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ABSTRACT

The time delay .and the dropout in network control systems (NCS) are
unavoidable mainly because of their limited transmission bandwidth. In this study, the
Taylor estimator scheme is developed to effectively improve tracking accuracy of
motion NCS under a higher data dropout rate in-uniform distributions. Furthermore,
as the data dropout in real applications is in stochastic nature with time-varying
properties, the missing messages ~occurconsecutively to cause the message
compensator based on uniform distribution of data dropout to be invalid. A real-time
transition probability estimator is thus proposed to monitor the data dropout
distribution in real time. With the least square-algorithm, estimators with real-time
orders according to different network conditions are then studied. In this dissertation,
the proposed model-free intelligent message estimator (IME) is developed to
compensate for different data dropout distributions in a switching mechanism based
on the estimated transition probability and stability analysis. However, when both the
time delay and the data dropout are simultaneously induced in NCS, the IME only
itself cannot provide appropriate compensation for their mutual effects. The integrated
compensator combining both the IME and the perfect delay compensator (PDC),
which is designed to compensate for the time delay, leads to satisfactory
compensation results for both the time delay and the data dropout. Both simulation
and experimental results indicate that the integration of the IME and the PDC

compensator has effectively improved control performance even with varied

il



networked time delays and data dropout distributions.

Keywords: motion NCS, dropout, message estimation, transition probability, time

delay
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Chapter 1
Introduction

Because techniques of network communication have been rapidly developed in
modern industries, there is a trend to integrate network protocol into traditional
control systems as the networked control system (NCS) (Zhang et al., 2001; Walsh et
al., 1999). Due to the scalability, flexibility, cost effectiveness, and easy maintenance
of the NCS technology, many industrial applications such as factory automation,
remote diagnostics and troubleshooting, remote mobile robots, aircraft, automobiles,
nursing homes, and tele-operations become popular research topics. While the control
technology over data communication networks is attractive, there still have challenges
in design, analysis, and implementation of practical NCSs due to the characteristics of
asynchronous communications and limited reliability of the NCS networks (Lian et al.,
2002). These challenges are particularly. evident when network infrastructures are
employed in the networked control-applications (Meyer and Conant, 2005; Schenato,
20006; Akyildiz et al., 2002). The first challenging problem is the time-varying
network-induced delay between the controller and other devices such as sensors and
actuators. This time-varying ' delay -will-affect the accuracy of timing dependent
computations in the control system. The second challenging problem is the possible
data packet dropout resulting from network traffic congestions and limited network
reliability. In this case, the controller.and/or actuator have to make decisions with
incomplete information on how to control the system. Both challenging problems, i.e.,
the network induced delay and the packet dropout, can significantly degrade control
performance of the overall real-time NCS. For the problem of the packet dropout, this
paper will develop compensation strategies for packet dropout compensation in

real-time NCS.

1.1 Network-induced delays

During the past decades, special issues in IEEE Transactions highlighted the
significance of the development of NCS technologies (Antsakls and Baillieul, 2004;
Bushnell, 2001). Among those technologies, NCS stability-based methods have been
rapidly developed (Peng and Tian, 2006; Peng and Tian, 2007; Peng et al., 2007; Yue



et al.,, 2004; Zhang et al., 2001). These methods have focused on NCS stability
analysis and controller design mainly with considerations of upper and lower bounds
of the network-induced delay. Their main goal is to find the stability conditions for
specific plants and then design the controller to meet the conditions. Most available
approaches are model-based designs to alleviate the network time delay effect as
categorized in Table 1.1. These NCS control design methods have been proposed
mainly to eliminate the time-delay effect from its closed control loop, and their design
procedures are usually based on the plant model with known or bounded delay
information. In real networks usually with varied time delays, those developed
model-based methodologies are usually not applicable. Thus, the model-free
methodology is desired for real concern-in- NCS implementation. The model-free
perfect delay compensation (PDC) is- proposed. for NCS (Lai et al., 2011), and the
network-induced delay in NCS can thus become a simple pure delay added to the

original loop. However, the stability-of PDC is not yet discussed.

Table 1.1 Classificationof time delay control design in NCS (Lai et al., 2011)

Time Delay Constraint Methods

1. Smith predictor

(Peng et al., 2004)
1. State feedback controller
Time-varying delay < (Tanget al., 2008)
sampling time 2.+ H,robust controller
(Gao and Chen, 2008)

1. Model predictor control

Constant delay time

Known (Zhao et al., 2009)
delay 2. Gain scheduler middleware
Model-based (Tipsuwan and Chow, 2004)
. Bounded time-varying 3. Switched system approach
NCS design delay > sampling time (Xie et al., 2008)

4. Fuzzy controller
(Lee et al., 2003)

5. Optimal controller
(Li et al., 2009)

1. CDOB
(Natori and Ohnishi, 2008)
Constant : ;
Unknown 2. Scattering transformation
delay (Matiakis et al., 2009)
1. CDOB

Time-varying delay (Natori et al., 2008)




1.2 Packet dropout

The packet dropout mainly occurs due to the packet collision. Moreover, for
hard real-time network control systems, the packet dropout is also defined when the
network-induced time is more than the system sampling period. Therefore, packet
dropout which is unavoidable in high-speed-high-precision NCS is another important
issue in motion NCS design. The packet dropout has been discussed mainly in
stability analysis.. Therefore, conservative control design is usually adopted in order
to guarantee the NCS stability. Among various NCS control methodologies, the

queuing methodology was proposed to develop NCSs with deterministic
communication behavior (Chan and Ozgiiner, 1995). They tried to compensate for
packet dropout through sophisticated computation by the controller. However, their
algorithms may not be feasible for implementation because of the requirement of

accurate process models.

Addressing the simultaneous-compensation of network induced delay and packet
dropout, Soglo and-Yang (2006) designed an agent-based networked control estimator
for the controller to-improve performance of NCSs. They modeled the NCS as an
asynchronous dynamical system (ADS) with a rate constraint, and then used the
bilinear matrix inequality method to solve the compensation problem. However, the
assumption that the network-induced delays were less than one sampling period also
limits their work in real applications-and.the network time delay is usually much

longer compared with the sampling time.

Schenato studied optimal state estimation in NCS with random delay and packet
loss for the NCS control design (Schenato, 2006). The mathematical analysis in his
work was elegant and however, his work was strongly relied on an accurate process

model with intensive computation of which is difficult in practical NCS.

Ling and Lemmon (2002, 2003, 2004) considered an optimal dropout
compensation based on the power spectral density of NCS output signals. Although
the optimal dropout compensator results in effective noise reduction to suppress the
noise contamination, its tracking accuracy in control performance in real-time NCS is

not concerned in their work.



Recently, Tian and Levy (2008) proposed the simple and model-free strategies to
compensate for control packet dropout at actuators. The packet dropout compensator
based on past control signals is similar to dynamic voltage scheduling from past
voltage settings (Varma et al., 2003). Their work provided useful packet dropout
compensation strategies for real-time NCS. However, their work was limited in
uniform distribution of packet dropouts which are too simple to model the distribution

of packet dropouts.

By applying the two-state Markov chain network model, various distributions of
packet dropout can be effectively distinguished (Kawka and Alleyne, 2009), and
networked control has emerged as a new example of a system class with abrupt
changes in dynamics that can be suitably modeled as a Markovian jump linear system

(MJLS).

Initial research focused on stability and performance analysis of MJLSs with
certain Markov transition probabilities with . exact model parameters (Chizeck et al.,
1986; Oliveira et al., 2002). Later efforts have focused on the control of MJLSs with
uncertainty in the model parameters (Costa et-al., 1999) or the transition probability
(Costa and Marques, 2000). In recent-work, the linear matrix inequality (LMI)
methods utilized extended parameters to reduce. conservativeness due to plant and
Markov transition probabilities uncertainties (Park et al., 2001; Park and Kwon, 2002;
Val et al., 2002; Souza, 2006). These available approaches for alleviating the data
dropout effect are categorized in Table 1.2. However, these works are usually more
complicated and stabilization is mainly concerned in real-time NCS. In fact, Markov
transition probabilities are in stochastic and time-varying natures which are difficult
to accurately estimate. Therefore, on-line estimation of transition probability becomes
crucial for real-time NCS applications, particularly for motion NCS to achieve

high-speed-high-precision manufacturing processes.



Table 1.2 Classification of dropout compensation in NCS

Data
Constraint Methods
Dropout
1. Optimal dropout compensator
(Ling and Lemmon, 2004)
constant 2. Agent-based estimator
dropout rate (Soglo and Yang, 2006)
Uniform 3. Optimal state estimation
distribution (Schenato,2006)
1. Packet dropout compensator
time-varying (Varma et al., 2003)
Dropout dropout rate 2. Proportional derivative predictor
compensator (Tian and Levy, 2008)
] 1. Optimal control
design ' (Chizeck et al., 1986)
S 2. Quadratic state feedback control
geTiSILion (Costacet al., 1999)
probability 3.« Hy andH  control
Varied (Oliveira et al., 2002)
distribution 1. Linear matrix inequality method

(Park and Kwon, 2002)
(Val et al., 2002)
(Souza, 2006)
2. Optimal dropout compensator
(Kawka and Alleyne, 2009)

time-varying
transition
probability

1.3 Problem statement

Although many methods have been proposed to design controllers for NCS by
concerning the data dropout effect in the past two decades, some critical problems are

still to be solved as follows:

(1) In motion NCS, many dropout compensators successfully compensate the data
dropout effect as the data dropout rate is relatively low, such as the one-delay
estimator (Ling and Lemmon, 2002) and the optimal compensator(Ling and
Lemmon, 2002; Ling and Lemmon, 2004). However, when the data dropout
rate increases, those available message estimators become invalid and a more
effective dropout compensator for a higher dropout rate is still desired
designed.

(2) When data dropouts consecutively occur as the communication becomes worse,

the compensators based on the assumption of uniform distribution of the data



dropout are not suitable for real applications. The most fundamental issue for
NCS under the condition of dropout distribution in stochastic nature is to
obtain an efficient estimation of the data dropout distribution. The processing
time and algorithms of existent dropout distribution estimators are still time

consuming and a real-time dropout distribution estimator is thus desired.

(3) Although some sophisticated dropout compensation approaches were proposed,
their processing time and modeling are very complicated to be realized. Under
various different level dropout distributions, an intelligent and effective
dropout compensator without complicated implementation is required for
NCS.

(4) To achieve stability analysis for motion NCS including the dropout
compensator is a challenging task, because the. dropout occurrence in a
network infrastructure is in a random nature. A systematic analysis approach to
guarantee stability of motion NCS s desired.

(5) In addition ito the dropout-effect, the network-induced time delay is another
crucial issue in NCS design. Since both the network introduced time delay and
the data dropout are unavoidable for motion NCS, the developed message
estimator should concern both the delay and dropout effects simultaneously in

a feasible motion NCS.

1.4 Proposed approach

In this dissertation, five major approaches corresponding to the mentioned

problems for motion NCS design are proposed as follows:

(1) The Taylor estimator scheme is proposed to compensate for the data dropout.
It maintains system dynamics for the motion NCS even under a higher data
dropout rate with uniform distribution.

(2) The real-time transition probability estimator is proposed to estimate the
dropout distribution between two nodes in real network environments.
Furthermore, the network loads and conditions can be monitored by applying

the estimator in real time.

(3) The intelligent message estimator (IME) scheme with the switching



least-square estimator is proposed based on the estimated data dropout

condition under different levels of dropout distributions.

(4) By modeling the NCS with a switching system dynamics and applying the
second moment stability (SMS) condition, stability regions of motion NCS
with various dropout compensator can be determined to guarantee the

stability of NCS with the switching law for the IME.

(5) By applying the integration of PDC and IME, the network-induced time
delay in different levels, and the unavoidable data dropout under different
distributions can be simultaneously compensated to restore the control design

without being affected seriously by the network in NCS realization.

1.5 Contents overview

This dissertation is organized as follows: the Taylor estimator for different data
dropout rates is presented in Chapter 2. Chapter 3 introduces the real-time transition
probability estimator and Chapter 4 presents the model-free intelligent message
estimator (IME) based on the real-time estimated transition probability. In Chapter 5,
a switching system dynamics modeling and its stability analysis are introduced for
motion NCS. In Chapter 6, the PDC compensation for the delay in NCS is introduced
in motion NCS and"its integration with the IME together solve the two major
problems in NCS. Finally, conclusions and recommendations for further research are

provided in Chapter 7.



Chapter 2
The Taylor message estimator for motion NCS

Although NCS possesses some advantages such as low cost, extensibility,
flexibility, and easy maintenance, the unavoidable time-delay effect induced in the
network seriously degrades its control performance and also reduces system reliability
and stability. Recently, different approaches were proposed for NCS to mainly
compensate for the time-delay effect like the queuing methodology (Luck and Ray,
1994), the sampling time scheduling (Kim et al., 1996), the gain scheduling PI control
(Tipsuwan and Chow, 2004), scheduling and control co-design (Lu et al., 2004), and
robust control (Chen et al., 2006; Jiang and Han, 2006).

A general network system is basically an event-triggered system and the time
delay is mainly concerned. However, the real-timeé motion NCS, which includes the
fixed sampling time.and an interpolator to. conduct provided motion contouring
commands, is a typical event/time-triggered system (Hsieh and Hsu, 2005). When the
network communication becomes heavy, some network nodes may not properly
receive/transmit messages on time and the data dropout may thus occur. In general,
the dropout rate of the network is closely related to both the network transmission rate
and the specified sampling period. The data dropout not only increases system
uncertainty of the NCS, but also it degrades motion accuracy in tracking and
contouring (Hsieh et al., 2006). A Markov chain'with two states treated as the vacant
sampling can be applied to model the data dropout in a stochastic nature (Nilsson,
1998). Moreover, to handle the data dropout, there are two approaches: (1) using the
past control signals to estimate the lost data (Ling and Lemmon, 2002) and (2)
including the estimator which based on the power spectral density of NCS output
signals (Ling and Lemmon, 2002; Ling and Lemmon, 2004).

A message estimator is proposed for the motion NCS to compensate for its
dropout effect. Both simulation and experimental results have shown that a message
estimator with a 3"-order Taylor expansion is effective for estimating missing motion
signals. Moreover, the motion control performance on the NCS is satisfactory by
including the estimator in the controller. Since the proposed structure leads to a more

reliable motion NCS with less uncertainty, it has been successfully integrated with the



feedforward control design to achieve high-precision motion accuracy (Tomizuka,
1978; Yeh and Hsu, 1999). The proposed network control structure has been
successfully realized on a DYNA MTYE 1007 CNC machine tool to prove the
feasibility of the present motion NCS.

2.1 Data dropout effects

Motion systems with synchronized control on multiple axes are designed
mainly to meet specifications of precision accuracy in tracking or contouring. When
motion control systems are realized on the NCS, the data bus containing either the
command messages or the feedback measurements are transmitted through the
network protocol, as shown in" Fig. 2.1. The induced time delay in the NCS is
unavoidable and the transmitted message may miss the hard real-time deadline, the
sampling time 7, and.it always leads to erroneous motions in precise systems. Thus,
the caused data dropout'is crucial to motion performance in the real-time NCS. For
the controller area network (CAN) bus, Table 2.1.shows all experimental
measurements of the dropout rate with different transmission rates and sampling
periods. Experimental results indicate that the dropout rate significantly decreases as
the sampling period.increases. Note that the control performance of the system also
decreases as the sampling period increases in NCS (Lian et al., 2002). Therefore, to
select a proper sampling time for the NCS, it is a trade-off by concerning between the

network transmission and the control performance.

|
I Master Slave :
Ir(1) Remote (@) 1
I Controller |1 »f .. >
I - I System
| i CAN bus !
| | (delay T :
| | Feedback | I
I l Sensor A I

Fig. 2.1 Networked motion control systems

Table 2.1 The data dropout rate of CAN bus transmission rate



.. Dropout rate (&) | Dropout rate (&)
Transmission rate
T=2ms T =1ms
IM bit/s 0.48% 0.49%
500 bit/s 0.51% 19.97%
250 bit/s 20.21% 42.14%

The data dropout occurs randomly on the network transmission either in
command or feedback measurement signals. Actually, the dropout commands are
properly estimated since most commands are relatively smooth compared with the
measurements (Hsieh and Hsu, 2005; Hsieh et al., 2006). Therefore, this paper
focuses on compensating the effect of the - measurément data dropout. To model the
data dropout in transmitting the-feedback message data, Fig. 2.2 shows that dis a
binary process with. probability-distribution of P(d[k]=1)=¢, P(d[k]=0)=1-¢,

and the data dropout occurs when d[n]=1 [11-12]. The transmitted feedback

signal y[n] is modeled as

i d[k]=0

ylk] = ylk]; @1
if dik)=1 '

yk]=0, < dropout
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Fig. 2.2 Modeled NCS with data dropout.
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Fig. 2.3 Experimental result with data dropout rate = 19.97%
Experimental results with an 1 ms sampling period and a 500K bit/s transmission rate
are shown in Fig. 2.3. Results indicate that the data dropout occurred in the feedback
data directly affects the system performance. In the present experiments, the missing
feedback messages are all treated as 0 values and it makes the designed controller to
loss efficacy. To compensate for the dropout data, the designed message estimator

F(z) isshown in Fig. 2.4 and the NCS can be expressed as in the following:
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{?[k] =ylk], i d[k]=0 22)

ylkl=plk], if dlk]=1 << compensated dropout

rlk] y[k]

0 1 P(2) ’
ikl .

Fig. 2.4 NCS with the-dropout compensator (Ling and Lemmon, 2004)

The power spectral'density of the system output response are as in the following (Ling

and Lemmon, 2004):

R | DP@E) |1
S50 = 50 P) SWW(Z)+|1—D(Z)P(Z)| 725 3)
5 (5) - [PFOD@ 20 ey ID@IPE)[ 1 04
” 1-D()P@E) | T 1-D)P(z) | 1-¢
where | . | means magnitude and D(z) :1_—8 . For ¢=0, A=0; for
1-¢-F(z)

g >0,A isthe unique positive solution to the following equation

= | P(e™)D(e™) 1]

1 .
A= EJ.—”‘I —D(e”)P(e’™)| SmleT)dv

(2.5)

L D™ A-PE™) 1,
27| 1-D(e™)P(e™) | 1-¢
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where w is the frequency. Moreover, the networked control system shown in Fig. 2.4
can be transformed to an LTI system as shown in Fig. 2.5. The optimal dropout
compensator F'(z) can be thus designed by minimizing the power spectral density of
the output response )[k] under the noise contamination n[k] (Ling and Lemmon,

2002; Ling and Lemmon, 2004).

k k
rlk] o P(2) Mk .

[

nk]

4
(o

yIk]

Fig. 2.5 Equivalent LTI systems (Ling and Lemmon, 2004)

2.2 The Taylor message estimator

Based on the structure shown in Fig. 2.4, the output of a message estimator
will estimate the missing message when the dropout happens as in Eq. (2.2). The
missing messages can be thus recovered to some extents to improve performance of
the motion NCS. For the messages in a relatively low frequency, the improvement of
control performance with a simple 1-delay message estimator is acceptable (Ling and
Lemmon, 2002). However, as the frequency of the transmitted/received signals
increases, the motion NCS owns faster dynamics and the improvement of the 1-delay
message estimator is thus limited.

2.2.1 The order of the estimator

In the present paper, a Taylor message estimator is proposed for the motion
NCS, because most dynamics of motion commands or motion measurements can be

represented by a Taylor expansion with a suitable order except the motion commands

13



containing significant variation, as shown in Fig. 2.6 with different dynamic natures.
Fig. 2.7 shows that the transmission error decreases when the order of the Taylor
estimator increases for smooth commands. However, it also shows that the
transmission error increases when the order of the Taylor estimator increases for
commands with significant variation. Therefore, the selection of orders of the Taylor
estimator is very important in motion NCS. So this paper used the integrated absolute
errors (IAE) of transmission errors as a performance index to determine the orders of
the Taylor estimator. Results shown in Fig. 2.8 indicate that the 3™-order Taylor

message estimator is more suitable in real applications by concerning different motion

commands.
50 50
40 40+
30 30t
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-30 =301
40 401
50 ‘ ‘ ‘ ‘ : ‘ 50
0 1000 2000 3000 4000 5000 | 6000 7000 0 1000 20000 3000 4000 5000 6000 7000
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(a) (b)

Fig. 2.6 Motion'commands with (a) smooth variation, (b) Significant variation
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Fig. 2.7 Simulation result with the Taylor message estimator
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Fig. 2.8 Analysis of compensation effects with different orders

2.2.2 Coefficients of Taylor message estimator

If the current £k, position data P(k) is lost, the Taylor expansion is

processed to estimate the velocity, v, , from the past data
- 1 1
Vi = AR +E (AB4 =AF,) +§ (AR —2AB_,+ AP )+ (2.6)

where

AP _, =P(k-1)-P(k-2), AP, , = P(k—2)—P(k-3), AP, , = P(k—-3)—P(k—4)
The estimated value of the current position command can be expressed as
f’(k) = P(k—-1)+v_, . Therefore, the estimated current result from the past messages is
obtained. The different order Taylor message estimators F(z) can be simply

expressed in the z-transform as

® 1%-order Taylor estimator

F(z)=2z"-z7 (2.7)
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o 2“d-message Taylor estimator

3 4 BN
F(z)=—z -2z7"+—z 2.8
(2) 5 5 (2.8)

® 3"order Taylor estimator

21 -1 19 ) ; -3 1 —4
F(zy="21 2,2, 3 _ 2 29
(2) 3 z 2 z 82 82 (2.9)

2.3 Simulation results

2.3.1 Noise command signals

In the simulation analysis, the:NCS structure shown in Fig. 2.4 was built on
Matlab. The dynamic model of the DYNA“CNC machine tool obtained from the

system identification procedure was adopted as

0.30554z7 -0.023766z" + 0.11104z " +0.028834z - 0.0122437° +0.020811z7 -0.089113z™
1-0.70669z™ +0.1934z7 - 0.15112z - 0.02566z*+0.028011z"°

P(z)=

Moreover, three different message estimators were implemented for verifying the
noise reduction and'control performance as: (1) the 1=delay estimator, F(z)=z", (2)

the optimal estimator (Ling and Lemmon, 2004), and (3) the proposed 3rd-Taylor

estimator. The dropout rate is chosen ase €[0, 0.6]. For the cases where the input
command r[k] is the white noise with zero mean, Fig. 2.9 indicate that based on the
index of the auto-correlation value R, , the optimal dropout compensator results in

the best noise reduction to suppress the noise contamination effect up to a 20% data
dropout rate. On the other hand, the 3"~order Taylor message estimator performs the
worst for noise reduction. Note that the Taylor message estimator mainly estimates
the missing message from the past data but the noise signals are unpredictable.
Therefore, the obtained results also imply that the Taylor message estimator is not

suitable for the highly noise-contaminated NCS.
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Fig. 2.9 = Output PSD with-white noise input.

2.3.2 Circular motion command

In real applications, motion commands in general are simple signals like GO1,
GO02 and GO03 in CNC codes as linear; clockwise and counter clockwise circular
motions, respectively. Basically; a third-order” Taylor  expansion is suitable to
represent most the basic'CNC motion commands. Here, a sinusoidal wave in a single

axis with the magnitude 50 mm under. the feedrate 3000 mm/min as input r[k] is

adopted to verify the circular motion performance of NCS. Results of three different
message estimators under different dropout rates are shown in Fig. 2.10. Simulation
results indicate that by applying the optimal dropout compensator, it leads to the
worst control accuracy and its dropout rate is limited to 20% only. Theoretically, the
optimal dropout compensator is designed to minimize the power spectral density of
the output signals due to the noise input and it is not suitable for the cases with
contouring commands. On the other hand, the proposed 3™-order Taylor message
estimator results in the best control performance when the dropout rate is as high as to

50%.
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Fig. 2.10 Tracking accuracy of different message estimators

2.3.3 NURBS motion commands

The circle and butterfly contours are selected as the test control commands
produced by applying the non-uniform rational B=Spline (NURBS) curve interpolator
(Piegl and Tiller, "1995; Gopi and Manohar, 1997). The NURBS interpolator can
create free-form curves easily by manipulating the values of control points, weight
and knot vectors. The:mathematical formulation of NURBS curve can be described as

follows:

>z, .(pwV,
C(p)==2 =>'R,.(pWV,

Mz, (pw,

i=0

(2.10)

and

Z, . (pv,
Ri,k (p) = ,,’k—

Z Z,(pv,
i=0

(2.11)

where V. is the control points; y, is the corresponding weights of V,; n+1 is the

number of control points; & is the order of the NURBS curve; Z, (p) is the kth

order B-spline basis function; R, (p) is the rational basis function. With the circular
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commands and the butterfly commands (Yeh and Hsu, 1999), Fig. 2.11 and Fig. 2.12
show that the proposed motion estimator can significantly improve control

performance as data dropout occurs.
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Fig. 2.11 - NURBS simulation result as* € =19.97% .
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Fig. 2.12 NURBS simulation resultas & =19.97%.
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2.4 Experimental results

2.4.1 Experimental setup with the CAN bus

The proposed approach was also verified on a CNC machine tool driven by the
AC servo motor. The message estimator together with the controller were
implemented on the TI TMS320F2812 DSP microcontroller and its internal CAN
protocol was used to transmit/receive messages of the position commands and
feedback measurements. The transmitted messages missing the deadline of the fixed
sampling time were counted as the data dropout in a time base. Without applying the
message estimator, a sinusoidal command was provided with a CAN transmission rate
at 250K bit/s. Its missing message transmission error at every sampling period 1 ms
was recorded as shown in Fig:2.13. Experimental results shown in Fig. 2.14 indicate

that the proposed 3™-order Taylor message estimator effectively reduces the network

o 1
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Fig. 2.13 The transmission error without message estimator
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Fig. 2.14 The transmission error with the Taylor message estimator

2.4.2 CNC applications

Furthermore,. the proposed 3"_order Taylor messageestimator and the
controller were applied to the DYNA MTYE 1007 CNC machine in a NCS structure,
as shown in Fig. 2.15. The sinusoidal command message with the position amplitude
50 mm under the feedrate 3000 mm/min are shown on Fig. 2.16. Experimental results
indicate that without the message estimator, the significant tracking error of NCS on
CNC leads to a relatively unstable system, as-shown in Fig. 2.17. By applying the
proposed Taylor message estimator, the motion NCS not only becomes more stable

but also greatly reduces the tracking error.

DYNA CNC
machine

DSP control DSP control
board (F2812) board (F2812)

CAN bus

Fig. 2.15 Experimental setup.
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Fig. 2.17 Experimental results with/without the message estimator.

2.4.3 Feedforward control on NCS

The feedforward control has been successfully applied to motion systems by
canceling poles and zeros of the plant model to improve tracking accuracy.
Apparently, the model-based feedforward design is not suitable for general NCS
because the dynamic model of a general NCS is usually uncertain due to both the

time-delay effect and the data dropout. Since the proposed message estimator may
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recover the missing message in the NCS to render a more reliable NCS model, the
feedforward control structure as shown in the Fig. 2.18 integrates with the Taylor

message estimator becomes feasible.

r[f'"] Feedforward + | l ) [A]
controller - P( Z)
VIkl . _

F(z)| & dlkl

[ A
y[k]

Fig. 2.18 The motion NCS 'with the message estimator and the feedforward controller.
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Fig: 2.19 . The basic structure.of ZPETC.

The basic feedforward structure of the zero phase error tracking control (ZPETC)
shown in the Fig. 2.19 cancels all removable poles and zeros in the position control
loop (Tomizuka, 1978). For those unstable zeros, their conjugate zeros are added to
compensate for their phase error through the entire frequency range. If the transfer

function of the original position loop is

T(z’l): z';.(f(lz)‘l): z74 .B;(Zzll)fu (z’l) (2.14)

the transfer function of the ZPETC can be expressed as
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Then, the total transfer function P(z™') becomes

g ) o) B _[BET)
P(Z )_Zp(z )'T(Z )_ Bu(l)z - Bu(l)z

(2.16)

Thus, ZPETC leads to zero phase error in all frequency range. Besides, the DC gain is
unity at the zero frequency, as in'Eq. (2:16).

Based on the measured results of the CAN bus shown in Table 1, simulation
results shown in Figs. 2.20-2.22 indicate that both the 1-delay message estimator and
the optimal dropout compensator present unsatisfactory. performance as the dropout
rate increases. The tracking accuracy of the controller combining the Taylor estimator
and the ZPETC leads to significant improvement in motion accuracy as shown in Fig.
2.22. Experimental:results on the NCS of CNC shown in Fig. 2:23 also indicate that
the tracking error s significantly reduced- by applying the proposed message

estimator.
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Fig. 2.21 Tracking errors of ZPETC and the optimal dropout compensator with dropout rate
(a) 0.49%, (b) 19.97%, (c) 42.14%.
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Fig. 2.23  Experimental result with the ZPETC and the Taylor message estimator

2.5 Summary

The dropout rate of the CAN bus increases rapidly even when the transmission
rate slightly decreases, as shown in the Table 2.1. Therefore, the dropout effect of the
NCS causes the serious motion error in precise motion systems. Basic motion control
commands (CNC G-code RS-273-A, RS-274-B) can be properly described in both the

position and the velocity. From both analytical and experimental results, the proposed

27



3"order message estimator can be suitably applied to the motion NCS to

satisfactorily compensate for the missing commands or measurements. The novel

control structure containing a 3 order Taylor message estimator is successfully

applied to the motion NCS to improve the control performance significantly. Both

simulation and experimental results are summarized as in the following:

4y

2

(©))

(C))

(©))

Fig. 2.8 indicates that the 3"-order Taylor message estimator is more suitable in
real applications by considering different motion commands (both smooth and
abruptly-changed). Moreover, simulation results indicate that the proposed
3".order Taylor estimator is effective in both the high and the low
noise-contaminated signals.

In real applications of the present message estimator, the dropout data must be
smooth and predictable; like position‘commands or velocity commands. Because
the velocity, the acceleration and the jerk which are the first, second, and third
derivatives of the position,-the present 3" order Taylor message estimator is
applicable to motion NCS-to-cover all information of the missing messages of
the commands or measurements.

In practice, allmotion commands and paths of CNC or robotsare predictable and
the proposed message estimator in NCS is suitable. Experimental results of the
CNC machine tool indicate -that by applying the proposed 3"-order Taylor
message estimator, the maximum tracking error.is reduced from 12 mm to 2.4
mm.

The present 3™-order Taylor message estimator not only reduces the tracking
error, but also degrades the NCS model uncertainty to achieve reliable motion.
By integrating the feedforward control together with the message estimator, the
present NCS model uncertainty is reduced and results shown in Fig. 2.23
indicate that the tracking error further decreases from 2.4 mm to 0.08 mm.

The communication delay basically is in a stochastic nature. If it is less than one
sampling period 7, its delay effect on the degradation of NCS performance is
negligible. However, as the delay becomes more serious, say several times than
the sampling interval 7 like in the Ethernet, the data dropout will also become
more serious and special design should be considered, like applying the Smith

predictor.
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By applying the proposed message estimator, advanced control design can be further
employed for the motion NCS design to render satisfactory precision and responses.
However, the proposed approach is feasible only as the data dropout rate is small and
the missing message can be estimated in a deterministic approach. As the dropout rate
increases to 50%, other statistical approaches to determine the stochastic model of the
missing messages and to take proper actions may thus be required (Hansen and Yu,

2001).
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Chapter 3

The Real-time transition probability estimator

3.1 The Distribution effect of data dropout

Traditionally, the data dropout rate & is recognized as the quality of service
(QoS) for NCS. However, in motion NCS, compared with evenly distributed missing
data, continuous missing data will cause even more serious motion error. Fig. 3.1
(a)-(b) show two signals with the same data dropout rate 20% applied to the butterfly
profile for fifth-order NURBS commands.shown in Fig. 3.2 (Hsieh et al., 2006). By
applying the same 3™-order. Taylor estimator for.compensating the missing motion
commands, simulation <«results show that the transmission error become more
significant when the‘data dropout is more centralized, as-shown in Fig. 3.3(b).
Therefore, these results indicate that both 'data dropout and its distribution play crucial

roles in NCS motion.accuracy.
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Fig. 3.1 (a) Distributed and (b) centralized dropout signals with the same dropout rate 20%
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3.2 Two-state Markov chain network model

In the Bernoulli model, the data dropout rate p describes the probability of

both the received and dropout status (Adas, 1997). The Bernoulli model cannot
capture the bursty behavior because the received signal or dropout signal at any
instant is independent of all other outcomes. However, transmissions in NCS
commonly exhibit bursty behavior. To capture bursty network losses, a two-state
Markov chain was used (Gilbert, 1960; Wang and Moayeri, 1995) with both
theoretical and practical complexity in modeling. In a Markov chain, the outcome for
the future state that the system will transit to depends only on the present state and not
any previous ones; the system is also memoryless. In this work, two parameters
describe the distribution of packet dropouts, the dropout state D and the received R

state. In our notation for success or failure in message received of the network at each
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sampling period, the parameter p, ; of the probabilities is

p, =Prla(k+1)=j|a(k)=i] fori,j € {R,D} (3.1)
where p,, , is the probability of transitioning from a D (dropout) state to a R
(received) state. Likewise, p, , is the probability of transitioning from a R state to a

D state. The probabilities of all transitions can be conveniently represented pictorially

as shown in Fig. 3.4, or in a Markov transition matrix given by Eq. (3.2)

l_pD=R l_pR:D

Fig. 3.4 Two-state Markov chain network model

Ppb  Pbp.r 1- Pb.r Pp.r
Prp  Prr PrD Pr.p

While in the Markov transition matrix, P itself'describes the probabilities of
all 1 step transitions, powers of “the transition matrix, i.e. P”, describe the
likelihoods of transitions m steps in the future. Thatis P" = [pi,j],
where

p., =Ptla(k+m)= jla(k)=i] fori,j € {R,D} (3.3)

In this study, m is chosen as 1. The Markov transition matrix also provides
information about the average behavior of the system. If all of the transition matrix

entries are positive, it is said to be regular. And if the transition matrix P 1is regular,

. . 3
there is a unique steady-state vector x such that (PT ) My —> 1 as k — oo, where

the transpose of P is adopted. This steady-state vector implies both an eigenvector for
the eigenvalue A =1, and a probability vector whose entries sum to one. The

existence of this steady state vector is guaranteed and for the network model
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framework presented here, it is describes the average received and dropout of the

network (Leon, 1998). For example, the network condition (pD’ &> Pr. D): (0.7,0.2)

corresponds to the transition matrix,
0.3 0.7
P=
02 0.8

eig(P")=0.1,1

' 0.5]]0.222
eigenvectors ,
0.5]10.778

where

(3.4)

The eigenvector corresponding to the eigenvalue l indicates that on average,
the system in the R state will occupy 77.8% of the total time and in the D state will be
22.2% of the time under that network condition. The two-parameter model description
is very convenient for graphically visualizing the effect of different network condition
parameters, and it will be used throughout Chapter 5 to examine stability of motion
NCS.

To further investigate the physical” significance ‘of the given network
parameters, the amount of burstiness can be quantified asa function of those network
parameters [Kawka 2006]. The expected. number of consecutive D states and the

expected number of consecutive R states are given by

1
E(cons D states) = =

pD,R 1- pD,D
E(cons R states) = = ! (3.5
Prp 1= Prxr

3.3 The transition probability estimator

Now that two-state Markov chain network model can clearly show the nature

characteristic of network signals, measurement of transition probabilities is very
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important and worthy issue. However, transition probabilities are caused by
unpredictable collision ~ network traffic load and system sampling period. Therefore,
Measurement of transition probabilities is time-consuming and difficult. Previous
researches can successfully measure transition probabilities to construct two-state
Markov chain network model (Bertuccelli and How, 2008; Azimi et al., 2005; Azimi
et al., 2003). Nevertheless, wasting time and complication are still limitations to
realize in real applications.

Motion NCS requires rapid and precise control. However, tradition transition
probabilities are aimed at overall network signal, they must be not suitable for motion
NCS. The real-time transition probability estimator is proposed to rapidly and
precisely estimate local transition probabilitiés in motion NCS.

In real-time transition probability estimator, there are two opinions different to
traditional transition probabilities. In_the first place, an observation window is
adopted as the local network signals. Observation windows are defined as a finite
length of previous network signals. For example, if the length of observation windows
is five and time index k=10, then OW(10)=[a(5) a(6) a(7) «(8) «(9)]is as an
Observation Windows, where «a/(k)is network signals. From the observation window,

network characters can be rapidly analyzed. In the second place, p, (k) is re-defined

as

p, (k) = Pr{Pr(OW(K) = /) [a(k)=i] for i, € (R. D) (3.2)

Under the definition, the local transition probability, o, (k) can be efficiently

estimated because all previous network signals are known. Moreover, the average of a

P, ;(k) with a relatively long duration can represent the transition probability, p, .

3.4 Illustrative example

By applying the proposed real-time estimator of the local transition probability

to the two signals with the same overall transition probability o, , =0.5, as shown

in Fig. 3.5 (a) and (b), respectively, their distributions are significantly different and
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the estimation results for two signals at the 15" instance are Ppp(15)=0 and
Pp p(15)=60%, respectively. Therefore, the index of local transition probability

P, (k) is more appropriate to imply the distribution of the dropout data in motion

NCS than the dropout rate only.

. _ 0 . S . .
pD,D(‘lS):§= PD,R(IS):EZIZI_PD,D(IS)

3 (numbers of D — D)
6 (numbers of D)

| , 1, .
E Po.p 9= gs Po.r = g =1- Pbp.n (2)
Total transition probability, £pp =

n 3 . 2
pD_.D(ls) = g, Ppo.r 15)= g

3 (numbersof D — D) _
6 (numbers of D)

Total transition probability, fpp =

>

(b)

Fig. 3.5 Real-time calculation of local transition probability with the same overall transition

probability p, , =0.5 .
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Furthermore, the proposed real-time transition probability estimator is verified
and simulation results are presented in Fig. 3.6 (a)-(b). In Fig. 3.6(a), the real-time
transition probability estimator can efficiently measure different transition

probabilities in network signals and its measuring time is less than 0.1 sec in Fig. 3.7.

Estimated local transition probability
True transition probability
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o
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o
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Value of transition probability

o
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Estimated local transition probability
True transition probability
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o
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Value of transition probability

o
N

0 1000 2000 3000 4000 5000 6000
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Fig. 3.6 Transition probabilities of (a) average of p,,(k) vs p,, and (b)

average of p, (k) vs pp,
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Fig. 3.7 Measuring time of the real-time transition probability estimator.

3.5 Summary

The proposed real-time transition probability estimator is designed with a
real-time view of the communication quality because of the short-window signals are
applied. The estimated results can be applied to on-line monitor QoS of network and
results are summarized as follows:

1) The transition probability matrix can be used to analyze the data dropout rate
by its eigenvector and the expected number of consecutive dropout states can
be estimated by obtaining the transition probability.

) The transition probability (p,, ) can efficiently and rapidly monitor the

real-time data dropout distribution of motion NCS with a straightforward
algorithm by triggering those sampled points as the singles are missing.

(3)  The 50-points average of the local transition probability, p, , and p,,, can

suitably represent the transition probability of overall network communication.
In simulation, the variation of network traffic load can be rapidly measured by

applying the real-time transition probability estimator.
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Chapter 4

The Intelligent message estimator

4.1 The structure of the multi-axis motion NCS

The general NCS architecture Fig. 4.1(a) shows that when the number of
motion axes increases, the network traffic of the architecture also increases more
seriously due to the commands and feedback messages that must be transmitted or
received on time within a system sampling period. Therefore, it leads to the
development of a faster network infrastructure to meet the requirement of
synchronization such as Ethernet and EtherCAD.  However, this also leads to

higher-cost implementation given the modifications,

Controller s e 0o Controller

Time-Trigge ﬂ"!l . Time-triggering | ime-lfisaeﬂnsl Time-triggering

Network
(D2 e (ed)Enc
et ++
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(a)
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Fig. 4.1 (a) General NCS architecture and (b) practical motion NCS architecture

In real control applications, practical - motion NCS architecture is generally
modified as shown.in Fig. 1(b), and only the command messages are transmitted from
the master to the _controller. Thus, the transmission can meet the hard real-time
requirement within a sampling period to avoid possible heayy traffic over networks.
Moreover, the feedback messages are transmitted according to certain monitoring
functions by the event-triggering approach without occupying the network.
Nevertheless, in motion NCS with multiple axes, when the network delay is longer
than the sampling period, the missing message of motion NCS becomes unavoidable.
Under such circumstances, a message estimator is thus required to estimate the
missing commands and to compensate for their effect. This research is crucial for
NCS and is still pursued by industries to promote NCS applications. Therefore,
various message estimators with different advantages have been proposed to cope
with the dropout effect for motion NCS under different conditions. For example, the
one-delay message estimator is easily implemented because of its simple algorithm of
replacing the missing message with previously received data (Ling and Lemmon,
2002). However, it cannot predict the variation of messages properly. On the other
hand, the non-linear NCS was modeled as a Markovian jump linear system, and the

finite loss history estimator (FLHE) was proposed to improve data dropout effects
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when the dropout rate is accurately known (Smith and Seiler, 2004). Nevertheless,
these methods generally require the accurate plant/network model. On the other hand,
model-free strategies for control packet dropout compensators, such as the
proportional plus derivative (PD) predictors with a different order of derivatives, are
proposed to estimate dropout data and to compensate for their effect (Tian and Levy,
2008). Recently, the Taylor estimator was proposed to significantly improve the
control performance in motion NCS (Hsieh et al., 2006; Hsieh and Hsu, 2008). All
these reported methods are effective due to their design structures, which are
commonly based on the assumption that the dropout data over the network are evenly
distributed. Once the missing data occur in a continuous format, this will generally
lead to a more serious maximum_contouring.error. Therefore, intelligent message
estimator (IME) is proposed.to compensate effects of data dropout based on real-time
transition probability estimator.

Moreover, in multi-axis motion NCS, data dropout will lead to the problem of
asynchronization among different axes. By _applying the proposed IME,
synchronization among different axes is also greatly improved. Both simulation and
experimental results with the mnon-uniform rational B-spline (NURBS) motion
commands have been verified. With different motion message estimators, the results
indicate that the present IME maintains the lowest transmission error as well as the

least motion contouring.érror when the transition probability ( p, ;) increases. The

CAN-based two-axis AC servo motor control system was also successfully
implemented with the proposed IME.

In motion NCS, the control messages for each motion axis must be transmitted
on time through the network protocol to meet the control design specifications, as
shown in Fig. 4.2. Since the time delay exists in stochastic and time-varying natures,
the transmitted messages may miss the hard real-time deadline because the network
bandwidth is saturated. Generally, it causes data dropout, as the network-induced time

delay is longer than the system sampling time 7, , as shown in the timing diagram in

Fig. 4.3.
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4.2 The Least-square estimator

In motion NCS, the teal position. commands are smooth curves in most
practical cases, but their curvatures may vary significantly along the contour.

Practically, missing data with higher transition probability (o, ,) will cause a more

serious contouring error around the higher curvature. To estimate the missing
messages in NCS, the one-delay estimator simply adopts the last received message as
the current missing message, and the Taylor estimator estimates the current missing
message from past received signals. If the past signal is also missing, the message
obtained from the estimators also becomes unreliable. In this dissertation, the IME is
proposed based on the integration of the least-square estimators with different orders

based on the online measured local transition probability ( 0, ,, ). As the messages are

serious dropouts, estimation based on the previous data is no longer reliable, and the
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one-delay estimator is then included in the proposed IME.

Since the online estimation is time consuming, all parameters of the real-time
least-square estimation (LSE) can be obtained in advance. Thus, to achieve an online
estimation and compensation algorithm for the missing command in motion NCS, the
IME is proposed based on past messages within a short window by applying the

least-square approach. For a general time sequence x[0],x[1],---x[M ], a polynomial

sequence can be suitably described as

xlkl=c, +c k+c, k> +-+cy kY 4.1)

Thus,

x[1]=c, + e+ 5+ ety
x2]=c, +62+c, 25+ +e, 2"

4.2)
xMM]=co+te, M+c, M* +--+cy MY
By rearranging Eq. (4.2) as
x[1] 1 14 o TE
2 20 2 LN
e 2 N Rl (43)
Ml | M° M - MY e,

The normal equation from the least-square approach can be applied to the data to

obtain coefficient vector ¢ as

c=(A"4)"A"x (4.4)

Thus, the missing value for the current missing message can be predicted as
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XM +1]=cy+c; (M +1)+c,(M +1)° +---+c, (M +1)"

[+ M+ (M) c “5)
[+ ) (M) (L) A x '
= LSE(M,N)-x

and the estimator matrix LSE(M,N) can thus be pre-calculated for real-time

implementation. M indicates the data number to be counted, and N is the order of
polynomial functions.

To achieve an online estimation for NCS, parameters should be determined in
advance. Therefore, the order and the data mumber of the least-square estimator
should be determined with.practical concerns. For example; the NURBS signal can be
approximated by a third-order polynomial equation obtained from the LSE (Sorenson,
1970). Therefore, the length of OW can be properly chosento as large as five to
suitably estimate the NURBS and other curves. Three useful LSE(M,N) are

pre-calculated for real-time applications as follows:

® [SE(53)=32z"-282"-08z"+22z1-08z" (4.6)
® [SE3,2)=3z"'-3z74z" (4.7)
® [SEQ1)=2z"-2z7 (4.8)

4.3 Analysis of LSE with different orders

Fig. 4.4 shows the transmission errors obtained by separately applying the
estimators of LSE(5,3) and LSE(2,1) to motion NCS in true transition

probability P, , =0.2 . Simulation results show that LSE(5,3) renders a better

compensation effect as compared to LSE(2,1), which should be applied in a more

serious data dropout case. However, as P, , = 0.4, which implies that there are about

two missing messages among the five transmitted messages, the transmission error
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increases, and LSE(5,3) is not suitable anymore. Fig. 4.5 shows that the compensation
results applying LSE(2,1) render better performance.
Furthermore, the least-square approach with a different M applied to a

different ]A’D, » shows that applying LSE(5,3) to compensate the missing data obtains
the best motion accuracy as 0< PD, » <0.2, but it becomes the worst as f’D, »>02.
Moreover, LSE(3,2) is more suitable for the situation, as 0.2 < ﬁD, p» <0.4. Moreover,
LSE(2,1) is most suitable for the situation as 0.4 < IA’D’ » <0.6. In addition, the

one-delay estimator possesses the best compensation effect as 0.6 < ﬁD’ p <1. These

simulation results are shown in Fig. 4.6.
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4.4 The IME architecture

It was discussed in the preceding section that intelligent Message Estimator

(IME) adopts four useful message estimators for real-time applications as follows:

® [SE(53) for low-data dropout cases

In this transmission case, all data within observation window length 5 are
properly received, or at most, only one missing data is estimated among the four

received data within the window. LSE(5,3) is chosen to estimate a cubic-curve

motion command with the order of 3 by using all five previous data, which may
include estimated data at most. In other-words; the third-order LSE(5,3) can properly
estimate the motion trajectory concerning its.velocity, acceleration, and even the

change of acceleration as the jerk, and the parameters are obtained from Eq. (4.6).

® [SE(3,2) for medium-data-dropout cases

In this case, the medium data dropout condition occurs, and the missing data
within 0.2 <I30’ p(k)y<0.4. In other words, only three reliable data are accountable

within the window “to. correctly estimate the missing data: Therefore, LSE(3,2)1is

chosen to suitably estimate the quadric-curve trajectory with the order of 2 by using
three previous data through' considering. both-its velocity and acceleration from Eq.

4.7)

® [SE(2,1) for heavy-dropout case cases
In this situation, the missing data within 0.4 < 130, »(k)<0.6,and LSE(2,1) i1s

chosen to estimate the motion trajectory concerning its velocity only by applying

previous two data, either received or estimated.

® The one-delay estimator is adopted for serious-data dropout cases.

In this situation, network communication presents such a heavy data dropout

rate; the missing data within O.6<ﬁD’ (k) <1 Therefore, the estimation results
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based on the mentioned least-square approach is not reliable anymore, and the
one-delay estimator is chosen to estimate the position only by directly adopting the

previous data as
1- delay estimator =z 4.9)

All switching laws according to Eq. (4.10a or 4.10b) based on the estimated

A

P, , thus agree with both the simulation results and the theoretical analysis, as

shown in Fig. 4.7. The proposed IME switching law based on the index of I3D, p can

thus be applied suitably to estimate and.recover the missing data for both centralized
and distributed missing messages in motion-NCS. Although the Taylor estimator has
been proven to render more accurate results than the one-delay estimator, Fig. 4.7

further indicates that the proposed IME presents a much better performance under a

different transition “probability F; 5, especially as the missing data becomes more

serious. In summary, different LSEs are applied to different real-time IBD’ p» as shown

in Fig. 4.8.
0< P, ,(K)<0.2, LSE(5,3) is adopted
02<P,,(K)<0.4, £ LSE(3,2)is adopted (4.10a)
0.4<P,,(K)<0.6,  LSE(2l)isadopted
0.6< IA’D, p(K)<1, 1- delay estimator is adopted
08< P, (K)<1, LSE(5,3) is adopted
0.6<P,,(K)<0.8,  LSE(3,2)isadopted (4.10b)
0.4< P, (K)<0.6, LSE(2.1) is adopted
0< B, ,(K)<0.4, 1- delay estimator is adopted
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Fig. 4.8 The system architecture of the proposed IME

4.5 Simulation results

Applications of the present IME based on real-time transition probability
IA’D’D have been applied to the two-axis motion NCS, as shown in Fig. 4.1. The
NURBS commands and the system response with P, , =0.2 are shown in Fig. 4.9.

The results show that the Taylor estimator can reduce the effects of data dropout at a

lower P, ,. However, Fig. 4.10 also shows that the contouring error obtained by

applying IME is significantly reduced to achieve better contouring accuracy. Fig. 4.11



shows that the contouring accuracy of the present IME even renders a much better
contouring accuracy when P, increases to 0.5. Furthermore, when the value of
P, increases to 0.6, the Taylor estimator will lead to an unstable motion as shown

in Fig. 4.12. Nevertheless, the proposed IME still results in a stable motion and

maintains the contouring error as the least from the simulation results.

15 . . .
: N Motion commands

— Without estimator

With Taylor estimator

T —

Y-axis (mm)

X-axis (mm)

Fig. 4.9 Contours of motion NCS without/with the Taylor estimator (7, , =0.2)
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Fig. 4.12 Contouring errors with (a) the Taylor estimator and (b) IME (P, , =0.6)

4.6 Experimental results

The proposed IME was applied.to.the. CAN based two-axis AC servo motor
control systems, as shown in Fig: 4.13. The butterfly NURBS profile for both the
X-axis and Y-axis position amplitudes is 30 mm under the feed rate 3,000 mm/min,

which is the same as in. Furthermore, £,5; is measured as 0.32 and 0.54,

respectively, for the present CAN-bus implementation with the baud rate 1 M bit/sec
under different sampling periods as 0.5 ms and 0.4 ms, respectively. The results
indicate that increasing the sampling rate will result in more serious missing data due

to the saturation of network bandwidth. Fig. 4.14 shows the contouring error when

B, , =0.32. The first-order differential results of the measured contouring error with

less oscillation are also shown in Fig. 4.15. All results indicate that the proposed IME
renders a more stable and reliable motion than the Taylor estimator. By observing the
contouring error as shown in Fig. 4.16 with a more serious data dropout, the results
also show that the proposed IME is more effective in reducing the asynchronization

effect than the Taylor estimator in rendering a more accurate motion. Similar results
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provided by the circular NURBS profile for the motion NCS obtained as shown in
Figs. 4.17-4.18 also indicate the applicability of the proposed IME to different motion

profiles.
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Fig. 4.18Circle responses of (a) Taylor estimator and (b) IME

with the sampling period =0.4 ms (B, = 0.54)

4.7 Summary

Based on theon-line estimated. transition.probability. 2/ from Chapter 3, a

suitable order of the least square estimators under different network communication
conditions can be thus determined. Both simulation” and experimental results have
verified estimation performance by applying different orders of the least square

estimators based on different communication quality p, . Results indicate that

applying the proposed IME, the missing commands can be properly estimated and the

data dropout effect can be thus effectively reduced to improve contouring accuracy of

motion NCS. Results are summarized as follows:

(1) By applying tracking performance analysis, the switching laws of the proposed
IME can be adopted based on estimated transition probability. Furthermore, the
IME leads to the lowest contouring error under conditions of different data
dropout distribution.

(2) By applying the proposed IME to the CAN based two-axis AC servo motor

control systems, contouring accuracy can be maintained well even under severe
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missing commands. Moreover, the proposed IME renders the best performance

as compared to the one-delay or the Taylor estimators in motion NCS.
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Chapter S
Stability analysis for NCS with the message estimator

Although physical dynamic systems operate in the continuous-time domain,
the plant models in NCS are suitably represented in discrete-time domain with the
sampling time over the network. This modeling paradigm is well suited for
representing motion NCS as shown in Fig. 5.1. With digital computation and
communication, digital control design applies the feedback sampled periodically for
controller to provide actuator actions periodically. In addition, the network
communication is constructed naturally with discrete-time analysis in our framework
where transmissions are set to occur periodically: By modeling the continuous plant
dynamics in discrete time through integration of the states.over the sample period, the

model of the NCS is shown in Fig. 5.1.

Controller Node Actuator/Sensor
Node

(event-trigger) Wi iriged)

Remote
System

4 Controller —)

@—) Actuator |[——>

-

(— Sensor |€———m

Fig. 5.1 Structure of the motion network control systems

Traditional state space representations of a continuous time plant given by

(t) = A.x(t) + Bu()

(5.1
y(t) = Cx(t) + Du(t)
Eq. (5.1) can be represented in discrete time with index ke Z = {1,2,3,- . } as
k+1DT)= Ax(kT )+ Bu(kT
x((k+DT,) = Ax(KT,) + Bu(kT) (52)

V(KT,) = Cx(KT,) + Du(kT,)
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where

(5.3)

and x(k) e R™ is the state vector, u(k)e R™ is the control vector, and y(k) e R™
is the output vector. This conversion assumes that the continuous time input u(¢) is
held constant for the duration of the sample period T, .

Through this work, we usually assume the availability of full-state feedback from
plants, and full-state feedback controllers are then obtained. The controller frequently
used in this work is the discrete-time infinite time horizon linear quadratic (LQ)
controller. The steady state LQ ‘control problem can.be posed (Gupta et al., 2005;
Sinopoli et al., 2005; Ogata, 1995): For the linear diserete plant described by

x(k+1) = Ax(k) + Bu(k) 5.4)
Determine the control
u(k) =—-Kx(k) (5.5

to minimizes the quadratic cost funetion

J(K) =S x(kY Ox (k) + u(k)” Ru(k) (5.6)

k=0
where Q 1is positive semi-definite and R 1s positive definite. The solution to his

problem is well-known (Ji et al., 1991) and it is computed by solving the steady-state
Riccati equation for P as.

P=Q+A"PA-A"PB(R+B"PB)"'B"PA (5.7)
The control gain K is then obtained as

K =(R+B"PB)"'B"P4 (5.8)
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The system models and the controller design for this approach are adopted throughout

the remainder of this chapter.

5.1 Modeling NCS dynamics as a switched system

By using the hybrid control system framework with the time-triggered
sensing/actuation, and the event-triggered communications shown in Fig. 5.1, the
behavior of motion NCS can be naturally fitted into the format of a switched system
with two discrete dynamic modes of operation (Kawka and Alleyne, 2009). The
closed loop mode (CL) describes the system dynamics evolution over a sample period
when the entire round trip communication of feedback and control was successful in
the previous sample period. The open loop mode (OL) describes the system dynamics
over a period when a new control packet was not received in.the preceding sample
period. This flow of information can be represented schematically by the diagrams as

in Fig. 5.2, and the dropout messages occur mainly due to-the increase of the time

delay.
RN SR YRANAYZ O

0 Vg 2T 35 4T 5T 615 715 8Ty 975 (ms)

Network state: R D R D D R R D R: received
D: dropout
System state: €L oL c oL oL Cc CcL OL ... CL: closed loop

OL: open loop

Fig. 5.2 Timing diagram of the network and system states

These two dynamics modes of operation can be described mathematically by

x(k+1) = Ax(k)+ Bu(k)
Closed Loop mode y(k) = Cx(k)+ Du(k)
u(k) = f(y(k=1), y(k=2),---,u(k —1),u(k -2),--)

(5.9)

x(k +1) = Ax(k) + Bu(k)
Open Loop mode (k) = Cx(k) + Du(k)
u(k) = f(y(k =m), y(k =m=1),---,u(k —=m),u(k —m—1),--)
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(5.10)

where m characterizes the time instant of the last successfully received message.

In the OL mode, although the most recent feedback information
(y(k—1),u(k—1)) is not available, information from the last successfully completed
round trip transmission (y(k—m),y(k —m—1),---u(k —m),u(k —m-1),---) can be
still used in the NCS applied by the actuator. That is why with this modeling strategy,
the NCS naturally fits into the framework of a switched system with two discrete
dynamics modes of operation, one for open loop and one for closed loop. For the
switched system, three effective data dropout compensators are presented in this study
as: (1) the one-delay compensator, (2)-the Taylor estimator, and (3) the least square

estimator.

5.2 NCS withone-delay compensator

The most basic strategy for handling the transient network dropout applies the
one-delay compensator when no message is received by the actuator. For regulation
stable systems, this'choice would be safe during a consecutive communication loss
period. However, applying incorrect control input to stable systems continuously
during data dropout period still drives them into undesirable states. Above all, the
one-delay compensator is relatively simple -and stable for motion NCS. A
mathematical description of the one-delay compensator at data dropout strategy for

motion NCS is given by:

x(k +1) = Ax(k) + Bu(k) (5.11)
e(k) = r(k) - x(k)

(5.12)

) — Ke(k —1) if success (Closed loop)
u =
0  if loss (Open loop)

where e(k)e R™ is the error vector and r(k)e R™ is the reference vector. Eq.

(5.11) and (5.12) can be expressed equivalently using the switched dynamics as
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F(k+1)= A, Z(k)+ B, ,,r(k), where (5.13)

(5.14)

el of 2]
)Nc(kﬂ){x(kﬂ)} -1 0 1

o
CL —I O 4 CL I

and where X is the augmented plant state vector and account for the delay, » is the
reference to be tracked, and o (k) € {OL,CL} is the switched system index signal. If
there is no reference command input and the objective of the closed-loop system is
only regulation of the states to zero, the switched system can be represented in a

simpler and more compact form given by

X(k+1)= A4, x(k) where (5.15)
A, 0
y T {—K 0} (5.16)
x(k+1):{ u(k) } o :{ A B} .
~-K 0

Although implementing the one-delay compensation results in more stable
NCS than other strategies, the choice of a one-delay compensator also leads to  poor
performance of the motion NCS even during a short duration of dropout occurrences.
Therefore, least square estimators with three different orders are adopted to improve

performance during the short bursts of data dropouts as below.

5.3 NCS with the Least square estimator

In motion NCS, all the reference commands will not change dramatically and
the actuating signals are thus in the relatively low frequency range. Therefore, the
least square estimator can be adopted by using knowledge of past successful received
control inputs to estimate the control actions during data dropouts. This strategy is
simple to implement and does not require information of the plant model. Three least

square estimators with different orders are adopted in this dissertation for different
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data dropout situations. A mathematical description of these least square estimators

can be pre-calculated in Chapter 4 for motion NCS as

LSE(5,3) = 3.2u(k —1) - 2.8u(u — 2) — 0.8u(k — 3) +2.2u(k — 4)— 0.8u(k - 5) (5.17)
LSE(3,2) = 3u(k —1)—3u(k —2) +u(k - 3) (5.18)
LSE(2,)) = 2u(k —1)—u(k —2) (5.19)

® NCS with LSE(2,1)
The state-feedback control law with LSE(2,1) strategy without reference

tracking as

(5= {— Kx(k=1) if'success (Closed loop)

. (5.20)
2u(k =1)—u(k—2) if loss (Open loop,)

Eq. (5.15) and (5.20) can be expressed equivalently using switched dynamics as

X(k+1) = 4,,,X(k), ~where

A 0 0 2B —B]
0 0/ 0" o
y A, =|-K 0700 0
xg)l) 0O-0.7 0 0
(h
N 000 I 0
Fhy=| uk) | 2 o (5.21)
ulk=1) I 00 0 0
u(k -2)|
A,=|-K 0 0 0 0
0 0 7 0 0
0 0 0 I 0]

® NCS with LSE(3,2)
The LSE(3,2) strategy is described with no reference tracking by Eq. (5.15)

with control law as
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) - Kx(k-1) if success (Closed loop)
u =
Bu(k—1)—=3u(k-2)+u(k—-3) if loss(Open loop) (5.22)

Eq. (5.15) and (5.22) can be expressed equivalently using switched dynamics as

X(k+1)=A4,,,x(k), where

A 0 0 3B -3B B]

I 00 0 0 0

A_—KOOO 0 0

Cxtky ] 7 o oI 0 0 0

x(k —1) 0 00 I 0 0

) = u(k) _O_ 0 0 O I 0]
u(k =1y A 0B 0 0 0] (5.23)

u(k <2) I 0.0-0 0 0

| u(k—3) | Az—Kooooo

“ 10 0L 0 0.0

00 0.0 7 00

07 0 0 0 /0]

® NCS with LSE(5.3)
The LSE(5;3) strategy is described. for.regulation by Eq. (5.15) with the

state-feedback control law as

(k) = { — Kx(k—=1) if success (Closed loop) (5.24)

3.2u(k —1) - 2.8u(k —2) — 0.8u(k —3) + 2. 2u(k —=4)— 0.8u(k —5)  if loss (Open loop )

Eq. (5.15) and (5.24) can be expressed equivalently using the switched dynamics as
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X(k+1)=4,,x(k), where
4 0 0 32B -28B -08 22B -0.8B]
I 00 0 0 0 0 0
-K 00 0 0 0 0 0
0 07 0 0 0 0 0
Tl T o0 00 1 0 0 0 0
x(k—1) 0 00 O I 0 0 0
u(k) 0 00 0 0 I 0 0
Y = u(k 1) L0 00 0 0 0 I 0 |
u(k—2) [ A 0B O0O0OOO0 O] (5.25)
u(k —3) I 0000000
u(k —4) -K 00 00000
L u(k—3)] GO0 L 00000
< 0 00 10 0 0 0
0 0 090 Z0 0 0
0.0 0°0 0.1 0 0
L0 0 0 0.0 0 40|

5.4 SMS Stability analysis of NCS

When motion NCS is modeled using a switched system whose transitions are
described by a Markov chain, existing stability results for stochastically switched
systems can be thus applied. Several probabilistic types of stability may be deduced

for different network conditions described by transition probabilities o, , and o, ,,

as in Chapter 3. Consider a general discrete-time Markovian Jump Linear Systems

(MILS) given by
x(k+1) = A, x(k)+ B, u(k) (5.26)

where x(k) € R™ is the state vector and u(k)€ R™ 1is the control vector, 4 and
B are real valued matrices of appropriate dimensions that are function of o(k), a
time-homogeneous Markov chain takes values in a finites set {1,2,---N}. Several

types of stability test are examined in (Ji et al., 1991) to show equivalence between
mean-square stability, stochastic stability, and exponential mean square stability for

MILS.
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® Mean-square stability:  V(x,,0,),lim, , E |“x(k)||2 | xO,O'OJ: 0 (5.27)
®  Stochastic stability: V(x,00), me(k)”2 | X,,0, ]< e (5.28)
k=0

® Exponential mean square stability:

V(x,,0,)3 constant 0<a<1,8>0

st Y(x,,0,), E|“x(k)||2| xO,O'OJ< pat x|’ (5.29)

where « and [ are independent of x, and o,. These equivalent notions are

referred as second moment stability (SMS) (Ji et al., 1991).

®  Almost sure stability:
A fourth type of stochastic stability called almost sure stability is also considered

frequently in the literature (Bolzern et al.; 2006).

V(0.0 lim, , E[(0) | xp20]=0 (5.30)

Almost sure stability is a weaker definition of stability that is implied by the
second moment stability of MJLS. However, SMS stability is not necessary for almost
sure stability. To check SMS ‘stability in general for a system with N different
switched Markov dynamics, several necessary and sufficient conditions have been

developed including checking if there exist {Gl. > 0} such that (Ji et al., 1991).

N
AiT{ZPgG,}Ai—Gi <0, i=12,...N (5.31)

J=1

5.4.1 Probability regions of NCS stability

One approach to obtain a solution to Eq. (5.31) is to use the Kronecker
product (Graham, 1981). Horn and Johnson (1991) proposes matrix analysis for the

Kronecker products. Let 4=(q;),,, be a real or complex matrix and define the

mxn

69



linear operator vec(-) by
T
vec(A) = [allaazla"'aamlaalz’azz,'”aamza'"aaln""amn]

The following lemma will be used to develop simpler SMS stability criteria as:

Lemma 5.1 (Horn and Johnson, 1991):
(@). vec(AX)=( ® A)vec(X), vec(AXB)=(B" ® A)vec(X).
(b). If 4XB +---+A4,XB, =C, then
lBIT QA4 +-+ BkT ® Ak}vec(X) =vec(C).

(c). vec(AX +YB)=(I ® A)vec(X)+ (B" ® Ivec(Y).

By adopting Lemma 5.1, simpler second moment stability criteria can be further
obtained.

Corollary 5.1 (Costa and Fragoso, 1993; Fang and Loparo, 2002 ): Suppose
the Markov chain network model is finite state and the probability transition matrix
converges to a stationary matrix, SMS stability 1s guaranteed if an eigenvalue
condition formed "from the network parameters and switched dynamics mode is

satisfied as:
plpr @1 . Jdiag(4,® 4,)_ o <1 (5.32)

where p is spectral radius, P = [pUJ is the Markov transition probability matrix, and

® represents the Kronecker product operation.
For the situation considered in this work, N =2 corresponding to OL and
CL two system states. By testing either of the conditions in Eq. (5.31) or (5.32) for

various transition probabilities, o, , € [0,1] and Prp € [0,1], regions of stability and

instability can be successfully found.

5.4.2 Example

One particular plant model examined in this motion NCS framework is the
rotating base inverted pendulum discretized for the 200 Hz sampling (Kawka and
Alleyne, 2009). The state dynamics and LQ control used in the linear switched

70



systems models obtained as :

1.008 5.0001x10° 0 0 6.5098x107°
0.31635 1.0008 0 0 —2.6043
= 4 = L} B= (5.33)
—4.1645x10™* —6.9404x107 1 5.0000x10 0.010052
—0.16602 —4.1645x10™* 0 1 4.0210
K =-[2.0941 037835 0.11654 0.092198] (5.34)

When the eigenvalue condition of Eq. (5.32) is applied to the pendulum model with
static state feedback control with one-delay compensator during data dropout given by
Eq. (5.15), (5.16), (5.33) and (5.34), the resulting theoretical stability region in the

space of network conditions can beplotted as shown.in Fig. 5.3.
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Fig. 5.3 Theoretical SMS stability regions for one-delay compensator

Furthermore, LSE(2,1) LSE(3,2) and LSE(5,3) are adopted to check their SMS
stability region, as shown in Fig. 5.4, 5.5 and 5.6, respectively. From these figures, the

transition probability p,, . is the domination factor to affect SMS stability region.

For various data dropout compensators, their suitable network conditions based on

Ppr have been determined to ensure stability of NCS with the LSE in different

orders, as shown in Fig. 5.7.
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Fig. 5.6 Theoretical SMS stability regions for LSE(3,2)
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Therefore, the intelligent message estimator (IME) 1s proposed for motion NCS based

on real-time local transition probability. All switching laws.are shown in the

following:
0.6< P, ((K) <1, LSE(5,3) is adopted
045< P, (K)<0.6/ | LSE(3,2)is adopted (535)
LSE(2,1) is adopted '

0.3< B, o(K) <045,

0< fA’D, #(K)<0.3, 1 - delay estimator is adopted

5.5 Discussion
The dynamic model of the DYNA CNC machine tool obtained from the

system identification procedure was adopted as (Hsieh and Hsu, 2008)
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P(z)= 0.30554z7 -0.023766z~ +0.11104z™* +0.028834z~ -0.012243z° +0.020811z7 -0.089113z™
1-0.70669z" +0.1934z -0.15112z -0.02566z* +0.028011z~

And the state dynamics and pole placement design used in the linear switched systems

models with all poles are about 0.5 obtained as

[0.707 —0.193 0.151 0.026 —0.028 0 0 0 1

1 0 0 0 0 000 0

0 1 0 0 0 000 0
|0 0 1 0 0 000, |0
0 0 0 1 0 000 0

0 0 0 0 100 0 0

0 0 0 0 00 100 0

0 0 0 0 0 <0 1 0] |o]

K =-[-3293 6806 —6.849 (4400 <1.778 0.438_ —0.063 0.004]

By using Eq. (5.32), SMS stability regions with different -orders of the least square
estimator also can'be found, as shown in Fig. 5.8(b). By comparing stability regions
of the rotating base inverted pendulum.discretized is as shown in the Fig. 5.8. The
suitable switching region of ,IME< for both plants -are listed in Table 5.1. Results
indicate that the stability regions of the DYNA CNC machine increases. This reason is
that the CNC machine possesses. better stability than the rotating base inverted
pendulum. To obtain a motion" NCS with guaranteed stability, the regions of an

unstable plant lie the rotating base inverted pendulum is adopted to construct a more

conservative design of NCS.
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Fig. 5.8 Theoretical SMS stability regions for different LSE
(a) the rotating base-inverted pendulum, (b) the CNC machine

Table 5.3 Evaluation for SMS stability regions of different LSE

. Plant inverted pendulum CNC machine
Estimator
LSE(5,3) 0.6< pp i<l 0.5< p,, <1
LSE(3.2) 0.4< pp o<1 0.32< p,, <1
LSE(2,1) 0.3< pp, <1 0.2<py,<I
One-delay estimator 0.15<ppp <1 0.15< ppp <1

By applying switching law Eq. 5.35, tracking errors with Taylor estimator and IME
are shown in the Fig. 5.9(a) and (b), respectively. From these figures, IME can lead to

both better tracking accuracy and stability in different transition probabilities.
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Fig. 5.9 Tracking errors by applying (a) Taylor estimator (b) IME

In this chapter, the network infrastructure is introduced in control loop of the
76

Summary
servo motor system. The time delay and data dropout simultaneously happens to

5.6



degrade the control performance. Simulation results has rendered satisfactory

performance to verify feasibility and effectiveness of the proposed IME. Several

critical summaries are presented as follows:

(1) Motion NCS dynamics are successfully modeled as a switched system.
Furthermore, Motion NCS applying least square estimators with different order
least square estimators are also modeled as switched systems.

(2) By using SMS stability condition, network region of stability with different
least square estimators are obtained. Furthermore, the switching laws of IME
can be also determined based on network region of stability.

(3) In simulation results, the motion NCS can ensure stability in different data

dropout distributions by applying IME.
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Chapter 6
Integration of delay and dropout compensation for

NCS

In real-time motion NCS, most of data dropouts are caused by the
networked-induced time delay as it is longer than the system sampling period.
Practically, network signals in TCP do not cause data dropout but it may increase
networked time delay, as shown in the Fig. 5.9. However, if the motion NCS is
constructed in a time-triggered system with a fixed sampling frequency, the increase
of the time delay will cause data dropout unavoidably. From this figure, the
significant increase of time delay will lead to consecutive data dropout as well as the

increase of the probability . of " p; ,. On the other-hand; the mild increment of the
networked time delay, will also-increase the probability of p,, . Furthermore, when

networked time delay decreases, more than one data can be received during one
sampling period, as-called the message rejection because only the last data is adopted.
Although system states (R , D and RJ) can represent variation of networked time

delays, the base-line of the networked time delay (7,) is avoidable and will affect

control performance of motion NCS.

6.1 The perfect delay compensation

For network time delay, many previous researches can effectively compensate
its effects, for example adaptive smith predictor (Lai and Hsu, 2010), communication
disturbance observer (CDOB) (Natori et al., 2008), scattering transformation
(Matiakis et al., 2009) and so on. Although these methods are useful for compensating
effects of networked time delay, the system dynamics model or networked time delay

must be known.
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Fig. 6.1 System states of real-time motion NCS vs networked time delay

The perfect delay compensator (PDC) scheme is proposed to deal with unknown and
varied time delay without considering the system model (Lai and Hsu, 2011), as
shown in the Fig. 6.2..By applying PDC scheme; the transfer function of the
close-loop system of the present-NCS.-with the PDC structure can be directly obtained

as follows:

Y(s) G.()G,(s)e”

Cres () = 2@~ Ty G.(3)G,(5)

G, ()e™ (5.36)
Equation (5.36) shows that the complicated NCS with delay time now becomes two
simple parts: (a) the desirable transfer function of the system G,(s) without the delay
time and (b) the pure time‘delay #j.. There is no time-delay effect in the closed loop of
the NCS. Therefore, the PDC ‘scheme will be adopted to compensate effects of

networked time delay.

R(s) e Y(s)
— —G6) pf G,0)

+ -

%—é_p e— fls

Ot gl e
S, Y S :
Yo " Modified anti-butterfly ' " Modified butterfly 7
element Network element
e A
T

Perfect Delay Compensator

Fig. 6.2 The control structure with PDC in the proposed NCS

In the simulation analysis, the NCS structure shown in Fig. 6.2 was built on
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Matlab. The dynamic model of the DYNA CNC machine tool obtained from the

system identification procedure was adopted as

0.305542% -0.023766z> +0.11104z™ + 0.028834z - 0.0122432° + 0.020811z” -0.089113z"®
1-0.70669z" +0.1934z% -0.15112z> -0.02566z* + 0.028011z"

P(z)=

The command signal is a sinusoid wave as shown in the Fig. 2.6 (a). Fig. 6.3

represents the tracking errors with 7, =10ms.

Fig. 6.3 The tracking error without delay compensation as 7, =10 ms

6.2 Case of invariant dropout distribution and the time delay

When the data dropout signals with p,, =08 are introduced, the tracking errors

increases and becomes not smooth without IME and PDC, as shown in the Fig. 6.4.
Furthermore, Fig. 6.5 and 6.6 respectively represents the tracking errors by applying
IME and PDC. Simulation results indicate that IME indeed compensate effects of data
dropout but the PDC can not compensate effects of the networked delay when the data
dropouts happen. By combining IME with PDC, effects of data dropout and
networked time delay can be simultaneously and effectively eliminated to make
real-time motion NCS return the original situation without data dropout and

networked time delay, as shown in the Fig. 6.7.
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Fig. 6.5 The tracking error by applying IME with p,, =08 and 7, =10ms
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Tracking errors (mm)

time (sec)

(®)
Fig. 6.7 Applying both IME-and PDC with p, »=0.8 and.z, =10ms

(a) the system response (b) the tracking error

Further, the longer networked time delay. (z, =50ms/)is itroduced. Fig. 6.8
represents the tracking errors with 7, =50ms and the system performance happens

serious shake because of networked time delay is too long. When the data dropout

signals with p,, =0.8 are introduced, the tracking errors without IME and PDC are

shown in the Fig. 6.9. Furthermore, Fig. 6.10 and 6.11 respectively represents the
tracking errors by applying IME and PDC. Simulation results also indicate that IME
indeed compensate effects of data dropout but the PDC cannot compensate effects of
the networked delay when the data dropout happen. By combining IME with PDC,
effects of data dropout and networked time delay can be simultaneously and
effectively eliminated even system response is not acceptable because of too longer

networked time delay, as shown in the Fig. 6.12.
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Fig. 6.9 The tracking error without compensation as both dropout and delay induced
(ppr=0.8, 7,=50ms)
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Fig. 6.12 Applying both IME and PDC with p,, =08 and 7, =50ms

(a)the system response (b)the tracking error
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6.3 Case of varied dropout distribution and the time delay

In above section, effects of fixed networked time delay and distribution data
dropouts are discussed and simulation results indicate that the integration IME and
PDC can effectively compensate effects of data dropout and network time delay. The
system architecture of integration of IME and PDC is shown in the Fig. 6.13.
However, the varied networked time delay and data dropout distributions are
avoidable existent in real network infrastructure. Therefore, the varied time delay and
different dropout distribution are shown in the Fig 6.14 (a) and (b) to be as real

network infrastructure situation.

0.6< P, (K)<1

045< BplK)=0.6

03< P, (K)<0.4

0< Pop(X) 0.3

Y(s)
> Gp(s) >

]2 D —
0.65< (K1l e m = = =
o(k)y=D

0435 < B, (K)<0.9

-SE(Z,I p3< P (K)<045

0<PiK)<03

Fig. 6.13 The system architecture-of NCS-with integration of PDC and IME.
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Fig. 6.14 (a) The dropout signal with different distributions (b) the varied networked time
delay.

In this section, there are five different network conditions to verified

compensation effects of IME and PDC. Total six cases will be tested and discusses as:
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1. Ideal Case: no data dropout and no time delay

2. Case A: increasing data dropout and no time delay

3. Case B: no data dropout and increasing time delay

4. Case C: increasing data dropout and constant time delay
5. Case D: constant dropout and increasing time delay

6. Case E: increasing dropout and increasing time delay

Simulation results of all cases are summarized in Table 6.1. Results for each case are

introduced as in the following:

® Ideal case: No networked time delay and.no data:dropout happens. Simulation
results of the tracking etror for the CNC system with a sinusoidal input are
shown in Fig. 6.15. Overall control performance of this ideal case without

network will be compared with-other 5 cases with the NCS implementation.

2.5
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1.5

1

0.5

0

-0.5
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-1

-1.5

-2

-2.5

Fig. 6.15 The tracking error of the Ideal Case without time delay and data dropout

® (Case A: Different dropout distributions are introduced to the motion NCS, as
shown in Fig. 6. 13(a). As no message estimator is applied, results show that the

system is unstable as shown in Fig. 6.16(a). From Fig. 6. 16 (b), results indicate
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that IME can significantly eliminate the of dropout with different distributions.

(ww) sious Buyoely

time (sec)

(@

IME with different dropout distributions ‘

2.5

(ww) sious Bupjoesy

time (sec)

(b)
Fig. 6.16 Tracking errors with different distributions (a) without compensation (b) applying

IME

® (Case B: The varied networked time delay is introduced to the motion NCS, as

shown in Fig. 6. 13(b). From Fig. 6. 17(a), the effect of network time delay lead
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to unstable motion NCS. However, by applying PDC, even the varied network
time delay effect is significantly eliminated, as shown in the Fig. 6.17(b), except

as the delay changes abruptly at time 2s and 4s.

tracking errors (mm)

tracking errors (mm)

(b)
Fig. 6.17 Tracking errors with varied network delay (a) without compensation (b) applying
PDC

® C(Case C: Different dropout distribution and constant network time delay

(7, =50ms) are both introduced to motion NCS. From Fig. 6. 18(a), simulation

results indicate that although IME can effectively eliminate the effect of dropout
distributions even in different levels, the effect of the network time delay still

exists and it will lead motion NCS to be unstable as the oscillation occurs, as
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shown in Fig. 6.18(a). Furthermore, the proposed motion NCS by integrating

PDC and IME simultaneously eliminates the effect of both data dropout and

network time delay, as shown in the Fig. 6.18(b).

(wuwi) sious Bupyoeny

time (sec)

(a)

(ww) siowsd Buoey

time (sec)

(b)
Fig. 6.18 Tracking errors with different dropout distributions and 7, = 50 ms by

(a) applying IME (b) applying both IME and PDC
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Case D: With the varied network time delay and a fixed dropout distribution

(pp.r =0.8) introduced to the motion NCS, simulation results indicate that PDC can

not compensate the effect of the time delay as the data dropout simultaneously occurs,
as shown in Fig. 6. 19(a). However, integrated PDC and IME can eliminate both the
effects of data dropout and network time delay, as shown in the Fig. 6.18(b).

tracking errors (mm)

tracking errors (mm)

ime (sec)

(b)
Fig. 6.19 Tracking errors with varied network time delay and p,, , =0.8 by

(a) applying PDC (b) applying both IME and PDC
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Case E: Finally, different dropout distributions as shown in Fig. 6.13(a), and the
varied networked time delay as shown in Fig. 6.13(b) are all introduced to the
motion NCS. Fig. 6.20 indicates that integration of the PDC and the IME can

simultaneously handle the most difficult conditions in NCS.
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Fig. 6.20 The tracking error with varied network time delay and different dropout

distributions by integrating PDC and IME.
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Table 6.4 Evaluation for compensated effects of PDC and IME.

Case Description Network conditions | Compensator Evaluation
Case Increasing Do =0.8-0.6>0.4 w/o IME Unstable
dropout 0
A Ty = i
No delay d IME Satisfactory
CaSC No dropout pD,R = 1 (110 dropout) W/O PDC Unstable
B Increasing delay 7, =10 = 40 — 70 (ms) PDC Satisfactory
Case Increasing Ppr=08->0.6—>04 IME Oscillation
dropout 50 (ms)
7, =50 (ms ;
C Constant delay d IME+PDC Satisfactory
Case | Constant dropout Ppr = 0.8 PDC Oscillation
D Increasing delay | 7 =10 54070 (ms) | IME+PDC Satisfactory
Increasing IME Unstable
o =0.8—>0.6 0.4
Case dropout & PDC Unstable
E and 7, =10—>40 — 70 (ms)
Tncreasing delay IME+PDC Satisfactory
6.4 Summary

Results showthat either the time delay or the data dropout unavoidably
degrade control performance and stability. Moreover, their simultaneous occurrences
will lead to serious problems in both stability and performance of NCS. In this chapter,
both the time delay compensator PDC and the data dropout estimator IME are
integrated in the proposed motion NCS to render satisfactory performance. The
feasibility and effectiveness of the proposed integrated NCS have been proven for
motion control with simulation results as follows:

(1) The NCS dynamics with data dropout effect have been suitably modeled as a
switched system between messages received and dropout status. Furthermore,
motion NCS applying least square estimators with different orders can be also
modeled as switched systems.

(2) By using SMS stability condition, the region of stability can be thus obtained
depending on the transition probability. Furthermore, the switching laws of IME
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(©))

(C))

©))

can be also determined based on the dominant transition probability o, ..

In simulation results, the motion NCS applying IME successfully achieves the
guaranteed stability even with different data dropout distributions.

With different levels of the time delay, the PDC still renders satisfactory
performance and stability. However, when the effect of the data dropout also
involves, the PDC alone is no longer suitable for NCS.

Under both the different levels of the time delay and the different distribution of
data dropout, the motion NCS maintains satisfactory control performance and

stability by combining both IME and PDC.
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Chapter 7

Conclusions and Future Work

7.1

Conclusions

This dissertation presents three newly developed approaches to deal with data

dropout effects in motion NCS. The 3" order Taylor message estimator is proposed

for motion NCS, as in Chapter 2. To estimate data dropout distributions for further

compensation, the real-time transition probability estimator is further proposed as in

Chapter 3. Moreover, the IME based on the estimated transition probability is then

applied to motion NCS by concerning both-the tracking accuracy and the guaranteed

stability, as in Chapter 4 and 5.7As the serious network<induced time delay occurs,

control performance of the integration of both IME and PDC is verified, as in Chapter

6. Conclusions of this dissertation-are as follows:

(1).

Q).

).

(4).

The 3"-order Taylor message estimator has been successfully applied to CAN
based CNC machine. Results indicate that as data dropout rate increases, the
proposed estimator still compensate for the dropout effect-well to maintain the
originally designed motion NCS. Thus, -even the feedforward controller can be
applied to the motion NCS'with a 3" order Taylor.message estimator to further

improve tracking aceuracy.

To cope with dropout with stochastic natures, the Taylor message estimator is
no longer to be suitable. Therefore, the real-time transition probability estimator
has been developed and it is realized on DSP microcontroller for motion NCS.
The proposed estimator provides efficient estimation of the transition
probability which is useful to switch different dropout compensators to be the

most suitable in tracking accuracy.

Average of fifty estimated transition probabilities, p,, and pp,, can

represent the transition probability of overall network to construct the two-state

Markov chain network model and stability analysis.

Performance and stability of IME in a motion NCS are modeled as a switched
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(5).

(6).

7.2

system and its stability is analyzed by the two-state Markov chain network

model. By monitoring the dominant transition probability ( p, , ), the switching

laws of IME are accordingly determined to compensate for the data dropout

effect with guaranteed stability of motion NCS.

The IME is successfully applied to the CAN-bus two-axis AC servo motor
control system to efficiently compensate for the data dropout. Experimental
results of the proposed IME render the best performance compared to the

one-delay or the Taylor estimators.

As the network-induced time delay presents, the IME alone only in no longer
suitable for motion NCS; however, the PDC alone only is also not suitable as
the dropout occurs. Simulation results indicate that the condition with either
dropout or delay<occurrence will cause unstableNCS. By applying the
integration of the PDC and-IME compensators, it effectively compensates for
the time delay.and dropout simultaneously. Furthermore; as both the dropout
and delay increase simultaneously, simulation results also indicate that the
proposed integration of both PDC and IME still control the NCS well with

satisfactory performance:

Future work

In this dissertation, the dropout compensator has already been realized in real

industrial applications on CNC machine tools and the 2-axis AC servo motor control

systems. The integration of both PDC and IME should be investigated on other

applications to prove their superior performance and stability as the delay and dropout

present simultaneously in practice.
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