國立交通大學

機械工程學系

博士論文

等速旋轉傾斜 Timoshenko 梁的穩態變形與自由 振動分析 The steady state deformation and free vibration analysis of a rotating inclined Timoshenko beam under constant angular velocity

研究生: 黃智麟

指導教授:蕭國模 博士

中華民國九十九年七月

等速旋轉傾斜 Timoshenko 梁的穩態變形與自由振動分析

The steady state deformation and free vibration analysis of a rotating inclined Timoshenko beam under constant angular velocity

研究生: 黃智麟

Student : Chih-Ling Huang

Advisor: Dr. Kuo-Mo Hsiao

指導教授: 蕭國模 博士

國 立 交 通 大 學 機 械 工 程 學 系 博士論 文 A Thesis Submitted to Department of Mechanical Engineering College of Engineering National Chiao Tung University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Mechanical Engineering July 2010 Hsinchu, Taiwan, Republic of China

中華民國九十九年七月

等速旋轉傾斜 Timoshenko 梁的穩態變形與自由振動分析

研究生:黃智麟

指導教授:蕭國模博士

國立交通大學機械工程學系博士班

摘 要

本研究之主要目的在探討設定角(setting angle)為0°及90°時具不同傾 斜角(inclination angle)之等速旋轉傾斜 Timoshenko 梁的穩態變形及自由振 動。本研究考慮的 Timoshenko 梁係以一傾斜角剛接在以等角速度旋轉的 圓柱上,並將旋轉梁的運動方程式建立在一個以等角速度旋轉的總體座標 上。本研究以 Timoshenko 梁正確的變形機制,利用虛功原理、d'Alembert 原理與幾何非線性梁理論之一致性線性化推導旋轉傾斜 Timoshenko 梁之 運動方程式。

當設定角為90°時,旋轉傾斜 Timoshenko 梁的穩態變形僅有軸向位移 且其軸向振動與側向振動不互相耦合,其側向振動僅考慮撲翼振動 (flapping vibration),本研究將以級數解求得旋轉傾斜梁的撲翼振動頻率及 振態。當設定角為0°時,旋轉傾斜 Timoshenko 梁的穩態變形含軸向和側 向變形且其軸向振動與側向振動因科氏力而相互耦合,側向穩態變形不為 零,本研究將以級數解求其側向穩態變形。

本研究將梁結構分割成數段,每一段稱為一個元素,然後在每一個元 素當前的變形位置上建立一以等角速度旋轉的元素座標,每一個元素的變 形、節點內力與運動方程式都是建立在該元素座標上。當設定角為90°

Ι

時,本研究將每一個元素之統御方程式的解表示成含二個獨立係數的級數 矩陣,再由旋轉傾斜梁兩端的邊界條件及相鄰元素在共同節點的連續條件 求得一組齊次方程式,該組齊次方程式為一個特徵值問題,其係數形成之 矩陣的行列式值為零時的根,即為振動的自然頻率。本研究以二分法 (bisection method)求旋轉傾斜 Timoshenko 梁振動的自然頻率,並以逆冪法 (inverse power method)求得其振動模態。當設定角為0°時,本研究用類似 的方法求得一組非齊次方程式,以求得其側向穩態變形。

本研究最後將以無因次化的數值例題探討旋轉傾斜 Timoshenko 梁之 自然頻率的收斂性、準確性,並探討傾斜角、無因次轉速、無因次轉軸半 徑及細長比對旋轉傾斜梁無因次自然頻率的影響,本研究還探討旋轉梁的 軸向振態與側向振態對應的自然頻率接近時,其振動模態的耦合及特徵值 曲線轉向與特徵值曲線轉向交叉的現象。

關鍵詞:Timoshenko 梁,旋轉梁,傾斜角,d'Alembert 原理,虛功原理, 幾何非線性梁理論,級數解,撲翼振動(flapping vibration),自然 頻率

The Steady State Deformation and Free Vibration Analysis of a Rotating Inclined Timoshenko Beam under Constant Angular Velocity

Student : Chih-Ling Huang

Advisor : Dr. Kuo-Mo Hsiao

Department of Mechanical Engineering National Chiao Tung University

Abstract

The steady state deformation and free vibration analysis of a rotating inclined Timoshenko beam with constant angular velocity is studied in this paper. Two different setting angles $\beta = 0^{\circ}$ and 90° are considered. The governing equations for linear vibration of a rotating Timoshenko beam are derived by the d'Alembert principle, the virtual work principle and the consistent linearization of the fully geometrically nonlinear beam theory in a rotating rectangular Cartesian coordinate system which is rigidly tied to the hub.

For $\beta = 90^{\circ}$ of the rotating inclined Timoshenko beam, the steady state deformation is only axial deformation. A method based on the power series solution is employed to solve the natural frequency and vibration modes of the axial vibration and flapping vibration. For $\beta = 0^{\circ}$, a similar method based on the power series solution is proposed to solve the steady lateral deformation and free vibration.

Here the rotating inclined beam is divided into several segments. The governing equations for linear vibration of each segment are solved by a power series. Substituting the power series solution of each segment into the corresponding boundary conditions at two end nodes of the rotating beam and the continuity conditions at common node between two adjacent segments, a set of homogeneous equations can be obtained. The natural frequencies may be determined by solving the homogeneous equations using the bisection method. Then the inverse power method is used to find the corresponding vibration modes.

Dimensionless numerical examples are studied to verify the accuracy of the proposed method and to investigate the dimensionless natural frequency of rotating inclined beams with different inclined angles, dimensionless angular velocities, dimensionless radius of the hub, and slenderness ratios. The phenomenon of eigenvalue curve crossing and eigenvalue curve veering are also investigated for rotating inclined beams that has two modes with closely spaced natural frequencies.

誌 謝

衷心感謝指導教授 蕭國模博士在博士班研讀期間的指導與鼓勵,使本 論文終得以順利的完成。蕭教授在研究上嚴謹的態度及對理論深入解析的精 神,使我受益良多,在此致上最崇高的謝意與敬意。

感謝論文公開演講時金大仁教授、呂宗熙教授、蔡佳霖教授、尹慶中博 士、陳宗麟博士、鄭泗東博士、李安謙教授對本論文提出的指導與建言。感 謝林世章教授、蔡佳霖教授、尹慶中博士及林文一博士擔任論文口試委員並 對本論文提出指正與建議,使本論文能夠更臻完善。

感謝計算力學研究室裡所有和善的碩、博研究生,總在適時的時候伸出 援手幫忙。感謝同時期讀書的同仁及超級好朋友在作研究的期間互相切磋討 論,並在忙碌與沮喪的時候互相協助與打氣。

感謝女兒新蓉一路的陪伴與配合,感謝父母親、家人們以及所有給我支 持與鼓勵的至親友人。僅以此成果與榮耀,獻給所有關心我的人!

中文摘要	Ι			
英文摘要 III				
誌謝	V			
目錄	VI			
表目錄	VIII			
圖目錄	XI			
符號說明	XIII			
第一章 導論	1			
第二章 理論推導	6			
2.1 問題描述	6			
2.2 座標系統	6			
2.3 Timoshenko 梁的變形描述	7			
2.4 旋轉傾斜梁的統御方程式	14			
第三章 旋轉傾斜梁的穩態與振動	20			
3.1 $\beta = 90^{\circ}$ 時旋轉傾斜梁的穩態	20			
3.2 $\beta = 90^{\circ}$ 時旋轉傾斜梁的振動方程式及其解	22			
3.3 β=90°時旋轉傾斜梁結構的節點位移、節點力及邊界條件	28			
3.4 $\beta = 90^{\circ}$ 時旋轉傾斜梁的自然頻率及振動模態	31			
3.5 $\beta = 0^{\circ}$ 時旋轉傾斜梁的穩態	32			
3.6 $\beta = 0^{\circ}$ 時旋轉傾斜梁的振動方程式	39			
第四章 數值計算方法與程序	44			
第五章 數值例題	46			
5.1 收斂性分析	46			

5.2 準確性分析	48
5.3 無因次轉速 $\overline{k} = 0$ 時的個案分析	49
5.4 設定角 $\beta = 0^{\circ}$ 時的個案分析	50
5.5 設定角 $\beta = 0^{\circ}$ 時的個案分析	51
5.6 特徵值曲線轉向與特徵值曲線交叉	52
第六章 結論與展望	54
6.1 結論	55
6.2 未來展望	56
參考文獻	58
附表	60
附圖	97

表目錄

表一	旋轉傾斜 Timoshenko 梁在不同元素數目之自然頻率的收斂分析	
	$(\bar{r}=0, \ \alpha=0^{\circ}, \ \beta=0^{\circ}, \ \bar{\eta}=750, \ \bar{k}=0.1)$	60
表二	旋轉傾斜 Timoshenko 梁在不同元素數目之自然頻率的收斂分析	
	$(\bar{r}=0, \ \alpha=0^{\circ}, \ \beta=90^{\circ}, \ \bar{\eta}=750, \ \bar{k}=0.1)$	61
表三	不同設定角的旋轉傾斜 Timoshenko 梁之自然頻率的收斂分析	
	$(\bar{r}=1, \ \alpha=0^{\circ}, \ \bar{\eta}=1000, \ \bar{k}=0.06)$	62
表四	不同傾斜角的旋轉傾斜 Timoshenko 梁之自然頻率的收斂分析	
	$(\bar{r}=1.5, \beta=90^{\circ}, \bar{\eta}=1000, \bar{k}=0.06, \alpha=0^{\circ}, 15^{\circ})$	63
表五	不同傾斜角的旋轉傾斜 Timoshenko 梁之自然頻率的收斂分析	
	$(\bar{r}=1.5, \beta=90^{\circ}, \bar{\eta}=1000, \bar{k}=0.06, \alpha=30^{\circ}, 45^{\circ})$	64
表六	不同傾斜角的旋轉傾斜 Timoshenko 梁之自然頻率的收斂分析	
	$(\bar{r}=1.5, \beta=90^{\circ}, \bar{\eta}=1000, \bar{k}=0.06, \alpha=60^{\circ}, 90^{\circ})$	65
表七	旋轉傾斜 Timoshenko 梁與 Euler 梁在不同細長比的自然頻率	
	$(\bar{k} = 0, \ \alpha = 0^{\circ}, \ \beta = 90^{\circ}, \ \bar{r} = 1)$	66
表八	旋轉傾斜 Timoshenko 梁與 Euler 梁在不同細長比的自然頻率	
	$(\bar{k} = 0.06, \ \alpha = 0^{\circ}, \ \beta = 90^{\circ}, \ \bar{r} = 1)$	67
表九	旋轉傾斜 Timoshenko 梁與 Euler 梁在不同細長比的自然頻率	
	$(\bar{k} = 0.06, \ \alpha = 30^{\circ}, \ \beta = 90^{\circ}, \ \bar{r} = 1)$	68
表十	旋轉傾斜 Timoshenko 梁在不同細長比的自然頻率($\bar{k} = 0$)	69
表十	一 旋轉傾斜 Timoshenko 梁在不同轉速與不同細長比的自然頻率	
	$(\bar{r}=0, \ \alpha=0^{\circ}, \ \beta=0^{\circ}, \ \bar{k}=0, 0.01)$	70
表十.	二 旋轉傾斜 Timoshenko 梁在不同轉速與不同細長比的自然頻率	
	$(\bar{r}=0, \ \alpha=0^{\circ}, \ \beta=0^{\circ}, \ \bar{k}=0.03, 0.06)$	71

表十三 旋轉傾斜 Timoshenko 梁在不同轉速與不同細長比的自然頻率	
$(\bar{r} = 0.5, \ \alpha = 0^{\circ}, \ \beta = 0^{\circ}, \ \bar{k} = 0, 0.01)$	72
表十四 旋轉傾斜 Timoshenko 梁在不同轉速與不同細長比的自然頻率	
$(\bar{r} = 0.5, \ \alpha = 0^{\circ}, \ \beta = 0^{\circ}, \ \bar{k} = 0.03, 0.06)$	73
表十五 旋轉傾斜 Timoshenko 梁在不同轉速與不同細長比的自然頻率	
$(\bar{r}=1, \ \alpha=0^{\circ}, \ \beta=0^{\circ}, \ \bar{k}=0, 0.01)$	74
表十六 旋轉傾斜 Timoshenko 梁在不同轉速與不同細長比的自然頻率	
$(\bar{r}=1, \ \alpha=0^{\circ}, \ \beta=0^{\circ}, \ \bar{k}=0.03, 0.06)$	75
表十七 旋轉傾斜 Timoshenko 梁在不同轉速與不同傾斜角的自然頻率	
$(\bar{r} = 0.5, \beta = 90^{\circ}, \bar{\eta} = 10)$	76
表十八 旋轉傾斜 Timoshenko 梁在不同轉速與不同傾斜角的自然頻率	
$(\bar{r} = 0.5, \beta = 90^{\circ}, \bar{\eta} = 20)$	77
表十九 旋轉傾斜 Timoshenko 梁在不同轉速與不同傾斜角的自然頻率	
$(\bar{r} = 0.5, \beta = 90^{\circ}, \bar{\eta} = 50)$.	78
表二十 旋轉傾斜 Timoshenko 梁在不同轉速與不同傾斜角的自然頻率	
$(\bar{r} = 0.5, \beta = 90^{\circ}, \bar{\eta} = 100)$	79
表二十一 旋轉傾斜 Timoshenko 梁在不同轉速與不同傾斜角的自然頻率	ž
$(\bar{r} = 0.5, \beta = 90^{\circ}, \bar{\eta} = 1000)$	80
表二十二 旋轉傾斜 Timoshenko 梁在不同轉速與不同傾斜角的自然頻率	1
$(\bar{r}=1, \ \beta=90^{\circ}, \ \bar{\eta}=10)$	81
表二十三 旋轉傾斜 Timoshenko 梁在不同轉速與不同傾斜角的自然頻率	2
$(\overline{r}=1, \beta=90^\circ, \overline{\eta}=20)$	82
表二十四 旋轉傾斜 Timoshenko 梁在不同轉速與不同傾斜角的自然頻率	3
$(\overline{r} = 1, \beta = 90^\circ, \overline{\eta} = 50)$	83
表二十五 旋轉傾斜 Timoshenko 梁在不同轉速與不同傾斜角的自然頻率	ž
$(r = 1, \beta = 90^{\circ}, \eta = 100)$	84

旋轉傾斜 Timoshenko 梁在不同轉速與不同傾斜角的自然頻率	<u><u>k</u></u>
$(\bar{r}=1, \beta=90^{\circ}, \bar{\eta}=1000)$	85
旋轉傾斜 Timoshenko 梁在不同轉速與不同傾斜角的自然頻率	<u>k</u>
$(\bar{r} = 1.5, \beta = 90^{\circ}, \bar{\eta} = 10)$	86
旋轉傾斜 Timoshenko 梁在不同轉速與不同傾斜角的自然頻率	<u>k</u>
$(\bar{r} = 1.5, \beta = 90^{\circ}, \bar{\eta} = 20)$	87
旋轉傾斜 Timoshenko 梁在不同轉速與不同傾斜角的自然頻率	š
$(\bar{r} = 1.5, \beta = 90^{\circ}, \bar{\eta} = 50)$	88
旋轉傾斜 Timoshenko 梁在不同轉速與不同傾斜角的自然頻率	š
$(\bar{r} = 1.5, \beta = 90^{\circ}, \bar{\eta} = 100)$	89
旋轉傾斜 Timoshenko 梁在不同轉速與不同傾斜角的自然頻率	<u>k</u>
$(\bar{r}=1.5, \beta=90^{\circ}, \bar{\eta}=1000)$	90
旋轉傾斜 Timoshenko 梁在不同細長比與不同轉速的自然頻率	š
$(\bar{r}=1, \ \alpha=0^{\circ}, \ \beta=0^{\circ}, \ \bar{\eta}=8.1, 8.15)$	91
旋轉傾斜 Timoshenko 梁在不同細長比與不同轉速的自然頻率	Ś
$(\bar{r}=1, \alpha=0^{\circ}, \beta=0^{\circ}, \bar{\eta}=8.2, 8.3)$	92
旋轉傾斜 Timoshenko 梁在不同細長比與不同轉速的自然頻率	<u> </u>
$(\bar{r}=1, \ \alpha=0^{\circ}, \ \beta=0^{\circ}, \ \bar{\eta}=8.4, 8.5)$	93
旋轉傾斜 Timoshenko 梁在不同細長比與不同轉速的自然頻率	š
$(\bar{r}=1, \ \alpha=0^{\circ}, \ \beta=90^{\circ}, \ \bar{\eta}=8.1, 8.15)$	94
旋轉傾斜 Timoshenko 梁在不同細長比與不同轉速的自然頻率	<u>×</u>
$(\bar{r}=1, \ \alpha=0^{\circ}, \ \beta=90^{\circ}, \ \bar{\eta}=8.2, 8.3)$	95
旋轉傾斜 Timoshenko 梁在不同細長比與不同轉速的自然頻率	<u>k</u>
$(\bar{r}=1, \ \alpha=0^{\circ}, \ \beta=90^{\circ}, \ \bar{\eta}=8.4, 8.5)$	96
	旋轉傾斜 Timoshenko 梁在不同轉速與不同傾斜角的自然頻率 ($\bar{r} = 1, \beta = 90^{\circ}, \bar{\eta} = 1000$)

圖目錄

圖一	無傾斜角的旋轉梁結構三視圖	97
圖二	具傾斜角的旋轉梁架構	98
圖三	(a)Lagwise bending vibration (b) 撲翼振動(Flapping vibration)	99
圖四	旋轉傾斜梁的俯視圖	100
圖五	旋轉傾斜梁的側視圖	100
圖六	梁的變形圖	101
圖七	作用於梁中任一小段的端點負荷	102
圖八	梁的分段元素	102
圖九	旋轉傾斜梁在不同細長比下側向振態對應的自然頻率之比值	
	$(\bar{k}=0, \ \alpha=0^{\circ}, \ \beta=90^{\circ}, \ \bar{r}=1)$	103
圖十	旋轉傾斜梁在不同細長比下側向振態對應的自然頻率之比值	
	$(\bar{k} = 0.06, \ \alpha = 0^{\circ}, \ \beta = 90^{\circ}, \ \bar{r} = 1)$	103
圖十一	· 旋轉傾斜梁在不同細長比下側向振態對應的自然頻率之比值	
	$(\bar{k} = 0.06, \ \alpha = 30^{\circ}, \ \beta = 90^{\circ}, \ \bar{r} = 1)$	104
圖十二	- 不同轉速下的第一至第六個振動模態	
	$(\bar{r}=1, \ \alpha=0^{\circ}, \ \beta=0^{\circ}, \ \bar{\eta}=10)$	105
圖十三	- 不同轉速下的第一至第六個振動模態	
	$(\bar{r}=1, \ \alpha=0^{\circ}, \ \beta=0^{\circ}, \ \bar{\eta}=50)$	108
圖十四	1 不同傾斜角的第一至第四個自然頻率	
	$(\bar{r}=1, \beta = 90^{\circ}, \bar{\eta} = 100)$	111
圖十五	不同細長比下不同轉速的 $\overline{K}_1 - \alpha$	
	$(\bar{r}=1, \beta = 90^{\circ})$	112
圖十六	不同轉軸半徑與不同轉速在不同傾斜角時側向振態的自然頻率	
	$(\beta = 90^\circ, \overline{\eta} = 10)$	113

圖十七 不同細長比的自然頻率與轉速之特徵值曲線

圖十八 不同細長比的自然頻率與轉速之特徵值曲線

圖十九 不同轉速下的第一至第六個振動模態

$$(\bar{r}=1, \ \alpha=0^{\circ}, \ \beta=0^{\circ}, \ \bar{\eta}=8.1)....$$
 116

圖二十 不同轉速下的第一至第六個振動模態 $(\bar{x} - 1) \propto -0^\circ R - 0^\circ \bar{x} - 8 15$ 110

圖二十一 不同細長比的自然頻率與轉速之特徵值曲線

圖二十二 不同細長比的自然頻率與轉速之特徵值曲線

符號說明

- *a_i* : 加速度分量
- a :加速度向量
- **a**₀ : 原點的絕對加速度
- A : 梁的截面積
- Cin :每個元素的待定係數
- C_n :每個元素的待定係數向量
- C_G : 整體梁的待定係數向量
- C^m : 第*m*個元素的待定係數向量
- e_i : X_i 軸的單位向量
- E :楊氏模數
- *F*₁ : X₁方向的合力
- F₂ : X₂方向的合力
- F₁; :元素在第 j 個節點的軸向力
- F_{2j} :元素在第*j*個節點的側向力
- F_{2i} : 第*m*個元素在第*j*個節點的側向力
- **F**_j : 元素在第 j 個節點的廣義節點力向量
- **F**^m_i : 第m個元素在第j個節點的廣義節點力向量
- G : 剪力模數
- *I* :梁的截面慣性矩
- k :每個元素的無因次轉速
- *k* : 整根梁的無因次轉速
- *K* :每個元素的無因次自然頻率
- *K* : 整根梁的無因次自然頻率

- *K_i* : 第*i* 個無因次自然頻率
- \overline{K}_{i}^{T} : 旋轉傾斜 Timoshenko 梁第 i 個側向振態的無因次自然頻率
- \overline{K}_{i}^{E} : 旋轉傾斜 Euler 梁第 i 個側向振態的無因次自然頻率
- 1 :每個元素的長度
- L : 整根梁的長度
- M : 繞X3軸的力矩
- M_j : 元素在第 j 個節點的力矩
- *M*^m_i : 第*m*個元素在第*j*個節點的力矩
- N : 整根梁分段元素的數目
- Q : 振動的無因次位移向量
- Q_i :元素在第*j*個節點的廣義位移向量
- Q^m; : 第m個元素在第j個節點的廣義節點位移向量
- r : $N\overline{r}$
- r : 無因次圓柱轉軸半徑 1896
- r : 梁變形後的位置向量
- **r**₀ : 梁變形前的位置向量
- **r**_{AO} : 圓柱中心點 A 到原點 O 的位置向量
- r :旋轉座標上的速度
- ř :旋轉座標上的加速度
- R :旋轉圓柱的半徑
- s :形心軸的弧長
- *t* :時間
- u : 軸向位移
- ud : 振動的軸向位移
- u_s :穩態的軸向位移

u_R : 軸向振動的振態

- δu_j : 元素在第 j 個節點的軸向虛位移
- U(ξ) : 無因次的軸向位移
- *U*_s :穩態的無因次軸向位移
- v : 側向位移
- v_d :振動的側向位移
- *v_i* : 速度分量
- *vs* :穩態的側向位移
- δv_i :元素在第*j*個節點的側向虛位移
- v :速度向量
- **v**₀ :原點的線速度
- V : 梁的體積
- ν(ξ) : 無因次的側向位移
- V_i :元素在第 j 個節點的側向位移
- Vs :穩態的無因次側向位移
- V^m : 第m個元素在第j個節點的側向位移
- δWext :外力所作的虚功
- δWint : 內力所作的虛功
- *x* : X₁軸的座標
- X_i :旋轉座標系統第 i (i = 1, 2, 3) 軸
- *y* : X₂軸的座標
- z : X3軸的座標
- α : 傾斜角
- α_s :剪力修正因子
- β : 設定角

γ	:對應 ε ₁₂ 之工程剪應變
Е	:對應 E11 之工程應變
\mathcal{E}_0	: 形心軸的單位長度伸長量
\mathcal{E}_{11}	:Green Strain 應變
ε_{12}	:Green Strain 應變
\mathcal{E}_{S}	:穩態時軸向應變
ε_{\max}	:穩態時最大應變
$\overline{\eta}$: 細長比
θ	:X1軸與形心軸切線方向的夾角
К	: 梁中心軸的曲率
μ	$: \frac{\alpha_s G}{E}$
ξ	:無因次軸向座標 $\begin{pmatrix} -1 \le \xi \le 1 \\ 2 \le 2 \end{bmatrix}$
ρ	:梁的密度 1896 月
φ	:旋轉角
φ_d	: 梁斷面繞X3軸的振動旋轉角
φ_j	:元素在第 j 個節點的旋轉角
$\varphi_{\scriptscriptstyle S}$:梁斷面繞X3軸的穩態旋轉角
φ_j^m	: 第 <i>m</i> 個元素在第 <i>j</i> 個節點的旋轉角
$\delta \varphi_j$:元素在第 j 個節點的虛位移
ω	:自然頻率
Ω	: 等角速率
Ω	:旋轉圓柱的角速度向量
$\dot{\mathbf{\Omega}}$:旋轉圓柱的加速度向量

第一章 導論

在許多實際的例子,像是渦輪真空幫浦的葉片、直升機的旋轉翼、衛 星的支翼、風扇的葉片、飛機的螺旋槳及長且具有撓性的空間旋轉吊桿等 都可以視為旋轉梁結構,而實際機構的應用上都受到振動之影響,因此振 動分析在旋轉梁結構的設計和分析上是很重要的,許多文獻在這方面已做 過研究[1-21]。實用上在機械領域裡面,依照不同的需求和特性,我們會需 要不同尺寸的旋轉梁。對一細長比較小的梁,其剪變形及旋轉慣量都不可 忽略,故將其視為 Timoshenko 梁來分析;相對的,對一細長比較大的梁, 其剪變形的影響就可以忽略,故我們就把它視為 Euler 梁來分析。因此研究 時常將 Timoshenko 梁奧 Euler 梁分開探討。在作振動分析上影響旋轉梁振 動頻率的參數很多,包括旋轉柱的半徑、旋轉梁的長度、旋轉梁端點的附 加質量、旋轉的速度、剪變形、轉動慣量、設定角(setting angle)、傾斜角 (inclination angle)、預扭角(pre-twisted angle)與旋轉梁根部的彈性拘限等, 在研究時應探討這些參數的影響,正確解析旋轉梁之振動行為,使能設計 出更臻完善之旋轉梁結構。

關於旋轉梁結構的振動分析在文獻[1,2]有詳細的回顧與探討。 Schilhansl[3]在考慮離心力但忽略科氏力(coriolis force)的情況下,導出如圖 一所示具有設定角β之等速旋轉梁振動的微分方程式。Lee and Kuo[4]探討 了等速旋轉 Euler 梁之旋轉軸的中心半徑、設定角及轉速對旋轉梁彎矩振動 自然頻率的影響。Krupka and Banumanis[5]忽略彎矩及扭矩擾動間的耦合效 應,研究旋轉梁受彎矩及扭矩擾動後旋轉慣量及剪變形對自然頻率和模態 的影響。Yokoyama[6]將旋轉慣量及剪變形、旋轉軸的中心半徑和設定角合 併到有限元素的模式中,探討其對自然頻率的影響。Lee and Lin[7]用線性 梁理論去推導旋轉 Timoshenko 梁之運動方程式,並探討了旋轉速度和質量 慣性矩(mass moment of inertia)的耦合效應、設定角和旋轉速度對彎矩自然 頻率的影響。文獻[8-11]則探討不同細長比之旋轉梁受軸向壓應力時之臨界 轉速。

文獻[3-11]均用線性梁理論推導旋轉梁的運動方程式,且在其振動分析 時都不考慮科氏力,即不考慮軸向與側向振動間的耦合作用,僅考慮側向 振動。然 Simo and Vu-Quac[22]提到在分析旋轉結構時需要用完整的幾何非 線性梁理論之一致性二階線性化,才能考慮到各種變形間與速度間的耦合 作用,適當的計算離心力對彎矩剛度的影響,若用線性梁理論將會產生虛 假的彎矩剛度流失,無法得到正確的運動方程式。在文獻[3-11]中因採用線 性梁理論去推導旋轉梁的運動方程式,所以文獻[3-11]中推導的旋轉梁之運 動方程式及所求得之振動的自然頻率,除了設定角為零度外,應是不正確 的,且文獻[3-11]中都假設沒有軸向變形,卻均無討論該假設之適用轉速範 圍和影響。

文獻[12, 13]考慮了軸向變形及科氏力,利用幾何非線性梁理論的一致 性線性化、虛功原理及 d'Alembert 原理,在旋轉座標上推導出如圖一所示 之等速旋轉 Timoshenko 梁正確的線性運動方程式,並提出一套旋轉梁振動 的自然頻率的級數解法及計算其自然頻率的數值計算程序,再以例題探討 其振動的自然頻率及科氏力對自然頻率的影響。不過文獻[12, 13]的數值方 法對細長比很大的梁在高轉速時無法收斂。

文獻[14]是考慮如圖一所示之等速旋轉 Euler 梁,亦利用虛功原理與 d'Alembert 原理和非線性梁理論的一致性線性化在旋轉座標上,推導旋轉 Euler 梁的統御方程式,然後採級數解法來分析旋轉梁之自由振動。文獻[14] 將旋轉 Euler 梁均分成多段,每段稱為一個元素,由每個元素的統御方程式 的級數解及旋轉梁兩端點的邊界條件及相鄰兩元素在共同節點上的連續條 件求得旋轉梁的自然頻率。文獻[14]發現當細長比很大時,在高轉速下僅用

一個元素無法求得正確的自然頻率,需將旋轉梁分成二個以上的元素,才 能求得精確的自然頻率。但文獻[14]並未考慮如圖二所示具有傾斜角α的旋 轉梁。

所謂具傾斜角(inclination angle)之旋轉梁,即梁之形心軸的延長線不會 與旋轉中心軸相交。在實用上電腦之冷卻風扇目前已有採用具傾斜角的葉 片[18],但除了文獻[15-21]的旋轉梁具傾斜角之探討外,其餘吾人所知的文 獻研究中旋轉梁都不具傾斜角。Lee[15]用假設模態法探討傾斜角不為零之 旋轉梁的自然頻率,但沒有考慮穩態變形。Al-Qaisia[16]探討傾斜角不為零 具端點質點之旋轉梁的非線性動態反應,但沒有探討旋轉梁的穩態變形及 自然頻率。在文獻[23]中提到,以等角速率旋轉的旋轉梁,由於慣性力的作 用,存在一個穩態變形,這個穩態變形為旋轉梁的角速率的函數,旋轉梁 的自由振動是指以其穩態變形為平衡點的微小振動,其自然振動頻率即指 該微小振動的自然頻率,故探討旋轉梁的自然振動頻率時,須先求出其穩 態變形。文獻[17-19]探討具有設定角與傾斜角的旋轉 Timoshenko 梁和 Euler 梁之自由振動,在旋轉梁的線性振動方程式中考慮了軸向穩態變形及科氏 力,但沒有考慮側向位移的穩態解。當傾斜角不為零時,由圖二可以發現 因離心力的作用,旋轉梁之軸向位移及側向位移的穩態解都應不為零,而 文獻[17-19]忽略了側向位移的穩態解,所求得旋轉梁之自然頻率可能不準 確。文獻[17-19]亦無探討細長梁在高轉速之自然振動頻率。

文獻[20]探討設定角為0°與90°時傾斜角不為零之 Euler 梁之自由振動,同文獻[14]利用 d'Alembert 原理、虚功原理、幾何非線性梁理論的一致線性化在一旋轉座標系統中推導等速旋轉傾斜 Euler 梁的線性運動方程式,然後採級數解法來分析旋轉梁之自由振動,並將旋轉梁均分成多段,以處理細長梁在高轉速之情況。文獻[20]發現當梁的細長比及無因次的轉速很大時,若計算時使用雙精度,則最少需將旋轉梁分成兩段,才能得到可

靠的自然振動頻率。當設定角為90°時,不管傾斜角是多少,旋轉傾斜梁僅 有軸向穩態變形,無側向穩態變形,故其振動的統御方程式與文獻[14]的統 御方程式有相同的形式,文獻[20]先求出軸向位移的穩態解,再求出以穩態 解為平衡點的自然振動頻率及振態。當設定角為0°時,旋轉傾斜梁有軸向 及側向的穩態變形,但不易用級數解求解,文獻[20]僅探討旋轉傾斜 Euler 梁的側向穩態解及推導其自然振動的統御方程式。文獻[21]則利用共旋轉有 限元素法推導旋轉傾斜 Euler 梁的運動方程式,探討具不同傾斜角之等速旋 轉傾斜 Euler 梁的穩態變形及自然振動頻率。

因文獻上仍較缺乏傾斜角不為零之旋轉 Timoshenko 梁的研究。故本研 究擬探討如圖二所示具傾斜角α及設定角β之雙對稱矩形截面之旋轉傾斜 Timoshenko 梁的穩態變形及自由振動,本研究擬採用文獻[14, 20]的方法推 導穩態變形及自由振動的統御方程式,並探討設定角為0°及90°之旋轉傾斜 Timoshenko 梁的穩態變形及自然振動頻率與振態。本研究第二章中先以旋 轉傾斜 Timoshenko 梁正確的變形機制,利用虛功原理、d'Alembert 原理與 幾何非線性梁理論之一致性線性化推導旋轉傾斜 Timoshenko 梁之穩態變形 的統御方程式和以穩態變形為平衡點之軸向、側向及旋轉的線性微分振動 方程式,在運動方程式中保留了科氏力及轉動慣量對自然頻率的影響。另 外分別以設定角為0°及90°之情況求得旋轉傾斜 Timoshenko 梁之穩態及振 動的統御方程式。在第三章中先考慮設定角為90°時之情況,此時軸向變形 與側向變形間無耦合關係存在,本研究中僅考慮一個方向的側向振動,其 形式如圖三為撲翼振動(flapping vibration),本研究將梁結構分割成數段,每 一段稱為一個元素,然後在每一個元素當前的變形位置上建立一以等角速 度旋轉的元素座標,每一個元素的變形、節點內力與運動方程式都是建立 在該元素座標上。本研究將每一個元素之側向振動與旋轉之統御方程式的 解表示成級數矩陣,再由旋轉傾斜梁兩端的邊界條件及相鄰元素在共同節

點的連續條件求得一組齊次方程式,使該組齊次方程式係數形成之矩陣的 行列式值為零時的根,即可以數值方法求得旋轉傾斜梁的振動自然頻率及 振態。接著再說明設定角為0°時,旋轉傾斜 Timoshenko 梁含軸向和側向耦 合之穩態變形的側向穩態解法,並利用振動的統御方程式說明振動解法。 在第四章中將說明本研究所採用的數值計算方法及求旋轉傾斜 Timoshenko 梁振動的自然頻率及其對應之振動模態的程序。第五章中以無因次化的數 值例題探討旋轉傾斜 Timoshenko 梁之自然頻率的收斂性、準確性,並探討 設定角、傾斜角、無因次轉速、無因次轉軸半徑及細長比對旋轉傾斜梁無 因次自然頻率的影響,以及探討旋轉梁的軸向振態與側向振態對應的自然 頻率接近時,其振動模態的耦合及特徵值曲線轉向(Eigenvalue curve veering) 與特徵值曲線交叉(Eigenvalue curve crossing)的現象[24,25]。第六章為本研 究之結論與展望。最後本文再列出參考文獻與本文所使用的附表及附圖。

第二章 理論推導

2.1 問題描述

本文考慮如圖二所示一均勻且雙軸對稱之矩形斷面 Timoshenko 梁,以 設定角β與傾斜角α剛接在一剛性圓柱上,該圓柱以等角速率Ω繞其中心軸 旋轉。本文中所有梁的位移、變形和振動指的是在一個以等角速率Ω繞圓 柱中心軸旋轉的旋轉座標上描述的位移、變形和振動。本文中僅考慮梁的 軸向位移,單一個側向位移及旋轉。以等角速率旋轉的傾斜梁存在著一個 含軸向及側向變形但沒有振動的穩態(steady state) [23]。本文中所有的振動 都是指以該穩態解為平衡點的振動。本文中考慮的振動是線性振動,所以 由振動造成的位移、速度和加速度都視為是一微小量(infinitesimal quantity)。

2.2 座標系統

如前所述,本文是在一旋轉座標上描述旋轉傾斜梁的位移、變形及運動狀態。本文中所用的旋轉座標系統X1X2X3可以說明如下:

如圖四與圖五所示,旋轉座標的原點是取在旋轉梁斷面的形心軸與旋轉圓柱的交點,其X₁軸和梁變形前的斷面形心軸一致,其X₂和X₃軸是取旋轉梁變形前的斷面主軸方向。

該旋轉座標系統是以等角速率Ω繞圓柱中心軸旋轉,本文中僅考慮梁 在X₁和X₂軸方向的位移及繞X₃軸的斷面旋轉。本文中旋轉梁的位移、變 形、速度、加速度及運動方程式均在此座標系統中定義。

角速度向量Ω在旋轉座標上可表示如下

 $\mathbf{\Omega} = \{ 0 \quad \Omega \sin \beta \quad \Omega \cos \beta \}$ (2.2.1)

其中 β 為梁的設定角(setting angle)。本文中以{}代表行矩陣。

2.3 Timoshenko 梁的變形描述

本文是在旋轉座標 X_i(i=1,2,3)上描述梁的變形。因本文僅考慮梁在 X₁-X₂平面上的變形,所以 Timoshenko 梁的變形可以由其形心軸在 X₁-X₂ 平面的位移及其斷面繞 X₃軸的旋轉來描述,因 X_i(i=1,2,3)座標的原點速度及 加速度皆不為零,在推導梁元素的速度及加速度時須加以考慮。

圖六中的 P 點為梁中的任意點, Q 點為 P 點在形心軸上的對應點, 即 P 點與 Q 點位於梁的同一斷面上, s 為 O 點到 Q 點間形心軸在變形後的弧長。 在旋轉座標上, P 點在梁變形前後的位置向量可分別表示如下

$$\mathbf{r}_{0} = \{x \ y \ z\}$$

$$\mathbf{r} = \{r_{1} \ r_{2} \ r_{3}\} = \{u + x - y \sin \varphi \ v + y \cos \varphi \ z\}$$

$$(2.3.1)$$

$$u = u_{s}(x) + u_{d}(x, t)$$

$$v = v_{s}(x) + v_{d}(x, t)$$

$$(2.3.3)$$

$$(2.3.4)$$

$$(2.3.4)$$

$$(2.3.5)$$

其中t代表時間,x、y與z分別為梁變形前 P 點在X_i(i=1,2,3)軸的座標, u_s(x)、v_s(x)與φ_s(x)分別為穩態的X₁軸方向之軸向位移、X₂軸方向之側向位 移與梁斷面繞X₃軸的旋轉角,u_d(x,t)、v_d(x,t)與φ_d(x,t)則分別是Q點在X₁軸 方向及X₂軸方向的微小位移與梁斷面繞X₃軸的微小振動旋轉角。

本文中的應變採用工程應變。為了推導上的方便,本文中由 Green strain 求得與其對應之工程應變[26]。Timoshenko 梁的 Green strain 中不為零的應 變有 ϵ_{11} 及 ϵ_{12} ,假如將(2.3.1)式中的 x y z 座標視為拉格蘭日座標(Lagrange co-ordinates),則 ϵ_{11} 及 ϵ_{12} 可以表示成

$$\varepsilon_{11} = \frac{1}{2} (\mathbf{r}_{,x}^{t} \mathbf{r}_{,x} - 1)$$
(2.3.6)

$$\varepsilon_{12} = \frac{1}{2} \mathbf{r}_{,x}^{t} \mathbf{r}_{,y} \tag{2.3.7}$$

對應Green Strain ϵ_{11} 之工程應變 ϵ 可以表示成

$$\varepsilon = (1 + 2\varepsilon_{11})^{1/2} - 1 \tag{2.3.8}$$

對應Green Strain ε_{12} 之工程剪應變 γ 可以表示成

$$\gamma = \sin^{-1}\left(\frac{2\varepsilon_{12}}{1+\varepsilon}\right)$$

$$\Re(2.3.2) 式 分 別 對x \cdot y 微 分 可得$$

$$\mathbf{r}_{,x} = \left\{ (1+\varepsilon_0)(\cos\theta - y\kappa\cos\varphi) \quad (1+\varepsilon_0)(\sin\theta - y\kappa\sin\varphi) \quad 0 \right\}$$

$$(2.3.10)$$

$$\mathbf{r}_{,y} = \{-\sin\varphi \quad \cos\varphi \quad 0\}$$
(2.3.11)

$$\varepsilon_0 = \frac{\partial s - \partial x}{\partial x} = \left[1 + (2u_{,x} + u_{,x}^2 + v_{,x}^2)\right]^{1/2} - 1$$
(2.3.12)

$$\sin\theta = \frac{\partial v}{\partial s} = \frac{v_{,x}}{1 + \varepsilon_0} \tag{2.3.13}$$

$$\cos\theta = \frac{\partial(x+u)}{\partial s} = \frac{1+u_{,x}}{1+\varepsilon_0}$$
(2.3.14)

$$\kappa = \frac{1}{\rho} = \frac{\partial \varphi}{\partial s} = \frac{\varphi_{,x}}{1 + \varepsilon_0}$$
(2.3.15)

其中 ε_0 為形心軸的單位長度伸長量(the unit extension of the centroid axis), θ 為 X_1 軸與形心軸切線方向的夾角, κ 為梁中心軸的曲率(the curvature about the arc length s)。 將(2.3.10)式-(2.3.11)式代入(2.3.6)式與(2.3.7)式,可得

$$\varepsilon_{11} = \frac{1}{2} \left\{ (1 + \varepsilon_0)^2 [1 - 2y\kappa\cos(\theta - \varphi) + y^2\kappa^2] - 1 \right\}$$
(2.3.16)

$$\varepsilon_{12} = \frac{1}{2}(1 + \varepsilon_0)\sin(\theta - \varphi) \tag{2.3.17}$$

$$\varepsilon = (1 + \varepsilon_0)[1 - 2y\kappa\cos(\theta - \varphi) + y^2\kappa^2]^{1/2} - 1$$
(2.3.18)

$$\gamma = \sin^{-1} \left\{ \frac{\sin(\theta - \varphi)}{[1 - 2y\kappa\cos(\theta - \varphi) + y^2\kappa^2]^{1/2}} \right\}$$
(2.3.19)

本文中假設變形為小變形, 位移為小位移, 由 $v_{,x} << 1$ 及(2.3.13)式, 可 知 $\sin\theta << 1$,所以本文在以後的推導中將採用近似式如下 **1896** $\sin\theta \approx \theta$, $\cos\theta \approx 1$, $\sin\varphi \approx \varphi$, $\cos\varphi \approx 1$, $1 + \varepsilon_0 \approx 1$, $1 + u_{,x} \approx 1$ (2.3.20)

$$\cos(\theta - \varphi) \approx 1, \quad \sin(\theta - \varphi) \approx \theta - \varphi \tag{2.3.21}$$

將(2.3.20)式代入(2.3.13)式及(2.3.15)式,可得近似值為

$$\theta \approx v_{,x} \tag{2.3.22}$$

$$\kappa \approx \varphi_{,x} \tag{2.3.23}$$

本文中假設 ε₀ <<1,但因在穩態的軸向及側向變形為一有限量(finite quantity),所以該軸向應變與側向變形間的耦合作用必需考慮,故(2.3.12)

式中 ε_0 在推導的過程中保留到變形參數的二次項(the second order terms),因此(2.3.12)式可表示成如下的近似式

$$\varepsilon_0 = \frac{\partial s}{\partial x} - 1 = u_{,x} + \frac{1}{2}v_{,x}^2$$
(2.3.24)

將(2.3.21)式-(2.3.24)式代入(2.3.18)式及(2.3.19)式,可得工程應變 *E* 及工程剪 應變 *r* 為

$$\varepsilon = \varepsilon_0 - (1 + \varepsilon_0) y \kappa = u_{,x} + \frac{1}{2} v_{,x}^2 - y \varphi_{,x}$$
(2.3.25)

$$\gamma = \sin^{-1} \left(\frac{\theta - \varphi}{1 - y\kappa} \right) = \theta - \varphi = v_{,x} - \varphi$$
(2.3.26)

因本文用虛功原理及d'Alembert原理推導運動方程式,所以需要應變的 變分、位置向量的變分及速度、加速度。為了方便稱呼,本文由振動造成 的位移、應變、速度及加速度都將稱為擾動量。在最後本文推導的結果將 保留至擾動量的一次項,但推導的過程中,太早做線性化會造成一些擾動 量之一次項的漏失,太慢做線性化又會使推導過程變的很繁雜,所以本文 在推導時將視實際推導過程在適當的時間引入線性化。其推導說明如下

應變的變分

將(2.3.25)式變分並保留到擾動量的一次項可得

$$\delta \varepsilon = \delta u_{,x} + v_{,x} \delta v_{,x} - y \delta \varphi_{,x} \tag{2.3.27}$$

將(2.3.26)式變分並保留到擾動量的零次項可得

$$\delta \gamma = \delta v_{,x} - \delta \varphi \tag{2.3.28}$$

位置向量的變分

將(2.3.2)式變分並保留到擾動量的一次項後,將(2.3.20)式代入可得

$$\delta \mathbf{r} = \{\delta u - y \delta \varphi \quad \delta v - y \varphi \delta \varphi \quad 0\}$$
(2.3.29)

速度

因X₁X₂X₃座標之原點的速度不為零,所以旋轉梁 P 點的絕對速度可表示成

$$\mathbf{v} = \{v_1 \quad v_2 \quad v_3\} = \mathbf{v}_O + \dot{\mathbf{r}} + \mathbf{\Omega} \times \mathbf{r}$$
(2.3.30)

 $\mathbf{v}_{O} = \mathbf{\Omega} \times \mathbf{r}_{AO} \tag{2.3.31}$

$$\mathbf{r}_{AO} = \{R\cos\alpha - R\sin\alpha \ 0\}$$
(2.3.32)

其中R為圓柱的半徑, α 為梁的傾斜角, \mathbf{r}_{AO} 為圓柱中心點A到 $X_1X_2X_3$ 座標 原點O的位置向量, Ω 為(2.2.1)式中旋轉圓柱的角速度向量, \mathbf{v}_O 為原點O因 圓柱以等角速度旋轉而產生的速度, \mathbf{r} 為(2.3.2)式中P點變形後的位置向量, $\dot{\mathbf{r}}$ 為P點在旋轉座標上的速度。

將(2.2.1)式與(2.3.32)式代入(2.3.31)式可得

$$\mathbf{v}_{O} = \{R\Omega\sin\alpha\cos\beta \quad R\Omega\cos\alpha\cos\beta \quad -R\Omega\cos\alpha\sin\beta\}$$
(2.3.33)

r可由(2.3.2)式對時間微分求得

$$\dot{\mathbf{r}} = \frac{\partial \mathbf{r}}{\partial t} = \{ \dot{u} - y\dot{\phi}\cos\phi \quad \dot{v} - y\dot{\phi}\sin\phi \quad 0 \}$$
(2.3.34)

$$\mathbf{\Omega} \times \mathbf{r} = \begin{cases} z\Omega\sin\beta - (y\cos\varphi + v)\Omega\cos\beta\\ (x - y\sin\varphi + u)\Omega\cos\beta\\ - (x - y\sin\varphi + u)\Omega\sin\beta \end{cases}$$
(2.3.35)

將(2.3.34)式-(2.3.35)式代入(2.3.30)式可得

$$\mathbf{v} = \begin{cases} R\Omega\sin\alpha\cos\beta + \dot{u} - y\dot{\phi}\cos\varphi + z\Omega\sin\beta - (y\cos\varphi + v)\Omega\cos\beta\\ R\Omega\cos\alpha\cos\beta + \dot{v} - y\dot{\phi}\sin\varphi + (x - y\sin\varphi + u)\Omega\cos\beta\\ - R\Omega\cos\alpha\sin\beta - (x - y\sin\varphi + u)\Omega\sin\beta \end{cases}$$
(2.3.36)

$$加速度
 旋轉梁 P 點的絕對加速度可以表示成

$$\mathbf{a} = \{a_1 \ a_2 \ a_3\} = \mathbf{a}_0 + \ddot{\mathbf{r}} + 2\mathbf{\Omega} \times \dot{\mathbf{r}} + \mathbf{\Omega} \times \mathbf{r} + \mathbf{\Omega} \times (\mathbf{\Omega} \times \mathbf{r})$$

$$\mathbf{a}_0 = \mathbf{\Omega} \times (\mathbf{\Omega} \times \mathbf{r}_{AO})$$
(2.3.37)$$

其中a_o為原點O的絕對加速度, ř為P點在旋轉座標上的加速度, 2Ω×r為科 氏加速度, Ω為旋轉圓柱的加速度向量, Ω為旋轉圓柱的角速度向量, r為 P點變形後的位置向量。因本研究僅考慮等角速度的旋轉,所以Ω與Ω×r均 為零。

將(2.2.1)式、(2.3.31)式與(2.3.33)式代入(2.3.38)式可得

$$\mathbf{a}_{O} = \left\{ -R\Omega^{2}\cos\alpha \quad R\Omega^{2}\sin\alpha\cos^{2}\beta \quad -R\Omega^{2}\sin\alpha\sin\beta\cos\beta \right\}$$
(2.3.39)

r可由(2.3.34)式對時間微分求得

$$\ddot{\mathbf{r}} = \frac{\partial^2 \mathbf{r}}{\partial t^2} = \left\{ \ddot{u} + y\dot{\varphi}^2 \sin\varphi - y\ddot{\varphi}\cos\varphi \quad \ddot{v} - y\dot{\varphi}^2\cos\varphi - y\ddot{\varphi}\cos\varphi \quad 0 \right\}$$
(2.3.40)

$$\mathbf{\Omega} \times \dot{\mathbf{r}} = \left\{ (-\dot{v} + y\dot{\phi}\sin\phi)\Omega\cos\beta \quad (\dot{u} - y\dot{\phi}\cos\phi)\Omega\cos\beta \quad (-\dot{u} + y\dot{\phi}\cos\phi)\Omega\sin\beta \right\} \quad (2.3.41)$$

由(2.2.1)式與(2.3.2)式可得

$$\Omega \times (\Omega \times \mathbf{r}) = \begin{cases} -(x - y\sin\varphi + u)\Omega^{2} \\ z\Omega^{2}\sin\beta\cos\beta - (y\cos\varphi + v)\Omega^{2}\cos^{2}\beta \\ -z\Omega^{2}\sin^{2}\beta + (y\cos\varphi + v)\Omega^{2}\sin\beta\cos\beta \end{cases}$$
(2.3.42)

1896

$$\frac{1896}{2}$$

將(2.3.20)式及(2.3.39)式-(2.3.42)式代入(2.3.37)式,並保留到擾動量的一次 項可得

$$a_1 = \ddot{u} - y\ddot{\varphi} - 2\dot{v}\Omega\cos\beta + \Omega^2 y\varphi + \Omega^2 (-R\cos\alpha - x - u)$$
(2.3.43)

 $a_2 = \ddot{v} - y\ddot{\phi} + 2(\dot{u} - y\dot{\phi})\Omega\cos\beta - v\Omega^2\cos^2\beta + (R\sin\alpha\cos\beta - y\cos\beta + z\sin\beta)\Omega^2\cos\beta$

(2.3.44)

$$a_3 = -2(\dot{u} - y\dot{\phi})\Omega\sin\beta + v\Omega^2\sin\beta\cos\beta - (R\sin\alpha\cos\beta - y\cos\beta + z\sin\beta)\Omega^2\sin\beta \quad (2.3.45)$$

2.4 旋轉傾斜梁的統御方程式

本文利用虛功原理及d'Alembert原理在旋轉座標上推導旋轉傾斜梁的 運動方程式。圖七所示為梁中的一小段,點1、2為其端點,s為形心軸的弧 長。本文中採用在 X_1 和 X_2 軸方向的位移u、v及繞 X_3 軸的旋轉角 φ 為廣義位 移。在梁斷面上與該廣義位移對應的廣義合力為 X_1 及 X_2 軸方向的力 F_1 及 F_2 ,以及繞 X_3 軸的力矩M。圖七中 F_{1j} 、 F_{2j} 及 M_j 分別代表合力 F_1 、 F_2 及M在端點 j(j=1,2)之值。

若給端點 j (j = 1,2)一個虛位移 δu_j、δv_j及δφ_j,其中()_j表示在端點 j之 值,則由虛功原理可知對應於該端點的虛位移,外力所作的虛功等於內力 所作的虛功。

$$\delta W_{ext} = \delta W_{int}$$

(2.4.1)

本文中假設材料為彈性材料,應力與應變的關係式符合虎克定律。而 內力所作的虛功又分為虛應變所造成的虛功及將加速度視為慣性力併入 body force中所作的虛功,故內力所作的總虛功可表示成

$$\delta W_{int} = E \int_{1}^{2} \delta \varepsilon^{t} \varepsilon dV + \alpha_{s} G \int_{1}^{2} \delta \gamma^{t} \gamma dV + \rho \int_{1}^{2} \delta \mathbf{r}^{t} \mathbf{a} dV$$
(2.4.2)

$$dV = dAdx \tag{2.4.3}$$

其中E為楊氏模數(Young's modulus), G為剪力模數(shear modulus), α_s 為 剪力修正因子(shear correction factor), ρ 為梁的密度, V為梁之端點 1、2 在 變形前的體積, A為梁的截面積。 將(2.3.25)式、(2.3.27)式及(2.4.3)式代入(2.4.2)式中右邊的第一項。由於 本文中所考慮的為雙對稱矩形斷面梁,故 $\int_A ydA = 0 \cdot \int_A zdA = 0 \cdot \int_A xydA = 0 \cdot \int_A yzdA = 0$,且使用梁的截面慣性矩(the moment of inertia of the cross-section) 為 $I = \int_A y^2 dA$,並將推導式保留到擾動量的二次項可得

$$E\int_{1}^{2}\delta\varepsilon^{t}\varepsilon dV = E\int_{1}^{2} \left(Au_{,x}\delta u_{,x} + Au_{,x}v_{,x}\delta v_{,x} + \frac{1}{2}Av_{,x}^{2}\delta u_{,x} + I\varphi_{,x}\delta\varphi_{,x}\right)dx$$
(2.4.4)

將(2.3.26)式、(2.3.28)式及(2.4.3)式代入(2.4.2)式中右邊的第二項可得

$$\alpha_s G \int_1^2 \delta \gamma^t \gamma dV = \alpha_s G A \int_1^2 \left[(v_{,x} - \varphi) \delta v_{,x} - (v_{,x} - \varphi) \delta \varphi \right] dx$$
(2.4.5)

將(2.3.29)式、(2.3.43)式-(2.3.45)式及(2.4.3)式代入(2.4.2)式中右邊的第 三項,並利用 $\int_A ydA = 0$ 、 $\int_A zdA = 0$ 、 $\int_A xydA = 0$ 、 $\int_A yzdA = 0$ 及梁的截面慣性 矩 $I = \int_A y^2 dA$,並保留到擾動量的一次項可得

$$\rho \int_{1}^{2} \delta \mathbf{r}^{t} \mathbf{a} dV = \rho A \int_{1}^{2} \left[\ddot{u} - 2\dot{v}\Omega\cos\beta + \Omega^{2}(-R\cos\alpha - x - u) \right] \delta u dx$$
$$+ \rho I \int_{1}^{2} (\ddot{\varphi} - \varphi \Omega^{2}\sin^{2}\beta) \delta \varphi dx \qquad (2.4.6)$$
$$+ \rho A \int_{1}^{2} (\ddot{v} + 2\dot{u}\Omega\cos\beta - v\Omega^{2}\cos^{2}\beta + R\Omega^{2}\sin\alpha\cos^{2}\beta) \delta v dx$$

將(2.4.4)式-(2.4.6)式代入(2.4.2)式,則內力所作的虛功可得

$$\delta W_{int} = \rho A \int_{1}^{2} \left[\ddot{u} - 2\dot{v}\Omega\cos\beta - \Omega^{2}(R\cos\alpha + x + u) \right] \delta u dx + EA \int_{1}^{2} (u_{,x} + \frac{1}{2}v_{,x}^{2}) \delta u_{,x} dx + \rho A \int_{1}^{2} (\ddot{v} + 2\dot{u}\Omega\cos\beta - v\Omega^{2}\cos^{2}\beta + R\Omega^{2}\sin\alpha\cos^{2}\beta) \delta v dx + \int_{1}^{2} \left[EAu_{,x}v_{,x} + \alpha_{s}GA(v_{,x} - \varphi) \right] \delta v_{,x} dx + \int_{1}^{2} \left[\rho I(\ddot{\varphi} - \varphi\Omega^{2}\sin^{2}\beta) - \alpha_{s}GA(v_{,x} - \varphi) \right] \delta \varphi dx + EI \int_{1}^{2} \varphi_{,x} \delta \varphi_{,x} dx$$

$$(2.4.7)$$

因本文假設梁沒有外加負荷,所以 *Wext* 即為梁斷面外力之合力所作的 虛功,可表示如下

$$\begin{split} \delta W_{ext} &= (F_1 \delta u + F_2 \delta v + M \delta \varphi)_1^2 \end{split} \tag{2.4.8} \\ & \pm v F_1 與 F_2 分別為作用在軸向 X_1 軸與側向 X_2 軸的力, M 為繞 X_3 軸的力矩, \\ &, ()_1^2 表示()在端點 2 之值減掉()在端點 1 之值。 \end{split}$$

(2.4.8)式之 *6Wext* 可以改寫成

將(2.4.10)式左右兩邊對應於相同虛位移的項相等,可以得到以下六個 方程式。

$$F_{1,x} = \rho A[\ddot{u} - 2\dot{v}\Omega\cos\beta - \Omega^2(R\cos\alpha + x + u)]$$
(2.4.11)

$$F_{2,x} = \rho A(\ddot{v} + 2\dot{u}\Omega\cos\beta - v\Omega^2\cos^2\beta + R\Omega^2\sin\alpha\cos^2\beta)$$
(2.4.12)

$$M_{,x} = \rho I (\ddot{\varphi} - \varphi \Omega^2 \sin^2 \beta) - \alpha_s G A(v_{,x} - \varphi)$$
(2.4.13)

$$F_1 = EA(u_{,x} + \frac{1}{2}v_{,x}^2)$$
(2.4.14)

$$F_2 = EAu_{,x}v_{,x} + \alpha_s GA(v_{,x} - \varphi)$$
(2.4.15)

$$M = EI\varphi_{,x} \tag{2.4.16}$$

其中(2.4.11)式-(2.4.13)式是旋轉傾斜梁的運動方程式(equations of motion), (2.4.14)式-(2.4.16)式是旋轉傾斜梁的本構方程式(constitutive equations)。

將(2.4.14)-(2.4.16)式代入(2.4.11)-(2.4.13)式,旋轉傾斜梁的統御方程式 可表示如下 $EA(u_{,xx} + v_{,x}v_{,xx}) = \rho A[\ddot{u} - 2\dot{v}\Omega\cos\beta - \Omega^{2}(R\cos\alpha + x + u)]$ (2.4.17) 1896 $EA(u_{,x}v_{,x})_{,x} + \alpha_{s}GA(v_{,xx} - \varphi_{,x}) = \rho A(\ddot{v} + 2\dot{u}\Omega\cos\beta - v\Omega^{2}\cos^{2}\beta + R\Omega^{2}\sin\alpha\cos^{2}\beta)$ (2.4.18)

$$EI\varphi_{,xx} = \rho I(\ddot{\varphi} - \varphi \Omega^2 \sin^2 \beta) - \alpha_s GA(v_{,x} - \varphi)$$
(2.4.19)

上述(2.4.17)式與(2.4.18)式中加底線的項為科氏力(Coriolis force)項,本文將 此項保留以探討科氏力對自然頻率之影響。

旋轉傾斜梁在穩態時, (2.3.3)式的 $u_d(x,t) = 0$ 、(2.3.4)式的 $v_d(x,t) = 0$ 及 (2.3.5)式的 $\varphi_d(x,t) = 0$,即 $u = u_s(x)$, $v = v_s(x)$, $\varphi = \varphi_s(x)$ 將其代入(2.4.17)式 -(2.4.19)式,可得穩態的統御方程式如下

$$EA(u_{s,xx} + v_{s,x}v_{s,xx}) = -\rho A \Omega^2 (R\cos\alpha + x + u_s)$$
(2.4.20)

$$EA(u_{s,x}v_{s,x})_{,x} + \alpha_s GA(v_{s,xx} - \varphi_{s,x}) = \rho A \Omega^2 (-v_s \cos^2 \beta + R \sin \alpha \cos^2 \beta)$$
(2.4.21)

$$EI\varphi_{s,xx} = -\rho I\varphi_s \Omega^2 \sin^2 \beta - \alpha_s GA(v_{s,x} - \varphi_s)$$
(2.4.22)

將(2.3.3)式-(2.3.5)式代入(2.4.17)式-(2.4.19)式,再將其分別與對應的 (2.4.20)式-(2.4.22)式相減,保留到擾動量的一次項,即可得振動的統御方程 式如下

$$EA(u_{d,xx} + v_{s,x}v_{d,xx} + v_{s,xx}v_{d,x}) = \rho A(\ddot{u}_d - \frac{2\dot{v}_d \Omega \cos \beta}{2} - u_d \Omega^2)$$
(2.4.23)

$$EA(u_{d,x}v_{s,x} + u_{s,x}v_{d,x})_{,x} + \alpha_s GA(v_{d,xx} - \varphi_{d,x}) = \rho A(\ddot{v}_d + 2\dot{u}_d \Omega \cos\beta - v_d \Omega^2 \cos^2\beta)$$

$$(2.4.24)$$

$$EI\varphi_{d,xx} = \rho I(\ddot{\varphi}_d - \varphi_d \Omega^2 \sin^2\beta) - \alpha_s GA(v_{d,x} - \varphi_d)$$

$$(2.4.25)$$

因設定角β不為0°或90°時,其振動應是三維的,本文中假設振動是二 維的,所以本文中僅考慮設定角β=0°及β=90°兩種情況。

當 $\beta = 0^{\circ}$ 時,因 $\cos \beta = 1$ 、 $\sin \beta = 0$,代入(2.4.20)式-(2.4.22)式, $\beta = 0^{\circ}$ 之 穩態的統御方程式可表示如下

$$EA(u_{s,xx} + v_{s,x}v_{s,xx}) = -\rho A \Omega^2 (R\cos\alpha + x + u_s)$$
(2.4.26)

$$EA(u_{s,x}v_{s,x})_{,x} + \alpha_s GA(v_{s,xx} - \varphi_{s,x}) = \rho A \Omega^2(-v_s + R\sin\alpha)$$
(2.4.27)

$$EI\varphi_{s,xx} = -\alpha_s GA(v_{s,x} - \varphi_s) \tag{2.4.28}$$
由(2.4.23)式-(2.4.25)式, β=0°之振動的統御方程式可表示如下

$$EA(u_{d,xx} + v_{s,x}v_{d,xx} + v_{d,x}v_{s,xx}) = \rho A(\ddot{u}_d - \underline{2\dot{v}_d\Omega} - u_d\Omega^2)$$
(2.4.29)

$$EA(u_{d,x}v_{s,x} + u_{s,x}v_{d,x})_{,x} + \alpha_s GA(v_{d,xx} - \varphi_{d,x}) = \rho A(\ddot{v}_d + \underline{2\dot{u}_d\Omega} - v_d\Omega^2)$$
(2.4.30)

$$EI\varphi_{d,xx} = \rho I \ddot{\varphi}_d - \alpha_s GA(v_{d,x} - \varphi_d) \tag{2.4.31}$$

當 β=90°時,因 cos β=0、sin β=1,代入(2.4.20)式-(2.4.22)式,β=90° 之穩態的統御方程式可表示如下

$$EA(u_{s,xx} + v_{s,x}v_{s,xx}) = -\rho A \Omega^2 (R\cos\alpha + x + u_s)$$
(2.4.32)

$$EA(u_{s,x}v_{s,x})_{,x} + \alpha_s GA(v_{s,xx} - \varphi_{s,x}) = 0$$
(2.4.33)

$$EI\varphi_{s,xx} = -\rho I \Omega^2 \varphi_s - \alpha_s GA(v_{s,x} - \varphi_s)$$

$$(2.4.34)$$

由(2.4.23)式-(2.4.25)式,
$$\beta = 90^{\circ}$$
之振動的統御方程式可表示如下
 $EA(u_{d,xx} + v_{s,x}v_{d,xx} + v_{d,x}v_{s,xx}) = \rho A(\ddot{u}_d - u_d \Omega^2)$ (2.4.35)

$$EA(u_{d,x}v_{s,x} + u_{s,x}v_{d,x})_{,x} + \alpha_s GA(v_{d,xx} - \varphi_{d,x}) = \rho A \ddot{v}_d$$
(2.4.36)

$$EI\varphi_{d,xx} = \rho I(\ddot{\varphi}_d - \varphi_d \Omega^2) - \alpha_s GA(v_{d,x} - \varphi_d)$$
(2.4.37)

由(2.4.20)式知 $u_s(x)$ 的統御方程式與傾斜角 α 及側向穩態解有關,但與 設定角 β 無關,所以(2.4.26)式與(2.4.32)式之形式皆與(2.4.20)式相同。本文 將在第三章中由(2.4.32)式求出旋轉傾斜梁的穩態解,由(2.4.35)-(2.4.37)式求 出 β =90°時,不同傾斜角 α 之旋轉傾斜梁的自然振動頻率,由(2.4.26)-(2.4.31) 式說明 β =0°時,不同傾斜角 α 之旋轉傾斜梁的側向穩態與振動解。

第三章 旋轉傾斜梁的穩態與振動

如前所述,以等速旋轉的傾斜梁,由於慣性力的作用,存在一個僅含 變形但沒有振動的穩態(steady state)[23],在本文中所謂的振動就是以該穩 態變形為平衡點的自然振動,其振動為微小振動。本文中考慮設定角 $\beta=0°與\beta=90°兩種情況。本章將先探討<math>\beta=90°時的穩態解及振動的級數解$ 和自然頻率,之後再接著探討 $\beta=0°時旋轉傾斜梁的穩態與振動解。$

3.1 $\beta = 90^{\circ}$ 時旋轉傾斜梁的穩態

在第二章 2.4 節已推得設定角β=90°時之統御方程式,故本節中將依 (2.4.32)式-(2.4.34)式之穩態方程式求其穩態解。

由(2.4.34)式將穩態的側向應變以旋轉角之函數表示如下

$$v_{s,x} = \frac{1}{\alpha_s GA} (\alpha_s GA \varphi_s - \rho I \Omega^2 \varphi_s - EI \varphi_{s,xx})$$
(3.1.1)

將(3.1.1)式對x微分可得

$$v_{s,xx} = \frac{1}{\alpha_s GA} (\alpha_s GA \varphi_{s,x} - \rho I \Omega^2 \varphi_{s,x} - EI \varphi_{s,xxx})$$
(3.1.2)

將(3.1.1)式及(3.1.2)式代入(2.4.33)式可得

$$(\frac{E^{2}I}{\alpha_{s}G}u_{s,x} + EI)\varphi_{s,xxx} + \frac{E^{2}I}{\alpha_{s}G}u_{s,xx}\varphi_{s,xx}$$

$$-[(EA - \frac{E\rho I\Omega^{2}}{\alpha_{s}G})u_{s,x} - \rho I\Omega^{2}]\varphi_{s,x} - (EA - \frac{E\rho I\Omega^{2}}{\alpha_{s}G})u_{s,xx}\varphi_{s} = 0$$
(3.1.3)

因梁在固定端的位移為零,在自由端的應力為零,所以穩態的邊界條件可以表示成

$$u_s(0) = 0, \ u_{s,x}(L) = 0$$
 (3.1.4)

$$v_s(0) = 0, \quad v_{s,x}(0) = 0$$
 (3.1.5)

$$\varphi_s(0) = 0, \quad \varphi_{s,x}(0) = 0 \tag{3.1.6}$$

由(3.1.3)式可知旋轉角的穩態解 $\varphi_s = 0$,將其代入(3.1.1)式積分後以邊 界條件(3.1.5)式代入可得側向位移的穩態解 $v_s = 0$ 。本文中假設(2.4.32)式中 $\frac{u_s}{L} <<1$,其中L為梁的長度,故可以將 u_s 捨去,將(2.4.32)式以下列近似式 代替

$$u_{s,xx} = -\frac{\rho \Omega^2}{E} (R \cos \alpha + x)$$
(3.1.7)

將(3.1.7)式對 x 積分兩次後,由(3.1.4)式代入邊界條件,可求得軸向位 移的穩態解如下

$$u_s = -\frac{\rho \Omega^2}{E} \left[\frac{1}{6} x^3 + \frac{R \cos \alpha}{2} x^2 - (RL \cos \alpha + \frac{L^2}{2})x \right]$$
(3.1.8)

由(3.1.8)式對 x 微分可得軸向應變

$$\varepsilon_s = -\frac{\rho \Omega^2}{E} \left(\frac{x^2}{2} + xR\cos\alpha - RL\cos\alpha - \frac{L^2}{2}\right)$$
(3.1.9)

由(3.1.9)式可知,當x為0時有最大應變

$$\varepsilon_{\max} = \bar{k}^2 (\bar{r} \cos \alpha + \frac{1}{2}) \tag{3.1.10}$$

$$\bar{k} = \Omega L \sqrt{\frac{\rho}{E}}$$

$$\bar{r} = \frac{R}{L}$$
(3.1.12)

其中Ā為無因次的轉速,F為無因次的圓柱轉軸半徑

3.2 β=90° 時旋轉傾斜梁的振動方程式及其解

如前節所述,側向位移 $v_s(x)$ 的穩態解為零,將其代入(2.4.35)式 -(2.4.37)式中。由於振動所造成的位移,即(2.3.3)式之 u_d 、(2.3.4)式中的 v_d 及(2.3.5)式中的 φ_d ,都是擾動量,所以在振動方程式的推導中僅保留 u_d 、 $v_d \sim \varphi_d$ 及其微分到一次項。在不致引起混淆的情況下,為了推導時的方 便,在本節中將(2.4.35)式-(2.4.37)式中的 $u_d \sim v_d$ 及 φ_d 的下標去掉,即以 $u \sim v$ 及 φ 代表振動所造成的位移,所以振動的統御方程式(2.4.35)式 -(2.4.37)式可改寫成 $Eu_{,xx} = \rho(\ddot{u} - u\Omega^2)$ (3.2.1) $E(u_{s,x}v_{,x})_{,x} + \alpha_s G(v_{,xx} - \varphi_{,x}) = \rho \ddot{v}$ (3.2.2) $El\varphi_{,xx} = \rho I(\ddot{\varphi} - \varphi \Omega^2) - \alpha_s GA(v_x - \varphi)$ (3.2.3)

旋轉傾斜Timoshenko梁在固定端x=0與自由端x=L的邊界條件可表示成

$$u(0,t) = 0, \quad u_x(L,t) = 0$$
 (3.2.4)

$$v(0,t) = 0, \quad v_{,x}(L,t) = 0$$
 (3.2.5)

 $\varphi(0,t) = 0, \quad \varphi(L,t) = 0, \quad \varphi_{,x}(L,t) = 0$ (3.2.6)

由(3.2.1)式-(3.2.3)式可發現*u*及*v*並不耦合,故*u*和*v*可分別求解。由 (3.2.1)式及(3.2.4)式可以解得旋轉梁軸向振動的振態*u*_R及自然頻率如下

$$u_R = \sin \frac{ax}{L} \tag{3.2.7}$$

$$a = (\overline{K}^2 + \overline{k}^2)^{1/2} = \frac{2n+1}{2}\pi$$
(3.2.8)

$$\overline{K} = \omega L \sqrt{\frac{\rho}{E}}$$
(3.2.9)

其中 K 為無因次的自然頻率, k 於(3.1.11)式中已定義,為無因次的轉速。 此解的型式與文獻[20]之旋轉傾斜 Euler 梁解得的結果相同,可知旋轉傾斜 Timoshenko 梁與 Euler 梁之軸向振動的自然頻率及振態是一致的。

文獻[14]中提到在高轉數時僅用一個級數來表示整根 Euler 梁的振動, 在有些情況無法求得振動頻率,文獻[20]中提到若計算時使用雙精度,則 最少需將旋轉 Euler 梁分成兩段,才能得到可靠的自然振動頻率。故本文 採用與文獻[14, 20]一樣的方式,在分析(3.2.2)式-(3.2.3)式時將 Timoshenko 梁均分成 N 段,為方便稱呼,每一段稱為一個元素,所以每個元素的長度 皆為

$$l = \frac{L}{N} \tag{3.2.10}$$

第m 個元素的統御方程式與(3.2.2)式-(3.2.3)式相同,但其獨立變數x的範圍為 $x_m \le x \le x_{m+1}$,其中 $x_m = (m-1)l$,m = 1, 2, ..., N(見圖八)。本文中每個元素都用一個級數來表示其統御方程式的解。

$$\xi = \frac{x - x_m}{l} - \frac{1}{2}, \quad V(\xi) = \frac{v}{l}, \quad U_s(\xi) = \frac{u_s}{l}$$
(3.2.11)

$$k = \frac{\bar{k}}{N} = \Omega l \sqrt{\frac{\rho}{E}}$$
(3.2.12)

$$r = N\overline{r} = \frac{R}{l} \tag{3.2.13}$$

$$\eta = \frac{\overline{\eta}}{N} = \sqrt{\frac{Al^2}{I}}, \quad \overline{\eta} = \sqrt{\frac{AL^2}{I}}$$
(3.2.14)

$$\mu = \frac{\alpha_s G}{E} \tag{3.2.15}$$

其中 k 已在(3.1.11)式定義,為無因次的轉速; r 已在(3.1.12)式定義,為無 因次的圓柱轉軸半徑; 可稱為細長比。將(3.1.8)式無因次化與(3.2.11)式 -(3.2.15)式代入(3.2.2)式-(3.2.3)式中,則可將統御方程式無因次化成

$$(U_{s,\xi}V_{,\xi})_{,\xi} + \mu(V_{,\xi\xi} - \varphi_{,\xi}) = \frac{\rho l^2}{E} \ddot{V}$$
(3.2.16)
$$\varphi_{\xi\xi} = \frac{\rho l^2}{E} (\ddot{\varphi} - \varphi \Omega^2) - \mu \eta^2 (V_{,\xi} - \varphi)$$
(3.2.17)

$$\varphi_{\xi\xi\xi} = \frac{\rho l^2}{E} (\ddot{\varphi} - \varphi \Omega^2) - \mu \eta^2 (V_{\xi} - \varphi)$$
(3.2.17)

其中

$$U_{s,\xi} = B_2 \xi^2 + B_1 \xi + B_0 \tag{3.2.18}$$

$$U_{s,\xi\xi} = 2B_2\xi + B_1$$

$$B_2 = -\frac{1}{2}k^2$$

$$B_1 = -k^2(m - 0.5 + r\cos\alpha) = -k^2r_m$$

$$B_0 = -\frac{1}{2}k^2[(m - 0.5 + r\cos\alpha)^2 - (r\cos\alpha + N)^2] = -\frac{1}{2}k^2[r_m^2 - r_N^2]$$

$$r_m = m - 0.5 + r\cos\alpha$$

 $r_N = N + r \cos \alpha$

24

若振動方程式(3.2.16)式-(3.2.17)式有自然頻率存在,則其解的形式必 可表示如下[14]

$$\mathbf{Q}(\xi,t) = \mathbf{Q}_R(\xi)e^{i\omega t} \tag{3.2.19}$$

$$\mathbf{Q}(\xi,t) = \{V \quad \varphi\}, \quad \mathbf{Q}_R(\xi) = \{V_R \quad \varphi_R\}$$
(3.2.20)

其中 $i=\sqrt{-1}$, ω 為自然頻率。

將(3.2.18)式及(3.2.19)式代入(3.2.16)式-(3.2.17)式可得

$$(B_2\xi^2 + B_1\xi + B_0 + \mu)V_{R,\xi\xi} + (2B_2\xi + B_1)V_{R,\xi} - \mu\varphi_{R,\xi} + K^2V_R = 0$$
(3.2.21)

$$\varphi_{R,\xi\xi} + \mu \eta^2 V_{R,\xi} + (K^2 + k^2 - \mu \eta^2) \varphi_R = 0$$
(3.2.22)

$$K = \frac{\overline{K}}{N} = \omega l \sqrt{\frac{\rho}{E}}$$
(3.2.23)其中 \overline{K} 已在(3.2.9)式定義,為無因次自然頻率; K是每個元素的無因次自然頻率。

將(3.2.21)式-(3.2.22)式用向量式表示如下

$$\mathbf{R}\mathbf{Q}_{R,\xi\xi} + \mathbf{S}\mathbf{Q}_{R,\xi} + \mathbf{T}\mathbf{Q}_{R} = \mathbf{0}$$
(3.2.24)

$$\mathbf{R} = \begin{bmatrix} B_2 \xi^2 + B_1 \xi + B_0 + \mu & 0\\ 0 & 1 \end{bmatrix} = \xi^2 \mathbf{R}_2 + \xi \mathbf{R}_1 + \mathbf{R}_0$$
(3.2.25)

$$\mathbf{S} = \begin{bmatrix} 2B_2\xi + B_1 & -\mu \\ \mu\eta^2 & 0 \end{bmatrix} = \xi \mathbf{S}_2 + \mathbf{S}_1$$
$$\mathbf{T} = \begin{bmatrix} K^2 & 0 \\ 0 & K^2 + k^2 - \mu\eta^2 \end{bmatrix}$$

$$\mathbf{R}_{2} = \begin{bmatrix} B_{2} & 0\\ 0 & 0 \end{bmatrix}, \quad \mathbf{R}_{1} = \begin{bmatrix} B_{1} & 0\\ 0 & 0 \end{bmatrix}, \quad \mathbf{R}_{0} = \begin{bmatrix} B_{0} + \mu & 0\\ 0 & 1 \end{bmatrix}$$
(3.2.26)
$$\mathbf{S}_{2} = \begin{bmatrix} 2B_{2} & 0\\ 0 & 0 \end{bmatrix}, \quad \mathbf{S}_{1} = \begin{bmatrix} B_{1} & -\mu\\ \mu\eta^{2} & 0 \end{bmatrix}$$

其中 \mathbf{R}_2 、 \mathbf{R}_1 、 \mathbf{R}_0 、 \mathbf{S}_2 及 \mathbf{S}_1 為2×2的常數矩陣。

由於(3.2.24)式是一組線性常微分方程,其解以級數可表示成

$$\mathbf{Q}_R(\xi) = \sum_{n=0}^{\infty} \mathbf{C}_n \xi^n \tag{3.2.27}$$

$$C_n = \{C_{1n} \ C_{2n}\}$$
 (3.2.28)
其中 $C_{in} (i=1,2)$ 是待定係數
將(3.2.27)式對 ξ 微分 次及微分二次後與(3.2.25)式一併代入(3.2.24)式
可得

$$\sum_{n=2}^{\infty} (\mathbf{A}_n \mathbf{C}_{n-2} + \mathbf{B}_n \mathbf{C}_{n-1} - \mathbf{C}_n) \boldsymbol{\xi}^{n-2} = \mathbf{0}$$
(3.2.29)

$$\mathbf{A}_{n} = -\frac{(n-2)(n-3)\mathbf{R}_{0}^{-1}\mathbf{R}_{2} + (n-2)\mathbf{R}_{0}^{-1}\mathbf{S}_{2} + \mathbf{R}_{0}^{-1}\mathbf{T}}{n(n-1)}$$
(3.2.30)

$$\mathbf{B}_{n} = -\frac{(n-2)\mathbf{R}_{0}^{-1}\mathbf{R}_{1} + \mathbf{R}_{0}^{-1}\mathbf{S}_{1}}{n}$$

其中 \mathbf{R}_0^{-1} 代表 \mathbf{R}_0 矩陣的反矩陣(inverse matrix)。

$$\mathbf{C}_n = \mathbf{A}_n \mathbf{C}_{n-2} + \mathbf{B}_n \mathbf{C}_{n-1}, \quad n \ge 2$$
(3.2.31)

$$\mathbf{A}_{n} = -\frac{1}{n(n-1)} \begin{bmatrix} \frac{(n-1)(n-2)B_{2} + K^{2}}{B_{0} + \mu} & 0\\ 0 & K^{2} + k^{2} - \mu\eta^{2} \end{bmatrix}$$
$$\mathbf{B}_{n} = -\frac{1}{n} \begin{bmatrix} \frac{(n-1)B_{1}}{B_{0} + \mu} & \frac{-\mu}{B_{0} + \mu}\\ \mu\eta^{2} & 0 \end{bmatrix}$$

其中B₀、B₁及B₂已在(3.2.18)式定義, k、η、μ及K已分別在(3.2.12)式、 (3.2.14)式、(3.2.15)式及(3.2.23)式中定義。

由(3.2.31)式可知 C_0 與 C_1 是獨立係數, $C_n(n \ge 2)$ 可寫成

$$C_{n} = Y_{0}^{n}C_{0} + Y_{1}^{n}C_{1}, \quad n \ge 2$$

$$C_{0} = \{C_{10} \quad C_{20}\}, \quad C_{1} = \{C_{11} \quad C_{21}\}$$

$$lagged = (3.2.31) \stackrel{*}{\prec} \mathcal{R}(3.2.32) \stackrel{*}{\prec} \overrightarrow{\tau} \overrightarrow{\tau} \overrightarrow{\tau}$$

$$Y_{0}^{n} = \mathbf{A}_{n}Y_{0}^{n-2} + \mathbf{B}_{n}Y_{0}^{n-1}$$

$$Y_{0}^{n} = \mathbf{A}_{n}Y_{1}^{n-2} + \mathbf{B}_{n}Y_{1}^{n-1}$$

$$Y_{0}^{0} = Y_{1}^{1} = \mathbf{I}, \quad Y_{0}^{1} = Y_{1}^{0} = \mathbf{0}$$

$$(3.2.32)$$

其中I及0各別是2×2的單位矩陣及零矩陣。

將(3.2.32)式代入(3.2.27)式可得

$$\mathbf{Q}_{R}(\xi) = \left(\mathbf{I} + \sum_{n=2}^{\infty} \xi^{n} \mathbf{Y}_{0}^{n}\right) \mathbf{C}_{0} + \left(\xi \mathbf{I} + \sum_{n=2}^{\infty} \xi^{n} \mathbf{Y}_{1}^{n}\right) \mathbf{C}_{1}$$
(3.2.34)

$$\mathbf{Q}_R(\xi) = \mathbf{E}_0(\xi)\mathbf{C}_0 + \mathbf{E}_1(\xi)\mathbf{C}_1 = \mathbf{E}^t(\xi)\mathbf{C}$$
(3.2.35)

$$\mathbf{E}_{0}(\xi) = \mathbf{I} + \sum_{n=2}^{\infty} \xi^{n} \mathbf{Y}_{0}^{n} , \quad \mathbf{E}_{1}(\xi) = \xi \mathbf{I} + \sum_{n=2}^{\infty} \xi^{n} \mathbf{Y}_{1}^{n}$$
(3.2.36)

$$\mathbf{E}(\xi) = \begin{bmatrix} \mathbf{E}_0(\xi) \\ \mathbf{E}_1(\xi) \end{bmatrix}$$
(3.2.37)

$$\mathbf{C} = \{\mathbf{C}_0 \quad \mathbf{C}_1\} \tag{3.2.38}$$

其中 $E_0(\xi)$ 與 $E_1(\xi)$ 都是2×2的矩陣, $E(\xi)$ 是由 $E_0(\xi)$ 與 $E_1(\xi)$ 組成的4×2的矩陣, C_0 與 C_1 都是2×1的待定係數矩陣,C是由 C_0 與 C_1 組成的4×1的待定係 數矩陣。待定係數 C_0 與 C_1 必需由邊界條件決定。

ESP

3.3 β=90°時旋轉傾斜梁結構的節點位移、節點力及邊界條件

本節中將梁元素兩端點的位移及節點力表示成待定係數向量 C_0 與 C_1 的函數。本節中以()_j表示()在元素第j(j=1,2)個節點的值,以()^m_j表示() 在第m(m=1,2,....,N)個元素的節點j(j=1,2)之值。本節中令 $\xi_1 = -0.5$ 及 $\xi_2 = 0.5$ 。

元素在第*j*個節點的廣義位移向量以 $Q_j(j=1,2)$ 表示, $V_j \mathcal{D} \varphi_j 分別表$ 示元素在第*j*個節點的側向位移及旋轉角。由(3.2.35)式可得

$$\mathbf{Q}_j = \{V_j \quad \varphi_j\} = \mathbf{Q}(\xi_j) = \mathbf{N}_{Qj}\mathbf{C}$$
(3.3.1)

$$\mathbf{N}_{Qj} = e^{i\omega t} \mathbf{E}^t(\xi_j) \tag{3.3.2}$$

其中N_{Oi}為2×4的矩陣。

如前節所述,振動所造成的位移都是擾動量,所以在廣義位移及節點 力的推導中僅保留u_d、v_d、 φ_d 及其微分到一次項。在不致引起混淆的情 況下,為了推導時的方便,同上一節中將u_d、v_d 及 φ_d 的下標去掉,即以 u、v 及 φ 代表振動所造成的位移。由(2.4.15)式及(2.4.16)式,本構方程式 表示如下

$$F_2 = EAu_{s,x}v_{,x} + \alpha_s GA(v_{,x} - \varphi)$$
(3.3.3)

$$M = EI\varphi_{,x} \tag{3.3.4}$$

將(3.3.3)式及(3.3.4)式無因次化

$$F_2 = EA[(U_{s,\xi} + \mu)V_{,\xi} - \mu\varphi]$$
(3.3.5)

$$M = \frac{Li}{l} \varphi_{\xi}$$

其中 $\mu \mathcal{B} U_{s,\xi}$ 已分別在(3.2.15)式及(3.2.18)式中定義。
(3.3.6)

將(3.2.19)式代入(3.3.5)式及(3.3.6)式可得

$$F_2 = EA[(U_{s,\xi} + \mu)\mathbf{e}_1^t\mathbf{Q}_{,\xi} - \mu\mathbf{e}_2^t\mathbf{Q}]$$
(3.3.7)

$$M = \frac{EI}{l} \mathbf{e}_2^t \mathbf{Q}_{\xi}$$
(3.3.8)

元素在第*j*個節點的廣義節點力向量以F_j表示, F_{2j}及M_j分別表示元 素在第*j*個節點的側向力及力矩。將(3.3.1)式代入(3.3.7)式及(3.3.8)式中可 得

$$\mathbf{F}_j = \{F_{2j} \quad M_j\} \tag{3.3.9}$$

$$F_{2j} = EA\{[U_{s,\xi}(\xi_j) + \mu]\mathbf{e}_1^t \mathbf{N}_{Qj,\xi} - \mu \mathbf{e}_2^t \mathbf{N}_{Qj}\}\mathbf{C}$$
(3.3.10)

$$M_j = \frac{EI}{l} \mathbf{e}_2^t \mathbf{N}_{Qj,\xi} \mathbf{C}$$
(3.3.11)

其中
$$\mathbf{e}_1 = \{1 \ 0\}$$
及 $\mathbf{e}_2 = \{0 \ 1\}$ 。

由(3.3.9)式-(3.3.11)式可得

其中N_{Fi}為2×4的矩陣。

$$\mathbf{F}_j = \mathbf{N}_{Fj}\mathbf{C} \tag{3.3.12}$$

$$\mathbf{N}_{Fj} = \begin{bmatrix} EA\{[U_{s,\xi}(\xi_j) + \mu] \mathbf{e}_1^t \mathbf{N}_{Qj,\xi} - \mu \mathbf{e}_2^t \mathbf{N}_{Qj}\} \\ \frac{EI}{l} \mathbf{e}_2^t \mathbf{N}_{Qj,\xi} \end{bmatrix}$$
(3.3.13)

旋轉傾斜梁的邊界條件有固定端位移為零和自由端外力為零,以及相 鄰兩元素在共同節點上都需滿足變形的相合條件及力的平衡條件,即應有 相同的側向位移、旋轉角、側向力及力矩。因此,旋轉傾斜梁的邊界條件 及連續條件如下

$$\mathbf{Q}_{1}^{1} = \mathbf{0}$$
 (3.3.14)

 $\mathbf{Q}_2^m = \mathbf{Q}_1^{m+1}$

 $\mathbf{F}_2^m = \mathbf{F}_1^{m+1}$

 $F_{2}^{N} = 0$

其中

 $\mathbf{Q}_j^m = \{V_j^m \quad \varphi_j^m\} = \mathbf{N}_{Qj}^m \mathbf{C}^m \quad , \quad m = 1, \ 2, \ \cdots, \ N \quad , \quad j = 1, \ 2$

 $\mathbf{F}_{i}^{m} = \{F_{2\,i}^{m} \ M_{j}^{m}\} = \mathbf{N}_{Fi}^{m}\mathbf{C}^{m} , m = 1, 2, \dots, N , j = 1, 2$

 Q_j^n 表示第m個元素在第j個節點的廣義節點位移向量, $V_j^m \mathcal{Q} \varphi_j^n \mathcal{O}$ 別表示 第m個元素在第j個節點的側向位移及旋轉角, \mathbf{F}_j^n 表示第m個元素在第j個節點的廣義節點力向量, $F_{2j}^m \mathcal{Q} M_j^n \mathcal{O}$ 別表示第m個元素在第j個節點的 側向力及力矩, $\mathbf{N}_{0j}^n \mathcal{Q} \mathbf{N}_{Fj}^n \mathcal{O}$ 別表示第m個元素在第j個節點的 $\mathbf{N}_{0j} \mathcal{Q} \mathbf{N}_{Fj}$ 向 量, $\mathbf{N}_{0j} \mathcal{Q} \mathbf{N}_{Fj}$ 已分別在(3.3.2)式及(3.3.13)式中定義, \mathbf{C}^m 表示第m個元素 的待定係數向量。

3.4 β=90°時旋轉傾斜梁的自然頻率及振動模態

旋轉傾斜梁振動的自然頻率,可由梁結構的兩端點的邊界條件及內部節點的連續條件求得。將(3.3.1)及(3.3.12)式代入(3.3.14)式可得

其中 C_G 表示整體梁的待定係數向量, K為 $4N \times 4N$ 的矩陣, C_G 為 $4N \times 1$ 的

矩陣,0為4N×1的零矩陣。

當(3.4.1)式中的 C_G 有非零解時,表示振動方程式(3.2.16)式及(3.2.17) 式有自然頻率存在。因(3.4.1)式為一齊項式(homogeneous equation),所以 僅有當 K 的行列式值為零時才有非零解。K 為無因次自然頻率 \overline{K} 的函數, 即 $K = K(\overline{K})$, \overline{K} 在(3.2.9)式中已經定義。所以滿足 det $K(\overline{K}) = 0 \ge \overline{K}$ 即為 (3.2.16)式及(3.2.17)式的無因次自然振動頻率。其計算方法將在下一章中 說明。令 \overline{K}_o 與 X 為(3.4.1)式之一對特徵值與特徵向量。特徵向量 X 可以由 以下的廣義特徵值問題得到

 $\left[\mathbf{K}\left(\overline{K}_{\omega}\right) + \mathbf{I}\right]\mathbf{X} = \lambda \mathbf{X}$ (3.4.4)

其中I為4N×4N的矩陣。λ=1可視為(3.4.4)式的特徵值。X可視為解(3.4.4) 式中對應於λ=1時之特徵向量。

本文中用逆冪法(inverse power method)[13]解(3.4.4)式中 λ =1時之特徵 向量。令 $C_G = X$,由 C_G 中可得對應於每個元素的待定係數 C^m ,將 C^m 代入 (3.2.27)式及(3.2.31)式即可求得對應於 \overline{K}_{ω} 的振動模態。

3.5 $\beta = 0^{\circ}$ 時旋轉傾斜梁的穩態

在第二章 2.4 節已推得設定角 $\beta = 0^{\circ}$ 時之統御方程式,故本節中將依 (2.4.26)式-(2.4.28)式之穩態方程式求其穩態解。因(2.4.26)式-(2.4.28)式之 穩態方程式中,軸向位移、側向位移及旋轉角都相互耦合,不易求解。將 (2.4.26)式的穩態側向位移之二次項乘積忽略,其方程式將與 3.1 節 $\beta = 90^{\circ}$ 之穩態方程式(3.1.7)式一樣,故 $\beta = 0^{\circ}$ 之軸向穩態解即可沿用 $\beta = 90^{\circ}$ 時的 穩態解(3.1.8)式。本節中將探討 $\beta = 0^{\circ}$ 之側向位移與旋轉角的穩態解。 本節與 3.2 節一樣,在分析時將梁均分成 N 個元素,每個元素的長度 皆為(3.2.10)式之l。第m 個元素的統御方程式與(2.4.27)式-(2.4.28)式相同, 獨立變數 x 的範圍為 $x_m \le x \le x_{m+1}$,其中 $x_m = (m-1)l$,m = 1, 2, ..., N。本文中 每個元素都用一個級數來表示其統御方程式的解。

$$\diamondsuit$$

$$U(\xi) = \frac{u}{l}, \quad V_s(\xi) = \frac{v_s}{l} \tag{3.5.1}$$

由 (3.2.11) 式 及 (3.5.1) 式之 假 設 ,將(2.4.27) 式 -(2.4.28) 式 無 因 次 化 ,並將 (3.2.18) 式 代入後可得 $(B_2\xi^2 + B_1\xi + B_0 + \mu)V_{s,\xi\xi} + (2B_2\xi + B_1)V_{s,\xi} - \mu\varphi_{s,\xi} + k^2V_s = rk^2 \sin \alpha$ (3.5.2) $\varphi_{s,\xi\xi} + \mu\eta^2(V_{s,\xi} - \varphi_s) = 0$ (3.5.3) 其 中 k 、 r 、 η 及 μ 已分別在(3.2.12)式、(3.2.13)式、(3.2.14)式及(3.2.15)式 中定義。

將(3.5.2)與(3.5.3)式用向量式表示如下

$$\mathbf{RQ}_{s,\xi\xi} + \mathbf{SQ}_{s,\xi} + \mathbf{T}_{s}\mathbf{Q}_{s} = \mathbf{C}_{s}$$
(3.5.4)

$$\mathbf{Q}_{s}(\xi) = \{V_{s} \quad \varphi_{s}\}$$

$$\mathbf{T}_{s} = \begin{bmatrix} K^{2} & 0\\ 0 & -\mu\eta^{2} \end{bmatrix}$$

$$\mathbf{C}_{s} = \begin{bmatrix} rk^{2}\sin\alpha\\ 0 \end{bmatrix}$$
(3.5.5)

其中R及S與(3.2.25)式中定義的R及S的2×2矩陣相同。

由於(3.5.4)式是一組線性常微分非齊性方程,方程式的解可表示為

$$\mathbf{Q}_{s}(\xi) = \sum_{n=0}^{\infty} \mathbf{a}_{n} \xi^{n} + \mathbf{Q}_{sp}$$
(3.5.6)

$$\mathbf{Q}_{sp} = \mathbf{T}_s^{-1} \mathbf{C}_s = \begin{bmatrix} \frac{rk^2 \sin \alpha}{K^2} & 0 \end{bmatrix}$$
(3.5.7)

$$\mathbf{a}_n = \{a_{1n} \ a_{2n}\}$$
(3.5.8)

其中 Q_{sp} 為方程式的特解, T_s^{-1} 是 T_s 的反矩陣, a_{in} (*i*=1,2)是待定係數。

將(3.5.6)式對 ξ 微分 一 次及 微分 二 次後 與(3.2.25)式及(3.5.5)式代入 (3.5.4)式可得 $\sum_{n=2}^{\infty} \{ [(n-2)(n-3)\mathbf{R}_2 + (n-2)\mathbf{S}_2 + \mathbf{T}_s] \mathbf{a}_{n-2} + [(n-1)(n-2)\mathbf{R}_1 + (n-1)\mathbf{S}_1] \mathbf{a}_{n-1}$ (3.5.9) + $n(n-1)\mathbf{R}_0 \mathbf{a}_n \} \xi^{n-2} = \mathbf{0}$

由(3.5.9)式可得遞迴關係式

$$\mathbf{a}_n = \mathbf{A}_n \mathbf{a}_{n-2} + \mathbf{B}_n \mathbf{a}_{n-1}, \quad n \ge 2 \tag{3.5.10}$$

$$\mathbf{A}_{n} = \begin{bmatrix} \frac{-(n-1)(n-2)B_{2} - K^{2}}{n(n-1)(B_{0} + \mu)} & 0\\ 0 & \frac{\mu\eta^{2}}{n(n-1)} \end{bmatrix}, \quad \mathbf{B}_{n} = \begin{bmatrix} \frac{-(n-1)B_{1}}{n(B_{0} + \mu)} & \frac{\mu}{n(B_{0} + \mu)}\\ \frac{-\mu\eta^{2}}{n} & 0 \end{bmatrix}$$

其中B₀、B₁及B₂已在(3.2.18)式定義, k、η、μ及K已分別在(3.2.12)式、 (3.2.14)式、(3.2.15)式及(3.2.23)式中定義。 由(3.5.10)式可知 a_0 與 a_1 是獨立係數, a_n 可寫成

$$\begin{aligned} \mathbf{a}_{n} &= \mathbf{Y}_{0}^{n} \mathbf{a}_{0} + \mathbf{Y}_{1}^{n} \mathbf{a}_{1}, \ n \geq 0 \end{aligned} \tag{3.5.11} \\ \mathbf{a}_{0} &= \{a_{10} \quad a_{20}\}, \ \mathbf{a}_{1} = \{a_{11} \quad a_{21}\} \\ \mathbf{Y}_{0}^{0} &= \mathbf{Y}_{1}^{1} = \mathbf{I}, \quad \mathbf{Y}_{0}^{1} = \mathbf{Y}_{1}^{0} = \mathbf{0} \\ &\neq \mathbf{P} \ \mathbf{I} \ \mathbf{D} \ \mathbf{0} \ \mathbf{\beta} \ \mathbf{J} \ \mathbf{\beta} \ 2 \times 2 \ \mathbf{6} \ \mathbf{P} \ \mathbf{\Omega} \ \mathbf{\beta} \ \mathbf{\beta} \ \mathbf{\beta} \ 2 \times 2 \ \mathbf{6} \ \mathbf{P} \ \mathbf{\Omega} \ \mathbf{\beta} \ \mathbf{\beta} \ \mathbf{\beta} \ \mathbf{\beta} \ 2 \times 2 \ \mathbf{6} \ \mathbf{\beta} \ \mathbf{\Omega} \ \mathbf{\beta} \ \mathbf{$$

將(3.5.11)式及(3.5.13)式代入(3.5.6)式可得

$$\mathbf{Q}_{s}(\xi) = (\mathbf{I} + \sum_{n=2}^{\infty} \xi^{n} \mathbf{Y}_{0}^{n}) \mathbf{a}_{0} + (\xi \mathbf{I} + \sum_{n=2}^{\infty} \xi^{n} \mathbf{Y}_{1}^{n}) \mathbf{a}_{1} + \mathbf{Q}_{sp}$$
(3.5.14)

由(3.5.14)式表示如下

$$\mathbf{Q}_{s}(\xi) = \mathbf{E}_{0}(\xi)\mathbf{a}_{0} + \mathbf{E}_{1}(\xi)\mathbf{a}_{1} + \mathbf{Q}_{sp} = \mathbf{E}^{t}(\xi)\mathbf{a} + \mathbf{Q}_{sp}$$
(3.5.15)

$$\mathbf{E}_{0}(\xi) = \mathbf{I} + \sum_{n=2}^{\infty} \xi^{n} \mathbf{Y}_{0}^{n}, \quad \mathbf{E}_{1}(\xi) = \xi \mathbf{I} + \sum_{n=2}^{\infty} \xi^{n} \mathbf{Y}_{1}^{n}$$
(3.5.16)

$$\mathbf{E}(\xi) = \begin{bmatrix} \mathbf{E}_0(\xi) \\ \mathbf{E}_1(\xi) \end{bmatrix}$$
(3.5.17)

$$\mathbf{a} = \{\mathbf{a}_0 \quad \mathbf{a}_1\} \tag{3.5.18}$$

其中 $E_0(\xi)$ 與 $E_1(\xi)$ 都是2×2的矩陣, $E(\xi)$ 是由 $E_0(\xi)$ 與 $E_1(\xi)$ 組成的4×2的矩陣, a_0 與 a_1 都是2×1的待定係數矩陣,a是由 a_0 與 a_1 組成的4×1的待定係數矩陣。待定係數 a_0 與 a_1 必需由邊界條件決定。

本節中將梁元素兩端點的位移及節點力表示成待定係數向量 a_0 與 a_1 的函數。本節中以()_j表示()在元素第j(j=1,2)個節點的值,以()^m_j表示() 在第m(m=1,2,...,N)個元素的節點j(j=1,2)之值。本節中令 $\xi_1 = -0.5$ 及 $\xi_2 = 0.5$ 。

元素在第j個節點的廣義位移向量以 $Q_j(j=1,2)$ 表示, V_j 及 φ_j 分別表示元素在第j個節點的穩態的側向位移及旋轉角。由(3.5.15)式可得

$$\mathbf{Q}_j = \{V_j \quad \varphi_j\} = \mathbf{Q}_s(\xi_j) = \mathbf{N}_{sj}(\xi_j) \mathbf{a} + \mathbf{Q}_{sp}$$
(3.5.19)

$$\mathbf{N}_{sj}(\xi_j) = \mathbf{E}^t(\xi_j) \tag{3.5.20}$$

其中 $N_{si}(\xi_i)$ 為2×4的矩陣。

因為在穩態時 $u_d = v_d = \varphi_d = 0$,所以(2.4.15)式及(2.4.16)式在穩態時可 表示如下

$$F_2 = EAu_{s,x}v_{s,x} + \alpha_s GA(v_{s,x} - \varphi_s)$$
(3.5.21)

$$M = EI\varphi_{s,x}$$

將(3.5.21)式及(3.5.22)式無因次化

$$F_2 = EA[(U_{s,\xi} + \mu)V_{s,\xi} - \mu\varphi_s]$$
(3.5.23)

(3.5.22)

$$M = \frac{EI}{l}\varphi_{s,\xi}$$
(3.5.24)

其中 μ 及 $U_{s,\xi}$ 已分別在(3.2.15)式及(3.2.18)式中定義。

元素在第*j*個節點的穩態的廣義節點力向量以**F**_{*j*}表示,*F*_{2*j*}及*M*_{*j*}分別 表示元素在第*j*個節點的側向力及力矩。將(3.2.18)式、(3.5.7)式及(3.5.19) 式代入(3.5.23)式及(3.5.24)式中可得 **E** $F_{j} = \{F_{2j} \ M_{j}\}$ (3.5.25) $F_{2j} = EA\{[U_{s,\xi}(\xi_{j}) + \mu]\mathbf{e}_{1}^{t}\mathbf{N}_{sj,\xi} - \mu\mathbf{e}_{2}^{t}\mathbf{N}_{sj}\}\mathbf{a}$ (3.5.26) $M_{j} = \frac{EI}{l}\mathbf{e}_{2}^{t}\mathbf{N}_{sj,\xi}\mathbf{a}$ (3.5.27)

其中 $e_1 = \{1 \ 0\}$ 及 $e_2 = \{0 \ 1\}$, N_{sj}已在(3.5.20)式中定義。

由(3.5.25)式-(3.5.27)式可得

$$\mathbf{F}_j = \mathbf{N}_{Fj} \mathbf{a} \tag{3.5.28}$$

$$\mathbf{N}_{Fj} = \begin{bmatrix} EA\{[U_{s,\xi}(\xi_j) + \mu]\mathbf{e}_1^t \mathbf{N}_{sj,\xi} - \mu \mathbf{e}_2^t \mathbf{N}_{sj}\} \\ \frac{EI}{l} \mathbf{e}_2^t \mathbf{N}_{sj,\xi} \end{bmatrix}$$
(3.5.29)

其中N_{Fj}為2×4的矩陣。

旋轉傾斜梁穩態的邊界條件有固定端位移為零和自由端外力為零,以 及相鄰兩元素在共同節點上都需滿足變形的相合條件及力的平衡條件,即 有相同的側向位移、旋轉角、側向力及力矩。因此,可得到以下的邊界條 件及連續條件

 $\mathbf{Q}_1^1 = \mathbf{0}$ (3.5.30)

 $Q_2^m = Q_1^{m+1}$

 $\mathbf{F}_2^m = \mathbf{F}_1^{m+1}$

 $F_{2}^{N} = 0$

其中

 Q_{j}^{m} 表示第 m 個元素在第j個節點的位移向量, V_{j}^{m} 及 φ_{j}^{m} 分別表示第 m 個元素在第j個 素在第j個節點的穩態的側向位移及旋轉角, F_{j}^{m} 表示第 m 個元素在第j個 節點的節點力向量, F_{2j}^{m} 及 M_{j}^{m} 分別表示第 m 個元素在第j個節點的側向力 及力矩, N_{sj}^{m} 及 N_{Fj}^{m} 分別表示第 m 個元素在第j個節點的 N_{sj} 及 N_{Fj} 向量, N_{sj} 及 N_{Fj} 已分別在(3.5.20)式及(3.5.29)式中定義, a^{m} 表示第 m 個元素的待 定係數向量。

旋轉傾斜梁穩態的自然頻率,可由穩態時梁結構的兩端點及內部節點

其中 \mathbf{a}_G 表示整體梁的待定係數向量, K 為 4N×4N 的矩陣, \mathbf{a}_G 為 4N×1的矩陣, b 為 4N×1的行矩陣, b 的元素除第一個元素為(3.5.7)式中之 $\frac{rk^2 \sin \alpha}{K^2}$ 外其餘皆為零。

解聯立方程式(3.5.31)式即可求得 \mathbf{a}_G ,將 \mathbf{a}_G 中之 \mathbf{a}^m (m=1, 2, ..., N)分別 代入遞迴關係(3.5.10)式求得 a_n ,即可由(3.5.1)式、(3.5.4)式及(3.5.6)式求得 $v_s 與 \varphi_s$ 。

3.6 β=0°時旋轉傾斜梁的振動方程式

如前所述,振動造成的位移,即(2.3.3)式之ud、(2.3.4)式中的vd及

(2.3.5)式中的 φ_d 都是擾動量,所以在振動方程式的推導中僅保留 $u_d \times v_d \times \varphi_d$ 及其微分到一次項。在不致引起混淆的情況下,為了推導時的方便,在本節中將(2.4.29)式-(2.4.31)式中的 $u_d \times v_d \mathcal{Q} \varphi_d$ 的下標去掉,即以 $u \times v \mathcal{Q} \varphi_d$ 代表振動所造成的位移,所以旋轉傾斜 Timoshenko 梁設定角 $\beta = 0^\circ$ 時振動的統御方程式(2.4.29)式-(2.4.31)式可改寫成

$$EA(u_{,xx} + v_{s,x}v_{,xx} + v_{,x}v_{s,xx}) = \rho A(\ddot{u} - \underline{2\dot{v}\Omega} - u\Omega^2)$$
(3.6.1)

$$EA(u_{,x}v_{s,x} + u_{s,x}v_{,x})_{,x} + \alpha_s GA(v_{,xx} - \varphi_{,x}) = \rho A(\ddot{v} + \underline{2i\Omega} - v\Omega^2)$$
(3.6.2)

$$EI\phi_{,xx} = \rho I \ddot{\varphi} - \alpha_s GA(v_{,x} - \varphi) \tag{3.6.3}$$

本節與 3.2 節一樣,在分析時將梁均分成 N 個元素,每個元素的長度 皆為(3.2.10)式之l。第m 個元素的統御方程式與(3.6.1)式-(3.6.3)式相同,但 其獨立變數 x 的範圍為 $x_m \le x \le x_{m+1}$,其中 $x_m = (m-1)l$,m=1,2,...,N。本文 中每個元素都用一個級數來表示其統御方程式的解。

由(3.2.11)-(3.2.15)式及(3.5.1)式之假設,將(3.6.1)-(3.6.3)式無因次化可得

$$U_{\xi\xi\xi} + V_{s,\xi}V_{\xi\xi} + V_{s,\xi\xi}V_{\xi} + k^{2}U = \frac{\rho l^{2}}{E}(\ddot{U} - \underline{2\Omega}\dot{V})$$
(3.6.4)

$$(V_{s,\xi}U_{,\xi} + U_{s,\xi}V_{,\xi})_{,\xi} + \mu(V_{,\xi\xi} - \varphi_{,\xi}) + k^2 V = \frac{\rho l^2}{E}(\ddot{V} + \underline{2\Omega}\dot{U})$$
(3.6.5)

$$\varphi_{\xi\xi\xi} + \mu \eta^2 (V_{\xi\xi} - \varphi) = \frac{\rho l^2}{E} \ddot{\varphi}$$
(3.6.6)

因振動方程式(3.6.4)式-(3.6.6)式是耦合的偏微分方程式,須同時求解。若振動方程式(3.6.4)式-(3.6.6)式有自然頻率存在,則其解的形式必可

$$\mathbf{Q}(\xi,t) = [\mathbf{Q}_R(\xi) + i\mathbf{Q}_I(\xi)]e^{i\omega t}$$
(3.6.7)

$$Q(\xi,t) = \{ U \ V \ \varphi \}, \quad Q_R(\xi) = \{ U_R \ V_R \ \varphi_R \}, \quad Q_I(\xi) = \{ U_I \ V_I \ \varphi_I \}$$
(3.6.8)
其中 $i = \sqrt{-1}$, ω 為自然頻率。

將(3.2.12)式、(3.6.7)式及(3.6.8)式代入(3.6.4)式-(3.6.6)式可得

$$U_{\xi\xi} + V_{s,\xi} V_{\xi\xi} + V_{s,\xi\xi} V_{\xi} + (k^2 + K^2)U + \underline{2ikKV} = 0$$
(3.6.9)

$$(V_{s,\xi}U_{,\xi} + U_{s,\xi}V_{,\xi})_{,\xi} + \mu(V_{,\xi\xi} - \varphi_{,\xi}) - \underline{2ikKU} + (k^2 + K^2)V = 0$$
(3.6.10)

$$\varphi_{\xi\xi} + \mu \eta^2 V_{\xi} + (K^2 - \mu \eta^2) \varphi = 0$$
(3.6.11)

其中K為無因次自然頻率,已在(3.2.23)式中定義。

將
$$(3.6.7)$$
式代入 $(3.6.9)$ 式- $(3.6.11)$ 式可得

$$U_{R,\xi\xi} + V_{s,\xi}V_{R,\xi\xi} + V_{s,\xi\xi}V_{R,\xi} + (k + K)U_{R} - \underline{2kK}V_{I} = 0$$
(3.0.12)

$$U_{I,\xi\xi} + V_{s,\xi} V_{I,\xi\xi} + V_{s,\xi\xi} V_{I,\xi} + (k^2 + K^2) U_I + \underline{2kKV_R} = 0$$
(3.6.13)

$$(V_{s,\xi}U_{R,\xi} + U_{s,\xi}V_{R,\xi})_{,\xi} + \mu(V_{R,\xi\xi} - \varphi_{R,\xi}) + \underline{2kKU_I} + (k^2 + K^2)V_R = 0$$
(3.6.14)

$$(V_{s,\xi}U_{I,\xi} + U_{s,\xi}V_{I,\xi})_{,\xi} + \mu(V_{I,\xi\xi} - \varphi_{I,\xi}) + (k^2 + K^2)V_I - \underline{2kKU_R} = 0$$
(3.6.15)

$$\varphi_{R,\xi\xi} + \mu \eta^2 V_{R,\xi} + (K^2 - \mu \eta^2) \varphi_R = 0$$
(3.6.16)

$$\varphi_{I,\xi\xi} + \mu \eta^2 V_{I,\xi} + (K^2 - \mu \eta^2) \varphi_I = 0$$
(3.6.17)

將(3.6.12)式-(3.6.17)式以向量式表示如下

(3.6.18)式是耦合的常微分方程式,其解應有如下的形式

$$\mathbf{Q}_{RI} = \begin{cases} U_R \\ U_I \\ V_R \\ V_R \\ V_I \\ \varphi_R \\ \varphi_I \end{cases} = \sum_{n=0}^{\infty} \begin{cases} C_n \\ D_n \\ E_n \\ E_n \\ F_n \\ G_n \\ H_n \end{cases} \boldsymbol{\xi}^n$$
(3.6.22)

其中 C_n 、 D_n 、 E_n 、 F_n 、 G_n 、 H_n 為待定係數。

將(3.6.19)式-(3.6.22)式代入(3.6.18)式,求出待定係數間的遞迴關係, 其方法可參考文獻[14]。由於本研究未將重點置放於此,本文僅提出推導 式提供爾後研究之參考。當傾斜角 $\alpha = 0^{\circ}$ 時,側向穩態解 $V_s = 0$,所以 (3.6.18)式將退化成與文獻[13]有相同的統御方程式,本文中將梁分成 N 段,以分段元素的數值方法求得旋轉傾斜Timoshenko梁振動的自然頻率及 振態,其數值結果可以與文獻[13]比較。 $\beta = 0^{\circ}$ 時,因科氏力的影響,軸向 振動與側向振動相互耦合,細長比在軸向振態與側向振態對應的自然頻率 接近時,軸向與側向振動的耦合更為顯著,在第五章數值例題中將探討特 徵值曲線轉向(Eigenvalue curve veering)的現象。

第四章 數值計算方法與程序

本章在說明當設定角β=90°時,旋轉傾斜 Timoshenko 梁運動的自然 頻率及其對應之振動模態的數值計算方法與程序。

由本文前一章的內容可知,旋轉傾斜 Timoshenko 梁之軸向振動的振 態u_R及無因次自然頻率 K 可以由(3.2.7)式-(3.2.9)式求得。將(3.2.18)式之軸 向穩態解及(3.2.19)式代入(3.2.16)式及(3.2.17)式可得側向振動與旋轉角的 統御方程式(3.2.21)式及(3.2.22)式。由(3.2.31)式及(3.2.33)式算出(3.2.36)式 之 E(č)的4×2的矩陣,由節點位移向量(3.3.1)式、節點力向量(3.3.12)式及 (3.3.14)式之邊界條件與連續條件,組成(3.4.2)式的剛度矩陣 K,K為 (3.2.23)式中分段元素的無因次自然頻率K的函數。若

 $D(K) = \det \mathbf{K}(K) = 0$

(4.1.1)

則(3.4.1)式之未定係數向量 C_G 有非零解,亦即由(4.1.1)式可求得分段元素的無因次自然頻率K。

1896

此外,由於矩陣K的維數隨著分段元素的個數增加而變大,為了避免 行列式的數值超過計算機所能處理的範圍,所以行列式值在數值程序中均 做以下的標準化 (normalization)

$$S(K) = \frac{D(K)}{D(0)}$$
(4.1.2)

本章解(4.1.1)式所採用的計算程序說明如下

(1) 設定起始值 K_0 及增量 ΔK 。令 $K_n = K_0 + n\Delta K$, $n = 0, 1, 2, \cdots$, 計算

 $S(K_n)$,一直到發現 $S(K_I)S(K_{I+1}) < 0$ 。

(2) 令 K_L = K_I, K_R = K_{I+1}, S_L = S(K_I), S_R = S(K_{I+1}), 其中下標 L 及 R
 分別表示左界及右界。

(3) 以二分法取該區間的中點
$$K_M = \frac{K_L + K_R}{2}$$
。
(4) 計算 $S(K_M)$, 令 $S_M = S(K_M)$ 。
(5) 若 $S_L S_M < 0$,則取 $[K_L, K_M]$ 為新的區間, 令 $K_R = K_M$, $S_R = S_M$ 。
(6) 若 $S_L S_M > 0$,則取 $[K_M, K_R]$ 為新的區間, 令 $K_L = K_M$, $S_L = S_M$ 。
(7) 若 $\frac{|K_R - K_L|}{|K_L|} < e_C$,其中 e_C 為給定的容許誤差值。
令 $K_{\omega} = K_M$, K_{ω} 即為(4.1.1)式分段元素的無因次自然頻率解,接著進
行下一步驟,否則回到步驟(3)。

- (8) 以逆冪法[13]解(3.4.4)式中 λ =1時之特徵向量,求得該無因次自然頻率 K_{ω} 的待定係數向量 C_{G} 。
- (9)利用(3.2.7)式、(3.2.27)式及(3.2.31)式求得該無因次自然頻率的振動模
 態。

(10)利用(3.2.23)式求得整體梁的無因次自然頻率 $\overline{K}_{\omega}(\overline{K}_{\omega} = NK_{\omega})$ 。

(11)回到步驟(1)繼續求下一個自然頻率及對應的振動模態。

第五章 數值例題

本章將以數值例題探討旋轉傾斜 Timoshenko 梁的自然頻率的收斂性與 準確性、分析無因次轉速 $\overline{k} = 0 \gtrsim$ Timoshenko 梁的自然頻率、設定角 $\beta = 0^{\circ}$ 時旋轉 Timoshenko 梁在不同無因次轉速 \overline{k} 時之自然頻率,以及設定 角 $\beta = 90^{\circ}$ 時具不同傾斜角 $\alpha \gtrsim$ 旋轉傾斜 Timoshenko 梁在不同無因次轉速 \overline{k} 時之自然頻率,最後再探討 $\alpha = 0^{\circ} \gtrsim$ 旋轉 Timoshenko 梁當軸向振態與側 向振態對應的自然頻率接近時,在 $\beta = 0^{\circ} \gtrsim$ 特徵值曲線轉向(Eigenvalue curve veering)與 $\beta = 90^{\circ} \gtrsim$ 特徵值曲線交叉(Eigenvalue curve crossing)的現 象。其中將考慮不同的無因次轉軸半徑 \overline{r} 、無因次轉速 \overline{k} 、傾斜角 α 、設 定角 β 及梁的細長比万對自然頻率所產生的影響。

因旋轉傾斜梁之使用一般在彈性範圍內,而大部分工程材料的降伏應 變遠小於1,本文在推導時假設穩態解的軸向應變 $\mathcal{E} << 1$,所以本章中將最 大應變 \mathcal{E}_{max} 定為 10^{-2} ,視應變小於最大應變 \mathcal{E}_{max} 時的轉速為合理範圍,因 此在本章中所分析的例題之轉速都考慮在合理的轉速值中。另外,根據描 述需要,本章中第*i* 個振態指的是對應於無因次轉速 $\overline{k} = 0$ 時的第*i* 個無因 次自然頻率 \overline{K}_i 之振態;軸向振態指的是該振態在無因次轉速 $\overline{k} = 0$ 時的振 動是軸向振動;側向振態指的是該振態在無因次轉速 $\overline{k} = 0$ 時的振動是側 向振動。

5.1 收斂性分析

為了確保分析結果的精度,文獻[14,20]都使用了三個元素的級數解, 但文獻[14]中僅分析傾斜角α=0°之旋轉梁,為了確保α≠0°時分析結果的 精度,本節中探討了使用不同的元素數目N時,旋轉傾斜Timoshenko梁之 自然頻率的收斂情形,在本章中所有的計算都是採用雙精度實數分析。文 獻[14]提到旋轉梁之細長比可很大時,在高轉速使用一個元素的級數解無 法求得較高的自然頻率。文獻[20]發現當轉速、細長比及自然頻率增加時 因雙精度的有效位數不夠,一個元素的級數解無法求得正確的自然頻率, 文獻[14]及文獻[20]都使用二次曲線內插法(Parabolic Interpolation Method) 求得自然頻率。本節分析了無因次轉軸半徑 $\bar{r}=0$ 、傾斜角 $\alpha=0^{\circ}$ 、細長比 $\bar{\eta}=750$ 、無因次轉速 $\bar{k}=0.1$ 及設定角 $\beta=0^{\circ}$,90°的旋轉傾斜梁在元素數 目 N=1, 2, 3, 5, 10時的無因次自然頻率及收斂項數,由(3.1.10)式得出此時 最大應變為 $\varepsilon_{max}=5\times10^{-3}$ 。由表一與表二之結果可以看出 $N \ge 2$ 時所得之 無因次自然頻率與級數解收斂時的項數都與文獻[14]相同,但文獻[14]使 用的二次曲線內插法之程式似乎不夠嚴謹,在N=1時,本文使用的二分法 可以比文獻[14]收斂到較高頻的自然頻率、

本節還分析了無因次轉軸半徑F=1、傾斜角 $\alpha=0^{\circ}$ 、細長比 $\overline{\eta}=1000$ 、無因次轉速 $\overline{k}=0.06$ 及設定角 $\beta=0^{\circ}$,90°的旋轉傾斜梁在元素 數目N=1,2,3,5,10時的無因次自然頻率及對應該無因次自然頻率之級數 解收斂時所需的項數,由(3.1.10)式得出此時最大應變為 $\varepsilon_{max} = 5.4 \times 10^{-3}$, 其結果如表三所示。表四至表六則為無因次轉軸半徑F=1.5、細長比 $\overline{\eta}=1000$ 、無因次轉速 $\overline{k}=0.06$ 及傾斜角 $\alpha=0^{\circ}$,15°,30°,45°,60°,90° 六種情況的旋轉傾斜Timoshenko梁在N=1,2,3,5,10時之無因次自然頻率 及對應該無因次自然頻率之級數解收斂時所需的項數,由(3.1.10)式得出此 時最大應變為 $\varepsilon_{max} = 7.2 \times 10^{-3}$ 。由表三至表六可以看到N=1時,高頻的無 因次自然頻率仍有無法收斂到答案的狀況;N=2時,求得的無因次自然頻 率與N=3時會有極少許的差異;N=3,5,10時其收斂的自然頻率則都相 同。檢查其行列式值(4.1.2)式,如同文獻[20]發現,由(3.2.18)式及(3.2.31) 式可知當無因次轉速 \overline{k} 、細長比 $\overline{\eta}$ 及無因次自然頻率 \overline{K} 增加時,(3.2.33)式 中之 $Y_i^n(i=0,1)$ 會隨著n增加逐漸增加,變得很大,再減小,這可能會造 成N=1時之級數解有效位數不夠,使行列式值抖動,因而無法求得正確的 自然頻率。由表一至表六中可以看出當N增加時,其級數解收斂所需的項 數越來越小,而由(3.2.12)式、(3.2.14)式及(3.2.23)式可以發現當N增加 時,分段元素的無因次轉速k、細長比 η 及無因次自然頻率K會減少,所 以雙精度之有效位數應已足夠。本章中為了確保使用雙精度計算時的收斂 性,爾後都是採用N=3來分析例題。

5.2 準確性分析

為探討本文方法的準確性,本節中分析了旋轉傾斜 Timoshenko 梁在傾 斜角 $\alpha = 0^{\circ}$, 30°、設定角 $\beta = 90^{\circ}$ 、無因次轉軸半徑 $\overline{r} = 1$ 及無因次轉速 $\overline{k} = 0$, 0.06 時在不同細長比下的前六個無因次自然頻率 $\overline{K}_{i}(i = 1 \sim 6)$ 。當傾 斜角 $\alpha = 0^{\circ}$ 時為旋轉傾斜梁的特例,此時本例題與文獻[13]中分析的旋轉 梁一樣,當無因次轉速 $\overline{k} = 0$ 時,本例題的部份結果可與文獻[13]的結果比 較,由表七中看出當細長比 $\overline{\eta} = 10$, 20, 50 時與文獻[13]四捨五入後的值相 同。另由表七至表九中比較本文與文獻[20]之無因次自然頻率,發現旋轉 傾斜 Timoshenko 梁軸向振態對應的無因次自然頻率與旋轉傾斜 Euler 梁的 結果相同,且表八與表九中看出軸向振態對應的無因次自然頻率與較於轉 傾斜 Euler 梁的無因次自然頻率略小,此為 Euler 梁忽略剪變形與旋轉慣量 之影響所致。圖九至圖十一取細長比半對數座標, \overline{K}_{i}^{T} 代表旋轉傾斜 Timoshenko 梁第 *i* 個側向振態對應的無因次自然頻率,旋轉傾斜 旋轉傾斜 Euler 梁的側向振態對應的無因次自然頻率之比值隨著細長比的 增加而漸趨近於 1,意謂細長比大時之旋轉傾斜梁可視之為旋轉傾斜 Euler 梁分析,這是合理的結果。當細長比万介於 100 與 500 之間時,旋轉傾斜 Timoshenko 梁側向振態對應的自然頻率接近旋轉傾斜 Euler 梁的結果,欲 求旋轉傾斜 Timoshenko 梁之自然頻率尚可適用旋轉傾斜 Euler 梁分析,但 當細長比可小於 100 時,由圖九至圖十一中顯示側向振態對應的無因次自 然頻率比值隨著高頻減小,此時旋轉傾斜梁之自然頻率分析應使用旋轉傾 斜 Timoshenko 梁之統御方程來分析才較合理與準確。

5.3 無因次轉速k = 0時的個案分析

當無因次轉速 $\bar{k} = 0$ 時,無因次自然頻率 \bar{K} 與傾斜角 α 、設定角 β 及無 因次轉軸半徑 \bar{r} 都無關,僅與細長比77有關。表十為 $\bar{k} = 0$ 時不同細長比77 之旋轉傾斜 Timoshenko 梁的前入個無因次自然頻率 $\bar{K}_i(i = 1 \sim 8)$,表中無因 次自然頻率 \bar{K}_i 加上(a)表示該無因次自然頻率對應的振態為軸向振態,未 m(a)者表示該無因次自然頻率對應的振態為側向振態。由表十可以發現旋 轉傾斜 Timoshenko 梁之軸向振態的無因次自然頻率與細長比77 無關;而側 向振態的前三個無因次自然頻率隨著細長比77 的增加而減少,當細長比 $\bar{\eta} = 8.1 \sim 8.15$ 時,第一個軸向振態對應的無因次自然頻率和當接近,如長比 $\bar{\eta} = 8.05 \sim 8.1$ 時,第二個軸向 振態對應的無因次自然頻率相當接近,細長比 $\bar{\eta} = 8.05 \sim 8.1$ 時,第二個軸向 振態對應的無因次自然頻率則和第四個側向振態對應的無因次自然頻率相 當接近,且細長比 $\bar{\eta} = 8.1$ 時,第一個軸向振態對應的無因次自然頻率出現 在第二個自然頻率,而細長比 $\bar{\eta} = 8.15$ 時,第一個軸向振態對應的無因次 自然頻率則出現在第三個自然頻率, $\bar{\eta} = 8.1$, 8.15的振動模態本文將在 5.6 節中說明。 5.4 設定角 $\beta = 0^{\circ}$ 時的個案分析

本節中探討當設定角 $\beta = 0^{\circ}$ 時,不同無因次轉軸半徑 \overline{r} 在不同無因次 轉速 \overline{k} 與不同細長比 $\overline{\eta}$ 之旋轉傾斜 Timoshenko 梁的無因次自然頻率 \overline{K} 及振 動模態的變化。

表十一至表十六為傾斜角 $\alpha = 0^\circ$ 時,無因次轉軸半徑 $\bar{r} = 0, 0.5, 1$ 、無 因次轉速 $\overline{k} = 0, 0.01, 0.03, 0.06$ 與細長比 $\overline{\eta} = 10, 20, 50, 100, 500, 1000 之旋轉$ Timoshenko 梁的前八個無因次自然頻率 \overline{K}_i (*i* = 1~8),由(3.1.10)式知最大應 變值隨無因次轉速及無因次轉軸半徑增加而增加,因此取本例題最大值 $\bar{r}=1$ 及 $\bar{k}=0.06$ 可得最大應變為 $\varepsilon_{max}=5.4\times10^{-3}$ 。表中無因次自然頻率 \overline{K}_i 加上(a)表示該無因次自然頻率對應的振態在 $\overline{k}=0$ 時為軸向振態,沒有加 上(a)表示該無因次自然頻率對應的振態在 $\bar{k} = 0$ 時為側向振態, 由(2.4.29)式及(2.4.30)式可知科氏力不為零,故其軸向和側向振動會互相耦合。圖十 二與圖十三為 $\bar{r}=1$ 、傾斜角 $\alpha=0^{\circ}$ 、設定角 $\beta=0^{\circ}$ 及轉速 $\bar{k}=0, 0.03, 0.06$ 在不同的細長比時前六個無因次自然頻率對應的振動模態(以k=0為基 礎)。由圖十二可以發現當細長比7=10時,第五與第六個自然頻率對應的 振態有些微的軸向與側向耦合振動,第二與第三個自然頻率對應的振態則 為較明顯的軸向與側向耦合振動,且無因次轉速k.越大越明顯;由圖十三 可以發現當細長比 $\overline{\eta} = 50$ 時,第一與第二個自然頻率對應的側向模態仍可 看出有些微的軸向與側向耦合振動,第四個自然頻率對應的軸向振態則為 較明顯的軸向與側向耦合振動,且亦隨無因次轉速k 越大越明顯。若單由 圖十二細長比河=10之第三個自然頻率對應的軸向振態與圖十三細長比 $\overline{\eta} = 50$ 之第四個自然頻率對應的軸向振態來比較,由表十一、表十三或表 十五可以發現,在無因次轉速 $\overline{k}=0$ 時,若軸向振熊與側向振熊的自然頻率 愈接近($\overline{\eta}$ = 10較接近),則其在 \overline{k} ≠ 0時之軸向振態應有更明顯的軸向與側

向耦合,且轉速愈大耦合愈嚴重。由表十一至表十六可以發現 $\beta = 0^{\circ}$ 時, 隨著轉速 \overline{k} 增加,無因次自然頻率 \overline{K}_i 會隨著增加,且在細長比 $\overline{\eta}$ 與無因次 轉軸半徑 \overline{r} 愈大時愈明顯。

5.5 設定角 $\beta = 90^{\circ}$ 時的個案分析

本節中探討當設定角 $\beta = 90^{\circ}$ 時,具不同的無因次轉軸半徑 \overline{r} 、細長比 $\overline{\eta}$ 及傾斜角 α 之旋轉傾斜 Timoshenko 梁在不同的無因次轉速 \overline{k} 時的無因次 自然頻率 \overline{K} 及振動模態的變化。

表十七至表三十一為無因次轉軸半徑 $\bar{r}=0.5$, 1, 1.5、細長比 $\bar{\eta}=10$, 20, 50, 100, 1000、傾斜角 $\alpha = 0^{\circ}$, 15°, 30°, 45°, 60°, 90°及無因次轉速 $\overline{k} = 0$, 0.03, 0.06 之旋轉傾斜 Timoshenko 梁的前十二個無因次自然頻率 \overline{K}_i (*i* =1~12), 由(3.1.10)式以本例題之無因次轉軸半徑 $\overline{r} = 1.5$ 及無因次轉速 $\overline{k} = 0.06$ 可得 最大應變為 $\varepsilon_{\text{max}} = 7.2 \times 10^{-3}$ 。表中無因次自然頻率 $\overline{K_i}$ 加上(a)表示該振動頻 率對應的振態為軸向振態。由(2.4.32)式及(2.4.33)式可知當 $\beta = 90^{\circ}$ 時,梁 未變形之慣性力僅有軸向分量,故旋轉梁的穩態解僅有軸向變形,且由 (2.4.35)式-(2.4.37)式可知其振動的統御方程式中科氏力項為零,旋轉傾斜 Timoshenko 梁的軸向振動與側向振動不會耦合,軸向振態與其無因次自然 頻率可以由(3.2.7)式-(3.2.9)式求出,且由(3.2.8)式可知該軸向振態對應的 無因次自然頻率與傾斜角α 無關但會隨無因次轉速的增加而減少,由表十 七至表三十一可見在合理的轉速範圍內,無因次轉速對軸向振態對應的無 因次自然頻率之影響甚小。圖十四至圖十六為根據表二十二至表三十一所 繪之不同細長比 $\overline{\eta}$ 之旋轉傾斜 Timoshenko 梁的 $\overline{K}_i - \alpha$ 曲線(無因次自然頻 率-傾斜角曲線),由表十七至表三十一及圖十四至圖十六可以發現側向振 態的無因次自然頻率 \overline{K}_i 隨著無因次轉速 \overline{k} 增加而增加,且i愈小(即較低頻

的自然頻率)、細長比 $\overline{\eta}$ 愈大及無因次轉軸半徑 \overline{r} 愈大時其增加率愈明顯, 當 $\overline{k} \neq 0$ 時,側向振態的無因次自然頻率 \overline{K}_i 則隨著傾斜角α增加而減少, 且其減少率隨無因次轉速 \overline{k} 、細長比 $\overline{\eta}$ 及無因次轉軸半徑 \overline{r} 增加而增加, 隨i的增加而減少。

5.6 特徵值曲線交錯與特徵值曲線交叉

由 5.4 節中傾斜角 $\alpha = 0^{\circ}$ 及設定角 $\beta = 0^{\circ}$ 時,可以看出旋轉梁的無因次 自然頻率會隨著無因次轉速成改變,且軸向振態與側向振態的自然頻率愈 接近,其對應之振動模態的耦合愈明顯。由 5.3 節中可得,當細長比 $\overline{\eta} = 8.1 \sim 8.15$ 時,第一個軸向振態對應的自然頻率和第二個側向振態對應 的自然頻率相當接近,在本節中考慮細長比可在8.1~8.5區間之無因次自然 頻率 \overline{K} ,表三十二至表三十四為無因次轉軸半徑 $\overline{r}=1$ 、傾斜角 $\alpha=0^{\circ}$ 及設 定角 $\beta = 0^{\circ}$ 之旋轉 Timoshenko 梁在不同無因次轉速 \overline{k} 的前六個無因次自然 頻率 $\overline{K}_i(i = 1 \sim 6)$,而表三十五至表三十七為無因次轉軸半徑 $\overline{r} = 1$ 、傾斜角 $\alpha = 0^{\circ}$ 及設定角 $\beta = 90^{\circ}$ 之旋轉 Timoshenko 梁在不同無因次轉速 \overline{k} 的前六個 無因次自然頻率 \overline{K}_i ($i = 1 \sim 6$)。圖十七與圖十八為表三十二至表三十四之無 因次自然頻率-無因次轉速曲線,傾斜角 $\alpha = 0^{\circ}$ 、無因次轉軸半徑r = 1及 細長比 $\overline{\eta} = 8.0 \sim 8.5$ 之旋轉 Timoshenko 梁在設定角 $\beta = 0^{\circ}$ 時之特徵值曲線轉 向(Eigenvalue curve veering), 與旋轉 Euler 梁在兩個自然頻率很接近時(細 長比為 38~40 及 77~80 時)發生特徵值曲線轉向的現象一致[21]。因表三十 二至表三十四旋轉 Timoshenko 梁之第三個無因次自然頻率隨著轉速的增加 而增加,因此特徵值曲線轉向後交錯而過,沒有相交。圖十九與圖二十為 無因次轉軸半徑 $\bar{r}=1$ 、傾斜角 $\alpha=0^{\circ}$ 及設定角 $\beta=0^{\circ}$ 在不同轉速時,細長

 $\beta = 0^{\circ}$ 時軸向振動與側向振動相互耦合,由圖十二、圖十三、圖十九及 圖二十可看出細長比在軸向振態與側向振態對應的自然頻率接近時,軸向 與側向振動的耦合更為顯著。另圖二十一與圖二十二為表三十五至表三十 七之無因次自然頻率-無因次轉速曲線,傾斜角α=0°、無因次轉軸半徑 $\bar{r}=1$ 及細長比 $\bar{\eta}=8.1\sim8.5$ 之旋轉 Timoshenko 梁在設定角 $\beta=90^{\circ}$ 時,兩個 自然頻率很接近,其特徵值曲線交叉(Eigenvalue curve crossing)。圖二十三 是無因次轉軸半徑 $\bar{r}=1$ 、傾斜角 $\alpha=0^{\circ}$ 、設定角 $\beta=90^{\circ}$ 、細長比 $\bar{n}=8.2$ 及 轉速為零時的前六個振動的基本模態,因不受科氏力的影響,軸向振動與 側向振動並不耦合,且轉速不為零時的振動模態都與基本模態相同。由圖 二十一與圖二十四看出當無因次轉軸半徑r=1、傾斜角 $\alpha=0^{\circ}$ 、設定角 β=90°及細長比 $\overline{\eta}=8.2$ 時,在無因次轉速 $\overline{k} ≤ 0.035$ 之第二個無因次自然 頻率對應第二個振態,第三個無因次自然頻率對應第三個振態;但在無因 次轉速 \bar{k} ≥0.04之第三個無因次自然頻率對應第二個振態,第二個無因次 自然頻率則對應第三個振態,因此在無因次自然頻率-無因次轉速之特徵 值曲線上呈現出交叉現象。

第六章 結論與展望

本文之研究主要目的在探討設定角為0°及90°時具不同傾斜角 (inclination angle)之等速旋轉傾斜 Timoshenko 梁的穩態變形及自由振動。 等速旋轉的傾斜 Timoshenko 梁存在一個沒有振動的穩態變形,所有的振 動都是指以該穩態為平衡點的微小線性振動。本文之研究僅考慮梁的軸向 位移、單一個側向位移及旋轉二維運動,本研究以 Timoshenko 梁正確的 變形機制,利用虛功原理、d'Alembert 原理與幾何非線性梁理論之一致性 線性化推導旋轉傾斜 Timoshenko 梁之運動方程式。

由旋轉傾斜 Timoshenko 梁的穩態統御方程式可知,其軸向穩態變形 與傾斜角有關但與設定角無關,但其側向穩態變形與傾斜角及設定角都有 關。而由旋轉傾斜 Timoshenko 梁的振動統御方程式可知,其振動與穩態 變形及設定角都有關。因統御方程式之擾動量間相互耦合,使求解之複雜 性提高,本文中以二維振動之考量僅分析設定角為0°與90°之情況。

當設定角為90°時,旋轉傾斜梁的側向穩態變形與穩態旋轉角為零, 且因科氏力項為零,其軸向與側向振動不耦合。其軸向穩態變形與軸向振 動的自然頻率及振態的解析解可以容易的得到。其側向振動與旋轉二維之 統御方程式具傾斜角的項消失,為一組二次變係數常微分方程式,本研究 將旋轉傾斜梁分成數段,每一段稱為一個元素,本研究將每一個元素之振 動統御方程式的解表示成一個含二個獨立係數的級數矩陣,再由旋轉梁雨 端的邊界條件及相鄰元素在共同節點的連續條件求得一組齊次方程式,本 研究以二分法(bisection method)解該齊次方程式求得撲翼振動(flapping vibration)的自然頻率,並以逆冪法(inverse power method)解特徵向量,求 得對應自然頻率的振動模態。
當設定角為0°時,旋轉傾斜梁的側向穩態變形不為零,且因科氏力的 值不為零,其軸向與側向振動是耦合的。本研究中忽略穩態側向位移之二 次項乘積,可得設定角在0°與90°的軸向穩態變形是相同的。其側向穩態 變形之統御方程式為一組二次變係數常微分方程式,本研究用級數解推導 一組非齊次方程式,藉此求得側向穩態解。然而設定角為0°時之自然振動 的統御方程式是一組軸向變形、側向變形與旋轉角三者之間相互耦合的變 係數常微分方程式,本研究僅利用解側向穩態變形的方法,推導出一組齊 次方程式,提供以級數解求解的路徑,並在傾斜角為0°時探討其特徵值曲 線轉向的現象。

6.1 結論

經由本文的推論,並以數值例題解析,在研究範圍內可以得到以下的 結論:

- 從收斂性分析來看,在旋轉傾斜梁的細長比及無因次轉速很大時,若使 用雙精度計算,以本文方法將梁分成三段即能夠得到可靠的旋轉傾斜梁 的自然頻率。
- 2. 旋轉傾斜 Timoshenko 梁之側向無因次自然頻率較旋轉傾斜 Euler 梁的無因次自然頻率值略小,且其比值隨著高頻減小,意謂細長比大時之旋轉傾斜梁可視為 Euler 梁,當細長比小於 100 時,旋轉傾斜梁之自然頻率分析應以 Timoshenko 梁來分析較為合理。
- 3. 當無因次轉速為零時,旋轉傾斜 Timoshenko 梁之軸向振態的無因次自 然頻率與傾斜角、設定角、無因次轉軸半徑及細長比都無關;而側向振 態的無因次自然頻率與傾斜角、設定角及無因次轉軸半徑無關,僅與細 長比有關。

- 4. 設定角與傾斜角都為0°時,為旋轉傾斜 Timoshenko 梁的特例,可以和 文獻上的結果比較。旋轉梁的自然頻率隨轉速增加而增加,且當梁的細 長比及無因次轉軸半徑愈大時愈明顯。當轉速為零時,若軸向振態與側 向振態的自然頻率愈接近,則其在轉速不為零時,軸向與側向振動的耦 合隨無因次轉速增加而越明顯。在細長比77=8.1~8.5 時,可發現當兩個 自然頻率很接近時,旋轉 Timoshenko 梁無因次自然頻率-無因次轉速曲 線發生特徵值曲線轉向(Eigenvalue curve veering)的現象。
- 5. 設定角為90°時,不管傾斜角是多少,旋轉傾斜 Timoshenko 梁的軸向振動與撲翼振動不會耦合,軸向振動的自然頻率與傾斜角無關但會隨轉速增加而減少,在合理的轉速範圍內,轉速對軸向振態對應的自然頻率影響甚小。側向振態的自然頻率則隨著轉速增加而增加,且細長比愈大、無因次轉軸半徑愈大時其增幅愈顯著,此現象對低頻的自然頻率更加顯著。當轉速不為零時,側向振態的自然頻率隨著傾斜角增加而減少,且 其減少率隨無因次轉速、細長比及無因次轉軸半徑增加而增加,此現象 亦在低頻的自然頻率時更加顯著。在細長比7=8.0~8.5 時,可發現當兩個自然頻率很接近時,旋轉 Timoshenko 梁無因次自然頻率-無因次轉速 曲線發生特徵值曲線交叉(Eigenvalue curve crossing)的現象。

6.2 未來展望

對於旋轉傾斜 Timoshenko 梁的穩態變形與自由振動分析上仍有許多問題值得克服與深入探討,未來展望如下

 旋轉傾斜 Timoshenko 梁的固定端實際上可能不是剛接在旋轉圓柱上, 未來可以考慮支承的剛度,並探討其對自然頻率的影響,還有旋轉傾斜 Timoshenko 梁的自由端考慮附加質量,並探討其對自然頻率的影響。

- 2. 本文僅探討設定角為0°及90°時的旋轉傾斜 Timoshenko 梁,當設定角為0°時,本文在側向穩態變形與自然振動分析上僅提出理論之推導與可行的方法,未來的研究應可深入探討並考慮其他設定角的旋轉傾斜Timoshenko 梁之穩態變形與自由振動分析。
- 本文僅考慮旋轉傾斜 Timoshenko 梁的軸向振動、單一側向振動及二維 的旋轉運動,這可能與三維的運動有所差異,未來應考慮三維的軸向振 動、雙軸側向振動及扭轉運動的探討。

參考文獻

- [1] A. Leissa, "Vibrational Aspects of Rotating Turbomachinery Blades", *ASME Applied Mecanics Reviews*, Vol. 34, 1981, pp. 629-635.
- [2] V. Ramamurti and P. Balasubramanian, "Analysis of Turbomachinery Blades - A Review", *The Shock and Vibration Digest*, 16, 1984, pp. 13-28.
- [3] M.J. Schilhansl, "Bending Frequency of a Rotating Cantilever Beam", *ASME Journal of Applied Mechanics*, Vol. 25, 1958, pp. 28-30.
- [4] S.Y. Lee and Y.H. Kuo, "Bending Frequency of a Rotating Beam with an Elastically Restrained Root", *ASME Journal of Applied Mechanics*, Vol. 58, 1991, pp. 209-214.
- [5] R.M. Krupka and A.M. Baumanis, "Bending-Benging Mode of a Rotating Tapered-Twisted Turbomachine Blade Including Rotatory Inertia and Shear Deformation", ASME Journal of Engineering for Industry, Vol. 91, No.4, 1969, pp. 1017-1024.
- [6] T. Yokoyama, "Free Vibration Characteristics of Rotating Timoshenko Beam", *International Journal of Mechanical Science*, Vol. 30, No. 10, 1988, pp. 743-755.
- [7] S.Y. Lee and S.M. Lin, "Bending Vibration of Rotating Nonuniform Timoshenko Beams with an Elastically Restrained Root", ASME Journal of Applied Mechanics, Vol. 61, 1994, pp. 949-955.
- [8] D.C. Kammer and A.L. Jr. Schlack, "Critical Spin Rate of Rotating Beams by Liapunov's Direct Method", *Journal of Vibration, Acoustics, Stress, and Reliability in Design*, Vol. 108, 1986, pp. 389-393.
- [9] C.D. Eick and M.P. Mignolet, "Vibration and Buckling of Flexible Rotating Beams", *AIAA Journal*, Vol. 33, No. 3, 1995, pp. 528-538.
- [10] C.H. J. Fox and J.S. Burdess, "The Natural Frequencies of A Thin Rotating Cantilever with Offset Root", *Journal of Sound and Vibration*, Vol. 65, No. 2, 1979, pp. 151-158.
- [11] F. Baur and W. Eidel, "Vibration of A Rotating Uniform Beam, Part II : Orientation Perpendicular To The Axis of Rotation", *Journal of Sound and Vibration*, Vol. 122. No. 2, 1988, pp. 357-375.
- [12] 洪船島, "旋轉梁結構之振動分析", 國立交通大學機械工程研究所碩 士論文, 臺灣, 新竹, 1997.

- [13] S.C. Lin and K.M. Hsiao, "Vibration Analysis of Rotating Timoshenko Beam", *Journal of Sound and Vibration*, Vol. 240 (2), 2001, pp. 303-322.
- [14] 周志芳, "旋轉梁之自由振動的級數解法", 國立交通大學機械工程研 究所碩士論文, 臺灣, 新竹, 1998.
- [15] H.P. Lee, "Vibration on an inclined rotating cantilever beam with tip mass", ASME Journal of Vibration and Acoustics, Vol. 115, 1993, pp. 241–245.
- [16] A.A. Al-Qaisia, "Non-linear dynamics of a rotating beam clamped with an attachment angle and carrying an inertia element", *The Arabian Journal for Science and Engineering*, Vol. 29, 2004, pp. 81-98.
- [17] 許哲嘉, "旋轉傾斜梁之動態分析", 國立成功大學機械工程學系博士 論文, 臺灣, 臺南, 2006.
- [18] S.Y. Lee and J.J. Sheu, "Free Vibrations of a Rotating Inclined beam", *ASME Journal of Applied Mechanics*, Vol. 74, 2007, pp. 406-414.
- [19] S.Y. Lee and J.J. Sheu, "Free Vibrations of an Extensible Rotating Inclined Timoshenko beam", *Journal of Sound and Vibration*, Vol. 304, 2007, pp. 606-624.
- [20] 顏宏儒, "旋轉傾斜梁之穩態及自由振動分析", 國立交通大學機械工 程研究所碩士論文, 臺灣, 新竹, 2008.
- [21] 周裕淳, "以有限元素法分析旋轉傾斜尤拉梁的穩態變形與自由振動 ", 國立交通大學機械工程研究所碩士論文, 臺灣, 新竹, 2009.
- [22] J.C. Simo and L. Vu-Quac, "The Role of Non-Linear Theories in Transient Dynamic Analysis of Flexible Structures", *Journal of Sound* and Vibration, Vol. 119, No. 3, 1987, pp. 487-508.
- [23] P.W. Likins, F.J. Barbera and V. Baddeley, "Mathematical Modeling of Spinning Elastic Bodies for Modal Analysis", *AIAA Journal*, Vol. 11, No. 9, 1973, pp. 1251-1258.
- [24] X. Chen, A. Kareem, "Curve Veering of Eigenvalue Loci of Bridges with Aeroelastic Effects", *Journal of Engineering Mechanics*, Vol. 129, No. 2, 2003, pp. 146-159.
- [25] J.L. du Boisa, S. Adhikarib, N.A.J. Lieven, "Eigenvalue curve veering in stressed structures: An experimental study", *Journal of Sound and Vibration*, Vol. 322, 2009, pp. 1117-1124.
- [26] T.J. Chung, *Continuous Mechanics*, Prentice-Hall, Inc., Englewood Cliff, New Jersey, 1988.

表一 旋轉傾斜 Timoshenko 梁在不同元素數目之自然頻率的收斂分析

N	1		2	3	5	10
	present	[14]	present, [14]	present, [14]	present, [14]	present, [14]
\overline{K}_{1}^{N}	0.0152069	_	0.0167764	0.0167764	0.0167764	0.0167764
I_1	85	_	54	42	33	25
\overline{K}_2^N	0.2283691	_	0.2284461	0.2284461	0.2284461	0.2284461
I_2	85	—	54	42	33	25
\overline{K}_3^N	0.3936238	_	0.3934491	0.3934491	0.3934491	0.3934491
I_3	82	_	54	42	33	25
\overline{K}_{4}^{N}	0.5734860	_	0.5733017	0.5733017	0.5733017	0.5733017
I_4	84	—	53	42	33	25
$\overline{K}_{9}^{N}(a)$	1.5803243	_	1.5803233	1.5803233	1.5803233	1.5803233
I_9	81	_	54 18	43	34	25
$\overline{K}_{19}^{N}(a)$	_	_	4.7155856	4.7155856	4.7155856	4.7155856
<i>I</i> ₁₉	_	_	61	49	38	28

$$(\bar{r}=0, \ \alpha=0^{\circ}, \ \beta=0^{\circ}, \ \bar{\eta}=750, \ k=0.1)$$

 \overline{K}_i^N :代表為分成 N 段時第 i 個無因次自然頻率, N=1, 2, 3, 5, 10

 $\overline{K}_i^N(\mathbf{a})$:表示該自然頻率對應的振態為軸向振態

 I_i :代表為對應於 \overline{K}_i^N 的級數收斂項數

-:代表無法用雙精度求得無因次自然頻率

表二 旋轉傾斜 Timoshenko 梁在不同元素數目之自然頻率的收斂分析

N	1		2	3	5	10
	present	[14]	present, [14]	present, [14]	present, [14]	present, [14]
\overline{K}_1^N I_1	0.1016486 85	0.101471 85	0.1014192 54	0.101492 42	0.1014192 33	0.1014192 25
\overline{K}_2^N I_2	0.2496345 85	0.2495496 85	0.2495625 54	0.2495625 42	0.2495625 33	0.2495625 25
\overline{K}_{3}^{N} I_{3}	0.4070802 82	-	0.4060922 54	0.4060922 42	0.4060922 33	0.4060922 25
\overline{K}_{4}^{N} I_{4}	0.5819787 84		0.5820621 53	0.5820621 42	0.5820621 33	0.5820621 25
$\overline{K}_{9}^{N}(a)$ I_{9}	1.5676100 81	_	1.5676100 54	1.5676100 43	1.5676100 34	1.5676100 25
$\overline{K}_{19}^{N}(a)$ I_{19}	-	_ _	4.7113278 61	4.7113278 49	4.7113278 38	4.7113278 28

 $(\bar{r}=0, \ \alpha=0^{\circ}, \ \beta=90^{\circ}, \ \bar{\eta}=750, \ \bar{k}=0.1$)

 \overline{K}_{i}^{N} :代表為分成 N 段時第 i 個無因次自然頻率 , N=1, 2, 3, 5, 10 $\overline{K}_{i}^{N}(a)$:表示該自然頻率對應的振態為軸向振態 I_{i} :代表為對應於 \overline{K}_{i}^{N} 的級數收斂項數 -:代表無法用雙精度求得無因次自然頻率

		× ×	-	•	ŕ	,			
β	i	\overline{K}_i^1	I^1	\overline{K}_i^2	I^2	\overline{K}_i^N	I^3	I^5	I^{10}
0°	1	0.0690970	113	0.0734840	65	0.0734842	51	39	29
	2	0.2170014	113	0.2171749	65	0.2171752	51	39	29
	3	-	-	0.3596817	65	0.3596818	51	39	29
	4	-	-	0.5173824	66	0.5173823	51	39	29
	5	-	-	0.6906797	66	0.6906801	51	39	29
	6	-	-	0.8775444	66	0.8775445	51	39	29
	7	-	-	1.0769951	66	1.0769950	52	39	29
	8	-	-	1.2888755	66	1.2888755	52	39	29
	9	-	-	1.5134188	66	1.5134190	52	40	29
	10	-	-	1.5742433	66	1.5742433	52	40	29
	11	-	-	1.7510263	66	1.7510265	52	40	29
	12	-		2.0021639	67	2.0021628	52	40	29
				$\langle //$	8	TE			
90°	1	0.0910332	113	0.0950297	65	0.0950297	51	39	29
	2	0.2297731	113	0.2253830	65	0.2253830	51	39	29
	3	0.3441493	113	0.3646995	65	0.3646995	51	39	29
	4	0.5128507	112	0.5208861	66	0.5208861	51	39	29
	5	0.5679179	112	0.6933106	66	0.6933105	51	39	29
	6	0.8132527	111	0.8796176	66	0.8796175	51	39	29
	7	1.0816823	111	1.0786836	66	1.0786856	52	39	29
	8	1.3070388	111	1.2902893	66	1.2902893	52	39	29
	9	1.5377446	111	1.5146235	66	1.5146239	52	40	29
	10	1.5593525	110	1.5696500	66	1.5696500	52	40	29
	11	-	-	1.7520683	66	1.7520682	52	40	29
	12	-	-	2.0030740	67	2.0030744	52	40	29

表三 不同設定角的旋轉傾斜 Timoshenko 梁之自然頻率的收斂分析

$(\bar{r}=1,$	$\alpha = 0^{\circ}$,	$\overline{\eta} = 1000$,	k = 0.06)
---------------	------------------------	----------------------------	-----------

		(<i>i</i> 1.5, <i>p</i>	, ,0	, , 1000,	π	0.00, 0. 0,	15)		
α	i	\overline{K}_i^1	I^1	\overline{K}_i^2	I^2	\overline{K}_i^N	I^3	I^5	I^{10}
0°	1	0.1051062	127	0.1079671	72	0.1079676	56	42	30
	2	0.2464092	127	0.2543244	72	0.2543256	56	42	30
	3	0.3867831	126	0.4097877	72	0.4097877	56	42	30
	4	0.5836241	126	0.5826134	72	0.5826133	56	42	30
	5	-	-	0.7724185	72	0.7724148	56	42	30
	6	-	-	0.9765286	72	0.9765289	56	42	30
	7	-	-	1.1934823	72	1.1934809	56	42	30
	8	-	-	1.4227884	72	1.4227886	56	42	30
	9	-	-	1.5696500	72	1.5696500	56	42	31
	10	-	-	1.6644639	72	1.6644644	56	42	31
	11	-	-		-	1.9187509	56	42	31
	12	-	- 3	ES	A	2.1859970	56	43	31
						r IE			
15°	1	0.1059065	126	0.1067182	71	0.1067184	55	42	30
	2	0.2566037	125	0.2515243	⁹ 71	0.2515240	55	42	30
	3	0.3869000	125	0.4054246	71	0.4054247	55	42	30
	4	0.5266159	125	0.5766466	71	0.5766468	55	42	30
	5	0.7582764	124	0.7647745	71	0.7647739	55	42	30
	6	-	-	0.9671686	71	0.9671686	55	42	30
	7	-	-	1.1823859	71	1.1823887	55	42	30
	8	-	-	1.4099755	71	1.4099755	56	42	30
	9	-	-	1.5696500	72	1.5696500	56	42	30
	10	-	-	1.6499585	72	1.6499584	56	42	30
	11	-	-	1.9025931	72	1.9025926	56	42	30
	12	-	-	2.1682353	72	2.1682369	56	42	31

表四 不同傾斜角的旋轉傾斜 Timoshenko 梁之自然頻率的收斂分析

$(\bar{r} = 1.5,$	$\beta = 90^{\circ}$,	$\overline{\eta} = 1000$,	$\bar{k} = 0.06$,	$\alpha = 0^{\circ}, 1$	5°)
()	1	· · · · · · · · · · · · · · · · · · ·			-)

		(************		, , ,		,)		
α	i	\overline{K}_i^1	I^1	\overline{K}_i^2	I^2	\overline{K}_i^N	I^3	I^5	I^{10}
30°	1	0.1233033	122	0.1029669	69	0.1029670	54	41	30
	2	0.2425943	122	0.2431188	69	0.2431193	54	41	30
	3	0.4227925	121	0.3923341	69	0.3923343	54	41	30
	4	0.5481693	121	0.5587371	69	0.5587369	54	41	30
	5	0.7063993	120	0.7418315	69	0.7418313	54	41	30
	6	0.9440046	120	0.9390626	69	0.9390623	54	41	30
	7	1.1656773	119	1.1490859	70	1.1490867	54	41	30
	8	1.3964557	119	1.3715190	70	1.3715185	54	41	30
	9	-	-	1.5696500	70	1.5696500	54	41	30
	10	-	-	1.6064388	70	1.6064388	54	41	30
	11	-	-	1.8541411	70	1.8541416	55	41	30
	12	-	- 3	2.1150136	70	2.1150152	55	42	30
					8	TE .			
45°	1	0.0920720	115	0.0966937	66	0.0966936	52	39	29
	2	0.2276733	115	0.2290956	66	0.2290955	52	39	29
	3	0.3644149	114	0.3704853	66	0.3704853	52	39	29
	4	0.5567624	114	0.5288158	66	0.5288158	52	40	29
	5	-	-	0.7034794	66	0.7034794	52	40	29
	6	-	-	0.8920757	66	0.8920758	52	40	29
	7	-	-	1.0934354	67	1.0934357	52	40	29
	8	-	-	1.3072990	67	1.3072990	52	40	29
	9	-	-	1.5338367	67	1.5338366	52	40	29
	10	-	-	1.5696500	67	1.5696500	52	40	29
	11	-	-	1.7734087	67	1.7734092	53	40	29
	12	-	-	2.0264573	68	2.0264556	53	40	29

表五 不同傾斜角的旋轉傾斜 Timoshenko 梁之自然頻率的收斂分析

 $(\bar{r}=1.5, \beta=90^{\circ}, \bar{\eta}=1000, \bar{k}=0.06, \alpha=30^{\circ}, 45^{\circ})$

				, ,		, ,	,		
α	i	\overline{K}_i^1	I^1	\overline{K}_i^2	I^2	\overline{K}_i^N	I^3	I^5	I^{10}
60°	1	0.0640434	105	0.0878305	62	0.0878306	49	37	27
	2	0.2531377	105	0.2093620	62	0.2093621	49	37	27
	3	0.2997511	104	0.3397201	62	0.3397201	49	37	27
	4	0.4805814	104	0.4866167	62	0.4866167	49	37	27
	5	0.6453988	104	0.6493411	62	0.6493411	49	37	28
	6	0.8111740	103	0.8257538	62	0.8257538	49	38	28
	7	1.0185970	103	1.0149500	62	1.0149499	49	38	28
	8	1.2145896	103	1.2168583	62	1.2168583	49	38	28
	9	1.4251300	103	1.4317842	63	1.4317840	49	38	28
	10	1.5608151	103	1.5696500	63	1.5696500	50	38	28
	11	1.6529672	103	1.6601848	63	1.6601850	50	38	28
	12	1.9273824	103	1.9025703	63	1.9025699	50	38	28
			Ξ			r IE			
90°	1	0.0610550	77	0.0610732	48	0.0610732	38	30	23
	2	0.1507153	76	0.1507115	48	0.1507115	38	30	23
	3	0.2480073	74	0.2480078	47	0.2480078	38	30	23
	4	0.3602173	74	0.3602107	47	0.3602107	38	30	23
	5	0.4869539	71	0.4869413	48	0.4869413	38	30	23
	6	0.6272713	69	0.6272303	48	0.6272303	38	30	23
	7	0.7811530	70	0.7811381	48	0.7811381	39	31	23
	8	0.9491835	71	0.9492362	49	0.9492362	39	31	23
	9	1.1322287	72	1.1322365	50	1.1322366	40	31	24
	10	1.3312623	72	1.3308321	50	1.3308321	41	32	24
	11	1.5459719	74	1.5456371	51	1.5456371	41	32	25
	12	1.5696500	74	1.5696500	51	1.5696500	41	32	25

表六 不同傾斜角的旋轉傾斜 Timoshenko 梁之自然頻率的收斂分析

 $(\bar{r}=1.5, \beta=90^{\circ}, \bar{\eta}=1000, \bar{k}=0.06, \alpha=60^{\circ}, 90^{\circ})$

衣七 旋轉傾斜 IIMOSNENKO 条與 Euler 条在个问細衣比的目》	然頻率
--	-----

$\overline{\eta}$	Beam	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6
10	Т	0.32309	1.45309	1.57080(a)	3.16707	4.71239(a)	4.82282
	T[13]	0.3231	1.4531	1.5708(a)	3.1671	4.7124(a)	4.8228
	E[20]	0.34368	1.57080(a)	1.91364	4.64936	4.71239(a)	7.82131
20	Т	0.17182	0.95696	1.57080(a)	2.33755	3.96197	4.71239(a)
	T[13]	0.1718	0.9570	1.5708(a)	2.3376	3.9620	4.7124(a)
	E[20]	0.17479	1.05953	1.57080(a)	2.82431	4.71239(a)	5.19119
50	Т	0.07006	0.42956	1.16396	1.57080(a)	2.18360	3.43268
	T[13]	0.0701	0.4296	1.1640	1.5708(a)	2.1836	
	E[20]	0.07026	0.43786	1.21530	1.57080(a)	2.35176	3.82644
			S				
100	Т	0.03513	0.21891	0.60755	1.17564	1.57080(a)	1.91300
	E[20]	0.03515	0.21999	0.61460	1.20047	1.57080(a)	1.97618
			E		. E		
500	Т	0.00703	0.04406	0.12332	0.24152	0.39898	0.59549
	E[20]	0.00703	0.04407	0.12338	0.24173	0.39954	0.59671
1000	Т	0.00352	0.02203	0.06169	0.12087	0.19977	0.29835
	E[20]	0.00352	0.02203	0.06169	0.12089	0.19984	0.29851

 $(\bar{k}=0, \ \alpha=0^{\circ}, \ \beta=90^{\circ}, \ \bar{r}=1)$

表八 旋轉傾斜 Timoshenko 梁與 Euler 梁在不同細長比的自然頻率

$\overline{\eta}$	Beam	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6
10	Т	0.33687	1.46845	1.56965(a)	3.18802	4.71201(a)	4.84684
	E[20]	0.35729	1.56965(a)	1.92445	4.65886	4.71201(a)	7.83009
20	Т	0.19795	0.98262	1.56965(a)	2.36709	3.99763	4.71201(a)
	E[20]	0.20094	1.08307	1.56965(a)	2.84703	4.71201(a)	5.21357
50	Т	0.12126	0.48764	1.22605	1.56965(a)	2.25114	3.50509
	E[20]	0.12153	0.49536	1.27507	1.56965(a)	2.41411	3.88986
100	Т	0.10434	0.31879	0.72079	1.29970	1.56965(a)	2.04434
	E[20]	0.10442	0.31976	0.72703	1.32243	1.56965(a)	2.10361
500	Т	0.09584	0.23058	0.38929	0.58079	0.80197	1.05173
	E[20]	0.09585	0.23062	0.38939	0.58102	0.80246	1.05271
			Ξ				
1000	Т	0.09503	0.22538	0.36470	0.52089	0.69331	0.87962
	E[20]	0.09504	0.22540	0.36473	0.52095	0.69342	0.87980

 $(\bar{k} = 0.06, \ \alpha = 0^{\circ}, \ \beta = 90^{\circ}, \ \bar{r} = 1)$

表九 旋轉傾斜 Timoshenko 梁與 Euler 梁在不同細長比的自然頻率

$\overline{\eta}$	Beam	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6
10	Т	0.33582	1.46724	1.56965(a)	3.18634	4.71201(a)	4.84491
	E[20]	0.35625	1.56965(a)	1.92360	4.65810	4.71201(a)	7.82939
20	Т	0.19607	0.98066	1.56965(a)	2.36477	3.99480	4.71201(a)
	E[20]	0.19906	1.08110	1.56965(a)	2.84525	4.71201(a)	5.21180
50	Т	0.11815	0.48345	1.22133	1.56965(a)	2.24590	3.49941
	E[20]	0.11842	0.49121	1.27052	1.56965(a)	2.40927	3.88488
100	Т	0.10077	0.31236	0.71272	1.29046	1.56965(a)	2.03432
	E[20]	0.10085	0.31332	0.71900	1.31333	1.56965(a)	2.09387
500	Т	0.09207	0.22223	0.37634	0.56310	0.77957	1.02492
	E[20]	0.09208	0.22227	0.37643	0.56331	0.78005	1.02589
			E				
1000	Т	0.09124	0.21695	0.35155	0.50286	0.67019	0.85129
	E[20]	0.09125	0.21697	0.35159	0.50292	0.67029	0.85146

 $(\bar{k} = 0.06, \ \alpha = 30^{\circ}, \ \beta = 90^{\circ}, \ \bar{r} = 1)$

$\overline{\eta}$	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6	\overline{K}_7	\overline{K}_8
7.8	0.39547	1.57080(a)	1.59016	3.36683	4.66650	4.71239(a)	5.83581	6.53366
7.9	0.39157	1.57080(a)	1.58409	3.35836	4.68507	4.71239(a)	5.84797	6.55088
8.0	0.38773	1.57080(a)	1.57798	3.34978	4.70252	4.71239(a)	5.86127	6.56765
8.05	0.38584	1.57080(a)	1.57492	3.34545	4.71082	4.71239(a)	5.86835	6.57587
8.1	0.38396	1.57080(a)	1.57185	3.34110	4.71239(a)	4.71882	5.87571	6.58396
8.15	0.38210	1.56877	1.57080(a)	3.33673	4.71239(a)	4.72653	5.88336	6.59194
8.2	0.38026	1.56568	1.57080(a)	3.33233	4.71239(a)	4.73394	5.89129	6.59980
8.3	0.37662	1.55950	1.57080(a)	3.32349	4.71239(a)	4.74786	5.90799	6.61516
8.4	0.37303	1.55330	1.57080(a)	3.31458	4.71239(a)	4.76057	5.92579	6.63006
8.5	0.36951	1.54707	1.57080(a)	3.30560	4.71239(a)	4.77207	5.94465	6.64451
10	0.32309	1.45309	1.57080(a)	3.16707	4.71239(a)	4.82282	6.28755	6.84520
20	0.17182	0.95696	1.57080(a)	2.33755	3.96197	4.71239(a)	5.71642	7.52062
30	0.11599	0.68631	1.57080(a)	1.77800	3.17597	4.71239(a)	4.77098	6.48495
38	0.09193	0.55521	1.47435	1.57080(a)	2.70220	4.15235	4.71239(a)	5.75344
39	0.08960	0.54211	1.44286	1.57080(a)	2.65114	4.08347	4.71239(a)	5.66974
40	0.08739	0.52959	1.41256	1.57080(a)	2.60170	4.01636	4.71239(a)	5.58773
50	0.07006	0.42956	1.16396	1.57080(a)	2.18360	3.43268	4.71239(a)	4.85651
100	0.03513	0.21891	0.60755	1.17564	1.57080(a)	1.91300	2.80509	3.83656
500	0.00703	0.04406	0.12332	0.24152	0.39898	0.59549	0.83088	1.10492
1000	0.00352	0.02203	0.06169	0.12087	0.19977	0.29835	0.41660	0.55449

表十 旋轉傾斜 Timoshenko 梁在不同細長比下的自然頻率 $(\overline{k}=0)$

\overline{k}	$\overline{\eta}$	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6	\overline{K}_7	\overline{K}_8
0	10	0.32309	1.45309	1.57080(a)	3.16707	4.71239(a)	4.82282	6.28755	6.84520
	20	0.17182	0.95696	1.57080(a)	2.33755	3.96197	4.71239(a)	5.71642	7.52062
	50	0.07006	0.42956	1.16396	1.57080(a)	2.18360	3.43268	4.71239(a)	4.85651
	100	0.03513	0.21891	0.60755	1.17564	1.57080(a)	1.91300	2.80509	3.83656
	500	0.00703	0.04406	0.12332	0.24152	0.39898	0.59549	0.83088	1.10492
	1000	0.00352	0.02203	0.06169	0.12087	0.19977	0.29835	0.41660	0.55449
0.01	10	0.32309	1.45317	1.57096(a)	3.16728 9	64.71241(a)	4.82309	6.28773	6.84539
	20	0.17186	0.95720	1.57090(a)	2.33787	3.96235	4.71242(a)	5.71687	7.52114
	50	0.07019	0.43018	1.16465	1.57089(a)	2.18436	3.43349	4.71242(a)	4.85738
	100	0.03540	0.22015	0.60892	1.17711	1.57089(a)	1.91453	2.80667	3.83817
	500	0.00815	0.04989	0.12995	0.24865	0.40639	0.60309	0.83861	1.11275
	1000	0.00505	0.03212	0.07397	0.13448	0.21414	0.31320	0.43177	0.56988

 $(\bar{r}=0, \ \alpha=0^{\circ}, \ \beta=0^{\circ}, \ \bar{k}=0, 0.01)$

表十一 旋轉傾斜 Timoshenko 梁在不同轉速與不同細長比的自然頻率

\overline{k}	$\overline{\eta}$	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6	\overline{K}_7	\overline{K}_8
0.03	10	0.32305	1.45374	1.57225(a)	3.16894	4.71255(a)	4.82523	6.28921	6.84692
	20	0.17216	0.95913	1.57171(a)	2.34035	3.96542	4.71268(a)	5.72051	7.52528
	50	0.07120	0.43509	1.17018	1.57166(a)	2.19042	3.43998	4.71268(a)	4.86429
	100	0.03737	0.22981	0.61975	1.18874	1.57166(a)	1.92668	2.81921	3.85107
	500	0.01191	0.08258	0.17323	0.29882	0.46079	0.66022	0.89759	1.17305
	1000	0.00817	0.07250	0.13429	0.21075	0.30259	0.41066	0.53590	0.67900
0.06	10	0.32292	1.45571	1.57658(a)	3.174589	4.71306(a)	4.83241	6.29417	6.85208
	20	0.17314	0.96563	1.57444(a)	2.34872	3.97576	4.71356(a)	5.73277	7.53922
	50	0.07432	0.45126	1.18862	1.57426(a)	2.21073	3.46176	4.71354(a)	4.88755
	100	0.04243	0.25975	0.65481	1.22706	1.57425(a)	1.96703	2.86108	3.89423
	500	0.01629	0.14493	0.26846	0.42125	0.60461	0.82016	1.06961	1.35420
	1000	0.01137	0.13821	0.24061	0.35516	0.48321	0.62434	0.77882	0.94733

 $(\bar{r}=0, \ \alpha=0^{\circ}, \ \beta=0^{\circ}, \ \bar{k}=0.03, 0.06)$

表十二 旋轉傾斜 Timoshenko 梁在不同轉速與不同細長比的自然頻率

\overline{k}	$\overline{\eta}$	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6	\overline{K}_7	\overline{K}_8
0	10	0.32309	1.45309	1.57080(a)	3.16707	4.71239	4.82282	6.28755	6.84520
	20	0.17182	0.95696	1.57080(a)	2.33755	3.96200	4.71239	5.71642	7.52062
	50	0.070061	0.42956	1.16396	1.57080(a)	2.18360	3.43268	4.71239	4.85651
	100	0.03513	0.21891	0.60755	1.17564	1.57080(a)	1.91300	2.80509	3.83656
	500	0.00703	0.04406	0.12332	0.24152	0.39898	0.59550	0.83090	1.10495
	1000	0.00352	0.02203	0.06169	0.12087	0.19977	0.29835	0.41660	0.55449
				3					
0.01	10	0.32320	1.45329	1.57096(a)	3.16746 9	6 4.71241	4.82329	6.28788	6.84554
	20	0.17208	0.95741	1.57090(a)	2.33811	3.96265	4.71242	5.71722	7.52154
	50	0.07074	0.43067	1.16517	1.57089(a)	2.18492	3.43410	4.71242	4.85802
	100	0.03649	0.22112	0.60993	1.17818	1.57089(a)	1.91565	2.80783	3.83937
	500	0.01197	0.05402	0.13461	0.25374	0.41172	0.60859	0.84424	1.11846
	1000	0.01004	0.03812	0.08167	0.14348	0.22398	0.32359	0.44254	0.58093

 $(\bar{r}=0.5, \ \alpha=0^{\circ}, \ \beta=0^{\circ}, \ \bar{k}=0, 0.01)$

表十三 旋轉傾斜 Timoshenko 梁在不同轉速與不同細長比的自然頻率

\overline{k}	$\overline{\eta}$	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6	\overline{K}_7	\overline{K}_8
0.03	10	0.32407	1.45488	1.57225(a)	3.17052	4.71255(a)	4.82705	6.29052	6.84826
	20	0.17415	0.96101	1.57171(a)	2.34255	3.96810	4.71268(a)	5.72366	7.52888
	50	0.07597	0.43946	1.17482	1.57166(a)	2.19547	3.44540	4.71268(a)	4.87009
	100	0.04576	0.23807	0.62862	1.19828	1.57166(a)	1.93667	2.82958	3.86177
	500	0.02852	0.10264	0.20110	0.33339	0.50029	0.70320	0.94307	1.22037
	1000	0.02709	0.09409	0.16636	0.25374	0.35582	0.47284	0.60559	0.75489
				크					
0.06	10	0.32696	1.46016	1.57667(a)	3.180819	4.71310(a)	4.83963	6.29933	6.85743
	20	0.18090	0.97305	1.57445(a)	2.35744	3.98641	4.71356(a)	5.74530	7.55354
	50	0.09107	0.46783	1.20671	1.57427(a)	2.23061	3.48321	4.71355(a)	4.91053
	100	0.06732	0.28771	0.68740	1.26328	1.57425(a)	2.00568	2.90155	3.93622
	500	0.05405	0.18809	0.33258	0.50718	0.71103	0.94446	1.20894	1.50596
	1000	0.05271	0.18226	0.30668	0.44520	0.59834	0.76463	0.94360	1.13544

 $(\bar{r} = 0.5, \ \alpha = 0^{\circ}, \ \beta = 0^{\circ}, \ \bar{k} = 0.03, 0.06)$

表十四 旋轉傾斜 Timoshenko 梁在不同轉速與不同細長比的自然頻率

表十五 旋轉傾斜 Timoshenko 梁在不同轉速與不同細長比的自然頻率

\overline{k}	$\overline{\eta}$	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6	\overline{K}_7	\overline{K}_8
0	10	0.32309	1.45309	1.57080(a)	3.16707	4.71239(a)	4.82282	6.28755	6.84520
	20	0.17182	0.95696	1.57080(a)	2.33755	3.96197	4.71239(a)	5.71642	7.52062
	50	0.07006	0.42956	1.16396	1.57080(a)	2.18360	3.43268	4.71239(a)	4.85651
	100	0.03513	0.21891	0.60755	1.17564	1.57080(a)	1.91300	2.80509	3.83656
	500	0.00703	0.04406	0.12332	0.24152	0.39898	0.59550	0.83090	1.10495
	1000	0.00352	0.02203	0.06169	0.12087	0.19977	0.29835	0.41660	0.55449
				E					
0.01	10	0.32331	1.45342	1.57096(a)	3.16763 9	4.71241(a)	4.82349	6.28803	6.84569
	20	0.17231	0.95762	1.57090(a)	2.33835	3.96295	4.71242(a)	5.71757	7.52194
	50	0.07129	0.43116	1.16569	1.57089(a)	2.18549	3.43470	4.71242(a)	4.85867
	100	0.03754	0.22209	0.61094	1.17926	1.57089(a)	1.91677	2.80899	3.84056
	500	0.01482	0.05784	0.13909	0.25869	0.41698	0.61404	0.84982	1.12414
	1000	0.01326	0.04323	0.08858	0.15182	0.23330	0.33358	0.45300	0.59173

 $(\bar{r}=1, \alpha=0^{\circ}, \beta=0^{\circ}, \bar{k}=0, 0.01)$

\overline{k}	$\overline{\eta}$	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6	\overline{K}_7	\overline{K}_8
0.03	10	0.32508	1.45601	1.57226(a)	3.17210	4.71256(a)	4.82887	6.29182	6.84960
	20	0.17613	0.96288	1.57171(a)	2.34474	3.97077	4.71268(a)	5.72680	7.53247
	50	0.08044	0.44378	1.17944	1.57166(a)	2.20051	3.45081	4.71268(a)	4.87587
	100	0.05282	0.24603	0.63735	1.20772	1.57166(a)	1.94661	2.83990	3.87243
	500	0.03848	0.11912	0.22489	0.36387	0.53611	0.74305	0.98592	1.26548
	1000	0.03735	0.11133	0.19238	0.28900	0.40019	0.52565	0.66593	0.82178
0.06	10	0.33094	1.46458	1.57678(a)	3.18709 9	64.71313(a)	4.84682	6.30444	6.86277
	20	0.18832	0.98040	1.57446(a)	2.36612	3.99700	4.71356(a)	5.75778	7.56781
	50	0.10514	0.48380	1.22446	1.57428(a)	2.25027	3.50449	4.71355(a)	4.93336
	100	0.08514	0.31300	0.71822	1.29825	1.57426(a)	2.04341	2.94132	3.97765
	500	0.07453	0.22256	0.38459	0.57765	0.79970	1.05000	1.32953	1.57424
	1000	0.07348	0.21718	0.35968	0.51738	0.69068	0.87754	1.07700	1.28888

 $(\bar{r} = 1, \ \alpha = 0^{\circ}, \ \beta = 0^{\circ}, \ \bar{k} = 0.03, 0.06)$

表十六 旋轉傾斜 Timoshenko 梁在不同轉速與不同細長比的自然頻率

				, , ,	•		
\overline{k}	α	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6
0	0°	0.32309	1.45309	1.57080(a)	3.16707	4.71239(a)	4.82282
0.03	0°	0.32558	1.45581	1.57051(a)	3.17075	4.71229(a)	4.82704
	15°	0.32555	1.45577	1.57051(a)	3.17070	4.71229(a)	4.82698
	30°	0.32545	1.45566	1.57051(a)	3.17054	4.71229(a)	4.82679
	45°	0.32529	1.45548	1.57051(a)	3.17029	4.71229(a)	4.82650
	60°	0.32508	1.45524	1.57051(a)	3.16996	4.71229(a)	4.82613
	75°	0.32483	1.45497	1.57051(a)	3.16958	4.71229(a)	4.82569
	90°	0.32457	1.45467	1.57051(a)	3.16917	4.71229(a)	4.82521
0.06	0°	0.33293	1.46393	1.56965(a)	3.18174	4.71201(a)	4.83963
	15°	0.33280	1.46377	1.56965(a)	3.18153	4.71201(a)	4.83938
	30°	0.33240	1.46332	1.56965(a)	3.18090	4.71201(a)	4.83866
	45°	0.33177	1.46260	1.56965(a)	3.17990	4.71201(a)	4.83751
	60°	0.33095	1.46166	1.56965(a)	3.17860	4.71201(a)	4.83600
	75°	0.32998	1.46056	1.56965(a)	3.17708	4.71201(a)	4.83425
	90°	0.32895	1.45939	1.56965(a)	3.17544	4.71201(a)	4.83237
			EN		8		
_						_	
k	α	K_7	K_8	<i>K</i> 9	K_{10}	K_{11}	<i>K</i> ₁₂
$\frac{k}{0}$	$\frac{\alpha}{0^{\circ}}$	<i>K</i> ₇ 6.28755	<i>K</i> ₈ 6.84520	$\frac{K_9}{7.85398(a)}$	<i>K</i> ₁₀ 8.12603	<i>K</i> ₁₁ 8.93990	K_{12} 10.29274
$\frac{k}{0}$	$\frac{\alpha}{0^{\circ}}$	K ₇ 6.28755 6.29054	<i>K</i> ₈ 6.84520 6.84831	$\frac{K_9}{7.85398(a)}$ 7.85392(a)	<i>K</i> ₁₀ 8.12603 8.12957	K11 8.93990 8.94530	
$\frac{k}{0}$	$ \begin{array}{c} \alpha \\ 0^{\circ} \\ 15^{\circ} \end{array} $			<i>K</i> ₉ 7.85398(a) 7.85392(a) 7.85392(a)	<i>K</i> ₁₀ 8.12603 8.12957 8.12952		
$\frac{k}{0}$	$ \begin{array}{c} \alpha \\ 0^{\circ} \\ 15^{\circ} \\ 30^{\circ} \end{array} $	$ \begin{array}{r} K_7 \\ \hline 6.28755 \\ 6.29054 \\ 6.29050 \\ 6.29037 \\ \hline $			K ₁₀ 8.12603 8.12957 8.12952 8.12937	$ \begin{array}{r} K_{11} \\ $	$ \begin{array}{r} K_{12} \\ \hline 10.29274 \\ 10.29608 \\ 10.29604 \\ 10.29589 \\ $
$\frac{k}{0}$	$ \begin{array}{c} \alpha \\ 0^{\circ} \\ 15^{\circ} \\ 30^{\circ} \\ 45^{\circ} \end{array} $	$ \begin{array}{r} K_7 \\ \hline 6.28755 \\ 6.29054 \\ 6.29050 \\ 6.29037 \\ 6.29016 \\ \end{array} $	$ \begin{array}{r} K_8 \\ \hline 6.84520 \\ 6.84831 \\ 6.84826 \\ 6.84813 \\ 6.84791 \\ \hline $		K10 8.12603 8.12957 8.12952 8.12937 8.12937 8.12912	$ \begin{array}{r} K_{11} \\ $	$ \begin{array}{r} K_{12} \\ \hline 10.29274 \\ 10.29608 \\ 10.29604 \\ 10.29589 \\ 10.29566 \\ $
$\frac{k}{0}$	$ \begin{array}{c} \alpha \\ 0^{\circ} \\ 15^{\circ} \\ 30^{\circ} \\ 45^{\circ} \\ 60^{\circ} \end{array} $	$ \begin{array}{r} K_7 \\ \hline 6.28755 \\ 6.29054 \\ 6.29050 \\ 6.29037 \\ 6.29016 \\ 6.28989 \\ $	$ \begin{array}{r} K_8 \\ \hline 6.84520 \\ 6.84831 \\ 6.84826 \\ 6.84813 \\ 6.84791 \\ 6.84764 \\ \hline $		K10 8.12603 8.12957 8.12952 8.12937 8.12912 8.12880	$ \begin{array}{r} K_{11} \\ $	$ \begin{array}{r} K_{12} \\ \hline 10.29274 \\ 10.29608 \\ 10.29604 \\ 10.29589 \\ 10.29566 \\ 10.29536 \\ \end{array} $
$\frac{k}{0}$	α 0° 15° 30° 45° 60° 75°	$ \begin{array}{r} K_7 \\ \hline 6.28755 \\ 6.29054 \\ 6.29050 \\ 6.29037 \\ 6.29016 \\ 6.28989 \\ 6.28958 \\ 6.28958 $	$ \begin{array}{r} K_8 \\ \hline 6.84520 \\ 6.84831 \\ 6.84826 \\ 6.84813 \\ 6.84791 \\ 6.84764 \\ 6.84731 \\ \end{array} $		K10 8.12603 8.12957 8.12952 8.12937 8.12912 8.12840 8.12843	$ \begin{array}{r} K_{11} \\ $	$ \begin{array}{r} K_{12} \\ \hline 10.29274 \\ 10.29608 \\ 10.29604 \\ 10.29589 \\ 10.29566 \\ 10.29536 \\ 10.29501 \\ \end{array} $
$\frac{k}{0}$	α 0° 15° 30° 45° 60° 75° 90°	$ \begin{array}{r} K_7 \\ \hline 6.28755 \\ 6.29054 \\ 6.29050 \\ 6.29037 \\ 6.29016 \\ 6.28989 \\ 6.28958 \\ 6.28924 \\ $		<i>K</i> ₉ 7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)	K10 8.12603 8.12957 8.12952 8.12937 8.12912 8.12840 8.12843 8.12803	$ \begin{array}{r} K_{11} \\ $	$ \begin{array}{r} K_{12} \\ \hline 10.29274 \\ 10.29608 \\ 10.29604 \\ 10.29589 \\ 10.29566 \\ 10.29536 \\ 10.29501 \\ 10.29463 \\ $
<u>k</u> 0.03 0.06		$ \begin{array}{r} K_7 \\ \hline 6.28755 \\ 6.29054 \\ 6.29050 \\ 6.29037 \\ 6.29016 \\ 6.28989 \\ 6.28958 \\ 6.28924 \\ 6.29944 \\ \hline 6.29944 \\ $	$\begin{array}{r} K_8 \\ \hline 6.84520 \\ \hline 6.84831 \\ \hline 6.84826 \\ \hline 6.84813 \\ \hline 6.84791 \\ \hline 6.84764 \\ \hline 6.84764 \\ \hline 6.84731 \\ \hline 6.84697 \\ \hline 6.85762 \end{array}$	<i>K</i> ₉ 7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85375(a)	K10 8.12603 8.12957 8.12952 8.12937 8.12912 8.12840 8.12843 8.12803 8.14020	$ \begin{array}{r} K_{11} \\ $	$ \begin{array}{r} K_{12} \\ \hline 10.29274 \\ 10.29608 \\ 10.29604 \\ 10.29589 \\ 10.29566 \\ 10.29536 \\ 10.29501 \\ 10.29463 \\ 10.30609 \\ \end{array} $
<u>k</u> 0 0.03 0.06	α 0° 15° 30° 45° 60° 75° 90° 15°	$ \begin{array}{r} K_7 \\ \hline 6.28755 \\ \hline 6.29054 \\ \hline 6.29050 \\ \hline 6.29037 \\ \hline 6.29016 \\ \hline 6.28989 \\ \hline 6.28958 \\ \hline 6.28924 \\ \hline 6.29944 \\ \hline 6.29926 \\ \end{array} $	$\begin{array}{r} K_8 \\ \hline 6.84520 \\ \hline 6.84831 \\ \hline 6.84826 \\ \hline 6.84813 \\ \hline 6.84791 \\ \hline 6.84764 \\ \hline 6.84764 \\ \hline 6.84731 \\ \hline 6.84697 \\ \hline 6.85762 \\ \hline 6.85744 \end{array}$	$ \begin{array}{r} K_9 \\ \overline{} \\ 7.85398(a) \\ \overline{} \\ 7.85392(a) \\ \overline{} \\ $	K10 8.12603 8.12957 8.12952 8.12937 8.12937 8.12912 8.12800 8.12843 8.12803 8.14020 8.13999	$\begin{array}{r} K_{11} \\ \hline 8.93990 \\ \hline 8.94530 \\ \hline 8.94522 \\ \hline 8.94499 \\ \hline 8.94462 \\ \hline 8.94462 \\ \hline 8.94414 \\ \hline 8.94358 \\ \hline 8.94299 \\ \hline 8.96140 \\ \hline 8.96109 \end{array}$	$ \begin{array}{r} K_{12} \\ \hline 10.29274 \\ 10.29608 \\ 10.29604 \\ 10.29589 \\ 10.29566 \\ 10.29536 \\ 10.29501 \\ 10.29463 \\ 10.30609 \\ 10.30589 \\ \end{array} $
<u>k</u> 0 0.03	α 0° 15° 30° 45° 60° 75° 90° 15° 30°	$ \begin{array}{r} K_7 \\ \hline 6.28755 \\ \hline 6.29054 \\ \hline 6.29050 \\ \hline 6.29037 \\ \hline 6.29016 \\ \hline 6.28989 \\ \hline 6.28958 \\ \hline 6.28924 \\ \hline 6.29944 \\ \hline 6.29926 \\ \hline 6.29875 \\ \end{array} $	$\begin{array}{r} K_8 \\ \hline 6.84520 \\ \hline 6.84831 \\ \hline 6.84826 \\ \hline 6.84813 \\ \hline 6.84791 \\ \hline 6.84764 \\ \hline 6.84764 \\ \hline 6.84731 \\ \hline 6.84697 \\ \hline 6.85762 \\ \hline 6.85744 \\ \hline 6.85690 \end{array}$	K9 7.85398(a) 7.85392(a) 7.85375(a) 7.85375(a) 7.85375(a)	K ₁₀ 8.12603 8.12957 8.12952 8.12937 8.12937 8.12912 8.12800 8.12843 8.12803 8.14020 8.13997	$\begin{array}{r} K_{11} \\ \hline 8.93990 \\ \hline 8.94530 \\ \hline 8.94522 \\ \hline 8.94499 \\ \hline 8.94462 \\ \hline 8.94462 \\ \hline 8.94414 \\ \hline 8.94358 \\ \hline 8.94299 \\ \hline 8.96140 \\ \hline 8.96109 \\ \hline 8.96017 \end{array}$	$ \begin{array}{r} \kappa_{12} \\ \hline 10.29274 \\ 10.29608 \\ 10.29604 \\ 10.29589 \\ 10.29566 \\ 10.29536 \\ 10.29501 \\ 10.29463 \\ 10.30609 \\ 10.30589 \\ 10.30531 \\ \end{array} $
<u>k</u> 0 0.03	α 0° 15° 30° 45° 60° 75° 90° 15° 30° 45°	K_7 6.28755 6.29054 6.29037 6.29016 6.28989 6.28958 6.28924 6.29944 6.29926 6.29875 6.29793	$\begin{array}{r} K_8 \\ \hline 6.84520 \\ \hline 6.84831 \\ \hline 6.84826 \\ \hline 6.84813 \\ \hline 6.84791 \\ \hline 6.84764 \\ \hline 6.84764 \\ \hline 6.84731 \\ \hline 6.84697 \\ \hline 6.85762 \\ \hline 6.85762 \\ \hline 6.85744 \\ \hline 6.85690 \\ \hline 6.85605 \end{array}$	K_9 $7.85398(a)$ $7.85392(a)$ $7.85392(a)$ $7.85392(a)$ $7.85392(a)$ $7.85392(a)$ $7.85392(a)$ $7.85392(a)$ $7.85392(a)$ $7.85375(a)$ $7.85375(a)$ $7.85375(a)$ $7.85375(a)$ $7.85375(a)$	$\begin{array}{r} K_{10} \\ \hline 8.12603 \\ \hline 8.12957 \\ \hline 8.12952 \\ \hline 8.12937 \\ \hline 8.12912 \\ \hline 8.12840 \\ \hline 8.12843 \\ \hline 8.12803 \\ \hline 8.14020 \\ \hline 8.13999 \\ \hline 8.13937 \\ \hline 8.13840 \end{array}$	K_{11} 8.939908.945308.945228.944998.944628.944148.943588.942998.961408.960178.95872	$\begin{array}{r} K_{12} \\ \hline 10.29274 \\ \hline 10.29608 \\ \hline 10.29604 \\ \hline 10.29589 \\ \hline 10.29566 \\ \hline 10.29536 \\ \hline 10.29501 \\ \hline 10.29463 \\ \hline 10.30609 \\ \hline 10.30589 \\ \hline 10.30531 \\ \hline 10.30439 \\ \end{array}$
<u>k</u> 0 0.03	α 0° 15° 30° 45° 60° 75° 90° 15° 30° 45° 60°	K_7 6.28755 6.29054 6.29037 6.29016 6.28989 6.28958 6.28924 6.29944 6.29926 6.29793 6.29686	$\begin{array}{r} K_8 \\ \hline 6.84520 \\ \hline 6.84831 \\ \hline 6.84826 \\ \hline 6.84813 \\ \hline 6.84791 \\ \hline 6.84764 \\ \hline 6.84764 \\ \hline 6.84731 \\ \hline 6.84697 \\ \hline 6.85762 \\ \hline 6.85762 \\ \hline 6.85764 \\ \hline 6.85690 \\ \hline 6.85605 \\ \hline 6.85494 \end{array}$	K_9 $7.85398(a)$ $7.85392(a)$ $7.85392(a)$ $7.85392(a)$ $7.85392(a)$ $7.85392(a)$ $7.85392(a)$ $7.85392(a)$ $7.85375(a)$ $7.85375(a)$ $7.85375(a)$ $7.85375(a)$ $7.85375(a)$ $7.85375(a)$ $7.85375(a)$ $7.85375(a)$	K10 8.12603 8.12957 8.12952 8.12937 8.12937 8.12912 8.12843 8.12843 8.12803 8.14020 8.13937 8.13840 8.13712	K_{11} 8.939908.945308.945228.944998.944628.944148.943588.942998.961408.960178.958728.95682	$\begin{array}{r} K_{12} \\ \hline 10.29274 \\ \hline 10.29608 \\ \hline 10.29604 \\ \hline 10.29589 \\ \hline 10.29566 \\ \hline 10.29536 \\ \hline 10.29501 \\ \hline 10.29463 \\ \hline 10.30609 \\ \hline 10.30589 \\ \hline 10.30531 \\ \hline 10.30439 \\ \hline 10.30319 \\ \end{array}$
<u>k</u> 0.03 0.06		K_7 6.28755 6.29054 6.29050 6.29037 6.29016 6.28989 6.28958 6.28924 6.29944 6.29926 6.29875 6.29793 6.29562	$\begin{array}{r} K_8 \\ \hline 6.84520 \\ \hline 6.84831 \\ \hline 6.84826 \\ \hline 6.84813 \\ \hline 6.84791 \\ \hline 6.84764 \\ \hline 6.84764 \\ \hline 6.84731 \\ \hline 6.84697 \\ \hline 6.85762 \\ \hline 6.85762 \\ \hline 6.85744 \\ \hline 6.85690 \\ \hline 6.85605 \\ \hline 6.85494 \\ \hline 6.85365 \\ \end{array}$	K_9 $7.85398(a)$ $7.85392(a)$ $7.85392(a)$ $7.85392(a)$ $7.85392(a)$ $7.85392(a)$ $7.85392(a)$ $7.85392(a)$ $7.85375(a)$	K_{10} 8.12603 8.12957 8.12952 8.12937 8.12937 8.12912 8.12843 8.12843 8.12803 8.14020 8.13999 8.13937 8.13840 8.13712 8.13563	$\begin{array}{r} K_{11} \\ \hline 8.93990 \\ \hline 8.94530 \\ \hline 8.94522 \\ \hline 8.94499 \\ \hline 8.94462 \\ \hline 8.94462 \\ \hline 8.94414 \\ \hline 8.94358 \\ \hline 8.94299 \\ \hline 8.96140 \\ \hline 8.96109 \\ \hline 8.96017 \\ \hline 8.95872 \\ \hline 8.95682 \\ \hline 8.95460 \\ \end{array}$	$\begin{array}{r} K_{12} \\ \hline 10.29274 \\ \hline 10.29608 \\ \hline 10.29604 \\ \hline 10.29589 \\ \hline 10.29586 \\ \hline 10.29536 \\ \hline 10.29501 \\ \hline 10.29463 \\ \hline 10.30609 \\ \hline 10.30589 \\ \hline 10.30531 \\ \hline 10.30439 \\ \hline 10.30179 \\ \hline 10.30179 \end{array}$

表十七 旋轉傾斜 Timoshenko 梁在不同轉速與不同傾斜角的自然頻率

 $(\bar{r} = 0.5, \beta = 90^{\circ}, \bar{\eta} = 10)$

表十八 旋轉傾斜 Timoshenko 梁在不同轉速與不同傾斜角的自然頻率

				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	• •		
\overline{k}	α	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6
0	0°	0.17182	0.95696	1.57080(a)	2.33755	3.96197	4.71239(a)
0.03	0°	0.17678	0.96157	1.57051(a)	2.34279	3.96826	4.71229(a)
	15°	0.17671	0.96151	1.57051(a)	2.34272	3.96817	4.71229(a)
	30°	0.17652	0.96132	1.57051(a)	2.34250	3.96790	4.71229(a)
	45°	0.17621	0.96102	1.57051(a)	2.34215	3.96747	4.71229(a)
	60°	0.17580	0.96063	1.57051(a)	2.34169	3.96692	4.71229(a)
	75°	0.17532	0.96018	1.57051(a)	2.34116	3.96627	4.71229(a)
	90°	0.17481	0.95970	1.57051(a)	2.34060	3.96558	4.71229(a)
0.06	0°	0.19086	0.97528	1.56965(a)	2.35841	3.98703	4.71201(a)
	15°	0.19061	0.97503	1.56965(a)	2.35812	3.98667	4.71201(a)
	30°	0.18988	0.97429	1.56965(a)	2.35725	3.98561	4.71201(a)
	45°	0.18873	0.97312	1.56965(a)	2.35586	3.98392	4.71201(a)
	60°	0.18720	0.97159	1.56965(a)	2.35406	3.98172	4.71201(a)
	75°	0.18542	0.96980	1.56965(a)	2.35195	3.97915	4.71201(a)
	90°	0.18348	0.96787	1.56965(a)	2.34969	3.97639	4.71201(a)
			EN		8 2		
\overline{k}	α	\overline{K}_7	\overline{K}_8	\overline{K}_9	\overline{K}_{10}	\overline{K}_{11}	\overline{K}_{12}
0	0°	5.71642	7.52062	7.85398(a)	9.32700	10.99557	11.01027
0.03	0°	5.72377	7.52901	7.85392(a)	9.33625	10.99553	11.01889
	15°	5.72366	7.52888	7.85392(a)	9.33612	10.99553	11.01876
	30°	5.72335	7.52852	7.85392(a)	9.33572	10.99553	11.01839
	45°	5.72285	7.52795	7.85392(a)	9.33509	10.99553	11.01780
	60°	5.72219	7.52721	7.85392(a)	9.33427	10.99553	11.01704
	75°	5.72143	7.52634	7.85392(a)	9.33331	10.99553	11.01615
	90°	5.72062	7.52541	7.85392(a)	9.33228	10.99553	11.01519
0.06	0°	5.74573	7.55406	7.85375(a)	9.36388	10.99541	11.04448
	15°	5.74531	7.55357	7.85375(a)	9.36334	10.99541	11.04398
	30°	5.74406	7.55215	7.85375(a)	9.36177	10.99541	11.04253
	45°	5.74207	7.54987	7.85375(a)	9.35926	10.99541	11.04021
	60°	5.73947	7.54690	7.85375(a)	9.35598	10.99541	11.03719
	75°	5 73645	7 54345	7.85375(a)	935217	10 99541	11 03366

 $(\bar{r} = 0.5, \beta = 90^{\circ}, \bar{\eta} = 20)$

7.53974

5.73320

90°

7.85375(a) 9.34808

10.99541

11.02987

			X	, ,	• /		
\overline{k}	α	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6
0	0°	0.07006	0.42956	1.16396	1.57080(a)	2.18360	3.43268
0.03	0°	0.08170	0.44051	1.17523	1.57051(a)	2.19569	3.44555
	15°	0.08156	0.44036	1.17507	1.57051(a)	2.19552	3.44537
	30°	0.08113	0.43993	1.17461	1.57051(a)	2.19502	3.44483
	45°	0.08043	0.43924	1.17388	1.57051(a)	2.19421	3.44397
	60°	0.07953	0.43833	1.17292	1.57051(a)	2.19317	3.44284
	75°	0.07845	0.43728	1.17180	1.57051(a)	2.19195	3.44154
	90°	0.07729	0.43615	1.17059	1.57051(a)	2.19064	3.44013
0.06	0°	0.10921	0.47179	1.20831	1.56965(a)	2.23149	3.48382
	15°	0.10878	0.47124	1.20770	1.56965(a)	2.23082	3.48309
	30°	0.10749	0.46963	1.20591	1.56965(a)	2.22884	3.48096
	45°	0.10541	0.46704	1.20306	1.56965(a)	2.22569	3.47756
	60°	0.10264	0.46365	1.19932	1.56965(a)	2.22158	3.47312
	75°	0.09931	0.45966	1.19495	1.56965(a)	2.21678	3.46794
	90°	0.09561	0.45535	1.19025	1.56965(a)	2.21161	3.46237
			EIN		8		
\overline{k}	α	\overline{K}_7	\overline{K}_8	\overline{K}_9	8 <u>K</u> 10	\overline{K}_{11}	\overline{K}_{12}
$\frac{\overline{k}}{0}$	lpha 0°	$\frac{\overline{K}_7}{4.71239(a)}$	 <u> </u> 	<i>K</i> ₉ 6.41102	\overline{K}_{10} 7.85398(a)	\overline{K}_{11} 8.06214	<u><i>K</i></u> ₁₂ 9.78423
	α 0° 0°	\overline{K}_7 4.71239(a) 4.71229(a)	\overline{K}_{8} 4.85651 4.87020	$\overline{K_9}$ 6.41102 6.42556	\overline{K}_{10} 7.85398(a) 7.85392(a)	$ \overline{K}_{11} \\ 8.06214 \\ 8.07759 $	\$\overline{K}_{12}\$ 9.78423 9.80064
	α 0° 0° 15°	$ \overline{K_7} $ 4.71239(a) 4.71229(a) 4.71229(a)	$ \overline{K_8} 4.85651 4.87020 4.87000 $	$\overline{K_9}$ 6.41102 6.42556 6.42535	\overline{K}_{10} 7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a)	$ \overline{K}_{11} \\ $	$ \overline{K}_{12} 9.78423 9.80064 9.80040 $
	α 0° 0° 15° 30°	$ \overline{K_7} $ 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a)	$ \overline{K_8} 4.85651 4.87020 4.87000 4.86942 $	$ \overline{K_9} 6.41102 6.42556 6.42535 6.42473 $	<i>K</i> ₁₀ 7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)	$ \overline{K_{11}} 8.06214 8.07759 8.07737 8.07671 $	$ \overline{K}_{12} 9.78423 9.80064 9.80040 9.79970 $
$ \overline{k} 0 0.03 $	α 0° 15° 30° 45°	$ \overline{K_7} 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) $	$ \overline{K_8} 4.85651 4.87020 4.87000 4.86942 4.86850 $	$ \overline{K_9} 6.41102 6.42556 6.42535 6.42473 6.42375 $	<i>K</i> ₁₀ 7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)	$ \overline{K_{11}} 8.06214 8.07759 8.07737 8.07671 8.07567 $	$ \overline{K}_{12} 9.78423 9.80064 9.80040 9.79970 9.79859 $
	α 0° 15° 30° 45° 60°	$ \overline{K_7} 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) $	$ \overline{K_8} 4.85651 4.87020 4.87000 4.86942 4.86850 4.86730 $	$ \overline{K_9} 6.41102 6.42556 6.42535 6.42473 6.42375 6.42247 $	<i>K</i> ₁₀ 7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)	$\frac{\overline{K}_{11}}{8.06214}$ 8.07759 8.07737 8.07671 8.07567 8.07430	$ \overline{K}_{12} 9.78423 9.80064 9.80040 9.79970 9.79859 9.79714 $
$ \overline{k} 0 0.03 $	α 0° 15° 30° 45° 60° 75°	$ \overline{K_7} $ 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a)	$\overline{K_8}$ 4.85651 4.87020 4.87000 4.86942 4.86850 4.86730 4.86590	$\frac{\overline{K_9}}{6.41102}$ 6.42556 6.42535 6.42473 6.42375 6.42247 6.42098	$\overline{K_{10}}$ 7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)	$\frac{\overline{K}_{11}}{8.06214}$ 8.07759 8.07737 8.07671 8.07567 8.07430 8.07271	$\begin{array}{r} \overline{K}_{12} \\ \hline 9.78423 \\ 9.80064 \\ 9.80040 \\ 9.79970 \\ 9.79859 \\ 9.79714 \\ 9.79545 \end{array}$
$ \overline{k} 0 0.03 $	α 0° 15° 30° 45° 60° 75° 90°	$\overline{K_7}$ 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a)	$\overline{K_8}$ 4.85651 4.87020 4.87000 4.86942 4.86850 4.86730 4.86590 4.86590 4.86440	$\overline{K_9}$ 6.41102 6.42556 6.42535 6.42473 6.42375 6.42247 6.42098 6.41938	$\overline{K_{10}}$ 7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)	$\begin{array}{r} \overline{K_{11}} \\ \hline 8.06214 \\ \hline 8.07759 \\ \hline 8.07737 \\ \hline 8.07671 \\ \hline 8.07567 \\ \hline 8.07430 \\ \hline 8.07271 \\ \hline 8.07101 \end{array}$	\overline{K}_{12} 9.78423 9.80064 9.80040 9.79970 9.79859 9.79714 9.79545 9.79364
k 0 0.03	α 0° 15° 30° 45° 60° 75° 90°	$\overline{K_7}$ 4.71239(a) 4.71229(a)	$\overline{K_8}$ 4.85651 4.87020 4.87000 4.86942 4.86850 4.86730 4.86590 4.86590 4.86440 4.91096	$\overline{K_9}$ 6.41102 6.42536 6.42535 6.42473 6.42375 6.42247 6.42098 6.41938 6.46894	K_{10} 7.85398(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)	$\frac{\overline{K}_{11}}{8.06214}$ 8.07759 8.07737 8.07671 8.07567 8.07430 8.07271 8.07101 8.12371	\overline{K}_{12} 9.78423 9.80064 9.80040 9.79970 9.79859 9.79714 9.79545 9.79364 9.84963
k 0 0.03	α 0° 15° 30° 45° 60° 75° 90° 0° 15°	$ \overline{K_7} $ 4.71239(a) 4.71229(a) 4.71201(a) 4.71201(a)	$\overline{K_8}$ 4.85651 4.87020 4.87000 4.86942 4.86850 4.86730 4.86590 4.86590 4.86440 4.91096 4.91018	$\overline{K_9}$ 6.41102 6.42556 6.42535 6.42473 6.42375 6.42247 6.42098 6.41938 6.46894 6.46810	K_{10} 7.85398(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85375(a)7.85375(a)	$\frac{\overline{K}_{11}}{8.06214}$ 8.07759 8.07737 8.07671 8.07567 8.07430 8.07271 8.07101 8.12371 8.12282	$\begin{array}{r} \overline{K}_{12} \\ \hline 9.78423 \\ 9.80064 \\ 9.80040 \\ 9.79970 \\ 9.79859 \\ 9.79714 \\ 9.79545 \\ 9.79364 \\ 9.84963 \\ 9.84868 \\ \end{array}$
k 0 0.03	α 0° 15° 30° 45° 60° 75° 90° 0° 15° 30°	$ \overline{K_7} $ 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71201(a) 4.71201(a) 4.71201(a)	$\overline{K_8}$ 4.85651 4.87020 4.87000 4.86942 4.86850 4.86730 4.86590 4.86590 4.86440 4.91096 4.91018 4.90789	$\overline{K_9}$ 6.41102 6.42556 6.42535 6.42473 6.42375 6.42247 6.42098 6.41938 6.46894 6.46810 6.46566	K_{10} 7.85398(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)	$\begin{array}{r} \overline{K_{11}} \\ \hline 8.06214 \\ \hline 8.07759 \\ \hline 8.07737 \\ \hline 8.07671 \\ \hline 8.07567 \\ \hline 8.07430 \\ \hline 8.07271 \\ \hline 8.07101 \\ \hline 8.12371 \\ \hline 8.12282 \\ \hline 8.12021 \end{array}$	$\begin{array}{r} \overline{K}_{12} \\ 9.78423 \\ 9.80064 \\ 9.80040 \\ 9.79970 \\ 9.79859 \\ 9.79714 \\ 9.79545 \\ 9.79364 \\ 9.84963 \\ 9.84868 \\ 9.84591 \\ \end{array}$
k 0 0.03	α 0° 15° 30° 45° 60° 75° 90° 0° 15° 30° 45°	$\overline{K_7}$ 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a)	$\overline{K_8}$ 4.85651 4.87020 4.87020 4.87000 4.86942 4.86850 4.86730 4.86730 4.86590 4.86590 4.86440 4.91096 4.91018 4.90789 4.90425	$\overline{K_9}$ 6.41102 6.42556 6.42535 6.42473 6.42375 6.42247 6.42098 6.41938 6.46894 6.46810 6.46566 6.46176	K_{10} 7.85398(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)	$\begin{array}{r c} \overline{K_{11}} \\ \hline 8.06214 \\ \hline 8.07759 \\ \hline 8.07737 \\ \hline 8.07671 \\ \hline 8.07567 \\ \hline 8.07430 \\ \hline 8.07271 \\ \hline 8.07101 \\ \hline 8.12371 \\ \hline 8.12282 \\ \hline 8.12021 \\ \hline 8.11606 \\ \end{array}$	$\begin{array}{r} \overline{K}_{12} \\ \hline 9.78423 \\ 9.80064 \\ 9.80040 \\ 9.79970 \\ 9.79859 \\ 9.79714 \\ 9.79545 \\ 9.79364 \\ 9.84963 \\ 9.84868 \\ 9.84591 \\ 9.84148 \\ \end{array}$
k 0 0.03	α 0° 15° 30° 45° 60° 75° 90° 0° 15° 30° 45° 60°	$\overline{K_7}$ 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a)	$\overline{K_8}$ 4.85651 4.87020 4.87000 4.86942 4.86850 4.86730 4.86590 4.86590 4.86440 4.91096 4.91018 4.90789 4.90425 4.89949	$\overline{K_9}$ 6.41102 6.42556 6.42535 6.42473 6.42375 6.42247 6.42098 6.41938 6.46894 6.46894 6.46810 6.46566 6.46176 6.45668	K_{10} 7.85398(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)	$\begin{array}{r} \overline{K_{11}} \\ \hline 8.06214 \\ \hline 8.07759 \\ \hline 8.07737 \\ \hline 8.07671 \\ \hline 8.07567 \\ \hline 8.07430 \\ \hline 8.07271 \\ \hline 8.07101 \\ \hline 8.12371 \\ \hline 8.12282 \\ \hline 8.12021 \\ \hline 8.11606 \\ \hline 8.11064 \\ \end{array}$	$\begin{array}{r} \overline{K}_{12} \\ 9.78423 \\ 9.80064 \\ 9.80040 \\ 9.79970 \\ 9.79859 \\ 9.79714 \\ 9.79545 \\ 9.79364 \\ 9.84963 \\ 9.84963 \\ 9.84591 \\ 9.84148 \\ 9.83571 \\ \end{array}$
k 0 0.03	α 0° 0° 15° 30° 45° 60° 75° 90° 0° 15° 30° 45° 60° 75° 90° 0° 15° 30° 45° 60° 75° 90°	$\overline{K_7}$ 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a)	$\overline{K_8}$ 4.85651 4.87020 4.87000 4.86942 4.86850 4.86730 4.86590 4.86590 4.86440 4.91096 4.91018 4.90789 4.90425 4.89949 4.89394	$\overline{K_9}$ 6.41102 6.42556 6.42535 6.42473 6.42375 6.42247 6.42098 6.41938 6.46894 6.46894 6.46810 6.46566 6.46176 6.45668 6.45075	K_{10} 7.85398(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)	$\begin{array}{r} \overline{K_{11}} \\ \hline 8.06214 \\ \hline 8.07759 \\ \hline 8.07737 \\ \hline 8.07671 \\ \hline 8.07567 \\ \hline 8.07430 \\ \hline 8.07271 \\ \hline 8.07101 \\ \hline 8.12371 \\ \hline 8.12282 \\ \hline 8.12021 \\ \hline 8.11606 \\ \hline 8.11064 \\ \hline 8.10432 \\ \end{array}$	$\begin{array}{r} \overline{k_{12}} \\ 9.78423 \\ 9.80064 \\ 9.80040 \\ 9.79970 \\ 9.79859 \\ 9.79714 \\ 9.79545 \\ 9.79364 \\ 9.84963 \\ 9.84963 \\ 9.84868 \\ 9.84591 \\ 9.84148 \\ 9.83571 \\ 9.82899 \\ \end{array}$

表十九 旋轉傾斜 Timoshenko 梁在不同轉速與不同傾斜角的自然頻率

 $(\bar{r} = 0.5, \beta = 90^{\circ}, \bar{\eta} = 50)$

					. ,		
\overline{k}	α	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6
0	0°	0.03513	0.21891	0.60755	1.17564	1.57080(a)	1.91300
0.03	0°	0.05474	0.23997	0.62935	1.19866	1.57051(a)	1.93691
	15°	0.05452	0.23969	0.62905	1.19834	1.57051(a)	1.93658
	30°	0.05388	0.23889	0.62817	1.19739	1.57051(a)	1.93558
	45°	0.05284	0.23760	0.62677	1.19588	1.57051(a)	1.93399
	60°	0.05145	0.23591	0.62494	1.19391	1.57051(a)	1.93192
	75°	0.04978	0.23392	0.62280	1.19161	1.57051(a)	1.92951
	90°	0.04793	0.23178	0.62049	1.18913	1.57051(a)	1.92692
0.06	0°	0.09030	0.29399	0.69008	1.26477	1.56965(a)	2.00662
	15°	0.08978	0.29310	0.68900	1.26356	1.56965(a)	2.00532
	30°	0.08824	0.29049	0.68583	1.25999	1.56965(a)	2.00150
	45°	0.08574	0.28627	0.68076	1.25430	1.56965(a)	1.99540
	60°	0.08236	0.28068	0.67408	1.24684	1.56965(a)	1.98742
	75°	0.07823	0.27401	0.66619	1.23807	1.56965(a)	1.97807
	90°	0.07353	0.26665	0.65760	1.22858	1.56965(a)	1.96798
\overline{k}	α	\overline{K}_7	$\overline{K_8}$	Ē,	\overline{K}_{10}	\overline{K}_{11}	\overline{K}_{12}
$\frac{\overline{k}}{0}$	$\frac{\alpha}{0^{\circ}}$	\$\overline{K_7}\$ 2.80509	\$\overline{K_8}\$ 3.83656	$\frac{\overline{K}_9}{4.71239(a)}$	<i>K</i> ₁₀ 4.99194	\$\overline{K_{11}}\$ 6.25634	\$\overline{K}_{12}\$ 7.61587
	α 0° 0°	\overline{K}_7 2.80509 2.82975	K ₈ 3.83656 3.86190	\overline{K}_{9} 4.71239(a) 4.71229(a)	K ₁₀ 4.99194 5.01794	$ \overline{K}_{11} \\ 6.25634 \\ 6.28301 $	$ \overline{K}_{12} \\ \overline{7.61587} \\ \overline{7.64322} $
	α 0° 0° 15°	$ \overline{K_7} 2.80509 2.82975 2.82940 $	K ₈ 3.83656 3.86190 3.86153	$ \overline{K_9} 4.71239(a) 4.71229(a) 4.71229(a) $	K ₁₀ 4.99194 5.01794 5.01757	$ \overline{K_{11}} 6.25634 6.28301 6.28262 $	$ \overline{K}_{12} 7.61587 7.64322 7.64282 $
$ \frac{\overline{k}}{0} 0.03 $	α 0° 15° 30°	$ \overline{K_7} 2.80509 2.82975 2.82940 2.82836 $	$\overline{K_8}$ 3.83656 3.86190 3.86153 3.86047	$ \overline{K_9} 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) $	K ₁₀ 4.99194 5.01794 5.01757 5.01647	$ \overline{K_{11}} 6.25634 6.28301 6.28262 6.28149 $	$ \overline{K}_{12} \\ 7.61587 \\ 7.64322 \\ 7.64282 \\ 7.64166 $
$\frac{\overline{k}}{0}$	α 0° 15° 30° 45°	$ \overline{K_7} 2.80509 2.82975 2.82940 2.82836 2.82672 $	K ₈ 3.83656 3.86190 3.86153 3.86047 3.85877	$ \overline{K_9} 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) $	$ \overline{K_{10}} 4.99194 5.01794 5.01757 5.01647 5.01472 $	$ \overline{K_{11}} 6.25634 6.28301 6.28262 6.28149 6.27970 $	\overline{K}_{12} 7.61587 7.64322 7.64282 7.64166 7.63982
$\frac{\overline{k}}{0}$	α 0° 15° 30° 45° 60°	$ \overline{K_7} 2.80509 2.82975 2.82940 2.82836 2.82672 2.82457 $	$ \overline{K_8} 3.83656 3.86190 3.86153 3.86047 3.85877 3.85655 $	$\overline{K_9}$ 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a)	$\overline{K_{10}}$ 4.99194 5.01794 5.01757 5.01647 5.01472 5.01244	$ \overline{K_{11}} 6.25634 6.28301 6.28262 6.28149 6.27970 6.27736 $	\overline{K}_{12} 7.61587 7.64322 7.64282 7.64166 7.63982 7.63741
$\frac{\overline{k}}{0}$	α 0° 15° 30° 45° 60° 75°	$ \overline{K_7} $ 2.80509 2.82975 2.82940 2.82836 2.82672 2.82457 2.82207	$\overline{K_8}$ 3.83656 3.86190 3.86153 3.86047 3.85877 3.85655 3.85397	$\overline{K_9}$ 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a)	$\overline{K_{10}}$ 4.99194 5.01794 5.01757 5.01647 5.01472 5.01244 5.00979	$ \overline{K_{11}} 6.25634 6.28301 6.28262 6.28149 6.27970 6.27736 6.27463 $	\overline{K}_{12} 7.61587 7.64322 7.64282 7.64166 7.63982 7.63741 7.63461
$ \overline{\frac{\overline{k}}{0}} \overline{0.03} $	α 0° 15° 30° 45° 60° 75° 90°	$\overline{K_7}$ 2.80509 2.82975 2.82940 2.82836 2.82672 2.82457 2.82207 2.81938	$\overline{K_8}$ 3.83656 3.86190 3.86153 3.86047 3.85877 3.85655 3.85397 3.85120	$ \frac{\overline{K}_{9}}{4.71239(a)} \\ 4.71229(a) \\ 4.$	K ₁₀ 4.99194 5.01794 5.01757 5.01647 5.01244 5.00979 5.00693	$\overline{K_{11}}$ 6.25634 6.28301 6.28262 6.28149 6.27970 6.27736 6.27463 6.27170	$\overline{K_{12}}$ 7.61587 7.64322 7.64282 7.64166 7.63982 7.63741 7.63461 7.63159
k 0 0.03 0.06	α 0° 15° 30° 45° 60° 75° 90°	$ \overline{K_7} 2.80509 2.82975 2.82940 2.82836 2.82672 2.82457 2.82207 2.81938 2.90222 $	$\overline{K_8}$ 3.83656 3.86190 3.86153 3.86047 3.85877 3.85655 3.85397 3.85120 3.93673	$ \overline{K_9} 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) $	K ₁₀ 4.99194 5.01794 5.01757 5.01647 5.01244 5.00979 5.00693 5.09497	$\overline{K_{11}}$ 6.25634 6.28301 6.28262 6.28149 6.27970 6.27736 6.27463 6.27463 6.27170 6.36218	$\overline{K_{12}}$ 7.61587 7.64322 7.64282 7.64166 7.63982 7.63741 7.63461 7.63159 7.72455
k 0 0.03	$egin{array}{c} \alpha \\ 0^{\circ} \\ 15^{\circ} \\ 30^{\circ} \\ 45^{\circ} \\ 60^{\circ} \\ 75^{\circ} \\ 90^{\circ} \\ 0^{\circ} \\ 15^{\circ} \end{array}$	$\overline{K_7}$ 2.80509 2.82975 2.82940 2.82836 2.82672 2.82457 2.82207 2.81938 2.90222 2.90085	$\overline{K_8}$ 3.83656 3.86190 3.86153 3.86047 3.85877 3.85655 3.85397 3.85120 3.93673 3.93531	$ \overline{K_9} 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71201(a) 4.71201(a) $	K ₁₀ 4.99194 5.01794 5.01757 5.01647 5.01244 5.00979 5.00693 5.09350	$\overline{K_{11}}$ 6.25634 6.28301 6.28262 6.28149 6.27970 6.27736 6.27463 6.27463 6.27170 6.36218 6.36067	\overline{K}_{12} 7.61587 7.64322 7.64282 7.64166 7.63982 7.63741 7.63461 7.63159 7.72455 7.72299
k 0 0.03	$\begin{array}{c} \alpha \\ 0^{\circ} \\ 0^{\circ} \\ 15^{\circ} \\ 30^{\circ} \\ 45^{\circ} \\ 60^{\circ} \\ 75^{\circ} \\ 90^{\circ} \\ 0^{\circ} \\ 15^{\circ} \\ 30^{\circ} \end{array}$	$\overline{K_7}$ 2.80509 2.82975 2.82940 2.82836 2.82672 2.82457 2.82207 2.81938 2.90222 2.90085 2.89684	$\overline{K_8}$ 3.83656 3.86190 3.86153 3.86047 3.85877 3.85655 3.85397 3.85120 3.93673 3.93531 3.93114	$ \overline{K_9} 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71201(a) 4.71201(a) 4.71201(a) $	K_{10} 4.99194 5.01794 5.01757 5.01647 5.01244 5.00979 5.00693 5.09350 5.08919	$\overline{K_{11}}$ 6.25634 6.28301 6.28262 6.28149 6.27970 6.27736 6.27463 6.27463 6.27170 6.36218 6.36067 6.35622	\overline{K}_{12} 7.61587 7.64322 7.64282 7.64166 7.63982 7.63741 7.63461 7.63461 7.63159 7.72455 7.72299 7.71841
k 0 0.03 0.06	$egin{array}{c} \alpha \\ 0^{\circ} \\ 15^{\circ} \\ 30^{\circ} \\ 45^{\circ} \\ 60^{\circ} \\ 75^{\circ} \\ 90^{\circ} \\ 0^{\circ} \\ 15^{\circ} \\ 30^{\circ} \\ 45^{\circ} \end{array}$	$\overline{K_7}$ 2.80509 2.82975 2.82940 2.82836 2.82672 2.82457 2.82207 2.81938 2.90222 2.90085 2.89684 2.89044	$\overline{K_8}$ 3.83656 3.86190 3.86153 3.86047 3.85877 3.85655 3.85397 3.85120 3.93673 3.93531 3.93114 3.92449	$ \overline{K_9} $ 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a)	K_{10} 4.99194 5.01794 5.01757 5.01647 5.01472 5.01244 5.00693 5.09497 5.08919 5.08232	$\overline{K_{11}}$ 6.25634 6.28301 6.28262 6.28149 6.27970 6.27736 6.27463 6.27463 6.27170 6.36218 6.36067 6.35622 6.34913	\overline{K}_{12} 7.61587 7.64322 7.64282 7.64166 7.63982 7.63741 7.63461 7.63159 7.72455 7.72299 7.71841 7.71112
k 0 0.03	$egin{array}{c} \alpha \\ 0^{\circ} \\ 15^{\circ} \\ 30^{\circ} \\ 45^{\circ} \\ 60^{\circ} \\ 75^{\circ} \\ 90^{\circ} \\ 0^{\circ} \\ 15^{\circ} \\ 30^{\circ} \\ 45^{\circ} \\ 60^{\circ} \\ \end{array}$	$\overline{K_7}$ 2.80509 2.82975 2.82940 2.82836 2.82672 2.82457 2.82207 2.81938 2.90222 2.90085 2.89684 2.89044 2.88207	$\overline{K_8}$ 3.83656 3.86190 3.86153 3.86047 3.85877 3.85655 3.85397 3.85120 3.93673 3.93531 3.93114 3.92449 3.91581	$\overline{K_9}$ 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a)	$\overline{K_{10}}$ 4.991945.017945.017575.016475.014725.012445.009795.006935.094975.093505.089195.082325.07334	$\begin{array}{r} \overline{K_{11}} \\ \hline 6.25634 \\ \hline 6.28301 \\ \hline 6.28262 \\ \hline 6.28149 \\ \hline 6.27970 \\ \hline 6.27736 \\ \hline 6.27463 \\ \hline 6.27463 \\ \hline 6.27170 \\ \hline 6.36218 \\ \hline 6.36067 \\ \hline 6.35622 \\ \hline 6.34913 \\ \hline 6.33989 \\ \end{array}$	\overline{K}_{12} 7.61587 7.64322 7.64282 7.64166 7.63982 7.63741 7.63461 7.63461 7.63159 7.72455 7.72299 7.71841 7.71112 7.70160
k 0 0.03	$egin{arred} \alpha & \ 0^{\circ} & \ 0^{\circ} & \ 15^{\circ} & \ 30^{\circ} & \ 45^{\circ} & \ 60^{\circ} & \ 75^{\circ} & \ 90^{\circ} & \ 15^{\circ} & \ 30^{\circ} & \ 45^{\circ} & \ 60^{\circ} & \ 75^{\circ} & \ 10^{\circ} & \ 10^$	$\overline{K_7}$ 2.80509 2.82975 2.82940 2.82836 2.82672 2.82457 2.82207 2.81938 2.90222 2.90085 2.89684 2.89044 2.88207 2.87229	$\overline{K_8}$ 3.83656 3.86190 3.86153 3.86047 3.85877 3.85655 3.85397 3.85120 3.93673 3.93531 3.93114 3.92449 3.91581 3.90566	$ \overline{K_9} 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71201(a) 4.71201(a) 4.$	K_{10} 4.991945.017945.017575.016475.014725.012445.009795.006935.094975.093505.089195.082325.073345.06287	$\overline{K_{11}}$ 6.25634 6.28301 6.28262 6.28149 6.27970 6.27736 6.27463 6.27463 6.27170 6.36218 6.36067 6.35622 6.34913 6.33989 6.32910	$\overline{K_{12}}$ 7.61587 7.64322 7.64282 7.64166 7.63982 7.63741 7.63461 7.63461 7.63159 7.72455 7.72299 7.71841 7.71112 7.70160 7.69049

表二十 旋轉傾斜 Timoshenko 梁在不同轉速與不同傾斜角的自然頻率

 $(\bar{r} = 0.5, \beta = 90^{\circ}, \bar{\eta} = 100)$

表二十一 旋轉傾斜 Timoshenko 梁在不同轉速與不同傾斜角的自然頻率

$(\bar{r} = 0.5,$	$\beta = 90^{\circ}$,	$, \overline{\eta} = 1000$
-------------------	------------------------	----------------------------

\overline{k}	α	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6
0	0°	0.00352	0.02203	0.06169	0.12087	0.19977	0.29835
0.03	0°	0.04043	0.09876	0.16905	0.25551	0.35709	0.47379
	15°	0.04015	0.09815	0.16809	0.25421	0.35545	0.47186
	30°	0.03932	0.09631	0.16525	0.25034	0.35060	0.46612
	45°	0.03795	0.09332	0.16061	0.24402	0.34268	0.45678
	60°	0.03608	0.08925	0.15430	0.23545	0.33199	0.44423
	75°	0.03377	0.08424	0.14654	0.22493	0.31893	0.42897
	90°	0.03109	0.07846	0.13760	0.21288	0.30407	0.41176
0.06	0°	0.07996	0.19194	0.31254	0.44925	0.60136	0.76700
	15°	0.07940	0.19070	0.31059	0.44657	0.59792	0.76278
	30°	0.07771	0.18699	0.30479	0.43859	0.58767	0.75024
	45°	0.07495	0.18092	0.29531	0.42553	0.57088	0.72971
	60°	0.07119	0.17267	0.28240	0.40774	0.54802	0.70175
	75°	0.06652	0.16248	0.26646	0.38573	0.51973	0.66720
	90°	0.06107	0.15071	0.24801	0.36021	0.48694	0.62723
					-8 E		
\overline{k}	α	\overline{K}_7	\overline{K}_8	\overline{K}_9	\overline{K}_{10}	\overline{K}_{11}	\overline{K}_{12}
\overline{k} 0	α 0°	<i>K</i> ₇ 0.41660	<i>K</i> ₈ 0.55449	<i>K</i> ₉ 0.71197	\overline{K}_{10} 0.88902	$\frac{\overline{K}_{11}}{1.08559}$	\overline{K}_{12} 1.30162
	α 0° 0°	\overline{K}_7 0.41660 0.60633	$\overline{K_8}$ 0.55449 0.75549	\overline{K}_{9} 0.71197 0.92192	K ₁₀ 0.88902 1.10613	$ \overline{K}_{11} \\ 1.08559 \\ 1.30851 $	$ \overline{K}_{12} 1.30162 1.52930 $
	α 0° 0° 15°	$ \overline{K}_{7} 0.41660 0.60633 0.60413 $	$ \overline{K_8} 0.55449 0.75549 0.75307 $	$ \overline{K_9} \\ 0.71197 \\ 0.92192 \\ 0.91931 $	K ₁₀ 0.88902 1.10613 1.10337	$ \overline{K}_{11} 1.08559 1.30851 1.30562 $	$ \overline{K}_{12} 1.30162 1.52930 1.52630 $
	α 0° 15° 30°	$ \overline{K}_{7} 0.41660 0.60633 0.60413 0.59763 $	$ \overline{K_8} 0.55449 0.75549 0.75307 0.74591 $	$ \overline{K_9} \\ 0.71197 \\ 0.92192 \\ 0.91931 \\ 0.91162 $	K ₁₀ 0.88902 1.10613 1.10337 1.09523	$ \overline{K_{11}} 1.08559 1.30851 1.30562 1.29709 $	$ \overline{K}_{12} 1.30162 1.52930 1.52630 1.51747 $
$\frac{\overline{k}}{0}$	α 0° 15° 30° 45°	$ \overline{K_7} 0.41660 0.60633 0.60413 0.59763 0.58708 $	$ \overline{K_8} 0.55449 0.75549 0.75307 0.74591 0.73435 $	$ \overline{K_9} \\ 0.71197 \\ 0.92192 \\ 0.91931 \\ 0.91162 \\ 0.89920 $	K ₁₀ 0.88902 1.10613 1.10337 1.09523 1.08211	$ \overline{K_{11}} 1.08559 1.30851 1.30562 1.29709 1.28339 $	$ \overline{K}_{12} 1.30162 1.52930 1.52630 1.51747 1.50327 $
	α 0° 15° 30° 45° 60°	$ \overline{K_7} 0.41660 0.60633 0.60413 0.59763 0.58708 0.57294 $	$\begin{array}{r} \overline{K_8} \\ \hline 0.55449 \\ 0.75549 \\ 0.75307 \\ 0.74591 \\ 0.73435 \\ 0.71890 \end{array}$	$ \overline{K_9} \\ 0.71197 \\ 0.92192 \\ 0.91931 \\ 0.91162 \\ 0.89920 \\ 0.88267 $	$\begin{array}{r} \overline{K_{10}} \\ 0.88902 \\ 1.10613 \\ 1.10337 \\ 1.09523 \\ 1.08211 \\ 1.06469 \end{array}$	$\frac{\overline{K}_{11}}{1.08559}$ 1.30851 1.30562 1.29709 1.28339 1.26524	$\begin{array}{r} \overline{K_{12}} \\ \hline 1.30162 \\ \hline 1.52930 \\ \hline 1.52630 \\ \hline 1.51747 \\ \hline 1.50327 \\ \hline 1.48451 \end{array}$
$ \overline{\frac{\overline{k}}{0}} 0.03 $	α 0° 15° 30° 45° 60° 75°	$ \overline{K_7} 0.41660 0.60633 0.60413 0.59763 0.58708 0.57294 0.55587 $	$\begin{array}{r} \overline{K_8} \\ \hline 0.55449 \\ 0.75549 \\ 0.75307 \\ 0.74591 \\ 0.73435 \\ 0.71890 \\ 0.70033 \\ \end{array}$	$\begin{array}{c} \overline{k_9} \\ 0.71197 \\ 0.92192 \\ 0.91931 \\ 0.91162 \\ 0.89920 \\ 0.88267 \\ 0.86290 \end{array}$	$\overline{K_{10}}$ 0.88902 1.10613 1.10337 1.09523 1.08211 1.06469 1.04393	$\begin{array}{r} \overline{K_{11}} \\ \hline 1.08559 \\ \hline 1.30851 \\ \hline 1.30562 \\ \hline 1.29709 \\ \hline 1.28339 \\ \hline 1.26524 \\ \hline 1.24367 \end{array}$	$\begin{array}{r} \overline{K_{12}} \\ \hline 1.30162 \\ \hline 1.52930 \\ \hline 1.52630 \\ \hline 1.51747 \\ \hline 1.50327 \\ \hline 1.48451 \\ \hline 1.46228 \end{array}$
k 0 0.03	α 0° 15° 30° 45° 60° 75° 90°	$\overline{K_7}$ 0.41660 0.60633 0.60413 0.59763 0.58708 0.57294 0.55587 0.53674	$\overline{K_8} \\ 0.55449 \\ 0.75549 \\ 0.75307 \\ 0.74591 \\ 0.73435 \\ 0.71890 \\ 0.70033 \\ 0.67967 \\ \end{array}$	$\begin{array}{c} \overline{k_9} \\ 0.71197 \\ 0.92192 \\ 0.91931 \\ 0.91162 \\ 0.89920 \\ 0.88267 \\ 0.86290 \\ 0.84100 \\ \end{array}$	$\overline{k_{10}}$ 0.88902 1.10613 1.10337 1.09523 1.08211 1.06469 1.04393 1.02104	$\overline{K_{11}}$ 1.08559 1.30851 1.30562 1.29709 1.28339 1.26524 1.24367 1.21998	$\overline{K_{12}}$ 1.30162 1.52930 1.52630 1.51747 1.50327 1.48451 1.46228 1.43794
k 0 0.03 0.06	α 0° 15° 30° 45° 60° 75° 90°	\overline{K}_7 0.41660 0.60633 0.60413 0.59763 0.58708 0.57294 0.55587 0.53674 0.94552	$\overline{K_8} \\ 0.55449 \\ 0.75549 \\ 0.75307 \\ 0.74591 \\ 0.73435 \\ 0.71890 \\ 0.70033 \\ 0.67967 \\ 1.13704$	$\frac{\overline{k_9}}{0.71197}$ 0.92192 0.91931 0.91162 0.89920 0.88267 0.86290 0.84100 1.34197	$\begin{array}{r} \overline{k_{10}} \\ 0.88902 \\ 1.10613 \\ 1.10337 \\ 1.09523 \\ 1.08211 \\ 1.06469 \\ 1.04393 \\ 1.02104 \\ 1.56087 \end{array}$	$\frac{\overline{K}_{11}}{1.08559}$ 1.30851 1.30562 1.29709 1.28339 1.26524 1.24367 1.21998 1.56965(a)	\overline{K}_{12} 1.30162 1.52930 1.52630 1.51747 1.50327 1.48451 1.46228 1.43794 1.79429
k 0 0.03 0.06	α 0° 15° 30° 45° 60° 75° 90° 0° 15°	$\begin{array}{c} \overline{K}_7 \\ \hline 0.41660 \\ \hline 0.60633 \\ \hline 0.60413 \\ \hline 0.59763 \\ \hline 0.59763 \\ \hline 0.58708 \\ \hline 0.57294 \\ \hline 0.55587 \\ \hline 0.53674 \\ \hline 0.94552 \\ \hline 0.94055 \end{array}$	$\overline{K_8}$ 0.55449 0.75549 0.75307 0.74591 0.73435 0.71890 0.70033 0.67967 1.13704 1.13132	$\begin{array}{r} \overline{k_9} \\ 0.71197 \\ 0.92192 \\ 0.91931 \\ 0.91162 \\ 0.89920 \\ 0.88267 \\ 0.86290 \\ 0.84100 \\ 1.34197 \\ 1.33555 \end{array}$	$\begin{array}{r} \overline{k_{10}} \\ 0.88902 \\ 1.10613 \\ 1.10337 \\ 1.09523 \\ 1.08211 \\ 1.06469 \\ 1.04393 \\ 1.02104 \\ 1.56087 \\ 1.55378 \end{array}$	$\overline{K_{11}}$ 1.08559 1.30851 1.30562 1.29709 1.28339 1.26524 1.24367 1.21998 1.56965(a) 1.56965(a)	$\begin{array}{r} \overline{K}_{12} \\ \hline 1.30162 \\ \hline 1.52930 \\ \hline 1.52630 \\ \hline 1.51747 \\ \hline 1.50327 \\ \hline 1.48451 \\ \hline 1.46228 \\ \hline 1.43794 \\ \hline 1.79429 \\ \hline 1.78658 \end{array}$
k 0 0.03 0.06	α 0° 15° 30° 45° 60° 75° 90° 0° 15° 30°	$\overline{K_7}$ 0.41660 0.60633 0.60413 0.59763 0.59763 0.58708 0.57294 0.55587 0.53674 0.94552 0.94055 0.92574	$\overline{K_8}$ 0.55449 0.75549 0.75307 0.74591 0.73435 0.71890 0.70033 0.67967 1.13704 1.13132 1.11433	$\begin{array}{r} \overline{k_9} \\ 0.71197 \\ 0.92192 \\ 0.91931 \\ 0.91162 \\ 0.89920 \\ 0.88267 \\ 0.86290 \\ 0.86290 \\ 0.84100 \\ 1.34197 \\ 1.33555 \\ 1.31648 \end{array}$	$\begin{array}{r} \hline K_{10} \\ 0.88902 \\ 1.10613 \\ 1.10337 \\ 1.09523 \\ 1.08211 \\ 1.06469 \\ 1.04393 \\ 1.02104 \\ 1.56087 \\ 1.55378 \\ 1.55378 \\ 1.53275 \end{array}$	$\overline{K_{11}}$ 1.08559 1.30851 1.30562 1.29709 1.28339 1.26524 1.24367 1.21998 1.56965(a) 1.56965(a) 1.56965(a)	$\begin{array}{r} \overline{K}_{12} \\ \hline 1.30162 \\ \hline 1.52930 \\ \hline 1.52630 \\ \hline 1.51747 \\ \hline 1.50327 \\ \hline 1.48451 \\ \hline 1.46228 \\ \hline 1.43794 \\ \hline 1.79429 \\ \hline 1.78658 \\ \hline 1.76372 \end{array}$
k 0 0.03	$egin{array}{c} \alpha \\ 0^{\circ} \\ 15^{\circ} \\ 30^{\circ} \\ 45^{\circ} \\ 60^{\circ} \\ 75^{\circ} \\ 90^{\circ} \\ 0^{\circ} \\ 15^{\circ} \\ 30^{\circ} \\ 45^{\circ} \end{array}$	$\overline{K_7}$ 0.41660 0.60633 0.60413 0.59763 0.58708 0.57294 0.55587 0.53674 0.94552 0.94055 0.92574 0.90152	$\overline{K_8}$ 0.55449 0.75549 0.75307 0.74591 0.73435 0.71890 0.70033 0.67967 1.13704 1.13132 1.11433 1.08657	$\begin{array}{r} \overline{k_9} \\ 0.71197 \\ 0.92192 \\ 0.91931 \\ 0.91162 \\ 0.89920 \\ 0.88267 \\ 0.86290 \\ 0.84100 \\ 1.34197 \\ 1.33555 \\ 1.31648 \\ 1.28535 \end{array}$	$\begin{array}{r} \overline{k_{10}} \\ 0.88902 \\ 1.10613 \\ 1.10337 \\ 1.09523 \\ 1.08211 \\ 1.06469 \\ 1.04393 \\ 1.02104 \\ 1.56087 \\ 1.55378 \\ 1.55378 \\ 1.53275 \\ 1.49846 \end{array}$	$\begin{array}{r} \overline{K_{11}} \\ \hline 1.08559 \\ \hline 1.30851 \\ \hline 1.30562 \\ \hline 1.29709 \\ \hline 1.28339 \\ \hline 1.26524 \\ \hline 1.24367 \\ \hline 1.21998 \\ \hline 1.56965(a) \\ \hline 1.5696(a) \\ \hline 1$	$\begin{array}{r} \overline{K_{12}} \\ \hline 1.30162 \\ \hline 1.52930 \\ \hline 1.52630 \\ \hline 1.51747 \\ \hline 1.50327 \\ \hline 1.48451 \\ \hline 1.46228 \\ \hline 1.43794 \\ \hline 1.79429 \\ \hline 1.78658 \\ \hline 1.76372 \\ \hline 1.72650 \\ \end{array}$
k 0 0.03	$egin{array}{c} \alpha \\ 0^{\circ} \\ 15^{\circ} \\ 30^{\circ} \\ 45^{\circ} \\ 60^{\circ} \\ 75^{\circ} \\ 90^{\circ} \\ 0^{\circ} \\ 15^{\circ} \\ 30^{\circ} \\ 45^{\circ} \\ 60^{\circ} \end{array}$	$\overline{K_7}$ 0.41660 0.60633 0.60413 0.59763 0.59763 0.58708 0.57294 0.55587 0.53674 0.94552 0.94055 0.92574 0.90152 0.86859	$\overline{K_8}$ 0.55449 0.75549 0.75307 0.74591 0.73435 0.71890 0.70033 0.67967 1.13704 1.13132 1.11433 1.08657 1.04888	$\overline{k_9}$ 0.71197 0.92192 0.91931 0.91162 0.89920 0.88267 0.86290 0.84100 1.34197 1.33555 1.31648 1.28535 1.24317	$\hline K_{10}$ 0.88902 1.10613 1.10337 1.09523 1.08211 1.06469 1.04393 1.02104 1.56087 1.55378 1.55378 1.53275 1.49846 1.45210	$\overline{K_{11}}$ 1.08559 1.30851 1.30562 1.29709 1.28339 1.26524 1.24367 1.21998 1.56965(a) 1.56965(a) 1.56965(a) 1.56965(a) 1.56965(a) 1.56965(a) 1.56965(a)	$\begin{array}{r} \overline{K_{12}} \\ \hline 1.30162 \\ \hline 1.52930 \\ \hline 1.52630 \\ \hline 1.51747 \\ \hline 1.50327 \\ \hline 1.48451 \\ \hline 1.46228 \\ \hline 1.43794 \\ \hline 1.79429 \\ \hline 1.78658 \\ \hline 1.76372 \\ \hline 1.72650 \\ \hline 1.67627 \end{array}$
k 0 0.03	$egin{array}{c} \alpha & & \\ 0^{\circ} & & \\ 15^{\circ} & & \\ 30^{\circ} & & \\ 45^{\circ} & & \\ 60^{\circ} & & \\ 75^{\circ} & & \\ 90^{\circ} & & \\ 0^{\circ} & & \\ 15^{\circ} & & \\ 30^{\circ} & & \\ 45^{\circ} & & \\ 60^{\circ} & & \\ 75^{\circ} & & \\ \end{array}$	$\overline{K_7}$ 0.41660 0.60633 0.60413 0.59763 0.59763 0.58708 0.57294 0.55587 0.53674 0.94552 0.94055 0.92574 0.90152 0.86859 0.82798	$\overline{K_8}$ 0.55449 0.75549 0.75307 0.74591 0.73435 0.71890 0.70033 0.67967 1.13704 1.13132 1.11433 1.08657 1.04888 1.00251	$\begin{array}{r} \overline{k_9} \\ 0.71197 \\ 0.92192 \\ 0.91931 \\ 0.91162 \\ 0.89920 \\ 0.88267 \\ 0.86290 \\ 0.84100 \\ 1.34197 \\ 1.33555 \\ 1.31648 \\ 1.28535 \\ 1.24317 \\ 1.19143 \\ \end{array}$	$\hline K_{10}$ 0.88902 1.10613 1.10337 1.09523 1.08211 1.06469 1.04393 1.02104 1.56087 1.55378 1.55378 1.53275 1.49846 1.45210 1.39541	$\overline{K_{11}}$ 1.08559 1.30851 1.30562 1.29709 1.28339 1.26524 1.24367 1.21998 1.56965(a) 1.56965(a) 1.56965(a) 1.56965(a) 1.56965(a) 1.56965(a) 1.56965(a) 1.56965(a)	$\begin{array}{r} \overline{K_{12}} \\ \hline 1.30162 \\ \hline 1.52930 \\ \hline 1.52630 \\ \hline 1.51747 \\ \hline 1.50327 \\ \hline 1.48451 \\ \hline 1.46228 \\ \hline 1.43794 \\ \hline 1.79429 \\ \hline 1.79429 \\ \hline 1.78658 \\ \hline 1.76372 \\ \hline 1.72650 \\ \hline 1.67627 \\ \hline 1.61506 \\ \end{array}$

表二十二 旋轉傾斜 Timoshenko 梁在不同轉速與不同傾斜角的自然頻率

			(,		
\overline{k}	α	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6
0	0°	0.32309	1.45309	1.57080(a)	3.16707	4.71239(a)	4.82282
0.03	0°	0.32659	1.45695	1.57051(a)	3.17233	4.71229(a)	4.82886
	15°	0.32653	1.45687	1.57051(a)	3.17223	4.71229(a)	4.82874
	30°	0.32632	1.45665	1.57051(a)	3.17191	4.71229(a)	4.82837
	45°	0.32600	1.45628	1.57051(a)	3.17141	4.71229(a)	4.82779
	60°	0.32558	1.45581	1.57051(a)	3.17075	4.71229(a)	4.82704
	75°	0.32509	1.45526	1.57051(a)	3.16999	4.71229(a)	4.82616
	90°	0.32457	1.45467	1.57051(a)	3.16917	4.71229(a)	4.82521
0.06	0°	0.33687	1.46845	1.56965(a)	3.18802	4.71201(a)	4.84684
	15°	0.33660	1.46814	1.56965(a)	3.18760	4.71201(a)	4.84635
	30°	0.33582	1.46724	1.56965(a)	3.18634	4.71201(a)	4.84491
	45°	0.33457	1.46580	1.56965(a)	3.18435	4.71201(a)	4.84262
	60°	0.33293	1.46393	1.56965(a)	3.18174	4.71201(a)	4.83963
	75°	0.33102	1.46174	1.56965(a)	3.17871	4.71201(a)	4.83613
	90°	0.32895	1.45939	1.56965(a)	3.17544	4.71201(a)	4.83237
			EN		8 8		

 $(\bar{r} = 1, \beta = 90^{\circ}, \bar{\eta} = 10)$

\overline{k}	α	\overline{K}_7	$\overline{K_8}$	\overline{K}_9	K_{10}	\overline{K}_{11}	\overline{K}_{12}
0	0°	6.28755	6.84520	7.85398(a)	8.12603	8.93990	10.29274
0.03	0°	6.29185	6.84964	7.85392(a)	8.13112	8.94760	10.29754
	15°	6.29176	6.84955	7.85392(a)	8.13101	8.94745	10.29744
	30°	6.29150	6.84929	7.85392(a)	8.13070	8.94698	10.29715
	45°	6.29108	6.84886	7.85392(a)	8.13021	8.94625	10.29669
	60°	6.29054	6.84831	7.85392(a)	8.12957	8.94530	10.29608
	75°	6.28992	6.84766	7.85392(a)	8.12883	8.94418	10.29538
	90°	6.28924	6.84697	7.85392(a)	8.12803	8.94299	10.29463
0.06	0°	6.30455	6.86296	7.85375(a)	8.14635	8.97053	10.31187
	15°	6.30420	6.86260	7.85375(a)	8.14593	8.96991	10.31148
	30°	6.30319	6.86153	7.85375(a)	8.14470	8.96809	10.31032
	45°	6.30156	6.85983	7.85375(a)	8.14275	8.96519	10.30848
	60°	6.29944	6.85762	7.85375(a)	8.14020	8.96140	10.30609
	75°	6.29695	6.85504	7.85375(a)	8.13723	8.95698	10.30329
	90°	6.29428	6.85227	7.85375(a)	8.13404	8.95222	10.30029

表二十三 旋轉傾斜 Timoshenko 梁在不同轉速與不同傾斜角的自然頻率

			(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	. ,		
\overline{k}	α	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6
0	0°	0.17182	0.95696	1.57080(a)	2.33755	3.96197	4.71239(a)
0.03	0°	0.17873	0.96344	1.57051(a)	2.34498	3.97093	4.71229(a)
	15°	0.17859	0.96331	1.57051(a)	2.34484	3.97075	4.71229(a)
	30°	0.17821	0.96294	1.57051(a)	2.34440	3.97021	4.71229(a)
	45°	0.17759	0.96235	1.57051(a)	2.34370	3.96936	4.71229(a)
	60°	0.17678	0.96157	1.57051(a)	2.34279	3.96826	4.71229(a)
	75°	0.17583	0.96067	1.57051(a)	2.34173	3.96697	4.71229(a)
	90°	0.17481	0.95970	1.57051(a)	2.34060	3.96558	4.71229(a)
0.06	0°	0.19795	0.98262	1.56965(a)	2.36709	3.99763	4.71201(a)
	15°	0.19747	0.98212	1.56965(a)	2.36650	3.99691	4.71201(a)
	30°	0.19607	0.98066	1.56965(a)	2.36477	3.99480	4.71201(a)
	45°	0.19383	0.97833	1.56965(a)	2.36202	3.99143	4.71201(a)
	60°	0.19086	0.97528	1.56965(a)	2.35841	3.98703	4.71201(a)
	75°	0.18733	0.97172	1.56965(a)	2.35421	3.98190	4.71201(a)
	90°	0.18348	0.96787	1.56965(a)	2.34969	3.97639	4.71201(a)
			E		8 E		
\overline{k}	α	\overline{K}_7	\overline{K}_8	\overline{K}_9	\overline{K}_{10}	\overline{K}_{11}	\overline{K}_{12}
0	0°	5.71642	7.52062	7.85398(a)	9.32700	10.99557(a)	11.01027
0.03	0°	5.72691	7.53260	7.85392(a)	9.34022	10.99553(a)	11.02257
	15°	5.72670	7.53236	7.85392(a)	9.33995	10.99553(a)	11.02232
	30°	5.72607	7.53164	7.85392(a)	9.33915	10.99553(a)	11.02159
	45°	5.72507	7.53050	7.85392(a)	9.33789	10.99553(a)	11.02041
	60°	5.72377	7.52901	7.85392(a)	9.33625	10.99553(a)	11.01889
	75°	5.72225	7.52727	7.85392(a)	9.33434	10.99553(a)	11.01710
	90°	5.72062	7.52541	7.85392(a)	9.33228	10.99553(a)	11.01519
0.06	0°	5.75822	7.56834	7.85375(a)	9.37962	10.99541(a)	11.05896
	15°	5.75737	7.56737	7.85375(a)	9.37855	10.99541(a)	11.05798
	30°	5.75488	7.56452	7.85375(a)	9.37541	10.99541(a)	11.05509
	45°	5.75091	7.55998	7.85375(a)	9.37041	10.99541(a)	11.05049
	60°	5.74573	7.55406	7.85375(a)	9.36388	10.99541(a)	11.04448
	75°	5.73970	7.54716	7.85375(a)	9.35626	10.99541(a)	11.03745

 $(\bar{r}=1, \ \beta=90^{\circ}, \ \bar{\eta}=20)$

表二十四 旋轉傾斜 Timoshenko 梁在不同轉速與不同傾斜角的自然頻率

				-			
\overline{k}	α	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6
0	0°	0.07006	0.42956	1.16396	1.57080(a)	2.18360	3.43268
0.03	0°	0.08589	0.44482	1.17985	1.57051(a)	2.20073	3.45096
	15°	0.08561	0.44453	1.17953	1.57051(a)	2.20039	3.45060
	30°	0.08479	0.44367	1.17861	1.57051(a)	2.19938	3.44952
	45°	0.08346	0.44230	1.17715	1.57051(a)	2.19778	3.44780
	60°	0.08170	0.44051	1.17523	1.57051(a)	2.19569	3.44555
	75°	0.07960	0.43841	1.17300	1.57051(a)	2.19326	3.44294
	90°	0.07729	0.43615	1.17059	1.57051(a)	2.19064	3.44013
0.06	0°	0.12126	0.48764	1.22605	1.56965(a)	2.25114	3.50509
	15°	0.12048	0.48658	1.22485	1.56965(a)	2.24981	3.50365
	30°	0.11815	0.48345	1.22133	1.56965(a)	2.24590	3.49941
	45°	0.11436	0.47843	1.21570	1.56965(a)	2.23966	3.49265
	60°	0.10921	0.47179	1.20831	1.56965(a)	2.23149	3.48382
	75°	0.10288	0.46394	1.19964	1.56965(a)	2.22193	3.47350
	90°	0.09561	0.45535	1.19025	1.56965(a)	2.21161	3.46237
					-8 IE		
\overline{k}	α	\overline{K}_7	\overline{K}_8	\overline{K}_9	\overline{K}_{10}	\overline{K}_{11}	\overline{K}_{12}
$\overline{\overline{k}}$	$\frac{\alpha}{0^{\circ}}$	$\frac{\overline{K}_7}{4.71239(a)}$	\$\overline{K}_8\$ 4.85651	<u> </u>	<i>K</i> ₁₀ 7.85398(a)	<i>K</i> ₁₁ 8.06214	<i>K</i> ₁₂ 9.78423
	α 0° 0°	\overline{K}_7 4.71239(a) 4.71229(a)	$\overline{K_8}$ 4.85651 4.87598	K ₉ 6.41102 6.43174	<i>K</i> ₁₀ 7.85398(a) 7.85392(a)	$ \overline{K}_{11} \\ 8.06214 \\ 8.08417 $	$ \overline{K}_{12} 9.78423 9.80764 $
	α 0° 0° 15°	$ \overline{K_7} 4.71239(a) 4.71229(a) 4.71229(a) $	$ \overline{K_8} 4.85651 4.87598 4.87559 $	K9 6.41102 6.43174 6.43131	$\overline{K_{10}}$ 7.85398(a) 7.85392(a) 7.85392(a)	$ \overline{K}_{11} \\ $	$ \overline{K}_{12} 9.78423 9.80764 9.80716 $
	α 0° 15° 30°	$ \overline{K_7} $ 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a)	$ \overline{K_8} 4.85651 4.87598 4.87559 4.87443 $	$ \overline{K_9} 6.41102 6.43174 6.43131 6.43008 $	$\overline{K_{10}}$ 7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)	$ \overline{K}_{11} \\ 8.06214 \\ 8.08417 \\ 8.08372 \\ 8.08241 $	$ \overline{K}_{12} 9.78423 9.80764 9.80716 9.80576 $
$ \frac{\overline{k}}{0} 0.03 $	α 0° 15° 30° 45°	$ \overline{K_7} $ 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a)	$ \overline{K_8} 4.85651 4.87598 4.87559 4.87443 4.87259 $	$ \overline{K_9} 6.41102 6.43174 6.43131 6.43008 6.42812 $	$\overline{K_{10}}$ 7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)	$ \overline{K}_{11} \\ 8.06214 \\ 8.08417 \\ 8.08372 \\ 8.08241 \\ 8.08032 $	$ \overline{K}_{12} 9.78423 9.80764 9.80716 9.80576 9.80354 $
$ \frac{\overline{k}}{0} 0.03 $	α 0° 15° 30° 45° 60°	$\overline{K_7}$ 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a)	$ \overline{K_8} 4.85651 4.87559 4.87559 4.87443 4.87259 4.87020 $	$ \overline{K_9} 6.41102 6.43174 6.43131 6.43008 6.42812 6.42556 $	$\overline{K_{10}}$ 7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)	\overline{K}_{11} 8.06214 8.08417 8.08372 8.08241 8.08032 8.07759	$ \overline{K}_{12} 9.78423 9.80764 9.80716 9.80576 9.80354 9.80064 $
$ \overline{\frac{\overline{k}}{0}} 0.03 $	α 0° 15° 30° 45° 60° 75°	$\overline{K_7}$ 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a)	$ \overline{K_8} 4.85651 4.87598 4.87559 4.87443 4.87259 4.87020 4.86740 $	$ \overline{K_9} 6.41102 6.43174 6.43131 6.43008 6.42812 6.42556 6.42258 $	$\overline{K_{10}}$ 7.85398(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)	\overline{K}_{11} 8.06214 8.08417 8.08372 8.08241 8.08032 8.07759 8.07442	\overline{K}_{12} 9.78423 9.80764 9.80716 9.80576 9.80354 9.80064 9.79726
$ \overline{\frac{\overline{k}}{0}} \overline{0.03} $	α 0° 15° 30° 45° 60° 75° 90°	$\overline{K_7}$ 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a)	$\overline{K_8}$ 4.85651 4.87598 4.87559 4.87443 4.87259 4.87020 4.86740 4.86440	$\overline{K_9}$ 6.41102 6.43174 6.43131 6.43008 6.42812 6.42556 6.42258 6.41938	$\overline{K_{10}}$ 7.85398(a) 7.85392(a)	$\begin{array}{r} \overline{K_{11}} \\ \hline 8.06214 \\ \hline 8.08417 \\ \hline 8.08372 \\ \hline 8.08241 \\ \hline 8.08032 \\ \hline 8.07759 \\ \hline 8.07442 \\ \hline 8.07101 \end{array}$	\overline{K}_{12} 9.78423 9.80764 9.80716 9.80576 9.80354 9.80064 9.79726 9.79364
k 0 0.03	α 0° 15° 30° 45° 60° 75° 90°	$\overline{K_7}$ 4.71239(a) 4.71229(a)	$\overline{K_8}$ 4.85651 4.87598 4.87559 4.87443 4.87259 4.87020 4.86740 4.86440 4.93380	$\overline{K_9}$ 6.41102 6.43174 6.43131 6.43008 6.42812 6.42556 6.42258 6.41938 6.49336	K_{10} 7.85398(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)	\overline{K}_{11} 8.06214 8.08417 8.08372 8.08241 8.08032 8.07759 8.07442 8.07101 8.14977	\overline{K}_{12} 9.78423 9.80764 9.80716 9.80576 9.80354 9.80064 9.79726 9.79364 9.87738
k 0 0.03 0.06	$\begin{array}{c} \alpha \\ 0^{\circ} \\ 15^{\circ} \\ 30^{\circ} \\ 45^{\circ} \\ 60^{\circ} \\ 75^{\circ} \\ 90^{\circ} \\ 0^{\circ} \\ 15^{\circ} \end{array}$	$\overline{K_7}$ 4.71239(a) 4.71229(a) 4.71201(a) 4.71201(a)	$\overline{K_8}$ 4.85651 4.87598 4.87559 4.87443 4.87259 4.87020 4.86740 4.86740 4.93380 4.93225	$\overline{K_9}$ 6.41102 6.43174 6.43131 6.43008 6.42812 6.42556 6.42258 6.41938 6.49336 6.49170	$\overline{K_{10}}$ 7.85398(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85375(a)7.85375(a)	$\begin{array}{r} \overline{K_{11}} \\ \hline 8.06214 \\ \hline 8.08417 \\ \hline 8.08372 \\ \hline 8.08241 \\ \hline 8.08032 \\ \hline 8.07759 \\ \hline 8.07442 \\ \hline 8.07101 \\ \hline 8.14977 \\ \hline 8.14800 \end{array}$	\overline{K}_{12} 9.78423 9.80764 9.80716 9.80576 9.80354 9.80064 9.79726 9.79364 9.87738 9.87549
k 0 0.03	α 0° 15° 30° 45° 60° 75° 90° 0° 15° 30°	$\overline{K_7}$ 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71201(a) 4.71201(a) 4.71201(a)	$\overline{K_8}$ 4.85651 4.87598 4.87559 4.87443 4.87259 4.87020 4.86740 4.86740 4.93380 4.93225 4.92769	$\overline{K_9}$ 6.41102 6.43174 6.43131 6.43008 6.42812 6.42556 6.42258 6.42258 6.41938 6.49336 6.49170 6.48683	$\overline{K_{10}}$ 7.85398(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)	$\begin{array}{r} \overline{K_{11}} \\ \hline 8.06214 \\ \hline 8.08417 \\ \hline 8.08372 \\ \hline 8.08241 \\ \hline 8.08032 \\ \hline 8.07759 \\ \hline 8.07442 \\ \hline 8.07101 \\ \hline 8.14977 \\ \hline 8.14800 \\ \hline 8.14280 \\ \hline \end{array}$	\overline{K}_{12} 9.78423 9.80764 9.80716 9.80576 9.80354 9.80064 9.79726 9.79364 9.87738 9.87549 9.86996
k 0 0.03	α 0° 15° 30° 45° 60° 75° 90° 0° 15° 30° 45°	$\overline{K_7}$ 4.71239(a)4.71229(a)4.71229(a)4.71229(a)4.71229(a)4.71229(a)4.71229(a)4.71229(a)4.71229(a)4.71201(a)4.71201(a)4.71201(a)4.71201(a)4.71201(a)4.71201(a)	$\overline{K_8}$ 4.85651 4.87598 4.87559 4.87443 4.87259 4.87020 4.86740 4.86740 4.86440 4.93380 4.93225 4.92769 4.92044	$\overline{K_9}$ 6.41102 6.43174 6.43131 6.43008 6.42812 6.42556 6.42258 6.41938 6.49336 6.49170 6.48683 6.47907	$\overline{K_{10}}$ 7.85398(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)	\overline{K}_{11} 8.06214 8.08417 8.08372 8.08241 8.08032 8.07759 8.07442 8.07101 8.14977 8.14800 8.14280 8.13452	\overline{K}_{12} 9.78423 9.80764 9.80716 9.80576 9.80354 9.80064 9.79726 9.79364 9.87738 9.87549 9.86996 9.86114
k 0 0.03	$\begin{array}{c} \alpha \\ 0^{\circ} \\ 15^{\circ} \\ 30^{\circ} \\ 45^{\circ} \\ 60^{\circ} \\ 75^{\circ} \\ 90^{\circ} \\ 0^{\circ} \\ 15^{\circ} \\ 30^{\circ} \\ 45^{\circ} \\ 60^{\circ} \end{array}$	$\overline{K_7}$ 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a)	$\overline{K_8}$ 4.85651 4.87598 4.87559 4.87443 4.87259 4.87020 4.86740 4.86740 4.93380 4.93380 4.93225 4.92769 4.92044 4.91096	$\overline{K_9}$ 6.41102 6.43174 6.43131 6.43008 6.42812 6.42556 6.42258 6.42258 6.41938 6.49336 6.49170 6.48683 6.47907 6.46894	$\overline{K_{10}}$ 7.85398(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)	\overline{K}_{11} 8.06214 8.08417 8.08372 8.08241 8.08032 8.07759 8.07442 8.07101 8.14977 8.14800 8.14280 8.13452 8.12371	\overline{K}_{12} 9.78423 9.80764 9.80716 9.80576 9.80354 9.80064 9.79726 9.79364 9.87738 9.87549 9.86996 9.86114 9.84963
k 0 0.03 0.06	α 0° 15° 30° 45° 60° 75° 90° 0° 15° 30° 45° 60° 75°	$\overline{K_7}$ 4.71239(a)4.71229(a)4.71229(a)4.71229(a)4.71229(a)4.71229(a)4.71229(a)4.71229(a)4.71229(a)4.71201(a)4.71201(a)4.71201(a)4.71201(a)4.71201(a)4.71201(a)4.71201(a)4.71201(a)4.71201(a)4.71201(a)4.71201(a)4.71201(a)4.71201(a)	$\overline{K_8}$ 4.85651 4.87598 4.87559 4.87443 4.87259 4.87020 4.86740 4.86740 4.86440 4.93380 4.93225 4.92769 4.92044 4.91096 4.89989	$\overline{K_9}$ 6.41102 6.43174 6.43131 6.43008 6.42812 6.42556 6.42258 6.41938 6.49336 6.49336 6.49170 6.48683 6.47907 6.46894 6.45711	K_{10} 7.85398(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85392(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)7.85375(a)	$\begin{array}{r} \overline{K_{11}} \\ \hline 8.06214 \\ \hline 8.08417 \\ \hline 8.08372 \\ \hline 8.08241 \\ \hline 8.08032 \\ \hline 8.07759 \\ \hline 8.07442 \\ \hline 8.07101 \\ \hline 8.14977 \\ \hline 8.14800 \\ \hline 8.14280 \\ \hline 8.13452 \\ \hline 8.12371 \\ \hline 8.11110 \\ \hline \end{array}$	\overline{K}_{12} 9.78423 9.80764 9.80716 9.80576 9.80354 9.80064 9.79726 9.79364 9.87738 9.87549 9.86996 9.86114 9.84963 9.83621

 $(\bar{r}=1, \ \beta=90^{\circ}, \ \bar{\eta}=50)$

			(, ,	, p , v, n	100)		
\overline{k}	α	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6
0	0°	0.03513	0.21891	0.60755	1.17564	1.57080(a)	1.91300
0.03	0°	0.06077	0.24787	0.63807	1.20810	1.57051(a)	1.94685
	15°	0.06038	0.24734	0.63748	1.20746	1.57051(a)	1.94617
	30°	0.05922	0.24578	0.63575	1.20558	1.57051(a)	1.94419
	45°	0.05732	0.24327	0.63298	1.20259	1.57051(a)	1.94104
	60°	0.05474	0.23997	0.62935	1.19866	1.57051(a)	1.93691
	75°	0.05157	0.23605	0.62509	1.19408	1.57051(a)	1.93210
_	90°	0.04793	0.23178	0.62049	1.18913	1.57051(a)	1.92692
0.06	0°	0.10434	0.31879	0.72079	1.29970	1.56965(a)	2.04434
	15°	0.10344	0.31717	0.71875	1.29736	1.56965(a)	2.04179
	30°	0.10077	0.31236	0.71272	1.29046	1.56965(a)	2.03432
	45°	0.09637	0.30453	0.70300	1.27938	1.56965(a)	2.02235
	60°	0.09030	0.29399	0.69008	1.26477	1.56965(a)	2.00662
	75°	0.08265	0.28116	0.67465	1.24748	1.56965(a)	1.98810
	90°	0.07353	0.26665	0.65760	1.22858	1.56965(a)	1.96798
			EIN		8		
\overline{k}	α	\overline{K}_7	$\overline{K_8}$	\overline{K}_9	8 <u>K</u> 10	\overline{K}_{11}	\overline{K}_{12}
$\frac{\overline{k}}{0}$	$\frac{lpha}{0^{\circ}}$	\$\overline{K_7}\$ 2.80509	\$\overline{K_8}\$ 3.83656	<i>K</i> ₉ 4.71239(a)	\overline{K}_{10} 4.99194	<i>K</i> ₁₁ 6.25634	\$\overline{K}_{12}\$ 7.61587
	α 0° 0°	\overline{K}_7 2.80509 2.84007	K ₈ 3.83656 3.87255	\overline{K}_9 4.71239(a) 4.71229(a)	K ₁₀ 4.99194 5.02891	$ \overline{K}_{11} \\ 6.25634 \\ 6.29429 $	$ \overline{K}_{12} 7.61587 7.65482 $
	α 0° 0° 15°	$ \overline{K_7} 2.80509 2.84007 2.83937 $	K ₈ 3.83656 3.87255 3.87183	$\overline{K_9}$ 4.71239(a) 4.71229(a) 4.71229(a)	K ₁₀ 4.99194 5.02891 5.02817	$ \overline{K}_{11} \\ 6.25634 \\ 6.29429 \\ 6.29353 $	$ \overline{K_{12}} 7.61587 7.65482 7.65403 $
	α 0° 15° 30°	$ \overline{K_7} 2.80509 2.84007 2.83937 2.83731 $	K ₈ 3.83656 3.87255 3.87183 3.86970	$ \overline{K_9} 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) $	K ₁₀ 4.99194 5.02891 5.02817 5.02598	$ \overline{K_{11}} 6.25634 6.29429 6.29353 6.29127 $	$ \overline{K_{12}} 7.61587 7.65482 7.65403 7.65171 $
	α 0° 15° 30° 45°	$ \overline{K_7} 2.80509 2.84007 2.83937 2.83731 2.83403 $	K ₈ 3.83656 3.87255 3.87183 3.86970 3.86631		K ₁₀ 4.99194 5.02891 5.02817 5.02598 5.02249	$ \overline{K_{11}} 6.25634 6.29429 6.29353 6.29127 6.28769 $	$\begin{array}{r} \overline{K_{12}} \\ \hline 7.61587 \\ \hline 7.65482 \\ \hline 7.65403 \\ \hline 7.65171 \\ \hline 7.64803 \end{array}$
	α 0° 15° 30° 45° 60°	$ \overline{K_7} 2.80509 2.84007 2.83937 2.83731 2.83403 2.82975 $	$ \overline{K_8} 3.83656 3.87255 3.87183 3.86970 3.86631 3.86190 $		K ₁₀ 4.99194 5.02891 5.02817 5.02598 5.02249 5.01794	$ \overline{K_{11}} 6.25634 6.29429 6.29353 6.29127 6.28769 6.28301 $	$\begin{array}{r} \overline{K_{12}} \\ \hline 7.61587 \\ \hline 7.65482 \\ \hline 7.65403 \\ \hline 7.65171 \\ \hline 7.64803 \\ \hline 7.64322 \end{array}$
$ \overline{k} 0 0.03 $	α 0° 15° 30° 45° 60° 75°	$ \overline{K_7} 2.80509 2.84007 2.83937 2.83731 2.83403 2.82975 2.82475 $	$ \overline{K_8} \overline{3.83656} 3.87255 3.87183 3.86970 3.86631 3.86190 3.85674 $	$ \overline{K_9} 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) $	$\overline{K_{10}}$ 4.99194 5.02891 5.02817 5.02598 5.02249 5.01794 5.01264	$\begin{array}{r} \overline{K_{11}} \\ \hline 6.25634 \\ \hline 6.29429 \\ \hline 6.29353 \\ \hline 6.29127 \\ \hline 6.28769 \\ \hline 6.28301 \\ \hline 6.27756 \end{array}$	$\begin{array}{r} \overline{K_{12}} \\ \hline 7.61587 \\ \hline 7.65482 \\ \hline 7.65403 \\ \hline 7.65171 \\ \hline 7.64803 \\ \hline 7.64322 \\ \hline 7.63761 \end{array}$
$ \overline{k} 0 0.03 $	α 0° 15° 30° 45° 60° 75° 90°	$\overline{K_7}$ 2.80509 2.84007 2.83937 2.83731 2.83403 2.82975 2.82475 2.81938	$\overline{K_8}$ 3.83656 3.87255 3.87183 3.86970 3.86631 3.86190 3.85674 3.85120	$\overline{K_9}$ 4.71239(a) 4.71229(a)	$\overline{K_{10}}$ 4.99194 5.02891 5.02817 5.02598 5.02249 5.01794 5.01264 5.00693	$\overline{K_{11}}$ 6.25634 6.29429 6.29353 6.29127 6.28769 6.28301 6.27756 6.27170	$\begin{array}{r} \overline{K_{12}} \\ \hline 7.61587 \\ \hline 7.65482 \\ \hline 7.65403 \\ \hline 7.65171 \\ \hline 7.64803 \\ \hline 7.64322 \\ \hline 7.63761 \\ \hline 7.63159 \end{array}$
k 0 0.03	α 0° 15° 30° 45° 60° 75° 90°	$\overline{K_7}$ 2.80509 2.84007 2.83937 2.83731 2.83403 2.82975 2.82475 2.81938 2.94197	$\overline{K_8}$ 3.83656 3.87255 3.87183 3.86970 3.86631 3.86190 3.85674 3.85120 3.97815	$ \overline{K_9} 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) $	$\overline{K_{10}}$ 4.99194 5.02891 5.02817 5.02598 5.02249 5.01794 5.01264 5.00693 5.13787	$\overline{K_{11}}$ 6.25634 6.29429 6.29353 6.29127 6.28769 6.28301 6.27756 6.27170 6.40647	$\begin{array}{r} \overline{K_{12}} \\ \hline 7.61587 \\ \hline 7.65482 \\ \hline 7.65403 \\ \hline 7.65171 \\ \hline 7.64803 \\ \hline 7.64322 \\ \hline 7.63761 \\ \hline 7.63159 \\ \hline 7.77020 \end{array}$
k 0 0.03	α 0° 15° 30° 45° 60° 75° 90° 0° 15°	$\begin{array}{r} \overline{k_7} \\ \hline 2.80509 \\ \hline 2.84007 \\ \hline 2.83937 \\ \hline 2.83731 \\ \hline 2.83403 \\ \hline 2.82975 \\ \hline 2.82475 \\ \hline 2.81938 \\ \hline 2.94197 \\ \hline 2.93929 \end{array}$	$\overline{K_8}$ 3.83656 3.87255 3.87183 3.86970 3.86631 3.86190 3.85674 3.85120 3.97815 3.97535	$ \frac{\overline{K_9}}{4.71239(a)} \\ 4.71229(a) \\ 4.71201(a) \\ 4.71201(a) $	K10 4.99194 5.02891 5.02817 5.02598 5.02249 5.01794 5.01264 5.00693 5.13787 5.13496	$\begin{array}{r c} \overline{K_{11}} \\ \hline 6.25634 \\ \hline 6.29429 \\ \hline 6.29353 \\ \hline 6.29127 \\ \hline 6.28769 \\ \hline 6.28301 \\ \hline 6.27756 \\ \hline 6.27170 \\ \hline 6.40647 \\ \hline 6.40346 \\ \end{array}$	$\begin{array}{r} \overline{K_{12}} \\ \hline 7.61587 \\ \hline 7.65482 \\ \hline 7.65403 \\ \hline 7.65171 \\ \hline 7.64803 \\ \hline 7.64322 \\ \hline 7.63761 \\ \hline 7.63159 \\ \hline 7.77020 \\ \hline 7.76710 \\ \end{array}$
k 0 0.03 0.06	α 0° 15° 30° 45° 60° 75° 90° 0° 15° 30°	$\begin{array}{r} \overline{k_7} \\ \hline 2.80509 \\ \hline 2.84007 \\ \hline 2.83937 \\ \hline 2.83731 \\ \hline 2.83403 \\ \hline 2.82975 \\ \hline 2.82475 \\ \hline 2.81938 \\ \hline 2.94197 \\ \hline 2.93929 \\ \hline 2.93139 \end{array}$	$\overline{K_8}$ 3.83656 3.87255 3.87183 3.86970 3.86631 3.86190 3.85674 3.85120 3.97815 3.97535 3.96711	$ \overline{K_9} 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71201(a) 4.71201(a) 4.71201(a) $	$\begin{matrix} K_{10} \\ 4.99194 \\ 5.02891 \\ 5.02817 \\ 5.02598 \\ 5.02249 \\ 5.01794 \\ 5.01264 \\ 5.00693 \\ 5.13787 \\ 5.13496 \\ 5.12642 \end{matrix}$	$\begin{array}{r c} \overline{K_{11}} \\ \hline 6.25634 \\ \hline 6.29429 \\ \hline 6.29353 \\ \hline 6.29127 \\ \hline 6.28769 \\ \hline 6.28301 \\ \hline 6.27756 \\ \hline 6.27170 \\ \hline 6.40647 \\ \hline 6.40346 \\ \hline 6.39464 \\ \end{array}$	$\begin{array}{r c} \overline{K}_{12} \\ \hline 7.61587 \\ \hline 7.65482 \\ \hline 7.65403 \\ \hline 7.65171 \\ \hline 7.64803 \\ \hline 7.64322 \\ \hline 7.63761 \\ \hline 7.63159 \\ \hline 7.77020 \\ \hline 7.77020 \\ \hline 7.76710 \\ \hline 7.75800 \\ \end{array}$
k 0 0.03 0.06	$egin{array}{c} \alpha \\ 0^{\circ} \\ 15^{\circ} \\ 30^{\circ} \\ 45^{\circ} \\ 60^{\circ} \\ 75^{\circ} \\ 90^{\circ} \\ 0^{\circ} \\ 15^{\circ} \\ 30^{\circ} \\ 45^{\circ} \end{array}$	$\begin{array}{r} \overline{k_7} \\ \hline 2.80509 \\ \hline 2.84007 \\ \hline 2.83937 \\ \hline 2.83731 \\ \hline 2.83403 \\ \hline 2.82975 \\ \hline 2.82475 \\ \hline 2.82475 \\ \hline 2.81938 \\ \hline 2.94197 \\ \hline 2.93929 \\ \hline 2.93139 \\ \hline 2.91877 \\ \end{array}$	$\overline{K_8}$ 3.83656 3.87255 3.87183 3.86970 3.86631 3.86190 3.85674 3.85120 3.97815 3.97535 3.96711 3.95395	$ \overline{K_9} 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a) $	K_{10} 4.991945.028915.028175.025985.022495.017945.012645.006935.137875.134965.126425.11279	$\begin{array}{r c} \overline{K_{11}} \\ \hline 6.25634 \\ \hline 6.29429 \\ \hline 6.29353 \\ \hline 6.29127 \\ \hline 6.28769 \\ \hline 6.28301 \\ \hline 6.27756 \\ \hline 6.27170 \\ \hline 6.40647 \\ \hline 6.40346 \\ \hline 6.39464 \\ \hline 6.38057 \\ \end{array}$	$\begin{array}{r c} \overline{K}_{12} \\ \hline 7.61587 \\ \hline 7.65482 \\ \hline 7.65403 \\ \hline 7.65171 \\ \hline 7.64803 \\ \hline 7.64322 \\ \hline 7.63761 \\ \hline 7.63159 \\ \hline 7.77020 \\ \hline 7.77020 \\ \hline 7.76710 \\ \hline 7.75800 \\ \hline 7.74350 \\ \end{array}$
k 0 0.03	$egin{arred} \alpha & \ 0^{\circ} & \ 0^{\circ} & \ 15^{\circ} & \ 30^{\circ} & \ 45^{\circ} & \ 60^{\circ} & \ 75^{\circ} & \ 90^{\circ} & \ 0^{\circ} & \ 15^{\circ} & \ 30^{\circ} & \ 45^{\circ} & \ 60^{\circ} & \ 45^{\circ} & \ 60^{\circ} & \ \end{array}$	$\begin{array}{r} \overline{k_7} \\ \hline 2.80509 \\ \hline 2.84007 \\ \hline 2.83937 \\ \hline 2.83731 \\ \hline 2.83403 \\ \hline 2.82975 \\ \hline 2.82475 \\ \hline 2.82475 \\ \hline 2.81938 \\ \hline 2.94197 \\ \hline 2.93929 \\ \hline 2.93139 \\ \hline 2.91877 \\ \hline 2.90222 \end{array}$	$\overline{K_8}$ 3.83656 3.87255 3.87183 3.86970 3.86631 3.86190 3.85674 3.85120 3.97815 3.97535 3.97535 3.96711 3.95395 3.93673	$\overline{K_9}$ 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a)	K_{10} 4.991945.028915.028175.025985.022495.017945.012645.006935.137875.134965.126425.112795.09497	$\begin{array}{r c} \overline{K_{11}} \\ \hline 6.25634 \\ \hline 6.29429 \\ \hline 6.29353 \\ \hline 6.29127 \\ \hline 6.28769 \\ \hline 6.28301 \\ \hline 6.27756 \\ \hline 6.27170 \\ \hline 6.40647 \\ \hline 6.40346 \\ \hline 6.39464 \\ \hline 6.38057 \\ \hline 6.36218 \\ \end{array}$	$\begin{array}{r} \overline{K_{12}} \\ \hline 7.61587 \\ \hline 7.65482 \\ \hline 7.65403 \\ \hline 7.65171 \\ \hline 7.64803 \\ \hline 7.64322 \\ \hline 7.63761 \\ \hline 7.63159 \\ \hline 7.77020 \\ \hline 7.77020 \\ \hline 7.76710 \\ \hline 7.75800 \\ \hline 7.74350 \\ \hline 7.72455 \end{array}$
k 0 0.03	$egin{array}{c} \alpha \\ 0^{\circ} \\ 15^{\circ} \\ 30^{\circ} \\ 45^{\circ} \\ 60^{\circ} \\ 75^{\circ} \\ 90^{\circ} \\ 0^{\circ} \\ 15^{\circ} \\ 30^{\circ} \\ 45^{\circ} \\ 60^{\circ} \\ 75^{\circ} \\ \end{array}$	$\begin{array}{r} \overline{k_7} \\ \hline 2.80509 \\ \hline 2.84007 \\ \hline 2.83937 \\ \hline 2.83731 \\ \hline 2.83403 \\ \hline 2.82975 \\ \hline 2.82475 \\ \hline 2.82475 \\ \hline 2.81938 \\ \hline 2.94197 \\ \hline 2.93929 \\ \hline 2.93139 \\ \hline 2.91877 \\ \hline 2.90222 \\ \hline 2.88279 \\ \end{array}$	$\overline{K_8}$ 3.83656 3.87255 3.87183 3.86970 3.86631 3.86190 3.85674 3.85120 3.97815 3.97535 3.97535 3.96711 3.95395 3.93673 3.91655	$\overline{K_9}$ 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a)	K_{10} 4.991945.028915.028175.025985.022495.017945.012645.006935.137875.134965.126425.112795.094975.07411	$\begin{array}{r c} \overline{K_{11}} \\ \hline 6.25634 \\ \hline 6.29429 \\ \hline 6.29353 \\ \hline 6.29127 \\ \hline 6.28769 \\ \hline 6.28301 \\ \hline 6.27756 \\ \hline 6.27170 \\ \hline 6.40647 \\ \hline 6.40346 \\ \hline 6.39464 \\ \hline 6.38057 \\ \hline 6.36218 \\ \hline 6.34068 \\ \end{array}$	$\begin{array}{r} \overline{K_{12}} \\ \hline 7.61587 \\ \hline 7.65482 \\ \hline 7.65403 \\ \hline 7.65171 \\ \hline 7.64803 \\ \hline 7.64322 \\ \hline 7.63761 \\ \hline 7.63159 \\ \hline 7.77020 \\ \hline 7.77020 \\ \hline 7.76710 \\ \hline 7.75800 \\ \hline 7.72455 \\ \hline 7.70241 \\ \end{array}$

表二十五 旋轉傾斜 Timoshenko 梁在不同轉速與不同傾斜角的自然頻率

 $(\bar{r}=1, \ \beta=90^{\circ}, \ \bar{\eta}=100)$

表二十六 旋轉傾斜 Timoshenko 梁在不同轉速與不同傾斜角的自然頻率

			()	, ,	• /		
\overline{k}	α	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6
0	0°	0.00352	0.02203	0.06169	0.12087	0.19977	0.29835
0.03	0°	0.04793	0.11531	0.19471	0.29055	0.40132	0.52651
	15°	0.04745	0.11427	0.19309	0.28833	0.39851	0.52314
	30°	0.04604	0.11113	0.18823	0.28170	0.39011	0.51309
	45°	0.04370	0.10595	0.18020	0.27072	0.37624	0.49654
	60°	0.04043	0.09876	0.16905	0.25551	0.35709	0.47379
	75°	0.03625	0.08960	0.15485	0.23619	0.33292	0.44531
	90°	0.03109	0.07846	0.13760	0.21288	0.30407	0.41176
0.06	0°	0.09503	0.22538	0.36470	0.52089	0.69331	0.87962
	15°	0.09408	0.22327	0.36141	0.51637	0.68752	0.87252
	30°	0.09124	0.21695	0.35155	0.50286	0.67019	0.85129
	45°	0.08653	0.20648	0.33523	0.48045	0.64142	0.81606
	60°	0.07996	0.19194	0.31254	0.44925	0.60136	0.76700
	75°	0.07152	0.17339	0.28353	0.40929	0.55001	0.70418
	90°	0.06107	0.15071	0.24801	0.36021	0.48694	0.62723
			EIN		8		
\overline{k}	α	\overline{K}_7	\overline{K}_8	\overline{K}_9	\overline{K}_{10}	\overline{K}_{11}	\overline{K}_{12}
0	0°	0.41660	0.55449	0.71197	0.88902	1.08559	1.30162
0.03	0°	0.66661	0.82233	0.99440	1.18342	1.38988	1.57051(a)
	15°	0.66273	0.81801	0.98969	1.17837	1.38453	1.57051(a)
	30°	0.65118	0.80515	0.97568	1.16338	1.36870	1.57051(a)
	45°	0.63223	0.78410	0.95283	1.13899	1.34300	1.56517
	60°	0.60633	0.75549	0.92192	1.10613	1.30851	1.52930
	75°	0.57417	0.72023	0.88409	1.06619	1.26680	1.48612
	90°	0.53674	0.67967	0.84100	1.02104	1.21998	1.43794
0.06	0°	1.07869	1.29029	1.51462	1.56965(a)	1.75207	2.00307
	15°	1.07029	1.28060	1.50369	1.56965(a)	1.73993	1.98978
	30°	1.04515	1.25164	1.47100	1.56965(a)	1.70366	1.95009
	45°	1.00348	1.20366	1.41692	1.56965(a)	1.64372	1.88459
	60°	0.94552	1.13704	1.34197	1.56087	1.56965(a)	1.79429
	75°	0.87146	1.05216	1.24684	1.45612	1.56965(a)	1.68063
				1.2		1.0 0 00 (0)	1.00000

 $(\bar{r}=1, \beta = 90^{\circ}, \bar{\eta} = 1000)$

表二十七 旋轉傾斜 Timoshenko 梁在不同轉速與不同傾斜角的自然頻率

			(. ,		
\overline{k}	α	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6
0	0°	0.32309	1.45309	1.57080(a)	3.16707	4.71239(a)	4.82282
0.03	0°	0.32760	1.45809	1.57051(a)	3.17391	4.71229(a)	4.83068
	15°	0.32750	1.45797	1.57051(a)	3.17375	4.71229(a)	4.83049
	30°	0.32720	1.45763	1.57051(a)	3.17328	4.71229(a)	4.82995
	45°	0.32672	1.45709	1.57051(a)	3.17253	4.71229(a)	4.82908
	60°	0.32609	1.45638	1.57051(a)	3.17154	4.71229(a)	4.82795
	75°	0.32536	1.45556	1.57051(a)	3.17040	4.71229(a)	4.82663
	90°	0.32457	1.45467	1.57051(a)	3.16917	4.71229(a)	4.82521
0.06	0°	0.34076	1.47295	1.56965(a)	3.19428	4.71201(a)	4.85403
	15°	0.34037	1.47249	1.56965(a)	3.19364	4.71201(a)	4.85329
	30°	0.33920	1.47115	1.56965(a)	3.19177	4.71201(a)	4.85114
	45°	0.33735	1.46900	1.56965(a)	3.18878	4.71201(a)	4.84772
	60°	0.33491	1.46619	1.56965(a)	3.18489	4.71201(a)	4.84324
	75°	0.33205	1.46291	1.56965(a)	3.18034	4.71201(a)	4.83801
	90°	0.32895	1.45939	1.56965(a)	3.17544	4.71201(a)	4.83237
			E		8		
\overline{k}	α	\overline{K}_7	\overline{K}_8	\overline{K}_{9}	\overline{K}_{10}	\overline{K}_{11}	\overline{K}_{12}
0	0°	6.28755	6.84520	7.85398(a)	8.12603	8.93990	10.29274
0.03	0°	6.29315	6.85098	7.85392(a)	8.13266	8.94991	10.29899
	15°	6.29301	6.85085	7.85392(a)	8.13250	8.94967	10.29884
	30°	6 29262	6 85045	7.05202()			
		0.22202	0.83043	7.85392(a)	8.13204	8.94898	10.29841
	45°	6.29200	6.84981	7.85392(a) 7.85392(a)	8.13204 8.13130	8.94898 8.94788	10.29841 10.29771
	45° 60°	6.29200 6.29120	6.84981 6.84898	7.85392(a) 7.85392(a) 7.85392(a)	8.13204 8.13130 8.13035	8.94898 8.94788 8.94645	10.29841 10.29771 10.29681
	45° 60° 75°	6.29200 6.29120 6.29025	6.84981 6.84898 6.84801	7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)	8.13204 8.13130 8.13035 8.12923	8.94898 8.94788 8.94645 8.94478	10.29841 10.29771 10.29681 10.29576
	45° 60° 75° 90°	6.29200 6.29120 6.29025 6.28924	6.84981 6.84898 6.84801 6.84697	7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a)	8.13204 8.13130 8.13035 8.12923 8.12803	8.94898 8.94788 8.94645 8.94478 8.94299	10.29841 10.29771 10.29681 10.29576 10.29463
0.06	45° 60° 75° 90° 0°	6.29200 6.29120 6.29025 6.28924 6.30962	0.83043 6.84981 6.84898 6.84801 6.84697 6.86829	7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85375(a)	8.13204 8.13130 8.13035 8.12923 8.12803 8.15249	8.94898 8.94788 8.94645 8.94478 8.94299 8.97961	10.29841 10.29771 10.29681 10.29576 10.29463 10.31765
0.06	45° 60° 75° 90° 0° 15°	6.29200 6.29120 6.29025 6.28924 6.30962 6.30910	0.83043 6.84981 6.84898 6.84801 6.84697 6.86829 6.86775	7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85375(a) 7.85375(a)	8.13204 8.13130 8.13035 8.12923 8.12803 8.15249 8.15186	8.94898 8.94788 8.94645 8.94478 8.94299 8.97961 8.97869	10.29841 10.29771 10.29681 10.29576 10.29463 10.31765 10.31706
0.06	45° 60° 75° 90° 0° 15° 30°	6.29200 6.29120 6.29025 6.28924 6.30962 6.30910 6.30759	6.84981 6.84898 6.84801 6.84697 6.86829 6.86775 6.86615	7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85375(a) 7.85375(a) 7.85375(a)	8.13204 8.13130 8.13035 8.12923 8.12803 8.15249 8.15186 8.15002	8.94898 8.94788 8.94645 8.94478 8.94299 8.97961 8.97869 8.97597	10.29841 10.29771 10.29681 10.29576 10.29463 10.31765 10.31706 10.31533
0.06	45° 60° 75° 90° 0° 15° 30° 45°	6.29200 6.29120 6.29025 6.28924 6.30962 6.30910 6.30759 6.30517	6.84981 6.84898 6.84801 6.84697 6.86829 6.86775 6.86615 6.86361	7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a)	8.13204 8.13130 8.13035 8.12923 8.12803 8.15249 8.15186 8.15002 8.14709	8.94898 8.94788 8.94645 8.94478 8.94299 8.97961 8.97869 8.97597 8.97164	10.29841 10.29771 10.29681 10.29576 10.29463 10.31765 10.31706 10.31533 10.31258
0.06	45° 60° 75° 90° 0° 15° 30° 45° 60°	6.29200 6.29120 6.29025 6.28924 6.30962 6.30910 6.30759 6.30517 6.30200	6.84981 6.84898 6.84801 6.84697 6.86829 6.86775 6.86615 6.86361 6.86029	7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a)	8.13204 8.13130 8.13035 8.12923 8.12803 8.15249 8.15186 8.15002 8.14709 8.14327	8.94898 8.94788 8.94645 8.94478 8.94299 8.97961 8.97869 8.97597 8.97164 8.96597	10.29841 10.29771 10.29681 10.29576 10.29463 10.31765 10.31706 10.31533 10.31258 10.30898
0.06	45° 60° 75° 90° 0° 15° 30° 45° 60° 75°	6.29200 6.29120 6.29025 6.28924 6.30962 6.30910 6.30759 6.30517 6.30200 6.29829	6.84981 6.84981 6.84898 6.84801 6.84697 6.86829 6.86775 6.86615 6.86361 6.86029 6.85642	7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85392(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a) 7.85375(a)	8.13204 8.13130 8.13035 8.12923 8.12803 8.15249 8.15186 8.15002 8.14709 8.14327 8.13882	8.94898 8.94788 8.94645 8.94478 8.94299 8.97961 8.97869 8.97597 8.97164 8.96597 8.95935	10.29841 10.29771 10.29681 10.29576 10.29463 10.31765 10.31706 10.31533 10.31258 10.30898 10.30479

 $(\bar{r} = 1.5, \beta = 90^{\circ}, \bar{\eta} = 10)$

表二十八 旋轉傾斜 Timoshenko 梁在不同轉速與不同傾斜角的自然頻率

			(, , ,	• •		
\overline{k}	α	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6
0	0°	0.17182	0.95696	1.57080(a)	2.33755	3.96197	4.71239(a)
0.03	0°	0.18065	0.96531	1.57051(a)	2.34718	3.97360	4.71229(a)
	15°	0.18045	0.96512	1.57051(a)	2.34695	3.97332	4.71229(a)
	30°	0.17988	0.96456	1.57051(a)	2.34630	3.97253	4.71229(a)
	45°	0.17896	0.96367	1.57051(a)	2.34525	3.97125	4.71229(a)
	60°	0.17776	0.96251	1.57051(a)	2.34389	3.96959	4.71229(a)
	75°	0.17634	0.96115	1.57051(a)	2.34230	3.96766	4.71229(a)
	90°	0.17481	0.95970	1.57051(a)	2.34060	3.96558	4.71229(a)
0.06	0°	0.20479	0.98990	1.56965(a)	2.37573	4.00819	4.71201(a)
	15°	0.20410	0.98916	1.56965(a)	2.37485	4.00711	4.71201(a)
	30°	0.20207	0.98698	1.56965(a)	2.37227	4.00395	4.71201(a)
	45°	0.19879	0.98351	1.56965(a)	2.36814	3.99891	4.71201(a)
	60°	0.19443	0.97896	1.56965(a)	2.36276	3.99234	4.71201(a)
	75°	0.18923	0.97363	1.56965(a)	2.35647	3.98466	4.71201(a)
	90°	0.18348	0.96787	1.56965(a)	2.34969	3.97639	4.71201(a)
			EIN		8		
\overline{k}	α	\overline{K}_7	\overline{K}_8	\overline{K}_9	\overline{K}_{10}	\overline{K}_{11}	\overline{K}_{12}
0	0°	5.71642	7.52062	7.85398(a)	9.32700	10.99557(a)	11.01027
0.03	0°	5.73005	7.53619	7.85392(a)	9.34418	10.99553(a)	11.02625
	15°	5.72973	7.53583	7.85392(a)	9.34378	10.99553(a)	11.02588
	30°	5.72879	7.53475	7.85392(a)	9.34259	10.99553(a)	11.02478
	45°	5.72729	7.53304	7.85392(a)	9.34070	10.99553(a)	11.02302
	60°	5.72534	7.53080	7.85392(a)	9.33823	10.99553(a)	11.02073
	75°	5.72306	7.52820	7.85392(a)	9.33536	10.99553(a)	11.01806
	90°	5.72062	7.52541	7.85392(a)	9.33228	10.99553(a)	11.01519
0.06	0°	5.77066	7.58256	7.85375(a)	9.39531	10.99541(a)	11.07331
	15°	5.76939	7.58111	7.85375(a)	9.39371	10.99541(a)	11.07185
	30°	5.76566	7.57685	7.85375(a)	9.38901	10.99541(a)	11.06756
	45°	5.75973	7.57006	7.85375(a)	9.38153	10.99541(a)	11.06071
	60°	5.75198	7.56121	7.85375(a)	9.37176	10.99541(a)	11.05174
	75°	5 7/29/	7 55086	7,85375(a)	9 36035	10.005/11(a)	11 0/122
	15	5.74274	7.55080	7.05575(a)	1.50055	10.99341(a)	11.04122

 $(\bar{r} = 1.5, \beta = 90^{\circ}, \bar{\eta} = 20)$

			$(\overline{r}=1.1)$	5, $\beta = 90^\circ$,	$\overline{\eta} = 50$)		
\overline{k}	α	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6
0	0°	0.07006	0.42956	1.16396	1.57080(a)	2.18360	3.43268
0.03	0°	0.08987	0.44909	1.18444	1.57051(a)	2.20575	3.45636
	15°	0.08947	0.44866	1.18397	1.57051(a)	2.20524	3.45581
	30°	0.08829	0.44738	1.18260	1.57051(a)	2.20373	3.45419
	45°	0.08638	0.44534	1.18041	1.57051(a)	2.20134	3.45162
	60°	0.08382	0.44267	1.17754	1.57051(a)	2.19821	3.44826
	75°	0.08074	0.43954	1.17420	1.57051(a)	2.19456	3.44434
	90°	0.07729	0.43615	1.17059	1.57051(a)	2.19064	3.44013
0.06	0°	0.13218	0.50295	1.24348	1.56965(a)	2.27058	3.52620
	15°	0.13111	0.50141	1.24171	1.56965(a)	2.26860	3.52405
	30°	0.12791	0.49686	1.23651	1.56965(a)	2.26279	3.51774
	45°	0.12264	0.48953	1.22818	1.56965(a)	2.25351	3.50766
	60°	0.11540	0.47979	1.21722	1.56965(a)	2.24134	3.49448
	75°	0.10633	0.46817	1.20430	1.56965(a)	2.22707	3.47904
	90°	0.09561	0.45535	1.19025	1.56965(a)	2.21161	3.46237
			E		8		
\overline{k}	α	\overline{K}_7	\overline{K}_8	\overline{K}_9	\overline{K}_{10}	\overline{K}_{11}	\overline{K}_{12}

表二十九 旋轉傾斜 Timoshenko 梁在不同轉速與不同傾斜角的自然頻率

\overline{k}	α	K_7	K_8	K_9	K_{10}	\overline{K}_{11}	\overline{K}_{12}
0	0°	4.71239(a)	4.85651	6.41102	7.85398(a)	8.06214	9.78423
0.03	0°	4.71229(a)	4.88176	6.43790	7.85392(a)	8.09074	9.81463
	15°	4.71229(a)	4.88117	6.43727	7.85392(a)	8.09007	9.81391
	30°	4.71229(a)	4.87944	6.43542	7.85392(a)	8.08810	9.81182
	45°	4.71229(a)	4.87668	6.43248	7.85392(a)	8.08497	9.80849
	60°	4.71229(a)	4.87309	6.42865	7.85392(a)	8.08088	9.80414
	75°	4.71229(a)	4.86890	6.42418	7.85392(a)	8.07612	9.79908
	90°	4.71229(a)	4.86440	6.41938	7.85392(a)	8.07101	9.79364
0.06	0°	4.71201(a)	4.95649	6.51765	7.85375(a)	8.17570	9.90501
	15°	4.71201(a)	4.95418	6.51517	7.85375(a)	8.17306	9.90219
	30°	4.71201(a)	4.94739	6.50790	7.85375(a)	8.16529	9.89392
	45°	4.71201(a)	4.93656	6.49631	7.85375(a)	8.15292	9.88074
	60°	4.71201(a)	4.92240	6.48116	7.85375(a)	8.13676	9.86352
	75°	4.71201(a)	4.90584	6.46346	7.85375(a)	8.11787	9.84341
	90°	4.71201(a)	4.88798	6.44439	7.85375(a)	8.09753	9.82177

				, 1	,		
\overline{k}	α	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6
0	0°	0.03513	0.21891	0.60755	1.17564	1.57080(a)	1.91300
0.03	0°	0.06624	0.25551	0.64665	1.21745	1.57051(a)	1.95672
	15°	0.06570	0.25474	0.64578	1.21650	1.57051(a)	1.95571
	30°	0.06410	0.25247	0.64322	1.21371	1.57051(a)	1.95276
	45°	0.06146	0.24881	0.63912	1.20924	1.57051(a)	1.94805
	60°	0.05783	0.24395	0.63373	1.20340	1.57051(a)	1.94189
	75°	0.05329	0.23816	0.62738	1.19654	1.57051(a)	1.93469
_	90°	0.04793	0.23178	0.62049	1.18913	1.57051(a)	1.92692
0.06	0°	0.11665	0.34165	0.74998	1.33348	1.56965(a)	2.08119
	15°	0.11545	0.33939	0.74706	1.33008	1.56965(a)	2.07746
	30°	0.11187	0.33267	0.73842	1.32004	1.56965(a)	2.06648
	45°	0.10591	0.32166	0.72441	1.30386	1.56965(a)	2.04885
	60°	0.09758	0.30666	0.70564	1.28238	1.56965(a)	2.02559
	75°	0.08684	0.28812	0.68298	1.25679	1.56965(a)	1.99806
	90°	0.07353	0.26665	0.65760	1.22858	1.56965(a)	1.96798
			EIN		8		
\overline{k}	α	\overline{K}_7	$\overline{\overline{K}_8}$	\overline{K}_9	8 K ₁₀	\overline{K}_{11}	\overline{K}_{12}
$\frac{\overline{k}}{0}$	$\frac{lpha}{0^{\circ}}$	\overline{K}_7 2.80509	 <u> </u> 	$\frac{\overline{K}_9}{4.71239(a)}$	<i>K</i> ₁₀ 4.99194	$\frac{\overline{K}_{11}}{6.25634}$	\$\overline{K}_{12}\$ 7.61587
	α 0° 0°	\overline{K}_7 2.80509 2.85034	\$\overline{K_8}\$ 3.83656 3.88317	\overline{K}_{9} 4.71239(a) 4.71229(a)	K ₁₀ 4.99194 5.03986	$ \overline{K}_{11} \\ 6.25634 \\ 6.30555 $	\$\overline{K}_{12}\$ 7.61587 7.66640
	α 0° 0° 15°	$ \overline{K_7} 2.80509 2.85034 2.84929 $	$ \overline{K_8} 3.83656 3.88317 3.88209 $	$\overline{K_9}$ 4.71239(a) 4.71229(a) 4.71229(a)	K ₁₀ 4.99194 5.03986 5.03874	$ \overline{K_{11}} 6.25634 6.30555 6.30440 $	$ \overline{K}_{12} $ 7.61587 7.66640 7.66521
	α 0° 15° 30°	$ \overline{K_7} 2.80509 2.85034 2.84929 2.84622 $	K ₈ 3.83656 3.88317 3.88209 3.87891	$ \overline{K_9} 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) $	K ₁₀ 4.99194 5.03986 5.03874 5.03546	$ \overline{K_{11}} 6.25634 6.30555 6.30440 6.30103 $	$ \overline{K_{12}} 7.61587 7.66640 7.66521 7.66175 $
$ \overline{\frac{\overline{k}}{0}} 0.03 $	α 0° 15° 30° 45°	$ \overline{K_7} 2.80509 2.85034 2.84929 2.84622 2.84132 $	K ₈ 3.83656 3.88317 3.88209 3.87891 3.87384	$ \overline{K_9} 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) $	K ₁₀ 4.99194 5.03986 5.03874 5.03546 5.03024	$ \overline{K_{11}} 6.25634 6.30555 6.30440 6.30103 6.29566 $	$ \overline{K}_{12} $ 7.61587 7.66640 7.66521 7.66175 7.65622
	α 0° 15° 30° 45° 60°	$ \overline{K_7} 2.80509 2.85034 2.84929 2.84622 2.84132 2.83491 $	$ \overline{K_8} 3.83656 3.88317 3.88209 3.87891 3.87384 3.86723 $	$ \overline{K_9} 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) $	K ₁₀ 4.99194 5.03986 5.03874 5.03546 5.03024 5.02343	$ \overline{K_{11}} 6.25634 6.30555 6.30440 6.30103 6.29566 6.28865 $	$\frac{\overline{K}_{12}}{7.61587}$ 7.66640 7.66521 7.66175 7.65622 7.64902
$ \overline{\frac{\overline{k}}{0}} 0.03 $	α 0° 15° 30° 45° 60° 75°	$ \overline{K_7} 2.80509 2.85034 2.84929 2.84622 2.84132 2.83491 2.82743 $	$\overline{K_8}$ 3.83656 3.88317 3.88209 3.87891 3.87384 3.86723 3.85951	$ \overline{K_9} 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) $	$\overline{K_{10}}$ 4.99194 5.03986 5.03874 5.03546 5.03024 5.02343 5.01548	$\begin{array}{r} \overline{K_{11}} \\ \hline 6.25634 \\ \hline 6.30555 \\ \hline 6.30440 \\ \hline 6.30103 \\ \hline 6.29566 \\ \hline 6.28865 \\ \hline 6.28048 \end{array}$	$\frac{\overline{K}_{12}}{7.61587}$ 7.66640 7.66521 7.66175 7.65622 7.64902 7.64062
k 0 0.03	α 0° 15° 30° 45° 60° 75° 90°	$\overline{K_7}$ 2.80509 2.85034 2.84929 2.84622 2.84132 2.83491 2.82743 2.81938	$\overline{K_8}$ 3.83656 3.88317 3.88209 3.87891 3.87384 3.86723 3.85951 3.85120	$ \frac{\overline{K_9}}{4.71239(a)} \\ 4.71229(a) \\ 4.71$	K ₁₀ 4.99194 5.03986 5.03874 5.03546 5.03024 5.02343 5.01548 5.00693	$\overline{K_{11}}$ 6.25634 6.30555 6.30440 6.30103 6.29566 6.28865 6.28048 6.27170	$\frac{\overline{K}_{12}}{7.61587}$ 7.66640 7.66521 7.66175 7.65622 7.64902 7.64062 7.63159
k 0 0.03 0.06	α 0° 15° 30° 45° 60° 75° 90°	$\overline{K_7}$ 2.80509 2.85034 2.84929 2.84622 2.84132 2.83491 2.82743 2.81938 2.98106	$\overline{K_8}$ 3.83656 3.88317 3.88209 3.87891 3.87384 3.86723 3.85951 3.85120 4.01903	$ \frac{\overline{K_9}}{4.71239(a)} \\ 4.71229(a) \\ 4.71201(a) $	K ₁₀ 4.99194 5.03986 5.03874 5.03546 5.03024 5.02343 5.01548 5.00693 5.18030	$\begin{array}{r} \overline{K_{11}} \\ \hline 6.25634 \\ \hline 6.30555 \\ \hline 6.30440 \\ \hline 6.30103 \\ \hline 6.29566 \\ \hline 6.28865 \\ \hline 6.28048 \\ \hline 6.27170 \\ \hline 6.45036 \end{array}$	$\frac{\overline{K}_{12}}{7.61587}$ 7.66640 7.66521 7.66175 7.65622 7.64902 7.64062 7.63159 7.81549
k 0 0.03	α 0° 15° 30° 45° 60° 75° 90° 0° 15°	$\overline{K_7}$ 2.80509 2.85034 2.84929 2.84622 2.84132 2.83491 2.82743 2.81938 2.98106 2.97709	$\overline{K_8}$ 3.83656 3.88317 3.88209 3.87891 3.87384 3.86723 3.85951 3.85120 4.01903 4.01487	$ \frac{\overline{K_9}}{4.71239(a)} \\ 4.71229(a) \\ 4.71201(a) \\ 4.71201(a) $	K ₁₀ 4.99194 5.03986 5.03874 5.03546 5.03024 5.02343 5.01548 5.00693 5.18030 5.17599	$\overline{K_{11}}$ 6.25634 6.30555 6.30440 6.30103 6.29566 6.28865 6.28048 6.27170 6.45036 6.44589	$\frac{\overline{K}_{12}}{7.61587}$ 7.66640 7.66521 7.66175 7.65622 7.64902 7.64062 7.63159 7.81549 7.81088
k 0 0.03	α 0° 15° 30° 45° 60° 75° 90° 0° 15° 30°	$\begin{array}{r} \overline{K_7} \\ \hline 2.80509 \\ \hline 2.85034 \\ \hline 2.84929 \\ \hline 2.84622 \\ \hline 2.84622 \\ \hline 2.84132 \\ \hline 2.83491 \\ \hline 2.82743 \\ \hline 2.81938 \\ \hline 2.98106 \\ \hline 2.97709 \\ \hline 2.96543 \\ \end{array}$	$\overline{K_8}$ 3.83656 3.88317 3.88209 3.87891 3.87384 3.86723 3.85951 3.85951 3.85120 4.01903 4.01487 4.00266	$ \overline{K_9} 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71201(a) 4.71201(a) 4.71201(a) $	K_{10} 4.99194 5.03986 5.03874 5.03546 5.03024 5.02343 5.01548 5.00693 5.18030 5.17599 5.16330	$\begin{array}{r c} \overline{K_{11}} \\ \hline 6.25634 \\ \hline 6.30555 \\ \hline 6.30440 \\ \hline 6.30103 \\ \hline 6.29566 \\ \hline 6.28865 \\ \hline 6.28048 \\ \hline 6.27170 \\ \hline 6.45036 \\ \hline 6.44589 \\ \hline 6.43276 \\ \end{array}$	$\frac{\overline{K}_{12}}{7.61587}$ 7.66640 7.66521 7.66175 7.65622 7.64902 7.64062 7.63159 7.81549 7.81088 7.79733
k 0 0.03	$egin{array}{c} \alpha \\ 0^{\circ} \\ 15^{\circ} \\ 30^{\circ} \\ 45^{\circ} \\ 60^{\circ} \\ 75^{\circ} \\ 90^{\circ} \\ 0^{\circ} \\ 15^{\circ} \\ 30^{\circ} \\ 45^{\circ} \\ \end{array}$	$\begin{array}{r} \overline{K_7} \\ \hline 2.80509 \\ \hline 2.85034 \\ \hline 2.84929 \\ \hline 2.84622 \\ \hline 2.84132 \\ \hline 2.83491 \\ \hline 2.82743 \\ \hline 2.82743 \\ \hline 2.81938 \\ \hline 2.98106 \\ \hline 2.97709 \\ \hline 2.96543 \\ \hline 2.94675 \\ \end{array}$	$\overline{K_8}$ 3.83656 3.88317 3.88209 3.87891 3.87384 3.86723 3.85951 3.85951 3.85120 4.01903 4.01487 4.00266 3.98314	$\overline{K_9}$ 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a)	K_{10} 4.99194 5.03986 5.03874 5.03546 5.03024 5.02343 5.01548 5.00693 5.18030 5.17599 5.16330 5.14304	$\begin{array}{r} \overline{K_{11}} \\ \hline 6.25634 \\ \hline 6.30555 \\ \hline 6.30440 \\ \hline 6.30103 \\ \hline 6.29566 \\ \hline 6.28865 \\ \hline 6.28048 \\ \hline 6.27170 \\ \hline 6.45036 \\ \hline 6.44589 \\ \hline 6.43276 \\ \hline 6.41181 \\ \hline \end{array}$	$\frac{\overline{K}_{12}}{7.61587}$ 7.66640 7.66521 7.66175 7.65622 7.64902 7.64062 7.63159 7.81549 7.81088 7.79733 7.77571
k 0 0.03	$egin{arred} \alpha & \ 0^{\circ} & \ 0^{\circ} & \ 15^{\circ} & \ 30^{\circ} & \ 45^{\circ} & \ 60^{\circ} & \ 75^{\circ} & \ 90^{\circ} & \ 0^{\circ} & \ 15^{\circ} & \ 30^{\circ} & \ 45^{\circ} & \ 60^{\circ} & \ 45^{\circ} & \ 60^{\circ} & \ \end{array}$	$\overline{k_7}$ 2.80509 2.85034 2.84929 2.84622 2.84132 2.83491 2.82743 2.81938 2.98106 2.97709 2.96543 2.94675 2.92218	$\overline{K_8}$ 3.83656 3.88317 3.88209 3.87891 3.87384 3.86723 3.85951 3.85951 3.85120 4.01903 4.01903 4.01487 4.00266 3.98314 3.95751	$\overline{K_9}$ 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a)	K_{10} 4.99194 5.03986 5.03874 5.03546 5.03024 5.02343 5.01548 5.00693 5.18030 5.17599 5.16330 5.14304 5.11648	$\begin{array}{r} \overline{K_{11}} \\ \hline 6.25634 \\ \hline 6.30555 \\ \hline 6.30440 \\ \hline 6.30103 \\ \hline 6.29566 \\ \hline 6.28865 \\ \hline 6.28048 \\ \hline 6.27170 \\ \hline 6.45036 \\ \hline 6.44589 \\ \hline 6.43276 \\ \hline 6.41181 \\ \hline 6.38438 \\ \end{array}$	$\overline{k_{12}}$ 7.61587 7.66640 7.66521 7.66175 7.65622 7.64902 7.64062 7.63159 7.81549 7.81088 7.79733 7.77571 7.74742
k 0 0.03	$egin{arred} \alpha & \ 0^{\circ} & \ 0^{\circ} & \ 15^{\circ} & \ 30^{\circ} & \ 45^{\circ} & \ 60^{\circ} & \ 75^{\circ} & \ 90^{\circ} & \ 0^{\circ} & \ 15^{\circ} & \ 30^{\circ} & \ 45^{\circ} & \ 60^{\circ} & \ 75^{\circ} & \ 15^{\circ} & \ 15^{$	$\overline{k_7}$ 2.80509 2.85034 2.84929 2.84622 2.84132 2.83491 2.82743 2.81938 2.98106 2.97709 2.96543 2.94675 2.92218 2.89323	$\overline{K_8}$ 3.83656 3.88317 3.88209 3.87891 3.87384 3.86723 3.85951 3.85951 3.85120 4.01903 4.01487 4.00266 3.98314 3.95751 3.92739	$\overline{K_9}$ 4.71239(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71229(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a) 4.71201(a)	K_{10} 4.991945.039865.038745.035465.030245.023435.015485.006935.180305.175995.163305.143045.016485.08531	$\begin{array}{r} \overline{K_{11}} \\ \hline 6.25634 \\ \hline 6.30555 \\ \hline 6.30440 \\ \hline 6.30103 \\ \hline 6.29566 \\ \hline 6.28865 \\ \hline 6.28048 \\ \hline 6.27170 \\ \hline 6.45036 \\ \hline 6.44589 \\ \hline 6.43276 \\ \hline 6.41181 \\ \hline 6.38438 \\ \hline 6.35223 \\ \end{array}$	$\overline{k_{12}}$ 7.61587 7.66640 7.66521 7.66175 7.65622 7.64902 7.64062 7.63159 7.81549 7.81088 7.79733 7.77571 7.74742 7.71430

表三十 旋轉傾斜 Timoshenko 梁在不同轉速與不同傾斜角的自然頻率

 $(\bar{r} = 1.5, \beta = 90^{\circ}, \bar{\eta} = 100)$

表三十一 旋轉傾斜 Timoshenko 梁在不同轉速與不同傾斜角的自然頻率

\overline{k}	α	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6
0	0°	0.00352	0.02203	0.06169	0.12087	0.19977	0.29835
0.03	0°	0.05437	0.12967	0.21696	0.32099	0.43997	0.57302
	15°	0.05375	0.12828	0.21480	0.31804	0.43622	0.56849
	30°	0.05188	0.12411	0.20834	0.30920	0.42498	0.55494
	45°	0.04875	0.11715	0.19756	0.29445	0.40626	0.53244
	60°	0.04434	0.10738	0.18241	0.27374	0.38005	0.50108
	75°	0.03855	0.09464	0.16265	0.24680	0.34617	0.46089
_	90°	0.03109	0.07846	0.13760	0.21288	0.30407	0.41176
0.06	0°	0.10797	0.25433	0.40979	0.58261	0.77241	0.97653
	15°	0.10672	0.25152	0.40542	0.57665	0.76477	0.96717
	30°	0.10297	0.24312	0.39233	0.55874	0.74183	0.93906
	45°	0.09669	0.22910	0.37049	0.52882	0.70348	0.89208
	60°	0.08783	0.20936	0.33972	0.48662	0.64934	0.82575
	75°	0.07617	0.18359	0.29949	0.43129	0.57828	0.73876
	90°	0.06107	0.15071	0.24801	0.36021	0.48694	0.62723
			EN		8		
\overline{k}	α	\overline{K}_7	\overline{K}_8	\overline{K}_9	\overline{K}_{10}	\overline{K}_{11}	\overline{K}_{12}
0	0°	0.41660	0.55449	0.71197	0.88902	1.08559	1.30162
0.03	0°	0.72035	0.88259	1.06044	1.25454	1.46541	1.57051(a)
	15°	0.71510	0.87669	1.05395	1.24751	1.45793	1.57051(a)
	30°	0.69941	0.85905	1.03458	1.22661	1.43569	1.57051(a)
	45°	0.67343	0.82996	1.00273	1.19235	1.39933	1.57051(a)
	60°	0.63742	0.78986	0.95907	1.14564	1.35000	1.57051(a)
	75°	0.59172	0.73942	0.90465	1.08786	1.28939	1.50949
	90°	0.53674	0.67967	0.84100	1.02104	1.21998	1.43794
0.06	0°	1.19348	1.42279	1.56965(a)	1.66446	1.91875	2.18600
	15°	1.18239	1.40998	1.56965(a)	1.64996	1.90259	2.16824
	30°	1.14909	1.37152	1.56965(a)	1.60644	1.85414	2.11502
	45°	1.09344	1.30730	1.53384	1.56965(a)	1.77341	2.02646
		1 01 40 5	1 21606	1 43178	1.56965(a)	1 66019	1 90257
	60°	1.01495	1.21080	1.75170	1.50705(u)	1.00019	1.90207
	60° 75°	1.01495 0.91220	1.21080	1.29906	1.51356	1.56965(a)	1.74288
表三十二 旋轉傾斜 Timoshenko 梁在不同細長比與不同轉速的自然頻率

$\overline{\eta}$	\overline{k}	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6
8.1	0	0.38396	1.57080(a)	1.57185	3.34110	4.71239(a)	4.71882
	0.01	0.38413	1.56853	1.57456	3.34161	4.71163	4.72002
	0.02	0.38465	1.56624	1.57818	3.34314	4.71017	4.72281
	0.03	0.38550	1.56434	1.58229	3.34568	4.70873	4.72644
	0.04	0.38668	1.56284	1.58689	3.34924	4.70749	4.73075
	0.05	0.38819	1.56171	1.59198	3.35379	4.70648	4.73568
	0.06	0.39002	1.56096	1.59759	3.35934	4.70570	4.74123
	0.07	0.39216	1.56055	1.60370	3.36587	4.70513	4.74740
	0.08	0.39460	1.56048	1.61034	3.37336	4.70475	4.75418
	0.09	0.39733	1.56073	1.61750	3.38180	4.70455	4.76157
	0.1	0.40033	1.56130	1.62518	3.39118	4.70451	4.76955
					6		
8.15	0	0.38210	1.56877	1.57080(a)	3.33673	4.71239(a)	4.72653
	0.01	0.38227	1.56694	1.57307	3.33724	4.71203	4.72734
	0.02	0.38279	1.56477	1.57657	⁰ 3.33877	4.71114	4.72957
	0.03	0.38365	1.56297	1.580596	3.34132	4.71007	4.73289
	0.04	0.38484	1.56155	1.58512	3.34489	4.70902	4.73705
	0.05	0.38636	1.56050	1.59015	3.34946	4.70810	4.74197
	0.06	0.38821	1.55981	1.59569	3.35502	4.70735	4.74757
	0.07	0.39036	1.55948	1.60175	3.36157	4.70677	4.75384
	0.08	0.39282	1.55947	1.60834	3.36909	4.70637	4.76075
	0.09	0.39557	1.55979	1.61545	3.37756	4.70614	4.76830
	0.1	0.39860	1.56041	1.62310	3.38696	4.70606	4.77647

 $(\overline{r}=1, \alpha=0^{\circ}, \beta=0^{\circ}, \overline{\eta}=8.1, 8.15)$

表三十三 旋轉傾斜 Timoshenko 梁在不同細長比與不同轉速的自然頻率

$\overline{\eta}$	\overline{k}	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6
8.2	0	0.38026	1.56568	1.57080(a)	3.33233	4.71239(a)	4.73394
	0.01	0.38043	1.56465	1.57227	3.33285	4.71216	4.73462
	0.02	0.38095	1.56292	1.57535	3.33439	4.71157	4.73658
	0.03	0.38181	1.56133	1.57916	3.33694	4.71078	4.73965
	0.04	0.38302	1.56006	1.58354	3.34052	4.70994	4.74366
	0.05	0.38455	1.55913	1.58846	3.34510	4.70916	4.74851
	0.06	0.38641	1.55855	1.59391	3.35068	4.70850	4.75411
	0.07	0.38858	1.55830	1.59990	3.35725	4.70797	4.76043
	0.08	0.39106	1.55838	1.60642	3.36479	4.70760	4.76743
	0.09	0.39383	1.55877	1.61348	3.37329	4.70737	4.77510
	0.1	0.39688	1.55947	1.62107	3.38272	4.70729	4.78341
8.3	0	0.37662	1.55950	1.57080(a)	3.32349	4.71239(a)	4.74786
	0.01	0.37679	1.55912	1.57162	3.32401	4.71227	4.74845
	0.02	0.37732	1.55826	1.57383	3.32555	4.71195	4.75019
	0.03	0.37820	1.55730	1.577026	3.32813	4.71148	4.75301
	0.04	0.37942	1.55649	1.58096	3.33172	4.71095	4.75682
	0.05	0.38098	1.55591	1.58555	3.33633	4.71043	4.76156
	0.06	0.38286	1.55562	1.59074	3.34195	4.70995	4.76714
	0.07	0.38507	1.55562	1.59650	3.34855	4.70957	4.77351
	0.08	0.38759	1.55592	1.60284	3.35614	4.70929	4.78065
	0.09	0.39040	1.55651	1.60974	3.36468	4.70913	4.78851
	0.1	0.39349	1.55738	1.61720	3.37418	4.70910	4.79706

 $(\overline{r}=1 \ , \ \alpha=0^{\circ} \ , \ \beta=0^{\circ} \ , \ \overline{\eta}=8.2, 8.3)$

表三十四 旋轉傾斜 Timoshenko 梁在不同細長比與不同轉速的自然頻率

$\overline{\eta}$	\overline{k}	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6
8.4	0	0.37303	1.55330	1.57080(a)	3.31458	4.71239(a)	4.76057
	0.01	0.37321	1.55317	1.57137	3.31510	4.71232	4.76113
	0.02	0.37375	1.55285	1.57304	3.31665	4.71212	4.76279
	0.03	0.37464	1.55249	1.57565	3.31924	4.71182	4.76552
	0.04	0.37588	1.55219	1.57909	3.32286	4.71147	4.76926
	0.05	0.37746	1.55207	1.58325	3.32749	4.71112	4.77396
	0.06	0.37938	1.55216	1.58808	3.33314	4.71081	4.77956
	0.07	0.38162	1.55249	1.59354	3.33978	4.71055	4.78601
	0.08	0.38417	1.55307	1.59963	3.34741	4.71038	4.79327
	0.09	0.38702	1.55391	1.60631	3.35601	4.71031	4.80130
	0.1	0.39016	1.55501	1.61359	3.36555	4.71034	4.81008
8.5	0	0.36951	1.54707	1.57080(a)	3.30560	4.71239(a)	4.77207
	0.01	0.36970	1.54707	1.57125	3.30612	4.71234	4.77263
	0.02	0.37024	1.54709	1.57259	3.30769	4.71221	4.77427
	0.03	0.37114	1.54717	1.574736	3.31029	4.71202	4.77698
	0.04	0.37240	1.54735	1.57775	3.31393	4.71179	4.78071
	0.05	0.37401	1.54768	1.58147	3.31859	4.71156	4.78542
	0.06	0.37595	1.54819	1.58591	3.32426	4.71136	4.79108
	0.07	0.37822	1.54889	1.59103	3.33094	4.71121	4.79763
	0.08	0.38081	1.54982	1.59680	3.33861	4.71113	4.80503
	0.09	0.38371	1.55096	1.60322	3.34726	4.71114	4.81325
	0.1	0.38689	1.55233	1.61027	3.35686	4.71124	4.82224

 $(\overline{r}=1 \ , \ \alpha=0^{\circ} \ , \ \beta=0^{\circ} \ , \ \overline{\eta}=8.4, 8.5)$

表三十五 旋轉傾斜 Timoshenko 梁在不同細長比與不同轉速的自然頻率

$\overline{\eta}$	\overline{k}	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6
8.1	0	0.38396	1.57080(a)	1.57185	3.34110	4.71239(a)	4.71882
	0.01	0.38428	1.57076(a)	1.57223	3.34164	4.71238(a)	4.71923
	0.02	0.38524	1.57067(a)	1.57336	3.34324	4.71235(a)	4.72047
	0.03	0.38682	1.57051(a)	1.57526	3.34592	4.71229(a)	4.72252
	0.04	0.38903	1.57029(a)	1.57791	3.34966	4.71222(a)	4.72539
	0.05	0.39185	1.57000(a)	1.58130	3.35445	4.71212(a)	4.72905
	0.06	0.39527	1.56965(a)	1.58544	3.36029	4.71201(a)	4.73349
	0.07	0.39927	1.56924(a)	1.59030	3.36717	4.71187(a)	4.73870
	0.08	0.40383	1.56876(a)	1.59590	3.37507	4.71171(a)	4.74464
	0.09	0.40894	1.56822(a)	1.60220	3.38398	4.71153(a)	4.75130
	0.1	0.41457	1.56761(a)	1.60921	3.39388	4.71133(a)	4.75865
8.15	0	0.38210	1.56877	1.57080(a)	3.33673	4.71239(a)	4.72653
	0.01	0.38242	1.56915	1.57076(a)	3.33727	4.71238(a)	4.72695
	0.02	0.38338	1.57029	1.57067(a)	⁰ 3.33888	4.71235(a)	4.72821
	0.03	0.38498	1.57051(a)	1.572196	3.34156	4.71229(a)	4.73031
	0.04	0.38720	1.57029(a)	1.57485	3.34531	4.71222(a)	4.73323
	0.05	0.39004	1.57000(a)	1.57826	3.35012	4.71212(a)	4.73696
	0.06	0.39347	1.56965(a)	1.58241	3.35598	4.71201(a)	4.74149
	0.07	0.39750	1.56924(a)	1.58729	3.36287	4.71187(a)	4.74680
	0.08	0.40209	1.56876(a)	1.59290	3.37080	4.71171(a)	4.75286
	0.09	0.40722	1.56822(a)	1.59923	3.37973	4.71153(a)	4.75965
	0.1	0.41288	1.56761(a)	1.60626	3.38966	4.71133(a)	4.76715

 $(\overline{r}=1, \alpha=0^{\circ}, \beta=90^{\circ}, \overline{\eta}=8.1, 8.15)$

表三十六 旋轉傾斜 Timoshenko 梁在不同細長比與不同轉速的自然頻率

$\overline{\eta}$	\overline{k}	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6
8.2	0	0.38026	1.56568	1.57080(a)	3.33233	4.71239(a)	4.73394
	0.01	0.38058	1.56607	1.57076(a)	3.33287	4.71238(a)	4.73437
	0.02	0.38155	1.56721	1.57067(a)	3.33449	4.71235(a)	4.73565
	0.03	0.38315	1.56912	1.57051(a)	3.33718	4.71229(a)	4.73779
	0.04	0.38539	1.57029(a)	1.57179	3.34094	4.71222(a)	4.74077
	0.05	0.38824	1.57000(a)	1.57520	3.34576	4.71212(a)	4.74457
	0.06	0.39169	1.56965(a)	1.57937	3.35164	4.71201(a)	4.74919
	0.07	0.39574	1.56924(a)	1.58427	3.35855	4.71187(a)	4.75460
	0.08	0.40035	1.56876(a)	1.58990	3.36650	4.71171(a)	4.76078
	0.09	0.40551	1.56822(a)	1.59625	3.37546	4.71153(a)	4.76771
	0.1	0.41120	1.56761(a)	1.60331	3.38541	4.71133(a)	4.77535
8.3	0	0.37662	1.55950	1.57080(a)	3.32349	4.71239(a)	4.74786
	0.01	0.37694	1.55988	1.57076(a)	3.32403	4.71238(a)	4.74830
	0.02	0.37792	1.56104	1.57067(a)	3.32566	4.71235(a)	4.74964
	0.03	0.37954	1.56296	1.57051(a)	3.32836	4.71229(a)	4.75185
	0.04	0.38180	1.56564	1.57029(a)	3.33214	4.71222(a)	4.75495
	0.05	0.38469	1.56908	1.57000(a)	3.33699	4.71212(a)	4.75890
	0.06	0.38818	1.56965(a)	1.57328	3.34290	4.71201(a)	4.76370
	0.07	0.39227	1.56924(a)	1.57821	3.34985	4.71187(a)	4.76932
	0.08	0.39693	1.56876(a)	1.58388	3.35784	4.71171(a)	4.77574
	0.09	0.40215	1.56822(a)	1.59027	3.36685	4.71153(a)	4.78294
	0.1	0.40789	1.56761(a)	1.59738	3.37686	4.71133(a)	4.79088

 $(\overline{r}=1, \alpha=0^{\circ}, \beta=90^{\circ}, \overline{\eta}=8.2, 8.3)$

表三十七 旋轉傾斜 Timoshenko 梁在不同細長比與不同轉速的自然頻率

$\overline{\eta}$	\overline{k}	\overline{K}_1	\overline{K}_2	\overline{K}_3	\overline{K}_4	\overline{K}_5	\overline{K}_6
8.4	0	0.37303	1.55330	1.57080(a)	3.31458	4.71239(a)	4.76057
	0.01	0.37336	1.55368	1.57076(a)	3.31512	4.71238(a)	4.76103
	0.02	0.37435	1.55484	1.57067(a)	3.31676	4.71235(a)	4.76241
	0.03	0.37599	1.55678	1.57051(a)	3.31948	4.71229(a)	4.76471
	0.04	0.37828	1.55948	1.57029(a)	3.32328	4.71222(a)	4.76792
	0.05	0.38120	1.56295	1.57000(a)	3.32815	4.71212(a)	4.77202
	0.06	0.38473	1.56717	1.56965(a)	3.33409	4.71201(a)	4.77700
	0.07	0.38886	1.56924(a)	1.57214	3.34108	4.71187(a)	4.78283
	0.08	0.39357	1.56876(a)	1.57784	3.34911	4.71171(a)	4.78950
	0.09	0.39884	1.56822(a)	1.58428	3.35817	4.71153(a)	4.79697
	0.1	0.40464	1.56761(a)	1.59143	3.36823	4.71133(a)	4.80522
					6		
8.5	0	0.36951	1.54707	1.57080(a)	3.30560	4.71239(a)	4.77207
	0.01	0.36985	1.54746	1.57076(a)	3.30615	4.71238(a)	4.77255
	0.02	0.37085	1.54863	1.57067(a)	⁰ 3.30779	4.71235(a)	4.77399
	0.03	0.37251	1.55058	1.57051(a)	3.31053	4.71229(a)	4.77637
	0.04	0.37482	1.55330	1.57029(a)	3.31435	4.71222(a)	4.77969
	0.05	0.37777	1.55679	1.57000(a)	3.31924	4.71212(a)	4.78394
	0.06	0.38134	1.56104	1.56965(a)	3.32521	4.71201(a)	4.78909
	0.07	0.38552	1.56604	1.56924(a)	3.33224	4.71187(a)	4.79514
	0.08	0.39028	1.56876(a)	1.57179	3.34031	4.71171(a)	4.80205
	0.09	0.39560	1.56822(a)	1.57826	3.34942	4.71153(a)	4.80979
	0.1	0.40146	1.56761(a)	1.58546	3.35954	4.71133(a)	4.81835

 $(\overline{r}=1 , \alpha=0^{\circ}, \beta=90^{\circ}, \overline{\eta}=8.4, 8.5)$

圖一 無傾斜角的旋轉梁結構三視圖

圖二 具傾斜角的旋轉梁架構

圖三 (a)Lagwise bending vibration (b) 撲翼振動(Flapping vibration)

圖四 旋轉傾斜梁的俯視圖

圖五 旋轉傾斜梁的側視圖

圖六 梁的變形圖

圖八 梁的分段元素

圖十 旋轉傾斜梁在不同細長比下側向振態對應的自然頻率之比值 $(\bar{k} = 0.06, \alpha = 0^{\circ}, \beta = 90^{\circ}, \bar{r} = 1)$

圖十一 旋轉傾斜梁在不同細長比下側向振態對應的自然頻率之比值

圖十二 不同轉速下的第一至第六個振動模態

 $(\bar{r}=1, \ \alpha=0^{\circ}, \ \beta=0^{\circ}, \ \bar{\eta}=10)$

圖十二 (續)

圖十二 (續)

圖十三 不同轉速下的第一至第六個振動模態

 $(\bar{r}=1, \alpha=0^{\circ}, \beta=0^{\circ}, \overline{\eta}=50)$

圖十三 (續)

圖十三 (續)

圖十四 不同傾斜角的第一至第四個自然頻率($\bar{r}=1, \beta=90^{\circ}, \bar{\eta}=100$)

圖十五 不同細長比下不同轉速的 $\overline{K}_1 - \alpha$ ($\overline{r} = 1$, $\beta = 90^\circ$)

圖十六 不同轉軸半徑在不同傾斜角時對應側向振態的自然頻率($\beta = 90^\circ$, $\overline{\eta} = 10$)

圖十七 不同細長比的自然頻率與轉速之特徵值曲線 ($\bar{r}=1$, $\alpha=0^{\circ}$, $\beta=0^{\circ}$, $\bar{\eta}=8.1, 8.15, 8.2$)

圖十八 不同細長比的自然頻率與轉速之特徵值曲線 ($\bar{r}=1$, $\alpha=0^{\circ}$, $\beta=0^{\circ}$, $\bar{\eta}=8.3, 8.4, 8.5$)

圖十九 不同轉速下的第一至第六個振動模態

 $(\bar{r}=1, \ \alpha=0^{\circ}, \ \beta=0^{\circ}, \ \bar{\eta}=8.1)$

圖十九 (續)

圖十九 (續)

圖二十 不同轉速下的第一至第六個振動模態

 $(\bar{r}=1, \alpha=0^{\circ}, \beta=0^{\circ}, \bar{\eta}=8.15)$

圖二十 (續)

圖二十 (續)

圖二十一 不同細長比的自然頻率與轉速之特徵值曲線 $(\bar{r}=1, \alpha=0^\circ, \beta=90^\circ, \bar{\eta}=8.1, 8.15, 8.2)$

圖二十二 不同細長比的自然頻率與轉速之特徵值曲線 $(\bar{r}=1, \alpha=0^\circ, \beta=90^\circ, \bar{\eta}=8.3, 8.4, 8.5)$

圖二十三 轉速為零的第一至第六個振動模態

 $(\bar{r}=1, \alpha=0^{\circ}, \beta=90^{\circ}, \overline{\eta}=8.2)$

圖二十三 (續)

圖二十三 (續)

圖二十四 不同轉速下的第二與第三個振動模態

 $(\bar{r}=1, \ \alpha=0^{\circ}, \ \beta=90^{\circ}, \ \bar{\eta}=8.2)$