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稀少取樣下之組合式訊號測不準表示法研

究與其在訊號平均值估計之應用 
 
研究生：羅文輝         指導教授：陳信宏  博士 
                                      
 
 

國立交通大學電信工程研究所 

中文摘要 

在許多訊號處理應用中，量測訊號時往往無法單獨得出某種訊號成分，所以

對於組合式訊號(combined signals)之量測(measurement)與表示有其基本必要

性。現今對於組合式訊號之量測以及其相對不確定性(uncertainty)之表示及分析

方法上，僅對於特定條件下之輸出訊號可進行詮釋。在最新JCGM 101 (The Joint 
Committee for Guides in Metrology) 2008年公開文獻中對於上述組合式訊號之量

測與表示，仍然承襲過往GUM (Guide to the Expression of Uncertainty in 
Measurement)之範疇，以衍生分布(propagation of distribution)之模型描述組合訊

號，量測結果則以JCGM 101所建議之表示法為標準，此表示法之成員有：平均

值(mean)、標準誤(standard uncertainty)、母體涵蓋率之相對應覆蓋區間(coverage 
interval)、以及此覆蓋區間之端點(endpoints)位置。對於其中屬於標準誤之部分，

JCGM 以 law of uncertainty of propagation (LUP)之概念處理組合式訊號輸出之

聯合標準誤(associated standard uncertainty)，但是對於輸出型態之不確定性可能

影響平均值和覆蓋區間之估計卻未提出較佳之克服方法。故本研究之主要範圍在

於界定稀少取樣資料下之組合式訊號以最小估計誤差前提下之測不準現象最佳

表示模型。 

 JCGM 所遺留下的基本問題在於組合訊號之平均值使用算術平均數(sample 
mean)計算，覆蓋區間則只能針對近似對稱之分布進行計算。有鑒於此，本研究

針對JCGM於組合式訊號之量測問題所留下之難題提出可行的解決方式，並且以

Monte Carlo method進行驗證提出以下幾種量測表示之優化解決方法：(1)首先確

認組合式訊號之輸出型態為一近似常態分布之窗型機率密度函數型態 
(quasi-normal signals with asymptotic window-shape distribution, QSAW)；(2)提出

適合所有分布型態之覆蓋區間之pdf表示式，以pdf解釋偏態母體中所定義之the 
probably shortest CI在asymptotically symmetry pdf下就是the shortest CI；(3)將覆蓋

區間之意義延伸至統計覆蓋區間(statistical coverage interval)，並且以 truncated 
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normal 機率密度函數為基礎之聯合機率密度函數(variably truncated normal joint 
probability density function)模擬統計覆蓋區間，並進而估計組合訊號之平均值；

(4)在以quantile為基礎之前提下，提出非線性quantile estimation之方法，藉以改良

對QSAW組合式訊號之平均值估計； (5)運用使用於強健式統計法的 “the 
asymptotic minimax principle”來改進對QSAW訊號之平均值估計；(6)使用the 
quantile mapping invariance (QMI) principle來增進quantile-based平均值估計器之

效能，並將其應用至由取樣訊號所估計之相關矩陣訊號求取eigenvalue上限之問

題。 

實驗證明本研究所提出之嶄新數學架構模型可以完美補強JCGM在組合訊號

中之描述不足部分。 
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Abstract 

In many signal processing applications, to measure and represent combined 

signals is a necessary and essential work because it is generally difficult to obtain 

individual components of a combined signal. So far, there are only few attempts on 

analyzing the measurement and/or representing the uncertainty of some special 

combined signals. JCGM (the Joint Committee for Guides in Metrology) coordinated 

the publication of measurement standard since 1995 and followed the GUM’s (Guide 

to the Expression of Uncertainty in Measurement) suggestion to publish a standard, 

JCGM 101, to outline the representation of combined signals by an additive model 

which models a combined signal as the result of the propagation of different input 

source signals. The suggested format of JCGM 101 includes the following four items: 

mean, standard uncertainty, coverage interval (CI) and its two endpoints. The JCGM 

standard uses the law of uncertainty of propagation to evaluate the associated standard 

uncertainty of a combined signal. But it does not provide the way to explore the 

effects of the output uncertainty on mean and coverage interval estimations. This 

motivates us in this study to exploit the optimal representation of the uncertainty of 

combined signals based on the minimal estimation error criterion under small sample 

size condition. 

One basic problem of the JCGM standard is the use of sample mean to estimate 
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the mean of a combined signal. It therefore neglects the uncertainty resulted from the 

rough mean estimation when the sample size is small. Another problem is that it 

evaluates the coverage interval based on the assumption of asymptotically symmetric 

distribution. This study proposes several approaches to attacking these problems and 

examines them by the Monte Carlo simulations. Items studied include: (1) We verify 

that the output of a combined signal distributes like a quasi-normal signal with 

asymptotic window-shape distribution (QSAW). (2) We derive a unified probability 

density function (pdf) for CI to eliminate the need of skewness recognition before the 

evaluation of CI. (3) We extend the CI representation to the statistical CI 

representation and form the variably truncated normal joint probability density 

function. A robust quantile-based mean estimator is accordingly proposed. (4) We try 

a nonlinear modification of the proposed quantile-based mean estimator and verify its 

robustness with specially focusing on the case when the pdf of the combined signal 

approximates a rectangular pdf. (5) We follow the robust statistical method using “the 

asymptotic minimax principle” to refine the sample mean. (6) We employ the quantile 

mapping invariance (QMI) principle to improve the efficiency of the quantile-based 

mean estimator and apply it to the task of finding the upper bound of eigenvalues 

from the correlation matrix calculated from sparse observed samples. 

We believe that the proposed unified representation of CI and its application to 

the quantile-based mean estimation are very promising and can contribute to extend 

the usage of the JCGM standard. 
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ACRONYMS 
BLUE the best linear unbiased estimation 

cdf     cumulative distribution function 

CI      coverage interval 

CLT  central limit theorem 

GLI  Gauss Legendre integration 

i.i.d  independent and identical distribution 

MLE    maximum likelihood estimation 

MSE    mean square error 

MMSE  minimum mean square error 

MLL marginal log likelihood 

pdf     probability density function 

QMLE  quantile-based maximum likelihood estimation 

QSQ    quasi symmetric quantiles 

UBE    upper bound of the eigenvalues 

VTNJ pdf   variably truncated normal joint pdf  

 

NOTATION 

? (.)p  pdf or conditional pdf for a certain variable  

Pr(.)  probability 

x       random variable of normal distribution 
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? (.)f  pdf of a certain random variable 

(.)xf  pdf of the normal population of  random variable x with mean u and 

standard deviation σ ; i.e., 2( ) ( , )xf x N u σ=  

(.)xF  cdf of the normal population of  random variable x ; ( ) ( )
x

x xF x f y dy
−∞

= ∫  

u      population mean 

σ      standard deviation of population 

:i nx ,1 i n≤ ≤    the ranked random variable resulting from sorting the samples of  x  

n       sample size 

[0,1]u  standard uniform distribution in [0,1]  

ξ   random sequence of the standard normal distribution 

:i nξ ,1 i n≤ ≤    order statistics random variable generated from the ranked random 

variable ξ of the standard normal pdf 

nX      random sequence of length n  

[ ]? .Ε  or [ ](?) .Ε  expectation operator 

[ ],Cov ⋅ ⋅  covariance operator 

[.]Min  take the minimum value in set 

I      identity vector 

B       covariance matrix 

L       likelihood 

r      range 

c      coverage 
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(.)U     unit step function 

( , )tZ Cc n  normalized factor for the fixed coverage point tCc , t  is the sampling 

index for Gauss-Legendre Integration 

jη   root of the Hermite polynomials expanded coverage the order of Hermite 

polynomials 

[ , ]a b    the interval for interval estimation of coverage 

( )Hm iw γ  the roots of the i-th Hermite polynomial 

(.)vP    the v -th Legendre polynomial 

sr       the random variable of range on standard normal pdf 

(.)Φ    cdf of standard normal distribution 

x      if no emphasis, it is the sample mean or average of the truncated data 

2x      mean of square 

( )
vP tw κ  the weighting coefficient of the t-th root of the v th order Legendre 

polynomial 
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Chapter 1: Introduction 

1.1 Motivation 

The observation of nature which constitutes an experiment will almost inevitably take 

the form of a measurement. Measurement is represented as the precision type related 

as whether the experiment is effective, or in the other words, how much is taken about 

its confidence corresponding to the experiment.  

Does the measurement merely have the purpose of standing for a qualitative 

conclusion? Such a question causes the focus of the meaning of any experiment 

whenever it is significant not only for someone’s special idea but also lay themselves 

open to all the frailties of human judgments. That is, confidence report is needed in 

the formal measurement report. According to the requirement of duplicate 

verifications for the results of any new approach, the workers expect to convey the 

experimental results to someone else based on the condition of laboratory or field 

testing invariantly so that the level of confidence must be also included in the 

measurement task. Besides, confidence plays the key role to support whether to 

accept the other’s report so as to avoid performing a duplicate experiment. Thus the 

center problem for measurement task includes showing the confidence level about the 

results.  

The best qualification of measurement is admitted as a statement of the result of 

human’s observations with high confidence. Because of this fundamental role of 

measurement it is necessary to consider in some detail what a measurement 

practically is. That is, how much confidence does we believe in the observations? 

Why does the measurement task pay attention to the confidence factor associated with 

the practical experiment? According to the scientific revolution, we think that the 

“uncertainty principle” brings the reason for any measurement event, especially in 

micro-electronics ones. For the reason to overcome the uncertainty representation, the 

Physics Laboratory of National Institute of Standards and Technology (NIST) 

conducts the standards and measurement method for electronic, optical and radiation 

technology for US. and takes the general Type A or Type B expression as the report 

for measurement task.   
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NIST keeps the policy based on the approach to expressing uncertainty in 

measurement recommended by the CIPM1and the evaluation given in the Guide to 

the Expression of Uncertainty in Measurement (GUM), which was prepared by 

individuals nominated by the BIPM, IEC, ISO, or OIML. GUM is the most authorized 

reference on the general application to express measurement uncertainty till 1995. 

After that time, the Joint Committee for Guides in Metrology (JCGM) collects the 

above document and releases the new methods and standards for measurement. Thus 

this study will keep the work to follow the document published by JCGM as the 

reference. Although JCGM spent a long time for the general expression of uncertainty 

measurement, there are some occasions not included for practical applications and we 

focus on those which measure the combined signals on sparse data condition.  

1.2 Stating the Function for Coverage Interval   

Signal processing is a basic technique to process the sensoring signal and further 

sends the processed signal to the next stage or outputs it. In addition to choose a 

proper singal processing technique, we also need some other tools to check the 

properties of the input signal, such as coverage interval (CI), normal range, and 

reference interval, in order to determine whether the input signal is quantified to take 

the utility. CI is the predicative interval including a measured random quantity based 

on a pre-specifyied proportion of population. It is frequently applied to the cases with 

normal population assumption where they take the minimal CI to replace all other 

possible values of CI. The principal function of CI is to state the confidence and 

uncertainty about the measured quantities. It defines the prediction interval of values 

where 95% of the population fall into as suggested by JCGM [33]. For instances, we 

may reject the outlier data from the measured signal if the data are away from the 

mean value grater than 2 times of the standard deviation. A risk representation can 

also be applied by the way of CI to make a reject decision on sampling data if its 

value is out of the CI extent.  

                                                 
CIPM: International Committee for Weights and Measures  

 BIPM: International Bureau of Weights and Measures  

 IEC: International Electrotechnical Commission  

 ISO: International Organization for Standardization  

 OIML: International Organization of Legal Metrology 
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Fig. 1: Measurement is the front stage of signal processing for quantifying data 

recognized 
 

Although CI is used as the standard item for the JCGM format of measurement tasks, 

there still have some shortcomings not being overcomed so far. The most commomly 

encountered problem is that CI is usually evaluated based on the assumption that the 

population has a asymptotically symmetric pdf, but we know this is not always 

appropriate, especially at the occasion of combined signal. The other CI computation 

method is the non-parametric method which is constructed basing on the percentile 

evaluated by the expectation of order statistics [1]; that is, we may take the quantile 

mapping to the corresponding percentile as the desired endpoint. The main difficulty 

of using CI for combined signal is that we don’t know whether the symmetry property 

of the output signal is valid when applying the CI computng algorithm. There are still 

other statistical techniques, such as logarithm transform and Box-Cox transformation, 

suggested for enhancing the symmetry properties of the analyzed signal and the 

outliers examining are also necessary.  

1.3 Goal and Scope 

Combined signal is one of the most popular measured signals for the practical usage 

and is widely applied to the field test as well as to the industry production. In GUM, a 

combined signal is represented by an additive model in which the pdf of the output 



 

 4

signal is modeled as the result of a propagation of input pdfs. Some special areas 

concern the measurement task of combined signals and treat it as an integration of the 

affecting factors caused from the environment.  

∑ ?

 
Fig. 2: Un-determined properties of the output pdf resulting from combining different 

input pdfs. 
 
In accordance with the report expression of  JCGM 101, coverage interval (CI) with 

its two endpoints, mean value and standard uncertainty are the three members of its 

main concern. They are also the main concern of this study. Due to the fact that the 

output of combined signal is random, we think the best description for CI 

representation is to formulate its pdf . Issues addressed are briefing as follows. First, 

we are interested in the formulation to unify the CI representations for skew and 

non-skew pdfs. Conventionally, different approaches are employed for these two 

types of pdfs to calculate their respective CI. Besides, we are also interested in the 

truncated probability density function normalized to its coverage. The non-skew, 

asymptotically symmetric pdf draws our special attention because it is the typical 

output pdf shape of combined signals. Moreover, the usual evaluation of 

asymptotically symmetric CI involves the interval composing of an upper quantile 

(half coverage) and a lower quantile (half coverage) with respect to the mean value. A 

robust CI estimation needs accurate quantile and mean formulations. This is the rule 

followed in the past studies so is the current study. There are a few exceptions to the 

rule. One is that we can consider giving a robust CI before the mean estimation, and 

this may leads to a good performance for mean estimation. A study will hence be 

conducted to try to use the traditional coverage interval to assist in the mean 

estimation. The issue is that if we are giving a more accurate coverage interval, can 

we make some progress on improving the mean estimation? Besides, we will 
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introduce three new approaches of mean estimation and compare them with the 

classical sample mean estimator. They include a quantile-based mean estimator using 

the coverage interval, a nonlinear mean estimator and a robust statistical one using the 

minimax principle. Lastly, we will shape the proposed quantile-based mean estimator 

to a quasi-symmetric quantile-based one and use it in an application to find the upper 

bound of the maximum eigenvalue (UBE), to examine the usage of the robust JCGM 

expression in measurement.  

 

 
Fig. 3: This study reverses the traditional direction for CI estimation respect to the 

asymptotically symmetry pdf and further extending CI for mean estimation 
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Chapter 2: Paper Review 

We review some literatures related to the three main topics discussed in the 

dissertation. They include coverage interval which is a member of JCGM expression, 

mean estimator, and finding UBE, which is an application of mean estimation. The 

sampling size requirement will be especially concerned in the following discussions. 

2.1 Coverage Interval 

Coverage interval (CI) is originally regarded as a parameter to represent the 

uncertainty of measurement. Fotowicz [2] proposed an analytic method to calculate 

CI from the distribution of the output of combined quantities, formed by taking the 

convolutions of the pdfs of its constituents which were assumed to be rectangular 

mixing with one of Student’s t-, triangular, or normal distributions. It made some 

progress in the realization of CI without using complex numerical computations. 

Nadarajah [3] continued to extend the algorithm and applied it to a wide range of 

usage with higher degree of freedom. In those studies, CI was always used as a 

confidence measurement in the sampling plan.  

CI is affected by coverage constraint realistically. If we turn to a different viewpoint 

relating to the coverage problem, the “statistical CI” is also a good tool to describe the 

uncertainty. Wilks [4] proposed a statistical CI, defined by 

1 2{ [( , )] } 1xPr p T T β α≥ ≥ − , (2-1) 

to describe the probability that a random variable x includes a β -content proportion 

of the population or more in the interval 1 2[ , ]T T  is greater than the threshold 1 α− . 

The statistical CI has been proved to represent a certain confidence level [45]. In 

those past studies, the confidence level was usually obtained by the Monte Carlo 

simulations [ 5 , 6 ].There were some previous studies concerning the issue of 

randomness of coverage. The early topic was called “the random division of an 

interval”, which means the range may be cut as many small sub-ranges which can be 

added to calculate the coverage [7,8]. 
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The representation of CI can be categorized into two classes: parametric and 

non-parametric CI. Lin et al. [9] suggested using a non-parametric formulation to 

calculate CI when the population pdf is unknown. Chen [47] suggested that, while 

adopting the parametric CI approach, it had better take the minimum of all possible 

values of CI for computational simplification. In the past, CI was mainly applied to 

the cases of resource constrained for the original population. For instances, a clinical 

chemistry experiment first applies tests to healthy people to create a CI, and then 

takes the same test to a patient and collects the outputs. If the outputs are out of the CI, 

it implies that the patient has got a disease. In medical engineering, to collect large 

samples containing all the records of patients is a time-consuming task so that we 

should sometimes take a sampling plan of small sample size. Thus data sparseness is 

inevitable in this kind of application because the process of collecting data is 

time-consuming and expensive.  

The use of CI is popular for the chemical substances in biological fluid for reference 

population [10], and for some other related fields of measurement. The International 

Federation of Clinical Chemistry and Laboratory Medicine (IFCC) [11] has published 

a series of recommendations for the advanced utilizations of CI. IFCC defined the 

percentile between 0.025~0.975 as the standard CI of 95% reference interval, and 

suggested that the best population (reference values) size had better be greater than 

120 so that a high confidence reliability can be guaranteed. IFCC made more rules 

and standards for the reference interval estimation and computation, but without 

further addressing the issue of the influence of sample size. This study discusses the 

CI problem concerning the size of sample data and deals with how to control the 

categories of influences if the sample size is far less than 120. We will take a new 

viewpoint to analyze the effect of sample size on CI. Actually, it is not necessary to 

formulate CI from the viewpoint of the aggregation method. If we evaluate the two 

endpoints of CI separately, we may consider estimating CI with the quantiles based 

on order statistics. The quantile-based estimator [12] was recently proposed by 

Heathcote et al. It performed very well for the response time estimation and showed 

high efficiency to the parameter estimation for some distributions. 
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2.2 Mean Estimation 

The second topic we are interested is the mean estimation of population. We will try 

to use CI in the mean estimation basing on the asymptotically symmetric pdf 

assumption. In this case, mean is the midpoint of the two endpoints of CI and we truly 

believe that a more accurate estimation for CI will lead to a more accurate estimation 

for mean value.  

In parameter estimation of using normally-distributed sparse data, there are two 

popular methods: the best linear unbiased estimation (BLUE) method and the 

maximum likelihood estimation (MLE) method. Balarkrishnan and Cohen [13], Lloyd 

[14], and Teichroew [15] proposed the BLUE method for parameter estimation of 

normal random variables by using order statistics. BLUE is a weighted least-square 

algorithm basing on the Gauss-Markov least-square theorem. It was popularly used 

for sparse data analysis. It is known that BLUE is unbiased and more efficient if it 

takes the censoring sampling scheme. We briefly discuss BLUE as follows. 

Let x  be a normal random variable with pdf 2( ) ( , ).xf x N u σ=  Assume that there 

are n  independent observed samples 1, , nx xL  of x. Let 1: :, ,n n nx xL  be the ranked 

samples of 1, , nx xL  in increasing order. The BLUE estimator is formulated as the 

sum of products of the observed data and properly-chosen coefficients. By performing 

the standard normal transformation, =( ) /i ix uξ σ− , to the observed data and sorting 

them in increasing order, we have 

1[ , , ]T
n nX x x= L  

1[ , , ]T
nξ ξ ξ= L  

{ }: :i n i nE ξ ρ=  

: : , :{ , }i n j n i j nCov ξ ξ β=    

{ }
{ }

: :i n i n

n

E x u

E X u

σξ

σξ

= +

= Ι +
    (2-2) 

[ ] 1
I 1, ,1 T

n n×
= L  
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2B Iσ=     (2-3) 

for 1 ,  and i j n i j≤ ≤ < , where In  is an n-dimensional all-1 vector. Consider the 

generalized variance: 

( ) ( )1I IT
n n n nX u B X uσξ σξ−− − − −       (2-4) 

Minimizing it with respect to u  and σ , we obtain. 

1 1 1

1 1 1

I I I I

I

T T T
n n n n n
T T T

n n

u B B B X

u B B B X

σ ξ

ξ σξ ξ ξ

− − −

− − −

+ =

+ =
 (2-5) 

The solution of Eq.(2-5) is 
1 1 1 1

*
1: :1 1 1 2

1

I I
( )(I I ) ( I )

T T T T n
Tn n

n n i i nT T T
in n n

B B B Bu X X x
B B B

ξ ξ ξ ξ ξ α
ξ ξ ξ

− − − −

− − −
=

⎧ ⎫−
= = − Δ =⎨ ⎬−⎩ ⎭

∑    (2-6) 

1 1 1 1
*

2: :1 1 1 2
1

I I I I I
( )(I I ) ( I )

T T T T n
Tn n n n

n n n i i nT T T
in n n

B B B B X X x
B B B

ξ ξσ α
ξ ξ ξ

− − − −

− − −
=

−
= = Δ =

− ∑    (2-7) 

where *u  and *σ  are the estimated parameters, and 1:iα  and 2:iα  are weighting 

coefficients. These coefficients have been tabulated by Sarhan and Greenberg [16,17] 

with entries in the 1956 tables being given for sample size up to 10 and in 1962 up to 

20. 

Generally speaking, BLUE performs well in small sample size. But it needs a table to 

look up, and this is a shortcoming. The other technique used is the MLE method 

which is often applied to the truncated normal distribution in sparse data condition. 

Cohen [54] derived the singly truncated and doubly truncated maximum likelihood 

estimators and found that they outperformed BLUE when the sample size was greater 

than 20. Cohen recognized the sparse data problem as a truncated normal pdf and 

defined its likelihood by  

2
1: 1:

2
11: 1:

( ) ( ) ( )exp( )
22 ( ( ) ( ))

n
n

n n i

ix n x n

UnitStep x x UnitStep x x r x uL
F x r F x σπσ =

⎛ ⎞− − − − −
= −⎜ ⎟⎜ ⎟+ −⎝ ⎠

∑  (2-8) 

If we take the transformations of 1: 1:( ) /n nx uξ σ= − and : :( ) /n n n nx uξ σ= −  and 

differentiate the resulting log-likelihood function with respect to u  and σ , we 

obtain the following two equations. 
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1: :
2

1: 1:

1: 1: : :2 2

1: 1:

( ( ) ( )) 1 ( )
( ( ) ( ))

( ( ) ( ) ( )) 11 ( )
( ( ) ( ))

n
n x n n

i
in n n

n
n n n n n n

i
in n n

n
x u

x u
n

ξ

ξ ξ

ξ ξ

ξ ξ

φ ξ φ ξ
σ ξ ξ σ

ξ φ ξ ξ φ ξ
σ

ξ ξ

=

=

−
= −

Φ −Φ

⎧ ⎫−⎪ ⎪+ = −⎨ ⎬Φ −Φ⎪ ⎪⎩ ⎭

∑

∑
        (2-9) 

where  and φ Φ are the standard normal pdf and cdf, respectively. By defining two 

new random variables 

1:

1: 1:

( )
( ) ( )

n
L

n s nr
ξ

ξ ξ

φ ξ
ξ ξ

Θ =
Φ + −Φ

 

and 

1:

1: 1:

( )
( ) ( )

n s
R

n s n

r
r

ξ

ξ ξ

φ ξ
ξ ξ

+
Θ =

Φ + −Φ
, 

 
we obtain the following two equations 

1: 1:
1 1: :

: 1:

( , ) n L R n
n n n

n n n

x xH
r

ξξ ξ
ξ ξ

− Θ −Θ −
= =

−
 (2-10) 

( )

22
1: 2

2 1: : 22
: 1:

1 ( )( , ) n L R L R
n n n

n n n

SH
r

ξ ξξ ξ
ξ ξ

+ Θ − Θ − Θ −Θ
⇒ =

−
  (2-11) 

2.3 The Method Suggested by Cohen 

Cohen proposed a method to estimate mean and variance of normally distributed 

random variable. Let L
L

x uξ
σ
−

=  and R
R

x uξ
σ
−

= , where Lx  and Rx  are the left 

and right truncation points, respectively. The standard deviation can be estimated by:   

R L

R L

x xσ
ξ ξ

−
=

−
. 

The method first models all data samples by a truncated normal distribution shown 

below:  

1: 1:

1: 1:

( ) ( ) ( )( )
( ) ( )

x n n
T

x n x n

f x UnitStep x x UnitStep x x rf x
F x r F x

− − − −
⇒

+ −
 (2-12) 

where the left truncation point Lx  is replaced by the minimum order random variable 

1:nx  and so is to the right truncation point Rx  replaced by ,n nx . It then defines a 
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likelihood function by  

1: 1:
1

( ; , , , ) ( ( ; , , , ))
n

n T i n
i

L x u x r f x u x rσ σ
=

=∏  (2-13) 

By taking 1:{ ( ; , , , )} 0nL x u x r
u

σ∂
=

∂
, it obtains 

1: 1:
2

11: 1:

( ( ) ( )) 1 ( )
( ( ) ( ))

n
x n x n

i
ix n x n

n f x f x r x u
F x r F xσ σ =

− +
= −

+ − ∑  (2-14) 

It then takes the standard normal transformations for the two endpoints of ranked 

samples, 1:nx  and :n nx , to obtain 

1:
1:

n
n

x uξ
σ
−

=  and :
:

n n
n n

x uξ
σ
−

= . 

The corresponding CI in the transform domain is : 1:s n n nr ξ ξ= − . It is noted that the cdf, 

( )ξ ξΦ , of the transformed random variable is related to the cdf, ( )xF x , of the 

original random variable by 1: 1:( ) ( )x n nF x ξ ξ= Φ  and : :( ) ( )x n n n nF x ξ ξ= Φ . By denoting 

1:

1: 1:

( )
( ) ( )

n
L

n s nr
ξ

ξ ξ

φ ξ
ξ ξ

Θ =
Φ + −Φ

 and 1:

1: 1:

( )
( ) ( )

n s
R

n s n

r
r

ξ

ξ ξ

φ ξ
ξ ξ

+
Θ =

Φ + −Φ
, it has 

( )L Rx u σ− = Θ −Θ  (2-15) 

By taking 1:{ ( ; , , , )} 0nL x u x rσ
σ
∂

=
∂

, it obtains 

21: 1: 1: 1:
3

11: 1:

( ( ) ( ) ( )) 1 ( ) 0
( ( ) ( ))

n
n x n n x n

i
ix n x n

n x f x x r f x r n x u
F x r F xσ σ σ =

− − + +
− + − =

+ − ∑  (2-16) 

Eq.(2-16) can be further simplified and expressed by 
 

{ }

1: 1: : :2 2

1: 1:

2 2 2 2 2
1 2

1 1

( ( ) ( ) ( )) 11 ( )
( ( ) ( ))

1 11 ( ) ( ) ( )

n
n n n n n n

i
in n n

n n

L R i
i i

x u
n

x x x u S x u
n n

ξ ξ

ξ ξ

ξ φ ξ ξ φ ξ
σ

ξ ξ

σ ξ ξ

=

= =

⎧ ⎫−⎪ ⎪+ = −⎨ ⎬Φ −Φ⎪ ⎪⎩ ⎭

Θ − Θ + = − + − = + −

∑

∑ ∑
 (2-17) 

where x  and 2S  are mean and variance of the data samples. If σ  is known, the 

above equation can be solved by an iterative procedure. 
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If σ is unknown, Cohen suggested to solve the following two equations: 

1: 1:
1 1: :

: 1:

( , ) n L R n
n n n

n n n

x xH
r

ξξ ξ
ξ ξ

− Θ −Θ −
= =

−
  (2-18) 

( )

22
1: :

2 1: : 22
: 1:

1 ( )( , ) n L n n R L R
n n n

n n n

SH
r

ξ ξξ ξ
ξ ξ

+ Θ − Θ − Θ −Θ
⇒ =

−
  (2-19) 

where w r= , 1 1:nv x x= − , and r  is the range of the data samples. Eqs.(2-18) and 

(2-19) can be solved by the Newton and Raphson method. But, it is time-consuming 

unless good initial values are provided. Alternatively, Cohen [18] proposed the 

following iterative procedure to solve them: 

( )( 1) ( ) ( )1:
:

( 1)
1:

1:1

i i in
n n L R

i
n

n

x x
r

x x
r

ξ
ξ

+

+

−⎧ ⎫− + Θ −Θ⎨ ⎬
⎩ ⎭=

−⎛ ⎞−⎜ ⎟
⎝ ⎠

 (2-20) 

( )( 1)
: 1:
i

n n nA Br x x rξ + = + − −  (2-21) 

( )( ) ( )i i
L RA = Θ −Θ  

2
2

2

2

4

2

SC C
rB A

S

+ +
= +  

( )1: in
R

x xC A
r
−

= +Θ  

S : variance of the test sequence 
r : range of the test sequence 
i : iteration index 

2.4 Sample Mean Estimator 

In the past, sample mean is widely used in the mean value estimation for any signal 

no matter what its original pdf is. The main reason of using sample mean is that it is 

not only a uniformly minimum variance unbiased estimator (UMVUE) but also a 

random variable of the central limit theorem (CLT). In this study, we will propose a 

new mean estimator basing on the proposed CI representation and compare its 

performance with the traditional sample mean estimator [19]. Our study will specially 

focus on the mean value estimation problem for the output of combined quantities in 
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the sparse data condition. Bowen [20] has pointed out that CLT may be explained as 

the sum of independent variables with the characteristic function formed by the 

product of the component characteristic functions. If we can ignore the unbiased 

requirement, there exist some biased estimators that outperform sample mean. Stearls 

[21] and Gleser [22] discussed a new approach to giving coefficients of variation of 

sample mean. Ashok et al. [23] further proposed a realistic method to adjust the 

coefficients of variation of sample mean to improve its performance. 

Up till now, if we want to predict the mean value of combined quantities accurately, 

the only way is to take the sample mean on heavy observations. In practical 

applications of measurement, the basic volume required for one digit accuracy is 610  

observations for 95% coverage interval [24]. If, there are not enough samples to 

support this rule, a medium- or small-size sampling plans should be taken. Besides, 

the good property of UMVUE for sample mean may be ineffective for the case of 

combined quantities which is of quasi-normal distribution. This is because the 

property of UMVUE is derived from the maximum likelihood estimation (MLE) on 

the basis of the normal pdf assumption. 

In this dissertation, a new method of mean value estimation, referred to as the 

quantile-based maximum likelihood estimator (QMLE), is proposed. The classical 

application of quantiles is the general usage of empirical quantiles. Koenker and 

Bassett [25] extended the empirical quantiles to the regression quantiles, which is 

specially useful for predicting the bounding information. Gilchrist [26] collected 

many studies about the estimation, validation, and statistical regression with quantile 

models. In the single quantile application, Giorgi and Narduzzi [27] gave the quantile 

estimation for the self-similar process.  

In the proposed QMLE, the quantiles are determined by the maximum percentage of 

population, i.e. coverage, so that it is composed of a couple of quasi-symmetric 

quantiles (QSQ). According to the past studies, the coverage-constrained quantiles 

will obey the properties of symmetric quantiles whose variances asymptotically 

approach to the Cramer-Rao lower bound [28]. The symmetric quantiles were 

described with strict definition given in [28]. But we treat them in a more flexible way 

as the ranked variables of the first ordered sample 1:nx  and the last ordered sample 
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:n nx . Hence the QSQ we considered are both empirical and quasi-symmetric quantiles. 

Lo and Chen [29,30] also derived good quantile-based estimators for the sparse data 

condition. In this study, we plan to derive the QMLE basing on the order statistics and 

expect that it can support not only the concept of empirical quantiles but also the 

quasi-symmetric quantiles. Otherwise, we would still need a quantile function defined 

below to link quantiles and MLE 

( ) Pr( )pQ p X x p≡ ≤ =  (2-22) 

Here, the value px  is called the p-quantile of population. 

2.5 Quantizing the Combined Signal 

Generally speaking, the measured quantities are affected by unknown noise so that 

they are always expressed in random representation. In the past studies, Fotowicz [2] 

suggested using “uncertainty ratio” to represent the combined signal comprising at 

least one input quantity with rectangular distribution. Suppose iz , 1 i N≤ ≤ , are 

independent signals and ic , 1 i N≤ ≤ , are corresponding weighting coefficients, then 

the linearly combined output x  can be expressed by: 

1 1 2 2 N Nx c z c z c z= + + +L . (2-23) 

The pdf of x is an R*N distribution which is the convolution of a rectangular 

distribution and a normal distribution, and can be expressed by:  

( )

2
3( )

2
3( )

1( )
2 6

tx UR

RN x UR
c

f x e dt
K URπ

−
+

−
= ∫ , (2-24) 

where 

2 2

[ ( )]

( ) [ ( )]
i

c i

Max u x
UR

u x Max u x
=

−
; (2-25) 

2 2 2

1
( ) ( )

N

c i i
i

u x c zσ
=

=∑  is the approximate variance of the combined signal; ( )izσ  is 

the standard deviation of iz ; cK  is a normalization constant; and ( )iu x  is the 

standard deviation of the i-th input random variable which is subject to the 

rectangular distribution. The endpoint of p-quantile for the R*N distribution can be 
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expressed by 

2

1

( )( ( ))
N

p RN i
i N

t vU k u y
k

μ
=

= + ∑ , (2-26) 

where μ  is the population mean, 2

3 (1 ( ) 2 ( )(1 ))
( ) 1RNk UR UR c
UR

= + − −
+

 is a 

coverage factor, c  is a coverage, ( )t v  is a quantile of Student’s t-distribution, Nk  

is the corresponding quantile of coverage factor, e.g. Nk =1.96 for c =95%, and N is 

the number of input quantities. If the distribution of the i-th input random variable 

coincides to be a normal, rectangular, Student’s t-, or triangular distribution, then 

( ) / 1Nt v k = . 

Fig. 4 displays the R*N distribution for UR = 1, 2, 3, and 4. According to Fig. 4, we 

describe the measured signal of combining quantities by additive mixture model as 

quasi-normal signals with asymptotic window-shape distribution (QSAW). A 

common property of QSAW signals is that they are usually distributed flatter than the 

normal pdf in the central part and then sharply decaying to zero at both ends. As 

shown in Fig. 4, the pdf of a QSAW signal looks like a normal distribution for small 

UR and a rectangular distribution for large UR. 

 
Fig. 4: An example of the QSAW signal with zero-mean R*N distribution for some 

uncertainty ratio (UR)  
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2.6 The Issue of Application to the Finding of UBE 

In this study, we will consider the use of robust mean estimation in signal detection. 

Generally, the energy-based signal activity detection approach is robust to noise and 

may cost down the non-coherent detection within a communication receiver. Zeng et 

al. [31] showed the benefits of using the maximum eigenvalue as a result of energy 

representation on large sample size. Recently, compressive sampling (CS) [32] is an 

emerging research topic aiming at restoring a signal in an undersampled condition 

using special vector bases with prior knowledge of the signal. In addition to CS, 

eigen-analysis is also a popular technique to consider spanning a signal with sparse 

eigenvectors in which the prior knowledge of needing signal to be normally 

distributed is released. We will not only consider the combination of energy detection 

and sparse data sampling, but also fuse the demand of practical signal processing. For 

instance, measuring signal in a time-varying environment usually results in 

representing the measured signal as the output of combining quantities by an additive 

mixture model, as suggested and outlined in the manual published by JCGM [33]. 

Moreover, the combined quantities are usually resulted from the propagations of 

multi-source signals with different pdfs so that the representation for the pdf of the 

output random variable is not tractable. 

Unexpectedly, the pdf of the maximum eigenvalue is too complex and inconvenient 

for computation [34] so that Ma and Zarowski [35] have tried to use the upper bound 

of the maximum eigenvalue, i.e., Dembo’s bound, for an efficient signal 

representation. In the study, we are interested in using more accurate mean estimation 

to improve the finding of upper bound of eigenvalues (UBE) from sparse observed 

samples.  

Since the environmental noise is usually time-varying or color, the traditional 

white-noise assumption is not realistic so that the mean value of noise can not always 

be regarded as zero. Hence this study proposes a new algorithm to evaluate the mean 

value in terms of noise combined with signal.  

Let :i nx , 1 i n≤ ≤ , represent the ranked random samples generated from the output of 

Eq.(2-23). In this study, we plan to estimate the mean value of a QSAW signal by a 

new quantile-based maximum likelihood estimator (QMLE) using only the 
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quasi-symmetric quantiles (QSQ), i.e., the minimum sample, 1:nx , and the maximum 

sample, :n nx . We will compare the performances of the QMLE and sample mean on 

mean estimation as well as on UBE finding. 

There are two parts in our task: one is the QMLE mean estimation aiming at reducing 

the uncertainty of the estimated correlation matrix and another is the improved upper 

bound of eigenvalues finding. Conventionally, the mean value of a signal is estimated 

by sample mean which is UMVUE derived basing on the assumption of normally 

distributed observations. Although sample mean is a good mean estimator, there still 

exist some biased estimators that outperform it [23]. In mean estimation for 

quasi-normal signals, the non-parametric order statistics method was applied to 

overcome the mismatch between normal and quasi-normal data. In the study, we are 

interested in the special case of quantile application to mean estimation using the 

QSQ. The QSQ are determined by the maximum percentage of the observed samples 

covering the original population, i.e., the coverage which is the cumulative 

probability calculated between the two endpoints of range. There are good evidences 

to show that the symmetric property of QSQ is more efficient if they occupy either a 

very large or very small percentage of the population [36]. Lastly, the task of UBE 

finding is attractive because the maximum eigenvalue is an important cue of signal 

activity detection for fading channels with unknown dispersion [31] in multiple-input 

multiple-output (MIMO) systems [37]. Taparugssanagorn and Ylitalo [38] further 

indicated the upper bound of MIMO channel capacity being affected by the 

distribution of the maximum eigenvalue, which was evaluated by the covariance of 

short-term phase noise. Zhang and Ovaska [39] extended the eigenanalysis to singular 

value decomposition based on signal-to-noise ratio for the analog-to-digital converter, 

but their method is not realistic for the cyclostationary detection in spectrum reuse 

application. Wu et al. [40] proved that the well-trained eigenvector feature of vehicle 

sound signature was capable of vehicle recognition. UBE acts as the maximum 

eigenvalue owing to the fact that this representation has been well discussed for the 

case of deterministic covariance matrix with Hermitian, symmetric positive-definite, 

or Toeplitz property, Park and Lee [41] improved it by using the technique of series 

expansion. They proposed the following equations to find a better upper bound of 

maximum eigenvalue than the classical Dembo’s bound: 
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⋅
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where m mR ×  is the correlation matrix of the input signal, r > 0 is the order index, ε  

is an eigenvalue, 1mη −  is the maximal eigenvalue of ( 1) ( 1)m mR − × − , b is an 

(m-1)-dimensional vector, and a is a scalar. Up till now, there are seldom studies 

devoting to the uncertainty analysis for the estimation of correlation matrix on sparse 

data condition. This study proposes the refreshing change-solution against the issue. It 

avoids the well-known heavy resampling and computation of the bootstrapping 

method [42] for small sample size. The main uncertainties of additive model result 

from the propagation of each source signal. In the reasoning for uncertainty of 

propagation, Denguir-Rekik et al.[43] fused the multiple marginal effects based on 

the multi-criteria for aggregated decision making. Ferrero and Salicone [ 44 ] 

addressed the issue of utilizing the random-fuzzy variable to fit the propagation of 

distribution. 
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Chapter 3: The Probability Density Function of Coverage 

Interval  

3.1  Introduction 

 

Coverage interval (CI) is an interval with two confidence extremes that covers a 

specified portion of the population. It has been intensively studied in recent years in 

biology, quality control, medical engineering, and some other research areas. CI is 

called reference interval in clinical chemistry [45] and is constructed based on the 

reference values belonging to the population. Motivated by the needs of processing 

data on small sample size condition for some newly developing areas, such as data 

mining for knowledge exploration and data representation for pattern recognition, this 

study deals with the problem of expressing CI under sparse data condition. The issue 

of applying CI representation to parameter estimation to against the large uncertainty 

caused by sparse data will also be addressed. 

The International Organization for Standardization has issued a document, ISO GUM 

Suppl. 1: Guide to the expression of uncertainty in measurement supplement 1 [24], to 

recommend applying CI as an expression of uncertainty measure to meet the recent 

trend of treating CI in a probabilistic way. The GUM method of evaluating and 

expressing uncertainty has been adopted widely by the industry. It can also be found 

from the manuals published by the Joint Committee for Guides in Metrology (JCGM) 

[46] that the probability assigned to the input quantity is important. But, a weakness 

of the probability assignment suggested by JCGM lies in the use of deterministic CI. 

A general way to represent CI, referred to as “parametric CI” [47], is based on 

defining a symmetric pdf for the input random variable. Alternatively, non-parametric 

CI representation is based on the empirical distribution of input data. It is usually 

applied to the case of skew distribution or to the case when the pdf is unknown. But, 

the dichotomy for CI representation is imperfect if a quasi-symmetric pdf is 

encountered. To solve the problem, a unified expression for the uncertainty 

representation of CI is proposed in this study. 
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Why should we need CI? It is well known that the information of an event can be 

represented as the logarithm of the reciprocal of its occurrence probability. It is the 

commonly used uncertainty measure of an individual event. Entropy is defined, from 

a macro view, as the expectation of the total information. Although both entropy and 

CI are macro view of sample data, entropy does not act like CI to provide a clear 

bounding message. This is analogous to the case of calculating the confidence interval 

of a parameter estimate. Confidence interval can show explicit bounding information 

for the estimated parameter. 

The chapter is organized as follows. In Section 3.2, a new representation of CI is 

proposed. It adopts a new method to derive the pdf of CI. The effectiveness of the 

proposed CI representation is evaluated by simulations discussed in Section 3.3. A 

realization of the statistical CI is presented in Section 3.4. Section 3.5 describes an 

extension of the statistical CI to the variably truncated normal joint (VTNJ) pdf.  

 

3.2  A New Method to Formulate the pdf of CI 

In this study, we regard CI as a random variable representing the bounded range to 

meet the coverage constraint. We now derive the pdf of CI. According to the work 

based on the general pdf of order statistics [48], the pdf of range can be expressed in a 

non-parametric form by 

1:| , | 1: 1:

2
1: 1: 1: 1: 1:

( ) ( , )

         ( 1) ( ) ( )( ( ) ( ))

nr n r x n n n

n
x n x n x n x n n

f r f r x dx

n n f x f x r F x r F x dx

∞

−∞

∞ −

−∞

=

= ⋅ − + + −

∫
∫

, (3-1) 

where ( )xf x  and ( )xF x  denote the pdf and cdf of random variable x, respectively; 

1:nx  is the minimum order of ranked samples; r is the range of samples; and n is the 

sample size. It is known that the range pdf shown in Eq.(3-1) is accurate for all 

realistic cases. 

We then perform the variable transformation to change the variable 1:nx  to c with 

range r being preserved, where 1: 1:( ) ( )x n x nc F x r F x= + −  is the coverage. Suppose 

that there are k roots jη , 1 j k≤ ≤ , of 1:nx  satisfying the coverage constraint 
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equation 1: 1:( ) ( )x n x nF x r F x Cc+ − =  with a given constant coverage Cc. The joint 

distribution of r and c can then be expressed by 

1:

1:

1: 1:, | , | 1:
1
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, |

1 0
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 (3-2) 

It is worthwhile to note that the above expression for the joint pdf of r and c does not 

explicitly include the coverage variable c. Instead, c is implicitly included through the 

roots of the coverage constraint ( ) ( )x xF r F Ccη η+ − =  for each given sample of 

c Cc= .  

We now take a new viewpoint, which is different from the traditional Bayes’ theorem, 

to derive the conditional pdf | , ( )r c nf r . The general form of the Bayes’ conditional pdf 

usually maps to a surface while our approach only needs some profiles in the same 

surface. The concept is shown in Fig. 5 and is realized by  

, |
| ,

, |

( , )
( )

( , )
r c Cc n

r c Cc n
r c Cc ndr

f r c Cc
f r

f r c Cc
=

=
=

=
=

=∫
. (3-3) 

 
Fig. 5: Profile-conditional pdf  by the sampling strategy. k  is a constant. 
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A problem encountered in the implementation of Eq.(3-3) is how to expand the 

transcendental function 1: 1:( ) ( )x n x nF x r F x Cc+ − =  in order to find its roots. 

Generally, this can be accomplished by using the Fourier series expansion. But, due to 

the fact that Hermite polynomials can best fit the curve of normal distribution, we 

apply Hermite polynomial expansion to ( )xF x  in order to efficiently find the 

solutions of 1: 1:( ) ( )x n x nF x r F x Cc+ − = . Eq.(3-2) is then expressed by  

{ } 2

, |
1

( 1) ( ) ( ) ( ) ( )
( , )

( ) ( )

n
k

x j x j x j x j
r c Cc n

j x j x j

n n f f r F r F
f r c Cc

f r f

η η η η

η η

−

=
=

⎛ ⎞− + + −⎜ ⎟= =
⎜ ⎟+ −
⎝ ⎠

∑ , (3-4) 

where j Rη ∈  and ( ) ( ) 0x j x jf r fη η+ − ≠  for 1 j k≤ ≤ . The constraint that jη  

must be real is to obey the output rule of Jacobian determinant.  

Some modifications are still needed in practical consideration. The basic idea is to 

neglect some roots of ( ) ( )x xF r F Ccη η+ − =  which have very low occurrence 

probabilities. This is realized by setting two bounds for those roots. This is motivated 

by the general rule of excluding outliers via considering only data in the interval 

[ 4 , 4 ]μ σ μ σ− +  where μ  and σ  are the mean and standard deviation of the 

population. Normalization of Eq.(3-4) is also needed in order to make it obey the 

basic requirement for probability. The pdf of CI can then be expressed by  

{ } 2

| ,
1

( 1) ( ) ( ) ( ) ( ) 1( )
( , )( ) ( )
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x j x j x j x j
r c Cc n

j x j x j

n n f f r F r F
f r

Z Cc nf r f

η η η η

η η

−
′

=
=

⎛ ⎞− + + −⎜ ⎟= ⋅
⎜ ⎟+ −
⎝ ⎠

∑ , (3-5) 

where ( , )Z Cc n  is a normalization factor shown below 

{ } 2

1

( 1) ( ) ( ) ( ) ( )
( , )

( ) ( )

n
k

x j x j x j x j

jdr x j x j

n n f f r F r F
Z Cc n

f r f

η η η η

η η

−
′

=

⎧ ⎫⎡ ⎤− + + −⎪ ⎪⎢ ⎥= ⎨ ⎬⎢ ⎥+ −⎪ ⎪⎣ ⎦⎩ ⎭
∑∫ ; 

, 1 ,j j kη ′≤ ≤ are the roots of 1: 1:( ) ( )x n x nF x r F x Cc+ − =  that satisfy 

4 4jμ σ η μ σ− ≤ ≤ + . If 1k′ > , a root-finding procedure is applied to the Hermite 

polynomial expanded version of 1: 1:( ) ( )x n x nF x r F x Cc+ − =  for finding all roots in 

the interval, [ 4 , 4 ]μ σ μ σ− + . 
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Now, we demonstrate our method by exploiting the pdf of CI for the normal 

distribution shown below 

2

2
( )

21( ) ,       .
2

x

xf x e x
μ
σ

πσ

−
−

= −∞ < < ∞  (3-6) 

The appropriate data structure to implement Eq.(3-5) is a two-dimensional matrix of 

r and jη . Considering that the range variable r is also the abscissa of the pdf of CI, 

we arrange the data along the r direction in either an increasing or decreasing order. 

As referring to Fig. 6, it is more efficient if we apply the bisection method to 

determine the two endpoints for the roots-finding task. Once we decide the two 

endpoints, we can assume that all effective roots are inside the interval. This can 

greatly reduce the searching interval for r and guarantee that there exists at least one 

solution in the reduced searching interval. Then, for each r  in the searching interval, 

we can find all solutions of jη  by directly solving the polynomial equation obtained 

by expanding the coverage constraint 1: 1:( ) ( )x n x nF x r F x Cc+ − −  using Hermite 

polynomials. Lastly, the pdf of CI is calculated by Eq.(3-5). 

( )F x

1( )F a

1( )F b2( )F b
3( )F b

2( )F a

 
Fig. 6: A conceptual diagram shows the use of the bisection method to establish the 

two endpoints for CI. Here, 1, 1[ ]a b  is an effective interval for root finding and 
c represents the center (midpoint) of any new effective interval. 
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An example to demonstrate the effectiveness of the proposed method using the 

standard normal random variable, 2( ;0,1 )N x , with experiment setting of 

coverage=0.95 and sample size=15 is shown in Fig. 7. Here the top panel shows the 

pdf of CI while the bottom one is the cdf. It can be found from the figure that the pdf 

of CI looks like a narrow pulse located near its minimum value (i.e., 3.92r = ). This 

result supports the idea of using the minimum case of CI to represent the whole pdf of 

CI as suggested by Chen et al. [47]. Moreover, by examining the cdf of CI shown in 

the bottom panel of Fig. 7, we find that about 70% of probability occurs at the 

minimum CI. 

 

 
Fig. 7: The pdf (top) and cdf (buttom) of CI for normal random variable with 

experiment setting of coverage=0.95 and sample size=15. 
 

3.3  Evaluation of the pdf of CI by Simulations 

We have suggested using Hermite polynomials to expand the transcendental 

CI-constrained function, 1: 1:( ) ( )x n x nF x r F x Cc+ − = , for the best approach to deriving 

the pdf of CI. It is referred to as the multi-root representation of the pdf of CI. Now 

we want to evaluate the goodness-of-fit of the representation by simulations. The test 

inspects 10,000 trials. In each trial, 15 samples satisfying the constraint of 

coverage=0.95 with 310−±  error tolerance are generated to directly find CI by 

15:15 1:15x x− . The histogram of CI is displayed in Fig. 8. It can be found from the figure 

that the empirical CI distribution fits well to the theoretical results shown in the top 

panel of Fig. 7. 
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Fig. 8: Histogram of CI generated by simulation using 10,000 trials. The experiment 

setting is coverage=0.95 and sample size=15. 
 

For further evaluating the proposed method, we compare it with another method 

basing on the Newton-Raphson root-finding algorithm. The method first uses the 

Newton-Raphson algorithm to find a root of 1: 1:( ) ( )x n x nF x r F x Cc+ − =  with initial 

searching point being set at the left endpoint (i.e., 4μ σ− ), and then find the pdf of 

CI by substituting the root into Eq.(3-5). It is referred to as the single-root 

representation. Table 1 lists the multi-root and single-root solutions of the coverage 

constraint equation, 1: 1:( ) ( )x n x nF x r F x Cc+ − = , for the standard normal distribution 

with coverage=0.95. From Table 1, some observations are listed below: 

Conditioned on our outlier rejection rules, there are only two roots in the interval 

[ 4 , 4 ]μ σ μ σ− +  no matter how the CI changes; 

For all CIs, the single-root solutions are very close to the first roots 1η  of the 

multi-root solution; 

For the minimum CI (i.e., 3.92), all roots of the multi-root solution and the single-root 

solution have nearly the same value; 

For the multi-root solution, the sum of its second root and CI is very close to the 

negative of its first root. This is resulted from the symmetry property of the normal 

distribution. 
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Table 1: the multi-root and single-root solutions of the coverage constraint equation 

CI 
Multi-root 
solution 

Single-root
solution 

 
2nd root 

2η  
1st root

1η  
η  

3.92 -1.97 -1.95 -1.95 
3.97 -2.15 -1.82 -1.82 
4.02 -2.23 -1.78 -1.78 
4.07 -2.32 -1.75 -1.75 
4.12 -2.39 -1.73 -1.73 
4.17 -2.45 -1.72 -1.72 
4.22 -2.51 -1.71 -1.71 
4.27 -2.57 -1.70 -1.70 
4.32 -2.63 -1.69 -1.69 
4.37 -2.69 -1.68 -1.68 
4.42 -2.74 -1.68 -1.67 
4.47 -2.80 -1.67 -1.67 

 

Fig. 9 plots the multi-root and single-root representations of the pdf and cdf of CI. It 

can be found from the figure that the multi-root representation fits better to the 

realistic case (by simulation) shown in Fig. 8. This result justifies the appropriateness 

of using the Hermite polynomial expansion to help to find multiple roots of the 

coverage constraint equation for constructing the pdf of CI. Table 2 lists some cdf 

values of CI for single-root representation, multi-root representation, and simulation 

(calculated from Fig. 8) for r in the range of [3.92, 4.37]. It can be found from the 

table that the simulation results are all larger than the single-root representation, but 

smaller than the multi-root representation. This shows that the single-root 

representation is only a rough approximation of the probability distribution of CI. The 

phenomenon that the whole simulated cdf curve lies under that of the multi-root 

representation can be explained from the viewpoint of sampling. As shown in the top 

panel of Fig. 9, the theoretical | , ( )r c nf r  has very large point probability at minr . 

Since there exists a coverage tolerance of 310−± set in the simulation, the peak-value 

case can not be generated every time. This makes the simulated cdf value at minr  

degrade significantly so as to make its cdf curve lie under the curve of the multi-root 
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representation which approaches the theoretical one (see Fig. 9). 

 

 
Fig. 9: The multi-root and single-root representations of the pdf and cdf of CI 

simulated using the standard normal distribution of input with sample size 15n = , 
and coverage=0.95. 

 
Table 2: Some cdf values of CI for single-root representation, multi-root 

representation and realistic case by simulation 
cdf of CI 

CI Single-root 
representation

Multi-root 
representation

Realistic case 
(Simulations) 

3.91 0 0 0 
3.97 0.13 0.68 0.36 

4.02 0.24 0.72 0.50 

4.07 0.34 0.76 0.59 

4.12 0.43 0.79 0.66 

4.17 0.51 0.83 0.71 

4.22 0.58 0.86 0.76 

4.27 0.63 0.88 0.79 

4.32 0.69 0.90 0.82 

4.37 0.73 0.91 0.85 
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Fig. 10: The cdfs of CI using single-root representation, multi-root representation, and 

simulations 
 

We then further examine their reliability. Table 3 lists the searching results of the 

single-root solution for some different initial conditions with coverage (=0.95) for 

standard normal distribution. It is clearly shown in the table that the Newton-Raphson 

method used for searching the single-root solution may fail with improper initial 

conditions. So the single-root representation is not always reliable. On the contrary, 

the method to find multiple roots via using the Hermite polynomial expansion of the 

coverage constraint function is always stable. So, the multi-root representation of the 

pdf of CI is reliable. 

 

Table 3: Single-root solutions using different initial conditions 

Initial value Final solution 
Test η  r  η  r  

1 -3 1 7.98 -61.47 10− ×
2 -2 2 -1.96 3.92 
3 -1 3 -1.96 3.92 
4 0 4 -1.96 3.92 
5 1 5 -1.96 3.92 
6 2 6 8.00 74.78 10−− ×
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3.4  A Realization of the Statistical CI 

Statistical CI is a wide-sense confidence interval representation which is expected to 

be stable for all sampling plans no matter how the sample size varies. Some 

computation skills were reported in related literatures as the non-parametric tolerance 

limits. We will further discuss the influences of CI caused by some properties of 

range and the corresponding endpoints. The issue has not been addressed yet. Now, 

we want to measure the confidence level in the statistical CI for the sparse data 

condition. The statistical CI [49], defined in ISO 3534 [50], was proposed for the 

concept of confidence level, but only few studies touched the realization algorithm 

[5,6]. Some other studies were related to the topic of non-parametric tolerance limit 

[51] which is similar to the statistical CI. Those past works discussed the coverage 

bound affected by the parameter estimation, inspected the quantile distribution, or 

described them from the non-parametric viewpoint to look the coverage variation. To 

extend those past works for further considering the effects of range and the minimum 

order of ranked samples on the coverage, we need to derive an explicit expression for 

these three random variables. We discuss the issue in detail as follows.  

In practical Monte Carlo simulations, the general expression for statistical CI is 

typically rewritten, in Pearson’s notation, using the incomplete Beta function [49] and 

expressed by 

: 1 :{ [( , )] } 1       1 ( 1 2 ,2 ) 1x i n n i n cPr p x x c I n i iα α+ − ≥ ≥ − ⇒ − + − ≥ − , (3-7) 

where 

( 1 2 ,2 ) ( , 1 2 ,2 ) / (1, 1 2 ,2 )cI n i i Beta c n i i Beta n i i+ − = + − + −   

and 

1 1

0
( , , ) (1 )

x p qBeta x p q t t dt− −≡ −∫ . 

It means that the statistical CI of coverage greater than c, at minimal 1 α−  

confidence level is : 1 :[ , ]i n n i nx x + − . 

For i =1, we can interpret Eq.(3-7) as the confidence level that the samples cover at 

least c portion of the population is 1 α− . Since Pearson’s notation is not convenient 

in practical realization, we derive a new polynomial form of the pdf of coverage to 
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calculate the statistical CI (or confidence level) of c coverage in the sparse data 

condition. Let  

( )
x

xs f y dy
−∞

= ∫ . (3-8) 

The variable s is subject to the standard rectangular distribution denoted by rect[0,1] . 

If we take the variable transform to all ranked samples :i nx  by Eq.(3-8), the new 

ranked variables :i ns , 1 i n≤ ≤ , are related to :i nx  by  

:

: ( )i nx

i n xs f y dy
−∞

= ∫  (3-9) 

for 1 i n≤ ≤ , where :0 1i ns< < . Since :i ns  can be regarded as the ranked random 

variables of s, the new range variable can be calculated by 

: 1:

:

1:

: 1:

( ) ( )
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n n n

n n

n
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x x

x x

x
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r s s

f t dt f t dt

f t dt c r

−∞ −∞

= −

⇒ −

= =

∫ ∫
∫

 (3-10) 

newr : random variable of uniform distribution [0,1] 

:i nx :random variable of order statistic :i ns ,1 i n≤ ≤  
( )xf t :pdf of random variable x   

( )c r : coverage value of the relative range, 

0 1

1

Range

Coverage

0 1

1

Range

Coverage

 
Fig. 11: Uniform pdf for the random variable s  

 
 

As a matter of fact, newr  has the same coverage as the range of the original random 

variable x . Since newr c= , Eq.(3-1) can be simplified to express the pdf of coverage 

by  

( )
1 2 2

| 1: 1: 1:0
( ) ( 1) 1 1 ( 1) (1 )

c n n
c n n n nf c n n s c s ds n n c c

− − −= − ⋅ ⋅ + − = − −∫  (3-11) 
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for 0 1c≤ ≤ . The cdf of coverage can be accordingly expressed by  
 

1
| ( ) ( (1 ) )n

c nF c c n n c−= + −  (3-12) 

for 0 1c≤ ≤ . Due to the fact that the above derivation is true for any random variable, 

the pdf of coverage is distribution-free. 

Fig. 12 displays the pdf of coverage calculated by Eq.(3-11) for some sample size n  

ranging from 5 to 20. It is clearly shown in the figure that the probability of coverage 

deviates away from 1 as the sample size decreases to a value less than 20. This means 

the common expectation in doing an experiment that the samples distribute like the 

original population becomes unrealistic as the sample size is less than 20. In other 

words, the samples are very likely to scatter in only a part of the population for a 

sparse data condition. We denote it as the short-tail problem. 

It is well known that the Student’s t-distribution is better than the normal distribution 

in terms of mean value estimation on the sparse data condition. The general reason is 

that the tail of a Student’s t-distribution is shorter than that of a normal distribution. 

Applying the same rule, the short-tail phenomenon demonstrated in Fig. 12 needs a 

new approach to formulate it. It is worth pointing out that short-tail is always decided 

by the endpoints of the distribution where their values approach zero asymptotically. 

In our case the distribution of endpoints is simple to predict. From Fig. 7, we find that 

the two endpoints of CI are almost known when the coverage is high. In other words, 

if the coverage is known, the short tail of pdf can be roughly captured. 
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Fig. 12: The pdf of coverage for some small sample size n 
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Fig. 12 reveals that the pdf of coverage is not stable as the sample size is less than 20. 

So we had better know well the coverage variation due to the setting of the 

β -content level. This issue was addressed by Faulkenberry and Weeks [52].They 

formulated it as a precision control problem to avoid the increase of parameter 

uncertainty for the case of sparse data. They suggested that the confidence level 

1 α−  had better be set to a value smaller than the β -content (i.e., c).  

Table 4 lists the values of confidence level 1 α−  calculated according to Eq.(3-11) 

for two different types of integration interval. The normal interval [0.95,1] is the 

general hypothesis testing requirement, while 1 1[ 0.025, 0.025]
1 1

n n
n n
− −

− +
+ +

 is the 

interval to compute the confidence level of uncertainty [52]. It is noted that 1
1

n
n
−
+

 is 

the expectation of coverage. We can see from Table 4 that the values of confidence 

level calculated using the normal interval of [0.95,1] is smaller when the sample size 

is less than 20. 

Table 4:  The confidence level 1 α− of two integration intervals for different sample 
sizes 

Integration interval for c  
n 

[0.95,1] 
1 1[ 0.025, 0.025]
1 1

n n
n n
− −

− +
+ +

10 0.08 0.16 
20 0.26 0.30 
50 0.72 0.68 
90 0.94 0.94 
120 0.98 0.98 

 

3.5  Extension of Statistical CI to the VTNJ pdf  

We now draw some attentions to the two random variables 1:nx  and r  which are 

related to statistical CI but do not appear in Eq.(3-11). The issue is treated by 

regarding the pdf of coverage shown in Eq.(3-11) as a marginal pdf for 1:nx  and r . 

As demonstrated by the CI shown in Fig. 7, only parts of 1:nx  and r  near the 

minimal CI have effect on confidence level computation. We hence need a more 



 

 33

precise description to relate the pdf of coverage with 1:nx  and r .The issue is 

addressed via transforming the statistical CI to an explicit joint pdf of 1:nx , r  and c , 

and use it to compute the confidence level. We first decompose the joint pdf of the 

three random variables, 1:nx , r  and c , into three terms by 

1:1: | , 1: | , |( , | ) ( ) ( ) ( )
nn x r n n r c n c nf x r c n f x f r f c= ⋅ ⋅  (3-13) 

The first term 
1: | , 1:( )

nx r n nf x  can be calculated from 
1:| , ( )

nr x nf r  (see Eq.(3-1)) by 

applying the Beyes’ rule. The other two terms, | , ( )r c nf r  and | ( )c nf c , have been 

formulated previously. So, according to Eq.(2-1), confidence level can be calculated 

from 1:( , | )nf x r c n  by 

max 1: ( )

min 1: ( )

1

1: 1:( , , | )n U

n L

r x

n nr x
CL f x r c n dx drdc

β
≡ ∫ ∫ ∫ , (3-14) 

where β  is the given β -content level (i.e., coverage), min max[ , ]r r  is the interval of 

range corresponding to the coverage c in [ ,1]β , and 1: ( ) 1: ( )[ , ]n L n Ux x  is the interval of 

1:nx  corresponding to range r and coverage c. It is noted that the statistical CI 

estimates the probability of coverage greater than β  so that Eq.(3-15) takes definite 

integration over [ ,1]β  for the coverage. The interval min max[ , ]r r  is obtained by the 

previously mentioned bisection method (see Eq.(3-5)). Since min max[ , ]r r  is the range 

of CI, any random interval 1 2[ , ]T T  in Eq.(2-1) will be a legal min max[ , ]r r . We 

therefore need to estimate the random interval 1 2[ , ]T T  for a given c. The minimum 

order random variable 1:nx  is deterministic for some pdfs such as Pareto, Weibull and 

Lognormal. But in this study we consider the realistic and reasonable extent 

1: ( ) 1: ( )[ , ]n L n Ux x  in the integration. We therefore propose to perform the Hermite 

polynomial expansion on the coverage function, 1: 1:( ) ( )x n x nF x r F x+ − , and employ its 

values at some discrete points to find the relative roots mapping from r  to 1:nx .  

Based on above discussions, the confidence level can be calculated from Eq.(3-16) 

by the traditional Riemann sum-based integration method. However, in order to make 

a tradeoff between precision and computational complexity, we adopt an alternative 

approach to using Gauss-Legendre integration (GLI) [53] to realize Eq.(3-14). GLI is 
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a popular method for computing definite integration based on the calculation of 

pre-determined known functions. For any piecewise continuous function, the task to 

calculate definite integral on the interval [ , ]a b  can be approximated by a weighted 

sum of Legendre‘s polynomials defined in the interval of [ 1,1]− . This is applicable to 

our situation because the pdf of coverage is a function given in Eq.(3-11). According 

to the order of integration, GLI should be applied to the output stage of | , ( )r c nf r , i.e. 

| ( )c nf c . Generally speaking, a GLI can be expressed by  

1

1

1

( )( ) ( )
2 2 2

               ( ) ( ) ( )
2 2 2

b

a

v

v v

b a b a b ag x dx g d

b a b a b aw g Rτ τ
τ

ξ ξ

ξ ξ ξ

−

=

− + −
= +

− − +
= ⋅ + +

∫ ∫

∑
 (3-17) 

where a and b are the endpoints of integration interval; τξ , 1 1τξ− < < , is the thτ  

root of the Legendre polynomial ( )vP ξ  with order v ; 

21( ) ( 1) ,  for 0,1, 2,
2 !

v
v

v v vP v
v

ξ ξ
ξ
∂

= − =
∂

L; ( )g x  is a known piecewise continuous 

function; 

2 2

( - )( )  
(1- )( ( ))

v

v

b aw
P

τ

τ τ

ξ
ξ ξ

=
′

 

 (3-18) 

is the weighting function; and  

( )
( )

4(2 1)
(2 )

3

2 !
( ) ( )

(2 1) (2 )!

v
v

v

v
R g

v v
ξ ξ

+

=
+

 (3-19) 

is the error term of the approximation.  

The error term ( )vR ξ  of GLI shown in Eqs.(3-17)~(3-19) is proportional to the 

2v th-order derivative of the coverage pdf | ( )c nf c . It can be found from Eq.(3-17) 

that the number of discrete sampling points (the expansion order of Legendre 

polynomials) equals v . As shown in Eq.(3-11), the pdf of coverage can be expressed 

by a polynomial with order 1n − . So, if 2 1v n≥ − , then ( )vR ξ  will theoretically 

become zero. This will result in an analytical closed form for the calculation of 



 

 35

confidence level. Up till now, we have successfully formulated a direct computation 

of confidence level in term of the statistical CI defined in the past studies. 
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Chapter 4 The Analytical Mean Estimator for Truncated 

Normal Distribution on Sparse Data Condition 

4.1 Introduction 

In this chapter, we try to use the likelihood technology to perform the best mean 

estimator basing on the frequently used truncated normal distribution formed by 

normalizing the CI-truncation part of pdf to its corresponding coverage. Hence 

truncated normal distribution is usually applied to the sparse data condition when data 

collection is time-consuming or of high sampling cost. The study focuses on the mean 

estimation of normally distributed random variables under the sparse data constraint. 

Since the truncation or censoring scheme is usually adopted in sparse data estimation, 

our major goal is to improve the truncated normal estimator proposed by Cohen [54]. 

There are some shortcomings in Cohen’s truncated normal estimator, including the 

need of looking-up tables for setting the positions of initial searching points, the need 

of a couple of endpoints to compute the standard deviation, the constraint that the 

expression of endpoints must be deterministic, and non-guarantee of convergence.  

The study will use the pdf  of coverage interval derived in Chapter 2 to construct a 

variably truncated normal joint (VTNJ) pdf, which considers coverage, coverage 

interval, the first order of ranked samples and the samples themselves. In addition, we 

reduce the computations of VTNJ pdf by employing the suggestion of Chen [55,47] 

about the parametric coverage interval to obtain a wide-sense parametric coverage 

estimator.  

4.2 The Proposed Method 

We use the concept of variably truncated normal distribution to cover the statistical 

CI in this study. Oour task is to estimate the mean of a random variable x with 

unknown normal distribution 2( ) ( , )xf x N μ σ=  from a set of n observed samples 

{ ,1 }ix i n≤ ≤  for 20n ≤ . We first rank these n samples in increasing order and 

denote them by :{ ,1 }i nx i n≤ ≤ . The range and coverage of the sample set are then 
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defined by : 1:n n nr x x= −  and : 1:( ) ( ),x n n x nc F x F x= −  respectively. Coverage is a macro 

view of random variable to carry global information of all observed samples. The 

general relation among coverage c , range r , the minimum order 1:nx , and samples 

nX  is shown in Fig. 13. In our basic assumption, we think the macro view random 

variables should be consistent to the result of micro view random variable. The 

dash-lines represent the interferences within the macro view random variables, while 

the solid-lines represent the interferences from the macro view to micro view random 

variables. A joint normal pdf of these four variables will be built in the following 

basing on Fig. 13 to compensate the coverage mismatch. We treat the distribution as a 

variably truncated normal joint (VTNJ) pdf to represent the randomness of the 

truncated points of a truncated normal distribution depending on coverage and sample 

size. 

 
Fig. 13: Relation of variables’ interference model 

 
We first decompose 

1:, , , ; , | 1:( , , , )
nx x r c u n nf x x r cσ  into four conditional pdfs by 

1: 1: 1:, , , ; , | 1: ; , | , , , | , 1: | , |( , , , ) ( ) ( ) ( ) ( )
n n nx x r c u n n x u x r c n x r n n r c n c nf x x r c f x f x f r f cσ σ= ⋅ ⋅ ⋅  (4-1) 

where  

1:

1: 1:
; , | , , ,

1:

( ) ( )( ) ( )
( , )n

n n
x u x r c n x

n

U x x U x x rf x f x
Q x rσ

− − − −
=  

 

is the truncated normal pdf depending on the sample size, the truncated points and the 

sample’s coverage; and 1: 1: 1:( , ) ( ) ( )n x n x nQ x r F x r F x= + −  is the sample coverage. 

nX

1:nx
r

c
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We then derive the pdf of coverage. The cdf of coverage for small sample size can be 

expressed by Eq.(4-2) [56] 

2

|
0

Pr ( ) (1 )
n

k n k
c n

k

n
C c c c

k

−
−

=

⎛ ⎞
> = −⎜ ⎟

⎝ ⎠
∑  (4-2) 

We now simplify the coverage pdf  as a polynomial of c. The derivation is given as 

follows. 

|
1Pr ( ) ((1 ) !{ ( )  ( ) ( 1) ( ) ( )

1 1

( 1) ( ) ( 1) ( 1) ( ) ( 1)}) / (  ( ) ( 1))
1 1

!( ( 1 ) ( ) ( 1 ) ( 1))
 ( ) ( 1)

n n n n
c n

n n n n

n n

cC c c n c n c n
c c

c cn c n c n n
c c

n c c n c c n
c n n

> = − − Γ + − − Γ
− −

+ − − Γ + − − − Γ + Γ Γ +
− −

− − + Γ + − + Γ +
=

Γ Γ +

 (4-3) 

1
1! !(  ( ) ( 1)  ( 1)) 1 ( 1)

( 1) ( ) ( 1)

n
n nn c n c n n c n nc n c

n n n

−
−Γ + Γ + − Γ +

= − = − + −
Γ + Γ Γ +

  

where (.)Γ  denotes the Gamma function and 1

0
( ) z tz t e dt

∞ − −Γ = ∫ . Hence 

( ) 1 2 1
| |( ) (1 Pr ( ) ) ( ( 1) ) ( 1)( ) 

 for  0 1

n n n n
c n c nf c C c nc n c n n c c

c c
c

− − −∂ ∂
= − > = − − = − −
∂ ∂

≤ ≤
 (4-4)  

It is worth to note that Eq.(4-4) is distribution-free because Pratt and Gibbsons [56] 

also proved it without assuming the distribution of the sampled random variable. Thus  

it is appropriately applied to any kind of pdf. As given in Chapter 2, Fig. 12 displays 

the coverage pdf for some small values of n. The figure shows the coverage 

distribution deviates away from 1 progressively and spreads wider as the sample size 

decreases from 20. We call this special phenomenon as distribution mismatch (DM) 

because it implicitly indicates that there exists a serious mismatch between the 

distributions of observed samples and the random variable when the sample size is 

small. The DM phenomenon reveals an important cue to the modeling of sparse data: 

coverage may serve as a confidence factor to indicate the appropriateness of observed 

data for robust parameter estimation. A higher value of coverage means a better 

match of the samples to its original normal distribution. To exploit the DM 

phenomenon, we treat coverage as a random variable and add it to the VTNJ pdf.  
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Eq.(4-1) can be established through Eqs.(3-13) and (3-17) by GLI which is a 

numerical technique for integration. Then, the VTNJ pdf can be implemented by the 

numerical technique to result in an interval estimation for the coverage fluctuation. In 

this study, the default settings are [ ]| 0.005c na E c= −  and [ ]| 0.005c nb E c= +  to 

consider the interval estimation for variable coverage, c . 

It will be perfect if we can use a fixed sampling number for GLI to reduce the error so 

as to make it approach to its minimum. As shown in Eq.(3-19), the error of GLI is 

related to the differential order of the integrated function. Obviously, its differential 

order is finite. From Eq.(3-19), if the GLI sampling number v  meets the condition of 

2 1v n≥ − , the estimation error ( )vR ξ  will be reduced to zero. In this case, GLI will 

approach to the theoretical optimal solution of no errors. Besides, Eq.(4-4) shows 

another important fact that the coverage pdf is independent of the distribution of the 

sampled random variable. So, we can claim that the pdf of coverage is distribution 

free. This property makes | ( )c nf c  freely connect to any kind of | , ( )r c nf r  by Chain 

rule. 

4.3 Standard Normal Transform for the VTNJ pdf Computation 

If we want to directly calculate the VTNJ pdf in | , ( )r c np r , we will face the problem 

that the mean and standard deviation of the population must be known in advance. 

But this is unrealistic in our mission. We therefore adopt an alternative approach to 

construct a new bridge to conjoint with these variables. The idea is to transform the 

observed data into the standard normal domain. The suggestion is shown in Fig. 14. 

As shown in the figure, we transform the observed ranked samples into the domain of 

standard normal by : :( ) /i n i nx uξ σ= − . Each transform pair is marked with the same 

digit number. The range is also transformed by : 1:s n n nr ξ ξ= − . Notice that the 

transform is quantile mapping invariance (QMI) for the macro view random variables. 
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Fig. 14: Relative quantile mapping invariance based on their percentiles. Dash-line 
represents the original normal pdf and solid-line represents the standard normal pdf. 

4.3.1 Derive the Variably Truncated Normal Joint Distribution 
Estimator (VTNJE) 

We then apply GLI to the VTNJ pdf to obtain the marginal log likelihood defined by: 

1:

2 1
t

1
( 1)( ) ( )

2
( )

v
s n

n n
t t P dr d

v

t

b a n n Cc Cc w GMLL
ξ

κ− −

=

−⎧ ⎫− −⎨ ⎬
⎩ ⎭

⋅ ≡ ∫ ∫∑  

 (4-5) 

where  
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2

2
11: 1:

1: 1:| ,

| ,

( )1log exp
22  ( ) ( )
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           ( )
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in s n
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nr n

r c Cc n

x uG
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p

p r
ξ ξ

ξσπσ ξ ξ
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=

⎧⎛ ⎞ ⎫⎧ ⎫−⎪ ⎪⎜ ⎟= −⎨ ⎨ ⎬⎬⎜ ⎟Φ + −Φ ⎪⎩ ⎭⎭⎪⎝ ⎠⎩

⋅ ⋅

⋅

∑
 

 
The marginal log likelihood is complicated and computionally time-consuming. We 

suggested an idea to reduce its computation basing on the coverage interval. An 

example of the profile-conditional pdf, | , ( )r c nf r , is plotted in Fig. 7. It is to 

demonstrate the fact that if we would like to guarantee the coverage of the estimation 

to be large enough to greater than a lower bound, then there will be much more 

tolerance intervals qualified for solutions to reside. Let us return to Eq.(4-4) to 

inspect the pdf of coverage which is distribution-free. We find that its form is 

inconvenient for parameter estimation due to the no use of derivative operator. 

Fortunately, Chen [47] suggested that the pdf of coverage can be parametric if we 

constrain the coverage interval to be the minimum of all possible values.  
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4.3.2 Algebraic Closed From for Parameter Estimation 

Let we apply the result of Fig. 7 to simplify Eq.(4-5). It can then be expressed as two 

quadric equations of variables σ  and u  respectively. Take the roots of these two 

quadric equations will result in the following solutions: 

( )2

1*

1

4

2

v

t
t

v

t
t

B B nD C

nD

σ σ σ

σ =

=

⎛ ⎞± + ⎜ ⎟
⎝ ⎠=

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑

∑
, (4-6) 

where 

{ } { }( )1: 1: 1:| , ,
1 1

( )
n t s

v n

t n i nc Cc Min r n
t i

B D E x xσ ξ ξ=
= =

⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑ ∑ , 

2
1:

1 1
( )

v n

t i n
t i

C D x xσ
= =

⎛ ⎞⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑ , 

( )2 1
t( ( 1)( ) ( ) )

2 v

n n
t t t P

b aD n n Cc Cc w κ− −−
= − − ; 

and  

*

2

1

1

4( )

2( )

v

u u t u
t

v

t
t

B B D C
u

D
=

=

− ± −
=

∑

∑
  (4-7) 
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 is the weighting coefficient of the t-th root of the -thv  

order Legendre polynomial, [ , ]a b  is the coverage estimation interval, and ( )ξ ξΦ  
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is the cdf of the standard normal distribution. The same strategy can be applied to the 

other endpoint :n nξ  via replacing 1:nξ  by :n nξ . Then, the VTNJ pdf can be 

implemented by the numerical technique to result in an interval estimation for the 

coverage fluctuation. From Fig. 12, it clearly shows that the coverage is a random 

variable if the sample size is less than 20. Hence, we had better to set the most 

observed interval to inspect its randomness. Define the following %β -inspection 

interval ( β -II):  

 

%β -inspection interval is an interval estimation for the coverage random variable 

over the interval [a,b] with [ ]| /2,c na E c β= −  and [ ]| / 2c nb E c β= + .  

 

We then aim at calculating the most possible happening probability. 

4.4 Experiments 

By checking Eqs.(4-6) and (4-7), we find that they are mainly affected by the sample 

mean, x , and the individual ranked samples, :i nx ,1 i n≤ ≤ . Our strategy is to adjust 

the coverage to make it approach to the real coverage, generated from x  and 

:i nx ,1 i n≤ ≤ . We examine two methods. One is to view the joint effect of x  and 

:i nx  under our suggestion of QMI (see Fig. 14). The other is to realize the QMI 

basing only on the real coverage. Its purpose is to see the differences between the 

sample mean without coverage estimation and VTNJE with coverage calibration. 

4.4.1 Test the Results with Consistency to Sample Mean under the 
QMI Principle—Case of the Default Percentile 

It is clear that coverage is a random variable based on Eq.(4-4) so that we should take 

the most observed samples. We first form an interval estimation for coverage by 

performing a coverage estimation from the expectation of order statistics by | [ ]c nE c  

and adding fluctuation of 0.005± .  

The VTNJE might work normally without the operations of looking up the tables so 
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that it more convenient for the computer programming. We will compare it to the best 

estimator of sample mean. The test pattern is selected from the normal distribution, 
2(10,1 )Ν . Two different conditions for sample mean are considered. One is to 

constrain the sample means in the interval of 0.3 0.3u x uσ σ− + ≤ ≤ + . It is referred 

to as the good sample mean case. The other is to constrain the sample means in the 

interval of 2.3 1.3u x uσ σ− + ≤ ≤ − +  or 1.3 2.3u x uσ σ+ ≤ ≤ + , and is referred to 

as the bad sample mean case due to its seriously skewness. Three estimators are 

compared: Scheme A represents the conventional sample mean estimator; and 

Scheme B is the coverage-based estimator defined below 

{ } { }{ }: :| , ,
* 1
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p n t s

v

t p nc Cc Min r n
t

p p n pv

t
t

D E
u u x

D
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σ
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=

=
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= = −
∑

∑
 (4-8) 

where p  is constrained to be either 1 or n  which corresponded to the endpoints of 
the range;. If 1p = , then the term { } { }

: :| , ,p n t s p nc Cc Min r nEξ ξ=  can be computed by 

{ } { }
1: 1:| , ,( 1)

n t s nc Cc Min r nEξ ξ=− . Scheme C is taking the result of Eq.(4-7). Those results are 

displayed in Fig. 15. It can be found from the figure that MSEs are very small for the 
case of good sample mean for all three estimators; while the MSEs are all large for 
the case of bad sample mean. This shows that the performance of VTNJE will 
asymptotically follow that of the sample mean. Those results also imply that very low 
MSE can be probably provided that the sample mean is near the population mean.  
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Fig. 15: Comparison of the conventional sample mean estimator and two 

coverage-based mean estimators. 
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4.4.2 Test the Results with Consistency to Sample Mean under the 
QMI Principle—Case of Realistic Percentile 

In the test phase, we eliminate the effects caused by the QMI mapping mismatch for 

1:nξ  to 1:nx  or :n nξ  to :n nx . In such a case, 1: 1:( ) /n nx uξ σ= −  and 

: :( ) /n n n nx uξ σ= −  are known. But, we pretend that we do not know  and u σ . The 

fluctuation assumption for coverage is therefore not needed. So, the previous 

formulation can be simplified and expressed by 
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where p  is constrained to be either 1 or n . Actually, Eq.(4-9) is equivalent to 
Eq.(4-10) because * *

: :p n p nu x ξ σ= − . We generated 1,000 trials to examine the new 

estimator and used MSE as the score of comparison. The results are listed in Table 5. 
 

Table 5：Performance of realistic QMI analysis 

Item sample mean Realistic QMI

MSE 0.0765 0.0252 

 

Notice that the MSE of realistic QMI was defined by 
2

1( )1
1000 2

nu u u+⎛ ⎞−⎜ ⎟
⎝ ⎠

∑ , where 

1u  and nu  were the estimated results for 1:nx  and :n nx , respectively. It can be 

found from Table 5 that the realistic QMI mean estimator performed better than the 
sample mean estimator. 

4.4.3 Comparison of the Different Estimators 

We compared three different mean estimators in terms of their stabilities and 

efficiencies. They are the Cohen’s method (shown in Eq.(2-18) to Eq.(2-21)), our 
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VTNJE and the sample mean which is the average of total samples. The test involves 

5000 trials, and in each trial 13 samples submitted to the standard normal distribution, 
2(0,1 )N  are generated. 

In the test, we apply three types of truncation intervals to force truncating the data 

outside them which they are [-2, 3], [-1.5, 1.75]. In such planning, we may easily to 

realize the performance between the Cohen, VTNJE and sample mean.  

The formulation derived by Cohen request of the initial searching points so that we 

divided the initial searching condition into two classes, bad and good. The bad 

condition indicating the initial searching position for mean, u , is outside the interval, 

[ 2 / , 2 / ]n u n uσ σ− + +  and good condition representing the initial searching 

position is inside the interval, [ 0.5 / ,0.5 / ]n u n uσ σ− + + . Table 6 display the 

average of the square errors of 5000 trials for the bad initial conditions and Table 7 is 

the case of good initial condition. We find from these two tables that our VTNJE is 

stable and outperforms the Cohen’s method. Besides, VTNJE performs slightly better 

than the sample mean.  

Table 6: Comparison with different estimators in association with bad initial 
searching points (Unit: MSE) 

Truncation Interval 
Estimator 

[-2,3] [-1.8,2.5] [-1.5,1.75]
Cohen 1.439 1.420 0.991 
VTNJE 0.061 0.059 0.059 

Sample mean 0.078 0.075 0.076 
 

Table 7: Comparison with different estimators in association with good initial 
searching points (Unit: MSE) 

Truncation Interval 
Estimator 

[-2.0,3.0] [-1.8,2.5] [-1.5,1.75]
Cohen 0.610 0.582 0.731 
VTNJE 0.061 0.060 0.059 

Sample mean 0.078 0.075 0.076 
 
 



 

 46

4.5 Conclusions 

This study develops the variably truncated normal joint pdf  to emulate the 

CI-truncation part of pdf normalize to its corresponding coverage. We have 

demonstrated the weakness of the Cohen’s mean estimator using classical truncated 

normal distribution on its reliability when the sample size is less than 20. On the 

contrary, the proposed VTNJE using the truncated normal distribution derived based 

on the normalized-parametric coverage intervals is reliable and efficient.  

We use Hermite polynomials to expand the coverage function accurately. It not only 

uses the high order polynomials to approach the real curve, but also guarantees the 

convergence for the condition when σ is known in advance (see Eqs.(4-9) and 

(4-10)). 

VTNJE only needs one truncation point for estimation (see Eqs. (4-6) and (4-7)); 

thus it is superior to the original truncated normal estimator which needs a couple of 

endpoints to do iterations (see Eqs. (2-18) and (2-19)). 

The third goodness of the VTNJ pdf is that it does not need any looking-up table for 

root-finding. It is expressed in an analytical closed form (see Eqs. (4-6) and (4-7)) 

and this feature may save time for computation. Furthermore, in the default QMI test, 

we have showed that our coverage-based mean estimator follows the sample mean so 

that the VTNJ pdf also solves the truncated normal problems with knowing only the 

possible information of the truncated points. 

Lastly, we reformulate the equations for the case when σ  is known. It works well if 

σ  is known in our estimation process. In the original MLE formulation derived by 

Cohen, the solution-finding process often encounters the underflow problem. Since 

the coefficients of the variables are probability or cumulative probability of normal 

distribution. It is inconvenient for the realizing inverse function representation. Our 

truncated normal estimator outperforms the old one obviously. 
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Chapter 5: The VTNJ Estimator Tested with the Combined 

Signals 

5.1 Introduction 
In Chapter 3, we have shown that the VTNJ pdf can act as the statistical CI to 

function like a truncated pdf. So, we can regard CI as being embedded in the VTNJ 

pdf. We have also tried to use the VTNJ pdf in the case of normally distributed 

observed data for mean estimation. Now we want to further test the VTNJ estimator 

(VTNJE) for the case of sampling data of combined signal. In the early GUM 

recommendation [24, p.6], the uncertainty evaluation was considered as to construct a 

relation between the input quantities and the output quantities of combined signal. 

This style of uncertainty measurement is recognized as Type A expression in NIST 

[57]. Now, we want to test the realistic refined case for the CI estimation. Fotowicz 

[2,58] proposed an analytic method to estimate CI based on the assumption that the 

individual standard uncertainty was known. Note that we have mentioned that case in 

Eqs.(2-23) - (2-25).  

From Eqs.(2-23) to (2-25), it is easy to realize that the standard uncertainties of input 

quantities must be known in advance. Fotowicz proved them on the basis of the 

Central Limit Theorem and concluded that if the distribution of the output of 

combined quantities is asymptotically symmetric, e.g. a normal distribution, then the 

output CI approaches the minimum of all possible values.  

Although the output of combined quantities may not be of normal distribution, we 

still suggest using the normal distribution assumption to estimate its mean value based 

on the past experience. Since VTNJE is designed based on the small sample size 

condition, it is necessary to examine its robustness when the sample size is less than 

20. Tests using different sample size ranging from 11 to 20 are therefore conducted. 

For each sample size, 1000 trials are tested. In each trial, we replace both the 

minimum order sample and the maximum order sample with their quantiles on the 

constrained uncertainty. In the following, two cases of the uncertainty loading tests in 

terms of VTNJE are examined. One is to test the random variable, coverage, versus 
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the sample size and another is to compare the realistic case with six different 

estimators.  

5.2 Robust Interval Detection for Small Sample Size 

According to Eq.(3-11), we define the primary reliable quantiles calculated from the 

expectations of their ordered samples which may be computed from the general pdf of 

order statistics adding with a little variation. Taking the viewpoint from Fig. 12, the 

optional truncation points are regarded as some variations around the expectation of 

coverage. We define the possible truncation positions as the %κ -inspection interval 

shown below: 

%κ -inspection interval is an interval estimation for the coverage random variable 

over the interval [a,b] with [ ]| /2,c na E c κ= −  [ ]| / 2c nb E c κ= + , and | ( )c nf c  being  

given in Eq.(3-11).   

From Eq.(3-11), it is easy to find that the expectation of coverage is ( 1) / ( 1)n n− + . 

From Fig. 7, the minimal CI has the maximal occurrence probability so that the right 

endpoint of percentile can be roughly determined as / ( 1)n n +  and the left endpoint 

is 1/ ( 1)n +  set based on the expectation of coverage. The default value for κ  is set 

to be 0.2. 

We now test the robustness of VTNJE by simulations. The experiment settings are 

described as follows. Let the output of combined quantities be composed of four 

independent random input quantities, including two normal distribution random 

variables, 2
1 ~ (0.1,1 )z N  and  2

2 ~ (2.15,1.5 )z N , and two rectangular distributions,  

3 ~ rect[ 2 3 1.05, 2 3 1.05]z − − −    and  4 ~ rect[ 4 3 1.45, 4 3 1.45]z − + + . The 

output x  is generated from four input quantities expressed by Eq.(5-1) and its 

uncertainty ratio UR  is equal to 1.48 calculated by Eq.(2-25): 

1 2 3 4 1 2 3 4( , , , )x f z z z z z z z z= = + + +  (5-1) 

We model the output quantity as a normal distribution shown below 

4 4
2

1 1

( ( ), ( ))i i
i i

N m z u z
= =
∑ ∑ , (5-2) 
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where ( )im z  and 2 ( )iu z  are respectively means and square of standard 

uncertainties of individual input quantities. Since 3z  and 4z  are not normal 

distribution, we can not estimate the mean of x  directly. Applying the law of 

uncertainty of propagation, the combined uncertainty ( )cu x  can be calculated by 

4 3 4
2 2

1 1 1

( ) ( ) ( ) 2 ( , )c i i j
i i j ii i j

f f fu x u z u z z
z z z= = = +

∂ ∂ ∂
= ⋅ +

∂ ∂ ∂∑ ∑ ∑   (5-3) 

We combine the Fotowicz’s equation with Eq.(2-26) to estimate the quantile which 

has been examined using 610  samples [2] . We generate 1,000 trials for each of the 

sample size in range of 11~20. Four estimators are compared. “VTNJE” represents 

the one using Eq.(4-7) by taking the average of the two outputs resulting from using 

the two input quantiles, 1:nx  and :n nx . “VTNJE+Fotowicz” represents “VTNJE” with 

the two endpoints of samples being replaced by those calculated by Eq.(2-26). 

Because of the randomness of coverage resulting from the sparse data condition (see 

Fig. 12), the traditional 95% coverage interval is not appropriate for describing the 

variation of coverage. Thus, the quantiles of the endpoints are decided by the 

expectation of Eq.(3-11). “sample mean” is the conventional sample mean estimator. 

“sample mean+Fotowicz” is “sample mean” in terms of Fotowicz’s quantiles.  

The theoretical output mean can be approximated by 
4

1

( )i
i

m z
=
∑ (=2.650). The sample 

mean over 510  observations is near 2.678 by Monte Carlo simulation. The 

experimental results are shown in Table 8. From the table, we find that “VTNJE” 

stably outperform “sample mean” if the uncertainty ratio is greater than 1.5. We note 

that this conclusion happens only when the sample size is smaller than 20 (see Table 

8).  
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Table 8: Computation results for the uncertainty ratio, UR  =1.5, with 1,000 trials, 
normalized by 2 ( ) /cu x n , 4 mixing signals (Unit: Normalized MSE) 

Average mean square errors Average mean square errors 
Sample 

size 
Sample 
mean 

VTNJE 
Sample 
mean + 

Fotowicz

VTNJE
+  

Fotowicz

Sample
size

Sample
mean

VTNJE
Sample 
mean + 

Fotowicz 

VTNJE
+  

Fotowicz
11 1.074 1.020 0.825 0.476 21 1.023 1.045 0.916 0.676 

12 1.051 0.970 0.840 0.509 22 1.116 1.115 1.000 0.704 

13 1.069 1.044 0.861 0.533 23 1.049 1.071 0.953 0.707 

14 1.066 0.996 0.906 0.550 24 1.005 1.008 0.926 0.688 

15 1.003 0.98 0.838 0.557 25 1.113 1.134 1.018 0.768 

16 1.122 1.023 0.975 0.600 26 1.126 1.135 1.031 0.785 

17 0.980 0.969 0.844 0.583 27 1.094 1.096 1.010 0.748 

18 1.000 0.984 0.877 0.593 28 1.085 1.088 0.999 0.789 

19 1.026 1.017 0.902 0.663 29 1.018 1.037 0.937 0.787 

20 1.046 1.029 0.931 0.695 30 1.036 1.106 0.969 0.803 

 

5.2.1 Test VTNJE for Combined Quantities 

Two patterns of output of combined quantities are used to further test VTNJE. The 

first one is composed of four independent input random quantities, including two 

quantities of normal distribution, 2
1 ~ (0.1,1 )z N and 2

2 ~ (2.15,1.5 )z N , and two 

quantities of rectangular distribution, 3 ~ rect [ 2 3 0.15, 2 3 0.15]z − + +  and 

4 ~ rect[ 10 3 0.1,10 3 0.1]z − − − . The second one is formed by changing 4z  of the 

first one to rect [ 28 3 0.1, 28 3 0.1]− − −  with the other three input quantities 

unchanged. They are mainly different by their uncertainty ratios: UR=3.7 for the first 

output quantity and UR=10.4 for the second one. Since VTNJE needs accurate 

quantiles, we predict the accurate quantiles for the two endpoints according to the 

order statistics in association with Eq.(5-2), :[ ]p nE x .  

Fig. 16 shows the experimental results of 3,000 trials for VTNJE using the two output 

patterns of UR=3.7 and 10.4. We find from the figure that VTNJE performs better for 

the pattern of higher UR whose shape of distribution is flatter than that of lower UR.   
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Fig. 16: Experimental results for VTNJE using two output patterns of UR=3.7 and 

10.4. Left: the distributions of output quantities. Right: MSEs normalized to 
2 ( ) /cu x n . 

 

For further examining the efficiency of VTNJE, six mean estimators are tested. The 

first two are sample mean and VTNJE. The third one, denoted as sample mean+60% 

VR, is sample mean with the two endpoints substituted with the accurate quantiles 

varying with 60% VR. Here, VR denotes the basic variation unit of ( ) /cu x n . The 

fourth, VTNJE+60% VR, is VTNJE with input quantities having 60% VR on the 

expectation. The fifth, VTNJE+Parzen, is VTNJE fed with quantile estimated by 

Parzen estimator. Parzen [59] proposed a simple quantile estimator via smoothing 

adjacent neighbors: 

1
1: :

1( ) ( ) ( ) ,     
2n i n i n

i i nF q n q x n q x i
n n

−
−

−
= − + − >  (5-4) 

where q  is the percent of quantile and i  is the sample index. If / 2i n≤ , reverse 

the order of weighting coefficients. The last, VTNJE+Fotowicz, is VTNJE using the 

quantiles estimated by the Fotowicz’s algorithm. The experimental results are 

displayed in Fig. 17. It can be seen from the figure that VTNJE outperforms sample 

mean without any assumption. This is a great achievement as we recognize that 

sample mean is UMVUE for normal distribution. Although the R*N distribution is 

different in shape from the normal distribution, they are alike for UR<1. Moreover, 

both VTNJE+60% VR and VTNJE+Fotowicz perform even better. This shows that 

VTNJE can operate on the same level of Fotowicz’s quantile even if it loads 60% 

combined uncertainty variation about the theoretical quantile. Lastly, VTNJE+Parzen 

performs not well in the sparse data condition. Here, we explain why VTNJE 
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outperforms the sample mean estimator. The reason is that the quantiles of R*N 

distribution has a small scattering area corresponding to the equal standard 

uncertainty of quantiles in VTNJE. Besides, sample mean is a UMVUE only for the 

normal population, it is not the best mean estimator for the R*N distribution. 

 
Fig. 17: Performance comparison for six estimators using the first output pattern with 

UR= 3.7. 
 

5.2.2 Test VTNJE for Different Uncertainty Ratio 

Lastly, we examine the performance of VTNJE for different uncertainty ratio. The 

experimental results are displayed in Fig. 18. First, we find from the figure that the 

average MSE of sample mean persists around its theoretic value of 1 according to the 

Central Limit Theorem. Here, average is taken over all sample sizes from 11 to 20. 

The average MSE of VTNJE decreases as UR increases and saturates to the value 

around 0.85 at UR near 6. Moreover, VTNJE outperforms sample mean when UR is 

greater than 2. As combined with the Fotowicz’s algorithm, sample mean+Fotowicz 

outperforms VTNJE for small UR; and their performances are comparable for large 

UR. Lastly, VTNJE+Fotowicz performs best. 
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Fig. 18: Performance comparison for four estimators using the output quantity of 

4-mixture combined quantities with different UR. The average MSE is normalized to 
2 ( )cu x n . 

5.3 Conclusions 

The highly concentrated pdf of CI also provides a proper demonstration of the idea of 

the conventional parametric CI approach which suggests taking the minimum of all 

possible values of CI. The new formulation of the pdf of CI has been shown to serve 

as a unified framework of parametric and non-parametric CI representations. Lastly, 

we have discussed a new quantile-based VTNJE to estimate the mean value of the 

output of combined quantities. The VTNJE was shown to outperform the traditional 

sample mean estimator for the sparse data condition.   

5.4 Appendix: Derivation a Closed Form for VTNJE 

Our principal goal is to establish an analytical form of estimator for the truncated 

normal distribution so that some special skills can be applied to the whole schemes 

including marginal likelihood, withdraw certain terms in the derived equations and 

externally adding a certain factor in the equation. If the posterior analysis takes a 

good performance, then these schemes are right. 

First, we take the integration of the log likelihood with respect to the three macro 

view random variables 1:nx , r , c  to obtain the marginal log likelihood.  
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1: 1: 2
1 1

(.) ( ( (( log 2 log ) )))
2
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2
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ξ ξ
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−
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∑ ∫ ∫
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where, 

( )2 1
t( ( 1)( ) ( )

2 v

n n
t t t P

b aD n n Cc Cc w κ− −−
= − − × , 

1: | , 1: | ,( | , ) ( | , )
n s sr n n s r c n s tQ p r n p r c Cc nξ ξ= ⋅ = , 

and | , ( | , )
sr c n s tp r c Cc n=  is the profile-conditional pdf  of sr . 

We then use a single truncation point to perform the estimation. Specifically, we 

employ the equation 1: 1:n nu x σξ= −  to obtain  

( )

1:

1:

1:

1

1: 1:
1
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1: 1:

2
1 1
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We then ignore the second term in Eq.(5-6) i.e. 

( )( ){ }
1:

1: 1:
1

log( ( ) ( ))
s n

v

t n s ndr d
t

D n r Q
ξ

ξ ξ
=

⋅ − Φ + −Φ∑ ∫ ∫ . We have two reasons to make the 

decisions. One is that it is a transcendental function which is difficult to obtain an 

explicit expression for the variables. The second reason is that we have found 

1: 1:( ) ( )n s nrξ ξΦ + −Φ  to be a coverage variable. Remember that we have derived the 

joint pdf of 1:nx , r , c . From Eq.(4-4), we find that the maximum power for 

coverage is 1n − in the pdf  of coverage. So, the dominant term has been present in 

the pdf  of coverage regardless whether the coverage variable, 1: 1:( ) ( )n s nrξ ξΦ + −Φ , 

is existing. Taking the expansion for the third term, we obain:     

1:

1:

2
1: 1:

2
1 1

2 21: 1:
1: 1:

1 1

( )( ( (( ) )))
2
( ) ( )1( ( (( ( ( ) 2 )) )))

2
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s n
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t dr d
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x x x xD Q
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ξ ξ
σ σ
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1: 1: 1:

2 21: 1:
, | , 1: , | ,

1 1

( ) ( )1( ( ( ( ) 2 [ ] [ ])))
2 n s t n s t n

v n
i n i n

t r c Cc n n r c Cc n
t i

x x x xD E Eξ ξξ ξ
σ σ = =

= =

− −
= ⋅ − + ⋅ +∑ ∑  (5-8) 

where ?[.]Ε  denotes the expectation operator. 

When we withdraw the coverage term, the equation will become Eq.(5-8) and the 

other problem generated. If we inspect Eq.(5-8), it will be found that there is going to 

no any coverage interval term, sr , to be left after integrating the variable sr . This 

result violates Eq.(2-10) derived by Cohen. Since our VTNJ estimator is the 

extending work of his truncated normal estimator so that we should preserve the 

information for sr . Thus we take the suggestion by Chen [47] to select the minimum 

coverage interval, [ ]sMin r , representing the information for coverage interval, sr . 

The new simplified equation is Eq.(5-9).  
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∑
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Taking the partial derivative of Eq.(5-9)  with respect to σ and setting it to zero, 
i.e., 
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Solving Eq.(5-10), we obtain an estimate of the standard deviation of the population: 
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with * 0σ > , where 
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( )2 1
t( ( 1)( ) ( )
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By substituting 1: 1:( ) /n nx uσ ξ= −  into Eq.(5-5), we obtain 
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Taking (.) 0MLL
u
∂

=
∂

, we obtain 
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With simple mathematical manipulations, the above equation can be simplified and 

expressed by 
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Solving Eq.(5-15), we obtain an estimator of μ : 
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Chapter 6 The Asymptotic Minimax Optimization for Mean 

Estimation of Combined Signals  

We now follow the robust statistical method “asymptotic minimax principle” to 

realize the mean estimation of combined signals. It is referred to as QMLE. We derive 

the QMLE via solving the problem of maximizing the objective function 

( , )QMLE μ σ  defined by: 

2

2
1

: :

( )( , ) ( log 2 log )
2 2

.        for 1 or 

n
i

i

p n p n

xnQMLE n

x p n

μμ σ π σ
σ

μ σξ
=

⎧ −
= − − −⎪

⎨
⎪ = − =⎩

∑ , (6-1) 

where :p nx  is the minimum order (for p=1) or maximum order (for p=n) of samples 

ix , for 1 i n≤ ≤ ; :p nξ  is a standard normal random variable normalized from :p nx ; 

and n  is the sample size. The solution derived in detail in the Appendix is given 

below: 

* *
: :p p n p p nxμ σ ξ= −  (6-2) 

where 

( ) ( )( )2 2
: : :

: : 1*

( ) 4 ( ( ) )( )
2 2

n

p n p n i p n
p n p n i

p

n x x n x xn x x
n n

ξξ
σ =

− + −−
= ±

∑
 (6-3) 

with the constraint * 0σ > , and x  is the sample mean. 

If we emulate the pdf of combined quantities as a quasi-normal distribution (see an 

example shown in Fig. 4), one of its two extreme shapes looks like a rectangular pdf 

for large UR. Fig. 19 demonstrates the first order and last order random variables (i.e. 

QSQ) of the rectangular and normal pdfs with the same standard uncertainty. From 

the figure, we find that the dispersion-areas of QSQ for the rectangular pdf are more 

concentrated than these for the normal pdf. 
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Fig. 19: Standard normal pdf combined with its CLT pdf and QSQ pdf for sample 

size=11. We plot the QSQ of equal variance rectangular pdf  [ 3, 3]−  as the blue 
solid line.  

 

6.1 Establish the Minimax Structure 

Huber [60] addressed the robust statistical method via the least possible variance 

searching algorithm given below:  

Asymptotic minimax results [60]: Let κ  be a convex compact set of distribution F 

on the real line. To find a sequence nT  of estimators of location which have a small 

asymptotic variance over the whole of κ ; more precisely, the supremum over κ  of 

the asymptotic variance should be least possible. 

According to the above theorem, we need three components to establish a minimax 

searching algorithm. They are the convex set, least variance and a minimax 

optimization objective function. We describe them in detail as follows. 

6.1.1 Convex Set 

Eq.(6-1) is a quadratic equation so that its global extreme does exist. According to 

this property, we construct the convex set comprising the candidates of population 

mean. Using three normal pdfs, 2(10,1 )N , 2(2.3,0.8 )N  and 2(3.7,1.2 )N  as 

examples, we form their convex sets by using Eqs.(6-2) and (6-3). There are 1,000 

trials with 15 samples in each trail. For each trial, the 15 samples are firstly sorted in 

the ascending order to find the two endpoints 1:nx  and :n nx . They are then 

transformed into the standard normal distributed versions, 1:nξ  and :n nξ , by using a 
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pre-assumed pseudo mean psμ  and the true standard deviation σ  if it is known (or 

the samples’ standard deviation 2

1

1 ( )
n

s i
i

x x
n

σ
=

= −∑ ). Then, the estimate *σ  is 

calculated by Eq.(6-3). We denote it as *
pσ . The final mean estimate is obtained 

substituting *
pσ  into Eq.(6-2), to obtain * *

: :p p n p p nu x σ ξ= −  for 1 or p n= . 

To evaluate the performance of the QMLE estimator, an averaged mean square error 

(MSE) defined by: 

( )* 2 * 21000
1

1

( ( ) ) ( ( ) )1
1000 2

ps n ps

i

i i
MSE

μ μ μ μ

=

− + −
= ∑  (6-4)  

is calculated for each test. We take the error between the pseudo mean and real mean, 

( )psμ μ− , as the reference. We set the inspection interval of psμ  to be 

[ 2 / , 2 / ]n nμ σ μ σ− + and take 50 pseudo means distributed uniformly over the 

interval as the candidates of population mean. Fig. 20 displays the average MSEs of 

QMLE versus ( )psμ μ− . It can be clearly found from the figure that, for all the three 

test cases using different normal distributions, the average MSEs of QMLE are 

characterized as convergence curves to become smaller as the absolute value of the 

difference between psμ  and μ  decreases.  
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Fig. 20: MSE of QMLE versus difference= ( )psμ μ−  for three normal distributions. 

Note that 1:nξ  is calculated using true standard deviation σ . 
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6.1.2 Asymptotic Efficient near the Minimal Average of MSEs 

Fig. 20 shows that the three average MSE curves are convex functions of ( )psμ μ−  

with their minima located at the zero of ( )psμ μ− . Based on the observation, we 

therefore suggest letting the selection criterion of the pseudo mean, psμ , correspond 

to the minimal average MSE, and expect that the resulting QMLE has higher 

efficiency than the sample mean. 

6.1.3 Minimax Structure for the Objective Function 

Now, we add a punishment term to form a new objective function and find the 

optimal pseudo mean estimate by: 

( )* 2 * 2
1

: 2

1

: : : 2

1
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1: 1 :
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x x x xn

x x
x x
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π σ
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⎩
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− − ⋅ − + − ⋅

∑

∑

2) ) }s

s

μ
σ

⎫
− ⎬

⎭

 (6-5) 

The minimax operation is thus constructed completely. The corresponding criterion of 

optimization is a combination of maximum QMLE and minimum MSE (MMSE) on 

QSQ.  

Table 9 lists four possible conditions that we will encounter in setting the inspection 

area for searching the optimal psμ . They specify the conditions whether the 

population’s mean and population’s standard uncertainty are given or not. Basically, 

the inspection area is set as [ 2 / , 2 / ]n nμ σ μ σ− + . If the combined (population’s) 

mean is unknown, the best searching interval for determining the candidates is also 

unknown. In this case, we use the sample mean to determine the searching interval. 

Similarly, if the combined (population’s) standard uncertainty, σ , is unknown, we 

use the samples’ standard uncertainty, Sσ , for its substitution. Table 9 shows the test 

conditions for the four combinations. 
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Table 9:  Table of confusion for the conditions of combined mean and combined 
standard uncertainty 

Combined Mean 
(CLT searching 

interval) 
 

Known Unknown 
Known A B Standard uncertainty 

of 
 combined quantities 

Unknown C D 

 

6.2 QMLE optimization on MMSE of the Two Endpoints of Range, 
(QSQ) 

In the proposed QMLE mean estimator, the quantiles are determined by the maximum 

percentage of its original population, i.e. coverage. Since the coverage-constrained 

quantiles obey the properties of symmetric quantiles, the QMLE mean estimator may 

be efficient and robust with variance asymptotically approaching the Cramer-Rao 

lower bound. It is worthy noting that since the QSQ usually covers a significant 

portion of the population, it is therefore popular to apply the double censoring scheme 

for the observations of small sample size, especially in the sport contest. We know 

that adopting such a strategy can avoid the large variation occurring in the mean 

estimation. Based on above discussions, we apply the above QMLE+MMSE 

optimization search only on QSQ, and call it the Q2MMSE-CLT scheme. 

We now examine the performance of Q2MMSE-CLT by simulations. Suppose that 

the combined quantity is composed of four independent random input quantities with 

two normal distributions, 1 2 3 4x z z z z= + + + , 2
1 ~ (0.1,1 )z N  and 

2
2 ~ (2.15,1.5 )z N , and two rectangular distributions, 

3 ~ [ 2 3 1.05, 2 3 1.05]z rect − − −  and 4 ~ [ 10 3 1.45,10 3 1.45]z rect − + + . We 

perform 10,000 trials to test Q2MMSE-CLT for each of the four conditions listed in 

Table 9. The testing sample size ranges from 11 to 40 for each trial. Fig. 21 and Fig. 

22 display the experimental results. It can be found from these two figures that 

Q2MMSE-CLT significantly outperforms the sample mean for Conditions A and B, 

and is slightly better for Conditions C and D. In other words, Q2MMSE-CLT has 

much lower MSEs when the standard uncertainty is known. 
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Fig. 21: Conditions A and C. y axis is normalized to 2 ( ) /cu x n  

 

10 15 20 25 30 35 40
0.6

0.7

0.8

0.9

1

1.1

1.2

Sample size

N
or

m
al

iz
ed

 M
SE

CLT interval is unknown

 

 

Case D
Case B
Sample mean

 
Fig. 22: Conditions B and D. y axis normalized to 2 ( ) /cu x n   

 

6.2.1 Test the Robustness of Q2MMSE-CLT for Different 
Uncertainty Ratio 

Here we test Q2MMSE-CLT for two different values of UR. As demonstrated in Fig. 

4, the R*N distribution is more flat in its central part as UR increases. It is a general 

issue to study whether Q2MMSE-CLT performs better for larger UR. We perform 

10,000 trials for two cases of combined quantities composing of four different 

distributions. One has 2
1 ~ (0.1,1 )z N , 2

2 ~ (0.2,1.5 )z N , 

3 ~ [ 2 3 0.15, 2 3 0.15]z rec − + + , and 4 ~ [ 10 3 0.1,10 3 0.1]z rec − − − . Its UR is 

equal to 3.7 evaluated according to Eq.(2-25). Another is the same as the first case 

except that 4 ~ [ 10 3 0.1,10 3 0.1]z rec − − −  is changed to 

4 ~ [ 28 3 0.1, 28 3 0.1]z rec − − − . The UR is accordingly changed to 10.4. Fig. 23 

displays the histograms of 50,000 outputs of combined quantities for the two cases. It 

shows the property of quasi-normal distribution for the output of combined quantities. 
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To compare the two cases of Q2MMSE-CLT, a robustness function of gain relative to 

sample mean is defined as  

2 ( )   ( 2 )1  ,    ( :  )
   (   )

cu xAverage MSEs of Q MMSEG unit
Average MSEs of sample mean n

= −        (6-6) 

Fig. 24 displays the experimental results. It can be found from the figure that 

Q2MMSE-CLT outperforms sample mean for both cases of UR=3.7 and UR=10.4. 

Moreover, the performance is better for larger UR. 

 
Fig. 23: Histogram of 50,000 combined quantities for different URs. x-axis is the 

output of combined quantities and y-axis is the frequency count 

 
Fig. 24: Gain performance for the different URs. The unit is 2 ( ) /cu x n  

6.2.2 An Advanced Refinement of the QMLE 

Although Q2MMSE-CLT follows the paradigm of asymptotic minimax principle, 

there are only about 2%~3% gains, for Conditions C and D, over the sample mean in 

the mean estimation for the output of combined quantities. By considering the 

practical applications, we only further discuss Condition D. As was noted previously, 

the testing data of combined quantities are formed in the same manner and we execute 
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1,000 trials with 15 observations in each trial. We select 60 candidates of population 

mean and arrange them to be symmetric to the sample mean within the interval of 

[ 2 / , 2 / ]s sn x n xσ σ− + + . Then we evaluate the QMLE via the Q2MMSE-CLT 

scheme. In our maneuver, we first plot the convex curves according to the three 

different clusters of Z score (i.e., quantile of the signal transformed to standard 

normal pdf) of sample mean: 2Z < − , 0.5 0.5Z− ≤ ≤ , and 2Z > . We then define the 

cluster 0.5 0.5Z− ≤ ≤  as good sample mean and the other two clusters, 2Z < −  and 

2Z > , as the bad sample means. Fig. 25 is the convex sets conditioned on the good 

sample mean. Here, the dot line is the convex set for the original signal of combined 

quantities and the green solid line represents the convex set due to enlarging standard 

uncertainty (ESU) to 4 times of the original signal with the same reference candidates 

of population mean. We find from the figure that for the good sample mean case 

QMLE converges near the symmetric location, (i.e., the 30-th candidate) for both the 

original and ESU signals. So, in the good sample mean case the convergence of 

QMLE to population mean on heavy observations will be guaranteed.   
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Fig. 25: Good sample mean tested with the convex sets, normalized by 2 ( ) /cu x n , 

sample size is 15, 4 combined quantities 
 

Fig. 26 and Fig. 27 show respectively the results for the two bad cases of biased Z 

score to be less than -2 and greater than 2 when applying the Q2MMSE-CLT and 

enlarging standard uncertainty Q2MMSE-CLT (ESQ2MMSE-CLT). We plot the 

details shown as the double y-axes representation in which the dash line represents 

the original signal evaluated by Q2MMSE-CLT and the solid line represents the 
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signal evaluated by ESQ2MMSE-CLT with 4 times of combined standard uncertainty. 

An important fact is found from these two figures that the original signal will be 

affected by the sample mean if it only takes the Q2MMSE-CLT operations. The 

resulting MSE curves converge to the near symmetric location which is the sample 

mean, but we know it is a bad sample mean. We also found from these two figures 

that, as we apply the ESQ2MMSE-CLT algorithm with 4 times of combined standard 

uncertainty, the MSE curves converge to locations deviated away from the bad 

sample mean and toward the true population mean. Why does it act like this as the 

action? The reason is that the ESQ2MMSE-CLT enlarges the combined standard 

uncertainty to 4 times of the original signal. Thus the Z score of the general maximum 

bias sample mean will be reduced to 25% of that of the original signal. It means that 

the Z score of bias is constrained to 0.5 0.5Z− ≤ ≤ . This in turn will guarantee the 

convergence to the good sample mean (also the population mean) as shown in Fig. 25, 
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Fig. 26: Originally left biased of bad sample mean tested with the convex sets, double 

y-axes, normalized by 2 ( ) /cu x n , sample size is 15, 4 combined quantities 
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Fig. 27: Originally right biased of bad sample mean tested with the convex sets, 

double y-axes, normalized by 2 ( ) /cu x n , sample size is 15, 4 combined quantities 

 

Fig. 28 displays the refined results of ESQ2MMSE-CLT for sample size from 11~40. 

We find from the figure that ESQ2MMSE-CLT significantly outperforms the sample 

mean by 40% MSE reduction. So it is a promising mean estimator. 
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Fig. 28: Refined Q2MMSE-CLT with the enlarging standard uncertainty, y-axis is 

normalized by 2 ( ) /cu x n , 4 combined quantities 

 

6.3 Change the Variable to Obtain a Nonlinear Estimator for Mean 
Estimation 
We now derive a new nonlinear equations for variable u  from Eq.(4-8).  By letting 
x u h= + Δ  and 2 2 2

nx S x= + . Then Eq.(5-15) becomes 
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where hΔ  is the sample mean bias relative to the population mean μ .  

Eq.(6-7) is a quadratic equations for variable μ . So, we can easily obtain the 

estimated mean *u . Because the variance, 2
nS , is a function of μ , we can regard 

Eq.(6-7) as the nonlinear equation. If we set hΔ  equal zero for Eq.(6-7), and the 

new equation is changed to: 

2 2 2 2
: : :

*
1

2 ( ) 0,   1    

1 ( )
2

p p n p p n p n n

n

x x S p or p nμ μ ξ

μ μ μ

− ⋅ + ⋅ − = = =

= +
 (6-8) 

1 1
1: :

1( ( )),        ( ( ))
1 1n n n

n
n n

ξ ξ− −= Φ = Φ
+ +

 (6-9) 

where (.)Φ  is the cdf of 2(0,1 )N , and 2
nS  is the variance of input sequence. Let us 

test the combined quantities of four input signals expressed by 

1 2 3 4x z z z z= + + +  (6-10) 

We perform 10,000 trials for two cases of combined quantities composing of four 

different distributions. One has 2
1 ~ (0.1,1 )z N , 2

2 ~ (0.2,1.5 )z N , 

3 ~ [ 2 3 0.15, 2 3 0.15]z rec − + + , and 4 ~ [ 10 3 0.1,10 3 0.1]z rec − − − . Its UR is 

equal to 3.7 evaluated according to Eq.(2-25). Another is the same as the first case 

except that [ 10 3 0.1,10 3 0.1]rec − − −  is changed to [ 28 3 0.1,28 3 0.1]rec − − −  

and the new UR is changed to 10.4. The experimental results are shown in Fig. 29. 

We find from the figure that the nonlinear mean estimator outperforms the 

sample-mean estimator for both cases. Moreover, it performs better for the case of 

large UR(=10.4). MSE reductions of about 30% and 70% were achieved for the two 

cases of UR=3.7 and 10.4, respectively. 
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Fig. 29: Nonlinear estimators compared to the sample mean estimator for different 
uncertainty ratio (UR), y axis is normalized to the combined standard uncertainty, 

2 ( ) /cu x n   

 

6.4 Conclusions 

In this chapter, the issue of applying quantile-based maximum likelihood estimation 

(QMLE) to mean value estimation of normally-distributed signal in sparse data 

condition is addressed. It proposes to incorporate order statistics into QMLE to take 

the maximum coverage as quantiles so as to conform to the requirement of symmetric 

quantiles. Simulation results confirm that the new Q2MMSE-CLT performs very well 

to outperform the conventional sample mean estimator. The proposed Q2MMSE-CLT 

reaches the highest gain when the combined mean is known and obtains the least 

benefit if we take the sample mean to substitute for the combined mean. In spite of the 

fact, ESQ2MMSE-CLT can compensate this shortcoming. The robustness of 

ESQ2MMSE-CLT to its usage of sample mean makes it a promising mean estimator 

for practical applications. 

It is worthy to note that Q2MMSE-CLT is free to the standard uncertainty of 

population. The standard uncertainty of combined quantities can therefore be ignored 

and replaced with the samples’ standard uncertainty in the estimation process. We 

also find that the nonlinear mean estimator solved from Eq.(6-8) outperforms all 

other estimators when UR is high. 

6.5 Appendix: Derivation of the Quantile-based Mean Estimator 

By substituting : :p n p nxμ σξ= − , for 1 or p n= , into ( , )QMLE μ σ  defined in 

Eq.(6-1), we obtain 
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Taking the partial derivative of Eq.(6-11) with respect to σ  and setting it to zero, 

we obtain 

2 2
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1 1
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Solving Eq.(6-12) to obtain an estimate of the standard deviation of population: 

( )2
* 4

2
B B nC

n
σ σ σσ
± +

=   (6-13) 

where : :
1

( )
n

p n i p n
i

B x xσ ξ
=

= −∑ , 2
:

1

( )
n

i p n
i

C x xσ
=

= −∑ , and * 0σ > .  

 
 

 
 



 

 71

Chapter 7 An Efficient Representation for Combined Signal 

Activity Detection in Sparse Data Condition 

7.1 The Simplified Quantile-based Mean Estimator 

We have shown that the proposed VTNJE is an efficient mean estimator in the 

previous chapter. But, its computational cost is too high. Now we proposed a new 

mean estimator for the combined signals. The idea is to keep using the same QMI 

principle and to inspect its efficiency in terms of the representation of the maximum 

eigenvalue which has been reviewed in Sub-section 2.6. We continue the work of [41] 

to employ the simplified representation of UBE and developed a new algorithm to 

against the uncertainty increasing on the sparse data condition such as Eqs. (2-27) - 

(2-28). The study considers that the correlation matrix, mxm ijR r⎡ ⎤= ⎣ ⎦ , is estimated 

from n observed samples of m-dimensional random vector by  

  for 1 ,ij
ij

i j

c
r i j m

σ σ
= ≤ ≤ , (7-1) 

where 1 ( )( )
1

T
ij m n m n m n m nC c X U X U

n × × × ×⎡ ⎤= = − −⎣ ⎦ −
 is the sample covariance of the 

observed i.i.d. random vectors ix , for  1 i n≤ ≤ ; 1 2[    ];m n nX × = x x xL  

 [    ]m nU × = u u uL  is the mean matrix with identical column vector [ ]iE=u x ; and 

jσ  is the standard deviation of the j-th component of ix . The conventional approach 

to mean matrix estimation is by the sample mean method. Since the variance of 

sample mean is known to increase as the sample size decreases, the resulting mean 

matrix estimate is hence unreliable in the sparse data condition. This will make the 

uncertainty of the estimated correlation matrix increase accordingly; which in turn 

affects the UBE finding.  

 In accordance with the discussions in Section 6.5, we have suggested a new 

approach for the mean estimation. Due to the fact that symmetric quantiles are 

efficient [36], we use QSQ to form a QMLE-based mean estimator by 
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* *
1

1- ( )
2 nQMLE QSQ μ μ= +  (7-2) 

To use Eq.(7-2), two problems are still needed to be solved. One is that Eq.(6-2) is 

derived based on the assumption of ideal additive mixture signal with normal 

distribution, while the realistic signal is QSAW. Another is that the transform-domain 

QSQ,i.e. , 1:nξ  and :n nξ , are unknown. 

To solve the first problem, we define the match pair (MP) for the QMLE analysis. 

From Fig. 30, we find that the two extreme pdfs of the QSAW signal are normal and 

rectangular distributions. We hence define MP as the following two pdfs with the 

same mean μ  and standard deviation σ  by 

2( , ) Rect[ 3 , 3 ]N μ σ σ μ σ μ↔ − + +  (7-3) 

Now we use order statistics to express the pdf of QSQ [61]. 

:
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: : : :

!( ) ( ( )) (1 ( )) ( )
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k n k
x k n x k n x k n x k n

nf x F x F x f x
k n k
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 (7-4) 

where ( )xf x  and ( )xF x  are the pdf and cdf of x, and k is the order index restricted 

to k =1 or n. We plot the pdfs of QSQ of the MP in Fig. 30 for the case of μ =0, 

σ =1, and n=11. The two red dash curves represent the pdfs of the standard normal 

QSQ and the two green solid curves represent those with rectangular QSQ. Fig. 30 

reveals that the rectangular QSQ are spanned in two smaller areas covered completely 

by their corresponding standard normal counterparts. Since the pdfs of MP are the two 

extremes of the pdf of QSAW, the QSQ of QSAW will also be dispersed in two areas 

covered by those of the normal QSQ. So, applying the transform-domain QSQ of 

QSAW to Eq.(6-2), derived based on the assumption of normal distribution, will 

cause no troubles at all. 
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Fig. 30: The pdfs of QSQ of the MP pair (i.e., normal and rectangular distributions) 

for the case of μ =0, σ =1, and n=11. Dots on x-axis are expectation values of QSQ. 
 

The second problem is solved by replacing 1:nξ  and :n nξ  with their expectation 

values. But, calculating the expectation of Eq.(7-4) is still difficult to implement for 

QSAW signal with pdf given in Eq.(2-24). Thus an alternative approach is adopted. 

Since the expectation values of QSQ for a QSAW signal are located between those of 

its two extreme MP pdfs which are very close to each other (see Fig. 30: green and 

red dots on the x-axis), we can therefore use the expectation values of either 

rectangular QSQ or normal QSQ to approximate them. Besides, we use an indirect 

way to calculate the expectation values of rectangular QSQ and normal QSQ. For any 

pdf ( )xf x , if we consider to transform the quantile :k nx  to its cumulative probability 

by Eq.(3-8), the distribution of the cumulative probability is subject to [0,1]rect . The 

expectation of the cumulative probability of minimum-order quantile, 1:np , can then 

be easily obtained from Eq.(7-4) by: 

1: 1:

1 1 1
| 1: 1: 1: 1: 1: 1: 1:0 0

! 1[ ] ( ) 1 (1 ) 1
0!( 1)! 1n n

n
p n n n p n n n n n

nE p p f p dp p p dp
n n

−= ⋅ = ⋅ ⋅ ⋅ − ⋅ ⋅ =
− +∫ ∫  (7-5) 

Similarly, the expectation of cumulative probability for the maximum quantile 

is
: | :[ ] / ( 1).

n np n n nE p n n= +  Since the formulations for these two expectations are 

distribution-free, we can therefore calculate the expectations of normal QSQ by 

1 1
1: :

1( ( )),        ( ( ))
1 1

N N
n n n

n
n n

ξ ξ− −= Φ = Φ
+ +

 (7-6) 
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and those of rectangular QSQ by 

1 1
1: :

1( ( )),      ( ( ))
1 1

R R
n n n

n
n n

ξ ξ− −= Ψ = Ψ
+ +

 (7-7) 

where (.)Φ  is the cdf of 2(0,1 )N  and (.)Ψ  is the cdf of [ 3, 3]rect − . 

To justify the feasibility of the scheme of replacing 1:nξ  and :n nξ  with their 

expectation values, the following experiment is conducted. Consider the signal x 

formed by four independently combined quantities: 

1 2 3 4x z z z z= + + +  (7-8) 

where two input quantities are normally distributed, 2
1 ~ (0.1,1 )z N  and 

2
2 ~ (2.15,1.5 )z N , and the other two are rectangular distributed, 

3 ~ rect[ 2 3 0.15, 2 3 0.15]z − + +  and 4 ~ rect[ 10 3 0.1,10 3 0.1]z − − − . We 

generate 50,000 samples of x to calculate its mean μ  and standard deviation σ  as 

the true parameters. We then perform 10,000 trials for each sample size n in the range 

of 11~40. In each trial, we generate a set of samples and transform the minimal and 

maximal samples, 1:nx  and :n nx , to produce the true transform-domain quantiles and 

denote them as 1:
T
nξ  and :

T
n nξ . We then simulate a pair of 1:nξ  and :n nξ  by 

:k nξ ~
: :

[ 0.5 ,0.5 ]
k n k n

T Trect VR VRξ ξ− + +  (7-9) 

for k=1 or n, and use them in Eqs.(7-5)~(7-9) to generate a QMLE-QSQ estimate. 

Here, VR is the dynamic range with unit of standard deviation of a single quantile of 

QSQ (denoted as SQSQ STD). We test several cases of VR which shows different 

degree of deviation of the transform-domain quantiles corresponding to the true ones. 

Fig. 31 shows the experimental results. 
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Fig. 31: The performance of QMLE-QSQ mean estimation for different degree of 

deviation of the transform-domain quantile used to the true one. Note that y axis is 
normalized by 2 ( ) /cu x n . 

 
As shown in Fig. 31, QMLE-QSQ outperforms the sample mean estimator if VR is 

smaller than 3.5 SQSQ STD. The average MSE decreases by about 50-60% if the 

transform-domain quantile is approximately known, e.g. VR=0.05 SQSQ STD. The 

improvement gradually degrades as VR increases. These results show that using 

approximate quantiles in the QMLE-QSQ mean estimator will not cause big trouble if 

they deviate not too far away from the true values. So, the proposed replacement 

scheme is appropriate. 

We then examine the effect of UR variation of the QSAW signal on the performance 

of QMLE-QSQ by simulations. Consider the previous combined signal x shown in 

Eq.(7-8). Its UR is 3.7 evaluated according to Eq.(2-25). We then simulate another 

combined signal x′  formed by z1, z2, z3, and 4 ~ rect[ 28 3 0.1, 28 3 0.1]z′ − − − . The 

UR of x′  is 10.4. To test QMLE-QSQ, both cases of replacing ( 1: :,n n nξ ξ ) by their 

expectation values, calculated using Eq.(7-6) based on the normal assumption and 

Eq.(7-7) based on the assumption of rectangular pdf are examined. For these two 

cases, the QMLE-QSQ are calculated, respectively, by 

( ) ( )* * * *
1 1: 1 1: : :

1 1( ) { }
2 2

N N
n n n n n n n nx xμ μ σ ξ σ ξ+ = − + −  (7-10) 

( ) ( )* * * *
1 1: 1 1: : :

1 1( ) { }.
2 2

R R
n n n n n n n nx xμ μ σ ξ σ ξ+ = − + −  (7-11) 
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We perform 10,000 trials for each sample size n ranging from 11 to 40. The 

normalized MSEs for UR=3.7 and UR=10.4 are displayed in Fig. 32. It can be found 

from these two figures that QMLE-QSQ significantly outperforms sample mean for 

both cases of normal and rectangular pdf assumptions. Moreover, QMLE-QSQ 

performs better for large UR. This can be explained as follows. As shown in Fig. 30, 

rectangular QSQ have much smaller variances than their counterparts of normal QSQ. 

The error caused by the expectation replacement scheme will be smaller for the 

rectangular pdf to make it outperform the normal pdf on mean estimation. Since the 

pdf of QSAW signal with larger UR looks more like the rectangular pdf (see Fig. 4), it 

is hence expected to perform better on mean estimation. Moreover, we find that the 

performances of QMLE-QSQ using the two quantile-expectation (QE) replacement 

schemes, based respectively on standard normal pdf and standard rectangular pdf 

assumptions, are almost the same. The reason is obvious because their locations are 

closed to each other. 
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Fig. 32: The mean estimation performance of QMLE-QSQ using two different 

quantile-expectation (QE) replacement schemes for two QSAW signals: (a) UR=3.7 
and (b) UR=10.4. The y axis is normalized by 2 ( ) /cu x n . Note that the MSEs of 

QMLE-QSQ and sample mean are 
* *
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7.2 Simulation Results for UBE Finding with QMLE-QSQ Mean 
Estimation 

Now, we examine the effect of applying the QMLE-QSQ mean estimator on UBE 

finding. We set r=1 in Eq.(2-28) for the first-order UBE evaluation so that it is tighter 
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than the Dembo’s bound which is the case of r=0 [41]. The first-order UBE is the 

maximal real root of Eq.(2-28). We denote ( )Q
m tη  as the UBE estimate using the 

QMLE-QSQ mean estimate to perform the mean matrix m nU × , and ( )s
m tη  as that of 

using sample mean. Here t denotes the trial index. Define the following five factors to 

measure the performance of UBE finding: 

{ }count of ( ) ( ) max{ ( )}s Q
m m kk

ET t t t tη η ε= > >  (7-12) 

/Yield ET T=  (7-13) 

1

1 ( ( ) max{ ( )})
ET

s
m kkt

OD t t
ET

η ε
=

= −∑  (7-14) 

1

1 ( ( ) max{ ( )})
ET

Q
m kkt

CD t t
ET

η ε
=

= −∑  (7-15) 

( ) /IR OD CD OD= −  (7-16) 

 
where ET denotes the number of effective (or successful) trails; ( )k tε ,1 k m≤ ≤ , are 

eigenvalues of trial t; “Yield” measures the percentage of effective trails; T is the total 

number of trials; OD and CD denote the average distances from the upper bound to 

the maximal eigenvalue for effective trails using sample mean and QMLE-QSQ, 

respectively; and IR denotes the improvement factor of the proposed UBE finding 

method over that using sample mean. We take 100 trials (T=100) for each sample size 

n ranging from 11 to 40. In each trial, m is set to equal to n, and each row vector of 

m nX ×  is formed by i.i.d. random variables generated by Eq.(7-8) using the same 

mean and the same UR (in the range of 8~10.4). The values of mean and UR for 

different row vector are different. The testing procedure spent 8 days on a PC with 

Intel Pentium 4 CPU run at a clock of 2.84 GHz. The experimental results are 

displayed in Fig. 33. It can be found from the figure that the yield is over 85% for n in 

the range of 11∼40. The corresponding IR is 25% for n=11 and decreases gradually to 

13% when n=40. These results show that the proposed QMLE-QSQ mean estimator 

can improve the UBE finding. 
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Fig. 33: The performance of UBE finding using the proposed QMLE-QSQ mean 

estimator 

7.3 Conclusions 

We measured the combined signal as a result of linear combination of input quantities 

and have proved that its shape looks like the QSAW in the previous chapter. In this 

chapter, we propose the QMLE-QSQ to estimate the mean value of QSAW signals 

and apply it to find the upper bound of eigenvalues for signal activity detection (SAD) 

in combined signals. The propagation of additive model is appropriate for assuming 

the QSAW to be quasi-normally distributed whenever its mean value is needed to be 

estimated. Either Eq.(7-6) or Eq.(7-7) is simple and unique to obtain based on the 

QMI transform domain working where Fig. 31 demonstrates the sensitivity analysis 

and Fig. 30 shows the dispersion of QSAW being smaller than 3.5 SQSQ STD. Lastly, 

the result in Fig. 32 admits the above facts. 

This topic related to the signal activity detection brings the issue of UBE 

approximation from deterministic to stochastic analysis via considering the case that 

the correlation matrix of signal is estimated from sparse observed sample vectors. A 

tighter upper bound of eigenvalues can be obtained as the correlation matrix is 

calculated by using the mean matrix formed by the proposed QMLE-QSQ mean 

estimates. More reliable correlation matrix can be explained in the system obtained by 

the QMLE-QSQ mean estimation to result in better UBE finding than that by the 

conventional sample mean estimation.  
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Chapter 7 Conclusions and Further Works 

In this dissertation, we devote to the robust representation of combined signals in 

sparse data condition in terms of the formulation of JCGM expression and take 

advantage to the unified pdf of coverage interval for uncertainty measurement. 

However, this unified pdf expression of coverage interval shows that the shortest 

coverage interval is good enough to represent the whole distribution of coverage 

interval when the pdf of population is asymptotically symmetric. Due to the fact that 

the two endpoints of coverage interval are decided in one step, we reverse the 

traditional procedure, which finds the endpoints after the mean estimation, to estimate 

the mean value of population after finding the endpoints of coverage interval. We find 

that given with an accurate coverage interval is capable of improving the mean 

estimation by the way of regarding the coverage interval as a result of variably 

truncated normal distribution. Besides the improvement on the mean estimation, a 

robust estimation for truncated normal pdf is also reached when we take the 

quantile-based estimation combined with the output of unified pdf of coverage 

interval. The result is better as compared with the model derived by Cohen.  

We also use quantile to derive a nonlinear equation for mean estimation. Simulation 

results demonstrate that it performs well. We last try a novel algorithm, named “The 

robust statistical principle of minimax optimization”, to use the unified pdf of 

coverage interval in mean estimation. It is a convex optimization method for the 

general mean estimation. The optimization process converges exactly to the true mean 

direction so that it may be considered as a new search algorithm as well as the 

steepest gradient descent algorithm without the quadratic object function. Finally, we 

apply the new mean estimator, QMLE-QSQ, to the application of signal activity 

detection in terms of finding the upper bound of eigenvalues. We find that the 

QMLE-QSQ can replace the classical sample mean to obtain a more accurate 

correlation matrix estimate, which in turn leads to a more efficient representation of 

the maximum eigenvalue. Thus, our study extend the previous UBE finding studies, 

which use deterministic correlation matrix, to employ stochastic correlation matrix 
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via introducing the uncertainty of mean estimation on spare data condition. And our 

solution can obtain better UBE for improving signal activity detection..      

Our work still leaves several warm topics about CI which are worthy of studying in 

the future. For instance, “the shortest CI” should be replaced with “the probably 

shortest CI” whenever the pdf is skew. But we don’t know how the skewness of signal 

pdf affects the pdf shape of CI. Secondly, we have proved some properties of 

endpoints of quantiles based on the QMI principle. They include the structure of left 

endpoint mapping to the quantile of 1/ ( 1)n + , the right endpoint mapping to the 

quantile of / ( 1)n n + , and coverage being equal to ( 1) / ( 1)n n− +  which is the 

expectation | [ ]c nE c shown in Eq.(3-11). Hence, the endpoint-decision with the QMI 

principle is deterministic. So, this criterion can not support the exploration of the 

random effects of endpoints. We suspect that the quantile-based mean estimation 

ought to be suffered from the random effects of the endpoints expression.    
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