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Abstract

In many signal processing.applications, to. measure and represent combined
signals is a necessary and essential work because it is generally difficult to obtain
individual components of a combined signal. So far, there are only few attempts on
analyzing the measurement and/or.representing the uncertainty of some special
combined signals. JCGM (the Joint Committee for Guides in Metrology) coordinated
the publication of measurement standard since 1995 and followed the GUM’s (Guide
to the Expression of Uncertainty in Measurement) suggestion to publish a standard,
JCGM 101, to outline the representation of combined signals by an additive model
which models a combined signal as the result of the propagation of different input
source signals. The suggested format of JCGM 101 includes the following four items:
mean, standard uncertainty, coverage interval (CI) and its two endpoints. The JCGM
standard uses the law of uncertainty of propagation to evaluate the associated standard
uncertainty of a combined signal. But it does not provide the way to explore the
effects of the output uncertainty on mean and coverage interval estimations. This
motivates us in this study to exploit the optimal representation of the uncertainty of
combined signals based on the minimal estimation error criterion under small sample

size condition.

One basic problem of the JCGM standard is the use of sample mean to estimate

il



the mean of a combined signal. It therefore neglects the uncertainty resulted from the
rough mean estimation when the sample size is small. Another problem is that it
evaluates the coverage interval based on the assumption of asymptotically symmetric
distribution. This study proposes several approaches to attacking these problems and
examines them by the Monte Carlo simulations. Items studied include: (1) We verify
that the output of a combined signal distributes like a quasi-normal signal with
asymptotic window-shape distribution (QSAW). (2) We derive a unified probability
density function (pdf) for CI to eliminate the need of skewness recognition before the
evaluation of CI. (3) We extend the CI representation to the statistical CI
representation and form the variably truncated normal joint probability density
function. A robust quantile-based mean estimator is accordingly proposed. (4) We try
a nonlinear modification of the proposed quantile-based mean estimator and verify its
robustness with specially focusing on the case when the pdf of the combined signal
approximates a rectangular pdf. (5) We follow the robust statistical method using “the
asymptotic minimax principle” to refine the sample mean. (6) We employ the quantile
mapping invariance (QMI) principle to-improve the efficiency of the quantile-based
mean estimator and apply it to the task of finding the upper bound of eigenvalues

from the correlation matrix calculated from sparse observed samples.

We believe that the proposed unified representation of CI and its application to
the quantile-based mean estimation are very promising and can contribute to extend

the usage of the JCGM standard.

v



RS

#mﬁwﬁ@P@ﬂ o
|%<F[ JThE S SR P - o
ENCE TRl @F;I[" [ s J?@EF F‘ji&?l; E;Frﬁrﬁfﬁg[jwm /]%JEE’E&%E[V HIRETE
’ ]Eiﬂﬁﬁai S S 5 ’?‘MﬁH
‘ i 0y 14 5L 8 7 " iy
St 4 S '?Jéiﬁ@ |F“" r%ﬁ\ljéjf%%g[ s TR I
ERi3 F”%ﬁ"HIfjglpfj{jg{ j PEvE > R - S (RIS P
~ ﬁF = A
EIEI[?;T}IU%[;:;EQTEA, {ﬁH Boe TF[zE’LEHbI[EtW EHELL%? B PR (955 F
o EI (_ﬁ 'ZHQ? /7 Jj 1E
fi- guji?j”gﬁﬁﬁaﬁiﬁﬂ Y L - B SRRSO BT B
22 BT SAIEST A R YRR S
£ R SIS T rﬁﬁl* & PEISPRR QT T T R
L ﬁjil[ :JEFI %FFJ:Irrjj,jpij,jjaj_ i F
ff)f EI rj;f‘ﬁ[# 37ZF'JI“)I E T sl T f D Barkmg K= rl
FE;E,;BFZF, -t & ﬁJaEE_.{ ﬁ 1"Z[f [F= [ﬁ%‘] J:S‘Eg\j“ I/ 8l o REH A
S f ﬁ'Puma ﬁ'JIj: FGI 5 1 i N tr,, I st F
]3 ﬁq ?é@ B 4 U~ ?sm AR W@a%ﬂ[ $F4L| w?@%ﬁi’ﬁ FJ’
sy 4 IR A JJH;";#JI igzﬁi\gﬁ g
j{, 5"}";47;/‘1 ’WEJJ\E?F% [rl %ETJ[L»F}?—K%&? f%:{:’?#y ﬁﬂi—”;; k= —f‘l _%Tﬁé‘
AEATRIE A 3l s st YT

—



ACRONYMS

BLUE the best linear unbiased estimation

cdf cumulative distribution function

CI coverage interval

CLT central limit theorem

GLI Gauss Legendre integration

ii.d independent and identical distribution
MLE maximum likelihood estimation
MSE mean square error

MMSE minimum mean square error
MLL marginal log likelihood

pdf probability density function

QMLE quantile-based maximum likelihood estimation
QSQ quasi symmetric quantiles
UBE upper bound of the eigenvalues

VTINIJ pdf  variably truncated normal joint pdf

NOTATION

p.() pdf or conditional pdf for a certain variable
Pr(.) probability

X random variable of normal distribution

vi



£ pdf of a certain random variable

£.0) pdf of the normal population of random variable x with mean u and

standard deviation o;i.e., f.(x)=N(u,0°)
F.() cdf of the normal population of random variable x; F (x)= J.j f.(»)dy

u population mean

o standard deviation of population

x,,,1<i<n  the ranked random variable resulting from sorting the samples of x
n sample size

u[0,1]  standard uniform distribution in [0,1]

& random sequence of the standard normal distribution

&..,1<i<mn  order statistics random variable generated from the ranked random

variable ¢ of the standard normal pdf

X, random sequence of length »
E, [] orE, [] expectation operator

Cov[-,-] covariance operator

Min[.]  take the minimum value in set

1 identity vector

B covariance matrix
L likelihood

r range

c coverage
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U(.) unit step function

Z(Cc,,n) normalized factor for the fixed coverage point Cc,, t is the sampling

index for Gauss-Legendre Integration

n, root of the Hermite polynomials expanded coverage the order of Hermite

polynomials

[a,b] the interval for interval estimation of coverage

wy, (7,) the roots of the i-th Hermite polynomial

P() the v-th Legendre polynomial

r the random variable of range on standard normal pdf

D(.) cdf of standard normal distribution

=|

if no emphasis, it is the sample mean or average of the truncated data

=

mean of square

w, (k,) the weighting coefficient’ of the t-th root of the vth order Legendre

polynomial
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Chapter 1: Introduction

1.1 Motivation

The observation of nature which constitutes an experiment will almost inevitably take
the form of a measurement. Measurement is represented as the precision type related
as whether the experiment is effective, or in the other words, how much is taken about

its confidence corresponding to the experiment.

Does the measurement merely have the purpose of standing for a qualitative
conclusion? Such a question causes the focus of the meaning of any experiment
whenever it is significant not only for someone’s special idea but also lay themselves
open to all the frailties of human judgments. That is, confidence report is needed in
the formal measurement report. According to the requirement of duplicate
verifications for the results of any new ‘approach, the workers expect to convey the
experimental results to someone else based on the. condition of laboratory or field
testing invariantly so that the“level of confidence must be also included in the
measurement task. Besides, confidence plays the key role to support whether to
accept the other’s report so as to avoeid performing a duplicate experiment. Thus the
center problem for measurement task includes showing the confidence level about the

results.

The best qualification of measurement is admitted as a statement of the result of
human’s observations with high confidence. Because of this fundamental role of
measurement it is necessary to consider in some detail what a measurement
practically is. That is, how much confidence does we believe in the observations?
Why does the measurement task pay attention to the confidence factor associated with
the practical experiment? According to the scientific revolution, we think that the
“uncertainty principle” brings the reason for any measurement event, especially in
micro-electronics ones. For the reason to overcome the uncertainty representation, the
Physics Laboratory of National Institute of Standards and Technology (NIST)
conducts the standards and measurement method for electronic, optical and radiation
technology for US. and takes the general Type A or Type B expression as the report

for measurement task.



NIST keeps the policy based on the approach to expressing uncertainty in
measurement recommended by the CIPM and the evaluation given in the Guide to
the Expression of Uncertainty in Measurement (GUM), which was prepared by
individuals nominated by the BIPM, IEC, ISO, or OIML. GUM is the most authorized
reference on the general application to express measurement uncertainty till 1995.
After that time, the Joint Committee for Guides in Metrology (JCGM) collects the
above document and releases the new methods and standards for measurement. Thus
this study will keep the work to follow the document published by JCGM as the
reference. Although JCGM spent a long time for the general expression of uncertainty
measurement, there are some occasions not included for practical applications and we

focus on those which measure the combined signals on sparse data condition.

1.2 Stating the Function for Coverage Interval

Signal processing is a basic technique to process the sensoring signal and further
sends the processed signal to the next stage or.outputs it. In addition to choose a
proper singal processing technique, we also need some other tools to check the
properties of the input signal,-such as coverage interval (CI), normal range, and
reference interval, in order to determine whether the input signal is quantified to take
the utility. CI is the predicative interval including a measured random quantity based
on a pre-specifyied proportion of population. It is frequently applied to the cases with
normal population assumption where they take the minimal CI to replace all other
possible values of CI. The principal function of CI is to state the confidence and
uncertainty about the measured quantities. It defines the prediction interval of values
where 95% of the population fall into as suggested by JCGM [33]. For instances, we
may reject the outlier data from the measured signal if the data are away from the
mean value grater than 2 times of the standard deviation. A risk representation can
also be applied by the way of CI to make a reject decision on sampling data if its

value is out of the CI extent.

CIPM: International Committee for Weights and Measures
BIPM: International Bureau of Weights and Measures
IEC: International Electrotechnical Commission

ISO: International Organization for Standardization

OIML: International Organization of Legal Metrology
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Fig. 1: Measurement is the front stage of signal processing for quantifying data
recognized

Although CI is used as the standard item for the JCGM format of measurement tasks,
there still have some shortcomings not being overcomed so far. The most commomly
encountered problem is that CI 1s usually evaluated based on the assumption that the
population has a asymptotically symmetric-pdf, but we know this is not always
appropriate, especially at the occasion of combined signal. The other CI computation
method is the non-parametric method which is constructed basing on the percentile
evaluated by the expectation of order statistics [1]; that is, we may take the quantile
mapping to the corresponding percentile as the desired endpoint. The main difficulty
of using CI for combined signal is that we don’t know whether the symmetry property
of the output signal is valid when applying the CI computng algorithm. There are still
other statistical techniques, such as logarithm transform and Box-Cox transformation,
suggested for enhancing the symmetry properties of the analyzed signal and the

outliers examining are also necessary.

1.3 Goal and Scope
Combined signal is one of the most popular measured signals for the practical usage
and is widely applied to the field test as well as to the industry production. In GUM, a

combined signal is represented by an additive model in which the pdf of the output



signal is modeled as the result of a propagation of input pdfs. Some special areas
concern the measurement task of combined signals and treat it as an integration of the

affecting factors caused from the environment.
) 4
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Fig. 2: Un-determined properties of the output pdf resulting from combining different
input pdfs.

In accordance with the report expression of JCGM 101, coverage interval (CI) with
its two endpoints, mean value and.standard uncertainty are the three members of its
main concern. They are also the-main concern of this study. Due to the fact that the
output of combined signal is random, we think the best description for CI
representation is to formulate its pdf . Issues addressed are briefing as follows. First,
we are interested in the formulation to-unify the CI representations for skew and
non-skew pdfs. Conventionally, different approaches are employed for these two
types of pdfs to calculate their respective CI. Besides, we are also interested in the
truncated probability density function normalized to its coverage. The non-skew,
asymptotically symmetric pdf draws our special attention because it is the typical
output pdf shape of combined signals. Moreover, the usual evaluation of
asymptotically symmetric CI involves the interval composing of an upper quantile
(half coverage) and a lower quantile (half coverage) with respect to the mean value. A
robust CI estimation needs accurate quantile and mean formulations. This is the rule
followed in the past studies so is the current study. There are a few exceptions to the
rule. One is that we can consider giving a robust CI before the mean estimation, and
this may leads to a good performance for mean estimation. A study will hence be
conducted to try to use the traditional coverage interval to assist in the mean
estimation. The issue is that if we are giving a more accurate coverage interval, can

we make some progress on improving the mean estimation? Besides, we will



introduce three new approaches of mean estimation and compare them with the
classical sample mean estimator. They include a quantile-based mean estimator using
the coverage interval, a nonlinear mean estimator and a robust statistical one using the
minimax principle. Lastly, we will shape the proposed quantile-based mean estimator
to a quasi-symmetric quantile-based one and use it in an application to find the upper
bound of the maximum eigenvalue (UBE), to examine the usage of the robust JCGM

expression in measurement.

Coverage Interval (Cl)

Traditional Direction
New Reverse Direction

/ Traditional Procedure for Cl \

Lower Upper
Quantile Quantile
A

Mean

Fig. 3: This study reverses the traditional direction for CI estimation respect to the
asymptotically symmetry pdf and further extending CI for mean estimation



Chapter 2: Paper Review

We review some literatures related to the three main topics discussed in the
dissertation. They include coverage interval which is a member of JCGM expression,
mean estimator, and finding UBE, which is an application of mean estimation. The

sampling size requirement will be especially concerned in the following discussions.

2.1 Coverage Interval

Coverage interval (CI) is originally regarded as a parameter to represent the
uncertainty of measurement. Fotowicz [2] proposed an analytic method to calculate
CI from the distribution of the output of combined quantities, formed by taking the
convolutions of the pdfs of its constituents which were assumed to be rectangular
mixing with one of Student’s t-, triangular, or ‘mormal distributions. It made some
progress in the realization of CI without using complex numerical computations.
Nadarajah [3] continued to extend the algorithmi and applied it to a wide range of
usage with higher degree of freedom. In'those studies, CI was always used as a

confidence measurement in the sampling plan:

CI is affected by coverage constraint realistically. If we turn to a different viewpoint
relating to the coverage problem, the “statistical CI” is also a good tool to describe the

uncertainty. Wilks [4] proposed a statistical CI, defined by

Prip[(T,T)]zp}21-a, (2-1)
to describe the probability that a random variable x includes a /3 -content proportion

of the population or more in the interval [7;,7,] is greater than the threshold 1-c .

The statistical CI has been proved to represent a certain confidence level [45]. In
those past studies, the confidence level was usually obtained by the Monte Carlo
simulations [5,6].There were some previous studies concerning the issue of
randomness of coverage. The early topic was called “the random division of an
interval”, which means the range may be cut as many small sub-ranges which can be

added to calculate the coverage [7,8].



The representation of CI can be categorized into two classes: parametric and
non-parametric CI. Lin et al. [9] suggested using a non-parametric formulation to
calculate CI when the population pdf is unknown. Chen [47] suggested that, while
adopting the parametric CI approach, it had better take the minimum of all possible
values of CI for computational simplification. In the past, CI was mainly applied to
the cases of resource constrained for the original population. For instances, a clinical
chemistry experiment first applies tests to healthy people to create a CI, and then
takes the same test to a patient and collects the outputs. If the outputs are out of the CI,
it implies that the patient has got a disease. In medical engineering, to collect large
samples containing all the records of patients is a time-consuming task so that we
should sometimes take a sampling plan of small sample size. Thus data sparseness is
inevitable in this kind of application because the process of collecting data is

time-consuming and expensive.

The use of CI is popular for the chemical substances in biological fluid for reference
population [10], and for some other related fields of measurement. The International
Federation of Clinical Chemistry and Laboratory Medicine (IFCC) [11] has published
a series of recommendations for the advanced utilizations of CI. IFCC defined the
percentile between 0.025~0.975-as. the standard CI of 95% reference interval, and
suggested that the best population (reference values) size had better be greater than
120 so that a high confidence reliability can be guaranteed. IFCC made more rules
and standards for the reference interval estimation and computation, but without
further addressing the issue of the influence of sample size. This study discusses the
CI problem concerning the size of sample data and deals with how to control the
categories of influences if the sample size is far less than 120. We will take a new
viewpoint to analyze the effect of sample size on CI. Actually, it is not necessary to
formulate CI from the viewpoint of the aggregation method. If we evaluate the two
endpoints of CI separately, we may consider estimating CI with the quantiles based
on order statistics. The quantile-based estimator [12] was recently proposed by
Heathcote et al. It performed very well for the response time estimation and showed

high efficiency to the parameter estimation for some distributions.



2.2 Mean Estimation

The second topic we are interested is the mean estimation of population. We will try
to use CI in the mean estimation basing on the asymptotically symmetric pdf
assumption. In this case, mean is the midpoint of the two endpoints of CI and we truly
believe that a more accurate estimation for CI will lead to a more accurate estimation

for mean value.

In parameter estimation of using normally-distributed sparse data, there are two
popular methods: the best linear unbiased estimation (BLUE) method and the
maximum likelihood estimation (MLE) method. Balarkrishnan and Cohen [13], Lloyd
[14], and Teichroew [15] proposed the BLUE method for parameter estimation of
normal random variables by using order statistics. BLUE is a weighted least-square
algorithm basing on the Gauss-Markov least-square theorem. It was popularly used
for sparse data analysis. It is known that BLUE is unbiased and more efficient if it

takes the censoring sampling scheme. Webriefly discuss BLUE as follows.

Let x be a normal random variable with pdf. f.(x)= N(u,c°). Assume that there

are n independent observed samples x;,---,x, of x. Let x,,---,x,  be the ranked

> nin

samples of x,,---,x, in increasing order. The BLUE estimator is formulated as the

sum of products of the observed data and properly-chosen coefficients. By performing

the standard normal transformation, & =(x, —u)/o, to the observed data and sorting

them in increasing order, we have

X, =[x, T
5 =[§1”"’§n]r
E{S.}=p.,

Cov{é:i:n > ‘fj:n} = ﬂi,jrn

E{xm} =u+o¢,

n

E{X,} =ul+0c¢ &2



B=o"l (2-3)
for 1<i,j<mandi<j, where I is an n-dimensional all-1 vector. Consider the

generalized variance:
(X, —ul,—o¢) B (X, —ul,—c¢) (2-4)
Minimizing it with respectto u and o, we obtain.

ul’ B +ol’BE=1"B'X,

(2-5)
uf'B' +oé'BE=E"BTX,
The solution of Eq.(2-5) 1is
. TB—I ITB—l _ TB—lI TB—l n
u = §T —15 ; T p-1 é: 7’"15—1 2 Xn = _é:TAXn = Zalzixi:n (2_6)
(B O1,BT1)-(5BT,) P
. ITB—II TB—l _ ITB—l ITB—I n
j— n ng n é n — ITAXn — zazjxi:n (2_7)

CETETOWB) (BT Nt S
where u~ and o are the estimated parameters, and «,, and «,, are weighting

coefficients. These coefficients have been tabulated by Sarhan and Greenberg [16,17]
with entries in the 1956 tables being given for sample size up to 10 and in 1962 up to
20.

Generally speaking, BLUE performs well in small sample size. But it needs a table to
look up, and this is a shortcoming. The other technique used is the MLE method
which is often applied to the truncated normal distribution in sparse data condition.
Cohen [54] derived the singly truncated and doubly truncated maximum likelihood
estimators and found that they outperformed BLUE when the sample size was greater
than 20. Cohen recognized the sparse data problem as a truncated normal pdf and

defined its likelihood by

_ UnitStep(x — x,,,) — UnitStep(x — x,, — (x, — u) )-8
( V22o(F, (3, +1) - F,(x,,) ] NI &)

If we take the transformations of &, 6 =(x,-u)/oc and & =(x,,—u)/c and

differentiate the resulting log-likelihood function with respect to # and o, we

obtain the following two equations.



n(@:(6,)=9.5.) 1
0((D§(§n:n) _(Dﬂf(é:l:n )) 0'2 l.:zl(xi M)

- {(51:,,@(511,,) €66 1} ISy
((I)g (Sn) _q)g (1)) 1o

where ¢ and @ are the standard normal pdf and cdf, respectively. By defining two

(2-9)

new random variables

_ $.(&.,.)
bD(E, +n) D)

and

_ ¢.(S, +1,)
K q)g(fl:n +7’s)_q)§(§1;n) ,

we obtain the following two equations

Hl (fl:n ’ fn:n) = i xli" = ®L — ®R — 51571 (2_10)
r gnzn - é:l:n

S? 1+£,0, -6,0, (0, _®R)2
Hz(é:l:n’é:n:n)j_Z: 2
r (én:n - gl:n )

(2-11)

2.3 The Method Suggested by Cohen

Cohen proposed a method to estimate mean and variance of normally distributed

Xp—U

. X, —u
random variable. Let & = Lo- and &, = , where x, and x, are the left

and right truncation points, respectively. The standard deviation can be estimated by:

_ X T X
é:R - §L
The method first models all data samples by a truncated normal distribution shown
below:
£ = f.(x)UnitStep(x —x,,,) — UnitStep(x — x,, — ) (2-12)

Er (xl:n + l") - Er (xl:n)
where the left truncation point x, is replaced by the minimum order random variable
X

and so is to the right truncation point x, replaced by x,,. It then defines a

n
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likelihood function by
L(x;u,0,%,,,r) = [ [ (f; (x;3u,0,x,,,7) (2-13)
i=1
) 0 ) .
By taking 6_ {L(x;u,o0,x,,,r)} =0, it obtains
u

n(f,(,) =i, +r) 1 &, _
o)~ ) o T (-14)

It then takes the standard normal transformations for the two endpoints of ranked

samples, x, and x,_ ,to obtain

nn %
X. —U X . —U
_ Tln __ Tnn
g]:n - and §n:n - .
O O

The corresponding CI in the transform domainis 7, =&  —¢& . It is noted that the cdf,
®,($), of the transformed random variable is related to the cdf, F.(x), of the

original random variable by F, (x,) =@ (&) and. F (x,,)=®P.(S,,). By denoting

#: (S d 9-(S, £7.)

L= and O, = , it has
CD§ (élzn +rjv)_q)§(§l:n) q)f(glzn +rjv)_q)§(§1:n)
Y-u=0(0,-0,) (2-15)
. 0 . .
By taking Fy- {L(x;u,0,x,,,r)} =0, it obtains
o
_n(xlzizﬂ(xlzn) — (xlzn + r)f:v(‘xlzn + }")) _ﬁ + LSZ(X.[ _ u)2 — 0 (2_16)

O-(Fx ('xl:n + l") - Fx ('xl:n )) o O i

Eq.(2-16) can be further simplified and expressed by

2 {(51:,,@(511,,) ~(6.)8:0) | 1} 1y
(q)g (Son) _®§(§1;n ) nois

o {EO, -0, +1 =%Z(xl. —-x)? +1Z(f—u)2 =S?+(Xx —u)’

i=1 nio

(2-17)

where ¥ and S? are mean and variance of the data samples. If & is known, the

above equation can be solved by an iterative procedure.
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If o is unknown, Cohen suggested to solve the following two equations:

H (G bn) =" _rx“” - 5_ ®_R 5_ iz (2-18)

§* 1+£.0,-¢ 0, —(0,-0,)°
H2(§1:’7’§’7:n):>_2: él.n L é:n.n R (2 L R)
r (gnzn - éjlzn)

(2-19)

where w=r, v, =X-x,, and r 1is the range of the data samples. Eqs.(2-18) and

(2-19) can be solved by the Newton and Raphson method. But, it is time-consuming
unless good initial values are provided. Alternatively, Cohen [18] proposed the

following iterative procedure to solve them:

r
= —— (2-20)
1_ Lin
-
£ :A+Br(f—xlm —r) (2-21)
4=(0)-0y)
2
C+1/C2+4S—2
B=A+ —
28
C:Ax_xllil+®g)
r

S : variance of the test sequence
r : range of the test sequence

i : iteration index

2.4 Sample Mean Estimator

In the past, sample mean is widely used in the mean value estimation for any signal
no matter what its original pdf is. The main reason of using sample mean is that it is
not only a uniformly minimum variance unbiased estimator (UMVUE) but also a
random variable of the central limit theorem (CLT). In this study, we will propose a
new mean estimator basing on the proposed CI representation and compare its
performance with the traditional sample mean estimator [19]. Our study will specially

focus on the mean value estimation problem for the output of combined quantities in

12



the sparse data condition. Bowen [20] has pointed out that CLT may be explained as
the sum of independent variables with the characteristic function formed by the
product of the component characteristic functions. If we can ignore the unbiased
requirement, there exist some biased estimators that outperform sample mean. Stearls
[21] and Gleser [22] discussed a new approach to giving coefficients of variation of
sample mean. Ashok et al. [23] further proposed a realistic method to adjust the

coefficients of variation of sample mean to improve its performance.

Up till now, if we want to predict the mean value of combined quantities accurately,
the only way is to take the sample mean on heavy observations. In practical
applications of measurement, the basic volume required for one digit accuracy is 10°
observations for 95% coverage interval [24]. If, there are not enough samples to
support this rule, a medium- or small-size sampling plans should be taken. Besides,
the good property of UMVUE for sample mean may be ineffective for the case of
combined quantities which is of quasi-normal distribution. This is because the
property of UMVUE is derived from the maximum likelihood estimation (MLE) on

the basis of the normal pdf assumption.

In this dissertation, a new method of mean value estimation, referred to as the
quantile-based maximum likelihood estimator (QMLE), is proposed. The classical
application of quantiles is the general usage of empirical quantiles. Koenker and
Bassett [25] extended the empirical quantiles to the regression quantiles, which is
specially useful for predicting the bounding information. Gilchrist [26] collected
many studies about the estimation, validation, and statistical regression with quantile
models. In the single quantile application, Giorgi and Narduzzi [27] gave the quantile

estimation for the self-similar process.

In the proposed QMLE, the quantiles are determined by the maximum percentage of
population, i.e. coverage, so that it is composed of a couple of quasi-symmetric
quantiles (QSQ). According to the past studies, the coverage-constrained quantiles
will obey the properties of symmetric quantiles whose variances asymptotically
approach to the Cramer-Rao lower bound [28]. The symmetric quantiles were
described with strict definition given in [28]. But we treat them in a more flexible way

as the ranked variables of the first ordered sample x,_, and the last ordered sample
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x,, . Hence the QSQ we considered are both empirical and quasi-symmetric quantiles.

Lo and Chen [29,30] also derived good quantile-based estimators for the sparse data
condition. In this study, we plan to derive the QMLE basing on the order statistics and
expect that it can support not only the concept of empirical quantiles but also the
quasi-symmetric quantiles. Otherwise, we would still need a quantile function defined

below to link quantiles and MLE

O(p)=Pr(X <x,)=p (2-22)

Here, the value x, is called the p-quantile of population.

2.5 Quantizing the Combined Signal

Generally speaking, the measured quantities are affected by unknown noise so that
they are always expressed in random representation. In the past studies, Fotowicz [2]
suggested using ‘“uncertainty ratio” to represent the combined signal comprising at

least one input quantity with rectangular distribution. Suppose z,, 1<i< N, are
independent signals and ¢,, 1<i<.N, are corresponding weighting coefficients, then
the linearly combined output x° can be expressed by:

X=Cz +CyZy+ ot CyZy . (2-23)

The pdf of x is an R*N distribution which is the convolution of a rectangular

distribution and a normal distribution, and can be expressed by:

B 1 I,x+ﬁ(UR) s 204
o )= T ) am © (2-24)
where
M ,
UR - \Max{u,(x)] (2-25)

Ju?2 () = Max{u,(0)F
N
uf(x)chfaz(zi) is the approximate variance of the combined signal; o(z;) is
i=l1

the standard deviation of z,; K

c

is a normalization constant; and u,(x) is the

standard deviation of the i-th input random variable which is subject to the

rectangular distribution. The endpoint of p-quantile for the R*N distribution can be
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expressed by

v

U, =k |30 ()2 (2-26)
i=1 kN

where p is the population mean, k,, = (1+(UR) 2J(UR)(1—-c¢)) is a

(UR)
coverage factor, c¢ is a coverage, #(v) is a quantile of Student’s t-distribution, k,
is the corresponding quantile of coverage factor, e.g. k, =1.96 for ¢=95%, and N is

the number of input quantities. If the distribution of the i-th input random variable
coincides to be a normal, rectangular, Student’s t-, or triangular distribution, then

)/ ky =1.

Fig. 4 displays the R*N distribution for UR = 1, 2, 3, and 4. According to Fig. 4, we
describe the measured signal of combining quantities by additive mixture model as
quasi-normal signals with asymptotic—window-shape distribution (QSAW). A
common property of QSAW signals is that they are usually distributed flatter than the
normal pdf in the central part ;and then sharply decaying to zero at both ends. As
shown in Fig. 4, the pdf of a QSAW signal looks like a normal distribution for small
UR and a rectangular distribution for large UR.

0.4

Random variable

Fig. 4: An example of the QSAW signal with zero-mean R*N distribution for some
uncertainty ratio (UR)
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2.6 The Issue of Application to the Finding of UBE

In this study, we will consider the use of robust mean estimation in signal detection.
Generally, the energy-based signal activity detection approach is robust to noise and
may cost down the non-coherent detection within a communication receiver. Zeng et
al. [31] showed the benefits of using the maximum eigenvalue as a result of energy
representation on large sample size. Recently, compressive sampling (CS) [32] is an
emerging research topic aiming at restoring a signal in an undersampled condition
using special vector bases with prior knowledge of the signal. In addition to CS,
eigen-analysis is also a popular technique to consider spanning a signal with sparse
eigenvectors in which the prior knowledge of needing signal to be normally
distributed is released. We will not only consider the combination of energy detection
and sparse data sampling, but also fuse the demand of practical signal processing. For
instance, measuring signal in a time-varying environment usually results in
representing the measured signal as the output of combining quantities by an additive
mixture model, as suggested and outlined in the manual published by JCGM [33].
Moreover, the combined quantities are usually. resulted from the propagations of
multi-source signals with different pdfs so that the representation for the pdf of the

output random variable is not tractable.

Unexpectedly, the pdf of the maximum eigenvalue is too complex and inconvenient
for computation [34] so that Ma and Zarowski [35] have tried to use the upper bound
of the maximum eigenvalue, i.e., Dembo’s bound, for an efficient signal
representation. In the study, we are interested in using more accurate mean estimation
to improve the finding of upper bound of eigenvalues (UBE) from sparse observed

samples.

Since the environmental noise is usually time-varying or color, the traditional
white-noise assumption is not realistic so that the mean value of noise can not always
be regarded as zero. Hence this study proposes a new algorithm to evaluate the mean

value in terms of noise combined with signal.

Let x,, 1<i<n,represent the ranked random samples generated from the output of

Eq.(2-23). In this study, we plan to estimate the mean value of a QSAW signal by a

new quantile-based maximum likelihood estimator (QMLE) using only the
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quasi-symmetric quantiles (QSQ), i.e., the minimum sample, x,,, and the maximum
sample, x,, . We will compare the performances of the QMLE and sample mean on

mean estimation as well as on UBE finding.

There are two parts in our task: one is the QMLE mean estimation aiming at reducing
the uncertainty of the estimated correlation matrix and another is the improved upper
bound of eigenvalues finding. Conventionally, the mean value of a signal is estimated
by sample mean which is UMVUE derived basing on the assumption of normally
distributed observations. Although sample mean is a good mean estimator, there still
exist some biased estimators that outperform it [23]. In mean estimation for
quasi-normal signals, the non-parametric order statistics method was applied to
overcome the mismatch between normal and quasi-normal data. In the study, we are
interested in the special case of quantile application to mean estimation using the
QSQ. The QSQ are determined by the maximum percentage of the observed samples
covering the original population, .i.e., the rcoverage which is the cumulative
probability calculated between the two-endpoints of range. There are good evidences
to show that the symmetric property of QSQ is more efficient if they occupy either a
very large or very small percentage of the population [36]. Lastly, the task of UBE
finding is attractive because the maximum eigenvalue is an important cue of signal
activity detection for fading channels with unknown dispersion [31] in multiple-input
multiple-output (MIMO) systems [37]. Taparugssanagorn and Ylitalo [38] further
indicated the upper bound of MIMO channel capacity being affected by the
distribution of the maximum eigenvalue, which was evaluated by the covariance of
short-term phase noise. Zhang and Ovaska [39] extended the eigenanalysis to singular
value decomposition based on signal-to-noise ratio for the analog-to-digital converter,
but their method is not realistic for the cyclostationary detection in spectrum reuse
application. Wu et al. [40] proved that the well-trained eigenvector feature of vehicle
sound signature was capable of vehicle recognition. UBE acts as the maximum
eigenvalue owing to the fact that this representation has been well discussed for the
case of deterministic covariance matrix with Hermitian, symmetric positive-definite,
or Toeplitz property, Park and Lee [41] improved it by using the technique of series
expansion. They proposed the following equations to find a better upper bound of

maximum eigenvalue than the classical Dembo’s bound:
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where R is the correlation matrix of the input signal, » > 0 is the order index, ¢

is an eigenvalue, 7, , is the maximal eigenvalue of R b is an

(m=Dx(m-1) >
(m-1)-dimensional vector, and a is a scalar. Up till now, there are seldom studies
devoting to the uncertainty analysis for the estimation of correlation matrix on sparse
data condition. This study proposes the refreshing change-solution against the issue. It
avoids the well-known heavy resampling and computation of the bootstrapping
method [42] for small sample size. The main uncertainties of additive model result
from the propagation of each source signal. In the reasoning for uncertainty of
propagation, Denguir-Rekik et al.[43] fused the multiple marginal effects based on
the multi-criteria for aggregated .decision making. Ferrero and Salicone [44 ]
addressed the issue of utilizing .the random-fuzzy variable to fit the propagation of

distribution.
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Chapter 3: The Probability Density Function of Coverage

Interval

3.1 Introduction

Coverage interval (CI) is an interval with two confidence extremes that covers a
specified portion of the population. It has been intensively studied in recent years in
biology, quality control, medical engineering, and some other research areas. CI is
called reference interval in clinical chemistry [45] and is constructed based on the
reference values belonging to the population. Motivated by the needs of processing
data on small sample size condition for some newly developing areas, such as data
mining for knowledge exploration and data representation for pattern recognition, this
study deals with the problem of expressing CLunder sparse data condition. The issue
of applying CI representation to parametetr estimation to against the large uncertainty

caused by sparse data will also be addressed.

The International Organization for Standardization has issued a document, ISO GUM
Suppl. 1: Guide to the expression of uncertainty in measurement supplement 1 [24], to
recommend applying CI as an expression of uncertainty measure to meet the recent
trend of treating CI in a probabilistic way. The GUM method of evaluating and
expressing uncertainty has been adopted widely by the industry. It can also be found
from the manuals published by the Joint Committee for Guides in Metrology (JCGM)
[46] that the probability assigned to the input quantity is important. But, a weakness
of the probability assignment suggested by JCGM lies in the use of deterministic CI.
A general way to represent CI, referred to as “parametric CI” [47], is based on
defining a symmetric pdf for the input random variable. Alternatively, non-parametric
CI representation is based on the empirical distribution of input data. It is usually
applied to the case of skew distribution or to the case when the pdf is unknown. But,
the dichotomy for CI representation is imperfect if a quasi-symmetric pdf is
encountered. To solve the problem, a unified expression for the uncertainty

representation of CI is proposed in this study.
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Why should we need CI? It is well known that the information of an event can be
represented as the logarithm of the reciprocal of its occurrence probability. It is the
commonly used uncertainty measure of an individual event. Entropy is defined, from
a macro view, as the expectation of the total information. Although both entropy and
CI are macro view of sample data, entropy does not act like CI to provide a clear
bounding message. This is analogous to the case of calculating the confidence interval
of a parameter estimate. Confidence interval can show explicit bounding information

for the estimated parameter.

The chapter is organized as follows. In Section 3.2, a new representation of CI is
proposed. It adopts a new method to derive the pdf of CI. The effectiveness of the
proposed CI representation is evaluated by simulations discussed in Section 3.3. A
realization of the statistical CI is presented in Section 3.4. Section 3.5 describes an

extension of the statistical CI to the variably truncated normal joint (VTNIJ) pdf.

3.2 A New Method to Formulate the pdf of CI

In this study, we regard CI as a random variable representing the bounded range to
meet the coverage constraint. We'now_derive the pdf of CI. According to the work
based on the general pdf of order statistics [48], the pdf of range can be expressed in a

non-parametric form by

fr\n (r)= J.:; f;,xlm\n (r,x,, )dx,,

, (3-1)
= [ (=D £, ) (5, + PE, (5, 1)~ F (3, ),

where f (x) and F (x) denote the pdf and cdf of random variable x, respectively;

x,, 1s the minimum order of ranked samples; r is the range of samples; and # is the

sample size. It is known that the range pdf shown in Eq.(3-1) is accurate for all

realistic cases.

We then perform the variable transformation to change the variable x,, to ¢ with
range r being preserved, where c=F (x,, +r)—F. (x,) is the coverage. Suppose

that there are k roots 7,, 1<;j<k, of x, satisfying the coverage constraint
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equation F (x,, +7)—F. (x,)=Cc with a given constant coverage Cc. The joint

distribution of 7 and ¢ can then be expressed by

k
1
f;,dr: (7", c= CC) = z {f;,xl.n|n (l", xl:n ) x }xl.n =n;

A o o)
or 0Ox,
o
or 0Ox,, .

J 1

=D (i) % § (3-2)
= J 1 0

S+ fn+r) = f(n))

+

: 1
= f;‘ »n(rﬁn')
H{ CATAC) +r)—ﬁ<n,)\}

It is worthwhile to note that the above expression for the joint pdf of r and ¢ does not
explicitly include the coverage variable c. Instead, c is implicitly included through the
roots of the coverage constraint F (n7+7r)=F.(7)=Cc for each given sample of

c=Cec.

We now take a new viewpoint, which is-different from the traditional Bayes’ theorem,

to derive the conditional pdf" £, ,(r). The general form of the Bayes’ conditional pdf

usually maps to a surface while our approach only needs some profiles in the same

surface. The concept is shown in Fig. 5 and is realized by

f; c=Cc|n (l",c = CC)
f;\c:Cc,n (7") = L .
J.dr f;,c’:Cc’|n (l", c= CC)

(3-3)

Pr(r|c,n)

c=k r
Fig. 5: Profile-conditional pdf by the sampling strategy. k is a constant.
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A problem encountered in the implementation of Eq.(3-3) is how to expand the
transcendental function F (x,,+r)—F (x,)=Cc 1in order to find its roots.
Generally, this can be accomplished by using the Fourier series expansion. But, due to
the fact that Hermite polynomials can best fit the curve of normal distribution, we

apply Hermite polynomial expansion to F (x) in order to efficiently find the

solutions of F (x,, +r)—F (x,)=Cc.Eq.(3-2) is then expressed by

& mm-nf @) S, E, - Em))
Jcalre =022 £+~ £n))

; (3-4)

where 7, €R and f(n,+r)-f(n,)#0 for 1<j<k. The constraint that 7,

must be real is to obey the output rule of Jacobian determinant.

Some modifications are still needed in practical consideration. The basic idea is to
neglect some roots of F (n+r)—F (n7)=Cc which have very low occurrence
probabilities. This is realized by-setting two bounds for those roots. This is motivated
by the general rule of excluding outliers via considering only data in the interval
[4—4o,u+40] where u and o are the mean and standard deviation of the
population. Normalization of Eq.(3-4) is also needed in order to make it obey the

basic requirement for probability. The pdf of CI can then be expressed by

Sremcen(r) = i n(n=1)f.(n,)f.(n,+ r){Fx(,]j +F)-F (nj)}n_z o
rle=Cen ) f.(n, +r)—fx(77j)‘ Z(Cen)’

(3-5)

where Z(Cc,n) is anormalization factor shown below

Z(Cc,n) = J. i n(n -0, (@, +r){Ec(77,j """)—Ex(?],')}n_z
o TRURTORVACH

dr | J=1

n,1<j<k’, are the roots of F/(x,+r)-F/(x,)=Cc that satisfy
u—-4o<n, <u+4o. If k'>1, a root-finding procedure is applied to the Hermite

polynomial expanded version of F (x,, +r)—F (x,)=Cc for finding all roots in

the interval, [u—40,u+40].
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Now, we demonstrate our method by exploiting the pdf of CI for the normal

distribution shown below

1 _(x*/—‘Z)z
f.(x)= N e —00< X <00, (3-6)
) 2ro

The appropriate data structure to implement Eq.(3-5) is a two-dimensional matrix of

rand 77,. Considering that the range variable r is also the abscissa of the pdf of ClI,

we arrange the data along the » direction in either an increasing or decreasing order.
As referring to Fig. 6, it is more efficient if we apply the bisection method to
determine the two endpoints for the roots-finding task. Once we decide the two
endpoints, we can assume that all effective roots are inside the interval. This can
greatly reduce the searching interval for » and guarantee that there exists at least one
solution in the reduced searching interval. Then, for each » in the searching interval,

we can find all solutions of 7, by directly solving the polynomial equation obtained
by expanding the coverage constraint F (x,, +7)—F (x_)—Cc using Hermite

polynomials. Lastly, the pdf of CI is calculated by Eq.(3-5).

b

F(x)

Y-AXis,

Bisection method find the
minimal CI and maximal CI

Sampling points for the
likelihood computations

Fig. 6: A conceptual diagram shows the use of the bisection method to establish the
two endpoints for CI. Here, [, 5] is an effective interval for root finding and

crepresents the center (midpoint) of any new effective interval.
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An example to demonstrate the effectiveness of the proposed method using the
standard normal random variable, N(x;0,1°) , with experiment setting of

coverage=0.95 and sample size=15 is shown in Fig. 7. Here the top panel shows the
pdf of CI while the bottom one is the cdf. It can be found from the figure that the pdf
of CI looks like a narrow pulse located near its minimum value (i.e., »=3.92). This
result supports the idea of using the minimum case of CI to represent the whole pdf of
CI as suggested by Chen et al. [47]. Moreover, by examining the cdf of CI shown in
the bottom panel of Fig. 7, we find that about 70% of probability occurs at the

minimum CI.

20/
£ 10 L
0
0 2 4 6 8
cl
1
Zos5
o
% 2 4 6 8
cl

Fig. 7: The pdf (top) and cdf (buttom) of CI for normal random variable with
experiment setting of coverage=0.95 and sample size=15.

3.3 Evaluation of the pdf of CI by Simulations

We have suggested using Hermite polynomials to expand the transcendental
Cl-constrained function, F (x,, +r)—F (x,,)=Cc, for the best approach to deriving
the pdf of CI. It is referred to as the multi-root representation of the pdf of CI. Now

we want to evaluate the goodness-of-fit of the representation by simulations. The test
inspects 10,000 trials. In each trial, 15 samples satisfying the constraint of
coverage=0.95 with 10~ error tolerance are generated to directly find CI by

X5,5 — X5 - The histogram of CI is displayed in Fig. 8. It can be found from the figure

that the empirical CI distribution fits well to the theoretical results shown in the top

panel of Fig. 7.
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Fig. 8: Histogram of CI generated by simulation using 10,000 trials. The experiment

setting is coverage=0.95 and sample size=15.

For further evaluating the proposed method, we compare it with another method
basing on the Newton-Raphson root-finding algorithm. The method first uses the

Newton-Raphson algorithm to find a root of F, (x,, +7)—F.(x,,)=Cc with initial
searching point being set at the left endpoint (i.e., ©—40 ), and then find the pdf of

CI by substituting the root into” Eq«(3-5). It is- referred to as the single-root
representation. Table 1 lists the-multi-root and single-root solutions of the coverage

constraint equation, F, (x,, +r)=F (x,)=Cc, for the standard normal distribution

with coverage=0.95. From Table 1,’some observations are listed below:

Conditioned on our outlier rejection rules, there are only two roots in the interval

[(—40,u+40] no matter how the CI changes;

For all CIs, the single-root solutions are very close to the first roots 7, of the

multi-root solution;

For the minimum CI (i.e., 3.92), all roots of the multi-root solution and the single-root

solution have nearly the same value;

For the multi-root solution, the sum of its second root and CI is very close to the
negative of its first root. This is resulted from the symmetry property of the normal

distribution.
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Table 1: the multi-root and single-root solutions of the coverage constraint equation

CI Multi-root Single-root
solution solution
2" root 1% root
772 77]
3.92 -1.97 -1.95 -1.95
3.97 -2.15 -1.82 -1.82
4.02 -2.23 -1.78 -1.78
4.07 -2.32 -1.75 -1.75
4.12 -2.39 -1.73 -1.73
4.17 -2.45 -1.72 -1.72
4.22 -2.51 -1.71 -1.71
4.27 -2.57 -1.70 -1.70
4.32 -2.63 -1.69 -1.69
4.37 -2.69 -1.68 -1.68
4.42 -2.74 -1.68 -1.67
4.47 -2.80 -1.67 -1.67

Fig. 9 plots the multi-root and single-root representations of the pdf and cdf of CI. It
can be found from the figure that.the multi-root representation fits better to the
realistic case (by simulation) shown in Fig. 8. This result justifies the appropriateness
of using the Hermite polynomial expansion to help to find multiple roots of the
coverage constraint equation for constructing the pdf of CI. Table 2 lists some cdf
values of CI for single-root representation, multi-root representation, and simulation
(calculated from Fig. 8) for r in the range of [3.92, 4.37]. It can be found from the
table that the simulation results are all larger than the single-root representation, but
smaller than the multi-root representation. This shows that the single-root
representation is only a rough approximation of the probability distribution of CI. The
phenomenon that the whole simulated cdf curve lies under that of the multi-root
representation can be explained from the viewpoint of sampling. As shown in the top

panel of Fig. 9, the theoretical f,  (r) has very large point probability at r . .

le,n
Since there exists a coverage tolerance of 107 set in the simulation, the peak-value

case can not be generated every time. This makes the simulated cdf value at

degrade significantly so as to make its cdf curve lie under the curve of the multi-root
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representation which approaches the theoretical one (see Fig. 9).

Single root pdf of Cl Single root cdf of Cl

4 1
=2 IK =05
o o
02 4 6 02 4 6
.Gl . Cl
Multi-root pdf of Cl  Multi-root cdf of Cl
1
E 10 E 0.5
O
00 5 02 4 6
Ci Cl

Fig. 9: The multi-root and single-root representations of the pdf and cdf of CI
simulated using the standard normal distribution of input with sample size n =15,
and coverage=0.95.

Table 2: Some cdf values of CI for, single-toot representation, multi-root
representation and realistic case by simulation

cdf of C1

CI Single-root Multi-root Realistic case

representation ._representation  (Simulations)

3.91 0 0 0

3.97 0.13 0.68 0.36
4.02 0.24 0.72 0.50
4.07 0.34 0.76 0.59
4.12 0.43 0.79 0.66
4.17 0.51 0.83 0.71
4.22 0.58 0.86 0.76
4.27 0.63 0.88 0.79
4.32 0.69 0.90 0.82
4.37 0.73 0.91 0.85
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Fig. 10: The cdfs of CI using single-root representation, multi-root representation, and
simulations

We then further examine their reliability. Table 3 lists the searching results of the
single-root solution for some different initial conditions with coverage (=0.95) for
standard normal distribution. It is elearly shown inthe table that the Newton-Raphson
method used for searching the single-root solution may fail with improper initial
conditions. So the single-root representation is not always reliable. On the contrary,
the method to find multiple roots via using the Hermite polynomial expansion of the

coverage constraint function is always stable. So, the multi-root representation of the

pdf of Cl is reliable.

Table 3: Single-root solutions using different initial conditions

Test Initial value Final solution
7 r n r
1 -3 1 798  -1.47x10°
2 -2 2 -1.96 3.92
3 -1 3 -1.96 3.92
4 0 4 -1.96 3.92
5 1 5 -1.96 3.92
6 2 6 8.00 —4.78x107’
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3.4 A Realization of the Statistical CI

Statistical CI is a wide-sense confidence interval representation which is expected to
be stable for all sampling plans no matter how the sample size varies. Some
computation skills were reported in related literatures as the non-parametric tolerance
limits. We will further discuss the influences of CI caused by some properties of
range and the corresponding endpoints. The issue has not been addressed yet. Now,
we want to measure the confidence level in the statistical CI for the sparse data
condition. The statistical CI [49], defined in ISO 3534 [50], was proposed for the
concept of confidence level, but only few studies touched the realization algorithm
[5,6]. Some other studies were related to the topic of non-parametric tolerance limit
[51] which is similar to the statistical CI. Those past works discussed the coverage
bound affected by the parameter estimation, inspected the quantile distribution, or
described them from the non-parametric viewpoint to look the coverage variation. To
extend those past works for further considering the effects of range and the minimum
order of ranked samples on the coverage, we need to derive an explicit expression for

these three random variables. We discuss the issue in-detail as follows.

In practical Monte Carlo simulations, the general expression for statistical CI is
typically rewritten, in Pearson’s notation, using the incomplete Beta function [49] and

expressed by

Prip [(x.,.x,., . )]=c}=21-a = 1-1.(n+1-2i,2i)>21-«a, (3-7)
where

I .(n+1-2i,2i) = Beta(c,n+1-2i,2i)/ Beta(1,n+1-2i,2i)

and

Beta(x, p,q) = J.:tp’l(l —1)"dt .

It means that the statistical CI of coverage greater than ¢, at minimal 1-«

confidence level is [x,,,x,,, ..].

For i=1, we can interpret Eq.(3-7) as the confidence level that the samples cover at
least ¢ portion of the population is 1—« . Since Pearson’s notation is not convenient

in practical realization, we derive a new polynomial form of the pdf of coverage to
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calculate the statistical CI (or confidence level) of ¢ coverage in the sparse data

condition. Let

s=[ f.dy. (3-8)

The variable s is subject to the standard rectangular distribution denoted by rect[0,1].
If we take the variable transform to all ranked samples x, by Eq.(3-8), the new

ranked variables s,,, 1<i<n,arerelatedto x,, by

S = £ )y (3-9)

for 1<i<n, where 0<s,, <1. Since s,, can be regarded as the ranked random

variables of s, the new range variable can be calculated by

rnew = Sn:n - Sl:n
= [ funyde= [ f.(0)dt (3-10)

=] £t =c(r)

’.., . Tandom variable of uniform distribution [0,1]

x,, :random variable of order statistic- s, ,1<i<n
f.(t) :pdf of random variable x

c(r) : coverage value of the relative range,

1

Coverage

M
0 1
Range

Fig. 11: Uniform pdf for the random variable s

As a matter of fact, »_  has the same coverage as the range of the original random

new

variable x. Since r, =c, Eq.(3-1) can be simplified to express the pdf of coverage

new

by

fo@ = nln=1)11(s,, +c=s,,) "ds,,, = n(n-1)e" (1) (3-11)
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for 0<c<1. The cdf of coverage can be accordingly expressed by

F,(@=c"(n+(1-n)) (3-12)

for 0<c<1. Due to the fact that the above derivation is true for any random variable,

the pdf of coverage is distribution-free.

Fig. 12 displays the pdf of coverage calculated by Eq.(3-11) for some sample size n
ranging from 5 to 20. It is clearly shown in the figure that the probability of coverage
deviates away from 1 as the sample size decreases to a value less than 20. This means
the common expectation in doing an experiment that the samples distribute like the
original population becomes unrealistic as the sample size is less than 20. In other
words, the samples are very likely to scatter in only a part of the population for a

sparse data condition. We denote it as the short-tail problem.

It is well known that the Student’s t-distribution is.better than the normal distribution
in terms of mean value estimation on the sparse data condition. The general reason is
that the tail of a Student’s t-distribution is shorter than that of a normal distribution.
Applying the same rule, the short-tail phenomenon demonstrated in Fig. 12 needs a
new approach to formulate it. It is worth peinting out that short-tail is always decided
by the endpoints of the distribution where their values approach zero asymptotically.
In our case the distribution of endpoints is simple to predict. From Fig. 7, we find that
the two endpoints of CI are almost known when the coverage is high. In other words,

if the coverage is known, the short tail of pdf can be roughly captured.

8- I |
~-n=5 | | : : :
B A e e 1
> *n=15 | | | |
o ~<-n=20 | : |
4 IR SRR R T |
O | | |
L | | |
2 1 : 1

0.4 0.6
Coverage
Fig. 12: The pdf of coverage for some small sample size n
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Fig. 12 reveals that the pdf of coverage is not stable as the sample size is less than 20.
So we had better know well the coverage variation due to the setting of the

f -content level. This issue was addressed by Faulkenberry and Weeks [52].They
formulated it as a precision control problem to avoid the increase of parameter
uncertainty for the case of sparse data. They suggested that the confidence level

I1-«a had better be set to a value smaller than the /S -content (i.e., ¢).

Table 4 lists the values of confidence level 1—-«a calculated according to Eq.(3-11)

for two different types of integration interval. The normal interval [0.95,1] is the

=l 0025271 1 0.025] is the
n+l

general hypothesis testing requirement, while [ "
n+

interval to compute the confidence level of uncertainty [52]. It is noted that n—_i is
n+

the expectation of coverage. We can.see from Table 4 that the values of confidence

level calculated using the normal-interval of [0.95,1] is smaller when the sample size

1s less than 20.

Table 4: The confidence level "1~ & of two integration intervals for different sample
sizes

Integration interval for ¢

1 1
095.1] [+——0.025"—+0.025]
’ n+l n+l

10 0.08 0.16
20 0.26 0.30
50 0.72 0.68
90 0.94 0.94
120 0.98 0.98

3.5 Extension of Statistical CI to the VITNJ pdf
We now draw some attentions to the two random variables x,, and » which are

related to statistical CI but do not appear in Eq.(3-11). The issue is treated by

regarding the pdf of coverage shown in Eq.(3-11) as a marginal pdf for x_, and r.
As demonstrated by the CI shown in Fig. 7, only parts of x, and » near the

minimal CI have effect on confidence level computation. We hence need a more
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precise description to relate the pdf of coverage with x,, and r.The issue is
addressed via transforming the statistical CI to an explicit joint pdf of x,,, r and c,

and use it to compute the confidence level. We first decompose the joint pdf of the

three random variables, x,,, » and c, into three terms by

f(xlznr’c | n) = fclm\r,n (xl:n) ’ f;\c,n (V) ’ f;'\n (C) (3-13)
The first term f , (x,) can be calculated from f, () (see Eq.(3-1)) by
applying the Beyes’ rule. The other two terms, f,. () and f, (c), have been

formulated previously. So, according to Eq.(2-1), confidence level can be calculated

from f(x,r,c|n) by

1 Tmax MU
CL= Jﬂ L J'ML)> f(x,,,r,c|n)dx,drdc, (3-14)

min

where [ is the given f-content level (i:e.; coverage), [ .7 is the interval of

min > inax |
range corresponding to the coverage c-in [B,1], and [x,,,,,X.,,] 1s the interval of
x,, corresponding to range r-and coverage c. It is noted that the statistical CI
estimates the probability of coverage greater than /£ so that Eq.(3-15) takes definite

integration over [f,1] for the coverage. The interval [r, ] is obtained by the

in ® rmax

previously mentioned bisection method (see Eq.(3-5)). Since [r,,.,7,.. ] is the range
of CI, any random interval [7,7,] in Eq.(2-1) will be a legal [r, .7.]. We
therefore need to estimate the random interval [7],7,] for a given c. The minimum

order random variable x,, is deterministic for some pdfs such as Pareto, Weibull and

Lognormal. But in this study we consider the realistic and reasonable extent

[Xi2)s Xinwy] 10 the integration. We therefore propose to perform the Hermite
polynomial expansion on the coverage function, F, (x,, +r)—F.(x,,), and employ its

values at some discrete points to find the relative roots mapping from r to x,,.

Based on above discussions, the confidence level can be calculated from Eq.(3-16)
by the traditional Riemann sum-based integration method. However, in order to make
a tradeoff between precision and computational complexity, we adopt an alternative

approach to using Gauss-Legendre integration (GLI) [53] to realize Eq.(3-14). GLI is
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a popular method for computing definite integration based on the calculation of
pre-determined known functions. For any piecewise continuous function, the task to

calculate definite integral on the interval [a,b] can be approximated by a weighted
sum of Legendre‘s polynomials defined in the interval of [—1,1]. This is applicable to
our situation because the pdf of coverage is a function given in Eq.(3-11). According

to the order of integration, GLI should be applied to the output stage of f,. (r), i.e.

Jun(€). Generally speaking, a GLI can be expressed by

+b+a)(b—a)d
2 2
a b+a

Y@ g2 + D4R )

[Lgtodr=[ g2

b—a
2

g
(3-17)

where a and b are the endpoints of integration interval; &, —1<¢& <1, is the zth

root of the Legendre  polynomial P (&) with  order v

F(5)= 23 ';fv (& -1)", forv=0,1,2,--=; ng(x) is. a known piecewise continuous
v!
function;
b-a
W, (§)=—D
(A-S)(F (&)
(3-18)
is the weighting function; and
2(2v+1) V! 4
R,(S)= ) 7877(8) (3-19)
Qv+D)((2v)))

is the error term of the approximation.

The error term R, (&) of GLI shown in Eqs.(3-17)~(3-19) is proportional to the
2vth-order derivative of the coverage pdf f,, (c). It can be found from Eq.(3-17)

that the number of discrete sampling points (the expansion order of Legendre
polynomials) equals v. As shown in Eq.(3-11), the pdf of coverage can be expressed

by a polynomial with order n—1. So, if 2v>n—1, then R (&) will theoretically

become zero. This will result in an analytical closed form for the calculation of

34



confidence level. Up till now, we have successfully formulated a direct computation

of confidence level in term of the statistical CI defined in the past studies.
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Chapter 4 The Analytical Mean Estimator for Truncated

Normal Distribution on Sparse Data Condition

4.1 Introduction

In this chapter, we try to use the likelihood technology to perform the best mean
estimator basing on the frequently used truncated normal distribution formed by
normalizing the Cl-truncation part of pdf to its corresponding coverage. Hence
truncated normal distribution is usually applied to the sparse data condition when data
collection is time-consuming or of high sampling cost. The study focuses on the mean
estimation of normally distributed random variables under the sparse data constraint.
Since the truncation or censoring scheme is usually adopted in sparse data estimation,
our major goal is to improve the truncated normal estimator proposed by Cohen [54].
There are some shortcomings in Cohen’s truncated normal estimator, including the
need of looking-up tables for setting the positions of initial searching points, the need
of a couple of endpoints to compute the standard deviation, the constraint that the

expression of endpoints must be deterministic, and non-guarantee of convergence.

The study will use the pdf of coverage interval derived in Chapter 2 to construct a

variably truncated normal joint (VTNJ) pdf, which considers coverage, coverage
interval, the first order of ranked samples and the samples themselves. In addition, we

reduce the computations of VINJ pdf by employing the suggestion of Chen [55,47]

about the parametric coverage interval to obtain a wide-sense parametric coverage

estimator.

4.2 The Proposed Method

We use the concept of variably truncated normal distribution to cover the statistical

CI in this study. Oour task is to estimate the mean of a random variable x with

unknown normal distribution f.(x)= N(u,0”) from a set of n observed samples
{x,1<i<n} for n<20. We first rank these n samples in increasing order and

denote them by {x, ,1<i<n}. The range and coverage of the sample set are then

iin?
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defined by r=x, —x_ , andc=F (x,_)—F (x,), respectively. Coverage is a macro

n

view of random variable to carry global information of all observed samples. The

general relation among coverage c, range r, the minimum order x,,, and samples
X, 1s shown in Fig. 13. In our basic assumption, we think the macro view random

variables should be consistent to the result of micro view random variable. The
dash-lines represent the interferences within the macro view random variables, while
the solid-lines represent the interferences from the macro view to micro view random
variables. A joint normal pdf of these four variables will be built in the following
basing on Fig. 13 to compensate the coverage mismatch. We treat the distribution as a
variably truncated normal joint (VINJ) pdf to represent the randomness of the
truncated points of a truncated normal distribution depending on coverage and sample

size.

Fig. 13: Relation of variables’ interference model

We first decompose £

X, X0 5C3U,0n

(x,x,,,7,c) into four conditional pdfs by
f;c,xlr,,,r,c;u,aln (X, xl:n 7 C) = f;c;u,a\xlm RN (x) ) f;cl:n\r,n (xl:n) ) f;’\c,n (7") ) f;\n (C) (4- 1)
where

Ux—x,)-Ulx=-x,-71)
O(x,,,7)

fx;u,o‘\xlm,r,c,n (X) = f;c(x)

is the truncated normal pdf depending on the sample size, the truncated points and the

sample’s coverage; and QO(x,,,r)=F.(x, +r)—F (x,) isthe sample coverage.
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We then derive the pdf of coverage. The cdf of coverage for small sample size can be

expressed by Eq.(4-2) [56]

Pr, (C>c)= HZ_ZZ (Zj cF(l-c)™ (4-2)

We now simplify the coverage pdf as a polynomial of c¢. The derivation is given as

follows.

Prc‘n (C>c)=((1-¢)"n! {—(ﬁ)” cT(n)+(=1)"c(- é)” ['(n)
+(=1)" (- IL)” Fn+)—(=D)"c(- IL)” I'n+D})/ (c T(n)['(n+1)) (4-3)
—c —c

_ nl(=c(=1+c")(n)+ (=1+c)c'T(n+1))
- ¢ T(m)(n+1)

n! " 'nl(c T(n)+T(n+1)—c T(n+1))

= =1-nc"" +(n-1)c"
I'(n+1) I'(mI'(n+1)

where I'(.) denotes the Gamma function and I'(z) = I: t"'e”'dt . Hence

8 a n—1 n n-2 n—1
fn(©) = —(=(Pr,, (€ > ) = = (et =lm=D)/) = n(n=1)(c" =) (4-4d)
for 0<c<1

It is worth to note that Eq.(4-4) is distribution-free because Pratt and Gibbsons [56]
also proved it without assuming the distribution of the sampled random variable. Thus
it is appropriately applied to any kind of pdf. As given in Chapter 2, Fig. 12 displays
the coverage pdf for some small values of n. The figure shows the coverage
distribution deviates away from 1 progressively and spreads wider as the sample size
decreases from 20. We call this special phenomenon as distribution mismatch (DM)
because it implicitly indicates that there exists a serious mismatch between the
distributions of observed samples and the random variable when the sample size is
small. The DM phenomenon reveals an important cue to the modeling of sparse data:
coverage may serve as a confidence factor to indicate the appropriateness of observed
data for robust parameter estimation. A higher value of coverage means a better
match of the samples to its original normal distribution. To exploit the DM

phenomenon, we treat coverage as a random variable and add it to the VTNIJ pdf.
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Eq.(4-1) can be established through Egs.(3-13) and (3-17) by GLI which is a
numerical technique for integration. Then, the VTNIJ pdf can be implemented by the

numerical technique to result in an interval estimation for the coverage fluctuation. In

this study, the default settings are a=E,, [c]-0.005 and b=E_,[c]+0.005 to

consider the interval estimation for variable coverage, c.

It will be perfect if we can use a fixed sampling number for GLI to reduce the error so
as to make it approach to its minimum. As shown in Eq.(3-19), the error of GLI is
related to the differential order of the integrated function. Obviously, its differential
order is finite. From Eq.(3-19), if the GLI sampling number v meets the condition of

2v>n-1, the estimation error R (&) will be reduced to zero. In this case, GLI will

approach to the theoretical optimal solution of no errors. Besides, Eq.(4-4) shows
another important fact that the coverage pdf is independent of the distribution of the
sampled random variable. So, we can claim that the pdf of coverage is distribution

free. This property makes f,, (c) freely connect to any kind of f,  (r) by Chain

rule.

4.3 Standard Normal Transform for the VI'NJ pdf Computation

If we want to directly calculate the VINJ-pdfm" p,.,(r), we will face the problem

that the mean and standard deviation of the population must be known in advance.
But this is unrealistic in our mission. We therefore adopt an alternative approach to
construct a new bridge to conjoint with these variables. The idea is to transform the
observed data into the standard normal domain. The suggestion is shown in Fig. 14.
As shown in the figure, we transform the observed ranked samples into the domain of

standard normal by &

n

=(x,, —u)/ o . Each transform pair is marked with the same
digit number. The range is also transformed by 7, =& —¢& . Notice that the

transform is quantile mapping invariance (QMI) for the macro view random variables.
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Fig. 14: Relative quantile mapping invariance based on their percentiles. Dash-line
represents the original normal pdf and solid-line represents the standard normal pdf.

4.3.1 Derive the Variably Truncated Normal Joint Distribution
Estimator (VTNJE)

We then apply GLI to the VTNIJ pdfto obtain the marginal log likelihood defined by:

MLL() = i{b ; a n(n=1)(Ce,"? = Ce;"Twy (Kt).[dr -[dﬁ G}
= -

(4-5)

where

_ 1 2 | S n (xi —u)2 '
oo L/ZO- (®§(§l:n+’i~)_®a§(fm))] eXp{ Izzll 20° }} p§1:n|”s,’l(é’:1:n)

Pryie=cen(T2)

The marginal log likelihood is complicated and computionally time-consuming. We
suggested an idea to reduce its computation basing on the coverage interval. An

example of the profile-conditional pdf, f,.,(r), is plotted in Fig. 7. It is to

demonstrate the fact that if we would like to guarantee the coverage of the estimation
to be large enough to greater than a lower bound, then there will be much more
tolerance intervals qualified for solutions to reside. Let us return to Eq.(4-4) to
inspect the pdf of coverage which is distribution-free. We find that its form is
inconvenient for parameter estimation due to the no use of derivative operator.
Fortunately, Chen [47] suggested that the pdf of coverage can be parametric if we

constrain the coverage interval to be the minimum of all possible values.
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4.3.2  Algebraic Closed From for Parameter Estimation

Let we apply the result of Fig. 7 to simplify Eq.(4-5). It can then be expressed as two
quadric equations of variables o and u respectively. Take the roots of these two

quadric equations will result in the following solutions:

B, i\/(Ba)2+4( v nDtjCa
* t=1

2[ nD j
t=1

(4-6)

<

where

B, = (ZDZ (Eglj,,\czcc, Min{r, },n {é:l:n })[Zn: (x, — XM)jj )

b—a
D =
( 2

t

n(n=1)(Ce,"” = Ce, YWy lxD))s

and

B+ \/Bj —4YD)C,
u' = = (4-7)

2(211)

where

)4

B,. {Dt [()_c - X, )(Eémlcch,M,.n{ﬁ_}m (e }) ~2x, }}

=1
\4 _

— 2 = 2 2
Cu - s {Dt |:‘x1:n +(‘xx1:n - X )(Egl:n\c:ccl aMi”{Vs}»” {é:ln})j|}
Here, x =—le. is the sample mean, X =—le.2 is the mean of sample square,

n i nio
(b-a) ) _ .

wp (K,) = is the weighting coefficient of the #-th root of the v-th

1-K(P (K,

order Legendre polynomial, [a,b] is the coverage estimation interval, and @, (&)
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is the cdf of the standard normal distribution. The same strategy can be applied to the
other endpoint & = via replacing &, by & . Then, the VINJ pdf can be

implemented by the numerical technique to result in an interval estimation for the
coverage fluctuation. From Fig. 12, it clearly shows that the coverage is a random
variable if the sample size is less than 20. Hence, we had better to set the most

observed interval to inspect its randomness. Define the following /% -inspection

interval ( S -1I):

P% -inspection interval is an interval estimation for the coverage random variable

over the interval [a,b] witha = E,, [c]-p/2, and b= E,, [c]+B/2.

We then aim at calculating the most possible happening probability.

4.4 Experiments

By checking Eqgs.(4-6) and (4-7), we find that they are mainly affected by the sample
mean, X, and the individual ranked .samples, x; ,1<i<n. Our strategy is to adjust
the coverage to make it approach to the real coverage, generated from X and

x,,,1<i<n. We examine two methods. One is to view the joint effect of X and

x.under our suggestion of QMI (see Fig. 14). The other is to realize the QMI

basing only on the real coverage. Its purpose is to see the differences between the

sample mean without coverage estimation and VTNJE with coverage calibration.

4.4.1 Test the Results with Consistency to Sample Mean under the
QMI Principle—Case of the Default Percentile

It is clear that coverage is a random variable based on Eq.(4-4) so that we should take
the most observed samples. We first form an interval estimation for coverage by

performing a coverage estimation from the expectation of order statistics by E, [c]

and adding fluctuation of £0.005.

The VTNJE might work normally without the operations of looking up the tables so
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that it more convenient for the computer programming. We will compare it to the best

estimator of sample mean. The test pattern is selected from the normal distribution,
N(10,1*). Two different conditions for sample mean are considered. One is to

constrain the sample means in the interval of —0.30+u <x <0.30 +u . It is referred
to as the good sample mean case. The other is to constrain the sample means in the
interval of —2.3c+u<x<-130+u or 13c+u<x<230+u, and is referred to
as the bad sample mean case due to its seriously skewness. Three estimators are
compared: Scheme A represents the conventional sample mean estimator; and

Scheme B is the coverage-based estimator defined below

\4

z {Dt |:E§p:”\c:Cc’, Min{r,},n {Sgp:n }}}

u =u =x_ —-= o (4-8)

v P
2.0,
t=1

where p 1is constrained to be either 1 or n which corresponded to the endpoints of

the range;. If p=1, then the term £ ) =Corinlr, {§pzn} can be computed by
(=DE, e, iniryn {&.,} - Scheme C is taking the result of Eq.(4-7). Those results are

displayed in Fig. 15. It can be found from the figure that MSEs are very small for the
case of good sample mean for all three estimators; while the MSEs are all large for
the case of bad sample mean. This shows that the performance of VINJE will
asymptotically follow that of the sample mean. Those results also imply that very low
MSE can be probably provided that the sample mean is near the population mean.

Good sample mean
0.03 T

0.021-

MSE

0.01-

=)

A B Cc
Estimator
Bad sample mean
0.2 T

A B Cc
Estimator

Fig. 15: Comparison of the conventional sample mean estimator and two
coverage-based mean estimators.
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4.4.2 Test the Results with Consistency to Sample Mean under the
QMI Principle—Case of Realistic Percentile

In the test phase, we eliminate the effects caused by the QMI mapping mismatch for

&, to x, o & to x_, . In such a case, & A =(x,-u)/oc and

n nn

& . =(x,, —u)/o are known. But, we pretend that we do not know u and o . The

fluctuation assumption for coverage is therefore not needed. So, the previous

formulation can be simplified and expressed by

ép:n (i('xi _xp:n)j \/(gp:n (i(xi _xpin)jj +4”2(Zn: (xi _xpiﬂ)z)
* + i=1

i=1 i=1

° " 2n - 2 ’ (4-9)
for c° >0 and
PEENCAES
2 — (4-10)
Jim-n e 2054 s (e (7)) ()]

+
E

where p 1is constrained to be either 1 of n. Actually, Eq.(4-9) is equivalent to

Eq.(4-10) because u = X —ép:na*. We generated 1,000 trials to examine the new

estimator and used MSE as the score of comparison. The results are listed in Table 5.

Table 5 : Performance of realistic QMI analysis

Item sample mean | Realistic QMI

MSE 0.0765 0.0252

2
Notice that the MSE of realistic QMI was defined by 10100 Z((ul ;u”) - uj , where

u, and u, were the estimated results for x, and x, , respectively. It can be

found from Table 5 that the realistic QMI mean estimator performed better than the

sample mean estimator.

4.4.3 Comparison of the Different Estimators

We compared three different mean estimators in terms of their stabilities and

efficiencies. They are the Cohen’s method (shown in Eq.(2-18) to Eq.(2-21)), our
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VTNIJE and the sample mean which is the average of total samples. The test involves

5000 trials, and in each trial 13 samples submitted to the standard normal distribution,

N(0,1%) are generated.

In the test, we apply three types of truncation intervals to force truncating the data
outside them which they are [-2, 3], [-1.5, 1.75]. In such planning, we may easily to

realize the performance between the Cohen, VINJE and sample mean.

The formulation derived by Cohen request of the initial searching points so that we
divided the initial searching condition into two classes, bad and good. The bad

condition indicating the initial searching position for mean, u, is outside the interval,

[—20/\/; +u,2a/x/;+u] and good condition representing the initial searching

position is inside the interval, [—0.50'/\/Z+u,0.50'/\/;+u]. Table 6 display the

average of the square errors of 5000 trials for the bad initial conditions and Table 7 is
the case of good initial condition. We find from these two tables that our VINIJE is
stable and outperforms the Cohen’s method. Besides, VITNJE performs slightly better

than the sample mean.

Table 6: Comparison with different estimators in-association with bad initial
searching points (Unit: MSE)

Truncation Interval
[-2,3] [-1.8,2.5] [-1.5,1.75]
Cohen 1.439 1.420 0.991
VTNIJE 0.061  0.059 0.059
Sample mean 0.078  0.075 0.076

Estimator

Table 7: Comparison with different estimators in association with good initial
searching points (Unit: MSE)

Truncation Interval

Estimator
[-2.0,3.0] [-1.8,2.5] [-1.5,1.75]
Cohen 0.610 0.582 0.731
VTNIJE 0.061 0.060 0.059

Sample mean  0.078 0.075 0.076
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4.5 Conclusions
This study develops the variably truncated normal joint pdf to emulate the

Cl-truncation part of pdf normalize to its corresponding coverage. We have
demonstrated the weakness of the Cohen’s mean estimator using classical truncated
normal distribution on its reliability when the sample size is less than 20. On the
contrary, the proposed VITNJE using the truncated normal distribution derived based

on the normalized-parametric coverage intervals is reliable and efficient.

We use Hermite polynomials to expand the coverage function accurately. It not only
uses the high order polynomials to approach the real curve, but also guarantees the
convergence for the condition when o is known in advance (see Eqgs.(4-9) and

(4-10)).

VTNIJE only needs one truncation point for estimation (see Egs. (4-6) and (4-7));
thus it is superior to the original truncated normal estimator which needs a couple of

endpoints to do iterations (see Eqgs, «(2-18) and (2-19)).

The third goodness of the VINJ pdf 1s that it does not need any looking-up table for

root-finding. It is expressed in an analytical closed form (see Eqs. (4-6) and (4-7))
and this feature may save time for.computation. Furthermore, in the default QMI test,
we have showed that our coverage-based mean estimator follows the sample mean so

that the VINJ pdf also solves the truncated normal problems with knowing only the

possible information of the truncated points.

Lastly, we reformulate the equations for the case when o is known. It works well if
o 1s known in our estimation process. In the original MLE formulation derived by
Cohen, the solution-finding process often encounters the underflow problem. Since
the coefficients of the variables are probability or cumulative probability of normal
distribution. It is inconvenient for the realizing inverse function representation. Our

truncated normal estimator outperforms the old one obviously.
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Chapter 5: The VITNJ Estimator Tested with the Combined

Signals

5. 1 Introduction

In Chapter 3, we have shown that the VINJ pdf can act as the statistical CI to
function like a truncated pdf. So, we can regard CI as being embedded in the VTNJ
pdf- We have also tried to use the VINJ pdf in the case of normally distributed
observed data for mean estimation. Now we want to further test the VITNJ estimator
(VINJE) for the case of sampling data of combined signal. In the early GUM
recommendation [24, p.6], the uncertainty evaluation was considered as to construct a
relation between the input quantities and the output quantities of combined signal.
This style of uncertainty measurement is recognized as Type A expression in NIST
[57]. Now, we want to test the realistic refined case for the CI estimation. Fotowicz
[2,58] proposed an analytic method to estimate CI based on the assumption that the
individual standard uncertainty was known. Note that we have mentioned that case in

Eqs.(2-23) - (2-25).

From Eqgs.(2-23) to (2-25), it is easy to realize that the standard uncertainties of input
quantities must be known in advance. Fotowicz proved them on the basis of the
Central Limit Theorem and concluded that if the distribution of the output of
combined quantities is asymptotically symmetric, e.g. a normal distribution, then the

output CI approaches the minimum of all possible values.

Although the output of combined quantities may not be of normal distribution, we
still suggest using the normal distribution assumption to estimate its mean value based
on the past experience. Since VINIJE is designed based on the small sample size
condition, it is necessary to examine its robustness when the sample size is less than
20. Tests using different sample size ranging from 11 to 20 are therefore conducted.
For each sample size, 1000 trials are tested. In each trial, we replace both the
minimum order sample and the maximum order sample with their quantiles on the
constrained uncertainty. In the following, two cases of the uncertainty loading tests in

terms of VINJE are examined. One is to test the random variable, coverage, versus
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the sample size and another is to compare the realistic case with six different

estimators.

5.2 Robust Interval Detection for Small Sample Size

According to Eq.(3-11), we define the primary reliable quantiles calculated from the
expectations of their ordered samples which may be computed from the general pdf of
order statistics adding with a little variation. Taking the viewpoint from Fig. 12, the
optional truncation points are regarded as some variations around the expectation of
coverage. We define the possible truncation positions as the x% -inspection interval

shown below:

k% -inspection interval is an interval estimation for the coverage random variable

over the interval [a,b] with a=F,, [¢]-x/2, b=E,, [¢]+x/2, and f,

cln

(c) being
given in Eq.(3-11).

From Eq.(3-11), it is easy to find thatthe expectation of coverage is (n—1)/(n+1).

From Fig. 7, the minimal CI has the maximal occutrence probability so that the right

endpoint of percentile can be roughly determined ‘as -n/(n+1) and the left endpoint
is 1/(n+1) set based on the expectation of coverage. The default value for x is set

to be 0.2.

We now test the robustness of VINJE by simulations. The experiment settings are
described as follows. Let the output of combined quantities be composed of four

independent random input quantities, including two normal distribution random

variables, z, ~ N (0.1,1*) and z,~N (2.15,1.5%), and two rectangular distributions,

z, ~rect[-24/3-1.05,24/3-1.05]  and  z, ~ rect{—4/3 +1.45,44/3+1.45] . The

output x is generated from four input quantities expressed by Eq.(5-1) and its

uncertainty ratio UR is equal to 1.48 calculated by Eq.(2-25):

x=f(z,2,,25,2,) =zt 2, + 2, + z, (5-1)

We model the output quantity as a normal distribution shown below

N(Zm(zi):zuz(zi)): (5'2)
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where m(z,) and u’(z,)) are respectively means and square of standard
uncertainties of individual input quantities. Since z, and z, are not normal

distribution, we can not estimate the mean of x directly. Applying the law of

uncertainty of propagation, the combined uncertainty u_(x) can be calculated by

=3 Ly i)y 3 LY ) (53)

zl/1+]

We combine the Fotowicz’s equation with Eq.(2-26) to estimate the quantile which
has been examined using 10° samples [2] . We generate 1,000 trials for each of the
sample size in range of 11~20. Four estimators are compared. “VTNIJE” represents
the one using Eq.(4-7) by taking the average of the two outputs resulting from using

the two input quantiles, x,, and x,, . “VTINJE+Fotowicz” represents “VTNJE” with

the two endpoints of samples being replaced by those calculated by Eq.(2-26).
Because of the randomness of coverage resulting from the sparse data condition (see
Fig. 12), the traditional 95% coverage interval is not appropriate for describing the
variation of coverage. Thus, the.quantiles of the endpoints are decided by the
expectation of Eq.(3-11). “sample mean’ 1s the conventional sample mean estimator.

“sample mean+Fotowicz” is “sample. mean” in terms of Fotowicz’s quantiles.

4
The theoretical output mean can be approximated by Zm(zl.) (=2.650). The sample

i=1
mean over 10° observations is near 2.678 by Monte Carlo simulation. The
experimental results are shown in Table 8. From the table, we find that “VTNJE”
stably outperform “sample mean” if the uncertainty ratio is greater than 1.5. We note

that this conclusion happens only when the sample size is smaller than 20 (see Table

8).
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Table 8: Computation results for the uncertainty ratio, UR =1.5, with 1,000 trials,
normalized by u’(x)/n, 4 mixing signals (Unit: Normalized MSE)

Average mean square errors Average mean square errors
Sample Sample VTNIJE Sample Sample VTNIJE
. Sample ) ample
s1ze VTNIJE mean + + size VTNIE mean + +
mean ) ) mean ) )
FotowiczFotowicz FotowiczFotowicz

11 1074 1.020 0.825 0.476 21 1.023 1.045 0916 0.676
12 1.051 0970 0.840 0.509 22 1.116 1.115 1.000 0.704
13 1.069 1.044 0.861 0.533 23 1.049 1.071 0.953  0.707
14 1.066 0.996 0906 0.550 24 1.005 1.008 0.926 0.688
15 1.003 098 0.838 0.557 25 1.113 1.134 1.018 0.768
16 1.122 1.023 0975 0.600 26 1.126 1.135 1.031 0.785
17 0980 0.969 0.844  0.583 27 1.094 1.096 1.010 0.748
18 1.000 0.984 0.877 0.593 28 1.085 1.088 0.999  0.789
19 1.026 1.017 0902 0.663 29 1.018 1.037 0.937 0.787
20 1.046 1.029 0931 0.695 30 1.036 1.106 0.969 0.803

5.2.1 Test VINJE for Combined Quantities

Two patterns of output of combined quantities are used to further test VINJE. The

first one is composed of four independent mput random quantities, including two

quantities of normal distribution, z, ~ N(0.1,1%) and z, ~ N(2.15,1.5%), and two
quantities of rectangular distribution, z, ~ rect [—2\/5 +0.15,24/3 +0.15] and
Z, ~ rect[—lO«/g—O.l,IO\/g—O.l]. The second one is formed by changing z, of the

first one to rect [—28\/§ ~0.1,283 —0.1] with the other three input quantities
unchanged. They are mainly different by their uncertainty ratios: UR=3.7 for the first
output quantity and UR=10.4 for the second one. Since VINIJE needs accurate
quantiles, we predict the accurate quantiles for the two endpoints according to the

order statistics in association with Eq.(5-2), E[x,,].

Fig. 16 shows the experimental results of 3,000 trials for VINJE using the two output
patterns of UR=3.7 and 10.4. We find from the figure that VTNJE performs better for
the pattern of higher UR whose shape of distribution is flatter than that of lower UR.
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Fig. 16: Experimental results for VTNJE using two output patterns of UR=3.7 and
10.4. Left: the distributions of output quantities. Right: MSEs normalized to

ul(x)/n.

For further examining the efficiency of VINJE, six mean estimators are tested. The
first two are sample mean and VINIJE. The third one, denoted as sample mean+60%

VR, is sample mean with the two endpoints substituted with the accurate quantiles
varying with 60% VR. Here, VR denotes the basic variation unit of u_(x)/ Jn . The

fourth, VINJE+60% VR, is VINJE with input quantities having 60% VR on the
expectation. The fifth, VINJE+Parzen, is VINJE fed with quantile estimated by
Parzen estimator. Parzen [59] proposed a simple quantile estimator via smoothing

adjacent neighbors:

, I i—1 . n
F N (q)=n(==q)x,_, +n(g——)x,,, i>— (5-4)
n n 2

where ¢ is the percent of quantile and i is the sample index. If i<n/2, reverse
the order of weighting coefficients. The last, VINJE+Fotowicz, is VINJE using the
quantiles estimated by the Fotowicz’s algorithm. The experimental results are
displayed in Fig. 17. It can be seen from the figure that VINIJE outperforms sample
mean without any assumption. This is a great achievement as we recognize that
sample mean is UMVUE for normal distribution. Although the R*N distribution is
different in shape from the normal distribution, they are alike for UR<1. Moreover,
both VINJE+60% VR and VTNJE+Fotowicz perform even better. This shows that
VTNIE can operate on the same level of Fotowicz’s quantile even if it loads 60%
combined uncertainty variation about the theoretical quantile. Lastly, VITNJE+Parzen

performs not well in the sparse data condition. Here, we explain why VTNIJE
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outperforms the sample mean estimator. The reason is that the quantiles of R*N
distribution has a small scattering area corresponding to the equal standard
uncertainty of quantiles in VINJE. Besides, sample mean is a UMVUE only for the

normal population, it is not the best mean estimator for the R*N distribution.

2/ =% = Sample mean

—— VTNJE

e Sample mean + 60% VR
W 1.6 —*—VTNJE +60% VR
0y | meeee VTNJE + Parzen
= 14 =-= yTNJE+Fotowicz
8 NTEELLELA ennmEns .'t.-‘ .---.-I" " e
N2
8 1t - il
*'
£
o 0.8}
pd
0.6/ =
04}
10 12 14 16 15 20

Sample size

Fig. 17: Performance comparison for six estimators using the first output pattern with
UR=3.7.

5.2.2 Test VINJE for Different Uncertainty Ratio

Lastly, we examine the performance of VINIJE for different uncertainty ratio. The
experimental results are displayed in Fig.-18. First, we find from the figure that the
average MSE of sample mean persists around its theoretic value of 1 according to the
Central Limit Theorem. Here, average is taken over all sample sizes from 11 to 20.
The average MSE of VTNIJE decreases as UR increases and saturates to the value
around 0.85 at UR near 6. Moreover, VINJE outperforms sample mean when UR is
greater than 2. As combined with the Fotowicz’s algorithm, sample mean+Fotowicz
outperforms VINJE for small UR; and their performances are comparable for large

UR. Lastly, VITNJE+Fotowicz performs best.
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Fig. 18: Performance comparison for four estimators using the output quantity of
4-mixture combined quantities with different UR. The average MSE is normalized to

uf(x)/n.

5.3 Conclusions

The highly concentrated pdf of CI also provides a proper demonstration of the idea of
the conventional parametric CI approach which suggests taking the minimum of all
possible values of CI. The new formulation of the pdf of CI has been shown to serve
as a unified framework of parametric and non-parametric CI representations. Lastly,
we have discussed a new quantile-based VINJE to estimate the mean value of the
output of combined quantities. The VINJE was shown to outperform the traditional

sample mean estimator for the sparse data condition.

5.4 Appendix: Derivation a Closed Form for VINJE

Our principal goal is to establish an analytical form of estimator for the truncated
normal distribution so that some special skills can be applied to the whole schemes
including marginal likelihood, withdraw certain terms in the derived equations and
externally adding a certain factor in the equation. If the posterior analysis takes a

good performance, then these schemes are right.

First, we take the integration of the log likelihood with respect to the three macro

view random variables x,,, 7, c¢ to obtain the marginal log likelihood.
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MLL(.) = ZV:(D, (, f. ((—ﬁlog 27 —nloga)x0)))

(5-5)
20, (], [, (Cnlog@(&, +r)-ig,)-> )< o))
where,
_¢ ~n(n=1)(Ce = e (w, (1)

Q = pflm\rs,n (glzn | rjv’n) .prs\c,n (rs | c= Cct’n) 2

and p, . (r,|c=Cc,n) isthe profile-conditional pdf of r,.

We then use a single truncation point to perform the estimation. Specifically, we

employ the equation u =x,, —o¢&,, to obtain

ML) =Y (D,-(], [, (5 log2-nlog)0))
+ 20, ([, [, (~nlog(@(E, 1) -(&,)0)) (56)

0, [, REEREEY )

We then ignore the second term in Eq.(5-6) ie.

i{D{ .(Idr J‘dg. (—nlog(®(&,, +1,)—D(E, ))Q))}. We have two reasons to make the

decisions. One is that it is a transcendental function which is difficult to obtain an
explicit expression for the variables. The second reason is that we have found

D(&, +1,)—D(&,) to be a coverage variable. Remember that we have derived the
joint pdf of x,, r, c¢. From Eq.(4-4), we find that the maximum power for
coverage is n—1linthe pdf of coverage. So, the dominant term has been present in
the pdf of coverage regardless whether the coverage variable, (&, +r)-D(S,),

is existing. Taking the expansion for the third term, we obain:

Z( ([, 2 Nt o)

(5-7)
D], ], (- (g(("’;’“k"))z+2(x 1))
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where E,[.] denotes the expectation operator.
When we withdraw the coverage term, the equation will become Eq.(5-8) and the
other problem generated. If we inspect Eq.(5-8), it will be found that there is going to

no any coverage interval term, r,, to be left after integrating the variable r, . This

result violates Eq.(2-10) derived by Cohen. Since our VTNIJ estimator is the
extending work of his truncated normal estimator so that we should preserve the

information for r, . Thus we take the suggestion by Chen [47] to select the minimum
coverage interval, Min[r,], representing the information for coverage interval, 7,.

The new simplified equation is Eq.(5-9).

ZV:Dt(_ﬁlog2zz—nlogo-)+ZV:Dt (_li(w)z
t=1 i o

(5-9)

(=1, i 5
Z—ME; le=Cc, Mm[r]n[ézln é‘l |e=Cc, ,Min r]”[ézln])
i=l1 o 2

Taking the partial derivative of Eq.(5-9) with respect to o and setting it to zero,
ie.,

- MLL()- Z(D( . z(x z(’“ ) B o6 D) =0

:(ZnDt)O- ZD(EI le=Cc, ,Min[r,], [é:ln]z(x xln)))o- Z(DZ(‘X _xln) ) 0
t=1 t=1
(5-10)
Solving Eq.(5-10), we obtain an estimate of the standard deviation of the population:

* Bgi\/(Ba)2+4(tZ:‘nDtjCa

o = - (5-11)
2(ZnDIJ

with ¢’ >0, where

= (Zi: Dt ((Efmkr—Cct Min[r,],n [é;n ]) Zi: (xi — X, )jj

o)
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D =
( 2

t

n(n=1)(Ce,"* = Ce," ) x(w, (x,))

By substituting o =(x,, —u)/¢&,, into Eq.(5-5), we obtain

MLLO) =YD, ], (o2 —nlog(™=)<0))
- n St (5-12)

20, ], (Cnlox@(&, +1)-0(&,)- ;2&_ 2050

Taking aiMLL(.) =0, we obtain
u

Z(x (xxl")(:) DE, ol €2 =0

—Z(nD (x, — u)*)— Z(DZ((X —Xu-— ‘xln'xl+uxl;z)E§ le=Ce, Min[r, 1n fln])) 0

t=1 i=1

Z(nD (x,, — u)) Z(D ((Zx ~ XU — NXX,, +nuxln)E§ (e=Ce, Minl n[fln])) 0

i=1

=D, (%, ~u))- Z(D((x T ST o [EED)=0 (5-13)

= Y (D, 25,4 0) = Y (DLW Ee g 15D

(DL =00 Eey st sl D+ D D0, ) By s[5 1) =0
(5-14)

With simple mathematical manipulations, the above equation can be simplified and

expressed by

—Z ) H +(Z(D<(x X Ex o simtonl €50 =25, M4
(5-15)

# 2D, 8, + (00, = ONE g 1E5, D) =0

Solving Eq.(5-15), we obtain an estimator of f:
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Chapter 6 The Asymptotic Minimax Optimization for Mean

Estimation of Combined Signals

We now follow the robust statistical method “asymptotic minimax principle” to
realize the mean estimation of combined signals. It is referred to as QMLE. We derive
the QMLE via solving the problem of maximizing the objective function
OMLE(u,o0) defined by:

('xi — :u)z

n n
MLE(u,0)=(——log2zr—nlogo)— ) ————
OMLE(u,0) = (= log ng)zzgz’ 6.1)

i=1

H=x,, -0, . forp=1orn

where x,, is the minimum order (for p=1)‘or maximum order (for p=n) of samples

x,, for 1<i<n; &

pn

is a standard ‘normal random variable normalized from x,,;

and n is the sample size. The solution derived in detail in the Appendix is given

below:

/Ll; = xp:n _O-;é:pn (6-2)

where

$ (l’l()_c—x ) \/(é:”:" (n(f_xl”’)))2 +4n(i(xi _xp:n)z)
o) = pn 5 rnl) 5 i=l (6-3)
h n

with the constraint " >0, and X is the sample mean.

If we emulate the pdf of combined quantities as a quasi-normal distribution (see an
example shown in Fig. 4), one of its two extreme shapes looks like a rectangular pdf
for large UR. Fig. 19 demonstrates the first order and last order random variables (i.e.
QSQ) of the rectangular and normal pdfs with the same standard uncertainty. From
the figure, we find that the dispersion-areas of QSQ for the rectangular pdf are more

concentrated than these for the normal pdf.
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Fig. 19: Standard normal pdf combined with its CLT pdf and QSQ pdf for sample

size=11. We plot the QSQ of equal variance rectangular pdf [—\/g \/g ] as the blue
solid line.

6.1 Establish the Minimax Structure

Huber [60] addressed the robust statistical method via the least possible variance

searching algorithm given below:

Asymptotic minimax results [60]: Let & bea convex compact set of distribution F
on the real line. To find a sequence 7 of estimators of location which have a small

asymptotic variance over the whole of x ; more precisely, the supremum over x of

the asymptotic variance should be least possible.

According to the above theorem, we need three components to establish a minimax
searching algorithm. They are the convex set, least variance and a minimax

optimization objective function. We describe them in detail as follows.

6.1.1 Convex Set

Eq.(6-1) is a quadratic equation so that its global extreme does exist. According to
this property, we construct the convex set comprising the candidates of population
mean. Using three normal pdfs, N(10,1*), N(2.3,0.8°) and N(3.7,1.2%) as
examples, we form their convex sets by using Eqgs.(6-2) and (6-3). There are 1,000
trials with 15 samples in each trail. For each trial, the 15 samples are firstly sorted in

the ascending order to find the two endpoints x, and x, . They are then

transformed into the standard normal distributed versions, &, and & ,, by using a
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pre-assumed pseudo mean 4, and the true standard deviation o if it is known (or

- /1 % _ . .
the samples’ standard deviation o, = —E (x,—X)* ). Then, the estimate o is
nig

calculated by Eq.(6-3). We denote it as 0:. The final mean estimate is obtained

substituting o, into Eq.(6-2), to obtain u, =x,, —o,&,, for p=lorn.

pn

To evaluate the performance of the QMLE estimator, an averaged mean square error

(MSE) defined by:

1 wzoo(mf(i)—u,,f+(u,’:<z')—um)2)
10005 2

(6-4)

is calculated for each test. We take the error between the pseudo mean and real mean,

(,ups— ,u) , as the reference. We set the inspection interval of x4, to be

[—20/ Jn, u+2o/ Jn Jand take 50. pseudo means distributed uniformly over the
interval as the candidates of population-mean. Fig: 20 displays the average MSEs of
QMLE versus ( My — u). It can be clearly found from the figure that, for all the three
test cases using different normal. distributions, the average MSEs of QMLE are

characterized as convergence curves to-become smaller as the absolute value of the

difference between g, and u decreases.

Convergence cune
02 \
[N ELEE Mearr 10 STD=1
“ — MearF23STD=0.8
015 i |=-Meare37STD=12
kN g5
n 01
005

1 05 0 05 1
(Difference)
Fig. 20: MSE of QMLE versus differenceZ( My — ,u) for three normal distributions.

Note that & 1is calculated using true standard deviation o .
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6.1.2 Asymptotic Efficient near the Minimal Average of MSEs

Fig. 20 shows that the three average MSE curves are convex functions of ( My — ,u)

with their minima located at the zero of ( Mo — u). Based on the observation, we

therefore suggest letting the selection criterion of the pseudo mean, x, , correspond

to the minimal average MSE, and expect that the resulting QMLE has higher

efficiency than the sample mean.

6.1.3 Minimax Structure for the Objective Function

Now, we add a punishment term to form a new objective function and find the

optimal pseudo mean estimate by:

arg max {QMLE(G, 1y, —%((M* —p) + (= 1)’ )}

Hps

n 1 &G %X,
=argmax- (——log27 —nlogo)——) (£
g/lp.v {( 2 g g ) 2;( o )

(6-5)

_i xi _xp:n . xp:n _/Llps _ﬁ(xp:n _Iups )2
- O o 2

s N

1 s Xy —H S F ’xn:n —H s
__{((‘x]n _Gl : 1 £ )_#)2 +(('xn;n _O-n / £ )_ﬂ)z}}
2 o o

N S

The minimax operation is thus constructed completely. The corresponding criterion of

optimization is a combination of maximum QMLE and minimum MSE (MMSE) on

QSQ.

Table 9 lists four possible conditions that we will encounter in setting the inspection
area for searching the optimal g, . They specify the conditions whether the
population’s mean and population’s standard uncertainty are given or not. Basically,
the inspection area is set as [u—20/ Jn, u+2o/ Jn ]. If the combined (population’s)

mean is unknown, the best searching interval for determining the candidates is also
unknown. In this case, we use the sample mean to determine the searching interval.
Similarly, if the combined (population’s) standard uncertainty, o, is unknown, we

use the samples’ standard uncertainty, o, for its substitution. Table 9 shows the test

conditions for the four combinations.
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Table 9: Table of confusion for the conditions of combined mean and combined
standard uncertainty

Combined Mean
(CLT searching
interval)
Known Unknown
Standard uncertainty Known A B
of
) .. Unknown C D
combined quantities

6.2 QMLE optimization on MMSE of the Two Endpoints of Range,
(QSQ)

In the proposed QMLE mean estimator, the quantiles are determined by the maximum
percentage of its original population, i.e. coverage. Since the coverage-constrained
quantiles obey the properties of symmetric quantiles, the QMLE mean estimator may
be efficient and robust with variance:asymptotically approaching the Cramer-Rao
lower bound. It is worthy noting that since the QSQ usually covers a significant
portion of the population, it is therefore popular to apply the double censoring scheme
for the observations of small sample size, especially in the sport contest. We know
that adopting such a strategy can avoid the large variation occurring in the mean
estimation. Based on above discussions, ‘'we apply the above QMLE+MMSE
optimization search only on QSQ, and call it the Q2MMSE-CLT scheme.

We now examine the performance of Q2MMSE-CLT by simulations. Suppose that

the combined quantity is composed of four independent random input quantities with

two  normal  distributions, X=z+z,+z;+z, , z, ~ N(0.1,1%) and
z, ~ N(2.15,1.5%) , and two rectangular distributions,

z, ~rect{-24/3 -1.05,24/3-1.05] and  z, ~ recf{-10+/3 +1.45,103+1.45] . We
perform 10,000 trials to test Q2MMSE-CLT for each of the four conditions listed in
Table 9. The testing sample size ranges from 11 to 40 for each trial. Fig. 21 and Fig.
22 display the experimental results. It can be found from these two figures that
Q2MMSE-CLT significantly outperforms the sample mean for Conditions A and B,
and is slightly better for Conditions C and D. In other words, Q2MMSE-CLT has

much lower MSEs when the standard uncertainty is known.
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Fig. 21: Conditions A and C. y axis is normalized to u’(x)/n
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Fig. 22: Conditions B and D. y-axismnormalized to u(x)/n

6.2.1 Test the Robustness of Q2MMSE-CLT for Different
Uncertainty Ratio

Here we test Q2MMSE-CLT for two different values of UR. As demonstrated in Fig.
4, the R*N distribution is more flat in its central part as UR increases. It is a general
issue to study whether Q2MMSE-CLT performs better for larger UR. We perform
10,000 trials for two cases of combined quantities composing of four different

distributions. One has z, ~N(0.1,1)) z, ~N(0.2,1.5%)

2

z, ~ rec[-243+0.15,24/3+0.15], and z, ~ rec[—10v/3-0.1,10/3-0.1]. Its UR is
equal to 3.7 evaluated according to Eq.(2-25). Another is the same as the first case

except that z, ~ rec{—10+/3 —0.1,108/3 —0.1] is changed to

z, ~ rec[-28+/3 —0.1,28+/3 —0.1]. The UR is accordingly changed to 10.4. Fig. 23

displays the histograms of 50,000 outputs of combined quantities for the two cases. It

shows the property of quasi-normal distribution for the output of combined quantities.
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To compare the two cases of Q2MMSE-CLT, a robustness function of gain relative to

sample mean is defined as

__ Average MSEs of (Q2MMSE)
Average MSEs of (sample mean)

4 (), (6-6)
n

G=1 (unit :

Fig. 24 displays the experimental results. It can be found from the figure that
Q2MMSE-CLT outperforms sample mean for both cases of UR=3.7 and UR=10.4.

Moreover, the performance is better for larger UR.

400 :
-+-+- UR=3.7
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Fig. 23: Histogram of 50,000.combined quantities for different URs. x-axis is the
output of combined quantities and y-axis is the frequency count
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Fig. 24: Gain performance for the different URs. The unitis u’(x)/n

6.2.2 An Advanced Refinement of the QMLE

Although Q2MMSE-CLT follows the paradigm of asymptotic minimax principle,
there are only about 2%~3% gains, for Conditions C and D, over the sample mean in
the mean estimation for the output of combined quantities. By considering the
practical applications, we only further discuss Condition D. As was noted previously,

the testing data of combined quantities are formed in the same manner and we execute
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1,000 trials with 15 observations in each trial. We select 60 candidates of population

mean and arrange them to be symmetric to the sample mean within the interval of
[-20,/ Jn+%, 20,/ Jn+X]. Then we evaluate the QMLE via the Q2MMSE-CLT

scheme. In our maneuver, we first plot the convex curves according to the three
different clusters of Z score (i.e., quantile of the signal transformed to standard
normal pdf) of sample mean: Z < -2, -0.5<72<0.5,and Z >2. We then define the
cluster —0.5<Z7 <0.5 as good sample mean and the other two clusters, Z <—-2 and
Z >?2, as the bad sample means. Fig. 25 is the convex sets conditioned on the good
sample mean. Here, the dot line is the convex set for the original signal of combined
quantities and the green solid line represents the convex set due to enlarging standard
uncertainty (ESU) to 4 times of the original signal with the same reference candidates
of population mean. We find from the figure that for the good sample mean case
QMLE converges near the symmetric location, (i.e., the 30-th candidate) for both the
original and ESU signals. So, in the good sample mean case the convergence of

QMLE to population mean on heayy observations will be guaranteed.

14
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Fig. 25: Good sample mean tested with the convex sets, normalized by u’(x)/n,

sample size is 15, 4 combined quantities

Fig. 26 and Fig. 27 show respectively the results for the two bad cases of biased Z
score to be less than -2 and greater than 2 when applying the Q2MMSE-CLT and
enlarging standard uncertainty Q2MMSE-CLT (ESQ2MMSE-CLT). We plot the
details shown as the double y-axes representation in which the dash line represents

the original signal evaluated by Q2MMSE-CLT and the solid line represents the
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signal evaluated by ESQ2MMSE-CLT with 4 times of combined standard uncertainty.
An important fact is found from these two figures that the original signal will be
affected by the sample mean if it only takes the Q2MMSE-CLT operations. The
resulting MSE curves converge to the near symmetric location which is the sample
mean, but we know it is a bad sample mean. We also found from these two figures
that, as we apply the ESQ2MMSE-CLT algorithm with 4 times of combined standard
uncertainty, the MSE curves converge to locations deviated away from the bad
sample mean and toward the true population mean. Why does it act like this as the
action? The reason is that the ESQ2MMSE-CLT enlarges the combined standard
uncertainty to 4 times of the original signal. Thus the Z score of the general maximum
bias sample mean will be reduced to 25% of that of the original signal. It means that
the Z score of bias is constrained to —0.5<Z <0.5. This in turn will guarantee the

convergence to the good sample mean (also the population mean) as shown in Fig. 25,

Normalized MSE

0.4+

Fig. 26: Originally left biased of bad sample mean tested with the convex sets, double
y-axes, normalized by u’(x)/n, sample size is 15, 4 combined quantities
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Fig. 27: Originally right biased of bad sample mean tested with the convex sets,
double y-axes, normalized by u’(x)/n, sample size is 15, 4 combined quantities

Fig. 28 displays the refined results of ESQ2MMSE-CLT for sample size from 11~40.
We find from the figure that ESQ2MMSE-CLT significantly outperforms the sample

mean by 40% MSE reduction. So'it is a promising mean estimator.

-+=4.0ESU
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Fig. 28: Refined Q2MMSE-CLT with the enlarging standard uncertainty, y-axis is
normalized by u’(x)/n,4 combined quantities

6.3 Change the Variable to Obtain a Nonlinear Estimator for Mean
Estimation

We now derive a new nonlinear equations for variable u from Eq.(4-8). By letting
X=u+Ah and x*=S.+Xx’. Then Eq.(5-15) becomes
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ZV:(D, Ju? + {i{q ((—Ah)(EW:CC“E{,.S},H {é,in})— 2%, )}}M

t=1 t=1

v (6-7)
+ Z (Dt (xi:n + (Ah ' xpiﬂ o Sj a Ah2 ) X (Eép‘n|czcct’E{’3‘}’n { ;:n }))) - 0
t=1 |

where A/ is the sample mean bias relative to the population mean .

Eq.(6-7) is a quadratic equations for variable . So, we can easily obtain the
estimated mean u . Because the variance,S”, is a function of x, we can regard

Eq.(6-7) as the nonlinear equation. If we set Ak equal zero for Eq.(6-7), and the

new equation is changed to:

/u;zy_zxp:n'#p+é:§:n'(‘x;27:n_sj)zo9 p:1 Orp:n
.1 (6-8)
yzi 25(/114'#,1)

n

£ = (@ (—), &, =@ () (6-9)
n+1

n+l

where @(.) is the cdf of N(0,1%), and S_ s the variance of input sequence. Let us

test the combined quantities of four input signals expressed by

X=z+z,+z,+z, (6-10)

We perform 10,000 trials for two cases of combined quantities composing of four

different  distributions.  One  has z ~N(0.1,I) , 2z,~N(0.2,1.5%)

z, ~rec[-243+0.15,24/3+0.15], and z, ~ req[—~104/3-0.1,10/3-0.1]. Its UR is
equal to 3.7 evaluated according to Eq.(2-25). Another is the same as the first case
except that rec[-10+/3—0.1,105/3 —0.1] is changed to rec[—28+/3 —0.1,28y/3 —0.1]
and the new UR is changed to 10.4. The experimental results are shown in Fig. 29.
We find from the figure that the nonlinear mean estimator outperforms the
sample-mean estimator for both cases. Moreover, it performs better for the case of

large UR(=10.4). MSE reductions of about 30% and 70% were achieved for the two
cases of UR=3.7 and 10.4, respectively.
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Fig. 29: Nonlinear estimators compared to the sample mean estimator for different
uncertainty ratio (UR), y axis is normalized to the combined standard uncertainty,

u’(x)/n

6.4 Conclusions

In this chapter, the issue of applying quantile-based maximum likelihood estimation
(QMLE) to mean value estimation of normally-distributed signal in sparse data
condition is addressed. It proposes.to incorporate order statistics into QMLE to take
the maximum coverage as quantiles so-as to conform to the requirement of symmetric
quantiles. Simulation results confirm that the new Q2MMSE-CLT performs very well
to outperform the conventional sample mean estimator. The proposed Q2MMSE-CLT
reaches the highest gain when the combined-mean is known and obtains the least
benefit if we take the sample mean to substitute for the combined mean. In spite of the
fact, ESQ2MMSE-CLT can compensate this shortcoming. The robustness of
ESQ2MMSE-CLT to its usage of sample mean makes it a promising mean estimator

for practical applications.

It is worthy to note that Q2MMSE-CLT is free to the standard uncertainty of
population. The standard uncertainty of combined quantities can therefore be ignored
and replaced with the samples’ standard uncertainty in the estimation process. We
also find that the nonlinear mean estimator solved from Eq.(6-8) outperforms all

other estimators when UR is high.

6.5 Appendix: Derivation of the Quantile-based Mean Estimator

By substituting ux=x, —o¢, forp=lorn, into OMLE(u,o) defined in

m

Eq.(6-1), we obtain
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X, =X,
OMLE(u,0) = (—g log27 —nlogo) —%Z (—22y?
R (6-11)
_ - xi_xp:n_ _E 2
; o é:p:n 2 §p:n
Taking the partial derivative of Eq.(6-11) with respect to o and setting it to zero,
we obtain
7’162 _é:P:nz(xi _xp:n)o-_z(xi _xp:n)z :0 (6-12)
i=1 i=1

Solving Eq.(6-12) to obtain an estimate of the standard deviation of population:

. B +.(B,) +4nC,

o = 6-13
0 (6-13)

where B, =&, > (x,-x,,), C,=>.(x,—x,,)°,and & >0.
i=1 i=1
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Chapter 7 An Efficient Representation for Combined Signal

Activity Detection in Sparse Data Condition

7.1 The Simplified Quantile-based Mean Estimator

We have shown that the proposed VINIJE is an efficient mean estimator in the
previous chapter. But, its computational cost is too high. Now we proposed a new
mean estimator for the combined signals. The idea is to keep using the same QMI
principle and to inspect its efficiency in terms of the representation of the maximum
eigenvalue which has been reviewed in Sub-section 2.6. We continue the work of [41]
to employ the simplified representation of UBE and developed a new algorithm to

against the uncertainty increasing on the sparse data condition such as Eqgs. (2-27) -

(2-28). The study considers that the correlation matrix, R =[”g], is estimated

from n observed samples of m-dimensional random vector by

C..
r,=—— forl<i,j<m, (7-1)
i

1 . .
where C :[C},} =—1(men U, )X, =U, ) is the sample covariance of the
n —
observed iid. random vectors X, , for 1<i<n ; X, =[x X, - X,];
U,.,=[uu - u] is the mean matrix with identical column vector u= E[x,]; and

o, 1s the standard deviation of the j-th component of x;. The conventional approach

to mean matrix estimation is by the sample mean method. Since the variance of
sample mean is known to increase as the sample size decreases, the resulting mean
matrix estimate is hence unreliable in the sparse data condition. This will make the
uncertainty of the estimated correlation matrix increase accordingly; which in turn

affects the UBE finding.

In accordance with the discussions in Section 6.5, we have suggested a new
approach for the mean estimation. Due to the fact that symmetric quantiles are

efficient [36], we use QSQ to form a QMLE-based mean estimator by
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OMLE-050 = (41 + 1) (7-2)

To use Eq.(7-2), two problems are still needed to be solved. One is that Eq.(6-2) is
derived based on the assumption of ideal additive mixture signal with normal
distribution, while the realistic signal is QSAW. Another is that the transform-domain

QSQ.i.e., &, and &, are unknown.

To solve the first problem, we define the match pair (MP) for the QMLE analysis.
From Fig. 30, we find that the two extreme pdfs of the QSAW signal are normal and
rectangular distributions. We hence define MP as the following two pdfs with the

same mean 4 and standard deviation o by

N(u,0?) <> Rect[—/30 + u,\30 + 1] (7-3)

Now we use order statistics to express the pdf of QSQ [61].

n!

= D ) LB ) /() (7-4)

f;ckm (xk:n )

where f (x) and F (x) are the pdf and cdf of x, and £ is the order index restricted
to k =1 or n. We plot the pdfs of QSQ of the MP in Fig. 30 for the case of =0,
o =1, and n=11. The two red dash curves represent the pdfs of the standard normal
QSQ and the two green solid curves represent those with rectangular QSQ. Fig. 30
reveals that the rectangular QSQ are spanned in two smaller areas covered completely
by their corresponding standard normal counterparts. Since the pdfs of MP are the two
extremes of the pdf of QSAW, the QSQ of QSAW will also be dispersed in two areas
covered by those of the normal QSQ. So, applying the transform-domain QSQ of
QSAW to Eq.(6-2), derived based on the assumption of normal distribution, will

cause no troubles at all.
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===:1Standard normal

Rectangular‘

QsQ

Normal /
2 QsQ

Fig. 30: The pdfs of QSQ of the MP pair (i.e., normal and rectangular distributions)
for the case of =0, o =1, and n=11. Dots on x-axis are expectation values of QSQ.

The second problem is solved by replacing &, and & = with their expectation

values. But, calculating the expectation of Eq.(7-4) is still difficult to implement for
QSAW signal with pdf given in Eq.(2-24). Thus an alternative approach is adopted.
Since the expectation values of QSQ for a QSAW signal are located between those of
its two extreme MP pdfs which are very close to each other (see Fig. 30: green and
red dots on the x-axis), we can. therefore use the expectation values of either
rectangular QSQ or normal QSQ to‘approximate them. Besides, we use an indirect
way to calculate the expectation values of rectangular QSQ and normal QSQ. For any

pdf f.(x),if we consider to transform the quantile x,_, to its cumulative probability
by Eq.(3-8), the distribution of the cumulative probability is subject to rect[0,1]. The
expectation of the cumulative probability of minimum-order quantile, p, , can then
be easily obtained from Eq.(7-4) by:
E = dp,, = "M -p, ) ldp, =—— (15
pl;,,ln[plzn] _J.O Prn 'f‘pl:,7 (pl:n) Prin _.[0 Prn m ( _pl:n) 1-apy, _E ( - )
Similarly, the expectation of cumulative probability for the maximum quantile
s E, [p,]=n/(n+]). Since the formulations for these two expectations are

distribution-free, we can therefore calculate the expectations of normal QSQ by

BV (@), EY =@l (7-6)
n+1 n+l1
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and those of rectangular QSQ by

B - (), ER = () (7-7)
n+l n+l
where ®(.) is the cdfof N(0,1>) and W(.) isthe cdfof rect[—/3,4/3].

To justify the feasibility of the scheme of replacing &, and & with their

expectation values, the following experiment is conducted. Consider the signal x

formed by four independently combined quantities:
X=z+z,+z;+2z, (7-8)

where two input quantities are mnormally distributed, z ~ N(0.1,1°) and
z,~N (2.151.5°) , and the other two are rectangular distributed,

z, ~rect[-24/3+0.15,24/3+0.15]  and  z, ~rect[-10+/3-0.1,10/3-0.1] . We
generate 50,000 samples of x to calculate its meéan x and standard deviation o as
the true parameters. We then perform 10,000 trials for each sample size n in the range
of 11~40. In each trial, we generate a set of samples-and transform the minimal and

maximal samples, x,, and x - to produce the true transform-domain quantiles and

nn ?

denote them as &/ and &! . We then simulate a pair of &, and & by

& ~rect[—0.5VR+5;,0.5VR+§;] (7-9)

for /=1 or n, and use them in Eqgs.(7-5)~(7-9) to generate a QMLE-QOSQ estimate.
Here, VR is the dynamic range with unit of standard deviation of a single quantile of
QSQ (denoted as SQSQ STD). We test several cases of VR which shows different
degree of deviation of the transform-domain quantiles corresponding to the true ones.

Fig. 31 shows the experimental results.
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Fig. 31: The performance of QMLE-QSQ mean estimation for different degree of
deviation of the transform-domain quantile used to the true one. Note that y axis is

normalized by u’(x)/n.

As shown in Fig. 31, QMLE-QSQ outperforms the sample mean estimator if VR is
smaller than 3.5 SQSQ STD. The average MSE decreases by about 50-60% if the
transform-domain quantile is approximately known, e.g. VR=0.05 SQSQ STD. The
improvement gradually degrades as VR -increases.- These results show that using
approximate quantiles in the OMLE-OSQ mean estimator will not cause big trouble if
they deviate not too far away from the true values. So, the proposed replacement

scheme is appropriate.

We then examine the effect of UR variation of the QSAW signal on the performance
of OMLE-QOSQ by simulations. Consider the previous combined signal x shown in
Eq.(7-8). Its UR is 3.7 evaluated according to Eq.(2-25). We then simulate another
combined signal x’ formed by zi, z3, z3, and z} ~ rect[—28«/§ —0.1,28\/5—0.1] . The
UR of x' is 10.4. To test QMLE-QOSQ, both cases of replacing (&, ,¢,, ) by their

expectation values, calculated using Eq.(7-6) based on the normal assumption and
Eq.(7-7) based on the assumption of rectangular pdf are examined. For these two

cases, the OMLE-QSQ are calculated, respectively, by

S+ =A%, ~ 0B )+ (v, -8 (7-10
S+ 1) = (5= T EE )+ (x,, ~0TER ) (7-11)
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We perform 10,000 trials for each sample size n ranging from 11 to 40. The
normalized MSEs for UR=3.7 and UR=10.4 are displayed in Fig. 32. It can be found
from these two figures that QMLE-QSQ significantly outperforms sample mean for
both cases of normal and rectangular pdf assumptions. Moreover, QMLE-QSQ
performs better for large UR. This can be explained as follows. As shown in Fig. 30,
rectangular QSQ have much smaller variances than their counterparts of normal QSQ.
The error caused by the expectation replacement scheme will be smaller for the
rectangular pdf to make it outperform the normal pdf on mean estimation. Since the
pdf of QSAW signal with larger UR looks more like the rectangular pdf (see Fig. 4), it
is hence expected to perform better on mean estimation. Moreover, we find that the
performances of QMLE-QSQ using the two quantile-expectation (QE) replacement
schemes, based respectively on standard normal pdf and standard rectangular pdf

assumptions, are almost the same. The reason is obvious because their locations are

closed to each other.

(a):UR=3.7

(b):UR=10.4
il Ve AW Vel 1§ A~ NANAAA
w
7 W
= 2 0.3
- 0.8;
e 2
T W = 0.6/
E 06 §
<23 | === QE on normal S 04 == QE on normal
===:QE on rectangular ===:QE on rectangular
0.4f ‘ === Sample mean 0.2+ ‘ == Sample mean
10 20 30 40 10 20 30 40
Sample size Sample size

Fig. 32: The mean estimation performance of OMLE-QSQ using two different
quantile-expectation (QE) replacement schemes for two QSAW signals: (a) UR=3.7
and (b) UR=10.4. The y axis is normalized by u’(x)/n . Note that the MSEs of

OMLE-QSQ and sample mean are " 5 1oooo(ﬂ (D) +u () -u)" and
100002’ (x) 5 2
n 10000

—————— % (z-uw),respectively.
10000- 2> (x) Z; a0 S TESP 4

7.2 Simulation Results for UBE Finding with QMLE-QSQ Mean
Estimation

Now, we examine the effect of applying the OMLE-OSQ mean estimator on UBE
finding. We set =1 in Eq.(2-28) for the first-order UBE evaluation so that it is tighter
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than the Dembo’s bound which is the case of =0 [41]. The first-order UBE is the

maximal real root of Eq.(2-28). We denote 72(¢) as the UBE estimate using the

OMLE-OSQ mean estimate to perform the mean matrix U

mxn 2

and 7, (¢) as that of

using sample mean. Here ¢ denotes the trial index. Define the following five factors to

measure the performance of UBE finding:

ET = count of {z 70> 02 () > max e, (t)}} (7-12)
Yield = ET /T (7-13)
1 ET s
0D = 3775 0)=max e, () (7-14)
B L ET 0 B _
CD = 201 (1) ~maxis, (03) (7-15)
IR = (OD—CD)/ OD (7-16)

where ET denotes the number of effective (or successful) trails; ¢,(¢),1<k<m, are

eigenvalues of trial ¢#; “Yield” measures the percentage of effective trails; 7 is the total
number of trials; OD and CD denote the average distances from the upper bound to
the maximal eigenvalue for effective trails using sample mean and QOMLE-QSQ,
respectively; and /R denotes the improvement factor of the proposed UBE finding
method over that using sample mean. We take 100 trials (7=100) for each sample size
n ranging from 11 to 40. In each trial, m is set to equal to n, and each row vector of

X, . is formed by i.i.d. random variables generated by Eq.(7-8) using the same

mean and the same UR (in the range of 8~10.4). The values of mean and UR for
different row vector are different. The testing procedure spent 8 days on a PC with
Intel Pentium 4 CPU run at a clock of 2.84 GHz. The experimental results are
displayed in Fig. 33. It can be found from the figure that the yield is over 85% for n in
the range of 11~40. The corresponding /R is 25% for n=11 and decreases gradually to
13% when n=40. These results show that the proposed OMLE-OSQ mean estimator
can improve the UBE finding.
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Fig. 33: The performance of UBE finding using the proposed QMLE-QSQ mean

estimator

7.3 Conclusions

We measured the combined signal as a result of linear combination of input quantities
and have proved that its shape looks like the QSAW in the previous chapter. In this
chapter, we propose the QMLE-QSQ to estimate the mean value of QSAW signals
and apply it to find the upper bound of eigenvalues for signal activity detection (SAD)
in combined signals. The propagation of additive model is appropriate for assuming
the QSAW to be quasi-normally distributed whenever its mean value is needed to be
estimated. Either Eq.(7-6) or Eq.(7-7) is simple and unique to obtain based on the
QMI transform domain working where Fig. 31 demonstrates the sensitivity analysis
and Fig. 30 shows the dispersion of QSAW being smaller than 3.5 SQSQ STD. Lastly,

the result in Fig. 32 admits the above facts.

This topic related to the signal activity detection brings the issue of UBE
approximation from deterministic to stochastic analysis via considering the case that
the correlation matrix of signal is estimated from sparse observed sample vectors. A
tighter upper bound of eigenvalues can be obtained as the correlation matrix is
calculated by using the mean matrix formed by the proposed QMLE-QSQ mean
estimates. More reliable correlation matrix can be explained in the system obtained by
the OMLE-QSQ mean estimation to result in better UBE finding than that by the

conventional sample mean estimation.
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Chapter 7 Conclusions and Further Works

In this dissertation, we devote to the robust representation of combined signals in
sparse data condition in terms of the formulation of JCGM expression and take
advantage to the unified pdf of coverage interval for uncertainty measurement.
However, this unified pdf expression of coverage interval shows that the shortest
coverage interval is good enough to represent the whole distribution of coverage
interval when the pdf of population is asymptotically symmetric. Due to the fact that
the two endpoints of coverage interval are decided in one step, we reverse the
traditional procedure, which finds the endpoints after the mean estimation, to estimate
the mean value of population after finding the endpoints of coverage interval. We find
that given with an accurate coverage interval is capable of improving the mean
estimation by the way of regarding the coverage interval as a result of variably
truncated normal distribution. Besides the improvement on the mean estimation, a
robust estimation for truncated normal pdf is ‘also reached when we take the
quantile-based estimation combined with the output of unified pdf of coverage

interval. The result is better as compared with-the model derived by Cohen.

We also use quantile to derive a nonlinear equation for mean estimation. Simulation
results demonstrate that it performs well. We last try a novel algorithm, named “The
robust statistical principle of minimax optimization”, to use the unified pdf of
coverage interval in mean estimation. It is a convex optimization method for the
general mean estimation. The optimization process converges exactly to the true mean
direction so that it may be considered as a new search algorithm as well as the
steepest gradient descent algorithm without the quadratic object function. Finally, we
apply the new mean estimator, QMLE-QSQ, to the application of signal activity
detection in terms of finding the upper bound of eigenvalues. We find that the
QMLE-QSQ can replace the classical sample mean to obtain a more accurate
correlation matrix estimate, which in turn leads to a more efficient representation of
the maximum eigenvalue. Thus, our study extend the previous UBE finding studies,

which use deterministic correlation matrix, to employ stochastic correlation matrix
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via introducing the uncertainty of mean estimation on spare data condition. And our

solution can obtain better UBE for improving signal activity detection..

Our work still leaves several warm topics about CI which are worthy of studying in
the future. For instance, “the shortest CI” should be replaced with “the probably
shortest CI” whenever the pdf'is skew. But we don’t know how the skewness of signal
pdf affects the pdf shape of CI. Secondly, we have proved some properties of
endpoints of quantiles based on the QMI principle. They include the structure of left
endpoint mapping to the quantile of 1/(n+1), the right endpoint mapping to the

quantile of n/(n+1), and coverage being equal to (n—1)/(n+1) which is the
expectation E_ [c]shown in Eq.(3-11). Hence, the endpoint-decision with the QMI

principle is deterministic. So, this criterion can not support the exploration of the
random effects of endpoints. We suspect that the quantile-based mean estimation

ought to be suffered from the random effects of the endpoints expression.
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