
國國國 立立立 交交交 通通通 大大大 學學學

資資資訊訊訊科科科學學學與與與工工工程程程研研研究究究所所所

博博博 士士士 論論論 文文文

雙雙雙階階階層層層視視視訊訊訊分分分析析析 ––– 由由由靜靜靜態態態背背背景景景模模模型型型到到到動動動態態態前前前景景景切切切割割割

Bi-Layer Video Analysis − from Static

Background Modeling to Dynamic

Foreground Segmentation

研研研 究究究 生生生：：：林林林泓泓泓宏宏宏

指指指導導導教教教授授授：：：莊莊莊仁仁仁輝輝輝 博博博士士士

劉劉劉庭庭庭祿祿祿 博博博士士士

中中中 華華華 民民民 國國國 一一一 百百百 年年年 三三三 月月月

雙雙雙階階階層層層視視視訊訊訊分分分析析析 ––– 由由由靜靜靜態態態背背背景景景模模模型型型到到到動動動態態態前前前景景景切切切割割割

Bi-Layer Video Analysis − from Static Background

Modeling to Dynamic Foreground Segmentation

研 究 生：林泓宏

指導教授：莊仁輝 博士

劉庭祿 博士

Student: Horng-Horng Lin

Advisor: Dr. Jen-Hui Chuang

Dr. Tyng-Luh Liu

國立交通大學

資訊科學與工程研究所

博士論文

A Thesis

Submitted to

Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

March 2011

HsinChu, Taiwan, Republic of China

中 華 民 國 一 百 年 三 月

謹獻給 我的父母 —

林良應先生與陳玉樺女士

雙雙雙階階階層層層視視視訊訊訊分分分析析析 ––– 由由由靜靜靜態態態背背背景景景模模模型型型到到到動動動態態態前前前景景景切切切割割割

學學學生生生：：：林林林泓泓泓宏宏宏 指指指導導導教教教授授授：：：莊莊莊仁仁仁輝輝輝 博博博士士士

劉劉劉庭庭庭祿祿祿 博博博士士士

國國國立立立交交交通通通大大大學學學 資資資訊訊訊科科科學學學與與與工工工程程程研研研究究究所所所

摘 要

雙階層視訊分割 — 即對視訊影片作前景層與背景層的區域切割 — 是電腦

視覺領域中一個極具挑戰性的問題，蓋因視訊內容的變化多樣，使得前景與背

景的階層分割變得複雜。對於此一問題，我們在論文中分別以「背景模型初始

化」、「背景模型維護」與「視訊階層遞移」三個研究主題來進行探討；其

中，前兩個研究主題，是針對固定式攝影機所拍攝的影片，作靜態背景模型的

建構與維護，使得前景階層，可透過與背景相減分割出來，而第三個研究主

題，則是針對移動式攝影機所拍攝的動態影片，作前景與背景階層的遞移分

割。

在背景模型初始化的研究主題探討中，我們開發一個以影像區塊為基礎的

快速背景模型估計法，並提出新穎的背景模型完整度量測法則，使得一個完整

的初始背景模型，可被快速建構出來。在背景模型維護的研究主題探討中，我

們檢視了常用的高斯混合模型，發現在高斯混合模型中，需要兩種型態的學習

速率控制，方可有效地平衡背景變化容忍度與前景偵測敏感度兩項拮抗因素，

對此，我們提出一個基於高階資訊回饋的新式學習速率控制法，來改良高斯混

合模型之背景模型維護方式。在視訊階層遞移的研究主題探討中，我們提出一

個基於半監督式頻譜叢集法的動態階層分割架構，來對於移動式攝影機所拍攝

的視訊影像，逐張作前景與背景的階層分割；其中，我們進一步擴充了半監督

式頻譜叢集法的數學模型，以便在視訊階層分割過程中，調控階層標籤估計的

可靠度，以增進階層分割的準確性，實驗結果顯示，此一視訊階層遞移分割架

構，對動態影片的切割具有良好的效果。

關鍵字：雙階層視訊分割、背景模型、高斯混合模型、半監督式頻譜叢集。

ii

Bi-Layer Video Analysis − from Static

Background Modeling to Dynamic

Foreground Segmentation

Student: Horng-Horng Lin Advisor: Dr. Jen-Hui Chuang

Dr. Tyng-Luh Liu

Institute of Computer Science and Engineering

National Chiao Tung University

Abstract

Bi-layer video segmentation, i.e., the extraction of foreground regions from back-

ground ones for a video sequence, is a challenging research field in computer vision

due to large content variation among video frames. To better address this bi-

layer video segmentation problem, three research topics are investigated in this

thesis including background model initialization, background model maintenance,

and video layer propagation. While the first two topics concern static background

modeling for analyzing videos obtained from static cameras, the third one pertains

to dynamic foreground segmentation for videos captured by moving cameras.

For the problem of background model initialization, we propose an efficient

background model estimation scheme based on image block classification, and de-

velop novel criteria for measuring the completeness of a background model. For the

problem of background model maintenance, we look into the formulations of Gaus-

sian mixture modeling (GMM) and identify the needs of two types of learning rates

for GMM to effectively deal with a trade-off between robustness to background

changes and sensitivity to foreground abnormalities. A novel bivariate learning

rate control scheme for GMM based on a feedback of high-level information is also

proposed. For the problem of video layer propagation, a new framework based on

semi-supervised spectral clustering is proposed for dynamic foreground segmenta-

tion of a video shot captured by a moving camera. The adopted formulation of

semi-supervised spectral clustering is generalized to regularize the reliabilities of

layer labels in sequential propagation. Experimental results show that satisfactory

results of related bi-layer video analysis can indeed be obtained with the proposed

approaches.

Keywords: Bi-layer video segmentation, background modeling, Gaussian mixture

modeling, semi-supervised spectral clustering.

iv

誌誌誌謝謝謝

非常幸運地，我能得到兩位指導教授的教導。在博士修業的前期，我同時也在

中研院資訊所服國防役，是資訊所的劉庭祿老師，帶領我進入電腦視覺與機器

學習的研究領域，教導我基礎知識，告訴我研究的目標與紀律，協助我建立研

究常規，更對我在研究與工作上有許多包容；同時，在本科領域外，劉老師也

帶領我初窺生物資訊領域的堂奧，回想起種種情境，無不讓我深深感念於心，

劉老師的教導，對我的博士修業及日後的工作與研究，有著至為深遠的影響。

國防役期滿後，回到交通大學成為全職學生，交大資工的莊仁輝老師，則是給

予學生獨立研究的訓練，讓我在研究主題選擇上有很大的自由度，並逐步引導

我作研究推展、論文撰改、投稿與答辯等，帶領我走向獨立研究之路；同時，

莊老師自我碩士修業以來，逾十年的指導中，除了專業領域外，更涵蓋了我生

活與家庭層面，提供我許多深具人生智慧的建議，使得我的研究與人生路程得

以平順，長期以來，莊老師對我所付出的諸多心力，實無可計量。而今博士修

業將告一段落，我深覺我是何等幸運，能夠同時得到兩位對學生至誠至性的師

長，對我長年的指導，沒有他們，我不會走向研究之路，也無從得見研究之

樂，更遑論學位的完成；對兩位老師的感激，遠非言語所能形容！

指導教授以外，我也特別感謝交大資工的蔡文祥老師，在我執行研究計畫

時，所給予的指導與勉勵；以及中研院資訊所的陳祝嵩老師對我的關懷與幫

助。此外，我也非常感激在中研院資訊所時陳煥宗、林彥宇、張天龍、趙盈

v

勝、陳俊宏、蔡玉寶、張文彥、葉士良等同事的研究討論、建議與鼓勵，以及

在交大時高肇宏、吳至仁、羅國華、林哲寬、陳宇欣、吳思慧、邱郁婷、陳光

兆、劉怡伶、李宗穎、蔡易達、吳佳昱等同學對我研究上的協助，是他們，豐

富了我的研究歷程。同時，我也衷心感謝威聯通科技的黃哲文經理與張明智總

經理，是他們的大力支持，我才有機會將公司工作與論文研究結合，進一步整

理成研究成果。而在論文口試時，口試委員王才沛老師、王聖智老師、洪一平

老師、范國清老師、廖弘源老師、賴尚宏老師、蔡文祥老師所給予的寶貴建

議，也將作為我日後研究工作的指引。

在此同時，我也要對我的父母獻上最深的謝意與敬意，沒有他們無私的付

出與栽培，我將無所憑、無所立。同時我也要謝謝內人意屏這些年來的支持，

讓我可以投入研究工作、完成學業。最後，謝謝學習歷程中許多協助過我的朋

友，謹致上我由衷地感激。

vi

Table of Contents

摘摘摘要要要 i

Abstract iii

誌誌誌謝謝謝 v

Table of Contents vi

List of Figures xi

List of Tables xii

1 Introduction 1

1.1 Background Model Initialization . 2

1.2 Background Model Maintenance . 2

1.3 Video Layer Propagation . 4

1.4 Thesis Organization . 5

2 Background Model Initialization via Classification 7

2.1 Overview . 8

2.1.1 Related Work . 10

vii

2.2 Background Model Estimation via Classification 14

2.2.1 Iterative Estimation Scheme 14

2.2.2 The Detailed Algorithm . 18

2.3 Fast Classification with Soft Margins 21

2.3.1 Feature Selection . 22

2.3.2 SVMs with Probability Outputs 23

2.3.3 CGBoost with Probability Outputs 24

2.4 Experimental Results . 25

2.4.1 Classifier Training . 26

2.4.2 Performance Evaluation . 29

3 Background Model Maintenance via Density Estimation 41

3.1 Overview . 42

3.1.1 Related Work . 44

3.1.2 Model Accuracy, Robustness and Sensitivity 46

3.2 Bivariate Learning Rate Control via High-Level Feedback 48

3.2.1 Background Model Maintenance 49

3.2.2 Feedback Control . 53

3.2.3 Heuristic for Adaptation of Double-Quick Lighting Change . 60

3.3 Experimental Results . 62

3.3.1 Regularized Background Adaptation 63

3.3.2 Parameter Tuning . 67

3.3.3 Double-Quick Lighting Change 69

3.3.4 Quantitative Evaluations . 71

3.3.5 Scene Change . 73

viii

3.3.6 Other Scenarios . 74

4 Video Layer Propagation via Semi-Supervised Clustering 77

4.1 Overview . 78

4.1.1 Related Work . 80

4.2 Video Layer Propagation Framework 81

4.2.1 Block Label Inference . 81

4.2.2 Semi-Supervised Spectral Clustering 84

4.2.3 Algorithm Interpretation . 89

4.3 Algorithm Implementation . 91

4.3.1 Similarity Measure . 91

4.3.2 Local Clustering . 92

4.3.3 Propagation Band . 95

4.3.4 Regularization of Label Reliability 95

4.3.5 Optional User Intervention 99

4.4 Experimental Results . 99

4.4.1 Video Layer Propagation in Static Background 101

4.4.2 Video Layer Propagation in Moving Background 103

5 Conclusion 107

5.1 Summary of Static Background Model Initialization 108

5.2 Summary of Static Background Model Maintenance 109

5.3 Summary of Dynamic Video Layer Propagation 110

Appendix 113

References 119

ix

List of Figures

2.1 The general idea of background model initialization 8

2.2 Notations for background model initialization 13

2.3 Flowchart of the bottom-up and top-down processes 16

2.4 Training images for background model initialization 26

2.5 Distributions of training data and training results 28

2.6 Results of background model initialization 30

2.7 Results of background block detection 31

2.8 Results of different parameter settings 34

2.9 Comparisons of [22], [54], and our approach 36

2.10 Tests on lighting variations . 38

2.11 Background model initialization and tracking 40

3.1 Flowchart of a general-purposed surveillance system 54

3.2 Simulated changes of the learning rate ηt 57

3.3 Example of motion blur . 58

3.4 Examples of quick and double-quick lighting changes 60

3.5 Comparisons of background adaptation to quick lighting changes . . 64

xi

3.6 Comparisons of background modeling for missing object and waving

hand . 66

3.7 Comparisons of background modeling without and with using the

background-type rate control . 67

3.8 Comparisons of background adaption to double-quick lighting change 70

3.9 Snapshots of the ground-truth images 71

3.10 Quantitative comparisons of [36], [54], and our approaches 72

3.11 Comparisons of scene change adaptation 75

3.12 Foreground detection and background modeling results for other

scenarios . 76

4.1 Illustration of the spatio-temporal neighbors of a block 82

4.2 Examples of kernel construction . 89

4.3 Examples of sub-graph G ′i in different representations 92

4.4 Simulated example on the regularization of label reliability 96

4.5 Quantitative evaluations of the proposed regularization of label re-

liability . 98

4.6 Results of the IU experiment . 100

4.7 Results of the IU experiment with user interventions 101

4.8 Quantitative evaluations for the IU experiment 102

4.9 Snapshots of the Mobile sequence and its ground-truth layer masks 104

4.10 Results of the Mobile experiment 105

4.11 Quantitative assessment on regularization of label reliability 106

xii

List of Tables

2.1 Comparisons between SVMs and CGBoost 29

2.2 Average error rates in different threshold settings 29

2.3 Detection error rates with and without top-down validation. 32

3.1 Numbers of image frames resisting background adaptation to after-

images w.r.t. βbs . 68

xiii

Chapter 1

Introduction

Bi-layer video segmentation, which involves the extractions of foreground regions

from background ones for a video sequence, is a challenging research field in com-

puter vision, due to large content variation among video frames. Understanding

of video contents via computer-assisted analysis, which is one of the main goals of

intelligent video analytics for surveillance applications and multimedia search, can

be greatly benefited by stable and accurate video layer segmentation. In this the-

sis, the research problem of bi-layer video analysis for segmenting videos captured

by static and moving cameras are investigated along three research directions:

background model initialization, background model maintenance and video layer

propagation. While the first two directions concern static background layer mod-

eling for analyzing video sequences obtained from static cameras, the third one

addresses dynamic foreground/background layer extraction for video sequences

captured by moving cameras.

1

1.1 Background Model Initialization

For a video sequence captured by a static camera, its foreground objects can of-

ten be efficiently extracted via background subtraction if a background model for

properly describing a static background scene is given. Despite the large amount

of previous research works on background modeling, the initialization of a stable

background model for a busy scene, such as a road junction with heavy traffic,

has been less discussed. In our investigation of the problem of background model

initialization, a new estimation scheme that combines bottom-up and top-down

information to construct a stable and complete background model is presented in

Chapter 2, wherein efficient image block classification for background model con-

struction is proposed and novel criteria for the measurement of background model

completeness is developed. Experimental results show that the efficient block-

based processing, together with the effective model completeness measure, can

derive stable background models for busy scenes and outperforms the compared

approaches.

1.2 Background Model Maintenance

Once a proper background model for a scene of interest has been initialized, this

model needs to be maintained thereafter to catch background changes, such as en-

vironmental lighting variations, so that foreground regions can be accurately differ-

entiated. For background model maintenance, Gaussian mixture modeling (GMM)

is a popular choice due to its capability of adaptation to periodic background

variations. However, the effectiveness of GMM is often limited by a trade-off be-

2

tween statistical robustness to background changes and sensitivity to foreground

abnormalities, and is inefficient in managing the trade-off for various surveillance

scenarios. To solve this problem, a novel bivariate learning rate control scheme

for GMM based on a feedback of high-level information is proposed in Chapter 3.

Experimental results show that the proposed GMM approach is superior to the

compared GMM-based methods in delivering better background model adaptation

results for challenging scenarios with the aforementioned trade-off.

It is worth noting that two distinct approaches are applied in this thesis to solve

the problems of background model initialization and maintenance. In general, the

proposed GMM approach for solving the problem of background model mainte-

nance can almost always give promising performance in background adaptation

and foreground detection. However, according to our study, such an approach is

not suitable for the problem of background model initialization, mainly due to its

deficiency in evaluating whether a derived background model by GMM is stable

and/or complete, as will be discussed in Chapter 2. On the other hand, while the

proposed approach for background model initialization delivers a more stable back-

ground model than the GMM approach, it is less capable of capturing dynamic

background changes, like waving trees, in long-term model maintenance, and may

result in a stable but slightly blur background model. Therefore, we present a

two-stage treatment to the general problem of static background modeling, with

each stage adopting a different approach, which will best fit each specific need

mentioned above.

3

1.3 Video Layer Propagation

For the case of moving camera, we investigate the problem of video layer propaga-

tion in Chapter 4, wherein foreground and background video layers of a video shot

are segmented in a sequential manner for consecutive image frames. Assume that

the bi-layer image segmentation for the first video frame of a video shot is given

in advance. The goal of video layer propagation is to extract the corresponding

video layer segments in subsequent video frames. Except for the initial layer infor-

mation, no prior assumptions or restrictions, e.g., on foreground shapes, on back-

ground models, or with respect to camera motions, are made. This general setting

brings a big challenge in problem solving because, for example, a background layer

may be cluttered and may undergo large changes in a video shot due to camera

movements. To extract time-varying video layer segments, a new framework based

on semi-supervised clustering is developed. Under this framework, image blocks

are used as layer propagation units to avoid costly pre-segmentation of images

into super-pixels. By modeling video layer propagation between consecutive im-

age frames as a label inference problem wherein new block labels are inferred from

previously known ones, and by solving this problem via semi-supervised spectral

clustering, video layers are progressively propagated. Experimental results show

that the proposed video layer propagation method can effectively extract dynamic

video layers, even in large, non-rigid motions.

4

1.4 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2, we investigate the prob-

lem of background model initialization by presenting an overview of background

modeling techniques, the proposed background model initialization approach and

experimental results. Assuming that an initial background model is obtained, we

discuss the problem of background model maintenance in Chapter 3 by addressing

the trade-off between model robustness and sensitivity, giving a GMM-based so-

lution for balancing the trade-off, and presenting experimental results to support

the effectiveness of the proposed solution. In Chapter 4, we explore the prob-

lem of video layer propagation by presenting a survey of related literature, the

proposed video layer propagation framework based on semi-supervised clustering,

and some experimental results. Finally, we discuss the effectiveness of the pro-

posed approaches for the three research topics studied in this thesis, as well as

future explorations, in Chapter 5.

5

Chapter 2

Background Model Initialization

via Classification

To efficiently construct a scene background model is crucial for tracking techniques

relying on background subtraction. Our proposed method is motivated by criteria

leading to what a general and reasonable background model should be, and real-

ized by a practical classification technique. Specifically, we consider a two-level

approximation scheme that combines the bottom-up and top-down information for

deriving a background model in real time. The key idea of our approach is simple

but effective: If a classifier can be used to determine which image blocks are part of

the background, its outcomes can help to carry out appropriate block-wise updates

in learning such a model. The quality of the solution is further improved by global

validations of the local updates to maintain the inter-block consistency. A com-

plete background model can then be obtained based on a measurement of model

completion. To demonstrate the effectiveness of our method, various experimental

results and comparisons are included.

7

I0 I13 I69 Estimated Background

Figure 2.1: The general idea of background model initialization. Through perform-
ing on-line classifications and by iteratively integrating the frame-wise detected
background blocks of images captured with a static monocular camera, the scene
background can be reliably estimated in real time.

2.1 Overview

Visual tracking systems using background subtraction often work by comparing

the upcoming image frame with an estimated background model to differentiate

moving foreground objects from the scene background. Hence the performance

of such systems depends heavily on how the background information is modeled

initially, and maintained thereafter. In this work, we aim to establish a learning

approach to reliably estimate a background model even when substantial object

movements are present during the initialization stage. As illustrated in Fig. 2.1,

the overall idea is to efficiently identify background blocks from each image frame

through on-line classifications, and to iteratively integrate these background blocks

into a complete model so that a tracking process can be automatically initiated

in real time. In developing such a progressive processing scheme for initializing a

background model, some criteria are considered.

• Stationary scene adaptation: It is commonly agreed that stationary scenes

are considered as background. Thus, in our design, when a moving object

becomes stationary over a certain period of time, it will be incorporated

8

into a background model. This would yield an initial background model

accommodating the most recent statistics about the background scene, e.g.,

a parking car or an occluded area.

• Gradual variation adaptation: The computation of a background model

should take account of small variations caused by, for example, gradual il-

lumination changes, waving trees, and faint shadows. It allows a system to

reduce the false detection rate of foreground objects.

• Model completion: Depending on object movements, the number of image

frames needed in estimating an initial background could vary significantly.

Hence, a measurement for the availability of a background model has to be

defined so that the system can immediately begin to track objects upon the

completion of model initialization.

• Efficiency: A background model must give rise to efficient on-line derivations

to guarantee real-time tracking performance.

The first two criteria listed above manifest what kind of scene contents are con-

sidered as background. The last two ones illustrate the design requirements of a

background model initialization system: it should be capable of deriving a com-

plete background model in a progressive manner and in real-time.

In the proposed approach, two features will be observed. First, we utilize learn-

ing methods to identify background blocks. Rather than developing discrimination

rules or models, we adopt learning approaches to construct a background block

classifier. This strategy not only provides a convenient way of defining some pre-

ferred background types from image examples, but also avoids complicated issues

9

of manually setting discriminating parameters, because they can be resolved by

learning from the chosen data. Second, the derived background model fulfills the

four criteria. To achieve efficiency, a progressive estimation scheme is developed

and a fast classifier adopted. For the model completion criterion, an effective defi-

nition is given to indicate that a complete background model is obtained, and the

subsequent tracking procedures can be started. Regarding the adaptation crite-

ria, we implement a bottom-up block updating, in either a gradual or an abrupt

fashion, for capturing the background variations and scene changes, respectively.

2.1.1 Related Work

Background modeling for tracking typically involves three issues: representation,

initialization, and maintenance. For example, one could represent a scene back-

ground by assuming a single Gaussian distribution for each pixel, initialize the

model by estimating from an image sequence, and maintain it during tracking by

updating Gaussian parameters of the background pixels. While the emphases of

most previous works, including those to be described later, are mainly on rep-

resentation and maintenance, the task to compute an initial background model

has been somewhat neglected or otherwise simplified by not allowing large object

movements throughout the initialization process, e.g., [14], [41], [64].

Background representation and maintenance

Gaussian models are perhaps the most popular representation for modeling a scene

background, e.g., [6], [36], [42], [54], [64]. Their maintenance is usually carried out

in the form of temporal blending to update intensity means and variances. Thus

10

related researches often differ in the number of Gaussian distributions used for

each pixel, and the update formulas for the Gaussian parameters. In [20], Gao

et al. further investigate possible errors caused by Gaussian mixture models, and

then apply statistical analysis to estimate related parameters.

Apart from Gaussian assumptions, Elgammal et al. [13] consider kernel smooth-

ing for a non-parametric estimate of pixel intensity over time. In [58], Toyama et

al. propose a wallflower algorithm to address the problem of background repre-

sentation and maintenance in three levels: pixel, region, and frame levels. Ridder

et al. [47] use a Kalman-filter estimator to identify the respective pixel intensities

of foreground and background from an image sequence, and to suppress false fore-

ground pixels caused by shadow borders. In [27], a mixture of local histograms is

proposed to construct a texture-based background model that is more robust to

background variations, e.g., illumination changes.

Prior assumptions about the foreground, background, and shadows can be

used to simplify the modeling complexity. For vehicle tracking, Friedman and

Russell [19] propose three kinds of color models to classify pixels into road, shadow,

and vehicle. They employ an incremental EM to learn a mixture-of-Gaussian for

distinguishing the foreground and background. In [48], [59], prior knowledge at

pixel level is considered in learning the model parameters of the foreground and

background. Then, a high-level process based onMarkov random field is performed

to integrate the information from all pixels.

Background model initialization

The most straightforward way to estimate a background model is to calculate the

intensity mean of each pixel through an image sequence. Apparently, this is rarely

11

appropriate for practical uses. Haritaoglu et al. [23], instead, compute intensity

medians over time. Yet a more general framework by Stauffer and Grimson [54]

is to use pixel-wise Gaussian mixtures to model a scene background. Mittal and

Huttenlocher [42] later extend the Gaussian mixture idea to construct a mosaic

background model from images captured using a non-stationary camera. In [58],

bootstrapping for background initialization is proposed, and implemented with a

pixel-level Wiener filtering.

Among the above-mentioned approaches, initializing a background model is

viewed more or less as part of the process for background maintenance. They do

not have a systematic way to measure the quality, and determine the degree of

completion for such a model. Consequently, these methods often require simple

initializations, or otherwise start tracking activities with unreliable background

models.

For computing an explicit background model, Gutchess et al. [22] use optical

flow information to choose the most likely time interval of stable intensity at each

pixel. However, the quality of their derived background model depends critically

on the accuracy of the pixel-wise optical flow estimations. Cucchiara et al. [9]

represent a background model by pixel medians of image samples, and specifically

identify moving objects, shadows and ghosts1 for different model updates using

color and motion cues. Based on the Gaussian mixture model, Hayman and Ek-

lundh [26] formulate a statistical scheme to derive a mosaic background model

with an active camera. They consider a mixel distribution to correct the errors in

background registration. In [11], De la Torre and Black apply principal component

1Ghosts are false foreground objects detected by subtracting an inaccurate background model
from image frames.

12

It B̃t

It−1 B̃∗
t−1

bit b̃it

bit−1 b̃∗it−1

(a) On-line image stream (b) Estimated background model

Figure 2.2: Notations for background model initialization. (a) It and It−1 are the
image frames at time t and t− 1, and their ith blocks are denoted as bit and bit−1,

respectively. (b) For the background models, B̃t is a possible estimation at time

t, while B̃∗
t−1 is the best estimation up to time t− 1. Accordingly, their ith blocks

are represented by b̃it and b̃∗it−1.

analysis (PCA) to construct the scene background from an image sequence. More

recently, Monnet et al. [43] propose an incremental PCA to progressively estimate

a background model and detect foreground changes. Still, these systems all lack an

explicit criterion for determining whether a background initialization is completed

or not—a crucial and practical element for a real-time tracking system.

Other techniques that explore layer decompositions of a video sequence can also

be used to estimate a background model. Irani and Peleg [28] explore the decompo-

sitions of dominant motions and apply them to the construction of an unoccluded

background image. In [29], [17], sprite layers are derived from probabilistic mix-

ture models, in which cues of layer appearances and motions are encoded. In [1],

[2], Aguiar and Moura consider rigid motions, intensity differences, and the region

rigidity for figure-ground separation, and formulate them as a penalized likelihood

model that can be optimized in efficient ways. In [7], [32], [63], graph-cut-based

techniques, such as [5], are applied to decompose video layers via pixel labeling,

with various objective functions being optimized. Though all the layer-based ap-

proaches are capable of deriving a background model even for dynamic scenes,

13

they often need to process a video sequence in batch, which is different from the

proposed progressive scheme.

2.2 Background Model Estimation via Classifi-

cation

Due to the restriction of limited memory space and the requirement of real-time

performance, only a small number of recent image frames are stored and referred

during the construction of a background model. Thus, an iterative estimation

scheme is proposed in the following to progressively identify background blocks in

image frames and to incorporate their information into a background model.

2.2.1 Iterative Estimation Scheme

To illustrate the idea of the proposed iterative estimation scheme, we begin by

summarizing the notations and definitions adopted in our discussion.

• We denote the test image sequence up to time instant t as It = {I1, I2, . . . , It},

and the most recent ℓ image frames as It,ℓ = {It−ℓ+1, . . . , It−1, It}. We also

use bit to stand for the ith block of It , and bi
t,ℓ =

{
bit−ℓ+1, . . . , b

i
t−1, b

i
t

}
for

the set of ith blocks from It,ℓ (see Fig. 2.2).

• Let B̃t be any possible background model estimation at time t, and B̃∗
t−1 be

the estimated background model at time t − 1. Then, the ith blocks of B̃t

and B̃∗
t−1 are denoted as b̃it and b̃∗it−1, respectively.

• A training set of m samples, D = {(x1, y1), (x2, y2), . . . , (xm, ym)}, is used to

14

build a binary classifier, where each xi is a fixed-size image block (or simply

the extracted feature vector), and yi ∈ {−1 (foreground), +1 (background) }

is its label.

• With training data D, an optimal classifier f ∗ can be defined as

f ∗ = argmax
f

p(f | D). (2.1)

Equation (2.1) manifests that a classifier f ∗ can be derived from a probabilistic

maximum a posteriori (MAP) treatment [49]. It is thus more desirable to have not

only classification labels/scores but also probabilistic outputs of f ∗. In Sec. 2.3

we will explain that either an SVM or a boosting-with-soft-margins classifier is

appropriate for delivering such probabilities. With probabilistic outputs, a thresh-

old can then be set to adjust the classification boundary, which is useful for our

background estimation. We will demonstrate this usage in Sec. 2.4.1.

The proposed iterative estimation scheme for deriving a background model

consists of a bottom-up block updating and a top-down model validation process.

As shown in Fig. 2.3, a flowchart is given to illustrate the interactions between

the two processes. The aim of the bottom-up process is to block-wise integrate

identified background blocks into a model and to form a model candidate B̃t. Then,

in the top-down process, the inter-block consistency for all the updated background

blocks are validated. By assuming that significant background updates often occur

in groups, isolated updates that mainly result from noises will be eliminated by

restoring their block statistics back to the previous estimates b̃∗it−1.

15

B a c k g r o u n d M o d e l

T o p - d o w n

B o t t o m - u p

I n t e r - B l o c k C o n s i s t e n c y
V a l i d a t i o n s

I m a g e B l o c k

B a c k g r o u n d B l o c k

E s t i m a t i o n

C lass i f i e r
B a c k g r o u n d

B a c k g r o u n d M o d e l

M a i n t e n a n c e

R e p l a c e m e n t

C a n d i d a t e

f∗bit

b̃∗it−1

(̃bit | bit, b̃∗it−1
)

(̃bit | bit)

B̃t

B̃t

B̃∗

t

Figure 2.3: Flowchart of the bottom-up and top-down processes. The flowchart
depicts the interactions between the bottom-up block updating and the top-down
model validation processes. While the bottom-up process handles block-wise up-
dates of the background, the top-down one deals with inter-block consistency val-
idations. The coupling of the two processes forms an efficient scheme for deriving
a background model.

More specifically, in the bottom-up process, the image block bit classified as

background and the previously estimated background block b̃∗it−1 act as two inputs

to the background adaptation. Based on a dissimilarity measure between the cur-

rent image block bit and the previous background block b̃∗it−1, either a maintenance

step or a replacement step is invoked for a block update. In the maintenance step,

the case of the small block difference is handled, assuming it is mostly caused by

gradual lighting variations or small vibrations. A new background block estimate

b̃it can thus be computed by a weighted average of the two blocks bit and b̃∗it−1. On

the other hand, when bit and b̃it are dissimilar, implying an occurrence of an abrupt

scene change, a replacement step is employed to calculate a renewed background

block estimate b̃it which is consistent with the image block bit.

After the above bottom-up updates, a background model candidate B̃t is ob-

tained. To turn this model candidate into a final estimate, a top-down process

16

is introduced to assure the model consistency between the current candidate B̃t

and the previous estimate B̃∗
t−1, by assuming a smooth changing in background

models. Though the checking of model consistency can be realized in various

ways, we choose to implement it in a simple manner by finding the updates of

isolated blocks and undoing them. Thus large and grouped background block up-

dates are preserved in this design, since they most likely belong to significant and

stable background changes, such as newly uncovered scenes or stationary objects.

Through the validation process, a final background model estimation B̃∗
t is derived.

It is worth mentioning that the entire approach is linked to a MAP formulation,

i.e.,

B̃∗
t = argmaxB̃t

(
∏

i+

P (̃bit | bit, b̃∗it−1)
∏

i−

P (̃bit | b̃∗it−1)

)

︸ ︷︷ ︸
Likelihood

P (B̃t | B̃∗
t−1)︸ ︷︷ ︸

Prior

, (2.2)

where i+ = {i | bit is classified as a background block by f ∗} and i− = {1, . . . , n}−

i+. (Assume there are n blocks in an image frame.) Interested readers can find the

derivation of (2.2) in Appendix. The connections between (2.2) and our approach

are elaborated as follows. Regarding the likelihood part, the two products can be

viewed as block-wise updates after the background classification. For the image

block classified as background, maximizing the probability P (̃bit | bit, b̃∗it−1) implies

that similarities among the background estimate b̃it, the image block bit and the

previous estimate b̃∗it−1 should be retained. Likewise, for a foreground block, the

corresponding probability P (̃bit | b̃∗it−1) is maximized by setting the current block

estimate b̃it equal to the previous one b̃
∗i
t−1. This is what we do in the bottom-up pro-

17

cess. Referring to the prior term, it indicates that model level consistency between

B̃t and B̃∗
t−1 needs to be maintained for maximizing the probability P (B̃t | B̃∗

t−1).

This, as well, corresponds to the top-down model validation. However, we note

that the background model B̃∗
t derived by our approach is only a rough approxi-

mation to the MAP solution, since (2.2) is not exactly solved. In fact, to optimize

(2.2), the underlying distributions of the probability terms should be further spec-

ified, and complicated optimization techniques, e.g., EM-based estimations, may

need to be employed. Hence, instead of pursuing the MAP solution, our focus is on

the design of a practical and efficient algorithm for background model estimation.

2.2.2 The Detailed Algorithm

Bottom-up process

We start by applying f ∗ to each bit to determine its probability of being a back-

ground block. A simplified notation P (bit | f ∗) will be hereafter adopted to denote

such a probability, with the understanding that the most recent ℓ ith-blocks bis

(i.e., bi
t,ℓ) are available for calculating useful features, e.g., optical flow values, for

classification. Observe that only for those image blocks classified as background

at each time t, their corresponding block-wise updatings would modify the back-

ground model. It is therefore preferable to have as few false positives by f ∗ as

possible. Hence we use a strict thresholding τ ∗, i.e., the decision boundary of f ∗,

on P (bit | f ∗) such that image blocks with P (bit | f ∗) > τ ∗ ≥ 0.5 are considered

background. Given this setting, there are two possible cases for a block updating.

• If bit is not a background block, then b̃∗it = b̃∗it−1, i.e., the pixel means and

variances of b̃∗it−1 are assigned to b̃∗it .

18

Algorithm 1: Background model estimation via classification

Data: Process It using f ∗, B̃∗
t−1 and an auxiliary image B̄ = {b̄i}. When

t = 0, we have B̃∗
0 = ∅, B̄ = ∅, and ∀i, age(i) = 0, counter(i) = 0,

and replace(i) = false.

Result: Obtain a MAP estimate B̃∗
t .

begin

B̃∗
t ←− B̃∗

t−1

for image block bit ∈ It do
if bit is a valid background block then

if diss(bit, b̃
∗i
t−1) ≤ δ(= 152 = 225) then

/* Maintenance */

b̃∗it ←− IterativeAverage(bit, b̃
∗i
t−1)

age(i)←− age(i) + 1
counter(i)←− 0
b̄i ←− 0

else

/* Replacement */
b̄i = b̄i + 1

N
bit

counter(i)←− counter(i) + 1
if counter(i) = N then

b̃∗it = b̄i

age(i)←− 0
counter(i)←− 0
replace(i)←− true

else

age(i)←− age(i) + 1
counter(i)←− 0
b̄i ←− 0

output B̃∗
t

19

• If bit is classified as a background block, we measure the dissimilarity between

bit and b̃∗it−1 by

diss(bit, b̃
∗i
t−1) =

‖bit − b̃∗it−1‖2
|bi| ,

where ‖bit − b̃∗it−1‖2 is the sum of squared pixel intensity differences, and |bi|

is the block size. Depending on the value of diss(bit, b̃
∗i
t−1), either a main-

tenance step or a replacement step is invoked (see Algorithm 1). We apply

the iterative maintenance formulas proposed in [6] to update the latest small

variations into B̃∗
t . Notice that a block replacement in evaluating B̃∗

t takes

place only when the particular block has been classified as background for

N consecutive frames. Indeed, the maintenance phase is designed to adapt

the gradual variations, and the replacement phase is to accommodate new

stationary objects.

Top-down process

A top-down process based on comparing B̃t with B̃∗
t−1 is employed to detect isolated

block updates in the bottom-up evaluation of B̃t, and undo these updates with the

statistical data from B̃∗
t−1.

2 Conveniently, in implementing the algorithm, the top-

down process can be carried out right after the background block classifications.

This would yield a set of valid background blocks; all of them are not isolated.

Hence, the bottom-up updatings over these valid blocks would directly lead to the

final estimate B̃∗
t .

2An isolated block updating (either for maintenance or for replacement) has less than three
of its 4-connected neighboring blocks being updated in the bottom-up process.

20

The background model

Having described our two-phase scheme to iteratively improve B̃∗
t , we are now in

a position to define a meaningful and steady initial background model B̃∗.

Definition 1. The initial background model B̃∗ is said to be B̃∗
t∗, if t

∗ is the earliest

time instant satisfying the following three conditions:

(i) there is no block replacement occurred for the last N image frames, i.e., in

calculating B̃∗
t∗−N+1, B̃

∗
t∗−N+2, · · · , B̃∗

t∗;

(ii) all image blocks in B̃∗
t∗ have been replaced at least one time since t = 0; and

(iii) they are of ages at least L. (In all our experiments, we have N = 45 and

L = N + 15 = 60.)

2.3 Fast Classification with Soft Margins

In this section, issues related to the feature selection and the classifier formulation

are addressed for the construction of an efficient background block classifier. In

the feature selection, we have chosen to use features as general as possible so that

the resulting classifier can handle a broad range of image sequences. Regarding the

classifier formulation, two learning methods, support vector machines (SVMs) and

column generation boost (CGBoost), are explored by investigating the following

two issues. First, rather than binary-value classifiers, a classifier with probability

outputs is required for our application. Second, the efficiency of the resulting

classifier should fulfill the demand of real-time performance.

21

2.3.1 Feature Selection

For our purpose, the task of training is to learn a binary classifier for identify-

ing background blocks from a video sequence captured by a static camera. We

use a two-dimensional feature vector to characterize an image block bi. The first

component is the average optical flow value, where we apply the Lucas-Kanade’s

algorithm [39] to compute the flow magnitude of each pixel in bi. In our implemen-

tation, it takes three image frames, It−2, It−1, and It, to calculate the flow values

properly. However, we note that if one-frame delay is allowed, a slightly better

results in evaluating the values of optical flow can be achieved by referencing It−1,

It, and It+1. The second component of a feature vector is derived from the (mean)

inter-frame image difference by |bi|−1∑
(x,y)∈bi |Ix,yt−1 − Ix,yt |. To ensure good classi-

fication results, the feature values of both dimensions are normalized into [0, 1] for

training and for testing.

The two feature components are discriminant enough for our application owing

to their generality and consistency in classifying background blocks of varied image

sequences. We should also point out that since the optical flow values are computed

using just three consecutive image frames, it may occur that a few pixels would

have erratic/large flow values. Hence, an estimated upper-bound threshold is

enforced to eliminate such errors. On the other hand, the additional cue using

temporal differencing is more stable and easier to calculate, but it may fail to

detect all the relevant cases. For example, the inter-frame difference may not

be small in evaluating a background block that consists of slightly waving trees.

Instead, an optical flow value is more informative to capture such a background

block with small motions.

22

2.3.2 SVMs with Probability Outputs

For binary classifications, SVMs determine a separating hyperplane fS(x) = w ·

φ(x), x ∈ D by transforming D from the input space to a high dimensional feature

space, through a mapping function φ. The optimal hyperplane f ∗
S can be obtained

by solving the following soft-margin optimization problem:

min
w, ξi

1

2
‖w‖2 + C+

S

∑

i+

ξi + C−
S

∑

i−

ξi (2.3)

subject to yifS(xi) ≥ 1− ξi, i = 1, . . . ,m,

where ξi ≥ 0 are slack variables for tolerating sample noises and outliers. The two

parameters C+
S and C−

S are useful when dealing with unbalanced training data.

(Recall that “+” is for background image blocks and “−” for foreground image

blocks.) For the sake of reducing false positives, which may lead to more serious

flaws in the estimated background model than false negatives would cause, C−
S is

given a value four times larger than the one for C+
S to penalize more the misclas-

sifications of foreground blocks. In solving (2.3), we use a degree 2 polynomial

kernel to yield satisfactory classification outcomes efficiently.

Probability output

We use a sigmoid model to map an SVM score into the probability of being a

background block by

P (x|f ∗
S) =

1

1 + exp(Af ∗
S(x) + B)

, (2.4)

23

where the two parameters A and B can be fitted using maximum likelihood es-

timation from D. Following [45], a model-trust algorithm is applied to solve the

two-parameter optimization problem. In our experiments, 65% of the training

blocks are used for deriving an SVM, and the other 35% are for calibrating proba-

bility outputs. The two fitted parameters are A = −0.673724 and B = −2.359339.

2.3.3 CGBoost with Probability Outputs

Among the many variants of boosting methods, the AdaBoost, introduced by

Freund and Schapire [16], is the most popular one to derive an effective ensemble

classifier iteratively. While AdaBoost has been proved to asymptotically achieve a

maximum margin solution, recent studies also suggest the adoption of soft margin

boosting to prevent the problem of overfitting [12], [46]. We thus employ the

linear program boosting proposed by Demiriz et al. [12] for achieving soft-margin

distribution over the training data D and acquiring an ensemble classifier fB =
∑T

j=1 αjfj, which is comprised of T weak learners fjs and weights αjs. Actually,

Demiriz et al. apply a column generation method to solve the linear program

by part, and establish an iterative boosting process that is similar to AdaBoost.

Note that in implementing the CGBoost, the weak learners are constructed from

radial basis function (RBF) networks, denoted as hs [46]. And each h has three

Gaussian hidden units where two of them are initialized for the background, and

the remaining one is for the foreground training data. Let fj(x) = sign(hj(x)) be

the weak learner selected at the jth iteration of CGBoost. Then, the RBF network

hj is derived by minimizing the following weighted error function

Ej =
1

2

∑m

i=1
wi(hj(xi)− yi)

2, (2.5)

24

where {wi} is the weight distribution over training data D at the jth iteration.

Probability output

Different from (2.4), it is more convenient to link boosting scores to probabilities.

Friedman et al. [18] have proved that the AdaBoost algorithm can be viewed as

a stage-wise estimation procedure for fitting an additive logistic regression model.

Consequently, a logistic transfer function can be directly applied to map CGBoost

scores to posterior probabilities by

P (x|f ∗
B) =

1

1 + exp(−2f ∗
B(x))

, (2.6)

where the mapping in (2.6) is valid when the training data D do not contain a

large portion of noisy samples or outliers. For the general case, it should still yield

reasonable probability values with respect to the classification results by f ∗
Bs.

To summarize, both the two classifiers, f ∗
S and f ∗

B, seek a soft-margin solution

when deciding a decision boundary for the training data D. They indeed achieve

similar classification performance in our experiments. However, SVMs are gener-

ally less efficient than boosting, as the number of support vectors increases rapidly

with the size of D. We thus prefer a CGBoost classifier for estimating an initial

background model.

2.4 Experimental Results

To demonstrate the effectiveness of our approach, we first describe how the clas-

sifiers are learned for the specific problem. We then test the algorithm with a

25

Figure 2.4: Training images for background model initialization. Examples of col-
lected images and their binary maps of the foreground (white) and the background
regions (black) are plotted, top and bottom, respectively.

number of image sequences on a P4 1.8GHz PC. Through illustrating with the

experimental results, we highlight the advantages of learning a background model

by classification, and make comparisons with those related works. Finally, possible

future extensions to the current system are also explored.

2.4.1 Classifier Training

Training data

We begin by collecting images that contain moving objects of different sizes and

speeds from various indoor and outdoor image sequences captured by a static

camera. These images are analyzed using a tracking algorithm (with known back-

ground models), decomposed into 8 × 8 image blocks, and then manually labeled

as +1 for background blocks, or −1 for foreground ones. Examples of the collected

images and the detected foreground and background regions are shown in Fig. 2.4.

Since we prefer a resulting classifier to accommodate small variations, image blocks

from regions of faint shadows or lighting changes are labeled as background. The

feature vector of an image block can be computed straightforwardly by referencing

26

the related ℓ = 3 blocks from the respective image sequence. Totally, there are

27, 600 image blocks collected to form the training data D. As shown in Fig. 2.5

(a), the features extracted from the background blocks are mostly of small val-

ues, while those extracted from the foreground blocks mostly have feature values

corresponding to the regions of large motions.

Classifier evaluations

The training and the classification outcomes by implementing the classifier re-

spectively with f ∗
S and f ∗

B are summarized in Table 2.1. Owing to the soft-margin

property of the two classifiers, almost the same training errors have been obtained.

However, the classification efficiency of f ∗
B is more than 20 times faster than that

of f ∗
S. To visualize the distribution of a derived classifier, for example, f ∗

B, its level

curves of the decision scores are plotted in Fig. 2.5 (b). It can be observed that

the area of positive scores is located near the lower-left corner, which is consistent

with the distribution of feature values computed from the training data.

Probability thresholding

For the sake of reducing false positives, we adopt a stricter probability threshold

τ ∗ = 0.6 in setting the decision boundary of a CGBoost classifier. This value is

determined through 10-fold cross validation. In Table 2.2, the average values of the

false positive and false negative rates in cross validation with respect to different

threshold settings are listed. While false negatives mainly affect the needed time

in estimating an initial background model, the false positives, i.e. misclassifying

foreground blocks as background, will have direct impacts on the quality of the

background model. Thus, it is preferable to choose 0.6 as the probability threshold

27

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Normalized Optical Flow

N
or

m
al

iz
ed

 In
te

r−
fr

am
e

D
iff

er
en

ce

Foreground (Blue)
Background (Red)

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Normalized Optical Flow

N
or

m
al

iz
ed

 In
te

r−
fr

am
e

D
iff

er
en

ce

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(b)

Figure 2.5: Distributions of training data and training results. (a) The distribution
of the training data. The training features are normalized to the values between
0 and 1. In order to detail the distribution of background samples, only the part
of 0 to 0.5 is plotted. (b) The level curve of f ∗

B’s decision scores. The zero-score
decision boundary is located on the lower-left corner of the plot.

28

Table 2.1: Comparisons between SVMs and CGBoost (using AdaBoost as a bench-
mark).

Classifier SVM f ∗
S CGBoost f ∗

B AdaBoost fA

Settings Image Size: 320× 240, Platform: P4-1.8GHz PC
Parameters C+

S = 20, CB = 10
27600

(None)
C−

S = 80
Components 4185 SVs 33 fjs 33 fjs
Error Rate∗ 0.0466 0.0466 0.0507

Test Speed 0.4fps 9.5fps 9.5fps

* Error Rate = # of Misclassified Blocks / # of Training Blocks

Table 2.2: Average error rates of 10-Fold cross validation in different threshold
settings

τ∗ 0.5 0.6 0.7

False Positive 0.02912 0.02768 0.01196
False Negative 0.01877 0.02062 0.49652

in that it causes fewer false positives without introducing too many false negatives.

2.4.2 Performance Evaluation

Since the classification efficiency of CGBoost is more than 20 times faster than that

of an SVM implementation (see Table 2.1), we describe below only the experimen-

tal results yielded by using the CGBoost classifier f ∗
B. For testing the generality

of the proposed scheme, all the to-be-estimated scenes of the testing sequences are

completely different from those of the training data. The testing sequences also

contain complex motions, e.g., substantial object interactions, and varied lighting

conditions, like cloudiness.

29

(a) A000, B̃∗
0 (b) A044, B̃∗

44 (c) A261, B̃∗
261 (d) A510, B̃∗

510 (e) A650, B̃∗
650

(f)A000−B̃∗
650 (g) A044−B̃∗

650 (h) A261−B̃∗
650 (i) A510−B̃∗

650 (j) A650−B̃∗
650

Figure 2.6: Results of background model initialization. (a)–(e) The upper row
shows image frames from sequence A, and the lower row depicts the progressive
estimation results. The initial background model is completed at t∗ = 650. (f)–(j)

The frame subtraction results by referencing the derived background model B̃∗
650.

Background model initialization

We first demonstrate the efficiency of our method for an outdoor environment.

The sequence A contains different types of objects, including slightly waving trees,

walking people, slow and fast moving vehicles, and even a stationary bike rider.

We shall use this example as a benchmark to analyze the quality of our results,

detection rates, and comparisons to other existing algorithms. As illustrated in

Figs. 2.6 (a) and (b), the background model is initialized into an empty set at t = 0,

and it is until the 44th frame that stationary regions of the scene are started to

be incorporated into the model (due to N = 45 in our setting). Fig. 2.6 (c) shows

a very slow moving car is falsely adapted into the background in transient (and is

eventually removed after its leaving the scene). More interesting is the scenario

30

(a) A020 (b) A166 (c) A261 (d) A372 (e) A540

Figure 2.7: Results of background block detection. Row one: Image frames from
sequence A. Row two: The manually labeled foreground (white) and background
(black) maps. Note that the very slow-moving car in (c) that later becomes fully
stationary in (d) is labeled as foreground and background, respectively. Row
three: Our background block detection results. The foreground blocks in gray are
identified by the top-down validation process.

depicted in Figs. 2.6 (d) and (e) that a bike rider waiting for a green traffic light

has remained still long enough to become a part of the derived back-ground model

at t∗ = 650. Then the system can start to track objects via frame differencing and

proper model updating. On the other hand, if we subtract the model from the

first t∗ frames, it gives the complexity of how the background model is initialized.

Factors such as dark shadows and waving trees can now be easily identified from

those shown in Figs. 2.6 (f)-(j).

Background block detection

To quantitatively evaluate the accuracy of the bottom-up block classifications and

the improvement with the top-down validations, we select twenty image frames

31

Table 2.3: Detection error rates with and without top-down validation.

BG/FG Block Without With %
Detection top-down top-down Improvement

Detection Error Rate∗ 0.04142 0.03779 8.764 %
False Positive Rate 0.02246 0.01825 18.744 %
False Negative Rate 0.01896 0.01954 -3.059 %

* Detection Error Rate = # of Misclassified Blocks / # of Testing Blocks

from sequence A that contain moving objects of different sizes and speeds, specular

light, and shadows. We then manually label each image block of the twenty frames

to result in a set of 20061 background and 3939 foreground blocks, where we shall

use them to examine the accuracy of our scheme for background block detection.

In Fig. 2.7, we show results for five selected frames. Note that those gray blocks

are detected as foreground through the top-down validation process. To further

justify the need of a local and global approach, a comparison of the detection

error rates with or without the top-down validation step is given in Table 2.3.

Though the values of detection rates could vary from testing our system in different

environments, it is clear that the improvement of reducing the errors by applying

the top-down validation is significant. As in this example, the reduction rate

of false positives is about 18.744% while the increase rate of false negatives is

only 3.059%. Two observations could arise from the foregoing verification for the

accuracy of our scheme in detecting background blocks.

• For the classifier to accommodate small variations like waving trees, it may

mistakenly classify very slow-moving objects into background (see Fig. 2.6

(c) and Fig. 2.7 (c)). This is indeed a trade-off, and we resolve the issue by

learning a proper decision boundary from the training data.

32

• Our classification scheme may suffer from the aperture problem in detecting

large objects in that we use motion features to construct a general classifier

(see Figs. 2.7 (a) and (c)). With the top-down validation, this problem

can be alleviated to some degree. Still a number of false positives caused

by the aperture problem exist frame-wise. However, since only the same

false positive occurring for N consecutive frames would be adapted into a

background model, such an event rarely happens in practice (with a very low

probability, e.g., around 0.01825N for the example in Table 2.3).

Feature selection

In our design, two general motion cues, the inter-frame difference and the optical

flow value, are adopted to discriminate background scenes. While the inter-frame

difference is effective in detecting static background blocks, the optical flow value,

on the other hand, provides discriminability in classifying image blocks in small

motions into gradually-varying background or moving foreground. To further jus-

tify the use of the optical flow cue, additional evaluations using the inter-frame

difference alone are provided. With the best setting of the difference threshold

at 0.013, the training error is raised from 0.0466 to 0.0528 (or a 13.3% increase),

and the testing error for the 20 evaluation image frames increases from 0.0378 to

0.0436 (or a 15.3% increase). Hence, the benefit of incorporating the optical flow

value is obvious.

Parameter settings

We next investigate the sensitivity of our method with respect to different values

of the two parameters N and L. (Since L = N + 15, it is indeed a one-parameter

33

(a) N = 30 (b) N = 45 (c) N = 60 (d) N = 75 (e) N = 90

Figure 2.8: Results of different parameter settings. In each case, we show the
image frame It∗ (above) that our system completes its estimation for a MAP
initial background model (below). Only for N = 30, it would produce an unstable
estimation due to the violation of stationary criterion. Different values of N and L
(given in Definition 1) mainly affect the needed time to derive a stable background
model. Respectively, it takes 403, 650, 678, 1001, and 1031 frames to compute the
initial background models.

scheme.) Specifically, we have experimented with N = 30, 45, 60, 75, and 90. We

show in Fig. 2.8 that, with different values of N and L, it mainly affects the needed

time to compute a stable initial background model. The larger the value of N is,

the longer period of time it takes to complete the estimation. Except for N = 30,

which is too short a time period for yielding a stationary adaptation, all other

settings of N lead to stable background models.

Comparisons of Background Model Completeness

A clear advantage of our formulation is the ability to know when a well-defined

initial background model is ready to be used for tracking. We demonstrate this

point by making comparisons with the popular mixture of Gaussians model [54]

and the local image flow approach [22]. While the two methods are also effective for

background initialization, they both lack a clear definition of what an underlying

34

background scene is at any time instant of the estimation processes. For systems

based on the mixture of Gaussians, they work by memorizing a certain number of

modes for each pixel, and then by pixel-wise integrating the most probable modes

to form a background model. This is in essence a local scheme that the overall

quality of a background model is difficult to evaluate. On the other hand, the

method described in [22] is designed to process a whole image sequence to output

a background model. We thus need to modify the algorithm into a sequential one

so that the comparisons can be done by frame-wise examining the respectively

derived background models.

The first experiment is carried out with image sequence A where the three

algorithms are alternately run till the image frame t∗ = 650 that our method

completes its estimation for an initial background model. For the mixture model,

we use three Gaussian distributions and a blending rate of 0.01, and initialize

the background model at t = 0 to the first image frame. For the local image

flow implementation, the values of w and δmax are set to 30 and 15, and the

background model is an empty set at t = 0. In Fig. 2.9, we show some intermediate

results of ours and the corresponding background models produced by the other

two methods. Due to the batch nature of the local image flow scheme, its three

background models shown in Fig. 2.9 are obtained by running the algorithm three

times, using the respective periods of image frames as the inputs. Overall, the

results produced by ours and the mixture of Gaussians are more reliable than those

of the local image flow, largely because the local flow scheme relies heavily on the

estimations of optical flow directions and their accuracy. While the outcomes by

the mixture of Gaussians seem to be satisfactory and similar to ours, the absence of

a good measurement to guarantee the quality of the resulting background models

35

(a) A000 (b) A044 (c) A261 (d) A650

Figure 2.9: Comparisons of [22], [54], and our approach. Row one: Images frames
from image sequence A. Row two: The intermediate results of background es-
timation by our method that completes at t∗ = 650. Row three and four: The
results respectively derived by the local image flow approach [22] and the mixture
of Gaussians method [54] at each corresponding time instant.

36

remains a disadvantage of the approach. Furthermore, as one would expect that a

mixture of Gaussians method should be sensitive to lighting variations in that it

is done by locally combining pixel intensities. We shall further elaborate on this

issue with the next experiment.

Our second comparison focuses on the effects of lighting changes. For the

outdoor sequence B (see Fig. 2.10), the lighting condition varies rapidly due to

overcast clouds. And the experimental results show that our method is less sensi-

tive to variations of this kind. Specifically, in Figs. 2.10 (e) and (f), we enlarge the

sizes and enhance the contrasts of the two derived background models for a clearer

view. Note that especially in the road area our background model estimation is

clearly of better quality than the one yielded by the mixture of Gaussians. This

is mostly because of our uses of motion cues for identifying background blocks

and the properties of the MAP background model for integrating local and global

consistency. On the other hand, the mixture of Gaussians approach uses only the

pixel-wise intensity information so that its performance depends critically on the

variations of intensity distribution about the background scene.

Initialization and tracking

To further illustrate the efficiency of using our proposed algorithm to estimate a

background model for tracking, we show the estimations of initial background mod-

els of test sequences C and D, and some subsequent tracking results in Fig. 2.11.

Below each depicted image frame It, the corresponding background model B̃∗
t is

plotted. In the two experiments, the estimations of the initial background model

B̃∗
t∗ are completed at frame number t∗ = 470, and 243, respectively. Once the B̃∗

t∗

is available, the system can start to track objects immediately, using the scheme

37

(a) B008 (b) B165 (c) B260 (d) B396

(e) Mixture of Gaussians (f) MAP

Figure 2.10: Tests on lighting variations with the sequence B. (a)–(d) Due to
overcast clouds, the outdoor lightings over the road change significantly throughout
the sequence. As a result, the quality of background models yielded by the mixture
of Gaussians is considerably affected. However, our formulation is more robust
to such lighting perturbations. (e)–(f) The two derived background models at
t∗ = 475 are enlarged and enhanced in contrast. False textures and extra noises
can be observed in the road areas of (e).

38

described in [6]. We also note that, as demonstrated in Figs. 2.11 (j)-(l), the back-

ground model can be updated appropriately during tracking, even when significant

changes in the scene background have occurred.

39

(a) C050 (b) C295 (g) D055 (h) D146

(c) C470 (t∗ = 470) (d) C501 (i) D243 (t∗ = 243) (j) D338

(e) C535 (f) C549 (k) D373 (l) D610

Figure 2.11: Background model initialization and tracking. The current image
frame It and the derived background model B̃∗

t are plotted together, top and
bottom, respectively. Some Tracking results are also shown in the Its.

40

Chapter 3

Background Model Maintenance

via Density Estimation

To model a scene for background subtraction, Gaussian mixture modeling (GMM)

is a popular choice for its capability of adaptation to background variations.

However, GMM often suffers from a trade-off between robustness to background

changes and sensitivity to foreground abnormalities, and is inefficient in manag-

ing the trade-off for various surveillance scenarios. By reviewing the formulations

of GMM, we identify that such a trade-off can be easily controlled by adaptive

adjustments of the GMM’s learning rates for image pixels at different locations

and of distinct properties. A new bivariate rate control scheme based on a feed-

back of high-level information is then developed to provide better regularization

of background adaptation for GMM and to help resolving the trade-off. Addition-

ally, to handle lighting variations that change too fast to be caught by GMM, a

heuristic rooting in frame difference is proposed to assist the proposed rate con-

trol scheme for reducing false foreground alarms. Experiments show the proposed

41

bivariate learning rate control scheme, together with the heuristic for adaptation

of double-quick lighting change, gives better performance than conventional GMM

approaches.

3.1 Overview

For video surveillance using a static camera, background subtraction is often re-

garded as an effective and efficient method for differentiating foreground objects

from a background scene. The performance of background subtraction highly

depends on how a background scene is modeled. Ideally, a perfect design of back-

ground modeling should be able to tolerate various background variations without

losing the sensitivity in detecting abnormal foreground objects. However, the

trade-off between statistical robustness and sensitivity in background modeling

is commonly encountered in practice and is hard to be balanced within a single

computational framework.

Among various background modeling approaches, e.g., [4], [9], [13], [19], [21],

[24], [33], [40], [41], [43], [47], [48], [50], [51], [54], [58], [64], [68], [70], the Gaussian

mixture modeling (GMM) [19], [21], [54] is known to be effective in sustaining

background variations, e.g., waving trees, due to its use of multiple buffers to

memorize scene states. It is hence widely adopted as a base framework in many

later developments [25], [26], [27], [36], [42], [55], [71]. However, the GMM often

suffers from the trade-off between statistical robustness to background changes

and sensitivity to foreground abnormalities, abbreviated as R-S trade-off in later

discussions. For instance, a Gaussian mixture model being tuned to tolerate quick

changes in background may also adapt itself to stationary objects, e.g., unattended

42

bags left by passengers, too quickly to issue reliable alarms. The lack of a simple

and flexible way to manage the R-S trade-off for various scenarios motivates this

research to re-examine the formulations of the GMM.

In the original formulations of the GMM, every image pixel, regardless of its

intensity being changing or not, is given the same setting of learning rates in

background model estimation, which is inefficient in managing the R-S trade-off.

Considering a pixel of background that was just uncovered from occlusion of a

moving object, the corresponding Gaussian mixture model for this pixel should

be updated in a slower pace than that for a stable background pixel, to prevent

false inclusion of moving shadows or motion blurs into background. Nonetheless,

in the original GMM formulations, an identical learning rate setting is applied to

all image pixels, leaving no space for tuning the background adaptation speeds for

this case. We therefore highlight the importance of adaptive learning rate control

in space and in time, and develop a new bivariate rate control scheme based on

the high-level feedback of pixel properties for GMM.

Features of the proposed scheme of bivariate learning rate control for GMM

are in several folds. Firstly, two types of learning needs are identified for a Gaus-

sian mixture model (for an image pixel), one for controlling the model estimation

accuracy and the other for regularizing the R-S trade-off. Different from previ-

ous works, e.g., [25], [54], that use a single learning rate setting for both learning

needs, the proposed bivariate rate control scheme distinguishes two different types

of learning rates and manipulates them independently. Secondly, the background

adaptation rates for image pixels are set individually in space. Image pixels at

different locations may thus exhibit distinct behaviors in background adaptation

for accommodating local scene changes. Thirdly, for every image pixel, its learning

43

rate for regularizing the R-S trade-off is computed based on the high-level feed-

back of its latest pixel type, i.e., as background, stationary foreground, moving

foreground, etc. Under this feedback control, the learning rate setting for an im-

age pixel can be dynamically adjusted in time, according to its type, and with

respect to different application scenarios1. The more pixel types are allowed, the

higher flexibility in background adaptation can be attained. Fourthly, a heuristic

for adaptation of double-quick lighting change is suggested to assist the learning

rate control to adapt very rapid lighting changes in background. This heuristic

enhances the model robustness to speedy lighting variations without sacrificing the

sensitivity in detection of significant foreground motions. To sum up, we maintain

that via a careful design of learning rate control for the GMM, the R-S trade-off

can be effectively and efficiently regularized in fulfilling various needs in video

surveillance.

3.1.1 Related Work

Balancing the R-S trade-off has long been an important task in background mod-

eling. In [58], Toyama et al. explore several scenarios that are hard to be handled

by background modeling, and propose a hybrid approach to maintain background

models at different spatial scales. In [4], Boult et al. apply different learning rates

to foreground and background pixels to increase the model sensitivity for single

Gaussian formulation and develop cleaning algorithms to reduce false alarms. In

[20], Gao et al. use statistical analysis to tune parameters in background modeling,

including the number of Gaussian components and the learning rate, for controlling

1For example, while pixels of stationary objects may need to be quickly adapted into back-
ground for the application of moving object detection, they should be stably identified as fore-
ground for the application of unattended object detection.

44

the trade-off. In [37], Li et al. utilize spatio-temporal features to model complex

backgrounds and develop a criterion to select the learning rate for the adapta-

tion of once-off background change. In [25], Harville discusses some trade-offs

frequently encountered by the GMM and adopts high-level feedback as a remedy.

Also based on the GMM, Tian et al. propose a weight exchange scheme based

on object-level feedback to prevent foreground fragmentation in the detection of

static object [55]. In [71], Zivkovic analyzes the appropriate number of mixture

components for the GMM and dynamically removes some mixture components

for computational efficiency. In [36], Lee proposes a new rate control formulation

for the learning of Gaussian parameters to enhance the accuracy and convergence

speed of background model estimation. Model robustness to background changes

is improved by Lee’s learning rate control without obvious side-effects on model

sensitivity. In [66], a two-layer GMM is proposed by Yang et al. to learn fore-

ground and background models at different learning rates and to achieve better

foreground segmentation results. Beyond Gaussian-based formulations, Elgammal

et al. adopt kernel density estimation to compute background models, and com-

bine short-term and long-term models to balance the R-S trade-off [13]. Despite

the effectiveness in background modeling for all the approaches mentioned above,

no comprehensive investigation into the relationship between model learning rates

and the trade-off control for different surveillance scenarios within a single back-

ground modeling framework has been conducted.

Note also that the idea of adopting high-level feedbacks, e.g., using foreground

pixel type, in background modeling is not new [4], [25], [55], [66]. Yet the proposed

feedback control over learning rates has several novel features. Firstly, to the best

of our knowledge, the proposed work is the first to apply independent controls

45

over two types of learning rates for simultaneously enhancing the model estimation

accuracy and regularizing the R-S trade-off. High-level feedbacks are applied only

to the learning rate control related to the R-S trade-off. Based on our study,

this independent control of two-type learning rates is a key to derive a robust

background modeling system. Secondly, a new rate control framework capable of

managing multiple pixel types as feedbacks is demonstrated to be practical and

feasible. Thirdly, the need of dynamically adjusting the learning rates for pixels

of background type is firstly identified in this study. This particular learning rate

control for background pixels can increase model sensitivity to hovering objects

with little side-effect to model robustness.

3.1.2 Model Accuracy, Robustness and Sensitivity

To estimate a density distribution from a sequence of intensities I0,x, . . . , It,x
2 for a

pixel at a position x via the GMM, three issues regarding model accuracy, robust-

ness and sensitivity need to be addressed. Specifically, a mixture model consisting

of N Gaussian distributions at time instance t can be denoted by

P (It,x) =
N∑

n=1

wt−1,x,n N
(
It,x;µt−1,x,n, σ

2
t−1,x,n

)
,

where N symbolizes a Gaussian probability density function

N
(
I;µ, σ2

) .
=

1√
2πσ2

exp

(
−(I − µ)2

2σ2

)
,

2Here It,x ∈ R denotes the 1-D pixel intensity only. Yet, all our formulations can be easily
extended to multi-dimensional color image processing, e.g., It,x ∈ R

3.

46

µt−1,x,n and σ2
t−1,x,n are the Gaussian parameters of the nth model, and wt−1,x,n is

the respective mixture weight. For maintaining this mixture model, the parameters

µt−1, σ
2
t−1 and wt−1 need to be updated based on a new observation It,x. In the

GMM, the update rule for µ, for the case that It,x matches the nth Gaussian

model, is

µt,x,n = (1− ρ)µt−1,x,n + ρIt,x,

where ρ ∈ [0, 1] is a learning rate3 that controls how fast the estimate µ converges

to new observations. Likewise, similar update rules can be applied to renewing σ2

and w, given corresponding learning rates.

In updating the Gaussian parameters µ and σ2, their values should reflect the

up-to-date statistics of a scene as accurately as possible. It is thus preferable to set

their learning rates to large values to quickly derive Gaussian distributions that

fit new observations. Also as noted in [36], setting higher learning rates for µ and

σ2 improves model convergency and accuracy, and brings few side-effect in model

stability.

While the model estimation accuracy depends on the learning rates for µ and

σ, one can see that the R-S trade-off is affected by the learning rate for the mixture

weight w. In the original GMM for background model estimation, the classification

of Gaussian models into foreground and background is done by evaluating their

mixture weights through thresholding. The Gaussian models that appear more

often will receive larger weights in the model updating process, and will possibly

be labeled as background [54]. However, the frequency of model occurrence should

not be the only factor that guides the changes of mixture weights. For example,

3The definition of learning rate is inherited from [54].

47

one may prefer to give large weights to the Gaussian models of tree shadows (for

background adaptation) while to keep small weights to those of parked cars (for

foreground detection), despite the similar frequencies of occurrence of these two

objects. By incorporating the high-level information of pixel types, e.g., of shadow

or car, into the weight updating process, flexible background modeling can then

be carried out. As more pixel types are designated by a surveillance system, more

appropriate controls on weight changes can be advised accordingly, which will help

resolving the R-S trade-off in background modeling. Based on this observation, we

propose a new bivariate learning rate control scheme based on a feedback of pixel

type for GMM.

3.2 Bivariate Learning Rate Control via High-

Level Feedback

Our presentations of the proposed bivariate learning rate control via high-level

feedback is divided into three parts. Firstly, an algorithm of background model

maintenance using the GMM is proposed, wherein two types of learning rates

are formally defined. We highlight the importance of the learning rate control

for mixture weights and elaborate its relationship to foreground pixel labeling.

Secondly, a feedback scheme that controls the learning rates for mixture weights

is detailed. Under this feedback control, different learning rates can be applied

to different image locations and scene types, which makes dynamic background

adaptation possible. Thirdly, a heuristic based on frame difference is introduced to

assist the learning rate control for the adaptation of double-quick lighting changes.

48

False alarms caused by, for example, sudden sunshine changes in the background

can hence be suppressed by this heuristic while significant, object motions can still

be captured.

3.2.1 Background Model Maintenance

Given a new observation of pixel intensity It,x, the task of background model

maintenance is to match this new observation to existing Gaussian distributions,

if possible, and to renew all the parameters of the Gaussian mixture model for this

pixel. The detailed steps of the proposed background model maintenance using

the GMM is shown in Algorithm 2.

For the model matching in Algorithm 2, l(t,x) is utilized to index the best

matched Gaussian model of It,x, if existing. Otherwise, l(t,x) = 0 will be set to

indicate It,x is a brand-new observation and should be modeled by a new Gaussian

distribution. The matching results of It,x can be recorded by model matching

indicators, i.e.,

Mt,x,n =

1, if n = l(t,x),

0, otherwise,
for n = 1, . . . , N,

and will be used in the later model update. Unlike [54] that adopts a more complex

formulation in model matching, i.e.,

l(t,x) = argmin
n=1,...,N

|It,x − µt−1,x,n|
σt−1,x,n

, (3.1)

a simple rule that selects the model of higher weight as the best match is used in

49

Algorithm 2. The proposed weight-based matching rule prefers matching a pixel

observation to the Gaussian model of background (with higher weight) other than

those of foreground, if this observation falls in the scopes of multiple models. Using

this rule not only saves computational costs but also fits the proposed rate control

scheme better, as will be discussed in more detail later.

After model matching, we check if Mt,x,l(t,x) is equal to 0, which implies no

model matched. If so, a model replacement is performed to incorporate It,x into

the GMM; otherwise, a model update is executed. In the replacement phase, the

least weighted Gaussian model is replaced by the current intensity observation. In

the update phase, the following three rules,

µt,x,l(t,x) =
(
1− ρt,x,l(t,x)(α)

)
µt−1,x,l(t,x) + ρt,x,l(t,x)(α) It,x, (3.2)

σ2
t,x,l(t,x) =

(
1− ρt,x,l(t,x)(α)

)
σ2
t−1,x,l(t,x) + ρt,x,l(t,x)(α)

(
It,x − µt,x,l(t,x)

)2
, (3.3)

wt,x,n =(1− ηt,x(β))wt−1,x,n + ηt,x(β)Mt,x,n, (3.4)

are applied, where ρt,x,l(t,x)(α) ∈ R denotes the learning rate for the Gaussian

parameters µ and σ2, and ηt,x(β) ∈ R is a new learning rate introduced in this

research for controlling the updating speed of the mixture weight w. Here, the two

scalars α and β can be viewed as hyper-parameters over ρ and η for tuning their

values. In [54], the learning rate ρ is defined as

ρt,x,l(t,x)(α)
.
= αN

(
It,x;µt−1,x,l(t,x), σ

2
t−1,x,l(t,x)

)
, (3.5)

50

while in [36] it is given by

ρt,x,l(t,x)(α)
.
=

(
1− α

ct,x,l(t,x)
+ α

)
, (3.6)

where ct,x,n = ct−1,x,n +Mt,x,n and ct=0,x,n = 0, ∀x, n.4 Although (3.6) may result

in quicker convergence in Gaussian parameter learning [36], we still choose (3.5)

in our implementation for experimental comparisons and put our emphasis on the

control of the learning rate η for the mixture weight. In later experiments we

will show that better performance can be achieved by controlling the learning rate

η than by tuning the rate ρ. Also, as noted in [36], typical values of α are in

[0.1, 0.001] for both (3.5) and (3.6), yielding a wide range of convergence rates in

Gaussian parameter estimation. Here we set α = 0.025 as a default value for quick

model learning.

In previous background modeling researches, e.g., [25], [36], [54], a naive setting

for mixture weight update, i.e.,

wt,x,n = (1− α)wt−1,x,n + αMt,x,n, (3.7)

is adopted. The rule (3.7) can be viewed as a special case of the proposed weight

update of (3.4) with ηt,x = α. In (3.7), all image pixels are confined to having an

identical rate setting in mixture weight learning, so that scene changes can not be

properly handled with respect to space and time. Instead, with our generaliza-

tion that assigns individual learning rates for mixture weights to image pixels and

adapts them over time, higher flexibility in regularizing background adaptation

4Interested readers can find the details in [36].

51

Algorithm 2: Background model maintenance

1 Parameters: Tσ(= 2.5), σ2
0(= 102), w0(= 0.01)

2 // Model matching

3 Mt,x,n = 0, ∀n = 1, . . . , N
4 dt,x,n = inf, ∀n = 1, . . . , N
5 for n = 1, . . . , N do

6 if |It,x − µt−1,x,n| ≤ Tσ σt−1,x,n then dt,x,n = −wt−1,x,n

7 l(t,x) = argminn=1,...,N dt,x,n
8 if dt,x,l(t,x) 6= inf then Mt,x,l(t,x) = 1 else l(t,x) = 0

9 // Model renewing

10 wt,x,n = (1− ηt,x(β))wt−1,x,n + ηt,x(β)Mt,x,n, ∀n
11 if Mt,x,l(t,x) = 1 then

12 // Update phase

13 ρt,x,l(t,x)(α) = αN
(
It,x; µt−1,x,l(t,x), σ

2
t−1,x,l(t,x)

)

14 µt,x,l(t,x) =
(
1− ρt,x,l(t,x)(α)

)
µt−1,x,l(t,x) + ρt,x,l(t,x)(α) It,x

15 σ2
t,x,l(t,x) =

(
1− ρt,x,l(t,x)(α)

)
σ2
t−1,x,l(t,x) + ρt,x,l(t,x)(α) (It,x − µt,x,l)

2

16 else

17 // Replacement phase

18 k = argminn=1,...,N wt−1,x,n

19 µt,x,k = It,x
20 σ2

t,x,k = σ2
0

21 wt,x,k = w0

22 wt,x,n = wt,x,n/
∑N

n=1wt,x,n, ∀n

can be obtained. Note that the index n is not attached to ηt,x because the chang-

ing rates for the weights wt,x,ns, ∀n, are designed to be consistent among the N

Gaussian models of the same image pixel. Regarding the computation of ηt,x, we

link it to the high-level feedback of pixel types and describe the feedback control

in Sec. 3.2.2.

In the GMM, all the scene changes, regardless of being foreground or back-

ground, are modeled by Gaussian distributions. To further distinguish these two

classes, a foreground indicator Ft,x,n for each Gaussian model is defined using the

52

corresponding mixture weight as

Ft,x,n =

0 if wt,x,n ≥ Tw,

1 otherwise,
(3.8)

where Tw ∈ R is a preset parameter.5 A binary foreground map can then be defined

as a set Ft = {Ft,x,l(t,x)|∀x}. In the original GMM formulations applying (3.7),

more frequently matched Gaussian models will have larger weights and will be

labeled as background. Nevertheless, stationary objects, e.g., abandoned packages

or standing persons, that appear constantly within a restricted area should not

always be absorbed into background for some applications. Rather, these objects

may need to be stably highlighted as foreground and alarms should be triggered

if necessary. By adaptively adjusting ηt,x in (3.4) based on object types, as will

be discussed next, such demands may be fulfilled without resorting to complex

versions of (3.8) for foreground and background separation.

3.2.2 Feedback Control

A flowchart of a general-purposed surveillance system is illustrated in Fig. 3.1,

where five processing modules are presented in a sequential manner. To address

the above issue associated with object types, the final results derived by the last

module of object type classification is fed back to the first one of background model

maintenance for further control of the learning rates. Rather than digging into the

details of each module wherein different implementations can be accommodated,

we place the focus on the learning rate control for mixture weights in the following

5The procedure of model sorting by the values of w/σ, as suggested in [54], is not applied
here since it is more complex and may cause complications in foreground pixel labeling.

53

Background Model Maintenance

Foreground Pixel Identification

Shadow Detection

Object Extraction

Object Type Classification

Image input Feedback

Figure 3.1: Flowchart of a general-purposed surveillance system. The first module
of background model maintenance corresponds to the Algorithm 2. The second
one of foreground pixel identification is implemented by using the mixture weight
thresholding discussed in Sec. 3.2.1. The third module can be realized by using an
shadow detection algorithm described in [6]. For object extraction, we mark small
(< 4×4 pixels), isolated foreground regions as noises via morphological processing
and group the rest foreground pixels into objects by connected component analysis.
Regarding the object type classification and the feedback control on learning rates,
they are presented in Sec. 3.2.2.

54

discussions.

In the proposed approach, we adopt different learning rate settings for four

object types of background, shadow, still foreground and moving foreground, re-

spectively. Based on the processing flow of Fig. 3.1, the object types of background,

shadow and foreground can be easily discriminated. To further classify the fore-

ground type into still and moving ones, the object tracking algorithm presented in

[6] is adopted to find the temporal associations among objects of time instances t

and t− 1. Then, the position displacements of tracked objects are thresholded for

discrimination of still and moving types. Thus, an object type indicator for every

pixel at time instance t can be defined as

Ot,x =

0 if Ft,x,l(t,x) = 0, (Background)

1 if Ft,x,l(t,x) = 1 and Type(It,x) = Shadow,

2 if Ft,x,l(t,x) = 1 and Type(It,x) = Still foreground,

3 Otherwise. (Moving foreground)

and an object map can be denoted by Ot = {Ot,x|∀x}. Subsequently, the ob-

ject map Ot is sent back to the background model maintenance module for the

learning rate control at the next time instance. This process can be regarded as a

delayed feedback control since the current learning rates are calculated based on

the previous estimations of pixel types. The above one-frame delay in feedback

control works well in practice because the previous type estimations often provide

reasonable guesses of the current pixel types if the frame rate is high with respect

to foreground movements. In addition, since the feedback control is applied to the

learning rate ηt,x, but not to the mixture weights wt,x,n directly, dramatic changes

55

in mixture weights as pixel type varies can be avoided. Stable foreground and

background separation (via weight thresholding) can thus be obtained.

With the above notations, the learning rate ηt,x can now be specified by

ηt,x(β) =

(1− βb) ηt−1,x + ηbβb if Ot−1,x = 0,

βdN
(
It,x;µt−1,x,b(t,x), σ

2
t−1,x,b(t,x)

)
if Ot−1,x = 1,

βs if Ot−1,x = 2,

βm if Ot−1,x = 3.

(3.9)

where ηb is a preset constant, the hyper-parameter β =

[
βb βd βs βm

]T
∈ R

4 is

extended to a vector for controlling the learning rate with respect to different pixel

types, and the index of the most probable background model, b(t,x), is defined by

b(t,x) = argmax
n=1,...,N

wt,x,n.

For a pixel of moving foreground (Ot−1,x = 3), one may set βm ∼ 0 to suppress

the adaptation of all moving objects into background, resulting in a very sensitive

system to motions. In contrast, by setting βm to a large value, which results in a

quick increase of the weight of a Gaussian model for, say, a waving tree, a system

will be more capable of tolerating background variations. On the other hand, for

the type of still foreground, the larger the βs is set, the quicker a stationary object

will be merged into background. For the application of abandoned and missing

object detection, a small βs is preferred. Regarding the case of shadow type, we

favor faster adaptation of fainter shadows into background, so N (·) is used to

estimate the similarity between the shadow intensity and the Gaussian model of

56

0 100 200 300 400 500 600
0

0.005

0.01

0.015

0.02

0.025

t

η t

β
b
=0.01

β
b
=0.1

Figure 3.2: Simulated changes of the learning rate ηt for a pixel being persistent
background, given βb = 0.01 (solid line) and βb = 0.1 (dotted line), respectively.
The initial learning rate ηt=0 is set to 1/6000 and ηb is set to 0.025.

the most probable background (indexed by bt,x). The corresponding learning rate

is then set to the similarity measure multiplied by a regularization scalar βd.

For a pixel of background type, i.e., Ot−1,x = 0, its learning rate is designed

to be gradually increased at a rate regularized by βb, as formulated in (3.9). The

learning rate for an image pixel being persistently identified as background will

asymptotically approach ηb, as shown in Fig. 3.2. However, once this pixel position

being occluded by shadows or moving objects, the respective learning rate will be

reset to other value, e.g., βm, that is much smaller than it was used to be. This

design helps preventing false inclusion of afterimages left by moving objects into

background. When taking pictures of moving objects, their boundaries are often

in blur. See Fig. 3.3 for an example. Some motion-blurred regions near object

boundaries may be misclassified as background, resulting in afterimages. For an

object hovering over a region, its afterimages appear frequently and will be quickly

57

Figure 3.3: Example of motion blur. The foreground and background boundaries of
a moving hand may not be clearly distinguished, even by human visual inspection.

included into a background model. To alleviate such a problem, instead of setting

the learning rate to a constant, i.e.,

ηt,x = ηb, if Ot−1,x = 0, (3.10)

it is increased gradually for a pixel of background in the proposed approach. In

Sec. 3.3.1, benefits of adopting this background-type rate control will be demon-

strated. Note that, in all our experiments, we set ηb = α, βb = 0.01, βd = 1/100,

βs = 1/900 and βm = 1/6000.

As discussed in [4] and [13], a major problem with feedback control for back-

ground modeling is that misclassifications of pixel type in the current frame will

propagate to subsequent frames as the learning rates are determined by classifica-

tion results. For instance, if a background pixel is misclassified as foreground, a

false positive will persist at this pixel location for a long time due to the low learn-

58

ing rate setting for foreground pixel. Fortunately, this problem can be treated, if

not cured, by the proposed framework of bivariate learning rate control.

Based on our observations, the problem with feedback control for background

modeling can be effectively treated if the following two criteria fulfilled: (a) ac-

curate estimation of a background model and (b) prevention of background adap-

tation to pixels of misclassified types. In the proposed approach, giving separate

controls to the learning rates ρ and η meets the criterion (a). Up-to-date model

estimations can hence be delivered by setting a large ρ, regardless of foreground

classification results controlled by η. Even for the pixels of misclassified types, their

Gaussian models can still be accurately estimated. Our experiments in Sec. 3.3.5

show that the accurate estimation of background models will help reducing per-

sistent false positives of misclassified pixels.

Regarding the criterion (b), the background-type rate control in (3.9) is de-

signed for it. With this control, false background adaptation to foreground motion

blurs (a.k.a. afterimages) can be largely reduced, as will be shown in Sec. 3.3.1. In

addition, the weight-based matching rule is utilized in our approach to eliminate

false positives even more. Although the matching rule seems to prefer the most-

weighted Gaussian models of background for new pixel observations, it matching

results are still trustworthy owing to our capability of deriving accurate Gaussian

models. Advantages of adopting this weight-based matching rule will be further

demonstrated in Sec 3.3.5.

59

(a) IAt−60
(b) IAt (t = 183) (c) |IAt − IAt−60

| ∗ 6

(d) IBt−12
(e) IBt (t = 548) (f) |IBt − IBt−12

| ∗ 6

Figure 3.4: Examples of (i) quick and (ii) double-quick lighting changes. (a)-(c)
Two images in Seq. A (recorded at 20 fps) and their difference for (i). (d)-(f) Two
images in Seq. B (recorded at 15 fps) and their difference for (ii).

3.2.3 Heuristic for Adaptation of Double-Quick Lighting

Change

Surveillance systems often encounter challenges from lighting changes, especially

for systems used in outdoor environments. While gradual and quick lighting vari-

ations can often be adapted by the GMM, some double-quick changes can not be

caught via background model learning at reasonable learning rates. For instance,

two examples of quick and double-quick lighting changes are given in Fig. 3.4. The

image sequence A shown in Figs. 3.4 (a)-(c) records a laboratory with a monitor

displaying rolling interferences. In this indoor sequence, it takes about 3 seconds

to increase the average intensity by 20%. This quick variation in image brightness

can still be learned by the GMM, as will be demonstrated in Sec. 3.3.1. In contrast,

60

for a double-quick lighting change shown in Figs. 3.4 (d)-(f), similar increases of

image intensity are observed in less than one second for an outdoor environment.

As will be shown in Sec. 3.3.3, many false alarms in foreground detection are issued

under such condition. Consequently, a heuristic based on frame difference is also

developed to assist the GMM to cope with double-quick lighting changes.

The idea behind the heuristic is simple yet effective. While image intensity

variation of double-quick lighting change may seem to be large among temporally

distant image frames, it may be small between two consecutive frames if the frame

rate of recording is high enough. The small and smooth change of image brightness

between consecutive image frames provides a cue for eliminating false alarms in

foreground detection for double-quick, but not abrupt6, lighting changes. For ex-

ample, by thresholding the differences between corresponding pair of pixels, each

from two consecutive frames, at a proper level, such false alarms can often be

reduced.

Accordingly, the proposed heuristic consists the following formulations. First,

the thresholding of intensity difference for every pixel pair is performed by

Dt,x =

1 |It,x − It−1,x| > Td,

0 otherwise.

where Td(= 10) is a given threshold. Thus, a frame difference map Dt = {Dt,x|∀x}

can be derived. By combining both the frame difference map Dt and the foreground

map Ft via

F ′
t = Ft AND (F ′

t−1 OR Dt), (3.11)

6Abrupt changes in background are regarded as salient deviations between two consecutive
image frames, due to, e.g., light on/off.

61

a new foreground map F ′
t being less affected by lighting changes can now be ob-

tained. Note that the OR operation in (3.11) is utilized for temporal accumulation

of foreground regions, which is useful for detecting objects in slow motion. The

map F ′
t is then used to replace Ft as a new output of the second module in Fig. 3.1.

Regarding the lighting change areas where F ′
t−Ft 6= 0, they are relabelled as back-

ground and will be quickly learned by the GMM via (3.9). False alarms caused by

double-quick lighting changes will hence be reduced. Based on our experiments

shown in Sec. 3.3.3, the system robustness to lighting changes will be increased

without losing the sensitivity in detecting significant foreground motions.

Because this heuristic is developed to improve the tolerance of our model to

speedy lighting changes without altering the background estimation results much,

the threshold value is usually limited by 10 ≤ Td ≤ 20. Image differences larger

than 20 between two consecutive image frames, which might be perceived by sen-

sitive human eyes, are considered as abrupt changes. Owing to the accumulating

formulation in (3.11), large lighting changes between two distant image frames can

still be handled using small Td for most cases.

3.3 Experimental Results

Several real videos are used to test the effectiveness of the proposed bivariate

learning rate control scheme. In Sec. 3.3.1, comparisons among different learn-

ing rate controls proposed by the original GMM [54], its variant [36] and this

research are presented7 using two image sequences with lighting changes, missing

7For experimental evaluations, we apply the conventional matching rule (3.1) to [36] and [54],
and use the same labeling rule (3.8) with Tw = 0.24 to all the methods to segment foreground
regions.

62

objects and waving hands. While the first scenario of lighting changes should be

quickly adapted into background, the other two should not. All these scenarios

can be properly handled by the proposed approach but not by those of [54] and

[36]. In Sec 3.3.2, the effects of tuning the parameter β are discussed. Next in

Sec 3.3.3, by using a third image sequence as a benchmark, the superiority of

the proposed heuristic for adaptation of double-quick lighting change is demon-

strated. In Sec. 3.3.4, quantitative evaluations of selected approaches with respect

to different α values are presented. In Sec. 3.3.5, an example of fountain spurt is

used to demonstrate our treatments of the problem with feedback control for back-

ground modeling. Finally, additional experimental results are given to show the

effectiveness of the proposed approach for the scenes of waving water and crowded

entrance.

3.3.1 Regularized Background Adaptation

In the first experiment for the adaptation of quick lighting changes, we use Seq. A

previously illustrated in Fig. 3.4 as a benchmark. The foreground detection results

and the learned background models, up to the image frame IAt , obtained from

different approaches are shown in Fig. 3.5 for two different learning rates. For

visual comparisons of the learned background models, a definition of background

map Bt =
{
µt,x,b(t,x)|∀x

}
is adopted, and the derived background maps are drawn

in the middle row of Fig. 3.5. In Figs. 3.5 (a) and (b), false positives of foreground

detection are observed by using α = 0.01 for the approaches of [54] and [36].

As shown in Figs. 3.5 (d) and (e), all the false positives can be eliminated by

giving a higher learning rate with α = 0.025 while only the rolling interferences

63

(a) Results of [54] (α = 0.010) (b) Results of [36] (α = 0.010) (c) Our results (α = 0.010)

(d) Results of [54] (α = 0.025) (e) Results of [36] (α = 0.025) (f) Our results (α = 0.025)

Figure 3.5: Comparisons of background adaptation to quick lighting changes using
Seq. A. Top row: foreground detection results for IAt ; middle row: computed
background maps Bts; bottom row: derived foreground maps. In the foreground
maps, the regions in blue denote shadows and noises. (a), (b), and (c) The results
of [54], [36], and our approach, respectively, with α = 0.010. (d), (e), and (f) The
results of [54], [36], and our approach, respectively, with α = 0.025.

64

on a monitor are marked as foreground. On the other hand, correct foreground

detection results are obtained in Figs. 3.5 (c) and (f) by the proposed approach

(with the heuristic of (3.11) applied) for both rate settings.

In the previous experiment, α = 0.025 can be regarded as a proper setting

for adaptation of quick lighting change. However, if the same setting is used for

Seq. C, defects of foreground detection will appear for approaches of [54] and [36].

(Because the foreground detection results of [54] and [36] in this experiment are

almost the same, only those of [36] are shown in Fig. 3.6 for brevity.) As shown in

Fig. 3.6 (a), a cellular phone on a desk is taken away. Usually, a missing personal

property should be marked as foreground and trigger an alarm. However, such an

abnormal event can not be stably detected with α = 0.025. The quick adaption

of the uncovered region into background happens in about one second, as shown

in Fig. 3.6 (b), leaving no evidence of the missing cellular phone. Similarly, hand

waving in front of the camera is soon adapted into background as well, as shown

in Fig. 3.6 (c), causing the hand regions only partially detected. In contrast, the

above two scenarios can be properly handled by the proposed approach with the

same parameter setting (α = 0.025), as shown in Figs. 3.6 (d)-(f). Thanks to the

regularization of the learning rate η, quick lighting changes, missing objects and

periodic motions can all be modeled decently in an unified framework.

Advantages of the proposed background-type rate control are also demon-

strated, using Seq.C, in Fig. 3.7 wherein background modeling results are obtained

with and without the background-type rate control. By replacing the gradual in-

crease of background learning rate in (3.9) with a constant setting of (3.10), as can

be seen in Fig. 3.7 (a), the afterimages induced by the waving hand are included

into the background model (the second row) and the resulted segmentation of fore-

65

(a) Results of [36] for IC
85

(b) Results of [36] for IC
110

(c) Results of [36] for IC
150

(d) Our results for IC
85

(e) Our results for IC
110

(f) Our results for IC
150

Figure 3.6: Comparisons of background modeling for missing object and waving
hand using Seq. C. Top row: foreground detection results; middle row: computed
background maps; bottom row: derived foreground maps. (a), (b), and (c) The
results for IC85, I

C

110, and IC150, respectively, using [36] with α = 0.025. (d), (e),
and (f) The results for IC85, I

C

110, and IC150, respectively, using our approach with
α = 0.025. In (f), the cellular phone taken away is identified as a missing object
and highlighted by a yellow box.

66

(a) IC
365

(w/o BTRC) (b) IC
810

(w/o BTRC) (c) IC
365

(w/ BTRC) (d) IC
810

(w/ BTRC)

Figure 3.7: Comparisons of background modeling results obtained without and
with using the background-type rate control (BTRC). Top row: foreground de-
tection results; middle row: computed background maps; bottom row: derived
foreground maps. (a) and (b) The results derived by replacing the first equation
of (3.9) with (3.10). (c) and (d) The results derived by (3.9).

ground regions is incomplete (the third row). In Fig. 3.7 (b), as the hand moving

out of the scene, the incorrect background model continues to gives false positives

in foreground detection for a period of time. On the other hand, such defects can

be effectively reduced by using the proposed rate control for background pixels, as

shown in Figs. 3.7 (c) and (d).

3.3.2 Parameter Tuning

As tuning the hyper-parameter β =

[
βb βd βs βm

]T
, the effect is more on time

span of background adaptation than on the accuracy of background modeling.

Specifically, varying βs changes the time span for a still object to be merged into

a background model, if no interrupt occurs. The number of required image frames

67

Table 3.1: Numbers of image frames resisting background adaptation to afterim-
ages w.r.t. βbs.

βb 0.01 0.05 0.1 0.5 1
of Frames > 700 > 700 ∼ 430 ∼ 175 ∼ 165

to adapt a pixel of still type into background can be estimated by

argmin
t

wt > Tw subject to wt = (1− βs)wt−1 + βs.

For example, given βs = 1/900 and w0 = 0.01 as an initial value, at least t = 239

image frames are required to complete the background adaptation of a still-type

pixel. For Seq. C shown in Fig. 3.7, it takes about 288 frames to replace regions

of the missing cellular phone with newly-revealed scenes in the background model,

just a little longer than predicted. Regarding the default setting of βm = 1/6000,

at least t = 1588 image frames are needed for a pixel being continuously occupied

by the same hovering object to be adapted into background. This number of

image frames roughly matches the testing example shown in Sec. 3.3.5 where all

the regions of a fountain spurt are adapted into background in about 2000 image

frames.

Similarly, tuning βb alters the time span of avoiding afterimages to be incorpo-

rated into a background model. Taking Seq. C as an benchmark, the numbers of

image frames having no afterimage in background models under different βbs are

summarized in Table 3.1. Here setting βb to 0.05 or less gives no obvious defects

in the estimated background models throughout the sequence. On the other hand,

increasing βb and βm may be needed for scenarios with large periodic motions, e.g.,

shaking tree branches and moving tides.

68

Regarding βd, it is tuned to slightly defer the adaptation of shadows that are

usually casted by foreground objects into a background model. Thus, the product

βdN
(
It,x;µt−1,x,b(t,x), σ

2
t−1,x,b(t,x)

)
should be kept below βb. In addition, if the

product is less than βs, it will instead be reset to βs in our implementation, to

adapt static and frequently-seen shadows into background. To sum up, via proper

tuning of β, the required time spans for adapting pixel of different types into

background can be easily and accurately controlled for various applications.

3.3.3 Double-Quick Lighting Change

Fig. 3.8 shows a scene experiencing double-quick sunshine changes. The resultant

double-quick changes in background can not be adapted in time by the GMM

framework, even by setting high learning rates, as shown in Fig. 3.8. By utilizing

the proposed heuristic, with Td set to 10, for adaptation of double-quick lighting

change, almost all the false positives resulted from sunshine changes are eliminated

in the entire testing sequence. Nevertheless, a few sides-effects are also observed.

Fig. 3.8 (d) gives an example that a small motorcycle whose colors are similar to

the background scene is misidentified as noises (marked in blue), for some parts of

this object are deleted by frame difference. Through examination of these results,

one can easily see that, overall, adopting such a heuristic actually brings in more

benefits than drawbacks. Further quantitative evaluations, as will be presented

later, also support this observation. Many false positives in foreground detection

can thus be reduced while only limited false negatives are induced. Besides, large,

significant motions will not be ignored by using this heuristic due to its design of

foreground map accumulation via the OR operation in (3.11).

69

(a) Results of [54] (α = 0.025) (b) Results of [36] (α = 0.025)(c) Results of [54] (α = 0.050)

(d) Results of [36] (α = 0.050)(e) Our results (α = 0.025,
w/o heuristic)

(f) Our results (α = 0.025)

Figure 3.8: Comparisons of background adaption to double-quick lighting change
using Seq. B. The foreground detection results for IBt are illustrated. (a) and (b)
The results of [54] and [36], respectively, with α = 0.025. (c) and (d) The results of
[54] and [36], respectively, with α = 0.050. (e) The results of the proposed approach
without using the heuristic for adaptation of double-quick lighting change. (f)
The results of the proposed approach. The yellow arrows mark the undetected
foreground regions of a small motorcycle.

70

(a) IB
450

(b) IB
500

(c) IB
548

(d) IB
600

Figure 3.9: Snapshots of the ground-truth images for Seq. B

3.3.4 Quantitative Evaluations

In the quantitative comparisons among [36], [54], and our approach without/with

the heuristic of (3.11), Seq. B is used as a benchmark for it is a real and chal-

lenging sequence. To construct the ground-truth data, we write a program to

segment possible foreground regions of Seq. B with high sensitivity. Subsequently,

32 representative image frames are selected by visual inspection, and with their

segmentation results refined manually. Note that all the vehicles in the scene, no

matter in motion or resting, are marked as foreground in this evaluation. Snap-

shots of the ground-truth images are given in Fig. 3.9.

The statistical plots in Fig. 3.10 are generated by applying different α values

to all the compared methods. Also, two Td settings for our approach are included

in the comparison. Results in Fig. 3.10 show that, with Td = 10, the proposed

approach constantly achieves low false positive rates (< 1%) while keeping high

detection accuracy (> 90%) for all αs. If the heuristic is not used, then α = 0.2

can be chosen for our approach to both catch the double-quick lighting changes

and maintain high detection accuracy. As for the methods of [36] and [54], finding

71

(0.001) (0.005) (0.01) (0.05) (0.1) (0.2)
0.975

0.98

0.985

0.99

0.995

1

α (plotted in log Scale)

D
et

ec
tio

n
R

at
e

Accuracy of Foreground Detection

GMM
DSLee
Our Approach w/o Heuristic
Our Approach (T

d
=10)

Our Approach (T
d
=20)

(a)

(0.001) (0.005) (0.01) (0.05) (0.1) (0.2)
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

α (plotted in log Scale)

E
rr

or
 R

at
e

False Positive of Foreground Detection

GMM
DSLee
Our Approach w/o Heuristic
Our Approach (T

d
=10)

Our Approach (T
d
=20)

(b)

Figure 3.10: Quantitative comparisons of [36] (DSLee), [54] (GMM), our approach
without the heuristic, and our approach with Td = 10 and Td = 20 under different
α settings using the 32 ground-truth images of Seq. B. Here, the values of 0.0010,
0.0025, 0.0050, 0.0075, 0.0100, 0.0250, 0.0500, 0.0750, 0.1000, and 0.2000 are set
to α to generate the curves. (a) Comparisons of foreground detection rates. The
detection level of 99% is marked for reference. (b) Comparisons of false positives
rates in foreground detection. The false positive level of 1% is marked for reference.

72

a reasonably good parameter setting seems not possible for this case.

Although our approaches (with and without the heuristic) do not give the

highest detection rate, they both have a feature of delivering stable detection

results under various α settings, mainly owing to our independent controls of the

two types of learning rates. Moreover, through examining the false positive rates

with respect to different αs, we choose to bring the heuristic into our approach as

a default practice since doing so will almost always give low false alarms. Note

that, based on the evaluations, α = 0.01 and α = 0.025 can be suggested as default

values for the heuristic because these values give slightly better detection accuracy.

To verify our argument that adjusting β does not affect the background mod-

eling performance much, a quantitative evaluation is conducted by varying βb to

0.001, 0.005, 0.010, 0.050, 0.100, and 0.500, with the other parameters fixed to

the default values. While the detection and false positive rates for βb = 0.010

(the default setting) are 99.3347% and 0.5420%, respectively, similar performance

indices for the other βbs are all within (99.3347±0.0274)% and (0.5420±0.0199)%,

respectively, which supports our argument.

3.3.5 Scene Change

In Sec. 3.2.2, the problem with feedback control and possible solutions are discussed.

An example illustrating such a problem is given in Fig. 3.11, where a fountain sud-

denly spurting high causes a bunch of false positives in foreground detection. The

first column of Figs. 3.11 shows such dramatic changes of background scene may

be adapted too quickly (in about 100 image frames) by [36] if a high learning rate

(α = 0.025) is used. On the contrary, as shown in the second column, these false

73

positives last for a very long time (> 2440 image frames) if a naive feedback con-

trol by setting ρ(α) = η(β) is used. The identical modeling of ρ and η, together

with the feedback controls, makes a system behave as what the problem describes.

However, as depicted in the third column of Figs. 3.11 (c) and (d), quicker adap-

tation of false positives into background can be achieved by separating the control

of ρ from that of η with the conventional model matching rule of (3.1). Finally, as

shown in the forth column, the false positives resulted from scene changes can be

completely eliminated in about 2000 image frames (equivalent to about 1.11 min-

utes for a 30 fps video) by combining the proposed bivariate rate control scheme

with the weight-based model matching rule.

3.3.6 Other Scenarios

Additional experiments for the scenes of waving water8 and crowded entrance are

demonstrated in Fig. 3.12. In Fig. 3.12 (a), a floating bottle on the waving water

can be successfully detected by the proposed approach. In the crowded entrance

sequence shown in Fig. 3.12 (b), a black bag left by a passenger is stably detected

as a foreign object in a busy scene. These experiments show the effectiveness of the

proposed scheme of bivariate learning rate control for the surveillance applications

associated with complex scenes.

8The image sequence of waving water is from [68].

74

(a) I2900

(b) I3000

(c) I4885

(d) I5340

Figure 3.11: Comparisons of scene change adaptation among [36] (the 1st column),
feedback control with ρ(α) = η(β) (the 2nd column), our approach with (3.1) (the
3rd column) and our approach with the weight-based model matching rule (the
4th column).

75

(a) Results for waving water [68] (b) Results for crowded entrance

Figure 3.12: Foreground detection (top row) and background modeling (bottom
row) results for the scenes of (a) waving water and (b) crowded entrance. The
yellow box in (b) marks an abandoned bag.

76

Chapter 4

Video Layer Propagation via

Semi-Supervised Clustering

Segmenting a video sequence into layer representations is challenging because of

the highly dynamic nature of video content. In this thesis, we propose a new

framework to propagate given layer segments of an initial frame to subsequent im-

age frames within a video shot via semi-supervised spectral clustering, and link the

segmentation of video layer to the design of a kernel matrix. Under such a frame-

work, using image blocks as layer propagation units is feasible, avoiding costly

pre-segmentation of images into super-pixels. By modeling video layer propaga-

tion between consecutive image frames as a label inference problem wherein new

block labels are inferred from previous known ones, and by solving this problem

via semi-supervised spectral clustering, video layers are progressively propagated.

Experimental results show the proposed approach can track and segment video

layers effectively, even for those undergoing large motion and deformation.

77

4.1 Overview

Decomposing video content into layer representations, e.g., foreground and back-

ground region segments, is beneficial for video understanding and coding. For

example, extracted foreground layers can be used for efficient video searching and

for better data compression. However, due to the highly dynamic nature of video

content, the problem of video layer decomposition is challenging and remains an

important research topic in computer vision.

Rather than decomposing video layers from scratch, a more restricted prob-

lem, video layer propagation, is investigated in this study. Given a video shot

and the layer segments of its initial image frame, the goal of video layer propaga-

tion is to iteratively propagate the corresponding video layers to the subsequent

image frames. Except for the initial layer information, no other assumptions on

foreground appearances, and on background scenes, or restrictions with respect to

camera motions are made. This makes the problem difficult because, for example,

a background layer of a video shot may be cluttered and undergo large changes

due to camera movements. It is thus hard to achieve reasonable decomposition of

subsequent, time-varying layer segments by simply applying supervised learning

methods to learn prior models from initially-given layers. Instead, we formulate the

video layer propagation problem as a series of semi-supervised clustering problems

to effectively capture the dynamic changes of video layers.

Specifically, propagating video layers from a previous image frame It−1 to the

current one It is regarded as a process of label inferencing, where the unknown

layer labels of the image elements in It are inferred from the known ones in It−1.

(An image element here can be embodied as a pixel, a block or a region.) Such

78

an inference process fits the formulation of semi-supervised clustering [69] very

well. By clustering the image elements in It into the layer classes of It−1, new

video layers can be obtained. Through a series of clustering processes, initial

video layers can be propagated progressively to capture continuous layer changes.

Experimental results show that the proposed approach can track and segment

video layers effectively, even when they undergo large, non-rigid motions.

The proposed approach for video layer propagation has several features. First,

a novel framework based on semi-supervised clustering is proposed for propagating

video layers. In particular, inferring new layer labels from previously determined

ones is linked to the construction of a kernel matrix in such a framework, which

provides a new perspective to the problem of video segmentation. Second, the

effectiveness of using image blocks as basic processing units for video layer prop-

agation is demonstrated. Such a choice provides more information than using

pixels in layer discrimination while avoids the costly pre-segmentation of image

regions/super-pixels. Third, a new regularization scheme for controlling the relia-

bility of block labels is developed. A block near layer boundaries often consists of

more than one video layer and is less appropriate to be categorized into a single

layer class. Hence the reliability of its layer label needs to be regularized as being

propagated to the next image. Such control of individual label trustworthiness is

novel and can be linked to the design of a regularized kernel. Fourth, since only

layer labels need to be processed in the proposed layer propagation framework, op-

tional user interventions for amending layer clustering defects can be incorporated

into the propagation process easily. Thus, a very small amount of flawed layer

labels that might later induce large layer segmentation errors can be corrected

handily at an early stage by manually re-labeling.

79

4.1.1 Related Work

Previous research on video layer representation and/or segmentation often assumes

that every video layer is planar and each can be associated with a distinct planar

motion model. Based on the assumption, several studies of motion segmentation,

e.g., in [3], [10], [28], [60], [61], [62], are proposed to estimate layer motions and

to extract video layers. Particularly, in [61], [62], spatial coherence of layer labels

is explicitly modeled and combined with layer motion estimation for stable layer

segmentation. In [57], Torr et al. develop a Bayesian formulation for video segmen-

tation in which parallax disparities of video layers are incorporated. Based on ho-

mographic projection, Ke and Kanade [31] propose a subspace clustering approach

to group image patches into video layers. In [17], [29], [30], an image is modeled as

a mixture of planar sprites that undergo different motion tranformations. Sprite

layers can then be extracted by optimizing the mixture formulation using EM-

based techniques. Further, Aguiar and Moura [1] apply a rigidity constraint on

objects to the mixture representation of layers for figure-ground separation.

Recently, video layer segmentation based on graph cuts has drawn much at-

tention. An early work proposed in [52] uses normalized cuts to segment video

layers in consistent motion. In [5], Boykov et al. apply graph min-cuts to ap-

proximate the solution of an energy function in general form and prove that the

approximated solution is near the global optimum. Based on [5], several methods

are then proposed to extract video layers using different cues, e.g., motion fields

[63], gradients [7], and stereo [34]. In [38], Li et al. interpolate video layers be-

tween key frames via graph cuts and introduce feature tracking for the refinement

of layer segmentation. In [8], a feature fusion formulation that combines motion,

80

color and contrast cues is proposed for bi-layer segmentation and can be solved

by graph cuts in real-time. In addition, occlusion orders [65], layer rigidity [15],

and learned layer filters [67] have also been integrated into the graph cut-based

segmentation of video layers. Besides, solving layer mixture models via graph cuts

is explored in [35]. According to our investigation, the proposed approach, though

also originated from similar graph-cut concepts, has novelties in the adoption of

semi-supervised clustering and in a link to kernel design.

4.2 Video Layer Propagation Framework

The main idea behind the proposed framework for video layer propagation is that

propagating video layers between two consecutive image frames can be regarded

as a label inference process. To estimate new layer labels, an algorithm of semi-

supervised spectral clustering [69] is adopted. The advantages of choosing this

algorithm include its adoption of prior labels in a natural way, the existence of a

closed-form solution, and its connection to the kernel methods in machine learn-

ing. In addition, a generalization of the adopted algorithm that regularizes the

reliability of layer labels is developed. This generalized regularization scheme not

only provides better control over prior labels in theory, but also benefits our design

of block-based layer propagation in practice.

4.2.1 Block Label Inference

The inference of video layer labels can be performed on various image elements,

e.g., pixels, regions, or blocks. In this study, we explore the feasibility of using

block units in layer propagation, which does not require costly pre-segmentation of

81

Figure 4.1: An illustration of the spatio-temporal neighbors of a block bt,i (colored
in black). The gray blocks whose centers are within the small and the large dashed
circles are regarded as the spatial and temporal neighbors of bt,i, respectively. All
the neighboring blocks are linked to bt,i by edges.

images into small, homogeneous regions. Thus, the layer propagation results will

not be affected by the stability of region segmentation. Also, block units provide

more discriminability than pixels in inferring layer labels. However, an image

block has resolution limitation in differentiating layer boundaries. An image block

near layer boundaries may have multiple video layers and is less appropriate to

be categorized into a single layer class. Hence, a regularization scheme of block

label reliability, especially for those blocks near layer boundaries, is proposed as a

remedy.

Consider two consecutive image frames, It and It−1, which are decomposed into

image blocks of size w × w, as shown in Fig. 4.1. Let l denote the total number

of the image blocks in the two frames, and bt,i denote the i-th image block in

the image It. Each of its spatial (temporal) neighbors of the image block bt,i,

denoted by bt,j (bt−1,j′), is the block whose center is inside the small (large) circle.

The radii of the spatial (small) and temporal (large) circles are denoted by rspa

and rtem, respectively. The respective block labels are symbolized by yt,i, yt,j and

82

yt−1,j′ , where y is in a label set L = {1, ..., C} and C = 2 accounts for foreground

and background layers. While yt,i and yt,j are unknown, yt−1,j′ is assumed to be

known, either from manual labeling or from previous layer estimation. Similarly,

the spatio-temporal neighbors of every image block in It can also be defined. All

the image blocks and their neighboring relationships can be conveniently denoted

by an undirected graph G(E ,V), where V and E stand for the set of l block nodes

and the set of all the neighboring links, respectively. We use vi ∼ vj to denote

that two neighboring nodes vi and vj are linked by an edge. Now, our goal is to

compute the new layer labels, yt,is, based on G.

To estimate the block label yt,i, both the spatial and temporal neighbors of

bt,i should be considered. Intuitively, not only the temporal similarities among

bt,i and all bt−1,j′s can be used to determine a probable label, but also the spatial

similarities among bt,i and all bt,js should also be consulted to maintain spatial

consistency. To obtain a balanced solution, strategies that regularize both spatial

and temporal similarities are often used. In the adopted semi-supervised spectral

clustering, the optimal layer labeling is achieved through the diffusion of similari-

ties. The similarities initially defined on E are spread into neighboring node pairs,

resulting in a new edge set Ẽ . This step corresponds to the construction of a kernel

matrix for G̃(Ẽ ,V) from a similarity matrix for G. The most probable label yt,i can

then be found based on the diffused similarities. As will become clearer later, the

spatio-temporal consistency among layer labels can thus be ensured. By deriving

all the layer labels, the propagation of video layers is realized.

83

4.2.2 Semi-Supervised Spectral Clustering

Let ŷi ∈ R
C denote the initially-given label of a graph node vi. Specifically, for

the case of C = 2, we set

ŷi =

[1 0]T if vi belongs to background;

[0 1]T if vi belongs to foreground;

[0 0]T if the label of vi is unknown.

(4.1)

A prior label matrix Ŷ , [ŷ1 ŷ2 . . . ŷl]
T ∈ R

l×C is then introduced to denote

all the initial labels of the nodes in G. By applying the semi-supervised spectral

clustering shown in Algorithm 3, a new label estimate Ŷ∗ that encodes the optimal

solutions of the unknown labels is derived. The algorithm, originally proposed by

Zhou et al. [69] and generalized in this study, is basically an adaptation of the

spectral clustering method [44]. However, unlike the spectral clustering which uses

only a similarity matrix, the semi-supervised modification takes both similarities

and prior labels into consideration. Zhou et al. presented an iterative equation as

Yk = (1− α)ŜYk−1 + αŶ , βŜYk−1 + αŶ, (4.2)

where both Ŝ (a normalized version of S) and Ŷ are regularized by a scalar α. To

initialize the calculation of (4.2), Yk=0 can be set arbitrarily, e.g., Y0 = Ŷ. By

iteratively computing (4.2), a new label matrix Y∗ = limk→∞Yk that corresponds

to the ultimate clustering results can be obtained. They also showed that the

iterative calculations converge to an analytic solution,

Y∗ = α(I− βŜ)−1Ŷ. (4.3)

84

Algorithm 3: Semi-supervised spectral clustering

1 Similarity matrix construction. Compute a symmetric similarity matrix
S, with each element

sij ,

{
Sim(vi, vj) if i 6= j and vi ∼ vj;
0 otherwise.

Note 0 ≤ Sim(vi, vj) ≤ 1 is a function measuring the similarity between the
linked nodes vi and vj.

2 Similarity matrix normalization. Compute Ŝ = D−1/2SD−1/2, where

D = diag(d1, . . . , dl) is a diagonal matrix with di =
∑l

j=1 sij.

3 Label matrix calculation. Apply one of the following steps to the
derivation of a label matrix Y∗.

a) Iteratively compute Yk = β1/2Ŝβ1/2Yk−1 +αŶ until convergence.

The converged matrix is denoted by Y∗. The α = diag(α1, . . . , αl) is a
diagonal matrix with αi ∈ [0, 1] weighting the label reliability of ŷi, and
β = I−α.

b) Alternatively, compute Y∗ = (I− β1/2Ŝβ1/2)−1αŶ. Actually the Y∗

computed here is the limit of the sequence {Yk} as k →∞.

4 Label assignment. Assign each un-labeled node vi a new label
y∗i = argmaxj∈{1,...,C} Y∗

ij

To provide better control over individual label reliability, we further extend the

regularization scalar α to a diagonal matrix α = diag(α1, . . . , αl), and developed

a counterpart of (4.2) as

Yk = β1/2Ŝβ1/2Yk−1 +αŶ, (4.4)

where β = I−α. Similarly, the convergence of (4.4) can be shown as

Y∗ = lim
k→∞

Yk = (I− β1/2Ŝβ1/2)−1αŶ. (4.5)

85

Benefits of adopting the matrix form α, rather than using a scalar, will be demon-

strated later with experiments.

Analytic solutions of both (4.3) and (4.5) can also be derived from the opti-

mization of cost functions in which the label consistency is explicitly modeled. It

is presented in [69] that (4.3) can be derived from

Y∗ , argmin
Y

1

2

[(
l∑

i=1

l∑

j=1

sij‖
1√
di
yi −

1√
dj
yj‖2

)
+ µ

l∑

i=1

‖yi − ŷi‖2
]
, (4.6)

where yi denotes the label vector of vi to be estimated,Y is defined as [y1 . . . yl]
T ,

and µ > 0 is a regularization parameter. While the first term of (4.6), as mentioned

in [69], represents a smoothness constraint for preventing large changes of labels

between nearby points, the second term, instead, expresses a fitting constraint for

maintaining the consistencies between a label estimate yi and its prior label ŷi.

Likewise, (4.5) can also be obtained from the optimization of

Y∗ , argmin
Y

1

2

[
1

2

(
l∑

i=1

l∑

j=1

sij‖
√
ηi√
di
yi −

√
ηj√
dj
yj‖2

)
+

l∑

i=1

µi‖yi − ŷi‖2
]

, argmin
Y

Q(Y)

(4.7)

where ηi > 0, µi > 0, and ηi + µi = δ, for all is, with a constant δ introduced

to constrain the sum of each regularization pair ηi and µi
1. The derivation of the

generalized solution (4.5) from (4.7) are given below.

1The value of δ can be arbitrary, as will be seen clearly later in the proof.

86

Proof. By defining the first term of the proposed cost function (4.7) as

Q1(Y) ,
1

2

(
l∑

i=1

l∑

j=1

sij‖
√
ηi√
di
yi −

√
ηj√
dj
yj‖2

)

=
1

2

∑l
j=1 s1j

∑C
c=1(

√
η1√
d1
y1c −

√
ηj√
dj
yjc)

2

...

+
∑l

j=1 skj
∑C

c=1(
√
ηk√
dk
ykc −

√
ηj√
dj
yjc)

2

...

+
∑l

j=1 slj
∑C

c=1(
√
ηl√
dl
ylc −

√
ηj√
dj
yjc)

2

and denoting the c-th element of a label vector yk as ykc, the derivative of Q1 with

respect to ykc can be shown as

∂Q1

∂ykc
=

[
∑

j 6=k

skj

√
ηk√
dk

(√
ηk√
dk

ykc −
√
ηj√
dj
yjc

)

−
∑

j 6=k

sjk

√
ηk√
dk

(√
ηj√
dj
yjc −

√
ηk√
dk

ykc

)]

= 2

(
ηk ykc −

∑

j 6=k

√
ηk ŝkj

√
ηj yjc

)
,

by using skj = sjk, ŝkj =
skj√
dkdj

, and
∑

j 6=k
skj√
dkdk

= 1.

On the other hand, the derivative of (4.7) with respect to ykc can be obtained

as

∂Q
∂ykc

= (ηk + µk)ykc −
∑

j 6=k

√
ηk ŝkj

√
ηj yjc − µkŷkc.

87

By setting ∂Q
∂ykc

= 0, we have

ykc −
∑

j 6=k

√
ηk

ηk + µk

ŝkj

√
ηj

ηk + µk

yjc −
µk

ηk + µk

ŷkc = 0. (4.8)

Since ηk + µk = δ = ηj + µj, then
√

ηj
ηk+µk

=
√

ηj
ηj+µj

. By defining αk ,
µk

ηk+µk
and

βk , 1− αk =
ηk

ηk+µk
, (4.8) can be further expressed as

ykc −
∑

j 6=k

√
βk ŝkj

√
βj yjc − αkŷkc = 0. (4.9)

Finally, by representing (4.9) using matrix notation, we arrive the following result,

Y∗ − β1/2Ŝβ1/2Y∗ −αŶ = 0

⇒ Y∗ = (I− β1/2Ŝβ1/2)−1αŶ.

By introducing more regularization parameters in (4.7), the reliability of prior

labels can be better controlled. Moreover, from the optimization of the cost func-

tion (4.7), the spatio-temporal consistency among video layer labels can be well

preserved.

In Algorithm 3, the Sim function listed in Step 1 is often calculated from a

Gaussian distribution in which various distance measurements of two neighboring

nodes can be applied. The adopted similarity measure will be detailed in Sec. 4.3.1.

For the estimation of label matrix Y∗, either the analytic solution of (4.5) or

the iterative approximation of (4.4) can be applied. While the former involves

the computation of matrix inversion which will be numerically unstable if (I −

88

(a) (b) (c)

Figure 4.2: Examples of kernel construction. (a) A similarity matrix S (shown as
an image). All the similarities of connected nodes are set to 0.999. (b) The kernel
K computed from S, with β = 0.8I. Here, K is normalized for better visualization.
(c) The regularized kernel K with the upper and the lower halves of β’s diagonal
elements set to 0.8 and 0.5, respectively.

β1/2Ŝβ1/2) is near singular, an approximation based on the latter can be used to

avoid such a problem. It is also worth mentioning that the algorithm is applicable

to multiple layer decomposition, i.e., C > 2.

4.2.3 Algorithm Interpretation

The analytic solution of the semi-supervised spectral clustering given in (4.5)

consists of the product of (I − β1/2Ŝβ1/2)−1 and αŶ. The first part, K ,

(I − β1/2Ŝβ1/2)−1, can be regarded as a graph/diffusion kernel K constructed

from a similarity matrix S [53], [69]. Fig. 4.2 shows simple examples of the kernel

design. In Fig. 4.2 (a), a similarity matrix S is depicted (shown as an image) to

represent a graph where each node is connected to at most four neighbors. All the

similarities are set to 0.999. By setting β = 0.8I and computing K, the similarities

are spread out, as shown in Fig. 4.2 (b). Note that, new edges with diffused simi-

larities are established between some nodes that are not connected in the original

89

graph. Fig. 4.2 (c) shows a regularized kernel wherein the upper and the lower

halves of the diagonal elements of β are set to 0.8 and 0.5, respectively.

For the second part, αŶ, it can be considered as a weighting scheme for label

reliability. Subsequently, a matrix form of (4.5) can be written as

Y∗ =

k1αŷ1 . . . k1αŷC

...
. . .

...

klαŷ1 . . . klαŷC

,

where ki denotes the i-th row of K and ŷi denotes the i-th column of Ŷ. The

clustering label for vi can then be determined by selecting the corresponding class

with the maximum value in {kiαŷ1, . . . ,kiαŷC}. We interpret this labeling step

as a weighted voting process among C classes. Together with similarity diffusion

and weighted voting, the semi-supervised spectral clustering is done.

To sum up, the proposed framework for video layer propagation utilizes the

semi-supervised spectral clustering to solve the label inference problem, which is

different from the popular graph-cut approach [5]. A connection between video

segmentation and kernel design is thus established, and an optimal solution derived

from (4.7) that balances the spatio-temporal consistency in node labeling can be

obtained. Moreover, a generalized formulation that regularizes the reliability of

individual label is proposed, which makes the block-based propagation of video

layers more feasible.

90

4.3 Algorithm Implementation

Several issues regarding the implementation of the proposed framework for video

layer propagation are addressed in this section. First, the adopted similarity mea-

sure for the comparison of image blocks is presented. Next, to reduce the compu-

tational cost of kernel construction, a strategy of local clustering is applied. Due

to this strategy, the propagation of video layers can be performed only within a

band of image blocks near layer boundaries. Then, the embodiment of the regular-

ization of label reliability is detailed. Finally, an optional user intervention scheme

is introduced to allow possible refinements of layer propagation results.

4.3.1 Similarity Measure

Since the main focus of this work is on the investigation of effectiveness of video

layer propagation using semi-supervised spectral clustering, only simple color fea-

tures are adopted in our implementation. For each image block, three histograms

computed from its YCbCr colors are used as image features. Specifically, denoted

by fm(bi) ∈ R
N is a normalized, N -bin color distribution of bi (N = 16), with

m ∈ {1, . . . , 3} indexing the m-th color channel. Though neither complex features

nor high-level structures are used, the experimental results obtained by using the

color cue alone, as will be shown in Sec. 4.4, are rather promising.

We choose the following multivariate Gaussian function as the similarity mea-

sure of two neighboring blocks:

Sim(bi,bj) = exp {−cD(bi,bj)
TΣ−1D(bi,bj)},

91

(a) (b)

Figure 4.3: Examples of sub-graph G ′i in different representations. (a) An example
of G ′i with rspa = w, rtem = 2w, qspa = 3w and qtem = 3.5w. The dark-grayed
blocks enclosed by the two dashed circles are the neighboring blocks with direct
links to bt,i (the black one). The light-grayed ones, which are not connected to
bt,i directly, are enclosed by the solid-line circles. (b) A simple example of G ′i in
graphical representation with rspa = qspa = qtem = w and rtem = 0. The spatial
and temporal neighbors of bt,i (double-circled) are denoted by white and black
circles respectively. As the red edges symbolize the direct links to bt,i, the black
ones show the indirect links.

where c is a scaling factor, Σ is a covariance matrix, and D(bi,bj) ∈ R
3 is a

distance vector with its m-th component Dm(bi,bj) = B (fm(bi), fm(bj)) . The

Bhattacharyya divergence B(a,b) is applied here to measure the distance of two

color distributions a and b. As for Σ, it is assumed to be a diagonal matrix for

simplicity. The estimation of Σ will be elaborated in the next subsection due to

its coupling to the local clustering implementation. Regarding c, a typical value

c = 0.5 is used in the experiments.

4.3.2 Local Clustering

As mentioned in Sec. 4.2.1, Fig. 4.1 can be represented by a graph G. To find the

unknown layer labels based on G using Algorithm 3, all the graph nodes need to

be taken into consideration, resulting in a very large similarity matrix. For the

92

construction of K, the inversion of such a large matrix is required, which is often

time consuming or even infeasible, e.g., due to limited computing resources. Ac-

cordingly, to reduce the computational cost, a local clustering strategy is employed

by decomposing G into many sub-graphs G ′s and solving the layer labeling locally,

block by block, based on each of the sub-graphs.

In local clustering, each image block bt,i is processed independently by per-

forming semi-supervised clustering in a small neighborhood of it. Fig. 4.3 (a)

shows an example of G ′i for estimating the label of bt,i, i.e., yt,i. The nodes in

G ′i correspond to three types of image blocks: bt,i itself (colored in black), those

directly linked to bt,i (colored in dark-gray, see also Fig. 4.1), and those indirectly

linked to bt,i (colored in light-gray). Although the indirectly linked nodes, defined

by two the solid-line circles in Fig. 4.3 (a) with radii qspa and qtem, have no direct

connection to bt,i, they still have effects on the inference of yt,i via similarity dif-

fusion. Such nodes are included in G ′i to maintain better label consistency in local

clustering. Fig. 4.3 (b) depicts a simple example of G ′i in graphical representation

by setting rspa, qspa, and qtem to the block width w, and rtem = 0. In our experi-

ments, these parameters are set to w = 8, rspa = 2w, rtem = 3w, qspa = rspa, and

qtem = rspa + rtem, respectively, resulting in more complex sub-graphs than that

shown in Fig. 4.3 (b).

Based on the idea of sub-graph, a similarity matrix S of much smaller size can

be derived. The complexity of transforming S to the kernel K in (4.5) can thus be

lowered down. Note that, before computing K, we firstly check if (I−β1/2Ŝβ1/2) is

well-conditioned. If not, the iterative approximation ofY∗ is applied by computing

(4.4) 100 times. Once Y∗ is obtained, we merely retrieve the matrix entries for

bt,i and determine its label. Thus, a sub-optimal yet practical estimate of y∗
t,i can

93

be derived. By combining all the local clustering results, new video layers of It

are obtained. Owing to the usage of local clustering, spatial label inconsistency

may occasionally occur. Therefore, a post-processing step is employed to eliminate

isolated label estimates2 in It and to preserve the global label consistency.

Using local clustering not only reduce the computational cost of matrix in-

version, but also bring two mechanisms that will have beneficial effects on layer

propagation: the estimation of local variances and the design of a propagation

band. While the former, as being explained here, gives an estimation of Σ that

captures local changes of layer appearances well, the latter, as will be discussed

in the next subsection, enhances the layer propagation efficiency. When comput-

ing Sim, it is important to give a proper estimation of Σ. An intuitive choice

is to compute Σ from all the distance vectors in G. However, such a choice may

result in a over-smoothed estimation. For example, the variance of block dissim-

ilarities around a smooth area should not be as same as that around a textured

region. Such a problem can be prevented by estimating Σ locally from G ′ with the

following steps:

1. Distance vector normalization. To enhance the local contrast among

pairwise distances, each Dm regarding to G ′ is re-scaled to [0, 1] using the

min-max normalization, for m = 1, ..., 3.

2. Covariance estimation. To capture the within-class variances, a set of

distance vectors D′s computed from same-labeled node pairs of G ′ are firstly

selected. Then, the m-th dimensional variance of D′
m is calculated, ∀m,

forming a diagonal covariance matrix Σ.

2A label estimate yt,i is said to be isolated if none of its four-connected neighbors in It is of
the same class.

94

4.3.3 Propagation Band

With the adoption of local clustering, the propagation of video layers only needs to

be performed for a spatial band of image blocks in It around prior layer boundaries

found in It−1, and is thus more efficient. Given a sub-graph G ′i(E ′i ,V ′
i) for estimating

yt,i and denoting the node constructed from It−1 by v′t−1,j, if the prior labels of all

v′t−1,js, i.e., yt−1,j ∀j, are of the same class, i.e., bt,i is located inside a previously

determined layer, then yt,i can simply be assigned to the corresponding layer class

without further clustering. An indicator function L on G ′i is defined for this label

check as

L(G ′i) =

1 if v′t−1,j, v
′
t−1,k ∈ V ′

i and yt−1,j = yt−1,k, ∀j, k;

0 otherwise.

A propagation band containing the image blocks to be processed in layer propa-

gation can then be defined formally as N = {bt,i|L(G ′i) = 0} .

4.3.4 Regularization of Label Reliability

Due to the block-based processing, there is ambiguity in deciding the label of an

image block located across multiple layer regions. Though the label of such a

block can still be obtained either from user-labeling or from previous estimation,

its reliability should be degraded while propagated to the next image frame. By

adopting the regularization matrix α in (4.5), instead of using a scalar, the goal

of controling individual reliability of block label can be realized.

95

(a) I0 (b) I10 (c) I20

(d) Initial label0 (e) The reg. result of I10 (f) The reg. result of I20

Figure 4.4: Simulated example for justifying the regularization of label reliability.
(a)-(c) Snapshots of a synthesized image sequence. (d) The initial layer labels of
I0, where the block centers are shown in yellow and blue for foreground and back-
ground respectively. The bold dots symbolize the image blocks of layer boundary.
(e) and (f) Snapshots of the layer propagation results. All the dotted blocks (bold
and non-bold) manifest the propagation bands.

96

Assume the regularized prior label matrix in (4.5) is sorted, i.e.,

αŶ = diag

αt−1

αt

Ŷt−1

Ŷt

 ,

where the sub-matrices Ŷt−1 and Ŷt denote the block labels of It−1 and It, and

their label reliability is regularized by αt−1 and αt, respectively. With the above

notations, the regularization of label reliability is implemented by

1. Boundary block identification. The image blocks near layer boundaries

are identified as those in It−1 whose eight-connected neighbors have different

layer labels.

2. Regularization matrix construction. To regularize individual label reli-

ability, αt is set to a zero vector, the elements of αt−1 that correspond to the

non-boundary blocks are set to α1, and the rests of αt−1 are set to α2 < α1.

3. Quadruple labeling. Besides the triple labeling in (4.1), one more assign-

ment is proposed for the boundary blocks by setting their ŷs to [0.5 0.5] to

denote the label uncertainty.3

In our experiments, α1 = 0.4 and α2 = α1/4 are manually set. In short, the

proposed regularization scheme adopts the novel matrix form α for better control

of individual label reliability, and represents boundary blocks by setting their labels

to [0.5 0.5].

The above regularization scheme is justified by a simulated example shown in

Fig. 4.4. A sequence of twenty image frames of size 320 × 240 is synthesized for

3The quadruple labeling is applied to the construction of Ŷ for the Step 3 in Algorithm 3. In
the Step 4, the resulting layer labels are still in binary.

97

0 5 10 15 20
2

4

6

8

10

12

14

16
x 10

−3

Image frame index

E
rr

or
 r

at
e

No regularization
Matrix regularization
Matrix regularization + quadruple labeling

Figure 4.5: Quantitative evaluations of the proposed regularization of label reli-
ability using the image sequence shown in Fig. 4.4. The dashed (blue), dotted
(black) and solid (red) lines represent the error rates of layer label classification
(i) without regularization, (ii) with matrix regularization using α, and (iii) with
matrix regularization plus quadruple labeling, respectively. The three horizontal
lines denote the corresponding error means, 0.00975, 0.00804, and 0.00546.

evaluation. To derive the ground-truth layer labels, an image block (8×8) located

across the ellipse boundary is assigned to the foreground layer if it contains more

than 50% red pixels of the ellipse. Totally, 24000 block labels are extracted.

Three experiments are performed by propagating the initial video layers to the

subsequent image frames (i) without regularization, (ii) with matrix regularization

using α, and (iii) with matrix regularization plus quadruple labeling. Because the

differences among the results of the three experiments can not be distinguished

easily by visual inspection, only the results of (iii) are shown in Figs. 4.4 (e) and (f).

For quantitative assessment, the error rates of the estimated labels with respect to

the ground-truth are shown in Fig. 4.5. It is readily observable that the smallest

error can be obtained for (iii). In Sec. 4.4, more experiments will be conducted

using a real video to evaluate the proposed regularization scheme.

98

4.3.5 Optional User Intervention

In the proposed framework, only binary layer labels (for C = 2) are recorded and

propagated to subsequent image frames. Thus, user interventions can be easily

incorporated into the framework to correct layer propagation defects. When the

video layers of It are derived, users can change the misclassified block labels to

correct ones, e.g., via mouse clicks. The amended labels will override the cluster-

ing results during subsequent layer propagation, and the respective regularization

parameters (elements of α) will also be set to 1. Some examples that demonstrate

the usages and effects of user intervention for video layer propagation will be given

in experiments.

4.4 Experimental Results

To assess the performance of the proposed framework for video layer propagation,

two experiments are conducted using the IU [34] and theMobile sequences. The IU

sequence (320×240), being recorded by a static camera, is used for an investigation

on effectiveness and limitation of our approach. Besides, the needs for user inter-

ventions are also presented in this experiment. The Mobile sequence (352× 288),

being captured by a moving camera, is used to demonstrate the capability of layer

propagations for large motions, as well as to validate the regularization of label

reliability. In the experiments, the experimental parameters (w, rspa, rtem, qspa,

qtem, c, α1, and α2) are set to the default values mentioned previously.

99

(a) IU0 (b) Initial Label0 (c) IU7

(d) IU11 (e) IU20 (f) IU96

(g) IU123 (h) IU130 (i) IU158

Figure 4.6: Results of the IU experiment. (a) The first image frame of the IU
sequence. (b) The initial layer label mask. (c)-(i) Snapshots of the video layer
propagation results for the IU sequence. While the brown circle marks the prop-
agation errors due to undifferentiated regions (similar color distributions between
the hair and the wall), the green ones indicate the errors resulting from uncovered
regions.

100

(a) IU11 (b) IU20 (c) IU96

(d) IU123 (e) IU130 (f) IU158

Figure 4.7: Results of the IU experiment with user interventions. (a)-(c) The
results of the 1st user intervention. User re-labeling is applied to the circled regions
in (a). (d) The propagation errors of uncovered region happened again and are
corrected similarly. (e) and (f) The propagation results after the 2nd correction.

4.4.1 Video Layer Propagation in Static Background

The IU video is originally offered as a benchmark for mono and stereo video seg-

mentation in [34]. To fit our needs, only the image sequence captured by the left

camera is used. Ground-truth layer masks which contain foreground, background

and in-between pixel classes are provided every fifth frame by [34], based on the

depth information. The masks are then transformed into binary block labels, as

the ground-truth for our evaluation, by majority votes. 4 Figs. 4.6 (a) and (b)

show the first image frame of the IU sequence and its initial layer label mask,

respectively. Figs. 4.6 (c)-(i) are the video layer propagation results. Despite the

effective propagation of video layers throughout the sequence, two problems can

4Because very few pixels located near layer boundaries are labeled as in-between, they have
almost no effect on the subsequent binary labeling of image blocks.

101

0 20 40 60 80 100 120 140 160
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Image frame index

E
rr

or
 r

at
e

No user intervention
With one user intervention
With two user interventions

Figure 4.8: Quantitative evaluations for the IU experiment. The dotted (black),
dashed (blue) and solid (red) lines are the error distributions without, with-one-
and with-two- user interventions, respectively. The three horizontal lines denote
the respective average error levels.

be observed from the results. The first one is due to undifferentiated regions, e.g.,

the region circled in brown in Fig. 4.6 (f). Because of our adoption of simple color

feature, the circled area whose color distributions are similar to the surrounding

scenes, is misclassified. Although such a problem might be alleviated by using

more complicated feature design, it is beyond the scope of this study.

The second problem is due to uncovered regions, e.g., as marked by green

circles in Figs. 4.6 (c) and (d). Being previously occupied by the foreground,

these uncovered regions are misclassified, inducing more errors in later frames.

Such a problem is more critical to the proposed approach, because using only

local information in the current design to guide the propagation process cannot

guarantee correct labeling of uncovered region. Fortunately, the above problems

mostly start from small misclassified regions, and can be easily amended by user

interventions. We hence choose to manually correct the erroneous block labels of

102

IU11, in which the errors are more obvious, and then resume the layer propagation.

Figs. 4.7 (a)-(c) show better results after the correction. In Fig 4.7 (d), the same

problem happened again and is corrected similarly, resulting in more accurate layer

segmentation, e.g., in Figs. 4.7 (e) and (f). The classification errors in terms of

the numbers of incorrect block labeling for the IU sequence are plotted in Fig. 4.8,

where the three curves correspond to the error distributions without-, with-one-,

and with-two- user interventions. Thus, through manual corrections of only two

frames, the mean error rate is greatly reduced from 6.10%s to 1.93%5.

4.4.2 Video Layer Propagation in Moving Background

In theMobile experiment, the performance of the proposed framework in propagat-

ing video layers undergoing large motions is quantitatively assessed. As shown in

Fig. 4.9, snapshots and the corresponding ground-truth layer masks of the Mobile

sequence are exhibited. The video layer propagation is performed on every other

frame. Totally 30 ground-truth masks are provided, where the first 15 masks are

extracted every other frame from Mobile2-Mobile30 and the others are extracted

every 10 frame from Mobile40-Mobile180. Challenges of this experiment include

the complex background scene, the large changes in motion of the foreground and

background layers, and the similarity in color between the rolling ball and some

background textures, e.g., the blue-circled regions in Figs. 4.9 (a) and (b). Snap-

shots of the video layer propagation results are shown in Fig. 4.10. The video layer

changes are effectively captured throughout the entire sequence without any user

5In [67], the mean error of the IU sequence is 2.56%. However, it should not be directly
compared to our result, for its pixel-wised evaluation is actually stricter than the block-wised
counterpart. Besides, the method presented in [67] is based on supervised learning, which is
quite different from the proposed approach.

103

(a) Mobile0 (b) Mobile90 (c) Mobile180

(d) Mask0 (e) Mask90 (f) Mask180

Figure 4.9: Snapshots of the Mobile sequence and the corresponding ground-truth
layer masks. The blue circles indicate some background regions similar to the
rolling ball. The green ones enclose some uncovered regions.

intervention involved. Particularly, the calendar, which undergoes translations

and size changes, is correctly tracked. Also, the rolling ball is captured in unity,

despite its similar color to some background textures. On the other hand, the

layer propagation defects caused by uncovered regions can still be perceived, e.g.,

the circled regions in Figs. 4.10 (b) and (c). The results validate the effectiveness

of the proposed approach using local, regional features to track deformable video

layers, without prior knowledge, e.g., layer rigidity [15], being imposed.

The quantitative assessments of the layer labeling errors using the 30 masks

are shown in Fig. 4.11. We also compare the error rates (i) without regularization,

(ii) with matrix regularization using α, and (iii) with matrix regularization plus

quadruple labeling in this evaluation. Again, the regularization scheme of (iii)

104

(a) Mobile0 (b) Mobile90 (c) Mobile180

(d) Mobile220 (e) Mobile292 (f) Non-reg. result of
Mobile180

Figure 4.10: Results of the Mobile experiment. (a)-(e) The results obtained by
using the label reliability regularization. Some problems caused by uncovered
regions are marked by green circles. (f) A result obtained without using the label
reliability regularization.

gives the best result. For a qualitative comparison, a video layer propagation

result without regularization is shown in Fig. 4.10 (f).

105

0 20 40 60 80 100 120 140 160 180
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Image frame index

E
rr

or
 r

at
e

No regularization
Matrix regularization
Matrix regularization + quadruple labeling

Figure 4.11: Quantitative assessment on regularization of label reliability using the Mobile

sequence. The dashed (blue), dotted (black) and solid (red) lines represent the errors of layer
labeling (i) without regularization, (ii) with matrix regularization using α, and (iii) with matrix
regularization plus quadruple labeling. The respective mean errors are 0.0731, 0.0475, and 0.0451.

106

Chapter 5

Conclusion

In this thesis, our exploration of video layer analysis for both static and moving

cameras is characterized by three research problems of background model initial-

ization, background model maintenance, and video layer propagation. For videos

captured by a static camera, the problems of background model initialization and

maintenance are studied within the scope of background subtraction that has long

been proven to be efficient and effective in foreground region segmentation. While

a classification-based estimation scheme is developed for background model ini-

tialization, a density estimation-based treatment is utilized in background model

maintenance. Both the approaches for static background modeling are demon-

strated to outperform some existing methods. For the videos captured by moving

camera, the research aim is on tracking the dynamic changes of video layers within

a video shot. A new framework for video layer propagation via semi-supervised

spectral clustering is proposed. Video layer changes induced by, e.g., camera and

object motions, can be well-captured using the proposed framework.

In investigation of the three research problems, different machine learning tech-

107

niques, i.e., supervised classification, semi-supervised clustering, and un-supervised

density estimation, are applied to solve the problems in systematic ways. While

block-based processing for deriving stable features in foreground and background

discrimination and for reduce computational complexities is adopted in supervised

and semi-supervised learning, pixel-based processing for recording detailed back-

ground scene variations is applied in un-supervised learning. Further discussions

with respect to each studied problem are given in the following sections.

5.1 Summary of Static Background Model Ini-

tialization

To establish an initial background model for tracking, an efficient on-line algorithm

is proposed. The key idea of the proposed approach is simple but effective: If one

can tell whether an image block is part of the background, this knowledge can

help to perform bottom-up block updates to derive a complete background model.

In addition, we introduce a top-down consistency check to eliminate noises in the

updates. The two mechanisms, together, lead to a reliable system. Regarding the

system tuning, there is only one parameter that needs to be determined. Indeed,

the experimental results demonstrate that the algorithm is robust to different

parameter settings, and can handle lighting variations.

In background classifier learning, a classifier formulation with probability out-

puts is adopted so that the classification boundary can be easily tuned. While

both an SVM and a CGBoost classifier are appropriate for this purpose, the latter

has an advantage of efficiency and is thus applied to the experiments. We also

108

note that the relevance vector machines (RVMs) [56] are another possible choice.

Particularly, RVMs are derived from MAP equations, and are truly probabilistic.

Overall, the proposed system for background model initialization is shown to

be useful and practical for real-time surveillance. For the future work, develop-

ing wide-range background model estimation schemes to accommodate a moving

camera could be a direction worthy of further exploration. This extension may

lead to a more challenging problem concerning spatial registration and temporal

modeling of background regions in motions.

5.2 Summary of Static BackgroundModel Main-

tenance

In background model learning, maintaining a balance between robustness to back-

ground variations and sensitivity to foreground changes has long been regarded

as a hard problem. In our study, the trade-off between model robustness and

sensitivity can be effectively regularized via the clarification of the different roles

of different learning rates for the GMM and by adopting the proposed bivariate

rate control scheme. Experimental results show that, with careful tuning of the

learning rates for mixture weights, robustness to quick variations in background

as well as sensitivity to abnormal changes in foreground can be achieved simulta-

neously for several surveillance scenarios. In addition, a heuristic for adaptation

of double-quick lighting change is proposed and verified in this work. With the

help of this heuristic, large lighting changes occurring in very short time intervals,

e.g., within one second, can be absorbed into background.

109

Our design of the bivariate learning rate control for the GMM roots in the

high-level feedback of pixel types identified by a surveillance system. Although,

in our current setting, only a limited amount of pixel types are computed for the

rate control, noticeable improvements in foreground detection over conventional

GMM approaches are already observable. Owing to the scalability of the pro-

posed scheme, more complex scenarios may be handled as more high-level informa-

tion incorporated. For example, region-level classification results of skin/non-skin,

face/non-face and human/non-human can be fed back to the pixel-level control of

the learning rate η in background modeling to increase model sensitivity to these

objects. Also, proper settings of the hyper-parameters α and β for pixels of high

spatio-temporal gradients may be worth an investigation. Another interesting di-

rection is to apply biological cues, e.g., discriminant saliency [40] between center

and surround, to increase the adaptation rates for background pixels of highly

dynamic background scenes that are often misclassified as foreground one.

5.3 Summary of Dynamic Video Layer Propaga-

tion

The characteristics of the proposed framework for video layer propagation include

its adoption of semi-supervised spectral clustering and the choice of block-based

processing. By casting video layer propagation into layer label inference and solv-

ing the label inference problem via semi-supervised spectral clustering, a new con-

nection between video segmentation and kernel design has been built. Under such

a framework, the feasibility of using block units for layer propagation is also ex-

110

plored. Adopting image blocks as processing units has advantages in forming

useful regional features, avoiding preprocessing of region segmentation, and fitting

video coding applications. However, due to the coarse resolution of block units,

ambiguity in labeling a block over layer boundaries may occur. Fortunately, with

the help of the proposed reliability regularization over block labels, the problem is

alleviated.

To reduce the computational cost of large matrix inversion, a strategy of local

clustering that solves layer labels by part is employed in our implementation.

With this local processing, new video layers can be computed only within a band

of blocks around layer boundaries, further increasing the processing efficiency.

Moreover, because only layer labels need to be propagated, user interventions

can be incorporated easily into the layer propagation process to amend defects.

Experimental results given in Chapter 4 show that, with the mere use of simple

color feature, the video layers can be effectively tracked, even for those video layers

in complex scenes and undergoing large, non-rigid motions.

Regarding the future work, more experiments still need to be conducted for

further evaluation of system efficiency and accuracy. Comparisons between the

proposed method and the state-of-the-art graph cut techniques may also be in-

cluded in future study. Besides, for increase the discriminability in clustering, the

adoption of more features, e.g., motions and textures, may be helpful, and could

lead to a mixture design of kernel matrices constructed from different features.

111

Appendix

MAP Formulation for

Background Model Estimation

Described below are the derivations of the MAP formulation (2.2) in Sec.2.2.1.

For easy explanation, the derivations are decomposed into six parts, which are

classifier training, iterative formulation, posterior probability decomposition, like-

lihood probability decomposition, background block classification, and the final

MAP formulation.

Classifier Training

To begin with, a MAP classifier derived from the training data D is defined by

f ∗ = argmaxf P (f | D) = argmaxf P (f | X,Y). It can be interpreted as a

supervised learning process to train an optimal classifier f ∗ from the training data

D = {X,Y}. With the definition of f ∗, we can start to derive the following

113

equations to estimate a background model.

P (B̃t | It,D)

=
∫
P (B̃t | It,D, f) p(f | It,D) df

=
∫
P (B̃t | It, f) p(f | D) df

≈ P (B̃t | It, f ∗),

where P (f | D) is assumed to peak at the optimal classifier f ∗ (e.g., see [49],

pp.474–476).

Iterative Formulation

To develop an iterative form for estimating a background model, we first define

B̃∗
t = argmax

B̃t

P (B̃t | It, f ∗),

and

B̃∗
t−1 = argmax

B̃t−1

P (B̃t−1 | It−1, f
∗).

114

Then we have

P (B̃t | It, f ∗)

=
∑

B̃t−1

(
P (B̃t | It, f ∗, B̃t−1)P (B̃t−1 | It, f ∗)

)

=
∑

B̃t−1

(
P (B̃t | It,ℓ, It−ℓ, f

∗, B̃t−1)P (B̃t−1 | It−1, It, f
∗)
)

(The image frames It,ℓ are used later to compute

feature vectors for classification.)

=
∑

B̃t−1

(
P (B̃t | It,ℓ, f ∗, B̃t−1)P (B̃t−1 | It−1, f

∗)
)

≈P (B̃t | It,ℓ, f ∗, B̃∗
t−1),

where, similarly, P (B̃t−1 | It−1, f
∗) is assumed to peak at B̃∗

t−1.

Posterior Probability Decomposition

Using Bayes’ rule, we decompose P (B̃t | It,ℓ, f ∗, B̃∗
t−1) into a product of an image

likelihood term and a prior.

P (B̃t | It,ℓ, f ∗, B̃∗
t−1)

= P (B̃t | It, . . . , It−ℓ+1, f
∗, B̃∗

t−1)

∝ P (It | B̃t, It−1, . . . , It−ℓ+1, B̃
∗
t−1, f

∗)P (B̃t | It−1, . . . , It−ℓ+1, f
∗, B̃∗

t−1)

= P (It | B̃t, It−1,ℓ−1, B̃
∗
t−1, f

∗)P (B̃t | It−1,ℓ−1, f
∗, B̃∗

t−1)

= P (It | B̃t, It−1,ℓ−1, B̃
∗
t−1, f

∗)︸ ︷︷ ︸
image likelihood

P (B̃t | B̃∗
t−1)︸ ︷︷ ︸

prior

.

115

Because the classifier f ∗ is used to perform block-wise (local) classifications, and

It−1,ℓ−1 are those image frames used in computing feature values, both of them

are eliminated from the prior probability which is used to measure the global

consistency over image blocks. That is, we simplify the prior term from P (B̃t |

It−1,ℓ−1, f
∗, B̃∗

t−1) to P (B̃t | B̃∗
t−1).

Likelihood Probability Decomposition

Applying the assumption of block-wise independencies, the likelihood term can be

further decomposed as follows.

P (It | B̃t, It−1,ℓ−1, B̃
∗
t−1, f

∗)

=
n∏

i=1

P (bit | b̃it,bi
t−1,ℓ−1, b̃

∗i
t−1, f

∗)

∝
n∏

i=1

(
P (bit | bi

t−1,ℓ−1, b̃
∗i
t−1, f

∗)P (̃bit | bit,bi
t−1,ℓ−1, b̃

∗i
t−1, f

∗)
)

=
n∏

i=1

(
P (bit | bi

t−1,ℓ−1, b̃
∗i
t−1, f

∗)P (̃bit | bi
t,ℓ, b̃

∗i
t−1, f

∗)
)

=
n∏

i=1

P (bit | bi
t−1,ℓ−1)

n∏

i=1

P (̃bit | bi
t,ℓ, b̃

∗i
t−1, f

∗).

∝
n∏

i=1

P (̃bit | bi
t,ℓ, b̃

∗i
t−1, f

∗).

The term P (bit | bi
t−1,ℓ−1, b̃

∗i
t−1, f

∗) is reduced to P (bit | bi
t−1,ℓ−1), because bit is

the ith block of frame It from an arbitrary on-line image stream, and it should

be independent from our choice of a classifier f ∗ and what the ith block of a

background model is at time t− 1, i.e., b̃∗it−1.

116

Background Block Classification

To utilize background block classification in estimating a background model, we

have

P (̃bit | bi
t,ℓ, b̃

∗i
t−1, f

∗)
.
=

P (̃bit | bit, b̃∗it−1), if bit is classified as background by f ∗,

P (̃bit | b̃∗it−1), otherwise.

Then we derive the decomposition for the image likelihood,

P (It | B̃t, It−1,ℓ−1, B̃
∗
t−1, f

∗) ∝
∏

i+

P (̃bit | bit, b̃∗it−1)
∏

i−

P (̃bit | b̃∗it−1),

where i+ = {i | bit is a background block} and i− = {1, ..., n} − i+.

The Final MAP Formulation

With all these derivations, we arrive at the following MAP optimization

B̃∗
t = argmax

B̃t

{(
∏

i+

P (̃bit | bit, b̃∗it−1)
∏

i−

P (̃bit | b̃∗it−1)

)
P (B̃t | B̃∗

t−1)

}
.

�

117

References

[1] P. M. Q. Aguiar and J. M. F. Moura, “Figure-ground segmentation from

occlusion,” IEEE Trans. Image Process., vol. 14, no. 8, pp. 1109–1124, 2005.

[2] ——, “Joint segmentation of moving object and estimation of background in

low-light video using relaxation,” in Proc. IEEE Int’l Conf. Image Processing,

vol. 5, 2007, pp. 53–56.

[3] S. Ayer and H. S. Sawhney, “Layered representation of motion video using

robust maximum-likelihood estimation of mixture models and mdl encoding,”

in Proc. IEEE Int’l Conf. Computer Vision, 1995, pp. 777–784.

[4] T. E. Boult, R. Micheals, X. Gao, P. Lewis, C. Power, W. Yin, and A. Erkan,

“Frame-rate omnidirectional surveillance and tracking of camouflaged and

occluded targets,” in Proc. Second IEEE Workshop on Visual Surveillance,

1999, pp. 48–55.

[5] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimization

via graph cuts,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 11, pp.

1222–1239, 2001.

119

[6] H.-T. Chen, H.-H. Lin, and T.-L. Liu, “Multi-object tracking using dynam-

ical graph matching,” in Proc. IEEE Conf. Computer Vision and Pattern

Recognition, vol. 2, 2001, pp. 210–217.

[7] S. Cohen, “Background estimation as a labeling problem,” in Proc. IEEE Int’l

Conf. Computer Vision, vol. 2, 2005, pp. 1034–1041.

[8] A. Criminisi, G. Cross, A. Blake, and V. Kolmogorov, “Bilayer segmentation

of live video,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition,

vol. 1, 2006, pp. 53–60.

[9] R. Cucchiara, C. Grana, M. Piccardi, and A. Prati, “Detecting moving ob-

jects, ghosts, and shadows in video streams,” IEEE Trans. Pattern Anal.

Mach. Intell., vol. 25, no. 10, pp. 1337–1342, Oct. 2003.

[10] T. J. Darrell and A. P. Pentland, “Cooperative robust estimation using layers

of support,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 17, no. 5, pp.

474–487, 1995.

[11] F. De la Torre and M. J. Black, “Robust principal component analysis for

computer vision,” in Proc. IEEE Int’l Conf. Computer Vision, vol. 1, 2001,

pp. 362–369.

[12] A. Demiriz, K. P. Bennett, and J. Shawe-Taylor, “Linear programming boost-

ing via column generation,” Machine Learning, vol. 46, no. 1-3, pp. 225–254,

2002.

120

[13] A. Elgammal, D. Harwood, and L. S. Davis, “Non-parametric background

model for background subtraction,” in Proc. European Conf. Computer Vi-

sion, vol. 2, 2000, pp. 751–767.

[14] T. Ellis and M. Xu, “Object detection and tracking in an open and dynamic

world,” in Proc. IEEE Int’l Workshop Performance Evaluation of Tracking

and Surveillance, 2001.

[15] M. Fradet, P. Pérez, and P. Robert, “Time-sequential extraction of motion

layers,” in Proc. IEEE Int’l Conf. Image Processing, 2008, pp. 3224–3227.

[16] Y. Freund and R. E. Schapire, “Experiments with a new boosting algorithm,”

in Proc. Int’l Conf. Machine Learning, 1996, pp. 148–156.

[17] B. J. Frey, N. Jojic, and A. Kannan, “Learning appearance and transparency

manifolds of occluded objects in layers,” in Proc. IEEE Conf. Computer Vi-

sion and Pattern Recognition, vol. 1, 2003, pp. 45–52.

[18] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression: a

statistical view of boosting,” The Annals of Statistics, vol. 38, no. 2, pp.

337–374, April 2000.

[19] N. Friedman and S. Russell, “Image segmentation in video sequences: A

probabilistic approach,” in Proc. Conf. Uncertainty in Artificial Intelligence,

1997, pp. 175–181.

[20] X. Gao, T. E. Boult, F. Coetzee, and V. Ramesh, “Error analysis of back-

ground adaption,” in Proc. IEEE Conf. Computer Vision and Pattern Recog-

nition, vol. 1, 2000, pp. 503–510.

121

[21] W. Grimson, C. Stauffer, R. Romano, and L. Lee, “Using adaptive tracking

to classify and monitor activities in a site,” in Proc. IEEE Conf. Computer

Vision and Pattern Recognition, 1998, pp. 22–29.

[22] D. Gutchess, M. Trajkovics, E. Cohen-Solal, D. Lyons, and A. K. Jain, “A

background model initialization algorithm for video surveillance,” in Proc.

IEEE Int’l Conf. Computer Vision, vol. 1, 2001, pp. 733–740.

[23] I. Haritaoglu, D. Harwood, and L. S. Davis, “A fast background scene mod-

eling and maintenance for outdoor surveillance,” in Proc. Int’l Conf. Pattern

Recognition, vol. 4, 2000, pp. 179–183.

[24] ——, “W4: Real-time surveillance of people and their activities,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 809–830, 2000.

[25] M. Harville, “A framework for high-level feedback to adaptive, per-pixel,

mixture-of-gaussian background models,” in Proc. European Conf. Computer

Vision, vol. 3, 2002, pp. 543–560.

[26] E. Hayman and J.-O. Eklundh, “Statistical background subtraction for a mo-

bile observer,” in Proc. IEEE Int’l Conf. Computer Vision, 2003, pp. 67–74.

[27] M. Heikkilä and M. Pietikäinen, “A texture-based method for modeling the

background and detecting moving objects,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 28, no. 4, pp. 657–662, 2006.

[28] M. Irani and S. Peleg, “Motion analysis for image enhancement: Resolution,

occlusion, and transparency,” J. Visual Communication and Image Represen-

tation, vol. 4, pp. 324–335, 1993.

122

[29] N. Jojic and B. J. Frey, “Learning flexible sprites in video layers,” in Proc.

IEEE Conf. Computer Vision and Pattern Recognition, vol. 1, 2001, pp. 199–

206.

[30] N. Jojic, J. Winn, and L. Zitnick, “Escaping local minima through hierarchical

model selection: Automatic object discovery, segmentation, and tracking in

video,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol. 1,

2006, pp. 117–124.

[31] Q. Ke and T. Kanade, “A subspace approach to layer extraction,” in Proc.

IEEE Conf. Computer Vision and Pattern Recognition, vol. 1, 2001, pp. 255–

262.

[32] D.-W. Kim and K.-S. Hong, “Practical background estimation for mo-

saic blending with patch-based markov random fields,” Pattern Recognition,

vol. 41, no. 7, pp. 2145–2155, 2008.

[33] T. Ko, S. Soatto, and D. Estrin, “Background subtraction on distributions,”

in Proc. European Conf. Computer Vision, vol. 3, 2008, pp. 276–289.

[34] V. Kolmogorov, A. Criminisi, A. Blake, G. Cross, and C. Rother, “Bi-layer

segmentation of binocular stereo video,” in Proc. IEEE Conf. Computer Vi-

sion and Pattern Recognition, vol. 2, 2005, pp. 407–414.

[35] M. P. Kumar, P. H. S. Torr, and A. Zisserman, “Learning layered motion

segmentations of video,” Int’l J. Computer Vision, vol. 76, pp. 301–319, 2008.

123

[36] D.-S. Lee, “Effective gaussian mixture learning for video background subtrac-

tion,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 5, pp. 827–832,

2005.

[37] L. Li, W. Huang, I. Y.-H. Gu, and Q. Tian, “Statistical modeling of complex

backgrounds for foreground object detection,” IEEE Trans. Image Process.,

vol. 13, no. 11, pp. 1459–1472, 2004.

[38] Y. Li, J. Sun, and H.-Y. Shum, “Video object cut and paste,” ACM Trans.

Graphics, vol. 24, no. 3, pp. 595–600, 2005.

[39] B. Lucas and T. Kanade, “An iterative image registration technique with

an application to stereo vision,” in Proc. DARPA IU Workshop, 1981, pp.

121–130.

[40] V. Mahadevan and N. Vasconcelos, “Background subtraction in highly dy-

namic scenes,” in Proc. IEEE Conf. Computer Vision and Pattern Recogni-

tion, 2008, pp. 1–6.

[41] S. J. McKenna, S. Jabri, Z. Duric, A. Rosenfeld, and H. Wechsler, “Tracking

groups of people,” Computer Vision and Image Understanding, vol. 80, no. 1,

pp. 42–56, October 2000.

[42] A. Mittal and D. Huttenlocher, “Site modeling for wide area surveillance

and image synthesis,” in Proc. IEEE Conf. Computer Vision and Pattern

Recognition, vol. 2, 2000, pp. 160–167.

124

[43] A. Monnet, A. Mittal, N. Paragios, and V. Ramesh, “Background modeling

and subtraction of dynamic scenes,” in Proc. IEEE Int’l Conf. Computer

Vision, 2003, pp. 1305–1312.

[44] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Analysis and

an algorithm,” in Advances in Neural Information Processing Systems 14,

2002.

[45] J. C. Platt, “Probabilistic outputs for support vector machines and compar-

isons to regularized likelihood methods,” in Advances in Large Margin Clas-

sifiers, A. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans, Eds. MIT

Press, 2000.

[46] G. Rätsch, T. Onoda, and K.-R. Müller, “Soft margins for adaboost,”Machine

Learning, vol. 42, pp. 287–320, 2001.

[47] C. Ridder, O. Munkelt, and H. Kirchner, “Adaptive background estimation

and foreground detection using kalman-filtering,” in Proc. Int’l Conf. Recent

Advances in Mechatronics, 1995, pp. 193–199.

[48] J. Rittscher, J. Kato, S. Joga, and A. Blake, “A probabilistic background

model for tracking,” in Proc. European Conf. Computer Vision, vol. 2, 2000,

pp. 336–350.

[49] B. Schölkopf and A. J. Smola, Learning with Kernels: Support Vector

Machines, Regularization, Optimization, and Beyond. Cambridge, Mas-

sachusetts: MIT Press, 2002, pp. 469–516.

125

[50] M. Seki, T. Wada, H. Fujiwara, and K. Sumi, “Background subtraction based

on cooccurrence of image variations,” in Proc. IEEE Conf. Computer Vision

and Pattern Recognition, vol. 2, 2003, pp. 65–72.

[51] Y. Sheikh and M. Shah, “Bayesian modeling of dynamic scenes for object

detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 11, pp.

1778–1792, 2005.

[52] J. Shi and J. Malik, “Motion segmentation and tracking using normalized

cuts,” in Proc. IEEE Int’l Conf. Computer Vision, 1998, pp. 1154–1160.

[53] A. J. Smola and R. Kondor, “Kernels and regularization on graphs,” in Proc.

Ann. Conf. Computational Learning Theory / Kernel Workshop, 2003, pp.

144–158.

[54] C. Stauffer and W. Grimson, “Adaptive background mixture models for real-

time tracking,” in Proc. IEEE Conf. Computer Vision and Pattern Recogni-

tion, vol. 2, 1999, pp. 246–252.

[55] Y.-L. Tian, M. Lu, and A. Hampapur, “Robust and efficient foreground anal-

ysis for real-time video surveillance,” in Proc. IEEE Conf. Computer Vision

and Pattern Recognition, vol. 1, 2005, pp. 1182–1187.

[56] M. E. Tipping, “Sparse bayesian learning and the relevance vector machine,”

J. Machine Learning Research, vol. 1, pp. 211–244, Jun. 2001.

[57] P. H. S. Torr, R. Szeliski, and P. Anandan, “An integrated bayesian approach

to layer extraction from image sequence,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 23, no. 3, pp. 297–303, 2001.

126

[58] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers, “Wallflower: Principles

and practice of background maintenance,” in Proc. IEEE Int’l Conf. Com-

puter Vision, vol. 1, 1999, pp. 255–261.

[59] D. Wang, T. Feng, H.-Y. Shum, and S. Ma, “A novel probability model for

background maintenance and subtraction,” in Proc. Int’l Conf. Vision Inter-

face, 2002, pp. 109–116.

[60] J. Y. A. Wang and E. H. Adelson, “Representing moving images with layers,”

IEEE Trans. Image Process., vol. 3, no. 5, pp. 625–638, 1994.

[61] Y. Weiss, “Smoothness in layers: Motion segmentation using nonparamet-

ric mixture estimation,” in Proc. IEEE Conf. Computer Vision and Pattern

Recognition, 1997, pp. 520–527.

[62] Y. Weiss and E. H. Adelson, “A unified mixture framework for motion seg-

mentation: Incorporating spatial coherence and estimating the number of

models,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition,

1996, pp. 321–326.

[63] J. Wills, S. Agarwal, and S. Belongie, “What went where,” in Proc. IEEE

Conf. Computer Vision and Pattern Recognition, vol. 1, 2003, pp. 37–44.

[64] C. R. Wren, A. Azarbayejani, T. J. Darrell, and A. P. Pentland, “Pfinder:

Real-time tracking of the human body,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 19, no. 7, pp. 780–785, July 1997.

127

[65] J. Xiao and M. Shah, “Motion layer extraction in the presence of occlusion

using graph cuts,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 10,

pp. 1644–1659, 2005.

[66] H. Yang, Y. Tan, J. Tian, and J. Liu, “Accurate dynamic scene model for

moving object detection,” in Proc. IEEE Int’l Conf. Image Processing, vol. 6,

2007, pp. 157–160.

[67] P. Yin, A. Criminisi, J. Winn, and I. Essa, “Tree-based classifiers for bi-

layer video segmentation,” in Proc. IEEE Conf. Computer Vision and Pattern

Recognition, 2007, pp. 1–8.

[68] J. Zhong and S. Sclaroff, “Segmenting foreground objects from a dynamic

textured background via a robust kalman filter,” in Proc. IEEE Int’l Conf.

Computer Vision, vol. 1, 2003, pp. 44–50.

[69] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf, “Learning with

local and global consistency,” in Advances in Neural Information Processing

Systems 16, 2004.

[70] Q. Zhu, S. Avidan, and K.-T. Cheng, “Learning a sparse, corner-based repre-

sentation for time-varying background modeling,” in Proc. IEEE Int’l Conf.

Computer Vision, vol. 1, 2005, pp. 678–685.

[71] Z. Zivkovic, “Improved adaptive gaussian mixture model for background sub-

traction,” in Proc. Int’l Conf. Pattern Recognition, vol. 2, 2004, pp. 28– 31.

128

