
國 立 交 通 大 學

電控工程研究所

博 士 論 文

建構新型 Petri Nets 模式與其應用

Construction and Applications of Novel Petri Nets Models

研 究 生 : 蔡 瑞 益

指導教授 : 鄧清政教授

中華民國九十九年七月

 II

建構新型 Petri Nets 模式與其應用
Construction and Applications of Novel Petri Nets Models

研 究 生 : 蔡瑞益 Student: Jui-I Tsai

指導教授 : 鄧清政教授 Advisor: Ching-Cheng Teng

國 立 交 通 大 學

電 控 工 程 研 究 所

博 士 論 文

A Dissertation
Submitted to Institute of Electrical Control Engineering
College of Electrical Engineering and Computer Science

National Chiao-Tung University
In Partial Fulfillment of the Requirement

For the degree
of Doctor Philosophy

in
Electrical Control Engineering

July 2010
Hsinchu, Taiwan, Republic of China

中 華 民 國 九 十 九 年 七 月十 九日

 i

建 構 新 型 Petri Nets 模 式 與 其 應 用

研究生 : 蔡瑞益 指導教授 : 鄧清政教授

國 立 交 通 大 學

電 控 工 程 研 究 所

摘 要

本論文利用 Petri nets 可撓性，建構出 Logical Petri nets 和 Boolean Petri

nets，分別應用到電子領域中的積體電路測試(IC testing)與電機領域中的階梯圖

(ladder diagram)測試、診斷和設計領域。

積體電路測試中，Logical Petri nets 是根據真值表(true table)之臨界值

(critical value)所建構而成，具有布林代數(Boolean algorithm)和 collapsing fault

性質，使 Petri nets 具有清晰物理觀念。本文所提出前進演算法(forward algorithm)

與後退演算法(backward algorithm)，即為了在組合電路(combinational circuit)

中，求得測試圖樣(test pattern)、故障點位置(site of fault) 和激發邏輯值(firing

logic value)。

 在階梯圖上，提出 Boolean Petri nets (BPNs)建構的抽象模式(abstract

model)，可直接從 BPNs 的 transition 時序，產生測試事件序列(test event

sequence)和提供製作出客製積體電路(application- specific integrated circuits)。

此外，在設計可程式控制器方面，也可依系統規格直接建構 BPNs 抽象模式或

利用 IDEF0 建構支援 BPNs 抽象模式可完成達到診斷、測試和控制器實現。最

後經由一郵票打印程序(stamping process)提供一階梯邏輯圖設計、測試和實

 ii

現，證實所提出方法有用的，另由與 simplified Petri net controller (SPNC) 比較，

證實 BPNs 是一簡潔模式。

 iii

Construction and Applications of Novel Petri Nets Models

 Student: Jui-I Tsai Advisor: Prof. Ching-Cheng Teng

Institute of Electrical Control Engineering

National Chiao-Tung University

 Due to the flexibility of Petri nets (PNs) and their ability to construct various types

of clear, readable and suitable plane models, PNs have been recently employed in

industrial applications. In this thesis, a Logic Petri nets (LPNs) and a Boolean Petri

nets (BPNs) were applied to test, diagnose, and design ladder diagrams (LDs) and to

test integrated circuits (ICs).

 In IC tests, the proposed LPNs model possesses the properties of a Boolean

algorithm including collapsing fault and clear physical concepts because the LPNs

model was constructed according to the critical truth table of combinatorial circuits.

To solve generated test patterns and determine fired logical values at the site of fault

in combinational circuits, the proposed approach contains a site of fault and fired

logical value reasoning algorithm and a test pattern generation reasoning algorithm.

 In existing LDs, the proposed BPNs was used to construct an abstract model that

can directly generate test events from the transition sequence of the BPNs and can

support the implementation of application-specific integrated circuits (ASIC).

Moreover, in the design of programmable logic controllers (PLCs), the proposed

abstract BPNs model can be constructed according to the specifications of the system

or by employing the integration definition for function modeling (IDEF0). The

abstract model developed in this thesis can directly generate a testing event sequence

for PLC testing and diagnosing. Finally, an example of a stamping process is provided

to illustrate the design, implementation, testing and troubleshooting process.

 iv

Comparison of the basic elements (i.e., number of places, transitions, and arcs) of

simplified Petri net controller (SPNC) (Lee, 2004) and BPNs are also given to

demonstrate the usefulness of this approach.

Key Words: Logic Petri nets, Boolean Petri nets, Petri nets, Abstract model, Ladder

diagram, Diagnosis, Testing, Fault model.

 v

ACKNOWLEDGMENT

博士論文的完成得感謝很多人，首先要感謝的是指導教授鄧清政在課業與研

究上的指導，以及樹立生活態度典範，在此表達最深的感謝與敬意。感謝口試

委員王德勝博士、洪丈力副教授 (萬能科技術大學電子系)、李慶鴻副教授 (元

智大學電機系)、以及本系徐保羅教授、梁耀文副教授等師長在論文上指導。

感謝學長李慶鴻博士研究方法、英文寫作技巧與潤稿指導，才能踏出英文寫

作之第一步，學長林保童博士協助完成論文臨門一腳，才能趕上口試時程，另

要感謝老同事默默支持與長官廖泰杉博士協助、陳永富教授(交通大學電物

系)、陳建人博士(精儀中心主任)支持，更要感謝師長林心宇教授在 Petri nets 和

黃錫瑜教授 (清華大學電機系)在 IC Testing 啟蒙教導，也要感謝投稿期間編審

諸多包容協助，尤其 Meng-Chu Zhou 在建構 Petri nets model 建議，另學長李

俊賢博士論文相助諸多與陳炯偉中醫師身體調理。謝謝系辦陳英芝和林滿足在

事務上協助。

謹將此論文獻給我敬愛的先父 蔡金水先生，母親 蔡許玉女士、娘子章文芳

和姊姊哥哥弟弟，因為有您們的支持與關懷，才能夠無後顧之憂，往前邁進。

感謝所有曾經幫助過我與默默祝福我的朋友，感謝您們。

 vi

TABLE OF CONTENTS

 Page

ABSTRACT (CHINESE) i

ABSTRACT (ENGLISH) iii

ACKNOWLEDGMENT v

TABLE OF CONTENTS vi

LIST OF TABLES ix

LIST OF FIGURES xi

CHARPTER 1

INTRODUCTION 1

 1.1. General Review 2

 1.2. Problem Statement 4

 1.3. Proposed Approach 6

 1.4. Organization of Thesis 8

CHARPTER 2

TEST GENERATION AND FAULT IDENTIFICATION

IN COMBINATIONAL CIRCUITS USING

LOGIC PETRI NETS 10

 2.1. The Model and Properties of Logic Petri nets 10

 vii

 2.2. A Fault Logic Reasoning Algorithm

for Sites and Fired Logic Value 14

 2.3. Forward and Backward Reasoning Algorithm 15

 2.4. Summary 21

CHARPTER 3

CONSTRUCTING AN ABSTRUCT MODEL FOR LADDER

DIAGRAM DIAGNOSIS USING PETRI NETS 22

3.1. Boolean Petri nets 23

 3.2. Ladder Diagram Model Using Boolean Petri Net 27

 3.3. Application Example 31

 3.4. Summary 40

CHARPTER 4

AN ASIC IMPLEMENTATION FOR TESTING OF A

LADDER DIAGRAM USING A BOOLEAN PETRI NET 41

4.1. Boolean Petri Net and Ladder Diagram Model 41

 4.2. Testing and Troubleshooting of ladder Diagrams 47

 4.3. Application Example 53

 viii

 4.4. Summary 57

CHARPTER 5

DESIGN FOR TESTING AND IMPLEMENTATION OF

LOGIC CONTROLLERS USING BOOLEAN PETRI NETS 59

5.1. Boolean Petri nets 60

 5.2. Constructing the Boolean Petri Net and Implementation 62

 5.3. Testing and Troubleshooting 65

 5.4. An example of stamping Process 68

 5.5. Summary 76

CHAPTER 6

CONCLUSIONS 77

 6.1. Summary of Contributions 77

 6.2. Future Research 78

REFERENCES 80

VITA 84

PUBLICATION LIST 85

 ix

LIST OF TABLES

2.1. True table and logic Petri nets model 12

2.2. Boolean algorithm respect to LPNs 13

2.3. Fault Collapsing respond to LPNs 13

2.4. The transition state for forward and backward of places 15

2.5. Immediate reachability set, reachability set, immediate backward

 incidence set and backward incidence set for each place iP . 20

2.6. Set of adjacent place jkAp for each place jP . 20

3.1. Some LDs models and their corresponding BPNs models. 28

3.2. Composite and Decomposite of Boolean Petri nets. 29

3.3. The descriptions of symbol. 33

4.1. Simplified BPNs. 44

4.2. Some LDs modules and their corresponding BE and BPNs models. 45

4.3. Composites and decomposites of Boolean Petri nets. 46

4.4. True table of a simple ladder diagram circuit 49

4.5. Test event sequence. 51

4.6. The HDL code of a basic ladder diagram 52

 x

4.7. Descriptions of symbols 53

4.8. Test event sequence and troubleshooting of motor starting LDs 56

4.9. The HDL code of motor start action. 57

5.1. The information from the BPNs to PLC code. 65

5.2. True table of a simple ladder diagram circuit. 66

5.3. Test event sequence and troubleshooting. 68

5.4. Test event sequence and troubleshooting of stamping process. 74

5.5. Comparison of SPNC and BPNs for stamping system 74

 xi

LIST OF FIGURES

2.1. Logic Petri nets model for NOT gate. 12

2.2. (a) Combinational circuit, (b)LPNs circuit 14

2.3. (a) Petri nets for immediate reachability, reachability, immediate

backward incidence, and backward incidence sets,

(b) Petri Net for adjacent place. 16

2.4. (a) Combinational circuit, (b) LPNs equivalent circuit. 18

2.5. The comparison between LPNs model and traditional method:

(a) A sample good circuit;

(b) A faulty circuit;

(c) The search graph for locating the fault;

(d) A faulty circuit of LPNs;

(e) The search graph for locating the fault of LPNs 25

3.1. Proposed hierarchical control. 22

3.2. (a) An example Petri nets,

(b) A token moving from A to B in Fig. 3.2. (a) After it fire. 26

3.3. A simple example. 26

 xii

3.4. The reduction result of Fig.3.3. 26

3.5. (a) A simple example and (b) the composite result of Fig.3.5. (a). 27

3.6. (a) A LDs of possessed fault and (b) A Petri model of possessed fault. 30

3.7. Control circuit of a Y- starting motor. 32

3.8. BPNs model of a LDs controller. 33

3.9. Equivalent diagram of Fig. 3.8. 33

3.10. Abstract model of Fig.3.9. 33

3.11. The reachability tree of the proposed BPNs. 35

3.12. Petri nets model: (a) with fault 1f , (b) with fault 2f ,

(c) with fault 3f in Fig. 3.7. 37

3.13. Simulated fault free model and fault model. 37

3.14. The faulty area in case 1. 39

4.1. Framework of LDs functional testing 41

4.2. (a) An example Petri nets,

(b) A token moving from A to B in Fig. 4.2. (a) After it fire. 42

4.3. (a) A basic ladder diagram circuit, (b) corresponding to AND logic,

(c) Corresponding to the BPNs model. 50

4.4. (a) Self-hold of a ladder diagram, (b) Corresponding to BPNs model and

 xiii

(c) Simplified BPNs model. 51

4.5. Control circuit of a Y- starting motor. 53

4.6. (a) BPNs model of a LDs controller, (b) equivalent diagram of Fig.5 (a),

(c)Simplified model of Fig. 5(b), (d) ASIC diagram,

(e) Simulation result. 56

5.1. Implementation scheme of PN-based controllers. 59

5.2. Proposed hierarchical control. 60

5.3. (a) Filling tank, (b) BPNs model of filling tank,

(c) Material flows of IDEF0 and (d) Information flows of IDEF0. 63

5.4. The IDEF0 scheme 64

5.5. BPNs model, (b) Corresponding to a self-hold of a ladder diagram 67

5.6. (a) Structure diagram of the stamping system (from Lee 2005),

(b) Corresponded BPNs of the stamping system,

(c) Corresponded BPNs of add safe designed stamping system,

(d) Mapped LLD. 71

5.7. Abstract BPNs model of stamping system. 72

5.8. Corresponding SPNC of the stamping system (from Lee, 2004) 74

5.9. LLD implementation of stamping system (from Lee, 2004) 75

 1

Chapter 1

Introduction

In industry, programmable logic controllers (PLCs) are often programmed with

ladder diagrams (LDs), and the overall design and testing of the LDs are based on

operator experience. Recently, Petri nets (PNs) have become popular tools for the

design and implementation of logic controllers. Compared to LDs, Petri nets establish

a system controller for various PLCs in a more flexible and understandable manner.

Previous studies on the design of LDs and Petri nets have focused on the

characteristics of both models and the conversion between LDs and Petri nets for the

analysis, validation, design, and implementation of PLCs (Peng, 2004).

The objective of this thesis was to achieve the following goals:

1) To develop a novel Petri nets for the construction of an abstract model of a logic

controller.

2) To develop a testing and diagnosis procedure for existing logic controllers.

3) To develop a clear approach for the design of logic controllers.

 The models and approaches developed in the thesis were applied to Y starting

 2

motor and stamping processes.

1.1. General Review

Petri nets (PNs) theory was developed in 1962 by Carl A. Petri (1962). PNs are a

theoretical, visual and graphical tool for the modeling, analysis, validation and control

of discrete event systems. Moreover, PNs are excellent tools for modeling

asynchronous concurrent systems. Due to the flexibility of PNs, they can be used to

construct models of various systems, including information flow management,

computer systems, manufacturing systems and power systems (Lan, 2009), (LO, 1997)

Recently, video streaming systems based on PNs have been developed (Hu, 2009),

and supply chain management systems have been previously constructed (Dotoli,

2009).

1.1.1. Development of an abstract model

Modeling plays an essential role in the design, fabrication, and testing of a digital

system (Abramovici, 1990). Moreover, many techniques have been developed for the

identification of faults in combinational circuits (Looney, 1987), (David, 1995);

however, most of these methods are based on functional modeling at the logic level. A

Logic Petri nets (LPNs) model of combinational circuits is alternation modeling

approach; thus, the LPNs model can transfer logic circuit problems into a local,

 3

adjacent place, resulting in a transition relational problem.

Traditionally, ladder diagrams (LDs) have been applied to programmable logic

controllers. For instance, Jackman et al. (1995) proposed a conceptual model and

working equation for converting relay ladder logic into a PNs model. Lee et al. (2000)

presented a method for obtaining an augmented PNs from a LDs, and applied the Petri

nets state equation to validate the corresponding flow mechanism in the PNs.

Venkatesh et al. (1994) and Peng et al. (2004) modeled the conversion of a LDs

contact to a PNs place, and increased the rate of virtual transitions. Lee et al (2004)

modeled the conversion of a LDs connect to a PNs transition, and increased the

position in the resulting PNs. However, the total number of nodes and links in the

generated Petri nets were relatively high, and the complexity of the system increased.

To reduce the complexity and increase the readability of the sequence control system

in the construction of an abstract model, a Boolean Petri nets that introduces

composite transitions, composite places, and relevant states was employed in this

thesis.

1.1.2. Diagnosis and testing of the ladder diagram

In industry, LDs are used to program logic controllers. The LDs allow plant

maintenance personnel to troubleshoot and maintain the system (Peng, 2001);

 4

however, the overall troubleshooting method is often experience-based. Given the

complexity of control programs and manufacturing systems, verification is time

consuming, and the systems are difficult to troubleshoot. The proposed BPNs are the

first model to introduce the concept of integrated circuit testing for solving

experience-based testing and troubleshooting problems in sequence controllers in

manufacturing systems.

1.1.3. The design of the logic controller

In industry, programmable logic controllers (PLCs) are often programmed using

LDs, and the testing of PLCs is often experience-based. Moreover, verification is

typically conducted through experiments or simulation. PNs focus on the design and

implementation of logic controllers; however, tools for the design, implementation

(Uzam et al. 1998), (Lee et al., 2005], and diagnosis of logic controllers are required.

To achieve this goal, the Boolean Petri nets was employed, which supplies an

integrated design tool for sequence control systems.

1.2. Problem Statement

 LDs are a common method used to control discrete events in the programmable

controller of an automated system. Researchers are constantly pursuing integrated

 5

tools that overcome the current limitations of LDs. The objectives of these tools

are to control the automated system, and to analyze, evaluate, and simulate the

sequence control system. Over the past several decades, PNs have emerged as an

important tool for the production of integrated solutions for the modeling,

analysis, simulation, and control of automated systems. The construction of

abstract models in existing circuits or specifications is not straightforward; thus,

different types of PN-based models have been proposed and applied to diagnosis

and test automated systems. However, all novel PNs must contain the following

requirements:

1.2.1. An alternation model for the testing of combinational circuit

In practice, many techniques for the identification of faults and test patterns

have been proposed. However, most of these methods have been developed

through functional modeling at the logic level.

1.2.2. An abstract model for existing LDs

Although LDs have been converted to PNs for analysis and validation (Peng,

2004), PNs are usually more complex, and the construction of abstract models

of LDs is not straightforward.

1.2.3. Systematic testing approaches for existing LDs

 6

Systematic LDs testing is important; however, experience-based testing is

still relatively common.

1.2.4. A sequence controller design for the testing, diagnosis and implementation of

programmable controllers

Although PLC engineers prefer to use LLD for the implementation of

programmable controllers, and straightforward designs have been constructed

with LLD models, these designs only focus on implementation while testing

and diagnosis of the system are neglected.

1.3. The proposed approach

To overcome the aforementioned problems, the following approaches are

proposed in this thesis:

1.3.1. Improved logic fault efficiency

The transitions of the PNs are modified according to the critical truth table to

produce a model called the Logic Petri Nets (LPNs). The LPNs model can

transfer a complex circuit problem into a local, adjacent place and a transition

relational problem, which simplifies the identification of the fault sites and fired

logical values. The LPNs model possesses the properties of a Boolean

 7

algorithm, including collapsing fault with clear physical concepts, fast

calculation speed, and high veracity.

1.3.2. Constructing an abstract model of the ladder diagram

In this thesis, a Boolean Petri nets (BPNs) is introduced, and the approach

used to transfer a LDs to a BPNs converts normal open (NO) and normal close

(NC) contacts in the LDs into PNs transitions and converts devices (e.g., relay

coils) in the LDs into PNs places. Moreover, the BPNs introduce the concepts of

composite transitions, composite places, and relevant states to reduce the

complexity of the system and to increase the readability of PNs in the

construction of abstract models. The abstract model can be applied to the

analysis and diagnosis of local controllers for the support of network-based

monitoring and the supervision of automated systems.

1.3.3. Systematic testing of sequence controllers.

 In this thesis, the concept of integrated circuit testing was introduced for the

construction of a fault-free model and the generation of a test events sequence for

LDs based on a BPNs. The fault-free BPNs model can directly convert hardware

description languages (HDLs) and can implement application-specific integrated

 8

circuits (ASICs). The comparison of the response of a fault-free circuit (i.e.,

ASIC circuit) and a fault circuit (i.e., LDs circuit) leads to the detection of fault

occurrence, which aids in troubleshooting.

1.3.4. Design for the testing, diagnosis and implementation of the sequence

controller

In this thesis, a design scheme for the testing, diagnosis and

implementation of logic controllers based on BPNs are proposed. The

abstract BPNs model can be constructed according to the specifications of the

system or by employing the integration definition for function modeling

(IDEF0). The abstract model can directly generate a testing event sequence

for the testing and diagnosis of PLCs. Moreover, the model can also support

network-based monitoring and supervision, and can be directly mapped into

relay ladder logic (RLL), ladder logic diagrams (LLDs), or hard description

language (HDL) for implementation in a system controller.

1.4. Organization of the thesis

This thesis is organized as follows: in Chapter 2, the LPNs model used to generate the

testing pattern of the combinational circuit is introduced. Chapter 3 introduces the

 9

BPNs model used to construct the abstract model and to diagnosis the LDs. In Chapter

4, the BPNs model is used to generate testing event sequences and to implement ASIC

for LDs testing. In Chapter 5, an integrated IDEF0/BPN/PLC approach for the testing,

diagnosis and implementation of the sequence controller design is proposed. Finally,

conclusions and recommendations for further research are provided in Chapter 6.

 10

CHARPTER 2

Test Generation and Fault Identification in Combinational

Circuits Using Logic Petri Nets

PNs are an excellent tool for modeling asynchronous concurrent systems. In

this chapter, the proposed PNs are modified to solve test generations and sites of

fired values based on the truth table of combinational circuits. To develop the

LPNs, critical truth tables were embedded into the transitions of the PNs. Thus,

the LPNs model can transfer a complex circuit problem into a local, adjacent

place and a transition relational problem, which simplifies the identification of

fault sites and fired logical values. Several algorithms were implemented to

obtain the test pattern and to improve the speed of calculation. Moreover, to

demonstrate the effectiveness of the LPNs model, two different processes were

modeled with the LPNs.

2.1. The Model and Properties of LPNs

The purpose of the development of LPNs model is that the LPNs model holds clear

logical property in IC testing. Firstly, the simplest way to represent a combinational

circuit is by its truth table. Assuming binary input variable, a circuit realizing a

function),...,,(21 nxxxX of n variables requires a table with n2 entries. The data

structure representing a truth table is usually an array U of dimension n2 . We

arrange the input combinations in their increasing binary order. Then, we obtain

)0,...,0,0()0(XU  ,)1,...,0,0()1(XU  , …,)1,...,1,1()12(XU n  . The truth table can be

divided into critical and no-critical part. For AND gate, the corresponding critical

value is 1 1 x , 1 2 x , and 1)1,1()12(2  XU . That is, if 1),(21 xxX then 1 1 x and

 11

1 2 x ; no-critical value of AND gate is 1 1 x or 1 2 x and 1),(21 xxX , i.e., if

1),(21 xxX then    1,1, 21 xx .

In this section, we embed the critical value of truth table into transition of PNs to

develop LPNs model. This special transition is called “logic transition”. Table 2.1

describes the LPNs model corresponding to the truth table. Clearly, the LPNs model is

matched properties of Boolean algorithm and fault collapsing. Based on the embed

critical value of truth table in LPNs model, the Boolean algorithm and fault collapsing

in LPNs representation are shown in Table 2.2 and Table 2.3.

In general used representation, the LPNs model structure can be defined as follows:

),,,,,,,,,,(0mbfoiOIDTPLPN 

Where

},...,,{ 21 mpppp  : finite set of places,

},...,,{ 11 ntttT  : finite set of logic transitions by critical value of truth table,

},...,,{ 11 mdddD  : finite set of propositions,

 DTP ,

DP  ,

 PTI : : an input function (a mapping from transitions to bags of places),

 PTO : : an output function (a mapping from transitions to bags of places),

 ,: Ti : logical value of a input transitions,

 ,: To : logical value of a output transitions,

)(: itipf  : input logical value of a transitions (a forward mapping from place p

to input critical value)(jti),

)(: jtopb  : output logical value of a transitions (a backward mapping from place

p to output critical value)(jto),

 ,: P : logic value of place (a mapping from place to logic value,  ,)(ip ,

i.e.,  denotes logic 1 and  denotes logic 0).

 12

},,{:0 Pm : Initial mark.

Example 1: Herein, the description of LPNs model for NOT gate is introduced, as the

following Fig. 2.1.

1p , :2p place, kt : transition, 1d : stuck-at-1, 1)(ptI k  , 2)(ptO k  , )(kti , )(kto ,

)(: 1 ktipf , )(: 2 ktopb , 1: P .

Fig. 2.1. Logic Petri Net model for NOT gate.

Table 2.1: Truth table and Logic Petri Nets model

kt1p 2p

 13

Table 2.2: Boolean algorithm respect to LPNs

Table 2.3: Fault collapsing respect to LPNs

 14

2.2. A Fault Logic Reasoning Algorithm for Sites and Fired Logic Value

Using the LPNs model, we proposed an algorithm to determine sites of a fault fired

logical value at combinational circuits.

Algorithm 1

Step 1: Transfer the circuit into the LPNs circuit.

Step 2: List the table for transitional state of forward of place)(ipf and backward of

place)(ipb .

Step 3: If)(ipb = and)(ipf   then place ip is the primary input, while line of

a primary input is fired logical value)(ipf , and it is denoted by

)(ipD =s-a-)(ipf .

Step 4: If)(ipb   and f(ip)= then place ip is the primary output, while line of a

place of primary output is fired logical value)(ipb , and it is denoted by)(ipD =

s-a-)(ipb ,

Step 5: If )(ipb , )(ipf , and)()(ii pfpb  then line of a place ip is fired

logical value)(ipf , and it is denoted by)(ipD = s-a-)(ipf , else no site of fault

for test generation.

Using Algorithm 1, the site of fault and fired logic vales can be found. An example

of simple circuit is described below.

 (a) (b)

Fig. 2.2. (a) Combinational circuit; (b) LPNs circuit

2p
1p

4p
3p

6p

5p

7p
2t

2p

1t

3t

5p

6p
3p

4p

1p

7p

 15

Example 2: A simple combinational circuit with AND and OR gates are used here (as

shown in Fig. 2.2 (a)).

Step 1: Transfer the combinational circuits to LPNs circuit, as Fig. 2.2 (b).

Step 2: List the transitional state as Table 2.4.

Step 3: Place 1p , 2p , 3p and 4p are primary inputs since)(1pb =)(2pb =)(3pb =)(4pb = .

)(1pD ,)(2pD ,)(3pD and)(4pD are stuck-at-1 by)(1pf =)(2pf =)(3pf =)(4pf =1.

Step 4: Place 7p is primary output since)(7pf =  .)(7pD is stuck-at 1 since

)(7pb =1.

Step 5: 5p , 6p are not terminal place since)(ipb   ,)(ipf   and)()(ii pfpb  ,

then)(5pD and)(6pD are stuck-at 0 since)(5pf =)(6pf =0.

By the results of above discussion, we can determine the fired logical values

(struck-at-fault) of places p1… p7 as Table 2.4.

Table 2.4: The transitional state for forward and backward of place

2.3. Forward and Backward Reasoning Algorithm

By the definitions of literature (Chen et al., 1990), (Chen et al., 2000), immediate

reachability set, reachability set, immediate backward incidence set, backward

incidence set, and adjacent place, a forward and backward reasoning algorithm is

proposed for test generation of combinational circuits.

 16

 (a) (b)

Fig. 2.3. (a) Petri Net for immediate reachability, reachability, immediate backward

incidence, and backward incidence sets (b) Petri Net for adjacent place.

Firstly, the PNs model for describing the definitions is shown in Fig. 2.3. For Fig.

2.3 (a), let it and jt be general transitions, and ap , bp , cp be three places. If

)(ia tIp  ,)(O ib tp  ,)(I jb tp  and)(O jc tp  , then we have

(1) Place bp is immediately reachable from place ap ,

(2) Place cp is immediately reachable from place bp ,

(3) Place ap is an immediately backward incidence place of place bp ,

(4) Place bp is an immediately backward incidence place of place cp ,

(5). Places bp and cp are reachable from place ap ,

(6) Places ap and bp are backward incidence places of place cp .

The reachability relationship is the reflexive closure of the immediately reachable

relationship. The backward incidence relationship is the reflexive closure of the

immediately backward incidence relationship.

The set of places that is immediately reachable from a place ap is called the

immediately reachability set of ap and is denoted by)(apIRS . The set of places that is

reachable from a place ap is called the reachability set of ap and is denoted

by)(apRS . The set of places that contains immediate backward places of bp is called

the immediate backward set of bp and is denoted by)(bpIBIS . The set of places

which contains backward incidence places of cp is called the backward incidence set

of cp and is denoted by)(cpBIS .

For Fig. 2.3(b), let kt be a transition, 1ap and 2ap be places. If place)(1 ka tIp 

and place)(2 ka tIp  then 1ap and 2ap are called adjacent places with respect to kt .

kt

2ap

1ap

dpap bp cp

it jt

 17

Next, we have the following forward and backward reasoning algorithm.

Algorithm 2

Step 1: Transfer the combinational circuits to LPNs circuit.

Step 2: List the table for immediate reachability set, reachability set, immediate

backward incidence set, backward incidence set, and the table for set of adjacent

places jkAp for each place jp .

Step 3: Find the primary inputs ip (IBIS (ip) =) and primary outputs (IRS (jp)

=).

Step 4: Select a site of fault and fired logic value from Table 2.4, activate it and

propagate to primary output, i.e., generate a fault effect and sensitized path. Initial

mark 0m are comprised by logical value of fault effect and logical value of a

propagation of all adjacent place of sensitized path (i.e.,)(: ijk tiAPf  is logical

value of an input transitions of all adjacent place of sensitized path).

Step 5: Find the test pattern by initial mark backtracing path and hold the fault effect

as below.

(1) Proposition of place jp -)(jpD generates a fault effect and forward propagates

the error through it to proposition of immediate reachability place kp -)(kpD

until to the primary output op . The change of the state of)(kpD is depended on the

input value)(iti and output value)(ito of transition relation. If

)()(ii toti  then)()(jk pDpD  . Otherwise,)()(jk pDpD  . Details of)(iti and

)(ito can be found in Table 2.4.

(2) At the same time, the proposition of place jp possesses a fault effect. The token

of adjacent place jkAp is equal to a forward mapping from jkAp to)(jti , i.e.,

)()(ijk tiAP  , the sensitized path is hold. Then we select a back path of immediate

backward incidence place jkAp through transition bt ()(jkApIBIS) to primary input

 18

inp . If)()(bjk toAp ) then  )}({)(bb tip  . Otherwise,    )()(bb tip  .

(3) Find the test generation of back path. Place jp propagate back through

transition bt to ip until to primary input inp . If  (jp)=)(bto then  )(bp = )(bti .

Otherwise,    )()(bb tip  .

Step 6: If we can find a token of primary input)(inp set and generate a fault effect

then fault f is detectable and test generation is set of a primary input token)(inp .

 Finally, we use an example to illustrate the LPNs reasoning process for test

generation.

 (a) (b)

Fig. 2.4. (a) Combinational circuit, (b) LPNs equivalent circuit.

Example 3: Determine test generation of sat-at-1 at 4p and sat-at-0 at 6p in

combinational circuit, as shown in Fig. 2.4(a).

 Case (a))(6pD : sat-at-0.

Step 1: Transfer the combinational circuits to LPNs circuits as shown in Fig. 2.4 (b).

Step 2: List the table for immediate reachability set, reachability set, immediate

backward incidence set, and backward incidence set table and the table for set of

adjacent places jkAp , as Table 2.5 and Table 2.6.

Step 3: Find the primary input  4321 ,,, pppppin  and the primary output  7ppo  .

Step 4: Select a)(6pD (which is sat-at-0), 1)(6 p is generate a fault effect and

0)(5 p is logical value of a propagation of all adjacent place of sensitized path. So

2p
1p

4p
3p

6p

5p

7p
2t

2p

1t

3t

5p

6p
3p

4p

1p

7p

 19

 0)()()(,1)()()(35672660  tipAptopbpm  .

Step 5:

(1))(6pD propagates the error through 3t to 0/1)(7 pD since)()(33 toti  .

(2) 0)()()(3567  tipAP  , sensitized path is hold. 0)()(15  top implies

   )(),()(),(1121 titipp   1,1 , i.e., )(),(21 pp       0,11,00,0 oror .

(3) 1)()()(266  topbp implies  )(),(43 pp      1,1)(),(22  titi .

Step 6:)(6pD sat-at-0 is detectable. Then, the test generation is

)(inp =        1,1)(),(,1,1)(),(4321  pppp  .

Case (b))(4pD : sat-at-1

Step 1: Transfer the combinational circuits to LPNs circuit as Fig. 2.4 (b).

Step 2: List the table for immediate reachability set, reachability set, immediate

backward incidence set and backward incidence set table and the table for

table set of adjacent places jkAp , as Table 2.5 and Table 2.6.

Step 3: Find the primary input  4321 ,,, pppppin  and the primary output  7ppo  .

Step 4: Select)(4pD (sat-at-1) and 0)(4 p generate a fault effect. 1)(3 p ,

0)(5 p are logical value of a propagation of all adjacent place of sensitized path.

So


0)()()(

,1)()()(,0)()()(

3567

23462440




tipAp

tipAptipfpm




Step 5:

(1))(4pD (sat-at-1) and 0)(4 p since)()(22 toti  ,)(4pD propagates the error

through 2t to 1/0)(6 pD . and)()(33 toti  ,)(4pD propagates the error through 2t

to 1/0)(7 pD .

(2) 1)()()(2346  tipAP  .

(3) 0)()()(3567  tipAP  , sensitized path is hold. The result is similar to (2) of

case (a)- Step 5. Thus,      1,1)(),()(),(1121  titipp  , i.e.,  )(),(21 pp 

 20

     0,1or 1,0or 0,0 .

Step 6:)(4pD : sat-at-1 is detectable and test generation is

)(inp =        0,1)(),(,1,1)(),(4321  pppp  .

Table 2.5: Immediate Reachability Set, Reachability Set, Immediate Backward

Incidence Set and Backward Incidence Set for each place ip

Table 2.6: Set of Adjacent Places jkAp for each place jp

The comparison between LPNs model and traditional method by Kirkland et al.,

(1988) in test generation for combinational circuit is shown in Fig. 2.5. The major

differences are described below. (1) LPNs approach is parallel processing, i.e., LPNs

approach has less operational time than (Kirkland et al., 1988); (2) every back

tracing path of LPNs is shorter than (Kirkland et al., 1988), i.e., complexity of

determining test generation LPNs is easier; (3) LPNs approach needs larger memory

than (Kirkland et al., 1988), i.e., cost using LPNs approach will increase.

 21

 (a) (b) (c)

 (d) (e)

Fig. 2.5. The comparison between LPNs model and traditional method (Kirkland

1988): (a) A sample good circuit; (b) A faulty circuit; (c) The search graph for

locating the fault; (d) A faulty circuit of LPNs; (e) The search graph for locating the

fault of LPN.

2.4. Summary

For solving test generation and site of fault in combinational circuits, we have

proposed a so-called Logic Petri Net model. The LPNs model embeds critical of truth

table into transition of Petri Net with clear physical concepts, fast calculation speed

and high veracity. It first transfers a complexity circuit problem to a local adjacent

place and transition relational one. Thus, the site of fault and fired logical value

problem is simplified. Both algorithms were presented for obtaining the test pattern

and improved the calculation speed. Two examples were shown to demonstrate the

effectiveness of LPNs model.

 22

CHAPTER 3

Constructing an Abstract Model for the Diagnosis of

Ladder Diagrams Using Boolean Petri Nets

As shown in Fig. 3.1, hierarchical control is an approach for the design of

large-scale discrete event systems that are used to deduce complexity (Lee et al.,

2004). In a manufacturing system, a LDs controller may use a local controller, which

allows the LDs controller to be diagnosed and monitored remotely. In this chapter, the

local controller (i.e., LDs controller) and abstract model (i.e., corresponding to the

LDs model) are modeled with BPNs. The LDs controller model employed in this

thesis is a structural model that is similar to the original LDs architecture, and the

abstract model is a behavioral model. The behavioral model is simplified by the

structural model; however, the behavioral model matches the functions of the LDs

controller.

To construct an abstract model from a simplified BPNs model, a BPNs module was

constructed from a table of LDs rungs based on a Boolean equation.

Internet

Controller

Local
Control Real

System

Controlled

Manger

Remote

Model

Abstract

Comparison

Control Virtual

Request

Output

Response

Display Status

Advice Command

Agent

ySupervisor

Output Difference

 23

Fig. 3.1. Proposed hierarchical control (by Lee (2004))

3.1. Boolean Petri nets

Carl Adam Petri proposed the Petri nets theory. Fig. 3.2 shows the structure of

Petri nets in a directed bipartite graph that consists of places, transitions, and arcs. A

circle with a token represents the places. A bar indicates the flow of tokens when

firing condition is satisfied, which represents the transition. Finally, a straight line that

connects the place to the transition, or the transition to the place denotes the arc,

which indicates the flow of tokens in the direction of the arrow.

 (a) (b)

Fig. 3.2(a) An example Petri nets, (b) A token moving from A to B in Fig. 3.2(a)

after it fire.

3.1.1 Definition of Boolean Petri nets

The purpose of developing the BPNs model is that this model exhibits the imply

logic property in a LDs. The simplest way to represent LDs is by its Boolean equation.

The approach proposed in this chapter embeds the Boolean equation in a PN transition

to develop the BPNs model. This special transition is called the “Boolean transition.”

Table 3.1 describes the BPNs model corresponding to the Boolean equation. Clearly,

the BPNs model also matches the LDs. To map LDs into a Petri nets, the Petri nets

must be extended. This extended Petri nets is called a Boolean Petri nets, which can

be defined formally as

),,,,,,,(0MoutinOIATPPN  (3-1)

A B
it A B

it

 24

Where },...,,{ 21 mpppP  , 1m , is a finite set of places representing the LDs action state.

The places are associated with a component or a set of components (i.e., a compound

component) such as the actuator output, relay coil, timer, counter solenoid, or source;

},...,,{ 21 ntttT  , 1n , is a finite set of transitions representing event whether occurs or not.

These transitions are always associates with a switch or a set of switches and

represented by Boolean equations or variables.

The switch can be a normal open (NO) switch or normal closed (NC) switch. The NO

switch is also called an “a” contact and the NC switch is also called a “b” contact,

where TP and TP .

)()(PTTPA  is a set of arcs (→) consisting of input arcs)(TPAi  and output

arcs)(PTAo  . The weight of each directed arc in this chapter is 1, and)(TPAi  is

defined as directed arcs from a place to a transition. Places are called input places and

transitions are called output transitions, and the input arc is represented by a

connected line as channel of token.)(PTAo  is defined as directed arcs from a

transition to a place, the transition is called the input transition and the place is called

the output place, and the output arc is represented by a connected line as channel of

token. The arc may be preservation arc (●→) that a input arc and a output arc exist

simultaneously between same place and transition (Lee et al., 2000); NPTI : is

an input function that defines as number of output arcs)(PTAo  , where  ,...2,1,0N ,

NTPO : is an output function that are defined as number of input arcs)(TPAi  ,

where  ,...2,1,0N ;  ninininin ,...,, 21 is a set of input switch, which is represented by

Boolean function or variable. A set of input switches is associated with a transition jt

and is denoted by  int j  . The Boolean function or variable can be ‘1’, in which case

the related transition jt is allowed to fire if it is enabled, or it can be ‘0’, in which case

the related transition t is not allowed to fire;  moutoutoutout ,...,, 21 is a set of output

actuator which is associated with a ip and is denoted by  outpi  ;)(0 PM is the

 25

initial marking that uses a token to represent the place status.

A transition is enabled if the number of tokens at the place is larger than or equal

to the number of input arcs. A transition is firing if the enabled transition is fired and

its transition states are true (i.e., the Boolean equation is true). When a transition fires,

it moves the tokens from input places to output places along the input arcs and output

arcs, as Fig. 3.2 illustrates. This moves the token of place A to place B along directed

arcs if transition it is firing. A marking is denoted as an m-vector, where m is the

total number of place P, while)(ipm is represented by the number of tokens at place

ip (Murata et al., 1989).

For the marking 0m , there is an enabled transition 1t . If there is a firing of

transition 1t , then the marking is immediately reachable to 'm from 0m , denoted

by '
10[mtm  . A marking im is said reachable from 0m if there exists a sequence of

firings that transforms 0m to im . R (0m) is defined as the set of all reachable

markings from 0m . F (0m) is defined as the set of all firing sequences from 0m . A

place ip is said to be bounded for an initial marking 0m if 0 k , k)( ipm ,

and)(0mRm . Specifically, it is said to be safe if k=1. A marking 0m is said to

be live for a Petri nets if every marking has been reached from 0m , which indicates it

is possible to fire any transition of the nets by some firing sequence (Murata et al.,

2007), (Zhou et al., 1998). If 0m may be reached from any marking, The Petri nets is

said to be reversible.

To simulate the behavior of LDs, this approach changes a state or marking

according to defined firing rules for the Boolean Petri nets model.

3.1.2. State equation

 26

The firing definition easily shows that the token moves from state 1kM to

another state kM by the kth firing, and kU is a firing vector which can be given in

terms of the following matrix state equation for Petri nets (Murata et al., 1977)

k

T

kk UAMM  1 (3-2)

Where kU is called firing vector, and TA is called the incidence matrix for any given

topological structure of Petri nets, defined by

njmiwhere

ptI

tp

tpA

ijji

ji

ji
T 
















 1,1,

),(

0

),(O

),(
ij

. (3-3)

Note that kM must be a vector of nonnegative integers (Murata et al., 1997). The

firing vector will then select an appropriate column of TA such that

01  k
T

k UAM for each k (3-4)

3.1.3. Definition of action dominance and equivalence

 Dominance. An action 1p is said to dominate another action 2p in an irredundant

place iff every exist of token for 2p is also exist of token for 1p . i.e., the life of a

token of 1p is longer than 2p , denoted as)()(21 pmpm  . The reduction of the place

1p to be analyzed is based on the dominance relation.

Example 1: Fig. 3.3 shows a PNs in which 1p is dominated by 2p and 3p , i.e.,

)()(21 pmpm  and)()(31 pmpm  . Fig. 3.4 shows the reduction result.

 Fig. 3.3 A simple example Fig. 3.4 The reduction result of Fig. 3.3

Equivalence. The actions 1p and 2p are equivalent if exist of token is same

condition for 1p and 2p , i.e.,)()(21 pmpm  and)()(12 pmpm  . The composite of

)(:2 Yp 2t)(:3 Dp

)(:1 Mp

3t
1t)(:2 Yp)(:3 Dp 3t2t1t

 27

the place 1p and 2p to be analyzed is based on the equivalent action.

Example 2: Fig. 3.5(a) shows a PNs in which 2p is equivalent to 3p , i.e.,

)()(23 pmpm  and)()(32 pmpm  . Fig. 3.5(b) shows the composite result.

 Fig. 3.5(a) A simple example Fig. 3.5(b) The composite result of Fig. 3.5(a)

3.2. Ladder Diagram Model Using Boolean Petri Net

3.2.1 Model of basic modules

In ladder diagrams, the horizontal line (rung) and the associated elements represent

Boolean equations. Similarly, in Boolean Petri nets, the associated transitions

represent Boolean equations. In ladder diagrams, the symbol “○” represents the

dependent element of the equation (coil). Similarly, in Boolean Petri nets, the symbol

“○” represents the dependent element of the equation (place). In ladder diagrams, “|

|” represents the independent element (normal open contacts), while in Boolean Petri

nets, “| or |” represents the independent element (input transitions). A diagonal line

placed in the middle of these symbols (i.e., “|/|”) represents normal closed contacts,

which indicate that the negated value of the variable is used. Similarly, bar “| or |”

represents the output transition. In ladder diagrams, variables (contacts) placed in a

series represent the AND Boolean function, while contacts placed in parallel represent

the OR Boolean function. The rungs are executed in order from top to bottom.

Therefore, the Type 8 ladder diagram in Table 3.1 represents Boolean equations

BMAM)( and MN  (Bender et al., 2008). In Boolean Petri nets, a similar

1p

)(:3 Yp

)(: 22 PLp

1t 1p),(: 22 PLYp
1t

 28

input transition represents)(MA , denoted as)(:1 MAt  , which is a composite

transition. Conversely, output transitions represent B , denoted as)(:2 Bt , and

output places are denoted as),(:2 NMp which are composite places. Finally, Table

3.1 summarizes some typical LDs modules and their corresponding Boolean Petri nets

models, where S is a pseudo source and the composite and decomposite of Boolean

Petri nets are as shown in Table 3.2.

TABLE 3.3: Some LDs modules and corresponding models

Modules
Ladder

Diagrams

Boolean

 Equations

Boolean

 Petri Nets
Modules

Ladder

Diagrams

Boolean

 Equations

Boolean

 Petri Nets

Type 1 AM  Type 3 ABM 

 TM

Type 4 BAM 

AM  Type 5

BAM

BAM





AM

MAM


 Type 6

21

2

1

MM

AM

AM





Type 2 AM 

Type 7

BA

BMAM



)(

 TM

Type 8

MN

BABMAM


)(

AM  Type 9




TM

ATimer

Type 10

AN

AM




Type 11








TC

TB

T B
C

CTB
A

A
M
N

S
SA

M
A

N

AM N

AS

M

M

S M)(MA 

AS M

1MAS

2M

AS)21(MM 

MAS AS M

AS M

MTS

AS M

TS M

MBS A

AS

B

M

MBS A
)(BA S M

)(BA S M

)(BA S M

MAS
AS M

AS MMAS

MTS TS M

N

AS

M

B

M

M

MAS

M

B

)(NM 
A

B

S

M

A

S

B

A

A

Timer

T M

),(TimerA T M

 29

Type 12







































TC

TCT

CTT

BTC

TB

TBT

BTT

CTB

BTC

CTB

)1(

)(

)1(

 Type 13

BN

BN

BNA

NAB

MBMBN

AM

AM

AMB

MBA

NANAM

MBN

NAM























)1(

)1(

Type 14










TC

TB

ATimer

Table 3.2: Composite and Decomposite of Boolean Petri nets

LDs
Boolean

Equation

BPNs

Decomposite Composite

C=A

D=A

C=D

C=AB

 C=A

C=B

C=A+B

CD

BAC




3.2.2. Model of faulty ladder diagram

A LDs circuit fault may generally be classed as both stuck-at 0 (s-a-0)and stuck-at 1

(s-a-1) type; the stuck-at 0 fault is like a NO switch and the stuck-at 1 fault is like an

NC switch. Hence the fault model of the ladder diagram can be modeled as a Petri

AS C

D

S A CB

AS C

B

1s

A),(DCS

)(AB CS

)(BA  CS

A
C

D

S

A

C

B

S

S

AS B C1S

AS C

C

C
D

B
A

D

C

S

B

)(DC 

A

B

S

T B

B

C

C

S
C

TB A

B

M

M

N

N

S
S

B
MN

A

Timer
T CB

ASAS Timer
T

T
B

B
C

C

 30

nets. LDs of the possessed faulty example are illustrated in Fig. 3.6(a) and the Petri

nets model is illustrated in Fig. 3.6(b). Where fault 1f are represented s-a-0 to

represent the switch A is struck at open, fault 2f is represented s-a-1 to represent the

switch B is stuck at close. According to Eq. (3-3), the incidence matrix

is

21

2

1

11

11
tt

p

p
AT












 .

 (a) (b)

Fig. 3.6. (a) A LDs of possessed fault (b) A Petri nets model of possessed fault

 The faults classified in the two cases are interpreted as below.

Case 1: Assume 1f is s-a-0 fault and initial marking is 









0

1

2

1

0 p

p
M

When the bottom is pushed A=1.











0

1)(:

2

1

1 t

At
U , 










0

0)(:

2

11

1 t

fAt
U f ， 










0

0/1)/(:

2

11

/1 1 t

fAAt
U f , where 1U and

1fU are

represented as the fault free and faulty firing vector, respectively. fU /1 is represented

as the fault free/faulty firing vector.

According to Eq. (3-2)


























































0/1

1/0

0/1

0/1

0

1

0

0/1

11

11

0

1
21

2

1

/10/1 1

tt

p

p
UAMM ft

T

f , i.e., 









1

0
1M ; 










0

1
1f

M ,

where 1M and
1fM are represented as the fault free and faulty marking vector,

respectively. fM /1 is represented as the fault free/faulty making vector.

In the LDs circuit, 1f fault means the coil C is not active since the switch A is stuck

at open.

Case 2: Assume 2f is s-a-1 fault and current marking is 









1

0

2

1

1 p

p
M

When the bottom is pushed B=1

)(: 11 fAt 

)(:1 Sp)(:2 Cp

)(: 22 fBt 

S A CB
1f

2fC

 31












0/1

0

)/(: 22

1

2 fBBt

t
U



























































1/0

0/1

0/1

0/1

1

0

0/1

0

11

11

1

0
21

2

1

21/2 2

tt

p

p
UAMM T

f i.e., 









0

1
2M ; 










1

0
2f

M .

In the LDs circuit, 2f fault means the coil C is maintain action since the switch B is

stuck at close.

3.3. Application Example

This section illustrates a practical example of hierarchical control system in Fig. 3.1.

The local controller is a LDs circuit. This circuit can be modeled by BPNs and is

simplified to obtain an abstract model using Table 3.1 of the preceding section. The

system fault can be diagnosed by the difference between the LDs response and

abstract model response. The differences are as decision of supervisor agent.

3.3.1. Constructing an abstract model using a Boolean PNs

To start a three-phase motor, a LDs controller use type of Y- starting to limit

starting current, as shown in Fig. 3.7 and symbol descriptions in Table 3.3. In the LDs

controller, the bottom 1Pb is control relay coil M, Y and timer coil active. The motor

enters the starting state when NO contacts of M and Y are turned on. Next, the relay

coil Y turns off after delay time T , and the motor returns to the normal state when

the relay coil Y turns off and relay coil D turns on. Finally, the motor stops if the

bottom 2Pb is pushed or the current is overload. This LDs controller can be specified

as follows:

Step 1) The motor is commanded to start (1Pb).

Step 2) The motor starting time is T .

Step 3) The motor is commanded to stop (2Pb).

 32

Step 4) The motor will stop if the current is overloaded.

The implicit specification is as following:

Spec) The relay coil D and relay coil Y are mutually exclusive.

The transformation from the ladder diagram (in parallel) to the abstract model (in

series) is based on the following steps:

 Step 1) A rung or compound rung of LDs is converted to a Boolean Petri nets

module using Table 3.1 or the Boolean equation. LDs controller then

assembles Boolean Petri nets modules, as Fig. 3.8 shows, where (1), (2) …

and (9) correspond to the number of LDs rungs.

 Step 2) A Boolean Petri nets can be given after eliminating the redundant or pseudo

places (i.e., the S place), as Fig. 3.9 illustrates.

Step 3) An abstract model can be obtained according to dominance relation reduce

some places (in this case, an abstract model reduce place 2p), and

eliminating some redundant elements (i.e., the coil of time or auxiliary relay),

as Fig. 3.10 shows.

Fig. 3.7. Control circuit of a Y- starting motor.

OL

AC 220V 60HZ

D

X

OL

Pb1

Timer M Y D

T

1f

2f

3f

6 1 Pb2

T

2Y

Y

PL1
T

PL2 PL3

M

 3 2 5 4 8 7 9

2X1X

2D1Y1D

S

E

 33

Table 3.3: The Descriptions of symbol

Symbol Description Symbol Description

 Indicator light of green “b” contact of Push bottom

 Indicator light of yellow “a “contact of Push bottom

 Indicator light of red

“a “ contact of relay

 Relay

“b” contact of relay

 Timer “a “ contact of timer

 Stuck at 0 (s-a-0) switch

for simulate fault

(Abramovici et al., 1990)

“b” contact of timer

1~9 rung number “b” contact of over load

Fig. 3.8. BPNs model of a LDs controller. Fig. 3.9. Equivalent diagram of Fig.

3.8.

 Fig. 3.10 Abstract model of Fig. 3.9

1PL

2PL

3PL

T

)(: 231 OLpbt 
),(: 23 PLYp),(: 34 PLDp

),,(:2 TimerMXp

)(: 231 OLpbt 

)(:2 Tt

)(: 11 Pbt

)(: 232 OLPbt 

)(: 11 pbt)(

)(:

1

111

pb

Xpbt




),(: 23 PLYp),(: 34 PLDp

),,(:2 TimerMXp

)(: 231 OLpbt 

)(:2 Tt

)1(

)1()62(

)52(

)8,6(
)6()9,7()9,7(

S

)52(
)8,6(

)9,2(E

)(E
)9,7(

)6(

)52(

)(E

)(: 232 OLPbt 

1PL)(: 11 Pbt Y D)(:2 Tt

)(: 232 Pbt

)(: 231 Pbt

 34

3.3.2 Properties of the proposed Boolean Petri nets

 The reachability of PNs is a tree, which uses states as nodes and transitions as arcs

(David et al., 1992). The construction of this tree starts from the root node. The root

node is represented as the initial state, and the arcs outgoing from the root node are

marked by the corresponding enabled transition. The arc will outgo to a new node

(state) from the firing of the corresponding transition (arc). The above procedures are

repeated until they produce duplicate nodes. Terminal nodes are identical to existing

nodes, which have no any enable transitions are met. In the reachability tree, dash

lines indicate nodes.

 Due to the similar processes of PNs reachability tree, this study presents the

reachability tree of the proposed BPNs in Fig. 3.9. For the sake of simplicity in

representing the node (node) in the reachablility tree, define the state variable vector

in the reachability tree as [p1 p2 p3 p4], and allow the initial state to be [1 0 0 0]. If

transition)(: 11 Pbt fires when 11 Pb (i.e. 1Pb is active), the state moves to [0 1 1

0]. If transition)(: 231 Pbt fires when 12 Pb (i.e. 2Pb is active), then the state

moves to [1 0 0 0]. Subsequently, if transition)(:2 Tt is enabled and fires, then the

state moves to [0 1 0 1], while if transition)(: 232 Pbt is enabled and fires, the state

moves to [1 0 0 0].

Proposition 1: The proposed BPN is live.

 Proof: Consider a case based on the reachability tree in Fig. 3.11. This figure

shows that there is no terminal node. Therefore, there always exists some sample path

such that any transitions can eventually fire to reach any states from the initial state 1p ,

i.e. },,{)(4320 pppmR  , },{)(210 ttmF  . According to this definition, the proposed

 35

BPN is live.

Proposition 2: The proposed BPN is reversible.

 Proof: The reachability tree in Fig. 3.11 indicates that there is no terminal node.

Therefore, there always exist some sample path such that any transitions can

eventually fire to reach the initial state 1p from any states (i.e. 2p , 3p , 4p),

)(21 pRp  ,)(31 pRp  ,)(41 pRp  . According to this definition, the proposed BPN is

reversible.

Proposition 3: The proposed BPN is bound.

 Proof: In stable PNs, the number of tokens in any place will not grow infinitely.

The reachability tree in Fig. 3.11 indicates that one and only one marked token

corresponds to any specific state. Therefore, the number of marked tokens in

1p , 2p , 3p and 4p is bounded above by 1. According to this definition, the proposed

BPN is bounded and safe.

 Fig. 3.11 The reachability tree of the Proposed BPNs

Similarly, the proposed abstract model in Fig. 3.10 is live, reversible, and safe. In the

0] 0 0 [1

1] 0 1 [0

0] 1 1 [0

)(: 11 Pbt

)(:2 Tt

)(: 232 OLPbt 

)(: 232 OLPbt 

 36

Petri nets model, the live is represented as a reachable starting state (i.e. Y state) and

running state (i.e. D state) from the ideal state (i.e. 1PL state), the safe is represented as

only existing in one state, the reversible is represented as returning to the ideal state

(i.e. 1PL state) from any other state (i.e. Y state and D state).

3.3.3 State equation

According to Eq. (3-2), Fig. 3.9 shows that the state equation is
k

T
kk UAMM  1

323121

4

3

2

1

1010

0111

1101

1101
tttt

p

p

p

p

AT

























 ,





















0

0

0

1

4

3

2

1

0

p

p

p

p

M ,





















0

0

0

1

32

31

2

1

1

t

t

t

t

U ,





















0

0

1

0

32

31

2

1

2

t

t

t

t

U ,





















0

1

0

0

32

31

2

1

31

t

t

t

t

U ,





















1

0

0

0

32

31

2

1

32

t

t

t

t

U





























































































































0

1

1

0

0

1

1

1

0

0

0

1

0

0

0

1

1010

0111

1101

1101

0

0

0

1

4

3

2

1

323121

4

3

2

1

101

p

p

p

p
tttt

p

p

p

p

UAMM T






























































































































1

0

1

0

1

1

0

0

0

1

1

0

0

0

1

0

1010

0111

1101

1101

0

1

1

0

4

3

2

1

323121

4

3

2

1

212

p

p

p

p
tttt

p

p

p

p

UAMM T
































































































































0

0

0

1

0

1

1

1

0

1

1

0

0

1

0

0

1010

0111

1101

1101

0

1

1

0

4

3

2

1

323121

4

3

2

1

31131

p

p

p

p
tttt

p

p

p

p

UACMM TT
































































































































0

0

0

1

1

0

1

1

1

0

1

0

1

0

0

0

1010

0111

1101

1101

1

0

1

0

4

3

2

1

323121

4

3

2

1

32232

p

p

p

p
tttt

p

p

p

p

UAMM T

In reality, places),,(:2 TimerMXp ,),(: 23 PLYp and),(: 31 PLDp are compounded

 37

places in Petri nets. Therefore, the state of  4321 ,,, ppppP  can be decompounded

into the  321 ,,,,,,, PLDPLYTimerMXPLP  state, so  0001)(0 PM T can be

transferred into  )00()00()000(1)(0 pM T . Similarly,)(1 PM T ,)(2 PM T ,)(31 PMT

and)(32 PM T can be decomposed into places  )00()11()111(0 ,

 )11()00()111(0 ,  )00()00()000(1 and

 )00()00()000(1 , respectively.

 (a) (b)

 (c)

Fig. 3.12 Petri nets model (a) with fault 1f , (b) with fault 2f , (c) with fault 3f in Fig.7.

)(: 231 OLpbt 

),(: 23 PLYp),(: 34 PLDp

),,(:2 TimerMXp

)(: 231 OLpbt 

)(:2 Tt

)(: 111
fPbt f

)(232 OLPbt 

)(: 231 OLpbt 

),(: 23 PLYp)(:4 Dp

),,(2 TimerMXp 

)(: 231 OLpbt 

)(:2 Tt

)(: 11 Pbt

)(: 232 OLPbt 

)(: 33 PLp f)(: 323 fDt f

)(: 233 OLPbt 

)(: 231 OLpbt 

),(: 22
PLYp f),(: 34 PLDp

),,(:2 TimerMXp

)(: 231 OLpbt 

)(:2 Tt

)(: 11 Pbt

)(: 232 OLPbt 

)(: 222 fXt f

)(: 233 OLPbt 

Model

Fault

Model

FreeFault
Comparison

Input

Output

Output Difference

Output

 38

Fig. 3.13 Simulated fault free model and fault model.

3.3.4 Analysis and diagnosis of fault modeling

Assume that the faults 1f , 2f and 3f in the LDs are stuck at 0 (s-a-0), as Fig. 3.7

illustrates. The fault can then be modeled into Petri nets as shown in Fig. 3.12 (a), (b),

and (c), respectively. In case 1, a transition)(: 11 pbt is fired since 1pb is active.

However, the transition 0)(: 111
fpbt f cannot be fired since 1f is stuck at 0.

Similarly, in case 2, 0)(: 222
fXt f , 1)(: 22

Xt . In case 3, 0)(: 323
fDt f ,

1)(: 23
Dt . For simple calculation of state equation, a control vector kU contains the

fault free Boolean equation and faulty Boolean equation of transitions, as denoted by

0/1)/ (: faultfreefaultt
if

. Fig. 3.13 shows fault free model and fault model

simulated structure.

A difference output vector (DOV) = fault free output vector-fault output vector. If has

fault occur then difference output vector 0. The fault is covered area from place of

negative value to place of positive value, and the faulty path flows through transition

it in DOV.

Case1: Assume 1f is s-a-0.

323121

4

3

2

1

1010

0111

1101

1101

1

tttt

p

p

p

p

A T
f

























 ,





















0

0

0

1

4

3

2

1

0

p

p

p

p

M ,





















0

0

0

0/1)/(:

32

31

2

111

1

1

t

t

t

fpbpbt

U

f





























































































































0

0/1

0/1

1/0

0

0/1

0/1

0/1

0

0

0

1

0

0

0

0/1

1010

0111

1101

1101

0

0

0

1

4

3

2

1

323121

4

3

2

1

1101

p

p

p

p
tttt

p

p

p

p

UAMM T
ff

DOV=  T0111 . The faulty area is covered from 1p to 2p and 3p as Fig. 3.14

 39

indicates, and the fault path flows through)(: 11 pbt . Thus, the fault is located between

rung 1 and rung 3 in Fig. 3.7. In physical terms, this means the motor cannot start

rotation.

Fig. 3.14 the faulty area in case 1

Case2: Assume 2f is s-a-0.

;

0

0

1

;

10

01

01

3

2

1

0

1

2

1

2

2

2


































p

p

p

M

tt

p

p

p

A

f

f

T
f

 









0

1)(:

2

11

1
ft

Pbt
U ; 










0

1

)/(: 222

1

1

2
fXXt

t
U

f






























































































0

1

0

0

1

1

0

0

1

0

1

10

01

01

0

0

1

)(

2

22

1

2

1

2

1

12021

f

ff

T
f

tt

p

p

p

p

p

p

UAMfM






























































































0/1

1

0

),(:0/1

0

0

0

1

0

0/1

0

10

01

01

0

1

0

)(

2

2

1

2

1

2

1

22122

222
PLYp

p

p

p

p

p

p

p

p

UCMfM

fff

T
f

DOV=  T100 . The faulty area is covered only in
2fp as Fig. 3.12(b) indicates, and

the fault path flows through)(: 22
Xt f . Thus, the fault is located between rung 2 and

rung 5 in Fig. 3.7. In physical terms, this means the motor cannot run.

Case3: Assume 3f is s-a-0.

3

3

33323121

4

4

3

2

1

110000

001010

000111

011101

011101
f

f

T
f

tttttt

p

p

p

p

p

A
































;





























0

0

0

0

0

1)(

3

33

32

31

2

11

1

ft

t

t

t

t

Pbt

U
;































0

0

0

0

1

0

)(

3

33

32

31

2

1

2

ft

t

t

t

Tt

t

U
;





























0/1

0

0

0

0

0

)/(: 322

33

32

31

2

1

3

3

fDDt

t

t

t

t

t

U

f

f

)(: 231 OLpbt 
),(: 23 PLYp

),,(:2 TimerMXp
11

1111

)(:

Pb

XPbt




 40

























0

0

0

0

1

3

4

3

2

1

0

fp

p

p

p

p

M
;

;

0

0

1

1

0

3

3

4

3

2

1

101

























f

T
f

p

p

p

p

p

UAMM

























0

1

0

1

0

2

4

3

2

1

212 3

f

T
f

p

p

p

p

p

UAMM
;

























0/1

1

0

1

0

)(: 3

4

3

2

1

2

3

333

PLp

p

p

p

p

UAMM

f

f
T
ff

DOV=  T10000 . The faulty area is covered only in
3fp as Fig. 3.12(c)

indicates, and the fault path flows through)(: 23
Dt f . Thus, the fault is located between

rung 7 and rung 9 in Fig. 3.7. In physical terms, this means the indicator

light
3

PL cannot light.

3.4. Summary

This chapter proposes the BPNs based on the Boolean equation, constructs a ladder

diagram module and develops an abstract model to diagnose local faults in the LDs.

The diagnostic process employs simple matrix manipulation and DOV to determine

the faulty area for diagnosing the ladder diagram. This study also provides an example

using composite transition, composite place, and relevant state to reduce complexity

and increase readability of the Petri nets. The proposed methodology is useful and

clear.

 41

CHAPTER 4

Implementation of an ASIC for the Testing of a Ladder

Diagram

As described in the previous chapter, a BPNs model and an abstract model were

constructed for the diagnosis of ladder diagrams. In this chapter, BPNs were used to

solve experience-based testing and troubleshooting problems of sequence controllers

in manufacturing systems. To describe the basic LDs and to propose a framework for

LDs testing, the concept of integrated circuit testing was introduced during the

construction of a fault-free model of LDs based on BPNs, as shown in Fig. 4.1. The

developed model can directly generate test event sequences of LDs from the transition

sequence of BPNs and can support the implementation of application-specific

integrated circuits (ASICs). The BPNs constructs a model that aides in the

troubleshooting of LDs and can be simulated using the state equation.

Fig. 4.1. Framework of LDs functional tests

4.1. Boolean Petri Net and Ladder Diagram Model

Response

Comparator

Detect (Pass/Fail) Primary

output
Primary

input

ASIC (Fault

Free)

LD

 42

Carl Adam Petri proposed the Petri nets theory. Figure 2 shows the structure of

Petri nets in a directed bipartite graph that consists of places, transitions, and arcs. A

circle with a token represents the places. A bar that indicates the flow of tokens when

the firing condition is satisfied, which represents the transition. Finally, a straight line

that connects the place to the transition, or the transition to the place, denotes the arc,

which indicates the flow of tokens in the direction of the arrow.

 (a) (b)

Fig. 4.2. (a) An example Petri nets. (b) A token moving from A to B in Fig. 4.2(a)

after it firing.

4.1.1. Definition of Boolean Petri nets

The purpose of developing the BPNs model is that this model exhibits the

implied logic property in LDs. The simplest way to represent LDs is by its Boolean

equation. The approach proposed in this paper embeds the Boolean equation in a PNs

transition to develop the BPNs model. This special transition is called the “Boolean

transition.” Table 4.1 describes the BPNs model corresponding to the Boolean

equation. Clearly, the BPNs model also matches the LDs. To map LDs into a Petri

nets, the Petri nets must be extended. This extended Petri nets are called a Boolean

Petri nets, which can be defined formally as

),,,,,,,(0MoutinOIATPPN  (4-1)

Where },...,,{ 21 mpppP  , 1m , is a finite set of places representing the LDs action state.

The places are associated with a component or a set of components (i.e., a compound

component) such as the actuator output, relay coil, timer, counter solenoid, or source;

A B
it A B

it

 43

},...,,{ 21 ntttT  , 1n , is a finite set of transitions representing whether an event occurs or

not. These transitions are always associated with a switch or a set of switches and are

represented by Boolean equations or variables.

The switch can be a normal open (NO) switch or normal closed (NC) switch. The NO

switch is also called an “a” contact, and the NC switch is also called a “b” contact,

where TP and TP .

)()(PTTPA  is a set of arcs (→) consisting of input arcs)(TPAi  and output

arcs)(PTAo  . The weight of each directed arc in this paper is 1, and)(TPAi  is

defined as directed arcs from a place to a transition. Places are called input places, and

transitions are called output transitions. The input arc is represented by a connected

line as a channel of a token.)(PTAo  is defined as directed arcs from a transition to

a place, where the transition is called the input transition and the place is called the

output place, and the output arc is represented by a connected line as a channel of a

token. The arc may be a preservation arc (●→), where an input arc and an output arc

exist simultaneously between the same place and transition; NPTI : is an input

function that defines the number of output arcs)(PTAo  , where  ,...2,1,0N .

NTPO : is an output function that is defined as the number of input arcs)(TPAi  ,

where  ,...2,1,0N ;  ninininin ,...,, 21 is a set of input switch, which is represented by a

Boolean function or variable. A set of input switches is associated with a transition jt

and is denoted by  int j  . The Boolean function or variable can be ‘1’, in which case

the related transition jt is allowed to fire if it is enabled, or it can be ‘0’, in which case

the related transition t is not allowed to fire.  moutoutoutout ,...,, 21 is a set of output

actuators, which is associated with a ip and is denoted by  outpi  .)(0 PM is the

initial marking that uses a token to represent the place status.

A transition is enabled if the number of tokens at the place is larger than or equal

to the number of input arcs. A transition is firing if the enabled transition is fired and

 44

its transition states are true (i.e., the Boolean equation is true). When a transition fires,

it moves the tokens from input places to output places along the input arcs and output

arcs, as Fig. 4.2 illustrates. This action moves the token of place A to place B along

directed arcs if transition it is firing. A marking is denoted as an m-vector, where m

is the total number of place P, while)(ipm is represented by the number of tokens at

place ip (Murata et al., 1989).

To simulate the behavior of LDs, this approach changes a state or marking

according to defined firing rules for the Boolean Petri nets model.

Table 4.1: Simplified BPNs

Type LDs Boolean

Equation

Before

PNs

Simplified

Boolean Equation

After PNs

1

BCAC)(

BAC

BA)BC(

BC)(AC







1

2

)(

)(

CBR

BAB




)()(

)()()(

BCR

SAAB




4.1.2. Model of a Ladder Diagram

In a ladder diagram, a rung corresponding to a Boolean equation (BE) was introduced

by David in 1995 (David et al., 1995). The Boolean equation associates every input

variable (e.g., switch) and output variable (e.g., relay coil). In a Petri nets, the input

variables are represented as an event. The output variables are represented as an event

state, while an output variable is dependent on input variables. LDs rung can

correspond to a Petri nets model, and the input variable of LDs may be simplified by

its Boolean property. For example, BCAC)( can be simplified to BAC  , as

shown in Type 1 of Table 4.1, and a Petri nets corresponding to LDs can be simplified

S A B C R
S BA

S CB  R

B
A B

C

S

3

1

2

R
B
B

S
A

B

CS

CA

B
C

B C

C

S

1

2

CA

 45

by properties of enabling and firing. For example, in Type 2 of Table 4.1, a marking of

place S is an enabled condition and a Boolean equation AB  is the equivalent

firing condition of rungs 1 and 2. A Boolean equation)(CBR  is a firing condition

of rung 3. Thus, the Boolean equation AB  merges with the enable condition S,

which is then given (S))( AB , and the Boolean equation)(CBR  is separated

into)()(BCR  and regarded as associated firing conditions with the enabling

condition. Therefore, the property of firing and enabling can apply to the parallel LDs

corresponding to series of Petri nets. Table 4.2 summarizes some typical LDs modules

and their corresponding BPNs, where S is a pseudo source that can represent the ideal

state of a relay coil, and composites and decomposites of BPNs are as shown in Table

4.3.

Table 4.2: Some LDs modules and their corresponding BE and BPNs models

Modules LDs BE/BPNs Modules LDs BE/BPNs

Type1

XM 

Type2 21 XXM 

21 XXM 

XMM  21

Type3

XM  Type4 21 XXM 

S 21 XX  M

2X1XS M
S X M

X MS

XS M

S X),(2,1 MM

S M21 XX 

S M21 XX 
2X
1XS M

2X1XS M

X 1MS

2M

S X M
X MS

X MSET S

X
S M

M

 46

Type5

BAM 

BANM 

Type6

XN

XM











TN

TM

Type7








TN

TM

Type8








TN

TM

Type9










TC

TB

ATimer

Type10










TC

TB

ATimer

Table 4.3: Composites and decomposites of Boolean Petri nets

LDs
Boolean

Equation

BPNs

Decomposite Composite

C=A

D=A

C=D

C=AB

 C=A

C=B

C=A+B

CD

BAC




1t
B

A
D

C

2t

A

C

B

t

t

t C

B

A

t
C

D

A

A
B C

Timer
T

S

T BSET

S

CSET

CRST

A Timer

BRST

A
B C

Timer
T

S

T B

S

C

C

B

A Timer

M NT

T MSET

S

NSET

N RST

MRST

M NT

T MS

N

N

M

M NT

XM N

T

MS

N

X MS

X
N

S
A

B

),(NM

S M
A

B

A
S M

M
B

A
S M

M
B

M
N

AS C

D

S A CB

AS C

B

1s

A),(DCS

)(BA CS

)(BA  CS

A
C

D

S

A

C

B

S

S

AS B C1S

AS C

C

C
D

B

A

D

C

S

B

),(DC
A

B

S

 47

4.1.3. State Equation

The firing definition easily shows that the token moves from state 1kM to

another state kM by the kth firing, and kU is a firing vector, which can be given in

terms of the following matrix state equation for Petri nets (Murata et al., 1977).

k

T

kk UAMM  1 (4-2)

Where kU is called the firing vector, and TA is called the incidence matrix for any

given topological structure of Petri nets, defined by

njmiwhere

ptI

tp

tpA

ijji

ji

ji
T 
















 1,1,

),(

0

),(O

),(
ij

. (4-3)

Note that kM must be a vector of nonnegative integers. The firing vector will then

select an appropriate column of TA such that

01  k
T

k UAM for each k . (4-4)

4.2. Testing and Troubleshooting of ladder Diagrams

In this section, we first introduce the concept of integrated circuit testing to

describe a basic LDs and to generate the testing event sequence of a LDs using a

BPNs model. The generated test event sequence can be applied to the testing and

troubleshooting of the LDs, while we can use the BPNs to program the free-fault

model and ASIC implementation.

4.2.1. Introduction of LDs testing (Lala et al., 2009)

A failure is said to have occurred in a ladder diagram circuit or system if it deviated

from its specified behavior. A fault refers to a physical defect in a ladder diagram

circuit. For example, a short in a normally open contact or a break in a normally

closed contact is a physical defect. An error is usually the manifestation of a fault in

 48

the ladder diagram circuit; thus, a fault may change the signal of a current in a ladder

diagram circuit from the open (correct) to closed (erroneous) state or vice versa.

The most common model used for ladder diagram faults is the single stuck-at fault.

It assumes that a fault in a ladder diagram rung results in one of its input or the output

being fixed at either on (i.e., stuck-at-on) or off (i.e., stuck-at-off). A stuck-at-on fault

implies the permanent closing of a rung in the ladder diagram circuit. A stuck-at-off

fault implies the permanent opening of a rung in the ladder diagram circuit.

The inputs to the ladder diagram circuit are called the primary input. They are the

only inputs can be applied to events in a Petri nets. This ability to apply an input event

to the primary inputs of a Petri nets is known as controllability. The outputs from the

ladder diagram are called primary outputs. The outputs can be observed in the effect

of events occurring in the Petri nets. The ability to observe the response of a fault on

an internal node via the primary outputs of a ladder diagram circuit is called

observability.

In general, a test can detect more than one fault in a ladder diagram circuit, and when

many tests in a set detect the same fault, it can be called a dominance fault. When

many faults in the same set detect the tests, it can be called an equivalent fault. Thus,

a major objective in test generation is to reduce the total number of faults to be

considered by dominance and equivalent. For example, in a simple ladder diagram

circuit shown in Fig. 4.3 (a) and its Boolean equation BAC  (Bender et al., 2008),

its Boolean equation can be viewed with AND logic in an integrated circuit (IC), as

shown in Figure 3(b), and with a BPNs model, as shown in Figure 3(c). Its true table

is shown in Table 4.4. The equivalent sets for the simple ladder diagram circuit is

{ 0 ,0 ,0  asCasBasA }, and its fault dominance relations are

{ 0 ,1  asAasC } and { 1 ,1  asBasC }. The fault can be ignored if

{ 1 ,0 ,0  asCasBasA }. In other words, these test sets {A, B } are reduced {0,

 49

1}, {1, 1}, {1, 0}. Similarly, in the self-hold of the ladder diagram circuit, shown in

Fig. 4.4(a), because its Boolean equation BCAC )(is equivalent to BAC 

and because sometimes contact switches C are uncontrollable, these test sets {A, B }

are reduced {0, 1}, {1, 1}, {1, 0} as well. The {0, 1}, {1, 1}, {1, 0} of the LDs test

pattern correspond to no event occurrence (i.e., switch A and B is not pressed), and

switch an event occurs (i.e., switch A is pressed) and switch B event occurs (i.e.,

switch B is pressed) for the BPNs, respectively.

Table 4.4: True table of a simple ladder diagram circuit

A B C (coil) A s-a-1 B s-a-1 C s-a-1 A s-a-0 B s-a-0 C s-a-0

0 0 0 1

0 1 0 1 1

1 0 0 1 1

1 1 1 0 0 0

4.2.2. Testing Event Sequence of a Ladder Diagram

Fault detection in a basic ladder diagram circuit, as shown in Fig. 4.3(a) and 4(a), is

transferred by a Boolean Petri nets, and its test event sequence can be generated from

the transition sequence of the transferred BPNs; thus, it is carried out by applying a

sequence of test events and observing the resulting outputs. If the observed response

is different than the expected response, a fault is present in the LDs. The aim of

testing is to verify that functions in the ladder diagram are true or false using Fig. 4.1,

which corresponds to troubleshooting, as shown in Table5.

In an m-input, there can be 2(m+1) stuck-at faults in the ladder diagram, but it can be

an (m+1) event sequence generated in the BPNs. Thus, the total number of single

 50

stuck-at faults in a basic ladder diagram circuit is 6 (=2×3), but the test event

sequence can be 3(=2+1), generated using a BPNs. The test event sequence is no

event, an event occurs and B event occurs, as shown in Table 4.5. The test event

sequence can be calculated and verified using state equation as well:

1/011/0 11112   ccc ttptp , where 1/01 ct is represented as A no event

occur, but A is fault-at-on.

0/110/1 11112   ooo ttptp , where 0/11 ot is represented as an event occurs,

but from primary input A to primary output C is fault-at-off.

0/110/1 22221   ccc ttptp , where 0/12 ct is represented as B event occurs,

but B is fault-at-on.














11

11

2

1

p

p
DT , 










0

1

2

1

0 p

p
M , 








 

 0

1/0

2

1

1 t

t
U c

c , 







 

 0

0/1

2

1

1 t

t
U c

o , 










 0/1

0

2

1

2

c

c t

t
U ;

















 







































  1/0

0/1

1/0

1/0

0

1

0

1/0

11

11

0

1

2

1

101 p

p
UDMM c

T

c

























































  0/1

1/0

0/1

0/1

0

1

0

0/1

11

11

0

1

2

1

101 p

p
UDMM o

T

o


























































  1/0

0/1

0/1

0/1

1

0

0/1

0

11

11

1

0

2

1

212 p

p
UDMM c

T

c

 (a) (b) (c)

Fig. 4.3. (a) A basic ladder diagram circuit, (b) Corresponding to AND logic and (c)

Corresponding to the BPNs model

A CB

Bt :2

Cp :2

S
Sp :1

A
C

At :1

B

 51

 (a) (b) (c)

Fig. 4.4. (a) Self-hold of a ladder diagram, (b) Corresponding to BPNs model and

(c) Simplified BPNs model

Table 4.5: Test events sequence

Initial

state
fault free Fault A B C Firing effect

Test

Event

Sequence

Troubleshooting

0 1 0/1 The token

was

propagated to

next position

before A is

firing.

No event Please check

push bottom A

whether stuck at

on or not.

1 1 1/0

The token

can not

deposited to

next position

when A is

firing (i.e., A

is pressed

event occur).

A event

occur

Please check

one of element

A, B, C and

interconnected

line whether

stuck at off.

1 0 0/1 The token

can be not

propagated to

next position

when B is

firing (i.e., B

is pressed

event occur).

B event

occur

Please check

push bottom B

whether stuck at

on or not.

Cp :2Sp :1

At :1

Bt :2

Cp :2

Sp :1

At :1

Bt :2

Cp :2

Sp :1

At :1

Bt :2

Bt :2

Sp :1

At :1

Cp :2

Bt :2

Sp :1

At :1

Cp :2

Bt :2

Sp :1

At :1

Cp :2

Bt :2

Cp :2
Sp :1

At :1

Bt :2

Cp :2

Sp :1

At :1

Bt :2

Cp :2

Sp :1

At :1

A
S M

M
B

M
C

S

B

),(CM
MA 

S

B

C

A

 52

4.2.3. HDL Program

 The basic ladder diagram can be implemented by HDL. The HDL program is

carried out according to positions, trasitions and token flowing in the BPNs, as shown

in Table 4.6.

Table 4.6: The HDL code of a basic ladder diagram
Number I. THE HDL CODE OF BASIC LADDER DIAGRAM

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

library ieee;

use ieee.std_logic_1164.all;

entity PLC is

port (Reset,CLK,A, B : in std_logic;

C : out std_logic;);

end PLC;

architecture behave of LD is

type STATE_TYPE is (p1, p2);

signal present_state, next_state : STATE_TYPE;

begin

token_flow: process (Reset,present_state) begin

 if Reset = ’1’ then next_state <= p1;

C =’0’;

case present_state is

when p1 =>

if A = ‘1’ then next_state <= p2;

else next_state <= p1;

end if; C<=’1’;

when p2 =>

if B = ‘1’ then next_state <= p1;

else next_state <= p2;

end if; C<=’0’;

end case;

end process token_flow;

 state_clocking: process (CLK) begin

if CLK’EVENT and CLK = ‘1’ then present_state <= next_state;

end if;

end process state_clocking;

end behave;

 53

4.3. Application Example

Fig. 4.5 Control circuit of a Y- starting motor

Table 4.7: Descriptions of symbols

Symbol Description Symbol Description

 Indicator light of green “b” contact of Push bottom

 Indicator light of yellow “a “contact of Push bottom

 Indicator light of red

“a “ contact of relay

 Relay

“b” contact of relay

 Timer “a “ contact of timer

1~9 rung number “b” contact of timer

 “b” contact of over load

This section illustrates a practice example. The controller is a LDs circuit. This

1PL

2PL

3PL

T

OL

AC 220V 60HZ

D X
OL

Pb1

Timer X Y D

T

6 1 Pb2

T

2Y

Y

PL1
T

PL2 PL3 M

 3 2 5 4 8 7

2M1M

2D1Y1D

S

E

 54

circuit can be modeled by BPNs and is simplified to obtain a fault-free model using

Table 4.1 of the preceding section. The system fault can be diagnosed by the

difference between the LDs response and the ASIC response (i.e., the fault-free

model).

To start a three-phase motor, a LDs controller uses a type of Y- starting to limit the

starting current, as shown in Fig. 4.5 and the symbol descriptions in Table 4.7. In the

LDs controller, the bottom 1Pb is a control relay coil M, Y and active timer coil. The

motor enters the starting state when NO contacts of M and Y are turned on. Next, the

relay coil Y turns off after delay time T , and the motor returns to the normal state

when the relay coil Y turns off and relay coil D turns on. Finally, the motor stops if the

bottom 2Pb is pushed or the current is overload. This LDs controller can be specified

as follows:

Step 1) The motor is commanded to start (1Pb).

Step 2) The motor starting time is T .

Step 3) The motor is commanded to stop (2Pb).

Step 4) The motor will stop if the current is overloaded.

The implicit specification is as follows:

The relay coil D and relay coil Y are mutually exclusive.

4.3.1 Fault Free Model

The transformation from the ladder diagram (in parallel) to the fault free model (in

series) is based on the following steps:

 Step 1) A rung or compound rung of the LDs is converted to a Boolean Petri nets

module using Table I or the Boolean equation. The LDs controller then

assembles Boolean Petri nets modules, as Fig. 4.6(a) shows, where (1),

(2) … and (9) correspond to the number of LDs rungs.

 55

 Step 2) A Boolean Petri nets can be given after eliminating the redundant or pseudo

places (i.e., the S place), as Fig. 4.6(b) illustrates.

Step 3) A fault-free model can be obtained according to dominance relation reducing

some places (in this case, an abstract model reduces place 2p) and eliminating some

redundant elements (i.e., the coil of time or auxiliary relay), as Fig. 4.6(c) shows.

Using the fault-free model to implement the ASIC circuit is shown in Fig. 4.6(d), and

simulated results are shown in Fig. 4.6(e). The generated test pattern is)push (11 pbt -

)push (2 Tt -)push (23 OLPbt  and state) ideal(,, 321 ttt .

 (a) (b)

 (c) (d)

 (e)

Fig. 4.6(a) BPNs model of a LDs controller, (b) Equivalent diagram of Fig.6 (a), (c)

Simplified model of Fig. 4.6(b), (d) ASIC diagram, and (e) Simulation result.

OLPb 2
CLR

DriveD

1Pb

CLK

ASIC

CLR

1t

CLK

3t

DriveY

2PL
3PL

1PL
2PL
3PL

1PL
DriveX

D

Y

X

2tT

)(: 11 PLp

)(11 Pbt 

),,(: 22 XYPLp),,(: 33 XDPLp

)(2  Tt

)(: 232 OLPbt 

)(: 231 OLPbt 

11 : PLp
),(: 23 PLYp),(: 34 PLDp

),,(:2 TimerMXp

)(: 231 OLpbt 

)(2  Tt

)(11 Pbt 

)(232 OLPbt 

)(11 PLp )(

)(

1

111

pb

Xpbt


),(23 PLYp ),(34 PLDp 

),,(2 TimerMXp 

)(231 OLpbt 

)(2  Tt

)1(

)1()62(

)52(

)8,6(
)6()9,7()9,7(

S

)52(
)8,6(

)9,2(E

)(E
)9,7(

)6(

)52(

)(E

)(232 OLPbt 

 56

4.3.2. Testing Event Sequence of a Motor Starting LDs and Troubleshooting

The test event sequence of the control ladder diagram can be generated in turn with

the BPNs diagram, as shown in Table 4.8. The test event sequence is applied to the

ladder diagram and ASIC to detect true or false of the LDs, as shown in Fig. 4.1, and

it corresponds to troubleshooting, as shown in Table 4.8.

Table 4.8: Test event sequence and troubleshooting of motor starting LDs

Test Event

Sequence

No event

occur

1Pb event

occur

T event

occur

2Pb event

occur

Troubleshooting Please check

push bottom

1Pb whether

stuck at on or

not.

Please check

element from

1Pb to Y

interconnected

line whether

stuck at off.

Please check

element from

T to D and

interconnected

line whether

stuck at off.

Please check

push bottom B

whether stuck

at on or not.

4.3.3. HDL Program

 The control ladder diagram of Y- starting can be implemented by HDL. The HDL

program is shown in Table 4.9, and its implemention and simulation are shown in Fig.

4.6(d) and (e), respectively.

Table 4.9: The HDL code of motor start action
Number II. THE HDL CODE OF MORTOR STARTING LADDER DIAGRAM

1
2
3
4
5
6
7
8

library ieee;

use ieee.std_logic_1164.all;

entity PLC is

port (Reset,CLK,t1, t3 : in std_logic;

PL1, PL2, PL3, X, Y, D : out std_logic;); end PLC;

architecture behave of piston is

type STATE_TYPE is (p0, p1, p2);

signal present_state, next_state : STATE_TYPE;

 57

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

signal t2 : BIT;

begin

token_flow: process (Reset,present_state) begin

 if Reset = ’1’ then next_state <= p0;

PL1=’1’; PL2=’0’; PL3=’0’; X=’0’;Y=’0’; D=’0’;

case present_state is

when p0 =>

if t1 = ‘1’ then next_state<= p1;

else next_state<= p0;

end if; PL1<=’0’; PL2<=’1’X<=’1’;Y<=’1’;

wait for 5sec;

t2 <= ‘1’;

when p1 =>

if t2 = ‘1’ then next_state <= p2;

else next_state <= p1;

end if; PL2<=’0’; PL3<=’1’; Y<=’0’;X<=’1’;D<=’1’;

when p2 =>

if t3 = ‘1’ then next_state <= p0;

else next_state <= p2;

end if; PL3<=’0’; PL1<=’1’; PL3<=’0’;

X<=’0’; D<=’0’;

end case;

end process token_flow;

 state_clocking: process (CLK) begin

if CLK’EVENT and CLK = ‘1’ then present_state <= next_state;

end if;

end process state_clocking;

end behave;
4.4. Summary

This paper shows a solution for the experience-based testing and troubleshooting

problem of LDs. We proposed a method for constructing a fault-free model,

supporting the implementation program of ASIC and testing event sequences from

BPNs. The testing problem was transferred to the determination of whether an event

occurred or not. If an event does not occur in the primary input then the primary

output is a have not response; likewise, if a have event occurs in the primary input,

 58

then the primary output corresponds to response and the LDs detects a fault. Finally,

an example of a motor start LDs was represented graphically as a fault-free model,

providing a direct way to convert LDs to HDL and generate test an event sequence,

while demonstrating this usable approach. In the future, we plan to apply this

approach to more complicated systems and develop BPNs directly applied to the

design of PLC implementation.

 59

CHAPTER 5

The Testing, Diagnosis and Implementation of Logic

Controllers

In previous chapters, a BPNs application that can be remotely diagnosed and

monitored was developed. Although the proposed model can solve experience-based

testing and troubleshooting problems in sequence controllers of manufacturing

systems, sequence controllers are often designed with different types of LDs. Thus,

the transfer of LDs to BPNs is difficult, and a systematic approach for the design of

sequence controllers based on BPNs must be developed. Moreover, the BPN-directed

application must be able to be remotely diagnosed and monitored. In this thesis, a

method based on IDEF0, BPNs and TPL was developed to validate the system and to

implement traditional PLCs. The proposed method can generate test event sequences

for the solution of experience-based testing and troubleshooting problems in sequence

controllers.

Fig. 5.1. Extension of the implementation scheme for Petri net-based controllers by

I/O-based

specifications

BPN using IDEF0 PLC

implementation

Design validation

using simulation

Design for testing

and diagnosis

 60

Taholakian et al. (1997).

Fig. 5.2. Proposed hierarchical control (by Lee et al., (2004)).

5.1. Boolean Petri nets

In this section, define BPNs and describe the state equation of BPNs. The BPNs

can be directly modeled from a specification of the logic controller or by employing

IDEF0. The state equation can be used to simulate design validation and the

constructed abstract model (as shown in Fig. 5.2) via an incidence matrix.

5.1.1 Definition of BPNs

The BPNs (Tsai et al., 2010) can be defined formally as

),,,,,,,(0MoutinOIATPPN  , (5-1)

Where },...,,{ 21 mpppP  , 1m is a finite set of places that are associated with the

output actuator; },...,,{ 21 ntttT  , 1n , is a finite set of transitions that are associated with

input sensors; TP ; and TP .)()(PTTPA  is a set of arcs (→)

consisting of input arcs)(TPAi  and output arcs)(PTAo  . The weight of each

directed arc in this chapter is 1, and)(TPAi  is defined as a directed arc from a place

Internet

Controller

Local Control Real
System

Controlled

Manger

Remote

Model

Abstract
Comparison

Control Virtual

Request

Output

Response

Display Status

Advice Command

Agent

ySupervisor

Output Difference

 61

to a transition. Places are called input places, and transitions are called output

transitions. The input arc is represented by a connected line as a channel of a token.

)(PTAo  is defined as a directed arc from a transition to a place, where the transition

is called the input transition and the place is called the output place. The output arc is

represented by a connected line as a channel of a token. NPTI : is an input

function that defines the number of output arcs)(PTAo  , where  ,...2,1,0N .

NTPO : is an output function that is defined as the number of input arcs)(TPAi  ,

where  ,...2,1,0N ;  ninininin ,...,, 21 is a set of input sensors that is associated with a

transition jt and is denoted by int j : . The term  moutoutoutout ,...,, 21 is a set of

output actuators that is associated with a ip and is denoted by outpi : .)(0 PM is the

initial marking that uses a token to represent the place status.

A transition is enabled if the number of tokens at the place is equal to or larger

than the number of input arcs. An enabled transition is firing when an input sensor

event occurrence associated with the enabled transition moves the tokens from input

places to output places along the input arcs and output arcs. A marking is denoted as

an m-vector, where m is the total number of places P, while)(ipm is represented by

the number of tokens at place ip .

5.1.2 State equation

The firing definition easily shows that the token moves from state 1kM to

another state kM by the kth firing, and kU is a firing vector that can be given in

terms of the following matrix state equation for Petri nets (Lee et al., 2000):

k

T

kk UAMM  1 , (5-2)

Where kU is the firing vector and TA is the corresponding abstract model called the

incidence matrix for any given topological structure of Petri nets, defined by

 62

njmiwhere

ptI

tp

tpA

ijji

ji

ji
T 
















 1,1,

),(

0

),(O

),(
ij

. (5-3)

Note kM must be a vector of nonnegative integers. The firing vector will then select

an appropriate column of TA such that

01  k
T

k UAM for each k (5-4)

5.2. Constructing Boolean Petri Net and Implementation

In this section, construct a BPNs model from a specification of the system and

map it to the PLC code based on the RLL, the LLD or the HDL.

5.2.1 System description

 An example of a tank filling is provided to describe the BPNs design stage for

directly constructing a model from system specifications or IDEF0. The tank filling

shown in Fig. 5.3(a) is redrawn from David’s paper (David 1995). A reservoir

provides water to tank 1 and tank 2. The tanks are modeled in three states: empty,

during filling and during emptying. The initial state of the model is an empty tank (i.e.,

the water level of the tank is lower than 1b and 2b). Valves 1V and 2V will be

open when push button m is pressed. Water from the reservoir flows into tank 1 and

tank 2 until the tanks are full of water (i.e., the water levels of the tanks are higher

than 1h and 2h). Valves 1W and 2W are then opened after the tank is filled until

both tanks are empty.

Reservoir

1Tank 2Tank

1h

1b

2h

2b

1V 2V

1W 2W

2S

1b 2b

m

1V 2V

1W 2W

1h 2h

1S

1

2

3

4

5

6

)1(

)2(

)3(

)4(

)5(

m

 63

 (a) (b)

 (C)

 (d)

Fig. 5.3. (a) Filling tank, (b) BPNs model of filling tank, (c) Material flows of IDEF0

and (d) Information flows of IDEF0.

5.2.2 Constructing the BPNs model

This BPNs model is explained in Fig. 5.3(b). The labels 1 to 6 represent steps, i.e.,

components of states. At the initial time, the steps in the set {1, 4} are active. Next,

transition (1), which follows these steps, can be fired as soon as event m associated

with (l) occurs. After this firing, steps 2 and 5 are active. When step 2 is active, the

output 1V = 1. When step 2 is active, transition (2) can be fired if the 1h event has

occurred, and so on. The concurrency is explicitly represented in this model. Steps 1,

Water level

< 1b , 2b
Water level

< 1h , 2h

1b , 2b <

Water level

< 1h , 2h
During filling

During

emptying

Empty tank

Read Push

button

ON

Valves W1, W2

open

Valves V1,

V2

open

21 , hh

21 , bb

m

 64

2 and 3 correspond to the states of tank 1 (empty, during filling, and during emptying,

respectively), and steps 4, 5 and 6 correspond to the states of tank 2.

IDEF0 (FIPS 183) is an activity-oriented model approach that represents the

activities performed in a system using ordered sets of boxes, as shown in Fig. 5.4. The

boxes are input-control-output mechanisms. The activity may be a decision-marking,

a material-conversion, or an information-conversion activity (Santarek et al., 1998).

The information flow represents system activities and their interrelationships. It is

transformed into a dynamic BPNs model based on the following steps:

1. The input and output commands of the activity box in the information flow

diagram are transformed into input and outputs places in the BPNs,

respectively.

2. The control signals of the sensor reading are transformed into transitions in the

BPNs.

3. The initial token of the BPNs are set according to the initial condition of the

system.

 The IDEF0 approach can be used to design the tank filling system, as shown in

Figs. 3(c) and (d). The BPNs model result is shown in Fig. 5.3(b).

Fig. 5.4. The IDEF0 scheme (Lee et al. 2005).

ActivityInput Output

Mechanism

Machines/operators

Control

Parameters/rules

Material/information

flows

Material/information

flows

 65

5.2.3 BPNs mapping to implementation

 To convert the BPNs model into PLC code for controller implementation, a

direct mapping was used and is shown in Table 5.1. In the initial conditions, a token is

located at place 1p , which is represented as 1p active. The token then flows to place

2p when the sensor input is on; the sensor input on is associated with transition 11 : Xt

firing. The active output device is assigned to the place 2p active. According to the

properties of being active and firing, the BPNs can be represented by the Boolean

equation 112 ptp  , which is equivalent to PLC code (Lee et al. 2005).

Table 5.1: Mapping the BPNs to PLC code

BPNs RLL LLD HDL

when p1 =>

if t1 = ‘1’ then next_state <= p2;

else next_state <= p1;

end if; Y1<=’0’, Y2<=’1’;

if t2 = '1' then

 next_state <= p0;

else next_state <= pk;

end if; Y<='0';

5.3. Testing and Troubleshooting

In this section, introduce the concept of integrated circuit testing (Lala 2009) to

describe basic LDs for the corresponding BPNs and to generate the testing event

sequence of a BPNs model. The generated test event sequence can be applied for the

testing and troubleshooting of the designed controller (i.e., local controller, as in Fig.

5.2).

2m 1kps
kpSET :sp :0

22 : mt

Ypk :

1m

2p

1p

2Y

2: pSET

1: pRST

22 :Yp11 : Yp
11 : mt 1m

2p

1p

2p
2p

2Y

kps 2m
1kp

 66

5.3.1. Introduction of LDs testing

For example, for a BPNs model like the one shown in Fig. 5.5(a), with its

corresponding LDs circuit shown in Fig. 5.5(b) and the Boolean equation

BAC  (Bender et al. 2008), the Boolean equation can be viewed with AND logic in

an integrated circuit (IC). Its true table is shown in Table 5.2. The equivalent set for

the LD circuit is { 0 ,0 ,0  asCasBasA }, and its fault dominance relations are

{ 0 ,1  asAasC } and { 1 ,1  asBasC }. The fault can be ignored if

{ 1 ,0 ,0  asCasBasA }. In other words, these test sets {A, B } are reduced to

{0, 1}, {1, 1}, and {1, 0}. The {0, 1}, {1, 1}, and {1, 0} of the LDs test pattern

correspond to no event occurrence (i.e., switch A and B are not pressed), switch an

event occurs (i.e., switch A is pressed) and switch B event occurs (i.e., switch B is

pressed) for the BPNs, respectively.

Table 5.2: True table of a simple LDs circuit

A B C (coil) A s-a-1 B s-a-1 C s-a-1 A s-a-0 B s-a-0 C s-a-0

0 0 0 1

0 1 0 1 1

1 0 0 1 1

1 1 1 0 0 0

5.3.2. Testing event sequence

Fault detection in a self-holding LDs, as shown in Fig. 5.5(b), it is mapped by a

BPNs as shown in Fig. 5.5(a) and its test event sequence can be generated from the

transition sequence of the BPNs model; thus, it is carried out by applying a sequence

of test events and observing the resulting outputs. If the observed response differs

from the expected response, a fault is present in the LDs. The aim of testing is to

verify that functions in the LDs are true or false, as shown in Fig. 5.2, which

 67

corresponds to troubleshooting, as shown in Table 5.3.

In an m-input system, there can be 2(m+1) stuck-at faults in the LDs, but there can

be an (m+1) event sequence generated in the BPNs. Thus, the total number of single

stuck-at faults in a basic LDs circuit is 6 (=2×3); however, the test event sequence can

be equal to 3 (=2+1), generated using a BPNs. The test event sequence is no event, an

event occurs and B event occurs, as shown in Table 5.3. The test event sequence can

be calculated and verified using the Boolean equation and the state equation,

respectively.

1/011/0 11112   ccc ttptp , where 1/0)free/fault(fault 1 ct is represented as

A no event occurs, but A is fault-at-on.

0/110/1 11112   ooo ttptp , where 0/11 ot is represented as an event occurs,

but from primary input A to primary output C is fault-at-off.

0/110/1 22221   ccc ttptp , where 0/12 ct is represented as B event occurs,

but B is fault-at-on.














11

11

2

1

p

p
DT , 










0

1

2

1

0 p

p
M , 








 

 0

1/0

2

1

1 t

t
U c

c , 







 

 0

0/1

2

1

1 t

t
U c

o , 










 0/1

0

2

1

2

c

c t

t
U ;

















 







































  1/0

0/1

1/0

1/0

0

1

0

1/0

11

11

0

1

2

1

101 p

p
UDMM c

T

c

,

























































  0/1

1/0

0/1

0/1

0

1

0

0/1

11

11

0

1

2

1

101 p

p
UDMM o

T

o

,


























































  1/0

0/1

0/1

0/1

1

0

0/1

0

11

11

1

0

2

1

212 p

p
UDMM c

T

c

.

 (a) (b)

Fig. 5.5. (a) BPNs model (b) Corresponding to a self-hold on LDs.

AS B

C

Cp :2At :1

Sp :1

Bt :2

Cp :2 2p

2p

2p

1p

 68

Table 5.3: Test event sequence and troubleshooting

Initial

state
fault free Fault A B C Firing effect

Test

Event

Sequence

Troubleshooting

0 1 0/1 The token

was

propagated to

the next

position

before A

fires.

No event Please check

push button A to

determine

whether it is

stuck at on or

not.

1 1 1/0

The token

cannot be

deposited in

the next

position

when A is

firing (i.e., A

is pressed

event

occurs).

A event

occurs

Please check

one of the

elements A, B,

or C and the

interconnected

line to

determine

whether they

are stuck at off.

1 0 0/1 The token

cannot be

propagated to

the next

position

when B is

firing (i.e., B

is pressed

event

occurs).

B event

occurs

Please check

push button B to

determine

whether it is

stuck at on or

not.

5.4. An example of stamping Process

To demonstrate the viability of the developed approach, a stamping process

application was investigated.

Cp :2Sp :1

At :1

Bt :2

Cp :2

Sp :1

At :1

Bt :2

Cp :2

Sp :1

At :1

Bt :2

Bt :2

Sp :1

At :1

Cp :2

Bt :2

Sp :1

At :1

Cp :2

Bt :2

Sp :1

At :1

Cp :2

Bt :2

Cp :2Sp :1

At :1

Bt :2

Cp :2

Sp :1

At :1

Bt :2

Cp :2

Sp :1

At :1

 69

5.4.1. System description

As shown in Fig. 5.6(a), a stamping system (Lee et al. 2005) consists of three

cylinders. Each cylinder has two normal open limit switches. In terms of input sensors,

the stamping system have a push button 1m and 6 limit switches: a0, a1, b0, b1, c0

and c1. For output actuators, there are 6 solenoid valves: A+, A-, B+, B-, C+ and C-,

where the + and – signs indicate a piston performing forward strokes and return

strokes, respectively. In the stamping process, pusher A moves the work piece onto the

worktable from a store. The work piece is then stamped by stamp B and afterwards is

ejected by a thrower C. Thus, the work process sequence of the system is A+, B+, {A-,

B-}, C+ and C-, where {A-, B-} represents two concurrent actions as the pistons of

both pusher A and stamper B perform return strokes simultaneously.

5.4.2 Construction of the BPNs model and mapping of LLD

According to the sequence of the stamping system associate input sensor, the

corresponding BPNs are shown in Fig. 5.6(b). One basic safety specification

assumption is that in any case in which the system must be shut off, this should be

done via the protruding switch 2m . A BPNs model for this specification constructed

using the reversible concept of a Petri nets, which is designed to add an OR transition

2m (denoted as a dotted bar in Fig. 5.6(b)), is shown in Fig. 5.6(c). The proposed

mapping LLD approach is shown in Fig. 5.6(d). Both RLL and HPL can be used in a

similar way.

 70

 (a)

sp :1 Ap :2 Bp :3),(:4  BAp Cp :5 Cp :6

11 : mt 12 : at 13 : bt)(: 004 bat  15 : ct

06 : ct

27 : mt (c)

sp :1 Ap :1 Bp :3),(:4  BAp Cp :5 Cp :6

11 : mt 12 : at 13 : bt)(: 004 bat  15 : ct

06 : ct

(b)

Pusher A

Stamper B

Thrower C

C- C+

A-

B- B+

A+

 71

 (d)

Fig. 5.6. (a) Structure diagram of the stamping system (from Lee 2005), (b)

Corresponding BPNs of the stamping system, (c) Corresponding BPNs with the added

safety design for the stamping system, (d) Mapped LLD using BPNs.

1 pSET

1T 1m

A

2p1a

B

2p

3p

3p1b

A4p

B4p

5p1c

C6p

6p1b

C5p

4p0a 0b

0 pSET

2 pSET

1 ST pR

3 pSET

2 ST pR

4 pSET

3 ST pR

2 pSET

6 ST pR

5 ST pR

6 pSET

4 ST pR

5 pSET

2m
s

0p 2p 6p

2T

3T

4T

5T

6T

 72

Fig. 5.7. Abstract BPNs model of the stamping system.

5.4.3 Abstract model and state equation

The abstract BPNs model shown in Fig. 5.7 is a behavioral model. The behavioral

model is simplified by the given BPNs model but matches the function of the

controller. According to Eq. (5-2), the state equation k

T

kk UAMM  1 can be used to

analyze and simulate the stamping system, where TA is the incidence matrix used to

represent an abstract model, kU is the firing vector (fault free/fault), “1” represents

the occurrence of an event and “0” represents no event in the firing vector 1/0 (0/1).


































1110000

0011000

0001100

0000110

0100011

1000001
7654321

6

5

4

3

2

1

ttttttt

p

p

p

p

p

p

AT ,

































0

0

0

0

0

1

6

5

4

3

2

1

0

p

p

p

p

p

p

M
,































0

0

0

0

0

0

)1/0(0/1

7

6

5

4

3

2

1

1

t

t

t

t

t

t

t

U
,































0

0

0

0

0

)1/0(0/1

0

7

6

5

4

3

2

1

2

t

t

t

t

t

t

t

U
,































0

0

0

0

)1/0(0/1

0

0

7

6

5

4

3

2

1

3

t

t

t

t

t

t

t

U ,































0

0

0

)1/0(0/1

0

0

0

7

6

5

4

3

2

1

4

t

t

t

t

t

t

t

U ,































0

0

)1/0(0/1

0

0

0

0

7

6

5

4

3

2

1

5

t

t

t

t

t

t

t

U ,































0

)1/0(0/1

0

0

0

0

0

7

6

5

4

3

2

1

6

t

t

t

t

t

t

t

U ,































)1/0(0/1

0

0

0

0

0

0

7

6

5

4

3

2

1

7

t

t

t

t

t

t

t

U .

sp :1 Ap :2 Bp :3),(:4  BAp Cp :5 Cp :6

11 : mt 12 : at 13 : bt)(: 004 bat  15 : ct

06 : ct

27 : mt

 73


















































































































































0

0

0

0

)1/0(

)0/1(

0

0

0

0

0/1

1/0

0

0

0

0

0

0

)1/0(0/1

1110000

0011000

0001100

0000110

0100011

1000001

0

0

0

0

0

1

6

5

4

3

2

1

6

5

4

3

2

1

7654321

6

5

4

3

2

1

6

5

4

3

2

1

101

p

p

p

p

p

p

or

p

p

p

p

p

p
ttttttt

p

p

p

p

p

p

p

p

p

p

p

p

UAMM T

Similarly,

























































0

0

0

)1/0(

)0/1(

0

0

0

0

0/1

1/0

0

6

5

4

3

2

1

6

5

4

3

2

1

212

p

p

p

p

p

p

or

p

p

p

p

p

p

UAMM T
,

























































0

0

)1/0(

)0/1(

0

0

0

0

0/1

1/0

0

0

6

5

4

3

2

1

6

5

4

3

2

1

323

p

p

p

p

p

p

or

p

p

p

p

p

p

UAMM T ,

























































0

)1/0(

)0/1(

0

0

0

0

0/1

1/0

0

0

0

6

5

4

3

2

1

6

5

4

3

2

1

434

p

p

p

p

p

p

or

p

p

p

p

p

p

UAMM T ,

























































)1/0(

)0/1(

0

0

0

0

0/1

1/0

0

0

0

0

6

5

4

3

2

1

6

5

4

3

2

1

545

p

p

p

p

p

p

or

p

p

p

p

p

p

UAMM T
,

























































)0/1(

0

0

0

)1/0(

0

1/0

0

0

0

0/1

0

6

5

4

3

2

1

6

5

4

3

2

1

652

p

p

p

p

p

p

or

p

p

p

p

p

p

UAMM T ,

























































)0/1(

0

0

0

0

)1/0(

1/0

0

0

0

0

0/1

6

5

4

3

2

1

6

5

4

3

2

1

751

p

p

p

p

p

p

or

p

p

p

p

p

p

UAMM T
.

5.4.4 Generating the testing event sequence and troubleshooting

The test event sequence of the local controller and the abstract model shown in

Fig. 5.2 can be generated from the BPNs model for PLC testing and diagnosis. It can

also be used to support network-based monitoring and supervision. Faulty diagnosis

of the local controller according to the switch type of the local controller leads to 3

simplified types, as shown in Table 5.4, where the test event sequence is

1m  1a  1b  0a  0b  1c  0c  2m .

 74

Table 5.4: Test event sequence and troubleshooting of the stamping process

Test Event

Sequence

Type of

switches
Initial state Fault free Fault Troubleshooting

it :(1m , 1a , 1b ,

0a , 0b , 1c , 0c)

no event

occurs

Normal

open

switch

Please check normal

switches to determine

whether they are stuck

at on or not.

it :(1m , 1a , 1b ,

0a , 0b , 1c , 0c)

event

occurs

Normal

open

switch

Please check relational

switches and their

interconnected line to

determine whether

they are stuck at off.

27 : mt
event

occurs

Normal

closed

switch

Please check switch

2m to determine
whether it is stuck at

on or not.

TABLE 5.5: Comparison of SPNC and BPNs for stamping system

Comparison measures SPNC BPNs

Basic elements

Place 15 Place 6

Transition 8 Transition 6

Arc 25 Arc 12

Total 48 Total 24

Fig. 5.8. Corresponding SPNC of the stamping system (from Lee, 2004)

1p 2p 3p

4p

6p

8p 9p5p 7p

 At1  Bt2   BAt ,3

4t

5t

 Ct6  Ct7 Repeat 8t

1:0 ms 1:1 as 1:2 bs

0:4 bs

1:5 cs 0:6 cs

0:3 as

1p
7t kp1p

7t kp

ip jp
itip jp

itip jp
it

ip jp
itip jp

itip jp
it

1p
7t kp

 75

1 pSET0p

1p1m

A

2p1a

B

2p

3p

3p1b

A4p

B4p

8p1c

C9p

9p1b

C8p

0a

7p

0 pSET

2 pSET

1 ST pR

3 pSET

2 ST pR

4 pSET

3 ST pR

2 pSET

9 ST pR

8 ST pR

9 pSET

6 ST pR

8 pSET

s

4p

6p

6 pSET

4 ST pR

5p0b
7 pSET

5 ST pR

7 ST pR

1T

2T

3T

4T

5T

6T

7T

8T

 Fig 5.9. LLD implementation of stamping system (from Lee, 2004)

5.4.5. Comparison of SPLC, BPNs and Corresponding LLD

The IDEF0/SPNC/TPL/LLD (Lee, 2004) is a systematic implementation approach;

however, the BPNs introduced composite transition and place to reduce the

 76

complexity of BPNs and simplified controller implementation. Therefore, the

comparison based simply on the number of Basic element for SPNC (Lee, 2004) and

BPNs of stamping system, is shown in Table 5.5. The SPNC needs place 15, transition

8 and arc 25, while BPNs only needs place 6, transition 6 and arc 12 from Fig 5.8 and

Fig. 5.6 (b), respectively. Furthermore, the mapping unit is from SPNC and BPNs to

LLD are 8 and 6 from Fig. 5.9 and Fig. 5.6 (d), respectively. Thus the BPNs are a

simple approach.

5.5. Summary

In this chapter, a clear design approach is proposed for the testing, diagnosis and

implementation of logic controllers using BPNs. The BPNs model is a core approach,

a bridge between a system specification and PLC code. The abstract model can

directly generate a testing event sequence to solve the experience-based testing and

diagnosis problems of controllers. It also supports network-based monitoring and

supervision, and it can be directly mapped into three types of PLC code to support

different implementations. Finally, an example of a stamping process is provided to

illustrate the design, implementation, testing and troubleshooting process as well as to

demonstrate the usefulness of this approach.

 77

CHAPTER 6

CONCLUSIONS

6.1. Summary of Contributions

 In this thesis, a method for the design, testing, diagnosis, and implementation of a

sequence controller for remotely monitored and controlled processes were proposed.

The model and techniques developed in thesis are useful for industrial applications of

automated systems. The contributions of this thesis to the design of automated

systems can be summarized as follows:

1) Test generation and determination of fault sites in combinational circuit

 To improve the efficiency of logic faults, the transitions of general Petri nets

were modified according to a local critical true table, known as the Logic Petri

nets (LPNs). The LPNs model transferred complex circuit problems into a local,

adjacent place and a transition relational problem, which simplified the site of

fault and fired logic value problems (Tsai, Lee and Teng 2006).

2) Construction of an abstract model of a ladder diagram

To diagnose the local fault of a ladder diagram on-line, a Boolean Petri nets

model was proposed. The model introduces the concepts of composite transitions,

composite places, and relevant states to reduce the complexity of the system and

to increase the readability of Petri nets. To determine faulty areas of the ladder

diagram, the proposed diagnostic process employs simple matrix manipulations

and a difference output vector (DOV) (Tsai and Teng, 2010).

 78

3) Implementation of ASIC for the testing of a ladder diagram

To solve experience-based testing and troubleshooting problems in LDs, the

developed method introduces a procedure that compares fault circuits and

fault-free circuits into integrated circuit testing. Moreover, to achieve the

proposed method, a fault-free model was constructed and application-specific

integrated circuits (ASICs) and testing event sequences were implemented. As a

result, the testing problem was transformed into the determination of event

occurrence. For instance, if an event did not occur in the primary input, then a

response is not obtained from the primary output. Likewise, if an event occurs in

the primary input, then the primary output responds accordingly, which results in

the detection of faults (Tsai, Lin and Teng, accepted).

4) Design for the testing and implementation of logic controllers

To solve experience-based testing and diagnosis problems in the design of

sequence controllers from system specifications, a BPNs model that acts as a bridge

between system specifications and PLC codes was developed. The abstract model can

directly generate a testing event sequence to solve experience-based testing and

diagnosis problems in sequence controllers. The model also supports network-based

monitoring and supervision, and can be directly mapped into three different types of

PLC code to support a variety of implementations. Finally, an example of a stamping

process was provided to illustrate the design, implementation, testing, and

troubleshooting of a sequence controller and to demonstrate the usefulness of the

proposed approach (Tsai, Liao and Teng, submitting).

6.2. Future Research

 The applications of PNs for the testing of circuit systems can be extended in the

 79

following directions:

1) In this thesis, the LPNs were used to generate automatic test patterns (ATPGs) in

combinational circuits. By applying an extended D-algorithm (Putzolu 1971), the

present model could be extended to sequence ATPG applications.

2) By employing BPNs, the testing and diagnosis of sequence controllers designed

from system specifications or existing PLCs was achieved. In future studies, the

BPNs map could be applied to Java language because Java technology was used to

implement the intelligent agent for on-line supervision (Lee 2004, thesis).

3) In this thesis, IDEF0, BPNs, and PLC were integrated to develop an approach for

the testing and diagnosis of a sequence controller and the generation of testing

events. In future studies, the proposed method could be extended to different

IF-THEN systems for the support of network-based monitoring and supervision.

 80

REFERENCES

Abramovici, M., Breuer, M. A. and Friedman, A. D. (1990), Digital systems testing and

testable design, Computer Science Press: New York.

Bender, D. F., Combemale, B., Crégut, X., Farines, J., Berthomieu, M. B. and Vernadat,

F. (2008), “Ladder metamodeling & PLC program validation through time Petri nets,”

ECMDA Lecture notes computer science, Springer Berlin / Heidelberg, pp. 121-136.

Chen, S. M., Ke, J. S. and Chang, J. F. (1990), “Knowledge representation using fuzzy

Petri nets,” IEEE Trans. Knowl. Data Eng., vol. 2, pp. 311-319.

Chen, S. M. (2000), “Fuzzy backward reasoning using fuzzy Petri nets,” IEEE. Trans.

Systems, Man, and Cybernetics. – Part B, vol. 30, no. 6, pp. 846-856.

David, R. and Alla, H. (1992), Petri Nets and Grafcet: Tools for Modeling Discrete-Event

Systems, London: Pretrice-Hall.

David, R. (1995), “Grafcet: a powerful tool for specification of logic controllers,” IEEE

Transactions on Control Systems Technology, pp. 253 – 268.

Dotoli, M. P., Fanti, G. M., Iacobellis, G. G. and. Mangini, A. M. (2009), “A First-Order

Hybrid Petri Net Model for Supply Chain Management,” IEEE Trans. Automat. Sci.

Eng., vol. 6, no. 4, pp. 744–758.

FIPS 183 (1993), National Institute of Standards and Technology, Integration Definition

 81

for Function Modeling (IDEF0). NIST, USA.

Hu, H. S., Zhou, M. C. and Li, Z. W. (2009), “Liveness enforcing supervision of video

streaming systems using nonsequential Petri nets,” IEEE Trans. Multimedia, vol. 11,

no. 8, pp. 1457–1465.

Jackman, J., Linn, R. J. and Hyde, D. (1995), “Petri net modeling of relay ladder logic,” J.

Design & Manuf., vol. 5, pp. 143-151.

Kirkland, T. and Mercer, M. R. (1988), “Algorithms for Automatic Test-pattern

Generation,” IEEE Design and Test of Computers, vol. 5, no. 3, pp. 43-55.

Lala, P. K. (2009), An Introduction to logic circuit Testing, Morgan & Claypool.

Lan, J. C. and Ma, M. (2009), “Fault diagnosis method of power system based on the

adaptive fuzzy Petri net,” Test and Diagnosis, IEEE Circuits and Systems

International Conference on 28-29, pp. 1-4.

Lee, G. S. and Lee, J. S. (2000), “The state equation of Petri net for the LD program,”

Proc. IEEE Trans. Int. Conf. Systems, Man, and Cybernetics, pp. 3051-3056.

Lee, J. S. (2004), Design of the remote supervision system for automated processes via the

Petri nets approach, Ph.D. Dissertation, Department of Electrical and Control

Engineering, National Chiao- Tung University, Taiwan, ROC, July.

 82

Lee, J. S. and Hsu, P. L. (2005), “A systematic approach for the sequence controller

design in manufacturing systems,” Int. J. Adv. Manuf. Technol., pp. 754-760.

LO, K. L., Ng, H. S. and Trecat, J. (1997),”Power systems fault diagnosis using Petri

nets,” IEE proceeding C. generation, Transmission and Distribution, vol. 144, pp.

231-236.

Looney, C. G. (1987), “Logical Control via Boolean Rule Matrix Transformations,” IEEE.

Trans. Systems, Man, and Cybernetics, vol. SMC-17, no. 6, pp. 1077-1082.

Murata, T. (1977), “State equation, controllability, and maximal matching of Petri nets,”

IEEE Trans. automatic control, vol. 22, pp. 412-416.

Murata, T. (1989), “Petri nets: properties, analysis, and application,” Proceedings of IEEE,

vol. 77, no. 4, pp. 541-580.

Peng, S. S., and Zhou, M. C. (2001), Conversion between Ladder diagram and Petri-net in

discrete-event control design- A survey, IEEE Trans. Int. Conf. Systems, Man, and

Cybernetics, pp. 2682-2687.

Peng, S. S. and Zhou, M. C. (2004), ”Ladder diagram and Petri-net-based discrete-event

control design methods,” IEEE. Trans. Systems, Man, and Cybernetics -Part C:

Applications and Review, vol. 34, no. 4, pp. 523-531.

Santarek, K. and Buseif, I. M. (1998), “Modeling and design of flexible manufacturing

systems using SADT and Petri nets tools,” J. Mater Process Tech., vol. 76, pp.

 83

212-218.

Taholakian, A. and Hales, W. M., “PN->PLC: a methodology for designing, simulation

and coding PLC based control system using Petri nets,” int. J. product. Res., vol. 35,

no. 6 pp. 1743-1762, 1997.

Tsai, J. I. and Teng, C. C. (2010), “Constructing an abstract model for ladder diagnosis

using Petri nets”, A Special Issue of Asian Journal of Control, vol. 12, no. 3, pp.

309-318.

Uzam, M. and Jones, A. H. (1998), “Discrete even control system design using automation

Petri nets and their ladder diagram implementation,” Int. J. Adv. Manuf. Tech., vol. 14,

pp. 716-728.

Venkatesh, K., Zhou, M. C. and Caudill, R. J. (1994), ”Comparing ladder logic diagrams

and Petri nets for sequence controller design through a discrete manufacturing

system,” IEEE Trans. on Industrial Electronics, vol. 41, no. 6, pp. 611-619.

Venkatesh, K., Zhou, M. C. and Caudill, R. J. (1994a), ”Evaluating the complexity of Petri

nets and ladder logic diagrams for sequence controllers design in flexible automation,”

Proc. of IEEE Workshop on Emerging Technologies and Factory Automation, Tokyo,

Japan, pp. 428-435.

Zhou, M.C. and Twiss, E. (1998), “Design of industrial automated systems via relay

ladder logic programming and Petri nets,” IEEE Transactions on Systems, Man, and

 84

Cybernetics, Part C: Applications and Reviews, pp. 137 – 150.

 85

VITA

 July 19, 2010

PERSONAL DATA

Name: 蔡瑞益 Jui-I Tsai

Date of Birth: April 19,1958

E-mail: tsai.ece90g@nctu.edu.tw

EDUCATION

2001/9-2010/7
Receive the Ph.D. degree in the Institute of Electrical Control

Engineering at National Chiao-Tung University, Taiwan, R.O.C.

1992/9-1994/7
Receive the M.S. degree in the Institute of Medical Engineering from

National Cheng- Kung University, Taiwan, R.O.C.

1981/9-1985/7
Receive the B.S. degree in the Department of Electronic Engineering

from Feng-Chia university, Taiwan, R.O.C.

ATTENDED CONFERENCES

 International Conferences

2006 Oct., IEEE Intl. Conf. Systems, Man and Cybernetics, Taipei, R.O.C.

 Domestic Conferences

2006 Nov., Chinese Automatic Control Conference, Taipei, R.O.C.

 86

PUBLICATION LIST

July 19, 2010

JOUNAL PAPERS

1. J.I. Tsai, J. M. Shieh, T. S. Liao and C. C. Teng, “High-voltage amplifier uses

simplified circuit,” EDN Design Ideas, pp.110, 2004.

2. J.I. Tsai, W. W. Pai, F. C. Hsu, P. J. Chen, J. M. Shieh, C. C. Teng and T. S. Liao,

“Relays eliminate high-voltage noise,” EDN Design Ideas, pp.66-68, 2007.

3. J.I. Tsai and C. C. Teng, “Constructing an abstract model for ladder diagnosis

using Petri nets,” A Special Issue of Asian Journal of Control, vol. 12, no. 3, pp.

309-318, 2010.

4. B. T. Lin, J.I. Tsai and C. C. Teng, “ /QFT H Controller Design of a

MIMO Suspension System,” accepted by the Advances in Differential

Equations and Control Processes, vol. 5, no. 1, pp. 49-63, 2010.

5. J.I. Tsai, B. T. Lin and C. C. Teng “An ASIC Implementation for testing of a

ladder diagram using a Boolean Petri net,” accepted by Far East Journal of

Experimental and Theoretical Artificial Intelligence, 2010.

6. J.I. Tsai, T. S. Liao, B. T. Lin and C. C. Teng “Design for the testing and

implementation of logic controllers using Boolean Petri net,” Far East Journal of

Experimental and Theoretical Artificial Intelligence, 2010 (revise).

INTERNATIONSL CONFFERENCE PAPER

1. J.I. Tsai, C. C. Teng and C. H. Lee, “Test Generation and Site of Fault for

Combinational Circuits Using Logic Petri Nets,” IEEE International Conference

on Systems, Man, and Cybernetics, Taipei, pp. 91-96, Oct. 2006.

DOMESTIC PAPER

1. J.I. Tsai, and C. C. Teng, “Fuzzy reasoning based on logical Petri nets,”

Automatic Control Conference, Taipei, pp. 1231-1236, Nov. 2006.

