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貝氏階層式結構於視訊監控之研究與應用 

 

研究生：黃敬群                          指導教授：王聖智博士 

國立交通大學電子工程學系電子研究所  博士班 

 

摘要 

 

在本論文中，我們提出以貝氏階層式結構為基礎的分析方法，讓視訊監控系

統得以用一致的架構，同時分析影像內容以及推論空間中場景的資訊。在真實的

場景中，為了實現一套穩健的視訊監控系統，往往會面臨許多挑戰，諸如物體間

相互遮蔽、前景物體與背景物體外貌相似而產生的混淆、透視投影所造成的物體

形變、陰影的變化、還有外在光線變化造成的影像變異。在這篇論文中，我們發

現，透過將空間場景適當的參數化，並同時依據場景模型和擷取到的影像資料來

進行分析，系統將能更輕易地處理前面所提及的變異因素。在貝氏階層式架構

中，我們透過階層式表示法將以像素特徵為基礎的資訊、以區域影像內容為基礎

的資訊、與以物件特性為基礎的資訊，透過機率的方式進行有系統的整合，以支

援影像內容的分析與場景資訊的推論。透過所提出的貝氏階層式架構，前面所提

到的許多變異因素可以被有效地解決，除此之外，某些變異因素還可進一步變成

有效的線索來協助三維場景資訊的推論。 

在本論文中，我們將貝氏階層式架構實際應用在停車場空位偵測系統以及多

攝影機視訊監控系統。在停車場空位自動偵測的系統上，實際的戶外停車場監控

場景往往受到許多變因的影響，進而降低了系統的正確性，這些變因包含: (a)戶

外變化劇烈的環境光源; (b)陰影的影響; (c)透視法上幾何投影所產生的變形; (d)

停放車輛之間產生的相互遮蔽問題。藉由所提出的貝氏階層式結構，我們可以有
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系統地將前述的許多變因加入停車空位的推論過程中，以降低這些變因對系統效

能的影響。我們的貝氏階層式結構透過建立參數化的空間場景模型來描述空間中

的遮蔽現象、幾何上的投影變形、以及陰影等變因所形成的影響，同時也將環境

光線變化所造成的色彩變動視為一種色彩分類的問題，並藉由分類程序的建立來

描述光線的變化。實驗結果顯示，我們的系統可以穩定地偵測空位的位置、有效

地標記並區分影像中屬於地面或車輛的區域、確切地標記屬於陰影的區域、以及

克服光線變化所衍生的問題。 

另一方面，在多攝影機視訊監控系統中，我們自動地定位、標記、與對應在

不同攝影機監控範圍內的多個物體，同時有效壓抑因為幾何深度上的不確定性所

產生的假物體。多攝影機視訊監控系統在真實的應用場景中，往往面臨一些具挑

戰性的議題: (a) 場景中未知物體的數量; (b)物體間的相互遮蔽; 以及(c)假物體

的出現。有別於過去的方法，我們提出了一套包含資訊整合與場景推論的兩步驟

策略。在資訊整合的步驟中，我們整合來自多攝影機的資訊以建立一機率分佈，

藉以描述物體出現於地面某一位置的可能性。在場景推論的步驟中，我們應用貝

氏階層式結構將場景模型納入考量，透過此結構，我們將物件在影像內的標記議

題、物件在多攝影機間的對應議題、以及假物件的消除議題整合為單一的最佳化

問題。此外，我們進一步採用期望-最大化架構來調整出更好的物體三維模型，

透過貝氏階層式結構與期望-最大化架構的結合，我們可以得到更好的系統效

能。實驗結果顯示，我們的系統可以自動地決定場景中的運動物體數量、有效地

標記並對應出不同攝影機影像中的多個物體、準確地定位物體在三維場景中的位

置、並且能有效地清除假物件。 

在本論文中，我們驗證了以貝氏階層式結構為基礎的影像分析架構可以有效

地應用到視訊監控的分析與應用上。透過此架構，我們將像素層級的色彩資訊、

像素間的區域層級資訊、以及以物體為基本單位的物件層級資訊有系統地整合在

一起，這樣的整合讓系統可以擁有更多的資訊，並可以針對較複雜的影像內容進

行準確的推論分析。 
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Abstract 

In this dissertation, we present a Bayesian hierarchical framework (BHF) to 

simultaneously deal with 3-D scene modeling and image analysis in a unified manner. 

In practice, to develop a robust video surveillance system, many challenging issues 

need to be taken into account, such as occlusion effect, appearance ambiguity between 

foreground and background, perspective effect, shadow effect, and lighting variations. 

In this dissertation, we find a way to handle these challenging issues by modeling 3-D 

scene in a parametric form and by integrating scene model and image observation 

together in the inference process. In the proposed hierarchical framework, we 

systematically integrate pixel-level information, region-level information, and 

object-level information in a probabilistic way for the semantic inference of image 

content and 3-D scene status. Under this BHF framework, occlusion effect, 

appearance ambiguity, perspective effect, shadow effect, and lighting variations can 

be well handled. Actually, in the BHF framework, occlusion effect, perspective effect, 

and shadow effect may even provide useful clues to support 3-D scene inference.  

In this dissertation, the BHF framework is applied to two video surveillance 

systems: a vacant parking space detection system and a multi-camera surveillance 
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system. In the vacant parking space detection system, the challenges come from 

dramatic luminance variations, shadow effect, perspective distortion, and the 

inter-occlusion among vehicles. With the proposed BHF, those issues can be well 

modeled in a systematic way and can be effectively handled. In detail, the proposed 

BHF scheme depicts the occlusion pattern, perspective distortion, and shadow effect 

by building a parametric scene model. On the other hand, the color fluctuation 

problem caused by luminance variation is treated as a color classification problem. 

With the BHF scheme, the detection of vacant parking spaces and the labeling of 

scene status are regarded as a unified Bayesian optimization problem subject to a 

shadow generation model, an occlusion generation model, and an object classification 

model. The system accuracy was evaluated by testing over a few outdoor parking lot 

videos captured from morning to evening. Experimental results showed that the 

proposed framework can systematically detect vacant parking spaces, efficiently label 

ground and car regions, precisely locate shadowed regions, and effectively handle 

luminance variations. 

On the other hand, in the application of multi-target detection and tracking over a 

multi-camera system, the main goal is to locate, label, and correspond multiple targets 

with the capability of ghost suppression over a multi-camera surveillance system. In 

practice, the challenges of this kind of system come from the unknown target number, 

the inter-occlusion among targets, and the ghost effect caused by geometric ambiguity. 

Instead of directly corresponding objects among different camera views, the proposed 

framework adopts a fusion-inference strategy. In the fusion stage, we formulate a 

posterior distribution to indicate the likelihood of having some moving targets at 

certain ground locations. In the inference stage, the scene model is inputted into the 

proposed BHF, where the target labeling, target correspondence, and ghost removal 

are regarded as a unified optimal problem subject to 3-D scene priors, target priors, 
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and image observations. Moreover, the target priors are iteratively refined based on an 

expectation-maximization (EM) process to further improve the system performance. 

The system accuracy is evaluated via both synthesized videos and real videos. 

Experimental results showed that the proposed system can systematically determine 

the target number, efficiently label and correspond moving targets, precisely locate 

their 3-D locations, and effectively tackle the ghost problem. 

With simulations over these two applications, we verified that the proposed BHF 

scheme can be well applied to various kinds of video surveillance applications. This 

BHF framework provides the flexibility to properly integrate pixel-level, region-level, 

and object-level information into a unified inference process. With the integrated 

information from multiple aspects, we will be able to handle more complicated tasks 

with improved accuracy and robustness. 
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Introduction 
______________________________________________ 
 

1.1 Overview 
Recently, computer vision technology for video surveillance applications has 

made tremendous progress. Using an intelligent surveillance system to manage 

parking lots or to monitor security zones is becoming practical. To add more values to 

existing surveillance systems, various kinds of vision-based intelligent functionalities 

have been explosively proposed. For example, some algorithms provide user-friendly 

ways to help operators in the control room to monitor tens of, or even hundreds of, 

cameras; while a few others provide the capability to automatically detect unusual 

events in the surveillance zone. These vision-based algorithms may be roughly 

classified into single-camera based methods and multi-camera based methods. Among 

those methods, object detection and object labeling are two essential processes for 

subsequent analyses, like behavior modeling and scene modeling. Object detection, 

such as face detection and vehicle detection, is an object-level classification that tells 
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whether and where a specific object is inside an image. On the other hand, object 

labeling is an identity-level (ID-level) classification that determines the identity of 

each object region in the image. An example of human detection and human identity 

labeling is shown in Fig. 1. Even though it seems very easy and straightforward for 

human eyes to perform object detection and labeling, a robust computational 

algorithm for these two operations is actually not trivial at all.  

(a) (b) (c) 

Fig. 1. An example of human detection and human identity labeling. (a) Test image. (b) Human 

detection result. (c) Human labeling result, with different colors indicating different persons.  

 

For a single camera system, the captured 2-D image lacks the depth information 

and the detection of moving targets usually suffers from the occlusion problem, which 

makes it difficult to correctly label or segment connective targets. To deal with 

occlusion, some methods adopt multi-camera approaches. Even though the cross 

reference of multiple camera views may ease the occlusion problem and provide a 

more reliable way for object detection and labeling, the object correspondence among 

multiple cameras may become another thorny problem.  

On the other hand, to detect foreground objects, the appearance ambiguity 

between the foreground objects and the surrounding background is a challenging issue 

that may fail many widely-used object detection algorithms. For example, some 

background subtraction algorithms, like [1][2], focus mainly on the modeling of 

background information. These algorithms work pretty well for scenes with stationary 
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background. However, they may detect incomplete foreground regions while the 

appearance of foreground objects happens to be similar to that of the background. To 

overcome this appearance ambiguity problem, simply relying on pixel-level image 

data would not be enough. Some other information, such as region-level messages and 

object-level messages, should be taken into consideration.  

Besides occlusion and appearance ambiguity, the perspective distortion in 2-D 

images is also a challenging issue. An object far away from the camera and an object 

close to the camera would have quite different scales and shapes in the camera views. 

To overcome the perspective effect, some researches focused on invariant feature 

descriptors. In their approaches, they detect reliable feature points first and design 

appropriate feature descriptors for object classification. For example, difference of 

Gaussian (DoG) [3] and Harris-Laplace [4] operators are popular feature extraction 

operators. The SIFT (Scale Invariant Feature Transform) [5] descriptor is another 

widely-used operator that is invariant to illumination variation and affine 

transformation. Even though these operators perform quite well in detecting 

prominent features, they are still incapable of handling object labeling in complicated 

scenes.  

Shadow effect and lighting variations are another two troublesome issues that 

degrade the robustness of present surveillance systems. Plentiful works have been 

proposed to solve these two problems. For example, Finlayson et al. [6] proposed an 

entropy minimization method to extract from an image the intrinsic image that is 

shadow-free. Matsushita et al. [7] proposed an illumination normalization method 

based on an off-line learned eigenspace to eliminate shadows. On the other hand, a 

few methods have been proposed to maintain reliable color appearance under varying 

illumination conditions. A review of these color constancy algorithms could be found 

in [8]. Moreover, in the last decade, the Bayesian approach and some learning-based 



 4

methods for color constancy have gotten great attention. A complete survey of 

Bayesian color constancy methods could be found in [9].  

To overcome these aforementioned problems, like occlusion, appearance 

ambiguity, perspective effect, shadow effect, and lighting variations, we found most 

existing methods rely more on image observation but less on 3-D scene knowledge. In 

this dissertation, we focus on the inclusion of 3-D scene knowledge in object 

detection and object labeling. In our study, we found the usage of 3-D knowledge 

could be very helpful in handling these complicated issues. Moreover, from the aspect 

of system functionality, an important role of a practical surveillance system is to 

dynamically reveal the 3-D status of the surveillance zone. To achieve this 

functionality, a major task of an intelligent surveillance system would be to 

automatically infer the unknown 3-D status based on the observed images. In this 

dissertation, we propose a Bayesian hierarchical framework to realize the integration 

of 2-D image information and 3-D scene model in a unified and efficient manner for 

scene inference. The optimal inference of BHF provides a systematic way to resolve 

the image labeling problem and to find out the 3-D scene unknowns simultaneously. 

We also apply the framework to two real applications of video surveillance. By using 

the hierarchical framework to represent the image generation model in a probabilistic 

manner, our systems can systematically integrate useful information from pixel level, 

region level, and object level to achieve semantic inference of the 3-D environments. 

1.2 Contribution 
In this dissertation, by using a parametric form to represent the 3-D scene model 

with unknown variables, we propose a unified framework, named as Bayesian 

hierarchical framework (BHF), to accomplish object detection, object labeling, and 

3-D scene inference, simultaneously. Based on the BHF framework, it becomes easier 
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to handle these aforementioned issues, like occlusion, appearance ambiguity, 

perspective effect, shadow effect, and lighting variations. Actually, under the BHF 

framework, occlusion effect, perspective effect, and shadow effect may even provide 

useful clues to support 3-D scene inference.   

Moreover, the proposed BHF framework has been applied to two video 

surveillance systems: a vacant parking space detection system and a multi-camera 

surveillance system. In the vacant parking space detection system, the challenges 

come from dramatic luminance variations, shadow effect, perspective distortion, and 

the inter-occlusion among vehicles. With the proposed BHF, those challenging issues 

can be well modeled in a systematic way and can be effectively handled. 

Experimental results over a few outdoor parking lot videos show that the proposed 

framework can systematically detect vacant parking spaces, efficiently label ground 

and car regions, precisely locate shadowed regions, and effectively handle luminance 

variations. On the other hand, in the application of multi-target detection and tracking 

over a multi-camera system, the challenges come from the unknown target number, 

the inter-occlusion among targets, and the ghost effect caused by geometric ambiguity. 

Similarly, with the proposed BHF, the target labeling, target correspondence, and 

ghost removal are regarded as a unified optimal problem subject to 3-D scene priors, 

target priors, and image observations. Experimental results show that the proposed 

system can systematically determine the target number, efficiently label and 

correspond moving targets, precisely locate their 3-D locations, and effectively tackle 

the ghost problem.  
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1.3 Organization 
The following chapters of this dissertation are organized as follows. 

 In Chapter 2, we introduce various kinds of messages that have been commonly 

used for image analysis and scene modeling in video surveillance. Based on the 

coverage of the information, we classify these messages as pixel-level messages, 

region-level messages, and object-level messages.  

 In Chapter 3, we detail the main idea of the proposed BHF framework and how 

we integrate various kinds of messages under this framework. In this chapter, we 

first introduce the modeling process in the proposed framework. After that, we 

depict the inference stage of the BHF framework which determines the optimal 

estimates of the system unknowns.  

 In Chapter 4 and Chapter 5, we present the applications of the BHF framework 

to two different applications. In Chapter 4, we present how we develop a vacant 

parking space detection system based on the BHF framework. In Chapter 5, we 

present how we develop a multi-camera surveillance system to perform 

multi-target detection and tracking. In both systems, we explain how the BHF 

framework integrates the top-down information from 3-D scene models with the 

bottom-up message from image observations. The inference procedure of each 

system is also presented, together with a few experimental results over real 

scenes to demonstrate the feasibility of the proposed BHF framework.  

 In Chapter 6, conclusions are drawn. 
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CHAPTER 2 
 

 

 

Backgrounds 
______________________________________________ 
 

Object detection and object labeling have played an important role in the 

development of video systems. Some examples, like face detection, human detection, 

and vehicle detection, have been widely applied to various applications. Right now, a 

lot of digital cameras can perform automatic face detection while capturing photos. A 

few intelligent video surveillance systems can count the number of people in the 

scene based on human detection techniques. For modern intelligent transportation 

systems, automatic vehicle detection is also prevalent. In the literature, many image 

analysis works have been proposed to detect or label interested objects. In Section 2.1, 

we illustrate a few representative algorithms for object detection and labeling. 

According to the type of information used, these algorithms can be categorized into 

pixel-level methods, region-level methods, and object-level methods. Since the 

proposed BHF framework is designed to integrate pixel-level, region-level, and 

object-level information together, we will briefly review these three types of image 

analysis methods for object detection and labeling.  
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On the other hand, with the rapid development of computer vision techniques, 

scene modeling has attracted more and more attentions. In recent years, the concept of 

contextual analysis, which physically connects image analysis with scene knowledge, 

has been intensively studied to achieve improved detection performance. For instance, 

if we know a car is parked at a certain place and we also know the direction of 

sunlight, we would expect a shadowed pattern caused by the parked car. This kind of 

scene knowledge can be helpful in object detection and labeling. Hence, in this 

dissertation, another focus is to study the way to combine image analysis with the 

inference of unknown factors in the scene model. In Section 2.2, we will review a few 

relevant works that discuss the connections between image analysis and 3-D scene 

modeling.   

2.1 Image Analysis Techniques 

2.1.1 Pixel-level Methods 

In most video surveillance systems, cameras are fixed. This static camera setting 

relaxes the difficulty of foreground object detection. Ideally, if we collect the 

color/intensity feature of a pixel over a temporal period, we may find, in most cases, 

the statistical property of the foreground color/intensity is somewhat different from 

that of the background color/intensity. Moreover, most of the period, the 

color/intensity feature at a pixel belongs to the background color/intensity. These two 

observations are the fundamental assumptions of many pixel-based background 

subtraction methods. Since background subtraction methods are simple and effective, 

this background modeling approach has become one of the popular tools in video 

surveillance applications.  

The basic operation of background modeling is to dynamically learn the 
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temporal statistical property of every pixel. Based on the learned model, a pixel is 

classified as either a “background pixel” or a “foreground pixel” based on the current 

color/intensity observation at that pixel. Besides, the current observation is fed back to 

update the background model. By on-line learning the statistical property of the 

background color/intensity, this background modeling method can efficiently extract 

foreground regions from the background. Currently, several efforts have been 

proposed for the modeling of time-varying background. Some simpler methods used 

the 1st order and 2nd order statistics to model the temporal property of a pixel [104]. In 

these simple approaches, a pixel with its color/intensity feature far away from the 

mean value is classified as a foreground pixel.  

On the other hand, some methods used more complicated parametric forms to 

model the dynamic statistics of the color/intensity feature at a pixel. Among those 

methods, the Gaussian mixture model (GMM) has been widely studied and has been 

proved to be a useful form for background modeling [2]. In principle, the distribution 

of a pixel value (x) over the temporal (t) direction is formulated as  

1

( ( )) ( ) ( ( ), , )
K

i au i i
i

p x t w t g x t μ σ
=

= ×∑ ,  (1) 

where p(x(t)) is the probability of observing the current pixel value x(t), wi(t) is an 

estimate of the weight of the ith Gaussian function gau(.) in the mixture model at Time 

t. μi andσi are the mean value and the standard deviation value of the ith Gaussian 

in the mixture at Time t. An example of the probability distribution of a pixel with a 

Gaussian mixture model is shown in Fig. 2.  
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Fig. 2. The probability distribution of a pixel with Gaussian mixture model [2].  

   

To classify a pixel into either a background pixel or a foreground pixel, 

Stauffer-Grimson [1] suggested firstly separating the K Gaussian distributions into 

background Gaussians and foreground Gaussians. Those pixels belonged to 

background Gaussians are determined as background pixels, and vice versa. To 

separate the K Gaussian distributions, the ratio wi /σi of each Gaussian distribution 

are calculated and is used to rank the K Gaussian distributions from small to large. 

The first B Gaussian distributions, whose summation of their probability weights 

exceeds a threshold T, are treated as background Gaussians. This is formulated as   

1

arg min( )
b

i
b i

B w T
=

= >∑ .   (2) 

On the other hand, the parameter sets {μi,σi ,wi } are dynamically updated over time 

to adapt to the environmental variation. By using a recursive filter to approximate the 

online Expectation-maximization (EM) algorithm [1], the parameter sets are updated 

based on the following formulation: 

( ) (1 ( )) ( 1) ( ) ( ( ), ( 1))t t t t Q x t tβ λ β λ β= − − + − .   (3) 

Here, β(t) could be any model parameter of {μi,σi ,wi } at Time t, λ(t) is the 

parameter learning rate, and x(t) is the new observation at Time t. The function Q(.) is 

a prediction of the model parameterβ(t) at Time t based on x(t) and the previous 
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parameterβ(t−1). In Fig. 3, we show the detection results based on the Gaussian 

mixture method. 

(a) 

  

(b) 

  
Fig. 3. Background subtraction results based on Gaussian mixture model. 

 

Instead of using a parametric form to model the statistical property of a 

background pixel, Elgammal et al. [10] proposed the description of a background 

model based on non-parametric kernel density estimation. In their method, the 

pixel-wise statistical property along the temporal direction is modeled by a kernel 

density function. Given N successive intensity values Bx={x1, x2,…,xN} along a 

temporal period at a pixel, they estimate the probability density function (pdf) to be 

1

1( | ) ( )
N

t x BW t i
i

p x B K x x
N =

= −∑ .  (4) 

Here, xt represents an intensity value. KBW is the kernel function with bandwidth BW. 

By assuming that most of the intensity values inside the observed time period belong 

to the background, a pixel with a smaller probability value p(xt) is more likely to be a 

foreground pixel. To adapt to the environmental variation over time, this algorithm 

simply shifts the time window to update samples for the estimation of the pdf 

function.   

To overcome the appearance variations caused by surrounding lighting, a few 
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researchers try to record all possible forms of the background images and then 

dynamically select the most suitable background image from the stored background 

image database. Obviously, it would be inefficient to directly store all possible 

background images in a large database. Hence, Funck et al. [11] assumed that the 

background images would form a Euklidian subspace within the space formed by all 

image pixels. By applying the Principal Component Analysis (PCA) technique to 

calculate the major principal components, any background image could be 

represented as a linear combination of the derived eigen-backgrounds. With this 

eigen-background representation, any input image is firstly projected onto the 

background subspace to find the most matched background image. By subtracting the 

matched background image from the input image, foreground objects are identified. 

Even though the detection of foreground objects based on pixel-level 

background modeling works pretty well for a scene with stationary background, this 

approach has difficulty in handling the occasional appearance ambiguity between a 

foreground object and its surrounding background [12]. When a foreground object 

happens to have an appearance similar to that of the surrounding background, the 

background model may not be enough for foreground/background discrimination. 

Hence, instead of focusing on the background model, some other researchers 

proposed the learning of the foreground target model. For instance, Tsai et al. [13] 

developed a probabilistic method to model a pixel-level car model in the chromatic 

domain. In their method, the RGB color features of many “car” pixels are collected 

and converted to a new color domain based on the following transformation. 

( ) / 3
(2 ) /

{ / , ( ) / }

Z R G B
u Z G B Z
p Max Z G Z Z B Z

= + +
= − −
= − −

.    (5) 

To combat the luminance variation problem, only the chromatic information (u, p) is 

used. The brightness value Z is ignored. Based on the finding in [13], the chromatic 
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values of the “car” pixels cluster compactly in the u-p color space. This cluster can be 

approximated by a Gaussian function: 

11 1( | ) exp( ( ) ( ) )
22 | |

t
c c c c c c

c

P x car x m x m
π

−= − − ∑ −
∑

  (6) 

where xc= (u, p) is the chromatic feature of a pixel x, mc is the estimated chromatic 

mean based on the training set of “car” pixels, and Σc is the estimated chromatic 

covariance matrix. Based on the car probability model in (6), the probability of being 

a “car” pixel at a pixel with the chromatic feature xc can be evaluated.  

2.1.2 Region-level Methods 

Because of its abilities to adapt to the background variations over time and to 

cope with multi-modal background distributions, the aforementioned pixel-level 

modeling has achieved its success in foreground object detection and labeling. 

Besides, the background modeling approach can handle the situations of new comers 

and the leave of existing objects. However, in an outdoor scene, occasional camera 

shaking and the swinging trees caused by strong wind may sometimes seriously 

degrade the performance of object detection and labeling. In order to improve the 

performance, some region-level methods have been proposed for image analysis in 

the literature.   

In region-level methods, some researchers extended the concept of GMM to 

develop new background subtraction methods that incorporate region-level 

information. For example, Heikkilä et al. [14] tried to model the temporal statistics of 

a small region to capture the textural information. In [14], local binary patterns were 

proposed to efficiently extract the texture features of a small region which are 

invariant to lighting changes. By modeling the dynamic variation of those texture 

features along the temporal direction, their system outperforms the traditional GMM 
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background subtraction in an outdoor scene, where the trees were swinging and the 

camera was shaking. In Fig. 4, we show the detection results based on their method. 

[14].  

 
Fig. 4. The background subtraction results based on the method proposed by Heikkilä 
et al. [14]. The first and third rows are the test images. The second and fourth rows 
are the detection results. (Figures courtesy of Marko Heikkilä [14]) 

 

Compared with GMM background modeling, non-parametric kernel based 

modeling relaxes the constraint of a GMM pdf function and may sometimes provide a 

more compact match with the true distribution. However, the original non-parametric 

method is still a pixel-based approach and may suffer from the aforementioned 

non-stationary effect like camera shaking and swinging trees. In [10], Elgammal et al. 

suggested an approach that takes into account the background models of neighboring 

pixels. This is due to the thinking that the intensity value xt at the current pixel may 

actually belong to a neighboring pixel at the previous moment. In their approach, they 

calculated the following probability    

( )
( ) max ( | )N t t yy N x

p x p x B
∈

= ,   (7) 
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where y is a pixel belongs to the neighborhood of the target pixel x, xt is the intensity 

value at x, and By is the intensity set for the pdf estimation of Pixel y. The distribution 

p(xt | By) is estimated by the non-parametric formula in (4). By comparing pN(xt) with 

a pre-defined threshold, foreground pixels are determined. A detection result based on 

the method of [10] is shown in Fig. 5. 

 

 
(a) (b) (c) 

Fig. 5. A background subtraction result based on the method of Elgammal et al. [10]. 
(a) A test image. (b) Per-pixel detection result. (c) Per-pixel detection result with 
neighboring consideration. (Figures courtesy of A. Elgammal [10] ) 

 

 Some methods suggested maintaining a region-based foreground model and a 

background model at the same time for object detection and labeling. A simplest 

setting is to use a uniform distribution over the feature domain to model the 

foreground model, as used in [15]. Obviously, the uniform foreground model cannot 

well capture the foreground property. Hence, Sheikh and Shah [16] expended the 

original non-parametric kernel density modeling in [10] with some modifications. 

First, both the foreground model and the background model are dynamically 

maintained in order to reduce the effect of appearance ambiguity. In their approach, it 

was assumed that foreground objects tend to have consistent appearance and high 

spatial correlation in successive frames as long as the video frame rate is high enough. 

With this assumption, the foreground detection results of the previous frames can be 

used to establish the foreground model of the current frame. Moreover, in their hybrid 
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modeling, the background and foreground models compete with each other for a 

better detection without the need of a manually selected threshold. Second, a new 

non-parametric kernel density estimation of the probability model over the domain 

(location) space and the range (color) space is proposed. Rather than modeling the 

color space only, the integration of the color space and the location space makes it 

easier to handle non-stationary background in an outdoor scene. In their method, by 

combining the spatial location x and the pixel color values xrgb into a random vector 

d =(x, xrgb), the joint domain-range probability is defined as   

1

1( | ) ( )
N

i
C BW C

i

p d d d
N

φ
=

Ω = −∑ .  (8) 

Here, ΩC={ 1
Cd , 2

Cd ,…, N
Cd } is the training set with N domain-range training data of 

some class C. In [16], the class C could be foreground (CF) or background (CB). BWφ  

is the domain-range kernel function with bandwidth BW. While calculating the class 

probability of a pixel x, ΩC directly embedded the information from neighboring 

pixels to contribute the support of the class C. With this design, the non-stationary 

statistical properties caused by winds or other factors can be overcome.  

 In some surveillance systems, the video frame rate is low and unstable due to the 

limited transmission bandwidth or the limited storage. In this kind of surveillance 

systems, the temporal persistence property required in [16] becomes unreliable. This 

fact makes foreground modeling difficult. One possible way to model the foreground 

model would be to exploit the region-level information in the current image. Based on 

the spatial statistics of the neighboring regions of a pixel, Benedek et al. proposed a 

method in [17] to build the foreground model of that pixel. They assumed a 

foreground pixel shares a similar appearance with the other foreground pixels around 

it. The procedure of the foreground modeling in [17] is illustrated in Fig. 6. To model 

pf(XS|S), the foreground probability of a pixel S with the color intensity XS, a 
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manually-defined window VS centered at S is selected as shown in Fig. 6(a). A rough 

foreground region F is extracted by background subtraction, as shown in Fig. 6(b). In 

Fig. 6(c), the intersection region of F and VS is denoted as FS. The histogram of FS is 

presented in Fig. 6(d). Those pixels whose intensities are within the range [XS -τ, XS 

+τ] are collected for the training of a Gaussian foreground model, as shown in Fig. 

6(e). Compared with the uniform foreground model, which gets a likelihood value 

2.71 for XS in this example, the spatial statistics based foreground modeling gives a 

likelihood value 4.03 for XS which apparently better represents the foreground 

property. In Fig. 6(f) and Fig. 6(g), the final detection results are compared based on 

the uniform foreground model and the spatial statistics based foreground model, 

respectively. Note that the gray color represents the shadow regions.   

 

Fig. 6. The procedure for the foreground modeling in [17] based on the spatial 
statistics.  (Figures courtesy of Cs. Benedek [17]) 

  

Another kind of region-level information is the expansion of spatial similarity. 

Statistically, adjacent points tend to belong to the same class, especially when the 

adjacent points share similar appearance. This property is sometimes named the 

“smooth constraint” of neighboring regions in the literature. To consider spatial 

similarity while doing image analysis, a popular way is to adopt Markov random field 

(MRF) model [18][19][20]. In MRF, the smooth constraint is modeled by the clique 
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potential among neighboring sites. Unlike many previous works which directly assign 

a suitable class to a pixel, the clique potential only requires the labels of neighboring 

pixels to fulfill the smooth constraint. Hence, a typical form of MRF usually involves 

an extra constraint (the data term), which defines the cost of assigning different labels 

for a pixel, to cooperate with the clique potential. By combining the data term and 

smoothness term, the MRF provides a flexible framework to integrate pixel-level 

information and region-level information for image analysis.  

2.1.3 Object-level Methods 

Instead of using pixel-level information to classify local pixels or using 

region-level information to group neighboring pixels through the use of MRF 

technique or some other grouping techniques like connected component analysis [23], 

a few other methods suggest to directly learn the unique object-level property of an 

object class for detection and labeling. Once the properties of an object class are well 

learned and modeled, a popular way to detect the interested target is to scan through 

the image by using a sliding window, as shown in Fig. 7. The discriminative 

properties of an object class are used to verify whether a target is inside the sliding 

window. Instead of merging local information to reach the final decision, those 

object-level methods use the object-level information as a whole for detection and 

labeling. A typical face detection procedure is illustrated in Fig. 7 as an example. A 

test window is first selected and the object features inside the window are calculated. 

By comparing the object features with respect to the object model and the non-object 

model, we decide whether an object could be found inside the window.  

A crucial step for object-level detection is the extraction of object-level 

information. A systematic way to find the discriminative features of an object class is 

to analyze a labeled training dataset based on a learning process. Through the learning 
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process, the object-level information, usually named as trained object model, is 

extracted and used for the detection task.  

 
Fig. 7. A typical object-based detection procedure with sliding window. Here, we use 
face detection as an example.   

 

Support vector machine (SVM) is a popular technique to train object models in 

the field of machine learning [24][25]. Given a set of training examples composed of 

positive examples and negative examples, the main operation of SVM is to search an 

optimal hyperplane that separates positive examples from negative examples with a 

maximum margin. The optimal hyperplane could be expressed as  

( ) ( )T
o of x w x bφ= + . (9) 

In (9), xo is the features calculated from an image patch (window). (.)φ  is a nonlinear 

mapping function to map the input features into a higher dimensional space H. (w,b) 

are the major parameters controlling the direction and shift of a hyperplane. In SVM, 

(w,b) are the major factors to learn. They are only determined by the support vectors, 

which are the borderline training examples in the dataset. Those support vectors 

represent almost all the information of the training dataset. We may treat these support 

vectors as the extracted object-level information learned from the SVM training 

process. The positive support vectors define the object model while the negative 

support vectors define the non-object model. In Fig. 8, we illustrate the concept of 
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SVM classification.  

 

Fig. 8. Illustration of SVM classification with a hyperplane that separates positive 
examples (“+”s) from negative examples (“O”s) with the maximum margin. Support 
vectors are parts of the training examples that lie on the boundary.   
 

In the literature, the feature xo in (9) calculated from an image window has 

played an important role in the performance of object detection. In general, a good 

feature is required to be invariant to illumination variations. Recently, a few features 

are commonly used, including the cascaded raw color pixel over the window [26], the 

wavelet-like features [27], and the histogram of oriented gradients (HOG) [28].   

 In object detection, a major difficulty is the need to deal with various kinds of 

variations, like appearance variation or shape variation. In a practice system, 

variations mainly come from intra-class difference, environmental illumination, and 

object deformation. To achieve robust object detection, a sophisticated but flexible 

object model is needed. However, an object-level model learned from the typical 

SVM procedure is more like to be a rigid template. While dealing with non-rigid 

object detection, the typical SVM-based object model may not be a proper solution. 

To overcome non-rigid deformation, the pictorial structure framework was first 

proposed in [29] and then extended by [30][31][32]. As illustrated in Fig. 9, the 

pictorial structure framework represents an object model by a set of parts that are 
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located in a deformable manner. Each part captures some local appearance properties 

of an object. Deformable models is also learned to characterize the spring-like 

connections between each pair of individual parts.  

 

 
Fig. 9. The pictorial structure framework proposed by Fischler and Elschlager [29]. 

 

 To learn a part-based object model based on a typical training dataset, where the 

positive examples are only selected by bounding boxes without any training 

information of the object parts, the SVM learning procedure would not be suitable. 

This is because the locations of object parts in each positive example are latent and 

unknown for training. In [32], Felzenszwalb et al. adopted the latent SVM [33] to 

handle latent factors. In latent SVM, the first step of the learning procedure is to 

maximize over latent part locations to find out the optimal part locations for each 

positive example based on a learned object model in the current iteration. The second 

step is to refine the object model based on the training dataset and the optimal part 

locations found in Step one. These two steps are iteratively performed until the final 

object model converges. As an example, we show a human model with its part models 

and deformable models in Fig. 10(c)(d). Here, HOG is used as the feature in this 

example. The deformable models allow each part to deviate from a reference location 

and can adapt to the variation caused by deformation. In Fig. 10(a), a result of human 

detection shows the deviation of each body part. 
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(a) (b) (c) (d) 

Fig. 10. The part-based object detection reported in [32]. (a) A tested image with the 
detected human and its parts. (b) The HOG human model. (c) The HOG models of 
each body parts. (d) The deformable models depicting the possible variation of each 
part. (Figures courtesy of P. Felzenszwalb [32]) 

 

If looking into the SVM learning procedure, we may find the SVM procedure 

“equally” takes into account the entire local feature space to maximize the margin 

while minimizing the number of incorrectly classified examples. Hence, the object 

model learned by the SVM process gives an equal weight to each local property of the 

object. However, different local area may have different degrees of discriminability. 

This brings the idea of feature selection while learning an object model. The 

AdaBoost technique [34][35][36] is a successful method, which incorporates feature 

selection into object model learning with a unified training procedure. Instead of 

combining many features with an equal weight like SVM, the AdaBoost procedure 

selects a few but important features to represent object information and creates a 

sparse classification rule for object detection.  

A main feature of AdaBoost is its ability to select the discriminative features. 

This is achieved by dynamically adjust the weights of each training sample. However, 

a typical AdaBoost algorithm does not put too much effort on the combination of local 

features. On the contrary, SVM method put more effort on the combination of local 

features through the use of different kernels. Recently, a few research works [37][38] 
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focus on the integration of AdaBoost algorithm and SVM method. The AdaBoost 

algorithm is used to select discriminative features for the object detection while the 

SVM process is used to determine the final classifier by fusing the selected features.  

 Besides utilizing a learning-based method to obtain object-level information, 

some previous works directly design the specific target body structure for detection. 

For instance, human is a very important class for video surveillance systems. Hence, 

many works have been proposed to design a suitable representation for human 

detection. Basically, the proposed human model is composed of some simple elements, 

such as blobs, pillars, ellipses, and cylinders. The conventional human representations 

include the ellipse model [40], the stick figure model [41], the 2-D contour model [42], 

and the volumetric model [43]. After the body structure is defined, object detection is 

accomplished by fitting the target structure model to the image observation. In Fig. 11, 

we illustrate a few commonly used representations for the human model.  

  

(a)A ellipse human model [40] (b)A stick-figure human model [41] 

  

(c) A 2D contour human model [42] (d) A volumetric human model [43] 

Fig. 11. Four representation methods for the human model. (Figures courtesy of JK 
Aggarwal [39]) 
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2.2 Connection between Image Analysis and 3D 

Scene Modeling  
Besides using pixel-level, region-level, and object-level information for image 

analysis, another useful clue is to rely on the prior knowledge of 3-D scene. For 

instance, in a lobby, we would expect a few people walking on the ground plane. 

Based on this prior knowledge plus an appropriate 3-D human model, object detection 

may become more stable, as reported in [44] and [45]. On the other hand, for a typical 

parking lot, we may know the 3-D layout of the parking spaces. Based on this prior 

knowledge plus suitable 3-D car models, the detection of parked cars may become 

more robust and reliable [46].  

The study of the connection between vision analysis and scene modeling has a 

long history. In the 19th century, James Gibson [47] proposed that scene surfaces 

constitute the fundamental of human vision. Human vision can perceive the depth and 

distance mainly depending on the perception of longitudinal surfaces. Warren [48] 

also believed that human vision can fully understand the 3-D scene not only based on 

image observation but also based on lots of visual experiences in daily life. The visual 

experiences drive human beings to utilize clues, such as horizontal line, shadow, and 

some familiar objects, to infer the status of the 3-D scene. Moreover, Koenderink et al. 

[49][50] found that the participants of their experiments could not measure the depth 

order of two points in the scene unless there is a scene surface connecting these two 

points. Those findings suggested that physical surfaces provide valuable information 

for scene interpretation.   

In the recent study of video surveillance techniques, an example of utilizing 

surface information to improve system accuracy is the use of the 3-D prior that human 

stands on the ground plane [40]. Based on this assumption, Object detection and 
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tracking become more robust. Moreover, Hoiem et al. [51][52] believed the extraction 

of the surface layout in an image is a right way to interpret the 3-D scene. Hence, they 

proposed a learning based method to assign each image pixel a geometric class. To 

find out the surface layout, Hoiem et al. [52] firstly over-segmented an image 

observation. Each segmented region was named as a super-pixel. By merging similar 

super-pixels based on some local features, like color, texture, location and shape, their 

algorithm generated a large set of segmented regions. The learned surface models 

were utilized to assign a surface class to each segmented region. Once the surface 

layout is extracted, Hoiem et al. [53][54] used the surface knowledge to reconstruct 

3-D view based on a single image. In Fig. 12., we illustrate the automatic photo 

pop-up with the help of the extracted surface layout.  

(a) (b) (c) (d) 

Fig. 12. Illustrate the process of automatic photo pop-up [54]. (a) An input image. (b) 
The surface layout with green, red, and purple representing support surfaces, vertical 
surfaces, and sky. (c) One synthesized image view. (d) Another synthesized image view. 
(Figures courtesy of D. Hoiem [54]) 

 

On the other hand, 3-D depth knowledge and camera viewpoint are also valuable 

information for object detection. In general, the camera viewpoint is available if the 

intrinsic and extrinsic parameters of the camera are available. Furthermore, for a 

practical video surveillance system, the inter-object occlusion would be a challenge 

issue. If the depth order of objects could be known in advance, it becomes easier to 
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handle the inter-object occlusion problem. In [55], Sudderth et al. integrated the depth 

information to achieve high detection performance. In [56], Hoiem et al. proposed to 

combine the information of surface layout, depth order, and camera viewpoint to 

support object detection. The results are shown in Fig. 13. By using the scene 

knowledge, lots of unlikely detection results are removed. 

 

 

(a) (b) (c) 

 

(d) (e) (f) 

Fig. 13. Human detection based on scene knowledge [53][56]. (a) An input image. (b) 
The surface layout with green, red, and blue representing support surfaces, vertical 
surfaces, and sky. (c) Detection without scene information. The detection windows are 
uniformly distributed in image. (d) Detection with the prior of surface layout. The 
detection windows are mainly distributed in the “vertical” surfaces. (e) Detection with 
the prior of depth and camera viewpoint. The detection windows are larger in the near 
distance. (f) Detection with the prior of surface layout, depth and camera viewpoint. 
The detection windows are fewer and more accurate. (Figures courtesy of D. Hoiem 
[56]) 

 

Some researches tried to estimation the depth map from a single image. Oliva 

and Torralba [57] found some image local properties, such as naturalness, openness, 
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roughness, expansion, and ruggedness, are directly relevant to the 3-D depth. By 

measuring those local properties from a single image, a rough depth map could be 

estimated. Moreover, Saxena [58] proposed an MRF-based framework to integrate 

local image properties to infer the depth map. The extracted depth order is then 

utilized to help image analysis.  

On the other hand, instead of using scene knowledge, like scene surfaces or 

depth order, to help object detection, some researchers began to think in the opposite 

way. Sudderth et al. [59] suggested that by understanding the relations among 

multi-targets, the depth information can be derived.  

In this dissertation, we study another possibility to combine image analysis and 

scene modeling in a unified framework. According to the findings of these previous 

works, image analysis and scene modeling are highly relative and are complementary 

to each other. However, in a practical video surveillance system, we usually have 

some unknowns in both 3-D scene model and 2-D image contents. This drives us to 

propose the Bayesian Hierarchical Framework (BHF) to simultaneously infer the 

status of 3-D scene model and label objects in the image domain.   
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CHAPTER 3 
 

 

 

Bayesian Hierarchical Framework  
______________________________________________ 
 

3.1 The Structure of BHF 
The proposed BHF has a 3-layer graphical structure as illustrated in Fig. 14. In 

order to perform the inference of 3-D scene status based on image observations, we 

include a scene layer and an observation layer in the structure. However, if only using 

a 2-layer graphical structure, it would be difficult for our system to clearly depict the 

generation of image appearance based on a parametric 3-D scene model. This is due 

to the fact that a parametric 3-D scene models can only generate geometric patterns 

and labeling layout rather than image color appearance. For this reason, we introduce 

a hidden labeling layer between the scene layer and the observation layer. With the 

insertion of the labeling layer, the prior knowledge of the 3-D scene can be 

propagated down to the labeling layer, while the information from the image 

observation can be propagated upward to efficiently affect the labeling layer. As a 

crucial medium, the labeling layer not only enables the communication between the 
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scene layer and the observation layer but also facilitates the integration of 2-D image 

information and 3-D scene model in a unified manner. 

 

 

(a) 

(b)  (c) 

Fig. 14. (a) The proposed Bayesian hierarchical framework (BHF). (b) BHF for the 
vacant parking space detection system. (c) BHF for the multi-target multi-camera 
surveillance system. 

 

 In Fig. 14 (b)(c), we use “the vacant parking space detection system” and “the 
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multi-target multi-camera surveillance system” as two examples to illustrate the 

application-oriented definition of each node in the proposed BHF as shown in Fig. 14 

(a). In detail, in the observation layer (IL), each node indicates a local feature. The 

local feature can be either region-based, like a gradient feature, or pixel-based, like a 

color feature. In Fig. 14 (b)(c), each observation node in both systems represents the 

color feature of a corresponding pixel in the observation image. In the hidden labeling 

layer (HL), each node represents the semantic status of a local region or an image 

pixel. Here, for “the vacant parking space detection system”, each labeling node 

represents a labeling pixel with four possible statuses, (“car pixel”, “shadowed pixel”), 

(“car pixel, un-shadowed pixel”), (“ground pixel”, “shadowed pixel”), and (“ground 

pixel, un-shadowed pixel”). For “the multi-target multi-camera surveillance system”, 

each labeling node represents the object identity which the corresponding image pixel 

belongs to. In Fig. 14 (c), the labeling statues could be “object 1 (marked by blue 

color)”, “object 2 (marked by orange color)”, “object 3 (marked by yellow color)”, 

“object 4 (marked by light blue color)”, and “background object (marked by red 

color)”.On the other hand, the scene layer (SL) indicates the unknown 3-D scene 

statuses that are to be inferred. For “the vacant parking space detection system”, each 

node in the scene layer represents the status of a corresponding parking space. It could 

be “vacant space” or “occupied space”. For “the multi-target multi-camera 

surveillance system”, each node in the scene layer represents if a moving target exists 

at a specific position. The links between the observation layer (IL) and the hidden 

labeling layer (HL) convey the bottom-up information from the image observation, 

while the links between the scene layer (SL) and the hidden labeling layer (HL) convey 

the top-down messages from the scene knowledge and the trainable target models. In 

the middle layer, the links between adjacent nodes convey a smooth constraint to 

model the high correlation in a local neighborhood. Based on this three-layer 
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framework, we are able to construct the generation models from the scene level to the 

labeling level and from the labeling level to the observation level. 

 

3.2 The Property of BHF 
In the literature, commonly used methods for object detection, object labeling 

and scene modeling can be roughly divided into three categories --- data-driven 

methods, model-driven methods, and hybrid methods. In general, data-driven methods 

directly use region-level and pixel-level information from the image data to support 

image analysis and the inference of the 3-D scene; while model-driven methods use a 

few object-based models pre-learned from training data to infer the scene statuses and 

to detect interested objects. On the other hand, hybrid methods are proposed to 

combine both image information and object knowledge for image analysis.  

In this dissertation, the proposed BHF framework is a hybrid method. As shown 

in Fig. 14, the message stream propagated upward from the observation layer is 

considered as data-driven information; while the message stream propagated 

downward from the scene layer is considered as model-driven knowledge. This BHF 

framework has quite different properties if compared with either data-driven methods 

or model-driven methods. On the other hand, if compared with existing hybrid 

methods, the BHF framework proposes a new way to integrate pixel-level, 

region-level and object-level information under a unified framework. A few 

distinctive properties of the proposed BHF framework are to be explained as follows.  

3.2.1 Differences to Data-driven and Model-driven 

Methods  
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Compared with data-driven methods and model-driven methods, a distinctive 

feature of the proposed BHF is the integration of object-level information from 3-D 

scene, region-level constraints in 2-D image patches, and pixel-level features from 

image pixels in a unified framework, as presented in Fig. 14. The main characteristics 

of BHF has two aspects: (a) a unified framework to combine pixel-level, region-level, 

and object-level information together to represent the generation process from 3-D 

scene to 2-D image; and (b) a systematic procedure to simultaneously analyze 2-D 

images and infer 3-D scene statuses.  

For most bottom-up methods, the process usually begins at the classification of 

each pixel into a target pixel or a non-target pixel. Since the pixels of a target usually 

share similar appearance, these methods merge target pixels into target regions based 

on region-level information in the image. However, when the appearance of a target 

region happens to be similar to that of the background, the appearance ambiguity 

causes the extracted target regions to be fragmental and incomplete. If the incomplete 

target regions are used to infer the 3-D scene statuses, the system accuracy will be 

deteriorated. Without using object-level information, data-driven methods usually 

suffer from poor accuracy in object detection and labeling.  

 On the other hand, for most top-down methods, the process usually begins at the 

training of a suitable object-based classifier. After the setting of the classifier is 

learned, the process can detect interested targets via the classification of image 

patches. Those object-based detection methods can obtain a complete detection result 

without fragments, but may lose the accurate silhouette of the interested targets. 

Furthermore, when there are multiple targets inside the 3-D scene, the occlusions 

among targets could be crucial and may cause difficulty in object detection and 

labeling. 

In this dissertation, the proposed 3-layer BHF includes a scene layer for 
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object-based information, an image observation layer for pixel-based information, and 

a labeling layer in the middle. This framework efficiently integrates top-down 

information with bottom-up messages. Based on the integration, top-down 

information and bottom-up messages cross-reference each other to support more 

robust and accurate inference. Moreover, the scene layer may also systematically 

model the interaction among multiple targets so that the proposed framework can 

effectively deal with the inter-target occlusion while doing the inference. This can 

further boost the system performance. 

3.2.2 Differences to Existing Hybrid Methods 

In recent years, a few hybrid frameworks that combine data-driven messages and 

model-driven information have been proposed to improve the performance of image 

labeling and object detection. In [60], the authors integrated image contexts and local 

appearance into a hybrid framework to provide improved image labeling results. 

However, the detection problem has not been addressed in their method. In [61], a 

hierarchical conditional random field framework was proposed to model the 

interaction between image labeling and object detection. In this approach, the 

interaction is described based on scene-context relationship. However, the adopted 

segmentation process is mainly based on local features without taking into account the 

global shape layout constraints. In [62], a located-hidden-random-field framework has 

been proposed to label and detect objects simultaneously. This method mainly focuses 

on the detection of a single object and adopts an object labeling template that is 

treated as the global shape knowledge for object detection. Extra efforts are needed to 

identify the absence of objects or the presence of multiple objects. In [63], an 

extended work of located-hidden-random-fields framework, named layout-consistent 

random field framework, was proposed to further deal with inter-object occlusion. In 
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this method, inter-object occlusions are assumed to be unexpected and are handled by 

defining asymmetric pair-level potentials between adjacent labels.  

Even though these aforementioned methods also integrate pixel-level, 

region-level, and object-level information for image content analysis, there are 

distinctive differences between our BHF-based modeling and theirs. In our approach, 

we couple the object-level information with the 3-D scene inference based on a 

unified parametric scene model. In the proposed BHF framework, since the cameras 

parameters have been calibrated beforehand, we can fully utilize the geometric 

knowledge in the monitored scene. Unlike previous methods which learn the 

object-level information from a bunch of training data, our BHF framework adopts 

the 3-D parametric scene model to synthesize geometric patterns for model learning. 

In other word, we do not simply rely on training data for the learning of the object 

models. Moreover, in BHF modeling, the use of the parametric scene model has 

greatly reduced the dimension of the solution space. Since the possible status of each 

3-D scene parameter is usually limited and can be quantized into a few choices, the 

possible solutions of image content labeling are well bounded.  

Furthermore, since the 3-D scene is properly modeled, the occlusion effect, the 

perspective effect, and the shadow effect can be theoretically analyzed. To deal with 

the variations of the surrounding illumination and to integrate the geometric scene 

knowledge with image observation, a hidden labeling layer is included in the structure. 

With the hidden layer between the observation layer and the scene layer, our 

framework provides a systematic structure that is very suitable for solving luminance 

variations, shadow effect, perspective effect, and occlusion.  

In BHF, image labeling is modeled as a pixel-level classification process. By 

dynamically training the pixel-level classification models to adapt to luminance 

variations, luminance-varying observations are converted into to more consistent 
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labels. On the other hand, to handle the occlusion and shadow effect, the target 

number, target location, target size, and a few necessary scene factors are modeled as 

scene parameters. During the inference process, the statuses of those scene parameters 

are all inferred at the same time so that the occlusion effect and the shadow effect can 

be well handled.  

Furthermore, for occlusions and shadows, the BHF framework can explicitly 

model their generation processes from 3-D scene to 2-D images. This makes 

occlusions and shadows a portion of the global knowledge. Hence, another distinctive 

feature of BHF is that occlusion and shadow effects may actually be used to offer 

useful and structured information to support scene inference. The occlusion effect 

tells how the 3-D objects in the scene interact with each other; while the shadow 

effect conveys the existing of certain objects. In BHF, these two effects are well 

modeled as parts of global knowledge. This kind of global knowledge may deduce 

expected labeling configuration when the scene parameters in the scene layer are 

specified. Under the BHF framework, scene modeling and image labeling processes 

are linked in an interactive manner. The labeling of image pixels adopts some global 

knowledge from the scene layer, while the scene layer makes a global inference based 

on local messages passed from the labeling process.  

3.3 The Modeling of BHF 
For different video surveillance systems, the system unknowns, the available 

physical constraints, and the available observations are application-dependent. In BHF, 

we treat the system observations and unknowns as random variables and represent 

them as nodes in the BHF structure. Through a learning procedure, we train 

appropriate probability models to model the physical constraints which are the links in 

the BHF structure. With the integration of system unknowns, system observations, 
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bottom-up constraints, and top-down constraints under the hierarchical framework, 

the analysis of image contents and the inference of the scene statuses are formulated 

as an optimization problem. By finding the optimal inference, the system can make a 

semantic understanding of the monitored scene.  

In BHF, the inter-layer links and intra-layer links represent the message 

propagations that should be properly modeled. As illustrated in Fig. 14, observation 

nodes are assumed to be conditionally independent when the statuses of the labeling 

layer is given. This implies no connections among observation nodes. On the other 

hand, one labeling node represents a local decision based on a local observation. 

Hence, there is a link connecting each labeling node and its corresponding 

observation node. Moreover, the local decisions of two adjacent labeling nodes are 

usually highly correlated. This property is modeled by connecting the labeling nodes 

as a four-neighbor Markov random field (MRF) [18]. To model the interactions 

between the labeling layer and the scene layer, each scene node that represents one 

kind of 3-D scene status is connected to related labeling nodes. Through those 

connections, the global information of geometric arrangement may influence the 

classification of local labeling nodes. In BHF, the topology of the inter-layer 

connection is flexible and application-oriented. In Chapter 4 and Chapter 5, we will 

apply the BHF framework to two different applications, a parking space detection 

system and a multi-camera surveillance system, to demonstrate how to define the 

nodes and how to model the links of the BHF structure in real applications.  

In principle, we can formulate the scene inference problem as a status decision 

process based on image observations. Since the process of image content analysis and 

the inference of the scene status are highly correlated, the proposed BHF is developed 

to combine the image labeling problem p(HL|IL) and the scene inference problem 

p(SL|IL) into a joint-inference problem p(HL,SL|IL). That is, our BHF always formulates 
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the system goal as to simultaneously find the optimal image content labeling and the 

3-D scene parameters based on the image observation and some model constraints. By 

unifying these two problems under a single framework, the connections among 

pixel-level features, region-level constraints, and object-level knowledge are 

well-constituted in a hierarchical form. This structure enables the proper use of the 

information embedded among layers and provides an efficient way to deal with scene 

inference and image content analysis simultaneously rather than to solve them 

individually. To find out a suitable classification label HL and the best scene inference 

SL under the given observation IL, an MAP optimization problem is defined as  

* *
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   (10) 

where ( * *,L LH S ) denotes the optimal solution pair of image content labeling and 3-D 

scene parameters. Here, p(SL) represents the prior knowledge of the 3-D scene status 

and p(HL|SL) stands for the object-level constraints propagated from the 3-D 

parametric scene model to the labeling layer. In the graphical structure of our BHF, 

we use the links between the scene layer and the labeling layer to represent p(HL|SL). 

On the other hand, we assume p(IL|HL,SL) = p(IL|HL). That is, we assume the 

probabilistic property of the observed image data is conditionally independent of the 

scene model once if the pixel labels are determined. Moreover, p(IL|HL) links the 

image observation data with the labeling results. In detail, p(IL|HL) is composed of a 

pixel classification model for pixel-level information and an adjacency model for 

region-level information. As mentioned above, for the pixel classification model, we 

assume the observation nodes in Fig. 14 are conditionally independent when the status 
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of the labeling layer is given. In addition, we assume the connections between the 

observation layer and the labeling layer are one-to-one and these connections can be 

modeled in terms of a “classification energy” ED[IL(m,n),HL(m,n)]. This classification 

energy conveys the property that the labeling result should be consistent with the 

feature values of the observed image. On the other hand, for the adjacency model, 

since the local labeling results of adjacent nodes are usually highly correlated, we 

define an “adjacency energy” EA[IL(m,n),HL(m,n);Np] to depict the assumption that the 

labels of adjacent pixels should follow some kind of smoothness constraint. By 

combining these two energy models, we have 

[ ( , ), ( , ); ][ ( , ), ( , )]( | ) A L L pD L L E I m n H m n NE I m n H m n
L L

m n

p I H K e e−−= ⋅∏∏ .  (11) 

Here, Np denotes a neighborhood around the pixel location (m,n) and K is a 

normalization term.  

In our system, p(IL|HL) and p(HL|SL) need to be explicitly determined in order to 

completely model the system goal as an optimization problem in (10). Once the 

models of BHF are defined, an optimal inference procedure is performed to obtain the 

results. In our BHF, the definition of the 3-D parametric scene model p(HL|SL) and the 

pixel classification model ED[IL(m,n),HL(m,n)] are highly application-dependent. In 

order to explain the modeling of p(HL|SL) and ED[IL(m,n),HL(m,n)], two examples will 

be demonstrated in Chapter 4 and Chapter 5, respectively.  

On the other hand, the adjacency model EA[IL(m,n),HL(m,n);Np] defined in the 

BHF framework is more generic. Usually, the local decisions of two adjacent labeling 

nodes are highly correlated especially when their corresponding image pixels share 

similar color features. In our system, by taking the observed image IL(m,n) into 

consideration, we define the adjacency energy of labeling nodes as a Markov random 

field [18] to provide a smoothness constraint between adjacent labeling nodes. Here, 
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we define 
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In (12), Np denotes the (2p+1)×(2p+1) neighborhood around (m,n) and β is a 

pre-selected penalty constant. In (13), the function GS is an adaptive function designed 

to preserve the intensity/color discontinuities in the original image. In our system, we 

design function GS to be a function similar to a logistic sigmoid function: 

( ) ( - ) ( - )( ) 1 (1- ) (1 ) 1th thU C U C
SG U Sigm U e eρ ρ= + = + + .  (15) 

An example of Sigm(U) is shown in Fig. 15. In principle, Sigm(U) works like a soft 

thresholding function, with Cth andρ controlling its zero-crossing point and shape, 

respectively. Both Cth and ρ  are application-dependent and are determined 

empirically. Sigm(U) outputs a positive value if U is smaller than Cth, and outputs a 

negative value otherwise. With this design, CA[.] is equal to zero when HL(m,n) and 

HL(m+Δm,n+Δn) are the same. If HL(m,n) and HL(m+Δm,n+Δn) are different, CA[.] 

gives a larger penalty if the difference between IL(m,n) and IL(m+Δm,n+Δn) is smaller 

than Cth, while gives a smaller penalty otherwise. Hence, to reduce the adjacency 

energy, Hi(m,n) and Hi(m+Δm,n+Δn) tend to share the same label when the difference 

between IL(m,n) and IL(m+Δm,n+Δn) is small, and tend to have different labels 

otherwise.  
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Fig. 15. Examples of Sigm(U) withρ=0.05 and Cth=100 

 

(a) 

 

(b) 

 

Fig. 16. Illustrate the inference process of BHF. (a) A standard inference process. 
(b) An example of BHF inference process for the multi-target multi-camera 
surveillance system.  
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3.4 The Inference of BHF 
To solve (10), an inference procedure is needed for the determination of the 

optimal solution pair ( * *,L LH S ). Since the undetermined variables include the optimal 

label of each pixel and the optimal status of scene parameters, this inference process 

is non-trivial at all. In our system, to find the status of each scene parameter, we first 

generate the possible status hypotheses of scene parameters. The status hypothesis 

that achieves the maximum posterior probability in (10) is picked. Here, we use Fig. 

16 to illustrate the inference steps. In detail, to implement this idea, our inference 

process for BHF is composed of three major steps:  

Step1: Generate the possible status hypotheses of scene parameters with the 

consideration of the independency among parameters. Assume there are Pa 

scene parameters in the system model and each parameter has SN statuses. 

While generating the possible status hypotheses, there would be totally SN
Pa 

status hypotheses if we ignore the possible independency among parameters. 

By considering the independency, the number of eligible status hypotheses 

could be greatly reduced. To the best case, the number of eligible status 

hypotheses could be as small as the product of Pa and SN. In real systems, the 

number of unknown scene parameters Pa are usually large but with some 

levels of independency. By properly taking into account these independency 

properties, the computational complexity of our inference process may grows 

much slower than the expected exponential grow.  

Step 2: Given a possible status hypothesis SH, find out the optimal labeling *
| HL S

H  

and compute the corresponding posterior probability of SH, denoted as Cp(SH). In 

our approach, *
| HL S

H  and Cp(SH) are defined as  
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In (16) and (17), the energy function ln ( , | )H
L L Lp H S S I=  is defined as 
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      (18) 

In our system, the maximization of ln ( , | )H
L L Lp H S S I=  under the given status 

hypothesis SH has a form much like the canonical MRF optimization formulation 

frequently used in some early-vision problems [18][19][20]. For a canonical MRF 

optimization formulation, the energy function MRFE , usually viewed as the log 

likelihood of the posterior distribution of an MRF [20][21][22], is composed of 

two parts, part one MRF
DE  and part two MRF

SE , with a constant λ  controlling the 

weighting between the part one and the part two. That is,  

MRF MRF MRF
D SE E Eλ= + × .   (19) 

To fit (16) and (17) into the canonical MRF optimization formulation, we combine 

ED(IL(m,n),HL(m,n)), p(HL(m,n)|S=SH), and the prior p(S= SH) in (18) to build the 

part one in (19); and treat EA[IL(m,n),HL(m,n);Np] as the part two. With this 

formulation, (16) and (17) can be solved by many practical optimization 

algorithms, such as the graph cuts algorithm, the loopy belief propagation 

algorithm, the tree-reweighted algorithm, and the iterated conditional mode 

algorithm. Based on a recent study of those methods [20], the graph cuts 

algorithm [64][65][66] has been found to perform better in terms of runtime. 
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Hence, in our system, we apply the graph cuts algorithm to the maximization of 

(16) and (17) under the status hypothesis SH. Here, the optimal image labeling 

under SH are achieved by assigning a suitable label to each pixel. To explain how 

we apply the graph cuts algorithm to our system, we assume each pixel has a label 

from the terminal (label) set {T0, T1, …,TM}. To setup the graph cuts method, we 

form a graph as shown below in Fig. 17 to represent our optimization problem. In 

this graph, a possible terminal connects to a portion of labeling nodes in the 

labeling image. Their relations are represented by the collections named as 

“t-links”. In our system, we use data term to define the weight of each t-link. On 

the other hand, the “n-links” in the labeling image is defined by the smoothness 

term. With this graph representation, our optimization problem is equal to cutting 

the t-links and n-links with the minimal cost so that all terminals are separated and 

each labeling node HL(m,n) only connects to one terminal through a t-link.  

 
Fig. 17. The graph setting for the graph cuts algorithm. 

Step 3: Compare the values of posterior probability over all possible status hypotheses. 

The status hypothesis that achieves the maximal value of posterior probability 

is picked as the optimal status *
LS . The corresponding optimal image labeling 

under *
LS  defines the optimal labeling *

LH . 
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3.5 The Application of BHF 
To further explain how to apply the framework to practical video surveillance 

applications under different scene conditions, we will discuss two real systems as 

examples in the following two chapters. In Chapter 4, we firstly apply the BHF to the 

design of a vacant parking space detection system over an outdoor parking lot, which 

is a scene with well-structured and predictable 3-D model. Next in Chapter 5, we 

apply the BHF to the tracking of multiple targets over a multi-camera system, whose 

scene model is dynamically changing and unpredictable. Below, we briefly explain 

the roles of the proposed BHF in these two systems. 

In the first application, we apply the BHF framework to a system for vacant 

parking space detection. Based on the 3-layer BHF, the bottom-up messages from 

image observation and the top-down knowledge from the scene model are effectively 

integrated. In BHF, the illumination variations in the outdoor scene are overcome by 

transferring the fluctuating RGB observations into meaningful labels. To adapt to the 

time-varying lighting condition, we online build the color classification models for 

object type and lighting condition. On the other hand, some global knowledge of the 

3-D scene, like the direction of sunlight and the 3-D car model, offers useful 

information for the labeling of image pixels. The top-down knowledge is propagated 

downward to influence the labeling process via the generation of an “expected object 

map” and an “expected shadow map”. By compromising between the expected 

labeling maps and the labeling from image observation, the status hypotheses of each 

parking space are evaluated. Under the proposed BHF, the vacant parking space 

detection problem and the optimal image content labeling problem are integrated in a 

unified manner. 

On the other hand, in the application of multi-target tracking with ghost 
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suppression over a multi-camera system, we propose a new approach to efficiently 

integrate, summarize, and infer video messages from multiple client cameras. The 

main concept is to fuse detection results from many client cameras, summarize 

consistent 2-D messages into a 3-D space, and do the inference for the scene model so 

that the operators in the control room can monitor the surveillance zone in an easier 

and more intuitive way. Here, we proposed a fusion-inference procedure to preserve 

the accuracy of target location without dramatically increasing the computational cost. 

In our fusion-inference procedure, the data fusion stage is used to detect possible 

targets and their 3-D locations. Based on the 3-D priors, target identification, labeling, 

and inter-occlusion are then analyzed under the proposed BHF in the inference stage. 

The optimal target labeling and the correspondence result are further used to refine the 

3-D target model through a feedback route to improve the accuracy of the inference 

stage.  
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CHAPTER 4 
 

 

 

A Hierarchical Bayesian Generation 
Framework for Vacant Parking Space 
Detection 
______________________________________________ 

4.1 Introduction of Parking Space Detection 
In this chapter, we introduce how the proposed BHF is adopted to detect the 

vacant parking spaces in a typical outdoor parking lot. Nowadays, using an intelligent 

surveillance system to manage parking lots has become practical. A recent technology 

review about smart parking system can be found in [67]. To assist users to efficiently 

find a vacant parking space, an intelligent parking space management system can not 

only provide the total number of vacant spaces in the parking lot but also explicitly 

identify the location of vacant parking spaces. In addition, a vision-based system may 

provide many value-added services, like parking space guidance and video 

surveillance. 

In practice, the major challenges of vision-based parking space detection come 
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from occlusion effect, shadow effect, perspective distortion, and the fluctuation of 

lighting condition. In Fig. 18, we show several parking lot images in our dataset. In 

these images, some environmental factors are mixed together in a sophisticated way. 

For instance, the illumination in a sunny day is quite different from that in a cloudy 

day; a parked car may occlude or cast a shadow over the parking space next to it; a 

shadowed region may be mistakenly recognized as a dark-colored vehicle; and a 

light-colored vehicle under strong sunlight may look very similar to a vacant parking 

space. 

(a) 

 

(b) 

 

(c) 

 

 Morning Noon Evening 
Fig. 18. Image shots of a parking lot. (a) Captured in a normal day. (b) Captured in a 
day with strong sunlight. (c) Captured in a cloudy day. 

 

Up to now, several methods have been proposed to overcome the aforementioned 

difficulties. These methods can be roughly classified into two major categories: 

car–driven and space-driven. For a car–driven method, cars are the major target and 

algorithms are developed to detect cars. Based on the result of car detection, vacant 

parking spaces are determined. To detect objects of interest, plentiful object detection 
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algorithms can be used. For example, the object detection method proposed in [68] by 

Schneiderman and Kanade is a trainable detector based on the statistics of localized 

parts. The adaboosting-based detection algorithm [69] is another widely used 

technique for the detection of specific objects in 2-D images. The method proposed by 

Felzenszwalb et al. [32] offered an efficient way to match objects based on a 

part-based model that well represents an object by pictorial structures. A global 

color-based model had been proposed by Tsai et al. [13] to efficiently detect vehicle 

candidates. On the other hand, Lee et al. [70] and Masaki [71] kept tracking and 

recording the movement of vehicles to identify empty parking spaces. Even though 

these object detection based frameworks had gained impressive achievement in many 

circumstances, such as highway and roadway, most of these algorithms are not 

specifically designed for vacant parking space detection in a typical parking lot. For 

example, as shown in Fig. 18, the captured images may include some cars with 

unclear details. Besides, due to the perspective distortion, a car far away from the 

camera only occupies a small area in the captured image. This perspective distortion 

may also affect the performance of car detection.  

For a space-driven method, the property of a vacant parking space is the major 

focus and available parking spaces are detected directly. When the camera is static, 

several background subtraction algorithms, like [2], can be used to detect foreground 

objects. Typically, these algorithms assume the variation of the background is 

statistically stationary within a short period. Unfortunately, this assumption is not 

always true for an outdoor scene. For example, a passing cloud that block the sunlight 

may suddenly change the lightness. To handle the dynamic variation of an outdoor 

environment, a possible solution is to build a complete background reference set 

under all kinds of lighting conditions. Funck et al. [11] proposed an eigen-space 

representation that models a huge set of background models with much less memory 



 49

space and computational cost. With a suitable background model, a typical way to 

determine the status of a parking space is to check the ratio of foreground pixel 

number to background pixel number. However, even if the background model is well 

learned, this kind of method still suffers from the occlusions and shadows caused by 

neighboring cars. To improve the performance of detection, Huang et al. [46] 

proposed a Bayesian detection framework to take into account both ground plane 

model and car model. Both occlusion effect and illumination variation were modeled 

under that framework. Recently, Bong et al. [72] proposed a Car Park Occupancy 

Information System (COINS) by using a “bi-stream” detector to overcome the 

shadow effect. In their approach, one stream used the background subtraction method 

to perform car detection, while the other stream adopted edge information to achieve 

shadow-insensitive detection. By using an “And” operator to combine both detection 

results, detection performance was improved. 

On the other hand, some other space-driven methods assume a vacant parking 

space possesses homogeneous appearance and use this property to detect vacant 

spaces. For example, Yamada and Mizuno [73] designed a homogeneity measure by 

calculating the area of fragmental segments. In principle, a vacant space has fewer but 

larger segments, while the area of a parked car has an opposite property. Lee et al. [74] 

suggested an entropy-based metric to determine the status of each parking space. 

However, these two systems ignored the shadow and occlusion caused by adjacent 

cars. In [75], Fabian used a segment-based homogeneity measure similar to that in [73] 

and proposed a method for occlusion handling. By pre-training a weighting map to 

indicate the image regions that may get occupied by neighboring cars, the influence of 

the occlusion effect can be reduced. Even thought their homogeneity measure is 

effective for most parking spaces, the environmental variations, especially the shadow 

effect and the over-exposure effect caused by strong sunlight, may fail the assumption 
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of homogeneous appearance. In practice, the shadow effect makes a parking space 

less homogeneous while the over-exposure effect makes the appearance of a car more 

homogeneous.   

Some other authors tried to detect vacant parking spaces via classification. For 

example, Dan [76] trained a general support vector machine (SVM) classifier by 

directly using the cascaded color vectors inside a parking space as the classification 

feature. However, the occlusion patterns were not well modeled in their approach. On 

the other hand, Wu et al. [77] grouped three neighboring spaces as a unit and define 

the color histogram across three spaces as the feature in their SVM classifier. With 

this arrangement, the inter-space correlation can be learned beforehand to overcome 

the inter-occlusion problem. However, the performance of classification is greatly 

affected by the environmental variations. In general, the lighting changes may cause 

the variations of object appearance in both brightness and chromaticity. This effect 

may dramatically degrade the accuracy of classification-based detection. 

The rest of this chapter is organized as follows. In Section 4.2, we present the 

main idea of our algorithm. The top-down information from the 3-D scene model is 

detailed in Section 4.3, while the message from image observation is presented in 

Section 4.4. The whole inference procedure is explained in Section 4.5. Experimental 

results and discussions are presented in Section 4.6.  

4.2 Overview of Vacant Space Detection 
In our system, the scene modeling and vacant parking space detection are 

accomplished based on the integration of scene prior and image observation in the 

BHF. By treating the status of each parking space as a part of the scene parameters, 

the vacant space detection is achieved via the process of scene inference. The general 

concept of the proposed system is illustrated in Fig. 19. Based on the BHF, the 
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bottom-up messages from image observation and the top-down knowledge from the 

scene model are integrated. In BHF, the illumination variations are overcome by 

transferring the fluctuating RGB observations into meaningful labels. The labeling 

process is treated as a color classification process between content labeling and image 

observation. Since the observation difference is mainly caused by the object type and 

the lighting condition, we decompose the image observation into an object component 

and a lighting component. The object type is either “car” or “ground”, while the 

lighting condition is either “shadowed” or “unshadowed”. To adapt to the 

time-varying lighting condition, we online build the color classification models for 

object type and lighting condition. On the other hand, some global knowledge of the 

3-D scene offers useful information for the labeling of image pixels. The top-down 

knowledge is propagated downward to influence the labeling process via the 

generation of an “expected object map” and an “expected shadow map”. Here, we 

explicitly define a generative model that takes into account the inter-occlusion effect, 

the expected shadow effect, and the perspective distortion. The relationships among 

these effects and the status of parking spaces are explicitly modeled via a Bayesian 

probabilistic model. By compromising between the expected labeling maps and the 

labeling from image observation, the status hypotheses of each parking space are 

evaluated. Finally, to avoid incorrect inference caused by unexpected occlusions, the 

global status hypotheses from the scene model provides useful constraints to handle 

partially inconsistent labels. In principle, we can formulate the vacant space detection 

problem as a status decision process based on image observations from a single 

camera. Since the status of a parking space may actually affect the inference of 

neighboring spaces, we analyze the status of neighboring parking spaces at the same 

time. Moreover, the vacant parking detection process is regarded as a Bayesian 

inference problem and is solved by finding the most reasonable parking space status 
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that fits both scene prior and image observation.  

 
Fig. 19. The concept of Bayesian hierarchical framework for vacant space detection. 

 

In Fig. 20, we show a simplified 3-layer structure to explain the BHF framework 

for vacant space detection. Here, we define the image observation layer as IL, where 

each node IL(m,n) indicates the RGB color feature at the (m,n) pixel of an image of 

size M × N. On the other hand, we define the labeling layer as HL, where each node 

HL(m,n) represents the categorization of the image pixel at (m,n). The labeling result 

of HL(m,n) could be (C,S), (G,S), (C,US), or (G,US), where C denotes “Car”, G 

denotes “Ground”, S denotes “Shadowed”, and US denotes “Unshadowed”. Moreover, 

we define the scene layer as SL, which indicates the status hypotheses of the parking 
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spaces. The node SL(i) in SL denotes the status of the ith parking space. Its value can 

be either 1 (occupied) or 0 (vacant).  

 

Fig. 20. Illustration of the 3-layer BHF for vacant space detection. 

 

In BHF, the topology of the inter-layer connections represents the probabilistic 

constraints between nodes as illustrated in Section 3.3. Given the observation IL, the 

status of the parking spaces is determined by finding the optimal pair ( *
LH , *

LS ) such 

that 

* *

,

,
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.               (20) 

The detail deduction of (20) is the same as that of (10). In the parking space detection 

system, p(IL|HL) constrains that the labeling results should be consistent with the RGB 

values of the observed image. Moreover, the labels of adjacent pixels should follow 

some kind of smoothness constraint. On the other hand, p(HL|SL) constrains that the 

labeling of parked cars and shadowed regions should match the expected 

inter-occlusion pattern and shadow pattern in a probabilistic sense. Finally, p(SL) 
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represents the prior knowledge of the parking space status. In our system, we assume 

the “occupied” status and the “available” status are equally possible for every parking 

space. With this assumption, the lnp(SL) term in can be ignored. Moreover, to find the 

optimal solution in (20), we adopt the graph-cuts technique as mentioned in Section 

3.4.  

4.3 Top-Down Knowledge From Scene Layer 
Since the parking spaces in a parking lot are well structured, we can synthesize 

an expected object map once if we have the 3-D car model and have a hypothesis 

about the status of parking spaces. On the other hand, if we know the lighting 

condition (sunny or cloudy) and have the direction of sunlight, we may also 

synthesize an expected shadow pattern. In our system, both expected object map and 

expected shadow map are created to help the labeling of image pixels. In our 

approach, p(HL|SL) is reformulated as 

( | ) ( ( , ) | )L L L L
m n

p H S p H m n S=∏∏ ,             (21) 

in which we assume the labeling nodes HL(m,n) are conditionally independent of each 

other once if the knowledge from the scene layer SL is given. Since the object type 

and the lighting type are physically independent, we formulate p(HL(m,n)|SL) as 

)|),(()|),(()|),(( L
L

L
O

LL SnmhpSnmhpSnmHp = .     (22) 

In physics, the object labeling model p(hO(m,n)|SL) includes the expected car mask 

and the inter-occlusion effect among neighboring cars; while the light labeling model 

p(hL(m,n)|SL) includes the expected shadow mask to indicate shadowed pixels. To 

define these two labeling models, we first introduce a parametric model to define the 

3-D structure of a parking lot. Based on the parametric scene model, we propose a 

generation process to generate the expected object labeling map and the expected 

shadow labeling map.   



 55

4.3.1 3-D Scene Parameters 

In our system, the number of parking space (Ns) and their locations on the 3-D 

ground plane are defined and learned in advance. In a normal situation, a car is parked 

inside a parking space. To simulate a parked car, we assume each car is a cube in the 

3-D world. The length (l), width (w), and height (h) of the cube are modeled as three 

independent Gaussian random variables, with the probability density functions p(l), 

p(w), and p(h). Besides, the random vector (l, w, h)T is assumed to be identically and 

independently distributed at different parking spaces. Here, the probability density 

functions p(l), p(w), and p(h) are pre-learned based on 120 parked cars. On the other 

hand, the 3-D ground plane of the parking lot is defined as a 2-D plane (X,Y,0). Inside 

the ith parking space, we assume the projection of the car center on the ground plane 

is represented by (Xi,Yi,0), where Xi and Yi are modeled as two randomly distributed 

Gaussian random variables with the probability density functions p(Xi) and p(Yi). The 

mean values of p(Xi) and p(Yi) are set to be the center of the ith parking space on the 

ground plane. Moreover, we assume the location pattern of parked cars at difference 

parking spaces is similar. That is, we assume the variances of p(Xi) and p(Yi) are 

independent of i. To train the variance values of p(Xi) and p(Yi), we measured for each 

of these 120 cars the deviation of the car center from the center of the parked space. 

To predict the shadowed regions, we model the lighting condition in the 3-D 

scene. In general, we may assume there are two major types of illumination in an 

outdoor environment: direct illumination from the Sun and ambient illumination from 

the sky. For each image pixel, it may be lighted by the skylight only, or lighted by 

both skylight and sunlight. Basically, shadow reflects the contrast of brightness for 

regions illuminated by different types of lighting. If the sunlight exists in the 

environment, the regions lighted by skylight only appear to be shadowed. On the 
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other hand, when sunlight is absent, we assume there is no shadowed region. 

Moreover, when sunlight is present, we assume the direction of sunlight is represented 

by a three dimensional vector (DX(t),DY(t),DZ(t))T, which is a function of time t. In our 

approach, the 3-D scene model of a parking lot is determined by the parameter set Φ, 

where 

{ ( ), ( ), ( ),{ ( ), , , , , ,  for 1,2,..., }}X Y Z L i i i i i sD t D t D t S i l w h X Y i NΦ = = .   (23) 

In Φ, {SL(i)} is the main unknown variable in scene model. The detailed deduction of 

the sunlight direction (DX(t),DY(t),DZ(t))T is to be explained later.   

4.3.2 Generation of Expected Labeling Maps 

4.3.2.1 Object Labeling Model 

In our system, once the 3-D scene parameters Φ are given, the expected object 

labeling and the expected shadow labeling on the captured images are automatically 

generated. Based on the projection matrix of the camera, a synthesized car parked at 

(Xi, Yi, 0) inside the ith parking space, with length li, width wi, and height hi, is 

projected onto the camera view to get the projection image Mi(m,n|Xi,Yi,li,wi,hi), 

which has the value 1 if the pixel (m,n) is within the projected region, and 0 otherwise. 

Since the size parameters (li,wi,hi) and the parked location (Xi,Yi) may vary from car to 

car, we take into account the prior probabilities p(li), p(wi), p(hi), p(Xi), and p(Yi) and 

define the expected car labeling map to be a probabilistic map Ci(m,n), which is the 

expectation value of Mi(m,n|Xi,Yi,li,wi,hi). That is, 

)],,,,|,([),(
,,,, iiiiiihwlYXi hwlYXnmMEnmC

iiiii

= .    (24) 

On the other hand, since the object type of an image pixel is either “Car” or “Ground”, 
the expected ground labeling map is defined as 

)],,,,|,([1),(
,,,, iiiiiihwlYXi hwlYXnmMEnmG

iiiii

−= .   (25) 
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In our system, we numerically calculate the expectation in (24) and (25) based on 

the Monte Carlo approach. Here, based on the prior probabilities p(li), p(wi), p(hi), 

p(Xi), and p(Yi), we draw a large set of sample tuples. For each sample tuple, say 

(lk,wk,hk,Xk,Yk), we synthesize a projection image. By averaging all projection images 

for all sample tuples, we get a probability map that approximates Ci(m,n). In Fig. 

21(b), we show the expected car labeling map of the car in Fig. 21(a).   

(a) (b)

(c) (d)

Fig. 21. (a) A 3-D car model. (b) Expected car labeling map of a parked car. 
(c)Expected car labeling of all parked cars. (d) Expected ground labeling of all 
parked cars. 

 

While taking all parking spaces into consideration, an image pixel at (m,n) in the 

ith parking space may get occluded not only by a car parked at that parking space but 

also by a car parked at an adjacent parking space. To model the inter-occlusion effect 

in the object labeling model, we define the probability 

( )

1

( ( , ) 0 | ) [ ( , ) ]
s

L

N
S io

L i
i

p h m n S G m n
=

= =∏       (26) 

where SL(i) is the status of the ith parking space. With (26), the probability of car 
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labeling at (m,n) given the status of all parking spaces can be formulated as 

( )

1

( ( , ) 1 | ) 1 [ ( , ) ]
s

L

N
S io

L i
i

p h m n S G m n
=

= = −∏    (27) 

In Fig. 21(c) and (d), we show the examples of ( ( , ) 1 | )O
Lp h m n S=  and ( ( , ) 0 | )O

Lp h m n S= , 
respectively. 

4.3.2.2 Shadow Labeling Model 

Similarly, by using a cube model for a parked car, the expected shadowed 

regions on the ground plane can be quickly determined in the 3-D space whenever the 

sunlight direction is known and the status of parking spaces are determined. An 

example is illustrated in Fig. 22. Here, we define ( , | , , , , )i i i i i iT m n X Y l w h  to be the 

projected shadow labeling image generated by a car parked at (Xi, Yi, 0) inside the ith 

parking space, with length li, width wi, and height hi. Similarly, by taking into account 

the prior probabilities p(li), p(wi), p(hi), p(Xi), and p(Yi), we define the expected 

shadow labeling map Si(m,n) in a probabilistic sense:   

)],,,,|,([),(
,,,, iiiiiihwlYXi hwlYXnmTEnmS

iiiii

= .      (28) 

Similarly, the expected non-shadow labeling map is defined as US i(m,n) = 1 – S i(m,n). 

In Fig. 22(b), we show the expected shadow labeling map of the car in Fig. 22(a). 

To model the shadow labeling model ( ( , ) | )L
Lp h m n S  with the consideration of all 

parking spaces, we define 

( )

1

( ( , ) 0 | ) [ ( , ) ]
s
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= =∏ .          (29) 

With (29), the probability of shadow labeling at (m,n) given SL is modeled by 

( )
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(a) 

 

(b)

 
Fig. 22. (a) Shadow formation. (b) Expected shadow labeling map. 

 

(a) (b)

(c) (d)

Fig. 23. (a) A 3-D car model. (b) Expected car labeling map of a parked car. 
(c)Expected car labeling of all parked cars. (d) Expected ground labeling of all 
parked cars. 

 

In Fig. 23(a) and (b), we show an example of the 3-D parking lot model and its 

expected shadow labeling map. To simplify the problem, we ignore the shadows cast 

upon the parked cars and only consider the shadows cast on the ground plane. With 

this assumption, a pixel with a higher probability of car labeling is less likely to be 

shadowed. Hence, we refine the probabilistic shadow labeling map to be 
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A refined shadow labeling map is shown in Fig. 23(d). 

4.3.3 Estimation of Sunlight Direction 

To generate the expected shadow labeling map, we need the direction of sunlight. 

The information of sunlight parameters is available on the internet, like the U.S. 

Naval Observatory website [78]. By providing the date and the geo-location of the 

parking lot, including longitude and latitude from a global position system (GPS), the 

web service can provide samples of sunlight direction for every 10 minutes. 

 
Fig. 24. Illustration of solar movement and sunlight direction. 

 

In our system, we adopt the concept proposed in [79] to calculate the sunlight 

direction. In principle, the solar motion model and the sunlight direction can be 

estimated based on the variations of intensity values in a day. In a single day, the solar 

motion follows a circle on the solar plane in the 3-D space, with a constant angular 

frequency ωs, as illustrated in Fig. 24. The angular frequency depends mainly on the 

self rotation of the Earth and is known in advance. The whole set of sunlight 

directions in a day form a conical surface and the cone aperture is equal to π-2δ, 
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where δ is the Sun declination angle approximated as 

36023.45 cos[(( ) ( 10)) ]
365

o o
dNδ = − ⋅ ⋅ +          (32) 

In (32), Nd is the number of days counted from January 1 to the current date. With this 

cone model, the sunlight direction over time can be parametrically represented by 

( ) {sin( ) cos( )[cos( ( )) sin( ( )) ]}s sD t n t t u t t sθ θδ δ ω ω= − + − + − ,   (33) 

where u  is a unit reference vector on the solar plane at time tθ, n  is the normal 

vector of the solar plane, and s n u= × . 

On the other hand, we assume the scene surfaces are mainly Lambertian surfaces. 

Hence, the intensity value reflected from a surface is proportional to the incident 

angle of the incident light with respect to the surface normal. The intensity value at an 

image pixel will climb to its maximum when the subtended angle between the 

corresponding surface normal vector and the sunlight direction reaches the minimum. 

As explained in appendix section A, if P  is the normal vector of a surface patch in 

the 3-D scene, the intensity value at the image pixel can be approximated as  

),()),(cos(),(),,( nmCnmtnmBtnmI pssun +−= θω ,     (34) 

which is a scaled cosine function plus a constant offset. Moreover, if θ represents the 

angle subtended by u  and the projection of P  on the solar plane, the phase shift θp 

of the cosine function is equal to θ up to a constant offset. In principle, if we pick up 

three image pixels, whose 3-D scene points lie on different surfaces with linearly 

independent normal vectors, we can deduce the geometric relationship between the 

solar plane and these three surface normal vectors [79]. For detailed deduction, please 

refer to Appendix A.   

In Fig. 25(a), we show three manually selected image pixels in the parking lot 

scene, one from the driveway and two from the bushes. These image pixels locate at 

three mutually orthogonal planes. The intensity profile of a pixel in green region is 
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shown in Fig. 25(b) as an example. By identifying the phase shift θp from each of 

these three intensity profiles, we can determine the sunlight direction )(tD  at any 

time instant t. Moreover, if a parking lot cannot provide these three mutually 

independent planes, an artificial cube is recommended to be set up in the parking lot 

scene. 

(a) 

 

(b) 

 
Fig. 25. (a) A parking lot image with three manually selected image pixels, 
marked in red, green, and blue. (b) The intensity profiles (blue) of the green 
pixel, overlapped with the fitted skylight profile (green) and the fitted 
skylight+sunlight profile (red). 

4.4 Bottom-Up Messages From Observation Layer 
In our parking space detection system, the bottom-up messages are embedded in 

the likelihood function p(IL|HL), which links the observation data with the labeling 

results. As mentioned in Section 3.3, p(IL|HL) is composed of a “classification energy” 

ED[IL(m,n),HL(m,n)] and an “adjacency energy” EA[IL(m,n),HL(m,n);Np]. That is, we 

have 
[ ( , ), ( , ); ][ ( , ), ( , )]( | ) A L L pD L L E I m n H m n NE I m n H m n

L L
m n

p I H K e e−−= ⋅∏∏ .    (35) 
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In (35), Np denotes a neighborhood around (m,n) and K is a normalization term. In the 
following subsections, we will explain the design of these energy models. 

4.4.1 Classification Energy Model  

4.4.1.1 Energy Model 

In our approach, we convert the RGB color features IRGB of each pixel into a 

semantic labeling. Here, we model the classification energy as 

[ ( , ), ( , )] ln( ( ( , ) | ( , ), ( , )))O L
D L LE I m n H m n p m n h m n h m n= − RGBI ,   (36)  

where p(IRGB|hO,hL) is the conditional probability distribution of IRGB given the 

semantic labeling (hO,hL). In (36), hO(m,n) could be C or G, and hL(m,n) could be S or 

US. For more detail, in Fig. 26, we show an example of color distributions in the RGB 

color space under the four different labeling statuses --- (C,S), (C,US), (G,S), and 

(G,US). 

(a) (b)

(c) (d)

Fig. 26. The color distributions (a) of shadowed ground pixels, (b) of un-shadowed 
ground pixels, (c) of shadowed car pixels, and (d) of un-shadowed car pixels.    
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Since the lighting condition changes from time to time, we need to dynamically 

adjust p(IRGB|hO,hL). Based on the image formation model explained in Appendix B, 

the trichromatic color vector IRGB at an image pixel can be represented as 

RiII RGBRGB = , where RGBI  is the norm of IRGB, R is a 3×3 matrix depending on 

surface reflectance, i is a vector depending on illumination, and 1=Ri . With this 

image formation model, we formulate p(IRGB|hO,hL) as 

)|()|(),|(),|( LOLOLO hphphhphhp iRII RGBRGB = .      (37) 

Since the reflectance of target objects (ground or cars) can be learned beforehand but 

the lighting condition is varying over time, p(R|hO) is learned off-line while p(i|hL) 

and p(||IRGB|| |hO,hL) are determined dynamically. Here, we build those probability 

models similar to the approach of [80] with a few modifications. First, instead of 

training the reflectance functions of only two objects (grass and ground in [80]) based 

on a single singular value decomposition (SVD) over one set of data, our application 

needs to collect the reflectance functions of various cars at different positions and at 

different time instants. This requires multiple SVD’s over different sets of data. Hence, 

we need to register the solutions of different SVD’s to deal with the ambiguity in 

SVD decomposition. Second, instead of clustering the daylight spectrums into only 

three classes, we determine p(i|hL) dynamically to deal with the continuously 

changing lighting condition. Third, in [80], the trained chromaticity values of different 

classes are used to initialize the classification of image content. Their intensity model 

is then on-line determined. However, owing to the wide range of car appearance, 

some cars may get confused with the ground in the chromaticity space. In our 

approach, we add in the scene knowledge to dynamically determine the intensity 

model p(||IRGB|| |hO,hL). Basically, given an image, there are two types of light: 

skylight and sunlight. Moreover, the ratio of reflectance between any two scene 
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patches can be well learned in advance. These two facts offer a possibility to on-line 

determine the intensity model of scene patches based on a few reference patches. 

Below, we explain the details of our approach. 

4.4.1.2 Learning of p(R|hO) 

In our experiments, we collected 5000 training samples of ground and cars to 

learn p(R|hO=G) and p(R|hO=C), respectively. Since the camera pose in our system is 

fixed, the captured images can be easily registered. To get the reflectance function of 

an object, we select a small surface patch with uniform illumination. To simplify the 

problem, we normalized IRGB by its norm to get the normalized RGB 

RGBRGB
N
RGB III /= . Assume there are P pixels inside the patch and we collect the 

samples for F registered frames. The illumination condition is the same for the whole 

patch at a certain time instant, but could be different at different time instants. On the 

contrary, the reflectance function could be different at different image pixels but is 

temporally invariant at the same pixel. Hence, for an image pixel at the spatial 

location p , its normalized RGB value at time instant k can be expressed as 

)()(),( kpkp iRIN
RGB = .                    (38) 

By arranging the normalized RGB values of all pixels inside the surface patch over F 

frames into a 3P×F matrix, we obtain the following formula 
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(39) 

where 1{ , , }Pp p=p  is the spatial locations of the P pixels and 1{ , , }Fk k=k  is 

the temporal indexes of the F frames. 

Given MRGB, we can decompose it into a reflectance matrix MR and an 

illumination matrix Mi, up to a 3×3 non-singular matrix Q. That is, if MR1 and Mi1 is 
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a pair of matrices that decompose MRGB, then MR2=MR1Q and Mi2=Q-1Mi is another 

decomposition pair. Fortunately, in the detection of vacant parking spaces, we only 

care about the difference in the surface reflectance matrix R but not the true value of 

R. As long as we fix the matrix Mi, two surface patches with different R will always 

have different MR. 

To decompose MRGB, we applied the SVD process over several planar patches to 

collect samples for the ground reflectance function and car reflectance function. For 

the car samples, we select the car roof as the planar patch, which is usually parallel to 

the ground plane. To deal with the ambiguity in matrix decomposition, we collected a 

set of image frames and manually selected a ground region in the parking lot scene as 

the reference patch, shown as the red patch in Fig. 27(a). By performing the SVD 

decomposition over the reference patch, we got the reference truth MR0 and Mi0. The 

reference truth Mi0 is used to register the illumination matrix of another spatial patch 

that are under the same lighting condition in the same set of image frames. On the 

other hand, the reference truth MR0 is used to register the reflectance matrix of the 

reference ground patch in another set of image frames. Based on SVD, with enough 

reflectance samples of cars and ground, we can construct the reflectance probability 

model p(R|hO). 

4.4.1.3 Learning of p(i|hL) 

The illuminant probability model p(i|hL) is determined based on the pre-trained 

model and the current image observation. Given an image, there are two types of 

regions: shadowed regions and unshadowed regions. By collecting many illumination 

samples i’s in shadowed and unshadowed regions, we can approximate p( i |hL=‘S’) 

and p( i |hL=‘US’). Since the reflectance matrix R of a scene patch can be learned in 

advance, we extract the illuminant component of some manually selected shadowed 
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and unshadowed regions to learn the off-line models poff( i |hL=‘S’) and poff( i |hL=‘US’). 

On the other hand, to deal with the continuously changing lighting condition, we also 

build the on-line models pon( i |hL=‘S’) and pon( i |hL=‘US’) based on the current image 

observation. The illuminant probability model is then determined based on a weighted 

combination of off-line and on-line models. That is, 

p( i |hL=‘S’)= ω1pon( i |hL=‘S’)+(1-ω1)poff( i |hL=‘S’)  and    (40) 

p( i |hL=‘US’) = ω2pon( i |hL=‘US’)+(1-ω2)poff( i |hL=‘US’).    (41) 

Here, ω1 and ω2 are determined by the ratio of the on-line training samples to the total 

training samples.   

 

(a) (b)

Fig. 27. (a) The reference ground patch (red) and the ground patches (pink) for the 
learning of ground reflectance function. (b) The car patches (pink) for the learning of 
car reflectance function. 

 

During on-line modeling, we need to determine whether a given illuminant 

sample is shadowed or unshadowed. Here, for the period from 10:30 to 14:00, we 

suppose all samples are unshadowed. For the other periods, the lighting situation is 

more complicated. In our parking lot scene, we identified a few regions that are 

always unshadowed, like some regions in the driveway. These driveway regions can 

be used as the reference regions for the ‘unshadowed’ case for both 

skylight-plus-sunlight case and skylight-only case. On the other hand, as shown in Fig. 
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25(b), the green region in the bush in Fig. 25(a), together with all the other planes 

parallel to that green region, is only lighted by skylight in the morning; while the blue 

region in Fig. 25(a), together with all the other planes parallel to that blue region, is 

only lighted by skylight in the afternoon. These two types of regions can be used as 

the reference regions for the ‘shadowed’ case when both sunlight and skylight are 

present. In Section 4.5.1, we will further explain how we check the presence of 

sunlight in the current image.   

 

4.4.1.4 Learning of p( ||IRGB|| | hO,hL) 

The intensity information ||IRGB|| is crucial in distinguishing cars from ground, 

especially when some cars may get confused with the ground in the chromaticity 

space. Unfortunately, ||IRGB|| is affected by the lighting source, the object reflectance, 

the object geometry, and even some unknown factors in the imaging pipeline such as 

automatic gain control and white balance. Hence, the modeling of the intensity model 

p(||IRGB|| | hO,hL) is more difficult. To build an adaptive intensity model based on 

current image observation, we propose a simplified linear model as expressed in (42) 

to model the intensity mapping from one object type (O1) in a scene patch to another 

object type (O 2) in another scene patch, under the same illumination type (L). 

LOOLOLOOLO ngag ,,,,,, 121122
+⋅= .        (42) 

In (42), gO,L denotes an intensity sample from the object type O under the illumination 

type L. Note that gO,L value is equal to the norm ||IRGB|| of a color pixel. 1 2, ,O O La  

represents the intensity ratio between objects O2 and O1 under illumination type L. 

1 2, ,O O Ln  is defined as a zero mean Gaussian noise that expresses the uncertainty in 

modeling the intensity ratio. Even though 1 2, ,O O La  is actually a random variable, we 
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found a deterministic setting works very well in our experiments. Here, we learn 

1 2, ,O O La  and the variance of 1 2, ,O O Ln  based on the following equations. 

2 1 2 1, , , ,ˆ /O O L O L O La g g= , and            (43) 

22
,,

22
,121,2,1,2

ˆˆˆˆ
LOLOLOO gLOOgn a σσσ −=             (44) 

In (43) and (44), ,O Lg  and 
,

2ˆ
O Lgσ  are the sample mean and sample variance of the 

intensity training samples. The training samples are manually collected from training 

image patches, with classified light type L and object type O. 

In our system, a few transformation models were pre-learned to generate the 

intensity model p( ||IRGB|| | hO,hL) dynamically. Here, we adopt the aforementioned 

reference regions, like the driveway regions that are always unshadowed and the bush 

regions that are always lighted by the skylight only. By using these reference regions, 

in which the lighting condition is already known, we learned the transformation 

models from each of these reference regions to the parking space ground and to the 

cars, respectively. After that, based on the learned transformation models and the 

current intensity values at these reference regions, we dynamically construct the 

intensity model p( ||IRGB|| | hO,hL). Similar to the deduction of the sunlight direction, if 

the parking lot scene cannot provide such reference regions, an artificial cube is 

suggested to be set up in the scene to form reference regions. 

4.4.2 Adjacency Energy Model  

In the parking lot scene, the local decisions of two adjacent labeling nodes are 

usually highly correlated. In this system, with the use of the original intensity image 

IL(m,n), we define the adjacency energy EA[IL(m,n),HL(m,n);Np] by using the smooth 

constraint explained in Section 3.3. Here, we briefly explain the design of the 
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adjacency energy model again.  

In our system, the adjacency energy EA[IL(m,n),HL(m,n);Np] is defined as 

[ ( , ), ( , ); ] [ , , , , , ] 
p p

A L L p A L L
m p n p

E I m n H m n N C I H m n m nβ
Δ =− Δ =−

≡ × Δ Δ∑ ∑
. 

With this definition, if two neighboring sites are set to different labels, our system will 

give a larger penalty if we find the color difference between two sites is small. 

Otherwise, our system will give a smaller penalty. That is, two neighboring sites tend 

to share the same label when the difference between their color features is small, and 

tend to have different labels otherwise.  

4.5 Vacant Parking Space Detection  

4.5.1   Optimal Inference of Parking Space Status  

With the top-down knowledge and the bottom-up message, we can infer the 

optimal *
LH  and *

LS  by solving the optimization problem in (10). In our approach, 

we get the initial guess of HL(m,n) by finding the labeling that minimizes the 

classification energy in (36). That is, we find the labeling image ( , )i
LH m n  such that 

)].,(),,([minarg),( nmHnmIEnmH LLDH

i
L

L

=           (45) 

On the other hand, since the status inference of a parking space depends on its 

neighboring parking spaces, we need to take into account relevant parking spaces 

when we infer the status of a parking space. In our experiments, a parked car casts a 

shadow to the right in the morning and to the left in the afternoon. Hence, we 

sequentially infer the status of each parking space from the bottom row to the top row 

and from left to right in the morning, and reverse the order in the afternoon. In Fig. 28, 

we show an example in the status determination of a parking space. Due to the 
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direction of sunlight, we check the parking spaces from left to right and from bottom 

to top. The red regions indicate those parking spaces whose status has already been 

inferred. The yellow circle indicates the parking space to be inferred at this moment. 

The green triangles indicate the relevant parking spaces. In this case, by trying 

different status combination of A and B spaces, four status hypotheses are to be tested. 

For each status hypothesis, we deduce the optimal HL(m,n) by using the graph-cuts 

algorithm, with the initial guess ( , )i
LH m n . The status hypothesis that achieves the 

maximum posterior probability is picked to infer the status of the current parking 

space. In our process, since the status of a parking space is only affected by its 

adjacent spaces, the system complexity grows linearly as the number of parking 

spaces increases.  

 
Fig. 28. Illustration of parking space status inference. 

 

Moreover, in an outdoor environment, the sunlight does not always exist. In the 

inference of parking space status, we need to determine whether the sunlight is 

present or not. In our approach, we first perform the optimal labeling based on the 

assumption that sunlight is present. After the optimal inference for the whole image, 

we divide those “ground” pixels into shadowed pixels and unshadowed pixels. In 

principle, if the sunlight is present, the RGB values of these two pixel groups should 
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reveal obvious difference. Hence, by calculating the Davies-Bouldin index (DBI) [81], 

which is defined as 

( ) ( )S US S USDBI S S μ μ= + − ,        (46) 

we can decide whether to accept the “presence” hypothesis or not. In (46), μs and μus 

are the mean RGB values of the shadowed cluster and the unshadowed cluster. Ss and 

Sus are the centroid distance of these two clusters defined as 

1

( )
kn

c i c k
i

S f nμ
=

= −∑ ,        (47) 

where c ∈{S, US}, nk is the total pixel number of the cluster, and fi is the RGB value 

of the ith pixel. When the DBI is smaller than a pre-defined threshold, we accept the 

“presence of sunlight” hypothesis. Otherwise, we take the “absence of sunlight” 

hypothesis and perform the optimal inference over the whole image again to get the 

final detection result.   

4.5.2  Refinement of Classification Energy Model 

In our system, after performing the optimal inference over an image, we obtain a 

semantic labeling (hO,hL) of the image that may provide useful information for the 

refinement of p(IRGB|hO,hL). The inferred semantic labeling (hO,hL) includes not only 

the bottom-up information but also the top-down knowledge. With the inclusion of the 

top-down knowledge, some pixels, which would be incorrectly labeled if only based 

on the classification models, can be correctly labeled. Those pixels usually correspond 

to non-Lambertian surfaces, like the car windows. Hence, based on the inferred 

optimal labeling (hO,hL), we re-compute the classification model p(IRGB|hO,hL) by 

checking the distribution of IRGB in the current image over different object types and 

different lighting types. The new model is then merged into the existing model for 

refinement: 
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In (48), wold and wnew determine the weights of the existing model and the new model. 

In our system, we empirically select (wold,wnew ) to be (0.2,0.8). Based on the refined 

model, the optimal labeling is re-estimated again. This optimization-refinement 

process is iteratively performed until the status inference of the parking spaces 

becomes stable. In our experiments, the refinement process usually converges in one 

or two iterations.   

4.5.3 System Setup and Online Vacant Space Detection 

To implement the whole system, several preparatory processes are required, as 

listed below. 

1. Calibration Steps 

a. Define a 3-D coordination system for the parking lot. Measure the 3-D 

location of each parking space. Here, we record the 3-D information in a 

blueprint. 

b. Perform camera calibration to compute the camera projection matrix. 

2. Offline learning of 3-D information 

a. Estimate the parameters of solar direction model based on the method 

introduced in Section 4.3.3. 

b. Collect 3-D training samples of vehicle length, width, and height to train the 

priors p(l), p(w), p(h). 

c. Collect 3-D location deviation samples to train p(X), and p(Y). 

3. Offline learning of 2-D information 

a. Collect reflectance samples to train the reflectance models of ground and 

cars, based on the method mentioned in Section 4.4.1.2. 
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b. For different time period, manually select unshadowed and shadowed 

reference regions in the image. 

c. Collect illuminant samples to train the offline illuminant probability model 

of the shadowed regions and unshadowed regions, based on the method 

mentioned in Section 4.4.1.2. 

d. Based on the method mentioned in Section 4.4.1.2, learn the intensity 

mapping models from each of these reference regions to the ground and to the 

cars. 

In our experiments, it took about five days to finish the above system setup 

processes for each parking lot. After system setup, the following processes are 

performed to dynamically detect vacant parking spaces. 

a.    Determine the current sunlight direction based on the pre-learned solar 

movement model. This solar movement model is updated for every few days. 

b. Based on the learned 3-D information, the sunlight detection, and the 

projection matrix, generate the expected object and shadow labeling models. 

c. Extract illuminant samples from pre-selected reference regions to update the 

illuminant probability model. 

d. Based on the pre-learned intensity mapping models, establish the intensity 

model of different classes. 

e. Combine object reflectance models, illuminant probability models, and 

intensity models to build the classification models. 

f. Incorporate classification models, expected labeling models, and adjacency 

model into the BHF to detect vacant parking spaces.   

 



 75

4.6 Experiment Results and Discussion 

4.6.1 Experiment Setup and Test Data 

In our experiments, we tested two different parking lots for performance 

evaluation. In each test, we set up an IP camera on the roof of a building near the 

parking lot. The camera was geometrically calibrated beforehand and monitored the 

status of parking spaces from morning to evening. Both experiments report similar 

detection accuracy. To avoid confusion, we mainly present the results and the analysis 

over the first parking lot. At the end of this section, we briefly present the detection 

performance over the second parking lot. 

Fig. 18 shows a few image shots of the first parking lot. Within the image view, 

there are 46 parking spaces in total. To evaluate the performance of our system, we 

tested three image sequences under different weather conditions. The first sequence 

was captured in a normal sunny day. The second sequence was captured in a day with 

very strong sunlight so that there were plentiful over-exposed regions in the images. 

The third sequence was captured in a day with unstable lighting condition. In this 

sequence, the lighting condition dramatically switched between sunny and cloudy. For 

each sequence, the recording time was from 8:00am to 5:00pm. Since the status of the 

parking condition was slowly changing, we performed vacant parking space detection 

for every five minutes. In total, we tested the status of 14766 spaces. In these three 

sequences, the shadow patterns varied from morning to evening. Sometimes, the 

shadowed regions suddenly disappeared when the sunlight was blocked by a cloud. 

The variations of illumination caused apparent drifts in color and brightness. These 

three sequences with vacant space detection results and ground truth are available at 

our website [82]. 
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4.6.2 Object/Shadow Labeling and Accuracy of Vacant 

Space Detection 

Many previous studies suggested the vacant spaces be detected by labeling the 

car pixels, such as Tsai et al. [13], or by labeling the ground pixels, such as Funck et 

al. [11]. In our method, we modeled both cars and ground plane for object labeling. In 

Fig. 29, we compare the results of car pixel labeling based on Tsai’s method [13] and 

ours. Here, we show the image portions that were labeled as “car”. Based on Tsai’s 

method, many shadowed ground regions were labeled as car pixels, many 

over-exposed car regions were labeled as ground pixels, and some car regions were 

mistakenly labeled as ground pixels. In comparison, our parking space detection 

system provided more accurate car regions and was less sensitive to the shadow effect. 

In Fig. 30, we compare the results of ground pixel labeling based on [11] and our 

method. Both [11] and our method used adaptive models for labeling. However, the 

method in [11] did not take into account the shadow effect and many shadowed 

ground regions were classified as car pixels. In comparison, most shadowed ground 

regions are correctly identified by our method.   

Even though the proposed adaptive models can better handle the shadow effect, 

many pixels were still misclassified if the scene knowledge was not involved. An 

example is presented in Fig. 31, where we show the labeling results with and without 

the scene knowledge. Especially, there were some pepper-like errors inside the car 

regions as shown in Fig. 31(c) which were caused by the ambiguity in color 

appearance. It is difficult to remove those errors if we only rely on color models. In 

our system, the scene information in the expected labeling maps provides constraints 

to remove that kind of errors. To deal with the color ambiguity between dark cars and 

shadowed ground, the expected shadow labeling map clearly constrains the location 
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of shadowed regions. On the other hand, if a region is to be occupied by a car, the 

expected object labeling map reveals the probable regions of car pixels and disfavors 

the occurrence of pepper-like labeling. Moreover, the expected object labeling map 

also reveals the expected occlusion effect and the perspective distortion. By taking 

into account these kinds of scene knowledge, more accurate and reliable detection 

results were obtained, as shown in Fig. 31. 
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(a) (b) (c) 
Fig. 29. Comparison of car pixel labeling. (a) Test images. (b) Regions 
labeled as car pixels based on [13]. (c) Regions labeled as car pixels based 
on the proposed method. 
 

  

  

(a) (b) (c) 
Fig. 30. Comparisons of ground pixel labeling. (a) Test images. (b) Regions 
labeled as ground pixels based on [11]. (c) Regions labeled as ground pixels 
based on our method. 
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(a) (b) (c) 
Fig. 31. The detection and labeling results at three different time instants. For 
each case, the images from the top are the test image, the car labeling without 
scene knowledge, the car labeling with scene knowledge, the shadow labeling 
without scene knowledge, and the shadow labeling with scene knowledge. 
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To assess the detection accuracy of our system, we manually built the ground 

truth of 14766 parking spaces. To evaluate our system from different aspects of 

environmental variations, we assessed the detection performance over a day, over 

different periods of a day, and over different regions of the parking lot. To 

quantitatively evaluate the performance, the false positive rate (FPR), false negative 

rate (FNR), and system accuracy (ACC) were calculated. In our simulation, the 

methods proposed by Dan [76], Wu et al. [77], and Huang et al. [46] were tested for 

comparison. The Receiver Operating Characteristic (ROC) curves of the four methods 

are also plotted in Fig. 32 for comparison. Here, we consider three test image 

sequences. For each image sequence and each method, the area under the ROC curve 

(AUC) is also calculated and provided in the Fig. 32 for reference. 

As listed in  

Table 1, the proposed method worked well in all three test sequences. We further 

divide a day into three periods: morning (8:00~11:00), noon (11:00~14:00), and 

afternoon (14:00~17:00). Generally, the afternoon period has the most serious shadow 

effect, while the noon period has almost no shadow at all. By calculating the ACC of 

those three periods, we found the ACC is inversely proportional to the degree of 

shadow effect. Moreover, we also evaluated the performance of detection over 

different regions to evaluate the influence of perspective distortion. As shown in  

Table 1, perspective distortion does not cause serious degradation in our 

experiments. Moreover, even though some portions of the 1st row were occluded by 

the trees, the proposed system still accurately inferred the status of the parking spaces.  

We also implemented our system in another parking lot. For each 320×240 tested 

image, there are 64 spaces inside. In total, we tested the statuses of 6912 spaces in that 

parking lot. In Fig. 33, we show some detection results in the second parking lot. The 

ACC, FPR, and FNR are 0.988, 0.0185, and 0.0097 respectively. The complete 
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detection results of the second parking lot are also available at our website. 

(a) 

 

(b) 

 

(c) 

 

Fig. 32. The Receiver Operating Characteristic (ROC) curves of our method, 
Huang’s method [46], Wu’s method [77], and Dan’s method [76], with the values of 
the area under ROC (AUC) for (a)“Day 1” (b)“Day 2”, and (c)“Day 3” image 
sequences.  
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Table 1. Performance comparison of four vacant space detection algorithms. 

# of tested

spaces 
Proposed method Huang [46] Wu [77] Dan [76] 

Test Data 

vacant parked FPR FNR ACC FPR FNR ACC FPR FNR ACC FPR FNR ACC 

Image 

Seq. 1 

(Day 1) 

491 4431 0.0004 0.0081 0.9988 0.0004 0.1690 0.9827 0.0111 0.7115 0.9193 0.0307 0.5748 0.9153

Image 

Seq. 2 

(Day 2) 

278 4644 0.0024 0.0324 0.9959 0.0002 0.2626 0.9850 0.0016 0.7837 0.9577 0.0101 0.7061 0.9537

Image 

Seq. 3 

(Day 3) 

206 4716 0.0040 0.0437 0.9943 0.0042 0.1019 0.9917 0.0018 0.7012 0.9739 0.0073 0.6524 0.9703

Morning 

period of 

3 Seq. 

380 4588 0.0031 0.0105 0.9964 0.0011 0.2026 0.9835 0.0004 0.4955 0.9646 0.0097 0.4478 0.9594

Noon 

period of 

3 Seq. 

367 4601 0.0015 0.0082 0.9980 0.0015 0.0381 0.9958 0.0045 0.8632 0.9360 0.0179 0.7629 0.9306

Afternoon 

period of 

3 Seq. 

228 4602 0.0024 0.0658 0.9946 0.0024 0.3772 0.9799 0.0091 0.8920 0.9502 0.0195 0.6948 0.9494

1st & 2nd 

rows of 3 

Seq. 

644 6739 0.0019 0.0233 0.9962 0.0025 0.1770 0.9823 0.0068 0.6960 0.9377 0.0179 0.5641 0.9381

3rd & 4th 

rows of 3 

Seq. 

98 5359 0.0015 0.0306 0.9980 0.0009 0.3163 0.9934 0.0028 0.6933 0.9871 0.0059 0.6933 0.9840

5th row of 

3 Seq. 
233 1693 0.0065 0.0172 0.9922 0.0006 0.1373 0.9829 0.0024 0.8240 0.8982 0.0366 0.7554 0.8764
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(a) 

(b) 

(c) 

Fig. 33. The proposed detection and labeling results at three different time 
instants in another parking space. For each case, the images from the left are 
the test image, the parking space detection results, and the car labeling 
results. 

4.6.3 Discussion and Future Works 

The whole system has been implemented in the Visual C++ environment on a PC 

with a 2.0GHz Pentium-4 CPU. It takes about 30 seconds to perform the space 

detection and labeling of parking spaces for a 320×240 color image with 46 spaces 

inside. The major CPU time is spent on building the online models, including the 

expected object labeling model, the expected shadow labeling model, and the color 

classification model. Even thought the execution time takes a little while, the speed of 

the proposed system is still reasonably fast to support practical parking space 

detection systems. Although the complexity of our system is already affordable for 

practical applications, the speed can be further boosted if we either adopt parallel 
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programming techniques, such as Open Multi-Processing (OpenMP), to fully use the 

computing power of a multi-core processor, or to adopt General-purpose computing 

on graphics processing (GPGPU).  

In our system, people in the parking lot may affect the detection of vacant 

parking spaces. However, people tend to dynamically move in the scene. By taking 

the temporal information into consideration, the problem of walking pedestrians can 

be relieved. On the other hand, even though our system works very well in an outdoor 

parking area during the daytime, there exist still several challenging issues, like how 

to manage an indoor parking area, how to detect vacant spaces in an outdoor parking 

lot during the night, and how to handle the unexpected shadow caused by other 

environmental objects. For an indoor parking area, the severe occlusion and the 

limited camera field of view could be the major challenges. Considering cost and 

efficiency, a possible solution is to build a low-cost camera sensor network. To detect 

vacant spaces in evening, we may need to consider multiple lighting sources while 

generating the expected shadow maps. We also require a new mechanism to handle 

the unpredictable lighting change caused by car headlights. All these discussions 

would be the future works of our vacant parking space detection system.  
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CHAPTER 5 
 

 

 

Multi-Target Correspondence and 
Labeling with Ghost Suppression 
over Multi-Camera System 
______________________________________________ 

5.1 Introduction  
In recent years, plentiful vision based techniques have been investigated to boost 

intelligent functionalities of modern surveillance systems. Among those technologies, 

object detection and labeling are especially crucial. For a single-camera system, these 

two processes are the fundamental steps for advanced analyses, like object tracking 

and behavior understanding. Up to now, many frameworks have been used to detect 

and label targets of interest. For example, Schneiderman and Kanade [68] proposed a 

trainable object detector for the detection of faces and cars, based on the statistics of 

localized parts. Adaboosting detection algorithm [69] is another widely used 

technique for the detection of specific objects in 2-D images. However, since a 2-D 

image lacks 3-D depth information, the detection of targets usually suffers from the 
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occlusion problem, especially when multiple targets appear in a complicated scene.  

An alternative way to deal with the occlusion problem is to use a multi-camera 

system. The cross reference of multiple camera views can effectively handle the 

occlusion problem and provide a reliable way for object labeling and correspondence. 

Up to now, several multi-camera surveillance systems have been proposed for 

multi-target correspondence. These approaches can be roughly classified into two 

major categories – “direct correspondence” and “indirect correspondence”. For a 

“direct correspondence” approach, moving objects are detected in each 2-D camera 

view first. After that, object correspondences are built among 2-D camera views and 

2-D detection results in different camera views are fused together to support 

surveillance over the 3-D space. For instance, In [83], Khan et al. found the 

overlapped fields of view among cameras. Whenever a moving object enters an 

overlapped region, the correspondence of this object with respect to its counterparts in 

other camera views can be established. In [84], Hu et al. proposed a principal 

axis-based correspondence among multiple camera views. This method offers robust 

results and can tolerate a certain level of defects in the motion detection and 

segmentation of each camera view. Moreover, the typically required camera 

calibration step is not a necessity in their system. In [85], Black and Ellis established 

the correspondence by comparing the distance between the projected epipolar lines 

and the detected objects in each 2-D image. For a multi-camera system with a narrow 

baseline setup, the use of epipolar constraint provides an efficient way to establish the 

correspondence.  

Basically, most “direct correspondence” approaches require the foreground 

regions of each target be correctly extracted in each camera view to ensure reliable 

correspondence. However, with the presence of occlusion, this requirement cannot be 

easily achieved. In [86][87] , Mittal and Davis launched the correspondence of objects 
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by matching the color appearance of segmented regions along epipolar lines in pairs 

of camera views. In their approach, the mid-points of the matched regions are 

projected onto the 3-D space to yield a 3-D probability distribution map for the 

description of object position. Although this method may relax the need of accurate 

foreground extraction, it has the extra requirement of color calibration among multiple 

cameras. Incorrect correspondence may also occur while matching objects with 

similar color appearance.  

In the “indirect correspondence” category, a multi-camera system fuses 

multi-view information onto a pre-selected data-fusion space. The fused information 

is then projected back to each camera view to build object correspondence. Typically, 

the 3-D space is chosen as the space for data fusion. For example, Utsumi et al. [88] 

proposed the adoption of intersection points, which are the intersections of the 3-D 

lines emitted from the 2-D tracking results of different camera views. In that approach, 

a mixture of Gaussian functions was used to describe the possible positions of moving 

objects in the 3-D space. By projecting these 3-D Gaussian distributions back to 

individual 2-D image plane, the object correspondence among camera views is 

derived in a probabilistic manner. On the other hand, Fleuret et al. [89][90][91] 

adopted a simple blob detector in 2-D analysis and introduced a generative model to 

fuse data from multiple views. In their system, a discrete occupancy map is designed 

to describe whether an individual target is standing at a specific ground location in the 

3-D space. After that, the most likely trajectory of each individual over the 3-D 

ground plane is traced via the Viterbi algorithm. In [92][93], Huang and Wang 

proposed a model-based approach to efficiently fuse consistent 2-D foreground 

detection results from multiple camera views. A probabilistic method is further 

proposed to simultaneously label and map multiple targets based on a Markov 

network.  
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Instead of fusing multi-view information onto the 3-D space, Khan and Shah [94] 

chose one of the 2-D camera views as the reference view for data fusion. In their 

approach, without relying on complicated camera calibration, they built a few 

homography matrices to map the projected ground planes in multiple camera views. 

After that, they fused the foreground likelihood information from multiple views to 

the scene plane in the reference camera view in order to generate a probability map of 

the target location. Owing to the geometric consistence, the fused target location 

probability map, named the “synergy map” in [94], would indicate a higher 

probability for a true target location. The synergy map was finally rectified so that the 

target location on the reference image is remapped to the relative ground plane 

location in the 3-D space. Since the fused synergy map is built over a 2-D image 

space, the spatial resolution of the target location is influenced by the perspective 

projection and is non-uniform in the 3-D space. A target far away from the reference 

camera would have a lower location resolution, while a target close to the reference 

camera would have a higher resolution. In addition, it is a little complicated to utilize 

the prior knowledge of the 3-D targets into this 2-D fusion framework. 

For these aforementioned “indirect correspondence” approaches, certain 

geometric ambiguity may cause “ghost objects” in the 3-D space. The ghost effect is 

another form of the inter-occlusion problem and is a classic problem in 3-D object 

reconstruction. Owing to the limited number of cameras around the surveillance zone, 

some ghost objects may occasionally fulfill the geometric consistency and appear in 

the reconstructed 3-D scene. These fake targets could severely affect the accuracy in 

building object correspondence. In recent years, several approaches have been 

proposed to suppress ghost objects in multi-camera applications. Including the 

aforementioned method in [94], most methods used the temporal consistency to 

remove ghost targets. For example, given a limited number of 2-D camera views, 
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Otsuka and Mukawa [95] proposed a framework of multi-view occlusion analysis to 

track objects. Once if occlusion patterns are detected, some occlusion hypotheses are 

launched to indicate the uncertainty caused by occlusion. Since an occlusion structure 

usually lasts only for a short period, those hypotheses are tested recursively based on 

the temporal consistency to suppress fake detection. In [96], on the other hand, Guan 

et al. suppressed ghost targets by considering the consistency of color appearance. By 

projecting 3-D objects onto different image views, they identify ghost objects based 

on dissimilarity of colors. Moreover, their approach may automatically learn the 

appearance models for different objects in different camera views during the tracking 

process. This eliminates the requirement of color calibration among different cameras.  

In this dissertation, we propose a new approach to efficiently integrate, 

summarize, and infer video messages from multiple client cameras. Even though we 

only use a simple foreground object detector to obtain imperfect foreground detection 

results, our system can still efficiently determine the number of moving targets inside 

the surveillance zone and accurately track the 3-D trajectories of the tracked targets. 

Besides, our approach can perform image labeling in a pixel-level manner and match 

targets among multiple camera views. The rest of this chapter is organized as follows. 

In Section 5.2, we present the main idea of the proposed framework, which is 

composed of a data fusion stage and an inference stage for multi-target labeling and 

correspondence. In Sections 5.3 and 5.4, we explain the details of the fusion stage and 

the inference stage, respectively. Experimental results and discussions are presented in 

Section 5.5.  

5.2 System Overview 
In this system, we focus on a client-server surveillance setting, which monitors a 

zone with multiple client cameras. The main goal of our system is to detect, locate, 
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correspond, and label multiple targets, especially for walking people in the zone. 

Without knowing the number of targets in advance, it would be a challenge to 

efficiently analyze the inter-occlusion situation among targets while locating and 

labeling targets.  

To handle the inter-occlusion problem, previous works [89][90][91][96] checked 

the possible points over a discrete domain, like a lattice of discrete ground locations 

or a set of 3-D voxels. At each point, a random variable is attached to represent the 

probability of having a target at that point. By considering the joint probability among 

random variables and the relative position among targets, the inter-occlusion situation 

can be well modeled and the moving targets can be detected. Basically, those previous 

works couple the detection of candidate locations with the analysis of inter-occlusion. 

This coupling leads to a trade-off between location accuracy and computational cost.  

In our approach, we decouple the detection of target locations from the analysis 

of inter-occlusion. The basic idea is to detect the candidate target locations in the first 

stage and then spend computations only over those candidate locations for 

inter-occlusion analysis. This two-stage procedure may preserve the accuracy of target 

location without dramatically increasing the computational cost. 

5.2.1 System Property  

In our system, we adopt an “indirect correspondence” approach that fuses 2-D 

information from a set of calibrated cameras to perform labeling and correspondence 

of multiple targets in the surveillance zone. The proposed scheme has two major 

features. First, to suppress the ghost targets caused by geometric ambiguity, the 3-D 

scene model in our framework is defined in a probabilistic manner. Second, instead of 

applying a fixed 3-D target model to all tracked targets, we use the BHF (Bayesian 

Hierarchical Framework) structure with an expectation-maximization mechanism to 
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on-line refine the 3-D target model for each individual target. Moreover, our system 

can locate, correspond, and label multiple targets over a multi-camera surveillance 

system, with the capability of ghost suppression and target model refinement.  

If compared with other relevant works, the proposed system includes three major 

contributions. First, we introduce a fusion-inference procedure to decouple the 

detection of target locations from the analysis of inter-occlusion so that the trade-off 

between location accuracy and computational cost are relieved. Second, in the fusion 

stage, we suggested a model-driven approach to achieve more robust fusion under 

imperfect foreground detection. Third, in the inference stage, the labeling, 

correspondence, and inference of 3-D target model, together with the suppression of 

ghost targets, are modeled in a unified framework and are resolved via an 

optimization process. Under the proposed system, we can systematically estimate the 

target number and tackle the inter-target occlusion problem. Moreover, the proposed 

system requires neither accurate foreground/background separation nor color 

calibration among multiple cameras.  

5.2.2 System Flow  

In our fusion-inference scheme, we design a data fusion stage to detect candidate 

targets and their 3-D locations. After that, target identification, image labeling, and 

inter-occlusion are analyzed under the proposed BHF framework in the inference 

stage. The inferred target labeling and correspondence results are further used to 

refine the 3-D target model. In Fig. 34, we illustrate the system flow of the proposed 

system. 



 92

 

Fig. 34. System flow of the proposed system. 

 

In the data fusion stage, a model-based approach is used to efficiently fuse 

consistent 2-D foreground detection results from multiple camera views. Here, we 

formulated a posterior distribution, named target detection probability (TDP), as the 

fused message pool to indicate the probability of having a moving target at a certain 

ground location. Based on the TDP distribution, the candidate targets and their 

locations can be identified in a probabilistic manner, which combines a sample-based 

representation of TDP and Mean-Shift clustering [97]. Moreover, with the use of 3-D 

target model, our fusion scheme may work reasonably well even with imperfect 

foreground extraction.  

After data fusion, a set of candidate targets are detected that include both true 

targets and ghost targets. Since the occurrence of ghost targets is geometrically 

consistent with the 2-D foreground detection results, existing methods attempt to 

suppress ghosts by checking some other properties, like photometric consistency and 

temporal consistency. In our system, we use a few 3-D priors about the surveillance 

scenario, such as the assumption that human stands on the ground plane, the 

probability distribution of the target height, and the probability distribution of the 

target location, to distinguish true targets from ghost targets. By properly integrating 

these 3-D priors into the scene knowledge, we can greatly simplify the ghost problem. 
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Moreover, in this system, we used the BHF framework to unify the processes of target 

labeling, target correspondence, and ghost suppression into a Bayesian inference 

process. Here, the labeling layer in BHF not only plays an intermediate role in the 

hierarchical framework but also provides a feedback route to refine the scene 

knowledge based on an EM (Expectation-Maximization) mechanism. In the following 

sections, we will explain in detail how we design the fusion stage and the inference 

stage of our system.  

5.3 Information Fusion and Summarization  

5.3.1 Foreground Detection on Single Camera  

To fulfill the speed requirement of a real-time multi-camera system, we only 

consider the 2-D foreground detection results as the observation data. In our system, 

the intrinsic and extrinsic parameters of all cameras are well calibrated beforehand. 

For each camera, we build its reference background based on the Gaussian mixture 

model (GMM) [98]. The foreground image is determined by checking the frame 

difference between the current image and the reference background in a pixel-level 

manner. Besides, to remove shadows, the frame difference operation is performed 

over the chromatic domain, rather than the achromatic domain. However, although the 

GMM background subtraction method can deal with gradually changing illumination 

through on-line background learning, it may still falsely reject some foreground pixels 

whose appearance happens to be similar to that of the reference background. As 

shown in Fig. 42(b), Fig. 43(b), and Fig. 44(b), the detected foreground objects are 

usually neither perfectly silhouetted nor well connected. 

5.3.2 Information Fusion  
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In the fusion step, we integrate the 2-D foreground detection results from a set of 

camera views to offer global 3-D information. To fuse 2-D information, most existing 

methods adopt a data-driven approach to back-project the 2-D foreground regions into 

a 3-D visual hull, as plotted in blue in Fig. 35(a). By accumulating the number of 

voxels of the visual hull along the normal direction of the ground plane, we can build 

a histogram that indicates the likelihood of having a candidate target on the ground 

plane, as illustrated in Fig. 35(b). However, since the extracted 2-D foreground 

silhouettes are usually fragmental and far from perfect, the reconstructed visual hull 

could be very different from the original 3-D target and the deduced voxel histogram 

could be seriously biased from the true location, as illustrated in Fig. 35(c) and (d). 

 To improve the accuracy in the estimation of target location, we adopt a 

model-driven approach to fuse 2-D information. In the proposed method, a so-called 

Target Detection Probability (TDP) distribution is defined to estimate the probability 

of having a moving target at a ground location. In Fig. 35(f), we show the estimated 

TDP distribution based on the incomplete foreground images in Fig. 35(e). It can be 

seen that the model-based approach provides a more reliable estimation of the target 

location. The detail of this model-driven approach is to be explained as follows.  

In our approach, the TDP distribution is formulated as a posterior distribution, 

which is expressed below based on the Bayes rule:  

);|,,()(~);,,|()( 11 ΘΘ≡ XFFpXpFFXpXG NN .   (49) 

In (49), X represents a location (x1,x2) on the ground plane of the 3-D space. N is 

the total number of cameras in the multi-camera system. Fi denotes the foreground 

detection result of the ith camera view. Θ defines the set of camera parameters of all N 

cameras. To simplify the formulation, we’ll ignore Θ in the following deductions. 

Moreover, p(X) is used to define the prior information about the targets’ possible 
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locations in the surveillance zone. If there is no specific knowledge about the possible 

locations of the moving targets, we can simply define p(X) to be uniformly distributed 

over the ground plane of the surveillance zone. 

 

  

(a) (b) (c) 

   

(d) (e) (f) 

Fig. 35. (a) Visual hull constructed from the foreground images of two camera 
views. (b) The voxel histogram based on the visual hull in (a). (c) Visual hull 
constructed from fragmented foreground images. (d) The voxel histogram based on 
the visual hull in (c). (e) The proposed pillar model in the 3-D space. (f) The 
estimated TDP distribution based on the foreground images in (e). (The red bar in 
(b)(d)(f) represents the true target position.) 

  

To define Fi, we use (m,n) to represent the 2-D coordinate system of the ith 

camera. If this camera has the image size Ms × Ns, we define the image view V of the 

ith camera to be the set of (m,n) with 0≤ m ≤ (Ms-1) and 0≤ n ≤ (Ns-1). With this 

notation, based on the foreground detection result on the ith camera view, we define 

Fi as  
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In (50), PL is a trainable constant designed to indicate the possibility that there could 

be some other foreground objects out of the field of view of the ith camera.   

Moreover, given the location X, we assume the foreground detection results are 

conditionally independent of each other. With this assumption, we rewrite (49) as 

∏
=

=
N

i
iN XFpXpXFFpXp

1
1 )|()()|,,()( .      (51) 

To formulate p(Fi|X), we model a moving person at the ground position X as a 

rectangular pillar, as shown in Fig. 35(e). The height H and width R of the rectangular 

pillar are modeled as independent Gaussian random variables, with their priors p(H) 

and p(R) being pre-trained based on the training data collected from the health center 

of our university. Based on the pre-calibrated projection matrix of the ith camera, a 

target at X with height H and width R can be projected onto the image plane of the ith 

camera to obtain the projection regions. Here we define the projection image Mi on 

the ith camera view as 

1     ( , )  
( , | , , )

0     ( , )  i

if m n projected regions
M m n H R X

if m n projected regions
∈⎧

= ⎨ ∉⎩
.  (52) 

Please note that the projected regions in (52) could be out of the image view V of the 

ith camera.  

With Fi and Mi, the normalized overlapping area, Ωi, is defined as  

( , ) ( , | , , )
( , , )

( , | , , )
i i

i
i

F m n M m n H R X dmdn
H R X

M m n H R X dmdn
Ω ≡ ∫ ∫

∫ ∫
. (53) 

By taking into account the prior probabilities p(H) and p(R), an estimate of p(Fi|X) is 

defined as  

∫∫Ω≡ dHdRRpHpXRHXFp ii )()(),,()|( .    (54) 
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In our approach, (54) is calculated numerically based on the Monte Carlo 

approach. Here, we draw a set of sample pairs (H,R) based on the prior models p(H) 

and p(R). For each sample pair (H,R) and a target location X, we evaluate its 

correlation value Ωi. By averaging the correlation values over all sample pairs, we 

estimate p(Fi|X) in a statistical manner. 

5.3.3 Representation of TDP and Information 

Summarization 

To numerically calculate TDP, we calculate G(X) over a Kn by Kn lattice on the 

ground plane. For each node Xi of the lattice, its value Wi=G(Xi) indicates the 

probability of having an object at that location. The sample set {Xi,Wi}i=0~S-1, with S = 

Kn
2, is then used to approximate the TDP distribution. In our experiments, we set Kn = 

100 and S = 10000.    

 

 
(a) (b) 

Fig. 36. (a) The TDP of four moving targets in the surveillance zone.  
(b)The bird-eye view of (a). 

 

Based on the TDP distribution, we summarize some useful information about the 

3-D scene, including the number of candidate targets, the most likely position of each 

candidate target, and the unique ID of each candidate target. Typically, the TDP 

distribution contains several clusters, with each cluster indicating a moving target on 

the ground plane. Hence, the detection of multiple moving targets can be treated as a 
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clustering problem over the TDP distribution. In Fig. 36(a), we show an example of 

the TDP distribution, which are fused from the foreground detection results of four 

cameras. To perform clustering over the TDP distribution, we apply the Mean-Shift 

clustering algorithm [99] over the sample set {Xi,Wi}i=1~S. This mean-shift clustering 

method is efficient in mode searching and does not require the prior knowledge of the 

cluster number. By iteratively calculating the next position yj+1 based on the following 

equation   
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we can identify a few converging points [99]. In (55), h is a parameter that controls 

the kernel size. With the mean-shift algorithm, those samples that converge to the 

same converging point are grouped as the same candidate target and are assigned the 

same ID.  

Based on the clustered groups, we determine the number of candidate targets. 

Moreover, assume we have identified M candidate targets on the ground plane with 

the ID’s: T1, T 2, … , TM. If we denote the Rs samples that belong to Tk as {Xk,0, Xk,1, …, 

Xk,Rs-1} with the corresponding weights as {Wk,0, Wk,1, …, Wk,Rs-1}, we can estimate the 

position distribution function p(X|Tk) for Tk. Here we model p(X|Tk) as a Gaussian 

function. The mean vector and covariance matrix of p(X|Tk) are estimated based on 

(56) and (57). 
1 1

, , ,
0 0

( ) ( )
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= ∑ ∑               (56) 
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− −

= =

= − −∑ ∑C    (57) 

Under the assumption that p(X|Tk) is a Gaussian distribution, the location of Tk is 

estimated to be kμ , which is the minimum-variance unbiased estimate of the 
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location.  

5.3.4 Ghost Object 

From time to time, ghost clusters may occur in the TDP distribution. 

Geometrically, the ghost effect happens when the projection of a rectangular pillar at 

an incorrect location accidentally matches the foreground detection results on the 

camera views. In Fig. 37, we present an illustration of the ghost problem when trying 

to reconstruct the 3-D scene based on two camera views. In this case, there are four 

reconstructed targets while only two of them are true. As a result of the limited 

camera views, two extra ghost objects occur even based on perfect 2-D silhouettes. 

 

 

 
Fig. 37. An illustration of the ghost problem when trying to reconstruct a 3-D scene based 
on two camera views.   
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5.4 Bayesian Inference and Ghost Suppression 
After information summarization, we have identified a few candidate targets and 

their possible locations. For each candidate, we have to decide its status to be either a 

true target or a ghost target. However, owing to the inter-occlusion among candidate 

targets, the status of a candidate target may actually affect the inference of other 

candidates. Hence, in our approach, the statuses of all candidate targets are to be 

inferred simultaneously, rather than being decided individually.  

To determine the status of candidate targets, we consider not only the foreground 

observations and geometric consistence but also some helpful prior knowledge about 

the targets. For example, as illustrated in Fig. 37, in the perspective back-projection 

from the 2-D camera view to the 3-D space, the farther the candidate target is away 

from the camera, the larger the reconstructed object would be. Since the 3-D size of a 

walking person actually distributes over a specific range, the prior information of 

human height may offer useful information to exclude targets with unreasonable 

height. 
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(b) 

Fig. 38. (a) An example of TDP distribution fused from four camera views.  
(b) The corresponding Bayesian hierarchical framework. 
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5.4.1 System Modeling 

5.4.1.1 Bayesian Hierarchical Framework 

In this system, we adopt the BHF framework to simultaneously infer the status of 

candidate targets. In Fig. 38, without loss of generality, we consider an example of 

TDP distribution fused from four camera views. The top layer of the BHF architecture 

is the scene layer SL that indicates the 3-D scene knowledge built at the fusion stage. 

Here, we treat the scene model as a knowledge pool collecting message from all 

cameras. The bottom layer is the observation layer IL, which contains both the 

captured images and the corresponding foreground detection results. We define Ii(m,n) 

and Fi(m,n) as the captured image and the foreground detection result of the ith 

camera view, respectively. The value of Fi(m,n) is defined as in (50). Between the 

scene layer and the observation layer, a labeling layer HL is added to deal with image 

labeling, target correspondence, and ghost removal. Here, we define Li(m,n) as the 

labeling image of the ith camera view. 

5.4.1.2 Problem Formulation 

In the “five candidate targets” case in Fig. 39, the scene layer SL = {s1, s2, s3, s4, s5} 

corresponds to the status of five candidate targets, with each status node being either 

“true” (1) or “ghost” (0). With five candidate targets, we have 25 status combinations 

in total. For each combination, we generate the expected foreground occlusion pattern 

by approximating each “true” target as a rectangle pillar on the ground. By projecting 

the 3-D rectangle pillars onto each camera view, we form the expected foreground 

image. Ideally, the optimal status combination would lead to the best match between 

the expected foreground image and the detected foreground image. In Fig. 39, we 

show two status combinations based on the example in Fig. 38. In Fig. 39(a), the 
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scene layer with five candidate targets, together with two of the four camera views, is 

shown for reference. In Fig. 39(b), we show the combination {s1, s2, s3, s4, s5} = 

{1,0,1,1,1}, which assumes the second candidate is a ghost while the remaining are 

true. By projecting the four 3-D pillars onto the camera views, we compare the 

expected foreground image with the detected foreground image. In Fig. 39(c), we 

show another combination {1,1,1,1,1}, which assumes all candidates are true targets. 

By checking the projected foreground images, it appears that the latter combination is 

less likely than the former combination. 
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x1

s4 

s2  
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(a) 
 

 

x2 

x1   

(b) 
 

 

x2 

x1   

(c) 
Fig. 39. (a) The scene layer in Figure 36 and two of the four camera views. (b) The 
combination {s1, s2, s3, s4, s5}={1,0,1,1,1} and the expected foreground images 
overlaid with the detected foreground images. (c) The combination {1,1,1,1,1} and the 
expected foreground images overlaid with the detected foreground images. 

 

Assume there are N camera views and we have identified M candidate targets 

based on the fused TDP distribution. In our system, targets correspondence and image 

labeling are achieved by assigning a suitable ID from the set {T0, T 1, …, TM} to each 

pixel of the N labeling images. Note that Tk is the ID of the kth target and T0 

represents the “background” object. Labeling and ghost suppression is achieved by 
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searching the optimal status combination that fits the foreground detection results. 

Here, we denote the observation layer as IL = (I,F), where I indicates the set of N 

original images and F indicates the set of N foreground detection images. Moreover, 

we denote the labeling layer HL as the set of N labeling images, and the scene layer SL 

as a status combination. With those definitions, we may combine the target labeling 

problem and the ghost suppression problem into a single MAP (Maximum A 

Posteriori) problem as introduced in Section 3.3. In this MAP problem, given the 

observation IL = (I,F), we seek the optimal status combination *
LS  and the optimal 

target labeling *
LH  such that,  

* *

,

,

,

, arg max ln ( , | )

arg max[ln ( | ) ln ( | ) ln ( )]

arg max[ln ( , | ) ln ( | ) ln ( )]

L L

L L

L L L L LH S

L L L L LH S

L L L LH S

H S p H S I

p I H P H S p S

p I F H P H S p S

=

= + +

= + +

.    (58) 

In (58), ln[p(I,F|HL)] describes the relation between the labeling images and the 

observation data, ln[p(HL|SL)] describes the relation between the 3-D scene model and 

the 2-D labeling images, and ln[p(SL)] describes the prior information about the 3-D 

scene model. 

5.4.1.3 Learning of p(I, F | HL) 

As illustrated in Section 3.3, p(IL|HL) is composed of a “classification energy” 

ED[IL(m,n),HL(m,n)] and an “adjacency energy” EA[IL(m,n),HL(m,n);Np]. Hence, we 

formulate p(I,F|HL) as    

( , | ) exp( [ ( , ), ( , )])exp( [ ( , ), ( , ); ])L D i i A i i p
i m n

p I F H K E F m n H m n E I m n H m n N= ⋅ − −∏∏∏ . (59) 

In (59), ED[Fi(m,n),Hi(m,n)] denotes the “classification energy” that relates the ith 

foreground detection image with the ith labeling image; EA[Ii(m,n),Hi(m,n);Np] 

denotes the “adjacency energy” that relates the ith original image with the ith labeling 
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image by checking the adjacent property within the neighborhood Np; and K is a 

normalization term.  

Ideally, if the foreground detection results are perfect, we expect Hi(m,n) to be T0 

if Fi(m,n) is 0, and to be an element of {T1, T2, …, TM} if Fi(m,n) is 1. Once a labeling 

violates this expectation, an empirically selected constant α is added onto the 

detection energy to panelize this inference. Hence, we define ED[Fi(m,n),Hi(m,n)] as 

( ( , ), ( , )) {1 [ ( , ), ( ( , ))]}D i i i iE F m n H m n F m n T H m nα δ≡ × −    (60) 

with T(Hi(m,n)) being defined as 

00     if ( , )
( ( , ))

1         otherwise     
i

i
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T H m n

=⎧
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⎩

                 (61) 

and δ[pa,qa] being defined as 

1     if    
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0     otherwise
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= ⎨
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.                      (62) 

On the other hand, the local decisions of two adjacent labeling nodes are usually 

highly correlated, especially when their corresponding image pixels share similar 

color features. Hence, we define the adjacency energy EA[Ii(m,n),Hi(m,n);Np] by using 

the same smooth constraint presented in Section 3.3. Here, we briefly explain the 

design of the adjacency energy model again.  

In our system, the adjacency energy EA[Ii(m,n),Hi(m,n);Np] is defined as. 

[ ( , ), ( , ); ] [ , , , , , ] 
p p

A i i p A i i
m p n p

E I m n H m n N C I H m n m nβ
Δ =− Δ =−

≡ × Δ Δ∑ ∑  

With this definition, if two neighboring sites are set to different labels, our system will 

give a larger penalty if we find the color difference between two sites is small. 

Otherwise, our system will give a smaller penalty. That is, two neighboring sites tend 

to share the same label when the difference between their color features is small, and 

tend to have different labels otherwise.  
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5.4.1.4 Learning of p(HL|SL) 

Given a status combination SL, we define a conditional probability p(Hi(m,n)=Tk|SL) 

to express the likelihood of having a label Tk at the pixel (m,n) of the ith labeling 

image. Here, we construct the probability model in a Monte Carlo manner. With the 

status combination S, we define a few rectangular pillars on the ground. The height 

and width of each pillar are sampled based on the probability density functions p(H) 

and p(R). The locations of the pillars are sampled from p(X|Tk), where Tk indicates the 

kth target. With the camera projection parameters, the expected foreground patterns 

for each target can be generated by projecting these rectangular pillars onto each 

camera view. Occasionally, more than two targets may project onto the same image 

region and cause occlusion. The inter-occluded patterns can be determined by 

checking the distance from the camera to the mean location of the targets. In Fig. 40, 

we demonstrate the occlusion effect by plotting p(Hi(m,n)=Tk|SL) individually for each 

of the four targets in Fig. 38 (b). 

Based on the definition of p(Hi(m,n)=Tk|SL), we have  

( | ) ( ( , ) | )L L i L
i m n

p H S p H m n S≡∏∏∏          (63) 

and we define the log probability function ln[p(HL|SL)] as 

ln ( | ) ln ( ( , ) | )L L i L
i m n

p H S p H m n S=∑∑∑ .       (64) 

  

Fig. 40. Examples of p(Hi(m,n) = Tk |S) 

 

On the other hand, the prior knowledge p(SL) is also used in the determination of 
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the optimal status combination. In our system, if Mt true targets are identified at the 

previous time instant, we assume it is more likely to have a similar number of true 

targets at the current moment. That is, if we denote 1−t
oS  as the optimal status 

combination at the previous time instant (t-1) and tS as a status combination at the 

current time instant t, we define the prior probability of tS  as 

1
1

2

,    if 1 
( )

,                       otherwise  

t t
ot W N(S ) N(S )

p S
W

−⎧ − ≤⎪= ⎨
⎪⎩

 ,        (65) 

where W1 and W 2 are two constants with W1 ≥ W 2. In (65), N(SL) denotes the number 

of true targets in the status combination SL. In detail, if we know the ratio between W1 

and W2, we could determine W2 such that the probability summation equals to 1. For 

example, we assume W1 = 2W 2, the number of candidate targets at Time t is 5, and 

the number of true targets in the previous optimal combination 1−t
oS  is 4. For this 

case, we have 5 5 5 5 5 5
2 3 4 5 2 0 1 22 (C +C +C ) (C +C +C ) 1W W⋅ + ⋅ = . Hence, we choose W 2 = 1/48 

and W1 = 1/24. 

5.4.2 Multi-Target Labeling and Tracking 

5.4.2.1 Optimal Inference of Target Labeling 

With the above deduction, the labeling of targets and the suppression of ghost 

targets can be solved by finding the optimal labeling images ( *
LH ) and the optimal 

status combination ( *
LS ) that maximize the following potential function Cp(HL, SL):    
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Basically, the problem of target labeling and ghost suppression is treated as a 

maximum a posterior (MAP) problem from the viewpoint of Bayesian generative 

model. Here, we incorporate four constraint terms: classification energy ED, adjacency 

energy EA, likelihood function p(HL|SL), and prior probability p(SL). As illustrated in 

Fig. 38, the classification energy ED[Fi(m,n),Hi(m,n)] represents the bottom-up 

constraint between the foreground detection images and the labeling images. To 

model the interaction between the labeling layer and the scene layer, the likelihood 

function p(HL|SL) represents the expected labeling layout based on the status 

combination SL. The expected inter-occluded patterns among candidate targets are 

also modeled in p(HL|SL) to influence the classification of local labeling nodes. By 

introducing the adjacency energy EA[Ii(m,n),Hi(m,n);Np], the proposed framework can 

not only infer the labeling based on the fusion of scene knowledge and foreground 

detection results, but also refine the labeling results based on the original image data. 

Last, the prior probability p(SL) includes the temporal prediction based on the 

previous decision. 

Moreover, due to the inter-occlusion among targets, the status inference of a 

candidate target may depend on some other candidate targets. Hence, we need to take 

into account relevant candidate targets when we infer the status of a candidate target. 

A brute-force way is to evaluate all possible status combination and pick the optimal 

one as *
LS . However, this leads to exponentially growing computational complexity 

as the number of candidate targets increases. Fortunately, in general, there could be 
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some kind of separateness among candidate targets that can be used to reduce the 

number of status hypotheses. In our system, if the projection of a candidate target on a 

camera view does not overlap with the projection of other targets, that candidate 

target is thought to be a true target. By excluding those targets with isolated 

projections, we only need to check the status combinations of the remaining targets. 

For example, in Fig. 38, the target S5 corresponds to the left target in the third camera 

view. Since this target has an isolated projection in the third camera view, it is treated 

as a true target. For this case, we only generate 24 status combinations for S1, S2, S3 

and S4, instead of generating 25 combinations for all five targets.  

In principle, the best configuration of labels depends on image data, foreground 

detection result, and scene model. In our experiments, even though plentiful false 

alarms and false rejection may appear in the foreground detection results, these errors 

have little influence on the final inference result. Based on the proposed BHF, the 

inter-occlusion problem can be effectively analyzed, the connected foreground 

regions can be well separated, and the ghost targets can be correctly identified. 

5.4.2.2 3-D Target Model Refinement 

Usually, the moving targets in the surveillance zone may have different model 

parameters, such as the target height and width. If the personalized target models can 

be obtained, the performance of the proposed inference framework can be further 

boosted. In real situations, however, it is impractical to obtain the personalized 3-D 

model parameters in advance. Hence, in our system, we achieve personalized 3-D 

modeling by treating the model parameters as latent random variables and introduce 

an EM based algorithm to iteratively refine the model parameters. The basic idea is to 

update the 3-D model parameters in the Expectation step based on the labeling results 

derived from the optimization procedure in (66). Next, in the Maximization step, by 
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using (54) to consider the refined statistics of the 3-D model parameters in an 

expectation sense, the optimization procedure in (66) is re-executed to boost the 

inference performance. The operation is repeated until the updated parameters 

converge or the maximum iteration number is met. 

In Fig. 41, we show an example of the labeling results with and without the 

target model refinement. Since each target has obvious height difference, the labeling 

results with a unified target model generate wrong labeling around the head regions as 

shown in Fig. 41(b). After the refinement of target model, more accurate labeling 

results are achieved, as shown in Fig. 41(c). 

In our system, the major 3-D target model of each target is a pillar model 

standing at a location X on the ground plane, with parameters height (H) and width 

(R). Initially, the proposed EM algorithm uses the pre-trained probability distributions 

p(H) and p(R) to model the uncertainty of each target height and width. With this 

initial setting, the proposed BHF generates the optimal inference of target labeling. 

Since the BHF combines not only the 3-D scene priors and target priors but also the 

observed image data and the corresponding foreground detection results, the optimal 

target labeling actually reveals the personal property of each detected target. Hence, 

based on the labeling results in multiple image views, we further update the 

probability distributions of H and R to establish personalized probability models. In 

practice, we found the target width has less uncertainty among targets and the 

pre-trained probability p(R) can well model the uncertainty in target width. Hence, in 

our system, only the model of target height is recursively refined. 
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(a) 

  

(b) 

  

(c) 

  

Fig. 41. Illustration of the labeling results. (a) Two camera views. (b) Without and (c) 
with target model refinement. 

 

In the Expectation step of the proposed EM procedure, the main goal is to refine 

the posterior probability of each target height given the multi-view labeling results. In 

our system, based on the Bayesian rule, the refinement of the posterior probability is 

defined as follows 

( | ) ( | ) ( )r r r r r
k k kp H L C p L H p H≡ ⋅ ⋅ .        (67) 

where 

1 1

( )               if  1
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. 

In (67), Lr indicates the labeling results of multiple image views at the rth Iteration of 
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our EM procedure. r
kH  is the height of the kth target at Iteration r, C is a 

normalization constant, ( | )r r
kp L H  is the likelihood term which will be defined later, 

and ( )r
kp H  is the prior term of r

kH . In our system, we directly treat 1  1( | )r r
kp H L− −

 

as the prior information propagated from the previous iteration to the current iteration 

to set the prior ( )r
kp H . Initially, 1( )kp H  is set to be the pre-trained target height 

probability p(H). 

To formulate the likelihood term ( | )r r
kp L H , we project the pillar model at the 

ground position of the kth target, with height r
kH  and width Rk, onto multiple camera 

views and we verify the projected regions with the labeling results. Since the variables 

H and R are assumed to be statistically independent, we assign the width of all targets 

to be the mean value of p(R) during the computation of ( | )r r
kp L H . Ideally, if a more 

precise target height is chosen, the projected region will better fit the labeling result. 

Hence, we define the likelihood term as  

( )
1

,
,

( | ) ( )
k
i

N
r r i

k m n
i m n A

p L H p l
∈

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠
∏ ∏ .             (68) 

In (68), k
iA  is the projected region of the kth target in the ith camera view. , ( )i

m np l  

is the probability of the labeling pixel at (m,n) with the label ID “l”. N is the total 

number of pixels within the projected regions. Since different r
kH  may generate 

different projected regions, we use the function ( . )1/N for normalization. Moreover, 

we assume the statuses of different labeling pixels are independent of each other and 

we evaluate only those pixels inside the projected regions of the kth target. In 

principle, the label ID “l” tends to be Tk. Hence, , ( )i
m np l  has a higher probability if 
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“l” equals to Tk and has a lower probability if “l” equals to T0. Occasionally, owing to 

occlusion, “l” may equal to some foreground target other than Tk. In this case, we do 

not have the information about Tk and we assign , ( )i
m np l  to be an intermediate value. 

In summary, we define , ( )i
m np l  as  

⎪
⎩

⎪
⎨

⎧

⋅
=⋅
=⋅

=
otherwise     

   if     
   if     

)( 0,
z

y
k

x

i
nm

e
Tle
Tle

lp
λ
λ
λ

,            (69) 

where λ is a normalization term to make the probability summation equal to 1. 

Moreover, x, y, and z are empirically pre-selected parameters, with x > z > y. If we 

rewrite (68) based on (66), we get a likelihood form as below 

0
1( | ) exp{ ( )}r r

k k otherp L H x N y N z N
N

λ= ⋅ ⋅ + ⋅ + ⋅ ,    (70) 

where Nk, N0, and Nother are the number of Tk-labeled pixels, the number of T0-labeled 

pixels, and the number of other pixels inside the projected regions in all camera views. 

Basically, (70) simply measures the matching level by accumulating the weighted sum 

of different labeling pixels inside the projected regions with the weighting parameters 

(x,y,z). Once the likelihood term ( | )r r
kp L H  is determined, the refined probability 

distribution of the kth target height at the current iteration can be obtained based on 

(67). The refined model ( | )r r
kp H L  is fed back to the proposed BHF to find the 

optimal object labeling again. In our experiments, 2~3 iterations are enough for the 

convergence of the EM algorithm. 

5.4.2.3 Multi-target Tracking 

In our system, by associating the temporal succession, we also extend the 

detection results to perform 3-D tracking over the ground plane. Basically, the object 



 114

tracking is treated as a dynamic system problem. Based on the proposed Bayesian 

detection framework, the major observation of the dynamic system comes from the 

estimated target location on the ground plane. In principle, to deal with the dynamic 

system problem, several Bayesian filter techniques can be used. For instance, we can 

use a Monte Carlo based framework to track multiple targets on the ground plane, as 

proposed in [92]. However, for the sake of computational simplicity, we adopt the 

Kalman filter to track each target in the scene.  

5.5 Results and Discussion 

5.5.1 Experimental Datasets 

To test our system over real video sequences, we set up four static cameras in our 

lab to capture test sequences. In our sequences, the coverage is about 4.5m by 4.5m, 

with 3 to 5 moving targets within the zone. A set of snap shots with 5 persons inside 

the scene are shown in Fig. 42(a). On the other hand, we also tested our system over 

the video sequences provided by the M2Tracker project [87] and the dataset used in 

Fleuret’s papers [89][90][91]. The M2Tracker sequence was captured by 15 

synchronized cameras over a 3.0m by 3.0m area, while Fleuret’s sequence was 

captured by 4 synchronized cameras in a 12.88m2 room. For each sequence, four 

camera views are used to evaluate our system. If more camera views are used, the 

performance of our system can be further boosted. In Figure 11(a) and Figure 12(a), 

we show four snap shots obtained from each of these two sequences.   

For each sequence, the cameras have been geometrically calibrated with respect 

to a world coordinate system. Except the M2Tracker sequence, each video sequence 

contains more than 300 frames. Especially, Fleuret’s video sequence contains 3900 

frames with many interesting events, such as people moving into surveillance zone, 
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people approaching and occluding each other, and some people only monitored by a 

portion of the cameras. For the evaluation of object ground location, we acquired the 

ground truth of the M2Tracker sequence from Dr. Li [96]. To establish the ground 

truth of Fleuret’s sequence, we manually identified the image position of human necks 

and built the correspondence among camera images. By backprojecting the 

corresponding image points, the object locations on the 3-D ground plane were 

obtained. For this sequence, we established the ground truth for every 25 frames. To 

see the details of our experimental results, please visit our website [100]. 

5.5.2 Foreground Detection and Information Fusion 

For each video sequence, foreground blobs are detected based on the popular 

GMM (Gaussian Mixture Model) background subtraction algorithm [101]. Shadow 

removal [102] is also included to suppress false detection. In Fig. 42(b), Fig. 43(b), 

and Fig. 44(b), we show the detected foreground images, where plentiful false 

detections occur due to the appearance similarity between the foreground objects and 

the background environment. In Fig. 42(c)(d), Fig. 43(c)(d), and Fig. 44(c)(d), we 

compare the fusion results based on the proposed model-based method and the 

conventional data-driven method. It can be seen that the model-based approach 

generates more reasonable fusion results, especially for the person in white shirt in 

Fig. 42 whose bottom part and upper part cannot be observed in the first and the third 

camera views, respectively. 
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(c) (d)

 

(e) 

 

(f)  

  
Fig. 42. One experiment result of our LAB sequence. (a) Four camera views. (b) 
Foreground detection images. (c) TDP distribution. (d) The voxel histogram based on 
the visual hull. (e) Bird-eye view of target location. (f) Labeling and correspondence 
of targets in pseudo-color 
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(c) (d)

 

(e) 

 

(f)  

    
Fig. 43. One experiment result of the M2Tracker sequence. (a) Four camera views. (b) 
Foreground detection images. (c) TDP distribution. (d) The voxel histogram based on 
the visual hull. (e) Bird-eye view of target location. (f) Labeling and correspondence 
of targets in pseudo-color. 
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(b) 

 

(c) (d)

 

(e) 

 

(f)  

   
Fig. 44. One experiment result of the Fleuret’s sequence. (a) Four camera views. (b) 
Foreground detection images. (c) TDP distribution. (d) The voxel histogram based on 
the visual hull. (e) Bird-eye view of target location. (f) Labeling and correspondence 
of targets in pseudo-color.  
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5.5.3 Accuracy of Target Location 

In our experiments, the object locations on the ground plane were estimated and 

displayed on the bird-eye view image, as shown in Fig. 42(e), Fig. 43(e), and Fig. 

44(e). To evaluate the performance of our system, we calculate the deviation of the 

estimated location with respect to the ground truth. First, we compare the performance 

between the model-based fusion method and the conventional data-driven fusion 

method by measuring the mean location deviation per frame for Fleuret’s video 

sequence. In this comparison, we use the same inference process for the estimation of 

target location. The profiles of the mean location deviation are plotted in Fig. 45. 

Numerically, the averaged mean deviations over Fleuret’s sequence are 0.087m and 

0.073m respectively for the data-driven method and our model-based method. 

 

 
Fig. 45. The mean deviation per frame for the Fleuret’s dataset. 

 

From time to time, some targets in the scene may not be monitored by all 

cameras. An example is shown in Fig. 46(a), where the person in blue jean can only 

be observed by two of the four cameras. For this case, the corresponding cluster in the 

TDP distribution is smaller but still detectable, as shown at the upper-right corner of 

the distribution in Fig. 46(b). Some ghost clusters also exist in this TDP distribution. 
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With the mean-shift algorithm for clustering and the BHF inference for ghost removal, 

all four targets are successfully detected, as shown in Fig. 46(c). In this figure, we use 

different gray levels to indicate different surveillance zones. From bright-gray to 

dark-gray, they are the 4-camera zone, 3-camera zone, and 2-camera zone. We also 

numerically evaluate the location accuracy of our method inside each of these three 

zones. For Fleuret’s sequence, 76% of the moving targets are monitored by four 

cameras, 21% of the moving targets are monitored by three cameras, and 3% of the 

moving targets are monitored by two cameras. In Table 2, we list the accuracy of 

target location in these three zones. We may find the accuracy goes down when the 

number of cameras decreases. 

 

(a) 

(b) 

   

(c) 

 
Fig. 46. One example of extended surveillance zone. (a) Four camera views. (b) The 
TDP distribution. (c) Bird-eye view of target location. 
 
 
Table 2. Accuracy of target location in three difference zones for Fleuret’s sequence. 

Surveillance Zone 4-camera Zone 3-camera Zone 2-camera Zone 
Mean deviation 0.069 m 0.079 m 0.147 m 
Max deviation 0.178 m 0.257 m 0.391 m 
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Fig. 47. A comparison of the mean deviation of each frame over the M2Tracker 
dataset.  
 

Moreover, we adopt the widely-used M2Tracker sequence as the benchmark to 

compare the accuracy of target location. In detail, we calculate the deviation of the 

estimated locations based on the M2Tracker sequence, for which the experimental 

results of a few other systems are available. For the M2Tracker sequence, the 

averaged mean deviation of our system is about 0.108m. In Fig. 47, we compare the 

mean deviation of each frame over four different systems: M2Tracker [87], Cost track 

[103], Li’s algorithm [96], and ours. Please note that only four camera views are used 

in our system, rather than the eight camera views used in the other three methods 

5.5.4 Detection and Labeling with Ghost Removal 

As shown in Fig. 42, Fig. 43, and Fig. 44, the computed TDP distribution reveals 

distinguishable clusters for candidate target identification and localization. The 

number and the location of the candidate targets can be decided by mean-shift 

clustering. With the presence of ghost objects, the number of candidate targets is 

usually larger than the true target number. After the inference stage, the results of 

ghost suppression, labeling, and correspondence are presented in Part (f) of Fig. 42, 
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Fig. 43, and Fig. 44. The results demonstrated that the scene knowledge is very 

helpful in the labeling process even under severe inter-target occlusion, especially for 

those connected foreground regions. We may also find that ghost targets are correctly 

removed under the proposed BHF framework.  

To quantitatively evaluate the detection and correspondence performance, false 

positive rate (FPR) and false negative rate (FNR) are used. In our system, the target 

detection and correspondence are defined as “correct” when the projected regions of 

the detected target in all camera views intersect the same individual. Based on this 

definition, the FPR and FNR of all tested datasets are calculated and listed in Table 3. 

Here, the performance before and after ghost removal are provided for comparison. 

The results depict the FPR before ghost suppression is higher, while the FNR is very 

low for all test sequences. After applying the BHF to detect and remove ghost targets, 

the ghost effect is suppressed and the FPR is decreased. Moreover, if we compare 

with Fleuret’s results [91], whose FPR and FNR are 0.0399 and 0.0614 respectively, 

our method achieves even lower FPR and FNR with values 0.021 and 0.013 for the 

same dataset. On the other hand, for the Lab dataset, we show in Fig. 48 the number 

of detected targets at each time frame. With ghost removal, the identified target 

number is much closer to the true target number 

Table 3. False positive rate (FPR), false negative rate (FNR). 
Without ghost removal With ghost removal 

Video datasets 
FPR FNR FPR FNR 

OVVV 3 persons 0.033 0.000 0.000 0.000 
OVVV 4 persons 0.023 0.000 0.000 0.000 
OVVV 5 persons 0.040 0.000 0.000 0.000 
Lab 3 persons 0.053 0.000 0.003 0.001 
Lab 4 persons 0.045 0.000 0.010 0.003 
Lab 5 persons 0.042 0.000 0.017 0.000 
M2tracker  0.183 0.000 0.027 0.000 
Fleuret 0.219 0.000 0.021 0.013 
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(a) 

 

(b) 

Fig. 48. The distributions of the number of detected target per frame for the 5-person 
Lab dataset. (a) Results without ghost removal. (b) Results with ghost removal.   

 

5.5.5 Multi-target Tracking on the Ground Plane  

In our system, the multi-target detection results across a few successive frames 

are associated to establish temporal target tracking. In Fig. 49, we show the bird-eye 

view of our tracking results for both the M2tracker and Lab datasets. Different colors 

correspond to different targets. It can be seen that the proposed system can be easily 

extended to handle the task of multi-target tracking. 
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(a)                          (b) 

Fig. 49. Multi-target tracking Results (a) M2tracker dataset (4 person). (b) Lab 
dataset (5 person). 

5.5.6 System Complexity 

The whole system is implemented in the Visual C++ environment on a PC with 

3.0GHz Core 2 Duo CPU. To evaluate the computational complexity of our system, 

we analyze the execution time of our system based on the M2Tracker sequence. In 

Table 4, we list the major processes of our system and the averaged runtime of each 

process at one time instant with four camera views. It can be seen that the major 

computations are spent over background subtraction, mean-shift clustering, and graph 

cut optimization. In practice, the background subtraction process can be executed at 

the camera side with a client-server surveillance architecture and our algorithm is 

mainly implemented at the server side for data integration. If excluding the 

background subtraction process, it takes about 3 to 6 seconds to perform the 

positioning, labeling, correspondence, 3-D target model refinement, and ghost 

suppression processes over four image shots with 320×240 resolution. Basically, it 

takes longer time if there are more candidate targets in the scene. Moreover, if we 

simplify the inference process to perform 3-D positioning and ghost suppression only, 

the whole computation time can be shortened down to around 0.2 seconds for every 

4-camera image shot. 
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Table 4. Runtime list 

Process Detailed Operations 
Averaged 

Runtime (sec.) 
Background Subtraction 0.25 Foreground Detection 

(4 camera views) Shadow Removal ~ 0.001 
Sample Generation < 0.00001 Information fusion 

(4 camera views) Mean-shift Clustering 0.13 
Hypothesis Generation <0.00001 

Graph Cuts Optimization 3.75 Bayesian Inference 
(4 camera views) 

Target Model Refinement 0.0002 

 

5.5.7 Future Works 

Currently, the proposed system could efficiently determine the number of 

moving clusters inside the surveillance zone and accurately track the 3-D trajectories 

of the tracked targets. However, an extra target counting analysis for groups is needed 

in order to estimate the target number if there are groups inside the surveillance zone. 

In the future, we plan to utilize the target width as possible prior information to 

roughly estimate the target number of a group. Also, we attempt to integrate a robust 

face detection algorithm into current system so that we can have more precise target 

counting. On the other hand, the face view of a target inside the surveillance zone is 

also important 3-D scene information for a modern surveillance system. Therefore, 

we will expand our system with the capability of multi-view multi-face detection in 

the near future.  
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CHAPTER 6 
 

 

 

Conclusions 
______________________________________________ 
 

In this dissertation, we proposed a 3-layer Bayesian hierarchical framework, 

which includes a scene layer on the top with the object-level information, an image 

observation layer at the bottom with the pixel-level information, and a labeling layer 

in the middle to interconnect these two layers. The proposed framework can 

efficiently integrate both the top-down information and the bottom-up messages. With 

the integration in a unified framework, the top-down information and the bottom-up 

messages cross reference each other to support a more robust and accurate system 

inference. Moreover, the scene layer offers a systematic representation to depict the 

3-D scene model in a parametric fashion. With the parameterized scene model, many 

troublesome issues, such as shadow effect and occlusion, now become easier to 

handle. In fact, shadow and occlusion are nature phenomena caused by objects in the 

3-D scene. In our approach, the proposed BHF framework models the generation of 

those scene effects so that shadow and occlusion may even provide useful clues for 
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scene inference. This BHF framework is designed to simultaneously perform image 

analysis and scene modeling. By having calibrated the surveillance cameras in 

advance, the BHF framework builds the physical connection between the 3-D scene 

and the captured 2-D images. This connection enables scene knowledge and image 

observation to cross reference each other so that the unknown parameters in the scene 

model and the labeling of the image contents are inferred simultaneously under a 

unified framework.  

For the application of vacant parking space detection, we adopted the proposed 

BHF to simultaneously detect vacant parking spaces and interpret the image content 

through labeling. In practice, the challenges of vacant space detection come from the 

shadow effect, the occlusion effect, the appearance ambiguity, the perspective 

distortion, and the dramatic luminance variations. In our system, we explicitly define 

a scene model of the parking lot. Based on the model, the generation of shadow, the 

generation of occlusion, the variation of lighting, and the perspective distortion are 

closely coupled with the status of the parking spaces. By utilizing the proposed BHF 

framework, the scene generation process is well modeled and the optimal inference of 

the parking space status is deduced. Our results showed that this system can achieve 

up to 99% accuracy in vacant parking space detection under different lighting 

conditions.  

In the application of multi-target tracking with ghost suppression over a 

multi-camera system, the proposed BHF provides an efficient way to simultaneously 

detect, locate, and label targets across multiple cameras. The ghost effect is also 

analyzed and suppressed. In principle, the system algorithm consists of two major 

steps: information fusion and Bayesian inference. The model-based information 

fusion step collects consistent information from multiple camera views and couples 

with 3-D priors to establish scene knowledge. Furthermore, the scene knowledge is 
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treated as extra information and is used in labeling, correspondence, and ghost 

suppression. The whole process is well modeled and resolved in the Bayesian 

inference step under the proposed BHF framework. Based on the proposed algorithm, 

many troublesome issues, like fragmental foreground detection results, inter-target 

occlusion, ghost targets, and the determination of target number, can be effectively 

handled in a systematic manner. Moreover, the proposed EM-based mechanism can 

iteratively refine target models and further boost the system performance. The 

experimental results show our system can successfully label objects and build 

correspondence even under severe occlusion. In addition, our system requires neither 

isolated foreground extraction nor color calibration among cameras. 

In summary, in this dissertation, we present a BHF framework for image analysis 

and 3-D scene modeling. We also apply the BHF framework to two applications of 

video surveillance. By using the hierarchical framework to represent the image 

generation model in a probabilistic manner, we have demonstrated how to 

systematically integrate useful information from pixel-level, region-level, and 

object-level for a semantic inference of the 3-D environment.  

In the future, we plan to expand the proposed BHF so that the temporal 

information from previous frames could be further utilized. With temporal 

information, the image constraint, and the scene constraint, the modified BHF would 

have more flexibility to boost the system performance. In addition, we will apply 

BHF to other applications such as scene understanding. As most of our knowledge, to 

achieve better scene understanding, the contextual scene information is proved to be 

useful. Since the proposed BHF could model contextual scene information in a natural 

sense, we belief BHF offers a possible solution to scene understanding. 
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Appendix A: Estimation of Sunlight Direction 
 

Based on the vectors u , s , and n  shown in Fig. 24, we define a USN 

coordinate system and represent the sunlight direction as 

( cos( )cos( ( ))sw t tθδ− − , cos( )sin( ( ))sw t tθδ− − , sin( )δ− )USN.    (A-1) 

On the other hand, any unit vector P  in the 3-D scene can be represented as 

(cosφcosθ, cosφsinθ, sinφ)USN. Here, φ represents the angle between P  and the solar 

plane, and θ represents the angle subtended by u  and the projected vector of P  on 

the solar plane. In our system, we assume the scene surfaces are mainly Lambertian. 

Hence, if P  is the normal vector of a surface patch in the 3-D scene, the intensity 

value at the corresponding image pixel can be approximated as 

( ), cos( )cos( )cos( ) sin( )sin( ).sun s sI D t P t tθδ φ ω ω θ δ φ∝ ∝ − − − −   (A-2) 

Based on (A-2), Isun can be modeled as  

),()),(cos(),(),,( nmCnmtnmBtnmI pssun +−= θω ,        (A-3) 

where the angular frequency of the cosine function is equal to the angular frequency 

of Earth’s self-rotation.  

Assume we denote 1P , 2P , and 3P  as the unit normal vectors of three selected 

surface patches in the parking lot. Since we manually select these three surface 

patches, the relative relationship among 1P , 2P , and 3P  can be obtained beforehand. 

Suppose 1 'P , 2 'P , and 3 'P  are the unit vectors along the projections of these three 

normal vectors onto the solar plane, and θ1, θ2, and θ3 are the angles subtended by u  

and each of these three projected vectors, as illustrated in Fig. 50. Since the phase 

shift θp in (A-3) is equal to θ up to a constant offset, the angles between these three 

projected vectors can be estimated by (θp1-θp2), (θp2-θp3), and (θp1-θp3). 
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Fig. 50. Three normal vectors in the USN coordinate system. 

 

Assume we represent n  as a linear combination of 1P , 2P , and 3P . That is, 

1 2 2n aP bP cP= + + . If we take the inner product of n  and iP , where i = 1, 2, 3, we 

obtain three equations to solve a, b, and c: 

1 1 2 1 3 1

2 1 2 2 3 2

3 1 3 2 3 3

, , , sin( )

, , , sin( )

, , , sin( )

P n a b P P c P P

P n a P P b c P P

P n a P P b P P c

ϕ

ϕ

ϕ

= + + =

= + + =

= + + =

.                 (A-4) 

In (A-4), the inner products ,i jP P , with i, j = 1, 2, 3, are known beforehand. To 

estimate {ϕ1,ϕ2,ϕ3}, we formulate the vector 'iP  as ' ( sin ) cosi i i iP P nϕ ϕ= − . As 

we take the inner products among 1 'P , 2 'P , and 3 'P , we have 

1 2 1 2 1 2 1 2 1 2

2 3 2 3 2 3 2 3 2 3

3 1 3 1 3 1 3 1 3 1

', ' =( , -sin sin )/(cos cos )=cos( )

', ' =( , -sin sin )/(cos cos )=cos( )

', ' =( , -sin sin )/(cos cos )=cos( )

P P

P P

P P

P P P P

P P P P

P P P P

ϕ ϕ ϕ ϕ θ θ

ϕ ϕ ϕ ϕ θ θ

ϕ ϕ ϕ ϕ θ θ

−

−

−

.   (A-5) 

Hence, with {(θp1-θp2), (θp2-θp3), (θp1-θp3)}, the geometric direction of n  with respect 

to { 1P , 2P , 3P } can be deduced. 

After the determination of n , the choice of { n ,tθ} is rather arbitrary. In our 

approach, we simply align n  with one of { 1 'P , 2 'P , 3 'P }. The reference time tθ  is 

defined to be the time when the corresponding intensity profile has the maximum 

value.  



 131

Appendix B: Image Formation Model 
 

We assume the surfaces in the 3-D scene of a parking lot are mainly Lambertian. 

and the trichromatic RGB features at a pixel can be formulated as 

( ) ( ) ( )c cI g l r f d
λ

λ λ λ λ= ∫ .                   (A-6) 

Here, g is a geometric factor that depends on the included angle between the incident 

radiant flux and the normal vector of the corresponding surface, l(λ) denotes the 

illuminant spectrum, r(λ) represents the spectral reflectance function, and fc(λ) 

represents the filter sensitivity function of the c channel with c∈{R,G,B}. To 

discretize (A-6) for computational analysis, several research works adopted 

finite-dimensional linear models to approximate both spectral reflectance function and 

illuminant spectrum. In our approach, we adopted a three-dimensional linear model 

and (A-6) is reformulated as   
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where 1 2 3( , , )Tβ β β=β is the vector of illuminant coefficients, 1 2 3=( , , )Tα α αα is the 

vector of reflectance coefficients, Mc is a 3×3 matrix with its entries defined as          

( , ) ( ) ( ) ( )i j ci j l r f d
λ

λ λ λ λ= ∫cM ,                (A-8) 

and αMα cc = . With (A-8), the trichromatic color vector IRGB is represented as  
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where [ ]TBGR αααA =  is a 3×3 matrix.  

In an outdoor parking lot, the lighting condition is varying over time. This makes 

both g and β change accordingly. To simplify the detection process, we focus mainly 

on the chromatic information. Since the absolute magnitudes of cα  and β do not 

affect the chromatic information, we arbitrarily rescale A and β by two constants a 

and b so that (A-9) can be reformulated as 

RiIRiβAAβI RGBRGB ==== )()1)(1( gab
ba

gabg .        (A-10) 
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