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Chapter 1 

INTRODUCTION 

This dissertation is organized as follows: Chapter 1 introduction; Chapter 2 describes 

transformation of time domain specification into frequency domain bounds and Chapter 3 

presents a /QFT H technique. Chapter 4 shows controller design of an MIMO system. 

Chapter 5 shows some simulation results. Finally, Chapter 6 conclusions and future works. 

1.1 Motivation 

Increasing motor vehicle-speed is an effective way to make the vehicle more 

competitive, while providing better safety and saving energy. However, a high-speed vehicle 

causes significant car body vibrations, which induce problems, such as ride stability, ride 

quality, and maintenance cost. Research has designed various vehicle suspension linking the 

bogies and the car body to cushion riders from vibrations, categorized as passive, active, and 

semi-active types. A passive vehicle suspension employing springs and pneumatic or oil 

dampers can only store energy in the spring and dissipate energy through the damper, fixing 

both components at the design stage. Replace the damper with a force actuator results in a 

fully active suspension. The idea behind fully active suspensions is that the force actuator is 

able to apply a force to the suspension in either bounce or rebound. The sophisticated control 

scheme employed in the suspension, actively governs this force, requiring high power. The 

current development of electronics and microprocessors has made commercial vehicles with 

active suspensions become available. Active suspension systems provide high control 
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performance over a wide frequency range of excitations induced by roadway irregularities 

beyond that control of passive suspensions. However, complexity, cost, and power 

consumption make these systems unacceptable for conventional use. Therefore, passive 

suspension systems remain dominant in the marketplace, because they are simple, reliable, 

and inexpensive. 

The typical passive suspension system is similar to a spring with a damper placed at each 

corner of the vehicle. The spring is chosen based solely on the weight of the vehicle, while the 

damper is the component that defines the suspension’s placement on the compromise curve. 

Depending on the realistic condition of the vehicle, a damper is chosen to make the vehicle 

perform best in its application. Ideally, the damper should isolate passengers from 

low-frequency road disturbances and absorb high-frequency road disturbances. Passengers are 

best isolated from low-frequency disturbances when the damping is high. However, high 

damping provides poor high frequency absorption. Conversely, when the damping is low, the 

damper offers sufficient high-frequency absorption, at the expense of low-frequency isolation. 

Suspension is the term given to the system of springs, shock absorbers, and linkages 

that connect a vehicle to its wheels. Suspension systems serve a dual purpose contributing to 

the car’s road holding/handling, braking for good active safety and driving pleasure, and 

keeping vehicle passenger comfortable and reasonably well isolated from road noise, bumps, 

and vibrations. These goals are generally at odds, so suspension tuning involves finding the 

right compromise. The suspension needs to keep the road wheel in contact with the road 

surface as much as possible, because all the forces acting on the vehicle do so through contact 

patches on the tires. The suspension protects the vehicle and any cargo or luggage from 

damage and wear. The design of the front and rear suspension of a car may be different. 

Stability for the vehicle suspension system is a very important role. Vehicle systems 

may use a 4 or 5 link type suspension, multi link suspension, double wishbone type 

http://en.wikipedia.org/wiki/Spring_(device)
http://en.wikipedia.org/wiki/Shock_absorber
http://en.wikipedia.org/wiki/Linkage_(mechanical)
http://en.wikipedia.org/wiki/Vehicle
http://en.wikipedia.org/wiki/Wheel
http://en.wikipedia.org/wiki/Car_handling
http://en.wikipedia.org/wiki/Brake
http://en.wikipedia.org/wiki/Rear_suspension
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suspension, rigid axle suspension, or parallel leaf spring type suspension. These suspension 

systems can effectively improve traffic safety and comfort. Generally, these two requirements 

conflict each other, therefore the spring and the damper must have a good trade-off design. 

Some have suggested that conventional passive suspension systems have reached the limits of 

their performance.  

The passive suspension system consists of an energy-dissipating element, including the 

damper, and an energy-storing element, which is the spring. Since these two elements cannot 

add energy to the system, this kind of suspension system is passive. This restricts physically 

realizing the class of passive mechanical impedances. A further problem is that the suspension 

strut needs a small mass compared to that of the vehicle body and wheel hub, imposing 

further restrictions on practically realizing the class of mechanical impedances using the 

classical spring-mass-damper analogue. 

Isolating the passenger and cargo from terrain induced shock and vibration is the important 

task of any ground vehicle suspension. Most suspensions have passive springs and dampers with 

limited vibration isolation performance for linear and nonlinear restoring or damping 

characteristics. Their transmissibility factors show that low damping gives good isolation at high 

frequency but poor resonance characteristics, whilst higher damping results in good resonance 

isolation at the expense of high frequency performance. 

1.2 Classification of Vehicle Suspension System 

Recent research efforts have focused on designing and developing an active 

suspension system to improve the trade-off between ride comfort and road handling. However, 

high cost has prevented its wide use, requiring a better cost effective suspension system. The 

semi-active suspension system has the potential to provide a better trade-off between cost and 

performance. The objective of this project is to develop an individually controlled semi-active 
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suspension system, which provides simultaneous real time optimum control of all the 

parameters including roll, pitch, and height control. An active suspension system provides a 

better trade-off between ride comfort and road handling. 

Developing and correcting safe vehicle operation is one of the main trends in modern 

vehicle production. Manufacturers are increasingly installing advanced electro-mechanical 

and electronic systems to control vehicle dynamic performance, such as anti-lock braking 

systems (ABS), electronic break force distribution (EBD), and electronic stability program 

(ESP). 

1.2.1 Passive suspension system 

This is an ordinary suspension system used to control vertical motion dynamics of a 

vehicle. The suspension element does not supply energy to the system. However, it controls 

the relative motion of the body to the wheel by using different types of damping or energy 

dissipating elements. The shock absorber is the trade-off between minimizing body vertical 

acceleration and tire deflection. The typical damping rate for shock absorbers is 24 inch/sec 

for suspension compression and 5 inch/sec for suspension extension. 

1.2.2 Semi-active suspension system  

A semi-active suspension [1, 2, 3, 4, 5] provides a rapid change in the rate of spring 

damping coefficients, and does not provide any energy into the suspension system. This 

system consists of sensors and actuators to detect the road profile for control input. Hydraulic 

actuators located in shock absorbers control the damping force rate. The shock absorber 

controls vehicle altitude changes when steering and accelerating, and the damping force 

transmitted from an uneven road. 
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1.2.3 Active suspension system 

The active suspension system [6, 7, 8] responds to vertical changes in the road input. 

This system supplies the energy to system elements, causing relative motion between the 

vehicle body and wheels. The active suspension system incorporates sensors to measure 

vehicle parameters, such as vertical vehicle body acceleration and/or vertical wheel 

acceleration, and uses a force generator in place of the damper, and in some cases, in place of 

the spring. 

A vehicle suspension system consists of a spring and a damper, to improve ride quality 

and road holding properties. These two requirements conflict with each other. The spring and 

the damper design must allow for good system performance. To improve suspension 

properties, many studies have dealt with active suspension systems. Investigations into active 

suspensions for ground vehicles have increased in recent years because using the active 

suspension system improves ride comfort. 
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Chapter 2 

TRANSLATION OF TIME-DOMAIN 

BOUNDS TO FREQUENCY-DOMAIN 

BOUNDS IN QFT DESIGN 

 

2.1 Introduction of QFT 

 

The Quantitative Feedback Theory [9, 10, 11] stems from Horowitz [12]. It is an efficient 

frequency based robust controller design methodology that maintains system response within 

pre-specified tolerances despite uncertainties and disturbances. 

 A two- degree-of-freedom (TDOF) control system structure is typically assumed for the 

QFT technique in Figure 2-1. 

( )R s
( )F s ( )G s ( )P s

+

-

Prefilter Controller Plant

( )C s

 

Figure 2-1: Two-degree-of-freedom feedback structure 

There are five principle steps in QFT design procedure:  

(1) Translation of time-domain bounds on  tC  into bounds on       jRjCjT   of 

Figure 2-2. 

(2) Derivation of bounds on  jL  from the bounds on  jT  and on  jP . 
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(3) Formulation of the optimum  sL  from the results of Step 2. 

(4) Derivation of the pre-filter  sF of Figure 2-1. 

(5) Modification, if necessary, of  sL  and  sF . 

2.2 Statement of Specifications 

In a minimum-phase system the magnitude of frequency response  jT  completely 

specifies the transfer function  sT , which in turn uniquely determines the system step 

response  tC . But the rigorous translation of time-domain bounds into bounds on  jT  is, 

as yet, an unsolved problem. In practice, one may begin, for example, by assuming a simple 

second-order or third-order system model for  sT [12]. In this dissertation we focus on 

translation of time-domain tolerances into frequency-domain bounds by (3,0) model. 

Since QFT design is based on frequency-domain, a set of time-domain design 

specifications will be transferred to frequency-domain specifications first. 

We assume the system is two-degree-of-freedom (TDOF) with minimum phase, giving 

time-domain design specifications as shown in Figure 2-2 we will transfer it to the 

frequency-domain as shown in Figure 2-3.  

Time-domain specifications [13] will be defined as follows: 

1.  10% of rise time  

The time of output reaches 10% of steady state value. Upper bound specification is 

denoted as )1(10rt ; lower bound specification is denoted as )2(10rt . 

2. 90% of rise time 

The time of output reaches 90% of steady state value. Upper bound specification is 
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denoted as )1(90rt ; lower bound specification is denoted as )2(90rt . 

3. 5% of settling time 

The settling time is the time required for the response curve to reach and stay within a 

range about the final value of size specified by absolute percentage of the final value. In 

this paper choose 5%. i.e., when 5stt  , 05.01)( tc  steady state value. 

4.  Maximum Overshoot, PM  

The maximum overshoot is the maximum peak value of the response curve measured 

from unity. It is defined as  

%100
)(

)()(







c

ctc
M

p

P , 

where pt  is the time required for the response to reach the first peak of the overshoot. 
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Figure 2-3 Boundaries of frequency response 

2.3 Mathematical Model of the Proposed Transformation 

In the third-order all poles (3,0) system, the system transfer function is )(ST           

)].222)(/[(2)(/)()(
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s
n

sps
n
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nnn sspsspsRsTsC                            (2.2) 

In Eq. (2.1) different values of pole (p) and damping ratio (  ) will be discussed in the 

following: 

1.  Under damping system 10   

Taking inverse Laplace transformation of Eq. (2.2), we have 
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2.  Critically damping system， 1  

Rewriting Eq. (2.2), we have 
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                     (2.5) 

Taking inverse Laplace transformation of Eq. (2.5), yields 
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3. Over damping system, 1    
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Taking inverse Laplace transformation of Eq. (2.7), we have 

BtAtpt ekekektc   3211)(   ,                  (2.8) 

where 

 

 

 

 

 

 

 

 

. )(             

)()2(             

)/(1)(

2

22

n
t

n

n
t

n

n
pt

n

ptep

pepp

petc

n

n























.)])([()/(

)])([()/(

)])(/[(

)1(

)1(

2
3

2
2

2
1

2

2

ABpBBpk

BApAApk

BpApk

B

A

n

n

n

n

n























11 

 

2.4 Flow Charts and Computing Procedures 
 

In this section we will discuss how to transfer the time-domain tolerances into the 

equivalent frequency response tolerances.  

Given ,  ),2(  ),2(  ),1(  ),1( 590109010 srrrr ttttt  five time- domain specifications the 

corresponding undamped natural frequencies are denoted by )),2((  )),1((  )),1(( 109010 rnrnrn ttt   

)(  )),2(( 590 snrn tt  . 

Adding two constrains 
pmtc )( and 05.1)( 5 stc , we have seven time specifications for 

the transformation. The flow charts are shown in Figure 2-4(a) to Figure 2-4(c). 

The upper bound of undamped natural frequency n ( max ) can be found by time 

specifications )1(  and  )1( 9010 rr tt , which will be denoted by  

))).1(()),1((( 9010max rnrn ttMin                           (2.9)                      

The lower bound of undamped natural frequency 
n (

min ) can be found by time 

specifications 59010    ),2(  , )2( srr tandtt , which will be denoted by   

 .  ))()),2(()),2((( 59010min snrnrn tttMax                       (2.10)        

If minmax    then the region of undamped natural frequency of the given 

590109010   ),2(  ),2(  ),1(  ),1( srrrr ttttt  five  time-domain specifications can be transferred to the 

frequency specifications. Otherwise, it cannot be transferred. Furthermore, adding two 

constrains pmtc )(  and 05.1)( 5 stc , we can determine the overall transformation region. 
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2.5 Illustrating Examples 

In the following, we will give two examples to show how to transfer time-domain 

specifications to frequency -domain specifications [14]. 

Example 1： 

Time-domain specifications are  

.2.1  and  047.1 ,65.0)2(

,219.0)1(  ,16.0)2(  ,05.0)1(

590

901010





psr

rrr

mtt

ttt
 

The transformation results are shown in Figure 2-5 to Figure 2-10. 

Example2:   

Time-domain specifications are 

.2.1  and  513.1 ,158.1)2(

,341.0)1(  ,171.0)2( , 079.0)1(

590

901010





psr

rrr

mtt

ttt
 

The transformation results are shown in Figure 2-11 to Figure 2-16. 

In the third-order model with all poles (3, 0) system, example 1, when we choose real 

pole much larger than the undamped natural frequency, the result is equivalent to the 

second-order model with all poles (2, 0) system. 

Comparing Figure 2-8 with Figure 2-10, we find that the frequency-domain tolerances 

of third-order model with all poles (3, 0) system are wider than the second-order with all poles 

(2, 0) system, which will be easier to design robust controllers. 
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Figure 2-4(b) Flow chart of specification transformation  
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Figure 2-4(c) Flow chart of specification transformation  
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Figure 2-5: Boundary of undamped natural frequency 
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Figure 2-7: Time-domain response of unit step input 
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Figure 2-8: Frequency-domain bounds 
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 Figure 2-9: Time-domain response of unit step input 
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Figure 2-10: Frequency-domain bounds 
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 Figure 2-13: Time-domain response of unit step input 
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Figure 2-14: Frequency-domain bounds 

 



21 

 

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

 A 

 B 

 C  D 

 E 

 F  G 

 H 

 Upper bound a(t)

Lower bound b(t)

 A:(t1,0.1)  B:(t3,0.9) 

 C:(tu1,1.2)  D:(t4,1.2) 

 E:(t5,1.05)  F:(t5,0.95)

 G:(t4,0.9)  H:(t2,0.1) 

 t1 

 t2 

 t3  t4  t5 

t1=tr10(1)= 0.079

t2=tr10(2)= 0.171

t3=tr90(1)= 0.341

t4=tr90(2)= 1.158

t5=ts5 = 1.513

p=logspace(1,3,10)

 Unit-Step Response in Time Specification for (3,0) Example 2 

t(sec)

c
(t

)

 

Figure 2-15: Time-domain response of unit step input 
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Figure 2-16: Frequency-domain bounds 
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Chapter 3 

A /QFT H  DESIGN TECHNIQUE 

3.1 Introduction of /QFT H  

     
H  Control theory has been intensively developed for twenty years. Especially, the 

2-Riccati-equation method given by Glover and Doyle (1988) opened a new way for 

state-space theory in 
H  control. Only in the past ten years have researchers in control 

theory began to realize that the QFT and 
H  design philosophies are related. Both QFT and 

H  design techniques preoccupied the control community for a long time, since the 

beginning of the 1970s.   

The LQG theory was first introduced in the optimal control system by Kalman (1960); 

Zames (1981) proposed the 
H norm concept to give a control system performance criterion, 

which beginning the
H  optimal control research. In 1988 Doyle and Glover [14] has derived 

controller formula for standard system structure, such that 
H optimal control reaches the 

well stage [16, 17]. The 
H optimal control is focus on plant with uncertainty and external 

disturbance to design a stabilizing control, such that the H  norm from external disturbance 

to error signal is minimized [16]. 

Computer program has developed quickly in recent years, although we can design 

controller by MATLAB QFT Toolbox directly, but in the frequency-domain design procedure, 

we also need loop shaping in Nichols chart. It is inconvenience to designer. For avoiding the 

tedious loop-shaping procedure, Sidi [18] proposed a method that combines in an efficient 
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way the QFT and H paradigms in the design of two-degree-of-freedom (TDOF) systems [5]. 

However, how to choose the weighting function has no detail explanation and analysis. 

Furthermore, many constrains in H calculation, cannot directly find the solution. This paper 

proposes the less constrains LMI based method to design H controller by using MATLAB, 

which is quickly and simply. 

3.2 Statement of QFT Design Problem 

A two-degree-of-freedom (TDOF) feedback structure is typically assumed for the QFT 

technique. In Figure 3-1, wherein the command input (r), plant (P), controller (K), pre-filter 

(F), system output (y), disturbance (d) and sensor noise (n) are depicted. Where K is the 

1
st
 –design-degree-of-freedom to reduce the system sensitivity, and F is the 

2
nd

-design-degree-of-freedom to meet the system performance [10, 19]. Assume the plant with 

parameter variations; we can denote the transfer function as: 

01

1

1

01

1

1)(
asasasa

bsbsbsb
sP

n

n

n

n

m

m

m

m

















, (m<n)                            (3.1) 

where , n, , iaaa iii 10  ,] ,[ maxmin   and , m, , jbbb jjj 10  ], ,[ maxmin  . 

Since plant (P) is with uncertainties, will denote the set of )}({ sP contains all possible 

transfer function of )(sP . 

K PF
r 1r










d

u y

n

e

 

Figure 3-1: Two-degree-of freedom feedback structure 

For a plant with parameter variations, if we want to satisfy the time domain 

specifications: rise time, delay time, settling time and maximum overshoot, then the unit step 
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response of the system must lie within the upper bound )(tTu and the lower bound )(tTl
. In other 

words,  )(sP , when given a unit step command input )(tr , the output )(ty must satisfy： 

)()()( tTtytT ul                              (3.2) 

If we transfer Eq. (3.2) to frequency domain representation, the frequency response of 

the system must lie within upper bound )(uT and lower bound )(lT . In other words,   

)()()(  udBl TjTT                         (3.3) 

where 

)()(
)(

)(
)( 1 sTsF

sR

sY
sT  , 

)(1

)(

)()(1

)()(
)(1

sL

sL

sKsP

sKsP
sT





 . 

The plant uncertainty or output disturbance and sensor noise, the overall system response 

variation range must satisfy the frequency domain specification: 

)()()(  ludB
TTjT                        (3.4) 

The QFT design steps are as follows: First, establish a template of plant with parameter 

variations. Second, choose the nominal plant as the reference point of the design. Third, 

transfer time-domain specifications to frequency-domain specifications. Fourth, set up 

satisfying frequency specifications boundary in Nichols chart. Finally, choose some 

frequencies and design loop-gain, which all above the tracking bounds and near U-contour, 

this step is called loop shaping. 
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L(jw)

 

Figure 3-2: Loop shaping 

After loop shaping, Eq. (3.4) hold, such that 





T

jL

jL

)(1

)(




 .                        (3.5) 

For overall )( jT  within frequency specifications, we should add prefilter to 

appropriate modification. 

3.3  H design problem 

  A Standard H  control structure is described in Figure 3-3, wherein y  is the 

measurement value of controller, u  is the output of controller,   is external disturbance, 

z is error signal, and G is transfer function matrix, which contains weighting function[17].  
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Figure 3-3:  A Standard H  control structure 

The goal of optimal control is to find a stabilizing controller K , such that the norm of 

zwT is minimum, where H  norm of zwT is defined as: 

))((sup 


jTT zwzw 


                         (3.6) 

In Figure 3-3 the block diagram zwT  is described by a linear fractional transformation 

(LFT) matrix function, which is convenient for dealing with control problem.  

Consider a standard feedback structure in Figure 3-4, we define the loop transfer 

function as: 

PKL   .                             (3.7) 

Furthermore, we define sensitivity function from d to y as: 

L
S




1

1
.                              (3.8) 

Also complementary sensitivity function as: 

L

L
ST




1
1  .                          (3.9) 

The transfer function from n to u is 

0

.
1

un

u K
T

n KP


 


                          (3.10) 

A well-defined feedback control system must satisfy the disturbance rejection in low 
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frequency range; in high frequency range the effect of sensor noise must be reduced. In the 

design of feedback controller, we ought to consider the above factors, such that the loop gain 

lies within a suitable location [17]. 
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Figure 3-4: A standard feedback structure 

For nominal performance and robust stability, we want 

1SW S

                               (3.11) 

1un unW T

                               (3.12) 

1TW T

                                (3.13) 

where 
SW ,

unW , and TW  stand for the weighting functions of the sensitivity function ( S ), 

control sensitivity function ( unT ), and complementary sensitivity function ( T ) respectively. 

This kind of design methodology is called H  mixed sensitivity problem. 
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Figure 3-5: Feedback system structure with weighting 



28 

 

Transferring Figure 3-5, feedback structure with weighting to Figure 3-3, LFT structure, 

and then we can find the controller by H  calculation. There are many design methods in 

H . Here we use the LMI based H  controller design method, which has less constrain, and 

is proposed by Gahine and pkarian [20]. 

Assume the state-space representation of the transfer function matrix ( G ) be 















)()()()(  

)()()()(  

)()()()(  

22212

12111

21

tuDtwDtxCty

tuDtwDtxCtz

tuBtwBtAxtx

                    (3.14) 

where nnA  , 11

11

mp
D


 , 22

22

mp
D


 . We will make the following assumptions: 

(A1) ),( 2  BA is stabilizable and ),( 2 CA  detectable. (This is required for the existence of a 

stabilizing controller K ). 

(A2) 022 D . 

There  exists a γ-sub-optimal controller such that ( , )zw lT F G K 
 
  , iff, there exist 

two symmetry matrix R and S such that the following inequalities hold： 

0
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0
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

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DIRC
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I

RR




                   (3.15) 

0
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


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



























 




I
IDC

DISB

CSBSASA

I

SS




                    (3.16) 

0³








SI

IR                                 (3.17) 

where 
R  and 

S stand for the null space of )  ,( 122

 DB  and )  ,( 212 DC , respectively. 

     The solution of the controller is very hard. Here we use the result of  

γ-sub-optimal controller transfer function  
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KKKK BAsICDsK 1)()(                       (3.18) 

which satisfies  the following relationship： 

clclclcllzw BAsICDsKGFsT 1)())(,()(                   (3.19) 

where 








 


KK

KK

cl
ACB

CBCDBA
A

2

222 ，







 


21

2121

DB

DDBB
B

K

K

cl
 

  KKcl CDCDDCC 122121  ，
11 12 21.cl KD D D D D              (3.20) 

Using the hinflmi instruction in MATLAB, we can rapidly find the 

γ -sub-optimal H control solution based on LMI. 

3.4  A Combined HQFT / design method 

A combined HQFT / design method no longer use Nichols chart to find controller. It is 

using 
H  optimal control method to find the controller K . Finally we design a prefilter such 

that the output response meets the desired performance. 

Reconsider Figure 3-1, the design of two-degree-of-freedom uncertain feedback system, 

the design steps are as follows: 

3.4.1 Design controller K： 

Firstly, without considering the prefilter F , transfer the desired performance 

specifications to proper weighting function. Then, use H  method to calculate controller K. 

3.4.2 Design prefilter F： 

After the controller is designed, we add the prefilter to modify the frequency response   
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Overall design steps are as shown in Figure 3-6. In the design processes the most 

important key point is how to choosing weighting function. 

<Step 1> 
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Figure 3-6: A combined HQFT / design steps 
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3-5 Multiplicative uncertain model of plant and weighting function TW . 

Assume P  is a plant with parameter variations, which use the multiplicative 

uncertainty model, as shown in Figure 3-7. Limit P  in the neighbor of the normalized 

nominal plant 0P , i.e., 

)(0 PIPP                                                 (3.21) 

where P  is the error of multiplicative model. 

P

0P

K

perturbation

Nominal plant






0 ( )P P I P  

 

Figure 3-7: The multiplicative uncertainty model 

The term of stability [20, 21] is： 





 PKP

KP 1

1 0

0                              (3.22) 

or 

1
1

0

0

0 







TW
KP

KP
P T

                        (3.23) 

where 
0

0

01

0
1

 
KP

KP

Pr

y
T


 . 

If the system is SISO, then the weighting function can be finding by Eq. (3.24) as 
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)(1
)(

)(

0





jW

jP

jP
T .                            (3.24) 

3.6  Sensitivity function and weighting function SW  

One of the most important indexes of control system performance specification is 

sensitivity function, which reflect the degree of overall performance affected by parameter 

variations in the system. The sensitivity function is defined by  

)()(

)()(
)(

max

max

dBjP

dBjT
jS T

P








                           (3.25) 

where )()(
max

dBjT   stands for the largest allowed variation range of )( jT  in Bode-plot; 

)()(
max

dBjP   stands for the largest allowed variation range of )( jP  in Bode-plot.  

In QFT design concept, we generally choose some frequencies less than 10 rad/sec. 

Hence when we find sensitivity function we also choose the above frequencies. After 

choosing nominal plant, using Eq. (3.25), we can find the magnitude response of the nominal 

sensitivity function )( jS0  in Bode-plot.  Next by using curve-fitting we can get the 

nominal sensitivity function )(0 sS . 

If the desired sensitivity function satisfies )()(  DjS , then the system desired 

performance could be written as:  

1)()( 0  jSjWS
                            (3.26) 

or 

)(

)(
)(

0 




jS

D
jWS



  .                           (3.27) 
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3.7 High frequency noise rejection and weighting function unW  

After giving nominal plan 0P , the transfer function from n to u is 

01 KP

K

n

u
Tun




                                 (3.28) 

Eq. (3.28) stands for the amplifier effect of sensor noise. If we can reduce the amplifier effect 

of the sensor noise, then the cost of feedback design is also reduced.  Adding the weighting 

function unW  into the transfer function
unT , we have 

1)()(  jTjW unun
.                            (3.29) 

A good control system should have proper loop-gain, which reduces the sensor noise 

disturbance at high frequency, and reduces sensitivity at low frequency. This property is 

considered in choosing unW  and SW . 

After transfer the system desired performance specifications to proper weighting 

function, we can use H method to find the controller K , and then use the same method in 

QFT, we add prefilter to make suitable modification. Finally check the overall step response 

in Eq. (3.2) to meet the desired. The flow chart of overall combined HQFT / design method 

is shown in Figure 3-8. 
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Figure 3-8: A flow chart of combined HQFT / design  
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3.8 Design Example of SISO System 

3.8.1 Problem description  

Assume plant with large parameter variations as following, 












 ]5.2 ,5.1[  ],5 ,1[  ],20 ,1[  ,
))((

)( bak
bsas

k
sP  

design controller K  and prefilter F  such that the system satisfies: (1) settling 

time: sec  3    st ，(2) maximum overshoot: %10    pM ，(3) disturbance attenuation: 

dBjT
dBd   3    )(  [21]. 

3.8.2  Specification transformation 

(1) Transfer time-domain specifications to the transfer function of upper and lower bound, 

76.612.3

76.6338.0
)(

2 




ss

s
sTu

，
)96.108.3)(15(

4.29
)(

2 


sss
sTl

 

Drawing the boundary of frequency for the system in Figure 3-9. 

(2) Disturbance attenuation dBjT
dBd   3)(  , i.e. sensitivity function should satisfy. 

3.8.3  Choosing the weighing function WT 

(1) Let the nominal plant be 
)5.1)(1(

1
)(0




ss
sP . 

(2) Using Equation (3.24) to find weighting function 
TW . Computer 1

)(

)(

0






jP

jP
. Since 

191max )(

)(

0




jP

jP
, we can choose 20TW , as shown in Figure 3-9. 
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Figure 3-9: Selection of complementary weighting function 

3.8.4 Choosing weighting function unW  and sW  

(1) First let initial value of 1unW , and then if necessary we can adjust it. 

(2) Using Eq. (3.25) and Eq. (3.26) to find the weighting function 
SW . 

We choose only some special frequencies, 10  ,8  ,4  ,2  ,1  ,8.0  ,4.0  ,2.0  ,1.0  to design. 

Sensitivity function can be found by following table directly. 
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Table 1: Table of sensitivity function 

 

 

 

 

 

 

 

 

                                                                                                                                       

When we have the data of   and |)(| jS , and then we can use mrfit instruction of 

MATLAB[22, 23] to find approximately the sensitivity function as： 

336.35616.3

)001.0(50524.0
)(

2

2






ss

s
sS

 

For guaranteeing )(414.1)( *  DjS  , and 1)()(  jSjWS
, we choose 

2

2

)001.0(

)336.35616.3(9896.0

)(

5.0
)(






s

ss

sS
sWS  

)/( srad  )()(
max

dBjT   )()(
max

dBjP   )( jS  

0.1 0.0665 44.3832 0.0015 

0.2 0.2619 44.2248 0.0059 

0.4 0.9893 43.6315 0.0227 

0.8 3.2984 41.7346 0.079 

1 4.6318 40.6446 0.114 

2 10.4374 35.8033 0.2915 

4 12.8271 30.7046 0.4178 

8 13.0651 27.64 0.4727 

10 13.7038 27.1131 0.5054 
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Figure 3-10: Boundary of frequency and sensitivity function 

3.8.5  Using 
H  algorithm to find controller )(sK  

Using the hinflmi instruction of MATLAB to calculate, we can get the controller as: 

)0009754.0)(001003.0)(759.6(

)1574.0)(1)(5.1(1001.21
        

)0009754.0)(001003.0)(759.6)(5147(

)1574.0)(1)(5.1(3671.108607
)(











sss

sss

ssss

sss
sK

 

3.8.6 Checking the frequency response  

When we got the controller, and then plot the frequency response |)(| 1 jT without 

prefilter. From Figure 3-11, we can find that the controller does not meet the desired 

performance in the low frequency, hence we must adjust the weighting function. The method 

of adjustment may reduce the value of sW  or unW , and then find the controller again. 
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Figure 3-11: Frequency response without prefilter ( 1unW ) 

If we let weighting function be 1.0unW , the controller is  

1367680.4466( 1.5)( 1)( 0.1745)
( )

( 6782)( 20.34)( 0.0009997)( 0.0009639)

201.663( 1.5)( 1)( 0.1745)
        

( 20.34)( 0.0009997)( 0.0009639)

s s s
K s

s s s s

s s s

s s s

  


   

  


    

Similarly, after checking max1 |)(| jT  we see that it does not completely lie within upper 

boundary and low boundary, as showing in Figure 3-12. Hence we should adjust weighting 

function again. We choose 05.0unW  to find the controller again. 
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Figure 3-12:  Frequency response without prefilter ( 1.0unW ) 
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When we choose weighting function 05.0unW , the controller is  

)0009742.0)(001006.0)(6.28(

)09977.0)(1)(5.1(1816.397
        

)0009742.0)(001006.0)(6.28)(2802(

)09977.0)(1)(5.1(8204.1112902
)(











sss

sss

ssss

sss
sK

 

Checking again, we find max1 |)(| jT  that the response curves are all completely within 

upper boundary and low boundary, as showing in Figure 3-13, and then the controller K  is 

acceptable. 
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Figure 3-13: Frequency response without prefilter ( 05.0unW ) 

From Figure 3-11 to Figure 3-13, we can adjust the rate of rolling off in high frequency 

by weighting function unW .  

3.8.7  Design prefilter )(sF  

    Although max1 |)(| jT , completely lie within upper boundary and lower boundary, still 

must add prefilter such that overall transfer function )()()( 1  jTjFjT   meets the desired 

frequency specification. After proper adjust, then we get the prefilter as: 



41 

 

)3)(2(

6

)
3

1)(
2

1(

1
)(







ssss

sF  

10
-1

10
0

10
1

10
2

-100

-80

-60

-40

-20

0

20
Frequency response with prefilter

w (frequency)

d
B

 (
m

a
g
n
it
u
d
e
)

|)()(|)( 1  jTjFjT 

)(uT

)(lT

 

Figure 3-14: Frequency response with prefilter 
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Figure 3-15: Step response with prefilter 

Finally, we check step response of Figure 3-15, if all step responses meet the desired 

time-domain specifications, and then overall design procedure is completed. 

 

3.8.8  Comparison QFT/
H  and QFT design 

Traditional QFT design controller is 
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Figure 3-16: Step response of traditional QFT design 

From Figure 3-15 and Figure 3-16, we find a combined of QFT/
H design can achieve 

the traditional QFT design. 
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Chapter 4 

CONTROLLER DESIGN OF AN MIMO 

SUSPENSION SYSTEM 

4.1 Structure Description 

A basic quarter vehicle suspension system presented in [23] as a target model for an 

MIMO design case is illustrated in Figure 4-1, where M , K , and B denote the mass, spring, 

and damper, respectively, as well as the related coefficients, and where 1f  and 2f  indicate 

the driving force and 1y and 2y indicate the displacement, respectively. The two-mass motion 

control system set up and designed to control the motion of the suspension, using the control 

functionality realized by the two robust controllers.  
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Figure 4-1:  Control scheme of a quarter vehicle model for the suspension system 

Moreover, the motion equations of the suspension system in Figure 4-1are described as 

1 1 1 1 1 2 1 1 2( ) ( )f M y B y y K y y                                      (4.1) 

2 2 2 1 2 1 1 2 1 2 2 2 2( ) ( )f M y B y y K y y K y B y                            (4.2) 

Let 1 1y x , and  2 2y x , then the first-order differential equations of displacements of the 

spring mass and unsprung mass can be described as 1 1y x , 2 2y x . Subsequently, assume 

1 3x x  and 2 4x x  then the first-order differentiation expressions of 3x  and 4x are 

represented as 1 3y x  and 2 4y x , respectively. Eq. (4.1) can be rewritten as  
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1 1 3 1 3 4 1 1 2

1 1 1 1
3 1 2 3 4 1

1 1 1 1 1

( ) ( )

1

f M x B x x K x x

K K B B
x x x x x f

M M M M M

    


    

                           (4.3) 

and also Eq. (4.2) can be rewritten as 

2 2 4 1 4 3 1 2 1 2 2 2 4

1 1 2 1 1 2
4 1 2 3 4 2

2 2 2 2 2

( ) ( )

( ) ( ) 1
.

f M x B x x K x x K x B x

K K K B B B
x x x x x f

M M M M M

      

 
    

                (4.4) 

The motion equations of the suspension system model are converted into matrix form as   

1 1

2 2 11 1 1 1

1 1 1 1 13 3 2

1 1 2 1 1 24 4

22 2 2 2

0 0 1 0 0 0

0 0 0 1 0 0

1
0        

1
0

x x

x x fK K B B

M M M M Mx x f

K K K B B Bx x

MM M M M

   
      
      
                          
           

  

     (4.5)  

and the output equations are shown as 

1

21

32

4

1     0     0     0
 

0     1     0     0

x

xy

xy

x

 
 

            
 
 

.                              (4.6) 

Furthermore, in frequency domain, the displacement responses of sprung mass and 

unsprung mass are calculated by using Eq. (4.5) and Eq. (4.6) taking Lapalce transform to 

obtain    

2

2 1 2 1 2 1 1

1 1

2
22 1 1 1 1 1

( )
             

( ) ( )

( )( )
                            

M s B B s K K B s K

Y s F s

F sY s B s K M s B s K

     
     
    

      
    

,             (4.7) 

where 2 2 2

1 1 1 2 1 2 2 1 1( ) [ ( ) ] ( )M s B s K M s B B s K B s K         . Moreover, in this case, the 

numerical values of suspension system depicted in Eq. (4.7) are represented as 
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2

11 4 3 2 4

12 4 3 2 4

21 4 3 2 4

2

22 4

0.001028 0.01 1.297

10.86 1306 1004 3.894 10

0.009872 0.3851

10.86 1306 1004 3.894 10

0.009872 0.3851

10.86 1306 1004 3.894 10

0.008772 0.009872 0.3851

1

s s
P

s s s s

s
P

s s s s

s
P

s s s s

s s
P

s

 


    




    




    

 


 3 2 40.86 1306 1004 3.894 10s s s   

                         (4.8) 

From the control system block diagram, a standard feedback configuration with weights 

is shown in Figure 3-6. Figure 3-6 can be redrawn in the general linear fractional 

transformation (LFT) framework as shown in Figure 4-2. Consequently, the H-infinity 

controller of quarter vehicle suspension system model can be calculated and obtained. 

v
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Figure 4-2: A LFT framework for control system structure 

4.2 Weighting function selections 

The selection of three weighting functions shown in Figure 4-2, is described as follows. 
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Firstly, the weighting function TW  is obtained from Eq. (3.24), where 0P  denotes the 

nominal plant and P indicates the uncertainty elements of plant. Next, the nominal model 0P  

is considered the diagonal elements and the uncertainty model P  is considered the 

off-diagonal elements [25] in Eq. (4.8) so that the system variations    0 1P j P j   will 

be less or equal than
TW in all frequency. Secondly, in order to obtain the weighting function 

SW , Eq. (3.24) is computed and then use curve fitting algorithm to obtain an initial and 

suitable two-order transfer functions so that     1SS j W j   . Finally, the first design 

stage for selection of weighting function unW  is chosen a low gain  unW j . With this 

initial condition, the bode plot of the overall  1T j for P  and checks if the overall 

 1T j changes are smaller at  . In other words, the adjustment value of weighting 

function unW  as a tuning parameter depends upon  1T j  variations due to the flowchart 

design procedure shown in Figure 3-8.  

4.3 Controller Design 

The controller design of suspension system is described in this section. The design steps 

of controller are shown in Figure 3-8, where the weighting functions unW  and SW  are 

tuning parameters. The developed H  controllers are rewritten in Table 3. Obviously, the 

mainly advantage of this paper is that the new flowchart is redrawn and illustrated in Figure 

3-8 without noise filter because of the developed H  controller. Namely, the noise filter, 

proposed by Sidi [18], is substituted for the developed H  controller which can be applied 

in the variation of each parameter of suspension system. 
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Chapter 5 

SIMULATION RESULTS 

The response of the controllers obtained from this /QFT H  approach can be described. 

However, QFT algorithm does not deal with the controller design of MIMO system very well. 

The QFT constraints on the criteria of the MIMO system with uncertainty components can be 

described. Based on setting the design conditions appropriately, the applicable controllers can 

be calculated by the /QFT H  approach. Figure 5-1 shows the singular value of uncertainty 

plant, where the solid line represents the weighting function WT1, 
 

 

0.4 0.4 300

0.55 30

s

s




 and the 

dashed line denotes the uncertainty parameter variations. Then, the weighting function WT for 

this case is chosen 1 1 1 1[ ( ), ( )]T T T T TW diag W inv W W inv W    so that the fluctuation of overall 

system can be reduced to zero. Figure 5-2 shows the magnitude of sensitivity function, SW . 

The selecting of control effort weighting function unW  is as a tuning parameter depending 

upon the sensitivity function variation. In this case, the weighting function is constant gain for 

suspension system, i.e.  1.2 120,120unW diag . The table 2 represents the specific design 

items for suspension system and the table 3 provides the design controller of the suspension 

system with the sub-optimal  =24.4162. Finally, Figure 5-3 illustrates the acceleration 

response 1y , which denotes input signal, road profile, to mass 1, 1M ,and Figure 5-4 

illustrates the acceleration response of 2y , which denotes input signal, road profile, to mass 2, 

2M , that is, the variations of mass 1 and mass 2 can be reduced to zero when the suspension 
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system travels along the unit step target path. Figure 5-5 is Bode plot of 11 22P P  and 

12 21P P , Figures 5-6 to 5-9 are the Bode plots of plant 11P , 12P , 21P  and 22P  , respectively. 

Figures 5-10 to 5-15 are the Bode plots of plant by 1B , 2B , 1K , 2K , 1M , and 2M variations, 

respectively. Figure 5-16 shows 1y  response without prefilter in time domain and Figure 

5-17 shows 1y response with prefilter in time domain. Figure 5-18 shows 1y response without 

prefilter in frequency domain, and Figure 5-19 shows 1y response with prefilter in frequency 

domain. Figure 5-20 shows 2y response without prefilter in time domain and Figure 5-21 

shows 2y response with prefilter in time domain. Figure 5-22 shows 2y response without 

prefilter in frequency domain, and Figure 5-23 shows 2y response with prefilter in frequency 

domain. 

      Table 2. System parameters 

Parameters Values Units 

1M  973 (kg) 

2M  114 (Kg) 

1B  1095 (Ns/m) 

2B  14.6 (Ns/m) 

1K  42720 (N/m) 

2K  101115 (N/m) 

 

Table 3. The results of QFT/H∞ controller 

Controllers Input (u1) 

y1 
    

    

2 2

11 2 2

25230.2692 1.076 0.5117 0.5534 30.68 10.32 1269

3.055 0.7148 0.5414 30.68 10.32 1269

s s s s s s
K

s s s s s s

     


     

 

y2 
    

    

2

12 2 2

91.4522 1.076 0.5117 0.1167 9.955 1285

3.055 0.7148 0.5414 30.68 10.32 1269

s s s s s
K

s s s s s s

    


     
 

 

Controllers Input (u2) 

y1 
    

    

2

21 2 2

70.9165 3.055 1.149 1.124 10.73 1290

3.055 0.7148 0.5414 30.68 10.32 1269

s s s s s
K

s s s s s s

    


     
 

y2 
    

    

2 2

22 2 2

19564.5581 0.5583 1.149 10.32 1270 0.5425 30.68

3.055 0.7148 0.5414 30.68 10.32 1269

s s s s s s
K

s s s s s s

     


     
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Figure 5-1: Singular value of uncertainty matrix for weighting function, WT. 
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Figure 5-2: Sensitivity function variation 
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Figure 5-3: The acceleration response of 1y  
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 Figure 5-4: The acceleration response of 2y . 
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  Figure 5-5: The Bode plot of 11 22P P  and 12 21P P  
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Figure 5-6: The Bode plot of plant 11P variation 
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     Figure 5-7: The Bode plot of plant 12P  variation 
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Figure 5-8: The Bode plot of plant 21P  variation 
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Figure 5-9: The Bode plot of plant 22P  variation 
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 Figure 5-10: The Bode plot of plant by 1B variations  
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Figure 5-11: The Bode plot of plant by 2B  variations 
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Figure 5-12: The Bode plot of plant by 1K  variations 
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Figure 5-13: The Bode plot of plant by 2K  variations 
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Figure 5-14: The Bode plot of plant by 1M  variations 
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Figure 5-15: The Bode plot of plant by 2M  variations 
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Figure 5-16: 1y response without prefilter in time domain 
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Figure 5-17: 1y response with prefilter in time domain 
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Figure 5-18: 1y response without prefilter in frequency domain  
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Figure 5-19: 1y response with prefilter in frequency domain  
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Figure 5-20: 2y  response without prefilter in time domain  
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Figure 5-21: 2y  response with prefilter in time domain  
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Figure 5-22: 2y response without prefilter in frequency domain  
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Figure 5-23: 2y response with prefilter in frequency domain  

 

 

    

Next, the stability analysis of MIMO Quarter-car vehicle suspension system is 

investigated by using Routh-Hurwitz stability criterion [26]. Moreover, in this case, the 

procedure in Routh’s stability criterion is as follows: 

The characteristic polynomial in s of MIMO suspension system is expressed as 

   

   1 2 2 1 1 1 1 2 2 12 3 41 2 1 2 1 1 1 2 2 1

1 2 1 2 1 2 1 2

       

P s sI A

B K B K B M B M B MK K B B K M K M K M
s s s s

M M M M M M M M

 

    
     , (5.1)

 
where the coefficients are real quantities. The stability can be demonstrated by Routh’s table, 

i.e.,  

1 2 1 1 1 2 2 1 1 2 1 2 1 2

1 1 1 2 2 1 1 2 1 2 2 1 1 2

1 1 2 1 1 1 2 2 2 1 2 1 1 2 1 1 1 2 2 1

1  ( ) / ( ) ( ) / ( )

( ) / ( ) ( ) / ( ) 0

( ) / ( (  )) 0

0 0

0 0

B B K M K M K M M M K K M M

B M B M B M M M B K B K M M

D B K K M B K K M B K K M M M B M B M B M

E

F

  

  

   

,  (5.2) 

 

where the coefficient D is denoted as 

 

2 2 2 2 2 2 2 2

1 2 1 1 2 1 1 2 2 1 1 1 1 1 2 1 2 1 2 1 1 2 2 1 1 1 1 2

1 2 1 1 1 2 2 1

( 2 )B B M B B M B B M B K M B K M B K M
D

B K M B K M B K M M

M M B M B M B M

       

 
 , and 

then 
numE

E
denE

 , the coefficient of numerator numE is represented as  

 



62 

 

  


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and the coefficient of denominator denE is indicated as 




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where next 
numF

F
denF

 , the coefficient of numerator numF is represented as 
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and the coefficient of denominator denF is indicated as shown 
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Moreover, because all expressions of the 1
st
 column in Eq. (5.2) of the numerator and 

denominator have no sign change, the system is stable. 
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Chapter 6 

CONCLUSION AND FUTURE WORKS 

This dissertation develops controllers for one MIMO suspension system, effectively  

using the /QFT H approach design procedure. The verification results demonstrate the 

effectiveness of the MIMO suspension operation scheme, and conform to the requirements. 

The MIMO suspension system with the developed /QFT H  controller and considered in 

the presence of disturbances and the noise signals maintain the displacement motion approach 

to zero subject to the given uncertainty components. The current study offers the key finding 

for ride quality and handling performance in applying the vehicle suspension system. This 

research can extend the state-space motion equations of the quarter model to the full-car 

suspension system. Constructing the dynamical system for the full-car model is more 

complicated than the quarter model system, and needs to consider translational and rotational 

motions. This work discusses the possibilities of full-car model MIMO suspension system 

with its parameter uncertainty responses, and uses the /QFT H  optimization algorithm 

design-technique to develop the controller. The control of a slalom vehicle under different roll 

conditions will also be more challenge work in the future.  
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Appendix 

Program: 

clear; 

nn1 = -5;%[-5%] 

nn2 = 4; %[+4%] 

m1 = ureal('m1',973,'Percentage',[nn1 nn2]); 

m2 = ureal('m2',114,'Percentage',[nn1 nn2]); 

k1 = ureal('k1',42720,'Percentage',[nn1 nn2]); 

k2 = ureal('k2',101115,'Percentage',[nn1 nn2]);%[system parameters] 

c1 = ureal('c1',1095,'Percentage',[nn1 nn2]); 

c2 = ureal('c2',14.6,'Percentage',[nn1 nn2]); 

%------------------------% 

A = [0 0 1 0 

    0 0 0 1 

    -k1/m1 k1/m1 -c1/m1 c1/m1 

    k1/m2 -(k1+k2)/m2 c1/m2 -(c1+c2)/m2]; 

B = [0 0;0 0;1/m1 0;0 1/m2]; 

C = [1 0 0 0;0 1 0 0]; 

D = zeros(2,2); 

plant = uss(A,B,C,D); 

%-----------------------------------% 

nn = 20;[sampling number] 

fw =logspace(-2,4,nn); 

Bplant = usample(plant,nn); 

B_siz = size(Bplant,3); 

for iB_siz = 1:B_siz 

bode(tf(plant.nomi(1,1))*tf(plant.nomi(2,2)),'r',tf(Bplant(1,2,iB_siz))*tf(Bplant(2,1,iB_siz)),'g

--',fw) 

hold on 

end 

%% to deterimine weighting function WT (W1) 

B_sizarr = size(Bplant,3); 

for iB_sizarr = 1:B_sizarr 
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PSS025_arr(:,:,iB_sizarr) = (tf(Bplant(:,:,iB_sizarr))-tf(plant.nomi))*inv(tf(plant.nomi)); 

        [magPSS025(:,:,:,iB_sizarr),phPSS025(:,:,:,iB_sizarr)] = 

bode(PSS025_arr(:,:,iB_sizarr),fw);  

                   magBP025_11(:,1,iB_sizarr) = magPSS025(1,1,:,iB_sizarr); 

             magf_BP02511(:,iB_sizarr) = magBP025_11(:,1,iB_sizarr); 

                    magBP025_12(:,1,iB_sizarr) = magPSS025(1,2,:,iB_sizarr); 

             magf_BP02512(:,iB_sizarr) = magBP025_12(:,1,iB_sizarr); 

                    magBP025_21(:,1,iB_sizarr) = magPSS025(2,1,:,iB_sizarr); 

             magf_BP02521(:,iB_sizarr) = magBP025_21(:,1,iB_sizarr); 

                  magBP025_22(:,1,iB_sizarr) = magPSS025(2,2,:,iB_sizarr); 

             magf_BP02522(:,iB_sizarr) = magBP025_22(:,1,iB_sizarr); 

 

   figure(2); 

       bodemag(PSS025_arr(:,:,iB_sizarr),'b',fw) 

 hold on;grid on 

  title('principal gains of singular value (P-Pn)/Pn  for evaluating Wmpo(w)') 

xlabel('frequence response') 

ylabel('dB') 

       pmag11= magf_BP02511; pmag12= magf_BP02512;  

   pmag21= magf_BP02521; pmag22= magf_BP02522; 

  %---------------------------------% 

n_W = 0.4*[0.4 300]; 

d_W = [0.55 30]; 

W = tf(n_W,d_W);  

   figure(3) 

    sigma(PSS025_arr(2,1,iB_sizarr),'r--',PSS025_arr(1,2,iB_sizarr),'b-.',W,'k',fw) 

     hold on 

end 

%% plant uncertainty variations 

for iB_sizarr = 1:B_sizarr 

PSS025_arrB(:,:,iB_sizarr) = tf(Bplant(:,:,iB_sizarr)); 

        [magPSS025B(:,:,:,iB_sizarr),phPSS025B(:,:,:,iB_sizarr)] = 

bode(PSS025_arrB(:,:,iB_sizarr),fw);  

                   magBP025B_11(:,1,iB_sizarr) = magPSS025B(1,1,:,iB_sizarr); 
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             magf_BP025B_11(:,iB_sizarr) = magBP025B_11(:,1,iB_sizarr); 

                    magBP025B_12(:,1,iB_sizarr) = magPSS025B(1,2,:,iB_sizarr); 

             magf_BP025B_12(:,iB_sizarr) = magBP025B_12(:,1,iB_sizarr); 

                    magBP025B_21(:,1,iB_sizarr) = magPSS025B(2,1,:,iB_sizarr); 

             magf_BP025B_21(:,iB_sizarr) = magBP025B_21(:,1,iB_sizarr); 

                  magBP025B_22(:,1,iB_sizarr) = magPSS025B(2,2,:,iB_sizarr); 

             magf_BP025B_22(:,iB_sizarr) = magBP025B_22(:,1,iB_sizarr); 

    

      figure(4); 

       bodemag(tf(Bplant(:,:,iB_sizarr)),'b',fw) 

 hold on;grid on 

  title('uncertainty variation (P))') 

xlabel('frequence response') 

ylabel('dB') 

end 

    %%% Wmp=max value (magnitude) 

max11=max(magf_BP025B_11); 

max12=max(magf_BP025B_12);  

max21=max(magf_BP025B_21); 

max22=max(magf_BP025B_22); 

 

    %%% wmp=min value (magnitude) 

min11=min(magf_BP025B_11);  

min12=min(magf_BP025B_12);  

min21=min(magf_BP025B_21);  

min22=min(magf_BP025B_22); 

 

%%  upper and lower bound 

  fw1 = logspace(-3,3,nn); 

%%%%%%%%%%%% upper bound and lower bound 

tu11=tf(0.338*[1,20],[1 3.12 6.76]); 

tl11=tf(15*[1.96],[conv([1 15],[1 3.08 1.96])]); 

%----------------------------% 

[mag_tu11,ph_tu11] = bode(tu11,fw1); 
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[mag_tl11,ph_tl11] = bode(tl11,fw1); 

 

mag_del_t11 = mag2db(mag_tu11)-mag2db(mag_tl11); 

 for idel_11 = 1:length(fw1) 

% [mag_delt11,ph_delt11] = bode(tu11-tl11,fw1); % diference of upper & lower bounds 

 mag_delt11(idel_11,1) = mag_del_t11(1,1,idel_11); 

 end 

%%%%%%%%%%%% upper bound and lower bound 

tu22=tu11; 

tl22=tl11; 

%----------------------------------% 

[mag_tu22,ph_tu22] = bode(tu22,fw1); 

[mag_tl22,ph_tl22] = bode(tl22,fw1); 

 

mag_del_t22 = mag2db(mag_tu22)-mag2db(mag_tl22); 

 for idel_11 = 1:length(fw1) 

%[mag_delt22,ph_delt22] = bode(tu22-tl22,fw1); 

 mag_delt22(idel_11,1) = mag_del_t22(1,1,idel_11); 

 end 

%---------------------------------% 

%%% sensitivity 

ss11 = mag_delt11./mag2db(max11-min11)'; 

ss22 = mag_delt22./mag2db(max22-min22)'; 

 

figure(5); 

semilogx(fw1,ss11,'g--',fw1,ss22,'r-.') 

%% 

%ss11=delt11(:)./delp11(:);ss22=delt22(:)./delp22(:); 

  %%%%% curve fitting 

  sys11 = frd(ss11,fw1);   

  sys22 = frd(ss22,fw1); 

  

cfs11 = tf(fitmagfrd(sys11,2)); 

cfs22 = tf(fitmagfrd(sys22,2)); 
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[magcfs11,phcfs11] = bode(cfs11,fw1); 

n_cfs11 = size(magcfs11,3); 

 for is11 = 1:n_cfs11 

          magcfs_11(is11,:) = magcfs11(:,1,is11); 

 end 

[magcfs22,phcfs22] = bode(cfs22,fw1); 

n_cfs22 = size(magcfs22,3); 

 for is22 = 1:n_cfs22 

  magcfs_22(is22,:) = magcfs22(:,1,is22); 

  end   

%%%% 1/ws 

k1=5;   k2=5;     

ws11_inv =k1/cfs11; 

ws22_inv =k2/cfs22;      % k1 times 

 

%ws11_inv=cfs11;ws22_inv=cfs22;               % one time 

[magws11_inv,phws11_inv]=bode(ws11_inv,fw1); 

nmagws11_inv = size(magws11_inv,3); 

for in_mag11_inv = 1:nmagws11_inv 

          magws11f_inv(in_mag11_inv,:) = magws11_inv(:,:,in_mag11_inv); 

end 

           

[magws22_inv,phws22_inv]=bode(ws22_inv,fw1); 

nmagws22_inv = size(magws22_inv,3); 

for in_mag22_inv = 1:nmagws22_inv 

          magws22f_inv(in_mag22_inv,:) = magws22_inv(:,:,in_mag22_inv); 

end 

           

     ws11 = 1/ws11_inv; 

%%%%% w21=ws%%%%%%% 

figure(6);  % plot curve fitting and 1/ws 

subplot(211) 

bodemag(ws11,'g',ws11_inv,'b',tu11,'r+',tl11,'r-.',fw1);%semilogx(fw,20*log10(magcfs11(:)),'b

+',fw,20*log10(magws11_inv(:)),'b',fw,20*log10(magcfs22(:)),'g+',fw,20*log10(magws22_in
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v(:)),'g') 

grid on; hold on 

  title('principal P11, 1/Ws and Senstivity') 

xlabel('frequence  red--p11  blue--1/Ws  green--Senstivity') 

ylabel('dB') 

%%%%% w22=ws%%%%%%% 

ws22 = 1/ws22_inv; 

subplot(212) 

title('principal P11, 1/Ws and Senstivity') 

 

bodemag(ws22,'g',ws22_inv,'b',tu22,'g+',tl22,'g-.',fw1) 

grid on; hold on 

title('principal P22, 1/Ws and Senstivity') 

 

xlabel('frequence  red--p22  blue-- 1/Ws  green--Senstivity') 

ylabel('dB') 

 

 

%% find K_controller 

     %%%   ws-----curve fitting 

   sws11=ws11_inv;    sws22=ws22_inv;  %two times 

   %     sws11=ltisys('tf',cfd11,conv(cfn11,[1/0.0001 

1]));sws22=ltisys('tf',cfd22,conv(cfn22,[1/0.0001 1]));  %one  times 

  % sws11=ltisys('tf',[0.7 8.4],[1 0.01]);     sws22=ltisys('tf',[0.7 56],[1 0.01]);  %                 

new value 

 sws = 1.02*append(ws11_inv,ws22_inv); 

 %  w1  ------max value=[1 0;0 1] 

swT = 1*[W*inv(W) 0;0 W*inv(W)]; 

     %%wun------try error 

    % swun_11=ltisys('tf',0.1,1);swun_22=ltisys('tf',0.1,1); 

    swun_11 = tf(120,1); swun_22 = tf(120,1); 

   swun = 1*[swun_11 0*swun_11;0*swun_22 swun_22]; 

%----------------------- 

systemnames = 'swT plant sws swun'; 
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inputvar ='[control(2); n(2); d(2)]'; 

outputvar ='[swun; sws; swT; d+n+plant]'; 

input_to_plant = '[control]'; 

input_to_sws = '[-d-n-plant]'; 

input_to_swun ='[control]'; 

input_to_swT ='[plant]'; 

PSS025_ic = sysic;  

%===================================% 

nmeas = 2; 

ncon = 2; 

hinPSS025_ic = PSS025_ic.nomi; 

[PSS_ica,PSS_icb,PSS_icc,PSS_icd] = ssdata(hinPSS025_ic); 

hinfPSS025_c = pck(PSS_ica,PSS_icb,PSS_icc,PSS_icd); 

 [ns_PSS025,ni_PSS025,no_PSS025] = sinfo(hinfPSS025_c); 

%  TF_PSS025 = ssub(hinfPSS025_c,1:2,7:8);   

%         [TFaak_PSS025 ,TFbbk_PSS025,TFcck_PSS025,TFddk_PSS025] = 

unpck(TF_PSS025); 

%  tfPSS025 = 

minreal(zpk(ss(TFaak_PSS025 ,TFbbk_PSS025,TFcck_PSS025,TFddk_PSS025))) 

   

addpath(genpath('D:\ExMat_Tools\Control2')) 

 [a111,b1,b2,ca,cb,d11,d12,d21,d22]=hinfpar(hinfPSS025_c,[nmeas,ncon]); 

   [gopt,K_PSS025] = hinflmi(hinfPSS025_c,[nmeas,ncon]); 

 [ns_K,ni_K,no_K] = sinfo(K_PSS025); 

   %%% controller 

    K_PSS025 = ssub(K_PSS025,1:ni_K,1:no_K);   

       [aak_PSS025 ,bbk_PSS025,cck_PSS025,ddk_PSS025] = unpck(K_PSS025); 

  tfK_PSS025 = minreal(zpk(ss(aak_PSS025 ,bbk_PSS025,cck_PSS025,ddk_PSS025))) 

   

figure(7); 

bodemag(tfK_PSS025) 

 

      %% close loop system without Prefilter and Noise filter 

  %%%   K*plant 
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   K = -minreal(tfK_PSS025); 

  NF = tf(1,[0 1]); 

   sNF = append(NF,NF); 

  %------------------- 

systemnames = 'K plant sNF'; 

inputvar ='[ r(2); d(2); n(2)]'; 

outputvar ='[K; plant; d+plant]'; 

input_to_plant = '[K]'; 

input_to_sNF = '[r-n-d-plant]'; 

input_to_K = '[sNF]'; 

unit_PSS025 = sysic; 

%------------------- 

[Bunit_PSS025,unit_SamValues] = usample(unit_PSS025,20); 

%---------calculation sensor noise T = u/n -----------% 

[PSS025_ica,PSS025_unitb,PSS025_unitc,PSS025_unitd] = ssdata(unit_PSS025.nomi); 

unitPSS025_c = pck(PSS025_ica,PSS025_unitb,PSS025_unitc,PSS025_unitd); 

[ns_unit_PSS025,ni_unit_PSS025,no_unit_PSS025] = sinfo(unitPSS025_c); 

tf_Tnoise11 = zpk(tf(unit_PSS025.nomi(1,5))); 

tf_Tnoise22 = zpk(tf(unit_PSS025.nomi(2,6))); 

figure(8) 

subplot(121);pzmap(tf_Tnoise11) 

subplot(122);pzmap(tf_Tnoise22) 

%--------Input r & Output plant -----------% 

figure(9) % step response 

subplot(121); step(tf(unit_PSS025.nomi(3,1)),'b',tu11,'g+',tl11,'g') 

subplot(122); step(tf(unit_PSS025.nomi(4,2)),'b',tu11,'g+',tl11,'g') 

title('step response');hold on 

xlabel('time ') 

ylabel('magnitude') 

%-------Input r & Output plant ----------% 

figure(10); 

subplot(121);bodemag(unit_PSS025(3,1),'b',Bunit_PSS025(3,1),'r',tu11,'g+',tl11,'g>') 

subplot(122);bodemag(unit_PSS025(4,2),'b',Bunit_PSS025(4,2),'r',tu11,'g+',tl11,'g>') 

%% 
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B_unit_PSS025 = size(Bunit_PSS025,3); 

for iB_sizunit_PSS025 = 1:B_unit_PSS025 

 [magunitPSS025B(:,:,:,iB_sizunit_PSS025),phunitPSS025B(:,:,:,iB_sizunit_PSS025)] = 

bode(Bunit_PSS025(:,:,iB_sizunit_PSS025),fw); 

              %%% max value (magnitude) for max|T1| <= Beta %%% 

              magBunitP025_31(:,1,iB_sizunit_PSS025) = 

magunitPSS025B(3,1,:,iB_sizunit_PSS025); 

             magf_BunitP02531(:,iB_sizunit_PSS025) = 

magBunitP025_31(:,1,iB_sizunit_PSS025); 

              

              magBunitP025_41(:,1,iB_sizunit_PSS025) = 

magunitPSS025B(4,1,:,iB_sizunit_PSS025); 

             magf_BunitP02541(:,iB_sizunit_PSS025) = 

magBunitP025_41(:,1,iB_sizunit_PSS025); 

              

             magBunitP025_32(:,1,iB_sizunit_PSS025) = 

magunitPSS025B(3,2,:,iB_sizunit_PSS025); 

             magf_BunitP02532(:,iB_sizunit_PSS025) = 

magBunitP025_32(:,1,iB_sizunit_PSS025); 

              

                magBunitP025_42(:,1,iB_sizunit_PSS025) = 

magunitPSS025B(4,2,:,iB_sizunit_PSS025); 

             magf_BunitP02542(:,iB_sizunit_PSS025) = 

magBunitP025_42(:,1,iB_sizunit_PSS025); 

              %%% max value (magnitude) for max|Td| <= Gamma %%% 

                    magBunitP025_35(:,1,iB_sizunit_PSS025) = 

magunitPSS025B(5,3,:,iB_sizunit_PSS025); 

             magf_BunitP02535(:,iB_sizunit_PSS025) = 

magBunitP025_35(:,1,iB_sizunit_PSS025); 

              

                 magBunitP025_36(:,1,iB_sizunit_PSS025) = 

magunitPSS025B(6,3,:,iB_sizunit_PSS025); 

             magf_BunitP02536(:,iB_sizunit_PSS025) = 

magBunitP025_36(:,1,iB_sizunit_PSS025); 
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               magBunitP025_45(:,1,iB_sizunit_PSS025) = 

magunitPSS025B(5,4,:,iB_sizunit_PSS025); 

             magf_BunitP02545(:,iB_sizunit_PSS025) = 

magBunitP025_45(:,1,iB_sizunit_PSS025); 

              

                magBunitP025_46(:,1,iB_sizunit_PSS025) = 

magunitPSS025B(6,4,:,iB_sizunit_PSS025); 

             magf_BunitP02546(:,iB_sizunit_PSS025) = 

magBunitP025_46(:,1,iB_sizunit_PSS025);    

end 

   %%% max value (magnitude) for max|T1| <= Beta %%% 

maxT31 = max(magf_BunitP02531); 

maxT32 = max(magf_BunitP02532); 

maxT41 = max(magf_BunitP02541); 

maxT42 = max(magf_BunitP02542); 

 dB_maxT31 = mag2db(maxT31); 

  dB_maxT32 = mag2db(maxT32); 

  dB_maxT41 = mag2db(maxT41);   

  dB_maxT42 = mag2db(maxT42);   

%------ Sensitivity function ----% 

figure(11); 

%%%---- input d(1) and output yd -----%%% 

subplot(221);step(tf(unit_PSS025.nomi(5,3)),'b',tf(unit_PSS025.nomi(6,3)),'r'); 

subplot(223);pzmap(tf(unit_PSS025.nomi(5,3)),tf(unit_PSS025.nomi(6,3))); 

%%%---- input d(2) and output yd -----%%% 

subplot(222);step(tf(unit_PSS025.nomi(5,4)),'b',tf(unit_PSS025.nomi(6,4)),'r'); 

subplot(224);pzmap(tf(unit_PSS025.nomi(5,4)),tf(unit_PSS025.nomi(6,4))); 

   %%% max value (magnitude) for max|Td| <= Gamma %%% 

maxT35 = max(magf_BunitP02535); 

maxT36 = max(magf_BunitP02536); 

maxT45 = max(magf_BunitP02545); 

maxT46 = max(magf_BunitP02546); 

 dB_maxT35 = mag2db(maxT35); 
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  dB_maxT36 = mag2db(maxT36); 

   dB_maxT45 = mag2db(maxT45); 

  dB_maxT46 = mag2db(maxT46); 

%% closed-loop system with Prefilter 

%%prefilter 

%pfn11=[1];pfd11=[1]; 

pfn11= 4*0.5*conv(conv([0 1],[0 2]),[1 2]); 

pfd11=conv([1 0.5],[1 9 16]);%[1 6 15 ]; 

 

F11 =tf(pfn11,pfd11); 

pfn22=2*conv([0 1],[0 2]); 

pfd22=[1 1 4]; 

%pfn22=[15];pfd22=[1 16 15 ]; 

 

F22 = tf(pfn22,pfd22); 

Pref = append(F11,F22); 

%----------------------------------- 

systemnames = 'Pref K plant'; 

inputvar ='[ r(2)]'; 

outputvar ='[plant]'; 

input_to_plant = '[K]'; 

input_to_K = '[Pref-plant]'; 

input_to_Pref = '[r]'; 

PSS025 = sysic; 

%---------------------% 

[B_PSS025,SamValues] = usample(PSS025,20);  

 

figure(12) 

subplot(121);step(tf(PSS025.nomi(1,1)),'r',tu11,'g+',tl11,'g'); 

title('unity feedback P11 Bode plot ') 

xlabel('frequence ') 

ylabel('dB') 

 

subplot(122);step(tf(PSS025.nomi(2,2)),'r',tu11,'g+',tl11,'g'); 
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title('unity feedback P22 Bode plot ') 

xlabel('frequence ') 

ylabel('dB') 

 

figure(13) 

bodemag(PSS025,'b',B_PSS025,'r',tu11,'g+',tl11,'g>') 

%% Acceration calculation ---> s^2*x1 

s = tf('s'); 

Accer_11 = s^2*minreal(tf(PSS025.nomi(1,1))); 

Accer_22 = s^2*minreal(tf(PSS025.nomi(2,2))); 

figure(14); 

subplot(211);step(Accer_11)  

subplot(212);step(Accer_22)  

%% simulation of m1, m2, k1, k2, c1 and c2 variations  

% m1 variations = [924.35, 1011.92]; 

vari = 5; 

m1_vari = 924.35:vari:1011.92; 

figure(15); 

for im1_vari = 1:length(m1_vari) 

m1_PSS025 = usubs(PSS025,'m1',im1_vari); 

BAccer_m1 = usample(m1_PSS025,10); 

BAccerm1_siz = size(BAccer_m1,3); 

for iBAccerm1_siz = 1:BAccerm1_siz 

bode(tf(BAccer_m1(1,1,iBAccerm1_siz)),fw) 

hold on 

end 

end 

%% 

% m2 variations = [108.3, 118.56]; 

m2_vari = 924.35:vari:1011.92; 

figure(16); 

for im2_vari = 1:length(m2_vari) 

m2_PSS025 = usubs(PSS025,'m2',im2_vari); 

BAccer_m2 = usample(m2_PSS025,10); 
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BAccerm2_siz = size(BAccer_m2,3); 

for iBAccerm2_siz = 1:BAccerm2_siz 

bode(tf(BAccer_m2(1,1,iBAccerm2_siz)),fw) 

hold on 

end 

end 

%% 

% k1 variations = [40584, 44428.8]; 

vari_1 = 500; 

k1_vari = 40584:vari_1:44428.8; 

figure(17); 

for ik1_vari = 1:length(k1_vari) 

k1_PSS025 = usubs(PSS025,'k1',ik1_vari); 

BAccer_k1 = usample(k1_PSS025,10); 

BAccerk1_siz = size(BAccer_k1,3); 

for iBAccerk1_siz = 1:BAccerk1_siz 

bode(tf(BAccer_k1(1,1,iBAccerk1_siz)),fw) 

hold on 

end 

end 

%% 

% k2 variations = [96059.25, 105159.6]; 

k2_vari = 96059.25:vari_1:105159.6; 

figure(18); 

for ik2_vari = 1:length(k2_vari) 

k2_PSS025 = usubs(PSS025,'k2',ik2_vari); 

BAccer_k2 = usample(k2_PSS025,10); 

BAccerk2_siz = size(BAccer_k2,3); 

for iBAccerk2_siz = 1:BAccerk2_siz 

bode(tf(BAccer_k2(1,1,iBAccerk2_siz)),fw) 

hold on 

end 

end 

%% 
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% c1 variations = [1040.25, 1138.8]; 

c1_vari = 1040.25:vari:1138.8; 

figure(19); 

for ic1_vari = 1:length(c1_vari) 

c1_PSS025 = usubs(PSS025,'c1',ic1_vari); 

BAccer_c1 = usample(c1_PSS025,10); 

BAccerc1_siz = size(BAccer_c1,3); 

for iBAccerc1_siz = 1:BAccerc1_siz 

bode(tf(BAccer_c1(1,1,iBAccerc1_siz)),fw) 

hold on 

end 

end 

%% 

% c2 variations = [13.87, 15.184]; 

c2_vari = 13.87:vari:15.184; 

figure(20); 

for ic2_vari = 1:length(c2_vari) 

c2_PSS025 = usubs(PSS025,'c2',ic2_vari); 

BAccer_c2 = usample(c2_PSS025,10); 

BAccerc2_siz = size(BAccer_c2,3); 

for iBAccerc2_siz = 1:BAccerc2_siz 

bode(tf(BAccer_c2(1,1,iBAccerc2_siz)),fw) 

hold on 

end 

end 

 


