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Complex Modes in Shielded Suspended 
Coupled Microstrip Lines 

Abstroet -The existence of complex modes in electrically shielded 
suspended coupled microstrip lines has been studied extensively, and 
the results are presented. A rigorous full-wave spectral-domain ap- 
proach (SDA) with a newly proposed and tested set of basis functions 
can efficiently and accurately determine the propagation characteristics 
of the dominant, higher order, and complex modes for planar or 
quasi-planar transmission lines. These basis functions are validated by 
comparing the convergence study of field solutions with those obtained 
by various sets of preconditioned bases and by the unconditioned 
subdomain ones. Excellent agreement is obtained for the propagation 
constants and the normalized complex longitudinal and transverse 
current distributions on conducting strips for the strongly coupled 
microstrip lines. This suggests that the proposed set of basis functions 
can be a viable candidate for the SDA in analyses of planar or quasi- 
planar transmission lines. 

Under all the particular case studies of this paper, it is shown that the 
complex modes may exist in all the shielded suspended coupled mi- 
crostrip lines, even when the substrate dielectric constant is low. Theo- 
retical results for the fundamental, higher order, evanescent, and com- 
plex modes are presented for suspended coupled microstrip lines. 

1. INTRODUCTION 
LANAR AND quasi-planar transmission lines are P the most commonly used waveguides in microwave 

and millimeter-wave integrated circuits [ 11, [2]. Various 
applications such as impedance matching, filter, and cou- 
pler designs may inevitably introduce discontinuities into 
the passive circuits. Therefore the characterization of 
planar or quasi-planar transmission line discontinuities 
becomes an important task for the computer-aided design 
(CAD) of microwave and millimeter-wave integrated cir- 
cuits [3]. For electrically shielded planar and quasi-planar 
transmission lines, many authors have reported that the 
fundamental, higher order, evanescent and complex modes 
may coexist [41-[7]. As Omar and Schunemann reported 
in their work of finline analysis [4], complex modes and 
backward-wave modes may exist in any planar guiding 
structure with closed boundaries. Later the inhomoge- 
neously and anisotropically filled waveguides [5] and the 
symmetric microstrip line [6], [7] were also found to 
support complex modes. Overlooking either one or both 
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of a pair of complex modes in the waveguide discontinuity 
analysis may lead to an irregularity of circuit parameters 
in the entire frequency spectrum of interest [8]. 

So far two methods for obtaining the solutions of the 
complex modes for microstrip and slotlines (or finlines) 
have been reported. The singular integral equation (SIE) 
technique has been efficiently applied to analyze a sym- 
metric finline [4] and a microstrip line [6]. In the litera- 
ture [7], a discrete space-domain formulation has been 
used to calculate various modes for a symmetric mi- 
crostrip line in closed structure. 

Notice that all the reported solutions of the complex 
modes are for symmetric transmission lines. Besides the 
SIE and the discrete space-domain approach, the spec- 
tral-domain approach (SDA) is the most widely used 
method in analyzing millimeter-wave planar or quasi- 
planar transmission lines for the dominant and the first 
few higher order modes [41. This paper extends the SDA 
to analyze the possible existence of complex modes in 
symmetric or asymmetric planar or quasi-planar transmis- 
sion lines embedded in a layered dielectric medium. 
Should both longitudinal and transverse current distribu- 
tions on each conducting strip be correctly obtained for 
any type of modal solution, the field solutions would be 
exact. One of the objectives of this paper is to obtain 
currents that are as close to being true as possible for any 
modal solution of general printed circuit lines. To achieve 
this, a newly proposed set of basis functions satisfying the 
criteria reported by Jansen [9] is derived from a two- 
dimensional electrostatic wedge problem. 

Subsection 11-A briefly describes the basic features of 
the SDA, and subsection 11-B lists the proposed set of 
basis functions with detailed discussions. Subsection 11-C 
qualitatively compares the numerical efficiency of the 
proposed bases with various types of preconditioned bases, 
namely 1) the sinusoidal type [lo], [ll], i.e., Fourier sine 
and cosine series divided by a term that corresponds to 
the edge singularity of an infinitely thin metal strip, and 
2) the Chebyshev type [12], i.e., Chebyshev functions of 
the first and second kinds modified by the edge condition. 
These two sets of basis functions will be designated as S 
(sinusoidal) type and C (Chebyshev) type herein. 

To test the accuracy of results obtained by using the 
proposed bases, subsection 111-A performs a comparative 
convergence study of the complex modes obtained by 

OO18-9480/90/0900-1278$01 .OO 0 1990 IEEE 



KUO AND TZUANG: COMPLEX MODES IN COUPLED MICROSTRIP LINES 1279 

Y 

7 
h3 

t 
hz + 
hi 
t X  

Fig. 1. Cross-sectional view of the asymmetric coupled microstrip lines 
embedded in a layered dielectric medium. 

various types of basis functions for asymmetric strongly 
coupled microstrip lines. Because the entire-domain (or 
global) basis functions are preconditioned, it is necessary 
to test whether the results obtained by the proposed bases 
are the same as those obtained by the unconditioned 
ones, namely, the discretized or subdomain bases 1131 (see 
also Section 111). The subdomain bases are believed to be 
capable of representing true complex current distribu- 
tions of single or coupled microstrip lines if each metal 
strip is partitioned into an adequate number of subsec- 
tions. Subsection 111-B compares the capability of repre- 
senting true complex current distributions on the printed 
lines for various types of preconditioned bases and uncon- 
ditioned subdomain bases. Subsection 111-C presents the 
theoretical fundamental, higher order, evanescent, and 
complex modes of suspended coupled microstrip lines 
with different dielectric substrates. 

11. FORMULATION 
A. Spectral-Domain Approach 

The SDA has been widely accepted for analyzing trans- 
mission lines, regardless of whether they are open or 
closed structures [141. When analyzing the coupled mi- 
crostrip lines embedded in a layered dielectric medium as 
shown in Fig. 1, the SDA is even more attractive if the 
concept of the immittance approach is invoked [151. Con- 
ceptually the immittance approach, which combines net- 
work and field theories, provides much more physical 
insight than other techniques developed for microstrip 
and slotline analyses. For the structural geometry shown 
in Fig. 1, the SDA starts with the Fourier transform 
defined as follows: 

~ ( q ( x ,  y ) )  = jrn ~ ( x ,  y ) - e j a x h  = + ( a , y ) .  (1) 

By the immittance approach [151, the dyadic Green's 
function 2 can be derived as 

--m 

Fig. 2. A two-dimensional corner defined by an intersection of two 
conducting planes. 

where y is the propagation constant to be determined 
and exp(jwt - y z )  is assumed. 

Next, the Galerkin procedure is applied to (2). The 
unknown surface current densities on each conducting 
strip are expanded by a complete set of basis functions. 
After matching the final boundary conditions imposed on 
the metal-dielectric interface, e.g., y = h,  + h, in Fig. 1, 
a nonstandard eigenvalue problem can be formulated, 
namely 

(3) 

The propagation constants ( y ' s )  are the roots of (3). 
These roots may stand for the fundamental, higher order, 
evanescent, or complex modes for the coupled microstrip 
lines. The integer subscript p stands for the order of the 
square matrix G. 

B. The Proposed Set of Basis Functions and Its Derivation 
Motivated to obtain very accurate modal solutions, in- 

cluding the possible existence of complex modes, we seek 
to develop an alternative set of basis functions. Jansen [91 
listed six criteria for obtaining basis functions used in the 
SDA, namely 1) edge condition, 2) twice continuous dif- 
ferentiability, 3) completeness, 4) integral relationship 
between longitudinal and transverse currents of a mi- 
crostrip line, 5) ability to represent nearly true modal 
current distributions, and 6) capability of being Fourier 
transformed. Now consider the two-dimensional electro- 
static wedge problem shown in Fig. 2, in which the com- 
plete solution for the surface charge distribution at point 
PI,=o can be expressed as [16] 

03 

a( p )  = a,p(n"/B)-' (4) 
n = l  

where p is the distance measured from the corner, and 
the an's are constants. For the infinitely thin microstrip 
lines shown in Fig. 1, 8=2.rr. Let us consider the pro- 
posed basis functions for the current distributions on strip 
1 of width W, in Fig. 1 (the derivation of those for the 
currents on strip 2 is identical). Since the dielectric sub- 
strates are nonmagnetic, the longitudinal current J J x )  is 
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proportional to the charge distribution a ( x )  under quasi- 
TEM conditions [ 171. Letting the normalizing variable 
u1 = 2/(X - SI - W, /2)W, and subsequently P " / ~ - '  = 

(Wl /2)n/2-'-(1 f u ~ ) ~ / ~ - ~  for n = 1,2; . ., we obtain 
J z l 1 ~ u I ~  corresponding to the edge at U, = - 1 as 

m 

JZl l (U1)  = c U l ) n / z - l  ( 5 )  

JZl2( ul) = C b2n( 1 - u ~ ) ~ / ~ - ~ .  

n = l  

and Jz12(u1) corresponding to the edge at-u, = 1 as 
m 

( 6) 
f l = l  

In (5) and (6), the bl,'s and bZn's are constants and 
- 1 < U, < 1. The longitudinal current on strip 1, Jzl(u,), 
is the sum of JzlI(ul) and Jz12(u1): 

Notice that Jzll(ul) (Jz12(ul)) is obtained by extending 
(4) at U, = - 1 (+ 1). If Jzl(ul) is expected to depend only 
on Jzll(ul) (Jz12(u1)) at u1 = - 1 (+ l), Jz12(uI) <Jzl,(u,>> 
is to be forced to zero at U, = - 1 (+ 1). One possible way 
of doing this is to adopt 

a( 1 f U l ) n / 2 - 1 / 2  
n/2-1- 

jzlmn(ul) = ~ 1 )  

+ $( 1 * u p 2  (8)  
where plus is for m = 1, minus is for m = 2, and n is the 
order of the basis functions. In (7), Nb is the number of 
basis functions ( jzlmn) used in the SDA for the expansion 
of Jzll or JZl2 .  Notice that the edge condition of an 
infinitely thin strip is guaranteed by the asymptotic behav- 
ior of Jzlm(ul) at U, = - 1 and 1 for m = 1 and 2, respec- 
tively. For example, as U, approaches -1, jzlll(ul) pre- 
vails and the asymptotic behavior 8-l" is guaranteed. On 
the strip away from the edges the longitudinal current 
distribution is then modeled by (7) and (8). Notice also 
that criterion 3 is satisfied by (7) and (8). It is obvious that 
the bases in (8) satisfy criterion 2. 

By integrating the following continuity equation im- 
posed on the metal strip as is done in [171, 

a a 
ax -(J,(x)e-'')+ ~ ( J z ( x ) e - ~ z ) =  - jwa(x)e-yz . (9) 

where a ( x )  has been defined in (4), we obtain 

Jxl(U1) = J x I l ( ~ 1 )  + Jx12(u1) 

2 Nb 

= C C dimnjximn(Ui), (10) 
m = l  n = l  

and 
jx lmn(u, )  = (1, u , ) " / ~ - ~ T ( I ~  u ~ ) ~ / ~ + ~ / ~  

(11) 
n/2+1  + $(1 f Ul) 

where the plus and the minus correspond to the subscript 

m = 1 and 2, respectively. Notice that Jxl(u,)  vanishes at 
the rate of at U, = - 1  and U, = 1. In addition, 
jxlln(l) = 0 and jx12,(- 1) = 0 for all n > 1. By doing so, 
Jxll(ul) and Jx12(u1) have no influence on the transverse 
current distribution at the edges U, = 1 and u1 = - 1 ,  
respectively. Although there are many possible ways of 
doing this, (7) and (8) and (10) and (11) are found to be 
capable of modeling true current distributions. 

When n = l  and 2, the Fourier transforms of ( l +  
u ~ ) ~ / ~ - ~  can be readily derived, and the results are 

e-'' W, 

J ; ; 2  
F [ ( 1 + U - ,121 = - . - * [ ~ ( Z K )  + jz ( z K ) ]  .ejrrxc 

(12) 

(13) 0 1  ~ [ ( l + u , )  ] =--.W,-sin(K)-ejaxc K 

where K = (aW,) /2 ,  x, = S, + $ W,, and the Fourier trans- 
form variable a > 0. % and 3 are respectively the 
Frensel cosine and sine integrals, defined by 

%( 6) + jq (6)  = eju du. ( 14) 
0 

By definition and by integrating by parts, F[(1+ 
with n > 3 can be expressed as 

- ( n - 2) . F [ ( 1 + U,) n/2 -2 ] ) .  ( 15) 

Since F[W- x)] = ~ * [ W x ) l  for any real function Wx), 
where the asterisk denotes the complex conjugate, the 
Fourier transform of (1 - u ~ ) ~ / ~ - ~  can be readily ob- 
tained from that of (1 + The numerical evalua- 
tions of e and 3 can be found in [MI. Thus criterion 6 
is satisfied. Now, only criterion 5 has not been addressed. 

It is obvious that the basis functions in (8) and (11) are 
well suited to determine the current distributions on the 
asymmetric coupled microstrip lines in Fig. 1. Even in the 
case of a symmetric structure, e.g. a symmetric microstrip 
line, they automatically result in both even and odd 
modes of solutions. 

C. Other Bases Commonly Used for Analyzing Asymmetric 
Structures by the SDA or Space-Domain Technique 

Jansen [lo] chose a complete set of basis functions 
satisfying the edge condition term by term to compute the 
characteristics of both shielded and open planar mi- 
crowave and millimeter-wave transmission lines. Later, 
Schmidt et al. [ l l ]  used only two expansion terms of this 
set of basis functions to obtain both the propagation 
constant and the characteristic impedance with 0.5% ac- 
curacy for an arbitrarily located unilateral finline. 
Kobayashi et al. formulated closed-form expressions to 
approximate the unknown longitudinal and transverse 
current distributions on microstrip line [ 191 and coupled 
microstrip lines [20]. Both sets of closed-form expressions 
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have resulted in accurate dominant-mode solutions when 
they are employed in the SDA. However, the mathemati- 
cal expressions of the basis functions for the coupled 
microstrip lines are complicated [20]. Recently, FachC and 
De Zutter [131, [211 analyzed single and coupled mi- 
crostrip lines in the space domain using the method of 
moments to discretize each current component. Tripathi 
and Lee [121 used Chebyshev polynomials of the first and 
second kinds modified by the edge condition to compute 
the dispersive characteristics of multiple coupled line 
structures in an inhomogeneous medium. 

One of the most advantageous features of the SDA is 
the fact that the preconditioned basis functions do not 
have to be very accurate to obtain a moderately accurate 
propagation constant for practical applications [ 191. An 
insufficient number of basis functions and inaccurate 
bases, however, will result in poor SDA solutions 1193, 
[20]. This is due to the fact that criterion 5 in subsection 
11-B is violated. 

To verify the fact that the proposed set of bases is 
capable of modeling true currents, i.e., criterion 5, we 
incorporate the SDA basis functions employed in [10]-[12] 
into the analysis of asymmetric coupled microstrip lines 
for comparative study. The Fourier transforms for these 
sets of basis functions are listed here for reference. 

1) Sinusoidal ( S )  Type [lo], [ll]: 

+ Bo( aW - p,) . (16) 
n- 

&,( a) = - j -  -W* [ B,( a~ + p,) . ejPn 
2 

- Bo( aW - p,) . (17) 

where p ,  = ( n  /2)rr. 
2) Chebyshev (C) Type [12]: 

&,( a) = ( j ) "  * rr .W-B,( a W )  (18) 

&,( a) = ( j ) "  *rr*W*( n + 1) *B,+,( a W ) / (  a W ) .  (19) 

In (16) through (19), the center of the strip is located at 
x = 0. B, is the nth-order Bessel function of the first 
kind, n = 0,1,2,. * a ,  and W is the half-width of the strip. 

To compare the numerical efficiencies of the three sets 
of global or preconditioned bases, we must compare the 
CPU times used for setting up the determinantal matrix 
G in (3). For the proposed bases, a) F[(l+ for 
n 3, can be obcained by fhe application of recursive 
formula (15); b) jxlm,(a) = jzlmp(a), p = n + 2 for m = 1 
or 2, ((8) and (11)); and_ c). L,,,(a) and iXlZn(a) are the 
complex conjugates of jzl ln(a) and jxll,(a), respectively, 
for n = 1,2; . -, Nb (subsection 11-B). Therefore the most 
time-consuming part is the -evaluation of_ Fresnel inte- 
grals. The computations of jzlmn(a) and jXlm,(a) invoke 
simple algebraic computations on the stored data. Our 
experiences show that the CPU time of the SDA program 
using bases of the S type is nearly 10% more than that 

using bases of the C type or the bases proposed for 
implementing a determinantal matrix of size 32 X 32. 

111. RESULTS 
The legitimacy of the proposed bases will be tested 

against the existing ones, namely, the preconditioned S 
and C types and the unconditioned subdomain bases. We 
choose a pair of asymmetric strongly coupled microstrip 
lines (Fig. 1) with aspect ratios of S, : W, : S,: W, : S, = 

89.5:20: 1:40:49.5 as a test case. This can be a difficult 
situation for the SDA program to obtain an accurately 
converged result for any modal solution. Due to the 
strong coupling between the adjacent edges, a sufficient 
number of bases and a sufficiently large number of spec- 
tral terms are required to obtain very accurate results. 
Similar experience was'reported in [lo], where a square 
matrix of order 20 and lo5 spectral summation terms 
were used to obtain accurate electromagnetic field solu- 
tions for a narrow microstrip with a shielding/line width 
ratio of 30. Here, a square matrix order from 32 to 40 (16 
to 20 for one strip) and a number of spectral terms N 
from lo4 to lo5 are used in the SDA program to perform 
the comparative convergence study of various types of 
bases. 

The discretized, or subdomain, bases [13] are also in- 
corporated into the SDA to verify the solutions. Each 
conducting strip is partitioned into M intervals of equal 
width, and the modeling of current distributions in each 
interval is similar to that of [13] except that the first three 
terms of (5 )  and (6) are used to account for the edge 
condition in the outermost intervals. These unconditioned 
subdomain bases enforced with the edge condition are 
simply called the unconditioned bases or the subdomain 
bases throughout the paper. 

The results reported herein are obtained by using the 
RM/FORTRAN version 2.4 on an IBM personal com- 
puter or the VAX/VMS FORTRAN on a VAX-3200 
workstation. Both result in the same answers for all the 
particular case studies presented here. Since one of the 
goals of this work is to obtain modal solutions that are as 
accurate as possible, faster converging algorithms, such as 
the technique reported in [7] are not used. No approxima- 
tion is made except for the truncation on the finite 
number of spectral summation terms N .  Al1,the variables 
in the SDA program are declared as double precision to 
maintain the best accuracy. 

A. Convergence Study of the Modal Solution of the Strongly 
Coupled Microstrip Lines 

Table I presents the solution of the complex mode of 
the asymmetric strongly coupled microstrip lines analyzed 
at 150 GHz. Two aspects of the convergence study will be 
discussed, namely the number of spectral terms ( N )  and 
the number of basis functions (A$). The bases adopted in 
Table I fall into two classes, namely preconditioned bases 
and unconditioned subdomain bases. 
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TABLE I 
CONVERGENCE STUDY OF THE NORMALIZED PROPAGATION CONSTANT OF 

A COMPLEX MODE OF THE SUSPENDED ASYMMETRIC STRONGLY 
COUPLED MICROSTRIP LINES. 

1.54454SS+jO.OlS9S4261 
1.5445237+j0.019005269 
1.544512S+j0.019012435 

1.5444925+j0.019006956 
1.5444954+iO.O19019S70 

5x104 

1.5457056+jO.O1916407S 
1.5457034+j0.019164305 
1.5457030+j0.019164324 

1.5444999+j0.019004243 
1.5445019+j0.019019659 
1.544502O+j0.019017690 

Subdomain 1.5445036+j0.019018027 1.5445099+j0.019015763 
lbases M'4 I :i I 1.5444991+j0.019019360 I 1.5445055+j0.01901i006 1 
bases hl 1.5445063+jO.O1901672S 

Structural parameters: 2a = 2.54 mm, SI = 1.13665 mm, W, = 
0.254 mm, S, = 0.0127 mm, W, = 0.508 mm, S ,  = 0.62865 mm, h, = h ,  = 
0.254 mm, h ,  = 0.762 mm; = E , ,  = 1, E , ,  = 2.2; frequency = 150 GHz. 

*lThese sets of bases belong to the class of preconditioned or entire- 
domain or global basis functions. The S and C type bases stand for 
sinusoidal [lo], I l l ]  and Chebyshev [12] types of bases, respectively. 

*'Nb is the number of the basis functions used to expand J, or J, on 
each conducting strip. The matrix size for the proposed set of bases is 
SN, X 8Nb,  and for the S or C type of bases it is 4Nb X 4Nb. 

*3Normalized complex propagation constant, k ,  being the wavenum- 
ber in free space. 

*4M is the number of equally partitioned intervals of each conducting 
strip. The first three edge terms in (5) and (6) are incorporated into the 
subdomain bases for both J, and J, at the outermost intervals. The 
matrix size is 4(M + 3) x 4(M + 3). 

The results obtained by the SDA using the precondi- 
tioned S and C types and the proposed bases are com- 
pared. Then the nearly converged solutions obtained by 
these preconditioned bases will be compared with those 
obtained by the unconditioned subdomain bases. 

To expand J, and J, on a conducting strip, the pro- 
posed set of bases uses a total of 4Nb basis terms, 
compared with the S or C type, which applies 2 Nb terms. 
Therefore the matrix G in (3) established by the proposed 
bases for the asymmetric coupled microstrip lines is 
8Nb X 8Nb in size, and that established by the S or C type 
is 4Nb X4Nb. For the same matrix size, we list the results 
with Nb = 6, 8, and 10 for the S and C types whereas 
Nb = 3, 4, and 5 for the proposed bases. The subdomain 
bases, however, need not have the same matrix size. Since 
we are interested in the nearly converged results, only the 
solutions with M = 20 and M = 40 are presented. 

On the other hand, the results with N = lo4 and 5 X lo4 
are presented for all types of bases, except that an addi- 
tional case with N = lo5 terms is used for the subdomain 
bases. 

As shown in Table I, the normalized propagation con- 
stants, i.e. y / k ,  ( = a / k ,  + j p  / k , ) ,  converge to 6.9 x 
lop4% (3.8 x lop2%), 2.6 x lop5% (9.9 x and 
6.5 X loF6% (1.6 X lov4%) for a ( p )  obtained by the use 
of S type, C type, and proposed bases, respectively, when 

the matrix size is increased from 32x32 to 40x40 with 
N = 5 x 1 0 4 .  As N increased from lo4 to 5X104 with 
matrix size 40 x 40, it is seen that all three preconditioned 
bases have resulted in approximately the same conver- 
gence rate with respect to N ,  i.e. 4X (lo-'%) for 
a (p ) .  Next we compare the apparently converged results 
obtained by the preconditioned bases, i.e., the solutions 
with N = 5 x lo4, Nb = 10 for the S or C type, and Nb = 5 
for the proposed bases, with those obtained by the subdo- 
main bases with M = 40 and N = lo5. We find that the 
normalized propagation constant obtained by the subdo- 
main bases agrees with those by the S type, C type, and 
proposed bases to 7.4 X lop4% (3.4 X 7.7 X 

(7.8 x lo-'%) and 2.8 x lop4% (5.1 x lop3%) ac- 
curacy for a ( p ) ,  respectively. Compared with bases of 
the S and C types the solutions obtained by the proposed 
bases have the closest agreement with those obtained by 
the unconditioned subdomain bases. 

We do not know yet which set of basis functions results 
in the closest solution to the true current. Thus the next 
subsection plots the complex modal J, and J, current 
distributions for the comparative study. 

B. Current Distributions on Strongly Coupled Microstrips: 
Capability of Modeling True Current 
Distributions -Criterion 5 

The preconditioned basis functions in the SDA are 
required in order to represent the true modal current 
distributions. For the particular case of the asymmetric 
strongly coupled microstrip lines discussed in subsection 
111-A, the current distributions for the complex modes 
obtained by the proposed bases may nearly converge by 
using Nb = 4 and N = 5 X lo4, whereas bases of the S type 
and the C type require the use of Nb = 10 and N = 5 X lo4. 

Parts (a) through (d) of Fig. 3 illustrate the magnitude 
and phase of the normalized J, and J,  on strips 1 and 2 
for one of the complex modes. All the current compo- 
nents are normalized by the total longitudinal current on 
strip 1, i.e., I,. Using the same structural parameters and 
the same complex mode in Table I, the results obtained 
by the unconditioned subdomain bases and various pre- 
conditioned bases are presented. The number of spectral 
terms N and the number of intervals M used for the case 
of subdomain bases are lo5 and 40, respectively. 

As shown in parts (a) through (d) of Fig. 3, the normal- 
ized current distributions obtained by the S type and C 
type bases are oscillatory. Not shown in these figures is 
the fact that the magnitudes of the oscillations surround- 
ing the plots computed on the basis of the proposed bases 
decrease as Nb increases from 6 to 10. The current 
distributions presented for the S and C type bases are 
those for Nb = 10. In an average sense, all the bases result 
in close agreement for the normalized J,, and Jz2 compo- 
nents; however, the normalized J,, and Jx2 obtained by 
bases of the C type deviate appreciably from those ob- 
tained by the others. Notice that the longitudinal (Iz1 or 
J z 2 )  and transverse (JX1 or J x 2 )  currents of the complex 
mode are comparable in magnitude while the longitudinal 
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Fig. 3. Comparison of the complex mode current distributions obtained by the unconditioned subdomain and various types 
of preconditioned bases. The test conditions and the values of the normalized propagation constants for the complex 
modes are given in Table I. Nb = 10 and N = 5 x lo4 for both the S and C type bases; N,, = 4 and N = 5 X lo4 for the 
proposed bases; and M = 40 and N = 10' for the subdomain bases. (a) Magnitude and phase of the normalized J, 
distribution on strip 1. (b) Magnitude and phase of the normalized J, distribution on strip 2. (c) Magnitude and phase of 
the normalized J, distribution on strip 1. (d) Magnitude and phase of the normalized J, distribution on strip 2. 

currents may be approximately two orders of magnitude 
bigger than the transverse currents for the dominant 
modes. This reflects the fact that the normalized complex 
propagation constants obtained by bases of the C type 
converge to slightly different real part ((U) values than 
those obtained by other types of bases, as shown in 
Table I. 

For the case of the proposed bases the current distribu- 
tions are in excellent agreement with those obtained by 
the subdomain bases. This supports the fact that the 
normalized propagation constants obtained by subdomain 
bases are in closest agreement with those obtained by the 
proposed bases (See Table I). 

For the dominant c and T modes under the same test 
conditions, i.e., the strongly coupled microstrip lines, the 
convergence of the propagation constant and the normal- 
ized current distributions obtained by the unconditioned 
and the three types of preconditioned basis functions has 
also been investigated. It was found that the above-men- 
tioned results for the complex mode also apply to these 

two dominant modes. Thus the proposed set of bases is 
capable of modeling true currents on coupled microstrip 
lines. 

C. Fundamental, Higher Order, Evanescent, and Complex 
Modes in Suspended Coupled Microstrip Lines 

Some of the important features of the complex modes 
and the backward-wave modes of planar transmission 
lines were thoroughly discussed in [4]. Here, theoretical 
results for various types of modes of the suspended cou- 
pled microstrip lines are presented for the first time. For 
all the modal solutions shown later, the normalized prop- 
agation constant y / k 0 ( a  / k ,  + j p  / k o )  is plotted against 
frequency. The evanescent modes are in the lower parts 
of the figures. For one of a pair of complex modes, the 
normalized phase constant p / k ,  and the normalized 
attenuation constant a / k ,  are represented by a dotted 
line and a dashed line, respectively. Since the conver- 
gence study of the modal solutions has been established 
in subsections 111-A and 111-B, the search of the modal 
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Fig. 4. Normalized propagation constant y / k ,  = a / k o  -t j P / k ,  of 
the suspended coupled microstrip lines versus frequency. Structural 
parameters: 2a = 2.54 mm, S, = S, = 1.1049 mm, W, = W, = 0.127 mm, 
S, = 0.0762 mm, 3h, = h,  = 0.381 mm, h,  = 0.762 mm; E,, = E,, = 1, 
E, ,  = 2.2. (a) Odd-mode excitation. (b) Even-mode excitation. 

solutions is carried out by using the proposed basis func- 
tions with Nb = 3. 

Parts (a) and (b) of Fig. 4 plot the odd- and even-mode 
dispersion characteristics of the particular suspended cou- 
pled microstrip lines, respectively. At the high-frequency 
end, the dominant mode is designated as mode 1, the first 
higher order mode as mode 2, and so on. Reading from 
the right of each figure, the primed number denotes the 
mode coming out of the complex mode region. The back- 
ward-wave and complex mode regions are designated as 
bk and c k ,  respectively. The subscript k denotes different 
regions for the backward-wave and complex modes in the 
figure. The W-band (75-110 GHz) waveguide housing of 
2 . 5 4 ~  1.27 mm2 (100x50 mil2) is used. The relative di- 
electric constant of the suspended substrate is 2.2, and 
the thickness is 15 mils. 

The odd-mode case of Fig. 4(a) consists of two distinct 
sets of complex modes. One ranges from under 50 GHz to 
138 GHz, the other from 73 GHz to beyond 150 GHz. 
Notice that these two regions of complex modes have 

nearly the same values of imaginary ( p )  parts. In the case 
of the even mode, Fig. 4(b) indicates that the first higher 
order mode has a cutoff frequency near 55 GHz, which is 
the reduction of the cutoff frequency of an air-filled 
W-band waveguide (59 GHz) due to the presence of the 
dielectric layer. The first pair of complex modes is beyond 
130 GHz. 

Keeping the same physical structure as used in Fig. 4 
except for an increase in the relative dielectric constant 
from 2.2 to 10, the odd-mode case of Fig. 5(a) has four 
sets of backward-wave modes and nine regions of complex 
modes, and the modal solutions become much more com- 
plicated than those in Fig. 4(a). Notice that mode 1 and 
mode 2, and mode 6 and mode 7 do not intersect as 
shown in the zoomed windows. Similarly, Fig. 5(b) of the 
even-mode case has at least two and six sets of backward- 
wave and complex modes, respectively, in the frequency 
spectrum plotted. 

Through the particular case studies investigated, a few 
observations from the modal solutions with complex 
modes are made: 1) the complex modes and the back- 
ward-wave modes may start to appear as the second and 
the third higher order modes (See Fig. 5); 2) the complex 
modes may start to appear in the third and fourth higher 
order modes even when a low-dielectric-constant sub- 
strate is used (See Fig. 4(a)); 3) the complex modes may 
spread entirely beyond the frequency spectrum of interest 
for certain suspended coupled microstrip lines (See Fig. 
4(a)); 4) the complex modes may repeatedly occur within 
a certain frequency band (See Fig. 5(a)); and 5 )  the 
above-cutoff higher order modes may result in the gener- 
ation of complex modes (See Fig. 5(b)). 

Therefore, for the particular case study of the sus- 
pended coupled microstrip lines, it is important to take 
into account the existence of the complex modes in for- 
mulating the discontinuity problem. 

IV. CONCLUSION 
An extensive convergence study of the full-wave spec- 

tral-domain analysis (SDA) of quasi-planar suspended 
coupled microstrip lines is presented. It validates the use 
of the proposed set of bases incorporated into the SDA 
program. In particular, the case of the suspended strongly 
coupled microstrip lines is investigated thoroughly. The 
comparative analyses of the normalized current distribu- 
tions, which are obtained by the proposed bases and other 
commonly used preconditioned and unconditioned bases, 
indicate that the solutions based on the proposed bases 
exhibit the smoothest current distributions for the com- 
plex modes and have excellent agreement with those 
obtained by the unconditioned subdomain bases. Thus 
this paper provides a viable set of basis functions for the 
SDA in analyzing transmission lines of planar or quasi- 
planar structures. 

Of more importance is the fact that the suspended 
coupled microstrip lines may have complex modes which 
start to appear as the first few higher order modes even 
when a substrate of low dielectric constant (E, = 2.2) is 
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Fig. 5. Normalized propagation constant y/k, = a / k ,  + j p / k ,  of the suspended coupled microstrip lines versus 
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0.381 mm, h, = 0.762 mm; crl  = E , ~  = 1, = 10. (a) Odd-mode excitation. (b) Even-mode excitation. 



1286 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 38, NO. 9, SEPTEMBER 1990 

used. In contrast to the suspended coupled microstrip 
lines, the symmetric finline may have complex modes at 
fairly higher order modes, say the eighth higher order 
mode [81. Thus the characterization of the discontinuity 
problem of the suspended coupled microstrip lines would 
have inaccurate results if the effects of the complex 
modes were not included in the analysis. The results 
presented in this paper may prove useful for understand- 
ing the operation of microwave or millimeter-wave cir- 
cuits integrated by suspended coupled microstrip lines 
involving discontinuities. 

REFERENCES 
T. Itoh, “Overview of quasi-planar transmission lines,” IEEE 
Trans. Microwave Theory Tech., vol. 37, pp. 275-280, Feb. 1989. 
R. G. Arnold, I. G. Eddison, and R. H. Jansen, “A comprehensive 
CAD approach to the design of MMIC‘s up to millimeter-wave 
frequencies,” IEEE Trans. Microwave Theory Tech., vol. 36, pp. 
208-219, Feb. 1988. 
N. H. L. Koster and R. H. Jansen, “The microstrip discontinuity: 
A revised description,” IEEE Trans. Microwave Theory Tech., vol. 
MTT-34, pp. 213-223, Feb. 1986. 
A. S. Omar and K. F. Schunemann, “Formulation of the singular 
integral equation technique for planar transmission lines,” IEEE 
Trans. Microwave Theory Tech., vol. MTT-33, pp. 1313-1322, Dec. 
1985. 
A. S. Omar and K. F. Schunemann, “Complex and backward-wave 
modes in inhomogeneously and anisotropically filled waveguides,” 
IEEE Trans. Microwave Theory Tech., vol. MlT-35, pp. 268-275, 
Mar. 1987. 
W.-X. Huang and T. Itoh, “Complex modes in lossless shielded 
microstrip lines,” IEEE Trans. Microwave Theory Tech., vol. 36, 
pp. 163-165, Jan. 1988. 
C. J. Railton and T. Rozzi, “Complex modes in boxed microstrip,” 
IEEE Trans. Microwave Theory Tech., vol. 36, pp. 865-874, May 
1988. 
A. S. Omar and K. F. Schunemann, “The effect of complex modes 
at finline discontinuities,” IEEE Trans. Microwave Theory Tech., 
vol. MTT-34, pp. 1508-1514, Dec. 1986. 
R. H. Jansen, “High-speed computation of single and coupled 
microstrip parameters including dispersion, higher order modes, 
loss and finite thickness,” IEEE Microwave Theory Tech., vol. 
MTT-26, pp. 75-82, Feb. 1978. 
R. H. Jansen, “Unified user-oriented computation of shielded, 
covered, and open planar microwave and millimeter-wave trans- 
mission line characteristics,” Microwave, Opt. Acoust., vol. 3, no. 
1, pp. 14-22, Jan. 1979. 
L. P. Schmidt, T. Itoh, and H. Hofmann, “Characteristics of 
unilateral fin-line structures with arbitrarily located slots,” IEEE 
Trans. Microwave Theory Tech., vol. MTT-29, pp. 352-355, Apr. 
1981. 
V. K. Tripathi and H. Lee, “Spectral-domain computation of 
characteristic impedances and multiple ports coupled microstrip 
lines,” IEEE Trans. Microwave Theory Tech., vol. 37, pp. 215-221, 
Jan. 1989. 
N. Facht and D. D. Zutter, “Rigorous full-wave space domain 
solution for dispersive microstrip lines,” IEEE Trans. Microwave 
Theory Tech., vol. 36, pp. 731-737, Apr. 1988. 
R. H. Jansen, “The spectral domain approach for microwave 
integrated circuits,” IEEE Trans. Microwave Theory Tech., vol. 
MTT-33, pp. 1043-1056, Oct. 1985. 

T. Itoh, “Spectral domain immitance approach for dispersion 
characteristics of generalized printed transmission lines,” IEEE 
Trans. Microwave Theory Tech., vol. MTT-28, pp. 733-736, July 
1980. 
J. D. Jackson, Classical Electrodynamics. New York Wiley, 1975, 
ch. 2. 
E. J. Denlinger, “A frequency dependent solution for microstrip 
transmission lines,” IEEE Trans. Microwave Theory Tech., vol. 
MTT-19, pp. 30-39, Jan. 1971. 
M. Abramowitz and I. A. Stegun, Eds., Handbook of Mathematical 
Functions with Formulas, Graphs, and Mathematical Tables. New 
York: Dover, 1964, p. 300. 
M. Kobayashi and F. Ando, “Dispersion characteristics of open 
microstrip lines,” IEEE Trans. Microwave Theory Tech., vol. MTT- 
35, pp. 101-105, Feb. 1987. 
M. Kobayashi and H. Momoi, “Longitudinal and transverse cur- 
rent distributions on coupled microstrip lines,” IEEE Trans. Mi- 
crowave Theory Tech., vol. 36, pp. 588-593, Mar. 1988. 
N. FachC and D. D. Zutter, “Circuit parameters for single and 
coupled microstrip lines by a rigorous full-wave space-domain 
analysis,” IEEE Trans. Microwave Theory Tech., vol. 37, pp. 
421-425, Feb. 1989. 

Q 

Jen-Tsai Kuo (S’89) received the B.S. degree in 
communication engineering from National 
Chiao Tung University (NCTU) in 1981 and the 
M.S. degree in electrical engineering from Na- 
tional Taiwan University in 1984, both in Tai- 
wan, Republic of China. Since August 1984, he 
has been with the Department of Communica- 
tion Engineering at NCTU, where he is working 
toward the Ph.D. degree and is a research assis- 
tant in the Microelectronics and Information 
Science and Technology Research Center. He is 

also a lecturer at the Microwave and Communication Electronics Labo- 
ratory. His research interests include microwave and millimeter-wave 
integrated circuit design. 

Q 

Ching-Kuang C. Tzuang (S784-M’87) was born 
in Taiwan on May 10, 1955. He received the 
B.S. degree in electronic engineering from Na- 
tional Chiao Tung University, Hsinchu, Taiwan, 
in 1977 and the M.S. degree from the University 
of California at Los Angeles in 1980. 

From February 1981 to June 1984, he was 
with TRW, Redondo Beach, CA, working on 
analog and digital monolithic microwave inte- 
grated circuits. He received the Ph.D. degree in 
electrical engineering in 1986 from the Univer- 

sity of Texas at Austin, where he worked on high-speed transient 
analyses of monolithic microwave integrated circuits. Since September 
1986, he has been with the Institute of Communication Engineering, 
National Chiao Tung University, Hsinchu, Taiwan, R.O.C. His research 
activities involve the design and development of millimeter-wave and 
microwave low-noise amplifiers, nonlinear oscillators, mixers, isolators, 
filters, and applied microwave field theory. 

* 


