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A License Plate Recognition Systessing
Scale-Space Binarization and Accumulated
Gradient Projection Methods

StudentTien-Der Yeh Advisors: DrYon-Ping Chen

Institute of Electrical and Control Engineering
National Chiao Tung University

ABSTRACT

A system consisting of three methods to deal vittbnise plate characters recognition is
proposed in this dissertation. The first method)esspace binarization, is suitable for
extracting characters from gray-level images. Ti¢hod combines the robust
Difference-of-Gaussian function and dynamic thréding technique to extract the license
plate characters directly. In orderto speed ueiteaction process, optimization methods are
also disclosed to reduce the computation time.sHwend method, voting boundary method,
Is suitable for correcting characters from geometaformation induced during capture
process. It assumes many straight lines candidaigsletects the best one passing through
most of the edge pixels by voting. The boundargdinan be used for correcting the
deformation and improve recognition rate therelbhe Third one, accumulated gradient
projection method, recognizes isolated charactgecbumulating the gradient projection of
the characters and converts them into feature vémt@omparison. The feature vector is
called accumulated gradient projection vector anaroven robust regardless of noise and

illumination change in experiments.
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Chapter 1 Introduction

The license plate recognition, or LPR in short, besn a popular research topic for several
decades [1]-[3],[19]. An LPR system is able to gruae vehicles automatically so that it is
useful for many applications such as portal cohirg| traffic monitoring, stolen car detection,
and etc. Up to now, an LPR system still faces spmblems concerning unknown plate size
and orientation, various light condition, unexpectemage deformation, and limited
computation timel[3].

Traditional methods for recognition of license plaharacters often include several stages.
Stage one is detection of possible areas wheletrese plate may exist. It is a big challenge to
detect the plates quickly and robustly since.imagag contain far more information than just
only expected plates. Stage two is segmentatioichndivides the detected areas into several
regions containing single character candidate.eStiagee is normalization; some attributes of
the character candidates, e.g., size or orientation transformed to certain values for the
requirements of recognition stage. Stage fourdegaition; the feature vectors extracted from
the normalized character candidates can be recagjrty technologies such as template
matching[16], vector quantization[4], support vectonachine(SVM)[15], or neural
networks[5][6].

The motivation of this work originates from thr@aitations of traditional LPR systems. The
first limitation is using simple features such aadjent energy to detect possible locations of
license plates. Using these simple features mayceethe complexity of computation but may
possibly lose some plate candidates because tlagegtaenergy will be suppressed due to
camera saturation or underexposure, which ofteestgtace under extreme light conditions

such as sunlight, night view, or shadow. The sediomtation originates from assuming correct



orientations for both camera and license platebaohigh gradient pixels in the image can be
expected in the pre-defined direction. In real satiee license plates may not always keep the
same orientations in the captured images. Nevedbghey can be rotated or slanted due to
irregular roads, unfixed camera positions, or almabrconditions of cars. The third limitation
comes from blurred or corrupted characters in Begplates, which may fail the LPR process in
detection or segmentation stage. The charactersstiangerous for application because one
single unclear character may result in loss of whimense plate. Compare to human nature,
people know the position of unclear characters leethey see some characters located nearby.
Human try different methods, e.g., change headtipasor walk closer, to read the unclear
characters, or even guess it if it is still nottidiguishable. This nature is not achievable in a
traditional LPR system due to its coarse-to-finghdecture. To retain high detection rate of
license plates under these limitations, the methakis work proposes a fine-to-coarse method
which firstly finds isolated characters in the eaptl image. Once some characters on a license
plate are found, the entire license plate can bectk around these characters. This method
may consume more computation than the traditiomarse-to-fine method. However, it
minimizes the probability of missing license platadidates in the detection stage.

A challenge to do the fine-to-coarse method isgatng isolated characters. There are few
literatures discussing about isolated charactexsgration due to several difficulties it has. Fjrst
it is difficult to extract orientation of an iso&t character. In traditional LPR systems, the
orientations of characters can be determined bybtdseline [3][8] of multiple characters.
However this method is not suitable for isolatedrelsters. Second, the unfixed camera view
angle often introduces geometric deformation onctheracter shapes or stroke directions. It
makes the detection and normalization processcdiffito be applied. Third, the unknown
orientations and shapes exposed under unknown dighdition and environment builds a

bottleneck for the isolated characters to be ctyreetected and recognized.



The proposed scheme to extract and recognize égglase characters has procedures as the
following. First, in the extraction stage, the seapace binarization(SSB) method which
utilizes the difference-of-Gaussian (DOG) functif@sis used to extract character candidates.
The DOG function has been proven stable againsendiumination change and 3D view point
change [9]-[14]. The binarization method first lbzas the character profiles on DOG image
and then extracts isolated character candidatesgays of dynamic threshold propagation and
thresholding. Second, in the deformation correcsiage, a voting boundary method is used to
detect the linear boundary of character candidatésch can be used for correcting the
candidates from some possible deformations. Thimdihe recognition stage, the novel
accumulated gradient projection vector method(AGREgthod) is applied to find out the
accumulated gradient projection vectors (AGPVsaifth normalized character candidate, and
compare the AGPVs with those of standard letteftbthe most similar one as recognition
result. Fig. 1-1 shows the functional block of f@posed LPR system. The experimental
results show the feasibility of the proposed metlaod its robustness to several image

parameters such as noise, character deformatiol@méhation change.

Character Candidates Extraction
(SSB)

1

Deformation Correction
(Voting Boundary Method)

0

Recognition
(AGPV Method)

Fig. 1-1 Functional block diagram of the propok®@R system



Chapter 2 Review of Related Works

This chapter briefly describes three important mégphes from which this work is
motivated and constructed. First, the methodsimgakith recognition of license plate
characters are reviewed. Second, the useful spalmestheory and its most popular
representation, difference-of-Gaussian functiong, discussed. Finally, the most popular

methods doing image binarization are describedcangpared.

2.1. License Plate Recognition

In traditional LPR systems, there is a detectiorcfion in the first step to find possible areas
that license plates may appear. The function aféeuires high speed feature detection and
therefore is generally focused on_simple featureshsas gradient energy or Harr-like
features[51] in the image. In order to make fasécteon, traditional methods often suppose a
fixed camera capture angle and allow a small degfeeviation in plate size and orientation.
On the detected areas, more specific rules aretasemturately localize the entire license plate
and find out the histogram for binarization. Onbe plate is binarized, the corresponding
baseline becomes an important reference for clasaségmentation and normalization. Based
on the binarized plate image, the segmentatiofies done by projecting the TRUE pixels onto
baseline and finding the valley on the projectesidgram as segmentation boundaries. For the
segmented characters, the statistical featurebevh tare extracted and fed into a statistical
classifier such as template matching[16], vectoramzation[4], support vector
machine(SVM)[15], or neural networks(NN)[5][6], foecognition. The statistical features
include some vectors such as CC(contour-crossingntyjd6], PBA(peripheral ground
area)[47], and CS(character shape), that are commsed for recognizing license plate

character.



2.2. Scale Space Theory

The concept of scale space [11] starts from the& lsdsservation that real-world objects are
composed of different structures at different stale other words, real-world objects may
appear in different ways depending on the scalebskrvation. For a computer designed to
detect the existence of an object in an imags, ieicessary to consider all the possible scales
that object may appear in the image in order touwaghe interested target in the correct scale.

Earlier works such as [12] and [13] have suggestatiGaussian function is the best choice
for scale-space kernel. Also, in [13], the authwoveed that the difference-of-Gaussian(DOG)
function provides a close approximation to theescairmalized Laplacian of GaussianJ°G,
which was proven by detail experiment in [14] thgiroduces the most stable image features
compared to a range of other possible image fumstio

There are two additional advantages using Gaudsrations as smoothing kernel. First, its
symmetric property makes it practical to. decomghsgwo-dimensional convolution into two
independent single dimensional equations. Thistlygreeduces the computation and shortens
processing time in computing different scale ima&exond, taking the Fourier transform of a
Gaussian function yields another Gaussian fundti@h Consequently, it can be derived that

the successive convolution with Gaussian ke@{eh) andG(o1) is equivalent to convolution
with G(o3), where
o,=4o, +a) (1)
Based on (1) and assumed that a Gaussian poimtdsfunection (PSF) is used to approximate

the image capturing process[18], it can explain the blur in input image can be ignored if a

sufficiently large observation scale is chosenesme o> if 0, >>0;.



2.3. Image Binarization

The methods for binarization of gray-level imagas be divided into two classes: global and
local thresholding. Global thresholding methodsegelty binarize the image with a single
threshold. In the contrast, local methods changethineshold dynamically over the image
according to local information. The threshold fdolml methods is often easier to be
determined than that of local methods becauseitses on the entire image. However, global
methods are easily failed when the dealt image anositnoise, variable illumination, or
complex background. Local thresholding methods Hmeteer adaptability than global ones to
deal with illumination change or complex backgrouhdwever, it is difficult to decide the
range of local area for threshold determination yetdstill sensitive to noise.

Global thresholding methods often calculate theghold based on histogram analysis [7],
[20]-[21]. Otsu’s method [7] proposed from the. viint of discrimination analysis is one of
the most preferred global technigues by investigatib directly approaches the feasibility of
evaluating the "goodness" of threshold-and autaralfiselects an optimal threshold from the
zeroth- and the first-order cumulative momentshaf gray-level histogram. In practice, this
method does not work well for the images with slesglanhomogeneous backgrounds, and
complex background patterns [22]. It is also digred in [22] that, a single threshold or some
multilevel global thresholds could not result inaturate binary image.

Local thresholding methods generally find threshdby statistical measurement in local
areas [23]-[26] based on the principle that objattan image provide high spatial frequency
components and illumination consists mainly of loweatial frequencies [31]. The local
intensity gradient (LIG) method in [23] is one bktmost popular local thresholding methods
which first finds the pixels with high intensityagtient as reference of initial threshold, and then

extends the threshold to whole image through regioowing method [30]. It uses a



predetermined window size to calculate the regignadlient means, locates low gradient areas
in the image based on the regional means, and édgde pixels by comparing pixel’s intensity
gradient with the regional means.

In general, local thresholding methods are, comedidrom real world situations, more
accurate than global ones. However, they stillesufom two problems that usually make them
unsatisfactory for investigators. First, it is ditflt to give a proper size of the “local area”
without prior information in the source image. Sedothe methods of this class are usually
more computationally expensive than the other adnenakes the local methods almost
unacceptable for real-time applications.

There are still some hybrid methods to binarizeartege by referring to the expected content
within the region of interest (ROI). Typical apg@tons performing hybrid binarization such as
license plate recognition (LPR) or automatic docntranalysis, often segment the image into
areas and find the areas which :are most likelyetdRBIs before binarization. Such systems
often have faster speed and higher accuracy tharaleglobal or loca) thresholding methods
but usually require prior information within the Rfr fast detection and binarization. For
example, in the LPR system [3], the author useg-tikafeatures in the first step to perform
fast detection and find out the ROI(license pladedidates), and then perform peak-valley
analysis within the ROI for binarization of theditse plates candidates. The peak-valley
analysis is referring to the histogram acquirethenROI and assumes some parameters such as
number of characters, characters scale and oliemtare already known. In document
binarization method [28], the input image is fiysdegmented into different types ROIs
containing different contents such as charactegsaphics or images. And specific binarization
methods are applied within the ROIs based on tlagacteristics of the type of contents. In

usual, the hybrid methods are not general enougle tpplied onto different applications.



Chapter 3 The Extraction Method

The problem of character extraction is similarhattof object localization [38], where the
largest bottleneck is almost all relevant facteesumknown in the source image, e.g., the scales
of the objects, the condition of illumination, tbemplexity of the background, and the degree
of blur and noise..., etc. As the scale of obserwatfo closely related to the scale of the
characters in the image, an incorrect observatialesnay incorporate undesirable information
and lead to undesirable extraction results [32¢rtier to do extraction robustly and efficiently,
we propose a scale-space binarization method, Bri®&Short, to extract the characters. The
extraction is started from the smallest observasoale which has best discrimination for
characters sized within a certain range, for exan#16 to 6464. Smaller sizes characters
are discarded because they are-maost probably cdnysedise. For larger sizes characters, a
higher observation scale is preferred to minimigedrobability of misinterpretation from noise.
Note that the extraction on higher observation excalan be performed by utilizing the
sub-sampling method to shrink the image size afatgmthe relative observation scale.

The proposed SSB method includes several functldoaks as illustrated in Fig. 3-1. First, a
character profile localization block finds innerdaouter profile pixels by applying a global
threshold on difference-of-Gaussian(DOG) image. Di®G function used to generate the
DOG image is proven to have the benefit of enhanthe edges in a digital image while
minimizing the impact of noise [39]. Second, a baany set is formed by collecting pixels
neighboring to both inner and outer profile pixelhird, the thresholds are initiated on
boundary set pixels and served as the initial veduelynamic threshold propagation. Fourth,
the dynamic thresholds are propagated from bouniatiie remaining pixels in the image.

Fifth, thresholding function compares the dynarhreshold with smoothed gray-level intensity



to binarize the image. Sixth, connected compongatyais is applied to connect pixels into
character candidates, and measure their prelimifeayures such as width, height and
occupancy for the next stage. Finally, the charactndidates are eliminated if their
preliminary features fall beyond reasonable ramyebe profile scores are lower than general
characters. An example on the simulation resulte@BSSB method is given in Fig. 3-2 for easy
understanding. In the next sections we’ll step tep £xplain the behavior of each functional

block in detail.

[ Profile localization ]

Il
[ Determining boundary pixels ]

0

[ Initializing threshold ]

0

[ Dynamic threshold propagating ]

.

[ Thresholding (Binarization) ]

o

[ Connected component analy%is

1
[ Eliminate false candidates ]

Fig. 3-1 Functional block diagram of the SSB mdtho

3.1. Profile Localization

Profile localization, similar to edge detectionpiten applied in the first stage of an image
recognition process to locate pixels as the bdssegmentation or matching. Many operators
can be found in literatures to detect edges orarsrin an image, e.g., Sobel operator[40],
Harris detector[41], or Canny detector[42]. Mosttlém use gradient based detection and
suffer from the difficulties in noise rejection amldreshold determination. The extraction

method in this work utilizes the DOG functions battit minimizes the impact of noise and



makes robust extraction without prior filtering.

Profile localization

(blue and red: profile pixels)

1
o il P,
e ) e Loy ]
Thresholding

Determine boundary pixels
(cyan: boundary pixels)

Fig. 3-2 An‘example of the SSB method

The profile localization consists of several stapsn the following procedures. At first, the
gray-level input imagéd,(x,y), is respectively convolved with two Gaussian tiors, gi(X,Y)
with deviationg; and,gx(x,y) with deviationo to get two Gaussian images(x,y) andlx(x,y).

And the difference of the two Gaussian imadegx,y)= 11(X,y) - 12(X,y), is called the DOG
image.

The two standard deviations; and o>, of the two Gaussian functions are respectivelleda
the first and the second observation scale. A amabservation scale observes more details in
an area but is more sensitive to noise. On theagnia larger observation scale is more stable
against noise but may lose significant detailshefinterested characters or mix the interested

characters with adjacent objects so that the cteasbecome difficult to be extracted. In the
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experiments we set the two scates1 ando,=4>2 for the profile extraction, which is proven by
experiments a better choice for processinglB6to 6464 character sizes in general 256-step
(8-bit) gray-level images.

In order to deal with larger scale characters wiihimum computation time, an efficient
method in Fig. 3-3 is applied by sub-sampling teeosid blurred imagk(x,y) by every two
pixels on each row and column to form a smallergeng'(x,y). Then based oth;'(x,y)
calculates the Gaussian filtered imdgex,y) and their DOG imag®,(x,y), and applies the
same procedure again to localize the profile pixAk a result, the observation scale w.r.t.
D(x,y) is double to that w.r.D1(x,y).

A 2-D DOG function used to extract the charactars loe expressed as,

2_2 2_2

-X-y -X“-y

1 20,2 1 20,2
DOG\ x,y)= e v - e 72 2
( y) N 2t N 2o, @)

Consider a case that an unit step aagg) exists inparallel to thg-axisi= X), the position of
peak response on convolving the unit step edgeaMdG function can be obtained by solving

the differential equation,
0
&[DOG(X’V) O u(x)]=0. ®3)

Transforming into frequency domain and then takimgerse transform, the solution of (3)
yields equivalent to that of the equation
DOG(x - x,,0) = 0. (4)

Solving (4) to get the positions of the two peadpanses at

2007 O
x=xt |“A% n 5
& \/022_012 g, ©)
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Fig. 3-3 The procedure to produce DOG Images daréifit observation scales

A plot by equation (5) in Fig. 3-4 og=0 reveals that convolution of a unit step edgé wie
DOG function generates two odd-symmetrical pealsdeethe unit step edge, i.e., positive
peak A and negative peak B. The most valuable ctarsiic of the DOG function is that these
peaks are quite stable even if the testing imagsists of small undesirable artifacts such as
noise, out-of-focus or variable illumination. Basedthis result, the DOG image is divided into
three sets by a fixed global threshalg and its complementarythy. The first set,Sets, is
composed of the pixels Bfi(xy) = thy; the second se$et,, is composed of the pixels Bf(x,y)

< -thy; and the third setSets, is the superset of the remainder containing ikel$ of thy>

D1(X,y)>-ths.

Set; and Set, are both called profile sets and have the follgmMeapresentation for easily
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identification according to the way they appear. ¢f@racters having lower gray-level intensity
(deeper color) than its nearby backgrouse; is also called the inner profile set because it
spreads interior characters’ boundaries. Simil&d$s is also called the outer profile set for the
location it appears. The two profile sets are repelg drawn in Fig. 3-5 in blue and yellow
colors.

The global thresholth; is used for determining whether a change of intgmns caused by
noise or a real edge. Smaller threshold collecteerpixels intoSet; andSet,, and takes more
computation time to deal with noise before extragthe characters. It is worth notify that the
lowest threshold for DOG function can be setthg0. Although setting threshold to zero
introduces much information generated by noiseait still retain correct extraction results
because that the energy of noise in the DOG regpmnautomatically suppressed when it
appears near an edge. As a result, it'is recommdeodset a small threshold, ey,=1, for all
the input images because it ensures reliable sestdh be persisted with reasonable
computation time regardless of the condition of ithfgut image. Different from some other
gradient operators which would possibly lose sohaacter candidates if a smaller threshold is
given, the only drawback for giving a smaller thralsl in DOG function is higher computation
time consumption. From various simulation resuksoan tell that a wide range of threshold on

DOG images can still provide reliable results aral@zing the profile pixels.

Fig. 3-4 An ideal unit-step edge (upper graph) its®OG response (lower graph)
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When a near-perfect input image like Fig. 3-6(agiien for binarization, the first step is to
find the corresponding two profile sets from the®{nage as in Fig. 3-6(b). It is worth to note
that the pixels of the inner profile set often agp@ a connected group, which is called the
inner profile groups or simply profile groups. Askig. 3-6(c), the smallest rectangle covering
the entire profile group is called the bonding aegle of the profile group. Note that a profile
group often represents the profile of an isolatedracter in normal case. However, it might
happen that a character is broken into two or npoodile groups due to special geometric
distribution or noise or special lighting conditiorhe broken profile groups will be linked up
by the connected component analysis later on teatdhe original characters.

According to (5), a constaity is defined to represent the radius of the effectixea of an

edge (intensity change), and

R :c,eil{\[a%ff_UTi2 Elhgj. (6)
where the functiogeil(x) roundsx towards positive infinity. Note that th&y is the horizontal
distance of AC or BC in Fig. 3-4, or equivalentigtradius of the circle of effective range in Fig.
3-5. In addition to the profile sets, a boundatSets is formed to represent the boundary of
character candidates. A pixmlis collected intcsets if it satisfies the following two conditions,

1. Except the zero-crossing pixels, i.e., the pwsid in Fig. 3-4, or the non-profile pixels in
Fig. 3-5, the pixels inside the effective are@gibelong to either innasr outer profile sets.
2. The total number of pixels belongs to inner peofiet and the total number of pixels

belongs to outer profile set inside the effectik@aaofp, are the same.
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Effective range

Boundary pixel

Inner profile pixel (Setl)

[]

Outer profile pixel (Set2)

Non-Profile pixels

Fig. 3-5 Determine boundary pixels

A A A A A

(@) c) (

e)

Fig. 3-6 (a) A perfect sample characterimageT{® DOG responses: positive response in red
and negative response in blue. (c) The inner gskl in red and the bonding rectangle in gray.

(d) Boundary set. (e) Extraction result.

In implementation, consider to discrete pixel comate and error tolerance, the pixelsSef;
andSet; inside the effective area pf are accumulated in®in; andBin; respectively, ang,

is collected intdbet; if it satisfies the following equations:

{Bin1 + Bin, = round((F%eff —1)2* 77) 7)

|Bin, - Bin,| < R, * 2

The pixels ofSetg make up the boundaries of character candidates &gy. 3-6(d) and
become the base of threshold propagating in thé step. Note that the character can be

extracted as in Fig. 3-6(e) after dynamic threslpotghagation and binarization.
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3.2. Dynamic Threshold Propagation

In order to solve the global-thresholding problesush as noise, variable illumination, and
complex background, and local-thresholding diffied such as pre-determining local area size,
and reducing computational complexity, a novel radthsing dynamic threshold propagation
Is proposed in this work.

Before the propagation process, each pixel in mhage is assigned a dynamic threshold
initialized to zero. As the process starts, theadyic threshold on a boundary set pixel is
assigned by looking for the best threshold in @ghboring area. Based on the values assigned
to boundary set pixels, the dynamic thresholdssamentially propagated to the remaining
pixels through neighboring pixels. As a result, tineesholds detected around boundary pixels
are able to spread out to the entire image sahleanterested characters can be figured out by
comparing gray-level intensity with the dynamicetsinold pixel-by-pixel.

The first step of dynamic threshold propagationtstiiom the boundary pixels. For each
boundary pixelXy, yp), the gradient magnitude of théh neighboring pixelx(i), ya(i)) inside
the effective areagffa(x,, Yp), is calculated. The pixel having maximum gradierggnitude

inside the effective area is selected as the mfergixel kn rer Yn red. In other words,
(Xn_ref ’yn_ref )Deﬁdxb ’yb) and ‘Dll(xn_ref ’yn_ref X = maqujll(xn (I)’yn (I ))|) ’ Where

[O1(x:(i),yn (1))] is the gradient magnitude of tieh neighboring pixel calculated by Sobel
operators as in [23]. After that, the dynamic thadd of the boundary pixel, denotedtbg(xy,

Yb), is assigned by the first Gaussian gray-levehefreference pixekq res ¥n red, I.€.,

thd ()% ’yb) = I1(Xn_ref ’yn_ref) . (8)
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Effective area

B (XY Boundary pixel

(Xn,Yn) Neighboring pixels
. (Xn_refayn_ref)

max gradient magnitude

Fig. 3-7 Dynamic threshold propagation

The above definition can be viewed in graphical @spntation as in Fig. 3-7, where the red
pixel is one of boundary set pixels and the blueelpis the one having maximum gradient
magnitude inside the effective area. The reasoreferring to the pixel of maximum gradient
magnitude is based on the discovery that the phaling maximum gradient magnitude often
appear in the mid point of edges. It is worth ttertbat the calculation of gradient magnitude is
referring to the first Gaussian imaggXx,y) instead of source imadéx,y) and the second
Gaussian image(x,y) because of the following two reasons: First,dbiedition of noise in the
source imagé(x,y) is unknown; the gradient referring to noisy ps<sl not meaningful and may
mislead the decision in finding correct thresh@dcond, the second Gaussian image gives too
much smoothness on boundary so that it often mialeelsoundary distorted after thresholding.
As a result, the first Gaussian image is the blesice for gradient magnitude comparison and
dynamic thresholding.

Once the dynamic thresholds of all boundary pikelge been assigned, they are iteratively
propagated to the other pixels through neighbaguirgls. For easily explanation, a pixel whose
dynamic threshold has been assigned is calledsagnasl pixel.

The dynamic threshold propagation is processeddrgtions. LetSet,” denote the set of

pixels ()gf ,ybp) whose dynamic thresholds are assigned ip4theiteration andet,” denote the
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set of the pixels(Xf Ya ) adjacent tcSets” in the same iteration. Note théet,' stands for the
boundary set containing assigned p|><(e{syﬁ) andSety* = Set,* for k>1. In the first iteration,

the dynamic thresholds on boundary pix%,yé) are propagated to its adjacent pi>(exjsy;).

Let (x(h).y:(h) be theh-th pixel in Set,' simultaneously adjacent tm boundary pixels,

denoted as{xé(i),yé (i )) i=1 tom, m can be any number from 1 to 8. The dynamic thresbbl
(x:(n).y:(n)) is assigned by averaging the dynamic thresholdallofhe adjacent boundary

pixels, i.e.,
th (o 00) = - >t 0.0 ®

The first iteration ends and the next iterationtstaght after all the pixels adjacent to the
boundary pixels have been processed. In-a ‘geregradgentation, the relationship for tpéh
iteration is,

a
m;

th, b (1) YA, Yo th, b)), (10)

i=1
where(x3(j),y3(j)) is thej-th pixel in Set. and m¢ is the total number of assigned pixels
adjacent tdx?(j),y(j)). The propagation process will not finish until thle pixels become

assigned.

An example of the propagation can be seen in F&). The red pixels in Fig. 3-8(a) are the
boundary pixels with the dynamic threshold inizalil according to Eq. (8). The orange pixels
in Fig. 3-8(b) and the yellow pixels in Fig. 3-8@je respectively the pixels after first and

second iteration of dynamic threshold propagation.
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(a) (b) (©)
Fig. 3-8 An example of dynamic threshold propagata) Boundary pixels (b) Assigned pixels

after first iteration (c) Assigned pixels after sed iteration

3.3. Thresholding and Connected Component Analysis

Based on the propagated dynamic thresholds, e&ehipiconverted into binary form(TRUE
or FALSE) by comparing its Gaussian smoothed gregtléntensity to the own dynamic
threshold. Then the connected compaonent analysisj@Cépplied to connect the TRUE pixels
into groups named isolated groups.

During the CCA process, the TRUE pixels of each tedlgroup are divided into two classes
and accumulated into two counters, respectively fifsieclass is edge pixels, which is adjacent
to at least one FALSE pixel after the CCA and isianglated into counteZe. The second class
is body pixels, which is the complementary to edyels, i.e., all the eight adjacent pixels are
TRUE, and is accumulated into coun@y. The total number of pixels in an isolated group is
denotedCy, Cr = Cg + Cg. For edge pixels, another counyris allocated to accumulate the
number of pixels adjacent ®et; or Set, pixels in order to give profile score to the iseth
group.

In normal cases as shown in Fig. 3-6, the profilelp of an isolated character can be
connected into an individual profile group, and thikole character should belong to an
individual isolated group, too. However, it mighagpen that the profile group is broken into
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segments due to noise or irregular light condiisrthe example in Fig. 3-9(a)-(d). In this case
the broken profiles can still be extracted into amnected group as in Fig. 3-9(e) after

thresholding and the connected component analysis.

(@) (b) (€) (d) (e)

Fig. 3-9 (a) An imperfect sample character imab¥ltie DOG responses: positive response in
red and negative response in blue. (c) The inrdil@iset in red and the bonding rectangle in

cyan. (d) Boundary set.(e) Extraction result.

3.4. Eliminate False Candidates

There are two stages elimination tofilter out thésdé character candidates in order to
minimize the computational consumption:in lategseta

The first stage elimination is based on the geomé&tatures captured by the CCA process.
After the CCA, each isolated group has own prelanynfeatures measured by its bonding
rectangle, i.e., group widtlv, group heightd, group occupancy (pixel count w.r.t. the
bonding rectangle ared)=C+/(WxH). The groups having abnormal preliminary featumes a
possibly caused by non-character objects suchias nobackground or variable illumination
and are eliminated immediately. For example, laatje of Wto H may represent a long edge or
a thin line in the image; smal andH may be caused by noise or a spot; latgaay stand for
a solid object or shadow..., etc. General charabti@ve a typical value for occupancy ranged in
0.3<U<0.8.

The second elimination is based on a quantity thedsures from the “goodness” of the
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profiles of each isolated group, namely, the pedditores. In ideal cases, the edge pixels found
by the CCA should be adjacent $et; or Set, pixels. i.e.,Cp = Cz . However, in real world
images, it is often not the case and mosCare Ce. Therefore, the profile score defined®y
Cp/Ceis calculated for each isolated group to evaluate much goodness it is from the ideal
case. In our experiments, the isolated groups haSin< 0.8 is eliminated. The remaining
isolated groups form the character candidates andbe used for recognition or other purposes

hereafter.

3.5. Implementation for Fast SSB

Besides a stable and accurate performance, theutatigmal complexity of a binarization
algorithm is also important in evaluating the parfance. The demand for low computational
complexity methods is especially strong.in a reaktembedded system. In such systems they
require low computational complexity methods fort mmly speeding up the response to
external events but also reducing the power consompAlthough the computational
complexity of the method presented here'is highan &a global thresholding method, a good
implementation can still make it computed efficlg@nd executed as fast as a global method.
Of course, it is expected to compete with the naxstl thresholding methods both in accuracy
and speed.

The problems to be discussed here is similar t@fgtenization in implementation. For the
proposed method, the optimization can be consideoed several aspects,

1. Simplify the convolution with Gaussian filter.

2. Use integers instead of floating points.

3. Use shifter to replace multiplier or divider.

4. Use acceleration table for dynamic threshold prapeg.
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3.5.1. Optimization in convolution

The convolution with Gaussian kernel takes much agatpn time because it is directly
propositional to the size of the input image aredl@aussian kernel. L& denote the width and
H denote the height of the input image, and give asGian kernel sizeakn. To convolve the
input image with the Gaussian kernel, it neétid\Vxn2 multiplications andHxWx( n2-1)
additions. Due to the symmetrical properties ofaasian function, the 2D convolution can be
decomposed into horizontal and vertical directiéior each directionnxl dimensional
Gaussian function is used so thltWxn multiplications andHxWx(n-1) additions is required.
This simplifies the complexity fror®(n?) to O(n).
3.5.2. Implement by integers and shifters

In computer systems, integer manipulation is alwagser than floating points. Especially,
many computer systems still have no hardware figapoint processor and allow only
manipulations by integers. On the other hand, mplidations or divisions often take longer
computation time than simple manipulations suchdafition, subtraction, or shifter; it would
be preferred if they can be replaced by shiftessfigeding up the computation and making the
algorithm more practical on various grade compsystems. Consider to implement by integer
and shifter in the program, we decide to selecGhessian kernel &(x)=G(y)=[1 4 8 4 1]. Fig.
3-10 gives a comparison to the three normalizeds&an functions: selected Gaussian kernel
in Gau3, ideal continuous Gaussian functol) in Gaul, and ideal discrete Gaussian
function in Gau2. It shows that the selected Gams&ernel is close to the ideal discrete

Gaussian function.
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Fig. 3-10 Comparison to three Gaussian functioraiGideal continuous function, Gauz2:

ideal discrete function, Gau3: selected kernel

The advantages of using the selected Gaussian kamdirst, the coefficients are integers;
second, all the coefficients are 2’'s multiples Isat tthe multiplications can be replaced by
shifters. Based on the selected kernel, the cotiealior the first Gaussian imadgx,y) (01=1)
can be written as

L(xy)=((xy)oG(x)oc(y) (11)

This can be achieved in program 1,

Programl
T T T ]
T XIYI=(0 De2]iyl+ [x+2]0y1) + (O [x-100Y] + | [x+1][yD)<<2) + ( [X[y]<<3);
LIANYI=(T XLy-21+ T [X[y+2]) + ((T [X][y-1] + T [X][y+1])<<2) + (T [X][y]<<3);

WhereT [X][y] is an intermediate arraly[x][y] is the gray-level intensity olr{x,y) andl 1[X][ V]
is the Gaussian smoothed gray-level intensity §xy). The “<<” operator denotes the left
shifter. According to (1), the second Gaussian enla(x,y) can be obtained by convolving

[1(x,y) with the same Gaussian kernel, i.e.,

L(xy)=(L(xy)BG(x)) 0 G(y) (12)
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The same programl can be used by substitutipg[y] with 1, [X][y] and | [X][y] with

I1[X][y]. Note that the equivalent scale fofx,)) is o, =+/2 based on equation (1). Finally, for

computing the DOG image, the two Gaussian images tmel normalized to the same level.

Therefore, the summation of the Gaussian kernel brustiminated. The equation is written as

D(xy)=1,(xy)=1{xy)* > G(x)x > G(y)- (13)
Since the) G(x) = Y G(y) =18x18=324 and324=256+64+4=2+2 +2*. As aresult, the

program to find the DOG image is implemented as:

Program2
e

DIX[Y]= 12[X1y]- (1h[X][yl<<8) - (11[X[y]<<6) — (11 [X][y]<<2);

It is important to check if the value in each stepnipulation exceeds the full range of
integers of a computer system and trim some |egsifisant bits(LSBs) from the operands if
necessary. For a 8-bit gray-level input image,nlaimum value of 1(x,y) is 324«256 which
becomes 18-bit signed integers. And the maximuraevall(x,y) is 324324x256 which is
extended to 26-bit. For a 16-bit computer systerplémented by the proposed method, the

program to calculati(x,y) andlx(x,y) can be changed to program 3 to avoid integerglove

Program3
i
T IXLYI=((F [x-2]0y1+ [x+2]0y]) + (O [x-10[y] + 1 [x+1][y])<<2) + (I [X][y]<<3))>>2;
LIXEYI=(CT [XIy-21+ T [XI[y+2]) + (T [40y-1] + T [X[y+1])<<2) + (T [X[y]<<3)) >> 4;

Y IXIYI=((y D210y 1 [x+2]1y0) + (0 [-300Y] + 1 [ 1]yD)<<2) + (2 [X4[y]<<3)) >> 4;
LIX[YI=CY [XLy-21+ Y [X][y+2]) + ((Y [X][y-1] + Y [X][y+1])<<2) + (¥ [X][y]<<3) ;

DIX[Y]= 12[XLY]- ((1a[X[yl<<4) + (1[X[Y]<<2) + (1.[X][y]>>2));

3.5.3. Use acceleration table for dynamic threshold progi#mn

The dynamic threshold propagation often runs owveriterations for a typical input image
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sized 648480. It is very time-consuming if a whole-imagerscaperformed on each iteration.
Therefore, an acceleration table is used to recheérhe required for propagation.

The acceleration table is composed of two firsthisifout (FIFO) memories, namely FIFO A
and FIFO B. When the propagation is started fronmidary set pixels, the coordinates of the
adjacent pixels that belong to non-boundary pixeds, pixels ofSet.’, are sequentially stored
into FIFO A. After a whole-image scan, all the bdary pixels are visited and the locations for
the adjacent non-boundary pixels are saved. Theheisecond iteration, the propagation starts
from the pixels saved in FIFOA, they becorSet,® pixels for this iteration. Again, the
coordinates of the pixels adjacentSt,? form Set.” and are stored into FIFO B. The process
repeats the same flow and toggles FIFO A and FIH®Y Beration. As a result, only one full

image scan is required for the first time and thvputation is greatly reduced by the way.
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Chapter 4 The Deformation Correction Method

In general cases, the license plate characteroféea involved with certain degree of
deformation when they are projected into two-dinn@mesl images. The deformation in turns of
mathematics could be composed of any transformagioch as rotation, scaling, affine
transform or mixed transformations..., etc. It ididiflt to recognize these characters without
correcting the deformation beforehand. In this ¢tkia@ novel method is discussed to correct the

extracted characters in the proposed license m@atagnition system.
4.1. Useful Properties for Deformation Correction

The extracted character candidates are not suifableecognition directly because they
probably undergo some geometric transformation$ sscrotation, affine deformations or
mixed deformation...due to abnormal camera locatiocapture angle. The method in this
section tries to eliminate the geometric transfaroms of character candidates and transform
them into normal orientation for stable recognitioRig. 4-1 shows some typical
transformations from normal plate image in Fig.(d}Isuch as rotation in Fig. 4-1(b), affine
deformation in Fig. 4-1(c) and mixed deformationFig. 4-1(d). Due to the difficulties in
finding invariant reference points, we utilize twseful properties for license plate characters to
eliminate the undergone geometric transformatidin® properties may not be sufficient to
make perfect recovery from the deformation; howetlery can be used to detect the

deformation and correct it in certain degrees tprowe the successful rate in recognition.

The first property used for correcting geometricodefation of character candidates is the
baseline. The baseline is an invisible line abovekwhll the characters on a license plate are
aligned. For various geometric deformations sudhigs4-1(b)-(d), the baseline can be used to

correct a part of them, e.g., Fig. 4-1(b). However, some other deformations, e.g., Fig.
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4-1(c)-(d), it needs more information in additianbtaseline to correct them for recognition. In
order to correct from these complex deformatiorsge@nd property is adopted by referring to
the horizontal boundary lines of each candidatdikgrihe baseline belonging to a group of
character candidates, the horizontal boundary Emeghe left and right boundaries belonging
to a single character candidate which can be wsedrimalize the slant angle of each character
candidate so that it can be changed to a statab$riitor feature extraction and recognition.
Before locating the baseline, the character canesdare grouped by their sizes and positions.
The rules of license plates [48] with an acceptatikerance are used to check if the character
candidates belong to the same license plate. Thiidaas obeying the rules will be grouped
and considered as a single license plate. For gatp of character candidates, a baseline is

expected to exist below and can be found by tHeviihg methods.

(a) Normal Plate (b) Rotational transformation

L)

Fig. 4-1 Typical geometric transformations in LBRtems
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4.2. Voting Boundary Method

The voting boundary method is suitable to find bamdines of a group of pixels in an
image. It works by assuming many straight line edaitegs and detecting the best one passing
through most of the edge pixels by voting. The metisoin some respects similar to Hough
transform[49] and has the same advantage withrabast detection. However, it simplifies the
computation from Hough transform by replacing tbenplex triangular functions with simple

additions and subtractions.

AT EI T

Direction-to-find bottom pixels

Fig. 4-2 A character candidate and the bottomlpixe

Before the voting boundary method, it is requiredind the edge pixels in four directions,
respectively top, bottom, left and right boundaryets. The edge pixels are the most outside
pixels of an image group. For example, the bottaxelp are defined as the set of pixels that
first appear when searching from bottom to top achevertical pixel line. Fig. 4-2 shows an
example on how to find the bottom pixels, where gy pixels are grouped by connected
component analysis in the extraction stage angbitteds marked as ‘B’ are the bottom pixels
found according to the definition above. The priteifor computing the voting boundary

method starts from similar triangles. Let’'s see Bi@ for example, in the similar triangle pair
AABC andAADE, it is known thataxd = (a+b)xc. Let the lineNG be one of the bottom

boundary lines of the pixel groups inside rectangldOP and the black circles are the
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corresponding bottom pixels. The distances frombibtgom edge,N_O to each bottom pixel
are stored in an arr&P, where the array haselement8P[x], x=1 tow. If BP[X] is on the line
NG, then it satisfies
Xxg= (W)x BP[X]. (14)
Consider to include error tolerance and rearrahgetjuation, thBP[X] is on line NG if it

satisfies

xx(g/w)<BP[x|+r
{xx(g/w)z BP{x]-r’ (13)

where the variable represents thickness of the boundary line andeaadjusted according to

different applications.

E
C
d
C
A a B b D
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N i i ) (@]
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Fig. 4-3 Derivation of the voting boundary method

Each boundary pixel is voted into one of the follogvithree sets according to the inequality
pairs: the first sefIT if a boundary pixel satisfies the both inequalitlye second set

UNDERFIT if a boundary pixel falls in the range(g/w)=BHx+r, and the third set
OVERFIT if a boundary pixel meets the condition(g/w) < BFx] - r . Let the pixels voted to

setFIT bep;, i=1to n The coordinates g are respectively(, ;) andx; <x; <Xz <... <X,. On
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each boundary line candidate, the distance of gtagt p, on coordinatex, y1), and end pixel

b 0N coordinatex, y), are measured as=+/(x, - x,)? + (v, - y,)? and treated as the length

of the boundary line.

The process to vote boundary lines is drawn in Big, where it can be seen that the
computation is very simple because of continuityhefx-axis. Only one division representing
the angle between the boundary line and 3&is is required at the beginning and few
additions or subtractions are required afterwalfterAhe voting process, the line gets the most
votes in seFIT is assigned to be the true boundary line of tikel@roup. Note that the set
UNDERFIT andOVERFIT can be referenced to delete improper characteldates if any

one of them is abnormally large.

Assignm = g/w

A 4
Initialize x=0, n=0

UNDERFIT=
If n<BP[x]-1 UNDERFIT + 1 N

n=n+m
X=x+1

OVERFIT=
OVERFIT +1 ¥

FIT=FIT +1

A

If x reach end

-_—

Fig. 4-4 Flow chart to vote boundary lines
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4.3. The Correction Method

The method used to find the baseline is first locathe bottom pixels of each character
candidates, and then use voting boundary methdicidoa line that most bottom pixels pass
through. After finding the bottom pixels of eachacdhcter candidate, the voting boundary
method is applied to detect the baseline passimggth most of the bottom pixels.

Once the baseline is detected, the next step isotect rotation angles of character
candidates. As discussed above that the charamtesslicense plate are aligned above the
baseline. If the baseline found by the voting pssds rotated, it stands for that all the character
candidates on it are rotated, too. Therefore, ttegiom angle of the character candidates can be
recovered to normal position according to the detkbaseline. During the recovery process,
each character candidate is rotated and the rgdadlichinary features such as width, height and
occupancy are re-measured for the feature extractioext stage.

For each recovered single character candidateydheg boundary method used to find
baseline of multiple characters is applied-agaifirtd the horizontal boundary lines of each
single character candidate. While something diffefeom the former, the conditions for
detecting horizontal boundary lines are adjustedlififerent characteristics of single characters.
After the voting boundary process, the true bountiae is selected according to the following
two rules: First, the number of votes to SE{DERFIT must be zero. It stands for that all the
edge pixels must lay inside the boundary linesoBegcinstead of referring to the number of
votes in seFI T, the length of boundary line is referred as thefketor to select true boundary
line. The length of a boundary line is defined asléngth from the first edge pixel to the last
one in seFIT. The boundary line candidate of longest lengtrelscted as the true boundary
line if its length is longer than a pre-definedet$inold. For some characters containing curvature

boundaries, the thicknes# (15) can be adjusted to retain accurate resAilgpical choice for
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32x32 size characters is2.

Based on the left and right boundary lines, eacidicate is adjusted to balance the left and
right boundary. Fig. 4-5 shows an example on hoadjost a deformed character based on the
detected boundary lines; Fig. 4-5(a) is the sodhegacter and Fig. 4-5(b) is the character after
adjustment, say, adjusted character. Rectangle ABGD AB'C'D’ are respectively the
rectangular borders of the source character angsi@dj characteyy andy/ are the widths of the
characters before and after adjustment. The charhetight, h, is unchanged after the
adjustment. Nodel to node4 are left edge pixelsrauk5 to node8 are right edge pixels.
Nodel and node4 are respectively the start pixetlead pixel of the left boundary line. Node5
and node7 are of the right boundary line. Our taigéo arrange the left and right boundary
lines symmetrically, i.e., any two pixels having #ame y-coordinate on left and right boundary
line have the same distance to the outer rectanigdiand right borders. Once the deformation

is corrected, the characters candidates are tresegdo next stage for recognition.

E N
L h  h
T fessssssss [ ]
I 3
) 7
ad ge !
Y ... I [
C 7 C
(b)

Fig. 4-5 Compensation of geometric deformation
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Chapter 5 The Recognition M ethod

After deformation correction, a novel method naraeclmulated gradient projection vector

method, or AGPV method in short, is applied to gggpe the extracted character candidates.
5.1. Why AGPV

When dealing with detection or recognition of clutéess, edge/line is a basic component
that could never be ignored. Straight edges hawplsirepresentation and stable characteristic
that make them easier detected than any othdnuts in an image.

There are numerous methods of edge detection céwubd in literatures[16]-[20], among
which Hough transform [16] is well-known for itsable and reliable performance. However,
Hough transform is also famous..for the . expensivet i computation and memory
consumption. Although some methods [21}[22] areppsed to improve the speed and reduce
memory consumption of Hough transform, sometimesstill insufficient in consideration of
accuracy for some applications. In our study, Houghsform provides an important concept to
us that stable performance can be achieved by neéatsumulation.

In this work we propose a novel accumulated grddieojection method for detection of
edges. The new method adopts the same concept gh lttansform to accumulate the pixels
of similar attributes in order to achieve stabld agliable result. Besides, two more concepts
are included to guarantee the reliability of thehod. First, the new method projects the pixels
of similar gradient orientations onto an axis whislthosen parallel to the majority of these
gradient orientations. In general cases the gradigentations of edge pixels are perpendicular
to the direction of the edge. The projection metholieves the best accuracy of measuring
since the edges are measured from their perpeadidinection. Second, instead of referring to

pixel intensity which might be sensitive by illunaition change, the new method accumulates
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the gradient magnitudes which are relatively meéable against illumination change. Besides,
the result is also stable against noise becausafets to the majority of accumulation and
minimizes the effect of random distributed noise.

5.2. The AGPV Methods

There are four stages to recognize a character tsengGPV method. First, determine the
axes; including the nature axes and augmented &ee®nd, calculate the AGPVs based on
these axeslhird, normalize the AGPVs for comparing with startdanes. Fourth, match with
standard AGPV:s to validate the recognition reduie procedure will be explained in detail in

the following sections.

5.2.1. Determine Axes

When discussing about the AGPV method, it is imgoatrto introduce an essential property,
axes, in advance. An axis of a character is a Speawientation on which the gradients of
grouped pixels are projected and accumulated to thve desired feature vector. An axis is
represented by a line that has the specific otiemtaand passes through the center of gravity
point of the grouped pixels. The axes of a charaztrarbe separated into two different classes
named nature axes and augmented axes. The twosckssdifferent in characteristics and

usages and will be described below.
5.2.1.1. Build up Orientation Histogram

The first step of the AGPV method is to build up theresponding orientation histograms of
the character candidates. The orientation histogamm$ormed from gradient orientations of
grouped pixels. Legx,y) be the intensity value of sample pixelj of an image group, the
gradients on x-axis and y-axis are respectively,

OX(x.y)= p(x+1y-1)=p(x-Ly-1)+2x(y(x+1,y) - y(x-Ly))+ p(x +1,y +1) - y(x -1,y +1)
OY(xy) = Ax =Ly +1)=fx -1y -1+ 2x (A xy +1) - Yxy -1+ Ax+Ly+1)=p{x+1y-1)  (16)
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the gradient magnitude)(x,y), and orientation&x,y), of this pixel is computed by

() =X () + OV () )
8(x,y) =tan*(0Y(x,y)/ OX(x,y))
By assigning a numbdINys in the orientation histogram, the gradients aawlated into
BINhis bins and the angle resolutionRESis =(360BINyis). The BINy;s is chosen as 64 in the
experiments and the angle resolut®BS;sis therefore 5.625 degrees. Each sample added to
the histogram is weighted by its gradient magnitadeé accumulated into the two nearest bins
by linear interpolation. Besides the histogram awgkation, the gradient of each sample is

accumulated into a variabeEs which stands for the total gradient energy oftitstogram.
5.2.1.2. Determine the Nature Axes

The nature axes is essential for the AGPV methagwibrd “nature” is used because the
axes always exist “naturally” regardless of mostimmment and camera factors that degrade
the recognition rate. The nature axes have seveaa groperties helpful for the recognition.
First, they have high gradient energy on specifierdation and therefore are highly detectable
in the input image. Second, the angle differenoesrg the nature axes are invariant to image
scaling and rotation. It means, they can be usedfagences to correct the unknown rotation
and scaling factors on the input image. Third, tinections of nature axes are robust within a
range of focus and illumination differences. Foughhough some factors, such as different
camera view angle, may cause character deformatidrchange the angle relationship among
the nature axes, the detected nature axes areisiill to filter out the dissimilar ones and
narrow down the range of recognition results.

The nature axes are determined by performing pebdyvanalysis on the orientation
histogram. A peak on the orientation histogramesents a specific orientation in the character

candidate. Let functioH(a) denote the histogram magnitude appeared on antilek-th peak,
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Pk, Of the orientation histogram is located by segltive angles satisfying
H(p)> H(pk -1) andH(p)> H(p« +1)
Beside the center of the peak, the two boundaaesed start anglg and end angle;, within

an angle difference to less tharay, are found by the following equations,

S = a, H(a)SH(b)’DbD(pk_e\h'pk) (18)

e =a, H(a)<H(b).ObO(p,,p, +ay,) (19)

The thresholay, is used to guarantee the boundaries of a peakstayy of its center and is
defined to be 22.5 degrees in the experiment. Tasoreto choos#22.5 degrees threshold is
because it segments a 360-degree circle into Btatiens; which is similar to human eyes since
we often see a circle in 8 octants

Once the start angle and end -angle of a peak ésrdieted, an energy function standing for

&
the gradient energy of theth peak-is defined (k)= > H(a). In addition, an outstanding

a5,
energy functiorD(k) is also defined for each peak,
D(K) = E(k)- (H(s)+H(e))x(e -s.)
2 (20)

The outstanding energy neglects the energy cométblly neighboring peaks and is more
meaningful tharE(k) to represent the distinctiveness of a peak. Pedgkssmall outstanding
energy are not considered as nature axes becaisbeii do not outstand from the neighboring
peaks and may not be detectable in new images.

In the experiments, there are different stratetppethreshold the outstanding energy for
training and recognition. In training phase, weesebne perfect image for each character; it is

called standard character image and is assignieel tioe standard of the recognition. The most
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important task in this phase is finding stable gaakhe standard character image. Therefore, a
higher threshol®E,/32 is applied and a peak has outstanding enegipehthan the threshold
is considered as a nature axis of the standardactesrimage. In recognition phase, the
histogram may have many unexpected factors suchnase, focus error, variable
illumination..., so that the task is changed to foree or more matched candidates for further
recognition. Therefore, a lower thresh@#,s/64 is used to filter out the dissimilar ones by th
outstanding energy. After threshold check, the peakose outstanding energy higher than the
threshold is called nature peaks of the charaotage and the corresponding angles are called
the nature axes. Typical license plate charactages (alphabet and numerical) can be found
having two to six nature axes by the proceduresabo

Fig. 5-1 is an example to show the nature axes. 3-itfa) is the source image, where
intensity is ranged from O(black) to 255(white)gFb-1(b) is the corresponding orientation
histogram which are accumulated from the pixelsrisity in Fig. 5-1(a). Fig. 5-1(c) overlays
the source image with the detected nature axesrshpwed arrows. We can see six peaks in the
histogram, marked as A,B,C,D,E and F respectiwelych correspond to the six red arrows in

Fig. 5-1(c).

200 150 400 50 [ 50 0 150 200
Angle

(@) (b) ()

Fig. 5-1 (a) Input image (b) Orientation histogreanThe nature axes
5.2.1.3. Determine the Augmented Axes
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Augmented axes are defined, as augmentations woenates, to be the directions on which
the generated feature vectors, AGPVs, are unigepexcial to represent the source character.
Unlike the nature axes possessing strong gradregrgg on specific orientation, augmented
axes do not have this property so that they maypeatbserved from orientation histogram.

Some characters have only few (one or two) appai@nte axes such as the example in Fig.
5-2. Therefore, it is necessary to generate end\@RVs on augmented axes for reliable
recognition. The experiments tell us that it neadkeast four AGPVs in order to recognize a
character in a high successful rate. The four AG&arsbe any one from nature axes AGPVs or
augmented axes AGPVs. More augmented axes carclaatkto refine the recognition result
if four AGPVs are not enough to distinguish a chteafrom similar characters. From the
experiment results we know that good recognitioie rean be achieved for license plate
characters by at most six AGPVs.

The augmented axes can be defined by characteesbajy fixed directions. In our
experiments, there are only four fixed directiamsthe four arrows in Fig. 5-2(c), defined as
augmented axes for the total 36 characters. titisneaningful to declare an augmented axis on
a character if it already exists in the nature aXégrefore, if any one of the four directions
already exists in the nature axes, it will not keldred any more in the augmented axes.

Orientation Hiotograrm
3000

2500
» 2000

= 4500

1000

500 L L L s L L s
=200 -150 -100 -50 o a0 100 150 200

Angle

() (b) (c)
Fig. 5-2 (a) A character that has only one natixis. (b) Orientation histogram. (c) The

nature axes in red arrow and three augmented axs#ae arrows.
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5.2.2. Calculate AGPVs

Once the axes of a character are determined, tktestep is to calculate the accumulated
gradient projection vectors(AGPVs) based on thgss.@On each axis of corresponding peak
the gradient magnitudes of pixels whose gradienentations fall inside the range

S, < e(x,y) < g _ are projected and accumulated. The axis coulchp@e in the nature axes or

augmented axes.

5.2.2.1. Projection principles

The projection axisf, is chosen from either nature axes or augmented aikh positive
direction @ Fig. 5-3 figures out the projection of samplegbifk, y) and the center of gravity

(COG) point of an object.

(xpmg’y pmg)

Fig. 5-3 Gradient projection of COG point and atlyer pixels

Let the &kcog Yeog) DE theCOG point of the input image, i.e.,

[Xcog}:ix 2 (x)
N

, 21
Yeog N 1)

> ()

i=1
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where &, yi) is thei-th pixel andN is the total number of pixels of a character cdatdi. Let the

function A(x,y) denote the angle between pixgfj and the x-axis, i.e.,

A(x,y) = atar(zj . (22)

X

The process of projecting a character onto ggisan be decomposed into three operations.

First, rotate the character by and\é = (A(xCog ,ycog)— w). Second, scale the rotated pixels by a

projection factoicogA#). And third, translate the axis origin to the dedicoordinate. Apply

the process on tHeOG point, the coordinate &@OG point after rotation is
Xeog | _[CO4AEB) —SiN(AB)] [ Xeoq 23)
Yiog | | SINAEG)  codA8) | | Veog |

Scaling by a projection factoogA6), it becomes

X CO| co Ae 0 cho
pcog :|: i ) :| g . (24)
ypcog 0 COiA 9) yrcog
Finally, combine (23) and (24) and further trarsstie origin of axig), to Xori, Yjori), the final

coordinate Xproj, Yproj) Of projecting any sample pixet,y) onto axiss, is computed by
o] fy o5060) | -silacloodsa)) ] P, [ @)
Yorol sin(A8)codA0) cos’(A0) Y| | Yocog | | Yoori |

Note that the origin of axiggs (Xyori, Yrori), IS chosen to be tHeOG point in the experiments,

.., Kpori, Yyori)= (Xcog Yeog), DECAUSE it concentrates the projected pixelsnarthe origin Xcog,

Yeog) @nd minimizes the axis length to accumulate togepted samples.
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5.2.2.2. Gradient projection accumulation

In this section, the pre-computed gradient oriémaand magnitude will be projected onto
specific axes then summed up. Only sample pixessnoifar gradient orientations are projected
onto the same axis. As the example in Fig. 5-dlgact O is projected onto axisof angle
O-degree. In this case, only the sample pixelgadignt orientation&(x,y) near 0-degree will

be projected ontg and then accumulated.

. pixels with similar
orientation

flaraclient orientations

gradient projection
" accumulation

l 1, axis of projeciton

Fig. 5-4 Accumulation of gradient projection

According to axes types, there are two differersesato select sample pixels of similar
orientations. For nature axis corresponding-tb peakpy, the sample pixels with orientation
Ax,y) ranged inside the boundaries of fhea.e.,sc< AX,y) <&, are projected and accumulated.
For augmented axis with anggethe sample pixels with gradient orientatidtis,y) ranged by
axy)= ¢22.5 anddx,y)< ¢gr-22.5 will be projected and accumulated. From (1) &5), the
projected gradient magnitudé](x,y), and the projected distanéd,x,y) of sample pixelx,y)

onto axisr,are respectively

m(x,y) = m(x,y)xcod8(x,y)- @), (26)
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and

Aé(x1y) = \/(Xproj B chog)2 + (yprOj a ypcog)2 : (27)

To accumulate the gradient projections, an empay&(X) is created with length equals to the
diagonal of the input image. Since the indexesadraay must be integers, linear interpolation

is used to accumulate the gradient projections ith&otwo nearest indexes of the array. In
mathematical representations, Hmﬂoor(?(x,y)) andu=b+1, wherefloor(z) roundsz to the

nearest integers towards minus infinity. For eaaim@e pixel X,y) on input imagd, do the

following accumulations,

R(b) = Rlb) + flx,y)x(u=7(xy); Rlu) = Rlu)+ m(x,y)x (1(x.y)-b). (28)

BesidesR(x), a second arrayf(x), is also created to collect overall informati@quired for
normalization. There are two differences betwBgq) andT(x). First, unlikeR(x) targeting on
only the sample pixels of similar orientatidifx) targets on all the sample pixels of a character
and accumulates their gradient magnitudes. Sedpdl,accumulates the projected gradient

magnitudefn(x,y) , While T(x) accumulates the original gradient magnitogey). Referring to

ed.(28),

T()=T(b)+ m(x,y)x {u="7(xy)); T(u)=T(u)+m(xy)x (1(xy)-b). (29)

The purpose of(x) is to collect the overall gradient informationtbé interested character

candidate for normalizing arr&(x) into desired AGPV.

5.2.2.3. Normalization

The last step to find out the AGPV of an axis isntrmalize the gradient projection
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accumulation arrayrk(x) into a fixed-length vector. With the fixed lengtine AGPVs have
standard dimensionality and can be compared witimdstrd AGPVs easily. Before the
normalization, the length of AGPYacpv, has to be determined. Depends on the complekity o
recognition targets, different length of AGPV may $elected to describe the distribution of
projected gradients. In our experiments, lthegpy is chosen as 32. A smallegspy lowers the
resolution and degrades the recognition rate whildéarger Lagpy Slows down system
performance and makes no significant differenceemognition rate. It is worth to note that,
one AGPV formed upon an axis is independent froenatmer AGPVs formed upon different
axes. This is important to make the AGPVs indepenhftem one another regardless of the
source character and axes.

In order to avoid the impact of isolated samplesfsixvhich are mostly caused by noise, the

arrayR(x) is filtered by a Gaussian filt&(X):
F~2(x) = R(x)* G(x), (30)

where the operator * stands for convolution operatirhe variance of the(x) is chosen ae
=(Leny)/128 in the experiments, wheker is the length oR(x). It is found that this choice
benefits in both resolution and noise rejectiomiirly, the arrayT(x) is also filtered by the
same Gaussian filter to eliminate the effect obaoAfter Gaussian filtering, the arr@fx) is
analyzed to find effective range, the range in Wihiee data is effective to represent a character.

The effective range starts from ind€gand ends in indeXe defined as

Xs ={x T(x)zth ;T(x) <th;,Ox<x}, (31)

and

Xo ={% T(x.) 2 th ;T(x) <th;,Ox>x.}, (32)
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where the thresholthris used to discard noise and is chosemhas=sMax(T(x))/32 in the
experiment. The effective rangeRi(i) is assigned to be the same as the effective @),
from X to Xe.

As mentioned previously, the gradient projectiocusculation results in a large sum along a
straight edge. This is a good property if the ie$séed character is composed of straight edges.
However, some characters may consist of not ombigtt edges but also some curves and
corners which only contribute small energy on aR&). In order to balance the contribution of
different types of edges and avoid the disturbdrae noise, a thresholihr is used to adjust
the content of array R(x) before normalization,

[0, if R(x)<th,

Ri) = {255, it R(x)=th,’ (33)

After finding the effective range and -adjusting tentent of array R(x), the accumulated

gradient projection vector(AGPV) is defined to repée from R(x),

AGPV(i) = f?(round((si—zj x(X, - X,)+ XD : (34)

Fig. 5-5 gives an example of the gradient accuraraarray T(x), gradient projection
accumulation arraiR(x) and normalized AGPV. The example uses the sastént@ge as Fig.
5-1 and displays only one of the nature axes,Bx&imilar to the method of finding the peaks
of orientation histogram, thieth effective peaks,m, onR(X) is defined adx(epy)> R(epk -1)
andR(epx)> R(epk +1). It can be observed that four effective peakst in Fig. 5-5(c) and each

of them represents an edge projected onto axisHgirb-1(c).

5.2.3. Matching and Recognition

This section describes how to apply the AGPV metiwoecognize the extracted character
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candidates, or say, test characters, in three tspeicst, the standard AGPV database is
collected to be the standard templates for matchuitfy test characters. Second, three
properties used in the matching process are diedu3#ird, the methods to match the AGPV

of a test character with standard AGPVs.
5.2.3.1. Create standard AGPV database

A standard database is created by collecting allAEPVs extracted from characters of
standard parameters: standard size, standard aapecho noise, no blur, and neither rotation
nor deformation. The extracted AGPVs are callechdded AGPVs and stored by two
categories: the one calculated on nature axedlézidhe standard nature AGPVs and the other
calculated on augmented axes is called the stamdgmented AGPVs. Let the number of total
standard characters beN=36(0~9 and A~Z) for license plate characters is plaper. Denote
the number of standard nature AGPYVSs ih standard character &B\(i), the number of
standard augmented AGPVsNA(1), and the total number of AGPVs d¥/(i), whereNV(i)=
NN(i)+ NA(i). Thej-th standard AGPV of theth character is denoted ¥g(i,j), wherej=1 to
NW(i). Note thatVs(i,j) are standard nature AGPVs faNN(i) while V«(i,j) are standard

augmented AGPVs otherwise.

5.2.3.2. Properties used for matching

Unlike general vectors matching problem directfgneng to the RMS error of two vectors,
the matching of AGPVs refers to special propertidsch are derived from their physical

meanings. There are three properties useful foitagity measuring between two AGPVs.
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Fig. 5-5 (a) Gradient projection on axis D. (pitOG point; red: axis D; cyan: selected
sample pixels; blue: projected samples) (b) Tlaelignt accumulation arrdyx) with distance

to the COG point. (c) The gradient projection piRé&). (d) Normalized AGPV.

The first property used for similarity measuringvbeen two AGPVs is that each peak in an
AGPV represents an edge on the source charactemdrber of peaks, or say the edge count,
is useful to represent the difference between t&PXs. For example, there are four peaks on
the extracted AGPV in Fig. 5-5(d) and each of threpresents an edge on the axis. The edge
count is invariant no matter how the charactertexisthe input image. In this paper, a function
EC(V) is defined to calculate the edge count of an AGRY the following algorithm,

=====Algorithm 1: Count the number of edgesmAGPYV ======
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fori=1 to (sizeY)-1)
if( V(i)==0 andV(i+1) >0)
ec-ectl,;

end

============= end of formula 1
The second property used for similarity measuriatyveen two AGPVs is that although the
edge count in an AGPV is invariant for the sameattar, the position of the edges could be
varied if the character is deformed. This is thgom@eason to explain why the RMS error is not
suitable to measure the similarity between two AGPY order to compare AGPVs under the
cases of character deformation, a.matching costitmC(U, V) is calculated to measure the
similarity between AGP\WJ and AGPWV, expressed as,
c(uv)=|ec(u)-eclv)+ecfuyv)-Eclv)+Ec(iv)-Ecv), (35)
whereUV =U OV is the union vector of AGPWY and AGPVV while IV =U nV is the
intersection vector of thenV andlV are calculated by the following formulas:
===== Formula 2: calculate union vectors of tWGRVs======
fori=1to 32
if(V(i)>0 orU(i) >0)
UV(i)=1;
else
UV(i)=0;
end

end

end Of formu|a 2:::::::::::::::::




===== Formula 3: calculate intersection vectdrsn® AGPVs ======
fori=1to 32
if(V(i1)>0 andU(i) >0)
IV(i)=1;
else
IV(i)=0;
end

end

end Of formu|a 3::::::::::::::::::

The third property used for similarity measuringviieen two AGPVs is that the angular
relationships of nature axes on the test charatersimilar to those on the corresponding
standard character. In the experiment, a threshgtdv32 is used to check if the AGPVs of the
test character match the angular relationship tifreaaxes of a standard character. A&f(k)

be thek-th axis angle of the test character, the functié(i,j) denote the angle of theh axis of
thei-th standard characters®A(i,j)<2m, fori=1 to 36,j=1 toNV(i). If them-th andn-th axis of
the test character are respectively correspondirtgeg-th andh-th axis of the-th standard

character, then
(AA (m)- AA (n)) - (AA(i,g) - A h)) < th, (36)

A typical example can be seen by comparing Figand Fig. 5-6 that the characters in Fig.
5-5(a) and Fig. 5-6(a) are the same but differslum index. Let the extracted AGPV in Fig.
5-5(d) beU and the one in Fig. 5-6(c) be From algorithm 1, the edge count of the assatiate
vectors are respectivelf;C(U)=4, EC(V)=3, EC(UV)=3, EC(IV)=4. From the definition of

matching cost in (35),
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c(uVv)=|Ec(u)-Ecfv)+|EC(UV)-EC(V ) +|EC(IV)-EC(V)

=|4-3+3-3+[4-3=2
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Fig. 5-6 An example comprising different blur imdeith Fig. 5-5 (a) Gradient projection
on axis D. (pink: COG point; red: axis D; cyanestéed sample pixels; blue: projected samples)

(b) The gradient projection arr&(x). (c) Normalized AGPV.

5.2.3.3. Matching of characters

In order to recognize the test character, the AG&Mbe test character is stage-by-stage
compared with the standard AGPVs in the databaseeder, a candidates list is created by
including all the standard characters at the beggand remove the standard characters those

have high matching cost to the test character oh stge. Until the end of the last stage, the
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candidate in the list consisting of the lowestltotatching cost is considered as the recognition
result.
Stage 1: Find the fundamental matching pair. Cateuthe cost function between the test

character and theth AGPV of thei-th standard character.
Cy(k. i) =Clvr (k)vs(i. 1)) (37)

Find a pair of axes whose matching cost is the mum. Letkr andjs be the pair of axes

respectively on the test character atial standard character

pair(k;, js)=argmin(C, (k, j)); (38)

K,

If C(kr, js) is less than a threshallk, thei-th standard character is kept in the candidases |i
and the paiki, js) is served as the fundamental pair of the caneidat

Stage 2: Find the other matching pairs betweersthedard AGPVs and the test character:
Based on the fundamental pair, the axes anglésedest character are compared with those of
the standard character. Let the number of naturB\g=detected on the test characteNbg.

For thei-th standard character, create an empty amgf)=0, 1<j< NV(i), to denote the

matching pair with the test character. Taking useq¢36), calculate

(AA (k) - AA (k) - (AAG, ) - AAGL jo) <th, 5 OKORNN Jkzk

0j O[LNNG)L j # s (39)

the k-th test AGPV satisfies (39) is called theh matching pair of the standard character,
denoted amp(j)=k. Note that there might be more than one test AGaisfying (39). In this
case only the one of lowest matching cost is reizeginas th¢-th matching axis and the others
are ignored.

Stage 3: Calculate total matching cost of standeire AGPVs: Define a character
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matching cost functio®€MC(i) to measure the similarity between test charaatekr thei-th

standard character by summing up the matching obsti the matching pairs,

emcl)= S el (meli)vs(. 1) (@0)

j=Lmp(j)>0

Stage 4: Calculate the matching costs of augmeXx@els: At the first step, find the axis angle

AXon the test character corresponding tgitiestandard augmented axis as

AX:(AA(i1j)_AA(i’js))+AAr(kT) (41)

If there is one AGPV of the test character, sag, kith nature AGPV satisfying (39), i.e.,

|(AAr (k)— AX] <th,, then thek-th nature AGPV is mapped to tp¢h augmented axis and

mp(j)=k. Otherwise, the AGPV corresponding to fhiln standard augmented axis must be
calculated based on the axis angke After that, the matching costs of the augment&PXs

are accumulated into the character matching costitan as,

NV (i)

cmc(i) = )l\fC(VT (mp(j)) Vi, })) (42)

j=NN(i )+

Stage 5: Recognition: Due to the different numideh@PVs for different standard character,

the character matching cost function is normalizgthe total number of standard AGPVs, i.e.,
cMmc(i) = cmc(i) /Nv(i) (43)

Finally, the test character is recognized ashtle standard character of the lowest matching

cost if the character matching c@&WC(h)<thg.
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Chapter 6 Experimental Results

The experiments are designed in two aspects toectsply test the feasibility and
performance of the two novel methods proposedigwiork. The first aspect is focused on the
extraction function, where the proposed scale spaization method is compared with two
popular binarization methods on several properfidgsee second aspect is the recognition
function, where the proposed AGPV method is conpuaii¢h traditional method, too, to show

the performance.

6.1. Scale-Space Binarization Method(Extraction) Test

The experiments to test the scale-space binarizatethod are divided into three parts. The
first one is feasibility test which is-held in orde prove the feasibility of proposed method
under various environments and light conditions.oTwell-known binarization methods,
Otsu’s method [1] (global thresholding) and thealontensity gradient method (LIG) [5], (local
thresholding) are compared with the proposed method

The second experiment is reliability test. We resipely add different levels of noise and
illumination into the test images and re-measueeektraction result. Similarly, the results of
using Otsu’s method and the LIG method are compaseasell.

The final experiment on the binarization methothes computation time test. We record the
computation time for the three different methodsiétrentium-M machine running 1.5GHz and
compare their performance.

6.1.1. Feasibility Test

The test images are captured from various enviromgneontaining license plates captured

from different orientation and distances. Totalyihages are converted into 8-bit gray-scale

images and resampled to 640x480 pixels. Two sampages and their simulation results are
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shown in Fig. 6-1 and Fig. 6-2. Two popular grayeleimage binarization methods, Otsu’s
method and LIG, are compared with the proposed adethrom the simulation results, we can
see that the proposed SSB method perform bettaribation results than the two prior
methods. It is worth to note that, the Otsu’s métlsoconvenient in implementation but often
failed in the images containing complex backgrouhd;LIG method performs nicely around
edges but failed to identify the interior of chadeas.
6.1.2. Reliability Test

Different levels of noise and illumination are addeto the test images and the true positive
rate (TPR), i.e., the rate that the true characters araetad successfully in the test image, is
measured. The subscript E is for extraction, usedistinguishing from the true positive rate of
recognition TPR where the true characters are recognized suctlgssfuhe test image. A
character is considered as successfully extrattedsiisolated from external objects and the

grouped pixels can be recognized by human eyes.
6.1.2.1. Quantization noise analysis

The first factor affects TRRs quantization noise. We respectively add 6 &{@I8%, 1.6%,
3.2%, 6.4%, 12.8%, 25.6%) noise into each pixekmgtithe 0.8% noise level is equivalent to
add 1 or -1 randomly into each 8-bit gray-levedghi 1.6 % is equivalent to add 2 or -2 into
each pixel... 25.6% is equivalent to add 32 or -3@ @ach pixel. The images after adding 12.8
% and 25.6% noise are shown in Fig. 6-3. The sitiwmaesults are shown in Table I, where the
TPRe is ranged from 0 to 100; TRR50 represents half(27) license plates on the B4j@s are
successfully extracted.

From the simulation result in Table |, it is obv#othat the proposed method (scale-space
binarization, SSB) performs better than the otlven tmethods when the input image is

corrupted with noise. In addition, a conclusion barderived from the simulation that the PR
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of binarization is closely related with characteizes. The bigger the character size is, the

higher the TPRis.

TABLE |
TPR: BY QUANTIZATION NOISE ANALYSIS
Noise 0.8% 1.6% 3.2% 6.4% 12.8% 25.6%
level
SSB 94 94 94 92 90 82
Otsu’s 83 81 75 62 53 32
LIG 89 87 85 78 63 47

6.1.2.2. lllumination analysis

lllumination is another important factor to binaion of images. In order to test the
robustness of the proposed method to illuminatieange, four directional light sourdesto L,
are added in the test images to imitate the regsamsder different illumination. The gray-level

intensity of the three test images are multipligdhe following four directional light sources.

: (44)

where theV andH are respectively the width and height of the testge and is the decay
curve of the directional light sources. Fig. 6-owhk the number one image exposed under
L1(x,y,K) with 3 different decay curvds=1,2,4. The simulation is executed by changing yleca
curvek and considered as successful if the charactexsserpunder the four directional lights

can be extracted and recognized by human eyes.

TABLE II.

TPR: BY ILLUMINATION ANALYSIS
INlumination AK=1 K=2 K=3 K=4
decay curve
SSB 93 93 86 74
Otsu’s 32 5 0 0
LIG 89 87 54 38
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It is evident in Table Il that local thresholdingethods(SSB, LIG) are better than global

one(Otsu’s), and among them the SSB method isrlibtia LIG under different illumination.

6.1.3. Computation time test

The three binarization methods are implemented-tanGuage and executed in a Pentium-M
machine running 1.5GHz. The computation times megufor binarizing the test images are
measured and the averages of them and the corgisgdname rates are recorded in TABLE
[ll. Note that the computation time measured dassclude the connected component analysis

because the comparison is focused on binarizatibn o

TABLE llI
COMPUTATION TIME COMPARISON OF THE THREE METHODS
Averaged time | Averaged frame
rate
SSB 62ms 16.13
Otsu’s 33ms 30.0
LIG 89ms 11.2

From table Ill, we can see the SSB:performs fasi@n the LIG (local thresholding) while
still slower than the Otsu’s method (global thrddhmg). Actually many binarization methods
require pre-processings such as smoothing filtenrayder to ensure the noise are minimized
before binarization. We can see this from the earésults of quantization noise analysis. The
SSB method here already incorporates two stagesnpoething by Gaussian filter. Therefore,
the time differences required for SSB and Otsu’shime may be smaller than that in table 1l

when the preprocesssings are taken into account.
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Fig. 6-1 (a) Source image#1. (b) Converted binagge; blue rectangles are isolated groups (c)
Results after elimination, blue rectangles areattar candidates. (d) Binarization result using
Otsu’s method. (e) Binarization result by LIG.
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Fig. 6-2 (a) Source image#2. (b) Converted binagge; blue rectangles are isolated groups. (c)
Results after elimination, blue rectangles areattar candidates. (d) Binarization result using
Otsu’s method. (e) Binarization result by LIG.
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Fig. 6-3 Images used in noise analysis(left: 12.88ht:25.6% quantization noise)

““ Fig. 6-4 Images with differemody curve light sources used in illumination
analysis, (a) k=1, (b) k=2, (c) k=3 (d) k=4
Lo l.d]
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6.2. AGPV(Recognition) Test

Although the AGPV method is robust due to its acolation property, it becomes a
limitation that the size of the characters musbigeenough for stable recognition. Therefore,
the characters smaller 64x64 after the extractiom wp-sampled twice respectively on
horizontal and vertical axes by interpolation. Aftleat, we choose some characters from the
test images to be the standard characters andatalthe standard AGPVSs.

Two factors, noise and illumination as that forragtion test is again used to test the
reliability of the AGPV method. The results are m@a&d by the true positive rate on
recognition(TPR). Total 264 characters extracted from the extacttage are treated as the
test characters in this measuring. kKRB0 represents that 132 characters out of the Bé4 o

are recognized successfully. The simulation rasuisted in Table IV - Table V.

TABLE IV
TPR: BY QUANTIZATION NOISE ANALYSIS
Noise 0 0.8% 1.6% 3.2% 6.4% 12.8% 25.6%
level
TPRr 93 92 90 86 81 73 61
TABLE V

TPR;BY ILLUMINATION ANALYSIS
IMlumination K=0 K=1 K=2 K=3 K=4
decay curve
TPRr 93 92 87 82 65

59



Chapter 7 Conclusion and Future Work

7.1. Conclusion

This dissertation is devoted to present an appraachprising three novel methods for
recognition of license plate characters. The telduies related to the license plate recognition
are first reviewed in Chapter 2 and then, the thmeghods respectively in charge of extraction,
normalization and recognition of license plate eloters are discussed in Chapter 3 to Chapter
5. After that, the experimental results are shaw@hapter 6 to demonstrate the feasibility and
the performance of the presented approach.

The first method named scale space binarizatiohoadefSSB) is used in the extraction stage,
intending to extract the characters quickly an@bdy in the source image. The method utilizes
Difference-of-Gaussian function to localize the fpjes of the interested characters and
dynamic thresholding to binarize the license plafé®en the characters are extracted from the
binary image by connected component analysis aadalse candidates are eliminated from
both geometrical properties and profile scores.ir@pation methods are also disclosed for
implementation and experimental results are praltdeshow the robustness and performance
of the proposed method in comparison with the twastiused methods, Otsu’s method and
LIG method. Compared with these methods, the SSBiadeas obviously robust from noise
and illumination change.

The second method, voting boundary method, is usedcorrecting the geometric
deformation of characters which often acts as tapnreason for recognition rate degradation
in license plate recognition systems. The votingrigiary method is helpful to estimate the
boundary lines used for correcting the deformatibaoharacters.

The third method, AGPV method, is designed in #@ognition stage to recognize isolated
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characters on license plates. The feature vect@®\s calculated from Gaussian-filtered
images are independent from rotation and scalimigsaitable for characters recognition. The
experimental results demonstrate the success pftp@sed method and its robustness to noise

and illumination change.

7.2. Future work

Although the methods in this work already includenplete functions to recognize license
plates from gray-level images, there still exisheassues worthy of future studies.

First, although the SSB method can be designed faltscale search, the computation for a
full scale search is still too heavy by pure sofevéor real-time applications. A hardware
accelerator can be studied to speed up the extrgotocess. Besides, the SSB method may not
be able to extract character candidates accurittlg resolution of the image is low. Some
methods to improve the successful extraction ratew resolution must be researched.

Second, although the voting- boundary. method is faklfp correct characters from
deformation, it is sometimes inaccurate to corceetracters of non-linear edges like “S” or “D”
or “Q” from certain deformations due to their cuxv@ edges. Besides, it cannot work properly
if the license plate includes dirty smudges arocimatacters or the resolution is low.

Third, the AGPV method requires manual decisiorthsas selecting standard characters by
human eyes. It is better to be improved by som&syatic procedures to do automatically
training from various input images. In addition rremtly the AGPV method may degrade
recognition rate seriously if the geometric defatioraof characters is not fully corrected in the
normalization stage. How to improve the recognittate when the test characters undergo
certain degree of geometric deformation is alsmrgoortant topic for future studies. Moreover,
the computational complexity of the AGPV methotdésavy and still needs improvement in the

future.
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