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Abstract-To design a tree coder for source coding with a fidelity 
criterion, one must choose a suitable code generator, an efficient tree 
search algorithm, an appropriate distortion measure, and a path map 
symbol release rule. The performance of several path map symbol 
release rules when used with exhaustive searching of the exponential 
metric tree is investigated. The average single-letter distortion of fixed 
length symbol release rules and two variable length symbol release rules 
are derived for shallow search depths and compared to simulation 
results. The incremental or single symbol release rule is shown to yield 
the best performance. 

I. INTRODUCTION 
Tree encoding is known to be capable of performing arbitrar- 

ily close to the rate distortion bound for any memoryless source 
and single-letter fidelity criterion [l], [2]. It employs a multipath 
search that pursues some or all of the paths in the code tree and 
chooses among them the best path at some search depth L. 
Designs of such a source encoder usually involve choosing a 
suitable code generator, an efficient tree search algorithm, and 
an appropriate distortion measure. In addition, it is also impor- 
tant to specify a rule to release the path map symbols to the 
channel. This correspondence addresses the problem of path 
map symbol release rule performance for the exponential metric 
tree. We present theoretical analyses for exhaustive tree search- 
ing that yield the average single-letter distortion performance of 
fixed length symbol release rules and two variable length symbol 
release rules, and we substantiate the theoretical values with 
simulation results. The fixed symbol release rule results aug- 
ment and check those of Bodie [3]. The organization of this 
correspondence is as follows. Section I1 gives a general descrip- 
tion of tree coding and defines some terminology. Section I l l  
presents the theoretical analyses and simulation results of vari- 
ous path map symbol release rules, including incremental encod- 
ing, block encoding, and two variable symbol release rules. 

11. TREE CODERS 

Tree coders employ encoding delay to provide a multipath 
search capability, and all possible output sequences are placed 
within a tree structure that consists of branches and nodes. 
There is a fixed number of N branches emanating from each 
node, each of which terminates in another node. In a code tree, 
each branch is labelled with p branch letters chosen from a 
reconstruction alphabet, and the encoding rate in bits per sam- 
ple is defined as (l/p)log,N. A path is a sequence of con- 
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nected branches through the tree and can be uniquely located 
by the path map symbols that specify which of the N emanating 
branches is to be followed to the node at the next level. Instead 
of transmitting branch letters, tree coders transmit these path 
map symbols. To gain insight into path map symbol release 
rules, the metric tree is introduced for use in analyzing tree 
coder performance. It differs from the code tree only in that 
each branch is labelled with the metric increment that quantifies 
the distortion associated with the reconstruction value. The path 
metric is defined as the cumulative metric increment through 
the path. 

A tree coder has four elements: a code generator, a tree 
search algorithm, a distortion measure, and a path map symbol 
release rule, as shown in Fig. 1. Given an L source letter 
sequence s = s,, s2, .  . . , sL, the code generator maps all possible 
path maps to a branch letter sequence s  ̂ = SI,,&;. . , S I L .  Code 
generators can be classified as having a deterministically popu- 
lated or stochastically populated code tree. The code trees 
associated with conventional source encoders such as pulse code 
modulation (PCM), differential PCM (DPCM), and adaptive 
DPCM (ADPCM), belong to the class of deterministic tree 
codes. They are more straightforward to implement, but they 
also provide the least gains over the single path source encoder. 
Stochastic tree coders use appropriately chosen random vari- 
ables as the reconstruction samples to populate the tree, and 
asymptotically in L ,  provide better performance than the deter- 
ministic coders. 

Fig. 1. Tree coder. 

The distortion measure calculates the path metric e(s, s^) that 
quantifies how well the reconstruction for a given path map 
approximates the source letters. The most popular single-letter 
fidelity criterion is the mean-squared error. The tree search 
algorithm finds the path with the least path metric by sequen- 
tially feeding different path maps to the code generator and 
using the distortion measure to evaluate the reconstructed s  ̂
until the best is found. Some popular tree search algorithms are 
the exhaustive search, the ( M ,  L )  algorithm [4], the stack algo- 
rithm [5], and the two-cycle algorithm [6]. The most effective is 
the exhaustive search algorithm, which sets the upper bound on 
the performance for all other search algorithms. It searches all 
possible branches of the code tree to depth L ,  and hence the 
best ŝ  is always found. However, as the search depth L is 
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increased, the complexity of the exhaustive search algorithm 
grows exponentially, and one of the other algorithms may be 
preferable [7]. 

The path map symbol release rule specifies how the path map 
symbols are presented to the channel. Most previous research 
on source coding with a fidelity criterion has emphasized the 
selection of a suitable tree code generator and an efficient tree 
search algorithm for some chosen symbol release rule. The most 
popular path map symbol release rule is single-symbol release, 
sometimes called incremental encoding, where no matter how 
deep the tree is searched, only the first symbol in the best path 
is released at any time instant [5 ] .  Following Gray's suggestion 
[8] that undesirable path switching might occur with incremental 
encoding, Goris and Gibson 191 briefly examined some variable 
symbol release rules. However, the question as to which symbol 
release rule yields the best performance remains open. In subse- 
quent sections, we compare several path map symbol release 
rules for exhaustive searching of the exponential metric tree. 

111. PATH MAP SYMBOL RELEASE RULES 

A theoretical analysis of path map symbol release rule perfor- 
mance is complicated by the fact that even an elementary 
memoryless data source and a simple code generator have a 
complex metric tree structure. To permit a theoretical analysis, 
we apply various path map symbol release rules to a binary 
metric tree in which the per-level metric increase p is dis- 
tributed as the exponential density. As shown in Appendix A, 
this exponential metric tree corresponds to the actual situation 
of applying binary, rate-1/2 tree encoding to a memoryless 
Gaussian source. In this paper, we study various symbol release 
rules on a binary L-dLpth metric tree in which the increase in 
path metric per level is distributed as the exponential density 
e - ' ,  x 2 0, also studied by Bodie [3]. We define hk as the least 
path metric attainable with an exhaustive search from level k to 
level L. Some density functions of A k  are derived in Appen- 
dix B. 

A. Fixed Symbol Release Rule 

First, we study the fixed symbol release rule in which no 
matter how deep the tree is searched, a fixed number of path 
map symbols is released after each search. Both incremental 
and block tree encoding, which release 1 and L symbols, respec- 
tively, are special cases of this rule. Some theoretical analyses of 
the fixed symbol release rule performance are presented in 
Appendix C. The theoretical values shown in Table I are for the 
L-depth exponential metric tree using the exhaustive tree search. 
The parameter D, is the average per-letter distortion attainable 

TABLE I 
AVERAGE PER-LETTER DISTORTION 

FOR FIXED SYMBOL RELEASE* 

L D, D2 D3 0 4  D5 
1 0.5000 
2 0.4167 0.4584 
3 0.3734 0.3951 0.4300 
4 0.3462 0.3598 0.3788 0.4091 
5 0.3275 0.3369 0.3490 0.3660 0.3928 
* T h e o r e t i c a l  r e s u l t s .  

with j number of path map symbols released. The leftmost 
column ( j  = 1) and rightmost column ( j  = I,) correspond to 
incremental and block encoding, respectively. Note that none of 
the multiple symbol release rules outperforms the single symbol 
release rule. Simulation results for blocklengths 1-12 are shown 
in Table 11. The one standard deviation confidence interval for 
the simulation values in Table I1 range from +0.001 to kO.003. 
Comparing Tables I and 11, it is evident that the theoretical and 
experimental values of average distortion agree very closely. 

The values of Dj for a given L in Tables I and I1 also indicate 
that performance degrades as the number of symbols released in 
a fixed length symbol release rule is increased. The reason for 
this seems to be that some path switching, which occurs when- 
ever the coder finds a better path than the one it is pursuing, is 
desirable, even though there is a risk of not staying on a path 
long enough to achieve its average performance [SI. The more 
symbols released in a fixed symbol release rule, the fewer 
opportunities the coder has to switch to a better path [9]. 
Another reason for degraded performance by the fixed L-sym- 
bo1 release rule is that there may be a problem with locally large 
distortions near the block edges due to reinitialization [SI. 

B. Variable Symbol Release Rules 
As noted by Gray [8], a variable symbol release rule should be 

employed to stay on a good path long enough to achieve the 
promised long-term fidelity. The logic behind this approach is 
that the first step of the good path, which has the least path 
metric, may be a poor one with a large sample distortion. Two 
variable symbol release rules are investigated here. One rule 
releases the path map symbols on the best path until the 
running average distortion is less than or equal to the long-term 
average distortion, while the other releases symbols until the 
level that has the least running average distortion on the best 
path. Goris and Gibson [9] suggest that the maximum number of 
symbols released should be constrained to J = IL/2], the largest 

TABLE I1 
AVERAGE PER-LETTER DISTORTION FOR FIXED SYMBOL RELEASE* 

1. 1 2 3 4 5 6 7 8 9 10 11 12 

D ,  0.5014 0.4229 0.3799 0.3544 0.3312 0.3232 0.3100 
0.4659 0.3950 0.3653 0.3416 0.3267 0.3183 

0.4325 0.3855 0.3557 0.3363 0.3206 
0.4147 0.3727 0.3454 0.3237 

0.4049 0.3571 0.3365 
0.3838 0.3478 

0.3638 

D2 
D3 
0 4  

D5 
D6 

Dl 
Dn 
D, 
DIO 
Dl, 
D 1 2  

*Sirnulation results. 

0.2987 0.3030 
0.2964 0.2998 
0.3091 0.3049 
0.3141 0.3070 
0.3223 0.3099 
0.3298 0.3172 
0.3446 0.3227 
0.3598 0.3330 

0.3567 

0.2876 
0.2951 
0.2987 
0.2969 
0.3048 
0.3137 
0.3119 
0.3 188 
0.3282 
0.3470 

0.2913 
0.2915 
0.2940 
0.2954 
0.3014 
0.3009 
0.3069 
0.3117 
0.3173 
0.3213 
0.3372 

0.2857 
0.2857 
0.2868 
0.2908 
0.2901 
0.2945 
0.2952 
0.3027 
0.3029 
0.3109 
0.3158 
0.3342 
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integer less than L/2, and we adopt this rule here. The follow- 
ing procedures are used. 

1) Exhaustively search for the best L-depth path with the 
minimum path metric, calculate the long-term average 
distortion E,,,, and the running average distortion at the 
jth level E j ,  j = 1,2; . ., J ,  

1 L  
E,,,, = - (Si - ;,y 

L i = l  

and 

2) Select one variable symbol release rule. 

Rule 1: Release the path map symbols until the ith level 
whose running average distortion E, is less than or 
equal to E,,,, [91. 

Rule 2: Search for the minimum running average distor- 
tion on the best path, say E; at level i. If E; is less 
than E,,,,, then release i path map symbols. If 
Ei is greater than E,,,,, then release only one 
symbol. 

3) If the number of path map symbols released in Step 2) 
reaches the constraint J ,  then stop sending. 

We have analyzed both of the variable symbol release rules 
for blocklengths 4 and 5 in Appendix D. As shown in Table 111, 
neither of the variable symbol release rules is able to outper- 
form the single symbol release rule, although Rule 2 comes very 
close. This implies that the first step on the best path has a good 
sample distortion. Table IV shows the simulation results for 
search depths 4-12, where the one standard deviation confi- 
dence interval should be considered to be 50.001 to kO.003. 
Comparing with Table 111, we see that the theoretical and 
simulation results are in good agreement. 

TABLE 111 
AVERAGE PER-LETER DISTORTION 
FOR VARIABLE SYMBOL RELEASE* 

L Incremental Block Rule 1 Rule 2 

4 0.3462 0.4090 0.3525 0.3478 
5 0.3275 0.3928 0.3325 0.3285 

*Theoretical results. 

TABLE IV 
AVERAGE PER-LETTER DISTORTION FOR 

VARIABLE SYMBOL RELEASE* 

L Incremental Block Rule 1 Rule 2 

4 
5 
6 
7 
8 
9 

10 
11 
12 

0.3544 
0.3312 
0.3232 
0.3100 
0.2987 
0.3030 
0.2876 
0.2913 
0.2857 

0.4147 
0.4049 
0.3838 
0.3638 
0.3598 
0.3567 
0.3470 
0.3372 
0.3342 

0.3628 
0.3396 
0.3282 
0.3141 
0.3063 
0.3039 
0.2967 
0.2947 
0.2907 

0.3575 
0.3353 
0.3302 
0.3110 
0.3033 
0.3031 
0.2964 
0.2925 
0.2870 

IV. CONCLUSION 

We have shown that the single symbol release rule outper- 
forms other fixed symbol release rules and two variable symbol 
release rules with exhaustive search of the exponential metric 
tree. This work thus tends to reinforce the simulation results in 
[9] and [ l l ]  for speech sources. Fixed multiple symbol release 
rule performance is degraded with an increase in the number of 
released symbols by the fact that it may miss desirable path 
switching and may have the problem of locally large distortion 
near the edges of a block. Variable symbol release rules fail to 
outperform the single symbol release rule, but their perfor- 
mance difference is small. Hence, one possible use of the 
variable symbol release rule is in the reduction of computational 
load when selecting an exhaustive search [9]. 

APPENDIX A 
THE EXPONENTIAL METRIC TREE 

To simplify the theoretical analyses, we have assumed a 
binary metric tree in which the metric increase p per level is 
distributed according to the exponential density. There exists a 
practical situation where tree encoding an actual data source 
will generate the exponential metric tree. This occurs when we 
apply tree encoding to a memoryless Gaussian source, whose 
source letters are distributed independently with normal density 
N(0, i), and use a rate-1/2 code tree structure with two branches 
emanating from each node, each branch associated with two 
branch letters that are assumed to be chosen from the same 
N(0, i) as the source lettys. We penote the two reconstruction 
letters on one branch as SI and S,, corresponding to the source 
letters S, and S,, and denote X ,  as the difference between S, 
and S,. We also define the metric increase per level p = X :  + 

Since both source letters and branch letters have the identical 
independent density function N(0, i), their difference X ,  has 
the density N(0,l). It is known that if XI, .  . . , X ,  is a random 
sample from a normal distribution with mean 6 and variance 
u2, then U =  I:=I(X, - [ ) 2 / u 2  has a chi-square distribution 
with n degrees of freedom [lo]. Hence the metric increase per 
level p will be distributed as X;, a chi-square density with two 
degrees of freedom. This is also the exponential density with 
parameter +, 

X i .  

APPENDIX B 
EXHAUSTIVE SEARCH ON THE EXPONENTIAL METRIC TREE 

We assume a binary depth L metric tree in which the in- 
crease in path metric per level (p, the metric increase) is 
distributed as the exponential density and follow the develop- 
ment of Bodie [3]. We define A, as the least path metric 
attainable with an exhaustive search from level k to level L. 
Extending the search one level further back involves choosing 
for each node the branch that contributes to the smaller path 
metric from level k - 1 to level L.  These path metrics are the 
sum of two independent components A k  and p, and their 
density functions equal the convolution of their respective com- 
ponent density functions 

Then A,- ,, the least path metric from level k - 1 to level L, has 
the density of the minimum of two random variables that are ~~~ 

*Simulation results. 
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distributed as fA;(x) ,  

f A , _ , ( x ) = 2 f A i ( x ) [ 1 - F A ; ( x ) ] '  

Since we always have A, = 0, f A ,  = S ( x )  at the last level of the 
tree. Starting from the last level, we may iterate the previous 
two equations to obtain the density function of A, at any level. 

Thus 

f A l ( x )  ='('); 

f A l  Jx) = 2e-'"; 

fA, -Ax) = 8e-'" - l2eP3" +4eC4"; 

f A ,  Jx) = 22.2e-'" -80eP3" +117.3e-4" -91.leP5" 

+40eP6" -9.3e-7" +0.9e-"; 
f A l  J x )  = 52.6eCZX - 341 .8eP3" + 1040.7e-4" 

- 1982.8e-5" +2650.6eC6" 
-2629.5ec7" + 1992e~'" - 1167.7e-9" 
+531.le-I0" - 186.le-"" 
+49.4e-I2" -9.6e-I3" + 1 . 3 e ~ ' ~ "  -0.1e-15"; 

f A l  Jx) = 113.5e-'" - 1 1 8 8 . l e ~ ~ "  +6197e-4" 
-21507.5eC5" +55789.2eC6" 
- 114968.3e-'" + 195238.6e-8" 
- 279807.2e-9" + 344013e-"'" 
-367097e-'I" +342883.2e-I2" 
-282050.3e-I3" +205210.4e-14" 
- 132438e-15" +7594l.9e-l6" 
-38712.1e-I7" + 17534.9e-I8" 
-7047.2e-I9" +2506.6e-"" 
-786.2e-21x +216.4e-"" 
-51.9e-23" + 10.8e-24" - 19e-25X 
+ 0.3e- 26x.  

APPENDIX C 
FIXED SYMBOL RELEASE RULE PERFORMANCE 

We denote hk as the expected value of A,, the least path 
metric attainable with an exhaustive search from level k to level 
L. From the density fAk given in Appendix B, we can calculate 
both h k  and Dj. See Tables V and I, respectively, 

A,: expected value of the path metric from level k to level L .  
Dj: the least per-letter average distortion attainable with the 

- 

exhaustive search and j fixed-symbol release rule. 

TABLE V 
EXPECTED VALUE OF PATH METRIC 

- - - - - 
L An A I  A 2  A 3  A4 A S  

1 0.5000 0.0000 
2 0.9167 0.5000 0.0000 
3 1.2901 0.9167 0.5000 0.0000 
4 1.6363 1.2901 1.9167 0.5000 0.0000 
5 1.9638 1.6363 1.2901 0.9167 0.5000 0.0000 

APPENDIX D 
VARIABLE SYMBOL RELEASE RULE PERFORMANCE 

A variable symbol release rule is employed to stay on a good 
path long enough to achieve the promised long-term fidelity. 
Two variable symbol release rules are investigated here. 

Rule 1: Release the path map symbols until the running aver- 
age distortion is less than or equal to the long-term 
average distortion, or reaches the release constraint 

Rule 2: Release the path map symbols until the level that has 
the smallest running average distortion, or the release 
constraint [ L  /2J is reached. Only release one symbol 
when the smallest running average distortion is greater 
than the long-term average distortion. 

1 L /21. 

A. Depth-4 Exponential Metric Tree Calculations 

1) Performance of Rule 1: We denote Ri as the event that i 
path map symbols are decided to be released and with U, = 3A,, 
u2 = 4A,, and y = U ,  - u2 ,  we have 

where 

f",,,, = f u , l u , ~ f u 2  

= e-2"1/3[3.7-13.3e-U2/~ +19.6e-"2/2 -15,2eC3"2/4 

+6.7e-"2 - 1.6e-5U2/4 +0.15e-3"2/2], 

u , 2 0 ,  u 2 2 0 ,  u12:u, .  

The least average path metric attainable with Rule 1 is 

D = D,.P(  R I )  + D,.P( R2)  

= 0.3462X0.535347+0.3598X0.464653 = 0.3525. 
2) Performance of Rule 2: 

< A , - A ,  and ~ 

2 - 4  

=P[ (A , -2A,+A2)20  and -A,+2A220]  
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There exist two possible conditions: 

EventA) z r ( 2 y - - x ) > ?  and ~ 2 ~ 2 ~ 2 0 ;  

Event B) z 2 x 2 y 2 z 2 0. 

2 

> (2y - x )  and 
2 -  

Hence 

P(Event A) = P (2A, - A, 2 )- [ 2 1 
=P[(3Ao-4A,) <0]=0.535347, 

P(Event B) = 1 - P(Event A) = 0.464653, and 

P ( R 2 )  = P( R,IEvent A).P(Event A) 

+ P( R21Event B) .P(Event B) 

where 

~ A I , , A I , A ~  = fA,,lA,,Az’fA,lAz’fAz 

= [ ~ ~ - ~ A I I - A I ) ] .  [2e-2(A1-A2z’] 

. [22.2e-2A2 -80e-3A2 + 117.3e-4A2 

- 91. l e  - 5 A 2  + 40e - 6 A 2  - 9.3e- 7A2 + 0.9e-”2 1 
= e-2Al,. [88.8-32OepA2 +469.3e-2A2 

-364.4e-3A2 + 160e-4Az 
-37.21i-~~2 +3.6e-6A2]. 

The upper and lower limits in the integral must be chosen to 
satisfy the following three constraints: 

a) ~ 2 ~ 2 ~ 2 0 ;  

b) - 3 x + 5 z 2 0  or z 2 3 x / 5 ;  

c) x - 2 y + z 2 0  or z 2 ( 2 y - x ) .  

There exist two possible conditions: 

3x 
z 2 (2y - x )  2 - 

5 
Event A) and x 2 y 2 z 2 0; 

3x 
5 

Event B) z 2 - 2 (2y - x )  and x 2 y 2 z 2 0. 

Hence 

I .Prob - > (2y - x )  L - 
= 0.1283 X 0.535347 + 0.1075 X 0.464653 = 0.1 18635. 

The least average path metric attainable with Rule 2 is 
P( R 2 )  = P (  R,(Event A) .P(Event A) D =  D, .P(R , )+  D 2 . P ( R 2 )  

+ P( R,IEvent B) .P(Event B) = 0.3462 X 0.881 1365 + 0.3598 X 0.1 18635 = 0.3478. 

[I+”/* 1 
.P[(Zg - .) 2 -x 

5 3 1  

1 

B. Depth-5 Exponential Metric Tree Calculations 

y = U, - u 2 ,  so we can write 

4 * / 5  2 y - *  fAl,.Al,A~X~y,Z) d z d y h  
1) Performance of Rule 1: We set u,=4Ao, u2=5A1, and 

P ( R , ) = P  ( A ,  - A , )  I - [ 5 I 
= P [ 4 A o - 5 A , ~ 0 ] = P [ ( u , - ~ 2 ) 1 0 ]  

s A , - A ,  and ~ 

2 

.P ( 2 y - x ) < - x  [ 5 3 1  
= 0.1313X0.46916+0.1023X0.53084 = 0.1159. 

The least average path metric attainable with Rule 2 is 

D = D,.P( R I )  + D 2 . P (  R 2 )  

= 0.3275 X 0.8841 +0.3369 X 0.1159 = 0.3285. 
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Bounds on the Undetected Error Probabilities of 
Linear Codes for Both Error Correction 

and Detection 
MAO-CHAO LIN 

Abstract -The (n, k ,  d 2 2t + 1) binary linear codes are studied, which 
are used for correcting error patterns of weight at most t and detecting 
other error patterns over a binary symmetric channel. In particular, for 
t = 1, it is shown that there exists one code whose probability of unde- 
tected errors is upper bounded by (n + 1]2"-k - n ] - l  when used on a 
binary symmetric channel with transition probability less than 2 / n .  

I .  INTRODUCTION 

In pure ARQ systems, linear codes are used solely for detect- 
ing errors. Suppose that we apply linear codes to a binary 
symmetric channel (BSC) with transition probability p. It 11, pp. 
78-79] has been proved that for each p with 0 I p I 1 ,  there 
exists an ( n , k )  binary linear code whose probability of unde- 
tected errors (PUDE) is upper bounded by 2 - ( n - k ) .  Hamming 
codes and double error correcting primitive BCH codes [2 ] ,  [3 ]  
have been proved to satisfy the inequality if the transition 
probability p is no greater than 1 / 2 .  

Pure ARQ systems have the problem of low throughput if the 
transition probability in the BSC is high. Therefore, in hybrid 
ARQ systems [ l ]  especially in type-I hybrid ARQ systems, linear 
codes are used for correcting some low weight error patterns 
and detecting many other error patterns. Therefore, it is inter- 
esting to study the probability of undetected errors for linear 
codes that are used for both error correction and error detec- 
tion over the BSC. In this correspondence, our study is divided 
into two parts. In the first part, we study the class of ( n ,  k ,  d 2 3) 
systematic linear codes that can be used for correcting every 
single error and detecting other error patterns. We show that 
there exists one code whose PUDE is upper bounded by ( n  + 1) 
. [ 2 n - k  - n]-l  when the transition probability is less than 2 / n .  
In the second part, we study the ( n , k )  systematic linear codes 
that are used for correcting some low weight-error patterns and 
detecting other error patterns. Suppose that 1 - R > H(2A).  We 
show that there exists an ( n ,  Rn,d 2 2An + 1) linear code whose 
PUDE is closely upper bounded by 2 - [ ' - R - H ' A ) ] n  as n ap- 
proaches infinity and the transition probability is less than A (if 
it is used to correct all the error patterns of weight at most An 
and to detect other error patterns). 
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11. CODES FOR ERROR DETECTION A N D  
SINGLE-ERROR CORRECTION 

Consider the ensemble r of all systematic ( n ,  k ,  d 2 3) binary 
linear codes. The generator matrix of an ( n ,  k )  systematic linear 
code V is of the form G = [ I  PI,  where I is the k X k identity 
matrix and P is some k ( n  - k )  matrix. A necessary and suffi- 
cient condition for V to have minimum distance of at least 3 is 
that no two rows of P are identical and each row in P must 
have weight of at least 2. Therefore, the cardinality of r is 

iri = [ 2" - k  - 1 - ( - k ) ]  . [ 2" - k  - 1 - (. - k )  - 11 

. . . [2"-k - 1 - ( n  - k)  - ( k  - l)] 

[ 2" - - 1 - ( n - k )] ! 
[ 2 n 4  - 1 - n ] !  (1) - - . 

We denote the codes in r by VI, V , ; .  .,Tr,. Let A l . ,  be the 
number of weight-w codewords in v, where I = 1,2; . ., Irl, and 
w = 0,3,4,. . . , n. Suppose v is used to correct every single error 
and detect other error patterns over a BSC with transition 
probability p ,  its PUDE is 

n 

JTEIv) = c [(w + l ) . A , , , + I  + A I , ,  + ( n  - w + l ) . ~ , , w - l ]  

.PW(1  - p ) " -  W .  (2) 

w = 2  

If the probability of choosing each code in r is equally likely, 
the average PUDE over all the codes in r is 

Note that each nonzero n-tuple appears in at most Ir'l codes in 
r, where 

ir'i I [2n-k - I - ( ~  - k ) ]  - I - ( ~  - k ) - i ]  

. . . [2n-k - 1 - ( n  - k )  - ( k  -2)] 

12n-k - 1 - ( n  - k ) l  ! 
(4) 
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