

國 立 交 通 大 學

資訊管理研究所

博博博博 士士士士 論論論論 文文文文

UMTS 差別性服務等候機制效能應用二種佇列
空間配置之研究

A Study on Performance Discussion of a UMTS
Priority-based Queuing Scheme with two Queuing

Buffer Allocations

研 究 生： 劉芳萍

 指導教授 ： 楊 千 博士

中 華 民 國 九 十 九 年 七 月

i

UMTS 差別性服務等候機制效能應用二種佇列
空間配置之研究

研 究 生：劉芳萍 Student：Fanpyn Liu

指導教授：楊 千 Advisor：Chyan Yang

國 立 交 通 大 學

資 訊 管 理 研 究 所

博 士 論 文

A Dissertation

Submitted to Institute of Information Management

College of Management

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

in

Information Management

July 2010

Hsinchu, Taiwan, the Republic of China

中華民國九十九年七月

ii

UMTS 差別性服務等候機制效能應用二種佇列
空間配置之研究

學生：劉芳萍 指導教授：楊 千

國立交通大學資訊管理研究所

摘摘摘摘 要要要要

自美國、日本和歐洲各國提出第三代無線通訊系統協定標準，

如 TD-SCDMA、CDMA2000與 WCDMA / UMTS以來，較廣為業界

所看好的技術規格為 WCDMA / UMTS，因為目前使用人口最多的

GSM 歐洲系統業者也加入參與制定，且 GSM 是世界上最大的第二

代移動通信網路，UMTS勢必成為第三代行動通訊主流規格。3GPP

所提出 UMTS 的 3G標準，可以確保 GSM核心網路無縫 (Seamless)

接取到 3G的核心網路，這種相容於過去 GSM / GPRS系統的考量，

對於系統業者不僅可投資延續價值，也兼顧商業上的經濟效益。

3G R5以後的規格及 4G網路已朝向全 IP 化的方向發展，並以

IP 作為主要通訊協定，因此，UMTS 的語音會話、影音串流、網頁

互動及檔案傳輸的四種資料類型，都有其特定的屬性質，並賦予不

同的封包傳輸順序，以達到符合各類型資料的服務等級 (Quality of

Service, QoS) 的要求及目標，由於 IP 協定中的盡力而為服務(Best

Effort Service)，對於嚴格要求低延遲、低抖動(Jitter)等服務的多媒體

類或語音的資料型態，已無法滿足需求，因此，提供優化的封包轉

送能力(Packet Forwarding)以達到服務等級要求，成為 UMTS核心網

路中一項重要的工作。

本論文提出的方法是在 UMTS 系統核心網路中，對不同的資料

類型，提供差異性服務及優先順序的封包傳送能力，利用兩種佇列

緩衝記憶體空間配置機制：動態佇列緩衝空間配置(DQB)和邏輯佇列

溢流緩衝空間配置(OQB)，另外，對各類型封包允入與允出佇列時的

iii

機制，分別以優先順序為基礎方式(Priority-Based Queuing)允入佇列

及連續性加權輪詢(Sequential-Weighted Round Robin)的允出佇列機

制處理。透過 NS2網路模擬軟體，對不同方案想定、封包大小及參

數值進行模擬評估，根據模擬的結果，每一種類型服務的封包在效

能(Throughput)、封包丟失率(drop probability)、延遲及抖動率與 IETF

所提出之差異性服務(Differentiated Service, DiffServ)比較，兩者可達

到近似的效能。

關鍵詞關鍵詞關鍵詞關鍵詞 UMTS、服務等級、優先佇列機制、邏輯佇列緩衝記憶體溢

位、動態佇列緩衝記憶體配置、差異性服務、連續性加權輪

詢佇列機制。

iv

A Study on Performance Discussion of a UMTS
Priority-based Queuing Scheme with two Queuing

Buffer Allocations

Student：Fanpyn Liu Advisors：Dr. Chyan Yang

Institute of Information Management

National Chiao Tung University

ABSTRACT

As UMTS systems will evolve into an all-IP stage in the future,

packet switching becomes a prerequisite for all UMTS applications. The

3GPP defines four types of UMTS traffic: conversational, streaming,

interactive and background; each type of UMTS traffic has its QoS

features. Differentiated Service (DiffServ) is QoS architecture for IP

networks, their based on packet marking that allows packets to be

prioritized according to Service Level Agreement (SLA) management.

The DiffServ is a scalable architecture and is proposed to provide QoS

guarantee services and scheduling packets forwarding for each class

within the IP networks.

According to four types of UMTS traffic, this study proposes a

priority-based queuing scheme with two queuing buffer allocations, the

dynamic queuing buffer (DQB) allocation and the overflow queuing

buffer (OQB) allocation, to support packet forwarding of four types of

UMTS traffic in a DiffServ method. In the proposed queuing scheme,

two major modules, a priority-based enqueuing module and a sequential

weighted round robin (SWRR) dequeuing module, base on the DQB

v

allocation and the OQB allocation to perform differentiated packet

enqueuing / dequeuing jobs among four types of UMTS traffic.

In this study, we use the ns2 (Network Simulator version 2) as the

simulation platform to simulate several scenarios. Discussing the

simulation results and analysis, we can find the proposed queuing

scheme can base on packet transmission priorities of four types of

UMTS traffic to support a differentiated packet forwarding behavior

among UMTS traffic in a UMTS core network and the performance of

UMTS traffic with a high priority always gets a better packet forwarding

performance than that of UMTS traffic with a low priority. And, the

differentiated packet forwarding behaviors with the proposed queueing

scheme are similar to the packet forwarding behavior with the IETF

DiffServ scheme.

Keyword: UMTS, priority-based queuing scheme, DQB allocation,

OQB allocation, differentiated service packet forwarding,

sequential weighted round robin queuing scheme.

vi

誌誌誌誌 謝謝謝謝

要開始寫「誌謝」這段，代表博士班的學生生涯要告一段落了，

沒有胸懷壯志，也沒有驪歌高唱，只有一路走來受到師長照顧和幫

忙，感激的心情無以言表，想說的感謝話有很多很多，想表達的誌

謝辭也很長很長，遠遠超過這本論文的長度，非三言兩語可以道盡

的。

能完成這個學位，首先要感謝的人，是我的指導教授楊 千博

士，因為教授有教無類，願意收我為徒成為大師的門下，才得以一

窺學術領域的深奧、作研究的嚴謹和人生智慧的哲理，生活中教授

對於嚴肅的主題，常以詼諧幽默和逗趣的方式闡述其中道理，並也

常不經意的在四兩撥千金的談笑間，剖析事情的角度分析其中的智

慧，令我們佩服、震撼且感動不已。另外，我還要特別感謝的人是

傅振華學長，因為他孜孜不倦、耐心和包容的指導，論文寫作、投

稿甚至程式的撰寫、除錯和修改…等，才使得研究成果得以展現，

完成這本論文的撰寫，心中有太多的感謝想要表達，千言萬語亦不

足以道盡，能敘述得出來的也不及千萬分之一。

徐道義教授在我就學期間，仍無時無刻關心我的研究狀況，並

指導我作研究的技巧與態度，此外，也要感謝口試委員–羅濟群教

授、劉敦仁教授和吳宗禮教授們逐字斧正論文內容，並犧牲週末假

期參加學生計畫書及論文口試，並於論文修改期間不吝地提供我許

多寶貴意見，啟發學生對問題的深究獲益良多，使本篇論文才能更

加充實完善。

另外，實驗室的學弟妹們–耿杰、建全、良駒、憲明、阿國、

秋皓、士原和志棋…等一起通宵達旦作研究、討論、吃宵夜、打球、

閒聊八卦及搞笑…等的革命情感，還有同班同學姐妹淘–翠娟、秀

怡和明賢，以及俊龍和文茂平大哥在心情沮喪研究低潮時，相互勉

勵加油打氣一起出遊、唱卡啦 OK 瘋狂的同窗之誼，這些都是我千

年修來的福分，才能和他們成為同學；另外在我職場中的長官、同

事也都是背後推動我前進堅持下去的動力。

vii

最後，謹以此文獻給我摯愛的雙親、小弟和懷念的大弟博熙及

愛犬(胖胖柴)，由於有他們默默的支持和陪伴，讓我能撐過這些煎熬

的日子，年邁的父親期盼和我分享這份榮耀的日子已經很久了，感

謝他至始至終對我的寬容和信心，並也要感謝我的愛犬們(蜜蜜和

PP)，因為牠們總是很有耐心靜靜的，陪我渡過一天又一天熬夜 K

書、寫論文的日子。

要感謝的人及事有太多族繁不及備載，一路走來受到太多人的

扶持和幫助，在博士生涯的研究歲月裏，也僅知學問與研究之不易，

如訪隱者之不遇，時時喟嘆「只在此山中，雲深不知處」，知識的

累積尚欠火候，回首這些年來，雖然其中沒有什麼值得特別炫耀的

成果，但對我而言，是寶貴的人生歷練，是無數教誨、關愛和幫助

的結果，本論文的完成絕非終點，文中的不足和淺顯之處則是我新

的征途上，另一個負笈研究的新起點，感謝大家。

viii

Contents

摘摘摘摘 要要要要…… ... ii

ABSTRACT .. iv

誌誌誌誌 謝謝謝謝…… .. vi

Contents… .. viii

List of Tables ... x

List of Figures ... xi

Abbreviations ... xii

Symbol Description ... xv

Chapter 1. Introduction .. 1

1.1. Research Background and Motivation ... 1

1.2. Related Research Work .. 2

1.3. Organization of the Dissertation .. 4

Chapter 2. Literature Review .. 5

2.1. UMTS Services and Applications .. 5

2.2. Requirements for QoS .. 6

2.2.1. QoS Mechanisms ... 7

2.2.2. UMTS QoS Architecture.. 9

2.2.3. QoS Classes of UMTS applications ... 10

2.3. UMTS with Differentiated Services (DiffServ) 12

2.3.1. Integrated Services (IntServ) ... 13

2.3.2. Differentiated Services (DiffServ) ... 14

Chapter 3. Review of Queue Management Mechanisms....................... 16

3.1 Passive Queue Management (PQM) ... 16

3.2 Active Queue Management (AQM) .. 17

3.3. Random Early Detection (RED) .. 18

3.4. Priority-based Queueing .. 19

3.5. Weighted Round Robin (WRR) Queueing .. 20

Chapter 4. An Approach to Priority-based Queueing Scheme with
Two Queueing Buffer Allocations ... 22

ix

4.1. Queueing Buffer Allocations in Priority-based Queueing Scheme 22

4.1.1. A Dynamic Queueing Buffer (DQB) Allocation 23

4.1.2. An Overflow Queueing Buffer (OQB) Allocation 24

4.2. A Priority-Based Enqueueing Module ... 25

4.2.1. A Priority-based Packet Enqueueing Module with a DQB
Allocation ... 27

4.2.2. A Priority-based Packet Enqueueing Module with an OQB
Allocation ... 30

4.3. A WRR Packet Dequeuing Module ... 33

Chapter 5. Simulation and Results Analysis .. 38

5.1. Simulation Topology and Parameters .. 38

5.2. Simulation Results and Analysis ... 40

5.2.1. UMTS Packet Transmission in a Continuous Traffic Pattern ... 40

5.2.2. UMTS Packet Transmission in an Intermittent Traffic Pattern . 47

5.2.3. Summary .. 52

Chapter 6. Conclusions ... 54

References .. 57

Appendix.. .. 62

Appendix A: The DQB Source Code ... 63

Appendix B: The DQB Header File .. 72

Appendix C: The OQB Source code ... 73

Appendix D: The OQB Header File ... 87

Appendix E: Simulation scenarios for DQB in a continuous traffic
pattern ... 89

Appendix F: Simulation scenarios for OQB in a continuous traffic
pattern ... 92

Appendix G: Simulation scenarios for DQB in a intermittent traffic
pattern ... 96

Appendix H: Simulation scenarios for OQB in a intermittent traffic
pattern ... 101

Responses to commitee comments ... 106

x

List of Tables

Table 1. Applications Enabling 3G Service Categories 6

Table 2. UMTS QoS features .. 11

Table 3. Packet dequeuing turns received by all logical queuing buffers
with the DQB / OQB allocations in a packet dequeuing cycle .. 34

Table 4. A summary of simulation parameters ... 39

Table 5. A packet enqueueing / dequeueing statistic of UMTS traffic in a
continuous transmission pattern ... 41

Table 6. An average packet delay statistic of UMTS traffic in a
continuous transmission pattern ... 43

Table 7. An average packet jitter statistic of UMTS traffic in a
continuous transmission pattern ... 43

Table 8. A statistic of disorder packet transmission among UMTS traffic
with the OQB allocation in a continuous traffic pattern 45

Table 9. A ranking weight statistic of UMTS application with both of the
DQB allocation and the OQB allocation in a continuous traffic
pattern ... 46

Table 10. A packet enqueuing / dequeuing statistic of UMTS traffic in an
intermittent transmission pattern .. 48

Table 11. An average packet delay statistic of UMTS traffic in an
intermittent transmission pattern .. 50

Table 12. An average packet jitter statistic of UMTS traffic in an
intermittent transmission pattern .. 50

Table 13. A statistic of disorder packet transmission among UMTS
traffic with the OQB allocation in an intermittent traffic
pattern ... 50

Table 14. A ranking weight statistic of UMTS application with both of
the DQB/OQB allocation in an intermittent traffic pattern 51

xi

List of Figures

Figure 1. IP QoS mechanisms ... 7

Figure 3. The QoS functions and can be implemented on a router 8

Figure 2. Diagram of the infrastructure of a UMTS network 8

Figure 4. UMTS QoS Architecture ... 9

Figure 5. Sketch map of Best effort and IntServ .. 14

Figure 6. DiffServ Control Architecture ... 15

Figure 7. Priority-based Queueing .. 20

Figure 8. First In First Out Queueing .. 21

Figure 9. Weighted Round Robin Queueing ... 21

Figure 10. A diagram of queuing buffer with the DQB allocation 24

Figure 11. A diagram of queuing buffer with the OQB allocation 25

Figure 12. A pseudo code of a two stage priority-based enqueuing
process ... 26

Figure 13. A diagram of arrival packets enqueueing process with the
DQB allocation ... 28

Figure 14. A pseudo code of the RED-based packet enqueuing process
with the DQB allocation ... 29

Figure 15. A diagram of arrival packets enqueueing process with the
OQB allocation ... 31

Figure 16. The pseudo code of a RED-based packet enqueueing process
with the OQB allocation ... 32

Figure 17. A diagram of the SWRR dequeuing module with the DQB
allocation ... 33

Figure 18. A diagram of the SWRR dequeuing module with the OQB
allocation ... 34

Figure 19. Flowchart of dequeueing turn transfer PDTT procedure 36

Figure 20. Flowchart of the WRR packet dequeueing module 37

Figure 21. A diagram of the simulation topology 39

Figure 22. A statistics of packet dequeueing volume in a continuous
transmission pattern .. 42

Figure 23. A statistics of packet dequeuing rate in an intermittent
transmission pattern .. 49

xii

Abbreviations

3G 3rd Generation

4G 4th Generation

3GPP 3rd Generation Partnership Project

APD Average Packet Delay

APJ Average Packet Jitter

AQM Active Queue Management

BAC Background traffic

BS Base Station

CDMA Code Division Multiple Access

CN Core Network

CON Conversational traffic

DiffServ Differentiated Services

DQB Dynamic Queueing Buffer

DP Dequeued Packets

DPR Dequeued Packet Ratio

DPT Disorder Packet Transmission

DRP Dropped Packets

DRPR Dropped Packet Ratio

ECN Explicit Congestion Notification

EDGE Enhanced Data Rates for GSM Evolution

EI Evaluation Item

FDD Frequency Division Duplex

FIFO First In First Out

FTP File Transfer Protocol

GBS Guaranteed Buffer Size

GGSN Gateway GPRS Support Node

GoS Grade of Service

GPRS General Packet Radio Service

GSM Global System for Mobile communication

xiii

IETF the Internet Engineering Task Force

INT Interactive traffic

IntServ Integrated Service

IP Internet Protocol

IPTV Internet Protocol Television

MT Mobile Termination

NS2 Network Simulator 2

OQB Overflow Queueing Buffer

PDTT Packet Dequeueing Turn Transfer

PEP Packet Enqueueing Probability

PHB Per-Hop-Behavior

PKT Packet

PQM Passive Queue Management

PRI Priority Queuing

PS Packet Size

QoS Quality of Service

RED Random Early Detection

RFC Request for Comment

RNC Radio Network Controller

RR Round Robin

SAP Service Access Point

SDU Service Data Unit

SLA Service Level Agreement

SMS Short Messaging Service

STR Streaming traffic

SWRR Sequential-WRR (Weighted Round Robin)

TCL Tool Command Language

TCP Transport Control Protocol

TDD Time Division Duplex

TE Terminal Equipment

TD-SCDMA Time Division Synchronous Code Division Multiple
Access

xiv

TPFPR Total Packet Forwarding Performance Ranking

TT Transmission Time

UDP User Datagram Protocol

UE User Equipment

UMTS Universal Mobile Telecommunications System

UT UMTS Traffic

UTRA UMTS Terrestrial Radio Access

UTRAN UMTS Terrestrial Radio Access Network

VoIP Voice over Internet Protocol

WCDMA Wireless Code Division Multiple Access

WRR Weighted Round Robin

WS Weight Sum

xv

Symbol Description

B Bytes

D(i, j) The jitter between any two particular packets.

i or j Send and receive times between two packets(i and j)

ms 10-3 seconds

Ri The arrival time of packet i

Rj The arrival time of packet j

Si The sending time of packet i

Sj The sending time of packet j

µs 10-6 seconds

1

Chapter 1. Introduction

Nowadays, mobile communications have become popular

communication fashions worldwide and are available to all. The

evolution technologies over the last two decades has enabled the

development of the ubiquitous mobile communication service, which

can provide the mobile user with voice, data and multimedia services at

any time, any place, and in any format. Hence, many applications and

bandwidth requirements are proposed for mobile communications. The

third generation (3G) and the proposed fourth generation (4G) mobile

communication support a broadband mobile communication

environment and diversified services.

1.1. Research Background and Motivation

The Universal Mobile Telecommunications System (UMTS), one

of the 3G mobile communication standards developed in Europe,

supports diversified mobile communication applications [1, 2].

According to 3GPP planning, an all IP-based architecture will eventually

be adopted in the UMTS core network to support diversified 3G services

[3]. For reducing the costs to increase the revenue, the network service

providers plan to merge the data communication network and telephony

communication network and develop the all-IP networks. In an all-IP

network, traffic is packetized and transmitted within a UMTS core

network and external IP networks [4-7]. These traffic types of UMTS

applications can be divided into four classes: conversational, streaming,

interactive, and background. For 3G applications, the 3GPP defines four

types of traffic, each with different Quality of Service (QoS) features.

Differentiated services (DiffServ) must be supported within a UMTS

core network to satisfy the required QoS of UMTS applications [8, 9].

The user will be judged on the basis of the these applications, on the

other hand, network bandwidth and application priority will determine

2

the performance of the network under its control in terms of the cost of

operating the network to support the agreed upon QoS requirements for

its users.

Today, people expect their mobile communication service to be

available all the time with no deterioration in the service quality. Hence,

it is imperative that the evaluation of the performance of the mobile

network takes into account the survivability requirements. With a QoS

solution based on different QoS classes the use of the mobile network

resources can be optimized. The users of the new networks services are

only interested in end-to-end QoS [10]. End-to-end services typically

involve communication through external networks, which make it

obligatory to be able to map UMTS QoS parameters to external network

QoS parameters and vice versa.

The main goal of this study is to analyze and compare the

performance of different queuing scheme over UMTS core network

gateway, using two queueing buffer allocations. We consider four

classes of packets which have to be served, where every packet of class

has priority forwarding behavior corresponding to the QoS requirement.

The simulation results are collected and analyzed to understand the

performance of the proposed queuing schemes. The priority-based

queuing scheme is implemented using an ns2 simulator, through which

several scenarios are assumed and simulated. Finally, a conclusion is

provided.

1.2. Related Research Work

In the competitive communication world, network bandwidth is

a precious and limited resource. As with any mobile communication

network service, guaranteed service levels and network performance are

critical factors. We investigate the queue scheduling scheme for the

provision of QoS over UMTS core network gateway by network

3

performance. In fact network performance should not be measured in

absolute quantities like dropped packets but the degree to which the

network satisfies the service requirements of each application.

Critical network parameters and performance to be used in specifying

and assessing the speed, accuracy, dependability, and availability of IP

pack transfer [11]. These parameters include packet drop, transfer delay,

packet jitter, and throughput. In particular, the network performance and

reliability are embodied by these QoS parameters. In order to reach the

goal, the access and delivery rules have to be formalized and be able to

make meaningful promises in end-to-end QoS.

To realize satisfying QoS results, investigating the process of

UMTS performance in a form of network simulation is a required in

implementing a particular queuing discipline. The simulation can

evaluate parameters associated with UMTS network performance; delay,

packet loss, packet jitter and throughput in accessing new service and

architecture. Packet loss information can be useful in tracking persistent

congestion problem. The statistical characteristics of the lost packets are

based on established loss models such as Gilbert, Poisson, and Bernoulli

[12, 13]. The probability of packet loss resulted from each of sent

packets. That is:

Packet Loss Ratio= _ _ _

_ _

Number of Lost Packets

Total Transmitted Packets
 ……….. (1)

Jitter is defined as the mean deviation of the difference in packet

spacing at the receiver compared to the packet spacing at the sender for a

pair of packets. This value is equivalent to the deviation in transit time

for a pair of packets. The jitter metric is defined as the difference in send

and receive times between two packets, i and j. The difference, D(i, j),

provides the jitter between any two particular packets, however, a jitter

value which measures the accumulated jitter over all packets is required.

4

D (i, j) = (Rj - Sj) - (Ri - Si) ……….. (2)

where Si=the sending time of packet i; Ri=the arrival time of packet i;

Sj=the sending time of packet j; Rj=the arrival time of packet j

and j＞i

The jitter of the response time is very important for real-time

applications such as telephony. Web browsing and mail are fairly

resistant to jitter, but any kind of streaming media (voice, video, music)

is quite susceptible to jitter. Jitter is a symptom that there is congestion,

or not enough bandwidth to handle the traffic.

1.3. Organization of the Dissertation

This dissertation is organized as follows. Related research works

and literature review are surveyed in Chapter 2. Chapter 3 introduces

some queue management mechanisms related to construct a queueing

scheme. In Chapter 4 and Chapter 5, they are the most important core of

this dissertation. Here we describe our queueing module and priority

based queueing scheme with two different queueing buffer allocations in

a UMTS core network gateway. Then, chapter 5 presents some

simulation results to compare performance of priority-based queueing

scheme with two queueing buffer allocation. Finally, we conclude our

research and summaries in Chapter 6.

5

Chapter 2. Literature Review

2.1. UMTS Services and Applications

UMTS is a 3G broadband, packet-based transmission of text,

digitized voice, video, video conferencing, IPTV (Internet Protocol

television) and multimedia at data rates up to 2Mbps, can be reached.

Higher bit rates naturally facilitate some new services, such as video

telephony and quick downloading of data [14, 15]. If there is to be a

killer application, it is most likely to be quick access to information and

its filtering appropriate to the location of a user. Often the requested

information is on the Internet, which calls for effective handing of

TCP/UDP/IP traffic in the UMTS network. At the start of the UMTS era

almost all traffic will be voice, but later the share of data will increase. It

is, however, difficult to predict the pace at which the share of data will

start to dominate the overall traffic volume. At the same time that

transition from voice to data occurs, traffic will move from

circuit-switched connections to packet-switched connections. At the start

of UMTS service not all of the QoS functions will be implemented and

therefore delay-critical applications such as speech and video telephony

will be carried on circuit-switched bearers. Later, it will be possible to

support delay-critical services as packet data with QoS functions [16].

Compared to GSM and other existing mobile networks, UMTS

provides a new and important feature, namely it allows negotiation of the

properties of a radio bearer. Attributes that define the characteristics of

the transfer may include throughput, transfer delay and data error rate.

To be a successful system, UMTS has to support a wide range of

applications that possess different QoS requirements. At present it is not

possible to predict the nature and usage of many of these applications.

Therefore it is neither possible nor sensible and optimise UMTS to only

one set of applications. Table 1 illustrates how the applications enabling

3G service categories [17].

6

Table 1. Applications Enabling 3G Service Categories
Service

Categories
Application

Location
Based

Edutainment
and

Infotainment

B2C
Service

Office
Extension

Tele-
medicine

Telematics
Telemetry

Monitoring
Multimedia H H H H M L

m-commerce H H H L L M
Unified

messaging
L L L H M L

VoIP M M M H H L
Interactive

Broadcasting
H H M L L L

IP Access M H H H M H
Positioning H H L M L H

Legends:
L: Low importance, M: Medium importance, H: High importance

2.2. Requirements for QoS

3GPP has specified high level requirements for UMTS QoS. These

requirements are divided into three categories – end user, general and

technical requirements. According to the 3GPP planning, an all IP-based

architecture will be adopted in the UMTS core network eventually to

support diversified 3G services. In an all-IP network, traffic is

packetized and transmitted within a UMTS core network and external IP

networks [3]. For 3G applications, the 3GPP defines four types of traffic;

their QoS features are different. DiffServs must be supported within a

UMTS core network to satisfy the required QoS of UMTS applications

[18]. The performance of packet forwarding process is one of the

important factors that affect QoS of UMTS applications. For UMTS

packet forwarding process in a UMTS core network gateway, a queuing

scheme always plays an important role. A proper priority-based queuing

scheme within a UMTS core network can support packet forwarding in a

DiffServ way for UMTS applications.

This study focuses on performance comparison of priority-based

queuing scheme with two different queuing buffer allocations in a

7

UMTS core network gateway. The proposed queuing scheme is

implemented in an ns2 simulator and several scenarios are assumed and

simulated. The simulation results are collected and analyzed to observe

the performance of the proposed queuing scheme with different queuing

buffer allocations. Finally, a conclusion is reached.

2.2.1. QoS Mechanisms

QoS is one of the most important issues in networks in general, and

particularly so in the Internet and other IP networks. QoS deals with the

strict management of traffic such that guarantees can be made and SLAs

(Service Level Agreement) between customers and service providers can

be observed. In the case of packet switching, QoS basically guarantees

that a packet will travel successfully between any two points. In

packet-switched networks, these parameters need to be controlled in

order to guarantee QoS, including latency end to end, jitter, loss,

sequencing (i.e., the order of delivery of the packets), and errors etc..

Figure 1 shows the four main IP QoS mechanisms: classification

(used for packet identification), conditioning (used for traffic shaping),

queue management (used to manage the queue depth), and queue

scheduling (used for packet scheduling) [19].

Figure 1. IP QoS mechanisms

8

When implementing QoS, a common mechanism used is queuing,

We survey a variety of queuing strategies that manage resources where

congestion might occur. In UMTS networks, the transition from a TE

(Terminal Equipment, such as mobile phone, Laptop…etc) via RNC

(Radio Network Controller) to a UMTS core network makes the gateway

in between a congestion point.

Figure 3. The QoS functions and can be implemented on a router

In such cases, queuing might be configured on the gateway at the

network edge. Figure 2 shows diagram of the infrastructure of a UMTS

network [2]. Figure 3 illustrates the QoS mechanisms can be

implemented the UMTS core network and briefly describes the QoS

functions [19].

Figure 2. Diagram of the infrastructure of a UMTS network

9

2.2.2. UMTS QoS Architecture

Network services are considered end-to-end, this means from a

Terminal Equipment (TE) to another TE. An End-to-End service may

have a certain QoS which is provided for the user of a network service. It

is the user that decides whether he is satisfied with the provided QoS or

not. To realize a certain network QoS a Bearer Service with clearly

defined characteristics and functionality is to be set up from the source to

the destination of a service. A bearer service includes all aspects to

enable the provision of a contracted QoS. These aspects are among

others the control signaling, user plane transport and QoS management

functionality. A UMTS bearer service layered architecture is depicted in

Figure 4, each bearer service on a specific layer offers its individual

services using services provides by the layers below [10].

Figure 4. UMTS QoS Architecture
Legends:
TE: Terminal Equipment, MT : Mobile Termination, CN: Core Network,
UTRAN : UMTS Terrestrial Radio Access Network,
EDGE: Enhanced Data Rates for GSM Evolution,
lu: the lu interface to connect UTRAN and CN
UTRA : Universal Terrestrial Radio Access
FDD: Frequency Division Duplex
TDD: Time Division Duplex

10

2.2.3. QoS Classes of UMTS applications

According to UMTS applications’ features, four QoS types of

traffic, conversational, streaming, interactive, and background, are

defined by the 3GPP. Each type of traffic has its QoS features. Four

types of UMTS traffic are described as follows [10].

� Conversational Traffic

VoIP, videoconference, and video telephony are the typical

conversational traffic. Real time is the most important characteristic for

conversational traffic. Moreover, to support conversational traffic, a

low delay and low jitter service is required. The transfer delay will be

significantly lower than the round trip delay of an interactive

application. The acceptable packet transfer delay for conversational

traffic is very stringent.

� Streaming traffic

Watching a real time video or listening to a real time audio from a

video/audio server through the UMTS network is a typical streaming

application. Generally speaking, streaming traffic is one way packet

transport, and packets are transmitted to users in real time. Streaming

traffic require a small delay variation. However, low transfer delay is

not required.

� Interactive traffic

When an end user accesses information or data from a server through a

UMTS network, it belongs to interactive traffic. Typical interactive

UMTS applications include web browsing, chatting room, ICQ, and

telnet; they require low packet loss rate. A reasonable packet transfer

delay is allowed for interactive traffic. In general, interactive UMTS

applications are classical data communication applications that are

characterized by the request/response pattern of the end-user. Round

trip delay time is one of the key attributes. A low bit error rate of

11

transmitted packets is another characteristic.

� Background traffic

Background delivery of E-mails, SMS, FTP, and reception of

measurement records within a UMTS network are the typical

background traffics. Background traffic transmission is also one of the

classical data communication schemes that do not expect the data to be

reached within a certain period of time. The QoS of background traffic

requires a low packet loss rate and relaxed delay requirements, similar

to the transmission of best effort traffic. Therefore, packet transfer of

background traffic is more or less time insensitive with a low bit error

rate.

Table 2. UMTS QoS features

Traffic class Fundamental features
Application

example

Packet
transmissio
n priority

Conversational

- Preserve time relation between
information entitles of the stream
-Sensitive to packet delay
-Conversational pattern

VoIP,
Video telephony

1st

Streaming
- Preserve time relation between
information entities of the stream
- Sensitive to packet delay

Streaming
video,

Streaming audio
2nd

Interactive
-Request/Response pattern
- Preserve payload content
-Low error packet rate

Telnet,
Chartroom,

Web browser
3rd

Background

-Destination is not expecting
the-data within a certain time
-Preserve payload content,
-Insensitive to packet delay,
-Low error packet rate

E-mail,
SMS,

File transfer
4th

From the QoS feature descriptions of UMTS traffic that mentioned

above, the major distinguishing factor among these QoS features is the

time sensitivity of packet transfer delay. Conversational traffic is the

most delay sensitive, followed by streaming and interactive applications.

Background traffic is the least delay sensitive. Moreover, compared to

conversational and streaming traffic, interactive and background traffic

12

is sensitive to packet error rate since most of them are traditional Internet

applications. In addition, interactive traffic bases on a request/response

operation pattern, a long packet delay is not allowed. Thus, interactive

traffic reaches a higher packet transmission priority than background

traffic. The QoS features of UMTS traffic are summarized in Table 2

[16].

2.3. UMTS with Differentiated Services (DiffServ)

The UMTS has a number of service classes that require end-to-end

QoS support. This requirement imposes on the design of the UMTS core

network bearer service as a part of the UMTS hierarchical QoS

architecture. This study presents queuing scheme and some scenario

simulations for provisioning QoS in the UMTS core network based on

the DiffServ model, a relatively simple but scalable IP-based QoS

technology. This requires proper choices of QoS mapping, router

configurations, and queuing scheme. Efficient queuing schemes are

introduced for the UMTS core network gateway, particularly for the

scheduling and buffer management schemes, to enhance QoS

provisioning in UMTS. The effectiveness of this approach is illustrated

by computer simulations.

The next generation of mobile phones will be probably all-IP based

enabling users to access Internet services. In order to make this possible

a satisfactory QoS, at least equal to the fixed Internet, must be ensured.

To achieve this goal an end-to-end QoS system must be constructed.

Another fact is the dominance of IP over other technologies due, it is

important to develop end-to-end IP QoS guarantees for the different

applications over distinct access technologies [10]. This is particularly

important for cellular wireless networks due to the ever growing

expansion of mobile phone users. One way to contribute to this goal is to

apply DiffServ QoS mechanisms to UMTS technology in order to model

13

an End-to-End QoS communication system. In particular, RED (Random

Early Detection) queue management and PRI (Priority Queuing) or

WRR (Weighted Round Robin Queueing) scheduling policies are

enforced [20]. Different UMTS traffic classes are mapped into different

DiffServ parameters [21, 22]. The performance of this architecture has

been evaluated by simulation using NS2, assuming different network

load scenarios.

2.3.1. Integrated Services (IntServ)

The integrated services (IntServ) scheme focuses on end-to-end

individual packet flows. In this scheme is designed to provide a set of

extensions to best-effort service model. The service level can be

typically quantified as a minimum service rate, or a maximum tolerable

end-to-end delay or loss rate. According to available resources, the

network grants or rejects the flow requests. The admission control unit,

the packet forwarding mechanisms and the Resource Reservation

Protocol (RSVP) are the three major components of the IntServ

architecture; these three components perform resources availability

check, packet forwarding process in a router and bandwidth reservation

jobs [23].

Since flow-based integrated services are supported in the IntServ

scheme; routers require more complicated mechanisms to maintain

control and packet forwarding states of all flows passing through them.

For a router, it is a heavy load. From an viewpoint of implementation

and operation, it is a significantly difficult job. Therefore, there exist

scalability and manageability issues for the IntServ scheme [24]. The

design principles of RSVP provides the end-to-end QoS guarantee for

data stream and it is to reserve and maintain the resources at each node

that is in the transmission path of flows. Figure 5 illustrates the best

effort service and the IntServ. In this illustration, the term "traffic flow"

is used in a loose sense and represents the source of traffic. In the best

14

effort service, all packets are lumped into a single mass regardless of the

source of the traffic. In IntServ, individual flows are distinguished on an

end-to-end basis.

2.3.2. Differentiated Services (DiffServ)

DiffServ attempts to accomplish the same goal as IntServ with

better scalability, it is a simple model where traffic entering a network is

first classified and possibly conditioned at the boundaries of the network,

and then assigned to different behavior aggregates. Scalability is

improved by moving per-flow states to edge routers and keeping

information of only a few flow classes called Per-Hop-Behavior (PHB)

in the core gateways. Packets are treated according to their PHB classes

instead of individual flows. PHB can be performed by proper buffer

management mechanisms such as RED in the gateways and fulfills

scalability by performing all complicated QoS function, such as traffic

classification, marking, metering, conditioning, shaping and per-flow

traffic [22, 25].

The Diffserv control architecture definition shows in Figure 6, these

functional elements are located in the ingress node of a DiffServ domain

and in interior DiffServ-compliant nodes [26].

Figure 5. Sketch map of Best effort and IntServ

15

Figure 6. DiffServ Control Architecture

Classifier: Selects a packet in a traffic stream based on the content of some portion
of the packet header.

Meter: Checks compliance to traffic parameters (ie: token bucket) and passes results
to the marker and shaper/dropper to trigger action for in/out-of-profile
packets.

Marker: Writes/rewrites the DSCP value

Shaper: Delays some packets to be compliant with the profile.

The DiffServ has no dynamic admission control. Therefore, the

network managers must make sure that enough resources are available

for the agreed SLAs. DiffServ doesn’t support per-flow QoS guarantees

to achieve scalability. It becomes challenging to still maintain QoS,

especially for voice and video, which need per-flow guarantees [27]. The

ways in which PHBs, edge functionality, and traffic profiles can be

combined to provide an end-to-end service, such as a virtual leased line

service [28].

16

Chapter 3. Review of Queue Management Mechanisms

The desired performance level and applying resource allocation

policies in mobile communication network is a hard task. There is a need

to express policies defined by the queuing scheme of each resource in a

UMTS core network gateway. This need is becoming increasingly

pressing in settings such as minimum limit, maximum limit, buffer size,

type of packet, packet enqueueing probability…etc. The problem of

queuing scheme in mobile communication network is becoming an

important one.

3.1 Passive Queue Management (PQM)

In passive queue management (PQM), packets coming to a buffer

are rejected only if there is no space in the buffer to store them and the

senders have no earlier warning on the danger of growing congestion

[29]. In this case all packets coming during saturation of the buffer are

lost. The existing schemes may differ on the choice of packet to be

deleted (end of the tail, head of the tail, random). During a saturation

period all connections are affected and all reach in the same way, hence

they become synchronized.

The main drawbacks of PQM are summarized as follows [29].

� Global synchronization

When a drop-tail buffer is full, all of the incoming packets are

dropped. Consequently, all the affected TCP connections try to recover

those dropped packets at about the same time. This moment, all the

connections simultaneously send large amount of packets to congest the

buffer again. This phenomenon may seriously affect the link utilization

and thus the overall network performance.

17

� Full-queue

PQM is only activated after the buffer is full. The buffer occupancy

may oscillate between empty and fullness. A traffic flow may experience

large end-to-end variations.

� Lock-out

Because of global synchronization phenomenon, some connections

are always served first and the others are denied by PQM. The network

resources are thus not distributed in a fair manner. This is called

“lock-out”.

3.2 Active Queue Management (AQM)

To enhance the throughput and fairness of the link sharing, also to

eliminate the synchronization, the Internet Engineering Task Force

(IETF) recommends active algorithm of buffer management [30]. Active

queue disciplines drop or mark packets before the queue is full.

Typically, they operate by maintaining one or more drop/mark

probabilities, and probabilistically dropping or marking packets even

when the queue is short. Active Queue Management (AQM) can

improve the performance of TCP, and has been recommended by the

IETF for use in the routers of the mobile communication [29]. The goal

of AQM is three folds. First, to improve throughput by reducing the

number of packets dropped. This is achieved by keeping the average

queue length small in order to absorb naturally occurring bursts without

dropping packets. Second, AQM provides low delay to interactive

services by maintaining a small average queue length. Third, AQM

avoids the lock out phenomenon arising from tail drop [31, 32].

18

3.3. Random Early Detection (RED)

Among various active queue management schemes, RED is

probably the most popular studied. RED was proposed to improve the

performance of TCP connections. As a queue management mechanism,

it drops packets in the considered gateway buffer to adjust the network

traffic behavior according to the queue size. Clearly, the configurable

parameters of RED such as dropping probability and thresholds are

critical to network performance, but the choice of these parameters

remains more of an art than a science because of the complexity of the

relationship between TCP/RED parameters and network performance. A

few papers on mathematical models and parameter settings can be found

in the literature [33, 34].

RED is an effective mechanism to control the congestion in the

network routers. It also helps prevent the global synchronization in the

TCP connections sharing a congested router and to reduce the bias

against burst connections. It was an improvement over the previous

proposals, such as Random Drop and Early Random Drop. Clark and

Fang [35] have proposed the incorporation of DiffServ in the Internet by

applying RED with different parameter setting to the “In” and

“Out“ packets of the flows arriving at a router. To be able to apply RED

mechanism in the DiffServ service, it is important to survey its queueing

behavior. For example, to figure out any guarantees on throughput and

delays one needs to survey these as a function of the RED parameters. It

is useful to complement these efforts with an analytical study.

Lin and Morris [36] have shown that the RED scheme doesn’t work

particularly well when the queue is occupied by well-behaved TCP flows

as well as greedy UDP flows at the same time. Misbehaving flows don’t

back off even if their packets are dropped. The average value of the

queue remains over Minth, causing drop from TCP flows that have

already reduced their rate.

19

3.4. Priority-based Queueing

Priority-based queueing is a simple approach to provide DiffServ to

different packet flow. Packets of different flows are assigned a priority

level according to their QoS requirement. When packets arrive at the

output link, they are first classified into different classes enqueued

separately based on their priorities. Then, queues are served in order.

The highest priority queue is served first before serving lower priority

queues. Packets in the same priority class are serviced in a FIFO manner.

But if a higher priority packet arrives while serving a lower priority

packet, the server waits until complete the service of the current packet

then goes back to serve the higher priority queue [37, 38].

Accordingly, higher priority queues will always be served before

lower priority queues. If a high priority user offers more load than the

link capacity of the output link, no packets can be transmitted from the

lower priority queues. In the worst-case, all packets in lower priority

queues will be discarded due to exceeding the transit delay bounds of the

scheduler. The high-priority queue is always going to be given first

priority, and that means traffic in the lower-priority queues can sit there

for a long time. Figure 7 illustrates the priority-based queue, anytime a

packet enters the high queue, the scheduler will stop transmitting any

other queue's traffic and transmit the high-priority traffic. The packets in

the other queues now have to wait their turn, if too many packets enter

those higher-priority queues. The starvation or blocking problem always

arises with high occurrence probability in the lower priority queue.

20

Figure 7. Priority-based Queueing

The priority-based queuing discipline play a crucial role in the

implementation of the DiffServ architecture where packets are classified

into a number of traffic classes and handle with various priorities.

Numberous research efforts have been made on performance analysis

and evaluation of the priority queuing mechanism [29, 39], as well as its

development and applications [40, 41].

3.5. Weighted Round Robin (WRR) Queueing

The traditional first-in-first-out (FIFO) droptail was initially the

only queue management scheme in the network. It is simple and easy to

implement in routers, however, it exacerbates the limitations of

end-point congestion control schemes such as TCP. When a packet

arrives and the queue is currently full, the incoming packet will be

dropped. Droptail is the most widely used queue manage algorithm due

to its simple implementation and relatively high efficiency. However,

droptail has some weakness, such as the bad fairness sharing among TCP

connection, and the throughput and link efficiency suffer severe

degradation if congestion is getting worse [42]. Figure 8 and Figure 9

illustrate FIFO queueing and WRR diagrams.

21

In WRR assigns a weight to each queue, and it then services each

nonempty queue in proportion to its weight, in round-robin fashion. The

packets in different queues are processed in turn. Thus the

lowest-priority queue can be guaranteed of a minimum bandwidth. This

avoids the case that the packets in the low priority queues cannot be

served. WRR is optimal when using uniform packet sizes, a small

number of flows, and long connections [43]. Lindemann and Thummler

[44] have shown a QoS differentiation with WRR, but the main focus in

the paper has been in balancing the resources between circuit switched

voice calls and packet switched data calls.

Figure 8. First In First Out Queueing

Figure 9. Weighted Round Robin Queueing

22

Chapter 4. An Approach to Priority-based Queueing
Scheme with Two Queueing Buffer Allocations

It is impossible that a UMTS core network bandwidth can fully

satisfy bandwidth requirements of all UMTS traffic. According to the

QoS features of conversational, streaming, interactive, and background

UMTS traffic and the packet transmission priority of each type of UMTS

traffic, a priority-based queuing scheme with different queuing buffer

allocations is proposed in this study to support a differentiated packet

forwarding process for UMTS applications. The following subsections

describe the processes of the enqueuing and dequeuing modules in

details about the priority-based queuing scheme.

4.1. Queueing Buffer Allocations in Priority-based
Queueing Scheme

Enqueuing and dequeuing modules are two major modules to

handle packets enqueuing and dequeuing jobs in a queuing scheme.

Usually, queuing buffer allocation in a queuing scheme affects packet

forwarding processes in enqueuing and dequeuing modules directly [40,

45]. Considering packet forwarding in a DiffServ mechanism and packet

forwarding starvation avoidance for four types of UMTS traffic, in [41]

proposed assignment buffer access scheme and we use assignment buffer

several queuing buffer allocation ideas, such as logical queuing buffer,

guaranteed queuing buffer space, queuing buffer space dynamical

allocation, and overflow queuing buffer space, to handle arrival packet

enqueuing processes. With these queuing buffer allocation ideas, the

proposed priority-based queuing scheme uses two queuing buffer

allocations; one queuing buffer allocation is dynamic queuing buffer

(DQB) allocation, the other is overflow queuing buffer (OQB) allocation.

These two queuing buffer allocations will be described in details as the

follows.

23

4.1.1. A Dynamic Queueing Buffer (DQB) Allocation

In the DQB allocation, a queuing buffer is divided into four logical

queuing buffers, conversational, streaming, interactive, and background.

Each logical queue buffer is FIFO queue; it stores its corresponding

UMTS packets. Each logical queue buffer is divided into two segments:

guaranteed buffer and dynamic buffer. For one type of UMTS packets, a

guaranteed buffer stores packets unconditionally if space is available.

Since each type of UMTS traffic has its own guaranteed buffer to

enqueue arrival packets; it might reduce a possibility of a UMTS packet

enqueuing starvation, especially for UMTS applications with lower

packet transmission priorities. Moreover, a guaranteed buffer size

depends on a packet transmission priority of its corresponding UMTS

traffic. Usually, a logical queuing with a high packet transmission

priority, more guaranteed buffer space would be allocated; this would be

helpful for UMTS packets with higher packet transmission priorities to

be enqueued easily.

When no space is available in a guaranteed buffer, a shared buffer

will be allocated conditionally to store an arrival packet [46, 47]. A

RED-based packet enqueuing process is invoked by the proposed

enqueuing module. According to available space in queuing buffer and

related parameters settings, the DQB allocation process is invoked to

decide to enqueue or drop arrival packets. As an arrival packet is allowed

to store in queuing buffer; it will be enqueued into its corresponding

dynamic buffer [48, 49]. A dynamic buffer is the buffer space will be

appended to a logical queuing buffer dynamically when one arrival

packet is enqueued into it. A size setting of a dynamic buffer of each

logical queuing buffer depends on its corresponding packet transmission

priority. A logical queuing buffer with a high packet transmission

priority might have a larger dynamic buffer than a logical queuing buffer

with a low packet transmission priority. Figure 10 shows the diagram of

the queuing buffer allocation in the DQB allocation.

24

Figure 10. A diagram of queuing buffer with the DQB allocation

4.1.2. An Overflow Queueing Buffer (OQB) Allocation

Like the DQB allocation, a FIFO logical queuing buffer idea also is

adopted in the OQB allocation. In the OQB allocation, five FIFO logical

queuing buffers are used to enqueue arrival UMTS packets; four logical

queuing buffers are guaranteed buffers and one logical queuing buffer is

a shared buffer. The four guaranteed logical queuing buffers are

corresponding to four types of UMTS traffic separately; an arrival packet

will be enqueued into its corresponding guaranteed logical queuing

buffer unconditionally when space is available to enqueue one packet.

Allocations of these four guaranteed logical queuing buffers let four

types of UMTS traffic can receive their queuing buffer space to enqueue

their arrival packets; it can avoid packet enqueuing starvation.

Moreover, for enhancing an enqueuing possibility of UMTS packet

with a higher packet transmission priority, these four logical queuing

buffers depend on their packet transmission priorities to allocate their

queuing buffer space. An overflow logical queuing buffer is one shared

buffer; it is shared by all UMTS packets. A size of overflow logical

queuing buffer is a difference between a physical queuing buffer size and

25

four guaranteed logical queuing buffers. For a UMTS arrival packet, if

no space is available to accommodate one packet in its corresponding

logical queuing buffer; the overflow queuing buffer will base on a

RED-based packet enqueuing process to determine whether an arrival

packet can be enqueued into the overflow queuing buffer or not. Usually,

UMTS traffic with a higher packet transmission priority receives better

settings in its corresponding RED-parameters to allow more packets with

the same packet transmission priority to be enqueued into the overflow

logical queuing buffer more easily. Figure 11 shows a diagram of the

OQB allocation.

Figure 11. A diagram of queuing buffer with the OQB allocation

4.2. A Priority-Based Enqueueing Module

A priority-based packet enqueuing module [41, 50, 51] is adopted

to handle arrival UMTS packets enqueuing process among several

logical queuing buffers in the proposed queuing scheme. Since two types

of queuing buffers are allocated to enqueue arrival packets; a two-stage

packet enqueuing process is adopted to process an arrival packet

enqueuing job in the priority-based enqueuing module. In the first stage

packet enqueuing process, a FIFO method is used for a guaranteed buffer;

26

an arrival packet can be enqueued into a guaranteed buffer only if space

is available in its corresponding guaranteed buffer. Otherwise, a

RED-based packet enqueuing process is invoked in the second stage

process to decide to enqueue or drop an arrival packet. Figure 12 shows

the pseudo code of the two-stage packet enqueuing process.

The priority-based packet enqueuing module based on packet

transmission priority of each type of UMTS traffic to set the parameters

which are used in the two-stage packet enqueuing process. These

parameters include guaranteed buffer size of each logical queue buffer

and four groups of RED-alike parameters [33, 34]. Each group of

RED-alike parameters consists of minimum limit, maximum limit, and

packet enqueuing probability. Generally speaking, each logical queuing

buffer depends on its packet transmission priority to receive

corresponding guaranteed buffer size and RED-alike parameter settings.

A logical queuing buffer with a higher packet transmission priority

always receives more favorable parameter settings than logical queuing

buffer with a lower packet transmission priority. It is easier for an arrival

UMTS packet with a higher packet transmission priority to be enqueue

A two stage priority-based enqueueing process

It bases on packet transmission priorities of four types of UMTS traffic to set the
parameters: guaranteed buffer sizes, minimum limits, maximum limits and packet
enqueueing probabilities, which are used in the priority-based enqueueing module

If (queueing queue buffer space is available)
 { /* to invoke the first stage */
 if (enqueued packets size < guaranteed buffer size)
 {
 To enqueue an arrival packet into a guaranteed buffer in its
 corresponding logical queue
 } else { /* to invoke the second stage */
 To invoke the RED-based packet enqueueing process
 }
} else { /* the queueing buffer is full */
 To drop an arrival packet
 }

Figure 12. A pseudo code of a two stage priority-based enqueuing process

27

into its corresponding logical queuing buffer. By way of corresponding

parameter settings, a DiffServ behavior can be supported by the

proposed enqueuing module.

Since two queuing buffer allocations are adopted in the

priority-based enqueuing module to handle an arrival packet enqueuing

process, there exists some differences in the proposed packet enqueuing

process. The proposed packet enqueuing process with the two queuing

buffer allocations will be described in details as the follows.

4.2.1. A Priority-based Packet Enqueueing Module with a
DQB Allocation

With the DQB allocation, two segments are allocated in each

logical queuing buffer; one is a guaranteed buffer and the other is a

dynamic buffer, it is a shared buffer. For enqueuing arrival packets into

guaranteed buffer and dynamic buffer in a logical queuing buffer, the

two-stage packet enqueuing process uses two different measures to

process an arrival packet enqueuing job. In the first stage packet

enqueuing process, a FIFO method is used for a guaranteed buffer; an

arrival packet can be enqueued into a guaranteed buffer only if space is

available in its corresponding guaranteed buffer. Otherwise, a

RED-based packet enqueuing process is invoked in the second stage

process to decide to enqueue or drop an arrival packet.

Packet enqueuing process in the second stage handles a dynamic

buffer space allocation for an arrival packet. Since a dynamic buffer

space allocation depends on available space of a physical queuing buffer;

it is easier for an arrival packet to receive dynamic buffer space when

more space is available in a physical queuing buffer. Thus, the

RED-based packet enqueuing process bases on one group of RED-alike

parameters which are corresponding to an arrival packet and available

space in physical queuing buffer to determine whether dynamic buffer

28

space can be allocated or not. If dynamic buffer space can be allocated

for an arrival packet; an arrival packet would be enqueued into its

corresponding dynamic buffer. Allocated dynamic buffer space will be

appended to the end of one logical queuing buffer which is

corresponding to the arrival packet. Otherwise, an arrival packet will be

dropped by the RED-based packet enqueuing process immediately.

In the RED-based packet enqueuing process, two thresholds [31,

33], minimum limit and maximum limit, about a physical queuing buffer

utilization are use to decides whether an arrival packet can receive

dynamic buffer space allocation unconditionally or to be dropped

immediately. Dynamic buffer space can be allocated for an arrival packet

unconditionally when length of enqueued packet is less than minimum

limit. An arrival packet will be dropped immediately when length of

enqueued packet is more than maximum limit. Moreover, Dynamic

buffer space can be allocated for an arrival packet conditionally when

length of enqueued packet is more than minimum limit and it is less than

maximum limit. The diagram of arrival packets enqueueing process with

the DQB allocation is shown in Figure 13 and Figure 14 shows the

Figure 13. A diagram of arrival packets enqueueing process with the DQB allocation

29

pseudo code of the RED-based packet enqueuing process with the DQB

allocation.

A RED-based packet enqueuing process with the DQB allocation

if (physical queuing buffer space is available)
 {
 if (the corresponding logical buffer size of an arrival packet ＜

 its minimum limit)
 {
 To allocate dynamic buffer space with the DQB allocation and enqueue an

 arrival packet into the allocated dynamic buffer space
To append to the allocated dynamic buffer space to one logical queuing
buffer which is corresponding to the arrival packet

 } else {
 if (the corresponding logical buffer size of an arrival packet ≧

its maximum limit)
 {
 To drop an arrival packet immediately
 } else {
 To generate a random probability based on a uniform

distribution
if (the random probability ≦
 the packet enqueuing probability)

 {
 To allocate dynamic buffer space with the DQB allocation

and enqueue an arrival packet into the allocated dynamic
buffer space

To append to the allocated dynamic buffer space to one
logical queuing buffer which is corresponding to the
arrival packet

} else {
 To drop an arrival packet
 }
 }
} else { /*no space available in queuing buffer */
 To drop an arrival packet immediately
 }

Figure 14. A pseudo code of the RED-based packet enqueuing process with the DQB
allocation

30

4.2.2. A Priority-based Packet Enqueueing Module with an
OQB Allocation

Like the priority-based enqueuing module with the DQB allocation,

a two-stage packet enqueuing process is adopted in this enqueuing

module, too. The process procedure of two-stage packet enqueuing

process in this enqueuing module is same as the process procedure of

two-stage packet enqueuing process with a DQB allocation. However,

there exist differences in queuing buffer allocation between the DQB

allocation and the OQB allocation; this causes that the two-stage packet

enqueuing process has different process target with the different queuing

buffer allocation.

Four logical queuing buffers which are corresponding to four types

of UMTS traffic are guaranteed buffers; they are the guaranteed buffer

space to store arrival UMTS packets with the OQB allocation.

Guaranteed buffer space allocation of each type of UMTS traffic

depends on its packet transmission priority. A UMTS application with

higher packet transmission priority receives more guaranteed buffer

space allocation. Differentiated guaranteed buffer space allocations exist

among four types of UMTS traffic. FIFO method is used in the first

stage process to handle arrival UMTS packets enqueuing job in

guaranteed buffers. Arrival packets can be enqueued only if space is

available in their corresponding guaranteed buffer; otherwise, a

RED-based packet enqueuing process will be invoked in the second

stage process to handle arrival packet enqueuing job in an overflow

logical queuing buffer.

The second stage packet enqueuing process is a RED-based packet

enqueuing process; it bases on the overflow queuing buffer’s capacity

and type of an arrival UMTS packet to handle arrival packet enqueuing

job in the overflow logical queuing buffer. Like the RED-based packet

enqueuing process with the DQB allocation, each type of UMTS traffic

31

has its corresponding RED-alike parameters minimum limit, maximum

limit, and packet enqueuing probability, to calculate an enqueued

probability of an arrival packet in this stage process. And, the settings of

four groups of RED-alike parameters are corresponding to their packet

transmission priorities. A packet with a higher packet transmission

priority receives better settings in its corresponding RED-alike

parameters and it can be enqueued into the overflow logical queuing

buffer more easily. With proper parameters settings, a differentiated

packet enqueuing behavior can be supported in the proposed enqueuing

module with the OQB allocation. The diagram arrival packets

enqueueing process with the OQB allocation is shown in Figure 15.

Figure 15. A diagram of arrival packets enqueueing process with the OQB allocation

Since there exists differences in a shared buffer allocation between

the OQB allocation and the DQB allocation, the RED-based packet

enqueuing process with the OQB allocation is a little different from to

the RED-based packet enqueuing process with the DQB allocation.

Essentially, these two RED-based packet enqueuing processes base on

three parameters, minimum limit, maximum limit and packet enqueuing

probability, to decide whether an arrival packet can be enqueued into a

shared buffer or not. In the OQB allocation, an overflow logical queuing

32

buffer is the only shared buffer; it stores all enqueued packets which are

allowed by the RED-based packet enqueuing process with the OQB

allocation. A FIFO method is used to process packet enqueuing and

dequeuing jobs in an overflow logical queuing buffer. A packet

enqueuing sequence is determined by packet enqueuing time and four

types of enqueued packets are mixed in an overflow logical queuing

buffer. Figure 16 shows the pseudo code of the RED-based packet

enqueuing process with the OQB allocation.

A RED-based packet enqueueing process with the OQB allocation

if (physical queueing buffer space is available)
 {
 if (enqueued packet size of the overflow logical buffer size ＜

a minimum limit of an arrival packet)
 {
 To enqueue an arrival packet into the overflow logical queueing buffer
 } else {
 if (enqueued packet size of the overflow logical buffer size ≧

its maximum limit of an arrival packet)
 {
 To drop an arrival packet immediately
 } else {
 To generate a random probability based on a uniform distribution

if (the random probability ≦

the packet enqueueing probability)
 {
 To enqueue an arrival packet into the overflow logical

queueing buffer
} else {

 To drop an arrival packet
}
 }
} else { /*no space available in queueing buffer */
 To drop an arrival packet immediately
 }

Figure 16. The pseudo code of a RED-based packet enqueueing process with the OQB
allocation

33

4.3. A WRR Packet Dequeuing Module

A packet dequeuing module in a queuing scheme performs packets

forwarding from its queuing buffer to packets’ next hop gateways. Since

all enqueued packets are stored in several logical queuing buffers no

matter with the DQB allocation or the OQB allocation. Therefore, for

supporting a DiffServ in packet deuqueuing process and avoiding packet

dequeuing starvation, especially for packets with a lower transmission

priority, a WRR idea is applied to propose a sequential-WRR (SWRR)

dequeuing scheme in this packet dequeuing module [43]. A diagram of

the SWRR dequeuing scheme with the DQB allocation is shown Figure

17 and a diagram of the SWRR dequeuing scheme with the OQB

allocation is shown Figure 18.

In the SWRR scheme, each logical queuing buffer depends on its

corresponding packet transmission priority to receive its deserved packet

dequeuing weight in a weighted packet dequeuing round robin cycle. In

a weighted packet dequeuing round robin cycle, each logical queuing

depends on its deserved dequeuing weight to receive packet dequeuing

turns in an assigned dequeuing sequence. One packet will be dequeued

Figure 17. A diagram of the SWRR dequeuing module with the DQB allocation

34

from one logical queuing buffer when the logical queueing buffer

receives a packet dequeuing turn. A dequeuing weight allotment bases

on packet transmission priorities of logical queuing buffers and a number

of logical queuing buffers to allot a corresponding packet dequeuing

turns to each logical queuing buffer. Since the DQB allocation and the

OQB allocation have different logical queuing buffers; a logical queuing

buffer with the same packet transmission priority will receive different

packet dequeuing turns in these two queuing buffer allocations. In the

SWRR scheme, at least one packet, possibly more, will be dequeued

from each logical queuing buffer in a packet dequeuing cycle. Usually,

packets with a high transmission priority are more easily dequeued than

packets with a low transmission priority. The packet dequeuing turns

received by logical queuing buffers in the DQB allocation and the OQB

allocation are shown in Table 3.

Figure 18. A diagram of the SWRR dequeuing module with the OQB allocation

35

Table 3. Packet dequeuing turns received by all logical queuing buffers with the
DQB / OQB allocations in a packet dequeuing cycle

Logical queuing
 buffer

Packet dequeuing turn number
the DQB allocation the OQB allocation

Conversational 4 5
Streaming 3 4
Interactive 2 2

Background 1 1
Overflow 0 3

Dequeueing cycle 10 15

The SWRR depends on a congruence equation to handle a

dequeuing turn switching a process among all logical queuing buffers.

Two variables, a packet dequeuing counter and a packet dequeuinging

cycle, are the core parameters in the congruence equation. The packet

dequeuing counter increments when one packet dequeued from one

logical queuing buffer. The packet dequeuinging cycle is the sum of the

assigned dequeuing turns received by all logical queuing buffers in a

weighted packet dequeuing round robin cycle. Then, with a mapping

relationship between a congruence which is calculated by the congruent

equation and a packet dequeuing sequence among logical queuing

buffers, dequeuing turns will be switched among all logical queuing

buffer dispersedly and differential dequeuing turns can be received by

logical queuing buffers.

 cycle dequeueing packet mod counter dequeueing packet
congruence a =

 … (2)

total logical queueing buffer number

i 1

packet dequeueing cycle

packet dequeueing turns i
=

=

∑ 　 ….(3)

In additions, as one logical queueing buffer receives a packet

dequeueing turn and there is no packet in the logical queueing buffer to

be dequeued; a packet dequeueing turn transfer (PDTT) procedure will

be invoked by the SWRR to accelerate packets dequeueing process. The

36

PDTT procedure will try to find one logical queueing buffer which has a

higher packet transmission priority and has one packet can be dequeued.

If one logical queueing buffer is found; it will receive a packet

dequeueing turn which is transferred from another logical queueing

buffer. With the PDTT procedure, one logical queueing buffer with a

higher packet transmission priority always can receive a transferred

packet dequeueing turn to dequeue one packet from itself. Thus, Figure

19 shows the flowchart of PDTT procedure which will be enhanced a

differentiated packet dequeueing behavior. A flowchart of the proposed

weighted round robin packet dequeueing module is shown in Figure 20.

Figure 19. Flowchart of dequeueing turn transfer PDTT procedure

37

Figure 20. Flowchart of the WRR packet dequeueing module

38

Chapter 5. Simulation and Results Analysis

The Network Simulator – ns2 is a discrete event simulator targeted

at network research [52]. Ns2 provides substantial support for simulation

of TCP/UDP, routing, and multicast over wired and wireless (local,

mobile and satellite) networks. In this study, the ns2 (version 2.26) is

used as the simulation platform in this study.

The proposed queueing scheme with the DQB allocation or with the

OQB allocation is implemented in the ns2 with C++; moreover, UMTS

applications are coded with C++ and integrated in the ns2, too. Several

simulation scenarios are coded with TCL and simulated to observe

packet forwarding performance of the proposed queueing scheme with

the DQB allocation or with the OQB allocation. Moreover, with the

simulation results, packet forwarding performance with the DQB

allocation or with the OQB allocation is compared and analyzed.

5.1. Simulation Topology and Parameters

For analyzing simulation data more concisely, a simplified topology

is used to simulate a UMTS core network and simplified UMTS traffic is

simulated over four pairs of UMTS connections; each connection

represents one type of UMTS traffic. The simulation topology is shown

in Figure 21. The backbone bandwidth over a UMTS core network is

2MB and the bandwidth requirement of each UMTS connection is 1MB.

Several dimensions of simulation parameters, four types of UMTS

traffic, packet size, backbone bandwidth, bandwidth requirements, and

traffic transmission patterns, are used to construct various simulation

scenarios. Moreover, since the DQB allocation and the OQB allocation

are a RED-based queueing buffer allocation; both of them require four

groups of RED-alike parameters to handle four types of arrival UMTS

packets in a packet enqueueing process. Due to a differentiated packet

transmission behavior is required among four types of UMTS traffic;

39

therefore, the settings of these four groups of RED-alike parameters base

on their corresponding packet transmission priorities. Finally, two traffic

transmission patterns, continuous and intermittent, will be simulated.

The settings of these parameters are listed in Table 4.

Figure 21. A diagram of the simulation topology

Table 4. A summary of simulation parameters

Parameter dimensions Setting values

Four types of UMTS traffic CON, STR, INT, BAC
Packet size 100 bytes, 500 bytes, 1000 bytes

Two-phase queueing buffer
allocation scheme settings

 GBS MIN MAX PEP
CON 8 8 40 1.00
STR 7 7 38 0.95
INT 5 5 35 0.85
BAC 2 2 31 0.70

UMTS traffic bandwidth
requirement

1.0MB
Backbone bandwidth in the

UMTS core network
2.0MB

Queueing buffer allocation DQB, OQB
Traffic transmission pattern Continuous, Intermittent

Simulation time 30 seconds
Legends:
CON: Conversational traffic, STR: Streaming traffic, INT : Interactive traffic,
BAC: Background traffic, GBS: Guaranteed buffer size,
PEP: packet enqueueing probability, MIN : minimum limit, MAX : maximum limit

40

5.2. Simulation Results and Analysis

According to the traffic transmission patterns, simulation scenarios

can be divided into two parts, continuous and intermittent. Moreover, for

having a packet forwarding performance comparison between the DQB

allocation and the OQB allocation, the others parameters settings are the

same in these two parts simulations and simulation results in the same

traffic transmission pattern are collected, compared, and analyzed. The

simulation results are described in the following subsections.

5.2.1. UMTS Packet Transmission in a Continuous Traffic
Pattern

In this section, all scenarios bases on the parameters settings shown

in Table 4 and all UMTS packets are transmitted continuously. These

scenarios intend to observe the UMTS packet forwarding performance

when the backbone bandwidth is insufficient and four types of UMTS

traffic keep transmitting continuously. The simulation results about

UMTS packet enqueued and dequeued performance information are

shown in Table 5 and Figure 22.

By examining Table 5 and Figure 22, it is obvious that a

differentiated packet forwarding behavior is supported by the proposed

queueing scheme with the DQB / OQB allocations; each type of UMTS

traffic receives its packet forwarding performance corresponding to its

packet transmission priority. Conversational and OQB allocations; each

type of UMTS traffic receives its packet forwarding performance

corresponding to its packet transmission priority. Conversational and

streaming applications receive better packet forwarding performance

than interactive and background applications. Comparing packet

dequeueing volumes reached by four types of UMTS traffic with the two

allocations, we can find that conversational traffic receives the same

packet dequeueing volumes with both the DQB and OQB allocations;

streaming traffic receives approximately the same packet dequeueing

41

volumes with both the DQB and OQB allocations; interactive traffic

receives better dequeueing volumes with the DQB allocation;

background traffic receives better dequeueing volumes with the OQB

allocation. Moreover, by examining the simulation trace files in details,

there is packet starvation for background traffic with the DQB allocation;

only a few background packets can be forwarded at the beginning of

packet dequeueing process and most of background packets are dropped

during a packet dequeueing process.

Table 5. A packet enqueueing / dequeueing statistic of UMTS traffic in a continuous
transmission pattern

UT PS

Arrival
packets

Enqueued
packets

Dequeued
packets

Dropped
packets

Packet
dequeued
ratio (%)

Packet
dropped
ratio (%)

DQB OQB DQB OQB DQB OQB DQB OQB DQB OQB DQB OQB

CON

100 37500 37500 37500 37500 37500 37500 0 0 100 100 0 0

500 7500 7500 7500 7500 7500 7500 0 0 100 100 0 0

1000 3751 3751 3751 3751 3751 3751 0 0 100 100 0 0

STR

100 37500 37500 22507 22511 22507 22511 14993 14989 60.02 60.03 39.98 39.97

500 7500 7500 4507 4513 4507 4513 2993 2987 60.09 60.17 39.91 39.83

1000 3751 3751 2257 2260 2257 2260 1494 1491 60.17 60.25 39.83 39.75

INT

100 37500 37500 15005 10015 15005 10015 22495 27485 40.01 26.71 59.99 73.29

500 7500 7500 3005 2014 3005 2014 4495 5486 40.07 26.85 59.93 73.15

1000 3751 3751 1505 1013 1505 1013 2246 2738 40.12 27.01 59.88 72.99

BAC

100 37500 37500 27 5012 27 5012 37473 32488 0.072 13.37 99.93 86.63

500 7500 7500 27 1011 27 1011 7473 6489 0.36 13.48 99.64 86.52

1000 3751 3751 27 514 27 514 3724 3237 0.72 13.70 99.28 86.30

Legends:
UT: UMTS traffic, PS: packet size,
CON: conversational, STR: streaming, INT : interactive, BAC: background

Examining Figure 22, it can be found that there exists a little

difference in packet dequeueing volume with these two allocations when

UMTS packets are transmitted in different size. Four types of UMTS

traffic can receive better packet dequeueing volume separately when

UMTS traffic is transmitted in a larger packet size, especially for UMTS

42

traffic with lower packet transmission priorities. Further comparing total

packet dequeueing throughputs supported by these two allocations, only

a very small difference exists in the total packet dequeueing throughputs.

The DQB allocation outperforms the OQB allocation; it becomes more

obvious when UMTS traffic is transmitted in a large packet size.

Legends:
CON: conversational, STR: streaming, INT : interactive, BAC: background,
DQB-100: packet size = 100 bytes and allocation = DQB,
DQB-500: packet size = 500 bytes and allocation = DQB,
DQB-1000: packet size = 1000 bytes and allocation = DQB,
OQB-100: packet size = 100 bytes and allocation = OQB,
OQB-500: packet size = 500 bytes and allocation = OQB,
OQB-1000: packet size = 1000 bytes and allocation = OQB

Figure 22. A statistics of packet dequeueing volume in a continuous transmission pattern

43

Table 6. An average packet delay statistic of UMTS traffic in a continuous
transmission pattern

UMTS

Traffic
Conversational Streaming Interactive Background

Allocations DQB OQB DQB OQB DQB OQB DQB OQB

PS

(B)

100 0.8006 0.8005 1.3333 1.3334 2.0 2.9968 4.0 5.9890

500 4.0147 4.0112 6.6667 6.6640 10.0 14.9285 76.9231 29.7564

1000 8.0587 8.0437 13.3333 13.3351 20.0 29.7470 153.8462 58.6901
Legends:
Unit : ms, PS : packet size, B : bytes

Table 7. An average packet jitter statistic of UMTS traffic in a continuous
transmission pattern

UMTS
Traffic

Conversational Streaming Interactive Background

Allocation DQB OQB DQB OQB DQB OQB DQB OQB

PS
(B)

100 0.5654 0.117 266.6607 364.6541 800.0 401.2484 0.0 5.0299

500 14.1371 2.934 1333.1853 1829.306 4000.0 2035.785 59200.0 132.8048

1000 57.22 11.7365 2666.0754 3638.6182 8000.0 4185.9545 118400.0 648.43775

Legends:
Unit : μs, PS : packet size, B : bytes

Table 6 and Table 7 show average packet delays and average packet

jitters received by four types of UMTS traffic with the two buffer

allocations in a continuous transmission pattern. Examining Table 6, we

can find that average packet delays received by UMTS traffic are

corresponding to their packet transmission priority; conversational and

streaming traffic receive better average packet delays than interactive

and background traffic. Looking over average packet delays received by

four types of UMTS traffic, conversational and streaming traffic receive

close average packet delays with both the DQB and OQB allocations;

interactive traffic receives better average packet delays with the DQB

allocation; background traffic receives better average packet delays with

the OQB allocation when transmitted packets are larger. Viewing

average packet jitters received by four types of UMTS traffic,

conversational and interactive traffic receive better average packet jitters

with the OQB allocation; streaming traffic receives better average packet

44

jitters with the DQB allocation; and, background traffic receives better

average packet jitters with the OQB allocation when transmitted packets

are larger. Moreover, we also find that average packet jitter of

background traffic is 0μs with the DQB allocation when transmitted

packet size is 100 bytes; it seems an unusual simulation result. Further

examining the simulation trace data that all UMTS packets are

transmitted in 100 bytes , we can find that background UMTS packets

can be transmitted stably before a background packet forwarding

starvation occurs (i.e., bandwidth is available for background packets to

forward to their next hop gateway). The background packet forwarding

starvation should be the reason why the average packet jitter of

background traffic is 0μs; it is a special case about average packet

jitters of UMTS traffic.

After examining Table 6 and Table 7, except for background traffic,

an average packet delay / jitter received by one type of UMTS traffic

depends on its corresponding packet size; UMTS traffic receives a

smaller average packet delay / jitter when transmitted packet is smaller;

on the contrary, UMTS traffic receives a larger average packet delay /

jitter when transmitted packet is larger. For most of UMTS traffic, there

exists a ratio relationship between average packet delay / jitter and

packet size with the DQB / OQB allocations; this ratio relationship can

be expressed as the following equations.

,

,

ut large
ut, packet delay

ut small

ut,large

ut,small

packet size
A ratio

packet size
an average packet delay

an average packet delay

≈ ≈

 …………………(4)

,

,

ut large
ut, packet jitter

ut small

ut,large

ut,small

packet size
A ratio

packet size
an average packet delay

an average packet delay

≈ ≈

 …………………(5)

where ut = conversational traffic, streaming traffic, and interactive traffic

45

Moreover, after looking over the simulation trace files in details, we

find that there exists a disorder packet transmission issue for UMTS

traffic with the OQB allocation; there is no disorder packet transmission

for UMTS traffic with the DQB allocation. The order of severity about

the disorder packet transmission among UMTS traffic depend on the

packet transmission priority of each type of UMTS traffic; UMTS traffic

with a higher packet transmission priority might transmit its packets

more disorderly than UMTS traffic with a lower packet transmission

priority. A statistic of disorder packet transmission among UMTS traffic

with the OQB allocation in a continuous traffic pattern is shown in Table

8.

Table 8. A statistic of disorder packet transmission among UMTS traffic with the
OQB allocation in a continuous traffic pattern

UMTS
Application

Conversational Streaming Interactive Background

Packet size 100 500 1000 100 500 1000 100 500 1000 100 500 1000
Number of DPT 12484 2484 1234 2503 506 253 8 6 6 5 5 6

Percentage of
DPT
 (%)

33.29 33.12 32.91 6.68 6.75 6.75 0.02 0.08 0.16 0.013 0.07 0.16

Legends:
DPT: disorder packet transmission

At last, a simple packet forwarding performance weight measure is

adopted to evaluate four types of UMTS traffic’s packet forwarding

performance with the two allocations. Four evaluation items, dequeued

packets, dropped packets, average packet delays, and average packet

jitters which are corresponding to QoS features, are used in the weight

measure. Each type of UMTS traffic depends on its packet forwarding

performance ranking in each evaluation item to receive its corresponding

weight in the weight measure. A total packet forwarding performance

ranking assignment depends on the sum of weights in the four evaluation

items; one type of UMTS traffic will receive a better total packet

forwarding performance ranking only when it receive a larger weight

46

sum. Since three kinds of packet sizes are used to understand packet

forwarding performance of four types of UMTS traffic in the scenarios;

the weight measure also bases on the packet sizes to evaluate the packet

forwarding performance received by UMTS traffic. A statistic of packet

forwarding performance weights and rankings about four types of UMTS

traffic in a continuous traffic pattern is listed in Table 9.

Table 9. A ranking weight statistic of UMTS application with both of the DQB
allocation and the OQB allocation in a continuous traffic pattern

Allocation DQB OQB
PS EI CON STR INT BAC CON STR INT BAC

100
bytes

DP 4 3 2 1 4 3 2 1
DRP 4 3 2 1 4 3 2 1
APD 4 3 2 1 4 3 2 1
APJ 3 2 1 4 4 2 1 3
WS 15 11 7 7 15 11 7 6

TPFPR 1 2 3 3 1 2 3 4

500
bytes

DP 4 3 2 1 4 3 2 1
DRP 4 3 2 1 4 3 2 1
APD 4 3 2 1 4 3 2 1
APJ 4 3 2 1 4 2 1 3
WS 16 12 8 4 16 11 7 6

TPFPR 1 2 3 4 1 2 3 4

1000
bytes

DP 4 3 2 1 4 3 2 1
DRP 4 3 2 1 4 3 2 1
APD 4 3 2 1 4 3 2 1
APJ 4 3 2 1 4 2 1 3
WS 16 12 8 4 16 11 7 6

TPFPR 1 2 3 4 1 2 3 4
Legends:
CON: conversational, STR: streaming. INT : interactive, BAC: background,
PS: packet size, EI : evaluation item, DP: dequeued packets, DRP: dropped packets,
WS: weight sum, APD: average packet delay, APJ: average packet jitter,
TPFPR: total packet forwarding performance ranking

Examining Table 9, we can find that four types of UMTS traffic

depend on their packet transmission priorities to receive their deserved

packet forwarding performance with the DQB and OQB allocations; no

matter what kind of packet sizes are transmitted. A differentiated packet

47

forwarding behavior can be supported by the proposed queuing scheme

with the two allocations in a continuous transmission traffic pattern.

5.2.2. UMTS Packet Transmission in an Intermittent Traffic
Pattern

Actually, it is impossible for all UMTS traffic to be transmitted in a

continuous traffic pattern all the time. Four types of UMTS traffic would

be transmitted intermittently and it presents an intermittent traffic pattern

during one specific period. This scenario tries to observe forwarding

performance among UMTS traffic supported by the proposed queuing

scheme with both the DQB allocation and the OQB allocation when the

bandwidth requirement of all UMTS traffic exceeds the backbone

bandwidth over a UMTS core network and four types of UMTS traffic is

transmitted intermittently. The parameter settings in this scenario also

bases on Table 4. The statistics of enqueued packets and dequeued

packets are listed in Table 10 and rates of UMTS packets dequeuing are

shown in Figure 23.

Examining Table 10 and Figure 23, we can find that four types of

UMTS traffic depend on their packet transmission priorities to receive

their deserved dequeuing packet rates with the DQB and OQB

allocations; differentiated packet forwarding rates can be supported by

the proposed queuing scheme with the two allocations in an intermittent

transmission pattern. Comparing packet dequeuing rates of four types of

UMTS traffic, conversational traffic, streaming, and background traffic

receive better performance with the OQB allocation; interactive traffic

receives better performance with the DQB allocation. Moreover, we also

find that packet forwarding starvation of background traffic in a

continuous transmission pattern can be released in an intermittent

transmission pattern with both the DQB allocation and the OQB

allocation.

48

Table 10. A packet enqueuing / dequeuing statistic of UMTS traffic in an intermittent
transmission pattern

UT PS
Arrival
packets

Enqueued
packets

Dequeued
packets

Dropped
packets

Packet
dequeued
ratio (%)

Packet
dropped
ratio (%)

TT
(second)

DQB OQB DQB OQB DQB OQB DQB OQB DQB OQB DQB OQB

C
O
N

100 23314 23314 23313 23314 23313 23314 1 0 100 100 0 0

18.65 500 4664 4664 4590 4664 4590 4664 74 0 98.41 100 1.59 0

1000 2334 2334 2284 2322 2284 2322 50 12 97.86 99.49 2.14 0.51

S
T
R

100 24939 24939 17834 17916 17834 17916 7105 7023 71.51 71.84 28.49 28.16

19.95 500 4989 4989 3580 3606 3580 3606 1409 1383 71.76 72.28 28.24 27.72

1000 2497 2497 1794 1832 1794 1832 703 665 71.85 73.37 28.15 26.63

I
N
T

100 27314 27314 15160 13584 15160 13584 12154 13730 55.50 49.73 44.50 50.27

21.85 500 5464 5464 3053 2723 3053 2723 2411 2741 55.87 49.84 44.13 50.16

1000 2733 2733 1519 1379 1519 1379 1214 1354 55.58 50.46 44.42 49.54

B
A
C

100 37500 37500 13360 14851 13360 14851 24140 22649 35.63 39.60 64.37 60.40

30.0 500 7500 7500 2760 2996 2760 2996 4740 4504 36.80 39.95 63.20 60.05

1000 3751 3751 1421 1506 1421 1506 2330 2245 37.88 40.15 62.12 59.85

Legends:
UT: UMTS traffic, PS: packet size, TT : transmission time
CON: conversational, STR: streaming. INT : interactive, BAC: background

Table 11 and Table 12 show average packet delays and average

packet jitters received by four types of UMTS traffic with the two

dynamic buffer allocations in an intermittent transmission pattern.

Looking over Table 11, we can find that average packet delays received

by four types of UMTS traffic are corresponding to their packet

transmission priorities with the two dynamic buffer allocations.

Moreover, we also find that the conversational and streaming traffic

receive better average packet delay with the OQB allocation and the

interactive traffic receives better average packet delay with the DQB

allocation in an intermittent transmission pattern. Examining Table12,

we can find that the average packet jitters received by four types of

UMTS traffic seem not corresponding to their packet transmission

priorities with both the DQB and OQB allocations in an intermittent

transmission pattern; the conversational traffic receives the best average

packet jitters and the streaming traffic receives better average packet

49

jitters than the interactive traffic. And, except for the streaming traffic,

the conversational, interactive, and background traffic can receive better

average packet jitters with the OQB allocation in an intermittent packet

transmission patter.

Legends:
CON: conversational, STR: streaming, INT : interactive, BAC: background,
DQB-100: packet size = 100 bytes and allocation = DQB,
DQB-500: packet size = 500 bytes and allocation = DQB,
DQB-1000: packet size = 1000 bytes and allocation = DQB,
OQB-100: packet size = 100 bytes and allocation = OQB,
OQB-500: packet size = 500 bytes and allocation = OQB,
OQB-1000: packet size = 1000 bytes and allocation = OQB

Examining Table 11 and Table 12, we find that there exists a ratio

relationship between average packet delay and packet size with both the

DQB and OQB allocations in an intermittent transmission pattern; this

ratio relationship is similar to equation 4; we also find that UMTS traffic

with a smaller packet size can receive better average packet jitter.

Figure 23. A statistics of packet dequeuing rate in an intermittent transmission pattern

50

Table 11. An average packet delay statistic of UMTS traffic in an intermittent
transmission pattern

UMTS
Traffic

Conversational Streaming Interactive Background

allocations DQB OQB DQB OQB DQB OQB DQB OQB

PS
(B)

100 0.8045 0.8045 1.1212 1.1171 1.4464 1.6182 2.0290 2.0207
500 4.1758 4.1116 5.6320 5.6263 7.2857 8.2523 9.9790 10.0254
1000 8.6228 8.4625 11.3721 11.2713 14.9069 16.6284 21.1606 19.9867

Legends:
Unit : ms, PS : packet size, B : bytes

Table 12. An average packet jitter statistic of UMTS traffic in an intermittent
transmission pattern

UMTS
traffic

conversational streaming interactive background

allocatio
ns

DQB OQB DQB OQB DQB OQB DQB OQB

PS
(B)

100 4.4626 2.3513 166.3637 224.9944 496.8321 251.002 1390.7471 63.2231

500 175.0327 51.9759 847.7044 1138.4102 2536.6174 1523.3886 4020.3046 715.4309

1000 627.4165 247.1910 1820.8287 2333.3333 5310.3905 3422.3195 5085.2713 2114.3617

Legends:
Unit : μs, PS : packet size, B : bytes

Table 13. A statistic of disorder packet transmission among UMTS traffic with the
OQB allocation in an intermittent traffic pattern

UMTS
Application

Conversational Streaming Interactive Background

Packet size 100 500 1000 100 500 1000 100 500 1000 100 500 1000
Number of

DPT
5768 1114 521 1564 319 169 2018 424 214 364 198 161

Percentage
of DPT (%)

24.74 23.9 22.33 6.272 6.4 6.78 7.39 7.76 7.83 0.971 2.64 4.3

Legends:
DPT: disorder packet transmission

In additions, the disorder packet transmission issue for UMTS

traffic still exists with the OQB allocation in an intermittent transmission

pattern. A statistic of disorder packet transmission among UMTS traffic

with the OQB allocation in an intermittent traffic pattern is shown in

Table 13 .The disorder packet transmission of the conversational traffic

is the most serious and the disorder packet transmission of the

51

background traffic is the least serious. With the OQB allocation, packet

transmission priority might impact order of severity about the disorder

packet transmission among UMTS traffic in an intermittent transmission

pattern.

Table 14. A ranking weight statistic of UMTS application with both of the
DQB/OQB allocation in an intermittent traffic pattern

Allocation DQB OQB

PS EI CON STR INT BAC
CO
N

STR INT BAC

100
bytes

DPR 4 3 2 1 4 3 2 1
DRPR 4 3 2 1 4 3 2 1
APD 4 3 2 1 4 3 2 1
APJ 4 3 2 1 4 2 1 3
WS 16 12 8 4 16 11 7 6

TPFPR 1 2 3 3 1 2 3 4

500
bytes

DPR 4 3 2 1 4 3 2 1
DRPR 4 3 2 1 4 3 2 1
APD 4 3 2 1 4 3 2 1
APJ 4 3 2 1 4 2 1 3
WS 16 12 8 4 16 11 7 6

TPFPR 1 2 3 4 1 2 3 4

1000
bytes

DPR 4 3 2 1 4 3 2 1
DRPR 4 3 2 1 4 3 2 1
APD 4 3 2 1 4 3 2 1
APJ 4 3 1 2 4 2 1 3
WS 16 12 7 5 16 11 7 6

TPFPR 1 2 3 4 1 2 3 4
Legends:
CON: conversational, STR: streaming. INT : interactive, BAC: background,
PS: packet size, EI : evaluation item, DPR: dequeued packet ratio,
DRPR: dropped packet ratio, APD: average packet delay, WS: weight sum,
APJ: average packet jitter, TPFPR: total packet forwarding performance
ranking

Finally, the packet forwarding performance weight measure is used

evaluate four types of UMTS traffic’s packet forwarding performance

with the two allocations in an intermittent packet transmission pattern. A

statistic of packet forwarding performance weights and rankings about

52

four types of UMTS traffic in an intermittent traffic pattern is listed in

Table 14.

Examining the total packet forwarding performance ranking shown

in Table 14, we can find that four types of UMTS traffic can receive

their deserved packet forwarding performance with the DQB and OQB

allocations; no matter what kind of packet sizes are transmitted. A

differentiated packet forwarding behavior can be supported by the

proposed queuing scheme with the two allocations in an intermittent

transmission traffic pattern.

5.2.3. Summary

After examining the simulation results, several summaries about the

proposed queuing scheme with the two buffer allocations are received

and described as the fellows.

� The proposed queuing scheme with both the DQB and OQB

allocations can support a differentiated packet forwarding behavior

for four types of UMTS traffic either in a continuous transmission

pattern or an intermittent transmission pattern; four types of UMTS

traffic can depend on their packet transmission priorities to receive

their deserved packet forwarding performance.

� Comparing the packet forwarding performance received by four

types of UMTS traffic with both the DQB and OQB allocations, we

can find that the dequeued / dropped packet volume of UMTS

packets is almost the same in a continuous transmission pattern and

the dequeued / dropped packet volume of UMTS traffic is very close

in an intermittent transmission pattern. We also find that the

conversational and streaming traffic receives close average packet

delays with both the DQB and OQB allocations and it is easy for

UMTS traffic to receive better average packet jitters with the OQB

allocation either in a continuous transmission pattern or in an

53

intermittent transmission pattern.

� After examining the packet forwarding performance of four types of

UMTS traffic and packet size, we find that there exists a close

relation among them. UMTS traffic receives more dequeuing packet

volume when transmitted packet size is large; however, UMTS

traffic receives larger average packet delays and jitters. On the

contrary, UMTS traffic receives less dequeuing packet volume when

transmitted packet size is small; but, UMTS traffic receives smaller

average packet delays and jitters.

� Finally, although the proposed queuing scheme with both the DQB

and OQB allocations can forward four types of UMTS packets in a

DiffServ way; but, for either the DQB allocation or the OQB

allocation, some issues need be watched. For the DQB allocation, a

packet forwarding starvation received by the background application

in the continuous traffic pattern; but, the packet forwarding

starvation among UMTS traffic with lower packet transmission

priorities might be released when UMTS packets are transmitted in

an intermittent transmission pattern. For the OQB allocation,

disorder packet transmissions occur among UMTS traffic both in a

continuous transmission pattern and an intermittent transmission

pattern. The overflow logical queuing buffer operation in the SWRR

scheme should be the reason why UMTS packets are transmitted

disorderly. In spite of disorder packet transmissions in an IP layer

can be recovered in a transport layer; the disorder packet

transmission still is an issue for the proposed queuing scheme to

refine the OQB allocation.

54

Chapter 6. Conclusions

As a UMTS system enters an all-IP stage, a packet switching

scheme is used to forward packets from all UMTS applications within a

UMTS core network. Since four types of UMTS traffic defined by the

3GPP are supported by the UMTS; each type of UMTS traffic has its

QoS features and requirements. However, bandwidth resource of a

UMTS core network is limited; it might be insufficient for UMTS

applications to receive their required QoS. For satisfying most of UMTS

applications’ QoS requirements, a queuing scheme should be adopted to

handle UMTS packet forwarding process in a DiffServ way within a

gateway over a UMTS core network.

This study proposes a priority-based queuing scheme to support

differentiated packet forwarding behaviors among UMTS traffic within a

UMTS core network. In the proposed queuing scheme, two queuing

buffer allocations, the DQB and OQB, are adopted to handle packet

enqueuing and dequeuing processes. These two allocations base on QoS

features of UMTS traffic to divide a physical queuing buffer into several

logical queuing buffers; each logical queuing buffer is used to enqueue

arrival UMTS packets. In the DQB allocation, four logical queuing

buffers are corresponding to four types of UMTS traffic. And, each

logical queuing buffer can be subdivided into a guaranteed buffer and a

dynamic buffer; a guaranteed buffer is one type of guaranteed buffers

and a dynamic buffer is one type of shared buffers. In the OQB

allocation, five logical queuing buffers are used; four logical queuing

buffers are guaranteed buffers which are corresponding to four types of

UMTS traffic and one overflow logical queuing buffer is a shared buffer.

Usually, a logical queuing buffer with higher packet transmission

priority can allow to enqueue more packets be enqueued with the DQB

and OQB allocations.

55

In the proposed queuing scheme, a priority-based packet enqueuing

module is adopted to process an arrival packet enqueuing job with either

the DQB allocation or the OQB allocation. Since two types of queuing

buffers, guaranteed buffer and shared buffer, are used to enqueue arrival

packets; FIFO scheme is used in a guaranteed buffer and RED-based

scheme is used in a shared buffer. The priority-based packet enqueuing

module bases on packet transmission priorities of four types of UMTS

traffic to assign parameter settings to logical queuing buffers in a

differentiated way. With the differentiated parameter settings, the

proposed packet enqueuing module can support a differentiated packet

enqueuing behavior among UMTS traffic. Moreover, a WRR-based

packet dequeuing module is used to manipulate a packet dequeuing

process among logical queuing buffers. The SWRR scheme is proposed

in the packet dequeuing module; it bases on packet transmission

priorities of UMTS packets which are enqueued in logical queuing

buffers to assign differentiated packet dequeuing turns to logical queuing

buffers. According to received packet dequeuing turns, it is easier for the

SWRR scheme to dequeue UMTS packets with higher packet

transmission priorities from logical queuing buffers. A differentiated

packet dequeuing process can be supported by the SWRR scheme.

In this study, several C++ programs and TCL scripts are coded and

implemented in the ns2 to simulate several scenarios. Two types of

scenarios, continuous and intermittent transmission patterns, are

simulated to understand packet forwarding performance of the proposed

queuing scheme with the DQB and OQB allocations. According to the

simulation results, we can find several important points. First, the

proposed queuing scheme can support four types of UMTS traffic to

receive their deserved packet forwarding performance either with the

DQB allocation or with the OQB allocation in both a continuous

transmission pattern and an intermittent transmission pattern. Secondly,

examining the simulation results, we can find that the overall packet

56

forwarding performance of UMTS traffic which is supported by the

proposed queuing scheme either with the DQB allocation or with the

OQB allocation is close. Different types of UMTS traffic receive better

packet forwarding performance either with the DQB allocation or with

the OQB allocation in different scenarios; neither the DQB allocation

nor with the OQB allocation can let four types of UMTS traffic receive

better packet forwarding performance in all scenarios. Thirdly, about the

two queuing buffer allocations, some issues need to be refined. For the

DQB allocation, UMTS traffic with the lowest packet transmission

priority might receive a packet forwarding starvation in a continuous

transmission pattern; but this issue seems not exist in an intermittent

transmission pattern. For the OQB allocation, disorder transmission

packets occur among four types of UMTS traffic in both a continuous

transmission pattern and an intermittent transmission pattern; this issue

results from the overflow logical queuing buffer operation in the SWRR

scheme.

57

References

1. UMTSWorld.com , 3G Tutorial, Overview of The Universal Mobile

Telecommunication System (draft), available at

http://www.umtsworld.com/technology/overview.htm, Jul. 2002.

2. 3GPP TS 23.101, General Universal Mobile Telecommunications

System (UMTS) architecture, V9.0.0, Dec. 2009.

3. 3GPP TR 23.922, Architecture for an All IP network, Oct. 1999.

4. UMTS Forum, Enabling UMTS Third Generation Services and

Applications (Report 11), available at

http://www.tik.ee.ethz.ch/~mobydick/related_work/umts-forum/umt

s-forum_report11.pdf, Oct. 2000.

5. Heikki Kaaranen, Ari Ahtiainen, Lauri Laitinen, Siammak Naghian

and Valtteri Niemi, UMTS Networks: Architecture, Mobility and

Services (2nd ed.), John Wiley & Sons, Inc., New Jersey, 2005.

6. 3GPP TS 23.002, Network Architecture, V8.3.0, Sep. 2008.

7. ETSI TS 123 002, Digital cellular telecommunications system

(Phase 2+); Universal Mobile. Telecommunications System (UMTS);

Network Architecture, V7.1.0, Mar. 2006.

8. Farshid Agharebparast and Victor C. M. Leung, QoS Support in the

UMTS/GPRS Backbone Network Using DiffServ, Proc. of IEEE

GLOBECOM, Nov. 2002.

9. Daniel Collins and Clint Smith, 3G Wireless Networks,

McGraw-Hill Professional, Sep. 18, 2001.

10. 3GPP, TS 23.207 v8.0.0, End-to-End QoS Concept and Architecture,

Dec. 2008.

11. Neal Seitz, ITU-T QoS standards for IP-based networks, IEEE

Communication Magazine, Vol. 41, No. 6, pp. 82-89, Jun. 2003.

12. Alan Clark, Packet loss Distributions and Packet loss Models, ITU-T

Contribution COM 12-D97-E, ITU, Telchemy Incorporated 2003.

13. Wenyu Jiang and Henning Schulzrinne, Modeling of Packet Loss

58

and Delay and their Effect on Real-Time Multimedia Service

Quality, In ACM International Workshop on Network and Operating

Systems Support for Digital Audio and Video (NOSSDAV), Chapel

Hill, North Carolina, Jun. 2000.

14. Thomas Pliakas, George Kormentzas and Charalabos Skianis,

Scalable Video Streaming Traffic Delivery in IP/UMTS Networking

Environments, Journal of Multimedia, Vol. 2, No. 2, pp. 37-46, Apr.

2007.

15. David J. Goodman and Robert A. Myers, Mobile Video Telephony:

for 3G Wireless Networks, McGraw-Hill Professional, Nov. 2004.

16. 3GPP TS 23.107 V6.4.0, QoS Concept and Architecture, Release 6,

Mar. 2006.

17. ETSI TS 122 105, V6.4.0, UMTS; Services and Service Capabilities,

available at http://www.etsi.org, Sep. 2005.

18. Robert Lloyd Evans, QoS in Integrated 3G Networks, Artech House,

New York, 2002.

19. Santiago Alvarez, QoS for IP/MPLS Networks, Cisco Press, July

2006.

20. Dimitrios Stiliadis and Anujan Varma, Efficient fair queueing

algorithm for packet-switched networks, IEEE/ACM Transactions

on Networking, Vol. 6, pp. 175-185, Apr. 1998.

21. IETF Differentiated Services (DiffServ) working group, available at:

http://www.ietf.org/html.charters/diffserv-charter.html

22. S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss,

An Architecture for Differentiated Services, IETF RFC 2475, Dec.

1998.

23. Paul P. White, RSVP and integrated services in the internet: A

tutorial, IEEE Communications Magazine, Vol. 35, No.5, pp.

100-106, May 1997.

24. Dovrolis Constantinos and Ramanathan Parameswaran, A case for

relative differentiated services and the proportional differentiation

59

model, IEEE Network, Vol. 13, pp. 26-34, Sep./Oct. 1999.

25. Tham Chen Khong, Yao Qi, and Jiang Yuming, Achieving

differentiated services through multi-class probabilistic priority

scheduling, Computer Networks, Vol.40, No. 4, pp. 577-593, 2002.

26. Y. Bernet, J. Binder, S. Blake, M. Carlson, S. Keshav, E. Davies, B.

Ohlman, D. Verma, Z. Wang and W. Weiss, A Framework for

Differentiated Service, Internet Draft, available at

http://tools.ietf.org/id/draft-ietf-diffserv-framework-01.txt, Oct.

1998.

27. Ikjun Yeom and A. L. Narasimha Reddy, Modeling TCP Behavior in

a Differentiated Services Network, IEEE/ACM Transactions on

Networking, pp. 31-46, Vol. 9, No. 1, Feb. 2001.

28. Van Jacobson, Kathleen Nichols and Kedar Poduri, An expedited

forwarding PHB. Request for Comments 2598, Internet Engineering

Task Force, Jun. 1999.

29. Dana Arash and Malekloo Ahmad, Performance Comparison

between Active and Passive Queue Management, IJCSI

International Journal of Computer Science Issues, Vol. 7, Issue 3,

No. 5, May 2010.

30. Bob Braden, David Clark, Jon Crowcroft, Bruce Davie, Steve

Deering, Deborah Estrin, Sally Floyd, Van Jacobson, Greg Minshall,

Craig Partridge, Larry Peterson, Kadangode Ramakrishnan, Scott

Shenker, John Wroclwski, and Lixia Zhang, Recommendations on

Queue Management and Congestion Avoidance in the Internet, IETF

RFC 2309, Apr. 1998.

31. Sally Floyd, References on RED (Random Early Detection) Queue

Management, available at http://www.icir.org/floyd/red.html

32. James Aweya, Michel Ouellette and Delfin Y. Montuno, A

multi-queue TCP window control scheme with dynamic buffer

allocation, Journal of Systems Architecture, Vol. 49, No. 7-9, pp.

369-385, Oct. 2003.

60

33. Sally Floyd, RED: discussions of setting parameters, available at

http://www.icir.org/floyd/REDparameters.txt, Nov. 1997.

34. Thomas Ziegler, Christof Brandauer and Serge Fdida, A Quantitative

Model for the Parameter Setting of RED with TCP Traffic , IWQoS,

LNCS 2092, Vol. 2092, pp. 202-216, 2001.

35. David Clark and Wenjia Fang, Explicit Allocation of Best Effort

Packet Delivery Service, IEEE/ACM Transactions on Networking,

Vol. 6, No. 4, pp. 362-373, Aug. 1998.

36. Dong Lin and Robert Morris, Dynamic of Random Early Detection,

In Proceedings of ACM SIGCOMM97, pp. 127-137, Cannes, France,

Sep. 14-18, 1997.

37. Jaiswal N.K., Priority Queue, Academic Press, Net York, 1968.

38. Eitan Altman and Tania Jiménez, Simulation analysis of RED with

short lived TCP connections, Computer Networks, Vol. 44, Issue 5,

pp. 631-641, Apr. 2004.

39. Mohamed Ashour and Tho Le-Ngoc, Priority queuing of long-range

dependent traffic, In Proceedings of the 2004 IEEE Global

Telecommunications Conference (GLOBECOM’04), Vol. 6, pp.

3025-3029, 2003.

40. Hoon Lee, Anatomy of delay performance for the strict priority

scheduling scheme in multi-service Internet, Computer

Communications, Vol. 29, No. 1, pp. 69-76, 1 Dec. 2005.

41. Chung G. Kang and Harry H. Tan, Queueing analysis of explicit

priority assignment buffer access scheme for ATM networks,

Computer Communications, Vol. 21, No. 11, pp. 996-1009, 10 Aug.

1998.

42. Takahiro Matsuda, Akira Nagata, and Miki Yamaoto, Performance

Analysis and Improvement of HighSpeed TCP with TailDrop/RED

Routers, IEICE Transactions on Communications, Vol.E88–B, No.6 ,

pp. 2495-2507, Jun. 2005.

43. Long Bao Le, Ekram Hossain and Attahiru Sule Alfa, Service

61

differentiation in multirate wireless networks with weighted

round-robin scheduling and ARQ-based error control, IEEE

Transactions on Communications, vol.54, No.2, pp.208–215, Feb.

2006.

44. Christoph Lindemann and Axel Thummler, Evaluating the GPRS

radio interface for different quality of service profiles, Proceeding

12th GI/ITG Fachtagung Kommunikation in Verteilten System, pp.

291-301, Hamburg, Germany, Feb. 2001.

45. Robert Braden, David Clark, and Scott Shenker, Integrated Services

in the Internet Architecture: an Overview, IETF RFC 1633, Jul.

1994.

46. Sally Floyd and Van Jacobson, Random Early Detection Gateways

for Congestion Avoidance, IEEE/ACM Transactions on Networking,

Vol 1, No. 4, pp. 397-413, Aug. 1993.

47. Fengyuan Rena, Chuang Lina and Bo Wei, A nonlinear control

theoretic analysis to TCP–RED system, Computer Networks, Vol. 49,

Issue 4, No.15, pp. 580-592, Nov. 2005.

48. Chait Hollot, Vishal Misra, Don Towsley and Wei-Bo Gong, A

control theoretic analysis of RED, IEEE Infocom’01, Anchorage,

Alaska, USA, 2001.

49. Juha Heinanen and Kalevi Kilkki, A fair buffer allocation scheme,

Computer Communications, Vol. 21, No. 3, pp. 220-226, 25 Mar.

1998

50. Gianluca Mazzini, Riccardo Rovatti and Gianluca Setti, A closed

from solution of Bernoullian two-classes priority queue, Computer

Communications, vol. 9, No. 3, pp. 264-266, 2005.

51. Xiao Yang, Performance analysis of priority schemes for IEEE

802.11 and IEEE 802.11e wireless LANs, IEEE Transactions on

Wireless Communications, Vol.4, No.4, pp. 1506-1515, 2005.

52. Steven McCanne and Sally Floyd, The Network Simulator – ns2,

available at: http://nsnam.isi.edu/nsnam/index.php/Main_Page

62

Appendix

63

Appendix A: The DQB Source Code

#include "umtspred-queue.h"
static class UmtsPredQueueClass : public TclClass
{
public:
 UmtsPredQueueClass() : TclClass("Queue/UmtsPredQueue") {}
 TclObject* create(int, const char*const*) {
 return (new UmtsPredQueue);
 }
} class_umts_priority_red_round_robin;

UmtsPredQueue::UmtsPredQueue()
{
 con_q_ = new PacketQueue;
 str_q_ = new PacketQueue;
 int_q_ = new PacketQueue;
 bac_q_ = new PacketQueue;
 pq_ = con_q_;
 con_enable_enque_ = false;
 str_enable_enque_ = false;
 int_enable_enque_ = false;
 bac_enable_enque_ = false;
 packet_deque_ctr_ = 0;
 umts_deq_turn_ = 0;
 phy_q_length_ = 0;
 con_enq_ctr_ = 0;
 str_enq_ctr_ = 0;
 int_enq_ctr_ = 0;
 bac_enq_ctr_ = 0;
 con_deq_ctr_ = 0;
 str_deq_ctr_ = 0;
 int_deq_ctr_ = 0;
 bac_deq_ctr_ = 0;
 con_dpq_ctr_ = 0;
 str_dpq_ctr_ = 0;
 int_dpq_ctr_ = 0;
 bac_dpq_ctr_ = 0;

 bind("con_queue_limit", &con_queue_limit_);
 bind("str_queue_limit", &str_queue_limit_);
 bind("int_queue_limit", &int_queue_limit_);
 bind("bac_queue_limit", &bac_queue_limit_);
 bind("c_enq_min", &c_enq_min_);
 bind("s_enq_min", &s_enq_min_);
 bind("i_enq_min", &i_enq_min_);
 bind("b_enq_min", &b_enq_min_);
 bind("c_enq_max", &c_enq_max_);
 bind("s_enq_max", &s_enq_max_);
 bind("i_enq_max", &i_enq_max_);
 bind("b_enq_max", &b_enq_max_);
 bind("con_redenque_prob", &con_redenque_prob_);
 bind("str_redenque_prob", &str_redenque_prob_);
 bind("int_redenque_prob", &int_redenque_prob_);
 bind("bac_redenque_prob", &bac_redenque_prob_);
}

void UmtsPredQueue::enque(Packet* p)
{
 hdr_ip* iph = hdr_ip::access(p);

 phy_q_length_ = con_q_ -> length() + str_q_ -> length() + int_q_ -> length() + bac_q_->length();
 switch (iph->prio_)
 {
 // If IPv6 priority = 15 (UMTS conversation traffic IP packet) then enqueue to con-queue
 case 15:

64

 {
 if (phy_q_length_ < qlim_)
 {
 if (con_q_->length() < con_queue_limit_)
 {
 con_enable_enque_ = true;
 } else {

 con_enable_enque_ =
overflow_pkt_enqueue_by_red(c_enq_min_,c_enq_max_,phy_q_length_,con_red
enque_prob_);

 }
 } else {
 con_enable_enque_ = false;
 }
 if (con_enable_enque_)
 {
 con_q_->enque(p);
 con_enq_ctr_++;
 } else {
 con_dpq_ctr_++;
 }
 break;
 }
 // If IPv6 priority = 13 (UMTS stream traffic IP packet) then enqueue to str-queue
 case 13:
 {
 if (phy_q_length_ < qlim_)
 {
 if (str_q_->length() < str_queue_limit_)
 {
 str_enable_enque_ = true;
 } else {

 str_enable_enque_ =
overflow_pkt_enqueue_by_red(s_enq_min_,s_enq_max_,phy_q_length_,str_redenqu
e_prob_);

 }
 } else {
 str_enable_enque_ = false;
 }
 if (str_enable_enque_)
 {
 str_q_->enque(p);
 str_enq_ctr_++;
 } else {
 str_dpq_ctr_++;
 }
 break;
 }
 // If IPv6 priority = 11 (UMTS interactive traffic IP packet) then enqueue to int-queue
 case 11:
 {
 if (phy_q_length_ < qlim_)
 {
 if (int_q_->length() < int_queue_limit_)
 {
 int_enable_enque_ = true;
 } else {

 int_enable_enque_ =
overflow_pkt_enqueue_by_red(i_enq_min_,i_enq_max_,phy_q_length_,int_reden
que_prob_);

 }
 } else {
 int_enable_enque_ = false;
 }
 if (int_enable_enque_)

65

 {
 int_q_->enque(p);
 int_enq_ctr_++;
 } else {
 int_dpq_ctr_++;
 }
 break;
 }
 // If IPv6 priority = 9 (UMTS background traffic IP packet) then enqueue to bac-queue
 case 9:
 {
 if (phy_q_length_ < qlim_)
 {
 if (bac_q_->length() < bac_queue_limit_)
 {
 bac_enable_enque_ = true;
 } else {

 bac_enable_enque_ =
overflow_pkt_enqueue_by_red(b_enq_min_,b_enq_max_,phy_q_length_,bac_red
enque_prob_);

 }
 } else {
 bac_enable_enque_ = false;
 }
 if (bac_enable_enque_)
 {
 bac_q_->enque(p);
 bac_enq_ctr_++;
 } else {
 bac_dpq_ctr_++;
 }
 break;
 }
 default:
 {

 printf("Not an UMTS traffic packet!! Be dropped by UmtsPred queue.\n");
 break;
 }
 }

}
unsigned long UmtsPredQueue::random_seed_by_system_time()
{
 struct timeval tv;
 struct timezone tz;
 unsigned long rng_seed;
/* to generate a seed of random generator by timer */
 if (gettimeofday(&tv, &tz) == 0)
 {
 rng_seed=tv.tv_usec;
 } else {
 printf("Not get timer information by gettimeofday !!!\n");
 rng_seed=0;
 }

 return rng_seed;

}

bool UmtsPredQueue::overflow_pkt_enqueue_by_red(int enq_min, int enq_max, int enq_pkt_num, double
redenque_prob)

{
 unsigned long rseed;
 double random_prob;

66

 if (enq_pkt_num >= enq_max)
 {
 return false;
 } else {
 if (enq_pkt_num < enq_min)
 {
 return true;
 } else {
 rseed=random_seed_by_system_time();
 srand(((int)rseed));
 random_prob=(double)(rand()/(RAND_MAX+1.0));
 if (random_prob <= redenque_prob)
 {
 return true;
 } else {
 return false;
 }
 }
 }

}

Packet* UmtsPredQueue::deque()
{
 Packet *p;
 bool deque_packet = false;

 umts_deq_turn_ = 0;
 switch (packet_deque_ctr_ % 10)
 {
 // to set dequeue turn to conversation traffic first if con_q_->length() //case (0, 3, 6, 9):
 case 0:
 {
 if (con_q_->length() > 0)
 {
 umts_deq_turn_ = 1;
 } else {
 if (str_q_->length() > 0)
 {
 umts_deq_turn_ = 2;
 } else {
 if (int_q_->length() > 0)
 {
 umts_deq_turn_ = 3;
 } else {
 if (bac_q_->length() > 0)
 {
 umts_deq_turn_ = 4;
 }
 }
 }
 }
 break;
 }
 case 3:
 {
 if (con_q_->length() > 0)
 {
 umts_deq_turn_ = 1;
 } else {
 if (str_q_->length() > 0)
 {
 umts_deq_turn_ = 2;
 } else {
 if (int_q_->length() > 0)

67

 {
 umts_deq_turn_ = 3;
 } else {
 if (bac_q_->length() > 0)
 {
 umts_deq_turn_ = 4;
 }
 }
 }
 }
 break;
 }
 case 6:
 {
 if (con_q_->length() > 0)
 {
 umts_deq_turn_ = 1;
 } else {
 if (str_q_->length() > 0)
 {
 umts_deq_turn_ = 2;
 } else {
 if (int_q_->length() > 0)
 {
 umts_deq_turn_ = 3;
 } else {
 if (bac_q_->length() > 0)
 {
 umts_deq_turn_ = 4;
 }
 }
 }
 }
 break;
 }
 case 9:
 {
 if (con_q_->length() > 0)
 {
 umts_deq_turn_ = 1;
 } else {
 if (str_q_->length() > 0)
 {
 umts_deq_turn_ = 2;
 } else {
 if (int_q_->length() > 0)
 {
 umts_deq_turn_ = 3;
 } else {
 if (bac_q_->length() > 0)
 {
 umts_deq_turn_ = 4;
 }
 }
 }
 }
 break;
 }
 // to set dequeue turn to stream traffic first if con_q_->length() //case (1, 4, 7):
 case 1:
 {
 if (str_q_->length() > 0)
 {
 umts_deq_turn_ = 2;
 } else {

68

 if (con_q_->length() > 0)
 {
 umts_deq_turn_ = 1;
 } else {
 if (int_q_->length() > 0)
 {
 umts_deq_turn_ = 3;
 } else {
 if (bac_q_->length() > 0)
 {
 umts_deq_turn_ = 4;
 }
 }
 }
 }
 break;
 }
 case 4:
 {
 if (str_q_->length() > 0)
 {
 umts_deq_turn_ = 2;
 } else {
 if (con_q_->length() > 0)
 {
 umts_deq_turn_ = 1;
 } else {
 if (int_q_->length() > 0)
 {
 umts_deq_turn_ = 3;
 } else {
 if (bac_q_->length() > 0)
 {
 umts_deq_turn_ = 4;
 }
 }
 }
 }
 break;
 }
 case 7:
 {
 if (str_q_->length() > 0)
 {
 umts_deq_turn_ = 2;
 } else {
 if (con_q_->length() > 0)
 {
 umts_deq_turn_ = 1;
 } else {
 if (int_q_->length() > 0)
 {
 umts_deq_turn_ = 3;
 } else {
 if (bac_q_->length() > 0)
 {
 umts_deq_turn_ = 4;
 }
 }
 }
 }
 break;
 }
 // to set dequeue turn to interactive traffic first if con_q_->length() //case (2, 8):
 case 2:

69

 {
 if (int_q_->length() > 0)
 {
 umts_deq_turn_ = 3;
 } else {
 if (con_q_->length() > 0)
 {
 umts_deq_turn_ = 1;
 } else {
 if (str_q_->length() > 0)
 {
 umts_deq_turn_ = 2;
 } else {
 if (bac_q_->length() > 0)
 {
 umts_deq_turn_ = 4;
 }
 }
 }
 }
 break;
 }
 case 8:
 {
 if (int_q_->length() > 0)
 {
 umts_deq_turn_ = 3;
 } else {
 if (con_q_->length() > 0)
 {
 umts_deq_turn_ = 1;
 } else {
 if (str_q_->length() > 0)
 {
 umts_deq_turn_ = 2;
 } else {
 if (bac_q_->length() > 0)
 {
 umts_deq_turn_ = 4;
 }
 }
 }
 }
 break;
 }
 // to set dequeue turn to background traffic first if con_q_->length() //case (5):
 case 5:
 {
 if (bac_q_->length() > 0)
 {
 umts_deq_turn_ = 4;
 } else {
 if (con_q_->length() > 0)
 {
 umts_deq_turn_ = 1;
 } else {
 if (str_q_->length() > 0)
 {
 umts_deq_turn_ = 2;
 } else {
 if (int_q_->length() > 0)
 {
 umts_deq_turn_ = 3;
 }
 }

70

 }
 }
 break;
 }
 default:
 {
 umts_deq_turn_ = 0;
 break;
 }
 }

 switch(umts_deq_turn_)
 {
 case 1:
 {
 p = con_q_->deque();
 deque_packet = true;
 con_deq_ctr_++;
 break;
 }
 case 2:
 {
 p = str_q_->deque();
 deque_packet = true;
 str_deq_ctr_++;
 break;
 }
 case 3:
 {
 p = int_q_->deque();
 deque_packet = true;
 int_deq_ctr_++;
 break;
 }
 case 4:
 {
 p = bac_q_->deque();
 deque_packet = true;
 bac_deq_ctr_++;
 break;
 }
 default:
 {
 break;
 }
 }
 if (deque_packet == true)
 {
 packet_deque_ctr_++;
 return (p);
 } else
 { return 0;}
}

// To print out the statistics information of UMTS priority queueing discipling // Unit : packet

void UmtsPredQueue::printstats()
{
 printf("\n*** UMTS priority queueing discipline operation statistics ***\n");
 printf("==\n");
printf("Traffic type enqueue dequeue dropped\n");
printf("------------ ------- ------- -------\n");

printf("Conversation %7d %7d
%7d\n",con_enq_ctr_,con_deq_ctr_,con_dpq_ctr_);

printf("Stream %7d %7d
%7d\n",str_enq_ctr_,str_deq_ctr_,str_dpq_ctr_);

71

printf("Interactive %7d %7d
%7d\n",int_enq_ctr_,int_deq_ctr_,int_dpq_ctr_);

printf("Background %7d %7d
%7d\n",bac_enq_ctr_,bac_deq_ctr_,bac_dpq_ctr_);

printf("\n---\n");
printf("Total UMTS dequeue packet number : %d\n",packet_deque_ctr_);

}
// Commands from the ns file are interpreted through this interface.
int UmtsPredQueue::command(int argc, const char*const* argv)
{
if (strcmp(argv[1], "printstats") == 0)
{
 printstats();
 return (TCL_OK);
 }
 return(Queue::command(argc, argv));

}

72

Appendix B: The DQB Header File

#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#include "queue.h"
#include "address.h"

class UmtsPredQueue : public Queue {
 public:
UmtsPredQueue();
int command(int argc, const char*const* argv); // interface to ns scripts
protected:
void enque(Packet*);
unsigned long random_seed_by_system_time();

bool overflow_pkt_enqueue_by_red(int enq_min, int enq_max, int enq_pkt_num, double redenque_prob);

 Packet* deque();
 void printstats();
PacketQueue *con_q_; // the FIFO queue for UMTS conversation traffic
PacketQueue *str_q_; // the FIFO queue for UMTS stream traffic
PacketQueue *int_q_; // the FIFO queue for UMTS interactive traffic
PacketQueue *bac_q_; // the FIFO queue for UMTS background traffic
bool con_enable_enque_; // boolean for UMTS conversational packet enqueue
bool str_enable_enque_; // boolean for UMTS streaming packet enqueue
bool int_enable_enque_; // boolean for UMTS interactive packet enqueue
bool bac_enable_enque_; // boolean for UMTS background packet enqueue
int packet_deque_ctr_; // to count the sent packets
int pkt_deque_cycle_; // to mod the sent packets
int umts_deq_turn_; // 1 for con_q, 2 for str_q, // 3 for int_q, 4 for bac_q
int phy_q_length_; // used queue buffer length
int con_enq_ctr_; // UMTS conversation application enqueue packet counter
int str_enq_ctr_; // UMTS stream application enqueue packet counter
int int_enq_ctr_; // UMTS interactive application enqueue packet counter
int bac_enq_ctr_; // UMTS background application enqueue packet counter
int con_deq_ctr_; // UMTS conversation application dequeue packet counter
int str_deq_ctr_; // UMTS stream application dequeue packet counter
int int_deq_ctr_; // UMTS interactive application dequeue packet counter
int bac_deq_ctr_; // UMTS background application dequeue packet counter
int con_dpq_ctr_; // UMTS conversation application packet drop by queue
int str_dpq_ctr_; // UMTS stream application packet drop by queue
int int_dpq_ctr_; // UMTS interactive application packet drop by queue
int bac_dpq_ctr_; // UMTS background application packet drop by queue
int con_queue_limit_; // UMTS conversational application queue limit
int str_queue_limit_; // UMTS streaming application queue limit
int int_queue_limit_; // UMTS interactive application queue limit
int bac_queue_limit_; // UMTS background application queue limit
int c_enq_min_; // UMTS conversational application min queue limit
int c_enq_max_; // UMTS conversation application max queue limit
int s_enq_min_; // UMTS streaming application min queue limit
int s_enq_max_; // UMTS streaming application max queue limit
int i_enq_min_; // UMTS interactive application min queue limit
int i_enq_max_; // UMTS interactive application max queue limit
int b_enq_min_; // UMTS background application min queue limit
int b_enq_max_; // UMTS background application max queue limit

double con_redenque_prob_; //UMTS conversational aplication packet enqueue probability by red
scheme

double str_redenque_prob_; //UMTS streaming aplication packet enqueue probability by red scheme
double int_redenque_prob_; //UMTS interactive aplication packet enqueue probability by red scheme
double bac_redenque_prob_; //UMTS background aplication packet enqueue probability by red scheme
};

73

Appendix C: The OQB Source code

#include "umtspdb-queue.h"

static class UmtsPdbQueueClass : public TclClass {
public:
 UmtsPdbQueueClass() : TclClass("Queue/UmtsPdbQueue") {}
 TclObject* create(int, const char*const*) {
 return (new UmtsPdbQueue);
 }
} class_umts_priority_dynamic_overflow_buffer;

UmtsPdbQueue::UmtsPdbQueue()
{
 FILE *fp;

 con_q_ = new PacketQueue;
 str_q_ = new PacketQueue;
 int_q_ = new PacketQueue;
 bac_q_ = new PacketQueue;
 ovb_q_ = new PacketQueue;
 pq_ = con_q_;
 con_enable_enque_ = false;
 str_enable_enque_ = false;
 int_enable_enque_ = false;
 bac_enable_enque_ = false;
 ovb_enable_enque_ = false;
 packet_deque_ctr_ = 0;
 umts_deq_turn_ = 0;
 phy_q_length_ = 0;
 con_enq_ctr_ = 0;
 str_enq_ctr_ = 0;
 int_enq_ctr_ = 0;
 bac_enq_ctr_ = 0;
 ovb_enq_ctr_ = 0;
 con_deq_ctr_ = 0;
 str_deq_ctr_ = 0;
 int_deq_ctr_ = 0;
 bac_deq_ctr_ = 0;
 ovb_deq_ctr_ = 0;
 con_dpq_ctr_ = 0;
 str_dpq_ctr_ = 0;
 int_dpq_ctr_ = 0;
 bac_dpq_ctr_ = 0;

bind("con_queue_limit", &con_queue_limit_);
 bind("str_queue_limit", &str_queue_limit_);
 bind("int_queue_limit", &int_queue_limit_);
 bind("bac_queue_limit", &bac_queue_limit_);
 bind("c_enq_min", &c_enq_min_);
 bind("s_enq_min", &s_enq_min_);
 bind("i_enq_min", &i_enq_min_);
 bind("b_enq_min", &b_enq_min_);
 bind("c_enq_max", &c_enq_max_);
 bind("s_enq_max", &s_enq_max_);
 bind("i_enq_max", &i_enq_max_);
 bind("b_enq_max", &b_enq_max_);
 bind("con_dbenque_prob", &con_dbenque_prob_);
 bind("str_dbenque_prob", &str_dbenque_prob_);
 bind("int_dbenque_prob", &int_dbenque_prob_);
 bind("bac_dbenque_prob", &bac_dbenque_prob_);

 /* To check output record files and remove them */

74

 if ((fp = fopen("con_pkt_forwarding_delay_rec_pdb","w")) != NULL)
 {
 fclose(fp);
 }
 if ((fp = fopen("str_pkt_forwarding_delay_rec_pdb","w")) != NULL)
 {
 fclose(fp);
 }
 if ((fp = fopen("int_pkt_forwarding_delay_rec_pdb","w")) != NULL)
 {
 fclose(fp);
 }
 if ((fp = fopen("bac_pkt_forwarding_delay_rec_pdb","w")) != NULL)
 {
 fclose(fp);
 }

}

void UmtsPdbQueue::enque(Packet* p)
{
 hdr_ip* iph = hdr_ip::access(p);

 phy_q_length_ = con_q_->length() + str_q_->length() + int_q_->length() + bac_q_->length() +
ovb_q_->length();

 switch (iph->prio_)
 {
 // If IPv6 priority = 15 (UMTS conversation traffic IP packet) then enqueue to con-queue
 case 15:
 {
 if (phy_q_length_ < qlim_)
 {
 if (con_q_->length() < con_queue_limit_)
 {
 con_enable_enque_ = true;
 } else {
 con_enable_enque_ = false;

 ovb_enable_enque_ =
overflow_pkt_enqueue_by_prob(c_enq_min_,c_enq_max_,phy_q_length_,con_db
enque_prob_);

 }
 } else {
 con_enable_enque_ = false;
 ovb_enable_enque_ = false;
 }
 if (con_enable_enque_)
 {
 con_q_->enque(p);
 con_enq_ctr_++;
 } else {
 if (ovb_enable_enque_)
 {
 ovb_q_->enque(p);
 con_enq_ctr_++;
 ovb_enq_ctr_++;
 } else {
 con_dpq_ctr_++;
 }
 }
 break;
 }

 // If IPv6 priority = 13 (UMTS stream traffic IP packet) then enqueue to str-queue
 case 13:
 {
 if (phy_q_length_ < qlim_)

75

 {
 if (str_q_->length() < str_queue_limit_)
 {
 str_enable_enque_ = true;
 } else {
 str_enable_enque_ = false;

 ovb_enable_enque_ =
overflow_pkt_enqueue_by_prob(s_enq_min_,s_enq_max_,phy_q_length_,str_dbe
nque_prob_);

 }
 } else {
 str_enable_enque_ = false;
 ovb_enable_enque_ = false;
 }
 if (str_enable_enque_)
 {
 str_q_->enque(p);
 str_enq_ctr_++;
 } else {
 if (ovb_enable_enque_)
 {
 ovb_q_->enque(p);
 str_enq_ctr_++;
 ovb_enq_ctr_++;
 } else {
 str_dpq_ctr_++;
 }
 }
 break;
 }

 // If IPv6 priority = 11 (UMTS interactive traffic IP packet) then enqueue to int-queue
 case 11:
 {
 if (phy_q_length_ < qlim_)
 {
 if (int_q_->length() < int_queue_limit_)
 {
 int_enable_enque_ = true;
 } else {
 int_enable_enque_ = false;

 ovb_enable_enque_ =
overflow_pkt_enqueue_by_prob(i_enq_min_,i_enq_max_,phy_q_length_,int_dbe
nque_prob_);

 }
 } else {
 int_enable_enque_ = false;
 ovb_enable_enque_ = false;
 }
 if (int_enable_enque_)
 {
 int_q_->enque(p);
 int_enq_ctr_++;
 } else {
 if (ovb_enable_enque_)
 {
 ovb_q_->enque(p);
 int_enq_ctr_++;
 ovb_enq_ctr_++;
 } else {
 int_dpq_ctr_++;
 }
 }
 break;
 }

76

 // If IPv6 priority = 9 (UMTS background traffic IP packet) then enqueue to bac-queue
 case 9:
 {
 if (phy_q_length_ < qlim_)
 {
 if (bac_q_->length() < bac_queue_limit_)
 {
 bac_enable_enque_ = true;
 } else {
 bac_enable_enque_ = false;

 ovb_enable_enque_ =
overflow_pkt_enqueue_by_prob(b_enq_min_,b_enq_max_,phy_q_length_,bac_d
benque_prob_);

 }
 } else {
 bac_enable_enque_ = false;
 ovb_enable_enque_ = false;
 }
 if (bac_enable_enque_)
 {
 bac_q_->enque(p);
 bac_enq_ctr_++;
 } else {
 if (ovb_enable_enque_)
 {
 ovb_q_->enque(p);
 bac_enq_ctr_++;
 ovb_enq_ctr_++;
 } else {
 bac_dpq_ctr_++;
 }
 }
 break;
 }
 default:
 {

// printf("Not an UMTS traffic packet!! Be dropped by UmtsPi queue.\n");

 break;
 }
 }

}

unsigned long UmtsPdbQueue::random_seed_by_system_time()
{
 struct timeval tv;
 struct timezone tz;
 unsigned long rng_seed;

/* to generate a seed of random generator by timer */
 if (gettimeofday(&tv, &tz) == 0)
 {
 rng_seed=tv.tv_usec;
 } else {
 printf("Not get timer information by gettimeofday !!!\n");
 rng_seed=0;
 }

 return rng_seed;

}

bool UmtsPdbQueue::overflow_pkt_enqueue_by_prob(int enq_min, int enq_max, int enq_pkt_num,
double dbenque_prob)

77

{
 unsigned long rseed;
 double random_prob;

 if (enq_pkt_num >= enq_max)
 {
 return false;
 } else {
 if (enq_pkt_num < enq_min)
 {
 return true;
 } else {
 rseed=random_seed_by_system_time();
 srand(((int)rseed));
 random_prob=(double)(rand()/(RAND_MAX+1.0));
 if (random_prob <= dbenque_prob)
 {
 return true;
 } else {
 return false;
 }
 }
 }

}

Packet* UmtsPdbQueue::deque()
{
 Packet *p;
 bool deque_packet = false;
 int packet_forwarding_cycle = 15;

 umts_deq_turn_ = 0;
 switch (packet_deque_ctr_ % packet_forwarding_cycle)
 {

 // to set dequeue turn to conversation traffic first if con_q_->length() //case (0, 3, 6, 9, 12):
 case 0:
 {
 if (con_q_->length() > 0)
 {
 umts_deq_turn_ = 1;
 } else {
 if (str_q_->length() > 0)
 {
 umts_deq_turn_ = 2;
 } else {
 if (int_q_->length() > 0)
 {
 umts_deq_turn_ = 3;
 } else {
 if (bac_q_->length() > 0)
 {
 umts_deq_turn_ = 4;
 } else {
 if (ovb_q_->length() > 0)
 {
 umts_deq_turn_ = 5;
 }
 }
 }
 }
 }
 break;
 }
 case 3:

78

 {
 if (con_q_->length() > 0)
 {
 umts_deq_turn_ = 1;
 } else {
 if (str_q_->length() > 0)
 {
 umts_deq_turn_ = 2;
 } else {
 if (int_q_->length() > 0)
 {
 umts_deq_turn_ = 3;
 } else {
 if (bac_q_->length() > 0)
 {
 umts_deq_turn_ = 4;
 } else {
 if (ovb_q_->length() > 0)
 {
 umts_deq_turn_ = 5;
 }
 }
 }
 }
 }
 break;
 }
 case 6:
 {
 if (con_q_->length() > 0)
 {
 umts_deq_turn_ = 1;
 } else {
 if (str_q_->length() > 0)
 {
 umts_deq_turn_ = 2;
 } else {
 if (int_q_->length() > 0)
 {
 umts_deq_turn_ = 3;
 } else {
 if (bac_q_->length() > 0)
 {
 umts_deq_turn_ = 4;
 } else {
 if (ovb_q_->length() > 0)
 {
 umts_deq_turn_ = 5;
 }
 }
 }
 }
 }
 break;
 }
 case 9:
 {
 if (con_q_->length() > 0)
 {
 umts_deq_turn_ = 1;
 } else {
 if (str_q_->length() > 0)
 {
 umts_deq_turn_ = 2;
 } else {

79

 if (int_q_->length() > 0)
 {
 umts_deq_turn_ = 3;
 } else {
 if (bac_q_->length() > 0)
 {
 umts_deq_turn_ = 4;
 } else {
 if (ovb_q_->length() > 0)
 {
 umts_deq_turn_ = 5;
 }
 }
 }
 }
 }
 break;
 }
 case 12:
 {
 if (con_q_->length() > 0)
 {
 umts_deq_turn_ = 1;
 } else {
 if (str_q_->length() > 0)
 {
 umts_deq_turn_ = 2;
 } else {
 if (int_q_->length() > 0)
 {
 umts_deq_turn_ = 3;
 } else {
 if (bac_q_->length() > 0)
 {
 umts_deq_turn_ = 4;
 } else {
 if (ovb_q_->length() > 0)
 {
 umts_deq_turn_ = 5;
 }
 }
 }
 }
 }
 break;
 }

 // to set dequeue turn to stream traffic first if con_q_->length() //case (1, 4, 8, 13):
 case 1:
 {
 if (str_q_->length() > 0)
 {
 umts_deq_turn_ = 2;
 } else {
 if (con_q_->length() > 0)
 {
 umts_deq_turn_ = 1;
 } else {
 if (int_q_->length() > 0)
 {
 umts_deq_turn_ = 3;
 } else {
 if (bac_q_->length() > 0)
 {
 umts_deq_turn_ = 4;
 } else {

80

 if (ovb_q_->length() > 0)
 {
 umts_deq_turn_ = 5;
 }
 }
 }
 }
 }
 break;
 }
 case 4:
 {
 if (str_q_->length() > 0)
 {
 umts_deq_turn_ = 2;
 } else {
 if (con_q_->length() > 0)
 {
 umts_deq_turn_ = 1;
 } else {
 if (int_q_->length() > 0)
 {
 umts_deq_turn_ = 3;
 } else {
 if (bac_q_->length() > 0)
 {
 umts_deq_turn_ = 4;
 } else {
 if (ovb_q_->length() > 0)
 {
 umts_deq_turn_ = 5;
 }
 }
 }
 }
 }
 break;
 }
 case 8:
 {
 if (str_q_->length() > 0)
 {
 umts_deq_turn_ = 2;
 } else {
 if (con_q_->length() > 0)
 {
 umts_deq_turn_ = 1;
 } else {
 if (int_q_->length() > 0)
 {
 umts_deq_turn_ = 3;
 } else {
 if (bac_q_->length() > 0)
 {
 umts_deq_turn_ = 4;
 } else {
 if (ovb_q_->length() > 0)
 {
 umts_deq_turn_ = 5;
 }
 }
 }
 }
 }
 break;

81

 }
 case 13:
 {
 if (str_q_->length() > 0)
 {
 umts_deq_turn_ = 2;
 } else {
 if (con_q_->length() > 0)
 {
 umts_deq_turn_ = 1;
 } else {
 if (int_q_->length() > 0)
 {
 umts_deq_turn_ = 3;
 } else {
 if (bac_q_->length() > 0)
 {
 umts_deq_turn_ = 4;
 } else {
 if (ovb_q_->length() > 0)
 {
 umts_deq_turn_ = 5;
 }
 }
 }
 }
 }
 break;
 }

 // to set dequeue turn to interactive traffic first if int_q_->length() //case (2, 10):
 case 2:
 {
 if (int_q_->length() > 0)
 {
 umts_deq_turn_ = 3;
 } else {
 if (con_q_->length() > 0)
 {
 umts_deq_turn_ = 1;
 } else {
 if (str_q_->length() > 0)
 {
 umts_deq_turn_ = 2;
 } else {
 if (bac_q_->length() > 0)
 {
 umts_deq_turn_ = 4;
 } else {
 if (ovb_q_->length() > 0)
 {
 umts_deq_turn_ = 5;
 }
 }
 }
 }
 }
 break;
 }
 case 10:
 {
 if (int_q_->length() > 0)
 {
 umts_deq_turn_ = 3;
 } else {
 if (con_q_->length() > 0)

82

 {
 umts_deq_turn_ = 1;
 } else {
 if (str_q_->length() > 0)
 {
 umts_deq_turn_ = 2;
 } else {
 if (bac_q_->length() > 0)
 {
 umts_deq_turn_ = 4;
 } else {
 if (ovb_q_->length() > 0)
 {
 umts_deq_turn_ = 5;
 }
 }
 }
 }
 }
 break;
 }

 // to set dequeue turn to interactive traffic first if bac_q_->length() //case (5):
 case 5:
 {
 if (bac_q_->length() > 0)
 {
 umts_deq_turn_ = 4;
 } else {
 if (con_q_->length() > 0)
 {
 umts_deq_turn_ = 1;
 } else {
 if (str_q_->length() > 0)
 {
 umts_deq_turn_ = 2;
 } else {
 if (int_q_->length() > 0)
 {
 umts_deq_turn_ = 3;
 } else {
 if (ovb_q_->length() > 0)
 {
 umts_deq_turn_ = 5;
 }
 }
 }
 }
 }
 break;
 }

 // to set dequeue turn to overflow buffer traffic first if ovb_q_->length() //case (7, 11, 14):
 case 7:
 {
 if (ovb_q_->length() > 0)
 {
 umts_deq_turn_ =5;
 } else {
 if (con_q_->length() > 0)
 {
 umts_deq_turn_ = 1;
 } else {
 if (str_q_->length() > 0)
 {
 umts_deq_turn_ = 2;

83

 } else {
 if (int_q_->length() > 0)
 {
 umts_deq_turn_ = 3;
 } else {
 if (bac_q_->length() > 0)
 {
 umts_deq_turn_ =4;
 }
 }
 }
 }
 }
 break;
 }
 case 11:
 {
 if (ovb_q_->length() > 0)
 {
 umts_deq_turn_ =5;
 } else {
 if (con_q_->length() > 0)
 {
 umts_deq_turn_ = 1;
 } else {
 if (str_q_->length() > 0)
 {
 umts_deq_turn_ = 2;
 } else {
 if (int_q_->length() > 0)
 {
 umts_deq_turn_ = 3;
 } else {
 if (bac_q_->length() > 0)
 {
 umts_deq_turn_ =4;
 }
 }
 }
 }
 }
 break;
 }
 case 14:
 {
 if (ovb_q_->length() > 0)
 {
 umts_deq_turn_ =5;
 } else {
 if (con_q_->length() > 0)
 {
 umts_deq_turn_ = 1;
 } else {
 if (str_q_->length() > 0)
 {
 umts_deq_turn_ = 2;
 } else {
 if (int_q_->length() > 0)
 {
 umts_deq_turn_ = 3;
 } else {
 if (bac_q_->length() > 0)
 {
 umts_deq_turn_ =4;
 }

84

 }
 }
 }
 }
 break;
 }
 default:
 {
 umts_deq_turn_ = 0;
 break;
 }
 }

 switch(umts_deq_turn_)
 {
 case 1:
 {
 p = con_q_->deque();
 deque_packet = true;
 con_deq_ctr_++;
 output_packet_forwarding_delay(CON);
 break;
 }
 case 2:
 {
 p = str_q_->deque();
 deque_packet = true;
 str_deq_ctr_++;
 output_packet_forwarding_delay(STR);
 break;
 }
 case 3:
 {
 p = int_q_->deque();
 deque_packet = true;
 int_deq_ctr_++;
 output_packet_forwarding_delay(INT);
 break;
 }
 case 4:
 {
 p = bac_q_->deque();
 deque_packet = true;
 bac_deq_ctr_++;
 output_packet_forwarding_delay(BAC);
 break;
 }
 case 5:
 {
 p = ovb_q_->deque();
 deque_packet = true;
 hdr_ip* iph = hdr_ip::access(p);
 switch (iph->prio_)
 {
 case 15:
 {
 con_deq_ctr_++;
 ovb_deq_ctr_++;
 output_packet_forwarding_delay(CON);
 break;
 }
 case 13:
 {
 str_deq_ctr_++;
 ovb_deq_ctr_++;

85

 output_packet_forwarding_delay(STR);
 break;
 }
 case 11:
 {
 int_deq_ctr_++;
 ovb_deq_ctr_++;
 output_packet_forwarding_delay(INT);
 break;
 }
 case 9:
 {
 bac_deq_ctr_++;
 ovb_deq_ctr_++;
 output_packet_forwarding_delay(BAC);
 break;
 }
 default:
 {

 printf("No UMTS packet avaialble dequeue from the overflow buffer !!!\n");
 break;
 }
 }
 break;
 }
 default:
 {
 break;
 }
 }
 if (deque_packet == true)
 {
 packet_deque_ctr_++;
 return (p);
 } else
 { return 0;}
}

// To record UMTS packets forwarding delay time
void UmtsPdbQueue::output_packet_forwarding_delay(int packet_type_)
{
 FILE *pkt_forwarding_delay_rec_fp;
 double cur_clock, cur_pkt_forwarding_delay_time;

 cur_clock = 0.0;
 switch (packet_type_)
 {
 case CON:
 {
 pkt_forwarding_delay_rec_fp=fopen("con_pkt_forwarding_delay_rec_pdb","a+");

cur_clock = Scheduler::instance().clock();
cur_pkt_forwarding_delay_time = cur_clock - prev_con_pkt_forwarding_clock;

 fprintf(pkt_forwarding_delay_rec_fp,"%f\n",cur_pkt_forwarding_delay_time);
prev_con_pkt_forwarding_clock = cur_clock;

 break;
 }
 case STR:
 {
 pkt_forwarding_delay_rec_fp=fopen("str_pkt_forwarding_delay_rec_pdb","a+");

cur_clock = Scheduler::instance().clock();
cur_pkt_forwarding_delay_time = cur_clock - prev_str_pkt_forwarding_clock;
fprintf(pkt_forwarding_delay_rec_fp,"%f\n",cur_pkt_forwarding_delay_time);
prev_str_pkt_forwarding_clock = cur_clock;

 break;
 }

86

 case INT:
 {
 pkt_forwarding_delay_rec_fp=fopen("int_pkt_forwarding_delay_rec_pdb","a+");

cur_clock = Scheduler::instance().clock();
cur_pkt_forwarding_delay_time = cur_clock - prev_int_pkt_forwarding_clock;
fprintf(pkt_forwarding_delay_rec_fp,"%f\n",cur_pkt_forwarding_delay_time);
prev_int_pkt_forwarding_clock = cur_clock;

 break;
 }
 case BAC:
 {
 pkt_forwarding_delay_rec_fp=fopen("bac_pkt_forwarding_delay_rec_pdb","a+");

cur_clock = Scheduler::instance().clock();
cur_pkt_forwarding_delay_time = cur_clock - prev_bac_pkt_forwarding_clock;
fprintf(pkt_forwarding_delay_rec_fp,"%f\n",cur_pkt_forwarding_delay_time);
prev_bac_pkt_forwarding_clock = cur_clock;

 break;
 }
 default:
 {
 break;
 }
 }
 fclose(pkt_forwarding_delay_rec_fp);
}

// To print out the statistics information of UMTS priority queueing discipling// Unit : packet
void UmtsPdbQueue::printstats()
{
 printf("\n*** UMTS priority queueing discipline operation statistics ***\n");
 printf("==\n");
printf("Traffic type enqueue dequeue dropped\n");
printf("------------ ------- ------- -------\n");
printf("Conversation %7d %7d %7d\n",con_enq_ctr_,con_deq_ctr_,con_dpq_ctr_);
printf("Stream %7d %7d
%7d\n",str_enq_ctr_,str_deq_ctr_,str_dpq_ctr_);

printf("Interactive %7d %7d
%7d\n",int_enq_ctr_,int_deq_ctr_,int_dpq_ctr_);

printf("Background %7d %7d
%7d\n",bac_enq_ctr_,bac_deq_ctr_,bac_dpq_ctr_);

printf("\n---\n");
printf("Total UMTS dequeue packet number from overflow buffer : %d\n",ovb_deq_ctr_);
printf("Total UMTS dequeue packet number : %d\n",packet_deque_ctr_);
printf("Total UMTS enqueue overflow buffer packet number : %d\n",ovb_enq_ctr_);

}

// int command(int argc, const char*const* argv)
// Commands from the ns file are interpreted through this interface.
int UmtsPdbQueue::command(int argc, const char*const* argv) {
if (strcmp(argv[1], "printstats") == 0) {
 printstats();
 return (TCL_OK);
 }
 return(Queue::command(argc, argv));

}

87

Appendix D: The OQB Header File

#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#include "queue.h"
#include "address.h"

#define CON 1 // Packet type : conversational
#define STR 2 // Packet type : streaming
#define INT 3 // Packet type : interactive
#define BAC 4 // Packet type : background

class UmtsPdbQueue : public Queue {
 public:
 UmtsPdbQueue();
 int command(int argc, const char*const* argv); // interface to ns scripts

 protected:
 void enque(Packet*);
 unsigned long random_seed_by_system_time();

 bool overflow_pkt_enqueue_by_prob(int enq_min, int enq_max, int enq_pkt_num, double
dbenque_prob);

 Packet* deque();
 void output_packet_forwarding_delay(int packet_type_);
 void printstats();

PacketQueue *con_q_; // the FIFO queue for UMTS conversation traffic
PacketQueue *str_q_; // the FIFO queue for UMTS stream traffic
PacketQueue *int_q_; // the FIFO queue for UMTS interactive traffic
PacketQueue *bac_q_; // the FIFO queue for UMTS background traffic
PacketQueue *ovb_q_; // the FIFO queue for UMTS overflow buffer
bool con_enable_enque_; // boolean for UMTS conversational packet enqueue
bool str_enable_enque_; // boolean for UMTS streaming packet enqueue
bool int_enable_enque_; // boolean for UMTS interactive packet enqueue
bool bac_enable_enque_; // boolean for UMTS background packet enqueue
bool ovb_enable_enque_; // boolean for UMTS overflow buffer packet enqueue

int packet_deque_ctr_; // to count the sent packets
int pkt_deque_cycle_; // to mod the sent packets
int umts_deq_turn_; // 1 for con_q, 2 for str_q, 3 for int_q, 4 for bac_q
double prev_con_pkt_forwarding_clock; // Previous conversational packet forwarding clock
double prev_str_pkt_forwarding_clock; // Previous streaming packet forwarding clock
double prev_int_pkt_forwarding_clock; // Previous nteractive packet forwarding clock
double prev_bac_pkt_forwarding_clock; // Previous background packet forwarding clock

 int phy_q_length_; // used queue buffer length

int con_enq_ctr_; // UMTS conversation application enqueue packet counter
 int str_enq_ctr_; // UMTS stream application enqueue packet counter
 int int_enq_ctr_; // UMTS interactive application enqueue packet counter

int bac_enq_ctr_; // UMTS background application enqueue packet counter
 int ovb_enq_ctr_; // UMTS overflow buffer enqueue packet counter

int con_deq_ctr_; // UMTS conversation application dequeue packet counter
 int str_deq_ctr_; // UMTS stream application dequeue packet counter
 int int_deq_ctr_; // UMTS interactive application dequeue packet counter

int bac_deq_ctr_; // UMTS background application dequeue packet counter
 int ovb_deq_ctr_; // UMTS overflow buffer dequeue packet counter
 int con_dpq_ctr_; // UMTS conversation application packet drop by queue
 int str_dpq_ctr_; // UMTS stream application packet drop by queue
 int int_dpq_ctr_; // UMTS interactive application packet drop by queue
 int bac_dpq_ctr_; // UMTS background application packet drop by queue
 int con_queue_limit_; // UMTS conversational application queue limit
 int str_queue_limit_; // UMTS streaming application queue limit
 int int_queue_limit_; // UMTS interactive application queue limit

88

 int bac_queue_limit_; // UMTS background application queue limit
int c_enq_min_; // UMTS conversational application min queue limit

 int c_enq_max_; // UMTS conversation application max queue limit
 int s_enq_min_; // UMTS streaming application min queue limit
 int s_enq_max_; // UMTS streaming application max queue limit
 int i_enq_min_; // UMTS interactive application min queue limit
 int i_enq_max_; // UMTS interactive application max queue limit
 int b_enq_min_; // UMTS background application min queue limit
 int b_enq_max_; // UMTS background application max queue limit

double con_dbenque_prob_; //UMTS conversational aplication packet enqueue probability
double str_dbenque_prob_; //UMTS streaming aplication packet enqueue probability
double int_dbenque_prob_; //UMTS interactive aplication packet enqueue probability
double bac_dbenque_prob_; //UMTS background aplication packet enqueue probability
};

89

Appendix E: Simulation scenarios for DQB in a continuous traffic
pattern

set ns [new Simulator]
#Define different colors for data flows
$ns color 1 Red
$ns color 2 Blue
$ns color 3 green
$ns color 4 yellow
$ns color 5 black
#Open the nam trace file
set tf [open umts-pred-out-a.tr w]
$ns trace-all $tf
#Define a 'finish' procedure
proc finish {}
{
 global ns tf
 $ns flush-trace
 close $tf
 #Execute trace file process
 set PERL "/usr/bin/perl"
 set USERHOME [exec env | grep "^HOME" | sed /^HOME=/s/^HOME=//]
 set NSHOME "$USERHOME/ns2/ns-allinone-2.30"
 set XGRAPH "$NSHOME/bin/xgraph"
 set GETDRT "$NSHOME/ns-2.30/bin/getdrt"
 exec $PERL $GETDRT -s 0.0 -d 6.0 -f 1 umts-pred-out-a.tr > predumtscdrta.tr
exec $PERL $GETDRT -s 1.0 -d 7.0 -f 2 umts-pred-out-a.tr > predumtssdrta.tr
exec $PERL $GETDRT -s 2.0 -d 8.0 -f 3 umts-pred-out-a.tr > predumtsidrta.tr
exec $PERL $GETDRT -s 3.0 -d 9.0 -f 4 umts-pred-out-a.tr > predumtsbdrta.tr
exit 0
}
set node_(s1) [$ns node]
set node_(s2) [$ns node]
set node_(s3) [$ns node]
set node_(s4) [$ns node]
set node_(g1) [$ns node]
set node_(g2) [$ns node]
set node_(r1) [$ns node]
set node_(r2) [$ns node]
set node_(r3) [$ns node]
set node_(r4) [$ns node]
$ns duplex-link $node_(s1) $node_(g1) 2.0Mb 1ms DropTail
$ns duplex-link $node_(s2) $node_(g1) 2.0Mb 1ms DropTail
$ns duplex-link $node_(s3) $node_(g1) 2.0Mb 1ms DropTail
$ns duplex-link $node_(s4) $node_(g1) 2.0Mb 1ms DropTail
$ns duplex-link $node_(g1) $node_(g2) 3.0Mb 100ms UmtsPredQueue
$ns duplex-link $node_(r1) $node_(g2) 2.0Mb 1ms DropTail
$ns duplex-link $node_(r2) $node_(g2) 2.0Mb 1ms DropTail
$ns duplex-link $node_(r3) $node_(g2) 2.0Mb 1ms DropTail
$ns duplex-link $node_(r4) $node_(g2) 2.0Mb 1ms DropTail
set umtspredqueue [[$ns link $node_(g1) $node_(g2)] queue]

#Setup UmtsPdbQueue queue parameter
$ns queue-limit $node_(g1) $node_(g2) 40
$umtspredqueue set c_enq_min 8
$umtspredqueue set s_enq_min 7
$umtspredqueue set i_enq_min 6
$umtspredqueue set b_enq_min 5
$umtspredqueue set c_enq_max 40
$umtspredqueue set s_enq_max 39
$umtspredqueue set i_enq_max 38
$umtspredqueue set b_enq_max 37
$umtspredqueue set con_dbenque_prob 1.0

90

$umtspredqueue set str_dbenque_prob 0.95
$umtspredqueue set int_dbenque_prob 0.90
$umtspredqueue set bac_dbenque_prob 0.85
$umtspredqueue set con_queue_limit 8
$umtspredqueue set str_queue_limit 7
$umtspredqueue set int_queue_limit 6
$umtspredqueue set bac_queue_limit 5

$ns duplex-link-op $node_(g1) $node_(g2) queuePos 0.5
$ns duplex-link-op $node_(s1) $node_(g1) orient up
$ns duplex-link-op $node_(s2) $node_(g1) orient left-up
$ns duplex-link-op $node_(s3) $node_(g1) orient left-down
$ns duplex-link-op $node_(s4) $node_(g1) orient down
$ns duplex-link-op $node_(g1) $node_(g2) orient right
$ns duplex-link-op $node_(g2) $node_(r1) orient up
$ns duplex-link-op $node_(g2) $node_(r2) orient rigth-up
$ns duplex-link-op $node_(g2) $node_(r3) orient rigth-down
$ns duplex-link-op $node_(g2) $node_(r4) orient down

#Setup a UMTS UDP connection
set udp_s1 [new Agent/UDP/UDPUmtsc]
set udp_r1 [new Agent/UDP/UDPUmtsc]
$ns attach-agent $node_(s1) $udp_s1
$ns attach-agent $node_(r1) $udp_r1
$ns connect $udp_s1 $udp_r1
set udp_con_pktsize 1000
$udp_s1 set packetSize_ $udp_con_pktsize
$udp_r1 set packetSize_ $udp_con_pktsize
$udp_s1 set fid_ 1
$udp_r1 set fid_ 1

set udp_s2 [new Agent/UDP/UDPUmtss]
set udp_r2 [new Agent/UDP/UDPUmtss]
$ns attach-agent $node_(s2) $udp_s2
$ns attach-agent $node_(r2) $udp_r2
$ns connect $udp_s2 $udp_r2
set udp_str_pktsize 1000
$udp_s2 set packetSize_ $udp_str_pktsize
$udp_r2 set packetSize_ $udp_str_pktsize
$udp_s2 set fid_ 2
$udp_r2 set fid_ 2

set udp_s3 [new Agent/UDP/UDPUmtsi]
set udp_r3 [new Agent/UDP/UDPUmtsi]
$ns attach-agent $node_(s3) $udp_s3
$ns attach-agent $node_(r3) $udp_r3
$ns connect $udp_s3 $udp_r3
set udp_int_pktsize 1000
$udp_s3 set packetSize_ $udp_int_pktsize
$udp_r3 set packetSize_ $udp_int_pktsize
$udp_s3 set fid_ 3
$udp_r3 set fid_ 3

set udp_s4 [new Agent/UDP/UDPUmtsb]
set udp_r4 [new Agent/UDP/UDPUmtsb]
$ns attach-agent $node_(s4) $udp_s4
$ns attach-agent $node_(r4) $udp_r4
$ns connect $udp_s4 $udp_r4
set udp_bac_pktsize 1000
$udp_s4 set packetSize_ $udp_bac_pktsize
$udp_r4 set packetSize_ $udp_bac_pktsize
$udp_s4 set fid_ 4
$udp_r4 set fid_ 4

#Setup a UMTS Conversation Application

91

set umtscapp_s [new Application/UMTSCApp]
set umtscapp_r [new Application/UMTSCApp]
$umtscapp_s attach-agent $udp_s1
$umtscapp_r attach-agent $udp_r1
$umtscapp_s set pktsize_ 1000
$umtscapp_s set random_ false

#Setup a UMTS stream Application
set umtssapp_s [new Application/UMTSSApp]
set umtssapp_r [new Application/UMTSSApp]
$umtssapp_s attach-agent $udp_s2
$umtssapp_r attach-agent $udp_r2
$umtssapp_s set pktsize_ 1000
$umtssapp_s set random_ false

#Setup a UMTS Interactive Application
set umtsiapp_s [new Application/UMTSIApp]
set umtsiapp_r [new Application/UMTSIApp]
$umtsiapp_s attach-agent $udp_s3
$umtsiapp_r attach-agent $udp_r3
$umtsiapp_s set pktsize_ 1000
$umtsiapp_s set random_ false

#Setup a UMTS Background Application
set umtsbapp_s [new Application/UMTSBApp]
set umtsbapp_r [new Application/UMTSBApp]
$umtsbapp_s attach-agent $udp_s4
$umtsbapp_r attach-agent $udp_r4
$umtsbapp_s set pktsize_ 1000
$umtsbapp_s set random_ false

set start_all_time 0.0
set stop_all_time 30.0

$ns at $start_all_time "$umtscapp_s start"
$ns at $start_all_time "$umtssapp_s start"
$ns at $start_all_time "$umtsiapp_s start"
$ns at $start_all_time "$umtsbapp_s start"
$ns at $stop_all_time "$umtscapp_s stop"
$ns at $stop_all_time "$umtssapp_s stop"
$ns at $stop_all_time "$umtsiapp_s stop"
$ns at $stop_all_time "$umtsbapp_s stop"
$ns at 31.0 "$umtspredqueue printstats"
$ns at 31.0 "finish"

$ns run

92

Appendix F: Simulation scenarios for OQB in a continuous traffic
pattern

set ns [new Simulator]
#Define different colors for data flows
$ns color 1 Red
$ns color 2 Blue
$ns color 3 green
$ns color 4 yellow
$ns color 5 black

#Open the nam trace file
set tf [open umts-pdb-out-a.tr w]
$ns trace-all $tf
#Define a 'finish' procedure
proc finish {}
{
 global ns tf
 $ns flush-trace
 close $tf
 #Execute trace file process
 set PERL "/usr/bin/perl"

 set USERHOME [exec env | grep "^HOME" | sed /^HOME=/s/^HOME=//]
 set NSHOME "$USERHOME/ns2/ns-allinone-2.30"
 set XGRAPH "$NSHOME/bin/xgraph"
 set GETDRT "$NSHOME/ns-2.30/bin/getdrt"

 exec $PERL $GETDRT -s 0.0 -d 6.0 -f 1 umts-pdb-out-a.tr > predumtscdrta.tr
 exec $PERL $GETDRT -s 1.0 -d 7.0 -f 2 umts-pdb-out-a.tr > predumtssdrta.tr
 exec $PERL $GETDRT -s 2.0 -d 8.0 -f 3 umts-pdb-out-a.tr > predumtsidrta.tr
 exec $PERL $GETDRT -s 3.0 -d 9.0 -f 4 umts-pdb-out-a.tr > predumtsbdrta.tr

 exit 0
}
set node_(s1) [$ns node]
set node_(s2) [$ns node]
set node_(s3) [$ns node]
set node_(s4) [$ns node]
set node_(g1) [$ns node]
set node_(g2) [$ns node]
set node_(r1) [$ns node]
set node_(r2) [$ns node]
set node_(r3) [$ns node]
set node_(r4) [$ns node]

$ns duplex-link $node_(s1) $node_(g1) 2.0Mb 1ms DropTail
$ns duplex-link $node_(s2) $node_(g1) 2.0Mb 1ms DropTail
$ns duplex-link $node_(s3) $node_(g1) 2.0Mb 1ms DropTail
$ns duplex-link $node_(s4) $node_(g1) 2.0Mb 1ms DropTail
$ns duplex-link $node_(g1) $node_(g2) 3.0Mb 100ms UmtsPdbQueue
$ns duplex-link $node_(r1) $node_(g2) 2.0Mb 1ms DropTail
$ns duplex-link $node_(r2) $node_(g2) 2.0Mb 1ms DropTail
$ns duplex-link $node_(r3) $node_(g2) 2.0Mb 1ms DropTail
$ns duplex-link $node_(r4) $node_(g2) 2.0Mb 1ms DropTail
set umtspdbqueue [[$ns link $node_(g1) $node_(g2)] queue]
#Setup UmtsPdbQueue queue parameter
$ns queue-limit $node_(g1) $node_(g2) 40

93

$umtspdbqueue set c_enq_min 8
$umtspdbqueue set s_enq_min 7
$umtspdbqueue set i_enq_min 6
$umtspdbqueue set b_enq_min 5
$umtspdbqueue set c_enq_max 40
$umtspdbqueue set s_enq_max 38
$umtspdbqueue set i_enq_max 36
$umtspdbqueue set b_enq_max 34
$umtspdbqueue set con_dbenque_prob 1.0
$umtspdbqueue set str_dbenque_prob 0.9
$umtspdbqueue set int_dbenque_prob 0.8
$umtspdbqueue set bac_dbenque_prob 0.7
$umtspdbqueue set con_queue_limit 8
$umtspdbqueue set str_queue_limit 7
$umtspdbqueue set int_queue_limit 6
$umtspdbqueue set bac_queue_limit 5

$ns duplex-link-op $node_(g1) $node_(g2) queuePos 0.5
$ns duplex-link-op $node_(s1) $node_(g1) orient up
$ns duplex-link-op $node_(s2) $node_(g1) orient left-up
$ns duplex-link-op $node_(s3) $node_(g1) orient left-down
$ns duplex-link-op $node_(s4) $node_(g1) orient down
$ns duplex-link-op $node_(g1) $node_(g2) orient right
$ns duplex-link-op $node_(g2) $node_(r1) orient up
$ns duplex-link-op $node_(g2) $node_(r2) orient rigth-up
$ns duplex-link-op $node_(g2) $node_(r3) orient rigth-down
$ns duplex-link-op $node_(g2) $node_(r4) orient down

#Setup a UMTS UDP connection
set udp_s1 [new Agent/UDP/UDPUmtsc]
set udp_r1 [new Agent/UDP/UDPUmtsc]
$ns attach-agent $node_(s1) $udp_s1
$ns attach-agent $node_(r1) $udp_r1
$ns connect $udp_s1 $udp_r1
set udp_con_pktsize 1000
$udp_s1 set packetSize_ $udp_con_pktsize
$udp_r1 set packetSize_ $udp_con_pktsize
$udp_s1 set fid_ 1
$udp_r1 set fid_ 1

set udp_s2 [new Agent/UDP/UDPUmtss]
set udp_r2 [new Agent/UDP/UDPUmtss]
$ns attach-agent $node_(s2) $udp_s2
$ns attach-agent $node_(r2) $udp_r2
$ns connect $udp_s2 $udp_r2
set udp_str_pktsize 1000
$udp_s2 set packetSize_ $udp_str_pktsize
$udp_r2 set packetSize_ $udp_str_pktsize
$udp_s2 set fid_ 2
$udp_r2 set fid_ 2

set udp_s3 [new Agent/UDP/UDPUmtsi]
set udp_r3 [new Agent/UDP/UDPUmtsi]
$ns attach-agent $node_(s3) $udp_s3
$ns attach-agent $node_(r3) $udp_r3
$ns connect $udp_s3 $udp_r3

94

set udp_int_pktsize 1000
$udp_s3 set packetSize_ $udp_int_pktsize
$udp_r3 set packetSize_ $udp_int_pktsize
$udp_s3 set fid_ 3
$udp_r3 set fid_ 3

set udp_s4 [new Agent/UDP/UDPUmtsb]
set udp_r4 [new Agent/UDP/UDPUmtsb]
$ns attach-agent $node_(s4) $udp_s4
$ns attach-agent $node_(r4) $udp_r4
$ns connect $udp_s4 $udp_r4
set udp_bac_pktsize 1000
$udp_s4 set packetSize_ $udp_bac_pktsize
$udp_r4 set packetSize_ $udp_bac_pktsize
$udp_s4 set fid_ 4
$udp_r4 set fid_ 4
#Setup a UMTS Conversation Application
set umtscapp_s [new Application/UMTSCApp]
set umtscapp_r [new Application/UMTSCApp]
$umtscapp_s attach-agent $udp_s1
$umtscapp_r attach-agent $udp_r1
$umtscapp_s set pktsize_ 1000
$umtscapp_s set random_ false

#Setup a UMTS stream Application
set umtssapp_s [new Application/UMTSSApp]
set umtssapp_r [new Application/UMTSSApp]
$umtssapp_s attach-agent $udp_s2
$umtssapp_r attach-agent $udp_r2
$umtssapp_s set pktsize_ 1000
$umtssapp_s set random_ false

#Setup a UMTS Interactive Application
set umtsiapp_s [new Application/UMTSIApp]
set umtsiapp_r [new Application/UMTSIApp]
$umtsiapp_s attach-agent $udp_s3
$umtsiapp_r attach-agent $udp_r3
$umtsiapp_s set pktsize_ 1000
$umtsiapp_s set random_ false

#Setup a UMTS Background Application
set umtsbapp_s [new Application/UMTSBApp]
set umtsbapp_r [new Application/UMTSBApp]
$umtsbapp_s attach-agent $udp_s4
$umtsbapp_r attach-agent $udp_r4
$umtsbapp_s set pktsize_ 1000
$umtsbapp_s set random_ false

set start_all_time 0.0
set stop_all_time 30.0

$ns at $start_all_time "$umtscapp_s start"
$ns at $start_all_time "$umtssapp_s start"
$ns at $start_all_time "$umtsiapp_s start"
$ns at $start_all_time "$umtsbapp_s start"
$ns at $stop_all_time "$umtscapp_s stop"

95

$ns at $stop_all_time "$umtssapp_s stop"
$ns at $stop_all_time "$umtsiapp_s stop"
$ns at $stop_all_time "$umtsbapp_s stop"
$ns at 31.0 "$umtspdbqueue printstats"
$ns at 31.0 "finish"

$ns run

96

Appendix G: Simulation scenarios for DQB in a intermittent traffic
pattern

set ns [new Simulator]
#Define different colors for data flows
$ns color 1 Red
$ns color 2 Blue
$ns color 3 green
$ns color 4 yellow
$ns color 5 black

#Open the nam trace file
set tf [open umts-pred-out-p.tr w]
$ns trace-all $tf

#Define a 'output' pricedure
proc output {} {
 global udp_r1 udp_r2 udp_r3 udp_r4
 global con_xmit_period str_xmit_period int_xmit_period bac_xmit_period
 global udp_con_pktsize udp_str_pktsize udp_int_pktsize udp_bac_pktsize
 set con_app_rbytes [$udp_r1 set con_rbytes]
 set str_app_rbytes [$udp_r2 set str_rbytes]
 set int_app_rbytes [$udp_r3 set int_rbytes]
 set bac_app_rbytes [$udp_r4 set bac_rbytes]

puts " "
 puts "con_xmit_period : $con_xmit_period"
 puts "str_xmit_period : $str_xmit_period"
 puts "int_xmit_period : $int_xmit_period"
 puts "bac_xmit_period : $bac_xmit_period"
 puts "Conversation application transmission volume : $con_app_rbytes"
 puts "Stream application transmission volume : $str_app_rbytes"
 puts "Interactive application transmission volume : $int_app_rbytes"
 puts "Background application transmission volume : $bac_app_rbytes"
set con_app_xmit_performance_byte [expr $con_app_rbytes / $con_xmit_period]

 set str_app_xmit_performance_byte [expr $str_app_rbytes / $str_xmit_period]
 set int_app_xmit_performance_byte [expr $int_app_rbytes / $int_xmit_period]
set bac_app_xmit_performance_byte [expr $bac_app_rbytes / $bac_xmit_period]

 puts " "
puts "Conversation application transmission performance by bytes : $con_app_xmit_performance_byte"
puts "Stream application transmission performance by bytes : $str_app_xmit_performance_byte"
puts "Interactive application transmission performance by bytes : $int_app_xmit_performance_byte"
puts "Background application transmission performance by bytes : $bac_app_xmit_performance_byte"
set con_app_xmit_performance_pkt [expr [expr $con_app_rbytes / $udp_con_pktsize] /

$con_xmit_period]
set str_app_xmit_performance_pkt [expr [expr $str_app_rbytes / $udp_str_pktsize] / $str_xmit_period]
set int_app_xmit_performance_pkt [expr [expr $int_app_rbytes / $udp_int_pktsize] / $int_xmit_period]
set bac_app_xmit_performance_pkt [expr [expr $bac_app_rbytes / $udp_bac_pktsize] / $bac_xmit_period]
puts " "
puts "Conversation application transmission performance by packets : $con_app_xmit_performance_pkt"
puts "Stream application transmission performance by packets : $str_app_xmit_performance_pkt"
puts "Interactive application transmission performance by packets : $int_app_xmit_performance_pkt"
puts "Background application transmission performance by packets : $bac_app_xmit_performance_pkt"

}

#Define a 'finish' procedure
proc finish {} {
 global ns tf
 $ns flush-trace
 close $tf

#Execute trace file process
set PERL "/usr/bin/perl"
set USERHOME [exec env | grep "^HOME" | sed /^HOME=/s/^HOME=//]

97

set NSHOME "$USERHOME/ns2/ns-allinone-2.30"
set XGRAPH "$NSHOME/bin/xgraph"
set GETSET "$NSHOME/ns-2.30/bin/getset"
set GETDRT "$NSHOME/ns-2.30/bin/getdrt"
set EEDELAYS "$NSHOME/ns-2.30/bin/eedelay_s"
exec $PERL $GETDRT -s 0.0 -d 6.0 -f 1 umts-pred-out-p.tr > predumtscdrtp.tr
exec $PERL $GETDRT -s 1.0 -d 7.0 -f 2 umts-pred-out-p.tr > predumtssdrtp.tr
exec $PERL $GETDRT -s 2.0 -d 8.0 -f 3 umts-pred-out-p.tr > predumtsidrtp.tr
exec $PERL $GETDRT -s 3.0 -d 9.0 -f 4 umts-pred-out-p.tr > predumtsbdrtp.tr
 exit 0
}
set node_(s1) [$ns node]
set node_(s2) [$ns node]
set node_(s3) [$ns node]
set node_(s4) [$ns node]
set node_(g1) [$ns node]
set node_(g2) [$ns node]
set node_(r1) [$ns node]
set node_(r2) [$ns node]
set node_(r3) [$ns node]
set node_(r4) [$ns node]

$ns duplex-link $node_(s1) $node_(g1) 2.0Mb 1ms DropTail
$ns duplex-link $node_(s2) $node_(g1) 2.0Mb 1ms DropTail
$ns duplex-link $node_(s3) $node_(g1) 2.0Mb 1ms DropTail
$ns duplex-link $node_(s4) $node_(g1) 2.0Mb 1ms DropTail
$ns duplex-link $node_(g1) $node_(g2) 3Mb 100ms UmtsPredQueue
$ns duplex-link $node_(r1) $node_(g2) 2.0Mb 1ms DropTail
$ns duplex-link $node_(r2) $node_(g2) 2.0Mb 1ms DropTail
$ns duplex-link $node_(r3) $node_(g2) 2.0Mb 1ms DropTail
$ns duplex-link $node_(r4) $node_(g2) 2.0Mb 1ms DropTail
set umtspredqueue [[$ns link $node_(g1) $node_(g2)] queue]

#Setup UmtsPdbQueue queue parameter
$ns queue-limit $node_(g1) $node_(g2) 40
$umtspredqueue set c_enq_min 8
$umtspredqueue set s_enq_min 7
$umtspredqueue set i_enq_min 6
$umtspredqueue set b_enq_min 5
$umtspredqueue set c_enq_max 40
$umtspredqueue set s_enq_max 38
$umtspredqueue set i_enq_max 36
$umtspredqueue set b_enq_max 34
$umtspredqueue set con_redenque_prob 1.0
$umtspredqueue set str_redenque_prob 0.9
$umtspredqueue set int_redenque_prob 0.8
$umtspredqueue set bac_redenque_prob 0.7
$umtspredqueue set con_queue_limit 8
$umtspredqueue set str_queue_limit 7
$umtspredqueue set int_queue_limit 6
$umtspredqueue set bac_queue_limit 5

$ns duplex-link-op $node_(g1) $node_(g2) queuePos 0.5
$ns duplex-link-op $node_(s1) $node_(g1) orient up
$ns duplex-link-op $node_(s2) $node_(g1) orient left-up
$ns duplex-link-op $node_(s3) $node_(g1) orient left-down
$ns duplex-link-op $node_(s4) $node_(g1) orient down
$ns duplex-link-op $node_(g1) $node_(g2) orient right
$ns duplex-link-op $node_(g2) $node_(r1) orient up
$ns duplex-link-op $node_(g2) $node_(r2) orient rigth-up
$ns duplex-link-op $node_(g2) $node_(r3) orient rigth-down
$ns duplex-link-op $node_(g2) $node_(r4) orient down
#Setup a UMTS UDP connection
set udp_s1 [new Agent/UDP/UDPUmtsc]
set udp_r1 [new Agent/UDP/UDPUmtsc]

98

$ns attach-agent $node_(s1) $udp_s1
$ns attach-agent $node_(r1) $udp_r1
$ns connect $udp_s1 $udp_r1
set udp_con_pktsize 1000
$udp_s1 set packetSize_ $udp_con_pktsize
$udp_r1 set packetSize_ $udp_con_pktsize
$udp_s1 set fid_ 1
$udp_r1 set fid_ 1

set udp_s2 [new Agent/UDP/UDPUmtss]
set udp_r2 [new Agent/UDP/UDPUmtss]
$ns attach-agent $node_(s2) $udp_s2
$ns attach-agent $node_(r2) $udp_r2
$ns connect $udp_s2 $udp_r2
set udp_str_pktsize 1000
$udp_s2 set packetSize_ $udp_str_pktsize
$udp_r2 set packetSize_ $udp_str_pktsize
$udp_s2 set fid_ 2
$udp_r2 set fid_ 2

set udp_s3 [new Agent/UDP/UDPUmtsi]
set udp_r3 [new Agent/UDP/UDPUmtsi]
$ns attach-agent $node_(s3) $udp_s3
$ns attach-agent $node_(r3) $udp_r3
$ns connect $udp_s3 $udp_r3
set udp_int_pktsize 1000
$udp_s3 set packetSize_ $udp_int_pktsize
$udp_r3 set packetSize_ $udp_int_pktsize
$udp_s3 set fid_ 3
$udp_r3 set fid_ 3
set udp_s4 [new Agent/UDP/UDPUmtsb]
set udp_r4 [new Agent/UDP/UDPUmtsb]
$ns attach-agent $node_(s4) $udp_s4
$ns attach-agent $node_(r4) $udp_r4
$ns connect $udp_s4 $udp_r4
set udp_bac_pktsize 1000
$udp_s4 set packetSize_ $udp_bac_pktsize
$udp_r4 set packetSize_ $udp_bac_pktsize
$udp_s4 set fid_ 4
$udp_r4 set fid_ 4

#Setup a UMTS Conversation Application
set umtscapp_s [new Application/UMTSCApp]
set umtscapp_r [new Application/UMTSCApp]
$umtscapp_s attach-agent $udp_s1
$umtscapp_r attach-agent $udp_r1
$umtscapp_s set pktsize_ 1000
$umtscapp_s set random_ false

#Setup a UMTS stream Application
set umtssapp_s [new Application/UMTSSApp]
set umtssapp_r [new Application/UMTSSApp]
$umtssapp_s attach-agent $udp_s2
$umtssapp_r attach-agent $udp_r2
$umtssapp_s set pktsize_ 1000
$umtssapp_s set random_ false

#Setup a UMTS Interactive Application
set umtsiapp_s [new Application/UMTSIApp]
set umtsiapp_r [new Application/UMTSIApp]
$umtsiapp_s attach-agent $udp_s3
$umtsiapp_r attach-agent $udp_r3
$umtsiapp_s set pktsize_ 1000
$umtsiapp_s set random_ false

99

#Setup a UMTS Background Application
set umtsbapp_s [new Application/UMTSBApp]
set umtsbapp_r [new Application/UMTSBApp]
$umtsbapp_s attach-agent $udp_s4
$umtsbapp_r attach-agent $udp_r4
$umtsbapp_s set pktsize_ 1000
$umtsbapp_s set random_ false

#Simulation Scenario
set start_all_time 0.0
set stop_con_time1 7.5
set stop_str_time1 9.5
set stop_int_time1 10.5
set start_con_time1 10.25
set start_str_time1 12.0
set start_int_time1 13.0
set stop_str_time2 14.25
set stop_int_time2 15.75
set stop_con_time2 16.0
set start_int_time2 17.25
set start_con_time2 17.6
set start_str_time2 18.0
set stop_con_time3 20.0
set stop_str_time3 20.6
set stop_int_time3 21.35
set start_str_time3 24.4
set start_int_time3 25.5
set start_con_time3 27.0
set stop_all_time 30.0
set con_xmit_period 0.0
set str_xmit_period 0.0
set int_xmit_period 0.0
set bac_xmit_period 0.0

set con_xmit_period [expr [expr $stop_con_time1 - $start_all_time] + [expr $stop_con_time2 -
$start_con_time1] + [expr $stop_con_time3 - $start_con_time2] + [expr $stop_all_time -
$start_con_time3]]
set str_xmit_period [expr [expr $stop_str_time1 - $start_all_time] + [expr $stop_str_time2 -
$start_str_time1] + [expr $stop_str_time3 - $start_str_time2] + [expr $stop_all_time - $start_str_time3]]
set int_xmit_period [expr [expr $stop_int_time1 - $start_all_time] + [expr $stop_int_time2 -
$start_int_time1] + [expr $stop_int_time3 - $start_int_time2] + [expr $stop_all_time - $start_int_time3]]
set bac_xmit_period $stop_all_time

$ns at $start_all_time "$umtscapp_s start"
$ns at $start_all_time "$umtssapp_s start"
$ns at $start_all_time "$umtsiapp_s start"
$ns at $start_all_time "$umtsbapp_s start"
$ns at $stop_con_time1 "$umtscapp_s stop"
$ns at $stop_str_time1 "$umtssapp_s stop"
$ns at $start_con_time1 "$umtscapp_s start"
$ns at $stop_int_time1 "$umtsiapp_s stop"
$ns at $start_str_time1 "$umtssapp_s start"
$ns at $start_int_time1 "$umtsiapp_s start"
$ns at $stop_str_time2 "$umtssapp_s stop"
$ns at $stop_int_time2 "$umtsiapp_s stop"
$ns at $stop_con_time2 "$umtscapp_s stop"
$ns at $start_int_time2 "$umtsiapp_s start"
$ns at $start_con_time2 "$umtscapp_s start"
$ns at $start_str_time2 "$umtssapp_s start"
$ns at $stop_con_time3 "$umtscapp_s stop"
$ns at $stop_str_time3 "$umtssapp_s stop"
$ns at $stop_int_time3 "$umtsiapp_s stop"
$ns at $start_str_time3 "$umtssapp_s start"
$ns at $start_int_time3 "$umtsiapp_s start"
$ns at $start_con_time3 "$umtscapp_s start"
$ns at $stop_all_time "$umtscapp_s stop"

100

$ns at $stop_all_time "$umtssapp_s stop"
$ns at $stop_all_time "$umtsiapp_s stop"
$ns at $stop_all_time "$umtsbapp_s stop"
$ns at 31.0 "$umtspredqueue printstats"
$ns at 31.0 "output"
$ns at 31.0 "finish"
$ns run

101

Appendix H: Simulation scenarios for OQB in a intermittent traffic
pattern

set ns [new Simulator]

#Define different colors for data flows
$ns color 1 Red
$ns color 2 Blue
$ns color 3 green
$ns color 4 yellow
$ns color 5 black

#Open the nam trace file
set tf [open umts-pdb-out-p.tr w]
$ns trace-all $tf

#Define a 'output' pricedure
proc output {} {
 global udp_r1 udp_r2 udp_r3 udp_r4
 global con_xmit_period str_xmit_period int_xmit_period bac_xmit_period
 global udp_con_pktsize udp_str_pktsize udp_int_pktsize udp_bac_pktsize

 set con_app_rbytes [$udp_r1 set con_rbytes]
 set str_app_rbytes [$udp_r2 set str_rbytes]
 set int_app_rbytes [$udp_r3 set int_rbytes]
 set bac_app_rbytes [$udp_r4 set bac_rbytes]

puts " "
puts "con_xmit_period : $con_xmit_period"
puts "str_xmit_period : $str_xmit_period"
puts "int_xmit_period : $int_xmit_period"
puts "bac_xmit_period : $bac_xmit_period"
puts "Conversation application transmission volume : $con_app_rbytes"
puts "Stream application transmission volume : $str_app_rbytes"
puts "Interactive application transmission volume : $int_app_rbytes"
puts "Background application transmission volume : $bac_app_rbytes"
set con_app_xmit_performance_byte [expr $con_app_rbytes / $con_xmit_period]
set str_app_xmit_performance_byte [expr $str_app_rbytes / $str_xmit_period]
set int_app_xmit_performance_byte [expr $int_app_rbytes / $int_xmit_period]
set bac_app_xmit_performance_byte [expr $bac_app_rbytes / $bac_xmit_period]
puts " "
puts "Conversation application transmission performance by bytes : $con_app_xmit_performance_byte"
puts "Stream application transmission performance by bytes : $str_app_xmit_performance_byte"
puts "Interactive application transmission performance by bytes : $int_app_xmit_performance_byte"
puts "Background application transmission performance by bytes : $bac_app_xmit_performance_byte"
set con_app_xmit_performance_pkt [expr [expr $con_app_rbytes / $udp_con_pktsize] / $con_xmit_period]
set str_app_xmit_performance_pkt [expr [expr $str_app_rbytes / $udp_str_pktsize] / $str_xmit_period]
set int_app_xmit_performance_pkt [expr [expr $int_app_rbytes / $udp_int_pktsize] / $int_xmit_period]
set bac_app_xmit_performance_pkt [expr [expr $bac_app_rbytes / $udp_bac_pktsize] / $bac_xmit_period]
puts " "
puts "Conversation application transmission performance by packets : $con_app_xmit_performance_pkt"
puts "Stream application transmission performance by packets : $str_app_xmit_performance_pkt"
puts "Interactive application transmission performance by packets : $int_app_xmit_performance_pkt"
puts "Background application transmission performance by packets : $bac_app_xmit_performance_pkt"
}

#Define a 'finish' procedure
proc finish {} {
 global ns tf
 $ns flush-trace
 close $tf
 #Execute trace file process
 set PERL "/usr/bin/perl"

102

 set USERHOME [exec env | grep "^HOME" | sed /^HOME=/s/^HOME=//]
 set NSHOME "$USERHOME/ns2/ns-allinone-2.30"
 set XGRAPH "$NSHOME/bin/xgraph"
 set GETSET "$NSHOME/ns-2.30/bin/getset"
 set GETDRT "$NSHOME/ns-2.30/bin/getdrt"
 set EEDELAYS "$NSHOME/ns-2.30/bin/eedelay_s"

 exec $PERL $GETDRT -s 0.0 -d 6.0 -f 1 umts-pdb-out-p.tr > predumtscdrtp.tr
 exec $PERL $GETDRT -s 1.0 -d 7.0 -f 2 umts-pdb-out-p.tr > predumtssdrtp.tr
 exec $PERL $GETDRT -s 2.0 -d 8.0 -f 3 umts-pdb-out-p.tr > predumtsidrtp.tr
 exec $PERL $GETDRT -s 3.0 -d 9.0 -f 4 umts-pdb-out-p.tr > predumtsbdrtp.tr

 exit 0
}

set node_(s1) [$ns node]
set node_(s2) [$ns node]
set node_(s3) [$ns node]
set node_(s4) [$ns node]
set node_(g1) [$ns node]
set node_(g2) [$ns node]
set node_(r1) [$ns node]
set node_(r2) [$ns node]
set node_(r3) [$ns node]
set node_(r4) [$ns node]

$ns duplex-link $node_(s1) $node_(g1) 2.0Mb 1ms DropTail
$ns duplex-link $node_(s2) $node_(g1) 2.0Mb 1ms DropTail
$ns duplex-link $node_(s3) $node_(g1) 2.0Mb 1ms DropTail
$ns duplex-link $node_(s4) $node_(g1) 2.0Mb 1ms DropTail
$ns duplex-link $node_(g1) $node_(g2) 3Mb 100ms UmtsPdbQueue
$ns duplex-link $node_(r1) $node_(g2) 2.0Mb 1ms DropTail
$ns duplex-link $node_(r2) $node_(g2) 2.0Mb 1ms DropTail
$ns duplex-link $node_(r3) $node_(g2) 2.0Mb 1ms DropTail
$ns duplex-link $node_(r4) $node_(g2) 2.0Mb 1ms DropTail
set umtspdbqueue [[$ns link $node_(g1) $node_(g2)] queue]

#Setup UmtsPdbQueue queue parameter
$ns queue-limit $node_(g1) $node_(g2) 40
$umtspdbqueue set c_enq_min 8
$umtspdbqueue set s_enq_min 7
$umtspdbqueue set i_enq_min 6
$umtspdbqueue set b_enq_min 5
$umtspdbqueue set c_enq_max 40
$umtspdbqueue set s_enq_max 38
$umtspdbqueue set i_enq_max 36
$umtspdbqueue set b_enq_max 34
$umtspdbqueue set con_redenque_prob 1.0
$umtspdbqueue set str_redenque_prob 0.9
$umtspdbqueue set int_redenque_prob 0.8
$umtspdbqueue set bac_redenque_prob 0.7
$umtspdbqueue set con_queue_limit 8
$umtspdbqueue set str_queue_limit 7
$umtspdbqueue set int_queue_limit 6
$umtspdbqueue set bac_queue_limit 5

$ns duplex-link-op $node_(g1) $node_(g2) queuePos 0.5

$ns duplex-link-op $node_(s1) $node_(g1) orient up
$ns duplex-link-op $node_(s2) $node_(g1) orient left-up
$ns duplex-link-op $node_(s3) $node_(g1) orient left-down
$ns duplex-link-op $node_(s4) $node_(g1) orient down
$ns duplex-link-op $node_(g1) $node_(g2) orient right
$ns duplex-link-op $node_(g2) $node_(r1) orient up
$ns duplex-link-op $node_(g2) $node_(r2) orient rigth-up
$ns duplex-link-op $node_(g2) $node_(r3) orient rigth-down

103

$ns duplex-link-op $node_(g2) $node_(r4) orient down

#Setup a UMTS UDP connection
set udp_s1 [new Agent/UDP/UDPUmtsc]
set udp_r1 [new Agent/UDP/UDPUmtsc]
$ns attach-agent $node_(s1) $udp_s1
$ns attach-agent $node_(r1) $udp_r1
$ns connect $udp_s1 $udp_r1
set udp_con_pktsize 1000
$udp_s1 set packetSize_ $udp_con_pktsize
$udp_r1 set packetSize_ $udp_con_pktsize
$udp_s1 set fid_ 1
$udp_r1 set fid_ 1

set udp_s2 [new Agent/UDP/UDPUmtss]
set udp_r2 [new Agent/UDP/UDPUmtss]
$ns attach-agent $node_(s2) $udp_s2
$ns attach-agent $node_(r2) $udp_r2
$ns connect $udp_s2 $udp_r2
set udp_str_pktsize 1000
$udp_s2 set packetSize_ $udp_str_pktsize
$udp_r2 set packetSize_ $udp_str_pktsize
$udp_s2 set fid_ 2
$udp_r2 set fid_ 2

set udp_s3 [new Agent/UDP/UDPUmtsi]
set udp_r3 [new Agent/UDP/UDPUmtsi]
$ns attach-agent $node_(s3) $udp_s3
$ns attach-agent $node_(r3) $udp_r3
$ns connect $udp_s3 $udp_r3
set udp_int_pktsize 1000
$udp_s3 set packetSize_ $udp_int_pktsize
$udp_r3 set packetSize_ $udp_int_pktsize
$udp_s3 set fid_ 3
$udp_r3 set fid_ 3

set udp_s4 [new Agent/UDP/UDPUmtsb]
set udp_r4 [new Agent/UDP/UDPUmtsb]
$ns attach-agent $node_(s4) $udp_s4
$ns attach-agent $node_(r4) $udp_r4
$ns connect $udp_s4 $udp_r4
set udp_bac_pktsize 1000
$udp_s4 set packetSize_ $udp_bac_pktsize
$udp_r4 set packetSize_ $udp_bac_pktsize
$udp_s4 set fid_ 4
$udp_r4 set fid_ 4

#Setup a UMTS Conversation Application
set umtscapp_s [new Application/UMTSCApp]
set umtscapp_r [new Application/UMTSCApp]
$umtscapp_s attach-agent $udp_s1
$umtscapp_r attach-agent $udp_r1
$umtscapp_s set pktsize_ 1000
$umtscapp_s set random_ false

#Setup a UMTS stream Application
set umtssapp_s [new Application/UMTSSApp]
set umtssapp_r [new Application/UMTSSApp]
$umtssapp_s attach-agent $udp_s2
$umtssapp_r attach-agent $udp_r2
$umtssapp_s set pktsize_ 1000
$umtssapp_s set random_ false

#Setup a UMTS Interactive Application
set umtsiapp_s [new Application/UMTSIApp]

104

set umtsiapp_r [new Application/UMTSIApp]
$umtsiapp_s attach-agent $udp_s3
$umtsiapp_r attach-agent $udp_r3
$umtsiapp_s set pktsize_ 1000
$umtsiapp_s set random_ false

#Setup a UMTS Background Application
set umtsbapp_s [new Application/UMTSBApp]
set umtsbapp_r [new Application/UMTSBApp]
$umtsbapp_s attach-agent $udp_s4
$umtsbapp_r attach-agent $udp_r4
$umtsbapp_s set pktsize_ 1000
$umtsbapp_s set random_ false

#Simulation Scenario
set start_all_time 0.0
set stop_con_time1 7.5
set stop_str_time1 9.5
set stop_int_time1 10.5
set start_con_time1 10.25
set start_str_time1 12.0
set start_int_time1 13.0
set stop_str_time2 14.25
set stop_int_time2 15.75
set stop_con_time2 16.0
set start_int_time2 17.25
set start_con_time2 17.6
set start_str_time2 18.0
set stop_con_time3 20.0
set stop_str_time3 20.6
set stop_int_time3 21.35
set start_str_time3 24.4
set start_int_time3 25.5
set start_con_time3 27.0
set stop_all_time 30.0

set con_xmit_period 0.0
set str_xmit_period 0.0
set int_xmit_period 0.0
set bac_xmit_period 0.0

set con_xmit_period [expr [expr $stop_con_time1 - $start_all_time] + [expr $stop_con_time2 -
$start_con_time1] + [expr $stop_con_time3 - $start_con_time2] + [expr $stop_all_time -
$start_con_time3]]

set str_xmit_period [expr [expr $stop_str_time1 - $start_all_time] + [expr $stop_str_time2 -
$start_str_time1] + [expr $stop_str_time3 - $start_str_time2] + [expr $stop_all_time - $start_str_time3]]

set int_xmit_period [expr [expr $stop_int_time1 - $start_all_time] + [expr $stop_int_time2 -
$start_int_time1] + [expr $stop_int_time3 - $start_int_time2] + [expr $stop_all_time - $start_int_time3]]

set bac_xmit_period $stop_all_time

$ns at $start_all_time "$umtscapp_s start"
$ns at $start_all_time "$umtssapp_s start"
$ns at $start_all_time "$umtsiapp_s start"
$ns at $start_all_time "$umtsbapp_s start"
$ns at $stop_con_time1 "$umtscapp_s stop"
$ns at $stop_str_time1 "$umtssapp_s stop"
$ns at $start_con_time1 "$umtscapp_s start"
$ns at $stop_int_time1 "$umtsiapp_s stop"
$ns at $start_str_time1 "$umtssapp_s start"
$ns at $start_int_time1 "$umtsiapp_s start"
$ns at $stop_str_time2 "$umtssapp_s stop"
$ns at $stop_int_time2 "$umtsiapp_s stop"
$ns at $stop_con_time2 "$umtscapp_s stop"
$ns at $start_int_time2 "$umtsiapp_s start"
$ns at $start_con_time2 "$umtscapp_s start"

105

$ns at $start_str_time2 "$umtssapp_s start"
$ns at $stop_con_time3 "$umtscapp_s stop"
$ns at $stop_str_time3 "$umtssapp_s stop"
$ns at $stop_int_time3 "$umtsiapp_s stop"
$ns at $start_str_time3 "$umtssapp_s start"
$ns at $start_int_time3 "$umtsiapp_s start"
$ns at $start_con_time3 "$umtscapp_s start"
$ns at $stop_all_time "$umtscapp_s stop"
$ns at $stop_all_time "$umtssapp_s stop"
$ns at $stop_all_time "$umtsiapp_s stop"
$ns at $stop_all_time "$umtsbapp_s stop"
$ns at 31.0 "$umtspdbqueue printstats"
$ns at 31.0 "output"
$ns at 31.0 "finish"

$ns run

106

Responses to commitee comments
口試委員問題與建議回覆

Prof. Chi-Chun Lo(羅濟群教授)

項次 問題與建議 問題回覆

1.

現行 UMTS 怎麼做？為什麼

要用你的方法？你的貢獻在

那？如果你已知道應用的

packet type 你就可以選擇最

好 的 方 法 管 理 queuing

system？

已請教專家回覆信：All-IP於 UMTS LTE才

會實現，目前 UMTS的環境 QoS有在做

本研究所提出二種佇列空間配置，主要是

能夠做到差別性服務的特性，並可實現在

不同網路型態上，採用 UMTS是因為 UMTS

有明確的定義差異性服務等級，可以作為

差別性服務的代表

我的貢獻在於只需要小成本的方式在

Router 上採用這個機制，所得的結果可與

DiffServ Domain 近似甚至有些服務類型優

於 DiffServ，節省許多建置上的成本

真實世界的網路環境，並無法事先預知何

種 Packet Type會送達，所以無法事先選擇

最好的 Queuing System 管理，因此選擇最

好的管理方式常是兩難的情況

Prof. Taoi Hsu(徐道義教授)

項次 問題與建議 問題回覆

1.
應參考 Benchmark 的演算機制進

行效能的比較優劣？

模擬後比較結果，請參考表 1, 2和 3.

Prof. Chyan Ynag(楊 千教授)

項次 問題與建議 問題回覆

1. 程式碼也需附在附錄中 論文初稿中已修正

Prof. Duen-Ren Liu(劉敦仁教授)

項次 問題與建議 問題回覆

1.
與現有的 DiffServ 架構之效能

比較

如上，同徐教授問題

107

Prof. Tsung-Li Wu(吳宗禮教授)

項次 問題與建議 問題回覆

1.

DQB 與 OQB 配置在 Edge

Router或 Core Router上？

在 Internet 環境中，Core Router 在其他視界

中就成為 Edge Router，所以，並不特定是配

置在那種 Router上，但以邏輯上而言是 Core

Router，Edge Router有另外負責的工作，如

分類、標記…

2.

提 出 新 的 機 制 ？ 改 善

Disorder 及 Starvation 的問

題，放棄 DQB和 OQB？

目前已在進行中，修改程式調整參數，以

求解決方法：

Disorder問題只會發生在 OQB中，每次保證

空間內的封包要送出佇列時，先檢查

Overflow buffer 的封包是否相同？！接著再

比對封包的序號作排序

Starvation 的問題發生在 DQB 中：後續要用

調整參數值的方法以求飢餓的狀況不會產

生

3.

為什麼選擇 DiffServ？ IntServ和 DiffServ是目前 IP QoS兩大主流，

而 IntServ 有建置上的困難與成本的負荷，

且需要所有路徑上的 Router 支援 RSVP 協

定；因 DiffServ不需要維護每個 flow也不需

要通知路由器為其預留資源，簡化了控制

信號工作，並可對 IP表頭內 TOS段來區別

不同的的優先等級以提供不同的服務。

3GPP 已定義優先順序類別映射至 DiffServ

中的 PHB 各類設定，所以本研究選擇

DiffServ模式，如：表 4所示.

4.
Mapping 至 Fig.4 UMTS QoS

Architecture研究上的QoS是

那一段？

提 供 CN Bearer Service/Backbone Bearer

Service之間的 QoS，因本研究主要是在核心

網路中運作

5.

研 究 上 提 出 的 Queuing

Scheme和 DiffServ Router是

否不同？

本研究的Queuing Scheme是在Router上運作

的機制，研究模擬所得的結果與 DiffServ可

達近似的效果

DiffServ 是一個架構由許多 Router(Edge

Router, Egress/Ingress Router, Core Router)組

成，可能是一個 ISP或一個企業網路，建置

成本相對會比較高

6.

AQM/RED 能發揮作用是因

為搭配 TCP 壅塞避免的機

制，才會有效果？對於 UDP

的封包是否就無效？對於

AQM/RED由於是運作在網路層，故不論 TCP

或 UDP的封包都可以利用 RED機制發揮壅

塞避免的功能，RED 的壅塞避免控制是以

佇列空間大小為基準，決定是否丟棄封

108

你提出的研model中是否也

有相同效果？

包，並非特定封包(TCP)才能發揮效能

在 DiffServ架構中，壅塞避免也是利用 AQM

中的 WRED機制所實作的

7.

封包 size 為什麼要定義

100、500、1000？

本研究利用三種封包的 SIZE 是大、中、小

封包的一種代表性，因為目前網路上的封

包有大有小，沒有一定的 size，而我們也無

法預測進來的封包有多大？是何種類型封

包？

目前多媒體類型的封包會因採用不同的壓

縮標準而有不同的封包大小，以 VoIP 而

言，壓縮的標準有 G.723、G.729與 G.711等

等。不一樣的語音壓縮標準代表著不同的

語音封包大小形式，同時也代表著不同的

語音壓縮比率，佔用不一樣的頻寬，會有

不一樣的延遲時間，再封裝下列 header後，

於網路中傳送。

N. V. Lopes, M. J. Nicolau and A. S., “Efficiency of
PRI and WRR DiffServ Scheduling Mechanisms
for Real-Time Services on UMTS Environment”,
2nd IFIP International Conference on New
Technologies, Mobility and Security (NTMS 2008),
Tangier, Morocco, Nov 5-7, 2008, ISBN:
978-2-9532443-0-4, pp 173-178. This study shows
traffic characteristics the following table 5.

Table 5. Traffic characteristics

 VoIP Video Streaming
Web Browsering

(HTTP)
FTP

Application
Protocol

Exponential CBR HTTP FTP

Transport Protocol UDP UDP TCP TCP
Packet Size (bytes) 372 540 500 500

Rate (bps) 12.2(x7 source)=85 47.7(x7 source)=333 160 484

Rate (%) 8 31 15 46

Interleaving(ms) 20 2 7 20

Voice: 372bytes: 10 frames per packets: 20(IPv4)+8(UDP)+12(RTP)+332(max RTP
payload for 10 AMR frames). It can be modelized by the two Markov process as
suggested by ITU-T.

Video: 540bytes: 20(IPv4) + 8(UDP) + 12(RTP) + 500(max AMR RTP payload).
The most of commercial videos are CBR.

Web Browser: 500bytes: Based on large packet sizes used in Internet.

FTP: FTP sessions behave similar to HTTP requests but without the page
abstraction level.

109

8.

不同資料型態的各種特性

於封包中是否也能突顯？

由於本研究是模擬而非仿真，所以要真正

切合實際環境中的封包特性的確有其困難

度

各種 Traffic Pattern，NS2有提供並可於模擬

時寫在 TCL腳本中

9.
DQB 與 OQB 應用在 UMTS

之 uplink/downlink Channel中

是否會有不同效果？

TE(終端設備端)才有 Downlink 與 Uplink 的問

題，核心網路中沒有 Downlink與 Uplink的問

題

10.

TCP on UMTS之一般效能如

何 ？ 如 果 不 佳 時 (很 多

retransmission時)怎麼辦？

TCP的效率問題不管在何種網路架構中，都

有可能會發生，不會因為是 UMTS就不會有

Retransmission 問題，本研究的重點不在於

TCP傳輸層，而是在網路層運作

11.
Table 4中，有過其他安排？

為什麼要這麼設定？

由多組想定實驗所得並配合各應用服務的

優先等級順序條件下，所得 Table 4設定是

最佳參數值組

Table 1. A Summary of simulation parameters

Parameter dimensions Setting values

Packet size 500 bytes

Two-phase queueing buffer
allocation scheme settings

UMTS Application GBS MIN MAX PEP

Conversational 8 8 40 1

Streaming 7 7 38 0.95

Interactive 5 5 35 0.85

Background 2 2 31 0.7

UMTS traffic bandwidth
requirement

1.0MB
Backbone bandwidth in the UMTS

core network
2.0MB

Queueing buffer allocation DQB, OQB, DiffServ

Traffic transmission pattern Continuous Simulation time 60 Sec

Legends: GBS: Guaranteed buffer size, PEP: packet enqueueing probability,

MIN: minimum limit, MAX: maximum limit

110

Table 2. Average packet jitter/delay statistic between DQB, OQB and DiffServ

UMTS
Traffic

Conversational Streaming Interactive Background

Allocations jitter delay jitter delay jitter delay jitter delay

DQB 0.000016 0.22751 0.002112 0.158768 0.000164 0.153704 0.020889 0.201037

OQB 0.00162 0.164011 0.002518 0.164316 0.002047 0.186736 0.002037 0.171697

DiffServ 0.000021 0.311937 0.000739 0.267067 0.001391 0.267066 0.0125 0.265889

Legends:

Unit : ms, PS : packet size, B : bytes

Table 3. Packet enqueuing/dequeuing statistic

Packet Size:
500 bytes

60 seconds Conversational Streaming Interactive Background

Arrival packets

DQB 15001 15001 15001 15001

OQB 15001 15001 15001 15001

DiffServ 14999 14999 14999 14999

Enqueued
packets

DQB 15001 9007 6004 28

OQB 15001 9012 4016 2009

DiffServ 14999 11093 3880 45

Dequeued
packets

DQB 15001 9007 6004 28

OQB 15001 9012 4016 2009

DiffServ 14999 11093 3880 45

Dropped packets

DQB 0 5994 8997 14973

OQB 0 5989 10985 12992

DiffServ 0 3906 11119 14954

Packet dequeued
ratio (%)

(Throughput)

DQB 100 60.04266382 40.0239984 0.186654223

OQB 100 60.07599493 26.77154856 13.3924405

DiffServ 100 73.95826388 25.86839123 0.300020001

Packet dropped
ratio (%)

DQB 0 39.95733618 59.9760016 99.81334578

OQB 0 39.92400507 73.22845144 86.6075595

DiffServ 0 26.04173612 74.13160877 99.69998

Table 4. QoS mapping between DiffServ PHBs and UMTS Service class

Application Type UMTS Service Class DiffServ PHB

VoIP Conversational EF (Expedited Forwarding)

Video Streaming Streaming AF1X (Assured Forwarding)

Web, Telnet Interactive AF2X

FTP, email Background BE (Best Effort)

