

國 立 交 通 大 學

電子工程學系電子研究所

博 士 論 文

利用延伸式有限狀態機來實現介面規格

相符驗證之研究

Interface Compliance Verification

Using the EFSM Model

 研 究 生 ：石哲華

 指導教授 ：周景揚 博士

 中華民國九十八年九月

利利利用用用延延延伸伸伸式式式有有有限限限狀狀狀態態態機機機來來來實實實現現現
介介介面面面規規規格格格相相相符符符驗驗驗證證證之之之研研研究究究

學學學生生生：：：石石石哲哲哲華華華 指指指導導導教教教授授授：：：周周周景景景揚揚揚

國國國立立立交交交通通通大大大學學學

電電電機機機學學學院院院 電電電子子子工工工程程程學學學系系系 電電電子子子研研研究究究所所所

摘摘摘要要要

進入了系統單晶片(SOC)時代後， 整合大量矽智產(intellectual

property)於單一晶片上，被視為設計複雜系統及加速設計流程的有效

方案。這些矽智產往往來自不同的設計團隊或公司，為了提高矽智產

的再使用性與減少整合時所需的時間，矽智產通常會針對特定的介面

協定(interface protocol)設計，而擁有相容介面協定的矽智產群便可以

很容易地在彼此間傳遞資料。今日的介面協定為了提供更高速、更具

有彈性的使用，其規格(specification)也愈益複雜，因此，驗證一個矽

i

智產設計是否吻合其傳輸介面，能夠在整合後正確地溝通資料，便成

為現今系統單晶片驗證上的一大課題。

模擬驗證(simulation-based Verification)是目前最廣泛應用在介面相

容性驗證(interface compliance verification)的方法，模擬驗證主要是利

用模擬器(simulator)來模仿晶片的實際運作，具有較低的進入門檻及

可處理較大電路為其優勢。在模擬驗證中，驗證人員透過適當的外部

輸入向量(input stimuli)來驅動待驗證設計的內部行為，同時，觀察模

擬時的訊號變化來檢查是否有違反設計規格的情形，在一段時間的模

擬之後，涵蓋率量度(coverage metric)則經常被採用來量化當前的驗證

品質。傳統上運用人力來撰寫輸入向量、比對模擬結果的作法，不僅

費時耗力也容易出錯，如果能夠利用工具自動化地完成上述工作，則

可有效地加速模擬驗證的流程。

一般的介面規格大多是使用自然語言(例如英文)或時序示意

圖(timing diagram)這類非正規的方法來描述， 在驗證自動化的過程

中，首要任務便是如何將這些介面規格轉譯為定義明確的形式(利用正

規的語言或表示法)。然而許多正規驗證語言的學習及使用上的難度較

高，容易導致轉譯過程中的錯誤，進而影響驗證的正確性。在這篇

論文中，我們利用了有限狀態機模型的優點，同時考量介面規格常見

的特性，發展了兩種基於延伸式有限狀態機模型(Extended Finite State

Machine)的介面規格描述方式，用來系統化地解譯介面規格。

ii

對於介面相容性驗證的問題， 我們提出了一套完整的自動化流

程。 透過所提出之演算法， 我們可以從單一延伸式有限狀態機模

型自動化地產生模擬驗證時所需之各種主要元件： 包含了向量產

生器(stimulus generator)、協定檢查器(protocol checker)及涵蓋率分析

器(coverage analyzer)。這些元件由於來自同一個模型，可以避免元件

間的不一致性，同時，我們的方法也提供了許多便於驗證與除錯的特

性，可用來大幅提升驗證的效率，實驗的結果顯示了，我們的方法

的確可以有效地執行介面規格相容性驗證並縮短所需的時間。

iii

iv

Interface Compliance Verification
Using the EFSM Model

Student: Che-Hua Shih Advisor: Dr. Jing-Yang Jou

Department of Electronics Engineering

Institute of Electronics

National Chiao Tung University

Abstract

In designing a modern system-on-a-chip (SOC), the platform-based de-

sign methodology with reusable intellectual property (IP) cores is usually

adopted to accelerate both the design and verification process. In this kind

of methodology, an IP core is often wrapped with certain interface logic and

integrated into a system platform based on a specific interface protocol. To

ensure that an IP core can concordantly communicate with others within the

v

system, it is very important to guarantee that its interface logic exactly con-

forms to the protocol for communication. Hence, interface compliance veri-

fication becomes an essential part in the SOC verification flow.

The simulation-based approaches are widely-used in interface compli-

ance verification works. Simulation-based verification has a lower barrier

to entry and can handle large designs. In this kind of approaches, appro-

priate input stimuli are applied to trigger the design’s internal operations.

Simultaneously, the signal changes are observed to check if there is any vio-

lations against the specification. Besides, certain coverage metrics are usually

adopted to quantify the verification completeness. Typically, those tasks are

made manually which are time-consuming and error-prone. To achieve high

verification efficiency, automation is necessary to speed up the verification

process.

In general, interface protocol specifications are written with natural lan-

guages or timing diagrams. To enable the automatic verification process, the

first task is to translate the original specification into a well-defined represen-

tation. In this dissertation, we developed two kinds of extended finite state

machine (EFSM) models which are suitable for representing common inter-

face protocols. Besides, we propose a unified framework using the EFSM

model for interface compliance verification. Via the proposed algorithms, the

vi

EFSM model can be automatically translated into a simulation kit consisting

of three verification components, a stimulus generator, a protocol checker,

and a coverage analyzer. The simulation kit has many useful features to in-

crease the verification efficiency. Our experimental results demonstrate that

the proposed framework improves not only the performance but also the qual-

ity for interface compliance verification.

vii

viii

Acknowledgements

This dissertation would not have been possible to complete without the

assistance and support of numerous individuals. First, I would like to express

my sincere appreciation to my advisor, Professor Jing-Yang Jou (周景揚)

for his support, suggestions and guidance throughout my graduate life. And I

would also like to thank Professor Juinn-Dar Huang (黃俊達), who had given

me a lots of valuable suggestions and discussions.

I would like to thank the members of my dissertation committee, Profes-

sor Sy-Yen Kuo (郭斯彥), Professor Sao-Jie Chen (陳少傑), Professor Kuen-

Jong Lee (李昆忠), Professor Shi-Yu Huang (黃錫瑜), Professor Chau-Chin

Su (蘇朝琴), and Professor Chun-Yao Wang (王俊堯), for their comments

and suggestions .

Besides, special thanks to Geeng-Wei Lee (李耿維), Cheng-Yeh Wang

(王成業), Tai-Ying Jiang (江泰盈), Hen-Ming Lin (林恆民), Chia-Chih Yen

(顏嘉志), Chien-Hua Chen (陳建華), Bu-Ching Lin (林步青), and all other

EDA members for the wonderful time we share together.

ix

My deepest appreciation goes to my wife, Huei-Min Lin (林惠敏), who

fills my life with laughter and love. Thank for her patient care on my life and

her endless support. Finally, I would like to devote this dissertation and its

honor to my parents and family. Thanks for their love and encouragement.

x

Contents

摘摘摘要要要 i

Abstract v

Acknowledgements ix

1 Introduction 1
1.1 Interface Compliance Verification . 1
1.2 Stimulus Generation . 4
1.3 Correctness Checking . 7
1.4 Coverage Analysis . 8
1.5 Automatic Simulation Kit Generation 9
1.6 Dissertation Organization . 10

2 An Overview of Our Methodology 11
2.1 Different Viewpoints for Interpreting a Specification 11
2.2 The Flow of Our Methodology . 13
2.3 Related Works . 15

3 GEFSM-Based Framework 19
3.1 The Traditional EFSM Model . 20
3.2 The GEFSM Model . 21
3.3 An Example Protocol Specification . 22
3.4 Stimulus Generation Flow . 25
3.5 Stimulus Biasing . 30

3.5.1 Transition-level Biasing / Transaction-level Biasing 31
3.5.2 Bit-level biasing / Word-level biasing 32
3.5.3 Feedback for Biasing Refinements 34

3.6 Automatic Translation . 35
3.7 Experimental Results . 40

3.7.1 Stimulus Biasing . 41
3.7.2 Performance Analysis . 42
3.7.3 Error Detection . 44
3.7.4 Synthesis Results . 44

3.8 Summary . 45

xi

4 CEFSM-Based Framework 47
4.1 The CEFSM Model . 48
4.2 CEFSM-based Correctness Checker . 51
4.3 CEFSM-based Stimulus Generator . 54
4.4 Automatic Translation . 61
4.5 Coverage Metrics . 64

4.5.1 The Basic Coverage Metrics . 64
4.5.2 The Transaction-level Functional Coverage 65

4.6 Experimental Results . 70
4.6.1 Coverage Comparison . 71
4.6.2 Stimulus Biasing . 74
4.6.3 Error Detection . 75
4.6.4 Synthesis Results . 76

4.7 Summary . 76

5 Conclusions and Future Works 79
5.1 Conclusions . 79
5.2 Future Works . 80

Bibliography 83

xii

List of Figures

1.1 The platform-based design methodology. 2

1.2 Typical interface compliance verification flow. 3

1.3 A typical environment for simulation-based verification. 5

2.1 Modeling in different points of view. 12

2.2 The overall flow of our verification methodology. 14

2.3 The flow of rule-based methodology. 16

2.4 The flow of CWL-based methodology. 16

3.1 A same protocol in two different FSM representations. 21

3.2 A simple transfer of a 4-beat burst. 23

3.3 The slave interface of the simplified protocol. 23

3.4 A burst with a wait state. 24

3.5 A burst with a busy state. 25

3.6 The protocol modeling steps with GEFSM. 26

3.7 The GEFSM of the example protocol. 27

xiii

3.8 Stimulus generation flow. 28

3.9 An example of bit-level biasing. 32

3.10 Stimulus generator translation flow. 36

3.11 The interface of the stimulus generator. 37

3.12 Weighted selection procedure. 39

3.13 The block diagram of the proposed GEFSM-based stimulus generator. . . 40

4.1 A CEFSM example. 52

4.2 CEFSM to correctness checker. 53

4.3 A simulation example. 55

4.4 CEFSM to stimulus generator. 56

4.5 The operation flow of a constraint producer. 58

4.6 Two different kinds of relations. 61

4.7 The block diagram of the proposed CEFSM-based stimulus generator. . . 63

xiv

List of Tables

2.1 Comparisons among two EFSM models 13

2.2 Comparisons among three approaches 17

3.1 Biasing information I . 31

3.2 Biasing information II . 35

3.3 Basic information of selected DUVs . 41

3.4 Results of word-level biasing . 42

3.5 Run-time analysis of different stimulus generators 43

4.1 Coverage comparisons for Case I . 73

4.2 Coverage comparisons for Case II . 74

4.3 Biasing settings . 75

4.4 Biasing results for Design RGB2YCrCb in Case II 75

xv

xvi

Chapter 1

Introduction

1.1 Interface Compliance Verification

In designing a modern system-on-a-chip (SOC), the platform-based design methodology

with reusable intellectual property (IP) cores is usually adopted to accelerate both the de-

sign and verification process. Fig. 1.1 illustrates the concept of this methodology. Each

pre-verified IP core is wrapped with certain interface logic and integrated into a system

platform based on a specific interface protocol. In order to ensure that an IP core can

concordantly communicate with others within the system, it is very important to guaran-

tee that its interface logic exactly conforms to the protocol for communication. Hence,

interface compliance verification becomes an essential part in the SOC verification flow.

There are two major categories in the field of interface compliance verification: formal

methods and simulation-based ones. Fig. 1.2 illustrates the basic concept of these two

1

Interface Wrapper

IP Core 1

Interface Wrapper

IP Core 2

Interface Wrapper

IP Core 3

Communication Interface

Platform

Figure 1.1: The platform-based design methodology.

methods. Formal methods mathematically determines whether the design is correct or

not. In [1][2][3][4][5][6], the authors use CTL (Computation Tree Logic) [1] to describe

the expected properties and the DUV (design under verification) is modeled as a finite

state machine. Then the model checking [7] technique is applied to verify the DUV

against these properties. Once the model checker reports a success, the design is fully

compliant to these properties. However, properties in CTL are not easily thorough and

the process of extracting properties from a specification written in natural languages is

generally complicated and painful. It is very likely that some properties are actually

implied by the specification but accidentally not extracted and thus ignored during formal

verification. Moreover, memory explosion and excessively long runtime may be even

serious problems as the design size increases.

The simulation-based approaches are classical but still widely-used in today’s verifi-

2

Properties &

input constraints

Formal Verification

Testbench

Model

checker
Simulator

Simulation-based Verification

Success message /

failure with a counterexample
Data / waveforms

DUV

Figure 1.2: Typical interface compliance verification flow.

cation works. In simulation-based approaches, a simulator is adopted to create an arti-

ficial universe that imitates the behaviors of a real design. In [8], they write the proto-

col specification with HDL monitors which can be directly used in the HDL simulation

environment to check if the simulation trace violates the target protocol. In [9], the au-

thors propose a systematic flow to represent the interface behaviors with a monitor FSM.

They also defines a path-based coverage metric to check the exercised functionalities. A

regular-expression-based specification style with a monitor circuit generation algorithm is

proposed in [10]. Another similar work in [11] generates monitor circuit from GSTE as-

sertion graphs. Simulation-based approaches have better scalability against formal ones.

However, the simulation-based approaches suffer from long simulation time and the false

positive problem. Hence, how to perform simulation-based verification efficiently and

3

effectively is very import.

A typical simulation environment for functional verification is shown in Fig. 1.3. The

DUV is the verification target. The two directed edges labelled with IDUV and ODUV

denote the input and output (I/O) signal sets of the DUV, respectively. Three tasks, the

stimulus generation, the correctness checking, and the coverage analysis, are included

in the environment. During simulation, the stimulus generation task provides necessary

IDUV values to trigger the DUV’s operations, and the correctness checking task exam-

ines the simulation data for error detection. After simulation, the coverage analysis is

performed to measure the verification completeness. Each task plays an important role

in simulation-based verification, and many techniques have been proposed to fulfill these

tasks in the last decades.

1.2 Stimulus Generation

To exercise different operations of a DUV, various input stimuli are required. On the one

hand, since the inputs to the DUV must conform to the specification, randomly generated

stimuli without any constraints are usually invalid which must be identified, discarded

and thus slow down the verification process. Generally, input stimuli are often made

manually by the designers who are familiar with the specification. In common interface

protocol specifications, stimuli applied to a DUV need to dynamically interact with the

DUV’s responses, thus the stimulus generation must be made with extreme cares. On

4

Correctness

Checking

Coverage

Analysis

DUV
Stimulus

Generation

IDUV

ODUV

Figure 1.3: A typical environment for simulation-based verification.

the other hand, in order to expose possible design errors of the DUV, a large amount

of stimuli are required. However, the manual stimulus development tends to be error-

prone and time-consuming. As a result, many research works [12] [13] [14] [15] [16]

[17] [18] [19] [20] [21] prefer to build a constraint-based stimulus generator to automate

this process. Constraints can be regarded as formal specifications of design behaviors.

A constraint-based stimulus generator produces only valid stimuli based on the given

constraints. Meanwhile, it is generally not uncommon that multiple valid stimuli exist

for a given set of constraints. Some generators pick the first valid one they find while

others choose one of the valid stimuli randomly. In general, verification engineers prefer

owning more controllability over simulation, thus biasing techniques are often along with

the stimulus generation. Biasing allows user-defined settings to increase or decrease the

appearance counts of certain stimuli. While constraints limit the random stimuli to valid

space, the bias settings can further guide the stimuli to hit the interested design corners.

Previous researchers typically use satisfiability (SAT) solvers [22] [23] or binary de-

5

cision diagram (BDD) [24] solvers as their constraint-solving engines. The SAT method

is a formal technique that is generally capable of solving a large number of complex con-

straints. However, a typical SAT solver often generates only one feasible solution under

a given constraint set with no biasing capability. Alternatively, solving constraints with

BDDs is relatively easier to be combined with the bit-level biasing approach. However,

the weakness of the BDD-based solver is the memory explosion problem while handling

a large set of complex constraints.

Yuan et al. [13] propose a general-purpose stimulus generation system, called Sim-

Gen. Constraints are represented as Boolean formulas with state variables. Then they

conjoin related constraints into a single BDD before simulation. Next, BDDs are tra-

versed in a top-down fashion to produce stimuli. Since the traversal needs only one pass

without any backtracking, this engine has good performance in solving constraints. Fur-

thermore, it has the advantage of its bit-level biasing ability, that is, users can define

the desired stimulus biasing at bit-level to adjust the branch probabilities of BDD nodes

during stimulus generation. Another work by Shimizu et al. [14] targets on interface ver-

ification. First, authors write a list of interface constraints in a proprietary specification

style. Next, they create BDDs with appropriate constraints on-the-fly instead of before

simulation. In this way, BDDs can be smaller and thus solved more quickly. However,

this approach needs to rebuild a new set of BDDs at every simulation cycle.

In [18], the author presents a word-level constraint-solving engine, called RACE, to

6

simplify the stimulus generation for multi-bit signals. RACE can handle constraints de-

scribed with multi-bit operands and most operators in high-level verification languages.

The constraint-solving mechanism of RACE is similar to PODEM [25], which is a popu-

lar gate-level ATPG (Automatic Test Pattern Generation) algorithm. RACE makes a series

of value assignments to find a satisfied stimulus. While a conflict occurs during these as-

signments, the backtraking procedure is invoked to find another set of value assignments.

Due to the nature of the word-level constraints and the less memory demand, RACE is ca-

pable of solving a large number of complex constraints. Nevertheless, while the solution

space for a set of target constraints is small, the backtracking procedure would be taken

frequently and thus slows down the stimulus generation.

1.3 Correctness Checking

Correctness checking verifies if the simulation results violate what the specification ex-

pects. A waveform viewer is commonly-used for correctness checking. It visualizes

multiple signal transitions over time to help designers observe the simulation data. In

fact, examining a large amount of complex simulation data by hand requires tremen-

dous effort and time. In order to speed up the verification process, automatic correctness

checkers/monitors are often adopted to replace manual waveform checking or data com-

paring. In general, there are three common types of checker implementations. The first

type is to build a table to record the relationships between the input stimuli and output

7

responses of the DUV. And then check the table to see if the correct I/O relationships are

preserved during simulation. The second type is to use a golden reference model whose

I/O behaviors are regarded as an accurate design. When the identical input stimuli are

simultaneously applied into both the reference model and the DUV, violations can be de-

tected if their responses are different. The third type is the assertion-based approach [26].

In this approach, the specification is presented as rules (assertions) that must be satisfied

throughout the simulation.

1.4 Coverage Analysis

Coverage metrics are usually adopted to quantitatively analyze the simulation complete-

ness. They can not only measure how well a design is verified objectively but also help

improve the quality of verification stimuli. They are capable of guiding further stimuli

to explore those unverified design corners. In general, there are two major categories of

coverage metrics [27]: code coverage and functional coverage.

Code coverage metrics concentrate on identifying which part of the implementation

code has been executed in the DUV. That is, they measure how much of the implementa-

tion has been exercised [28] [29] [30] [31] [32]. For example, statement coverage, branch

coverage, and condition coverage are well-known code coverage metrics. Many simu-

lators have already provided simple code coverage analysis. However, the fundamental

issue of all code coverage metrics is that they can only measure how well the structural

8

code has been exercised. They are not designed to check whether all the functions ex-

pected in the design specification have been examined. Namely, the verification quality

is generally considered not good enough for modern complex SOC designs even if a high

code coverage has been achieved.

Hence, the functional coverage is usually applied to further boost the verification qual-

ity. Functional coverage, as its name suggests, focuses on the design functionality. It

measures how much of the original design specification has been verified. Therefore,

functional coverage is an appropriate measurement to check if the design aim, “to prop-

erly implement all the functions in the specification”, is achieved.

1.5 Automatic Simulation Kit Generation

To speed up the verification process, manual works on stimulus generation, correctness

checking, and coverage analysis can be replaced with a simulation kit, including a stim-

ulus generator, a correctness checker, and a coverage analyzer. Typically, it takes signifi-

cant effort and time to implement these simulation components according to the original

specification. As mentioned, many research works aim at developing certain simulation

components efficiently. However, for a complete verification environment, the required

simulation components may be created by different methodologies and/or different verifi-

cation teams. Whenever the specification is modified, the stimulus generator, the correct-

ness checker, and the coverage analyzer should be individually revised according to the

9

specification changes. This process often introduces consistency and integration problems

to the whole environment.

To overcome these problems, we develop a unified framework for automatic simu-

lation kit generation. We use extended finite state machine (EFSM) model [33] as the

specification style for properly describing general interface behaviors. The complete sim-

ulation kit can then be automatically built from a given specification. Thus verification en-

gineers just need to focus on maintaining the correctness of specification and the validity

of every derived component is then guaranteed instantly. Hence, this kind of methodology

can provide a more robust and efficient verification framework.

1.6 Dissertation Organization

The rest of this dissertation is organized as follows. Chapter 2 introduces the overall flow

of the proposed verification methodology. Unified frameworks using a generator-based

EFSM and checker-based EFSM are described in Chapter 3 and Chapter 4, respectively.

Finally, we give the concluding remarks and future works in Chapter 5.

10

Chapter 2

An Overview of Our Methodology

In this chapter, we will first discuss two different viewpoints for specification interpreting.

Then, we will give an overview of our methodology and compared it with previous works.

2.1 Different Viewpoints for Interpreting a Specification

Most interface protocols are written in natural languages or waveform diagrams. Like

other automation methodologies, we need to formally specify the interface protocol first.

Interpreting an interface specification is like to specify what is valid I/O traces. As shown

in Fig 2.1, according to the target simulation components, engineers are used to interpret a

specification in either generator’s or checker’s point of view. From a checker’s viewpoint,

it observes the behaviors of IDUV and ODUV simultaneously to determine whether the

current trace is valid or not. From a generator’s viewpoint, it produces valid input stimuli

11

Checker

DUV
Stimulus

Generator

IDUV

ODUV

Interface protocol specification

Valid IDUV/ODUV
combinations?

Under current ODUV
What is valid IDUV?

Figure 2.1: Modeling in different points of view.

based on the output responses of the design. Actually, the generator and checker share

an underlying semantics which defines a set of valid input / output traces. As a result,

we develop two alternative EFSM models, the generator-based EFSM (GEFSM) and the

checker-based EFSM (CEFSM), as the specification styles in our methodology.

One of the major differences between the two proposed models is that the CEFSM is

a deterministic machine and the other is a non-deterministic machine. In a deterministic

EFSM, for a given combination of input, output, variable, and state values, there is at most

one transition can be enabled. On the contrary, a non-deterministic EFSM allows multiple

possible transitions. On the one hand, the GEFSM mainly considers the output responses

of the DUV and the internal state to define the valid stimuli to the DUV. Since the multiple

valid stimuli are usually allowed under certain output responses, the state transitions of

the GEFSM are non-deterministic which is more intuitive and flexible to write a generator.

On the other hand, the structure of the CEFSM imitates a real checker which considers

12

Table 2.1: Comparisons among two EFSM models
Model Input Output State transition Independent checker?
GEFSM ODUV IDUV Non− deterministic No
CEFSM IDUV ∪ODUV None Deterministic Y es

all the input and output signals as the state transition conditions. Table 2.1 shows the

basic comparison between them. Each of the two models can be translated to a complete

simulation kit. However, there is a slight difference between the two translated kits. The

CEFSM-based correctness checker can operate correctly with other stimulus generators /

testbenches. But the GEFSM-based correctness checking ability can only accompany the

GEFSM-based stimulus generator.

2.2 The Flow of Our Methodology

The flow of our methodology is illustrated in Fig. 2.2. The interface protocol specifica-

tion is expressed with a modified EFSM model initially. The model can be translated into

a stimulus generator, a correctness checker, and a structural coverage analyzer. Mean-

while, the interested transactions can be specified using SOL. These transactions are fur-

ther translated into a functional coverage analyzer automatically. Then the whole system,

including the DUV, stimulus generator, correctness checker, and coverage analyzer, is

simulated. According to the outcome from the correctness checker, we can know if the

DUV conforms to the interface protocol. The EFSM-based checker can not only detect

protocol violations, but also provide useful information for debugging. In traditional de-

13

Verification kit

DUV

Biasing

Interface Protocol

Specification

(EFSM)

Correctness

Checker

Coverage

Analyzer

Stimulus

Generator

Translator

Simulator

Transactions

in SOL

Transaction

Coverage

Analyzer

Coverage

Report

Biasing

Figure 2.2: The overall flow of our verification methodology.

bugging process, designers inspect the simulation data to discover possible error sources.

They usually need to manually associate the simulation waveforms with the interface

behaviors. As mentioned before, in the EFSM model, each state represents a certain in-

terface status, and each state transition represents certain interface behaviors. Tracing the

simulation sequences via the EFSM model can easily link the simulation data and the

desired transactions together. This makes the debugging work simpler and more intuitive.

From the coverage analyzer, the report can show how many interested transactions have

been verified. Moreover, the coverage information can be used to further guide the biasing

options of stimulus generator to hit those unverified corner cases.

14

2.3 Related Works

Some research works have been proposed to build a complete simulation environment. In

[14], the authors create a list of interface constraints in a proprietary specification style,

which is called the “antecedent implies consequent” form. The antecedent and consequent

are both Boolean formulae. When an antecedent’s condition is met, the implied conse-

quent’s condition must be held simultaneously. These constraints can be directly used as

assertions during simulation. This work creates BDDs from the asserted constraints on-

the-fly and applies BDD traversals to find a valid stimulus. The coverage metric in this

work is defined as the proportion of how many antecedent conditions are triggered during

simulation. Fig. 2.3 illustrates this rule-based framework.

Another work proposed by Ara et al. [34] defines valid signal values hierarchically

with a regular-expression-based (RE-based) language, CWL (Component Wrapper Lan-

guage). These definitions can be converted to corresponding finite automata acting as

correctness checkers during simulation. Verification engineers can manually assemble

these definitions to develop required stimuli more quickly. How many states and transi-

tions of all finite automata are visited is counted as the main coverage measurement in

this approach. Fig. 2.4 illustrates the CWL-based framework.

We list the comparisons between the two existing approaches and ours in Table 2.2.

Compared to previous approaches, the major contributions of our approach are:

15

DUV

Interface Protocol

Specification

(Rules)

Rule Checker
Rule Coverage

Analyzer

Stimulus Generator

Simulator

Coverage

Report

Bit-level

Biasing

Rule1: antecedent1 consequent1
Rule2: antecedent2 consequent2

….

BDD Solver

BDD Builder

Figure 2.3: The flow of rule-based methodology.

DUV

Interface Protocol

Specification

(CWL)

Correctness Checker

(FAs)

State & Transition

Coverage Analyzer
Stimulus Generator

Simulator

Coverage

Report

Test Scenerio

Figure 2.4: The flow of CWL-based methodology.

16

Table 2.2: Comparisons among three approaches
Comparison item [14] [34] Our approach
Modeling category Rule-based RE-based EFSM-based
Allowed modeling operator Logic operators RE operators Logic operators and arithmetic operators
Checker type Rules Finite Automata EFSM
Stimulus generation Fully-automatic Semi-automatic Fully-automatic
Stimulus biasing ability Bit-level only Not mentioned Multiple biasing options
Coverage metric Rule State and transition State, transition, and transaction
Hardware acceleration Hard Hard Easy

• Modify the classical EFSM model to ease the description of interface : The refined

EFSM model allows a richer set of operators providing better description power.

• Propose a methodology to obtain a set of simulation components from one specifi-

cation automatically and these components are also synthesizable to enable hard-

ware acceleration during verification.

• Support various stimulus biasing options to increase the stimulus effectiveness.

• Develop a transaction description language, State-Oriented Language (SOL) [35],

to precisely evaluate how many interface functions are actually exercised.

17

18

Chapter 3

GEFSM-Based Framework

In the chapter, we introduce the GEFSM-based framework to develop a stimulus generator

for interface compliance verification. As well, the diversified biasing strategies includ-

ing the transition-level, transaction-level, and bit-level/word-level biasing provide users

higher controllability over stimulus generation. The GEFSM-based stimulus generator is

also capable of checking if the DUV conforms to the interface protocol during simula-

tion. Furthermore, unlike SAT- or BDD-based constraint solvers, this generator can be

easily implemented in synthesizable Hardware Description Language (HDL). Therefore,

it is feasible to dramatically speed up the verification process via a hardware accelerator

or emulator.

19

3.1 The Traditional EFSM Model

Definition 1 For a variable v, its value set is Dv.

Definition 2 For a finite set of variables V ={v1, v2, ..., vn}, its value set DV is the n-

dimensional Cartesian product Dv1 ×Dv2 × . . .×Dvn .

The EFSM model is a finite state machine extended with internal variables. It provides

a more efficient way to describe the behavior of a sequential circuit and relaxes the state

explosion problem suffered by traditional finite state machine models.

Definition 3 An EFSM is a 7-tuple (Q, Σ, ∆, X , q0, X0, F,U,T), where

Q a set of finite states

Σ a set of inputs

∆ a set of outputs

X a set of variables

q0 the initial state, q0 ∈ Q

X0 a set of initial values for variables in X

F a set of enabling functions fi such that fi: DX → {0,1}

U a set of update transformation functions ui such that ui: DX → DX

T a set of state transition relation such that: T : Q × DX × DΣ → Q × DX ×

D∆

20

sidle

s1

REQ

ACK

!REQ

s2s101

!ACK
ACK

ACK

sidle

swait

REQ / Count=100

ACK /-

!REQ / -

(!ACK)&(Count!=0) / Count--

svio

(!ACK)&(Count==0) /-

svio
!ACK

FSM (103 states) EFSM (3 states)

Figure 3.1: A same protocol in two different FSM representations.

Internal variables used in the EFSM model can significantly reduce the number of

required states. For example, as shown in Fig. 3.1, if a protocol specifies that a slave

can arbitrarily insert up to 100 wait cycles before responding to a master’s request, the

classical FSM requires 103 states to model this behavior while the EFSM only needs 3

states.

3.2 The GEFSM Model

Though the EFSM model has been widely used in many previous research works [36]

[37] [38], we slightly modify the definition of the state transition to best fit our own need

here. The modified model is called the Generator-based EFSM model which can be seem

as a protocol specification from the generator’s point of view.

Definition 4 A GEFSM is a 7-tuple (Q, Σ, ∆, X , q0, X0, T), where

Q a set of finite states

Σ a set of inputs

21

∆ a set of outputs

X a set of variables

q0 the initial state, q0 ∈ Q

X0 a set of initial values for variables in X

T a set of state transitions, each transition t is a 4-tuple (st, qt, et, ut), where

st the current state, st ∈ Q

qt the next state, qt ∈ Q

et the transition enabling function, returning true(1)/false(0) to enable/disable

the transition, et : DΣ ×D∆ ×DX → {0, 1}

ut the update transformation function, updating the values of the subset

S ⊆ ∆ ∪X , ut : DΣ ×D∆ ×DX → DS

Definition 5 The GEFSM is a non-deterministic machine. That is, for any state s ∈ Q

and its outgoing transition set Ts= {t | t = (st, qt, et, ut) ∈ T and st = s}. It is allowed

that ∃ ti, tj ∈ Ts, ti 6= tj and d ∈ DΣ ×D∆ ×DX , s.t. both eti(d) = 1 and etj(d) = 1.

3.3 An Example Protocol Specification

In order to clearly illustrate our methodology, we introduce a protocol simplified from the

AMBA AHB [39] as an example. Fig. 3.2 shows the simplest transfer of this protocol.

22

CLK

Ib

Ia[7:0]

Id[2:0]

Or

A A+1 A+2 A+3

Data
(A)

Data
(A+1)

Data
(A+2)

Data
(A+3)

Figure 3.2: A simple transfer of a 4-beat burst.

Slave

CLK

Ib

Ia[7:0]

Id[2:0]

Or

Control

Address

Data

Transfer Response

Figure 3.3: The slave interface of the simplified protocol.

This protocol defines how a slave receives a 4-beat burst from a master. As shown in

Fig. 3.3, the slave only considers 4 interface signals: Or, Ib, Ia, and Id. Signal Or belongs

to ODUV and others belogns to IDUV . The following is a part of the specification about

the bus master issuing a 4-beat burst to a slave:

(Item 1) A 4-beat burst includes 4 data transfers. A burst can tightly follow another

burst.

(Item 2) The address (Ia) of the next transfer in a burst is equal to the address of the

23

CLK

Ib

Ia[7:0]

Id[2:0]

Or

A A+1 A+2 A+3

Data
(A)

Data
(A+1)

Data
(A+2)

Figure 3.4: A burst with a wait state.

current transfer plus one.

(Item 3) The slave asserts the ready signal (Or) when it is ready for the current transfer.

The master should send the values of the current data (Id) and the next address.

(Item 4) A slave can insert extra wait cycles by deasserting Or. In this situation, all

output signals of the master must hold their previous values. Fig. 3.4 shows a

burst with a wait state added for the first transfer.

(Item 5) The master can choose to continue the burst (Ib = 1) or send a busy response

(Ib = 0) to temporarily suspend the next transfer. Fig. 3.5 shows a burst with a

busy state added for the second transfer.

According to the protocol specification, we build the corresponding GEFSM step by

step as shown in Fig. 3.6 and Fig. 3.7. The final GEFSM Fig. 3.7 is shown which has four

states (s0, s1, s2, and s3) and 17 transitions (t1 ∼ t17) with an internal variable (x1) for

24

CLK

Ib

Ia[7:0]

Id[2:0]

Or

A A+1 A+1 A+2

Data
(A)

Data
(A+1)

Data
(A+2)

Figure 3.5: A burst with a busy state.

burst-length counting.

3.4 Stimulus Generation Flow

We develop a translator that can automatically translate a given GEFSM model into the

corresponding stimulus generator. The generated stimulus generator is capable of produc-

ing massive random stimuli which are fully compliant with the given interface protocol

via the corresponding GEFSM.

For a GEFSM-based stimulus generator, Fig. 3.8 illustrates the 3-phase flow about

how to automatically generate the stimulus on-the-fly based on the current DUV’s re-

sponse during dynamic simulation:

1. Evaluation: At the current state, evaluate the enabling functions of all its outgoing

transitions. The return values of the enabling functions are determined by the cur-

25

s1

s0

x1==0 / -

- / x1=4

x1!=0 / x1=x1-1
Step 1 (from Item 1)

s1

s0

x1==0 / -

- / x1=4

x1!=0 / x1=x1-1; Ia= Ia+1;
Step 2 (from Item 1~2)

s1

s0

(Or==1) (x1==0) / -

- / x1=4

(Or==1) (x1!=0) / x1=x1-1; Ia= Ia+1;
Step 3 (from Item 1~3)

s1

s0

(Or==1) (x1==0) /-

- / x1=4

(Or==1) (x1!=0) / x1=x1-1; Ia= Ia+1;
Step 4 (from Item 1~4)

s2

Or==0 / Ia=Ia; Id=Id

(Or==1) x1==0) / x1=4

(Or==1) x1==0) / -

Or==0 / Ia=Ia; Id=Id

- / -

- / -

- / -

- / -

x1==0 / x1=4

x1==0 / x1=4

(Or==1) (x1==0) / x1=4

(Or==1) (x1==0) / x1=4

Figure 3.6: The protocol modeling steps with GEFSM.

26

s1

s2

s3s0

GEFSM

∑: Or

∆: Ia, Ib, Id

State: S0, S1, S2, S3

Variable: x1

t3, t4

t5

t6

t7

t1

t2

t9

t8

Transition definitions:

t=(st, qt, et, ut)

t1=(S0, S0, -, {Ib==0})

t2=(S0, S1, -, {Ib==1; x1=4})

t3=(S1, S1, (Or==1) x1!=0), {Ib=1; Ia=Ia+1; x1=x1-1})

t4=(S1, S1, (Or==1) x1==0), {Ib=1; x1=4})

t5=(S1, S0, (Or==1) x1==0), {Ib=0})

t6=(S1, S2, Or==0, {Ia=Ia; Id=Id})

t7=(S1, S3, (Or==1) x1!=0), {Ib=0; Ia==Ia+1; x1=x1-1})

t8=(S2, S2, Or==0, Ia=Ia; Id=Id)

t9=(S2, S0, (Or==1) x1==0), {Ib=0})

t10=(S2, S1, (Or==1) x1==0), {Ib=1; x1=4})

t11=(S2, S1, (Or==1) (x1!=0), {Ib=1; Ia=Ia+1; x1=x1-1})

t12=(S2, S3, (Or==1) (x1!=0), {Ib=0; Ia=Ia+1; x1=x1-1})

t13=(S3, S3, Or==1, {Ib=0; Ia=Ia; Id=Id})

t14=(S3, S1, Or==1, {Ib=1; Ia=Ia; Id=Id})

t12

t13

t14

t10, t11

Step 5 (from Item 1~5)

Figure 3.7: The GEFSM of the example protocol.

27

Evaluation

Selection

Update

Figure 3.8: Stimulus generation flow.

rent values of the interface signals (Σ, ∆) and internal variables (X). A transition

is put into the next transition candidate set (NTCS) only if its enabling function

is evaluated true. Some transitions might be evaluated false and excluded in the

NTCS. It actually means the current signal values on the interface prevent the stim-

ulus generator from producing certain stimuli for the next cycle. In other words,

the stimulus generator implicitly solves constraints presented by the given protocol

during the stimulus generation process. Meanwhile, in case the NTCS is empty

after the evaluation, it means the behavior of DUV must violate the protocol be-

cause it makes the stimulus generator find no valid move for the next cycle. That

is, the stimulus generator can not only generate the valid stimuli but also serve as a

protocol compliance checker at the same time.

2. Selection: From the non-empty NTCS, randomly pick one as the next transition

based on the given transition weights. A transition with a higher weight has a higher

probability to be selected as the next transition. Hence, some sort of biasing strate-

gies can be utilized here to meet volatile requirements of users. Meanwhile, the

next transition becomes determinate at this phase no matter what selection strategy

28

is in use.

3. Update: Assign values to the outputs and variables according to the update trans-

formation function of the selected transition. This phase consists of the constrained

and unconstrained parts:

(a) Constrained part: Outputs and variables explicitly defined in the update

transformation function must be assigned with the constrained values.

(b) Unconstrained part: Outputs not defined in the update transformation func-

tion can be randomly assigned with any valid values within their own domains.

Again, some kind of biasing strategies can be used here.

Actually, the mission of the Update phase is to generate a complete and valid stim-

ulus. After the Update phase, the GEFSM moves to the next state through the

selected transition and then the stimulus generation process goes back to the Eval-

uation phase for the next cycle.

Now we use the stimulus generator built from the GEFSM in Fig. 3.7 to demonstrate

this flow. Assume the current state is s1:

Case 1 (current state = S1, Ia = 20, Ib = 1, Id = 0, Or = 1, Vb = 3)

The enabling functions et3 and et7 are both evaluated true at the Evaluation phase. It

means the two corresponding transitions, t3 and t7, are the next transition candidates.

29

Next, at the Selection phase, one of the candidates would be chosen as the next transition.

Assume the transition t7 is selected, the constrained outputs and variables of ut7 need to

be updated as the defined values – assigning Ia, Ib, and X1 to 21, 0, and 2, respectively.

The remaining unconstrained outputs can be assigned to any valid values. For instance,

we can set Id to 2. Finally, the current state moves from s1 to s3.

Case 2 (current state = S3, Or = 0)

In this case, all enabling functions return false at the Evaluation phase. In other words, no

possible transition exists and a protocol violation is detected by the stimulus generator.

Meanwhile, it terminates the current simulation and reports the error.

3.5 Stimulus Biasing

Biasing techniques can help verification engineers generate stimuli to hit desirable corner

cases more easily. BDD-based approaches can generally support the stimulus biasing.

However, due to the BDD’s inherent topology, only bit-level signals can be biased in

these approaches. Instead, our stimulus generator is capable of achieving an even higher

flexibility, shown later, to bias the generated stimuli. This feature is extremely useful to

exercise those uncovered scenarios to get a better simulation quality.

30

Table 3.1: Biasing information I
Biasing type Weight
Transition-level Wt3 = 20

Wt4 = 40
Wt5 = 40
Wt6 = 100
Wt7 = 80

Word-level Wd=2′b00 = 5
Wd=2′b01 = 40
Wd=2′b10 = 40
Wd=2′b11 = 15

3.5.1 Transition-level Biasing / Transaction-level Biasing

Since each transition indicates certain interface behavior, we use the transition-level bi-

asing to guide the state transition. Due to the non-determinism, there may exist multiple

valid transitions after the Evaluation phase. A strategy is needed to pick one from these

candidates. One method is to give each transition t an individual weight wt. Then, the

probability that a candidate transition ti is selected is defined as:

Pti =
wti∑

tj∈NTCS wtj

, ti ∈NTCS

For example, in Case 1 of the previous example, t3 and t7 are both transition candidates.

If the biasing information is given as Table 3.1, t7 has a higher probability (80%) to be

chosen than t3 (20%) does. Furthermore, if preliminary simulation results do not exercise

certain states or transitions, the related transition weights can be increased accordingly.

Another similar approach is the transaction-level biasing. We can define a meaningful

transaction in terms of a sequence of transitions and then bias all these transitions at the

31

d[1]

d[1]=1 d[1]=0

(Value) d=2'b11 d=2'b10 d=2'b01 d=2'b00

(Biasing) p*q p*(1-q) (1-p)*q (1-p)*(1-q)

p (1-p)

d[0]=1 d[0]=0

q (1-q)

(a) (b)

0 ≤ p ≤ 1

0 ≤ q ≤ 1

 Then

 Else

d[0]

d[1]

d[0] d[0]

Figure 3.9: An example of bit-level biasing.

same time.

3.5.2 Bit-level biasing / Word-level biasing

As mentioned before, bit-level biasing is available while BDD-based approaches are

adopted. The basic idea of these approaches is to traverse BDDs to obtain a valid so-

lution. Fig. 3.9 is an example to demonstrate the bit-level biasing scheme. In Fig. 3.9(a),

there are two BDD nodes representing distinct bit signals, d[0] and d[1]. Each node has

two outgoing branches “Then” and “Else” to indicate that the signal is assigned to 1 or 0.

General bit-level biasing schemes set a probability value along with each branch to affect

the BDD traversal outcomes. For example, p and q are bit-level biasing parameters for

“d[1]=1” and “d[0]=1” in Fig. 3.9, respectively.

In typical protocols, many signals are defined in a group of bits, i.e., a word, instead

of a single bit only. Therefore, the capability of the word-level biasing becomes critical

32

and essential. As shown in Fig. 3.9(b), bit-level biasing settings can result in different

word-level biasing. However, bit-level biasing has limitations in many situations. For

example, in our approach, we allow the weight settings for different word values of d as

shown in Table 3.1 to apply direct word-level biasing. This biasing setting simultaneously

increases the appearance probabilities of “d=01” and “d=10”. Note that, under bit-level

biasing, the positive biasing of “d=01” implies the negative biasing of “d=10”. Obviously,

there is no way for bit-level biasing to achieve the distribution of word-level biasing given

in Table 3.1.

In our approach, the word-level biasing settings can affect the generated stimuli in

two manners. On the one hand, while the biased signal is in the unconstrained part of

the Update phase, the signal’s value can be directly produced via a weighted random

number generator with the distribution specified by the word-level biasing. On the other

hand, if the biased signal appears in the constrained part, i.e., the signal value relates to

which transition is selected, the biasing effect could be reflected by changing the transition

weights. Assume the word-level biasing list for an n-bit signal s is “Ws=0, Ws=1, ...,

Ws=2n−1” and Ct
s=i is a binary variable indicating if “s = i” is feasible while selecting

t as the next transition, for 0 ≤ i ≤ 2n − 1. While the original transition weight of the

transition t is wt, the modified transition weight according to the word-level biasing is:

w′
t = wt ∗

∑2n−1
i=0 Ct

s=i ∗Ws=i∑2n−1
i=0 Ws=i

33

Table 3.2 shows an example of this mechanism. When the word-level weights of the

signal b are given, the original transition weights, as shown in Table 3.1, can be modified

according to the update transformation functions of those transitions. While t3 and t7 con-

strain the value of Ib to 1 and 0, respectively, the modification ratio, W ′
t3
/Wt3:W ′

t7
/Wt7 ,

is 3:1, which is the same as the word-level biasing setting of Ib (WIb=1:WIb=0). After

this adjustment, the transitions tending to generate signal values with higher word-level

weights should appear more frequently.

3.5.3 Feedback for Biasing Refinements

By understanding the design intent and desired scenarios, engineers can manually change

those biasing settings to improve simulation quality in later simulation runs. Besides,

we could also build a weight tuner which can collect current simulation information and

adjust the biasing settings automatically.

In general, a weight tuner should follow certain formulae or strategies to bias the

simulation to unverified corners. In other words, the new weight settings should raise

the appearance probability of those stimuli which are seldom or even not produced in the

previous stimulus set. For example, here is a simple strategy for increasing the transition

coverage of GEFSM and balancing every transition’s appearance count as far as possible.

Assume current outgoing transitions are {t1, t2, ..., tn} and the corresponding weight set

is W={wt1 , wt2 , ..., wtn}. If ti is selected as the next transition and wti is greater than n,

34

Table 3.2: Biasing information II
Biasing type Weight
Word-level WIb=0 = 1

WIb=1 = 3
Modified weight

Transition-level W ′
t3 = 80 ∗ (3/4) = 60

W ′
t4 = 20 ∗ (3/4) = 15

W ′
t5 = 40 ∗ (1/4) = 10

W ′
t6 = 100 ∗ (4/4) = 100

W ′
t7 = 80 ∗ (1/4) = 20

we can apply the following weight tuning formula to every wtj ∈ W:

wtj =

wtj − n, for j=i

wtj + 1, for j 6=i

By decreasing the weight of frequently appeared transition and increasing weights of

others, this kind of feedback mechanism can dynamically modify biasing settings during

simulation. Hence, more varied stimulus sequences can be obtained using an automatic

weight tuner.

3.6 Automatic Translation

We implement an translator as shown in Fig. 3.10. The translator first reads in the given

GEFSM of the specific interface protocol and the biasing information. It then automat-

ically produces a corresponding stimulus generator in target HDL form. The upper part

in Fig. 3.10 is a typical simulation-based verification environment. DUVs are usually

written in HDL. However, high-level testbenches or stimulus generators are often devel-

35

I/F

HDL Simulator

DUVSG

HW-based

SG
DUV

I/F

Emulator

GEFSM

Biasing

Information

Translator SG

Synthesizer

Synthesizable

Only

Behavioral

or

Synthesizable

Figure 3.10: Stimulus generator translation flow.

oped in C/C++, so they need to interact with the HDL simulator via the Programming

Language Interface (PLI). Extra simulation overhead is required due to the PLI commu-

nication need. Since our stimulus generator is implemented in native HDL, it can thus

save simulation time compared to those approaches using PLI.

Fig. 3.11 shows the interface of the stimulus generator. The primary input ports (Σ)

and output ports (∆) of generated stimulus generator are defined in GEFSM model. Be-

sides, it has an additional output port, “FAIL”, to indicate whether any violation occurs.

This translation process can be finished in the following three steps:

(Step 1) First, the compiler translates the enabling functions into assignment state-

ments. For example, the enabling function et3 in Fig. 3.7 can be written with

the following Verilog statement:

et3 = (Or == 1)&&(x1! = 0);

36

GEFSM M=(Q, ∑, ∆, X, q0, x0, T)

AVSG

∑

∆

FAIL

FAIL

et1
et2
 .

 .

etn

Figure 3.11: The interface of the stimulus generator.

In this statement, et3 is a binary variable representing the evaluation result. The

evaluation results for all outgoing transitions of the current state pass through

an NOR gate and then drive the output signal “FAIL” as shown in Fig. 3.11. As

explained, it implies if no available transition for the next move, the DUV must

have some design error.

(Step 2) Unlike the deterministic machine, the GEFSM has a set of transition can-

didates. In our approach, the stimulus generator chooses the next transition

according to the given transition weights (transition-level biasing). We use a

weighted selection procedure as shown in Fig. 3.12 to realize this mechanism.

First, it sums the weights of transitions in NTCS via additions or a lookup-up

table. Then, it generates a random number between 0 and the weight sum. Typ-

ically, random numbers can be obtained from a software call provided by most

HDL simulators. According to this number and weight distribution, a decoder

37

can determine the selection result.

(Step 3) The major task of the stimulus generator is to generate proper values for out-

put signals which are constrained by the selected transition. On one hand, the

constraints are defined in the update transformation functions, and the compiler

directly translates them into assignment statements. For example, the update

transformation function ut3 can be implemented with three statements in Ver-

ilog:

x1 = x1 − 1;

Ia = Ia + 1;

Ib = 1;

On the other hand, the weighted selection procedure is used to assign the un-

constrained output signals with weighted random values (bit-level/word-level

biasing).

Synthesizable stimulus generator

Practically, simulation jobs are very time-consuming for large complex SOC designs.

Hence hardware accelerators or emulators are usually utilized to speed up the verifica-

tion process around 100 ∼ 1000 times. The lower part of Fig. 3.10 demonstrates this

acceleration environment. In general, SAT- or BDD-based generators are inherently hard

38

Adder

Tree /

Look-up

Table

Wt1

Wt1+Wt2

Wt1+Wt2+Wt3

Wt1+Wt2+Wt3+Wt4

Decoder

<

<

<

<

Wt1

Wt2

Wt3

Wt4

Selection

Result

Random Number

Generatior

Figure 3.12: Weighted selection procedure.

to be synthesized to hardware, and thus prevent such kind of acceleration. Conversely,

the proposed translator is capable of generating the stimulus generator in synthesizable

HDL form on one condition – only synthesizable operators are allowed in the transition

enabling and update transformation functions of the given GEFSM. In our experiences,

the set of synthesizable operators are generally large enough for modeling most of inter-

face protocols. Furthermore, random numbers are required to implement the weighted

selection schemes requested by the Selection and Update phases. This hardware imple-

mentation is similar to the hardware Lottery manager circuit in [40]. To make our stimulus

generator fully synthesizable, a hardware-based LFSR (Linear Feedback Shift Register)

[41] is used. The combination of these 2 efforts enables the truly hardware-based stimu-

lus generator as well as the use of hardware acceleration techniques. Fig. 3.13 shows the

block diagram of the proposed GEFSM-based stimulus generator.

39

Fail

Transition

Evaluator

Random Number Generator /

LFSR

IDUV

ODUV

Transition Selector Updater

Constrained Stimulus

Assignment Unit

Unconstrained Stimulus

Assignment Unit

Round Robin Selector /

Weighted Random

Selector

NTCSstate

Figure 3.13: The block diagram of the proposed GEFSM-based stimulus generator.

3.7 Experimental Results

To demonstrate the effectiveness and efficiency of our approach, we use the WISHBONE

[42] and AMBA AHB protocols as the test cases. The experiments are conducted over

a set of 3 WISHBONE-compliant and 3 AHB-compliant bus slave designs. The WISH-

BONE test cases are obtained from the OPENCORES organization [43], and the others

are internal designs. Table 3.3 shows the basic information of each design. All exper-

iments are performed on a Sun Blade-2000 workstation with 1GB RAM. Simulation is

conducted using a Cadence Verilog-XL simulator.

We first model both the WISHBONE and AHB protocols in GEFSM. The resultant

GEFSM of the WISHBONE requires 4 states and 17 transitions while AHB’s requires 6

states and 46 transitions. Then the target stimulus generators are directly generated from

40

Table 3.3: Basic information of selected DUVs
Design Description Protocol

AC97 Simple AC97 controller WISHBONE
SPI Serial Peripheral Interface WISHBONE

PTC PWM/Timer/Counter WISHBONE
RGB2YCrCb RGB-to-YCrCb Translator AMBA AHB

CON Convolution Calculator AMBA AHB
MAC Multiply-accumulator AMBA AHB

the corresponding GEFSMs through the proposed compiler.

Overall experimental results confirm that generated stimulus generators are fully ca-

pable of providing a large amount of valid verification stimuli for all 6 designs. Next, we

report certain detailed experimental results to show the power of biasing and the run-time

efficiency of our stimulus generation.

3.7.1 Stimulus Biasing

We apply the proposed biasing methods on the experiments over the design CON. We

first show the effectiveness of the transaction-level biasing. Suppose each transition ini-

tially has equal weight and users want to exercise a five-cycle transaction, “Nonseq →

Busy → Seq → Busy → Seq”. However, this transaction never occurs in the initial unbi-

ased simulation of 1000 cycles. Then we increase the weights of related transitions (e.g.,

Nonseq→Busy) by 10 times. Under the new bias setting, the expected transaction appears

19 times in first 1000 cycles. It demonstrates that the transaction-level biasing technique

can help achieve higher functional coverage in shorter simulation cycles.

Another experiment focuses on performing the word-level biasing on the AHB signal

41

Table 3.4: Results of word-level biasing
HBURST Burst type Weight Count

000 SINGLE 10 13022 (9.95%)
001 INCR 20 25996 (19.86%)
010 WRAP4 40 52377 (40.02%)
011 INCR4 5 6521 (4.98%)
100 WRAP8 15 19645 (15.01%)
101 INCR8 0 0 (0%)
110 WRAP16 0 0 (0%)
111 INCR16 10 13317 (10.18%)

HBURST. HBURST is a three-bit signal indicating the current burst type as shown in the

first and second columns of Table 3.4. For certain verification need, we set the expected

probabilities on different HBURST values in terms of the word-level weights. Note that

no single bit-level bias setting on HBURST can produce the identical word-level biasing

shown in the third column in Table 3.4. After 1 million simulation cycles, the appear-

ance count of each burst type is reported in the last column. The results perfectly match

the given bias setting. This experiment also implies that we can disable certain types

of stimuli by setting the corresponding weights as zeros. This skill is extremely useful

when a DUV does not fully implement all features specified in the interface protocol. In

short, through the proposed biasing techniques, it becomes much easier to get the desired

stimuli.

3.7.2 Performance Analysis

Shorter stimulus generation time should be always preferred during verification. To illus-

trate the performance of the stimulus generation, the run-time is compared with those of

42

Table 3.5: Run-time analysis of different stimulus generators
Stimulus generator

Design
PRSG Ours SG1 SG2

AC97 117.56 s 123.04 s 136.92 s 139.81 s
SPI 19.45 s 24.03 s 36.60 s 37.92 s
PTC 14.88 s 17.42 s 31.52 s 33.90 s

RGB2YCrCb 11.10 s 12.20 s 23.97 s 24.46 s
CON 10.43 s 11.37 s 24.01 s 25.09 s
MAC 12.80 s 13.82 s 22.11 s 22.55 s
Total 186.22 s 201.88 s 275.13 s 283.73 s
Ratio 0.92 1.00 1.36 1.41

other stimulus generation methods. We build four simulation environments which contain

different stimulus generators. The run-time (for 1 million simulation cycles) for 6 real de-

signs in each simulation environment is reported in Table 3.5. In the first environment, we

use a pure random stimulus generator (PRSG) to produce stimuli. This is the most trivial

way to generate massive random stimuli at virtually no cost. The second environment

is to use our stimulus generator instead of the PRSG. From Table 3.5, the difference of

run-time required by the PRSG and our stimulus generator is quite small. It shows our

stimulus generator can be as efficient as a PRSG. However, the PRSG generally produces

invalid stimuli while ours only generates stimuli fully compliant with the protocol. Be-

sides, we use CUDD (Colorado University Decision Diagram) [44] package to build two

BDD-based implementations, referred to as SG1 and SG2, which are similar to the stim-

ulus generators in [13] and [14], respectively. Since PLI mechanism is required between

the HDL simulator and BDD-solving engine for these two environments, the experimen-

tal results show that these two environments take averagely 36% and 41% more run-time

than our GEFSM-based approach.

43

3.7.3 Error Detection

While the GEFSM model describes the target interface protocol, the stimulus generator

can also detect those design errors which violate the interface protocol. For demonstrat-

ing this feature, we do inject protocol-related errors into designs, and the experimental

results show that the stimulus generator can indeed capture all these kinds of design er-

rors. We also inject protocol-independent errors to correct designs. For example, one such

injected error is to change the internal computing function of the design RGB2YCrCb. As

expected, this kind of error can not be detected by our stimulus generator since the er-

ror effect does not affect the interface behavior. To detect those internal design bugs,

users need to build other checkers to investigate the simulation results and the stimulus

generator purely serves as a stimulus generator in this case.

3.7.4 Synthesis Results

As mentioned, our stimulus generator can be easily mapped to real hardware through

a commercial logic synthesizer. We use Synoposys Design Vision as the synthesizer

under UMC 0.18 technology. The synthesizer reports that only 1.8K and 5.7K NAND2-

equivalent gates are required to implement the stimulus generators of the WISHBONE

and AMBA AHB protocols, respectively. This result clearly shows that the proposed

stimulus generator can be easily and cost-effectively integrated into a high-performance

emulator-based verification flow.

44

3.8 Summary

We propose a GEFSM-based approach for interface compliance verification. In this ap-

proach, the GEFSM model is used to represent the interface specification from the gen-

erator’s view and then automatically translated into a dedicated stimulus generator. This

stimulus generator can produce a large amount of valid random stimuli and simultane-

ously check the correctness of the interface behavior. In addition, it can be easily im-

plemented in synthesizable HDL to enable the hardware acceleration. By supporting

transaction-, transition-, and word-level biasing, the stimulus generator provides users

better controllability over where a simulation run heads for. The experimental results

demonstrate that these biasing methods do successfully generate appropriate stimuli as

expected. Moreover, the extremely low overhead in simulation time shows the remark-

ably high efficiency of our stimulus generation. Hence, this approach can indeed improve

the simulation quality as well as speed up the verification process.

Although the proposed GEFSM can be translated to a stimulus generator which can

also check the simulation traces simultaneously, this approach cannot build a pure checker.

That is, the protocol checking mechanism is along with the stimulus generation. This may

limit the usage model of the GEFSM-based approach while engineers may sometimes re-

quire a pure protocol checker to examine the interface behaviors triggered by another

stimulus generator or manual stimuli. In the next chapter, we proposed a CEFSM-based

methodology which is capable of producing a single stimulus generator, protocol checker,

45

or coverage analyzer to handle different verification requirements.

46

Chapter 4

CEFSM-Based Framework

In this chapter, a CEFSM-based unified framework is introduced to generate a complete

verification kit for interface compliance verification. Compared to the GEFSM-based ap-

proach, the correctness checker translated from a CEFSM can operate under other stim-

ulus generation schemes. We also introduce a transaction-level coverage metric which is

proper to define transactions within an EFSM.

47

4.1 The CEFSM Model

Definition 6 Given a function f : Da → Db with respect to mapping variable a to b, the

relation function R : Da ×Db → {0, 1} is defined as:

R(a, b) =

1 , if b == f(a) where a ∈ Da, b ∈ Db

0 , otherwise

if we have to cope several functions ~f : DA → DB with the variables A={a1, a2, . . . , an}

and B={b1, b2, . . . , bm}, then the relation R : DA ×DB → {0, 1} is defined as:

R(A, B) =
m∧

i=1

(bi == fi(a1, a2, . . . , an))

Definition 7 The existential quantification of a function f(x1, x2, . . . , xi, . . . , xn) with

respect to a binary variable xi, denoted as ∃xif , is fxi=1∨ fxi=0, where fxi=1 = f(x1, x2,

. . . , xi = 1, . . . , xn) and fxi=0 = f(x1, x2, . . . , xi = 0, . . . , xn).

Definition 8 The existential quantification of a function f(x1, x2, . . . , xi, . . . , xn) with

respect to a variable xi, whose value set Dxi
={k1, k2, . . ., km}, is ∃xif = fxi=k1

∨
fxi=k2

∨
. . .

∨
fxi=km .

Definition 9 The existential quantification of a function f with respect to a set of vari-

ables X={x1, x2, . . . , xk}, is defined as a sequence of single-variable operations: ∃Xf=

48

∃x1(∃x2 . . . (∃xk f)).

A checker-based EFSM model is modified from the traditional EFSM model to better

fit the need for describing a general interface protocol specification from a checker’s point

of view.

Definition 10 A CEFSM M is a 7-tuple (Q, Σ, Σ′, X , q0, X0, T), where

Q a finite set of states

Σ a set of signals

Σ′ a copy of Σ to hold the values of Σ in the last state transition

X a set of variables

q0 the initial state, q0 ∈ Q

X0 a set of initial values for variables in X

T a set of state transitions, each transition t is a 5-tuple (st, qt, rt, pt, at), where

st the current state, st ∈ Q

qt the next state, qt ∈ Q

rt the relation function with respect to ~ft : DΣ′ → DΣt , where Σt is a

subset of Σ in which each signal is related to Σ′. rt : DΣ′ × DΣt →

{0, 1} can be written as:

rt(Σ
′, Σt) =

∧

for each bi ∈ Σt

(bi == fti(Σ
′))

49

pt the predicate function, pt : DX → {0, 1}

at the action function, at : DX → DX

Assume that the current signal values (σ), previous signal values (σ′), and current vari-

able values (x) are given. Performing a state transition ti=(sti , qti , rti , pti , ati) means that

M is initially in the state sti with those given values such that rti(σ
′, σ)=1, and pti(x)=1,

then M moves to the state qti and updates the values of variables according to ati(x). In

this case, rti(σ
′, σ)=1 and pti(x)=1 are two necessary conditions of the transition ti. We

call the conjunction of rti and pti , i.e., rti ∧ pti , the transition condition (TC) of ti. While

M moves to the state s, the next state transition must be within its outgoing-transition set

Tnext(s)= {t | t = (st, qt, rt, pt, ut) ∈ T and st = s}.

In our approach, we use this CEFSM model to describe the interface protocol spec-

ification from a checker’s viewpoint. Σ is identical to the set of all interface signals

(IDUV ∪ ODUV). Each state indicates certain interface status, and the set of transitions

represents all possible status transformations. Compared with previous approaches, two

different features make this CEFSM model easier to specify an interface protocol. The

first feature is that the transition conditions are written as functions to make the modeling

capability more flexible and powerful. Especially when the interface protocol specifica-

tion contains the following behaviors:

• Retention behavior: A retention behavior means that a signal must retain its previ-

ous value. For example, in AMBA AHB protocol, while a binary signal HREADY

50

is low, the multi-bit signal HTRANS must hold its previous value.

• Arithmetic behavior: An arithmetic behavior means that the current value of a

signal can be arithmetically calculated. For example, during a burst transfer, the

value of the multi-bit signal HADDR is incremented by one at each subsequent

cycle.

These two behaviors can be written in the relation functions, “ (HREADY == 1) ∧

(HTRANS == HTRANS ′) ” and “(HADDR == HADDR′ + 1)”, respectively. Obvi-

ously, these kinds of behaviors can not be easily represented with pure Boolean formulae

or regular expressions. The second feature is that the predicate and action functions on

variables can significantly reduce the number of required states and transitions. For exam-

ple, the address of a fixed-length burst transfer can be described with a counter variable

to make the state machine more compact.

Similarly, according to the protocol introduced in Section 3.3, we build the corre-

sponding CEFSM as shown in Fig. 4.1. It has 4 states, 4 signals, one internal variable,

and 13 transitions. The bottom of Fig. 4.1 lists the transition conditions.

4.2 CEFSM-based Correctness Checker

In this section, we show the role an CEFSM-based checker play during simulation. A

CEFSM-based checker can be easily generated according to a given CEFSM model. As

51

s1

s2

s3s0

CEFSM

∑: Or, Ia, Ib

∑´: Or´, Ia´, Ib´

State: S0, S1, S2, S3

Variable: x1

t4

t5

t6

t7

t1, t2

t3

t10

t8

t9

Transition definitions:

t=(st, qt, rt, pt, at)

t1=(S0, S0, Or==0, -, -)

t2=(S0, S0, (Or==1) (Ib==0), -, -)

t3=(S0, S1, (Or==1) (Ib==1), -, x1=3)

t4=(S1, S1, (Or==1) (Ia==Ia´+1) (Ib==1), x1>0, x1=x1-1)

t5=(S1, S0, (Or==1) (Ia==Ia´+1) (Ib==1), x1==0, -)

t6=(S1, S2, (Or==0) (Ia==Ia´+1), -, -)

t7=(S1, S3, (Or==1) (Ia==Ia´+1) (Ib==0), x1>0, x1=x1-1)

t8=(S2, S2, (Or==0) (Ia==Ia´), -, -)

t9=(S2, S0, (Or==1) (Ia==Ia´) (Ib==1), x1==0, -)

t10=(S2, S1, (Or==1) (Ia==Ia´) (Ib==1), x1>0, x1=x1-1)

t11=(S2, S3, (Or==1) (Ia==Ia´) (Ib==0), x1>0, x1=x1-1)

t12=(S3, S3, (Or==1) (Ia==Ia´) (Ib==0), -, -)

t13=(S3, S1, (Or==1) (Ia==Ia´) (Ib==1), -, -)

t11

t12

t13

Figure 4.1: A CEFSM example.

52

CEFSM M=(Q, ∑, ∑´, X, q0, x0, T) Correctness Checker

∑
Fail

VioStorage

Figure 4.2: CEFSM to correctness checker.

shown in Fig. 4.2, the checker embeds a CEFSM that has similar states and transitions to

the given CEFSM model. Furthermore, an extra state, “Vio”, is added into the embedded

CEFSM for indicating the violation status. The checker takes all interface signals (Σ) as

its input, and produces only one output signal, “Fail”, representing the checking result.

The value of Fail is associated with the current state. While the embedded CEFSM moves

to the state Vio, Fail is asserted to 1. Otherwise, Fail remains 0 indicating no violations.

There is also one dedicated storage element for each interface signal to keep its value in

the previous cycle. During simulation, state transitions are performed based on the evalu-

ation of the transition conditions. While the interface signal values obey the specification,

the embedded CEFSM makes the corresponding transition to reach a valid state. On the

contrary, if no single transition condition can be satisfied after evaluation, the machine

moves to Vio. CEFSM. The violation alert can be observed through the signal Fail which

is only asserted at Vio.

Now we illustrate the correctness checking process with the corresponding checker

translated from the CEFSM in Fig. 4.1. The simulation data is shown as waveforms in

53

Fig. 4.3. At the cycle C1, initially the current state is S0 and the current value of x1

is 0. Among all transitions in Tnext(S0), only the transition condition of t3 is satisfied.

As a result, the checker moves to S1 and sets the value of x1 to 3 according to at3 . By

repeating this kind of iteration, the state changes in the order “S0 → S1 → S2 → S1 → S3”.

Since the state transitions are all kept within the valid states during the first five cycles,

the signal Fail holds low. However, at C5, no single transition whose condition can be

satisfied so that the checker moves to Vio and then asserts Fail. It means a certain protocol

violation occurs and the current simulation task should be stopped and the debugging

process should then begin.

4.3 CEFSM-based Stimulus Generator

In this section, we introduce the CEFSM-based stimulus generation scheme. The primary

function of the stimulus generator is to assign valid values to IDUV according to the ob-

served values of ODUV . Before describing the details, we use the example in Fig. 4.3 to

give the idea of our stimulus generation. In this example, Ia, Ib, and Id belong to IDUV ,

and Or belongs to ODUV . That is, the valuses of Ia, Ib, and Id are produced by the stimu-

lus generator while the value of Or is driven by the DUV. Consider the state transition of

the corresponding CEFSM at C2. After evaluating the transition conditions with Or = 0,

Ib = 1, and x1 = 3, the CEFSM takes a transition t6 to move to S2 and retains the value of

x1 simultaneously. The updated variable value is exactly the evaluation value for the state

54

Cycle

CLK

Ib

Ia[7:0]

Id[2:0]

Or

X1

Scurrent

Fail

2019 21 22

2 1 3

S1S0 S2 S1 S3 Vio

C0 C1 C2 C3 C4 C5 C6

30 2 1

Figure 4.3: A simulation example.

55

CEFSM M=(Q, ∑, ∑´, X, q0, x0, T)
Fail

Checker

Constraint Solver

σ Scurrent x

IDUV

ODUV

Constraint Producer

Stimulus Constraint

Figure 4.4: CEFSM to stimulus generator.

transition at C3. Since the updated variable value can determine the results of those pred-

icate functions of transitions in Tnext, some impossible next transitions can be eliminated

in advance according to the variable value. The set of remaining transitions is the next

transition candidate set (NTCS). In this example, Tnext(S2) is {t8, t9, t10, t11} while the

NTCS of S2 at C2 is {t8, t10, t11}. Identifying the NTCS of the current state is the prepro-

cess of the stimulus generation in our approach. Subsequently, the generator must assign

values to IDUV at C2 for interacting with the DUV. These values become the evaluation

values of Ia, Ib, and Id for state transition at C3. Note that arbitrary stimulus assignments

may cause certain protocol violations. For example, if we make the assignments Ia = 19

at C2, the embedded CEFSM can not find any valid transition at C3, and thus a protocol

violation occurs. In other words, to generate a valid stimulus, the relation functions in

NTCS must be taken into consideration.

The CEFSM-based stimulus generator consists of a CEFSM-based checker, a con-

straint producer, and a constraint solver as shown in Fig. 4.4. In the first stage, the checker

56

performs certain state transition and updates the values of all variables. In addition, the

checker passes necessary information to the constraint producer. The information includes

the current signals’ values (σ), the current state (Scurrent), and the current variables’ values

(x).

In the second stage, the constraint producer generates the constraint indicating a valid

solution space for the stimulus generation. The constraint can be obtained by applying

three operations over the relation functions of transitions in Tnext(Scurrent) as shown in

Fig. 4.5. Since the values of ODUV are determined by the DUV, the existential quan-

tification operations are first performed to make those relation functions of transitions in

Tnext(Scurrent) independent of ODUV . Suppose the relation function of the transition t

is shown as Equation (4.1). In the beginning, the input of the relation function rt is the

union of Σ′ and Σt. Illustrated in Equation (4.2), the simplified relation function (SR) of

the transition t is the result after performing the existential quantification operation of rt

with respect to ODUV . Since the dependence of ODUV is eliminated, the input of SRt

reduces to the union of Σ′ and Σt ∩ IDUV (note that Σt ∩ IDUV = Σt - ODUV). The sec-

ond operation is the constraint evaluation. This operation applies σ and x to the SRs and

the predicate functions of the transitions in Tnext(Scurrent), respectively. On the one hand,

since the SRs regard the next state transition, σ are treated as the previous values at the

next state transition. The evaluation of SR can further simplify the original function into

the stimulus constraint function (SC) as shown in Equation (4.3). The remaining input in

57

Existential Quantification

Constraint Evaluation

Constraint Selection

σ , x

Tnext(Scurrent)

Figure 4.5: The operation flow of a constraint producer.

SCt further reduces to the set of Σt ∩ IDUV , which is only a subset of IDUV . The SCt

is exactly the constraint for IDUV when the transition t is selected as the next transition.

On the other hand, the evaluation of the predicate functions can discard some invalid next

transitions and obtain the NTCS.

rt(Σ
′, Σt) =

∧

for each bi ∈ Σt

(bi == fti(Σ
′)) (4.1)

SRt(Σ
′, Σt ∩ IDUV) = ∃ODUV (rt(Σ

′, Σt))

=
∧

for each bi ∈ Σt∩IDUV

(bi == fti(Σ
′)) (4.2)

SCt(Σt ∩ IDUV) = SRt(σ, Σt ∩ IDUV)

=
∧

for each bi ∈ Σt∩IDUV

(bi == fti(σ)) (4.3)

Actually, the entire solution space for the current generated stimulus is the conjunction

58

of SCs in the NTCS of the current state:
∨

ti∈NTCS SCti . Intuitively, we could directly

solve this constraint to obtain a valid stimulus. However, in our approach, only one SC

from the NTCS is picked and passed to the constraint solver. This strategy comes with

the following two benefits:

• Simplify the constraint solving process.

• Enable the transition biasing (discuss later).

In the last stage, the constraint solver receives an SC from the constraint producer and

then generates a valid stimulus accordingly. As described, the SC is in the form:

(IDUV 1 == k1) ∧ (IDUV 2 == k2) ∧ . . . ∧ (IDUV N
== kN),

ki maps to a specific value within the value set of IDUVi

As a result, the constraint solver first performs a series of assignments, including “(IDUV 1 =

k1)”, “(IDUV 2 = k2)”, . . . , and “(IDUV N
= kN)”. This process assigns a set of valid val-

ues for the constrained signals. After these assignments, remaining unconstrained signals

in IDUV can be assigned with any values in their own value set by the constraint solver.

Like the GEFSM-based stimulus generator, the CEFSM-based stimulus generator also

support various stimulus biasing options. Remind that the constraint producer only selects

a single stimulus constraint instead of the union of all stimulus constraints derived from

59

the NTCS. For transition-level biasing, each transition ti is given an individual weight

wti . Then, the probability of selecting a candidate constraint SCti is defined as:

PSCti
=

wtiP
tj∈NTCS wtj

, ti ∈ NTCS

0, otherwise

A candidate constraint with a larger weight has a higher probability to be chosen. In

other words, the transition trend can be biased by this mechanism. Moreover, if previ-

ous simulation results do not exercise certain states or transitions, the related transition

weights can be increased accordingly to raise their appearance probabilities. We can also

define a meaningful transaction in terms of a sequence of transitions and then bias all

these transitions simultaneously.

Note that even if a specific SCti is selected, it is not guaranteed that the correspond-

ing transition ti is exactly the next transition. This is because the solution space of the

selected SC may overlap with the solution spaces of other SCs. An example shown in

Fig. 4.6 demonstrates two kind of relations of solution spaces shown in Fig. 4.3. SPi

denotes the solution space of SCti . Fig. 4.6(a) shows that the overlapping relation for

solution spaces of SCs at C1. SP4 is a subset of SP6. That is, even if SCt4 is selected

for stimulus generation, the next transition could be t6 instead of t4. Another example is

shown in Fig. 4.6(b), the two non-overlapping solution spaces mean that the selected SC

can directly determine the next transition. Obviously, in either case, the transition-level

60

SP6

SP4 SP7 SP12 SP13

(a) (b)

At C1, NTCS = {t4, t6, t7}

SCt4 = (Ia ==Ia’+1) (Ib==1)
SCt6 = (Ia ==Ia’+1)
SCt7 = (Ia ==Ia’+1) (Ib==0)

At C4, NTCS = {t12, t13}

SCt12 = (Ia ==Ia’) (Ib==0)
SCt13 = (Ia ==Ia’) (Ib==1)

Figure 4.6: Two different kinds of relations.

biasing can increase the probability of exercising certain transitions.

4.4 Automatic Translation

We implement a translator that can read in a CEFSM model and then automatically pro-

duce the stimulus generator and correctness checker. To meet specific simulation require-

ments, these components can be translated into either a high-level language or a native

HDL. That is, it is possible to use only a native HDL simulator to simulate all the simula-

tion components and the DUV. This can save a lot of simulation time compared to those

approaches using PLI.

Furthermore, our translator is capable of generating simulation components in synthe-

sizable HDL on one condition – only synthesizable operators are allowed in the transition

conditions of the given CEFSM. In our experiences, the set of synthesizable operators

are generally sufficient to model most interface protocols. Fig. 4.7 illustrates the block

61

diagram of the proposed CEFSM-based stimulus generator. The upper part is the embed-

ded correctness checker. The checker consists of several Flip-Flops (FFs) and a transition

evaluator which can be implemented as a combinational circuit. The architecture of the

correctness checker is similar to the traditional FSM with extended variables. Unlike

the traditional FSM that makes a state transition only depending on the current state and

current input values, in our approach, the previous input values and current variable val-

ues can also affect the state transition. The transition evaluator implements the transition

conditions and action functions to determine the next state and update the values of the

variables.

The lower part of Fig. 4.7 shows the elements for stimulus generation. The constraint

evaluator and selector accomplish the flow in Fig. 4.5. Note that the existential quantifica-

tion is done by our translator in the preprocess so that the stimulus generator does not need

to do this operation during simulation. The constraint evaluator can determine the NTCS

of the current state according to the predicate functions in Tnext(Scurrent). Since the NTCS

may contain more than one transition, a constraint selector is required. The easiest way to

build a constraint selector is to use the round-robin method. If the transition-level biasing

is desired, the selector with a weighted random selection engine [40] can be adopted alter-

natively. The weighted random selection engine can randomly choose one item from the

candidates based on the candidates’ weights, and thus realize the transition-level biasing.

According to the selected constraint, the constraint solver can assign valid values to

62

Fail

Transition

Evaluator

Random Number Generator /

LFSR

IDUV

ODUV

Constraint Selector

FFs
FFs

FFs

FFs
x

Scurrent

 Constraint Solver

Constrained Stimulus

Assignment Unit

Unconstrained Stimulus

Assignment Unit Round Robin Selector /

Weighted Random

Selector

Constraint Evaluator

Correctness Checker

Figure 4.7: The block diagram of the proposed CEFSM-based stimulus generator.

IDUV . This solver contains two units for stimulus assignment. One unit makes a series

of stimulus assignments with constrainted values, and the other one makes a series of

stimulus assignments with random values. Typically, random numbers can be obtained

from a software call provided by most HDL simulators. For hardware implementation, an

LFSR circuit can be adopted to produce random numbers. Furthermore, if the word-level

biasing is required, weighted random number generators can replace the pure random

number generators. All the elements in our stimulus generator can be implemented with

either behavioral or synthesizable HDL easily. Hence, our approach enables the truly

hardware-based stimulus generator and correctness checker that can be realized in hard-

ware acceleration environments.

63

4.5 Coverage Metrics

4.5.1 The Basic Coverage Metrics

Generally, various coverage metrics are used to evaluate the simulation completeness. In

our approach, since the EFSM is used to represent the interface protocol specification,

some basic coverage metrics can be easily derived from the EFSM model:

• State coverage: the coverage of all states in the EFSM.

• Transition coverage: the coverage of all transitions in the EFSM.

• Transition-pair coverage: the coverage of feasible transition-pairs in the EFSM.

Intuitively, these three coverage metrics can be observed by adding flags to the states

and transitions of the embedded EFSM of the correctness checker. In other words, the

EFSM-based correctness checker can also provide basic coverage analysis.

For interface protocol verification, how many transaction types are examined should

be the major concern. However, a transaction specified in an interface protocol specifi-

cation usually contains a series of state transitions. Obviously, basic state or transition

coverage can not directly represent the transaction coverage. Many meaningful transac-

tion types may not be exercised yet even if all states and transitions are covered during

simulation. For this reason, we propose a transaction-level functional coverage method-

ology to enhance the coverage measurement.

64

4.5.2 The Transaction-level Functional Coverage

In order to provide a method for specifying transactions simply, we develop a transaction

description language, SOL, mainly based on the Property Specification Language (PSL)

[45]. Because PSL provides a richer set of expressive and readable language constructs

than typical regular-expression-based approaches do, SOL adopts most PSL constructs

used to describe temporal sequences. The syntax of SOL is based on the following prin-

ciples:

• Since a transaction is defined as a specific sequence of state transitions, states are

used as basic elements to describe sequences.

• Extra signals can be included in additional to the states while defining a transaction.

• A sequence can be defined once as a named sequence and then be reused later. The

assignment operator is used to define a named sequence. The left-hand-side of the

assignment operator becomes a synonym for the sequence on the right-hand-side.

• Sequence name is enclosed in braces when referred.

• A sequence set comprises one or more sequences. Sequences are enclosed in angle

brackets and separated by commas.

The syntax of SOL is briefly introduced below. We use the CEFSM shown in Fig. 4.1

as an example again to demonstrate the operators in SOL.

65

1. Concatenation (;): Two sequences can be concatenated into one by the concatena-

tion operator.

Example 1: In Fig. 4.1, T1 is a transaction with the state transitions that starts from

S1, then moves through S2, S3, and ends at S1.

T1 : S1 → S2 → S3 → S1

SOL T1 = {S1; S2; S3; S1};

2. Extra signal qualification (“ ”): Extra signals can be qualified while making a state

transition. The expression built from the extra signals should be enclosed in double

quotes.

Example 2: In Fig. 4.1, T2 is another transaction with the same state transitions

sequence as T1 while the value of the extra signal x1 must be 2 when moving from

S1 to S2.

T2 : S1
x1==2→ S2 → S3 → S1

SOL T2 = {S1“x1==2”; S2; S3; S1};

3. Repetition ([]): The repetition operators are used to describe repeated concatena-

tions of a sequence. There are three types of the repetition operators: consecutive

repetition ([*]), non-consecutive repetition ([=]), and goto repetition ([→]).

(a) Consecutive repetition ([*]):

Example 3: In Fig. 4.1, T3 is a transaction with the state transitions that starts

66

from S1, moves to S2, and stays at S2 for three consecutive cycles, then ends

at S1.

T3 : S1 → S2 → S2 → S2 → S1

SOL T3 = {S1; S2[*3]; S1};

Example 4: In Fig. 4.1, T4 is a transaction with the state transitions that starts

from S1, moves to S2, and stays at S2 for one to five consecutive cycles, then

ends at S1.

T4 : S1 → S2 (1 ∼ 5 cycles) → S1

SOL T4 = {S1; S2[*1 : 5]; S1};

(b) Non-consecutive repetition ([=]):

Example 5: In Fig. 4.1, T5 is a transaction with the state transitions that starts

from S1, and then visits S2 three times. The visits of S2 need not to be in

consecutive cycles. In addition, T5 holds after the third S2 is visited and still

holds before the forth S2 appears.
T5︷ ︸︸ ︷

S1 → . . . → S2 → . . . → S2 → . . . → S2 → . . . → S2 → . . .

SOL T5 = {S1; S2[= 3]};

(c) Goto repetition ([→]):

Example 6: In Fig. 4.1, similar to T5, T6 is also a transaction with the state

transitions that starts from S1, and then moves to S2 three times (can be non-

consecutive). In addition, T6 holds only at the cycle in which the third S2 is

67

visited.
T6︷ ︸︸ ︷

S1 → . . . → S2 → . . . → S2 → . . . → S2 → . . . → S2 → . . .

SOL T6 = {S1; S2[→ 3]};

4. Sequence AND (&&): A transaction which combines two sequences with the se-

quence AND operator holds only if both sequences hold and complete at the same

cycle.

Example 7: In Fig. 4.1, similar to T6, T7 is also a transaction with the state tran-

sitions that starts from S1, and then visits S2 three times (can be non-consecutive).

However, S3 is not allowed showing up in the sequence T7 strictly.

T7 : S1 → . . . (!S3) → S2 → . . . (!S3) → S2 → . . . (!S3) → S2

SOL T7 = {S1; {S3[= 0]}&&S2[→ 3]};

5. Sequence OR (|): A transaction which combines two sequences with the sequence

OR operator holds if one of the two alternative sequences holds.

Example 8: In Fig. 4.1, T8 is a transaction shown below:

T8 : S1 → S2 → S3 → S1 OR S1 → S2 → S2 → S2 → S1

SOL T8 = {{S1; S2; S3; S1}|{S1; S2[∗3]; S1}};

Note that above two sequences are previously defined as T1 and T3. Hence, T8 can

also be defined in terms of these named sequences.

T8 = {{T1}|{T3}};

68

6. Sequence fusion (:): Similar to the concatenation operator, a sequence fusion oper-

ator concatenates two sequences overlapping by one cycle.

Example 9: In Fig. 4.1, T9 is a transaction shown below:

T9 : S1 → S2 → S3 → S1 → S2 → S2 → S2 → S1

SOL T9 = {S1; S2; S3; S1; S2[∗3]; S1};

T9 can also be treated as two sequences that overlap each other for one cycle as

shown below:

SOL T9 = {{S1; S2; S3; S1} : {S1; S2[∗3]; S1}};

Again, T9 can also be defined in terms of T1 and T3.

T9 = {{T1} : {T3}};

7. Sequence set cross (**): A sequence set cross operator is used to represent a set of

back-to-back consecutive transactions.

Example 10: Assume the following 8 transactions are interested:

{{T1} : {T3} : {T8}}; {{T2} : {T3} : {T8}};

{{T1} : {T4} : {T8}}; {{T2} : {T4} : {T8}};

{{T1} : {T3} : {T9}}; {{T2} : {T3} : {T9}};

{{T1} : {T4} : {T9}}; {{T2} : {T4} : {T9}};

The following expression utilizing the sequence set cross operator provides a much

more elegant but equivalent representation for the set of 8 interested transactions.

69

SOL T10 = 〈{T1}, {T2}〉**〈{T3}, {T4}〉 **〈{T8}, {T9}〉;

SOL provides an efficient methodology in transaction description for state-based spec-

ifications. As mentioned, SOL is a PSL-like language. Except for the “sequence set

cross” and “extra signal qualification” operators, other operators in SOL can find their

corresponding counterparts in PSL. Hence people who are familiar with PSL can easily

use SOL with virtually no extra learning effort. The fundamental conceptual difference

between PSL and SOL is that SOL uses states as the atomic elements when defining a

transaction. This method can raise the level of abstraction as well as encapsulate the de-

tails of the low-level signals. Hence, verification engineers can put more emphasis on the

functionality at higher abstract level. Besides, the two new operators can further bring

more conveniences at EFSM level. Using “sequence set cross” operations, we can fold

lots of back-to-back transactions in a concise manner. The “extra signal qualification” is

useful while the transactions is related to some internal variables of EFSM or abstracted

signals.

4.6 Experimental Results

We choose the AMBA AHB and WISHBONE protocols to demonstrate our methodology.

Experiments are conducted over those designs in Table 3.3. The experimental environ-

ment is built as shown in Fig. 2.2. We model the required protocol specification with

70

a CEFSM. The resultant CEFSM of the WISHBONE contains 6 states and 23 transi-

tions while AHB’s requires 7 states and 69 transitions. The simulation kit, including the

stimulus generator, the correctness checker, and the coverage analyzer, are directly trans-

lated from the CEFSM model. With the generated simulation kit, the simulation-based

verification process is fully automated. Next, we report detailed experimental results to

demonstrate the important features of our methodology.

4.6.1 Coverage Comparison

Here three coverage results (state coverage, state transition coverage, and transaction cov-

erage) are compared for these designs, respectively.

Case I.

We first define the interested transactions of the two protocols as followings:

• WISHBONE: 6 basic read and write transactions, i.e., { SingleRead }, { Sin-

gleWrite }, { BlockRead }, { BlockWrite }, { FourBeatBlockRead }, { FourBeat-

BlockWrite }.

• AHB: 10 basic read and write transactions, i.e., { IncrBeatRead }, { IncrBeatWrite

}, { OneBeatRead }, { OneBeatWrite }, { FourBeatRead }, { FourBeatWrite }, {

EightBeatRead }, { EightBeatWrite }, { SixteenBeatRead }, { SixteenBeatWrite }.

71

Meanwhile, the stimulus generator is configured to evenly pick the next transition

from the NTCS and assign the unconstrained values in purely random way. That is, no

bias strategy is used.

The comparison results are shown in Table 4.1. For those WISHBONE-compliant

designs, few cycles are required to reach 100% state/transition coverage. However, while

the state/transition coverage are satisfied, the basic transactions are not fully exercised.

For the AHB-compliant design RGB2YCrCb, it takes 8/2455/1040 cycles to reach 100%

state/transition/transaction coverage. As the state coverage reaches 100%, the transaction

coverage is only 10%. In this case, the interested transactions are very simple so that

more simulation time is required to achieve 100% transition coverage than 100% transac-

tion coverage. The results from the other two AMBA-compliant designs basically tell the

similar story.

Case II.

Besides 10 basic transactions, we make the interested transactions of AMBA designs

more complex by adding more transactions:

• 4 transactions with BUSY (i.e., { IncrBeatWithBUSY }, { FourBeatWithBUSY },

etc.).

• 25 consecutive transactions (i.e., 〈{ IncrBeat }, { OneBeat }, { FourBeat }, { Eight-

Beat }, { SixteenBeat }〉 **〈{ IncrBeat }, { OneBeat }, { FourBeat }, { EightBeat

72

Table 4.1: Coverage comparisons for Case I
Protocol Design Coverage type # of cycles to reach 100% Transaction coverage (%)

WISHBONE PTC State 12 17 (1/6)
Transition 48 50 (3/6)

Transaction 245 100 (6/6)
AC97 State 10 17 (1/6)

Transition 155 67 (4/6)
Transaction 2480 100 (6/6)

SPI State 21 17 (1/6)
Transition 229 83 (5/6)

Transaction 414 100 (6/6)
AHB RGB2YCrCb State 8 10 (1/10)

Transition 2455 100 (10/10)
Transaction 1040 100 (10/10)

Convolution State 84 20 (2/10)
Transition 3319 100 (10/10)

Transaction 1427 100 (10/10)
MAC State 30 10 (1/10)

Transition 1823 100 (10/10)
Transaction 923 100 (10/10)

}, { SixteenBeat }〉).

• 2 transactions interleaved with BUSY and SEQ transfers (i.e., { FourBeatInter } =

{ SNONSEQ; SBUSY ; SSEQ ; SBUSY ; SSEQ; SBUSY ; SSEQ }, { EightBeatInter }).

Again, no bias strategy is used here. The comparison results are shown in Table 4.2.

For the design RGB2YCrCb, it still takes 8/2455 cycles to reach 100% state/transition

coverage. But it takes 732381 cycles to reach 100% transaction coverage. As the state/transition

coverage reach 100%, the transaction coverage is only 5%/85%. It is shown that the trans-

action coverage is much lower than that in Case I as the other two coverage metrics reach

100%.

We get some conclusions from the above 2 cases. While the set of interested trans-

actions becomes larger and more complex, it needs significantly (non-linearly) longer

73

Table 4.2: Coverage comparisons for Case II
Design Coverage type # of cycles to reach 100% Transaction coverage (%)

RGB2YCrCb State 8 5 (2/41)
Transition 2455 85 (35/41)

Transaction 732381 100 (41/41)

simulation time to reach 100% transaction coverage. Moreover, even the state/transition

coverage reach 100%, the transaction coverage can still be very low. The situation is

getting worse when more complicated transactions are concerned. It means that even a

stimulus set developed to reach 100% state/transition coverage hardly provides a satis-

fied functional coverage for real industrial designs. Experimental results show that the

classical coverage metrics are not capable of providing enough verification quality.

4.6.2 Stimulus Biasing

After analyzing the coverage report of Case II, it is found that the major reason why so

many cycles are required to reach 100% transaction coverage is the seldom occurrence of

the transaction { EightBeatInter }. Hence, it is possible to reduce the simulation time by

biasing the stimulus generator but still remain the same functional coverage quality. The

biasing settings and results are shown in Table 4.3 and Table 4.4, respectively.

In bias1, in which the word-level biasing is used, the weight of 8-beat burst is 10 times

to other burst types because the transaction { EightBeatInter } only occurs in an 8-beat

burst transfer. This biasing indeed decreases the simulation time to 54295 cycles, which is

only 7.4% of the original one. In bias2, in which the transaction-level biasing is applied,

74

Table 4.3: Biasing settings
Word-level biasing on HBURST Transaction-level biasing

Biasing SINGLE INCR 4-Beat 8-Beat 16-Beat Every transition leaving
or entering the busy state

others

no bias 1 1 1 1 1 1 1
bias1 1 1 1 10 1 1 1
bias2 1 1 1 1 1 10 1
bias3 1 1 1 10 1 10 1

Table 4.4: Biasing results for Design RGB2YCrCb in Case II
Design Bias # of cycles to reach 100% transaction coverage Factor

RGB2YCrCb no biasing 732381 1
bias1 54295 0.074
bias2 33861 0.046
bias3 16551 0.027

the weights of transitions that enter or leave the busy state are intuitively increased. This

biasing can reach 100% transaction coverage in only 33861 cycles. Applying both word-

level and transaction-level biasing in bias3, the simulation time can be further reduced to

16551 cycles, which is only 2.7% of the original one. The results show that the coverage

information can help bias the stimulus generator to create more effective stimuli and help

verify the DUV in much shorter time. This technique is extremely useful while developing

a regression verification environment in which the compact and effective stimulus suites

are crucial to minimize the required simulation time. That is, the proposed methodology

can increase the efficiency of the regression verification process.

4.6.3 Error Detection

To verify the effectiveness of the correctness checker, we intentionally inject protocol-

related errors into designs. The experimental results show that the checker is fully capable

75

of capturing these kinds of design errors. Once an error is detected, the error-occuring

state/transion/transaction are reported so that it would be very helpful to reason and locate

where the root error source is.

4.6.4 Synthesis Results

As mentioned, our simulation component can be mapped to real hardware through a com-

mercial logic synthesizer. We use Synoposys Design Vision as the synthesizer under

UMC 0.18 technology. For WISHBONE protocol, the synthesizer reports that 0.7K and

2.0K NAND2-equivalent gates are required to implement a correctness checker and a

stimulus generator with an embedded checker, respectively. For AMBA AHB protocol,

the synthesizer reports that 3.0K and 6.8K NAND2-equivalent gates are required to im-

plement a correctness checker and a stimulus generator with an embedded checker, re-

spectively. This result clearly shows that the proposed correctness checker and stimulus

generator can be easily and cost-effectively integrated into a high-performance emulator-

based verification flow.

4.7 Summary

In this chapter, we introduce the CEFSM-based unified framework. A translator is built to

automatically translate the given CEFSM model into a complete simulation kit which is

more flexible to apply in various simulation environments. In addition, we also propose a

76

state-oriented language SOL, which can help develop the transaction-level functional cov-

erage metric to achieve even better verification quality. This coverage metric can provide

useful information for further stimulus biasing. The experimental results demonstrate that

the proposed methodology can indeed improve the verification quality as well as speed

up the verification process.

77

78

Chapter 5

Conclusions and Future Works

5.1 Conclusions

Designing a reusable IP component with a standard interface protocol is a trend in the

SOC era. It is very important to guarantee that the integrated IP conforms to the spe-

cific interface protocol. Therefore, how to correctly and efficiently perform the interface

compliance verification becomes a big issue for SOC integration.

In this dissertation, we propose a unified methodology for interface compliance ver-

ification. We formulate an interface protocol specification with an EFSM model. Two

different kinds of EFSM models are developed for different specification viewpoints. The

EFSM model can then be translated into a correctness checker, a stimulus generator, and

a coverage analyzer as the essential simulation components. These components can also

be implemented in synthesizable HDL to enable hardware acceleration. For steering the

79

simulation direction, the generated stimuli can be guided through transition-, transaction-,

and word-level biasing to provide better stimulus controllability. In addition, we also pro-

pose a state-oriented language SOL, which can help develop the transaction-level func-

tional coverage metric to achieve even better verification quality. This coverage metric can

provide useful information for further stimulus biasing. The experimental results demon-

strate that the proposed methodology can indeed improve the verification quality as well

as speed up the verification process. Therefore, we believe the proposed EFSM-based

verification flow is an efficient and effective solution for interface compliance verifica-

tion.

5.2 Future Works

There are some improvements could be done in the future:

An automatic biasing tuner: Though our methodology provides multiple stimulus

biasing options, the stimulus biasing setting is still based on users’ knowledge. Obviously,

it would be better to mathematically link the stimulus biasing options for a specific cov-

erage metric, especially transaction-level coverage, to automate the biasing process. In

addition, our work only focuses on the behaviors of interface signals, that is, the internal

architecture of the DUV is treated as a black box. If the internal information of DUV is

collected and analyzed during simulation, it can further guide the stimulus generation and

improve the debugging process.

80

Modeling ability: Though the proposed EFSM models are appropriate for common

interface protocol modeling, they still have limitations in some characterization. For ex-

ample, current EFSM models can not directly describe a protocol with multiple clock

signals. More powerful structure may be added into our EFSM models to enhance the

modeling ability.

Specification debugging tool: While the EFSM modeling style brings a more power-

ful describing ability, its structure is more complex in checking if there is any consistence

problem in the EFSM model. The transition functions of the EFSM model should be

carefully used to avoid the inconsistences between them which may make certain states

unreachable. Some previous researches [46] [47] focus on this issue but they can not di-

rectly apply for our modified EFSM models. If we can develop algorithms for debugging

the proposed EFSM models, it will be helpful in the protocol modeling phase.

81

82

Bibliography

[1] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verification of finite-

state concurrent systems using temporal logic specifications,” ACM Transactions on

Programming Languages and Systems, pp. 244–263, April 1986.

[2] I. Beer, S. Ben-David, C. Eisner, Y. Engel, R. Gewitzman, and A. Landver, “Estab-

lishing PCI compliance using formal verification: A case study,” Proceedings of the

14th International Phoenix Conference on Computation and Communications, pp.

373–377, March 1995.

[3] S. Campos, E. M. Clarke, W. R. Marrero, and M. Minea, “Verifying the performance

of the PCI local bus using symbolic techniques,” Proceedings of the 1995 Interna-

tional Conference on Computer Design: VLSI in Computers and Processors, pp.

72–78, January 1995.

[4] K. Kaufmann, A. Martin, and C. Pixley, “Design constraints in symbolic model

checking,” Proceedings of the 10th International Conference on Computer Aided

83

Verification, pp. 477–487, June 1998.

[5] P. Chauhan, E. M. Clarke, Y. Lu, and D. Wang, “Verifying ip-core based system-

on-chip designs,” Proceedings of the 12th Annual IEEE International ASIC/SOC

Conference, pp. 27–31, September 1999.

[6] A. Roychoudhury, T. Mitra, and S. R. Karri, “Using formal techniques to debug the

AMBA system-on-chip bus protocol,” Proceedings of the Design, Automation and

Test in Europe Conference and Exhibition, pp. 1530–1591, March 2003.

[7] K. L. McMillann, “Symbolic model checking,” Kluwer Academic Publishers, 1993.

[8] K. Shimizu, D. L. Dill, and A. J. Hu, “Monitor-based formal specification of PCI,”

Proceedings of the 3th International Conference on Formal Methods in Computer-

Aided Design, pp. 335–353, November 2000.

[9] H.-M. Lin, C.-C. Yen, C.-H. Shih, and J.-Y. Jou, “On compliance test of on-chip bus

for SOC,” Proceedings of the Asia and South Pacific Design Automation Conference,

pp. 328–333, January 2004.

[10] M. T. Oliviera and A. J. Hu, “High level specification and automatic generation of

IP interface monitors,” Proceedings of the 39th Design Automation Conference, pp.

129–134, June 2002.

84

[11] A. J. Hu, J. Casus, and J. Yang, “Efficient generation of monitor circuits for GSTE

assertion graphs,” Proceedings of the 2003 IEEE/ACM International Conference on

Computer-Aided Design, pp. 154–159, November 2003.

[12] T. Larrabee, “Test pattern generation using boolean satisfiability,” IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems, pp. 4–15, Jan-

uary 1992.

[13] J. Yuan, K. Shultz, C. Pixley, H. Miller, , and A. Aziz, “Modeling design constraints

and biasing in simulation using BDDs,” Proceedings of the 1999 IEEE/ACM Inter-

national Conference on Computer-Aided Design, pp. 584–589, November 1999.

[14] K. Shimizu and D. L. Dill, “Deriving a simulation input generator and a coverage

metric from a formal specification,” Proceedings of the 39th Design Automation

Conference, pp. 801–806, June 2002.

[15] J. Yuan, A. Aziz, K. Albin, and C. Pixley, “Simplifying boolean constraint solving

for random simulation-vector generation,” Proceedings of the 2002 IEEE/ACM In-

ternational Conference on Computer-Aided Design, pp. 123–127, November 2002.

[16] J. Yuan, K. Albin, A. Aziz, and C. Pixley, “Constraint synthesis for environment

modeling in functional verification,” Proceedings of the 40th Design Automation

Conference, pp. 296–299, June 2003.

85

[17] J. Yuan, C. Pixley, A. Aziz, and K. Albin, “A framework for constrained func-

tional verification,” Proceedings of the 2003 IEEE/ACM International Conference

on Computer-Aided Design, pp. 142–145, November 2003.

[18] M. A. Iyer, “RACE: A word-level ATPG-based constraints solver system for smart

random simulation,” Proceedings of the 2003 International Test Conference, pp.

299–308, September 2003.

[19] C.-H. Shih, J.-D. Huang, and J.-Y. Jou, “Stimulus generation for interface protocol

verification using the non-deterministic extended finite state machine model,” Pro-

ceedings of the 10th IEEE International Workshop on High Level Design Validation

and Test, pp. 87–93, November 2005.

[20] S. Inc., “Constrained-random test generation and functional coverage with vera,”

Technical report, February 2003.

[21] N. Kitchen and A. Kuehlmann, “Stimulus generation for constrained random stimu-

lation,” Proceedings of the 2007 IEEE/ACM International Conference on Computer-

Aided Design, pp. 258–265, November 2007.

[22] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff: Engineering

an efficient sat solver,” Proceedings of the 38th Design Automation Conference, pp.

530–535, June 2001.

86

[23] N. Een and N. Sorensson, “An extensible sat-solver,” International Conference on

Theory and Applications of Satisfiability Testing, pp. 502–518, May 2003.

[24] S. B. Akers, “Binary decision diagrams,” IEEE Transactions on Computers, pp.

509–516, June 1978.

[25] P. Goel, “An implicit enumeration algorithm to generate tests for combinational

logic circuits,” IEEE Transactions on Computers, pp. 215–222, March 1981.

[26] H. Foster, A. Krolnik, and D. Lacey, “Assertion-based design,” Kluwer Academic

Publishers, 2004.

[27] J. Bergeron, “Writing testbenches: Functional verification of HDL models,” Kluwer

Academic Publishers, 2003.

[28] D. Drako and P. Cohen, “HDL verification coverage,” Integrated System Design

Magazine, pp. 46–52, June 1998.

[29] F. Fallah, S. Devadas, and K. Keutzer, “OCCOM: Efficient computation of

observability-based code coverage metrics for functional verification,” Proceedings

of the 35th Design Automation Conference, pp. 152–157, June 1998.

[30] P. A. Thaker, V. D. Agrawal, and M. E. Zaghloul, “Validation vector grade (VVG):

A new coverage metric for validation and test,” Proceedings of the IEEE VLSI Test

Symposium, pp. 182–188, April 1998.

87

[31] B. Min and G. Choi, “ECC: Extended condition coverage for design verification us-

ing excitation and observation,” Proceedings of the Pacific Rim International Sym-

posium on Dependable Computing, pp. 183–190, December 2001.

[32] T.-Y. Jiang, C.-N. J. Liu, and J.-Y. Jou, “Observability analysis on HDL descriptions

for effective functional validation,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, pp. 1509–1521, August 2007.

[33] G. V. Bochmann and J. Gecsei, “A unified method for the specification and veri-

fication of protocols,” Proceeding of the International Federation for Information

Processing Congress ’77, pp. 229–234, August 1977.

[34] K. Ara and K. Suzuki, “A proposal for transaction-level verification with compo-

nent wrapper language,” Proceedings of the Design, Automation and Test in Europe

Conference and Exhibition, pp. 82–87, March 2003.

[35] M.-Y. Su, C.-H. Shih, J.-D. Huang, and J.-Y. Jou, “FSM-based transaction-level

functional coverage,” Proceedings of the Asia and South Pacific Design Automation

Conference, pp. 448–453, January 2006.

[36] K.-T. Cheng and A. S. Krishnakumar, “Automatic functional test generation using

the extended finite state machine model,” Proceedings of the 30th Design Automa-

tion Conference, pp. 86–91, June 1993.

88

[37] D. Lee and M. Yannakakis, “Optimization problems from feature testing of com-

munication protocols,” Proceedings of the 4th International Conference on Network

Protocols, pp. 66–75, October 1996.

[38] C. Besse, A. Cavalli, and D. Lee, “An automatic and optimized test generation tech-

nique applying to TCP/IP protocols,” Proceedings of the 14th International Confer-

ence on Automated Software Engineering, pp. 73–80, October 1999.

[39] A. Limited, “AMBA specification (rev. 2.0),” May 1999.

[40] K. Lahiri, A. Raghunathan, and G. Lakshminarayana, “Lotterybus: A new high-

performance communication architecture for system-on-chip design,” Proceedings

of the 38th Design Automation Conference, pp. 15–20, June 2001.

[41] P. H. Bardell, W. H. McAnney, and J. Savir, “Built-in test for vlsi: Pseudorandom

techniques,” New York: John Wiley & Sons, Inc., 1987.

[42] O. Organization, “Specification for the: Wishbone system-on-chip (soc) intercon-

nection architecture for portable IP cores, rev. b.3,” September 2002.

[43] [Online]. Available: http://www.opencores.org/

[44] F. Somenzi, “CUDD: Colorado university decision diagram package.” [Online].

Available: http://vlsi.colorado.edu/∼fabio/CUDD/

89

[45] “Property specification language–language reference manual version 1.1.” [Online].

Available: http://www.eda.org/vfv/docs/PSL-v1.1.pdf

[46] M. U. Uyar and A. Y. Duale, “Resolving inconsistencies in EFSMs using simultane-

ous reachability analysis,” Proceedings of IEEE Military Communications Confer-

ence, pp. 135–139, October 1999.

[47] B. Karacali, K. C. Tai, and M. A. Vouk, “Deadlock detection of EFSMs using si-

multaneous reachability analysis,” Proceedings of International Conference on De-

pendable Systems and Networks, pp. 315–324, June 2000.

90

	封面.pdf
	thesis.pdf

