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ABSTRACT

Bi-layer video segmentation,.e., the-extraction of foreground regions from back-
ground ones for a video sequence,.is a challenging research field in computer vision
due to large content variation among video frames. 1o better address this bi-
layer video segmentation problem, three research topics are investigated in this
thesis including background model initialization, background model maintenance,
and video layer propagation. While the first two topics concern static background
modeling for analyzing videos obtained from static cameras, the third one pertains
to dynamic foreground segmentation for videos captured by moving cameras.

For the problem of background model initialization, we propose an efficient
background model estimation scheme based on image block classification, and de-

velop novel criteria for measuring the completeness of a background model. For the



problem of background model maintenance, we look into the formulations of Gaus-
sian mixture modeling (GMM) and identify the needs of two types of learning rates
for GMM to effectively deal with a trade-off between robustness to background
changes and sensitivity to foreground abnormalities. A novel bivariate learning
rate control scheme for GMM based on a feedback of high-level information is also
proposed. For the problem of video layer propagation, a new framework based on
semi-supervised spectral clustering is proposed for dynamic foreground segmenta-
tion of a video shot captured by a moving camera. The adopted formulation of
semi-supervised spectral clustering is generalized to regularize the reliabilities of
layer labels in sequential propagation. Experimental results show that satisfactory
results of related bi-layer video analysis can indeed be.obtained with the proposed

approaches.

Keywords: Bi-layer video segmentation, background modeling, Gaussian mixture

modeling, semi-supervised spectral clustering.

v



JEHFIER ) RAEFE R FHIRORT - AWM EHEESTH > AR LE
FAR IR A APTIRB AR » A E R B etk L > BARENEHATEER
ZEGB RS RF R R ERRAA G B AR R KT L
RER > EHREMRRIFLAFS 0F : Ao EAFAERIN 512 0L
WARK G AW FRA RO E A SR AT RRRERLDC
FIEFOHRE  HROW I ERARODERTR  AZELREOYE -
B mE > HARXARERAHALMEE S R KT L ELHELN » A28
FHAB A RGIR o RRETFREZBERE AR K B B F3l 4
KA RS ~ IR ~ R EFF F - FARKAGE L LI ;5 Bl
HEEGARALEERAR VAT RO ST > T EEAN > BETRAE
ERFER @ REKFE RERNEL BIER RAT RO RBA LB
AR > RAAR » FEEFEH KT EGHLZ h > BETHE - mSELH
FHE—BE  RRERRAMFFE > PRI RLHZEZREMR
ko HEARFOBE RARM KX TAOHRIHL » LEKRFALARZ
B> FIRZRMPAL TR BRI BT RB » BT BPTRE

WEHBAS > ROUBHNBH IR T LR HFLN » ERPATHEFE
B BT THRERBE : AR FHARERMGRNG LA HROMIRAEY
By o dbh s RALFEFTRUEFTHAREAMEREZT - HKREF - RRAFE - ME



Br~BRARE ~ R ER ~RLE -~ BT RFFAFOHMAAR - EREHAH > AR
ERXREZHER ~REL S BHF-RY L - RFKR - RBE -~ A4S - RE
ko~ BlBE 2R KyiE s RESFREHAAR LG » M 8
T RGP RIEAL o BB > KA Z O R R A A0 7 Y LT MR AT 4L
B TG R XF > KL AEREHDN MERALIARES » E—F ¥
BRARRE - MARX X » OREB I THF - TTHEH - %—F
H6F o~ BEERE  BLREN MM EEG  RXAHBGHLTHF
%o WAHE AR BB R TAE 53] o

Fe SL R B > KA E KA LR LR R A H ERAE o RA MM ARG
M KA ETE - B L o FIFRALZHHT A AT FZLFRY ILHE
ERETARNARILME S TRFE o kK> HMEEERTHZ BB RGN
Koo ER G R

vi



Table of Contents

W#/E

Abstract

2H

Table of Contents
List of Figures
List of Tables

1 Introduction
1.1 Background Model Initialization . . ... . . . .. ...
1.2 Background Model Maintenance . . . . . . . ... ... ... ....
1.3 Video Layer Propagation . . . . . . ... .. ... .. ... .....

1.4 Thesis Organization . . . . . . . . . . .. .. ... ... ... ...

2 Background Model Initialization via Classification

2.1 Overview . . . . ..o,

2.1.1 Related Work . . . . . . . . .

vil

iii

vi

xi

xii



2.2 Background Model Estimation via Classification . . . . . . . . . ..
2.2.1 TIterative Estimation Scheme . . . . . . . .. .. .. ... ..
2.2.2  The Detailed Algorithm . . . . . .. ... ... ... .. ..

2.3 Fast Classification with Soft Margins . . . . . . . . ... ... ...
2.3.1 Feature Selection . . . . .. .. ... oo
2.3.2  SVMs with Probability Outputs . . . . . . . ... ... ...
2.3.3 CGBoost with Probability Outputs . . . . . .. .. ... ..

2.4 Experimental Results . . . . . . . . ... ... ... ... ......
2.4.1 Classifier Training . « @ oon o 0 0 000000

2.4.2 Performance Evaluation o o O oL

Background Model Maintenance via Density Estimation

3.1 Overview cow . o T L e
3.1.1 Related Work . . . . . . o .0
3.1.2  Model Accuracy, Robustness and Sensitivity .. . . . . . ..

3.2 Bivariate Learning Rate Control via High-Level Feedback . . . . . .
3.2.1 Background Medel Maintenance . .. < & .. . .. ... ...
3.2.2 Feedback' Control. . . . . . . . 0000
3.2.3 Heuristic for Adaptation of Double-Quick Lighting Change .

3.3 Experimental Results . . . . . ... .. ... ... .. ........
3.3.1 Regularized Background Adaptation . . ... ... .. ...
3.3.2 Parameter Tuning . . . . . . . . ... .. L.
3.3.3 Double-Quick Lighting Change . . . .. .. .. ... ....
3.3.4 Quantitative Evaluations . . . . . . . ... ... ... ....

3.3.5 Scene Change . . . . .. .. .. ... ... ...

viil

60



3.3.6 Other Scenarios . . . . . . . . . .

4 Video Layer Propagation via Semi-Supervised Clustering

4.1 OVErvIeW . . . . . o o s,

4.1.1 Related Work . . . . . . . . ...

4.2 Video Layer Propagation Framework . . . . .. .. ... ... ...

4.2.1 Block Label Inference

4.2.2 Semi-Supervised Spectral Clustering . . . . ... ... ...

4.2.3  Algorithm Interpretation

4.3 Algorithm Implementation

4.3.1 Similarity Measure
4.3.2 Local Clustering

4.3.3 Propagation Band

4.3.4 Regularization of Label Reliability . . . . .o .. ... ..

4.3.5 Optional User Intervention

4.4 Experimental Results « . oo o0 0 0oL

4.4.1 Video Layer Propagation in Static Background . . . . . . . .

4.4.2 Video Layer Propagation in Moving Background . . . . . . .

5 Conclusion

5.1 Summary of Static Background Model Initialization . . . . . . . ..

5.2 Summary of Static Background Model Maintenance . . . . . . . . .

5.3 Summary of Dynamic Video Layer Propagation . . . . . ... ...

Appendix

References

X

77
78
80
81
81
84
89
91
91
92
95
95
99
99
101
103

107
108
109
110

113

119






List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11

3.1
3.2
3.3
3.4
3.5

The general idea of background model initialization . . . . . . . . . 8
Notations for background model initialization . . . . .. .. .. .. 13
Flowchart of the bottom-up and top-down processes . . . . . . . .. 16
Training images for background model initialization . . . . . . . . . 26
Distributions of training data and training results ... . . . . . . .. 28
Results of background-medel initialization . . . . ... . . . . . .. 30
Results of background block detection . . .. .. . = . ... ... 31
Results of different parameter settings . . . . . . .. o oL L 34
Comparisons of [22),[54]; and our approach . & . . . ... .. 36
Tests on lighting variations . . . . . . . . . &0 ... ... ... 38
Background model initialization.and tracking . . . . . . . . . .. .. 40
Flowchart of a general-purposed surveillance system . . . . . . . .. 54
Simulated changes of the learning rate n, . . . . . . . . .. ... .. 57
Example of motion blur . . . . .. ... ..o 58
Examples of quick and double-quick lighting changes . . . . . . .. 60

Comparisons of background adaptation to quick lighting changes . . 64

x1



3.6

3.7

3.8
3.9
3.10
3.11
3.12

4.1
4.2
4.3
4.4
4.5

4.6
4.7
4.8
4.9
4.10
4.11

Comparisons of background modeling for missing object and waving

Comparisons of background modeling without and with using the
background-type rate control . . . . . . ... ... 67

Comparisons of background adaption to double-quick lighting change 70

Snapshots of the ground-truth images . . . . . . . ... .. ... .. 71
Quantitative comparisons of [36], [54], and our approaches . . . . . 72
Comparisons of scene change adaptation . . . . . ... .. ... .. 75

Foreground detection and background modeling results for other

SCenarios . . . . . v cen U s 76
[lustration of the spatio-temporal neighbors of a block . . . . . .. 82
Examples of kernel construction .= . . . 0. oL oL L L. 89
Examplesrof sub-graph G! in different representations=—. . . . . . . . 92
Simulated example on the regularization of label reliability . . . . . 96

Quantitative evaluations of the proposed regularization of label re-

liability . 0 . o0 o oL 98
Results of the [U experiment . . . . . .o .0 v ... ... L. 100
Results of the IU experiment with user interventions . . . . . . .. 101
Quantitative evaluations for the U experiment . . . . . . . . . . .. 102

Snapshots of the Mobile sequence and its ground-truth layer masks 104
Results of the Mobile experiment . . . . . . . ... ... .. .... 105

Quantitative assessment on regularization of label reliability . . . . 106

x1i



List of Tables

2.1
2.2

2.3

3.1

xiil






Chapter 1

Introduction

Bi-layer video segmentation, which involves the extractions of foreground regions
from background ones for a video-sequence, is a challenging research field in com-
puter vision, due to large content variation.among video frames. Understanding
of video contents yvia computer-assisted analysis, which is one of the main goals of
intelligent video analytics for surveillance applications and multimedia search, can
be greatly benefited by stable and accurate video layer segmentation. In this the-
sis, the research problem of bi-layer video analysis for.segmenting videos captured
by static and moving cameras:are-investigated along three research directions:
background model initialization, background model maintenance and video layer
propagation. While the first two directions concern static background layer mod-
eling for analyzing video sequences obtained from static cameras, the third one
addresses dynamic foreground/background layer extraction for video sequences

captured by moving cameras.



1.1 Background Model Initialization

For a video sequence captured by a static camera, its foreground objects can of-
ten be efficiently extracted via background subtraction if a background model for
properly describing a static background scene is given. Despite the large amount
of previous research works on background modeling, the initialization of a stable
background model for a busy scene, such as a road junction with heavy traffic,
has been less discussed. In our investigation of the problem of background model
initialization, a new estimation scheme that combines bottom-up and top-down
information to construct a stable and complete background model is presented in
Chapter 2, wherein efficient image block classification for. background model con-
struction is proposedrand novel-eriteria for the measurement of background model
completeness is developed. Experimental results show that the efficient block-
based processing, ‘together with the effective model completeness measure, can
derive stable background models for busy scenes and outperforms the compared

approaches.

1.2 Background Model Maintenance

Once a proper background model for a scene of interest has been initialized, this
model needs to be maintained thereafter to catch background changes, such as en-
vironmental lighting variations, so that foreground regions can be accurately differ-
entiated. For background model maintenance, Gaussian mixture modeling (GMM)
is a popular choice due to its capability of adaptation to periodic background

variations. However, the effectiveness of GMM is often limited by a trade-off be-



tween statistical robustness to background changes and sensitivity to foreground
abnormalities, and is inefficient in managing the trade-off for various surveillance
scenarios. To solve this problem, a novel bivariate learning rate control scheme
for GMM based on a feedback of high-level information is proposed in Chapter 3.
Experimental results show that the proposed GMM approach is superior to the
compared GMM-based methods in delivering better background model adaptation
results for challenging scenarios with the aforementioned trade-off.

It is worth noting that two distinct approaches are applied in this thesis to solve
the problems of background model initialization and maintenance. In general, the
proposed GMM approach for solving the problem of background model mainte-
nance can almost always give promising performance in _background adaptation
and foreground detection. However, acecording to our study;such an approach is
not suitable for thesproblem of background model initialization, mainly due to its
deficiency in evaluating whether a derived background model by GMM is stable
and/or complete, as will be discussed.in Chapter 2. On the other hand, while the
proposed approach for-background model initialization delivers a more stable back-
ground model than the/GMM approach, it is less capable of capturing dynamic
background changes, like waving trees, in long-term model maintenance, and may
result in a stable but slightly blur background model. Therefore, we present a
two-stage treatment to the general problem of static background modeling, with
each stage adopting a different approach, which will best fit each specific need

mentioned above.



1.3 Video Layer Propagation

For the case of moving camera, we investigate the problem of video layer propaga-
tion in Chapter 4, wherein foreground and background video layers of a video shot
are segmented in a sequential manner for consecutive image frames. Assume that
the bi-layer image segmentation for the first video frame of a video shot is given
in advance. The goal of video layer propagation is to extract the corresponding
video layer segments in subsequent video frames. Except for the initial layer infor-
mation, no prior assumptions or restrictions, e.g., on foreground shapes, on back-
ground models, or with respect to camera motions; are made. This general setting
brings a big challenge in problem solving because, for example, a background layer
may be cluttered and may undergo-large changes in a video shot due to camera
movements. To extract time-varying video layer segments, a new framework based
on semi-supervised clustering is developed. Under this framework, image blocks
are used as layer propagation units to avoid costly pre-segmentation of images
into super-pixels. By modeling video layer propagation between consecutive im-
age frames as a label inference problem wherein new block labels are inferred from
previously known ones, and by solving this problem via semi-supervised spectral
clustering, video layers are progressively propagated. Experimental results show
that the proposed video layer propagation method can effectively extract dynamic

video layers, even in large, non-rigid motions.



1.4 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2, we investigate the prob-
lem of background model initialization by presenting an overview of background
modeling techniques, the proposed background model initialization approach and
experimental results. Assuming that an initial background model is obtained, we
discuss the problem of background model maintenance in Chapter 3 by addressing
the trade-off between model robustness and sensitivity, giving a GMM-based so-
lution for balancing the trade-off, and presenting experimental results to support
the effectiveness of the proposed solution. In Chapter 4, we explore the prob-
lem of video layer propagation by presenting a survey of related literature, the
proposed video layerspropagation-framework based on semi-supervised clustering,
and some experimental results.Finally, we discuss.the effectiveness of the pro-
posed approaches‘for the three research topics studied in this thesis, as well as

future explorations, in Chapter 5.






Chapter 2

Background Model Initialization

via Classification

To efficiently construet a scene background modelis crucial for tracking techniques
relying on background subtraction. Our proposed method is motivated by criteria
leading to what a general and reasonable background model should be, and real-
ized by a practical classification technique.- Specifically, we consider a two-level
approximation scheme that ecombines the bottom-up and top-down information for
deriving a background model in real-time. The key idea of our approach is simple
but effective: If a classifier can be used to determine which image blocks are part of
the background, its outcomes can help to carry out appropriate block-wise updates
in learning such a model. The quality of the solution is further improved by global
validations of the local updates to maintain the inter-block consistency. A com-
plete background model can then be obtained based on a measurement of model
completion. To demonstrate the effectiveness of our method, various experimental

results and comparisons are included.



Estimated Background

Figure 2.1: The general idea of background model initialization. Through perform-
ing on-line classifications and by iteratively integrating the frame-wise detected
background blocks of images captured with a static monocular camera, the scene
background can be reliably estimated in real time.

2.1 Overview

Visual tracking systems using background subtraction often work by comparing
the upcoming image frame with an estimated background model to differentiate
moving foreground.objects from-the scene background. Hence the performance
of such systems depends heavily on how the background information is modeled
initially, and maintained thereafter. In this work, we aim to establish a learning
approach to reliably estimate a-background model even when substantial object
movements are present during the initialization stage. ‘A8 illustrated in Fig. 2.1,
the overall idea is to efficiently identify background blocks from each image frame
through on-line classifications, and to iteratively integrate these background blocks
into a complete model so that a tracking process can be automatically initiated
in real time. In developing such a progressive processing scheme for initializing a

background model, some criteria are considered.

e Stationary scene adaptation: It is commonly agreed that stationary scenes
are considered as background. Thus, in our design, when a moving object

becomes stationary over a certain period of time, it will be incorporated



into a background model. This would yield an initial background model
accommodating the most recent statistics about the background scene, e.g.,

a parking car or an occluded area.

e Gradual variation adaptation: The computation of a background model
should take account of small variations caused by, for example, gradual il-
lumination changes, waving trees, and faint shadows. It allows a system to

reduce the false detection rate of foreground objects.

e Model completion: Depending on object movements, the number of image
frames needed in estimating an initial background could vary significantly.
Hence, a measurement for the availability of a'background model has to be
defined so that the system can immediately begin to track objects upon the

completion of model initialization.

e FEfficiency: A background model must give rise to efficient on-line derivations

to guarantee real-time tracking performance.

The first two criteria listed .above manifest what kind of scene contents are con-
sidered as background. The last two.ones.illustrate the design requirements of a
background model initialization system: it should be capable of deriving a com-
plete background model in a progressive manner and in real-time.

In the proposed approach, two features will be observed. First, we utilize learn-
ing methods to identify background blocks. Rather than developing discrimination
rules or models, we adopt learning approaches to construct a background block
classifier. This strategy not only provides a convenient way of defining some pre-

ferred background types from image examples, but also avoids complicated issues



of manually setting discriminating parameters, because they can be resolved by
learning from the chosen data. Second, the derived background model fulfills the
four criteria. To achieve efficiency, a progressive estimation scheme is developed
and a fast classifier adopted. For the model completion criterion, an effective defi-
nition is given to indicate that a complete background model is obtained, and the
subsequent tracking procedures can be started. Regarding the adaptation crite-
ria, we implement a bottom-up block updating, in either a gradual or an abrupt

fashion, for capturing the background variations and scene changes, respectively.

2.1.1 Related Work

Background modeling for tracking typically involves three issues: representation,
matialization, and maintenance. For example, one.could represent a scene back-
ground by assuming a single Gaussian distribution for each pixel, initialize the
model by estimating from an image sequence, and maintain it-during tracking by
updating Gaussian-parameters of the background pixels. 'While the emphases of
most previous works; including those to be described later; are mainly on rep-
resentation and maintenance, ‘the task to compute an initial background model
has been somewhat neglected or otherwise simplified by not allowing large object

movements throughout the initialization process, e.g., [14], [41], [64].

Background representation and maintenance

Gaussian models are perhaps the most popular representation for modeling a scene
background, e.g., [6], [36], [42], [54], [64]. Their maintenance is usually carried out

in the form of temporal blending to update intensity means and variances. Thus

10



related researches often differ in the number of Gaussian distributions used for
each pixel, and the update formulas for the Gaussian parameters. In [20], Gao
et al. further investigate possible errors caused by Gaussian mixture models, and
then apply statistical analysis to estimate related parameters.

Apart from Gaussian assumptions, Elgammal et al. [13] consider kernel smooth-
ing for a non-parametric estimate of pixel intensity over time. In [58], Toyama et
al. propose a wallflower algorithm to address the problem of background repre-
sentation and maintenance in three levels: pixel, region, and frame levels. Ridder
et al. [47] use a Kalman-filter estimator to.identify the respective pixel intensities
of foreground and background from-animagesequence, and to suppress false fore-
ground pixels caused by shadow borders. In [27]; a mixture of local histograms is
proposed to construet a texture-based background model that is more robust to
background variations, e.g.; illumination changes.

Prior assumptions about the foreground, background, and shadows can be
used to simplify the modeling ‘complexity. For wvehicle tracking, Friedman and
Russell [19] propose three kinds of color models-to elassify pixels into road, shadow,
and vehicle. They employ an.incremental EM to learn a mizture-of-Gaussian for
distinguishing the foreground and-background. Tn [48], [59], prior knowledge at
pixel level is considered in learning the model parameters of the foreground and
background. Then, a high-level process based on Markov random field is performed

to integrate the information from all pixels.

Background model initialization

The most straightforward way to estimate a background model is to calculate the

intensity mean of each pixel through an image sequence. Apparently, this is rarely

11



appropriate for practical uses. Haritaoglu et al. [23], instead, compute intensity
medians over time. Yet a more general framework by Stauffer and Grimson [54]
is to use pixel-wise Gaussian miztures to model a scene background. Mittal and
Huttenlocher [42] later extend the Gaussian mixture idea to construct a mosaic
background model from images captured using a non-stationary camera. In [58],
bootstrapping for background initialization is proposed, and implemented with a
pixel-level Wiener filtering.

Among the above-mentioned approaches, initializing a background model is
viewed more or less as part of the process for background maintenance. They do
not have a systematic way:to measure the quality, and determine the degree of
completion for such a.model. Consequently, these methods often require simple
initializations, or otherwise start tracking activities with unreliable background
models.

For computing an explicit background model, Gutchess et al. [22] use optical
flow information to choose the most likely time interval of stable intensity at each
pixel. However, the quality of their derived-background model depends critically
on the accuracy of thepixelwise optical flow estimations. Cucchiara et al. [9]
represent a background model by pixel medians of image samples, and specifically
identify moving objects, shadows and ghosts' for different model updates using
color and motion cues. Based on the Gaussian mixture model, Hayman and Ek-
lundh [26] formulate a statistical scheme to derive a mosaic background model
with an active camera. They consider a muxel distribution to correct the errors in

background registration. In [11], De la Torre and Black apply principal component

1 Ghosts are false foreground objects detected by subtracting an inaccurate background model
from image frames.

12
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(a) On-line image stream (b) Estimated background model

Figure 2.2: Notations for background model initialization. (a) I; and I;_; are the
image frames at time ¢ and ¢ — 1, and their ith blocks are denoted as b} and b!_,,

respectively. (b) For the background models, Et is a possible estimation at time
t, while B} ; is the best estimation up to time ¢ — 1. Accordingly, their 7th blocks
are represented by bi and b}" .

analysis (PCA) to construct the seene background from an image sequence. More
recently, Monnet et al. [43] propese an incremental PCA to progressively estimate
a background model and detect foreground changes. Still, these systems all lack an
explicit criterion for determining whether a background initialization is completed
or not—a crucial and practical element for a real-time tracking system.

Other techniques that explore layer decompositions of a video sequence can also
be used to estimate.a background model. Trani and Peleg [28] explore the decompo-
sitions of dominant motions and-apply them to the construction of an unoccluded
background image. In [29], [17], sprite layers are.derived from probabilistic mix-
ture models, in which cues of layer appearances and motions are encoded. In [1],
2], Aguiar and Moura consider rigid motions, intensity differences, and the region
rigidity for figure-ground separation, and formulate them as a penalized likelihood
model that can be optimized in efficient ways. In [7], [32], [63], graph-cut-based
techniques, such as [5], are applied to decompose video layers via pixel labeling,
with various objective functions being optimized. Though all the layer-based ap-

proaches are capable of deriving a background model even for dynamic scenes,

13



they often need to process a video sequence in batch, which is different from the

proposed progressive scheme.

2.2 Background Model Estimation via Classifi-
cation

Due to the restriction of limited memory space and the requirement of real-time
performance, only a small number of recent image frames are stored and referred
during the construction of a background model. Thus, an iterative estimation
scheme is proposed in the following to progressively identify background blocks in

image frames and to incorporate their information into a‘background model.

2.2.1 Iterative Estimation Scheme

To illustrate the idea of the proposed iterative estimation scheme, we begin by

summarizing the notations and definitions adopted in our discussion.

e We denote the testimage sequence up to time instant ¢ as I, = {I1, I, ..., I},
and the most recent ¢ image frames as Iyg'= {f;_r+1,..., L1, 1, }. We also
use b to stand for the ith block of [, , and b, = {bj_,,,....bj_,bi} for

the set of ith blocks from I,, (see Fig. 2.2).

e Let B, be any possible background model estimation at time ¢, and é;[l be
the estimated background model at time ¢t — 1. Then, the ith blocks of Et

and B;_, are denoted as b and b}, respectively.

e A training set of m samples, D = {(x1,41), (X2,%2), - - -, (X, Ym) }, is used to

14



build a binary classifier, where each x; is a fixed-size image block (or simply
the extracted feature vector), and y; € { —1 (foreground), +1 (background) }

is its label.

e With training data D, an optimal classifier f* can be defined as
fr= arg){llaxp(f | D). (2.1)

Equation (2.1) manifests that a classifier f* can be derived from a probabilistic
mazimum a posteriori (MAP) treatment [49]. Tt-is thus more desirable to have not
only classification labels/scores but also probabilistic outputs of f*. In Sec. 2.3
we will explain that either an SVM or a boosting-with-soft-margins classifier is
appropriate for delivering such-probabilities. With probabilistic outputs, a thresh-
old can then be set to adjust the classification boundary, which is useful for our
background estimation. We will demonstrate this usage.in See..2.4.1.

The proposed iterative estimation scheme for deriving arbackground model
consists of a bottom=up block updating and a top-down model validation process.
As shown in Fig. 2.3, a flowchart is given to illustrate the interactions between
the two processes. The aim of the bottom-up process is to block-wise integrate
identified background blocks into a model and to form a model candidate B,. Then,
in the top-down process, the inter-block consistency for all the updated background
blocks are validated. By assuming that significant background updates often occur
in groups, isolated updates that mainly result from noises will be eliminated by

restoring their block statistics back to the previous estimates g’{il.
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Figure 2.3: Flowchart of the bottom-up and top-down processes. The flowchart
depicts the interactions between the bottom-up block updating and the top-down
model validation processes. While the bottom-up process handles block-wise up-
dates of the background, the top-down.one deals with. inter-block consistency val-
idations. The coupling of the two processes formstan efficient scheme for deriving
a background model.

More specifically; in the bottom-up process, the image block b! classified as
background and the previously estimated background block E;‘il act as two inputs
to the background adaptation. Based on a dissimilarity measure between the cur-
rent image block bi“and the previous background block Nj{il, either a maintenance
step or a replacement step is invoked for a block update. In the maintenance step,
the case of the small bloek difference is handledy-assuming it is mostly caused by
gradual lighting variations or small vibrations. A new background block estimate
b! can thus be computed by a weighted average of the two blocks b and b%,. On
the other hand, when b} and Z@ are dissimilar, implying an occurrence of an abrupt
scene change, a replacement step is employed to calculate a renewed background
block estimate b which is consistent with the image block b{.

After the above bottom-up updates, a background model candidate Et is ob-

tained. To turn this model candidate into a final estimate, a top-down process
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is introduced to assure the model consistency between the current candidate Et
and the previous estimate E;“_l, by assuming a smooth changing in background
models. Though the checking of model consistency can be realized in various
ways, we choose to implement it in a simple manner by finding the updates of
isolated blocks and undoing them. Thus large and grouped background block up-
dates are preserved in this design, since they most likely belong to significant and
stable background changes, such as newly uncovered scenes or stationary objects.
Through the validation process, a final background model estimation Et* is derived.

It is worth mentioning that the entire.approach is linked to a MAP formulation,

ie.,
B = arg max;; (HP(bﬂbi, ) Hp(bﬂb:il)) PB.| B )y, (22)
i+ i 4 | "=~ unnd
Lz'ke?z(hood

where iT = {i| b} is classified as a background block by f*}and i~ = {1,...,n}—
i™. (Assume there are n blocks incan image frame.) Interested readers can find the
derivation of (2.2) in Appendix. The connections between (2.2) and our approach
are elaborated as follows. Regarding the likelihood part, the two products can be
viewed as block-wise updates after the background classification. For the image
block classified as background, maximizing the probability P(bi | b7, b7 ) implies
that similarities among the background estimate Zé, the image block b¢ and the
previous estimate 32“_1 should be retained. Likewise, for a foreground block, the
corresponding probability P(b¢ | bi®,) is maximized by setting the current block

estimate gff equal to the previous one E;‘il. This is what we do in the bottom-up pro-
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cess. Referring to the prior term, it indicates that model level consistency between
B, and B}, needs to be maintained for maximizing the probability P(B; | B;_,).
This, as well, corresponds to the top-down model validation. However, we note
that the background model Ef derived by our approach is only a rough approzi-
mation to the MAP solution, since (2.2) is not exactly solved. In fact, to optimize
(2.2), the underlying distributions of the probability terms should be further spec-
ified, and complicated optimization techniques, e.g., EM-based estimations, may
need to be employed. Hence, instead of pursuing the MAP solution, our focus is on

the design of a practical and efficient algoerithm for background model estimation.

2.2.2 The Detailed Algorithm

Bottom-up process

We start by applying f* to each b} to determine its probability of being a back-
ground block. A simplified notation P(bi| f*) will be hereafter adopted to denote
such a probability, with the understanding that the most recent ¢ ith-blocks b's
(i.e., bi,e) are available for calculating useful features, €.g., optical flow values, for
classification. Observe that onlyfor those image blocks classified as background
at each time t, their corresponding block-wise updatings would modify the back-
ground model. It is therefore preferable to have as few false positives by f* as
possible. Hence we use a strict thresholding 7%, i.e., the decision boundary of f*,
on P(b. | f*) such that image blocks with P(b | f*) > 7% > 0.5 are considered

background. Given this setting, there are two possible cases for a block updating.

e If b is not a background block, then b = b, i.e., the pixel means and

variances of b’ ; are assigned to b;".
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Algorithm 1: Background model estimation via classification

Data: Process I, using f*, B;_, and an auxiliary image B = {b'}. When
t = 0, we have ES =0, B=0, and Vi, age(i) = 0, counter(i) = 0,
and replace(i) = false.

Result: Obtain a MAP estimate B;.

begin

B; «+— By,

for image block bi € I, do

if 0! is a valid background block then

if diss(bi,b,) <0(=115% =225)then

/* Maintenance */

by = IterativeAverage(b:, br' )

age()+—= age(i) + 1

counter(i) +—20

bis—0

else

/* Replacement */

b=t + b

counter(i) +— counter(i) 41

if counter(i) = N then

age(t) +— 0
counter(i) +—0
replace () $— true

else
age(i) «+— age(i) + 1
counter(i) «— 0
bl +— 0

output Et*
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e If b is classified as a background block, we measure the dissimilarity between

bi and gjil by N
diss(bi, b)) = —Hbé - Z?Iil||2,

b7
where [|bi — b7 || is the sum of squared pixel intensity differences, and ||
is the block size. Depending on the value of diss(bi,gfil), either a main-
tenance step or a replacement step is invoked (see Algorithm 1). We apply
the iterative maintenance formulas proposed in [6] to update the latest small
variations into Et* . Notice that a block replacement in evaluating Ef takes
place only when the particular block has been classified as background for
N consecutive frames. Indeed, the maintenance phase is designed to adapt

the gradual variations,.and-the replacement phase is-to accommodate new

stationary objects.

Top-down process

A top-down process based on comparing Et with E;‘fl is employed to detect isolated
block updates in the hottom-upevaluation of Et, and undo these updates with the
statistical data from BK;LI. 2 Conveniently, in implementing the algorithm, the top-
down process can be carried out/right after the background block classifications.
This would yield a set of walid background blocks; all of them are not isolated.
Hence, the bottom-up updatings over these valid blocks would directly lead to the

final estimate E,T

2An isolated block updating (either for maintenance or for replacement) has less than three
of its 4-connected neighboring blocks being updated in the bottom-up process.
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The background model

Having described our two-phase scheme to iteratively improve B, we are now in

a position to define a meaningful and steady initial background model B*.

Definition 1. The initial background model B* is said to be ét**, if t* 1s the earliest
time instant satisfying the following three conditions:

(i) there is no block replacement occurred for the last N image frames, i.e., in
calculating E;‘*_NH, EQZ_NH, e ,E;’l ;

(i) all image blocks in E;" have been replaced at least one time since t = 0; and

(iii) they are of ages at least L. (In all our experiments, we have N = 45 and

L=N+15=60.)

2.3 Fast Classification with - Soft Margins

In this section, issues related to the feature selection and the classifier formulation
are addressed for the construction of an efficient background block classifier. In
the feature selection, we have chosen to use features as'general as possible so that
the resulting classifier can handle.a broad range of image sequences. Regarding the
classifier formulation, two learning methods, support vector machines (SVMs) and
column generation boost (CGBoost), are explored by investigating the following
two issues. First, rather than binary-value classifiers, a classifier with probability
outputs is required for our application. Second, the efficiency of the resulting

classifier should fulfill the demand of real-time performance.
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2.3.1 Feature Selection

For our purpose, the task of training is to learn a binary classifier for identify-
ing background blocks from a video sequence captured by a static camera. We
use a two-dimensional feature vector to characterize an image block b°. The first
component is the average optical flow value, where we apply the Lucas-Kanade’s
algorithm [39] to compute the flow magnitude of each pixel in b*. In our implemen-
tation, it takes three image frames, I;_», I;_1, and I;, to calculate the flow values
properly. However, we note that if one-frame delay is allowed, a slightly better
results in evaluating the values ofioptical low can be achieved by referencing I; 1,

I;, and I 1. The second component of a feature wector is derived from the (mean)

inter-frame image differente by |b'] " D@ yyer 124 — 1Y) To ensure good classi-
fication results, the feature values-of both dimensions are normalized into [0, 1] for
training and for testing.

The two feature components are diseriminant enough for our.application owing
to their generality and consistency in classifying background blocks of varied image
sequences. We should also point out that since the optical flow values are computed
using just three consecutive image frames, it may occur that a few pixels would
have erratic/large flow values/ Hence, an estimated upper-bound threshold is
enforced to eliminate such errors. On the other hand, the additional cue using
temporal differencing is more stable and easier to calculate, but it may fail to
detect all the relevant cases. For example, the inter-frame difference may not
be small in evaluating a background block that consists of slightly waving trees.

Instead, an optical flow value is more informative to capture such a background

block with small motions.
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2.3.2 SVMs with Probability Outputs

For binary classifications, SVMs determine a separating hyperplane fg(x) = w -
¢(x), x € D by transforming D from the input space to a high dimensional feature
space, through a mapping function ¢. The optimal hyperplane f§ can be obtained

by solving the following soft-margin optimization problem:

w:&i

: 1 _
min §||WH2—I—C’;r g &+ Cy g & (2.3)
— p

subject to ¥ fs(x;) >1-¢&, i=1,...,m,

where & > 0 are slack variables fortolerating sample noises and outliers. The two
parameters C'¢ and Cg aré useful when dealing with unbalanced training data.
(Recall that “+” is for background image blocks and “—" for foreground image
blocks.) For the sake of reducing false positives, which-may lead to more serious
flaws in the estimated background model than false negatives would cause, Cg is
given a value four tumes largér than the one for C'¢ to penalize more the misclas-
sifications of foreground blocks. -In solving (2.3), we use a degree 2 polynomial

kernel to yield satisfactory classification outcomes efficiently.

Probability output

We use a sigmoid model to map an SVM score into the probability of being a

background block by

1

Pxlfs) = 1 +exp(Afi(x)+B)’

(2.4)
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where the two parameters A and B can be fitted using maximum likelihood es-
timation from D. Following [45], a model-trust algorithm is applied to solve the
two-parameter optimization problem. In our experiments, 65% of the training
blocks are used for deriving an SVM, and the other 35% are for calibrating proba-
bility outputs. The two fitted parameters are A = —0.673724 and B = —2.359339.

2.3.3 CGBoost with Probability Outputs

Among the many variants of boosting methods, the AdaBoost, introduced by
Freund and Schapire [16], is the most popular ene to derive an effective ensemble
classifier iteratively. While AdaBoost has been proved te asymptotically achieve a
maximum margin solution; recent studies also suggest the adoption of soft margin
boosting to prevent the problem of overfitting [12],.][46]. “"We thus employ the
linear program boosting proposed by Demiriz et al. [12] for achieving soft-margin
distribution over the training data D and acquiring an ensemble classifier fp =
Zle «; f;, which is.comprised of T" weak learners f;s and weights a;s. Actually,
Demiriz et al. apply a column generation method to solve the linear program
by part, and establish an-iterative boosting process that is similar to AdaBoost.
Note that in implementing the/ CGBoost;the weak learners are constructed from
radial basis function (RBF) networks, denoted as hs [46]. And each h has three
Gaussian hidden units where two of them are initialized for the background, and
the remaining one is for the foreground training data. Let f;(x) = sign(h;(x)) be
the weak learner selected at the jth iteration of CGBoost. Then, the RBF network

h; is derived by minimizing the following weighted error function



where {w;} is the weight distribution over training data D at the jth iteration.

Probability output

Different from (2.4), it is more convenient to link boosting scores to probabilities.
Friedman et al. [18] have proved that the AdaBoost algorithm can be viewed as
a stage-wise estimation procedure for fitting an additive logistic regression model.
Consequently, a logistic transfer function can be directly applied to map CGBoost

scores to posterior probabilities by

AN} 1
P(x|fp) = TT oxp(=2/5(x)); (2.6)

where the mapping in(2.6) is-valid when the training data D do not contain a
large portion of noisy samples or-outliers. For the general case, it should still yield
reasonable probability values with respect to the classification results by f}s.

To summarize, both the two classifiers, f§ and ff, seek a soft-margin solution
when deciding a decision boundary for the training data ID. . They indeed achieve
similar classification performance in our experiments.. However, SVMs are gener-
ally less efficient than boosting;.as‘the number-of support vectors increases rapidly
with the size of D. We thus prefer'a CGBoost classifier for estimating an initial

background model.

2.4 Experimental Results

To demonstrate the effectiveness of our approach, we first describe how the clas-

sifiers are learned for the specific problem. We then test the algorithm with a
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Figure 2.4: Training images for background model initialization. Examples of col-
lected images and their binary maps of the foreground (white) and the background
regions (black) are plotted, top and bottom, respectively.

number of image sequences on a P4 1.8GHz PC. Through illustrating with the
experimental results, we highlight the advantages of learning a background model
by classification, and make comparisons with those related works. Finally, possible

future extensions to.the current system _are also explored.

2.4.1 Classifier Training
Training data

We begin by collecting images that contain moving objects of different sizes and
speeds from various indeor and.outdoor image-sequences captured by a static
camera. These images are analyzed using a tracking algorithm (with known back-
ground models), decomposed into 8 x 8 image blocks, and then manually labeled
as +1 for background blocks, or —1 for foreground ones. Examples of the collected
images and the detected foreground and background regions are shown in Fig. 2.4.
Since we prefer a resulting classifier to accommodate small variations, image blocks
from regions of faint shadows or lighting changes are labeled as background. The

feature vector of an image block can be computed straightforwardly by referencing
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the related ¢ = 3 blocks from the respective image sequence. Totally, there are
27,600 image blocks collected to form the training data D. As shown in Fig. 2.5
(a), the features extracted from the background blocks are mostly of small val-
ues, while those extracted from the foreground blocks mostly have feature values

corresponding to the regions of large motions.

Classifier evaluations

The training and the classification outcomes by implementing the classifier re-
spectively with f§ and fj are summarized in Table 2.1. Owing to the soft-margin
property of the two classifiers, almost the same training errors have been obtained.
However, the classification efficiency of ff is.more than 20-times faster than that
of f§. To visualize the distribution-of a derived classifier, for-example, f, its level
curves of the decision scores are plotted in Fig: 2.5 (b). It can be observed that
the area of positive scores is located near the lower-left corner, which is consistent

with the distribution of feature values‘computed from the training data.

Probability thresholding

For the sake of reducing false positives, we adopt a stricter probability threshold
7% = 0.6 in setting the decision boundary of a CGBoost classifier. This value is
determined through 10-fold cross validation. In Table 2.2, the average values of the
false positive and false negative rates in cross validation with respect to different
threshold settings are listed. While false negatives mainly affect the needed time
in estimating an initial background model, the false positives, i.e. misclassifying
foreground blocks as background, will have direct impacts on the quality of the

background model. Thus, it is preferable to choose 0.6 as the probability threshold
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Figure 2.5: Distributions of training data and training results. (a) The distribution
of the training data. The training features are normalized to the values between
0 and 1. In order to detail the distribution of background samples, only the part
of 0 to 0.5 is plotted. (b) The level curve of f3’s decision scores. The zero-score
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Table 2.1: Comparisons between SVMs and CGBoost (using AdaBoost as a bench-
mark).

| Classifier || SVM fz

CGBoost 3 | AdaBoost fa |

Settings Image Size: 320 x 240, Platform: P4-1.8GHz PC
Parameters | C& =20, | Cp = 545 (None)
Cq =80
Components || 4185 SVs 33 fjs 33 fjs
Error Rate* 0.0466 0.0466 0.0507
’ Test Speed H 0.4fps ‘ 9.5fps ‘ 9.5fps

* Error Rate = # of Misclassified Blocks / # of Training Blocks

Table 2.2: Average error rates of 10-Fold eross validation in different threshold
settings

5 [0S 06. [ 07 ]
False Positive.. || 0.02912| 0.02768| 0.01196
False Negative || 0.01877| 0.02062|. 0.49652

in that it causes fewer false positives without introducing too many false negatives.

2.4.2 Performance Evaluation

Since the classification efficiency of €CGBoost ismore than 20 times faster than that
of an SVM implementation (see Table 2.1), we describe below only the experimen-
tal results yielded by using the CGBoost classifier f;. For testing the generality
of the proposed scheme, all the to-be-estimated scenes of the testing sequences are
completely different from those of the training data. The testing sequences also
contain complex motions, e.g., substantial object interactions, and varied lighting

conditions, like cloudiness.
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Figure 2.6: Results of background model initialization: (a)—(e) The upper row
shows image frames from sequence A, and the lower row depicts the progressive
estimation results. The initial background model is completed at t* = 650. (f)—(j)
The frame subtraction results by referencing the defived background model Bi,.

Background model initialization

We first demonstrate the efficiency of our method for an outdoor environment.
The sequence A contains different types of objects, including slightly waving trees,
walking people, slow and fast. meving vehicles,.and even a stationary bike rider.
We shall use this example as a benchmark to analyze the quality of our results,
detection rates, and comparisons to other existing algorithms. As illustrated in
Figs. 2.6 (a) and (b), the background model is initialized into an empty set at ¢ = 0,
and it is until the 44th frame that stationary regions of the scene are started to
be incorporated into the model (due to N = 45 in our setting). Fig. 2.6 (c) shows
a very slow moving car is falsely adapted into the background in transient (and is

eventually removed after its leaving the scene). More interesting is the scenario
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(a) A020 (b) A166 (¢) A261 (d) A372 (e) AB540

Figure 2.7: Results of background block deteetion. Row one: Image frames from
sequence A. Row two: The manually labeled foreground (white) and background
(black) maps. Note that the very slow-moving car in (¢) that later becomes fully
stationary in (d) is.labeled as-foreground.and backgroundy respectively. Row
three: Our background block detection results. The foreground blocks in gray are
identified by the top-down validation process.

depicted in Figs. 2.6 (d) and (e) that a bike rider waiting for a green traffic light
has remained still long enough to become a part of the derived back-ground model
at t* = 650. Then thesystem can start to track objects viaframe differencing and
proper model updating. “On thewother hand, if-we subtract the model from the
first t* frames, it gives the complerity of how the background model is initialized.

Factors such as dark shadows and waving trees can now be easily identified from

those shown in Figs. 2.6 (f)-(j).

Background block detection

To quantitatively evaluate the accuracy of the bottom-up block classifications and

the improvement with the top-down validations, we select twenty image frames



Table 2.3: Detection error rates with and without top-down validation.

BG/FG Block Without With %
Detection top-down | top-down | Improvement
Detection Error Rate* || 0.04142 0.03779 8.764 %
False Positive Rate 0.02246 0.01825 18.744 %
False Negative Rate 0.01896 0.01954 -3.059 %

* Detection Error Rate = # of Misclassified Blocks / # of Testing Blocks

from sequence A that contain moving objects of different sizes and speeds, specular
light, and shadows. We then manually label each image block of the twenty frames
to result in a set of 20061 background and 3939 foreground blocks, where we shall
use them to examine the accuracy of our scheme for background block detection.
In Fig. 2.7, we show results for-five selected frames. Note that those gray blocks
are detected as foreground through the top-down validation process. To further
justify the need of a local and global approach, a comparison of the detection
error rates with or without the top-down validation step is given in Table 2.3.
Though the values of detection rates could vary from testing our system in different
environments, it is clear that the improvement of reducing the errors by applying
the top-down validation s significant. As in-this example, the reduction rate
of false positives is about 18.744% while the increase rate of false negatives is
only 3.059%. Two observations could arise from the foregoing verification for the

accuracy of our scheme in detecting background blocks.

e For the classifier to accommodate small variations like waving trees, it may
mistakenly classify very slow-moving objects into background (see Fig. 2.6
(c) and Fig. 2.7 (c)). This is indeed a trade-off, and we resolve the issue by

learning a proper decision boundary from the training data.
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e Our classification scheme may suffer from the aperture problem in detecting
large objects in that we use motion features to construct a general classifier
(see Figs. 2.7 (a) and (c)). With the top-down validation, this problem
can be alleviated to some degree. Still a number of false positives caused
by the aperture problem exist frame-wise. However, since only the same
false positive occurring for N consecutive frames would be adapted into a
background model, such an event rarely happens in practice (with a very low

probability, e.g., around 0.01825" for the example in Table 2.3).

Feature selection

In our design, two general motion cues; the inter-frame difference and the optical
flow value, are adopted to discriminate background scenes. While the inter-frame
difference is effective in detecting static background blocks, the optical flow value,
on the other hand, provides discriminability in classifying image blocks in small
motions into gradually-varying background or moving foreground. To further jus-
tify the use of the optical flow cue, additional evaluations using the inter-frame
difference alone are provided. With the best setting of the difference threshold
at 0.013, the training error is raised from 0.0466 to 0.0528 (or a 13.3% increase),
and the testing error for the 20 evaluation image frames increases from 0.0378 to
0.0436 (or a 15.3% increase). Hence, the benefit of incorporating the optical flow

value is obvious.

Parameter settings

We next investigate the sensitivity of our method with respect to different values

of the two parameters N and L. (Since L = N + 15, it is indeed a one-parameter
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(a) N =30 (b) N = 45 (c) N = 60 (d) N =75 (e) N =90

Figure 2.8: Results of different parameter settings. In each case, we show the
image frame I~ (above) that our system completes its estimation for a MAP
initial background model (below). Only for N = 30, it would produce an unstable
estimation due to the violation of stationary criterion. Different values of N and L
(given in Definition 1) mainly affect'the needed time to derive a stable background
model. Respectively, it takes 403, 650, 678, 1001, and 1031 frames to compute the
initial background models.

scheme.) Specifically, we have experimented with N. = 30,45;60, 75, and 90. We
show in Fig. 2.8 that, with different values of IV and L, it mainly affects the needed
time to compute a'stable initial background model. The larger'the value of N is,
the longer period of time it takes to-complete the estimation. Except for N = 30,

which is too short a time period for yielding a stationary adaptation, all other

settings of N lead to stable background models.

Comparisons of Background Model Completeness

A clear advantage of our formulation is the ability to know when a well-defined
initial background model is ready to be used for tracking. We demonstrate this
point by making comparisons with the popular mixture of Gaussians model [54]
and the local image flow approach [22]. While the two methods are also effective for

background initialization, they both lack a clear definition of what an underlying
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background scene is at any time instant of the estimation processes. For systems
based on the mixture of Gaussians, they work by memorizing a certain number of
modes for each pixel, and then by pixel-wise integrating the most probable modes
to form a background model. This is in essence a local scheme that the overall
quality of a background model is difficult to evaluate. On the other hand, the
method described in [22] is designed to process a whole image sequence to output
a background model. We thus need to modify the algorithm into a sequential one
so that the comparisons can be done by frame-wise examining the respectively
derived background models.

The first experiment isccarried out with-image sequence A where the three
algorithms are alternately run till the image frame ¢* =650 that our method
completes its estimation for an-initial background medel. For the mixture model,
we use three Gaussian distributions and a blending rate of 0.01, and initialize
the background model at ¢t = 0 to the first image frame. For the local image
flow implementation, the values of w' and 0,,.,, are set to 30 and 15, and the
background model is an empty set at t = 0. In Fig.-2.9, we show some intermediate
results of ours and the corresponding background models produced by the other
two methods. Due to the batch nmature of the local image flow scheme, its three
background models shown in Fig. 2.9 are obtained by running the algorithm three
times, using the respective periods of image frames as the inputs. Overall, the
results produced by ours and the mixture of Gaussians are more reliable than those
of the local image flow, largely because the local flow scheme relies heavily on the
estimations of optical flow directions and their accuracy. While the outcomes by
the mixture of Gaussians seem to be satisfactory and similar to ours, the absence of

a good measurement to guarantee the quality of the resulting background models
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Figure 2.9: Comparisons of [22], [54], and our approach. Row one: Images frames
from image sequence A. Row two: The intermediate results of background es-
timation by our method that completes at t* = 650. Row three and four: The
results respectively derived by the local image flow approach [22] and the mixture
of Gaussians method [54] at each corresponding time instant.
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remains a disadvantage of the approach. Furthermore, as one would expect that a
mixture of Gaussians method should be sensitive to lighting variations in that it
is done by locally combining pixel intensities. We shall further elaborate on this
issue with the next experiment.

Our second comparison focuses on the effects of lighting changes. For the
outdoor sequence B (see Fig. 2.10), the lighting condition varies rapidly due to
overcast clouds. And the experimental results show that our method is less sensi-
tive to variations of this kind. Specifically, in Figs. 2.10 (e) and (f), we enlarge the
sizes and enhance the contrasts of the two derived background models for a clearer
view. Note that especially«in the road area our background model estimation is
clearly of better quality than the one yielded by the mixture of Gaussians. This
is mostly because of our uses-of motion cues for identifying background blocks
and the propertiesiof the MAP background model for integrating local and global
consistency. On the other hand, the mixture of Gaussians approach uses only the
pixel-wise intensity information so that its performance depends critically on the

variations of intensity distribution about the background scene.

Initialization and tracking

To further illustrate the efficiency of using our proposed algorithm to estimate a
background model for tracking, we show the estimations of initial background mod-
els of test sequences C and D, and some subsequent tracking results in Fig. 2.11.
Below each depicted image frame I, the corresponding background model E;‘ is
plotted. In the two experiments, the estimations of the initial background model
E;ﬂ are completed at frame number t* = 470, and 243, respectively. Once the E;

is available, the system can start to track objects immediately, using the scheme
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MAP Background Model
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iure ui Gaussians ) . o : Backgruun Model
(e) Mixture of Gaussians (f) MAP

Figure 2.10: Tests on lighting variations with the sequence B. (a)-(d) Due to
overcast clouds, the outdoor lightings over the road change significantly throughout
the sequence. As a result, the quality of background models yielded by the mixture
of Gaussians is considerably affected. However, our formulation is more robust
to such lighting perturbations. (e)—(f) The two derived background models at
t* = 475 are enlarged and enhanced in contrast. False textures and extra noises
can be observed in the road areas of (e).
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described in [6]. We also note that, as demonstrated in Figs. 2.11 (j)-(1), the back-
ground model can be updated appropriately during tracking, even when significant

changes in the scene background have occurred.

39



R (e) €535 Z - Z (k) D373 (1) D610

Figure 2.11: Background model initialization and tracking. The current image
frame [, and the derived background model B; are plotted together, top and
bottom, respectively. Some Tracking results are also shown in the I;s.
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Chapter 3

Background Model Maintenance

via Density. Estimation

To model a scene for background-subtraction; Gaussian mixture modeling (GMM)
is a popular choice for its capability of ‘adaptation to background variations.
However, GMM often suffers from a trade-off between robustness to background
changes and sensitivity to foreground abnormalities, and is inefficient in manag-
ing the trade-off for varioussurveillance scenarios. By reviewing the formulations
of GMM, we identify that‘such a trade-off-can be easily controlled by adaptive
adjustments of the GMM’s learning rates for image pixels at different locations
and of distinct properties. A new bivariate rate control scheme based on a feed-
back of high-level information is then developed to provide better regularization
of background adaptation for GMM and to help resolving the trade-off. Addition-
ally, to handle lighting variations that change too fast to be caught by GMM, a
heuristic rooting in frame difference is proposed to assist the proposed rate con-

trol scheme for reducing false foreground alarms. Experiments show the proposed
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bivariate learning rate control scheme, together with the heuristic for adaptation
of double-quick lighting change, gives better performance than conventional GMM

approaches.

3.1 Overview

For video surveillance using a static camera, background subtraction is often re-
garded as an effective and efficient method for differentiating foreground objects
from a background scene. The performance of background subtraction highly
depends on how a background scene is modeled. Ideally, a perfect design of back-
ground modeling should be able to tolerate various background variations without
losing the sensitivity in‘detecting abnormal foreground objects. However, the
trade-off between statistical robustness and sensitivity in background modeling
is commonly encountered in practice and is hard to be balanced within a single
computational framework.

Among various background modeling approaches, e.g.. [4]; [9], [13], [19], [21],
[24], [33], [40], [41], [43], [47], [48], [50], [51], [54], [58],[64], [68], [70], the Gaussian
mixture modeling (GMM)/[19]; [21]s.[54] is-known to be effective in sustaining
background variations, e.g., waving trees, due to its use of multiple buffers to
memorize scene states. It is hence widely adopted as a base framework in many
later developments [25], [26], [27], [36], [42], [55], [71]. However, the GMM often
suffers from the trade-off between statistical robustness to background changes
and sensitivity to foreground abnormalities, abbreviated as R-S trade-off in later
discussions. For instance, a Gaussian mixture model being tuned to tolerate quick

changes in background may also adapt itself to stationary objects, e.g., unattended
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bags left by passengers, too quickly to issue reliable alarms. The lack of a simple
and flexible way to manage the R-S trade-off for various scenarios motivates this
research to re-examine the formulations of the GMM.

In the original formulations of the GMM, every image pixel, regardless of its
intensity being changing or not, is given the same setting of learning rates in
background model estimation, which is inefficient in managing the R-S trade-off.
Considering a pixel of background that was just uncovered from occlusion of a
moving object, the corresponding Gaussian mixture model for this pixel should
be updated in a slower pace than that for.a_stable background pixel, to prevent
false inclusion of moving shadows or motion blurs into background. Nonetheless,
in the original GMM formulations, an-identical learning rate setting is applied to
all image pixels, leaving no space for tuning the background adaptation speeds for
this case. We therefore highlight the importance of adaptive learning rate control
in space and in time, and develop a new bivariate rate control scheme based on
the high-level feedback of pixel properties for GMM.

Features of the proposed scheme of bivariate learning rate control for GMM
are in several folds. Firstly, two types of learning needs are identified for a Gaus-
sian mixture model (for an image pixel), one for controlling the model estimation
accuracy and the other for regularizing the R-S trade-off. Different from previ-
ous works, e.g., [25], [54], that use a single learning rate setting for both learning
needs, the proposed bivariate rate control scheme distinguishes two different types
of learning rates and manipulates them independently. Secondly, the background
adaptation rates for image pixels are set individually in space. Image pixels at
different locations may thus exhibit distinct behaviors in background adaptation

for accommodating local scene changes. Thirdly, for every image pixel, its learning
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rate for regularizing the R-S trade-off is computed based on the high-level feed-
back of its latest pixel type, i.e., as background, stationary foreground, moving
foreground, etc. Under this feedback control, the learning rate setting for an im-
age pixel can be dynamically adjusted in time, according to its type, and with
respect to different application scenarios'. The more pixel types are allowed, the
higher flexibility in background adaptation can be attained. Fourthly, a heuristic
for adaptation of double-quick lighting change is suggested to assist the learning
rate control to adapt very rapid lighting changes in background. This heuristic
enhances the model robustness to speedy-lighting variations without sacrificing the
sensitivity in detection of significant foreground motions. To sum up, we maintain
that via a careful design of learning rate control for the GMM, the R-S trade-off
can be effectively and efficiently regularized in fulfilling various needs in video

surveillance.

3.1.1 Related Work

Balancing the R-S trade-off has long been an important task in background mod-
eling. In [58], Toyama et al. explore several scenarios that are hard to be handled
by background modeling, and propose a hybrid approach to maintain background
models at different spatial scales. In [4], Boult et al. apply different learning rates
to foreground and background pixels to increase the model sensitivity for single
Gaussian formulation and develop cleaning algorithms to reduce false alarms. In
[20], Gao et al. use statistical analysis to tune parameters in background modeling,

including the number of Gaussian components and the learning rate, for controlling

'For example, while pixels of stationary objects may need to be quickly adapted into back-
ground for the application of moving object detection, they should be stably identified as fore-
ground for the application of unattended object detection.
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the trade-off. In [37], Li et al. utilize spatio-temporal features to model complex
backgrounds and develop a criterion to select the learning rate for the adapta-
tion of once-off background change. In [25], Harville discusses some trade-offs
frequently encountered by the GMM and adopts high-level feedback as a remedy.
Also based on the GMM, Tian et al. propose a weight exchange scheme based
on object-level feedback to prevent foreground fragmentation in the detection of
static object [55]. In [71], Zivkovic analyzes the appropriate number of mixture
components for the GMM and dynamically removes some mixture components
for computational efficiency. In [36], Lee.proposes a new rate control formulation
for the learning of Gaussian parameters to'enhance the accuracy and convergence
speed of background model estimation..Model robustness to background changes
is improved by Lee’s learning rate control without obvious side-effects on model
sensitivity. In [66];7a two-layer GMM is propesed by Yang ef al. to learn fore-
ground and background models at different learning rates and to achieve better
foreground segmentation results. Beyond Gaussian-based formulations, Elgammal
et al. adopt kernel density estimation to compute background models, and com-
bine short-term and long-term models to balance the R-S trade-off [13]. Despite
the effectiveness in background modeling for all the approaches mentioned above,
no comprehensive investigation into the relationship between model learning rates
and the trade-off control for different surveillance scenarios within a single back-
ground modeling framework has been conducted.

Note also that the idea of adopting high-level feedbacks, e.g., using foreground
pixel type, in background modeling is not new [4], [25], [55], [66]. Yet the proposed
feedback control over learning rates has several novel features. Firstly, to the best

of our knowledge, the proposed work is the first to apply independent controls
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over two types of learning rates for simultaneously enhancing the model estimation
accuracy and regularizing the R-S trade-off. High-level feedbacks are applied only
to the learning rate control related to the R-S trade-off. Based on our study,
this independent control of two-type learning rates is a key to derive a robust
background modeling system. Secondly, a new rate control framework capable of
managing multiple pixel types as feedbacks is demonstrated to be practical and
feasible. Thirdly, the need of dynamically adjusting the learning rates for pixels
of background type is firstly identified in this study. This particular learning rate
control for background pixels can increase.model sensitivity to hovering objects

with little side-effect to model robustness.

3.1.2 Model Accuracy, Robustness and Sensitivity

To estimate a density distribution from a sequence of intensities /o , . . ., [; x> for a
pixel at a position.x via the GMM, three issues regarding model accuracy, robust-
ness and sensitivity meed to be addressed. Specifically, a mixture model consisting

of N Gaussian distributions at time instance ¢ -can be denoted by

N
P(It,x) = Zwt—l,x,nN(It,x;:ut—l,x,nagg_LXW)7
n=1

where A symbolizes a Gaussian probability density function

N (I;p,0%) = ! eXp(—M),

2w o2 202

2Here I;x € R denotes the 1-D pixel intensity only. Yet, all our formulations can be easily
extended to multi-dimensional color image processing, e.g., I; x € R3.
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Hi—1x,n and Ut2—1,x,n are the Gaussian parameters of the nth model, and w;_; x , is
the respective mixture weight. For maintaining this mixture model, the parameters
-1, ‘7th1 and w;_; need to be updated based on a new observation [; x. In the
GMM, the update rule for p, for the case that I;x matches the nth Gaussian
model, is

Htxn = (1 - p),utfl,x,n + p[t,xa

where p € [0,1] is a learning rate® that controls how fast the estimate y converges
to new observations. Likewise, similar update rules can be applied to renewing o>
and w, given corresponding learning rates.

In updating the Gaussian parameters p and 0%, their values should reflect the
up-to-date statistics of a scene-as-accurately as possible. It is-thus preferable to set
their learning rates:to large values to quickly derive Gaussian distributions that
fit new observations: Also as noted in [36], setting higher learning rates for p and
o? improves model convergency and accuracy, and brings few side-effect in model
stability.

While the model estimation accuracy depends on the learning rates for x4 and
o, one can see that the R-S trade-off is affected bythelearning rate for the mixture
weight w. In the original GMM for background model estimation, the classification
of Gaussian models into foreground and background is done by evaluating their
mixture weights through thresholding. The Gaussian models that appear more
often will receive larger weights in the model updating process, and will possibly
be labeled as background [54]. However, the frequency of model occurrence should

not be the only factor that guides the changes of mixture weights. For example,

3The definition of learning rate is inherited from [54].
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one may prefer to give large weights to the Gaussian models of tree shadows (for
background adaptation) while to keep small weights to those of parked cars (for
foreground detection), despite the similar frequencies of occurrence of these two
objects. By incorporating the high-level information of pixel types, e.g., of shadow
or car, into the weight updating process, flexible background modeling can then
be carried out. As more pixel types are designated by a surveillance system, more
appropriate controls on weight changes can be advised accordingly, which will help
resolving the R-S trade-off in background modeling. Based on this observation, we
propose a new bivariate learning rate control scheme based on a feedback of pixel

type for GMM.

3.2 Bivariate Learning Rate Control via High-

Level Feedback

Our presentations .of the proposed bivariate learning rate control via high-level
feedback is divided into three parts. Firstly, an algorithm of background model
maintenance using the GMMuis proposed, wherein two types of learning rates
are formally defined. We highlight the importance of the learning rate control
for mixture weights and elaborate its relationship to foreground pixel labeling.
Secondly, a feedback scheme that controls the learning rates for mixture weights
is detailed. Under this feedback control, different learning rates can be applied
to different image locations and scene types, which makes dynamic background
adaptation possible. Thirdly, a heuristic based on frame difference is introduced to

assist the learning rate control for the adaptation of double-quick lighting changes.
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False alarms caused by, for example, sudden sunshine changes in the background
can hence be suppressed by this heuristic while significant, object motions can still

be captured.

3.2.1 Background Model Maintenance

Given a new observation of pixel intensity I;x, the task of background model
maintenance is to match this new observation to existing Gaussian distributions,
if possible, and to renew all the parameters of the Gaussian mixture model for this
pixel. The detailed steps of the proposed background model maintenance using
the GMM is shown in Algorithm 2.

For the model matehing in Algorithm 2, [(¢,x) is utilized to index the best
matched Gaussian model of I, if existing. Otherwise, I(f,x) = 0 will be set to
indicate I; x is a brand-new observation and should be modeled by a new Gaussian
distribution. The.matching results of [, x can be recorded by model matching
indicators, i.e.,

L, ifn=1(tx%),
Mtxn: fOI‘Tl:L...7N,

0, otherwise,

and will be used in the later model update. Unlike [54] that adopts a more complex

formulation in model matching, i.e.,

I x —1xn
l(t,x) = argmin’ tx — Ht-lx, ’, (3.1)

n=1,...,N O¢t—1,x,n

a simple rule that selects the model of higher weight as the best match is used in
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Algorithm 2. The proposed weight-based matching rule prefers matching a pixel
observation to the Gaussian model of background (with higher weight) other than
those of foreground, if this observation falls in the scopes of multiple models. Using
this rule not only saves computational costs but also fits the proposed rate control
scheme better, as will be discussed in more detail later.

After model matching, we check if M,y ;. x) is equal to 0, which implies no
model matched. If so, a model replacement is performed to incorporate I; x into
the GMM; otherwise, a model update is executed. In the replacement phase, the
least weighted Gaussian model is replaced by the current intensity observation. In

the update phase, the following three rules;,

Mt x 1(t,x) = (1 — Ptx,l(t,x) (Oé)) Hop—1,x 1(t5%) + Pt x,(t,x) (Oé) It,x; (32)
2
O-tQ,x,l(t,x) = (1 - pt,x,l(t,x) (a)) U?—l,x,l(t,x) + pt,x,l(t,x) (CE) (It,x = ﬂt,xJ(t,x)) ; (33)

wt,x,n = (1 - nt,x(ﬁ)) wt—l,x,n + nt,x(ﬁ) Mt,x,m (34)

are applied, where pt,x,l(tyx)(oz) € R denotes the learning rate for the Gaussian
parameters g and o2, and M (8) € R is a new learning rate introduced in this
research for controlling the'updating speed-of the mixture weight w. Here, the two
scalars o and (8 can be viewed as hyper-parameters over p and 7 for tuning their

values. In [54], the learning rate p is defined as

pt,x,l(t,X)<a) =aN (It,x§ Ht—1,x,1(t,x)s Ut{l,x,l(t,x)) ) (3-5)
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while in [36] it is given by

. 11—«
Prxi(tx) (@) = ( + a) , (3.6)

Ct,x,1(t,x)

where ¢;xn = ¢—1xn + Myxn and ¢;—gxn = 0, Vx,n.* Although (3.6) may result
in quicker convergence in Gaussian parameter learning [36], we still choose (3.5)
in our implementation for experimental comparisons and put our emphasis on the
control of the learning rate n for the mixture weight. In later experiments we
will show that better performance can be achieved by controlling the learning rate
n than by tuning the rate p. "Also, as noted in [36], typical values of a are in
[0.1,0.001] for both (3.5) and(3.6), yielding a wide.range of convergence rates in
Gaussian parameter estimation.-Here we set a = 0.025 as ardefault value for quick
model learning.

In previous background modeling researches; e.g., [25]; [36], [54], a naive setting

for mixture weight update, i.e.,
Wy xn = (1 - O{) Wi—1,x,n + o Mt,x,na (37)

is adopted. The rule (3.7) can be viewed as a special case of the proposed weight
update of (3.4) with nx = a. In (3.7), all image pixels are confined to having an
identical rate setting in mixture weight learning, so that scene changes can not be
properly handled with respect to space and time. Instead, with our generaliza-
tion that assigns individual learning rates for mixture weights to image pixels and

adapts them over time, higher flexibility in regularizing background adaptation

“4Interested readers can find the details in [36].
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Algorithm 2: Background model maintenance
Parameters: T, (= 2.5), 03(= 10%), wo(= 0.01)
// Model matching
Mt,x,n = 0, Vn = 1,...,N
dixn=1nf, Vn=1,...,N
for n=1,...,N do
L if ‘It,x - Mt—l,x,n‘ <Ts Ot—1,x,n then dt,x,n = —Wt-1x,n

S Tt e W N

-~

l(t,x) = arg min,_; n dixn
8 if dyyinx) 7 inf then M,y ;5 =1 elsel(t,x) =0

9 // Model renewing

10 Wt x,n = (1 - nt,x(ﬁ)) Wt—1,x,n T nt,x(ﬁ) Mt,x,na vn
11 if Mt,x,l(t,x) == 1 then

12 // Update phase
13 Prxiitx) (@) = aN <Itvx3 “t-l,x,l(t,X)7UtZ—Lx,l(t,x))
14 Pt x,1(t,x) = (1 - pt,x,l(t,x)(a)) Ht—1,%,1(t,x) + Ptxl(tx) (a) It,x

15 O-tQ,XJ(t,X) = (1 - ptax7l(t7x) (O[)) UtZ—l,X,l(t,X) + pt:x’l(t»x) (a) (It7x - Mt,x,l)Q

16 else

17 // Replacement phase

18 k=argmin,_; N Wi-txn
19 Mt x .k = It,x

20 UtQ,x,k = o}

21 Wt x,k = WO

N
22 wt7x7n = wt7X,n/Zn=l wt7x7n7 vn

can be obtained. Note that the index n is not attached ton, x because the chang-
ing rates for the weights w; x,,3, ¥n, are designed to be consistent among the N
Gaussian models of the same image pixel. Regarding the computation of 7, x, we
link it to the high-level feedback of pixel types and describe the feedback control
in Sec. 3.2.2.

In the GMM, all the scene changes, regardless of being foreground or back-
ground, are modeled by Gaussian distributions. To further distinguish these two

classes, a foreground indicator F}y, for each Gaussian model is defined using the
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corresponding mixture weight as

0 if wixn > Ty,

Fixn= (3.8)

1 otherwise,

where T}, € R is a preset parameter.® A binary foreground map can then be defined
as a set F; = {F,xiux|Vx}. In the original GMM formulations applying (3.7),
more frequently matched Gaussian models will have larger weights and will be
labeled as background. Nevertheless, stationary objects, e.g., abandoned packages
or standing persons, that appear constantly within a restricted area should not
always be absorbed into background for some applications. Rather, these objects
may need to be stably highlighted as foreground and alarms should be triggered
if necessary. By adaptively adjusting mx in (3.4) based on object types, as will
be discussed next, such demands may be fulfilled without resorting to complex

versions of (3.8) ferforeground and background separation.

3.2.2 Feedback Control

A flowchart of a general-purposed. surveillancessystem 1is illustrated in Fig. 3.1,
where five processing modules are presented in'a sequential manner. To address
the above issue associated with object types, the final results derived by the last
module of object type classification is fed back to the first one of background model
maintenance for further control of the learning rates. Rather than digging into the
details of each module wherein different implementations can be accommodated,

we place the focus on the learning rate control for mixture weights in the following

®The procedure of model sorting by the values of w/o, as suggested in [54], is not applied
here since it is more complex and may cause complications in foreground pixel labeling.

53



Image input Feedback

4 v

Background Model Maintenance
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Foreground Pixel Identification
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Figure 3.1: Flowchart of a general-purpesed surveillance system. The first module
of background model maintenance corresponds to the Algorithm 2. The second
one of foreground pixel identification is implemented by using the mixture weight
thresholding discussed in Sec. 3.2.1. The third module can be realized by using an
shadow detection algorithm described in [6]. For object extraction, we mark small
(< 4 x 4 pixels), isolated foreground regions as noises via morphological processing
and group the rest foreground pixels into objects by connected component analysis.
Regarding the object type classification and the feedback control on learning rates,
they are presented in Sec. 3.2.2.
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discussions.

In the proposed approach, we adopt different learning rate settings for four
object types of background, shadow, still foreground and moving foreground, re-
spectively. Based on the processing flow of Fig. 3.1, the object types of background,
shadow and foreground can be easily discriminated. To further classify the fore-
ground type into still and moving ones, the object tracking algorithm presented in
6] is adopted to find the temporal associations among objects of time instances ¢
and t — 1. Then, the position displacements of tracked objects are thresholded for
discrimination of still and moving types..Thus, an object type indicator for every

pixel at time instance t can be defined as

0 ifF %) =0, (Background)

o 1 F x 10.%-="1and Type(/; ) = Shadow,
tx —

5

2 if F, xiax) = 1 and Type(lix) = Still foreground,

3 Otherwise. (Moving foreground)

and an object map can be denoted by Op = {Ox|Vx}.. Subsequently, the ob-
ject map Oy is sent back to the background model maintenance module for the
learning rate control at the next time instance. This process can be regarded as a
delayed feedback control since the current learning rates are calculated based on
the previous estimations of pixel types. The above one-frame delay in feedback
control works well in practice because the previous type estimations often provide
reasonable guesses of the current pixel types if the frame rate is high with respect
to foreground movements. In addition, since the feedback control is applied to the

learning rate 7 x, but not to the mixture weights w; x ,, directly, dramatic changes
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in mixture weights as pixel type varies can be avoided. Stable foreground and
background separation (via weight thresholding) can thus be obtained.

With the above notations, the learning rate 1, x can now be specified by

(1 — Bp) m—1.x + M5 if Or_1x =0,
ﬂdN <[t,x; Ht—1,x,b(t,x) 0'152_1 <.b(t.x ) if Otfl,x = 17
Mx(B) = e (3.9)
/BS lf Otfl,x — 27
ﬁm lf Ot—l,x - 3

T
where 1, is a preset constant, the hyper-parameter 3 = {gb Ba  Bs 54 € R*is
extended to a vector foricontrolling the learning rate with respect to different pixel

types, and the index of the most-probable background model, b(t, x), is defined by

b(t,x) = argmax wy x .
n=1,... N

For a pixel of moving foreground (Op—3% = 3);-0ne-may set f,, ~ 0 to suppress
the adaptation of all'moving objects into background, resulting in a very sensitive
system to motions. In contrast;.by setting (3, to-a large value, which results in a
quick increase of the weight of ‘@ Gaussian model for, say, a waving tree, a system
will be more capable of tolerating background variations. On the other hand, for
the type of still foreground, the larger the j, is set, the quicker a stationary object
will be merged into background. For the application of abandoned and missing
object detection, a small S is preferred. Regarding the case of shadow type, we
favor faster adaptation of fainter shadows into background, so N (-) is used to

estimate the similarity between the shadow intensity and the Gaussian model of

56



0.025

0.015

0.01

0.005

L L
0 100 200 300 400 500 600
t

0 I I

Figure 3.2: Simulated changes of the learning rate 7, for a pixel being persistent
background, given (3, = 0.01 (solid line)-and.Gy= 0.1 (dotted line), respectively.
The initial learning rate ;- is-set-to 1/6000 and n is set to 0.025.

the most probable background (indexed by b; ). The corresponding learning rate
is then set to the similarity measure multiplied by a regularization scalar f;.

For a pixel of background type, ., O;_1 x =0, its learning rate is designed
to be gradually increased at a rate regularized by [, as formulated in (3.9). The
learning rate for an image pixel being persistently identified as background will
asymptotically approach 7, as shown.in Fig. 3:2. However, once this pixel position
being occluded by shadows or moving objects, the respective learning rate will be
reset to other value, e.g., (,,, that is much smaller than it was used to be. This
design helps preventing false inclusion of afterimages left by moving objects into
background. When taking pictures of moving objects, their boundaries are often
in blur. See Fig. 3.3 for an example. Some motion-blurred regions near object
boundaries may be misclassified as background, resulting in afterimages. For an

object hovering over a region, its afterimages appear frequently and will be quickly
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Figure 3.3: Example of motion blur. The foreground and background boundaries of
a moving hand may not be clearly distinguished,even by human visual inspection.
included into a background model." To alleviate such.a problem, instead of setting

the learning rate tora constant, i.e.,

nt,x = 1, lf Ot—l,x — 0) (310)

it is increased gradually for a. pixel of background.in the proposed approach. In
Sec. 3.3.1, benefits of adopting this background-type rate control will be demon-
strated. Note that, in all our experiments, we set n, = «a, §, = 0.01, 85 = 1/100,
Bs = 1/900 and 3, = 1/6000.

As discussed in [4] and [13], a major problem with feedback control for back-
ground modeling is that misclassifications of pixel type in the current frame will
propagate to subsequent frames as the learning rates are determined by classifica-
tion results. For instance, if a background pixel is misclassified as foreground, a

false positive will persist at this pixel location for a long time due to the low learn-
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ing rate setting for foreground pixel. Fortunately, this problem can be treated, if
not cured, by the proposed framework of bivariate learning rate control.

Based on our observations, the problem with feedback control for background
modeling can be effectively treated if the following two criteria fulfilled: (a) ac-
curate estimation of a background model and (b) prevention of background adap-
tation to pixels of misclassified types. In the proposed approach, giving separate
controls to the learning rates p and 1 meets the criterion (a). Up-to-date model
estimations can hence be delivered by setting a large p, regardless of foreground
classification results controlled by 7. Ewven for the pixels of misclassified types, their
Gaussian models can still be accurately estimated.. Our experiments in Sec. 3.3.5
show that the accurate estimation of background models will help reducing per-
sistent false positives.of misclassified pixels.

Regarding the ‘eriterion (b); the background-type rate control in (3.9) is de-
signed for it. With this control, false background adaptation to foreground motion
blurs (a.k.a. afterimages) cansbe largely reduced, as will be shown in Sec. 3.3.1. In
addition, the weight-based matching rule is-utilized in our approach to eliminate
false positives even more. ‘Although the matching rule seems to prefer the most-
weighted Gaussian models of background for new pixel observations, it matching
results are still trustworthy owing to our capability of deriving accurate Gaussian
models. Advantages of adopting this weight-based matching rule will be further

demonstrated in Sec 3.3.5.
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(d) [tB—12 (e) I? (t = 548) (f) |ItB - ItB—12| * 6

Figure 3.4: Examples_.of (1) 'quick and (ii) double-quick lighting changes. (a)-(c)
Two images in Seq. A (recorded at-20 fps) and their difference for (i). (d)-(f) Two
images in Seq. B (recorded at-15-fps) and their difference for (ii).

3.2.3 Heuristic for Adaptation of Double-Quick Lighting

Change

Surveillance systems-often encounter challenges from lighting changes, especially
for systems used in outdoor environments. While gradual and quick lighting vari-
ations can often be adapted by the GMM; some double-quick changes can not be
caught via background model learning at reasonable learning rates. For instance,
two examples of quick and double-quick lighting changes are given in Fig. 3.4. The
image sequence A shown in Figs. 3.4 (a)-(c) records a laboratory with a monitor
displaying rolling interferences. In this indoor sequence, it takes about 3 seconds
to increase the average intensity by 20%. This quick variation in image brightness

can still be learned by the GMM, as will be demonstrated in Sec. 3.3.1. In contrast,
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for a double-quick lighting change shown in Figs. 3.4 (d)-(f), similar increases of
image intensity are observed in less than one second for an outdoor environment.
As will be shown in Sec. 3.3.3, many false alarms in foreground detection are issued
under such condition. Consequently, a heuristic based on frame difference is also
developed to assist the GMM to cope with double-quick lighting changes.

The idea behind the heuristic is simple yet effective. While image intensity
variation of double-quick lighting change may seem to be large among temporally
distant image frames, it may be small between two consecutive frames if the frame
rate of recording is high enough. The small,.and smooth change of image brightness
between consecutive image frames. provides a.cue for eliminating false alarms in
foreground detection for double-quick, but not abrupt®; lighting changes. For ex-
ample, by thresholding the differences between corresponding pair of pixels, each
from two consecutive frames, at a proper level, such false alarms can often be
reduced.

Accordingly, the proposed heuristie consists the following formulations. First,

the thresholding of intensity difference for every pixel pair is performed by

1 \It,x = It—l,xl > Td;
Dt,x <

0" otherwise.

where Ty(= 10) is a given threshold. Thus, a frame difference map D; = {D; «|Vx}
can be derived. By combining both the frame difference map D, and the foreground
map F; via

F, = F; AND (F;_, OR D), (3.11)

6 Abrupt changes in background are regarded as salient deviations between two consecutive
image frames, due to, e.g., light on/off.
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a new foreground map F] being less affected by lighting changes can now be ob-
tained. Note that the OR operation in (3.11) is utilized for temporal accumulation
of foreground regions, which is useful for detecting objects in slow motion. The
map F; is then used to replace F; as a new output of the second module in Fig. 3.1.
Regarding the lighting change areas where F] —F; # 0, they are relabelled as back-
ground and will be quickly learned by the GMM via (3.9). False alarms caused by
double-quick lighting changes will hence be reduced. Based on our experiments
shown in Sec. 3.3.3, the system robustness to lighting changes will be increased
without losing the sensitivity in detecting significant foreground motions.
Because this heuristic is developed to improve the tolerance of our model to
speedy lighting changes without altering the background estimation results much,
the threshold valuetis usually limited by 10.< T; < 20. Image differences larger
than 20 between two consecutive image frames, which might be perceived by sen-
sitive human eyes are considered as abrupt changes. Owing to the accumulating
formulation in (3.11), large lighting changes between two distant image frames can

still be handled using small 1, for most cases.

3.3 Experimental Results

Several real videos are used to test the effectiveness of the proposed bivariate
learning rate control scheme. In Sec. 3.3.1, comparisons among different learn-
ing rate controls proposed by the original GMM [54], its variant [36] and this

research are presented” using two image sequences with lighting changes, missing

"For experimental evaluations, we apply the conventional matching rule (3.1) to [36] and [54],
and use the same labeling rule (3.8) with 7, = 0.24 to all the methods to segment foreground
regions.
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objects and waving hands. While the first scenario of lighting changes should be
quickly adapted into background, the other two should not. All these scenarios
can be properly handled by the proposed approach but not by those of [54] and
[36]. In Sec 3.3.2, the effects of tuning the parameter 3 are discussed. Next in
Sec 3.3.3, by using a third image sequence as a benchmark, the superiority of
the proposed heuristic for adaptation of double-quick lighting change is demon-
strated. In Sec. 3.3.4, quantitative evaluations of selected approaches with respect
to different o values are presented. In Sec. 3.3.5, an example of fountain spurt is
used to demonstrate our treatments of the problem with feedback control for back-
ground modeling. Finally, additional experimental results are given to show the
effectiveness of the proposed approach for the scenes of wawving water and crowded

entrance.

3.3.1 Regularized Background Adaptation

In the first experiment for the adaptation of quick lighting changes, we use Seq. A
previously illustratedin Fig. 3.4 as a benchmark: The foreground detection results
and the learned backgtound models, up to the image frame [, obtained from
different approaches are shown in Fig:=3:5 for two different learning rates. For
visual comparisons of the learned background models, a definition of background
map B; = { ,ut,x,b(t’x)]VX} is adopted, and the derived background maps are drawn
in the middle row of Fig. 3.5. In Figs. 3.5 (a) and (b), false positives of foreground
detection are observed by using a = 0.01 for the approaches of [54] and [36].
As shown in Figs. 3.5 (d) and (e), all the false positives can be eliminated by

giving a higher learning rate with o = 0.025 while only the rolling interferences
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(a) Results of [54] (o = 0.010) (b) Results of [36] (a = 0.010)" (¢) Our results (o = 0.010)

(d) Results of [54] (o = 0.025) (e) Results of [36] (aw = 0.025) (f) Our results (o = 0.025)

Figure 3.5: Comparisons of background adaptation to quick lighting changes using
Seq. A. Top row: foreground detection results for I; middle row: computed
background maps B;s; bottom row: derived foreground maps. In the foreground
maps, the regions in blue denote shadows and noises. (a), (b), and (¢) The results
of [54], [36], and our approach, respectively, with o = 0.010. (d), (e), and (f) The
results of [54], [36], and our approach, respectively, with a = 0.025.
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on a monitor are marked as foreground. On the other hand, correct foreground
detection results are obtained in Figs. 3.5 (¢) and (f) by the proposed approach
(with the heuristic of (3.11) applied) for both rate settings.

In the previous experiment, a = 0.025 can be regarded as a proper setting
for adaptation of quick lighting change. However, if the same setting is used for
Seq. C, defects of foreground detection will appear for approaches of [54] and [36].
(Because the foreground detection results of [54] and [36] in this experiment are
almost the same, only those of [36] are shown in Fig. 3.6 for brevity.) As shown in
Fig. 3.6 (a), a cellular phone on a desk is taken away. Usually, a missing personal
property should be marked<as foreground and.trigger an alarm. However, such an
abnormal event can net be stably detected with o =.0.025. The quick adaption
of the uncovered region into background happens in about ene second, as shown
in Fig. 3.6 (b), leaving no-evidence of the missing cellular phone. Similarly, hand
waving in front of the camera is soon adapted into background as well, as shown
in Fig. 3.6 (c), causing the hand regions only partially detected. In contrast, the
above two scenarios can be properly handled by the proposed approach with the
same parameter setting{(a =.0.025), as shown in Figs. 3.6 (d)-(f). Thanks to the
regularization of the learning rate 5, quick lighting changes, missing objects and
periodic motions can all be modeled decently in an unified framework.

Advantages of the proposed background-type rate control are also demon-
strated, using Seq. C, in Fig. 3.7 wherein background modeling results are obtained
with and without the background-type rate control. By replacing the gradual in-
crease of background learning rate in (3.9) with a constant setting of (3.10), as can
be seen in Fig. 3.7 (a), the afterimages induced by the waving hand are included

into the background model (the second row) and the resulted segmentation of fore-
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(a) Results of [36] for IE (b) Results of [36] for ISy

(d) Our results for IS (e) Our results for IS, (f) Our results for I'G,

Figure 3.6: Comparisons of background modeling for missing object and waving
hand using Seq. C. Top row: foreground detection results; middle row: computed
background maps; bottom row: derived foreground maps. (a), (b), and (c) The
results for IS, I5,, and I, respectively, using [36] with a = 0.025. (d), (e),
and (f) The results for IS, IS,, and IG,, respectively, using our approach with
a = 0.025. In (f), the cellular phone taken away is identified as a missing object

and highlighted by a yellow box. 66



(a) IS5 (w/o BTRC) (b) IS, (w/o BTRC) (c) I§s (w/ BTRC) (d) IS, (w/ BTRC)

Figure 3.7: Comparisons of background modeling results obtained without and
with using the background-type-rate control (BTRC). Top.row: foreground de-
tection results; middle row: computed-background maps; bottom row: derived
foreground maps. (a) and (b) The results derived by replacing the first equation
of (3.9) with (3.10). (¢) and (d) The results derived by (3.9).

ground regions is ingomplete (the third row). In Fig. 3.7 (b), as the hand moving
out of the scene, theincorrect background model continues to.gives false positives
in foreground detection for a period of time. On the other hand, such defects can

be effectively reduced by using the proposed rate ¢ontrol for background pixels, as

shown in Figs. 3.7 (c) and (d).

3.3.2 Parameter Tuning

T
As tuning the hyper-parameter 3 = [5{; Ba By ﬁm} , the effect is more on time
span of background adaptation than on the accuracy of background modeling.
Specifically, varying s changes the time span for a still object to be merged into

a background model, if no interrupt occurs. The number of required image frames
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Table 3.1: Numbers of image frames resisting background adaptation to afterim-
ages w.r.t. [ps.

B 0.01 0.05 0.1 0.5 1
# of Frames | > 700 | > 700 | ~ 430 | ~ 175 | ~ 165

to adapt a pixel of still type into background can be estimated by
arg mtin wy > T, subject to w; = (1— ;) w1+ fs.

For example, given 5, = 1/900 and wy = 0.01 as an initial value, at least ¢ = 239
image frames are required to complete the background adaptation of a still-type
pixel. For Seq. C shown in Fig..3.7, it takes about 288 frames to replace regions
of the missing cellular‘phone with newly-revealed scenes in the background model,
just a little longer than predicted. Regarding the default setting of 3,, = 1/6000,
at least ¢ = 1588 image frames are needed for a pixel being continuously occupied
by the same hovering object to be adapted into background. This number of
image frames roughly matches the testing example shown in:Sec. 3.3.5 where all
the regions of a fountain spurt are adapted into background in about 2000 image
frames.

Similarly, tuning [, alters the time span of avoiding afterimages to be incorpo-
rated into a background model. Taking Seq. C as an benchmark, the numbers of
image frames having no afterimage in background models under different [5,s are
summarized in Table 3.1. Here setting 3, to 0.05 or less gives no obvious defects
in the estimated background models throughout the sequence. On the other hand,
increasing 3, and (3, may be needed for scenarios with large periodic motions, e.g.,

shaking tree branches and moving tides.
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Regarding [y, it is tuned to slightly defer the adaptation of shadows that are
usually casted by foreground objects into a background model. Thus, the product
BaN (It,xéNt—l,x,b(t,x);Uf_ljx,b(tvx)> should be kept below 3. In addition, if the
product is less than [, it will instead be reset to [, in our implementation, to
adapt static and frequently-seen shadows into background. To sum up, via proper
tuning of B, the required time spans for adapting pixel of different types into

background can be easily and accurately controlled for various applications.

3.3.3 Double-Quick Lighting Change

Fig. 3.8 shows a scene experiencing double-quick sunshine changes. The resultant
double-quick changes ‘in- background can not be adapted in time by the GMM
framework, even by setting high learning rates, as shown in Fig. 3.8. By utilizing
the proposed heuristic, with 7; set to 10, for-adaptation of double-quick lighting
change, almost all.the false positives resulted from sunshine changes are eliminated
in the entire testingsequence. Nevertheless, a few sides-effects are also observed.
Fig. 3.8 (d) gives antexample that a small motoreycle whose colors are similar to
the background scene is misidentified as noises (marked in blue), for some parts of
this object are deleted by frame difference:: Through examination of these results,
one can easily see that, overall, adopting such a heuristic actually brings in more
benefits than drawbacks. Further quantitative evaluations, as will be presented
later, also support this observation. Many false positives in foreground detection
can thus be reduced while only limited false negatives are induced. Besides, large,
significant motions will not be ignored by using this heuristic due to its design of

foreground map accumulation via the OR operation in (3.11).
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(a) Results of [54] (v = 0.025)(b) Results of [36] (a.= 0.025)(c) Results of [54] (e = 0.050)

(d) Results of [36] (a = 0.050)(e) Our results (o = 0.025, (f) Our results (o = 0.025)
w /o heuristic)

Figure 3.8: Comparisons of background adaption to double-quick lighting change
using Seq. B. The foreground detection results for IB are illustrated. (a) and (b)
The results of [54] and [36], respectively, with a = 0.025. (c) and (d) The results of
[54] and [36], respectively, with o = 0.050. (e) The results of the proposed approach
without using the heuristic for adaptation of double-quick lighting change. (f)
The results of the proposed approach. The yellow arrows mark the undetected
foreground regions of a small motorcycle.
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(a) 1411350 (b) IE]%O (c) 158 (d) IG%O

Figure 3.9: Snapshots of the ground-truth images for Seq. B

3.3.4 Quantitative Evaluations

In the quantitative comparisons among [36], [54], and our approach without/with
the heuristic of (3.11); Seq. B-is-used as a benchmark for it is a real and chal-
lenging sequence. _To construct -the ground-truth data, we write a program to
segment possible foreground regions of Seq: B with high sensitivity. Subsequently,
32 representative image frames are selected by visual inspection, and with their
segmentation results refined manually. Note that all the vehicles in the scene, no
matter in motion or resting, are marked as foreground in this evaluation. Snap-
shots of the ground-truth images are.given in-Fig.3.9.

The statistical plots in Fig. 3.10 are generated by applying different o values
to all the compared methods. Also, two Ty settings for our approach are included
in the comparison. Results in Fig. 3.10 show that, with 7; = 10, the proposed
approach constantly achieves low false positive rates (< 1%) while keeping high
detection accuracy (> 90%) for all as. If the heuristic is not used, then o = 0.2
can be chosen for our approach to both catch the double-quick lighting changes

and maintain high detection accuracy. As for the methods of [36] and [54], finding
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Figure 3.10: Quantitative comparisons of [36] (DSLee), [54] (GMM), our approach
without the heuristic, and our approach with T; = 10 and T; = 20 under different
a settings using the 32 ground-truth images of Seq. B. Here, the values of 0.0010,
0.0025, 0.0050, 0.0075, 0.0100, 0.0250, 0.0500, 0.0750, 0.1000, and 0.2000 are set
to a to generate the curves. (a) Comparisons of foreground detection rates. The
detection level of 99% is marked for reference. (b) Comparisons of false positives
rates in foreground detection. The false positive level of 1% is marked for reference.

o (plotted in log Scale)

(b)
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a reasonably good parameter setting seems not possible for this case.

Although our approaches (with and without the heuristic) do not give the
highest detection rate, they both have a feature of delivering stable detection
results under various « settings, mainly owing to our independent controls of the
two types of learning rates. Moreover, through examining the false positive rates
with respect to different as, we choose to bring the heuristic into our approach as
a default practice since doing so will almost always give low false alarms. Note
that, based on the evaluations, a = 0.01 and o = 0.025 can be suggested as default
values for the heuristic because these values give slightly better detection accuracy.

To verify our argument-that adjusting B does not affect the background mod-
eling performance mugch, a quantitative evaluation is'.conducted by varying [, to
0.001, 0.005, 0.010,20.050, 0.100,-and 0.500, with the other parameters fixed to
the default valuesi"While the detection and false positive rates for 5, = 0.010
(the default setting) are 99.3347% and 0.5420%, respectively, similar performance
indices for the other £s are all within (99.334740.0274)% and (0.5420+0.0199)%,

respectively, which supports our argument.

3.3.5 Scene Change

In Sec. 3.2.2, the problem with feedback control and possible solutions are discussed.
An example illustrating such a problem is given in Fig. 3.11, where a fountain sud-
denly spurting high causes a bunch of false positives in foreground detection. The
first column of Figs. 3.11 shows such dramatic changes of background scene may
be adapted too quickly (in about 100 image frames) by [36] if a high learning rate

(v = 0.025) is used. On the contrary, as shown in the second column, these false
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positives last for a very long time (> 2440 image frames) if a naive feedback con-
trol by setting p(a) = n(0) is used. The identical modeling of p and 7, together
with the feedback controls, makes a system behave as what the problem describes.
However, as depicted in the third column of Figs. 3.11 (¢) and (d), quicker adap-
tation of false positives into background can be achieved by separating the control
of p from that of n with the conventional model matching rule of (3.1). Finally, as
shown in the forth column, the false positives resulted from scene changes can be
completely eliminated in about 2000 image frames (equivalent to about 1.11 min-
utes for a 30 fps video) by combining the proposed bivariate rate control scheme

with the weight-based model matching rule.

3.3.6 Other Scenarios

Additional experiments for the scenes of waving water® and crowded entrance are
demonstrated in Fig. 3.12. In Fig. 3.12(a); a floating bottle on the waving water
can be successfully.detected by the proposed approach. In the crowded entrance
sequence shown in Fig. 3.12 (b),a black bag left by a passenger is stably detected
as a foreign object in a busy scene. These experimentsshow the effectiveness of the
proposed scheme of bivariate learning rate-control for the surveillance applications

associated with complex scenes.

8The image sequence of waving water is from [68].
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(d) Iss40

Figure 3.11: Comparisons of scene change adaptation among [36] (the 1st column),
feedback control with p(«) = n(8) (the 2nd column), our approach with (3.1) (the
3rd column) and our approach with the weight-based model matching rule (the
4th column).
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(a) Results for waving water. [68] (b) Results for crowded entrance

Figure 3.12: Foreground detection (top row) and background modeling (bottom
row) results for the scenes of (a) waving water and (b) crowded entrance. The
yellow box in (b) marks an abandoned bag.
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Chapter 4

Video Layer Propagation via

Semi-Supervised Clustering

Segmenting a video sequence into-layer representations is challenging because of
the highly dynamic nature of video content. In this thesis, we propose a new
framework to propagate given layer segments of an initial frame to subsequent im-
age frames within awideo shot via semi-supervised-spectral clustering, and link the
segmentation of video'layer to the design of a kernel matriz. Under such a frame-
work, using image blocks @as layer propagation units is feasible, avoiding costly
pre-segmentation of images into super-pixels.” By modeling video layer propaga-
tion between consecutive image frames as a label inference problem wherein new
block labels are inferred from previous known ones, and by solving this problem
via semi-supervised spectral clustering, video layers are progressively propagated.
Experimental results show the proposed approach can track and segment video

layers effectively, even for those undergoing large motion and deformation.
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4.1 Overview

Decomposing video content into layer representations, e.g., foreground and back-
ground region segments, is beneficial for video understanding and coding. For
example, extracted foreground layers can be used for efficient video searching and
for better data compression. However, due to the highly dynamic nature of video
content, the problem of video layer decomposition is challenging and remains an
important research topic in computer vision.

Rather than decomposing video layers from scratch, a more restricted prob-
lem, video layer propagation, is investigated in this study. Given a video shot
and the layer segments of its initial image frame, the goal of video layer propaga-
tion is to iteratively propagate-the corresponding video layers to the subsequent
image frames. Except for the initial layer information, no ether assumptions on
foreground appearances, and on background scenes, or restrictions with respect to
camera motions are made. This makes the problem difficult because, for example,
a background layer of a video shot may be cluttered and undergo large changes
due to camera movements. It is thus hard to achieve reasonable decomposition of
subsequent, time-varying layer segments by simply applying supervised learning
methods to learn prior models from initially-given layers. Instead, we formulate the
video layer propagation problem as a series of semi-supervised clustering problems
to effectively capture the dynamic changes of video layers.

Specifically, propagating video layers from a previous image frame I;_; to the
current one I; is regarded as a process of label inferencing, where the unknown
layer labels of the image elements in I; are inferred from the known ones in I;_;.

(An image element here can be embodied as a pixel, a block or a region.) Such
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an inference process fits the formulation of semi-supervised clustering [69] very
well. By clustering the image elements in I; into the layer classes of I; 1, new
video layers can be obtained. Through a series of clustering processes, initial
video layers can be propagated progressively to capture continuous layer changes.
Experimental results show that the proposed approach can track and segment
video layers effectively, even when they undergo large, non-rigid motions.

The proposed approach for video layer propagation has several features. First,
a novel framework based on semi-supervised clustering is proposed for propagating
video layers. In particular, inferring new layer labels from previously determined
ones is linked to the construction of-a kermel matrizin such a framework, which
provides a new perspective to the problem of video segmentation. Second, the
effectiveness of using.image blocks-as basic processing units for video layer prop-
agation is demonstrated. Such a choice provides more information than using
pixels in layer diserimination while avoids the costly pre-segmentation of image
regions/super-pixels. Third, a new regularization scheme for controlling the relia-
bility of block labels is developed. A block near layer boundaries often consists of
more than one video layer and is less appropriate to be categorized into a single
layer class. Hence the reliability of its layer label needs to be regularized as being
propagated to the next image. Such control of individual label trustworthiness is
novel and can be linked to the design of a reqularized kernel. Fourth, since only
layer labels need to be processed in the proposed layer propagation framework, op-
tional user interventions for amending layer clustering defects can be incorporated
into the propagation process easily. Thus, a very small amount of flawed layer
labels that might later induce large layer segmentation errors can be corrected

handily at an early stage by manually re-labeling.
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4.1.1 Related Work

Previous research on video layer representation and/or segmentation often assumes
that every video layer is planar and each can be associated with a distinct planar
motion model. Based on the assumption, several studies of motion segmentation,
e.g., in [3], [10], [28], [60], [61], [62], are proposed to estimate layer motions and
to extract video layers. Particularly, in [61], [62], spatial coherence of layer labels
is explicitly modeled and combined with layer motion estimation for stable layer
segmentation. In [57], Torr et al. develop a Bayesian formulation for video segmen-
tation in which parallax disparities of video layers are incorporated. Based on ho-
mographic projection, Kedand Kanade [31] propose asubspace clustering approach
to group image patches into video layers. In [17], [29], [30]; an image is modeled as
a mixture of planar sprites that-undergo different motion tranformations. Sprite
layers can then be extracted by optimizing the mixture formulation using EM-
based techniques.Further, Aguiar and Moura [1] apply a rigidity constraint on
objects to the mixture representation of layers for figure-ground separation.
Recently, video layer segmentation based on graph cuts has drawn much at-
tention. An early work proposed in [52] uses normalized cuts to segment video
layers in consistent motion. In [5], Boykev et al. apply graph min-cuts to ap-
proximate the solution of an energy function in general form and prove that the
approximated solution is near the global optimum. Based on [5], several methods
are then proposed to extract video layers using different cues, e.g., motion fields
[63], gradients [7], and stereo [34]. In [38], Li et al. interpolate video layers be-
tween key frames via graph cuts and introduce feature tracking for the refinement

of layer segmentation. In [8], a feature fusion formulation that combines motion,
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color and contrast cues is proposed for bi-layer segmentation and can be solved
by graph cuts in real-time. In addition, occlusion orders [65], layer rigidity [15],
and learned layer filters [67] have also been integrated into the graph cut-based
segmentation of video layers. Besides, solving layer mixture models via graph cuts
is explored in [35]. According to our investigation, the proposed approach, though
also originated from similar graph-cut concepts, has novelties in the adoption of

semi-supervised clustering and in a link to kernel design.

4.2 Video Layer Propagation Framework

The main idea behind the proposed framework for videolayer propagation is that
propagating video layers between two consecutive image frames can be regarded
as a label inference process. To-estimate new layer labels; an algorithm of semi-
supervised spectral clustering [69] is adopted.. The advantages of choosing this
algorithm include its adoption of prior labels in a natural way, the existence of a
closed-form solution; and its connection to the kernel methods in machine learn-
ing. In addition, a generalization of the adopted algorithm that regularizes the
reliability of layer labels isideveloped.. This.generalized regularization scheme not
only provides better control over priorlabels in theory, but also benefits our design

of block-based layer propagation in practice.

4.2.1 Block Label Inference

The inference of video layer labels can be performed on various image elements,
e.g., pixels, regions, or blocks. In this study, we explore the feasibility of using

block units in layer propagation, which does not require costly pre-segmentation of
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Figure 4.1: An illustration of the spatio-temporal neighbors of a block by ; (colored
in black). The gray blocks whose centers are within the small and the large dashed
circles are regarded as the spatial and temporal neighbors of b, ;, respectively. All
the neighboring blocks are linked to b ; by edges.

images into small, homogeneous regions. Thus, the layer propagation results will
not be affected by the stability of region segmentation. Also, block units provide
more discriminability than pixels in inferring layer labels.  However, an image
block has resolution limitation in differentiating layer boundaries. An image block
near layer boundaries may have multiple video layers and is less appropriate to
be categorized into-a single layer class. Hence, a regularization scheme of block
label reliability, especially. for these blocks near layer boundaries, is proposed as a
remedy.

Consider two consecutive image frames; /; and I, _;, which are decomposed into
image blocks of size w x w, as shown in Fig. 4.1. Let [ denote the total number
of the image blocks in the two frames, and b,; denote the i-th image block in
the image I;. Each of its spatial (temporal) neighbors of the image block by,
denoted by by ; (b;_1 ), is the block whose center is inside the small (large) circle.
The radii of the spatial (small) and temporal (large) circles are denoted by 7y,

and 74, respectively. The respective block labels are symbolized by v ;, v ; and
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Y11/, where y is in a label set £ = {1,...,C} and C' = 2 accounts for foreground
and background layers. While y;; and 3, ; are unknown, y;_; ;- is assumed to be
known, either from manual labeling or from previous layer estimation. Similarly,
the spatio-temporal neighbors of every image block in I; can also be defined. All
the image blocks and their neighboring relationships can be conveniently denoted
by an undirected graph G(€,V), where V and £ stand for the set of [ block nodes
and the set of all the neighboring links, respectively. We use v; ~ v; to denote
that two neighboring nodes v; and v; are linked by an edge. Now, our goal is to
compute the new layer labels, v ;s, based on G.

To estimate the block label v;;,-both the spatial and temporal neighbors of
b;; should be considered. Intuitively; not only the temporal similarities among
b;; and all b;_; js can be used to-determine.a probable label; but also the spatial
similarities among by ; and-all by;s should also be consulted to maintain spatial
consistency. To obtain a balanced solution, strategies that regularize both spatial
and temporal similarities areoften used. In the adopted semi-supervised spectral
clustering, the optimal layer labeling is achieved through the diffusion of similari-
ties. The similarities initially.defined on £ are spread into neighboring node pairs,
resulting in a new edge set €./This step eorresponds to the construction of a kernel
matrix for G(£, V) from a similarity matrix for G. The most probable label y,; can
then be found based on the diffused similarities. As will become clearer later, the
spatio-temporal consistency among layer labels can thus be ensured. By deriving

all the layer labels, the propagation of video layers is realized.
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4.2.2 Semi-Supervised Spectral Clustering

Let y; € R® denote the initially-given label of a graph node v;. Specifically, for

the case of C' = 2, we set

[10]" if v; belongs to background;

yi=49 [0 1]T if v; belongs to foreground; (4.1)
[0 0] if the label of v; is unknown.
A prior label matrix Y £ [y1 ¥2 ... ¥i]T € R is then introduced to denote

all the initial labels of the nodes in G. By applying the semi-supervised spectral
clustering shown in Algorithm 3, a new label estimate Y* that encodes the optimal
solutions of the unknown labelsis-derived. The algorithm;originally proposed by
Zhou et al. [69] and generalized-in this study, is basically an adaptation of the
spectral clustering method [44]. However, unlike the spectral clustering which uses
only a similarity matrix, the semi-supervised modification takes both similarities

and prior labels into-consideration: Zhou et al._presented an.iterative equation as
Y. =(1- a)SYk_l +aY 2 3SYi i+ aY, (4.2)

where both S (a normalized version of S) and Y are regularized by a scalar a. To
initialize the calculation of (4.2), Yi—o can be set arbitrarily, e.g., Yo = Y. By
iteratively computing (4.2), a new label matrix Y* = limy_,», Y} that corresponds
to the ultimate clustering results can be obtained. They also showed that the

iterative calculations converge to an analytic solution,

Y* = oI —pS)7'Y. (4.3)
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Algorithm 3: Semi-supervised spectral clustering

1 Similarity matrix construction. Compute a symmetric similarity matrix
S, with each element

5 B Sim(v;,v;) if 1 # j and v; ~ v;;
Y10 otherwise.

Note 0 < Sim(v;,v;) <1 is a function measuring the similarity between the

linked nodes v; and v;.

1/2

2 Similarity matrix normalization. Compute S = D~%/2SD~'/2 where

D = diag(dy, ..., d;) is a diagonal matrix with d; = 22:1 Sij.
3 Label matrix calculation. Apply one of the following steps to the

derivation of a label matrix Y*.

a) Iteratively compute Y, = Bl/QS,BI/zYk,l + Y until convergence.

The converged matrix is denoted by Y*. The o = diag(ay,...,q;) is a
diagonal matrix with'a; € [0, 1] weighting the label reliability of y;, and
B=1-a.

b) Alternatively, compute Y* = (I — ,81/2§ﬁ1/2)_1aY. Actually the Y*
computed. here is the-limit of the sequence {Y}} as k— oo.

4 Label assignment. Assign each un-labeled node v; a new label
y; = arg max,eri...c} Y;kj

To provide better control over individual label reliability, we further extend the
regularization scalar « to'a diagenal matrix a =-diag(av, ..., ), and developed

a counterpart of (4.2) as
Y, = 38'2SB*Y, 1 + aY, (4.4)
where 8 = I — a. Similarly, the convergence of (4.4) can be shown as

Y* = lim Y, = (I- 328B8Y?) laY. (4.5)

k—o0
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Benefits of adopting the matrix form «, rather than using a scalar, will be demon-
strated later with experiments.

Analytic solutions of both (4.3) and (4.5) can also be derived from the opti-
mization of cost functions in which the label consistency is explicitly modeled. It

is presented in [69] that (4.3) can be derived from

Y* 2 argmml [(ZZszjll\/—yz \/—ngZ) +MZ lyi — yz||2] (4.6)

Y =1 j5=1

T

Y

where y; denotes the label vector of v; to be estimated, Y is defined as [y; ... yi]
and p > 0 is a regularization parameter.-While the first term of (4.6), as mentioned
n [69], represents a smoothness constraint for preventing large changes of labels
between nearby points, the second term, instead, expresses a fitting constraint for
maintaining the consistencies between a label estimate y; and its prior label y;.

Likewise, (4.5) can-also be obtained from the optimization of

l
. 11 \/ Al
Y* & argm1n§ [§ (E E szj|| i yj||2) + E pilly: — Yz||2]
Y =1 ]:1 \/_ =1 (47)

£ argmin Q(Y)
Y

where n; > 0, u; > 0, and n; + p; = 0, for all is, with a constant ¢ introduced
to constrain the sum of each regularization pair 7; and p;'. The derivation of the

generalized solution (4.5) from (4.7) are given below.

IThe value of § can be arbitrary, as will be seen clearly later in the proof.
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Proof. By defining the first term of the proposed cost function (4.7) as

Lo
1 \/E VI o
o) & 3 (L - o
2\ = j=1
! c ;
i1 51 Zc:l(%ylc \\/ﬁ%ij)Q
1 ! C (Ve Vi 2
Y + Zj:15kac:1(ﬁykc—\/_dijyjc)
I c
+ Zj:1sljzc:1<\/_\/;z§ylc

\*/ﬁ%yje)Q
and denoting the c-th element of‘a label vector ypas yxe, the derivative of Q; with

respect to yi. can be.shown as

\/Tlk VIl
aykc [Z k}j (\/—y - \/d—jyjc>
Vi Vlk
_Z Sjk ~—77= NGA (\/d—jyjc_\/_— )]

J#k

=2 (m Yee — > /T kg \/n—jyjc>

i#k

_ Ski

Ski
by using s; = Sj, Sk = \/#dj, and Z#k BB —
On the other hand, the derivative of (4.7) with respect to yx. can be obtained

as

09
8?} (nk + ,uk Yke — Z \/_k: Skj \/m Yje — Mkykc

J#k
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ine 92 —
By setting o = 0, we have
Nk . 15 277N
Yke — Skjnl T Yje — Uke = 0. 4.8
;\/%-ﬂik J\/nk+ﬂk e+ (48)
Since ny, + px, = 0 = n; + p;, then \/nk:’fuk = anfuj. By defining a;, £ nk‘fﬂk and
Br 21—y = nkTMk7 (4.8) can be further expressed as

Yke — Z \/@ ‘§kj \//B_j Yje — akykc =0. (49)

i#k

Finally, by representing (4.9)wsing matrix notation, we arrive the following result,

Y* = 61/2S;81/2Y* i aY —0

= Y* =(I- B/°S3%)laY.

O

By introducing more regularization parametets in (4.7), the reliability of prior
labels can be better controlled. Moreover, from the optimization of the cost func-
tion (4.7), the spatio-temporal consistency among video layer labels can be well
preserved.

In Algorithm 3, the Sim function listed in Step 1 is often calculated from a
Gaussian distribution in which various distance measurements of two neighboring
nodes can be applied. The adopted similarity measure will be detailed in Sec. 4.3.1.
For the estimation of label matrix Y*, either the analytic solution of (4.5) or
the iterative approximation of (4.4) can be applied. While the former involves

the computation of matrix inversion which will be numerically unstable if (I —
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(b) ()

Figure 4.2: Examples of kernel construction. (a) A similarity matrix S (shown as
an image). All the similarities of connected nodes are set to 0.999. (b) The kernel
K computed from S, with 3 = 0.81. Here, K is normalized for better visualization.
(c) The regularized kernel K with the upper and the lower halves of 3’s diagonal
elements set to 0.8 and 0.55 respectively.

Bl/ 2@61/ 2) is near singular, an-approximation based on the latter can be used to

avoid such a problem. It is also-worth mentioning that the algorithm is applicable

to multiple layer decomposition, i.e., C' > 2.

4.2.3 Algorithm Interpretation

The analytic solution’ of the semi-supervised spectral clustering given in (4.5)
consists of the product of (I.— ,81/2S,61/2)_1 and &Y. The first part, K £
(I- [31/2@[31/2)*1, can be regarded as a graph/diffusion kernel K constructed
from a similarity matrix S [53], [69]. Fig. 4.2 shows simple examples of the kernel
design. In Fig. 4.2 (a), a similarity matrix S is depicted (shown as an image) to
represent a graph where each node is connected to at most four neighbors. All the
similarities are set to 0.999. By setting 8 = 0.8I and computing K, the similarities
are spread out, as shown in Fig. 4.2 (b). Note that, new edges with diffused simi-

larities are established between some nodes that are not connected in the original

89



graph. Fig. 4.2 (c) shows a regularized kernel wherein the upper and the lower
halves of the diagonal elements of 3 are set to 0.8 and 0.5, respectively.
For the second part, aY, it can be considered as a weighting scheme for label

reliability. Subsequently, a matrix form of (4.5) can be written as

klayl klayc

g
I

klayl klayc

where k; denotes the i-th row of K and y* denotes the i-th column of Y. The
clustering label for v; canithen be determined by'selecting the corresponding class
with the maximum value in {k;ay!, ..., Kay}. We interpret this labeling step
as a weighted voting process among C' classes. Together with similarity diffusion
and weighted voting, the semi-supervised spectral clustering is-done.

To sum up, theproposed framework for video layer propagation utilizes the
semi-supervised spectral clustering to solve the label inference problem, which is
different from the popular graph-cut approach [5]." A connection between video
segmentation and kernel designiis thus establishedyand an optimal solution derived
from (4.7) that balances the spatio-temporal consistency in node labeling can be
obtained. Moreover, a generalized formulation that regularizes the reliability of
individual label is proposed, which makes the block-based propagation of video

layers more feasible.
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4.3 Algorithm Implementation

Several issues regarding the implementation of the proposed framework for video
layer propagation are addressed in this section. First, the adopted similarity mea-
sure for the comparison of image blocks is presented. Next, to reduce the compu-
tational cost of kernel construction, a strategy of local clustering is applied. Due
to this strategy, the propagation of video layers can be performed only within a
band of image blocks near layer boundaries. Then, the embodiment of the regular-
ization of label reliability is detailed. Finally, an optional user intervention scheme

is introduced to allow possible refinements of layer propagation results.

4.3.1 Similarity Measure

Since the main focus of this work-is on-the-investigation of effectiveness of video
layer propagation using semi-supervised spectral clustering, only simple color fea-
tures are adopted in our implementation. For each image bloek, three histograms
computed from its YCbCr colors are used as image-features. Specifically, denoted
by fm(b;) € RY is anormalized, N-bin color distribittion of b; (N = 16), with
m € {1,...,3} indexing the m-th color channel. Though neither complex features
nor high-level structures are used, the experimental results obtained by using the
color cue alone, as will be shown in Sec. 4.4, are rather promising.

We choose the following multivariate Gaussian function as the similarity mea-

sure of two neighboring blocks:

Sim(b;, b;) = exp {—cD(b;,b;)" X 7'D(b;, b;)},
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(a)
Figure 4.3: Examples of sub-graph G/ in different representations. (a) An example
of G with 1y, = w, Tiem = 2W, @spa = 3w and e, = 3.5w. The dark-grayed
blocks enclosed by the two dashed circles are the neighboring blocks with direct
links to by, (the black one). The light-grayed ones, which are not connected to
b;; directly, are enclosed by the solid-line circles. (b) A simple example of G/ in
graphical representation with rs0 = ¢spa = Gtem— w and r4,, = 0. The spatial
and temporal neighbors of b;; (double-circled) are ‘denoted by white and black

circles respectively. As the red-edges symbolize the direct links to b, ;, the black
ones show the indireet links.

where ¢ is a scaling factor, X is a covariance matrix, and D(b;,b;) € R? is a
distance vector with its m-th component D,,(b;, b;) = B (fm(b;), fn(b;)). The
Bhattacharyya divergence B(a;b). is-applied here to measure the distance of two
color distributions a'and b. Asfor 33, it is assumed to be a diagonal matrix for
simplicity. The estimation of 3.will be elaborated in the next subsection due to
its coupling to the local clustering implementation. Regarding c, a typical value

¢ = 0.5 is used in the experiments.

4.3.2 Local Clustering

As mentioned in Sec. 4.2.1, Fig. 4.1 can be represented by a graph G. To find the
unknown layer labels based on G using Algorithm 3, all the graph nodes need to

be taken into consideration, resulting in a very large similarity matrix. For the
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construction of K, the inversion of such a large matrix is required, which is often
time consuming or even infeasible, e.g., due to limited computing resources. Ac-
cordingly, to reduce the computational cost, a local clustering strategy is employed
by decomposing G into many sub-graphs G’s and solving the layer labeling locally,
block by block, based on each of the sub-graphs.

In local clustering, each image block b;; is processed independently by per-
forming semi-supervised clustering in a small neighborhood of it. Fig. 4.3 (a)
shows an example of G/ for estimating the label of by;, i.e., y;,. The nodes in
G! correspond to three types of image blocks: by ; itself (colored in black), those
directly linked to by, (colored in dark-gray, see also Fig. 4.1), and those indirectly
linked to by, (colored in light-gray). Although the indirectly linked nodes, defined
by two the solid-line:circles in-Fig:-4.3 (a) with radii ¢s,, and g, have no direct
connection to by ;,/they still have effects on theinference of w;; via similarity dif-
fusion. Such nodes‘are included in G to maintain better label consistency in local
clustering. Fig. 4.3 (b) depicts a simple example of G/ in graphical representation
by setting rgpa, ¢spa, and giem to the block width w, and 74, = 0. In our experi-
ments, these parameters are set to w = 8, rypq = 2W, Tiem = W, Gspa = Tspa, and
Qtem = Tspa + Ttem, Tespectively, resulting in more complex sub-graphs than that
shown in Fig. 4.3 (b).

Based on the idea of sub-graph, a similarity matrix S of much smaller size can
be derived. The complexity of transforming S to the kernel K in (4.5) can thus be
lowered down. Note that, before computing K, we firstly check if (I— B'/283Y %) is
well-conditioned. If not, the iterative approximation of Y* is applied by computing
(4.4) 100 times. Once Y* is obtained, we merely retrieve the matrix entries for

b;; and determine its label. Thus, a sub-optimal yet practical estimate of y;, can
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be derived. By combining all the local clustering results, new video layers of I;
are obtained. Owing to the usage of local clustering, spatial label inconsistency
may occasionally occur. Therefore, a post-processing step is employed to eliminate
isolated label estimates? in I, and to preserve the global label consistency.

Using local clustering not only reduce the computational cost of matrix in-
version, but also bring two mechanisms that will have beneficial effects on layer
propagation: the estimation of local variances and the design of a propagation
band. While the former, as being explained here, gives an estimation of 3 that
captures local changes of layer appearances well, the latter, as will be discussed
in the next subsection, enhances the layer propagation efficiency. When comput-
ing Sim, it is important to give a proper.estimation of 3. An intuitive choice
is to compute X from all the distance vectors in G. However, such a choice may
result in a over-smoothed estimation. For example, the variance of block dissim-
ilarities around a'smooth area should net be as same as that around a textured
region. Such a problem can be prevented by estimating X locally from G’ with the

following steps:

1. Distance vector nmormalization. To enhance the local contrast among
pairwise distances, each D, regarding to G’ is re-scaled to [0, 1] using the

min-max normalization, for m =1, ..., 3.

2. Covariance estimation. To capture the within-class variances, a set of
distance vectors D’s computed from same-labeled node pairs of G’ are firstly
selected. Then, the m-th dimensional variance of D! is calculated, Vm,

forming a diagonal covariance matrix 3.

2A label estimate y; ; is said to be isolated if none of its four-connected neighbors in I; is of
the same class.
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4.3.3 Propagation Band

With the adoption of local clustering, the propagation of video layers only needs to
be performed for a spatial band of image blocks in I; around prior layer boundaries
found in 7;_;, and is thus more efficient. Given a sub-graph G/(&!, V!) for estimating
ysi and denoting the node constructed from I;_; by v;_, ;, if the prior labels of all
v{fl’js, ie., yi—1,; Vj, are of the same class, i.e., by; is located inside a previously
determined layer, then y,; can simply be assigned to the corresponding layer class
without further clustering. An indicator function L on G! is defined for this label
check as

L(G) = L it v, v e € Viandwe 15 = Yok, Vi, K

0 otherwise.
A propagation band containing the image blocks to be processed in layer propa-

gation can then be defined formally as A= {b;;|L(G!) = 0} .

4.3.4 Regularization of Label Reliability

Due to the block-based processing; there is-ambiguity in deciding the label of an
image block located across multiple layer regions. Though the label of such a
block can still be obtained either from user-labeling or from previous estimation,
its reliability should be degraded while propagated to the next image frame. By
adopting the regularization matrix « in (4.5), instead of using a scalar, the goal

of controling individual reliability of block label can be realized.
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(b) Io

(d) Initial labelgy (e) The reg. result of I (f) The reg. result of Iy

Figure 4.4: Simulated example for justifying the regularization of label reliability.
(a)-(c) Snapshots of a synthesized image sequence. (d) The initial layer labels of
Iy, where the block centers are shown in yellow and blue for foreground and back-
ground respectively. The bold dots symbolize the image blocks of layer boundary.
(e) and (f) Snapshots of the layer propagation results. All the dotted blocks (bold
and non-bold) manifest the propagation bands.
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Assume the regularized prior label matrix in (4.5) is sorted, i.e.,

“ . (8| Yt—l
aY = diag ,
oy Y,

where the sub-matrices Yt,l and Yt denote the block labels of I;_; and I;, and
their label reliability is regularized by a;_; and ay, respectively. With the above

notations, the regularization of label reliability is implemented by

1. Boundary block identification. The image blocks near layer boundaries
are identified as those in [y whose eight-connected neighbors have different

layer labels.

2. Regularization matrix construction. To regularize individual label reli-
ability, a; is'set to-a zero vector, the elements of ez that correspond to the

non-boundary blocks are set to a;; and the rests of oy 1 are set to ay < aj.

3. Quadruple labeling. Besides the triple labeling in (4.1), one more assign-
ment is proposed for.the boundary blocks by setting their ys to [0.5 0.5] to

denote the label uncertainty.?

In our experiments, a; = 0.4 and as = @a;/4 are manually set. In short, the
proposed regularization scheme adopts the novel matrix form a for better control
of individual label reliability, and represents boundary blocks by setting their labels
to [0.5 0.5].

The above regularization scheme is justified by a simulated example shown in

Fig. 4.4. A sequence of twenty image frames of size 320 x 240 is synthesized for

3The quadruple labeling is applied to the construction of Y for the Step 3 in Algorithm 3. In
the Step 4, the resulting layer labels are still in binary.
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Figure 4.5: Quantitative evaluations of the proposed regularization of label reli-
ability using the image sequencershown in Fig: 4.4. The dashed (blue), dotted
(black) and solid (red) lines represent-the-error rates of layer label classification
(i) without regularization, (ii) with matrix regularization using «, and (iii) with
matrix regularization plus quadruple labeling; respectively. The three horizontal
lines denote the corresponding-error means, 0.00975, 0.00804, and 0.00546.

evaluation. To derive the ground-truth layer labels; ansimage block (8 x 8) located
across the ellipse boundary is assigned to the foreground layer if it contains more
than 50% red pixels of the ellipse. “Totally, 24000 block labels are extracted.
Three experiments are performed by propagating the initial video layers to the
subsequent image frames (i) without regularizationy(ii) with matrix regularization
using «, and (iii) with matrix regularization-plus quadruple labeling. Because the
differences among the results of the three experiments can not be distinguished
easily by visual inspection, only the results of (iii) are shown in Figs. 4.4 (e) and (f).
For quantitative assessment, the error rates of the estimated labels with respect to
the ground-truth are shown in Fig. 4.5. It is readily observable that the smallest

error can be obtained for (iii). In Sec. 4.4, more experiments will be conducted

using a real video to evaluate the proposed regularization scheme.
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4.3.5 Optional User Intervention

In the proposed framework, only binary layer labels (for C' = 2) are recorded and
propagated to subsequent image frames. Thus, user interventions can be easily
incorporated into the framework to correct layer propagation defects. When the
video layers of I; are derived, users can change the misclassified block labels to
correct ones, e.g., via mouse clicks. The amended labels will override the cluster-
ing results during subsequent layer propagation, and the respective regularization
parameters (elements of a) will also be set to 1. Some examples that demonstrate
the usages and effects of user intervention for video layer propagation will be given

in experiments.

4.4 Experimental Results

To assess the performance of the proposed framework for video layer propagation,
two experiments are conducted using the IU[34] and the Mobile sequences. The IU
sequence (320 x 240), being recorded by a static camera, is used for an investigation
on effectiveness and limitation of our approach. Besides, the needs for user inter-
ventions are also presented in this experiment: The Mobile sequence (352 x 288),
being captured by a moving camera, is used to demonstrate the capability of layer
propagations for large motions, as well as to validate the regularization of label
reliability. In the experiments, the experimental parameters (W, Tspa, Ttem, Ispas

Qtems C, a1, and ) are set to the default values mentioned previously.
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(b) Initial Labelg (C) 10,

(g) TU123 (h) TU 30 (i) TUys8

Figure 4.6: Results of the [U experiment. (a) The first image frame of the IU
sequence. (b) The initial layer label mask. (c)-(i) Snapshots of the video layer
propagation results for the U sequence. While the brown circle marks the prop-
agation errors due to undifferentiated regions (similar color distributions between
the hair and the wall), the green ones indicate the errors resulting from uncovered

regions.
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(d) TU123 (e) IU 30 (f) TUq5s

Figure 4.7: Results of ‘the /U experiment with-user imterventions. (a)-(c) The
results of the 1st userintervention.-User re-labeling is applied to the circled regions
in (a). (d) The propagation errors of uncovered region happened again and are
corrected similarly. (e) and (f)-The propagation results after the 2nd correction.

4.4.1 Video Layer Propagation in Static Background

The IU video is originally offered as a benchmark for mono and stereo video seg-
mentation in [34]. To fit our needs, only the image sequence captured by the left
camera is used. Ground-truth layer masks which-contain foreground, background
and in-between pixel classes are provided every fifth frame by [34], based on the
depth information. The masks are then transformed into binary block labels, as
the ground-truth for our evaluation, by majority votes. 4 Figs. 4.6 (a) and (b)
show the first image frame of the IU sequence and its initial layer label mask,
respectively. Figs. 4.6 (c)-(i) are the video layer propagation results. Despite the

effective propagation of video layers throughout the sequence, two problems can

4Because very few pixels located near layer boundaries are labeled as in-between, they have
almost no effect on the subsequent binary labeling of image blocks.
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Figure 4.8: Quantitative evaluations for the [U experiment. The dotted (black),
dashed (blue) and solid (xed) lines are the error.distributions without, with-one-
and with-two- user interventions, respectively. The three horizontal lines denote
the respective average error levels.

be observed from the results. The first one is due to undifferentiated regions, e.g.,
the region circled in-brown in Fig. 4.6 (f). Because of our adoption of simple color
feature, the circled area whose color distributions are similar to the surrounding
scenes, is misclassified. Although such a problem might be alleviated by using
more complicated feature design, it is beyond the scope of this study.

The second problem is due to uncovered regions, e.g., as marked by green
circles in Figs. 4.6 (c¢) and (d). Being previously occupied by the foreground,
these uncovered regions are misclassified, inducing more errors in later frames.
Such a problem is more critical to the proposed approach, because using only
local information in the current design to guide the propagation process cannot
guarantee correct labeling of uncovered region. Fortunately, the above problems
mostly start from small misclassified regions, and can be easily amended by user

interventions. We hence choose to manually correct the erroneous block labels of
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IU4, in which the errors are more obvious, and then resume the layer propagation.
Figs. 4.7 (a)-(c) show better results after the correction. In Fig 4.7 (d), the same
problem happened again and is corrected similarly, resulting in more accurate layer
segmentation, e.g., in Figs. 4.7 (e) and (f). The classification errors in terms of
the numbers of incorrect block labeling for the U sequence are plotted in Fig. 4.8,
where the three curves correspond to the error distributions without-, with-one-,
and with-two- user interventions. Thus, through manual corrections of only two

frames, the mean error rate is greatly reduced from 6.10%s to 1.93%°.

4.4.2 Video Layer Propagation in Moving Background

In the Mobile experiment, the performance of the proposed framework in propagat-
ing video layers undergoing large motions is quantitatively assessed. As shown in
Fig. 4.9, snapshots and the corresponding ground-truth layer masks of the Mobile
sequence are exhibited. The video layer propagation is performed on every other
frame. Totally 30 ground-truth masks are provided, where the first 15 masks are
extracted every other frame from Mobiley-Mobilesg and the others are extracted
every 10 frame from Mobileg=Mobile;gg. Challenges of this experiment include
the complex background scene, the large changes in motion of the foreground and
background layers, and the similarity in color between the rolling ball and some
background textures, e.g., the blue-circled regions in Figs. 4.9 (a) and (b). Snap-
shots of the video layer propagation results are shown in Fig. 4.10. The video layer

changes are effectively captured throughout the entire sequence without any user

°In [67], the mean error of the IU sequence is 2.56%. However, it should not be directly
compared to our result, for its pixel-wised evaluation is actually stricter than the block-wised
counterpart. Besides, the method presented in [67] is based on supervised learning, which is
quite different from the proposed approach.
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Figure 4.9: Snapshots of the Mobile sequence and the corresponding ground-truth
layer masks. Thesblue circles indicate some background regions similar to the
rolling ball. The green ones enclose some uncovered regions.
intervention involved. Particularly, the calendar, which undergoes translations
and size changes, is correctly tracked. Also, the rolling ball is captured in unity,
despite its similar color te some background textures: On the other hand, the
layer propagation defects caused by uncovered regions can still be perceived, e.g.,
the circled regions in Figs. 4.10 (b) and (c). The results validate the effectiveness
of the proposed approach using local, regional features to track deformable video
layers, without prior knowledge, e.g., layer rigidity [15], being imposed.

The quantitative assessments of the layer labeling errors using the 30 masks
are shown in Fig. 4.11. We also compare the error rates (i) without regularization,
(ii) with matrix regularization using «, and (iii) with matrix regularization plus

quadruple labeling in this evaluation. Again, the regularization scheme of (iii)
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Figure 4.10: Results of the Mobile experiment.(a)-(e) The results obtained by
using the label reliability regularization. Some problems caused by uncovered
regions are marked by green circles. (f) A result obtained without using the label
reliability regularization.

gives the best result.. For a qualitative comparison, a video layer propagation

result without regularizationis shown in Fig. 4.10 (f).
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Figure 4.11: Quantitative ‘assessment. on regularization of label reliability using the Mobile
sequence. The dashed (blue), dotted (black). and selid (red) lines represent the errors of layer
labeling (i) without regularization, (ii) with matrix regularization using e, and (iii) with matrix
regularization plus quadruple labeling. The respective mean errors are 0.0731, 0.0475, and 0.0451.
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Chapter 5

Conclusion

In this thesis, our expleration of video layer analysis for both static and moving
cameras is characterized by threeresearch problems of background model initial-
ization, background model maintenance; and video layer propagation. For videos
captured by a static camera, the problems of background model initialization and
maintenance are studied within the scope of background subtraction that has long
been proven to be efficient and effective in foreground region segmentation. While
a classification-based ‘estimation scheme is developed for background model ini-
tialization, a density estimation-based treatment is utilized in background model
maintenance. Both the approaches for static background modeling are demon-
strated to outperform some existing methods. For the videos captured by moving
camera, the research aim is on tracking the dynamic changes of video layers within
a video shot. A new framework for video layer propagation via semi-supervised
spectral clustering is proposed. Video layer changes induced by, e.g., camera and
object motions, can be well-captured using the proposed framework.

In investigation of the three research problems, different machine learning tech-
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niques, i.e., supervised classification, semi-supervised clustering, and un-supervised
density estimation, are applied to solve the problems in systematic ways. While
block-based processing for deriving stable features in foreground and background
discrimination and for reduce computational complexities is adopted in supervised
and semi-supervised learning, pixel-based processing for recording detailed back-
ground scene variations is applied in un-supervised learning. Further discussions

with respect to each studied problem are given in the following sections.

5.1 Summary of Static Background Model Ini-
tialization

To establish an initial background-model for tracking, an efficient on-line algorithm
is proposed. The key idea of the proposed approach is simple but effective: If one
can tell whether an image block is part of the background, this knowledge can
help to perform bottom-up block updates to derive a complete:background model.
In addition, we introduce a top-down consistency check to eliminate noises in the
updates. The two mechanisms;.together, lead to asreliable system. Regarding the
system tuning, there is only one parameter that needs to be determined. Indeed,
the experimental results demonstrate that the algorithm is robust to different
parameter settings, and can handle lighting variations.

In background classifier learning, a classifier formulation with probability out-
puts is adopted so that the classification boundary can be easily tuned. While
both an SVM and a CGBoost classifier are appropriate for this purpose, the latter

has an advantage of efficiency and is thus applied to the experiments. We also
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note that the relevance vector machines (RVMs) [56] are another possible choice.
Particularly, RVMs are derived from MAP equations, and are truly probabilistic.

Overall, the proposed system for background model initialization is shown to
be useful and practical for real-time surveillance. For the future work, develop-
ing wide-range background model estimation schemes to accommodate a moving
camera could be a direction worthy of further exploration. This extension may
lead to a more challenging problem concerning spatial registration and temporal

modeling of background regions in motions.

5.2 Summary of Static Background Model Main-
tenance

In background model learning, maintaining a balance between robustness to back-
ground variations.and sensitivity to foreground changes has long been regarded
as a hard problem.= In our study, the trade-off between model robustness and
sensitivity can be effectively regularized via the clarification of the different roles
of different learning rates for the GMM and by adopting the proposed bivariate
rate control scheme. Experimental results show that, with careful tuning of the
learning rates for mixture weights, robustness to quick variations in background
as well as sensitivity to abnormal changes in foreground can be achieved simulta-
neously for several surveillance scenarios. In addition, a heuristic for adaptation
of double-quick lighting change is proposed and verified in this work. With the
help of this heuristic, large lighting changes occurring in very short time intervals,

e.g., within one second, can be absorbed into background.
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Our design of the bivariate learning rate control for the GMM roots in the
high-level feedback of pixel types identified by a surveillance system. Although,
in our current setting, only a limited amount of pixel types are computed for the
rate control, noticeable improvements in foreground detection over conventional
GMM approaches are already observable. Owing to the scalability of the pro-
posed scheme, more complex scenarios may be handled as more high-level informa-
tion incorporated. For example, region-level classification results of skin/non-skin,
face /non-face and human/non-human can be fed back to the pixel-level control of
the learning rate n in background modeling to increase model sensitivity to these
objects. Also, proper settings of the-hyper-parameters o and S for pixels of high
spatio-temporal gradients may be worth-an investigation. Another interesting di-
rection is to apply biological cues;-e.g.~discriminant saliency[40] between center
and surround, to fincrease the adaptation rates for background pixels of highly

dynamic background scenes that are often misclassified ‘as foreground one.

5.3 Summary of Dynamic Video Layer Propaga-
tion

The characteristics of the proposed framework for video layer propagation include
its adoption of semi-supervised spectral clustering and the choice of block-based
processing. By casting video layer propagation into layer label inference and solv-
ing the label inference problem via semi-supervised spectral clustering, a new con-
nection between video segmentation and kernel design has been built. Under such

a framework, the feasibility of using block units for layer propagation is also ex-
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plored. Adopting image blocks as processing units has advantages in forming
useful regional features, avoiding preprocessing of region segmentation, and fitting
video coding applications. However, due to the coarse resolution of block units,
ambiguity in labeling a block over layer boundaries may occur. Fortunately, with
the help of the proposed reliability regularization over block labels, the problem is
alleviated.

To reduce the computational cost of large matrix inversion, a strategy of local
clustering that solves layer labels by part is employed in our implementation.
With this local processing, new video layets can be computed only within a band
of blocks around layer boundaries, further-increasing the processing efficiency.
Moreover, because only layer labels need to be propagated, user interventions
can be incorporated easily into-the layer propagation process to amend defects.
Experimental results given-in Chapter 4 show that, with the mere use of simple
color feature, the video layers can be effectively tracked, even for those video layers
in complex scenes‘and undergoing large, non-rigid motions.

Regarding the future work, more experiments still need to be conducted for
further evaluation of system.efficiency and accuracy. -Comparisons between the
proposed method and the state-of-the-art graph cut techniques may also be in-
cluded in future study. Besides, for increase the discriminability in clustering, the
adoption of more features, e.g., motions and textures, may be helpful, and could

lead to a mixture design of kernel matrices constructed from different features.
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Appendix
MAP Formulation for

Background Model Estimation

Described below are.the derivations of the. MAP formulation (2.2) in Sec.2.2.1.
For easy explanation, the derivations are decomposed into six parts, which are
classifier training,literative formulation, posterior probability decomposition, like-
lihood probability”decomposition, background block classification, and the final

MAP formulation.

Classifier Training

To begin with, a MAP classifier derived from the training data D is defined by
f* = argmax; P(f | D) = argmax,; P(f | X,Y). It can be interpreted as a
supervised learning process to train an optimal classifier f* from the training data

D = {X,Y}. With the definition of f* we can start to derive the following
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equations to estimate a background model.

P(B, | 1,,D)
= [P(B:|1.,D, f)p(f |1, D)df
= [ P(Bi|L. f)p(f | D)df
~ P(B,| L, f),

where P(f | D) is assumed to peak at the optimal classifier f* (e.g., see [49],
pp.474-476).

Iterative Formulation

To develop an iterative i odel, we first define

and
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Then we have

P(B, | 1, )

=S (P(Et | L, f*, B,1)P(Bo_ | It,f*)>
Et—l

= Z (P(ét | It,ZaIt—Eaf*>§t—l>P(§t—l | It—17[t7 f*)>
Bi_1

(The image frames I, are used later to compute

feature vectors for classification.)

=3 (P(Br | Lot BEDNPBas |11 )

Et—l

%P<§t | It,fa f*v E;fk—l)a
where, similarly, P(ét_l | I _1;f*)is assumed to peak at E;“_l.

Posterior Probability Decomposition

Using Bayes’ rule, we decompose P(Et | Lo, 5, Et*_l) into a product of an image

likelihood term and a<prior:.

P(By | iy, f*, B} 1)
= P(Et | Iy, . .. >[t—€+17 f*> é:—ﬁ
x P(I | B, Ly, ... Ly, B, fOPBy | L1, .. Ty, £ BEy)
= P(I| By Ly y1, By f*)P(By | L. /. By

= P(L| By X1, Biy, f*) P(By | BLy).

image likelihood prior
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Because the classifier f* is used to perform block-wise (local) classifications, and
I,_1 01 are those image frames used in computing feature values, both of them
are eliminated from the prior probability which is used to measure the global
consistency over image blocks. That is, we simplify the prior term from P(Et |

L1, f", E:q) to P(Et | E:fl)'

Likelihood Probability Decomposition

Applying the assumption of block-wise independencies, the likelihood term can be

further decomposed as follows.

P, | Buid o, Bf 4. )
= [12@A 0, by, 0, )
=1

T

X H (P(b; ' bi—l,é—bb:ilaf*)P(bi | bi) i—l,f—lvb:ila f*)>
=1

= H (P(bé | bi—l,ﬁ—lv’g:ilaf*) P(’gzlt | bi,ﬁ7g:ilv f*)>

i=1
- HP(bi | bi—l,é—l) HP(bi | bi,eybﬁbf*)-
i=1 i=1

P(b; | bi,bbriluf*>'

®
=

1

]

The term P(b} | biq,zqafgﬁlaf*) is reduced to P(b; | bj_,, ), because b} is
the 7th block of frame I; from an arbitrary on-line image stream, and it should
be independent from our choice of a classifier f* and what the ith block of a

background model is at time ¢t — 1, i.e., gfil
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Background Block Classification

To utilize background block classification in estimating a background model, we

have

-~ . P(gi | bi,gﬁl), if b} is classified as background by f*,
P(b; ’ bf&,é?b;tm—bf*) = ~ o~
P | b y), otherwise.

Then we derive the decomposition for the image likelihood,

P(It | Etvlt—l,ﬁ—laézlluf*) X HP(I;; | b;g:il) HP((;; |’5:11)7
it i

(2

where i = {i|b} isa background-block} and i~ = {1, ...,n}p—i".

The Final MAP Formulation

With all these derivations, we arriveat the following MAP optimization

B: — argmax { (H P 5.5 ) T PO b:zn) P(B, ém} |
i+ i~

By
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