
1134

Code PATH Search
Generator Algorithm -

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 36, NO. 5, SEPTEMBER 1990

Symbol
Release Rule -

Correspondence

Path Map Symbol Release Rules and the Exponential
Metric Tree

WEN-WHEI CHANG AND JERRY D. GIBSON

Abstract-To design a tree coder for source coding with a fidelity
criterion, one must choose a suitable code generator, an efficient tree
search algorithm, an appropriate distortion measure, and a path map
symbol release rule. The performance of several path map symbol
release rules when used with exhaustive searching of the exponential
metric tree is investigated. The average single-letter distortion of fixed
length symbol release rules and two variable length symbol release rules
are derived for shallow search depths and compared to simulation
results. The incremental or single symbol release rule is shown to yield
the best performance.

I. INTRODUCTION
Tree encoding is known to be capable of performing arbitrar-

ily close to the rate distortion bound for any memoryless source
and single-letter fidelity criterion [l], [2]. It employs a multipath
search that pursues some or all of the paths in the code tree and
chooses among them the best path at some search depth L.
Designs of such a source encoder usually involve choosing a
suitable code generator, an efficient tree search algorithm, and
an appropriate distortion measure. In addition, it is also impor-
tant to specify a rule to release the path map symbols to the
channel. This correspondence addresses the problem of path
map symbol release rule performance for the exponential metric
tree. We present theoretical analyses for exhaustive tree search-
ing that yield the average single-letter distortion performance of
fixed length symbol release rules and two variable length symbol
release rules, and we substantiate the theoretical values with
simulation results. The fixed symbol release rule results aug-
ment and check those of Bodie [3]. The organization of this
correspondence is as follows. Section I1 gives a general descrip-
tion of tree coding and defines some terminology. Section I l l
presents the theoretical analyses and simulation results of vari-
ous path map symbol release rules, including incremental encod-
ing, block encoding, and two variable symbol release rules.

11. TREE CODERS

Tree coders employ encoding delay to provide a multipath
search capability, and all possible output sequences are placed
within a tree structure that consists of branches and nodes.
There is a fixed number of N branches emanating from each
node, each of which terminates in another node. In a code tree,
each branch is labelled with p branch letters chosen from a
reconstruction alphabet, and the encoding rate in bits per sam-
ple is defined as (l/p)log,N. A path is a sequence of con-

Manuscript received September 28, 1988; revised September 5, 1989. This
work was presented in part at the 1988 International Conference on Ad-
vances in Communication and Control Systems, Baton Rouge, LA, October
19-21, 1988.

W.-W. Chang is with the Department of Communication Engineering,
National Chiao-Tung University, Taiwan, ROC.

J. D. Gibson is with the Department of Electrical Engineering, Texas
A&M University, College Station, TX 77843.

IEEE Log Number 9035999.

nected branches through the tree and can be uniquely located
by the path map symbols that specify which of the N emanating
branches is to be followed to the node at the next level. Instead
of transmitting branch letters, tree coders transmit these path
map symbols. To gain insight into path map symbol release
rules, the metric tree is introduced for use in analyzing tree
coder performance. It differs from the code tree only in that
each branch is labelled with the metric increment that quantifies
the distortion associated with the reconstruction value. The path
metric is defined as the cumulative metric increment through
the path.

A tree coder has four elements: a code generator, a tree
search algorithm, a distortion measure, and a path map symbol
release rule, as shown in Fig. 1. Given an L source letter
sequence s = s,, s2, . . . , sL, the code generator maps all possible
path maps to a branch letter sequence s ̂ = SI,,&;. . , S I L . Code
generators can be classified as having a deterministically popu-
lated or stochastically populated code tree. The code trees
associated with conventional source encoders such as pulse code
modulation (PCM), differential PCM (DPCM), and adaptive
DPCM (ADPCM), belong to the class of deterministic tree
codes. They are more straightforward to implement, but they
also provide the least gains over the single path source encoder.
Stochastic tree coders use appropriately chosen random vari-
ables as the reconstruction samples to populate the tree, and
asymptotically in L , provide better performance than the deter-
ministic coders.

Fig. 1. Tree coder.

The distortion measure calculates the path metric e(s, s^) that
quantifies how well the reconstruction for a given path map
approximates the source letters. The most popular single-letter
fidelity criterion is the mean-squared error. The tree search
algorithm finds the path with the least path metric by sequen-
tially feeding different path maps to the code generator and
using the distortion measure to evaluate the reconstructed s ̂
until the best is found. Some popular tree search algorithms are
the exhaustive search, the (M , L) algorithm [4], the stack algo-
rithm [5], and the two-cycle algorithm [6]. The most effective is
the exhaustive search algorithm, which sets the upper bound on
the performance for all other search algorithms. It searches all
possible branches of the code tree to depth L , and hence the
best ŝ is always found. However, as the search depth L is

00 18-9448/90/0900- 1 134$0 1 .OO 0 1990 IEEE

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 36, NO. 5, SEPTEMBER 1990 I135

increased, the complexity of the exhaustive search algorithm
grows exponentially, and one of the other algorithms may be
preferable [7].

The path map symbol release rule specifies how the path map
symbols are presented to the channel. Most previous research
on source coding with a fidelity criterion has emphasized the
selection of a suitable tree code generator and an efficient tree
search algorithm for some chosen symbol release rule. The most
popular path map symbol release rule is single-symbol release,
sometimes called incremental encoding, where no matter how
deep the tree is searched, only the first symbol in the best path
is released at any time instant [5] . Following Gray's suggestion
[8] that undesirable path switching might occur with incremental
encoding, Goris and Gibson 191 briefly examined some variable
symbol release rules. However, the question as to which symbol
release rule yields the best performance remains open. In subse-
quent sections, we compare several path map symbol release
rules for exhaustive searching of the exponential metric tree.

111. PATH MAP SYMBOL RELEASE RULES

A theoretical analysis of path map symbol release rule perfor-
mance is complicated by the fact that even an elementary
memoryless data source and a simple code generator have a
complex metric tree structure. To permit a theoretical analysis,
we apply various path map symbol release rules to a binary
metric tree in which the per-level metric increase p is dis-
tributed as the exponential density. As shown in Appendix A,
this exponential metric tree corresponds to the actual situation
of applying binary, rate-1/2 tree encoding to a memoryless
Gaussian source. In this paper, we study various symbol release
rules on a binary L-dLpth metric tree in which the increase in
path metric per level is distributed as the exponential density
e - ' , x 2 0, also studied by Bodie [3]. We define hk as the least
path metric attainable with an exhaustive search from level k to
level L. Some density functions of A k are derived in Appen-
dix B.

A. Fixed Symbol Release Rule

First, we study the fixed symbol release rule in which no
matter how deep the tree is searched, a fixed number of path
map symbols is released after each search. Both incremental
and block tree encoding, which release 1 and L symbols, respec-
tively, are special cases of this rule. Some theoretical analyses of
the fixed symbol release rule performance are presented in
Appendix C. The theoretical values shown in Table I are for the
L-depth exponential metric tree using the exhaustive tree search.
The parameter D, is the average per-letter distortion attainable

TABLE I
AVERAGE PER-LETTER DISTORTION

FOR FIXED SYMBOL RELEASE*

L D, D2 D3 0 4 D5
1 0.5000
2 0.4167 0.4584
3 0.3734 0.3951 0.4300
4 0.3462 0.3598 0.3788 0.4091
5 0.3275 0.3369 0.3490 0.3660 0.3928
* T h e o r e t i c a l r e s u l t s .

with j number of path map symbols released. The leftmost
column (j = 1) and rightmost column (j = I,) correspond to
incremental and block encoding, respectively. Note that none of
the multiple symbol release rules outperforms the single symbol
release rule. Simulation results for blocklengths 1-12 are shown
in Table 11. The one standard deviation confidence interval for
the simulation values in Table I1 range from +0.001 to kO.003.
Comparing Tables I and 11, it is evident that the theoretical and
experimental values of average distortion agree very closely.

The values of Dj for a given L in Tables I and I1 also indicate
that performance degrades as the number of symbols released in
a fixed length symbol release rule is increased. The reason for
this seems to be that some path switching, which occurs when-
ever the coder finds a better path than the one it is pursuing, is
desirable, even though there is a risk of not staying on a path
long enough to achieve its average performance [SI. The more
symbols released in a fixed symbol release rule, the fewer
opportunities the coder has to switch to a better path [9].
Another reason for degraded performance by the fixed L-sym-
bo1 release rule is that there may be a problem with locally large
distortions near the block edges due to reinitialization [SI.

B. Variable Symbol Release Rules
As noted by Gray [8], a variable symbol release rule should be

employed to stay on a good path long enough to achieve the
promised long-term fidelity. The logic behind this approach is
that the first step of the good path, which has the least path
metric, may be a poor one with a large sample distortion. Two
variable symbol release rules are investigated here. One rule
releases the path map symbols on the best path until the
running average distortion is less than or equal to the long-term
average distortion, while the other releases symbols until the
level that has the least running average distortion on the best
path. Goris and Gibson [9] suggest that the maximum number of
symbols released should be constrained to J = IL/2], the largest

TABLE I1
AVERAGE PER-LETTER DISTORTION FOR FIXED SYMBOL RELEASE*

1. 1 2 3 4 5 6 7 8 9 10 11 12

D , 0.5014 0.4229 0.3799 0.3544 0.3312 0.3232 0.3100
0.4659 0.3950 0.3653 0.3416 0.3267 0.3183

0.4325 0.3855 0.3557 0.3363 0.3206
0.4147 0.3727 0.3454 0.3237

0.4049 0.3571 0.3365
0.3838 0.3478

0.3638

D2
D3
0 4

D5
D6

Dl
Dn
D,
DIO
Dl,
D 1 2

*Sirnulation results.

0.2987 0.3030
0.2964 0.2998
0.3091 0.3049
0.3141 0.3070
0.3223 0.3099
0.3298 0.3172
0.3446 0.3227
0.3598 0.3330

0.3567

0.2876
0.2951
0.2987
0.2969
0.3048
0.3137
0.3119
0.3 188
0.3282
0.3470

0.2913
0.2915
0.2940
0.2954
0.3014
0.3009
0.3069
0.3117
0.3173
0.3213
0.3372

0.2857
0.2857
0.2868
0.2908
0.2901
0.2945
0.2952
0.3027
0.3029
0.3109
0.3158
0.3342

1136 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 36, NO. 5 , SEPTEMBER 1990

integer less than L/2, and we adopt this rule here. The follow-
ing procedures are used.

1) Exhaustively search for the best L-depth path with the
minimum path metric, calculate the long-term average
distortion E,,,, and the running average distortion at the
jth level E j , j = 1,2; . ., J ,

1 L
E,,,, = - (Si - ;,y

L i = l

and

2) Select one variable symbol release rule.

Rule 1: Release the path map symbols until the ith level
whose running average distortion E, is less than or
equal to E,,,, [91.

Rule 2: Search for the minimum running average distor-
tion on the best path, say E; at level i. If E; is less
than E,,,,, then release i path map symbols. If
Ei is greater than E,,,,, then release only one
symbol.

3) If the number of path map symbols released in Step 2)
reaches the constraint J , then stop sending.

We have analyzed both of the variable symbol release rules
for blocklengths 4 and 5 in Appendix D. As shown in Table 111,
neither of the variable symbol release rules is able to outper-
form the single symbol release rule, although Rule 2 comes very
close. This implies that the first step on the best path has a good
sample distortion. Table IV shows the simulation results for
search depths 4-12, where the one standard deviation confi-
dence interval should be considered to be 50.001 to kO.003.
Comparing with Table 111, we see that the theoretical and
simulation results are in good agreement.

TABLE 111
AVERAGE PER-LETER DISTORTION
FOR VARIABLE SYMBOL RELEASE*

L Incremental Block Rule 1 Rule 2

4 0.3462 0.4090 0.3525 0.3478
5 0.3275 0.3928 0.3325 0.3285

*Theoretical results.

TABLE IV
AVERAGE PER-LETTER DISTORTION FOR

VARIABLE SYMBOL RELEASE*

L Incremental Block Rule 1 Rule 2

4
5
6
7
8
9

10
11
12

0.3544
0.3312
0.3232
0.3100
0.2987
0.3030
0.2876
0.2913
0.2857

0.4147
0.4049
0.3838
0.3638
0.3598
0.3567
0.3470
0.3372
0.3342

0.3628
0.3396
0.3282
0.3141
0.3063
0.3039
0.2967
0.2947
0.2907

0.3575
0.3353
0.3302
0.3110
0.3033
0.3031
0.2964
0.2925
0.2870

IV. CONCLUSION

We have shown that the single symbol release rule outper-
forms other fixed symbol release rules and two variable symbol
release rules with exhaustive search of the exponential metric
tree. This work thus tends to reinforce the simulation results in
[9] and [l l] for speech sources. Fixed multiple symbol release
rule performance is degraded with an increase in the number of
released symbols by the fact that it may miss desirable path
switching and may have the problem of locally large distortion
near the edges of a block. Variable symbol release rules fail to
outperform the single symbol release rule, but their perfor-
mance difference is small. Hence, one possible use of the
variable symbol release rule is in the reduction of computational
load when selecting an exhaustive search [9].

APPENDIX A
THE EXPONENTIAL METRIC TREE

To simplify the theoretical analyses, we have assumed a
binary metric tree in which the metric increase p per level is
distributed according to the exponential density. There exists a
practical situation where tree encoding an actual data source
will generate the exponential metric tree. This occurs when we
apply tree encoding to a memoryless Gaussian source, whose
source letters are distributed independently with normal density
N(0, i), and use a rate-1/2 code tree structure with two branches
emanating from each node, each branch associated with two
branch letters that are assumed to be chosen from the same
N(0, i) as the source lettys. We penote the two reconstruction
letters on one branch as SI and S,, corresponding to the source
letters S, and S,, and denote X , as the difference between S,
and S,. We also define the metric increase per level p = X : +

Since both source letters and branch letters have the identical
independent density function N(0, i), their difference X , has
the density N(0,l). It is known that if XI, . . . , X , is a random
sample from a normal distribution with mean 6 and variance
u2, then U = I:=I(X, - [) 2 / u 2 has a chi-square distribution
with n degrees of freedom [lo]. Hence the metric increase per
level p will be distributed as X;, a chi-square density with two
degrees of freedom. This is also the exponential density with
parameter +,

X i .

APPENDIX B
EXHAUSTIVE SEARCH ON THE EXPONENTIAL METRIC TREE

We assume a binary depth L metric tree in which the in-
crease in path metric per level (p, the metric increase) is
distributed as the exponential density and follow the develop-
ment of Bodie [3]. We define A, as the least path metric
attainable with an exhaustive search from level k to level L.
Extending the search one level further back involves choosing
for each node the branch that contributes to the smaller path
metric from level k - 1 to level L. These path metrics are the
sum of two independent components A k and p, and their
density functions equal the convolution of their respective com-
ponent density functions

Then A,- ,, the least path metric from level k - 1 to level L, has
the density of the minimum of two random variables that are ~~~

*Simulation results.

IEEE TRANSACTIONS O N INFORMATION THEORY, VOL. 36, NO. 5, SEPTEMBER 1990 1137

distributed as fA;(x) ,

f A , _ , (x) = 2 f A i (x) [1 - F A ; (x)] '

Since we always have A, = 0, f A , = S (x) at the last level of the
tree. Starting from the last level, we may iterate the previous
two equations to obtain the density function of A, at any level.

Thus

f A l (x) ='(');

f A l Jx) = 2e-'";

fA, -Ax) = 8e-'" - l2eP3" +4eC4";

f A , Jx) = 22.2e-'" -80eP3" +117.3e-4" -91.leP5"

+40eP6" -9.3e-7" +0.9e-";
f A l J x) = 52.6eCZX - 341 .8eP3" + 1040.7e-4"

- 1982.8e-5" +2650.6eC6"
-2629.5ec7" + 1992e~'" - 1167.7e-9"
+531.le-I0" - 186.le-""
+49.4e-I2" -9.6e-I3" + 1 . 3 e ~ ' ~ " -0.1e-15";

f A l Jx) = 113.5e-'" - 1 1 8 8 . l e ~ ~ " +6197e-4"
-21507.5eC5" +55789.2eC6"
- 114968.3e-'" + 195238.6e-8"
- 279807.2e-9" + 344013e-"'"
-367097e-'I" +342883.2e-I2"
-282050.3e-I3" +205210.4e-14"
- 132438e-15" +7594l.9e-l6"
-38712.1e-I7" + 17534.9e-I8"
-7047.2e-I9" +2506.6e-""
-786.2e-21x +216.4e-""
-51.9e-23" + 10.8e-24" - 19e-25X
+ 0.3e- 26x.

APPENDIX C
FIXED SYMBOL RELEASE RULE PERFORMANCE

We denote hk as the expected value of A,, the least path
metric attainable with an exhaustive search from level k to level
L. From the density fAk given in Appendix B, we can calculate
both h k and Dj. See Tables V and I, respectively,

A,: expected value of the path metric from level k to level L .
Dj: the least per-letter average distortion attainable with the

-

exhaustive search and j fixed-symbol release rule.

TABLE V
EXPECTED VALUE OF PATH METRIC

- - - - -
L An A I A 2 A 3 A4 A S

1 0.5000 0.0000
2 0.9167 0.5000 0.0000
3 1.2901 0.9167 0.5000 0.0000
4 1.6363 1.2901 1.9167 0.5000 0.0000
5 1.9638 1.6363 1.2901 0.9167 0.5000 0.0000

APPENDIX D
VARIABLE SYMBOL RELEASE RULE PERFORMANCE

A variable symbol release rule is employed to stay on a good
path long enough to achieve the promised long-term fidelity.
Two variable symbol release rules are investigated here.

Rule 1: Release the path map symbols until the running aver-
age distortion is less than or equal to the long-term
average distortion, or reaches the release constraint

Rule 2: Release the path map symbols until the level that has
the smallest running average distortion, or the release
constraint [L /2J is reached. Only release one symbol
when the smallest running average distortion is greater
than the long-term average distortion.

1 L /21.

A. Depth-4 Exponential Metric Tree Calculations

1) Performance of Rule 1: We denote Ri as the event that i
path map symbols are decided to be released and with U, = 3A,,
u2 = 4A,, and y = U , - u2 , we have

where

f",,,, = f u , l u , ~ f u 2

= e-2"1/3[3.7-13.3e-U2/~ +19.6e-"2/2 -15,2eC3"2/4

+6.7e-"2 - 1.6e-5U2/4 +0.15e-3"2/2],

u , 2 0 , u 2 2 0 , u12:u, .

The least average path metric attainable with Rule 1 is

D = D,.P(R I) + D,.P(R2)

= 0.3462X0.535347+0.3598X0.464653 = 0.3525.
2) Performance of Rule 2:

< A , - A , and ~

2 - 4

=P[(A , -2A,+A2)20 and -A,+2A220]

1138 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 36, NO. 5, SEPTEMBER 1990

There exist two possible conditions:

EventA) z r (2 y - - x) > ? and ~ 2 ~ 2 ~ 2 0 ;

Event B) z 2 x 2 y 2 z 2 0.

2

> (2y - x) and
2 -

Hence

P(Event A) = P (2A, - A, 2)- [2 1
=P[(3Ao-4A,) <0]=0.535347,

P(Event B) = 1 - P(Event A) = 0.464653, and

P (R 2) = P(R,IEvent A).P(Event A)

+ P(R21Event B) .P(Event B)

where

~ A I , , A I , A ~ = fA,,lA,,Az’fA,lAz’fAz

= [~ ~ - ~ A I I - A I)] . [2e-2(A1-A2z’]

. [22.2e-2A2 -80e-3A2 + 117.3e-4A2

- 91. l e - 5 A 2 + 40e - 6 A 2 - 9.3e- 7A2 + 0.9e-”2 1
= e-2Al,. [88.8-32OepA2 +469.3e-2A2

-364.4e-3A2 + 160e-4Az
-37.21i-~~2 +3.6e-6A2].

The upper and lower limits in the integral must be chosen to
satisfy the following three constraints:

a) ~ 2 ~ 2 ~ 2 0 ;

b) - 3 x + 5 z 2 0 or z 2 3 x / 5 ;

c) x - 2 y + z 2 0 or z 2 (2 y - x) .

There exist two possible conditions:

3x
z 2 (2y - x) 2 -

5
Event A) and x 2 y 2 z 2 0;

3x
5

Event B) z 2 - 2 (2y - x) and x 2 y 2 z 2 0.

Hence

I .Prob - > (2y - x) L -
= 0.1283 X 0.535347 + 0.1075 X 0.464653 = 0.1 18635.

The least average path metric attainable with Rule 2 is
P(R 2) = P (R,(Event A) .P(Event A) D = D, .P(R ,)+ D 2 . P (R 2)

+ P(R,IEvent B) .P(Event B) = 0.3462 X 0.881 1365 + 0.3598 X 0.1 18635 = 0.3478.

[I+”/* 1
.P[(Zg - .) 2 -x

5 3 1

1

B. Depth-5 Exponential Metric Tree Calculations

y = U, - u 2 , so we can write

4 * / 5 2 y - * fAl,.Al,A~X~y,Z) d z d y h
1) Performance of Rule 1: We set u,=4Ao, u2=5A1, and

P (R ,) = P (A , - A ,) I - [5 I
= P [4 A o - 5 A , ~ 0] = P [(u , - ~ 2) 1 0]

s A , - A , and ~

2

.P (2 y - x) < - x [5 3 1
= 0.1313X0.46916+0.1023X0.53084 = 0.1159.

The least average path metric attainable with Rule 2 is

D = D,.P(R I) + D 2 . P (R 2)

= 0.3275 X 0.8841 +0.3369 X 0.1159 = 0.3285.

REFERENCES
[l] F. Jelinek, “Tree encoding of memoryless time-discrete sources with a

fidelity criterion,” IEEE Trans. Inform. Theory, vol. IT-15, pp. 584-590,
Sept. 1969.

[2] C. R. Davis and M. E. Hellman, “On tree coding with a fidelity
criterion,” IEEE Trans. Inform. Theory, vol. IT-21, pp. 373-378, July
1975.
J . B. Bodie, “Multi-path tree encoding for analog data sources,” Com-
mun. Res. Lab., McMaster Univ., Hamilton, ON, Canada, M. Eng.
thesis, June 1974.
J . B. Anderson and J. B. Bodie, “Tree encoding of speech,” IEEE
Trans. Inform. Theory, vol. IT-21, pp. 319-387, July 1975.
J . B. Anderson, “A stack algorithm for source coding with a fidelity
criterion,’’ IEEE Trans. Inform. Theory, vol. IT-20, pp. 211-226, Mar.
1974.
J. B. Anderson and F. Jelinek, “ A 2-cycle algorithm for source coding
with a fidelity criterion,” lEEE Trans. Inform. Theory, vol. IT-19, pp.
11-92, Jan. 1973.
J. B. Anderson, “Recent advances in sequential encoding of analog
waveforms,” Conf. Rec., 1978 Nat. Telecomm. Conf., Birmingham, AL.
Dec. 3-6, pp. 19.4.1-19.4.5.

[3]

[4]

[5]

[6]

[7]

I E E E TRANSACTIONS ON INFORMATION THEORY, VOL.. 36, NO. 5, SEPTEMBER 1990 1139

[XI R. M. Gray, "Time-invariant trellis encoding of ergodic discrete-time
sources with a fidelity criterion," IEEE Truns. Inform. Theory, vol.
IT-23, pp. 71-83, Jan. 1977.
A. C. Goris and J. D. Gibson, "Incremental tree coding of speech,"
IEEE Truns. Inform. Theory, vol. IT-27, pp. 511-516, July 1981.
A. M. Mood and F. A. Graybill, Inrroduction to the Theop of Statistics,
second ed.
S. Mohan, D. Kryskowski, and C.-M. Lin, "Stack algorithm speech
encoding with fixed and variable symbol release rules," IEEE Trans.
Commun., vol. COM-33, pp. 1015-1018, Sept. 1985.

[9]

[IO]

[I l l
New York: McGraw-Hill, 1963.

Bounds on the Undetected Error Probabilities of
Linear Codes for Both Error Correction

and Detection
MAO-CHAO LIN

Abstract -The (n, k , d 2 2t + 1) binary linear codes are studied, which
are used for correcting error patterns of weight at most t and detecting
other error patterns over a binary symmetric channel. In particular, for
t = 1, it is shown that there exists one code whose probability of unde-
tected errors is upper bounded by (n + 1]2"-k - n] - l when used on a
binary symmetric channel with transition probability less than 2 / n .

I . INTRODUCTION

In pure ARQ systems, linear codes are used solely for detect-
ing errors. Suppose that we apply linear codes to a binary
symmetric channel (BSC) with transition probability p. It 11, pp.
78-79] has been proved that for each p with 0 I p I 1 , there
exists an (n , k) binary linear code whose probability of unde-
tected errors (PUDE) is upper bounded by 2 - (n - k) . Hamming
codes and double error correcting primitive BCH codes [2] , [3]
have been proved to satisfy the inequality if the transition
probability p is no greater than 1 / 2 .

Pure ARQ systems have the problem of low throughput if the
transition probability in the BSC is high. Therefore, in hybrid
ARQ systems [l] especially in type-I hybrid ARQ systems, linear
codes are used for correcting some low weight error patterns
and detecting many other error patterns. Therefore, it is inter-
esting to study the probability of undetected errors for linear
codes that are used for both error correction and error detec-
tion over the BSC. In this correspondence, our study is divided
into two parts. In the first part, we study the class of (n , k , d 2 3)
systematic linear codes that can be used for correcting every
single error and detecting other error patterns. We show that
there exists one code whose PUDE is upper bounded by (n + 1)
. [2 n - k - n]-l when the transition probability is less than 2 / n .
In the second part, we study the (n , k) systematic linear codes
that are used for correcting some low weight-error patterns and
detecting other error patterns. Suppose that 1 - R > H(2A). We
show that there exists an (n , Rn,d 2 2An + 1) linear code whose
PUDE is closely upper bounded by 2 - [' - R - H ' A)] n as n ap-
proaches infinity and the transition probability is less than A (if
it is used to correct all the error patterns of weight at most An
and to detect other error patterns).

Manuscript received February 8, 1989; revised December 1, 1989. This
work was presented at the IEEE 1990 International Symposium on Informa-
tion Theory, San Diego, CA, January 14-19, 1990. This work was supported
by the National Science Council of the Republic of China under grant NSC
78-0404-E002-05.

M.-C. Lin is with the Department of Electrical Engineering, National
Taiwan University, Taipei 10764, Taiwan, ROC.

IEEE Log Number 9036388.

11. CODES FOR ERROR DETECTION A N D
SINGLE-ERROR CORRECTION

Consider the ensemble r of all systematic (n , k , d 2 3) binary
linear codes. The generator matrix of an (n , k) systematic linear
code V is of the form G = [I PI, where I is the k X k identity
matrix and P is some k (n - k) matrix. A necessary and suffi-
cient condition for V to have minimum distance of at least 3 is
that no two rows of P are identical and each row in P must
have weight of at least 2. Therefore, the cardinality of r is

iri = [2" - k - 1 - (- k)] . [2" - k - 1 - (. - k) - 11

. . . [2"-k - 1 - (n - k) - (k - l)]

[2" - - 1 - (n - k)] !
[2 n 4 - 1 - n] ! (1) - - .

We denote the codes in r by VI, V , ; . .,Tr,. Let A l . , be the
number of weight-w codewords in v, where I = 1,2; . ., Irl, and
w = 0,3,4,. . . , n. Suppose v is used to correct every single error
and detect other error patterns over a BSC with transition
probability p , its PUDE is

n

JTEIv) = c [(w + l) . A , , , + I + A I , , + (n - w + l) . ~ , , w - l]

.PW(1 - p) " - W . (2)

w = 2

If the probability of choosing each code in r is equally likely,
the average PUDE over all the codes in r is

Note that each nonzero n-tuple appears in at most Ir'l codes in
r, where

ir'i I [2n-k - I - (~ - k)] - I - (~ - k) - i]

. . . [2n-k - 1 - (n - k) - (k -2)]

12n-k - 1 - (n - k) l !
(4)

0018-9448/90/0900-1139$01.00 01990 IEEE

