
 

 

國 立 交 通 大 學 
 

電信工程研究所 
 

博 士 論 文 
 

 
多載波系統之時域等化 

 
Time Domain Equalization for Multicarrier Systems 

 
 

研 究 生： 李 俊 芳 
 
指導教授： 吳 文 榕  博士 

 
 

 
中 華 民 國  九十九 年 六 月 



 

多載波系統之時域等化 

Time Domain Equalization 

for Multicarrier Systems 
 

研 究 生： 李俊芳      Student :  Chun-Fang Lee 
指導教授： 吳文榕  博士   Advisor :  Dr. Wen-Rong Wu 

 
 

國立交通大學 

電信工程研究所 

博士論文 
 

A Dissertation 
Submitted to Institute of Communication Engineering 

College of Electrical Engineering 
National Chiao Tung University 

in Partial Fulfillment of the Requirements 
for the Degree of Doctor of Philosophy 

in 
Communication Engineering 

Hsinchu, Taiwan 
 

2010 年 6 月 

 



 i

多載波系統之時域等化 

 

 

 

研究生: 李俊芳                      指導教授: 吳文榕 博士 

 

 

國立交通大學 

電信工程研究所博士班 

摘要 

在多載波系統中，循環前置 (cyclic prefix)是用以避免符元之間的干擾

(intersymbol interference)。然而循環前置需額外的頻寬，其長度通常取決於傳輸

效率和系統效能之間的一個權衡。假如通道響應長度超過循環前置的範圍，則會

產生符元之間的干擾而導致系統效能降低。一個簡單的補救方法是使用一時域等

化器，將通道響應縮短至循環前置之範圍以內。本論文針對兩個眾所周知的多載

波系統：離散多頻系統和正交分頻多工系統，發展出新的時域等化器之設計方

法。時域等化器是一普遍用於離散多頻系統的裝置。許多方法已經被提出用來以

設計容量最大化之時域等化器。在這些已提出的方法中都有一共同的假設即循環

迴旋(circular convolution)可被用於雜訊信號及時域等化器。然而這個假設是不成

立的，因為在一離散多頻系統中雜訊信號並不含有循環前置。對於等化後殘留之

符元之間干擾，現存方法亦有類似的假設。由於這些不正確的假設，導致經過時

域等化後之子載波雜訊和殘留之符元之間干擾量並未被正確的計算出，因而現存

之最佳解事實上並不是最佳的。在本論文的第一部份，我們嘗試解決此問題。我

們首先仔細的分析經時域等化後的雜訊信號和殘留之符元之間干擾信號之統計

特性，並推導出計算時域等化後的雜訊和殘留符元之間干擾功率的正確公式。然

後我們重新審視通道容量並設計一真正最佳的時域等化器。模擬顯示我們所提出

的方法優於現存的方法，且效能非常接近於理論之上限。 

 



 ii

一典型的無線通道有多路徑(multipath)響應，這響應通常具有限脈衝響應

(finite impulse response)的特性。因此其所對應的時域等化器會有無限脈衝響應

(infinite impulse response)，這將導致傳統的時域等化器設計及其應用會有很高的

計算複雜度。另在正交分頻多工系統中時域等化器的設計標的是平均位元錯誤率

(bit- error-rate)，而平均位元錯誤率是等化器的一複雜函數，因此要求出最佳的時

域等化器是一個非常困難的問題。在本論文的第二部份中，我們發展一些新的方

法用以克服上述問題。首先我們提出一具無限脈衝響應之時域等化器來縮短通道

的響應。在理論上吾人可以證明無線通道之時域等化器具有低階的無限脈衝響應

特性，因此其階數可以遠小於有限脈衝響應之時域等化器。模擬顯示我們所提出

的方法可以有效的降低計算複雜度，而其效能幾乎與現存之方法相同。我們接者

進一步的提出一具有么正前置編碼(unitary precoding)之正交分頻多工系統。經過

前置編碼的正交分頻多工系統不只可以提高子載波的多樣性(diversity)，同時也

可以方便時域等化器之設計。我們提出一時域等化器的設計方法稱之為最大訊雜

干擾比(maximum signal-to-interference-plus-noise ratio)。我們證明最佳的時域等化

器可以將所有子載波的訊雜干擾比最大化，並且其解可以很容易的被導出。另一

方面，要能完全的得到通道所提供的多樣性，接收端必須使用最大相似(maximum 

likelihood)偵測器。然而，用於前置編碼之正交分頻多工系統之最大相似偵測器

的計算複雜度相當高，我們因此提出一偵測的方法稱之為混合型球型解碼和連續

干擾消除(sphere-decoding-and-successive-interference-cancellation)。由模擬得知，

此方法可以逼近最佳之效能，但其計算複雜度低。 
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Abstract 

 
In multicarrier systems, cyclic prefix (CP) is introduced to avoid intersymbol 

interference (ISI). The CP is an overhead and its size is chosen as a compromise 

between the transmission efficiency and system performance. If the length of the 

channel response exceeds the CP range, the ISI is induced and the system 

performance will be degraded. A simple remedy for this problem is to apply a 

time-domain equalizer (TEQ) such that the channel response can be shortened into the 

CP range. This dissertation is aimed to develop new TEQ design methods for two 

well known multicarrier systems: discrete multitone (DMT) and orthogonal frequency 

division multiplexing (OFDM). The TEQ is a commonly used device in DMT 

systems. Many methods have been proposed to design the TEQ with a capacity 

maximization criterion. An implicit assumption used by existing methods is that 

circular convolution can be conducted for the noise signal and the TEQ. This 

assumption is not valid because the noise vector, observed in a DMT symbol, does not 

have a CP. A similar assumption is also made for the residual ISI signal. Due to these 

invalid assumptions, the TEQ-filtered noise and residual ISI powers in each subcarrier 

were not properly evaluated. As a result, the existing optimum solutions are actually 

not optimal. In the first part of the dissertation, we attempt to resolve this problem. 

We first analyze the statistical properties of the TEQ-filtered noise signal and the 

residual ISI signal in detail, and derive precise formulae for the calculation of the 

TEQ-filtered noise and residual ISI powers. Then, we re-formulate the capacity 
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maximization criterion to design the true optimum TEQ. Simulations show that the 

proposed method outperforms the existing ones, and its performance closely 

approaches the theoretical upper bound. 

 

A wireless channel typically has the multi-path response, exhibiting a finite 

impulse response (FIR) characteristic. Thus, the corresponding TEQ will have an 

infinite impulse response (IIR). The direct application of conventional TEQ designs 

results in a filter with high computational complexity. In OFDM systems, the criterion 

for the TEQ design is the average bit error rate (BER) which is a complicated function 

of the TEQ, and the optimum TEQ is difficult to obtain. In the second part of the 

dissertation, we develop new methods to overcome the problems. We propose using 

an IIR TEQ to shorten the CIR. It can be shown that the ideal TEQ exhibits low-order 

IIR characteristics, and the order of the IIR TEQ can be much lower than that of the 

FIR TEQ. Simulations show that while the proposed method can reduce the 

computational complexity significantly, its performance is almost as good as existing 

methods. We then further propose an OFDM system with a unitary precoding. The 

precoded OFDM system not only enhances the diversity of subcarriers, but also 

facilitates the TEQ design. We propose a TEQ design method called the maximum 

signal-to-interference-plus-noise ratio (MSINR). It is shown that the optimum TEQ, 

maximizing the SINR of all subcarriers, can be easily derived. To full explore the 

diversity the channel provides, the detector used at the receiver must be the 

maximum-likelihood (ML). The computational complexity of the ML detector for the 

precoded OFDM system can be very high. We then propose a detection method, 

called the sphere-decoding-and-successive-interference-cancelation (SDSIC). The 

proposed method can have near-optimal performance but the computational 

complexity is low. 

 



Acknowledgements

I have a long list of people to thank for their sincere support and help. First of all, I express my

gratitude to my advisor, Prof. Wen-Rong Wu, for taking a chance on me and guiding me in my

doctoral studies. He spends a lot of time in discussing the problems I encounter in my research,

providing valuable suggestions, and teaching me how to write technical papers. Under his

enthusiastic instruction, I learned not only how to do a research but also learned the optimistic

study attitude. I also learned to appreciate and mimic his clarity of expression and attention to

detail. Prof. Wu has my deepest respect professionally and personally.

Secondly, I am deeply indebted to my beloved wife, Chin-Jung Wu, for her love, patience

and understanding. She took care most family issues during my long studying period and per-

severed by my side through ups and downs although I know that I was not always the easiest

person to deal with. I would like to express my sincere gratitude to my parents Run-Yuan Lee

and Bi-Tao Chang, for their selflessly sacrificing and support. Then, I want to thank to my

lovely children, Ting-Ying Lee, and Gia-Ann Lee. They are the sources of my power. Also I

would like to thank to my brother Ming-Fang Lee, and my sister Hsiu-Ping Lee for their un-

dertaking many family issues without complaint. Without their kindly cares, I will never think

about pursuing a doctoral degree.

Moreover, I am grateful to all members in Wideband Transmission & Signal Processing

Laboratory for the camaraderie and helpful research suggestions including Fan-Shao Tseng,

Chao-Yuan Hsu, Hung-Dow Hsieh, Chun-Tao Lin, Nan-Chiun Lien, and so on. I would like

i



to thank them for their constructive suggestions and prompt help during the period of the PhD

program. Finally, I would like to thank all friends who ever encourage or help me.

ii



Contents

Acknowledgements i

Contents iii

List of Tables v

List of Figures vi

1 Introduction 1

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Review of Previous Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions and Dissertation Organization . . . . . . . . . . . . . . . . . . . 6

2 Conventional Time Domain Equalization for DMT Systems 9

2.1 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Minimum Mean Squared Error (MMSE) Method . . . . . . . . . . . . . . . . 14

2.3 Maximum Shortened SNR (MSSNR) Method . . . . . . . . . . . . . . . . . . 17

2.4 Maximum Bit Rate (MBR) Method . . . . . . . . . . . . . . . . . . . . . . . 18

3 Time Domain Equalization for DMT Systems with Enhanced MBR Method 23

3.1 Analysis of Noise/Residual ISI Effect . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Conventional SINR calculation . . . . . . . . . . . . . . . . . . . . . . 24

iii



3.1.2 Analysis of Noise Effect . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.3 Analysis of residual ISI . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 IIR Time Domain Equalization for OFDM Systems 49

4.1 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Proposed IIR TEQ Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 IIR Characteristic of the TEQ . . . . . . . . . . . . . . . . . . . . . . 52

4.2.2 Derivation of MS FIR TEQ . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.3 Derivation of IIR TEQ . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.4 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Time Domain Equalization for OFDM Systems with Unitary Precoding 77

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.2 TEQ Design with MSINR Method . . . . . . . . . . . . . . . . . . . . 84

5.2.3 Detection Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2.4 Computational Complexity Analysis . . . . . . . . . . . . . . . . . . . 97

5.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Conclusions 115

Bibliography 119

iv



List of Tables

3.1 Throughput for various TEQ design methods (unit: Mbps) . . . . . . . . . . . 37

4.1 Plot definitions of simulation scenario A (for various IIR order) . . . . . . . . . 75

4.2 Plot definitions of simulation scenario B (for various pole/zero order per stage) 75

4.3 Plot definitions of simulation scenario C (for various TLS per stage) . . . . . . 76

5.1 Complexity comparison for various detection methods (SNRa is varied) . . . . 101

5.2 Complexity comparison for various detection methods (p is varied) . . . . . . . 101

v



vi



List of Figures

1.1 An OFDM system model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 A DMT model for TEQ design . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Block diagram of the MMSE equalizer . . . . . . . . . . . . . . . . . . . . . . 21

2.3 (a) Effective channel in a DMT system, (b) Decomposition of received signal:

desired signal path, ISI path, and noise path (H is the channel matrix). . . . . . 22

3.1 Decomposed TEQ-filtered noise powers (N = 16, CSA#5 Loop) . . . . . . . 38

3.2 Comparison of TEQ-filtered noise powers; power calculated with (3.9), power

calculated with (3.8) (correct one), and simulated power (N = 16, CSA#5 Loop) 39

3.3 A zoomed view of Figure 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Decomposed residual-ISI powers (N = 16, CSA#5 Loop) . . . . . . . . . . . 41

3.5 Comparison of residual-ISI powers; power calculated with (3.12), power calcu-

lated with (3.11) (correct one), and simulated power (N = 16, CSA#5 Loop) . 42

3.6 A zoomed view of Figure 3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.7 Configuration of various standard test loops defined in ITU-T Recommendation

G.996.1. The numbers on a line segment represent the length (feet) and the wire

gauge (American wire gauge) of the line. The left side of a loop is connected to

a central office. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.8 SINR comparison between TEQs designed for min-ISI method and SEMBR

method (N = 16, mid-CSA#6 Loop) . . . . . . . . . . . . . . . . . . . . . . 45

vii



3.9 Throughput comparison for TEQs designed with min-ISI and SEMBR method

(N = 16). MFB shows upper bound with no ISI. Loop Index is defined in Table

3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.10 TEQ frequency responses designed with min-ISI and SEMBR method (N =

16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 An OFDM system with TEQ . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 An OFDM system with multistage TEQ . . . . . . . . . . . . . . . . . . . . . 64

4.3 System model for Steiglitz McBride method . . . . . . . . . . . . . . . . . . . 65

4.4 A typical wireless channel impulse response . . . . . . . . . . . . . . . . . . . 65

4.5 Average-squared-error of IIR TEQ fitted with SMM (for various pole/zero order) 66

4.6 Residual ISI power of IIR TEQ fitted with SMM (for various pole/zero order) . 67

4.7 SER Performance of IIR TEQ fitted with SMM (for various pole/zero order) . . 68

4.8 Impulse response of an FIR TEQ and its fitted IIR TEQ . . . . . . . . . . . . . 69

4.9 SER performance of Experiment #1 (for various stage number) . . . . . . . . . 70

4.10 SER performance of Experiment #2 (for various TEQ order in the first stage) . 71

4.11 SER performance of Experiment #3 (for various TEQ order in the second stage 72

4.12 SER performance of Experiment #4 (for various TLS per Stage) . . . . . . . . 73

4.13 SER comparison of conventional FIR TEQ and proposed IIR TEQ . . . . . . . 74

5.1 (a). A conventional OFDM system, (b). An OFDM system with unitary pre-

coding (UP) and unitary decoding (UD). . . . . . . . . . . . . . . . . . . . . . 102

5.2 Proposed model for OFDM systems with a TEQ . . . . . . . . . . . . . . . . . 103

5.3 Complexity comparison for various detection methods . . . . . . . . . . . . . 104

5.4 Complexity comparison for various detection methods . . . . . . . . . . . . . 105

5.5 BER performance comparison for OFDM systems with various unitary precoders106

5.6 BER performance comparison for precoded OFDM systems with SD detector

(QPSK scheme) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

viii



5.7 BER performance comparison for precoded OFDM systems with SIC detector

(QPSK scheme) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.8 BER performance comparison for precoded OFDM systems with SD detector

(16-QAM scheme) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.9 BER performance comparison for precoded OFDM systems with SIC detector

(16-QAM scheme) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.10 BER performance comparison for precoded systems with various detection meth-

ods (QPSK scheme) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.11 BER performance comparison for precoded OFDM systems with various de-

tection methods (16-QAM scheme) . . . . . . . . . . . . . . . . . . . . . . . . 112

5.12 BER performance comparison for OFDM systems with ISI (QPSK scheme) . . 113

5.13 BER performance comparison for OFDM system with ISI (16-QAM) . . . . . 114

ix



x



Chapter 1

Introduction

IN recent years, the multicarrier technique has been becoming more and more popular in

communication communities [1]- [2]. For example, discrete multitone (DMT) is used in

standardized digital subscriber line (DSL) systems, such as asymmetric DSL (ADSL) [3]- [5]

and very high speed DSL (VDSL) [6], and orthogonal frequency division multiplexing (OFDM)

is used in standardized wireless systems, such as IEEE 802.11g [10], [11], digital audio broad-

cast (DAB) [8], and digital video broadcast (DVB) [9]. Although DMT and OFDM systems

are efficient, there are still many problems not investigated. This chapter gives introduction for

the motivation of this research and the contribution of the dissertation. Section 1.1 states the

problem we consider, Section 1.2 reviews the related works, and Section 1.3 states the main

contributions of this research and give the outline of the dissertation.

§ 1.1 Problem Statement

As the transmission speed of a communication system becomes higher and higher, the undesired

effect, intersymbol interference (ISI), becomes more and more serious. A common remedy

for ISI is the use of an equalizer. However, for high speed systems, the delay spread of the

channel is large and equalization becomes difficult. One effective solution for the problem

1



is the multicarrier modulation technique. In multicarrier systems, the symbol size is made

large and the ISI effect is then reduced. The idea of multicarrier communication is not new.

However, it is not popular until the implementation bottleneck was broken by advanced digital

signal processing, i.e., multicarrier modulation can be efficiently implemented by fast Fourier

transform (FFT). Two multicarrier techniques are well known, i.e, DMT and OFDM. DMT

is developed for wireline systems while OFDM for wireless. The modulation technique is

essentially the same for both systems. The difference lies in that DMT transmits real signals

while OFDM complex signals, and DMT conducts two additional operations, bit loading (at the

transmitter) and time-domain equalization (at the receiver).

A block diagram of an OFDM transceiver is shown in Figure 1.1. The key to avoid compli-

cated equalization is the addition of a guard period between two consecutive OFDM symbols,

called the cyclic prefix (CP). If the CP length is larger than that of the channel response, no ISI

will occur. As a result, the transmit signal in each subcarrier can be easily recovered by a single-

tap frequency domain equalizer (FEQ). However, the CP is an overhead and it will reduce the

transmission efficiency. In wireline systems, the channel impulse response (CIR) is known to

have a low-pass infinite-impulse-response (IIR) characteristic. To avoid ISI, the CP size must

be large and this is not desirable. A compromising approach is to use a time-domain equalizer

(TEQ) in the receiver side such that the channel response can be shortened and a smaller CP is

applicable. Note that the TEQ is usually implemented as a finite-impulse-response (FIR) filter

and due to the low-pass IIR characteristic, the required number of filter taps is generally small.

The computational complexity of the TEQ is usually low. The design of the TEQ has been a

critical problem in DMT systems.

In conventional OFDM systems, the TEQ is not considered. As a result, the choice of

the CP size is a compromise between the transmission overhead and system performance. If

the CIR length exceeds the CP range, the ISI is induced and the system performance will be

degraded. A simple remedy for this problem is also to apply a TEQ such that the CIR can be

shortened into the CP range. If the TEQ can be applied for OFDM systems, the CP length

2



can be reduced without sacrificing the performance. Or, the CP length remains the same and

the performance can be improved. There are a couple of reasons why the TEQ is not popular

in OFDM systems. The first reason is that for fast fading environments, the TEQ will be fast

varying and the calculation of the optimum TEQ will be difficult. The second reason is that the

channel response of a wireless system usually does not have the low-pass characteristic and the

TEQ cannot be as efficient as that in DMT systems. In other words, the length of the optimum

TEQ response can be very long. The third reason is that the optimum TEQ in OFDM systems

is difficult to design. In OFDM systems, no bit-loading is conducted. Each subcarrier transmits

the same number of bits and the criterion for the TEQ to minimize is the average bit-error-rate

(BER). However, the BER is a highly nonlinear function of the TEQ. The optimization is very

difficult to conduct if not impossible.

In this dissertation, we will develop new algorithms for the TEQ design in DMT and OFDM

systems. For DMT systems, many TEQ design methods have been proposed. As we will show,

however, all the methods are not optimal. We will develop the true optimum approach and show

the superiorness of the proposed algorithm. For OFDM systems, we develop new methods such

that the TEQ can be applied in slow fading environments. In slow fading, we do not have

to update the TEQ frequently and the system overhead is low. To solve the inefficient TEQ

problem, we propose using an IIR TEQ and develop new IIR TEQ design methods. With the

IIR TEQ, the operation can be as efficient as that in DMT systems. As to the optimum TEQ,

we propose using a precoding scheme such that the optimum TEQ, minimizing the BER, can

be derived easily. The proposed precoded OFDM system also outperforms the uncoded OFDM

no matter the TEQ is used or not.

§ 1.2 Review of Previous Works

The TEQ development is originated from the community of wireline communications (e.g.

ADSL). As mentioned, the multicarrier modulation scheme in wireline applications is called

3



DMT. The DMT performs bit-loading and the transmission rate can approach the maximum

channel capacity. Many algorithms have been proposed for the design of the TEQ in the DMT

system [12]- [27].

A conventional method uses the minimum mean square error (MMSE) algorithm [12], [13],

which minimizes the mean square error between two responses, one with the TEQ shortened

impulse response, and the other a desired impulse response. Treating the TEQ design as a

pure channel shortening problem, the work in [14] proposes a criterion to maximize the short-

ening signal-to-noise ratio (SSNR), defined as the ratio of the energy of the TEQ shortened

response inside and outside the CP range. This method was referred to as the maximized SSNR

(MSSNR) method. Another shortening method, minimizing the channel delay spread, has also

been proposed [20]- [21]. Note that all these methods do not consider the impact of the TEQ on

channel capacity, and they are not optimal in general.

The work in [15] first considered capacity maximization in the TEQ design. With a geo-

metric signal-to-noise (SNR) maximization, a constrained nonlinear optimization problem was

obtained. Since a closed-form solution did not exist, some numerical method was used in [15].

One drawback to this work is that the residual ISI effect was not considered. A method referred

to as maximum bit rate (MBR) [18] was then proposed, taking both residual ISI and channel

noise into account. To reduce the computational complexity, a suboptimum method called mini-

mum ISI (min-ISI), which performs similarly to the MBR method, was also developed. Another

MBR related method was suggested in [24]. It is known that when the maximum excess de-

lay exceeds the CP range, inter-carrier interference (ICI) will occur in DMT systems. Thus, the

residual ISI will induce ICI, and this problem was examined in [17]. It was found that the afore-

mentioned methods shared a common mathematical framework based on the maximization of

a product of generalized Rayleigh quotients [22].

The methods mentioned above conducted the TEQ design entirely in the time-domain. An-

other approach, treating the problem in the frequency-domain, was first proposed in [23] for

DMT systems, and later in [28] for MIMO OFDM systems. This method, referred to as per-
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tone equalization (PTEQ), allows an equalizer designed for the signal in each tone. By taking

the computational advantage of fast Fourier transform (FFT), TEQ filtering operations can be

effectively implemented in the discrete Fourier transform (DFT) domain. It was shown that the

PTEQ scheme can outperform conventional TEQ schemes. However, the PTEQ requires a large

quantity of memory for storage and potentially greater computational complexity [22]. Another

method, called subsymbol equalization [25], also design the TEQ in the frequency domain. It

used the conventional zero-forcing (ZF) FEQ to obtain the equalized time-domain signal. The

drawback of this approach is that it is only applicable to a certain type of channels.

Recently, some TEQ design methods developed for DMT systems have been extended to

OFDM systems [28]- [33]. The MSSNR TEQ for OFDM systems has been studied in [29].

In the original MSSNR method, the TEQ length is constrained to be smaller than or equal to

the CP length. In [29], a modified MSSNR TEQ method was proposed to solve the problem.

Using this method, the limitation on the TEQ tap length can be removed. In [29], an adaptive

TEQ method based on the least mean-square (LMS) algorithm was also proposed to track the

channel variation. Since the convergence of the LMS algorithm is slow, the QR-recursive least

square (QR-RLS) algorithm was further proposed in [33] for TEQ adaptation.

There are some precoder designs for OFDM systems proposed in [46]- [52]. In [46], it is

shown that the OFDM system with a unitary precoder can improve system performance and a

simple decision-feedback detector can further enhances the performance. A special and simple

precoder was proposed in [47]- [48] such that blind channel estimation for OFDM systems can

be conducted. When the channel has nulls close to or on the FFT grids, OFDM faces serious

symbol recovery problems. As an alternative to error control coding (ECC), [49] proposed a

unitary precoding to solve the problem. The work in [50] also considers the OFDM systems

with unitary precoding. It proves that when the receiver is the MMSE, the optimum precoding

matrix is the DFT matrix. In this case, the OFDM system becomes a single carrier system. The

works in [51] and [52] combines ECC and unitary precoding in order to obtain a high diversity

and low complexity system. The overall diversity was shown [51] to be the product of the
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individual diversity achievable by the ECC and that by the precoder, while the complexity is

just a linear multiple of the sum of their individual complexities.

§ 1.3 Contributions and Dissertation Organization

The MBR design method [18] has proved to be an effective TEQ design method in DMT sys-

tems. Unfortunately, we have found that in the derivation of the MBR method, the TEQ-filtered

noise and the ISI powers were not properly evaluated. As a result, the MBR method, claimed

to be optimal, is not truly optimal. This is due to the assumption made in [18] (also in [15]) that

the DFT of the TEQ-filtered noise is equal to the DFT of the TEQ response multiplied by that of

the noise sequence (in a DMT symbol). This is equivalent to saying that the TEQ-filtered noise

is obtained with a circular convolution of the TEQ response and the noise sequence. However,

the noise sequence does not have a CP, and the TEQ-filtered noise corresponds to a linear con-

volution of the TEQ response and the noise sequence, instead of a circular convolution. This

problem was first discovered by us [26], [27], and it was also briefly mentioned in a recently

published work [25] (no detailed discussions and derivations were reported). A similar assump-

tion was also made for the residual ISI [18]. Note that the residual ISI is the ISI response outside

the CP range. As a result, the residual ISI cannot be obtained with a circular convolution of the

input signal and the residual ISI response. This dissertation attempts to resolve the problems

not considered previously. We give a detailed analysis of the TEQ-filtered noise and residual

ISI in a DMT system, and derive precise formulae for the calculation of the noise and residual

ISI powers. It turns out that these powers are larger than those previously calculated [15], [18].

With the analytic results, we further re-formulate the capacity criterion to design the true opti-

mum TEQ.

It is well known that the wireline channel has an IIR characteristic. Consequently, con-

ventional TEQs use in DMT systems are treated as a FIR filter. However, a wireless channel

typically has the multi-path response, exhibiting a FIR characteristic. It can be shown that the
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ideal TEQ for a wireless channel has an IIR characteristic. If the delay spread of a wireless

channel is larger than the CP size, the ISI will occur. The TEQ, designed to shorten the CIR in

DMT systems, can also be used to in OFDM systems. However, the corresponding TEQ will

tend to have an IIR response. If the TEQ is still modeled as an FIR filter, the required order

for the TEQ will be high. Conventional approaches then suffer from the high computational

complexity problem, both in the derivation of TEQ and in the operation of channel shortening.

We then propose using an IIR TEQ to overcome these problems. Since the ideal TEQ exhibits

a low-order IIR characteristic, the order of the proposed IIR TEQ can be much lower than the

FIR TEQ.

In OFDM systems, the signal band is divided into multiple subbands and a subcarrier is

used in each subband. In each subcarrier, signal is modulated independently. For a frequency-

selective fading channel, the channel response for some subcarriers may be poor. Signal re-

covery in those subcarriers is then difficult. It can be shown that the frequency diversity of a

subcarrier is one. The conventional OFDM system does not fully explore the frequency diver-

sity the channel provides. We propose an OFDM system with a unitary precoding. We show that

the frequency diversity of the precoded system can be greatly enhanced. Note that the precoded

OFDM system is different from that in [46]- [52]. In our system, the coding block does not

require having the same size as that of the OFDM symbol. Another advantage of the precoded

OFDM system is that the TEQ design becomes simple and the resultant performance is bet-

ter. We propose a TEQ design method called the maximum signal-to-interference-plus-noise

ratio (MSINR). It is shown that the optimum TEQ, maximizing the SINR of all subcarriers,

can be easily derived. To fully explore the diversity the channel provides, the detector used

at the receiver must be the maximum-likelihood (ML). The computational complexity of the

ML detector for the precoded OFDM system can be very high. We then propose a detection

method, called the sphere-decoding-and-successive-interference-cancelation (SDSIC) method.

The proposed method can have near-optimal performance but the computational complexity is

low.
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This dissertation is organized as follows. In Chapter 2, we briefly review some conventional

TEQ designs. In Chapter 3, we present the detailed analysis of the TEQ-filtered noise and

residual ISI in a DMT system, and derive the precise formulae for the calculation of the noise

and residual ISI powers. With the result, we further re-formulate the capacity criterion to design

the true optimum TEQ. In Chapter 4, we describe the proposed IIR TEQ. Using the TEQ, we

can conduct the equalization operation in an efficient way. In Chapter 5, we detail the proposed

precoded OFDM system, and present the proposed MSINR TEQ design method. The SDSIC,

an efficient ML-type detection algorithm, is also described. Finally, we draw the conclusions in

Chapter 6. IDFTOFDM Transmitter P/SCPAdded AWGNDFTOFDM  Receiver FEQDecision S S/PCPRemovedF
FH wireless channel

Figure 1.1: An OFDM system model.
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Chapter 2

Conventional Time Domain Equalization

for DMT Systems

Many TEQ design methods have been developed for DMT systems. This chapter reviews three

commonly used TEQ design methods, i.e., MMSE, MSSNR, and MBR. The designs with the

MMSE and MSSNR methods were developed earlier and the solutions are simpler to derive.

However, these methods are not optimal since bit-loading is conducted in DMT systems. The

TEQ designed with the MBR method is theoretically optimal since it maximizes channel capac-

ity. This chapter reviews the methods reported in [12], [14], and [18]. In Section 2.1, we give

the signal model for a DMT system with a TEQ. In Section 2.2, 2.3 and 2.4, we briefly review

the MMSE, MSSNR, and the MBR TEQ design methods.

§ 2.1 Signal Model

First we define variables and symbols used throughout this work. Let M be the DFT size, L

the CP length, K = M + L the DMT symbol length, I the channel length, and N the TEQ

length. In addition, let n be the time index, i the DMT symbol index, both in the time domain,

and k the subchannel index in the DFT domain. Since DMT is a real modulation scheme,
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0 ≤ k ≤ M/2−1. For OFDM systems, however, 0 ≤ k ≤ M −1. Denote ∗ as the operation of

linear convolution while ~ as that of circular convolution. As for vector or matrix operations, we

denote [·]T , [·]∗, and [·]H as the transpose, the complex conjugate, and the Hermitian operations

for a vector or matrix, respectively. Also, denote 0p as the p × 1 zero column vector, 1p the

p× 1 unity column vector, 0p×q the p× q zero matrix, Ip the p× p identity matrix, and diag [·]
as either the vector formed by the diagonal elements of a matrix, or a diagonal matrix formed

by a vector. For notational convenience, we also define bae2 = aaH , and 〈a〉2 = diag
[
aaH

]
,

where a is a vector. Note that bae2 is a matrix while 〈a〉2 is a vector. Also, these operations are

applicable to matrices.

A common model of a DMT system with a TEQ design is shown in Figure 2.1. At the DMT

transmitter side, we denote the ith transmitted data symbol as

d̃i = [d̃i(0), · · · , d̃i(M − 1)]T ,

where d̃i(k) is the (k + 1)th element of d̃i. Taking the M -point inverse DFT (M -IDFT) of d̃i,

we can then obtain the corresponding time domain signal, denoted as di. Then,

di = [di(0), · · · , di(M − 1)]T = FHd̃i,

where F is an M ×M DFT matrix. Let

α = e−j2π/M , (2.1)

and

f(k) =
1√
M

[
1, αk, . . . , α(M−1)k

]T
. (2.2)

We then have

F = [f(0), f(1), . . . , f(M − 1)] . (2.3)

Appending the CP and conducting the parallel-to-serial conversion, we can obtain the transmit-

ted signal x(n). Here, n = iK + l, and




x(iK + l) = di(l + M − L), for 0 ≤ l ≤ L− 1,

x(iK + l) = di(l − L), for L ≤ l ≤ K − 1,
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where di(l) is the (l + 1)th element of di. The signal x(n) is then transmitted over an FIR

channel and corrupted by additive white Gaussian noise (AWGN).

Let the channel response be represented as

h = [h(0), · · · , h(I − 1)]T ,

the AWGN as η(n), and the noise-free channel output signal as z(n). Then,

z(n) = x(n) ∗ h(n).

At the receiver side, both z(n) and η(n) are first filtered by an N -tap TEQ. Let the TEQ coeffi-

cients be denoted as

w = [w(0), · · · , w(N − 1)]T , (2.4)

the corresponding TEQ-filtered output of z(n), and that of the channel noise be y(n) and v(n),

respectively. Thus, y(n) = z(n) ∗ w(n) and v(n) = η(n) ∗ w(n). Performing the serial-

to-parallel conversion, and removing the CP, we can obtain the ith received signal-only DMT

symbol as

yi = [y(iK + ∆ + L), · · · , y(iK + ∆ + K − 1)]T . (2.5)

where ∆ is the optimum delay. With the M -DFT operation, we have the frequency domain

signal vector as

ỹi = [ỹi(0), · · · , ỹi(M − 1)]T = Fyi,

where ỹi(k) is the (k + 1)th element of ỹi. Let the corresponding ith noise vector at the TEQ

input and output be

ηi = [η(iK + ∆ + L), · · · , η(iK + ∆ + K − 1)]T , (2.6)

and

vi = [v(iK + ∆ + L), · · · , v(iK + ∆ + K − 1)]T , (2.7)

respectively. We can obtain their M -DFT transformed vectors as

η̃i = [η̃i(0), · · · , η̃i(M − 1)]T = Fηi,
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and

ṽi = [ṽi(0), · · · , ṽi(M − 1)]T = Fvi,

respectively.

From Figure 2.1, we can see that the transmitted signal x(n) is passed through the channel

h(n) and the TEQ w(n). Let g(n) be the equivalent channel response (ECR) where

g(n) = h(n) ∗ w(n),

and the length of g(n) be J where J = I + N − 1. Here, we assume that J < M . The ECR

can be represented by a vector, g, and

g = [g(0), g(1), · · · , g(J − 1)]T .

Figure 2.3(a) shows the effective channel of a DMT system. We can then decompose g into two

parts,

g = gS + gI.

The first part,

gS =
[
0T

∆,gT
∆,0T

J−∆−L

]T
,

corresponds to the desired shortened channel response (in the CP range). Thus,

g∆ = [g(∆), g(∆ + 1), . . . , g(∆ + L− 1)]T .

If we let

g∆(i) = g(∆ + i),

then we have

g∆ = [g∆(0), g∆(1), . . . , g∆(L− 1)]T .

The second part,

gI =
[
g(0), . . . , g∆(−1),0T

L, g∆(L), . . . , g(J − 1)
]T

,
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is the ECR outside the CP region.

We can express gS and gI in terms of the channel matrix H and the TEQ vector w as

gS = DSHw,

gI = DIHw, (2.8)

where

DS = diag
[
0T

∆,1T
L,0T

J−∆−L

]
,

DI = IJ −DS = diag
[
1T

∆,0T
L,1T

J−∆−L

]
, (2.9)

and

H =




h(0) 0 . . . 0

h(1) h(0) . . . 0
...

... . . . ...

h(I − 1) h(I − 2) . . . h(I −N)

0 h(I − 1) . . . h(I −N + 1)
...

... . . . ...

0 0 . . . h(I − 1)




J×N

. (2.10)

Define an M × J matrix TG such that when gI and gS are multiplied by TG, they will be

shifted with the optimal delay ∆, and then padded with zeros to have a size of M . That is,

TG =




0(J−∆)×∆ IJ−∆

I∆ 0∆×(J−∆)

0(M−J)×J




M×J

(2.11)

Additionally, let g̃S, g̃I be the DFT of gS, and gI, respectively. Then, we have

g̃S = [g̃S(0), · · · , g̃S(M − 1)]T = FTGgS, and

g̃I = [g̃I(0), · · · , g̃I(M − 1)]T = FTGgI, (2.12)
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where

g̃S(k) = fT (k)TGDSHw, and

g̃I(k) = fT (k)TGDIHw (2.13)

are the (k + 1)th elements of g̃S, and g̃I, respectively. We can re-express gS and gI as gS =

[gS(0), · · · , gS(J − 1)]T , and gI = [gI(0), · · · , gI(J − 1)]T , respectively, where gS(l), gI(l) are

the (l+1)th elements of gS, and gI, respectively. Let yS(n) and yI(n) be the desired and residual

ISI components of y(n), respectively. Thus we have

y(n) = yS(n) + yI(n),

where yS(n) = x(n) ∗ gS(n), and yI(n) = x(n) ∗ gI(n). Consequently, we can also decompose

yi as

yi = yS,i + yI,i, (2.14)

where

yS,i = [yS(iK + ∆ + L), · · · , yS(iK + ∆ + K − 1)]T , and

yI,i = [yI(iK + ∆ + L), · · · , yI(iK + ∆ + K − 1)]T .

Let

ỹS,i = [ỹS,i(0), · · · , ỹS,i(M − 1)]T ,

ỹI,i = [ỹI,i(0), · · · , ỹI,i(M − 1)]T

be the M -DFT of yS,i, and yI,i, respectively. Then, ỹS,i = FyS,i, ỹI,i = FyI,i, and ỹi can be

rewritten as ỹi = ỹS,i + ỹI,i. Figure 2.3(b) shows the decomposition of y(n) + η(n).

§ 2.2 Minimum Mean Squared Error (MMSE) Method

The block diagram of the MMSE TEQ design method is shown in Figure 2.2. As we can see,

the upper branch of the system consists of the channel and an FIR TEQ, and the lower branch
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consists of a delay and an FIR filter with a target impulse response (TIR). The MMSE TEQ w is

designed to minimize the MSE between the output of the TEQ and the TIR. If the ECR is equal

to the delayed TIR, the error signal ei will be zero. For a given length of the TIR, the MMSE

TEQ tend to make the ECR to have the same response length. Note that to avoid an all-zero

trivial solution, there must be some constraint on w or the TIR. Commonly used constraints

include unit-energy constraint (UEC) and unit-tap constraint (UTC) [16].

From Figure 2.2, we see that the signal at the receiver is given by

z(n) = h(n) ∗ x(n) + η(n). (2.15)

Using the matrix-form expression, we have

zi = HTxi + ηi, (2.16)

where H is the channel matrix defined in (2.10), xi = [x(iK+∆+L), · · · , x(iK+∆+K−1)]T ,

zi = [z(iK+∆+L), · · · , z(iK+∆+K−1)]T , and ηi defined in (2.6). Let the TIR be denoted

as b = [b(0), · · · , b(L− 1)]T . Note here that the TIR length is chosen to be the CP size L. The

error signal e(n) can then be defined as

e(n) = r(n)− ζ(n) = w(n) ∗ z(n) + ζ(n)

=
N−1∑
i=0

w(i)z(n + N − 1− i)−
L∑

j=0

bjx(n + N − 1−∆− j)

= wTzn − [01×∆,bT ,01×(N+I−∆−L−1)]xn, (2.17)

where zn = [z(n + N − 1), · · · , z(n)]T and xn = [x(n + N − 1), · · · , x(n − I)]T . If we let

b∆ = [0∆×1,b,0(N+I−∆−L−1)×1], the MSE can then have the following expression:

MSE = E{e(n)2} = bT
∆Rxxb∆ − bT

∆Rxzw −wTRzxb∆ + wTRxxw, (2.18)

where Rxx = E{xxT}, Rxz = E{xzT}, Rzx = E{zxT}, and Rzz = E{zzT}, respectively.

Taking the derivative with respect to w and setting the result to zero, we have

bT
∆Rxz = wTRzz (2.19)
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Substituting (2.19) into (2.18), we further have

MSE = bT
∆

[
Rxx − RxzR−1

zz Rzx
]
b∆ (2.20)

Define R∆ as

R∆ =
[
0(L+1)×∆, I(L+1)×(L+1),0(L+1)×(N+I−∆−L−1)

]T [
Rxx − RxzR−1

zz Rzx
] ·

[
0(L+1)×∆, I(L+1)×(L+1),0(L+1)×(N+I−∆−L−1)

]
. (2.21)

Thus, the MSE can be written as

MSE = bTR∆b (2.22)

As mentioned, some constraint must be posed to avoid the trivial solution. Here, we pose the

UTC on b, i.e., bT ik = 1. Thus, the Lagrangian can be formed as

LUT(b, λ) = bTR∆b + λ(bT ik − 1), (2.23)

where ik is (k+1)th column vector of the identity matrix IM . Setting the derivative with respect

to b, ∂LUT(b, λ)/∂b, to zero, we have

∂LUT(b, λ)

∂b
= 2R∆bo + λik = 0. (2.24)

Thus, the optimal TIR, denoted as bo, can be found as

bo =
R−1

∆ iko

R−1
∆ (ko, ko)

, (2.25)

where R−1
∆ (k, k) is the (k + 1)th element in the diagonal of the matrix R−1

∆ , and ko can be

obtained as

ko = arg max
0≤k≤L

{R−1
∆ (k, k)}. (2.26)

The solution given by (2.25) yields an MMSE of

MMSEUT =
1

R−1
∆ (ko, ko)

, (2.27)
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The optimum TEQ, denoted as wo, can be obtained from (2.19) by setting b = bo,i.e,

wo = bT
o RxzR−1

zz (2.28)

If the UEC is posed on b, then the Lagrangian will become

LUE(b, λ) = bTR∆b + λ(bTb− 1) (2.29)

Setting ∂LUE(b, λ)/∂b to zero, we then have

R∆bo = λbo. (2.30)

Equation (2.30) implies that bo is an eigenvector of R∆. From (2.30), we have the MSE as

MSE = bT
o R∆bo = bT

o λbo = λ. (2.31)

Therefore, we can choose bo as the eigenvector corresponding to the minimum eigenvalue of

R∆, denoted by λmin, to minimize the MSE. Thus, the minimum MSE is

MMSEUE = λmin. (2.32)

§ 2.3 Maximum Shortened SNR (MSSNR) Method

The work in [14] treats the TEQ design problem as a pure channel shortening problem. It

proposes a criterion to minimize the energy of the ECR outside the target window, while keeping

the energy inside constant. The SSNR is defined as the ratio of the energy of the ECR inside

and outside the CP range. In [14], a method is proposed to find a TEQ that maximize the SSNR.

From (2.35), the ECR inside the target window can be written as

gS = DSHw, (2.33)

and the ECR outside the target window as

gI = DIHw. (2.34)
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Therefore, the energy inside and outside the target window is

gT
I gI = wTHTDT

I DIHw = wTAw,

gT
S gS = wTHTDT

S DSHw = wTBw, (2.35)

respectively, where A and B are symmetric and positive semi-definite matrices.

Optimum shortening is achieved if we choose w to minimize wTAw while satisfying a

constraint on wTBw. Using mathematical expression, we have

min
w

wTAw such that wTBw = 1. (2.36)

This is equivalent to maximizing the SSNR given by

SSNR =
wTBw

wTAw
(2.37)

Since B is positive definite, B can have a Cholesky decomposition. Employing Cholesky de-

composition, we have

B =
√

B
√

B
T
. (2.38)

The optimum solution for the TEQ vector w is then

wopt =
(√

B
)−1

pmin, (2.39)

where pmin is the eigenvector corresponding to the minimum eigenvalue of the composite matrix

(
√

B)−1A(
√

B
T
)−1. Note that B is invertible only when N < L. The solution when B is

singular is a more complicated problem which has been discussed in [14].

§ 2.4 Maximum Bit Rate (MBR) Method

Let sd(k) be the signal power in the (k + 1)th subchannel. Then,

sd(k) = E{|d̃i(k)|2}, (2.40)

18



where E{·} is the expectation operation. Also, let sη(k) be the corresponding noise power.

Then,

sη(k) = E{|η̃i(k)|2}. (2.41)

It is generally assumed that the transmit data are white, and hence the power is identical for each

subchannel; that is, sd(k) = sd, where sd is a constant. Similarly, the subchannel noise power

sη(k) = sη, where sη is a constant. From the definitions shown above, it is straightforward to

have

E{|ỹS,i(k)|2} = sd |g̃S(k)|2 , E{|ỹI,i(k)|2} = sd |g̃I(k)|2 , and E{|ṽi(k)|2} = sη |w̃(k)|2 ,

where

w̃(k) = fT (k)TWw.

Here, w̃(k) is the (k + 1)th component of the M -DFT of w, and TW is an M × N matrix

padding zeros in w to a size of M , i.e.,

TW =
[
IN ,0(M−N)×N

]T
.

The subchannel signal-to-interference plus noise ratio (SINR) at the DFT output is then

SINR(k) =
E

{|ỹS,i(k)|2}

E
{|ṽi(k)|2} + E

{|ỹI,i(k)|2} =
sd |g̃S(k)|2

sη |w̃(k)|2 + sd |g̃I(k)|2 . (2.42)

After some mathematical manipulations, the subchannel SINR can be rewritten as

SINR(k) =
sd(k)

∣∣fT (k)TGDSHw
∣∣2

sη(k) |fT (k)TWw|2 + sd(k) |fT (k)TGDIHw|2 =
wTA(k)w

wTB(k)w
(2.43)

where

A(k) = sd(k)HTDT
S TT

Gf∗(k)fT (k)TGDSH, and

B(k) = sη(k)TT
W f∗(k)fT (k)TW + sd(k)HTDT

I TT
Gf∗(k)fT (k)TGDIH.

Using the result shown above, we can express the capacity for a DMT system as

B =
∑

k∈Ω

log2

(
1 +

1

Γ

wTA(k)w

wTB(k)w

)
bits/symbol, (2.44)
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where Ω is the set of total usable subchannels, namely,

Ω = {0, 1, · · · ,M/2− 1},

and Γ the SNR gap [18]. Thus, we can obtain the optimum TEQ vector w by maximizing

(2.44). This method is called MBR [18]. Note that (2.44) is a nonlinear function of w. It can

only be solved by some nonlinear optimization methods, such as the quasi-Newton or simplex

algorithms. Since the nonlinear optimization method often requires extensive computations, a

suboptimal method, referred to as min-ISI, was then developed in [18]. It was shown that the

performance of min-ISI can effectively approach the performance of MBR.IDFT
CPRemoved

CP Added
DFT S / P

P / S
TEQw

ChannelhDMT Transmitter
DMT Receiver

AWGN
Figure 2.1: A DMT model for TEQ design
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TEQwChannelh TIRbDelay AWGN
Figure 2.2: Block diagram of the MMSE equalizer
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(a) TEQwChannelh AWGNEffective channel

(b)
Signal pathISI path Channelh TEQwChannelh TEQwNoise path TEQwAWGN

Figure 2.3: (a) Effective channel in a DMT system, (b) Decomposition of received signal: de-

sired signal path, ISI path, and noise path (H is the channel matrix).
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Chapter 3

Time Domain Equalization for DMT

Systems with Enhanced MBR Method

As shown in Section 2.4, to use the MBR method we have to evaluate the TEQ-filtered noise

and the ISI powers. Unfortunately, we have found that, the TEQ-filtered noise and the ISI

powers were not properly evaluated in existing works. As a result, the MBR method, claimed

to be optimal, is not truly optimal. In this chapter, we attempt to resolve the problems not

considered in previous works [15], [18]. We present a detailed analysis of the TEQ-filtered

noise and residual ISI in a DMT system, and derive correct formulae for the calculation of the

noise and residual ISI powers. With the analytic results, we further re-formulate the capacity

function, and then propose a new method for TEQ design, called the enhanced MBR (EMBR)

method. This chapter is organized as follows. In Section 3.1, we analyze the impact of the noise

and residual ISI to the TEQ design, and derive correct formulae for the calculation of noise and

residual ISI powers. In Section 3.2, we re-formulate the conventionally used cost function and

propose a new TEQ design method. Section 3.3 gives simulation results.
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§ 3.1 Analysis of Noise/Residual ISI Effect

§ 3.1.1 Conventional SINR calculation

As discussed in Section 2.4, interference in a subchannel consists of noise and residual ISI. Let

xi = [x(iK + L), · · · , x(iK + K − 1)]T

be the ith data symbol at the DMT transmitter output. Since xi contains a CP, the desired signal

component in (4.2) can be expressed as

yS,i = xi ~ g.

Here, we extend the circular convolution operation to vectors for notational simplicity. With the

M -DFT operation,

ỹS,i = x̃i • g̃.

where • is defined as the element-by-element vector multiplication. Note that noise does not

contain CPs; thus, vi 6= ηi ~ w, and ṽi 6= η̃i • w̃. As a result,

E{|ṽi(k)|2} 6= sη |w̃(k)|2 .

Also, the residual ISI response is the ISI response outside the CP region. The corresponding

residual ISI cannot be obtained from the circular convolution of the input signal and gI. Thus,

E{|ỹI,i(k)|2} 6= sd |g̃I(k)|2 .

From these facts, we conclude that SINR calculated with (2.42) is not correct. In other words,

SINR(k) 6= sd |g̃S(k)|2
sη |w̃(k)|2 + sd |g̃I(k)|2 (3.1)

Although the properties analyzed above are simple, they were not discovered until recently

[26]. It was also independently observed in [25]. Since the SINR is erroneously calculated, the

optimum solution obtained with (2.44) is no longer optimal. In the following section, we will

analyze the effect of the non-cyclic noise and residual ISI, and derive correct formulae for their

power calculations.
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§ 3.1.2 Analysis of Noise Effect

Let

sd = [sd(0), sd(1), . . . , sd(M − 1)]T = sd · 1M , and

sη = [sd(η), sη(1), . . . , sη(M − 1)]T = sη · 1M ,

where

sd = M · E{x2(n)} = Mσ2
d, and

sη = M · E{η2(n)} = Mσ2
η.

Recall g∆ defined in Section 2.1, and define G∆ as an M ×M circular channel matrix:

G∆ =




g∆(0) 0 . . . 0 g∆(L− 1) . . . g∆(2) g∆(1)

g∆(1) g∆(0) . . . 0 0 . . . g∆(3) g∆(2)
...

... . . . . . . . . . . . . . . . ...

0 0 . . . g∆(L− 2) g∆(L− 3) . . . g∆(0) 0

0 0 . . . g∆(L− 1) g∆(L− 2) . . . g∆(1) g∆(0)




. (3.2)

We first consider a scenario in which g does not have residual ISI. The DFT output of the

received symbol ỹi = ỹS,i can be written as

ỹS,i = FyS,i = FG∆xi = G̃∆xi,

where G̃∆ = FG∆. Define the vector consisting of the subchannel received signal powers as

sy. Then,

sy = E
{〈ỹS,i〉2

}
.

It follows that

E
{〈ỹS,i〉2

}
= 〈E{G̃∆xi}〉2 = σ2

d〈G̃∆〉2.

Let

G∆ = [ρ(0), . . . , ρ(M − 1)],
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where ρ(l) is the (l + 1)th column of G∆. Then,

G̃∆ = [ρ̃(0), . . . , ρ̃(M − 1)],

where ρ̃(k) = Fρ(k) is the (k + 1)th column vector of G̃∆. Thus,

sy = E
{〈ỹS,i〉2

}
= σ2

d

M−1∑

k=0

〈ρ̃(k)〉2. (3.3)

From (3.2), we find that each ρ(k) in sy contains a circular shift of the ECR vector g∆. Thus,

〈ρ̃(k)〉2 = 〈g̃∆〉2

for all k’s, where

g̃∆ = FT∆g∆ = Fρ(0)

and T∆ is an M × L zero padding matrix used to increase the size of g∆ to M . Consequently,

sy = Mσ2
d〈g̃∆〉2 = sd〈g̃∆〉2

for all k’s.

Without loss of generality, we let the TEQ length, N , be smaller than the CP length, L.

Furthermore, let

ηC,i = [η(iK + ∆), η(iK + ∆ + 1), · · · , η(iK + ∆ + L− 1)]T ,

which is the noise sequence in the CP region of the ith symbol. Thus, the noise vector in the ith

DMT symbol can be defined as

η̌i =
[
ηT

C,i,η
T
i

]T
.

Then, we can denoted the TEQ-filtered noise vector as

vi = Wη̌i,
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where W is an M ×K matrix composing of TEQ coefficients as

W =




0 . . . w(N − 1) w(N − 2) . . . 0 . . . 0 0

0 . . . 0 w(N − 1) . . . 0 . . . 0 0
... . . . ...

... . . . ... . . . ...
...

0 . . . 0 0 . . . w(N − 1) . . . w(0) 0

0 . . . 0 0 . . . 0 . . . w(1) w(0)




M×K

. (3.4)

Note that the first (L − N) column vectors of W are zero vectors, 0M . The DFT of the TEQ-

filtered noise vector in the i symbol, denoted as ṽi, is then

ṽi = Fvi = FWη̌i = W̃η̌i,

where W̃ = FW is the DFT of W. Note that W is not a circular matrix like G∆, and W can

be expressed in another form [u(0), . . . ,u(K − 1)], where u(p) is

u(p) =





0M if 0 ≤ p ≤ L−N
[
w(L− p), . . . , w(N − 1),0T

K−N−p

]T if L−N + 1 ≤ p ≤ L− 1
[
0T

p−L,wT ,0T
K−N−p

]T if L ≤ p ≤ K −N
[
0T

p−L, w(0), w(1), . . . , w(K − 1− p)
]T if K −N + 1 ≤ p ≤ K − 1

(3.5)

Let sv denote the vector containing the power of TEQ-filtered noise in subchannels. Thus,

sv = E{〈ṽi〉2} = E{〈W̃η̌i〉2} = σ2
η〈W̃〉2 = σ2

η

K−1∑
p=0

〈ũ(p)〉2, (3.6)

where ũ(p) = Fu(p) is the DFT of u(p), and

E{〈η̌i〉2} = σ2
η · 1K .

For simplicity, we let W1 be the matrix formed by u(p) for L − N + 1 ≤ p ≤ L − 1, W2 be

formed by u(p) for L ≤ p ≤ K−N , and W3 be formed by u(p) for K−N +1 ≤ p ≤ K− 1,

respectively. Then, we can rewrite W as

W =
[
0M×(L−N),W1,W2,W3

]
. (3.7)
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From (3.5), note that column vectors in W2 contain the complete TEQ vector w, which

implies that

〈ũ(p)〉2 = 〈w̃〉2,

for L ≤ p ≤ K − N . Each column vector in W1 and W3, however, contains only partial w.

As a result, sv can be expressed as

sv = σ2
η

(
L−1∑

p=L−N+1

〈ũ(p)〉2 + (M −N + 1)〈w̃〉2 +
K−1∑

p=K−N+1

〈ũ(p)〉2
)

. (3.8)

Equation (3.8) gives the exact calculation of the noise power after TEQ. From (3.4), we can see

that if the channel noise is cyclic, W can be folded to become an M ×M circular matrix. In

this case, we have

sv = Mσ2
η〈w̃〉2 = sη〈w̃〉2. (3.9)

Conventional SINR calculation, as shown (2.42), uses (3.9). However, the channel noise is not

cyclic; (3.9) is incorrect. From (3.8), we can clearly see that two more terms are induced due to

the non-cyclic noise problem.

Now, we use some experimental results to show the differences between (3.8) and (3.9).

The experiment settings are the standard ADSL environments [5], and will be described later in

detail in Section 3.3. These experiments are all obtained with the standard test loop CSA #5,

and the vector of the TEQ coefficients w is obtained with the min-ISI method [18]. As we can

see from (3.9), sv, representing the TEQ-filtered noise spectrum, is equal to the multiplication

of sη and 〈w̃〉2. Thus, if the TEQ induces a null in its spectrum, it will also do that in sv.

However, it is not the case in (3.8). Figure 3.1 shows the contribution of W1, W2, and W3, to

sv, respectively. Only W2 shows the same spectrum characteristic as that of w. As mentioned

previously, column vectors of both W1 and W3 contain only partial w, and their spectrum

characteristics are different from those of w. As we can see from the figure, spectrum nulls

introduced by the TEQ disappeared in spectrums yielded by W1 and W3. Figure 3.2 shows

the TEQ-filtered noise spectrums calculated with (3.8) and (3.9), and Figure 3.3 shows the

zoomed spectrum around nulls. The simulated noise power is also shown in the figures, which

28



are obtained with 500 DMT symbols. It is apparent that the magnitudes at TEQ-induced nulls

increase in the spectrum calculated with (3.8), and it is accurate. We then conclude that noise

power tends to be higher in the spectrum with (3.8). This will have a great impact on the signal

to noise ratio (SNR) at spectrum nulls induced by the TEQ.

§ 3.1.3 Analysis of residual ISI

In general, a TEQ can not be designed to shorten the channel into the CP range completely. The

resultant channel response outside the CP range consists of the residual ISI. Let the transmit

signal in the CP range of the ith DMT symbol be

xC,i = [x(iK), x(iK + 1), · · · , x(iK + L− 1)]T .

We then have the complete ith DMT symbol,

x̌i =
[
xT

C,i,x
T
i

]T
,

which is a K × 1 column vector. Due to the delay ∆, the ith received DMT symbol x̌i receives

interference from x̌i−1 and x̌i+1. Define an extended symbol as

x̌3,i = [x̌T
i−1, x̌

T
i , x̌T

i+1]
T ,

and the response of gI can be ignored when it exceeds M ; that is,

gI = [g(0), . . . , g∆(−1),0T
L, g∆(L), . . . , g(M − 1)]T ,

which can be expressed in another form as

gI = [gI(0), . . . , gI(∆), gI(∆ + 1), . . . , gI(M − 1)]T .

Thus, the power of x̌3,i is

E{bx̌3,ie2} = σ2
d ·




CS 0K×K 0K×K

0K×K CS 0K×K

0K×K 0K×K CS


 ,
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where

CS = IK×K +


 0L×M IL×L

0M×M 0M×L


 .

Using vector representation, we can express the residual ISI yI,i in (4.2) as

yI,i = CIx̌3,i,

where

CI = [cI(0), · · · , cI(3K − 1)]

is the matrix with residual ISI coefficients. We have the following decomposition:

CI =
[
0M×(2L+∆+1),C1,C2,C3,0M×(K−∆)

]
M×3K

,

where

C1 =




gI(M − 1) . . . gI(1)

0 . . . gI(2)
... . . . ...

0 . . . gI(M − 1)

0 . . . 0




M×(M−1)

C2 =
[

gI(0) gI(1) . . . gI(M − 1)
]T

M×1
(3.10)

C3 =




0 . . . 0 0

gI(0) . . . 0 0
... . . . ...

...

gI(M − 2) . . . gI(1) gI(0)




M×(M−1)

.

Let

C̃I = FCI =
[
0M×(2L+∆+1), c̃I(1), · · · , c̃I(2M − 1),0M×(K−∆)

]

be the DFT of CI, where

c̃I(p) = FcI(2L + ∆ + p), for 1 ≤ p ≤ 2M − 1.
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At the DFT output, we have the residual ISI component of the received signal,

ỹI,i = FyI,i = FCIx̌3,i = C̃Ix̌3,i.

Denote sI as the vector containing residual ISI power in subchannels. Then,

sI = E
{〈ỹI,i〉2

}
= E

{〈FCIx̌3,i〉2
}
]

= σ2
d

2M−1∑
p=1

〈c̃I(p)〉2 + σ2
d

M−∆−1∑
p=M−L−∆

〈c̃I(p)〉2 + σ2
d

2M+L−∆−1∑
p=2M−∆

〈c̃I(p)〉2, (3.11)

where the last two terms in (3.11) are the interference power induced from the off-diagonal

terms of E{bx̌3,ie2}. Observe that only C2 has the complete residual ISI vector gI. Thus,

〈C̃2〉2 = 〈g̃I〉2,

where

C̃2 = FC2 = c̃I(K + L).

Column vectors in C1 and C3 contain only partial gI. If gI is in the CP range, then the circular

convolution property can be applied. Then,

sI = Mσ2
d〈g̃I〉2 = sd〈g̃I〉2. (3.12)

This is the result used in (2.42). However, the residual ISI is the ISI outside the CP range, and

(3.12) is not valid in practice.

Here, we also use some experimental results to show the difference between (3.11) and

(3.12). The experiment settings are the same as those in Section 3.1.2. Figure 3.4 shows the

spectrums yielded by C1, C2, and C3 in (3.10), respectively. We can see that spectrums yielded

by C1 and C3 are larger than that by C2, which is directly related to gI. This phenomenon is

more apparent in regions with spectrum nulls. Figure 3.5 shows the spectrums obtained with

(3.11) and (3.12), and Figure 3.6 is a zoomed spectrum. The simulated ISI power is also shown

in the figures, which are obtained with 500 DMT symbols. As revealed with the figures, the

magnitudes at the nulls are significantly raised in the spectrum calculated with (3.11). Also, the
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spectrum agrees with that simulation very well. Similar to the case in Section 3.1.2, the SINR

is reduced at spectrum nulls.

Combining the results in Section 3.1.2 and Section 3.1.3, we conclude that the SINR cal-

culation in (2.43) is not correct. To have better loading performance, noise and residual ISI

powers should be revised to those in (3.8) and (3.11). In the next section, we will use the

corrected formula to propose a new TEQ scheme.

§ 3.2 Proposed Method

The formulations in (3.8) and (3.11) is meant to demonstrate the effect of the non-cyclic prop-

erty of noise and the residual ISI. To derive the optimum TEQ, we have to use another formu-

lation. Rewrite the TEQ-filtered noise vector vi as vi = Niw, where Ni is a matrix with noise

samples, i.e.,

Ni =




η(iK + ∆ + L) . . . η(iK + ∆ + L−N + 1)
... . . . ...

η(iK + ∆ + K − 1) . . . η(iK + ∆ + K −N + 1)




M×N

. (3.13)

The DFT of the ith TEQ-filtered noise symbol at the (k + 1)th subchannel is

ṽi(k) = fT (k)vi = fT (k)Niw,

and the corresponding power is

E{|ṽi(k)|2} = E
{∣∣fT (k)Niw

∣∣2
}

= wTR(k)w,

where

R(k) = E{bÑT
i (k)e2},

and

Ñi(k) = fT (k)Ni.
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Similarly, we can rewrite the residual ISI, yI,i, in (4.2) as

yI,i = XigI,

where

Xi =




x(iK + L− J + 1) . . . x(iK + L)
... . . . ...

x(iK + K − J) . . . x(iK + K − 1)




M×J

. (3.14)

The DFT of the residual ISI at the (k + 1)th subchannel is

ỹI,i(k) = fT (k)yI,i = fT (k)XiDIHw,

and the corresponding power is

E{|ỹI,i(k)|2} = E{|fT (k)XiDIHw|2} = wTQ(k)w,

where

Q(k) = HTDT
I E{bX̃T

i (k)e2}DIH,

and

X̃i(k) = fT (k)Xi.

Then, the subchannel SINR can be revised from (2.42) as

SINR(k) =
E

{|ỹS,i(k)|2}

E
{|ṽi(k)|2} + E

{|ỹI,i(k)|2} =
wTA(k)w

wTY(k)w
(3.15)

where A(k) is defined as that in (2.43), and

wTY(k)w = wT [R(k) + Q(k)]w

includes the noise power wTR(k)w and residual ISI power wTQ(k)w. Finally, the capacity

can be expressed in terms of the subchannel SINR (3.15) as

B =
∑

k∈Ω

log2

(
1 +

1

Γ

wTA(k)w

wTY(k)w

)
bits/symbol. (3.16)
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The optimum w can then be obtained by maximizing B. To distinguish from the MBR method

[18], we called the proposed method the enhanced MBR (EMBR) method.

The proposed EMBR method requires the use of a nonlinear optimization method to search

the optimum solution and its computational complexity is high. To reduce the complexity,

(3.16) must be simplified. Here, we use the procedure outlined in [18] to do the work. To avoid

the trivial all-zero solution, a constraint must be imposed. Using the constraint that

∑

k∈Ω

wTA(k)w = 1,

we define the TEQ optimization problem as

Minimize wT

(∑

k∈Ω

Y(k)

)
w, subject to wT

(∑

k∈Ω

A(k)

)
w = 1. (3.17)

From results derived previously, we have

∑

k∈Ω

wTY(k)w = wT
∑

k∈Ω

E{bÑi(k)e2}w + wTHTDT
I

∑

k∈Ω

E{bX̃i(k)e2}DIHw (3.18)

From the definition of E{bÑi(k)e2}, we can derive its closed-form expression as

E{bÑi(k)e2} = σ2
η




a1 b1,2 . . . b1,N

b2,1 a2 . . . b2,N

...
... . . . ...

bN,1 bN,2 . . . aN




, (3.19)

where 



ai = M for all i,

bi,j = (M − i + j)α(j−i)k for i > j,

bi,j = (M + i− j)α(j−i)k for i < j.
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Similarly, we have E{bX̃i(k)e2} as

σ2
d




a1 b1,2 . . . b1,L+1 b1,L+2 + c1,L+2 . . . b1,M + c1,M

b2,1 a2 . . . b2,L+1 b2,L+2 . . . b2,M + c2,M

...
... . . . ...

... . . . ...

bL+1,1 bL+1,2 . . . aL+1 bL+1,L+2 . . . bL+1,M + cL+1,M

bL+2,1 + cL+2,1 bL+2,2 . . . bL+2,L+1 aL+2 . . . bL+2,M + cL+2,M

bL+3,1 + cL+3,1 bL+3,2 + cL+3,2 . . . bL+3,L+1 bL+3,L+2 . . . bL+3,M + cL+3,M

...
... . . . ...

... . . . ...

bM,1 + cM,1 bM,2 + cM,2 . . . bM,L+1 + cM,L+1 bM,L+2 + cM,L+2 . . . aM




,

(3.20)

where 



ci,j = (i− j − L)α(M+L+j−i)k for i > j,

ci,j = (j − i− L)α−(M+L−j+i)k for i < j.

The maximization problem in (3.17) is known to be a Rayleigh quotient problem, and the solu-

tion can be obtained with the eigen-decomposition method. Let

A =
∑

k∈Ω

A(k),Y =
∑

k∈Ω

Y(k).

Using the Cholesky decomposition, we have

A = AT
CDACD.

The optimal TEQ solution to (3.17) is known to be

wopt = A−1
CDpmin, (3.21)

where pmin is the eigenvector corresponding to the minimum eigenvalue of a composite matrix

A−1
CDY(AT

CD)−1 [14]. We refer to the EMBR solved with the suboptimum method as sim-

plified EMBR (SEMBR). The SEMBR method avoids the complicated nonlinear optimization

problem. Simulations show that the TEQ designed with the SEMBR method is close to the

optimum.
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§ 3.3 Simulations

In this section, we report some simulation results to demonstrate the effectiveness of the pro-

posed TEQ method. We use the 12 standard test loops defined in the ITU ADSL specifica-

tion [7], including 3 revised resistance design (RRD) loops, 8 carrier serving area (CSA) loops,

and one Mid-CSA loop. Figure 3.7 shows the configuration of these test loops. In this figure,

the numbers specified for a link represent the wire length and the wire gauge of the link. The

performance of the proposed SEMBR method and that of the original min-ISI method [18] is

compared. The channel noise was modeled as AWGN with a flat power spectrum density of -

140 dBm/Hz, and near-end-cross-talk (NEXT) noise from 5 integrated services digital network

(ISDN) disturbers. The transmit signal power was set to 23 dBm. The DFT/IDFT size, as de-

fined in the ITU ADSL standard, is 512, and the CP size is 32. In addition, the sampling rate

was set to 2.208 MHz, and the overall SNR gap Γ is 11.6 dB [12].

Figure 3.8 shows the subchannel SINRs with TEQs obtained by the min-ISI and the SEMBR

methods for mid-CSA loop #6. Both SINR plots are evaluated with 500 DMT symbols. As

we can see, these two SINR distributions are very close. However, some nulls appear in the

SINR plot associated with the min-ISI method. Bit loading in these subchannels are then seri-

ously affected. Figure 3.9 shows the throughput comparison for the DMT systems with TEQs

designed by the min-ISI and SEMBR methods. All 12 test loops mentioned above were eval-

uated, and the size of the TEQ used here was set to 16. Note that the loop index in Figure

3.9 is defined in Table 3.1 and the table also shows the detailed throughput in Figure 3.9. The

matched filter bound (MFB) in Figure 3.9, calculated without the ISI effect, serves as the the-

oretical upper bound. From the figure, we can observe that the throughput of the DMT system

with the TEQ designed by the SEMBR method is consistently higher than that generated by the

min-ISI method. Figure 3.10 shows the frequency responses of TEQs designed with the min-ISI

and SEMBR methods for CSA loop #6 and T1.601 loop #9. From the figure, we can clearly

tell the difference between these two methods. The TEQ responses yielded by the proposed
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Table 3.1: Throughput for various TEQ design methods (unit: Mbps)

Loop Index Test Loop min-ISI SEMBR MFB

1 CSA Loop #1 8.6045 9.0972 9.2306

2 CSA Loop #2 9.7885 10.321 10.548

3 CSA Loop #3 8.3222 8.7051 8.8715

4 CSA Loop #4 8.2342 8.7314 8.8668

5 CSA Loop #5 8.8369 9.1219 9.3507

6 CSA Loop #6 8.0701 8.4261 8.5745

7 CSA Loop #7 7.8381 8.4464 8.5303

8 CSA Loop #8 7.1301 7.4443 7.5482

9 midCSA Loop 9.7429 10.114 10.182

10 T1.601 Loop #7 2.1658 2.2491 2.4220

11 T1.601 Loop #9 2.5006 2.7647 2.9412

12 T1.601 Loop #13 2.5112 2.7635 2.9090

SEMBR method do not have the spectrum nulls as those observed from the min-ISI method.

The appearance of the nulls is due to the underestimate of the noise and residual ISI powers.
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Figure 3.1: Decomposed TEQ-filtered noise powers (N = 16, CSA#5 Loop)
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Figure 3.2: Comparison of TEQ-filtered noise powers; power calculated with (3.9), power cal-

culated with (3.8) (correct one), and simulated power (N = 16, CSA#5 Loop)
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Figure 3.3: A zoomed view of Figure 3.2
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Figure 3.4: Decomposed residual-ISI powers (N = 16, CSA#5 Loop)
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Figure 3.5: Comparison of residual-ISI powers; power calculated with (3.12), power calculated

with (3.11) (correct one), and simulated power (N = 16, CSA#5 Loop)
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Figure 3.6: A zoomed view of Figure 3.5
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T1.601 Loop #7 1350 / 26T1.601 Loop #9 6000 / 261500 / 263000 / 26 1500 / 26 1500 / 261500 / 26T1.601 Loop #13 1500/ 26 500/ 249000 / 26 500/ 241500 / 262000 / 24
Mid CSA Loop 6000 / 26

CSA Loop #1 5900 / 26 600 / 26 1800 / 26350 / 24 650 / 26700 / 26 3000 / 263000 / 26700 / 24CSA Loop #2CSA Loop #3 500 / 26 50 / 2650 / 24 3050 / 262200 / 26 50 / 24 50 / 24 100 / 24700 / 26 1500 / 26 600 / 26CSA Loop #4 6250 / 26 800 / 26400 / 26 800 / 26550 / 26CSA Loop #5 1200 / 261200 / 265800 / 26 150 / 24 300 / 24 300 / 26CSA Loop #6 9000 / 26CSA Loop #7 10700 / 24 800 / 24CSA Loop #8 12000 / 24
Figure 3.7: Configuration of various standard test loops defined in ITU-T Recommendation

G.996.1. The numbers on a line segment represent the length (feet) and the wire gauge (Amer-

ican wire gauge) of the line. The left side of a loop is connected to a central office.
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Chapter 4

IIR Time Domain Equalization for OFDM

Systems

In this chapter, we propose a low-complexity IIR TEQ scheme. The basic idea is to use an IIR

TEQ instead of an FIR one for the channel shortening. However, the direct derivation of an IIR

TEQ from the channel response is a difficult job. In this chapter, we propose using a two-step

approach. In the first step, we derive a high-order FIR TEQ. In the second step, we convert

the FIR TEQ into a low-order IIR TEQ. In the derivation of the FIR TEQ, we propose using a

multi-stage (MS) structure. Instead of a single-stage (SS) high-order TEQ, we propose using a

cascade of several low-order TEQs. For conventional TEQ design methods such as [14] or [18],

matrix operations are frequently required, and the computational complexity is O(N3) [29]

where N is the TEQ order. Thus, if N is large, the required computational complexity is

high. With our MS structure, the computational complexity for the FIR TEQ derivation can be

dramatically reduced. Since the ideal TEQ exhibits the low-order IIR characteristic, the order

required for an IIR TEQ will be much lower than that of an FIR TEQ. To convert an FIR filter

into an equivalent IIR form, we apply the Steiglitz McBride method (SMM) [35] to do the job.

Simulations show that while the proposed method can reduce the computational complexity

significantly, its performance is almost unaffected. In this chapter, we will mainly use the
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MSSNR method [14] as our TEQ design method. It can have a good BER performance for

OFDM systems [29]. Note that the idea of the IIR TEQ was first proposed by in [31] and [32].

In [34], an IIR TEQ based on the QR-RLS adaptive algorithm was also proposed. However, it

is well-known that the stability of an adaptive IIR filter cannot be guaranteed. This is different

from the SMM we use, where the convergence is guaranteed [36]- [39].

This chapter is organized as follows. In Section 4.1, we give the general signal model of an

OFDM system. In Section 4.2, we briefly review the IIR characteristic of the TEQ, derive the

MS FIR TEQ, detail the proposed IIR TEQ scheme, and analyze its complexity. Section 4.3

shows the simulation results.

§ 4.1 Signal Model

A common model of an OFDM system with the TEQ design is shown in Figure 4.1. At the

OFDM transmitter side, denote the i-th transmitted data symbol as d̃i = [d̃i(0), · · · , d̃i(M −
1)]T , where d̃i(k) is the (k + 1)-th element of d̃i. Taking the M -point inverse DFT (M -

IDFT) to d̃i, we can then obtain the corresponding time domain signal, denoted as di. That

is, di = [di(0), · · · , di(M − 1)]T = FHd̃i where F is an M ×M DFT matrix defined in (2.3).

Subsequently, appending the CP and conducting the parallel-to-serial conversion, we obtain the

transmitted signal x(n). Here, n = iK + l, and

x(iK + l) =





di(l + M − L), for 0 ≤ l ≤ L− 1,

di(l − L), for L ≤ l ≤ K − 1.
(4.1)

where di(l) is the (l + 1)-th element of di. The signal x(n) is then transmitted over a wireless

channel with FIR and corrupted by AWGN.

Let the wireless CIR be represented as h = [h(0), · · · , h(I − 1)]T , and AWGN as η(n).

x(n) is assumed independent to the noise η(n). Denote the noise-free channel output signal as

z(n), where z(n) = x(n) ∗ h(n). At the receiver side, both z(n) and η(n) are first filtered by

an N -tap TEQ. Let the TEQ coefficients be denoted as w = [w(0), · · · , w(N − 1)]T . Also let
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the corresponding TEQ-filtered output of z(n) and that of the channel noise be y(n) and v(n),

where y(n) = z(n) ∗ w(n) and v(n) = η(n) ∗ w(n), respectively. Moreover, without loss of

generality, let the synchronization delay be zero in the following paragraphs. Performing the

serial-to-parallel conversion and removing the CP, we can obtain the i-th received signal-only

OFDM symbol as yi = [y(iK + L), · · · , y((i + 1)K − 1)]T . Let the corresponding i-th noise

symbol vector at the TEQ input and output be ηi = [η(iK + L), · · · , η((i + 1)K − 1)]T and

vi = [v(iK + L), · · · , v((i + 1)K − 1)]T , respectively.

From Figure 4.1, we can see that the transmitted signal x(n) passes the wireless channel,

h(n), and the TEQ, w(n). Let g(n) = h(n) ∗w(n) be the ECR, and g = [g(0), · · · , g(J − 1)]T

where J = I + N − 1. Assume that J < M , and we can decompose g into g = gS + gI,

where gS = [g(0), . . . , g(L − 1),0T
J−L]T is the desired shortened channel response, and gI =

[0T
L, g(L), . . . , g(J − 1)]T the residual ISI response. Both the responses gS and gI are defined

in (2.35), and the channel matrix H is in (2.10).

We can reexpress gS and gI as gS = [gS(0), · · · , gS(J − 1)]T , and gI = [gI(0), · · · , gI(J −
1)]T , respectively, where gS(l) is the (l + 1)-th element of gS, and gI(l) that of gI. Let yS(n),

yI(n) be the desired part and the residual ISI part of y(n). Thus we have y(n) = yS(n) + yI(n),

where yS(n) = x(n) ∗ gS(n), and yI(n) = x(n) ∗ gI(n). Consequently, we can also decompose

yi as

yi = yS,i + yI,i, (4.2)

where yS,i = [yS(iK +L), · · · , yS((i+1)K − 1)]T , and yI,i = [yI(iK +L), · · · , yI((i+1)K −
1)]T .

§ 4.2 Proposed IIR TEQ Method

In this section, we first describe the IIR characteristic of the TEQ in Section 4.2.1. Then we

derive the MS FIR TEQ in Section 4.2.2. Based on the result, we then derive the proposed

IIR TEQ scheme in Section 4.2.3. Finally, we analyze the computational complexity of the
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proposed scheme in Section 4.2.4.

§ 4.2.1 IIR Characteristic of the TEQ

The typically wireless channel generally has a multipath response, which can be modeled as an

FIR system. In this paragraph, we show that the TEQ for an FIR channel will exhibit an IIR

characteristic. Recall that a wireless CIR h has an FIR where the channel length exceeds the CP

size, that is, I > L. Without loss of generality, we let h(0) = 1. Denote the transfer function of

the channel as H(z). Then,

H(z) = 1 + h(1)z−1 + · · ·+ h(I − 1)z−I+1

= (1− z1z
−1)(1− z2z

−1) · · · · · (1− zI−1z
−1) (4.3)

where z1, · · · , zI−1 are I − 1 zeros of H(z) and |z1| ≤ |z2| · · · ≤ |zI−1|. We can further express

H(z) as a cascade of three FIR channels, i.e., H(z) = H0(z)H1(z)H2(z) where H0(z) have m0

zeros all located inside the unit circle, H1(z) have m1 zeros all located on the unit circle, and

H2(z) have m2 zeros all located outside the unit circle. Note that m0 +m1 +m2 = I− 1. Now,

suppose we want to shorten the wireless channel into the CP range. In other words, the TEQ

must shorten at least I − L channel taps. We have three cases to discuss, i.e., (1) I − L ≤ m0,

(2) m0 < I − L ≤ m0 + m2, (3) m0 + m2 < I − L. For Case 1, the TEQ can be an IIR filter

having I − L poles of {z1, · · · , zI−L}. Denoting the transfer function of the TEQ as W (z), we

can have

W (z) =
1

(1− z1z−1)(1− z2z−1) · · · (1− zI−Lz−1)
. (4.4)

In this case, I −L zeros of H(z) is canceled by I −L poles of W (z), and the channel response

can be perfectly shortened. For Case 2, we can let m0 zeros of H(z) be canceled by m0 poles of

W (z) obtained from H0(z). However, there are I−L−m0 zeros cannot be canceled. Note that

if we substitute z with z−1 in H2(z), the resultant transfer function will have its zeros located

inside the unit circle. This indicates that the zeros of H2(z
−1) can also be canceled by an IIR
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filter if the time index goes from 0 to −∞. Although the IIR filer is not realizable, it can be

approximated by an non-causal FIR filter. Thus, we have the TEQ as

W (z) =
W0(z)

(1− z1z−1)(1− z2z−1) · · · (1− zm0z
−1)

. (4.5)

where W0(z) is the FIR filter designed to cancel the response of the I − L − m0 zeros. In

this case, the channel can be shortened, but not perfectly. The performance depends on the

dimension of W0(z). As known, zeros on the unit circle cannot be canceled. Thus, for Case 3,

the channel response cannot be shortened into the CP range. Since the number of the taps to be

shortened is generally much smaller than the channel length itself, Case 1 will be observed in

most environments.

From above discussion, we conclude that the TEQ possesses an IIR characteristic in wireless

channels. Note that this property is quite different from the wireline applications where the CIR

can be modeled as a low-order IIR system [40]. Thus, a low-order FIR TEQ can effectively

shorten the channel. This is also the main difference between the application of the TEQ in

DMT and OFDM systems.

§ 4.2.2 Derivation of MS FIR TEQ

As shown in Figure 4.1, the objective of the TEQ is to shorten the CIR length I to the CP size, L.

As discussed, for wireless channels, the required FIR TEQ order for the desired shortening may

be long. As we will see, the derivation of the MSSNR TEQ relies on matrix operations having

the computational complexity of O(N3). If N is large, the computational complexity will be

high. Here, we propose an MS structure to alleviate this problem. We approach the original SS

TEQ with a cascade of multiple TEQs. It is simple to see that the TEQ order in each stage can

be made much smaller than that of the original one. Let the number of stages be V , the TEQ

vector in the l-th stage be wl, and its order be Nl, that is, wl = [wl(0), · · · , wl(Nl − 1)]T where

1 ≤ l ≤ V . In each stage, we can derive the TEQ using the conventional MSSNR method.

For each individual stage of the MS structure, let the ECR at the l-th stage be denoted as
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gl. Then, gl = gl−1 ∗ wl, where g0 = h and 1 ≤ l ≤ V . Here, the convolution operator ‘∗’

is applied for vectors. In the l-th stage, the TEQ shortens the CIR for a designated Pl taps. In

other words, after the l-th TEQ, the length of target-impulse-response becomes I − ∑l
i=1 Pi.

Hence, the total target-shortening-length is
∑V

l=1 Pl = I − L and the overall equivalent TEQ

length is
∑V

l=1 Nl − V + 1. Furthermore, the overall TEQ response w is equal to the cascade

of the individual TEQs, that is, w = w1 ∗w2 ∗ · · ·wV .

As mentioned in Section 4.1, assume that the synchronization delay is zero, and let gl =

[gl(0), · · · , gl(Jl − 1)]T , where Jl is the ECR length at the l-th stage, and Jl = Jl−1 + Nl − 1,

1 ≤ l ≤ V . Note that J0 = I is the original CIR length. We can then decompose gl into two

parts, the desired shortened channel response gS,l = [gl(0), . . . , gl(Ll − 1),0T
Jl−Ll

]T , and the

residual ISI gI,l = [0T
Ll

, gl(Ll), . . . , gl(Jl−1)]T , where Ll = I−∑l
j=1 Pl. That is, gl = gS,l+gI,l.

Then, we can rewrite gS,l and gI,l as

gS,l = DS,lHlwl

gI,l = DI,lHlwl, (4.6)

where DS,l = diag
[
1T

Ll
,0T

Jl−Ll

]
, DI,l = diag

[
0T

Ll
,1T

Jl−Ll

]
, and Hl a Jl ×Nl matrix consist-

ing of a shift version of the ECR gl−1,

Hl =




gl−1(0) 0 . . . 0

gl−1(1) gl−1(0) . . . 0
...

... . . . ...

gl−1(Jl−1 − 1) gl−1(Jl−1 − 2) . . . gl−1(Jl−1 −Nl)

0 gl−1(Jl−1 − 1) . . . gl−1(Jl−1 −Nl + 1)
...

... . . . ...

0 0 . . . gl−1(Jl−1 − 1)




Jl×Nl

. (4.7)

The SSNR at the TEQ output of the l-th stage for the OFDM receiver is then defined as

SSNRl =
gH

S,lgS,l

gH
I,lgI,l

=
wH

l HH
l DH

S,lDS,lHlwl

wH
l HH

l DH
I,lDI,lHlwl

=
wH

l Alwl

wH
l Blwl

, (4.8)
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where gH
S,lgS,l is the desired signal power, gH

I,lgI,l the residual ISI power, Al = HH
l DH

S,lDS,lHl,

and Bl = HH
l DH

I,lDI,lHl.

The optimal TEQ for the MSSNR method can be obtained through the maximization of

the SSNR. The rows of DI,lHl are formed by the shifted version of the CIR and the rank of

DI,lHl is Jl×Nl. Consequently, the matrix Bl is of full rank Nl×Nl and also positive definite.

Hence, Bl can be decomposed by using the Cholesky decomposition, that is, Bl = BlBH
l . We

can define a vector yl = BH
l wl, and then wl = (BH

l )−1yl. Thus, wH
l Blwl = yH

l yl, and

wH
l Alwl = yH

l (Bl)
−1Al(BH

l )−1yl = yH
l Alyl, where Al = (Bl)

−1Al(BH
l )−1. As a result,

SSNRl = yH
l Alyl/y

H
l yl has a form of Raleigh quotient. It is well known that optimal yl,o

maximizing the quotient SSNRl can be obtained by choosing the eigenvector corresponding to

the maximum eigenvalue of Al [41]. Thus, we can have the optimal TEQ vector wl,o is

wl,o = (BH
l )−1yl,o, (4.9)

and the corresponding optimal SSNRl is

SSNRl,o =
wH

l,oAlwl,o
wH

l,oBlwl,o
= λl (4.10)

where λl is the maximum eigenvalue of Al. Different from that in DMT systems, the MSSNR

TEQ has been shown to have good performance in OFDM systems [29].

After deriving TEQ vectors {w1,o,w2,o, · · · ,wV,o} for all V stages, we can have the equiv-

alent optimal TEQ vector wo as

wo = w1,o ∗w2,o ∗ · · ·wV,o (4.11)

This result is also shown in Figure 4.2.

§ 4.2.3 Derivation of IIR TEQ

As shown in Sec 4.2.1, the TEQ for the wireless channel possesses a low-order IIR property.

Thus, a conventional FIR TEQ achieving satisfactory performance requires a high order. This
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will consume heavy computations in the shortening operation. To solve the problem, we then

propose converting the FIR TEQ obtained in (4.11) to an equivalent IIR one. By doing so,

we can effectively reduce the required computational complexity for the shortening operation.

Here, we use the SMM to do the job.

The SMM is an iterative method for the IIR system identification [35]. Its structure is shown

in Figure 4.3, in which c(n), x(n), and r(n) denote the impulse response, the input signal, and

the output signal of the plant, respectively. Here, the plant is an IIR system and its transfer

function can be represented as a rational function as

C(z) =
A(z)

B(z)
. (4.12)

Also let

Cm(z) =
Am(z)

Bm(z)
(4.13)

be the estimated transfer function of the plant in the m-th iteration, where Am(z) =
∑Q

j=0 αj(m)z−j ,

Bm(z) = 1−∑P
j=1 βj(m)z−j . Note that Q and P are the order of A(z) and B(z), respectively.

Assume that in the (m− 1)-th iteration, optimal Bm−1(z) and Am−1(z) have been obtained. To

conduct the m-th iteration, the SMM first filters the plant output, r(n), and its input, x(n), with

1/Bm−1(z). The resultant outputs, u(n) and v(n), are then fed to Bm(z) and Am(z), respec-

tively. Optimal Bm(z) and Am(z) can then be obtained by minimizing the average-squared-

error (ASE) power of the two outputs. It is simple to see that if the algorithm converges, i.e.,

Bm−1(z) = Bm(z), then the plant is identified as Am(z)/Bm(z).

Put the unknown parameters βj(m) and αj(m) together to form a vector Θ(m) as

Θ(m) = [β1(m), · · · , βP (m), α0(m), · · · , αQ(m)]T , (4.14)

and also define a vector Φ(n) as

Φ(n) = [v(n− 1), · · · , v(n− P ), u(n), · · · , u(n−Q)]T . (4.15)
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Define the error signal between the filtered outputs of u(n) and v(n) as em(n). Then, we have

em(n) =

Q∑
j=0

αj(m)v(n− j)− u(n) +
P∑

j=1

βj(m)u(n− j)

= ΦT (n)Θ(m)− u(n). (4.16)

If we collect the observations of u(n) and v(n) in a time window with size N ′, we can then

have N ′ samples of the error signal which can be expressed as

em(n) = Ψ(n)Θ(m)− u(n), (4.17)

where em(n) = [em(n), em(n− 1), · · · , em(n−N ′ + 1)]T , u(n) = [u(n), u(n− 1), · · · , u(n−
N ′ + 1)]T , and Ψ(n) = [Φ(n),Φ(n − 1), · · · ,Φ(n − N ′ + 1)]T . Thus, we can use the least-

squares (LS) method to obtain the optimal estimate of Θ(m). The criterion for the LS method

is to minimize the ASE power, denoted as ξ[Θ(m)], given by [35],

ξ[Θ(m)] = ‖em(n)‖2 = ‖Ψ(n)Θ(m)− u(n)‖2 , (4.18)

The solution to the LS problem (4.18) can be written as

Θ(m) =
(
ΨT (n)Ψ(n)

)−1
ΨT (n)u(n). (4.19)

Then, 1/Bm(z) is used to filter r(n) and x(n), and u(n) and v(n) is obtained for the LS solution

in the next iteration. Since the SMM is an iterative algorithm, it requires an initial estimate of

B0(z). A simple method for this problem is just to let B0(z) = 1. In this case, v(n) is the

input of the plant which is x(n), and u(n) is the corresponding output, i.e., u(n) = r(n). For

IIR filter design, the stability is always an issue. The stability and the convergence of the SMM

have been investigated. Interested readers may refer to [36] - [39].

We summarize the procedure of the proposed TEQ design method as follows. Firstly, we

apply the MS structure and use the conventional MSSNR method to obtain an FIR TEQ wl,o

for each stage, where 1 ≤ l ≤ V . By cascading the multiple stages of TEQs wl,o, we can obtain

the equivalent optimal TEQ wo in (4.11). Treating wo as the impulse response of an IIR plant,

we can then apply the SMM to convert the FIR TEQ into an equivalent IIR TEQ, efficiently.
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§ 4.2.4 Complexity Analysis

In this paragraph, we discuss the issue of computational complexity of the proposed algorithm.

We first compare the design complexity of the conventional SS and the proposed MS FIR TEQ.

For fair comparison, we let the order of the conventional SS TEQ be equal to the equivalent

order of the MS TEQ. The computational complexity of the SS MSSNR TEQ method is shown

to be 38N3/3 + IN2 [29], where N is the SS TEQ length. Thus, that of the proposed MS

method is 38
∑V

l=1 N3
l /3 + I

∑V
l=1 N2

l , where Nl is the proposed l-th stage TEQ length, V the

number of multi-stages, and I the CIR length. Hence, the MS approach can greatly reduce

the required computational complexity. As an example, we let N = 16, V = 3 and I =

25. The computational complexity of the MS TEQ is only 13.8% of that of the SS TEQ. The

improvement comes from the fact that the computational complexity of the MSSNR method is

O(N3). As a result, when N is large, the complexity grows fast.

We now consider the computational complexity of the SMM. For simplicity, let the data

window size of the SMM, denoted as N ′, be equal to the FIR TEQ filter order N . It can be

shown that the computational complexity of the SMM isO(m[(P +Q+1)3 +(P +Q+1)2N +

(P + Q + 1)N ]), where m is the iteration number. Although the computational complexity of

the SMM has the same order as that of the MSSNR, its actual complexity will be much lower.

This is due to two facts. First, as we will see in the next section, the SMM converges very fast,

usually within five iterations. Second, in typical applications, P + Q is usually much smaller

than N . As a result, the overhead introduced by the SMM is not significant.

We now evaluate the computational complexity during the shortening operation. Note that

the shortening operation has to be conducted for every input data sample. It solely depends on

the number of taps in the TEQ. Thus, the computational complexity for the conventional FIR

TEQ is O(N), while that for the proposed IIR TEQ is O(P + Q + 1). Since P + Q is usually

much smaller than N , the computational complexity of the IIR TEQ is much smaller than the

FIR TEQ. Using a typical example, the proposed algorithm can save approximately up to 70%
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of the computations without compromising the SER performance [32]. When M and L are

large, as found in many practical OFDM systems, the reduction in computational complexity

can be more significant.

§ 4.3 Simulations

The simulation setup is described as follows. The OFDM system we use has the symbol size

of 64, and the CP size of 16. The wireless channel is generated using an exponential-decay

power profile. The channel is quasi-static and its response changes for every OFDM packet.

In our simulations, we assume that the CIR is known or can be well estimated. The wireless

CIR length is assumed to be 25, exceeding the CP size. A typical wireless CIR is shown in

Figure 4.4. Channel noise is modeled as the AWGN, and added at the channel output. All FIR

TEQs considered in the simulations have an order of 16. They are designed with the MSSNR

method [14], which has been shown to have a good compromise between the complexity and

the SER performance [29]. In the figures shown, N and D stand for the number of zeros and

poles used in the IIR TEQ, respectively.

In the first set of simulations, we evaluate the impact of the number of poles and zeros used in

the IIR TEQ, and the convergence rate of the SMM. Figure 4.5 shows the relationship between

the ASE power and the iteration numbers, under the variation of the pole/zero order of the IIR

TEQ. We can see that as the number of poles (or zeros) increases, the error power decreases.

This is not surprising since more degree of freedom can be used to reduce the ASE power.

Figure 4.6 shows the relationship between the residual ISI power and the iteration numbers,

under the same setting as that in Figure 4.5. Since the residual ISI power is not the criterion to

be minimized, an IIR TEQ with higher order does not necessarily yield a smaller residual ISI

power. Note that the residual ISI power relates to the SER, directly. Also shown in Figure 4.5

and Figure 4.6, we can see that the SMM converges to a stable value very quick. The required

number for iteration is typically below 5. We then consider the SER performance of the IIR
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TEQs discussed above, as shown in Figure 4.7. The behavior of the SER performance in Figure

4.7 is similar to that of the residual ISI power in Figure 4.6. This is consistent with the assertion

we just mentioned. Note that the choice of the order of the IIR TEQ is a compromise between

the SER performance and the computational complexity. From simulations, we found that a

good choice for the numbers of zeros and poles are 3 and 3, respectively. Figure 4.8 shows an

example of the impulse responses of the FIR filter and its equivalent IIR one (fitted with the

SMM). Here, the number of poles is 3, that of zeros is also 3, and the iteration number used in

the SMM is 5. We can see that the fitted IIR TEQ can approach the original FIR TEQ well.

The performance and the computational complexity of the proposed algorithm depend on

the parameters it uses such as the number of stage, the filter order at each stage, and the target

channel length to be shortened (TLS) at each stage. Before the actual application of the pro-

posed algorithm, we need to determine those parameters. We then need some design guidelines

in order to obtain optimal results. Since theoretical analysis is difficult, we use simulations to

do the job here. Table 4.1, 4.2, and 4.3 show the different parameter settings for simulations.

The second column in the tables numbers the test TEQs used in the simulations, and the third

column gives the number of stages used in the MS structure. The fourth column gives the order

of the TEQ used at each stage, in which the notation da, b, · · · e indicates that the TEQ order

for the first stage is a, that for the second stage is b, and so on. The last column gives the TLS,

where the notation bc, d, · · · c indicates that the TLS for the first stage is c, that for the 2nd stage

is d, and so on.

The SER performance of the MSSNR [14] and the proposed method are then evaluated. All

the simulations are evaluated with 1000 OFDM packets, where each OFDM packet contains 60

OFDM symbols. We first see the effect of the number of processing stages. Table 4.1 shows

the parameter setting for this purpose. Here, we let the equivalent order of the MS TEQ be the

same in all settings. The number of stages we tried are 2, 3, 4, and 5, corresponding to TEQ #1a,

#1b, #1c, and #1d, respectively. The equivalent TEQ filter order is 16 for all 4 test TEQs. The

TEQ filter orders are d8, 9e, d6, 6, 6e, d5, 5, 5, 4e, and d4, 4, 4, 4, 4e, respectively. And the TLSs
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for the test TEQs are b4, 5c, b3, 3, 3c, b3, 2, 2, 2c, b2, 2, 2, 2, 1c, respectively. Figure 4.9 shows

the SER performance comparison for settings in Table 4.1. We can see that as the number of

stages increases, although it can reduce more computations, the SER performance degrades. It

is apparently that the BER performance for the SS TEQ (the plot of MSSNR TEQ) is superior

to that of the multistage ones. This is not surprising since the original MSSNR design is a joint

optimization approach (for all tap weights), while the MS structure is not. From Figure 4.9, we

can see that it is adequate to let the number of stages be 2 or 3 (that is, TEQ #1a and #1b), a

good compromise between the complexity and BER performance.

We then evaluate the effect of the filter order used at each stage. Table 4.2 gives the setting

for simulations. Here, the number of stage is set as 2, and the highest order for each stage

is set as 16. The TLSs for the test TEQs are all fixed to b4, 5c. Figure 4.10 and Figure 4.11

show the simulation results. From the figures, we can see that the larger the filter order, the

better the BER performance we can have. However, as the filter order of one stage increases,

the computational complexity increases accordingly. Thus, there is a compromise between the

TEQ order and the performance. Also from Figure 4.11, we can see that as the filter order at

the second stage decreases (that in the first stage is fixed), the performance degrades, but the

degradation is not severe. In contrast, from Figure 4.10, we see that as the filter order of the first

stage decreases (that in the second stage is fixed), the performance degradation is more severe.

This is because the residual ISI of the first stage will propagate to the second stage, and the

TEQ in the second stage cannot compensate for that effect completely. Thus, the TEQs in early

stages play more important roles than those in following stages. We should give a higher order

for the TEQs in the early stages. On the other hand, the shortening work is also relatively easier

at early stages, and a higher order for the TEQ may not require. In summary, we may let the

TEQ order be roughly equal for all stages. This is an important property the MS structure has.

Table 4.3 shows the settings of the TEQ in scenarios with various TLSs. Here, the number

of stages is still set to 2, and the TEQ tap length for both stages is set to 16. Figure 4.12 shows

the simulation results. We see that if the TLS of the first stage is in a smaller order, such as the
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case of TEQ #4d, #4e and #4f, the SER performance is generally better than that of other cases.

The reason is similar to the results in Figure 4.10 and Figure 4.11. As the TLS of the first stage

increases, the residual ISI of the first stage will become larger and it propagates to the second

stage. The TEQ in the second stage cannot compensate for that effect. However, if the TLS

of the first stage becomes too small, the corresponding TLS of the second stage becomes large

and the required filter order of the second stage will becomes high. Then the computational

complexity of the TEQ will be increased. With a larger residual ISI, no matter in the first or

second stage, the performance of the TEQ will be degraded. Thus, it is better to distribute the

required TLS to all stages, evenly. This is another important property the MS structure has.

Based on the simulation results, we can obtain some design guidelines for the MS design.

Firstly, the number of stages used should not be too large, i.e., 2 or 3. Secondly, the filter order

for each stage can be made roughly equal. The order is selected with a compromise between

complexity and performance. For example, an appropriate filter order for a two-stage structure

may be d8, 9e. Thirdly, the total TLS can also be evenly distributed to all TEQs. In other words,

the TLS for each stage can also be set roughly equal. Or, that in early stages is somewhat lower.

For example, an appropriate TLS value for a two-stage structure can be b4, 5c or b3, 6c.
According to the above design guidelines, we can determine proper values for the param-

eters. It turns out that the number of stages is 2, the filter order per stage is d8, 9e, the TLS

is b4, 5c. Figure 4.13 shows the simulation results with the settings. As we can see, the SER

performance of the proposed IIR TEQ is slightly worse than that of the original FIR TEQ. The

complexity ratio of the IIR TEQ to that of the FIR TEQ in TEQ derivation, and in shortening

operation, is only 33% and 37%, respectively. We can then conclude that the proposed IIR TEQ

is much more efficient than the conventional FIR TEQ.

62



IDFT P/S
DFT TEQOFDM Receiver S/PCPRemoved

CPAdded WirelessChannelhAWGN
FH

F w
Figure 4.1: An OFDM system with TEQ
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Figure 4.2: An OFDM system with multistage TEQ
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Plant C(z)x(n) em(n)r(n) u(n)v(n) + -
Figure 4.3: System model for Steiglitz McBride method

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

A
m

pl
itu

de

Time, t

 

 
Real Part of Channel
Imaginary Part of Channel

Figure 4.4: A typical wireless channel impulse response

65



0 5 10 15 20

10
−2

10
−1

A
ve

ra
ge

−
S

qu
ar

e−
E

rr
or

, A
S

E

Iteration

 

 
N = 3, D = 1
N = 3, D = 3
N = 3, D = 5
N = 3, D = 7
N = 2, D = 3
N = 4, D = 3
N = 6, D = 3
N = 7, D = 3

Figure 4.5: Average-squared-error of IIR TEQ fitted with SMM (for various pole/zero order)
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Figure 4.6: Residual ISI power of IIR TEQ fitted with SMM (for various pole/zero order)
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Figure 4.8: Impulse response of an FIR TEQ and its fitted IIR TEQ
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Figure 4.9: SER performance of Experiment #1 (for various stage number)
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Figure 4.10: SER performance of Experiment #2 (for various TEQ order in the first stage)
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Figure 4.11: SER performance of Experiment #3 (for various TEQ order in the second stage
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Figure 4.12: SER performance of Experiment #4 (for various TLS per Stage)
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Table 4.1: Plot definitions of simulation scenario A (for various IIR order)

Figure # TEQ # Multistage TEQ order TLS

Order per stage per stage

Figure 4.9 TEQ #1a 2 d8, 9e b4, 5c
TEQ #1b 3 d6, 6, 6e b3, 3, 3c
TEQ #1c 4 d5, 5, 5, 4e b3, 2, 2, 2c
TEQ #1d 5 d4, 4, 4, 4, 4e b2, 2, 2, 2, 1c

Table 4.2: Plot definitions of simulation scenario B (for various pole/zero order per stage)

Figure # TEQ # Multistage TEQ order TLS

Order per stage per stage

Figure 4.10 TEQ #2a 2 d16, 16e b4, 5c
TEQ #2b 2 d13, 16e b4, 5c
TEQ #2c 2 d11, 16e b4, 5c
TEQ #2d 2 d8, 16e b4, 5c
TEQ #2e 2 d6, 16e b4, 5c
TEQ #2f 2 d4, 16e b4, 5c

Figure 4.11 TEQ #3a 2 d16, 16e b4, 5c
TEQ #3b 2 d16, 13e b4, 5c
TEQ #3c 2 d16, 11e b4, 5c
TEQ #3d 2 d16, 9e b4, 5c
TEQ #3e 2 d16, 6e b4, 5c
TEQ #3f 2 d16, 4e b4, 5c
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Table 4.3: Plot definitions of simulation scenario C (for various TLS per stage)

Figure # TEQ # Multistage TEQ order TLS

Order per stage per stage

Figure 4.12 TEQ #4a 2 d16, 16e b7, 2c
TEQ #4b 2 d16, 16e b6, 3c
TEQ #4c 2 d16, 16e b5, 4c
TEQ #4d 2 d16, 16e b4, 5c
TEQ #4e 2 d16, 16e b3, 6c
TEQ #4f 2 d16, 16e b2, 7c
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Chapter 5

Time Domain Equalization for OFDM

Systems with Unitary Precoding

In this chapter, we propose an OFDM system with unitary precoding. In conventional OFDM

systems, the diversity of each subcarrier’s channel is one. With precoding, the diversity can be

greatly enhanced. Precoding in OFDM systems also provides another advantage facilitating the

TEQ design. We propose a design method based on the MSINR criterion. It turns out that the

method is simple and effective. Due to precoding, the transmit and the receive signal vectors

can be formulated as the input and the output of a MIMO system. As a result, MIMO detec-

tion has to be conducted in the receiver. Various MIMO detection algorithms are well known,

e.g., successive interference cancelation (SIC) and sphere decoding (SD). The SIC method is

simple but the performance is not optimal. On the contrary, the SD method requires higher

computational complexity but can achieve near-optimum performance. To solve the problem,

we propose a hybrid detection algorithm, called SDSIC. The SDSIC method can achieve near-

optimum performance but the computational complexity is low. Simulation results show that

precoded OFDM systems with the proposed SMSINR TEQ and the proposed SDSIC detection

method significantly outperform unprecoded OFDM systems with conventional TEQs.

This chapter is organized as follows. In Section 5.1, we give the motivation of the proposed
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precoded OFDM systems. In Section 5.2, we describe the precoding method for OFDM systems

and the SDSIC detection scheme. In Section 5.3, we show simulation results demonstrating the

performance of the proposed system.

§ 5.1 Motivation

Consider an equivalent OFDM channel model shown in Figure 5.1(a). In the figure, the OFDM

signal passes through a wireless channel with the CIR denoted as h. We first consider a special

case that M = I and L = I − 1. In this case, no ISI occurs and the CP overhead approaches

100%. Consider a specific OFDM symbol and let the input and output signal vector in Figure

5.1(a) be x̃ and ỹ, respectively. We then have

ỹ = FHFF
H x̃ + ṽ

= Λhx̃ + ṽ (5.1)

where

HF =




h(0) h(I − 1) . . . h(2) h(1)

h(1) h(0) . . . h(3) h(2)
...

... . . . ...

h(I − 1) h(I − 2) . . . h(1) h(0)




M×M

, (5.2)

Λh is a diagonal matrix, and ṽ is AWGN vector in frequency domain. Let h̃I = [h̃0, · · · , h̃I−1]
T ,

where h̃l is the channel response of the (l + 1)th subcarrier. Note that in the case of M = I ,

we have h̃M = h̃I . Then, we have Λh = diag
[
h̃0, · · · , h̃I−1

]
. From the definition, h̃l can be

derived as

h̃l =
I−1∑
n=0

αlnh(n), (5.3)

where α is defined in (2.1). If h(n) is a tap with Rayleigh fading, h(n) can be seen as a

complex Gaussian random variable. From (5.3), we see that h̃l is a complex Gaussian random

variable. Hence, h̃l also experiences Rayleigh fading. It is apparent that the diversity gain
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for each subcarrier is only one. Thus, the conventional OFDM system does not exploit the

frequency diversity gain provided by the channel and there is a plenty of room for performance

improvement.

Now, we consider an OFDM system with a percoding structure shown in Figure 5.1(b). For

simplicity, we let the precoding is linear and the precoding matrix is unitary. In the receiver,

unitary decoding is conducted to recovery the signal. The matrix for precoding is denoted by U

and that for decoding by UH . The input and output signal vectors can then be expressed by

ỹ = UHFHFF
HUx̃ + ṽ.

Then, the equivalent channel matrix can be expressed as

H̃ = UHFHFF
HU = UHΛhU. (5.4)

As we can see from (5.4), the channel matrix is not diagonal anymore (except for the AWGN

channel). To facilitate later derivation, we let h(n)’s be independent and identically-distributed

(i.i.d.). With this assumption, we then have

E
{
h̃Ih̃

H
I

}
= E

{
FhhHFH

}
= σ2

hI, (5.5)

where σ2
h = E{h2

l } for every l. In other words, h̃l’s are also i.i.d. In the following, we will show

that the diversity gain of the precoded OFDM system is I .

Consider two transmit signal vectors x̃a and x̃b. We want to find the pairwise error proba-

bility (PEP) that the receive signal vector is erroneously detected as x̃b when x̃a is transmitted.

The PEP is given by [44]

P(x̃a → x̃b) = E

{
Q

(
‖ H̃(x̃a − x̃b) ‖

2
√

No/2

)}
, (5.6)

where

Q (m) , 1√
2π

∫ ∞

m

exp(−x2

2
)dx, (5.7)
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and exp(·) an exponential function. We first calculate the term ‖ H̃(x̃a−x̃b) ‖ in the Q function:

‖ H̃(x̃a − x̃b) ‖ =

√
(x̃a − x̃b)HH̃HH̃(x̃a − x̃b)

=

√
[U(x̃a − x̃b)]

H |Λh|2 [U(x̃a − x̃b)]

=

√√√√
I∑

l=1

∣∣∣h̃l

∣∣∣
2

‖ uT
l (x̃a − x̃b) ‖2, (5.8)

where ul is the lth column of U. Denote the averaged SNR as SNRa where SNRa = E{|h̃l|2}/N0,

and the normalized h̃l as h̃
′
l where h̃

′
l = h̃l/E{|h̃l|2}. Also, let cl =‖ uT

l (x̃a − x̃b) ‖2. Substi-

tuting (5.8) into (5.6), we can rewrite the PEP as

P(x̃a → x̃b) = E




Q




√√√√SNRa

∑L
l=1

∣∣∣h̃′l
∣∣∣
2

‖ uT
l (x̃a − x̃b) ‖2

2








= E




Q




√√√√SNRa

∑I
l=1

∣∣∣h̃′l
∣∣∣
2

cl

2








≤
I∏

l=1

1

1 + cl

4
SNRa

≤ 4I

SNRI
a

∏I
l=1 cl

, (5.9)

From (5.9), we can see that the diversity gain is I , compared to one for conventional OFDM

systems [44].

In practice, the DFT size, M , is generally much greater than the channel length, I . Without

loss of generality, we let M = NpI where Np is an integer. It is simple to see that h̃ is not a

white vector anymore. However, if we down-sample h̃ by a factor of Np, the resultant vector

will be white. This property can be derived as follows. Let h̃l = [h̃l, h̃Np+l, · · · , h̃(I−1)Np+l]
T ,

where l is an offset number ranging from [0, Np − 1]. The corresponding DFT matrix to obtain
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h̃l is given by

Fl =
1√
I




1 αl α2l . . . α(I−1)l

1 αNp+l α2(Np+l) . . . α(Np+l)(I−1)l

...
...

... . . . ...

1 α(I−1)Np+l α2((I−1)Np+l) . . . α(I−1)((I−1)Np+l)




I×I

. (5.10)

It is simple to check that Fl is a unitary matrix, that is, FlF
H
l = II×I . Then,

E
{
h̃lh̃

H
l

}
= E

{
FlhhHFH

l

}
= σ2

hI. (5.11)

In other words, the elements of h̃l are i.i.d. This suggests that we can use a precoding block with

the size of I and the subcarriers in the block are evenly drawn from the frequency domain. From

the above discussion, we know that precoding in OFDM systems can enhance the frequency

diversity, and the maximum diversity gain is I . Based on this property, we propose a new

precoded OFDM system shown in Figure 5.2. In the system, the OFDM symbol is divided

into pM subsymbols where each subsymbol has p subcarrires and p ≤ I . Precoding is then

conducted for each subsymbol.

Precoding in OFDM systems was also proposed in [49] and [50]. The precoding structure

in [49] is somewhat different from ours. In [49], redundancy is added in precoding and its

purpose is to replace channel coding. In the proposed system, no extra redundancy is added and

the purpose is to enhance diversity gain. Channel coding is still used in the proposed system to

obtain coding gain. In [50], the size of the precoding block is M and the linear receivers such as

the MMSE and ZF are used. As discussed, the frequency diversity for a precoded OFDM system

is I . Using a coding block larger than I results in little performance improvement. However, the

required computational complexity for signal detection may become much higher. The block

size for precoding in the proposed algorithm can be varied. Generally, it is less than I . Also,

the receivers we use are nonlinear.
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§ 5.2 Proposed Method

In Section 5.2.1, we first describe the proposed precoded OFDM system. In Section 5.2.2,

we then propose a TEQ design method called MSINR for the precoded system in which the

channel delay spread exceeds the CP range. In Section 5.2.3, we then review various MIMO

detection methods and propose a new detection algorithm. Finally, in Section 5.2.4, we analyze

the computational complexity of the proposed detection scheme.

§ 5.2.1 System Model

Figure 5.2 shows the proposed precoded OFDM system. As we can see, the main operations

in the transmitter (for the transmit signal vector d̃i) include precoding, permutation, and IDFT.

Precoding is conducted by the multiplication of d̃i with a M×M matrix U. The matrix includes

pM unitary submatrices given by:

U =




Up 0p×p · · · 0p×p

0p×p Up · · · 0p×p

. . . . . . ... . . .

0p×p 0p×p · · · Up




(5.12)

where p = 2m,m ∈ [1, log2M ], is the block size for precoding and Up a p × p unitary matrix.

For computational efficiency, we will use the Walsh-Hadamard matrix for Up. The permutation

matrix P is used to conduct the downsampling operation such that the symbols involved in a

precoding block are approximately uncorrelated. Let pk be the (k + 1)th column vector of

P and ik the (k + 1)th column vector of the identity matrix IM . Then, pmpM+n = inpM+m,

0 ≤ m,n ≤ p − 1. After the IDFT operation, the corresponding time domain signal vector,

denoted by di, can be expressed as

di = FHPUd̃i = FH
U d̃i, (5.13)
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where FH
U = FHPU is defined as the precoded IDFT matrix. At the receiver side, the ith

received symbol at the TEQ output can be expressed as

ri = yi + vi = GFH
U d̃i + vi

= GSF
H
U d̃i + GIF

H
U d̃i + vi, (5.14)

where the first two terms are the signal part and residual ISI part of the received signal, respec-

tively, and the last term the AWGN.

After the processing of the TEQ, the signal is then passed through the DFT (F), the inverse

permutation PH , and the unitary decoding (UH) modules, sequentially. At the decoder output,

we then have

r̃i = G̃Sd̃i + G̃Id̃i + ṽi, (5.15)

where

G̃S = FUGSF
H
U ,

G̃I = FUGSF
H
U , and

ṽi = FUv, (5.16)

respectively. From (5.15), we can have the signal term, denoted by ỹS,i, as

ỹS,i = G̃Sd̃i = FUGSF
H
U d̃i, (5.17)

and the noise-plus-interference term, denoted by ẽi, as

ẽi = G̃Id̃i + ṽi = ỹI,i + ṽi = FUGIF
H
U d̃i + ṽi, (5.18)

where ỹI,i is the received signal contributed by the residual ISI. Note that from (5.13) and (5.16),

we can also express G̃S as

G̃S = UHPHFGSF
HPU = UHĜSU, (5.19)

where ĜS = PHFGSF
HP and ĜS is a diagonal matrix. Finally, r̃i is used as the input to a

MIMO detection algorithm. Some existing and proposed algorithms are described in Section

5.2.3.

83



§ 5.2.2 TEQ Design with MSINR Method

At the decoder output, we have r̃i = ỹS,i + ẽi. Now, we can partition r̃i into pM sub-

vectors. Each subvector, having p data symbols, corresponds to a coded signal block. We

call a subvector as a received OFDM sub-symbol. Denoting the jth OFDM sub-symbol as

r̃i,j , we then have r̃i =
[
r̃T

i,0, · · · , r̃T
i,pM−1

]T . Using the similar partition, we can also have

ỹS,i =
[
ỹT

S,i,0, · · · , ỹT
S,i,pM−1

]T and ẽi =
[
ẽT

i,0, · · · , ẽT
i,pM−1

]T . From (5.15), we see that

r̃i = ỹS,i + ỹI,i + ṽi. (5.20)

Thus, we can have the following relationships,

r̃i,k = ỹS,i,k + ẽi,k, and

ẽi,k = ỹI,i,k + ṽi,k, (5.21)

where ṽi =
[
ṽT

i,0, · · · , ṽT
i,pM−1

]T . Let the procoding submatrix, Up, be

Up =




u1,1 u1,2 · · · u1,p

u2,1 u2,2 · · · u2,p

...
... . . . ...

up,1 up,2 · · · up,p




. (5.22)

and ỹS,i(k), ỹI,i(k), ṽi(k), and ẽi(k) be the (k + 1)th subcarrier components of ỹS,i, ỹI,i, ṽi, and

ẽi, respectively. Since ỹS,i(k) = g̃S(k)d̃i(k), and ỹI,i(k) = g̃I(k)d̃i(k), we have

|ỹS,i(mp + k)|2 =
1

p

p−1∑
j=0

∣∣∣uH
k,j g̃S(jpM + m)d̃i(jpM + m)

∣∣∣
2

, and

|ẽi(mp + k)|2 =
1

p

p−1∑
j=0

∣∣∣uH
k,j g̃I(jpM + m)d̃i(jpM + m)

∣∣∣
2

+

1

p

p−1∑
j=0

∣∣uH
k,j ṽi(jpM + m)

∣∣2 , (5.23)

where 0 ≤ m ≤ pM − 1, 0 ≤ k ≤ p− 1.
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Recall that sd(k) and sη(k) are the signal power and the noise power in the (k + 1)th sub-

channel defined in (2.40) and (2.41), respectively. In general, sd(k) = sd where sd is a constant,

and sη(k) = sη where sη is also a constant. The SINR of the (mp + k)th subchannel at the

decoder output is then

SINRp
m(k) =

sd

∑p−1
j=0

∣∣uH
k,jf

T (jpM + m)TGDSHw
∣∣2

sd

∑p−1
j=0

∣∣uH
k,jf

T (jpM + m)TGDIHw
∣∣2 + sη

∑p−1
j=0

∣∣uH
k,jf

T (jpM + m)TWw
∣∣2

=

∑p−1
j=0 wHAj,mw

∑p−1
j=0 wHBj,mw

=
wH

∑p−1
j=0 Aj,mw

wH
∑p−1

j=0 Bj,mw
, (5.24)

where m is the OFDM sub-symbol index, 0 ≤ m ≤ pM −1, k the data symbol index in the mth

OFDM sub-symbol, 0 ≤ k ≤ p− 1,

Aj,m = |uk,j|2HHDH
S TH

G f∗(jpM + m)fT (jpM + m)TGDSH, and

Bj,m = |uk,j|2HHDH
I TH

G f∗(jpM + m)fT (jpM + m)TGDIH +

sη

sd

|uk,j|2TH
W f∗(jpM + m)fT (jpM + m)TW . (5.25)

Let

Am =

p−1∑
j=0

Aj,m, and Bm =

p−1∑
j=0

Bj,m. (5.26)

Then

SINRp
m(k) =

wHAmw

wHBmw
. (5.27)

As mentioned, the unitary matrix we consider is the Hadamard matrix. For the matrix, |uk,j|2 =

1. Then,

Am = HHDH
S TH

G

p−1∑
j=0

f∗(jpM + m)fT (jpM + m)TGDSH, and

Bm = HHDH
I TH

G

p−1∑
j=0

f∗(jpM + m)fT (jpM + m)TGDIH +

sη

sd

TH
W

p−1∑
j=0

f∗(jpM + m)fT (jpM + m)TW . (5.28)
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It is important to see that the SINR of each subcarrier in an OFDM sub-symbol is the same.

To minimize the error rate performance of sub-symbol m, we then have to maximize SINRp
m(k).

However, the TEQ may not be able to maximize the SINRs of all OFDM sub-symbols. An

compromised scheme is to maximize the average SINR, i.e.,

max
w

pM−1∑
m=0

wHAmw

wHBmw
. (5.29)

We call the method as the MSINR method. For a special case that p = 1, we have

max
w

M−1∑
m=0

wHAmw

wHBmw

= max
w

M−1∑
m=0

wHHHDH
S TH

G f∗(m)fT (m)TGDSHw

wHHHDH
I TH

G f∗(m)fT (m)TGDIH + sη

sd
TH

W

∑p−1
j=0 f∗(m)fT (m)TWw

.(5.30)

As we can see, the MSINR method is equivalent to the MBR method in [18]. For this case,

the subcarrier SINR will have largest variation since no diversity can be exploited. For another

special case that p = M , we have

Am = HHDH
S TH

G

M−1∑
j=0

f∗(j)fT (j)TGDSH, and

= HHDH
S TH

GTGDSH, and

Bm = HHDH
I TH

G

M−1∑
j=0

f∗(j)fT (j)TGDIH +
sη

sd

TH
W

M−1∑
j=0

f∗(j)fT (j)TW

= HHDH
I TH

GTGDIH +
sη

sd

TH
WTW . (5.31)

Hence,

max
w

wHAmw

wHBmw
= max

w

wHHHDH
S TH

GTGDSHw

wHHHDH
I TH

GTGDIH + sη

sd
TH

WTWw
. (5.32)

Since only one precoding block is used, the SINRs of all subcarriers are equal. Then, maxi-

mization of averaged SNR is identical to maximization of the SNR of each subcarrier. Thus,

the MSINR becomes optimal. However, the computational complexity for precoding and signal

detection is also the highest. Also note that in this case the MSINR method is exactly the same
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as that of the min-ISI method. In other words, the TEQ derived will be the same as that of the

min-ISI method. As we can see, the min-ISI method is not optimal while the MSINR method is

optimal. The difference lies in that precoding is conducted when the MSINR method is applied.

As mentioned, the diversity gain provided by the channel is I . Note that the CP size is L.

To maintain the circular convolution property, the CIR length I must be shortened to the CP

size L. That is, the diversity gain provided by the system is L. To fully explore the diversity, a

precoding size of L (i.e., p = L) will be sufficient. We now show that a precoding size of L is

also sufficient (optimal) for the MSINR method. Let the channel taps be i.i.d. and p = L. From

(5.11), we know that the elements in the downsampled vector h̃l are i.i.d. Let UL be an L× L

unitary matrix, and ULU
H
L = IL×L. The lth precoded OFDM sub-symbol is then UH

L h̃l. Thus,

E
{
UH

L h̃lh̃
H
l UL

}
= E

{
UH

L FlhhHFH
l UL

}
= σ2

hIL×L. (5.33)

In other words, the signal power of each subcarrier after precoding is the same. Thus, maximiz-

ing the averaged SINR is equivalent to maximizing the SINR of each subcarrier. The MSNIR

method is then optimal. Note that the optimality is based on the assumption that the channel

taps are i.i.d. In practice, this assumption may not be held. As a result, the signal power in each

coding block is not the same. For simplicity, we can simplify the cost function in (5.29) as

max
w

wH
∑pM−1

m=0 Amw

wH
∑pM−1

m=0 Bmw
. (5.34)

And we call the TEQ design using the cost function in (5.34) as the simplified MSINR (SM-

SINR) method. If the size of the coding block is properly chosen, the variation of the signal

power in each coding block will be small and the TEQ obtained with (5.34) is nearly optimal.

§ 5.2.3 Detection Methods

Precoding in OFDM systems exploits the frequency diversity the channel provides. However,

the precoding also results in a MIMO system for the subcarriers in the same coding block. One

of the advantage of OFDM systems is that the equalization can be conducted by a single-tap
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FEQ. As we will see, the single-tap FEQ cannot be used in precoded systems since the diversity

gain will be reduced back to one [44]. To explore the diversity the precoded system has, we

then have to use more sophisticated detection methods such as the SIC and ML methods. The

SIC is a simple MIMO detection method. Due to its lower computational complexity, it is

frequently considered in real-world implementation. The ML method is the optimum detection

method; however, its computational complexity grows exponentially along with the QAM size

and the system dimension. In many cases, the computational complexity becomes prohibitively

high. To solve the problem, many near-optimum detectors have been proposed. Among these

detectors, SD is considered as one of the most efficient ML algorithms. It has been proved that

for an L× L MIMO system, the diversity gain with the ML detector is L [44]. Thus, to obtain

the full diversity gain for precoded OFDM systems, we then have to use the ML detector. In

many real-world applications, the channel length (i.e., L) is generally large. Even with the SD

algorithm, the computational complexity is still too high. In this section, we propose a new

method to solve the problem. The proposed method, combining the merits of SIC and SD, can

have a similar performance as that of SD. However, the required computational complexity can

be significantly reduced.

Zero Forcing FEQ (ZF-FEQ)

When detecting a signal component, the ZF-FEQ completely removes the interference from

other components. Let the receive signal vector r̃i in (5.15) be multiplied by a ZF-FEQ matrix,

denoted as S. The output signal, denoted as ũ′i, is then passed through a hard-decision device

and a decided signal vector, denoted as ũi, is obtained. The equalized signal vector can be

expressed as

ũ′i = Sr̃i

= SỹS,i + SỹI,i + Sṽi

= SG̃Sd̃i + SG̃Id̃i + Sṽi, (5.35)
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where ỹS,i, ỹI,i, and ṽi are those defined in (5.17) and (5.18). To have a ZF-FEQ result, we have

S as

S = G̃−1
S . (5.36)

As a result, we have ũ′i as

ũ′i = d̃i + G̃−1
S G̃Id̃i + G̃−1

S ṽi. (5.37)

From (5.19), we can see that

G̃−1
S = UHĜ−1

S U (5.38)

Note that Ĝ−1
S is just the single-tap FEQ used in conventional OFDM systems. The ZF-FEQ

in the precoded OFDM system is exactly the same as that in the uncoded system. Thus, the

required computational complexity is low. However, as mentioned, the diversity gain for the

ZF detection in MIMO systems is one [44]. As a result, no performance improvement can be

obtained with precoding.

Successive Interference Cancelation (SIC)

The SIC is a nonlinear detection method. The main idea is to estimate and detect each signal

component of the transmitted symbol sequentially. Each detected component is then removed

from the received signal before the estimation of the next component [63]. To apply the SIC

method, we first partition the receive OFDM symbol, r̃i in (5.15), into pM sub-symbols with

size p = M/pM . Also, ṽi in (5.16) and ũi are also partitioned accordingly. Let

r̃i =
[
r̃T

i,0, r̃
T
i,1, · · · , r̃T

i,pM−1

]T
,

ṽi =
[
ṽT

i,0, ṽ
T
i,1, · · · , ṽT

i,pM−1

]T
, and

ũi =
[
ũT

i,0, ũ
T
i,1, · · · , ũT

i,pM−1

]T
, (5.39)
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where

r̃i,k = [r̃i(pk), r̃i(pk + 1), · · · , r̃i(pk + p− 1)]T ,

ũi,k = [ũi(pk), ũi(pk + 1), · · · , ũi(pk + p− 1)]T , and

ṽi,k = [ṽi(pk), ṽi(pk + 1), · · · , ṽi(pk + p− 1)]T , for 0 ≤ k ≤ pM − 1. (5.40)

ĜS =




ĜS,0 0p×p · · · 0p×p

0p×p ĜS,1 · · · 0p×p

...
... . . . ...

0p×p 0p×p · · · ĜS,pM−1




, (5.41)

where ĜS,k is a p × p diagonal matrix. Then, with the property of the permutation matrix, G̃S

can be also represented as

G̃S =




G̃S,0 0p×p · · · 0p×p

0p×p G̃S,1 · · · 0p×p

...
... . . . ...

0p×p 0p×p · · · G̃S,pM−1




(5.42)

where the kth component is given by

G̃S,k = UH
p ĜS,kUp, for k = 0, · · · , pM − 1. (5.43)

As we can see, all G̃S,k, Pk, Up, and ĜS,k are p×p matrices. The corresponding kth component

of ISI matrix can be represented as

G̃I,k = UH
p ĜI,kUp, for k = 0, · · · , pM − 1. (5.44)

As a result, we have the receive kth sub-symbol as

r̃i,k = G̃S,kd̃i,k + G̃I,kd̃i,k + ṽi,k, for k = 0, · · · , pM − 1, (5.45)

ũi,k, r̃i,k and ṽi,k are those defined in (5.39), and G̃S,k, G̃I,k in (5.43) and (5.44), respectively.

As we can see, (5.45) is a MIMO system representation.
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From [42], we see that the probability density function of the receive signal conditioned

on the transmit signal is defined as the likelihood function. For our problem, the likelihood

function is then p{̃ri ,k |d̃i ,k}. The criterion to choose d̃i,k that maximizes p{̃ri ,k |d̃i ,k} is called

the ML criterion. It is simple to prove that the decision rule can be reduced to find the d̃i that is

closest in distance to the received signal vector r̃i,k. Therefore, the ML detection criterion for

our precoded OFDM systems can be reduced to

ũi,k = arg min
d̃i,k∈Ψp

‖ r̃i,k − G̃S,kd̃i,k ‖2, (5.46)

where Ψp is a set including all possible d̃i. Using the QR decomposition, we can decompose

G̃S,k into G̃S,k = Q̃kR̃k, where R̃k is an upper-triangular matrix given by

R̃k =




r̃k(0, 0) r̃k(0, 1) r̃k(0, 2) · · · r̃k(0, p− 1)

0 r̃k(1, 1) r̃k(1, 2) · · · r̃2p(1, p− 1)

0 0 r̃k(2, 2) · · · r̃k(2, p− 1)
...

...
... . . . ...

0 0 0 · · · r̃k(p− 1, p− 1)




, (5.47)

and Q̃k is a unitary matrix. Then, we have the ML detection as

ũi,k = arg min
d̃i,k∈Ψp

‖ r̃i,k − Q̃kR̃kd̃i,k ‖2

= arg min
d̃i,k∈Ψp

‖ r̃′i,k − R̃kd̃i,k ‖2, (5.48)

where r̃′i,k = Q̃H
k r̃i,k. The SIC tries to implement the ML detection and conducts signal detec-

tion starting from the last data symbol. From (5.48), we see that the last symbol can be detected

by

ûi,k(p− 1) = arg min
d̃i,k(p−1)∈Ψd

∣∣∣r̃′i,k(p− 1)− r̃k(p− 1, p− 1)d̃i,k(p− 1)
∣∣∣
2

, (5.49)

where Ψd is the set for all possible transmit d̃i,k(p − 1). Now, if the detection is correct, i.e.,

ûi,k(p− 1) = d̃i,k(p− 1), we can subtract its interference from the received signal and this will
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enhance the probability of correct detection of d̃i,k(p − 2). This process can be repeated until

all the symbols are detected. For (m + 1)th symbol, we then have the detection as

ûi,k(m) = arg min
d̃i,k(m)∈Ψd




∣∣∣∣∣r̃
′
i,k(m)−

p−1∑
j=m

r̃k(m, j)d̃i,k(j)

∣∣∣∣∣

2

 , (5.50)

where d̃i,k(n) = ûi,k(n) for (m + 1) ≤ n ≤ (p − 1), and 0 ≤ m ≤ p − 1. Note that the

SIC method cannot achieve the ML performance since detection errors can occur in any stage.

Also, an detection error in a certain stage will increase the probability of detection error in later

stages. This is called error propagation.

Maximum Likelihood Sequential Estimation

The ML detector is an optimal detector and it needs an exhaustive search over the entire set of

Ψp [54]. If the QAM constellation size is R and the size of the OFDM sub-symbol d̃i,k is p,

the computational complexity for the ML detector is O(Rp). The complexity of the ML detec-

tion can become extremely high for a high constellation modulation size R and large symbol

size p. Many suboptimum methods have been developed to reduce the required computational

complexity. These methods can have near-ML performance but the required computational

complexity is much lower. Among them, the most well known is the SD method. In this disser-

tation, we use the SD-based method for the implementation of the ML detector.

Sphere Decoding (SD)

From (5.48), we see that the ML detection can be conducted as

ũi,k = arg min
d̃i,k∈Ψp

‖ Q̃H
k r̃i,k − R̃kd̃i,k ‖2

= arg min
d̃i,k∈Ψp

‖ r̃′i,k − R̃kd̃i,k ‖2 . (5.51)

Note that R̃k is an upper-triangular matrix. The main idea of the SD method is to search a

subset of Ψp such that

‖ r̃′i,k − R̃kd̃i,k ‖2< r2
SD, (5.52)
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where rSD is the radius of the searching sphere [54]. The search starts with the last symbol of r̃′i,k

and forms a tree structure excluding unlikely candidates located out of the sphere. Considering

the pth component r̃′i,k, we have

|r̃′i,k(p− 1)− r̃k(p− 1, p− 1)d̃i,k(p− 1)|2 < r2
SD. (5.53)

We then choose all possible d̃i,k(p−1)′s such that |r̃′i,k(p−1)− r̃k(p−1, p−1)d̃i,k(p−1)|2 < r2
SD

as the candidates for the pth component of r̃i,k. Now, consider the (p−1)th and pth components

of r̃′i,k in (5.52). For each candidate of d̃i,k(p− 1), we then choose all d̃i,k(p− 2)’s such that

‖

 ũi,k(p− 2)′

ũi,k(p− 1)′


−


 r̃k(p− 2, p− 2) r̃k(p− 2, p− 1)

0 r̃k(p− 1, p− 1)





 d̃i,k(p− 2)

d̃i,k(p− 1)


 ‖2< r2

SD (5.54)

as the candidates. The remaining components, [d̂i,k(p− 3), · · · , d̂i,k(0)]T , can be determined in

a similar manner. For a general expanding form of (5.52), we have

ũi,k = min
d̃i,k∈Ψp

p−1∑
n=0

∣∣∣∣∣r̃
′
i,k(n)−

p−1∑
m=n

r̃k(n,m)d̃i,k(m)

∣∣∣∣∣

2

< r2
SD (5.55)

where r̃′i,k =
[
r̃′i,k(0), · · · , r̃′i,k(p− 1)

]T , d̃i,k =
[
d̃i,k(0), · · · , d̃i,k(p− 1)

]T

. The search from

d̃i,k(p−1) to d̃i,k(0) then forms a tree structure. A complete path in the tree give a solution can-

didate (d̃i,k). Since the tree has many paths satisfying (5.55), we then have a list of candidates.

Finally, we can find the one minimizing (5.51) as the detection output.

The efficiency of the SD method greatly depends on the choice of the radius rSD. The

complexity will be high if rSD is large. This is because more candidates will be included in

the sphere of (5.55). If rSD is small, the optimum solution may not be included in the sphere.

In [55], a proper radius is suggested as:

r2
SD = C|det(G̃S,k)|

1
p (5.56)

where C is a constant, and det(G̃S,k) the determinant of G̃S,k. The matrix G̃S,k is defined in

(5.46). It has been shown that the choice can have a good compromise between performance

and computational complexity [56].
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Ordering for SIC and SD

For the SIC method, detection is conducted in a backward fashion. As mentioned, the SIC

method described in (5.50) has an error propagation problem. The diagonal element of R̃k,

i.e, r̃k(m,m), 0 ≤ m ≤ p − 1, determines the SINR of the mth signal component. If r̃i,k can

be ordered before the QR decomposition such that r̃k(m,m) (after QR decomposition) has an

ascending order, the error propagation effect can be reduced. However, the optimum ordering

resulting an ascending order of r̃k(m,m) has not been found yet. Some suboptimum ordering

methods have been proposed in the literature [56], [64], [61], [62]. For the SD method, a proper

ordering also gives better result. This is because for the determination of the candidates of the

mth d̃i,k, the number of components involved in (5.55) is m− 1. When the tree is expanded in

early stages, m is small. The distance calculation in (5.55) is not reliable. If an proper ordering

is conducted, the SINR can be enlarged and the radius of the sphere can be reduced. As a result,

the number of candidates can be reduced too. As we see in (5.56), the computational complexity

of the SD method is related to the number of candidates. A proper ordering can then reduce the

computational complexity of the SD method.

From (5.48), we see that the equivalent MIMO system obtained from the precoded OFDM

system has a special structure. The existing ordering algorithms may not be proper for this

application. For example, the scheme in [56] uses the column norms of the channel matrix for

ordering. However, from (5.19), we see that the column norms are all the same and the method

in [56] cannot be applied. Here, we propose an simple ordering scheme for the precoded OFDM

system.

Recall that the ML detection for precoded OFDM systems can be expressed as

ũi,k = arg min
d̃i,k∈Ψp

‖ r̃i,k − G̃S,kd̃i,k ‖2 (5.57)

where

r̃i,k = G̃S,kd̃i,k + G̃I,kd̃i,k + ṽi,k, for k = 0, · · · , pM − 1. (5.58)

Here, ũi,k, r̃i,k and ṽi,k are those defined in (5.39), and G̃S,k, G̃I,k in (5.43) and (5.44), re-
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spectively. As defined, ĜS,k in (5.41) is a diagonal matrix. We propose ordering the diagonal

elements of ĜS,k such that the elements have an ascending order. That is

g̃S,k = [g̃S,k(0), · · · , g̃S,k(p− 1)]T = Okdiag
[
ĜS,k

]
(5.59)

where g̃S,k(0) ≤ · · · ≤ g̃S,k(p − 1), and Ok is a permutation matrix (OT
k Ok = Ip). Therefore,

we can have ordered ĜS,k, denoted by Ĝo
S,k, as

Ĝo
S,k = diag [g̃S,k] = OkĜS,kO

T
k . (5.60)

From (5.43), we know that G̃S,k = UH
p ĜS,kUp, for k = 0, · · · , pM − 1. From (5.57), we can

rewrite the detection problem as

ũi,k = arg min
d̃i,k∈Ψp

‖ OT
k (Okr̃i,k −OkG̃S,kd̃i,k) ‖2

= arg min
d̃i,k∈Ψp

‖ OT
k (r̃o

i,k −OkU
H
p ĜS,kUpd̃i,k) ‖2

= arg min
d̃i,k∈Ψp

‖ OT
k (r̃o

i,k −OkU
H
p OT

k OkĜS,kO
T
k OkUpO

T
k Okd̃i,k) ‖2

= arg min
d̃i,k∈Ψp

‖ OT
k (r̃o

i,k − (Uo
p)

HĜo
S,kU

o
pd̃

o
i,k) ‖2

= arg min
d̃i,k∈Ψp

‖ r̃o
i,k −Go

S,kd̃
o
i,k ‖2 (5.61)

where Uo
p = OkUpO

T
k , d̃o

i,k = Okd̃i,k, and Go
S,k = (Uo

p)
HĜo

S,kU
o
p. Note that Uo

p is still a

unitary matrix because that (Uo
p)

HUo
p = (OkU

H
p OT

k )OkUpO
T
k = Ip.

We now can conduct SIC or SD with (5.61). Let Qk and Rk be the matrix pair of QR-

decomposition of Go
S,k, where Qk =

[
q0

k, · · · ,qp−1
k

]
is a unitary matrix and Rk is an upper-

triangular matrix with the form

Rk =




rk(0, 0) rk(0, 1) · · · rk(0, p− 1)

0 rk(1, 1) · · · rk(1, p− 1)
...

... . . . ...

0 0 · · · rk(p− 1, p− 1)




. (5.62)

95



The operations are the same as those in (5.48), (5.51) except that Qk and Rk are used to replace

Q̃k and R̃k, respectively.

ũo
i,k = arg min

d̃o
i,k∈Ψp

‖ QH
k r̃o

i,k −Rkd̃
o
i,k ‖2

= arg min
d̃o

i,k∈Ψp

‖ r̃′oi,k −Rkd̃
o
i,k ‖2, (5.63)

where r̃′oi,k = QH
k r̃o

i,k. Note that ũo
i,k, r̃o

i,k, d̃o
i,k, r̃′oi,k are the ordered version of ũi,k, r̃i,k, d̃i,k,

r̃′i,k. From (5.60), we know that Ĝo
S,k is a matrix whose diagonal elements are in an ascending

order of those of ĜS,k. From simulations, we found that the rk(m,m) tends to be equal or larger

than r̃k(m,m) when m is close to q. The result is similar to the method in [56]. However, the

theoretical proof will be difficult.

Hybrid SD-SIC (SDSIC)

As described, the SD method can efficiently implement the ML detector. However, when the

dimension of the MIMO system is high, the computational complexity is still high. The com-

putational complexity of the SIC is much lower, but it suffers from the error propagation effect.

For our precoded OFDM system, the equivalent MIMO system is of dimension L×L where L

is the length of the time-domain channel response. For OFDM systems, the CP size indicates

the maximum channel length. For wideband systems, the delay spread of the channel is usually

large. For example, the CP size for the OFDM symbol defined in IEEE802.11a/g systems is 16.

Thus, the equivalent MIMO system in precoded OFDM systems will be of dimension 16× 16.

The computational complexity of the SD algorithm for such system will be very high.

We now propose a new detection method to solve the problem. The proposed method com-

bines the merits of SD and SIC methods and its performance can approach to that of the SD

method. We call it the SDSIC method. The main idea comes from the fact that for SIC, the

decision errors at its early stages is more damaging. In other words, if the detection is erroneous

in early stages, it is likely to be erroneous in later stages. To solve the problem, we can use the

SD method to obtain decisions in early stages. The proposed SDSIC method can be described
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as follows. Let ũi,k be divided into two parts, ũD,i,k and ũC,i,k, where

ũi,k =
[
ũT

C,i,k, ũ
T
D,i,k

]T
, (5.64)

ũD,i,k = [ũi,k(p− pk), · · · , ũi,k(p− 1)]T is the vector to be detected by the SD method, and

ũC,i,k = [ũi,k(0), · · · , ũi,k(p− pk − 1)]T the remaining vector to be detected by the SIC method.

Note that the parameter pk determines the dimension of the MIMO system that the SD will work

on. The large the pk, the higher the computational complexity the SD will require. To find the

decision for ũD,i,k, we modify the SD method in (5.55) as

ũD,i,k =

p−1∑
n=p−pk

∣∣∣∣∣r̃
′
i,k(n)−

p−1∑
m=n

rk(n,m)d̃i,k(m)

∣∣∣∣∣

2

< r2
SD (5.65)

where r̃′i,k(n), rk(n,m), and d̃i,k(m) are those defined in (5.55). Starting a tree-search from

d̃i,k(pk − 1) to d̃i,k(0), we can determine a list of d̃i,k within the sphere as candidates, and find

the one minimizing (5.65) as the detection result.

With the detected ũD,i,k, we can subtract its interference to the system and then use the SIC

method to detect the remaining vector, ũC,i,k. The SIC method can be described as

ûi,k(m) = arg min
d̃i,k(m)∈Ψd




∣∣∣∣∣r̃
′
i,k(m)−

p−1∑
j=m

rk(m, j)d̃i,k(j)

∣∣∣∣∣

2

 , (5.66)

where d̃i,k(n) = ûi,k(n) for (m + 1) ≤ n ≤ (p− 1), and 0 ≤ m ≤ (p− pk − 1).

§ 5.2.4 Computational Complexity Analysis

In this section, we analyze the computational complexity of the ZF, SIC, SD, and SDSIC meth-

ods. The ZF receiver multiplies the received signal vector with the matrix G̃−1
S and feeds the

output to a slicer. Due to its special structure, the computational complexity for the matrix in-

verse G̃−1
S is O(M2). The QR decomposition is required for the SIC and SD methods. The

computational complexity of the QR decomposition is O(M3). In SIC, the upper triangular

matrix Rk is used for successive detection and interference cancelation. When detecting the
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mth data symbol, the signal estimates from all previous detected data symbols are weighted

and subtracted from the received signal. The overall detection complexity per vector symbol

is hence roughly in the order of O(M3). Therefore, the computational complexity for the ZF

receiver is lower than that of the SIC receiver.

The detection complexity of SD is known to be higher than that of linear and SIC receivers

[59]. The computational complexity of the proposed SDSIC method will be higher than that

of the SIC method, but lower than the SD method. The complexity of the SD method is data-

dependent, and in general it it difficult to determine its complexity order. In [57] and [58], a

closed-form expression for the mean complexity is derived. It is shown that the computational

complexity is a function of the SNR, the detection radius, the constellation size, and the symbol

size. Here, we give the computational complexity for a 16-QAM scheme as a reference:

C(m, ρ, d2) =
m∑

k=1

Fp(k)
∑

q

1

22k

2k∑

l=0


 2k

l


 gkl(q)γ

(
αn

1 + 2ρq
5m

, n−m + k

)
, (5.67)

where gkl(q) is the coefficient of xq in the polynomial (1 + x + x4 + x9)l(1 + 2x + x4)2k−l,

Fp(k) = 8k + 36, ρ is SNR, d is the given search radius, m is the dimension of the sphere, α

is chosen such that γ(αn
2

, n
2
) = 1 − ei, m is the dimension size [58]. We now use an example

to evaluate the mean complexity of the SD and SDSIC methods. The radius rSD we used is

as that in (5.56) and p is set to be 8. Figure 5.3 shows the complexity comparison for SIC,

SD, and SDSIC while Table 5.1 gives the numerical figures. As we can see, the complexity of

SDSIC is significantly lower than that of SD for low to medium SNR regions. For example,

when the SNR is 20 dB, the complexity of SDSIC method is only about 15% of that of the SD

method. Figure 5.4 shows the complexity comparison when p is varied. Here, the modulation

is 16-QAM, the SNR is 10dB, and the radius rSD is equal to (5.56). Table 5.2 illustrates the

numerical figures for the comparison. Again, the complexity of SDSIC is significantly lower

than that of SD. For example, when p = 8, the complexity of the SDSIC method is only about

3% of that of the SD method. As p becomes larger, the difference between these two methods

becomes larger. We then conclude that the SDSIC method can reach a near-SD performance
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and its computational complexity is much lower than that of the SD method.

§ 5.3 Simulations

In this section, we report simulation results evaluating the performance of the proposed algo-

rithm. The simulation setup is described as follows. The OFDM system we use has a symbol

size of 64. The wireless channel is generated using an exponential-decay power profile and the

CIR length is assumed to be 25. The channel is quasi-static and its response changes for every

OFDM packet. A single OFDM packet contains 1600 OFDM symbols. In our simulations, we

assume that the CIR is known. The channel noise is modeled as the AWGN, and added at the

channel output. We first consider the case with no ISI which means the CP size is larger than

the channel length. For this case, the CP size is set to be 32. Figure 5.5 to Figure 5.11 show

the simulation results. Then, we consider the case with ISI in which the CP size is set to be 16.

Figure 5.12 to Figure 5.13 show the simulation results. All simulations are obtained with 200

independent runs.

We first compare the performance of various precoding matrices that may be used in the

OFDM systems. Figure 5.5 shows results for the QPSK/16-QAM modulation schemes. In this

figure, the legends indicate the modulation scheme, the detection scheme, and the precoding

type, respectively. Here, CHT denotes complex HT. From the figure, we can see that the perfor-

mance of the three precoders (HT/CHT/DFT) are almost the same, and the performance of the

DFT precoding is slightly better than the other two precodings (HT/CHT). The result verifies

the property reported in [50]. The optimum precoding matrix is the DFT matrix. In this case,

the OFDM system becomes a single carrier system. Note that the computational complexity of

DFT is higher than that of HT. Also, the performance difference is marginal. Thus, the HT ma-

trix is a good choice for the precoding. In the later simulations, we only consider the precoding

with the HT matrix.

Then, we evaluate the influence of the block size used for precoding. Figure 5.6 to Figure 5.9
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show the simulation results for the QPSK and 16-QAM scheme with the SD and SIC detectors.

In these figures, the legends indicate the detection scheme, the precoding type, and the block

size for coding. We can see that as the block size increases, the performance becomes better

and better in high SNR regions. Using our analysis, we can see that the diversity gain of the

OFDM system is 25 and the largest coding block we need to use should be around 25. From the

figures, we can clearly verify the result; the performance of precoding with size of 32 is close

to that with 16. It is simple to see that the larger the block size, the higher the computational

complexity the detector will require. To compromise, we will use the block size of 8 in the

following simulations.

To see how much improvement we can obtain, we then compare the performance of the

system with and without precoding. Figure 5.10 and Figure 5.11 show the simulation results

for the QPSK and 16-QAM schemes. In the figures, the legends indicate the detection method

(FEQ/SIC/SD/SDSIC) and if precoding is used or not (HT/no HT). From the figures, we can see

that the performance of conventional OFDM systems without precoding has the worst perfor-

mance in high SNR regions. With precoding, the performance can be significantly enhanced.

We can clearly see that only the SD method can fully explore the diversity the channel pro-

vides. Precoding with the SIC detection method only performs slightly better than that without

precoding. Also note that the performance of the SDSIC method is almost as good as that of

the SD method. However, the computational complexity of the SDSIC method is much lower.

The other advantage of SDSIC is that it improve the performance of SD in low SNR regions.

Therefore, we can conclude that the proposed SDSIC method has a good compromise between

the performance and computational complexity.

Finally, we evaluate the performance of precoded OFDM systems in ISI environments. In

this case, the CP size is smaller than channel length and the ISI occurs. We let the TEQ size

be 16 and employ an SMSINR TEQ for the channel shortening. The performance comparison

for various detection methods is shown in Figure 5.12 and Figure 5.13 for the QPSK and 16-

QAM schemes, respectively. In the Figures, the legend indicates if the TEQ is used or not (No
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Table 5.1: Complexity comparison for various detection methods (SNRa is varied)

SNR (dB) 12 16 20 24 28

SIC vs. SD 284.6 127.8 57.62 26.80 13.23

SDSIC vs. SD 7.60% 12.36% 19.56% 29.72% 42.68%

SDSIC vs. SIC 21.62 15.78 11.27 7.96 5.64

Table 5.2: Complexity comparison for various detection methods (p is varied)

p 2 4 8 16 32

SIC vs. SD 69.70 95.23 422 9844 105

SDSIC vs. SD 18.01% 9.15% 2.82% 0.54% 0.12%

SDSIC vs. SIC 12.55 8.71 11.90 52.78 1230

TEQ/TEQ), what detection methods is used, (FEQ/SIC/SD/SDSIC), and if precoding is used or

not (HT/no HT). As shown in these figures, the MSINR TEQ can effectively improve the BER

performance as compared to the case without TEQ. The behavior of all detectors is similar to

that of the previous cases. Precoding with the SD detector has the best performance since it can

fully explore the diversity gain the channel provides. It is much better than the system without

precoding (even a TEQ is applied). We can also see that without a TEQ, the performance of

the OFDM system is very poor. Still, the performance of the proposed SDSIC detector is close

to that of the SD detector. Again, we conform that the proposed SDSIC detector is a good

detection method for precoded OFDM systems with ISI.
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IDFT ChannelmatrixFH FDFT
IDFT ChannelmatrixU FH UHFDFTUP UD(a).
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HF
HF

Figure 5.1: (a). A conventional OFDM system, (b). An OFDM system with unitary precoding

(UP) and unitary decoding (UD).
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Figure 5.2: Proposed model for OFDM systems with a TEQ
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Figure 5.3: Complexity comparison for various detection methods
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Figure 5.4: Complexity comparison for various detection methods
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Figure 5.5: BER performance comparison for OFDM systems with various unitary precoders
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Figure 5.6: BER performance comparison for precoded OFDM systems with SD detector

(QPSK scheme)
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Figure 5.7: BER performance comparison for precoded OFDM systems with SIC detector

(QPSK scheme)
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Figure 5.8: BER performance comparison for precoded OFDM systems with SD detector (16-

QAM scheme)
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Figure 5.9: BER performance comparison for precoded OFDM systems with SIC detector (16-

QAM scheme)
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Figure 5.10: BER performance comparison for precoded systems with various detection meth-

ods (QPSK scheme)
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Figure 5.11: BER performance comparison for precoded OFDM systems with various detection

methods (16-QAM scheme)
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Figure 5.12: BER performance comparison for OFDM systems with ISI (QPSK scheme)
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Figure 5.13: BER performance comparison for OFDM system with ISI (16-QAM)
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Chapter 6

Conclusions

The TEQ is a device used in DMT systems to combat the ISI problem. Many methods have

been proposed to obtain optimum TEQs. However, we have found that these optimum TEQs

are actually not optimal. This is because the noise, observed in a DMT symbol, does not have a

CP, and the circular convolution for the noise and the TEQ cannot be conducted. Conventional

methods ignored these phenomena, and erroneously calculate the noise and residual ISI power

of subcarriers. We have derived the correct formula for the calculation of noise and residual

ISI powers. It turns out that these powers are larger than those calculated by the conventional

methods. Using the capacity maximization criterion, we then propose a new optimal TEQ de-

sign method, called the EMBR method. The EMBR method requires solving a constrained

nonlinear optimization problem and hence is not cost-effective. To reduce the computational

complexity, we then derive a simplified EMBR method, i.e., the SEMBR method. Simulations

based on various ADSL standard test loops show that the proposed SEMBR method outper-

forms the well-known min-ISI method. Furthermore, the throughput yielded by the proposed

SEMBR method closely approaches the theoretical upper bound.

Since the TEQ in OFDM systems tends to have an IIR characteristic, the computational

complexity of the conventional FIR TEQ may be high. To facilitate the application of the TEQ

in OFDM systems, we then propose using the IIR TEQ for channel shortening. However, we
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found that the direct derivation of the IIR TEQ is difficult. We then use a simpler two-step

approach. In the first step, we use a multistage structure to obtain the FIR TEQ. In the second

step, we use the SMM to convert the FIR TEQ into an equivalent IIR one. It is shown that the

order of the IIR TEQ can be much lower than that of the FIR TEQ. Also, the TEQ derivation

with the MS structure can be much more efficient than the conventional SS structure. We then

obtain a low-complexity TEQ, both in the derivation and the shortening phase. Simulations

show that while the proposed method can reduce the computational complexity significantly, its

performance is almost as good as that of the existing methods.

To further improve the performance, we finally propose an OFDM system with unitary

precoding. Due to the precoding operation, the OFDM can exploit the frequency diversity the

channel provides. Based on this structure, we propose a TEQ design method, called MSINR.

It is shown that the MSINR method can maximize the SINR of all subcarriers, simultaneously.

This results in a true optimum TEQ which cannot obtained by the existing methods. To fully

explore the diversity, however, we have to use the ML detector in the receiver. The SD, being an

efficient ML detector, still requires high computational complexity when used in the proposed

precoded OFDM systems. To solve the problem, we propose a detection method, called the

SDSIC method, which has near-SD performance and a complexity much lower than that of

the SD. Simulations show the precoded OFDM system with the proposed MSINR TEQ with

the SDSIC detector significantly outperforms the unprecoded OFDM system with conventional

TEQs.

In concluding the dissertation, we suggest some possible topics for future research.

1. In MIMO-OFDM systems, the TEQ design becomes more complicated and challeng-

ing. However, the fundamental problems encountered in MIMO-OFDM systems are

the same as those in SISO-OFDM systems. With some modifications, the proposed

EMBR/SEMBR method can be extended to MIMO-OFDM systems.

2. Similarly, the IIR TEQ designed method proposed in this dissertation can be also extended

to MIMO-OFDM systems. How to convert a MIMO FIR filter into a MIMO IIR filter is
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the key problem. Also, the stability is an important issue that has to be considered.

3. In this dissertation, all TEQs are designed based on the assumption that perfect channel

information is available. In practical systems, however, this may not be always possible

since the channel estimation will introduce errors. How to design a robust TEQ overcom-

ing the channel uncertainty problem deserves further studies.

4. In this dissertation, we only consider the channel-independent precoder which can explore

the receiver frequency diversity. The transmitter diversity, however, is not considered. A

more involved problem is to design a channel-dependent precoder. In this case, channel

feedback will be required and the optimization problem will become much more compli-

cated.

5. The proposed precoded method can be extended to MIMO-OFDM systems easily. With

the precoding, the diversity gain can be further increased and the performance of MIMO-

OFDM systems can also be improved. In addition, the MSINR TEQ design method for

channel shortening can also be extended to MIMO-OFDM systems.

6. In conventional OFDM systems, channel coding is usually invoked to provide the coding

and diversity gains. Channel coding, however, has to include redundancy. The proposed

precoding scheme can also be generalized to include redundancy. How to combine chan-

nel coding and precoding in OFDM systems in an efficient way also deserves further

studies.
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