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摘   要   

     

本論文提出一個車牌字體辨識系統，此系統包含三個主要方法。第一

個方法稱為尺度空間二值化，可以用來從灰階圖像上擷取字體。此方法結

合了穩健的高斯差函數和動態二值化處理，從未知影像中直接擷取出車牌

字體。為了使擷取的處理速度加快，本論文也提出優化的方法用以縮短計

算時間。第二個方法稱為邊界投票方法，適合用來矯正字體在影像拍攝過

程中所導致的幾何型變。此方法一開始假設了許多直線，然後以投票方式

找出一條通過最多邊界點的直線當成邊界線。找到的邊界線可以幫助矯正

字體的幾何型變，因而藉此改善辨識率。第三個方法稱為累積梯度投影方

法，利用累積梯度並且轉換它們成特徵向量來識別獨立字體。這些特徵向

量稱為累積梯度投影向量，被實驗證實對雜訊及照度改變是具有穩健性的。 
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ABSTRACT 

A system consisting of three methods to deal with license plate characters recognition is 

proposed in this dissertation. The first method, scale-space binarization, is suitable for 

extracting characters from gray-level images. The method combines the robust 

Difference-of-Gaussian function and dynamic thresholding technique to extract the license 

plate characters directly. In order to speed up the extraction process, optimization methods are 

also disclosed to reduce the computation time. The second method, voting boundary method, 

is suitable for correcting characters from geometric deformation induced during capture 

process. It assumes many straight lines candidates and detects the best one passing through 

most of the edge pixels by voting. The boundary lines can be used for correcting the 

deformation and improve recognition rate thereby. The third one, accumulated gradient 

projection method, recognizes isolated characters by accumulating the gradient projection of 

the characters and converts them into feature vector for comparison. The feature vector is 

called accumulated gradient projection vector and is proven robust regardless of noise and 

illumination change in experiments.  
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Chapter 1   Introduction 

The license plate recognition, or LPR in short, has been a popular research topic for several 

decades [1]-[3],[19]. An LPR system is able to recognize vehicles automatically so that it is 

useful for many applications such as portal controlling, traffic monitoring, stolen car detection, 

and etc. Up to now, an LPR system still faces some problems concerning unknown plate size 

and orientation, various light condition, unexpected image deformation, and limited 

computation time[3].  

Traditional methods for recognition of license plate characters often include several stages. 

Stage one is detection of possible areas where the license plate may exist. It is a big challenge to 

detect the plates quickly and robustly since images may contain far more information than just 

only expected plates. Stage two is segmentation, which divides the detected areas into several 

regions containing single character candidate. Stage three is normalization; some attributes of 

the character candidates, e.g., size or orientation, are transformed to certain values for the 

requirements of recognition stage. Stage four is recognition; the feature vectors extracted from 

the normalized character candidates can be recognized by technologies such as template 

matching[16], vector quantization[4], support vector machine(SVM)[15], or neural 

networks[5][6].  

The motivation of this work originates from three limitations of traditional LPR systems. The 

first limitation is using simple features such as gradient energy to detect possible locations of 

license plates. Using these simple features may reduce the complexity of computation but may 

possibly lose some plate candidates because the gradient energy will be suppressed due to 

camera saturation or underexposure, which often takes place under extreme light conditions 

such as sunlight, night view, or shadow. The second limitation originates from assuming correct 
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orientations for both camera and license plates so that high gradient pixels in the image can be 

expected in the pre-defined direction. In real cases, the license plates may not always keep the 

same orientations in the captured images. Nevertheless, they can be rotated or slanted due to 

irregular roads, unfixed camera positions, or abnormal conditions of cars. The third limitation 

comes from blurred or corrupted characters in license plates, which may fail the LPR process in 

detection or segmentation stage. The characteristic is dangerous for application because one 

single unclear character may result in loss of whole license plate. Compare to human nature, 

people know the position of unclear characters because they see some characters located nearby. 

Human try different methods, e.g., change head position or walk closer, to read the unclear 

characters, or even guess it if it is still not distinguishable. This nature is not achievable in a 

traditional LPR system due to its coarse-to-fine architecture. To retain high detection rate of 

license plates under these limitations, the method in this work proposes a fine-to-coarse method 

which firstly finds isolated characters in the captured image. Once some characters on a license 

plate are found, the entire license plate can be detected around these characters. This method 

may consume more computation than the traditional coarse-to-fine method. However, it 

minimizes the probability of missing license plate candidates in the detection stage. 

A challenge to do the fine-to-coarse method is recognizing isolated characters. There are few 

literatures discussing about isolated characters recognition due to several difficulties it has. First, 

it is difficult to extract orientation of an isolated character. In traditional LPR systems, the 

orientations of characters can be determined by the baseline [3][8] of multiple characters. 

However this method is not suitable for isolated characters. Second, the unfixed camera view 

angle often introduces geometric deformation on the character shapes or stroke directions. It 

makes the detection and normalization process difficult to be applied. Third, the unknown 

orientations and shapes exposed under unknown light condition and environment builds a 

bottleneck for the isolated characters to be correctly detected and recognized.  
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The proposed scheme to extract and recognize license plate characters has procedures as the 

following. First, in the extraction stage, the scale-space binarization(SSB) method which 

utilizes the difference-of-Gaussian (DOG) functions [9] is used to extract character candidates. 

The DOG function has been proven stable against noise, illumination change and 3D view point 

change [9]-[14]. The binarization method first localizes the character profiles on DOG image 

and then extracts isolated character candidates by means of dynamic threshold propagation and 

thresholding. Second, in the deformation correction stage, a voting boundary method is used to 

detect the linear boundary of character candidates, which can be used for correcting the 

candidates from some possible deformations. Third, in the recognition stage, the novel 

accumulated gradient projection vector method(AGPV method) is applied to find out the 

accumulated gradient projection vectors (AGPVs) of each normalized character candidate, and 

compare the AGPVs with those of standard letters to find the most similar one as recognition 

result. Fig. 1-1 shows the functional block of the proposed LPR system. The experimental 

results show the feasibility of the proposed method and its robustness to several image 

parameters such as noise, character deformation and illumination change. 

 

 

Fig. 1-1  Functional block diagram of the proposed LPR system  

 

Deformation Correction 
(Voting Boundary Method) 

Character Candidates Extraction 
(SSB) 

Recognition 
(AGPV Method) 
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Chapter 2   Review of Related Works  

This chapter briefly describes three important techniques from which this work is 

motivated and constructed.  First, the methods dealing with recognition of license plate 

characters are reviewed. Second, the useful scale-space theory and its most popular 

representation, difference-of-Gaussian functions, are discussed. Finally, the most popular 

methods doing image binarization are described and compared. 

2.1. License Plate Recognition 

In traditional LPR systems, there is a detection function in the first step to find possible areas 

that license plates may appear. The function often requires high speed feature detection and 

therefore is generally focused on simple features such as gradient energy or Harr-like 

features[51] in the image. In order to make fast detection, traditional methods often suppose a 

fixed camera capture angle and allow a small degree of deviation in plate size and orientation. 

On the detected areas, more specific rules are used to accurately localize the entire license plate 

and find out the histogram for binarization. Once the plate is binarized, the corresponding 

baseline becomes an important reference for characters segmentation and normalization. Based 

on the binarized plate image, the segmentation is often done by projecting the TRUE pixels onto 

baseline and finding the valley on the projected histogram as segmentation boundaries. For the 

segmented characters, the statistical features of them are extracted and fed into a statistical 

classifier such as template matching[16], vector quantization[4], support vector 

machine(SVM)[15], or neural networks(NN)[5][6], for recognition. The statistical features 

include some vectors such as CC(contour-crossing count)[46], PBA(peripheral ground 

area)[47], and CS(character shape), that are common used for recognizing license plate 

character. 
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2.2. Scale Space Theory 

The concept of scale space [11] starts from the basic observation that real-world objects are 

composed of different structures at different scales. In other words, real-world objects may 

appear in different ways depending on the scale of observation. For a computer designed to 

detect the existence of an object in an image, it is necessary to consider all the possible scales 

that object may appear in the image in order to capture the interested target in the correct scale. 

Earlier works such as [12] and [13] have suggested that Gaussian function is the best choice 

for scale-space kernel. Also, in [13], the author showed that the difference-of-Gaussian(DOG) 

function provides a close approximation to the scale-normalized Laplacian of Gaussian, σ2∇2G, 

which was proven by detail experiment in [14] that it produces the most stable image features 

compared to a range of other possible image functions. 

There are two additional advantages using Gaussian functions as smoothing kernel. First, its 

symmetric property makes it practical to decompose the two-dimensional convolution into two 

independent single dimensional equations. This greatly reduces the computation and shortens 

processing time in computing different scale images. Second, taking the Fourier transform of a 

Gaussian function yields another Gaussian function [17]. Consequently, it can be derived that 

the successive convolution with Gaussian kernel G(σ2) and G(σ1) is equivalent to convolution 

with G(σ3), where 

2
2

2
13 σσσ +=  (1) 

Based on (1) and assumed that a Gaussian point spread function (PSF) is used to approximate 

the image capturing process[18], it can explain that the blur in input image can be ignored if a 

sufficiently large observation scale is chosen since σ3~σ2 if  σ2 >>σ1. 
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2.3. Image Binarization 

The methods for binarization of gray-level images can be divided into two classes: global and 

local thresholding. Global thresholding methods generally binarize the image with a single 

threshold. In the contrast, local methods change the threshold dynamically over the image 

according to local information. The threshold for global methods is often easier to be 

determined than that of local methods because it focuses on the entire image. However, global 

methods are easily failed when the dealt image contains noise, variable illumination, or 

complex background. Local thresholding methods have better adaptability than global ones to 

deal with illumination change or complex background, however, it is difficult to decide the 

range of local area for threshold determination and yet still sensitive to noise. 

Global thresholding methods often calculate the threshold based on histogram analysis [7], 

[20]-[21]. Otsu’s method [7] proposed from the viewpoint of discrimination analysis is one of 

the most preferred global techniques by investigators. It directly approaches the feasibility of 

evaluating the "goodness" of threshold and automatically selects an optimal threshold from the 

zeroth- and the first-order cumulative moments of the gray-level histogram. In practice, this 

method does not work well for the images with shadows, inhomogeneous backgrounds, and 

complex background patterns [22]. It is also discovered in [22] that, a single threshold or some 

multilevel global thresholds could not result in an accurate binary image. 

Local thresholding methods generally find thresholds by statistical measurement in local 

areas [23]-[26] based on the principle that objects in an image provide high spatial frequency 

components and illumination consists mainly of lower spatial frequencies [31]. The local 

intensity gradient (LIG) method in [23] is one of the most popular local thresholding methods 

which first finds the pixels with high intensity gradient as reference of initial threshold, and then 

extends the threshold to whole image through region growing method [30]. It uses a 
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predetermined window size to calculate the regional gradient means, locates low gradient areas 

in the image based on the regional means, and finds edge pixels by comparing pixel’s intensity 

gradient with the regional means.  

In general, local thresholding methods are, considered from real world situations, more 

accurate than global ones. However, they still suffer from two problems that usually make them 

unsatisfactory for investigators. First, it is difficult to give a proper size of the “local area” 

without prior information in the source image. Second, the methods of this class are usually 

more computationally expensive than the other one; it makes the local methods almost 

unacceptable for real-time applications. 

There are still some hybrid methods to binarize the image by referring to the expected content 

within the region of interest (ROI). Typical applications performing hybrid binarization such as 

license plate recognition (LPR) or automatic document analysis, often segment the image into 

areas and find the areas which are most likely to be ROIs before binarization. Such systems 

often have faster speed and higher accuracy than general (global or loca) thresholding methods 

but usually require prior information within the ROI for fast detection and binarization. For 

example, in the LPR system [3], the author uses Haar-like features in the first step to perform 

fast detection and find out the ROI(license plate candidates), and then perform peak-valley 

analysis within the ROI for binarization of the license plates candidates. The peak-valley 

analysis is referring to the histogram acquired in the ROI and assumes some parameters such as 

number of characters, characters scale and orientation are already known. In document 

binarization method [28], the input image is firstly segmented into different types ROIs 

containing different contents such as characters or graphics or images. And specific binarization 

methods are applied within the ROIs based on the characteristics of the type of contents. In 

usual, the hybrid methods are not general enough to be applied onto different applications. 
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Chapter 3   The Extraction Method  

The problem of character extraction is similar to that of object localization [38], where the 

largest bottleneck is almost all relevant factors are unknown in the source image, e.g., the scales 

of the objects, the condition of illumination, the complexity of the background, and the degree 

of blur and noise…, etc. As the scale of observation is closely related to the scale of the 

characters in the image, an incorrect observation scale may incorporate undesirable information 

and lead to undesirable extraction results [32]. In order to do extraction robustly and efficiently, 

we propose a scale-space binarization method, or SSB in short, to extract the characters. The 

extraction is started from the smallest observation scale which has best discrimination for 

characters sized within a certain range, for example, 16×16 to 64×64. Smaller sizes characters 

are discarded because they are most probably caused by noise. For larger sizes characters, a 

higher observation scale is preferred to minimize the probability of misinterpretation from noise.  

Note that the extraction on higher observation scales can be performed by utilizing the 

sub-sampling method to shrink the image size and enlarge the relative observation scale.  

The proposed SSB method includes several functional blocks as illustrated in Fig. 3-1. First, a 

character profile localization block finds inner and outer profile pixels by applying a global 

threshold on difference-of-Gaussian(DOG) image. The DOG function used to generate the 

DOG image is proven to have the benefit of enhancing the edges in a digital image while 

minimizing the impact of noise [39]. Second, a boundary set is formed by collecting pixels 

neighboring to both inner and outer profile pixels. Third, the thresholds are initiated on 

boundary set pixels and served as the initial value for dynamic threshold propagation. Fourth, 

the dynamic thresholds are propagated from boundary to the remaining pixels in the image. 

Fifth, thresholding function compares the dynamic threshold with smoothed gray-level intensity 
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to binarize the image. Sixth, connected component analysis is applied to connect pixels into 

character candidates, and measure their preliminary features such as width, height and 

occupancy for the next stage. Finally, the character candidates are eliminated if their 

preliminary features fall beyond reasonable ranges or the profile scores are lower than general 

characters. An example on the simulation results of the SSB method is given in Fig. 3-2 for easy 

understanding. In the next sections we’ll step by step explain the behavior of each functional 

block in detail. 

 

Fig. 3-1  Functional block diagram of the SSB method 

3.1. Profile Localization 

Profile localization, similar to edge detection, is often applied in the first stage of an image 

recognition process to locate pixels as the basis of segmentation or matching. Many operators 

can be found in literatures to detect edges or corners in an image, e.g., Sobel operator[40], 

Harris detector[41], or Canny detector[42]. Most of them use gradient based detection and 

suffer from the difficulties in noise rejection and threshold determination. The extraction 

method in this work utilizes the DOG functions so that it minimizes the impact of noise and 
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makes robust extraction without prior filtering. 

 

Fig. 3-2  An example of the SSB method 

The profile localization consists of several steps as in the following procedures. At first, the 

gray-level input image, I(x,y), is respectively convolved with two Gaussian functions, g1(x,y) 

with deviation σ1 and, g2(x,y) with deviation σ2 to get two Gaussian images, I1(x,y) and I2(x,y). 

And the difference of the two Gaussian images, D1(x,y)= I1(x,y) - I2(x,y), is called the DOG 

image.  

The two standard deviations, σ1 and σ2, of the two Gaussian functions are respectively called 

the first and the second observation scale. A smaller observation scale observes more details in 

an area but is more sensitive to noise. On the contrary, a larger observation scale is more stable 

against noise but may lose significant details of the interested characters or mix the interested 

characters with adjacent objects so that the characters become difficult to be extracted. In the 

Source image Profile localization 
(blue and red: profile pixels) 

 

Determine boundary pixels 
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experiments we set the two scales σ1=1 and σ2= 2  for the profile extraction, which is proven by 

experiments a better choice for processing 16×16 to 64×64 character sizes in general 256-step 

(8-bit) gray-level images. 

In order to deal with larger scale characters with minimum computation time, an efficient 

method in Fig. 3-3 is applied by sub-sampling the second blurred image I2(x,y) by every two 

pixels on each row and column to form a smaller image I2'(x,y). Then based on I2'(x,y) 

calculates the Gaussian filtered image I3(x,y) and their DOG image D2(x,y), and applies the 

same procedure again to localize the profile pixels. As a result, the observation scale w.r.t. 

D2(x,y) is double to that w.r.t. D1(x,y).  

A 2-D DOG function used to extract the characters can be expressed as,  

 ( ) 2
2
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Consider a case that an unit step edge u(x0) exists in parallel to the y-axis(x= x0), the position of 

peak response on convolving the unit step edge with a DOG function can be obtained by solving 

the differential equation, 
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Transforming into frequency domain and then taking inverse transform, the solution of (3) 

yields equivalent to that of the equation 

 ( ) 000 =− ,xxDOG . (4) 

Solving (4) to get the positions of the two peak responses at 
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Fig. 3-3  The procedure to produce DOG Images on different observation scales 

A plot by equation (5) in Fig. 3-4 on x0=0 reveals that convolution of a unit step edge with the 

DOG function generates two odd-symmetrical peaks beside the unit step edge, i.e., positive 

peak A and negative peak B. The most valuable characteristic of the DOG function is that these 

peaks are quite stable even if the testing image consists of small undesirable artifacts such as 

noise, out-of-focus or variable illumination. Based on this result, the DOG image is divided into 

three sets by a fixed global threshold thf and its complementary –thf. The first set, Set1, is 

composed of the pixels of D1(x,y) ≥ thf; the second set, Set2, is composed of the pixels of D1(x,y) 

≤ -thf; and the third set, Set3, is the superset of the remainder containing the pixels of thf> 

D1(x,y)>-thf. 

Set1 and Set2 are both called profile sets and have the following representation for easily 
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identification according to the way they appear. For characters having lower gray-level intensity 

(deeper color) than its nearby background, Set1 is also called the inner profile set because it 

spreads interior characters’ boundaries. Similarly, Set2 is also called the outer profile set for the 

location it appears. The two profile sets are respectively drawn in Fig. 3-5 in blue and yellow 

colors. 

The global threshold thf is used for determining whether a change of intensity is caused by 

noise or a real edge. Smaller threshold collects more pixels into Set1 and Set2, and takes more 

computation time to deal with noise before extracting the characters. It is worth notify that the 

lowest threshold for DOG function can be set to thf=0. Although setting threshold to zero 

introduces much information generated by noise, it can still retain correct extraction results 

because that the energy of noise in the DOG response is automatically suppressed when it 

appears near an edge. As a result, it is recommended to set a small threshold, e.g., thf =1, for all 

the input images because it ensures reliable results can be persisted with reasonable 

computation time regardless of the condition of the input image. Different from some other 

gradient operators which would possibly lose some character candidates if a smaller threshold is 

given, the only drawback for giving a smaller threshold in DOG function is higher computation 

time consumption. From various simulation results we can tell that a wide range of threshold on 

DOG images can still provide reliable results on localizing the profile pixels. 

 

Fig. 3-4  An ideal unit-step edge (upper graph) and its DOG response (lower graph) 
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When a near-perfect input image like Fig. 3-6(a) is given for binarization, the first step is to 

find the corresponding two profile sets from the DOG image as in Fig. 3-6(b).  It is worth to note 

that the pixels of the inner profile set often appear in a connected group, which is called the 

inner profile groups or simply profile groups. As in Fig. 3-6(c), the smallest rectangle covering 

the entire profile group is called the bonding rectangle of the profile group. Note that a profile 

group often represents the profile of an isolated character in normal case. However, it might 

happen that a character is broken into two or more profile groups due to special geometric 

distribution or noise or special lighting condition. The broken profile groups will be linked up 

by the connected component analysis later on to reveal the original characters. 

According to (5), a constant Reff is defined to represent the radius of the effective area of an 

edge (intensity change), and 
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where the function ceil(x) rounds x towards positive infinity. Note that the Reff is the horizontal 

distance of AC or BC in Fig. 3-4, or equivalently the radius of the circle of effective range in Fig. 

3-5.  In addition to the profile sets, a boundary set SetB is formed to represent the boundary of 

character candidates. A pixel pb is collected into SetB if it satisfies the following two conditions, 

1. Except the zero-crossing pixels, i.e., the position C in Fig. 3-4, or the non-profile pixels in 

Fig. 3-5,  the pixels inside the effective area of pb belong to either inner or outer profile sets. 

2. The total number of pixels belongs to inner profile set and the total number of pixels 

belongs to outer profile set inside the effective area of pb are the same. 



 

 - 15 - 

 

Fig. 3-5  Determine boundary pixels 

  
(a)                      (b)                      (c)                     (d)                      (e) 

Fig. 3-6 (a) A perfect sample character image. (b) The DOG responses: positive response in red 

and negative response in blue. (c) The inner profile set in red and the bonding rectangle in gray. 

(d) Boundary set. (e) Extraction result. 

 

In implementation, consider to discrete pixel coordinate and error tolerance, the pixels of Set1 

and Set2 inside the effective area of pb are accumulated into Bin1 and Bin2 respectively, and pb 

is collected into SetB if it satisfies the following equations: 
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The pixels of SetB make up the boundaries of character candidates as in Fig. 3-6(d) and 

become the base of threshold propagating in the next step. Note that the character can be 

extracted as in Fig. 3-6(e) after dynamic threshold propagation and binarization. 
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3.2. Dynamic Threshold Propagation 

In order to solve the global-thresholding problems such as noise, variable illumination, and 

complex background, and local-thresholding difficulties such as pre-determining local area size, 

and reducing computational complexity, a novel method using dynamic threshold propagation 

is proposed in this work. 

Before the propagation process, each pixel in the image is assigned a dynamic threshold 

initialized to zero. As the process starts, the dynamic threshold on a boundary set pixel is 

assigned by looking for the best threshold in its neighboring area. Based on the values assigned 

to boundary set pixels, the dynamic thresholds are sequentially propagated to the remaining 

pixels through neighboring pixels. As a result, the thresholds detected around boundary pixels 

are able to spread out to the entire image so that the interested characters can be figured out by 

comparing gray-level intensity with the dynamic threshold pixel-by-pixel. 

The first step of dynamic threshold propagation starts from the boundary pixels. For each 

boundary pixel (xb, yb), the gradient magnitude of the i-th neighboring pixel (xn(i), yn(i)) inside 

the effective area, effa(xb, yb), is calculated. The pixel having maximum gradient magnitude 

inside the effective area is selected as the reference pixel (xn_ref, yn_ref). In other words, 

( ) ( )bbref_nref_n y,xeffay,x ∈  and ( ) ( ) ( )( )( )iy,ixImaxy,xI nnref_nref_n 11 ∇=∇ , where 

|∇I1(xn(i),yn (i))| is the gradient magnitude of the i-th neighboring pixel calculated by Sobel 

operators as in [23]. After that, the dynamic threshold of the boundary pixel, denoted as thd(xb, 

yb), is assigned by the first Gaussian gray-level of the reference pixel (xn_ref, yn_ref), i.e., 

 ( ) ( )ref_nref_nbbd y,xIy,xth 1=  . (8) 
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Fig. 3-7  Dynamic threshold propagation 

 
The above definition can be viewed in graphical representation as in Fig. 3-7, where the red 

pixel is one of boundary set pixels and the blue pixel is the one having maximum gradient 

magnitude inside the effective area. The reason for referring to the pixel of maximum gradient 

magnitude is based on the discovery that the pixels having maximum gradient magnitude often 

appear in the mid point of edges. It is worth to note that the calculation of gradient magnitude is 

referring to the first Gaussian image I1(x,y) instead of source image I(x,y) and the second 

Gaussian image I2(x,y) because of the following two reasons: First, the condition of noise in the 

source image I(x,y) is unknown; the gradient referring to noisy pixels is not meaningful and may 

mislead the decision in finding correct threshold. Second, the second Gaussian image gives too 

much smoothness on boundary so that it often makes the boundary distorted after thresholding. 

As a result, the first Gaussian image is the best choice for gradient magnitude comparison and 

dynamic thresholding. 

Once the dynamic thresholds of all boundary pixels have been assigned, they are iteratively 

propagated to the other pixels through neighboring pixels. For easily explanation, a pixel whose 

dynamic threshold has been assigned is called an assigned pixel. 

The dynamic threshold propagation is processed by iterations. Let Setb
p denote the set of 

pixels ( )p
b

p
b y,x  whose dynamic thresholds are assigned in the p-th iteration and Seta
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set of the pixels ( )p
a

p
a y,x  adjacent to Setb

p in the same iteration. Note that Setb
1 stands for the 

boundary set containing assigned pixels ( )11
bb y,x  and Setb

k = Seta
k-1 for k>1. In the first iteration, 

the dynamic thresholds on boundary pixels ( )11
bb y,x  are propagated to its adjacent pixels( )11

aa y,x . 

Let ( ) ( )( )hy,hx aa
11  be the h-th pixel in Seta

1 simultaneously adjacent to m boundary pixels, 

denoted as ( ) ( )( )iy,ix bb
11 , i=1 to m, m can be any number from 1 to 8. The dynamic threshold of 

( ) ( )( )hy,hx aa
11  is assigned by averaging the dynamic thresholds of all the adjacent boundary 

pixels, i.e., 

 ( ) ( )( ) ( ) ( )( )∑
=

=
m

i
bbdaad iy,ixth

m
hy,hxth

1

1111 1
. (9) 

The first iteration ends and the next iteration starts right after all the pixels adjacent to the 

boundary pixels have been processed. In a general representation, the relationship for the q-th 

iteration is, 

 ( ) ( )( ) ( ) ( )( )∑
=

=
q
jm

i

q
b

q
bdq

j

q
a

q
ad iy,ixth

m
jy,jxth

1

1
, (10) 

where ( ) ( )( )jy,jx q
a

q
a  is the j-th pixel in Seta

q and mj
q is the total number of assigned pixels 

adjacent to ( ) ( )( )jy,jx q
a

q
a . The propagation process will not finish until all the pixels become 

assigned.  

An example of the propagation can be seen in Fig. 3-8. The red pixels in Fig. 3-8(a) are the 

boundary pixels with the dynamic threshold initialized according to Eq. (8). The orange pixels 

in Fig. 3-8(b) and the yellow pixels in Fig. 3-8(c) are respectively the pixels after first and 

second iteration of dynamic threshold propagation. 
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(a)                                                  (b)                                                 (c) 

Fig. 3-8  An example of dynamic threshold propagation (a) Boundary pixels (b) Assigned pixels 

after first iteration (c) Assigned pixels after second iteration 

 

3.3. Thresholding and Connected Component Analysis 

Based on the propagated dynamic thresholds, each pixel is converted into binary form(TRUE 

or FALSE) by comparing its Gaussian smoothed gray-level intensity to the own dynamic 

threshold. Then the connected component analysis(CCA) is applied to connect the TRUE pixels 

into groups named isolated groups. 

During the CCA process, the TRUE pixels of each isolated group are divided into two classes 

and accumulated into two counters, respectively. The first class is edge pixels, which is adjacent 

to at least one FALSE pixel after the CCA and is accumulated into counter CE. The second class 

is body pixels, which is the complementary to edge pixels, i.e., all the eight adjacent pixels are 

TRUE, and is accumulated into counter CB. The total number of pixels in an isolated group is 

denoted CT,  CT = CE + CB. For edge pixels, another counter CP is allocated to accumulate the 

number of pixels adjacent to Set1 or Set2 pixels in order to give profile score to the isolated 

group. 

In normal cases as shown in Fig. 3-6, the profile pixels of an isolated character can be 

connected into an individual profile group, and the whole character should belong to an 

individual isolated group, too. However, it might happen that the profile group is broken into 
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segments due to noise or irregular light condition as the example in Fig. 3-9(a)-(d). In this case 

the broken profiles can still be extracted into an connected group as in Fig. 3-9(e) after 

thresholding and the connected component analysis.  

 

                             

(a)                          (b)                          (c)                          (d)                          (e) 

Fig. 3-9 (a) An imperfect sample character image. (b)The DOG responses: positive response in 

red and negative response in blue. (c) The inner profile set in red and the bonding rectangle in 

cyan. (d) Boundary set.(e) Extraction result. 

 

3.4. Eliminate False Candidates 

There are two stages elimination to filter out the false character candidates in order to 

minimize the computational consumption in later stages. 

The first stage elimination is based on the geometric features captured by the CCA process. 

After the CCA, each isolated group has own preliminary features measured by its bonding 

rectangle, i.e., group width W, group height H, group occupancy U (pixel count w.r.t. the 

bonding rectangle area), U=CT/(W×H). The groups having abnormal preliminary features are 

possibly caused by non-character objects such as noise or background or variable illumination 

and are eliminated immediately. For example, large ratio of W to H may represent a long edge or 

a thin line in the image; small W and H may be caused by noise or a spot; large U may stand for 

a solid object or shadow…, etc. General characters have a typical value for occupancy ranged in 

0.3 ≤ U ≤0.8. 

The second elimination is based on a quantity that measures from the “goodness” of the 
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profiles of each isolated group, namely, the profile score SP. In ideal cases, the edge pixels found 

by the CCA should be adjacent to Set1 or Set2 pixels. i.e., CP = CE . However, in real world 

images, it is often not the case and most are CP < CE. Therefore, the profile score defined by SP=  

CP/CE is calculated for each isolated group to evaluate how much goodness it is from the ideal 

case. In our experiments, the isolated groups having SP < 0.8 is eliminated. The remaining 

isolated groups form the character candidates and can be used for recognition or other purposes 

hereafter. 

3.5. Implementation for Fast SSB 

Besides a stable and accurate performance, the computational complexity of a binarization 

algorithm is also important in evaluating the performance. The demand for low computational 

complexity methods is especially strong in a real-time embedded system. In such systems they 

require low computational complexity methods for not only speeding up the response to 

external events but also reducing the power consumption. Although the computational 

complexity of the method presented here is higher than a global thresholding method, a good 

implementation can still make it computed efficiently and executed as fast as a global method. 

Of course, it is expected to compete with the most local thresholding methods both in accuracy 

and speed. 

The problems to be discussed here is similar to the optimization in implementation. For the 

proposed method, the optimization can be considered from several aspects,  

1. Simplify the convolution with Gaussian filter. 

2. Use integers instead of floating points. 

3. Use shifter to replace multiplier or divider. 

4. Use acceleration table for dynamic threshold propagation.  
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3.5.1. Optimization in convolution 

The convolution with Gaussian kernel takes much computation time because it is directly 

propositional to the size of the input image and the Gaussian kernel. Let W denote the width and 

H denote the height of the input image, and give a Gaussian kernel sized n×n. To convolve the 

input image with the Gaussian kernel, it needs H×W×n² multiplications and H×W×( n²-1) 

additions. Due to the symmetrical properties of a Gaussian function, the 2D convolution can be 

decomposed into horizontal and vertical direction. For each direction, n×1 dimensional 

Gaussian function is used so that H×W×n multiplications and H×W×(n-1) additions is required. 

This simplifies the complexity from O(n²) to O(n). 

3.5.2. Implement by integers and shifters  

In computer systems, integer manipulation is always faster than floating points. Especially, 

many computer systems still have no hardware floating point processor and allow only 

manipulations by integers. On the other hand, multiplications or divisions often take longer 

computation time than simple manipulations such as addition, subtraction, or shifter; it would 

be preferred if they can be replaced by shifter for speeding up the computation and making the 

algorithm more practical on various grade computer systems. Consider to implement by integer 

and shifter in the program, we decide to select the Gaussian kernel as G(x)=G(y)=[1 4 8 4 1]. Fig. 

3-10 gives a comparison to the three normalized Gaussian functions: selected Gaussian kernel 

in Gau3, ideal continuous Gaussian function(σ=1) in Gau1, and ideal discrete Gaussian 

function in Gau2. It shows that the selected Gaussian kernel is close to the ideal discrete 

Gaussian function. 
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Fig. 3-10 Comparison to three Gaussian functions, Gau1: ideal continuous function, Gau2: 

ideal discrete function, Gau3: selected kernel 

 
The advantages of using the selected Gaussian kernel are, first, the coefficients are integers; 

second, all the coefficients are 2’s multiples so that the multiplications can be replaced by 

shifters. Based on the selected kernel, the convolution for the first Gaussian image I1(x,y) (σ1=1) 

can be written as 

 ( ) ( ) ( )( ) ( )yxy,xy,x GGII ⊗⊗=1  (11) 

This can be achieved in program 1, 

 
 

Where T [x][y] is an intermediate array, I [x][y] is the gray-level intensity on I(x,y) and I1[x][y] 

is the Gaussian smoothed gray-level intensity on I1(x,y). The “<<” operator denotes the left 

shifter. According to (1), the second Gaussian image I2(x,y) can be obtained by convolving 

I1(x,y) with the same Gaussian kernel, i.e., 

 ( ) ( ) ( )( ) ( )yxy,xy,x GGII ⊗⊗= 12 . (12) 

============================================================= 
Program1 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
T [x][y]=(I [x-2][y]+I [x+2][y]) + ((I [x-1][y] + I [x+1][y])<<2) + (I [x][y]<<3); 
I1[x][y]=( T [x][y-2]+ T [x][y+2]) + ((T [x][y-1] + T [x][y+1])<<2) + (T [x][y]<<3); 
============================================================= 
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The same program1 can be used by substituting I1[x][y] with I2 [x][y] and I [x][y] with 

I1[x][y]. Note that the equivalent scale for I2(x,y) is 22 =σ  based on equation (1). Finally, for 

computing the DOG image, the two Gaussian images must be normalized to the same level. 

Therefore, the summation of the Gaussian kernel must be eliminated. The equation is written as 

 ( ) ( ) ( ) ( ) ( )∑∑ ××−=
yx

yGxGy,xy,xy,x 12 IID . (13) 

Since the ( ) ( ) 3241818 =×==∑∑
yx

yGxG  and 268 222464256324 ++=++= . As a result, the 

program to find the DOG image is implemented as: 

 
 

It is important to check if the value in each step manipulation exceeds the full range of 

integers of a computer system and trim some least significant bits(LSBs) from the operands if 

necessary. For a 8-bit gray-level input image, the maximum value of I1(x,y) is 324×256 which 

becomes 18-bit signed integers. And the maximum value of I2(x,y) is 324×324×256 which is 

extended to 26-bit. For a 16-bit computer system implemented by the proposed method, the 

program to calculate I1(x,y) and I2(x,y) can be changed to program 3 to avoid integers overflow. 

 
 

3.5.3. Use acceleration table for dynamic threshold propagation 

The dynamic threshold propagation often runs over ten iterations for a typical input image 

================================================================= 
Program3 

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
T [x][y]=((I [x-2][y]+I [x+2][y]) + ((I [x-1][y] + I [x+1][y])<<2) + (I [x][y]<<3))>>2; 
I1[x][y]=(( T [x][y-2]+ T [x][y+2]) + ((T [x][y-1] + T [x][y+1])<<2) + (T [x][y]<<3)) >> 4; 
 
Y [x][y]=((I1 [x-2][y]+I1 [x+2][y]) + ((I1 [x-1][y] + I1 [x+1][y])<<2) + (I1 [x][y]<<3)) >> 4; 
I2[x][y]=( Y [x][y-2]+ Y [x][y+2]) + ((Y [x][y-1] + Y [x][y+1])<<2) + (Y [x][y]<<3) ; 
 
D[x][y]= I2[x][y]- ((I1[x][y]<<4) + (I1[x][y]<<2) + (I1[x][y]>>2)); 

 
================================================================= 

 

================================================ 
Program2 

////////////////////////////////////////////////////////////////////////////////////////////// 
D[x][y]= I2[x][y]- (I1[x][y]<<8) - (I1[x][y]<<6) – (I1[x][y]<<2); 

================================================ 
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sized 640×480. It is very time-consuming if a whole-image scan is performed on each iteration. 

Therefore, an acceleration table is used to reduce the time required for propagation. 

The acceleration table is composed of two first-in-first-out (FIFO) memories, namely FIFO A 

and FIFO B. When the propagation is started from boundary set pixels, the coordinates of the 

adjacent pixels that belong to non-boundary pixels, i.e., pixels of Seta
1, are sequentially stored 

into FIFO A. After a whole-image scan, all the boundary pixels are visited and the locations for 

the adjacent non-boundary pixels are saved. Then, in the second iteration, the propagation starts 

from the pixels saved in FIFOA, they become Setb
2 pixels for this iteration. Again, the 

coordinates of the pixels adjacent to Setb
2 form Seta

2 and are stored into FIFO B. The process 

repeats the same flow and toggles FIFO A and FIFO B by iteration. As a result, only one full 

image scan is required for the first time and the computation is greatly reduced by the way. 
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Chapter 4   The Deformation Correction Method  

In general cases, the license plate characters are often involved with certain degree of 

deformation when they are projected into two-dimensional images.  The deformation in turns of 

mathematics could be composed of any transformation such as rotation, scaling, affine 

transform or mixed transformations…, etc. It is difficult to recognize these characters without 

correcting the deformation beforehand. In this chapter a novel method is discussed to correct the 

extracted characters in the proposed license plate recognition system. 

4.1. Useful Properties for Deformation Correction 

The extracted character candidates are not suitable for recognition directly because they 

probably undergo some geometric transformations such as rotation, affine deformations or 

mixed deformation…due to abnormal camera location or capture angle. The method in this 

section tries to eliminate the geometric transformations of character candidates and transform 

them into normal orientation for stable recognition. Fig. 4-1 shows some typical 

transformations from normal plate image in Fig. 4-1(a) such as rotation in Fig. 4-1(b), affine 

deformation in Fig. 4-1(c) and mixed deformation in Fig. 4-1(d). Due to the difficulties in 

finding invariant reference points, we utilize two useful properties for license plate characters to 

eliminate the undergone geometric transformations. The properties may not be sufficient to 

make perfect recovery from the deformation; however they can be used to detect the 

deformation and correct it in certain degrees to improve the successful rate in recognition. 

The first property used for correcting geometric deformation of character candidates is the 

baseline. The baseline is an invisible line above which all the characters on a license plate are 

aligned. For various geometric deformations such as Fig. 4-1(b)-(d), the baseline can be used to 

correct a part of them, e.g., Fig. 4-1(b). However, for some other deformations, e.g., Fig. 
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4-1(c)-(d), it needs more information in addition to baseline to correct them for recognition. In 

order to correct from these complex deformations, a second property is adopted by referring to 

the horizontal boundary lines of each candidate. Unlike the baseline belonging to a group of 

character candidates, the horizontal boundary lines are the left and right boundaries belonging 

to a single character candidate which can be used to normalize the slant angle of each character 

candidate so that it can be changed to a state suitable for feature extraction and recognition.  

Before locating the baseline, the character candidates are grouped by their sizes and positions. 

The rules of license plates [48] with an acceptable tolerance are used to check if the character 

candidates belong to the same license plate. The candidates obeying the rules will be grouped 

and considered as a single license plate. For each group of character candidates, a baseline is 

expected to exist below and can be found by the following methods. 

     

    

 
Fig. 4-1  Typical geometric transformations in LPR systems 

(a) Normal Plate (b) Rotational transformation 

(c) Affine transformation 
(d) Mixed 
transformation 
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4.2. Voting Boundary Method 

The voting boundary method is suitable to find boundary lines of a group of pixels in an 

image. It works by assuming many straight line candidates and detecting the best one passing 

through most of the edge pixels by voting. The method is in some respects similar to Hough 

transform[49] and has the same advantage with it in robust detection. However, it simplifies the 

computation from Hough transform by replacing the complex triangular functions with simple 

additions and subtractions. 

 
Fig. 4-2  A character candidate and the bottom pixels 

 

Before the voting boundary method, it is required to find the edge pixels in four directions, 

respectively top, bottom, left and right boundary pixels. The edge pixels are the most outside 

pixels of an image group. For example, the bottom pixels are defined as the set of pixels that 

first appear when searching from bottom to top on each vertical pixel line. Fig. 4-2 shows an 

example on how to find the bottom pixels, where the gray pixels are grouped by connected 

component analysis in the extraction stage and the pixels marked as ‘B’ are the bottom pixels 

found according to the definition above. The principle for computing the voting boundary 

method starts from similar triangles. Let’s see Fig. 4-3 for example, in the similar triangle pair 

∆ABC and ∆ADE, it is known that ( ) cbada ×+=× . Let the line NG  be one of the bottom 

boundary lines of the pixel groups inside rectangle MNOP and the black circles are the 
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corresponding bottom pixels. The distances from the bottom edge, NO to each bottom pixel 

are stored in an array BP, where the array has w elements BP[x], x=1 to w. If BP[x] is on the line 

NG , then it satisfies  

 ( ) [ ]xBPwgx ×=× . (14) 

Consider to include error tolerance and rearrange the equation, the BP[x] is on line NG if it 

satisfies  

 
( ) [ ]
( ) [ ]




−≥×
+<×

rxBPw/gx

rxBPw/gx
, (15) 

where the variable r represents thickness of the boundary line and can be adjusted according to 

different applications. 

 
Fig. 4-3  Derivation of the voting boundary method 

 
Each boundary pixel is voted into one of the following three sets according to the inequality 

pairs: the first set FIT if a boundary pixel satisfies the both inequality, the second set 

UNDERFIT if a boundary pixel falls in the range ( ) [ ] rxBPw/gx +≥× , and the third set 

OVERFIT if a boundary pixel meets the condition( ) [ ] rxBPw/gx −<× . Let the pixels voted to 

set FIT be pi, i=1 to n. The coordinates of pi are respectively (xi, yi) and x1 < x2 < x3 <… < xn. On 
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each boundary line candidate, the distance of start pixel p1 on coordinate (x1, y1), and end pixel 

pn on coordinate (xn, yn), are measured as ( ) ( )2
1

2
1 yyxxd nn −+−= and treated as the length 

of the boundary line.  

The process to vote boundary lines is drawn in Fig. 4-4, where it can be seen that the 

computation is very simple because of continuity of the x-axis. Only one division representing 

the angle between the boundary line and the x-axis is required at the beginning and few 

additions or subtractions are required afterward. After the voting process, the line gets the most 

votes in set FIT is assigned to be the true boundary line of the pixel group. Note that the set 

UNDERFIT and OVERFIT can be referenced to delete improper character candidates if any 

one of them is abnormally large. 

 
Fig. 4-4  Flow chart to vote boundary lines 

 

Assign m = g/w  

Initialize x=0, n=0  

If n < BP[x]-1 
UNDERFIT= 
UNDERFIT + 1 

If n ≥ BP[x]+1 
OVERFIT= 
OVERFIT + 1 

FIT = FIT +1 

n = n + m 
x = x+1 

If x reach end  

End 
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4.3. The Correction Method 

The method used to find the baseline is first locating the bottom pixels of each character 

candidates, and then use voting boundary method to find a line that most bottom pixels pass 

through. After finding the bottom pixels of each character candidate, the voting boundary 

method is applied to detect the baseline passing though most of the bottom pixels.  

Once the baseline is detected, the next step is to correct rotation angles of character 

candidates. As discussed above that the characters on a license plate are aligned above the 

baseline. If the baseline found by the voting process is rotated, it stands for that all the character 

candidates on it are rotated, too. Therefore, the rotation angle of the character candidates can be 

recovered to normal position according to the detected baseline. During the recovery process, 

each character candidate is rotated and the related preliminary features such as width, height and 

occupancy are re-measured for the feature extraction in next stage. 

For each recovered single character candidate, the voting boundary method used to find 

baseline of multiple characters is applied again to find the horizontal boundary lines of each 

single character candidate. While something different from the former, the conditions for 

detecting horizontal boundary lines are adjusted for different characteristics of single characters. 

After the voting boundary process, the true boundary line is selected according to the following 

two rules: First, the number of votes to set UNDERFIT must be zero. It stands for that all the 

edge pixels must lay inside the boundary lines. Second, instead of referring to the number of 

votes in set FIT, the length of boundary line is referred as the key factor to select true boundary 

line. The length of a boundary line is defined as the length from the first edge pixel to the last 

one in set FIT. The boundary line candidate of longest length is selected as the true boundary 

line if its length is longer than a pre-defined threshold. For some characters containing curvature 

boundaries, the thickness r in (15) can be adjusted to retain accurate results. A typical choice for 
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32×32 size characters is r=2. 

Based on the left and right boundary lines, each candidate is adjusted to balance the left and 

right boundary. Fig. 4-5 shows an example on how to adjust a deformed character based on the 

detected boundary lines;  Fig. 4-5(a) is the source character and Fig. 4-5(b) is the character after 

adjustment, say, adjusted character. Rectangle ABCD and A′B′C′D′ are respectively the 

rectangular borders of the source character and adjusted character. w and w′ are the widths of the 

characters before and after adjustment. The character height, h, is unchanged after the 

adjustment. Node1 to node4 are left edge pixels and node5 to node8 are right edge pixels. 

Node1 and node4 are respectively the start pixel and end pixel of the left boundary line. Node5 

and node7 are of the right boundary line. Our target is to arrange the left and right boundary 

lines symmetrically, i.e., any two pixels having the same y-coordinate on left and right boundary 

line have the same distance to the outer rectangular left and right borders. Once the deformation 

is corrected, the characters candidates are then passed to next stage for recognition. 

 
(a)                                                           (b) 

Fig. 4-5  Compensation of geometric deformation 
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Chapter 5   The Recognition Method  

After deformation correction, a novel method named accumulated gradient projection vector 

method, or AGPV method in short, is applied to recognize the extracted character candidates. 

5.1. Why AGPV 

When dealing with detection or recognition of characters, edge/line is a basic component 

that could never be ignored. Straight edges have simple representation and stable characteristic 

that make them easier detected than any other attributes in an image. 

There are numerous methods of edge detection can be found in literatures[16]-[20], among 

which Hough transform [16] is well-known for its stable and reliable performance. However, 

Hough transform is also famous for the expensive cost on computation and memory 

consumption. Although some methods [21][22] are proposed to improve the speed and reduce 

memory consumption of Hough transform, sometimes it is still insufficient in consideration of 

accuracy for some applications. In our study, Hough transform provides an important concept to 

us that stable performance can be achieved by means of accumulation. 

In this work we propose a novel accumulated gradient projection method for detection of 

edges. The new method adopts the same concept as Hough transform to accumulate the pixels 

of similar attributes in order to achieve stable and reliable result. Besides, two more concepts 

are included to guarantee the reliability of the method. First, the new method projects the pixels 

of similar gradient orientations onto an axis which is chosen parallel to the majority of these 

gradient orientations. In general cases the gradient orientations of edge pixels are perpendicular 

to the direction of the edge. The projection method achieves the best accuracy of measuring 

since the edges are measured from their perpendicular direction. Second, instead of referring to 

pixel intensity which might be sensitive by illumination change, the new method accumulates 
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the gradient magnitudes which are relatively more stable against illumination change. Besides, 

the result is also stable against noise because it refers to the majority of accumulation and 

minimizes the effect of random distributed noise. 

5.2. The AGPV Methods 

There are four stages to recognize a character using the AGPV method. First, determine the 

axes; including the nature axes and augmented axes. Second, calculate the AGPVs based on 

these axes. Third, normalize the AGPVs for comparing with standard ones. Fourth, match with 

standard AGPVs to validate the recognition result. The procedure will be explained in detail in 

the following sections. 

5.2.1. Determine Axes  

When discussing about the AGPV method, it is important to introduce an essential property, 

axes, in advance. An axis of a character is a specific orientation on which the gradients of 

grouped pixels are projected and accumulated to form the desired feature vector. An axis is 

represented by a line that has the specific orientation and passes through the center of gravity 

point of the grouped pixels. The axes of a character can be separated into two different classes 

named nature axes and augmented axes. The two classes are different in characteristics and 

usages and will be described below. 

5.2.1.1. Build up Orientation Histogram 

The first step of the AGPV method is to build up the corresponding orientation histograms of 

the character candidates. The orientation histograms are formed from gradient orientations of 

grouped pixels. Let γ(x,y) be the intensity value of sample pixel (x,y) of an image group I, the 

gradients on x-axis and y-axis are respectively, 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( ) ( ) ( )11111121111

11111121111

−+−+++−−+×+−−−+−=∇
+−−+++−−+×+−−−−+=∇

y,xy,xy,xy,xy,xy,xy,xY

y,xy,xy,xy,xy,xy,xy,xX

γγγγγγ
γγγγγγ

, (16) 
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the gradient magnitude, m(x,y), and orientation, θ(x,y), of this pixel is computed by 

( ) ( )( ) ( )( )
( ) ( ) ( )( )y,xX/y,xYtany,x

y,xYy,xXy,xm

∇∇=

∇+∇=
−1

22

θ
, (17) 

By assigning a number BINhis in the orientation histogram, the gradients are accumulated into 

BINhis bins and the angle resolution is REShis =(360/BINhis). The BINhis is chosen as 64 in the 

experiments and the angle resolution REShis is therefore 5.625 degrees. Each sample added to 

the histogram is weighted by its gradient magnitude and accumulated into the two nearest bins 

by linear interpolation. Besides the histogram accumulation, the gradient of each sample is 

accumulated into a variable GEhis which stands for the total gradient energy of the histogram.  

5.2.1.2. Determine the Nature Axes 

The nature axes is essential for the AGPV method; the word “nature” is used because the 

axes always exist “naturally” regardless of most environment and camera factors that degrade 

the recognition rate. The nature axes have several good properties helpful for the recognition. 

First, they have high gradient energy on specific orientation and therefore are highly detectable 

in the input image. Second, the angle differences among the nature axes are invariant to image 

scaling and rotation. It means, they can be used as references to correct the unknown rotation 

and scaling factors on the input image. Third, the directions of nature axes are robust within a 

range of focus and illumination differences. Fourth, although some factors, such as different 

camera view angle, may cause character deformation and change the angle relationship among 

the nature axes, the detected nature axes are still useful to filter out the dissimilar ones and 

narrow down the range of recognition results. 

The nature axes are determined by performing peak-valley analysis on the orientation 

histogram. A peak on the orientation histogram represents a specific orientation in the character 

candidate. Let function H(a) denote the histogram magnitude appeared on angle a; the k-th peak, 
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pk, of the orientation histogram is located by seeking the angles satisfying 

H(pk)> H(pk -1) and H(pk)> H(pk +1) 

Beside the center of the peak, the two boundaries named start angle sk and end angle ek, within 

an  angle difference to pk less than ath are found by the following equations, 

( ) ( ) ( )kthkk p,apb,bHaH,as −∈∀≤=    (18) 

( ) ( ) ( )thkkk ap,pb,bHaH,ae +∈∀≤=    (19) 

The threshold ath is used to guarantee the boundaries of a peak stay nearby of its center and is 

defined to be 22.5 degrees in the experiment. The reason to choose ±22.5 degrees threshold is 

because it segments a 360-degree circle into 8 orientations; which is similar to human eyes since 

we often see a circle in 8 octants  

Once the start angle and end angle of a peak is determined, an energy function standing for 

the gradient energy of the k-th peak is defined as( ) ( )∑
=

=
k

k

e

sa

aHkE . In addition, an outstanding 

energy function D(k) is also defined for each peak, 

 
( ) ( ) ( ) ( )( ) ( )

2
kkkk seeHsH

kEkD
−×+

−=
 (20) 

The outstanding energy neglects the energy contributed by neighboring peaks and is more 

meaningful than E(k) to represent the distinctiveness of a peak. Peaks with small outstanding 

energy are not considered as nature axes because that they do not outstand from the neighboring 

peaks and may not be detectable in new images.  

In the experiments, there are different strategies to threshold the outstanding energy for 

training and recognition. In training phase, we select one perfect image for each character; it is 

called standard character image and is assigned to be the standard of the recognition. The most 
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important task in this phase is finding stable peaks in the standard character image. Therefore, a 

higher threshold GEhis/32 is applied and a peak has outstanding energy higher than the threshold 

is considered as a nature axis of the standard character image. In recognition phase, the 

histogram may have many unexpected factors such as noise, focus error, variable 

illumination…, so that the task is changed to find one or more matched candidates for further 

recognition. Therefore, a lower threshold GEhis/64 is used to filter out the dissimilar ones by the 

outstanding energy. After threshold check, the peaks whose outstanding energy higher than the 

threshold is called nature peaks of the character image and the corresponding angles are called 

the nature axes. Typical license plate character images (alphabet and numerical) can be found 

having two to six nature axes by the procedures above. 

Fig. 5-1 is an example to show the nature axes. Fig. 5-1(a) is the source image, where 

intensity is ranged from 0(black) to 255(white). Fig. 5-1(b) is the corresponding orientation 

histogram which are accumulated from the pixels intensity in Fig. 5-1(a). Fig. 5-1(c) overlays 

the source image with the detected nature axes shown by red arrows. We can see six peaks in the 

histogram, marked as A,B,C,D,E and F respectively, which correspond to the six red arrows in 

Fig. 5-1(c). 

 

     

(a)                                   (b)                                   (c) 

Fig. 5-1  (a) Input image (b) Orientation histogram (c) The nature axes 

5.2.1.3. Determine the Augmented Axes 
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Augmented axes are defined, as augmentations to nature axes, to be the directions on which 

the generated feature vectors, AGPVs, are unique or special to represent the source character. 

Unlike the nature axes possessing strong gradient energy on specific orientation, augmented 

axes do not have this property so that they may not be observed from orientation histogram.  

Some characters have only few (one or two) apparent nature axes such as the example in Fig. 

5-2. Therefore, it is necessary to generate enough AGPVs on augmented axes for reliable 

recognition. The experiments tell us that it needs at least four AGPVs in order to recognize a 

character in a high successful rate. The four AGPVs can be any one from nature axes AGPVs or 

augmented axes AGPVs. More augmented axes can be declared to refine the recognition result 

if four AGPVs are not enough to distinguish a character from similar characters. From the 

experiment results we know that good recognition rate can be achieved for license plate 

characters by at most six AGPVs. 

The augmented axes can be defined by character shapes or by fixed directions. In our 

experiments, there are only four fixed directions, as the four arrows in Fig. 5-2(c), defined as 

augmented axes for the total 36 characters. It is not meaningful to declare an augmented axis on 

a character if it already exists in the nature axes. Therefore, if any one of the four directions 

already exists in the nature axes, it will not be declared any more in the augmented axes.  

   

(a)                                   (b)                                   (c) 

Fig. 5-2  (a) A character that has only one nature axis. (b) Orientation histogram. (c) The 

nature axes in red arrow and three augmented axes in blue arrows. 
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5.2.2. Calculate AGPVs 

Once the axes of a character are determined, the next step is to calculate the accumulated 

gradient projection vectors(AGPVs) based on these axes. On each axis of corresponding peak pk, 

the gradient magnitudes of pixels whose gradient orientations fall inside the range 

( ) kk ey,xs << θ  are projected and accumulated. The axis could be any one in the nature axes or 

augmented axes. 

 

5.2.2.1. Projection principles 

The projection axis, ηφ, is chosen from either nature axes or augmented axes with positive 

direction φ. Fig. 5-3 figures out the projection of sample pixel (x, y) and the center of gravity 

(COG) point of an object.  

 

Fig. 5-3  Gradient projection of COG point and any other pixels 

 

Let the (xcog, ycog) be the COG point of the input image, i.e., 
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where (xi, yi) is the i-th pixel and N is the total number of pixels of a character candidate. Let the 

function A(x,y) denote the angle between pixel(x,y) and the x-axis, i.e., 

( ) 






=
x

y
tanay,xA . (22) 

The process of projecting a character onto axis ηφ can be decomposed into three operations. 

First, rotate the character by angle ( )( )φθ −=∆ cogcog y,xA . Second, scale the rotated pixels by a 

projection factor cos(∆θ). And third, translate the axis origin to the desired coordinate. Apply 

the process on the COG point, the coordinate of COG point after rotation is 

( ) ( )
( ) ( ) 
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Scaling by a projection factor cos(∆θ), it becomes 
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. (24) 

Finally, combine (23) and (24) and further translate the origin of axis ηφ  to (xηori, yηori), the final 

coordinate (xproj, yproj) of projecting any sample pixel (x,y) onto axis ηφ  is computed by 

( ) ( ) ( )
( ) ( ) ( ) 
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. (25) 

Note that the origin of axis ηφ, (xηori, yηori), is chosen to be the COG point in the experiments, 

i.e., (xηori, yηori)= (xcog, ycog), because it concentrates the projected pixels around the origin (xcog, 

ycog) and minimizes the axis length to accumulate the projected samples.  
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5.2.2.2. Gradient projection accumulation 

In this section, the pre-computed gradient orientation and magnitude will be projected onto 

specific axes then summed up. Only sample pixels of similar gradient orientations are projected 

onto the same axis. As the example in Fig. 5-4, an object O is projected onto axis η of angle 

0-degree. In this case, only the sample pixels of gradient orientations θ(x,y) near 0-degree will 

be projected onto η and then accumulated.  

 

 

Fig. 5-4  Accumulation of gradient projection  

 

According to axes types, there are two different cases to select sample pixels of similar 

orientations. For nature axis corresponding to k-th peak pk, the sample pixels with orientation 

θ(x,y) ranged inside the boundaries of the pk, i.e., sk < θ(x,y) < ek, are projected and accumulated. 

For augmented axis with angle φ, the sample pixels with gradient orientations θ(x,y) ranged by 

θ(x,y)≥ φ-22.5 and θ(x,y)≤ φ+22.5 will be projected and accumulated. From (17) and (25), the 

projected gradient magnitude, ( )y,xm̂ , and the projected distance, ( )y,xl̂  of sample pixel (x,y) 

onto axis ηφ are respectively 

( ) ( ) ( )( )φθ −×= y,xcosy,xmy,xm̂ , (26) 
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and 

( ) ( ) ( )22
pcogprojpcogproj yyxxy,xˆ −+−=l . (27) 

To accumulate the gradient projections, an empty array R(x) is created with length equals to the 

diagonal of the input image. Since the indexes of an array must be integers, linear interpolation 

is used to accumulate the gradient projections into the two nearest indexes of the array. In 

mathematical representations, let b=floor( ( )y,xl̂ ) and u=b+1, where floor(z) rounds z to the 

nearest integers towards minus infinity. For each sample pixel (x,y) on input image I, do the 

following accumulations, 

( ) ( ) ( ) ( )( )y,xˆuy,xm̂bRbR l−×+= ; ( ) ( ) ( ) ( )( )by,xˆy,xm̂uRuR −×+= l . (28) 

Besides R(x), a second array, T(x), is also created to collect overall information required for 

normalization. There are two differences between R(x) and T(x). First, unlike R(x) targeting on 

only the sample pixels of similar orientation, T(x) targets on all the sample pixels of a character 

and accumulates their gradient magnitudes. Second, R(x) accumulates the projected gradient 

magnitude ( )y,xm̂ , while T(x) accumulates the original gradient magnitude m(x,y). Referring to 

eq.(28),  

( ) ( ) ( ) ( )( )y,xˆuy,xmbTbT l−×+= ; ( ) ( ) ( ) ( )( )by,xˆy,xmuTuT −×+= l . (29) 

The purpose of T(x) is to collect the overall gradient information of the interested character 

candidate for normalizing array R(x) into desired AGPV. 

 

5.2.2.3. Normalization 

The last step to find out the AGPV of an axis is to normalize the gradient projection 
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accumulation array R(x) into a fixed-length vector. With the fixed length, the AGPVs have 

standard dimensionality and can be compared with standard AGPVs easily. Before the 

normalization, the length of AGPV, LAGPV, has to be determined. Depends on the complexity of 

recognition targets, different length of AGPV may be selected to describe the distribution of 

projected gradients. In our experiments, the LAGPV is chosen as 32. A smaller LAGPV lowers the 

resolution and degrades the recognition rate while a larger LAGPV slows down system 

performance and makes no significant difference on recognition rate. It is worth to note that, 

one AGPV formed upon an axis is independent from the other AGPVs formed upon different 

axes. This is important to make the AGPVs independent from one another regardless of the 

source character and axes. 

In order to avoid the impact of isolated sample pixels which are mostly caused by noise, the 

array R(x) is filtered by a Gaussian filter G(x): 

( ) ( ) ( )xG*xRxR
~ = , (30) 

where the operator * stands for convolution operation. The variance of the G(x) is chosen as σ 

=(LenR)/128 in the experiments, where LenR is the length of R(x). It is found that this choice 

benefits in both resolution and noise rejection. Similarly, the array T(x) is also filtered by the 

same Gaussian filter to eliminate the effect of noise. After Gaussian filtering, the array T(x) is 

analyzed to find effective range, the range in which the data is effective to represent a character. 

The effective range starts from index Xs and ends in index Xe, defined as 

( ) ( ){ }sTTsss xxthxT;thxT,xX <∀<≥=  , , (31) 

and 

( ) ( ){ }eTTeee xxthxT;thxT,xX >∀<≥=  , , (32) 
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where the threshold thT is used to discard noise and is chosen as thT =Max(T(x))/32 in the 

experiment. The effective range of R(x) is assigned to be the same as the effective range of T(x), 

from Xs to Xe. 

As mentioned previously, the gradient projection accumulation results in a large sum along a 

straight edge. This is a good property if the interested character is composed of straight edges. 

However, some characters may consist of not only straight edges but also some curves and 

corners which only contribute small energy on array R(x). In order to balance the contribution of 

different types of edges and avoid the disturbance from noise, a threshold thR is used to adjust 

the content of array R(x) before normalization, 

( ) ( )
( )




≥
<

=
R

R

thxR
~

,

thxR
~

,
xR̂

 if  255

 if  0
, (33) 

After finding the effective range and adjusting the content of array R(x), the accumulated 

gradient projection vector(AGPV) is defined to resample from ( )xR̂ ,  

( ) ( ) 
















 +−×






= sse XXX
i

roundR̂iAGPV
32

. (34) 

Fig. 5-5 gives an example of the gradient accumulation array T(x), gradient projection 

accumulation array R(x) and normalized AGPV. The example uses the same test image as Fig. 

5-1 and displays only one of the nature axes, axis E. Similar to the method of finding the peaks 

of orientation histogram, the k-th effective peaks, epk, on R(x) is defined as R(epk)> R(epk -1) 

and R(epk)> R(epk +1). It can be observed that four effective peaks exist in Fig. 5-5(c) and each 

of them represents an edge projected onto axis E in Fig. 5-1(c). 

5.2.3. Matching and Recognition 

This section describes how to apply the AGPV method to recognize the extracted character 
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candidates, or say, test characters, in three aspects. First, the standard AGPV database is 

collected to be the standard templates for matching with test characters. Second, three 

properties used in the matching process are discussed. Third, the methods to match the AGPV 

of a test character with standard AGPVs. 

5.2.3.1. Create standard AGPV database 

A standard database is created by collecting all the AGPVs extracted from characters of 

standard parameters: standard size, standard aspect ratio, no noise, no blur, and neither rotation 

nor deformation. The extracted AGPVs are called standard AGPVs and stored by two 

categories: the one calculated on nature axes is called the standard nature AGPVs and the other 

calculated on augmented axes is called the standard augmented AGPVs. Let the number of total 

standard characters be N, N=36(0~9 and A~Z) for license plate characters in this paper. Denote 

the number of standard nature AGPVs for i-th standard character as NN(i), the number of 

standard augmented AGPVs as NA(i), and the total number of AGPVs as NV(i), where NV(i)= 

NN(i)+ NA(i). The j-th standard AGPV of the i-th character is denoted as VS(i,j), where j=1 to 

NV(i). Note that VS(i,j) are standard nature AGPVs for j≤NN(i) while VS(i,j) are standard 

augmented AGPVs otherwise. 

 

5.2.3.2. Properties used for matching 

Unlike general vectors matching problem directly referring to the RMS error of two vectors, 

the matching of AGPVs refers to special properties which are derived from their physical 

meanings. There are three properties useful for similarity measuring between two AGPVs. 
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(a)                                                           (b) 

    

(c)                                                        (d) 

Fig. 5-5 (a) Gradient projection on axis D. (pink: COG point; red: axis D; cyan: selected 

sample pixels; blue: projected samples)  (b) The gradient accumulation array T(x) with distance 

to the COG point.  (c) The gradient projection array R(x). (d) Normalized AGPV.  

 

The first property used for similarity measuring between two AGPVs is that each peak in an 

AGPV represents an edge on the source character. The number of peaks, or say the edge count, 

is useful to represent the difference between two AGPVs. For example, there are four peaks on 

the extracted AGPV in Fig. 5-5(d) and each of them represents an edge on the axis. The edge 

count is invariant no matter how the character exists in the input image. In this paper, a function 

EC(V) is defined to calculate the edge count of an AGPV V by the following algorithm, 

=====   Algorithm 1: Count the number of edges in an AGPV ====== 

ec=0; 
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for i=1 to (size(V)-1) 

 if( V(i)==0 and V(i+1) >0) 

  ec=ec+1; 

 end 

end 

EC(V)=ec; 

============= end of formula 1 ===================== 

The second property used for similarity measuring between two AGPVs is that although the 

edge count in an AGPV is invariant for the same character, the position of the edges could be 

varied if the character is deformed. This is the major reason to explain why the RMS error is not 

suitable to measure the similarity between two AGPVs. In order to compare AGPVs under the 

cases of character deformation, a matching cost function C(U, V) is calculated to measure the 

similarity between AGPV U and AGPV V, expressed as,  

( ) ( ) ( ) ( ) ( ) ( ) ( )VIVVUVVUVU ECECECECECEC,C −+−+−= , (35) 

where VUUV ∪=  is the union vector of AGPV U and AGPV V while  VUIV ∩=  is the 

intersection vector of them. UV and IV are calculated by the following formulas: 

=====   Formula 2: calculate union vectors of two AGPVs====== 

for i=1 to 32 

 if(V(i)>0 or U(i) >0) 

  UV(i)=1; 

 else 

  UV(i)=0; 

 end 

end 

============= end of formula 2================= 
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=====   Formula 3: calculate intersection vectors of two AGPVs ====== 

for i=1 to 32 

 if(V(i)>0 and U(i) >0) 

  IV(i)=1; 

else 

  IV(i)=0; 

end 

end 

============= end of formula 3================== 

The third property used for similarity measuring between two AGPVs is that the angular 

relationships of nature axes on the test character are similar to those on the corresponding 

standard character. In the experiment, a threshold thA=π/32 is used to check if the AGPVs of the 

test character match the angular relationship of nature axes of a standard character. Let AAT(k) 

be the k-th axis angle of the test character, the function AA(i,j) denote the angle of the j-th axis of 

the i-th standard character, 0≤AA(i,j)<2π, for i=1 to 36, j=1 to NV(i). If the m-th and n-th axis of 

the test character are respectively corresponding to the g-th and h-th axis of the i-th standard 

character, then  

( ) ( )( ) ( ) ( )( ) ATT thh,iAAg,iAAnAAmAA ≤−−− .  (36) 

A typical example can be seen by comparing Fig. 5-5 and Fig. 5-6 that the characters in Fig. 

5-5(a) and Fig. 5-6(a) are the same but differs in blur index. Let the extracted AGPV in Fig. 

5-5(d) be U and the one in Fig. 5-6(c) be V. From algorithm 1, the edge count of the associated 

vectors are respectively, EC(U)=4, EC(V)=3, EC(UV)=3, EC(IV)=4. From the definition of 

matching cost in (35), 
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( ) ( ) ( ) ( ) ( ) ( ) ( )
2343334 =−+−+−=

−+−+−= VIVVUVVUVU ECECECECECEC,C
 

 

        

(a)                                     (b) 

 

(C) 

Fig. 5-6  An example comprising different blur index with Fig. 5-5 (a) Gradient projection 

on axis D. (pink: COG point; red: axis D; cyan: selected sample pixels; blue: projected samples) 

(b) The gradient projection array R(x). (c) Normalized AGPV.  

 

5.2.3.3. Matching of characters 

In order to recognize the test character, the AGPVs of the test character is stage-by-stage 

compared with the standard AGPVs in the database. Moreover, a candidates list is created by 

including all the standard characters at the beginning and remove the standard characters those 

have high matching cost to the test character on each stage. Until the end of the last stage, the 
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candidate in the list consisting of the lowest total matching cost is considered as the recognition 

result. 

Stage 1: Find the fundamental matching pair. Calculate the cost function between the test 

character and the j-th AGPV of the i-th standard character. 

( ) ( ) ( )( )j,i,kCj,kC ST VV=1  (37) 

Find a pair of axes whose matching cost is the minimum. Let kT and js be the pair of axes 

respectively on the test character and i-th standard character 

( ) ( )( )j,kCminargj,kpair
j,k

1=ST ; (38) 

If C(kT, jS) is less than a threshold thF, the i-th standard character is kept in the candidates list 

and the pair(kT, jS) is served as the fundamental pair of the candidate.  

Stage 2: Find the other matching pairs between the standard AGPVs and the test character: 

Based on the fundamental pair, the axes angles of the test character are compared with those of 

the standard character. Let the number of nature AGPVs detected on the test character be NNT. 

For the i-th standard character, create an empty array mp(j)=0, 1≤j≤ NV(i), to denote the 

matching pair with the test character. Taking use of eq(36), calculate 

( ) ( )( ) ( ) ( )( ) ASTTT thj,iAAj,iAAkAAkAA ≤−−− ; [ ] TT kk,NN,k ≠∈∀ 1 ; 

( )[ ] Sjj,iNN,j ≠∈∀ 1  (39) 

the k-th test AGPV satisfies (39) is called the j-th matching pair of the standard  character, 

denoted as mp(j)=k. Note that there might be more than one test AGPVs satisfying (39). In this 

case only the one of lowest matching cost is recognized as the j-th matching axis and the others 

are ignored. 

Stage 3: Calculate total matching cost of standard nature AGPVs: Define a character 
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matching cost function CMC(i) to measure the similarity between test character and the i-th 

standard character by summing up the matching costs of all the matching pairs, 

( ) ( )( ) ( )( )
( )

( )

∑
>=

=
iNN

jmp,j
ST j,i,jmpMCiCMC

01

VV  (40) 

Stage 4: Calculate the matching costs of augmented AGPVs: At the first step, find the axis angle 

AX on the test character corresponding to the j-th standard augmented axis as 

( ) ( )( ) ( )TTS kAAj,iAAj,iAAAX +−=  (41) 

If there is one AGPV of the test character, say, the k-th nature AGPV satisfying (39), i.e., 

( )( ) AT thAXkAA ≤− , then the k-th nature AGPV is mapped to the j-th augmented axis and 

mp(j)=k. Otherwise, the AGPV corresponding to the j-th standard augmented axis must be 

calculated based on the axis angle AX. After that, the matching costs of the augmented AGPVs 

are accumulated into the character matching cost function as, 

( ) ( )( ) ( )( )
( )

( )

∑
+=

=
iNV

iNNj
ST j,i,jmpMCiCMC

1

VV  (42) 

Stage 5: Recognition: Due to the different number of AGPVs for different standard character, 

the character matching cost function is normalized by the total number of standard AGPVs, i.e., 

( ) ( ) ( )iNV/iCMCiCMC =  (43) 

Finally, the test character is recognized as the h-th standard character of the lowest matching 

cost if the character matching cost CMC(h)<thR. 
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Chapter 6   Experimental Results 

The experiments are designed in two aspects to respectively test the feasibility and 

performance of the two novel methods proposed in this work. The first aspect is focused on the 

extraction function, where the proposed scale space binarization method is compared with two 

popular binarization methods on several properties. The second aspect is the recognition 

function, where the proposed AGPV method is compared with traditional method, too, to show 

the performance. 

6.1. Scale-Space Binarization Method(Extraction) Test 

The experiments to test the scale-space binarization method are divided into three parts. The 

first one is feasibility test which is held in order to prove the feasibility of proposed method 

under various environments and light conditions. Two well-known binarization methods, 

Otsu’s method [1] (global thresholding) and the local intensity gradient method (LIG) [5], (local 

thresholding) are compared with the proposed method.  

The second experiment is reliability test. We respectively add different levels of noise and 

illumination into the test images and re-measure the extraction result. Similarly, the results of 

using Otsu’s method and the LIG method are compared as well. 

The final experiment on the binarization method is the computation time test. We record the 

computation time for the three different methods on a Pentium-M machine running 1.5GHz and 

compare their performance. 

6.1.1. Feasibility Test 

The test images are captured from various environments containing license plates captured 

from different orientation and distances. Totally 54 images are converted into 8-bit gray-scale 

images and resampled to 640×480 pixels. Two sample images and their simulation results are 
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shown in Fig. 6-1 and Fig. 6-2. Two popular gray-level image binarization methods, Otsu’s 

method and LIG, are compared with the proposed method. From the simulation results, we can 

see that the proposed SSB method perform better binarization results than the two prior 

methods. It is worth to note that, the Otsu’s method is convenient in implementation but often 

failed in the images containing complex background; the LIG method performs nicely around 

edges but failed to identify the interior of characters. 

6.1.2. Reliability Test 

Different levels of noise and illumination are added into the test images and the true positive 

rate (TPRE), i.e., the rate that the true characters are extracted successfully in the test image, is 

measured. The subscript E is for extraction, used for distinguishing from the true positive rate of 

recognition TPRR where the true characters are recognized successfully in the test image. A 

character is considered as successfully extracted if it is isolated from external objects and the 

grouped pixels can be recognized by human eyes. 

6.1.2.1. Quantization noise analysis 

The first factor affects TPRE is quantization noise. We respectively add 6 levels (0.8%, 1.6%, 

3.2%, 6.4%, 12.8%, 25.6%) noise into each pixel, where the 0.8% noise level is equivalent to 

add 1 or -1 randomly into each  8-bit gray-level pixel; 1.6 % is equivalent to add 2 or -2 into 

each pixel… 25.6% is equivalent to add 32 or -32 into each pixel.  The images after adding 12.8 

% and 25.6% noise are shown in Fig. 6-3. The simulation results are shown in Table I, where the 

TPRE  is ranged from 0 to 100; TPRE =50 represents half(27) license plates on the 54 images are 

successfully extracted.  

From the simulation result in Table I, it is obvious that the proposed method (scale-space 

binarization, SSB) performs better than the other two methods when the input image is 

corrupted with noise. In addition, a conclusion can be derived from the simulation that the TPRE 
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of binarization is closely related with characters sizes. The bigger the character size is, the 

higher the TPRE is. 

 

6.1.2.2. Illumination analysis 

Illumination is another important factor to binarization of images. In order to test the 

robustness of the proposed method to illumination change, four directional light sources L1 to L4 

are added in the test images to imitate the responses under different illumination. The gray-level 

intensity of the three test images are multiplied by the following four directional light sources. 

 

( ) ( ) ( )( )
( ) ( )( ) ( )( )
( ) ( )( ) ( )( )
( ) ( ) ( )( ) ( )( )k

k

k

k

WH/yHxWk,y,xL

WH/yHxk,y,xL

WH/yxWk,y,xL

WH/yxk,y,xL

1010

1010

1010

1010

4

3

2

1

+++−+−=

+++−+=

++++−=

++++=

, (44) 

where the W and H are respectively the width and height of the test image and k is the decay 

curve of the directional light sources. Fig. 6-4 shows the number one image exposed under 

L1(x,y,k) with 3 different decay curves k=1,2,4. The simulation is executed by changing decay 

curve k and considered as successful if the characters exposed under the four directional lights 

can be extracted and recognized by human eyes.  

 

TABLE II. 
TPRE BY ILLUMINATION ANALYSIS  

Illumination 

decay curve 

K=1 K=2 K=3 K=4 

SSB 93 93 86 74 

Otsu’s 32 5 0 0 

LIG 89 87 54 38 
 

TABLE I 
TPRE BY QUANTIZATION NOISE ANALYSIS 

Noise 

level 

0.8% 1.6% 3.2% 6.4% 12.8% 25.6% 

SSB 94 94 94 92 90 82 

Otsu’s 83 81 75 62 53 32 

LIG 89 87 85 78 63 47 
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It is evident in Table II that local thresholding methods(SSB, LIG) are better than global 

one(Otsu’s), and among them the SSB method is better than LIG under different illumination. 

6.1.3. Computation time test 

The three binarization methods are implemented by C-language and executed in a Pentium-M 

machine running 1.5GHz. The computation times required for binarizing the test images are 

measured and the averages of them and the corresponding frame rates are recorded in TABLE 

III. Note that the computation time measured doesn’t include the connected component analysis 

because the comparison is focused on binarization only. 

 

From table III, we can see the SSB performs faster than the LIG (local thresholding) while 

still slower than the Otsu’s method (global thresholding). Actually many binarization methods 

require pre-processings such as smoothing filtering in order to ensure the noise are minimized 

before binarization. We can see this from the earlier results of quantization noise analysis. The 

SSB method here already incorporates two stages pre-smoothing by Gaussian filter. Therefore, 

the time differences required for SSB and Otsu’s method may be smaller than that in table III 

when the preprocesssings are taken into account. 

 

TABLE III 
COMPUTATION TIME COMPARISON OF THE THREE METHODS 

 Averaged time Averaged frame 

rate 

SSB 62ms 16.13 

Otsu’s 33ms 30.0 

LIG 89ms 11.2 
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Fig. 6-1 (a) Source image#1. (b) Converted binary image; blue rectangles are isolated groups (c) 
Results after elimination, blue rectangles are character candidates. (d) Binarization result using 

Otsu’s method. (e) Binarization result by LIG. 
 
 

a b 

c 

d e 
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Fig. 6-2 (a) Source image#2. (b) Converted binary image; blue rectangles are isolated groups. (c) 
Results after elimination, blue rectangles are character candidates. (d) Binarization result using 

Otsu’s method. (e) Binarization result by LIG. 
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c 
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Fig. 6-3  Images used in noise analysis(left: 12.8%, right:25.6% quantization noise) 

 
 
 
 
 

  
 

   
                   Fig. 6-4 Images with different decay curve light sources used in illumination 

analysis, (a) k=1, (b) k=2, (c) k=3 (d) k=4 
 

 

 

a b 

c d 
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6.2. AGPV(Recognition) Test 

Although the AGPV method is robust due to its accumulation property, it becomes a 

limitation that the size of the characters must be big enough for stable recognition. Therefore, 

the characters smaller 64×64 after the extraction are up-sampled twice respectively on 

horizontal and vertical axes by interpolation. After that, we choose some characters from the 

test images to be the standard characters and calculate the standard AGPVs. 

Two factors, noise and illumination as that for extraction test is again used to test the 

reliability of the AGPV method. The results are measured by the true positive rate on 

recognition(TPRR). Total 264 characters extracted from the extraction stage are treated as the 

test characters in this measuring. TPRR=50 represents that 132 characters out of the 264 ones 

are recognized successfully. The simulation result is listed in Table IV - Table V.  

 

 

 

 

TABLE  V 
TPRR BY ILLUMINATION ANALYSIS  

Illumination 

decay curve 

K=0 K=1 K=2 K=3 K=4 

TPRR 93 92 87 82 65 
 

TABLE  IV 
TPRR BY QUANTIZATION NOISE ANALYSIS 

Noise 

level 

0 0.8% 1.6% 3.2% 6.4% 12.8% 25.6% 

TPRR 93 92 90 86 81 73 61 

 



 

 60 

Chapter 7   Conclusion and Future Work 

7.1. Conclusion 

This dissertation is devoted to present an approach comprising three novel methods for 

recognition of license plate characters. The technologies related to the license plate recognition 

are first reviewed in Chapter 2 and then, the three methods respectively in charge of extraction, 

normalization and recognition of license plate characters are discussed in Chapter 3 to Chapter 

5. After that, the experimental results are shown in Chapter 6 to demonstrate the feasibility and 

the performance of the presented approach. 

The first method named scale space binarization method (SSB) is used in the extraction stage, 

intending to extract the characters quickly and reliably in the source image. The method utilizes 

Difference-of-Gaussian function to localize the profiles of the interested characters and 

dynamic thresholding to binarize the license plates. Then the characters are extracted from the 

binary image by connected component analysis and the false candidates are eliminated from 

both geometrical properties and profile scores. Optimization methods are also disclosed for 

implementation and experimental results are provided to show the robustness and performance 

of the proposed method in comparison with the two most-used methods, Otsu’s method and 

LIG method. Compared with these methods, the SSB method is obviously robust from noise 

and illumination change. 

The second method, voting boundary method, is used for correcting the geometric 

deformation of characters which often acts as the major reason for recognition rate degradation 

in license plate recognition systems. The voting boundary method is helpful to estimate the 

boundary lines used for correcting the deformation of characters. 

The third method, AGPV method, is designed in the recognition stage to recognize isolated 
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characters on license plates. The feature vectors AGPVs calculated from Gaussian-filtered 

images are independent from rotation and scaling and suitable for characters recognition. The 

experimental results demonstrate the success of the proposed method and its robustness to noise 

and illumination change. 

7.2. Future work 

Although the methods in this work already include complete functions to recognize license 

plates from gray-level images, there still exist some issues worthy of future studies.  

First, although the SSB method can be designed to do full scale search, the computation for a 

full scale search is still too heavy by pure software for real-time applications. A hardware 

accelerator can be studied to speed up the extraction process.  Besides, the SSB method may not 

be able to extract character candidates accurately if the resolution of the image is low. Some 

methods to improve the successful extraction rate in low resolution must be researched. 

Second, although the voting boundary method is helpful to correct characters from 

deformation, it is sometimes inaccurate to correct characters of non-linear edges like “S” or “D” 

or “Q” from certain deformations due to their curvature edges. Besides, it cannot work properly 

if the license plate includes dirty smudges around characters or the resolution is low.  

Third, the AGPV method requires manual decisions such as selecting standard characters by 

human eyes. It is better to be improved by some systematic procedures to do automatically 

training from various input images. In addition, currently the AGPV method may degrade 

recognition rate seriously if the geometric deformation of characters is not fully corrected in the 

normalization stage. How to improve the recognition rate when the test characters undergo 

certain degree of geometric deformation is also an important topic for future studies. Moreover, 

the computational complexity of the AGPV method is heavy and still needs improvement in the 

future. 
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