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Numerical Analysis of Nonequilibrium Electron 
Transport in AlGaAs/InGaAs/GaAs 

Pseudomorphic MODFET’s 
TAHUI WANG AND CHENG-HSIANG HSIEH 

Absrract-Nonequilibrium electron transport in the InGaAs pseu- 
domorphic MODFET’s has been analyzed with the moment equations 
approach. In our model, the momentum and energy balance equations 
for the two-dimensional electrons in the InGaAs channel are solved 
with relaxation times generated from a Monte Carlo simulation. The 
two-dimensional electron wave functions and the quantized states ener- 
gies in the InGaAs quantum well are calculated exactly from the Schro- 
dinger equation along the direction perpendicular to the quantum well. 
Also included is a two-dimensional Poisson equation solver. In the cal- 
culation, all of the equations are solved iteratively until a self-consist- 
ent solution is achieved. The simulation result for a realistic device 
structure with a 0.5-pm recessed gate shows a significant overshoot 
velocity of 4.5 x lo7 cm/s at a drain bias of 1.0 V.  Electron temper- 
ature reaches a peak value of around 2500 K under the gate. In energy 
transport, the diffusive component of the energy flux is found to be 
dominant in the high-field region. 

I. INTRODUCTION 
N RECENT YEARS, submicrometer AlGaAs/ I InGaAs /GaAs pseudomorphic modulation doped field- 

effect transistors (MODFET) [ 13 have attracted consid- 
erable interest because of their potential for ultra-high 
speed applications. The conducting channel of a pseudo- 
morphic MODFET is a thin InGaAs layer sandwiched be- 
tween a doped AlGaAs layer and an unintentionally doped 
GaAs buffer. The inclusion of the InGaAs layer is to pro- 
vide better electron confinement and superior electron 
transport characteristics. In these devices, the sheet con- 
centration of the two-dimensional electron gas (2DEG) is 
increased over comparable AlGaAs /GaAs structures due 
to the increase of the conduction band-edge discontinui- 
ties at the heterojunctions. Electron mobility and steady- 
state saturation velocity in InGaAs are intrinsically higher 
than those in GaAs. Furthermore, owing to a larger I’ val- 
ley to L valley energy separation, the intervalley scatter- 
ing in InGaAs occurs at relatively higher electron energies 
and therefore a larger non-steady-state electron overshoot 
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velocity [2], [3] is also expected in InGaAs. A higher 
electron velocity and a larger 2DEG density have lent 
these devices an excellent candidate for high-speed digital 
and analog applications. The cut-off frequencies of the 
0.25-pm pseudomorphic MODFET’s have been demon- 
strated to be around 100 GHz [4]. 

In order to study the charge-modulation behavior of the 
InGaAs potential well in which the quantum-size effects 
are prominent, it is necessary to solve the Schrodinger 
equation and the Poisson equation self-consistently with 
various effects taken into account, for example, many- 
body exchange force, donor neutralization, and wave- 
functions penetration into the large bandgap materials. 
The pseudomorphic MODFET’s have been studied by 
Ando and Itoh [ 5 ]  using this approach. However, their 
charge control model is subject to some limitations. i) The 
Poisson equation is solved only one-dimensionally . 
Hence, Ando and Itoh’s model is valid only in the low- 
field region of the channel where the gradual channel ap- 
proximation (GCA) is appropriate. ii) The parasitic or ac- 
cess regions of the device are not included, which are of 
importance to the device performance especially in the 
submicrometer domain. iii) The temperature of the 2DEG 
has to be assumed equal to the lattice temperature (300 
K).  The first two limitations can be removed by solving 
the two-dimensional Poisson equation in the entire de- 
vice. The third one involves the problem of electron trans- 
port and one has to use a more advanced transport model. 

Many authors [ 6 ] ,  [7] have employed the continuity 
equation and the current equation together with a field- 
dependent mobility model in their analyses of the electron 
transport in the MODFET’s. Based on the assumption that 
the electron drift velocity is always in equilibrium with 
the local electric field, these conventional transport 
models lack the capability to treat the nonstationary prop- 
erties correctly. Consequently, ensemble Monte Carlo 
(EMC) methods [8], [9] have been developed to solve the 
electron distribution function in the MODFET’s directly 
from the first-principle Boltzmann transport equation 
(BTE). However, the EMC methods require tremendous 
computer resources to track simultaneously a large num- 
ber (typically, several thousands) of electron trajectories 
in both real and momentum space. The third category of 
approaches consists of the momentum and energy balance 
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equations derived from the moments of the BTE [lo]. In 
addition to electron concentration, electron velocity and 
temperature are also involved. In these methods, it is a 
set of partial differential equations rather than a function 
of the local electric field to determine the local carrier 
energy and velocity. Although these models are not as 
rigorous as the EMC model, they provide a satisfactory 
description of the nonstatic characteristics of electron dy- 
namics. In order to keep the most important features of 
velocity overshoot without consuming too much CPU 
time, we have developed a moment equations model for 
the analysis of electron transport in the pseudomorphic 
MODFET's. 

A realistic device structure with a recessed gate is used 
throughout this study. Our model includes the one-dimen- 
sional continuity equation, momentum balance and en- 
ergy balance equations of electrons in the quantum well 
with momentum and energy relaxation times generated 
from the Monte Carlo simulations. The one-dimensional 
analysis along the direction parallel to the quantum well 
for electron transport is appropriate since the InGaAs 
channel is sufficiently thin and strong electron confine- 
ment always exists at both sides of the InGaAs channel. 
The wave functions and the quantized state energies of 
the 2DEG are calculated exactly from the Schrodinger 
equation along the direction perpendicular to the quantum 
well. Also included is a two-dimensional Poisson equa- 
tion solver to provide an electric field distribution for 
transport calculation and a band-edge profile used in the 
Schrodinger equation. Electron temperature instead of lat- 
tice temperature is employed to determine the electron 
distribution in the quantized states. All of the above men- 
tioned equations are iteratively solved until a self-con- 
sistent solution is achieved. 

In the following sections, the details of our model and 
the simulation procedures will be described and the basic 
physics of the device operation will be analyzed in depth 
based on the calculated results. 

11. PHYSICAL MODEL 
A .  Electron Transport Equations 

The investigated device structure is illustrated sche- 
matically in Fig. 1. In order to describe the two-dimen- 
sional (2D) electron dynamics in the channel in terms of 
electron concentration, velocity, and temperature by the 
balance equations, one can multiply the BTE by appro- 
priate functions of electron velocity and integrate it over 
the momentum space using the relaxation time approxi- 
mation for the collision integral [ 1 11 .  The moments of the 
BTE along the channel direction are derived as follows: 

i) The continuity equation 

a 
a x  - ( n , v )  = 0.  

ii) The momentum balance equation 
av qF k a  

m* r , ( E )  n,m* a x  a x  ( n , T )  - U -  = 0. (2)  

Source 

m Gate 

Drain 

E 

I S .  I. Substrate 

1 InGaAs Quantum Well Channel 

Fig .  1 .  Schemat ic  representation of an InGaAs  pseudomorphic MODFET. 

iii) The energy balance equation 

where 

sheet electron concentration, 
average electron velocity, 
electron temperature, 
average electron energy, 
electric field, 
Boltzmann constant, 
effective electron mass, 
equilibrium electron thermal energy, 
diffusive component in the energy flux. 

The momentum relaxation time r, and the energy re- 
laxation time r, are assumed to be functions of average 
electron energy E .  In (2), n,kT is interpreted as the elec- 
tron gas pressure. Hence 

expresses the deceleration due to the force exerted by the 
gradient of electron gas pressure. U ( a  v / a x )  is identified 
as the acceleration of electrons. In our one-dimensional 
(1 D) case, the electron energy flux is written as n, v ( E  + 
k T )  + Q in which n , v ( E  + k T )  is the convective com- 
ponent, or the energy drift, and Q is the diffusive com- 
ponent, or the energy diffusion. Therefore, the last two 
[erms in (3) describe the power conveyed by an energy 
flow gradient. The readers should be reminded that Q in 
(3) is defined to reflect the third central moment or the 
skewness of the distribution function [12]. Assuming a 
drifted Maxwellian distribution function, many authors 
simply neglected this energy diffusion term in their bal- 
ance equations [13]-[15]. The importance of keeping Q 
in (3) will be discussed later. We adopt an approximation 
for Q suggested in [ 121 to avoid the coupling between (3) 
and other higher order moment equations. 

5k2n,rIn( E )  T aT 
2m* a x '  

Q = -  (4) 
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In this equation 

5k2n,7,,(E) T 
2m* 

expresses the thermal conductivity of the electron gas ac- 1 

z 
z m 

... cording to the Wiedemann-Franz law [ 161, [ 171 in which 
the i- value is chosen to be 0 for the polar optical phonon 
scattering. Slightly different forms of Q have been used 
by Widiger et al. [ 181 and Azroff [ 191. It should be pointed 
out that one can derive E = $ m*v2 + kT in (3) for the 

0 0  0 0  
0 0  5 0  10 15 20 

Eiectric Field ( KV/cm 1 
2D since 
the present model includes multiple subbands and elec- 

transport in a sing’e ’llbband. Fig 2 Monte Carlo calculated steady-state electron energy and drift ve- 
locity versus electric field in In, 15Gao s5As and in GaAs 

tron transitions between different subbands are possible, 
we still choose E = $ m*v2 + kT as an approximation. 

B. Momentum and Energy Relaxation Times 

To obtain r,  and 7, as the functions of electron energy 
E,  the ensemble Monte Carlo simulations have been per- 
formed for bulk In,Ga, -,As (x = 0.15) at 300 K em- 
ploying the material parameters suggested by Brennan et 
al. [20]. In our calculation, principle scattering mecha- 
nisms such as polar optical phonon scattering and inter- 
valley phonon scattering are incorporated. The effect of 
impurity scattering is intentionally removed because the 
ionized donors are separated from the conducting channel 
by an undoped spacer layer in a MODFET structure. The 
2D quantization effect is neglected in the calculation of 
the relaxation times. This is justified by the Monte Carlo 
simulation in GaAs performed by Yokoyama e? al. [21]. 
Yokoyama’s result indicates that the low-field 2D elec- 
tron mobility at 300 K is about 8100 cm2/V . s, only 
slightly different from the bulk electron mobility of 8000 
cm2/V s in intrinsic GaAs. Calculated steady-state elec- 
tron energy and drift velocity versus electric field are 
drawn in Fig. 2. In addition, the results in bulk GaAs are 
also shown for comparison. These data are transformed 
into 7 , ( E )  and 7 , ( E )  in Fig. 3. 

The relaxation times have been used in a study of the 
transient response of the electron drift velocity [3] to an 
electric field step in homogeneous GaAs. In this study, 
the transient forms of (2) and (3) without the spatial de- 
rivatives are derived. The transient velocity v( ?) is solved 
using the Euler method. Fig. 4 directly compares the re- 
sults from the balance equations and from a Monte Carlo 
simulation. An excellent agreement is achieved. It is evi- 
dent that the velocity overshoot phenomena can be suc- 
cessfully analyzed with these balance equations. As a 
matter of fact, electron transport takes place in multiple 
valleys in GaAs. Our model actually assumes an equiva- 
lent single valley. This approximation is appropriate since 
the effects of valley transfer (Gunn effects) and band non- 
parabolicity have been simulated in the Monte Carlo cal- 
culations. Thus the multiple-valley transport behavior is 
incorporated in this “equivalent” single-valley model 
through the use of the Monte Carlo generated relaxation 
time. Consistency obtained in Fig. 4 confirmed that the 
multiple valley models [ 1 11 or the energy-dependent ef- 

_ .  

30 
E 
S 0 2 t  , ‘, 3 20 $ :: 0 

d B 
5 0 1  

E 
P 0 0  

\ /  - - 
\ ‘\.-__- 10 @ 

I c , w 

0 0  

,’ \, 

0 0  01 02 0 3  0 4  0 5  0.6 

Electron Energy ( e V )  

Fig. 3 .  Momentum and energy relaxation times as functions of electron 
energy calculated from the Monte Carlo simulation in the In, lsCao ssAs 
and in GaAs. 
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Fig. 4.  Transient response of the electron velocity in GaAs to an electric 
field step of 5.0 kV/cm starting at time = 0.0 ps. The solid line repre- 
sents the balance equations result and the dashed line is generated from 
a Monte Carlo simulation. 

fective mass [15] in the balance equations approach are 
not absolutely necessary. 

C. Quantization Effects of the Two-Dimensional 
Electrons 

As illustrated in Fig. 5 ,  a self-consistent conduction 
band-edge profile and the 2DEG wave functions are solved 
from the mutually coupled Poisson and Schrodinger equa- 
tions in our model. The spatial distribution of the 2D elec- 
trons is deduced from the electron wave functions. The 
Schrodinger equation for the envelope wave function I), (x, 
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Fig. 5 .  Self-consistent wave functions, conduction band edge, and charge 
density plotted as functions of position in the direction perpendicular to 
the quantum well. eo, e , ,  and e* are the lowest three eigenenergies and 
po, p,, and ‘pz are the corresponding wave functions. At this cross sec- 
tion, almost all of the donors are ionized. 

y )  in the ith subband at x is (x is defined along the channel 
direction) 

and 

V ( x ,  Y )  -q6(x, Y )  + Vb(  Y )  + v e x ( x ,  Y )  ( 6 )  
where 2rA is Planck’s constant, e i ( x )  is the ith eigen- 
energy at x, Vh( y )  is the heterojunction conduction band 
discontinuity, and Vex (x, y )  is the local exchange-corre- 
lation potential. Here, we use an analytic parameteriza- 
tion for Vex [22]. The inclusion of the exchange force re- 
duces the eigenenergies. The image potential energy is 
ignored because the dielectric constants differ so little in 
the AlGaAs /InGaAs /GaAs systems. In our quantization 
calculations, ( 5 )  is solved for the lowest three eigenstates 
( i  = 0, 1, and 2 ) .  For electron temperature at 300 K,  
more than 90% of total electrons are populated in these 
three subbands. Beyond the third eigenstate, the energy 
separation between two consecutive eigenstates is com- 
parable to or less than the thermal energy kT,  in our case. 
The thermal broadening may smear out the energy quan- 
tization effect. Therefore, electrons at higher states are 
treated as three-dimensional (3D) bulk electrons. The dis- 
tributions of the 2D and the 3D bulk electrons are deter- 
mined by an equivalent electron temperature, which is a 
variable in the transport equations. 

The wave functions solved from ( 5 )  are used to calcu- 
late the charge density in the 2D Poisson equation, i.e., 

v [ E < &  Y )  W ( x ,  Y ) ]  = - q [ N A ( x ,  Y )  - n ( x ,  Y ) ]  

( 7 )  
where E (x, y )  is the position-dependent dielectric con- 
stant and n ( x ,  y )  is the density of the electrons. 

where m is the index of the highest subband in which the 
quantization effects are considered. In our model, m is 
chosen to be 2. n i ( x )  is the 2DEG sheet concentration in 
the ith subband and n 3 d ( x ,  y )  represents the concentration 
of the 3D bulk electrons. They are expressed in the fol- 
lowing: 

where Er is the quasi-Fermi level and N,. is the effective 
density of states of the conduction band. ~ ( x ,  y ) ,  s(x,  y ) ,  
and H ( u ,  s )  are defined below 

e(.> - E,(& Y )  
kT > 

(x, y)  in the quantum well ( 11) 

0, otherwise i u ( x ,  Y )  E 

For electrons outside the InGaAs quantum well, U is zero 
by definition and H( U, s )  reduces to the familiar Fermi- 
Direct integral FI l2 ( s ) .  In (1 3), we modified the density 
of states and the integration lower bound in the Fermi- 
Direc integral for the 3D bulk electrons in the InGaAs 
layer to avoid double-counting of the 2DEG density. Once 
n ( x ,  y )  is known, the sheet concentration of the conduct- 
ing electrons in the channel is obtained by a simple 
integration 

n.T(x) = j 4 x 9  Y) dY. (14) 
well 

In the MODFET structures, the AlGaAs layers are usu- 
ally heavily doped so that the donor neutralization effects 
become crucial at a large gate bias. Neglect of the donor 
neutralization effects in the previous models [18] may 
cause a severe overestimate of the drain current. In this 
work, the ionized donor density N;  is evaluated using the 
Fermi-Dirac statistics. 

At the end of this section, we would like to mention 
that the 1D approximation of the Schrodinger equation is 
justified in the InGaAs pseudomorphic MODFET struc- 
tures since the potential variation in the perpendicular di- 
rection due to the bandgap discontinuities is much more 
abrupt than the potential variation in the channel direc- 
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tion. This situation is unlike the AlGaAs/GaAs 
MODFET's in which the quantum confinement may dis- 
appear in the high-field region of the channel. 

111. SIMULATION METHODS 
To solve all of the above mentioned equations self-con- 

sistently, a numerical algorithm illustrated in Fig. 6 is de- 
veloped. An successive underrelaxation (SUR) scheme 
has been employed to damp all corrections of the vari- 
ables in the program to avoid violent numerical fluctua- 
tions in iterations. 

In the simnlation, a nonuniform rectangular mesh is 
chosen to discretize the device under consideration. In or- 
der to have the boundary conditions of the electron sheet 
concentration at the source and drain ends for the trans- 
port calculations, the Schrodinger equation and the 1D 
Poisson equation along the y direction are first evaluated 
using the Neumann conditions for the potential at both 
upper and lower surfaces of the device. 

In the quantization part, ( 5 )  is solved at each x grid line 
to give e i ( x )  and the normalized rl/;(x) by a numerical 
method similar to that used in [23]. Then, the quasi-Fermi 
level E f ( x )  is calculated from a binary search such that 
n , ( x )  calculated by (8)-( 14) is equal to the value obtained 
from the transport equations. 

The 2D Poisson equation, i.e.,  (7) with N ; ( x ,  y )  cal- 
culated from the Fermi-Dirac distribution, is solved using 
the Incomplete Cholesky-Conjugate Gradient (ICCG) al- 
gorithm [24]. The convergence criterion for the potential 
in the ICCG routine is set equal to lop5 V.  Every time 
after the program passes its inner loop convergent criteria 
(see Fig. 6), the potential distribution is used to derive 
the electric field distribution for the transport calculation. 

In the transport part, the balance equations are solved 
sequentially. Since the balance equations are 1 D partial 
differential equations, a direct solution method (tri-diag- 
onal method [25]) is available. Equations (1) and (2) are 
combined into 

where 

Equation (15) is a second-order differential equation of 
n , ( x ) .  Given F ( x ) ,  T ( x ) ,  and r h ( E ( x ) ) ,  n , y ( x )  can be 
easily solved by the tri-diagonal method using the bound- 
ary conditions discussed previously. The electron veloc- 
ity profile ~ ( x )  and a v / a x  in (16) are then updated using 
this n, ( x )  solution by 

Similarly, we can derive a second-order differential equa- 
tion for T ( x ) .  Using a static field-temperature relation- 
ship at the source and data contacts as boundary condi- 

Schrodinger E q .  

Poisson Eq. 

I v  

Transport Eqs.  

output 

Results 

F i g .  6.  Numerical  algorithm for the pseudomorphic  MODFET simulation.  

tions, we can obtain new T ( x )  and correspondingly new 
E ( x )  by the tri-diagonal method. The functions of r,  ( E  ) 
and r, ( E ) are stored in the computer program as a tabular 
form. A linear interpolation technique is utilized to cal- 
culate new 7; ( E  ) and 7: ( E  ) in (15). Successively, n,, U ,  

and Tare corrected each iteration with a relaxation factor 
of 0.1 until the convergence criteria are satisfied under the 
current field profile. The small relaxation factor chosen 
here is to ensure the convergence stability and has not 
been optimized yet. The convergence tolerance for the 
transport equations is relative change in n,, U ,  and 
T. After the program passes the transport equations in the 
inner loop, the self-consistent n, and T solutions are then 
put in the Schrodinger and the Poisson equations again to 
generate a new field profile in the next outer loop iteration 
(see Fig. 6). The iteration process continues until all gov- 
erning equations are self-consistently solved. 

IV. RESULTS A N D  DISCUSSIONS 
In this section, we would like to discuss the simulation 

result for a half-micrometer gate Ino. 15Gao.s5As pseudo- 
morphic MODFET at room temperature. The simulation 
is performed at a drain bias of 1.0 V and a gate bias of 
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Source 

Drain 

Fig. 7 .  A self-consistent two-dimensional band-edge diagram of the sim- 
ulated pseudomorphic structure at a drain bias of 1 .O V and a gate bias 
of 0.0 v .  

0.0 V .  The device configuration and material parameters 
are listed in Table I. 

Fig. 7 is the calculated 2D conduction band-edge pro- 
file. This figure is drawn with the same scale in both x 
and y directions so that one can envision the quantum well 
in scale. Indeed, the quantum well is sufficiently thin that 
we can neglect the variation of the channel field in the 
y-direction in the quantum well and justify the 1D ap- 
proach to the transport equations. Fig. 8 shows the 2D 
distribution of the conducting electrons n(x, y )  in the 
simulated device. In the source access region, the electron 
concentration has a 6-function-like distributioq. The peak 
of the 2D electrons distribution is about 40 A from the 
AlGaAs /InGaAs interface. The density function be- 
comes more uniformly distributed under the gate. The 
reason is that the 2D electrons are heated by a large field 
and most of them are excited to higher states where the 
electrons have more spread wave functions. The distri- 
bution of the 2D electrons in the quantum well has inti- 
mate influence on the operation of the device. In this re- 
spect, the adoption of the 2D Poisson equation and the 
1 D Schrodinger equation simultaneously in the present 
model marks a major improvement over other existing 
MODFET models; For example, the 2D hydrodynamic 
model proposed by Widiger er al. [18] assumes a 
&function distribution of the 2D electrons exactly at the 
heterointerface. This assumption ignores the distance be- 
tween the 2D electrons and the heterointerface and appar- 
ently exaggerates the charge-modulation capability from 
the gate. On the other side, the 1D models employed by 
many people [ 5 ] ,  [6] include only the 1D Poisson equa- 
tion and the 1D Schrodinger equation. Due to the neglect 
of the potential variation in the channel direction, the 1D 
Poisson equation tends to overestimate the repulsive field 
in the perpendicular direction under the gate. This in turn 
leads to the 2D electrons accumulation closer to the bot- 
tom interface ( InGaAs /GaAs ) in the pseudomorphic 
MODFET's, in other words, a larger distance from the 
gate to the 2D electrons. From this viewpoint, an under- 
estimate of the gate capacitance is expected from the 1D 
models. 

The longitudinal electric field in the quantum well is 
plotted as a function of distance in Fig. 9. The field is 

Fig. 8 .  Two-dimensional distribution of the electron concentration in the 
simulated device. Only the portion of the device close to the gate is 
shown. 

Position ( micron 1 

Fig. 9. Longitudinal electric field in the quantum well versus distance along 
the channel. 

TABLE I 
DEVICE AND MATERIAL PARAMETERS EMPLOYED IN THE SIMULATION 

~~ ~ 

Source to  Gate Spacing 

Drain t o  Gate Spacing 

Gate Length 

GaAs Buffer Layer Thickness 

InGaAs Layer Thickness 

Undoped AlGaAs Spacer Layer Thickness 

AlGaAs Layer Thickness (Recessed Region) 

AlGaAs Layer Thickness (Unrecessed Region) 

AlGaAs Layer Doping Concentration 

AI Mole Fraction in AlGaAs Layer 

AlGaAs Electron Effective Mass 

InGaAs Electron Effective Mass 

AlGaAs/InGaAs Conduction Band Discontinuity 

InGaAs/GaAs Conduction Band Discontinuity 

Schottky Barrier Height 

Donor Levcl in AlGaAs Layer 

AlGaAs Dielectric Constant 

InGaAs Dielectric Constant 

GaAs Dielectric Constant 

1.0 Pm 

1.0 Pm 

0.5 Pm 

2000 K 
200 b: 
30 K 
380 K 
800 b: 
1.0 1018 1/cm3 

0.15 

0.0795 mo 

0.0556 mo 

0.224 eV 

0.100 eV 

0.8 eV 

6.0 meV 

12.39 (0 

12.94 CO 

12.66 CO 

highly nonuniform and exhibits a peak value of 56 kV/cm 
under the gate as a consequence of the pinch-off effect. 

Fig. 10 plots the concentration distribution of the con- 
ducting electrons in the channel and Fig. 1 1  shows the 
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I 3  Gate E 0.01 
00 0 5  10 15 2 0  2.5 

Position ( micron I 

Fig. IO .  Distribution of the conducting electron concentration along the 
channel. 

5.0 1 O7 

Gate 
0.0 

0 0  0 5  10 15 2 0  2 5  

Position [ micron I 

Fig. 1 1 .  Electron velocity distribution as a function of distance in the 
InGaAs channel. 

electron velocity distribution. The result indicates a sub- 
stantial velocity overshoot. The peak electron velocity ex- 
ceeds 4.0 X lo7 cm/s which is far above the steady-state 
saturation velocity balanced locally with the field in the 
InGaAs material. This result is consistent with the Monte 
Carlo calculations by Wang et al. [8] and Park et al. [9] 
and explains the eminently nice high-frequency charac- 
teristics of the pseudomorphic MODFET's. 

Fig. 12 gives the calculated profiles of electron tem- 
perature and energy in the channel. At the sharp electric 
field spike, the electron temperature is as hot as 2500 K. 
The corresponding average electron energy reaches 0.3 
eV above the conduction band minimum. This implies that 
the real-space transfer, as well as the k-space transfer, is 
likely to occur in the high-field region. 

In Figs. 13 and 14, we evaluate the significance of each 
individual term in the momentum and energy transport 
equations respectively. 

In the source access region, the electron transport is in 
fact very similar to that in an ordinary resistor ( q F / m *  
and V / [ T ~ ( E ) ]  dominant as shown in Fig. 13). The car- 
riers are drifted by the field with an average velocity of 
1.3 X lo7 cm/s and a temperature of about 370 K until 
they travel to the region under the gate. 

The electric field becomes much stronger and increases 
rapidly with x under the gate. Electron momentum gained 
from the field is balanced by i) the momentum reduction 
due to the scatterings, ii) the retarding force resulted from 
the gradient of the electron gas pressure, and iii) the ac- 
celeration of the electron velocity. In Fig. 13, we observe 
that the momentum reduction due to the scatterings dom- 
inates in the low-field region under the gate, while the 

Gate 
0 0  010 0'5 10 7 5  2'0 2!' 

Position (micron ) 

Fig. 12. Distributions of electron temperature and average energy along 
the channel. 

Position (micron I 

Fig. 13. Magnitudes of the individual terms in the momentum balance 
equation as functions of position in the InGaAs channel. 
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Fig. 14. Magnitudes of the individual terms in the energy balance equation 
as functions of position in the InGaAs channel. 

pressure gradient is more important at the high-field spike. 
In the conventional transport model, electron temperature 
is not retained inside the gradient operator in (2). Thus 
the effects of the pressure gradient reduce to the classical 
concept of diffusion. Using this simplification, one pre- 
dicts a diffusion current in the same direction as the drift 
current under the gate. However, in our hot-electron 
model, the electrons are found to diffuse against the field 
drift under the gate. This is evidenced by the opposite 
direction of 

in Fig. 13. Upon entering the gate region, much momen- 
tum gained from the pressure gradient is used to acceler- 
ate electrons and the acceleration term [ - v ( a  v/ax)] 
takes about 40% of the scattering term ( U / T ,  ( E  )). On 
the contrary, electrons leaving the gate region decelerate 
and release some momenta due to the phonon scattering, 
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thus causing a positive peak on the [ - U (  a u / ~ x ) ]  curve 
in Fig. 13. 

In Fig. 14, it is clear that only a small fraction of the 
field heating power is relaxed locally via scattering pro- 
cesses in the region under the gate. At the high-field spike, 
the excess power is “pumped” out by the gradient of the 
diffusive energy flux to the low-field region nearby. This 
effect is not included in the models based on a drifted 
Maxwellian distribution function. The Monte Carlo sim- 
ulation by Wang and Hess [8] indicates that the distribu- 
tion function in high-field region does exhibit a strong 
asymmetry. The Q term in (3) of our model describes the 
effects of this asymmetry and is found to have a great con- 
tribution to the total energy flow. The other part of the 
energy flow is the convective component n , v ( E  + k T )  
which carries a large amount of electron energy from the 
low-field region under the gate to the drain access region 
as shown in Fig. 14. Under the gate, the average electron 
energy is kept relatively low due to the energy flow gra- 
dient. This reduces the scattering rate and leads to the 
important consequence of space velocity overshoot. 

In the drain access region, although the electron veloc- 
ity is almost the same as in the source access region, the 
picture of carrier transport is quite different from that in 
the source access region. Because a large electron tem- 
perature gradient exists in this region of the device, elec- 
tron transport is mainly achieved by the “hot diffusion” 
rather than by the field drift 

U a ( n , T )  and - ( E )  dominant (-- n,m* a x  

The momentum dissipation by the scatterings is provided 
by the pressure gradient, while the energy dissipation due 
to the collisions is supplied from both the convective and 
the diffusive energy flux gradients. 

The simulated device I-V characteristics is shown in 
Fig. 15. The transconductance at V, = 0.0 V and V, = 
1.0 V can be extracted from the figure as 390 mS/mm. 
Notice that the knee voltage of the I-V curves is around 
0.4 V due to the low parasitic resistance in the access 
regions. Current transport in the AlGaAs layer is not taken 
into account in the simulation. The influence of the DX 
centers is also not considered since the aluminum com- 
position in the simulated structure is 0.15. 

V.  CONCLUSIONS 
As a conclusion, we have developed a hot-electron 

model including both the effects of the 2D quantization 
and the nonequilibrium transport in the AlGaAs/ 
InGaAs /GaAs pseudomorphic MODFET’s. A significant 
overshoot of electron velocity under the gate is observed. 
The results of this work indicates that the classical as- 
sumption of a local and instantaneous balance between the 
electric field and carrier energy is not appropriate to de- 
scribe the electron transport behaviors in the submicro- 
meter MODFET devices. 

:i::FT,, vGs= 02v  ,I 
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Fig. 15. Full device I-V Characteristics of the pseudomorphic MODFET. 
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