B o

iE 1‘#%&‘1‘] Petri Nets i ;" 27 H g #

Construction and Applications-of Novel Petri Nets Models

:['7"'2/,"": ;4:
Eii.%%y_

I ERE ke

PERRA4 L4 ES

7N

& A7) Petri Nets -5 &7 2 i *

Construction and Applications of Novel Petri Nets Models

I R =5 v Student: Jui-I Tsai
IR B ERR Advisor: Ching-Cheng Teng

A Dissertation
Submitted to Institute of Electrical Control Engineering
College of Electrical Engineering and Computer Science
National Chiao-Tung University
In Partial Fulfillment of the Requirement
For the degree
of Doctor Philosophy
in
Electrical Control Engineering
July 2010
Hsinchu, Taiwan, Republic of China

foE R R 4 L4 & - 1 o 4p

II

g A Al PetriNets # ;¢ & H g *

k|

3
e
g

= 5 R BrcRE

A~ 1% Petrinets ¥ &% - 22 1 Logical Petri nets f= Boolean Petri
nets » A W& H* DR FARE P o 48 T BRI (IC testing) & T B4R B ¢ FE)
(ladder diagram)ip|3& ~ & #7{ok -4 8 o

F AT B RIEE P > Logical Petrinets #1345 £ (& % (true table) 2 &/t &
(critical value) #72& T]é‘;rﬁ = B3 # 454 #ii(Boolean algorithm){r collapsing fault

{2872 ¢ Petrinets & 7 a4~ BLE o & 2 47k) m it i B 2 (forward algorithm)

<

27 {4 19;% & ;2 (backward algorithm) » 5 3 % %= & 7 ¥ (combinational circuit)
P 7 PR B (test pattern) ~ Tl 2h = ¥ (site of fault) fripcs &iE & (firing
logic value) -

wfyH- B+ > #& 1) Boolean Petri nets (BPNs)z e #% #i°5* (abstract
model) » ¥ ® /¢ _BPNs “transition FFE » & 2 PR E £ 5 7| (test event
sequence) fr#k & # iF 11 % % 4% 48 T #& (application- specific integrated circuits) ©
P BT RN FIES G 0 4 T R4 AR F $22 4 BPNs 3 % R 2
1 * IDEFO Li"}#i#;%BPNS PR T RE B PRSI ET R - &

o5 d - #RL 47 Er 48 K (stamping process)#% i — F§ 17 B4E R K 3+ ~ BT

il

Construction and Applications of Novel Petri Nets Models

Student: Jui-I Tsai Advisor: Prof. Ching-Cheng Teng
Institute of Electrical Control Engineering

National Chiao-Tung University

Due to the flexibility of Petri nets (PNs) and their ability to construct various types
of clear, readable and suitable plane models, PNs have been recently employed in
industrial applications. In this thesis, a Logic Petri nets (LPNs) and a Boolean Petri
nets (BPNs) were applied to test, diagnose, and design ladder diagrams (LDs) and to
test integrated circuits (ICs).

In IC tests, the proposed .LPNs model possesses.the properties of a Boolean
algorithm including collapsing fault and clear physical.concepts because the LPNs
model was constructed according to the critical truth table of combinatorial circuits.
To solve generated test patternssand determine fired logical values at the site of fault
in combinational circuits, the proposed approach contains a site of fault and fired
logical value reasoning algorithm and a test pattern generation reasoning algorithm.

In existing LDs, the proposed BPNs was used to construct an abstract model that
can directly generate test events from the transition sequence of the BPNs and can
support the implementation of application-specific integrated circuits (ASIC).
Moreover, in the design of programmable logic controllers (PLCs), the proposed
abstract BPNs model can be constructed according to the specifications of the system
or by employing the integration definition for function modeling (IDEF0). The
abstract model developed in this thesis can directly generate a testing event sequence
for PLC testing and diagnosing. Finally, an example of a stamping process is provided

to illustrate the design, implementation, testing and troubleshooting process.

il

Comparison of the basic elements (i.e., number of places, transitions, and arcs) of
simplified Petri net controller (SPNC) (Lee, 2004) and BPNs are also given to

demonstrate the usefulness of this approach.

Key Words: Logic Petri nets, Boolean Petri nets, Petri nets, Abstract model, Ladder

diagram, Diagnosis, Testing, Fault model.

v

ACKNOWLEDGMENT

T2 e Pk o HRGSIEL 2 - o 1R I kLR B T O

F O » R AR S PR RO RS - B 13
= RIS MY PRI (EERI 7)~ FRNSHIPE

PSSR 1 F (R AT R PRSI

RESIEP R A O Y TR TR Y
(B Y 4+ SRR I O S e F- TS R b
Fol 2 [AR 722 S R L B I R (s
)~ T I R ot T o UM b+ 42 % Petr nets 711
fﬁ,éﬁhjﬂ‘& BE *%?ﬂt{\ﬁ;—r)[i IC Testing Fl 555 “J%,lr‘&%ﬂ@‘%ﬁﬁf ﬂﬁ;
Ea fw& Y5> £ EH Meng-Chu Zhou liﬁifﬁ‘ Petri nets model & > PIFF=%
AR iy AHZ0EE LRI FRRT P RAER! - IR BHHLY A R
4555 - -

IRV RATIIOBIO Y B S BFR A Y
FMBEBR B 9191 > POELE RIPIHO Y S) s L R B -

RGBT | TR RIS RIS O RGBT -

TABLE OF CONTENTS

Page
ABSTRACT (CHINESE) 1
ABSTRACT (ENGLISH) iii
ACKNOWLEDGMENT v
TABLE OF CONTENTS vi
LIST OF TABLES iX

LIST OF FIGURES Xi

CHARPTER 1
INTRODUCTION 1

1.1. General Review 2
1.2. Problem Statement 4
1.3. Proposed Approach 6

1.4. Organization of Thesis 8

CHARPTER 2

TEST GENERATION AND FAULT IDENTIFICATION

IN COMBINATIONAL CIRCUITS USING

LOGIC PETRI NETS 10
2.1. The Model and Properties of Logic Petri nets 10

vi

2.2. A Fault Logic Reasoning Algorithm

for Sites and Fired Logic Value 14

2.3. Forward and Backward Reasoning Algorithm 15

2.4. Summary 21
CHARPTER 3

CONSTRUCTING AN ABSTRUCT MODEL FOR LADDER

DIAGRAM DIAGNOSIS USING PETRI NETS 22
3.1. Boolean Petri nets 23
3.2. Ladder Diagram Model Using Boolean Petri Net 27
3.3. Application Example 31
3.4. Summary 40
CHARPTER 4

AN ASIC IMPLEMENTATION FOR TESTING OF A

LADDER DIAGRAM USING A BOOLEAN PETRI NET 41
4.1. Boolean Petri Net and Ladder Diagram Model 41
4.2. Testing and Troubleshooting of ladder Diagrams 47

4.3. Application Example 53

vil

4.4. Summary 57

CHARPTER 5

DESIGN FOR TESTING AND IMPLEMENTATION OF
LOGIC CONTROLLERS USING BOOLEAN PETRI NETS 59

5.1. Boolean Petri nets 60
5.2. Constructing the Boolean Petri Net and Implementation 62
5.3. Testing and Troubleshooting 65
5.4. An example of stamping Process 68
5.5. Summary 76
CHAPTER 6
CONCLUSIONS 77
6.1. Summary of Contributions 77
6.2. Future Research 78
REFERENCES 80
VITA 84

PUBLICATION LIST 85

viii

LIST OF TABLES

2.1.

2.2.

2.3.

24.

2.5.

2.6.

3.1.

3.2.

3.3.

4.1.

4.2.

4.3.

4.4.

4.5.

4.6.

True table and logic Petri nets model

Boolean algorithm respect to LPNs

Fault Collapsing respond to LPNs

The transition state for forward and backward of places
Immediate reachability set, reachability set, immediate backward
incidence set and backward incidence set for each placeP,.

Set of adjacent place Ap, {for each placeP,.

Some LDs models and their corresponding BPNs models.
Composite and Decomposite of Boolean Petr1 nets.

The descriptions of symbol.

Simplified BPNs.

Some LDs modules and their corresponding BE and BPNs models.

Composites and decomposites of Boolean Petri nets.

True table of a simple ladder diagram circuit

Test event sequence.

The HDL code of a basic ladder diagram

12

13

13

15

20

20

28

29

33

44

45

46

49

51

52

X

4.7. Descriptions of symbols

4.8. Test event sequence and troubleshooting of motor starting LDs

4.9. The HDL code of motor start action.

5.1. The information from the BPNs to PLC code.

5.2. True table of a simple ladder diagram circuit.

5.3. Test event sequence and troubleshooting.

5.4. Test event sequence and troubleshooting of stamping process.

5.5. Comparison of SPNC and BPNs for stamping system

53

56

57

65

66

68

74

74

LIST OF FIGURES

2.1. Logic Petri nets model for NOT gate.

2.2. (a) Combinational circuit, (b)LPNs circuit

2.3. (a) Petri nets for immediate reachability, reachability, immediate

backward incidence, and backward incidence sets,

(b) Petri Net for adjacent place.

2.4. (a) Combinational circuit, (b) LPNs equivalent circuit.

2.5. The comparison between LPNs model and traditional method:

(a) A sample good circuit;

(b) A faulty circuit;

(c) The search graph for locating the fault;

(d) A faulty circuit of LPNs;

(e) The search graph for locating the fault of LPNs

3.1. Proposed hierarchical control.

3.2. (a) An example Petri nets,

(b) A token moving from A to B in Fig. 3.2. (a) After t, fire.

3.3. A simple example.

12

14

16

18

25

22

26

26

X1

3.4. The reduction result of Fig.3.3. 26

3.5. (a) A simple example and (b) the composite result of Fig.3.5. (a). 27

3.6. (a) A LDs of possessed fault and (b) A Petri model of possessed fault. 30

3.7. Control circuit of a Y-A starting motor. 32
3.8. BPNs model of a LDs controller. 33
3.9. Equivalent diagram of Fig. 3.8. 33
3.10. Abstract model of Fig.3.9. 33
3.11. The reachability tree of the proposed BPNs. 35

3.12. Petri nets model: (a) with fault f , (b) with fault- f,,

(c) with fault f, in Fig.3.7. 37
3.13. Simulated fault free model and fault model. 37
3.14. The faulty area in case 1. 39
4.1. Framework of LDs functional testing 41

4.2. (a) An example Petri nets,

(b) A token moving from A to B in Fig. 4.2. (a) After t, fire. 42

4.3. (a) A basic ladder diagram circuit, (b) corresponding to AND logic,

(c) Corresponding to the BPNs model. 50

4.4. (a) Self-hold of a ladder diagram, (b) Corresponding to BPNs model and

Xil

(c) Simplified BPNs model.

4.5. Control circuit of a Y- A starting motor.

4.6. (a) BPNs model of a LDs controller, (b) equivalent diagram of Fig.5 (a),

(c)Simplified model of Fig. 5(b), (d) ASIC diagram,

(e) Simulation result.

5.1. Implementation scheme of PN-based controllers.

5.2. Proposed hierarchical control.

5.3. (a) Filling tank, (b) BPNs model of filling tank;

(c) Material flows of IDEF0 and (d) Information flows of IDEFO.

5.4. The IDEFO scheme

5.5. BPNs model, (b) Corresponding to a self-hold of a ladder diagram

5.6. (a) Structure diagram of the stamping system (from Lee 2005),
(b) Corresponded BPNs of the stamping system,
(c¢) Corresponded BPNs of add safe designed stamping system,
(d) Mapped LLD.

5.7. Abstract BPNs model of stamping system.

5.8. Corresponding SPNC of the stamping system (from Lee, 2004)

5.9. LLD implementation of stamping system (from Lee, 2004)

51

33

56

59

60

63

64

67

71

72

74

75

xiii

Chapter 1

Introduction

In industry, programmable logic controllers (PLCs) are often programmed with
ladder diagrams (LDs), and the overall design and testing of the LDs are based on
operator experience. Recently, Petri nets (PNs) have become popular tools for the
design and implementation of logic controllers. Compared to LDs, Petri nets establish
a system controller for various PLCs in a more flexible and understandable manner.
Previous studies on the desigh of LDs and Petri nets have focused on the
characteristics of both models and the conversion between LDs and Petri nets for the

analysis, validation, design, and implementation-of PLCs (Peng, 2004).

The objective of this thesis was to achieve the following goals:

1) To develop a novel Petri nets for the construction of an abstract model of a logic
controller.

2) To develop a testing and diagnosis procedure for existing logic controllers.

3) To develop a clear approach for the design of logic controllers.

The models and approaches developed in the thesis were applied to Y —A starting

motor and stamping processes.

1.1. General Review

Petri nets (PNs) theory was developed in 1962 by Carl A. Petri (1962). PNs are a

theoretical, visual and graphical tool for the modeling, analysis, validation and control

of discrete event systems. Moreover, PNs are excellent tools for modeling

asynchronous concurrent systems. Due to the flexibility of PNs, they can be used to

construct models of various systems, including information flow management,

computer systems, manufacturing systems and power systems (Lan, 2009), (LO, 1997)

Recently, video streaming systems based on PNs have been developed (Hu, 2009),

and supply chain management systems have been previously constructed (Dotoli,

2009).

1.1.1. Development of an abstract model

Modeling plays an essential role in the design, fabrication, and testing of a digital

system (Abramovici, 1990). Moreover, many techniques have been developed for the

identification of faults in combinational circuits (Looney, 1987), (David, 1995);

however, most of these methods are based on functional modeling at the logic level. A

Logic Petri nets (LPNs) model of combinational circuits is alternation modeling

approach; thus, the LPNs model can transfer logic circuit problems into a local,

adjacent place, resulting in a transition relational problem.

Traditionally, ladder diagrams (LDs) have been applied to programmable logic

controllers. For instance, Jackman et al. (1995) proposed a conceptual model and

working equation for converting relay ladder logic into a PNs model. Lee et al. (2000)

presented a method for obtaining an augmented PNs from a LDs, and applied the Petri

nets state equation to validate the corresponding flow mechanism in the PNs.

Venkatesh et al. (1994) and Peng et al. (2004) modeled the conversion of a LDs

contact to a PNs place, and increased the rate of virtual transitions. Lee et al (2004)

modeled the conversion of aLDs connect to'a PNs transition, and increased the

position in the resulting PNs. However, the total number of nodes and links in the

generated Petri nets were relatively high, and the complexity of the system increased.

To reduce the complexity and increase the readability of the sequence control system

in the construction of an abstract model, a Boolean Petri nets that introduces

composite transitions, composite places, and relevant states was employed in this

thesis.

1.1.2. Diagnosis and testing of the ladder diagram

In industry, LDs are used to program logic controllers. The LDs allow plant

maintenance personnel to troubleshoot and maintain the system (Peng, 2001);

however, the overall troubleshooting method is often experience-based. Given the

complexity of control programs and manufacturing systems, verification is time

consuming, and the systems are difficult to troubleshoot. The proposed BPNs are the

first model to introduce the concept of integrated circuit testing for solving

experience-based testing and troubleshooting problems in sequence controllers in

manufacturing systems.

1.1.3. The design of the logic controller

In industry, programmable.logic controllers (PLCs) are often programmed using

LDs, and the testing of PLCs is often experience-based. Moreover, verification is

typically conducted through experiments or simulation. PNs focus on the design and

implementation of logic controllers; however, tools for the design, implementation

(Uzam et al. 1998), (Lee et al., 2005], and diagnosis of logic controllers are required.

To achieve this goal, the Boolean Petri nets was employed, which supplies an

integrated design tool for sequence control systems.

1.2. Problem Statement

LDs are a common method used to control discrete events in the programmable

controller of an automated system. Researchers are constantly pursuing integrated

tools that overcome the current limitations of LDs. The objectives of these tools

are to control the automated system, and to analyze, evaluate, and simulate the

sequence control system. Over the past several decades, PNs have emerged as an

important tool for the production of integrated solutions for the modeling,

analysis, simulation, and control of automated systems. The construction of

abstract models in existing circuits or specifications is not straightforward; thus,

different types of PN-based models have been proposed and applied to diagnosis

and test automated systems. However, all novel PNs must contain the following

requirements:

1.2.1. An alternation model for the testing of combinational circuit

In practice, many techniques for the identification of faults and test patterns

have been proposed. However, most of these methods have been developed

through functional modeling at the logic level.

1.2.2. An abstract model for existing LDs

Although LDs have been converted to PNs for analysis and validation (Peng,

2004), PNs are usually more complex, and the construction of abstract models

of LDs is not straightforward.

1.2.3. Systematic testing approaches for existing LDs

1.2.4.

Systematic LDs testing is important; however, experience-based testing is

still relatively common.

A sequence controller design for the testing, diagnosis and implementation of

programmable controllers

Although PLC engineers prefer to use LLD for the implementation of

programmable controllers, and straightforward designs have been constructed

with LLD models, these designs only focus on implementation while testing

and diagnosis of the system are neglected.

1.3. The proposed approach

To overcome the aforementioned problems, the following approaches are

proposed in this thesis:

1.3.1.

Improved logic fault efficiency

The transitions of the PNs are modified according to the critical truth table to

produce a model called the Logic Petri Nets (LPNs). The LPNs model can

transfer a complex circuit problem into a local, adjacent place and a transition

relational problem, which simplifies the identification of the fault sites and fired

logical values. The LPNs model possesses the properties of a Boolean

algorithm, including collapsing fault with clear physical concepts, fast

calculation speed, and high veracity.

1.3.2. Constructing an abstract model of the ladder diagram

In this thesis, a Boolean Petri nets (BPNs) is introduced, and the approach

used to transfer a LDs to a BPNs converts normal open (NO) and normal close

(NC) contacts in the LDs into PNs transitions and converts devices (e.g., relay

coils) in the LDs into PNs places. Moreover, the BPNs introduce the concepts of

composite transitions, composite places; and relevant states to reduce the

complexity of the system and to increase the readability of PNs in the

construction of abstract.models. The abstract model can be applied to the

analysis and diagnosis of local controllers for the support of network-based

monitoring and the supervision of automated systems.

1.3.3. Systematic testing of sequence controllers.

In this thesis, the concept of integrated circuit testing was introduced for the

construction of a fault-free model and the generation of a test events sequence for

LDs based on a BPNs. The fault-free BPNs model can directly convert hardware

description languages (HDLs) and can implement application-specific integrated

circuits (ASICs). The comparison of the response of a fault-free circuit (i.e.,

ASIC circuit) and a fault circuit (i.e., LDs circuit) leads to the detection of fault

occurrence, which aids in troubleshooting.

1.3.4. Design for the testing, diagnosis and implementation of the sequence

controller

In this thesis, a design scheme for the testing, diagnosis and

implementation of logic controllers based on BPNs are proposed. The

abstract BPNs model can be constructed according to the specifications of the

system or by employing the integration definition for function modeling

(IDEFO0). The abstract model can directly generate a testing event sequence

for the testing and diagnosis of PLCs. Moreover, the model can also support

network-based monitoring and supervision, and can be directly mapped into

relay ladder logic (RLL), ladder logic diagrams (LLDs), or hard description

language (HDL) for implementation in a system controller.

1.4. Organization of the thesis

This thesis is organized as follows: in Chapter 2, the LPNs model used to generate the

testing pattern of the combinational circuit is introduced. Chapter 3 introduces the

BPNs model used to construct the abstract model and to diagnosis the LDs. In Chapter

4, the BPNs model is used to generate testing event sequences and to implement ASIC

for LDs testing. In Chapter 5, an integrated IDEFO/BPN/PLC approach for the testing,

diagnosis and implementation of the sequence controller design is proposed. Finally,

conclusions and recommendations for further research are provided in Chapter 6.

CHARPTER 2
Test Generation and Fault Identification in Combinational

Circuits Using Logic Petri Nets

PNs are an excellent tool for modeling asynchronous concurrent systems. In
this chapter, the proposed PNs are modified to solve test generations and sites of
fired values based on the truth table of combinational circuits. To develop the
LPNs, critical truth tables were embedded into the transitions of the PNs. Thus,
the LPNs model can transfer a complex circuit problem into a local, adjacent
place and a transition relational: problem, which simplifies the identification of
fault sites and fired logical values. Several algorithms were implemented to
obtain the test pattern and to improve the speed of calculation. Moreover, to
demonstrate the effectiveness of the' LPNs model, - two different processes were

modeled with the LPNs.

2.1. The Model and Properties of LPNs

The purpose of the development of LPNs model is that the LPNs model holds clear
logical property in IC testing. Firstly, the simplest way to represent a combinational
circuit is by its truth table. Assuming binary input variable, a circuit realizing a
function X(x,X,,...,x,) of n variables requires a table with 2" entries. The data
structure representing a truth table is usually an array U of dimension 2". We
arrange the input combinations in their increasing binary order. Then, we obtain
U(0) = X(0,0,..,0), U(l)=X(0,0,.,1), ..., UQ"=1)=X(LL..,1). The truth table can be
divided into critical and no-critical part. For AND gate, the corresponding critical
valueis x,el, x,el,and U(2’-1)=X(L1)=1. Thatis, if X(x,x,)=1 then x el and

10

X, €l; no-critical value of AND gate is x 1 or x,¢1 and X(x,x,)=1, ie., if
X(x,%,)#1 then f{x,x,}a {L1}.

In this section, we embed the critical value of truth table into transition of PNs to
develop LPNs model. This special transition is called “logic transition”. Table 2.1
describes the LPNs model corresponding to the truth table. Clearly, the LPNs model is
matched properties of Boolean algorithm and fault collapsing. Based on the embed
critical value of truth table in LPNs model, the Boolean algorithm and fault collapsing
in LPNs representation are shown in Table 2.2 and Table 2.3.

In general used representation, the LPNs model structure can be defined as follows:

LPN =(P,T,D,1,0,i,0, f,b,a,m,)
Where
p=1{p,p,.P,}: finite set of places,
T={t,t,.,t} : finite set of logic transitions by critical value of truth table,
D={d,.d,,...d, }: finite set of propositions,
PNTND=00,
IPl=[ol,
| :T — P”: an input function (a mapping from transitions to bags of places),
O:T — P”: an output function (a mapping from transitions to bags of places),
i:T — {o,0}: logical value of a input transitions,
0:T — {o,0}: logical value of a output transitions,
f:p—i(t): input logical value of a transitions (a forward mapping from place p
to input critical value i(t,)),

b:p—o(t,): output logical value of a transitions (a backward mapping from place
p to output critical value o(t,)),

a:P — {oo}: logic value of place (a mapping from place to logic value, a(p,)={s.0},
i.e., o denotes logic 1 and - denotes logic 0).

11

m, : P — {—e,} : Initial mark.
Example 1: Herein, the description of LPNs model for NOT gate is introduced, as the
following Fig. 2.1.
p,, p, :place, t,:transition, d,: stuck-at-1, I(t)=p,, Ot)=p,, i(t)=e, o) =0,

f:p, —it)=e, b:p,o0()=0, a:P —>e.

J t, P,

©—e—O

Fig. 2.1. Logic Petri Net model for NOT gate.

Table 2.1: Truth table and Logic Petri Nets model

TYPE True Table Logic gate Logic Petri Nets
A C £
A C A 7
NOT gate 1 0
A B C .
0 0 0 A C A ' ¢
ORgate | 0 1 | 1 @—
1o |1 | B B
1 1 1
A B C
I,
0o 00 A A Yoo
AND gate 0 1 0 }
B
1 0 0 B
1 1 1
A B C
. A ¢
0 0 | A k C
.............. - C
NOR gate 0 | 0
B
1 0 0 B
1 1 0
A B C
0o 0|1 A c A ¢
NAND gate| 0 1 1 }—
1 0 1 B B
1 1 0

12

Table 2.2: Boolean algorithm respect to LPNs

NO |Boolean algorithm |Before Logic Petri Nets After Logic Petri Nets
— 4 h e A A
W [@=4 Creos(e () OO
A A+ A A A
@) jamach OO
1O
4 Ae 4 A A
@ reaa OO
A
4 A4+0 A A
(4) |A+0=A 0 oD
40 del 4 4
(5) |ae1=A)] O—u{o—-o
4 4+l A 1
(6) |A+1=1 . .
A . A0 A 0
) jas0=0 0 O 0
A+d=1 4 4T 4 .
® - Old—®
A
Ae A=0 -
4 Ae 4 4 0
® O(jo—»@
A4
— - = A+B - deB
(4=B)=AeB 4 A 4B
(10)
5 O
m -1-F A AeB i A+ B
(11)
2O O
B

Table 2.3: Fault collapsing respect to LPNs

Type of gate Logic gate Logic Petri Nets
4~ f
INot gate 4|>o—
Avy C
A
OR gate
BA
Ad C
IAND gate .
v
BA
INOR. gate
ey C
INAND gate %DDL
B

13

2.2. A Fault Logic Reasoning Algorithm for Sites and Fired Logic Value
Using the LPNs model, we proposed an algorithm to determine sites of a fault fired
logical value at combinational circuits.
Algorithm 1

Step 1: Transfer the circuit into the LPNs circuit.

Step 2: List the table for transitional state of forward of place f(p,)and backward of
place b(p,).

Step 3: If b(p)=¢ and f(p,) # ¢ then place p, is the primary input, while line of
a primary input is fired logical value f(p) , and it is denoted by
D(p,) =s-a- f(p)).

Step 4: If b(p) # ¢ and f(p,)=¢thenplace 'p; +is the primary output, while line of a
place of primary output is fired logical'value b(p,), and it is denoted by D(p,)=
s-a-b(p,),

Step 5: If b(p)=4¢, f(p)=4, and b(p)= f(p) then line of a place p, is fired
logical value f(p,), and it-is denoted by D(p,)= s-a- f(p,), else no site of fault

for test generation.

Using Algorithm 1, the site of fault and fired logic vales can be found. An example
of simple circuit is described below.

P —

P, —

Ps
Py |

Ps

(a) (b)

Fig. 2.2. (a) Combinational circuit; (b) LPNs circuit

14

Example 2: A simple combinational circuit with AND and OR gates are used here (as

shown in Fig. 2.2 (a)).

Step 1: Transfer the combinational circuits to LPNs circuit, as Fig. 2.2 (b).

Step 2: List the transitional state as Table 2.4.

Step 3: Place p,, p,, p, and p, are primary inputs since b(p,)=b(p,)=b(p,) =b(p,)=4.
D(p,),D(p,),D(p,)and D(p,) are stuck-at-1 by f(p,)= f(p,)= f(p,)=f(p,)=1.

Step 4: Place p, is primary output since f(p,)=¢. D(p,) is stuck-at 1 since
b(p,)=1.

Step 5: p,, p, are not terminal place since b(p,) = ¢, f(p,) = ¢ and b(p,)= f(p,),
then D(p,) and D(p,) are stuck-at O since f(p,)=f(p,)=0.

By the results of above discussion; we can:determine the fired logical values

(struck-at-fault) of places p;....p7 as Table 2.4.

Table 2.4: The transitional state for forward and backward of place

Pl;ce b(p;) fp,) D(p;) Sign of stuck-at-fault
P 9 i(f,)=» Stuck-at-1 T
7, o i) =» Stuck-at-1 0
7 @ i(t,)=» Stuck-at-1 T
Py ¢ i(t,)=e Stuck-at-1 T
s o(t)=-e i(ty)=co Stuck-at-0 \
Ps | olty)=» i(t;)=- Stuck-at-0 1
p; | oty =o ¢ Stuck-at-1 T

2.3. Forward and Backward Reasoning Algorithm

By the definitions of literature (Chen et al., 1990), (Chen et al., 2000), immediate
reachability set, reachability set, immediate backward incidence set, backward
incidence set, and adjacent place, a forward and backward reasoning algorithm is

proposed for test generation of combinational circuits.

15

P2z Py

(a) (b)
Fig. 2.3. (a) Petri Net for immediate reachability, reachability, immediate backward
incidence, and backward incidence sets (b) Petri Net for adjacent place.

Firstly, the PNs model for describing the definitions is shown in Fig. 2.3. For Fig.

2.3 (a), let t and t, be general transitions, and p,, p,, p, be three places. If
p,el(t), p,eO),p,elt) and p, eO(t,), then we have

(1) Place p, is immediately reachable from place p,,

(2) Place p, is immediately reachable from place p,,

(3) Place p, is an immediately backward incidence place of place p, ,

(4) Place p, is animmediately backward incidence place of place p, ,

(5). Places p, and p, are reachable from place p,;

(6) Places p, and p, are backward incidence places of place p, .

The reachability relationship s the reflexive closure of the immediately reachable
relationship. The backward incidence relationship is the reflexive closure of the
immediately backward incidence relationship.

The set of places that is immediately reachable from a place p, is called the
immediately reachability set of p, and is denoted by IRS(p,). The set of places that is
reachable from a place p, is called the reachability set of p, and is denoted
by RS(p,). The set of places that contains immediate backward places of p, is called
the immediate backward set of p, and is denoted by IBIS(p,). The set of places
which contains backward incidence places of p, is called the backward incidence set
of p, and is denoted by BIS(p,).

For Fig. 2.3(b), let t be a transition, p,, and p,, be places. If place p, el(t,)
and place p,,el(t) then p, and p,, are called adjacent places with respect tot, .

16

Next, we have the following forward and backward reasoning algorithm.
Algorithm 2

Step 1: Transfer the combinational circuits to LPNs circuit.

Step 2: List the table for immediate reachability set, reachability set, immediate

backward incidence set, backward incidence set, and the table for set of adjacent

places Ap, for each placep,.

Step 3: Find the primary inputs p, (IBIS (p,) =¢) and primary outputs (IRS (p,)
=4).

Step 4: Select a site of fault and fired logic value from Table 2.4, activate it and
propagate to primary output, i.e., generate a fault effect and sensitized path. Initial
mark m, are comprised by logical® value of. fault effect and logical value of a
propagation of all adjacent place of sensitized path (i.e., f:AP, —i(t) is logical
value of an input transitions of all adjacent place of sensitized path).

Step 5: Find the test pattern by initial mark backtracing path and hold the fault effect

as below.

(1) Proposition of place P;- D(p,) generates a fault effect and forward propagates

the error through % to proposition of immediate reachability place p, - D(p,)

until to the primary output p,. The change of the state of D(p,) is depended on the

input value i) and output value o¢t,) of transition relation. If
i(t,)=0(t) then D(p,)=D(p,) . Otherwise, D(p,)=D(p,) . Details of i(t) and
o(t) can be found in Table 2.4.

(2) At the same time, the proposition of place p, possesses a fault effect. The token
of adjacent place Ap, is equal to a forward mapping from Ap, to i), 1e.,
a(AP,) =i(t) , the sensitized path is hold. Then we select a back path of immediate

backward incidence place Ap, through transition t, (IBIS(Ap,)) to primary input

17

p.- If a(Ap,)=0(t)) then {a(p,)}={i(t,)}. Otherwise, {a(p,)}< {i(t,)}.

(3) Find the test generation of back path. Place p, propagate back through
transition t, to p until to primary input p,.If «(p,)=o(t,) then {a(p,)}={it,)}.
Otherwise, {a(p,)} fi(t,)}.

Step 6: If we can find a token of primary input «(p,)set and generate a fault effect
then fault f is detectable and test generation is set of a primary input token «a(p,) .

Finally, we use an example to illustrate the LPNs reasoning process for test

generation.

Py —
Py —

Ps

s

(a) (b)

Fig. 2.4. (a) Combinational circuit, (b) LPNs equivalent circuit.

Example 3: Determine test generation of sat-at-1 at p, and sat-at-0 at p, in

combinational circuit, as shown in Fig. 2.4(a).
Case (a) D(p,) : sat-at-0.

Step 1: Transfer the combinational circuits to LPNs circuits as shown in Fig. 2.4 (b).

Step 2: List the table for immediate reachability set, reachability set, immediate
backward incidence set, and backward incidence set table and the table for set of
adjacent places Ap, , as Table 2.5 and Table 2.6.

Step 3: Find the primary input p, ={p,,p,,p,,p,} and the primary output p, = {p,}.

Step 4: Select a D(p,) (which is sat-at-0),a(p,)=1 is generate a fault effect and
a(p,) =01s logical value of a propagation of all adjacent place of sensitized path. So

18

m, = {a(p,) =b(p,) = 0o(t,) =1, a(Ap,,) = a(p) = i(t) = 0}.
Step 5:
(1) D(p,) propagates the error through t, to D(p,)=1/0 since i(t,)=o0(t,).
(2) a(AP)=a(p,)=i(t)=0 , sensitized path is hold. «a(p,)=o(t)=0 implies
fa(p).a(p)f= fic)it)} ={L1, i, {a(p),a(p)f = {0.0jor{o,lor{L.of.
(3)a(p,) =b(p,)=o(t,) =1 implies {a(p,)a(p,)} ={it)i(t,)}={11}.
Step 6: D(p,) sat-at-0 is detectable. Then, the test generation is

a(p,) ={la(p).a(p,)} (LI {a(p,).a(p,)}= {L1}}.

Case (b) D(p,) : sat-at-1
Step 1: Transfer the combinational circuits to LPNs circuit as Fig. 2.4 (b).
Step 2: List the table for immediate reachability set, reachability set, immediate
backward incidence set and backward incidence set table and the table for
table set of adjacent places Ap, , as Table 2.5 and Table 2.6.
Step 3: Find the primary input “p, ={p,,p,,p,,p,} and the primary output p, = {p,}.
Step 4: Select D(p,) (sat-at-1) and a(p,)=0 generate a fault effect. a(p,)=1,

a(p,) =0 are logical value of a propagation of all adjacent place of sensitized path.

go M =1x(p) = T(P) =i(6) = 0,a(Ap,) = a(p) =it =1,
a(Ap,) =a(p,) =i(t,) =0}

Step 5:

(1) D(p,) (sat-at-1) and «a(p,)=0sincei(t,)=o0(t,), D(p,) propagates the error
through t, toD(p,)=0/1. andi(t,)=o(t,), D(p,) propagates the error through t,
to D(p,)=0/1.

(2) a(AP,)=a(p,)=it,)=1.

(3) a(AP,)=a(p.) =i(t,) =0, sensitized path is hold. The result is similar to (2) of

case (a)- Step 5. Thus, {a(p).a(p)}={it)it)}={L1}, ie, {a(p)a(p.))

19

Step

={0,0}or {0,1}or {1,0}.

6:

D(p.)

sat-at-1

is

detectable

a(p,) ={la(p).a(p,)}z LI} {a(p,).a(p,)}=10}.

and

test

generation

1S

Table 2.5: Immediate Reachability Set, Reachability Set, Immediate Backward

Incidence Set and Backward Incidence Set for each place p,

Place IRS(p;) RS(p;) IBIS(p;) BIS(p,)
P {P ; I}):P-} ¢ ¢
Py {P; {PP; 4 ¢
Py {Ps} {ps-p?} ¢ ¢
Py {Ps} {Ps-p?} ¢ ¢
Ps {P} [P} "tprp:} {Pl-P:}
Ps {P“} Ip"} "tps-f-’4} {P3-P4}
P; ¢ ¢ {ps.ps} {{ps.ps) {p;- P P12,)}

Table 2.6: Set of Adjacent Places Ap;,- for each place “p;

Place p, Transition f, it;) o(t;) |Place p, Ap
2 I3 1 1 Ps b
P L 1 1 Ps b
b, f 1 1 P Py
p, I 1 1 Ps Ds
b I 0 0 P, P
P Iy 0 0 P s

The comparison between LPNs model and traditional method by Kirkland et al.,

(1988) in test generation for combinational circuit is shown in Fig. 2.5. The major

differences are described below. (1) LPNs approach is parallel processing, i.e., LPNs

approach has less operational time than (Kirkland et al., 1988); (2) every back

tracing path of LPNs is shorter than (Kirkland

et al., 1988), i.e., complexity of

determining test generation LPNs is easier; (3) LPNs approach needs larger memory

than (Kirkland

et al., 1988), i.e., cost using LPNs approach will increase.

20

~ R -
L/ — L.e’ 0 \ J 0 \ /
~ ~ 7 ‘\/ \

) {’/7 _/\g/ ~
M zz ->‘—S’—L/{/ Primary l\@/
S input “_
(a) (b) (c)
4 ofolol
@ Lo d@*ﬂo-@ (L0 G‘/\LG};’{_
_ ! 4 L\\ 0 [E\‘ x
) L K —
(d) (e)

Fig. 2.5. The comparison between LPNs model and traditional method (Kirkland
1988): (a) A sample good circuit; (b) A faulty circuit; (c) The search graph for
locating the fault; (d) A faulty circuit of LPNs; (e) The search graph for locating the

fault of LPN.

2.4. Summary

For solving test generation and site-of fault in combinational circuits, we have
proposed a so-called Logic Petri Net model. The LPNs model embeds critical of truth
table into transition of Petri Net with clear physical concepts, fast calculation speed
and high veracity. It first transfers a complexity circuit problem to a local adjacent
place and transition relational one. Thus, the site of fault and fired logical value
problem is simplified. Both algorithms were presented for obtaining the test pattern
and improved the calculation speed. Two examples were shown to demonstrate the

effectiveness of LPNs model.

21

CHAPTER 3

Constructing an Abstract Model for the Diagnosis of

Ladder Diagrams Using Boolean Petri Nets

As shown in Fig. 3.1, hierarchical control is an approach for the design of

large-scale discrete event systems that are used to deduce complexity (Lee et al.,

2004). In a manufacturing system, a LDs controller may use a local controller, which

allows the LDs controller to be diagnosed and monitored remotely. In this chapter, the

local controller (i.e., LDs controller) and abstract model (i.e., corresponding to the

LDs model) are modeled with BPNs.“The LDs controller model employed in this

thesis is a structural model that is similar to the original LDs architecture, and the

abstract model is a behavioral model. The behavioral-model is simplified by the

structural model; however, the behavioral model matches the functions of the LDs

controller.

To construct an abstract model from a simplified BPNs model, a BPNs module was

constructed from a table of LDs rungs based on a Boolean equation.

Command Advice

A 4

Remote

Manger

Status Display
—

Supervisory |«
Agent
Comparison
Abstract JOutput
Model

Difference Output

Local

Controller

Real Contro

Controlled

System

22

Fig. 3.1. Proposed hierarchical control (by Lee (2004))
3.1. Boolean Petri nets

Carl Adam Petri proposed the Petri nets theory. Fig. 3.2 shows the structure of
Petri nets in a directed bipartite graph that consists of places, transitions, and arcs. A
circle with a token represents the places. A bar indicates the flow of tokens when
firing condition is satisfied, which represents the transition. Finally, a straight line that
connects the place to the transition, or the transition to the place denotes the arc,

which indicates the flow of tokens in the direction of the arrow.

A t, B A t, B
O Qi O——®
(a) (b)

Fig. 3.2(a) An example Petri nets, (b) A token moving from A to B in Fig. 3.2(a)

after t, fire.

3.1.1 Definition of Boolean Petri nets

The purpose of developing the BPNs model is that this model exhibits the imply
logic property in a LDs. The simplest way to represent LDs is by its Boolean equation.
The approach proposed in this chapter embeds the Boolean equation in a PN transition
to develop the BPNs model. This special transition is called the “Boolean transition.”
Table 3.1 describes the BPNs model corresponding to the Boolean equation. Clearly,
the BPNs model also matches the LDs. To map LDs into a Petri nets, the Petri nets
must be extended. This extended Petri nets is called a Boolean Petri nets, which can
be defined formally as

PN =(P,T,A,1,0,in,out,M,) (3-1)

23

WhereP = {p,, p,,...p,} ,m=>1, is a finite set of places representing the LDs action state.
The places are associated with a component or a set of components (i.e., a compound
component) such as the actuator output, relay coil, timer, counter solenoid, or source;
T={t.t,,..1,}» n=1,1s a finite set of transitions representing event whether occurs or not.
These transitions are always associates with a switch or a set of switches and
represented by Boolean equations or variables.

The switch can be a normal open (NO) switch or normal closed (NC) switch. The NO
switch is also called an “a” contact and the NC switch is also called a “b” contact,
wherePNT =® andPuT =®.

Ac (PxT)u(TxP) is a set of arcs (—) consisting of input arcs A (PxT) and output
arcs A (T x P). The weight of each directed arc in this chapter is 1, and A (PxT) is
defined as directed arcs from a place to.a transition. Places are called input places and
transitions are called output transitions, and the ‘input arc is represented by a
connected line as channel of token. A{(TxP) ‘is defined as directed arcs from a
transition to a place, the transition is _called the input transition and the place is called
the output place, and the output arc is represented by a connected line as channel of
token. The arc may be preservation arc (@—>) that a input arc and a output arc exist
simultaneously between same place and transition (Lee et al., 2000);1 :TxP — N is
an input function that defines as number of output arcs A (T x P), where N ={0,1,2,...},
O:PxT — N is an output function that are defined as number of input arcs A (PxT),
where N ={0,1,2,..};in={in,,in,,...in, }is a set of input switch, which is represented by
Boolean function or variable. A set of input switches is associated with a transition t,

and is denoted byt, ={in}. The Boolean function or variable can be ‘1°, in which case
the related transition t,is allowed to fire if it is enabled, or it can be ‘0’, in which case
the related transition t is not allowed to fire; out = {out,,out,....,out, }is a set of output
actuator which is associated with a p and is denoted by p, ={out}; M (P) is the

24

initial marking that uses a token to represent the place status.

A transition is enabled if the number of tokens at the place is larger than or equal
to the number of input arcs. A transition is firing if the enabled transition is fired and
its transition states are true (i.e., the Boolean equation is true). When a transition fires,
it moves the tokens from input places to output places along the input arcs and output
arcs, as Fig. 3.2 illustrates. This moves the token of place A to place B along directed
arcs if transition t, is firing. A marking is denoted as an m-vector, where m is the
total number of place P, while m(p,) is represented by the number of tokens at place

p, (Murata et al., 1989).

For the markingm,, there is an enabled transitiont,. If there is a firing of
transition t,, then the marking is immediately reachable to m from m,, denoted

by m,[t, >m’. A markingm.. is said reachable from m;- if there exists a sequence of

firings that transforms m, to. m;« R"(m,) is defined as the set of all reachable
markings from m;. F (m,) is'defined as the set of all firing sequences from m,. A
place p, is said to be bounded for an‘initial markingm, if3k> 0, >m(p;)< k,
and Vme R(m,). Specifically, it is said to be safe if k=1. A marking m, is said to
be live for a Petri nets if every marking has been reached from m,, which indicates it
is possible to fire any transition of the nets by some firing sequence (Murata et al.,
2007), (Zhou et al., 1998). If m, may be reached from any marking, The Petri nets is
said to be reversible.

To simulate the behavior of LDs, this approach changes a state or marking

according to defined firing rules for the Boolean Petri nets model.

3.1.2. State equation

25

The firing definition easily shows that the token moves from state M, to
another state M, by the kth firing, and U, is a firing vector which can be given in
terms of the following matrix state equation for Petri nets (Murata et al., 1977)

M, =M,_ +AU, (3-2)

Where U, is called firing vector, and A" is called the incidence matrix for any given

topological structure of Petri nets, defined by

_Oij(piatj)
AT(p.t;) = 0 , where 1<i<m, I<j<n- (3-3)
i (5, pi)

Note that M, must be a vector of nonnegative integers (Murata et al., 1997). The
firing vector will then select an appropriate column of A" such that

M., +A'U, >0 foreach k (3-4)

3.1.3. Definition of action dominance and equivalence

Dominance. An action p,is-said to dominate another action p, in an irredundant
place iff every exist of token for/p, is.also exist of token for p,. i.e., the life of a
token of p, is longer than p,, denoted asm(p,) > m(p,). The reduction of the place

p, to be analyzed is based on the dominance relation.

Example 1: Fig. 3.3 shows a PNs in which p, is dominated by p, and p,,ie.,

m(p,) >m(p,) andm(p,)>m(p,). Fig. 3.4 shows the reduction result.

p,:(Y) t p;:(D)
4 Q_’I_»O\: 4 p,:(Y) L p;:(D) b
<Op. “(M) /'| O O
Fig. 3.3 A simple example Fig. 3.4 The reduction result of Fig. 3.3

Equivalence. The actions p,and p, are equivalent if exist of token is same
condition for p, and p,, i.e., m(p,)>m(p,) andm(p,)>m(p,). The composite of

26

the place p,and P, to be analyzed is based on the equivalent action.
Example 2: Fig. 3.5(a) shows a PNs in which p,is equivalent to p,, ie.,

m(p;)>m(p,) and m(p,)>m(p,). Fig. 3.5(b) shows the composite result.
p,:(Y)

P t] pzz(YaPLz)

o O
@—@8 ©—+—O

Fig. 3.5(a) A simple example Fig. 3.5(b) The composite result of Fig. 3.5(a)

3.2. Ladder Diagram Model Using Boolean Petri Net

3.2.1 Model of basic modules

In ladder diagrams, the horizontal line (rung) and the associated elements represent
Boolean equations. Similarly, in Boolean Petri nets, the associated transitions
represent Boolean equations. In ladder-diagrams, the symbol “(0” represents the
dependent element of the equation (coil). Similarly, in Boolean Petri nets, the symbol
“(O” represents the dependent element of the equation (place). In ladder diagrams, |
[” represents the independent element (normal open contacts), while in Boolean Petri
nets, “| or |” represents the independent element (input transitions). A diagonal line
placed in the middle of these symbols (i.e., “|/|”) represents normal closed contacts,
which indicate that the negated value of the variable is used. Similarly, bar “| or I”
represents the output transition. In ladder diagrams, variables (contacts) placed in a
series represent the AND Boolean function, while contacts placed in parallel represent
the OR Boolean function. The rungs are executed in order from top to bottom.

Therefore, the Type 8 ladder diagram in Table 3.1 represents Boolean equations

M=(A+ M)E and N =M (Bender et al., 2008). In Boolean Petri nets, a similar

27

input transition represents (A+ M), denoted as t :(A+ M), which is a composite

transition. Conversely, output transitions represent B , denoted as t, : (B), and

output places are denoted as p, :(M,N)which are composite places. Finally, Table

3.1 summarizes some typical LDs modules and their corresponding Boolean Petri nets

models, where S is a pseudo source and the composite and decomposite of Boolean

Petri nets are as shown in Table 3.2.

TABLE 3.3: Some LDs modules and corresponding models

Ladder Boolean Boolean Ladder Boolean Boolean
Modules Modules)
Diagrams Equations | Petri Nets Diagrams Equations Petri Nets
Type 1 saA M |[M=A s oA o (Typed o [M=AB s(A-B) M
0 o0 O
IS_O.Q.TA M M =T, s 07w o Type4 A M M=A+B s (A+B) m
ERE I ey (N Bony
SLa X M =A S0 M I ype 5 AB S (A+B
Fee—~0O— (M= OO [P s A B M |M=AB vl o\
' O—lM-a+e
M S A
e M=A+M (o Type 6 A M1 M= A s A (MI+M2)
M S(A+M)M 7
M=A ’_“—[%:l M2=A
M1=M2
Type 2 S A M M =A s A M |Type7 S A B M M :(A+M)§
F+—0O— Oe—fe—© ‘: O \ B
M=T Type 8 |g LA B M (A MB— B
s T, wm A s T M P 5 M=(A+MB=AB
Free——0 M N
Y
S A M V]
Fooo—O— (M =A s A m |[Type9 - Timer = A (ATimer) T, M
O+ A o [V @10
LAsSs My |
Type 10 M=A e S Type 11 B=T,
S M N O M T B B T, C
N = A A | C = TA @""’O
N &5 C
oRNg

28

Type 12 ST B=T,+C Type 13 M = AN Wﬁ‘
IAC E:TA§ %)IITI(g WYY N =BM e)
& B c B=T,+C M=AN=A+N
=T, +T,B =A+BM
(1+T)B=T, U+rBM = A
= E = TA Z v A: A
C=T,B N=BM=B+M
=TT, +C) “B+AN
(1+T,)C =T, (1+AN=B
=C=T, N=B
=N=B
Type 14 Timer=A |S Timer
— @»é(% e
T Ch B || B=T, >0
C=T,
Table 3.2: Composite and Decomposite of Boolean Petri nets
Boolean |BPNs
LDs . . .
Equation [Decomposite Composite
— c
s|_A c C=A s A O S (C,D)
D=A ()—>}<: £ O——0O
_ O
S“A S B G S (AB) C
Sl—Au—Sd—nB—QC—| C=AB OO0 | O—>0
C=A S A
s| A c ~ O—»}\AC S (A+B) C
o c=B s 5 »O O——0O
C=A+B O—>|/v
S Al B, C
J_ o S A/v
< C=AB C S (C + D)
c D D=C e
| B

3.2.2. Model of faulty ladder diagram
A LDs circuit fault may generally be classed as both stuck-at 0 (s-a-0)and stuck-at 1
(s-a-1) type; the stuck-at 0 fault is like a NO switch and the stuck-at 1 fault is like an

NC switch. Hence the fault model of the ladder diagram can be modeled as a Petri

29

nets. LDs of the possessed faulty example are illustrated in Fig. 3.6(a) and the Petri
nets model is illustrated in Fig. 3.6(b). Where fault f are represented s-a-0 to

represent the switch A is struck at open, fault f, is represented s-a-1 to represent the

switch B is stuck at close. According to Eq. (3-3), the incidence matrix

t:(Af)
P, : (s/>|\p 1)
MW

Fig. 3.6. (a) A LDs of possessed fault (b) A Petri nets model of possessed fault

The faults classified in the two cases are interpreted as below.

. . . B\ ¢ 1
Case 1: Assume f, is s-a-0 fault and-initial markingis~ M, = E‘ {0}

When the bottom is pushed A=1.

t (A1 t o (A-)]0 too(ALA:f)[1/0
u=" A ,U, =" (A1) U, = ¢) , where U, and U, are
t, |0 ‘ t, |0 ' £, 0 !

represented as the fault free and faulty firing vector, respectively. U, , is represented
as the fault free/faulty firing vector.
According to Eq. (3-2)

t, t

T p (1 -1 1 |1/0 1 -1/0 0/1| . 0 1
v =M, +AU, = + =| |+ = , Le, M, = 5 M, = ,
' p,| 0 I -1 0 0 1/0 1/0 1 10

where M and M, are represented as the fault free and faulty marking vector,

M

respectively. M, isrepresented as the fault free/faulty making vector.
In the LDs circuit, f, fault means the coil C is not active since the switch A is stuck

at open.

. . 0
Case 2: Assume f, iss-a-1 fault and current marking is M, = P L}

2

When the bottom is pushed B=1

30

t 0

LJ2 = —

t :(B/B- fz){l/o}

tl tZ
. p, |0 -1 1 0 0 1/0 /0| . 1 0

M,,=M+AU, = + = |+ = Le,M,=| |; M, =| |.

: p,|1 1 -1|1/0 1 -1/0 0/1 0 ol
In the LDs circuit, f, fault means the coil C is maintain action since the switch B is

stuck at close.

3.3. Application Example

This section illustrates a practical example of hierarchical control system in Fig. 3.1.
The local controller is a LDs circuit. This circuit can be modeled by BPNs and is
simplified to obtain an abstract model using Table 3.1 of the preceding section. The
system fault can be diagnosed by the difference between the LDs response and

abstract model response. The differences are as decision of supervisor agent.

3.3.1. Constructing an abstract model using a Boolean PNs

To start a three-phase motor, a LDs controller use type of Y-Astarting to limit
starting current, as shown in Fig. 3.7 and symbol descriptions in Table 3.3. In the LDs
controller, the bottom Pb, is control relay coil M, Y and timer coil active. The motor
enters the starting state when NO contacts of M and Y are turned on. Next, the relay
coil Y turns off after delay time T,, and the motor returns to the normal state when
the relay coil Y turns off and relay coil D turns on. Finally, the motor stops if the
bottom Pb,is pushed or the current is overload. This LDs controller can be specified
as follows:

Step 1) The motor is commanded to start (Ph).

Step 2) The motor starting time is T, .

Step 3) The motor is commanded to stop (Pb,).

31

Step 4) The motor will stop if the current is overloaded.

The implicit specification is as following:
Spec) The relay coil D and relay coil Y are mutually exclusive.

The transformation from the ladder diagram (in parallel) to the abstract model (in

series) is based on the following steps:

Step 1) A rung or compound rung of LDs is converted to a Boolean Petri nets
module using Table 3.1 or the Boolean equation. LDs controller then

assembles Boolean Petri nets modules, as Fig. 3.8 shows, where (1), (2) ...

and (9) correspond to the number of LDs rungs.

Step 2) A Boolean Petri nets can be given after eliminating the redundant or pseudo

places (i.e., the S place), as:Fig. 3.9 illustrates.
Step 3) An abstract model can be obtained according to dominance relation reduce

some places (in this'case, an abstract model reduce place p,), and

eliminating some redundant elements (i.e., the coil of time or auxiliary relay),

as Fig. 3.10 shows.

AC 220V 60HZ
8 9

S > ' olo .
E — j_X _sz

1

1 — 1Y, __Dz

|_—_I |_—_|OL
f
3/[Y D <SLZ PL3
LTI T

Fig. 3.7. Control circuit of a Y- A starting motor.

0,0—

V>_|

o

ool
%

N=

||
I g

'

s

<

32

Table 3.3: The Descriptions of symbol

Symbol | Description Symbol Description
q} Indicator light of green “b” contact of Push bottom
L1 alo
QL Indicator light of yellow 1 ““a “contact of Push bottom
2 o o
‘! Indicator light of red — — | “a* contact of relay
L3
O Relay 1 “b” contact of relay
[7.] | Timer 2 ““a “ contact of timer
[o | Stuck at 0 (s-a-0) switch aho
for simulate fault “b™ contact of timer
(Abramovici et al., 1990)
1~9 rung number o0 “b” contact of over load

(2-6))((le 3 !

£ pb, + X
tl : (pb 1) :Ah(upbl)
H 4)é’,{)v

|
t;, :(Pb, +OL)

Fig. 3.8. BPNs model of a LDs controller.

3.8.

PLo t:poy) Y t:T) o

Fig. 3.10 Abstract model of Fig. 3.9

t;: (P +OD t, :(Fyv
\A

p, :(Y,PL) L :(T)) p,:(0,pL)

,M Timer)

t,:(Ph,+0L)

Fig. 3.9. Equivalent diagram of Fig.

33

3.3.2 Properties of the proposed Boolean Petri nets

The reachability of PNs is a tree, which uses states as nodes and transitions as arcs
(David et al., 1992). The construction of this tree starts from the root node. The root
node is represented as the initial state, and the arcs outgoing from the root node are
marked by the corresponding enabled transition. The arc will outgo to a new node
(state) from the firing of the corresponding transition (arc). The above procedures are
repeated until they produce duplicate nodes. Terminal nodes are identical to existing
nodes, which have no any enable transitions are met. In the reachability tree, dash
lines indicate nodes.

Due to the similar processes of «PNs reachability tree, this study presents the
reachability tree of the proposed BPNs in Fig. 3:9. For the sake of simplicity in
representing the node (node).in the reachablility tree; define the state variable vector
in the reachability tree as [pl.p2 p3 p4], and allow the initial state to be [1 0 0 0]. If

transition t, : (Pb,) fires whens Pb, =1(i.e. Pb, .is active), the state moves to [0 1 1
0]. If transition t,, :(Pb,) fires when Pb, =1(i.e. Pb, is active), then the state

moves to [1 0 0 0]. Subsequently, if transition t, :(T,) is enabled and fires, then the

state moves to [0 1 0 1], while if transition t,, :(Pb,) is enabled and fires, the state

moves to[1 00 0].

Proposition 1: The proposed BPN is live.

Proof: Consider a case based on the reachability tree in Fig. 3.11. This figure
shows that there is no terminal node. Therefore, there always exists some sample path
such that any transitions can eventually fire to reach any states from the initial state p,,

re.R(my) =1{p,, P;, P,}, F(my)={t,t,}. According to this definition, the proposed

34

BPN is live.
Proposition 2: The proposed BPN is reversible.
Proof: The reachability tree in Fig. 3.11 indicates that there is no terminal node.

Therefore, there always exist some sample path such that any transitions can

eventually fire to reach the initial state p, from any states (i.e. pP,, P;, P,),

P, € R(P,), p,e R(P;), P, € R(P,). According to this definition, the proposed BPN is

reversible.
Proposition 3: The proposed BPN is bound.

Proof: In stable PNs, the number of tokens in any place will not grow infinitely.
The reachability tree in Fig. 3.11 indicates that one and only one marked token

corresponds to any specific state. Therefore, the number of marked tokens in

P, P,,P; and p, is bounded above by 1. According to this definition, the proposed

BPN is bounded and safe.

L, :(Ph, +OL) ltl :(P)

_---_G_----

t,:(Pb, +0L)

B ettt

Fig. 3.11 The reachability tree of the Proposed BPNs

Similarly, the proposed abstract model in Fig. 3.10 is live, reversible, and safe. In the

35

Petri nets model, the live is represented as a reachable starting state (i.e. Y state) and
running state (i.e. D state) from the ideal state (i.e. PL, state), the safe is represented as
only existing in one state, the reversible is represented as returning to the ideal state

(1.e. PL, state) from any other state (i.e. Y state and D state).

3.3.3 State equation

According to Eq. (3-2), Fig. 3.9 shows that the state equationis M, =M, , + A'U,

Lottt P 1 t, |1
p[-1 0 1 1
110—1—1 M_pzo U—t20
At P : 0= : L= :
pl1 -1 -1 0 P |0 t,]0
PO 1 0 -1 P, 0 t,|0
t, [0 t, [0 t, [0
t, |1 t, [0 t,40
U, = U, = Uy, =
t;, 10 t, |1 t;, 10
t,| 0 t, 0] t, 1
o _ tl t2 t31 t32 4 A) - o
p[1] [-1=0 10 o] [1] [+ pJoO
O |1 70 =1°=1{0]:-|0| |1 1
|\/|1=|\/|0+ATUI='O2 + =1+ _ P
p, (Ol |1 Zdo=1 o fo| [of 1] psfl
p,JO0] [0 1 "0 =1foj {0} |0 p,[O]
L _tl t2 t31 t32 o o _ _ o
p[o] [-1 o 1 17]o] [o] [o] pJoO
1|1 0 -1 11| |1] |0 1
MZ:M1+ATU2:p2 + =| |+ _ P
S 1 -1 =1 00| |[1] [-1| p,s|0
p,J0] [0 1 0o -t1]of |o] [1] p,1]
B t] tz t31 tsz o
p[0] [-1 0 1 170] [o] [1] p[1
10 (1 0 -1 —1|0| [1] |-1 0
M, =M, +CTATU, = 2| |+ =l P
pl1| |1 =1 =1 o 1] [1] |-1] p,]0
p,0] L0 1 0 -1Jof [0] [0] p,|oO]
t1 t2 t}l t32
pfo] [-1 o 1 170] [o] [1] p[1
1| |1 0 -1 —1{0| |1] |-1 0
M, =M, +AU, =" |4 RN
p,/0] |1 -1 =1 oo| |o] |0| psoO
p. 1] |0 1 o =—1)1| |1] |[-1] p,]|O

In reality, places p, : (X,M,Timer), p,:(Y,PL,) and p,:(D,PL,) are compounded

36

places in Petri nets. Therefore, the state of P={p,p,,p,.p,} can be decompounded
into theP:{PLl,X,M,Timer,Y,PLZ,D,PLS} state, so M](P)=[1 0 0 0] can be

transferred intoM](p)=[1 (0 0 0) (0 0) (0 0)]. Similarly,M (P), MI(P), M (P)
and MJ(P) can be decomposed into places [0 a1 1n ar1 (© O)] ,

o a1 1 @© o0 an [© 0 0 (© 0 (© 0)] and
[0 0 0) (0 0) (0 0)], respectively.

p,:(Y,PL,) t,:(Ty) p,:(D,PL,) P, :(Y.PLy) 4:(Ty)p,:(D,PL;)

b f,) t,:(PB+OD) t,:(Pb) ‘
)
X ,M ,Timer)

t,:(pPB+0Dt, : (P

e
I

t,; 1 (pb, +OL)

p, :(X\, M, Timer)

[

t,, =(Pb, +OL)

(a) p,:(Y,PL) &i(T,) p4:(D) t3:(D, 1) Pey(PL;) (b)

p, =(X,M,Timer)

(©

Fig. 3.12 Petri nets model (a) with fault f,, (b) with fault f,, (c) with fault f,in Fig.7.

Comparison
Fault Free Output -
Input Model Difference Output
_’,
Fault Output
———
Model

37

Fig. 3.13 Simulated fault free model and fault model.

3.3.4 Analysis and diagnosis of fault modeling

Assume that the faults f,, f, and f, in the LDs are stuck at 0 (s-a-0), as Fig. 3.7

illustrates. The fault can then be modeled into Petri nets as shown in Fig. 3.12 (a), (b),

and (c), respectively. In case 1, a transition t, :(pb,)is fired since pb, is active.

However, the transition t; :(pb,f,)=0 cannot be fired since f, is stuck at 0.

Similarly, in case 2, t; :(X,f,)=0, t :(X,)=1. In case 3, t, :(D,f;,)=0,

t :(D,)=1. For simple calculation of state equation, a control vectorU, contains the

fault free Boolean equation and faulty Boolean equation of transitions, as denoted by

t, :(fault free/ fault)=1/0. Fig. 313 shows fault free model and fault model

simulated structure.

A difference output vector (DOV) = fault free output vector-fault output vector. If has

fault occur then difference output vector= 0. The fault'is covered area from place of

negative value to place of positive value; and the faulty path flows through transition

t. in DOV.

Casel: Assume f, is s-a-0.

1
p[-1 0o 1 1 D,

1 t, :(pb,/pb, f)|1/0
1 0 -1 -1 0 t
A'][— p2 ,Mozpz ,Ulz 2
] Py 1 -1 -1 0 ps| 0 L)
p,| 0 1 0 -1 AL L
t ottt
p|1f (-1 0 1 1]1/0 1| |-1/0
T p,| 0 1 0 -1 -1} 0 0 1/0
M =M+ AU, = + =| |+
p;| 0 1 -1 -1 0] O 0 1/0
P, 0 0 1 0 -1 0 0 0

0
0
0

Py

0/1

1/0

1/0
0

DOV=[-1 1 1 0] . The faulty area is covered from p, to p,andp, as Fig. 3.14

38

indicates, and the fault path flows throught, : (pb,) . Thus, the fault is located between
rung 1 and rung 3 in Fig. 3.7. In physical terms, this means the motor cannot start

rotation.

p3 :(Y3PL2)

be(p0n 0 ()
@—A\ZC:()X,M ,Timer)
Fig. 3.14 the faulty area in case 1

Case2: Assume f, is s-a-0.

tot,
-1 0 1
AT_ID1 1 o-M—plo-u—t“(Pbl)l'u— b :
2= Py Mo =P ’ e ty, 0]’]_tfz (X, /X, 15)[0
pf2 0 1 Ps 0
6,
p |1 p =10 1 NS 0
|\/|l(f2):|\/|0.|rA12U1:p2 04+ p, | 1 0{0}=0+ 1 |=|1
P, 10) PO 1 oo Lo
p, [0 p[=1"0 0 ol 1o P, 0
M,(f,)=M, +C{,U, = p, | 1|+P, |1 0[1/0}: L+ 0= P> !
P, 0] Py, [071 0] [1/0] py :(Y,PL,)[1/0

DOV= [0 0 1]T . The faulty area is covered only in p; as Fig. 3.12(b) indicates, and
the fault path flows throught, :(X,). Thus, the fault is located between rung 2 and

rung 5 in Fig. 3.7. In physical terms, this means the motor cannot run.

Case3: Assume f, is s-a-0.

tl tZ t3] t32 t33 tf3 t (Pb)_1_ t _0_ t] O
1 1 1
p|-1 0 1 1 1 0 t, 0
L |0 LT[1
p,|1 0 -1 -1 -1 0. . . ¢ 0
T > t, |0} t, 0] U. = 31
Ao=p|1 -1 -1 0 0 0fU, = u, = f ¢ 0
p,1 0 1 0 1 0 0 t, |0 t, |0 32
A _
t 0
P:;s/ 0 O O 0 -1 1 ty |0 t; [0 33
t, 0] t, 0] t, :(D,/D,f)[1/0]

39

P[] P [0 P[0
P[0) P, |1 p, |1)
My=p;|0 ’ M, =M+ AU, = p;|1}; M, =M, +AfU, = p; |0 ’
P, |0 P, |0 P, |1
P, |0] Py, |0 P:,| 0
[0]
P, 1
M, =M,+AlU, = p, 0
P, 1
Py, :(PL;)[1/0]

DOV= [O 0 0 0 l]T. The faulty area is covered only inp, as Fig. 3.12(c)
indicates, and the fault path flows throught, :(D,). Thus, the fault is located between

rung 7 and rung 9 in Fig. 3.7. In physical terms, this means the indicator

light PL cannot light.

3.4. Summary

This chapter proposes the BPNs based on the Boolean equation, constructs a ladder
diagram module and develops an abstract model to diagnose local faults in the LDs.
The diagnostic process employs simple matrix manipulation and DOV to determine
the faulty area for diagnosing the ladder diagram. This study also provides an example
using composite transition, composite place, and relevant state to reduce complexity
and increase readability of the Petri nets. The proposed methodology is useful and

clear.

40

CHAPTER 4
Implementation of an ASIC for the Testing of a Ladder

Diagram

As described in the previous chapter, a BPNs model and an abstract model were
constructed for the diagnosis of ladder diagrams. In this chapter, BPNs were used to
solve experience-based testing and troubleshooting problems of sequence controllers
in manufacturing systems. To describe the basic LDs and to propose a framework for
LDs testing, the concept of integrated circuit testing was introduced during the
construction of a fault-free model‘of LDs based on BPNs, as shown in Fig. 4.1. The
developed model can directly‘generate test event sequences of LDs from the transition
sequence of BPNs and can support the implementation of application-specific
integrated circuits (ASICs).- The BPNs constructs -a model that aides in the

troubleshooting of LDs and can be simulated using the state equation.

Response

| ASIC (Fault omparator

Free) Primary

output

Detect (Pass/Fail)

»| Primary

input LD

»
L

Fig. 4.1. Framework of LDs functional tests

4.1. Boolean Petri Net and Ladder Diagram Model

41

Carl Adam Petri proposed the Petri nets theory. Figure 2 shows the structure of
Petri nets in a directed bipartite graph that consists of places, transitions, and arcs. A
circle with a token represents the places. A bar that indicates the flow of tokens when
the firing condition is satisfied, which represents the transition. Finally, a straight line
that connects the place to the transition, or the transition to the place, denotes the arc,

which indicates the flow of tokens in the direction of the arrow.

A t, B A t, B
@0 O——®
(a) (b)

Fig. 4.2. (a) An example Petri nets. (b) A token moving from A to B in Fig. 4.2(a)

after t, firing.

4.1.1. Definition of Boolean Petri nets

The purpose of developing the BPNs model is that this model exhibits the
implied logic property in LDs. The simplest way to represent LDs is by its Boolean
equation. The approach proposed in this paper embeds the Boolean equation in a PNs
transition to develop the BPNs model. This special transition is called the “Boolean
transition.” Table 4.1 describes the BPNs model corresponding to the Boolean
equation. Clearly, the BPNs model also matches the LDs. To map LDs into a Petri
nets, the Petri nets must be extended. This extended Petri nets are called a Boolean
Petri nets, which can be defined formally as

PN =(P,T,A1,0,in,0ut,M,) 4-1)
WhereP ={p,,p,....p,} ,m=>1, is a finite set of places representing the LDs action state.
The places are associated with a component or a set of components (i.e., a compound

component) such as the actuator output, relay coil, timer, counter solenoid, or source;

42

T={t.t,..1}, nx1,is a finite set of transitions representing whether an event occurs or
not. These transitions are always associated with a switch or a set of switches and are
represented by Boolean equations or variables.
The switch can be a normal open (NO) switch or normal closed (NC) switch. The NO
switch is also called an “a@’ contact, and the NC switch is also called a “b” contact,
wherePNT=® andPuT = ®.
Ac (PxT)u(TxP) 1is a set of arcs (—) consisting of input arcs A (PxT) and output
arcs A (T xP). The weight of each directed arc in this paper is 1, and A (PxT) is
defined as directed arcs from a place to a transition. Places are called input places, and
transitions are called output transitions. The input arc is represented by a connected
line as a channel of a token. A (T xP)" is defined as directed arcs from a transition to
a place, where the transition is called the input transition and the place is called the
output place, and the output.arc'is represented by a connected line as a channel of a
token. The arc may be a preservation arc (@—), where an input arc and an output arc
exist simultaneously between the same place and transition; | :TxP — N 1is an input
function that defines the number of "output arcs A(T xP), where N={01.2,.}.
O:PxT — N 1is an output function that is defined as the number of input arcs A (PxT),
where N ={0,12,...};in={in,in,,...,in, } is a set of input switch, which is represented by a
Boolean function or variable. A set of input switches is associated with a transition t,
and is denoted byt, ={in}. The Boolean function or variable can be ‘1°, in which case
the related transition t,is allowed to fire if it is enabled, or it can be ‘0’, in which case
the related transition t is not allowed to fire. out ={out,,out,....,out, }is a set of output
actuators, which is associated with a p,and is denoted by p, ={out}. M (P) is the
initial marking that uses a token to represent the place status.

A transition is enabled if the number of tokens at the place is larger than or equal

to the number of input arcs. A transition is firing if the enabled transition is fired and

43

its transition states are true (i.e., the Boolean equation is true). When a transition fires,
it moves the tokens from input places to output places along the input arcs and output
arcs, as Fig. 4.2 illustrates. This action moves the token of place A to place B along
directed arcs if transition t, is firing. A marking is denoted as an m-vector, where m
is the total number of place P, while m(p,) is represented by the number of tokens at
place p, (Murata et al., 1989).

To simulate the behavior of LDs, this approach changes a state or marking

according to defined firing rules for the Boolean Petri nets model.

Table 4.1: Simplified BPNs

Type | LDs Boolean Before Simplified After PNs
Equation PNs Boolean Equation
1 : B, G /4 _
lﬁj—“—ﬁ C=(A+C)B | A C=(A+C)B A
C(1+B)=AB
C =AB

) | B=(A+B) . [S4B% | B=(A=(A)() |saBCR
EEC R=(B-C) Sfro | R=(C)-(B) OFFOFC

4.1.2. Model of a Ladder Diagram

In a ladder diagram, a rung corresponding to a Boolean equation (BE) was introduced
by David in 1995 (David et al., 1995). The Boolean equation associates every input
variable (e.g., switch) and output variable (e.g., relay coil). In a Petri nets, the input
variables are represented as an event. The output variables are represented as an event
state, while an output variable is dependent on input variables. LDs rung can

correspond to a Petri nets model, and the input variable of LDs may be simplified by
its Boolean property. For example, C =(A+C)B can be simplified toC = AB, as

shown in Type 1 of Table 4.1, and a Petri nets corresponding to LDs can be simplified

44

by properties of enabling and firing. For example, in Type 2 of Table 4.1, a marking of
place S is an enabled condition and a Boolean equation B = A is the equivalent
firing condition of rungs 1 and 2. A Boolean equation R = (B-C) is a firing condition
of rung 3. Thus, the Boolean equation B = A merges with the enable condition S,
which is then givenB =(A)-(S), and the Boolean equationR = (B -C)is separated
intoR=(C)-(B) and regarded as associated firing conditions with the enabling
condition. Therefore, the property of firing and enabling can apply to the parallel LDs
corresponding to series of Petri nets. Table 4.2 summarizes some typical LDs modules
and their corresponding BPNs, where S is a pseudo source that can represent the ideal

state of a relay coil, and composites and decomposites of BPNs are as shown in Table

4.3.

Table 4.2: Some LDs modules and their corresponding BE and BPNs models

Modules LDs BE/BPNs Modules LDs BE/BPNs
= P M M =X, +X
Typel sy L M M= X Type2 X, 1T A,
—OO—O—{ x. 1O
f X| %: — X, +X,
5 L SETM @%—>|—>()
20
SX, X, M M =X -X
9_x.+o| o O s
L M. ' % x1|.xz %
b XJ_ M
—00@: M =M, = X

4%

Type3 fx % M = X Type4 <y M M =X, +X,
o8 | O4O e

45

Type5 M M=A-B Type6 Xpy M M = X
Oﬁ *‘O—‘ N = X
ﬁ éi 2 Er :.;:IN
X
. &++0
M=N=AB M M=T,
S M
M. N T,: N=T,
E“?‘LW é’i N) AN T
o0 B}/O SO
Type7 T, M=T, Type8 s _RSIN| | M =T,
N=T, T, | seT™m N=T,
A M N
N_O_ T
. N A, SETN TN
RST M
Type9 Timer = A TypelO I8y Timer| | Timer=A
B=T, rstc| | B=T.
C=T, C=T,
T, | sEIB
A OTlmer A, SETC s A QTlmer
&+ —o @+l
‘&% RST B ‘&%
Table 4.3: Composites and decomposites of Boolean Petri nets
Boolean BPNs
LDs . . .
Equation Decomposite Composite
S A c C=A s A (C) At (C) C.D)
.——Eg:‘ D=A Q_>}<: 5 O—>)< 5 Q—» O
c=D O O
O c
A S B A S (AB C
-0 [C=A8 | OO0 5/‘|—>O O——>0
C=A A ’\A A
s| A C O—r c O—» c S (A+B)C
I I s . %0 |, 16| o0
C=A+B - St
S Al B, C A
c _ S A C) t
b C=AB /vc _ \Ai/z S C.D)
C p—
D-C o) &N 5
| L

46

4.1.3. State Equation

The firing definition easily shows that the token moves from state M, _, to
another state M, by the kth firing, and U, is a firing vector, which can be given in
terms of the following matrix state equation for Petri nets (Murata et al., 1977).

M, =M, +AU, (4-2)
Where U, is called the firing vector, and A" is called the incidence matrix for any

given topological structure of Petri nets, defined by

_Oij(phtj)
AT(p;.t)) = 0 , Where 1<i<m, 1<j<n-
it pi)

(4-3)

Note that M, must be a vector of nonnegative integers. The firing vector will then
select an appropriate column of “A™ such that

M,,+A'U,>0 foreach k (4-4)

4.2. Testing and Troubleshooting of ladder Diagrams

In this section, we first introduce the concept of integrated circuit testing to
describe a basic LDs and to generate the testing event sequence of a LDs using a
BPNs model. The generated test event sequence can be applied to the testing and
troubleshooting of the LDs, while we can use the BPNs to program the free-fault
model and ASIC implementation.

4.2.1. Introduction of LDs testing (Lala et al., 2009)

A failure is said to have occurred in a ladder diagram circuit or system if it deviated
from its specified behavior. A fault refers to a physical defect in a ladder diagram
circuit. For example, a short in a normally open contact or a break in a normally

closed contact is a physical defect. An error is usually the manifestation of a fault in

47

the ladder diagram circuit; thus, a fault may change the signal of a current in a ladder
diagram circuit from the open (correct) to closed (erroneous) state or vice versa.

The most common model used for ladder diagram faults is the single stuck-at fault.
It assumes that a fault in a ladder diagram rung results in one of its input or the output
being fixed at either on (i.e., stuck-at-on) or off (i.e., stuck-at-off). A stuck-at-on fault
implies the permanent closing of a rung in the ladder diagram circuit. A stuck-at-off
fault implies the permanent opening of a rung in the ladder diagram circuit.

The inputs to the ladder diagram circuit are called the primary input. They are the
only inputs can be applied to events in a Petri nets. This ability to apply an input event
to the primary inputs of a Petri nets is known as controllability. The outputs from the
ladder diagram are called primary outputs. The outputs can be observed in the effect
of events occurring in the Petri nets. The ability to observe the response of a fault on
an internal node via the primary outputs of a ladder diagram circuit is called
observability.

In general, a test can detect more than one fault in'a ladder diagram circuit, and when
many tests in a set detect the same fault, it can be called a dominance fault. When
many faults in the same set detect the tests, it can be called an equivalent fault. Thus,
a major objective in test generation is to reduce the total number of faults to be
considered by dominance and equivalent. For example, in a simple ladder diagram
circuit shown in Fig. 4.3 (a) and its Boolean equation C = A-B (Bender et al., 2008),
its Boolean equation can be viewed with AND logic in an integrated circuit (IC), as
shown in Figure 3(b), and with a BPNs model, as shown in Figure 3(c). Its true table
is shown in Table 4.4. The equivalent sets for the simple ladder diagram circuit is
{ A s—a-0,Bs—a-0,Cs—a—-0 }, and its fault dominance relations are
{Cs-a-1,As—a-0 } and { Cs-a-1,Bs—a-1}. The fault can be ignored if
{As—a-0,Bs—a—0,Cs—a—1}. In other words, these test sets {A, B} are reduced {0,

48

1}, {1, 1}, {1, 0}. Similarly, in the self-hold of the ladder diagram circuit, shown in
Fig. 4.4(a), because its Boolean equation C=(A+C)-B is equivalent to C=A-B
and because sometimes contact switches C are uncontrollable, these test sets {A, B }
are reduced {0, 1}, {1, 1}, {1, 0} as well. The {0, 1}, {1, 1}, {1, 0} of the LDs test
pattern correspond to no event occurrence (i.e., switch A and B is not pressed), and
switch an event occurs (i.e., switch A is pressed) and switch B event occurs (i.e.,

switch B is pressed) for the BPNs, respectively.

Table 4.4: True table of a simple ladder diagram circuit

A B C(coil) |As-a-1 | B s-a-1|Cs-a-1 |As-a-0 | B s-a0|Cs-a-0
0 O 0 1

0 1 0 1 1

1 0 0 1 1

1 1 1 0 0 0

4.2.2. Testing Event Sequence of a Ladder Diagram
Fault detection in a basic ladder diagram circuit, as shown in Fig. 4.3(a) and 4(a), is
transferred by a Boolean Petri nets, and its test event sequence can be generated from
the transition sequence of the transferred BPNs; thus, it is carried out by applying a
sequence of test events and observing the resulting outputs. If the observed response
is different than the expected response, a fault is present in the LDs. The aim of
testing is to verify that functions in the ladder diagram are true or false using Fig. 4.1,
which corresponds to troubleshooting, as shown in Table5.
In an m-input, there can be 2(m+1) stuck-at faults in the ladder diagram, but it can be

an (m+1) event sequence generated in the BPNs. Thus, the total number of single

49

stuck-at faults in a basic ladder diagram circuit is 6 (=2x3), but the test event
sequence can be 3(=2+1), generated using a BPNs. The test event sequence is no
event, an event occurs and B event occurs, as shown in Table 4.5. The test event
sequence can be calculated and verified using state equation as well:

p,=t_.-p, =0/1=t_-1=t_ =0/1,where t_ =0/1 isrepresented as A no event

occur, but A is fault-at-on.

p,=t_-p =1/0=t_ -1=t_=1/0,where t_ =1/0 isrepresented as an event occurs,

but from primary input A to primary output C is fault-at-off.

p, =t -p,=1/0=t,_ 1=t =1/0,where t, =1/0 isrepresented as B event occurs,

but B is fault-at-on.
-1 1 1 te 10/1 t [1/0 t 0
DT=p1 , M0= pl , Ulicz 1-c : U170= 1-c , U27C= 1 ;
p,| 1 -1 p,|0 t,| 0 t,] 0 t,.[1/0
F p,H [—1 1} [0/1} H {0/—1} {1/0}
M,.=M,+D" .U, = + : =| |+ =
p,| 0 1.=1]|0 0 0/1 0/1
T p |1 -1 1 1/0 1 -1/0 0/1
M,=M,+D U = + . = + =
p,|0 1. - 0 0 1/0 1/0
: p, |0 =11 0 0 1/0 1/0
M,.=M,+D"-U, = + . = |4 =
p,|1 1 =1{[1/0 1 -1/0 0/1

S ' t: A
Aj B C A C /1' Ssz :C
0] ol 5 @),
2 '| /
(a) (b) ()

Fig. 4.3. (a) A basic ladder diagram circuit, (b) Corresponding to AND logic and (c)

Corresponding to the BPNs model

50

(2)

(b)

Fig. 4.4. (a) Self-hold of a ladder diagram, (b) Corresponding to BPNs model and

(c) Simplified BPNs model

Table 4.5: Test events sequence

(©)

Test
Initial —
at fault free | Fault ABC | Firingeffect | Event Troubleshooting
state
Sequence
tpAC t,: A t:A 0 1 0/1{ Thetoken No event | Please check
%% /' s| Sl G was push bottom A
e Gi\[A/ | ﬁ propagated to whether stuck at
t: B t2 . B tz B 3k
2 next position on or not.
before A'is
firing.
t A t ;A t:A 1.1.1/0 | The token A event Please check
: J . : J PN C p/'SMC can not occur one of element
| < CQ\ 4,'.'?:-""" deposited to A, B, C and
7B t |ﬁ t,:B . :

? ’ next position interconnected
when A is line whether
firing (i.e., A stuck at off.
is pressed
event occur).

t A t |: Aol teA 100/1 | The token B event Please check
gl :s| % © GE:S ’ l ,:C can be not occur push bottom B
|« |Ag ; ‘13 propagated to whether stuck at
J t,: i "
:B : g next position on or not.

when B is
firing (i.e., B
is pressed

event occur).

51

4.2.3. HDL Program

The basic ladder diagram can be implemented by HDL. The HDL program is

carried out according to positions, trasitions and token flowing in the BPNs, as shown
in Table 4.6.

Table 4.6: The HDL code of a basic ladder diagram

Number I. THE HDL CODE OF BASIC LADDER DIAGRAM
1 library ieee;
2 use ieee.std_logic_1164.all;
3 entity PLC is
4 port (Reset, CLK,A, B : in std_logic;
5 C :outstd logic;);
6 end PLC;
7 architecture behave of LD is
8 type STATE_TYPE is (p, p2);
9 signal present_state, next state - STATE TYPE,;
10 |begin
11 token_flow: process (Reset,present state) begin
12 if Reset = "1’ then next_state <= p1;
13 C="0;
14 case present_state is
15 when pl =>
16 if A=°1"thennext state <=p2;
17 else next state <=pl;
18 end if; C<="1";
19 when p2 =>
20 if B=°1"then next_state <=pl;
21 else next_state <= p2;
22 end if; C<="0";
23 end case;
24 end process token_flow;
25 state_clocking: process (CLK) begin
26 if CLK’EVENT and CLK = ‘1’ then present_state <= next_state;
27 end if;
28 end process state_clocking;
29 |end behave;

52

4.3. Application Example

AC 220V 60HZ
s 1 P22 34 5 6 7 8

M

£ R :'[Mllgblgzz

— | o]

OL)g
Timer| X D SLz PL3

YO OO0

'

. |
Oz
()

<

LT

Fig. 4.5 Control circuit of a Y-A starting motor

s

Table 4.7: Descriptions of symbols

Symbol Description Symbol Description

. Indicator light of green ““b” contact of Push bottom
PL1 olo

O Indicator light of yellow 1 ““a “contact of Push bottom
PL 2 o o

. Indicator light of red “a ““ contact of relay
PL 3

O Relay 1 “b”” contact of relay

[] Timer 2 ““a “ contact of timer

1~9 rung number aho “b contact of timer

“b” contact of over load

This section illustrates a practice example. The controller is a LDs circuit. This

53

circuit can be modeled by BPNs and is simplified to obtain a fault-free model using
Table 4.1 of the preceding section. The system fault can be diagnosed by the
difference between the LDs response and the ASIC response (i.e., the fault-free
model).

To start a three-phase motor, a LDs controller uses a type of Y- Astarting to limit the
starting current, as shown in Fig. 4.5 and the symbol descriptions in Table 4.7. In the
LDs controller, the bottom Pb, is a control relay coil M, Y and active timer coil. The
motor enters the starting state when NO contacts of M and Y are turned on. Next, the
relay coil Y turns off after delay time T,, and the motor returns to the normal state
when the relay coil Y turns off and relay coil D turns on. Finally, the motor stops if the
bottom Pb,1s pushed or the current is'overload.. This LDs controller can be specified
as follows:

Step 1) The motor is commanded to start (Pb,).

Step 2) The motor starting time 15T

Step 3) The motor is commanded.to stop (Pb,).

Step 4) The motor will stop if the current is overloaded.

The implicit specification is as follows:

The relay coil D and relay coil Y are mutually exclusive.

4.3.1 Fault Free Model
The transformation from the ladder diagram (in parallel) to the fault free model (in
series) is based on the following steps:
Step 1) A rung or compound rung of the LDs is converted to a Boolean Petri nets
module using Table I or the Boolean equation. The LDs controller then
assembles Boolean Petri nets modules, as Fig. 4.6(a) shows, where (1),

(2) ... and (9) correspond to the number of LDs rungs.

54

Step 2) A Boolean Petri nets can be given after eliminating the redundant or pseudo

places (i.e., the S place), as Fig. 4.6(b) illustrates.

Step 3) A fault-free model can be obtained according to dominance relation reducing

some places (in this case, an abstract model reduces place p,) and eliminating some

redundant elements (i.e., the coil of time or auxiliary relay), as Fig. 4.6(c) shows.

Using the fault-free model to implement the ASIC circuit is shown in Fig. 4.6(d), and

simulated results are shown in Fig. 4.6(e). The generated test pattern is t (push pb,) -

t,(pushT,) - t,(pushPb,+OL) and t,t,,t (idealstate).

p3 :(Y’ PLz) tZ = (TA) p4 :(DDPLs)

P, : PL, ¢ =(Pp)
Wy

,M ,Timer)

|
t;, =(Pb, +OL)

t,, =(Pb, +0L)
(a) (b)
ASIC
p1 (PLl) pz:(PLGYnx) p3 :(PL39D7X) PL1 PL1
PL2 €—{PL2 XL+ DriveX
PL3 €4—PL3
Pbi Mt Y L— DriveY
PbT2\+OL—:%tti DC}— DriveD
CLR —p[ICLR [CLK

CLK

R
() (d)

30008800000

¥

(e)

Fig. 4.6(a) BPNs model of a LDs controller, (b) Equivalent diagram of Fig.6 (a), (¢)

Simplified model of Fig. 4.6(b), (d) ASIC diagram, and (e) Simulation result.

55

4.3.2. Testing Event Sequence of a Motor Starting LDs and Troubleshooting

The test event sequence of the control ladder diagram can be generated in turn with
the BPNs diagram, as shown in Table 4.8. The test event sequence is applied to the
ladder diagram and ASIC to detect true or false of the LDs, as shown in Fig. 4.1, and
it corresponds to troubleshooting, as shown in Table 4.8.

Table 4.8: Test event sequence and troubleshooting of motor starting LDs

Test Event No event Pb, event T, event Pb, event
Sequence occur occur occur occur
Troubleshooting Please check Please check Please check Please check

push bottom element from | element from
Pb, whether Pb toY T, to D and push bottom B
stuck at on.or -~ | interconnected | interconnected whether stuck
not. line whether line' whether
stuck at off. stuck at off. at on or not.

4.3.3. HDL Program
The control ladder diagram of Y- A starting can be implemented by HDL. The HDL

program is shown in Table 4.9, and its implemention and simulation are shown in Fig.
4.6(d) and (e), respectively.

Table 4.9: The HDL code of motor start action

Number Il. THE HDL CODE OF MORTOR STARTING LADDER DIAGRAM
1 library ieee;
2 use ieee.std_logic_1164.all;
3 entity PLC is
4 port (Reset,CLK,t1, t3 : in std_logic;
5 PLI1, PL2, PL3, X, Y, D :outstd logic;); end PLC;
6 architecture behave of piston is
7 type STATE _TYPE is (p0, pl, p2);
8 signal present_state, next_state : STATE TYPE;

56

9 signal t2 : BIT;

10 |begin

11 token_flow: process (Reset,present_state) begin

12 if Reset = "1’ then next_state <= p0;,

13 PL1="1"; PL2="0’; PL3="0"; X="0";Y="0"; D="0’;
14 case present_state is

15 when p0 =>

16 if tl=°1"then next state<=pl;

17 else next_state<= p0;

18 end if; PL1<="0’; PL2<="1’X<="1";Y<="1";

19 wait for 5sec;

20 2 <=°1";

21 when pl =>

22 if 2=°1"then next_state <= p2;

23 else next_state <= pl;

24 end if; PL2<="0’; PL3<=’1"; Y<='0";X<="1";D<="1’,
25 when p2 =>

26 if 3 =21"thennext state <=p0;

27 else next state <= p2;

28 end if; PL3<="0’; PL1<="1"; PL3<="0’;

29 X<="0; D<=70";

30 end case;

31 end process token flow;

32 state_clocking: process (CLK) begin

33 if CLK’EVENT and CLK = ‘1’ then present_state <= next_state;
34 end if;

35 end process state_clocking;

36 |end behave;

4.4. Summary

This paper shows a solution for the experience-based testing and troubleshooting
problem of LDs. We proposed a method for constructing a fault-free model,
supporting the implementation program of ASIC and testing event sequences from
BPNs. The testing problem was transferred to the determination of whether an event
occurred or not. If an event does not occur in the primary input then the primary

output is a have not response; likewise, if a have event occurs in the primary input,

57

then the primary output corresponds to response and the LDs detects a fault. Finally,
an example of a motor start LDs was represented graphically as a fault-free model,
providing a direct way to convert LDs to HDL and generate test an event sequence,
while demonstrating this usable approach. In the future, we plan to apply this
approach to more complicated systems and develop BPNs directly applied to the

design of PLC implementation.

58

CHAPTERS
The Testing, Diagnosis and Implementation of Logic

Controllers

In previous chapters, a BPNs application that can be remotely diagnosed and
monitored was developed. Although the proposed model can solve experience-based
testing and troubleshooting problems in sequence controllers of manufacturing
systems, sequence controllers are often designed with different types of LDs. Thus,
the transfer of LDs to BPNs is difficult, and a systematic approach for the design of
sequence controllers based on BPNs must be developed. Moreover, the BPN-directed
application must be able to be remotely diagnosed and monitored. In this thesis, a
method based on IDEF0, BPNs and TPL was developed- to validate the system and to
implement traditional PLCs. The proposed method can-generate test event sequences

for the solution of experience-based testing and troubleshooting problems in sequence

controllers.
Design for testing
and diagnosis
A
1/O-based BPN using IDEF0 PLC
specifications implementation

A
A 4

Design validation

using simulation

Fig. 5.1. Extension of the implementation scheme for Petri net-based controllers by

59

Taholakian et al. (1997).

Command Advice Supervisory
Agent X
v Comparison
Remote | Status Display Abstract |Output
Manger |Virtual Contrgl| Model
Difference Output

I i_gefl.‘.lfs.t. Internet | _ T _ _ _

Local Real Contro] | Controlled Response
—

Controller System

Fig. 5.2. Proposed hierarchical control (by Lee et al., (2004)).

5.1. Boolean Petri nets
In this section, define BPNs and describe the state equation of BPNs. The BPNs
can be directly modeled from a specification-of the logic controller or by employing
IDEF0O. The state equation can be used to simulate design validation and the
constructed abstract model (as shown in Fig. 5.2) via an incidence matrix.
5.1.1 Definition of BPNs
The BPNs (Tsai et al., 2010) can be defined formally as
PN =(P,T,A 1,0,in,out,M) , (5-1)
Where P ={p,p,,..p,},m>1 is a finite set of places that are associated with the
output actuator; T=g.t,..t}, nx1,is a finite set of transitions that are associated with
input sensors; PNT=d: andPUT #®. Ac(PxT)u(TxP) is a set of arcs (—)
consisting of input arcs A (PxT) and output arcs A (T xP). The weight of each

directed arc in this chapter is 1, and A (PxT) is defined as a directed arc from a place

60

to a transition. Places are called input places, and transitions are called output
transitions. The input arc is represented by a connected line as a channel of a token.
A, (T xP) 1is defined as a directed arc from a transition to a place, where the transition
is called the input transition and the place is called the output place. The output arc is
represented by a connected line as a channel of a token.1:TxP— N is an input
function that defines the number of output arcs A(T xP), where N={01.2,.}.
O:PxT — N 1is an output function that is defined as the number of input arcs A (PxT),
where N ={0,1,2,...};in={in,,in,,...,in, }is a set of input sensors that is associated with a
transition t, and is denoted byt :in. The term out={out ,out,,..,out,} is a set of
output actuators that is associated with a p,and is denoted by p,:out. M (P) is the
initial marking that uses a token to reptesent the place status.

A transition is enabled if the number of tokens at the place is equal to or larger
than the number of input arcs. An enabled transition is.firing when an input sensor
event occurrence associated with the enabled transition.moves the tokens from input
places to output places along the input arcs and output arcs. A marking is denoted as
an m-vector, where m is the total number of places P, while m(p,) is represented by

the number of tokens at place p, .

5.1.2 State equation

The firing definition easily shows that the token moves from state M, , to
another state M, by the kth firing, and U, is a firing vector that can be given in
terms of the following matrix state equation for Petri nets (Lee et al., 2000):

M, =M_+AU, , (5-2)
Where U, is the firing vector and A" is the corresponding abstract model called the

incidence matrix for any given topological structure of Petri nets, defined by

61

_Oij(piatj)
AT(p;t)) = 0 , where 1<i<m, I<j<n- (5-3)
Iji(tjapi)

Note M, must be a vector of nonnegative integers. The firing vector will then select
an appropriate column of AT such that

M., +A"U, >0 foreach k (5-4)

5.2. Constructing Boolean Petri Net and Implementation

In this section, construct a BPNs model from a specification of the system and
map it to the PLC code based on the RLL, the LLD or the HDL.
5.2.1 System description

An example of a tank filling is provided to describe the BPNs design stage for
directly constructing a model from system specifications or IDEF(. The tank filling
shown in Fig. 5.3(a) is redrawn from David’s: paper. (David 1995). A reservoir
provides water to tank 1 and tank 2. The tanks are modeled in three states: empty,
during filling and during emptying. The initial state of the model is an empty tank (i.e.,
the water level of the tank is lower than b, ‘and b,). Valves V, and V, will be
open when push button m is pressed. Water from the reservoir flows into tank 1 and
tank 2 until the tanks are full of water (i.e., the water levels of the tanks are higher
than h, and h,). Valves W, and W, are then opened after the tank is filled until

both tanks are empty.

Reservoir _|m
O O
Vv
2 h2
Tank 2|b,
2

62

(2) (b)

Water level o
<b,.b,
| Water level o
< h] ’ hz
T ' bl s b2 <
Empty tank al Water level
During filling
< hl > hz
I}uring
emptying
©)
m
¢ hl ’ hz
Read
»| Push
A 4 b1) bz
button N
Valves V1,
V2
Valves W1, W2
open 6
open

(d)

Fig. 5.3. (a) Filling tank, (b) BPNs model of filling tank, (c) Material flows of IDEFO
and (d) Information flows of IDEFO.
5.2.2 Constructing the BPNs model

This BPNs model is explained in Fig. 5.3(b). The labels 1 to 6 represent steps, i.e.,
components of states. At the initial time, the steps in the set {1, 4} are active. Next,
transition (1), which follows these steps, can be fired as soon as event m associated
with (1) occurs. After this firing, steps 2 and 5 are active. When step 2 is active, the

output V,= 1. When step 2 is active, transition (2) can be fired if the h, event has

occurred, and so on. The concurrency is explicitly represented in this model. Steps 1,

63

2 and 3 correspond to the states of tank 1 (empty, during filling, and during emptying,
respectively), and steps 4, 5 and 6 correspond to the states of tank 2.

IDEFO (FIPS 183) is an activity-oriented model approach that represents the
activities performed in a system using ordered sets of boxes, as shown in Fig. 5.4. The
boxes are input-control-output mechanisms. The activity may be a decision-marking,
a material-conversion, or an information-conversion activity (Santarek et al., 1998).
The information flow represents system activities and their interrelationships. It is
transformed into a dynamic BPNs model based on the following steps:

1. The input and output commands of the activity box in the information flow
diagram are transformed into input and outputs places in the BPNs,
respectively.

2. The control signals of the sensor reading are transformed into transitions in the
BPNs.

3. The initial token of the BPNs are set according.to the initial condition of the
system.

The IDEFO approach can be used to design the tank filling system, as shown in

Figs. 3(c) and (d). The BPNs model result is shown in Fig. 5.3(b).

Control

Parameters/rules

v

Input —p Activity — Output

Material/information T Material/information
flows flows
Mechanism
Machines/operators

Fig. 5.4. The IDEFO scheme (Lee et al. 2005).

64

5.2.3 BPNs mapping to implementation

To convert the BPNs model into PLC code for controller implementation, a
direct mapping was used and is shown in Table 5.1. In the initial conditions, a token is
located at place p,, which is represented as p, active. The token then flows to place
p, when the sensor input is on; the sensor input 0N is associated with transition t, : X,
firing. The active output device is assigned to the place p, active. According to the
properties of being active and firing, the BPNs can be represented by the Boolean

equation p, =t, - p,, which is equivalent to PLC code (Lee et al. 2005).

Table 5.1: Mapping the BPNs to PLC code

BPNs RLL LLD HDL
p, 1Y, t].mlpZ:Y2 m IBLI I_ m |£L| S p Whenpl =
@—»m D | RS, if tl =°1"then next state <= p2;
. else next_state <= pl;
p p2 2
o 30 end if; Y1<="0", Y2<="1;
. . if t2="1"then
RS pk Y S m2 P pk S P - p '
O<—|<—@ Lol —0O ILn’O-LO—I ?—E|I:|—k next_state <= p0;
t,om, else next state <= pk;
end if; Y<='0';

5.3. Testing and Troubleshooting

In this section, introduce the concept of integrated circuit testing (Lala 2009) to
describe basic LDs for the corresponding BPNs and to generate the testing event
sequence of a BPNs model. The generated test event sequence can be applied for the
testing and troubleshooting of the designed controller (i.e., local controller, as in Fig.

5.2).

65

5.3.1. Introduction of LDs testing

For example, for a BPNs model like the one shown in Fig. 5.5(a), with its
corresponding LDs circuit shown in Fig. 5.5(b) and the Boolean equation
C=AB (Bender et al. 2008), the Boolean equation can be viewed with AND logic in
an integrated circuit (IC). Its true table is shown in Table 5.2. The equivalent set for
the LD circuitis { A s—a—0,Bs—a—0,Cs—a-0 }, and its fault dominance relations are
{Cs-a-1,As—a-0 } and { Cs-a-1,Bs—a-1}. The fault can be ignored if
{As—a-0,Bs—a—0,Cs—a—1}. In other words, these test sets {A,B} are reduced to
{0, 1}, {1, 1}, and {1, 0}. The {0, 1}, {1, 1}, and {1, 0} of the LDs test pattern
correspond to no event occurrence (i.e., switch A and B are not pressed), switch an
event occurs (i.e., switch A is pressed) and switch B event occurs (i.e., switch B is
pressed) for the BPNs, respectively.

Table 5.2: True table of a simple LDs circuit

A B C(coil) |As-a-1-| B s-a-1 | Cs-a-1 |As-a-0 | B s-a0|Cs-a-0
0 0 0 1

0 1 0 1 1

1 O 0 1 1

1 1 1 0 0 0

5.3.2. Testing event sequence

Fault detection in a self-holding LDs, as shown in Fig. 5.5(b), it is mapped by a
BPNs as shown in Fig. 5.5(a) and its test event sequence can be generated from the
transition sequence of the BPNs model; thus, it is carried out by applying a sequence
of test events and observing the resulting outputs. If the observed response differs
from the expected response, a fault is present in the LDs. The aim of testing is to

verify that functions in the LDs are true or false, as shown in Fig. 5.2, which

66

corresponds to troubleshooting, as shown in Table 5.3.

In an m-input system, there can be 2(m+1) stuck-at faults in the LDs, but there can
be an (m+1) event sequence generated in the BPNs. Thus, the total number of single
stuck-at faults in a basic LDs circuit is 6 (=2%3); however, the test event sequence can
be equal to 3 (=2+1), generated using a BPNs. The test event sequence is N0 event, an
event occurs and B event occurs, as shown in Table 5.3. The test event sequence can
be calculated and verified using the Boolean equation and the state equation,
respectively.

p,=t_ -p, =0/1=t_ -1=t_ =0/1, where t _ (faultfree/fault)=0/1 1is represented as
A no event occurs, but A is fault-at-on.

p,=t_-p =1/0=t_ -1=t_ =1/0, where t_ =1/0 isrepresented as an event occurs,
but from primary input A to.primary-output C is fault-at-off.

p =t -p,=1/0=t, -1=t,_ =170, where t,_ =1/0is represented as B event occurs,

but B is fault-at-on.
-1 1 1 t..[0/1 t_ [1/0 t| 0
DT — pl , MO — pl ; UFC _ 1-c , UFO . 1-c , U27C — 1 ;
p,| 1 -1 p,|0 t,| 0 t,| 0 t,.[1/0
; p,H {—1 1“0/1} H {0/—1} [1/0}
M.=M,+D" -U _ = + . =| |+ =
p,|0] |1 —1][0 o] |o/1| |o/

. p, |1 -1 1]]1/0 1 -1/0 0/1
Mp=M,+D -U_ = + . =| |+ =
p, |0 1 -1 0 0 1/0 1/0

2

R s PR RIS
M,.=M,+D U, = + . =| |+ =
p,|1 1 -1|(1/0 1 -1/0 0/1

p,:S p,:C S B _|_A P>
! —0
t,:B — P2 C
| s
(a) (b)

Fig. 5.5. (a) BPNs model (b) Corresponding to a self-hold on LDs.

67

Table 5.3: Test event sequence and troubleshooting

Test
Initial _
at fault free | Fault ABC | Firing effect | Event Troubleshooting
state
Sequence
LA LA :t:A | 010/1 | The token No event | Please check
G|] S
(ifB (iSB QS‘B was push button A to
il -« -+ propagated to determine
the next whether it is
position stuck at on or
before A not.
fires.
LA tiA t:A 1 111/0 | The token Aevent Please check
| e e
¥ X Q cannot be occurs one of the
ealSHR-Rci e
] I 5“ deposited in elements A, B,
the next or C and the
position interconnected
when A is line to
firing (i.e.;°A determine
IS pressed whether they
event are stuck at off.
occurs).
t A t ;|A ¢ | A 1.0.0/1 | The token B event Please check
> . ,:C |
fl ;l é < . ;5\6 1 :S\é% :q cannot be occurs push button B to
|« |« Ci\g propagated to determine
t,: B tz :B tz g o .
the next whether it is
position stuck at on or
when B is not.

firing (i.e., B
is pressed
event

occurs).

5.4. An example of stamping Process

To demonstrate the viability of the developed approach, a stamping process

application was investigated.

68

5.4.1. System description

As shown in Fig. 5.6(a), a stamping system (Lee et al. 2005) consists of three
cylinders. Each cylinder has two normal open limit switches. In terms of input sensors,
the stamping system have a push button m, and 6 limit switches: a0, al, b0, b1, cO
and c1. For output actuators, there are 6 solenoid valves: A+, A-, B+, B-, C+ and C-,
where the + and — signs indicate a piston performing forward strokes and return
strokes, respectively. In the stamping process, pusher A moves the work piece onto the
worktable from a store. The work piece is then stamped by stamp B and afterwards is
ejected by a thrower C. Thus, the work process sequence of the system is A+, B+, {A-,
B-}, C+ and C-, where {A-, B-} represents two concurrent actions as the pistons of

both pusher A and stamper B perform: return strokes simultaneously.

5.4.2 Construction of the BPNs'model and mapping of LLD

According to the sequence of ‘the stamping system associate input sensor, the
corresponding BPNs are shown in Fig. 5.6(b).. One basic safety specification
assumption is that in any case in which the system must be shut off, this should be
done via the protruding switchm,. A BPNs model for this specification constructed
using the reversible concept of a Petri nets, which is designed to add an OR transition
m, (denoted as a dotted bar in Fig. 5.6(b)), is shown in Fig. 5.6(c). The proposed
mapping LLD approach is shown in Fig. 5.6(d). Both RLL and HPL can be used in a

similar way.

69

p,:B+

p4 :(A—7 B—)

70

S

gmz

Mpﬂ | pM Ps SETp,
SET p,
T SETp,
|
RST p,
e
a, P,
T, I I I I SET p,
RST p,
Ps @B+
b
'l'3 1 I |p3 SET p4
RST p,

@A-
p4 eB_
| (3 | [P [P
| | I}il
e

Fig. 5.6. (a) Structure diagram of the stamping system (from Lee 2005), (b)

SET p,

RST p,

SET p,

RST p;

SET p,

RST p,

Corresponding BPNs of the stamping system, (¢) Corresponding BPNs with the added

safety design for the stamping system, (d) Mapped LLD using BPNs.

71

p,:B+ p,:(A-B-)

Fig. 5.7. Abstract BPNs model of the stamping system.

5.4.3 Abstract model and state equation

The abstract BPNs model shown in Fig. 5.7 is a behavioral model. The behavioral
model is simplified by the given BPNs model but matches the function of the
controller. According to Eq. (5-2); the state equation M, =M, +A'U, can be used to
analyze and simulate the stamping system, where A" is the incidence matrix used to
represent an abstract model,-U, 1s the firing vector (fault free/fault), “1” represents
the occurrence of an event and “0” represents no event in the firing vector 1/0 (0/1).

t ottt ot ot t

p _ 1 2 3 4 5 6 7 L
‘-1 0 0 0 0 0 1 p.[1] t[1/0(0/1)] t[o0]
Pl 1 -1 0 0 1 0 0.0 t| 0 t,[1/0(0/1)
2
0 1 -1 0 0 0 O t 0 t 0
AT = pv’) p3 0 b _ ') _ ')
p|[0O 0 1 -1 0 0 0/|M= 0 U=t 0 U,=t| 0
‘ P. t| o t] o
o 0 0 1 -1 0 0 0 s s
‘1o o 0 1 -1 -1 P, t, 0 t, 0
p6_ B pa _0_ t7_ 0 i t7_ 0 J
t, 0 t, 0 t[o] t[0] t[0]
t, 0 t, 0 t, 0 t, 0 t, 0
t,[1/0(0/1) t, 0 t, 0 t, 0 t, 0
U, =t, 0 U, =t,|1/0(0/1) |°U, =t, 0 U, =t, 0 U, =t, 0
t, 0 t, 0 t.[1/0(0/1) t, 0 t, 0
t, 0 t, 0 t, 0 t,[1/0(0/1) t, 0
t| 0 | t,] o0 | t,l 0 | t,l 0 | t,|1/0(0/1)]

72

P,
P,
P,

M, =M, +A'U =

P;
Ps

Similarly,

p,
P,
M, =M U
, =M +AU=

Ps

P

P,
P,
o s
M, =M, +AU=

ps

Pl

P
P,
M, =M, + AU =P
P
P,

4

S O O O O =

P,
P,
P,
P

0/1
1/0

0/1
1/0

"0
1/0

P

or =

or

10/1]

P,
P,
P
P,
ps
P

pl
P,
p;
P,
ps

PsL

P,
P,
b
P,
ps
P

tot, tot,
0 0 0 0
0 0 0 1
-1 0 0 0
1 -1 0 0
0 1 -1 0
0 0 1 -l

> M, =M, +AU=

M, =M, + AU =

M, =M, +AU =

o o o o =T

b
P,
b

ps

Ps L

P,
P,
P

P

P

P,
P

4

ps

Pl

_[1700/D)] o
(071) p,[0/1
0
0 p,|1/0
0 _bs g
0 P,
|t
_ | 0 | p(‘ L _
[0] p[0
0 p,| 0
0/1
or= P 1701,
1/0 p,| (0/1)
0 p,| 0
0 | Pl O |
[0 p[o
0 p,| O
0 ore P 0 |,
0 p,| 0
0/1 p, | (1/0)
L) p.| 0/
1/0] p,[(0/1)]
0 p,| 0
0
or = p| 0
0 p,| 0
0 p,] 0
071 P.L(1/0) |

Pq L

5.4.4 Generating the testing event sequence and troubleshooting

The test event sequence of the local controller and the abstract model shown in
Fig. 5.2 can be generated from the BPNs model for PLC testing and diagnosis. It can

also be used to support network-based monitoring and supervision. Faulty diagnosis

or =

b,
p,
P,
P,
P

P L

[(1/0)]
0/1)

oS O O

of the local controller according to the switch type of the local controller leads to 3

simplified types, as shown in Table 5.4, where the test event sequence is

m-a—>b-o>a-—>b-o>c—o>c,om,.

73

Table 5.4: Test event sequence and troubleshooting of the stamping process

Test Event{Type of] . .)
. Initial state |Fault free |Fault Troubleshooting
Sequence |switches
t:(m,a b ,|Normal Please check normal
P ti p i P ti p i P t. p j . .
a,,b,, ¢ ,c,)lopen @-”-’O @—P’—PO switches to determine
no event/switch whether they are stuck
occurs at on or not.
t;:(m,,a,,b ,|Normal Please check relational
P; ti p j P tl p i o tl p i . .
a,,b,, ¢, ¢)lopen @—>’—>O O—P’—P@ switches and their
event switch interconnected line to
occurs determine whether
they are stuck at off.
tom, Normal Please check switch
P, t, Pu|P t, P|R ot P
event closed M to determine
occurs switch whether it is stuck at
on or not.

TABLE 5.5: Comparison of SPNC and BPNs for stamping system

Comparison measures SPNC BPNs
Place 15 Place 6
Transition 8 Transition 6
Basic elements
Arc 25 |Arc 12
Total 48 |Total 24

cat

Fig. 5.8. Corresponding SPNC of the stamping system (from Lee, 2004)

74

P T P
\ A ET 4 | |8 | [P
SET p, |[— RSTp, ||
m
T ey L SET p, T. | %bo | %ps SETp, |—
RSTp, |— RSTp, |
P,
I I oA+ . P[P
0 | | SET p,
12| [P
T, 1 SETp, | RSTp,
RST p, ——| RSTp,
p3 e B+ I I p8 .C +
b__||p c
! : AL
'|'3 | | SET P, T7 I I i I SET D,
RST p, | | | RsTp,
p4 .A— p9 QC _
b | [P
. on- o YR
L | RSTp,

Fig 5.9. LLD implementation of stamping system (from Lee, 2004)

5.4.5. Comparison of SPLC, BPNs and Corresponding LLD
The IDEFO/SPNC/TPL/LLD (Lee, 2004) is a systematic implementation approach;

however, the BPNs introduced composite transition and place to reduce the

75

complexity of BPNs and simplified controller implementation. Therefore, the
comparison based simply on the number of Basic element for SPNC (Lee, 2004) and
BPNs of stamping system, is shown in Table 5.5. The SPNC needs place 15, transition
8 and arc 25, while BPNs only needs place 6, transition 6 and arc 12 from Fig 5.8 and
Fig. 5.6 (b), respectively. Furthermore, the mapping unit is from SPNC and BPNs to
LLD are 8 and 6 from Fig. 5.9 and Fig. 5.6 (d), respectively. Thus the BPNs are a

simple approach.

5.5. Summary

In this chapter, a clear design approach.is proposed for the testing, diagnosis and
implementation of logic controllers using BPNs. The'BPNs model is a core approach,
a bridge between a system ‘specification and PLC code. The abstract model can
directly generate a testing event sequence to solve the experience-based testing and
diagnosis problems of controllers." It also supports network-based monitoring and
supervision, and it can be directly mapped into three types of PLC code to support
different implementations. Finally, an example of a stamping process is provided to
illustrate the design, implementation, testing and troubleshooting process as well as to

demonstrate the usefulness of this approach.

76

CHAPTER 6

CONCLUSIONS

6.1. Summary of Contributions

In this thesis, a method for the design, testing, diagnosis, and implementation of a
sequence controller for remotely monitored and controlled processes were proposed.
The model and techniques developed in thesis are useful for industrial applications of
automated systems. The contributions of this thesis to the design of automated
systems can be summarized as follows:

1) Test generation and determination of fault sites in combinational circuit

To improve the efficiency of logic faults; the transitions of general Petri nets
were modified according to a local critical true table, known as the Logic Petri
nets (LPNs). The LPNs model transferred complex circuit problems into a local,
adjacent place and a transition ‘relational problem, which simplified the site of

fault and fired logic value problems (Tsai, Lee and Teng 2006).

2) Construction of an abstract model of a ladder diagram

To diagnose the local fault of a ladder diagram on-line, a Boolean Petri nets
model was proposed. The model introduces the concepts of composite transitions,
composite places, and relevant states to reduce the complexity of the system and
to increase the readability of Petri nets. To determine faulty areas of the ladder
diagram, the proposed diagnostic process employs simple matrix manipulations

and a difference output vector (DOV) (Tsai and Teng, 2010).

77

3) Implementation of ASIC for the testing of a ladder diagram

To solve experience-based testing and troubleshooting problems in LDs, the
developed method introduces a procedure that compares fault circuits and
fault-free circuits into integrated circuit testing. Moreover, to achieve the
proposed method, a fault-free model was constructed and application-specific
integrated circuits (ASICs) and testing event sequences were implemented. As a
result, the testing problem was transformed into the determination of event
occurrence. For instance, if an event did not occur in the primary input, then a
response is not obtained from the primary output. Likewise, if an event occurs in
the primary input, then the primary output responds accordingly, which results in

the detection of faults (Tsai, Linand Teng, accepted).

4) Design for the testing and implementation of logic controllers

To solve experience-based testing and diagnosis. problems in the design of

sequence controllers from system specifications, @ BPNs model that acts as a bridge

between system specifications and PLC codes was developed. The abstract model can

directly generate a testing event sequence to solve experience-based testing and

diagnosis problems in sequence controllers. The model also supports network-based

monitoring and supervision, and can be directly mapped into three different types of

PLC code to support a variety of implementations. Finally, an example of a stamping

process was provided to illustrate the design, implementation, testing, and

troubleshooting of a sequence controller and to demonstrate the usefulness of the

proposed approach (Tsai, Liao and Teng, submitting).

6.2. Future Research

The applications of PNs for the testing of circuit systems can be extended in the

78

following directions:

1)

2)

3)

In this thesis, the LPNs were used to generate automatic test patterns (ATPGs) in
combinational circuits. By applying an extended D-algorithm (Putzolu 1971), the

present model could be extended to sequence ATPG applications.

By employing BPNs, the testing and diagnosis of sequence controllers designed
from system specifications or existing PLCs was achieved. In future studies, the
BPNs map could be applied to Java language because Java technology was used to

implement the intelligent agent for on-line supervision (Lee 2004, thesis).

In this thesis, IDEF0, BPNs, andPLC were integrated to develop an approach for
the testing and diagnosis of a sequence controller. and the generation of testing
events. In future studies, the proposed method could be extended to different

IF-THEN systems for the support of network-based monitoring and supervision.

79

REFERENCES

Abramovici, M., Breuer, M. A. and Friedman, A. D. (1990), Digital systems testing and

testable design, Computer Science Press: New York.

Bender, D. F., Combemale, B., Crégut, X., Farines, J., Berthomieu, M. B. and Vernadat,
F. (2008), “Ladder metamodeling & PLC program validation through time Petri nets,”

ECMDA Lecture notes computer science, Springer Berlin / Heidelberg, pp. 121-136.

Chen, S. M., Ke, J. S. and Chang, J. F. (1990), “Knowledge representation using fuzzy
Petri nets,” IEEE Trans. Knowl..Data Eng., vol. 2, pp. 311-319.

Chen, S. M. (2000), “Fuzzy backward reasoning using fuzzy Petri nets,” IEEE. Trans.
Systems, Man, and Cybernetics.— Part B, vol. 30, no. 6, pp. 846-856.

David, R. and Alla, H. (1992), Petri Nets-and Graicet: Tools for Modeling Discrete-Event

Systems, London: Pretrice-Hall.

David, R. (1995), “Grafcet: a powerful tool for specification of logic controllers,” IEEE

Transactions on Control Systems Technology, pp. 253 — 268.

Dotoli, M. P., Fanti, G. M., lacobellis, G. G. and. Mangini, A. M. (2009), “A First-Order

Hybrid Petri Net Model for Supply Chain Management,” IEEE Trans. Automat. Sci.

Eng., vol. 6, no. 4, pp. 744-758.

FIPS 183 (1993), National Institute of Standards and Technology, Integration Definition

80

for Function Modeling (IDEFO). NIST, USA.

Hu, H. S., Zhou, M. C. and Li, Z. W. (2009), “Liveness enforcing supervision of video
streaming systems using nonsequential Petri nets,” IEEE Trans. Multimedia, vol. 11,

no. 8, pp. 1457-1465.

Jackman, J., Linn, R. J. and Hyde, D. (1995), “Petri net modeling of relay ladder logic,” J.

Design & Manuf,, vol. 5, pp. 143-151.

Kirkland, T. and Mercer, M. R. (1988), “Algorithms for Automatic Test-pattern

Generation,” IEEE Design and Test of Computers, vol. 5, no. 3, pp. 43-55.

Lala, P. K. (2009), An Introduction to logic circuit Testing, Morgan & Claypool.

Lan, J. C. and Ma, M. (2009), “Fault diagnosis method of power system based on the

adaptive fuzzy Petri net,” Test and Diagnosis, IEEE Circuits and Systems

International Conference on 28-29, pp. 1-4.

Lee, G. S. and Lee, J. S. (2000), “The state equation of Petri net for the LD program,”

Proc. IEEE Trans. Int. Conf. Systems, Man, and Cybernetics, pp. 3051-3056.

Lee, J. S. (2004), Design of the remote supervision system for automated processes via the

Petri nets approach, Ph.D. Dissertation, Department of Electrical and Control

Engineering, National Chiao- Tung University, Taiwan, ROC, July.

81

Lee, J. S. and Hsu, P. L. (2005), “A systematic approach for the sequence controller

design in manufacturing systems,” Int. J. Adv. Manuf. Technol., pp. 754-760.

LO, K. L., Ng, H. S. and Trecat, J. (1997),”Power systems fault diagnosis using Petri
nets,” |EE proceeding C. generation, Transmission and Distribution, vol. 144, pp.

231-236.

Looney, C. G. (1987), “Logical Control via Boolean Rule Matrix Transformations,” |IEEE.
Trans. Systems, Man, and Cybernetics, vol. SMC-17, no. 6, pp. 1077-1082.

Murata, T. (1977), “State equation, controllability, and maximal matching of Petri nets,”

IEEE Trans. automatic control, vol. 22, pp.412-416.

Murata, T. (1989), “Petri nets: properties, analysis, and application,” Proceedings of IEEE,

vol. 77, no. 4, pp. 541-580.

Peng, S. S., and Zhou, M. C. (2001), Conversion between Ladder diagram and Petri-net in
discrete-event control design- A survey, |IEEE Trans. Int. Conf. Systems, Man, and

Cybernetics, pp. 2682-2687.

Peng, S. S. and Zhou, M. C. (2004), ”Ladder diagram and Petri-net-based discrete-event
control design methods,” IEEE. Trans. Systems, Man, and Cybernetics -Part C:

Applications and Review, vol. 34, no. 4, pp. 523-531.

Santarek, K. and Buseif, I. M. (1998), “Modeling and design of flexible manufacturing

systems using SADT and Petri nets tools,” J. Mater Process Tech., vol. 76, pp.

82

212-218.

Taholakian, A. and Hales, W. M., “PN->PLC: a methodology for designing, simulation
and coding PLC based control system using Petri nets,” int. J. product. Res., vol. 35,

no. 6 pp. 1743-1762, 1997.

Tsai, J. I. and Teng, C. C. (2010), “Constructing an abstract model for ladder diagnosis
using Petri nets”, A Special Issue of Asian Journal of Control, vol. 12, no. 3, pp.

309-318.

Uzam, M. and Jones, A. H. (1998), “Discrete even control system design using automation
Petri nets and their ladder diagram implementation,” Int. J. Adv. Manuf. Tech., vol. 14,

pp. 716-728.

Venkatesh, K., Zhou, M. C. and'Caudill, R. J. (1994), ”Comparing ladder logic diagrams
and Petri nets for sequence controller design through a discrete manufacturing

system,” IEEE Trans. on Industrial Electronics, vol. 41, no. 6, pp. 611-619.

Venkatesh, K., Zhou, M. C. and Caudill, R. J. (1994a), ”Evaluating the complexity of Petri
nets and ladder logic diagrams for sequence controllers design in flexible automation,”
Proc. of IEEE Workshop on Emerging Technologies and Factory Automation, Tokyo,

Japan, pp. 428-435.

Zhou, M.C. and Twiss, E. (1998), “Design of industrial automated systems via relay

ladder logic programming and Petri nets,” IEEE Transactions on Systems, Man, and

83

Cybernetics, Part C: Applications and Reviews, pp. 137 — 150.

84

VITA

July 19, 2010

PERSONAL DATA

Name: %"—kf—ﬁﬁ

Jui-I Tsai

Date of Birth: April 19,1958

E-mail: tsai.ece90g@nctu.edu.tw

EDUCATION

2001/9-2010/7

Receive the Ph.D. degree in the~Institute of Electrical Control
Engineering at National Chiao-Tung University, Taiwan, R.O.C.

1992/9-1994/7

Receive the. M.S. degree in the Institute.of Medical Engineering from
National Cheng- Kung University, Taiwan, R.O.C.

1981/9-1985/7

Receive the B.S. degree in the Department of Electronic Engineering

from Feng-Chia university, Taiwan, R.O.C.

ATTENDED CONFERENCES

¢ International Conferences

2006 Oct., IEEE Intl. Conf. Systems, Man and Cybernetics, Taipei, R.O.C.

o Domestic Conferences

2006 Nov., Chinese Automatic Control Conference, Taipei, R.O.C.

85

PUBLICATION LIST

July 19, 2010

JOUNAL PAPERS

1. J.1. Tsai, J. M. Shieh, T. S. Liao and C. C. Teng, “High-voltage amplifier uses
simplified circuit,” EDN Design Ideas, pp.110, 2004.

. J.1. Tsai, W. W. Pai, F. C. Hsu, P. J. Chen, J. M. Shieh, C. C. Teng and T. S. Liao,
“Relays eliminate high-voltage noise,” EDN Design Ideas, pp.66-68, 2007.

. J.l. Tsal and C. C. Teng, “Constructing an abstract model for ladder diagnosis
using Petri nets,” A Special Issue of Asian Journal of Control, vol. 12, no. 3, pp.
309-318, 2010.

. B. T. Lin, J.I. Tsai and C. C. Teng, “QFT /H_ Controller Design of a

MIMO Suspension System,” accepted 'by the Advances in Differential
Equations and Control Processes, vol. 5, no. 1, pp.49-63, 2010.

.J.1. Tsai, B. T. Lin and C. C. Teng “An ASIC Implementation for testing of a
ladder diagram using a Boolean Petri net,” accepted by Far East Journal of
Experimental and Theoretical Artificial Intelligence, 2010.

. J.I. Tsai, T. S. Liao, B."T. Lin and C.-C. Teng “Design for the testing and
implementation of logic controllers using Boolean Petri net,” Far East Journal of
Experimental and Theoretical Artificial Intelligence, 2010 (revise).

INTERNATIONSL CONFFERENCE PAPER

1. J.I. Tsai, C. C. Teng and C. H. Lee, “Test Generation and Site of Fault for
Combinational Circuits Using Logic Petri Nets,” IEEE International Conference
on Systems, Man, and Cybernetics, Taipei, pp. 91-96, Oct. 2006.

DOMESTIC PAPER

1. J.I. Tsai, and C. C. Teng, “Fuzzy reasoning based on logical Petri nets,”
Automatic Control Conference, Taipei, pp. 1231-1236, Nov. 2006.

86

