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 要

中間階層的物體表面函數可以有效的表現物體部位的形體特徵與結構，然而

要定義與導出中間階層的表面函數是非常困難的。在本論文中，我們提出了一

個新的中間階層物體表面函數，稱為最小切面周長函數(MSP)，來表示物體的區

域體積資訊並探討其在幾何處理上的應用。對於一個物體表面上的點，其最小

切面周長為是定義在通過該點的切面上，目標是用來表示該點周圍的區域體

積。相對於其他中間階層函數如形體對角函數(SDF)[73]，最小切面周長函數可

以更正確的反應出物體的區域體積資訊。我們也將此一以切面為基礎的函數應

用於網格切割與骨架產生上。所提出之網格切割方法完整的利用到物體區域體

積資訊並能夠產生階層式的部位切割將重要部位首先切出並確保每一階層中所

切出的部位具有類似的重要度。而所提出之網格骨架產生方式是將三維表面透

過一連串的邊交換(edge-swap)操作直接擷取出曲線骨架。所產生之曲線骨架即

使在物體的核心區域或骨架接合處都可以保有高密度的節點，此一特性可以幫

助我們建立網格表面與骨架之間的對應。此外，所提出之方法只仰賴一個重要

度參數來操作，透過調整重要度參數可以得到不同精細度的骨架。最後，我們

也探討目前模型簡化機制只參考幾何資訊而未考量觀察者主觀定義所導致主觀

認定之重要區域會被過度簡化的問題。為了克服此問題，我們提出了一套使用

者可控制之網格簡化機制來讓使用者對網格上的主觀認定重要區域給定權重，

並確保該區域在簡化後的模型上具有與給定權重值相似的解析度提升效果。
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ABSTRACT

Intermediate-level surface functions of 3D objects are useful for representing the ob-

ject’s part-level shape information and structure. In this thesis, we propose an intermediate-

level surface function and explore its applications to geometry processing. The proposed

surface function, called minimum slice perimeter function (MSP), is defined in terms of

the slices that pass through the surface point and aims to represent the local volume around

the surface point. This slice-based MSP represents more accurate local volume informa-

tion than previous intermediate-level surface functions, such as Shape Diameter Function

(SDF) [73] and ia immediately beneficial to applications such as mesh segmentation and

skeletonization. Our proposed mesh segmentation algorithm, which takes advantage of

local volume information around the surface point, is able to generate hierarchical segmen-

tation where parts on the same level of the hierarchy share similar salience significance,

while parts on a level are less significant than parts on their parental level. The proposed

mesh skeletonization scheme employs a greedy edge-swap process that extracts the curve

skeleton directly from the 3D surface. The resulting skeleton inherently possesses a dense

node distribution at the core part and around the junctions which helps to derive a dense

skeleton-surface mapping. Moreover, the single salience parameter for branch removal

works well and provides a flexible control for deriving skeleton of varying detail. Finally,



existing level-of-detail modeling techniques consider only geometric other than semantic

information, and hence areas of semantic importance are often oversimplified. To ame-

liorate the problem, we propose a user-controllable mesh simplification framework that

allows users to assign weights on selected regions and obtain a predictable improvement of

the resolution over the regions.
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C H A P T E R 1

Introduction

The geometric modeling deals with the mathematical foundation of how the shape of an

object is described and manipulated. Among the various object representations, the polyg-

onal mesh, which is capable of representing arbitrary boundary shapes and is efficient for

rendering, is most commonly used in the computer graphics field. Many geometric op-

erations are developed for handling polygonal meshes, such as mesh simplification, mesh

parameterization, remeshing, and mesh segmentation.

The shape properties (called surface functions) associated with the surface play a cru-

cial role in the manipulation of the polygonal mesh. In the past two decades, various

surface functions have been developed for different purposes. Most of them are derived

directly on the 2-manifold of the surface. For example, the local geometric features such

as curvature [82, 57], and planarity [21] or the global core-salient feature such as averaged

geodesic distance [27]. These surface functions, however, are at the two ends of the scaling

spectrum. For geometric operations that require the knowledge of part information, these

surface functions may be either too local or too global.

Recently, the intermediate-level surface functions have drawn attention in geometric

modeling field. Aiming to fill the gap between local and global surface functions, functions

defined in intermediate scale can reveal the information about the object’s part structures

and their significance. Various intermediate-level shape properties have been proposed

such as the part salience [41, 19], symmetry [63, 58], visibility inside the object [53], and

the shape diameter function (SDF) [73]. In Fig. 1.1, three surface functions, namely mean

curvature, our proposed minimum slice perimeter function (MSP), and averaged geodesic

1
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(a) Local (Mean Curvature) (b) Intermediate (MSP) (c) Global (AGD)

Figure 1.1: Surface functions of different scaling on the fertility model.

distance function, that represent surface functions in different scales are visualized on the

fertility model with color ranging from blue to red for increasing value. We can see that the

minimum slice perimeter function (MSP) describes the part information better than others;

the distribution of function values better reveals the surface regions representing the parts.

The major difficulty for deriving the intermediate-level surface function is the definition of

the affected region for gathering shape information. The local shape properties are usu-

ally derived using the theorems in differential geometry by gathering the information in

the neighborhood of the surface point. On the contrary, the global shape properties are

derived by searching over the entire model. The intermediate-level properties, however, re-

quire a reasonable definition about the region for gathering information around the surface

point, and may have different region sizes for different surface points. Moreover, unlike

the local shape properties, most intermediate-level properties gather shape information in

3D Euclidean space, which leads high computational complexity.

In this thesis, we propose a slice-based method for deriving the intermediate-level sur-

face function. For a surface point p, we aim to find a good slice to describe the shape

around p so that the perimeter of the slice can be an approximation to the internal vol-

ume around the surface point p. Our motivation comes from the short-cut rule [79] which

states that human vision prefers to use the shortest possible cuts to parse silhouettes. For a

surface point p, the slice of mesh encompassed by the short-cut passing through p should

well represent the object shape around p. However, deriving short-cuts on the 3D object is

difficult for 3D objects of complex shape and may be not always valid. Instead of finding

the exact curved short-cuts on the object, we approximate the short-cut for a surface point

p by a planar slice that is the intersection of the mesh and the plane passing through p and

perpendicular to the surface at p, and has the minimum slice perimeter. We call this planar

slice the minimum perimeter slice of p. Also, we denote minimum slice perimeter (MSP)
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as the perimeter of the minimum perimeter slice for the surface point.

The minimum perimeter slice has several properties for describing the object shape.

First, MSP function can successfully describe the relative internal volume of the local re-

gion due to the close relation between the perimeter and the interior area of the slice. Also,

the normal of the minimum perimeter slice depicts the orientation of the object part, which

might be useful for deriving the vector field on the surface by taking into account the orien-

tation of object parts. Moreover, the fact that a short-cut always crosses a local symmetric

axis implies that the intersection point of the minimum perimeter slice and the local sym-

metric axis can be approximated by the centroid of the slice. Hence the union of those

centroid forms a shrunk mesh that approximates the skeleton of the object. Compared to

another intermediate-level surface function Shape Diameter Function (SDF) [73] that mea-

sures the diameter of the object’s volume around a surface point, MSP possesses a better

measure about the local volume information since SDF reveals only portion of the internal

volume for object parts that do not resemble cylinder.

The minimum perimeter slice can be regarded as a good representative planar slice

for describing the object shape at the surface point. Geometric modeling applications that

require the information about the local shape of object can be benefited. In this thesis, we

apply the MSP function to the mesh segmentation and skeletonization processes and show

that with the aid of MSP function, the results can have great improvement comparing to

previous works.

1.1 Volume Based Mesh Segmentation

Most existing mesh segmentation methods employ local geometric properties or global

core-salient features. While local shape properties often results in a over-segmented seg-

mentation, the global shape properties may handle only models with core-salience feature.

The volume based surface function can reveal the information about the object’s parts.

We propose a new part-based hierarchical mesh segmentation scheme that utilizes the local

volume information. Based on the observation that surface regions having similar local vol-

ume tend to be grouped in the same part, the candidate part boundary regions on the surface

can be easily located by applying threshold to the magnitude of MSP gradient. Moreover,

the significance of object part pairs separated by the boundary region can be measured using

their relative volumes. Based on the significance of object part pairs, for each level of the
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hierarchical segmentation, the proposed scheme decomposes the object into several object

part pairs that have the most significance. Boundary of the object parts are extracted from

the boundary regions using the graph-cut algorithm that takes both the local curvature and

the magnitude of MSP gradient into account, resulting in smooth boundaries. Compared

to the segmentation methods provided by the segmentation benchmark [10], our segmen-

tation scheme is able to decompose the object into parts in a more visually convinced way

for objects of different topological types.

1.2 Mesh Skeletonization using Volume Based Surface Func-

tion

The skeleton is an important shape descriptor for representing the topology of a 3D ob-

ject. Most existing mesh skeletonization methods derive the skeleton by either quantizing

the 3D object into volume representative or resampling processes. The quantization and

resampling of object usually lead to missing topological features; for example, small han-

dles on the original object may be missed in the resulting skeleton. There exists several

skeletonization methods that extract the skeleton directly from the 3D mesh. Although the

topology of the skeleton can be homeomorphic to the original mesh, such methods usually

lead to over-simplified skeleton results.

Based on the proposed slice-based scheme, we introduce a new mesh skeletonization

method to extract curved skeleton directly from the surface. Since the short-cut rule [79]

implies that a valid short-cut should be across a local symmetry axis, the minimum perime-

ter slice, as an approximation to the short-cut, inherits the same property. We first ap-

proximate the skeleton by the geometric centers of the minimum perimeter slices for all

surface points. Then a greedy edge-swap framework is invoked to degenerate the manifold

mesh topology to an 1D skeleton. In the process of edge-swapping, path smoothing and

branch removal are applied to smooth the skeleton and remove branches due to small sur-

face features and noise. As a result, the derived curved skeleton has a dense skeleton node

distribution even at the core or junction parts. Moreover, the skeleton is extracted directly

from the original mesh without resampling or quantization of the original mesh. So it is

homeomorphic to the original mesh. A skeleton-surface mapping is inherently established

that may be useful for embedding the surface information into skeleton. The threshold for



1.3 User-Controllable Mesh Simplification 5

branch removal requires only one parameter and provides a flexible control for deriving

skeleton of varying details.

1.3 User-Controllable Mesh Simplification

At the end of this thesis, we discuss the issue about a user-controllable strategy for level-of-

detail modeling process. The semantic meaning of an object is important in describing the

visual significance of some object regions. For example, the eyes are important cues when

looking at a human model. However, such a semantic meaning can hardly be described by

the existing shape properties. Moreover, different applications may give different semantic

meanings about the same object. To introduce the semantic meaning into the modeling

simplification process, the user-assisted strategy is often required. The most important

aspect in designing a user-assisted interface is the quantization of the semantic meaning

and its adaptation to applications. We introduce a user-controllable scheme for the general

mesh simplification application, in which the weighting provided by users is specified as

the multiple of the resolution improvement in the selected surface regions. The previous

weight-based user-assisted simplification methods [38, 64] take the weighting values as

the multiplication of simplification cost. As a consequence, the resolution improvement

in selected regions are unpredictable. In our user-controllable simplification scheme, the

weighting values are used to delay the order of the simplification operators in the sim-

plification sequence. With a carefully designed order delaying scheme, we can achieve

predictable resolution improvement for different simplification targets. With our proposed

scheme, the same amount of resolution improvement can be obtained for models that are

simplified using different simplification metrics.

1.4 Contributions

We summarize the contributions of this research as follows :

• Propose a new surface function, called minimum perimeter slice function (MSP), for

representing the local volume of an object.

• Propose a new part-based mesh segmentation method that well utilizes the volume

based surface function.
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– Regions of similar volume are grouped according to the MSP function.

– Can construct a hierarchical segmentation on which not only components on

a higher level reveal higher degree of salience than their descendant parts but

also the components on each level of hierarchy have similar degree of salience

significance.

• Propose a novel greedy framework for extracting a curved skeleton directly from the

3D model.

– The resulting skeleton possesses a dense node distribution at the core parts and

around the junctions, and the skeleton-surface mapping and MSP value.

– A single salience parameter is required for controlling branch removal so as to

compute skeletons with varying details.

– The proposed method is able to generate consistent skeletons for models in

different resolutions and poses.

• Propose a user-controllable simplification framework that allows users to obtain a

predictable resolution improvement over the simplified mesh deriving by using any

existing error metrics.

– The resolution improvement for a given weighting value in a selected region is

predictable.

– The weighting schemes are completely independent of the error metric used,

that is, same resolution improvement for a weighting value is obtained no matter

what error metric is used.

– A weighting value will result in the same resolution improvement when it is

applied to simplified meshes in different resolutions.

1.5 Thesis Organization

The remainder of the thesis is organized as follow.

In Chapter 2, a survey on the shape properties, mesh segmentation, skeletonization, and

user-assisted simplification is given. We introduce a new surface function representing the

local volume information around the surface point in Chapter 3. In Chapter 4, a part-based
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mesh segmentation algorithm is proposed that can take complete advantage of the volume

based surface function. Chapter 5 describes a new mesh skeletonization method that de-

rived from the minimum perimeter slices. In Chapter 6, we propose a user-controllable

mesh simplification that allows users to achieve a predictable resolution improvement by

using weighting schemes. Finally, we conclude our works and address possible future

works in Chapter 7.



C H A P T E R 2

Related Works

In this chapter, we discuss the works related to our research. The review of related work

begins by a survey of shape properties used in geometric modeling. We categorize the

shape properties according to the spectrum of scaling. Then, we review two geometric

modeling applications that benefit from the intermediate-level shape properties, the mesh

segmentation and skeletonization. Finally, user-assisted mesh simplification is reviewed.

2.1 Shape Property in Geometric Modeling

Most of the geometric operations rely on the analysis of shape properties of the object.

Shape property can be classified depending on its coverage on the object. Earlier researches

focused on the analysis of local geometric features which mainly derived based on the the-

ories in differential geometry, such as the curvature [82, 57] and planarity [21]. However,

the local geometric features are sensitive to the detail signal on the surface. The global

shape properties, which are classified at another end of the scaling spectrum, are derived

based on the analysis that covers the entire object. The distance between two surface point

p1 and p2 can be a metric for describing the relation between these two points. Various

distance measurement method have been proposed for different goals. The Euclidean dis-

tance is perhaps the easiest way to measure the distance between two points. However,

the Euclidean distance can not reveal the change of shape. The geodesic distance [80] is

the most widely used distance measurement in shape analysis which measures the shortest

length between two surface points along the surface. Additionally, Hilaga et al. used the

8
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average geodesic distance (AGD) to represent the protrusive of the object [27]. The major

problem of AGD is its inability to capture the change of shape due to the nature of its global

measurement. Moreover, the AGD is not applicable to objects without obvious core-salient

features.

To fill the gap between the local and global shape properties, intermediate-scale sur-

face attributes have been proposed for describing the localized regions. The salience is a

perception-based measurement describing the visual importance of a region relative to oth-

ers. On the surface of 3D object, the salience is usually defined as the combination of local

shape properties such as the weighted averaging of Gaussian curvatures in different scales

by Lee et al. [41] or the combination of curvature and area by Gal and Cohen-Or [19].

However, without the information from more global shape properties, the salience defined

based only on the local shape properties may not be able to reveal the significance of the

object region. Symmetry of an object is another important characteristic for analyzing the

object. Kazhdan et al. defined the symmetry distance of an object using all planes and

rotations through its center of mass, and used it as a global shape descriptor for performing

shape matching in database retrieval [37]. Podolak et al. extended the work of Kazhdan et

al. to the continuous measurement of global reflective symmetry of an object with respect

to all planes pass through the surface [63]. Mitra et al. identified the object parts that have

partial symmetries within or between them by using the voting process [58]. The reflec-

tive symmetry defined by the plane restricts the representative of symmetry for non-rigid

shapes. Xu et al. extended the planar reflective symmetry proposed by Podolak et al. [63]

to identify the partial intrinsic reflective symmetry of object [87]. They assume that surface

points geodesically equidistant to both of the points in the reflective sample point pairs are

the candidate position for the intrinsic reflective symmetry. A scalar surface function for

describing the intrinsic reflective symmetry can be established by voting the surface points

geodiscally equidistant to the sample pairs. Lipman et al. generalized the symmetry cor-

respondences between points by finding orbits between them [50]. By grouping a set of

points that have the same orbit in a correspondence graph, problems of finding approxi-

mate and partial symmetries can be reduced to the measurement of connectedness in the

correspondence graph.

The volume inside the object is another intuitive and useful intermediate-scale shape

property. Shapira et al. proposed a surface attribute that describes the local volume as-
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sociated with the surface point, called shape diameter function (SDF) [73]. The SDF is

an approximation of medial axis transform (MAT) [11] that uses local shape diameter to

approximate the radius of the maximal inscribed ball. Both MAT and SDF have the same

problem that the volume information at surface points is quite local. For example, the

volume information associated with a point refers only to the maximal inscribed ball asso-

ciated with that point in the MAT approach. For the slab of a non-cylindrical part, the union

of several balls is required for evaluating the entire volume. The SDF has the same limi-

tation since it is conceptually derived from MAT. There are other shape properties defined

in intermediate-scale. Liu et al. measured the possibility of surface region to be within the

same object part by the visibility of surface region inside the object [53].

2.2 Mesh Segmentation

In the past decade, many mesh segmentation methods have been proposed. Based on the

objective, mesh segmentation methods generally fall into two categories: patch-type and

part-type [5, 71, 10]. Patch-type segmentation usually decomposes the mesh into several

patches by analyzing the surface properties such as dihedral angles [46, 75], curvature [56,

60, 75], geodesic distance [88], and planarity [21]. Part-type segmentation tends to segment

a complex object into several meaningful components, usually based on the concepts from

cognition theory [28, 29]. For example, the minima rule states that human perception

tends to break an object into parts along the region of minimum negative curvature [28].

Moreover, the salience of parts determined by relative volume, boundary strength, and

degree of protrusion is important for human perception [29]. Our method is a part-type

segmentation, and we will mainly review this type of segmentation and refer readers to the

excellent survey paper by Shamir [71] for the patch-type segmentation.

Locating the boundary between parts can be done by either boundary-based or region-

based approach. Mangan and Whitaker used the watershed to segment the object into

several parts according to the curvature on the surface [56]. Lee et al. [45] cut the object

into parts by first finding the loop along the minimum negative curvature, and then test

the salience of the divided parts based on the part salience theory [29]. However, the

surface curvature is too local for describing the shape of object and locating cut boundaries

based on the curvature cannot always result in a meaningful part segmentation. Moreover,

the iterative segmentation process proposed leads to a binary hierarchical segmentation on
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which each level does not provide an intuitive meaning for object parts.

The geodesic distance is another attribute widely used in mesh segmentation [77, 36,

51, 52]. The averaged geodesic distance (AGD) derived as the average of geodesic distance

from a surface point to all other points can be used to represent the degree of protrusion of

a part. However, such attributes are useful only for models that have an obvious core part

and feature parts.

The Medial Axis Transform (MAT) is a global shape descriptor of the object [11].

MAT or skeleton can be used as a guideline for segmentation. For example, Li et al.

segmented the object by moving a sweep plane along the skeleton of object [48]. Since

the size of the cutting section of the sweeping plane can be regarded as local volumetric

information of the object, the cut boundaries are usually at the regions where the size of

cutting section varies rapidly. Oscar et al. segmented the skeletal mesh by measuring

thickness corresponding to the skeleton nodes derived from the skeletonization process [6].

The most concave region for the cutting is searched for each skeleton branch by comparing

the thickness of the skeleton nodes with their neighbors [6]. Reniers and Telea observed

that the junction between two skeleton paths has high potential to be a good place for

separating two parts [66, 67]. Shapira et al. proposed a hierarchical segmentation method

by fitting k Gaussian functions to the histogram of SDF values, and clustering the mesh

faces according to their corresponding Gaussian functions [73]. However, the fitting of the

global histogram can not reflect the difference between the object parts and some small

parts with no salient feature may be segmented. The segmentations generated by using

different number of Gaussian functions do not have consistent part correspondence and the

part boundaries may not always lie on meaningful regions.

An iterative approach for decomposing the object into several parts is based on the

k-means clustering [54]. Shlafman et al. used k-means clustering to segment the object

into a user-specified number of components [77]. This work was later refined to achieve

hierarchical segmentation [36]. However, the geodesic distance used in [36] describes only

the protrusion of object parts and hence the resultant hierarchical segmentation tends to cut

the object along the longest parts at the higher level of the hierarchy, which may not meet

the concept of perception. Moreover, the method is usually suitable only for objects having

obvious core-salient features. The challenge to the k-means clustering methods is that the

value of k needs to be given a priori. Liu and Zhang overcame such problems by applying
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the spectral analysis on the affinity matrix constructed using the mesh faces [51].

Another segmentation approach was based on the fitting of primitives. Attene et al.

extended the hierarchical face clustering [21] and replaced the clustering metric by other

similarity measures for the predefined primitives, such as spheres, cylinders and planes [4].

Mortara et al. detected the parts with tubular shape from the whole object [59]. They

extracted the core part by excluding all the tubular parts from the object to complete the

segmentation.

Pose-invariant mesh segmentation has attracted more attention in recent years. Such

works focused on finding the consistent segmentation over different poses of a model.

Katz et al. transformed the original model into a pose-invariant representation using multi-

dimensional scaling and then used spherical mirroring to extract the core of the object

and feature points to segment the objects [35]. In character animation, the pose-invariant

segmentation can be achieved by finding the rigid components during the animation [41,

44, 43]. However, such methods are usually suitable only for articulated models and the

requirement of animation sequences also poses some restrictions on the usability.

Consistent mesh segmentation aims to produce consistent segmentations for a set of

meshes [78, 72, 84]. Golovinskiy and Funkhouser [23] employed rigid alignment [9] in a

hierarchical clustering approach for consistent segmentation. Both the geometric features

of individual meshes and the correspondence information between the set of meshes are

considered. However, rigid alignment may not be able to correctly align the meshes in

some cases, as reported in [34]. Kalogerakis et al. [34] proposed a scheme to compute

segmentations and to assign labels for a set of meshes. The assignment of labels was

formulated as an optimization problem and the objective function measured the consistency

of primitives (i.e. triangles) with labels. The objective function was computed via a training

process and then applied to the other meshes for computing consistent segmentation. Their

approach handled various segmentations for a wide range of meshes. However, the training

process is time consuming and usually takes hours of computing.

Golovinskiy and Funkhouser [22] defined a surface function called partition function

that indicates how likely each edge is to lie on the boundary of a random segmentation

drawn from a set of existing segmentations. Based on the partition function, a cut is asso-

ciated with a consistency measure as the length-weighted average of the partition function

values of its edges. The most consistent cuts defined as the set of cuts with highest con-
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sistency are used for finding the part boundaries. Chen et al. proposed a benchmark for

quantitative evaluation of mesh segmentation algorithms [10]. The benchmark includes a

data set with 4,300 manually generated segmentations for 380 object meshes in 19 cate-

gories. It also provides software for producing four quantitative metrics for the comparison

of segmentation algorithms.

2.3 Mesh Skeletonization

Most of the mesh skeletonization methods can be classified into two categories: volumetric

and geometric. The volumetric methods perform thinning on the voxelization structure of

the objects [42, 61, 55] or tracking on the field function derived from the objects [12, 26].

The review of volumetric methods is referred to the survey by Cornea and Min [15].

A common geometric approach is based on the construction of the Voronoi diagram [85]

and its extension [2, 18, 17]. The Reeb graph [65] can also be used for computing the skele-

ton from the 3D model. There are a variety of techniques using different surface functions,

such as the geodesic function [27, 83], harmonic function [8], and height function in 3D

space [76, 3]. One challenge of this approach is to embed the skeleton into the geometry. In

most cases, the skeleton is derived by averaging the position of vertices on the slab defined

by the iso-contour of the function [62, 83]. Aujay et al. embedded the skeleton through an

adaptively refinement by solving the Laplacian equation [8].

Sharf et al. constructed the skeleton of the 3D model by tracing the growing fronts of

the blob inside the model [74]. Their method generates smoothed curved skeleton with

topology homotopic to the deformable model. However, their work requires a deformable

model for driving the process and a filtering process for removing the noisy branches.

There are skeletonization methods for extracting the skeleton directly from the surface

of the model. Au et al. extracted the skeleton by iteratively contracting the mesh based

on Laplacian smoothing [6]. The resulting skeleton has coarse node distribution around

the junctions and within the core part. Moreover, the Laplacian smoothing requires several

boundary constraints for ensuring that the skeleton branches are preserved. There is no in-

tuitive interpretation in doing so. The shape diameter function (SDF) [73] can also be used

to extract the skeleton. The candidate position of the skeleton is achieved by transforming

mesh vertices using the half distance toward the inverse normal direction. The skeleton is

then obtained using the moving least square reconstruction. Such skeletonization scheme
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is not homotopic since it does not take the connectivity of the mesh vertices into account.

Other than the skeletonization of polygonal meshes, Tagliasacchi et al. extracted the skele-

ton from the point cloud by finding the rotational symmetry axis [81]. Their scheme can

compute the skeleton even though the point cloud data is incomplete.

2.4 User-Assisted Mesh Simplification

Level-of-detail (LOD) modeling aims to represent a complex mesh with several levels of

detail, and from which an appropriate level is selected at run time to represent the orig-

inal mesh. A number of methods have been proposed in the literature. Most methods

simplify the given mesh by using a sequence of primitive collapsing operations, such as

edge collapse [32], triangle collapse [25], vertex clustering [68], vertex removal [70], and

multi-triangulations [16].

The primitive collapsing operations can be organized in various orders. The simplest

way is to perform the operations in arbitrary order. A more sophisticate approach is to

perform the operations in the increasing order of collapsing cost, which is analogous to

the greedy algorithm. Several error metrics have been proposed to determine the cost

of an edge collapsing operation, such as quadric error metrics (QEM) [20], appearance-

preserving simplification (APS) [14], image-driven simplification (IDS) [49], and percep-

tually guided simplification of lit, textured meshes [86]. Each error metric has its own

strength and weakness in preserving certain properties of the original mesh. For exam-

ple, quadric error metrics [20] tends to preserve only the geometric accuracy during the

simplification process, appearance-preserving simplification (APS) [14] takes the texture

deviation into account, and image-driven simplification [49] aims to preserve the visual fi-

delity between the simplified mesh and the original mesh. Moreover, These metrics fail to

consider semantic or functional features on the models. As a result, it is found in practice

that these metrics alone are not able to produce satisfactory results when very low polygon

count is the goal.

The first system that allows users to guide the simplification is Zeta proposed by Cignoni

et al. [13]. Zeta takes a pre-computed sequence of primitive simplifications as an input, and

utilizes hyper-triangulation model, which employs vertex decimation as the local mesh re-

duction operator. Users can selectively refine a model by locally changing error thresholds

to extract different approximations that did not appear during the original simplification
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process. Semisimp proposed by Li and Watson [47] provides three approaches for users to

manipulate the simplification results using the simplification hierarchy. It allows users to

improve mesh quality by manipulating the simplification orders, vertex positions, and the

hierarchical partitioning of mesh during the simplification.

Kho and Garland [38] proposed a user-guided mesh simplification system particularly

for meshes derived using QEM [20]. To increase resolution in a selected region, the system

multiply quadric errors associated with vertices in the region by the weighting multiplier,

and hence postpone the edge collapse operations in the region. The constraint quadrics can

be augmented into optimal placement computation to bias the optimal position towards the

constrained planes. Pojar et al. presented an approach that is very similar to the work of

Kho and Garland [64]. A sophisticated Maya plug-in is provided to offer rich interface and

great compatibility with other modeling applications. Since the distribution of QEM during

simplification can not be described by a simple function, the weighting approach proposed

in [64, 64] suffers from the problem that the value of multiplier has no direct relation to the

increase in resolution. In consequence, the value of multiplier is chosen in a trial and error

basis.

Hussain et al. [33] proposed a unified framework for constructing multiresolution mesh

based on the simplification hierarchy and hypertriangulation model [13], called adaptive

simplification model (ADSIMP). It provides the ability of real time navigation across con-

tinuous LODs of meshes. Two operations, selective refinement and selective simplification,

are provided to fine tune the simplified mesh at any level of detail.

A user-assisted simplification method for converting CAD models into the triangle

meshes with boundary preservation was proposed by González et al. [24]. Their method

allows users to specify different levels of detail for each subobject of the CAD models, and

ensures the consistency of boundaries between subobjects. However, the requirement of

subobjects limits their work to be useful only for man made CAD models.
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Minimum Slice Perimeter
Function

Our research focus on the derivation of surface properties that benefit the intermediate-level

shape analysis, such as the object part identification. The major challenge of deriving the

intermediate-level shape properties for 3D object is the high computational cost and how

to define the affected range.

The short-cut rule [79] states that human vision prefers to use the shortest possible cuts

to parse silhouettes. Moreover, the area bounded by the short cut is an appropriate measure

for the local interior volume of the object around the surface point. Hence the short cut is an

important property for segmenting parts. Deriving the short cuts on a 3D model, however,

is difficult due to the complex relation between the 3D shapes and silhouettes. Instead, we

approximate the short cut for a surface point by using the planar slice that passes across the

model through the surface point and has the minimum perimeter.

3.1 Definition of Minimum Slice Perimeter Function

For a manifold surface M, we define the Minimum Slice Perimeter (MSP) function at a

surface point p as the minimum perimeter of the planar slices passing through p and parallel

to the surface normal at p. It is given as follows:

MSP(p) = min
n
‖pl (n, p)∩M‖, (3.1)

16
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Figure 3.1: Slices for computing MSP.

where pl (n, p) represents a plane passing p with unit normal n that is perpendicular to the

surface normal at p and ‖pl (n, p)∩M‖ represents the perimeter of the intersecting slice

of pl (n, p) and M. The planar slice having the minimum perimeter is called the Minimum

Perimeter Slice of p.

For each surface point p of the 3D mesh, the MSP value of p is derived by first com-

puting the intersecting slices for a predefined number of slice planes and then compute the

minimum perimeter from the intersecting slices. The slice planes are distributed uniformly

about the surface normal vector at p. The intersecting slice of a slicing plane and the surface

is computed by performing a surface propagating process starting from the face containing

p. A slice’s perimeter is computed as the total length of the edges on the intersecting slice.

The minimum perimeter is taken as the MSP value of p. Fig. 3.1 shows 10 intersecting

slices and the slice with the minimum perimeter is shown in red.

Fig. 3.2 demonstrates the MSP function on some models. The color ranging from blue

to red indicates MSP values from low to high. It is observed that the MSP function is effec-

tive for representing the local volume information. The core parts have higher MSP value

than the salient parts for the articulated models and the parts can be distinguished easily

according to the MSP distribution even for models with complex topological structures. In

Fig. 3.3, the normal of the minimum perimeter slices is visualized on the surface. Such

normals are able to reveal the overall orientation of the object shape. Since the minimum

perimeter slice describes the object shape in intermediate scale, it’s independent on the

pose of object. As shown in Fig. 3.4, a cat model with different poses has similar MSP dis-

tributions. Similarly, a model with different resolutions also has similar MSP distributions,
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Figure 3.2: The MSP function for different 3D models.

as shown in Fig. 3.5.

Table 3.1 shows the timing data for computing MSP value using eight slices for each

surface point on the models. The test platform is a PC with Intel Core i5 2.67Ghz CPU.

Notice that we did not implement any acceleration structures for our MSP method. It turns

out that the computation time of our method is similar to that of SDF [73]. The accuracy of

Table 3.1: Timing data for computing MSP values.

Model
Number of

Time (sec.)
polygons

Raptor 30k 2.77
Heptoroid 20k 1.01

Dancer 20k 2.07
Armadillo 20k 2.93
Neptune 60k 14.19

Dancing Children 30k 4.93
Fertility 30k 6.02
Horse 40k 9.07

the MSP value for a surface point depends on the number of slices used. In our experiment,

some noticeable noises can be observed for the number of slices less than four. For the
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Figure 3.3: The normal of minimum perimeter slices that is projected onto the surface.

Figure 3.4: MSP function for the cat model in different poses.

number of slices higher than or equal to eight, the MSP values are almost the same. A

typical range of the number of slices is from four to eight for trading off between quality

and efficiency.

Some highlights of MSP value can be observed at the tips of object parts (such as the

chest of horse, shoulder of nepture, and head of dancing children) in Fig. 3.2. This is due

to the improper orientation of minimum perimeter slices, where the slice planes in such

tip regions are almost parallel to the local symmetric axis. Moreover, the slicing along the

normal direction may be sensitive to the surface noise. Fig. 3.6 illustrates two examples

for the MSP function on noisy surfaces, where the raptor model with high resolution has

details on its surface and the horse model is produced by applying a turbulence function on

the model surface. Non-smooth MSP value can be observed, particularly at small regions

where MSP values change dramatically.

3.2 Minimum Perimeter Slice Refinement

A good minimum perimeter slice should be capable of representing the shape in the slab

of its local region well. Therefore, a good minimum perimeter slice can be considered as
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Figure 3.5: MSP function for the raptor model in different resolutions.

Figure 3.6: The MSP function of noisy surfaces.

the slice on which all the surface points along the slice yield similar minimum perimeter.

Based on this observation, to measure how well a minimum perimeter slice is, we define

the slice-deviation error for the minimum perimeter slice of a surface point p as follows:

cdev (p) =
1

‖S (p)‖

∫
q∈S(p)

cos−1 (np ·nq
)

dq, (3.2)

where S (p) is the minimum perimeter slice at the surface point p, np and nq are the unit

plane normals of the minimum perimeter slices at p and q, respectively. Fig. 3.7 depicts the

slice-deviation error of the models shown in the top row of Fig. 3.2. High slice-deviation er-

ror can be observed at the tips of object parts and the junctions, where improper orientation

may be used to derive the minimum perimeter slices.

According to the definition in [79], the short-cut is not necessary to be perpendicular

to the surface normal, slicing along the surface normal may be too restrict for deriving a

good minimum perimeter slice for approximating the short cut. It is reasonable to argue

that an ideal minimum perimeter slice at the surface point p should be minimal for both

the slice perimeter and the slice deviation error. However, such a minimum perimeter slice

may not always exist. Instead, we refine the orientation of the minimum perimeter slice at
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Figure 3.7: The slice deviation error of 3D models.

the surface point p by minimizing the objective function described in Eq. 3.3.

Op (n) =
‖pl (n, p)∩M‖

2πrM
+

cdev (p)
π/2

, (3.3)

where the plane normal n is not restricted to be perpendicular to the surface normal at point

p, and rM denotes the half of the diagonal of the object’s bounding box, which is used to

normalize the slice perimeter.

Refining the minimum perimeter slice using Eq. 3.3 is, however, difficult due to the

intercorrelation between slice normal and slice deviation error. Instead, we use an iteration-

based method that takes the minimum perimeter slice computed using method described by

Eq. 3.1 as an initial guess. For each iteration, the new slice that minimizes the combination

of the slice perimeter and the slice deviation error is taken. The searching space for the new

slice plane should cover the entire hemisphere centered at p, which is too large. For the

minimum perimeter slice S (p) of the surface point p, we consider the unit plane normal nq

of the minimum perimeter slice of each point q along S (p). The average of those normal nq

weighted by using the reciprocal of slice-deviation error at q gives a reasonable orientation

of the object part, and hence offers a candidate slice-plane normal for computing a better

minimum perimeter slice; as shown in Eq. 3.4.

navg (S (p) , p) =
∫

q∈S(p)

nq

cdev (q)
dq, (3.4)

Hence, the search of the slice-plane normal in the entire hemisphere space is reduced to the

search in the range bounded by the normal of the minimum perimeter slice plane derived

in previous iteration and the candidate slice-plane normal navg. The iterative process is
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Figure 3.8: The refined MSP function of the 3D models.

Figure 3.9: The refined MSP function of noisy surfaces.

performed until the normal difference between the new minimum perimeter slice plane and

the previous one is below a user-specified threshold.

Fig. 3.8 illustrates the refined MSP function for models shown in the top row of Fig. 3.2.

The highlights at the chest of horse, shoulder of nepture, and head of dancing children

models are eliminated. Fig. 3.9 shows another refinement result on the noisy surfaces.

3.3 Comparisons

Both of MSP and SDF [73] reveal the local volume of the object, but by different defi-

nitions. SDF is an approximation of the medial axis which describes the local volume of

object at the surface point by the maximum inscribed ball attaching to the surface point.

Ray casting through the interior of object is applied to approximate the diameter of the

maximum inscribed ball. Both MSP and SDF can reveal the local volume well for cylin-
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(a) MSP (b) SDF

(c) Gradient of MSP (d) Gradient of SDF

Figure 3.10: The distributions of MSP and SDF and their gradients.

drical parts, but MSP is capable of capturing better volume information than the SDF for

those object parts that are non-cylindrical, such as the palm, as shown in Fig. 3.10. For

non-cylindrical models or parts, the SDF value reflects only a portion of the internal vol-

ume information and measures the local thickness or local diameter of the model. The

red color around the side of the palm means that the internal volume is much larger at the

side of palm than at the center. Instead of MSP function, the minimum perimeter slice

carries additional shape information about the object part, such as the slice shape and the

orientation. The SDF, however, is unable to derive such information.

The surface function which describes the internal volume of the object is useful for part-

based mesh segmentation. The averaging computation in SDF formulation can alleviate

the problem induced by surface details or noise. It, however, tends to blur the change of

volume, leading to some difficulties in deriving the part boundary, especially for the surface

regions with dramatic change in local volume. Fig. 3.10(c) and Fig. 3.10(d) depict that the
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(a) MSP (b) SDF

Figure 3.11: Vertex distribution of the shrunk mesh using MSP and SDF.

gradient of MSP changes significantly across the object parts, e.g. the regions between the

fingers and the palm and the gradient of SDF does not change obviously across the object

parts.

For skeletonization application, the centroid of the minimum perimeter slice has better

representative for the curve skeleton, compared to the transformed vertices derived using

the half-depth toward the inverse normal direction of SDF, as shown in Fig. 3.11.

3.4 Limitations

In some cases, the minimum perimeter slice does not faithfully capture the local shape of

a part; e.g., at the feet of the dancing-children model in Fig. 3.2 where some planar slices

pass across multiple parts and yield relatively larger MSP value than they should be.
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Volume Based Mesh
Segmentation

4.1 Introduction

Due to the advance of 3D model acquisition equipment, 3D meshes with high polygon

counts and complex topological structures can be obtained easily. As meshes are becoming

larger and more complex, decomposing an object into smaller and simpler components is

essential for many mesh techniques, including parameterization, texture mapping, morph-

ing, editing, shape matching, compression and more. Thus mesh segmentation has become

a key ingredient in many mesh applications.

Most of the existing mesh segmentation methods rely on either local detail geometric

features or global topological structure. The use of too local or too global surface proper-

ties limits many segmentation algorithms to either decompose a model into several surface

patches [21, 46, 60] or to handle only models with some specific topological structure such

as core-salient features [36, 35]. As indicated in the part salience theory [29], the rela-

tive size of object region is an important characteristic for identifying the object part. The

neighboring regions with similar volume tend to be grouped into a part and consequently

the gradient of the local volume directly implies the potential regions for deriving part

boundaries. The MSP function, describing the internal volume of the local region associ-

ated to the surface point, is best applicable for this scope. Fig. 4.1 depicts the MSP and

the magnitude of MSP gradient on the camel model. The color ranges from blue to red

25
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(a) MSP (b) Magnitude of MSP gradient

Figure 4.1: MSP and the magnitude of MSP gradient on the camel model.

represents the function value in ascending order. The magnitude of MSP gradient directly

indicates the strength of surface regions to be boundaries.

Since complex models often contain features in different scales or salience, ranging

from global structure to detail surface features, it is useful to decompose the models into

components in several levels or hierarchically. Several approaches have been proposed in

this direction. Hierarchical face clustering techniques construct the hierarchy in a bottom-

up fashion [21]. Top-down approaches start from the root, which represents the whole

object, and partition the component into two or more parts [36]. This process continues

recursively until a certain condition is met. At each level of the top-down approach, the

segmentation is usually derived implicitly by locating the best boundary between parts.

Several hierarchical segmentation techniques have been proposed [36, 35, 45, 40]. Most

of the techniques claim that components on a higher level reveal higher degree of salience

than their descendant parts. But many of them cannot ensure that the components on each

level of hierarchy have similar degree of salience.

Locating boundary between parts can be done by either boundary-based or region-based

approach. Boundary-based approach uses local geometric properties, such as curvature, to

locate boundary. Region-based approach seeks for regions with similar properties, such

as the combination of geodesic and angular distances in [36], from which boundaries are

derived. Since parts have different levels of salience, to evaluate the significance of a

boundary between parts, we need to include the salience measures of the associated parts.

However, the boundary computed by using boundary-based and region-based approach

usually lacks the necessary salience measures for the parts associated with the boundary.

In this chapter, we introduce a new hierarchical segmentation scheme that decomposes



4.2 Volume Based Mesh Segmentation 27

an object into meaningful parts in such a way that not only components on a higher level

reveal higher degree of salience than their descendant parts but also the components on

each level of hierarchy share similar degree of salience. Our segmentation is based on the

MSP function which represents the object’s internal volume on the surface. As neighboring

regions having similar internal volume tend to be grouped together and form a part, the

magnitude of MSP gradient can be used to locate the candidate segmentation regions that

contain the boundaries. Moreover, the significance of segmentation regions is evaluated in

the process of hierarchical segmentation. The evaluation takes into account the salience

information of the parts associated with the segmentation region.

The proposed hierarchical segmentation scheme starts from the whole object and, for

each level of the hierarchy, locates segmentation regions by applying a threshold to the

function for the magnitude of MSP gradient, then evaluates the significance of segmenta-

tion regions. Finally, the scheme selects a set of the most significant segmentation regions

for that hierarchy level. The boundaries for that level are then computed by using graph

cut [36] with a capacity that considers both the curvature and the magnitude of MSP gradi-

ent.

We make the following contributions to the mesh segmentation process:

1. Propose a segmentation scheme based on the MSP function that encodes local vol-

ume information. The proposed segmentation scheme has several advantages:

• Regions of similar volume are grouped into a part according to the MSP func-

tion.

• A significance measure of a boundary that takes into account the local curvature

and the changes in MSP value is presented.

2. Propose a hierarchical segmentation on which not only components on a higher level

reveal higher degree of salience than their descendant parts but also the components

on each level of hierarchy have similar degree of salience.

4.2 Volume Based Mesh Segmentation

The proposed segmentation scheme begins by deriving the gradient of MSP function for

each face. Then, a set of segmentation regions is found by applying a threshold value to
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(a) MSP (b) Magnitude of MSP
Gradient

(c) Segmentation
Regions

(d) Segmented Parts

Figure 4.2: Steps of the mesh segmentation process.

the magnitude of MSP gradient. Each segmentation region divides the object into two or

more potential object parts. We test the saliency of the potential parts and obtain some most

significant segmentation regions. Finally, a cut is derived within each selected segmentation

region which separates the object into two parts. Figure 4.2 illustrates such segmentation

process.

4.2.1 Segmentation regions finding

4.2.1.1 Computing the gradient of MSP function

The magnitude of MSP gradient represents the rate of volume change in the neighborhood

of the surface point. As shown in Fig. 4.1, there are large gaps in volume’s size between

the body and the neck and between the body and front limbs of the camel model, which are

revealed in the distribution of MSP function (Fig. 4.1(a)) and the magnitude of its gradient

(Fig. 4.1(b)). Computing the gradient of MSP function on a piecewise linear polygon mesh

is not as trivial as that on the continuous surface. To compute the gradient of MSP function

at a surface point x, we first derive a difference-vector for every edge in a neighborhood of

x and then compute the MSP gradient vector at x as the average of all difference-vectors.

The difference-vector for an edge is the vector in the direction of the edge vector and with

the magnitude as the difference of the MSP values at its two endpoints.

The gradient of MSP function at x is finally the averaged MSP difference-vector at x.

Its detail equation is as follows:

∇MSP(x) =
1
|Nx| ∑

e∈Nx

(
MSP(vi)−MSP

(
v j
))

ē, (4.1)
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where Nx is the neighborhood of x with a user-specified range, vi and v j are two endpoints

of the edge e, possibly clamped to be within Nx, and ē is the unit vector of the edge e

with direction from v j to vi. Such a formulation is similar to the method for computing the

curvature tensor in Alliez et al.[1]. For efficiency consideration, we define Nx as the surface

region within the sphere centering at x with a user-specified radius.

4.2.1.2 Deriving an appropriate threshold value

The segmentation regions are defined as the surface regions where the magnitude of MSP

gradient is above a specific threshold value. An appropriate threshold value is hard to find

in practice. A smaller threshold value will enlarge the segmentation regions, making the

computation of a proper cut boundary more difficult. On the other hand, for a large thresh-

old value, the segmentation region may not form in loops, even using extrapolation. To

decide an appropriate threshold value automatically, we consider the cumulative function

for the surface area with respective to the magnitude of MSP gradient as follows:

A(V ) =
∫ V

0
a(v)dv, (4.2)

where a(v) denotes the area of the surface region having the magnitude of MSP gradient as

v and A(V ) is the total area of the surface region that has the magnitude of MSP gradient

less than or equal to V . A(V ) is a monotonically increasing function, representing the

changes of cumulative surface area with respect to the magnitude of MSP gradient. A

good threshold value will be the magnitude of MSP gradient value that indicates a sudden

drop on the value of A(V ) when the magnitude of MSP gradient decreases. Hence, by

considering A(V ) as a 2D curve segment, the desired threshold value will be at the position

where the curvature is maximal. Fig. 4.3(a) and Fig. 4.3(b) illustrate the graph of A(V ) and

its curvature for the horse model, respectively. The segmentation regions extracted using

the derived threshold value is shown in Fig. 4.3(c).

4.2.1.3 Loop closing for segmentation regions

Since the cut boundary is extracted within the segmentation region, a segmentation region

must form a loop. The segmentation region derived by applying threshold on MSP gra-

dient in general does not guarantee to form a loop. We apply extrapolation to close those

segmentation regions into loops. For a segmentation region that does not form a loop, a re-
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(a) A(V ) (b) Curvature of A(V ) (c) Segmentation regions

Figure 4.3: A(V ) , curvature of A(V ), and segmentation regions derived for the camel
model.

(a) Original segmentation regions (b) Region extrapolation (c) Grown region peering

Figure 4.4: The loop closing process.

gion growing process is performed starting from the region boundary, and in each iteration

the face with the largest magnitude of MSP gradient is added to the segmentation region

until the newly added face connects to another region or close the loop. After closing up a

loop, the faces within the newly grown region are peeled away iteratively in the decreasing

order of their magnitude of MSP gradients until a ribbon region with one face width left

between the two newly connected segmentation regions. At this point, these two segmenta-

tion regions are merged. The merging process is executed iteratively until all segmentation

regions form in loops. Fig. 4.4 illustrates the loop closing process.

4.2.2 Significant segmentation pairs selection

The segmentation region derived using the magnitude of MSP gradient represents the

strength of the part boundary, but does not reveal any salience information of the parts

it separated. However, the salience of segmented parts associated with the segmentation

regions may range from detail feature to global structure.
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There may have more than two parts associated with a segmentation region. Thus for

a segmentation region, we define a segmentation pair to be two parts sharing the same

segmentation region. The part saliency theory states that the salience of a 3D part depends

on three factors: its size related to the whole object, the boundary strength, and the degree

of protrusion [29]. Since we have derived the segmentation regions using the magnitude

of MSP gradient, the local volume of an object part can be approximated by the average

MSP value within the part region. The strength of boundary between a segmentation pair

can be described as the difference of the averaged MSP values of the two parts. In order

to measure the protrusion of the object part, we use the salience metric proposed by Gal

and Cohen-Or [19] due to its computational efficiency and practicability for identifying

surface features. Thus, we assign a salience-measure to each of segmentation pair (Pa,Pb)

as follows:

S(Pa,Pb) = min(RMSP(Pa) ,RMSP(Pb))min(S (Pa) ,S (Pb))‖RMSP(Pa)−RMSP(Pb)‖, (4.3)

where

S (P) = ∑
f∈P

Area( f )Curvature( f )3,

and Pa and Pb are the two parts sharing the segmentation region, RMSP(P) is the averaged

MSP value of the part P. S (p) denotes the saliency of the part P, which is derived by the

combination of surface area and the curvature. We use the Gaussian curvature in saliency

computation since it has better description for the protrusion of object part.

To find the most significant segmentation pairs, we sort the value of S for all segmen-

tation pairs in ascending order into a sorted sequence {S∗(i)}, and seek an index k such

that S∗(k)−S∗(k− 1) is the maximum; that is, look for the largest gap among the sorted

S∗(i). Those segmentation pairs that have S value higher than S∗(k−1) will be chosen as

the segmentation regions for the current hierarchy level. As shown in Fig. 4.5, there is a

large gap in the histogram of salience-measure between the segmentation pairs 17 and 18,

and segmentation pairs 18 to 21 are selected.

4.2.3 Cut boundary extraction for the selected segmentation pair pair

Once a segmentation pair is selected, we next compute a cut boundary between parts by

performing a modified graph cut [36]. We propose a hybrid capacity that combines the



4.3 Hierarchical Segmentation 32

(a) Salience-measure function histogram (b) Selected segmentation pairs

Figure 4.5: Selection of the segmentation pairs.

difference of MSP as well as angle difference as follows:

cap(i, j) =


1

1+

(
θ(ei j)

θavg

)2

+
∆MSP(ei j)

∆MSPavg +2
‖ei j‖
‖eavg‖

ei j ∈ E, i, j 6= S,T,

∞ otherwise,

(4.4)

where i and j are two adjacent faces on the object that are not in both the source region

S and the target region T , ei j denotes the edge between faces i and j, E is the set of all

the edges of the object, θ
(
ei j
)

is the dihedral angle of ei j which can be normalized by

the average dihedral angle θavg, and ∆MSP
(
ei j
)

denotes the MSP difference across ei j

which can be normalized by the average of MSP difference ∆MSPavg, ‖ei j‖ is the edge

length of ei j which can be normalized by the averaged edge length ‖eavg‖. θavg, ∆MSPavg,

and ‖eavg‖ are computed using all the dihedral angles, all the faces, and all the edge of the

object, respectively. The ‖ei j‖
‖eavg‖ is a compensated term aiming to straighten the cut boundary

since the path generated by using the tip of the magnitude of MSP gradient may not always

be smooth.

4.3 Hierarchical Segmentation

The selection of the most significant parts directly implies that a hierarchical segmentation

can be obtained easily by performing the segmentation process iteratively. For each level of

hierarchy, the selection of the most significant segmentation pairs ensures that the selected
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(a) Level 1 (0.148) (b) Level 2 (0.102) (c) Level 3 (0.07)

Figure 4.6: Segmentation regions at three levels on the camel models.

(a) Level 1 (b) Level 2 (c) Level 3

Figure 4.7: Hierarchical Segmentation of the camel model in three levels.

parts will have similar salience significance while having large differences compared to the

remaining parts. Thus we obtain a top-down hierarchical segmentation that decomposes

the object into parts into levels that reveal the salience significance down from the global

structure to local features.

Our segmentation regions are found by applying a threshold value to the cumulative

function shown in Eq. 4.2. In order to capture more boundaries in finer levels, for each

level we ignore the surface areas nearby the part boundaries derived in previous levels in

computing Eq. 4.2. As a result, a lower threshold value on the histogram can be obtained

to enlarge the segmentation regions. Fig. 4.6 illustrates the segmentation regions found in

three levels for the camel model. We observe that the threshold value applied decreases

as the segmentation level gets deeper (see the numbers inside the parentheses) and the

segmentation regions for smaller features, such as the mouth and the fingers, are found in

finer levels. Fig. 4.7 reveals the segmentation results of the camel model corresponding to
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the segmentation regions in Fig. 4.6.

4.4 Experimental Results

(a) hand (b) dinosaur (c) armadillo

(d) santa (e) nepture

Figure 4.8: The segmentation result of different models.

By using the volume information encoded in the MSP function, the proposed segmen-

tation scheme can handle models of different topological types. Fig. 4.8 demonstrates the

segmentation result for models shown in Fig. 3.2. Observed that the cut boundaries are

located along the regions where there exists a large gap in MSP value and in the mean-

time follow the object’s local features. Moreover, the salience-measure ensures that the

most visually significant parts are segmented. The dinosaur (Fig. 4.8(b)) and armadillo

(Fig. 4.8(c)) models have complex surface details and hence it is difficult to locate correct

cut boundaries based on minima-rule alone. Since the MSP function is less sensitive to the
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surface detail noise, we can generate meaningful parts and reasonably good boundaries us-

ing the proposed hybrid capacity on these two models. The nepture (Fig. 4.8(e)) model has

genus higher than 1 and does not have obvious core-salient structure. Such kind of model

can hardly be handled well using segmentation methods based on the global shape proper-

ties such as averaged geodesic distance [36, 35]. On the other hand, the proposed method

finds no difficulty on such models since the volume information encoded by MSP function

is less global and provides enough cues for identifying the parts from the models. Some

smooth artifacts on cut boundaries may still be observed on some segmentation results such

as the cut boundaries between the hind legs and the body of the camel (Fig. 4.7) and be-

tween the thighs and the body of the armadillo (Fig. 4.8(c)) and of nepture (Fig. 4.8(e)).

In such regions, the tip of the magnitude of MSP gradient has large amount of disturbance

and twice of compensation term in Eq. 4.4 may be not enough for yielding smooth bound-

aries. Moreover, we assume that the internal volume is uniform within the object part while

noticeable volume change exists between parts. For models with some adjacent parts that

have no noticeable volume change between them, our segmentation scheme may fail to

separate them into different parts, such as the case in Fig. 4.8(e) where the hand and trident

are not separated.

In Fig. 4.9, we compare the proposed method to other methods provided in the segmen-

tation benchmark [10]. Cup and chair models do not have obvious core-salient structure on

which the core extraction [35] and K-means [77] algorithms fail to produce good segmen-

tations. The segmentation using SDF is based on a global fitting of the histogram function

and is unable to reflect the local changes in object volume, leading to biased segmenta-

tion boundaries. Moreover, the SDF cannot correctly describe the non-cylindrical part and

generates improper segments on the cup model. The randomized cuts method [22] gener-

ates good segmentation results for most of the models. However, its performance strongly

depends on the segmentation methods based on local curvature and the geodesic distance.

In consequence, it may not generate good segmentations for models with complex local

features. Fig. 4.10 shows the segmentation result of dinosaur model using the proposed

scheme and the randomized cuts [22]. The proposed segmentation can tolerate the com-

plex local features of the dinosaur model and segments the models into parts with similar

salience significance. On the other hand, randomize cuts algorithm produces improper seg-

mentation boundaries at the neck, the body, and the tail. We also perform the benchmark
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MSP Randomized Cuts SDF K-Means Core Extraction

Figure 4.9: Comparison of the segmentation methods.

(a) MSP (b) Randomized Cuts

Figure 4.10: Comparison of dinosaur result using MSP and randomized cuts [22].
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study of the proposed method against others using the segmentation benchmark [10]. The

benchmark is obtained by performing the comparison based on 20 models selected from the

object database of the segmentation benchmark (two models from each object category).

Fig. 4.11 reveals that the proposed segmentation scheme always yields lower error than the

four other metrics proposed in [10].

(a) Cut Discrepancy (b) Hamming Distance

(c) RandIndex (d) Consistency Error

Figure 4.11: The benchmark of our segmentation method.

Since the interior volume of a model is almost constant during animation, the proposed

segmentation scheme is inherently pose invariant. We list the segmentation result of the

animated centaur model in four poses in the top of Fig. 4.12. The bottom of Fig. 4.12

illustrates the average error rate of MSP function for each of the four poses. For each

pose, the MSP’s average error rate is computed by averaging the differences in MSP value

between the pose and all other poses. The MSP is almost invariant to the change of pose,

except in some joint regions where very small deviation of MSP value may exist.

We decompose the dinosaur and armadillo models into a hierarchy of four levels, as

shown in Fig. 4.13. The columns from left to right indicate the levels in ascending order.

The most significant parts, such as the body of armadillo and the four limbs, are decom-

posed at the first level. As going down in the hierarchy, we observe that parts at the same

level have similar salience significance and parts in lower levels have less salience signif-
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0.012 0.009 0.011 0.015Avg. error rate
pose 0 pose 1 pose 2 pose 3

Figure 4.12: Segmentation and average error rate for different poses of the animated centaur
model.

icance. Fig. 4.14 depicts the histogram plots of salience-measure for the dinosaur model.

The parts having similar meaning tend to have similar values of salience-measure and will

be decomposed at the same level. Fig. 4.15 lists the hierarchical segmentation result using

SDF [73]. The boundaries of core part for the dinosaur and armadillo are varying among

different levels. Parts at the same level might differ greatly in salience significance and,

moreover, parts at lower levels may not have less salience significance.
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Figure 4.13: Hierarchical segmentation result of the dinosaur and armadillo models.

(a) Level 1 (b) Level 2 (c) Level 3 (d) Level 3

Figure 4.14: Histograms of the salience-measure at four levels for the dinosaur model.

Figure 4.15: Hierarchical segmentation result of the dinosaur and armadillo models using
SDF [73].
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Mesh Skeletonization using
Volume Based Surface

Function

5.1 Introduction

The skeleton of a 3D model is an 1D structure that represents the topological characteristics

of the model. As a global shape descriptor of 3D models, the skeleton is useful for shape

analysis, object retrieval, segmentation, and animation. In general, extracting skeleton

from a 3D model is a costly process that usually requires the information about the internal

volume of the model.

According to the short-cut [79], a good cut should be the shortest cut and cross an

axis of local symmetry. Hence, the skeleton can be computed based on the union of the

local symmetries of all short cuts on the surface. Based on the MSP function introduced

in Chap. 3, we propose a new mesh skeletonization that derives the curved skeleton di-

rectly from the 3D model. The original model is shrunk directly to a skeleton-like shape

while preserving the connectivity of the model by using the information associated with

the minimum perimeter slices. A greedy framework is then invoked to iteratively alter the

connectivity of the shrunk mesh and adjust its local geometry until an 1D curved skeleton

is obtained. Although similar to the greedy framework commonly used in mesh simplifi-

cation, our framework aims to degenerate the topology and to move transformed vertices

towards the centerline. The mesh manipulation operator and the error metric are there-

40
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fore completely different. The edge swap operator only alters the edge connectivity and

is commonly used in mesh simplification to obtain a better mesh connectivity. Since the

edge swap operator can be iteratively applied to reduce a 3D mesh to a 1D structure, it is

used as a single edge operator in our greedy framework. To degenerate the shrunk mesh

to a 1D curve skeleton, an error metric guides the edge swap sequence such that the edges

with higher deviation from the centerline would be swapped first. Moreover, we apply a

smoothing operation after each edge swap operation so as to move the vertices towards

the centerline. To do so, a slice-deviation error derived from the minimum perimeter slice

measures the deviation between a shrunk vertex and the centerline. The resulting skeleton

of the greedy framework may contain small skeleton branches induced by the local surface

features or noises. These small skeleton branches can be removed by testing the salience

of their corresponding surface regions.

Our approach would attempt to retain vertices and to delete a small portion of the ver-

tices associated with short branches during branch removal. The resulting skeleton pos-

sesses a dense node distribution at the core parts and around the junction nodes, and a

skeleton-surface mapping. Previous skeleton extraction methods such as the ones using

Reeb graph [27, 8, 83] or mesh contraction [6] usually generate skeletons with sparse node

distribution, especially at the core parts of the model or around the junctions. Although the

sparse node distribution may lead to zigzag skeleton structure in some cases, sparse nodes

at the core parts are usually sufficient for some applications such as segmentation and skin-

ning. Nevertheless, when we consider to embed the surface information to the skeleton,

the denser node distribution is, the more information could be embedded. Some applica-

tions may be benefited greatly by the presence of dense node distribution together with

the skeleton-surface mapping. For example, we are investigating how to find a surface-to-

surface correspondence between two meshes by utilizing the skeleton-surface mapping and

a mapping between dense nodes of two skeletons established with the aid of a well devel-

oped skeleton correspondence algorithm such as [7]. In this case, the density of skeleton

nodes affects the accuracy of the surface correspondence.

Our contributions of this work are stated as follows. We propose a novel greedy frame-

work for degenerating the 2-manifold connectivity of polygonal mesh to a 1D skeletal

structure. The resulting skeleton possesses a dense node distribution at the core parts and

around the junctions. A single salience parameter is required for controlling branch re-
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(a) Original mesh (b) Shrunk mesh (c) Intermediate skeleton (d) Final skeleton

Figure 5.1: The skeletonization process.

moval so as to compute skeletons with varying details. Finally, the proposed method is

able to generate consistent skeletons for models in different resolutions.

5.2 Mesh Skeletonization

To compute the skeleton, we first shrink the 3D mesh to a skeleton-like shape by trans-

forming each vertex to the local symmetry axis approximated by the geometric center of

the minimum perimeter slice associated with the vertex. A greedy edge-swap process based

on the edge swap operator is invoked to iteratively degenerate the shrunk mesh to an 1D

skeleton structure. A specially designed metric is proposed to guide the edge-swap se-

quence such that the edges deviate farther from the centerline would be swapped first.

Furthermore, after each edge swap the vertices of the swapped edge are refined towards

positions that represent the skeleton as the centerline by using a smoothing operator. The

resulting skeleton may contain undesired small branches induced by detailed geometric

features, noise, or the improper orientation minimum perimeter slices. After a branch is

formed in the edge-swap process, we compute the saliency of the surface region corre-

sponding to the branch and remove the branch if its associated salience value is smaller

than a user-specified threshold. So that the threshold can be intuitively tuned and skeletons

with varying resolutions can be effectively generated.

Fig. 5.1 depicts the proposed skeletonization process. First, the original mesh is shrunk

to a skeleton-like shape, as shown in Fig. 5.1(b). Second, a sequence of edge-swap opera-

tors is performed to transform the shrunk mesh to a 1D skeleton structure. An intermediate

result is shown in Fig. 5.1(c) and the resulting 1D skeleton is shown in Fig. 5.1(d).
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5.2.1 Mesh Shrinking

The minimum perimeter slice associated with a surface point p approximates the short-cut

passing through p. The skeleton point that corresponds to the surface point p therefore

can be approximated by the geometric center of the simple polygon forming the minimum

perimeter slice. Accordingly, the mesh is shrunk to a skeleton-like shape by transforming

each surface point to its corresponding geometric center. Note that MSP slices, rather than

the refined MSP slices, are used in the proposed skeletonization method since the metric

that guides the edge-swapping and the smoothing operator to be described later is able to

effectively handle the outlier cases of the shrunk mesh.

The shrunk mesh is, therefore, similar to the resulting skeleton in shape and preserves

the connectivity of the original mesh. Some of the transformed vertices may deviate from

the skeleton path and form protrusions on the shrunk mesh, especially around the skeleton

junctions as shown in Fig. 5.1(b). However, most of the transformed vertices are distributed

along the skeleton path, providing a good hint on how to locate the skeleton and how to

adjust the outliers towards the skeleton path.

5.2.2 Mesh Degeneration

To extract an 1D skeleton from a manifold mesh is a degeneration process. An edge-

swap operator flips the common edge of two adjacent triangles to the edge connecting two

opposite vertices. Traditionally, the edge-swap operator is used in level-of-detail modeling

to adjust the triangle connectivity in order to refine the mesh connectivity, while geometry

simplification operators such as edge collapse are used to simplify the mesh. When the

edge-swap operator is iteratively applied to a 3D mesh, the mesh can be degenerated to

a 1D structure while all vertex positions are retained; as shown in Fig. 5.2 in which a

tetrahedral is degenerated to a 1D structure. Our skeleton extraction algorithm is a greedy

framework based on an edge-swap operator which is used for degenerating the shrunk mesh

into a 1D skeleton structure. In this subsection, the error metric, smoothing operator, and

branch removal scheme will be described.
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Figure 5.2: A tetrahedral is degenerated to a 1D structure using edge swap.

(a) Slice-deviation error (b) Vertex sparseness (c) Vertex protrusion

Figure 5.3: Metric associated with the transformed vertices on the horse model. The color
ranging from blue to red represents the increasing value.

5.2.3 Error Metric

In traditional mesh simplification algorithms, the error metric measures the error incurs be-

fore and after the simplification [20]. The primitives with smaller error have higher priority

to be simplified. In our case, the primitives are edges formed by transformed vertices. We

need an error metric to measure how much an edge deviates from the skeleton path and the

amount of changes in shape before and after an edge swap operation is performed.

To measure how much a transformed edge deviates from the skeleton path, we first

measure how much its end vertices deviate from the skeleton path. For a surface vertex,

its slice-deviation error defined by Eq. 3.2 measures how well its minimum perimeter slice

approximates the short cut, which offers a good measure on how much its corresponding

transformed vertex deviates from the skeleton path. For a transformed vertex v, we denote

cdev (v) as the slice-deviation error of its original surface vertex. Fig. 5.3(a) shows the

slice-deviation error of the transformed vertices of the horse model. Notice that minimum

perimeter slices of some vertices near the ends of skeleton or junctions usually have higher

slice-deviation errors.

Adopting the slice-deviation error alone does not guarantee that the shape of the skele-

ton would be preserved. This is because the slice-deviation error describes only the devia-

tion of the minimum perimeter slice from the short cut. To preserve the shape and produce
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Figure 5.4: Measurement of the vertex sparseness.

a smooth curved skeleton, the change of the shape on the shrunk mesh should be taken into

account. We observe that the transformed vertices usually distribute around the skeleton

path and the vertices with higher slice-deviation error deviate farther from the skeleton path,

are less dense and form protrusions on the shrunk mesh. In addition to slice-deviation error,

we define the vertex density and the vertex protrusion for a vertex as the shape preserving

metric. Measuring the vertex density in Euclidean space is a difficult task as an additional

acceleration structure is required. Instead, we compute the sparseness of the transformed

vertex v as the averaged distance between v and all the opposite edges of the one-ring faces

of v, as shown in Fig. 5.4. The corresponding equation is given as follows:

cs (v) =
1
n

n

∑
1

hi. (5.1)

The vertex protrusion cp (v) measures the protrusion of the transformed vertex v relative to

its one-ring neighborhood as shown in Eq. 5.2 as follows

cp (v) = v− ∑
vi∈V

vi, (5.2)

where V denotes the one-ring vertices of the vertex v. Fig. 5.3(b) and Fig. 5.3(c) illustrate

the sparseness and the protrusion of the transformed vertices.

The skeleton is an 1D edge structure. Hence, we need one more metric for measuring

the area difference of the shrunk mesh before and after swapping an edge e. This metric is

called area-difference error cA (e). To increase the convergence rate of the skeletonization

process, we would give the transformed edge with higher area-difference error to have

higher priority to be swapped.

Finally, the metric used to guide the edge swapping process is a combination of slice-

deviation error, vertex sparseness metric, vertex protrusion metric, and the area-difference
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error. It is given in Eq. 5.3 as follows

C (e) =
cdev (e)

π
+

cs (e)+ cp (e)+ cA (e)
3‖emax‖

, (5.3)

where ‖emax‖ denotes the length of the longest edge in the shrunk mesh and is used for

normalization, and cdev (e), cs (e) and cp (e) are computed as the averaged slice-deviation

error, averaged sparseness and averaged protrusion of the two end vertices, respectively. At

each iteration step of the edge-swapping process, the edge with the highest C(e) is swapped

first; that is, conceptually the edge that deviates most from the centerline would be swapped

first.

5.2.4 Skeleton path smoothing

The proposed edge-swapping process ensures that the manifold topology of the shrunk

mesh is degenerated to a 1D skeleton structure while all the vertices are preserved. How-

ever, vertices with high slice-deviation error cannot represent the skeleton well, leading to

a zigzag skeleton path. To smooth the skeleton path, we perform a smoothing operation on

the vertices after each edge swap operation. Consider the edge e with end points vs1 and

vs2 , as shown in Fig. 5.5. After e is swapped, the vertices vt1 and vt2 are refined to v′t1 and

vs1

vt2vt1

vs2

v′

v′t1
v′t2

Figure 5.5: Bi-linear interpolation after the edge swapping.

v′t2 , respectively. v′t1 and v′t2 are computed by a bilinear interpolation that first derives the

interpolated position of vs1 and vs2 , denoted as v′, and then interpolates v′ with vt1 and vt2 ,

respectively. The slice-deviation errors are used to offer the weights such that vertices are

moved towards the centerline. Eq. 5.4 and Eq. 5.5 list the equations.

v′t1 =
v′cdev(vt1)+vt1cdev(v′)

cdev(v′)+cdev(vt1)

v′t2 =
v′cdev(vt2)+vt2cdev(v′)

cdev(v′)+cdev(vt2)
,

(5.4)
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(a) Without path smoothing (b) With path smoothing

Figure 5.6: Effect of skeleton path smoothing.

where

v′ =
vs1cdev(vs2)+ vs2cdev(vs1)

cdev(vs1)+ cdev(vs2)
, (5.5)

and cdev(v′) is the interpolated value of the slice-deviation errors of vs1 and vs2 .

The number of times for refining a vertex depends on the number of its outgoing edges

being swapped. Fig. 5.6 depicts the resultant skeleton of a horse model without and with

path smoothing enabled. In both cases, branch removal is enabled.

5.2.5 Skeleton branch removal

The skeleton resulted from the iterative edge swapping process may contain many small

branches induced by detailed geometric features, noise, or the improper orientation mini-

mum perimeter slices, as shown in Fig. 5.7(a). Such small branches may not be useful for

describing the anatomical structure of the model. A skeleton branch represents a protrusion

from the core part. So during our skeletonization process, a skeleton branch is removed if

its corresponding surface region is insignificant in terms of the salience measurement.

According to the saliency geometric features proposed by Gal and Cohen-Or [19], the

salience of a model’s part is judged by the combination of the surface curvature and the

area. The maximum curvature of the surface point on the protrude part can be described

as the reciprocal of the radius of the maximum inscribed ball, which can be approximated

by the distance between the surface point and the corresponding skeleton node. Moreover,

the area of the protrusion can be described as the integral of the MSP function along the

skeleton branch. Thus, we define the salience of the skeleton branch b as the integral of the
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(a) Without branch removal (b) With branch removal

Figure 5.7: Effect of branch removal.

MSP function multiplied by the curvature along the skeleton branch, as given in Eq. 5.6,

S(b) =
∫

x∈b

MSP(t (x))

r (x)3 (cdev (t (x))+1)
dx, (5.6)

where t (x) denotes the transformation from the skeleton to the surface and

r (x) =
MSP(t (x))2

8π2‖x− t (x)‖
+
‖x− t (x)‖

2

is the approximate radius of the maximum inscribed ball for the surface point t (x). The

division by slice-deviation error in Eq. 5.6 is used to reduce the contribution from poor

representative MSP slices. Note that all the lengths in Eq. 5.6 are divided by the half length

of the mesh diagonal for normalization.

During skeletonization, once a part of the shrunk mesh is degenerated to a 1D branch,

the salience of the branch is computed. The branch is removed if its salience value is

smaller than a user-specified threshold. Fig. 5.7 illustrates the resultant skeleton of a horse

model without and with branch removal. In both cases, path smoothing is performed.

Since all the vertices are retained by the edge-swap operator with the smoothing oper-

ator and only a small portion of the vertices are deleted in the process of branch removal,

the resulting skeleton possesses a dense node distribution.

5.2.6 Discussions

Our skeletonization scheme and contraction-based skeleton extraction [6] share similar

ideas; but they are very different in terms of algorithms. Since connectivity is maintained
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in the skeletonization, both methods generate skeletons that are homotopic to the original

model. Both methods are rotation invariant and pose insensitive since they work directly

on the original geometry.

We found in practice that the skeletons generated by [6] and ours are quite similar in

shape; but have some different characteristics due to their algorithmic differences. For

example, the skeletons generated by [6] have sparse nodes at the core parts of a model

while the skeletons derived by the proposed method have a dense node distribution at the

core parts and around the junctions. Moreover, the mapping vertices of a skeleton node

in [6] form a cylinder-like or a sphere-like shape, which are much larger than the ones

derived by our proposed method. Compared to [6], our skeleton-surface mapping together

with the dense node distribution embed more accurate and detailed surface property or

information on the skeleton, which are useful to applications such as surface-to-surface

correspondence. Due to the fact that only vertices associated with insignificant branches

are deleted in our skeletonization, the skeletons of models with extremely low polygon

count can also be extracted. However, the method [6] may not be able to handle such kind

of models. The saliency threshold in our approach is more intuitive to be specified than

the initial weights for balancing the contraction and attraction constraints used in [6]. The

initial weights do not have intuitive relation to the skeleton branching and higher weights

do not guarantee to have branches for more detail features.

5.3 Results

We implemented our approach and applied it to 3D models with various topological types.

Fig. 5.8 lists the resulting skeletons of some 3D models. Note that MSP, rather than the

refined MSP, is used for all skeleton examples derived by the proposed method. The results

show that the proposed skeletonization is homotopic not only for simple models but also

for models with higher order genus, such as heptoroid, dancing children, or fertility. The

small red spheres in Fig. 5.8 represent the nodes of the skeleton paths, indicating that the

skeletons have a high node resolution at the core parts and junctions. Table 5.1 shows the

percentages of surface vertices that are retained on the skeletons for some models.

Although MSP slicing is sensitive to noise, for applications such as segmentation and

skeletonization such noises are harmless to the judgment of intermediate level features on

the objects. The proposed skeletonization scheme is insensitive to the noisy surface models,
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(b) 200

(e) 500
(h) 200

(c) 75

(d) 200

(g) 100

(a) 200

(f) 150

Figure 5.8: The skeletons of different models. The numbers indicate salience thresholds
used and small red spheres represent the skeleton nodes.

Table 5.1: Number of surface vertices retained on the skeleton.

Model
Number of Number of

vertices skeleton nodes
Raptor 15,000 4,708 (31.39%)

Heptoroid 9,950 3,234 (32.47%)
Dancer 10,000 3,673 (36.73%)

Armadillo 10,002 1,762 (17.62%)
Neptune 29,996 5,515 (18.38%)

Dancing Children 14,986 1,704 (11.37%)
Fertility 14,994 3,266 (21.78%)
Horse 19,851 4,033 (20.32%)

as shown in our experiment. Fig. 5.9 shows the skeleton extracted from the noisy horse

model, on which the resulting skeleton preserves the main structure of the horse model and

is similar to the skeleton of the smooth horse model, as shown in Fig. 5.8. MSP function is

pose invariant and so is the proposed skeletonization method. Fig. 5.10 shows the skeletons

of the cat models of different poses in Fig. 3.4.

5.3.1 Comparisons

We compare our skeletonization method with the mesh contraction algorithm [6] which

also derives the skeleton directly from the surface. The results, derived using the parameter

setting as suggested in [6], are shown in Fig. 5.11. Our method and the mesh contraction
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Figure 5.9: Skeleton extracted from a horse model with high noise.

Figure 5.10: Skeletons for the cat model in different poses.

algorithm generate skeletons that are homotopic to the original models and are similar in

shape. However, skeletons produced by our skeletonization have a denser node distribution

than the ones produced by [6], especially at the core parts of the model and around the

junctions.

Next, we show that our skeletonization provides a much denser mapping between the

skeleton nodes and the surface than that of [6]. The skeleton-surface mapping are depicted

using the raptor models of polygon count 2,500 and 20,000, as shown in Fig. 5.12. No-

tice that for models of higher resolution, the proposed approach retains more vertices for

forming the skeleton nodes, leading to a dense skeleton-surface mapping; that is, each node

maps to a smaller surface region.

The proposed skeletonization process requires only one user-defined parameter, namely

the salience threshold. Fig. 5.13 shows the skeletons of different levels of details for the

armadillo model. The skeleton computed with a smaller salience threshold preserves more

branches for smaller geometric features, such as the tiny fingers (Fig. 5.13(b)). However,

if the salience threshold is too small, many small branches are retained (Fig. 5.13(a)). On
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Figure 5.11: Skeletons computed by contraction method [6].

the other hand, a skeleton computed with a high salience threshold represents the main

structure of the model. For the contraction method, it is hard to tune the parameter values

for obtaining skeletons with decreasing levels of detail like the ones in Fig. 5.13.

It is desirable that skeleton extraction can be independent on the model resolution; that

is, consistent skeletons can be extracted from a model in different resolutions. Fig. 5.14

shows the skeletons for the raptor model in different resolutions with MSP functions in

Fig. 3.5, which are consistent in branching structure and shape. Notice that even for a

model with low polygon count, such as 2,500 polygons, the skeleton can be extracted and

retains the structure of the model, which is the limitation of [6].

5.3.2 Limitations

For certain man-made objects consisting of highly concave local regions, geometric centers

of some MSP slices may not lay inside the object. In this case, the resulting skeleton is not

guaranteed to be lying inside the model. Nevertheless, if the shrunk mesh is inside the

object, the proposed skeletonization ensures that the skeleton is inside the object. Our

skeletonization method may fail to generate high quality curve skeletons for the objects

with holes. However, if the geometric centers can be well recovered or computed for those

MSP slices that have missed segments, the skeletonization process is not affected by the

holes.
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Figure 5.12: Dense skeleton-surface mapping on the raptor models with polygon count
2,500 (top) and 20,000 (bottom).

(a) Salience = 10 (b) Salience = 200 (c) Salience = 800 (d) Salience = 1,500

Figure 5.13: Skeletons of decreasing levels of details for the armadillo model.

(a) 2,500 polygons (706
nodes)

(b) 10,000 polygons (2,345
nodes)

(c) 20,000 polygons (3,781
nodes)

Figure 5.14: Skeleton of raptor model in different resolutions (salience threshold 500). The
number inside the parentheses is the number of skeleton nodes.
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User-Controllable Mesh
Simplification

6.1 Introduction

In addition to the intermediate-level surface properties and its applications to mesh pro-

cessing, we are also interested in how to employ semantic meaning of the object’s feature

in the geometric processing. The semantic meaning of the object’s feature is important for

describing the visual significance of shape feature, but cannot be described by the the exist-

ing surface properties. Hence, a user-assisted strategy is usually required to employing the

semantic meaning of the shape feature in the geometric modeling process. To adapt a user-

assisted scheme to the geometric modeling process, one crucial issue is how to quantize

the semantic meaning of the shape feature into a value that can be effectively recognized

by the applications. In this chapter, we focus on how to employ the semantic meaning

of the shape feature in the mesh simplification application and propose a user-controllable

scheme to assist users to attain a satisfactory resolution for regions of semantic importance.

In the past two decades, lots of mesh simplification metrics have been proposed, which

consider either the geometric difference [30, 20], texture deviation [14], or visual differ-

ence [49]. Each of these metrics has its own strength and weakness in preserving geomet-

ric and texture features. However, all of these metrics do not take semantic or functional

features into account. As a result, practitioners have found that these metrics are not able

to produce satisfactory result when the simplified mesh of very low-polygon count are ex-

54
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pected.

To overcome such limitations, the concept of user-assisted or user-guided simplifica-

tion become attractive. One way to this end is to perform refinement or simplification on the

simplification hierarchy [13, 47, 33]. Such setup is usually constrained by the vertex-split

dependence problems. Another approach reorders the primitive collapsing by weighting

the collapsing cost [38, 64]. Since the collapsing cost cannot be described by a simple

function, the weights applied have no direct relation to the result of the refinement. In con-

sequence, the weights are usually chosen in a trial and error basis. Moreover, the weights

that are appropriate to a simplified mesh derived by an error metric may not be appropriate

to the one derived by another error metric.

Our goal is a user-controllable simplification framework that allows users to improve

the quality of simplified meshes derived by using any existing error metric, such as QEM [20]

or APS [14]. The framework consists of two stages. The first stage employs weighting

schemes that allow users to refine unsatisfactory regions and achieve user-expected resolu-

tions. The second stage is a local refinement scheme that utilizes vertex splits performed

on the vertex hierarchy [31], aiming to provide a user-guided fine-tune for recovering sharp

features. To achieve the goal of user-controllable, we define the weight in the first stage

to be the resolution improvement of the surface region. Then, a reorder scheme is used

that the simplification operations in the weighted regions are postponed until the resolu-

tion increments are met. Two weighting schemes are proposed, namely uniform weighting

and nonuniform weighting. In uniform weighting scheme, a weight value is applied to all

original mesh vertices in a selected region, resulting in a uniform improvement on vertex

resolution in the region. On the other hand, in the nonuniform weighting scheme vary-

ing weights are applied to vertices in a selected region and obtain a nonuniform resolution

improvement in the region. The proposed weighting schemes differ from the previous

approaches [38, 64] in that the proposed weighting schemes reorder the simplification se-

quence directly rather than by changing the simplification cost and then reordering the

sequence indirectly. The proposed reordering mechanisms are designed to achieve the fol-

lowing goals:

• The resolution improvement for a given weighting value in a selected region is pre-

dictable.

• The weighting schemes are completely independent of the error metric used, that is,
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same resolution improvement for a weighting value is obtained no matter which error

metric is used.

• A weighting value will result in the same resolution improvement when it is applied

to simplified meshes in different resolutions.

6.2 User-Controllable Mesh Simplification

The proposed user-controllable simplification framework allows users to achieve a pre-

dictable quality improvement in selected regions for a simplified mesh derived by any ex-

isting error metric, such as QEM [20] or APS [14]. The framework consists of two stages.

The first stage employs the proposed weighting schemes that allow users to refine the un-

satisfactory regions to the user-expected resolutions. The second stage is a local refinement

based on the vertex hierarchy [31], aiming to provide a user-guided fine tune to recover

sharp features via vertex splits. Fig. 6.1 depicts an overview of the framework. At the

start-up, we construct a progressive mesh (PM) sequence for the input mesh using an au-

tomatic mesh simplification algorithm, such as QEM [20] or APS [14]. If the quality of

the simplified mesh is not satisfactory, users can mark the unsatisfactory regions on the

original mesh, assign weights to the vertices inside the regions, and apply the weighting

scheme to increase the vertex resolution in the selected regions. The weighting scheme can

be iteratively applied until the satisfactory result is obtained. The vertex hierarchy is then

built according to the reordered PM sequence. Finally, if necessary, users can refine the

local features such as sharp edges or corners by iteratively performing vertex splits.

Two weighting schemes are proposed. In the first scheme users assign a constant

weighting value to all the vertices in a selected region marked on the original mesh. Each

edge collapse associated with the vertex in the selected region are then reordered by com-

paring it to other edge collapses in PM sequence in such a way that the resulting resolution

in the region is about a multiple of the number of the vertices in the region defined by the

weighting value. Second scheme allows the user to specify a weighting value to each ver-

tex independently in a unsatisfactory region. The reordering of the edge collapse associated

with the vertex is compared only to its dependent edge-collapses in the PM sequence. Such

a scheme is applied in per-vertex basis and hence provides a nonuniform weighting effect

in the region if the varying value is applied to vertices in the region via surface painting
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Figure 6.1: System overview.

system. After the reordering of edge collapses is completed, the input mesh is simplified

according to the new order to a mesh that has same polygon count as before.

As stated in Section 1, the weighting scheme proposed here reorder the collapsing se-

quence directly, rather than indirectly via the weighting of the collapsing cost as in [38, 64].

Such a direct reordering mechanism can ensure a predictable improvement of vertex reso-

lution in the selected region, normally by an increase as a multiple of the number of vertices

in the region. This effect is usually impossible to be achieved by using previous methods.

Moreover, the proposed schemes are quite unique in its capability to be both error-metric

and resolution independent. That is, same resolution improvement in the selected region

will be obtained for a particular weighting value no matter which error metric is used or

whatever the resolution is for the simplified mesh.

Each of the two stages has its own strength and weakness. The weighting scheme

reorders the edge collapsing sequence and may greatly alter the simplification result. As a

result, the weighting scheme is more effective in overall refinement over the selected region,
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but can be hardly used to fine tune the local features. On the other hand, the local refinement

is restricted by the existing vertex hierarchy; but is effective in performing refinement over

local areas to recover sharp features. In the meantime, the local refinement has relatively

more control on where to get polygon budget, and hence can be applied to models with low

polygon count.

Both the nonuniform weighting scheme and local refinement are based on the vertex

hierarchy but with different goals and mechanisms. The nonuniform weighting scheme

reorders collapsing order for the edge collapse associated with a vertex according to its re-

lation to its designated ancestor in the vertex hierarchy while the local refinement, however,

refines the mesh around a vertex by splitting the vertex; that is, moving up the active cut

own the vertex hierarchy.

6.3 Uniform Weighting Scheme

We consider the weighting value as a multiple value for the expected increase on the vertex

resolution in a selected region. That is, given a user-specified weighting value ω and a

selected region containing n vertices in the simplified mesh, all the edge collapses in the

selected region will be delayed such that approximately ω×n vertices will be preserved in

the region while maintaining the same total polygon count for the simplified mesh.

Before getting into the detailed reordering scheme, we first define the order of an edge

collapse. Consider a complete progressive mesh sequence (PM sequence) for simplifying

a given original mesh to a vertex, the order of an edge collapse is its order in the PM

sequence. For all edge collapses in the selected region, we enumerate them from back to

front in the complete PM sequence and in the meantime define the the rank of the edge

collapse according to the enumeration. To make the reordering computation clean, we

enumerate starting from 0, that is, the rank of the last edge collapse in the selected region

is 0, the last second is 1, and so on.

Consider a selected region R specified on the original mesh and a user-specified weight-

ing value ω assigned to the vertex v in R. Let e be the edge that is collapsed to v, and r and

o be the rank and order of edge collapse e, respectively. The new rank r̃ of edge collapse e

is computed by

r̃ =
r
ω
. (6.1)
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Figure 6.2: Reordering edge collapses in the selected region after applying weighting 2
(uniform weighting scheme).
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Figure 6.3: The effect of applying a weighting value to the selected regions with different
resolutions (uniform weighting scheme).

The new collapsing order õ of edge collapse e is obtained by the linear interpolation be-

tween oi and oi+1, where ri < r̃ ≤ ri+1. That is, for the edge collapse e having new rank

r̃, we first find oi and oi+1 such that ri < r̃ ≤ ri+1, and then perform the following linear

interpolation:

õ = (r̃− ri)×oi+1 +(ri+1− r̃)×oi. (6.2)

Let’s illustrate the reordering process using the example shown in Fig. 6.2, where the

triangle dots on the top horizontal line indicate edge collapses in the selected region and

their ranks and orders before the weighting value 2 is applied, while the triangle dots on the

bottom horizontal line represent reordered edge collapses and their new ranks and orders.

The edge collapse with rank 5 is assigned a new rank 2.5(= 5/2), and its new order 675 is

the result of a linear interpolation between the orders of edge collapses whose ranks are 3

and 2 before weighting. As a result of the reordering, the first of these six edge collapses

is reordered to a place where the fourth edge collapse most likely lies. Since the weighting

scheme doesn’t take the collapsing cost into account, it is apparent that its effectiveness is

independent of the error metric employed.

Since the proposed weighting scheme determines the new order for an edge collapse

according to where its new rank lies in the original PM sequence, its effectiveness is applied
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to whole PM sequence. Hence the effectiveness of a particular weighting value works

for simplified meshes of different resolution. Take the example shown in Fig. 6.3, where

weighting value is 3 and M1, M2, and M3 represent the termination points of simplified

meshes of three different resolutions. We can see that there are one edge collapse remains

before the collapsing terminates for M1. After applying weighting value 3, the number of

edge collapses remain becomes 3. Similar results are observed for M2 and M3.

6.4 Nonuniform Weighting Scheme

In the uniform weighting scheme, the orders of all edge collapses in the selected region are

delayed with the same amount of gap in the PM sequence such that an expected resolution

increase defined by the weighting value can be achieved. In this weighting scheme, a

consistent weighting value is applied to all vertices in the selected region. Such a setting

may limit the flexibility that the designers expect to have; for example designers may expect

to have resolution increase by varying orders for vertices within the unsatisfactory region.

We next propose a weighting scheme in which a weighting value is assigned to each

individual vertex in the original mesh and then an increase in vertex resolution indicated by

the weighting value will be obtained around the vertex. Thus for a selected region on the

original mesh, different weighting values can be applied to vertices in the region by using

a surface painting system and, as a result, varying resolution increases will be achieved

within the region.

...
...

998

786

564

413

118 122

vamax

v2

v

v1

275

v′′v′

(a) Before weighting

...

...

998

786

564

417

274 277

vamax

v2

v v1

413

v′′v′

(b) After apply weighting value
of 2

Figure 6.4: Effect of the nonuniform weighting scheme.

To this end, we formulate the weighting schedule based on the vertex hierarchy formed

by the PM sequence; as shown in Fig 6.4. Consider the edge e that collapses to the vertex v.



6.4 Nonuniform Weighting Scheme 61

If the collapsing order of e is delayed to that of its parent, our goal is to obtain two vertices

replacing v. Similarly, four vertices is expected to be obtained if the order of e is delayed

to that of its grandparent. Based on the aforementioned observation, when the collapsing

order of the edge e associated with a vertex v is delayed to that of v’s i-th ancestor on the

vertex hierarchy, our goal is to obtain 2i vertices to replace v. Consider an edge e and its

collapsed vertex v. Suppose ω is the weight assigned to the vertex v, indicating the number

of vertices expected to replace v in current level. We first find i such that 2i < ω ≤ 2i+1

and then compute the target collapsing order of e, denoted by õ, by linearly interpolating

the collapsing orders of v’s i-th and (i+1)-th ancestors, respectively, as follows,

õ = α oi+1 +β oi, (6.3)

where oi and oi+1 are edge-collapse orders of v’s i-th and (i+1)-th ancestors, respectively,

and

α =
ω−2i

2i+1−2i ,

and

β =
2i+1−ω

2i+1−2i .

The weighting value ω should be bounded since the highest ancestor for a vertex v is the

root of vertex hierarchy. Let’s denote the root as the amax-th ancestor of the vertex v. The

weighting value ω assigned to v should be bounded by 2amax
; that is, ω should be clamped

to min
(
ω,2amax)

.

So far we have described how to reorder the collapsing order of the edge associated

with a vertex in the nonuniform weighting scheme. To make it really works, by that we

mean 2i vertices is obtained to replace the vertex v if the collapsing order of the edge e

associated with v is delayed to that of v’s i-th ancestor on the vertex hierarchy, we need also

to assign the same weighting value to the descendants of v, at least down to level of 2i−1

on the vertex hierarchy. In our interface, after examining the simplified mesh users assign

varying weighting value to vertices in the selected regions on the original mesh by using a

surface painting tool. For a vertex inside the selected regions, its descendants are around

(some of them may be outside the region), and therefore are likely to be assigned with

some weighting values. Due to this interface design, as we will see in the result section, the

nonuniform weighting scheme may not always achieve the expected resolution increment.
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6.5 Local Refinement

The weighting scheme, including previous methods, generally cannot recover sharp fea-

tures, such as sharp edges and corners. The second stage of our user-controllable simpli-

fication framework is a local refinement scheme aiming to provide an effective tool for

recovering local sharp features. The proposed refinement operation is similar to the se-

lective refinement and simplification in view-dependent level-of-detail modeling [31]. The

selective refinement (simplification) refines (simplifies) a mesh by moving down (up) the

active cut of the vertex hierarchy.

Given a simplified mesh with its progressive mesh sequence, normally the result of the

first stage, the system constructs the corresponding vertex hierarchy with collapsing cost

recorded on each vertex and the active cut associated with the given simplified mesh. To

do the local refinement, user selects a set of vertices and the system will perform vertex

split on these vertices, and in the meantime do the vertex collapsing on some vertices to

maintain the polygon count. Those vertices that have the lowest collapsing cost are the

candidate vertices for edge collapsing. Note that the vertex split or collapsing are just the

moving down or up of the active cut.

One thing worth mentioning is that the vertex split dependency problem may limit the

ability of local refinement since a vertex can be split only if all its neighboring vertices

after split are reachable. In our implementation, such problems are overcome by applying

the approach proposed in [39]. Another issue needs to be addressed is that, after local re-

finement, vertices resulting from a vertex split normally have costs lower than their parent.

After a sequence of vertex splits applied to a vertex v, the subtree originates from v may

have leaf vertices whose costs are relatively lower than that of vertices in the active cut.

This implies that the split vertices may soon be collapsed when vertices in other region are

split. To prevent this problem, we need to adjust the costs of split vertices such that they

have about the same magnitude as the cost of v. Further, the cost difference for vertices in

the subtree should be maintained to preserve the local features.

The cost adjustment is done along with the vertex split operations in the local refinement

process. Let cv be the cost of a vertex v to be split, and c1 and c2 be the costs of the children
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of v. Suppose c1 ≥ c2, c1 and c2 are adjusted to c∗1 and c∗2 as follows:

c∗1 = cv +
c1−c2

2

c∗2 = cv− c1−c2
2 .

(6.4)

Note that Eq. 6.4 ensures that the average cost of the split vertices is the same as their parent

and the cost difference between the split vertices is maintained.
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(b) After the vertex split

Figure 6.5: Cost adjustment in local refinement process.

As shown in Fig. 6.5, the costs of v31 and v32 are adjusted after v13 is split, and the

average cost of v31 and v32 are the same as their parent v13. Moreover, the difference

between v31 and v32 remains the same after local refinement.

6.6 Results

In the implementation, the proposed user-controllable mesh simplification framework sup-

ports QEM [20] and APS [14] as the cost measure for the edge collapsing. To preserve

the simplification styles of the employed error metric, the simplification after applying

weighting is executed in the same way as the automatic simplification process with the

error metric, except that the edge collapses associated with the weighted vertices are not

performed until the delayed orders are encountered.

Several experimental tests are performed to demonstrate the effectiveness of the pro-

posed weighting schemes. First example is a cow model of 5,804 polygons (Fig. 6.6(a)),

which is simplified to a mesh of 1,160 polygons (20% of the original mesh) by using

QEM [20] (Fig. 6.6(b)). Different weighting values are applied to the region of left eye

using uniform weighting scheme as shown in Fig. 6.6(a) by red color. Fig. 6.6(c) and

Fig. 6.6(d) depict simplified result and the refined meshes after applying weighting values
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(a) Original mesh (b) Simplified mesh (8
vertices in the selected
region)

(c) Weight = 2 (18
vertices in the selected
region)

(d) Weighting = 3 (27
vertices in the selected
region)

Figure 6.6: Apply uniform weighting on the cow model using different weighting values.

(a) Original mesh (b) Simplified mesh (c) After applying
weighting scheme

(d) After local refine-
ment

Figure 6.7: Two-stage user-controllable simplification (with uniform weighting) on the
dragon model.

2 and 3, respectively. Fig. 6.7 and Fig. 6.8 illustrate the effectiveness of two-stage user-

controllable simplification on the dragon model of 50,000 polygons and male model of

151k polygons. Both models are first simplified to meshes of 1,500 polygons using QEM.

For the dragon model, the uniform weighting scheme with weight value of 3 is applied to

the regions of eyes, with the resultant mesh shown in Fig. 6.7(c). Local refinement is then

applied to areas of teeth and nose, producing refined mesh shown in Fig. 6.7(d). For the

male model, the uniform weighting scheme with weight value of 3 is applied to regions of

eyes, lips, and nose, and local refinement is applied to recover sharp features such as eye-

balls, eyebrows, and nose. Table 6.1 and Table 6.2 list the geometry and normal deviations,

respectively, before and after the user-controllable simplification for the male model. The

errors are measured using MeshDev, which a mesh comparison tool using attribute devia-

tion metric [69]. Although the mean errors after applying user-controllable simplification

are slightly increased, the errors are diffused over the regions that are considered perceptu-

ally less important. Fig. 6.9 visualizes the distributions of geometry and normal deviations

for the male model. Noticeable improvements can be found in the selected regions, and

the compensative error introduced by the proposed scheme is almost invisible and diffused

over the less-important regions.

Fig. 6.10 illustrates the result of nonuniform weighting scheme and local refinement
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(a) Original mesh (b) Simplified mesh (c) After applying
weighting scheme

(d) After local refine-
ment

Figure 6.8: Two-stage user-controllable simplification (with uniform weighting) on the
male model.

Figure 6.9: Visualization of the error distributions for simplified male model before (top)
and after apply user-controllable simplification (bottom). The left column are the shaded
models, the middle column shows the distributions of geometry deviation, and the right col-
umn visualizes the normal deviation. Both deviations are measured by using MeshDev [69].

applied to the buste model of originally 511k polygons. It is first simplified to 1,500 poly-

gons using QEM. Three different levels of nonuniform weights are applied to the model

according to the significance in perception; as shown in Fig. 6.10(c) on which the green,

yellow, and red colors represent the weighting value 2, 3, and 4, respectively. Then, the

local refinement is applied to the eyes, nose, and lips to recover crease features.

Fig. 6.11 compares the effectiveness of the proposed uniform weighting and nonuni-

form weighting schemes against the one proposed in [38]. The cow model is simplified to

1,160 polygons (20% of the original mesh) using QEM; as shown in Fig. 6.11(a). Weight-

ing value 3 is assigned to the left eye as the red region shown in Fig. 6.6(a). The proposed

uniform and nonuniform weighting schemes yield similar resolution increment for that re-

gion, namely increasing from 8 vertices to 27 and 25 vertices, respectively; see Fig. 6.11(b)

and Fig. 6.11(c), respectively . The weighting scheme of [38] reorders the edge collapse
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Table 6.1: Geometry deviation of the simplified male model before and after applying the
user-controllable simplification.

Simplified mesh
Simplified mesh
after refinement

Minimum 2.758e−8 3.187e−8
Maximum 5.045e−3 5.008e−3

Mean 5.131e−4 5.460e−4
Variance 1.880e−7 1.963e−7

Table 6.2: Normal deviation of the simplified male model before and after applying the
user-controllable simplification.

Simplified mesh
Simplified mesh
after refinement

Minimum 7.984e−4 8.007e−4
Maximum 1.925 1.948

Mean 0.222 0.227
Variance 0.04469 0.04461

sequence by directly multiplying the weighting values to the corresponding quadric er-

rors. Since modification of quadric error has no direct link to the resolution improvement,

the resolution improvement is not predictable. In this test case, the number of vertices

remain unchanged; as shown in Fig. 6.11(d). Next, we compare the effectiveness of the

proposed uniform weighting, nonuniform weighting schemes, and the weighting scheme

in [38] using the buste model. The buste model is first simplified to the meshes of 1,500

polygons. Uniform weighting with values 2 and 3 is applied to the selected regions as

shown in Fig. 6.10. For nonuniform weighting, values similar to that in Fig. 6.10 are ap-

plied to the selected regions. As shown in Fig. 6.12, the uniform weighting with value 2

may not preserve the eyes well (Fig. 6.12(b)) while the uniform weighting with value 3

seems over-preserve the eyes (Fig. 6.12(c)). The nonuniform weighting scheme is more

capable of adapting to the expectation of users. Again, the weighting scheme of [38] with

weighting value of 3 performs badly in this case.

Both of our proposed weighting schemes are independent on the resolution of the given

meshes, meaning that similar resolution increment in the selected regions is achieved for

the given simplified meshes in different resolutions. Fig. 6.13 depicts the results of ap-

plying the uniform weighting with value 3 to the cow models with polygon counts 500,

1,160, 1,739, and 2,321. The selected region is the same as the one in Fig.6.6. The in-

creased number of vertices in the selected region is shown in Table 6.3, which also includes
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(a) Original mesh (b) Simplified
mesh

(c) Nonuniform
weighting

(d) After applying
weighting scheme

(e) After local re-
finement

Figure 6.10: Two-stage user-controllable simplification (with nonuniform weighting) on
the Buste model.

(a) Simplified mesh (8
vertices in the selected
region)

(b) Uniform weight-
ing (27 vertices in the
selected region)

(c) Nonuniform
weighting (25 vertices
in the selected region)

(d) Weighting scheme
of [38] (8 vertices in
the selected region)

Figure 6.11: Comparison of the proposed uniform weighting and nonuniform weighting
schemes against the weighting scheme in [38].

the performance of the proposed nonuniform weighting scheme and the scheme proposed

in [38]. The three numbers in each item of the ”vertex count in the selected region” indi-

cate the vertex counts resulting from the uniform weighting scheme (top), the nonuniform

weighting scheme (middle), and the weighting scheme of [38] (bottom). We observe that

the performance of the uniforming and nonuniform weighting scheme is quite close to what

we expect. Note that the small inaccuracy in hitting the expected target is due to the de-

pendency problem in the dependency hierarchy that occurs on the boundary of the selected

region. On the other hand, the resolution improvement of the weighting scheme of [38]

is unpredictable. It is usually hard for users to specify the weight value for an expected

resolution improvement.

The proposed weighting schemes are also independent on the error metric used in

the mesh simplification. Since APS is a texture-deviation error metric, we consider the

Parasaur model with texture mapped. The Parasaur model of 7685 polygons is first simpli-

fied to 750 polygons using QEM and APS. Then we apply the uniform weighting scheme

with values 2 and 3 to the region of left eye. Table 6.4 shows the resolution increments

in the region of left eye after we apply the uniform weighting scheme with values 2 and

3 to the region. As we can see that the obtained resolution increments are close to what

we expect for both metrics. The proposed weighting schemes can be applied to models
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(a) Simplified
mesh

(b) Uniform
weighting with
value 2

(c) Uniform
weighting with
value 4

(d) Nonuniform
weighting

(e) Weighting
scheme of [38]

Figure 6.12: Comparison of the proposed uniform weighting, nonuniform weighting
schemes, and the weighting scheme in [38].

(a) 500 (8.6%) poly-
gons

(b) 1,160 (20%) poly-
gons

(c) 1,739 (30%) poly-
gons

(d) 2,321 (40%) poly-
gons

Figure 6.13: Results of applying the uniform weighting with value 3 to the cow model of
resolutions in different resolutions.

with texture mapped to reduce the texture distortion. Fig. 6.14 shows the result of applying

the two-stage user controllable simplification scheme to the Parasaur model with texture

mapped. Again, the Parasaur model is simplified to a mesh of 750 polygons using APS, on

which noticeable texture distortion can be found; as shown in Fig. 6.14(b). Fig. 6.14(c) and

Fig. 6.14(d) depict a great reduction in texture distortion after applying uniform weight-

ing scheme with weighting value of 3 around the left eye and then local refinement on the

texture boundaries.
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Table 6.3: Comparison on the resolution improvement obtained by the proposed weighting
schemes and the weighting scheme of [38].The three numbers in each item of the ”vertex
count in the selected region” indicate the vertex counts resulting from the uniform weight-
ing scheme (top), the nonuniform weighting scheme (middle), and the weighting scheme
of [38] (bottom).

Polygon count Vertex count in the selected region
of Without Weighting Weighting

simplified mesh weighting value = 2 value = 3

500 (8.6%)
8 13

4 8 12
3 3

1,160 (20%)
18 27

8 16 25
8 8

1,740 (30%)
26 39

13 27 42
12 12

2,320 (40%)
44 67

22 40 47
23 23

2,902 (50%)
56 68

28 49 61
30 30

Table 6.4: Resolution improvement after applying constant weighting scheme on different
error metrics.

Error metric
Vertex count in the selected region

W/O Weighting Weighting
weighting value = 2 value = 3

QEM 15 33 49
APS 6 15 22

(a) Original mesh (b) Simplified mesh (c) After applying
uniform weighting
scheme

(d) After local refine-
ment

Figure 6.14: Applying two-stage user-controllable simplification to the Parasaur model.
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Conclusions and Future
Works

7.1 Conclusions

In this thesis, we have presented a new slice-based scheme for deriving an intermediate-

level surface function that has advantages of low computational complexity and being com-

pact in affected region. Based on the short-cut rule [79], human vision prefers to use the

shortest possible cuts to parse silhouettes. We approximated the short cut passing a sur-

face point by a planar slice on the surface, called minimum perimeter slice, that passes the

point and has the minimum perimeter. Shape analysis of 3D object can then be performed

using a series of 2D slices, hence reducing the computation cost. The surface function

defined as the perimeter of the minimum perimeter slice, called minimum slice perimeter

(MSP), for all surface points is able to represent the local volume of object around the sur-

face point and possesses a better measure about the local volume information than other

intermediate-level surface functions such as SDF [73]. Moreover, the orientation of the

minimum perimeter slices on the surface reveals the flow of shape orientation on surface.

Such shape properties are useful for describing the object’s part level information, which

can be useful in geometric modeling applications.

We applied the minimum perimeter slice to the mesh segmentation and skeletonization.

For mesh segmentation, a new hierarchical segmentation scheme taking the local volume

information into account is presented. The derived segmentation hierarchy possesses some

70
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desired properties. For example, components on a higher level reveal higher degree of

salience than their descendant parts and the components on each level of hierarchy have

similar degree of salience. Moreover, the number of boundaries on each level of the hierar-

chy is determined automatically. With the aid of the local volume information provided by

MSP, the proposed segmentation scheme can decompose object into several levels of parts

in more natural ways, and can be applied to objects in different topological types.

The proposed MSP-driven skeletonization framework first transforms the original mesh

to a shrunk skeleton-like mesh using MSP information and then employs a greedy edge-

swap framework to degenerate the shrunk mesh into an 1D skeleton. In the greedy frame-

work, edges that deviate farther from the centerline would be swapped first and vertices

are moved towards the centerline. Small branches are removed by checking the salience

value of their correspondence surface region whenever a branch is formed. The metric de-

signed for the greedy edge-swap framework and salience evaluation are formulated based

on the MSP function. The skeleton generated by the proposed method has a dense node

distribution at the core parts and around the junctions, and inherently possesses a skeleton-

surface mapping. The single salience parameter for branch removal provides a flexible

control for deriving skeletons with varying details. Moreover, consistent skeletons can be

extracted for a model in different resolutions and poses. We demonstrated the effectiveness

of the proposed algorithm by a rather extensive testing and comparison to a state-of-the-art

method.

Beyond the intermediate-level shape property and its applications, we also investigated

how to interpret and achieve users’ expectation when performing mesh simplification. A

new concept of the user-controllable mesh simplification scheme is proposed in which the

user-specified weights on some selected regions are used to reorder the simplification oper-

ator rather than first altering the simplification costs and then reordering the simplification

operator. Our scheme results in a predictable resolution improvement over the selected re-

gions and is metric independent since the user-specified weights are not used to alter the

simplification cost.

7.2 Future works

There exists some limitations to the proposed minimum slice perimeter. Some small high-

lights of MSP value may be noticed on the surface since the slices may pass across multiple



7.2 Future works 72

object parts. A filter that is able to prune those slice segments outside the designate part is

required to achieve a MSP that better describes the local volume information.

The existing salience definitions for the 3D object surface [41, 19] are based on the

combination of local geometric properties such as curvature and area, which may not reveal

the visual significance of object parts. We are also interested in investigating how the

salience of a 3D object part can be defined based on the intermediate-level shape properties.

In addition to the derivation of minimum slice perimeter, the normal of the minimum

perimeter slices associated with surface points reveals the orientation flow of the object

shape, which can be used to guide the vector field generation on the object’s surface. We

will investigate how to derive a shape-aware vector field on the surface using the orientation

vectors provided by the minimum perimeter slices.

Our proposed skeletonization scheme can extract curved skeleton with dense node dis-

tribution directly from 3D model. Such dense node distribution allows us to establish a

reasonable many-to-one mapping between surface and skeleton. Such surface-skeleton

mapping may be helpful in geometric modeling applications such as the surface-to-surface

correspondence, mesh deformation, and mesh symmetrization. In the future, we will inves-

tigate how these geometric modeling problems can be benefited from the skeleton-surface

mapping.



Bibliography

[1] ALLIEZ, P., COHEN-STEINER, D., DEVILLERS, O., LÉVY, B., AND DESBRUN,
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