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鍺中三價受子和雙共振腔於兆赫波源之理論研究 

 

學生王：王德賢                                       指導教授：顏順通 博士  

國立交通大學電子工程學系暨研究所 

摘 要       

  在本論文中我們分兩個部份分別討論兩種不同的半導體的兆赫波光源。第

一個是摻雜三價受子的鍺。其可藉由電洞從鍺三價受子的激發態到基態的電隅

極躍遷（electric-dipole transition）放出的兆赫頻段的電磁波。第二個是搭配兩種

不同特性的共振腔所形成的拋物量子井雷射。我們預期在低溫下其可成為高功

率的兆赫波光源。 

  在第一個部份中我們探討應力對鍺受子能階的電子結構（electronic struc-

ture）以及其電隅極躍遷的效應。而我們的計算是建立在等效質量理論（effective 

mass theory）並考慮了一個半經驗的雜質位能。這個雜質位能考慮了波向量 q

相關介電函數所造成的屏蔽效應以及中心核修正（central-cell correction）。 

  我們可以從受子態的成份來瞭解應力對電子結構和電隅極躍遷所造成的影

響。在應力約小於 3 kbar 時受子態的束縛能會隨應力增加而快速地下降。此外

我們發現偶對稱的受子態對於壓縮應力（compressive stress）和對伸張應力

（ tensile stress）展現出非對稱的特性。這是因為偶對稱的受子態重電洞

（heavy-hole）和輕電洞（light-hole）的成份有很大的差異所造成。隨著應力的

增加重電洞能帶和輕電洞能帶的隅合越來越小，且其在高應力（ 3 kbar）的情



 

ii 

 

況機乎可以乎略。此時受子態機乎是由單純的重電洞或是單純的由輕電洞所組

成。這會造成受子態會有額外簡併的行為，且電隅極躍遷會有額外的選擇定則

（selection rule）。我們針對低能量的激發態和基態間的躍遷在無應力和低應力

（<0.35 kbar）的情況下做詳細的討論並且發現我們的結果與實驗比較達到定量

的一致。至於高應力的情況目前並無實驗可供對照，我們也討論了理論模型在

高應力下的適用性。 

  在第二個部份中我們提出並以理論証實一種雙共振腔的高功率的拋物量子

井兆赫波雷射。當量子井與光子晶體-金屬-金屬共振腔共振時可以將載子次能帶

間發光躍遷率（intersubband radiative transition rate）提高幾個數量級，而當量子

井與法布利-培若（Fabry-Perot）共振腔產生共振會提高載子的帶間躍遷率

（interband transition rate）。當這兩個共振腔同時與量子井共振，載子數和熱都

會明顯地降低。此時，熱機乎不隨注入電流的增加而增加但兆赫波的發光強度

卻可隨著注入電流呈線性地增加。我們預期這個系統可以有很好的發光效率且

發光功率可輕易地達到 10 W/cm2。 
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Heterogeneous Cavities for Terahertz Emission 

 

 

Student：Te-Hsien Wang      Advisors：Dr. Shun-Tung Yen 

Department of Electronics Engineering & Institute of Electronics 
National Chiao Tung University 

ABSTRACT 
     

    In this dissertation, we study two types of semiconductor terahertz source. 1. The group-III 

acceptors in Ge under uniaxial stress. It can radiate terahertz electromagnetic wave through the 

electric-dipole transitions from the excited to the ground acceptor states. 2. The parabolic quantum 

wells laser with heterogeneous cavities. We expect it can be a high-power terahertz emitter. 

    In the first part of the dissertation, we study stress effect on the electronic structures and the 

electric-dipole transitions for group-III acceptors in Ge. The calculation is based on the effective 

mass theory with a semi-empirical impurity potential which considers the q-dependent screening 

and the central-cell correction. The stress effect on the electronic structures and the electric-dipole 

transitions can be undertood by connecting with the composition of the acceptor states. We find that 

the binding energies decrease rapidly with the stress in the low-stress region, and for even-parity 

states they exhibit remarkable asymmetry between the compressive and the tensile stress due to the 

large difference between the heavy-hole and the light-hole compositions. The coupling between the 

heavy-hole and the light-hole bands decreases with increasing stress and is almost negligible in the 
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high-stress region ( 3kbar). In this case, the acceptor states are almost pure heavy-hole or 

light-hole states. This causes the appearance of extra degeneracy of the acceptor states and addi-

tional selection rules of the electric-dipole transitions. In addition, we study in detail the electronic 

structures of the low-lying acceptor states and the electric-dipole transitions in the low-stress region. 

The results are in agreement with the currently available experimental data. However, because of 

the lack of the experimental data in the high-stress region, a justification is made for the applicabil-

ity of our calculation for the case of high stress. 

    In the second part of the dissertation, we propose and demonstrate theoretically a scheme for 

high-efficiency terahertz lasing from parabolic quantum wells resonant coupled with two different 

cavities. An in-resonance photonic crystal metal-metal cavity can increase the intersubband radia-

tive transition rates by several orders; an in-resonance Fabry-Perot cavity can increase the interband 

transition rate. Simultaneous interband and intersubband lasings can significantly reduce the carrier 

density and heat generation due to nonradiative processes. In this case, the heat generation remains 

low and constant, independent of the injection current but the terahertz emission power increases 

linearly with current. With the present scheme, terahertz emission power of 10 W/cm2 can easily be 

achieved, accompanied by high intersubband quantum efficiency.  
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Chapter 1 
Overview  

Terahertz (THz) radiation is the electromagnetic (EM) wave whose frequency lies be-

tween the microwave and the infrared regions. The EM wave of 1 THz has a period of 1 ps, a 

wavelength of 300 µm, a photon energy of 4.1 meV, which divided by the Boltzmann’s con-

stant is a temperature of 47.6 K. There are many fundamental physics processes associated 

with the THz frequencies such as rotation of molecules, lattice vibrations, intraband transi-

tions in semiconductors, and energy gaps of superconductors. Using the distinctive line struc-

tures of the various species of molecules, we can identify these molecules in an unknown ma-

terial. In addition, we can obtain the information of the molecular collision by the line shapes 

of the spectrum. In the following section, we will describe the properties of THz radiation in 

different types of materials and the correlations between these properties and some interesting 

applications.  

1.1  Properties and Applications of THz Radiation  

   According to the optical properties in the THz region, we can roughly divide common 

materials into three categories. The first one is metal, which has a high conductivity. There-

fore, it is highly reflective in THz region. The second one is dielectric including, for instance, 

paper, clothes, wood, and plastic, etc. They have low conductivity and are almost nonpolar. 

They are usually opaque for visible light but transparent to THz EM waves. The third one is 

water. It is a strongly polar liquid, and is highly absorptive at THz frequencies. The properties 

of these materials as well as the semiconductor are given in Table 1.1. Since most of the ma-

terials for packaging are made of dielectric, which is transparent to THz EM waves, the THz 

imaging can be used to inspect the seal packages without causing any damage to the packages. 

Since water is highly absorptive in THz region, we can easily differentiate between the sub-
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stances containing water and the dry materials. We can also easily identify the metal because 

it is highly reflective. Furthermore, we can combine spectral identification with imaging be-

cause many materials have unique spectrum in THz frequency. Because of the properties of 

THz EM wave mentioned above, the THz imaging has applications in many fields.     

THz imaging can be applied to the problems of homeland security, because it can be used 

to identify illegal drugs, explosives, and weapons, concealed underneath most packaging ma-

terials, remotely. The other application is for earth and space science. By measuring the THz 

radiation from the atmosphere, we can monitor the atmospheric composition, and hence better 

understand the effect of ozone hole on the global warming. Furthermore, measuring the THz 

radiation from the outer space can help us to observe the birth of solar system and newborn 

galaxies as far as several billion light years away. This can be helpful to the investigation of 

the evolution of galaxies and the formation of stars and planets. THz radiation is also useful 

for biology and medical science and agriculture because of three reasons. The first is that 

most of the collective vibrational modes of protein and DNA lie in the THz region. The 

second is that THz radiation is very sensitive to water. This is useful because the small change 

of water content may represent crucial defects in the tissue. The third is that THz has much 

low photon energy in comparison with X-rays. Therefore, THz imaging will not cause dam-

age to the tissues. Furthermore, THz radiation can be used for three dimensional imaging of 

teeth. The image can be more accurate than that obtained by X-ray imaging.  

The study of THz radiation is growing in many independent fields. Here, we have just 

briefly described some applications in homeland security, earth and space science, biology 

and medical science and agriculture. THz radiation has many other applications. Readers can 

find the details from the review articles [1-7]. 
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Table 1.1 Optical properties of different types of materials in the THz region.  
Material Type Optical Properties Values at 1 THz 
Liquid water High absorption coefficient ≈ 250 cm-1 
Metal High reflectivity >99.5 % 
Plastic Low absorption coefficient <0.5 cm-1 
 Low refractive index ≈ 1.5 
Semiconductor Low absorption coefficient <1cm-1 
 High refractive index ~3-4 
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1.2  Terahertz Sources  

   Even though THz radiation has so many applications as mentioned in the previous 

section, the THz EM spectrum is the least explored region to date mainly due to the lack of 

compact, efficient, and cheap THz sources. This is why the region of THz EM spectrum is 

called the “THz gap”. In the last two decades, there has been a dramatic increase in the num-

ber of publications on THz sources. In this section, we briefly describe the THz sources of 

different operation principles. The details can be found in the reviews [1-2, 4-7]. 

THz radiation can be generated through nonlinear crystals such as ZnTe, CdTe, and GaP. 

When two optical photons at frequencies ω1 and ω2 are incident upon the nonlinear crystal, 

the frequency of the output photon can be the difference between the two input frequencies 

ωT= ω1− ω2. If the input light source is a femtosecond laser generating pulses of broad-band 

spectrum with bandwidth about 10 THz, the output is a broad-band THz pulses generated 

through optical rectification; If the input light source consist of two continuous wave (CW) 

optical beams with frequency difference in the THz region, the output is CW THz radiation 

generated through the difference frequency conversion (DFG). The optical-to-THz conversion 

efficiency of the nonlinear crystal has an upper limit determined by the Manley-Rowe rela-

tions. The upper limit is noωT /nT(ω1+ ω2), and of the order of 10−3~10−2. Here, no and nT are, 

respectively, the refractive indices in the optical and THz regions.  

THz radiation can be generated through time-varying current in a biased photoconductive 

antenna. The photoconductive antenna has two metal electrodes on a semiconductor substrate. 

When the optical EM wave is incident upon the gap between the electrodes, the photocarriers 

are generated and can be accelerated by a static electric field. This results in a photocurrent 

varying with the intensity of the incident EM wave. Therefore, similar to the case of nonlinear 

crystals, the femtosecond laser pulses can generate a broad-band THz pulses and the two CW 

optical beams with frequency difference in the THz region can generate CW THz radiation.  
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THz radiation can be generated from accelerated electrons in vacuum. Backward wave 

oscillators (BWOs) and free-electron lasers (FELs) are two examples. The BWOs are vacuum 

tubes. The accelerated electrons in the vacuum tube interact with the EM modes of a metal 

grating. The metal grating is called a slow-wave structure because the accelerated electrons 

slow down when they go through the slow-wave structure. The kinetic energy of the electrons 

is transferred to EM energy through exciting the EM modes of the metal grating. The device 

is called BWO because the motion of the electrons and the group velocity of the EM waves 

are oriented in opposite directions. The output power of the BWO can be 100 mW below 0.2 

THz but decreases rapidly with frequency (about 1 mW at 1 THz). In FELs, a relativistic 

electron beam passes through periodically alternating magnetic structure. The periodic mag-

netic field forces the electrons oscillating and hence radiate coherent EM wave. The FELs can 

reach high power and are the widest tunable laser. The range in wavelength is from micro-

waves to X-rays. However, the FELs are expensive and need a huge space. 

THz radiation can be generated through radiative transitions between two energy levels. 

Far-infrared gas lasers, quantum cascade lasers (QCLs), and p-Ge lasers are three examples. 

The far-infrared gas lasers radiate photons through the transitions between the molecular rota-

tion energy levels. The gain media are molecular gas such as CH3Cl, CH2F2, NH3, and 

CH3OH. These molecules have permanent dipole moment. Therefore, they can couple the EM 

radiation. The far-infrared gas lasers have the advantages of high power and 

room-temperature operation. However, their frequencies are discrete and determined by the 

molecular rotational levels. Extra space is required for the cavity to confine the laser modes. 

In addition, some species of gas are toxic, and a high-voltage system is required.  

The QCL and p-Ge laser are semiconductor THz sources, which have advantages such as 

compact, easily integrated, and low power consumption. A QCL consist of a repeated mul-

tiple quantum well heterostructures. Unlike the conventional semiconductor diode laser emit-
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ting EM waves through the electron-hole recombination across the band gap, the QCL is un-

ipolar and lasing through the radiative intersubband (ISB) transitions of electrons. After the 

ISB transition of the electron, the electron is at a lower subband and then injected to the next 

period to undergo another ISB transition. The repeating process is the origin of the name 

“cascade”. One difficulty of the QCLs is that the electron distribution can easily affected by 

the thermal excitation because of the small separation between the subbands. The output 

power can be up to 100 mW at liquid temperature but decrease rapidly with increasing tem-

perature. To date, room-temperature operation THz QCL is not available. Another problem of 

QCLs is the mode confinement. The conventional dielectric waveguide is not suitable because 

the decay length of the THz evanescent waves is much larger than the thickness of the active 

region. Semi-insulating surface plasma and metal-metal (MM) waveguides are two common 

solutions [8].  

The p-Ge lasers generate THz radiation through the radiative transitions of holes from the 

long-lifetime light-hole (LH) to the heavy-hole (HH) Landau levels. Similar to the QCLs, 

thermal excitation is a problem. The lasing of p-Ge lasers requires the specific conditions of 

the applied crossed electric and magnetic fields. The frequency is continuously tunable from 

one to four THz by varying the strengths of the electric and the magnetic fields. THz radiation 

can also be generated through the radiative transitions between the acceptor levels in p-Ge. 

Contrary to the radiation through the hole transitions between Landau levels, that through the 

transitions between the acceptor levels do not require the applied magnetic field. The THz 

stimulated emission has been observed in the p-Ge in the presence of a uniaxial stress. The 

frequency is also continuously tunable by changing the applied stress [9].  

1.3  Contributions  

    In the present dissertation, we study the group-III acceptors in strained Ge. As mentioned 

in the previous section, the THz emission can be obtained through the transitions of holes 
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between the acceptor states. In addition to the bulk p-Ge, we also study the effect of THz cav-

ities on a parabolic quantum well (PQW) structure. We propose a high-power THz laser de-

vice with heterogeneous cavities. The main contributions of the present dissertation are listed 

as follows: 

1. We calculate the electronic structure of acceptor states and the oscillator strengths of the 

electric-dipole transitions from the ground states for various group-III acceptors in Ge in 

the absence and presence of an uniaxial stress along the [001] direction. 

2. Our results, including energy levels of acceptor states, the chemical shifts, and the oscil-

lator strengths of electric-dipole transitions, are in quantitative agreement with the cur-

rently available experimental data in the low-stress region (<0.35 kbar). 

3. For the case of high stress (up to 10 kbar), we provide a justification for the applicability 

of the theoretical model in the present calculation. 

4. We explain the stress dependence of the acceptor levels, chemical shifts, and the oscilla-

tor strengths of the electric-dipole transition in terms of the compositions of the acceptor 

states. 

5. We find some specific features in the high-stress region such as extra degeneracy of ac-

ceptor states and additional selection rules of the electric-dipole transitions. These fea-

tures are also discussed in detail in the present dissertation. 

6. We propose a scheme of high-efficiency THz radiation from a PQW laser incorporated 

with two different cavities. In this scheme, the two cavities can be simultaneously reso-

nantly coupled with the PQWs. In this case, the device can emit EM waves of two dif-

ferent photon energies. One photon energy is the conduction-to-valence band energy gap, 

which is in the near-infrared (NIR) region; the other is the separation between the 

neighboring subbands. It is in the THz region.  
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7. We construct a theoretical model to analyze the system of PQWs incorporated with two 

different cavities. In this model, we take into account the heat generation caused by the 

acoustic deformation potential (ADP) scattering and the piezoelectric (PZ) scattering.  

8. The calculation demonstrate that the THz surface emission power of 10 W/cm2 can easi-

ly be achieved and the heat generation can be significantly suppressed and is almost con-

stant with increasing current injection for high-power THz emission.  

1.4  Organization  

       The dissertation is divided into two parts. The first part, from chapter 2 to chapter 4, 

is devoted to the study of group-III acceptors in strained Ge. In chapter 2, we review the ear-

lier research of acceptor states and provide an overview of this part. In chapter 3, we present 

the theoretical model for the calculations of acceptor states and the oscillator strengths of 

electric-dipole transitions between the acceptor states. In chapter 4, we systematically present 

and discuss results for zero, infinitesimal, low, and high stress. The second part, including 

chapter 5 and chapter 6, is devoted to the study of parabolic quantum well laser with hetero-

geneous cavities. In chapter 5, we describe the operation principle of the devices and con-

struct the theoretical model. In chapter 6, we present and discuss the results of the calculation 

for two different cases. In the first case, only a single cavity sustaining THz modes is present. 

In the second case, not only the THz cavity but also the cavity sustaining the NIR modes is 

present. 
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Analysis of Group-III Acceptors 

in Ge under Uniaxial Stress 
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Chapter 2 
Introduction 

The electronic structures of impurities in semiconductor has been studied extensively 

experimentally [10] and theoretically [11] in the 1960s and 1970s. For the case of shallow 

impurities, the frequencies of the most prominent transitions are in general in the terahertz 

(THz) region [12-15]. Recently, research on shallow impurities in semiconductors has at-

tracted considerable interest because they indicate that the shallow impurities are promising 

candidates for a simple and coherent THz radiation source [16]. It has been demonstrated that 

the THz radiation can be generated from group-III acceptors in Ge in the absence [17] and 

presence [9, 18-19] of stress. Therefore, it is important to study the stress effect on the elec-

tronic structures and on the oscillator strengths of the optical transitions between acceptor 

states for group-III acceptors in Ge.  

In the theoretical aspect, it has been over half a century since the Luttinger-Kohn effec-

tive-mass approximation (EMA), which was first used to calculate the electronic structures of 

impurities in semiconductors [20]. However, the applicability of the EMA to the impurity 

problem is still an open issue, and modification within the framework of EMA is under de-

velopment. Pantelides and Sah [21-22] evaluated the EMA by calculating the energy levels of 

donors in Si with ab initio impurity potentials. They found the EMA is not only applicable to 

shallow levels but also to deep levels for isocoric impurities, and the applicability can be ex-

tended to the case of nonisocoric impurities just by adding a reorthogonalization term to the 

impurity potential of [21]. Baldereschi and Lipari [23-24] calculated the energy levels of odd 

parity states for various group-III acceptors in Ge by EMA, giving results in quantitative 

agreement with experiments [12-15]. Their studies not only justify the applicability of the 

EMA to the group-III acceptors but also demonstrate the importance of the q-dependent di-
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electric screening and the components of high angular momenta (up to l=7) of the acceptor 

states. The calculations of [23-24] show that the energy levels of odd parity states are almost 

independent of the species of the group-III acceptors. This is reasonable because the impurity 

potential difference between the group-III acceptors is significant only in the region around 

the impurity site (i.e., in the central-cell region), where the wave functions of the odd parity 

states are almost vanished. However, this is not so for even parity states. Lipari et al. [25] 

calculated the even parity states of various species of group-III acceptors by introducing into a 

semi-empirical impurity potential a short range part of a simple and local form. In addition, 

Buczko and Bassani [26] performed a similar calculation by using different impurity potential 

of a different form. The results of both [25] and [26] are in quantitative agreement with expe-

riments. This provides the foundation for using the semi-empirical potential with the cen-

tral-cell effect in the impurity level calculation.  

The experimental absorption spectra of group-III acceptors in Ge have been available in 

[12-15] in 1960s and 1970s. Nevertheless, the quantitative values of oscillator strengths were 

not obtained until Rotsaert et al [27-28], in which the oscillator strengths is obtained by inte-

grating the experimental absorption spectra. Clauws [29] et al calculated the oscillator 

strengths of electric-dipole transitions between ground states and odd-parity states in EMA. 

Their calculation also introduces into a semi-empirical impurity potential a short range part of 

a simple and local form, which is different from that of Buczko and Bassani [26]. The results 

of [29] and [26] are in quantitative agreement. However they are not in quantitative agreement 

with the experimental results of [27-28]. Furthermore, Andreev et al [30-31] determined not 

only the oscillator strengths but also the linewidth by very-high resolution (up to 0.01 cm−1) 

absorption spectra. The experimental results of oscillator strengths are in quantitative agree-

ment with the theoretical data [26, 29], but not with the experiments [27-28]. Andreev et al 

[31] proposed that the possible reason of the disagreement between experimental results of 
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Rotsaert et al [27-28] and Andreev et al [30-31] is the difference in resolutions of the spectra.   

Several studies have been done regarding the stress effect on the acceptor levels [32-34] 

and on the on the oscillator strengths of the electric-dipole transitions [35]. However, none of 

them considers simultaneously the q-dependent dielectric screening and the central-cell cor-

rection. In addition, the axial approximation have been used in [35]. It is not reasonable at low 

stress.  

In part I of the dissertation, we study the stress effect on the electronic structure and the 

oscillator strength of electric-dipole transitions for various group-III acceptors in Ge by the 

EMA with a simple semi-empirical potential including the q-dependent dielectric screening 

and the central-cell correction. The details of the calculation method are presented in chapter 

2, and the results and discussion in chapter 3. In section 3.1, we make assignments of the ex-

perimental transition lines in the absence of stress. We also discuss the correlation between 

the central-cell potential and the oscillator strength of electric-dipole transitions. In section 3.2, 

we discuss the effect of an infinitesimal stress on the oscillator strengths, and calculate the 

intensity parameters u and v, which are parameters to determine the relative intensities of the 

infinitesimal-stress-induced components of the electric-dipole transitions between 8Γ  ac-

ceptor states for the zincblend structure host crystal. In section 3.3, we discuss in detail the 

stress dependence of the oscillator strength of the electric-dipole transitions and the low-lying 

acceptor levels in the low-stress region (<0.35 kbar). In addition, we make assignments for 

the currently available experimental lines of stress-induced components. In section 3.4, we 

study the general stress effect on the acceptor electronic structure. To do this, the stress in the 

section is up to 10 kbar. The tensile stress is also considered for convenience in comparison 

and analysis. In section 3.5, we discuss some specific features in the high stress region in 

which the coupling between the heavy-hole (HH) and the light-hole (LH) is negligible. Final-

ly, we give a justification of the impurity potential adopted in the present calculation. 
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Chapter 3 
Calculation Method 

3.1 Electronic Structure  

We calculate the electronic structure of the acceptor states in strained group-III germa-

nium by means of the six-band Lutteinger-Kohn effective mass Hamiltonian [20] modified by 

the Bir-Pikus deformation theory [36]. In this scheme, the acceptor states can be expressed as 

 
6

1

j j
j

j
F J M

=

Ψ = ∑ , (3.1) 

where |3/2,±3/2>, |3/2,±1/2> , and |1/2,±1/2> are the HH, LH, and split-off-hole (SO) band 

edge states, respectively. The |Jj,Mj '
dT> transform in the  group like the spherical harmonic 

function j jJ M
Y . The |3/2,±3/2> and |3/2,±1/2> are basis functions of the 8Γ  representation; 

the |1/2,±1/2> are basis functions of 7Γ  representation. The Fj

 

 are the envelope functions 

which are the solutions of the effective-mass equation,  
6

1
,          1, 2,...,6ij j j

j
H F EF j

=

= =∑ , (3.2) 

where E is the energy of the acceptor states and Hij the elements of the effective-mass Hamil-

tonian H. The H can be expressed as a sum of the Hamiltonian without acceptors H0

 

 (i.e., the 

Hamiltonian of the perfect crystal) and the remaining part caused by the presence of the ac-

ceptors,  

0VI H H= − , (3.3) 

where V is the impurity potential, I is a 6×6 unit matrix. The general form of H0 can be ex-

pressed as [34, 37] 
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R b id S d i

ε ε

ε ε

ε ε ε ε ε ε
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The / ,  /x yp i x p i y= − ∂ ∂ = − ∂ ∂  , and /zp i z= − ∂ ∂  are the elements momentum operator 

along the crystallographic directions [100], [010], and [001], respectively; εij is the symmetric 

strain tensor; ∆ is the spin-orbit split-off energy, γ 1, γ2, and γ3 are the Luttinger parameters; av, 

b, and d are the Pikus-Bir deformation potentials; m0 is the free-electron mass. For the case of 

a stress P along the [001] direction, only the normal strains εxx, εyy, and εzz are not vanished. 
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They can be written as 

 

12
2 2

12 11 12 11

11 12
2 2

12 11 12 11

2

2

xx yy

zz

C P
C C C C
C C P

C C C C

ε ε

ε

= =
− −
+

= −
− −

, (3.5) 

where C11 and C12 are stiffness constants. Because the strain εxx is equal to εyy, Rε=Sε=0. 

Therefore, we need only the deformation potential b in the calculation if we neglect the Pε 

wich just shifts the valence bands as a whole. The impurity potential is a sum of the Coulomb 

contribution VC and the central-cell correction Vcc and is expressed in a semi-empirical form:  

 ( )

C cc

2

C *
B

2

cc *

1 1 exp

exp
2 B

V V V

q rV
r a

Aq rV
r a

α

β

= +

  
= − + − −  

  
 

= − 
 






, (3.6) 

where α, β, and A are dimensionless parameters; ϵ is the dielectric constant; q is the elemen-

tary charge; * 2 2
B 1 0/a m eγ=   is the effective Bohr radius. The Coulomb contribution VC is 

caused by the point charge of the acceptor ion modified by the q-dependent dielectric screen-

ing [25]. The Vcc includes the contributions (a) the difference in the screened potential in-

duced by the positive point charge at the impurity site with the charge magnitude equal to that 

of the core electrons between the impurity and the host atoms, (b) the difference in the 

screened potentials induced by the core electrons between the impurity and the host atoms, (c) 

the difference in the effective repulsive potentials, which is the kinetic energy of the valence 

electrons in nature, localized in the central-cell region, and originates from the requirement 

that the wave functions of the valence electrons are orthogonal to those of the core electrons, 

(d) the lattice relaxation around the impurity site induced by the presence of the impurity 

[21-22]. The sum of the contribution (a) and the VC is just the difference in the screened point 

charge potential induced by the nucleus. The sum of the potentials (a) and (b) is attractive for 
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the valence electrons and localized in the central-cell region because they are induced by 

charges of the same magnitude but opposite sign. The effect (c) should be the primary contri-

bution. Therefore, we expect that the Vcc is small for the isocoric acceptor Ga, positive (A>0) 

for B and Al, and negative (A<0) for In and Tl. 

    In order to solve the effective-mass equation (3.2), the envelope function can be ex-

panded in a sum of products of radial functions and spherical harmonic functions,  

 ( ) ( ),j jlm lm
lm

F g r Y θ φ= ∑ . (3.7)  

To save the labor in the calculation, we take into account the symmetry of the acceptor states. 

In the absence of stress, the acceptor states transform like basis functions of the irreducible 

representations 6Γ , 7Γ , and 8Γ  of the '
dT  group. In the presence of stress along the [001] 

direction, the 8Γ  state of the '
dT  group split into one 6Γ  and one 7Γ  states of the '

2dD  

group, and the 6Γ ( 7Γ ) state of the '
dT  group becomes the 6Γ ( 7Γ ) state of the '

2dD  group. 

Both the 6Γ  and the 7Γ  states are doubly degenerate because of the time reversal symmetry. 

Furthermore, in spite of the lack of the inversion symmetry of the problem, all the envelope 

functions of an acceptor states have a common parity because the effective-mass Hamiltonian 

H has inversion symmetry about the impurity site. Therefore, the acceptor state can be classi-

fied to +
6Γ , 6

−Γ , +
7Γ  ,and 7

−Γ  states, where the even- (odd-) parity of the envelope function 

is denoted by the superscript + (−). For the even- (odd-) parity states, the sum in Eq. (3.7) 

over l runs over all nonnegative even (odd) integers; the sum over m runs over the integers 
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, (3.8) 

where n is an integer. Such a choice of the basis functions of the angular part of the envelope 

functions is equivalent to that in Ref. [34] although different in formulation. The radial part of 

the envelope function is expanded as 

 ( ) rL lm
jlm jg r r c e να

ν
ν

−= ∑ , (3.9) 

where the numbers αν are chosen to form a geometric progression [26]. The value L is chosen 

according to the following rule 

 
0    for 0
1    for 1 and any positive even number 
2    for any odd number except for 1

l
L l

l

=
= =
 =

 (3.10) 

 

3.2 Electric-Dipole Transitions  

Having obtained the acceptor states, we can go on to calculate the electric-dipole transi-

tions between these states. Considering the case that the temperature T=4.22 K, we suppose 

that all the holes are in the ground state 81 +Γ  in the absence of stress, and in the 61 +Γ  and the 

71 +Γ  states, into which the 81 +Γ  splits when a [001] stress is applied. Thus, the absorption 

coefficient of the electric-dipole transition between acceptor states can be written as 

 ( ) ( ) ( ) ( ) ( )( )
2 2

1
1 ,

10

2; 1 1a
n

n

q N w f E n E
cm µ ν

µ ν µ
µν

π γα ω δ ω+ −

∞
+ − +

Γ Γ
=

= Γ Γ − Γ +∑∑e e

 


, (3.11) 
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where un νΓ  (u=+,−) denotes the nth lowest u
νΓ  acceptor state, ( )uE n νΓ  is the energy level 

of the un νΓ  state, e is the polarization unit vector of the EM wave, ( )1w µ
+Γ  is the probabili-

ty that a hole is in the 1 µ
+Γ  state, Na is the acceptor concentration. The indices µ and ν run 

over all the irreducible representation. The ( )1 ,n
f

µ ν
+ −Γ Γ

e  is the oscillator strength of the elec-

tric-dipole transition from the 1 µ
+Γ  state to the n ν

−Γ  state [38], 

 ( ) ( ) ( )( ) ( ) ( )

2
0

'21 ,
'1

2 1 1 1 q qn
qq

mf E n E n
gµ ν

ν µ µ ν
µγ+ −

− + + −
Γ Γ

= Γ − Γ Γ Γ∑e e r


, (3.12) 

where gµ is the degeneracy of the 1 µ
+Γ  state, and the q (q’) runs over all the degenerate part-

ners of the 1 µ
+Γ  ( n ν

−Γ ) state. There are four terms in the sum of Eq. (3.12) for the case of the 

'
2dD  group. Two of them are zero if we choose an appropriate orthogonal set of the degene-

rate states. The remaining two terms have the same value because of the time reversal sym-

metry. Therefore, Eq. (3.12) can be expressed as 

 ( ) ( ) ( )( ) 2
0
21 ,

1

4 1 1
n

mf E n E n
µ ν

ν µ µ νγ+ −
− + + −

Γ Γ
= Γ − Γ Γ Γe e r



. (3.13) 

Here, for simplicity, we drop the indices q and q’, and the 1 nµ ν
+ −Γ Γe r  is one of the 

non-zero matrix elements. By Eqs. (3.1) and (3.7), the matrix element 1 nµ ν
+ −Γ Γe r  can be 

further expressed as 

 
( )even 6 21 *3 *

' ' ' ' '0 0 0
' 1 ' 1
' 1

1 sin cosn
jlm j l m lm l m r

l l l mm j
l

n drr g g d d Y Yµ ν
π π

µ ν θ
φ θ θ θ

+ −∞ Γ Γ+ −

=
= ± =
≥

Γ Γ = ∑ ∑ ∑∑∫ ∫ ∫e r  (3.14) 

where θr is the angle between e and r. Here, the envelope functions have been supposed to be 

slowly varying compared with the Bloch functions because they are really slowly varying 

outside the central-cell region. Inside the central-cell region, the wavefunctions of odd-parity 

states are almost vanished so that treating the envelope functions as slowly varying functions 
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will not considerably affect the result of the integration (3.14). 

   In the present calculation, we denote the EM wave with the polarization vector parallel 

(perpendicular) to the stress direction [001] by E


 ( ⊥E ). For E


, the 6 61 n+ −Γ → Γ  and 

7 71 n+ −Γ → Γ  the transitions are forbidden, while for ⊥E , all the transitions are allowed.  

 

3.3 Values of Parameters  

    In the present calculation, the parameters of bulk Ge are set as follows: the Luttinger’s 

parameters γ1=13.38, γ2=4.24 and γ3=5.69 [39], the spin-orbit splitting ∆=296 meV [40], the 

stiffness constants C11=1240 kbar/cm2 and C12=413 kbar/cm2 [41], and the deformation po-

tential b=-2.63 eV. The value of the deformation potential is determined by a best fit to the 

experimental stress dependence of the transition energy between 61 +Γ  and 71 +Γ  [42]. The 

dielectric constant ϵ and the parameter α for the acceptor Coulomb potential are set at 15.36 

and 0.93 ϵγ1, respectively, as in the work of [25] and [43]. For the central-cell potential, β is 

set at 1.00 ϵγ1 and A is an adjustable parameter, as in the work of [44]. By fitting the calcu-

lated to the experimental values of the D line transition energy (i.e., the energy difference 

between 81 +Γ  and 82 −Γ ) for various species of acceptors in Ge [12-14], we determine the A 

values to be 28.96, 7.52, 1.00, −13.71 and −26.29 for B, Al, Ga, In and Tl, respectively. This 

is in agreement with our expectation in section 2.1 that the Vcc (and hence the value of para-

meter A) is is small for the isocoric acceptor Ga, positive (A>0) for B and Al, and negative 

(A<0) for In and Tl. 
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Chapter 4 
Results and Discussion  

4.1 Zero Stress  

   We make assignments for the lines associated with transitions from the ground state 81 +Γ  

to the odd-parity states. Table 4.1 lists the calculated transition energies, together with expe-

rimental data currently accessible, for various species of acceptors in unstrained Ge. As can 

be seen, our calculation not only results in excellent assignments but also resolves crowding 

levels of final states for observed single transitions which have not been resolved by experi-

ment. For instance, the A₃ line is associated with the transitions ( )8 7 6 81 2 ,1 ,6+ − − −Γ → Γ Γ Γ .  

   Table 4.2 lists the calculated transition energies for the hole from the lowest odd-parity 

state 81 −Γ  to the higher even-parity states of unstrained Ge:B together with the experimental 

data of [45]. Lipari et al. [25] and Kurskii [46] have identified a single level of 82 +Γ  for 

Ge:B by assigning the E line in [12] to the transition from 81 +Γ  to 82 +Γ . Here, we identify 

systematically the levels of even-parity states by assigning the lines of transitions in [45]. The 

assignment is found to be excellent. Furthermore, our calculation can give additional energy 

levels of even-parity states which have not been resolved yet by experiment. In [45], the lines 

of 2.435 and 2.485 meV are associated with G* →C* transition where the symbol G* corres-

ponds to the 81 −Γ  level and the C* corresponds to the set of the 83 +Γ , 71 −Γ , and 83 −Γ  levels. 

Excluding the 8 71 1− −Γ → Γ , and 8 81 3− −Γ → Γ  transitions which are almost electric-dipole for-

bidden, we assign the line at 2.435 meV to the 8 81 3− +Γ → Γ  transition while the line at 2.485 

meV is assigned to the 8 62 3+ −Γ → Γ  transition whose energy is 2.481 meV in our calculation.  



 

21 

 

    Figure 4.1 shows the oscillator strengths as functions of the parameter A for elec-

tric-dipole transitions of G( 8 81 1+ −Γ → Γ ), D( 8 81 2+ −Γ → Γ ), and C( 8 7 81 1 ,3+ − −Γ → Γ Γ ) lines. The 

parameter A can be regarded as the strength of the effective central-cell force exerted on the 

hole. It is positive (negative) for the effective repulsive (attractive) force for the hole. As can 

be seen, the oscillator strengths decrease with the attractive force. This is because the proba-

bility of the hole in the central-cell region increases with the attractive force for the ground 

state and the integral in Eq. (3.14) over the central-cell region gives almost no contribution to 

the whole dipole matrix element. The oscillator strengths almost vanish when the attractive 

force is so large that the wave function of the ground state is totally localized in the cen-

tral-cell region (A<50). On the other hand, the oscillator strengths increase slowly with the 

repulsive force because the size of central-cell region is much smaller than that of the 

ground-state wave function. As a result, the deviation of the oscillator strength of the D line 

transition from that of the pure point charge (with A=0) for Tl is three times larger in magni-

tude than that for B, even though the magnitude of A for Tl is smaller than that for B. The 

dashed line in Fig. 4.1 is for the binding energy of the ground state. It decreases slowly with 

the repulsive force, but increases dramatically with the attractive force when the attractive 

force is so large (A<−35) that an appreciable part of the wave function of the ground state is 

localized in the central-cell region. When this happens, the effective mass theory is no longer 

applicable. The points in Fig. 4.1 are the oscillator strengths measured by Andreev et al. 

[30-31] for acceptors B and Al. As can be seen, there is an excellent agreement between the 

calculated and the experimental results. 
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Table 4.1 Transition energies from the ground state 81 +Γ  to the odd-parity states for various 

group-III acceptors in unstrained Ge. The symbols for transition lines given in the first col-

umn are defined as in [14]. 

 
a present work; b reference [13]; c reference[12]; d reference [14]; e reference [15].  
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Table 4.2 The transition energies from the 81 −Γ  state to the higher even-parity states of un-

strained Ge:B. The experimental data are taken from [45], and the number in parentheses at-

tached to each of the data is the sample number. 

 
 

 

 



 

24 

 

 

 

 

 

 

Fig. 4.1 Oscillator strengths of electric-dipole transitions for G( 8 81 1+ −Γ → Γ ), D( 8 81 2+ −Γ → Γ ), 

and C( 8 7 81 1 ,3+ − −Γ → Γ Γ ) lines and the binding energy of the ground state as functions of the 

strength parameter A. The points are experimental data of [30-31]. 
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4.2 Infinitesimal Stress  

    As mentioned earlier, the uniaxial stress along the [001] direction will reduce the crystal 

symmetry from Td group to D2d group. In order to avoid confusing the notations of '
dT  group 

and '
2dD  group, we denote the irreducible representations, symmetry, and acceptor states of 

'
dT  group by νΓ , u

νΓ , and un νΓ  (i.e., the symbols with a bar), respectively, in the following 

discussion.   

    The relative intensities of the infinitesimal-stress-induced components of the 8 6Γ → Γ  

and the 8 7Γ → Γ  transitions can be determined by the group-theoretical analysis, and those 

of the 8 8Γ → Γ  transitions depend on two intensity parameters u and v [47]. For E


, the rel-

ative intensities of the 6 7Γ → Γ  and the 7 6Γ → Γ  components are 1/2−v and 1/2+v, respec-

tively. For ⊥E , those of the 6 6Γ → Γ , the 6 7Γ → Γ , the 7 6Γ → Γ , and the 7 7Γ → Γ  com-

ponents are 3u/8, (1−3u/4+v)/2, (1−3u/4−v)/2, and 3u/8, respectively. The values of u and v of 

the 8 81 n+ −Γ → Γ  transitions for various species of group-III acceptors in Ge are listed in Table 

4.3. As can be seen, the intensity parameters (and hence the relative intensities) do not corre-

late significantly with the species of group-III acceptors except for the 8 81 1+ −Γ → Γ  transition. 

Martin et al. obtained the values of the parameters, u=0.95±0.05 and v=−0.1±0.05, for Ge:Ga 

by the piezospectroscopic measurement [48]. Our result, u=0.99 and v=−0.10, shows a better 

agreement with the experiment than that of [34], u=0.91 and v=−0.29. 
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Table 4.3 Intensity parameters for group-III acceptors in Ge. 
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4.3  Oscillator Strengths and Line Assignment in the Low-Stress 

Region  

    Even though the group-theoretical analysis of [47] provides information about the rela-

tive intensities at infinitesimal stress, it is not applicable to the case of finite stress due to the 

strain-induced couplings between acceptor states of the same symmetry. In this section, we 

consider the presence of a finite but low stress (≤0.3 kbar). In such a low-stress region, the 

energy levels of the initial and the final states of the G, D, and C line components do not ei-

ther cross or anticross.  

 

4.3.1 G-line  

        In the presence of [001] stress, the G line splits into four components, 

G1( 6 61 1+ −Γ → Γ ), G2( 6 71 1+ −Γ → Γ ), G3( 7 61 1+ −Γ → Γ ), and G4( 7 71 1+ −Γ → Γ ). Figure 4.2 shows the 

stress dependence of the oscillator strengths of the G line components for (a) E


 and (b) ⊥E . 

As can be seen, the oscillator strengths are susceptible to the stress in the low-stress region. In 

addition, with the increase of stress, the oscillator strengths of G1 for ⊥E  and G2 for E


 

first decrease to zero and then increase.  

    We further inspect the compositions of acceptor states to gain more insight into the stress 

dependence of oscillator strengths. In the absence of stress, the initial states of the G line 

components, 61 +Γ  and 71 +Γ , have an s (l=0) composition of 71% and a d (l=2) composition of 

28%. The final states, 61 −Γ  and 71 −Γ , have a p (l=1) composition of 90% and an f (l=3) com-

position of 9%. In the stress region from 0 to 0.3 kbar, the compositions are not susceptible to 

the stress because the couplings of the 61 +Γ , 71 +Γ , 61 −Γ , and 71 −Γ  states with other acceptor 
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states of the same symmetry are weak. As a result, the dipole matrix elements of Eq. (3.14) 

contain significant s→p and d→p components (denoted by Msp and Mdp, respectively), a small 

d→f component Mdf, and negligible higher-order components. Furthermore, the components 

Msp and Mdp have comparable magnitudes but opposite signs so that the sum of Msp and Mdp is 

small in magnitude and comparable with Mdf. This is the reason why the oscillator strength of 

the G line transition, as Fig. 4.1 shows, is much smaller than those of the C and D line transi-

tions, even though the final state of the G line transition has a greater overlap with the ground 

state than those of C and D line transitions. Because of the significant overlap between the 

wave functions of the initial and the final states, and the almost complete cancellation be-

tween the Msp and the Mdp components, the weak strain-induced couplings between the ac-

ceptor states still has a considerable influence on the stress dependence of oscillator strengths 

as Fig. 4.2 shows. 

    As to the G1 line for ⊥E  and the G2 linefor E


, Msp has a larger magnitude than Mdp 

and has the same sign as Mdf at zero stress. With the increase of stress, Msp (Mdp) decreases 

(increases) markedly in magnitude, but Mdf changes slowly. Therefore, the oscillator strength 

decreases with stress until it reduces to zero. If the stress goes on increasing, the Mdp becomes 

larger in magnitude than the sum of Msp and Mdf, leading to the increase in the oscillator 

strength with stress. 
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Fig. 4.2 Oscillator strengths of G line components for Ge:Ga as functions of uniaxial stress 

along the [001] direction for (a) E


 and (b) ⊥E .  
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4.3.2 D-line  

The final state of D line transition has a 55% p and a 43% f compositions at zero stress. 

The sum of Msp, Mdp, and Mdf, unlike the G line transition, is not small in magnitude. There-

fore, the D line transition is one of the most prominent transitions as Fig. 4.1 shows. 

In the presence of [001] stress, the D line splits into four components, D1( 6 61 2+ −Γ → Γ ), 

D2( 6 71 2+ −Γ → Γ ), D3( 7 61 2+ −Γ → Γ ), and D4( 7 71 2+ −Γ → Γ ). Figure 4.3 shows the assigned transi-

tion energies of the D line components as well as C and B line components for Ge:In against 

the [001] stress, together with the experimental data of [49] for comparison. As can be seen, 

the calculated results show excellent agreement with the experimental results. This confirms 

the reliability of our calculation in the low-stress region. The D1 and the D4 transitions are not 

observed in [49]. They are more difficult to be observed than the D2 and the D3 transitions. 

This can be seen in Fig. 4.4, in which the D1 and the D4 transitions are forbidden for E


 and 

their oscillator strengths are much smaller than those of the D2 and the D3 transitions for ⊥E . 
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Fig. 4.3 Stress dependence of transition energies of the B, the C, and the D lines for Ge:In. 

The solid circles represent the experimental data taken from [49]. The lines are for the calcu-

lated transition energies from the 61 +Γ  to the 6
−Γ  states (solid lines), from the 61 +Γ  to the 

7
−Γ  states (dashed lines), from the 71 +Γ  to the 6

−Γ  states (dotted lines), and from the 71 +Γ  to 

the 7
−Γ  states (dash-dotted lines). 
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Fig. 4.4 Oscillator strengths of D line components for Ge:Ga as functions of uniaxial stress 

along the [001] direction for (a) E


 and (b) ⊥E . 
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4.3.3 C-line  

The C line is associated with not only the 8 71 1+ −Γ → Γ  and the 8 81 3+ −Γ → Γ  transitions, 

but also the 8 81 3+ +Γ → Γ  transition, which is a transition between even-parity states. It is 

worth mentioning that although the envelope functions of an acceptor state have a common 

parity, the total wave function of Eq. (3.1) does not have a definite parity because of the lack 

of inversion symmetry in the p-Ge system. Therefore, this could allow the electric-dipole 

transitions between acceptor states of the same parity. For the transitions between even-parity 

states, the matrix element integral over all space is nearly equal to that over the central-cell 

region since the envelope functions are slowly varying outside the central-cell region. There-

fore, the simple empirical form of the central-cell correction Vcc of Eq. (3.6) should not be 

applicable. On the contrary, for the electric-dipole transitions between acceptor states of op-

posite parity and between odd-parity states, the calculated results are not correlated closely 

with the detailed form of the Vcc since the wave functions of odd-parity states almost vanish in 

the central-cell region. This is the reason why adopting the simple empirical form of Vcc, we 

can obtain results in excellent agreement with experiments.  

    Figure 4.5 shows a comparison between our calculation and the experimental result of 

Vickers et al. [42] on the stress dependence of the C* and the D* related levels for Ge:Ga, 

where, as defined by Gershenzon et al. [45], the D* corresponds to the 81 −Γ  level which splits 

into 62 −Γ  and 72 −Γ  under [001] stress. To comply with the data of Vickers, our calculated 

energy levels are measured from a stress-dependent energy reference ( )81E Pε
+Γ − , where 

( )81E +Γ  is the energy level of the ground state 81 +Γ  at zero stress and Pε  is the strained 

energy induced by hydrostatic compression. Our results show excellent agreement with the 

experiment [42] for the odd-parity states but the relative energy position between the even 
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parity states (i.e., 63 +Γ  and 73 +Γ  states) is reversed. The reason is not clear. There is no ar-

tificial energy shift in our calculation for the data in Fig. 4.5.  

In the presence of [001] stress, the 71 −Γ  state becomes the 73 −Γ  state, and the 83 −Γ  

state splits into the 63 −Γ  and the 74 −Γ  states. As a result, the C line, excluding the transitions 

between even-parity states, splits into six components, C1( 6 71 3+ −Γ → Γ ), C2( 6 61 3+ −Γ → Γ ), 

C5( 6 71 4+ −Γ → Γ ), C6( 7 71 3+ −Γ → Γ ), C7( 7 61 3+ −Γ → Γ ), and C10( 7 71 4+ −Γ → Γ ). Here, the notation of 

the C line components is the same as that of [42]. It is known that the main transition of C line 

at zero stress is 8 71 1+ −Γ → Γ  [26, 29, 44]. This can also be seen in Fig. 4.1. Therefore, the 

main C line components should be those whose final state is 73 −Γ  at [001] infinitesimal stress. 

They are C1 (for E


) and C6 (for ⊥E ) as can be seen in Fig. 4.6. However, since a small 

stress can cause a strong coupling between the 73 −Γ  and the 74 −Γ  states, the oscillator 

strengths of the C line components whose final states are the 73 −Γ  and the 74 −Γ  states 

change rapidly with stress when the stress is close to zero. The main C line component for 

E


 ( ⊥E ) becomes C5 (C10) when the stress is larger than 0.28 (0.02) kbar. In addition, in 

comparison with the coupling between the 73 −Γ  and the 74 −Γ  states, the couplings of the 

73 −Γ  ( 74 −Γ ) state with other acceptor states should be insignificant so that the sum of the os-

cillator strengths of the C1 and the C5 components and the sum of the C6 and the C10 compo-

nents are not susceptible to the stress. 
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Fig. 4.5 Stress dependence of the C* and the D* line components for Ge:Ga. The energies are 

measured from a stress-dependent reference ( )81E Pε
+Γ − , where ( )81E +Γ  is the energy level 

of the ground state 81 +Γ  at zero stress and Pε  is the strained energy induced by hydrostatic 

compression. The solid lines are the results of the present work. The solid circles (open 

squares) denote the experimental data associated with the 6Γ  ( 7Γ ) final states taken from 

[42].  
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Fig. 4.6 Oscillator strengths of C line components for Ge:Ga as functions of uniaxial stress 

along the [001] direction for (a) E


 and (b) ⊥E . 
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4.3.4 B-line  

In the presence of [001] stress, the B line transition 8 81 4+ −Γ → Γ  splits into four compo-

nents. As shown in Fig 3.3, Dickey and Dimmock [49] measured the transition energies of 

two of the four B line components for Ge:In as functions of stress and we assigned the two 

components to the 6 71 5+ −Γ → Γ  (denoted by B2) and the 7 61 4+ −Γ → Γ  (denoted by B3) transi-

tions. Figure 4.7 shows the stress dependence of the oscillator strengths of the B line compo-

nents for Ge:In. As can be seen, the B1( 6 61 4+ −Γ → Γ ) and the B4( 7 71 5+ −Γ → Γ ) components are 

forbidden for E


, and their oscillator strengths for ⊥E  are smaller than those of the B2 and 

the B3 components in the low-stress region (<0.14 kbar). This is in agreement with the fact 

that only the B2 and the B3 components were observed in the experiment of [49]. At the stress 

close to 0.14 kbar, the oscillator strength of the B2 component changes dramatically with 

stress due to the anticrossing between the 75 −Γ  and the 76 −Γ  states. Therefore, the B2 com-

ponent should be assigned to the 6 71 6+ −Γ → Γ  transition when the stress is higher than 0.14 

kbar. 
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Fig. 4.7 Oscillator strengths of B line components for Ge:Ga as functions of uniaxial stress 

along the [001] direction for (a) E


 and (b) ⊥E . 
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4.3.5 Absorption Spectra  

Figure 4.8 shows the calculated absorption spectra for Ge:Ga at liquid-temperatue 

(T=4.22 K). In the calculation, the acceptor concentration is taken to be 6×1013 cm−3, and the 

stress for panel (a) and (b) is taken to be 0.078 and 0.22 kbar, respectively, as the same para-

meters in [42]. We also replace the delta function in Eq. (3.11) with a Lorentzian line-shape 

function whose full width at half-maximum (FWHM) is taken to be 0.25 cm−1. Here, the B2 

component is assigned to the 6 71 5+ −Γ → Γ  transition in panel (a) and to the 6 71 6+ −Γ → Γ  tran-

sition in panel (b) due to the anticrossing between the 75 −Γ  and the 76 −Γ  states as mentioned 

previously. As can be seen, except for the presence of the transitions between even-parity 

states, the calculated spectra are in good agreement with the experimental results, and suc-

cessfully predict that the C7 component for E


 vanishes at 0.078 kbar but appears at 0.22 

kbar. This can also be understood in terms of the stress dependence of the C7 oscillator 

strength for E


 in Fig. 4.6(a). 

    In panel (b), the transition energies of D3 (69.4 cm−1), C1 (69.2 cm−1), and C2 (69.9 cm−1) 

components are very close to each other, and the C1 and C2 components are much weaker than 

the D3 component so that the D3, C1, and C2 components are not resolved by experiment. In 

addition to the C7, C10, B2, and B3 components, there are fourteen transition lines with transi-

tion energies between 75 cm−1 and 80 cm−1. These transitions, whose initial state is 61 +Γ , are 

not labelled in panel (b) because they are too weak to be observed. 
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Fig. 4.8 Absorption spectra for Ge:Ga under [001] stress of (a) 0.078 kbar and (b) 0.22 kbar at 

liquid-helium temperature (T=4.22 K). The acceptor concentration is 6×1013 cm−3. Each peak 

of the spectra is broadened by a Lorentzian line-shape function with a FWHM of 0.25 cm−1. 
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4.4 Effect of Stress on the Electronic structure  

4.4.1 Isocoric acceptor Ga in Ge 

We have considered the case of low-stress region (≤0.3 kbar). In this section, we will 

discuss the general features of the stress dependence on the acceptor electronic structure. Here, 

the discussion is not limited to the case of low-stress region, in which the final states of the G, 

D, and C line components do not either cross or anticross. 

Figures 3.9 and 3.10 show the binding energies of even- and odd-parity states, respec-

tively, for Ge:Ga as functions of uniaxial stress along the [001] direction. The panels (b) of 

the two figures are zoom-in of panels (a) so that the curves of several excited states of low 

binding energy are distinguishable. A positive (negative) stress means a compressive (tensile) 

stress. The binding energy of an acceptor state is the minimum energy required to liberate a 

hole bound at the state, that is, the difference in energy between the state and the nearest va-

lence band edge. Since the valence band edges vary with the stress, we calculate and plot the 

edges of the HH, the LH, and the SO bands as functions of [001] stress in Fig. 4.11 for con-

venience in later analysis. With the compressive stress, the LH (HH) band edge moves mono-

tonically upwards (downwards), while with tensile stress the HH (LH) band edge moves up-

wards (downwards). Accordingly, we have ( ) ( )B LH
u u
i iE n E n EΓ = Γ −  for compressive stress 

and ( ) ( )B HH
u u
i iE n E n EΓ = Γ −  for tensile stress, where ( )B

u
iE nΓ  is the binding energy of 

the u
inΓ  state, and ELH and EHH are the LH and the HH band edges, respectively.  

    As shown in Figs. 3.9 and 3.10, the binding energies are susceptible to the stress as the 

stress is lower than 3 kbar but become more insensitive to the stress as the stress is larger. 

Such stress dependence is related to the composition of the acceptor states. As the stress is 

low ( 3 kbar), the states are composed in a manner that the HH composition fHH and the LH 
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composition fLH are both significant but the SO composition is negligible since 

( ) ( ) ( )HH LH SO
u u u
i i iE n E E n E E n EΓ − ≈ Γ − Γ − , where ESO is the edge of the SO band. As 

compression increases, some higher-energy levels move downwards with the HH band and 

finally become resonant in nature after merging into the LH band. The other levels which re-

main above the LH band do not move with the HH band. As a result, the ratio fHH/ fLH de-

creases with compression for the bound states because of the increase of ( ) HH
u
iE n EΓ − . As 

the stress is sufficiently large such that ( ) ( )HH LH
u u
i iE n E E n EΓ − Γ − , the bound states are 

almost of LH character (i.e., fLH ≈1 and fHH ≈0 ). In the light of the variational principle, more 

basis functions are preferred at low stress to form the eigenfunctions of acceptor states than at 

high stress. This explains the facts that the binding energy is largest at zero stress and de-

creases rapidly with low stress but changes slowly with high stress. The situation of tensile 

stress is similar to that of compression, but with the roles of HH and LH replacing each other. 

Analogously, under a sufficiently high tensile stress, the acceptor states are almost of HH 

character. An exception occurs in the high-stress region where the binding energy slightly in-

creases with compressive stress but slightly decreases with tensile stress. This is because at a 

high stress the HH-LH coupling in the acceptor states becomes unimportant and the effective 

mass is the dominant factor in the stress dependence of binding energy. The LH mass is in-

creased by compressive stress but the HH mass is reduced by tensile stress.  

    There is a substantial difference in stress dependence of binding energy between the 

low-energy even-parity states and the low-energy odd-parity states as the stress is lower than 

3 kbar. As shown in Figs. 3.9 and 3.10, the binding energy of the 61 +Γ  ( 71 +Γ ) state decreases 

much more rapidly with the compressive (tensile) stress than with the tensile (compressive) 

stress but such asymmetry does not appear so remarkably for the odd-parity states. To realize 

the difference, it is instructive to invoke the correlation between the HH-LH coupling and the 
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binding energy of an acceptor state. Figure 4.12 shows the HH composition fHH and the LH 

composition fLH of Ge:Ga acceptor states 61 +Γ  in (a), 71 +Γ  in (b), 61 −Γ  in (c), and 71 −Γ  in (d) 

as functions of [001] stress. The SO composition is negligibly small (less than 0.3%) and 

hence not shown here. We find from Fig. 4.12(a) that fHH =75% and fLH =25% for the 61 +Γ  

state at zero stress, indicating that the 61 +Γ  state is like HH more than like LH in character. 

The compositions of the 61 +Γ  state change rapidly with the compressive stress but much 

more slowly with the tensile stress as the stress is lower than 3 kbar. At a compressive stress 

above 3 kbar, the 61 +Γ  state becomes almost of LH character (fHH ≈0 and fLH ≈100%) while 

for tensile stress it remains HH-like. At a tensile stress of 3 kBar, the 61 +Γ  state does not be-

come a purely HH-like state, but still contains a LH composition of about 10%. Such a rapid 

change in composition is the cause of the rapid reduction in binding energy with the compres-

sive stress. For the 71 +Γ  state, the situation is reverse. As seen from Fig. 4.12(b), the 71 +Γ  

state is LH-like with fLH =75% at zero stress. It turns out to become almost purely HH-like 

after a rapid change in composition with the tensile stress, but remains still LH-like as its fLH 

value increases slowly with the compressive stress. For the 61 −Γ  ( 71 −Γ ) state, as shown in Fig. 

4.12(c) and (d), fLH =55%> fHH (fHH =55%> fLH) at zero stress. This causes the binding energy 

of the 61 −Γ  ( 71 −Γ ) state to decrease with the tensile (compressive) stress more rapidly than 

with the compressive (tensile) stress, as Fig. 4.10 shows. The asymmetry in the stress depen-

dence for the odd-parity states is not as prominent as for the even-parity states due to the 

small difference between fLH and fHH at zero stress. 
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Fig. 4.9 Binding energies of even-parity states as functions of uniaxial stress along the [001] 

direction for Ge:Ga. The positive (negative) stress means a compressive (tensile) stress. The 

panel (b) is a zoom-in of the panel (a).  
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Fig. 4.10 Binding energies of odd-parity states as functions of uniaxial stress along the [001] 

direction for Ge:Ga. The positive (negative) stress means a compressive (tensile) stress. The 

panel (b) is a zoom-in of the panel (a).  
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Fig. 4.11 The HH, LH, and SO band edges (denoted by EHH, ELH, and ESO, respectively) as 

functions of uniaxial stress along the [001] direction for Ge:Ga. The positive (negative) stress 

means a compressive (tensile) stress.  
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Fig. 4.12 Stress dependence of the HH composition (fHH) and the LH composition (fLH) of (a) 

61 +Γ , (b) 71 +Γ , (c) 61 −Γ , and (d) 71 −Γ  for Ge:Ga. The positive (negative) stress means a com-

pressive (tensile) stress.  
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4.4.2 Chemical Shifts of various species of group-III acceptors  

In section 3.1, we have presented the energy levels of even-parity states for the noniso-

coric group-III acceptors in strainless Ge. In the previous section, we have also discussed the 

energy levels of even-parity states for the nonisocoric group-III acceptors in strainless Ge. 

Now we are going to explore the stress effect on the energy levels of even-parity states for 

various nonisocoric group-III acceptors in Ge. Figure 4.13 shows the chemical shifts of sever-

al low-energy even-parity states versus [001] stress for nonisocoric acceptors B, Al, In, and Tl, 

as well as the isocoric acceptor Ga, doped in Ge. The chemical shift of a state for a certain 

species of acceptor is defined as the deviation of the energy level of the state from the corres-

ponding level which is obtained by setting the central-cell correction Vcc at zero (i.e., A=0). It 

is caused by the central-cell correction which has been included in Eq. (3.6). Due to the 

short-range nature of the central-cell potential, the chemical shift can be considered to be 

proportional nearly to the value of A times the probability density of the hole at the acceptor 

site. Since only the s (l=0) composition of the wave function contributes probability at the ac-

ceptor site, the chemical shift should be proportional approximately to ( ) 26
001

0jj
A g

=∑ . As a 

result, the chemical shifts for Ga are negligibly small, as can be seen from Fig. 4.13, because 

of the small value of A. Also, the chemical shifts for B and Al are positive and those for In 

and Tl are negative in accordance with the signs of their A values, which reflects a positive or 

negative change in the effective force on the hole exerted by the core states. However, the 

chemical shift does not linearly depend on A. As mentioned in section 3.1, the negative A en-

hances the total attractive force of the acceptor acting on the hole and causes the wave func-

tions to be more localized around the acceptor site than a positive A. As a result, the chemical 

shift for Tl is more predominant than for B although the A value for Tl is smaller in magni-

tude. For In, the chemical shift can be comparable to that for B although the magnitude of A is 
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only about one half of that for B.  
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Fig. 4.13 Chemical shifts of (a) 61 +Γ , (b) 71 +Γ , (c) 62 +Γ , and (d) 72 +Γ  as functions of [001] 

stress for various group-III acceptors in Ge. The positive (negative) stress means a compres-

sive (tensile) stress. 
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4.5 High-Stress Region  

4.5.1 Features in the high-stress region 

    The acceptor states in the presence of [001] stress are doubly degenerate except for the 

case of accidentally degeneracy. However, as mentioned earlier, the HH-LH coupling is neg-

ligible when the stress is sufficiently high. Such decoupling of the HH and LH can cause extra 

degeneracy of the acceptor states as can be seen in Fig. 4.9 and 4.10. In this case, the effec-

tive-mass Hamiltonian has nearly azimuthal symmetry and the acceptor states can be regarded 

as belonging to a single valence band. Therefore, the acceptor states can be expressed as 

 ( )
( )

,
u

u
JMm JMlm lm

l m
g Y JMθ φ

≥

Ψ = ∑ , (4.1) 

with J, M, m, and u as good quantum numbers, where u is the parity of the envelope function. 

The sum in Eq. (4.1) runs over even l for even-parity states (u≡+), and runs over odd l for 

odd-parity states (u≡−). The azimuthal and the time-reversal symmetries ensure the fourfold 

degeneracy in the states u
JMmΨ , , ,

u
J M m−Ψ , , ,

u
J M m−Ψ , and , ,

u
J M m− −Ψ  for m≠0, and the 

twofold degeneracy in the states 0
u
JMΨ  and , ,0

u
J M−Ψ  for m=0. There are three possible 

combinations in the high-stress case for the extra degeneracy, 6 7
u uΓ + Γ , 62 u×Γ , and 72 u×Γ  

for m≠0, and no extra degeneracy for m=0. The combinations depend on the values of m, u, 

and M, and are listed in Table 4.4. For HH-like states (M=±3/2), the representations without 

extra degeneracy are 6
+Γ  and 7

−Γ  for m=0, and the combinations with extra degeneracy in-

clude (i) 6 7
± ±Γ + Γ  for |m|=2n−1, (ii) 62 +×Γ  and 72 −×Γ  for |m|=4n, and (iii) 62 −×Γ  and 

72 +×Γ  for |m|=4n−2, where n is a positive integer. For LH-like states (M=±1/2), the possible 

degeneracies can be obtained from those for the HH-like states just by interchanging the pari-

ties + and −. The results for the LH-like states are also listed in Table 4.4. We emphasize that 
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only the 7
+Γ  and the 6

−Γ  states (the 6
+Γ  and the 7

−Γ  states) can remain doubly degenerate 

without extra degeneracy at high compressive (tensile) stress, in agreement with the results in 

Fig. 4.9 and 3.10.  

    We know from Table 4.4 the asymptotic property that the 6
+Γ  ( 7

+Γ ) states have no sig-

nificant m=0 component at high compressive (tensile) stress. Therefore, the s compositions of 

the 6
+Γ  ( 7

+Γ ) states decrease to zero with the compressive (tensile) stress. This can explain 

the asymmetric stress dependence of the chemical shift in Fig. 4.13 wherein the magnitude of 

the chemical shift for the 6
+Γ  ( 7

+Γ ) states decreases to almost zero with the compressive 

(tensile) stress much more rapidly than with the tensile (compressive) stress. On the other 

hand, the relatively mild stress dependence for the 6
+Γ  ( 7

+Γ ) states in the high tensile (com-

pressive) stress region is caused by the distortion of the wave functions whose s composition 

reduce with the deformation. 

   Even though the index l in Eq. (4.1) is not a good quantum number, we found, by the 

calculation of l compositions as functions of stress, that only the acceptor states close to the 

anticrossing point can have different non-negligible l compositions for the ground state and 

the odd-parity states. Therefore, the l can approximately be regarded as a good quantum 

number in the high-stress region. In Fig. 4.14, we use nXm to denote the odd-parity acceptor 

states in the compressive high-stress region. Here, X denotes a lower-case letter for the angu-

lar momentum l (s, p, d, f, … for l=0,1,2,3,…, respectively), and n is a positive integer for sort 

of the acceptor states with the same l and m according to their energy levels. As can be seen, 

the result is consistent with Table 4.4, and the nXm and the nX−m states are degenerate in the 

high-stress region.  

The decoupling of the HH and LH can cause not only the extra degeneracy of the accep-
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tor states but also additional selection rules of the electric-dipole transitions. Figure 4.15 

shows the stress dependence of oscillator strengths of electric-dipole transitions from the 

ground state 71 +Γ  to the odd parity states. The results agree with the selection rules of the 

electric-dipole transitions: ∆l=±1, ∆m=0, for E


 and ∆l=±1, ∆m=±1, for ⊥E . In the 

high-stress region, the ground state is s-like. Therefore, for E


 ( ⊥E ), only the transitions 

whose final states are np0 (np±1) can have non-negligible oscillator strengths. In addition, as 

mentioned in section 3.3.1, the G line components are weak in the low-stress region because 

of the appreciable d composition of the 61 +Γ  and the 71 +Γ  states. However, with the increase 

of stress, the d (s) composition of 71 +Γ  decreases (increases) so that for ⊥E , the oscillator 

strengths of the G3 and G4 components, which correspond to the 7 11 2p+
±Γ →  transitions in 

the high-stress region, increase with stress, and hence the 7 11 2p+
±Γ →  transitions become the 

main transitions in the high-stress region. 

 

4.5.2 Justification of the model potential in the high-stress region 

We have shown that our calculated results are in excellent agreement with experiment up 

to 0.35 kbar. However, we do not find high-stress experimental data in the literature to con-

firm the validity of our calculation, in which the stress is up to 10 kbar. In fact, the so-called 

high stress of 10 kbar gives the normal strain εz along the uniaxial axis as small as −0.97% for 

Ge. Therefore, the Bir-Pikus effective-mass theory [36] is still applicable and other stress ef-

fects should give a negligible higher-order correction. For instance, we have supposed the 

functional form of the semi-empirical impurity potential V introduced in Eq. (3.6) to be in-

dependent of the stress in the calculation. To justify the assumption, we reconsider the impur-
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ity potential as contributed from two parts [21]. One is called the bare potential Vb, which is 

caused by the difference in the charges of the closed-shell ions (namely, the nuclei plus the 

core electrons) between the crystals with and without the impurity present. The other one is 

caused by the redistribution of valence electrons due to the presence of the impurity and is 

called the screening potential Vs since, from the viewpoint of the hole of interest, the valence 

electrons play a role of screening the bare potential. It is reasonable to assume the inner states 

of all the closed-shell ions to be unaffected by the presence of the impurity, except for the 

state of the host ion to be replaced by the impurity ion. As a result, the presence of the impur-

ity gives a bare potential as the Coulomb potential due to a point charge at the impurity site. 

Furthermore, the stress as small as we have considered should not alter significantly the inner 

states of the host and the impurity ions. Neglecting the lattice relaxation due to the presence of 

the impurity, we conclude that the strain causes a change only in the screening potential, in 

addition to the deformation of the lattice which has been considered by the Bir-Pikus theory. 

The q-dependent dielectric screening of the impurity potential in Eq. (3.6) is based on the 

assumptions that the distribution of valence electrons responds linearly to the presence of the 

impurity and that the Umklapp elements of the dielectric tensor are neglected [25]. According 

to our previous argument, the assumptions should be valid regardless of the applied stress we 

have considered. In other words, the functional form of the impurity is applicable not only for 

low stress (<0.35 kbar), as has been confirmed by the observed transition energies, but also 

for stress up to 10 kbar if we allow the dielectric constant ϵ to be a function of the stress. 

As has been pointed out, the correction due to the stress dependence of ϵ should be small 

compared to the Bir-Pikus strain effect. Goi et al. [50] have measured the stress dependence 

of ϵ for Ge at room temperature, giving 

 ( ) 2, 300 K 15.94 0.36 0.014P T P P= = − + , (4.2) 

where P is the hydrostatic stress (in unit of 10 kbar). To obtain an expression for low temper-
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ature, we suppose the variation of temperature also gives a small effect on ϵ such that the ϵ 

can be expressed as a separable function of P and T, namely, a function in a product of func-

tions only of P and only of T. Accordingly, the dielectric constant at T=0 K is 

 ( ) ( ) ( ) ( )
2

, 0 K 0,0 K ,300 K / 0,300 K

15.36 0.347 0.0135

P T P

P P

= =

= − +

     (4.3) 

where we have used ϵ (0,0 K)=15.36 [43]. As expected, we see that the stress dependence of ϵ 

is small for the stress up to 10 kbar. For the uniaxial stress σ along the [001] direction in our 

case, the stress dependence of ϵ can be obtained from Eq. (4.3) by replacing the coefficient in 

the linear-in-P term with its one-third and neglecting the last term. This results in 

ϵ(σ)=15.36−0.116σ. It gives correction no more than 2.2% for the energy levels and correction 

no more than 4.6% for the chemical shifts for a stress of 10 kbar.  
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Table 4.4 Combinations of two-dimensional representations for extra dengeneracy, if possible, 

in the limiting case of high stress. They depend on the Bloch function JM  , the magnetic 

quantum number m, and the parity. The n is a positive integer. 
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Fig. 4.14 Binding energies of odd parity states as functions of the compressive stress along 

the [001] direction for Ge:Ga. Panel (b) is a zoom-in of panel (a). The notation of acceptor 

states is explained in text.  
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Fig. 4.15 Oscillator strengths of electric-dipole transitions from the ground state 71 +Γ  to the 

odd parity states for Ge:Ga as functions of uniaxial stress along the [001] direction for (a) E


 

and (b) ⊥E . The transitions which have non-negligible oscillator strengths in the high-stress 

region are denoted by its final states with the same notation as in Fig. 4.14. 
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4.6 Summary  

    We have studied the electronic structures of various group-III acceptors in Ge and the 

electric-dipole transitions between the acceptor states in the absence and presence of a [001] 

stress. We systematically discussed the cases of zero, infinitesimal, low, and high stress. Our 

calculated results show quantitative agreement with the available experimental spectrum so 

that the corresponding transition lines can be properly assigned. At zero stress, the binding 

energy of the ground states and the oscillator strengths of electric-dipole transitions from the 

ground state to the odd-parity states are more susceptible to the attractive central-cell force 

(e.g. for acceptor Tl) than to the repulsive one (e.g. for acceptor B). For the case of infinite-

simal stress, we have calculated the intensity parameters, u and v, of transitions 8 81 1+ −Γ → Γ  

for various species of group-III acceptors in Ge. Except for the G line transition, the intensity 

parameters are not significantly correlated with the species of acceptor atoms. At finite stress, 

the intensity parameters are no longer applicable due to the strain-induced couplings between 

acceptor states of the same symmetry. In fact, the oscillator strengths of certain transitions 

change appreciably even though only a small stress (<0.3 kbar) is applied. The stress effect on 

the binding energies of acceptor states has been found to be related to the compositions of the 

states. Our results show that the binding energies decrease rapidly with the stress as the stress 

is smaller than 3 kbar. Also, the binding energies of even-parity states exhibit remarkable 

asymmetry in the stress dependence due to the large difference between the HH and the LH 

compositions of the states. They decrease much more rapidly with compressive stress than 

with tensile stress for 6
+Γ  states, but conversely for 7

+Γ  states. Increasing stress results in 

HH-LH decoupling. The acceptor states asymptotically approach pure LH (HH) states with 

the compressive (tensile) stress. In the high-stress region (>3 kbar), the l and m can approx-

imately be regarded as good quantum numbers. The nXm and the nX−m are almost degenerate. 
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The selection rules are ∆l=±1, ∆m=0, for E


 and ∆l=±1, ∆m=±1, for ⊥E . Because the 

ground state becomes s-like, only the transitions to the np0 (np±1) states for E


 ( ⊥E ) can 

have non-negligible oscillator strengths. For the same reason, the G3 and G4 components, 

which are weak in the low-stress region, become the main transitions for ⊥E  in the 

high-stress region. The central-cell correction is important for energy levels of nonisocoric 

acceptors and causes significant chemical shift for even-parity states, especially for the 61 +Γ  

and the 71 +Γ  states. The compressive (tensile) stress can reduce effectively the chemical shift 

of the 6
+Γ  ( 7

+Γ ) states because of the rapid reduction of the s component with the stress. Be-

cause of the lack of experimental data available for comparison in the high-stress region, a 

detailed argument has been made supporting the applicability of our calculation scheme to the 

case of high stress.  
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Chapter 5 
Basic Principle and Theoretical Model 

5.1 Introduction  

Parabolic quantum wells (PQW) have been demonstrated to be a candidate of the active 

region for THz emission [51-52]. The emission efficiency depends on the ratio of the radiative 

to the nonradiative rates of ISB processes. The radiative transition rate is the sum of the spon-

taneous and the stimulated emission rates. The former is typically of the order of 104 to 105 s-1. 

It is much less than the ISB acoutic phonon scattering rate (~109 s-1) and the ISB optical pho-

non scattering rate (~1012 s-1). Therefore, almost all the energy of carriers is dissipated 

through the nonradiative ISB transition and is converted into heat if there is no appropriate 

cavity. The THz photonic crystal (PC) metal-metal (MM) cavity containing a 

two-demensional (2D) metallic array can have a quality factor of (Q~50) comparable with 

those of micro-disk cavities [53]. Such a cavity, when incorporated with a resonant phonon 

quantum cascade active region, has been demonstrated to achieve THz surface-emitting lasing 

with narrow-beam and high-power (~1 W/cm2) output at low temperatures (below 10 K) [54]. 

In the present research, we propose a scheme for THz emission from the PQW resonantly 

coupled with the PC MM cavity and with the Fabry-Perot (FP) cavity. The device and its light 

emission are schematically shown in Fig. 5.1(a). The lasing of the PC MM cavity will en-

hance the ISB radiatvie transition accompanied with the surface emission of the terahertz EM 

wave; the lasing of the FP cavity will enhance the interband (IB) transition accompanied with 

the edge emission of the near-infrared (NIR) EM wave. We find the radiative ISB transition 

rate in the PQW can be enhanced by several orders of magnitude. Incorporating a compatible 

FP cavity will depopulate rapidly the electron and hole lowest subbands. Thus the ISB radia-

tive process can surpass the ISB nonradiative process, allowing the THz emission power to be 
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higher than the heat generation power. The THz emission can easily achieve 10 W/cm2.  

 

 
Fig. 5.1 (a) Schematic illustration of simultaneous interband and intersubband lasings from 

the PQWs coupled with the PC MM and FP cavities. (b) Illustrative PQWs with the levels of 

subband edges.  
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5.2 Description of Parabolic Quantum Wells  

We consider, as a test case, a PQW structure of seven conduction and seven valence 

subbands as shown schematically in the Fig. 5.1(b). According to the order of the electron 

(hole) energies from low to high, the conduction (valence) subbands are denoted by e1 (h1), 

e2 (h2),…, e7 (h7). We assume that the conduction (valence) subband structures are parabolic 

with the same effective mass me (mh). This is reasonable naturally for conduction subbands 

and also for valence subbands provided that a large strain makes negligible the coupling be-

tween the HH and the LH subbands in the energy region the holes mainly populate. For the 

case of GaAs1−xPx PQW, this can be achieved as the PQW is pseudomorphically grown on the 

AlxGa1−xAs barrier layer. For the case of (001) biaxial strain, the LH subbands are raised so 

that the holes mainly populate the LH subbands.  

In the present calculation, we use the parameters of GaAs0.85P0.15. The effective masses 

are given by linear interpolation between values of pure-GaAs and pure-GaP, and are set at me 

=0.094m0 and mh=0.105m0. The mh is the LH mass instead of the HH mass. The energy dif-

ference between the neighboring valence subbands is set at ∆Eh=4.1 meV, and thus that be-

tween the neighboring conduction subbands is given by ∆Ee=∆Eh(55mh/45me)1/2=4.8 meV. 

Here the ratio 55:45 is the conduction-to-light-hole band offset ratio of the PQWs. It is ob-

tained from the theory of [55] for the case that the strain caused by a thick AlxGa1−xAs (001) 

layer of the heterostructure is taken into account.    

 

5.3 Photonic Crystal Metal-Metal Cavity  

    In the present calculation, we consider the case that the area of the PC MM cavity is so 

large that the PC MM modes can be treated as quasi-continuous with a 2D density of modes N. 

We do not consider a specific PC MM cavity structure but describe the PC MM cavity and its 

coupling with the PQW with two parameters. They are the quality factor Q and the spontane-
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ous emission enhancement factor γ. The latter is defined as the ratio of the ISB spontaneous 

emission rates with and without the PC MM cavity being incorporated, and can be expressed 

as 

 
0

3
2 c

N
N

λγ
λ

= , (5.1) 

where N/N0 is the Purcell factor, N0 the 2D density of modes in the absence of the cavity, λ 

the wavelength of EM wave in the material, and λc an effective modal distance between the 

PC MM cavity and the PQW charactering the carrier-phonon coupling. It can be expressed as 

 
( ) ( )

( )

2

c 2

b 0, z

d

d z
λ = ∫

∫

r r E r

r E r e
 






, (5.2) 

where E is the electric field of the EM wave, ϵ the dielectric constant, ϵb the dielectric con-

stant of the barrier, ez is the unit vector perpendicular to the quantum well layer, and z = z0 is 

at the center of the PQW. The detailed derivation of Eqs. (5.1) and (5.2) will be given in 

section 5.5. As can be seen, if the polarization of the PC MM cavity modes is in the plane of 

the quantum well, the λc is infinity, the PC MM cavity modes decouple from the PQW, γ=0, 

and hence the rate of spontaneous emission into the PC MM cavity modes is zero. One can 

obtain a high ISB radiative transition rate by designing a PC MM cavity with a short λc as 

well as a high Purcell factor N/N0. The λc almost approaches to the thickness of the PC MM 

cavity Lcav when the metallic filling ratio of the PC approaches to unity (i.e., the PC becomes 

a metal plate) for the case of λ ≫ Lcav. The PQW width should be the lower bound of Lcav and 

λc. In the present calculation, we set the Purcell factor N/N0=1 and γ=10, so that the corres-

ponding λc, for 1 THz EM wave given, by Eq. (5.1) is 13 µm. It is much larger than the 

thickness of the PQW (~100 nm). The quality factor is set at Q = 10 for all the PC MM mod-

es of interest in the present calculation. It is smaller than that (Q~50) reported in [53]. The 

energy broadening of the PC MM cavity modes with energy in the vicinity of ∆Eσ is Γσ=∆Eσ 

/Q (σ=e,h) and the corresponding lifetime is τph,σ=ℏ/Γσ. The photonic lifetime broadening for 
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the present case should be larger than the energy broadening due to the finite lifetime of the 

electronic states provided that the optical phonon process is not activated. Such electronic 

lifetime broadening should be smaller than the energy broadening observed in experiment 

(~0.15 meV at 20K) and hence considerably smaller than that in the present case (Γσ ~0.5 

meV). 

 

5.4 Rate Equations  

    The rate equations for carriers of the subbands under steady state can be written as  

 ( )
7 1

' ,1 ' ''
' '' 1

1 ,     , ;  1, 2,...,7
i

i i i i
i i i

JR R e h i
qσ σδ σ

−

= =

 + − = = =  
∑ ∑  (5.3) 

where Rσi’ is the annihilation rate of the carriers in subband i due to IB transition, Rσii’ the ISB 

transition rate for carrier transitions from subband σi to σi’, and J the injection current density. 

The rates Rσi and Rσii’ are functions of carrier densities (denoted by nσi). The right-hand (left-) 

hand side of Eq. (5.3) is the sum of the generation (annihilation) rates of carriers in subbands 

higher than the subband σi. Here, we have assumed that only the highest subbands (e7 and h7) 

have a nonzero generation rate J/q. The fourteen equations in Eq. (5.3) only gives thirteen 

linear-independent equations because the equations for (σ,i)=(e,1) and for (σ,i)=(h,1) are li-

near dependent. This means that the annihilation rates for total electrons and for total holes 

are equal. Therefore, we require the charge neutrality condition,  

 
7 7

1 1
ei hi

i i
n n

= =

=∑ ∑ , (5.4) 

along with the rate equations to solve for the subband carrier densities. The ISB transition rate 

includes the radiative transition rate r
'iiRσ  and the nonradiative transition rate nr

'iiRσ . For PQW, 

the be approximately written as 

 ( )ph,r
' , 1 ', 1

, 1

,    , ;  2,3,...,6ii i i i i
i

n
R n n e h iσ

σ σ σ
σ

δ σ
τ − −

−

= − = =  (5.5) 
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where iστ  is the lifetime of spontaneous emission into the PC MM cavity modes for 

σ(i+1)→σi ISB transition of a single carrier (if other carriers were absent), nph,σ the photon 

number of each excited PC MM mode with energy in the vicinity of ∆Eσ. Since the number of 

photons emitted by the PQW into the PC MM cavity modes is equal to that radiated out of the 

PC MM cavity under steady state, the photon number nph,σ can be expressed as 

 
( )

7
ph,

ph, , 1
2

r
i i

i
n R

N E
σ

σ σ
σ σ

τ
−

=

=
Γ ∆ ∑ . (5.6) 

Here, we have supposed that only the PC MM cavity modes in the energy region between 

∆Eσ−Γσ/2 and ∆Eσ+Γσ/2 are excited by the PQW, and they are excited equally so that each 

mode in the energy region between ∆Eσ−Γσ/2 and ∆Eσ+Γσ/2 has the same photon number 

nph,σ. We approximate the nonradiative transition rate nr
'iiRσ  as 

 
( )

( )

nr
' '

'

,       '
'

ii ii i

i

R r n x x
i i

x n i i n
σ σ σ

σ σδ

= − Θ   >
= − −

 (5.7) 

where δnσ is the number of states of a single subband of type σ in the energy interval ∆Eσ and 

Θ(x) the unit step function (i.e., Θ(x)=1 if x≥0, Θ(x)=0 if x<0). The rσii’ is the rate of the 

nonradiative ISB transition of a single carrier from the subband edge of σi to the subband σi’ 

if other carriers were absent. It includes the acoustic deformation potential (ADP) scattering 

rate ADP
'iirσ  and the piezoelectric (PZ) scattering rate PZ

'iirσ . In general, ADP
'iirσ  and PZ

'iirσ  are 

comparable at low temperature. The general form of ADP
'iirσ  has been derived in [56], and that 

of PZ
'iirσ  can be derived in a similar way. In the present calculation, they can be written as 
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where Dσ is the hydrostatic deformation potential constant (HDPC), ρ the material density, vs 

the sound velocity, ePZ the piezoelectric constant, and Hi the Hermite polynomial of degree i. 

The Nσ,i-i’ is the number of phonons participating in the carrier-phonon scattering leading to 

the ISB transition between σi and σi’, and can be written as 
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where kB is the Boltzmann constant. In general, the intrasubband scattering rate is about one 

order in magnitude larger than the ISB scattering rate. Provided that the intrasubband phonon 

scattering rate is set at infinity, the carriers in each subband are in equilibrium with the lattice 

which has a low temperature (4.22K). This may result in a considerable overestimate of the 

heat generation. In deriving Eq. (5.7), and only for this equation, we set the carrier tempera-

ture of each subband at 0K for simplicity. Although the intrasubband equilibrium is assumed, 

the ISB equilibrium is not necessarily established.  

The IB recombination rate Rσi can be written as Rei =∑i’Rei-hi’ and Rhi =∑i’Rei’-hi where 

Rei-hi’ is the recombination rate between subbands ei and hi’. We approximate Rei-hi’ by  
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where fσi is the carrier population probability at the edge of subband σi which is in equili-

brium with the lattice (T=4.22 K), τei-hi’ the life time for IB transition of an electron from the 
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edge of subband ei to that of hi’ if the latter were empty of electrons. It can be written as  
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where gσi (z) is the z-dependent envelope function of subband σi, Eei-hi’ the energy separation 

between the edges of subbands ei and hi’, EP the energy equivalent of the IB momentum ma-

trix element [57], and c the speed of light in vacuum. In deriving Eq. (5.11), we suppose that 

the cavity modes have electric fields with z z= ×e E e E  in the PQW.  

As mentioned earlier, we use the parameter of GaAs0.85P0.15. The dielectric constant ϵ is 

set at 12.6. The other parameters in the rate equations are given by linear interpolation be-

tween the values of pure-GaAs and pure-GaP. Therefore, we obtain the parameter EP=25.2 eV, 

the material density ρ=5139 kg/cm3, the sound velocity vs =5324 m/s, the piezoelectric con-

stant ePZ =0.15 C/m2, and HDPC De=7.17 eV and Dh=1.24 eV.  

 

5.5 Intersubband Radative Transition Rates  

    In this section, we will investigate the effect of the cavity modes on the ISB spontane-

ous emission rate, and derive the enhancement factor γ given by Eqs. (5.1) and (5.2). As 

mentioned earlier, γ is defined as the ISB spontaneous emission rate in the presence of the PC 

MM cavity normalized by that in the absence of the PC MM cavity. Therefore, we will begin 

with the case in the absence of the PC MM cavity. According to Fermi’s golden rule, the rate 

of ISB transition between the subband states iik  and jjk  can be written as 

 ( ) ( )
2

2sp

b

21

i j

i i j j i j
i j

E ckE E i q jα
α

π
δ

τ

 
= − −  

 
∑ k
kk k

k k k r e k



 
, (5.12) 

where ekα is the unit polarization vector of the EM wave with wave vector k and polarization 

α, Ei(ki) the energy of the ith subbnand states with wave vector ki, Esp the magnitude of elec-

tric field of a plane wave with a single photon within a unit volume. The Esp satisfies 
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 ( ) ( ) ( ) ( )2

sp2 = ;  = i i j jd E E Eω ω ω −∫ r r k k   . (5.13) 

The r-dependent dielectric constant ϵ(r) can be approximated by ϵb, because the EM wave is 

extended and the PQW is much thinner than the barrier so that most of the EM wave distri-

bute in the barrier. Another reason is that the dielectric constants of the PQW and of the bar-

rier are in general nearly equal. The selection rule causes that only the z-component of the di-

pole matrix element is not vanished. Furthermore, neglecting the momentum of the photon, 

we can express the electric dipole matrix element as ,i ji j ij zi q j d δ= k kk r k e . Therefore, we 

can rewrite Eq. (5.12) as 

 
2 2

,
b b

1 2
2 i j

i j

ij
ij ij z

i j

E ckd E α
α

π δ δ
τ

 
= −  

 
∑k k k
kk k

e e



  
, (5.14) 

where, Eij is the energy difference between subbands i and j. The sum in Eq. (5.14) is just one 

third of the 3D density of modes for the bulk material (denoted by Nb). Therefore, 

 ( )2

, b
b

1 1
3 i j

i j

ij
ij ij

i j

E
d N E

π
δ

τ
= k k

k k 
, (5.15) 

The spontaneous emission rate in the absence of PC MM cavity is obtained by summing over 

all the final states 

 ( )2

b
0, b

1 1 1
3

j i j

ij
ij ij

ij i j

E
d N E

π
τ τ

= =∑
k k k 

. (5.16) 

As can be seen, it is not a function of the wave vector of the initial state. Equation (5.16) can 

also be written as 

 
3

2b
4 3

0,

1 1
3

ij
ij

ij

E
d

cτ π
=




 (5.17) 

    Having obtained the ISB radiative transition rate in the absence of PC MM cavity, we go 

on to derive that in the presence of the PC MM cavity. Similarly, we begin with Fermi’s gol-
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den rule. The rate of the ISB transition between the states iik  and jjk  can be written as 

 ( ) ( )( ) 2

PC
1 2 ( )
i j

i i j j j i
i j

E E j q iα
α

π δ ω α
τ

= − −∑ k
kk k

k k k k r E k






 



 (5.18) 

where PC ( )ω αk


 is the dispersion relation and αkE


 the electric field caused by a single 

photon within a unit area for the PC MM cavity mode with the wave vector k


 and the pola-

rization α. Here, the index α can be generalized to include other good quantum numbers (if 

exists) of the PC MM cavity modes. The expression of Eq. (5.18) is useful if PC ( )ω αk


 and 

αkE


 were known. However, as mentioned earlier, we do not intend to consider any specific 

PC MM cavity structure and hence any specific PC ( )ω αk


 and αkE


. Therefore, we rewrit-

ten Eq. (5.18) as  

 ( ) ( )( ) ( )
21 2

i j

i i j j j i
i j

N E E j q iπ
τ

= −
k k

k k k r E r k



. (5.19) 

Here the selection rule of momentum (i.e., ( ) ,i jj ij q i δ∝ k kk r E r k ) is no longer strictly 

valid because the photons can gain momenta through the scattering by the PC; the ISB transi-

tions between states of different wave vectors are allowed through emitting photons into the 

PC MM cavity modes. However, the matrix element ( )j ij q ik r E r k  has a significant 

value only when PC2 /j i aπ−k k   , where aPC is the lattice constant of the PC. Therefore, 

the density of modes of Eq. (5.19) can be approximated by ( )ijN E  for the case that aPC is 

much larger than the lattice constant of the material. In this case, the electric field E(r) should 

be slowly varying over a unit cell. Therefore, the electric dipole matrix element can be written 

as 
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 ( ) ( ) ( ) ( )*
j ij i j ij q i q d F F d= ∫ k kk r E r k r r r E r r r  , (5.20) 

where Fik(r) is the envelope function of the subband state ik . It can be expressed as 

 ( ) ( ) ( )expi iF i g z=k r k r


  (5.21) 

In general, the thickness of the PQW is so small that the electric field in the PQW can be ap-

proximated by ( )0, zE r


. Therefore, the matrix element can be written as 

 ( ) ( ) ( )0,i ji
j i ij zj q i d e z d−= ∫

k k rk r E r k E r e r



 

  . (5.22) 

In deriving Eq. (5.22) we have used the orthogonality of the functions gi(z). The (5.19) can be 

written as 
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 (5.23) 

 

For the electron initially at subband state iik , the rate of the spontaneous emission for the 

ISB transition to the subband j is ( )1 1
iij i i jτ τ− −= ∑ k kk

k . In fact, similar to 1
0,ijτ − , 1

ijτ −  is not a 

function of the wave vector of the initial state. It can be written as 
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2
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π
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, (5.24) 

or 

 ( ) ( ) ( )2 2

b c

21 ij
ij

ij

dz dd
N E

π

τ λ
= ∫ ∫ r r E r








 (5.25) 

Since ( )E r  is the electric field caused by a single photon, it satisfies 

 ( ) ( ) 2
2 , ijdz d z E=∫ ∫ r r E r

 

 . (5.26) 

Substituting Eq. (5.26) into Eq. (5.25), we obtain 
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 ( )
2

b c

1 ij ij
ij

ij

d E
N E

π

τ λ
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
. (5.27) 

According to the definition of the spontaneous emission enhancement factor γ, it is γ=τ0,ij/ τ ij. 

From Eqs. (5.16) and (5.27), γ can be written as 

 
( )
( )c b

3 ij

ij

N E

N E
γ

λ
=  (5.28) 

The 3D density of modes Nb can be expressed in terms of the 2D density of modes N0,  

 ( ) ( )b 0
2

ij ijN E N E
λ

= . (5.29) 

Therefore, we obtain the final expression of the spontaneous emission enhancement factor γ, 

 
c 0

3
2
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λγ
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Chapter 6 
Results and Discussion 

6.1  Effects of the PC MM Cavity  

In the absence of a PC MM cavity, only the edge emission of the THz EM wave is 

available because the radiative ISB transition is forbidden for the EM wave polarized along 

the z direction. Furthermore, almost all the energy of carriers, as mentioned earlier, is dissi-

pated through the nonradiative ISB transition and is converted into heat because the nonradia-

tive transition rate is much larger than the radiative transition rate. Fig. 6.1 shows the carri-

er-phonon scattering rate of a single carrier (i.e., 1ADP ADP
'' 1

i
i iii

r rσ σ
−

=
= ∑ , 1PZ PZ

'' 1

i
i iii

r rσ σ
−

=
= ∑  ) as 

function of the subband index i of the subband which the carrier populates. The subscript e (h) 

denotes the electron-phonon (hole-phonon) scattering. As can be seen, the carrier-phonon 

scattering rate is of the order of 109~1010 s−1 which is about 105 times higher than the sponta-

neous emission rate (about 104~105 s−1).  

Two other features of the carrier-phonon scattering can be seen from Fig. 6.1. The first is 

that the ADPe scattering rate is much higher than the ADPh scattering rate. This is because the 

ADP scattering rate is proportional to the square of the HDPC, and there is a large difference 

in the magnitude of HDPC between the valence band and the conduction band. The second is 

that the subband index (i) dependence of the ADP
irσ  is qualitative different from that of the 

PZ
irσ . The ADP

irσ  almost increases linearly with the index i because the ADP
'iirσ  is almost a con-

stant for different final states σi’. However, the PZ
irσ  increases with the subband index i and 

then saturates to a constant because the PZ
'iirσ  is smaller for a smaller i’. This is due to the in-

trinsic properties of electrostatic interaction that the faster moving carriers scatter less than the 
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slower moving carriers [58]. For the smaller index i’ (i.e., the larger i−i’), the final state of 

ISB transition 'i iσ σ→  can gain a higher kinetic energy.  

    The presence of the PC MM cavity can introduce a 2D density of mode of the PC MM 

cavity. The z component of the polarization of the PC MM cavity mode can be considerable in 

the PQW so that the carrier-photon coupling is significant and the surface emission is availa-

ble. Figure 6.2(a) shows the modal photon number nph,σ and the THz emission power Wph,σ 

(σ=e,h) as functions of the injection current J. As can be seen, nph,σ increases with J and the 

ISB stimulated emission rate, which is nph,σ times the spontaneous emission rate, can increase 

by several orders of magnitude. Therefore, the radiative ISB transition rate is comparable to 

the nonradiative ISB transition rate, and hence the output of the THz emission is almost com-

parable to the heat. This can be seen from Fig. 6.3 (a), which shows the J dependence of the 

heat generation. In addition, Fig. 6.3 (a) shows the J dependence of the carrier density ntot, 

which is defined as the total 2D carrier density divided by the PQW width. We find the carrier 

density ntot is almost proportional to the heat generation. In other words, the average carrier 

-phonon scattering rate is almost constant with increasing J (and hence ntot ).  

When J is further increased beyond a critical value Jc, the separation of the quasi-Fermi 

level of subband e7 from the edge of subband e1 can be larger than the optical phonon energy 

opω  (~36 meV) to activate optical phonon emission. This will degrade seriously device 

performance, such as increasing the threshold current, generating more heat, and hence lo-

wering the ISB quantum efficiency (QE). For the present calculation, Jc is about 382 A/cm2 

below which the THz emission power is lower than 2 A/cm2. 
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Fig. 6.1 The rates of different carrier-phonon scattering mechanisms for a single electron 

(hole) at the conduction (valence) subband ei (hi). 
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Fig. 6.2 The photon number nph,σ of PC MM cavity modes and the THz emission power Wph,σ  

(σ=e,h) versus the injection current J for (a) without and (b) with the FP cavity. 
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Fig. 6.3 The carrier density ntot, the total heat power, and the contributions of different scat-

tering mechanisms to the heat generation as functions of the injection current J for (a) without 

and (b) with the FP cavity.  
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6.2  Effects of the Heterogeneous Cavities  

The ISB QE can be significantly improved by introducing a FP cavity. To gain an insight, 

we show in Fig. 6.4 the IB gains gi at seven photon energies ei hiEω −=  (i=1,2,...,7) versus J 

for (a) without and (b) with a FP cavity. The gain spectrum has local maxima at ei hiEω −=  

if the scattering broadenings are small [59]. Without the FP cavity, g1 increases rapidly with J 

and then saturates at a value gs1 when fe1 and fh1 approach unity. Differently, the gains gi (i≥2) 

increase from more negative values, because the absorption increases with the photon energy 

in the absence of excitation, and then saturate at much higher currents. Therefore, the lasing 

photon energy is between Ee1-h1 and Ee2-h2 if there is a FP cavity with a threshold gain gth<gs1. 

Once IB lasing, the gain g1 is pinned at gth, as Fig. 6.4(b) shows. The lasing depopulates ra-

pidly subbands e1 and h1, and hence establishes ISB population inversion. This may lead to 

ISB lasing of the PC MM cavity modes. The ISB lasing further enhances ISB transitions, by 

stimulated emission, of carriers in all subbands except the lowest ones. As a result, all the 

subband carrier densities are finally suppressed at fixed values, almost independent of J. This 

is reflected by the negative gains gi (i≥2) in Fig. 6.4(b) as the current density J is higher than 

100 A/cm2. Here we set gth =350 cm−1 for the lasing mode with energy 1 1e hEω −= . Benefits 

of the carrier density suppression are threefold. The first is that the 1 1e h→  IB lasing re-

mains steady no matter how high the current is. This ensures the stability of THz ISB lasing. 

The second is that optical phonon scattering is prohibited. At deep lasing, the separation of 

the quasi-Fermi level of subband e7 from the lowest subband edge is smaller than the optical 

phonon energy by about 4.7 meV. The third is that acoustic phonon scattering and the heat 

generation are suppressed. Fig. 6.3 (b) shows the heat power and the carrier density ntot as 

functions of J in the presence of the FP cavity. As can be seen, the heat as well as ntot satu-

rates, as ISB lasing. The heat is much smaller than that without the FP cavity at high J. In the 
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saturation region, any increase in J does not cause heat generation but totally contributes THz 

emission, and hence the ISB process is dominated by the radiative process. The heat deviates 

from the linear dependence on ntot in the region around J~100 A/cm2 because the region is a 

transition region between nonradiative-process-dominated (NPD) and radia-

tive-process-dominated (RPD) cases. With the increase of J (and hence ntot), the carriers tend 

to populate higher subbands, which have higher nonradiative scattering rates ADP
irσ  and PZ

irσ . 

Therefore, the slope of heat versus ntot for the RPD case is higher than that for the NPD case, 

and varies markedly with J (and hence ntot) in the transition region. With the FP cavity, the 

threshold of ISB lasing is reduced. Above threshold, the THz emission power Wph,σ and the 

modal photon number nph,σ increase linearly with J, as shown in Fig. 6.2(b), and the emission 

has a slope efficiency almost equal to 6 /E qσ∆ . This indicates that, besides those for the 

fixed heat generation rate, additional ISB transitions proceed by emitting THz photons. The 

factor 6 arises from there being 6 equally energy spacings of the subbands for each PQW. The 

more subbands the PQW has, the higher the slope efficiency will be, but the activation of opt-

ical phonon scattering sets its upper bound at op / qω . At high J, the electron ISB lasing has 

a higher emission power than the hole lasing because the former has a higher slope efficiency. 

In the present calculation, we do not take account of the ISB carrier-carrier (CC) scatter-

ing. The ISB CC scattering can dominate the ISB process for high carrier density. However, it 

should not be important in our case because the carrier density can remain low (<5.5×1016 

cm−3) with the scheme of PQW resonantly coupled with a PC MM cavity and a FP cavity [Fig. 

4(b)]. The carrier density at lasing can be further reduced by optimizing the cavities, such as 

enhancing Q and γ (through enhancing the Purcell factor and reducing the characteristic 

length λc) and lowering the threshold gain gth of the FP cavity modes. Figure 6.5 shows the 

carrier density ntot versus J for different γ and gth. We can find that the reduction in ntot is 
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prominent when γ is enhanced and/or gth is lowered. Therefore, the emission efficiency can be 

further improved and the heat generation can be further alleviated. 
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Fig. 6.4 The interband gains gi at photon energies Eei-hi (i=1,2,…,7) versus the injection cur-

rent J for (a) without and (b) with the FP cavity. 
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Fig. 6.5 The carrier density ntot versus the injection current J for different threshold gains gth 

of the FP modes and different intersubband spontaneous emission enhancement factors γ.  
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6.3  Summary  

    In summary, we have proposed a scheme for THz emission. In this scheme, the PQWs 

are resonant coupled with PC MM and FP cavities. The in-resonance PC MM cavity can in-

crease the ISB radiative transition rate by several orders; the in-resonance FP cavity can de-

populate the carriers through the IB lasing so that not only the optical phonon scattering is 

prohibited but also the acoustic phonon scattering is suppressed. When ISB and IB lasings 

occur simultaneously, the emission power increases linearly with current while the heat gen-

eration is almost constant. In this case, the slope efficiency of emission power is nearly equal 

to that without the phonon scattering.  
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