
國立交通大學

電控工程研究所

博士論文博士論文博士論文博士論文

利用尺度空間二值化與累積梯度投影的方法

應用於車牌字體的擷取與辨識

Extraction and Recognition of License Plate

Characters Using Scale-Space Binarization and

Accumulated Gradient Projection Methods

研 究 生: 葉天德

指導教授: 陳永平 教授

中 華 民 國 一 百 年 貳 月

利用尺度空間二值化與累積梯度投影的方法

應用於車牌字體的擷取與辨識

Extraction and Recognition of License Plate

Characters Using Scale-Space Binarization and

Accumulated Gradient Projection Methods

研 究 生：葉天德 Student: Tien-Der Yeh

指導教授：陳永平 Advisor: Yon-Ping Chen

國 立 交 通 大 學

電控工程研究所

博 士 論 文

A Dissertation

Submitted to Institute of Electrical and Control Engineering

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Electrical Engineering

Feb. 2011

Hsinchu, Taiwan, Republic of China

中華民國一百年貳月

 i

利用尺度空間二值化與累積梯度投影的方法
應用於車牌字體的擷取與辨識

學生：葉天德 指導教授：陳永平

國立交通大學電控工程研究所博士班

摘 要

本論文提出一個車牌字體辨識系統，此系統包含三個主要方法。第一

個方法稱為尺度空間二值化，可以用來從灰階圖像上擷取字體。此方法結

合了穩健的高斯差函數和動態二值化處理，從未知影像中直接擷取出車牌

字體。為了使擷取的處理速度加快，本論文也提出優化的方法用以縮短計

算時間。第二個方法稱為邊界投票方法，適合用來矯正字體在影像拍攝過

程中所導致的幾何型變。此方法一開始假設了許多直線，然後以投票方式

找出一條通過最多邊界點的直線當成邊界線。找到的邊界線可以幫助矯正

字體的幾何型變，因而藉此改善辨識率。第三個方法稱為累積梯度投影方

法，利用累積梯度並且轉換它們成特徵向量來識別獨立字體。這些特徵向

量稱為累積梯度投影向量，被實驗證實對雜訊及照度改變是具有穩健性的。

 ii

A License Plate Recognition System Using
Scale-Space Binarization and Accumulated

Gradient Projection Methods

Student: Tien-Der Yeh Advisors: Dr.Yon-Ping Chen

Institute of Electrical and Control Engineering
National Chiao Tung University

ABSTRACT

A system consisting of three methods to deal with license plate characters recognition is

proposed in this dissertation. The first method, scale-space binarization, is suitable for

extracting characters from gray-level images. The method combines the robust

Difference-of-Gaussian function and dynamic thresholding technique to extract the license

plate characters directly. In order to speed up the extraction process, optimization methods are

also disclosed to reduce the computation time. The second method, voting boundary method,

is suitable for correcting characters from geometric deformation induced during capture

process. It assumes many straight lines candidates and detects the best one passing through

most of the edge pixels by voting. The boundary lines can be used for correcting the

deformation and improve recognition rate thereby. The third one, accumulated gradient

projection method, recognizes isolated characters by accumulating the gradient projection of

the characters and converts them into feature vector for comparison. The feature vector is

called accumulated gradient projection vector and is proven robust regardless of noise and

illumination change in experiments.

 iii

Acknowledgement

First of all, I am heartily thankful to my advisor, Prof. Yon-Ping Chen, whose

encouragement, guidance and support from the initial to the final stage helped me to learn

what I need from the research and made this thesis possible. And the thesis committee, Prof.

Li-Chen Fu, Prof. Kuo-Kai Shyu, Prof. Jen-Hui Chuang, Prof. Kai-Tai Song, and Prof.

Sheng-Fuu Lin, whose valuable recommendations and comments help to perfect this

dissertation.

Next, I’d like to give thank to my parents, who always give me confidence and encourage

me to persist in the thesis. Also, a deepest gratitude would be shown to my respected uncle,

Mr. Ching-Tsai Peng, who taught me always positive thinking and encouraged me all the time

especially when a bottleneck is encountered on thesis writing. Besides, I would give my best

thanks and appreciation to my best friends, Erik Lin and Patrick Lam, who supported me

during this period and gave me encouragement whenever I need help. Furthermore, this thesis

would not be accomplished without my wife’s fully support. Her understanding, trust and

assistance helped me to persist in this thesis until accomplishment.

Finally, I offer my best regards and blessings to all of those who supported and helped me

in any respect during the completion of this dissertation. Because of you, I can focus on the

research until completion. Thank you very much.

 iv

誌 謝

首先, 我要由衷的感謝我的指導教授 陳永平老師。他多年來從頭到尾

的鼓勵、引導、及支持幫助我從研究中學得我所要的及讓這篇論文得以完

成。同時要謝謝口試委員 傅立成老師、 徐國鎧老師、 莊仁輝老師、 宋

開泰老師與 林昇甫老師 對此篇論文的寶貴意見與指正，使本論文更臻完

善。

其次，我要謝謝我的父母，他們總是給我信心及鼓勵，讓我可以堅持

到最後並完成這篇論文。還有，我也要向我尊敬的伯父 彭清財先生表達最

深的感激，他教我要維持積極的思考，尤其是在寫作論文遇到瓶頸的時候

不斷的給我正向的鼓勵。再來我要感激我兩個最好的朋友，Erik Lin 及

Patrick Lam，他們在我寫作論文的這段期間需要幫忙的時候不斷的給予支

持及鼓勵。此外，如果沒有內人的全力支持，這篇論文也無法完成。她的

體諒、信任及協助讓我可以無後顧之憂一路堅持直到完成這篇論文。

最後，我要對所有在這篇論文寫作期間給予我支持、鼓勵及幫助的人

表達最高的敬意與祝福。因為你們的付出，讓我能夠專心於課業直到畢業

這一刻，謝謝你們。

 v

Table of Contents
Chinese Abstract ··i
English Abstract ··ii
Acknowledgement ··iii
Chinese Acknowledgement ··iv
Table of Contents ··v
List of Figures ··vii
List of Tables ··viii
Symbols ··ix

Chapter 1 Introduction ··1
Chapter 2 Review of Related Works ··4
 2.1 Scale Space Theory and Difference-of-Gaussian Functions································4
 2.2 Previous Methods for Image Binarization································5
 2.3 License Plate Recognition ··6
Chapter 3 The Extraction Method ··8
 3.1 Profile Localization ··9
 3.2 Dynamic Threshold Propagation ··16
 3.3 Thresholding and Connected Component Analysis································19
 3.4 Eliminate False Candidates··20
 3.5 Implementation for Fast Binarization··21
 3.5.1 Optimization in convolution··22
 3.5.2 Implement by integers and shifters··22
 3.5.3 Use acceleration table for dynamic threshold propagation································24
Chapter 4 The Deformation Correction Method ··26
 4.1 Useful Properties for Deformation Correction································26
 4.2 Voting Boundary Method··28
 4.3 The Correction Method··31
Chapter 5 The Recognition Method··33
 5.1 Why AGPV··33
 5.2 The AGPV Methods ··34
 5.2.1 Determine Axes ··34
 5.2.1.1 Build up Orientation Histogram ··34
 5.2.1.2 Determine the Nature Axes ··35
 5.2.1.3 Determine the Augmented Axes··37
 5.2.2 Calculate AGPVs··39
 5.2.2.1 Projection principles ··39
 5.2.2.2 Gradient projection accumulation ··41
 5.2.2.3 Normalization ··42
 5.2.3 Matching and Recognition··44
 5.2.3.1 Create standard AGPV database··45
 5.2.3.2 Properties used for matching ··45
 5.2.3.3 Matching of characters ··49
Chapter 6 Experimental Results··52
 6.1 Scale-Space Binarization Method(Extraction) Test································52
 6.1.1 Feasibility Test··52
 6.1.2 Reliability Test··53
 6.1.2.1 Quantization noise analysis ··53
 6.1.2.2 Illumination analysis··54
 6.1.3 Computation time test··55

 vi

 6.2 AGPV(Recognition) Test ··59
Chapter 7 Conclusion and Future Work··60
 7.1 Conclusion ··60
 7.2 Future work··61
 Bibliographies ··62

 vii

List of Figures

Fig. 1-1 Functional block diagram of the proposed LPR system 3

Fig. 3-1 Functional block diagram of the SSB method 9

Fig. 3-2 An example of the SSB method 10

Fig. 3-3 The procedure to produce DOG Images on different observation scales 12

Fig. 3-4 An ideal unit-step edge (upper graph) and its DOG response (lower graph) 13

Fig. 3-5 Determine boundary pixels 15

Fig. 3-6 Extraction of a perfect sample character image 15

Fig. 3-7 Dynamic threshold propagation 17

Fig. 3-8 An example of dynamic threshold propagation 19

Fig. 3-9 Extraction of an imperfect sample character image 20

Fig. 3-10 Comparison to three Gaussian functions, 23

Fig. 4-1 Typical geometric transformations in LPR systems 27

Fig. 4-2 A character candidate and the bottom pixels 28

Fig. 4-3 Derivation of the voting boundary method 29

Fig. 4-4 Flow chart to vote boundary lines 30

Fig. 4-5 Compensation of geometric deformation 32

Fig. 5-1 The nature axes 37

Fig. 5-2 The nature axes and the augmented axes 38

Fig. 5-3 Gradient projection of COG point and any other pixels 39

Fig. 5-4 Accumulation of gradient projection 41

Fig. 5-5 Normalized AGPV 46

Fig. 5-6 An example comprising different blur index with Fig. 5-5 49

Fig. 6-1 Source image#1 binarization result 56

 viii

Fig. 6-2 Source image#2 binarization result 57

Fig. 6-3 Images used in noise analysis 58

Fig. 6-4 Images with different decay curve light sources used in illumination analysis 58

 ix

List of Tables

TABLE I TPRE BY QUANTIZATION NOISE ANALYSIS

54

TABLE II TPRE BY ILLUMINATION ANALYSIS 54

TABLE III COMPUTATION TIME COMPARISON OF THE THREE METHODS

55

TABLE IV TPRR BY QUANTIZATION NOISE ANALYSIS

59

TABLE V TPRR BY ILLUMINATION ANALYSIS

59

 x

Symbols

σ : Gaussian function standard deviation

σ1 : The first observation scale for Difference-of-Gaussian function

σ2 : The second observation scale for Difference-of-Gaussian function

G(σ) : Gaussian function with standard deviation σ

g1(x,y) : The Gaussian function with deviation σ1

g2(x,y) : The Gaussian function with deviation σ2

I(x,y) : Gray-level source image

I1 (x,y) : The first Gaussian blurred image for Difference-of-Gaussian function

I2 (x,y) : The second Gaussian blurred image for Difference-of-Gaussian function

D1(x,y) : The first Difference-of-Gaussian image

DOG(x,y) : A 2D Difference-of-Gaussian function

u(x0) : Unit step function in parallel to the y-axis with origin shifted to x= x0

Set1 : The first profile set

Set2 : The second profile set

Set3 : Non-profile set

thf : Fixed threshold for identifying profile pixels

effa(xb,yb) : Effective area of (xb,yb)

Reff : Radius of effective area of an edge

Bin1 : Total number of pixels for the first profile set

Bin2 : Total number of pixels for the second profile set

(xb,yb) : A boundary pixel

(xn,yn) : A neighboring pixel

thd(x, y) : Dynamic threshold on pixel (x, y)

 xi

|∇I1(x,y)| : Gradient magnitude on pixel (x,y) in the first Gaussian blurred image

()p
b

p
b y,x : The pixel whose dynamic thresholds are assigned in the p-th iteration

Setb
p : the set of boundary pixels with dynamic thresholds assigned in the p-th

iteration

Seta
p : the set of adjacent pixels with dynamic thresholds assigned in the p-th iteration

() ()()iy,ix aa
11 : the i-th pixel in Seta

1

CE : Total number of edge pixels of an isolated group

CB : Total number of non-edge(body) pixels of an isolated group

CT : Total number of pixels of an isolated group

CP : The number of edge pixels of an isolated group adjacent to profile sets

W : Width of a grouped image

H : Height of a grouped image

U : Occupancy of a grouped image

SP : Profile score of a grouped image

FIT : Set of boundary pixels falling inside a boundary line

UNDERFIT : Set of boundary pixels falling below a boundary line

OVERFIT : Set of boundary pixels falling above a boundary line

γ(x,y) : Gray-level intensity value of sample pixel (x,y)

m(x,y) : Gradient magnitude of sample pixel (x,y)

θ(x,y) : Gradient orientation of sample pixel (x,y)

BINhis : Total number of bins of an orientation histogram

REShis : Resolution of an orientation histogram

GEhis : Total gradient energy of an orientation histogram

H(a) : The magnitude appeared on angle a of an orientation histogram

pk : The k-th peak in an orientation histogram

 xii

sk : The start angle of the k-th peak in an orientation histogram

ek : The end angle of the k-th peak in an orientation histogram

ath : Threshold for the maximum range of a peak in an orientation histogram

E(k) : Energy function for the k-th peak in an orientation histogram

D(k) : Outstanding energy function for the k-th peak in an orientation histogram

()y,xm̂ : Projected gradient magnitude

()y,xl̂
 : Projected length

R(x) : The first gradient projection array

T(x) : The second gradient projection array

()xR
~ : The first gradient projection array after smoothing

()xR̂ : The smoothed gradient projection array after binarization

AGPV(i) : The i-th accumulated gradient projection vector

EC(V) : the edge count of an accumulated gradient projection vector V

C(U, V) : matching cost function of accumulated gradient projection vectors U and V

UV : Union vector of two AGPVs

IV : Intersection vector of two AGPVs

AAT(k) : The k-th axis angle of the test character

AA(i,j) : The angle of the j-th axis of the i-th standard character

NN(i) : The number of nature AGPVs for i-th standard character

NA(i) : The number of augmented AGPVs for i-th standard character

NV(i) : The total number of AGPVs for i-th standard character

VS(i,j) : The j-th standard AGPV of the i-th character

CMC(i) : Character matching cost between test character and the i-th standard one

 - 1 -

Chapter 1 Introduction

The license plate recognition, or LPR in short, has been a popular research topic for several

decades [1]-[3],[19]. An LPR system is able to recognize vehicles automatically so that it is

useful for many applications such as portal controlling, traffic monitoring, stolen car detection,

and etc. Up to now, an LPR system still faces some problems concerning unknown plate size

and orientation, various light condition, unexpected image deformation, and limited

computation time[3].

Traditional methods for recognition of license plate characters often include several stages.

Stage one is detection of possible areas where the license plate may exist. It is a big challenge to

detect the plates quickly and robustly since images may contain far more information than just

only expected plates. Stage two is segmentation, which divides the detected areas into several

regions containing single character candidate. Stage three is normalization; some attributes of

the character candidates, e.g., size or orientation, are transformed to certain values for the

requirements of recognition stage. Stage four is recognition; the feature vectors extracted from

the normalized character candidates can be recognized by technologies such as template

matching[16], vector quantization[4], support vector machine(SVM)[15], or neural

networks[5][6].

The motivation of this work originates from three limitations of traditional LPR systems. The

first limitation is using simple features such as gradient energy to detect possible locations of

license plates. Using these simple features may reduce the complexity of computation but may

possibly lose some plate candidates because the gradient energy will be suppressed due to

camera saturation or underexposure, which often takes place under extreme light conditions

such as sunlight, night view, or shadow. The second limitation originates from assuming correct

 - 2 -

orientations for both camera and license plates so that high gradient pixels in the image can be

expected in the pre-defined direction. In real cases, the license plates may not always keep the

same orientations in the captured images. Nevertheless, they can be rotated or slanted due to

irregular roads, unfixed camera positions, or abnormal conditions of cars. The third limitation

comes from blurred or corrupted characters in license plates, which may fail the LPR process in

detection or segmentation stage. The characteristic is dangerous for application because one

single unclear character may result in loss of whole license plate. Compare to human nature,

people know the position of unclear characters because they see some characters located nearby.

Human try different methods, e.g., change head position or walk closer, to read the unclear

characters, or even guess it if it is still not distinguishable. This nature is not achievable in a

traditional LPR system due to its coarse-to-fine architecture. To retain high detection rate of

license plates under these limitations, the method in this work proposes a fine-to-coarse method

which firstly finds isolated characters in the captured image. Once some characters on a license

plate are found, the entire license plate can be detected around these characters. This method

may consume more computation than the traditional coarse-to-fine method. However, it

minimizes the probability of missing license plate candidates in the detection stage.

A challenge to do the fine-to-coarse method is recognizing isolated characters. There are few

literatures discussing about isolated characters recognition due to several difficulties it has. First,

it is difficult to extract orientation of an isolated character. In traditional LPR systems, the

orientations of characters can be determined by the baseline [3][8] of multiple characters.

However this method is not suitable for isolated characters. Second, the unfixed camera view

angle often introduces geometric deformation on the character shapes or stroke directions. It

makes the detection and normalization process difficult to be applied. Third, the unknown

orientations and shapes exposed under unknown light condition and environment builds a

bottleneck for the isolated characters to be correctly detected and recognized.

 - 3 -

The proposed scheme to extract and recognize license plate characters has procedures as the

following. First, in the extraction stage, the scale-space binarization(SSB) method which

utilizes the difference-of-Gaussian (DOG) functions [9] is used to extract character candidates.

The DOG function has been proven stable against noise, illumination change and 3D view point

change [9]-[14]. The binarization method first localizes the character profiles on DOG image

and then extracts isolated character candidates by means of dynamic threshold propagation and

thresholding. Second, in the deformation correction stage, a voting boundary method is used to

detect the linear boundary of character candidates, which can be used for correcting the

candidates from some possible deformations. Third, in the recognition stage, the novel

accumulated gradient projection vector method(AGPV method) is applied to find out the

accumulated gradient projection vectors (AGPVs) of each normalized character candidate, and

compare the AGPVs with those of standard letters to find the most similar one as recognition

result. Fig. 1-1 shows the functional block of the proposed LPR system. The experimental

results show the feasibility of the proposed method and its robustness to several image

parameters such as noise, character deformation and illumination change.

Fig. 1-1 Functional block diagram of the proposed LPR system

Deformation Correction
(Voting Boundary Method)

Character Candidates Extraction
(SSB)

Recognition
(AGPV Method)

 - 4 -

Chapter 2 Review of Related Works

This chapter briefly describes three important techniques from which this work is

motivated and constructed. First, the methods dealing with recognition of license plate

characters are reviewed. Second, the useful scale-space theory and its most popular

representation, difference-of-Gaussian functions, are discussed. Finally, the most popular

methods doing image binarization are described and compared.

2.1. License Plate Recognition

In traditional LPR systems, there is a detection function in the first step to find possible areas

that license plates may appear. The function often requires high speed feature detection and

therefore is generally focused on simple features such as gradient energy or Harr-like

features[51] in the image. In order to make fast detection, traditional methods often suppose a

fixed camera capture angle and allow a small degree of deviation in plate size and orientation.

On the detected areas, more specific rules are used to accurately localize the entire license plate

and find out the histogram for binarization. Once the plate is binarized, the corresponding

baseline becomes an important reference for characters segmentation and normalization. Based

on the binarized plate image, the segmentation is often done by projecting the TRUE pixels onto

baseline and finding the valley on the projected histogram as segmentation boundaries. For the

segmented characters, the statistical features of them are extracted and fed into a statistical

classifier such as template matching[16], vector quantization[4], support vector

machine(SVM)[15], or neural networks(NN)[5][6], for recognition. The statistical features

include some vectors such as CC(contour-crossing count)[46], PBA(peripheral ground

area)[47], and CS(character shape), that are common used for recognizing license plate

character.

 - 5 -

2.2. Scale Space Theory

The concept of scale space [11] starts from the basic observation that real-world objects are

composed of different structures at different scales. In other words, real-world objects may

appear in different ways depending on the scale of observation. For a computer designed to

detect the existence of an object in an image, it is necessary to consider all the possible scales

that object may appear in the image in order to capture the interested target in the correct scale.

Earlier works such as [12] and [13] have suggested that Gaussian function is the best choice

for scale-space kernel. Also, in [13], the author showed that the difference-of-Gaussian(DOG)

function provides a close approximation to the scale-normalized Laplacian of Gaussian, σ2∇2G,

which was proven by detail experiment in [14] that it produces the most stable image features

compared to a range of other possible image functions.

There are two additional advantages using Gaussian functions as smoothing kernel. First, its

symmetric property makes it practical to decompose the two-dimensional convolution into two

independent single dimensional equations. This greatly reduces the computation and shortens

processing time in computing different scale images. Second, taking the Fourier transform of a

Gaussian function yields another Gaussian function [17]. Consequently, it can be derived that

the successive convolution with Gaussian kernel G(σ2) and G(σ1) is equivalent to convolution

with G(σ3), where

2
2

2
13 σσσ += (1)

Based on (1) and assumed that a Gaussian point spread function (PSF) is used to approximate

the image capturing process[18], it can explain that the blur in input image can be ignored if a

sufficiently large observation scale is chosen since σ3~σ2 if σ2 >>σ1.

 - 6 -

2.3. Image Binarization

The methods for binarization of gray-level images can be divided into two classes: global and

local thresholding. Global thresholding methods generally binarize the image with a single

threshold. In the contrast, local methods change the threshold dynamically over the image

according to local information. The threshold for global methods is often easier to be

determined than that of local methods because it focuses on the entire image. However, global

methods are easily failed when the dealt image contains noise, variable illumination, or

complex background. Local thresholding methods have better adaptability than global ones to

deal with illumination change or complex background, however, it is difficult to decide the

range of local area for threshold determination and yet still sensitive to noise.

Global thresholding methods often calculate the threshold based on histogram analysis [7],

[20]-[21]. Otsu’s method [7] proposed from the viewpoint of discrimination analysis is one of

the most preferred global techniques by investigators. It directly approaches the feasibility of

evaluating the "goodness" of threshold and automatically selects an optimal threshold from the

zeroth- and the first-order cumulative moments of the gray-level histogram. In practice, this

method does not work well for the images with shadows, inhomogeneous backgrounds, and

complex background patterns [22]. It is also discovered in [22] that, a single threshold or some

multilevel global thresholds could not result in an accurate binary image.

Local thresholding methods generally find thresholds by statistical measurement in local

areas [23]-[26] based on the principle that objects in an image provide high spatial frequency

components and illumination consists mainly of lower spatial frequencies [31]. The local

intensity gradient (LIG) method in [23] is one of the most popular local thresholding methods

which first finds the pixels with high intensity gradient as reference of initial threshold, and then

extends the threshold to whole image through region growing method [30]. It uses a

 - 7 -

predetermined window size to calculate the regional gradient means, locates low gradient areas

in the image based on the regional means, and finds edge pixels by comparing pixel’s intensity

gradient with the regional means.

In general, local thresholding methods are, considered from real world situations, more

accurate than global ones. However, they still suffer from two problems that usually make them

unsatisfactory for investigators. First, it is difficult to give a proper size of the “local area”

without prior information in the source image. Second, the methods of this class are usually

more computationally expensive than the other one; it makes the local methods almost

unacceptable for real-time applications.

There are still some hybrid methods to binarize the image by referring to the expected content

within the region of interest (ROI). Typical applications performing hybrid binarization such as

license plate recognition (LPR) or automatic document analysis, often segment the image into

areas and find the areas which are most likely to be ROIs before binarization. Such systems

often have faster speed and higher accuracy than general (global or loca) thresholding methods

but usually require prior information within the ROI for fast detection and binarization. For

example, in the LPR system [3], the author uses Haar-like features in the first step to perform

fast detection and find out the ROI(license plate candidates), and then perform peak-valley

analysis within the ROI for binarization of the license plates candidates. The peak-valley

analysis is referring to the histogram acquired in the ROI and assumes some parameters such as

number of characters, characters scale and orientation are already known. In document

binarization method [28], the input image is firstly segmented into different types ROIs

containing different contents such as characters or graphics or images. And specific binarization

methods are applied within the ROIs based on the characteristics of the type of contents. In

usual, the hybrid methods are not general enough to be applied onto different applications.

 - 8 -

Chapter 3 The Extraction Method

The problem of character extraction is similar to that of object localization [38], where the

largest bottleneck is almost all relevant factors are unknown in the source image, e.g., the scales

of the objects, the condition of illumination, the complexity of the background, and the degree

of blur and noise…, etc. As the scale of observation is closely related to the scale of the

characters in the image, an incorrect observation scale may incorporate undesirable information

and lead to undesirable extraction results [32]. In order to do extraction robustly and efficiently,

we propose a scale-space binarization method, or SSB in short, to extract the characters. The

extraction is started from the smallest observation scale which has best discrimination for

characters sized within a certain range, for example, 16×16 to 64×64. Smaller sizes characters

are discarded because they are most probably caused by noise. For larger sizes characters, a

higher observation scale is preferred to minimize the probability of misinterpretation from noise.

Note that the extraction on higher observation scales can be performed by utilizing the

sub-sampling method to shrink the image size and enlarge the relative observation scale.

The proposed SSB method includes several functional blocks as illustrated in Fig. 3-1. First, a

character profile localization block finds inner and outer profile pixels by applying a global

threshold on difference-of-Gaussian(DOG) image. The DOG function used to generate the

DOG image is proven to have the benefit of enhancing the edges in a digital image while

minimizing the impact of noise [39]. Second, a boundary set is formed by collecting pixels

neighboring to both inner and outer profile pixels. Third, the thresholds are initiated on

boundary set pixels and served as the initial value for dynamic threshold propagation. Fourth,

the dynamic thresholds are propagated from boundary to the remaining pixels in the image.

Fifth, thresholding function compares the dynamic threshold with smoothed gray-level intensity

 - 9 -

to binarize the image. Sixth, connected component analysis is applied to connect pixels into

character candidates, and measure their preliminary features such as width, height and

occupancy for the next stage. Finally, the character candidates are eliminated if their

preliminary features fall beyond reasonable ranges or the profile scores are lower than general

characters. An example on the simulation results of the SSB method is given in Fig. 3-2 for easy

understanding. In the next sections we’ll step by step explain the behavior of each functional

block in detail.

Fig. 3-1 Functional block diagram of the SSB method

3.1. Profile Localization

Profile localization, similar to edge detection, is often applied in the first stage of an image

recognition process to locate pixels as the basis of segmentation or matching. Many operators

can be found in literatures to detect edges or corners in an image, e.g., Sobel operator[40],

Harris detector[41], or Canny detector[42]. Most of them use gradient based detection and

suffer from the difficulties in noise rejection and threshold determination. The extraction

method in this work utilizes the DOG functions so that it minimizes the impact of noise and

Profile localization
(

Determining boundary pixels

Initializing threshold

Dynamic threshold propagating

Thresholding (Binarization)

Eliminate false candidates

Connected component analysis

 - 10 -

makes robust extraction without prior filtering.

Fig. 3-2 An example of the SSB method

The profile localization consists of several steps as in the following procedures. At first, the

gray-level input image, I(x,y), is respectively convolved with two Gaussian functions, g1(x,y)

with deviation σ1 and, g2(x,y) with deviation σ2 to get two Gaussian images, I1(x,y) and I2(x,y).

And the difference of the two Gaussian images, D1(x,y)= I1(x,y) - I2(x,y), is called the DOG

image.

The two standard deviations, σ1 and σ2, of the two Gaussian functions are respectively called

the first and the second observation scale. A smaller observation scale observes more details in

an area but is more sensitive to noise. On the contrary, a larger observation scale is more stable

against noise but may lose significant details of the interested characters or mix the interested

characters with adjacent objects so that the characters become difficult to be extracted. In the

Source image Profile localization
(blue and red: profile pixels)

Determine boundary pixels
(cyan: boundary pixels)

Thresholding

 - 11 -

experiments we set the two scales σ1=1 and σ2= 2 for the profile extraction, which is proven by

experiments a better choice for processing 16×16 to 64×64 character sizes in general 256-step

(8-bit) gray-level images.

In order to deal with larger scale characters with minimum computation time, an efficient

method in Fig. 3-3 is applied by sub-sampling the second blurred image I2(x,y) by every two

pixels on each row and column to form a smaller image I2'(x,y). Then based on I2'(x,y)

calculates the Gaussian filtered image I3(x,y) and their DOG image D2(x,y), and applies the

same procedure again to localize the profile pixels. As a result, the observation scale w.r.t.

D2(x,y) is double to that w.r.t. D1(x,y).

A 2-D DOG function used to extract the characters can be expressed as,

 () 2
2

22

2
1

22

2

2

2

1 2

1

2

1 σσ

σπσπ

yxyx

eey,xDOG

−−−−

−= . (2)

Consider a case that an unit step edge u(x0) exists in parallel to the y-axis(x= x0), the position of

peak response on convolving the unit step edge with a DOG function can be obtained by solving

the differential equation,

 () ()[] 00 =⊗
∂
∂

xuy,xDOG
x

. (3)

Transforming into frequency domain and then taking inverse transform, the solution of (3)

yields equivalent to that of the equation

 () 000 =− ,xxDOG . (4)

Solving (4) to get the positions of the two peak responses at

1

2
2

1
2

2

2
2

2
1

0

2
σ
σ

σσ
σσ

lnxx ⋅
−

±= . (5)

 - 12 -

Fig. 3-3 The procedure to produce DOG Images on different observation scales

A plot by equation (5) in Fig. 3-4 on x0=0 reveals that convolution of a unit step edge with the

DOG function generates two odd-symmetrical peaks beside the unit step edge, i.e., positive

peak A and negative peak B. The most valuable characteristic of the DOG function is that these

peaks are quite stable even if the testing image consists of small undesirable artifacts such as

noise, out-of-focus or variable illumination. Based on this result, the DOG image is divided into

three sets by a fixed global threshold thf and its complementary –thf. The first set, Set1, is

composed of the pixels of D1(x,y) ≥ thf; the second set, Set2, is composed of the pixels of D1(x,y)

≤ -thf; and the third set, Set3, is the superset of the remainder containing the pixels of thf>

D1(x,y)>-thf.

Set1 and Set2 are both called profile sets and have the following representation for easily

D4

I1 I2

I2' I3

I4

I5

I3'

I4'

-

-

-

-

D1

D2

 D3

source Image

G(σ)

G(σ)

sub-sampling

G(σ)

G(σ)

G(σ)

sub-sampling

sub-sampling

 - 13 -

identification according to the way they appear. For characters having lower gray-level intensity

(deeper color) than its nearby background, Set1 is also called the inner profile set because it

spreads interior characters’ boundaries. Similarly, Set2 is also called the outer profile set for the

location it appears. The two profile sets are respectively drawn in Fig. 3-5 in blue and yellow

colors.

The global threshold thf is used for determining whether a change of intensity is caused by

noise or a real edge. Smaller threshold collects more pixels into Set1 and Set2, and takes more

computation time to deal with noise before extracting the characters. It is worth notify that the

lowest threshold for DOG function can be set to thf=0. Although setting threshold to zero

introduces much information generated by noise, it can still retain correct extraction results

because that the energy of noise in the DOG response is automatically suppressed when it

appears near an edge. As a result, it is recommended to set a small threshold, e.g., thf =1, for all

the input images because it ensures reliable results can be persisted with reasonable

computation time regardless of the condition of the input image. Different from some other

gradient operators which would possibly lose some character candidates if a smaller threshold is

given, the only drawback for giving a smaller threshold in DOG function is higher computation

time consumption. From various simulation results we can tell that a wide range of threshold on

DOG images can still provide reliable results on localizing the profile pixels.

Fig. 3-4 An ideal unit-step edge (upper graph) and its DOG response (lower graph)

 - 14 -

When a near-perfect input image like Fig. 3-6(a) is given for binarization, the first step is to

find the corresponding two profile sets from the DOG image as in Fig. 3-6(b). It is worth to note

that the pixels of the inner profile set often appear in a connected group, which is called the

inner profile groups or simply profile groups. As in Fig. 3-6(c), the smallest rectangle covering

the entire profile group is called the bonding rectangle of the profile group. Note that a profile

group often represents the profile of an isolated character in normal case. However, it might

happen that a character is broken into two or more profile groups due to special geometric

distribution or noise or special lighting condition. The broken profile groups will be linked up

by the connected component analysis later on to reveal the original characters.

According to (5), a constant Reff is defined to represent the radius of the effective area of an

edge (intensity change), and

⋅

−
=

1

2
2

1
2

2

2
2

2
12

σ
σ

σσ
σσ

lnceilReff
, (6)

where the function ceil(x) rounds x towards positive infinity. Note that the Reff is the horizontal

distance of AC or BC in Fig. 3-4, or equivalently the radius of the circle of effective range in Fig.

3-5. In addition to the profile sets, a boundary set SetB is formed to represent the boundary of

character candidates. A pixel pb is collected into SetB if it satisfies the following two conditions,

1. Except the zero-crossing pixels, i.e., the position C in Fig. 3-4, or the non-profile pixels in

Fig. 3-5, the pixels inside the effective area of pb belong to either inner or outer profile sets.

2. The total number of pixels belongs to inner profile set and the total number of pixels

belongs to outer profile set inside the effective area of pb are the same.

 - 15 -

Fig. 3-5 Determine boundary pixels

(a) (b) (c) (d) (e)

Fig. 3-6 (a) A perfect sample character image. (b) The DOG responses: positive response in red

and negative response in blue. (c) The inner profile set in red and the bonding rectangle in gray.

(d) Boundary set. (e) Extraction result.

In implementation, consider to discrete pixel coordinate and error tolerance, the pixels of Set1

and Set2 inside the effective area of pb are accumulated into Bin1 and Bin2 respectively, and pb

is collected into SetB if it satisfies the following equations:

()()

<−
−≥+
2

1

21

2
21

*RBinBin

*RroundBinBin

eff

eff π
. (7)

The pixels of SetB make up the boundaries of character candidates as in Fig. 3-6(d) and

become the base of threshold propagating in the next step. Note that the character can be

extracted as in Fig. 3-6(e) after dynamic threshold propagation and binarization.

Effective range

Boundary pixel

Non-Profile pixels

Inner profile pixel (Set1)

Outer profile pixel (Set2)

 - 16 -

3.2. Dynamic Threshold Propagation

In order to solve the global-thresholding problems such as noise, variable illumination, and

complex background, and local-thresholding difficulties such as pre-determining local area size,

and reducing computational complexity, a novel method using dynamic threshold propagation

is proposed in this work.

Before the propagation process, each pixel in the image is assigned a dynamic threshold

initialized to zero. As the process starts, the dynamic threshold on a boundary set pixel is

assigned by looking for the best threshold in its neighboring area. Based on the values assigned

to boundary set pixels, the dynamic thresholds are sequentially propagated to the remaining

pixels through neighboring pixels. As a result, the thresholds detected around boundary pixels

are able to spread out to the entire image so that the interested characters can be figured out by

comparing gray-level intensity with the dynamic threshold pixel-by-pixel.

The first step of dynamic threshold propagation starts from the boundary pixels. For each

boundary pixel (xb, yb), the gradient magnitude of the i-th neighboring pixel (xn(i), yn(i)) inside

the effective area, effa(xb, yb), is calculated. The pixel having maximum gradient magnitude

inside the effective area is selected as the reference pixel (xn_ref, yn_ref). In other words,

() ()bbref_nref_n y,xeffay,x ∈ and () () ()()()iy,ixImaxy,xI nnref_nref_n 11 ∇=∇ , where

|∇I1(xn(i),yn (i))| is the gradient magnitude of the i-th neighboring pixel calculated by Sobel

operators as in [23]. After that, the dynamic threshold of the boundary pixel, denoted as thd(xb,

yb), is assigned by the first Gaussian gray-level of the reference pixel (xn_ref, yn_ref), i.e.,

 () ()ref_nref_nbbd y,xIy,xth 1= . (8)

 - 17 -

Fig. 3-7 Dynamic threshold propagation

The above definition can be viewed in graphical representation as in Fig. 3-7, where the red

pixel is one of boundary set pixels and the blue pixel is the one having maximum gradient

magnitude inside the effective area. The reason for referring to the pixel of maximum gradient

magnitude is based on the discovery that the pixels having maximum gradient magnitude often

appear in the mid point of edges. It is worth to note that the calculation of gradient magnitude is

referring to the first Gaussian image I1(x,y) instead of source image I(x,y) and the second

Gaussian image I2(x,y) because of the following two reasons: First, the condition of noise in the

source image I(x,y) is unknown; the gradient referring to noisy pixels is not meaningful and may

mislead the decision in finding correct threshold. Second, the second Gaussian image gives too

much smoothness on boundary so that it often makes the boundary distorted after thresholding.

As a result, the first Gaussian image is the best choice for gradient magnitude comparison and

dynamic thresholding.

Once the dynamic thresholds of all boundary pixels have been assigned, they are iteratively

propagated to the other pixels through neighboring pixels. For easily explanation, a pixel whose

dynamic threshold has been assigned is called an assigned pixel.

The dynamic threshold propagation is processed by iterations. Let Setb
p denote the set of

pixels ()p
b

p
b y,x whose dynamic thresholds are assigned in the p-th iteration and Seta

p denote the

Effective area

(xb,yb) Boundary pixel

(xn,yn) Neighboring pixels

(xn_ref,yn_ref)
max gradient magnitude

 - 18 -

set of the pixels ()p
a

p
a y,x adjacent to Setb

p in the same iteration. Note that Setb
1 stands for the

boundary set containing assigned pixels ()11
bb y,x and Setb

k = Seta
k-1 for k>1. In the first iteration,

the dynamic thresholds on boundary pixels ()11
bb y,x are propagated to its adjacent pixels()11

aa y,x .

Let () ()()hy,hx aa
11 be the h-th pixel in Seta

1 simultaneously adjacent to m boundary pixels,

denoted as () ()()iy,ix bb
11 , i=1 to m, m can be any number from 1 to 8. The dynamic threshold of

() ()()hy,hx aa
11 is assigned by averaging the dynamic thresholds of all the adjacent boundary

pixels, i.e.,

 () ()() () ()()∑
=

=
m

i
bbdaad iy,ixth

m
hy,hxth

1

1111 1
. (9)

The first iteration ends and the next iteration starts right after all the pixels adjacent to the

boundary pixels have been processed. In a general representation, the relationship for the q-th

iteration is,

 () ()() () ()()∑
=

=
q
jm

i

q
b

q
bdq

j

q
a

q
ad iy,ixth

m
jy,jxth

1

1
, (10)

where () ()()jy,jx q
a

q
a is the j-th pixel in Seta

q and mj
q is the total number of assigned pixels

adjacent to () ()()jy,jx q
a

q
a . The propagation process will not finish until all the pixels become

assigned.

An example of the propagation can be seen in Fig. 3-8. The red pixels in Fig. 3-8(a) are the

boundary pixels with the dynamic threshold initialized according to Eq. (8). The orange pixels

in Fig. 3-8(b) and the yellow pixels in Fig. 3-8(c) are respectively the pixels after first and

second iteration of dynamic threshold propagation.

 - 19 -

(a) (b) (c)

Fig. 3-8 An example of dynamic threshold propagation (a) Boundary pixels (b) Assigned pixels

after first iteration (c) Assigned pixels after second iteration

3.3. Thresholding and Connected Component Analysis

Based on the propagated dynamic thresholds, each pixel is converted into binary form(TRUE

or FALSE) by comparing its Gaussian smoothed gray-level intensity to the own dynamic

threshold. Then the connected component analysis(CCA) is applied to connect the TRUE pixels

into groups named isolated groups.

During the CCA process, the TRUE pixels of each isolated group are divided into two classes

and accumulated into two counters, respectively. The first class is edge pixels, which is adjacent

to at least one FALSE pixel after the CCA and is accumulated into counter CE. The second class

is body pixels, which is the complementary to edge pixels, i.e., all the eight adjacent pixels are

TRUE, and is accumulated into counter CB. The total number of pixels in an isolated group is

denoted CT, CT = CE + CB. For edge pixels, another counter CP is allocated to accumulate the

number of pixels adjacent to Set1 or Set2 pixels in order to give profile score to the isolated

group.

In normal cases as shown in Fig. 3-6, the profile pixels of an isolated character can be

connected into an individual profile group, and the whole character should belong to an

individual isolated group, too. However, it might happen that the profile group is broken into

 - 20 -

segments due to noise or irregular light condition as the example in Fig. 3-9(a)-(d). In this case

the broken profiles can still be extracted into an connected group as in Fig. 3-9(e) after

thresholding and the connected component analysis.

(a) (b) (c) (d) (e)

Fig. 3-9 (a) An imperfect sample character image. (b)The DOG responses: positive response in

red and negative response in blue. (c) The inner profile set in red and the bonding rectangle in

cyan. (d) Boundary set.(e) Extraction result.

3.4. Eliminate False Candidates

There are two stages elimination to filter out the false character candidates in order to

minimize the computational consumption in later stages.

The first stage elimination is based on the geometric features captured by the CCA process.

After the CCA, each isolated group has own preliminary features measured by its bonding

rectangle, i.e., group width W, group height H, group occupancy U (pixel count w.r.t. the

bonding rectangle area), U=CT/(W×H). The groups having abnormal preliminary features are

possibly caused by non-character objects such as noise or background or variable illumination

and are eliminated immediately. For example, large ratio of W to H may represent a long edge or

a thin line in the image; small W and H may be caused by noise or a spot; large U may stand for

a solid object or shadow…, etc. General characters have a typical value for occupancy ranged in

0.3 ≤ U ≤0.8.

The second elimination is based on a quantity that measures from the “goodness” of the

 - 21 -

profiles of each isolated group, namely, the profile score SP. In ideal cases, the edge pixels found

by the CCA should be adjacent to Set1 or Set2 pixels. i.e., CP = CE . However, in real world

images, it is often not the case and most are CP < CE. Therefore, the profile score defined by SP=

CP/CE is calculated for each isolated group to evaluate how much goodness it is from the ideal

case. In our experiments, the isolated groups having SP < 0.8 is eliminated. The remaining

isolated groups form the character candidates and can be used for recognition or other purposes

hereafter.

3.5. Implementation for Fast SSB

Besides a stable and accurate performance, the computational complexity of a binarization

algorithm is also important in evaluating the performance. The demand for low computational

complexity methods is especially strong in a real-time embedded system. In such systems they

require low computational complexity methods for not only speeding up the response to

external events but also reducing the power consumption. Although the computational

complexity of the method presented here is higher than a global thresholding method, a good

implementation can still make it computed efficiently and executed as fast as a global method.

Of course, it is expected to compete with the most local thresholding methods both in accuracy

and speed.

The problems to be discussed here is similar to the optimization in implementation. For the

proposed method, the optimization can be considered from several aspects,

1. Simplify the convolution with Gaussian filter.

2. Use integers instead of floating points.

3. Use shifter to replace multiplier or divider.

4. Use acceleration table for dynamic threshold propagation.

 - 22 -

3.5.1. Optimization in convolution

The convolution with Gaussian kernel takes much computation time because it is directly

propositional to the size of the input image and the Gaussian kernel. Let W denote the width and

H denote the height of the input image, and give a Gaussian kernel sized n×n. To convolve the

input image with the Gaussian kernel, it needs H×W×n² multiplications and H×W×(n²-1)

additions. Due to the symmetrical properties of a Gaussian function, the 2D convolution can be

decomposed into horizontal and vertical direction. For each direction, n×1 dimensional

Gaussian function is used so that H×W×n multiplications and H×W×(n-1) additions is required.

This simplifies the complexity from O(n²) to O(n).

3.5.2. Implement by integers and shifters

In computer systems, integer manipulation is always faster than floating points. Especially,

many computer systems still have no hardware floating point processor and allow only

manipulations by integers. On the other hand, multiplications or divisions often take longer

computation time than simple manipulations such as addition, subtraction, or shifter; it would

be preferred if they can be replaced by shifter for speeding up the computation and making the

algorithm more practical on various grade computer systems. Consider to implement by integer

and shifter in the program, we decide to select the Gaussian kernel as G(x)=G(y)=[1 4 8 4 1]. Fig.

3-10 gives a comparison to the three normalized Gaussian functions: selected Gaussian kernel

in Gau3, ideal continuous Gaussian function(σ=1) in Gau1, and ideal discrete Gaussian

function in Gau2. It shows that the selected Gaussian kernel is close to the ideal discrete

Gaussian function.

 - 23 -

Fig. 3-10 Comparison to three Gaussian functions, Gau1: ideal continuous function, Gau2:

ideal discrete function, Gau3: selected kernel

The advantages of using the selected Gaussian kernel are, first, the coefficients are integers;

second, all the coefficients are 2’s multiples so that the multiplications can be replaced by

shifters. Based on the selected kernel, the convolution for the first Gaussian image I1(x,y) (σ1=1)

can be written as

 () () ()() ()yxy,xy,x GGII ⊗⊗=1 (11)

This can be achieved in program 1,

Where T [x][y] is an intermediate array, I [x][y] is the gray-level intensity on I(x,y) and I1[x][y]

is the Gaussian smoothed gray-level intensity on I1(x,y). The “<<” operator denotes the left

shifter. According to (1), the second Gaussian image I2(x,y) can be obtained by convolving

I1(x,y) with the same Gaussian kernel, i.e.,

 () () ()() ()yxy,xy,x GGII ⊗⊗= 12 . (12)

===
Program1

///
T [x][y]=(I [x-2][y]+I [x+2][y]) + ((I [x-1][y] + I [x+1][y])<<2) + (I [x][y]<<3);
I1[x][y]=(T [x][y-2]+ T [x][y+2]) + ((T [x][y-1] + T [x][y+1])<<2) + (T [x][y]<<3);
===

 - 24 -

The same program1 can be used by substituting I1[x][y] with I2 [x][y] and I [x][y] with

I1[x][y]. Note that the equivalent scale for I2(x,y) is 22 =σ based on equation (1). Finally, for

computing the DOG image, the two Gaussian images must be normalized to the same level.

Therefore, the summation of the Gaussian kernel must be eliminated. The equation is written as

 () () () () ()∑∑ ××−=
yx

yGxGy,xy,xy,x 12 IID . (13)

Since the () () 3241818 =×==∑∑
yx

yGxG and 268 222464256324 ++=++= . As a result, the

program to find the DOG image is implemented as:

It is important to check if the value in each step manipulation exceeds the full range of

integers of a computer system and trim some least significant bits(LSBs) from the operands if

necessary. For a 8-bit gray-level input image, the maximum value of I1(x,y) is 324×256 which

becomes 18-bit signed integers. And the maximum value of I2(x,y) is 324×324×256 which is

extended to 26-bit. For a 16-bit computer system implemented by the proposed method, the

program to calculate I1(x,y) and I2(x,y) can be changed to program 3 to avoid integers overflow.

3.5.3. Use acceleration table for dynamic threshold propagation

The dynamic threshold propagation often runs over ten iterations for a typical input image

===
Program3

//
T [x][y]=((I [x-2][y]+I [x+2][y]) + ((I [x-1][y] + I [x+1][y])<<2) + (I [x][y]<<3))>>2;
I1[x][y]=((T [x][y-2]+ T [x][y+2]) + ((T [x][y-1] + T [x][y+1])<<2) + (T [x][y]<<3)) >> 4;

Y [x][y]=((I1 [x-2][y]+I1 [x+2][y]) + ((I1 [x-1][y] + I1 [x+1][y])<<2) + (I1 [x][y]<<3)) >> 4;
I2[x][y]=(Y [x][y-2]+ Y [x][y+2]) + ((Y [x][y-1] + Y [x][y+1])<<2) + (Y [x][y]<<3) ;

D[x][y]= I2[x][y]- ((I1[x][y]<<4) + (I1[x][y]<<2) + (I1[x][y]>>2));

===

==
Program2

//
D[x][y]= I2[x][y]- (I1[x][y]<<8) - (I1[x][y]<<6) – (I1[x][y]<<2);

==

 - 25 -

sized 640×480. It is very time-consuming if a whole-image scan is performed on each iteration.

Therefore, an acceleration table is used to reduce the time required for propagation.

The acceleration table is composed of two first-in-first-out (FIFO) memories, namely FIFO A

and FIFO B. When the propagation is started from boundary set pixels, the coordinates of the

adjacent pixels that belong to non-boundary pixels, i.e., pixels of Seta
1, are sequentially stored

into FIFO A. After a whole-image scan, all the boundary pixels are visited and the locations for

the adjacent non-boundary pixels are saved. Then, in the second iteration, the propagation starts

from the pixels saved in FIFOA, they become Setb
2 pixels for this iteration. Again, the

coordinates of the pixels adjacent to Setb
2 form Seta

2 and are stored into FIFO B. The process

repeats the same flow and toggles FIFO A and FIFO B by iteration. As a result, only one full

image scan is required for the first time and the computation is greatly reduced by the way.

 - 26 -

Chapter 4 The Deformation Correction Method

In general cases, the license plate characters are often involved with certain degree of

deformation when they are projected into two-dimensional images. The deformation in turns of

mathematics could be composed of any transformation such as rotation, scaling, affine

transform or mixed transformations…, etc. It is difficult to recognize these characters without

correcting the deformation beforehand. In this chapter a novel method is discussed to correct the

extracted characters in the proposed license plate recognition system.

4.1. Useful Properties for Deformation Correction

The extracted character candidates are not suitable for recognition directly because they

probably undergo some geometric transformations such as rotation, affine deformations or

mixed deformation…due to abnormal camera location or capture angle. The method in this

section tries to eliminate the geometric transformations of character candidates and transform

them into normal orientation for stable recognition. Fig. 4-1 shows some typical

transformations from normal plate image in Fig. 4-1(a) such as rotation in Fig. 4-1(b), affine

deformation in Fig. 4-1(c) and mixed deformation in Fig. 4-1(d). Due to the difficulties in

finding invariant reference points, we utilize two useful properties for license plate characters to

eliminate the undergone geometric transformations. The properties may not be sufficient to

make perfect recovery from the deformation; however they can be used to detect the

deformation and correct it in certain degrees to improve the successful rate in recognition.

The first property used for correcting geometric deformation of character candidates is the

baseline. The baseline is an invisible line above which all the characters on a license plate are

aligned. For various geometric deformations such as Fig. 4-1(b)-(d), the baseline can be used to

correct a part of them, e.g., Fig. 4-1(b). However, for some other deformations, e.g., Fig.

 - 27 -

4-1(c)-(d), it needs more information in addition to baseline to correct them for recognition. In

order to correct from these complex deformations, a second property is adopted by referring to

the horizontal boundary lines of each candidate. Unlike the baseline belonging to a group of

character candidates, the horizontal boundary lines are the left and right boundaries belonging

to a single character candidate which can be used to normalize the slant angle of each character

candidate so that it can be changed to a state suitable for feature extraction and recognition.

Before locating the baseline, the character candidates are grouped by their sizes and positions.

The rules of license plates [48] with an acceptable tolerance are used to check if the character

candidates belong to the same license plate. The candidates obeying the rules will be grouped

and considered as a single license plate. For each group of character candidates, a baseline is

expected to exist below and can be found by the following methods.

Fig. 4-1 Typical geometric transformations in LPR systems

(a) Normal Plate (b) Rotational transformation

(c) Affine transformation
(d) Mixed
transformation

 - 28 -

4.2. Voting Boundary Method

The voting boundary method is suitable to find boundary lines of a group of pixels in an

image. It works by assuming many straight line candidates and detecting the best one passing

through most of the edge pixels by voting. The method is in some respects similar to Hough

transform[49] and has the same advantage with it in robust detection. However, it simplifies the

computation from Hough transform by replacing the complex triangular functions with simple

additions and subtractions.

Fig. 4-2 A character candidate and the bottom pixels

Before the voting boundary method, it is required to find the edge pixels in four directions,

respectively top, bottom, left and right boundary pixels. The edge pixels are the most outside

pixels of an image group. For example, the bottom pixels are defined as the set of pixels that

first appear when searching from bottom to top on each vertical pixel line. Fig. 4-2 shows an

example on how to find the bottom pixels, where the gray pixels are grouped by connected

component analysis in the extraction stage and the pixels marked as ‘B’ are the bottom pixels

found according to the definition above. The principle for computing the voting boundary

method starts from similar triangles. Let’s see Fig. 4-3 for example, in the similar triangle pair

∆ABC and ∆ADE, it is known that () cbada ×+=× . Let the line NG be one of the bottom

boundary lines of the pixel groups inside rectangle MNOP and the black circles are the

B

B B B B

B

B B

Direction to find bottom pixels

 - 29 -

corresponding bottom pixels. The distances from the bottom edge, NO to each bottom pixel

are stored in an array BP, where the array has w elements BP[x], x=1 to w. If BP[x] is on the line

NG , then it satisfies

 () []xBPwgx ×=× . (14)

Consider to include error tolerance and rearrange the equation, the BP[x] is on line NG if it

satisfies

() []
() []

−≥×
+<×

rxBPw/gx

rxBPw/gx
, (15)

where the variable r represents thickness of the boundary line and can be adjusted according to

different applications.

Fig. 4-3 Derivation of the voting boundary method

Each boundary pixel is voted into one of the following three sets according to the inequality

pairs: the first set FIT if a boundary pixel satisfies the both inequality, the second set

UNDERFIT if a boundary pixel falls in the range () [] rxBPw/gx +≥× , and the third set

OVERFIT if a boundary pixel meets the condition() [] rxBPw/gx −<× . Let the pixels voted to

set FIT be pi, i=1 to n. The coordinates of pi are respectively (xi, yi) and x1 < x2 < x3 <… < xn. On

d
c

a b A B

C

D

E

N

M P w

O

G

g

x

BP[x]

 - 30 -

each boundary line candidate, the distance of start pixel p1 on coordinate (x1, y1), and end pixel

pn on coordinate (xn, yn), are measured as () ()2
1

2
1 yyxxd nn −+−= and treated as the length

of the boundary line.

The process to vote boundary lines is drawn in Fig. 4-4, where it can be seen that the

computation is very simple because of continuity of the x-axis. Only one division representing

the angle between the boundary line and the x-axis is required at the beginning and few

additions or subtractions are required afterward. After the voting process, the line gets the most

votes in set FIT is assigned to be the true boundary line of the pixel group. Note that the set

UNDERFIT and OVERFIT can be referenced to delete improper character candidates if any

one of them is abnormally large.

Fig. 4-4 Flow chart to vote boundary lines

Assign m = g/w

Initialize x=0, n=0

If n < BP[x]-1
UNDERFIT=
UNDERFIT + 1

If n ≥ BP[x]+1
OVERFIT=
OVERFIT + 1

FIT = FIT +1

n = n + m
x = x+1

If x reach end

End

Yes

Yes

Yes

No

No

No

 - 31 -

4.3. The Correction Method

The method used to find the baseline is first locating the bottom pixels of each character

candidates, and then use voting boundary method to find a line that most bottom pixels pass

through. After finding the bottom pixels of each character candidate, the voting boundary

method is applied to detect the baseline passing though most of the bottom pixels.

Once the baseline is detected, the next step is to correct rotation angles of character

candidates. As discussed above that the characters on a license plate are aligned above the

baseline. If the baseline found by the voting process is rotated, it stands for that all the character

candidates on it are rotated, too. Therefore, the rotation angle of the character candidates can be

recovered to normal position according to the detected baseline. During the recovery process,

each character candidate is rotated and the related preliminary features such as width, height and

occupancy are re-measured for the feature extraction in next stage.

For each recovered single character candidate, the voting boundary method used to find

baseline of multiple characters is applied again to find the horizontal boundary lines of each

single character candidate. While something different from the former, the conditions for

detecting horizontal boundary lines are adjusted for different characteristics of single characters.

After the voting boundary process, the true boundary line is selected according to the following

two rules: First, the number of votes to set UNDERFIT must be zero. It stands for that all the

edge pixels must lay inside the boundary lines. Second, instead of referring to the number of

votes in set FIT, the length of boundary line is referred as the key factor to select true boundary

line. The length of a boundary line is defined as the length from the first edge pixel to the last

one in set FIT. The boundary line candidate of longest length is selected as the true boundary

line if its length is longer than a pre-defined threshold. For some characters containing curvature

boundaries, the thickness r in (15) can be adjusted to retain accurate results. A typical choice for

 - 32 -

32×32 size characters is r=2.

Based on the left and right boundary lines, each candidate is adjusted to balance the left and

right boundary. Fig. 4-5 shows an example on how to adjust a deformed character based on the

detected boundary lines; Fig. 4-5(a) is the source character and Fig. 4-5(b) is the character after

adjustment, say, adjusted character. Rectangle ABCD and A′B′C′D′ are respectively the

rectangular borders of the source character and adjusted character. w and w′ are the widths of the

characters before and after adjustment. The character height, h, is unchanged after the

adjustment. Node1 to node4 are left edge pixels and node5 to node8 are right edge pixels.

Node1 and node4 are respectively the start pixel and end pixel of the left boundary line. Node5

and node7 are of the right boundary line. Our target is to arrange the left and right boundary

lines symmetrically, i.e., any two pixels having the same y-coordinate on left and right boundary

line have the same distance to the outer rectangular left and right borders. Once the deformation

is corrected, the characters candidates are then passed to next stage for recognition.

(a) (b)

Fig. 4-5 Compensation of geometric deformation

 - 33 -

Chapter 5 The Recognition Method

After deformation correction, a novel method named accumulated gradient projection vector

method, or AGPV method in short, is applied to recognize the extracted character candidates.

5.1. Why AGPV

When dealing with detection or recognition of characters, edge/line is a basic component

that could never be ignored. Straight edges have simple representation and stable characteristic

that make them easier detected than any other attributes in an image.

There are numerous methods of edge detection can be found in literatures[16]-[20], among

which Hough transform [16] is well-known for its stable and reliable performance. However,

Hough transform is also famous for the expensive cost on computation and memory

consumption. Although some methods [21][22] are proposed to improve the speed and reduce

memory consumption of Hough transform, sometimes it is still insufficient in consideration of

accuracy for some applications. In our study, Hough transform provides an important concept to

us that stable performance can be achieved by means of accumulation.

In this work we propose a novel accumulated gradient projection method for detection of

edges. The new method adopts the same concept as Hough transform to accumulate the pixels

of similar attributes in order to achieve stable and reliable result. Besides, two more concepts

are included to guarantee the reliability of the method. First, the new method projects the pixels

of similar gradient orientations onto an axis which is chosen parallel to the majority of these

gradient orientations. In general cases the gradient orientations of edge pixels are perpendicular

to the direction of the edge. The projection method achieves the best accuracy of measuring

since the edges are measured from their perpendicular direction. Second, instead of referring to

pixel intensity which might be sensitive by illumination change, the new method accumulates

 - 34 -

the gradient magnitudes which are relatively more stable against illumination change. Besides,

the result is also stable against noise because it refers to the majority of accumulation and

minimizes the effect of random distributed noise.

5.2. The AGPV Methods

There are four stages to recognize a character using the AGPV method. First, determine the

axes; including the nature axes and augmented axes. Second, calculate the AGPVs based on

these axes. Third, normalize the AGPVs for comparing with standard ones. Fourth, match with

standard AGPVs to validate the recognition result. The procedure will be explained in detail in

the following sections.

5.2.1. Determine Axes

When discussing about the AGPV method, it is important to introduce an essential property,

axes, in advance. An axis of a character is a specific orientation on which the gradients of

grouped pixels are projected and accumulated to form the desired feature vector. An axis is

represented by a line that has the specific orientation and passes through the center of gravity

point of the grouped pixels. The axes of a character can be separated into two different classes

named nature axes and augmented axes. The two classes are different in characteristics and

usages and will be described below.

5.2.1.1. Build up Orientation Histogram

The first step of the AGPV method is to build up the corresponding orientation histograms of

the character candidates. The orientation histograms are formed from gradient orientations of

grouped pixels. Let γ(x,y) be the intensity value of sample pixel (x,y) of an image group I, the

gradients on x-axis and y-axis are respectively,

() () () () ()() () ()
() () () () ()() () ()11111121111

11111121111

−+−+++−−+×+−−−+−=∇
+−−+++−−+×+−−−−+=∇

y,xy,xy,xy,xy,xy,xy,xY

y,xy,xy,xy,xy,xy,xy,xX

γγγγγγ
γγγγγγ

, (16)

 - 35 -

the gradient magnitude, m(x,y), and orientation, θ(x,y), of this pixel is computed by

() ()() ()()
() () ()()y,xX/y,xYtany,x

y,xYy,xXy,xm

∇∇=

∇+∇=
−1

22

θ
, (17)

By assigning a number BINhis in the orientation histogram, the gradients are accumulated into

BINhis bins and the angle resolution is REShis =(360/BINhis). The BINhis is chosen as 64 in the

experiments and the angle resolution REShis is therefore 5.625 degrees. Each sample added to

the histogram is weighted by its gradient magnitude and accumulated into the two nearest bins

by linear interpolation. Besides the histogram accumulation, the gradient of each sample is

accumulated into a variable GEhis which stands for the total gradient energy of the histogram.

5.2.1.2. Determine the Nature Axes

The nature axes is essential for the AGPV method; the word “nature” is used because the

axes always exist “naturally” regardless of most environment and camera factors that degrade

the recognition rate. The nature axes have several good properties helpful for the recognition.

First, they have high gradient energy on specific orientation and therefore are highly detectable

in the input image. Second, the angle differences among the nature axes are invariant to image

scaling and rotation. It means, they can be used as references to correct the unknown rotation

and scaling factors on the input image. Third, the directions of nature axes are robust within a

range of focus and illumination differences. Fourth, although some factors, such as different

camera view angle, may cause character deformation and change the angle relationship among

the nature axes, the detected nature axes are still useful to filter out the dissimilar ones and

narrow down the range of recognition results.

The nature axes are determined by performing peak-valley analysis on the orientation

histogram. A peak on the orientation histogram represents a specific orientation in the character

candidate. Let function H(a) denote the histogram magnitude appeared on angle a; the k-th peak,

 - 36 -

pk, of the orientation histogram is located by seeking the angles satisfying

H(pk)> H(pk -1) and H(pk)> H(pk +1)

Beside the center of the peak, the two boundaries named start angle sk and end angle ek, within

an angle difference to pk less than ath are found by the following equations,

() () ()kthkk p,apb,bHaH,as −∈∀≤= (18)

() () ()thkkk ap,pb,bHaH,ae +∈∀≤= (19)

The threshold ath is used to guarantee the boundaries of a peak stay nearby of its center and is

defined to be 22.5 degrees in the experiment. The reason to choose ±22.5 degrees threshold is

because it segments a 360-degree circle into 8 orientations; which is similar to human eyes since

we often see a circle in 8 octants

Once the start angle and end angle of a peak is determined, an energy function standing for

the gradient energy of the k-th peak is defined as() ()∑
=

=
k

k

e

sa

aHkE . In addition, an outstanding

energy function D(k) is also defined for each peak,

() () () ()() ()

2
kkkk seeHsH

kEkD
−×+

−=
 (20)

The outstanding energy neglects the energy contributed by neighboring peaks and is more

meaningful than E(k) to represent the distinctiveness of a peak. Peaks with small outstanding

energy are not considered as nature axes because that they do not outstand from the neighboring

peaks and may not be detectable in new images.

In the experiments, there are different strategies to threshold the outstanding energy for

training and recognition. In training phase, we select one perfect image for each character; it is

called standard character image and is assigned to be the standard of the recognition. The most

 - 37 -

important task in this phase is finding stable peaks in the standard character image. Therefore, a

higher threshold GEhis/32 is applied and a peak has outstanding energy higher than the threshold

is considered as a nature axis of the standard character image. In recognition phase, the

histogram may have many unexpected factors such as noise, focus error, variable

illumination…, so that the task is changed to find one or more matched candidates for further

recognition. Therefore, a lower threshold GEhis/64 is used to filter out the dissimilar ones by the

outstanding energy. After threshold check, the peaks whose outstanding energy higher than the

threshold is called nature peaks of the character image and the corresponding angles are called

the nature axes. Typical license plate character images (alphabet and numerical) can be found

having two to six nature axes by the procedures above.

Fig. 5-1 is an example to show the nature axes. Fig. 5-1(a) is the source image, where

intensity is ranged from 0(black) to 255(white). Fig. 5-1(b) is the corresponding orientation

histogram which are accumulated from the pixels intensity in Fig. 5-1(a). Fig. 5-1(c) overlays

the source image with the detected nature axes shown by red arrows. We can see six peaks in the

histogram, marked as A,B,C,D,E and F respectively, which correspond to the six red arrows in

Fig. 5-1(c).

(a) (b) (c)

Fig. 5-1 (a) Input image (b) Orientation histogram (c) The nature axes

5.2.1.3. Determine the Augmented Axes

 - 38 -

Augmented axes are defined, as augmentations to nature axes, to be the directions on which

the generated feature vectors, AGPVs, are unique or special to represent the source character.

Unlike the nature axes possessing strong gradient energy on specific orientation, augmented

axes do not have this property so that they may not be observed from orientation histogram.

Some characters have only few (one or two) apparent nature axes such as the example in Fig.

5-2. Therefore, it is necessary to generate enough AGPVs on augmented axes for reliable

recognition. The experiments tell us that it needs at least four AGPVs in order to recognize a

character in a high successful rate. The four AGPVs can be any one from nature axes AGPVs or

augmented axes AGPVs. More augmented axes can be declared to refine the recognition result

if four AGPVs are not enough to distinguish a character from similar characters. From the

experiment results we know that good recognition rate can be achieved for license plate

characters by at most six AGPVs.

The augmented axes can be defined by character shapes or by fixed directions. In our

experiments, there are only four fixed directions, as the four arrows in Fig. 5-2(c), defined as

augmented axes for the total 36 characters. It is not meaningful to declare an augmented axis on

a character if it already exists in the nature axes. Therefore, if any one of the four directions

already exists in the nature axes, it will not be declared any more in the augmented axes.

(a) (b) (c)

Fig. 5-2 (a) A character that has only one nature axis. (b) Orientation histogram. (c) The

nature axes in red arrow and three augmented axes in blue arrows.

 - 39 -

5.2.2. Calculate AGPVs

Once the axes of a character are determined, the next step is to calculate the accumulated

gradient projection vectors(AGPVs) based on these axes. On each axis of corresponding peak pk,

the gradient magnitudes of pixels whose gradient orientations fall inside the range

() kk ey,xs << θ are projected and accumulated. The axis could be any one in the nature axes or

augmented axes.

5.2.2.1. Projection principles

The projection axis, ηφ, is chosen from either nature axes or augmented axes with positive

direction φ. Fig. 5-3 figures out the projection of sample pixel (x, y) and the center of gravity

(COG) point of an object.

Fig. 5-3 Gradient projection of COG point and any other pixels

Let the (xcog, ycog) be the COG point of the input image, i.e.,

()

()

×=

∑

∑

=

=
N

i
i

N

i
i

cog

cog

y

x

Ny

x

1

11
, (21)

 - 40 -

where (xi, yi) is the i-th pixel and N is the total number of pixels of a character candidate. Let the

function A(x,y) denote the angle between pixel(x,y) and the x-axis, i.e.,

()

=
x

y
tanay,xA . (22)

The process of projecting a character onto axis ηφ can be decomposed into three operations.

First, rotate the character by angle ()()φθ −=∆ cogcog y,xA . Second, scale the rotated pixels by a

projection factor cos(∆θ). And third, translate the axis origin to the desired coordinate. Apply

the process on the COG point, the coordinate of COG point after rotation is

() ()
() ()

⋅

∆∆
∆−∆

=

cog

cog

rcog

rcog

y

x

cossin

sincos

y

x

θθ
θθ

. (23)

Scaling by a projection factor cos(∆θ), it becomes

()
()

⋅

∆
∆

=

rcog

rcog

pcog

pcog

y

x

cos

cos

y

x

θ
θ

0

0
. (24)

Finally, combine (23) and (24) and further translate the origin of axis ηφ to (xηori, yηori), the final

coordinate (xproj, yproj) of projecting any sample pixel (x,y) onto axis ηφ is computed by

() () ()
() () ()

+

−

⋅

∆∆∆
∆∆−∆

⋅=

ori

ori

pcog

pcog

proj

proj

y

x

y

x

y

x

coscossin

cossincos
y

x

η

η

θθθ
θθθ

2

2

. (25)

Note that the origin of axis ηφ, (xηori, yηori), is chosen to be the COG point in the experiments,

i.e., (xηori, yηori)= (xcog, ycog), because it concentrates the projected pixels around the origin (xcog,

ycog) and minimizes the axis length to accumulate the projected samples.

 - 41 -

5.2.2.2. Gradient projection accumulation

In this section, the pre-computed gradient orientation and magnitude will be projected onto

specific axes then summed up. Only sample pixels of similar gradient orientations are projected

onto the same axis. As the example in Fig. 5-4, an object O is projected onto axis η of angle

0-degree. In this case, only the sample pixels of gradient orientations θ(x,y) near 0-degree will

be projected onto η and then accumulated.

Fig. 5-4 Accumulation of gradient projection

According to axes types, there are two different cases to select sample pixels of similar

orientations. For nature axis corresponding to k-th peak pk, the sample pixels with orientation

θ(x,y) ranged inside the boundaries of the pk, i.e., sk < θ(x,y) < ek, are projected and accumulated.

For augmented axis with angle φ, the sample pixels with gradient orientations θ(x,y) ranged by

θ(x,y)≥ φ-22.5 and θ(x,y)≤ φ+22.5 will be projected and accumulated. From (17) and (25), the

projected gradient magnitude, ()y,xm̂ , and the projected distance, ()y,xl̂ of sample pixel (x,y)

onto axis ηφ are respectively

() () ()()φθ −×= y,xcosy,xmy,xm̂ , (26)

 - 42 -

and

() () ()22
pcogprojpcogproj yyxxy,xˆ −+−=l . (27)

To accumulate the gradient projections, an empty array R(x) is created with length equals to the

diagonal of the input image. Since the indexes of an array must be integers, linear interpolation

is used to accumulate the gradient projections into the two nearest indexes of the array. In

mathematical representations, let b=floor(()y,xl̂) and u=b+1, where floor(z) rounds z to the

nearest integers towards minus infinity. For each sample pixel (x,y) on input image I, do the

following accumulations,

() () () ()()y,xˆuy,xm̂bRbR l−×+= ; () () () ()()by,xˆy,xm̂uRuR −×+= l . (28)

Besides R(x), a second array, T(x), is also created to collect overall information required for

normalization. There are two differences between R(x) and T(x). First, unlike R(x) targeting on

only the sample pixels of similar orientation, T(x) targets on all the sample pixels of a character

and accumulates their gradient magnitudes. Second, R(x) accumulates the projected gradient

magnitude ()y,xm̂ , while T(x) accumulates the original gradient magnitude m(x,y). Referring to

eq.(28),

() () () ()()y,xˆuy,xmbTbT l−×+= ; () () () ()()by,xˆy,xmuTuT −×+= l . (29)

The purpose of T(x) is to collect the overall gradient information of the interested character

candidate for normalizing array R(x) into desired AGPV.

5.2.2.3. Normalization

The last step to find out the AGPV of an axis is to normalize the gradient projection

 - 43 -

accumulation array R(x) into a fixed-length vector. With the fixed length, the AGPVs have

standard dimensionality and can be compared with standard AGPVs easily. Before the

normalization, the length of AGPV, LAGPV, has to be determined. Depends on the complexity of

recognition targets, different length of AGPV may be selected to describe the distribution of

projected gradients. In our experiments, the LAGPV is chosen as 32. A smaller LAGPV lowers the

resolution and degrades the recognition rate while a larger LAGPV slows down system

performance and makes no significant difference on recognition rate. It is worth to note that,

one AGPV formed upon an axis is independent from the other AGPVs formed upon different

axes. This is important to make the AGPVs independent from one another regardless of the

source character and axes.

In order to avoid the impact of isolated sample pixels which are mostly caused by noise, the

array R(x) is filtered by a Gaussian filter G(x):

() () ()xG*xRxR
~ = , (30)

where the operator * stands for convolution operation. The variance of the G(x) is chosen as σ

=(LenR)/128 in the experiments, where LenR is the length of R(x). It is found that this choice

benefits in both resolution and noise rejection. Similarly, the array T(x) is also filtered by the

same Gaussian filter to eliminate the effect of noise. After Gaussian filtering, the array T(x) is

analyzed to find effective range, the range in which the data is effective to represent a character.

The effective range starts from index Xs and ends in index Xe, defined as

() (){ }sTTsss xxthxT;thxT,xX <∀<≥= , , (31)

and

() (){ }eTTeee xxthxT;thxT,xX >∀<≥= , , (32)

 - 44 -

where the threshold thT is used to discard noise and is chosen as thT =Max(T(x))/32 in the

experiment. The effective range of R(x) is assigned to be the same as the effective range of T(x),

from Xs to Xe.

As mentioned previously, the gradient projection accumulation results in a large sum along a

straight edge. This is a good property if the interested character is composed of straight edges.

However, some characters may consist of not only straight edges but also some curves and

corners which only contribute small energy on array R(x). In order to balance the contribution of

different types of edges and avoid the disturbance from noise, a threshold thR is used to adjust

the content of array R(x) before normalization,

() ()
()

≥
<

=
R

R

thxR
~

,

thxR
~

,
xR̂

 if 255

 if 0
, (33)

After finding the effective range and adjusting the content of array R(x), the accumulated

gradient projection vector(AGPV) is defined to resample from ()xR̂ ,

() ()

 +−×

= sse XXX
i

roundR̂iAGPV
32

. (34)

Fig. 5-5 gives an example of the gradient accumulation array T(x), gradient projection

accumulation array R(x) and normalized AGPV. The example uses the same test image as Fig.

5-1 and displays only one of the nature axes, axis E. Similar to the method of finding the peaks

of orientation histogram, the k-th effective peaks, epk, on R(x) is defined as R(epk)> R(epk -1)

and R(epk)> R(epk +1). It can be observed that four effective peaks exist in Fig. 5-5(c) and each

of them represents an edge projected onto axis E in Fig. 5-1(c).

5.2.3. Matching and Recognition

This section describes how to apply the AGPV method to recognize the extracted character

 - 45 -

candidates, or say, test characters, in three aspects. First, the standard AGPV database is

collected to be the standard templates for matching with test characters. Second, three

properties used in the matching process are discussed. Third, the methods to match the AGPV

of a test character with standard AGPVs.

5.2.3.1. Create standard AGPV database

A standard database is created by collecting all the AGPVs extracted from characters of

standard parameters: standard size, standard aspect ratio, no noise, no blur, and neither rotation

nor deformation. The extracted AGPVs are called standard AGPVs and stored by two

categories: the one calculated on nature axes is called the standard nature AGPVs and the other

calculated on augmented axes is called the standard augmented AGPVs. Let the number of total

standard characters be N, N=36(0~9 and A~Z) for license plate characters in this paper. Denote

the number of standard nature AGPVs for i-th standard character as NN(i), the number of

standard augmented AGPVs as NA(i), and the total number of AGPVs as NV(i), where NV(i)=

NN(i)+ NA(i). The j-th standard AGPV of the i-th character is denoted as VS(i,j), where j=1 to

NV(i). Note that VS(i,j) are standard nature AGPVs for j≤NN(i) while VS(i,j) are standard

augmented AGPVs otherwise.

5.2.3.2. Properties used for matching

Unlike general vectors matching problem directly referring to the RMS error of two vectors,

the matching of AGPVs refers to special properties which are derived from their physical

meanings. There are three properties useful for similarity measuring between two AGPVs.

 - 46 -

(a) (b)

(c) (d)

Fig. 5-5 (a) Gradient projection on axis D. (pink: COG point; red: axis D; cyan: selected

sample pixels; blue: projected samples) (b) The gradient accumulation array T(x) with distance

to the COG point. (c) The gradient projection array R(x). (d) Normalized AGPV.

The first property used for similarity measuring between two AGPVs is that each peak in an

AGPV represents an edge on the source character. The number of peaks, or say the edge count,

is useful to represent the difference between two AGPVs. For example, there are four peaks on

the extracted AGPV in Fig. 5-5(d) and each of them represents an edge on the axis. The edge

count is invariant no matter how the character exists in the input image. In this paper, a function

EC(V) is defined to calculate the edge count of an AGPV V by the following algorithm,

===== Algorithm 1: Count the number of edges in an AGPV ======

ec=0;

 - 47 -

for i=1 to (size(V)-1)

 if(V(i)==0 and V(i+1) >0)

 ec=ec+1;

 end

end

EC(V)=ec;

============= end of formula 1 =====================

The second property used for similarity measuring between two AGPVs is that although the

edge count in an AGPV is invariant for the same character, the position of the edges could be

varied if the character is deformed. This is the major reason to explain why the RMS error is not

suitable to measure the similarity between two AGPVs. In order to compare AGPVs under the

cases of character deformation, a matching cost function C(U, V) is calculated to measure the

similarity between AGPV U and AGPV V, expressed as,

() () () () () () ()VIVVUVVUVU ECECECECECEC,C −+−+−= , (35)

where VUUV ∪= is the union vector of AGPV U and AGPV V while VUIV ∩= is the

intersection vector of them. UV and IV are calculated by the following formulas:

===== Formula 2: calculate union vectors of two AGPVs======

for i=1 to 32

 if(V(i)>0 or U(i) >0)

 UV(i)=1;

 else

 UV(i)=0;

 end

end

============= end of formula 2=================

 - 48 -

===== Formula 3: calculate intersection vectors of two AGPVs ======

for i=1 to 32

 if(V(i)>0 and U(i) >0)

 IV(i)=1;

else

 IV(i)=0;

end

end

============= end of formula 3==================

The third property used for similarity measuring between two AGPVs is that the angular

relationships of nature axes on the test character are similar to those on the corresponding

standard character. In the experiment, a threshold thA=π/32 is used to check if the AGPVs of the

test character match the angular relationship of nature axes of a standard character. Let AAT(k)

be the k-th axis angle of the test character, the function AA(i,j) denote the angle of the j-th axis of

the i-th standard character, 0≤AA(i,j)<2π, for i=1 to 36, j=1 to NV(i). If the m-th and n-th axis of

the test character are respectively corresponding to the g-th and h-th axis of the i-th standard

character, then

() ()() () ()() ATT thh,iAAg,iAAnAAmAA ≤−−− . (36)

A typical example can be seen by comparing Fig. 5-5 and Fig. 5-6 that the characters in Fig.

5-5(a) and Fig. 5-6(a) are the same but differs in blur index. Let the extracted AGPV in Fig.

5-5(d) be U and the one in Fig. 5-6(c) be V. From algorithm 1, the edge count of the associated

vectors are respectively, EC(U)=4, EC(V)=3, EC(UV)=3, EC(IV)=4. From the definition of

matching cost in (35),

 - 49 -

() () () () () () ()
2343334 =−+−+−=

−+−+−= VIVVUVVUVU ECECECECECEC,C

(a) (b)

(C)

Fig. 5-6 An example comprising different blur index with Fig. 5-5 (a) Gradient projection

on axis D. (pink: COG point; red: axis D; cyan: selected sample pixels; blue: projected samples)

(b) The gradient projection array R(x). (c) Normalized AGPV.

5.2.3.3. Matching of characters

In order to recognize the test character, the AGPVs of the test character is stage-by-stage

compared with the standard AGPVs in the database. Moreover, a candidates list is created by

including all the standard characters at the beginning and remove the standard characters those

have high matching cost to the test character on each stage. Until the end of the last stage, the

 - 50 -

candidate in the list consisting of the lowest total matching cost is considered as the recognition

result.

Stage 1: Find the fundamental matching pair. Calculate the cost function between the test

character and the j-th AGPV of the i-th standard character.

() () ()()j,i,kCj,kC ST VV=1 (37)

Find a pair of axes whose matching cost is the minimum. Let kT and js be the pair of axes

respectively on the test character and i-th standard character

() ()()j,kCminargj,kpair
j,k

1=ST ; (38)

If C(kT, jS) is less than a threshold thF, the i-th standard character is kept in the candidates list

and the pair(kT, jS) is served as the fundamental pair of the candidate.

Stage 2: Find the other matching pairs between the standard AGPVs and the test character:

Based on the fundamental pair, the axes angles of the test character are compared with those of

the standard character. Let the number of nature AGPVs detected on the test character be NNT.

For the i-th standard character, create an empty array mp(j)=0, 1≤j≤ NV(i), to denote the

matching pair with the test character. Taking use of eq(36), calculate

() ()() () ()() ASTTT thj,iAAj,iAAkAAkAA ≤−−− ; [] TT kk,NN,k ≠∈∀ 1 ;

()[] Sjj,iNN,j ≠∈∀ 1 (39)

the k-th test AGPV satisfies (39) is called the j-th matching pair of the standard character,

denoted as mp(j)=k. Note that there might be more than one test AGPVs satisfying (39). In this

case only the one of lowest matching cost is recognized as the j-th matching axis and the others

are ignored.

Stage 3: Calculate total matching cost of standard nature AGPVs: Define a character

 - 51 -

matching cost function CMC(i) to measure the similarity between test character and the i-th

standard character by summing up the matching costs of all the matching pairs,

() ()() ()()
()

()

∑
>=

=
iNN

jmp,j
ST j,i,jmpMCiCMC

01

VV (40)

Stage 4: Calculate the matching costs of augmented AGPVs: At the first step, find the axis angle

AX on the test character corresponding to the j-th standard augmented axis as

() ()() ()TTS kAAj,iAAj,iAAAX +−= (41)

If there is one AGPV of the test character, say, the k-th nature AGPV satisfying (39), i.e.,

()() AT thAXkAA ≤− , then the k-th nature AGPV is mapped to the j-th augmented axis and

mp(j)=k. Otherwise, the AGPV corresponding to the j-th standard augmented axis must be

calculated based on the axis angle AX. After that, the matching costs of the augmented AGPVs

are accumulated into the character matching cost function as,

() ()() ()()
()

()

∑
+=

=
iNV

iNNj
ST j,i,jmpMCiCMC

1

VV (42)

Stage 5: Recognition: Due to the different number of AGPVs for different standard character,

the character matching cost function is normalized by the total number of standard AGPVs, i.e.,

() () ()iNV/iCMCiCMC = (43)

Finally, the test character is recognized as the h-th standard character of the lowest matching

cost if the character matching cost CMC(h)<thR.

 - 52 -

Chapter 6 Experimental Results

The experiments are designed in two aspects to respectively test the feasibility and

performance of the two novel methods proposed in this work. The first aspect is focused on the

extraction function, where the proposed scale space binarization method is compared with two

popular binarization methods on several properties. The second aspect is the recognition

function, where the proposed AGPV method is compared with traditional method, too, to show

the performance.

6.1. Scale-Space Binarization Method(Extraction) Test

The experiments to test the scale-space binarization method are divided into three parts. The

first one is feasibility test which is held in order to prove the feasibility of proposed method

under various environments and light conditions. Two well-known binarization methods,

Otsu’s method [1] (global thresholding) and the local intensity gradient method (LIG) [5], (local

thresholding) are compared with the proposed method.

The second experiment is reliability test. We respectively add different levels of noise and

illumination into the test images and re-measure the extraction result. Similarly, the results of

using Otsu’s method and the LIG method are compared as well.

The final experiment on the binarization method is the computation time test. We record the

computation time for the three different methods on a Pentium-M machine running 1.5GHz and

compare their performance.

6.1.1. Feasibility Test

The test images are captured from various environments containing license plates captured

from different orientation and distances. Totally 54 images are converted into 8-bit gray-scale

images and resampled to 640×480 pixels. Two sample images and their simulation results are

 - 53 -

shown in Fig. 6-1 and Fig. 6-2. Two popular gray-level image binarization methods, Otsu’s

method and LIG, are compared with the proposed method. From the simulation results, we can

see that the proposed SSB method perform better binarization results than the two prior

methods. It is worth to note that, the Otsu’s method is convenient in implementation but often

failed in the images containing complex background; the LIG method performs nicely around

edges but failed to identify the interior of characters.

6.1.2. Reliability Test

Different levels of noise and illumination are added into the test images and the true positive

rate (TPRE), i.e., the rate that the true characters are extracted successfully in the test image, is

measured. The subscript E is for extraction, used for distinguishing from the true positive rate of

recognition TPRR where the true characters are recognized successfully in the test image. A

character is considered as successfully extracted if it is isolated from external objects and the

grouped pixels can be recognized by human eyes.

6.1.2.1. Quantization noise analysis

The first factor affects TPRE is quantization noise. We respectively add 6 levels (0.8%, 1.6%,

3.2%, 6.4%, 12.8%, 25.6%) noise into each pixel, where the 0.8% noise level is equivalent to

add 1 or -1 randomly into each 8-bit gray-level pixel; 1.6 % is equivalent to add 2 or -2 into

each pixel… 25.6% is equivalent to add 32 or -32 into each pixel. The images after adding 12.8

% and 25.6% noise are shown in Fig. 6-3. The simulation results are shown in Table I, where the

TPRE is ranged from 0 to 100; TPRE =50 represents half(27) license plates on the 54 images are

successfully extracted.

From the simulation result in Table I, it is obvious that the proposed method (scale-space

binarization, SSB) performs better than the other two methods when the input image is

corrupted with noise. In addition, a conclusion can be derived from the simulation that the TPRE

 - 54 -

of binarization is closely related with characters sizes. The bigger the character size is, the

higher the TPRE is.

6.1.2.2. Illumination analysis

Illumination is another important factor to binarization of images. In order to test the

robustness of the proposed method to illumination change, four directional light sources L1 to L4

are added in the test images to imitate the responses under different illumination. The gray-level

intensity of the three test images are multiplied by the following four directional light sources.

() () ()()
() ()() ()()
() ()() ()()
() () ()() ()()k

k

k

k

WH/yHxWk,y,xL

WH/yHxk,y,xL

WH/yxWk,y,xL

WH/yxk,y,xL

1010

1010

1010

1010

4

3

2

1

+++−+−=

+++−+=

++++−=

++++=

, (44)

where the W and H are respectively the width and height of the test image and k is the decay

curve of the directional light sources. Fig. 6-4 shows the number one image exposed under

L1(x,y,k) with 3 different decay curves k=1,2,4. The simulation is executed by changing decay

curve k and considered as successful if the characters exposed under the four directional lights

can be extracted and recognized by human eyes.

TABLE II.
TPRE BY ILLUMINATION ANALYSIS

Illumination

decay curve

K=1 K=2 K=3 K=4

SSB 93 93 86 74

Otsu’s 32 5 0 0

LIG 89 87 54 38

TABLE I
TPRE BY QUANTIZATION NOISE ANALYSIS

Noise

level

0.8% 1.6% 3.2% 6.4% 12.8% 25.6%

SSB 94 94 94 92 90 82

Otsu’s 83 81 75 62 53 32

LIG 89 87 85 78 63 47

 - 55 -

It is evident in Table II that local thresholding methods(SSB, LIG) are better than global

one(Otsu’s), and among them the SSB method is better than LIG under different illumination.

6.1.3. Computation time test

The three binarization methods are implemented by C-language and executed in a Pentium-M

machine running 1.5GHz. The computation times required for binarizing the test images are

measured and the averages of them and the corresponding frame rates are recorded in TABLE

III. Note that the computation time measured doesn’t include the connected component analysis

because the comparison is focused on binarization only.

From table III, we can see the SSB performs faster than the LIG (local thresholding) while

still slower than the Otsu’s method (global thresholding). Actually many binarization methods

require pre-processings such as smoothing filtering in order to ensure the noise are minimized

before binarization. We can see this from the earlier results of quantization noise analysis. The

SSB method here already incorporates two stages pre-smoothing by Gaussian filter. Therefore,

the time differences required for SSB and Otsu’s method may be smaller than that in table III

when the preprocesssings are taken into account.

TABLE III
COMPUTATION TIME COMPARISON OF THE THREE METHODS

 Averaged time Averaged frame

rate

SSB 62ms 16.13

Otsu’s 33ms 30.0

LIG 89ms 11.2

 56

Fig. 6-1 (a) Source image#1. (b) Converted binary image; blue rectangles are isolated groups (c)
Results after elimination, blue rectangles are character candidates. (d) Binarization result using

Otsu’s method. (e) Binarization result by LIG.

a b

c

d e

 57

Fig. 6-2 (a) Source image#2. (b) Converted binary image; blue rectangles are isolated groups. (c)
Results after elimination, blue rectangles are character candidates. (d) Binarization result using

Otsu’s method. (e) Binarization result by LIG.

a b

c

d e

 58

Fig. 6-3 Images used in noise analysis(left: 12.8%, right:25.6% quantization noise)

 Fig. 6-4 Images with different decay curve light sources used in illumination

analysis, (a) k=1, (b) k=2, (c) k=3 (d) k=4

a b

c d

 59

6.2. AGPV(Recognition) Test

Although the AGPV method is robust due to its accumulation property, it becomes a

limitation that the size of the characters must be big enough for stable recognition. Therefore,

the characters smaller 64×64 after the extraction are up-sampled twice respectively on

horizontal and vertical axes by interpolation. After that, we choose some characters from the

test images to be the standard characters and calculate the standard AGPVs.

Two factors, noise and illumination as that for extraction test is again used to test the

reliability of the AGPV method. The results are measured by the true positive rate on

recognition(TPRR). Total 264 characters extracted from the extraction stage are treated as the

test characters in this measuring. TPRR=50 represents that 132 characters out of the 264 ones

are recognized successfully. The simulation result is listed in Table IV - Table V.

TABLE V
TPRR BY ILLUMINATION ANALYSIS

Illumination

decay curve

K=0 K=1 K=2 K=3 K=4

TPRR 93 92 87 82 65

TABLE IV
TPRR BY QUANTIZATION NOISE ANALYSIS

Noise

level

0 0.8% 1.6% 3.2% 6.4% 12.8% 25.6%

TPRR 93 92 90 86 81 73 61

 60

Chapter 7 Conclusion and Future Work

7.1. Conclusion

This dissertation is devoted to present an approach comprising three novel methods for

recognition of license plate characters. The technologies related to the license plate recognition

are first reviewed in Chapter 2 and then, the three methods respectively in charge of extraction,

normalization and recognition of license plate characters are discussed in Chapter 3 to Chapter

5. After that, the experimental results are shown in Chapter 6 to demonstrate the feasibility and

the performance of the presented approach.

The first method named scale space binarization method (SSB) is used in the extraction stage,

intending to extract the characters quickly and reliably in the source image. The method utilizes

Difference-of-Gaussian function to localize the profiles of the interested characters and

dynamic thresholding to binarize the license plates. Then the characters are extracted from the

binary image by connected component analysis and the false candidates are eliminated from

both geometrical properties and profile scores. Optimization methods are also disclosed for

implementation and experimental results are provided to show the robustness and performance

of the proposed method in comparison with the two most-used methods, Otsu’s method and

LIG method. Compared with these methods, the SSB method is obviously robust from noise

and illumination change.

The second method, voting boundary method, is used for correcting the geometric

deformation of characters which often acts as the major reason for recognition rate degradation

in license plate recognition systems. The voting boundary method is helpful to estimate the

boundary lines used for correcting the deformation of characters.

The third method, AGPV method, is designed in the recognition stage to recognize isolated

 61

characters on license plates. The feature vectors AGPVs calculated from Gaussian-filtered

images are independent from rotation and scaling and suitable for characters recognition. The

experimental results demonstrate the success of the proposed method and its robustness to noise

and illumination change.

7.2. Future work

Although the methods in this work already include complete functions to recognize license

plates from gray-level images, there still exist some issues worthy of future studies.

First, although the SSB method can be designed to do full scale search, the computation for a

full scale search is still too heavy by pure software for real-time applications. A hardware

accelerator can be studied to speed up the extraction process. Besides, the SSB method may not

be able to extract character candidates accurately if the resolution of the image is low. Some

methods to improve the successful extraction rate in low resolution must be researched.

Second, although the voting boundary method is helpful to correct characters from

deformation, it is sometimes inaccurate to correct characters of non-linear edges like “S” or “D”

or “Q” from certain deformations due to their curvature edges. Besides, it cannot work properly

if the license plate includes dirty smudges around characters or the resolution is low.

Third, the AGPV method requires manual decisions such as selecting standard characters by

human eyes. It is better to be improved by some systematic procedures to do automatically

training from various input images. In addition, currently the AGPV method may degrade

recognition rate seriously if the geometric deformation of characters is not fully corrected in the

normalization stage. How to improve the recognition rate when the test characters undergo

certain degree of geometric deformation is also an important topic for future studies. Moreover,

the computational complexity of the AGPV method is heavy and still needs improvement in the

future.

 62

Bibliographies

[1] Takashi Naito, Toshihiko Tsukada, Keiichi Yamada, Kazuhiro Kozuka, and Shin

Yamamoto, “Robust License-Plate Recognition Method for Passing Vehicles under Outside

Environment,” IEEE Transactions on Vehicular Technology, vol. 49, no. 6, 2000.

[2] S. Kim, D. Kim, Y. Ryu, and G. Kim, “A Robust License Plate Extraction Method Under

Complex Image Conditions,” in Proc. 16th International Conference on Pattern Recognition

(ICPR’02), Quebec City, Canada, vol. 3, pp. 216-219, Aug. 2002.

[3] S. Z. Wang and H. J. Lee, “A Cascade Framework for a Real-Time Statistical Plate

Recognition System,” Transactions on Information Forensics and Security, IEEE, vol. 2,

no.2, pp. 267 - 282, DOI: 10.1109/TIFS.2007.897251, June 2007.

[4] Zunino, R. and Rovetta, S., “Vector Quantization for License-Plate Location and Image

Coding.” Transactions on Industrial Electronics, IEEE, vol. 47, no. 1, pp. 159 - 167, Feb

2000, DOI: 10.1109/41.824138.

[5] Kwan, H.K., “Multilayer Recurrent Neural Networks [Character Recognition Application

Example].” The 2002 45th Midwest Symposium on, vol. 3, pp. 97-100, 4-7 Aug. 2002,

ISBN: 0-7803-7523-8, INSPEC: 7736581.

[6] Wu-Jun Li, Chong-Jun Wang, Dian-Xiang Xu, and Shi-Fu Chen., “Illumination Invariant

Face Recognition Based on Neural Network Ensemble.” ICTAI, pp. 486 - 490, 15-17 Nov.

2004, DOI: 10.1109/ICTAI.2004.71

[7] N. Otsu, “A Threshold Selection Method from Gray-Level Histograms.” Transactions on

Systems, Man and Cybernetics, IEEE, vol. 9, no. 1, pp. 62-66, Jan. 1979, ISSN: 0018-9472,

DOI: 10.1109/TSMC.1979.4310076

[8] Atallah AL-Shatnawi and Khairuddin Omar., “Methods of Arabic Language Baseline

Detection – The State of Art,” IJCSNS, vol. 8, no. 10, Oct 2008.

 63

[9] D. G. Lowe, "Distinctive Image Features from Scale-invariant Keypoints," International

Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, 2004.

[10] D. G. Lowe, "Object Recognition from Local Scale-invariant Features," International

Conference on Computer Vision, Corfu, Greece (September 1999), pp. 1150-1157.

[11] Witkin, A. P., "Scale-space Filtering," International Joint Conference on Artificial

Intelligence, Karlsruhe, Germany, pp. 1019-1022, 1983.

[12] Koenderink, J. J., "The Structure of Images," Biological Cybernetics, 50:363-396, 1984.

[13] Lindeberg, T. "Scale Space Theory: A Basic Tool for Analyzing Structures at Different

Scales." Journal of Applied Statistics, vol. 21, no. 2, pp. 224-270, 1994.

[14] Mikolajczyk, K. "Detection of Local Features Invariant to Affine Transformations." Ph.D

thesis, Institut National Polytechnique de Grenoble, France, 2002.

[15] C. J. C. Burges, “A Tutorial on Support Vector Machines for Pattern Recognition,” J.

DataMining Knowl. Disc., vol. 2, no. 2, pp.121-167, 1998.

[16] Lixin Fan, “What A Single Template Can Do in Recognition,” Fourth International

Conference on Image and Graphics, pp. 586-591, 2007.

[17] Smith, Julius O. Spectral Audio Signal Processing, October 2008 Draft,

http://ccrma.stanford.edu/~jos/sasp/, online book, accessed <20100528>.

[18] M. Irani and S. Peleg, “Motion Analysis for Image Enhancement: Resolution, Occlusion

and Transparency,” Journal of Visual Communications and Image Representation, Dec.

1993, vol. 4, pp. 324-335,

[19] C. N. Anagnostopoulos, et al., “A license plate recognition algorithm for Intelligent

Transportation System applications, ” IEEE Transactions on Intelligent Transportation

Systems, vol. 7, no. 3, pp. 377-392, 2006

 64

[20] J. N. Kapur, P. K. Sahoo and A. K. C. Wong, “A New Method for Gray-level Picture

Thresholding Using the Entropy of the Histogram, ”Computer Vision, Graphics, and Image

Processing, vol. 23, no. 3, pp. 273-285., 1985.

[21] S. U. Lee, S. Y. Chung, and R. H. Park, "A Comparative Performance Study of Several

Global Thresholding Techniques Segmentation," Computer Vision, Graphics, and Image

Processing, vol. 52, no. 2, pp. 171-190, 1990.

[22] P. K. Sahoo, S. Soltani and A.K.C. Wong, "A Survey of Thresholding Technique,"

Computer Vision, Graphics, and Image Processing, vol. 41, no. 2, 1988.

[23] J. R. Parker, "Gray Level Thresholding in Badly Illuminated Images," IEEE Trans. Pattern

Anal. Mach. Intell., vol. 13, no. 8, pp. 813-819, 1991.

[24] F. Deravi and S. K. Pal, "Gray Level Thresholding Using Second Order Statistics," Pattern

Recognition Lett., vol. 1, no. 5-6. pp. 417-422, 1983.

[25] J. Kittler and J. Illingworth, "Threshold Selection Based on a Simple Image Statistic,"

Computer Vision, Graphics, and Image Processing, vol. 30, no. 2, pp. 125-147, 1985.

[26] Y. Yang and H. Yan, "An Adaptive Logical Method for Binarization of Degraded

Document Images," Pattern Recognition, vol. 33, pp. 787-807, 2000.

[27] Y. P. Chen and T. D. Yeh, "A Method for Extraction and Recognition of Isolated License

Plate Characters," IJCSIS, vol. 5, no. 1, pp. 1-10, 2009.

[28] Sauvola J. and Pietikainen M., "Adaptive Document Image Binarization," Pattern

Recognition, vol. 33, no. 2, pp. 225-236, 2000.

[29] Farrahi Moghaddam, R. and Cheriet, M., “A Multi-Scale Framework for Adaptive

Binarization of Degraded Document Images,” Pattern Recognition, vol. 43, no. 6, 2010.

[30] R. Haralick, “Image segmentation survey,” in Fundamentals of Computer Vision, O. D.

Faugeras, Ed. London: Cambridge University Press, 1983.

 65

[31] T. G. Stockham, “Image processing in the context of a visual model,” Proc. IEEE, vol. 60,

no. 7, pp. 828-842, 1972.

[32] Witkin, A. P., "Scale-space filtering," International Joint Conference on Artificial

Intelligence, Karlsruhe, Germany, pp. 1019-1022, 1983.

[33] Koenderink, J. J. "The Structure of Images," Biological Cybernetics, vol. 50, pp. 363-396,

1984.

[34] Lindeberg, T. "Scale Space Theory: A Basic Tool for Analyzing Structures at Different

Scales." Journal of Applied Statistics, vol. 21, no. 2, pp. 224-270, 1984.

[35] Mikolajczyk, K. "Detection of Local Features Invariant to Affine Transformations." Ph.D

thesis, Institut National Polytechnique de Grenoble, France, 2002.

[36] H. J. Lee and B. Chen, “Recognition of Handwritten Chinese Characters via Short Line

Segments,” Pattern Recognition, vol. 25, no. 5, pp. 543-552, 1992

[37] M. Irani and S. Peleg, “Motion Analysis for Image Enhancement: Resolution, Occlusion

and Transparency,” Journal of Visual Communications and Image Representation, vol. 4,

pp. 324-335, 1993.

[38] Marek Brej and Milan Sonka, "Object Localization and Border Detection Criteria. Design

in Edge-Based Image Segmentation: Automated Learning from Examples," IEEE

Transactions on Medical Imaging, vol. 19, no. 10, Oct. 2000.

[39] Y. P. Chen and T. D. Yeh, “Isolated Characters Extraction Using Difference-of-Gaussian

Function,” National Computer Symposium: Workshop on ICM, pp. 274-282, Taipei

Taiwan, Nov. 27-28, 2009

[40] Gonzalez and R. Woods, Digital Image Processing, Addison Wesley, pp. 414 - 428, 1992.

[41] C. Harris and M. Stephens. "A Combined Corner and Edge Detector," Proceedings of the

4th Alvey Vision Conference, pp. 147-151, 1988.

 66

[42] John Canny, "A Computational Approach to Edge Detection," IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 8, no. 6, pp. 679-698, Nov. 1986,

doi:10.1109/TPAMI.1986.4767851.

[43] S. Nomura, et al., “A Novel Adaptive Morphological Approach for Degraded Character

Image Segmentation,” J. Pattern Recognit., vol. 38, pp. 1961-1975, Jan. 2005.

[44] Xiaoou Tang, Feng Lin and Jianzhuang Liu, “Video-Based Handwritten Chinese Character

Recognition,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 15,

no. 1, Jan. 2005.

[45] Liana M. Lorigo, Venu Govindaraju, “Offline Arabic Handwriting Recognition: A

Survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 5,

May 2006.

[46] L. Tu., et al., "Recognition of Handprinted Chinese Characters by Feature Matching." in

Int. Conf on Computer Processing of Chinese and Oriental Languages, pp. 154-157, 1991.

[47] Y. H. Tseng, C. C. Kuo and H. J. Lee, "Speeding up Chinese Character Recognition and Its

Application on Automatic Document Reading," Pattern Recognition, vol.31, no. 11, pp.

1589-1600, 1998.

[48] Z. H. Yang et.al, “A Study of Algorithms for Handheld License Plate Recognition

System,” National Computer Symposium: Workshop on ICM, pp. 304-315, Taipei Taiwan,

Nov. 27-28, 2009.

[49] R. O. Duda, R. E. Hart, “Use of the Hough Transform to Detect Lines and Curves in

Pictures,” CACM, vol. 15, no. 1, pp. 11-15, January 1972.

[50] X. Pan, X. Ye, and S. Zhang, “A Hybrid Method for Robust Car Plate Character

Recognition,” J. Eng Appl. Artif. Intell., vol.18, no. 8, pp. 963-972, 2005.

[51] M. Oren et al., “Pedestrian Detection Using Wavelet Templates,” in Proc. IEEE Int. Conf.

Comp. Vision and Pattern Recognition, pp. 193-199, 1997.

 67

[52] P. Viola and M. Jones, “Robust Real-Time Object Detection,” Int. J. Comput. Vision, vol.

57, no. 2, pp. 137-154, 2004.

[53] B. Enyedi, et al, “Strategies for Fast License Plate Number Localization,” in IEEE Int.

Symp. Electron. Marine, Zadar, Croatia, pp. 579-584, Jun. 2004.

[54] R. Lienhart and J. Maydt, “An Extended Set of Haar-like Features for Rapid Object

Detection,” in Proc. IEEE Int. Conf. Image Processing, New York, vol. 1, pp. 900-903, Sep.

2002.

[55] H. A. Hegt, R. Haye, and N. A. Khan, “A High Performance License Plate Recognition

System,” in Proc. IEEE Int. Conf. Systems, Man, Cybern., San Diego, CA, vol.5, pp.

4357-4362, Oct. 1998.

[56] S.-Z. Wang and H.-J. Lee, “Detection and Recognition of License Plate Characters with

Different Appearances,” in Proc. IEEE Int. Conf. Intelligent Transportation Systems,

Shanghai, China, vol.2, pp.979-984, Oct, 2003

[57] Y. Amit, D. Geman, and X. Fan, ”A Coarse-to-fine Strategy for Multiclass Shape

Detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 12, pp. 1606-1621, Dec

2004.

[58] S. L. Chang, et al., “Automatic License Plate Recognition,” IEEE Trans. Intell. Transport.

Syst., vol. 5, no. 1, pp. 42-53, Mar. 2004.

[59] D. U. Cho and Y. H. Cho, “Implementation of Preprocessing Independent of Environment

and Recognition of Car Number Plate Using Histogram and Template Matching,” J. Korean

Comm. Sci., vol. 23, no. 1, pp. 94-100, 1998.

[60] S. Draghici, “A Neural Network Based Artificial Vision System for License Plate

Recognition,” Int. J. Neural Syst., vol. 8, pp. 113-126, Feb. 1997.

