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Student: Tan-Chi Ho Advisor: Prof. Jung-Hong Chuang
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ABSTRACT

Intermediate-level surface functions of 3D objects are. useful for representing the ob-
ject’s part-level shape information and structure. In this thesis, we propose an intermediate-
level surface function and explore its applications to geometry processing. The proposed
surface function, called minimum slice perimeter function (MSP), is defined in terms of
the slices that pass through the surface point and aims to represent the local volume around
the surface point. This slice-based MSP represents more accurate local volume informa-
tion than previous intermediate-level surface functions, such as Shape Diameter Function
(SDF) [[73] and ia immediately beneficial to applications such as mesh segmentation and
skeletonization. Our proposed mesh segmentation algorithm, which takes advantage of
local volume information around the surface point, is able to generate hierarchical segmen-
tation where parts on the same level of the hierarchy share similar salience significance,
while parts on a level are less significant than parts on their parental level. The proposed
mesh skeletonization scheme employs a greedy edge-swap process that extracts the curve
skeleton directly from the 3D surface. The resulting skeleton inherently possesses a dense
node distribution at the core part and around the junctions which helps to derive a dense
skeleton-surface mapping. Moreover, the single salience parameter for branch removal

works well and provides a flexible control for deriving skeleton of varying detail. Finally,



existing level-of-detail modeling techniques consider only geometric other than semantic
information, and hence areas of semantic importance are often oversimplified. To ame-
liorate the problem, we propose a user-controllable mesh simplification framework that
allows users to assign weights on selected regions and obtain a predictable improvement of

the resolution over the regions.
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CHAPTER 1

Introduction

The geometric modeling deals with the mathematical foundation of how the shape of an
object is described and manipulated. Among the various object representations, the polyg-
onal mesh, which is capable of reépresenting arbitrary boundary shapes and is efficient for
rendering, is most commonly.used in-the computer graphics field. Many geometric op-
erations are developed for handling polygonal meshes, such as mesh simplification, mesh
parameterization, remeshing, and mesh segmentation.

The shape properties (called surface functions) associated with the surface play a cru-
cial role in the manipulation of the polygonal mesh. In the past two decades, various
surface functions have been developed for different purposes. Most of them are derived
directly on the 2-manifold of the surface. For example, the local geometric features such
as curvature [82,57], and planarity [21] or the global core-salient feature such as averaged
geodesic distance [27]]. These surface functions, however, are at the two ends of the scaling
spectrum. For geometric operations that require the knowledge of part information, these
surface functions may be either too local or too global.

Recently, the intermediate-level surface functions have drawn attention in geometric
modeling field. Aiming to fill the gap between local and global surface functions, functions
defined in intermediate scale can reveal the information about the object’s part structures
and their significance. Various intermediate-level shape properties have been proposed
such as the part salience [41, [19], symmetry [63, 58]], visibility inside the object [53], and
the shape diameter function (SDF) [73]. In Fig.[I.1] three surface functions, namely mean

curvature, our proposed minimum slice perimeter function (MSP), and averaged geodesic



(a) Local (Mean Curvature) (b) Intermediate (MSP) (c) Global (AGD)

Figure 1.1: Surface functions of different scaling on the fertility model.

distance function, that represent surface functions in different scales are visualized on the
fertility model with color ranging from blue to red for increasing value. We can see that the
minimum slice perimeter function (MSP) describes the part information better than others;
the distribution of function values better reveals the surface regions representing the parts.
The major difficulty for deriving the intermediate-level surface function is the definition of
the affected region for gathering shapeinformation. The local shape properties are usu-
ally derived using the theorems. in differential geometry by gathering the information in
the neighborhood of the surface point. - On the contrary, the global shape properties are
derived by searching over the entire model. The intermediate-level properties, however, re-
quire a reasonable definition about the region for gathering information around the surface
point, and may have different region sizes for different surface points. Moreover, unlike
the local shape properties, most intermediate-level properties gather shape information in
3D Euclidean space, which leads high computational complexity.

In this thesis, we propose a slice-based method for deriving the intermediate-level sur-
face function. For a surface point p, we aim to find a good slice to describe the shape
around p so that the perimeter of the slice can be an approximation to the internal vol-
ume around the surface point p. Our motivation comes from the short-cut rule [[79] which
states that human vision prefers to use the shortest possible cuts to parse silhouettes. For a
surface point p, the slice of mesh encompassed by the short-cut passing through p should
well represent the object shape around p. However, deriving short-cuts on the 3D object is
difficult for 3D objects of complex shape and may be not always valid. Instead of finding
the exact curved short-cuts on the object, we approximate the short-cut for a surface point
p by a planar slice that is the intersection of the mesh and the plane passing through p and
perpendicular to the surface at p, and has the minimum slice perimeter. We call this planar

slice the minimum perimeter slice of p. Also, we denote minimum slice perimeter (MSP)
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as the perimeter of the minimum perimeter slice for the surface point.

The minimum perimeter slice has several properties for describing the object shape.
First, MSP function can successfully describe the relative internal volume of the local re-
gion due to the close relation between the perimeter and the interior area of the slice. Also,
the normal of the minimum perimeter slice depicts the orientation of the object part, which
might be useful for deriving the vector field on the surface by taking into account the orien-
tation of object parts. Moreover, the fact that a short-cut always crosses a local symmetric
axis implies that the intersection point of the minimum perimeter slice and the local sym-
metric axis can be approximated by the centroid of the slice. Hence the union of those
centroid forms a shrunk mesh that approximates the skeleton of the object. Compared to
another intermediate-level surface function Shape Diameter Function (SDF) [/3] that mea-
sures the diameter of the object’s volume around a surface point, MSP possesses a better
measure about the local volume information since SDF reveals only portion of the internal
volume for object parts that do not resemble cylinder:

The minimum perimeter slice can-be regarded as a-good representative planar slice
for describing the object shape at the surface point. Geometric modeling applications that
require the information about the local shape of object can be benefited. In this thesis, we
apply the MSP function to the mesh segmentation and skeletonization processes and show
that with the aid of MSP function, the results can have great improvement comparing to

previous works.

1.1 Volume Based Mesh Segmentation

Most existing mesh segmentation methods employ local geometric properties or global
core-salient features. While local shape properties often results in a over-segmented seg-
mentation, the global shape properties may handle only models with core-salience feature.

The volume based surface function can reveal the information about the object’s parts.
We propose a new part-based hierarchical mesh segmentation scheme that utilizes the local
volume information. Based on the observation that surface regions having similar local vol-
ume tend to be grouped in the same part, the candidate part boundary regions on the surface
can be easily located by applying threshold to the magnitude of MSP gradient. Moreover,
the significance of object part pairs separated by the boundary region can be measured using

their relative volumes. Based on the significance of object part pairs, for each level of the
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hierarchical segmentation, the proposed scheme decomposes the object into several object
part pairs that have the most significance. Boundary of the object parts are extracted from
the boundary regions using the graph-cut algorithm that takes both the local curvature and
the magnitude of MSP gradient into account, resulting in smooth boundaries. Compared
to the segmentation methods provided by the segmentation benchmark [10], our segmen-
tation scheme is able to decompose the object into parts in a more visually convinced way

for objects of different topological types.

1.2 Mesh Skeletonization using Volume Based Surface Func-
tion

The skeleton is an important shape descriptor for representing the topology of a 3D ob-
ject. Most existing mesh skeletonization -methods derive the skeleton by either quantizing
the 3D object into volume representative or resampling processes. The quantization and
resampling of object usually lead to missing topological features; for example, small han-
dles on the original object may be missed in the resulting skeleton. There exists several
skeletonization methods that extract the skeleton directly from the 3D mesh. Although the
topology of the skeleton can be homeomorphic to the original mesh, such methods usually
lead to over-simplified skeleton results.

Based on the proposed slice-based scheme, we introduce a new mesh skeletonization
method to extract curved skeleton directly from the surface. Since the short-cut rule [79]
implies that a valid short-cut should be across a local symmetry axis, the minimum perime-
ter slice, as an approximation to the short-cut, inherits the same property. We first ap-
proximate the skeleton by the geometric centers of the minimum perimeter slices for all
surface points. Then a greedy edge-swap framework is invoked to degenerate the manifold
mesh topology to an 1D skeleton. In the process of edge-swapping, path smoothing and
branch removal are applied to smooth the skeleton and remove branches due to small sur-
face features and noise. As a result, the derived curved skeleton has a dense skeleton node
distribution even at the core or junction parts. Moreover, the skeleton is extracted directly
from the original mesh without resampling or quantization of the original mesh. So it is
homeomorphic to the original mesh. A skeleton-surface mapping is inherently established

that may be useful for embedding the surface information into skeleton. The threshold for
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branch removal requires only one parameter and provides a flexible control for deriving

skeleton of varying details.

1.3 User-Controllable Mesh Simplification

At the end of this thesis, we discuss the issue about a user-controllable strategy for level-of-
detail modeling process. The semantic meaning of an object is important in describing the
visual significance of some object regions. For example, the eyes are important cues when
looking at a human model. However, such a semantic meaning can hardly be described by
the existing shape properties. Moreover, different applications may give different semantic
meanings about the same object. To introduce the semantic meaning into the modeling
simplification process, the user-assisted strategy is often required. The most important
aspect in designing a user-assisted interface is the quantization of the semantic meaning
and its adaptation to applications.. We introduce a user-controllable scheme for the general
mesh simplification application, in which the weighting provided by users is specified as
the multiple of the resolution-improvement in the selected surface regions. The previous
weight-based user-assisted simplification methods [38l |64] take the weighting values as
the multiplication of simplification cost.  As a consequence, the resolution improvement
in selected regions are unpredictable. In our-user-controllable simplification scheme, the
weighting values are used to delay the order of the simplification operators in the sim-
plification sequence. With a carefully designed order delaying scheme, we can achieve
predictable resolution improvement for different simplification targets. With our proposed
scheme, the same amount of resolution improvement can be obtained for models that are

simplified using different simplification metrics.

1.4 Contributions

We summarize the contributions of this research as follows :

e Propose a new surface function, called minimum perimeter slice function (MSP), for

representing the local volume of an object.

e Propose a new part-based mesh segmentation method that well utilizes the volume

based surface function.
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— Regions of similar volume are grouped according to the MSP function.

— Can construct a hierarchical segmentation on which not only components on
a higher level reveal higher degree of salience than their descendant parts but
also the components on each level of hierarchy have similar degree of salience

significance.

e Propose a novel greedy framework for extracting a curved skeleton directly from the

3D model.

— The resulting skeleton possesses a dense node distribution at the core parts and

around the junctions, and the skeleton-surface mapping and MSP value.

— A single salience parameter is required for controlling branch removal so as to

compute skeletons with varying details.

— The proposed method is able to generate consistent skeletons for models in

different resolutions.and poses.

e Propose a user-controllable simplification framework that allows users to obtain a
predictable resolution improvement over the simplified mesh deriving by using any

existing error metrics.

— The resolution improvement for a given weighting value in a selected region is

predictable.

— The weighting schemes are completely independent of the error metric used,
that is, same resolution improvement for a weighting value is obtained no matter

what error metric is used.

— A weighting value will result in the same resolution improvement when it is

applied to simplified meshes in different resolutions.

1.5 Thesis Organization

The remainder of the thesis is organized as follow.
In Chapter[2] a survey on the shape properties, mesh segmentation, skeletonization, and
user-assisted simplification is given. We introduce a new surface function representing the

local volume information around the surface point in Chapter[3] In Chapter[d] a part-based
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mesh segmentation algorithm is proposed that can take complete advantage of the volume
based surface function. Chapter [5] describes a new mesh skeletonization method that de-
rived from the minimum perimeter slices. In Chapter [6] we propose a user-controllable
mesh simplification that allows users to achieve a predictable resolution improvement by
using weighting schemes. Finally, we conclude our works and address possible future

works in Chapter



CHAPTER 2

Related Works

In this chapter, we discuss the works related to our research. The review of related work
begins by a survey of shape properties used in geometric modeling. We categorize the
shape properties according to the spectrum. of scaling.. Then, we review two geometric
modeling applications that benefit from the intermediate-level shape properties, the mesh

segmentation and skeletonization. Finally, user-assisted mesh simplification is reviewed.

2.1 Shape Property in Geometric Modeling

Most of the geometric operations rely on the analysis of shape properties of the object.
Shape property can be classified depending on its coverage on the object. Earlier researches
focused on the analysis of local geometric features which mainly derived based on the the-
ories in differential geometry, such as the curvature [82, 57] and planarity [21]]. However,
the local geometric features are sensitive to the detail signal on the surface. The global
shape properties, which are classified at another end of the scaling spectrum, are derived
based on the analysis that covers the entire object. The distance between two surface point
p1 and p, can be a metric for describing the relation between these two points. Various
distance measurement method have been proposed for different goals. The Euclidean dis-
tance is perhaps the easiest way to measure the distance between two points. However,
the Euclidean distance can not reveal the change of shape. The geodesic distance [80] is
the most widely used distance measurement in shape analysis which measures the shortest

length between two surface points along the surface. Additionally, Hilaga et al. used the
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average geodesic distance (AGD) to represent the protrusive of the object [27]. The major
problem of AGD is its inability to capture the change of shape due to the nature of its global
measurement. Moreover, the AGD is not applicable to objects without obvious core-salient
features.

To fill the gap between the local and global shape properties, intermediate-scale sur-
face attributes have been proposed for describing the localized regions. The salience is a
perception-based measurement describing the visual importance of a region relative to oth-
ers. On the surface of 3D object, the salience is usually defined as the combination of local
shape properties such as the weighted averaging of Gaussian curvatures in different scales
by Lee et al. [41] or the combination of curvature and area by Gal and Cohen-Or [19].
However, without the information from more global shape properties, the salience defined
based only on the local shape properties may not be able to reveal the significance of the
object region. Symmetry of an object is another important characteristic for analyzing the
object. Kazhdan et al. defined the symmetry distance of an object using all planes and
rotations through its center of mass, and-used it as a global shape descriptor for performing
shape matching in database retrieval [37]. Podolak et al. extended the work of Kazhdan et
al. to the continuous measurement of global reflective symmetry of an object with respect
to all planes pass through the surface [63]. Mitra et al. identified the object parts that have
partial symmetries within or between them by using the voting process [S8]]. The reflec-
tive symmetry defined by the plane restricts the representative of symmetry for non-rigid
shapes. Xu et al. extended the planar reflective symmetry proposed by Podolak et al. [63]
to identify the partial intrinsic reflective symmetry of object [87]. They assume that surface
points geodesically equidistant to both of the points in the reflective sample point pairs are
the candidate position for the intrinsic reflective symmetry. A scalar surface function for
describing the intrinsic reflective symmetry can be established by voting the surface points
geodiscally equidistant to the sample pairs. Lipman et al. generalized the symmetry cor-
respondences between points by finding orbits between them [S0]. By grouping a set of
points that have the same orbit in a correspondence graph, problems of finding approxi-
mate and partial symmetries can be reduced to the measurement of connectedness in the
correspondence graph.

The volume inside the object is another intuitive and useful intermediate-scale shape

property. Shapira et al. proposed a surface attribute that describes the local volume as-
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sociated with the surface point, called shape diameter function (SDF) [[73]. The SDF is
an approximation of medial axis transform (MAT) [11] that uses local shape diameter to
approximate the radius of the maximal inscribed ball. Both MAT and SDF have the same
problem that the volume information at surface points is quite local. For example, the
volume information associated with a point refers only to the maximal inscribed ball asso-
ciated with that point in the MAT approach. For the slab of a non-cylindrical part, the union
of several balls is required for evaluating the entire volume. The SDF has the same limi-
tation since it is conceptually derived from MAT. There are other shape properties defined
in intermediate-scale. Liu et al. measured the possibility of surface region to be within the

same object part by the visibility of surface region inside the object [S3]].

2.2 Mesh Segmentation

In the past decade, many mesh segmentation methods have been proposed. Based on the
objective, mesh segmentation methods generally fall into two categories: patch-type and
part-type [, 71} [10]. Patch-type segmentation usually decomposes the mesh into several
patches by analyzing the surface properties-such as dihedral angles [46, 73], curvature [56,
60, [75]], geodesic distance [88]], and planarity [21]]. Part-type segmentation tends to segment
a complex object into several meaningful components, usually based on the concepts from
cognition theory [28, 29]. For example, the minima rule states that human perception
tends to break an object into parts along the region of minimum negative curvature [28].
Moreover, the salience of parts determined by relative volume, boundary strength, and
degree of protrusion is important for human perception [29]. Our method is a part-type
segmentation, and we will mainly review this type of segmentation and refer readers to the
excellent survey paper by Shamir [71] for the patch-type segmentation.

Locating the boundary between parts can be done by either boundary-based or region-
based approach. Mangan and Whitaker used the watershed to segment the object into
several parts according to the curvature on the surface [S56]]. Lee et al. [45] cut the object
into parts by first finding the loop along the minimum negative curvature, and then test
the salience of the divided parts based on the part salience theory [29]. However, the
surface curvature is too local for describing the shape of object and locating cut boundaries
based on the curvature cannot always result in a meaningful part segmentation. Moreover,

the iterative segmentation process proposed leads to a binary hierarchical segmentation on
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which each level does not provide an intuitive meaning for object parts.

The geodesic distance is another attribute widely used in mesh segmentation [77, 36,
S51,152]. The averaged geodesic distance (AGD) derived as the average of geodesic distance
from a surface point to all other points can be used to represent the degree of protrusion of
a part. However, such attributes are useful only for models that have an obvious core part
and feature parts.

The Medial Axis Transform (MAT) is a global shape descriptor of the object [11].
MAT or skeleton can be used as a guideline for segmentation. For example, Li et al.
segmented the object by moving a sweep plane along the skeleton of object [48]. Since
the size of the cutting section of the sweeping plane can be regarded as local volumetric
information of the object, the cut boundaries are usually at the regions where the size of
cutting section varies rapidly. Oscar et al. segmented the skeletal mesh by measuring
thickness corresponding to the skeleton nodes derived from the skeletonization process [6].
The most concave region for the cutting is searched for.each skeleton branch by comparing
the thickness of the skeleton nodes with their-neighbors{6]. Reniers and Telea observed
that the junction between two' skeleton paths has high potential to be a good place for
separating two parts [66, 67]]. "Shapira et al. proposed a hierarchical segmentation method
by fitting k£ Gaussian functions to the histogram of SDF values, and clustering the mesh
faces according to their corresponding Gaussianfunctions [[73]]. However, the fitting of the
global histogram can not reflect the difference between the object parts and some small
parts with no salient feature may be segmented. The segmentations generated by using
different number of Gaussian functions do not have consistent part correspondence and the
part boundaries may not always lie on meaningful regions.

An iterative approach for decomposing the object into several parts is based on the
k-means clustering [54]. Shlafman et al. used k-means clustering to segment the object
into a user-specified number of components [77]. This work was later refined to achieve
hierarchical segmentation [36]]. However, the geodesic distance used in [36] describes only
the protrusion of object parts and hence the resultant hierarchical segmentation tends to cut
the object along the longest parts at the higher level of the hierarchy, which may not meet
the concept of perception. Moreover, the method is usually suitable only for objects having
obvious core-salient features. The challenge to the k-means clustering methods is that the

value of k needs to be given a priori. Liu and Zhang overcame such problems by applying
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the spectral analysis on the affinity matrix constructed using the mesh faces [S1].

Another segmentation approach was based on the fitting of primitives. Attene et al.
extended the hierarchical face clustering [21] and replaced the clustering metric by other
similarity measures for the predefined primitives, such as spheres, cylinders and planes [4].
Mortara et al. detected the parts with tubular shape from the whole object [S9)]. They
extracted the core part by excluding all the tubular parts from the object to complete the
segmentation.

Pose-invariant mesh segmentation has attracted more attention in recent years. Such
works focused on finding the consistent segmentation over different poses of a model.
Katz et al. transformed the original model into a pose-invariant representation using multi-
dimensional scaling and then used spherical mirroring to extract the core of the object
and feature points to segment the objects [35]. In character animation, the pose-invariant
segmentation can be achieved by finding. the rigid components during the animation [41}
44| 143]. However, such methods.are usually suitable only for articulated models and the
requirement of animation sequences also poses some restrictions on the usability.

Consistent mesh segmentation aims to produce consistent segmentations for a set of
meshes [[78, [72, 184]. Golovinskiy and Funkhouser [23]] employed rigid alignment [9]] in a
hierarchical clustering approach for. consistent segmentation. Both the geometric features
of individual meshes and the correspondence information between the set of meshes are
considered. However, rigid alignment may not be able to correctly align the meshes in
some cases, as reported in [34]. Kalogerakis et al. [34] proposed a scheme to compute
segmentations and to assign labels for a set of meshes. The assignment of labels was
formulated as an optimization problem and the objective function measured the consistency
of primitives (i.e. triangles) with labels. The objective function was computed via a training
process and then applied to the other meshes for computing consistent segmentation. Their
approach handled various segmentations for a wide range of meshes. However, the training
process is time consuming and usually takes hours of computing.

Golovinskiy and Funkhouser [22] defined a surface function called partition function
that indicates how likely each edge is to lie on the boundary of a random segmentation
drawn from a set of existing segmentations. Based on the partition function, a cut is asso-
ciated with a consistency measure as the length-weighted average of the partition function

values of its edges. The most consistent cuts defined as the set of cuts with highest con-
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sistency are used for finding the part boundaries. Chen et al. proposed a benchmark for
quantitative evaluation of mesh segmentation algorithms [10]. The benchmark includes a
data set with 4,300 manually generated segmentations for 380 object meshes in 19 cate-
gories. It also provides software for producing four quantitative metrics for the comparison

of segmentation algorithms.

2.3 Mesh Skeletonization

Most of the mesh skeletonization methods can be classified into two categories: volumetric
and geometric. The volumetric methods perform thinning on the voxelization structure of
the objects [42, 161, 55]] or tracking on the field function derived from the objects [12, 26].
The review of volumetric methods is referred to the survey by Cornea and Min [15]].

A common geometric approach is based on the construction of the Voronoi diagram [I83]]
and its extension [2, 18, 117]. The Reeb graph [635] canalso be used for computing the skele-
ton from the 3D model. There are a variety of techniques using different surface functions,
such as the geodesic function-[27,83], harmonic function [8], and height function in 3D
space [[76,13]. One challenge of this approach is to embed the skeleton into the geometry. In
most cases, the skeleton is derived by averaging the position of vertices on the slab defined
by the iso-contour of the function [62, 83].-Aujay et al. embedded the skeleton through an
adaptively refinement by solving the Laplacian equation [§].

Sharf et al. constructed the skeleton of the 3D model by tracing the growing fronts of
the blob inside the model [74]. Their method generates smoothed curved skeleton with
topology homotopic to the deformable model. However, their work requires a deformable
model for driving the process and a filtering process for removing the noisy branches.

There are skeletonization methods for extracting the skeleton directly from the surface
of the model. Au et al. extracted the skeleton by iteratively contracting the mesh based
on Laplacian smoothing [6]. The resulting skeleton has coarse node distribution around
the junctions and within the core part. Moreover, the Laplacian smoothing requires several
boundary constraints for ensuring that the skeleton branches are preserved. There is no in-
tuitive interpretation in doing so. The shape diameter function (SDF) [[73] can also be used
to extract the skeleton. The candidate position of the skeleton is achieved by transforming
mesh vertices using the half distance toward the inverse normal direction. The skeleton is

then obtained using the moving least square reconstruction. Such skeletonization scheme
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is not homotopic since it does not take the connectivity of the mesh vertices into account.
Other than the skeletonization of polygonal meshes, Tagliasacchi et al. extracted the skele-
ton from the point cloud by finding the rotational symmetry axis [81]. Their scheme can

compute the skeleton even though the point cloud data is incomplete.

2.4 User-Assisted Mesh Simplification

Level-of-detail (LOD) modeling aims to represent a complex mesh with several levels of
detail, and from which an appropriate level is selected at run time to represent the orig-
inal mesh. A number of methods have been proposed in the literature. Most methods
simplify the given mesh by using a sequence of primitive collapsing operations, such as
edge collapse [32], triangle collapse [23], vertex clustering [68]], vertex removal [70]], and
multi-triangulations [[16].

The primitive collapsing operations can be organized in various orders. The simplest
way is to perform the operations in arbitrary-order. A more sophisticate approach is to
perform the operations in the-increasing order of collapsing cost, which is analogous to
the greedy algorithm. Several error metrics have been proposed to determine the cost
of an edge collapsing operation, such-as quadric error metrics (QEM) [20], appearance-
preserving simplification (APS) [14], image-driven simplification (IDS) [49], and percep-
tually guided simplification of lit, textured meshes [86]. Each error metric has its own
strength and weakness in preserving certain properties of the original mesh. For exam-
ple, quadric error metrics [20] tends to preserve only the geometric accuracy during the
simplification process, appearance-preserving simplification (APS) [14] takes the texture
deviation into account, and image-driven simplification [49]] aims to preserve the visual fi-
delity between the simplified mesh and the original mesh. Moreover, These metrics fail to
consider semantic or functional features on the models. As a result, it is found in practice
that these metrics alone are not able to produce satisfactory results when very low polygon
count is the goal.

The first system that allows users to guide the simplification is Zeta proposed by Cignoni
et al. [13]. Zeta takes a pre-computed sequence of primitive simplifications as an input, and
utilizes hyper-triangulation model, which employs vertex decimation as the local mesh re-
duction operator. Users can selectively refine a model by locally changing error thresholds

to extract different approximations that did not appear during the original simplification
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process. Semisimp proposed by Li and Watson [47] provides three approaches for users to
manipulate the simplification results using the simplification hierarchy. It allows users to
improve mesh quality by manipulating the simplification orders, vertex positions, and the
hierarchical partitioning of mesh during the simplification.

Kho and Garland [38]] proposed a user-guided mesh simplification system particularly
for meshes derived using QEM [20]. To increase resolution in a selected region, the system
multiply quadric errors associated with vertices in the region by the weighting multiplier,
and hence postpone the edge collapse operations in the region. The constraint quadrics can
be augmented into optimal placement computation to bias the optimal position towards the
constrained planes. Pojar et al. presented an approach that is very similar to the work of
Kho and Garland [64]. A sophisticated Maya plug-in is provided to offer rich interface and
great compatibility with other modeling applications. Since the distribution of QEM during
simplification can not be described by a simple function, the weighting approach proposed
in [64}64] suffers from the problem that the value of multiplier has no direct relation to the
increase in resolution. In consequence; the value of multiplier is chosen in a trial and error
basis.

Hussain et al. [33] proposed a unified framework for constructing multiresolution mesh
based on the simplification hierarchy and hypertriangulation model [13]], called adaptive
simplification model (ADSIMP). 1t provides the ability of real time navigation across con-
tinuous LODs of meshes. Two operations, selective refinement and selective simplification,
are provided to fine tune the simplified mesh at any level of detail.

A user-assisted simplification method for converting CAD models into the triangle
meshes with boundary preservation was proposed by Gonzdlez et al. [24]]. Their method
allows users to specify different levels of detail for each subobject of the CAD models, and
ensures the consistency of boundaries between subobjects. However, the requirement of

subobjects limits their work to be useful only for man made CAD models.



CHAPTER 3

Minimum Slice Perimeter
Function

Our research focus on the derivation of surface properties that benefit the intermediate-level
shape analysis, such as the object part-identification. The major challenge of deriving the
intermediate-level shape properties for 3D object is the high computational cost and how
to define the affected range.

The short-cut rule [79] states.that human vision prefers to use the shortest possible cuts
to parse silhouettes. Moreover, the area bounded by the short cut is an appropriate measure
for the local interior volume of the object around the surface point. Hence the short cut is an
important property for segmenting parts. Deriving the short cuts on a 3D model, however,
is difficult due to the complex relation between the 3D shapes and silhouettes. Instead, we
approximate the short cut for a surface point by using the planar slice that passes across the

model through the surface point and has the minimum perimeter.

3.1 Definition of Minimum Slice Perimeter Function

For a manifold surface M, we define the Minimum Slice Perimeter (MSP) function at a
surface point p as the minimum perimeter of the planar slices passing through p and parallel

to the surface normal at p. It is given as follows:

MSP (p) = min ||pl (n, p) " M, (3.1)
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Figure 3.1: Slices for computing MSP.

where pl (n, p) represents a plane passing p with unit normal » that is perpendicular to the
surface normal at p and ||pl (n, p) " M|| represents the perimeter of the intersecting slice
of pl(n,p) and M. The planar slice having the minimum perimeter is called the Minimum
Perimeter Slice of p.

For each surface point p of the 3D -mesh, the MSP value of p is derived by first com-
puting the intersecting slices for a predefined number of slice planes and then compute the
minimum perimeter from the intersecting slices. The slice planes are distributed uniformly
about the surface normal vector at p.. The intersectingslice of a slicing plane and the surface
is computed by performing a surface ‘propagating process starting from the face containing
p- A slice’s perimeter is computed as the total length of the edges on the intersecting slice.
The minimum perimeter is taken as the MSP value of p. Fig. [3.1] shows 10 intersecting
slices and the slice with the minimum perimeter is shown in red.

Fig. [3.2]demonstrates the MSP function on some models. The color ranging from blue
to red indicates MSP values from low to high. It is observed that the MSP function is effec-
tive for representing the local volume information. The core parts have higher MSP value
than the salient parts for the articulated models and the parts can be distinguished easily
according to the MSP distribution even for models with complex topological structures. In
Fig.[3.3] the normal of the minimum perimeter slices is visualized on the surface. Such
normals are able to reveal the overall orientation of the object shape. Since the minimum
perimeter slice describes the object shape in intermediate scale, it’s independent on the
pose of object. As shown in Fig.[3.4] a cat model with different poses has similar MSP dis-

tributions. Similarly, a model with different resolutions also has similar MSP distributions,
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Figure 3.2: The MSP function for different 3D models.

as shown in Fig.[3.5]

Table [3.1] shows the timing data for computing MSP value using eight slices for each
surface point on the models. The test platform 1s a PC with Intel Core i5 2.67Ghz CPU.
Notice that we did not implement any acceleration structures for our MSP method. It turns

out that the computation time of our method is similar to that of SDF [73]]. The accuracy of

Table 3.1: Timing data for computing MSP values.

Model Number of Time (sec.)
polygons

Raptor 30k 2.77
Heptoroid 20k 1.01
Dancer 20k 2.07
Armadillo 20k 2.93
Neptune 60k 14.19
Dancing Children 30k 4.93
Fertility 30k 6.02
Horse 40k 9.07

the MSP value for a surface point depends on the number of slices used. In our experiment,

some noticeable noises can be observed for the number of slices less than four. For the
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Figure 3.3: The normal of minimum perimeter slices that is projected onto the surface.

Figure 3.4: MSP function forthe cat model-in different poses.

number of slices higher than or equal to eight, the MSP-values are almost the same. A
typical range of the number of slices is from four to eight for trading off between quality
and efficiency.

Some highlights of MSP value can be observed at the tips of object parts (such as the
chest of horse, shoulder of nepture, and head of dancing children) in Fig.[3.2] This is due
to the improper orientation of minimum perimeter slices, where the slice planes in such
tip regions are almost parallel to the local symmetric axis. Moreover, the slicing along the
normal direction may be sensitive to the surface noise. Fig. [3.6]illustrates two examples
for the MSP function on noisy surfaces, where the raptor model with high resolution has
details on its surface and the horse model is produced by applying a turbulence function on
the model surface. Non-smooth MSP value can be observed, particularly at small regions

where MSP values change dramatically.

3.2 Minimum Perimeter Slice Refinement

A good minimum perimeter slice should be capable of representing the shape in the slab

of its local region well. Therefore, a good minimum perimeter slice can be considered as
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Figure 3.5: MSP function for the raptor model in different resolutions.

Figure 3.6: The MSP function of noisy surfaces.

the slice on which all the surface points along the slice yield similar minimum perimeter.
Based on this observation, to measure how well a minimum perimeter slice is, we define

the slice-deviation error for the minimum perimeter slice of a surface point p as follows:

1 -1
Cdev (P :—/ cos” ' (n,-ng)dq, 3.2)
0PV = TSI Jyesin ™ 710

where S (p) is the minimum perimeter slice at the surface point p, n, and n, are the unit
plane normals of the minimum perimeter slices at p and g, respectively. Fig.[3.7]depicts the
slice-deviation error of the models shown in the top row of Fig.[3.2] High slice-deviation er-
ror can be observed at the tips of object parts and the junctions, where improper orientation
may be used to derive the minimum perimeter slices.

According to the definition in [79], the short-cut is not necessary to be perpendicular
to the surface normal, slicing along the surface normal may be too restrict for deriving a
good minimum perimeter slice for approximating the short cut. It is reasonable to argue
that an ideal minimum perimeter slice at the surface point p should be minimal for both
the slice perimeter and the slice deviation error. However, such a minimum perimeter slice

may not always exist. Instead, we refine the orientation of the minimum perimeter slice at
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Figure 3.7: The slice deviation error of 3D models.

the surface point p by minimizing the objective function described in Eq. 3.3

_ llpt(n,p) AM|| | caev(p)

Op(n) 27ry /2’ (3.3)

where the plane normal 7 is not restricted to be perpendicular to the surface normal at point
p, and ry; denotes the half of the diagonal of the object’s bounding box, which is used to
normalize the slice perimeter.

Refining the minimum perimeter slice using Eq. [3:3}is, however, difficult due to the
intercorrelation between slice normal and slice deviation error. Instead, we use an iteration-
based method that takes the minimum perimeter slice computed using method described by
Eq.[3.1]as an initial guess. For each iteration, the new slice that minimizes the combination
of the slice perimeter and the slice deviation error is taken. The searching space for the new
slice plane should cover the entire hemisphere centered at p, which is too large. For the
minimum perimeter slice S (p) of the surface point p, we consider the unit plane normal n,
of the minimum perimeter slice of each point g along S (p). The average of those normal n,
weighted by using the reciprocal of slice-deviation error at g gives a reasonable orientation
of the object part, and hence offers a candidate slice-plane normal for computing a better

minimum perimeter slice; as shown in Eq.[3.4]

ng

e (S(p)2) = | dg, (3.4)

q€S(p) Cdev (q)

Hence, the search of the slice-plane normal in the entire hemisphere space is reduced to the
search in the range bounded by the normal of the minimum perimeter slice plane derived

in previous iteration and the candidate slice-plane normal ng,,,. The iterative process is
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Figure 3.8: The refined MSP function of the 3D models.

Figure 3.9: The refined MSP function of noisy surfaces.

performed until the normal difference between the new minimum perimeter slice plane and
the previous one is below a user-specified threshold.

Fig.[3.§|illustrates the refined MSP function for models shown in the top row of Fig.
The highlights at the chest of horse, shoulder of nepture, and head of dancing children

models are eliminated. Fig. [3.9shows another refinement result on the noisy surfaces.

3.3 Comparisons

Both of MSP and SDF reveal the local volume of the object, but by different defi-
nitions. SDF is an approximation of the medial axis which describes the local volume of
object at the surface point by the maximum inscribed ball attaching to the surface point.
Ray casting through the interior of object is applied to approximate the diameter of the

maximum inscribed ball. Both MSP and SDF can reveal the local volume well for cylin-
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(b) SDF

(c) Gradient of MSP (d) Gradient of SDF

Figure 3.10: The distributions of MSPand SDF and their gradients.

drical parts, but MSP is capable of capturing better volume information than the SDF for
those object parts that are non-cylindrical, such as the palm, as shown in Fig. 3.10} For
non-cylindrical models or parts, the SDF value reflects only a portion of the internal vol-
ume information and measures the local thickness or local diameter of the model. The
red color around the side of the palm means that the internal volume is much larger at the
side of palm than at the center. Instead of MSP function, the minimum perimeter slice
carries additional shape information about the object part, such as the slice shape and the
orientation. The SDF, however, is unable to derive such information.

The surface function which describes the internal volume of the object is useful for part-
based mesh segmentation. The averaging computation in SDF formulation can alleviate
the problem induced by surface details or noise. It, however, tends to blur the change of
volume, leading to some difficulties in deriving the part boundary, especially for the surface

regions with dramatic change in local volume. Fig. and Fig. [3.10(d)] depict that the
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(a) MSP (b) SDF

Figure 3.11: Vertex distribution of the shrunk mesh using MSP and SDF.

gradient of MSP changes significantly across the object parts, e.g. the regions between the
fingers and the palm and the gradient of SDF does not change obviously across the object
parts.

For skeletonization application, the centroid of the minimum perimeter slice has better
representative for the curve skeleton, compared to the transformed vertices derived using

the half-depth toward the inverse.normal direction of SDF, as shown in Fig.[3.11]

3.4 Limitations

In some cases, the minimum perimeter slice does not faithfully capture the local shape of
a part; e.g., at the feet of the dancing-children model in Fig. [3.2) where some planar slices

pass across multiple parts and yield relatively larger MSP value than they should be.



CHAPTER 4

Yolume Based Mesh
Segmentation

4.1 Introduction

Due to the advance of 3D meodel acquisition equipment,~3D meshes with high polygon
counts and complex topological structures can be obtained easily. As meshes are becoming
larger and more complex, decomposing an object into smaller and simpler components is
essential for many mesh techniques, including parameterization, texture mapping, morph-
ing, editing, shape matching, compression and more. Thus mesh segmentation has become
a key ingredient in many mesh applications.

Most of the existing mesh segmentation methods rely on either local detail geometric
features or global topological structure. The use of too local or too global surface proper-
ties limits many segmentation algorithms to either decompose a model into several surface
patches [21} 46, 160] or to handle only models with some specific topological structure such
as core-salient features [36, [35]. As indicated in the part salience theory [29], the rela-
tive size of object region is an important characteristic for identifying the object part. The
neighboring regions with similar volume tend to be grouped into a part and consequently
the gradient of the local volume directly implies the potential regions for deriving part
boundaries. The MSP function, describing the internal volume of the local region associ-
ated to the surface point, is best applicable for this scope. Fig. d.1I] depicts the MSP and

the magnitude of MSP gradient on the camel model. The color ranges from blue to red
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(a) MSP (b) Magnitude of MSP gradient

Figure 4.1: MSP and the magnitude of MSP gradient on the camel model.

represents the function value in ascending order. The magnitude of MSP gradient directly
indicates the strength of surface regions to be boundaries.

Since complex models often contain features in different scales or salience, ranging
from global structure to detail surface features, itis useful to decompose the models into
components in several levels or hierarchically. Several approaches have been proposed in
this direction. Hierarchical face clustering techniques construct the hierarchy in a bottom-
up fashion [21]. Top-down approaches start from the root, which represents the whole
object, and partition the component into two or more parts [36]. This process continues
recursively until a certain condition is met. At-€ach level of the top-down approach, the
segmentation is usually derived implicitly by locating the best boundary between parts.
Several hierarchical segmentation techniques have been proposed [36, 135, 45, 140]. Most
of the techniques claim that components on a higher level reveal higher degree of salience
than their descendant parts. But many of them cannot ensure that the components on each
level of hierarchy have similar degree of salience.

Locating boundary between parts can be done by either boundary-based or region-based
approach. Boundary-based approach uses local geometric properties, such as curvature, to
locate boundary. Region-based approach seeks for regions with similar properties, such
as the combination of geodesic and angular distances in [36], from which boundaries are
derived. Since parts have different levels of salience, to evaluate the significance of a
boundary between parts, we need to include the salience measures of the associated parts.
However, the boundary computed by using boundary-based and region-based approach
usually lacks the necessary salience measures for the parts associated with the boundary.

In this chapter, we introduce a new hierarchical segmentation scheme that decomposes
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an object into meaningful parts in such a way that not only components on a higher level
reveal higher degree of salience than their descendant parts but also the components on
each level of hierarchy share similar degree of salience. Our segmentation is based on the
MSP function which represents the object’s internal volume on the surface. As neighboring
regions having similar internal volume tend to be grouped together and form a part, the
magnitude of MSP gradient can be used to locate the candidate segmentation regions that
contain the boundaries. Moreover, the significance of segmentation regions is evaluated in
the process of hierarchical segmentation. The evaluation takes into account the salience
information of the parts associated with the segmentation region.

The proposed hierarchical segmentation scheme starts from the whole object and, for
each level of the hierarchy, locates segmentation regions by applying a threshold to the
function for the magnitude of MSP gradient, then evaluates the significance of segmenta-
tion regions. Finally, the scheme selects a set,of the most significant segmentation regions
for that hierarchy level. The boundaries for that level.are then computed by using graph
cut [36] with a capacity that considers both the curvature and the magnitude of MSP gradi-
ent.

We make the following contributions to'the mesh segmentation process:

1. Propose a segmentation scheme.based on the MSP function that encodes local vol-

ume information. The proposed segmentation scheme has several advantages:
e Regions of similar volume are grouped into a part according to the MSP func-
tion.
e A significance measure of a boundary that takes into account the local curvature

and the changes in MSP value is presented.

2. Propose a hierarchical segmentation on which not only components on a higher level
reveal higher degree of salience than their descendant parts but also the components

on each level of hierarchy have similar degree of salience.

4.2 Volume Based Mesh Segmentation

The proposed segmentation scheme begins by deriving the gradient of MSP function for

each face. Then, a set of segmentation regions is found by applying a threshold value to
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(a) MSP (b) Magnitude of MSP (c) Segmentation (d) Segmented Parts
Gradient Regions

Figure 4.2: Steps of the mesh segmentation process.

the magnitude of MSP gradient. Each segmentation region divides the object into two or
more potential object parts. We test the saliency of the potential parts and obtain some most
significant segmentation regions. Finally, a cut is derived within each selected segmentation
region which separates the object into two parts. Figure {.2]illustrates such segmentation

process.

4.2.1 Segmentation regions finding

4.2.1.1 Computing the gradient of MSP function

The magnitude of MSP gradient represents the rate of volume change in the neighborhood
of the surface point. As shown in Fig. .1} there are large gaps in volume’s size between
the body and the neck and between the body and front limbs of the camel model, which are
revealed in the distribution of MSP function (Fig. and the magnitude of its gradient
(Fig.[A.1(b)). Computing the gradient of MSP function on a piecewise linear polygon mesh
is not as trivial as that on the continuous surface. To compute the gradient of MSP function
at a surface point x, we first derive a difference-vector for every edge in a neighborhood of
x and then compute the MSP gradient vector at x as the average of all difference-vectors.
The difference-vector for an edge is the vector in the direction of the edge vector and with
the magnitude as the difference of the MSP values at its two endpoints.

The gradient of MSP function at x is finally the averaged MSP difference-vector at x.

Its detail equation is as follows:

VMSP (x) Y. (MSP(v;)) —MSP (v;)) ¢, (4.1

a |Nx‘ eEN,
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where Ny is the neighborhood of x with a user-specified range, v; and v; are two endpoints
of the edge e, possibly clamped to be within N,, and é is the unit vector of the edge e
with direction from v; to v;. Such a formulation is similar to the method for computing the
curvature tensor in Alliez et al.[[1]. For efficiency consideration, we define N, as the surface

region within the sphere centering at x with a user-specified radius.

4.2.1.2 Deriving an appropriate threshold value

The segmentation regions are defined as the surface regions where the magnitude of MSP
gradient is above a specific threshold value. An appropriate threshold value is hard to find
in practice. A smaller threshold value will enlarge the segmentation regions, making the
computation of a proper cut boundary more difficult. On the other hand, for a large thresh-
old value, the segmentation region may not form in loops, even using extrapolation. To
decide an appropriate threshold value automatically, we consider the cumulative function

for the surface area with respective to the magnitude of MSP gradient as follows:

A(V) = /O v 4.2)

where a (v) denotes the area of the surface region having the magnitude of MSP gradient as
v and A (V) is the total area of the surface.region that has the magnitude of MSP gradient
less than or equal to V. A(V) is a monotonically increasing function, representing the
changes of cumulative surface area with respect to the magnitude of MSP gradient. A
good threshold value will be the magnitude of MSP gradient value that indicates a sudden
drop on the value of A (V) when the magnitude of MSP gradient decreases. Hence, by
considering A (V) as a 2D curve segment, the desired threshold value will be at the position
where the curvature is maximal. Fig. and Fig.[4.3(b))illustrate the graph of A (V) and
its curvature for the horse model, respectively. The segmentation regions extracted using

the derived threshold value is shown in Fig. |4.3(c)

4.2.1.3 Loop closing for segmentation regions

Since the cut boundary is extracted within the segmentation region, a segmentation region
must form a loop. The segmentation region derived by applying threshold on MSP gra-
dient in general does not guarantee to form a loop. We apply extrapolation to close those

segmentation regions into loops. For a segmentation region that does not form a loop, a re-
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Figure 4.3: A(V) , curvature of A (V), and segmentation regions derived for the camel
model.

(a) Original segmentation regions (b) Region extrapolation (c) Grown region peering

Figure 4.4: The loop closing process.

gion growing process is performed starting from the region boundary, and in each iteration
the face with the largest magnitude of MSP gradient is added to the segmentation region
until the newly added face connects to another region or close the loop. After closing up a
loop, the faces within the newly grown region are peeled away iteratively in the decreasing
order of their magnitude of MSP gradients until a ribbon region with one face width left
between the two newly connected segmentation regions. At this point, these two segmenta-
tion regions are merged. The merging process is executed iteratively until all segmentation

regions form in loops. Fig. {.4]illustrates the loop closing process.

4.2.2 Significant segmentation pairs selection

The segmentation region derived using the magnitude of MSP gradient represents the
strength of the part boundary, but does not reveal any salience information of the parts
it separated. However, the salience of segmented parts associated with the segmentation

regions may range from detail feature to global structure.
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There may have more than two parts associated with a segmentation region. Thus for
a segmentation region, we define a segmentation pair to be two parts sharing the same
segmentation region. The part saliency theory states that the salience of a 3D part depends
on three factors: its size related to the whole object, the boundary strength, and the degree
of protrusion [29]. Since we have derived the segmentation regions using the magnitude
of MSP gradient, the local volume of an object part can be approximated by the average
MSP value within the part region. The strength of boundary between a segmentation pair
can be described as the difference of the averaged MSP values of the two parts. In order
to measure the protrusion of the object part, we use the salience metric proposed by Gal
and Cohen-Or [19] due to its computational efficiency and practicability for identifying
surface features. Thus, we assign a salience-measure to each of segmentation pair (P, Py)

as follows:
S (P,,P,) = min (RMSP (P,) ,RMSP(Z,)) min (S (P,),S(B,)) |[RMSP (P,) — RMSP (P,) ||, (4.3)

where

S(P)= Z Ared (f) Curvature(f)?,
ferP

and P, and P, are the two parts sharing the segmentation region, RMSP (P) is the averaged
MSP value of the part P. S(p) denotes'the saliency of the part P, which is derived by the
combination of surface area and the curvature. We use the Gaussian curvature in saliency
computation since it has better description for the protrusion of object part.

To find the most significant segmentation pairs, we sort the value of S for all segmen-
tation pairs in ascending order into a sorted sequence {S*(i)}, and seek an index k such
that S*(k) —S*(k— 1) is the maximum; that is, look for the largest gap among the sorted
S*(i). Those segmentation pairs that have S value higher than S*(k — 1) will be chosen as
the segmentation regions for the current hierarchy level. As shown in Fig. 4.5] there is a
large gap in the histogram of salience-measure between the segmentation pairs 17 and 18,

and segmentation pairs 18 to 21 are selected.

4.2.3 Cut boundary extraction for the selected segmentation pair pair

Once a segmentation pair is selected, we next compute a cut boundary between parts by

performing a modified graph cut [36]. We propose a hybrid capacity that combines the
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Figure 4.5: Selection of the segmentation pairs.

difference of MSP as well as angle difference as follows:

1 ..
eii€Ei,j#S,T,
.. 1 a(4;) i AMSP (ci;) 5 lijl !
cap (i,j) = *\ eare AMSPavg |~ learg] (4.4)
o otherwise,

where i and j are two adjacent faces on the object that are not in both the source region
S and the target region T, ¢;; denotes the edge between faces i and j, E is the set of all
the edges of the object, 6 (ei j) is the dihedral angle of e;; which can be normalized by
the average dihedral angle 6,,,, and AMSP (e,- j) denotes the MSP difference across e;;
which can be normalized by the average of MSP difference AMSP,,,, ||¢;;|| is the edge
length of e;; which can be normalized by the averaged edge length ||eayg||. Oavg, AMSPy,,,

and ||e4y,|| are computed using all the dihedral angles, all the faces, and all the edge of the

lleij]]
||eang

object, respectively. The is a compensated term aiming to straighten the cut boundary
since the path generated by using the tip of the magnitude of MSP gradient may not always

be smooth.

4.3 Hierarchical Segmentation

The selection of the most significant parts directly implies that a hierarchical segmentation
can be obtained easily by performing the segmentation process iteratively. For each level of

hierarchy, the selection of the most significant segmentation pairs ensures that the selected
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(a) Level 1 (0.148) (b) Level 2 (0.102) (c) Level 3 (0.07)

Figure 4.6: Segmentation regions at three levels on the camel models.

(a) Level 1 (b) Level 2 (c) Level 3

Figure 4.7: Hierarchical Segmentation of the camel model in three levels.

parts will have similar salience significance while having large differences compared to the
remaining parts. Thus we obtain a top-down hierarchical segmentation that decomposes
the object into parts into levels that reveal the salience significance down from the global
structure to local features.

Our segmentation regions are found by applying a threshold value to the cumulative
function shown in Eq. [4.2] In order to capture more boundaries in finer levels, for each
level we ignore the surface areas nearby the part boundaries derived in previous levels in
computing Eq. As a result, a lower threshold value on the histogram can be obtained
to enlarge the segmentation regions. Fig. {.6|illustrates the segmentation regions found in
three levels for the camel model. We observe that the threshold value applied decreases
as the segmentation level gets deeper (see the numbers inside the parentheses) and the
segmentation regions for smaller features, such as the mouth and the fingers, are found in

finer levels. Fig. .7 reveals the segmentation results of the camel model corresponding to
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the segmentation regions in Fig. [4.6]

4.4 Experimental Results

i

(a) hand (b). dinosaur (c) armadillo

(d) santa (e) nepture

Figure 4.8: The segmentation result of different models.

By using the volume information encoded in the MSP function, the proposed segmen-
tation scheme can handle models of different topological types. Fig. 4.8 demonstrates the
segmentation result for models shown in Fig. [3.2] Observed that the cut boundaries are
located along the regions where there exists a large gap in MSP value and in the mean-
time follow the object’s local features. Moreover, the salience-measure ensures that the
most visually significant parts are segmented. The dinosaur (Fig. 4.8(b)) and armadillo
(Fig. models have complex surface details and hence it is difficult to locate correct

cut boundaries based on minima-rule alone. Since the MSP function is less sensitive to the
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surface detail noise, we can generate meaningful parts and reasonably good boundaries us-
ing the proposed hybrid capacity on these two models. The nepture (Fig. model has
genus higher than 1 and does not have obvious core-salient structure. Such kind of model
can hardly be handled well using segmentation methods based on the global shape proper-
ties such as averaged geodesic distance 36, [35]]. On the other hand, the proposed method
finds no difficulty on such models since the volume information encoded by MSP function
is less global and provides enough cues for identifying the parts from the models. Some
smooth artifacts on cut boundaries may still be observed on some segmentation results such
as the cut boundaries between the hind legs and the body of the camel (Fig. and be-
tween the thighs and the body of the armadillo (Fig. and of nepture (Fig. {.8(e)).
In such regions, the tip of the magnitude of MSP gradient has large amount of disturbance
and twice of compensation term in Eq. may be not enough for yielding smooth bound-
aries. Moreover, we assume that the internal volume is uniform within the object part while
noticeable volume change exists between parts. For models with some adjacent parts that
have no noticeable volume change between them, our segmentation scheme may fail to
separate them into different parts, such as the case in Fig. where the hand and trident
are not separated.

In Fig. we compare the proposed method to other methods provided in the segmen-
tation benchmark [[10]. Cup and chair models donot have obvious core-salient structure on
which the core extraction [35)] and K-means [77] algorithms fail to produce good segmen-
tations. The segmentation using SDF is based on a global fitting of the histogram function
and is unable to reflect the local changes in object volume, leading to biased segmenta-
tion boundaries. Moreover, the SDF cannot correctly describe the non-cylindrical part and
generates improper segments on the cup model. The randomized cuts method [22] gener-
ates good segmentation results for most of the models. However, its performance strongly
depends on the segmentation methods based on local curvature and the geodesic distance.
In consequence, it may not generate good segmentations for models with complex local
features. Fig. shows the segmentation result of dinosaur model using the proposed
scheme and the randomized cuts [22]. The proposed segmentation can tolerate the com-
plex local features of the dinosaur model and segments the models into parts with similar
salience significance. On the other hand, randomize cuts algorithm produces improper seg-

mentation boundaries at the neck, the body, and the tail. We also perform the benchmark
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Figure 4.9: Comparison of the segmentation methods.

(a) MSP (b) Randomized Cuts

Figure 4.10: Comparison of dinosaur result using MSP and randomized cuts [22].
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study of the proposed method against others using the segmentation benchmark [10]. The
benchmark is obtained by performing the comparison based on 20 models selected from the
object database of the segmentation benchmark (two models from each object category).
Fig. . TT]reveals that the proposed segmentation scheme always yields lower error than the

four other metrics proposed in [10].
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Figure 4.11: The benchmark of our segmentation method.

Since the interior volume of a model is almost constant during animation, the proposed
segmentation scheme is inherently pose invariant. We list the segmentation result of the
animated centaur model in four poses in the top of Fig. @.12] The bottom of Fig. .12
illustrates the average error rate of MSP function for each of the four poses. For each
pose, the MSP’s average error rate is computed by averaging the differences in MSP value
between the pose and all other poses. The MSP is almost invariant to the change of pose,
except in some joint regions where very small deviation of MSP value may exist.

We decompose the dinosaur and armadillo models into a hierarchy of four levels, as
shown in Fig. @.13] The columns from left to right indicate the levels in ascending order.
The most significant parts, such as the body of armadillo and the four limbs, are decom-
posed at the first level. As going down in the hierarchy, we observe that parts at the same

level have similar salience significance and parts in lower levels have less salience signif-
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\ ¢
pose 0 pose 1 pose 2 pose 3
Avg. errorrate  0.012 0.009 0.011 0.015

Figure 4.12: Segmentation and average error rate for different poses of the animated centaur
model.

icance. Fig.[4.14]depicts the histogram plots.of salience-measure for the dinosaur model.
The parts having similar meaning tend to have similar values of salience-measure and will
be decomposed at the same level. Fig.[4.15]lists the hierarchical segmentation result using
SDF [73]]. The boundaries of'core part for the dinosaur and armadillo are varying among
different levels. Parts at the same level might differ greatly in salience significance and,

moreover, parts at lower levels may not have less salience significance.
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Figure 4.15: Hierarchical segmentation result of the dinosaur and armadillo models using
SDF [73]].




CHAPTER 5

Mesh Skeletonization using
Volume Based Surface
Function

5.1 Introduction

The skeleton of a 3D model is an 1D structure that represents the topological characteristics
of the model. As a global shape descriptor-of 3D models, the skeleton is useful for shape
analysis, object retrieval, segmentation, and animation. In general, extracting skeleton
from a 3D model is a costly process that usually requires the information about the internal
volume of the model.

According to the short-cut [/9]], a good cut should be the shortest cut and cross an
axis of local symmetry. Hence, the skeleton can be computed based on the union of the
local symmetries of all short cuts on the surface. Based on the MSP function introduced
in Chap. [3| we propose a new mesh skeletonization that derives the curved skeleton di-
rectly from the 3D model. The original model is shrunk directly to a skeleton-like shape
while preserving the connectivity of the model by using the information associated with
the minimum perimeter slices. A greedy framework is then invoked to iteratively alter the
connectivity of the shrunk mesh and adjust its local geometry until an 1D curved skeleton
is obtained. Although similar to the greedy framework commonly used in mesh simplifi-
cation, our framework aims to degenerate the topology and to move transformed vertices

towards the centerline. The mesh manipulation operator and the error metric are there-

40
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fore completely different. The edge swap operator only alters the edge connectivity and
is commonly used in mesh simplification to obtain a better mesh connectivity. Since the
edge swap operator can be iteratively applied to reduce a 3D mesh to a 1D structure, it is
used as a single edge operator in our greedy framework. To degenerate the shrunk mesh
to a 1D curve skeleton, an error metric guides the edge swap sequence such that the edges
with higher deviation from the centerline would be swapped first. Moreover, we apply a
smoothing operation after each edge swap operation so as to move the vertices towards
the centerline. To do so, a slice-deviation error derived from the minimum perimeter slice
measures the deviation between a shrunk vertex and the centerline. The resulting skeleton
of the greedy framework may contain small skeleton branches induced by the local surface
features or noises. These small skeleton branches can be removed by testing the salience
of their corresponding surface regions.

Our approach would attempt to retain. vertices and to delete a small portion of the ver-
tices associated with short branches during branch removal. The resulting skeleton pos-
sesses a dense node distribution at the core parts and around the junction nodes, and a
skeleton-surface mapping. Previous skeleton extraction methods such as the ones using
Reeb graph [27, 8} 183]] or mesh contraction{6] usually generate skeletons with sparse node
distribution, especially at the core parts of the model or around the junctions. Although the
sparse node distribution may lead to zigzag skeleton structure in some cases, sparse nodes
at the core parts are usually sufficient for some applications such as segmentation and skin-
ning. Nevertheless, when we consider to embed the surface information to the skeleton,
the denser node distribution is, the more information could be embedded. Some applica-
tions may be benefited greatly by the presence of dense node distribution together with
the skeleton-surface mapping. For example, we are investigating how to find a surface-to-
surface correspondence between two meshes by utilizing the skeleton-surface mapping and
a mapping between dense nodes of two skeletons established with the aid of a well devel-
oped skeleton correspondence algorithm such as [7]. In this case, the density of skeleton
nodes affects the accuracy of the surface correspondence.

Our contributions of this work are stated as follows. We propose a novel greedy frame-
work for degenerating the 2-manifold connectivity of polygonal mesh to a 1D skeletal
structure. The resulting skeleton possesses a dense node distribution at the core parts and

around the junctions. A single salience parameter is required for controlling branch re-
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(a) Original mesh (b) Shrunk mesh (c) Intermediate skeleton (d) Final skeleton

Figure 5.1: The skeletonization process.

moval so as to compute skeletons with varying details. Finally, the proposed method is

able to generate consistent skeletons for models in different resolutions.

5.2 Mesh Skeletonization

To compute the skeleton, we first shrink the 3D mesh to a skeleton-like shape by trans-
forming each vertex to the local. symmetry axis approximated by the geometric center of
the minimum perimeter slice associated with the vertex. A-greedy edge-swap process based
on the edge swap operator isinvoked to iteratively degenerate the shrunk mesh to an 1D
skeleton structure. A specially designed metric-is proposed to guide the edge-swap se-
quence such that the edges deviate farther from the eenterline would be swapped first.
Furthermore, after each edge swap the vertices of the swapped edge are refined towards
positions that represent the skeleton as the centerline by using a smoothing operator. The
resulting skeleton may contain undesired small branches induced by detailed geometric
features, noise, or the improper orientation minimum perimeter slices. After a branch is
formed in the edge-swap process, we compute the saliency of the surface region corre-
sponding to the branch and remove the branch if its associated salience value is smaller
than a user-specified threshold. So that the threshold can be intuitively tuned and skeletons
with varying resolutions can be effectively generated.

Fig.[5.1]depicts the proposed skeletonization process. First, the original mesh is shrunk
to a skeleton-like shape, as shown in Fig.[5.1(b)} Second, a sequence of edge-swap opera-

tors is performed to transform the shrunk mesh to a 1D skeleton structure. An intermediate

result is shown in Fig. and the resulting 1D skeleton is shown in Fig.
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5.2.1 Mesh Shrinking

The minimum perimeter slice associated with a surface point p approximates the short-cut
passing through p. The skeleton point that corresponds to the surface point p therefore
can be approximated by the geometric center of the simple polygon forming the minimum
perimeter slice. Accordingly, the mesh is shrunk to a skeleton-like shape by transforming
each surface point to its corresponding geometric center. Note that MSP slices, rather than
the refined MSP slices, are used in the proposed skeletonization method since the metric
that guides the edge-swapping and the smoothing operator to be described later is able to
effectively handle the outlier cases of the shrunk mesh.

The shrunk mesh is, therefore, similar to the resulting skeleton in shape and preserves
the connectivity of the original mesh. Some of the transformed vertices may deviate from
the skeleton path and form protrusions on the shrunk mesh, especially around the skeleton
junctions as shown in Fig. However, most of the transformed vertices are distributed
along the skeleton path, providing argood hint on how.to locate the skeleton and how to

adjust the outliers towards the'skeleton path.

5.2.2 Mesh Degeneration

To extract an 1D skeleton from a manifold mesh is a degeneration process. An edge-
swap operator flips the common edge of two adjacent triangles to the edge connecting two
opposite vertices. Traditionally, the edge-swap operator is used in level-of-detail modeling
to adjust the triangle connectivity in order to refine the mesh connectivity, while geometry
simplification operators such as edge collapse are used to simplify the mesh. When the
edge-swap operator is iteratively applied to a 3D mesh, the mesh can be degenerated to
a 1D structure while all vertex positions are retained; as shown in Fig. [5.2] in which a
tetrahedral is degenerated to a 1D structure. Our skeleton extraction algorithm is a greedy
framework based on an edge-swap operator which is used for degenerating the shrunk mesh
into a 1D skeleton structure. In this subsection, the error metric, smoothing operator, and

branch removal scheme will be described.
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Figure 5.2: A tetrahedral is degenerated to a 1D structure using edge swap.

(a) Slice-deviation error (b) Vertex sparseness (c) Vertex protrusion

Figure 5.3: Metric associated with the transformed vertices on the horse model. The color
ranging from blue to red represents the increasing value.

5.2.3 Error Metric

In traditional mesh simplification algorithms, the error metric measures the error incurs be-
fore and after the simplification[20]. The primitives with smaller error have higher priority
to be simplified. In our case, the primitives are edges formed by transformed vertices. We
need an error metric to measure how much an'edge deviates from the skeleton path and the
amount of changes in shape before and after an edge swap operation is performed.

To measure how much a transformed edge deviates from the skeleton path, we first
measure how much its end vertices deviate from the skeleton path. For a surface vertex,
its slice-deviation error defined by Eq. measures how well its minimum perimeter slice
approximates the short cut, which offers a good measure on how much its corresponding
transformed vertex deviates from the skeleton path. For a transformed vertex v, we denote
Cdev (v) as the slice-deviation error of its original surface vertex. Fig. shows the
slice-deviation error of the transformed vertices of the horse model. Notice that minimum
perimeter slices of some vertices near the ends of skeleton or junctions usually have higher
slice-deviation errors.

Adopting the slice-deviation error alone does not guarantee that the shape of the skele-
ton would be preserved. This is because the slice-deviation error describes only the devia-

tion of the minimum perimeter slice from the short cut. To preserve the shape and produce
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Figure 5.4: Measurement of the vertex sparseness.

a smooth curved skeleton, the change of the shape on the shrunk mesh should be taken into
account. We observe that the transformed vertices usually distribute around the skeleton
path and the vertices with higher slice-deviation error deviate farther from the skeleton path,
are less dense and form protrusions on the shrunk mesh. In addition to slice-deviation error,
we define the vertex density and the vertex protrusion for a vertex as the shape preserving
metric. Measuring the vertex density in Euclidean space is a difficult task as an additional
acceleration structure is required.. Instead, we compute the sparseness of the transformed
vertex v as the averaged distance between v and all the opposite edges of the one-ring faces

of v, as shown in Fig. The corresponding equation is given as follows:

S | ==

cg(v)=

ihi. (5.1)
1

The vertex protrusion ¢, (v) measures the protrusion of the transformed vertex v relative to

its one-ring neighborhood as shown in Eq. [5.2] as follows

cp(v)=v—3 v, (5.2)
vV
where V denotes the one-ring vertices of the vertex v. Fig. and Fig. illustrate
the sparseness and the protrusion of the transformed vertices.

The skeleton is an 1D edge structure. Hence, we need one more metric for measuring
the area difference of the shrunk mesh before and after swapping an edge e. This metric is
called area-difference error c4 (e). To increase the convergence rate of the skeletonization
process, we would give the transformed edge with higher area-difference error to have
higher priority to be swapped.

Finally, the metric used to guide the edge swapping process is a combination of slice-

deviation error, vertex sparseness metric, vertex protrusion metric, and the area-difference
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error. It is given in Eq.[5.3|as follows

_ Cdev (e> Cs (6) t¢p <e> tca (6)
C(e) = p + 3| emar] , (5.3)

where ||enqy| denotes the length of the longest edge in the shrunk mesh and is used for
normalization, and ¢y, (e), cs(e) and c,, (e) are computed as the averaged slice-deviation
error, averaged sparseness and averaged protrusion of the two end vertices, respectively. At
each iteration step of the edge-swapping process, the edge with the highest C(e) is swapped
first; that is, conceptually the edge that deviates most from the centerline would be swapped

first.

5.2.4 Skeleton path smoothing

The proposed edge-swapping process ensures:that the manifold topology of the shrunk
mesh is degenerated to a 1D skeleton structure while all the vertices are preserved. How-
ever, vertices with high slice-déviation error cannot represent the skeleton well, leading to
a zigzag skeleton path. To smooth the skeleton path, we perform a smoothing operation on
the vertices after each edge swap operation. Consider the edge e with end points v, and

Vs,, as shown in Fig. After e is.swapped, the vertices v, and vy, are refined to v§1 and

\%
Vi r2

VSZ

Figure 5.5: Bi-linear interpolation after the edge swapping.

vgz, respectively. V;l and vﬁz are computed by a bilinear interpolation that first derives the
interpolated position of vy, and vy,, denoted as v/, and then interpolates v’ with v, and vy,,
respectively. The slice-deviation errors are used to offer the weights such that vertices are
moved towards the centerline. Eq. and Eq.[5.5]list the equations.
V¢ gev (Vi) )41y Caen(V')

Caor (V) Fden (V1

)
/ _ Ve ey (Vt2)+vtz Cdev(V')
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5.4




5.2 Mesh Skeletonization

47

(a) Without path smoothing (b) With path smoothing

Figure 5.6: Effect of skeleton path smoothing.

where

/= ViCder(Vss)  VorCaen (V) (5.5)

Cdev (Vs| ) + Cdev (Vsz )

and c,,, (') is the interpolated value of the slice-deviation errors of vy, and vy, .
The number of times for refining a vertex depends on the number of its outgoing edges
being swapped. Fig.[5.6 depicts the resultant skeleton of a horse model without and with

path smoothing enabled. In both cases, branch removal is enabled.

5.2.5 Skeleton branch removal

The skeleton resulted from the iterative edge swapping process may contain many small
branches induced by detailed geometric features, noise, or the improper orientation mini-
mum perimeter slices, as shown in Fig. Such small branches may not be useful for
describing the anatomical structure of the model. A skeleton branch represents a protrusion
from the core part. So during our skeletonization process, a skeleton branch is removed if
its corresponding surface region is insignificant in terms of the salience measurement.
According to the saliency geometric features proposed by Gal and Cohen-Or [19], the
salience of a model’s part is judged by the combination of the surface curvature and the
area. The maximum curvature of the surface point on the protrude part can be described
as the reciprocal of the radius of the maximum inscribed ball, which can be approximated
by the distance between the surface point and the corresponding skeleton node. Moreover,
the area of the protrusion can be described as the integral of the MSP function along the

skeleton branch. Thus, we define the salience of the skeleton branch b as the integral of the
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(a) Without branch removal (b) With branch removal
Figure 5.7: Effect of branch removal.

MSP function multiplied by the curvature along the skeleton branch, as given in Eq.[5.6]

B MSP (¢ (x))
0= /xeb 00 (eqal(x)) +1)

dx, (5.6)

where 7 (x) denotes the transformation from the skeleton to the surface and

| MSP(t(x))* et
" s,

is the approximate radius of the maximum inscribed ball for the surface point 7 (x). The
division by slice-deviation error in Eq. [5.6]is used to reduce the contribution from poor
representative MSP slices. Note that all the lengths in Eq.[5.6|are divided by the half length
of the mesh diagonal for normalization.

During skeletonization, once a part of the shrunk mesh is degenerated to a 1D branch,
the salience of the branch is computed. The branch is removed if its salience value is
smaller than a user-specified threshold. Fig. illustrates the resultant skeleton of a horse
model without and with branch removal. In both cases, path smoothing is performed.

Since all the vertices are retained by the edge-swap operator with the smoothing oper-
ator and only a small portion of the vertices are deleted in the process of branch removal,

the resulting skeleton possesses a dense node distribution.

5.2.6 Discussions

Our skeletonization scheme and contraction-based skeleton extraction [6] share similar

ideas; but they are very different in terms of algorithms. Since connectivity is maintained
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in the skeletonization, both methods generate skeletons that are homotopic to the original
model. Both methods are rotation invariant and pose insensitive since they work directly
on the original geometry.

We found in practice that the skeletons generated by [6] and ours are quite similar in
shape; but have some different characteristics due to their algorithmic differences. For
example, the skeletons generated by [6] have sparse nodes at the core parts of a model
while the skeletons derived by the proposed method have a dense node distribution at the
core parts and around the junctions. Moreover, the mapping vertices of a skeleton node
in [6] form a cylinder-like or a sphere-like shape, which are much larger than the ones
derived by our proposed method. Compared to [6], our skeleton-surface mapping together
with the dense node distribution embed more accurate and detailed surface property or
information on the skeleton, which are useful to applications such as surface-to-surface
correspondence. Due to the fact that only,vertices associated with insignificant branches
are deleted in our skeletonization, the skeletons of models with extremely low polygon
count can also be extracted. However, the method [6] may not be able to handle such kind
of models. The saliency threshold in our approach is more intuitive to be specified than
the initial weights for balancing the contraction and attraction constraints used in [6]]. The
initial weights do not have intuitive relation to the skeleton branching and higher weights

do not guarantee to have branches for more detail features.

5.3 Results

We implemented our approach and applied it to 3D models with various topological types.
Fig. [5.8| lists the resulting skeletons of some 3D models. Note that MSP, rather than the
refined MSP, is used for all skeleton examples derived by the proposed method. The results
show that the proposed skeletonization is homotopic not only for simple models but also
for models with higher order genus, such as heptoroid, dancing children, or fertility. The
small red spheres in Fig. represent the nodes of the skeleton paths, indicating that the
skeletons have a high node resolution at the core parts and junctions. Table shows the
percentages of surface vertices that are retained on the skeletons for some models.
Although MSP slicing is sensitive to noise, for applications such as segmentation and
skeletonization such noises are harmless to the judgment of intermediate level features on

the objects. The proposed skeletonization scheme is insensitive to the noisy surface models,
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Figure 5.8: The skeletons of different models. The numbers indicate salience thresholds
used and small red spheres represent the skeleton nodes.

Table 5.1: Number of surface vertices retained on the skeleton.

Number of Number of

Model g
vertices skeleton nodes
Raptor 15,000 4,708 (31.39%)
Heptoroid 9,950 3,234 (32.47%)
Dancer 10,000 3,673 (36.73%)
Armadillo 10,002 1,762 (17.62%)
Neptune 29,996 5,515 (18.38%)
Dancing Children 14,986 1,704 (11.37%)
Fertility 14,994 3,266 (21.78%)
Horse 19,851 4,033 (20.32%)

as shown in our experiment. Fig.[5.9)shows the skeleton extracted from the noisy horse
model, on which the resulting skeleton preserves the main structure of the horse model and
is similar to the skeleton of the smooth horse model, as shown in Fig. @ MSP function is
pose invariant and so is the proposed skeletonization method. Fig.[5.10|shows the skeletons

of the cat models of different poses in Fig. [3.4]

5.3.1 Comparisons

We compare our skeletonization method with the mesh contraction algorithm [6] which
also derives the skeleton directly from the surface. The results, derived using the parameter

setting as suggested in [6], are shown in Fig.[5.11} Our method and the mesh contraction
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Figure 5.9: Skeleton extracted from a horse model with high noise.

Figure 5.10: Skeletons for the cat model in different poses.

algorithm generate skeletons that are homotopic-to the original models and are similar in
shape. However, skeletons produced by our skeletonization have a denser node distribution
than the ones produced by [6]], especially at the core parts of the model and around the
junctions.

Next, we show that our skeletonization provides a much denser mapping between the
skeleton nodes and the surface than that of [6]. The skeleton-surface mapping are depicted
using the raptor models of polygon count 2,500 and 20,000, as shown in Fig. No-
tice that for models of higher resolution, the proposed approach retains more vertices for
forming the skeleton nodes, leading to a dense skeleton-surface mapping; that is, each node
maps to a smaller surface region.

The proposed skeletonization process requires only one user-defined parameter, namely
the salience threshold. Fig. shows the skeletons of different levels of details for the
armadillo model. The skeleton computed with a smaller salience threshold preserves more
branches for smaller geometric features, such as the tiny fingers (Fig. [5.13(b)). However,
if the salience threshold is too small, many small branches are retained (Fig. [5.13(a)). On
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Figure 5.11: Skeletons computed by contraction method [6]].

the other hand, a skeleton computed with-a high salience threshold represents the main
structure of the model. For the-contraction method.. it is hard to tune the parameter values
for obtaining skeletons with decreasing levels of detail like the ones in Fig.

It is desirable that skeleton extraction can be independent on the model resolution; that
is, consistent skeletons can be extracted from a model in different resolutions. Fig. [5.14]
shows the skeletons for the raptor model in different resolutions with MSP functions in
Fig. [3.5] which are consistent in branching structure and shape. Notice that even for a
model with low polygon count, such as 2,500 polygons, the skeleton can be extracted and

retains the structure of the model, which is the limitation of [6].

5.3.2 Limitations

For certain man-made objects consisting of highly concave local regions, geometric centers
of some MSP slices may not lay inside the object. In this case, the resulting skeleton is not
guaranteed to be lying inside the model. Nevertheless, if the shrunk mesh is inside the
object, the proposed skeletonization ensures that the skeleton is inside the object. Our
skeletonization method may fail to generate high quality curve skeletons for the objects
with holes. However, if the geometric centers can be well recovered or computed for those
MSP slices that have missed segments, the skeletonization process is not affected by the

holes.
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Figure 5.12: Dense skeleton-surface mapping on.the raptor models with polygon count

2,500 (top) and 20,000 (bottom).

(a) Salience = 10 (b) Salience =200 (c) Salience = 800 (d) Salience = 1,500

Figure 5.13: Skeletons of decreasing levels of details for the armadillo model.

NPT NS NS

(a) 2,500 polygons (706 (b) 10,000 polygons (2,345 (c) 20,000 polygons (3,781
nodes) nodes) nodes)

Figure 5.14: Skeleton of raptor model in different resolutions (salience threshold 500). The
number inside the parentheses is the number of skeleton nodes.



CHAPTER 6

User-Controllable Mesh
Simplification

6.1 Introduction

In addition to the intermediate-level surface properties and its applications to mesh pro-
cessing, we are also interested-in how to employ-semantic meaning of the object’s feature
in the geometric processing. The semantic meaning of the object’s feature is important for
describing the visual significance of shape feature, but cannot be described by the the exist-
ing surface properties. Hence, a user-assisted strategy is usually required to employing the
semantic meaning of the shape feature in the geometric modeling process. To adapt a user-
assisted scheme to the geometric modeling process, one crucial issue is how to quantize
the semantic meaning of the shape feature into a value that can be effectively recognized
by the applications. In this chapter, we focus on how to employ the semantic meaning
of the shape feature in the mesh simplification application and propose a user-controllable
scheme to assist users to attain a satisfactory resolution for regions of semantic importance.

In the past two decades, lots of mesh simplification metrics have been proposed, which
consider either the geometric difference [30} 20], texture deviation [14], or visual differ-
ence [49]. Each of these metrics has its own strength and weakness in preserving geomet-
ric and texture features. However, all of these metrics do not take semantic or functional
features into account. As a result, practitioners have found that these metrics are not able

to produce satisfactory result when the simplified mesh of very low-polygon count are ex-
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pected.

To overcome such limitations, the concept of user-assisted or user-guided simplifica-
tion become attractive. One way to this end is to perform refinement or simplification on the
simplification hierarchy [[13} 147, 33]]. Such setup is usually constrained by the vertex-split
dependence problems. Another approach reorders the primitive collapsing by weighting
the collapsing cost [38, 164]. Since the collapsing cost cannot be described by a simple
function, the weights applied have no direct relation to the result of the refinement. In con-
sequence, the weights are usually chosen in a trial and error basis. Moreover, the weights
that are appropriate to a simplified mesh derived by an error metric may not be appropriate
to the one derived by another error metric.

Our goal is a user-controllable simplification framework that allows users to improve

the quality of simplified meshes derived by using any existing error metric, such as QEM [20]

or APS [14]. The framework consists of two stages. The first stage employs weighting
schemes that allow users to refine unsatisfactory regions and achieve user-expected resolu-
tions. The second stage is a local refinement scheme that utilizes vertex splits performed
on the vertex hierarchy [31], aiming to provide a user-guided fine-tune for recovering sharp
features. To achieve the goal of user-controllable; we define the weight in the first stage
to be the resolution improvement of the surface region. Then, a reorder scheme is used
that the simplification operations in the weighted regions are postponed until the resolu-
tion increments are met. Two weighting schemes are proposed, namely uniform weighting
and nonuniform weighting. In uniform weighting scheme, a weight value is applied to all
original mesh vertices in a selected region, resulting in a uniform improvement on vertex
resolution in the region. On the other hand, in the nonuniform weighting scheme vary-
ing weights are applied to vertices in a selected region and obtain a nonuniform resolution
improvement in the region. The proposed weighting schemes differ from the previous
approaches [38],164] in that the proposed weighting schemes reorder the simplification se-
quence directly rather than by changing the simplification cost and then reordering the
sequence indirectly. The proposed reordering mechanisms are designed to achieve the fol-

lowing goals:

e The resolution improvement for a given weighting value in a selected region is pre-

dictable.

e The weighting schemes are completely independent of the error metric used, that is,
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same resolution improvement for a weighting value is obtained no matter which error

metric is used.

e A weighting value will result in the same resolution improvement when it is applied

to simplified meshes in different resolutions.

6.2 User-Controllable Mesh Simplification

The proposed user-controllable simplification framework allows users to achieve a pre-
dictable quality improvement in selected regions for a simplified mesh derived by any ex-
isting error metric, such as QEM [20] or APS [14]. The framework consists of two stages.
The first stage employs the proposed weighting schemes that allow users to refine the un-
satisfactory regions to the user-expected resolutions. The second stage is a local refinement
based on the vertex hierarchy [31], aiming to provide a user-guided fine tune to recover
sharp features via vertex splits.«Fig. [6.1] depicts an overview of the framework. At the
start-up, we construct a progressive mesh (PM) sequence for the input mesh using an au-
tomatic mesh simplification algorithm, such as QEM [20] or APS [14]. If the quality of
the simplified mesh is not satisfactory, users can mark the unsatisfactory regions on the
original mesh, assign weights to<the vertices inside the regions, and apply the weighting
scheme to increase the vertex resolution in the selected regions. The weighting scheme can
be iteratively applied until the satisfactory result is obtained. The vertex hierarchy is then
built according to the reordered PM sequence. Finally, if necessary, users can refine the
local features such as sharp edges or corners by iteratively performing vertex splits.

Two weighting schemes are proposed. In the first scheme users assign a constant
weighting value to all the vertices in a selected region marked on the original mesh. Each
edge collapse associated with the vertex in the selected region are then reordered by com-
paring it to other edge collapses in PM sequence in such a way that the resulting resolution
in the region is about a multiple of the number of the vertices in the region defined by the
weighting value. Second scheme allows the user to specify a weighting value to each ver-
tex independently in a unsatisfactory region. The reordering of the edge collapse associated
with the vertex is compared only to its dependent edge-collapses in the PM sequence. Such
a scheme is applied in per-vertex basis and hence provides a nonuniform weighting effect

in the region if the varying value is applied to vertices in the region via surface painting
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Figure 6.1: System overview.

system. After the reordering of edge collapses is'completed, the input mesh is simplified
according to the new order to a mesh that has same polygon count as before.

As stated in Section 1, the weighting scheme proposed here reorder the collapsing se-
quence directly, rather than indirectly via the weighting of the collapsing cost as in 38} 164].
Such a direct reordering mechanism can ensure a predictable improvement of vertex reso-
lution in the selected region, normally by an increase as a multiple of the number of vertices
in the region. This effect is usually impossible to be achieved by using previous methods.
Moreover, the proposed schemes are quite unique in its capability to be both error-metric
and resolution independent. That is, same resolution improvement in the selected region
will be obtained for a particular weighting value no matter which error metric is used or
whatever the resolution is for the simplified mesh.

Each of the two stages has its own strength and weakness. The weighting scheme
reorders the edge collapsing sequence and may greatly alter the simplification result. As a

result, the weighting scheme is more effective in overall refinement over the selected region,
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but can be hardly used to fine tune the local features. On the other hand, the local refinement
is restricted by the existing vertex hierarchy; but is effective in performing refinement over
local areas to recover sharp features. In the meantime, the local refinement has relatively
more control on where to get polygon budget, and hence can be applied to models with low
polygon count.

Both the nonuniform weighting scheme and local refinement are based on the vertex
hierarchy but with different goals and mechanisms. The nonuniform weighting scheme
reorders collapsing order for the edge collapse associated with a vertex according to its re-
lation to its designated ancestor in the vertex hierarchy while the local refinement, however,
refines the mesh around a vertex by splitting the vertex; that is, moving up the active cut

own the vertex hierarchy.

6.3 Uniform Weighting Scheme

We consider the weighting value as a multiple value for the expected increase on the vertex
resolution in a selected region. That is, given a user-specified weighting value w and a
selected region containing n vertices. in the simplified mesh, all the edge collapses in the
selected region will be delayed such that approximately @ x n vertices will be preserved in
the region while maintaining the same total polygon count for the simplified mesh.

Before getting into the detailed reordering scheme, we first define the order of an edge
collapse. Consider a complete progressive mesh sequence (PM sequence) for simplifying
a given original mesh to a vertex, the order of an edge collapse is its order in the PM
sequence. For all edge collapses in the selected region, we enumerate them from back to
front in the complete PM sequence and in the meantime define the the rank of the edge
collapse according to the enumeration. To make the reordering computation clean, we
enumerate starting from 0, that is, the rank of the last edge collapse in the selected region
1s 0, the last second is 1, and so on.

Consider a selected region R specified on the original mesh and a user-specified weight-
ing value @ assigned to the vertex v in R. Let e be the edge that is collapsed to v, and r and
o be the rank and order of edge collapse e, respectively. The new rank 7 of edge collapse e
is computed by

6.1

- r
r= —.
(D
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Rank 6 5 4 3 2 1 0
——— V a V I
Order 57 122 274 564 786 900 998
Rank 3 25 2 15 1 05 0
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Order 564 675 786 843 900 949 998

Figure 6.2: Reordering edge collapses in the selected region after applying weighting 2
(uniform weighting scheme).
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Figure 6.3: The effect of applying a weighting value to the selected regions with different
resolutions (uniform weighting scheme).

The new collapsing order ¢ of edge collapse ¢ is obtained by the linear interpolation be-
tween o; and 0;41, where r; <7 < r;iy.. That is, for the edge collapse e having new rank
7, we first find o; and 0, such that r; < 7 < r;; ,-and then perform the following linear

interpolation:

6 = (F—ri)Xoip1+(rig1 —F) x 0. (6.2)

Let’s illustrate the reordering process using the example shown in Fig. [6.2] where the
triangle dots on the top horizontal line indicate edge collapses in the selected region and
their ranks and orders before the weighting value 2 is applied, while the triangle dots on the
bottom horizontal line represent reordered edge collapses and their new ranks and orders.
The edge collapse with rank 5 is assigned a new rank 2.5 (= 5/2), and its new order 675 is
the result of a linear interpolation between the orders of edge collapses whose ranks are 3
and 2 before weighting. As a result of the reordering, the first of these six edge collapses
is reordered to a place where the fourth edge collapse most likely lies. Since the weighting
scheme doesn’t take the collapsing cost into account, it is apparent that its effectiveness is
independent of the error metric employed.

Since the proposed weighting scheme determines the new order for an edge collapse

according to where its new rank lies in the original PM sequence, its effectiveness is applied
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to whole PM sequence. Hence the effectiveness of a particular weighting value works
for simplified meshes of different resolution. Take the example shown in Fig. [6.3] where
weighting value is 3 and M, M>, and M3 represent the termination points of simplified
meshes of three different resolutions. We can see that there are one edge collapse remains
before the collapsing terminates for M. After applying weighting value 3, the number of

edge collapses remain becomes 3. Similar results are observed for M, and Ms.

6.4 Nonuniform Weighting Scheme

In the uniform weighting scheme, the orders of all edge collapses in the selected region are
delayed with the same amount of gap in the PM sequence such that an expected resolution
increase defined by the weighting value can be achieved. In this weighting scheme, a
consistent weighting value is applied to all vertices in the selected region. Such a setting
may limit the flexibility that the designers expect to-have; for example designers may expect
to have resolution increase by varying orders for vertices within the unsatisfactory region.
We next propose a weighting scheme in which a weighting value is assigned to each
individual vertex in the original mesh and then an increase in vertex resolution indicated by
the weighting value will be obtained around the vertex.. Thus for a selected region on the
original mesh, different weighting values can-be applied to vertices in the region by using
a surface painting system and, as a result, varying resolution increases will be achieved

within the region.

(a) Before weighting (b) After apply weighting value
of 2

Figure 6.4: Effect of the nonuniform weighting scheme.

To this end, we formulate the weighting schedule based on the vertex hierarchy formed

by the PM sequence; as shown in Fig[6.4] Consider the edge e that collapses to the vertex v.
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If the collapsing order of e is delayed to that of its parent, our goal is to obtain two vertices
replacing v. Similarly, four vertices is expected to be obtained if the order of e is delayed
to that of its grandparent. Based on the aforementioned observation, when the collapsing
order of the edge e associated with a vertex v is delayed to that of v’s i-th ancestor on the
vertex hierarchy, our goal is to obtain 2 vertices to replace v. Consider an edge e and its
collapsed vertex v. Suppose  is the weight assigned to the vertex v, indicating the number
of vertices expected to replace v in current level. We first find i such that 2/ < @ < 2!
and then compute the target collapsing order of e, denoted by 4, by linearly interpolating

the collapsing orders of v’s i-th and (i 4 1)-th ancestors, respectively, as follows,

0=0oir1+Bo, (6.3)

where o; and 0, are edge-collapse orders of v’s i-th and (i + 1)-th ancestors, respectively,

and '
w— 2
O pi g
and
2i+l_w
A SarEDy

The weighting value @ should be bounded since.the highest ancestor for a vertex v is the
root of vertex hierarchy. Let’s denote the root as the a™**-th ancestor of the vertex v. The
weighting value @ assigned to v should be bounded by 2¢"“"; that is, @ should be clamped
to min (co, Z“mw) )

So far we have described how to reorder the collapsing order of the edge associated
with a vertex in the nonuniform weighting scheme. To make it really works, by that we
mean 2 vertices is obtained to replace the vertex v if the collapsing order of the edge e
associated with v is delayed to that of v’s i-th ancestor on the vertex hierarchy, we need also
to assign the same weighting value to the descendants of v, at least down to level of 2/~!
on the vertex hierarchy. In our interface, after examining the simplified mesh users assign
varying weighting value to vertices in the selected regions on the original mesh by using a
surface painting tool. For a vertex inside the selected regions, its descendants are around
(some of them may be outside the region), and therefore are likely to be assigned with
some weighting values. Due to this interface design, as we will see in the result section, the

nonuniform weighting scheme may not always achieve the expected resolution increment.
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6.5 Local Refinement

The weighting scheme, including previous methods, generally cannot recover sharp fea-
tures, such as sharp edges and corners. The second stage of our user-controllable simpli-
fication framework is a local refinement scheme aiming to provide an effective tool for
recovering local sharp features. The proposed refinement operation is similar to the se-
lective refinement and simplification in view-dependent level-of-detail modeling [31]. The
selective refinement (simplification) refines (simplifies) a mesh by moving down (up) the
active cut of the vertex hierarchy.

Given a simplified mesh with its progressive mesh sequence, normally the result of the
first stage, the system constructs the corresponding vertex hierarchy with collapsing cost
recorded on each vertex and the active cut associated with the given simplified mesh. To
do the local refinement, user selects a set of vertices and the system will perform vertex
split on these vertices, and in the. meantime do the vertex collapsing on some vertices to
maintain the polygon count. Those vertices that have the lowest collapsing cost are the
candidate vertices for edge collapsing. Note that the vertex split or collapsing are just the
moving down or up of the active cut.

One thing worth mentioningis that the vertex split dependency problem may limit the
ability of local refinement since a vertex can be split only if all its neighboring vertices
after split are reachable. In our implementation, such problems are overcome by applying
the approach proposed in [39]. Another issue needs to be addressed is that, after local re-
finement, vertices resulting from a vertex split normally have costs lower than their parent.
After a sequence of vertex splits applied to a vertex v, the subtree originates from v may
have leaf vertices whose costs are relatively lower than that of vertices in the active cut.
This implies that the split vertices may soon be collapsed when vertices in other region are
split. To prevent this problem, we need to adjust the costs of split vertices such that they
have about the same magnitude as the cost of v. Further, the cost difference for vertices in
the subtree should be maintained to preserve the local features.

The cost adjustment is done along with the vertex split operations in the local refinement

process. Let ¢, be the cost of a vertex v to be split, and ¢1 and ¢; be the costs of the children
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of v. Suppose c¢1 > ¢, 1 and ¢ are adjusted to ¢} and ¢ as follows:
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! o2 (6.4)
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Note that Eq. [6.4|ensures that the average cost of the split vertices is the same as their parent

and the cost difference between the split vertices is maintained.

(a) Before the vertex split (b) After the vertex split

Figure 6.5: Cost adjustment in local refinement process.

As shown in Fig. [6.5] the'costs of v3; and v3 are adjusted after vy3 is split, and the
average cost of v3; and v3, are the same-as their parent v;3. Moreover, the difference

between v3; and v3, remains the same after local refinement.

6.6 Results

In the implementation, the proposed user-controllable mesh simplification framework sup-
ports QEM [20] and APS [[14] as the cost measure for the edge collapsing. To preserve
the simplification styles of the employed error metric, the simplification after applying
weighting is executed in the same way as the automatic simplification process with the
error metric, except that the edge collapses associated with the weighted vertices are not
performed until the delayed orders are encountered.

Several experimental tests are performed to demonstrate the effectiveness of the pro-
posed weighting schemes. First example is a cow model of 5,804 polygons (Fig. [6.6(a)),
which is simplified to a mesh of 1,160 polygons (20% of the original mesh) by using
QEM [20] (Fig. [6.6(b)). Different weighting values are applied to the region of left eye

using uniform weighting scheme as shown in Fig. by red color. Fig. and
Fig.[6.6(d)| depict simplified result and the refined meshes after applying weighting values
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(a) Original mesh  (b) Simplified mesh (8 (c) Weight = 2 (18 (d) Weighting = 3 (27
vertices in the selected vertices in the selected vertices in the selected
region) region) region)

Figure 6.6: Apply uniform weighting on the cow model using different weighting values.

(a) Original mesh (b) Simplified mesh (c) After applying (d) After local refine-
weighting scheme ment

Figure 6.7: Two-stage user-controllable simplification (with uniform weighting) on the
dragon model.

2 and 3, respectively. Fig.[6.7}and Fig.[6:8] illustrate the effectiveness of two-stage user-
controllable simplification on the dragon model of 50,000 polygons and male model of
151k polygons. Both models ate first simplified to-meshes of 1,500 polygons using QEM.
For the dragon model, the uniform weighting scheme with weight value of 3 is applied to
the regions of eyes, with the resultant mesh shown in Fig. Local refinement is then
applied to areas of teeth and nose, producing refined mesh shown in Fig. [6.7(d)] For the
male model, the uniform weighting scheme with weight value of 3 is applied to regions of
eyes, lips, and nose, and local refinement is applied to recover sharp features such as eye-
balls, eyebrows, and nose. Table @ and Table@list the geometry and normal deviations,
respectively, before and after the user-controllable simplification for the male model. The
errors are measured using MeshDev, which a mesh comparison tool using attribute devia-
tion metric [69]]. Although the mean errors after applying user-controllable simplification
are slightly increased, the errors are diffused over the regions that are considered perceptu-
ally less important. Fig. [6.9) visualizes the distributions of geometry and normal deviations
for the male model. Noticeable improvements can be found in the selected regions, and
the compensative error introduced by the proposed scheme is almost invisible and diffused
over the less-important regions.

Fig. illustrates the result of nonuniform weighting scheme and local refinement
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(a) Original mesh (b) Simplified mesh (c) After applying (d) After local refine-
weighting scheme ment

Figure 6.8: Two-stage user-controllable simplification (with uniform weighting) on the
male model.

Figure 6.9: Visualization of the error distributions for simplified male model before (top)
and after apply user-controllable simplification (bottom). The left column are the shaded
models, the middle column shows the distributions of geometry deviation, and the right col-
umn visualizes the normal deviation. Both deviations are measured by using MeshDev [69]].

applied to the buste model of originally 511k polygons. It is first simplified to 1,500 poly-
gons using QEM. Three different levels of nonuniform weights are applied to the model
according to the significance in perception; as shown in Fig. on which the green,
yellow, and red colors represent the weighting value 2, 3, and 4, respectively. Then, the
local refinement is applied to the eyes, nose, and lips to recover crease features.

Fig. [6.11] compares the effectiveness of the proposed uniform weighting and nonuni-
form weighting schemes against the one proposed in [38]]. The cow model is simplified to
1,160 polygons (20% of the original mesh) using QEM; as shown in Fig. Weight-
ing value 3 is assigned to the left eye as the red region shown in Fig. The proposed
uniform and nonuniform weighting schemes yield similar resolution increment for that re-
gion, namely increasing from 8 vertices to 27 and 25 vertices, respectively; see Fig.[6.11(b)]
and Fig. respectively . The weighting scheme of [38] reorders the edge collapse
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Table 6.1: Geometry deviation of the simplified male model before and after applying the

user-controllable simplification.

Simplified mesh Simplified mesh

after refinement
Minimum 2.758e—8 3.187e—8
Maximum 5.045¢—3 5.008e—3
Mean 5.131e—4 5.460e—4
Variance 1.880e—7 1.963e—7

Table 6.2: Normal deviation of the simplified male model before and after applying the

user-controllable simplification.

Simplified mesh | >/ mPlified mesh
after refinement
Minimum 7.984e—4 8.007e—4
Maximum 1.925 1.948
Mean 0.222 0.227
Variance 0.04469 0.04461

sequence by directly multiplying the weighting values to the corresponding quadric er-
rors. Since modification of quadric error has no direct link to the resolution improvement,
the resolution improvement is not predictable. In this test case, the number of vertices
remain unchanged; as shown ‘in Fig; Next, we compare the effectiveness of the
proposed uniform weighting, nonuniform weighting schemes, and the weighting scheme
in [38]] using the buste model. The buste model is first simplified to the meshes of 1,500
polygons. Uniform weighting with values 2 and 3 is applied to the selected regions as
shown in Fig. For nonuniform weighting, values similar to that in Fig. are ap-
plied to the selected regions. As shown in Fig. [6.12] the uniform weighting with value 2
may not preserve the eyes well (Fig. while the uniform weighting with value 3
seems over-preserve the eyes (Fig. [6.12(c)). The nonuniform weighting scheme is more
capable of adapting to the expectation of users. Again, the weighting scheme of [38] with
weighting value of 3 performs badly in this case.

Both of our proposed weighting schemes are independent on the resolution of the given
meshes, meaning that similar resolution increment in the selected regions is achieved for
the given simplified meshes in different resolutions. Fig. depicts the results of ap-
plying the uniform weighting with value 3 to the cow models with polygon counts 500,
1,160, 1,739, and 2,321. The selected region is the same as the one in Figl6.6] The in-

creased number of vertices in the selected region is shown in Table[6.3] which also includes
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Figure 6.10: Two-stage user-controllable simplification (with nonuniform weighting) on
the Buste model.

(a) Simplified mesh (8 (b) Uniform weight- (c) Nonuniform (d) Weighting scheme

vertices in the selected ing (27 vertices in the weighting (25 vertices of [38] (8 vertices in
region) selected region) in the selected region) the selected region)

Figure 6.11: Comparison of the proposed-uniform weighting and nonuniform weighting
schemes against the weighting scheme in [38].

the performance of the proposed nonuniform weighting scheme and the scheme proposed
in [38]]. The three numbers in-each item of the "vertex count in the selected region” indi-
cate the vertex counts resulting from the uniform weighting scheme (top), the nonuniform
weighting scheme (middle), and the weighting-scheme of [38] (bottom). We observe that
the performance of the uniforming and nonuniform weighting scheme is quite close to what
we expect. Note that the small inaccuracy in hitting the expected target is due to the de-
pendency problem in the dependency hierarchy that occurs on the boundary of the selected
region. On the other hand, the resolution improvement of the weighting scheme of [38]
is unpredictable. It is usually hard for users to specify the weight value for an expected
resolution improvement.

The proposed weighting schemes are also independent on the error metric used in
the mesh simplification. Since APS is a texture-deviation error metric, we consider the
Parasaur model with texture mapped. The Parasaur model of 7685 polygons is first simpli-
fied to 750 polygons using QEM and APS. Then we apply the uniform weighting scheme
with values 2 and 3 to the region of left eye. Table [6.4] shows the resolution increments
in the region of left eye after we apply the uniform weighting scheme with values 2 and
3 to the region. As we can see that the obtained resolution increments are close to what

we expect for both metrics. The proposed weighting schemes can be applied to models
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Figure 6.12: Comparison of the proposed uniform weighting, nonuniform weighting
schemes, and the weighting scheme in [38].

(a) 500 (8.6%) poly- (b) 1,160 (20%) poly- (c) 1,739 (30%) poly- (d) 2,321 (40%) poly-
gons gons gons gons

Figure 6.13: Results of applying the uniform weighting with value 3 to the cow model of
resolutions in different resolutions:

with texture mapped to reduce-the texture distortion. Fig. [6:14]shows the result of applying
the two-stage user controllable simplification.scheme to the Parasaur model with texture
mapped. Again, the Parasaur model is simplified to a'mesh of 750 polygons using APS, on
which noticeable texture distortion can be found; as shown in Fig.[6.14(b)l Fig.[6.14(c)|and

Fig. [6.14(d)| depict a great reduction in texture distortion after applying uniform weight-
ing scheme with weighting value of 3 around the left eye and then local refinement on the

texture boundaries.
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Table 6.3: Comparison on the resolution improvement obtained by the proposed weighting
schemes and the weighting scheme of [38].The three numbers in each item of the “vertex
count in the selected region” indicate the vertex counts resulting from the uniform weight-
ing scheme (top), the nonuniform weighting scheme (middle), and the weighting scheme
of [38] (bottom).

Polygon count | Vertex count in the selected region
of Without | Weighting | Weighting
simplified mesh | weighting | value=2 | value=3
8 13
500 (8.6%) 4 8 12
3 3
18 27
1,160 (20%) 8 16 25
8 8
26 39
1,740 (30%) 13 27 42
12 12
44 67
2,320 (40%) 22 40 47
23 23
56 68
2,902 (50%) 28 49 61
30 30

Table 6.4: Resolution improvement after applying constant weighting scheme on different
error metrics.

Vertex count in the selected region
Error metric W/0 Weighting | Weighting
weighting | value=2 | value=3
QEM 15 33 49
APS 6 15 22

(a) Original mesh (b) Simplified mesh (c) After applying (d) After local refine-
uniform weighting ment
scheme

Figure 6.14: Applying two-stage user-controllable simplification to the Parasaur model.



CHAPTER 7

Conclusions and Future
Works

7.1 Conclusions

In this thesis, we have presented a new slice-based scheme for deriving an intermediate-
level surface function that has advantages of low computational complexity and being com-
pact in affected region. Based on the short-cut rule{79], human vision prefers to use the
shortest possible cuts to parse silhouettes. We approximated the short cut passing a sur-
face point by a planar slice on the surface, called minimum perimeter slice, that passes the
point and has the minimum perimeter. Shape analysis of 3D object can then be performed
using a series of 2D slices, hence reducing the computation cost. The surface function
defined as the perimeter of the minimum perimeter slice, called minimum slice perimeter
(MSP), for all surface points is able to represent the local volume of object around the sur-
face point and possesses a better measure about the local volume information than other
intermediate-level surface functions such as SDF [73]]. Moreover, the orientation of the
minimum perimeter slices on the surface reveals the flow of shape orientation on surface.
Such shape properties are useful for describing the object’s part level information, which
can be useful in geometric modeling applications.

We applied the minimum perimeter slice to the mesh segmentation and skeletonization.
For mesh segmentation, a new hierarchical segmentation scheme taking the local volume

information into account is presented. The derived segmentation hierarchy possesses some

70
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desired properties. For example, components on a higher level reveal higher degree of
salience than their descendant parts and the components on each level of hierarchy have
similar degree of salience. Moreover, the number of boundaries on each level of the hierar-
chy is determined automatically. With the aid of the local volume information provided by
MSP, the proposed segmentation scheme can decompose object into several levels of parts
in more natural ways, and can be applied to objects in different topological types.

The proposed MSP-driven skeletonization framework first transforms the original mesh
to a shrunk skeleton-like mesh using MSP information and then employs a greedy edge-
swap framework to degenerate the shrunk mesh into an 1D skeleton. In the greedy frame-
work, edges that deviate farther from the centerline would be swapped first and vertices
are moved towards the centerline. Small branches are removed by checking the salience
value of their correspondence surface region whenever a branch is formed. The metric de-
signed for the greedy edge-swap framework and salience evaluation are formulated based
on the MSP function. The skeleton generated by the proposed method has a dense node
distribution at the core parts and around the junctions, and inherently possesses a skeleton-
surface mapping. The single salience parameter for branch removal provides a flexible
control for deriving skeletons ‘with varying‘details. Moreover, consistent skeletons can be
extracted for a model in differentresolutions and poses. We demonstrated the effectiveness
of the proposed algorithm by a rather'extensive testing and comparison to a state-of-the-art
method.

Beyond the intermediate-level shape property and its applications, we also investigated
how to interpret and achieve users’ expectation when performing mesh simplification. A
new concept of the user-controllable mesh simplification scheme is proposed in which the
user-specified weights on some selected regions are used to reorder the simplification oper-
ator rather than first altering the simplification costs and then reordering the simplification
operator. Our scheme results in a predictable resolution improvement over the selected re-
gions and is metric independent since the user-specified weights are not used to alter the

simplification cost.

7.2 Future works

There exists some limitations to the proposed minimum slice perimeter. Some small high-

lights of MSP value may be noticed on the surface since the slices may pass across multiple
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object parts. A filter that is able to prune those slice segments outside the designate part is
required to achieve a MSP that better describes the local volume information.

The existing salience definitions for the 3D object surface [41, [19] are based on the
combination of local geometric properties such as curvature and area, which may not reveal
the visual significance of object parts. We are also interested in investigating how the
salience of a 3D object part can be defined based on the intermediate-level shape properties.

In addition to the derivation of minimum slice perimeter, the normal of the minimum
perimeter slices associated with surface points reveals the orientation flow of the object
shape, which can be used to guide the vector field generation on the object’s surface. We
will investigate how to derive a shape-aware vector field on the surface using the orientation
vectors provided by the minimum perimeter slices.

Our proposed skeletonization scheme can extract curved skeleton with dense node dis-
tribution directly from 3D model. Such.dense node distribution allows us to establish a
reasonable many-to-one mapping between surface and skeleton. Such surface-skeleton
mapping may be helpful in geometric modeling applications such as the surface-to-surface
correspondence, mesh deformation, and mesh symmetrization. In the future, we will inves-

tigate how these geometric modeling problems can be benefited from the skeleton-surface

mapping.
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