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摘要 

多入/多出(multiple-input, multiple-output, MIMO)是適用於多種通訊系統之系統模型，含多

傳送 /接收天線系統 (multiple transmit and receive antenna systems)、分碼多重存取 

(code-division multiple-access systems, CDMA)系統及符元間相互干擾系統(systems with 

inter-symbol interference channels)等。本論文針對 MIMO 系統提出新型傳送及接收處理技

術。首先，本論文針對空間多工 (spatial multiplexing)之多天線系統，提出兩種新型

MMSE(minimum mean-squared error)通道分解協助式偵測器 (channel-factorization aided 

detector)；從硬體複雜度(hardware complexity)或位元錯誤率(bit-error-rate)上作比較，新型的

偵測器具優於現存方法之效能。接著，本論文針對多天線 MIMO-OFDM (orthogonal 

frequency-division multiplexing)系統在 I-Q 失衡的干擾下，研究接收機架構並在運算複雜度

及位元錯誤率的取捨下作最佳的設計。最後，本論文則針對二維 OFDM-CDMA 下行 

(forward link)系統提出新型傳輸端預處理技術(transmitter-based pre-processing)；數值模擬結

果顯示： (i) 根據可達到之總資料速率，所提出的新方法之效能優於其他現存方法，(ii) 如

果能夠依據通道選擇特性(channel selectivity)來適當的決定延展樣式(spreading pattern)，則二

維延展(2-D spreading)之效能優於一維延展。     
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Abstract 

Multiple-input, multiple-output (MIMO) is a model for a variety of communication systems, 

including the multiple transmit and receive antenna systems, code-division multiple-access 

(CDMA) systems, systems with an inter-symbol interference channel, etc. In this dissertation, 

new transmit and receive techniques for the MIMO communication systems are proposed. Firstly, 

two new MMSE (minimum mean-squared error) channel-factorization aided detectors (CFAD) 

are proposed for the spatial multiplexing multiple antenna systems. The proposed detectors 

outperform the existing ones in terms of hardware complexity and/or bit error rate performance. 

Secondly, receiver designs with good trade-off between computational complexity and BER 

performance are investigated for the MIMO-OFDM (orthogonal frequency-division multiplexing) 

systems with the presence of I-Q imbalances. Lastly, new transmitter preprocessing techniques 

are proposed for the two-dimensional (2-D) OFDM-CDMA forward link systems. Numerical 

results show that (i) the new method outperforms the existing ones in terms of achievable sum 

data rate, and (ii) the 2-D spreading outperforms the 1-D one if spreading pattern is adapted 

according to channel selectivity. 
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Chapter 1  
Introduction 
 

The next-generation mobile communication is envisioned to provide high spectrum-efficient, 

high data-rate multimedia services over a wide variety of operating environments: indoor, outdoor, 

high and low mobility, etc. To date, innovative techniques have been proposed in the mobile 

communication systems to achieve these goals, including the techniques of using multiple 

transmit and receive antennas [1], [2], code division multiple access (CDMA), orthogonal 

frequency division multiplexing (OFDM), and the combinations of them [3]-[5]. One general 

model for all these techniques is the multiple-input, multiple-output (MIMO) system model, as 

shown in Figure 1.1, where the system has m inputs and n outputs. In addition, the MIMO system 

can also be used to model the communication systems with an ISI (inter-symbol interference) 

channel [6]. In this dissertation, we focuses new transmit and receive techniques for the MIMO 

systems. 

 

 

Figure 1.1: System model for MIMO communication systems 
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1.1 New Techniques for MIMO Systems with 

Multiple Transmit and Receive Antennas 

A popular MIMO system is to use multiple transmit and receive antennas in a wireless 

communication system. The system is capable of providing diversity gain, array gain (power 

gain), and/or degree-of-freedom gain over single-input-single-output (SISO) systems, the single 

antenna systems [1], [2], [19]. Space-time coding, beam-forming and spatial multiplexing are the 

modes of operations to exploit the diversity gain, array gain, and degree-of-freedom gain, 

respectively. In particular, in spatial multiplexing, parallel data streams are transmitted over 

different transmit antennas to take advantage of the extra degree of freedom provided by a 

rich-scattered environment to increase spectral efficiency [19]-[23]. The spatial multiplexing 

MIMO systems have been one of the key technologies to enable high data-rate, high 

spectral-efficiency transmission in wireless environments.  

1.1.1 Channel Factorization Aided MMSE Receiver for 

Multiple Transmit and Receive Antenna Systems 

The first part of this dissertation focuses on the design of new receiver techniques for the spatial 

multiplexing MIMO systems. Specifically, two types of minimum mean-squared error (MMSE) 

channel-factorization aided detectors (CFAD) are proposed to improve the system performance.  

For the spatial multiplexing MIMO systems, the optimal detector is the maximum-likelihood 

(ML) detector that minimizes the detection error probability, given the perfect channel estimation. 

Without imposing a special structure on the transmitted symbols, however, the complexity of the 

ML detector grows exponentially with the transmit antenna and/or the symbol constellation sizes, 
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because all the symbol vectors need to be searched exhaustively for the optimum detection. For 

the case of using QAM symbols, on the other hand, the complexity of the ML detector can be 

reduced by using the sphere decoding [24], [25], where the searching is limited to within a sphere 

around the received signal, although its complexity may still be too demanding for some 

applications. In viewing this, different reduced-complexity sub-optimal detectors have been 

proposed in real systems, including the linear and nonlinear detectors [20]-[23]. For an 

ill-conditioned channel, unfortunately, the performance of these detectors is significantly inferior 

to that of the ML detector. 

Recently, CFADs have been proposed to narrow the performance gap between the ML and 

traditional reduced-complexity detectors [26]-[35], where channel factorization is mostly done 

with the lattice-reduction algorithms such as the Lenstra–Lenstra–Lovász (LLL) [36], [37] and 

Seysen’s algorithms [38], [39]. Thus, the method is also called the lattice-reduction aided detector, 

LRAD. (Here, we prefer to use the term CFAD because the channel factorization is not 

necessarily done with a lattice-reduction algorithm.) In particular, in [26]-[29], the LLL-based 

LRAD was proposed to improve performance over the conventional ZF (zero forcing) MIMO 

detector. The authors of [30]-[32] proposed the MMSE-based LRAD to further improve its ZF 

counterpart. Later on, the LLL algorithm was proposed to operate on the dual lattice rather than 

the original lattice to reduce effective noise power [33], [34]. In addition, the Seysen’s algorithm 

[39] which simultaneously reduces lattice basis and its dual was proposed to improve the 

performance of the LLL algorithm. Lastly, the authors of [35] conducted a comprehensive 

performance comparisons on the reduction algorithms mentioned above. 

Traditionally, the design of the channel factorization algorithm in LRAD is somewhat 

intuitively; neither a specific detector nor a cost function is devised to search for good 

factorization algorithms. The LLL and Seysen’s algorithms were employed to obtain a relatively 

short (orthogonal) basis with no consideration of the low-complexity detector used. In this part of 
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work, we propose a new approach: the factorization algorithm is designed specifically for the 

MMSE detector with the aim to minimize the cost function of sum mean-squared-error (MSE). 

Two new types of factorization algorithms are proposed. Type-I is LLL-based, where the 

best-performed factorization algorithm found in the literature, i.e., the LLL algorithm working on 

the dual matrix of the extended channel matrix (DLLL-extended algorithm), is a member of this 

type but has a higher complexity than the proposed one. In this regard, this work provides a 

theoretical foundation for the DLLL-extended algorithm. Type-II is greedy-search based, where 

its members are differentiated with different algorithm’s parameters. Type-II algorithms can 

provide around 0.5-1.0 dB gain over Type-I algorithms and have a fixed computational 

complexity which is seen as an advantageous in hardware implementation. 

1.1.2 Receiver Design for MIMO-OFDM Systems with I-Q 

Imbalances 

Combining the techniques of multiple antennas and OFDM, i.e., the MIMO-OFDM technique, 

endows the communication systems with high data-rate, high spectral-efficiency transmissions. 

Using OFDM, ISI incurred in high data-rate transmission can be removed with a simple 

frequency-domain equalizer at the receiver. Currently, MIMO-OFDM has been adopted in the 

IEEE 802.11n, IEEE 802.16, and 3GPP Long Term Evolution (LTE) specifications.  

From the viewpoint of low-cost transceiver designs, zero intermediate-frequency (IF) 

structure is very appealing thanks to its avoidance of using expensive IF components and the 

image rejection (IR) filter. It is more amenable to monolithic integration and, thus, facilitates a 

low cost, small form factor design. This architecture, however, is very sensitive to imperfections 

of the analog circuitry. In particular, mismatch between I and Q branch circuitry, called the 

in-phase-quadrature (I-Q) imbalance, induces mirror-frequency interference. These imbalances 

that may appear at both transmitter and receiver will significantly degrade communication 
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performance if not compensated properly. In this part of dissertation, we investigate the receiver 

design for the MIMO-OFDM systems with the presence of I-Q imbalance.  

In the literature, the BER performance of the QPSK-modulated OFDM systems was 

evaluated to illustrate the impact of I-Q imbalance in [40]. In [41], the authors analyzed the 

impact of I-Q imbalance and phase noise in the MIMO-OFDM systems with different number of 

antennas. The authors of [42] evaluated the impact of carrier frequency offset (CFO), the 

sampling clock offset, and I-Q imbalance on the MC-CDMA downlink system, considering a 

receiver based on channel tracking designed to cope with high mobility. A new detection method 

was proposed for the OFDM systems with the presence of I-Q imbalance in [43] along with a 

new pilot design to estimate the channel. In [44], authors proposed a technique that jointly 

estimates the I-Q imbalance, dc offset, carrier frequency offset, and channel for receivers in 

frequency selective channels. In addition, new adaptive techniques were proposed to compensate 

I-Q imbalance [45]-[48]. The authors in [45] proposed an adaptive scheme to correct I-Q 

imbalances at the remote transmitter as well as at the receiver in the single carrier systems and 

OFDM systems [46]. With the presence of I-Q imbalance and dc offset, an adaptive 

compensation technique was proposed in [47]. The effect of both transmitter and receiver I-Q 

imbalance was studied under the effect of carrier frequency offset in the OFDM systems.  Also, 

an algorithm was developed in [48] to adaptively compensate for such distortion in the digital 

domain.  

Instead of using adaptation correction, I-Q imbalance correction methods were proposed for 

the quadrature receiver [49] and OFDM receiver [50]. In [51], an estimation technique that 

resorts to the iterative Expectation-Maximization (EM) algorithm to converge to the ML 

estimation was proposed for both channel and I-Q imbalance coefficients in presence of unknown 

transmitted data symbols. In addition, some jointly compensation schemes for front-end 

impairments were proposed in [52]-[60]. A digital signal processing techniques for compensating 
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both the I-Q imbalance and the DC offset in communication receivers were derived in [52]. The 

authors in [53] developed an estimation/compensation scheme to jointly combat the I-Q 

imbalance and phase noise at baseband. In [54], the authors proposed and analyzed a joint I-Q, 

CFO estimation/compensation method. In addition, a pilot-based scheme for both CFO and I-Q 

imbalance compensations at the baseband was developed in [55]. The authors studied the effect 

of both the transmitter and receiver I-Q imbalances in an OFDM system [56], [57] and 

MIMO-OFDM systems [58], and developed the algorithms to compensate for such distortions in 

the digital domain. Also, the authors proposed to compensate I-Q imbalances with a cascaded 

connection of MMSE and MLD [59] and ordered successive interference cancellation (OSIC) 

[60].  

Different from previous works that regard I-Q imbalance as impairment and than 

compensates it, in this part of work, we model it as a part of whole system for MIMO-OFDM 

transceiver, and examine receiver structure designs based on the trade-off between BER 

performance and computational complexity.  

1.1.3 Transmitter-Based Pre-Processing for Forward-Link   

2-D OFDM-CDMA System  

Transmitter pre-processing has been known as a technique to increasing the system capacity 

and/or performance and to shifting the signal processing complexity from a mobile unit to the 

base station in forward-link transmission of a multiple access environment [12]-[18]. A 

transmitter pre-coding was studied for the down-link of a synchronous direct sequence CDMA 

(DS-CDMA) system in [12]. Based on the minimum mean square error (MMSE) criterion with 

power scaling, both ISI and MAI (multiple access interference) can be removed in a multi-path 

channel if RAKE receiver is employed in the mobile unit. The authors in [16] proposed to apply 

the filtering directly to the transmitted waveform, rather than to the data symbols as in [12], in 
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order to achieve better performance and further reduce the complexity of a mobile unit. 

Furthermore, a similar structure as those in [12], [16] with multiple transmit antennas was 

investigated in [13], where a set of transmit filters was designed, based on the maximization of 

signal to interference-plus-noise ratio (SINR) at each receiver output. Without jointly considering 

all the users, the system performance is similar to that of pre-rake diversity combining in [14]. In 

[15], a combined transmitter frequency-time domain power adaptation with maximum ratio 

combining (MRC) receiver was explored for the forward-link of a MC-CDMA system. 

Performance gain is obtained by using a simple power adaptation strategy that drops bad 

sub-carriers and distributes the transmission power uniformly over other better ones. 

Transmitter-based pre-processing has also been applied to the MIMO systems. For example, in 

[17], the authors proposed a transmitter pre-processing technique for decomposing a multi-user 

MIMO downlink channel into multiple parallel independent single-user MIMO ones. As a result, 

any technique for single-user MIMO such as singular value decomposition (SVD) based 

techniques [18] can be applied for each user of the multi-user MIMO system. 

OFDM-CDMA – a form of CDMA with multiple-carrier transmission – is a promising radio 

access technology for the next-generation mobile communication. By combining OFDM and 

CDMA, it is able to overcome the serious ISI in a high-data-rate environment with simple 

frequency-domain equalization, provide high spectral efficiency in the cellular environment with 

universal frequency reuse and gain reception diversity through spreading data over frequency and 

time domain. It can be shown later that the model of systems employing the technique of 

OFDM-CDMA is also a manner of multiple-input-multiple-output model.  

Traditionally, OFDM and CDMA are combined in a one-dimensional (1-D) fashion; that is, a 

data symbol is either spread in frequency or time domain [3]-[5]. The former is called 

multi-carrier CDMA (MC-CDMA) and the latter multi-carrier direct-sequence CDMA 

(MC-DS-CDMA). In MC-CDMA, a data symbol is duplicated into several parallel copies with 
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each copy multiplied by a spreading chip before being modulated onto a sub-carrier in an OFDM 

format. In contrast, in MC-DS-CDMA, a data symbol is spread in the time domain first and then 

the chips are modulated onto the same sub-carrier. 1-D OFDM-CDMA has been investigated 

extensively in the literature including receiver design, performance evaluation and comparisons 

between different spreading methods, see [3]-[5] and references therein. 

2-D OFDM-CDMA, where data symbols are spread over time and frequency domains, has 

been getting more and more attention recently because of its ability to exploit simultaneously the 

temporal and spectral characteristics of the fading channels. In [7], NTT DoCoMo proposed a 

2-D orthogonal frequency and code division multiplexing (OFCDM) system with variable 

spreading factors for the forward link. The same principle was applied in [8], where the authors 

proposed a time-frequency localized CDMA (TFL-CDMA) system that utilizes the 

channel-correlation in both time and frequency in order to reduce multiple access interference 

(MAI). In contrast, a 2-D OFDM-CDMA system was studied with a spreading pattern designed to 

maximize the diversity order [9]. Application of a simplified multi-user detection (MUD) to the 

2-D systems was explored in [10], and more recently, the adaptability of 2-D OFDM-CDMA 

systems was investigated in [11].  

This part of work aims to investigate transmitter-based pre-processing techniques for the 2-D 

OFDM-CDMA forward-link systems over the time-variant multi-path Rayleigh fading channels, 

aiming to increase the system sum data rate and reduce the computational complexity of a mobile 

unit. For the non-selective channels, the optimum pre-processing that achieves the maximum sum 

data rate is obtained by applying the principle of multi-user water filling under the condition of 

zero MAI. For the selective channels, preprocessing methods based on the traditional criteria of 

ZF and MMSE are investigated first, and then a new method called zero forcing with multi-user 

water filling (ZF-MWF) is proposed to increase the system performance. The sum data rate of the 

system serves as the performance index for the design and comparison of different methods. The 
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merit of 2-D over 1-D spreading is highlighted and the design issues such as selection of 

spreading pattern and user scheduling are also discussed. 

1.2  Dissertation Outline 

This dissertation focuses on the investigations of transmit and receive techniques for the MIMO 

communication systems. In Chapter 2, two types channel factorization algorithms are proposed 

for channel factorization aided MMSE detector in multiple transmit and receive antenna systems. 

In Chapter 3, we explore the receiver structure designs based on the trade-off between BER 

performance and computational complexity for MIMO-OFDM systems with the transmitter and 

receiver I-Q imbalances. Chapter 4 investigates transmitter-based pre-processing techniques so as 

to increase the system sum data rate for the 2-D OFDM-CDMA forward-link systems over the 

time-variant multi-path Rayleigh fading channels. Finally, conclusions are given in Chapter 5.  
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Chapter 2  
Channel Factorization Aided MMSE 
Receiver for MIMO Systems 
 

Channel-factorization aided detector (CFAD) is one of the important low-complexity detectors 

used in the MIMO receivers. Through channel factorization, a CFAD transforms the original 

MIMO system into an equivalent system with a better-conditioned channel in which detection is 

performed with a low-complexity detector; the estimate is then transformed back to the original 

system to obtain the final decision. Traditionally, the channel factorization is done with the lattice 

reduction algorithms such as the Lenstra–Lenstra–Lovász (LLL) and Seysen’s algorithms with no 

consideration of the low-complexity detector used. In this Chapter, we propose a different 

approach: the channel factorization is designed specifically for the minimum mean-square-error 

(MMSE) detector that is a popular low-complexity detector in CFADs. Two new types of 

factorization algorithms are proposed. Type-I is LLL based, where the LLL algorithm working on 

the dual matrix of the extended channel matrix (DLLL-extended) is a member of this type but 

with a higher complexity. DLLL-extended is the best-performed factorization algorithm found in 

the literature, Type-II is greedy-search based where its members are differentiated with different 

algorithm’s parameters. Type-II algorithms can provide around 0.5-1.0 dB gain over Type-I 

algorithms and has a fixed computational complexity which is advantageous in hardware 

implementation. In addition, combining proposed MMSE channel factorization algorithm with 

the element-wise, candidate-list (EWCL) detector can approach to within a fractional dB of the 

ML performance.  

 



 11

2.1 System Model and Reduced-complexity Detectors 

Figure 2.1 is the considered flat-faded MIMO channel with m  transmit and n m≥  receive 

antennas, where ,i jh  denotes the complex-valued gain from transmit antenna j  to receive 

antenna i , 1 j m≤ ≤  and 1 i n≤ ≤ . The corresponding signal model is given by 

y = Hx + w                                                         (2.1) 

where [ ]1
T n

ny y C= ⋅⋅⋅ ∈y , [ ]1
T m

mx x C= ⋅⋅⋅ ∈x , [ ]1
T n

nw w C= ⋅⋅⋅ ∈w  are the received signal 

vector, transmitted signal vector, and noise vector, respectively, H  is the composite channel 

matrix with m  transmit antennas and n  receive antennas, and C  is the set of complex 

numbers. Using the notations in Figure 2.1 and Equation (2.1), the channel matrix is ,i jh⎡ ⎤= ⎣ ⎦H . 

The popular correlated channel model for 1/ 2 1/ 2
R TH = J FJ  in [31] is adopted in this chapter, where 

F  consists of zero-mean, uncorrelated complex Gaussian coefficients of unit variance, and TJ  

and RJ  are the spatial correlation matrices at transmitter and receiver, respectively. Furthermore, 

as in [31], we adopt the commonly used correlation matrices  

2

2
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4 4

( 1) 4

1
1

1

1

m

T

m

ρ ρ ρ
ρ ρ
ρ ρ ρ

ρ

ρ ρ ρ
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−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

J
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% #
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"

,                                   (2.2) 

and 

2

2

4 ( 1)

4 4

( 1) 4

1
1

1

1

n

R

n

ρ ρ ρ
ρ ρ
ρ ρ ρ

ρ

ρ ρ ρ

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

J

"
% #
%

# % % %

"

,                                   (2.3) 
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with 0 1ρ≤ ≤ . Note that 0.0ρ =  gives the uncorrelated channel and 1.0ρ =  gives the fully 

correlated one. 

 

 

 

Figure 2.1: The considered MIMO channel with m  transmit and n  receive antennas. 

 

For quadrature amplitude modulation (QAM) constellations, it is easy to see that, after proper 

shifting and scaling, [ ]1
T m

mx x= ⋅⋅⋅ ∈Ωx , where ZΩ ⊂ , and Z  is the set of complex integers. 

Also, the signal vector m∈Ωx  has independent and identical distributed (i.i.d.) entries with the 

power constraint 2 2
xE mσ⎡ ⎤ =⎣ ⎦x , where 2⋅ denotes the squared Euclidean norm, and 

[ ]1
T

nw w= ⋅⋅⋅w  is a circularly symmetric complex Gaussian vector with the correlation matrix 

2E H
w nσ⎡ ⎤ =⎣ ⎦ww I . x  and w  are independent of each other, and nI  denotes the n n×  identity 

matrix. 

Basically, a linear detector is to find an ˆ m∈Ωx  that is closest to the filtered vector HB y , 

i.e.,  
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� 2
arg min  

m

H HQ
∈Ω

⎡ ⎤= − = ⎣ ⎦x
x B y x B y ,                                     (2.4) 

where HB  is the receive filter, and [ ]Q ⋅  is the operation of rounding its argument to the nearest 

ˆ m∈Ωx . For the MMSE linear detector, 
12

2

H

H Hw
m

x

σ
σ

−⎡ ⎤⎛ ⎞
+⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
B = H H I H [20]-[23]. Without 

considering the effect of noise, i.e., 
2

2 0w

x

σ
σ

= , the detector degenerates to ZF linear detector, where 

inter-symbol interference in y  is cancelled completely. It is well known that linear detectors 

suffer from severe noise enhancement in an ill-conditioned channel and have diversity order of 

1n m− +  which is less than the full diversity order n  [20]-[23]. 

Successive interference cancellation (SIC) is a popular low-complex non-linear detector. 

Firstly, the channel matrix is QR decomposed, i.e., =H QR , where H
mQ Q = I , and R is an 

upper triangular matrix given by  

11 12 1

22 20

0 0

m

m

mm

r r r
r r

r

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

R =

"
"

# % % #
"

.                                              (2.5) 

The detection is then carried out as 

1

1ˆ ˆ , , 1
m

j j ji i
i jjj

x Q y r x j m
r = +

⎡ ⎤⎛ ⎞
= − = ⋅⋅⋅⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑� ,                                   (2.6) 

where [ ]1
T H

my y⋅ ⋅ ⋅y = Q y� � �� . SIC reduces the effect of noise enhancement but suffers from error 

propagation which can be lessened if the sequence of detection of , 1ix i m= ⋅⋅⋅  is properly 

ordered [22], [23]. With the perfect ordering, SIC is equivalent to the well-known V-BLAST 

detector [20], [21]. Ideally, the diversity order of detecting jx  is equal to 1n j− + , 

, 1, 1j m m= − ⋅⋅⋅ .  
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2.2 Channel-Factorization Aided Detection 

In the literature, LRAD has been proposed to improve the performance of the traditional 

reduced-complexity detectors while retains a low complexity [26]-[35]. It was shown in [33], [34] 

that LRAD achieves full diversity order. Recall that in this paper LRAD will be viewed as a 

special case of a more general class of detectors, CFAD, where channel factorization can be done 

with any algorithms including the LLL and Seysen’s lattice-reduction algorithms. 

Let [ ]1 2 m⋅ ⋅ ⋅�H h h h , where { }1 2, , , m⋅ ⋅ ⋅h h h  is a set of linearly independent vectors in Cn . 

The set of points 
1

= ,
m

i i i
i

x x
=

⎧ ⎫Λ ∈ Ζ⎨ ⎬
⎩ ⎭

∑H v v = h is called a lattice of dimension m , generated by 

the basis { }1 2, , , m⋅ ⋅ ⋅h h h , and [ ]1 2 m⋅ ⋅ ⋅H h h h�  is the generator matrix. It is clear that different 

bases can be used to generate the same lattice. In particular, H  and iH  generate the same 

lattice ΛH  if and only if i=H HD , where D  is a unimodular matrix [37]. A complex integer 

matrix D  is called unimodular if ( )det 1=D . Clearly, 1−D  is also a unimodular matrix. In 

Equation (2.1), the noiseless received signal vector is a lattice point in ΛH . Therefore, the 

detection problem is to find a lattice point in ΛH  that is as close as possible to the received 

signal vector y . 

A block diagram of the channel-factorization aided detector (CFAD) is shown in Figure 2.2; 

the original system in Equation (2.1) is transformed into an equivalent one by factorizing the 

channel matrix into i=H HD , where D  is a unimodular matrix. That is,  

i i= + = + = +y Hx w HDx w Hz w ,                                       (2.7) 

where =z Dx  is a symbol vector in the transform domain. If the channel factorization is done 

with a lattice-reduction algorithm, then it is the well-known LRAD. The key idea of CFAD is 
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firstly to find a factorization such that iH  is  

 

 

 

Figure 2.2: A simplified diagram for the channel-factorization aided detection. 

 

better-conditioned than H , then a reduced-complexity detection, i.e., “Slicer”, is performed in 

the z -domain to obtain an initial estimate z� . The “Slicer” in Figure 2.2 performs the operation 

of element-wise rounding after a proper shifting and scaling as that given in [32]. Eventually, the 

estimate is transformed back to the original x -domain to obtain the final estimate  

� 2
-1arg  min  

m∈Ω
= −

x
x D z x� .                                              (2.8) 

Figure 2.3 shows the advantage of CFAD for 2 2×  real system. As shown in figure, black 

points are the set of received noiseless signals. For non-factorized case, that is to detect symbol 

x , the channel matrix encountered is H  labeled with blue; by contrast, if channel is properly 

factorized, the channel matrix becomes iH  labeled with red for the detection of transformed 

symbol z . It is obviously that the performance of detecting symbol z  is better than that of 

detecting symbol x , because the decision region for the factorized case is square, which results 

from the fact that the columns of matrix iH  are orthogonal. This illustrates why remarkable 

performance improvement can be obtained by CFAD. 

 



 16

 

Figure 2.3: An example for the channel factorization 

 

The LLL algorithm is well-known for searching a good factorization i=H HD . Through size 

reduction and reordering of the sequence of basis vectors, a relatively short (orthogonal) basis can 

be found with a polynomial time complexity [36], [37]. The complex version of the LLL 

algorithm in [68] is summarized in Table 2.1. The LLL algorithm can be applied to the primal 

lattice [26]-[32] generated by the generator matrix H , the dual lattice [33], [34] generated by the 

generator matrix ( ) 1#
H

H H−⎡ ⎤
⎢ ⎥⎣ ⎦

H H H H� , and the extended lattice generated by w
m

x

σ
σ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

H
H

I
�  

[30]. Seysen’s algorithm (SA) is another popular lattice-reduction algorithm for the channel 

factorization [38], [39]. Since SA reduces the primal and dual lattices simultaneously, it  
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Table 2.1: Complex version of the LLL algorithm 

 

[ ] [ ]

i i

2,1
GSO

1 2 1 2 3,1 3,2

,1 ,2 ,3

1
μ 1 0

Input: lattice matrix = .μ μ 1

μ μ μ 1

Output:  and unimodular matrix  such that .

T

T
m m

m m m

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=

H h h h QU q q q

H T H HT

# # # %
"

──────────────────────────────────────

───────────

a b a b

1

, -1 -1 -1 -1 , -1

1.     2,  and 

2.    while ( ) do
3.         μ ,  μ   
4.         update GSO of  based on effective procedures in [36]

5.  

m

m

i i i i i i i i i i

i

i m

⎡ ⎤
⎢ ⎥= = = ⎢ ⎥
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≤

= − = +

t
T I

t

h h h t t t
H

#

───────────────────────────

( )

{ }

2 2
, -1 -1 -1

-1 -1

       if μ ,  then

6.              swap  and , swap  and   
7.              update GSO of  based on effective procedures in [36]
8.              max 2, -1  
9.         else

i i i i i

i i i i

i i

δ+ <

=

q q q

h h t t
H

a b a b, ,

10.            for - 2 to 1 do
11.                 μ ,  μ  
12.                 update GSO of  based on effective procedures in [36]
13.            end for
14.            1
15.

i i i j j j j i j i

j i

i i

=

= −  = +  

= +

h h h t t t
H

i

       end if
16.  end while

17.  =H H

 

 

has a similar performance as that of LLL applied to the dual lattice, as to be shown later. Very 

recently, it was reported in [35] that the LLL algorithm applying on the dual lattice #H  and the 
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SA algorithm on H  give the best performance if the MMSE detector is used as the 

low-complexity in Figure 2.2 to obtain the initial estimate z� . Any reduced-complexity detector, 

denoted by the function ( )f y  in Figure 2.2, can be used to obtain the initial estimate z� . For 

example, ZF-LD and MMSE-LD in Equation (2.4), or SIC in Equation (2.6) can be used with H  

replaced by iH  and x  by z . Furthermore, the slicer is used to lower the detection complexity 

[32], which is perfectly fine for an infinite constellation because m= ∈Ζz Dx  for m∈Ζx . For a 

finite constellation, however, there is boundary error effect; that is, -1D z�  may not belong to mΩ . 

This explains why Equation (2.8) is needed for the final detection. 

 

2.3 Proposed Factorization Algorithms for CFAD 

Detectors 

Traditionally, the LLL and Seysen’s algorithms are used in CFAD for the channel 

factorization i=H HD  with no consideration of which type of low-complexity detector is used in 

the z-domain detection. In this section, we propose a different approach: channel factorization is 

designed specifically for the CFAD-MMSE detector, and thus improve the detector performance 

of the detector either in bit error rate or detector complexity over other channel factorization 

methods in the literature. Furthermore, a low-complexity element-wise candidate list detector is 

proposed that along with the new MMSE-based channel factorization can be used to approach to 

within fractional dB of the performance of ML detection. 

 

2.3.1 MMSE Criterion 

Let MMSEG  be the MMSE filter for the initial detection in the z -domain, given the 



 19

factorization i=H HD . It can be shown that  

12
2

2arg min H Hw
MMSE m

x

E σ
σ

−
⎛ ⎞⎡ ⎤= − = +⎜ ⎟⎣ ⎦ ⎝ ⎠G

G Gy z D H H I H                     (2.9) 

From Appendix A, the covariance matrix of the error vector MMSE −G y z  is  

( )( )
12

2
2          

          

H
MMSE MMSE MMSE

H Hw
w m

x

H

E

σσ
σ

−

⎡ ⎤− −⎣ ⎦

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
=

Φ G y z G y z

D H H I D

DAD

�

 ,                               (2.10) 

where 
12

2
2

H w
w m

x

σσ
σ

−
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

A H H I  is a positive definite matrix, and the sum MSE (mean square 

error) is 

( ) ( )H
MMSEtr tr=Φ DAD .                                             (2.11) 

where ( )tr ⋅  denotes the sum of the diagonal elements of a square matrix. Using Equations (2.10) 

and (2.11), our goal is to find the factorization i
opt=H HD  by solving the following optimization 

problem 

( )opt arg min ,   s.t.  is a unimodular matixHtr⎡ ⎤= ⎣ ⎦D
D DAD D .                  (2.12) 

Note that there are infinite numbers of unimodular matrices in Equation (2.12), and thus finding 

the optimal solution by exhaustive search is not possible. Here, two types algorithms are 

proposed to obtain approximate solutions efficiently: one is LLL-based, and the other is 

greedy-search based with column-wise optimization. 

 

2.3.2 Type-I Algorithms (LLL based) 

By applying singular-value-decomposition (SVD), the channel matrix H  can be expressed 
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as 

    
  

H⎡ ⎤
= ⎢ ⎥

⎣ ⎦
H U V

0
Δ

,                                                   (2.13) 

where U and V  are unitary matrices with dimension of n n×  and m m× , respectively, and 

( )1 2diag , , , m= Δ Δ ⋅⋅⋅ ΔΔ  is an m m×  diagonal matrix with the singular values 

0,  1,...,k k mΔ > = . Using Equation (2.13), the matrix A  becomes  

H=A ϒ ϒ ,                                                         (2.14) 

where 1/ 2 H= Vϒ Γ  is an m m×  nonsingular matrix, and 

2 2 2 2 2 2

2 2 2 2 2 2 2 2 2
1 2

diag , , ,w x w x w x

x w x w m x w

σ σ σ σ σ σ
σ σ σ σ σ σ

⎛ ⎞
= ⋅⋅⋅⎜ ⎟Δ + Δ + Δ +⎝ ⎠

Γ .                         (2.15) 

More generally, we have the following lemma. 

Lemma 1:  With ϒ  in Equation (2.14), H=A C C  if and only if C = Pϒ , where H
mP P = I  is 

an l m×  matrix with l m≥ .  

Proof: For the if part, ( )HH H=C C = P Pϒ ϒ ϒ ϒ = Α . For the only if part, using Equation (2.14), 

one gets H HC C = ϒ ϒ . Since ϒ  is nonsingular, 1H H
m

− − =C C Iϒ ϒ . Identify 1−P = Cϒ , the 

proof is done.  

In addition, C = Pϒ  is full column-ranked due to that ϒ  is nonsingular and P  is full 

column-ranked. 

Define 1 2
H

m⎡ ⎤= ⋅ ⋅ ⋅⎣ ⎦D d d d , that is kd  is k-th column vector of matrix HD . Using 

H=A C C , the sum MSE becomes 

( )
1

2

1

                 =

        

m
H H

MMSE k k
k

m

k
k

tr
=

=

= ∑

∑

Φ d C Cd

Cd ,                                            (2.16) 
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where , 1, ,k k m= ⋅⋅ ⋅Cd  are lattice points of the lattice 
1

= ,
m

k k k
k

x x
=

⎧ ⎫Λ ∈ Ζ⎨ ⎬
⎩ ⎭

∑C v  v = c , generated 

by the generator matrix [ ]1 m⋅ ⋅ ⋅C c c� . Furthermore, , 1, ,k k m= ⋅⋅ ⋅Cd  are linearly independent 

since HD  is unimodular and C  is full column-ranked, and therefore { }
1

m

k k =
Cd  is a basis of the 

lattice ΛC . Consequently, the optimization problem in Equation (2.12) becomes to find the basis 

of ΛC  that has the smallest sum squared norm 
2

1

m

k
k =
∑ Cd , which is a well-known lattice 

reduction problem. Let { }opt, 1

m

k k =
c  be a basis of ΛC that has the smallest sum squared norm, and 

opt opt,1 opt,, , m⎡ ⎤= ⎣ ⎦C c c" . Since optC  and C  generate the same lattice, opt opt=C C T  for a 

unimodular matrix optT . In addition, opt opt
H=C CD , thus ( )1

opt opt

H−=D T . Given optD , the 

desirable factorization is i opt opt=H H D . 

The LLL lattice-reduction algorithm will be adopted here as a practical way to search for 

optD . In this case, if iC  denotes the reduced basis by the LLL algorithm, that is i  
LLL
=C CT , 

where T  is a unimodular matrix, then the approximate solution is obtained as l ( )1 H−=D T  and 

il=H HD . From Appendix B, it is shown that lD  is the same for any decomposition H=A C C , 

and thus the detection performance is independent of what particular decomposition result C  is 

used. The complete algorithm is summarized in Table 2.2. 

Notice that the matrix A  can also be rewritten as 

 ( ) ( ) ( )
12 1 1 12 2 2

2
H H H HH Hw

w m w w
x

σσ σ σ
σ

−
− − −⎛ ⎞

= + = = =⎜ ⎟
⎝ ⎠

A H H I H H H H H H H H E E , 

(2.17) 
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Table 2.2: The Proposed Type-I Algorithm 

 

2 2

12
2

2

Input: ,  ,  
Output: ,a unimodular matrix.

1: Compute .

2: Perform the decomposition (fo

x w

H w
w m

x

H

σ σ

σσ
σ

−
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= +⎜ ⎟
⎝ ⎠

=

H
D

A H H I

A C C 

──────────────────────────────────────

──────────────────────────────────────

i

( )1

r example by Cholesky decomposition).

3: Perform the LLL algorithm to obtain .

4: Identify .

LLL

H−

=

=

 

C CT

D T

──────────────────────────────────────

 

 

where ( ) 1H
wσ

−
=E H H H  and H  is extended channel matrix in [30], [35]. In fact, E  is the 

dual matrix of H  scaled by wσ , i.e., ( )( )1 #
H

H H
w wσ σ

−
= =E H H H H . Therefore, applying the 

LLL algorithm, we have i  
LLL
=E ET  and i#   

LLL
=H HT . In other words, the scheme i#   

LLL
=H HT  

used in [35] is a member of the proposed Type-I algorithms. But, since #H  has the dimension of 

( )n m m+ × , the complexity of applying LLL algorithm on #H  is more complex than the one on 

C , which has the dimension m m× . 

 

2.3.3 Type-II Algorithms (greedy-search based) 

A greedy-search algorithm is proposed here as an alternative to Type-I to obtain an 

approximate solution of Equation (2.12). As to be shown later, this algorithm performs better than 

Type-I and has a fixed computational complexity which is considered to be advantageous in 

hardware implementation.  
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Using 1 2
H

m⎡ ⎤= ⋅ ⋅ ⋅⎣ ⎦D d d d , the sum MSE can be rewritten as 

( )
1 1

m m
H

MMSE k k k
k k

tr mse
= =

= =∑ ∑Φ d Ad ,                                      (2.18) 

where H
k k kmse d Ad� . In this algorithm, firstly we observe that H

k k kmse d Ad�  depending only 

on kd , 1,...,k m= . Therefore, the updating of the matrix HD  can be done one column at a time 

to minimize kmse , from the first to the last column. This iteration can be repeated again and 

again until no improvement is possible, starting from H
mD = I . 

Without loss of generality, consider that the kth-column of HD  is to be updated. A new 

column vector ,newkd  is proposed as 

,new 1 1 1 1 1 1k k k k k k m mα α α α− − + += + + + + + +d d d d d d" " ,                      (2.19) 

where { }m m k
α

≠
 are parameters to be optimized to lower kmse . It is shown in Appendix C that 

new 1 1 ,new 1,..., , , ,...,H
k k k m− +⎡ ⎤= ⎣ ⎦D d d d d d is unimodular provided that HD is unimodular, and { }m m k

α
≠

 

are complex integers. With this new ,newkd , ,newkmse  is given by  

,new ,new ,new

1

1 2

2

  

           1   1

H
k k k

H H

mse =

⎡ ⎤
⎢ ⎥⎡ ⎤= ⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

d A d

α
α α R

α

 ,                                           (2.20) 

where 1 1 1

T

kα α −⎡ ⎤= ⋅⋅⋅⎣ ⎦α ,  2 1

T

k mα α+⎡ ⎤= ⋅⋅⋅⎣ ⎦α , and H=R DAD . Define 
1

1

H

H
k−

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

1

d
D

d
#  and 

1
H
k

H
m

+⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

2

d
D

d
# . The matrix R  can be partitioned as    
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1 1 1 1 2 1,1 1,2 1,3

1 2 2,1 2,2 2,3

2 1 2 2 2 3,1 3,2 3,3

H H
k

H H H H H
k k k k

H H
k

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

D AD D Ad D AD R R R
R d AD d Ad d AD R R R

D AD D Ad D AD R R R
,                    (2.21) 

And Equation (2.20) becomes 

1,1 1,2 1,3 1

, 1 2 2,1 2,2 2,3

3,1 3,2 3,3 2

1,21,1 1,3 1 1
1 2 1 2 2,1 2,3 2,2

3,1 3,3 3,22 2

2,2

 1 1

      

   

H H
k new

H H H H

H
k k

mse
⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥⎡ ⎤= ⎣ ⎦ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤⎡ ⎤⎡ ⎤
⎡ ⎤ ⎡ ⎤= + + +⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦

⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦
= +

R R R α
α α R R R

R R R α

RR R α α
α α α α R R R

R R Rα α

α S α α 2,1 1,2 1,1
H
k k+ +S S α S

,  

(2.22) 

where 1

2
k

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

α
α

α
, 1,1 1,3

2,2
3,1 3,3

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

R R
S

R R
, 1,2

2,1
3,2

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

R
S

R
, [ ]1,2 2,1 2,3 =S R R  and 1,1 2,2=S R . 

By differentiating ,k newmse  with respect to kα  and setting the result equal to zero, the 

optimal vector of kα , ,optkα , is obtained by  

2,2 ,opt 2,1k = −S α S .                                                    (2.23) 

Furthermore, define 1

2
k

⎡ ⎤
⎢ ⎥
⎣ ⎦

D
D

D
�  be the matrix obtained by deleting the k-th row of the matrix D . 

Then 

1,1 1,3
2,2

3,1 3,3

H
k k

⎡ ⎤
= =⎢ ⎥

⎣ ⎦

R R
S D AD

R R
.                                          (2.24) 

Since kD  has full row-rank (because D  has full row-rank), from Appendix D, 2,2S  is positive 

definite. Thus,   

1,opt 1
,opt 2,2 2,1

2,opt
k

−⎡ ⎤
= = −⎢ ⎥

⎣ ⎦

α
α S S

α
 ,                                            (2.25) 

and  
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1,opt

,new

2,opt

1H
k

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

α
d D

α
.                                                  (2.26) 

Generally, the elements of , optkα  are not complex integers and thus need to be rounded to 

ones in order to keep H
newD  a unimodular matrix (see Appendix C). Denote a bopt,k j

α  be the 

rounding operation on the jth element of the vector opt,kα , where more than one rounded values 

can be retained in order to improve performance,  ψ
k j

⎡ ⎤⎣ ⎦α
 be the set of retained complex integers 

in the rounding a bopt,k j
α , and [ ]{ }1 1 1 ,  ψ

k k j

T
k k k m jα α α α α− + ⎡ ⎤⎣ ⎦

Ψ = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ∈
α

=α α . Then, the final 

α  to be used in updating can be obtained by 

1
upd

1 2Ψ

2

arg min  1   1
k k

H H

∈

⎡ ⎤
⎢ ⎥⎡ ⎤= ⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦

αα

α
α α α R

α
                                     (2.27) 

In our experience with extensive simulations, ψ 2
k j

⎡ ⎤⎣ ⎦
>

α
 provides very little improvement, 

where ψ
k j

⎡ ⎤⎣ ⎦α
 is the cardinality of the set ψ

k j
⎡ ⎤⎣ ⎦α

. Therefore, ψ 2,   
k j

j⎡ ⎤⎣ ⎦
= ∀

α
 will be used in all 

discussions regarding Type-II algorithms. Consider the example of 4m n= = . If  

[ ],opt 0.3 0.6 ,  0.4 0.1 ,  0.7 0.9 T
k i i i= − + − +α , where 1i = − , then { }

1

ψ ,  0
k

i
⎡ ⎤⎣ ⎦

=
α

, and 

{ }
2

ψ 0,  1
k⎡ ⎤⎣ ⎦

=
α

, and { }
3

ψ 1 ,  
k

i i
⎡ ⎤⎣ ⎦

= +
α

, and it leads to  

0 0 0 0
0 , 0 , 1 , 1 , 0 , 0 , 1 , 1

1 1 1 1
k

i i i i

i i i i i i i i

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥Ψ = ⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎪ ⎪+ + + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

α .                     (2.28) 

Finally, the new update of kd  is given by ( ) ( )Hupd upd
,upd 1 2 1 

HHH
k

⎡ ⎤= ⎢ ⎥⎣ ⎦
d D α α , and 

,upd ,upd ,upd  H
k k kmse = d A d , if ,updk kmse mse< . Otherwise, no update is performed and kd  remains 
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no change. The complete algorithm is summarized in Table 2.3, where the algorithm is terminated 

if the maximum number of iteration IN  is reached. It is worthy to note that since at each step of 

updating ,updk kmse mse≤  and the minimal kmse  is bounded below, the algorithm converges, 

although it may not converge to the minimal kmse . 

 

2.3.4 Complexity Analysis for Channel Factorization 

Algorithms 

The complexity of different channel factorization algorithms, including LLL, SA, and the 

proposed algorithms, is analyzed in this sub-section based on the parameters of 

,  ,  , , ψ ,
k j

Im n N κ
⎡ ⎤⎣ ⎦

=
α

 and Ω . Since the detailed complexity calculation is quite tedious, only 

the final results are summarized here. Table 2.4 summaries the complexity analysis along with 

that of other algorithms considered in this work. In this analysis, the complexity of an algorithm 

is divided into two parts: the initialization and main-body parts, where the complexity of 

Cholesky decomposition, Gram Schmidt Orthogonalization (GSO) and matrix inversion are those 

given in [69]. Note that for Type-I algorithm, because the QR decomposition [64] for the upper 

triangular matrix C  is readily available with m=Q I , and =R C , the complexity of GSO 

operation is reduced significantly. Table 2.5 gives the complexity for obtaining ,updkd  in Type-II 

algorithms which is used to calculate the main-body complexity of the Type-II algorithm. Since 

the updating needs to be done m times in each iteration, the complexity of the main-body part is 

Im N⋅  times of that given in Table 2.5. The complexity of the MMSE detector is also calculated 

where the calculation is divided into three parts as given in Table 2.6. 
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Table 2.3: The Proposed Type-II Algorithm 

 

2 2Input: ,  ,  ,   and , the maximum number of iterations.

Output: ,  a unimodular matrix.

1:   0   
2:   whil
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x w m I
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i

σ σ =

=
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──────────────────────────────────────
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1 upd

,opt 2,2 2,1 1 2Ψ

2
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,upd 1 2 ,upd ,upd

e  do 
3:        for  1 to  do  

4:              , and  arg min  1   1

5:              1 ,  and    

k k
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H H
k

HHH H
k k k

i N
k m

mse

−

∈

<

=

⎡ ⎤
⎢ ⎥⎡ ⎤= − = ⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤= =⎢ ⎥⎣ ⎦

αα

α
α S S α α α R

α

d D α α d A d

( )
,upd

,upd

,upd ,upd

                 

6:             if , then

7:                  ,   

8:             end if
9:        end for
10:      if (no update for all  1 to  ), then
11:       

k

k k

k k k k

mse mse

mse mse

k m

<

= =

=

d d

    
12:      else
13:           1
14:      end if
15: end while
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=
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──────────────────────────────────────

 

 

 

 

 

 



 28

Table 2.4: Computational complexity of different channel factorization algorithms. 

 
Computational Complexity 

Algorithms 
Initialization Main-body of the Algorithm 

Operations 
Number of real 
multiplications 

Number of real 
additions 

Operations
Number of real 
multiplications 

Number of real 
additions LLL- 

extended GSO for 
H  

2 3

2

4 4
2 6
n m m

m m
⋅ +

+ +
 

2 3

2

4 4
3

n m m
m m

⋅ +

+ +
 LLL variable variable 

SA- 
extended 

Calculation 

of HH H  

and 

( ) 1H −
H H  

2

3 2

2 2
2 2

n m n m
m m

⋅ + ⋅

+
 

2

3 2

2 2
2 2

n m n m
m m

⋅ + ⋅

+
SA variable variable 

Calculation 

of #H  

2

3 2

6 2
2 2
n m n m
m m

⋅ + ⋅

+
 

2

3 2

6 2
2 2
n m n m
m m

⋅ + ⋅

+
LLL variable variable 

DLLL- 
extended GSO for 

#H  

2 3

2

4 4
2 6
n m m

m m
⋅ +

+ +
 

2 3

2

4 4
3

n m m
m m

⋅ +

+ +
 

Calculation 

of ( )1 H−T
3 22 2m m+  3 22 2m m+  

Calculation 
of A  

2

3 2

2 2
2 2

n m n m
m m

⋅ + ⋅

+
 

2

3 2

2 2
2 2

n m n m
m m

⋅ + ⋅

+

Calculation 
of C  

32
3
m  

32
3
m  

LLL variable variable 

Type-I 
Algorithms 

GSO for 
C  

22 6m m+  2 3m m+  
Calculation 

of ( )1 H−T
3 22 2m m+  3 22 2m m+  

Type-II 
Algorithms 

Calculation 
of A  

2

3 2

2 2
2 2

n m n m
m m

⋅ + ⋅

+
 

2

3 2

2 2
2 2

n m n m
m m

⋅ + ⋅

+

IN  and 

ψ
k j

κ
⎡ ⎤⎣ ⎦

=
α

4 3

2

2 6
3 6 14

I m mN
m m

⎛ ⎞+ +
⎜ ⎟

−⎝ ⎠
 

( )
4 3 2

1

2 18 6

3 14 18 1
I

m

m m mN
m m κ −

⎛ ⎞+ − −
⎜ ⎟
⎜ ⎟+ ⋅ −⎝ ⎠
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2.3.5 Element-Wise Candidate-List (EWCL) Detection  

Here, a simple EWCL detection is proposed that along with the proposed channel 

factorization can be used to approach closely to the ML performance. Specifically, the K  most 

closest complex integers to [ ]MMSE k
G y , denoted as the set kΨ , are retained as the candidate 

symbols for detecting ,  1, ,kz k m= ⋅⋅⋅ , where 
12

2
H Hw

MMSE m
x

σ
σ

−
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

G D H H I H , that is, 

MMSE-LD is employed as the low-complexity detector. Let Ψz  be the corresponding set of 

candidate signal vectors in the transform domain; that is { }1 2  ,  
T

m k kz z z z⎡ ⎤Ψ = ⋅⋅⋅ ∈ Ψ⎣ ⎦z z =� � � � � . 

Then, the decision for the EWCL detection is given by 

� 2arg  min  
∈

= −
xx Ψ

x y Hx ,                                              (2.29) 

where � �{ }2-1Ψ  | arg  min  and Ψ
m∈Ω

= − ∈x z
x

x x = D z x z� �, . As to be shown in the next section, 

2K =  is enough to approach closely to the ML performance. 

 

Table 2.5: Computational complexity for obtaining ,updkd  in Type-II algorithms with ψ
k j

κ
⎡ ⎤⎣ ⎦

=
α

 

 

Algorithm Computational complexity of ,updkd  

Operations 
Number of real 

multiplications 

Number of real 

additions 

Solve linear equation set for 

,optkα  in (21) 
( )32 1

3
m −

 
( )32 1

3
m −

 

Obtain updα  in (25) 24 4m −  ( )2 14 4 6 1mm κ −− + ⋅ −

Type-II 

Algorithms 

Obtain integer vector ,updkd 0 24 4m m−  
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Table 2.6: Computational complexity of MIMO detector 

 

Algorithm Computational complexity of MIMO detector 

Operations 
Number of real 

multiplications 

Number of real 

additions 

Calculation of MMSEG   

in (7) and 1−D  

2 3 28 2 2n m m m⋅ + + 2 3 28 2 2n m m m⋅ + +  

Calculation of MMSEG y   

and 1 :−D z�  

24 4n m m⋅ +  24 4n m m⋅ +  

MIMO 

detector in 

Figure 2.2 

Obtain �x  by (6) 4m ⋅ Ω  4m ⋅ Ω  

 

2.4 Simulation Results 

This section provides simulations to compare the proposed algorithms and those in the 

literature in the aspects of performance and complexity for the CFAD detectors. In the 

simulations, the data vectors x  are transmitted on a frame-by-frame basis, with 200 data vectors 

per frame. Total of 410  frames are simulated. Signal constellation is fixed to 16QAM for easy 

comparisons between cases with different antenna numbers, although similar conclusions can be 

drawn for other constellation sizes according to our results not shown here. The channel is block 

faded; that is, H  remains unchanged over a frame and changes independently from frame to 

frame. Signal to noise power ratio (SNR) is defined as 2 2
x wm σ σ⋅ . A total of five factorization 

algorithms are considered, including the LLL (LLL-extended [30]) and Syesen’s algorithms 
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(SA-extended [35], [39]) working on H , the LLL algorithm working on the dual matrix of H  

(DLLL-extended [34][35][34,35]), and the proposed Type-I and Type-II algorithms. It has been 

shown in [35] that reduction working on H  outperforms that on H . Therefore, only those 

algorithms working on H  are compared here. The complex version of the LLL algorithm in 

Table 2.1 (with 0.999δ = ) is used in all channel factorization methods that use LLL, where a bi  

stands for the operation of rounding its element to the nearest complex integer. The Cholesky 

decomposition is used to obtain HA = C C  in Type-I algorithm, and ψ 2
k j

κ
⎡ ⎤⎣ ⎦

= =
α

 in Type-II 

algorithm.  

The bit-error-rate (BER) for CFAD-MMSE-LD in uncorrelated MIMO channels ( 0.0ρ = ) 

are compared first. Figure 2.4 shows the effect of iteration number IN  on the BER performance 

of Type-II Algorithm for the case of 6m n= = . As can be seen, there is almost no performance 

improvement with 3IN > . Consequently, we use 3IN =  for the subsequent comparisons. 

Figure 2.5, Figure 2.6, Figure 2.7, and Figure 2.8 show the comparisons between different 

channel factorizations for the cases of 2m n= = , 4m n= = , 6m n= = , and 8m n= =  

respectively. In these figures, the performance of conventional (non-factorized) MMSE detector 

is also provided for reference. With smaller numbers of antennas, e.g., 2,  4m n= = , all the 

considered channel factorization algorithms perform similarly especially for 2m n= = ; the 

CFAD, however, provides significant improvement over the conventional MMSE detector. As 

expected, DLLL-extended and Type-I have the same performance because DLLL-extended is a 

member of the Type-I algorithms, as discussed in the previous Section. SA-extended performs 

closely to Type-I and outperforms LLL-extended by about 1.5-2.5 dB at 4BER 10−=  for 

6,  8m n= = . Type-II has the best performance with a 0.5 dB gain margin over Type-I 

(DLLL-extended) and SA-extended. In Figure 2.6, Figure 2.7, and Figure 2.8, the performance of 

the best-performed pre-coder for un-coded1 system proposed in [72] is also given for comparison 

purpose. Clearly, the pre-coder’s performance is inferior to that of the proposed CFAD methods. 
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In [71], [72], the performance improvement with pre-coding was shown to be much higher for the 

cases of m n> . 

The comparisons over the correlated MIMO channels ( 0.6ρ = ) are shown in Figure 2.9 for 

the case of 8m n= = . As shown in the figure, the channel correlation degrades the performance 

of the conventional MMSE detector very dramatically. In addition, Type-II outperforms Type-I 

(DLLL-extended) and SA-extended by about 0.7 dB. In Figure 2.10, we compare [ ]maxE mseH  

between different algorithms, where { }max max kk
mse mse=  is the worst square error among all 

the receive branches, and [ ]E ⋅H  denotes the average operation over H . maxmse  dominates the  

BER performance. As is shown, Type-II shows its superiority over others. 

Figure 2.11 is an example of computational complexity comparison between different channel 

factorizations, where the empirical CDF (cumulative density function) of the number of real 

multiplications is shown for 6,  SNR 28 dB, =0.0m n ρ= = = . Since the hardware 

implementation cost of a multiplication is much higher than that of an addition [70], only 

multiplications is taken into consideration here for complexity comparison. Noticeably, the 

LLL-based methods (LLL-extended, DLLL-extended and Type-I) and SA-extended all have a 

variable complexity; Type-I has the less complexity, then, LLL-extended, DLLL-extended and 

SA-extended. The same order of complexity is observed for other cases not shown here. In this 

specific example, Type-II is more complex than LLL and SA-based algorithms for about 35% of 

the channel realizations. Nevertheless, Type-II has a fixed computational complexity which is 

considered to be advantageous in hardware implementation. 

 

1.  Note that the “code” of “pre-coder” and “pre-coding” means spatial beam-forming at the transmitter. On the other hand, the “code” of 

“un-coded system” means forward error correction coding. 
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In this following, the complexity of MIMO receiver (channel factorization plus MMSE 

detection) is compared specifically when Type-I, SA-extended and DLLL-extended are employed 

as the factorization algorithm. Recall that these algorithms have a similar BER performance as 

shown in Figure 2.5-Figure 2.9. The comparison is made from two aspects: hardware complexity 

and computational complexity per data vector. For data vectors where pilots are located, both 

channel factorization and MMSE detection are required to be performed, and, therefore, for a 

fixed hardware clock rate, extra circuitry is needed for the computation of the factorization 

algorithm, and that increases hardware complexity. Table 2.7 shows the hardware complexity 

ratio of channel factorization to overall MIMO receiver for the considered factorization 

algorithms. As is seen, the ratio ranges from 44% to 74%. Therefore, how to reduce the 

complexity of channel factorization algorithm is an important issue. In addition, from Table 2.7, it 

can be shown that the saving of hardware complexity of overall MIMO receiver offered by 

Type-I ranges from 21% to 43 %. For example, the saving for SA-extended for the case of 

{ }P Q q 0.5≤ =  is (5804 2904) (2772 2904) 34%
5804 2904

+ − +
=

+
.   

The computational complexity per data vector, evaluated by the number of real 

multiplications per data vector cf
MIMO

N
N

p
+ , is also employed for comparisons, where cfN  and  

MIMON  are the number of real multiplication for the channel factorization algorithm and the 

MMSE MIMO detector, respectively, and p  is the number of data vectors in a frame. Figure 

2.12 is such a comparison for { }P Q q 0.9≤ = . Similar results are observed for 10 and 50 

percentiles although they are not shown here for brevity. As is shown, the complexity saving by 

Type-I is quite significant for small p. For example, for 6p =  the savings are 

4307 3479 19%
4307

−
=  and 3887 3479 11%

3887
−

=  for SA-extended, and DLLL-extended 

respectively. As expected, the complexity saving becomes smaller for larger p. 

In practical mobile cellular systems, channel estimation is usually done for every 0.5 to 1 ms 
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in order to cover mobility up to 350 km/hour [75]-[76]. For example, in the 3GPP-LTE 

specification, there are 7 (OFDM) symbols in a slot (0.5 ms) where time-frequency multiplexed 

pilots are used for the cell-specific channel estimation [75]. Also, in the IEEE 802.16m 

specification, there are 5 to 7 (OFDM) symbols in a sub-frame (around 1ms) where 

time-frequency multiplexed pilots are used for channel estimation. In this type of systems, Type-I 

algorithm is particular useful. In wireless LAN systems, on the other hand, the so-called 

preamble-based training is employed where pilot signals are placed at the beginning of a data 

packet. In this case, if the packet size p is large, says over 30, the saving provided by Type-I 

becomes quite small. 

  
 

Table 2.7: Hardware complexity ratio of channel factorization algorithm to overall MIMO 

receiver, i.e., cf

cf MIMO

N
N N+

, for the case of 6,  16QAM, SNR 28 dB, =0.0m n ρ= = =  

 

 
Comparison 

points 
SA-extended DLLL-extended Type-I 

{ }P Q q 0.1≤ = 3686 56%
3686 2904

=
+

4735 62%
4735 2904

=
+

2287 44%
2287 2904

=
+

{ }P Q q 0.5≤ = 5804 67%
5804 2904

=
+

5220 64%
5220 2904

=
+

2772 49%
2772 2904

=
+

{ }P Q q 0.9≤ = 8415 74%
8415 2904

=
+

5897 67%
5897 2904

=
+

3449 54%
3449 2904

=
+
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Figure 2.4: The effect of IN  of Type-II algorithm on BER for the case of 

6, 6,  16QAM, =0.0m n ρ= =  
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Figure 2.5: BER comparisons of different channel factorizations for CFAD-MMSE in the case of 

2, 2,  16QAM, =0.0m n ρ= = . 
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Figure 2.6: BER comparisons of different channel factorizations for CFAD-MMSE in the case of 

4, 4,  16QAM, =0.0m n ρ= = . 
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Figure 2.7: BER comparisons of different channel factorizations for CFAD-MMSE in the case of 

6, 6,  16QAM, =0.0m n ρ= = . 
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Figure 2.8: BER comparisons of different channel factorizations for CFAD-MMSE in the case of 

8, 8,  16QAM, =0.0m n ρ= = . 
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Figure 2.9: BER comparisons of different channel factorizations for CFAD-MMSE in the case of 

8, 8,  16QAM, =0.6m n ρ= = . 
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Figure 2.10: [ ]maxE mseH  comparisons of different channel factorizations for CFAD-MMSE in 

the case of 8, 8,  16QAM, =0.6m n ρ= = . 
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Figure 2.11: Complexity comparisons of different channel factorization algorithms. 
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Figure 2.12: Number of real multiplications per data vector for different channel factorization 

algorithms with 6,  16QAM, SNR 28 dB, =0.0m n ρ= = =  and { }P Q q 0.9≤ = . 

 

 

Next, the bit-error-rate (BER) for CFAD-MMSE-SIC and CFAD-MMSE-EWCL in 

uncorrelated MIMO channels ( 0.0ρ = ) are compared. As shown in Figure 2.13, the performance 

improvement is diminishing when the SIC detector is used instead. This might be attributed to the 

fact that in the nonlinear SIC detector the noise enhancement is not as significant as in the linear 

MMSE detector, and the performance improvement provided by the traditional LRAD is less 

prominent. In Figure 2.14, we show the performance of CFAD-MMSE-EWCL detectors for the 

case of 6, 6,16QAMm n= = . Again, the proposed methods outperform conventional LLL and 

SA algorithms. Furthermore, as can be seen, using EWCL along with the proposed MMSE 
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channel factorization can approach very closely to the ML performance (within a fractional dB). 
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Figure 2.13: Comparison of the BER performance of different channel factorization methods 
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Figure 2.14: Comparison of bit-error-rate performance for different factorization algorithms with 

6,  16QAMm n= = . 
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2.5 Conclusions 

A new design on channel factorization is proposed for the channel-factorization aided detectors, 

where effective factorization algorithms are sought to minimize the sum mean-squared-error of 

the MMSE detector. Two new types of factorization algorithms are devised; the first type is LLL 

based, where the best-performed factorization algorithm found in the literature, i.e., the 

DLLL-extended algorithm, is a member of this type but with a higher complexity. The second 

type is greedy-search based which can provide around 0.5-1.0 dB gain over the first type and has 

a fixed computational complexity which is advantageous in hardware implementation. The 

computational complexity of the proposed methods are analyzed and compared to the existing 

methods. In addition, combining proposed MMSE channel factorization algorithm with the 

element-wise, candidate-list (EWCL) detector can approach to within a fractional dB of the ML 

performance. 
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Chapter 3  
MIMO-OFDM Systems with In-phase/ 
Quadrature-phase Imbalances 
 

In this Chapter, receiver designs are investigated for the MIMO-OFDM systems with the 

presence of I-Q imbalances. I-Q imbalance is one of the key radio impairments in the 

direct-conversion architecture that will degrade significantly the communication performance if 

left uncompensated. Both frequency-dependent and independent I/Q imbalances at the transmitter 

and receiver are considered.  

 

3.1 I/Q Imbalances Model for MIMO-OFDM Systems 

Figure 3.1 shows the model of the direct-conversion radio transmitter and receiver with the 

presence of I-Q imbalances. The equivalent low-pass signal after transmit filter imbalance 

(frequency-dependent imbalance), ( ) ( ) ( )I Qv t v t jv t= + , is expressed as  

( ) ( ) ( ) ( ) ( ) ( ) ( )*

2 2
TI TQ TI TQh t h t h t h t

v t x t x t
+ −⎛ ⎞ ⎛ ⎞

= ⊗ + ⊗⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                   (3.1) 

where ( ) ( ) ( )I Qx t x t jx t= +  is the baseband signal for transmission. In addition, the equivalent 

low-pass signal after frequency–independent I-Q imbalance, ( )s t , is expressed as  
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Figure 3.1: I/Q imbalances model at transmitter and receiver sides 

 

( ) ( )( ) ( )( )*1 11 1
2 2

T Tj j
T Ts t v t g e v t g eθ θ= + + −                               (3.2) 

where Tg  and Tθ  are the gain and phase imbalances due to imperfection of the local oscillator. 

Using Equations (3.1) and (3.2), we have 

( ) ( ) ( ) ( ) ( )*
T Ts t x t h t x t h t+ −= ⊗ + ⊗                                     (3.3) 

where ( ) ( ) ( )1
2

Tj
T TI T TQh t h t g e h tθ

+ ⎡ ⎤= +⎣ ⎦ , and ( ) ( ) ( )1
2

Tj
T TI T TQh t h t g e h tθ

− ⎡ ⎤= −⎣ ⎦ . For 

discrete-time signal model, Equation (3.3) becomes 

*[ ] [ ] [ ] [ ] [ ]T Ts n x n h n x n h n+ −= ⊗ + ⊗                                       (3.4) 

where ( )1[ ] [ ] [ ]
2

Tj
T TI T TQh n h n g e h nθ

+ = + , and ( )1[ ] [ ] [ ]
2

Tj
T TI T TQh n h n g e h nθ

− = − . Noticeably, for 

the case of no I-Q imbalances, i.e., [ ] [ ]TI TQh n h n= , 1Tg = , and 0Tθ = , Equation (3.4) 

degenerate to the ideal case 
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[ ] [ ] [ ]TIs n x n h n= ⊗                                                    (3.5) 

Similarly, with the presence of receiver I-Q imbalance, the demodulated baseband signal, 

[ ]y n , is expressed as 

( ) ( )*[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]c R c Ry n s n h n w n h n s n h n w n h n+ −= ⊗ + ⊗ + ⊗ + ⊗             (3.6) 

where [ ]ch n  and [ ]w n  are baseband channel response and received noise, respectively, and 

( )1[ ] [ ] [ ]
2

Rj
R RI RQ Rh n h n h n g e θ−

+ +�  and ( )1[ ] [ ] [ ]
2

Rj
R RI RQ Rh n h n h n g e θ

− −�  result from I/Q 

imbalances at receiver side. Rg  and Rθ  are the receiver gain and phase imbalances. 

Substitute Equation (3.4) into (3.6), the received signal, under the effects of transmitter and 

receiver I-Q imbalances, is  

( )
( )

*

**

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

     [ ] [ ] [ ] [ ] [ ] [ ] [ ]

T T c R

T T c R

y n x n h n x n h n h n w n h n

x n h n x n h n h n w n h n

+ − +

+ − −

⎡ ⎤= ⊗ + ⊗ ⊗ + ⊗⎣ ⎦

⎡ ⎤+ ⊗ + ⊗ ⊗ + ⊗⎣ ⎦

               (3.7) 

Further, it can be rewritten as  

( )
( )

* *

* * *

*

[ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ]
          

[ ] [ ]

T c R T c R

T c R T c R

R

R

x n h n h n h n h n h n h n
y n

x n h n h n h n h n h n h n

w n h n

w n h n

+ + − −

− + + −

+

−

⎧ ⎫⊗ ⊗ ⊗ + ⊗ ⊗ +⎪ ⎪= ⎨ ⎬
⊗ ⊗ ⊗ + ⊗ ⊗⎪ ⎪⎩ ⎭

⊗ +⎧ ⎫
+ ⎨ ⎬

⊗⎩ ⎭

            (3.8) 

Equation (3.8) can be easily generalized to MIMO systems with m transmit and n receive 

antennas. In this case, for example, the received signal at i-th antenna, [ ]iy n , is expressed as 

( )
( )

* *
, , , , , ,

* * *
1 , , , , , ,

,

*
,

[ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ]
          ,  f

[ ] [ ]

m j T j c ij R i T j c ij R i

i
j j T j c ij R i T j c ij R i

i R i

i R i

x n h n h n h n h n h n h n
y n

x n h n h n h n h n h n h n

w n h n

w n h n

+ + − −

= − + + −

+

−

⎧ ⎫⊗ ⊗ ⊗ + ⊗ ⊗ +⎪ ⎪= ⎨ ⎬
⊗ ⊗ ⊗ + ⊗ ⊗⎪ ⎪⎩ ⎭

⊗ +⎧ ⎫⎪ ⎪+ ⎨ ⎬
⊗⎪ ⎪⎩ ⎭

∑

or 1,2,...,                                           i n=

   (3.9) 

Consider the MIMO-OFDM systems where the length of overall channel response is not 
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larger than that of cyclic-prefix (CP) of an OFDM symbol, i.e., the case with inter-symbol 

interference (ISI) and inter-carrier interference (ICI) free. After Fast-Fourier Transform (FFT), the 

signals at k-th sub-carrier of the i-th receive antenna , [ ]iY k , is  

( )
( )

l
* *

, , , , , ,

* * *
1 , , , , , ,

[ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ]

i

m j T j c ij R i T j c ij R i
i

j j T j c ij R i T j c ij R i

Y k

X k H k H k H k H k H k H k
W k

X k H k H k H k H k H k H k

+ + − −

= − + + −

=

⎧ ⎫+ − − +⎪ ⎪ +⎨ ⎬
− + − −⎪ ⎪⎩ ⎭

∑
     (3.10) 

where l [ ]{ } { } { }* *
, , , ,[ ] [ ] [ ] [ ]i i R i i R i R i i R i in nk

W k DFT w n h n w n h n DFT+ − + −= ⊗ + ⊗ = +H w H w  with  

,1 , 1,...,
T

i i i N Lw w + −= ⎡ ⎤⎣ ⎦w , and 

, , , ,2 , ,1

, , , ,2 , ,1
,

, , , ,2 , ,1 ( 1)

0

0

R

R

R R

R i L R i R i

R i L R i R i
R i

R i L R i R i N N L

h h h

h h h

h h h

± ± ±

± ± ±
±

± ± ± × + −

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

H

"
"
% % % %

"

,       (3.11) 

Where RL  is the length of receive filters [ ]Rh n± . It turns out that 

l l [ ]{ } ( )*
, ,i i R i i R i i

k
W W k + −= = +F H w H w , where F  is N-point DFT matrix.  

Similarly, the received signals at the mirror frequency, i.e., k− -th sub-carrier, from i-th 

receive antenna, [ ]iY k− , is  

( )
( )

l

*

* * * * *
*, , , , , ,

* * * *
1 , , , , , ,

[ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ]

i

m j T j c ij R i T j c ij R i
i

j j T j c ij R i T j c ij R i

Y k

X k H k H k H k H k H k H k
W k

X k H k H k H k H k H k H k

+ + − −

= − + + −

− =

⎧ ⎫− − − − + − +⎪ ⎪ + −⎨ ⎬
− − − + −⎪ ⎪⎩ ⎭

∑
   

(3.12) 

It is worth to notice from Equations (3.10) and (3.12) that the transmitted signal at the mirror 

sub-carrier, i.e., *[ ]jX k− , will interfere with the desired symbol [ ]jX k  due to I-Q imbalances. 

Accordingly, the received signals at mirror sub-carrier should be jointly processed to attain better 
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performance.  

Next, Equations (3.10) and (3.12) can be rewritten as 

( ) l

( ) l

11 * 12

1

** 21 * 22

1

[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]

m

ii j ij j ij
j

m

ii j ij j ij
j

Y k X k H k X k H k W k

Y k X k H k X k H k W k

=

=

= + − +

− = − + − − + −

∑

∑
                     (3.13) 

where  

11 * *
, , , , , ,[ ] [ ] [ ] [ ] [ ] [ ] [ ]ij T j c ij R i T j c ij R iH k H k H k H k H k H k H k+ + − −= + − − , 

12 * *
, , , , , ,[ ] [ ] [ ] [ ] [ ] [ ] [ ]ij T j c ij R i T j c ij R iH k H k H k H k H k H k H k− + + −= + − − , 

21 * * * *
, , , , , ,[ ] [ ] [ ] [ ] [ ] [ ] [ ]ij T j c ij R i T j c ij R iH k H k H k H k H k H k H k− + + −− = − − − + − , 

and 

22 * * * *
, , , , , ,[ ] [ ] [ ] [ ] [ ] [ ] [ ]ij T j c ij R i T j c ij R iH k H k H k H k H k H k H k+ + − −− = − − − + − . 

We collect the signals from all receive antennas to form the composite signal model for the 

MIMO-OFDM systems as follows. 

11 11 12 12
1 1,1 1, 1,1 1,

11 11 12 12
,1 , ,1 ,

* 21 21 22 22
1 1,1 1, 1,1 1,

* 21 21
,1 ,

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ]

m m

n n n m n n m

m m

n n n m n

Y k H k H k H k H k

Y k H k H k H k H k
Y k H k H k H k H k

Y k H k H k H

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

=⎢ ⎥− − − − −⎢ ⎥
⎢ ⎥
⎢ ⎥

− − −⎢ ⎥⎣ ⎦

" "
# # % # # % #

" "
" "

# # % # # % #
"

l

l

l

l

1
1

* *
1 1

*22 22
*,1 ,

[ ][ ]

[ ] [ ]
[ ] [ ]

[ ][ ] [ ]
[ ]

       

nm

mn m
n

W kX k

X k W k
X k W k

X kk H k
W k

⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

+⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

−− − ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎢ ⎥⎣ ⎦ −⎣ ⎦

##

# #
"

 

                                                    (3.14) 

Define *

[ ]
[ ]
k

k
⎡ ⎤

= ⎢ ⎥−⎣ ⎦

Y
Y

Y
, we have 
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m

m
m

11 12

*21 22 *

[ ][ ][ ] [ ]
=

[ ] [ ] [ ] [ ]

kkk k
k k k k

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥= + +⎢ ⎥ ⎢ ⎥− − − ⎢ ⎥⎣ ⎦ ⎣ ⎦ −⎣ ⎦

WxH H
Y Hx W

H H x W
 

where 

11 * *[ ] [ ] [ ] [ ] [ ] [ ] [ ]R c T R c Tk k k k k k k+ + − −= + − −H H H H H H H , 

12 * *[ ] [ ] [ ] [ ] [ ] [ ] [ ]R c T R c Tk k k k k k k+ − − += + − −H H H H H H H , 

21 * * * *[ ] [ ] [ ] [ ] [ ] [ ] [ ]R c T R c Tk k k k k k k+ − − +− = − − − + −H H H H H H H , 

and 

 22 * * * *[ ] [ ] [ ] [ ] [ ] [ ] [ ]R c T R c Tk k k k k k k+ + − −− = − − − + −H H H H H H H  

with  

,1,1 ,1,

, ,1 , ,

[ ] [ ]
[ ]

[ ] [ ]

c c m

c

c n c n m

H k H k
k

H k H k

⎡ ⎤± ±
⎢ ⎥± = ⎢ ⎥
⎢ ⎥± ±⎣ ⎦

H
"

# % #
"

,  

,1

,

[ ] 0
[ ]

0 [ ]

T

T

T m

H k
k

H k

±

±

±

±⎡ ⎤
⎢ ⎥± = ⎢ ⎥
⎢ ⎥±⎣ ⎦

H % ,  

and  

,1

,

[ ] 0
[ ]

0 [ ]

R

R

R n

H k
k

H k

±

±

±

±⎡ ⎤
⎢ ⎥± = ⎢ ⎥
⎢ ⎥±⎣ ⎦

H % . 

 

3.2 Receiver Structure Design for MIMO-OFDM 

Systems with I/Q Imbalances 

As is shown in Equation (3.14), the size of MIMO signal model is doubled due to jointly consider 
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the signals at the desired and mirror sub-carriers. Though performance improvement may be 

obtained with this type of joint detection, the complexity may increase tremendously. In this 

section, the different detection algorithms are examined based on the compromise between 

performance and complexity for MIMO-OFDM systems with I-Q imbalances.  

First type of receiver structure considered, denoted as Type-I, is the joint detection of the 

desired and mirror signals x  in Equation (3.14). Detection algorithms employed and compared 

in this Chapter are MMSE, MMSE-SIC, CF-I, and CF-II, which are low-complexity algorithms 

in practice. Note that CF-I and CF-II are the two newly proposed types of 

channel-factorization-aided detectors described in Chapter 2. Another type of receiver structure, 

denoted as Type-II, is composed of two-step processing, including the mirror interference 

cancellation (MIC) followed by a detection of mirror signals. In particular, firstly, multiply Y  

by MIC matrix G  to obtain 

i
11 12 *11 12

21 22 * 21 22 *

[ ] [ ] [ ]
[ ] [ ] [ ]

k k k
k k k

⎡ ⎤+ −⎡ ⎤ ⎡ ⎤
= = = ⎢ ⎥⎢ ⎥ ⎢ ⎥− + −⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Y G Y G YG G
Y GY

G G Y G Y G Y
                   (3.15) 

then, carry out the detections of [ ]kx  and [ ]k−x  by making use of 11 12 *[ ] [ ]k k+ −G Y G Y  and 

21 22 *[ ] [ ]k k+ −G Y G Y , respectively.  

In this Chapter, only the MIMO-OFDM systems with equal number of transmit and receive 

antenna is concerned.  The MIC matrix can be 1
ZF

−=G H , m

1

2

1H H
MMSE

sσ

−
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

W
G H HH C , or  

( )
( )

112 22

121 11

[ ] [ ] [ ][ ]
, with 

[ ] [ ] [ ] [ ]

n
BZF

n

k k kk
k k k k

−

−

⎧ − = −− −⎡ ⎤ ⎪= ⎨⎢ ⎥−⎣ ⎦ ⎪ = −⎩

Φ H HI Φ
G

Φ I Φ H H
 based on ZF, MMSE, and 

block-ZF (BZF) algorithms, respectively, where m
mm H

E ⎡ ⎤= ⎢ ⎥⎣ ⎦W
C WW . Also, it is easy to show that  
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m

m

m
m m

m

m
m m

* *

, , '2

', ', '

[ ] [ ]
[ ] [ ] [ ] [ ']

[ ] [ ']

     ,   ' 2                                                    

H T H T

k k k k
n

k k k k

k k
E k k E k k

k k

k N kσ

⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪ ⎪ ⎪⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥= − =⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎪ − ⎪ ⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎩ ⎭
⎡ ⎤

= = − +⎢ ⎥
⎣ ⎦

W

W W
C W W W W

W W

Ψ Ψ
Ψ Ψ

    (3.16) 

where k’ is the index of the mirror sub-carrier of the k-th sub-carrier, and  

1, ,

,

, ,

0

0

k k

k k

n k k

ϕ

ϕ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Ψ % ,  

and  

'

' '

'

1, ,

, ,

, ,

0

0

k k
H

k k k k

n k k

ϕ

ϕ

⎡ ⎤
⎢ ⎥

= =⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Ψ Ψ%  

 with  

2 2

, , , ,[ ,:] [ ,:]

, , ' , , , ,[ ,:] [ ',:] [ ,:] [ ',:]

,  1,...,

,  1,...,

i k k R i R ik k

T T

i k k R i R i R i R ik k k k

i n

i n

ϕ

ϕ

+ −

+ − − +

⎡ ⎤ ⎡ ⎤= + =⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

FH FH

FH FH FH FH
 .         (3.17) 

Note that if I/Q is matched at receiver side, i.e., , ( 1) ,  R i N N L i− × + −= ∀H 0 , then mW
C  is 

diagonalized.  

Note that for Type-II receiver with ZF-MIC, 

i
m m

m m

*11 1211 12

21 22 * ** 21 22

[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]

ZF ZFZF ZF
ZF ZF

ZF ZF
ZF ZF

k k k k k
k k k k k

⎡ ⎤+ + −⎡ ⎤ ⎡ ⎤ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ − + + −⎣ ⎦

Y x G W G WG G
Y G Y

G G Y x G W G W
 

where 
111 12 11 12

1
21 22 21 22

[ ] [ ]
[ ] [ ]

ZF ZF
ZF

ZF ZF

k k
k k

−
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            (3.18) 

In addition, it is easy to show that  
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[ ]
 

[ ]
n

BZF
n

k
k

− −⎡ ⎤
= ⎢ ⎥−⎣ ⎦

I Φ
G

Φ I
 

with 

( ) 112 22[ ] [ ] [ ]k k k
−

− = −Φ H H  

and  

( ) 121 11[ ] [ ] [ ]k k k
−

= −Φ H H                                              (3.19) 

Based on the relationships between ZFG  and BZFG  described in Equation (3.19), and the 

results shown in Appendix E, it is clear later that the identical BER performance can be attained 

for ZF-MIC and BZF-MIC, if the same detection algorithms are employed. In addition, the 

computational complexity of BZF-MIC is less complexity than that of ZF-MIC while comparing 

the expressions of ZFG  and BZFG  in Equations (3.18) and (3.19).   
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3.3 Case Study and Simulation Results  
In this section, different cases with TX and/or RX I/Q imbalances for MIMO-OFDM systems 

with equal number of transmit and receive antenna, i.e., m n= , are studied and compared by 

simulations. Table 3.1 gives the system and I/Q imbalance parameters which are typical values in 

real systems [73], [74]. In the sequel of this chapter, “TX_Imb = 1” stands for transmitter side I-Q 

imbalance with parameters { }, , 1
, ,  ,  

mTI TQ
T j T j j j j

g f fθ
=

 indicated in Table 3.1. By contrast, 

“TX_Imb = 0” means ideal transmitter, i.e., { }, , 1
1, 0 ,  

mo TI TQ
T j T j j j j

g f fθ
=

= = = . Similar meanings 

are also used for “RX_Imb”. The transmission is done on a frame-by-frame basis. For each case, 

different strategies may be adopted for receiver structure design to compromise between BER 

performance and computational complexity. Furthermore, discrete-time, wide-sense stationary 

uncorrelated scattering (WSSUS) Rayleigh channel model, described in Chapter 4, is used for 

each pair of transmit and receive antennas. The power delay profile of the multi-path channel 

follows the exponential decay model 

( )2 2
0 exp ,   1,2,....,l s rmslT T l Lσ σ= ⋅ − =  ,                                 (3.20) 

with ( )2
0 1 exp s rmsT Tσ = − − , 6 rms sL T T= , such that 2

0

1
L

l
l

σ
=

≈∑ , where rmsT  and sT  are root 

mean square delay spread and sampling period, respectively. The channel remains unchanged 

during a frame. Also, the multi-path channels between different pair of transmit and receive 

antennas is uncorrelated to each other.  
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Table 3.1: System Parameters  

 
System Parameter and Radio Impairments Parameter Value 

Channel Bandwidth 20 MHz 

FFT length ( )N , cyclic prefix length ( )gN  64N = , 16gN =  

OFDM-Symbol Time ( )OFDMT , Symbol Time 

( )sT  

4 sOFDMT μ= , 50 sT ns=  

Sub-carrier Spacing 1
sNT

⎛ ⎞⎜ ⎟
⎝ ⎠

 0.3125 MHz  

Number of Transmit and Receive Antenna 

( ),m n   

2m n= =  

Frequency independent I-Q Imbalance 

( ) ( ), , , ,, , ,T j T j R i R ig gθ θ  
( ),1 ,11.05, 4o

T Tg θ= = , ( ),2 ,20.94, 5o
T Tg θ= = −

( ),1 ,10.96, 5o
R Rg θ= = , ( ),2 ,20.94, 4o

R Rg θ= =  

[ ] [ ] [ ] [ ]{ }, , , ,, , ,TI j TQ j RI i RQ ih n h n h n h n : 2rd order 

FIR with cut-off frequency 

( ) ,  ,  ,  TI TQ RI RQ
j j i if f f f  MHz  

( )1 1=8 ,  8.3TI TQf f = , ( )2 2=8 ,  8.2TI TQf f =  

( )1 1=8.1 ,  8.4RI RQf f = , ( )2 2=8.1 ,  7.9RI RQf f =  

 

3.3.1 Complexity Analysis 

In this subsection, the averaged computational complexity for different receiver structures 

concerned in this chapter is presented and compared. Related complexities of matrix 

computations are the same as those used in Chapter 2 [69]. Firstly, Table 3.2 gives the averaged 

computational complexity of Type-I receivers, where ( ),2CF I II mNM −  and ( ),2CF I II mNA −  are 

number of real multiplication and addition needed for CF-I (II) algorithms with channel matrix 
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size 2m. These results can be found by referring to subsection 2.3.4. Also, p is frame size, that is, 

channel factorization algorithms need to be performed once per p OFDM symbols.  

 

Table 3.2: Averaged computational complexity of Type-I receivers 

 

Type-I receiver Number of real multiplications Number of real additions 

Joint-MMSE 3 264 32 8m m m+ + ⋅ Ω  3 264 32 8m m m+ + ⋅ Ω  

Joint-MMSESIC 

23 2 3
1

2 2
1

16 24 2

8 2(1 4 )

m

k

m

k

m m k

m m k
=

=

+ + +

Ω + +

∑
∑

 
23 2 3

1

2 2
1

16 24 2

8 2(1 4 )

m

k

m

k

m m k

m m k
=

=

+ + +

Ω + +

∑
∑

 

Joint-CF-I ,2 3 280 40 8CF I mNM
m m m

p
− + + + ⋅ Ω  ,2 3 280 40 8CF I mNA

m m m
p

− + + + ⋅ Ω

Joint-CF-II ,2 3 280 40 8CF II mNM
m m m

p
− + + + ⋅ Ω  ,2 3 280 40 8CF II mNA

m m m
p

− + + + ⋅ Ω

 

Next, the averaged computational complexities of Type-II receivers are evaluated. As 

mentioned in previous section and shown in Appendix E that the BER performance of BZF-MIC 

is identical to that of ZF-MIC while the same detection algorithms are employed. Also, BZF-MIC 

is less complex than ZF-MIC in MIC stage. Accordingly, the averaged computational complexity 

of ZF-MIC isn’t compared in this subsection. Table 3.3 provides the averaged computational 

complexity of Type-II receivers. As the expressions of MIC matrices of BZF and MMSE, i.e., 

BZFG  and MMSEG  shown in previous subsection, the computation of BZFG  is less complex than 

that of MMSEG , which leads to that the complexity of BZF-MIC is much smaller. In addition, the 

BER performance of BZF-MIC is nearly identical to that of MMSE-MIC if the same detection 
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algorithm is used, which will be shown in the following subsections. It is therefore concluded that 

BZF-MIC is preferable to employ for detection than MMSE-MIC, if Type-II receiver is 

considered.  

 

Table 3.3: Averaged computational complexity of Type-II receivers 

 

Type-II receiver Number of real multiplications Number of real additions 

BZF-MMSE 3 228 36 8m m m+ + ⋅ Ω  3 228 36 8m m m+ + ⋅ Ω  

BZF-MMSESIC 
3 2 3

1

2
1

16 32 4

8 4(1 2 )

m

k

m

k

m m k

m m k
=

=

+ + +

Ω + +

∑
∑

 
3 2 3

1

2
1

16 32 4

8 4(1 2 )

m

k

m

k

m m k

m m k
=

=

+ + +

Ω + +

∑
∑

 

BZF-CF-I , 3 22
32 40 8CF I mNM

m m m
p

−⋅
+ + + ⋅ Ω , 3 22

32 40 8CF I mNA
m m m

p
−⋅

+ + + ⋅ Ω  

BZF-CF-II , 3 22
32 40 8CF II mNM

m m m
p

−⋅
+ + + ⋅ Ω , 3 22

32 40 8CF II mNA
m m m

p
−⋅

+ + + ⋅ Ω

MMSE-MMSESIC 
3 2 3

1

2
1

68 44 4

8 4(1 2 )

m

k

m

k

m m k

m m k
=

=

+ + +

Ω + +

∑
∑

 
3 2 3

1

2
1

68 44 4

8 4(1 2 )

m

k

m

k

m m k

m m k
=

=

+ + +

Ω + +

∑
∑

 

MMSE-CF-I , 3 22
84 52 8CF I mNM

m m m
p

−⋅
+ + + ⋅ Ω , 3 22

84 52 8CF I mNA
m m m

p
−⋅

+ + + ⋅ Ω  

MMSE-CF-II , 3 22
84 52 8CF II mNM

m m m
p

−⋅
+ + + ⋅ Ω , 3 22

84 52 8CF II mNA
m m m

p
−⋅

+ + + ⋅ Ω

 

Figure 3.2 compares the averaged number of real multiplications required by two receiver 

structures, i.e., Type-I and Type-II with BZF-MIC, with different detection algorithms for the 

case of 2,64QAM,SNR 20dB, 6m n p= = = = . Aforementioned, BZF-MIC outperforms over 



 60

ZF-MIC and MMSE-MIC in complexity, and attains comparable BER performance, which will 

be shown later. It can be seen by Figure 3.2, the complexity increases while replacing BZF-MIC 

(Type-II) with Type-I receiver are 1664 1392 20%
1392

−
= , 1988 1416 40%

1416
−

= , 

1970 1485 33%
1485

−
= , and 2033 1481 37%

1481
−

=  for MMSE, MMSESIC, CF-I at { }P 0.5Q q≤ = , 

and CF-II detection algorithms, respectively.   
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Figure 3.2: Averaged computational complexity comparisons of two receiver structures with 

different detection algorithms 

 

 

3.3.2 BER Performance with TX_Imb = RX_Imb = 0 (Ideal) 
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In this case, signals model in Equation (3.14) can be simplified as 

m

m
m

m

m

11

*22* *

11

*22 *

[ ][ ] [ ][ ]
[ ][ ] [ ] [ ]

[ ] [ ] [ ]
    =

[ ] [ ] [ ]

m m

m m

kk kk
kk k k

k k k

k k k

×

×

⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥= = + = +⎢ ⎥⎢ ⎥ ⎢ ⎥−− − ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ −⎣ ⎦

⎡ ⎤+
⎢ ⎥
⎢ ⎥− − + −⎣ ⎦

WY xH 0
Y Hx W

0 HY x W

H x W

H x W

            (3.21) 

due to [ ] [ ]T T m mk k− − ×= − =H H 0 , and [ ] [ ]R R m mk k− − ×= − =H H 0 . Because the noise in [ ]kY  and 

*[ ]k−Y  are uncorrelated to each other owing to , ( 1) ,  R i N N L i− × + −= ∀H 0 , mW
C  is diagonal 

mentioned before, the BER performance of Type-I receiver is identical to that of Type-II receiver 

while the same detection algorithm is applied. Accordingly, Type-II receiver is preferred thanks to 

its less computational complexity by reducing the size of MIMO signal model processed. This 

can be demonstrated by the results shown in Figure 3.3 for the case of 2,  64QAMm n= = , and 

2, 12rms sT T L= =  (indoor environment). Note that MMSE detection roughly attains the 

performance of diversity one, and MMSE-SIC outperforms MMSE, but can’t achieve full 

diversity. By contrast, both CF-I and CF-II perform the best and obtain full diversity, as shown in 

Chapter 2.   
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Figure 3.3: Comparison of BER performance for the case of TX_Imb = RX_Imb = 0. 

 

3.3.3 BER Performance with TX_Imb = 1, RX_Imb = 0 

Received signals can be expressed as: 

m

m
m

11 12

** 21 22 *

[ ][ ] [ ][ ] [ ]
=

[ ] [ ] [ ] [ ] [ ]

kk kk k
k k k k k
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WY xH H
Y Hx W

Y H H x W
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m

11 12

21 * * * 22 * * *

,2

', '

[ ] [ ] [ ] [ ],  [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ],  [ ] [ ] [ ] [ ]

,   ' 2   

R c T R c T

R c T R c T

k k mxm
n

mxm k k

k k k k k k k k

k k k k k k k k

k N kσ

+ + + −

+ − + +

= =

− = − − − − = − − −

⎡ ⎤
= = − +⎢ ⎥

⎣ ⎦
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H H H H H H H H

H H H H H H H H
Ψ 0

C
0 Ψ

          (3.22) 
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because of [ ] [ ]R R m mk k− − ×= − =H H 0  and , ( 1) ,  R i N N L i− × + −= ∀H 0 . We can find from Equation 

(3.22) that [ ]kx  experiences both [ ]c kH  and *[ ]c k−H , which are the constituent of 11[ ]kH  

and 21[ ]k−H , respectively, to be present in the received signals at subcarrier k and its mirror 

subcarrier –k, i.e., [ ]kY  and *[ ]k−Y , due to TX I/Q imbalance. Similar phenomenon can also 

be occurred for *[ ]k−x . That is to say, [ ]kx  and *[ ]k−x  should be detected jointly based on 

received signals Y  so as to obtain better performance, thanks to potential diversity gain 

provided by TX I/Q imbalance.  

As shown in Figure 3.4, the performance limit of Type-II receivers with only TX I/Q 

imbalance is to approach to that of systems without I/Q imbalances (ideal case). On the contrary, 

Type-I receivers can obtain improved performance (even compare with ideal case with the same 

detection algorithm except for MMSE) based on the fact that TX I/Q imbalance is capable of 

providing additional diversity gain. For MMSE algorithm, two types of receivers perform 

comparable. For MMSESIC and CF-I (II), Type-I receivers outperform Type-II about 3 dB and 

2.5 dB at 3BER 10−=  and 4BER 10−= , respectively, but at the expense of increased 

computational complexity discussed in subsection 3.3.1. In addition, Type-II receivers with 

BZF-MIC and MMSE-MIC perform comparable to ideal case if the same detection algorithms 

are employed.  



 64

16 20 24 28 32 36
1E-4

1E-3

0.01

0.1

m=n=2, 64 QAM, L=12, TX_Imb=1, RX_Imb=0
BE

R

SNR(dB)

 Ideal. MMSE 
 Ideal, MMSESIC
 Ideal, CF-I
 Ideal, CF-II
 Joint, MMSE
 Joint, MMSESIC
 Joint, CF-I
 Joint, CF-II
 BZF-MIC, MMSE
 BZF-MIC, MMSESIC
 BZF-MIC, CF-I
 BZF-MIC, CF-II
 MMSE-MIC, MMSESIC
 MMSE-MIC, CF-I
 MMSE-MIC, CF-II

 

Figure 3.4: Comparison of BER performance for the case of TX_Imb = 1, RX_Imb = 0. 

 

 

3.3.4 BER Performance with TX_Imb = 0, RX_Imb = 1 

In this case, received signals can be expressed as: 
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            (3.23) 

because of [ ] [ ]T T m mk k− − ×= − =H H 0  and , ( 1) ,  T j N N L j− × + −= ∀H 0 . Note that although [ ]kx  is 
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present not only at [ ]kY  but also at *[ ]k−Y  of receiver side, the potential diversity gain is not 

longer available. It results from the fact that the channel gain constituent of 11[ ]kH  and 

21[ ]k−H  is the same, i.e., [ ]c kH . Similar phenomenon can also be found for [ ]k−x .  
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Figure 3.5: Comparison of BER performance for the case of TX_Imb = 0, RX_Imb = 1. 

 

Figure 3.5 presents the performance comparisons. As can be seen, the performance with only 

RX I/Q imbalance is comparable for two types of receivers while the same detection algorithm is 

used, and can just approach to that of ideal case without attaining additional diversity gain.  
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3.3.5 BER Performance with TX_Imb = 1, RX_Imb = 1  

This case is essentially the combinations of cases described in subsections 3.3.3 and 3.3.4, 

and the received signal model is expressed in Equation (3.14). Also its performance behavior is 

similar to that of systems with only TX I/Q imbalance, which can be seen by Figure 3.6.   
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Figure 3.6: Comparison of BER performance for the case of TX_Imb = RX_Imb = 1. 

 

 

 

3.4 Conclusions  

According to the case studies and simulation results provided in previous section, receiver 

structures should be properly chosen based on MIMO-OFDM systems with TX and/or RX I-Q 

imbalances such as to compromise between performance and computational complexity. For 
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example, in the forward-link (down-link) of cellular systems, TX (base station) I-Q imbalance is 

nearly perfect, but RX (mobile unit) may have large I-Q imbalance due to its low-cost 

requirements. In this case (no additional receiver diversity can be exploited), Type-II receiver is 

recommended to enable comparable performance with Type-I and ideal case, and reduced 

computational complexity receiver (mobile unit). On the contrary, in the reverse-link (up-link) of 

cellular systems, receivers (base station) are suggested to employ Type-I structure so as to attain 

improved BER performance by making use of potential diversity gain provided by TX I-Q 

imbalance, but at the cost of increased computational complexity.    
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Chapter 4  
Transmitter Pre-Processing for 2-D 
OFDM-CDMA Forward-Link Systems 
over Time-varying Rayleigh Fading 
Channels 
 

2-D OFDM-CDMA is a promising access technology for the next–generation mobile cellular 

systems, thanks to its capability to exploit both the temporal and spectral characteristics of the 

fading channels. In this Chapter, transmitter-based pre-processing is investigated for 2-D 

OFDM-CDMA forward link systems over the time-variant multi-path Rayleigh fading channels, 

aiming to increase the system sum data rate and shift the signal processing complexity of a 

mobile unit to the base station. For the non-selective fading channels, the optimum 

pre-processing that achieves the maximum sum data rate is obtained by applying the principle of 

multi-user water filling under the condition of zero MAI. For the selective channels, 

preprocessing methods based on the traditional criteria of ZF and MMSE are investigated first, 

and then a new method called ZF-MWF (zero forcing with multi-user water filling) is proposed 

to increase the system performance.  

 

4.1 System Model 

4.1.1 Radio Resource Unit (RRU) 
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In order to apply 2-D spreading, the time-frequency radio resource in a frame is divided into 

non-overlapped f tg g×  rectangular radio resource units (RRU) as shown in Figure 4.1 (a), 

where fg  and tg  are the frequency- and time-domain spreading factor, respectively. 

1f tG g g⋅ >�  is the overall spreading factor. In an RRU, the sub-carriers and OFDM symbols 

are assumed to be adjacent to each other2. Users with the same overall spreading factor can share 

an RRU in a code division fashion as shown in Figure 4.1 (b), and users with different overall 

spreading factor use different RRUs. Since RRUs are non-overlapping, without loss of generality 

only one RRU will be treated explicitly in the rest of this paper. Note that for 1tg =  the system 

degenerates to an MC-CDMA system and for 1fg =  an MC-DS-CDMA system; MC-CDMA 

and MC-DS-CDMA are special cases of the considered 2-D OFDM-CDMA system. 

Different spreading patterns, characterized by the pair ( , )f tg g , can be employed under a 

fixed overall spreading factor. Figure 4.2 depicts such possibilities for 16G =  with different 

selections of fg  and tg . For examples, ( 2, 8)f tg g= =  and ( 4, 4)f tg g= =  are two 

legitimate spreading patterns. Different spreading patterns may result in different performance 

depending on the frequency and time selectivity of the channel, as to shown later. In fact, how 

spreading patterns perform against each other under a fixed G  is one of the issues that interest 

us in this study. 

Let G  be the number of users in the system. (Recall that G  also is the overall 

 

2. The sub-carriers and OFDM symbols in an RRU can also be scattered over the frequency and time, respectively in order to increase diversity 

order [9]. 
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Figure 4.1: Radio Resource Units 
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spreading factor.) With orthogonal spreading codes, an RRU can be shared simultaneously by all 

the G  users in a code division fashion, one code for each user.  Nevertheless, it can also be 

shared by the G  users in a time division fashion by scheduling different users in different 

frames; that is some users are scheduled to transmit in a frame and others are scheduled in other 

frames. In a time-varying fading 

 

 

 

Figure 4.2: Example Spreading Patterns 
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environment, by scheduling those users who are in a good channel condition in a particular frame, 

one can take advantage of the multi-user diversity and increase the system throughput [19]. To 

investigate the multi-user diversity gain, we allow K G<  users be scheduled in a frame in our 

formulation. In this case, each scheduled user can use up to /G K  spreading codes, where 

/G K  is a positive integer. For a time-varying channel, it is plausible that each user has a fair 

access to the channel in the long run. 

Anyhow, G  symbols are always transmitted in an RRU, although the symbols may or may 

not belong to the same user. By that sense an RRU is said to support G  data channels, one 

channel for a data symbol. 

 

4.1.2 Channel Model 

A discrete-time, wide-sense stationary uncorrelated scattering (WSSUS) Rayleigh channel is 

considered. The complex equivalent low-pass response for transmitting the i-th symbol ( )ix  (i-th 

data channel) is given by  

( ) ( ) ( )( ) ( )

0

; ,   1,..., ,
L

i i
l s

l

h t h t lT i Gτ δ τ
=

= − =∑                                 (4.1) 

where ( )δ ⋅  is the Dirac delta function, ( ) ( )i
lh t  is the lth path gain, slT  is the propagation delay 

for the lth path, and sT  is the sampling duration of the system. ( ) ( )i
lh t  is a complex Gaussian 

random variable with zero mean and variance 2
lσ , and { }( )

0
( )

Li
l l

h t
=

 are independent of each other 

for each i. In addition, { }( )

0
( )

Li
l l

h t
=

 are independent of { }( )

0
( )

Lj
l l

h t
=

 if the ith and jth channels are 

not destined to the same user. The channel is assumed to be remained constant over one OFDM 

symbol and vary symbol-by-symbol based on channel time variation. Thus Equation (4.1) can be 

simplified as 
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( ) ( ) ( )( ) ( )

0

; ,  1,..., ,
L

i i
l s

l

h n h n lT i Gτ δ τ
=

= − =∑                                (4.2) 

where n  is the OFDM symbol index. Furthermore, the power delay profile of the multi-path 

channel follows the exponential decay model 

( )2 2
0 exp 10 ,   1, 2,....,σ σ= ⋅ − =l l L l L  ,                                   (4.3) 

with ( )2
0 1 exp 10 Lσ = − − , and 2

0

1
L

l
l

σ
=

=∑ . For symbols (data channels) targeted to the same user, 

the channel responses are identical. Finally, the Clarke’s two-dimensional isotropic scattering 

model for { }( ) ( )i
lh n  will be used to model the time variation of channels in this study [61].  

 

4.1.3 Transmitter and Receiver 

The transmitter of the considered OFDM-CDMA forward-link system is sketched in Figure 4.3 

(a). Recall that only one RRU will be explicitly treated. The data symbol ( ) ,  1,...,ix i G=  is first 

spread over time- and frequency-domain by a two-dimensional spreading code 

( )
, , 1,..., , 1,...,= =i

m n f tc m g n g , and the spreading chip is pre-processed by multiplying the 

complex-valued gain ( )
, , 1,..., , 1,...,= =i

m n f tp m g n g , respectively. (Note that the data symbols may 

or may not belong to the same user.) The corresponding chips from all data symbols in an RRU 

are summed together before being allocated to the time-frequency plane which is done, along 

with chips from other RRUs, by the time-frequency mapping. Lastly, the allocated chips are 

performed IFFT and sent for further operations such as parallel-to-serial conversion, cyclic-prefix 

insertion and analog/RF front-end processing.  
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Figure 4.3: (a) Transmitter (b) Receiver 

 

As is shown in Figure 4.3 (b), at the receive end of ith data channel, after RF/analog 

processing, synchronization, cyclic-prefix removal and serial to parallel conversion, the received 

signal is performed FFT and time-frequency de-mapping. The de-mapped chips of the considered 
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RRU are passed through a simple two-dimensional de-spreading because most of the signal 

processing has been shifted to the base station. The de-spread signals are then forwarded for 

further demodulation and/or decoding. 

 

4.1.4 Signal Models 

Assuming that the length of cyclic-prefix is larger than the maximum delay spread sLT  and 

that perfect frequency/time synchronization is achievable at the receiver, then the de-mapped 

signal of the ( , )thm n  chip of i-th data channel is given by,  

( ) ( ) ( ) ( ) ( ) ( )
, , , , , ,

1

, 1,..., 1,..., , 1,...,
G

i j j j i i
m n m n m n m n m n f t

j

y x p c H W m g n g i G
=

⎛ ⎞
= + = = =⎜ ⎟

⎝ ⎠
∑ ,           (4.4) 

where  

( )
2

( ) ( )
,

0

FFT

j lmL
Ni i

m n l
l

H h n e
π−

=

= ∑ ,                                             (4.5) 

and ( )
,
i

m nW  are the associated (frequency-domain) channel gain and noise, respectively, and FFTN  

is the size of IFFT/FFT. Note again that ( ) ( )
, ,=i j

m n m nH H , and ( ) ( )
, ,
i j

m n m nW W=  if ( )ix  and ( )jx  belong 

to the same user. In addition, ( )
,
i

m nW  is a Gaussian variable with zero mean and variance 2
Wσ .  

 

For notation simplicity, we redefine the two-dimensional chip index ( ),m n  into the 

one-dimensional one by using ( 1) ,  1, , 1, , 1 .f t fk n g m n g m g k G= − + = ⋅⋅⋅ = ⋅⋅⋅ = ⋅⋅⋅  With this new 

indexing notation, Equation (4.5) can be rewritten as the matrix form below. 
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( ) ( ) ( ) ( ) ( )
1 1 1 1

1( )
1

( ) ( ) ( ) ( ) ( ) ( ) ( )

1

( )

( ) ( ) ( ) ( ) ( )

1

( )
1

(

            

0

0

G
j j j i i

ji

G
i i j j j i i

k k k k k
j

i
G

G
j j j i i

G G G G
j

i

i
G

x p c H W

y

y x p c H W

y

x p c H W

H

H

=

=

=

⎡ ⎤⎛ ⎞
+⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎛ ⎞⎢ ⎥ = +⎜ ⎟⎢ ⎥⎢ ⎥ ⎝ ⎠⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎛ ⎞⎢ ⎥
+⎜ ⎟⎢ ⎥

⎝ ⎠⎣ ⎦

=

∑

∑

∑

y

#
#

�
#

#

% ( )
(1) ( )

1
(1) ( ) (1) ( )

) ( ) ( )

,..., ,...,

i

G G

G i
G

x W

x W

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤ +⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

p p c c: # #

                  (4.6) 

where ( ) ( ) ( )
1

Tj j j
Gp p⎡ ⎤⋅⋅⋅⎣ ⎦p � , ( ) ( ) ( )

1

Tj j j
Gc c⎡ ⎤⋅⋅⋅⎣ ⎦c � , :  denotes the Hadamard product 

(element-by-element multiplication), and [ ]Ti  the operation of transpose of a vector and/or 

matrix. Define (1) ( ) TGx x⎡ ⎤⋅ ⋅ ⋅⎣ ⎦x = , ( ) ( ) ( )
1

Ti i i
GW W⎡ ⎤= ⋅ ⋅ ⋅⎣ ⎦w , (1) (2) ( )G⎡ ⎤⋅⋅⋅⎣ ⎦P = p p p , 

(1) (2) ( )G⎡ ⎤⋅⋅⋅⎣ ⎦C = c c c  and 

( )
1

( )

( )

0

0

i

i

i
G

H

H

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

H % ,   

Equation (4.6) becomes 

( )( ) ( ) ( )i i i= +y H P C x w: ,                                              (4.7) 

where x  is the symbol vector with the covariance matrix 2
x Gσ I , ( )iw  is a complex Gaussian 

vector with the covariance matrix 2
W Gσ I ,  2

xσ  and 2
Wσ  are the average transmit power, and 

noise power for each sub-carrier, respectively, and GI  is the identity matrix of dimension G .  

Let ( )id  be the decision variable of i-th data channel. Then,  

( )( ) ( ) ( ) ( ) ( ) ( ) ( )H H Hi i i i i i id = +c y c H P C x c w� : ,                              (4.8) 

where [ ] [ ]
TH ∗=i i  denotes conjugate transpose operation, and { }( ) ( )

1

H G
i i

i=
c w  are i.i.d. Gaussian 

variables provided that orthogonal codes are used. 
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4.2 Transmitter-Based Pre-Processing 

4.2.1 Sum Data Rate 

For a multiple access system, sum data rate is the maximum achievable reliable data rate of 

all users supported by the system [19]. It is a measure of system throughput from the 

information-theoretical point of view. Sum data rate will be adopted here as the performance 

index for the design and comparison of different pre-processing methods.  

From Equation (4.8), the decision variable for i-th symbol can be rewritten as 

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 noise
desired signal

MAI

H H H
G

i i i i i i i i j j j i i

j
j i

d x x
=
≠

= + +∑c H p c c H p c c w: : ��	�
�����	����

�����	����


.           (4.9) 

The MAI term can be approximated as a zero-mean Gaussian variable under the assumption of 

large G  [62]. Therefore, the achievable maximum reliable data rate ( )iC  for i-th data channel, 

given ( )iH , is given by [19], [63]  

2
( ) ( ) ( ) ( )

( )
2 2

( ) ( ) ( ) ( ) ( ) ( )

1

2 ( ) ( ) ( ) ( ) ( ) ( )

2
2 ( ) ( ) ( ) ( ) ( ) ( ) 2

1

1 log 1

1 log 1

H

H H

H H H

H H H

i i i i

i

G
i i j j i i

j
j i

i i i i i i
x

G
j i i i i j

x W
j
j i

E x

G
E x

G
σ

σ σ

=
≠

=
≠

⎧ ⎫
⎪ ⎪
⎪ ⎪⎡ ⎤⎪ ⎪⎢ ⎥⎪ ⎪⎣ ⎦= +⎨ ⎬

⎡ ⎤⎪ ⎪⎢ ⎥⎪ ⎪+⎢ ⎥⎪ ⎪
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

⎧ ⎫
⎪ ⎪
⎪ ⎪⋅

= +⎨ ⎬
⎪ +
⎪
⎩

∑

∑

c H q

c H q c w

q H c c H q

q H c c H q

C

 b/s/Hz,
⎪
⎪
⎭

              (4.10) 

where ( ) ( ) ( )i i iq p c� : , and  
2( ) 1i =c  for i=1,2,…,G. As a result, the sum data rate C  which 

is the sum of individual rate is obtained by 
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2 ( ) ( ) ( ) ( ) ( ) ( )
( )

2
2 ( ) ( ) ( ) ( ) ( ) ( ) 21 1

1

1 log 1   b/s/Hz
H H H

H H H

i i i i i iG G
i x

G
j i i i i ji i

x W
j
j i

G
σ

σ σ= =

=
≠

⎧ ⎫
⎪ ⎪
⎪ ⎪⋅

= = +⎨ ⎬
⎪ ⎪+
⎪ ⎪
⎩ ⎭

∑ ∑
∑

q H c c H q

q H c c H q
C C           (4.11) 

With the performance index in Equation (4.11), our problem becomes to find the set of 

optimum pre-processing weight vectors �{ }( )i
q , for a given { }( )iH , to obtain the maximum sum 

data rate by solving the following constrained optimization problem 

�{ } { }( )

( ) 2( )

1

arg max  ,       s.t. 
i

Gi i

i

G
=

⎧ ⎫
= =⎨ ⎬

⎩ ⎭
∑

q
q qC .                                (4.12) 

After obtaining the sum data rate for a particular { }( )iH , the average sum data rate, called 

ergodic sum data rate in [19]3, is evaluated by [ ]Eerg =C C , where the expectation is taken over 

all channels { }( )iH . 

 

4.2.2 Non-selective Fading Channels 

For the non-selective (both time and frequency) fading channels, ( ) (i)=i
GHH I  for all i. In this 

case, as to be shown, the optimization in Equation (4.12) can be carried out easily in two steps, 

thanks to the nice property of orthogonality among different data channels in this channel 

condition. Firstly, from Equation (4.10), it is observed that if a set of { }( )iq  which is able to  

 

3. ε -outage data rate is a more appropriate performance measure for a very slow fading channel [19, chapter 6] which is not the case considered 

here. 
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maximize the respective signal power
2

( ) ( ) ( ) ( )Hi i i iE x⎡ ⎤
⎢ ⎥⎣ ⎦

c H q  while completely eliminating the 

MAI  2 ( ) ( ) ( ) ( ) ( ) ( )

1

,
H H H

G
j i i i i j

x
j
j i

iσ
=
≠

∀∑q H c c H q , then it will be the optimal one. Such a { }( )iq  is indeed 

available as derived as follows. According to the results of Rayleigh Quotient [64], 

2( ) ( ) ( ) ( ) ( ) ( ) ( )
max

H H Hi i i i i i iλ≤q H c c H q q  with equality if ( )iq  is the eigenvector associated with the 

maximum eigenvalue maxλ  of the Hermitian matrix ( ) ( ) ( ) ( )H Hi i i iH c c H . In addition, it is easy to 

see that ( )( ) ( ) ( ) ( )rank 1
H Hi i i i =H c c H  with 

2
( ) ( )

max

Hi iλ = H c  and the corresponding eigenvector 

( ) ( )Hi i
it ⋅H c , where it  is a non-zero complex value. Setting ( ) ( ) ( ) ,

Hi i i
it i= ⋅ ∀q H c  in Equation 

(4.10), it is clear that MAI can be removed completely because all the spreading codes are 

orthogonal, and therefore �
( ) ( ) ( ) ,

Hi i i
it i⋅ ∀q = H c  is the set of optimum pre-processing vectors that 

maximizes ( )iC  given the transmit power � 2( )2 ,
i

x iσ ∀q . The next step is to apply the principle 

of multi-user water filling so as to maximize the sum data rate. This can be done by solving the 

following constrained optimization problem,   

�
�

�
�

2( )

22 ( )2 ( ) ( )
2 2( ) ( )

2 2
1 1

arg max  log 1 ,  s.t. 

H

i

ii i
G Gxi i

i iW

G
σ

σ⎧ ⎫⎪ ⎪ = =⎨ ⎬
⎪ ⎪⎩ ⎭

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥⎧ ⎫

= + =⎨ ⎬ ⎨ ⎬⎢ ⎥
⎩ ⎭ ⎪ ⎪⎢ ⎥

⎣ ⎦⎩ ⎭

∑ ∑
q

H c q
q q .     (4.13) 

Equation (4.13) can be solved by applying the theory of Lagrange Multiplier as follows [65]. 

Since the objective function is lower bounded by zero, there exists at least one solution in 

Equation (4.13). Define the Lagrange function  

� �
�

�

22 ( )2 ( ) ( )
2 2 2(1) ( ) ( )

2 2
1 1

,..., , log 1

H ii i
G GxG i

i iW

f G
σ

λ λ
σ= =

⎧ ⎫
⎪ ⎪ ⎛ ⎞⎛ ⎞ = + + −⎨ ⎬⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎪ ⎪
⎩ ⎭

∑ ∑
H c q

q q q ,  (4.14) 

where λ is the real Lagrange multiplier. The necessary conditions for the solutions are given by 
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�
� � �

2 2(1) ( )

2( )
,..., , 0,  ,

G

i
f iλ⎛ ⎞∂

= ∀⎜ ⎟
⎝ ⎠∂

q q
q

                                  (4.15) 

and 

� � �
2 2(1) ( )

 ,..., , 0
G

f λ
λ

⎛ ⎞∂
=⎜ ⎟∂ ⎝ ⎠

q q                                         (4.16) 

These equations lead to  

�
�

22( )

2
2 ( ) ( )

1 ,   
ln 2 H

i
W

i i
x

iσ
λ σ

= − − ∀
⋅

q
H c

                                   (4.17) 

and  

�
2( )

1

G i

i

G
=

=∑ q                                                        (4.18) 

From Equations (4.17) and (4.18) we have  

�
2 22( )

2 22 ( ) ( ) 2 ( ) ( )1

11+ ,    1 ,
H H

Gi
W W

j j i ijx x

i G
G

σ σ
σ σ

+

=

⎡ ⎤
⎢ ⎥= − = ⋅⋅ ⋅⎢ ⎥⋅ ⋅⎢ ⎥⎣ ⎦

∑q
H c H c

             (4.19) 

where [ ] { }max , 0x x+ = . Equation (4.19) is a form of multi-user water filling.  

 

4.2.3 Selective Fading Channels 

For the selective (either time, frequency or both) fading channels, there is no easy way to 

solve the constrained optimization problem in Equation (4.12) because the orthogonality among 

different data channels are destroyed. In this part, we first apply the traditional ZF-PN (zero 

forcing with power normalization) and MMSE (minimum mean square error) criteria to design 

the pre-processing. Then a new method called ZF-MWF (zero forcing with multi-user water 

filling) is proposed. 
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4.2.3.1 Zero-Forcing with Power Normalization 

The basic idea of this method is trying to decouple different data channels (data symbols) at 

the outputs of de-spreading by properly choosing matrix Q P C� :  at the base station. In other 

words, the MAI is eliminated completely at the outputs of the de-spreading operation of the 

receiver. Then, the total transmit power is normalized to meet the power constraint [12].  

Define d  be the aggregated decision variables from all data channels. From Equation (4.9), 

N N

(1) (1) (1) (1) (1) (1) (1) (1) (1)

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

  

H H H H

H H H H noisesignalG G G G G G G G G

d

d

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ = = + = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

c H Qx c w c H c w
d Qx RQx w

c H Qx c w c H c w

� # # # #  (4.20) 

where  

(1) (1) (1) (1)

( ) ( ) ( ) ( )

,    and 

H H

H HG G G G

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

= ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

c H c w
R w =

c H c w

# # .  

To eliminate completely the MAI, we need the condition that i =RQx x . That results in                   

i ( ) 1
 H H

R

− +=Q R RR R� .                                             (4.21) 

R
+R  is the right pseudo inverse of matrix R . On the other hand, the total transmit power needs 

to be normalized to 2
x Gσ ⋅ , that is l 2

2
xE Gσ⎡ ⎤ = ⋅⎢ ⎥⎣ ⎦

Qx . Therefore, l /R R F
G + +=Q R R  where 

F
i  stands for the Frobenius norm of a matrix.  

 

4.2.3.2 Minimum Mean Square Error 

In this method, lQ  is selected to minimize mean square error between the decision vector d  

and transmitted symbol vector x , under a fixed transmit power. The associated constrained 
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optimization problem can be formulated as follows. 

l { } { }2 2arg min  ,  s.t. H
F

E tr G⎡ ⎤= − = =⎣ ⎦Q
Q d x Q Q Q  ,                      (4.22) 

where 

[ ]{ }2 2 2 2= = +  H H
x G G WE E tr Gσ σ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− + − ⋅ − − ⋅⎣ ⎦⎣ ⎦ ⎣ ⎦d x RQx w x Q R I RQ I .  

(4.23) 

Therefore, Equation (4.22) can be rewritten as  

l [ ]{ }{ } { }2arg min  ,   s.t. H H H
G G F

tr tr G⎡ ⎤= − − = =⎣ ⎦Q
Q Q R I RQ I Q Q Q           (4.24) 

In what follows, again, the theory of Lagrange Multiplier is employed to solve the above 

constrained optimization problem.  

Define the Lagrange function as 

( ) [ ]{ } { }( ), H H H
G Gf tr tr Gλ λ⎡ ⎤= − − + −⎣ ⎦Q Q R I RQ I Q Q .                  (4.25) 

 The necessary conditions for the solutions in Equation (4.24) are l �( ),f λ∂
=

∂
Q 0

Q
 and 

l �( ) , 0f λ
λ
∂

=
∂

Q , which in turn give the conditions 

�( )l  H H
Gλ+ ⋅ =R R I Q R ,                                              (4.26) 

and  

l l{ }H
tr G=Q Q .                                                      (4.27) 

In Appendix F, it is shown that the square matrix �( )H
Gλ+ ⋅R R I  in Equation (4.26) is 

nonsingular in order for � l( ),λ Q  to become a solution. Therefore,  

l �( ) 1
H H

Gλ
−

= + ⋅Q R R I R ,                                              (4.28) 

and from Equation (4.27) we have  

�( ) �( ){ }1 1
H H H

G Gtr Gλ λ
− −

+ ⋅ + ⋅ =R R I R R R R I .                            (4.29) 

By applying the spectral decomposition to the Hermitian matrix HR R , that is,  
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H

1

G
H

i i i
i

λ
=

= ∑R R v v                                                    (4.30) 

where iλ  and iv  are the eigenvalue and eigenvector of the matrix HR R , respectively. 

Equation (4.29) can be simplified as 

�( )2
1

 
G

i

i
i

Gλ

λ λ=

=
+

∑                                                     (4.31) 

where from the Appendix F, � ,i iλ λ≠ − ∀ . Equation (4.31) can be solved by using numerical 

methods such as the one given in [66].  

 

4.2.3.3 Zero-forcing with Multi-user Water Filling 

From Equation (4.10), it is clear that the achievable data rate of a specific channel can be 

increased by maximizing the received signal power and/or eliminating MAI. Also, as discussed in 

the case of non-selective channels, the principle of multi-user water filling can be applied in a 

multi-user environment to increase the sum data rate. In our previous discussions, ZF with power 

normalization is able to remove MAI completely but with no attempt to maximize the received 

signal power. MMSE, on the other hand, tries to strike a balance between MAI and noise. The 

residual MAI, however, may limit the sum data rate in Equation (4.11) while noise is comparably 

small. Unfortunately, both methods do not exploit the potential gain of multi-user water filling as 

does in the non-selective case, in a multi-user environment. In this section, a novel two-step 

pre-processing method called ZF with multi-user water filling is proposed. In the first step, the 

received signal power is maximized for each respective data channel under the condition of zero 

MAI, and then the principle of multi-user water filling is applied in the second step so as to 

increase the sum data rate.  

The first step is to find a set of �{ }( )i
q  such that the MAI in Equation (4.9) is eliminated 
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completely and at the same time the respective desired signal power is maximized. In other 

words,  

� { }
{ }

( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1

arg max  ,  

                                              s.t. ,   

H H H

i

H H

i i i i i i i

G
i j j j j

j
j i

i
=
≠

=

∈ ∀

q
q q H c c H q

q H c c H∩N
            (4.32) 

where { }AN  denotes the null space of the matrix A , and ∩  the operation of intersection. 

Equivalently,  

� { } { }
( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )arg max  ,  s.t.   
H H H

i

i i i i i i i i i= ∈ ∀
q

q q H c c H q q HN                 (4.33) 
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Let { }( ) ( )
1 ,...,

i

i i
Dβ β  be an orthonormal basis of { }HN , and iD  be its dimension. Then, 
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Furthermore, 
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Where (i) ( ) ( ) ( ) ( )
1 ,1 1

1

= ,
iD

i i i i
j j

j

b a α
=

=∑ a α  is the inner product of vectors 
i
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By applying Cauchy-Schwarz Inequality [64], 
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And the sum data rate in Equation (4.11) becomes  
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In the second step, the principle of multi-user water filling is applied in Equation (4.37) in 

order to obtain the maximum sum data rate. That is, we are seeking for  
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With an application of the theory of Lagrange Multiplier, it can be shown that 
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The complete algorithm for ZF-MWF is summarized in Table 4.1.  
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Table 4.1: Zero-forcing with Multi-user Water Filling 
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5.    determine power allocation results  based on Equation (2.39)    
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4.3 Numerical Results 

This section presents and compares the ergodic sum data rate of the considered 

pre-processing methods. The system parameters are summarized in Table 4.2. Recall that there 

are total G  users in the system, but they may not all be scheduled to transmit in a frame. 

K G≤  denotes the actual number of scheduled users. For K G< , /G K  codes are allocated to 

each user (multi-code transmission), and the system can exploit the multi-user diversity gain to 

increase the sum data rate. The user scheduling is performed on a frame-by-frame basis. As given 
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in Table 4.2, a frame consists of 16 OFDM symbols. The Hadamard-Walsh orthogonal codes are 

used throughout this study. 

 

Table 4.2: System parameters 

 

Parameters Values 

Number of users in the system, G  16 

Overall processing gain, G  16 

Number of users scheduled in a frame, K   1, 2, 4, 8, 16 

Number of spreading codes allocated to each 

scheduled user 

/G K  

OFDM symbol duration, OFDMT  10 sμ  

Useful OFDM symbol duration, FFTT  8 sμ  

Sub-carrier frequency spacing, 1/ FFTf TΔ =  125 KHz 

System sampling period, sT  /FFT FFTT N  

FFT size, FFTN  256 

Cyclic prefix size 64 

Normalized frequency selectivity, / cf BΔ  

cB , coherent bandwidth of the channel 

1/8, 1/4, 1/2 

Frame size 16 OFDM symbols 

Normalized time selectivity, /OFDM cT T  

cT , coherence time of the channel 

1/8, 1/4, 1/2 

Spreading Codes Hadamard-Walsh codes 
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In Table 4.2, / cf BΔ  and /OFDM cT T  are defined as the normalized frequency and time 

selectivity, respectively, where cB  is the coherent bandwidth and cT  the coherent time of the 

channel. In this study, 1/(50 )cB τσ=  and 1/(50 )c DT f= , where τσ  is the root-mean-square 

delay spread and Df  the maximum Doppler spread of the channel [67]. By changing the path 

number L  and Df , we can obtain the desirable frequency and time selectivity designated in 

Table 4.2. For example, 7,  13,  26L =  correspond to / 1/8,  1/ 4,  1/ 2cf BΔ = , and 

250,  500,  1000 HzDf =  correspond to / 1/8,  1/ 4,  1/ 2OFDM cT T = , respectively.  

Figure 4.4 shows the performance of the ergodic sum data rate for the non-selective channel, 

with different number of scheduled users. The number of channel samples used for evaluating the 

ergodic sum data rate is over 20000. Recall that for the non-selective fading channels, the 

pre-processing is the optimum one that achieves the maximum sum data rate. For comparison 

purpose, the sum data rate for AWGN channel is also included in the figure. Clearly, for 8K ≤  

higher ergodic sum data rate is obtained for fading channels than AWGN case, thanks to the 

exploitation of the multi-user diversity. Nevertheless, the advantage of multi-user diversity 

diminishes as the number of scheduled users becomes larger. In fact, for 16K =  the ergodic sum 

data rate of the fading channel is less than that of the AWGN channel except for very low SNRs. 

Figure 4.5 compares the ergodic sum data rate for the considered pre-processing methods in 

selective channels with 16K = . Frequency-domain spreading with two values of channel 

selectivity, that is / 1/ 2,  1/ 4cf BΔ =  is used as the example. As are shown in the figure, the 

channel selectivity decreases the ergodic sum data rate; the more severe the channel selectivity, 

the smaller the ergodic sum data rate. This phenomenon is more prominent for MMSE in the high 

SNR region, because in MMSE there is a residual MAI and that becomes more dominant in 

performance at high SNR region. The newly proposed ZF-MWF could significantly outperform 

the other two, depending on the channel selectivity and the operating SNR. Only a small gap is 

observed with this new method, as compared to the maximum ergodic sum data rate that is only 
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achievable with the nonselective channels. ZF-PN performs less favorable than the other two in 

low SNR region. Nevertheless, it outperforms MMSE in high SNR region where MAI is the 

dominant factor. 

Figure 4.6 shows the performance of considered pre-processing methods in selective channels 

with two cases of scheduled number, 16K =  and 4K = . It is apparently that multi-user 

diversity gain can be still exploited in selective channels. In addition, the comparative results of 

performance between these pre-processing methods are consistent with those shown in Figure 

2.5.  

Figure 4.7, Figure 4.8, and Figure 4.9 show the advantage by using 2-D spreading and the 

importance of selection of the spreading patterns for the cases of 

2 216,  1,  15,  and 29 dBx WK σ σ= = , respectively. From the result, it can be concluded that fg  

and tg  should be selected in a way to reduce the channel selectivity both in time and frequency. 

In this example, 4, 4f tg g= =  is the optimum one regardless of the channel selectivity. The loss 

in ergodic sum data rate can be quite large if the spreading pattern is not selected properly. This is 

especially true for MMSE. Again, the new method can significantly outperform the other two in 

the 2-D spreading case. 
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Figure 4.4: Ergodic sum data rate for non-selective channels with the optimum pre-processing 

 

  

 



 91

-10 0 10 20 30
0

1

2

3

4

5

6

7

8

9

ZF-MWF

MMSE

ZF-PN

gt=1, gf=16, K=16
Er

go
di

c 
su

m
 d

at
a 

ra
te

 (b
/s/

H
z)

σx
2/σW

2 (dB)

 optimum, non-selective channel
     Δf/Bc=1/4
     Δf/Bc=1/2

 
Figure 4.5: Comparisons of the ergodic sum data rate for different pre-processing methods with 

/ 1/ 4cf BΔ =  and / 1/ 2cf BΔ = . 
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Figure 4.6: Comparisons of the ergodic sum data rate for different pre-processing methods with 

16K =  and 4K = . 
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Figure 4.7: Example effects of spreading patterns on the ergodic sum data rate with different 

degrees of selectivity for 2 216,  1 dBx WK σ σ= =  
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Figure 4.8: Example effects of spreading patterns on the ergodic sum data rate with different 

degrees of selectivity for 2 216,  15 dBx WK σ σ= =  
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Figure 4.9: Example effects of spreading patterns on the ergodic sum data rate with different 

degrees of selectivity for 2 216,  29 dBx WK σ σ= =  

 

 

4.4 Conclusions 

In this Chapter, different transmitter-based pre-processing methods are investigated for the 

2-D OFDM-CDMA forward-link systems in the time-variant multi-path Rayleigh fading channels. 

The optimum pre-processing that achieves the highest ergodic sum data rate is obtained for the 

non-selective fading channels. For the selective one, three sub-optimum methods are investigated 

including ZF with power normalization, MMSE and the newly proposed ZF with multi-user 

water filling. Numerical results show that the new method significantly outperforms the other two, 
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especially while the channel exhibits severe channel selectivity. The merit of 2-D spreading over 

the 1-D one is illustrated through examples. Furthermore, user scheduling provides significant 

performance improvement by exploiting multi-user diversity, especially if only a small number of 

users are scheduled at a time.  
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Chapter 5  
Concluding Remarks 

 

Multiple-input-multiple-output (MIMO) is, in general, a model for a variety of communication 

problems including the multiple transmit and receive antenna systems, code-division 

multiple-access systems, inter-symbol interference channels, etc. In this dissertation, new 

transmit and receive techniques for MIMO communication systems are proposed. 

In Chapter 2, a new design on channel factorization is proposed for the channel-factorization 

aided detectors, where effective factorization algorithms are sought to minimize the sum 

mean-squared-error of the MMSE detector. Two new types of factorization algorithms are 

devised; the first type is LLL based, where the best-performed factorization algorithm found in 

the literature, i.e., the DLLL-extended algorithm, is a member of this type but with a higher 

complexity. The second type is greedy-search based which can provide around 0.5-1.0 dB gain 

over the first type and has a fixed computational complexity which is advantageous in hardware 

implementation. The computational complexity of the proposed methods are analyzed and 

compared to the existing methods. In addition, combining proposed MMSE channel factorization 

algorithm with the element-wise, candidate-list (EWCL) detector can approach to within a 

fractional dB of the ML performance. 

In Chapter 3, according to the case studies and simulation results, receiver structures should 

be properly designed based on MIMO-OFDM systems with TX and/or RX I/Q imbalances such 

as to compromise between performance and computational complexity. For example, in the 

forward-link (down-link) of cellular systems, TX (base station) I/Q imbalance is nearly perfect, 

but RX (mobile unit) may have large I/Q imbalance due to its low-cost requirements. In this case, 
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Type-II receiver is recommended to enable good performance and reduced computational 

complexity receiver (mobile unit). On the contrary, in the reverse-link (up-link) of cellular 

systems, receivers (base station) are suggested to employ Type-I structure so as to attain 

improved BER performance by making use of additional diversity gain provided by TX I/Q 

imbalance. 

In Chapter 4, different transmitter-based pre-processing methods are investigated for the 2-D 

OFDM-CDMA forward-link systems in the time-variant multi-path Rayleigh fading channels. 

The optimum pre-processing that achieves the highest ergodic sum data rate is obtained for the 

non-selective fading channels. For the selective one, three sub-optimum methods are investigated 

including ZF with power normalization, MMSE and the newly proposed ZF with multi-user 

water filling. Numerical results show that the new method significantly outperforms the other two, 

especially while the channel exhibits severe channel selectivity. The merit of 2-D spreading over 

the 1-D one is illustrated through examples. Furthermore, user scheduling provides significant 

performance improvement by exploiting multi-user diversity, especially if only a small number of 

users are scheduled at a time. 
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Appendix 
Appendix A 

By definition, ( )( )H

MMSE MMSE MMSEE ⎡ ⎤= − −⎢ ⎥⎣ ⎦
Φ G y z G y z , where 
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According to Equation (A.2),  MMSEG  can be rewritten as: 

( )

1 12 2

2 2

12 2 2      

H H H Hw w
MMSE m n

x x

H H
x x w n
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σ σ

σ σ σ
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G D H H I H DH HH I
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 .                 (A.3) 

Therefore, ( )2 2 2 H H H H
MMSE x w n MMSE x MMSEσ σ σ+ =G HH I G DH G , and Equation (A.1) becomes 
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By applying the Matrix Inversion Lemma ( ) ( )1 11 1 1 1 1− −− − − − −− + = +K K L NK L M NK K LMN  

[69] to Equation (A.4) with 1 2 H
xσ− =K DD , ( )1 

H H−=L D H , 
2

1
2 w

n
x

σ
σ

− =M I , and 1
2

1

xσ
−=N HD , 

12
2

2
H H Hw

MMSE w m
x

σσ
σ

−
⎛ ⎞

= + =⎜ ⎟
⎝ ⎠

Φ D H H I D DAD ,                             (A.5) 
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Appendix B 

In this appendix, it is proved that given =C Pϒ , where ϒ  is a non-singular matrix and 

H =P P I , if iLLL
= Tϒϒ ϒ , and iLLL

C=C CT , then i i=C Pϒ  and Cϒ =T T , where iLLL
= XX XT  denotes 

that the factorization is done with the LLL algorithm.  

Proof: Let { }∈X , Cϒ . Initially, in the LLL algorithm, the Gram Schmidt Orthogonalization 

(GSO) procedure is applied to obtain the factorization 

GSO
T= X XX Q U , 

where 1, ,m⎡ ⎤= ⋅⋅⋅⎣ ⎦X X XQ q q  is a orthogonal matrix, and XU  is a lower triangular matrix with 

unit main diagonal elements. Since =C Pϒ  and H =P P I , it is easy to show that =CQ PQϒ  
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and = =CU U Uϒ . Let [ ]1 m= ⋅⋅⋅C c c , [ ]1 m= ϒ ⋅⋅⋅ ϒϒ , and 2,1

,1 ,2

1 0
μ 1

μ μ 1m m

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

U =
# # %

"

, the LLL 

algorithm then performs the following two operations iteratively to obtain a reduced basis:  

, ,

2 2

1 , , 1 1, 1,

Operation 1:  μ ,  if μ

Operation 2: swap  and ,    if μ .

i i i j j i j

i i i i i i iδ− − − −

⎡ ⎤ ⎡ ⎤= −  ≠ 0.⎣ ⎦ ⎣ ⎦

+ <x x x

x x x

x x q q q
,  

where { }∈ ϒx c, , and [ ]⋅  stands for the operation of rounding the argument to the nearest 

complex integer. Since ( ), , ,μ μ μi i j j i i j j i i j j⎡ ⎤ ⎡ ⎤ ⎡ ⎤− = ϒ − ϒ = ϒ − ϒ⎣ ⎦ ⎣ ⎦ ⎣ ⎦c c P P P  in Operation 1, and 

2 2

, ,i i ϒ=cq q  and 
2 2

, , 1 1, , , 1 1,μ μi i i i i i i i− − ϒ − − ϒ+ = +c cq q q q  in Operation 2, it concludes that 

i i=C Pϒ  and = CT Tϒ . 

 

 

Appendix C 

In this Appendix, we prove that new 1 1 ,new 1,..., , , ,...,H
k k k m− +⎡ ⎤= ⎣ ⎦D d d d d d  is unimodular provided 

that HD  is unimodular, where  

,new 1 1 1 1 1 1k k k k k k m mα α α α− − + += + + + + + +d d d d d d" " .                      (C.1) 

and { }m m k
α

≠
 are complex integers.  

Proof:  Recall that 1 1 1,..., , , ,...,H
k k k m− +⎡ ⎤= ⎣ ⎦D d d d d d . Using Equation (C.1), H H k

new m=D D I , 

where k
mI  is obtained by replacing the kth-column of mI  with 1 1 1, , ,1, ,

T

k k mα α α α− +⎡ ⎤⋅ ⋅ ⋅ ⋅ ⋅⋅⎣ ⎦ . It is 
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clear that ( )det 1k
m =I . Therefore, ( ) ( ) ( )det det det 1H k H

new m= ⋅ =D I D , and H
newD  is a 

unimodular matrix. 

 

 

Appendix D 

In this appendix, it is proved that the matrix HOAO  is positive definite provided the l m×  

matrix O  has full row rank, where l m≤ , and 
12

2
2

H w
w m

x

σσ
σ

−
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

A H H I  .  

Proof: Firstly, 
12

2
2

H w
w m

x

σσ
σ

−
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

A H H I  is positive definite. This can be shown as follows. Let 

2

2
H w

m
x

σ
σ

= +X H H I . It is clear that X  is Hermitian and semi-positive definite, i.e., 0H ≥u X u , 

for all 1m×  vector u . Suppose 0H =u X u , we have 
2

2 0H H Hw

x

σ
σ

+ =u H Hu u u , and that implies 

m=u 0 . Hence, X  is positive definite, and so is ( ) 12
wσ −=A X . Secondly, since A  is positive 

definite, H=A J J  for an upper triangular matrix J  by applying, for example, the Cholesky 

decomposition [64]. Given 1l ×  vector v , 

2
0H H H H H H= = ≥v OAO v v OJ JO v JO v ,  

therefore HOAO  is semi-positive definite. In addition, if 0H H =v OAO v , it follows that 

H =O v 0  (as A  is positive definite), and =v 0  because O  has full row rank, and this 

concludes the proof.                       
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Appendix E 

Given n m×= +r H s w , where 2H
s mE σ⎡ ⎤ =⎣ ⎦ss I , HE ⎡ ⎤ =⎣ ⎦ www C . = = +r Br BHs Bw� , where B  

is an invertible square matrix with size n n× . In this appendix, it is proved that the BER 

performance of detecting s  on r  is identical to that on r�  if the same detection algorithm is 

applied, including MMSE, MMSE-SIC, CF-I, CF-II, and ML.  

Proof: ( )
1

12 2 2
2

1arg min H H H H
s s

s

E σ σ
σ

−
−⎛ ⎞⎡ ⎤= − = + = +⎜ ⎟⎣ ⎦ ⎝ ⎠

r w wG
G Gr s H HH C H HH C , and the 

output of MMSE filter on r  is 

1 1

2 2

1 1H H H H

s sσ σ

− −
⎛ ⎞ ⎛ ⎞

= + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

r w wG r H HH C Hs H HH C w                   (E.1) 

Also, 
1

2

2

1arg min H H H H H

s

E
σ

−
⎛ ⎞⎡ ⎤= − = +⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠

wr G
G Gr s H B BHH B BC B�

� . It is easily to shown that 

the output of MMSE filter on r�  is the same as that on r , i.e., = rrG r G r�
� . The BER 

performance is, therefore, the same while MMSE detection is applied. In reality, r  and r�  are 

sufficient statistics, because =r Br�  with invertible square matrix B . Thus, not only MMSE 

detection, but also MMSE-SIC and ML detections can obtain the same performance while they 

are applied on r  and r� . In addition, it can be shown that the results of matrix A  in covariance 

matrix of error vector expressed in Equation (2.10) are also the same while applying channel 

factorization algorithms on r  and r� . Accordingly, it leads to identical detection performance, 

and this completes the proof.   

 

 



 104

Appendix F  

In this Appendix, we will prove by contradiction that the square matrix �( )H
Gλ+ ⋅R R I  of 

Equation (4.26) is a non-singular matrix in the constrained optimization problem we considered.   

Proof: From Equation (4.24),  

l [ ]{ }{ } { }2arg min  ,  s.t. H H H
G G F

tr tr G⎡ ⎤= − − = =⎣ ⎦Q
Q Q R I RQ I Q Q Q .          (F.1) 

Because the objective function is lower bounded by zero, there exists at least one such lQ . In 

other words, there exists at least a pair of � l( ),  λ Q  such that  

�( )l  H H
Gλ+ ⋅ =R R I Q R ,                                              (F.2) 

and  

l l{ }H
tr G=Q Q .                                                      (F.3) 

Let ( ),i iλ v  be one of the eigenvalue-eigenvector pairs of the Hermitian matrix HR R . Then, it 

is easy to show that �( ),i iλ λ+ v  is also an eigenvalue-eigenvector pair of the matrix 

�H
Gλ+ ⋅R R I . Remember that R  in Equation (4.20) is a G G×  full rank matrix, that is 

( ) ( ) ( )rank rank rankH H G= = =R R R R . Suppose that the square matrix �( )H
Gλ+ ⋅R R I  in 

Equation (A.2) is singular, then there must exist a real �λ  such that � iλ λ= − . Therefore,   

�( ) ( )rank rankH H
G Gλ+ ⋅ < =R R I R .                                   (F.4) 

Equation (F.4) implies that there are no solutions for lQ  in Equation (F.2). This is, however, 

contradictory to the fact that there exists at least a pair of � l( ),  λ Q  to satisfy Equations (F.2) and 

(F.3). 
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