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Abstract

In this dissertation, we present a Bayesian hierarchical framework (BHF) to
simultaneously deal with 3-D scene modeling and image analysis in a unified manner.
In practice, to develop a robust video surveillance system, many challenging issues
need to be taken into account, such as occlusion effect, appearance ambiguity between
foreground and background, perspective effect, shadow effect, and lighting variations.
In this dissertation, we find a way to handle these challenging issues by modeling 3-D
scene in a parametric form and by integrating scene model and image observation
together in the inference process. In the proposed hierarchical framework, we
systematically integrate pixel-level information, region-level information, and
object-level information in a probabilistic way for the semantic inference of image
content and 3-D scene status. Under this BHF framework, occlusion effect,
appearance ambiguity, perspective effect, shadow effect, and lighting variations can
be well handled. Actually, in the BHF framework, occlusion effect, perspective effect,
and shadow effect may even provide useful clues to support 3-D scene inference.

In this dissertation, the BHF framework is applied to two video surveillance

systems: a vacant parking space detection system and a multi-camera surveillance
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system. In the vacant parking space detection system, the challenges come from
dramatic luminance variations, shadow effect, perspective distortion, and the
inter-occlusion among vehicles. With the proposed BHF, those issues can be well
modeled in a systematic way and can be effectively handled. In detail, the proposed
BHF scheme depicts the occlusion pattern, perspective distortion, and shadow effect
by building a parametric scene model. On the other hand, the color fluctuation
problem caused by luminance variation is treated as a color classification problem.
With the BHF scheme, the detection of vacant parking spaces and the labeling of
scene status are regarded as a unified Bayesian optimization problem subject to a
shadow generation model, an occlusion generation model, and an object classification
model. The system accuracy was evaluated by testing over a few outdoor parking lot
videos captured from morning to evening. Experimental results showed that the
proposed framework can systematically detect vacant parking spaces, efficiently label
ground and car regions, precisely locate shadowed regions, and effectively handle
luminance variations.

On the other hand, in the application of multi-target detection and tracking over a
multi-camera system, the main goal is to locate, label, and correspond multiple targets
with the capability of ghost suppression over a multi-camera surveillance system. In
practice, the challenges of this kind of system come from the unknown target number,
the inter-occlusion among targets, and the ghost effect caused by geometric ambiguity.
Instead of directly corresponding objects among different camera views, the proposed
framework adopts a fusion-inference strategy. In the fusion stage, we formulate a
posterior distribution to indicate the likelihood of having some moving targets at
certain ground locations. In the inference stage, the scene model is inputted into the
proposed BHF, where the target labeling, target correspondence, and ghost removal

are regarded as a unified optimal problem subject to 3-D scene priors, target priors,
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and image observations. Moreover, the target priors are iteratively refined based on an
expectation-maximization (EM) process to further improve the system performance.
The system accuracy is evaluated via both synthesized videos and real videos.
Experimental results showed that the proposed system can systematically determine
the target number, efficiently label and correspond moving targets, precisely locate
their 3-D locations, and effectively tackle the ghost problem.

With simulations over these two applications, we verified that the proposed BHF
scheme can be well applied to various kinds of video surveillance applications. This
BHF framework provides the flexibility to properly integrate pixel-level, region-level,
and object-level information into a unified inference process. With the integrated
information from multiple aspects, we will be able to handle more complicated tasks

with improved accuracy and robustness.
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CHAPTER 1

Introduction

1.1 Overview

Recently, computer vision technology for video surveillance applications has
made tremendous progress. Using an intelligent surveillance system to manage
parking lots or to monitor security zones is becoming practical. To add more values to
existing surveillance systems, various kinds of vision-based intelligent functionalities
have been explosively proposed. For example, some algorithms provide user-friendly
ways to help operators in the control room to monitor tens of, or even hundreds of,
cameras; while a few others provide the capability to automatically detect unusual
events in the surveillance zone. These vision-based algorithms may be roughly
classified into single-camera based methods and multi-camera based methods. Among
those methods, object detection and object labeling are two essential processes for
subsequent analyses, like behavior modeling and scene modeling. Object detection,

such as face detection and vehicle detection, is an object-level classification that tells



whether and where a specific object is inside an image. On the other hand, object
labeling is an identity-level (ID-level) classification that determines the identity of
each object region in the image. An example of human detection and human identity
labeling is shown in Fig. 1. Even though it seems very easy and straightforward for
human eyes to perform object detection and labeling, a robust computational

algorithm for these two operations is actually not trivial at all.

(a) (b) (c)

Fig. 1. An example of human detection and human identity labeling. (a) Test image. (b) Human

detection result. (¢) Human labeling result, with different colors indicating different persons.

For a single camera system, the captured 2-D image lacks the depth information
and the detection of moving targets usually suffers from the occlusion problem, which
makes it difficult to correctly label or segment connective targets. To deal with
occlusion, some methods adopt multi-camera approaches. Even though the cross
reference of multiple camera views may ease the occlusion problem and provide a
more reliable way for object detection and labeling, the object correspondence among
multiple cameras may become another thorny problem.

On the other hand, to detect foreground objects, the appearance ambiguity
between the foreground objects and the surrounding background is a challenging issue
that may fail many widely-used object detection algorithms. For example, some
background subtraction algorithms, like [1][2], focus mainly on the modeling of

background information. These algorithms work pretty well for scenes with stationary




background. However, they may detect incomplete foreground regions while the
appearance of foreground objects happens to be similar to that of the background. To
overcome this appearance ambiguity problem, simply relying on pixel-level image
data would not be enough. Some other information, such as region-level messages and
object-level messages, should be taken into consideration.

Besides occlusion and appearance ambiguity, the perspective distortion in 2-D
images is also a challenging issue. An object far away from the camera and an object
close to the camera would have quite different scales and shapes in the camera views.
To overcome the perspective effect, some researches focused on invariant feature
descriptors. In their approaches, they detect reliable feature points first and design
appropriate feature descriptors for object classification. For example, difference of
Gaussian (DoG) [3] and Harris-Laplace [4] operators are popular feature extraction
operators. The SIFT (Scale Invariant Feature Transform) [5] descriptor is another
widely-used operator that is invariant to illumination variation and affine
transformation. Even though these operators perform quite well in detecting
prominent features, they are still incapable of handling object labeling in complicated
scenes.

Shadow effect and lighting variations are another two troublesome issues that
degrade the robustness of present surveillance systems. Plentiful works have been
proposed to solve these two problems. For example, Finlayson et al. [6] proposed an
entropy minimization method to extract from an image the intrinsic image that is
shadow-free. Matsushita et al. [7] proposed an illumination normalization method
based on an off-line learned eigenspace to eliminate shadows. On the other hand, a
few methods have been proposed to maintain reliable color appearance under varying
illumination conditions. A review of these color constancy algorithms could be found

in [8]. Moreover, in the last decade, the Bayesian approach and some learning-based
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methods for color constancy have gotten great attention. A complete survey of
Bayesian color constancy methods could be found in [9].

To overcome these aforementioned problems, like occlusion, appearance
ambiguity, perspective effect, shadow effect, and lighting variations, we found most
existing methods rely more on image observation but less on 3-D scene knowledge. In
this dissertation, we focus on the inclusion of 3-D scene knowledge in object
detection and object labeling. In our study, we found the usage of 3-D knowledge
could be very helpful in handling these complicated issues. Moreover, from the aspect
of system functionality, an important role of a practical surveillance system is to
dynamically reveal the 3-D status of the surveillance zone. To achieve this
functionality, a major task of an intelligent surveillance system would be to
automatically infer the unknown 3-D status based on the observed images. In this
dissertation, we propose a Bayesian hierarchical framework to realize the integration
of 2-D image information and 3-D scene model in a unified and efficient manner for
scene inference. The optimal inference of BHF provides a systematic way to resolve
the image labeling problem and to find out the 3-D scene unknowns simultaneously.
We also apply the framework to two real applications of video surveillance. By using
the hierarchical framework to represent the image generation model in a probabilistic
manner, our systems can systematically integrate useful information from pixel level,

region level, and object level to achieve semantic inference of the 3-D environments.

1.2 Contribution

In this dissertation, by using a parametric form to represent the 3-D scene model
with unknown variables, we propose a unified framework, named as Bayesian
hierarchical framework (BHF), to accomplish object detection, object labeling, and

3-D scene inference, simultaneously. Based on the BHF framework, it becomes easier
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to handle these aforementioned issues, like occlusion, appearance ambiguity,
perspective effect, shadow effect, and lighting variations. Actually, under the BHF
framework, occlusion effect, perspective effect, and shadow effect may even provide
useful clues to support 3-D scene inference.

Moreover, the proposed BHF framework has been applied to two video
surveillance systems: a vacant parking space detection system and a multi-camera
surveillance system. In the vacant parking space detection system, the challenges
come from dramatic luminance variations, shadow effect, perspective distortion, and
the inter-occlusion among vehicles. With the proposed BHF, those challenging issues
can be well modeled in a systematic way and can be effectively handled.
Experimental results over a few outdoor parking lot videos show that the proposed
framework can systematically detect vacant parking spaces, efficiently label ground
and car regions, precisely locate shadowed regions, and effectively handle luminance
variations. On the other hand, in the application of multi-target detection and tracking
over a multi-camera system, the challenges come from the unknown target number,
the inter-occlusion among targets, and the ghost effect caused by geometric ambiguity.
Similarly, with the proposed BHF, the target labeling, target correspondence, and
ghost removal are regarded as a unified optimal problem subject to 3-D scene priors,
target priors, and image observations. Experimental results show that the proposed
system can systematically determine the target number, efficiently label and
correspond moving targets, precisely locate their 3-D locations, and effectively tackle

the ghost problem.



1.3

Organization

The following chapters of this dissertation are organized as follows.

2

2

In Chapter 2, we introduce various kinds of messages that have been commonly
used for image analysis and scene modeling in video surveillance. Based on the
coverage of the information, we classify these messages as pixel-level messages,
region-level messages, and object-level messages.

In Chapter 3, we detail the main idea of the proposed BHF framework and how
we integrate various kinds of messages under this framework. In this chapter, we
first introduce the modeling process in the proposed framework. After that, we
depict the inference stage of the BHF framework which determines the optimal
estimates of the system unknowns.

In Chapter 4 and Chapter 5, we present the applications of the BHF framework
to two different applications. In Chapter 4, we present how we develop a vacant
parking space detection system based on the BHF framework. In Chapter 5, we
present how we develop a multi-camera surveillance system to perform
multi-target detection and tracking. In both systems, we explain how the BHF
framework integrates the top-down information from 3-D scene models with the
bottom-up message from image observations. The inference procedure of each
system is also presented, together with a few experimental results over real
scenes to demonstrate the feasibility of the proposed BHF framework.

In Chapter 6, conclusions are drawn.



CHAPTER 2

Backgrounds

Object detection and object labeling have played an important role in the
development of video systems. Some examples, like face detection, human detection,
and vehicle detection, have been widely applied to various applications. Right now, a
lot of digital cameras can perform automatic face detection while capturing photos. A
few intelligent video surveillance systems can count the number of people in the
scene based on human detection techniques. For modern intelligent transportation
systems, automatic vehicle detection is also prevalent. In the literature, many image
analysis works have been proposed to detect or label interested objects. In Section 2.1,
we illustrate a few representative algorithms for object detection and labeling.
According to the type of information used, these algorithms can be categorized into
pixel-level methods, region-level methods, and object-level methods. Since the
proposed BHF framework is designed to integrate pixel-level, region-level, and
object-level information together, we will briefly review these three types of image

analysis methods for object detection and labeling.



On the other hand, with the rapid development of computer vision techniques,
scene modeling has attracted more and more attentions. In recent years, the concept of
contextual analysis, which physically connects image analysis with scene knowledge,
has been intensively studied to achieve improved detection performance. For instance,
if we know a car is parked at a certain place and we also know the direction of
sunlight, we would expect a shadowed pattern caused by the parked car. This kind of
scene knowledge can be helpful in object detection and labeling. Hence, in this
dissertation, another focus is to study the way to combine image analysis with the
inference of unknown factors in the scene model. In Section 2.2, we will review a few
relevant works that discuss the connections between image analysis and 3-D scene

modeling.

2.1 Image Analysis Techniques

2.1.1 Pixel-level Methods

In most video surveillance systems, cameras are fixed. This static camera setting
relaxes the difficulty of foreground object detection. Ideally, if we collect the
color/intensity feature of a pixel over a temporal period, we may find, in most cases,
the statistical property of the foreground color/intensity is somewhat different from
that of the background color/intensity. Moreover, most of the period, the
color/intensity feature at a pixel belongs to the background color/intensity. These two
observations are the fundamental assumptions of many pixel-based background
subtraction methods. Since background subtraction methods are simple and effective,
this background modeling approach has become one of the popular tools in video
surveillance applications.

The basic operation of background modeling is to dynamically learn the

8



temporal statistical property of every pixel. Based on the learned model, a pixel is
classified as either a “background pixel” or a “foreground pixel” based on the current
color/intensity observation at that pixel. Besides, the current observation is fed back to
update the background model. By on-line learning the statistical property of the
background color/intensity, this background modeling method can efficiently extract
foreground regions from the background. Currently, several efforts have been
proposed for the modeling of time-varying background. Some simpler methods used
the 1% order and 2™ order statistics to model the temporal property of a pixel [104]. In
these simple approaches, a pixel with its color/intensity feature far away from the
mean value is classified as a foreground pixel.

On the other hand, some methods used more complicated parametric forms to
model the dynamic statistics of the color/intensity feature at a pixel. Among those
methods, the Gaussian mixture model (GMM) has been widely studied and has been
proved to be a useful form for background modeling [2]. In principle, the distribution

of a pixel value (x) over the temporal (¢) direction is formulated as
K
p(x(t)):ZW[(Z)Xgau(x(t)7/’l[’G[)7 (1)
i=1

where p(x(?)) is the probability of observing the current pixel value x(¢), w{) is an
estimate of the weight of the ith Gaussian function g,,(.) in the mixture model at Time
t. (;ando; are the mean value and the standard deviation value of the ith Gaussian
in the mixture at Time ¢. An example of the probability distribution of a pixel with a

Gaussian mixture model is shown in Fig. 2.



The probability of observing pixel value x

|
300
Pixel value x

Fig. 2. The probability distribution of a pixel with Gaussian mixture model [2].

To classify a pixel into either a background pixel or a foreground pixel,
Stauffer-Grimson [1] suggested firstly separating the K Gaussian distributions into
background Gaussians and foreground Gaussians. Those pixels belonged to
background Gaussians are determined as background pixels, and vice versa. To
separate the K Gaussian distributions, the ratio w; / g ; of each Gaussian distribution
are calculated and is used to rank the K Gaussian distributions from small to large.
The first B Gaussian distributions, whose summation of their probability weights

exceeds a threshold 7, are treated as background Gaussians. This is formulated as

B=arg min(i w,>T). (2)

b i=1

On the other hand, the parameter sets { (£, 0 ;,w; } are dynamically updated over time
to adapt to the environmental variation. By using a recursive filter to approximate the
online Expectation-maximization (EM) algorithm [1], the parameter sets are updated

based on the following formulation:
B)=(1-A)S( -1+ ADO(x(1), f(1=1)).  (3)
Here, [3(f) could be any model parameter of {0 ;,w; } at Time ¢, A(?) is the

parameter learning rate, and x(¢) is the new observation at Time ¢. The function Q(.) is
a prediction of the model parameter 5 (f) at Time ¢ based on x(¢) and the previous
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parameter S (z—1). In Fig. 3, we show the detection results based on the Gaussian

mixture method.

(@)

()

Fig. 3. Background subtraction results based on Gaussian mixture model.

Instead of using a parametric form to model the statistical property of a
background pixel, Elgammal et al. [10] proposed the description of a background
model based on non-parametric kernel density estimation. In their method, the
pixel-wise statistical property along the temporal direction is modeled by a kernel
density function. Given N successive intensity values B,={xi, x»,...,xy} along a
temporal period at a pixel, they estimate the probability density function (pdf) to be

1 &
p(x, IBx)=N;KBW(Xt—x1-)- 4

Here, x,represents an intensity value. Kzw is the kernel function with bandwidth BW.
By assuming that most of the intensity values inside the observed time period belong
to the background, a pixel with a smaller probability value p(x;) is more likely to be a
foreground pixel. To adapt to the environmental variation over time, this algorithm
simply shifts the time window to update samples for the estimation of the pdf
function.

To overcome the appearance variations caused by surrounding lighting, a few
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researchers try to record all possible forms of the background images and then
dynamically select the most suitable background image from the stored background
image database. Obviously, it would be inefficient to directly store all possible
background images in a large database. Hence, Funck et al. [11] assumed that the
background images would form a Euklidian subspace within the space formed by all
image pixels. By applying the Principal Component Analysis (PCA) technique to
calculate the major principal components, any background image could be
represented as a linear combination of the derived eigen-backgrounds. With this
eigen-background representation, any input image is firstly projected onto the
background subspace to find the most matched background image. By subtracting the
matched background image from the input image, foreground objects are identified.
Even though the detection of foreground objects based on pixel-level
background modeling works pretty well for a scene with stationary background, this
approach has difficulty in handling the occasional appearance ambiguity between a
foreground object and its surrounding background [12]. When a foreground object
happens to have an appearance similar to that of the surrounding background, the
background model may not be enough for foreground/background discrimination.
Hence, instead of focusing on the background model, some other researchers
proposed the learning of the foreground target model. For instance, Tsai et al. [13]
developed a probabilistic method to model a pixel-level car model in the chromatic
domain. In their method, the RGB color features of many “car” pixels are collected

and converted to a new color domain based on the following transformation.

Z=(R+G+B)/3
u=2Z-G-B)/Z . (5)
p=Max{Z-G/Z,(Z-B)/Z}

To combat the luminance variation problem, only the chromatic information (u, p) is
used. The brightness value Z is ignored. Based on the finding in [13], the chromatic
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values of the “car” pixels cluster compactly in the u-p color space. This cluster can be

approximated by a Gaussian function:

P(x, |car) = ﬁexp(—%m —m) T —m))  (6)

where x.= (u, p) is the chromatic feature of a pixel x, m, is the estimated chromatic
mean based on the training set of “car” pixels, and X. is the estimated chromatic
covariance matrix. Based on the car probability model in (6), the probability of being

a “car” pixel at a pixel with the chromatic feature x. can be evaluated.

2.1.2  Region-level Methods

Because of its abilities to adapt to the background variations over time and to
cope with multi-modal background distributions, the aforementioned pixel-level
modeling has achieved its success in foreground object detection and labeling.
Besides, the background modeling approach can handle the situations of new comers
and the leave of existing objects. However, in an outdoor scene, occasional camera
shaking and the swinging trees caused by strong wind may sometimes seriously
degrade the performance of object detection and labeling. In order to improve the
performance, some region-level methods have been proposed for image analysis in
the literature.

In region-level methods, some researchers extended the concept of GMM to
develop new background subtraction methods that incorporate region-level
information. For example, Heikkila et al. [14] tried to model the temporal statistics of
a small region to capture the textural information. In [14], local binary patterns were
proposed to efficiently extract the texture features of a small region which are
invariant to lighting changes. By modeling the dynamic variation of those texture

features along the temporal direction, their system outperforms the traditional GMM
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background subtraction in an outdoor scene, where the trees were swinging and the

camera was shaking. In Fig. 4, we show the detection results based on their method.

[14].

Fig. 4. The background subtraction results based on the method proposed by Heikkild
et al. [14]. The first and third rows are the test images. The second and fourth rows
are the detection results. (Figures courtesy of Marko Heikkild [14])

Compared with GMM background modeling, non-parametric kernel based
modeling relaxes the constraint of a GMM pdf function and may sometimes provide a
more compact match with the true distribution. However, the original non-parametric
method is still a pixel-based approach and may suffer from the aforementioned
non-stationary effect like camera shaking and swinging trees. In [10], Elgammal et al.
suggested an approach that takes into account the background models of neighboring
pixels. This is due to the thinking that the intensity value x, at the current pixel may
actually belong to a neighboring pixel at the previous moment. In their approach, they

calculated the following probability

py(x)=max p(x,[B,), (7)
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where y is a pixel belongs to the neighborhood of the target pixel x, x; is the intensity
value at x, and B, 1s the intensity set for the pdf estimation of Pixel y. The distribution
p(x; | B)) is estimated by the non-parametric formula in (4). By comparing pp(x,) with
a pre-defined threshold, foreground pixels are determined. A detection result based on

the method of [10] is shown in Fig. 5.

(b) ©

Fig. 5. A background subtraction result based on the method of Elgammal et al. [10].
(a) A test image. (b) Per-pixel detection result. (c) Per-pixel detection result with
neighboring consideration. (Figures courtesy of A. Elgammal [10] )

Some methods suggested maintaining a region-based foreground model and a
background model at the same time for object detection and labeling. A simplest
setting is to use a uniform distribution over the feature domain to model the
foreground model, as used in [15]. Obviously, the uniform foreground model cannot
well capture the foreground property. Hence, Sheikh and Shah [16] expended the
original non-parametric kernel density modeling in [10] with some modifications.
First, both the foreground model and the background model are dynamically
maintained in order to reduce the effect of appearance ambiguity. In their approach, it
was assumed that foreground objects tend to have consistent appearance and high
spatial correlation in successive frames as long as the video frame rate is high enough.
With this assumption, the foreground detection results of the previous frames can be

used to establish the foreground model of the current frame. Moreover, in their hybrid
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modeling, the background and foreground models compete with each other for a
better detection without the need of a manually selected threshold. Second, a new
non-parametric kernel density estimation of the probability model over the domain
(location) space and the range (color) space is proposed. Rather than modeling the
color space only, the integration of the color space and the location space makes it
easier to handle non-stationary background in an outdoor scene. In their method, by
combining the spatial location x and the pixel color values x,, into a random vector

d =(x, X,g»), the joint domain-range probability is defined as
- 1 & S T
pld Q)= ﬁz%w(d —d¢). (8)
i=1

Here, Q)c={ c?é ,cTé yeees ﬂ} is the training set with N domain-range training data of
some class C. In [16], the class C could be foreground (Cr) or background (Cs). 4,
is the domain-range kernel function with bandwidth BW. While calculating the class
probability of a pixel x, ()¢ directly embedded the information from neighboring
pixels to contribute the support of the class C. With this design, the non-stationary
statistical properties caused by winds or other factors can be overcome.

In some surveillance systems, the video frame rate is low and unstable due to the
limited transmission bandwidth or the limited storage. In this kind of surveillance
systems, the temporal persistence property required in [16] becomes unreliable. This
fact makes foreground modeling difficult. One possible way to model the foreground
model would be to exploit the region-level information in the current image. Based on
the spatial statistics of the neighboring regions of a pixel, Benedek et al. proposed a
method in [17] to build the foreground model of that pixel. They assumed a
foreground pixel shares a similar appearance with the other foreground pixels around
it. The procedure of the foreground modeling in [17] is illustrated in Fig. 6. To model

PAXslS), the foreground probability of a pixel § with the color intensity Xs, a
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manually-defined window Vs centered at S is selected as shown in Fig. 6(a). A rough
foreground region F'is extracted by background subtraction, as shown in Fig. 6(b). In
Fig. 6(c), the intersection region of F and Vs is denoted as Fis. The histogram of F is
presented in Fig. 6(d). Those pixels whose intensities are within the range [Xs- 7, Xs
+ 7 ] are collected for the training of a Gaussian foreground model, as shown in Fig.
6(e). Compared with the uniform foreground model, which gets a likelihood value
2.71 for Xy in this example, the spatial statistics based foreground modeling gives a
likelihood value 4.03 for Xs which apparently better represents the foreground
property. In Fig. 6(f) and Fig. 6(g), the final detection results are compared based on
the uniform foreground model and the spatial statistics based foreground model,

respectively. Note that the gray color represents the shadow regions.

h,: histogram of gray values in F,

b, (5)=4.03
_//-,T_\'g
X
b3

50 100 150 250

Fig. 6. The procedure for the foreground modeling in [17] based on the spatial
statistics.  (Figures courtesy of Cs. Benedek [17])

Another kind of region-level information is the expansion of spatial similarity.
Statistically, adjacent points tend to belong to the same class, especially when the
adjacent points share similar appearance. This property is sometimes named the
“smooth constraint” of neighboring regions in the literature. To consider spatial
similarity while doing image analysis, a popular way is to adopt Markov random field

(MRF) model [18][19][20]. In MREF, the smooth constraint is modeled by the clique
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potential among neighboring sites. Unlike many previous works which directly assign
a suitable class to a pixel, the clique potential only requires the labels of neighboring
pixels to fulfill the smooth constraint. Hence, a typical form of MRF usually involves
an extra constraint (the data term), which defines the cost of assigning different labels
for a pixel, to cooperate with the clique potential. By combining the data term and
smoothness term, the MRF provides a flexible framework to integrate pixel-level

information and region-level information for image analysis.

2.1.3 Object-level Methods

Instead of using pixel-level information to classify local pixels or using
region-level information to group neighboring pixels through the use of MRF
technique or some other grouping techniques like connected component analysis [23],
a few other methods suggest to directly learn the unique object-level property of an
object class for detection and labeling. Once the properties of an object class are well
learned and modeled, a popular way to detect the interested target is to scan through
the image by using a sliding window, as shown in Fig. 7. The discriminative
properties of an object class are used to verify whether a target is inside the sliding
window. Instead of merging local information to reach the final decision, those
object-level methods use the object-level information as a whole for detection and
labeling. A typical face detection procedure is illustrated in Fig. 7 as an example. A
test window is first selected and the object features inside the window are calculated.
By comparing the object features with respect to the object model and the non-object
model, we decide whether an object could be found inside the window.

A crucial step for object-level detection is the extraction of object-level
information. A systematic way to find the discriminative features of an object class is

to analyze a labeled training dataset based on a learning process. Through the learning
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process, the object-level information, usually named as trained object model, is

extracted and used for the detection task.

No

Feature |:> Face |:>

Extraction Detection

>
Non-Object
Model

Fig. 7. A typical object-based detection procedure with sliding window. Here, we use

Yes

face detection as an example.

Support vector machine (SVM) is a popular technique to train object models in
the field of machine learning [24][25]. Given a set of training examples composed of
positive examples and negative examples, the main operation of SVM is to search an
optimal hyperplane that separates positive examples from negative examples with a

maximum margin. The optimal hyperplane could be expressed as

f(x,)=w'g(x,)+b. (9
In (9), x, is the features calculated from an image patch (window). ¢@(.) is anonlinear
mapping function to map the input features into a higher dimensional space H. (w,b)
are the major parameters controlling the direction and shift of a hyperplane. In SVM,
(w,b) are the major factors to learn. They are only determined by the support vectors,
which are the borderline training examples in the dataset. Those support vectors
represent almost all the information of the training dataset. We may treat these support
vectors as the extracted object-level information learned from the SVM training
process. The positive support vectors define the object model while the negative

support vectors define the non-object model. In Fig. 8, we illustrate the concept of
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SVM classification.
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Fig. 8. Illustration of SVM classification with a hyperplane that separates positive
examples (“+”’s) from negative examples (“O’’s) with the maximum margin. Support

vectors are parts of the training examples that lie on the boundary.

In the literature, the feature x, in (9) calculated from an image window has
played an important role in the performance of object detection. In general, a good
feature is required to be invariant to illumination variations. Recently, a few features
are commonly used, including the cascaded raw color pixel over the window [26], the
wavelet-like features [27], and the histogram of oriented gradients (HOG) [28].

In object detection, a major difficulty is the need to deal with various kinds of
variations, like appearance variation or shape variation. In a practice system,
variations mainly come from intra-class difference, environmental illumination, and
object deformation. To achieve robust object detection, a sophisticated but flexible
object model is needed. However, an object-level model learned from the typical
SVM procedure is more like to be a rigid template. While dealing with non-rigid
object detection, the typical SVM-based object model may not be a proper solution.
To overcome non-rigid deformation, the pictorial structure framework was first
proposed in [29] and then extended by [30][31][32]. As illustrated in Fig. 9, the

pictorial structure framework represents an object model by a set of parts that are
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located in a deformable manner. Each part captures some local appearance properties
of an object. Deformable models is also learned to characterize the spring-like

connections between each pair of individual parts.

Ny

Fig. 9. The pictorial structure framework proposed by Fischler and Elschlager [29].

To learn a part-based object model based on a typical training dataset, where the
positive examples are only selected by bounding boxes without any training
information of the object parts, the SVM learning procedure would not be suitable.
This is because the locations of object parts in each positive example are latent and
unknown for training. In [32], Felzenszwalb et al. adopted the latent SVM [33] to
handle latent factors. In latent SVM, the first step of the learning procedure is to
maximize over latent part locations to find out the optimal part locations for each
positive example based on a learned object model in the current iteration. The second
step is to refine the object model based on the training dataset and the optimal part
locations found in Step one. These two steps are iteratively performed until the final
object model converges. As an example, we show a human model with its part models
and deformable models in Fig. 10(c)(d). Here, HOG is used as the feature in this
example. The deformable models allow each part to deviate from a reference location
and can adapt to the variation caused by deformation. In Fig. 10(a), a result of human

detection shows the deviation of each body part.
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(a) (b)
Fig. 10. The part-based object detection reported in [32]. (a) A tested image with the
detected human and its parts. (b) The HOG human model. (c) The HOG models of
each body parts. (d) The deformable models depicting the possible variation of each
part. (Figures courtesy of P. Felzenszwalb [32])

If looking into the SVM learning procedure, we may find the SVM procedure
“equally” takes into account the entire local feature space to maximize the margin
while minimizing the number of incorrectly classified examples. Hence, the object
model learned by the SVM process gives an equal weight to each local property of the
object. However, different local area may have different degrees of discriminability.
This brings the idea of feature selection while learning an object model. The
AdaBoost technique [34][35][36] is a successful method, which incorporates feature
selection into object model learning with a unified training procedure. Instead of
combining many features with an equal weight like SVM, the AdaBoost procedure
selects a few but important features to represent object information and creates a
sparse classification rule for object detection.

A main feature of AdaBoost is its ability to select the discriminative features.
This is achieved by dynamically adjust the weights of each training sample. However,
a typical AdaBoost algorithm does not put too much effort on the combination of local
features. On the contrary, SVM method put more effort on the combination of local

features through the use of different kernels. Recently, a few research works [37][38]
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focus on the integration of AdaBoost algorithm and SVM method. The AdaBoost
algorithm is used to select discriminative features for the object detection while the
SVM process is used to determine the final classifier by fusing the selected features.
Besides utilizing a learning-based method to obtain object-level information,
some previous works directly design the specific target body structure for detection.
For instance, human is a very important class for video surveillance systems. Hence,
many works have been proposed to design a suitable representation for human
detection. Basically, the proposed human model is composed of some simple elements,
such as blobs, pillars, ellipses, and cylinders. The conventional human representations
include the ellipse model [40], the stick figure model [41], the 2-D contour model [42],
and the volumetric model [43]. After the body structure is defined, object detection is
accomplished by fitting the target structure model to the image observation. In Fig. 11,

we illustrate a few commonly used representations for the human model.

‘
.

(a)A ellipse human model [40] (b)A stick-figure human model [41]

)

(c) A 2D contour human model [42] (d) A volumetric human model [43]

Fig. 11. Four representation methods for the human model. (Figures courtesy of JK
Aggarwal [39])
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2.2 Connection between Image Analysis and 3D

Scene Modeling

Besides using pixel-level, region-level, and object-level information for image
analysis, another useful clue is to rely on the prior knowledge of 3-D scene. For
instance, in a lobby, we would expect a few people walking on the ground plane.
Based on this prior knowledge plus an appropriate 3-D human model, object detection
may become more stable, as reported in [44] and [45]. On the other hand, for a typical
parking lot, we may know the 3-D layout of the parking spaces. Based on this prior
knowledge plus suitable 3-D car models, the detection of parked cars may become
more robust and reliable [46].

The study of the connection between vision analysis and scene modeling has a
long history. In the 19th century, James Gibson [47] proposed that scene surfaces
constitute the fundamental of human vision. Human vision can perceive the depth and
distance mainly depending on the perception of longitudinal surfaces. Warren [48]
also believed that human vision can fully understand the 3-D scene not only based on
image observation but also based on lots of visual experiences in daily life. The visual
experiences drive human beings to utilize clues, such as horizontal line, shadow, and
some familiar objects, to infer the status of the 3-D scene. Moreover, Koenderink et al.
[49][50] found that the participants of their experiments could not measure the depth
order of two points in the scene unless there is a scene surface connecting these two
points. Those findings suggested that physical surfaces provide valuable information
for scene interpretation.

In the recent study of video surveillance techniques, an example of utilizing
surface information to improve system accuracy is the use of the 3-D prior that human

stands on the ground plane [40]. Based on this assumption, Object detection and
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tracking become more robust. Moreover, Hoiem et al. [S1][52] believed the extraction
of the surface layout in an image is a right way to interpret the 3-D scene. Hence, they
proposed a learning based method to assign each image pixel a geometric class. To
find out the surface layout, Hoiem et al. [52] firstly over-segmented an image
observation. Each segmented region was named as a super-pixel. By merging similar
super-pixels based on some local features, like color, texture, location and shape, their
algorithm generated a large set of segmented regions. The learned surface models
were utilized to assign a surface class to each segmented region. Once the surface
layout is extracted, Hoiem et al. [53][54] used the surface knowledge to reconstruct
3-D view based on a single image. In Fig. 12., we illustrate the automatic photo

pop-up with the help of the extracted surface layout.

(a) (b) (©) (d)

Fig. 12. lllustrate the process of automatic photo pop-up [54]. (a) An input image. (b)
The surface layout with green, red, and purple representing support surfaces, vertical
surfaces, and sky. (c) One synthesized image view. (d) Another synthesized image view.
(Figures courtesy of D. Hoiem [54])

On the other hand, 3-D depth knowledge and camera viewpoint are also valuable
information for object detection. In general, the camera viewpoint is available if the
intrinsic and extrinsic parameters of the camera are available. Furthermore, for a
practical video surveillance system, the inter-object occlusion would be a challenge

issue. If the depth order of objects could be known in advance, it becomes easier to
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handle the inter-object occlusion problem. In [55], Sudderth et al. integrated the depth
information to achieve high detection performance. In [56], Hoiem et al. proposed to
combine the information of surface layout, depth order, and camera viewpoint to
support object detection. The results are shown in Fig. 13. By using the scene

knowledge, lots of unlikely detection results are removed.

Fig. 13. Human detection based on scene knowledge [53][56]. (a) An input image. (b)
The surface layout with green, red, and blue representing support surfaces, vertical
surfaces, and sky. (c) Detection without scene information. The detection windows are
uniformly distributed in image. (d) Detection with the prior of surface layout. The
detection windows are mainly distributed in the “vertical” surfaces. (e) Detection with
the prior of depth and camera viewpoint. The detection windows are larger in the near
distance. (f) Detection with the prior of surface layout, depth and camera viewpoint.

The detection windows are fewer and more accurate. (Figures courtesy of D. Hoiem

[36])

Some researches tried to estimation the depth map from a single image. Oliva

and Torralba [57] found some image local properties, such as naturalness, openness,
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roughness, expansion, and ruggedness, are directly relevant to the 3-D depth. By
measuring those local properties from a single image, a rough depth map could be
estimated. Moreover, Saxena [58] proposed an MRF-based framework to integrate
local image properties to infer the depth map. The extracted depth order is then
utilized to help image analysis.

On the other hand, instead of using scene knowledge, like scene surfaces or
depth order, to help object detection, some researchers began to think in the opposite
way. Sudderth et al. [59] suggested that by understanding the relations among
multi-targets, the depth information can be derived.

In this dissertation, we study another possibility to combine image analysis and
scene modeling in a unified framework. According to the findings of these previous
works, image analysis and scene modeling are highly relative and are complementary
to each other. However, in a practical video surveillance system, we usually have
some unknowns in both 3-D scene model and 2-D image contents. This drives us to
propose the Bayesian Hierarchical Framework (BHF) to simultaneously infer the

status of 3-D scene model and label objects in the image domain.
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CHAPTER 3

Bayesian Hierarchical Framework

3.1 The Structure of BHF

The proposed BHF has a 3-layer graphical structure as illustrated in Fig. 14. In
order to perform the inference of 3-D scene status based on image observations, we
include a scene layer and an observation layer in the structure. However, if only using
a 2-layer graphical structure, it would be difficult for our system to clearly depict the
generation of image appearance based on a parametric 3-D scene model. This is due
to the fact that a parametric 3-D scene models can only generate geometric patterns
and labeling layout rather than image color appearance. For this reason, we introduce
a hidden labeling layer between the scene layer and the observation layer. With the
insertion of the labeling layer, the prior knowledge of the 3-D scene can be
propagated down to the labeling layer, while the information from the image
observation can be propagated upward to efficiently affect the labeling layer. As a

crucial medium, the labeling layer not only enables the communication between the
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scene layer and the observation layer but also facilitates the integration of 2-D image

information and 3-D scene model in a unified manner.

Scene
Layer (S))

Labeling Layer
(H)

Observation Layer

()

(b) (©)
Fig. 14. (a) The proposed Bayesian hierarchical framework (BHF). (b) BHF for the

vacant parking space detection system. (c) BHF for the multi-target multi-camera

surveillance system.

In Fig. 14 (b)(c), we use “the vacant parking space detection system” and “the
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multi-target multi-camera surveillance system” as two examples to illustrate the
application-oriented definition of each node in the proposed BHF as shown in Fig. 14
(a). In detail, in the observation layer (/;), each node indicates a local feature. The
local feature can be either region-based, like a gradient feature, or pixel-based, like a
color feature. In Fig. 14 (b)(c), each observation node in both systems represents the
color feature of a corresponding pixel in the observation image. In the hidden labeling
layer (H.), each node represents the semantic status of a local region or an image
pixel. Here, for “the vacant parking space detection system”, each labeling node
represents a labeling pixel with four possible statuses, (“car pixel”, “shadowed pixel”),
(“car pixel, un-shadowed pixel”), (“ground pixel”, “shadowed pixel”), and (“ground
pixel, un-shadowed pixel”). For “the multi-target multi-camera surveillance system”,
each labeling node represents the object identity which the corresponding image pixel
belongs to. In Fig. 14 (c), the labeling statues could be “object 1 (marked by blue
color)”, “object 2 (marked by orange color)”, “object 3 (marked by yellow color)”,
“object 4 (marked by light blue color)”, and “background object (marked by red
color)”.On the other hand, the scene layer (S;) indicates the unknown 3-D scene
statuses that are to be inferred. For “the vacant parking space detection system”, each
node in the scene layer represents the status of a corresponding parking space. It could
be “vacant space” or “occupied space”. For “the multi-target multi-camera
surveillance system”, each node in the scene layer represents if a moving target exists
at a specific position. The links between the observation layer (/;) and the hidden
labeling layer (H;) convey the bottom-up information from the image observation,
while the links between the scene layer (S;) and the hidden labeling layer (H}) convey
the top-down messages from the scene knowledge and the trainable target models. In
the middle layer, the links between adjacent nodes convey a smooth constraint to

model the high correlation in a local neighborhood. Based on this three-layer
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framework, we are able to construct the generation models from the scene level to the

labeling level and from the labeling level to the observation level.

3.2 The Property of BHF

In the literature, commonly used methods for object detection, object labeling
and scene modeling can be roughly divided into three categories --- data-driven
methods, model-driven methods, and hybrid methods. In general, data-driven methods
directly use region-level and pixel-level information from the image data to support
image analysis and the inference of the 3-D scene; while model-driven methods use a
few object-based models pre-learned from training data to infer the scene statuses and
to detect interested objects. On the other hand, hybrid methods are proposed to
combine both image information and object knowledge for image analysis.

In this dissertation, the proposed BHF framework is a hybrid method. As shown
in Fig. 14, the message stream propagated upward from the observation layer is
considered as data-driven information; while the message stream propagated
downward from the scene layer is considered as model-driven knowledge. This BHF
framework has quite different properties if compared with either data-driven methods
or model-driven methods. On the other hand, if compared with existing hybrid
methods, the BHF framework proposes a new way to integrate pixel-level,
region-level and object-level information under a unified framework. A few

distinctive properties of the proposed BHF framework are to be explained as follows.

3.2.1 Differences to Data-driven and Model-driven

Methods
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Compared with data-driven methods and model-driven methods, a distinctive
feature of the proposed BHF is the integration of object-level information from 3-D
scene, region-level constraints in 2-D image patches, and pixel-level features from
image pixels in a unified framework, as presented in Fig. 14. The main characteristics
of BHF has two aspects: (a) a unified framework to combine pixel-level, region-level,
and object-level information together to represent the generation process from 3-D
scene to 2-D image; and (b) a systematic procedure to simultaneously analyze 2-D
images and infer 3-D scene statuses.

For most bottom-up methods, the process usually begins at the classification of
each pixel into a target pixel or a non-target pixel. Since the pixels of a target usually
share similar appearance, these methods merge target pixels into target regions based
on region-level information in the image. However, when the appearance of a target
region happens to be similar to that of the background, the appearance ambiguity
causes the extracted target regions to be fragmental and incomplete. If the incomplete
target regions are used to infer the 3-D scene statuses, the system accuracy will be
deteriorated. Without using object-level information, data-driven methods usually
suffer from poor accuracy in object detection and labeling.

On the other hand, for most top-down methods, the process usually begins at the
training of a suitable object-based classifier. After the setting of the classifier is
learned, the process can detect interested targets via the classification of image
patches. Those object-based detection methods can obtain a complete detection result
without fragments, but may lose the accurate silhouette of the interested targets.
Furthermore, when there are multiple targets inside the 3-D scene, the occlusions
among targets could be crucial and may cause difficulty in object detection and
labeling.

In this dissertation, the proposed 3-layer BHF includes a scene layer for
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object-based information, an image observation layer for pixel-based information, and
a labeling layer in the middle. This framework efficiently integrates top-down
information with bottom-up messages. Based on the integration, top-down
information and bottom-up messages cross-reference each other to support more
robust and accurate inference. Moreover, the scene layer may also systematically
model the interaction among multiple targets so that the proposed framework can
effectively deal with the inter-target occlusion while doing the inference. This can

further boost the system performance.

3.2.2 Differences to Existing Hybrid Methods

In recent years, a few hybrid frameworks that combine data-driven messages and
model-driven information have been proposed to improve the performance of image
labeling and object detection. In [60], the authors integrated image contexts and local
appearance into a hybrid framework to provide improved image labeling results.
However, the detection problem has not been addressed in their method. In [61], a
hierarchical conditional random field framework was proposed to model the
interaction between image labeling and object detection. In this approach, the
interaction is described based on scene-context relationship. However, the adopted
segmentation process is mainly based on local features without taking into account the
global shape layout constraints. In [62], a located-hidden-random-field framework has
been proposed to label and detect objects simultaneously. This method mainly focuses
on the detection of a single object and adopts an object labeling template that is
treated as the global shape knowledge for object detection. Extra efforts are needed to
identify the absence of objects or the presence of multiple objects. In [63], an
extended work of located-hidden-random-fields framework, named layout-consistent

random field framework, was proposed to further deal with inter-object occlusion. In
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this method, inter-object occlusions are assumed to be unexpected and are handled by
defining asymmetric pair-level potentials between adjacent labels.

Even though these aforementioned methods also integrate pixel-level,
region-level, and object-level information for image content analysis, there are
distinctive differences between our BHF-based modeling and theirs. In our approach,
we couple the object-level information with the 3-D scene inference based on a
unified parametric scene model. In the proposed BHF framework, since the cameras
parameters have been calibrated beforehand, we can fully utilize the geometric
knowledge in the monitored scene. Unlike previous methods which learn the
object-level information from a bunch of training data, our BHF framework adopts
the 3-D parametric scene model to synthesize geometric patterns for model learning.
In other word, we do not simply rely on training data for the learning of the object
models. Moreover, in BHF modeling, the use of the parametric scene model has
greatly reduced the dimension of the solution space. Since the possible status of each
3-D scene parameter is usually limited and can be quantized into a few choices, the
possible solutions of image content labeling are well bounded.

Furthermore, since the 3-D scene is properly modeled, the occlusion effect, the
perspective effect, and the shadow effect can be theoretically analyzed. To deal with
the variations of the surrounding illumination and to integrate the geometric scene
knowledge with image observation, a hidden labeling layer is included in the structure.
With the hidden layer between the observation layer and the scene layer, our
framework provides a systematic structure that is very suitable for solving luminance
variations, shadow effect, perspective effect, and occlusion.

In BHF, image labeling is modeled as a pixel-level classification process. By
dynamically training the pixel-level classification models to adapt to luminance

variations, luminance-varying observations are converted into to more consistent
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labels. On the other hand, to handle the occlusion and shadow effect, the target
number, target location, target size, and a few necessary scene factors are modeled as
scene parameters. During the inference process, the statuses of those scene parameters
are all inferred at the same time so that the occlusion effect and the shadow effect can
be well handled.

Furthermore, for occlusions and shadows, the BHF framework can explicitly
model their generation processes from 3-D scene to 2-D images. This makes
occlusions and shadows a portion of the global knowledge. Hence, another distinctive
feature of BHF is that occlusion and shadow effects may actually be used to offer
useful and structured information to support scene inference. The occlusion effect
tells how the 3-D objects in the scene interact with each other; while the shadow
effect conveys the existing of certain objects. In BHF, these two effects are well
modeled as parts of global knowledge. This kind of global knowledge may deduce
expected labeling configuration when the scene parameters in the scene layer are
specified. Under the BHF framework, scene modeling and image labeling processes
are linked in an interactive manner. The labeling of image pixels adopts some global
knowledge from the scene layer, while the scene layer makes a global inference based

on local messages passed from the labeling process.

3.3 The Modeling of BHF

For different video surveillance systems, the system unknowns, the available
physical constraints, and the available observations are application-dependent. In BHF,
we treat the system observations and unknowns as random variables and represent
them as nodes in the BHF structure. Through a learning procedure, we train
appropriate probability models to model the physical constraints which are the links in

the BHF structure. With the integration of system unknowns, system observations,
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bottom-up constraints, and top-down constraints under the hierarchical framework,
the analysis of image contents and the inference of the scene statuses are formulated
as an optimization problem. By finding the optimal inference, the system can make a
semantic understanding of the monitored scene.

In BHF, the inter-layer links and intra-layer links represent the message
propagations that should be properly modeled. As illustrated in Fig. 14, observation
nodes are assumed to be conditionally independent when the statuses of the labeling
layer is given. This implies no connections among observation nodes. On the other
hand, one labeling node represents a local decision based on a local observation.
Hence, there is a link connecting each labeling node and its corresponding
observation node. Moreover, the local decisions of two adjacent labeling nodes are
usually highly correlated. This property is modeled by connecting the labeling nodes
as a four-neighbor Markov random field (MRF) [18]. To model the interactions
between the labeling layer and the scene layer, each scene node that represents one
kind of 3-D scene status is connected to related labeling nodes. Through those
connections, the global information of geometric arrangement may influence the
classification of local labeling nodes. In BHF, the topology of the inter-layer
connection is flexible and application-oriented. In Chapter 4 and Chapter 5, we will
apply the BHF framework to two different applications, a parking space detection
system and a multi-camera surveillance system, to demonstrate how to define the
nodes and how to model the links of the BHF structure in real applications.

In principle, we can formulate the scene inference problem as a status decision
process based on image observations. Since the process of image content analysis and
the inference of the scene status are highly correlated, the proposed BHF is developed
to combine the image labeling problem p(H.|l;) and the scene inference problem

p(Sz/r) into a joint-inference problem p(H.,Sz|Ir). That is, our BHF always formulates
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the system goal as to simultaneously find the optimal image content labeling and the
3-D scene parameters based on the image observation and some model constraints. By
unifying these two problems under a single framework, the connections among
pixel-level features, region-level constraints, and object-level knowledge are
well-constituted in a hierarchical form. This structure enables the proper use of the
information embedded among layers and provides an efficient way to deal with scene
inference and image content analysis simultaneously rather than to solve them
individually. To find out a suitable classification label /; and the best scene inference
S; under the given observation /;, an MAP optimization problem is defined as

H,,S, = argg}?s)flnp(HL,SL |1,)

= argmax In[p(1, | H,,S,)p(H,|S)p(S)]

= arggl%XIH[p(IL |HL)p(HL |SL)p(SL)]
= argrl?%x[lnp([L |H,)+InP(H, |S,)+Inp(S,)]

(10)

where (H,,S,) denotes the optimal solution pair of image content labeling and 3-D

scene parameters. Here, p(S;) represents the prior knowledge of the 3-D scene status
and p(H|S;) stands for the object-level constraints propagated from the 3-D
parametric scene model to the labeling layer. In the graphical structure of our BHF,
we use the links between the scene layer and the labeling layer to represent p(H.|Sy).
On the other hand, we assume p(I;|H.,S;) = p(Ir|H). That is, we assume the
probabilistic property of the observed image data is conditionally independent of the
scene model once if the pixel labels are determined. Moreover, p(I;|H;) links the
image observation data with the labeling results. In detail, p({;|H}) is composed of a
pixel classification model for pixel-level information and an adjacency model for
region-level information. As mentioned above, for the pixel classification model, we

assume the observation nodes in Fig. 14 are conditionally independent when the status
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of the labeling layer is given. In addition, we assume the connections between the
observation layer and the labeling layer are one-to-one and these connections can be
modeled in terms of a “classification energy” Ep[I.(m,n),H(m,n)]. This classification
energy conveys the property that the labeling result should be consistent with the
feature values of the observed image. On the other hand, for the adjacency model,
since the local labeling results of adjacent nodes are usually highly correlated, we
define an “adjacency energy” E4[I;(m,n),H(m,n);N,] to depict the assumption that the
labels of adjacent pixels should follow some kind of smoothness constraint. By

combining these two energy models, we have

p(]L |HL) -K- HHe—ED[IL(m,n),HL(m,n)]e_EA[IL(m»"),HL(m,”)QNp] ) (1 1)

m n

Here, N, denotes a neighborhood around the pixel location (m,n) and K is a
normalization term.

In our system, p(/;|H;) and p(H;|St) need to be explicitly determined in order to
completely model the system goal as an optimization problem in (10). Once the
models of BHF are defined, an optimal inference procedure is performed to obtain the
results. In our BHF, the definition of the 3-D parametric scene model p(H;|S;) and the
pixel classification model Ep[li(m,n),H(m,n)] are highly application-dependent. In
order to explain the modeling of p(H.|S;) and Ep[I.(m,n),H(m,n)], two examples will
be demonstrated in Chapter 4 and Chapter 5, respectively.

On the other hand, the adjacency model E4[/;(m,n),H;(m,n);N,] defined in the
BHF framework is more generic. Usually, the local decisions of two adjacent labeling
nodes are highly correlated especially when their corresponding image pixels share
similar color features. In our system, by taking the observed image I;(m,n) into
consideration, we define the adjacency energy of labeling nodes as a Markov random

field [18] to provide a smoothness constraint between adjacent labeling nodes. Here,
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we define

E, 1, (m,n), H (m,n);N ]

P L (12)
= [ x Z Z C,I,,H,,mn,Am,An]
Am=—p An=—p
where
C,1,,H,,m,n,Am,An]
=(1-0[H,(m,n),H,(m+ Am,n + An)]) (13)
xGS(”IL(m,n)—IL(m+Am,n+An)||)
and
1 ifp =gq
olp..q 1= “ooTh 14
[P, 4. {0 otherwise (14

In (12), N, denotes the (2p+1)x(2p+1) neighborhood around (m,n) and S is a
pre-selected penalty constant. In (13), the function Gy is an adaptive function designed
to preserve the intensity/color discontinuities in the original image. In our system, we

design function Gy to be a function similar to a logistic sigmoid function:
G, (U) = Sign(U)+1=(1-" ) /14" ) +1. (15)

An example of Sigm(U) is shown in Fig. 15. In principle, Sigm(U) works like a soft
thresholding function, with Cy, and o controlling its zero-crossing point and shape,
respectively. Both Cy; and o are application-dependent and are determined
empirically. Sigm(U) outputs a positive value if U is smaller than Cy, and outputs a
negative value otherwise. With this design, C4[.] is equal to zero when H(m,n) and
Hi(m+Am,n+An) are the same. If Hy(m,n) and Hy(m+Am,n+An) are different, C[.]
gives a larger penalty if the difference between I;(m,n) and I;(m+Am,n+An) is smaller
than Cy, while gives a smaller penalty otherwise. Hence, to reduce the adjacency
energy, H(m,n) and H(m+Am,n+An) tend to share the same label when the difference
between I (m,n) and I (m+Am,n+An) is small, and tend to have different labels

otherwise.
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Fig. 16. Illustrate the inference process of BHF. (a) A standard inference process.
(b) An example of BHF inference process for the multi-target multi-camera

surveillance system.

40



3.4 The Inference of BHF

To solve (10), an inference procedure is needed for the determination of the

optimal solution pair (/,,S, ). Since the undetermined variables include the optimal

label of each pixel and the optimal status of scene parameters, this inference process

is non-trivial at all. In our system, to find the status of each scene parameter, we first

generate the possible status hypotheses of scene parameters. The status hypothesis
that achieves the maximum posterior probability in (10) is picked. Here, we use Fig.

16 to illustrate the inference steps. In detail, to implement this idea, our inference

process for BHF is composed of three major steps:

Stepl: Generate the possible status hypotheses of scene parameters with the
consideration of the independency among parameters. Assume there are P,
scene parameters in the system model and each parameter has Sy statuses.
While generating the possible status hypotheses, there would be totally Sy’
status hypotheses if we ignore the possible independency among parameters.
By considering the independency, the number of eligible status hypotheses
could be greatly reduced. To the best case, the number of eligible status
hypotheses could be as small as the product of P, and Sy, In real systems, the
number of unknown scene parameters P, are usually large but with some
levels of independency. By properly taking into account these independency
properties, the computational complexity of our inference process may grows

much slower than the expected exponential grow.

Step 2: Given a possible status hypothesis S”, find out the optimal labeling H’

st
and compute the corresponding posterior probability of S”, denoted as Cp(SH ). In

our approach, H ; o and Cp(SH) are defined as
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H :argrrbaxlnp(HL,SL:SH |1,),and (16)

st

C,(8")=maxIn p(H,.8, =S"|1,) . (17)

In (16) and (17), the energy function In p(H,,S, =S" |1,) is defined as

In p(H,,S, =S"|1I,)
==Y > E,[I,(m,n),H, (m,n)]

m n

~S'">E 1, (m,n),H,(m,n);N, ] (18)

m n

+>.> In p(H,(m,n)| S =8")+1n p(S =S")

In our system, the maximization of In p(H,,S, =S" |I,) under the given status
hypothesis S has a form much like the canonical MRF optimization formulation
frequently used in some early-vision problems [18][19][20]. For a canonical MRF

optimization formulation, the energy function E", usually viewed as the log

likelihood of the posterior distribution of an MRF [20][21][22], is composed of
two parts, part one E,~" and part two E," ,with a constant A controlling the

weighting between the part one and the part two. That is,
EMT = EYR 4 Ax EYT (19)

To fit (16) and (17) into the canonical MRF optimization formulation, we combine
Ep(I.(m,n),Hy(m,n)), p(H.(m,n)|S=S"), and the prior p(S= S") in (18) to build the
part one in (19); and treat E4[I;(m,n),H (m,n);N,] as the part two. With this
formulation, (16) and (17) can be solved by many practical optimization
algorithms, such as the graph cuts algorithm, the loopy belief propagation
algorithm, the tree-reweighted algorithm, and the iterated conditional mode
algorithm. Based on a recent study of those methods [20], the graph cuts

algorithm [64][65][66] has been found to perform better in terms of runtime.
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Hence, in our system, we apply the graph cuts algorithm to the maximization of
(16) and (17) under the status hypothesis S”. Here, the optimal image labeling
under S” are achieved by assigning a suitable label to each pixel. To explain how
we apply the graph cuts algorithm to our system, we assume each pixel has a label
from the terminal (label) set {70, T}, ...,T)}. To setup the graph cuts method, we
form a graph as shown below in Fig. 17 to represent our optimization problem. In
this graph, a possible terminal connects to a portion of labeling nodes in the
labeling image. Their relations are represented by the collections named as
“t-links”. In our system, we use data term to define the weight of each t-link. On
the other hand, the “n-links” in the labeling image is defined by the smoothness
term. With this graph representation, our optimization problem is equal to cutting
the t-links and n-links with the minimal cost so that all terminals are separated and
each labeling node H;(m,n) only connects to one terminal through a t-link.

Terminals (labels)

t-lin
t-link, h N lf(;’;’\-' — (h N ;("‘L N
L (1, : [V x(um .L;(:‘»I;r)
LA/ NVECR s /DD o LMD
b link
(LD (2 D)/ N D)/ N/ L(M)
n-link

Fig. 17. The graph setting for the graph cuts algorithm.

Step 3: Compare the values of posterior probability over all possible status hypotheses.

The status hypothesis that achieves the maximal value of posterior probability

is picked as the optimal status S, . The corresponding optimal image labeling

under S, defines the optimal labeling H, .
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3.5 The Application of BHF

To further explain how to apply the framework to practical video surveillance
applications under different scene conditions, we will discuss two real systems as
examples in the following two chapters. In Chapter 4, we firstly apply the BHF to the
design of a vacant parking space detection system over an outdoor parking lot, which
is a scene with well-structured and predictable 3-D model. Next in Chapter 5, we
apply the BHF to the tracking of multiple targets over a multi-camera system, whose
scene model is dynamically changing and unpredictable. Below, we briefly explain
the roles of the proposed BHF in these two systems.

In the first application, we apply the BHF framework to a system for vacant
parking space detection. Based on the 3-layer BHF, the bottom-up messages from
image observation and the top-down knowledge from the scene model are effectively
integrated. In BHF, the illumination variations in the outdoor scene are overcome by
transferring the fluctuating RGB observations into meaningful labels. To adapt to the
time-varying lighting condition, we online build the color classification models for
object type and lighting condition. On the other hand, some global knowledge of the
3-D scene, like the direction of sunlight and the 3-D car model, offers useful
information for the labeling of image pixels. The top-down knowledge is propagated
downward to influence the labeling process via the generation of an “expected object
map” and an “expected shadow map”. By compromising between the expected
labeling maps and the labeling from image observation, the status hypotheses of each
parking space are evaluated. Under the proposed BHF, the vacant parking space
detection problem and the optimal image content labeling problem are integrated in a
unified manner.

On the other hand, in the application of multi-target tracking with ghost
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suppression over a multi-camera system, we propose a new approach to efficiently
integrate, summarize, and infer video messages from multiple client cameras. The
main concept is to fuse detection results from many client cameras, summarize
consistent 2-D messages into a 3-D space, and do the inference for the scene model so
that the operators in the control room can monitor the surveillance zone in an easier
and more intuitive way. Here, we proposed a fusion-inference procedure to preserve
the accuracy of target location without dramatically increasing the computational cost.
In our fusion-inference procedure, the data fusion stage is used to detect possible
targets and their 3-D locations. Based on the 3-D priors, target identification, labeling,
and inter-occlusion are then analyzed under the proposed BHF in the inference stage.
The optimal target labeling and the correspondence result are further used to refine the
3-D target model through a feedback route to improve the accuracy of the inference

stage.
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CHAPTER 4

A Hierarchical Bayesian Generation
Framework for Vacant Parking Space

Detection

4.1 Introduction of Parking Space Detection

In this chapter, we introduce how the proposed BHF is adopted to detect the
vacant parking spaces in a typical outdoor parking lot. Nowadays, using an intelligent
surveillance system to manage parking lots has become practical. A recent technology
review about smart parking system can be found in [67]. To assist users to efficiently
find a vacant parking space, an intelligent parking space management system can not
only provide the total number of vacant spaces in the parking lot but also explicitly
identify the location of vacant parking spaces. In addition, a vision-based system may
provide many value-added services, like parking space guidance and video
surveillance.

In practice, the major challenges of vision-based parking space detection come
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from occlusion effect, shadow effect, perspective distortion, and the fluctuation of
lighting condition. In Fig. 18, we show several parking lot images in our dataset. In
these images, some environmental factors are mixed together in a sophisticated way.
For instance, the illumination in a sunny day is quite different from that in a cloudy
day; a parked car may occlude or cast a shadow over the parking space next to it; a
shadowed region may be mistakenly recognized as a dark-colored vehicle; and a
light-colored vehicle under strong sunlight may look very similar to a vacant parking

space.

Morning Noon Evening

Fig. 18. Image shots of a parking lot. (a) Captured in a normal day. (b) Captured in a
day with strong sunlight. (c¢) Captured in a cloudy day.

Up to now, several methods have been proposed to overcome the aforementioned
difficulties. These methods can be roughly classified into two major categories:
car—driven and space-driven. For a car—driven method, cars are the major target and
algorithms are developed to detect cars. Based on the result of car detection, vacant

parking spaces are determined. To detect objects of interest, plentiful object detection
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algorithms can be used. For example, the object detection method proposed in [68] by
Schneiderman and Kanade is a trainable detector based on the statistics of localized
parts. The adaboosting-based detection algorithm [69] is another widely used
technique for the detection of specific objects in 2-D images. The method proposed by
Felzenszwalb et al. [32] offered an efficient way to match objects based on a
part-based model that well represents an object by pictorial structures. A global
color-based model had been proposed by Tsai et al. [13] to efficiently detect vehicle
candidates. On the other hand, Lee et al. [70] and Masaki [71] kept tracking and
recording the movement of vehicles to identify empty parking spaces. Even though
these object detection based frameworks had gained impressive achievement in many
circumstances, such as highway and roadway, most of these algorithms are not
specifically designed for vacant parking space detection in a typical parking lot. For
example, as shown in Fig. 18, the captured images may include some cars with
unclear details. Besides, due to the perspective distortion, a car far away from the
camera only occupies a small area in the captured image. This perspective distortion
may also affect the performance of car detection.

For a space-driven method, the property of a vacant parking space is the major
focus and available parking spaces are detected directly. When the camera is static,
several background subtraction algorithms, like [2], can be used to detect foreground
objects. Typically, these algorithms assume the variation of the background is
statistically stationary within a short period. Unfortunately, this assumption is not
always true for an outdoor scene. For example, a passing cloud that block the sunlight
may suddenly change the lightness. To handle the dynamic variation of an outdoor
environment, a possible solution is to build a complete background reference set
under all kinds of lighting conditions. Funck et al. [11] proposed an eigen-space

representation that models a huge set of background models with much less memory
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space and computational cost. With a suitable background model, a typical way to
determine the status of a parking space is to check the ratio of foreground pixel
number to background pixel number. However, even if the background model is well
learned, this kind of method still suffers from the occlusions and shadows caused by
neighboring cars. To improve the performance of detection, Huang et al. [46]
proposed a Bayesian detection framework to take into account both ground plane
model and car model. Both occlusion effect and illumination variation were modeled
under that framework. Recently, Bong et al. [72] proposed a Car Park Occupancy
Information System (COINS) by using a “bi-stream” detector to overcome the
shadow effect. In their approach, one stream used the background subtraction method
to perform car detection, while the other stream adopted edge information to achieve
shadow-insensitive detection. By using an “And” operator to combine both detection
results, detection performance was improved.

On the other hand, some other space-driven methods assume a vacant parking
space possesses homogeneous appearance and use this property to detect vacant
spaces. For example, Yamada and Mizuno [73] designed a homogeneity measure by
calculating the area of fragmental segments. In principle, a vacant space has fewer but
larger segments, while the area of a parked car has an opposite property. Lee et al. [74]
suggested an entropy-based metric to determine the status of each parking space.
However, these two systems ignored the shadow and occlusion caused by adjacent
cars. In [75], Fabian used a segment-based homogeneity measure similar to that in [73]
and proposed a method for occlusion handling. By pre-training a weighting map to
indicate the image regions that may get occupied by neighboring cars, the influence of
the occlusion effect can be reduced. Even thought their homogeneity measure is
effective for most parking spaces, the environmental variations, especially the shadow

effect and the over-exposure effect caused by strong sunlight, may fail the assumption
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of homogeneous appearance. In practice, the shadow effect makes a parking space
less homogeneous while the over-exposure effect makes the appearance of a car more
homogeneous.

Some other authors tried to detect vacant parking spaces via classification. For
example, Dan [76] trained a general support vector machine (SVM) classifier by
directly using the cascaded color vectors inside a parking space as the classification
feature. However, the occlusion patterns were not well modeled in their approach. On
the other hand, Wu et al. [77] grouped three neighboring spaces as a unit and define
the color histogram across three spaces as the feature in their SVM classifier. With
this arrangement, the inter-space correlation can be learned beforehand to overcome
the inter-occlusion problem. However, the performance of classification is greatly
affected by the environmental variations. In general, the lighting changes may cause
the variations of object appearance in both brightness and chromaticity. This effect
may dramatically degrade the accuracy of classification-based detection.

The rest of this chapter is organized as follows. In Section 4.2, we present the
main idea of our algorithm. The top-down information from the 3-D scene model is
detailed in Section 4.3, while the message from image observation is presented in
Section 4.4. The whole inference procedure is explained in Section 4.5. Experimental

results and discussions are presented in Section 4.6.

4.2  Overview of Vacant Space Detection

In our system, the scene modeling and vacant parking space detection are
accomplished based on the integration of scene prior and image observation in the
BHF. By treating the status of each parking space as a part of the scene parameters,
the vacant space detection is achieved via the process of scene inference. The general

concept of the proposed system is illustrated in Fig. 19. Based on the BHF, the
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bottom-up messages from image observation and the top-down knowledge from the
scene model are integrated. In BHF, the illumination variations are overcome by
transferring the fluctuating RGB observations into meaningful labels. The labeling
process is treated as a color classification process between content labeling and image
observation. Since the observation difference is mainly caused by the object type and
the lighting condition, we decompose the image observation into an object component
and a lighting component. The object type is either “car” or “ground”, while the
lighting condition is either ‘“shadowed” or “unshadowed”. To adapt to the
time-varying lighting condition, we online build the color classification models for
object type and lighting condition. On the other hand, some global knowledge of the
3-D scene offers useful information for the labeling of image pixels. The top-down
knowledge is propagated downward to influence the labeling process via the
generation of an “expected object map” and an “expected shadow map”. Here, we
explicitly define a generative model that takes into account the inter-occlusion effect,
the expected shadow effect, and the perspective distortion. The relationships among
these effects and the status of parking spaces are explicitly modeled via a Bayesian
probabilistic model. By compromising between the expected labeling maps and the
labeling from image observation, the status hypotheses of each parking space are
evaluated. Finally, to avoid incorrect inference caused by unexpected occlusions, the
global status hypotheses from the scene model provides useful constraints to handle
partially inconsistent labels. In principle, we can formulate the vacant space detection
problem as a status decision process based on image observations from a single
camera. Since the status of a parking space may actually affect the inference of
neighboring spaces, we analyze the status of neighboring parking spaces at the same
time. Moreover, the vacant parking detection process is regarded as a Bayesian

inference problem and is solved by finding the most reasonable parking space status
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that fits both scene prior and image observation.
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‘Image Observation (Observation Layer IL)‘

Fig. 19. The concept of Bayesian hierarchical framework for vacant space detection.

In Fig. 20, we show a simplified 3-layer structure to explain the BHF framework
for vacant space detection. Here, we define the image observation layer as /;, where
each node /;(m,n) indicates the RGB color feature at the (m,n) pixel of an image of
size M x N. On the other hand, we define the labeling layer as H;, where each node
Hj(m,n) represents the categorization of the image pixel at (m,n). The labeling result
of Hi(m,n) could be (C.S), (GS), (C,US), or (GUS), where C denotes “Car”, G
denotes “Ground”, S denotes “Shadowed”, and US denotes “Unshadowed”. Moreover,

we define the scene layer as Sy, which indicates the status hypotheses of the parking
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spaces. The node S;(7) in S, denotes the status of the ith parking space. Its value can

be either 1 (occupied) or 0 (vacant).
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Fig. 20. Illustration of the 3-layer BHF for vacant space detection.

In BHF, the topology of the inter-layer connections represents the probabilistic

constraints between nodes as illustrated in Section 3.3. Given the observation /;, the

status of the parking spaces is determined by finding the optimal pair (4, ,S;) such

that

H,,S, =argmaxInp(H,,S, |1,)
5t . (20)
= argglasx[lnp(lL |HL)+1nP(HL |SL)+1np(SL)]

The detail deduction of (20) is the same as that of (10). In the parking space detection
system, p(I;|H}) constrains that the labeling results should be consistent with the RGB
values of the observed image. Moreover, the labels of adjacent pixels should follow
some kind of smoothness constraint. On the other hand, p(H;|S.) constrains that the
labeling of parked cars and shadowed regions should match the expected

inter-occlusion pattern and shadow pattern in a probabilistic sense. Finally, p(Si)
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represents the prior knowledge of the parking space status. In our system, we assume
the “occupied” status and the “available” status are equally possible for every parking
space. With this assumption, the Inp(S;) term in can be ignored. Moreover, to find the
optimal solution in (20), we adopt the graph-cuts technique as mentioned in Section

3.4.

4.3 Top-Down Knowledge From Scene Layer

Since the parking spaces in a parking lot are well structured, we can synthesize
an expected object map once if we have the 3-D car model and have a hypothesis
about the status of parking spaces. On the other hand, if we know the lighting
condition (sunny or cloudy) and have the direction of sunlight, we may also
synthesize an expected shadow pattern. In our system, both expected object map and
expected shadow map are created to help the labeling of image pixels. In our

approach, p(H;|Sy) is reformulated as

p(HL‘SL):HHP(HL(man)ISL)a (21)

in which we assume the labeling nodes H(m,n) are conditionally independent of each
other once if the knowledge from the scene layer S; is given. Since the object type

and the lighting type are physically independent, we formulate p(H;(m,n)|S.) as
p(H, (m,n)|S,)= p(h®(m,n)|S,)p(h* (m,n)|S,). (22)

In physics, the object labeling model p(h°(m,n)|S;) includes the expected car mask
and the inter-occlusion effect among neighboring cars; while the light labeling model
p(h"(m,n)|S;) includes the expected shadow mask to indicate shadowed pixels. To
define these two labeling models, we first introduce a parametric model to define the
3-D structure of a parking lot. Based on the parametric scene model, we propose a
generation process to generate the expected object labeling map and the expected

shadow labeling map.
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4.3.1 3-D Scene Parameters

In our system, the number of parking space (¥;) and their locations on the 3-D
ground plane are defined and learned in advance. In a normal situation, a car is parked
inside a parking space. To simulate a parked car, we assume each car is a cube in the
3-D world. The length (/), width (w), and height (%) of the cube are modeled as three
independent Gaussian random variables, with the probability density functions p(/),
p(w), and p(h). Besides, the random vector (/, w, k)" is assumed to be identically and
independently distributed at different parking spaces. Here, the probability density
functions p(/), p(w), and p(h) are pre-learned based on 120 parked cars. On the other
hand, the 3-D ground plane of the parking lot is defined as a 2-D plane (X, Y,0). Inside
the ith parking space, we assume the projection of the car center on the ground plane
is represented by (X, Y;0), where X; and Y; are modeled as two randomly distributed
Gaussian random variables with the probability density functions p(X;) and p(Y;). The
mean values of p(X;) and p(Y;) are set to be the center of the ith parking space on the
ground plane. Moreover, we assume the location pattern of parked cars at difference
parking spaces is similar. That is, we assume the variances of p(X;) and p(Y;) are
independent of i. To train the variance values of p(X;) and p(Y;), we measured for each
of these 120 cars the deviation of the car center from the center of the parked space.

To predict the shadowed regions, we model the lighting condition in the 3-D
scene. In general, we may assume there are two major types of illumination in an
outdoor environment: direct illumination from the Sun and ambient illumination from
the sky. For each image pixel, it may be lighted by the skylight only, or lighted by
both skylight and sunlight. Basically, shadow reflects the contrast of brightness for
regions illuminated by different types of lighting. If the sunlight exists in the

environment, the regions lighted by skylight only appear to be shadowed. On the
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other hand, when sunlight is absent, we assume there is no shadowed region.
Moreover, when sunlight is present, we assume the direction of sunlight is represented
by a three dimensional vector (Dx(¢),Dy(£),DAt))", which is a function of time ¢. In our
approach, the 3-D scene model of a parking lot is determined by the parameter set ©,

where
® ={D,(?),D,(t),D,(t),{S, (@), L, w;,h,, X,,Y,, fori=1,2,..,N }}. (23)

In @, {S;(i)} is the main unknown variable in scene model. The detailed deduction of

the sunlight direction (Dx(),Dy(¢),DA1))" is to be explained later.
4.3.2 Generation of Expected Labeling Maps

4.3.2.1 Object Labeling Model

In our system, once the 3-D scene parameters @ are given, the expected object
labeling and the expected shadow labeling on the captured images are automatically
generated. Based on the projection matrix of the camera, a synthesized car parked at
(X; Y, 0) inside the ith parking space, with length /;,, width w;, and height #4;, is
projected onto the camera view to get the projection image M(m,n|X, Y, l,w;h)),
which has the value 1 if the pixel (m,n) is within the projected region, and 0 otherwise.
Since the size parameters (/;, w;, 4;) and the parked location (X;, ¥;) may vary from car to
car, we take into account the prior probabilities p(/;), p(w;), p(h;), p(X;), and p(Y;) and
define the expected car labeling map to be a probabilistic map Cy(m,n), which is the
expectation value of M,(m,n|X; Y, [, w;h;). That is,

C.(m,n) = X“Y[jll:?’w“h[[Mi(m,n | X.,Y,L,w,h)]. (24)

On the other hand, since the object type of an image pixel is either “Car” or “Ground”,

the expected ground labeling map is defined as

G(mn)=1- FE h[M,.(m,n|Xl.,Yi,ll.,wi,hi)]. (25)

X, Y0, w;,
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In our system, we numerically calculate the expectation in (24) and (25) based on
the Monte Carlo approach. Here, based on the prior probabilities p(/,), p(wy), p(h)),
p(X)), and p(Y;), we draw a large set of sample tuples. For each sample tuple, say
(I, Wi, Xx, Y1), we synthesize a projection image. By averaging all projection images
for all sample tuples, we get a probability map that approximates Ci(m,n). In Fig.

21(b), we show the expected car labeling map of the car in Fig. 21(a).

Fig. 21. (a) A 3-D car model. (b) Expected car labeling map of a parked car.

(c)Expected car labeling of all parked cars. (d) Expected ground labeling of all

parked cars.

While taking all parking spaces into consideration, an image pixel at (m,n) in the
ith parking space may get occluded not only by a car parked at that parking space but
also by a car parked at an adjacent parking space. To model the inter-occlusion effect

in the object labeling model, we define the probability

p(h*(m,n)=018,) = [[G.(m,n)* ] (26)

i=1

where S;(7) is the status of the ith parking space. With (26), the probability of car
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labeling at (m,n) given the status of all parking spaces can be formulated as

p(h*(m,n) =1[S§,)=1 —ﬁ[G,-(m,n)SL“’] (27)

In Fig. 21(c) and (d), we show the examples of p(h°(m,n)=1[S,) and p(h°(m,n)=0]S,),

respectively.

4.3.2.2 Shadow Labeling Model
Similarly, by using a cube model for a parked car, the expected shadowed
regions on the ground plane can be quickly determined in the 3-D space whenever the

sunlight direction is known and the status of parking spaces are determined. An
example is illustrated in Fig. 22. Here, we define 7,(m,n|X,,Y,l,w,,h) to be the

projected shadow labeling image generated by a car parked at (X; Y;, 0) inside the ith
parking space, with length /;, width w;, and height 4;. Similarly, by taking into account
the prior probabilities p(l), p(w;), p(hi), p(X;), and p(Y;), we define the expected
shadow labeling map S;(m,n) in a probabilistic sense:

S(mmy=E (Tmnl X, Vlw ) (28)

277

Similarly, the expected non-shadow labeling map is defined as US (m,n) = 1 — S (m,n).

In Fig. 22(b), we show the expected shadow labeling map of the car in Fig. 22(a).

To model the shadow labeling model p(h*(m,n)|S,) with the consideration of all

parking spaces, we define

p(h"(m,n)=0]S,)= ﬁ[USi(m,")SL([)]- (29)

i=1

With (29), the probability of shadow labeling at (m,n) given S, is modeled by

p(h*(m,n)=1|5,)=1 —ﬁ[USi(m,n)sL(i)]- (30)

i=1
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Fig. 23. (a) A 3-D car model. (b) Expected car labeling map of a parked car.
(c)Expected car labeling of all parked cars. (d) Expected ground labeling of all

parked cars.

In Fig. 23(a) and (b), we show an example of the 3-D parking lot model and its
expected shadow labeling map. To simplify the problem, we ignore the shadows cast
upon the parked cars and only consider the shadows cast on the ground plane. With
this assumption, a pixel with a higher probability of car labeling is less likely to be

shadowed. Hence, we refine the probabilistic shadow labeling map to be
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p(h-(m.m) =118,) = (1= p(h°(m.n) =1]S,)) x(1=][[US,(m.))*"]). (1)

i=l1

A refined shadow labeling map is shown in Fig. 23(d).

4.3.3 Estimation of Sunlight Direction

To generate the expected shadow labeling map, we need the direction of sunlight.
The information of sunlight parameters is available on the internet, like the U.S.
Naval Observatory website [78]. By providing the date and the geo-location of the
parking lot, including longitude and latitude from a global position system (GPS), the

web service can provide samples of sunlight direction for every 10 minutes.

D(r,) i/

Fig. 24. Illustration of solar movement and sunlight direction.

In our system, we adopt the concept proposed in [79] to calculate the sunlight
direction. In principle, the solar motion model and the sunlight direction can be
estimated based on the variations of intensity values in a day. In a single day, the solar
motion follows a circle on the solar plane in the 3-D space, with a constant angular
frequency i, as illustrated in Fig. 24. The angular frequency depends mainly on the
self rotation of the Earth and is known in advance. The whole set of sunlight

directions in a day form a conical surface and the cone aperture is equal to -2,
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where 0 is the Sun declination angle approximated as
v 360 0
0 =-23.45 -cos[((g) (N, +10))’] (32)

In (32), N, is the number of days counted from January 1 to the current date. With this

cone model, the sunlight direction over time can be parametrically represented by

D(1) = —{sin(8)n + cos(5)[cos(, (t — t,))u +sin(w, (1 — 1,))s]} (33)

where # 1is a unit reference vector on the solar plane at time 7y, # 1is the normal
vector of the solar plane, and 5 =7 x 1.

On the other hand, we assume the scene surfaces are mainly Lambertian surfaces.
Hence, the intensity value reflected from a surface is proportional to the incident
angle of the incident light with respect to the surface normal. The intensity value at an
image pixel will climb to its maximum when the subtended angle between the
corresponding surface normal vector and the sunlight direction reaches the minimum.

As explained in appendix section A, if P is the normal vector of a surface patch in

the 3-D scene, the intensity value at the image pixel can be approximated as

L, (m,n,t) = B(m,n)cos(wt —0,(m,n))+C(m,n), (34)

sun

which is a scaled cosine function plus a constant offset. Moreover, if 6 represents the
angle subtended by # and the projection of P on the solar plane, the phase shift 6,
of the cosine function is equal to & up to a constant offset. In principle, if we pick up
three image pixels, whose 3-D scene points lie on different surfaces with linearly
independent normal vectors, we can deduce the geometric relationship between the
solar plane and these three surface normal vectors [79]. For detailed deduction, please
refer to Appendix A.

In Fig. 25(a), we show three manually selected image pixels in the parking lot
scene, one from the driveway and two from the bushes. These image pixels locate at

three mutually orthogonal planes. The intensity profile of a pixel in green region is
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shown in Fig. 25(b) as an example. By identifying the phase shift §, from each of

D ——

these three intensity profiles, we can determine the sunlight direction D(z) at any

time instant 7. Moreover, if a parking lot cannot provide these three mutually
independent planes, an artificial cube is recommended to be set up in the parking lot

scene.
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Fig. 25. (a) A parking lot image with three manually selected image pixels,
marked in red, green, and blue. (b) The intensity profiles (blue) of the green
pixel, overlapped with the fitted skylight profile (green) and the fitted
skylight+sunlight profile (red).

4.4 Bottom-Up Messages From Observation Layer
In our parking space detection system, the bottom-up messages are embedded in
the likelihood function p(/;|H;), which links the observation data with the labeling
results. As mentioned in Section 3.3, p(/;|H}) is composed of a “classification energy”
Epl[l;(m,n),H;(m,n)] and an “adjacency energy” E4[I;(m,n),H(m,n);N,]. That is, we

have

_ —Ep[I; (mn),H, (mn)] —E4 I (mn),H (mn)N,]
pU, |H)=K-] ] e tmmaimme tattmmRimmifid = 35
m n
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In (35), N, denotes a neighborhood around (m,n) and K is a normalization term. In the

following subsections, we will explain the design of these energy models.

4.4.1 Classification Energy Model

4.4.1.1 Energy Model

In our approach, we convert the RGB color features Irgp of each pixel into a
semantic labeling. Here, we model the classification energy as
E,[1,(m,n), H (m,n)] = ~In(p(Lgy(m,n) | h° (m,n),h" (m,n))), ~ (36)
where p(IRGB|hO,hL) is the conditional probability distribution of Irgp given the
semantic labeling (h°,4"). In (36), h°(m,n) could be C or G, and A*(m,n) could be S or
US. For more detail, in Fig. 26, we show an example of color distributions in the RGB

color space under the four different labeling statuses --- (C,S), (C,US), (G,S), and

(G,US).
Color distribution of Ground-Shadowed pixel Color distribution of Ground-UnShadowed pixel
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Fig. 26. The color distributions (a) of shadowed ground pixels, (b) of un-shadowed
ground pixels, (c) of shadowed car pixels, and (d) of un-shadowed car pixels.
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Since the lighting condition changes from time to time, we need to dynamically
adjust p(Irgs|h®,h"). Based on the image formation model explained in Appendix B,
the trichromatic color vector Irgsp at an image pixel can be represented as
Tpes = |Trea|Ri, Where [Iyes| is the norm of Irge, R is a 3x3 matrix depending on
surface reflectance, i is a vector depending on illumination, and |Ri|=1. With this
image formation model, we formulate p(Irgg|h®,h") as

P |17, 1") = p(Lagy[[| 17, B p(R[A)pG L") (37)
Since the reflectance of target objects (ground or cars) can be learned beforehand but
the lighting condition is varying over time, p(R|4°) is learned off-line while p(i|i")
and p(||Irgs|||h°,h") are determined dynamically. Here, we build those probability
models similar to the approach of [80] with a few modifications. First, instead of
training the reflectance functions of only two objects (grass and ground in [80]) based
on a single singular value decomposition (SVD) over one set of data, our application
needs to collect the reflectance functions of various cars at different positions and at
different time instants. This requires multiple SVD’s over different sets of data. Hence,
we need to register the solutions of different SVD’s to deal with the ambiguity in
SVD decomposition. Second, instead of clustering the daylight spectrums into only
three classes, we determine p(ils*) dynamically to deal with the continuously
changing lighting condition. Third, in [80], the trained chromaticity values of different
classes are used to initialize the classification of image content. Their intensity model
is then on-line determined. However, owing to the wide range of car appearance,
some cars may get confused with the ground in the chromaticity space. In our
approach, we add in the scene knowledge to dynamically determine the intensity
model p(|Irgs|| |2°,h"). Basically, given an image, there are two types of light:

skylight and sunlight. Moreover, the ratio of reflectance between any two scene
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patches can be well learned in advance. These two facts offer a possibility to on-line
determine the intensity model of scene patches based on a few reference patches.

Below, we explain the details of our approach.

4.4.1.2 Learning of p(R|1°)

In our experiments, we collected 5000 training samples of ground and cars to
learn p(R|2°=G) and p(R|h°=C), respectively. Since the camera pose in our system is
fixed, the captured images can be easily registered. To get the reflectance function of
an object, we select a small surface patch with uniform illumination. To simplify the

problem, we normalized Irgs by its norm to get the normalized RGB

N
Leae = Irca/ ”IRGB”. Assume there are P pixels inside the patch and we collect the

samples for F registered frames. The illumination condition is the same for the whole
patch at a certain time instant, but could be different at different time instants. On the
contrary, the reflectance function could be different at different image pixels but is
temporally invariant at the same pixel. Hence, for an image pixel at the spatial

location p , its normalized RGB value at time instant k& can be expressed as

e (P k) =R(P)i(k) . (38)
By arranging the normalized RGB values of all pixels inside the surface patch over F

frames into a 3PxF matrix, we obtain the following formula

Ln(Piok) .. Tep(Biky) R(p)

M (B.k) = i) - i(k)],, =M M, (K),(3)

I:GB@P,](]) III:GB@P’kF) R(py) hPa

where p={p,,---,pp} 1s the spatial locations of the P pixels and k={k,---,k.} 1s

BPxF

the temporal indexes of the F frames.
Given Mggp, we can decompose it into a reflectance matrix Mg and an

illumination matrix M;, up to a 3x3 non-singular matrix Q. That is, if Mgy and Mj; is
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a pair of matrices that decompose Mggs, then Mr,=Mg;Q and MiZZQ'lMi is another
decomposition pair. Fortunately, in the detection of vacant parking spaces, we only
care about the difference in the surface reflectance matrix R but not the true value of
R. As long as we fix the matrix M;, two surface patches with different R will always
have different Mg.

To decompose Mrga, we applied the SVD process over several planar patches to
collect samples for the ground reflectance function and car reflectance function. For
the car samples, we select the car roof as the planar patch, which is usually parallel to
the ground plane. To deal with the ambiguity in matrix decomposition, we collected a
set of image frames and manually selected a ground region in the parking lot scene as
the reference patch, shown as the red patch in Fig. 27(a). By performing the SVD
decomposition over the reference patch, we got the reference truth Mg and Mjy. The
reference truth My is used to register the illumination matrix of another spatial patch
that are under the same lighting condition in the same set of image frames. On the
other hand, the reference truth Mgy is used to register the reflectance matrix of the
reference ground patch in another set of image frames. Based on SVD, with enough
reflectance samples of cars and ground, we can construct the reflectance probability

model p(R|1%).

4.4.1.3 Learning of p(i|n")

The illuminant probability model p(i|h") is determined based on the pre-trained
model and the current image observation. Given an image, there are two types of
regions: shadowed regions and unshadowed regions. By collecting many illumination
samples i’s in shadowed and unshadowed regions, we can approximate p(i|h"=*S")
and p(i|h*=US"). Since the reflectance matrix R of a scene patch can be learned in

advance, we extract the illuminant component of some manually selected shadowed
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and unshadowed regions to learn the off-line models po(i [F*=:S") and pou(i |[i*=<US").
On the other hand, to deal with the continuously changing lighting condition, we also
build the on-line models pon(i|A*=:S") and pon(i|k*="US") based on the current image
observation. The illuminant probability model is then determined based on a weighted
combination of off-line and on-line models. That is,
PGIR=S")= @pon(ilh"="S")+(1-0)pori(i[i"=S") and  (40)
PGIA*=US") = @pon(i |i*="US ) +(1-2)por(i[h"="US").  (41)

Here, w; and w; are determined by the ratio of the on-line training samples to the total

training samples.

Fig. 27. (a) The reference ground patch (red) and the ground patches (pink) for the
learning of ground reflectance function. (b) The car patches (pink) for the learning of

car reflectance function.

During on-line modeling, we need to determine whether a given illuminant
sample is shadowed or unshadowed. Here, for the period from 10:30 to 14:00, we
suppose all samples are unshadowed. For the other periods, the lighting situation is
more complicated. In our parking lot scene, we identified a few regions that are
always unshadowed, like some regions in the driveway. These driveway regions can
be used as the reference regions for the ‘unshadowed’ case for both

skylight-plus-sunlight case and skylight-only case. On the other hand, as shown in Fig.
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25(b), the green region in the bush in Fig. 25(a), together with all the other planes
parallel to that green region, is only lighted by skylight in the morning; while the blue
region in Fig. 25(a), together with all the other planes parallel to that blue region, is
only lighted by skylight in the afternoon. These two types of regions can be used as
the reference regions for the ‘shadowed’ case when both sunlight and skylight are
present. In Section 4.5.1, we will further explain how we check the presence of

sunlight in the current image.

4.4.1.4 Learning of p( |[Irggl|| | #°4")

The intensity information |[Irgs|| is crucial in distinguishing cars from ground,
especially when some cars may get confused with the ground in the chromaticity
space. Unfortunately, ||Irgs|| is affected by the lighting source, the object reflectance,
the object geometry, and even some unknown factors in the imaging pipeline such as
automatic gain control and white balance. Hence, the modeling of the intensity model
p(|[Trgsl| | A°,4") is more difficult. To build an adaptive intensity model based on
current image observation, we propose a simplified linear model as expressed in (42)
to model the intensity mapping from one object type (O;) in a scene patch to another

object type (O ,) in another scene patch, under the same illumination type (L).

80,1 =%,0,.. 80, THo0,0,." (42)
In (42), go, denotes an intensity sample from the object type O under the illumination
type L. Note that go; value is equal to the norm |[Irgs|| of a color pixel. 4o 0,
represents the intensity ratio between objects O, and O; under illumination type L.

"0, 18 defined as a zero mean Gaussian noise that expresses the uncertainty in

modeling the intensity ratio. Even though 4@, o, is actually a random variable, we
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found a deterministic setting works very well in our experiments. Here, we learn

Ay, 0, and the variance of 7, ,, based on the following equations.

Ao,0.L = 80,1 /gol,L , and (43)
A2 _ a2 A2 A2
0,,01,L o GgOZ,L aOhOzsLGgo],L (44)

In (43) and (44), a and 6;” are the sample mean and sample variance of the

intensity training samples. The training samples are manually collected from training
image patches, with classified light type L and object type O.

In our system, a few transformation models were pre-learned to generate the
intensity model p( ||Irgs|| | A°,4") dynamically. Here, we adopt the aforementioned
reference regions, like the driveway regions that are always unshadowed and the bush
regions that are always lighted by the skylight only. By using these reference regions,
in which the lighting condition is already known, we learned the transformation
models from each of these reference regions to the parking space ground and to the
cars, respectively. After that, based on the learned transformation models and the
current intensity values at these reference regions, we dynamically construct the
intensity model p( ||Irgsl| | 19 h"). Similar to the deduction of the sunlight direction, if
the parking lot scene cannot provide such reference regions, an artificial cube is

suggested to be set up in the scene to form reference regions.

4.4.2 Adjacency Energy Model

In the parking lot scene, the local decisions of two adjacent labeling nodes are
usually highly correlated. In this system, with the use of the original intensity image
I;(m,n), we define the adjacency energy E4[/;(m,n),H(m,n);N,] by using the smooth

constraint explained in Section 3.3. Here, we briefly explain the design of the
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adjacency energy model again.
In our system, the adjacency energy E4[/;(m,n),H(m,n);N,] is defined as

P P
E[1,(m,n),H (m,n);N, 1= Bx D > C,l,,H,,mn,Am,An]

Am=—p An=—p

With this definition, if two neighboring sites are set to different labels, our system will
give a larger penalty if we find the color difference between two sites is small.
Otherwise, our system will give a smaller penalty. That is, two neighboring sites tend
to share the same label when the difference between their color features is small, and

tend to have different labels otherwise.

4.5 Vacant Parking Space Detection

4.5.1 Optimal Inference of Parking Space Status

With the top-down knowledge and the bottom-up message, we can infer the
optimal H, and S, by solving the optimization problem in (10). In our approach,
we get the initial guess of Hy(m,n) by finding the labeling that minimizes the

classification energy in (36). That is, we find the labeling image H,(m,n) such that
H,(m,n) = argn}iinED[IL(m,n),HL(m,n)]. (45)

On the other hand, since the status inference of a parking space depends on its
neighboring parking spaces, we need to take into account relevant parking spaces
when we infer the status of a parking space. In our experiments, a parked car casts a
shadow to the right in the morning and to the left in the afternoon. Hence, we
sequentially infer the status of each parking space from the bottom row to the top row
and from left to right in the morning, and reverse the order in the afternoon. In Fig. 28,

we show an example in the status determination of a parking space. Due to the
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direction of sunlight, we check the parking spaces from left to right and from bottom
to top. The red regions indicate those parking spaces whose status has already been
inferred. The yellow circle indicates the parking space to be inferred at this moment.
The green triangles indicate the relevant parking spaces. In this case, by trying
different status combination of A and B spaces, four status hypotheses are to be tested.

For each status hypothesis, we deduce the optimal H;(m,n) by using the graph-cuts

algorithm, with the initial guess H,(m,n). The status hypothesis that achieves the

maximum posterior probability is picked to infer the status of the current parking
space. In our process, since the status of a parking space is only affected by its
adjacent spaces, the system complexity grows linearly as the number of parking

Spaces increases.

V////, &0
V7777777 /4

Fig. 28. lllustration of parking space status inference.

Moreover, in an outdoor environment, the sunlight does not always exist. In the
inference of parking space status, we need to determine whether the sunlight is
present or not. In our approach, we first perform the optimal labeling based on the
assumption that sunlight is present. After the optimal inference for the whole image,
we divide those “ground” pixels into shadowed pixels and unshadowed pixels. In

principle, if the sunlight is present, the RGB values of these two pixel groups should
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reveal obvious difference. Hence, by calculating the Davies-Bouldin index (DBJ) [81],

which is defined as

DBI = (S, + SUS)/(”/uS — Hys

) (46)

we can decide whether to accept the “presence” hypothesis or not. In (46), us and g,
are the mean RGB values of the shadowed cluster and the unshadowed cluster. S; and

S, are the centroid distance of these two clusters defined as

) / My s (47)

where ¢ €{S, US}, ny is the total pixel number of the cluster, and f; is the RGB value

S.=QNf-m
i=1

of the ith pixel. When the DBI is smaller than a pre-defined threshold, we accept the
“presence of sunlight” hypothesis. Otherwise, we take the “absence of sunlight”
hypothesis and perform the optimal inference over the whole image again to get the

final detection result.

4.5.2 Refinement of Classification Energy Model

In our system, after performing the optimal inference over an image, we obtain a
semantic labeling (h°,4") of the image that may provide useful information for the
refinement of p(Irge|h’,4"). The inferred semantic labeling (h°,4") includes not only
the bottom-up information but also the top-down knowledge. With the inclusion of the
top-down knowledge, some pixels, which would be incorrectly labeled if only based
on the classification models, can be correctly labeled. Those pixels usually correspond
to non-Lambertian surfaces, like the car windows. Hence, based on the inferred
optimal labeling (h°h%), we re-compute the classification model p(Irgs/h®,h") by
checking the distribution of Irgp in the current image over different object types and
different lighting types. The new model is then merged into the existing model for

refinement:
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Prona (w105 1") =W, Do (i 110+ W,y gy (Mg | A1) . (48)
In (48), wys and wy,,, determine the weights of the existing model and the new model.
In our system, we empirically select (Wyz,Wnew ) to be (0.2,0.8). Based on the refined
model, the optimal labeling is re-estimated again. This optimization-refinement
process is iteratively performed until the status inference of the parking spaces
becomes stable. In our experiments, the refinement process usually converges in one

or two iterations.

4.5.3 System Setup and Online Vacant Space Detection

To implement the whole system, several preparatory processes are required, as
listed below.
1. Calibration Steps
a.  Define a 3-D coordination system for the parking lot. Measure the 3-D
location of each parking space. Here, we record the 3-D information in a
blueprint.
b.  Perform camera calibration to compute the camera projection matrix.
2. Offline learning of 3-D information
a.  Estimate the parameters of solar direction model based on the method
introduced in Section 4.3.3.
b.  Collect 3-D training samples of vehicle length, width, and height to train the
priors p(l), p(w), p(h).
c.  Collect 3-D location deviation samples to train p(X), and p(Y).
3. Offline learning of 2-D information
a.  Collect reflectance samples to train the reflectance models of ground and

cars, based on the method mentioned in Section 4.4.1.2.
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b.  For different time period, manually select unshadowed and shadowed
reference regions in the image.

c.  Collect illuminant samples to train the offline illuminant probability model
of the shadowed regions and unshadowed regions, based on the method
mentioned in Section 4.4.1.2.

d. Based on the method mentioned in Section 4.4.1.2, learn the intensity
mapping models from each of these reference regions to the ground and to the

cars.

In our experiments, it took about five days to finish the above system setup
processes for each parking lot. After system setup, the following processes are
performed to dynamically detect vacant parking spaces.

a.  Determine the current sunlight direction based on the pre-learned solar
movement model. This solar movement model is updated for every few days.

b. Based on the learned 3-D information, the sunlight detection, and the
projection matrix, generate the expected object and shadow labeling models.

c.  Extract illuminant samples from pre-selected reference regions to update the
illuminant probability model.

d. Based on the pre-learned intensity mapping models, establish the intensity
model of different classes.

e. Combine object reflectance models, illuminant probability models, and
intensity models to build the classification models.

f.  Incorporate classification models, expected labeling models, and adjacency

model into the BHF to detect vacant parking spaces.
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4.6 Experiment Results and Discussion

4.6.1 Experiment Setup and Test Data

In our experiments, we tested two different parking lots for performance
evaluation. In each test, we set up an IP camera on the roof of a building near the
parking lot. The camera was geometrically calibrated beforehand and monitored the
status of parking spaces from morning to evening. Both experiments report similar
detection accuracy. To avoid confusion, we mainly present the results and the analysis
over the first parking lot. At the end of this section, we briefly present the detection
performance over the second parking lot.

Fig. 18 shows a few image shots of the first parking lot. Within the image view,
there are 46 parking spaces in total. To evaluate the performance of our system, we
tested three image sequences under different weather conditions. The first sequence
was captured in a normal sunny day. The second sequence was captured in a day with
very strong sunlight so that there were plentiful over-exposed regions in the images.
The third sequence was captured in a day with unstable lighting condition. In this
sequence, the lighting condition dramatically switched between sunny and cloudy. For
each sequence, the recording time was from 8:00am to 5:00pm. Since the status of the
parking condition was slowly changing, we performed vacant parking space detection
for every five minutes. In total, we tested the status of 14766 spaces. In these three
sequences, the shadow patterns varied from morning to evening. Sometimes, the
shadowed regions suddenly disappeared when the sunlight was blocked by a cloud.
The variations of illumination caused apparent drifts in color and brightness. These
three sequences with vacant space detection results and ground truth are available at

our website [82].
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4.6.2 Object/Shadow Labeling and Accuracy of Vacant

Space Detection

Many previous studies suggested the vacant spaces be detected by labeling the
car pixels, such as Tsai et al. [13], or by labeling the ground pixels, such as Funck et
al. [11]. In our method, we modeled both cars and ground plane for object labeling. In
Fig. 29, we compare the results of car pixel labeling based on Tsai’s method [13] and
ours. Here, we show the image portions that were labeled as “car”. Based on Tsai’s
method, many shadowed ground regions were labeled as car pixels, many
over-exposed car regions were labeled as ground pixels, and some car regions were
mistakenly labeled as ground pixels. In comparison, our parking space detection
system provided more accurate car regions and was less sensitive to the shadow effect.
In Fig. 30, we compare the results of ground pixel labeling based on [11] and our
method. Both [11] and our method used adaptive models for labeling. However, the
method in [11] did not take into account the shadow effect and many shadowed
ground regions were classified as car pixels. In comparison, most shadowed ground
regions are correctly identified by our method.

Even though the proposed adaptive models can better handle the shadow effect,
many pixels were still misclassified if the scene knowledge was not involved. An
example is presented in Fig. 31, where we show the labeling results with and without
the scene knowledge. Especially, there were some pepper-like errors inside the car
regions as shown in Fig. 31(c) which were caused by the ambiguity in color
appearance. It is difficult to remove those errors if we only rely on color models. In
our system, the scene information in the expected labeling maps provides constraints
to remove that kind of errors. To deal with the color ambiguity between dark cars and

shadowed ground, the expected shadow labeling map clearly constrains the location

76



of shadowed regions. On the other hand, if a region is to be occupied by a car, the
expected object labeling map reveals the probable regions of car pixels and disfavors
the occurrence of pepper-like labeling. Moreover, the expected object labeling map
also reveals the expected occlusion effect and the perspective distortion. By taking
into account these kinds of scene knowledge, more accurate and reliable detection

results were obtained, as shown in Fig. 31.
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Fig. 29. Comparison of car pixel labeling. (a) Test images. (b) Regions
labeled as car pixels based on [13]. (c) Regions labeled as car pixels based
on the proposed method.

Fig. 30. Comparisons of ground pixel labeling. (a) Test images. (b) Regions

labeled as ground pixels based on [11]. (c) Regions labeled as ground pixels

based on our method.
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(a) (b) (c)

Fig. 31. The detection and labeling results at three different time instants. For

each case, the images from the top are the test image, the car labeling without
scene knowledge, the car labeling with scene knowledge, the shadow labeling

without scene knowledge, and the shadow labeling with scene knowledge.
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To assess the detection accuracy of our system, we manually built the ground
truth of 14766 parking spaces. To evaluate our system from different aspects of
environmental variations, we assessed the detection performance over a day, over
different periods of a day, and over different regions of the parking lot. To
quantitatively evaluate the performance, the false positive rate (FPR), false negative
rate (FNR), and system accuracy (ACC) were calculated. In our simulation, the
methods proposed by Dan [76], Wu et al. [77], and Huang et al. [46] were tested for
comparison. The Receiver Operating Characteristic (ROC) curves of the four methods
are also plotted in Fig. 32 for comparison. Here, we consider three test image
sequences. For each image sequence and each method, the area under the ROC curve
(AUCQ) is also calculated and provided in the Fig. 32 for reference.

As listed in

Table 1, the proposed method worked well in all three test sequences. We further
divide a day into three periods: morning (8:00~11:00), noon (11:00~14:00), and
afternoon (14:00~17:00). Generally, the afternoon period has the most serious shadow
effect, while the noon period has almost no shadow at all. By calculating the ACC of
those three periods, we found the ACC is inversely proportional to the degree of
shadow effect. Moreover, we also evaluated the performance of detection over
different regions to evaluate the influence of perspective distortion. As shown in

Table I, perspective distortion does not cause serious degradation in our
experiments. Moreover, even though some portions of the 1* row were occluded by
the trees, the proposed system still accurately inferred the status of the parking spaces.

We also implemented our system in another parking lot. For each 320x240 tested
image, there are 64 spaces inside. In total, we tested the statuses of 6912 spaces in that
parking lot. In Fig. 33, we show some detection results in the second parking lot. The

ACC, FPR, and FNR are 0.988, 0.0185, and 0.0097 respectively. The complete
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detection results of the second parking lot are also available at our website.
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Fig. 32. The Receiver Operating Characteristic (ROC) curves of our method,
Huang's method [46], Wu's method [77], and Dan's method [76], with the values of
the area under ROC (AUC) for (a)“Day 1 (b)“Day 2", and (c)“Day 3" image

sequences.
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Table 1. Performance comparison of four vacant space detection algorithms.

Test Data

# of

spaces

tested

Proposed method

Huang [46]

Wu [77]

Dan [76]

vacant

parked

FPR

FNR

ACC

FPR |FNR |ACC

FPR

FNR

ACC

FPR

FNR

ACC

Image
Seq. 1
(Day 1)

491

4431

0.0004

0.0081

0.9988

0.0004 | 0.1690 | 0.9827

0.0111

0.7115

0.9193

0.0307

0.5748

0.9153

Image
Seq. 2
(Day 2)

278

4644

0.0024

0.0324

0.9959

0.0002 | 0.2626 | 0.9850

0.0016

0.7837

0.9577

0.0101

0.7061

0.9537

Image
Seq. 3
(Day 3)

206

4716

0.0040

0.0437

0.9943

0.0042{0.10190.9917

0.0018

0.7012

0.9739

0.0073

0.6524

0.9703

Morning
period of
3 Seq.

380

4588

0.0031

0.0105

0.9964

0.0011 {0.2026 | 0.9835

0.0004

0.4955

0.9646

0.0097

0.4478

0.9594

Noon
period of
3 Seq.

367

4601

0.0015

0.0082

0.9980

0.0015|0.0381 | 0.9958

0.0045

0.8632

0.9360

0.0179

0.7629

0.9306

Afternoon
period of
3 Seq.

228

4602

0.0024

0.0658

0.9946

0.0024 | 0.3772(0.9799

0.0091

0.8920

0.9502

0.0195

0.6948

0.9494

1st & 2nd
rows of 3

Seq.

644

6739

0.0019

0.0233

0.9962

0.0025{0.1770 | 0.9823

0.0068

0.6960

0.9377

0.0179

0.5641

0.9381

3rd & 4th
rows of 3

Seq.

98

5359

0.0015

0.0306

0.9980

0.0009 {0.3163 | 0.9934

0.0028

0.6933

0.9871

0.0059

0.6933

0.9840

51 row of

3 Seq.

233

1693

0.0065

0.0172

0.9922

0.0006 | 0.1373 | 0.9829

0.0024

0.8240

0.8982

0.0366

0.7554

0.8764
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Fig. 33. The proposed detection and labeling results at three different time
instants in another parking space. For each case, the images from the left are
the test image, the parking space detection results, and the car labeling

results.

4.6.3 Discussion and Future Works

The whole system has been implemented in the Visual C++ environment on a PC
with a 2.0GHz Pentium-4 CPU. It takes about 30 seconds to perform the space
detection and labeling of parking spaces for a 320240 color image with 46 spaces
inside. The major CPU time is spent on building the online models, including the
expected object labeling model, the expected shadow labeling model, and the color
classification model. Even thought the execution time takes a little while, the speed of
the proposed system is still reasonably fast to support practical parking space
detection systems. Although the complexity of our system is already affordable for

practical applications, the speed can be further boosted if we either adopt parallel
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programming techniques, such as Open Multi-Processing (OpenMP), to fully use the
computing power of a multi-core processor, or to adopt General-purpose computing
on graphics processing (GPGPU).

In our system, people in the parking lot may affect the detection of vacant
parking spaces. However, people tend to dynamically move in the scene. By taking
the temporal information into consideration, the problem of walking pedestrians can
be relieved. On the other hand, even though our system works very well in an outdoor
parking area during the daytime, there exist still several challenging issues, like how
to manage an indoor parking area, how to detect vacant spaces in an outdoor parking
lot during the night, and how to handle the unexpected shadow caused by other
environmental objects. For an indoor parking area, the severe occlusion and the
limited camera field of view could be the major challenges. Considering cost and
efficiency, a possible solution is to build a low-cost camera sensor network. To detect
vacant spaces in evening, we may need to consider multiple lighting sources while
generating the expected shadow maps. We also require a new mechanism to handle
the unpredictable lighting change caused by car headlights. All these discussions

would be the future works of our vacant parking space detection system.
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CHAPTER S

Multi-Target Correspondence and
Labeling with Ghost Suppression
over Multi-Camera System

5.1 Introduction

In recent years, plentiful vision based techniques have been investigated to boost
intelligent functionalities of modern surveillance systems. Among those technologies,
object detection and labeling are especially crucial. For a single-camera system, these
two processes are the fundamental steps for advanced analyses, like object tracking
and behavior understanding. Up to now, many frameworks have been used to detect
and label targets of interest. For example, Schneiderman and Kanade [68] proposed a
trainable object detector for the detection of faces and cars, based on the statistics of
localized parts. Adaboosting detection algorithm [69] is another widely used
technique for the detection of specific objects in 2-D images. However, since a 2-D

image lacks 3-D depth information, the detection of targets usually suffers from the
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occlusion problem, especially when multiple targets appear in a complicated scene.

An alternative way to deal with the occlusion problem is to use a multi-camera
system. The cross reference of multiple camera views can effectively handle the
occlusion problem and provide a reliable way for object labeling and correspondence.
Up to now, several multi-camera surveillance systems have been proposed for
multi-target correspondence. These approaches can be roughly classified into two
major categories — “direct correspondence” and “indirect correspondence”. For a
“direct correspondence” approach, moving objects are detected in each 2-D camera
view first. After that, object correspondences are built among 2-D camera views and
2-D detection results in different camera views are fused together to support
surveillance over the 3-D space. For instance, In [83], Khan et al. found the
overlapped fields of view among cameras. Whenever a moving object enters an
overlapped region, the correspondence of this object with respect to its counterparts in
other camera views can be established. In [84], Hu et al. proposed a principal
axis-based correspondence among multiple camera views. This method offers robust
results and can tolerate a certain level of defects in the motion detection and
segmentation of each camera view. Moreover, the typically required camera
calibration step is not a necessity in their system. In [85], Black and Ellis established
the correspondence by comparing the distance between the projected epipolar lines
and the detected objects in each 2-D image. For a multi-camera system with a narrow
baseline setup, the use of epipolar constraint provides an efficient way to establish the
correspondence.

Basically, most “direct correspondence” approaches require the foreground
regions of each target be correctly extracted in each camera view to ensure reliable
correspondence. However, with the presence of occlusion, this requirement cannot be

easily achieved. In [86][87] , Mittal and Davis launched the correspondence of objects
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by matching the color appearance of segmented regions along epipolar lines in pairs
of camera views. In their approach, the mid-points of the matched regions are
projected onto the 3-D space to yield a 3-D probability distribution map for the
description of object position. Although this method may relax the need of accurate
foreground extraction, it has the extra requirement of color calibration among multiple
cameras. Incorrect correspondence may also occur while matching objects with
similar color appearance.

In the “indirect correspondence” category, a multi-camera system fuses
multi-view information onto a pre-selected data-fusion space. The fused information
is then projected back to each camera view to build object correspondence. Typically,
the 3-D space is chosen as the space for data fusion. For example, Utsumi et al. [88]
proposed the adoption of intersection points, which are the intersections of the 3-D
lines emitted from the 2-D tracking results of different camera views. In that approach,
a mixture of Gaussian functions was used to describe the possible positions of moving
objects in the 3-D space. By projecting these 3-D Gaussian distributions back to
individual 2-D image plane, the object correspondence among camera views is
derived in a probabilistic manner. On the other hand, Fleuret et al. [89][90][91]
adopted a simple blob detector in 2-D analysis and introduced a generative model to
fuse data from multiple views. In their system, a discrete occupancy map is designed
to describe whether an individual target is standing at a specific ground location in the
3-D space. After that, the most likely trajectory of each individual over the 3-D
ground plane is traced via the Viterbi algorithm. In [92][93], Huang and Wang
proposed a model-based approach to efficiently fuse consistent 2-D foreground
detection results from multiple camera views. A probabilistic method is further
proposed to simultaneously label and map multiple targets based on a Markov

network.
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Instead of fusing multi-view information onto the 3-D space, Khan and Shah [94]
chose one of the 2-D camera views as the reference view for data fusion. In their
approach, without relying on complicated camera calibration, they built a few
homography matrices to map the projected ground planes in multiple camera views.
After that, they fused the foreground likelihood information from multiple views to
the scene plane in the reference camera view in order to generate a probability map of
the target location. Owing to the geometric consistence, the fused target location
probability map, named the “synergy map” in [94], would indicate a higher
probability for a true target location. The synergy map was finally rectified so that the
target location on the reference image is remapped to the relative ground plane
location in the 3-D space. Since the fused synergy map is built over a 2-D image
space, the spatial resolution of the target location is influenced by the perspective
projection and is non-uniform in the 3-D space. A target far away from the reference
camera would have a lower location resolution, while a target close to the reference
camera would have a higher resolution. In addition, it is a little complicated to utilize
the prior knowledge of the 3-D targets into this 2-D fusion framework.

For these aforementioned “indirect correspondence” approaches, certain
geometric ambiguity may cause “ghost objects” in the 3-D space. The ghost effect is
another form of the inter-occlusion problem and is a classic problem in 3-D object
reconstruction. Owing to the limited number of cameras around the surveillance zone,
some ghost objects may occasionally fulfill the geometric consistency and appear in
the reconstructed 3-D scene. These fake targets could severely affect the accuracy in
building object correspondence. In recent years, several approaches have been
proposed to suppress ghost objects in multi-camera applications. Including the
aforementioned method in [94], most methods used the temporal consistency to

remove ghost targets. For example, given a limited number of 2-D camera views,
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Otsuka and Mukawa [95] proposed a framework of multi-view occlusion analysis to
track objects. Once if occlusion patterns are detected, some occlusion hypotheses are
launched to indicate the uncertainty caused by occlusion. Since an occlusion structure
usually lasts only for a short period, those hypotheses are tested recursively based on
the temporal consistency to suppress fake detection. In [96], on the other hand, Guan
et al. suppressed ghost targets by considering the consistency of color appearance. By
projecting 3-D objects onto different image views, they identify ghost objects based
on dissimilarity of colors. Moreover, their approach may automatically learn the
appearance models for different objects in different camera views during the tracking
process. This eliminates the requirement of color calibration among different cameras.

In this dissertation, we propose a new approach to efficiently integrate,
summarize, and infer video messages from multiple client cameras. Even though we
only use a simple foreground object detector to obtain imperfect foreground detection
results, our system can still efficiently determine the number of moving targets inside
the surveillance zone and accurately track the 3-D trajectories of the tracked targets.
Besides, our approach can perform image labeling in a pixel-level manner and match
targets among multiple camera views. The rest of this chapter is organized as follows.
In Section 5.2, we present the main idea of the proposed framework, which is
composed of a data fusion stage and an inference stage for multi-target labeling and
correspondence. In Sections 5.3 and 5.4, we explain the details of the fusion stage and
the inference stage, respectively. Experimental results and discussions are presented in

Section 5.5.

5.2 System Overview

In this system, we focus on a client-server surveillance setting, which monitors a

zone with multiple client cameras. The main goal of our system is to detect, locate,
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correspond, and label multiple targets, especially for walking people in the zone.
Without knowing the number of targets in advance, it would be a challenge to
efficiently analyze the inter-occlusion situation among targets while locating and
labeling targets.

To handle the inter-occlusion problem, previous works [89][90][91][96] checked
the possible points over a discrete domain, like a lattice of discrete ground locations
or a set of 3-D voxels. At each point, a random variable is attached to represent the
probability of having a target at that point. By considering the joint probability among
random variables and the relative position among targets, the inter-occlusion situation
can be well modeled and the moving targets can be detected. Basically, those previous
works couple the detection of candidate locations with the analysis of inter-occlusion.
This coupling leads to a trade-off between location accuracy and computational cost.

In our approach, we decouple the detection of target locations from the analysis
of inter-occlusion. The basic idea is to detect the candidate target locations in the first
stage and then spend computations only over those candidate locations for
inter-occlusion analysis. This two-stage procedure may preserve the accuracy of target

location without dramatically increasing the computational cost.

5.2.1 System Property

In our system, we adopt an “indirect correspondence” approach that fuses 2-D
information from a set of calibrated cameras to perform labeling and correspondence
of multiple targets in the surveillance zone. The proposed scheme has two major
features. First, to suppress the ghost targets caused by geometric ambiguity, the 3-D
scene model in our framework is defined in a probabilistic manner. Second, instead of
applying a fixed 3-D target model to all tracked targets, we use the BHF (Bayesian

Hierarchical Framework) structure with an expectation-maximization mechanism to
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on-line refine the 3-D target model for each individual target. Moreover, our system
can locate, correspond, and label multiple targets over a multi-camera surveillance
system, with the capability of ghost suppression and target model refinement.

If compared with other relevant works, the proposed system includes three major
contributions. First, we introduce a fusion-inference procedure to decouple the
detection of target locations from the analysis of inter-occlusion so that the trade-off
between location accuracy and computational cost are relieved. Second, in the fusion
stage, we suggested a model-driven approach to achieve more robust fusion under
imperfect foreground detection. Third, in the inference stage, the labeling,
correspondence, and inference of 3-D target model, together with the suppression of
ghost targets, are modeled in a unified framework and are resolved via an
optimization process. Under the proposed system, we can systematically estimate the
target number and tackle the inter-target occlusion problem. Moreover, the proposed
system requires neither accurate foreground/background separation nor color

calibration among multiple cameras.

5.2.2 System Flow

In our fusion-inference scheme, we design a data fusion stage to detect candidate
targets and their 3-D locations. After that, target identification, image labeling, and
inter-occlusion are analyzed under the proposed BHF framework in the inference
stage. The inferred target labeling and correspondence results are further used to
refine the 3-D target model. In Fig. 34, we illustrate the system flow of the proposed

system.
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Fig. 34. System flow of the proposed system.

In the data fusion stage, a model-based approach is used to efficiently fuse
consistent 2-D foreground detection results from multiple camera views. Here, we
formulated a posterior distribution, named target detection probability (TDP), as the
fused message pool to indicate the probability of having a moving target at a certain
ground location. Based on the TDP distribution, the candidate targets and their
locations can be identified in a probabilistic manner, which combines a sample-based
representation of TDP and Mean-Shift clustering [97]. Moreover, with the use of 3-D
target model, our fusion scheme may work reasonably well even with imperfect
foreground extraction.

After data fusion, a set of candidate targets are detected that include both true
targets and ghost targets. Since the occurrence of ghost targets is geometrically
consistent with the 2-D foreground detection results, existing methods attempt to
suppress ghosts by checking some other properties, like photometric consistency and
temporal consistency. In our system, we use a few 3-D priors about the surveillance
scenario, such as the assumption that human stands on the ground plane, the
probability distribution of the target height, and the probability distribution of the
target location, to distinguish true targets from ghost targets. By properly integrating

these 3-D priors into the scene knowledge, we can greatly simplify the ghost problem.
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Moreover, in this system, we used the BHF framework to unify the processes of target
labeling, target correspondence, and ghost suppression into a Bayesian inference
process. Here, the labeling layer in BHF not only plays an intermediate role in the
hierarchical framework but also provides a feedback route to refine the scene
knowledge based on an EM (Expectation-Maximization) mechanism. In the following
sections, we will explain in detail how we design the fusion stage and the inference

stage of our system.

5.3 Information Fusion and Summarization

5.3.1 Foreground Detection on Single Camera

To fulfill the speed requirement of a real-time multi-camera system, we only
consider the 2-D foreground detection results as the observation data. In our system,
the intrinsic and extrinsic parameters of all cameras are well calibrated beforehand.
For each camera, we build its reference background based on the Gaussian mixture
model (GMM) [98]. The foreground image is determined by checking the frame
difference between the current image and the reference background in a pixel-level
manner. Besides, to remove shadows, the frame difference operation is performed
over the chromatic domain, rather than the achromatic domain. However, although the
GMM background subtraction method can deal with gradually changing illumination
through on-line background learning, it may still falsely reject some foreground pixels
whose appearance happens to be similar to that of the reference background. As
shown in Fig. 42(b), Fig. 43(b), and Fig. 44(b), the detected foreground objects are

usually neither perfectly silhouetted nor well connected.

5.3.2 Information Fusion

93



In the fusion step, we integrate the 2-D foreground detection results from a set of
camera views to offer global 3-D information. To fuse 2-D information, most existing
methods adopt a data-driven approach to back-project the 2-D foreground regions into
a 3-D visual hull, as plotted in blue in Fig. 35(a). By accumulating the number of
voxels of the visual hull along the normal direction of the ground plane, we can build
a histogram that indicates the likelihood of having a candidate target on the ground
plane, as illustrated in Fig. 35(b). However, since the extracted 2-D foreground
silhouettes are usually fragmental and far from perfect, the reconstructed visual hull
could be very different from the original 3-D target and the deduced voxel histogram
could be seriously biased from the true location, as illustrated in Fig. 35(c) and (d).

To improve the accuracy in the estimation of target location, we adopt a
model-driven approach to fuse 2-D information. In the proposed method, a so-called
Target Detection Probability (TDP) distribution is defined to estimate the probability
of having a moving target at a ground location. In Fig. 35(f), we show the estimated
TDP distribution based on the incomplete foreground images in Fig. 35(e). It can be
seen that the model-based approach provides a more reliable estimation of the target
location. The detail of this model-driven approach is to be explained as follows.

In our approach, the TDP distribution is formulated as a posterior distribution,

which is expressed below based on the Bayes rule:

In (49), X represents a location (x;,x2) on the ground plane of the 3-D space. N is
the total number of cameras in the multi-camera system. F; denotes the foreground
detection result of the ith camera view. ® defines the set of camera parameters of all ¥
cameras. To simplify the formulation, we’ll ignore ® in the following deductions.

Moreover, p(X) is used to define the prior information about the targets’ possible
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locations in the surveillance zone. If there is no specific knowledge about the possible
locations of the moving targets, we can simply define p(X) to be uniformly distributed

over the ground plane of the surveillance zone.

@ (e) )

Fig. 35. (a) Visual hull constructed from the foreground images of two camera

views. (b) The voxel histogram based on the visual hull in (a). (c) Visual hull
constructed from fragmented foreground images. (d) The voxel histogram based on
the visual hull in (c). (e) The proposed pillar model in the 3-D space. (f) The
estimated TDP distribution based on the foreground images in (e). (The red bar in
(b)(d)(f) represents the true target position.)

To define F;, we use (m,n) to represent the 2-D coordinate system of the ith
camera. If this camera has the image size M, x N;, we define the image view V of the
ith camera to be the set of (m,n) with 0<m < (M;-1) and 0<n < (N;-1). With this
notation, based on the foreground detection result on the ith camera view, we define

F;as
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1 if (mn) eV and (m,n) € foreground regions
F.(m,n)=<0 if (mn)eV and (m,n) €backgroundregions. (50)
P, if(mn)eV
In (50), P, is a trainable constant designed to indicate the possibility that there could
be some other foreground objects out of the field of view of the ith camera.

Moreover, given the location X, we assume the foreground detection results are

conditionally independent of each other. With this assumption, we rewrite (49) as

PXOP(E,- Fy | X) = p(O] ] p(F 1 X). (1)

i=1

To formulate p(FiX), we model a moving person at the ground position X as a
rectangular pillar, as shown in Fig. 35(e). The height A and width R of the rectangular
pillar are modeled as independent Gaussian random variables, with their priors p(H)
and p(R) being pre-trained based on the training data collected from the health center
of our university. Based on the pre-calibrated projection matrix of the ith camera, a
target at X with height / and width R can be projected onto the image plane of the ith
camera to obtain the projection regions. Here we define the projection image M; on
the ith camera view as

1 if (m,n) € projected regions

M (m,n|H,R,X)= { (52)

0 if (m,n) & projected regions
Please note that the projected regions in (52) could be out of the image view V of the
ith camera.

With F; and M,, the normalized overlapping area, €, is defined as

IE(m,n)Mi(m,n | H,R, X)dmdn

Q. (H,R X)E'[
e j j M (m,n|H,R,X)dmdn

(53)

By taking into account the prior probabilities p(H) and p(R), an estimate of p(FiX) is

defined as

p(F | X) = [[Q.(H,R,X)p(H)p(R)AHdR . (54)
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In our approach, (54) is calculated numerically based on the Monte Carlo
approach. Here, we draw a set of sample pairs (H,R) based on the prior models p(H)
and p(R). For each sample pair (H,R) and a target location X, we evaluate its
correlation value ;. By averaging the correlation values over all sample pairs, we

estimate p(F;X) in a statistical manner.

5.3.3 Representation of TDP and Information

Summarization

To numerically calculate TDP, we calculate G(X) over a K, by K, lattice on the
ground plane. For each node X; of the lattice, its value W;=G(X;) indicates the
probability of having an object at that location. The sample set {X;,W;}i=o-s.1, with S =
K7, is then used to approximate the TDP distribution. In our experiments, we set K, =

100 and S = 10000.

(a) (b)
Fig. 36. (a) The TDP of four moving targets in the surveillance zone.
(b)The bird-eye view of (a).

Based on the TDP distribution, we summarize some useful information about the
3-D scene, including the number of candidate targets, the most likely position of each
candidate target, and the unique ID of each candidate target. Typically, the TDP
distribution contains several clusters, with each cluster indicating a moving target on

the ground plane. Hence, the detection of multiple moving targets can be treated as a
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clustering problem over the TDP distribution. In Fig. 36(a), we show an example of
the TDP distribution, which are fused from the foreground detection results of four
cameras. To perform clustering over the TDP distribution, we apply the Mean-Shift
clustering algorithm [99] over the sample set {X;,W;}i=i-s. This mean-shift clustering
method is efficient in mode searching and does not require the prior knowledge of the

cluster number. By iteratively calculating the next position y;+; based on the following

equation
S - X 2
S xm e
i=0
y.i+1 = S-1 X 2 ’ (55)
D Woexp(|~——)
i=0 h

we can identify a few converging points [99]. In (55), / is a parameter that controls
the kernel size. With the mean-shift algorithm, those samples that converge to the
same converging point are grouped as the same candidate target and are assigned the
same ID.

Based on the clustered groups, we determine the number of candidate targets.
Moreover, assume we have identified M candidate targets on the ground plane with
the ID’s: T1, T, ..., Tir. If we denote the R samples that belong to 7} as { X0, Xi.1, ---,
Xi.rs-1} With the corresponding weights as {Wio, Wi, ..., Wirs-1}, We can estimate the
position distribution function p(X|Ty) for T;. Here we model p(X|Ty) as a Gaussian

function. The mean vector and covariance matrix of p(X|7) are estimated based on

(56) and (57).
d=(EW X ) (W) (56)
C =W (X, - 1)K~ V) (W) (5T)

J=0 J=0

Under the assumption that p(X|7) is a Gaussian distribution, the location of T} is
estimated to be x*, which is the minimum-variance unbiased estimate of the
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location.

5.3.4 Ghost Object

From time to time, ghost clusters may occur in the TDP distribution.
Geometrically, the ghost effect happens when the projection of a rectangular pillar at
an incorrect location accidentally matches the foreground detection results on the
camera views. In Fig. 37, we present an illustration of the ghost problem when trying
to reconstruct the 3-D scene based on two camera views. In this case, there are four
reconstructed targets while only two of them are true. As a result of the limited

camera views, two extra ghost objects occur even based on perfect 2-D silhouettes.

iiH |
I

Fig. 37. An illustration of the ghost problem when trying to reconstruct a 3-D scene based

on two camera views.
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5.4  Bayesian Inference and Ghost Suppression

After information summarization, we have identified a few candidate targets and
their possible locations. For each candidate, we have to decide its status to be either a
true target or a ghost target. However, owing to the inter-occlusion among candidate
targets, the status of a candidate target may actually affect the inference of other
candidates. Hence, in our approach, the statuses of all candidate targets are to be
inferred simultaneously, rather than being decided individually.

To determine the status of candidate targets, we consider not only the foreground
observations and geometric consistence but also some helpful prior knowledge about
the targets. For example, as illustrated in Fig. 37, in the perspective back-projection
from the 2-D camera view to the 3-D space, the farther the candidate target is away
from the camera, the larger the reconstructed object would be. Since the 3-D size of a
walking person actually distributes over a specific range, the prior information of
human height may offer useful information to exclude targets with unreasonable

height.
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Observation Layer

(b)

Fig. 38. (a) An example of TDP distribution fused from four camera views.
(b) The corresponding Bayesian hierarchical framework.
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5.4.1 System Modeling

5.4.1.1 Bayesian Hierarchical Framework

In this system, we adopt the BHF framework to simultaneously infer the status of
candidate targets. In Fig. 38, without loss of generality, we consider an example of
TDP distribution fused from four camera views. The top layer of the BHF architecture
is the scene layer S; that indicates the 3-D scene knowledge built at the fusion stage.
Here, we treat the scene model as a knowledge pool collecting message from all
cameras. The bottom layer is the observation layer /;, which contains both the
captured images and the corresponding foreground detection results. We define [(m,n)
and Fi(m,n) as the captured image and the foreground detection result of the ith
camera view, respectively. The value of Fi(m,n) is defined as in (50). Between the
scene layer and the observation layer, a labeling layer H; is added to deal with image
labeling, target correspondence, and ghost removal. Here, we define Li(m,n) as the

labeling image of the ith camera view.

5.4.1.2 Problem Formulation

In the “five candidate targets” case in Fig. 39, the scene layer S, = {si, 52, 53, 54, S5}
corresponds to the status of five candidate targets, with each status node being either
“true” (1) or “ghost” (0). With five candidate targets, we have 2’ status combinations
in total. For each combination, we generate the expected foreground occlusion pattern
by approximating each “true” target as a rectangle pillar on the ground. By projecting
the 3-D rectangle pillars onto each camera view, we form the expected foreground
image. Ideally, the optimal status combination would lead to the best match between
the expected foreground image and the detected foreground image. In Fig. 39, we

show two status combinations based on the example in Fig. 38. In Fig. 39(a), the
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scene layer with five candidate targets, together with two of the four camera views, is
shown for reference. In Fig. 39(b), we show the combination {si, s2, §3, S4, S5} =
{1,0,1,1,1}, which assumes the second candidate is a ghost while the remaining are
true. By projecting the four 3-D pillars onto the camera views, we compare the
expected foreground image with the detected foreground image. In Fig. 39(c), we
show another combination {1,1,1,1,1}, which assumes all candidates are true targets.
By checking the projected foreground images, it appears that the latter combination is

less likely than the former combination.

()
Fig. 39. (a) The scene layer in Figure 36 and two of the four camera views. (b) The
combination {s;, s2 3 S4 S5}={1,0,1,1,1} and the expected foreground images
overlaid with the detected foreground images. (c) The combination {1,1,1,1,1} and the
expected foreground images overlaid with the detected foreground images.

Assume there are N camera views and we have identified M candidate targets
based on the fused TDP distribution. In our system, targets correspondence and image
labeling are achieved by assigning a suitable ID from the set {7y, 71, ..., Ti} to each
pixel of the N labeling images. Note that 7; is the ID of the kth target and Ty

represents the “background” object. Labeling and ghost suppression is achieved by
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searching the optimal status combination that fits the foreground detection results.
Here, we denote the observation layer as I, = (I,F), where I indicates the set of N
original images and F indicates the set of N foreground detection images. Moreover,
we denote the labeling layer H; as the set of N labeling images, and the scene layer S,
as a status combination. With those definitions, we may combine the target labeling
problem and the ghost suppression problem into a single MAP (Maximum A

Posteriori) problem as introduced in Section 3.3. In this MAP problem, given the

observation I; = (I,F), we seek the optimal status combination S, and the optimal

target labeling H, such that,
H;SZ = argglasxmp(HLaSL 11;)
= al‘gI;I[laSX[lnp(IL |H,)+InP(H, |S,)+Inp(S,)] . (58)

=al‘g1’IFllaSX[lnp(I,F\HL)+lnP(HL |S,)+1np(S,)]

In (58), In[p(l,F|Hr)] describes the relation between the labeling images and the
observation data, In[p(H.|S;)] describes the relation between the 3-D scene model and
the 2-D labeling images, and In[p(S.)] describes the prior information about the 3-D

scene model.

5.4.1.3 Learning of p(I, F | Hy)

As illustrated in Section 3.3, p(I;|H.) is composed of a “classification energy”
Epl[l;(m,n),H;(m,n)] and an “adjacency energy” E [l (m,n),H;(m,n);N,]. Hence, we
formulate p(/,F|H}) as

p(LFE|H)=K-T T T [exp(-E,LEGmn), H (mm)]) exp(—E, L, (m,n), H,(m,n); N, ]).. (59)

In (59), Ep[Fi{m,n),H(m,n)] denotes the “classification energy” that relates the ith
foreground detection image with the ith labeling image; E [Ii{(m,n),H{(m,n);N,]

denotes the “adjacency energy” that relates the ith original image with the ith labeling
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image by checking the adjacent property within the neighborhood N,; and K is a

normalization term.

Ideally, if the foreground detection results are perfect, we expect H(m,n) to be T
if Fi(m,n) 1s 0, and to be an element of {7, T>, ..., Ty} if Fi(m,n) is 1. Once a labeling
violates this expectation, an empirically selected constant « is added onto the

detection energy to panelize this inference. Hence, we define Ep[Fi(m,n),H{(m,n)] as
ED (F; (ma n)a Hi (ma l’l)) =ax {1 - 5[}7; (m,l’l), T(Hz(ma I’Z))]} (60)
with T(H{(m,n)) being defined as

0 ifH,(m,n)=T,
T'(H,(m,n)) = : (61)
1 otherwise
and Jp..q.] being defined as
1 ifp =gq
olp,.q,1= ‘AP 62
LP.-4.] { 0 otherwise (62)

On the other hand, the local decisions of two adjacent labeling nodes are usually
highly correlated, especially when their corresponding image pixels share similar
color features. Hence, we define the adjacency energy E4[I(m,n),H(m,n);N,] by using
the same smooth constraint presented in Section 3.3. Here, we briefly explain the
design of the adjacency energy model again.

In our system, the adjacency energy E4[/(m,n),H{(m,n);N,] is defined as.

P P
E [1.(m,n),H (m,n);N,1= Bx . > C,II,H,mn,Am,An]

Am=—p An=—p

With this definition, if two neighboring sites are set to different labels, our system will
give a larger penalty if we find the color difference between two sites is small.
Otherwise, our system will give a smaller penalty. That is, two neighboring sites tend
to share the same label when the difference between their color features is small, and

tend to have different labels otherwise.
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5.4.1.4 Learning of p(H(|S})

Given a status combination S;, we define a conditional probability p(Hi(m,n)=TS.)
to express the likelihood of having a label 7} at the pixel (m,n) of the ith labeling
image. Here, we construct the probability model in a Monte Carlo manner. With the
status combination S, we define a few rectangular pillars on the ground. The height
and width of each pillar are sampled based on the probability density functions p(H)
and p(R). The locations of the pillars are sampled from p(X|7}), where T} indicates the
kth target. With the camera projection parameters, the expected foreground patterns
for each target can be generated by projecting these rectangular pillars onto each
camera view. Occasionally, more than two targets may project onto the same image
region and cause occlusion. The inter-occluded patterns can be determined by
checking the distance from the camera to the mean location of the targets. In Fig. 40,
we demonstrate the occlusion effect by plotting p(Hi(m,n)=T1;|S.) individually for each
of the four targets in Fig. 38 (b).

Based on the definition of p(H(m,n)=T4S.), we have

p(H, ISL)EHHHP(Hi(m,n)ISL) (63)

and we define the log probability function In[p(H;|S.)] as

Inp(H, |S,)=2.> > Inp(H(mn)|S,). (64)

i m

Fig. 40. Examples of p(H(m,n) = T} |S)

On the other hand, the prior knowledge p(S:) is also used in the determination of

106



the optimal status combination. In our system, if M, true targets are identified at the

previous time instant, we assume it is more likely to have a similar number of true

targets at the current moment. That is, if we denote S’ as the optimal status

combination at the previous time instant (-1) and S "as a status combination at the
current time instant ¢, we define the prior probability of S as

W, if |N(S')- NS )| <1
p(St):{l if [N(S*) - NSt )| | )

w,, otherwise

where I/} and IV, are two constants with /] > /5. In (65), N(S;) denotes the number
of true targets in the status combination S;. In detail, if we know the ratio between 11}
and 175, we could determine ¥, such that the probability summation equals to 1. For

example, we assume [/} = 2 //,, the number of candidate targets at Time ¢ is 5, and

the number of true targets in the previous optimal combination S’ is 4. For this

case, we have 2, -(C3+C,+C3) + W, - (Co+C;+C)) = 1. Hence, we choose W, = 1/48

and ) = 1/24.

5.4.2 Multi-Target Labeling and Tracking

5.4.2.1 Optimal Inference of Target Labeling

With the above deduction, the labeling of targets and the suppression of ghost

targets can be solved by finding the optimal labeling images (/, ) and the optimal

status combination (S ) that maximize the following potential function C,(Fy, Sy):
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H,,S, =argmax C,(H,,S,)
= arggi%)f{—zl_:;zn:ED[E(m,n),Hl.(m,n)]
—ZZZEA[I[(m,n),H,.(m,n);Np]

i m

+>°3° 3 In p(H,(m,n)|S,)+1n p(S,)}

i m

(66)

Basically, the problem of target labeling and ghost suppression is treated as a
maximum a posterior (MAP) problem from the viewpoint of Bayesian generative
model. Here, we incorporate four constraint terms: classification energy Ep, adjacency
energy Ey, likelihood function p(H|S;), and prior probability p(Sz). As illustrated in
Fig. 38, the classification energy Ep[Fi(m,n),H{(m,n)] represents the bottom-up
constraint between the foreground detection images and the labeling images. To
model the interaction between the labeling layer and the scene layer, the likelihood
function p(H|S;) represents the expected labeling layout based on the status
combination S;. The expected inter-occluded patterns among candidate targets are
also modeled in p(H;|S;) to influence the classification of local labeling nodes. By
introducing the adjacency energy E4[1i(m,n),H{(m,n);N,], the proposed framework can
not only infer the labeling based on the fusion of scene knowledge and foreground
detection results, but also refine the labeling results based on the original image data.
Last, the prior probability p(S;) includes the temporal prediction based on the
previous decision.

Moreover, due to the inter-occlusion among targets, the status inference of a
candidate target may depend on some other candidate targets. Hence, we need to take
into account relevant candidate targets when we infer the status of a candidate target.

A brute-force way is to evaluate all possible status combination and pick the optimal
one as S, . However, this leads to exponentially growing computational complexity

as the number of candidate targets increases. Fortunately, in general, there could be
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some kind of separateness among candidate targets that can be used to reduce the
number of status hypotheses. In our system, if the projection of a candidate target on a
camera view does not overlap with the projection of other targets, that candidate
target is thought to be a true target. By excluding those targets with isolated
projections, we only need to check the status combinations of the remaining targets.
For example, in Fig. 38, the target S5 corresponds to the left target in the third camera
view. Since this target has an isolated projection in the third camera view, it is treated
as a true target. For this case, we only generate 2% status combinations for S 1, S2, 83
and S, instead of generating 2° combinations for all five targets.

In principle, the best configuration of labels depends on image data, foreground
detection result, and scene model. In our experiments, even though plentiful false
alarms and false rejection may appear in the foreground detection results, these errors
have little influence on the final inference result. Based on the proposed BHF, the
inter-occlusion problem can be effectively analyzed, the connected foreground

regions can be well separated, and the ghost targets can be correctly identified.

5.4.2.2 3-D Target Model Refinement

Usually, the moving targets in the surveillance zone may have different model
parameters, such as the target height and width. If the personalized target models can
be obtained, the performance of the proposed inference framework can be further
boosted. In real situations, however, it is impractical to obtain the personalized 3-D
model parameters in advance. Hence, in our system, we achieve personalized 3-D
modeling by treating the model parameters as latent random variables and introduce
an EM based algorithm to iteratively refine the model parameters. The basic idea is to
update the 3-D model parameters in the Expectation step based on the labeling results

derived from the optimization procedure in (66). Next, in the Maximization step, by
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using (54) to consider the refined statistics of the 3-D model parameters in an
expectation sense, the optimization procedure in (66) is re-executed to boost the
inference performance. The operation is repeated until the updated parameters

converge or the maximum iteration number is met.

In Fig. 41, we show an example of the labeling results with and without the
target model refinement. Since each target has obvious height difference, the labeling
results with a unified target model generate wrong labeling around the head regions as
shown in Fig. 41(b). After the refinement of target model, more accurate labeling
results are achieved, as shown in Fig. 41(c).

In our system, the major 3-D target model of each target is a pillar model
standing at a location X on the ground plane, with parameters height (H) and width
(R). Initially, the proposed EM algorithm uses the pre-trained probability distributions
p(H) and p(R) to model the uncertainty of each target height and width. With this
initial setting, the proposed BHF generates the optimal inference of target labeling.
Since the BHF combines not only the 3-D scene priors and target priors but also the
observed image data and the corresponding foreground detection results, the optimal
target labeling actually reveals the personal property of each detected target. Hence,
based on the labeling results in multiple image views, we further update the
probability distributions of H and R to establish personalized probability models. In
practice, we found the target width has less uncertainty among targets and the
pre-trained probability p(R) can well model the uncertainty in target width. Hence, in

our system, only the model of target height is recursively refined.
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Fig. 41. lllustration of the labeling results. (a) Two camera views. (b) Without and (c)

with target model refinement.

In the Expectation step of the proposed EM procedure, the main goal is to refine
the posterior probability of each target height given the multi-view labeling results. In
our system, based on the Bayesian rule, the refinement of the posterior probability is

defined as follows

p(H |L)=C-p(L'|H;) - p(H). (67)
where

p(H) if r=1

H)=
p(H,) p(H'|L™") otherwise

In (67), L indicates the labeling results of multiple image views at the rth Iteration of
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our EM procedure. H, is the height of the kth target at Iteration », C is a

normalization constant, P(L | H) is the likelihood term which will be defined later,

and p(H;) is the prior term of H/ . In our system, we directly treat P(H, LY
as the prior information propagated from the previous iteration to the current iteration

to set the prior p(H]). Initially, p(H,) is set to be the pre-trained target height

probability p(H).

To formulate the likelihood term P(L [ H}) | we project the pillar model at the
ground position of the kth target, with height H, and width R;, onto multiple camera

views and we verify the projected regions with the labeling results. Since the variables
H and R are assumed to be statistically independent, we assign the width of all targets
to be the mean value of p(R) during the computation of p(L|HY), Ideally, if a more

precise target height is chosen, the projected region will better fit the labeling result.

Hence, we define the likelihood term as
Iy
p(L | H})= (H H (P}, (0)} : (68)
In (68), A" is the projected region of the kth target in the ith camera view. an,n ()
is the probability of the labeling pixel at (m,n) with the label ID “/”. N is the total
number of pixels within the projected regions. Since different H, may generate

different projected regions, we use the function ( . )" for normalization. Moreover,
we assume the statuses of different labeling pixels are independent of each other and

we evaluate only those pixels inside the projected regions of the kth target. In

principle, the label ID “/” tends to be 7. Hence, pfm (/) has a higher probability if
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“I” equals to T and has a lower probability if “/” equals to 7. Occasionally, owing to

occlusion, “/” may equal to some foreground target other than 7}. In this case, we do

not have the information about 7 and we assign p, (/) to be an intermediate value.

In summary, we define p;, (/) as

A-et ifl=T,
pha(D=14-¢" ifI=T, (69)

A-e® otherwise

where { is a normalization term to make the probability summation equal to 1.
Moreover, x, y, and z are empirically pre-selected parameters, with x >z > y. If we

rewrite (68) based on (66), we get a likelihood form as below

P TH)) = 2 expic (e Nyt Ny €2 N, )b, (70
where Ny, Ny, and N, are the number of 7j-labeled pixels, the number of 7)-labeled
pixels, and the number of other pixels inside the projected regions in all camera views.
Basically, (70) simply measures the matching level by accumulating the weighted sum
of different labeling pixels inside the projected regions with the weighting parameters
(x,y,z). Once the likelihood term p(L | H;) is determined, the refined probability
distribution of the kth target height at the current iteration can be obtained based on
(67). The refined model p(H, |L") is fed back to the proposed BHF to find the

optimal object labeling again. In our experiments, 2~3 iterations are enough for the

convergence of the EM algorithm.

5.4.2.3 Multi-target Tracking
In our system, by associating the temporal succession, we also extend the

detection results to perform 3-D tracking over the ground plane. Basically, the object
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tracking is treated as a dynamic system problem. Based on the proposed Bayesian
detection framework, the major observation of the dynamic system comes from the
estimated target location on the ground plane. In principle, to deal with the dynamic
system problem, several Bayesian filter techniques can be used. For instance, we can
use a Monte Carlo based framework to track multiple targets on the ground plane, as
proposed in [92]. However, for the sake of computational simplicity, we adopt the

Kalman filter to track each target in the scene.

5.5 Results and Discussion

5.5.1 Experimental Datasets

To test our system over real video sequences, we set up four static cameras in our
lab to capture test sequences. In our sequences, the coverage is about 4.5m by 4.5m,
with 3 to 5 moving targets within the zone. A set of snap shots with 5 persons inside
the scene are shown in Fig. 42(a). On the other hand, we also tested our system over
the video sequences provided by the M2Tracker project [87] and the dataset used in
Fleuret’s papers [89][90][91]. The M2Tracker sequence was captured by 15
synchronized cameras over a 3.0m by 3.0m area, while Fleuret’s sequence was
captured by 4 synchronized cameras in a 12.88m” room. For each sequence, four
camera views are used to evaluate our system. If more camera views are used, the
performance of our system can be further boosted. In Figure 11(a) and Figure 12(a),
we show four snap shots obtained from each of these two sequences.

For each sequence, the cameras have been geometrically calibrated with respect
to a world coordinate system. Except the M2Tracker sequence, each video sequence
contains more than 300 frames. Especially, Fleuret’s video sequence contains 3900

frames with many interesting events, such as people moving into surveillance zone,
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people approaching and occluding each other, and some people only monitored by a
portion of the cameras. For the evaluation of object ground location, we acquired the
ground truth of the M2Tracker sequence from Dr. Li [96]. To establish the ground
truth of Fleuret’s sequence, we manually identified the image position of human necks
and built the correspondence among camera images. By backprojecting the
corresponding image points, the object locations on the 3-D ground plane were
obtained. For this sequence, we established the ground truth for every 25 frames. To

see the details of our experimental results, please visit our website [100].

5.5.2 Foreground Detection and Information Fusion

For each video sequence, foreground blobs are detected based on the popular
GMM (Gaussian Mixture Model) background subtraction algorithm [101]. Shadow
removal [102] is also included to suppress false detection. In Fig. 42(b), Fig. 43(b),
and Fig. 44(b), we show the detected foreground images, where plentiful false
detections occur due to the appearance similarity between the foreground objects and
the background environment. In Fig. 42(c)(d), Fig. 43(c)(d), and Fig. 44(c)(d), we
compare the fusion results based on the proposed model-based method and the
conventional data-driven method. It can be seen that the model-based approach
generates more reasonable fusion results, especially for the person in white shirt in
Fig. 42 whose bottom part and upper part cannot be observed in the first and the third

camera views, respectively.
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Fig. 42. One experiment result of our LAB sequence. (a) Four camera views. (b)

Foreground detection images. (c) TDP distribution. (d) The voxel histogram based on

the visual hull. (e) Bird-eye view of target location. (f) Labeling and correspondence

of targets in pseudo-color
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Fig. 43. One experiment result of the M2Tracker sequence. (a) Four camera views. (b)

Foreground detection images. (c) TDP distribution. (d) The voxel histogram based on
the visual hull. (e) Bird-eye view of target location. (f) Labeling and correspondence

of targets in pseudo-color.
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(c) (@)

Fig. 44. One experiment result of the Fleuret’s sequence. (a) Four camera views. (b)
Foreground detection images. (c) TDP distribution. (d) The voxel histogram based on
the visual hull. (e) Bird-eye view of target location. (f) Labeling and correspondence

of targets in pseudo-color.
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5.5.3 Accuracy of Target Location

In our experiments, the object locations on the ground plane were estimated and
displayed on the bird-eye view image, as shown in Fig. 42(e), Fig. 43(e), and Fig.
44(e). To evaluate the performance of our system, we calculate the deviation of the
estimated location with respect to the ground truth. First, we compare the performance
between the model-based fusion method and the conventional data-driven fusion
method by measuring the mean location deviation per frame for Fleuret’s video
sequence. In this comparison, we use the same inference process for the estimation of
target location. The profiles of the mean location deviation are plotted in Fig. 45.
Numerically, the averaged mean deviations over Fleuret’s sequence are 0.087m and

0.073m respectively for the data-driven method and our model-based method.

Mean Location Error of the Fleuret sequence
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Fig. 45. The mean deviation per frame for the Fleuret's dataset.

From time to time, some targets in the scene may not be monitored by all
cameras. An example is shown in Fig. 46(a), where the person in blue jean can only
be observed by two of the four cameras. For this case, the corresponding cluster in the
TDP distribution is smaller but still detectable, as shown at the upper-right corner of

the distribution in Fig. 46(b). Some ghost clusters also exist in this TDP distribution.
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With the mean-shift algorithm for clustering and the BHF inference for ghost removal,
all four targets are successfully detected, as shown in Fig. 46(c). In this figure, we use
different gray levels to indicate different surveillance zones. From bright-gray to
dark-gray, they are the 4-camera zone, 3-camera zone, and 2-camera zone. We also
numerically evaluate the location accuracy of our method inside each of these three
zones. For Fleuret’s sequence, 76% of the moving targets are monitored by four
cameras, 21% of the moving targets are monitored by three cameras, and 3% of the
moving targets are monitored by two cameras. In Table 2, we list the accuracy of
target location in these three zones. We may find the accuracy goes down when the

number of cameras decreases.

(b)

Fig. 46. One example of extended surveillance zone. (a) Four camera views. (b) The

TDP distribution. (c) Bird-eye view of target location.

Table 2. Accuracy of target location in three difference zones for Fleuret s sequence.

Surveillance Zone

4-camera Zone

3-camera Zone

2-camera Zone

Mean deviation

0.069 m

0.079 m

0.147 m

Max deviation

0.178 m

0.257 m

0.391 m
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Fig. 47. A comparison of the mean deviation of each frame over the M2Tracker
dataset.

Moreover, we adopt the widely-used M2Tracker sequence as the benchmark to
compare the accuracy of target location. In detail, we calculate the deviation of the
estimated locations based on the M2Tracker sequence, for which the experimental
results of a few other systems are available. For the M2Tracker sequence, the
averaged mean deviation of our system is about 0.108m. In Fig. 47, we compare the
mean deviation of each frame over four different systems: M2Tracker [87], Cost track
[103], Li’s algorithm [96], and ours. Please note that only four camera views are used

in our system, rather than the eight camera views used in the other three methods

5.5.4 Detection and Labeling with Ghost Removal

As shown in Fig. 42, Fig. 43, and Fig. 44, the computed TDP distribution reveals
distinguishable clusters for candidate target identification and localization. The
number and the location of the candidate targets can be decided by mean-shift
clustering. With the presence of ghost objects, the number of candidate targets is
usually larger than the true target number. After the inference stage, the results of

ghost suppression, labeling, and correspondence are presented in Part (f) of Fig. 42,
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Fig. 43, and Fig. 44. The results demonstrated that the scene knowledge is very
helpful in the labeling process even under severe inter-target occlusion, especially for
those connected foreground regions. We may also find that ghost targets are correctly
removed under the proposed BHF framework.

To quantitatively evaluate the detection and correspondence performance, false
positive rate (FPR) and false negative rate (FNR) are used. In our system, the target
detection and correspondence are defined as “correct” when the projected regions of
the detected target in all camera views intersect the same individual. Based on this
definition, the FPR and FNR of all tested datasets are calculated and listed in Table 3.
Here, the performance before and after ghost removal are provided for comparison.
The results depict the FPR before ghost suppression is higher, while the FNR is very
low for all test sequences. After applying the BHF to detect and remove ghost targets,
the ghost effect is suppressed and the FPR is decreased. Moreover, if we compare
with Fleuret’s results [91], whose FPR and FNR are 0.0399 and 0.0614 respectively,
our method achieves even lower FPR and FNR with values 0.021 and 0.013 for the
same dataset. On the other hand, for the Lab dataset, we show in Fig. 48 the number
of detected targets at each time frame. With ghost removal, the identified target

number is much closer to the true target number

Table 3. False positive rate (FPR), false negative rate (FNR).

] Without ghost removal With ghost removal
Video datasets

FPR FNR FPR FNR
OVVV 3 persons 0.033 0.000 0.000 0.000
OVVV 4 persons 0.023 0.000 0.000 0.000
OVVV 5 persons 0.040 0.000 0.000 0.000
Lab 3 persons 0.053 0.000 0.003 0.001
Lab 4 persons 0.045 0.000 0.010 0.003
Lab 5 persons 0.042 0.000 0.017 0.000
M2tracker 0.183 0.000 0.027 0.000
Fleuret 0.219 0.000 0.021 0.013
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(b)
Fig. 48. The distributions of the number of detected target per frame for the 5-person
Lab dataset. (a) Results without ghost removal. (b) Results with ghost removal.

5.5.5 Multi-target Tracking on the Ground Plane

In our system, the multi-target detection results across a few successive frames
are associated to establish temporal target tracking. In Fig. 49, we show the bird-eye
view of our tracking results for both the M2tracker and Lab datasets. Different colors
correspond to different targets. It can be seen that the proposed system can be easily

extended to handle the task of multi-target tracking.
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(b)
Fig. 49. Multi-target tracking Results (a) M2tracker dataset (4 person). (b) Lab
dataset (5 person).

5.5.6 System Complexity

The whole system is implemented in the Visual C++ environment on a PC with
3.0GHz Core 2 Duo CPU. To evaluate the computational complexity of our system,
we analyze the execution time of our system based on the M2Tracker sequence. In
Table 4, we list the major processes of our system and the averaged runtime of each
process at one time instant with four camera views. It can be seen that the major
computations are spent over background subtraction, mean-shift clustering, and graph
cut optimization. In practice, the background subtraction process can be executed at
the camera side with a client-server surveillance architecture and our algorithm is
mainly implemented at the server side for data integration. If excluding the
background subtraction process, it takes about 3 to 6 seconds to perform the
positioning, labeling, correspondence, 3-D target model refinement, and ghost
suppression processes over four image shots with 320240 resolution. Basically, it
takes longer time if there are more candidate targets in the scene. Moreover, if we
simplify the inference process to perform 3-D positioning and ghost suppression only,
the whole computation time can be shortened down to around 0.2 seconds for every

4-camera image shot.
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Table 4. Runtime list

Process

Detailed Operations

Averaged

Runtime (sec.)

Foreground Detection | Background Subtraction 0.25
(4 camera views) Shadow Removal ~0.001
Information fusion Sample Generation <0.00001
(4 camera views) Mean-shift Clustering 0.13
. Hypothesis Generation <0.00001
%ﬁygsgrelr}ln\fieés%%e Graph Cuts Optimization 3.75
Target Model Refinement 0.0002

5.5.7 Future Works

Currently, the proposed system could efficiently determine the number of
moving clusters inside the surveillance zone and accurately track the 3-D trajectories
of the tracked targets. However, an extra target counting analysis for groups is needed
in order to estimate the target number if there are groups inside the surveillance zone.
In the future, we plan to utilize the target width as possible prior information to
roughly estimate the target number of a group. Also, we attempt to integrate a robust
face detection algorithm into current system so that we can have more precise target
counting. On the other hand, the face view of a target inside the surveillance zone is
also important 3-D scene information for a modern surveillance system. Therefore,

we will expand our system with the capability of multi-view multi-face detection in

the near future.
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CHAPTER 6

Conclusions

In this dissertation, we proposed a 3-layer Bayesian hierarchical framework,
which includes a scene layer on the top with the object-level information, an image
observation layer at the bottom with the pixel-level information, and a labeling layer
in the middle to interconnect these two layers. The proposed framework can
efficiently integrate both the top-down information and the bottom-up messages. With
the integration in a unified framework, the top-down information and the bottom-up
messages cross reference each other to support a more robust and accurate system
inference. Moreover, the scene layer offers a systematic representation to depict the
3-D scene model in a parametric fashion. With the parameterized scene model, many
troublesome issues, such as shadow effect and occlusion, now become easier to
handle. In fact, shadow and occlusion are nature phenomena caused by objects in the
3-D scene. In our approach, the proposed BHF framework models the generation of

those scene effects so that shadow and occlusion may even provide useful clues for
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scene inference. This BHF framework is designed to simultaneously perform image
analysis and scene modeling. By having calibrated the surveillance cameras in
advance, the BHF framework builds the physical connection between the 3-D scene
and the captured 2-D images. This connection enables scene knowledge and image
observation to cross reference each other so that the unknown parameters in the scene
model and the labeling of the image contents are inferred simultaneously under a
unified framework.

For the application of vacant parking space detection, we adopted the proposed
BHF to simultaneously detect vacant parking spaces and interpret the image content
through labeling. In practice, the challenges of vacant space detection come from the
shadow effect, the occlusion effect, the appearance ambiguity, the perspective
distortion, and the dramatic luminance variations. In our system, we explicitly define
a scene model of the parking lot. Based on the model, the generation of shadow, the
generation of occlusion, the variation of lighting, and the perspective distortion are
closely coupled with the status of the parking spaces. By utilizing the proposed BHF
framework, the scene generation process is well modeled and the optimal inference of
the parking space status is deduced. Our results showed that this system can achieve
up to 99% accuracy in vacant parking space detection under different lighting
conditions.

In the application of multi-target tracking with ghost suppression over a
multi-camera system, the proposed BHF provides an efficient way to simultaneously
detect, locate, and label targets across multiple cameras. The ghost effect is also
analyzed and suppressed. In principle, the system algorithm consists of two major
steps: information fusion and Bayesian inference. The model-based information
fusion step collects consistent information from multiple camera views and couples

with 3-D priors to establish scene knowledge. Furthermore, the scene knowledge is
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treated as extra information and is used in labeling, correspondence, and ghost
suppression. The whole process is well modeled and resolved in the Bayesian
inference step under the proposed BHF framework. Based on the proposed algorithm,
many troublesome issues, like fragmental foreground detection results, inter-target
occlusion, ghost targets, and the determination of target number, can be effectively
handled in a systematic manner. Moreover, the proposed EM-based mechanism can
iteratively refine target models and further boost the system performance. The
experimental results show our system can successfully label objects and build
correspondence even under severe occlusion. In addition, our system requires neither
isolated foreground extraction nor color calibration among cameras.

In summary, in this dissertation, we present a BHF framework for image analysis
and 3-D scene modeling. We also apply the BHF framework to two applications of
video surveillance. By using the hierarchical framework to represent the image
generation model in a probabilistic manner, we have demonstrated how to
systematically integrate useful information from pixel-level, region-level, and
object-level for a semantic inference of the 3-D environment.

In the future, we plan to expand the proposed BHF so that the temporal
information from previous frames could be further utilized. With temporal
information, the image constraint, and the scene constraint, the modified BHF would
have more flexibility to boost the system performance. In addition, we will apply
BHF to other applications such as scene understanding. As most of our knowledge, to
achieve better scene understanding, the contextual scene information is proved to be
useful. Since the proposed BHF could model contextual scene information in a natural

sense, we belief BHF offers a possible solution to scene understanding.
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Appendix A: Estimation of Sunlight Direction

Based on the vectors #, s, and n shown in Fig. 24, we define a USN

coordinate system and represent the sunlight direction as

(—cos(§) cos(w, (t—1,)) | —cos(5)sin(w, (¢ —1,))  —sin(5) )USN. (A-1)
On the other hand, any unit vector P in the 3-D scene can be represented as
(cospcosh, cospsind, sing)ysn. Here, ¢ represents the angle between P and the solar
plane, and 6 represents the angle subtended by # and the projected vector of P on
the solar plane. In our system, we assume the scene surfaces are mainly Lambertian.

Hence, if P is the normal vector of a surface patch in the 3-D scene, the intensity

value at the corresponding image pixel can be approximated as
[ <D(t), 13> o —cos(5) cos(@)cos(a,t — mt, —0) —sin(S)sin(g). (A-2)
Based on (A-2), I, can be modeled as

1, (m,n,t) = B(m,n)cos(ot—6,(m,n))+ C(m,n), (A-3)

sun

where the angular frequency of the cosine function is equal to the angular frequency

of Earth’s self-rotation.

Assume we denote P, P,,and P, as the unit normal vectors of three selected

surface patches in the parking lot. Since we manually select these three surface

patches, the relative relationship among P, P,,and P, can be obtained beforehand.

Suppose P', P,',and P are the unit vectors along the projections of these three

normal vectors onto the solar plane, and 6,, 6,,and 6; are the angles subtended by u
and each of these three projected vectors, as illustrated in Fig. 50. Since the phase
shift 6, in (A-3) is equal to & up to a constant offset, the angles between these three

projected vectors can be estimated by (6,;-0,2), (0,2-0,3), and (6,-0,5).
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Fig. 50. Three normal vectors in the USN coordinate system.

Assume we represent /i as a linear combination of P, and P That is,

2 9

ii =aP +bP,+cP, . If we take the inner product of 7i and P, wherei=1,2, 3, we

1

obtain three equations to solve a, b, and c:
(B.n)=a+b(R,B)+c(B,B)=sin(p)
<1§,ﬁ> = a<13,17> +h+ <132,133> =sin(g,).. (A-4)
(P.n)=a(B.B)+b(B,P)+c=sinig)

In (A-4), the inner products<ﬁ, T’> with i, j = 1, 2, 3, are known beforehand. To

estimate {@;, 2,3}, we formulate the vector f-j' as ?j:(ﬁi—sinqoi;z)/cosqoi. As

we take the inner products among B', P',and P, we have

< > = < 1545 > -sing, sing, )/(cosg, cos @, }=cos(6y, — ,,)
<P P, >—(< >, 3> -sing, sin @, )/(cos, cos @, )=cos(6,, — 6,,) . (A-5)
< > (< 30 1> -sing, sin g, )/(cos g, cos ¢, )=co8(Gp, — ;)

Hence, with {(0,/-0,2), (6,2-0»3), (0,1-0,3)}, the geometric direction of n with respect
to { B ,P,,P,} can be deduced.

After the determination of 7, the choice of {7,fs} is rather arbitrary. In our
approach, we simply align #n with one of {P P, ,P }. The reference time #y is

defined to be the time when the corresponding intensity profile has the maximum

value.
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Appendix B: Image Formation Model

We assume the surfaces in the 3-D scene of a parking lot are mainly Lambertian.

and the trichromatic RGB features at a pixel can be formulated as
I, = g[ (A f.(A)dA. (A-6)

Here, g is a geometric factor that depends on the included angle between the incident
radiant flux and the normal vector of the corresponding surface, /(4) denotes the
illuminant spectrum, r(4) represents the spectral reflectance function, and f.(4)
represents the filter sensitivity function of the ¢ channel with ce{R,G,B}. To
discretize (A-6) for computational analysis, several research works adopted
finite-dimensional linear models to approximate both spectral reflectance function and
illuminant spectrum. In our approach, we adopted a three-dimensional linear model

and (A-6) is reformulated as
3 3
Io=g[ O BLONDY a,r(2) fi(A)dA
i=1 j=1
3 3
=gX B a,[ LA (2) f.(2)dA (A-7)
i=1 j=1
=gp'M 0 =gp'a,,
where B=(8,5,.5,)" is the vector of illuminant coefficients, a=(a,,a,,a,)" is the

vector of reflectance coefficients, M. is a 3x3 matrix with its entries defined as
MG, ) = | L)) f(Ad A, (A-8)

and o, =M _a . With (A-8), the trichromatic color vector Irgs is represented as

Iy Ug
Ipae =16 |=8 0!3; B =gAB, (A-9)
Iy asz

131



where Az[aR o aB]T is a 3x3 matrix.

In an outdoor parking lot, the lighting condition is varying over time. This makes

both g and P change accordingly. To simplify the detection process, we focus mainly

on the chromatic information. Since the absolute magnitudes of a, and p do not

affect the chromatic information, we arbitrarily rescale A and B by two constants a

and b so that (A-9) can be reformulated as

Lucs = 9AB = gab(é A)(%B) = (gab)Ri = Ly |Ri. (A-10)
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