

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

博 士 論 文

CloudEdge:一個架構在雲端計算環境的內容傳遞系統

CloudEdge: A Content Delivery System in Cloud

Environment

 研究生: 邱繼弘

 指導教授: 袁賢銘 博士

中 華 民 國 九 十 九 年 六 月

I

CloudEdge:一個架構在雲端計算環境的內容傳遞系統

研究生: 邱繼弘 指導教授: 袁賢銘 博士

國立交通大學資訊科學與工程研究所

摘要

隨著 Internet 上 Web 應用程式的成長，操作網路上的影像、照片、聲音、與

影片變成越來越複雜。一個以提供內容分享為主的網站系統需要大量的便宜、高

效能、與高可用性的儲存空間。而因應雲端計算的趨勢，越來越多的應用程式將

他們的資料內容搬遷至外部的雲端服務，以降低硬體與維護的成本。Amazon S3

就是一個專門以儲存內容為主的服務，網站開發者能將它的媒體內容資訊，交由

這樣雲端服務的系統來運作。隨著大型網站應用全球化服務，如何透過在全球各

地所建構的網路節點的合作，提供全球網路用戶低成本、即時、高效能的內容存

取，是從單純資料儲存衍生出內容傳遞網路的課題。

在本篇論文中，將提出一種稱為 CloudEdge 的創新架構，他是一個在雲端環

境中的內容傳遞系統。這個架構能夠提供遠端的內容管理系統與網站應用程式一

種鬆散耦合的整合，並且比 Amazon S3 或類似服務，有如內容更新通知、邊緣

網路內容遞送、內容快取、加密資料存取、版本管理、因應需求的內容變化產生

器、與內容的後製處理等先進的功能。

II

CloudEdge: A Content Delivery System in Cloud Environment

Student: Chi Huang Chiu Advisor: Dr. Shyan Ming Yuan

Institute of Computer Science and Engineering

National Chiao Tung University

Abstract

With the growth of web applications on Internet, managing web content objects

such as image, photo, audio and video files is becoming more complicated. A web

system providing content sharing may need large volume of data storage which must

be cheap, high-performance, and high availability. With the trend of cloud

computing[1], more and more web applications move their content to external storage

services like Amazon S3(Simple Storage Service) to reduce the cost of hardware and

maintenance. In the other side, the access to large web applications is from nodes

around the world. Providing low cost, real-time, and high efficiency content access

method with the help of controlled nodes deployed in different locations is a new

issue of content delivery network instead of simply content access.

In this paper, a novel architecture called CloudEdge for content delivery network

with the storage service in cloud computing is introduced. This architecture could not

only keep the loosely coupled integration between Storage Service and Web

Applications but also provide better content manipulation features than Amazon S3

such as change notification, edge network content delivery, caching, secured access

control, the variations of content objects generated on demand, and post-process on

content objects.

Keywords: cloud computing; CDN; content delivery network; storage service;

distributed file system; distributed system; edge network; web applications; storage

service; web information system.

III

ACKNOWLEDGEMENTS

誌謝

在交大就學超過十五年，最要感謝的是我的指導老師 袁賢銘教授從我高中生時

參加推薦甄選到博士畢業，持續的給我指導、鼓勵、與訓練。而袁老師對各種事

物的看法與理解，深深的影響著我，也是我在遇到困難時，解決問題的最好方式。

此外，我也要感謝這份博士論文的口試委員：施仁忠教授、曾憲雄教授、楊竹星

教授、廖婉君教授、林華君教授、與彭文志教授，你們給我的建議與指導，讓我

的這份論文能更盡善盡美，也讓我學習了不少新的觀點與想法。由其是施仁忠與

曾憲雄老師，你們不但在研究上給我了指導，在交大的求學過程中，也不時的給

我提攜與指導，也都是我最該尊敬的恩師。

至於資訊科學系辦的楊秀琴、余美珠、陳小翠、與紀佩詩小姐，你們是我博士班

求學的一個大家族，沒有你們對我的照顧與叮嚀，求學的過程會更加的艱辛。而

我也要感謝分散式系統實驗室的好伙伴們，特別是林獻堂學長、吳瑞祥、鄭明俊、

與蕭存喻學長，有了你們在一起，這幾年的博士班生涯過的特別充實且熱鬧，許

許多多的點子，不都在我們的一同激盪下，有了火花。

更要感謝的是我的家人，爸爸與媽媽從小對我的教導、栽培、期待、與支持，是

我這博士學位最大的依靠，希望從今以後我能代替你們，肩負著這家庭的重擔。

最後一定要感謝的是我的摯愛 嘉慧，沒有你的愛與陪伴，這求學的過程會更加

的艱辛與困難。

僅將我這論文，獻給我的家人，謝謝你們。

IV

TABLE OF CONTENTS

Acknowledgements .. III

Table of Contents ... IV

List of Figures ... VII

List of Tables ... IX

Chapter 1. Background .. 1

1.1 The Evolution of Web Infrastructure ... 1

1.2 Storage Service and Cloud Computing .. 4

1.3 Loosely-Coupled Integration ... 6

1.4 Related Works .. 7

Content Delivery Network ... 7

Storage and Cloud Services ... 8

Integrated CDN and Storage Service ... 9

Chapter 2. Problems & Objectives .. 11

2.1 The Problems of Storage Service in Cloud .. 11

2.2 Objectives .. 12

V

Chapter 3. System Design ... 14

3.1 Architecture Overview ... 14

3.2 Object, Content Bucket and Version Control .. 17

3.3 Content Type, Variations, and Post Processing 19

3.4 Access Control & Access Limiter.. 21

Chapter 4. Component Design .. 23

4.1 Content Access URL.. 23

4.2 CloudEdge Meta Server ... 25

4.3 CloudEdge Gateway .. 27

4.4 CloudEdge Server .. 28

Chapter 5. Implementation .. 31

5.1 Environment of Implementation .. 31

5.2 funPhoto: the Experimental System ... 31

Chapter 6. Experiments & Discussions ... 34

6.1 The Experiment .. 34

6.2 CloudEdge: a Combination of Content Delivery Network and Storage

Service in Cloud ... 37

VI

6.3 Deploy CloudEdge in Local environment. .. 39

Chapter 7. Conclusions & Future Works .. 40

7.1 Conclusion ... 40

7.2 Future Works ... 40

References ... 42

VII

LIST OF FIGURES

Figure 1. The proxy servers and reverse proxy servers in web architecture.2

Figure 2. Edge Servers and Edge Network ..3

Figure 3. The architecture of a typical web system with external storage

service ...4

Figure 4. The architecture of web systems with storage service connected to

Internet directly. ..5

Figure 5. A sample signed URL to access private content in Amazon S3

Service. ..7

Figure 6. The Architecture of CloudEdge System ...14

Figure 7. The architecture of multiple server instances in CloudEdge system16

Figure 8. The process to store and access a content object.18

Figure 9. The processes of different variation generation mode20

Figure 10. Syntax and samples of Content Access URL ..23

Figure 11. Information stored in CloudEdge Meta Server25

Figure 12. The interfaces in CloudEdge Gateway..27

Figure 13. The Flow Chart for CloudEdge Server to process a Content Access

URL ...29

Figure 14. The architecture of funPhoto System ..32

Figure 15. The deployment environment of these three configurations35

VIII

Figure 16. The relationship between storage space and cost in different type of

storage. ..37

IX

 LIST OF TABLES

Table 1. Main functions of major components in CloudEdge17

Table 2. Syntax of all available access modifiers in CloedEdge24

Table 3. The available type of extensible modules in CloudEdge26

Table 4. The implemented extensible modules in funPhoto service33

Table 5. The result of the experiment ...36

Table 6. Comparison Between CloudEdge and Amazon Web Service38

1

Chapter 1. BACKGROUND

1.1 THE EVOLUTION OF WEB INFRASTRUCTURE

The web infrastructure is the most important invention for internet. Nowadays, we use

web applications to share files, read mails, buy merchandises, and even take lessons

every day. These web applications in web servers use the Hyper Text Transfer

Protocol (HTTP)[11] protocol to serve information and content to web browsers in

clients. The design of HTTP is client-server architecture and the loading of these

servers are depending on the concurrent access clients.

To avoid the repeat access on the same content that changes rarely, some cache

mechanisms are provided in HTTP to help web servers control the cache on web

browser. The cache on web browsers could not only reduce the access time of the

client but also decrease the loading of web server. In late „90s, the bandwidth of

internet is narrow especially on the backbone between different countries or campuses.

The design of web proxy helps the browsers to share the cache of web content

between different clients in the same local area network. All browsers use the same

proxy server could share the cache in the proxy server and it could improve the user

experience by decreasing the loading time of web pages.

In general, web proxy servers are deployed in client side and managed by the network

of web clients. On the other side, the reverse web proxy is another kind of web proxy

which is deployed in the same network of the web server to reduce the overhead and

2

response time of web servers. These kinds of servers are widely applied in large-scale

web application servers to increase the throughput of the whole system.[1]

Web Application

Server
Web Client

Web Application

Server
Web Client

Local Area

Network

Proxy Server

Web Application

Server

Local Area

Network

Web Client Reverse Proxy Server

Internet

Internet

Internet

a)

c)

b)

Figure 1. The proxy servers and reverse proxy servers in web architecture.

In Figure 1, the web architecture and position of proxy server and reverse proxy

server are shown. The proxy server is deployed by the client-side network and could

not be controlled directly from web application provider. In the design of proxy server,

a simple cache and invalidate mechanism is applied, but some content in web

application is dynamic or generated from different kind of sources. Therefore, some

kinds of content composition in the reverse proxy in server side like Server Side

Include (SSI) are introduced to support dynamic document caching.

When a web application is popular and accessed from clients distributed in different

global locations, the bandwidth between the clients and the reverse proxies are the

bottled neck. For instance, when there is a 10 Gbit/s network backbone and 10 Gbit/s

central server capacity, only 1 Gbit/s can be delivered. But when 10 reverse proxy

3

servers are moved to 10 different strategy locations which are near the client, total

capacity can be 10*10 Gbit/s. Therefore, a client accesses a copy of the data near to the

client, as opposed to all clients accessing the same central server, so as to avoid

bottleneck near that server.

Such deployment of reserve proxies could be a kind of content delivery network or

content distribution network (CDN). CDN is a system of computers containing copies

of data, placed at various points in a network so as to maximize bandwidth for access

the data from client throughout the network. The strategically placed reverse proxy

servers are edge servers in CDN and the network connected between edge servers and

web servers are edge networks.

The HTTP protocol for web applications is over TCP connection. The TCP

throughput between two different nodes is impacted both by latency and packet loss.

CDNs place servers as close to the edge network that users are on as possible.

Although network distance may not be the only factor that leads to best performance.

End Users will experience less jitter, fewer network peaks and surges, and improved

stream quality.

Web Client

Local Area

Network

Proxy Server

Web Application

Server

Web Client

Local Area

Network

Proxy Server Edge Server

Edge

Network

Edge Server

Internet

Location A

Location B

Figure 2. Edge Servers and Edge Network

4

As shown in Figure 2, web clients in different locations will be redirected to nearby

edge server through internet. Generally, the redirection is done by a customized DNS

server which makes the decision according to the IP address of client and the

availability of edge servers around the world. Since the edge server and edge network

are both in private network, the communication protocols between servers are not

limited to HTTP and some proprietary protocols such as multicasting could be applied.

Since the edge server is managed by the web application, the storage and computing

resources could also be leveraged to serve web clients.

1.2 STORAGE SERVICE AND CLOUD COMPUTING

Traditional web applications use a file system for both application scripts and resource

files and some critical data may be stored in database servers separately. With the

growth of web applications on Internet, managing web content objects like image,

photo, audio and video files is becoming more complicated. In order to handle the

issues of performance, availability, management and capacity, more and more web

applications replace ordinary local file system with external storage services. The

architecture of a typical web system is shown in Figure 3.

Web Application

Server

Storage

Service

Internet

Web Client

Figure 3. The architecture of a typical web system with external storage service

A web application may use a network file system as the storage service like NAS

(Network Attached Storage), SAN (Storage Area Network), and DAS (Direct Attached

5

storage)[9]. In these cases, web application servers may be the bottleneck of the

performance because all published content would be accessed through web application

servers. Moreover, these commercial solutions are expensive when the volume of the

storage servers is huge.

Therefore some tailor-made file systems designed for web application are introduced

for large-scale web applications. For example, flickr.com is a photo sharing website

operated by Yahoo. It has over billions of photos and all of them are available online.

To manage these huge photos, flickrFS[10], a proprietary file storage service, is applied

to handle photo files. Similarly, Amazon S3 (Simple Storage Service), the first

commercial online cloud services[1][3][4], is an online storage web service offered by

Amazon Web Services. Amazon S3 provides unlimited storage through a simple web

services interface since March 2006.

Web Application

Server

Storage

Service

Internet

Web Client

Web Application

Server

Storage

Service

Internet

Web Client

(a) Flickr FS

(b) Amazon S3

Figure 4. The architecture of web systems with storage service connected to Internet

directly.

6

Figure 4 shows the architecture for these storage services for web applications. These

storage services could not only handle the storage accesses from application servers but

also serve the requests from web client directly through the HTTP protocol [11] which

is the most common protocol on Internet. Such design could reduce the overhead of

application server and decrease the latency of the web request. Figure 4(a) shows a

common architecture from flick that the storage server and web application server are

deployed in the same local area network.

In Figure 4(b), Amazon S3, the storage service is not deployed near by the web

application server. The storage service is located in Internet and all operations on

storage services are done in cloud. Such design could reduce the cost of maintenance

for local storage service and the bandwidth and availability could be guaranteed by

their huge investment.

1.3 LOOSELY-COUPLED INTEGRATION

Conventionally, the meta information of the content is stored in the database near the

web server. Web applications will use this information during generating web pages

to clients, and memory cache is much important to reduce the response time on

generating a HTML page. The memory cache avoids the bottleneck on I/O access but

accessing the resource in cloud computing environment has long latency.

For instance, if a web page wants to embed 10 photo files in the storage service and

limit the access of these photo URLs to the current user. The web application needs to

send 10 requests to storage server to generate 10 unique URL links for each photo. If

the storage server is in a cloud environment, the access time of each request should

over 100 milliseconds. 10 photos in a pages need at least 1 second to handle the

7

request, and 1000 photos means more than 100 seconds. In most web client, a request

which take more than 100 seconds to process will be recognized as a time-out request.

Generally, a web site with good user experience usually processes a request within 1

second.

Therefore, a loosely-coupled integration between web application server and storage

service are required to reduce the overhead of waiting response of requests. Some

mechanisms need to apply to avoid requests on generating web pages. For example,

the Amazon S3 storage service uses a simple signature method in URL to solve above

issue. All URLs for private content require a signature signed by a shared key to make

sure the access is granted from web applications. A sample URL to access private

content object in Amazon S3 is shown in Figure 5.

http://quotes.s3.amazonaws.com/nelson?AWSAccessKeyId=44CF9590006BF252F707

&Expires=1177363698&Signature=vjbyPxybdZaNmGa%2ByT272YEAiv4%3D

Figure 5. A sample signed URL to access private content in Amazon S3 Service.

In the above sample, a signature is included and the edge server can verify it to grant the

access right. In order to avoid the illegal access by sharing the URL, an expired time is

assigned to avoid illegal access of that object. Moreover, the owner of the content

need to pay the request fee and bandwidth cost on handling a request in cloud services

like Amazon S3. The method of signature is a demonstration of loosely-coupled

integration between web application servers and cloud computing services.

1.4 RELATED WORKS

CONTENT DELIVERY NETWORK

8

In 1998, Akamai Technologies [12] provide the first commercial content delivery

service with Apple to provide media streaming service. After that, a global distributed

content delivery architecture is introduced to provide a Akamai distributed content

delivery system to fights service bottlenecks and shutdowns by delivering content

form the Intenet‟s edge.[8]

In Akamai‟s edge platform, the product of HTTP Content Delivery provides the

features of access control, cache control, content targeting, secure content delivery,

and site failover. In Akamai edge platform, the Edge Side Include (ESI) is the

language to do the content composition on edge server. [12] Besides, to manage the

cached data in edge servers, the ESI Invalidation Protocol [13] is applied to avoid the

access of expired content.

The Edge Platform provide a complete solution to help web applications to distribute

existing content on web servers through the edge network and edge servers provide by

Akamai Technologies. In addition, Coral CDN [14] is a similar content delivery

network service but it use the P2P technologies [15][16][17]. Because Akamai and

Coral CDN do not store the content in their system and work like a reverse proxy to

deliver the content identified by a URL located in the original web server.

STORAGE AND CLOUD SERVICES

The Amazon Web Services [19] is a collection of web services offered over Internet by

Amazon.com; and it is the most popular commercial cloud computing services. From

the point view of storage service, Amazon S3 (Simple Storage Service) [20] is an online

storage for web applications and it has the definition of bucket and content object. An

9

application could create several buckets to handle different kind of content; and each

content object in a bucket has a unique ID for reference.

On the other hand, Amazon Elastic Compute Cloud (EC2)[21] provides computing

power to host the images of virtual server in cloud. With the combination of Amazon

S3 and EC2, web applications could be deployed in Amazon Web Service to reduce the

cost of deployment and prepare for uncertain capacity in the future. Besides, Amazon

SimpleDB [22] and Simple Queue Service (SQS) [23] are also the related services for

cloud environment. For the whole architecture of its development, Amazon Web

Service would host whole web applications in its cloud environment. In CloudEdge, the

design focuses on the integration between the existing web applications and external

storage services in cloud environment.

INTEGRATED CDN AND STORAGE SERVICE

Amazon CloudFront[24] is a web service for content delivery. It integrates with other

Amazon Web Services to give developers and businesses an easy way to distribute

content to end users with low latency, high data transfer speeds, and no commitments.

With the help of the CloudFront, the content stored in the Amazon S3 service could

be accessed via the edge servers located in US, European, Hong Kong, Singapore, and

Japan. Since the origin server and the edge server are all from Amazon, some

protocols and access methods provided in Amazon S3 could also be applied in

Amazon CloudFront, too.

In addition, some fully distributed network file system like Google File System (GFS)

[25] or Hadoop HDFS[26] are also applied the concept of CDN architecture. These

systems could store files in different globally located servers. The cache of a file in a

10

node may be converted to the replica of the file in the whole system. Since the

behaviors of these systems are the same, these file systems still could not provide

HTTP accesses.

11

Chapter 2. PROBLEMS & OBJECTIVES

2.1 THE PROBLEMS OF STORAGE SERVICE IN CLOUD

Since the storage service in cloud is located in the Internet, the network latency and

bandwidth between storage service and application server may increase the difficulty

for developers to deploy such services in their system. Therefore, some loosely coupled

integration designs are applied to solve some issues like access control which may be

much simple in the traditional architecture without storage service in cloud.

The sample of Amazon S3 in section 1.3 demonstrates a way to do the access control

but it is not good enough to fit all kind of applications to handle private content. For

example, a photo sharing website may intend to block any request without correct

Referral HTTP header which means that the photos are embedded in other website. In

such case, current version of Amazon S3 service does not have any solutions to do such

access control.

On the other head, if a client wants to access rotated version of a photo in storage

service, the web application server needs to download the whole photo, rotate it and

then return to web clients. This scenario shows the capability of content delivery in

current storage service in cloud is not good enough and some operations should be done

in storage service to reduce the cost of transmission between the service and application

server.

12

To fulfill all the features need by web applications discussed above, there are two

issues that are required to be solved in the storage services deployed in cloud

environment:

 More Complicated Access Control Mechanism

The signature and expiration mechanism is easy but the URL link of the files are

available for all clients in the internet before the expiration of the link

determined by the set expired time in the URL. More complicated access control

mechanism like IP address, HTTP Cookies, and Referral Headers are required to

limited the secured data and prevent the illegal access.

 Content Manipulation in Edge Network

For example, a video sharing service needs to prepare different quality of video

files for different devices and configurations. The encoding types of video files

are different to view in a High-Definition TV, a desktop computer or a mobile

phone. The storage service should have a feature to handling the different

version of content object to fulfill the requests from different kind of clients. In

addition, a water mark or a hidden signature is also need to be placed in the

content object to avoid the copyright issues.

2.2 OBJECTIVES

In order to delivery content from storage services, the CloudEdge is proposed as a

system to provide content delivery features in cloud environment. The major goals of

CloudEdge are:

 To reduce the communication cost between web application and storage service.

13

 To provide a secured access control mechanism and make sure private content

could be available only for predefined condition.

 To process the content and generate various kinds of variations based on the

requests of applications.

The rest of this paper is organized as follows. The next chapter, system design,

introduces concepts and overall architecture of our system. The chapter entitled

component design gives design details of all major components. Chapter 5. discusses

the implementation of our experimental service. Some discussions and comparisons on

system design are presented in chapter 6. Conclusions and some future directions are in

the last chapter.

14

Chapter 3. SYSTEM DESIGN

3.1 ARCHITECTURE OVERVIEW

The CloudEdge is a content delivery system for existing storage services. Its whole

architecture and major components are shown on figure 6. The brief description of

these components is as follows.

CloudEdge

Gateway

Storage

Service

Web Clients CloudEdge

Server

Web Application

Server

Server NetworkEdge NetworkInternet

CloudEdge

Meta Server

Cloud Network

Figure 6. The Architecture of CloudEdge System

Three major components of CloudEdge system are CloudEdge Server, CloudEdge

Gateway and CloudEdge Meta Server which help the system to delivery content to web

clients.

The Edge Network, a term in CDN (Content Delivery Network), is a network which has

high-quality connection to both cloud network and clients in some areas. On the

architecture shown in figure 4, the CloudEdge Server is deployed in Edge Network to

provide content from backend service to web clients. In practical, several instances of

CloudEdge Server may be deployed in several locations according to geographical

15

location and network topology. Theoretically, for web clients, the closer the content the

faster the delivery. End users will likely experience less jitter, fewer network peaks and

surges, and stream quality improvement- especially at remote areas.

On a web system using the CloudEdge architecture, all content requests from web

client would be handled by CloudEdge server which accomplishes the following tasks

for each request:

 Retrieving requested content from Storage Services through the CloudEdge

Gateway and caching it in local storage to reduce the bandwidth cost.

 Performing access control to check whether the access is allowed based upon the

guidance from web application server.

 Transforming the content into requested format like different size, quality or

encoding format.

 Processing the content to add one-time signatures like water mark, logo, or texts.

CloudEdge Gateway, located within cloud network, is an interface to manipulate

content in storage service. Web applications import their content to storage service with

the help of CloudEdge Gateway instead of access the storage services directly. It means

that the Gateway make the storage service transparent and different storage service

could be chosen according to the requirement of application. The CloudEdge Gateway

has the following services for the system:

 To verify and import the content to bound storage service.

 To handle the request from edge servers and access the storage service according

to defined mapping.

16

 To provide the Meta information for each content bucket, a collection of content

files.

Finally, the CloudEdge Meta Server stores the Meta information for Content Bucket,

and it also has the program library to process the content in the CloudEdge Server. The

Meta Server works as a central database of the system because all CloudEdge nodes

will share the information from same CloudEdge Meta Server.

Web Clients

CloudEdge

Server

CloudEdge

Server

Web Clients

CloudEdge

Meta Server

Web Clients

CloudEdge

Server

CloudEdge

Server

Web Clients

Edge Network

Cloud Network

CloudEdge

Gateway
CloudEdge

Gateway

Storage

Service

Figure 7. The architecture of multiple server instances in CloudEdge system

The architecture for multiple server instances is shown in figure 7. In this system, only

one storage service and one CloudEdge Meta Server are available in the center of the

system. Several CloudEdge Gateway could be deployed to increase the throughput and

availability of the system. In addition, Several CloudEdge Servers are deployed in

17

several places of Edge Network to provide better connection between the CloudEdge

System and local clients. To sum up, the table 1 shows the main functions of major

components in CloudEdge system.

Table 1. Main functions of major components in CloudEdge

Component Function Description

CloudEdge Meta

Server

The CloudEdge Meta Server has the configuration of all

CloudEdge system and make sure that all nodes of the system

are all consistent if the configuration is changed.

Cloud Edge Server CloudEdge Server, located within edge network, is the access

point for clients and applications.

CloudEdge

Gateway

CloudEdge Gateway, located within cloud network, is an

interface to manipulate content in storage service.

3.2 OBJECT, CONTENT BUCKET AND VERSION CONTROL

In the CloudEdge system, the object is a minimal unit for the content which could be a

photo, video, audio or other media file. Besides, in the storage service, an object would

be mapped to a file or an item according to its design. In the system, each object could

be accessed from a web client through the CloudEdge Server directly using the HTTP

protocol.

All content objects belong to a content bucket which is a collection of content objects

with the same type. Each content bucket has a unique name for reference and each

object in the content bucket has a unique Object ID too. A pair of bucket name and

18

content id could be as a reference for a content object. In addition, a content bucket

could be set either public or private. All requests to content objects in a private bucket

should be associated with a singed signature, otherwise, the requests would be denied.

All content objects in CloudEdge are not controlled by version but the cached objects in

the CloudEdge Server and would be invalidated immediately if the update is received in

the Cloud Edge Gateway. Although the cache could be invalidated, the content object

could still be cached in clients or proxy servers. To avoid accessing expired content, the

cache in client side could be disabled for specified bucket using the response headers in

HTTP protocol. Moreover, the web application could send a version number for each

content object with the bucket name and object ID to generate different URL and avoid

the access of cached objects. In that case, web applications manage the cache of client

side by themselves.

CloudEdge

Gateway

Storage

Service

CloudEdge

Server

1. Verify 2. Store

3. Invalidate

3. Serve

4. Cache

* Store

* Access

Application

Server

Web Client

in Asia

{bucket name, object ID, content}

{bucket name, object ID, [version],

[signature]}

{content}

1. Access 2. Retrieve

Figure 8. The process to store and access a content object.

As the figure 8 shown above, the application stores a content object into the storage

service through the help of CloudEdge Gateway with a bucket name and the object ID

19

as the identifier. After storing the content in the storage service, the related cached

content in the CloudEdge Server will be invalidated immediately.

For content access, a client could use a bucket name and content ID to access a public

content object and a signature is required if the bucket is private. Sometimes, requests

are accomplished with version number to control the cache in clients from applications.

Because the cache in the CloudEdge Server could be invalidated after modification, all

request to the CloudEdge Server will check the cache first and store the result in the

cache according to the configuration of the bucket.

3.3 CONTENT TYPE, VARIATIONS, AND POST PROCESSING

A content bucket could have a content type to enable the features of variations and post

processing on content in this bucket. A variation for a content object means a new

format of this object such as different size, quality, or encoding format. For example, a

video may have different encoding format for different devices like desktop, mobile

phone, and portable media player; a photo may have different size for application like

full size for printing, large size for slide show, and thumbnail size for previewing. In the

flickr.com, an uploaded photo will be resized to different variations in the following

dimensions: 75x75, 100x100, 240x240, 500x500, and 1024x1024.

For a bucket with a defined content type, all content objects imported to CloudEdge

Gateways require a verification process to make sure these objects could be

manipulated correctly at CloudEdge Servers. Besides, each variation of a content type

has to set a generation mode which may be “pre-generated mode”, “generate

on-demand mode”, or “generate and store back mode”. The difference processes for

these variation generation modes is shown in figure 9.

20

CloudEdge

Gateway

Storage

Service

CloudEdge

Server

1. Verify

2. Generate 3. Store

Pre-generate mode * Store

* AccessGenerate on demand mode

1. Acces 2. Retrieve 3. Serve

4. Generate

5. Cache

Generate and Store back mode

1. Acces 2. Retrieve 3. Serve

4. Generate

5. Cache 6. Import 7. Store

* Access

Figure 9. The processes of different variation generation mode

In “Pre-Generate Mode”, a variation is pre-generated right after verifying the content

object; the storage service has one item for original format and the other item for the

variation. This mode is suitable for situation which the variation is accessed frequently.

The “Generate on demand mode” generates a variation when a request is sent to the

CloudEdge Server. This mode is designed for the variations which require few

computing efforts. The third mode is “Generate and store back mode” and it is similar

to the combination of previous two modes which store the generated variation in the

storage service. An environment which has several cloud edge gateways could use

this mode to share the generated variation to reduce the efforts for generating the same

21

variation again. If a variation type is rarely accessed and the generation cost is high,

then “Generate and Store back mode” is a better choice.

Post-Processing is a way to modify the content at the CloudEdge Server before

returning the result to web clients. Applications could use this design to add some

signatures, such as water marks, logos and texts, on content objects. In addition, some

operations like get a range of the video or rotate the photo could be done by the

post-processing mechanism. The difference between post-processing and variation is

caching. In addition, the result of post-processing could not be shared with other

request.

3.4 ACCESS CONTROL & ACCESS LIMITER

Content objects stored in CloudEdge could be public or private, and illegal accesses

will be blocked at CloudEdge Server. In web applications, a web page consists of a

HTML file and related content objects in which each item is processed on different

requests. The relationships are the URL of each content object. To secure private

content objects, a signature using a private key is applied and all URLs for secured

content are signed in web applications and verified in CloudEdge Server. With the

signature, any malicious change of URL would be blocked and only assigned content

objects are accessible. Since the signature is signed in web application server without

any interaction with CloudEdge Gatway, it does not increase the processing time except

for calculating the signatures.

In the CloudEdge system, a design of “Access Limiter” is applied to secure the access

of content objects. Access Limiter is an extensible module in CloudEdge Servers. Once

the parameters of Access Limiter are included in the content object URL, the access

22

will be limited according to its parameters. A Access Limiter is similar to the “expired

time” in Amazon S3 metioned in section 1.2 but has more options according to the

implementations like limiting the client IP, verifying the existence of HTTP cookies

and even the bandwidth control. In the next chapter, the detail design of the Access

Limiter is explained.

23

Chapter 4. COMPONENT DESIGN

4.1 CONTENT ACCESS URL

A Content Access URL is a reference to access the content in CloudEdge. A URL

consists of bucket name, object ID, access modifier and signature. The syntax of the

content object URL is shown in figure 10.

 http://{CloudEdge Hostname}/{bueckt name}/{object ID}{/access modifier}*{//signature}+

#1. http://edge.cloudedge.com/publicVideo/12765

#2. http://edge.cloudedge.com/privateVideo/12765//ZnVucAop

#3. http://edge.cloudedge.com/privateVideo/12765/v3//ZnVucAop

#4. http://edge.cloudedge.com/publicVideo/12765/Vmp4

#5. http://edge.cloudedge.com/privateVideo/12765/Prange:0-10s//ZnVucAop

#6. http://edge.cloudedge.com/privateVideo/12765/Lip:140.113.23.3//SmlNeU1E

#7. http://edge.cloudedge.com/privateVideo/12765/Lonce//U21sTmVV

Figure 10. Syntax and samples of Content Access URL

In a Content Access URL, the CloudEdge Hostname is the server FQDN (Fully

Qualified Domain Name) for CloudEdge Server. With regard to samples shown in

figure 8, the #1 is the access URL for a public content in bucket “publicVideo” and

object ID “12765”. Sample #2 is assigned for private content object in bucket

“privateVideo”. A BASE64 encoded string after the double slashes is the signature for

the whole URL.

There are 4 kinds of access modifiers for Content Access URL: version, variation,

post-processing, and access limiter. The syntax of each modifier is shown in table 2. A

24

version modifier adds version information of the content in the Access URL. The

version numbers in CloudEdge are ignored. Sample #3 shows that its signature is same

as #2 because the ignored version number is not included. The change of version

number in URL avoids the access of cached content in proxy servers or clients. A

variation modifier is a selector for different variation of content. In the #4 sample, it

asks the CloudEdge server to provide the “mp4” encoding format for the assigned video

content.

Table 2. Syntax of all available access modifiers in CloedEdge

Access Modifier Syntax Sample

Version /v{versionString} #3

Variation /V{variationString} #4

Post-Processing /P{module}{:{parameter}}? #5

Access Limiter /L{module}{:{parameter}}? #6, #7

A post-processing modifier provides detail information to perform post-processing.

The module “range” in sample #5 is applied to get the first 10 seconds of the video.

Finally, the access limiter modifier, similar to post-processing modifier, is the notation

to limit content access. In sample #6, an IP Address limiter is applied to control the

access only from the IP parameter. The last sample #7 shows the “once” access limiter

without parameter. A module limits the access only once per session.

The available modules or variations are defined in each bucket according to its content

type defined in CloudEdge Meta Server. Besides, a content access URL could have

several post-processing or access limiter modifiers and the order of the access limiter

modifiers could be ignored.

25

4.2 CLOUDEDGE META SERVER

CloudEdge Meta Server is the central database of the CloudEdge System; it has the

runtime information and program module repository. The information stored in the

Meta Server is shown in figure 11. First, the system topologies about the access

information of other CloudEdge Servers are stored. A CloudEdge system could have

multiple CloudEdeg Servers or Gateways which are operated independently but all

these servers need to register themselves in the CloudEdge Server to guarantee the

changes of the system could be notified.

CloudEdge

Meta Server

Module Repository

Bucket Configuration

System Topology

Content Type Configuration

Figure 11. Information stored in CloudEdge Meta Server

Next, the content type configuration includes all available content type and the base

setting of verification, variation, and post-processing for these types. Since some

default configurations are defined, web application developers could also derived new

configuration for their needs from them. Furthermore, the bucket configuration

includes all registered bucket and its arrangements including content type, access

control setting, available post-processing modules, and variation setting.

26

The Meta Server provides not only the runtime information and configuration but also a

module repository providing the library of extensible modules. There are four kinds of

extensible modules which could be executed in CloudEdge Servers and Gateways. All

kind of these modules and their execution environment are explained in table 3.

Table 3. The available type of extensible modules in CloudEdge

Extensible Module

Type

Execution

Envionment

Description

Verification Module CloudEdge Gateway These modules verify the content

when the web application import

new content into the CloudEdge

Gateway

Variation

Generation Module

CloudEdge Gateway,

CloudEdge Server

These modules generate required

variations of content object

according to the variation

generation mode of the bucket.

Post-Processing

Module

CloudEdge Server These modules modify the content

object in relation to the assigned

parameters.

Access Limiter

Moudle

CloudEdge Server These modules control the access

rights for each request to

CloudEdge server.

The registration process for a CloudEdge Serversor Gateway node is as follows:

1. Add the information of the new node into the Network Topology table.

2. Synchronize all Content Type configuration and Bucket Configuration between

node and Meta Server.

3. Synchronize the extensible modules which may be executed in this node.

27

All information exchanged in above process has version number. The Meta Server will

notify all nodes according to the network topology to resynchronize information to the

latest version if any update is made.

4.3 CLOUDEDGE GATEWAY

Content Type Management

System Management

Data Manipulation

Bucket Management

CloudEdge

Gatway

Figure 12. The interfaces in CloudEdge Gateway

The CloudEdge Gateway is the main interface for web applications to manage the

whole CloudEdge System. It provides interfaces based on web service for the

following operations:

 Data Manipulate Interface

Like the interfaces for most storage services, the data manipulate interface could

get, put and delete objects directly. It also supports the “range” options to get

content in specified range.

 Bucket Management Interface

This interface provides operations to create or remove a bucket, get the

information and configuration of all buckets, or change the setting of specified

28

bucket. Besides, the access control of a specified bucket including ACL and keys

could be managed by the CloudEdge Gateway via this interface.

 Content Type Management Interface

This Interface manages the Content Type Configuration in CloudEdge Meta

Server including the relationships between content types, modules, variations, and

post-processing.

 System Management Interface

This interface not only provides the network topology of the online system but

also has the operations to get the statistics information of all nodes, buckets, and

objects. It could help the web applications to monitor the performance and

availability of the systems and get notification if any node is corrupted.

Any update operation in CloudEdge Gateway may trigger the Meta Server to invalidate

the cache in CloudEdge Server or issue a request to synchronize the configuration in all

CloudEdge Servers and Gateways. In order to avoid the race condition of the cache data

or configuration, a Server Notification Queue is implemented in the CloudEdge Meta

Server. Any update of content or configuration creates an item in the queue to trigger

the update on all servers.

A queue is processed by a signal-thread worker and the Meta Server would ensure that

acknowledgments of all servers are received before process the next item in queue.

Besides, a serious object changes may generate a lot of items in queue to invalidate

cache and the worker will send the all consequent update items in the queue together to

reduce the cost of cache invalidation.

4.4 CLOUDEDGE SERVER

29

A CloudEdge Server serves request from web client and works like an edge server in a

Content Delivery Network. The CloudEdge Server not only caches the data but also has

a secured access control mechanism and post-processing features. The flow chart in

figure 13 shows the process of handling a request in CloudEdge server.

Start

Get Request

Information from

Content Access URL

If the request

Match the bucket

Configuration ?

End

No

Yes

Is the Object

available in cache?

Return the Content

In local Cache

Access

Denied

Yes

Access the Content

Object from

CloudEdge

Gateway

Store the

return from Gateway

in Cache

Have any Post-

Processing?

Process all assigned

Access Limiter

Is All Access

Limiter Passed ?
No

Yes

No

No

Do the Post-

Processing

and return the results

Yes

Figure 13. The Flow Chart for CloudEdge Server to process a Content Access URL

30

In the architecture of CloudEdge, there are multiple CloudEdge Server and Gateway

instances. For web clients, the nearest CloudEdge Server is chosen by the result from

Domain Name System according to the geographical information. For example, the

DNS server will return a CloudEdge Server instance if the request is sent from a

network which has the cheapest cost to connect the server. On the other head,

CloudEdge Gateways have multiple instances designed for load balancing and better

system availability. A CloudEdge Server or Web Application Server could choose any

online gateway to reach the system.

31

Chapter 5. IMPLEMENTATION

5.1 ENVIRONMENT OF IMPLEMENTATION

The implementation of the CloudEdge system is based on Java platform [26][28]. The

reason is portability since a Java program can be executed in all kind of operating

system with a Java Runtime Environment. In some cloud computing environment, the

available operating systems are limited, so the portability of CloudEdge System is

increased with such implementation. Besides, the extensible modules are dynamic

linked libraries and could be load and unload online. In this system, each module is

implemented as a JAR file and the ClassLoader in Java Platform could manage these

modules as dynamic libraries. The storage services in CloudEdge are also flexible and

the system implementation has several configurations for different applications

including Amazon S3, MogileFS [29], and ordinary POSIX file system.

First of all, the Amazon S3 is the first commercial storage service in cloud computing

and the CloudEdge implementation could be installed in Amazon EC2 platform to

accommodate the whole system in a cloud environment. Second, the MogileFS from

Danga Interactive is a popular distributed file system for web. The implementation

could be leveraged if a large-scale local storage is needed. Finally, the ordinary POSIX

file system could also be the backend storage service of a CloudEdge system. It is the

basic configuration of a small web application and it could still take the advantage of

the CloudEdge like variations conversion, post-processing and access control.

5.2 FUNPHOTO: THE EXPERIMENTAL SYSTEM

32

The experimental system of CloudEdge is “funPhoto “a web-based photo sharing

system with large volume of photos. The system shows the benefits of the CloudEdge

design with verification, variation, post-processing, and access control.

CloudEdge

Gateway

Storage

Service

Web Clients from other countries

CloudEdge

Server

Web Application

Server

CloudEdge

Meta Server

CloudEdge

Server

Web Clients in Taiwan

Hosted in Taiwan in AsiaHosted in US Cloud in Amazon Web Service

Internet

Amazon S3 Amazon EC2

Figure 14. The architecture of funPhoto System

The architecture of the funPhoto System is shown in figure 14. First, the funPhoto use

the Amazon S3 Services for photo storage; and CloudEdge Systems are also deployed

in Amazon EC2, the first commercial cloud computing Platform. The funPhoto web

application system is deployed in our hosting service in Taiwan because the major users

of the service come from Taiwan. The novel design of the funPhoto is that it doesn‟t

store the photo in its machine. The funPhoto system uses a storage service in cloud.

Besides, an instance of CloudEdge Server is also deployed in Taiwan to serve photo

content objects and reduce the cost of bandwidth and access latency.

33

In funPhoto, only a content type “Photo” is applied and it has several variations

including thumbnail size, small size, normal size, large size, and original size (the

default content object). The implemented modules in the latest CloudEdge System

comes with the funPhoto Service are shown in table 4:

Table 4. The implemented extensible modules in funPhoto service

Module Description

Verification Module

Verification for Photo A Photo Verification Module can recognize supported

photo format and convert all photo to PNG format.

Post-Proccessing

Rotate Rotate the photo in 90∘ CW, 180∘ CW, or 270∘ CW

Rectangle Return the assigned portion of the photo.

Resize Resize the photo to assigned size.

Watermark Add invisible watermark in the photo.

Text Add a visible text in assigned position of the photo.

Access Limiter

Once Let the client could access the content only in according

to the session id in cookie.

ExpiredTime Block the access after the expired time.

IP Only allowing the assigned IP to access the photo.

HTTP Cookie Allow the access when a valid HTTP cookie is found.

Bandwidth Limit the daily bandwidth usage for same IP.

Referral Check the referral header of HTTP request to avoid

external usage of the photo.

34

Chapter 6. EXPERIMENTS & DISCUSSIONS

6.1 THE EXPERIMENT

To measure network latency in different configurations, several experiments were

conducted. The scenario for these experiments is “post-processing” and in that case,

watermarks were embedded into photos by web application before returning to clients.

The test case was executed in three configurations: “Traditional Cloud”, a web

application with an external storage service in cloud; “CloudEdge in Cloud”, a

CloudEdge Server is deployed near the storage service in Cloud but the web application

is deployed in the other network; and “CloudEdge in Local”, a configuration has all

servers in the same network.

The environments for these three configurations are shown in figure 15. The Amazon

S3 storage services are leveraged to store the content objects. The difference is that the

two “CloudEdge” configurations have CloudEdge servers deployed in Amazon Elastic

Compute Cloud (EC2) servers.

In the experiment environments, all local servers located in Taiwan are Dell R300

Servers with Xeon 2.4 GHz CPU & 8 GB Memory. All Amazon EC2 nodes are the

Standard Reserved Instances in default (Small) configuration: 1.7 GB of memory, 1

EC2 Compute Unit (1 virtual core with 1 EC2 Compute Unit).

35

CloudEdge

Gateway

Storage

Service

Web Clients

CloudEdge

Server
Web Application

Server

CloudEdge

Meta Server

Hosted in TaiwanHosted in in Amazon Web Service

Internet

Amazon S3 Amazon EC2

Configuration (b): CloudEdge in Cloud

Storage

Service

Web Clients

Web Application

Server

Hosted in TaiwanHosted in in Amazon Web Service

Internet

Amazon S3

Configuration (a): Traditional Cloud

CloudEdge

Gateway

Storage

Service

Web Clients

CloudEdge

Server
Web Application

Server

CloudEdge

Meta Server

Hosted in in Amazon Web Service

Amazon S3 Amazon EC2

Configuration (c): CloudEdge in Local

Figure 15. The deployment environment of these three configurations

In the experiment, a photo in storage service was retrieved and processed; and an

invisible watermark was added to trace the illegal distribution of the photo. In the

configuration (a), the web application server manipulated the photo by itself. In the rest

36

configurations, the photos were manipulated by edge server and the details of the

requested photo operations are sent by the web applications via the Content Access

URL.

To measure the processing time in each step, a 650KB sample photo was accessed 10

times in these three configurations. The result is shown in table 5.

Table 5. The result of the experiment

 Retrieving the Photo from Storage Service Adding

Water Mark

Total Time

Accessing

CloudEdge Gateway

Storage Service

(a) - 4587 ms 601ms. 5189ms.

(b) < 1 ms 812ms 457ms 1269 ms

(c) < 1ms 906ms 460ms 1366 ms

By comparing the result of Configuration (a) and (b), it shows that the CloudEdge

System can reduce the cost of communication when the web applications and the

storage services are not in the same network. In configuration (a), the cost of retrieving

content objects from storage service in cloud is expensive, but the CloudEdge could

reduce it significantly since the CloudEdge Server is near the Storage Service.

For the configuration (c), it shows that the total time to process the request is similar to

configuration (b). In fact, accessing the Content objects according to the Content

Access URL does not require the access of web applications. It means that the

CloudEdge Solution could help Web Applications to handle the content object

37

regardless of the communication quality between storage service and web application

servers.

6.2 CLOUDEDGE: A COMBINATION OF CONTENT DELIVERY NETWORK AND

STORAGE SERVICE IN CLOUD

Storage Space

Cost $$$

Amazon S3

Traditional

Figure 16. The relationship between storage space and cost in different type of

storage.

Cloud Computing provides a new way to develop system and it will change the logic of

resource management. For a storage service in cloud computing, the professional

services could reduce the cost of uncertainly and maintenance. Taking Amazon S3 as

an example, the cost of the storage is according to your storage space, but it costs much

more in a traditional approach. With respect to huge storage, traditional approach

requires high-end machines and more maintenance efforts as the chart shows in figure

16. Therefore, the use of the storage in cloud is the trend for new system development.

Not all systems could use both the Amazon S3 storage service and computing

clustering service like Amazon EC2 because some data may be sensitive and the system

infrastructure may be difficult to be deployed in a general environment. Recently, more

38

and more large-scale web applications move their content objects into the storage

service in cloud and the CloudEdge could be a better content delivery method than

existing solutions. A comparison between CloudEdge and the Amazon Web Services,

the most popular commercial cloud service, is shown in table 6.

Table 6. Comparison Between CloudEdge and Amazon Web Service

Item CloudEdge Amazon Web Services

Access Control Access Limiter could limit the

access according not only to

signatures and expired time but

also the client IP, HTTP

cookies, HTTP referral header,

and used bandwidth.

Only signatures and

expired time.

Edge Network

Support

CloudEdge Server could be

deployed in any locations as the

edge server in CDN.

Amazon CloudFront

service has several edge

services deployed

worldwide.

Post-Processing Provide Post-Processing

operations on content objects.

No

Variations Control Any content object could have

several variations and be

generated on demand.

No

Loosely Coupled

Integration

Yes Yes

39

In summary, CloudEdge is a perfect combination of Content Delivery and Cloud

Computing. It could keep the loosely coupled integration between web application and

storage service but provide more features required in content protection and

manipulation.

6.3 DEPLOY CLOUDEDGE IN LOCAL ENVIRONMENT.

The CloudEdge system is designed to be deployed with a storage service in Cloud

environment, but most small or middle-scale websites do not have such deployment

architecture before its growth. The CloudEdge have a kind of configuration to use an

ordinary POSIX file system as its storage service and the system could still have the

benefits of content management, access control, variation on demand, and

post-processing on content objects.

With the growth of the web applications, the system using the ordinary file system

could be migrated to storage service in cloud environment or local distributed file

systems. Moreover, the CloudEdge Server could also have multiple instances deployed

in local area network to increase the throughput of the system. Once the service has

heavy loading from different places around the world, the deployment of CloudEdge

Server in edge network could be considered to reduce the latency of content access and

bandwidth cost.

40

Chapter 7. CONCLUSIONS & FUTURE

WORKS

7.1 CONCLUSION

The CloudEdge is a Content Delivery System for Storage Service in Cloud

Environment. It‟s loosely coupled integration through the query string of URL could

reduce the communication cost between web application server and storage services.

For private content, CloudEdge has an extensible access control mechanism to meet the

requirement for all kind of applications. Besides, the CloudEdge leverages the

computing power in edge network to manipulating the content according to the request

from server. Content object could have variations or be processed according to the

assignment from Web applications. It could totally reduce the communication cost

between web application and storage services. To sum up, the CloudEdge system

provides a perfect combination between content delivery network and storage service

in cloud environment. It could help the web application developers use an external

storage in cloud with ease, and let the applications manipulate these content objects like

local disk access.

7.2 FUTURE WORKS

The manipulations on content objects are always required for web applications after

receiving a content object from web browser. For a photo or video uploaded from

clients need to convert to the same size and data format. But currently, the web

application server could not send a command to do such operations on content objects.

41

For example, if a web application wants to add a photo frame on a photo stored in the

storage service, the web application need to download the photo, add the frame, and

upload back. In the next step, the content type framework of CloudEdge will be

extended to various kinds of Class Library to provide content operations in storage

service from web application through SOAP[30] or REST APIs. With such

improvement, managing content the storage service could be enhanced to a content

management system in cloud environment.

42

REFERENCES

[1] Brian D. Davison, A Web Caching Primer, IEEE Internet Computing, vol. 5, no.

4, pp. 38-45, July/Aug. 2001.

[2] Brian Hayes, Cloud computing, Communications of the ACM, Volume 51, Issue 7,

July 2008, p. 9-11..

[3] Armbrust, Michael and Fox, Armando and Griffith, Rean and Joseph, Anthony D.

and Katz, Randy H. and Konwinski, Andrew and Lee, Gunho and Patterson,

David A. and Rabkin, Ariel and Stoica, Ion and Zaharia, Matei, Above the

Clouds: A Berkeley View of Cloud Computing, EECS Department, University of

California, Berkeley, Feb. 2009.

[4] A. Weiss, Computing in the clouds. netWorker 11, 4, Dec. 2007. p 16-15.

[5] James Murty, Programming Amazon Web Services: S3, EC2, SQS, FPS, and

SimpleDB, O'Reilly Media, Inc., March 25, 2008

[6] Mayur R. Palankar, Adriana Iamnitchi, Matei Ripeanu, Simson Garfinkel,

Amazon S3 for science grids: a viable solution?, Proceedings of the 2008

international workshop on Data-aware distributed computing, Boston, MA, USA,

2008

[7] S Saroiu, KP Gummadi, RJ Dunn, SD Gribble, HM Levy, An analysis of internet

content delivery systems, Proceedings of the 5th Symposium on Operating

Systems Design and Implementation (OSDI), Boston, MA, December 2002, p.

315-328

43

[8] Dilley, J. Maggs, B. Parikh, J. Prokop, H. Sitaraman, R. Weihl,

B., Globally distributed content delivery, Internet Computing, IEEE, Sep/Oct

2002, Sep/Oct 2002, p. 50-58.

[9] D. Sacks, Demystifying DAS, SAN, NAS, NAS Gateways, Fibre Channel, and

iSCSI, IBM Storage Networking, 2001

[10] Manish Rai Jain. FlickrFS. http://manishrjain.googlepages.com/flickrfs

[11] R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk, L. Masinter, P. Leach, T.

Berners-Lee, Hypertext Transfer Protocol - HTTP/1.1., [Publication]. RFC

(Request for Comments), June 1999.

[12] M. Tsimelzon, B. Weihl, J. Chung, D. Frantz, J. Basso, C. Newton, M. Hale, L.

Jacobs, and C. O'Connell, ESI Language Specification 1.0, W3C, August 2001.

[13] L. Jacobs, G. Ling, and X. Liu, ESI Invalidation Protocol 1.0. W3C, August

2001.

[14] Coral Content Distribution Network, http://www.coralcdn.com/

[15] Michael J. Freedman, Eric Freudenthal, and David Mazières, Democratizing

Content Publication with Coral, In Proc. 1st USENIX/ACM Symposium on

Networked Systems Design and Implementation (NSDI‟04), San Francisco, CA,

March 2004.

[16] Michael J. Freedman, Mythili Vutukuru, Nick Feamster, and Hari Balakrishnan,

Geographic Locality of IP Prefixes, Proc. 5th ACM SIGCOMM Conference on

Internet Measurement, Berkeley, CA, October 2005.

[17] Maxwell N. Krohn, Michael J. Freedman, and David Mazières, On-the-Fly

Verification of Rateless Erasure Codes for Efficient Content Distribution, Proc.

IEEE Symposium on Security and Privacy, Oakland, CA, May 2004.

[18] Akamai Technologies. http://www.akamai.com/

44

[19] Amazon Web Services. http://aws.amazon.com/

[20] Amazon Simple Storage Service. http://aws.amazon.com/s3/

[21] Amazon Elastic Compute Cloud. http://aws.amazon.com/ec2/

[22] Amazon SimpleDB. http://aws.amazon.com/simpledb/

[23] Amazon Simple Queue Service. http://aws.amazon.com/sqs/

[24] Amazon CloudFront. http://aws.amazon.com/cloudfront/

[25] S Ghemawat, H Gobioff, ST Leung, The Google file system, Proc. of 19th ACM

Symposium on Operating Systems Principles, Lake George, NY, October, 2003.

[26] D Borthakur. The hadoop distributed file system: Architecture and design,

Hadoop Project Website, 2007.

http://hadoop.apache.org/common/docs/r0.18.0/hdfs_design.pdf

[27] T. Lindholm, F. Yellin, Java virtual machine specification, Addison-Wesley

Longman Publishing Co., Inc., 1999 Boston, MA, USA

[28] J. Gosling, B. Joy, G. Steele, G. Bracha, Java Language Specification: The Java

Series, Addison-Wesley Longman Publishing Co., Inc., 2000 Boston, MA, USA

[29] Brad Fitzpatrick, Lisa Phillips, Inside Live Journal's Backend, November 2004,

Danga Interactive, http://www.usenix.org/events/lisa04/tech/talks/fitzpatrick.pdf

[30] Box D, Ehnebuske D, Kakivaya G, Layman A, Mendelsohn N, Nielsen H, Thatte

S, Winer D: Simple Object Access Protocol (SOAP) 1.1.

http://www.w3.org/TR/SOAP/

http://www.usenix.org/events/lisa04/tech/talks/fitzpatrick.pdf
http://www.w3.org/TR/SOAP/

