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摘要摘要摘要摘要    

 

多進多出系統(MIMO)搭配中繼站之應用可提升系統涵蓋率或提高系統容量。採用

分散式平行單天線中繼站網路則額外享有建置彈性、多集性與成本之優勢，然而

亦面臨因結構上缺乏中繼站相互連通而衍生的設計議題。本論文針對分散式放大

-前送(amplify-forwarding)中繼站型態，首先考慮提升中繼站容量之中繼前送

增益(forwarding)設計。在設計中數學結構的限制下，目前並無實用有效之快速

設計方式，因此我們採用矩陣低階更新(matrix low-rank updating)的方式，設

計遞迴式最佳化解法。此解法雖可快速計算並提供提高系統容量之設計，對於分

散式中繼站之特性研究並無實質貢獻，因此我們設計雜訊優勢模型以簡化系統，

並據此提除對應之增益設計方法。此設計方法搭配中繼站部分啟用之模式，我們

發現此設計方法可類比於單站多天線選擇系統(single-hop MIMO antenna 

selection)。因此我們可採用多天線選擇系統之已知特性，類比分析我們針對中

繼站所提出之設計方法。由模擬結果可知，我們所設計之設計方法可有效提升系

統容量，且印證類比於多天線選擇系統之容量分佈特性。 

 

當中繼站的數量增加時，基於中繼站選擇之設計方法將面臨運算量大幅上升之問

題。同樣還是由優勢雜訊模型出發，我們設計新的增益最佳化運算並避免中繼站

選擇。此演算法更進一步簡化並轉換設計問題，並使用修正之解題空間(solution 

space)。應用於多用戶系統之低散逸波束設計亦包含於我們所設計之演算法。由



ii 

 

模擬結果可知，免除中繼站選擇之演算法，相較於使用中繼站選擇方法，其效能

相若或更好。 

 

在第三部分我們討論針對高度散佈(highly dispersive)通道之分頻正交多工系

統(OFDM)之通道估計，以及其應用於使用 OFDM 之中繼站網路。對於 OFDM 通道估

計問題，時域(time-domain)通道估計方法可利用有限的領航訊號(pilot 

symbols)提供精確之通道估計。然而此類方法須掌握通道多路徑之延遲位置

(multipath delay positions)。已知針對延遲位置估計的方法需要特定格式之

領航訊號，且在通過慢速衰落(slow fading)通道時可能會降低估計效能。我們

所設計之延遲位置估計，採用追求最大程度相合(matching pursuit)之演算法，

考慮相鄰 OFDM 訊框中領航訊號，且不限制領航訊號的位置。經由模擬結果可知，

我們所設計之延遲位置估計方法，可大幅提升通道估計之準確率。另外我們討論

採用 OFDM 之放大前送中繼站其對應之傳輸通道模型，經由分析得知可對應於一

高度散佈之傳輸通道，因此適用於本文所提出之估計方法。 



iii 

 

 

Design of Distributed Amplify-Forwarding  

MIMO Relay Networks 

 

 

Student: Chun Jung Wu                        Advisor: Dr. David-W. Lin 

 

Department of Electronics Engineering 

& Institute of Electronics  

National Chiao Tung University 

 

 

 

Abstract 

 

Relays can potentially enhance the transmission performance of multi-input 

multi-output (MIMO) systems. A parallel single-antenna relay network has additional 

advantages in flexibility, diversity, and cost, but also poses significant design 

problems because the absence of inter-antenna connections over different relays 

makes the underlying mathematical problems much more difficult to solve. In this 

thesis, we first consider the design of parallel amplify-and-forward relay networks. 

More specifically, we focus on the design of relay gains to maximize the system 

capacity. As no closed-form analytic solution can be found, we first develop an 

iterative algorithm based on low-rank updating to efficiently find a locally optimal 

solution. Since iterative optimization provides little insight into the analytical 

properties of the solution, we attempt analytical solutions based on asymptotic noise 

conditions and relay selection. It is discovered that the proposed algorithms could be 

modeled as single-hop MIMO antenna selection systems and could be analyzed in the 

similar way. We examine the resulting capacity outage diversity orders and confirm 

the analysis and equivalent modeling with simulation results. 

 

As the algorithms based on relay selection may encounter expensive computation 

burden as number of relays increases, we develop algorithms based on noise dominant 

models but avoid computational intensive relay selection. The proposed algorithms 

are made possible by modified criterion and specifically constrained solution space. 

Low-leakage beamforming used for multiuser communication is applied in our 

algorithm. Numerical results demonstrate the proposed algorithms exhibit comparable 

or better performance than previous selection-based approaches. 
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In the third part of this thesis, we consider OFDM channel estimation with highly 

dispersive channel and application in distributed relay network. Time-domain channel 

estimation techniques have been proposed for OFDM systems for their ability to yield 

relatively accurate estimates with only a few pilots. Key information needed in such 

techniques is the multipath delays of the channel. Prior approaches to estimation of 

multipath delays require regular pilot structures and may not work in slow fading. We 

propose a group matching pursuit technique for channel estimation. The technique is 

an extension of the orthogonal matching pursuit technique. It employs the pilots in 

several OFDM symbols to estimate the multipath delays in a sequential manner, 

where the pilots can have an arbitrary structure. Simulation results show that the 

proposed algorithm has superior performance. We then demonstrate that distributed 

AF relay network with OFDM transmission could be modeled as single-hop OFDM 

system with equivalently high dispersive delay profile. Thus we apply and examine 

the proposed channel estimation schemes for the relay network of interest.  
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Chapter 1

Introduction

1.1 Research Background, Motivation and Issues

1.1.1 On the Capacity of Distributed AF MIMO Relay Network

Relays have been considered a useful means for coverage extension and capacity enhance-
ment of wireless systems [33]. Among all conceivable relaying strategies, two have received
the most attention: amplify-and-forward (AF) [30] and decode-and-forward (DF) [31]. In
AF systems the relays amplify or beamform the received signals without further process-
ing, while in DF systems they decode (or demodulate if there is no channel coding) the
received signals and transmit the re-encoded (or remodulated) signals to the destination.
Besides the forwarding strategies, an important subject in relay system design is the over-
all wireless system architecture. In this, due to the capacity advantage of multi-input
multi-output (MIMO) transmission over single-input single-output (SISO) transmission,
many have sought to incorporate some MIMO concepts one way or another. The present
work is concerned with AF-based distributed relay networks, whose architecture will be
described further later.

The simplest relay-aided transmission system consists of three nodes: source, relay
(cooperator) and destination [44]. To facilitate MIMO transmission, an intuitive approach
is to install multiple antennas on one or more of the nodes. For simplicity, consider the
situation where the source and the destination have an equal number of antennas. A
case with a single-antenna source (SAS) and a single relay (SR) equipped with multiple
antennas (MAR) is considered in [48]. A natural extension to have a multiple-antenna
source (MAS) and an SR-MAR to enable spatial multiplexing [25, 6]. In studies of MAS-
SR-MAR systems, the multiple antennas on each terminal are usually assumed to be fully
connected and may have arbitrary interconnection weights. In this case, known matrix
theory can be used to decompose a MIMO transmission channel into parallel SISO links
(via, for example, the singular value decomposition (SVD) or the QR decomposition).
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Each spatially multiplexed signal stream can then be transported over one parallel link,
and the matrix decomposition can be viewed as simultaneous beamforming for these
streams. Typical performance measures, such as the signal-to-interference-plus-noise ratio
(SINR) or the mean-square error (MSE) in received signal values, can be expressed in
terms of the parameters of the decomposed channel. System optimization may then
become essentially a problem of power allocation among the individual streams [25, 6].

On the other hand, use of multiple, parallel relays (PR) has also been considered by
many researchers and shown to be potentially beneficial in various aspects [5, 21, 40, 22,
13, 9, 12, 24, 26, 11, 15, 47, 20, 8, 3]. For example, it is found that an increased number of
relays can benefit the system capacity [5]. In fact, the parallel relays can function as virtual
transmitter antennas and effect transmitter diversity either in the form of distributed
space-time coding [21, 40] or in the form of distributed beamforming [22, 13, 9]. The
corresponding diversity order has been examined in [22] and [12], respectively. Moreover,
parallel relaying has also been studied in the contexts of sensor networks [24], two-way
relaying [26], and secrecy communication [11]. However, despite the potential benefits, the
fact that the relays are not connected but stand in parallel raises a cooperation problem
which, if not dealt with, could severely limit the realizable benefit.

To see why, let L be the number of parallel relays and Ni (1 ≤ i ≤ L) the number
of antennas on relay i. Let M denote the number of antennas on the source terminal
as well as that on the destination terminal. Consider first the simplest case where each
terminal has only one antenna, i.e., SAS-PR-SAR where M = Ni = 1 ∀i [13, 9]. In
this case, the relays effectively constitute a distributed beamformer for the single signal
stream. Applying the same design philosophy to an MAS-PR-MAR system with M > 1
and Ni > 1 ∀i, there can be MS = min{M,Ni ∀i} concurrent signal streams. The
beamforming techniques used in MAS-SR-MAR systems can be extended to this scenario
with a twist [15, 47]. That is, the available antennas on the relays can be used to provide
MS parallel subchannels between the source and the destination. Systems operating in
the above ways have been considered in some works [48, 13, 9, 15, 47, 25, 6]. In terms
of capacity, however, such systems suffer from two consequences. First, the number of
supported subchannels (i.e., the number of concurrent spatially multiplexed streams) does
not grow with the relay number L, but is upper-bounded by MS. Secondly, to increase the
number of streams we need to ensure that all relays are equipped with sufficient antennas.
Designs that can obviate the above limits are of interest and importance.

In this work we consider the design of MAS-PR-SAR systems (where Ni = 1 and∑
Ni = L) to support multiple signal streams. More specifically, we consider the design

of AF relay forwarding gains for maximization of system capacity. Previously, Jin et al.
[20] considered the case where the relays had equal gain and analyzed the statistics of the
resulting ergodic capacity. Chen et al. [8] considered the minimization of transmission
power subject to per-stream SINR targets. The problem is related to system capacity,
but somewhat indirectly. Bae and Lee [3] proposed algorithms for capacity optimization
under the condition that the product of the source-to-relay and the relay-to-destination
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channel matrices was asymptotically diagonal in the limit of a large number of relays.
But in sum, there is as yet no extensive work on the design of distributed parallel relay
networks for capacity maximization. Actually, the relationship between number of relay
terminals and system capacity also needs to be further clarified. The present work is
motivated by these observations.

We consider two approaches to maximizing the capacity of a distributed relay network
with presence of perfect channel state information (CSI). The first is algorithmic, as
so far no closed-form solution to the problem exists. However, although algorithmic
optimization can yield good results, it provides little insight into the analytical properties
of the solutions. We thus also attempt an analytical approach. Because no closed-form
solution can be obtained for the general situation, we consider two asymptotic situations
which are more amenable to analysis. In one of them the relay noise dominates the overall
noise in the received signal at the destination and in the other the destination terminal
noise dominates. Alternatively, these two situations can also be viewed as providing two
upper bounds to the system capacity.

Given the simplification lead by noise-dominant models, it is still a challenging task to
optimize the relay network performance. Instead of considering all relays simultaneously,
we discover that closed form optimization is possible if only partial of relays are active.
In consequence, we develop algorithms for capacity improvement which work with relay
selection. In addition, we then observe the proposed selection-based algorithms could
be modeled and analyzed with equivalent single-hop MIMO antenna selection systems
[16, 17]. Given the results and analysis of existing works in the area of MIMO antenna
selection, we gain more in depth understanding about the application of proposed algo-
rithms for distributed relay networks.

As the number of relays increases, it is found that both capacity and outage diversity
order increases. However, the proposed algorithms based on relay selection may become
intractable as the number of relay terminals is large. To counteract the situation, we
design further simplifications by modified criterion and shrunken solution space. Though
being suboptimal in nature, the proposed algorithms avoid computational intensive oper-
ation and could fully utilize the whole relay network. Simulations confirm the proposed
approaches could result in slightly inferior or better performance than selection-based
schemes, with considerably smaller computation cost as number of relays is large.

1.1.2 On the OFDM Channel Estimation and Applications in
Relay Networks

Coherent demodulation of orthogonal frequency-division multiplexing (OFDM) signals
critically depends on proper channel estimation. Since OFDM systems usually reserves
some subcarriers as pilots, most channel estimation methods are pilot-aided. A com-
mon approach is to estimate the channel frequency response at pilot locations first, and
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then “extend” the estimate to other subcarrier locations. One frequently considered way
of “extension” is low-order polynomial interpolation, which can take the form of one-
dimensional interpolation in the frequency domain (within the boundary of one OFDM
symbol) or two-dimensional interpolation over frequency and time (across several OFDM
symbols) [23], [7]. The performance of this sort of methods is limited by the pilot density
and the channel characteristics. For example, if the channel has small coherence band-
width (i.e., long delay spread) and low coherence time (e.g., due to fast motion) and the
pilots are widely spaced in frequency, then they would have difficulty obtaining accurate
channel estimates.

Another way of “extension” is based on exploiting the time-domain characteristics of
the channel [29]. Since, in many cases, only a few multipaths contribute significantly to
the channel response (in other words, the channel is “sparse”), the unknowns in time-
domain estimation (which consist of the path coefficients of the significant multipaths
if their delays are known) are usually much fewer than that in frequency-domain-based
interpolation (which consist of the frequency response at all subcarriers). Hence the few
pilots can be put to better use and result in more accurate channel estimates. This is
especially the case when the pilots are very few and very widely spaced (as, for example,
in the case of the IEEE 802.16-2004 OFDMA uplink [19]).

Evidently, a fundamental issue in time-domain channel estimation is to find the delays
of the significant multipaths. In [46], an effective delay acquisition technique is developed,
but the pilots need to be equally spaced. In [32], the MUSIC algorithm widely used for
spectrum analysis is employed for channel estimation, but again assuming equally spaced
pilots. The algorithm can be easily extended to deal with irregular pilot spacings, but
the pilot locations in the multiple OFDM symbols used in channel estimation should
be identical. To the best of our knowledge, there is no time-domain channel estimation
technique proposed so far that makes use of arbitrarily organized pilots in multiple OFDM
symbols in the presence of channel fading.

In this work, we propose an effective technique for time-domain sparse channel esti-
mation based on the matching pursuit (MP) approach. MP algorithms have been used
in audio and video signal processing to select bases of subspaces [27], [1]. We extend the
prior MP method for multipath delay estimation by jointly considering a group of OFDM
symbols; thus we term the proposed algorithm a group MP (GMP) algorithm. And we
design the algorithm such that it can deal with arbitrary pilot assignment that may vary
from OFDM symbol to OFDM symbol. In [43], [34] the similar MP based processing for
multiple measurement vectors are discussed. Note that the dictionary, or the range of
basis searching, in these works is unique. In the scenario of this contribution, however,
there are multiple reference dictionaries due to arbitrary pilot assignment.

The proposed subspace-based approaches for OFDM channel estimation is effective
to highly dispersive frequency-selective channels with limited resource of pilots, which is
also an potential threat to distributed relays with OFDM transmission. For most works
on relay systems, flat-fading channels are the presumed channel models. However in
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practice frequency selective channels would pose substantial effects to relay networks We
demonstrate that for AF distributed relays, the end-to-end OFDM transmission could
be modeled as equivalent single-hop OFDM with a delay profile composed of summation
of multiple convolution, and consequently exhibits severe channel dispersion. We would
apply the proposed schemes for the relay transmission and examine the performance.

1.2 Outline of This Thesis

In Chap. 2, we first briefly describe the system model of amplify-forwarding distributed
relay network used in this work, then present capacity (i.e. mutual information) of this
model and the associated optimization problem. To simplify the optimization and gain
some insights into system design, we discuss the effects of relay transmission power scaling
which ultimately leads to an upper bound of capacity. As our first approach to capacity
optimization, in the third part of this chapter we present the alternating optimization.
Specifically, this approach applies successive greedy optimization, low-rank updating of
matrix computation, and quadratic approximation. Finally some numerical results are
shown to confirm the performance of proposed approach.

While alternating optimization based on low-rank updating discussed in Chap. 2 can
yield good results, it provides little insight into the analytical properties of the solutions.
We thus consider an analytical approach in Chap. 3. In particular, note that in AF sys-
tems the receiver noise arises from two sources: the relay noise nR and the destination
terminal noise nD. The design problem becomes mathematically more tractable when
one of the two dominates in the overall receiver noise so that the other may be ignored.
We term the simplification as noise-dominant models. Algorithms to design relay gains
corresponding to the models are discussed in this chapter. We discover that the proposed
algorithm could be linked to equivalent single-hop MIMO antenna selection system. Thus
we would first briefly review the important results and findings on single-hop MIMO an-
tenna selection systems. For analytical insights we show how to model equivalent MIMO
antenna selection systems. Finally some numerical results are shown for performance eval-
uation and validating the links between equivalent MIMO antenna selection and proposed
relay selection schemes.

We discuss system simplification and approximation of distributed relay network based
on noise-dominant models in Chap. 3, wherein relay selection algorithms and associated
relay gains designs are also presented. Though the algorithms based on relay selection is
conceptually concise, the computation burden would growth exponentially as the number
of relays increases. To circumvent the problem, in Chap. 4 we discuss algorithms based
on noise-dominant models but avoid relay selection. For relay-noise dominant model we
cast the problem into projections with two subspace and minimizing the ratio of projected
vector norms. In Sec. 4.1.1 the idea and algorithm for multiuser low-leakage beamform-
ing [35] are briefly reviewed. We would apply the algorithm to solve minimization of
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norms in Sec. 4.1.3. As for destination-noise dominant model, in Sec. 4.2.2 we simplify
the problem by making the end-to-end MIMO channel H in (2.3) an upper-triangular
matrix so that the matrix determinant maximization in (2.4) could be approximated as
product of diagonal terms of H . Then in Sec. 4.2.3 we transform the design problem
with specifically constrained solution space and propose iterative algorithm to reach local
optimizer. Finally we summarize all the proposed algorithms (with and without relay se-
lection), and compare the order of computation complexity for selection-based algorithms
and proposed efficient designs. Numerical results of respective algorithms are shown and
compared in Sec. 4.3.

In Chap. 5 we discuss subspace-based algorithms for OFDM transmission with highly
dispersive delay profile and limited pilot resources. We propose MP based algorithms to
reconstruct the delay subspace which enables efficient and accurate time-domain channel
estimation. Then we present the channel modeling of distributed AF relay network with
OFDM transmission. It turns out the relay network of interest actually suffer equivalent
highly dispersive channel. Thus we propose the apply subspace-based algorithm to handle
the channel estimation. Finally in Chap. 6 we provide some concluding remarks on this
thesis work.

1.3 Contribution of This Thesis

We briefly outline the contribution of this work.

1. We propose iterative alternating optimization to improve the capacity of distributed
AF MIMO relay network. The proposed algorithm is based on matrix low-rank
updating and thus could efficiently generate optimized results.

2. Noise-dominant models is proposed to simplify system design on distributed AF
MIMO relay network. We show the models serve as upper bounds of system capacity
and lead to several efficient design algorithms.

3. Based on noise-dominant models and relay selection, we develop two corresponding
relay gains designs. We also discover the performance of proposed algorithm could
be modeled as equivalent MIMO antenna selection systems. Thus we could reply
on the well-studied characteristics of MIMO antenna selection to approximate and
analyze the proposed algorithms.

4. To circumvent the potential expensive computation burden of selection-based schemes,
we further transform and simplify the design problem in order to consider and uti-
lize all the relays simultaneously. For the relay noise dominant model, we develop
algorithms based on low-leakage beamforming designs. As to destination noise dom-
inant model, we propose to simplify the problem by matrix triangularization. An
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algorithms with specifically constrained solution space is developed to iteratively
improve the results.

5. To perform OFDM channel estimation with highly dispersive delay profile but with
few pilot or training symbols, we apply subspace-based algorithm to efficiently utilize
limited pilot resource. Since the unknown subspace is critical to this approach, we
apply OMP and invent GMP to iterative reconstruct the subspace. The proposed
MP based algorithms could bypass some limitations of other algorithms and utilize
the information brought by consecutive OFDM symbols. Also we discover that AF
distributed relay network with OFDM transmission could be modeled as single-hop
OFDM with equivalent highly dispersive channel. Thus the proposed subspace-
based algorithms is suitable to handle the channel estimation for the relay network
of interest.
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Chapter 2

Capacity of Relay Network and
Alternating Optimization

In this chapter, we first briefly describe the system model of amplify-forwarding dis-
tributed relay network used in this work, then present capacity (i.e. mutual information)
of this model and the associated optimization problem. To simplify the optimization and
gain some insights into system design, we discuss the effects of relay transmission power
scaling which ultimately leads to an upper bound of capacity. As our first approach to
capacity optimization, in the third part of this chapter we present the alternating op-
timization. Specifically, this approach applies successive greedy optimization, low-rank
updating of matrix computation, and quadratic approximation. Finally some numerical
results are shown to confirm the performance of proposed approach.

2.1 System Model and Capacity of Relay Networks

2.1.1 System Model and Power Limits

We consider a distributed MIMO relay system consisting of one source terminal, one
destination terminal and L single-antenna relay terminals. Both source and destination
are equipped with M antennas. To preserve the degree of freedom in the end-to-end
transmission, it is reasonable to assume L ≥ M . Fig. 2.1 demonstrates a conceptual
representation for the system of interest.

Let x and y (x,y ∈ CM) denote the signal vector transmitted from the source and
received at the destination, respectively. Let r = [r(1) r(2) · · · r(L)]T represent the for-
warding gain vector of relay network, wherein the ith relay performs amplify-forwarding
by multiplying the received signal with the complex gain r(i) and then transmitting the
result. Signals in the system pass through two MIMO channels, F andGH , to go from the
source to the destination, where F ∈ CM×L andGH ∈ CL×M denote channel between des-

8



Fig. 2.1: MIMO system with distributed relays.

tination and relays and channel between relays and source, respectively. The superscript
()H defines matrix Hermitian transpose. The received signals at the relays are assumed to
be subject to additive complex circular white Gaussian noise nR ∼ CN (0, σ2

RIL), where
IL denotes an identity matrix of size L × L. Likewise, the received signals at the des-
tination are assumed to be subject to additive complex circular white Gaussian noise
nD ∼ CN (0, σ2

DIM). Assume that there is no direct propagation path from the source to
the destination. The received signal vector y at the destination can be described as

y = F diag(r)GHx+ F diag(r)nR + nD

, FRGHx+ FRnR + nD (2.1)

where R is a diagonal matrix defined from r, and diag(r) denotes a diagonal matrix
whose diagonal terms are equal to r.

To optimize the system capacity fairly, transmission power limits are imposed on the
source and the relays. Specifically, we assume that the source transmits independent
signal streams over its M antennas with equal power σ2

x, subject to a total power limit of
PS. Further, the relays are subject to a total power limit of PR. Mathematically, these
constraints can be expressed as

PS ≥ tr(E{xxH}) = Mσ2
x,

PR ≥ tr(E{(RGHx+RnR)(RGHx+RnR)H})

=
L∑
i=1

(σ2
R + σ2

x|G(i)|2)|r(i)|2 ,
L∑
i=1

p(i)|r(i)|2,

where |G(i)|2 = (G(i))HG(i), with G(i) representing the ith column of G and being asso-
ciated with the channel vector between the source and the ith relay.
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2.1.2 Noise Whitening and Capacity

Note that the noise vector (FRnR+nD) in (2.1) as received by the destination is spatially
correlated. To find the system capacity, a noise whitening filter W−1/2 at the destination
is used, where W is given by

W = E{(FRnR + nD)(FRnR + nD)H}
= σ2

D(I + σ2(FR)(FR)H), (2.2)

with σ , σR/σD. Let H denote the noiseless end-to-end equivalent MIMO channel, i.e.,
H ,

√
σ2
xFRG

H . Then we may derive the system capacity as a function of R as [41]

log2 C(R) , log2 det(IN +HHW−1H)

= log2 det(W +HHH)− log2 det(W ) (2.3)

where det(·) denotes matrix determinant. The optimization problem can be stated as

Ropt = arg max
R

C(R) (2.4)

subject to

PS ≥Mσ2
x, PR ≥

L∑
i=1

p(i)|r(i)|2. (2.5)

By observing (2.3) it is clear increasing source transmitting power or σx is always
beneficial to capacity regardless of channel condition or the design of R. Thus we may
readily set σ2

x = MPS. Further, the combination of σ2
x and G matrix in (2.3) could be

replaced by a scaled version of G without lose any generality, so we ignore σx hereafter
in this work.

2.2 Power Scaling and Upper bounds of Capacity

The inequality about PS in (2.5) is discussed in last section. The remaining inequality
power constraint naturally prompts one to think: is it possible to simplify the constraint by
considering only the equality therein without impacting the optimality of the solution?
Or, alternatively, given a certain r that satisfies (2.5) with inequality, will the system
capacity be increased by scaling r to reach equality in (2.5)? Intuitively, the answer may
seem to be a no-brainer as increasing the transmission power should be beneficial to the
signal-to-noise ratio (SNR) and thus the capacity. However, because R affects both H
and W , it is not easy to intuitively determine in (2.3) the consequence of scaling R up.
Thus a solid proof nevertheless requires some works. We state the result as a theorem
and present the proof as follows.
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Theorem 2.2.1 (Capacity scaling). When the (complex) relay gains R are scaled by
s ∈ C with |s| > 1, C(sR) > C(R).

Proof. First, it is clear in (2.3) that C(sR) = C(|s|R). Without loss of generality we
assume s ∈ R+ (the set of positive real numbers) hereafter.

Consider a singular value decomposition of FR given by

FR = UΛV H (2.6)

where for convenience we let Λ be M×M . Thus U ∈ CM×M is the matrix of left singular
vectors as usual, but the matrix of right singular vectors V becomes L × M , that is,
V ∈ CL×M . Further, let the singular values along the diagonal of Λ be arranged in
descending numerical order. Let λi denote the ith diagonal element in Λ. Substituting
the above into (2.2) and (2.3), we get

W = UΣUH ,

C(R) = log det{IM +G[(FR)HW−1(FR)]GH}
= log det{IM +G[V ΣV H ]GH}, (2.7)

where Σ and Σ are diagonal matrices with their ith diagonal terms given by

Σ(i, i) = σ2
D + (σR|λi|)2, (2.8)

Σ(i, i) =
|λi|2

σ2
D + (σR|λi|)2

=
|λi|2

Σ(i, i)
. (2.9)

By scaling R to sR and using W s to denote the resulting noise correlation matrix at
the destination (in place of W ), we find

W s = σ2
DI + (sσR)2(FR)(FR)H = UΣsU

H ,

C(sR) = log det{IM +G[s2(FR)HW−1
s (FR)]GH}

= log det{IM +G[V ΣsV
H ]GH}, (2.10)

where Σs and Σs are diagonal matrices with their ith diagonal terms given by

Σs(i, i) = σ2
D + (sσR|λi|)2,

Σs(i, i) =
s|λi|2

σ2
D + (sσR|λi|)2

, aiΣ(i, i), (2.11)

with ai defined as

ai =
s2[σ2

D + (σR|λi|)]2

σ2
D + s2(σ2

R|λi|)2
.

Note that ai > 1 and ai ≤ aj for i ≤ j.
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From (2.10) and (2.11), Σs can be expressed as the sum of two diagonal matrices as

Σs = a1Σ + Σ∆,

where Σ∆ is some nonnegative diagonal matrix. Then, based on the eigenvalue inequalities
concerning the sum of two nonnegative-definite matrices [37, Sec. 6.4], we have

C(sR) = log det{IM +G[V ΣsV
H ]GH}

≥ log det{IM + a1G[V ΣV H ]GH}
> log det{IM +G[V ΣV H ]GH} = C(R).

�

Therefore, we confirm that scaling up of the relay gains can increase system capacity.
Hence we may simplify the optimization constraint to

PR =
L∑
i=1

(σ2
R + |G(i)|2)|r(i)|2 ,

L∑
i=1

p(i)|r(i)|2. (2.12)

That is, the relays should transmit at the maximum allowed total power.

Next, one may wonder if the capacity could increase without bound if the total relay
transmission power tends to infinity. Intuitively, the answer may appear to be another
no-brainer because, from (2.1), the quality of the source-to-relay links should place a cap
on the amount of information rate that the system can support no matter how much the
relay transmission power can be. But again, a solid mathematical proof requires a few
lines of reasoning. Again we state the result as a theorem and present the proof as follows.

Theorem 2.2.2 (Asymptotic capacity with high relay power). As |s| → ∞, C(sR) is
upper-bounded by

log det[IM + σ−2
R GG

H ]

and it approaches the upper bound if and only if G and FR span the same row space.

Proof. To complete the proof, we will need the following inequality of eigenvalues about
matrix product [37, Sec. 6.6]. Assume A and B are N × N Hermitian non-negative
definite matrices, and let ρi(A) be the ith largest eigenvalue of A. Then we have

ρi(A)ρN(B) ≤ ρi(AB) ≤ ρi(A)ρ1(B)

From (2.11), as |s| → ∞ the significance of σD vanishes, so that Σs(i, i) . σ−2
R and

C(sR) ≈ log det[IM + σ−2
R GV V

HGH ] (2.13)
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where V is the matrix of right singular vectors of FR as given in (2.6). To obtain the
result, the key is to grasp the eigenvalue structure of GV V HGH , or equivalently that of
GHGV V H . For this, let ρi(M ) denote the ith largest eigenvalue of a matrix M that
has real eigenvalues. We have

ρ1(GHG) ≥ ρ2(GHG) ≥ · · · ≥ ρM(GHG) > 0,

ρi(V V
H) = 1, 1 ≤ i ≤M,

ρi(G
HG) = ρi(V V

H) = 0, M + 1 ≤ i ≤ L.

Therefore, based on the eigenvalue properties concerning matrix products [37, Sec. 6.6],
we have

ρi(G
HGV V H) ≤ ρi(G

HG)ρ1(V V H)

= ρi(G
HG). (2.14)

The equality in the first line of the above equation holds if and only if G and V span the
same row space, or equivalently, if and only if G and FR span the same row space. In
conclusion, as |s| → ∞,

C(sR) ≤ log det[IM + σ−2
R GG

H ], (2.15)

where the equality holds if and only if FR and G span the same row space.

�

With Theorem 2.2.2, it is verified that C(R) is upper-bounded irrespective of the
power level of the relays.

2.3 Iterative Alternating Optimization

In Sec. 1.1.1 we briefly review the state of the art of relay network designs and the
challenges of distributed relay networks. In this section we take a closer look at the
optimization problem in (2.4) and present the efficient suboptimal successive alternating
algorithms based on low-rank updating and quadratic approximation.

Observing the criteria in (2.3), it is clear the computation for matrix determinant is
critical for optimization. Given multiple-antenna relays, the forwarding gain matrix R is
not diagonal, which mean we could rely on matrix decomposition (such as SVD or QR) to
transform cascaded MIMO channels into parallel subchannels then simplify determinant
computation [6]. Now to deal with diagonal R and non-convex problem, intuitively we
have two options to design the optimization algorithms:

1. Brute-force or systematic global search: since (2.4) could not apply convex program-
ming, we could always utilize systematic global optimization (e.g. genetic algorithm
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[10]) or even brute-force search to find the optimalR. However, this approach would
cost huge computation when L is large.

2. Replace determinant computation with high-order multivariate polynomial function:
the matrix determinant of a N ×N matrix H is defined to be the scalar [28]

det(H) =
∑
p

s(p)H(1, p1)H(2, p2) · · ·H(N, pN), (2.16)

where the sum is taken over the N ! permutations p = (p1, p2 · · · pN) of (1, 2 · · ·N),
H(i, j) denotes the item at ith row and jth column of H , and the sign scalar s(p) ∈
{+1,−1} is defined by permutation p. Following (2.3) and (2.16), we may transform
the optimization cost function in (2.4) into a high-order multivariate polynomial
of r(i) then perform derivative-based algorithms (e.g. Newton’s method [10]) to
approach local optimizer. Such algorithms would simplify the original multivariate
problem as successive one-dimensional line searches and guide the searches to most
favorable directions. However, even heading to favorable directions, line searches
with repeated calculation of high-order multivariate polynomial function would still
cost considerable computations and thus may not suit practical purpose.

Given the above two observations, we should design the optimization which not only
simplifies the multivariate problem but does effectively suppress extensive computation.
Alternating optimization [4] is one approach that meets the requirements. Instead of si-
multaneously considering all variables, by definition alternating optimization focus on one
variable at one time and alternates between variables. By optimizing one variable (and
fix the others) in one iteration and considering another variable in next round, alternating
optimization again transform multivariate problem into successive one-dimensional opti-
mization. Since we deal with cost function with single variable throughout line searches,
we may apply low-rank updating methods [28, Sec. 6.2] to avoid extensive matrix compu-
tation. Further, we could approximate polynomial function based on low-rank updating
as second-order function. Thus the approximated optimizer could be derived without line
search.

2.3.1 Low-rank Updating for Capacity Computation

Some matrix computation, such as decomposition, inversion or determinant, require con-
siderable computing resource. When the variation of a matrix comes from one or two
vectors, it is possible to compute some quantities associated with the matrix efficiently
via an updating procedure rather than via a full-blown computational procedure. Since
the variations are frequently of rank one or two, the efficient updating methods are often
termed low-rank updating. In what follows we describe some updating methods used in
our work.
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Assume square matrices A,B and C with updating equalities as follows

B , A+ u1v
H
1 ,C , B + u2v

H
2

where A is assumed to be full-rank Hermitian matrix. Given det(A) and A−1, we have
rank-one updating for efficient computation about B as

B−1 = A−1 − A
−1u1v

H
1 A

−1

1 + vH1 A
−1u1

, (2.17)

det(B) = det(A)(1 + vH1 A
−1u1). (2.18)

Using (2.18) and (2.17) we could save a great deal of calculation and extend to rank-two
updating for det(C) as

det(C) = det(B)(1 + vH2 B
−1u2)

= det(A)(1 + vH1 A
−1u1)

[
1 + vH2

(
A−1 − A

−1u1v
H
1 A

−1

1 + vH1 A
−1u1

)
u2

]
= det(A){(1 + vH1 A

−1u1)(1 + vH2 A
−1u2)− vH2 A−1u1v

H
1 A

−1u2}. (2.19)

Now we describe how the above-mentioned low-rank updating is applied in our alter-
nating optimization. In the proposed iterative relay gain adjustment, we adjust only one
relay gain at a time. Specifically, in each iteration, we replace one relay gain by some
value α ∈ C. The other relay gains are multiplied by a factor β ∈ R+ (where R+ stands
for the set of positive real numbers) such that the power constraint (2.12) is satisfied. The
factors α and β are chosen to maximize C(R).

In more detail, let r = [r(1), . . . , r(L)]T denote the gain vector of the relay network
where superscript T denotes transpose. Let the ith term of r, or r(i), be the relay to be
optimized in certain iteration, and ro be the same as r except with r(i) replaced by zero.
Also let ru denote the gain vector after the above-described update. Then

ro = (IL − Si)r, ru = βro + αSi1, (2.20)

where Si denotes the “selection matrix” whose elements are all zero except for a 1 at the
ith diagonal position and 1 represents an all-ones vector. Clearly, following (2.12) α is
subject to the constraint

0 ≤ |α| <
√
PR/p(i), (2.21)

and for given α, we have

β =

√
PR − |α|2p(i)∑
i p(i)|ro(i)|2

. (2.22)

Let Ro = diag(ro) and Ru = diag(ru). Then the noise-free equivalent end-to-end
channel matrix after gain updating is given by

Hu = βHo + αF (i)(G(i))H (2.23)

15



whereHo = FRoG
H andHu = FRuG

H . And the autocorrelation matrix of the received
noise vector at the destination becomes

W u = σ2
D[IM + (σβ)2(FRo)(FRo)

H ] + |σRα|2F (i)(F (i))H

, σ2
DWo + |σRα|2F (i)(F (i))H . (2.24)

We see that Hu is different from βHo by a rank-one matrix and that W u is different
from σ2

DW o also by a rank-one matrix. Further, we could express W u + HuH
H
u with

rank-two updating as

W u +HuH
H
u = (σ2

DW o + β2HoH
H
o ) + (αHβ)(HoG

(i))(F (i))H

+F (i) [(αβ)(HoG
(i))H + (|αG(i)|2 + |σRα|2)(F (i))H ]. (2.25)

Given these matrix updating forms, we proceed the design of alternating optimization by
decomposing the problem into three parts: 1) how to express C(Ru) in terms of α and
β; 2) how to optimize the values of α and β; and 3) how to iterate. We address these
subproblems in order below.

First, consider the term det(W u). From (2.24) it can readily be seen to be a polynomial
in |α|2 and β2. Applying the rank-one determinant update formula to it results in

det(W u) = σ2M
D det(W o)(1 + |σα|2(F (i))HW−1

o F
(i)). (2.26)

Its dependence on |α|2 and β2 can be expressed more concretely in terms of an eigenvalue
decomposition of (FRo)(FRo)

H :

(FRo)(FRo)
H = V 1Σ1V

H
1 . (2.27)

Then, letting e1(i) denote the ith eigenvalue (i.e., the ith diagonal element of Σ1), we
have

det(W u) = σ2M
D

M∏
i=1

{1 + (σβ)2e1(i)}{1 + |σα|2(F (i))HV 1[IM + (σβ)2Σ1]−1V HF (i)},

(2.28)

where a leading product in (2.18) is canceled by the common denominator of the braced
quantity.

Next, consider the term det(W u+HuH
H
u ), for which we make use of the rank-2 update

formula for matrix determinants. Employing (2.19) with the following identifications of
variables:

C ↔W u +HuH
H
u ,

A↔ σ2
D[IM + (σβ)2FRo(FRo)

H ] + β2HoH
H
o ,

u1 ↔ F (i),v1 ↔ (αHβ)(HoG
(i)) + (|αG(i)|2 + |σRα|2)F (i),

u2 ↔HoG
(i),v2 ↔ (αβ)F (i),
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we get

det(W u +HuH
H
u )

= det(A){(1 + vH1 A
−1u1)(1 + vH2 A

−1u2)− vH2 A−1u1v
H
1 A

−1u2}. (2.29)

As in the case of det(W u), its polynomial functional dependence on α and β can be
brought out more concretely with an eigenvalue decomposition of a constituent factor of
A:

FRo(FRo)
H + σ−2

R HoH
H
o = V 2Σ2V

H
2 . (2.30)

Then, letting e2(i) denote the ith eigenvalue, we have

det(A) = σ2M
D

M∏
i=1

[1 + (σβ)2e2(i)]

det(W u +HuH
H
u ) (2.31)

= det(A)[(1 + l1p
H
1 p1 + l2p

H
2 p1)(1 + lH2 p

H
1 p2)− (lH2 p

H
1 p1)(l1p

H
1 p2 + l2p

H
2 p2)]

= σ2M
D

M∏
i=1

[1 + (σβ)2e2(i)]× [1 + l1|p1|2 + 2<(l2p
H
2 p1) + |l2|2(|pH1 p2|2 − |p1|2|p2|2)],

where <(·) denotes the real part of a quantity and we have made the following definitions
to simplify the notation:

l1 , (|αG(i)|2 + |σRα|2)σ−2
D , l2 , αβ2σ−2

D , (2.32)

p1 , [IM + (σβ)2Σ2]−
1
2V H

2 F
(i), p2 , [IM + (σβ)2Σ2]−

1
2V H

2 (HoG
(i)). (2.33)

In summary, C(Ru) can be expressed as the difference between (2.31) and (2.28). We
now turn to the problem of finding α and β that maximize it.

2.3.2 Optimization of α and β

To start, note that none of the terms constituting det(W u) and det(W u +2 HuH
H
u )

depend on the phase of α except <(l2p
H
2 p1) that appears in (2.31). As a result, for any

given |α| and β, C(Ru) can be maximized by choosing the phase of α such that <(l2p
H
2 p1)

is maximized. This can be achieved by letting ∠α = ∠pH1 p2, so that <(l2p
H
2 p1) =

|l2pH2 p1|. The problem thus reduces to one of finding the best |α| and β. But since there
is a one-to-one relation between |α| and β (see (2.22)), we only need to solve for β. After
some straightforward algebra based on (2.3), (2.28), (2.31), we can show that the optimal
β is one that maximizes the following function:

q(β) ,
1 + l1|p1|2 + 2|l2pH2 p1|+ |l2|2(|pH1 p2|2 − |p1|2|p2|2)

1 + |σα|2(F (i))HV 1[IM + (σβ)2Σ1]−1V HF (i)

M∏
i=1

1 + (σβ)2e2(i)

1 + (σβ)2e1(i)
, (2.34)

17



where |α|, l1, l2, p1 and p2 are all functions of β.

Due to the complicated nature of (2.34), there is in general no closed-form solution
for the optimal β. We need to resort to a search technique, and such techniques are innu-
merable. A simplest one is non-iterative line search, in which one examines a sufficiently
dense subset of all admissible values of β to find the one maximizing q(β). From (2.21)
and (2.22), the set of admissible values of β are given by

0 < β ≤
√

PR∑L
i=1 p(i)|ro(i)|2

. (2.35)

A second method is to iteratively update a trial solution to β by solving a low-order
polynomial approximation to q(β) in each iteration. For example, one may, in each
iteration, use a quadratic approximation obtained by taking the second-order Taylor series
expansions of q(β) around some β value and take the β value that maximizes the quadratic
approximation as the updated trial solution. If this value should fall outside the admissible
range given in (2.35), we may replace it by the nearest boundary value of the range. In
addition, if the resulting q(β) value should decrease in some iteration, then we may stop
the iteration and revert to an earlier solution.

In fact, to find the optimal β one need not work with q(β) directly. Any monotone
increasing function of q(β) can be used in its stead. For example, since, from (2.34),
q(β) is a product of multiple factors, it may be easier to consider maximizing a logarithm
of q(β) than q(β) itself, for then products become sums. This approach is taken in our
implementation of the quadratic approximation method. Moreover, in implementing the
quadratic approximation method we have chosen to take the Taylor series expansion at
β = 1. The reason is that, since we adjust one relay gain at a time, the overall opti-
mization process belong to the category of alternating optimization which is guaranteed
to converge to a local optimum [4]. Upon convergence, the values in ru will change little
from one iteration to the next. In other words, the optimal β values will approach unity
upon convergence of the overall algorithm. Hence a series expansion around β = 1 should
provide a good approximation to the performance surface in the later stages of algorithm
progression and benefit its convergence behavior there. In summary, in our implementa-
tion of the quadratic approximation method we seek to maximize ql(β) , log q(β). And
for it we define

qa(β) , ql(1) + q′l(1)(β − 1) +
q′′l (1)

2
(β − 1)2, (2.36)

where q′l(1) and q′′l (1) are the first and second derivatives of ql(β) evaluated at β = 1. The
solution to the equation q′a(β) = 0 is then taken to be the current trial solution for β.

We summaries the proposed successive optimization algorithm as follows. It finds a
locally optimal solution.
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1. Select some relay i for gain adjustment, where i can be chosen in round-robin fashion,
for example.

2. Perform eigenvalue decomposition of (FRo)(FRo)
H and FRo(FRo)

H+σ−2
R HoH

H
o

as in (2.27) and (2.30) to find Σi and V i, i = 1, 2.

3. Solve for the β that maximizes q(β) as given in (2.34) by a search method, such
as the line search or the quadratic approximation method described in the last
subsection. Obtain the corresponding |α| using (2.22) and let ∠α = ∠pH1 p2.

4. Update the relay gains by setting the gain of the ith relay to α and multiplying the
gains of all other relays by β.

5. Exit if some stopping criteria are satisfied, or go to step 1 otherwise.

2.3.3 Numerical Results

In presenting the simulation results, we arbitrarily let M = 4, PR = 10, and σ2
R = σ2

D =
0.1. And we consider two relay network sizes: L = 6 and L = 12. The channel matri-
ces F and G are generated by letting all their elements be independent and identically
distributed (i.i.d.) complex Gaussian random variables. The relays are initialized to an
identical gain that satisfies the power constraint (2.12). Thus their initial performance
also serves as a benchmark to compare algorithm results with.

Fig. 2.2 illustrates the progression of average capacity with number of iterations under
two methods of solving for the relay gains adjustment factor β: line search and quadratic
approximation, where the former has a much higher computational complexity than the
latter. The results show that line search performs better than quadratic approximation,
but both show a qualitatively similar convergence behavior and the final results after
convergence are quite close. Also note that the converged capacity, for both approaches,
are much better than the initial capacity, especially when L is large. Such significant im-
provement of capacity suggests that the proposed algorithms could contribute substantial
performance upgrading when compared to simple identical gain design.

In Fig. 2.3 we show the average behavior of capacity variation when performing line
search of optimal β value in step 3 of procedures described in Sec. 2.3.2. Note the capacity
curve is first normalized with maximal q(β) in step 3, then is averaged over random channel
conditions as set for Fig. 2.2. With this simulation, we could confirm that the optimal
solution to line search is around β = 1 in average. Thus applying second-order Taylor
Series expansion at β = 1 not only lead to efficient suboptimal q(β) solution, but also
provides a good approximation to actual q(β) behavior around optimal β.
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Chapter 3

Capacity Improvement based on
Noise-Dominant Models

While alternating optimization based on low-rank updating discussed in Chap. 2 can yield
good results, it provides little insight into the analytical properties of the solutions. We
thus consider an analytical approach in this chapter. Since no closed-form solution can
be obtained for the general situation, we consider several simplified situations which are
more amenable to analysis. In particular, note that in AF systems the receiver noise arises
from two sources: the relay noise nR and the destination terminal noise nD. The design
problem becomes mathematically more tractable when one of the two dominates in the
overall receiver noise so that the other may be ignored. The results obtained from ignoring
one noise source may be viewed as upper bounds on system capacity or as asymptotic
performance of the system. For convenience, we term the two simplified conditions the
relay noise-dominant condition and the destination noise-dominant condition, respectively.

Interestingly, closed-form analytical solutions are not available for arbitrary L even
in these simplified conditions. But such solutions can be found if L is restricted to
some specific values depending on M . It thus prompts a (suboptimal) relay selection
approach wherein a judiciously selected subset of the relays is used to participate in
signal transmission and the subset size is such that an analytical solution exists. This
approach also helps us to study the resulting capacity outage diversity and compare it to
that of single-hop MIMO systems with or without antenna selection [17, 14].

Since MIMO antenna selection systems lay the foundation for the analytical inter-
pretation of the proposed relay selection schemes, In this chapter we would first briefly
review the important results of the studies on single-hop MIMO antenna selection systems.
Then we present noise-dominant models for relay network design and propose correspond-
ing algorithms for individual models. For analytical insights we design equivalent MIMO
antenna selection systems. Finally some numerical results are shown for performance eval-
uation and validating the links between equivalent MIMO antenna selection and proposed
relay selection schemes.
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3.1 Preliminary: MIMO Antenna-Selection Systems

Diversity techniques based on antenna selection or maximal ratio combining are mature
and popular approach to utilize multiple antennas for performance improvement. When
only single stream is transmitted with Nt Tx antennas and Nr Rx antennas, the diversity
order of NtNr could be achieved [2]. However, this principle could not be applied directly
to spatial multiplexing transmission with multiple concurrent streams. To this end, MIMO
antenna selection systems are developed [16] [17] and shown to be an efficient way to
provide additional diversity for spatial multiplexing systems.

Consider a point-to-point MIMO system with M transmitter antennas and N receiver
antennas, where N ≥ M . Let H ∈ CN×M be the channel matrix and let the transmit-
ted signal-to-received noise power ratio (transmit-to-receive SNR) ρ2. Then the system
capacity is given by

log2C(H) = log2 det(IM + ρ2HHH). (3.1)

For a flat-fading H , a statistical lower bound is [14]

log2C(H) ≥
M∑
i=1

log2(1 + ρ2γ2
N−i+1) (3.2)

where γ2
N−i+1 denotes a gamma-distributed random variable with N − i + 1 degrees of

freedom. This lower bound indicates that the capacity of an M × N MIMO system
is statistically equivalent to or better than that of a system composed of M parallel
independent single-input multi-output (SIMO) subsystems wherein the ith subsystem
performs maximal-ratio combining (MRC) on N − M + i receiver antennas. In other
words, the overall capacity outage diversity of an M × N MIMO system is bounded
between N −M + 1 and N .

Consider a system where the receiver selects M out of its N antennas for use in signal
detection. Let HS be the M ×M channel matrix of the resulting MIMO channel. This
matrix contains the M rows inH that correspond to the selected receiver antennas. There
are

(
N
M

)
possible antenna choices. Let (M,N ;M)S denote a system wherein the antennas

are chosen to maximize the capacity. Then the system capacity can be described as

log2CS = max
HS

log2 det(I + ρ2HH
SHS). (3.3)

It is shown in [17] that the capacity of such a system is again statistically equivalent to
or better than a MIMO system composed of M parallel independent SIMO subsystems
wherein the ith subsystem performs antenna selection by choosing one out of N − i + 1
receiver antennas.

In a nutshell, both the full system (M,N ;N)S and the receiver antenna selection sys-
tem (M,N ;M)S can be statistically modeled as a set of parallel SIMO transmissions and
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thus share a similar capacity outage diversity order. We show the cumulative distribution
function (CDF) curves of capacity for both systems. Given M = 3, in Fig. 3.1 the top part
presents CDF curves of both systems with N = 5 and N = 12, respectively. We could
observe that increasing N would improve capacity, and full systems outperform antenna
selection systems. To gain more insights into the capacity distribution, in the bottom
part of Fig. 3.1 we show biased CDF where curves are overlapped and shifted horizontally
with the 50% points collocated. With the biased CDF it is clear that antenna selection
systems share similar capacity distribution characteristic with corresponding full systems.

3.2 Designs for Destination-Noise Dominant Condi-

tions

Following Sec. 2.1.2, the noise in system could be represented as

W = E{(FRnR + nD)(FRnR + nD)H}
= σ2

D(I + σ2(FR)(FR)H). (3.4)

Thus, when the destination noise dominates in the overall noise we have W & σ2
DI. Then

we have capacity approximation as

C(R) = log2 det(I +HHW−1H)

. det[I + σ−2
D H

HH ]. (3.5)

Hence the capacity is approximately that of an M ×M single-hop point-to-point MIMO
system with channel matrix H and transmitted signal-to-received noise power ratio
(transmit-to-receive SNR) 1/σ2

D. However, even in this rather simplified condition, no
general solution is available to the optimization problem (2.4) for arbitrary L > M . But
an analytical solution can be obtained for L = M . Thus we consider a relay selection
approach wherein M relays are selected to perform the relaying. Let the total of

(
L
M

)
selections be indexed from 1 to

(
L
M

)
. For the kth selection define the corresponding

optimization target based on (3.5) as

CD(k,RD) , det[IM + σ−2
D (F kRDG

H
k )(F kRDG

H
k )H ] (3.6)

where F k ∈ CM×M and Gk ∈ CM×M , respectively, denote the submatrices of F and
G constructed by collecting the columns corresponding to the active relays in the kth
selection, and RD denotes the diagonal matrix of relay gains of the active relays. Let
rD(i) be the ith diagonal term in RD. In high SNR,

CD(k,RD) . det[σ−2
D (F kRDG

H
k )(F kRDG

H
k )H ]

= σ−2M
D det(F kF

H
k ) det(GkG

H
k )
∏
i

|rD(i)|2. (3.7)
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To maximize CD(k,RD) subject to the power constraint (2.12) given F k and Gk, we
equivalently find the optimum rD such that

rD = arg max
rD

∏
i

|rD(i)| (3.8)

subject to
M∑
i=1

(σ2
R + ‖G(i)

k ‖
2)|rD(i)|2 = PR, (3.9)

where rD = [rD(1), . . . , rD(M)]T and G
(i)
k denotes the ith column of Gk. Employing the

Lagrange multiplier technique leads to the optimum relay power allocation as

|rD(i)| =
√

PR

M(σ2
R + ‖G(i)

k ‖2)
. (3.10)

Denote the resulting CD(k,RD) by CDO(k). The final solution is then given by the optimal
selection

k̄ , arg max
k
CDO(k) (3.11)

together with its corresponding optimum relay power allocation.

To analyze its performance, substitute (3.10) into (3.7) and assume ‖G(i)
k ‖2 � σ2

R

(i.e., consider the high SNR limit). Then we get an upper bound for any C
(k)
DO(RD) as

CDO(k) . σ−2M
D det(F kF

H
k )

det(GkG
H
k )∏

i ‖G
(i)
k ‖2

(
PR
M

)M . (3.12)

A simpler upper bound can be obtained by considering a QR decomposition of GH
k as

GH
k = QT , where Q is a unitary matrix and T is an upper triangular matrix. Denote the

ith column of T by T (i) and the ith diagonal term of T by T (i, i). Then ‖T (i)‖2 = ‖G(i)
k ‖2

because T (i) and G
(i)
k are related by a unitary transform Q, and |T (i, i)|2 ≤ ‖T (i)‖2.

Consequently,

det(GkG
H
k )∏

i ‖G
(i)
k ‖2

=
| det(Q)|2| det(T )|2∏

i ‖G
(i)
k ‖2

=
M∏
i=1

|T (i, i)|2

‖G(i)
k ‖2

≤
M∏
i=1

‖T (i)‖2

‖G(i)
k ‖2

= 1, (3.13)

where equality holds only when Gk has orthogonal columns. Substituting into (3.12)
yields the desired upper bound

CDO(k) < det(F kF
H
k )(

PR
σ2
DM

)M . (3.14)

Thus we obtain an upper bound CDU on the capacity measure for the suboptimal solution
as

CDO(k̄) < det(F k̄F
H
k̄ )(

PR
σ2
DM

)M ≤ max
k

det(F kF
H
k )(

PR
σ2
DM

)M , CDU . (3.15)
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Note that log2CDU is actually the asymptotic capacity of an (M,L;M)S system at
transmit-to-receive SNR PM

R /(σ2
DM)M , where (X, Y ;Z)S denotes an X × Y single-hop

point-to-point MIMO system wherein the receiver selects, out of the total Y received an-
tenna signals, the Z that yields the maximum capacity for receiver processing. (See the
review in Sec. 3.1)

By (3.12) we may also obtain a lower bound for CDO(k̄): Letting

k = arg max
k

det(GkG
H
k )∏

i ‖G
(i)
k ‖2

, (3.16)

we have the lower bound CDL as

CDL , CDO(k) ≤ max
k
CDO(k). (3.17)

When L � M , it becomes more likely to find a set of M nearly orthogonal columns in
G. In this case, we will have det(GkG

H
k )/

∏
i ‖G

(i)
k ‖2 . 1 and thus

CDL = CDO(k) . det(F kF
H
k )(

PR
σ2
DM

)M . (3.18)

Now since k is a selection based on G without taking F into consideration and since from
(3.18) log2CDL resembles the form of the capacity of an M ×M single-hop point-to-point
MIMO system with channel matrix F k at transmit-to-receive SNR PM

R /(σ2
DM)M , we can

view log2CDL as the capacity of an (M,M ;M)S system.

Therefore, from (3.15) and (3.17) we conclude that in the destination-noise dominant
condition, the performance of relay selection with optimal power allocation is asymptot-
ically upper-bounded by that of the (M,L;M)S MIMO antenna selection system and
lower-bounded by that of (M,M ;M)S. The capacity outage diversity order is thus sim-
ilarly bounded by that of these two systems. Simulation results in Sec. 3.4 will show
that, although the above derivation has been carried out mostly assuming asymptotic
conditions, relay selection systems operating in practical conditions exhibit some similar
performance characteristics.

3.3 Designs for Relay-Noise Dominant Conditions

We now turn to the relay noise-dominant situation. Again, no closed-form general solution
can be found for arbitrary values of L and M , but a solution can be found if they are
related in a specific way. We thus again propose a relay selection scheme.

To start, let N out of the L relays be selected to participate in the relaying, where N ≥
M but is otherwise undetermined for the moment. Altogether there are

(
L
N

)
selections. For

the jth selection we let F j ∈ CM×N and Gj ∈ CM×N denote the corresponding channel
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submatrices of F and G, respectively. From the derivation up to (2.9) in Theorem. 2.2.1
we may infer that, in the relay noise-dominant situation,

CR(j,RR) . det(IM + σ−2
R GjV jV

H
j G

H
j ) (3.19)

where RR is the diagonal matrix of relay gains, V j ∈ CN×M is the matrix of right singular
vectors of F jRR with its jth column corresponding to the jth largest singular value of
F jRR. Comparing with the situation addressed in Theorem 2.2.1 (in particular, see
(2.13)) we find that relay noise-dominant systems behave similarly to systems with very

high relay transmission power. Hence by Theorem 2.2.2, C
(j)
R (RR) is upper-bounded as

CR(j,RR) ≤ det(IM + σ−2
R GjG

H
j ), (3.20)

where equality holds and CR(j,RR) is maximized if the rows of F jRR span the same
space as that of Gj. Note that, contrary to the destination noise-dominant case, in the
present case the total relay transmission power does not affect the performance at all,
only the row space of F jRR matters. And the relay network should try to align the row
space of F jRR with that of Gj, which is a beamforming problem.

To proceed, let F<i>
j denote the ith row of F j. Let Oj ∈ CN×(N−M) be a matrix

of basis vectors for the orthogonal complement of the row space of Gj; that is, Oj is
such that GjOj = 0 where 0 denotes a zero matrix. Also, let Φij , diag(F<i>

j )Oj.
Immediately we have

rTRΦij = rTR diag(F<i>
j )Oj = (F<i>

j )HRROj (3.21)

where rR ∈ CN is the vector formed of the diagonal elements of RR. To make the row
space of F jRR equal to that of Gj, we may equivalently find rR such that rTRΦij = 0 ∀i.
For this, define

Φj , [Φ1j Φ2j · · · ΦMj] ∈ CN×N(N−M). (3.22)

Then the optimal solution or beamformer rR should be such that rTRΦj = 0. The existence
of such a solution would require Φj to have a non-empty null column space. Therefore let
M(N −M) < N . Combined with the earlier assumption that N ≥M , the only choice is
N = M + 1 for any M ≥ 2.

In conclusion, the final solution is given by the selection

j̄ = arg max
1≤j≤( L

M+1)
CR(j,RR) (3.23)

where for each j, RR is given by diag(rR) with rR being the solution to the equation

rTRΦj = 0 and “normalized” such that
∑M+1

i=1 (σ2
R + ‖G(i)

j ‖2)|rR(i)|2 = PR (where G
(i)
j is

the ith column of Gj and rR(i) is the ith element of rR).

Regarding its performance, from (3.20) we see that the resulting capacity measure is
approximately given by CRO as follows:

max
j
CR(j,RR) ≈ max

j
det(IM + σ−2

R GjG
H
j ) , CRO, (3.24)
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where the middle expression indicates that log2CRO should behave similarly to an (M,L;M+
1)S MIMO antenna selection system with transmit-to-receive SNR σ2

x/σ
2
R. We will not

develop upper and lower bounds to the capacity performance as in the destination noise-
dominant case because (3.24) is already a good approximation.

3.4 Numerical Results

Next, we consider the methods derived under the two dominant noise assumptions. This
serves two main purposes. First, their performance is compared with two benchmarks,
namely, that of equal-gain allocation and that obtained with alternating iterative algo-
rithm (discussed in Sec. 2.3). And secondly, their capacity outage behavior is observed.
It is suggested in Sec. 3.2 and 3.3 that more relays would represent larger capacity outage
diversity, which is expected to be presented in simulation. In this we also look at how
close the bounds CDU and CDL and the approximation CRO are to the actual results. To
demonstrate the capacity outage diversity, we present the cumulative distribution function
(CDF) of capacity (with respect to capacity).

For the destination noise-dominant case, Fig. 3.2 shows some cumulative distribution
function (CDF) curves of the obtained capacity at M = 3, L = 6, σD = 0.1 and PR =
1. Not surprisingly, the iterative algorithm performs better than the suboptimal relay-
selection solutions, and the equal-gain allocation performs worse. The CDU curve is rather
close to the iterative algorithm results at the same σD/σR ratio. As to the relay-selection
solutions, we see that the capacity performance drops as σR increases (which worsens the
SNR). But even though the destination noise becomes less dominant with increasing σR,
the capacity outage diversity order (indicated by the slope of the curve) remains similar
and similar to that of CDU .

Next, we consider how the diversity order varies with number of relays (L). Fig. 3.3
shows some results with all system parameters the same as above except for a fixed
σR = 10−2 and a variable L. As the purpose is to examine the diversity order behavior
but not the actual capacity, we “bias” the CDF curves horizontally to make their 50%
points co-located at zero capacity. The curves verify that the proposed relay selection
method indeed yields a similar diversity order to CDU , and the diversity order increases
(i.e., the CDF curve steepens) with number of relays. To compare with the diversity
behavior of CDL, we also show a curve for a (3, 3; 3)S system.

Now consider the design based on the relay noise-dominant assumption. Fig. 3.4 shows
some results. Again, the iterative algorithm performs better and the equal-gain worse.
And we verify that the diversity order behavior at σR/σD = 10 is similar to that of a
(3, 6; 4)S system (the behavior of CRO). As expected, capacity drops as σD increases
(which lowers the SNR and also makes the relay noise less dominant). But the great
difference with Fig. 3.2 is the reduction in diversity order (i.e., reduction in steepness of
CDF curve) with reduced relay noise-dominance.
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Fig. 3.2: Capacity CDF of distributed relay system designed under destination noise-
dominant assumption.

In Fig. 3.5, we compare the capacity CDFs of distributed relay networks of different
sizes, all designed with the relay selection method for the relay noise-dominant condition,
with the (M,L;M + 1)S MIMO antenna selection systems. We see that the performance
of the latter tightly upper-bounds the corresponding distributed relay systems.
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Chapter 4

Efficient Algorithms for
Noise-Dominant Models

We discuss system simplification and approximation of distributed relay network based
on noise-dominant models in Chap. 3, wherein relay selection algorithms and associated
relay gains designs are also presented. Though the algorithms based on relay selection is
conceptually concise, the computation burden would growth exponentially as the number
of relays increases. To circumvent the problem, in this chapter we discuss algorithms
based on noise-dominant models but avoid relay selection. As the foundation of proposed
efficient designs, we briefly review relay selection algorithms in Sec. 4.1.2 and Sec. 4.2.1.

For relay-noise dominant model we start from the equivalent beamforming problem dis-
cussed in Sec.3.3. Since we consider L relay gains simultaneously and optimal beamformer
is not available, we cast the problem into projections onto two subspace and minimizing
the ratio of projected vector norms. In Sec.4.1.1 the idea and algorithm for multiuser low-
leakage beamforming [35] are briefly reviewed. We would apply the algorithm to solve
minimization of norms in Sec. 4.1.3.

As for destination-noise dominant model, in Sec. 4.2.2 we simplify the problem by
making the end-to-end MIMO channel H in (2.3) an upper-triangular matrix so that the
matrix determinant maximization in (2.4) could be approximated as product of diagonal
terms of H . In other words, we zero-force some terms of H then focus on a product
maximization problem. In Sec. 4.2.3 we transform the design problem with specifically
constrained solution space and propose iterative algorithm to reach local optimizer.

It is the potentially expensive computation of selection-based algorithms that moti-
vates us to develop efficient designs for noise-dominant models. Thus in Sec. 4.1.4 and
4.2.4 we would summarize all the proposed algorithms (with and without relay selection),
and compare the order of computation complexity for selection-based algorithms and pro-
posed efficient designs. Finally the respective performance would be shown and compared
in Sec.4.3.
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4.1 Designs for Relay-Noise Dominant Conditions

4.1.1 Downlink Low-leakage Beamforming Design

Assume base station is equipped with N transmission antennas and serves K users. For
the kth user, base station send signal scalar sk via dedicated transmission beamforming
vector rk ∈ ZN . Thus the transmitted signal vector x could be described as

x =
K∑
k=1

rksk, (4.1)

where rk and sk is normalized such that E{|sk|2} = 1, ‖rk‖2 = 1. Assume the number
of receiver antennas at the kth user is Mk, and the MIMO channel matrix between base
station and the kth user is F k ∈ ZMk×N . Then the reception vector of the ith user, yi,
could be modeled as

yi = F ix+ vk

= F irisi +
∑
∀k 6=i

F irksk + vk, (4.2)

where vk ∼ CN (0, σ2
kI) denotes the reception noise of the ith user. Note the first term

in the RHS of (4.2) represents desired downlink signal for the ith user, while the second
terms represents unwanted interference.

Following (4.2) the SINR (signal to interference plus noise ratio) at the input of the
ith user could be stated as

SINRi =
‖F iri‖2

Miσ2
i +

∑
∀k 6=i
‖F irk‖2

. (4.3)

Note the beamformers meant for other users, rk(∀k 6= i), account for the interference to
the ith user. It is conceptually depicted in Fig. 4.1 with i = 1. SINR is a performance
index of fundamental importance and frequently used as design criteria. However, it
is challenging to optimize K beamformers simultaneously with K SINR index. Another
potential approach is to arrange beamformers so that the interference is completely nulled
out at transmitter. It is intuitive and simple, but would require larger size of transmitter
antennas to ensure that F kri = 0 ∀i, k 6= i. Thus base station may need additional
antennas to serve more users.

To accommodate the above-mentioned problems of SINR-based beamforming design,
another relaxed but viable criterion is proposed in [35]. Instead of considering interfering
terms F irk ∀i 6= k, Sadek et al. proposed applying SLNR (signal to leakage plus noise
ratio) measure which emphasis the leakage signals from ri to users j(∀k 6= i). The SLNR
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Fig. 4.1: Downlink signal and interference flows for user 1

measure for the ith user could be stated as

SLNRi =
‖F iri‖2

Miσ2
i +

∑
∀k 6=i
‖F kri‖2

,
‖F iri‖2

Miσ2
i + ‖Φiri‖2

(4.4)

and depicted in Fig. 4.2 assuming i = 1. Φi is defined to be a matrix composed of F k(∀k 6=
i) and is used to measure the leakage from ri It is clear that SLNRi depends only on ri
and is easier to be optimized. The optimal solution of ri that maximize SLNRi is shown
to be [35] the scaled version of eigenvector of (Miσ

2
i I + ΦH

i Φi)
−1FH

i F i corresponding to
the maximal eigenvalue. Note that maximizing SLNRi is equivalent to design ri with two
criteria, minimizing ‖Φiri‖ and maximizing ‖F iri‖, exercised simultaneously. In later
sections we would again apply the composite criteria for relay network design.

4.1.2 Capacity Approximation and Relay Selection

For the case of relay-noise dominating mode, the significance of IM in (2.2) vanishes.
Following Sec. 3.3 we derive the upper bound and approximation of capacity measure as

C(R) . det(IM +
σ2
x

σ2
R

GV V HGH) (4.5)

≤ det(IM +
σ2
x

σ2
R

GGH), (4.6)
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Fig. 4.2: Downlink signal and leakage flows from user 1

where V ∈ CL×M is the matrix composed of right singular vectors of FR corresponding
to the M largest singular values, and the equality in (4.6) holds when V spans the range
of GH . To explain how and when this condition is satisfied, we first define following
matrices: let V GR ∈ CL×M be the orthogonal basis spanning range of GH , and let V GN

be the orthogonal complement of V GR. Also we define Φi and Φ such that

Φi , diag(F<i>)V GN (4.7)

Φ , [Φ1Φ2 · · ·ΦM ] ∈ CL×M(L−M), (4.8)

where F<i> stands for the ith row vector of F .

Since we require V spans the range of GH , the row vectors of FR should not fall in
the null space of GH . That is, (FR)<i>V GN = 0 ∀i, which could be rewritten as

(FR)<i>V GN = rT diag(F<i>)V GN

= rTΦi = 0 ∀i, (4.9)

where 0 means the matrix with appropriate size and all zero terms. Equivalently we
should find the solution to rTΦ = 0, and scale r such that power limitation (2.5) is
satisfied. A non-trivial solution requires non-empty null space of ΦT , which means the
size of relay networks should satisfies L = M + 1 (see Sec. 3.3 for detail).

When it comes to larger relay networks (L > M + 1), one simple extension based on
(4.9) is to select M + 1 relays out of L. Since we may guarantee asymptotic capacity
reaching the upper bound in (4.6) for M + 1 relays, the selection with best value in (4.6)
would be used to activate the selected relays and deactivate otherwise.
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4.1.3 Capacity Improvement based on Maximizing the Ratio of
Norms

For larger size of relay network, the exhaustive
(

L
M+1

)
selections would require considerable

computation as L increases, thus we may resort to another approach to designR efficiently.
Recall in Sec. 4.1.2 the fundamental is to designR such thatGH and (FR)H have identical
range space. When L 6= M +1 we could still apply the principle and design the algorithm
with composite criteria.

On one hand, though in (4.9) we could not find r as the solution to rTΦ = 0 when
L 6= M + 1, we may try to minimize ‖rTΦ‖ as an approximated criterion based on (4.9).
On the other hand, note that

‖(FR)<i>V GR‖ ≤ ‖(FR)<i>‖ ∀i

and the equality holds when GH and (FR)H have identical range space, which indicates
that we should try to maximize ‖(FR)<i>V GR‖. To do so we define Ψi and Ψ as

Ψi , diag(F<i>)V GR (4.10)

Ψ , [Ψ1Ψ2 · · ·ΨM ] ∈ CL×M2

. (4.11)

Then maximizing ‖(FR)<i>V GR‖ is equivalent to maximizing ‖rTΨ‖.
Now we need to handle norm minimization and maximization simultaneously. The

design of r could be realized by maximizing the ratio of norms as

ropt = arg max
r

‖rTΨ‖
‖rTΦ‖

. (4.12)

Recall we discuss low-leakage beamforming technique in Sec.4.1.1. The criterion in (4.12)
resembles that in (4.4). Thus we derive ropt such that it should be proportional to the
eigenvector of (ΦΦH)−1ΨΨH corresponding to the maximum eigenvalue, and is scaled
according to (2.5). Note the Φ in (4.12) is wide matrix, so ΦΦH is invertible (given Φ is
full rank).

4.1.4 Algorithms Summary and Complexity Comparison

For better understanding and comparison, in what follows we summarize and itemize the
two algorithms (with and without relay selection) for relay-noise . Moreover, among the
steps of algorithms we highlight some key procedures that are computationally demanding
or repeatedly executed. Based on the assessment of computation burden for these steps,
we may obtain a rough yet useful comparison of complexity of the two algorithms.

For the algorithm based on relay selection in Sec. 4.1.2, the procedures could be
summarized as follows:
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1. Set
(

L
M+1

)
combinations to represent all possible selection of choosing M + 1 relays

out of L.

2. For the ith combination (1 ≤ i ≤
(

L
M+1

)
), we define F i and Gi as the submatrix of

F and G respectively and is corresponding to the selected M + 1 relays for the ith
selection. Also we denote ri as the corresponding M + 1 relay gains.

3. For all the combination, we compute the individual capacity approximation as (4.6).

4. Find the combination with largest capacity and set relay gains for the selected relays
by following steps. The remaining (unselected) gains are set as zero.

5. Assume the index of selected combination is k. Define matrix V GN be the orthogonal
basis spanning the null space of Gk (i.e. GkV GN = 0). Set matrix Φ based on (4.7)
and (4.8).

6. Set rk as the solution of rTkΦ = 0 then scale rk such that the power limitation (2.5)
is satisfied.

In step 3 the capacity approximation for each combination requires calculating matrix
determinant and matrix multiplication. We may apply QR matrix decomposition based
on Gram-Schmidt process to obtain matrix determinant, and consume computation of
order O((M + 1)3) = O(M3) [42]. The matrix multiplication requires M2(2M + 1) flops
(complex Floating-Point number Operations Per Second), thus again is of order O(M3).
Since the computation of matrix determinant and multiplication is repeated for all the
combination, the computational complexity associated with step 3) is about O(LM+1M3).

Now we summarize the procedures of the algorithm based on maximizing the ratio of
norms in Sec. 4.1.3 as follows:

1. Define matrix V GN be the orthogonal basis spanning the null space ofG (i.e.GV GN =
0), and V GR be the orthogonal complement of V GN .

2. Set matrix Φ based on (4.7) and (4.8). Also set matrix Ψ in a similar way based
on (4.10) and (4.11).

3. Following (4.12) we set r as the eigenvector of (ΦΦH)−1ΨΨH corresponding to its
maximum eigenvalue, and scale the resulting r such that the power limitation (2.5)
is satisfied.

In step 1 we perform QR decomposition forG which costs about 2L3 flops [42]. Among
the three matrix multiplications in step 3), the one with largest matrix size, ΦΦH , takes
L2(2ML − 2M2 − 1) flops. Thus for large size of relay the matrix multiplications are of
order O(ML3). Also found in 3 is an inversion for L×L Hermitian matrix, which would
require L3 +L2 +L flops [18]. Based on these assessment we conclude that the algorithm
computation is of order O(ML3).
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4.2 Designs for Destination-Noise Dominant Condi-

tions

4.2.1 Capacity Approximation and Relay Selection

For the case of destination-noise dominating mode, in (2.2) and (2.3) the matrix W could
be approximated as σ2

DI. So we have

C(r) . det(IM +
σ2
x

σ2
D

HHH). (4.13)

Clearly C(r) is now closely related to | det(H)|, especially when system works with high
SNR. Therefore it is reasonable to use | det(H)| as alternative cost function to be maxi-
mized during system design. In other words, (2.4) could be replaced as

ropt = arg max
r
| det(H)| (4.14)

subject to
∑
∀i

p(i)|r(i)|2 ≤ PR.

For the case L = M and full-rank square F and G, (4.14) turns out to be

ropt = arg max
r
| det(F ) det(G)|

∏
∀i

|r(i)| (4.15)

with optimal solution as

|ropt(i)| =

√
PR

Mp(i)
. (4.16)

For the case L > M , we may select M relays out of L such that (4.16) is applied for each
selection and choose the combination with largest | det(H)|.

4.2.2 Capacity Improvement based on Partial Zero Forcing

When L > M , | det(H)| could not be decoupled as (4.15) therefore the solution in (4.16)
is no longer applicable. Selection-based approaches may simply become too expensive
as the combinations grows exponentially when L increases. Therefore another efficient
algorithm is required if we would like to handle and make use of all relays simultaneously.

Denote H(i, j) as the element at the ith row and jth column of H . The determinant
of H is defined to be

det(H) ,
∑
∀u

a(u)
M∏
i=1

H(i,u(i)), (4.17)
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where the summation is taken over the M ! permutations u = [u(1)u(2) · · ·u(M)] of
(1, 2 · · ·M) [28], and the scalar a(u) ∈ {1,−1} is a function of u. Directly pursuing the
optimization of (4.17) is complicate and impracticable. To approach a viable algorithm
we first simplify (4.17) by designing R such that partial terms of H are zero forced and
H becomes a lower-triangular matrix. Equivalently we would have

H(i, j) = 0, 1 ≤ i ≤M, i < j ≤M. (4.18)

det(H) =
M∏
i=1

H(i, i). (4.19)

Note the matrix determinant computation is now greatly simplified as product of diagonal
terms.

Note thatH(i, j) could be expressed asH(i, j) = (F<i>�G<j>
)r, where � represents

element-wise product, and G
<j>

denotes the conjugate of G<j>. Combining (4.18) and
(4.19) we modify (4.14) as

ropt = arg max
r
|
∏
∀i

H<i>
R r| (4.20)

subject to

HNr = 0, (4.21)∑
∀i

p(i)|r(i)|2 ≤ PR, (4.22)

where HR is defined such that its the ith row H<i>
R is equal to F<i> � G<i>

. That

is, HRr = diag(H). HN ∈ C
M(M−1)

2
×L is defined in a similar way such that HNr

corresponds to the upper-half elements (besides diagonal terms) of H . To ensure non-

empty solution domain in (4.21) we require L > M(M−1)
2

, which would be true for large
relay systems.

To transform (4.20), (4.21) and (4.22) into more tractable forms, we first introduce a
diagonal matrix S whose ith diagonal term is equal to p(i)−0.5, and define rS , S

−1r.

Following (4.21) we know HNSrS should be 0. For this we define V N ∈ CL×(L−
M(M−1)

2
)

as the orthogonal basis of null space of HNS, and define rN such that rN , V
H
NrS. Now

the optimization problem becomes

ropt = SV N arg max
rN
|
∏
∀i

(HRSV N)<i>rN | (4.23)

subject to
∑
∀i

|rN(i)|2 = PR. (4.24)
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Note we set equality constraint in (4.24) since scaling r (or rN) with a positive real
number would always be beneficial in (4.23).

For convenience of algorithm presentation, we assume HRSV N ∈ CM×(L−
M(M−1)

2
) be

a full-rank wide matrix , while the proposed algorithm could be easily extended when
HRSV N is tall matrix. We do SVD (singular value decomposition) such that AΣV H

R =

HRSV N , where A is unitary, Σ is diagonal matrix, and V R ∈ C(L−
M(M−1)

2
)×M . Then

we arrange another transforming by defining ε , V H
RrN , and obtain the optimization

problem as

ropt = SV NV R arg max
ε
|
∏
∀i

(AΣ)<i>ε| (4.25)

subject to εHε = PR, (4.26)

Now we could focus on max
∏

i(AΣ<i>ε). To best of our knowledge (4.25) and (4.26)
could not be handled by closed-form solution or convex programming, thus we design
iterative algorithm for an suboptimal solution based on the following observations:

1. Define η , AΣε and cη , ‖η‖. Given cη being a known and fixed value, by Jensen’s
inequality the upper bound of |

∏
i η(i)| would be (cη/

√
M)M , where the bound is

reached when |η(i)| = cη/
√
M ∀i. In other words, given a fixed ‖η‖, we would

conclude that |
∏

i η(i)| is maximized when all elements in η have identical absolute
value.

2. Assume the diagonal terms of Σ are listed in descending order. Since A is uni-
tary, we know ‖η‖ = ‖Σε‖. Given ‖ε‖2 = PR as limited by (4.26), it is obvious
that Σ(M,M)

√
PR ≤ ‖η‖ ≤ Σ(1, 1)

√
PR, where the upper and lower bound are

reached when all elements in ε are zeros except |ε(1)| =
√
PR and |ε(M)| =

√
PR,

respectively.

Following the observations, we set two principles for optimization:

1. Based on observation 1, when the transformed η shows the unique form that all its
elements has identical absolute value, the product value |

∏
i η(i)| reaches maximum

in terms of cη. Consequently we would force all elements in η to have identical
absolute value. That is, η could be described as η = (cη/

√
M)θ, where θ ∈ CM

and |θ(i)| = 1 ∀i.

2. Based on observation 2, the 2-norm of ε is fixed to PR while ‖η‖2 is varying. Since
‖η‖2 affects the achievable upper bound of |

∏
i η(i)|, we should consider maximizing

‖η‖2.
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Combining (4.25), (4.26) and the principles, we arrive

|
∏
∀i

(AΣ)<i>ε| = |
∏
∀i

η(i)| = (cη/
√
M)M

‖ε‖ =
√
PR = (

cη√
M

)‖Σ−1A−1θ‖.

Clearly maximizing in (4.25) is now equivalent to minimizing ‖Σ−1A−1θ‖. The new forms
of optimization problems could be stated as

ropt = SV NV RΣ−1A−1 arg min
θ
‖Σ−1A−1θ‖ (4.27)

subject to θ ∈ CM , |θ(i)| = 1 ∀i (4.28)

Note the solution to (4.27) is suboptimal to (4.25), because the optimizer for (4.25)
may not result in η with the form (cη/

√
M)θ and thus would be ruled out of the domain

of (4.28). Since the actual optimizer is not available, we have no way to assess the the
performance degradation of suboptimality. With simulation results, however, it is shown
to be an efficient yet powerful approach.

Also note that though we apply lower-triangular matrix to arrange the zero forcing
and approximate computation of matrix determinant, according to (4.17) it is possible
use other zero forcing arrangements (for example, do row permutation of H and/or set
upper-triangular zero forcing). However, selecting among the potential arrangements is
beyond the scope of this work. What we focus here is to design efficient approach given
zero forcing arrangement is fixed.

4.2.3 Iterative Greedy Optimization

To handle the optimization for (4.27) we consider iterative greedy algorithm which grad-
ually improve the cost function in (4.27). The idea is to select one element in θ, say θ(k),
as varying variable and optimize it in each iteration, then pick another θ(j) j 6= k in next
iteration. To clearly separate and express the varying and invariant parts, we define

u , (Σ−1A−1)(k), (4.29)

uo ,
∑
∀k̃ 6=k

(Σ−1A−1)(k̃)θ(k̃), (4.30)

θ∆ ∈ CM ,θ∆(i) , exp(j∠u(i)− j∠uo(i)), (4.31)
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where ∠u(i) denotes the phase of u(i). With these definitions we rewrite the square of
cost function in (4.27) as

‖Σ−1A−1θ‖2 = ‖θ(k)u+ uo‖2

=‖θ(k)|u| � θ∆ + |uo| ‖2

=
M∑
i=1

|u(i)|2 + |uo(i)|2 + 2|u(i)uo(i)| cos(∠θ∆(i) + ∠θ(k)). (4.32)

Differentiate (4.32) with respect to ∠θ(k) yields

∂‖Σ−1A−1θ‖2

∂∠θ(k)
=− 2

M∑
i=1

|u(i)uo(i)| sin(∠θ∆(i) + ∠θ(k))

=− 2 sin∠θ(k)
M∑
i=1

|u(i)uo(i)| cos∠θ∆(i)

− 2 cos∠θ(k)
M∑
i=1

|u(i)uo(i)| sin∠θ∆(i). (4.33)

To find optimized ∠θ(k) such that (4.32) is minimized, we derive the root of (4.33). The
solution would be

∠θ(k) = arctan

−
M∑
i=1

|u(i)uo(i)| sin∠θ∆(i)

M∑
i=1

|u(i)uo(i)| cos∠θ∆(i)

 (4.34)

Note due to the nature of trigonometric functions we would find two solutions (roots)
in the range 0 ≤ ∠θ(k) ≤ 2π, and the one corresponding to smaller ‖Σ−1A−1θ‖ is the
desired θ(k) optimizer. As described earlier, in each iteration we pick one θ(k) as varying
variable and repeat (4.32)-(4.34) closed-forms to optimize ‖Σ−1A−1θ‖.

4.2.4 Algorithms Summary and Complexity Comparison

Similar to what we presented in Sec. 4.1.4, now we summarize the procedures and compare
the complexity of two algorithms for destination-noise dominating model. First, the
algorithm based on relay selection in Sec. 4.2.1 could be described as follows:

1. Set
(
L
M

)
combinations to represent all possible selection of choosing M relays out of

L.
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2. For the ith combination (1 ≤ i ≤
(
L
M

)
), we define F i and Gi as the submatrix

of F and G respectively and is corresponding to the selected M relays for the ith
selection. Also we denote ri as the corresponding M relay gains.

3. For the ith combination, we compute the individual relay gains ri following (4.16)
then calculate the capacity with (4.15).

4. Repeat step 3 for all the combinations then selected the one with largest capacity
and set relay gains accordingly.

The computationally demanding step 3 requires twice matrix determinant compu-
tation for M × M matrices, and would be repeated for

(
L
M

)
combinations. Thus the

computation burden is of order O(LMM3).

For the algorithm discussed in Sec. 4.2.2 and 4.2.3, the procedures could be summarized
as follows:

1. Define HR, HN , S, V N , V R, A and Σ as denoted in Sec. 4.2.2.

2. Define θ by randomly choosing all the terms from [0, 2π]

3. Set iteration index i = 1

4. Set index k = mod (i,M) + 1, where mod (i,M) means the value of i modulo
M .

5. With index k, define u, uo and θ∆ based on (4.29), (4.30) and (4.31).

6. Calculate θ(k) based on (4.34).

7. Increase i by one and go back to step 4, or stop if certain criteria are satisfied.

8. Using the final result of θ, we set r based on (4.27).

The iterative operations between step 4 and 7 do not require complicate computa-
tion, and typically would converge within 10 iterations. Thus we may ignore this part for
complexity assessment. In step 8 there are multiple matrix multiplication and inversion.
Note A is unitary, and S,Σ are diagonal matrices. Thus the corresponding matrix com-
putation is simple. The maximal matrix size for the remaining matrix multiplication in
step 8 is L, so the overall complexity of step 8 is of order O(L3). In step 1 we need SVD

computation for a M × (L− M(M−1)
2

) matrix , which require [42, p. 234]

{L− M(M − 1)

2
}2(2M − 1) + 6{L− M(M − 1)

2
}3 (4.35)

flops and is of order O(L3). Thus we could conclude that the order of overall computation
is of O(L3).
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4.3 Numerical Results

To evaluate the performance of algorithms described in Sec. 4.1 and Sec. 4.2, we simulate
random channels and perform capacity optimization by the two selection-based methods
and proposed efficient designs. Selection-based method for relay-noise dominating and
destination-noise dominating are marked as ’relay dom selec’ and ’desti dom selec’, re-
spectively. The approach maximizing ratio of norms in Sec. 4.1.3 is marked as ’relay dom
MRN’, while the algorithm based on lower-triangular matrix zero forcing in Sec. 4.2.2 is
marked as ’desti dom ZF’. For all the simulations we set M = 3. The resulting capacity
measures are used to generate cumulative distribution function (CDF) curves so that we
could compare the capacity distribution of various system configurations and algorithms.
Each curve shows the distribution of 103 channel realizations. For benchmarking purpose
we also simulate a simple relay gains design which set all gains with identical value and
scale relay the transmission power according to (2.5).

Since handling relay network with larger size is one of our motivations to develop
efficient designs, two relay sizes are simulated so that we could examine if any worth
noting difference shown between the sizes, where solid and dash lines are for L = 9 and
L = 18, respectively.

In Fig. 4.3 we simulate the relay system with relay-noise dominating condition by
setting PR = 100, σR = 0.1 and σD = 0.01. Not surprisingly the algorithms devel-
oped for relay-noise dominating, as described in Sec. 4.1, performs better than those for
destination-noise dominating. For L = 18 the algorithm maximizing ratio of norms shows
slight performance degradation compared to selection-based method, but would save con-
siderable computation. Hence the proposed algorithm would be beneficial for large relay
systems given noise modeling fit presumed condition.

Next we consider relaying under destination-noise dominating condition and set PR =
1, σR = 0.01 and σD = 0.1. Again algorithms with mismatched model perform worse
than those with correct noise model. Note with larger relay size , the approach based on
lower-triangle matrix zero forcing shows better results than selection-based method, which
suggests that for large relay system the proposed algorithm not only works efficiently but
also demonstrates powerful performance by collaborating the whole relay network, while
selection-based method could only utilize a small portion of relays thus results in inferior
capacity.

Finally in Fig. 4.5, a particular noise condition, set by PR = 10, σR = 0.1 and σD =
0.01, is chosen to examine if the algorithms presented in Sec. 4.1 and Sec. 4.2 still work
properly when noise model is neither relay-noise or destination-noise dominant. Note
that noise dominant condition is affected not only by ratio of σR and σD, but also PR
and L. Thus for generic noise condition (none noise dominates) it would not be easy to
fully investigate and conclude the superiority between algorithms. But for this particular
noise condition we could observe that in general the proposed algorithms results in better
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Fig. 4.3: Simulate under relay-noise dominating condition.
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Fig. 4.4: Simulate under destination-noise dominating condition.

system capacity than equal gains design. It is shown in this simulation that the proposed
algorithms performs robustly against model mismatch.
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Chapter 5

Channel Estimation for Distributed
Relay Networks with OFDM
Transmission

5.1 Matching Pursuit Algorithms for OFDM Chan-

nel Estimation

5.1.1 OFDM Transmission System

Assume that the coherence time of the fading wireless channel is much larger than the
OFDM symbol duration. Let the size of the discrete Fourier transform (DFT) used in
OFDM transmission be N and let the OFDM symbol duration be T . The transmission
mechanism associated with each OFDM symbol can be described in terms of matrix-vector
notations as

y = XWh+ n

= Xg + n, (5.1)

where X = diag(x(0), x(1), . . . , x(N − 1)) is the diagonal matrix composed of the trans-
mitted data, W is the Fourier transform matrix, h is the channel impulse response vector
and g is the N -vector of the corresponding frequency response vector, n is the N -vector of
additive noise samples (assumed white Gaussian), and y is the N -vector of received signal
in the frequency domain (i.e., after DFT). The structures of h and W are as follows.

Let the multipath channel have L paths with delays given by τl, l = 0, . . . , L−1, where
0 ≤ τl ≤ τmax for some maximum possible path delay τmax and each τl may be nonsample-
spaced (that is, it need not be an integer multiple of the OFDM sample spacing). Vector h
has L elements, which are the complex gains of the multipaths. Matrix W has dimension
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N × L, with its lth column given by 1/
√
N [1, e−j2πτl/T , . . . , e−j2π(N−1)τl/T ]T where (·)T

denotes matrix transpose. Note that the lth column of W is parametrized by the path
delay τl. The range space of W , or that of any matrix structured similarly to W , has
been called a delay subspace [39].

Assume there are D pilot subcarriers in each OFDM symbol and assume D ≥ L. Let
S be the D × N selection matrix that selects the pilot locations of an N -vector. For
example, y , Sy is the vector of received pilots and g , Sg is the vector of channel
frequency response at the pilot locations. Then for the pilot locations, we have

y = XWh+ n

= Xg + n (5.2)

where
X , SXST , W , SW . (5.3)

5.1.2 Time-Domain Approach to Channel Estimation

Given the pilot data X and the received pilot vector y, one way of time-domain channel
estimation is to first derive the least-square (LS) estimates of g and h, which are given
by [46]

ĝ = X−1y (5.4)

and
ĥ = (WHW )−1WH ĝ ,W †ĝ, (5.5)

respectively, where superscript H denotes Hermitian transpose. Then the estimated chan-
nel frequency response is given by

ĝ = Wĥ

= WW †X−1y. (5.6)

With know pilot locations and pilot values, in order to complete the computation described
in the right-hand side of (5.6), the only information that need to be estimated is the delay
subspace, or equivalently, the set of path delays {τl}. To this subject we now turn in the
next section.

5.1.3 Estimation of Multipath Delays

Consider a group of Lg successive OFDM symbols and let them be indexed j = 0, . . . , Lg−
1. Assume that, within the time span of these Lg symbols (i.e., LgT ), the complex
multipath gains may vary due to fading, but the path delays remain the same. This
assumption is appropriate because the path delays usually change much more slowly than
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the path gains [39]. In our earlier notations, W stays constant over this period but h
may change. For convenience, we attach an index to h and let hj denote the channel
response in the jth OFDM symbol period in the group. Likewise, we also use superscript
j to index other quantities that may change with symbols, such as ĝj and Sj.

Let there be Q candidate delay values between 0 and τmax from which we will identify
L for the delay subspace. One reasonable choice of these Q values is τmaxk/Q, k =
0, . . . , Q− 1. We can define an N ×Q dictionary matrix as V = [v0, . . . ,vQ−1] where its
kth column is given by

vk = [1, e−j2πτmax
kT
Q , . . . , e−j2π(N−1)τmax

kT
Q ]T . (5.7)

Define V j , SjV .

Estimation Based on the MUSIC Algorithm

The MUltiple SIgnal Classification algorithm (MUSIC) [36] algorithm has been widely
used in array signal processing for direction of signal arrival (DOA) estimation. With
the assumption of uncorrelated sources, MUSIC algorithm generally is capable of high
resolution identification. We mentioned that the MUSIC has been proposed for use in
multipath delay estimation for OFDM transmission, with the assumption that the pilot
locations be fixed and equal-spaced [32]. Below we outline the algorithm without giving
all the details. It is written in a form applicable to the case with fixed but not necessarily
equal-spaced pilots.

The fundamental idea of the MUSIC technique is to first find the null (noise) subspace
based on the received signal and then project all candidate basis vectors of the delay
subspace (i.e., columns of V j or V ) into the null subspace. Since the actual basis vectors
of the delay subspace (which correspond to signal) do not lie in the null subspace, the
reciprocals of the projections should show peak at these basis vectors. From this we can
identify the delay subspace. Procedure-wise, the steps are as follows:

1. For each OFDM symbol group, collect the Lg estimated channel frequency response
vectors ĝj for pilot locations. Solve for the projection matrix PN of the noise
subspace with rank D − L.

2. Project all the columns in V with PN . Find the L columns with the smallest
projection magnitudes. These L columns define the desired delays.

3. Follow the procedure in Sec. 5.1.2 to complete the channel estimation.

Note in the second step we omit the index j for V because V j is identical for all j.
Indeed, having fixed pilot locations is a requirement of the MUSIC technique. Besides
the limitation of fixed pilot locations, a property of the MUSIC technique is that, if some
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path coefficients do not change significantly over the Lg OFDM symbols, then there may
be a rank-deficiency problem. The result is that these paths may not be identified and
resolved properly. This property appears quite undesirable, because it seems to imply
the unpalatable conclusion that, in order to achieve good multipath delay estimation, we
should make the OFDM symbol period a significant fraction of the channel coherence time.
In the area of direction-of-arrivals estimation, this effect has been known as the problem
of correlated signal sources, and it may heavily degrade the estimation performance even
in high SNR [38]. A technique called spatial smoothing [32], [38] can solve the problem,
but the remedy itself also requires equal-spaced pilots. Moreover, it would divide the
pilots into several groups, which is an unaffordable solution when the pilots are very few.

Estimation Based on Orthogonal Matching Pursuit Employing One Single
OFDM Symbol

In preparation for the description of the proposed GMP technique, we describe how con-
ventional orthogonal matching pursuit (OMP) can be applied to multipath delay estima-
tion with a single OFDM symbol [45].

Ideally, to choose L delays out of Q candidate values, we should try all
(
Q
L

)
possible

combinations. For each combination, ĝ may be projected into the corresponding delay
subspace. We then choose the combination with the largest projection magnitude as the
estimation result. But the above exhaustive search approach is obviously impractical even
with a moderate number of candidate delays Q. One suboptimal but much more efficient
approach is the OMP technique [1], which employs a kind of greedy search method to
determine the chosen candidates in a sequential fashion.

In applying OMP to multipath delay estimation for OFDM, we determine one path
delay at a time. At each iteration, say iteration p, let U p be the matrix containing the
columns from V that define the (partial) delay subspace found so far. We project ĝ to
the subspace and find the residual. Then from all columns of V that have not entered or
covered by U p, we choose the one that has the maximum inner product with the residual
and add it to U p. At this, we go to the next iteration until the required number of paths is
found. The concept of above-mentioned orthogonal matching pursuit is shown in Fig. 5.1.

Mathematically, let dp be the index of the column from V that is chosen in iteration
p. Let kp denote this vector, that is, kp = vdp . Let PUp denote the matrix that, when
premultiplied to a vector, projects the vector onto the range space of U p. And let rp be
the residual after the pth iteration. Then the OMP algorithm, in iteration p, works as
follows:

dp = arg max
i
|rHp−1vi|, 0 ≤ i ≤ Q− 1, (5.8)

kp = vdp , U p = [U p−1,kp], (5.9)

rp = (I − P Up)ĝ, (5.10)
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Fig. 5.1: In the pth iteration,projection and selection based on projection residual

where r0 , ĝ, U 0 = ∅, and UL−1 gives the desired estimate of W (See Sec.5.1.2).

The Group Matching Pursuit Algorithm for Multipath Delay Estimation

Now we turn to the proposed GMP algorithm for estimation of multipath delays based
on observation of one OFDM symbol group. While the multipath delays and the delay
subspace characterized by W are (assumed to be) fixed within one OFDM symbol group,
the changing pilot locations result in different W j and different V j. One approach, based
on OMP, to address this condition is to perform Lg OMP operations, one for each OFDM
symbol, and combine the results. But how the results can be combined poses a problem,
because the estimated delays may be different for different OFDM symbols.

The idea of GMP is to make use of the whole set of ĝj, j = 0, . . . , Lg − 1, and obtain
a jointly optimal delay estimation in some sense. This results in the following steps for
iteration p of the algorithm:

dp = arg max
i

Lg−1∑
j=0

|(rjp−1)Hvji |, 0 ≤ i ≤ Q− 1, (5.11)

kjp = vjdp , U j
p = [U j

p−1,k
j
p], 0 ≤ j ≤ Lg − 1, (5.12)

rjp = (I − PUj
p
)ĝ, 0 ≤ j ≤ Lg − 1. (5.13)

(See the beginning paragraph of Sec. 5.1.3 for the meaning of the superscript j.) As in
OMP, U j

p, j = 0, . . . , Lg− 1, give the the desired estimates of W j, j = 0, . . . , Lg− 1, that
define the delay subspace and can be used as described in Sec. 5.1.2 to obtain a channel
estimate for each OFDM symbol in the group. Note that the channel estimates may vary
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for different symbols, because the channel is subject to fading, but the delay subspace is
the same.

On the Number of Path Delays to Estimate

Throughout the chapter, we have assumed that the number of path delays to be estimated
is known. This information can be obtained through other means of channel analysis [46]
or empirical data. Even if the number of estimated delays is different from the actual
number, in many cases it should not be critical. For example, if we have estimated less
path delays than the actual but have captured the most significant paths, then the loss may
be acceptable. Conversely, if we have estimated several more path delays than the actual,
the resulting enhancement in noise may have little implication as long as its correlation
with the actual delay subspace is small [45]. In any case, the number of multipath delays
that can be estimated with the proposed technique is upper bounded by D, for otherwise
we would have an under-determined set of equations for ĥ (see, e.g., (5.5)).

5.2 Relay System Model with OFDM Transmission

Now we discuss how the end-to-end distributed relay forwarding could be modeled as
conventional OFDM transmission. We are interested in amplify-forwarding distributed
relay network with OFDM modulation throughout end-to-end transmission. Assume relay
network is composed of L single-antenna relays. Both source and destination terminal
are equipped with single-antenna. Note the discussion in this chapter could be intuitively
extended to the cases of multi-antenna source or destination. Again we apply two-phase
relay transmission as assumed in Chap. 2. In the first slot, source transmits one OFDM
symbol. Each relay performs respective time synchronization to determine correct symbol
boundary, then remove cyclic prefix (CP) and acquire a complete OFDM symbol with
N subcarriers. To realize amplify-forwarding, the ith (1 ≤ i ≤ L) relay amplify received
OFDM symbol by ri, then add a new CP and transmit. Note that the procedure of
removing CP then add another seems redundant. Actually, he received CP samples
contain IBI (inter-block interference) signals. If these CP samples remain untouched and
are forwarded to destination, the end-to-end transmission would supper two stages of IBI
corruption. Thus removing the received CP samples would equivalently remove the IBI
from source and therefore would reduce the overall IBI.

We assume a global synchronization for relays transmission is available so that relays
could transmit at the same time. Upon receiving the forwarded OFDM symbol, destina-
tion works as a conventional OFDM receiver to process received OFDM symbols. The
relays reception and forwarding process is depicted in Fig. 5.2.

To model the end-to-end OFDM transmission, we start by focusing on single relay.
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Fig. 5.2: Relay operations for OFDM transmission

For the ith relay, its frequency-domain reception could be stated as

zi = XWf̃ i + ni = Xf i + ni

= F ix+ ni (5.14)

where zi ∈ ZN , X denotes a diagonal matrix whose diagonal terms are equal to x and
composed of signals from source, ni is the additive noise, W the Fourier transform matrix,
f̃ i and f i represent the impulse response and frequency response of channel between
source and ith relay, respectively. F i is defined to be a diagonal matrix whose diagonal
terms are equal to f i. Note that though relays do not perform DFT or IDFT throughout
the signal reception and forwarding, we use zi as frequency-domain representation of
received signal for sake of concise and convenient system modeling.

At destination, amplified zi travels through another multipath channel and is summed
up with OFDM signals from other relays. The frequency-domain reception of destination
is described as

y = nD +
L∑
i=1

ri diag(zi)Wg̃i = nD +
L∑
i=1

ri diag(zi)gi

= nD +
L∑
i=1

riGiF ix+
L∑
i=1

riGini

, nD +Hx+ nR, (5.15)

where nR is the overall forwarding noise, g̃i and gi represent the impulse response and
frequency response of channel between destination and ith relay, respectively. Gi is
defined to be a diagonal matrix whose diagonal terms are equal to gi, and diagonal matrix
H ,

∑
∀i , GiF i means frequency response of the equivalent end-to-end channel. Let h

be the vector composed of diagonal terms of H . Observing the subcarrier-wise product
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in the definition of H , we may conclude that

h =
L∑
i=1

f i � gi = W

L∑
i=1

f̃ i ⊗ g̃i, (5.16)

where � denotes element-wise product, ⊗ stands for circular convolution. Observing
(5.16) we understand that the equivalent channel impulse response of end-to-end channel
could be modeled as follows: for each relay, do circular convolution for the two-stage
channel f̃ i and g̃i, then sum up the L copies of convolution results. Based on this model,
it is clear that the equivalent channel is of widely dispersive channel impulse response.

5.3 Numerical Results

Let the DFT size in OFDM be 256, with 12 subcarriers assigned for pilots. The pilot
locations are randomly determined. Let QPSK be employed for each data subcarrier.
Consider transmission over a 4-path channel. The path coefficients vary randomly from
one OFDM symbol to another, each following a complex Gaussian distribution. Besides
the first path delay τ0 = 0, other path delays are uniformly distributed in the range
[0, τmax), but stay constant during the OFDM symbol group used in GMP channel esti-
mation. We let τmax = 25 and Lg = 10.

Two MP-based approaches are simulated: OMP and GMP. As mentioned previously,
to the best of our knowledge there does not exist prior techniques suitable for subspace-
based OFDM channel estimation under arbitrary pilot assignments that may vary from
symbol to symbol. Thus we cannot compare with eigen-decomposition based schemes
such as that in [46] or [32]. However, we simulate channel estimation methods based on
linear interpolation and spline interpolation, for a comparison.

Fig. 5.3 shows the mean-square channel estimation errors of different approaches, and
Fig. 5.4 the average symbol error rates for each simulated scheme. In the figures, the labels
“GMP+MS” and “OMP+SS” mean “GMP approach for multi-symbol estimation” and
“OMP for single-symbol estimation,” respectively. While interpolation-based methods
suffer from scarcity of pilots and are not able to estimate the shape of channel frequency
responses accurately, MP-based methods can use the limited resource (pilots) efficiently
and result in clearly superior estimation. The proposed GMP algorithm enjoys the great-
est “diversity gain” from multi-symbol processing and thus has the better performance
among all.

Fig. 5.5 shows the average symbol error rates when the four path delays are fixed at
[0, 3, 6, 9]. The simulation demonstrates even better performance for GMP than that
in Fig. 5.4. This is because subspace-based algorithms for OFDM channel estimation
has a resolution limitation depending on the pilot ratio [32]. When some paths are close
together, as occasionally happened in the simulation resulting in Fig. 5.4, MP-based
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Fig. 5.3: Normalized mean-square channel estimation errors of different channel estima-
tion methods

schemes may have difficulty telling them apart. But this is certainly not the case with
the simulation resulting in Fig. 5.5, for the paths are well separated.

In Fig. 5.6 we simulate and examine channel estimations for OFDM distributed relay
networks. We set the number of relay terminals as 10. It is assumed there are St multipath
delay taps randomly spaced between [0, τmax]. In OFDM transmission with 256-point
FFT/IFFT we assign Sp pilot subcarriers and estimate Se (the column size of W in (5.5))
tap gains. In Fig. 5.6 we simulate two sets of configurations. For solid lines we examine the
performance with fewer pilots and smaller delay range, thus we set St = 3, τmax = 4, Se = 8
and Sp = 10. For dotted lines we try wider delay range with more pilots by setting
St = 4, τmax = 8, Se = 18 and Sp = 20. To compare the performance of various approach
we realize channel estimation based on linear interpolation, time-domain least-square
method (discussed in Sec. 5.1.2) and OMP-based algorithm. It is clear that OMP-based
outperforms the others in both configurations.
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Chapter 6

Conclusion

In this thesis we studied the design of distributed AF MIMO relay networks. Specifically,
we focused on the capacity improvement and present noise-dominant models to simplify
design problem. As to channel estimation we applied proposed subspace-based algorithm
to handle equivalent dispersive channel.

In Chap. 2 and Chap. 3, We considered the design of distributed amplify-and-forward
relay networks for two-hop MIMO transmission. More specifically, we considered the
determination of relay gains for maximization of system capacity. As no closed-form ana-
lytical solution could be found for the problem, we considered two alternative approaches.
One approach was algorithmic, for which we derived an efficient iterative algorithm. Since
the algorithmic solution gave little insight into the analytical properties of the solution,
we also took an analytical approach, assuming some asymptotic noise conditions. The
analytical approach resulted in several relay selection-type of solutions and facilitated an
analysis of the diversity behavior of the solutions. It turned out that their capacity di-
versity performance behaved similarly to some single-hop point-to-point MIMO antenna
selection systems previously analyzed by other researchers. Some simulation results were
presented. The results showed that, not surprisingly, the iterative algorithm did yield
better designs than the relay selection methods, but at the cost of a substantially higher
computational complexity. More significantly, they also confirmed our outage diversity
analysis and verified that increasing the number of relays could enhance the outage di-
versity performance.

In Chap.4 we considered the design of distributed amplify-and-forward relay networks
for two-hop MIMO transmission. With the help of noise-dominating models we simplify
the originally intractable capacity optimization problem. Further simplification is realized
by designing modified criterion of maximal ratio of norms, and shrinking the solution space
with zero-forcing. Since no relay selection is required, we could control the computation
cost even with large size of relay network. The performance of proposed algorithms is
verified by simulations and is proven to be comparable or better than selection-based
algorithm.
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Time-domain channel estimation techniques can obtain relatively accurate channel
estimates for OFDM transmission with relatively few pilot subcarriers. But it requires
knowledge of the multipath delays. In Chap. 5 We proposed a group matching pursuit
technique for multipath delay estimation. Unlike previous techniques, the proposed tech-
nique allows arbitrary pilot structures that may vary from one OFDM symbol to the
next. Simulation results showed that the proposed algorithm has superior estimation
performance. We also presented the channel modeling of distributed AF relay network
with OFDM transmission. It turns out the relay network of interest actually suffer equiv-
alent highly dispersive channel. Thus we examined applying subspace-based algorithm to
handle the channel estimation.
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[10] E. Chong and S. Żak, An introduction to optimization. Wiley-interscience, 2008.

60



[11] L. Dong, Z. Han, A. Petropulu, and H. Poor, “Improving wireless physical layer
security via cooperating relays,” IEEE Trans. Signal Process., vol. 58, no. 3, pp.
1875–1888, 2010.

[12] M. Elkashlan, P. L. Yeoh, R. H. Y. Louie, and I. B. Collings, “On the exact and
asymptotic SER of receive diversity with multiple amplify-and-forward relays,” IEEE
Trans. Veh. Technol., vol. 59, no. 9, pp. 4602–4608, 2010.

[13] P. Fertl, A. Hottinen, and G. Matz, “A multiplicative weight perturbation scheme
for distributed beamforming in wireless relay networks with 1-bit feedback,” in Proc.
IEEE Int. Conf. Acoust., Speech, Signal Processing (ICASSP), 2009.

[14] G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading en-
vironment when using multiple antennas,” Wireless personal communications, vol. 6,
no. 3, pp. 311–335, 1998.

[15] Y. Fu, L. Yang, and W. P. Zhu, “A nearly optimal amplify-and-forward relaying
scheme for two-hop MIMO multi-relay networks,” IEEE Commun. Lett., vol. 14,
no. 3, pp. 229–231, 2010.

[16] A. Gorokhov, D. Gore, and A. Paulraj, “Performance bounds for antenna selection
in MIMO systems,” in Conf. Rec., IEEE Int. Conf. Commun., vol. 5, 2003.

[17] ——, “Receive antenna selection for MIMO flat-fading channels: theory and algo-
rithms,” IEEE Inf. Theory, vol. 49, no. 10, pp. 2687–2696, Oct. 2003.

[18] R. Hunger, “Floating point operations in matrix-vector calculus,” Munich University
of Technology, Tech. Rep., 2007.

[19] IEEE Standard for Local and Metropolitan Area Networks - Part 16: Air Interface
for Fixed Broadband Wireless Access systems, IEEE Std. 802.16-2004, Oct. 2004.

[20] S. Jin, M. R. McKay, C. Zhong, and K. Wong, “Ergodic capacity analysis of amplify-
and-forward MIMO dual-hop systems,” IEEE Inf. Theory, vol. 56, no. 5, pp. 2204–
2224, 2010.

[21] Y. Jing and B. Hassibi, “Distributed space-time coding in wireless relay networks,”
IEEE Trans. Wireless Commun., vol. 5, no. 12, pp. 3524–3536, 2006.

[22] Y. Jing and H. Jafarkhani, “Network beamforming using relays with perfect channel
information,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing (ICASSP),
vol. 3, 2007.

[23] S. G. Kang, Y. M. Ha, and E. K. Joo, “A comparative investi-gation on channel
estimation algorithms for OFDM in mobile communications,” IEEE Trans. Broad-
casting, vol. 49, no. 2, pp. 142–149, 2008.

61



[24] R. Krishna, Z. Xiong, and S. Lambotharan, “A cooperative MMSE relay strategy for
wireless sensor networks,” IEEE Signal Process. Lett., vol. 15, pp. 549–552, 2008.

[25] C. Li, L. Yang, and W. P. Zhu, “Joint power allocation based on link reliability for
MIMO systems assisted by relay,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Processing (ICASSP), 2009.

[26] C. Li, L. Yang, and W. Zhu, “Two-way MIMO relay precoder design with channel
state information,” IEEE Trans. Commun., vol. 58, no. 12, pp. 3358–3363, 2010.

[27] S. G. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictionaries,”
IEEE Trans. Signal Process., vol. 41, no. 12, pp. 3397–3415, Dec. 1993.

[28] C. D. Meyer, Matrix Analysis and Applied Linear Algebra. Philadelphia, PA: SIAM,
2000.

[29] H. Minn and V. K. Bhargava, “An investigation into time-domain approach for
OFDM channel estimation,” IEEE Trans. Broadcast., vol. 46, no. 4, pp. 240–248,
Dec. 2000.
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