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建  構  新  型 Petri Nets  模  式  與  其  應  用 

 

研究生 : 蔡瑞益        指導教授 : 鄧清政教授 

 

國 立 交 通 大 學 

電 控 工 程 研 究 所 

摘 要 

 

本論文利用 Petri nets 可撓性，建構出 Logical Petri nets 和 Boolean Petri 

nets，分別應用到電子領域中的積體電路測試(IC testing)與電機領域中的階梯圖

(ladder diagram)測試、診斷和設計領域。 

積體電路測試中，Logical Petri nets 是根據真值表(true table)之臨界值

(critical value)所建構而成，具有布林代數(Boolean algorithm)和 collapsing fault

性質，使 Petri nets 具有清晰物理觀念。本文所提出前進演算法(forward algorithm)

與後退演算法(backward algorithm)，即為了在組合電路(combinational circuit) 

中，求得測試圖樣(test pattern)、故障點位置(site of fault) 和激發邏輯值(firing 

logic value)。 

 在階梯圖上，提出 Boolean Petri nets (BPNs)建構的抽象模式(abstract 

model)，可直接從 BPNs 的 transition 時序，產生測試事件序列(test event 

sequence)和提供製作出客製積體電路(application- specific integrated circuits)。 

此外，在設計可程式控制器方面，也可依系統規格直接建構 BPNs 抽象模式或

利用 IDEF0 建構支援 BPNs 抽象模式可完成達到診斷、測試和控制器實現。最

後經由一郵票打印程序(stamping process)提供一階梯邏輯圖設計、測試和實
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現，證實所提出方法有用的，另由與 simplified Petri net controller (SPNC) 比較，

證實 BPNs 是一簡潔模式。  
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Construction and Applications of Novel Petri Nets Models 

 

  Student: Jui-I Tsai        Advisor: Prof. Ching-Cheng Teng 
 

Institute of Electrical Control Engineering 
 

National Chiao-Tung University 
   

  Due to the flexibility of Petri nets (PNs) and their ability to construct various types 

of clear, readable and suitable plane models, PNs have been recently employed in 

industrial applications. In this thesis, a Logic Petri nets (LPNs) and a Boolean Petri 

nets (BPNs) were applied to test, diagnose, and design ladder diagrams (LDs) and to 

test integrated circuits (ICs). 

  In IC tests, the proposed LPNs model possesses the properties of a Boolean 

algorithm including collapsing fault and clear physical concepts because the LPNs 

model was constructed according to the critical truth table of combinatorial circuits. 

To solve generated test patterns and determine fired logical values at the site of fault 

in combinational circuits, the proposed approach contains a site of fault and fired 

logical value reasoning algorithm and a test pattern generation reasoning algorithm. 

   In existing LDs, the proposed BPNs was used to construct an abstract model that 

can directly generate test events from the transition sequence of the BPNs and can 

support the implementation of application-specific integrated circuits (ASIC). 

Moreover, in the design of programmable logic controllers (PLCs), the proposed 

abstract BPNs model can be constructed according to the specifications of the system 

or by employing the integration definition for function modeling (IDEF0). The 

abstract model developed in this thesis can directly generate a testing event sequence 

for PLC testing and diagnosing. Finally, an example of a stamping process is provided 

to illustrate the design, implementation, testing and troubleshooting process. 
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Comparison of the basic elements (i.e., number of places, transitions, and arcs) of 

simplified Petri net controller (SPNC) (Lee, 2004) and BPNs are also given to 

demonstrate the usefulness of this approach. 

 

Key Words:  Logic Petri nets, Boolean Petri nets, Petri nets, Abstract model, Ladder 

diagram, Diagnosis, Testing, Fault model. 
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Chapter 1 

Introduction 

    

In industry, programmable logic controllers (PLCs) are often programmed with 

ladder diagrams (LDs), and the overall design and testing of the LDs are based on 

operator experience. Recently, Petri nets (PNs) have become popular tools for the 

design and implementation of logic controllers. Compared to LDs, Petri nets establish 

a system controller for various PLCs in a more flexible and understandable manner. 

Previous studies on the design of LDs and Petri nets have focused on the 

characteristics of both models and the conversion between LDs and Petri nets for the 

analysis, validation, design, and implementation of PLCs (Peng, 2004). 

 

The objective of this thesis was to achieve the following goals: 

1) To develop a novel Petri nets for the construction of an abstract model of a logic 

controller. 

2) To develop a testing and diagnosis procedure for existing logic controllers. 

3) To develop a clear approach for the design of logic controllers. 

 

  The models and approaches developed in the thesis were applied to Y  starting 
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motor and stamping processes. 

1.1. General Review 

Petri nets (PNs) theory was developed in 1962 by Carl A. Petri (1962). PNs are a 

theoretical, visual and graphical tool for the modeling, analysis, validation and control 

of discrete event systems. Moreover, PNs are excellent tools for modeling 

asynchronous concurrent systems. Due to the flexibility of PNs, they can be used to 

construct models of various systems, including information flow management, 

computer systems, manufacturing systems and power systems (Lan, 2009), (LO, 1997) 

Recently, video streaming systems based on PNs have been developed (Hu, 2009), 

and supply chain management systems have been previously constructed (Dotoli, 

2009). 

 

1.1.1. Development of an abstract model  

Modeling plays an essential role in the design, fabrication, and testing of a digital 

system (Abramovici, 1990). Moreover, many techniques have been developed for the 

identification of faults in combinational circuits (Looney, 1987), (David, 1995); 

however, most of these methods are based on functional modeling at the logic level. A 

Logic Petri nets (LPNs) model of combinational circuits is alternation modeling 

approach; thus, the LPNs model can transfer logic circuit problems into a local, 
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adjacent place, resulting in a transition relational problem. 

Traditionally, ladder diagrams (LDs) have been applied to programmable logic 

controllers. For instance, Jackman et al. (1995) proposed a conceptual model and 

working equation for converting relay ladder logic into a PNs model. Lee et al. (2000) 

presented a method for obtaining an augmented PNs from a LDs, and applied the Petri 

nets state equation to validate the corresponding flow mechanism in the PNs. 

Venkatesh et al. (1994) and Peng et al. (2004) modeled the conversion of a LDs 

contact to a PNs place, and increased the rate of virtual transitions. Lee et al (2004) 

modeled the conversion of a LDs connect to a PNs transition, and increased the 

position in the resulting PNs. However, the total number of nodes and links in the 

generated Petri nets were relatively high, and the complexity of the system increased. 

To reduce the complexity and increase the readability of the sequence control system 

in the construction of an abstract model, a Boolean Petri nets that introduces 

composite transitions, composite places, and relevant states was employed in this 

thesis. 

 

1.1.2. Diagnosis and testing of the ladder diagram 

In industry, LDs are used to program logic controllers. The LDs allow plant 

maintenance personnel to troubleshoot and maintain the system (Peng, 2001); 
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however, the overall troubleshooting method is often experience-based. Given the 

complexity of control programs and manufacturing systems, verification is time 

consuming, and the systems are difficult to troubleshoot. The proposed BPNs are the 

first model to introduce the concept of integrated circuit testing for solving 

experience-based testing and troubleshooting problems in sequence controllers in 

manufacturing systems. 

 

1.1.3. The design of the logic controller 

In industry, programmable logic controllers (PLCs) are often programmed using 

LDs, and the testing of PLCs is often experience-based. Moreover, verification is 

typically conducted through experiments or simulation. PNs focus on the design and 

implementation of logic controllers; however, tools for the design, implementation 

(Uzam et al. 1998), (Lee et al., 2005], and diagnosis of logic controllers are required. 

To achieve this goal, the Boolean Petri nets was employed, which supplies an 

integrated design tool for sequence control systems. 

 

1.2. Problem Statement 

 LDs are a common method used to control discrete events in the programmable 

controller of an automated system. Researchers are constantly pursuing integrated 
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tools that overcome the current limitations of LDs. The objectives of these tools 

are to control the automated system, and to analyze, evaluate, and simulate the 

sequence control system. Over the past several decades, PNs have emerged as an 

important tool for the production of integrated solutions for the modeling, 

analysis, simulation, and control of automated systems. The construction of 

abstract models in existing circuits or specifications is not straightforward; thus, 

different types of PN-based models have been proposed and applied to diagnosis 

and test automated systems. However, all novel PNs must contain the following 

requirements: 

 

1.2.1. An alternation model for the testing of combinational circuit  

In practice, many techniques for the identification of faults and test patterns 

have been proposed. However, most of these methods have been developed 

through functional modeling at the logic level. 

1.2.2. An abstract model for existing LDs 

Although LDs have been converted to PNs for analysis and validation (Peng, 

2004), PNs are usually more complex, and the construction of abstract models 

of LDs is not straightforward. 

1.2.3. Systematic testing approaches for existing LDs 
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Systematic LDs testing is important; however, experience-based testing is 

still relatively common. 

1.2.4. A sequence controller design for the testing, diagnosis and implementation of 

programmable controllers 

Although PLC engineers prefer to use LLD for the implementation of 

programmable controllers, and straightforward designs have been constructed 

with LLD models, these designs only focus on implementation while testing 

and diagnosis of the system are neglected. 

 

1.3. The proposed approach 

To overcome the aforementioned problems, the following approaches are 

proposed in this thesis: 

 

1.3.1. Improved logic fault efficiency 

The transitions of the PNs are modified according to the critical truth table to 

produce a model called the Logic Petri Nets (LPNs). The LPNs model can 

transfer a complex circuit problem into a local, adjacent place and a transition 

relational problem, which simplifies the identification of the fault sites and fired 

logical values. The LPNs model possesses the properties of a Boolean 
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algorithm, including collapsing fault with clear physical concepts, fast 

calculation speed, and high veracity. 

 

1.3.2. Constructing an abstract model of the ladder diagram 

In this thesis, a Boolean Petri nets (BPNs) is introduced, and the approach 

used to transfer a LDs to a BPNs converts normal open (NO) and normal close 

(NC) contacts in the LDs into PNs transitions and converts devices (e.g., relay 

coils) in the LDs into PNs places. Moreover, the BPNs introduce the concepts of 

composite transitions, composite places, and relevant states to reduce the 

complexity of the system and to increase the readability of PNs in the 

construction of abstract models. The abstract model can be applied to the 

analysis and diagnosis of local controllers for the support of network-based 

monitoring and the supervision of automated systems. 

 

1.3.3. Systematic testing of sequence controllers. 

   In this thesis, the concept of integrated circuit testing was introduced for the 

construction of a fault-free model and the generation of a test events sequence for 

LDs based on a BPNs. The fault-free BPNs model can directly convert hardware 

description languages (HDLs) and can implement application-specific integrated 
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circuits (ASICs). The comparison of the response of a fault-free circuit (i.e., 

ASIC circuit) and a fault circuit (i.e., LDs circuit) leads to the detection of fault 

occurrence, which aids in troubleshooting. 

 

1.3.4. Design for the testing, diagnosis and implementation of the sequence 

controller 

In this thesis, a design scheme for the testing, diagnosis and 

implementation of logic controllers based on BPNs are proposed. The 

abstract BPNs model can be constructed according to the specifications of the 

system or by employing the integration definition for function modeling 

(IDEF0). The abstract model can directly generate a testing event sequence 

for the testing and diagnosis of PLCs. Moreover, the model can also support 

network-based monitoring and supervision, and can be directly mapped into 

relay ladder logic (RLL), ladder logic diagrams (LLDs), or hard description 

language (HDL) for implementation in a system controller. 

 

1.4. Organization of the thesis 

This thesis is organized as follows: in Chapter 2, the LPNs model used to generate the 

testing pattern of the combinational circuit is introduced. Chapter 3 introduces the 
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BPNs model used to construct the abstract model and to diagnosis the LDs. In Chapter 

4, the BPNs model is used to generate testing event sequences and to implement ASIC 

for LDs testing. In Chapter 5, an integrated IDEF0/BPN/PLC approach for the testing, 

diagnosis and implementation of the sequence controller design is proposed. Finally, 

conclusions and recommendations for further research are provided in Chapter 6. 
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CHARPTER 2 

Test Generation and Fault Identification in Combinational 

Circuits Using Logic Petri Nets 

 

PNs are an excellent tool for modeling asynchronous concurrent systems. In 

this chapter, the proposed PNs are modified to solve test generations and sites of 

fired values based on the truth table of combinational circuits. To develop the 

LPNs, critical truth tables were embedded into the transitions of the PNs. Thus, 

the LPNs model can transfer a complex circuit problem into a local, adjacent 

place and a transition relational problem, which simplifies the identification of 

fault sites and fired logical values. Several algorithms were implemented to 

obtain the test pattern and to improve the speed of calculation. Moreover, to 

demonstrate the effectiveness of the LPNs model, two different processes were 

modeled with the LPNs. 

 

2.1. The Model and Properties of LPNs 

The purpose of the development of LPNs model is that the LPNs model holds clear 

logical property in IC testing. Firstly, the simplest way to represent a combinational 

circuit is by its truth table. Assuming binary input variable, a circuit realizing a 

function ),...,,( 21 nxxxX  of n  variables requires a table with n2  entries. The data 

structure representing a truth table is usually an array U  of dimension n2 . We 

arrange the input combinations in their increasing binary order. Then, we obtain 

)0,...,0,0()0( XU  , )1,...,0,0()1( XU  , …, )1,...,1,1()12( XU n  . The truth table can be 

divided into critical and no-critical part. For AND gate, the corresponding critical 

value is 1 1 x , 1 2 x , and 1)1,1()12( 2  XU . That is, if 1),( 21 xxX  then 1 1 x  and 
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1 2 x ; no-critical value of AND gate is 1 1 x  or 1 2 x  and 1),( 21 xxX ,  i.e., if 

1),( 21 xxX  then    1,1, 21 xx .  

In this section, we embed the critical value of truth table into transition of PNs to 

develop LPNs model. This special transition is called “logic transition”. Table 2.1 

describes the LPNs model corresponding to the truth table. Clearly, the LPNs model is 

matched properties of Boolean algorithm and fault collapsing. Based on the embed 

critical value of truth table in LPNs model, the Boolean algorithm and fault collapsing 

in LPNs representation are shown in Table 2.2 and Table 2.3. 

In general used representation, the LPNs model structure can be defined as follows: 

),,,,,,,,,,( 0mbfoiOIDTPLPN   

Where  

},...,,{ 21 mpppp  :  finite set of places,  

},...,,{ 11 ntttT   : finite set of logic transitions by critical value of truth table, 

},...,,{ 11 mdddD  : finite set of propositions, 

 DTP ,  

DP  ,  

 PTI : : an input function (a mapping from transitions to bags of places), 

 PTO : : an output function (a mapping from transitions to bags of places), 

 ,: Ti : logical value of a input transitions, 

 ,: To : logical value of a output transitions, 

)(: itipf  : input logical value of a transitions (a forward mapping from place p  

to input critical value )( jti ), 

)(: jtopb  : output logical value of a transitions (a backward mapping from place 

p  to output critical value )( jto ), 

 ,: P : logic value of place (a mapping from place to logic value,  ,)( ip ,  

i.e.,   denotes logic 1 and   denotes logic 0). 
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},,{:0 Pm : Initial mark. 

Example 1: Herein, the description of LPNs model for NOT gate is introduced, as the 

following Fig. 2.1. 

1p , :2p place, kt : transition, 1d : stuck-at-1, 1)( ptI k  , 2)( ptO k  , )( kti , )( kto , 

 )(: 1 ktipf ,  )(: 2 ktopb , 1: P . 

 

Fig. 2.1. Logic Petri Net model for NOT gate. 

 

Table 2.1: Truth table and Logic Petri Nets model 

  

 

 

kt1p 2p
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Table 2.2: Boolean algorithm respect to LPNs 

 

Table 2.3: Fault collapsing respect to LPNs 
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2.2. A Fault Logic Reasoning Algorithm for Sites and Fired Logic Value 

Using the LPNs model, we proposed an algorithm to determine sites of a fault fired 

logical value at combinational circuits.  

Algorithm 1 

Step 1: Transfer the circuit into the LPNs circuit. 

Step 2: List the table for transitional state of forward of place )( ipf and backward of 

place )( ipb . 

Step 3: If )( ipb =  and )( ipf    then place ip  is the primary input, while line of 

a primary input is fired logical value )( ipf , and it is denoted by 

)( ipD =s-a- )( ipf . 

Step 4: If )( ipb    and f( ip )= then place ip  is the primary output, while line of a 

place of primary output is fired logical value )( ipb , and it is denoted by )( ipD = 

s-a- )( ipb ,  

Step 5: If )( ipb , )( ipf , and )()( ii pfpb   then line of a place ip  is fired 

logical value )( ipf , and it is denoted by )( ipD = s-a- )( ipf , else no site of fault 

for test generation. 

 

Using Algorithm 1, the site of fault and fired logic vales can be found. An example 

of simple circuit is described below. 

 

  (a)                  (b) 

Fig. 2.2. (a) Combinational circuit; (b) LPNs circuit 

 

2p
1p

4p
3p

6p

5p

7p
2t

2p

1t

3t

5p

6p
3p

4p

1p

7p
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Example 2: A simple combinational circuit with AND and OR gates are used here (as 

shown in Fig. 2.2 (a)).  

Step 1: Transfer the combinational circuits to LPNs circuit, as Fig. 2.2 (b).  

Step 2: List the transitional state as Table 2.4. 

Step 3: Place 1p , 2p , 3p  and 4p  are primary inputs since )( 1pb = )( 2pb = )( 3pb = )( 4pb = . 

)( 1pD , )( 2pD , )( 3pD and )( 4pD are stuck-at-1 by )( 1pf = )( 2pf = )( 3pf = )( 4pf =1. 

Step 4: Place 7p  is primary output since )( 7pf =  . )( 7pD  is stuck-at 1 since 

)( 7pb =1. 

Step 5: 5p , 6p  are not terminal place since )( ipb   , )( ipf    and )()( ii pfpb  , 

then )( 5pD  and )( 6pD  are stuck-at 0 since )( 5pf = )( 6pf =0. 

By the results of above discussion, we can determine the fired logical values 

(struck-at-fault) of places p1… p7 as Table 2.4. 

 

Table 2.4: The transitional state for forward and backward of place 

 

 

2.3. Forward and Backward Reasoning Algorithm  

By the definitions of literature (Chen et al., 1990), (Chen et al., 2000), immediate 

reachability set, reachability set, immediate backward incidence set, backward 

incidence set, and adjacent place, a forward and backward reasoning algorithm is 

proposed for test generation of combinational circuits.  
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                        (a)                    (b) 

Fig. 2.3. (a) Petri Net for immediate reachability, reachability, immediate backward 

incidence, and backward incidence sets (b) Petri Net for adjacent place. 

Firstly, the PNs model for describing the definitions is shown in Fig. 2.3. For Fig. 

2.3 (a), let it  and jt  be general transitions, and ap , bp , cp  be three places. If 

)(  ia tIp  , )(O  ib tp  , )(I  jb tp   and )(O  jc tp  , then we have 

(1) Place bp  is immediately reachable from place ap ,  

(2) Place cp  is   immediately reachable from place bp ,  

(3) Place ap  is an immediately backward incidence place of place bp ,  

(4) Place bp  is   an immediately backward incidence place of place cp ,  

(5). Places bp  and cp  are reachable from place ap ,  

(6) Places ap  and bp  are backward incidence places of place cp .  

The reachability relationship is the reflexive closure of the immediately reachable 

relationship. The backward incidence relationship is the reflexive closure of the 

immediately backward incidence relationship.  

The set of places that is immediately reachable from a place ap  is called the 

immediately reachability set of ap  and is denoted by )( apIRS . The set of places that is 

reachable from a place ap  is called the reachability set of ap  and is denoted 

by )( apRS . The set of places that contains immediate backward places of bp  is called 

the immediate backward set of bp  and is denoted by )( bpIBIS . The set of places 

which contains backward incidence places of cp  is called the backward incidence set 

of cp  and is denoted by )( cpBIS . 

For Fig. 2.3(b), let kt  be a transition, 1ap  and 2ap  be places. If place )(  1 ka tIp   

and place )(  2 ka tIp   then 1ap  and 2ap  are called adjacent places with respect to kt . 

kt

2ap

1ap

dpap bp cp

it jt
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Next, we have the following forward and backward reasoning algorithm. 

Algorithm 2 

Step 1: Transfer the combinational circuits to LPNs circuit. 

Step 2: List the table for immediate reachability set, reachability set, immediate 

backward incidence set, backward incidence set, and the table for set of adjacent 

places jkAp  for each place jp . 

Step 3: Find the primary inputs ip  (IBIS ( ip ) = ) and primary outputs (IRS ( jp ) 

= ).  

Step 4: Select a site of fault and fired logic value from Table 2.4, activate it and 

propagate to primary output, i.e., generate a fault effect and sensitized path. Initial 

mark 0m are comprised by logical value of fault effect and logical value of a 

propagation of all adjacent place of sensitized path (i.e., )(: ijk tiAPf   is logical 

value of an input transitions of all adjacent place of sensitized path). 

Step 5: Find the test pattern by initial mark backtracing path and hold the fault effect 

as below.  

(1) Proposition of place jp - )( jpD  generates a fault effect and forward propagates 

the error through it  to proposition of immediate reachability place kp - )( kpD  

until to the primary output op . The change of the state of )( kpD  is depended on the 

input value )( iti  and output value )( ito of transition relation. If 

)()( ii toti  then )()( jk pDpD  . Otherwise, )()( jk pDpD  . Details of )( iti  and 

)( ito  can be found in Table 2.4.  

(2) At the same time, the proposition of place jp  possesses a fault effect. The token 

of adjacent place jkAp  is equal to a forward mapping from jkAp  to )( jti , i.e., 

)()( ijk tiAP  , the sensitized path is hold. Then we select a back path of immediate 

backward incidence place jkAp  through transition bt  ( )( jkApIBIS ) to primary input 



 18

inp . If )()( bjk toAp  ) then   )}({)( bb tip  . Otherwise,    )()( bb tip  . 

(3) Find the test generation of back path. Place jp  propagate back through 

transition bt  to ip until to primary input inp . If  ( jp )= )( bto  then  )( bp = )( bti . 

Otherwise,    )()( bb tip  . 

Step 6: If we can find a token of primary input )( inp set and generate a fault effect 

then fault f is detectable and test generation is set of a primary input token )( inp . 

    Finally, we use an example to illustrate the LPNs reasoning process for test 

generation. 

 

 

        (a)                              (b) 

Fig. 2.4. (a) Combinational circuit, (b) LPNs equivalent circuit. 

 

Example 3: Determine test generation of sat-at-1 at 4p  and sat-at-0 at 6p  in 

combinational circuit, as shown in Fig. 2.4(a). 

  Case (a) )( 6pD : sat-at-0. 

Step 1: Transfer the combinational circuits to LPNs circuits as shown in Fig. 2.4 (b). 

Step 2: List the table for immediate reachability set, reachability set, immediate 

backward incidence set, and backward incidence set table and the table for set of 

adjacent places jkAp , as Table 2.5 and Table 2.6.  

Step 3: Find the primary input  4321 ,,, pppppin   and the primary output  7ppo  . 

Step 4: Select a )( 6pD  (which is sat-at-0), 1)( 6 p  is generate a fault effect and 

0)( 5 p is logical value of a propagation of all adjacent place of sensitized path. So 

2p
1p

4p
3p

6p

5p

7p
2t

2p

1t

3t

5p

6p
3p

4p

1p

7p
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 0)()()( ,1)()()( 35672660  tipAptopbpm  .  

Step 5:  

(1) )( 6pD propagates the error through 3t  to 0/1)( 7 pD  since )()( 33 toti  . 

(2) 0)()()( 3567  tipAP  , sensitized path is hold. 0)()( 15  top implies  

   )(),()(),( 1121 titipp    1,1 , i.e., )(),( 21 pp        0,11,00,0 oror . 

(3) 1)()()( 266  topbp  implies   )( ),( 43 pp        1,1  )( ),( 22  titi . 

Step 6: )( 6pD  sat-at-0 is detectable. Then, the test generation is 

)( inp =        1,1)(),(,1,1)(),( 4321  pppp  . 

 

Case (b) )( 4pD : sat-at-1 

Step 1: Transfer the combinational circuits to LPNs circuit as Fig. 2.4 (b). 

Step 2: List the table for immediate reachability set, reachability set, immediate 

backward incidence set and backward incidence set table and the table for 

table set of adjacent places jkAp , as Table 2.5 and Table 2.6.  

Step 3: Find the primary input  4321 ,,, pppppin   and the primary output  7ppo  . 

Step 4: Select )( 4pD  (sat-at-1) and 0)( 4 p  generate a fault effect. 1)( 3 p , 

0)( 5 p are logical value of a propagation of all adjacent place of sensitized path. 

So 


0)()()(          

,1)()()( ,0)()()(

3567

23462440




tipAp

tipAptipfpm


   

Step 5:  

(1) )( 4pD  (sat-at-1) and 0)( 4 p since )()( 22 toti  , )( 4pD  propagates the error 

through 2t  to 1/0)( 6 pD . and )()( 33 toti  , )( 4pD  propagates the error through 2t  

to 1/0)( 7 pD . 

(2) 1)()()( 2346  tipAP  . 

(3) 0)()()( 3567  tipAP  , sensitized path is hold. The result is similar to (2) of 

case (a)- Step 5. Thus,      1,1)(),()(),( 1121  titipp  , i.e.,    )(),( 21 pp    
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     0,1or  1,0or  0,0 . 

Step 6: )( 4pD : sat-at-1 is detectable and test generation is 

)( inp =        0,1)(),(,1,1)(),( 4321  pppp  . 

 

Table 2.5: Immediate Reachability Set, Reachability Set, Immediate Backward 

Incidence Set and Backward Incidence Set for each place ip  

 
 

Table 2.6: Set of Adjacent Places jkAp  for each place jp  

 

 

The comparison between LPNs model and traditional method by Kirkland et al., 

(1988) in test generation for combinational circuit is shown in Fig. 2.5. The major 

differences are described below. (1) LPNs approach is parallel processing, i.e., LPNs 

approach has less operational time than (Kirkland  et al., 1988); (2) every back 

tracing path of LPNs is shorter than (Kirkland  et al., 1988), i.e., complexity of 

determining test generation LPNs is easier; (3) LPNs approach needs larger memory 

than (Kirkland  et al., 1988), i.e., cost using LPNs approach will increase. 
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       (a)                   (b)                      (c) 

            

       (d)                    (e) 

Fig. 2.5. The comparison between LPNs model and traditional method (Kirkland 

1988): (a) A sample good circuit;  (b) A faulty circuit; (c) The search graph for 

locating the fault; (d) A faulty circuit of LPNs; (e) The search graph for locating the 

fault of LPN. 

 

2.4. Summary 

For solving test generation and site of fault in combinational circuits, we have 

proposed a so-called Logic Petri Net model. The LPNs model embeds critical of truth 

table into transition of Petri Net with clear physical concepts, fast calculation speed 

and high veracity. It first transfers a complexity circuit problem to a local adjacent 

place and transition relational one. Thus, the site of fault and fired logical value 

problem is simplified. Both algorithms were presented for obtaining the test pattern 

and improved the calculation speed. Two examples were shown to demonstrate the 

effectiveness of LPNs model. 
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CHAPTER 3 

Constructing an Abstract Model for the Diagnosis of 

Ladder Diagrams Using Boolean Petri Nets 

 

As shown in Fig. 3.1, hierarchical control is an approach for the design of 

large-scale discrete event systems that are used to deduce complexity (Lee et al., 

2004). In a manufacturing system, a LDs controller may use a local controller, which 

allows the LDs controller to be diagnosed and monitored remotely. In this chapter, the 

local controller (i.e., LDs controller) and abstract model (i.e., corresponding to the 

LDs model) are modeled with BPNs. The LDs controller model employed in this 

thesis is a structural model that is similar to the original LDs architecture, and the 

abstract model is a behavioral model. The behavioral model is simplified by the 

structural model; however, the behavioral model matches the functions of the LDs 

controller. 

To construct an abstract model from a simplified BPNs model, a BPNs module was 

constructed from a table of LDs rungs based on a Boolean equation. 
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Fig. 3.1. Proposed hierarchical control (by Lee (2004))  

3.1. Boolean Petri nets 

Carl Adam Petri proposed the Petri nets theory. Fig. 3.2 shows the structure of 

Petri nets in a directed bipartite graph that consists of places, transitions, and arcs. A 

circle with a token represents the places. A bar indicates the flow of tokens when 

firing condition is satisfied, which represents the transition. Finally, a straight line that 

connects the place to the transition, or the transition to the place denotes the arc, 

which indicates the flow of tokens in the direction of the arrow. 

 

 

                  (a)                           (b) 

Fig. 3.2(a) An example Petri nets, (b) A token moving from A to B in Fig. 3.2(a) 

after it  fire.  

 

3.1.1 Definition of Boolean Petri nets 

The purpose of developing the BPNs model is that this model exhibits the imply 

logic property in a LDs. The simplest way to represent LDs is by its Boolean equation. 

The approach proposed in this chapter embeds the Boolean equation in a PN transition 

to develop the BPNs model. This special transition is called the “Boolean transition.” 

Table 3.1 describes the BPNs model corresponding to the Boolean equation. Clearly, 

the BPNs model also matches the LDs. To map LDs into a Petri nets, the Petri nets 

must be extended. This extended Petri nets is called a Boolean Petri nets, which can 

be defined formally as  

),,,,,,,( 0MoutinOIATPPN                                    (3-1) 

A B
it A B

it
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Where },...,,{ 21 mpppP  , 1m , is a finite set of places representing the LDs action state. 

The places are associated with a component or a set of components (i.e., a compound 

component) such as the actuator output, relay coil, timer, counter solenoid, or source; 

},...,,{ 21 ntttT  , 1n , is a finite set of transitions representing event whether occurs or not. 

These transitions are always associates with a switch or a set of switches and 

represented by Boolean equations or variables. 

The switch can be a normal open (NO) switch or normal closed (NC) switch. The NO 

switch is also called an “a” contact and the NC switch is also called a “b” contact, 

where TP  and TP . 

)()( PTTPA   is a set of arcs (→) consisting of input arcs )( TPAi   and output 

arcs )( PTAo  . The weight of each directed arc in this chapter is 1, and )( TPAi   is 

defined as directed arcs from a place to a transition. Places are called input places and 

transitions are called output transitions, and the input arc is represented by a 

connected line as channel of token. )( PTAo   is defined as directed arcs from a 

transition to a place, the transition is called the input transition and the place is called 

the output place, and the output arc is represented by a connected line as channel of 

token. The arc may be preservation arc (●→) that a input arc and a output arc exist 

simultaneously between same  place and transition (Lee et al., 2000); NPTI :  is 

an input function that defines as number of output arcs )( PTAo  , where  ,...2,1,0N , 

NTPO :  is an output function that are defined as number of input arcs )( TPAi  , 

where  ,...2,1,0N ;  ninininin ,...,, 21 is a set of input switch, which is represented by 

Boolean function or variable. A set of input switches is associated with a transition jt  

and is denoted by  int j  . The Boolean function or variable can be ‘1’, in which case 

the related transition jt is allowed to fire if it is enabled, or it can be ‘0’, in which case 

the related transition t is not allowed to fire;  moutoutoutout ,...,, 21 is a set of output 

actuator which is associated with a ip and is denoted by  outpi  ; )(0 PM  is the 
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initial marking that uses a token to represent the place status. 

A transition is enabled if the number of tokens at the place is larger than or equal 

to the number of input arcs. A transition is firing if the enabled transition is fired and 

its transition states are true (i.e., the Boolean equation is true). When a transition fires, 

it moves the tokens from input places to output places along the input arcs and output 

arcs, as Fig. 3.2 illustrates. This moves the token of place A to place B along directed 

arcs if transition it  is firing. A marking is denoted as an m-vector, where m is the 

total number of place P, while )( ipm  is represented by the number of tokens at place 

ip  (Murata et al., 1989). 

For the marking 0m , there is an enabled transition 1t . If there is a firing of 

transition 1t , then the marking is immediately reachable to 'm  from 0m , denoted 

by '
10[ mtm  . A marking im  is said reachable from 0m  if there exists a sequence of 

firings that transforms 0m  to im . R ( 0m ) is defined as the set of all reachable 

markings from 0m . F ( 0m ) is defined as the set of all firing sequences from 0m . A 

place ip  is said to be bounded for an initial marking 0m  if 0    k , k   )(  ipm , 

and )(    0mRm . Specifically, it is said to be safe if k=1. A marking 0m  is said to 

be live for a Petri nets if every marking has been reached from 0m , which indicates it 

is possible to fire any transition of the nets by some firing sequence (Murata et al., 

2007), (Zhou et al., 1998). If 0m  may be reached from any marking, The Petri nets is 

said to be reversible. 

To simulate the behavior of LDs, this approach changes a state or marking 

according to defined firing rules for the Boolean Petri nets model. 

 

3.1.2. State equation 
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The firing definition easily shows that the token moves from state 1kM  to 

another state kM  by the kth firing, and kU  is a firing vector which can be given in 

terms of the following matrix state equation for Petri nets (Murata et al., 1977) 

k

T

kk UAMM  1                                          (3-2) 

Where kU is called firing vector, and TA  is called the incidence matrix for any given 

topological structure of Petri nets, defined by 

njmiwhere

ptI

tp

tpA

ijji

ji

ji
T 
















 1,1,

),(

0

),(O

),(
ij

.             (3-3) 

Note that kM  must be a vector of nonnegative integers (Murata et al., 1997). The 

firing vector will then select an appropriate column of TA  such that 

01  k
T

k UAM  for each k                                    (3-4) 

 

3.1.3. Definition of action dominance and equivalence 

  Dominance. An action 1p is said to dominate another action 2p  in an irredundant 

place iff every exist of token for 2p  is also exist of token for 1p . i.e., the life of a 

token of 1p  is longer than 2p , denoted as )()( 21 pmpm  . The reduction of the place 

1p  to be analyzed is based on the dominance relation. 

Example 1: Fig. 3.3 shows a PNs in which 1p  is dominated by 2p  and 3p , i.e., 

)()( 21 pmpm   and )()( 31 pmpm  . Fig. 3.4 shows the reduction result. 

 

 

 

      Fig. 3.3 A simple example        Fig. 3.4 The reduction result of Fig. 3.3 

Equivalence. The actions 1p and 2p  are equivalent if exist of token is same 

condition for 1p  and 2p , i.e., )()( 21 pmpm   and )()( 12 pmpm  . The composite of 

)(:2 Yp 2t )(:3 Dp

)(:1 Mp

3t
1t )(:2 Yp )(:3 Dp 3t2t1t
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the place 1p and 2p  to be analyzed is based on the equivalent action. 

Example 2: Fig. 3.5(a) shows a PNs in which 2p is equivalent to 3p , i.e., 

)()( 23 pmpm   and )()( 32 pmpm  . Fig. 3.5(b) shows the composite result.  

 

 

  

    Fig. 3.5(a) A simple example     Fig. 3.5(b) The composite result of Fig. 3.5(a)  

   

3.2. Ladder Diagram Model Using Boolean Petri Net 

3.2.1 Model of basic modules  

In ladder diagrams, the horizontal line (rung) and the associated elements represent 

Boolean equations. Similarly, in Boolean Petri nets, the associated transitions 

represent Boolean equations. In ladder diagrams, the symbol “○” represents the 

dependent element of the equation (coil). Similarly, in Boolean Petri nets, the symbol 

“○” represents the dependent element of the equation (place). In ladder diagrams, “| 

|” represents the independent element (normal open contacts), while in Boolean Petri 

nets, “| or |” represents the independent element (input transitions). A diagonal line 

placed in the middle of these symbols (i.e., “|/|”) represents normal closed contacts, 

which indicate that the negated value of the variable is used. Similarly, bar “| or |” 

represents the output transition. In ladder diagrams, variables (contacts) placed in a 

series represent the AND Boolean function, while contacts placed in parallel represent 

the OR Boolean function. The rungs are executed in order from top to bottom. 

Therefore, the Type 8 ladder diagram in Table 3.1 represents Boolean equations 

BMAM )(   and MN  (Bender et al., 2008). In Boolean Petri nets, a similar 

1p

)(:3 Yp

)(: 22 PLp

1t 1p ),(: 22 PLYp
1t
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input transition represents )( MA , denoted as )(:1 MAt  , which is a composite 

transition. Conversely, output transitions represent B  , denoted as )(:2 Bt , and 

output places are denoted as ),(:2 NMp which are composite places. Finally, Table 

3.1 summarizes some typical LDs modules and their corresponding Boolean Petri nets 

models, where S is a pseudo source and the composite and decomposite of Boolean 

Petri nets are as shown in Table 3.2. 

TABLE 3.3: Some LDs modules and corresponding models 

Modules 
Ladder  

Diagrams 

Boolean 

 Equations

Boolean 

 Petri Nets 
Modules

Ladder  

Diagrams 

Boolean 

 Equations 

Boolean 

 Petri Nets 

Type 1  AM    Type 3  ABM    

 

 

 TM  

 

Type 4  BAM    

 

 

AM    Type 5  

BAM

BAM



   

 

 

 

AM

MAM


  Type 6  

21

2

1

MM

AM

AM





 
 

Type 2  AM    

 

Type 7  

BA

BMAM



 )(   

 

 

 TM  

 

Type 8  

MN

BABMAM


 )(   

 

 

AM    Type 9  




TM

ATimer   

Type 10  

AN

AM


  

 
Type 11  








TC
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Table 3.2: Composite and Decomposite of Boolean Petri nets 
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3.2.2. Model of faulty ladder diagram 

A LDs circuit fault may generally be classed as both stuck-at 0 (s-a-0)and stuck-at 1 
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nets. LDs of the possessed faulty example are illustrated in Fig. 3.6(a) and the Petri 

nets model is illustrated in Fig. 3.6(b). Where fault 1f  are represented s-a-0 to 

represent the switch A is struck at open, fault 2f  is represented s-a-1 to represent the 

switch B is stuck at close. According to Eq. (3-3), the incidence matrix 

is

21
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11
tt

p
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              (a)                          (b) 

Fig. 3.6. (a) A LDs of possessed fault (b) A Petri nets model of possessed fault    

 The faults classified in the two cases are interpreted as below. 
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represented as the fault free and faulty firing vector, respectively. fU /1 is represented 

as the fault free/faulty firing vector. 

According to Eq. (3-2) 
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where 1M and 
1fM are represented as the fault free and faulty marking vector, 

respectively. fM /1  is represented as the fault free/faulty making vector. 

In the LDs circuit, 1f  fault means the coil C is not active since the switch A is stuck 

at open. 
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In the LDs circuit, 2f  fault means the coil C is maintain action since the switch B is 

stuck at close. 

 

3.3. Application Example 

This section illustrates a practical example of hierarchical control system in Fig. 3.1. 

The local controller is a LDs circuit. This circuit can be modeled by BPNs and is 

simplified to obtain an abstract model using Table 3.1 of the preceding section. The 

system fault can be diagnosed by the difference between the LDs response and 

abstract model response. The differences are as decision of supervisor agent. 

 

3.3.1. Constructing an abstract model using a Boolean PNs 

To start a three-phase motor, a LDs controller use type of Y- starting to limit 

starting current, as shown in Fig. 3.7 and symbol descriptions in Table 3.3. In the LDs 

controller, the bottom 1Pb  is control relay coil M, Y and timer coil active. The motor 

enters the starting state when NO contacts of M and Y are turned on. Next, the relay 

coil Y turns off after delay time T , and the motor returns to the normal state when 

the relay coil Y turns off and relay coil D turns on. Finally, the motor stops if the 

bottom 2Pb is pushed or the current is overload. This LDs controller can be specified 

as follows: 

Step 1) The motor is commanded to start ( 1Pb ). 

Step 2) The motor starting time is T . 

Step 3) The motor is commanded to stop ( 2Pb ). 
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Step 4) The motor will stop if the current is overloaded. 

The implicit specification is as following: 

Spec) The relay coil D and relay coil Y are mutually exclusive. 

The transformation from the ladder diagram (in parallel) to the abstract model (in 

series) is based on the following steps: 

  Step 1) A rung or compound rung of LDs is converted to a Boolean Petri nets 

module using Table 3.1 or the Boolean equation. LDs controller then 

assembles Boolean Petri nets modules, as Fig. 3.8 shows, where (1), (2) … 

and (9) correspond to the number of LDs rungs. 

  Step 2) A Boolean Petri nets can be given after eliminating the redundant or pseudo 

places (i.e., the S place), as Fig. 3.9 illustrates. 

Step 3) An abstract model can be obtained according to dominance relation reduce 

some places (in this case, an abstract model reduce place 2p ), and 

eliminating some redundant elements (i.e., the coil of time or auxiliary relay), 

as Fig. 3.10 shows. 

 

 

 

 

 

 

 

 

 

 

Fig. 3.7. Control circuit of a Y- starting motor. 
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Table 3.3: The Descriptions of symbol 

Symbol Description Symbol Description 

 Indicator light of green  “b” contact of Push bottom 

 Indicator light of yellow  “a “contact of Push bottom 

 Indicator light of red 
 

“a “ contact of relay 

 Relay 

 

“b” contact of relay 

 Timer  “a “ contact of timer 

 Stuck at 0 (s-a-0) switch 

for simulate fault 

(Abramovici et al., 1990) 

 

“b” contact of timer 

1~9 rung number  “b” contact of over load 

 

 

 

 

 

 

                              

Fig. 3.8. BPNs model of a LDs controller.   Fig. 3.9. Equivalent diagram of Fig. 

3.8.   

                

 

 

        Fig. 3.10 Abstract model of Fig. 3.9                 
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3.3.2 Properties of the proposed Boolean Petri nets 

 The reachability of PNs is a tree, which uses states as nodes and transitions as arcs 

(David et al., 1992). The construction of this tree starts from the root node. The root 

node is represented as the initial state, and the arcs outgoing from the root node are 

marked by the corresponding enabled transition. The arc will outgo to a new node 

(state) from the firing of the corresponding transition (arc). The above procedures are 

repeated until they produce duplicate nodes. Terminal nodes are identical to existing 

nodes, which have no any enable transitions are met. In the reachability tree, dash 

lines indicate nodes. 

  Due to the similar processes of PNs reachability tree, this study presents the 

reachability tree of the proposed BPNs in Fig. 3.9. For the sake of simplicity in 

representing the node (node) in the reachablility tree, define the state variable vector 

in the reachability tree as [p1 p2 p3 p4], and allow the initial state to be [1 0 0 0]. If 

transition )(: 11 Pbt  fires when 11 Pb (i.e. 1Pb  is active), the state moves to [0 1 1 

0]. If transition )(: 231 Pbt  fires when 12 Pb (i.e. 2Pb  is active), then the state 

moves to [1 0 0 0]. Subsequently, if transition )(:2 Tt  is enabled and fires, then the 

state moves to [0 1 0 1], while if transition )(: 232 Pbt  is enabled and fires, the state 

moves to [1 0 0 0]. 

 

Proposition 1: The proposed BPN is live. 

  Proof: Consider a case based on the reachability tree in Fig. 3.11. This figure 

shows that there is no terminal node. Therefore, there always exists some sample path 

such that any transitions can eventually fire to reach any states from the initial state 1p , 

i.e. },,{)( 4320 pppmR  , },{)( 210 ttmF  . According to this definition, the proposed 
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BPN is live. 

Proposition 2: The proposed BPN is reversible. 

  Proof: The reachability tree in Fig. 3.11 indicates that there is no terminal node. 

Therefore, there always exist some sample path such that any transitions can 

eventually fire to reach the initial state 1p from any states (i.e. 2p , 3p , 4p ), 

)( 21 pRp  , )( 31 pRp  , )( 41 pRp  . According to this definition, the proposed BPN is 

reversible. 

Proposition 3: The proposed BPN is bound. 

  Proof: In stable PNs, the number of tokens in any place will not grow infinitely. 

The reachability tree in Fig. 3.11 indicates that one and only one marked token 

corresponds to any specific state. Therefore, the number of marked tokens in 

1p , 2p , 3p  and 4p  is bounded above by 1. According to this definition, the proposed 

BPN is bounded and safe. 

 

 

                   Fig. 3.11 The reachability tree of the Proposed BPNs  

 

Similarly, the proposed abstract model in Fig. 3.10 is live, reversible, and safe. In the 
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Petri nets model, the live is represented as a reachable starting state (i.e. Y state) and 

running state (i.e. D state) from the ideal state (i.e. 1PL state), the safe is represented as 

only existing in one state, the reversible is represented as returning to the ideal state 

(i.e. 1PL state) from any other state (i.e. Y state and D state). 

 

3.3.3 State equation 

According to Eq. (3-2), Fig. 3.9 shows that the state equation is 
k
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In reality, places ),,(:2 TimerMXp , ),(: 23 PLYp  and ),(: 31 PLDp  are compounded 
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places in Petri nets. Therefore, the state of  4321 ,,, ppppP   can be decompounded 

into the  321 ,,,,,,, PLDPLYTimerMXPLP   state, so  0001)(0 PM T  can be 

transferred into  )00()00()000(1)(0 pM T . Similarly, )(1 PM T , )(2 PM T , )(31 PMT  

and )(32 PM T  can be decomposed into places  )00()11()111(0 , 

 )11()00()111(0 ,  )00()00()000(1  and 

 )00()00()000(1 , respectively. 

 

 

 

 

 

   (a)                                     (b)  

 

 

 

 

 

           (c)                                                                   

Fig. 3.12 Petri nets model (a) with fault 1f , (b) with fault 2f , (c) with fault 3f in Fig.7. 
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Fig. 3.13 Simulated fault free model and fault model. 

3.3.4 Analysis and diagnosis of fault modeling  

Assume that the faults 1f , 2f  and 3f  in the LDs are stuck at 0 (s-a-0), as Fig. 3.7 

illustrates. The fault can then be modeled into Petri nets as shown in Fig. 3.12 (a), (b), 

and (c), respectively. In case 1, a transition )(: 11 pbt is fired since 1pb  is active. 

However, the transition 0)(: 111
fpbt f  cannot be fired since 1f  is stuck at 0. 

Similarly, in case 2, 0)(: 222
fXt f , 1)(: 22

Xt . In case 3, 0)(: 323
fDt f , 

1)(: 23
Dt . For simple calculation of state equation, a control vector kU  contains the 

fault free Boolean equation and faulty Boolean equation of transitions, as denoted by 

0/1)/ (: faultfreefaultt
if

. Fig. 3.13 shows fault free model and fault model 

simulated structure.  

A difference output vector (DOV) = fault free output vector-fault output vector. If has 

fault occur then difference output vector 0. The fault is covered area from place of 

negative value to place of positive value, and the faulty path flows through transition 

it  in DOV.   

Case1: Assume 1f  is s-a-0. 
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DOV=  T0111 . The faulty area is covered from 1p  to 2p and 3p  as Fig. 3.14 
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indicates, and the fault path flows through )(: 11 pbt . Thus, the fault is located between 

rung 1 and rung 3 in Fig. 3.7. In physical terms, this means the motor cannot start 

rotation.  

 

 

 

Fig. 3.14 the faulty area in case 1 

Case2: Assume 2f  is s-a-0. 
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DOV=  T100 . The faulty area is covered only in
2fp  as Fig. 3.12(b) indicates, and 

the fault path flows through )(: 22
Xt f . Thus, the fault is located between rung 2 and 

rung 5 in Fig. 3.7. In physical terms, this means the motor cannot run. 

 

Case3: Assume 3f  is s-a-0. 
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DOV=  T10000 . The faulty area is covered only in
3fp  as Fig. 3.12(c) 

indicates, and the fault path flows through )(: 23
Dt f . Thus, the fault is located between 

rung 7 and rung 9 in Fig. 3.7. In physical terms, this means the indicator 

light
3

PL cannot light. 

 

3.4. Summary  

This chapter proposes the BPNs based on the Boolean equation, constructs a ladder 

diagram module and develops an abstract model to diagnose local faults in the LDs. 

The diagnostic process employs simple matrix manipulation and DOV to determine 

the faulty area for diagnosing the ladder diagram. This study also provides an example 

using composite transition, composite place, and relevant state to reduce complexity 

and increase readability of the Petri nets. The proposed methodology is useful and 

clear. 
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CHAPTER 4 

Implementation of an ASIC for the Testing of a Ladder 

Diagram 

 

As described in the previous chapter, a BPNs model and an abstract model were 

constructed for the diagnosis of ladder diagrams. In this chapter, BPNs were used to 

solve experience-based testing and troubleshooting problems of sequence controllers 

in manufacturing systems. To describe the basic LDs and to propose a framework for 

LDs testing, the concept of integrated circuit testing was introduced during the 

construction of a fault-free model of LDs based on BPNs, as shown in Fig. 4.1. The 

developed model can directly generate test event sequences of LDs from the transition 

sequence of BPNs and can support the implementation of application-specific 

integrated circuits (ASICs). The BPNs constructs a model that aides in the 

troubleshooting of LDs and can be simulated using the state equation.  

   

 

Fig. 4.1. Framework of LDs functional tests 

 

4.1. Boolean Petri Net and Ladder Diagram Model 
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Carl Adam Petri proposed the Petri nets theory. Figure 2 shows the structure of 

Petri nets in a directed bipartite graph that consists of places, transitions, and arcs. A 

circle with a token represents the places. A bar that indicates the flow of tokens when 

the firing condition is satisfied, which represents the transition. Finally, a straight line 

that connects the place to the transition, or the transition to the place, denotes the arc, 

which indicates the flow of tokens in the direction of the arrow. 

 

 

                  (a)                           (b) 

Fig. 4.2. (a) An example Petri nets. (b) A token moving from A to B in Fig. 4.2(a) 

after it  firing.  

 

4.1.1. Definition of Boolean Petri nets 

The purpose of developing the BPNs model is that this model exhibits the 

implied logic property in LDs. The simplest way to represent LDs is by its Boolean 

equation. The approach proposed in this paper embeds the Boolean equation in a PNs 

transition to develop the BPNs model. This special transition is called the “Boolean 

transition.” Table 4.1 describes the BPNs model corresponding to the Boolean 

equation. Clearly, the BPNs model also matches the LDs. To map LDs into a Petri 

nets, the Petri nets must be extended. This extended Petri nets are called a Boolean 

Petri nets, which can be defined formally as  

),,,,,,,( 0MoutinOIATPPN                                    (4-1) 

Where },...,,{ 21 mpppP  , 1m , is a finite set of places representing the LDs action state. 

The places are associated with a component or a set of components (i.e., a compound 

component) such as the actuator output, relay coil, timer, counter solenoid, or source; 

A B
it A B

it
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},...,,{ 21 ntttT  , 1n , is a finite set of transitions representing whether an event occurs or 

not. These transitions are always associated with a switch or a set of switches and are 

represented by Boolean equations or variables. 

The switch can be a normal open (NO) switch or normal closed (NC) switch. The NO 

switch is also called an “a” contact, and the NC switch is also called a “b” contact, 

where TP  and TP . 

)()( PTTPA   is a set of arcs (→) consisting of input arcs )( TPAi   and output 

arcs )( PTAo  . The weight of each directed arc in this paper is 1, and )( TPAi   is 

defined as directed arcs from a place to a transition. Places are called input places, and 

transitions are called output transitions. The input arc is represented by a connected 

line as a channel of a token. )( PTAo   is defined as directed arcs from a transition to 

a place, where the transition is called the input transition and the place is called the 

output place, and the output arc is represented by a connected line as a channel of a 

token. The arc may be a preservation arc (●→), where an input arc and an output arc 

exist simultaneously between the same place and transition; NPTI :  is an input 

function that defines the number of output arcs )( PTAo  , where  ,...2,1,0N . 

NTPO :  is an output function that is defined as the number of input arcs )( TPAi  , 

where  ,...2,1,0N ;  ninininin ,...,, 21 is a set of input switch, which is represented by a 

Boolean function or variable. A set of input switches is associated with a transition jt  

and is denoted by  int j  . The Boolean function or variable can be ‘1’, in which case 

the related transition jt is allowed to fire if it is enabled, or it can be ‘0’, in which case 

the related transition t is not allowed to fire.  moutoutoutout ,...,, 21 is a set of output 

actuators, which is associated with a ip and is denoted by  outpi  . )(0 PM  is the 

initial marking that uses a token to represent the place status. 

A transition is enabled if the number of tokens at the place is larger than or equal 

to the number of input arcs. A transition is firing if the enabled transition is fired and 
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its transition states are true (i.e., the Boolean equation is true). When a transition fires, 

it moves the tokens from input places to output places along the input arcs and output 

arcs, as Fig. 4.2 illustrates. This action moves the token of place A to place B along 

directed arcs if transition it  is firing. A marking is denoted as an m-vector, where m 

is the total number of place P, while )( ipm  is represented by the number of tokens at 

place ip  (Murata et al., 1989). 

To simulate the behavior of LDs, this approach changes a state or marking 

according to defined firing rules for the Boolean Petri nets model. 

 

Table 4.1: Simplified BPNs 

Type LDs Boolean 

Equation 

Before 

PNs 

Simplified 

Boolean Equation 

After PNs 

1 

 
BCAC )(   

  
BAC

BA)BC(

BC)(AC







1   

2 
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BAB
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 )()(

)()()(

BCR

SAAB




 

 

4.1.2. Model of a Ladder Diagram 

In a ladder diagram, a rung corresponding to a Boolean equation (BE) was introduced 

by David in 1995 (David et al., 1995). The Boolean equation associates every input 

variable (e.g., switch) and output variable (e.g., relay coil). In a Petri nets, the input 

variables are represented as an event. The output variables are represented as an event 

state, while an output variable is dependent on input variables. LDs rung can 

correspond to a Petri nets model, and the input variable of LDs may be simplified by 

its Boolean property. For example, BCAC )(   can be simplified to BAC  , as 

shown in Type 1 of Table 4.1, and a Petri nets corresponding to LDs can be simplified 

S A B C R
S BA

S CB  R

B
A B

C

S

3

1

2

R
B
B

S
A

B

CS

CA

B
C

B C

C

S

1

2

CA



 45

by properties of enabling and firing. For example, in Type 2 of Table 4.1, a marking of 

place S is an enabled condition and a Boolean equation AB   is the equivalent 

firing condition of rungs 1 and 2. A Boolean equation )( CBR  is a firing condition 

of rung 3. Thus, the Boolean equation AB   merges with the enable condition S, 

which is then given (S))(  AB , and the Boolean equation )( CBR  is separated 

into )()( BCR   and regarded as associated firing conditions with the enabling 

condition. Therefore, the property of firing and enabling can apply to the parallel LDs 

corresponding to series of Petri nets. Table 4.2 summarizes some typical LDs modules 

and their corresponding BPNs, where S is a pseudo source that can represent the ideal 

state of a relay coil, and composites and decomposites of BPNs are as shown in Table 

4.3. 

 

Table 4.2: Some LDs modules and their corresponding BE and BPNs models 

Modules LDs BE/BPNs Modules LDs BE/BPNs 

Type1 

 

XM   

 

Type2 21 XXM   

 

21 XXM   

 

XMM  21  

 

Type3 

 

XM   Type4 21 XXM   
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X MS
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Type5 

 

BAM   

 
BANM   

Type6 

 

XN
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
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Table 4.3: Composites and decomposites of Boolean Petri nets 
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4.1.3. State Equation 

The firing definition easily shows that the token moves from state 1kM  to 

another state kM  by the kth firing, and kU  is a firing vector, which can be given in 

terms of the following matrix state equation for Petri nets (Murata et al., 1977). 

k

T

kk UAMM  1                                          (4-2) 

Where kU is called the firing vector, and TA  is called the incidence matrix for any 

given topological structure of Petri nets, defined by 

njmiwhere
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Note that kM  must be a vector of nonnegative integers. The firing vector will then 

select an appropriate column of TA  such that 

01  k
T

k UAM  for each k .                                  (4-4) 

 

4.2. Testing and Troubleshooting of ladder Diagrams 

In this section, we first introduce the concept of integrated circuit testing to 

describe a basic LDs and to generate the testing event sequence of a LDs using a 

BPNs model. The generated test event sequence can be applied to the testing and 

troubleshooting of the LDs, while we can use the BPNs to program the free-fault 

model and ASIC implementation. 

4.2.1. Introduction of LDs testing (Lala et al., 2009) 

A failure is said to have occurred in a ladder diagram circuit or system if it deviated 

from its specified behavior. A fault refers to a physical defect in a ladder diagram 

circuit. For example, a short in a normally open contact or a break in a normally 

closed contact is a physical defect. An error is usually the manifestation of a fault in 
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the ladder diagram circuit; thus, a fault may change the signal of a current in a ladder 

diagram circuit from the open (correct) to closed (erroneous) state or vice versa. 

The most common model used for ladder diagram faults is the single stuck-at fault. 

It assumes that a fault in a ladder diagram rung results in one of its input or the output 

being fixed at either on (i.e., stuck-at-on) or off (i.e., stuck-at-off). A stuck-at-on fault 

implies the permanent closing of a rung in the ladder diagram circuit. A stuck-at-off 

fault implies the permanent opening of a rung in the ladder diagram circuit. 

The inputs to the ladder diagram circuit are called the primary input. They are the 

only inputs can be applied to events in a Petri nets. This ability to apply an input event 

to the primary inputs of a Petri nets is known as controllability. The outputs from the 

ladder diagram are called primary outputs. The outputs can be observed in the effect 

of events occurring in the Petri nets. The ability to observe the response of a fault on 

an internal node via the primary outputs of a ladder diagram circuit is called 

observability. 

In general, a test can detect more than one fault in a ladder diagram circuit, and when 

many tests in a set detect the same fault, it can be called a dominance fault. When 

many faults in the same set detect the tests, it can be called an equivalent fault. Thus, 

a major objective in test generation is to reduce the total number of faults to be 

considered by dominance and equivalent. For example, in a simple ladder diagram 

circuit shown in Fig. 4.3 (a) and its Boolean equation BAC  (Bender et al., 2008), 

its Boolean equation can be viewed with AND logic in an integrated circuit (IC), as 

shown in Figure 3(b), and with a BPNs model, as shown in Figure 3(c). Its true table 

is shown in Table 4.4. The equivalent sets for the simple ladder diagram circuit is 

{ 0  ,0  ,0   asCasBasA }, and its fault dominance relations are 

{ 0  ,1  asAasC } and { 1  ,1  asBasC }. The fault can be ignored if 

{ 1  ,0  ,0  asCasBasA }. In other words, these test sets {A, B } are reduced {0, 
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1}, {1, 1}, {1, 0}. Similarly, in the self-hold of the ladder diagram circuit, shown in 

Fig. 4.4(a), because its Boolean equation BCAC  )(  is equivalent to BAC    

and because sometimes contact switches C are uncontrollable, these test sets {A, B } 

are reduced {0, 1}, {1, 1}, {1, 0} as well. The {0, 1}, {1, 1}, {1, 0} of the LDs test 

pattern correspond to no event occurrence (i.e., switch A and B is not pressed), and 

switch an event occurs (i.e., switch A is pressed) and switch B event occurs (i.e., 

switch B is pressed) for the BPNs, respectively. 

 

Table 4.4: True table of a simple ladder diagram circuit 

A  B  C (coil) A s-a-1 B  s-a-1 C s-a-1 A s-a-0 B  s-a-0 C s-a-0 

0   0 0   1    

0   1 0 1  1    

1   0 0  1 1    

1   1 1    0 0 0 

 

4.2.2. Testing Event Sequence of a Ladder Diagram  

Fault detection in a basic ladder diagram circuit, as shown in Fig. 4.3(a) and 4(a), is 

transferred by a Boolean Petri nets, and its test event sequence can be generated from 

the transition sequence of the transferred BPNs; thus, it is carried out by applying a 

sequence of test events and observing the resulting outputs. If the observed response 

is different than the expected response, a fault is present in the LDs. The aim of 

testing is to verify that functions in the ladder diagram are true or false using Fig. 4.1, 

which corresponds to troubleshooting, as shown in Table5.  

In an m-input, there can be 2(m+1) stuck-at faults in the ladder diagram, but it can be 

an (m+1) event sequence generated in the BPNs. Thus, the total number of single 
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stuck-at faults in a basic ladder diagram circuit is 6 (=2×3), but the test event 

sequence can be 3(=2+1), generated using a BPNs. The test event sequence is no 

event, an event occurs and B event occurs, as shown in Table 4.5. The test event 

sequence can be calculated and verified using state equation as well:  

1/011/0 11112   ccc ttptp , where 1/01 ct  is represented as A no event 

occur, but A is fault-at-on. 

0/110/1 11112   ooo ttptp , where 0/11 ot  is represented as an event occurs, 

but from primary input A to primary output C is fault-at-off. 

0/110/1 22221   ccc ttptp , where 0/12 ct  is represented as B event occurs, 

but B is fault-at-on. 
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      (a)                   (b)            (c) 

Fig. 4.3. (a) A basic ladder diagram circuit, (b) Corresponding to AND logic and (c) 

Corresponding to the BPNs model 
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       (a)                (b)             (c) 

Fig. 4.4. (a) Self-hold of a ladder diagram, (b) Corresponding to BPNs model and 

(c) Simplified BPNs model 

 

Table 4.5: Test events sequence 

Initial 

state 
fault free Fault A B C Firing effect 

Test 

Event 

Sequence 

Troubleshooting

  

0 1 0/1 The token 

was 

propagated to 

next position 

before A is 

firing. 

No event Please check 

push bottom A 

whether stuck at 

on or not. 

  

1 1 1/0

 

The token 

can not 

deposited to 

next position 

when A is 

firing (i.e., A 

is pressed 

event occur). 

A event 

occur 

Please check 

one of element 

A, B, C and 

interconnected 

line whether 

stuck at off. 

  

1 0 0/1 The token 

can be not 

propagated to 

next position 

when B is 

firing (i.e., B 

is pressed 

event occur). 

B event 

occur 

Please check 

push bottom B 

whether stuck at 

on or not. 
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4.2.3. HDL Program 

  The basic ladder diagram can be implemented by HDL. The HDL program is 

carried out according to positions, trasitions and token flowing in the BPNs, as shown 

in Table 4.6. 

 

Table 4.6: The HDL code of a basic ladder diagram  
Number I. THE HDL CODE OF BASIC LADDER DIAGRAM 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

library ieee; 

use ieee.std_logic_1164.all; 

entity PLC is  

port (Reset,CLK,A, B : in std_logic;  

C : out std_logic;);  

end PLC; 

architecture behave of LD is 

type STATE_TYPE is (p1, p2); 

signal present_state, next_state : STATE_TYPE; 

begin 

token_flow: process (Reset,present_state) begin 

  if Reset = ’1’ then next_state <= p1;  

C =’0’; 

case present_state is 

when p1 => 

if  A = ‘1’ then next_state <= p2;  

else           next_state <= p1;  

end if; C<=’1’; 

when p2 => 

if  B = ‘1’ then next_state <= p1;  

else          next_state <= p2;  

end if; C<=’0’;  

end case; 

end process token_flow; 

  state_clocking: process (CLK) begin 

if CLK’EVENT and CLK = ‘1’ then present_state <= next_state;

end if; 

end process state_clocking; 

end behave; 
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4.3. Application Example 

 

 

 

 

 

 

 

 

 

 

Fig. 4.5 Control circuit of a Y- starting motor 

 

Table 4.7: Descriptions of symbols 

Symbol Description Symbol Description 

 Indicator light of green  “b” contact of Push bottom 

 Indicator light of yellow  “a “contact of Push bottom 

 Indicator light of red 

 

“a “ contact of relay 

 Relay 

 

“b” contact of relay 

 Timer  “a “ contact of timer 

1~9 rung number  “b” contact of timer 

   “b” contact of over load 

   

This section illustrates a practice example. The controller is a LDs circuit. This 
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circuit can be modeled by BPNs and is simplified to obtain a fault-free model using 

Table 4.1 of the preceding section. The system fault can be diagnosed by the 

difference between the LDs response and the ASIC response (i.e., the fault-free 

model). 

To start a three-phase motor, a LDs controller uses a type of Y- starting to limit the 

starting current, as shown in Fig. 4.5 and the symbol descriptions in Table 4.7. In the 

LDs controller, the bottom 1Pb  is a control relay coil M, Y and active timer coil. The 

motor enters the starting state when NO contacts of M and Y are turned on. Next, the 

relay coil Y turns off after delay time T , and the motor returns to the normal state 

when the relay coil Y turns off and relay coil D turns on. Finally, the motor stops if the 

bottom 2Pb is pushed or the current is overload. This LDs controller can be specified 

as follows: 

Step 1) The motor is commanded to start ( 1Pb ). 

Step 2) The motor starting time is T . 

Step 3) The motor is commanded to stop ( 2Pb ). 

Step 4) The motor will stop if the current is overloaded. 

The implicit specification is as follows: 

The relay coil D and relay coil Y are mutually exclusive. 

 

4.3.1 Fault Free Model 

The transformation from the ladder diagram (in parallel) to the fault free model (in 

series) is based on the following steps: 

  Step 1) A rung or compound rung of the LDs is converted to a Boolean Petri nets 

module using Table I or the Boolean equation. The LDs controller then 

assembles Boolean Petri nets modules, as Fig. 4.6(a) shows, where (1), 

(2) … and (9) correspond to the number of LDs rungs. 
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  Step 2) A Boolean Petri nets can be given after eliminating the redundant or pseudo 

places (i.e., the S place), as Fig. 4.6(b) illustrates. 

Step 3) A fault-free model can be obtained according to dominance relation reducing 

some places (in this case, an abstract model reduces place 2p ) and eliminating some 

redundant elements (i.e., the coil of time or auxiliary relay), as Fig. 4.6(c) shows. 

Using the fault-free model to implement the ASIC circuit is shown in Fig. 4.6(d), and 

simulated results are shown in Fig. 4.6(e). The generated test pattern is )push ( 11 pbt  - 

)push (2 Tt - )push ( 23 OLPbt   and state) ideal(,, 321 ttt . 

 

 

 

 

 

 

            (a)                                   (b) 

                

 

 

                  (c)                                  (d)                            

 

                  (e)                                  

Fig. 4.6(a) BPNs model of a LDs controller, (b) Equivalent diagram of Fig.6 (a), (c) 

Simplified model of Fig. 4.6(b), (d) ASIC diagram, and (e) Simulation result. 
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4.3.2. Testing Event Sequence of a Motor Starting LDs and Troubleshooting 

The test event sequence of the control ladder diagram can be generated in turn with 

the BPNs diagram, as shown in Table 4.8. The test event sequence is applied to the 

ladder diagram and ASIC to detect true or false of the LDs, as shown in Fig. 4.1, and 

it corresponds to troubleshooting, as shown in Table 4.8. 

Table 4.8: Test event sequence and troubleshooting of motor starting LDs 

Test Event 

Sequence 

No event 

occur 

1Pb  event 

occur 

T  event 

occur 

2Pb event 

occur 

Troubleshooting Please check 

push bottom 

1Pb  whether 

stuck at on or 

not. 

Please check 

element from 

1Pb  to Y 

interconnected 

line whether 

stuck at off. 

Please check 

element from 

T  to D and 

interconnected 

line whether 

stuck at off. 

Please check 

push bottom B 

whether stuck 

at on or not. 

 

4.3.3. HDL Program 

  The control ladder diagram of Y- starting can be implemented by HDL. The HDL 

program is shown in Table 4.9, and its implemention and simulation are shown in Fig. 

4.6(d ) and (e), respectively. 

 

 

Table 4.9: The HDL code of motor start action  
Number II. THE HDL CODE OF MORTOR STARTING LADDER DIAGRAM  

1 
2 
3 
4 
5 
6 
7 
8 

library ieee; 

use ieee.std_logic_1164.all; 

entity PLC is  

port (Reset,CLK,t1, t3 : in std_logic;  

PL1, PL2, PL3, X, Y, D : out std_logic;); end PLC; 

architecture behave of piston is 

type STATE_TYPE is (p0, p1, p2); 

signal present_state, next_state : STATE_TYPE; 
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9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

signal t2 : BIT; 

begin 

token_flow: process (Reset,present_state) begin 

  if Reset = ’1’ then next_state <= p0;  

PL1=’1’; PL2=’0’; PL3=’0’; X=’0’;Y=’0’; D=’0’; 

case present_state is 

when p0 => 

if  t1 = ‘1’ then next_state<= p1;  

else           next_state<= p0;  

end if; PL1<=’0’; PL2<=’1’X<=’1’;Y<=’1’; 

wait for 5sec; 

t2 <= ‘1’; 

when p1 => 

if  t2 = ‘1’ then next_state <= p2;  

else           next_state <= p1;  

end if; PL2<=’0’; PL3<=’1’; Y<=’0’;X<=’1’;D<=’1’; 

when p2 => 

if  t3 = ‘1’ then next_state <= p0;  

else           next_state <= p2;  

end if; PL3<=’0’; PL1<=’1’; PL3<=’0’;  

X<=’0’; D<=’0’; 

end case; 

end process token_flow; 

  state_clocking: process (CLK) begin 

if CLK’EVENT and CLK = ‘1’ then present_state <= next_state;

end if; 

end process state_clocking; 

end behave; 
4.4. Summary 

This paper shows a solution for the experience-based testing and troubleshooting 

problem of LDs. We proposed a method for constructing a fault-free model, 

supporting the implementation program of ASIC and testing event sequences from 

BPNs. The testing problem was transferred to the determination of whether an event 

occurred or not. If an event does not occur in the primary input then the primary 

output is a have not response; likewise, if a have event occurs in the primary input, 
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then the primary output corresponds to response and the LDs detects a fault. Finally, 

an example of a motor start LDs was represented graphically as a fault-free model, 

providing a direct way to convert LDs to HDL and generate test an event sequence, 

while demonstrating this usable approach. In the future, we plan to apply this 

approach to more complicated systems and develop BPNs directly applied to the 

design of PLC implementation. 
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CHAPTER 5 

The Testing, Diagnosis and Implementation of Logic 

Controllers 

 

In previous chapters, a BPNs application that can be remotely diagnosed and 

monitored was developed. Although the proposed model can solve experience-based 

testing and troubleshooting problems in sequence controllers of manufacturing 

systems, sequence controllers are often designed with different types of LDs. Thus, 

the transfer of LDs to BPNs is difficult, and a systematic approach for the design of 

sequence controllers based on BPNs must be developed. Moreover, the BPN-directed 

application must be able to be remotely diagnosed and monitored. In this thesis, a 

method based on IDEF0, BPNs and TPL was developed to validate the system and to 

implement traditional PLCs. The proposed method can generate test event sequences 

for the solution of experience-based testing and troubleshooting problems in sequence 

controllers. 

 

 

Fig. 5.1. Extension of the implementation scheme for Petri net-based controllers by 

I/O-based 

specifications 

BPN using IDEF0 PLC 

implementation 

Design validation 

using simulation 

Design for testing 

and diagnosis  
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Taholakian et al. (1997).  

 

Fig. 5.2. Proposed hierarchical control (by Lee et al., (2004)). 

               

5.1. Boolean Petri nets                                      

In this section, define BPNs and describe the state equation of BPNs. The BPNs 

can be directly modeled from a specification of the logic controller or by employing 

IDEF0. The state equation can be used to simulate design validation and the 

constructed abstract model (as shown in Fig. 5.2) via an incidence matrix. 

5.1.1 Definition of BPNs  

The BPNs (Tsai et al., 2010) can be defined formally as  

),,,,,,,( 0MoutinOIATPPN   ,                                 (5-1) 

Where },...,,{ 21 mpppP  , 1m  is a finite set of places that are associated with the 

output actuator; },...,,{ 21 ntttT  , 1n , is a finite set of transitions that are associated with 

input sensors; TP ; and TP . )()( PTTPA   is a set of arcs (→) 

consisting of input arcs )( TPAi   and output arcs )( PTAo  . The weight of each 

directed arc in this chapter is 1, and )( TPAi   is defined as a directed arc from a place 
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to a transition. Places are called input places, and transitions are called output 

transitions. The input arc is represented by a connected line as a channel of a token. 

)( PTAo   is defined as a directed arc from a transition to a place, where the transition 

is called the input transition and the place is called the output place. The output arc is 

represented by a connected line as a channel of a token. NPTI :  is an input 

function that defines the number of output arcs )( PTAo  , where  ,...2,1,0N . 

NTPO :  is an output function that is defined as the number of input arcs )( TPAi  , 

where  ,...2,1,0N ;  ninininin ,...,, 21 is a set of input sensors that is associated with a 

transition jt  and is denoted by int j : . The term  moutoutoutout ,...,, 21  is a set of 

output actuators that is associated with a ip and is denoted by outpi : . )(0 PM  is the 

initial marking that uses a token to represent the place status. 

A transition is enabled if the number of tokens at the place is equal to or larger 

than the number of input arcs. An enabled transition is firing when an input sensor 

event occurrence associated with the enabled transition moves the tokens from input 

places to output places along the input arcs and output arcs. A marking is denoted as 

an m-vector, where m is the total number of places P, while )( ipm  is represented by 

the number of tokens at place ip . 

 

5.1.2 State equation 

The firing definition easily shows that the token moves from state 1kM  to 

another state kM  by the kth firing, and kU  is a firing vector that can be given in 

terms of the following matrix state equation for Petri nets (Lee et al., 2000): 

k

T

kk UAMM  1  ,                                        (5-2) 

Where kU is the firing vector and TA  is the corresponding abstract model called the 

incidence matrix for any given topological structure of Petri nets, defined by 
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Note kM  must be a vector of nonnegative integers. The firing vector will then select 

an appropriate column of TA  such that 

01  k
T

k UAM  for each k                                (5-4) 

5.2. Constructing Boolean Petri Net and Implementation  

In this section, construct a BPNs model from a specification of the system and 

map it to the PLC code based on the RLL, the LLD or the HDL. 

5.2.1 System description  

   An example of a tank filling is provided to describe the BPNs design stage for 

directly constructing a model from system specifications or IDEF0. The tank filling 

shown in Fig. 5.3(a) is redrawn from David’s paper (David 1995). A reservoir 

provides water to tank 1 and tank 2. The tanks are modeled in three states: empty, 

during filling and during emptying. The initial state of the model is an empty tank (i.e., 

the water level of the tank is lower than 1b  and 2b ). Valves 1V  and 2V  will be 

open when push button m  is pressed. Water from the reservoir flows into tank 1 and 

tank 2 until the tanks are full of water (i.e., the water levels of the tanks are higher 

than 1h  and 2h ). Valves 1W  and 2W  are then opened after the tank is filled until 

both tanks are empty. 

 

Reservoir

1Tank 2Tank 

1h

1b

2h

2b

1V 2V

1W 2W

2S

1b 2b

m

1V 2V

1W 2W

1h 2h

1S

1

2

3

4

5

6

)1(

)2(

)3(

)4(

)5(

m
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        (a)                     (b) 

 

                        (C) 

 

 

 

 

 

 

                               (d) 

Fig. 5.3. (a) Filling tank, (b) BPNs model of filling tank, (c) Material flows of IDEF0 

and (d) Information flows of IDEF0. 

5.2.2 Constructing the BPNs model 

This BPNs model is explained in Fig. 5.3(b). The labels 1 to 6 represent steps, i.e., 

components of states. At the initial time, the steps in the set {1, 4} are active. Next, 

transition (1), which follows these steps, can be fired as soon as event m associated 

with (l) occurs. After this firing, steps 2 and 5 are active. When step 2 is active, the 

output 1V = 1. When step 2 is active, transition (2) can be fired if the 1h  event has 

occurred, and so on. The concurrency is explicitly represented in this model. Steps 1, 
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< 1b , 2b  
Water level 

< 1h , 2h  
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Water level 

< 1h , 2h  
During filling 
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emptying 

Empty tank  

Read Push 

button 

ON 

Valves W1, W2 
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Valves V1, 

V2 

open 

21   , hh

21  , bb

m
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2 and 3 correspond to the states of tank 1 (empty, during filling, and during emptying, 

respectively), and steps 4, 5 and 6 correspond to the states of tank 2. 

IDEF0 (FIPS 183) is an activity-oriented model approach that represents the 

activities performed in a system using ordered sets of boxes, as shown in Fig. 5.4. The 

boxes are input-control-output mechanisms. The activity may be a decision-marking, 

a material-conversion, or an information-conversion activity (Santarek et al., 1998). 

The information flow represents system activities and their interrelationships. It is 

transformed into a dynamic BPNs model based on the following steps: 

1. The input and output commands of the activity box in the information flow 

diagram are transformed into input and outputs places in the BPNs, 

respectively. 

2. The control signals of the sensor reading are transformed into transitions in the 

BPNs. 

3. The initial token of the BPNs are set according to the initial condition of the 

system. 

  The IDEF0 approach can be used to design the tank filling system, as shown in 

Figs. 3(c) and (d). The BPNs model result is shown in Fig. 5.3(b). 

 

Fig. 5.4. The IDEF0 scheme (Lee et al. 2005). 

ActivityInput Output

Mechanism 

Machines/operators 

Control 

Parameters/rules 

Material/information 

flows  

Material/information 

flows  
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5.2.3 BPNs mapping to implementation 

    To convert the BPNs model into PLC code for controller implementation, a 

direct mapping was used and is shown in Table 5.1. In the initial conditions, a token is 

located at place 1p , which is represented as 1p  active. The token then flows to place 

2p  when the sensor input is on; the sensor input on is associated with transition 11 : Xt  

firing. The active output device is assigned to the place 2p  active. According to the 

properties of being active and firing, the BPNs can be represented by the Boolean 

equation 112 ptp  , which is equivalent to PLC code (Lee et al. 2005). 

 

Table 5.1: Mapping the BPNs to PLC code 

BPNs RLL LLD HDL 

 

when p1 => 

if  t1 = ‘1’ then next_state <= p2;  

else           next_state <= p1;  

end if; Y1<=’0’, Y2<=’1’; 

 

 

if  t2 = '1' then  

  next_state <= p0; 

else       next_state <= pk; 

end if; Y<='0';  

 

5.3. Testing and Troubleshooting                            

In this section, introduce the concept of integrated circuit testing (Lala 2009) to 

describe basic LDs for the corresponding BPNs and to generate the testing event 

sequence of a BPNs model. The generated test event sequence can be applied for the 

testing and troubleshooting of the designed controller (i.e., local controller, as in Fig. 

5.2). 

 

2m 1kps
kpSET :sp :0

22 : mt

Ypk :

1m

2p

1p

2Y

2: pSET

1: pRST

22 :Yp11 : Yp
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5.3.1. Introduction of LDs testing  

For example, for a BPNs model like the one shown in Fig. 5.5(a), with its 

corresponding LDs circuit shown in Fig. 5.5(b) and the Boolean equation 

BAC  (Bender et al. 2008), the Boolean equation can be viewed with AND logic in 

an integrated circuit (IC). Its true table is shown in Table 5.2. The equivalent set for 

the LD circuit is { 0  ,0  ,0   asCasBasA }, and its fault dominance relations are 

{ 0  ,1  asAasC } and { 1  ,1  asBasC }. The fault can be ignored if 

{ 1  ,0  ,0  asCasBasA }. In other words, these test sets {A, B } are reduced to 

{0, 1}, {1, 1}, and {1, 0}. The {0, 1}, {1, 1}, and {1, 0} of the LDs test pattern 

correspond to no event occurrence (i.e., switch A and B are not pressed), switch an 

event occurs (i.e., switch A is pressed) and switch B event occurs (i.e., switch B is 

pressed) for the BPNs, respectively. 

Table 5.2: True table of a simple LDs circuit 

A  B  C (coil) A s-a-1 B  s-a-1 C s-a-1 A s-a-0 B  s-a-0 C s-a-0 

0   0 0   1    

0   1 0 1  1    

1   0 0  1 1    

1   1 1    0 0 0 

5.3.2. Testing event sequence  

Fault detection in a self-holding LDs, as shown in Fig. 5.5(b), it is mapped by a 

BPNs as shown in Fig. 5.5(a) and its test event sequence can be generated from the 

transition sequence of the BPNs model; thus, it is carried out by applying a sequence 

of test events and observing the resulting outputs. If the observed response differs 

from the expected response, a fault is present in the LDs. The aim of testing is to 

verify that functions in the LDs are true or false, as shown in Fig. 5.2, which 
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corresponds to troubleshooting, as shown in Table 5.3.  

In an m-input system, there can be 2(m+1) stuck-at faults in the LDs, but there can 

be an (m+1) event sequence generated in the BPNs. Thus, the total number of single 

stuck-at faults in a basic LDs circuit is 6 (=2×3); however, the test event sequence can 

be equal to 3 (=2+1), generated using a BPNs. The test event sequence is no event, an 

event occurs and B event occurs, as shown in Table 5.3. The test event sequence can 

be calculated and verified using the Boolean equation and the state equation, 

respectively.  

1/011/0 11112   ccc ttptp , where 1/0)free/fault(fault 1 ct   is represented as 

A no event occurs, but A is fault-at-on. 

0/110/1 11112   ooo ttptp , where 0/11 ot  is represented as an event occurs, 

but from primary input A to primary output C is fault-at-off. 

0/110/1 22221   ccc ttptp , where 0/12 ct  is represented as B event occurs, 

but B is fault-at-on. 














11

11

2

1

p

p
DT , 










0

1

2

1

0 p

p
M , 








 

 0

1/0

2

1

1 t

t
U c

c , 







 

 0

0/1

2

1

1 t

t
U c

o , 










 0/1

0

2

1

2

c

c t

t
U ;  

















 







































  1/0

0/1

1/0

1/0

0

1

0

1/0

11

11

0

1

2

1

101 p

p
UDMM c

T

c

,
 

























































  0/1

1/0

0/1

0/1

0

1

0

0/1

11

11

0

1

2

1

101 p

p
UDMM o

T

o

,
 


























































  1/0

0/1

0/1

0/1

1

0

0/1

0

11

11

1

0

2

1

212 p

p
UDMM c

T

c

.
 

    

 

            (a)                           (b)             

Fig. 5.5. (a) BPNs model (b) Corresponding to a self-hold on LDs.  
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Table 5.3: Test event sequence and troubleshooting 

Initial 

state 
fault free Fault A B C Firing effect 

Test 

Event 

Sequence 

Troubleshooting

 

0 1 0/1 The token 

was 

propagated to 

the next 

position 

before A 

fires. 

No event Please check 

push button A to 

determine 

whether it is 

stuck at on or 

not. 

 

1 1 1/0

 

The token 

cannot be 

deposited in 

the next 

position 

when A is 

firing (i.e., A 

is pressed 

event 

occurs). 

A event 

occurs 

Please check 

one of the 

elements A, B, 

or C and the 

interconnected 

line to 

determine 

whether they 

are stuck at off. 

  

1 0 0/1 The token 

cannot be 

propagated to 

the next 

position 

when B is 

firing (i.e., B 

is pressed 

event 

occurs). 

B event 

occurs 

Please check 

push button B to 

determine 

whether it is 

stuck at on or 

not. 

 

5.4. An example of stamping Process 

To demonstrate the viability of the developed approach, a stamping process 

application was investigated. 
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5.4.1. System description  

As shown in Fig. 5.6(a), a stamping system (Lee et al. 2005) consists of three 

cylinders. Each cylinder has two normal open limit switches. In terms of input sensors, 

the stamping system have a push button 1m  and 6 limit switches: a0, a1, b0, b1, c0 

and c1. For output actuators, there are 6 solenoid valves: A+, A-, B+, B-, C+ and C-, 

where the + and – signs indicate a piston performing forward strokes and return 

strokes, respectively. In the stamping process, pusher A moves the work piece onto the 

worktable from a store. The work piece is then stamped by stamp B and afterwards is 

ejected by a thrower C. Thus, the work process sequence of the system is A+, B+, {A-, 

B-}, C+ and C-, where {A-, B-} represents two concurrent actions as the pistons of 

both pusher A and stamper B perform return strokes simultaneously.  

 

5.4.2 Construction of the BPNs model and mapping of LLD 

According to the sequence of the stamping system associate input sensor, the 

corresponding BPNs are shown in Fig. 5.6(b). One basic safety specification 

assumption is that in any case in which the system must be shut off, this should be 

done via the protruding switch 2m . A BPNs model for this specification constructed 

using the reversible concept of a Petri nets, which is designed to add an OR transition 

2m  (denoted as a dotted bar in Fig. 5.6(b)), is shown in Fig. 5.6(c). The proposed 

mapping LLD approach is shown in Fig. 5.6(d). Both RLL and HPL can be used in a 

similar way.  
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                      (a) 
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                                   (d) 

Fig. 5.6. (a) Structure diagram of the stamping system (from Lee 2005), (b) 

Corresponding BPNs of the stamping system, (c) Corresponding BPNs with the added 

safety design for the stamping system, (d) Mapped LLD using BPNs. 

 

1 pSET

1T 1m

A

2p1a

B

2p

3p

3p1b

A4p

B4p

5p1c

C6p

6p1b

C5p

4p0a 0b

0 pSET

2 pSET

1 ST pR

3 pSET

2 ST pR

4 pSET

3 ST pR

2 pSET

6 ST pR

5 ST pR

6 pSET

4 ST pR

5 pSET

2m
s

0p 2p 6p

2T

3T

4T

5T

6T



 72

 

Fig. 5.7. Abstract BPNs model of the stamping system.  

 

5.4.3 Abstract model and state equation 

The abstract BPNs model shown in Fig. 5.7 is a behavioral model. The behavioral 

model is simplified by the given BPNs model but matches the function of the 

controller. According to Eq. (5-2), the state equation k

T

kk UAMM  1 can be used to 

analyze and simulate the stamping system, where TA  is the incidence matrix used to 

represent an abstract model, kU  is the firing vector (fault free/fault), “1” represents 

the occurrence of an event and “0” represents no event in the firing vector 1/0 (0/1).  
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5.4.4 Generating the testing event sequence and troubleshooting 

The test event sequence of the local controller and the abstract model shown in 

Fig. 5.2 can be generated from the BPNs model for PLC testing and diagnosis. It can 

also be used to support network-based monitoring and supervision. Faulty diagnosis 

of the local controller according to the switch type of the local controller leads to 3 

simplified types, as shown in Table 5.4, where the test event sequence is 

1m  1a  1b  0a  0b  1c  0c  2m . 
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Table 5.4: Test event sequence and troubleshooting of the stamping process 

Test Event 

Sequence 

Type of 

switches 
Initial state Fault free Fault Troubleshooting 

it :( 1m , 1a , 1b ,

0a , 0b , 1c , 0c ) 

no event 

occurs 

Normal 

open 

switch 

Please check normal 

switches to determine 

whether they are stuck 

at on or not. 

it :( 1m , 1a , 1b ,

0a , 0b , 1c , 0c ) 

event 

occurs 

Normal 

open 

switch 

Please check relational 

switches and their 

interconnected line to 

determine whether 

they are stuck at off. 

27 : mt  
event 

occurs  

Normal 

closed 

switch 

Please check switch 

2m to determine 
whether it is stuck at 

on or not. 

 

TABLE 5.5: Comparison of SPNC and BPNs for stamping system 

Comparison measures SPNC BPNs 

Basic elements 

Place        15 Place         6 

Transition     8 Transition     6 

Arc          25 Arc         12 

Total         48  Total        24 

 

 

 

Fig. 5.8. Corresponding SPNC of the stamping system (from Lee, 2004) 
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  Fig 5.9. LLD implementation of stamping system (from Lee, 2004) 

 

5.4.5. Comparison of SPLC, BPNs and Corresponding LLD 

The IDEF0/SPNC/TPL/LLD (Lee, 2004) is a systematic implementation approach; 

however, the BPNs introduced composite transition and place to reduce the 
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complexity of BPNs and simplified controller implementation. Therefore, the 

comparison based simply on the number of Basic element for SPNC (Lee, 2004) and 

BPNs of stamping system, is shown in Table 5.5. The SPNC needs place 15, transition 

8 and arc 25, while BPNs only needs place 6, transition 6 and arc 12 from Fig 5.8 and 

Fig. 5.6 (b), respectively. Furthermore, the mapping unit is from SPNC and BPNs to 

LLD are 8 and 6 from Fig. 5.9 and Fig. 5.6 (d), respectively. Thus the BPNs are a 

simple approach. 

 

5.5. Summary 

In this chapter, a clear design approach is proposed for the testing, diagnosis and 

implementation of logic controllers using BPNs. The BPNs model is a core approach, 

a bridge between a system specification and PLC code.  The abstract model can 

directly generate a testing event sequence to solve the experience-based testing and 

diagnosis problems of controllers. It also supports network-based monitoring and 

supervision, and it can be directly mapped into three types of PLC code to support 

different implementations. Finally, an example of a stamping process is provided to 

illustrate the design, implementation, testing and troubleshooting process as well as to 

demonstrate the usefulness of this approach. 
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CHAPTER 6 

CONCLUSIONS 

 

6.1. Summary of Contributions 

 

 In this thesis, a method for the design, testing, diagnosis, and implementation of a 

sequence controller for remotely monitored and controlled processes were proposed. 

The model and techniques developed in thesis are useful for industrial applications of 

automated systems. The contributions of this thesis to the design of automated 

systems can be summarized as follows: 

1) Test generation and determination of fault sites in combinational circuit 

    To improve the efficiency of logic faults, the transitions of general Petri nets 

were modified according to a local critical true table, known as the Logic Petri 

nets (LPNs). The LPNs model transferred complex circuit problems into a local, 

adjacent place and a transition relational problem, which simplified the site of 

fault and fired logic value problems (Tsai, Lee and Teng 2006). 

 

2) Construction of an abstract model of a ladder diagram 

To diagnose the local fault of a ladder diagram on-line, a Boolean Petri nets 

model was proposed. The model introduces the concepts of composite transitions, 

composite places, and relevant states to reduce the complexity of the system and 

to increase the readability of Petri nets. To determine faulty areas of the ladder 

diagram, the proposed diagnostic process employs simple matrix manipulations 

and a difference output vector (DOV) (Tsai and Teng, 2010). 
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3) Implementation of ASIC for the testing of a ladder diagram 

To solve experience-based testing and troubleshooting problems in LDs, the 

developed method introduces a procedure that compares fault circuits and 

fault-free circuits into integrated circuit testing. Moreover, to achieve the 

proposed method, a fault-free model was constructed and application-specific 

integrated circuits (ASICs) and testing event sequences were implemented. As a 

result, the testing problem was transformed into the determination of event 

occurrence. For instance, if an event did not occur in the primary input, then a 

response is not obtained from the primary output. Likewise, if an event occurs in 

the primary input, then the primary output responds accordingly, which results in 

the detection of faults (Tsai, Lin and Teng, accepted). 

 

4) Design for the testing and implementation of logic controllers 

To solve experience-based testing and diagnosis problems in the design of 

sequence controllers from system specifications, a BPNs model that acts as a bridge 

between system specifications and PLC codes was developed. The abstract model can 

directly generate a testing event sequence to solve experience-based testing and 

diagnosis problems in sequence controllers. The model also supports network-based 

monitoring and supervision, and can be directly mapped into three different types of 

PLC code to support a variety of implementations. Finally, an example of a stamping 

process was provided to illustrate the design, implementation, testing, and 

troubleshooting of a sequence controller and to demonstrate the usefulness of the 

proposed approach (Tsai, Liao and Teng, submitting). 

 

6.2. Future Research 

  The applications of PNs for the testing of circuit systems can be extended in the 
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following directions: 

1) In this thesis, the LPNs were used to generate automatic test patterns (ATPGs) in 

combinational circuits. By applying an extended D-algorithm (Putzolu 1971), the 

present model could be extended to sequence ATPG applications. 

 

2) By employing BPNs, the testing and diagnosis of sequence controllers designed 

from system specifications or existing PLCs was achieved. In future studies, the 

BPNs map could be applied to Java language because Java technology was used to 

implement the intelligent agent for on-line supervision (Lee 2004, thesis).  

 

3) In this thesis, IDEF0, BPNs, and PLC were integrated to develop an approach for 

the testing and diagnosis of a sequence controller and the generation of testing 

events. In future studies, the proposed method could be extended to different 

IF-THEN systems for the support of network-based monitoring and supervision. 
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