
 

 

國 立 交 通 大 學 

 

電信工程研究所 

 

博 士 論 文 

 
 

使用超穎材質以降低特定吸收比及交互 

方向內隱式時域有限差分法之穩定度改善 

 

SAR Reduction with Metamaterials and 
Stability Improvement of ADI-FDTD 

 

 

研 究 生：黃 竣 南  

 

           指導教授：鍾世忠 

 

中 華 民 國  100  年 10  月 



使用超穎材質以降低特定吸收比及交互 

方向內隱式時域有限差分法之穩定度改善 

SAR Reduction with Metamaterials and 
Stability Improvement of ADI-FDTD 

 

研究生： 黃竣南        Student: Jiunn-Nan Hwang 

指導教授：鍾世忠 博士  Advisor: Dr. Shyh-Jong Chung   

 

國立交通大學 

電信工程研究所 

博士論文 

 
 

A Dissertation 
Submitted to Department of Communication Engineering 

College of Electrical and Computer Engineering 
National Chiao Tung University 

in Partial Fulfillment of the Requirements 
for the Degree of Doctor of Philosophy 

in 
Communication Engineering 

Hsinchu, Taiwan 
 

2011 年 10 月 



 i

摘要 

 

目前行動通訊裝置使用人數日與俱增，而人們也開始關心手機電磁輻射對人體

的影響。其中，藉由特定吸收效率可以瞭解人頭電磁能量吸收的多寡。目前，時

域有限差分法已應用於人頭特定吸收效率的計算。最近，超穎材質由於具有特殊

物理特性而引起研究人員對其興趣。超穎材質為人造材質，由於其介電係數與導

磁係數為負值，因此超穎材質電磁傳輸特性不同於一般材質。 

   在本研究中，我們將使用超穎材質以減低人頭與天線間交互電磁現象。首先，

我們利用時域有限差分法結合 Drude 模型來模擬超穎材質。在模擬中，超穎材質

置於天線與人頭間。從模擬結果可知，藉由擺放超穎材質可以有效減低人頭的特

定吸收效率。我們也探討擺放超穎材質對於天線影響。藉由適當擺放超穎材質，

超穎材質對於天線輻射能量和天線場型影響不大。而我們進一步探討擺放位置，

尺寸大小，超穎材質介質係數對於減低特定吸收效率的影響。超穎材質可以藉由

設計分離式環形共振器來實現。在本研究中，我們設計分離式環形共振器，使其

工作頻率為 900 MHz 和 1800 MHz。設計流程也將詳細描述。我們將設計的分離

式環形共振器置於天線與介質體中間，從結果可以發現介質體的特定吸收效率將

會減低。此研究可以提供減低特定吸收效率的方法。 

  在研究中，我們也發展無條件穩定 ADI-FDTD 模擬方法。我們發現，當使用吸

收邊界於 ADI-FDTD 時，可能會造成演算法不穩定問題。首先，我們探討 Mur 吸

收邊界於 ADI-FDTD 的數值穩定分析。在此演算法中，電磁波傳播方向將會影響

該演算法穩定度。從模擬結果可知，該演算法只有在波行進方向為 0 度，45 度，

90 度時會穩定。我們也推導出該演算法數值色散關係式。發現此演算法數值不

穩定是無法改善。接著，我們探討應用分離場完美匹配層於 ADI-FDTD 的穩定度

分析。穩定度理論分析可以藉由推導穩定矩陣實現。我們發現應用分離場完美匹

配層於 ADI-FDTD 會造成數值不穩定結果。完美匹配層中電導會影響該演算法穩

定度。因此，我們提出改良完美匹配層電導，以改善該演算法穩定度。最後藉由

數值模擬可以驗證分離場完美匹配層和 Mur 吸收邊界於 ADI-FDTD 的數值不穩定

效應。CN-FDTD 為另一種無條件穩定演算法。ADI-FDTD 與 CN-FDTD 差別只是二階

近似項。在本研究中，我們將分析分離場完美匹配層，非分離場完美匹配層，複

數頻率轉換完美匹配層對於 ADI-FDTD 與 CN-FDTD 的影響。我們發現 ADI-FDTD

不穩定是二階近似項所造成。藉由此研究可以提供未來發展應用於 ADI-FDTD 簡

潔穩定的完美匹配層。由於在 ADI-FDTD 中，其時間步階不受穩定法則限制，故

該演算法非常適合模擬超大型積體電路。藉由改良完美匹配層，我們發現所提出

的演算法可以有效率以及準確模擬超大型積體電路時域與頻域電磁特性。 

在多天線系統中，增加天線隔絕度為重要參數。在本研究中，藉由在兩天線間

增加一耦合元件，可以有效增加隔絕度。此耦合元件優點為不增加額外天線面

積。在研究中，耦合元件尺寸對於天線隔絕度效率與共振頻率也將做進一步探
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討，經由天線量測結果，所提出的耦合元件可以增加天線 15dB 的隔絕度，增加

耦合元件對於天線場型亦只有減少 1dB 增益以內的影響 



 iii

Abstract 
The use of the mobile devices has been growing rapidly in the global communities. 

The influence of electromagnetic (EM) waves from cellular phones on the human 
head has been widely discussed recently. The specific absorbing rate (SAR) is a 
defined parameter for evaluating power deposition in human tissue. The 
finite-difference time-domain (FDTD) is widely used to study the peak SAR in the 
human head. Recently, metamaterials have inspired great interests in their unique 
physical properties and novel application. Metamaterials denote artificially 
constructed materials having electromagnetic properties not general found in nature. 
Two important parameters, electric permittivity and magnetic permeability determine 
the response of the materials to the electromagnetic propagation.  

In this work, we use the metamaterials to reduce the EM interaction between the 
antenna and human head. Preliminary simulation of metamaterials is performed by 
FDTD method with lossy Drude model. The metamaterials are placed between the 
antenna and human head. From the simulation result, it is found that the peak SAR in 
the human head can be reduced with the placement of metamaterials. We also study 
the antenna performance with metamaterials. The antenna radiated power and antenna 
pattern can be less affected with placement of metamaterials properly. The effects of 
placement position of metamaterials, metamaterials size, and the medium parameters 
of metamaterials on the SAR reduction effectiveness are investigated. The 
metamaterials can be constructed from split ring resonators (SRRs). In this work, we 
also design the SRRs operated at 900 MHz and 1800 MHz. The design procedure of 
the SRRs is described. The designed SRRs are placed between the antenna and a 
dielectric cube. It is found that the peak SAR in the dielectric cube is reduced 
significantly. This study can provide useful methodology for SAR reduction.  

In this work, we develop the alternating direction implicit (ADI) finite-difference 
time-domain (FDTD) method. However, when employing the absorbing boundary 
conditions (ABCs) for ADI-FDTD method, this scheme can lead to instability. First, 
the stability analysis of the Mur’s ABC for ADI-FDTD method is also studied. The 
effect of the wave propagation direction on the stability of this scheme is investigated. 
It is found that this scheme can be stable only when the incident wave directions are 0 
degree, 45 degree, and 90 degree. We also derive the dispersion relation of this 
scheme. The instability of this scheme can not be avoided. Then, the stability analysis 
of split-field perfectly matched layer (PML) for ADI-FDTD is studied. The theoretical 
stability analysis of this scheme is performed by deriving the amplification matrix. It 
is found that the split-field PML scheme for ADI-FDTD method will be unstable. The 
effect of the PML conductivity profile on the stability of this scheme is studied. We 
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propose the modified PML conductivity profile to improve the stability of this scheme. 
Finally, numerical simulations are performed to validate the instability of the 
split-field PML and Mur’s ABC for ADI-FDTD method.  

The Crank-Nicolson FDTD (CN-FDTD) is also an unconditionally stable scheme. 
The difference between the ADI-FDTD and CN-FDTD is the second order 
perturbation term. In this work, the stability analysis of split-field PML and 
unsplit-field PML for ADI-FDTD and CN-FDTD are studied. It is found that the 
instability of PML schemes for ADI-FDTD is due to the perturbation term. This study 
can provide information to develop a simple and stable PML scheme for ADI-FDTD 
in future work.  

The ADI-FDTD can simulate the VLSI circuits effectively since the time step is not 
restricted by the Courant stability condition. The modified PML scheme for 
ADI-FDTD method is employed to simulate the VLSI circuits. It is found that the 
proposed scheme can model the time domain and frequency domain electromagnetic 
characteristics of VLSI circuits accurately and effectively.    

A coupling element to enhance the isolation between two closely packed antennas 
for 2.4 GHz wireless local area network (WLAN) application is introduced. The 
proposed structure occupies two antenna elements and a coupling element in between. 
By putting a coupling element which artificially creates an additional coupling path 
between the antenna elements, the antenna isolation can be enhanced. The advantage 
of this design is that no extra space is needed for antenna elements. With the proposed 
design, more than 15 dB isolation can be achieved for two parallel individual planar 
inverted F antennas (PIFAs) with 5 mm spacing. Parametric studies for the design are 
also included to show how to increase isolation bandwidth and control the isolation 
frequency. 
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Chapter 1  
 
Introduction 
 
1.1 SAR Reduction with Metamaterials 

The use of the cellular phones has been growing rapidly in the global communities. 
The absorption of EM energy emitted from cellular phone has been discussed in 
recent years. Exposure guidelines for protecting the human body from EM exposure 
have been issued in many countries. More and more people concern the absorption of 
electromagnetic radiation from cellular phone in the human head.  

 
Figure 1.1.1 The SAR distribution in the human head 
 
The specific absorption rate (SAR) is a defined parameter for evaluating power 

deposition in human tissue, as shown in Fig. 1.1.1. For the cellular phone compliance, 
the SAR value must not exceed the exposure guidelines [1, 2]. Some numerical results 
have implied that the peak 1 g averaged SAR value (SAR1g) may exceed the exposure 
guidelines when a portable telephone is placed extremely close to the head [3, 4]. 
Therefore, many researchers are working on reducing the SAR values. In [5], a ferrite 
sheet was proposed to use as a protection attachment between the antenna and a head. 
It was found that a ferrite sheet can result in SAR reduction and the radiation pattern 
of the antenna can be less affected. In [6], a PEC reflector was arranged between a 
human head and the driver of a folded loop antenna. Numerical results showed that 
the radiation efficiency can be enhanced and the peak SAR value can be reduced. In 
[7], a study on the effects of attaching conductive materials to cellular phone for SAR 
reduction has been presented. It indicated that the position of the shielding material is 
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an important factor for SAR reduction effectiveness.    
Recently, metamaterials have inspired great interests due to their unique physical 

properties and novel application [8, 9]. Metamaterials denote artificially constructed 
materials having electromagnetic properties not generally found in nature. Two 
important parameters, electric permittivity and magnetic permeability determine the 
response of the materials to the electromagnetic propagation. Mediums with negative 
permittivity can be obtained by arranging the metallic thin wires periodically [10]. On 
the other hand, an array of split ring resonators (SRRs) can exhibit negative effective 
permeability [11]. The metallic thin wires and split ring resonators are narrow-banded 
and lossy materials, as shown in Fig. 1.1.2.  

xL

zL

yL

w

l

      

r2

c

d
g

l

 
         (a)                      (b) 
Figure 1.1.2 (a) thin wire structure (b) split-ring resonator (SRR). 
 
When one of the effective medium parameters is negative and the other is positive, 

the medium will display a stop band. The metamaterials is on a scale less than the 
wavelength of radiation and uses low density of metal. The structures are resonant due 
to internal capacitance and inductance. The stop band of metamaterials can be 
designed at operation bands of cellular phone while the size of metamaterials is 
similar to that of cellular phone. In [12], the designed SRRs operated at 1.8 GHz were 
used to reduce the SAR value in a lossy material. The metamaterials are designed on 
circuit board so it may be easily integrated to the cellular phone. Simulation of wave 
propagation into metamaterials was proposed in [13]. The authors developed the 
FDTD method with lossy Drude models for metamaterials simulation. This method is 
a useful approach to study the wave propagation characteristics of metamaterials [14] 
and has been further developed with the perfectly matched layer and extended to 
three-dimension problem [15].  

In this work, we will use metamaterials for SAR reduction. An anatomically based 
human head model and a dipole antenna are assumed. The metamaterials are placed 
between the antenna and a human head. Preliminary study of SAR reduction with 
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metamaterials is performed by 3-D FDTD method with lossy Drude model. In order 
to study SAR reduction of antenna operated at the GSM 900 band, the effective 
medium parameter of metamaterials is set to be negative at 900 MHz. Different 
positions, sizes, and negative medium parameters of metamaterials for SAR reduction 
effectiveness are also analyzed. To investigate the influence of metamaterials on the 
antenna, the peak SAR1g and antenna performances are demonstrated. The use of 
metamaterials is also compared with other SAR reduction techniques. We design the 
metamaterials from periodically arrangement of split ring resonators (SRRs). By 
properly designing structure parameters of SRRs, the effective medium parameter can 
be negative around 900 MHz and 1800 MHz bands. The SAR value in a simplified 
muscle cube with the presence of SRRs is studied. Numerical results are demonstrated 
to validate the effect of SAR reduction with metamaterials. 

 
1.2 Stability Analysis of Absorbing Boundary Conditions for 
ADI-FFDTD 

 Finite-Difference Time-Domain (FDTD) method has been widely used to analyze 
the electromagnetic problems [16, 17]. Due to the explicit nature of this method, the 
time step size is restricted by the Courant, Friedrichs, and Lewy (CFL) stability 
condition. Recently, a stable alternating direction implicit (ADI) scheme was 
introduced for the FDTD method. The ADI-FDTD method is an attractive method due 
to its unconditionally stability with large CFL number [18-21]. The flowchart of 
ADI-FDTD is shown in Fig. 1.2.1. 

Update Ex implicitly(with current source)
along y direction

Update Ey implicitly(with current source)
along z direction

Update Ez implicitly(with current source)
along x direction

Update Hx, Hy, Hz explicitly

Update magnetic source

t=t+Δt/2

Update Ex implicitly(with current source)
along z direction

Update Ey implicitly(with current source)
along x direction

Update Ez implicitly(with current source)
along y direction

Update Hx, Hy, Hz explicitly

Update magnetic source

t=t+Δt/2

 
Figure 1.2.1 Flow chart of ADI-FDTD. 
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When the ADI-FDTD method is used to simulate unbounded region problems, 
efficient absorbing boundary conditions (ABCs) must be employed. The commonly 
used ABCs are Mur’s first order ABC and perfectly matched layer (PML) medium. In 
[22, 23], the Mur’s first order ABC was implemented in the ADI-FDTD method to 
simulate microstrip circuits. A split field PML [24] was employed for the ADI-FDTD 
method [25, 26]. However, the implementation of ABCs in the ADI-FDTD method 
can affect the stability of this scheme. For analytical ABCs, it is found that the 
implementation of the third order Higdon’s ABC in the ADI-FDTD method will cause 
instability in the simulation results [27]. In [28, 29], it is found that the ADI-FDTD 
method with split-field PML will lead to late-time instability from numerical 
simulations. In [28], the authors indicate that the instability from the split-field PML 
equations can be prevented by using an unsplit form PML implementation. However, 
the split-field PML formulation is less complicated and more straightforward 
compared to the unsplit form PML implementation. Therefore, a more stable PML 
implementation for ADI-FDTD method is highly desirable.  

It is important to analyze the stability of the absorbing boundary condition for the 
ADI-FDTD method. In this work, first, the stability analysis of the Mur’s first order 
ABC in the ADI-FDTD method is demonstrated. The theoretical stability analysis of 
this scheme also is studied by deriving the amplification matrix. The effect of the 
wave propagation direction on the stability of this scheme is investigated. From the 
stability analysis, it is found that the ADI scheme of the Mur’s first order ABC is 
unstable. Since we focus on analyzing the stability of the Murs’ ABC at the boundary 
and do not consider the stability of the total computation domain, the proposed 
stability analysis is approximate. The stability analysis of the total computational 
domain can be accomplished by numerical simulation with a large number of time 
steps. In this work, the numerical tests of the ADI-FDTD method with Mur’s ABC are 
performed. Numerical results of this scheme with different time step size will be 
demonstrated to validate the instability of this scheme. 

Then, the theoretical stability analysis of the ADI-FDTD method with split-field 
PML will be studied through deriving the amplification matrix. The amplification 
matrix is derived using the actual updating equations of the field components. From 
the stability analysis, it is found that this scheme will be unstable at the PML interface 
and inside the PML regions. The effect of the PML conductivity profile on the 
stability of this scheme will be investigated [30]. We find that the instability of this 
scheme is due to the conductivities within the PML medium. The instability of this 
scheme inside the PML regions can be improved significantly with the modified PML 
conductivity profile. Numerical results of the 3-D ADI-FDTD method with split-field 
PML will be demonstrated to validate the theoretical results. 
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The ADI-FDTD method is an attractive method since the time step size is not 
restricted by the CFL condition. Therefore, this method can model the 
electromagnetic effects of the VLSI circuits efficiently. The frequency domain 
characteristics of the VLSI circuit can be obtained from the Fourier transform of the 
transient time domain waveform and it requires a large number of time steps to 
complete the simulation by FDTD method. This study will be difficult or even 
impossible due to the late-time instability of ADI-FDTD method with PML absorbing 
boundary condition. It is not apparent in the literature that anyone has studied the 
frequency domain characteristics of the VLSI circuits by the ADI-FDTD method with 
PML absorbing boundary condition.       

The Crank-Nicolson FDTD (CN-FDTD) is found to be another alternative 
unconditionally stable FDTD method. The ADI-FDTD can be seen as an 
approximation of the CN-FDTD scheme [31]. In [32, 33], the CN -FDTD with 
split-field PML and nearly PML (NPML) were proposed. It is shown that the 
CN-FDTD can remain unconditionally stable with PML implementation. The stability 
analysis of the PML schemes for the CN-FDTD and ADI-FDTD will be studied. The 
Von Neumann analysis is used to determine the stability of these schemes. The 
difference between the CN-FDTD and ADI-FDTD is the Δt2 perturbation term. From 
this study, it is found that the perturbation term will affect the stability of PML 
schemes for ADI-FDTD method. This study can provide information to improve the 
PML scheme for ADI-FDTD method. 

 In previous study [30], it is found that the PML conductivity profile will affect the 
stability of the ADI-FDTD method with Berenger’s PML absorber. The modified 
PML conductivity profile is employed in this work to investigate the electromagnetic 
effects of the VLSI circuits in time domain and frequency domain. From the 
simulation results, it is found that the instability of this scheme can be improved with 
the modified PML conductivity profiles. Numerical simulations of the VLSI 
interconnect and RF inductor will be performed to show the efficiency and accuracy 
of the proposed scheme 
  
1.3. Coupling element for antenna isolation enhancement 
The isolation between antennas is a critical parameter in many practical applications 

such as antenna arrays, diversity antennas and also multiple input multiple output 
(MIMO) communication systems. However, when antennas are closely packed, strong 
mutual coupling will degrade radiation patterns and decrease antenna efficiency, 
which will cause deterioration in signal-to-noise ratio and signal 
to-interference-plus-noise ratio of the systems        
  In this work, we propose a new coupling element between the antennas in order to 
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create an additional coupling path for enhancing the isolation. The coupling element 
is placed between antennas and therefore no extra space is needed with this design. 
This coupling element is not physically connected to the antenna elements and is 
flexible for controlling the center frequency, bandwidth, and level of isolation. To 
demonstrate the idea, two antenna elements for using in 2.4 GHz WLAN band are 
studied. From this study, it is found that the design can achieve more than 15 dB 
isolation improvement with 5 mm antenna spacing. The detail parametric studies are 
provided, which show the design of the proposed structure.  
 
1.4 Organization of the Dissertation 
   This dissertation is organized as follows: First, we will discuss FDTD modeling 
method and its algorithm in Chapter 2. The FDTD method can use to simulate the 
metamaterials, calculate the radiation pattern of the antenna affected by the 
metamaterials, and calculate the SAR values in the human head. In Chapter 3, we will 
employ the Drude model into FDTD to investigate the effect of the metamaterials on 
SAR reduction. The design concept of split ring resonators (SRRs) is introduced. With 
the use of periodical boundary condition and total field / scatter field FDTD schemes, 
we will design the SRRs to operate at 900MHz and 1800MHz. The SAR reduction 
with the designed SRRs will be demonstrated. In Chapter 4, the stability analysis of 
the absorbing boundary conditions (ABCs) for ADI-FDTD will be demonstrated. 
Theoretical stability analysis and numerical simulation of the split-field PML and 
Mur’s ABC for ADI-FDTD method will be studied. The modified PML conductivity 
profile is proposed to improve the stability of the split-field PML scheme for 
ADI-FDTD. The CN-FDTD can remain stable with PML scheme. The difference 
between the ADI-FDTD and CN-FDTD is the perturbation term. With this modified 
PML scheme, the time domain and frequency domain characteristics of VLSI circuits 
will be investigated. In Chapter 5, a coupling element to enhance the isolation 
between two closely packed antennas for 2.4 GHz wireless local area network 
(WLAN) application is introduced. The proposed structure occupies two antenna 
elements and a coupling element in between. The advantage of this design is that no 
extra space is needed for antenna elements. The proposed coupling element for 
antenna isolation will be discussed. Conclusions are drawn in Chapter 6. 
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Chapter 2  
 
FDTD Method 
 
 
 The finite difference time domain (FDTD) is widely used to simulate the 
electromagnetic problems. In this chapter, the basic FDTD algorithm is described. To 
simulate open region problems, the absorbing boundary condition (ABC) is employed 
for FDTD method. The commonly used ABCs include Mur’s ABC and perfect 
matched layer (PML). With the implementation of near field to far field 
transformation algorithm, the FDTD method can simulate the radiation pattern of the 
antenna. The modeling of the lumped elements by FDTD method will also be 
discussed. Finally, the flow of the FDTD computation will be described.       
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2.1 From Maxwell’s Equations to FDTD Method. 
   

We will derive the 3-D time domain Maxwell’s equations to develop FDTD method. 
In this study, we consider the source free region with lossy electric and lossy magnetic 
mediums. To calculate the magnetic loss, the magnetic current density M is defined as 

'M Hρ=                          (2.1.1) 
To calculate electric loss, we define the equivalent electric current J   

J Eσ=                           (2.1.2) 
The 'ρ is magnetic resistivity and σ is the electric conductivity. From Maxwell’s 
equations, we can obtain 

HE
t

H
μ
ρ

μ

'1
−×∇−=

∂
∂                   (2.1.3) 

1E H E
t

σ
ε ε

∂
= ∇× −

∂
                      (2.1.4) 

 
2.1.1 Three-dimension Electric and Magnetic Field Equations 
 Based on the equations (2.1.3) and (2.1.4), we can derive the 3-D electric and 
magnetic field equations. 
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∂
∂

x
zyx H

y
E

z
E

t
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μ
                 (2.1.5) 
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∂
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∂
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                 (2.1.6) 
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∂
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∂
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μ
                 (2.1.7) 

1 yx z
x

HE H E
t y z

σ
ε

∂⎛ ⎞∂ ∂
= − −⎜ ⎟∂ ∂ ∂⎝ ⎠

                   (2.1.8) 

1y x z
y

E H H E
t z x

σ
ε

∂ ∂ ∂⎛ ⎞= − −⎜ ⎟∂ ∂ ∂⎝ ⎠
                   (2.1.9) 

1 y xz
z

H HE E
t x y

σ
ε

∂⎛ ⎞∂∂
= − −⎜ ⎟∂ ∂ ∂⎝ ⎠

                  (2.1.10) 

The six field partial differential equations form the basic FDTD algorithms. 
 
2.1.2 Finite Difference Method and Yee Algorithm  
 In this section, we will derive the FDTD method based on Yee algorithm [16]. In Yee 
algorithm, the derivatives of space and time are expressed by centre difference 
method. By applying the Yee algorithm for Maxwell’s equations, the FDTD method 
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can be obtained. To begin the development of FDTD, we consider 1-D lossless 
condition as an example. 

                  
x

E
t

H zy

∂
∂

=
∂

∂
μ
1                          (2.1.11) 

According to a derivative definition, (2.1.11) can be written as 

x
E

t
H z

x

y

t Δ
Δ

=
Δ

Δ
→Δ→Δ 00

lim1lim
μ

                    (2.1.12) 

We can note that the exact solution of (2.1.12) is (x, t)  
 Based on the Maxwell’s equation, the derivatives of time and space in (2.1.12) are 
discretized by using centre difference expression, therefore we can obtain 

( ) ( ) ( ) ( )
ni t

iziz

x

nyny

x
xxExxE

t
ttHttH

Δ
Δ−−Δ+

=
Δ

Δ−−Δ+ 22122
μ

    (2.1.13) 

The solution of (2.1.13) is (xi, tn) and ( , )i nx t will be close to (x, t). 

Based on the FDTD method, the magnetic field ( )
2y n
tH t Δ

+ can be expressed as   

( ) ( ) ( ) ( )[ ]
n

ii
t

izizxnyxny xxExxE
x
tttHttH 2222 Δ−−Δ+

Δ
Δ

+Δ−=Δ+
μ

 (2.1.14) 

We denote i and n to express the space and time position, respectively. (2.1.14) can be 
further modified as  

[ ]n
i

n
i

n
i

n
i EE

x
tHH 2121

2121
−+

−+ −
Δ
Δ

+=
μ

                (2.1.15) 

From (2.1.15), in order to calculate the magnetic field 1/ 2n
iH + , we need to obtain the 

same magnetic field in the earlier time step at the same location and the electric fields 
located at / 2x± Δ . Similarly, the electric field can be obtained as follow  

1 1/ 2 1/ 2
1/ 2 1/ 2 1

n n n n
i i i i

tE E H H
xε

+ + +
+ + +

Δ ⎡ ⎤= + −⎣ ⎦Δ
                (2.1.16) 

From (2.1.15) and (2.1.16), the electric and magnetic fields in the FDTD can be 
obtained from the fields in the earlier time step. The fields in space and time can be 
expressed as shown in Fig. 2.1.1. 
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i-1 i-1/2 i i+1/2 i+1 i+3/2

n-1

n-1/2

n

n+1/2

n+1

n+3/2

(i,n)

/2tΔ

/ 2xΔ

1/ 2
n
iE +1/2

n
iE−

1/2
1

n
iH +
+

1/ 2n
iH +

1/2n
iH −

1
1/ 2

n
iE +
+

 

Figure 2.1.1 The fields in the space cell. 
   
In (2.1.16), the time and space are variables. From (2.1.16), any 3-D location in the 
Yee cell can be expressed as 

( , , ) ( , , )i j k i x j y k z= Δ Δ Δ                   (2.1.17) 
Here, Δx, Δy, and Δz are space increment in x, y, and z direction.  
We can define the function u in the space and time in the Yee cell as 

, ,( , , , ) n
i j ku i x j y k z n z uΔ Δ Δ Δ =                 (2.1.18) 

The Δt is time increment and n is an integer.   
Based on the Yee algorithm, we can obtain the space derivative of u in the x direction 

      1/ 2, , 1/ 2, , 2( , , , ) [( ) ]
n n
i j k i j ku u

u i x j y k z n z O x
x x

+ −−∂
Δ Δ Δ Δ = + Δ

∂ Δ
    (2.1.19) 

For time consideration, we can obtain the time derivative of u 
1/ 2 1/ 2

, , , , 2( , , , ) [( ) ]
n n
i j k i j ku u

u i x j y k z n z O t
t t

+ −−∂
Δ Δ Δ Δ = + Δ

∂ Δ
      (2.1.20) 

In (2.1.19) and (2.1.20), 2[( ) ]O xΔ and 2[( ) ]O tΔ  are error terms. 
  From previous study, it is found that the FDTD is based on the Maxwell’s equation. 
For example, the field component Hx in space and time can be expressed as 
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         (2.1.21) 

However, there will be some computational calculation problem for , ,|nx i j kH  

and 1/ 2
, ,|nx i j kH + 、 1/ 2

, ,|nx i j kH − . We can rewritten , ,|nx i j kH  as 
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After substituting (2.1.22) into (2.1.21), we can obtain 
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(2.1.23) can be further modified as 
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 The electric fields xE , yE and zE can be obtained by the same procedure. For 

example, the electric field zE can be expressed as 
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          (2.1.25) 

 We can derive the six field components based on the FDTD method. The field 
components located in the Yee cell is shown in Fig. 2.1.2. It can be found that the 
electric field component is surrounded by the magnetic field components and the 
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magnetic field component is surrounded by the electric field components 

( , , )yH i j k

( , , )zE i j k
( 1, , )zE i j k+

( , , 1)xE i j k +

( , , )xE i j k

( , , 1)yE i j k +

( , 1, 1)xE i j k+ +

( 1, , 1)yE i j k+ +

( , , 1)zH i j k +

( 1, , )yE i j k+

( 1, 1, )Ez i j k+ +

( 1, , )xH i j k+

xΔ

yΔ

zΔ

 
Figure 2.1.2 The field components in the Yee cell. 
 
2.2 Numerical Stability 
  In the FDTD method, we need to decide the grid size first. The grid size will affect 
the numerical dispersion. When the grid size is fixed, the time step size Δt can also be 
decided based on the stability criterion. 
 The grid size will depend on the highest operation frequency fu of the modeled 
structure. The grid size is usually set to be smaller than /10uλ  to avoid serious 
numerical dispersion. 
 After the grid size is fixed, the time step size Δt can also be calculated. When the 
wave propagates in one time step, the propagation distance should not be over the grid 
size. To avoid numerical stability problem, the time step size should meet the FDTD 
Courant-Friedrich-Levy (CFL) criterion. 

                   

( ) ( ) ( )2 2 2

1
1 1 1

t
c

x y z

Δ ≤
+ +

Δ Δ Δ

                   (2.2.1) 

 
2.3 Material Set 
In this research, the material setting for FDTD simulation includes: 

A. Metal Structure: The ground plane or the microstrip is metal structure. We usually 
assume the metal is perfect electric conductor (PEC). The thickness of metal is set 
to be very small and the tangential electric field is zero for metal structure. 

B. Dielectric structure: The dielectric constant εr is set in FDTD for different 
dielectric materials.  

C. Interface between air and dielectric structure: We use average value of dielectric 
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constant between two different materials. For example, we usually set the 
dielectric constant for air is ε0 and dielectric constant for dielectric material is εr. 

The dielectric constant of the interface is 0

2
rε ε+
. 

 
2.4 Source Condition 
 For FDTD simulation, the sine wave is usually used with operation frequency 0f . 
The expression for sine wave is 

0 0( ) sin(2 )f t E f n tπ= Δ                    (2.4.1) 
In our simulation, the Gaussian source is commonly used. We can set the source that 

is centered at time step 0n and has a 1/e characteristic decay of decayn  time steps, the 

Gaussian source can be expressed as 

0[( ) / ]
0( ) decayn n nf t E e− −=                     (2.4.2) 

 In the FDTD simulation, we set the source for electric field directly. For example, if 
we set the source at si for Ez component, it can be written as 

0 0| ( ) sin(2 )
S

n
z iE f t E f n tπ= = Δ                    (2.4.3) 

 
2.5 Absorbing Boundary Condition 
  In the FDTD method, the absorbing boundary condition (ABC) is used to simulate 
open region problem. As shown in Fig 2.5.1, the electric field components at the 
boundaries should meet a particular condition to avoid reflection wave from the 
boundary.  

1i= maxi i=

maxj j=

1j =

lattice boundary

radiated wave

source

 

Figure 2.5.1 Absorbing boundary condition for FDTD method. 
 
The commonly used absorbing boundary conditions are Mur’s absorbing boundary 
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condition [34] and perfectly matched layer (PML) [24]. They are discussed briefly. 
2.5.1 Mur’s ABC 
  There are two types Mur’s ABCs including Mur’s first order ABC and Mur’s 
second order ABC. We consider the electric field component zE in a 2-D space at 
x i x= Δ and y j y= Δ . For Mur’s first order ABC, zE  can be expressed as 

( )1 1
, 1, 1, ,
n n n n
i j i j i j i j

c t xE E E E
c t x

+ +
− −

Δ − Δ
= + −

Δ + Δ
               (2.5.1) 

 If we assume x yΔ = Δ , the Mur’s second order ABC in 2-D domain can be expressed 
as  
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(2.5.2) 

In the Mur’s first order ABC, the field component zE at x i x= Δ  is calculated from 

zE at x i x= Δ  at earlier time step and the field component zE  at ( 1)x i x= − Δ at the 
current time step. The Mur’s ABC is simple and easy to implement. 
 
2.5.2 Perfectly Matched Layer (PML) 
 The Berenger proposed the PML absorbing boundary condition in 1994 [24]. By 
using the electric and magnetic conductivities, the reflection wave can be minimized 
inside the PML medium. The PML medium can absorb the propagation wave in any 
direction. When using the PML, we need to split the electric and magnetic field 
components. For TM wave, the field components Ezx and Hx in the PML can be 
expressed as 
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The xσ and *
xσ are electric conductivity and magnetic conductivity, respectively. They 

are function of PML layers. Fig. 2.5.2 shows the electric conductivity and magnetic 
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conductivity in the PML medium.  

Wave source

*
1 1(0,0, , )y yPML σ σ

*
2 2(0,0, , )y yPML σ σ

*
2 2,( , ,0,0)x xPML σ σ*

1 1,( , ,0,0)x xPML σ σ
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1 1, 2 2,( , , , )x x y yPML σ σ σ σ * *

2 2, 2 2,( , , , )x x y yPML σ σ σ σ

* *
1 1, 1 1,( , , , )x x y yPML σ σ σ σ

* *
2 2, 1 1,( , , , )x x y yPML σ σ σ σ

outgoing wave

perfect conductor  
Figure 2.5.2 PML absorbing boundary condition 
 
The PML impedance can be matched to the free space impedance with the condition 

μ
σ

ε
σ *

=                             (2.5.5) 

The PML conductivity profile is usually scaled to reduce the reflection error. 
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where d is the thickness of PML absorber, Δs is the cell size, and s0 represents the 
interface. Typically, we choose m = 4 for optimum PML performance [25] 
 
2.6 Near Field to Far Field Transformation 
 It is not practical to directly simulate the electric and magnetic fields in the far field 
within the FDTD grid. This will require a large computational domain to include the 
far field. The field components in the far field can be calculated by near field to far 
field transformation [35]. First, we calculate the equivalent electric current and 
equivalent magnetic current in the near field in the region enclosed the computational 
domain. From the near field equivalent electric current and equivalent magnetic 
current, we can obtain the field components in the far field. We can calculate the 
antenna radiation pattern by using this method. 
 As shown in Fig 2.6.1, we use the virtual surface abS  to enclose the B region. First 
we can calculate the tangential fields sE and sH . After obtaining the sE and sH , we can 
calculate the equivalent surface electric current sJ and equivalent surface magnetic 
current sM at the surface of abS  
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                 ˆ( ) ( )s
sJ r n H r= ×                         (2.6.1) 

ˆ( ) ( )s
sM r n E r= − ×                         (2.6.2) 

where n̂  is normal to the surface of abS  
 

 

Grid
boundary(ABC)

Near to far field
transformation

boundary

ˆ S
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A

 
Figure 2.6.1 Near field to far field transformation 
 
In the near field to far field transformation, the near field in the closed volume is 

calculated first. Then, the field components in the far field can be calculated by 
Kirchhoff surface integral representation (KSIR) as 
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where  
rr is any point in the far field 

'rr is the point at the surface of the FDTD computational domain 
'R r r= −

r r r  

| |R R=
r

 

n̂ is normal to the computational surface 
c is light velocity 

'a is closed surface for FDTD method 
The KSIR can calculate the field components in the far field outside the 

computational domain. Therefore, we can calculate the field components in the far 
field as follow  
A. The near field components of arbitrary scatter can be calculated by FDTD 

method easily. 
B. The far field components in any direction can be calculated from the KSIR 

method. 
We can use the Gaussian excitation source to obtain the wideband field components 
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in the far field. The frequency domain field components can be obtained by using 
Discrete Fourier Transformation (DFT) method.  
 
2.7 Lumped Elements 
 FDTD method can also be used to simulate linear and non-linear lumped elements 

[36, 37]. We assume the lumped elements are place in the z-direction, and the FDTD 
method for lumped elements is described as follow 
 
2.7.1 FDTD Method for Lumped Elements 
We consider the Maxwell’s equation with current source 

c
DH J
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∂
∇× = +

∂

r
r r

                          (2.7.1) 

where cJ Eσ=
r r

and D Eε=
r r

, we can discretized the (2.7.1) by central difference 

method 
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It should be noticed that the magnetic field is at (n+1/2) time step, which is located 

between the , ,|nz i j kE and 1
, ,|nz i j kE + . The cJ is also at the time step (n+1/2)th time step and 

can be calculated by 

( ), ,1/ 2 1/ 2 1
, , , , , , , , , ,| | | |

2
i j kn n n n

c i j k i j k z i j k z i j k z i j kJ E E E
σ

σ+ + += = +              (2.7.3) 

We assume all the lumped elements are in free space (ε = ε0, σ = 0, and Jc = 0). The 
H∇× for FDTD can be rewritten as 
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Therefore, (2.7.2) can become  
1 1/ 2
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tE E H
ε

+ +Δ
= + ∇×                    (2.7.5) 

In the FDTD method, we will introduce the current density LJ for lumped elements 

C L
DH J J
t

∂
∇× = + +

∂

r
r r r

                         (2.7.6) 

Assuming the element located at , ,|z i j kE in the z direction. The relation between the 
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current density LJ and lumped element current LI is 

L
L

IJ
x y

=
Δ Δ

                             (2.7.7) 

, ,|z i j kV E z= Δ                           (2.7.8) 

From (2.7.5), the FDTD algorithm for lumped element can be written as 
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2.7.2 Resistor 

 We assume to place a resistor at , ,|z i j kE  in the z direction. The relation for voltage 

and current is 
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Substituting the (2.7.10) into (2.7.9), we can obtain the FDTD algorithm for resistor. 
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2.7.3 Resistive Voltage Source 

The FDTD can also simulate the resistive voltage source. We assume the element is 
placed in z direction and the relation between the voltage and current is 
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where 1/ 2n
SV + is excitation source and SR is matching impedance 

The FDTD algorithm for resistive voltage source is 
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(2.7.13) 
 
 

 2.8 FDTD Method for Computer Calculation 
  We have explained the basic algorithm for FDTD method. In the FDTD method, we 
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calculate the electric and magnetic fields in each time step. Before running the FDTD 
for each time step, we need to set the FDTD parameters like grid size, time step size, 
source condition. The flow of FDTD method for computation is explained below 
2.8.1 Pre-Processing 
A. Define the FDTD grid size 
B. Define the time step size to meet the stability condition 
C. Calculate the FDTD parameters for different materials 
 
2.8.2 Time Stepping 
A. Assign the excitation 
B. Calculate the electric field components 
C. Employ the absorbing boundary condition to absorb the outgoing wave. 
D. Calculate the magnetic field components 
 
2.8.3 Post-Processing 
A. Recording the electric and magnetic fields at each time step. 
B. Calculate the electric and magnetic fields in far field.  
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Chapter 3 
 
Study of SAR Reduction with 
Metamaterials 
 

In this work, the EM interaction between the antenna and the human head is 
reduced with metamaterials. Preliminary study of SAR reduction with metamaterials 
is performed by FDTD method with lossy Drude model. It is found that the specific 
absorption rate (SAR) in the head can be reduced by placing the metamaterials 
between the antenna and the head. The antenna performances and radiation pattern 
with metamaterials are analyzed. A comparative study with other SAR reduction 
techniques is also provided. The metamaterials can be obtained by arranging split ring 
resonators (SRRs) periodically. In this research, we design the SRRs operated at 900 
MHz and 1800 MHz bands. The design procedure will be described. Numerical 
results of the SAR values in a muscle cube with the presence of SRRs are shown to 
validate the effect of SAR reduction. These results can provide helpful information in 
designing the mobile communication equipments for safety compliance. 
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3.1 Preliminary Studies of SAR Reduction by FDTD Method with 
Lossy Drude Model 
 
3.1.1 FDTD Method with Lossy Drude Model 

 Preliminary studies of SAR reduction with metamaterials were performed by 
FDTD with lossy Drude model. The SAR reduction effectiveness and antenna 
performance with different positions, sizes, and negative medium parameters of 
metamaterials will be analyzed. The head model used in this study was obtained from 
Magnetic resonance imaging (MRI) based head model through The Whole Brain 
Atlas website. In the MRI human head model, different colors of the human head 
represent different tissues, as shown in Fig. 3.1.1. In this study, six types of tissues, 
i.e., bone, brain, muscle, eyeball, fat, and skin, were involved in this model.  

 

Figure 3.1.1 MRI human head model  
 
The MRI human head model is discretized for FDTD simulation. Fig. 3.1.2 shows a 

horizontal cross section through the eyes of this head model. The electrical properties 
of tissues were taken from [3, 4], as shown in Table 3.1.  

 

Figure 3.1.2 Human head model for FDTD computation. 
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              Table 3.1 electric properties for human head model 

 900MHz 1.8GHz 
Tissue ρ  εr σ εr σ 
Bone 1810 17.4 0.19 15.5 0.39 
Brain 1040 44.1 0.89 42.2 1.18 
Muscle 1040 51.8 1.11 49.4 1.53 
Eyeball 1010 74.3 1.97 73.7 2.33 
Fat 920 10.0 0.17 9.55 0.22 
Skin 1010 39.5 0.69 38.9 0.95 

 

 The formulation of SAR is defined as ρ
σ

2

2ESAR = , where E, σ, and ρ are the 

electric field, conductivity, and mass density in the head, respectively. 
Simulations of metamaterials are performed by FDTD method with lossy Drude 

model [13]. The method is a useful method to understand the wave propagation 
characteristics of metamaterials. In this method, let μ and ε be modeled by the 
following expressions 
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where ωp and Γ denote the corresponding plasma and damping frequencies, 
respectively. 
We can provide a slight variation of (3.1.1) as 
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This model is actually Lorentz medium model, e.g., 
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where 21 eee Γ+Γ=Γ and 21
2
0 eee ΓΓ=ω . 

With this method, we can treat the metamaterials as homogenous materials with 
frequency-dispersive material parameters. 
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3.1.2 SAR Calculation Verification 
  The developed FDTD method for SAR calculation is studied and verified. Fig. 
3.1.3 shows the muscle cube and antenna models in this study. The antenna was 
arranged parallel to the cube axis. The muscle cube was formed by muscle tissue with 
εr = 51.8, σ  = 1.11 , and ρ  = 1040 at 900 MHz.  

 
Fig. 3.1.3 Test Structure used in SAR calculation. 
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(a) different sampled fields        (b) different grid size and time step 

Fig. 3.1.4 SAR calculation in the muscle cubic for numerical tests. 
 

The SAR value was calculated for an antenna output power equal to 1 W. In this 
FDTD simulation, the Δx =5mm, Δy=5mm, Δz=5mm, and Δt=9.0 ps were used. The 
calculated steady-state SAR1g value is shown in Fig. 3.1.4. First, the peak SAR value 
was calculated from 27 averaged electric fields. It is found that the calculated peak 
SAR1g without metamaterials was 3.70 W/kg. Then, 48 electric fields were averaged 
to obtain the SAR values. The calculated peak SAR1g was 3.87 W/kg. Similar results 
can be obtained for SAR calculation with different sampled electric fields.  

Since the grid size will affect the accuracy of the FDTD simulation, the calculated 
SAR values for different grid size and time step were studied. The smaller grid size 
with Δx =2.5mm, Δy=2.5mm, Δz=2.5mm, and Δt=4.5 ps were also studied. The 
calculated peak SAR1g with smaller grid size was 3.82 W/kg, which is similar to 
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previous results.  
Then, the metamaterials were placed between the antenna and human head. The 

distance between the antenna feeding point and edge of metamaterials was 5 mm. The 
size of metamaterials in xz plane was 50 mm× 50 mm and thickness was 10 mm. The 
metamaterials with μ = 1 and ε = −3 at 900 MHz are employed. As shown in Fig. 
3.1.5, it is found that the calculated SAR value is reduced to be 3.25W/kg.  

To investigate the EM wave interaction between the muscle cube and antenna, Fig. 
3.1.6 shows the SAR distribution in the yz section of the muscle cube. It is found that 
the peak SAR occurs near the antenna. The SAR distribution of the muscle cube with 
metamaterials is also studied. A significant SAR reduction in the muscle cube can be 
observed with the metamaterials placement.  
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Fig. 3.1.5 SAR calculation in the muscle cubic 

             

           (a)     (b)  
Fig. 3.1.6 SAR distribution (t=15 ns) in the yz section of the muscle cubic (a) SAR 
distribution without metamaterials (b) SAR distribution with metamaterials. 
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To validate the effect of SAR reduction with metamaterials, the commercial tool 
Ansoft HFSS [47] is utilized for simulation. The radiated power from antenna with μ 
= 1 and ε = −3 medium is also fixed at 1 W. The SAR distribution in the yz cross 
section of the muscle cubic is studied, as shown in Fig. 3.1.7. It is found that the 
calculated SAR value is reduced from 3.45 W/kg to 3.10 W/kg. Peak SAR value 
occurs close to antenna can also be observed for both HFSS and FDTD results. The 
SAR reduction with metamaterials can also be observed with Ansoft HFSS simulator 
to validate our study. 
 

      

                              (a)                  (b) 
Fig. 3.1.7 SAR distribution with HFSS solver (a) SAR distribution without 
metamaterials (b) SAR distribution without metamaterials. 
 
3.1.3 SAR Calculation in the Head with Metamaterials 

 
Fig. 3.1.8 shows the human head and antenna models in this study. Numerical 

simulation of SAR value was performed by FDTD method. The parameters for FDTD 
computation were as follows. The simulated domain were 128× 128 × 128 cells. The 
cell sizes were set as Δx = Δy = Δz = 3.0 mm. The computational domain was 
terminated with 8 cells PML. A dipole antenna was modeled by thin-wire 
approximation. The antenna was arranged parallel to the head axis. The distance 
between the antenna and head surface was 3.0 cm. The SAR value was calculated for 
an antenna output power equal to 600 mW. The calculated steady-state SAR1g value is 
shown in Fig. 3.1.9. It is found that the calculated peak SAR1g without metamaterials 
was 2.43 W/kg. The SAR simulation is compared with the results in [3, 4] for 
validation, as shown in Table 3.2. Although different head and antenna models were 
used, the simulated SAR1g is similar to their results. 



 26

 
Figure 3.1.8 The head and antenna models for SAR calculation. 
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Figure 3.1.9 Calculated SAR1g from FDTD simulation 
 

Table 3.2 Comparisons of peak SAR  

 
 

The metamaterials were placed between the antenna and human head. The distance 
D between the antenna feeding point and edge of metamaterials was 3 mm. The size 
of metamaterials in xz plane was 45 mm× 45 mm and thickness d was 6 mm. The 
SAR value and antenna performance with metamaterials were analyzed. To evaluate 
the power radiated from the antenna, the source impedance (ZS) was assumed equal to 
the complex conjugate of the free space radiation impedance (ZS= 102.14 - j83.78 Ω). 
The source voltage (VS) was chosen to obtain a radiated power in free space equal to 

600 mW ( 086.0 RS RV ⋅⋅= ). When analyzing the influence of the metamaterials and 
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the human head on the antenna performance, the source impedance and source 
voltage were fixed at the ZS and VS values. The power radiated from the antenna was 
evaluated by computing the radiation impedance in this situation (ZR=RR+jXR) and 
used the following equation [38] 

2
2

||2
1

SR

R
SR ZZ

RVP
+

=        (3.1.5) 

The total power absorbed in the head was calculated by 

dvEP
Vabs ∫= 2||

2
1 σ        (3.1.6) 

 
Figure 3.1.10 Calculated SAR1g from FDTD simulation with metamaterials 
 
Different negative medium parameters for SAR reduction effectiveness were 

analyzed. We placed negative permittivity mediums between the antenna and the 
human head. First, the plasma frequencies of the mediums were set to be ωpe = 
11.309 × 109 rad/s, ωpm = 0 which give mediums with μ = 1 and ε = −3 at 900 MHz. 
The mediums with larger negative permittivity μ = 1 and ε = −5 were also studied. We 
set eΓ =1.0 × 108 rad/s, suggesting the mediums have losses. Numerical results of SAR 
value and antenna performance are given in Figure 3.1.10 and Table 3.3. 

 
Table 3.3 Effects of metamaterials on antenna performances  

and SAR reduction at 900 MHz 
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 From the simulation results, it is found that the peak SAR1g becomes 1.73 W/kg 
with μ = 1 and ε = −3 mediums. Compared to the condition without metamaterials, 
the radiated power is reduced for 8.78% while the SAR is reduced for 28.8 %. With 
the use of μ = 1 and ε = −5 mediums, the SAR reduction effectiveness is decreased. 
However, the radiated power from the antenna is less affected.  

To investigate the EM wave interaction between the human head and antenna, Fig. 
3.1.11 shows the SAR value in the horizontal cross section through the eyes of this 
head model. It is found that the peak SAR occurs near the ear close to the antenna. 
The SAR values with μ = 1 and ε = −3 is also demonstrated for comparison. A 
significantly SAR reduction in the human head can also be observed.   

2.4+
2.18182 to 2.4
1.96364 to 2.18182
1.74545 to 1.96364
1.52727 to 1.74545
1.30909 to 1.52727
1.09091 to 1.30909
0.872727 to 1.09091
0.654545 to 0.872727
0.436364 to 0.654545
0.218182 to 0.436364
0 to 0.218182

 
    (a) 

       
                                 (b) 
Figure 3.1.11 SAR values in the horizontal cross section of this head (a) without 

metamaterials (b) with metamaterials  
 
Comparisons of the SAR reduction effectiveness with different positions and sizes 

of metamaterials were analyzed. Simulation results are shown in Table 3.4. In case A, 
the distance D between the antenna and metamaterials was changed from 3 mm to 6 
mm. In case B, the metamaterials thickness d was reduced from 6 mm to 3 mm. It is 
found that both the peak SAR1g and power absorbed by the head increase with the 
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increase of distance D or the decrease of thickness d. In case C, the size of 
metamaterials was increased from 45 mm× 45 mm to 48 mm× 48 mm. It can be noted 
that the peak SAR1g is reduced significantly while the degradation on the radiated 
power due to metamaterials is insignificant. 
 

Table 3.4 Effects of sizes and positions of metamaterials  
on antenna performances and SAR values 

 

 
Figure 3.1.12 Calculated φ plane radiation pattern at 900 MHz. 

 
To further investigate whether the metamaterials less affected the antenna 

performance or not, radiation pattern of the dipole antenna with μ = 1 and 
ε = −3 metamaterials were analyzed. The radiation patterns were obtained by the near- 
and far-field transformation of the Kirchhoff surface integral representation (KSIR) 
[35]. All the radiation patterns were normalized to the maximum gain obtained 
without materials. Fig. 3.1.12 shows the radiation patterns in φ plane for θ = 900. In 
[5], the radiation pattern close to the head is reduced about 6 dB and our simulation 
result is similar to their result. With the use of metamaterials, it can be seen that the 
maximum degradation of the far field does not exceed 1.21 dB. 
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The use of metamaterials was also compared with other SAR reduction techniques. 
The PEC reflector and ferrite material were commonly used in SAR reduction. The 
PEC reflector and ferrite sheet were analyzed with the same size and position as 
metamaterials. The relative permittivity and permeability of ferrite sheet were ε = 7.0- 
j0.58 and μ = 2.83- j3.25, respectively. Numerical results are shown in Table 3.5. A 
PEC placed between human head and antenna is studied. It can be found that the peak 
SAR1g is increased with the use of PEC reflector. This is because the EM wave can be 
induced in the neighbor of a PEC reflector due to scattering. When the size of PEC 
sheet is small compared to human head, the head will absorb more EM energy. 
Similar results of peak SAR increase with PEC placement was also reported in [5]. 
The use of ferrite sheet can reduce the peak SAR1g effectively. However, the 
degradation on radiated power from antenna is also significant. In addition, compare 
to the use of ferrite sheet, the metamaterials can be designed at the desired operation 
frequency. The metamaterials are designed on circuit board so it may be easily 
integrated to the cellular phone. The design procedure will be shown in section 3.2. 

 
Table 3.5 Comparisons of SAR reduction techniques with different materials  

 

To study the effect of SAR reduction with the use of metamaterials, the radiated 
power from the dipole antenna with μ = 1 and ε = −3 mediums was fixed at 600 mW. 
Numerical results are shown in Table 3.6. It is found that the use of metamaterials can 
reduce the peak SAR1g for 22.2%. 

 
Table 3.6 Effect of metamaterials on SAR reduction 

 (PR = 0.6 W for 900 MHZ) 
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3.2 SRRs Design Methodology and SAR Reduction 
 
3.2.1 SRR Structure 

From the FDTD analysis, we found that metamaterials can be used to reduce the 
peak SAR1g in the head. In this section, the metamaterials operated at 900 MHz and 
1800 MHz bands of the cellular phone were designed. The metamaterials can be 
obtained by arranging split ring resonators (SRRs) periodically. The SRRs considered 
here consisted of two square rings, each with gaps appearing on the opposite sides. 
The configuration has a geometry that is similar to the SRR structures in [39]. As 
shown in Fig. 3.2.1, the structure of a single SRR is defined by the following structure 
parameters: the square ring size l, the ring thickness c, the ring gap d, and the split gap 
g. The resonant frequency of SRRs can be shifted toward higher or lower frequency 
band by properly choosing these structure parameters. 

 

Figure 3.2.1 The structures of split ring resonators (SRRs). 
 
3.2.2 SRR Design and Simulation 

Numerical simulation can predict the transmission properties of SRRs with various 
structure parameters. We used FDTD method to simulate the SRRs structures. For all 
simulations, EM wave propagated along the y direction. The electric field polarization 
was kept along the z axis and magnetic field polarization was kept along x axis. 
Periodic boundary condition was used to reduce the computational domain and 
absorbing boundary condition was used at the propagation region. The 
total-field/scatter-field formulation was used to excite plane wave. The region inside 
of the computational domain and outside of the SRRs was assumed to be vacuum.  

To verify our FDTD simulation, the structure parameters of SRRs were chosen the 
same as [39]. The structure parameters were d = g = c = 0.33 mm, and l = 3 mm. The 
thickness and dielectric constant of the circuit board were 0.45 mm and 4.4, 
respectively. The SRRs were placed in the yz plane, as shown in Fig. 3.2.2. The unit 
elements in the propagation y direction were 25 elements. Periodic boundary 
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conditions were applied normal to the propagation direction. Fig. 3.2.3 shows the 
transmission spectra of SRRs in this simulation. In [39], the measured results show 
that the SRRs display a stop band extending from 8.1 to 9.5GHz, which is similar to 
our simulation results. 

 
Figure 3.2.2 Top view of the FDTD setup for SRRs simulation ( ||H ). 
 

 
Figure 3.2.3 Modeled transmission spectra of SRRs placed in the yz plane. 
The SRRs placed in the xz plane were considered, as shown in Fig. 3.2.4. The 

structure parameters of SRRs were the same as previous study in this section. The unit 
elements in the propagation y direction were 20 elements. Periodic boundary 
conditions were applied normal to the propagation direction. Fig. 3.2.5 shows 
simulated transmission spectra of SRRs. The stop band is shifted toward higher 
frequency band and extends from 18 GHz to 24 GHz. From this study, it is found that 
both of the two incident polarizations can produce stop band. As shown in [40], the 
stop band corresponds to a region where either permittivity or permeability is negative. 
When the magnetic field is polarized along the split ring axes ||H , it will produce a 
magnetic field that may either oppose or enhance the incident field. A large 
capacitance in the region between the rings will be generated and the electric field 
will be strongly concentrated. There is strong field coupling between SRRs and the 
permeability medium will be negative at stop band. On the other hand, the behavior of 
the stop band can be contrasted with that occurring for the ⊥H case. Because the 
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magnetic field is parallel to the plane of SRRs, we assume the magnetic effects are 
small, and that permeability is small, positive, and slowly varying. In the 

⊥H condition, these structures can be viewed as arranging the metallic wires 
periodically. The continuous wires behave like high-pass filter, which means the 
permittivity can be negative below the plasma frequency. For this metallic wire 
structures, there will be a stop band around the resonance frequency.  As shown in 
Fig 3.2.5, a stop band occurs, but outside of the stop band region of the 

||H polarization. The contrast between the two stop bands in the ||H and ⊥H cases 
illustrates the difference between the magnetic and electric responses of the SRRs. 
Theoretical investigations in [40] have shown that the ||H  band gap is due to 
negative permeability and the ⊥H band gap is due to negative permittivity.  

 
Figure 3.2.4 Top view of FDTD simulation for SRRs placed in the xz plane ( ⊥H ). 

 
Figure 3.2.5 Modeled transmission spectra of SRRs placed in the xz plane. 
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We will investigate whether the performance of metamaterials is affected or not 
when placing closely to materials with large dielectric constant and conductivity. The 
SRRs placed closely to dielectric cube with ε  = 49.4 and σ =1.53  was studied, as 
shown in Fig. 3.2.6. The simulation condition was the same as above study except the 
presence of dielectric cube. The receiving point of S21 is placed between the SRRs 
and dielectric cube. Fig. 3.2.7 shows the calculated transmission spectra of SRRs. 
Compared to the condition without dielectric cube, the magnitudes of transmission 
spectra are changed. However, the frequency of stop band is not affected. The SRRs 
can still retain their propagation properties if placed closely to large dielectric 
materials.   

 
Figure 3.2.6 Top view of FDTD simulation for SRRs with dielectric cube. 

 

Figure 3.2.7 Modeled transmission spectra of SRRs placed in the xz plane  
with dielectric cube. 

 
From the numerical study by FDTD method with Drude model, we find that the 

peak SAR value in the human head can be reduced by using negative permittivity 
mediums. The SRRs placed in the xz plane were considered. On the other hand, the 
size of the metamaterials in the EM propagation direction will not be too large with 
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this placement. To construct the SRRs for SAR reduction, we have changed the 
structure parameters of SRRs that the stop band can be designed at 900 MHz and 
1800 MHz band, respectively. From FDTD simulation, we found that the ring size l is 
an important factor for operation frequency. The stop band can be shifted toward 
lower frequency band by increasing the ring size. To obtain a stop band at 900 MHz, 
the structure parameters of SRR were chosen as c = 1.8 mm, d = 0.6 mm, g = 0.6 mm, 
and l = 43.8 mm. The periodicity along x, y, z, axes were Lx = 63 mm, Ly = 1.5 mm, 
and Lz = 63 mm, respectively. On the other hand, to obtain a stop band at 1800 MHz, 
the structure parameters of SRR were chosen as c = 1.8 mm, d = 0.6 mm, g = 0.6 mm, 
and l = 34.2 mm. The periodicity along x, y, z, axes were Lx = 50 mm, Ly = 1.5 mm, 
and Lz = 50 mm, respectively. Both the thickness and dielectric constant of the circuit 
board for operating at 900 MHz and 1800 MHz were 0.508 mm and 3.38, respectively. 
The size of the designed SRRs can also be reduced with the use of high dielectric 
constant circuit board. As shown in Fig. 3.2.8, the SRRs medium can display a stop 
band at 900 MHz and 1800 MHz after properly designing structure parameters. 

 
Fig. 3.2.8 Modeled transmission spectra of the designed SRRs. 

 
It is known that a simple frequency selective surface (FSS) can also be used to obtain 

a stop band. In [41-43], a number of FSS are proposed for antenna application. In [43], 
the authors also proposed capacitively loaded loop (CLL) structure which is similar to 
SRR for antenna application. However, these structures display a stop band at several 
GHz. We have tried to use high impedance surface structure [41] to reduce the peak 
SAR. However, we found that when these structures are operated at 900 MHz, the 
sizes of these structures are too large for cellular phone application. A negative 
permittivity medium can also be constructed by arranging the metallic thin wires 
periodically [10]. However, we found that when the thin wires are operated at 900 
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MHz, the size is also too large for practical application. Because the SRR structures 
are resonant due to internal capacitance and inductance, they are on a scale less than 
the wavelength of radiation. In this study, it is found that the SRRs can be designed at 
900MHz while the size is similar to that of cellular phone. 
 
3.2.3 SAR Calculation in a Muscle Cube 

The designed SRRs were used to reduce the SAR value. Since a 3-D model of the 
whole head with the presence of SRRs structure requires a great amount of memory in 
FDTD computation, a simplified muscle cube is studied to validate the effect of SAR 
reduction. Fig. 3.2.9 shows the muscle cube used in SAR simulation. It was formed 
by muscle tissue with εr = 51.8, σ  = 1.11 , and ρ  = 1040 at 900 MHz and εr = 49.4, 
σ  = 1.53 , and ρ  = 1040 at 1800 MHz. The distance between the antenna and the 
muscle cube was 25 mm. The designed SRRs were placed between the antenna and 
the muscle cube. The finite sized SRRs with Nx = 1, Ny = 10, and Nz =1 unit elements 
along each direction were considered. The radiated power from the antenna was 
assumed to be 600 mW at 900 MHz and 125 mW at 1800 MHz, respectively. The size 
of the muscle cube was chosen equal to the length of the dipole antenna. 

 
Fig. 3.2.9 Structure used in SAR calculation. 

 
The peak SAR1g and antenna performance with SRRs were studied. The results are 

given in Table 3.7. The radiated power from the antenna operated at 900 MHz was 
changed from 600 mW to 528.8 mW. The peak SAR1g became 5.59 W/kg, a reduction 
of 36.8% with respect to the condition without SRRs. The antenna operated at 1800 
MHz with SRRs was also studied. The radiated power changed to 119.2 mW and the 
peak SAR1g became 0.54, a reduction of 44.3% with respect to the condition without 
SRRs. It is found that the radiated power is less affected while the peak SAR1g is 
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reduced significantly with the designed SRRs.  

 

Table 3.7 Effects of SRRs on the antenna performance and SAR reduction 

 
 
To study the effect of SAR reduction with the use of metamaterials, the radiated 

power from the dipole antenna with SRRs were fixed at 600 mW and 125 mW at 900 
MHz and 1800 MHz operation bands, respectively. Numerical results of peak SAR1g 
are shown in Table 3.8. The peak SAR1g values with SRRs are reduced for 27.57% 
and 37.62% at 900 MHz and 1800 MHz, respectively. As a consequence, the designed 
SRRs can be used to reduce the EM interaction between the antenna and the muscle 
cube.  

Table 3.8  
Effect of SAR reduction for 900MHz and 1800MHz bands  

(PR = 0.6 W for 900 MHZ AND PR = 0.125 W for 1800 MHZ) 

 

 
In general situation, the bandwidth used for mobile communications is 5% or so. 

The effect of SAR reduction with the designed SRRs on the 5% frequency bandwidth 
was studied. Table 3.9 shows the numerical results. Compared to the peak SAR values 
without SRRs at 900 MHz and 1800 MHz, the performance of SAR reduction on the 
5% frequency bandwidth is also significant. 

 
Table 3.9 Effects of SAR reduction on 5% frequency band  

for 900MHz and1800MHz 
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3.3 Discussion  
 
 In this work, we have reduced the EM interaction between the antenna and the 
human head with metamaterials. Based on the 3-D FDTD method with lossy Drude 
model, it is found that the peak SAR1g in the head can be reduced by placing the 
metamaterials between the antenna and the human head. The antenna performances 
can be less affected with the use of metamaterials. Comparisons with other SAR 
reduction techniques are also demonstrated. We also designed metamaterials from 
periodically arrangement of split ring resonators (SRRs). By properly designing 
structure parameters, the stop band of SRRs can be designed at 900 MHz and 1800 
MHz bands of the cellular phone. The peak SAR1g in a simplified muscle cube with 
the presence of the designed SRRs is studied and a significant reduction can be 
obtained. The designed SRRs also have good performance of SAR reduction on 5% 
frequency bandwidth. Numerical results can provide useful information in designing 
communication equipments for safety compliance. 
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Chapter 4  
 
Stability Analysis of Absorbing Boundary 
Condition for ADI-FDTD Method  

 
In this chapter, stability analysis of the absorbing boundary conditions (ABCs) for 

alternating direction implicit (ADI) finite-difference time-domain (FDTD) method is 
demonstrated. First, the stability analysis of the Mur’s first order ABC in the 
ADI-FDTD method is presented. To analysis the stability of this scheme, the 
amplification matrix is derived. The effect of wave propagation direction on the 
stability of this scheme is investigated. The numerical dispersion relation of this 
scheme is also derived analytically from the amplification matrix. From the 
theoretical stability analysis and numerical simulation, it is found that the Mur’s first 
order ABC in the ADI-FDTD method will be unstable.  
On the other hand, the stability analysis of the split-field PML for ADI-FDTD is 

studied. The amplification matrix of this scheme is also derived based on the Von 
Neumann method. From the stability analysis, it is found that the split-field PML 
scheme for ADI-FDTD will be unstable at the PML interface and inside the PML 
regions. The instability of this scheme inside the PML regions can be improved with 
the modified PML conductivity profile. The theoretical results are validated by means 
of numerical simulations. 
The ADI-FDTD method can be seen as a second order perturbation of the 

Crank-Nicolson FDTD (CN-FDTD) scheme. The difference between the CN-FDTD 
and ADI-FDTD is the Δt2 perturbation term. When the PML is introduced for the 
ADI-FDTD method, the perturbation term will affect the stability of the ADI-FDTD 
method. In this work, the stability analysis of the PML schemes for the ADI-FDTD 
and CN-FDTD are demonstrated. It is found that the split-field PML and unsplit-field 
PML for ADI-FDTD method can lead to unstable condition due to the perturbation 
term. 
The proposed modified PML conductivity profiles can improve the stability of 

split-field PML scheme for ADI-FDTD method. Numerical simulations of the VLSI 
interconnect and RF inductor in time domain and frequency domain will be 
demonstrated to show the efficiency and accuracy of this method 
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4.1 Analysis of Stability and Numerical Dispersion Relation of Mur’s 
Absorbing Boundary Condition in the ADI-FDTD Method 
 
4.1.1 Stability Analysis of the Mur’s First Order ABC in the ADI-FDTD 

The stability of the Mur’s ABC in the ADI-FDTD method is studied. For simplicity, 
we consider the 2-D TM ADI-FDTD. This scheme at the y = jmax-1 grid boundary is 
illustrated. Based on [20], the formulations of Hx, Hy, and Ez components in the first 
updating step are  
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where Δt and Δx are the time step size and cell size, respectively.   
The Mur’s ABC [34] is implemented at the boundary y = jmax. The ADI schemes of 

the Mur’s ABC are based on the formulations in [22]. As an explicit direction in the 
first updating step, the wave equation is written as  

4/1
, max

4/1
, 2/1max2/1max

++
−− ∂

∂
=

∂
∂ n

jiz
n

jiz E
y

vE
t

                    (4.1.7) 

From (4.1.7), the field component Ez at the boundary y = jmax can be written as 

( )n
jiz

n
jiz

n
jiz

n
jiz EE

ytv
ytv

EE max,  
2/1

1max,  
max

max
1max,  

2/1
max,  2

2
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Δ+Δ
Δ−Δ

+= +
−−

+               (4.1.8) 

On the other hand, as an implicit direction in the second updating step, the wave 
equation is written as  
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From (4.1.9), the implementation of the Mur’s first order ABC for the ADI-FDTD 
should be applied inside the tridiagonal matrix, the field component Ez at the 
boundary y = jmax becomes 
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Due to the adoption of the Mur’s first order ABC at the boundary, the Ez i,jmax 
expression in (4.1.10) is substituted into (4.1.1) and (4.1.4), respectively. The Hx 
components become 
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As shown in [20], the stability analysis of the ADI-FDTD method is studied from 
deriving the amplification matrix or the amplification factor for the two updating steps 
of this scheme. To derive the amplification matrix for the first updating step, the 
relation of field components at nth time step and (n+1/2)th time step in the system of 
the first updating equations are employed. However, the Hx at (n+1/2)th time step is 
calculated from the Ez components at (n-1/2)th time step and nth time step, as shown 
in (4.1.11). To write this equation into the matrix from nth time step and (n+1/2)th 
time step, we need to introduce the amplification factor ξ  for Ez components at 
(n-1/2)th time step and rewrite (4.1.11) to be 
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Since ξ  is the amplification factor from (n-1/2)th time step to nth time step, it is 
identical to the amplification factor of the second updating step. As a result, the first 
updating equations (4.1.2), (4.1.3), and (4.1.13) can be formulated in the matrix form.   

The numerical stability of this scheme is determined with the Fourier method. The 
spatial frequencies are assumed to be kx, ky, and kz along the x, y, and z directions, and 
the field components in the spatial spectral domain are 
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After substituting these equations for the first updating equations, we can obtain 

n
z

y

y

n
x

n
x

E
tvy

yyk
y
t

yk
j

tvy
y

y
t

HH

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ+Δ

Δ
⎟
⎠

⎞
⎜
⎝

⎛ Δ
Δ
Δ

−
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠

⎞
⎜
⎝

⎛ Δ
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Δ+Δ

Δ
Δ

Δ
+

=+

ξ
μ

μ
max

max

2/1

2cos

2exp2
2

 (4.1.17) 

2/12/1
2sin ++ ⎟

⎠
⎞⎜

⎝
⎛ Δ

Δ
Δ

+= n
z

xn
y

n
y Exk

x
tjHH

μ
              (4.1.18) 

n
x

yn
y

xn
z

n
z Hyk

y
tjHxk

x
tjEE ⎟

⎠

⎞
⎜
⎝

⎛ Δ
Δ
Δ

−⎟
⎠
⎞⎜

⎝
⎛ Δ

Δ
Δ

+= ++
2sin 2sin 2/12/1

εε
          (4.1.19) 

Denote the field vector in the spatial spectral domain as 
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The time marching relation of the field components can be written in a matrix form 
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The growth factor for the first updating step is the eigenvalues of Λ1. It can be found 

that the ξ is one element of the matrix P1. Similar procedure can be applied to the 
second updating equations (4.1.5), (4.1.6), and (4.1.12), the field components for the 
second updating equations from (n+1/2)th time step to (n+1)th time step can also be 
written in a matrix form 
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The growth factorξ for the second updating step is the eigenvalues of Λ2. Combing 

the two half time steps can lead to one time step  
nnn XXX Λ=ΛΛ=+

21
1                (4.1.23) 

In this work, the ξ  value is solved first to obtain the matrix Λ.When the matrix Λ 
is obtained, the amplification factor for the total updating step can be found. The 
stability of this scheme requires that the eigenvalues of Λ lie within or on the unit 
circle, i.e., 1≤Λλ . Due to the complexity of the amplification matrix Λ, it is difficult to 
get a simplified analytical expression for the eigenvalues. The eigenvalues are 
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numerically calculated by Matlab®. The amplification matrix Λ is a function of the 
discrete wavenumber. All propagation directions are considered to study the stability 
of this scheme. Let kx = ksinφ,  ky = kcosφ, and 22

yx kkk += ; angle φ  is incident angle 
with respective to the y axis. 

To study the stability of this scheme, a 2-D computation domain is studied and the 
ratio of Δt/Δtmax is defined as the CFL number (CFLN). The cell size with Δx = Δy = 
1.0 mm and FDTD time step size limit Δtmax=2.35 ps are used. The stability of this 
scheme with different propagation direction and time step size is investigated. The 
calculated maximum eigenvalues of Λ  for different time step size and wave 
propagation direction are shown in Fig. 4.1.1.  
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Figure 4.1.1 The maximum eigenvalues for different propagation direction. 

 
The eigenvalues of this scheme will be smaller than unity only when the 

propagation directions are at φ =0ο, 45ο, and 90ο and will become unstable at other 
propagation directions. It can also be found that the eigenvalues are larger than unity 
even when CFLN = 1 is used. In a practical ADI-FDTD simulation, the 
electromagnetic wave will not propagate at a specific direction when it reaches the 
absorbing boundary condition. Since the ADI scheme of the Mur’s ABC is unstable, 
the field components at the boundary will become unstable. 

 

4.1.2 Numerical Dispersion Relation 
 
In this section, the numerical dispersion of the ADI-FDTD is studied. The time step 

size of the conventional FDTD needs to set to satisfy the Courant-Friedrich-Levy 
(CFL) stability condition but the time step size for the ADI-FDTD can set to be as 
large as the FDTD one. The time step size for the ADI-FDTD is not restricted by the 
grid side but by the numerical dispersion.   

The calculated and measured transmission loss of the power plane is studied, as 
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shown in Fig. 4.1.2. The Mur’s first order absorbing boundary conditions are applied 
on the outer surface. For conventional FDTD simulation, the grid size Δx = 2mm, Δy 
= 2mm, and Δz = 1.6 mm are used. The maximum time step size Δt =3.5 ps is used to 
meet the stability condition. For ADI-FDTD simulation, both 3Δt and 5Δt time step 
are used for comparison.  

As shown in Fig. 4.1.2, the calculated transmission loss of the FDTD is similar to 
the measured data although its response is shifted downward slighted in term of 
frequency. Comparing the results of the ADI-FDTD method with the FDTD method, 
we can see that there are differences depending on the time step size, as shown in 
Table 4.1. The difference is due to the numerical dispersion. It can be seen, 
quantitatively, that the increase in time step size resulted in a reduction of the resonant 
frequency. As mentioned, the tradeoff resulting from an increase in time step size, 
which effects a reduction in CPU time, is an increase in numerical errors. The 
ADI-FDTD method will have advantage over the FDTD method if a model with 
smaller grid is studied. 
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Figure 4.1.2 Transmission characteristics for power plane study. 

 
Table 4.1 

Calculated resonant frequency for different schemes 
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4.1.3 Numerical Simulation  

Numerical verifications of instabilities are performed by 3-D ADI-FDTD with 
Mur’s first order ABC. In this study, a uniform mesh with cell size Δx = Δy = Δz = 
1.0 mm and the maximum FDTD time step Δtmax= 121092.1 −× s are used. The 
computation domain is 42 × 42 × 42. The Mur’s first order ABCs are applied on the six 
sides of the computation domain. A differential Gaussian pulse is launched for Ez 
component. The source is excited at the center position (21, 21, 21) and the 
observation point is positioned at (21, 20, 21). Numerical simulations of the 
ADI-FDTD with Mur’s ABC for different CFLN are demonstrated. The ADI-FDTD 
method can be efficient only when large CFLN is used. This scheme with CFLN =3 
and CFLN = 5 are studied, as shown in Fig. 4.1.3 and Fig 4.1.4, respectively. It can be 
found that instability of this scheme will appear after running 1300 time steps and 600 
time steps for CFLN = 3 and CFLN = 5, respectively. With the implementation of the 
Mur’s ABC in the ADI-FDTD method, this scheme will become unstable with less 
time steps when larger CFLN is used. 
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Figure 4.1.3 Numerical simulation of the ADI-FDTD with Mur’s ABC (CFLN=3). 
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Figure 4.1.4 Numerical simulation of the ADI-FDTD with Mur’s ABC (CFLN=5).4.2 
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4.2 A Modified PML Conductivity Profile for the ADI-FDTD Method 
with Split-field PML 

 
4.2. 1 Theoretical Amplification Matrix 
In this section, the amplification matrix of the ADI-FDTD method with split-field 

PML is derived. For simplicity, a 2-D TM ADI-FDTD is studied. In this scheme, the 
field components Ezx, Ezy, Hx, and Hy for the first updating procedure can be written 
as 
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Since the electric conductivity σ and magnetic conductivity σ∗  within the   PML are 
usually scaled for small reflection, the PML parameters σ  and σ∗ in these equations 
will be position-dependent. In this study, the amplification matrix is derived using the 
actual updating equations of field components to capture the effect of the PML 
conductivity profile.  

Similarly, for the second updating procedure, the field components can be written 
as 
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We assume the spatial frequencies to be kx, ky, and kz along the x, y, and z directions 
and the field components in the spatial spectral domain can be written as 
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After substituting these equations into (4.2.1)-(4.2.4), we can obtain  
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Denote the field vector in the spatial spectral domain as 
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The time marching relation of field vector can be written in a matrix form as 



 
 

48 
 

nn
PM Χ=Χ

+

1
2
1

1            (4.2.18) 

where 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
⋅⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ Δ
⋅⋅

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
⋅⋅⋅−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
⋅⋅⋅

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
⋅⋅⋅−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
⋅⋅⋅+

=

Δ

Δ
−

Δ

Δ
−

10
2

sin2
2

sin2

0100
0010

00

2
sin2

2
sin2

2
sin2

2
sin21

1,1,

2
2

2
1

2
2

2
1

1

xk
Dj

xk
Dj

e
xk

DjC

e
xk

DjC

e
xk

DjC

e
xk

DjC

M

x
bx

x
bx

xk
jx

bxbx

xk
jx

bxbx

xk
jx

bxbx

xk
jx

bxbx

x

x

x

x

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
⋅⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ Δ
⋅⋅

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
⋅⋅

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⋅−

⋅
⋅

=

Δ

Δ
−

1,

1,1,1,

2
2

2
1

1

000

0
2

sin2
2

sin2

0
2

sin20

00

ax

ay
y

by
y

by

y
byay

xk
j

ax

xk
j

ax
bxax

D

D
yk

Dj
yk

Dj

yk
CjC

eD

eD
CC

P

x

x

 

We can apply the same procedure for the second updating equations. 
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It can be found that not only σ∗
xi+1/2,j and σ∗

y i,j+1/2 but also σ∗
xi-1/2,j and σ∗

y i,j-1/2 are 
within the amplification matrix Λ. The stability criterion requires that the eigenvalues 

of Λ lie within or on the unit circle, i.e., 1≤Λλ . 

 4.2.2 Stability Analysis 
For the stability analysis of this scheme, the eigenvalues of amplification matrix are 

evaluated. Due to the complexity of the amplification matrix Λ, it is difficult to get the 
simplified analytical expression for the eigenvalues. The eigenvalues are numerically 
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calculated by Matlab. The stability matrix is a function of the discrete wavenumber. 
Since the stability must be independent of the angle of wave propagation, all angles 

must be considered. We find that the maximum eigenvalues occur when 12sin =⎟
⎠
⎞

⎜
⎝
⎛ Δsk s , s 

= x, y, z. 
A 2-D computation domain contains 42× 42 cells is studied. The cell size with Δx = 

Δy = 1.0 mm and FDTD time step limit Δtmax=2.35 ps are used. Ten layers of PML are 
used in x and y direction. The parameters of PML are chosen the same as those in [25]. 
The polynomial scaling is used for the PML conductivity profile 

s
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+
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ss
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−
=

σ
σ  s = x, y, z         (4.2.21) 

where d is the thickness of PML absorber, Δs is the cell size, and s0 represents the 
interface. In this simulation, we choose m = 4 and σmax = 10.61S/m for optimum PML 
performance [25].  

In order to validate the proposed amplification matrix, the eigenvalues of 
amplification matrix are computed for free space condition σ = σ∗

 = 0 and PML 
medium with same conductivity σ = σmax. The time step size is 5Δtmax. As shown in 
Table 4.1, this scheme will be stable on these conditions since all eigenvalues are 
smaller than unity. 

Table 4.2 
Eigenvalues of Λ for free space and PML mediums σ = σmax 

 Free space 
σ = 0 

PML medium 
σ = σmax 

 
|λΛ| 

1.0000000e+000 
1.0000000e+000 
1.0000000e+000 
1.0000000e+000 

8.7121313e-001 
8.7121313e-001 
4.8417857e-001 
4.8417857e-001 

 
The ADI-FDTD method with the conventional PML conductivity profile (4.2.21) is 

studied. Since the σ and σ∗ within the PML become position-dependent, the 
amplification matrix will also be different for different PML coefficients. The 
eigenvalues of amplification matrix are computed for four PML coefficients, as shown 
in Fig. 4.2.1 Position 1 is located at free space. The positions within the PML 
mediums are studied. Position 2 is located at the interface between PML and free 
space where σ∗

y i,j+1/2 = 0 and σ∗
y i,j-1/2 = 30.1592. Position 3 is located at the first layer 

of PML where σ∗
y i,j+1/2 = 30.1592 and σ∗

y i,j-1/2 =934.9371. Position 4 is located at the 
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eighth layer of PML where σ∗
y i,j+1/2 = 481372.0127 and σ∗

y i,j-1/2 = 792615.6173. The 
σx = σx

*= 0 is used for the four positions. 

PML

Position 1

Position 2
Position 3

Position 4

x

y

 

Figure 4.2.1 Four positions for eigenvalue calculation. 
 

The calculated eigenvalues of Λ for different time steps and positions are shown in 
Table 4.2. We have tested different values for the numerical accuracy to be certain that 
round-off error does not affect the calculated eigenvalues. As shown in Table 4.2, it is 
found that the maximum eigenvalue increases with the grow of the time step. This 
scheme will be unstable at Position 2 and Position 3 because the eigenvalues are 
larger than unity. In [28], it was commented that the instability of the ADI-FDTD 
method with the split-field PML is unavoidable. The eigenvalue of this scheme with 
time step size less than the CFL limit is also investigated. It can bee seen that some 
eigenvalues are larger than unity at Position 2 and Position 3 even the time step 
0.9Δtmax is used. 
 

Table 4.3 Eigenvalues of Λ for 2D ADI-FDTD with PML  
 Position 1 

(21, 20) 
Position 2 
(21, 10) 

Position 3 
(21, 9) 

Position 4 
(21, 2) 

0.9Δtmax 1.0000000e+000 
1.0000000e+000 
1.0000000e+000 
1.0000000e+000 

9.9999985e-001
9.9999985e-001
1.0000000e+000
1.0000021e+000

9.9991584e-001
9.9991584e-001
9.9977724e-001
1.0000735e+000

6.9932975e-001 
6.9932975e-001 
6.4315304e-001 
6.4315304e-001 

Δtmax 1.0000000e+000 
1.0000000e+000 
1.0000000e+000 
1.0000000e+000 

9.9999977e-001
9.9999977e-001
1.0000000e+000
1.0000028e+000

9.9990957e-001
9.9990957e-001
9.9974524e-001
1.0001031e+000

6.8325119e-001 
6.8325119e-001 
6.1599183e-001 
6.1599183e-001 
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2 Δtmax 1.0000000e+000 
1.0000000e+000 
1.0000000e+000 
1.0000000e+000 

9.9999766e-001
9.9999766e-001
1.0000000e+000
1.0000141e+000

9.9983507e-001
9.9983507e-001
9.9940408e-001
1.0005628e+000

5.8437802e-001 
5.8437802e-001 
3.9758804e-001 
3.9758804e-001 

4 Δtmax 1.0000000e+000 
1.0000000e+000 
1.0000000e+000 
1.0000000e+000 

9.9998999e-001
9.9998999e-001
1.0000000e+000
1.0000451e+000

9.9960137e-001
9.9960137e-001
9.9871437e-001
1.0017621e+000

7.2137644e-001 
5.0510375e-001 
5.0510375e-001 
1.5426083e-002 

 
4.2.3 Modified PML Conductivity Profiles 

The PML conductivity profile will affect the stability of the ADI-FDTD method with 
the split-field PML. As shown in Table 4.2, it is found that all the eigenvalues are 
smaller than unity at Position 4. We find that there are two conditions for this scheme 
to be stable inside the PML regions. For the first condition, the ratio of the successive 
magnetic conductivities in the PML should be small. For the second condition, the 
electric and magnetic conductivities inside the PML regions should be large enough. 
Since the PML conductivity is increased from the PML interface to the PEC boundary, 
we find that the ratio of the successive magnetic conductivities in the PML close to 
the PML interface should be smaller than 1.3 and that close to the PEC boundary 
should be smaller than 1.5 to avoid the instability. 
The effect of the conductivity profile on the stability of this scheme is investigated. 

Two modified conductivity profiles are studied, as shown in Fig. 4.2.2. For the first 
modified conductivity profiles, the σmax = 10.61S/m and the ratio of the successive 
magnetic conductivities inside the PML regions are arranged as  
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The increase of the PML conductivity of (4.2.22) is not polynomially scaled. 
Therefore the PML performance with the first modified PML conductivity profile 
(4.2.22) will be significantly affected. A second modified PML conductivity profile 
with a constant scaling factor m is proposed. In this modified PML conductivity 
profile, the successive PML conductivity is scaled using the polynomial function 
(4.2.21) with σmax = 21.22S/m and m = 2 

2

2
0max)(

d
ss

s s
s

−
=

σ
σ  s = x, y, z         (4.2.23) 
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The corresponding normal reflection coefficient ( )0R  of (4.2.23) is 24108.6 −×  
which is much smaller than the conventional value. Comparisons between the 
conventional PML conductivity profile (4.2.21), the first modified conductivity 
profile (4.2.22) and the second modified conductivity profile (4.2.23) are shown in 
Fig 4.2.2. 
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Figure 4.2.2 Conductivity profiles for the PML mediums. 

 
The same 2-D computation domain is studied. The time step is 5Δtmax. The 

calculated eigenvalues of this scheme with different conductivity profiles at different 
positions are shown in Table 4.3. First, the PML medium with the same conductivity 
σ = 10.61 is studied. It is found that this scheme can be stable inside the PML regions. 
However, the maximum eigenvalue at the (21, 10) is larger than unity. The instability 
of this scheme at the PML interface is unavoidable. Although the instability inside the 
PML regions can be improved, this scheme will suffer from lager reflection errors 
since the conductivity is not increased from the PML interface to the PEC boundary. 
The conventional conductivity profile (4.2.21) for optimum PML performance is 
studied. As shown in Table 4.3, this scheme will be unstable from position (21, 10) to 
position (21, 3) and become stable from position (21, 2) with the conventional 
conductivity profile. This is because the ratio of the successive magnetic 
conductivities in the PML layers can be less than 1.5 only at the regions close to the 
PEC boundary.  



 
 

53 
 

Table 4.4 
The calculated eigenvalues of Λ  for different conductivity profiles 

 

 Position 

(21,10) 

Position 

(21,9) 

Position 

(21,8) 

Position 

(21,7) 

Position 

(21,6) 

Position 

(21,3) 

Position 

(21,2) 

PML 

medium 

σ = 10.61 

8.3167465e-001 

 8.3167465e-001 

1.0000000e+00 

2.2607177e+00 

8.7121313e-001 

 8.7121313e-001 

 4.8417857e-001 

 4.8417857e-001 

8.7121313e-001 

 8.7121313e-001

 4.8417857e-001

 4.8417857e-001

8.7121313e-001 

 8.7121313e-001 

 4.8417857e-001 

 4.8417857e-001

8.7121313e-001 

8.7121313e-001 

4.8417857e-001 

4.8417857e-001

8.7121313e-001 

 8.7121313e-001 

 4.8417857e-001 

 4.8417857e-001 

8.7121313e-001 

 8.7121313e-001

 4.8417857e-001

 4.8417857e-001

Conventional 

conductivity 

profile 

9.9998595e-001 

9.9998595e-001 

1.0000607e+00 

1.0000000e+00 

9.9947387e-001 

9.9947387e-001 

1.0023617e+000 

9.9837472e-001 

9.9501294e-001 

9.9501294e-001 

9.8273693e-001 

1.0149820e+000 

9.7672831e-001 

9.7672831e-001 

9.2571923e-001 

1.0462747e+000 

9.2963950e-001 

9.2963950e-001 

7.9713001e-001 

1.0958000e+00 

8.0873543e-001 

3.4158314e-001 

5.3701283e-002 

1.0400832e+00 

8.5231622e-001 

5.8450767e-001 

5.1407068e-001 

3.3159060e-002 

1st modified 

conductivity 

profile 

9.7912834e-001 

9.7912834e-001 

1.0952721e+00 

1.0000000e+00 

8.8457772e-001 

8.8457772e-001 

7.6986223e-001 

9.8777229e-001 

8.5285313e-001 

8.5285313e-001 

7.1107860e-001 

9.8155369e-001 

8.4633346e-001 

7.7764778e-001 

6.1748176e-001 

9.9755841e-001 

8.8028977e-001 

6.3334230e-001 

5.0285471e-001 

9.8509416e-001 

7.7235998e-001 

8.6715348e-001 

2.5298972e-001 

1.2658093e-002 

5.7646377e-001 

5.7646377e-001 

7.4761908e-001 

8.5740395e-002 

2nd modified 

conductivity 

profile 

9.9540604e-001 

9.9540604e-001 

1.0200902e+00 

1.0000000e+00 

9.5110019e-001 

9.5110019e-001 

8.1340254e-001 

1.1607705e+000 

8.1956499e-001 

8.1956499e-001 

4.9000128e-001 

1.2344384e+000 

8.3465030e-001 

4.6990210e-001 

1.7718996e-001 

1.1379080e+000 

9.2765962e-001 

7.5040601e-001 

3.0547466e-001 

1.7064586e-002 

8.4492806e-001 

8.4492806e-001 

4.7954231e-001 

4.7954231e-001 

9.0538676e-001 

9.0538676e-001 

5.2417697e-001 

5.2417697e-001 

 
The ADI-FDTD method with the modified PML conductivity profile is studied. For 

the first modified conductivity profile (4.2.22), it can be found that all the eigenvalues 
of this scheme are smaller than unity from position (21, 9) to position (21, 1), which 
means this scheme can be stable inside the PML. For the second modified 
conductivity profile (4.2.23), the ratio of the successive magnetic conductivities in the 
PML is smaller than 1.5 from position (21, 6) to position (21, 1). As shown in Table 
4.3, the calculated eigenvalues of this scheme with the second modified conductivity 
profile can be stable in these positions. Compared to the conventional conductivity 
profile, the instability inside the PML region can also be improved significantly with 
the second modified conductivity profile.  

The PML performances of this scheme with the modified conductivity profiles are 
studied. A differentiated Gaussian pulse is launched for the Hx component. The source 
excitation is located at (21, 21) and the observation position is located ten cells away 
from the excitation and close to the PML interface. The relative reflection error of the 
PML is evaluated by 
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where Ht is the H field component recorded at the observation point and Ht
ref is the 

reference value calculated from a large enough domain. The recorded H components 
for TM and TE wave are Hx and Hz fields. The calculated relative reflection error of 
the 2D TM and TE wave are shown in Fig 4.1.3a and Fig 4.1.3b, respectively. In the 
PML equations, the σy

* is used in the Hy equation and both the σx
* and σy

* are used in 
the Hzx and Hzy equations. Therefore, the calculated reflection errors of TM and TE 
wave are somewhat different. For the first modified PML conductivity profile (4.2.22), 
it is found that the PML performance will be deteriorated about 22 dB compared to 
the conventional PML scheme. For the second modified conductivity profile (4.2.23), 
the maximum reflection error is reduced around 12 dB for TM wave. The PML 
performance of the ADI-FDTD with the second modified PML conductivity profile is 
better than that with the first modified PML conductivity profile, as shown in Fig. 
4.2.3. Although the PML performance of first modified PML conductivity profile can 
be improved by increasing the PML thickness, the corresponding conductivity will 
become small and the instability of this scheme will be increased. From Table 4.3, it is 
found that the ADI-FDTD scheme with the first modified PML conductivity profile 
will still be unstable in the vacuum-PML regions. The worse PML performance of 
first modified PML conductivity profile will make this scheme more unstable since 
the reflection wave from the boundary will be amplified in the unstable vacuum-PML 
regions. 
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Figure 4.2.3a Relative reflection error of the TM ADI-FDTD method with PML ABC. 
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Figure 4.2.3b Relative reflection error of the TE ADI-FDTD method with PML ABC. 
 
As shown in Table 4.3, the instability of the ADI-FDTD with PML can also be 

improved when the second modified PML conductivity profile is employed and the 
PML performance can still be maintained. The first modified conductivity can be 
viewed as a guideline for the design of the stable split-field PML. For considering the 
PML performance and the stability of this scheme, the second modified PML profile 
(4.2.23) is more suitable for ADI-FDTD simulation. 
 
4.2.4 Numerical Simulation 

The theoretical amplification matrix is derived based on the Von Neumann method. 
The Von Neumann method assumes the wave propagates in an unbound region. When 
the calculated eigenvalues of ADI-FDTD with split-field PML are larger than unity, it 
means that the electromagnetic field will be unstable in the homogenous region with 
these PML coefficients. Since the ADI scheme can be unstable with these PML 
coefficients, the ADI-FDTD with PML implementation can become unstable. To 
validate the instability of the ADI-FDTD with PML implementation, one method is to 
calculate the amplification matrix of the total computational domain. However, the 
amplification matrix of the total computational domain will be very complicated and 
is not suitable for other problems. The simple way to analyze the stability of the total 
computational domain can be accomplished by numerical simulations. In this section, 
the numerical tests of the ADI-FDTD method with split-field PML are performed. 
From the stability analysis, the ADI-FDTD method with split-field PML will be 
unstable at the vacuum-PML interface and inside the PML regions. For 2-D case, the 
eigenvalue is small and it requires a large number of time steps to make the field 
components unstable. Numerical simulation is performed by 3-D ADI-FDTD with 
split-field PML. A uniform mesh with cell size Δx = Δy = Δz = 1.0 mm and FDTD 
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time step limit Δtmax=1.92 ps are used. The computation domain is 42 × 42 × 42. PML 
layers that are ten cells thick terminated all six sides of the computation domain. A 
differential Gaussian pulse applied to Hx field is excited at the center position (21, 21, 
21) and the time step size in this study is 5Δtmax. First, the numerical simulation of this 
scheme with the conventional PML conductivity profile (4.2.21) is performed. Fig. 
4.2.4 shows the time-domain Hx fields recorded at the position (21, 20, 21). As shown 
in Fig 4.2.4, this scheme will become unstable after running 3500 time steps. 
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Figure 4.2.4 The Hx component with the conventional conductivity profile. 
 
For considering the theoretical stability analysis and PML performance, the 

ADI-FDTD method with the second modified PML conductivity profile (4.2.23) is 
studied. Fig. 4.2.5 shows the simulated time-domain Hx fields. No instability is 
observed after running 15000 time steps. Although there are several eigenvalues 
larger than unity and the PML performance will be affected for the second modified 
conductivity profile, it is found that the stability of this scheme can be significantly 
improved. 
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Figure 4.2.5 The Hx component with the modified PML conductivity profile. 
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4.3 PML for CN-FDTD and ADI-FDTD 
The ADI-FDTD can be seen as a second order perturbation of CN-FDTD. Their 

formulations are described briefly. The Maxwell’s curl equations are given by 

HEt
rr

ℜ=∂
~1

ε
  EHt

rr
ℜ−=∂
~1

μ
                        (4.3.1) 

where ε and μ are the permittivity and permeability, respectively. E
r

and H
r

are the 
electric and magnetic fields, and ℜ

~  is the curl operator in Cartesian coordinates. One 
can replace all the derivatives by centered difference operator and average the field 
affected by the curl operator to derive the CN-FDTD scheme,  
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where ( )Tzyxzyx HHHEEE=Ψ
r

is the numerical vector field and the operator 

Tℜ
~  is the numerical counterpart of ℜ

~ . Equation (4.3.2) is the CN-FDTD scheme. It 
will require large computational resources to solve this scheme. Nevertheless, the 
CN-FDTD can be reformulated to ADI-FDTD scheme that can be solved efficiently. 
Based on [31], the CN-FDTD method can be split into two step procedure for 
ADI-FDTD. The space operator Tℜ

~ is decomposed as 
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~~~                                  (4.3.3) 

and (4.3.2) can be rewritten as 
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The CN-FDTD scheme (4.3.4) can be rewritten as 
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If we neglect the Δt2 perturbation term, we can get the approximation of CN-FDTD as 
ADI-FDTD  
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Therefore, the ADI-FDTD scheme (4.3.6) can be seen as a second order perturbation 
of the CN-FDTD (4.3.2) 
 Equation (4.3.6) can be further split into two updating steps 
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where *nΨ
r

 is an auxiliary intermediate vector field. The ADI-FDTD equations (4.3.7) 
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can be solved efficiently.  
  To simulate unbounded region problems, the PML formulations should be 
implemented for CN-FDTD and ADI-FDTD. We can use the same procedure to 
reformulate the PML equations. We can use the same procedure to reformulate the 
PML equations. For the PML equations, the PML conductivity is incorporated into 
matrix Tℜ

~ . Once we derive the operator Tℜ
~  and split into two operators A~ and B~ , 

we can reformulate the PML equations for CN-FDTD and ADI-FDTD. In this study, 
the unsplit-field PML, split-field PML and CFS PML formulations for CN-FDTD and 
ADI-FDTD are investigated. 
 
4.3.1. Unsplit-field PML Scheme 

The unsplit-field PML scheme is based on the formulations derived in [28]. The 
unsplit form PML equations are  
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where u∂ represents the partial derivative with respective to u direction, eE
r

 and 

oH
r

are two auxiliary fields, and 
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(4.3.8)-(4.3.11) can be written in a compact form as 
( ) ( )tt Tt Ψℜ=Ψ∂

rr ~                                   (4.3.13) 
where ( )tΨ is the compound Cartesian vector  

(
)Tozoyoxezeyex

zyxzyx
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                      (4.3.14) 
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and 
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where I~  and 0~ are 3× 3 identity and null matrix, respectively.  
The operators A~ and B~  are chosen so that 

TBA ℜ=+
~~~                                     (4.3.16) 

A possible choice of A~ and B~ is given by 
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The field components E
r

, H
r

, eE
r

 and oH
r

can be solved by CN-FDTD (4.3.4) or by 
two updating steps ADI-FDTD method (4.3.7). The system equation (4.3.7) can be 
further triangularized in order to solve it efficiently. When we set the PML 
conductivity σx= σy = σz =0, E

r
 and H

r
 formulations will be identical to the 

ADI-FDTD method.   
 
4.3.2 Split-field PML Scheme 
  The split-field PML formulations can also be expressed in the partial differential 
form (4.3.1) and solved by the CN-FDTD scheme. Based on [25], the field vector is 
defined as  

(
)T

zyyxxzzxyzxy

zyyxxzzxyzxy

HHHHHH

EEEEEE=Ψ
r

               (4.3.19) 

and Tℜ
~  is a 12× 12 dimensional space operator  
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 Tℜ

~ can be split into two operators to derive ADI-FDTD scheme and the operators 
A~ and B~ are given by 
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Compared to the unsplit field PML scheme, the split field PML equation is less 

complicated and more straightforward. However, this formulation suffers from large 
reflection error when attempting to absorb low-frequency evanescent wave. The CFS 
PML scheme can efficiently absorb low-frequency wave and is discussed below.  
 
4.4 Theoretical Stability Analysis 

 To study the stability of the PML schemes for the CN-FDTD and ADI-FDTD 
method, the Von Neumann method is employed. Following the similar procedures 
presented in [20], we assume that for each time step the field components are 
Fourier-transformed into the spatial spectral domain. From the system equations of 
(4.3.4), the CN-FDTD scheme can be written in the spatial spectral domain in a 
matrix form as 

nn GΧ=Χ +1                          (4.4.1) 
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where the vector Xn represents the field components and the auxiliary variables at the 
nth time step for different PML schemes. From the system equations of (4.3.7), the 
ADI-FDTD scheme can also be written in the spatial spectral domain in a matrix form 
as 
                          nn PM Χ=Χ 1

*
1                            (4.4.2) 

*
2

1
2

nn PM Χ=Χ +                           (4.4.3) 
for the n* and n+1 time steps, respectively. The entries for the matrices M and P are 
derived from updating equations. The two half time steps can be combined to one 
time step  

nnn XXPMPMX Λ== −−+
1

1
12

1
2

1                      (4.4.4) 
The stability criterion requires that the eigenvalues of amplification matrices G and Λ 
lie within or on the unit circle. An attempt to determine the eigenvalues of G and 
Λ symbolically was made. However, due to the complexity of the amplification 
matrix, it is difficult to get a simplified analytical expression for the eigenvalues. The 
maximum eigenvalues are numerically calculated by Matlab®. In this study, we set the 
cell size to be Δx = Δy = Δz = 1.0 mm and FDTD time step limit Δtmax=1.92 ps is used. 
The ratio of Δt/Δtmax is defined as the CFL number (CFLN).  
 
4.4.1 Unsplit-field PML Scheme 

The eigenvalues of G and Λ are computed when σx = σ z=0 and σ y=10.66 S/m. The 
time step sizes are chosen to be Δtmax, 2Δtmax, and 5Δtmax, respectively. Both the 
unsplit field PML schemes for the CN-FDTD scheme and ADI-FDTD are investigated 
and the theoretical results are shown in Table 4.4. When CFLN = 1, both the 
ADI-FDTD and CN-FDTD PML formulations can be stable since the maximum 
eigenvalues for the two schemes are smaller than unity. However, it is found that the 
eigenvalues of the unsplit field PML scheme for ADI-FDTD scheme are larger than 
unity when CFLN = 2 is used. On the other hand, we use different CFLN and 
σ  values and no instability was observed for CN-FDTD PML scheme. As shown in 
(4.3.5), the difference between CN-FDTD and ADI-FDTD is the Δt2 perturbation term. 
The results indicate that perturbation term will affect the stability of PML scheme for 
ADI-FDTD when large CFLN is used.  
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Table 4.5 

Eigenvalues of for Λ and G unsplit PML scheme  
 CFLN=1 CFLN=2 CFLN=5 
 
 
 

Unsplit-field 
PML for 

ADI-FDTD 
σ=10.66 

|λΛ| 

1.0000000e+000 
8.7747147e-001 
8.7747147e-001 
8.7747147e-001 
1.0000000e+000 
1.0000000e+000 
8.7747147e-001 
3.0475086e-001 
3.0475086e-001 
3.0475086e-001 
3.0475086e-001 
1.0000000e+000 

1.0000000e+000 
1.0000000e+000 
1.1404158e+000 
1.1404158e+000 
1.0000000e+000 
1.0000000e+000 
1.1404158e+000 
1.1404158e+000 
4.3679841e-001 
4.3679841e-001 
4.3679841e-001 
4.3679841e-001 

1.0000000e+000 
1.0000000e+000 
1.8425689e+000 
1.8425689e+000 
1.8425689e+000 
1.8425689e+000 
1.0000000e+000 
1.0000000e+000 
4.1123514e-001 
4.1123514e-001 
4.1123514e-001 
4.1123514e-001 

 
 

Unsplit-field 
PML for 

CN-FDTD 
σ=10.66 

|λG| 

1.0000000e+000 
9.2402257e-001 
9.2402257e-001 
9.2402257e-001 
9.2402257e-001 
2.3259772e-001 
2.3259772e-001 
2.3259772e-001 
2.3259772e-001 
1.0000000e+000 
1.0000000e+000 
1.0000000e+000 

1.0000000e+000 
9.2903235e-001 
9.2903235e-001 
9.2903235e-001 
9.2903235e-001 
4.6207853e-001 
4.6207853e-001 
4.6207853e-001 
4.6207853e-001 
1.0000000e+000 
9.9999998e-001 
1.0000000e+000 

1.0000000e+000 
9.6195689e-001 
9.6195689e-001 
9.6195689e-001 
9.6195689e-001 
7.3695418e-001 
7.3695418e-001 
7.3695418e-001 
7.3695418e-001 
1.0000000e+000 
9.9999997e-001 
1.0000000e+000 

  
4.4.2 Split-field PML Scheme  
The split-field PML schemes for CN-FDTD and ADI-FDTD are studied. In [45], it 

indicated that the split-field PML for the ADI-FDTD method will be unstable when 
the PML conductivity profile is polynomial scaled and this scheme can be stable with 
constant PML conductivity. In this study, the smaller PML conductivity σx = σ z=0 
and σ y=0.1066 S/m is used. From Table 4.5, it is found that the split-field PML 
scheme for ADI-FDTD can be stable when CFLN = 5 and will become unstable when 
large CFLN =15 is used. No instability is observed when split-field PML for 
CN-FDTD scheme is used. 
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Table 4.6 

Eigenvalues of Λ and G for split PML scheme 
 CFLN=1 CFLN=5 CFLN=15 

 
 
split-field PML 
for ADI-FDTD 

σ=0.1066 
|λΛ| 

  9.9422334e-001
  9.9422334e-001
  9.9422334e-001
  9.9422334e-001
  9.8563297e-001
  9.8563297e-001
  9.8563297e-001
  9.8563297e-001
  1.0000000e+000
  9.9999999e-001
  1.0000000e+000
  1.0000000e+000

9.9590080e-001 
  9.9590080e-001
  9.9590080e-001
  9.9590080e-001
  9.4176082e-001
  9.4176082e-001
  9.4176082e-001
  9.4176082e-001
  1.0000000e+000
  1.0000000e+000
  9.9999996e-001
  9.9999999e-001

  1.0066924e+000
  1.0066924e+000
  1.0066924e+000
  1.0066924e+000
  8.3275850e-001
  8.3275850e-001
  8.3275850e-001
  8.3275850e-001
  9.9999972e-001
  1.0000000e+000
  1.000000e+000 
  9.9999999e-001

 
Split-field PML 
for CN-FDTD 

σ=0.1066 
|λG| 

  9.9614053e-001
  9.9614053e-001
  9.9614053e-001
  9.9614053e-001
  9.8468627e-001
  9.8468627e-001
  9.8468627e-001
  9.8468627e-001
  1.0000000e+000
  1.0000000e+000
  9.9999999e-001
  1.0000000e+000

  9.9851056e-001
  9.9851056e-001
  9.9851056e-001
  9.9851056e-001
  9.2575790e-001
  9.2575790e-001
  9.2575790e-001
  9.2575790e-001
  1.0000000e+000
  1.0000000e+000
  9.9999996e-001
  9.9999998e-001

  9.9948561e-001
  9.9948561e-001
  9.9948561e-001
  9.9948561e-001
  7.9378279e-001
  7.9378279e-001
  7.9378279e-001
  7.9378279e-001
  9.9999986e-001
  9.9999996e-001
  1.000000e+000 
  1.0000000e+000

  

4.5 Numerical Verification 
Numerical simulations are performed by 3-D ADI-FDTD with unsplit-field PML 

and split-field PML to validate the instability of the two schemes. A uniform mesh 
with cell size Δx = Δy = Δz = 1.0 mm and FDTD time step limit Δtmax=1.92 ps are 
used. The computation domain is 42 × 42 × 42. PML layers that are ten cells thick 
terminated all six sides of the computation domain. A differential Gaussian pulse 
applied to Hx field is excited at the center position (21, 21, 21). The polynomial 
scaling is used for the PML conductivity profile 
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where d is the thickness of PML absorber, Δs is the cell size, and s0 represents the 
interface. In this simulation, we choose scaling factor m = 4 and σmax = 10.61S/m for 
optimum PML performance [25]. 

First, numerical simulation of the ADI-FDTD with unsplit-field PML is performed. 
The time step size in this study is chosen to be 2Δtmax. Fig. 4.5.1 shows the 
time-domain Hx fields recorded at the position (21, 20, 21). As shown in Fig 4.5.1, 
this scheme will become unstable after running 400 time steps. 
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Figure 4.5.1 The Hx component for ADI-FDTD with unsplit-field PML (CFLN=2). 
 
Then, numerical simulation of the ADI-FDTD with split-field PML is performed. 

The time step size in this study is 7Δtmax. As shown in Fig. 4.5.2, this scheme can also 
become unstable after running 1200 time steps. 
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Figure 4.5.2 The Hx component for ADI-FDTD with split-field PML (CFLN=7). 
 
  From numerical simulation, it is found that the split-field PML scheme [25] and 
unsplit-field PML [28] scheme for ADI-FDTD can be unstable. The instability of the 
split-field PML and unsplit-field PML for ADI-FDTD can not be avoided but can be 
improved by using the modified PML conductivity profile [30].  
 
4.6 Simulation of VLSI Circuits 

From previous studies, it is found that the time step size of the ADI-FDTD method 
is not restricted by the CFL stability condition, but by the required numerical 
dispersion of this method. One of the factors that affect the numerical dispersion is the 
grid size. When employing the ADI-FDTD method for VLSI circuits modeling, the 
grid cell size will be micron-scale, which is much smaller than 1/10th or 1/20th of the 
smallest wavelength of interest. Therefore, the ADI-FDTD is well suited for VLSI 
circuits modeling since the numerical error of scheme can be small even large time 
step size is used. In this section, numerical simulations of the VLSI circuits including 
the multilevel crossover and RF inductor by ADI-FDTD method are demonstrated.  
 

4.6.1 Multilevel Crossover in VLSI Interconnects 
The coupling effect of the multilevel crossover in VLSI circuit is analyzed. The 

structure is taken from [44] and is shown in Fig. 4.6.1. The two-level crossover has 
two conductors in each level. The conductors are of copper with width 1 μm and 
thickness 1 μm, respectively. The five SiO2 layers are of thickness 1 μm and εr = 3.9 
and covered by two ground conductors on the top and bottom. The line lengths and 
separations are 30.8 μm and 1 μm, respectively.  
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Figure 4.6.1 Multilevel crossover in VLSI interconnect. 
 
In the ADI-FDTD modeling, the computational domain is meshed with cell sizes 

Δx = Δy = Δz= 0.2 μm. The maximum time step size for CFL condition is 0.38 fs. The 
PML medium with ten layers is employed to truncate the computational domain. The 
total computational domain is 174× 174× 45. For the ADI-FDTD simulation, the 
CFLN = 10 and CFLN = 20 are used and the corresponding time step size are 3.8 fs 
and 7.6 fs, respectively. 

The simulation results are shown in Fig. 4.6.2 and Fig. 4.6.3 First, the conventional 
ADI-FDTD with Berenger’s PML is studied. As shown in Fig 4.6.2, it can be found 
that the numerical results will become unstable after running 4800 time step. By 
employing the modified PML conductivity profile with m = 1.5 and σmax = 21.22S/m 
for this scheme [45], the instability of this scheme can be improved, as shown in Fig. 
4.6.3. We have also extended the running time to 10000 time steps and no instability 
is observed.  
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Figure 4.6.2 Voltage at Port 1 with the conventional PML conductivity profile. 

 
Figure 4.6.3 Voltage at Port 1 with the modified PML conductivity profile. 

 
The coupling effect of the multilevel crossover is investigated by employing the 

ADI-FDTD method with modified PML conductivity profile. The excitation pulse is 
trapezoidal with rise time and fall time τr = τf = 380 fs and on-time τon =380 fs. The 
simulation result is shown in Fig. 4.3.4. The numerical result of the ADI-FDTD 
method is similar to that of the FDTD method even CFLN = 20. It is found that there 
is considerable coupling between the lines in the same level and different levels. The 
coupled signal amplitudes are near 10% of that of the incident pulse. This shows good 
match between our result and the result in [44]. 
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Figure 4.6.4 Voltages at different ports of the multilevel crossover. 
   

The time step size, total time steps, and the CPU time ratio are shown in Table 4.6. 
Since the time step size is set 10 and 20 times as larger as that of the FDTD method, 
the total time steps can be reduced. The require memory for the ADI-FDTD method is 
about 1.9 times as large as that for the conventional FDTD method because of the 
extra electromagnetic components for two updating steps. Compared to the FDTD 
method, the CPU time can be reduced to 56.1% and 26.9% for CFLN = 10 and CFLN 
= 20, respectively. 

. 
Table 4.7 

Multilevel crossover simulation 
 
 

 
 
 
 
 

 Δt Steps CPU 
Time 
Ratio 

FDTD 0.38fs 10000 1.000 
ADI-FDTD 
(10Δtmax) 

3.8fs 1000 0.561 

ADI-FDTD 
(20Δtmax) 

7.6fs 500 0.269 
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4.6.2 RF Inductor 
Simulations of the VLSI circuit by ADI-FDTD method are performed. A five-turn 

spiral inductor [46] is studied by the ADI-FDTD method. A cross sectional view of a 
portion of the structure is illustrated in Fig 4.6.5. The substrate and metal parameters 
are shown in Table 4.7. The outer dimension is 250 μm, the top conductor microstrip 
is 8 um wide, and the spacing between conductors is 2.8 μm. The inner space between 
coupled lines is 150 μm. 

250 um

150 um

Port 1 Port 2

1h

2h
3h

4h
5h

Si

2SiO

 
 
Figure 4.6.5 Cross section view and layout of the spiral inductor with h3-h5 = 1.3 μm, 
h2 = 3.6 μm, h1= 200 um, h4= 2.07 μm, and h5= 0.84 μm. 

 
Table 4.8 

Substrate and metal parameters 
 

 
For single-ended excitation, Port 2 is grounded. The frequency domain 

characteristic of the RF inductor can be obtained from the Fourier transform of the 
time domain transient waveform. The quality factor of the inductor is defined by 

[ ]inputZ
fLQ

Re
2π

=                           (4.6.1) 

where Zinput is the series equivalent input impedance.  

Parameter Value 
Oxide thickness over M2,h3-h6 1.3μm 
Oxide thickness below M2,h2 3.61 μm 

Silicon resistivity 15 Ω-μm 
Silicon thickness, h1 200 μm 

Metal resistivity 31 mΩ-μm 
M3 thickness, h4 2.07 μm 
M2 thickness, h5 0.84 μm 
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In the ADI-FDTD simulation, the cell sizes in the x- and y-directions are Δx = Δy = 
1.35 μm. We use the nonuniform cells in the z-direction to reduce the computational 
domain and model the fine geometry. The nonuniform cell sizes in z-direction are 3.0 
μm, 1.5 μm, and 1.2 μm, respectively. The CFL stability condition is Δtmax ≤ 2.5 fs. 
We choose CFLN = 20 and the corresponding time step size Δt =50 fs.   

Since we will study the Q- factor in frequency domain, the total number of the time 
steps for ADI-FDTD simulation is around 25000 time steps when CFNL = 20 is used. 
If the conventional FDTD method is used to analyze this inductor, the total time steps 
will be 5105×  and it will be difficult to complete the simulation. When the 
conventional PML conductivity profile is used for ADI-FDTD method, the numerical 
results will be unstable after running 1000 time steps. In section 4.2, we find that the 
ratio of the successive magnetic conductivity should be small to prevent the instability. 
To validate this viewpoint, the homogeneous PML medium σx = σy = σmax is 
employed for the ADI-FDTD to analyze the spiral inductor. The simulation result 
shows that no instability is observed after running 25000 time steps and the 
time-domain waveforms are Fourier transformed to obtain the frequency domain 
result. Comparisons between the experimental measurement and simulation result for 
Q-factor are shown in Fig. 4.6.6. At frequencies below 2.5 GHz, the simulation results 
of the Q-factor between measurement and simulation result are matched well. From 
the measurement result, the peak Q-factor is 6.6 at 1.6 GHz. Our simulation shows 
that the peak Q is 6.3 at 1.6 GHz, which is similar to the measurement result.  
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Fig. 4.6.6 Measured and simulated Q-factor 
 
4.7 Discussion 
In this work, the stability analysis of the Mur’s ABC in the ADI-FDTD is studied. 

The stability analysis is performed by deriving the amplification matrix of this scheme. 
The stability of this scheme with different propagation directions and different time 
step size is investigated. From the stability analysis, we find the eigenvalues of this 
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scheme will be smaller than unity when the propagation directions are 
at φ =0ο, 45ο, and 90ο and will become unstable at other propagation directions. The 
numerical dispersion relation of the Mur’s ABC in ADI-FDTD is derived analytically 
from amplification matrix. We find that the numerical errors of this scheme are 
significantly affected by the propagation directions and time step size. We also 
perform numerical simulations of 3-D ADI-FDTD method to validate the instability 
of this scheme. On the other hand, the stability analysis of the ADI-FDTD method 
with split-field PML mediums is studied. It is found that this scheme will be unstable 
at the vacuum-PML interface and inside the PML regions. The instability of this 
scheme inside the PML regions can be improved with the modified conductivity 
profile. The theoretical results are validated from numerical simulations. The stability 
analysis of the split-field PML and unsplit-field PML CFS PML schemes for the 
ADI-FDTD and CN-FDTD are studied. The ADI-FDTD can be seen as a second order 
perturbation of the CN-FDTD method. From the stability analysis, we find that the Δt2 

perturbation term can affect the stability of the PML schemes for ADI-FDTD. 
The modified PML conductivity profile is used to improve the stability of the 

ADI-FDTD with PML absorber. The multilevel crossover in VLSI circuit and RF 
inductor are studied by ADI-FDTD method. Compared to the conventional FDTD 
simulation, a significant reduction in calculation time can be achieved. Although the 
PML performance will be affected by the modified PML conductivity profile, it can 
be found that the simulation results are matched quite well with the reference results. 
The modified scheme can provide an efficient and accurate electromagnetic 
simulation method for VLSI circuits. 
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Chapter 5  
 
Isolation Enhancement Between Two 
Packed Antennas with Coupling Element  
 
This paper introduces a coupling element to enhance the isolation between two 
closely packed antennas for 2.4 GHz wireless local area network (WLAN) application. 
The proposed structure occupies two antenna elements and a coupling element in 
between. By putting a coupling element which artificially creates an additional 
coupling path between the antenna elements, the antenna isolation can be enhanced. 
The advantage of this design is that no extra space is needed for antenna elements. 
With the proposed design, more than 15 dB isolation can be achieved for two parallel 
individual planar inverted F antennas (PIFAs) with 5 mm spacing. Parametric studies 
for the design are also included to show how to increase isolation bandwidth and 
control the isolation frequency. 
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5.1 Antenna Design 
The details of our proposed design are shown in Fig. 5.1.1. It can be seen that two 

identical PIFA antenna elements operated at 2.4 GHz are integrated on a low cost FR4 
substrate with a PCB thickness of 1.6 mm and relative permittivity is 4.3. Their 
edge-to-edge separation is just 5 mm (0.04 λ0). The PIFAs are located on the top left 
hand side and right hand side of the PCB respectively and the resonant length is 
approximately a quarter wavelength. The coupling element is introduced for 
enhancing isolation. It is located between the two PIFA antenna elements and 
occupied the dimension of 5 × 13 mm2. The proposed coupling element is formed by 
a coupling pad and a thin wire connected to backside ground. The advantage of this 
design is that no extra space is needed for antenna elements. The concept for isolation 
enhancement with this design is discussed briefly below.   

 

(a) front side 

 
(b) back side 

Fig. 5.1.1 Geometry of two PIFAs using coupling element for isolation 
enhancement 
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Assume the excited current is fed into PIFA 1. Since PIFA 2 is placed very close to 
PIFA 1, the strong coupled current on PIFA 2 is approximately 180 degree out of 
phase with the excited current. The proposed coupling element is placed between the 
two PIFAs. In this condition, the coupling starts from PIFA 1, through to the coupling 
element, which, in turn, couples to PIFA 2. The coupled current on coupling element 
is approximately in phase with excited current on PIFA 1. If the coupling element in 
this path is adjusted properly, the two coupled currents can be cancelled out so that the 
overall resultant coupled current is cancelled. The addition of the coupling element 
will reduce the current in the original PIFA 1, by a similar coupling process. Therefore 
this design will also affect the self-impedance of the antennas. As long as the 
cancellation coupling is not too large, this effect can be handled by adjusting the 
antenna matching appropriately. 

 
5.2 Parametric study of coupling element 
   We have performed the parametric studies and they explain how to control the 
center frequency, bandwidth, and level of isolation. The coupling element structure 
will significantly impact isolation improvement. The circuit model of the proposed 
design is shown in Fig. 5.2.1. The Ls and Cs are the ground inductance and self 
capacitance of the coupling element. The Lm and Cm represent the mutual inductance 
and mutual capacitance between the PIFA and the coupling element. The parameters 
of the equivalent circuit are studied. The capacitance Cm and ground inductance Ls 
will significantly affect the isolation level and bandwidth. In this study, Lm and Cs are 
fixed as 1.5 nH and 0.2 pF, respectively. First, the Cm = 0.25 pF and Ls = 6 nH are 
used for operation at 2.4 GHz band. The simulated S11 is shown in Fig. 5.2.2. The 
increase of the mutual capacitance and reduce the ground inductance are considered. 
The Cm and Ls are changed to be 0.45 pF and 4 nH, respectively. From this circuit 
model, it is found that the bandwidth of the coupling element can be improved with 
increasing the mutual capacitance.  
 

Cm,1 Cm,2

Lm,1 Lm,2

LsCs

PIFA1 PIFA2

 
Fig. 5.2.1.  Equivalent circuit model of the coupling element.  
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Fig. 5.2.2. Simulated S parameters for equivalent circuit model. 

 
  Increasing the bandwidth of the coupling element will also increase the isolation 
level. The reason is that increase the capacitance will increase the field strength of the 
coupling element and which cancels out the mutual coupling between antenna 
elements and thus enhances the isolation. To verify the effect of isolation bandwidth 
improvement, the antenna structure of Fig. 5.2.3 is studied. By controlling the size of 
the coupling pad and thin wire, the coupling element can be operated at 2.4 GHz 
WLAN band. The details geometry of the coupling element is shown in Fig. 5.2.3.  
For the initial design, the geometry parameters L1 = 7 mm, W1= 1 mm, L2 = 9.5mm, 
and W2 = 2.6 mm. The corresponding gap s between coupling element and PIFA is 1.2 
mm. The coupling element is then modified to increase the capacitance between 
antenna and coupling element. The width of the ground wire W1 is also increased to 
reduce the ground inductance for operation at 2.4 GHz. The proposed design with L1 
= 5.9 mm, W1= 4 mm, L2 = 9.1 mm, and W2 = 4.5 mm is studied. The gap s is 
changed to be 0.25 mm. The simulated isolation for the proposed design is shown in 
Fig. 5.2.3. The results are compared with reference antenna elements without 
coupling element. From the simulation results, it is found the bandwidth of this design 
can be significantly improved and the isolation can be below -15 dB for 2.4 GHz 
WLAN band.  
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                                  (b) 
   Fig. 5.2.3. (a) Proposed design for isolation bandwidth enhancement. (b) 
Simulated S parameters for the proposed design. 
 

The parametric study is based on the geometry given in Fig. 5.2.3. Referring to Fig. 
5.2.3, the coupling element has two key parameters which we refer to the L1 and L2 as 
labeled on Fig. 5.2.3. We simulate the proposed structure in Fig. 5.2.3 and vary these 
two parameters to understand how to control the structure. For the studies on the 
effect of L1, firstly we fix the value L2 and vary the L1 from 5.3 mm to 5.9 mm. 
Increasing L1 will increase the parasitic inductance. In Fig. 5.2.4, we can observe that 
the position of the maximum isolation shifts to a lower frequency when the L1 
increases. Secondly we fix the value of L1 and vary L2 from 9.1 mm to 8.0 mm. The 
parasitic capacitance between coupling element and antennas will be deceased after 
decreasing L2 length. In Fig. 5.2.4, we can observe that the position of the maximum 
isolation shifts to higher frequency when the L2 decreases. From the result, we can 
notice that both the L1 and L2 have a significant effect on the position of maximum 
isolation. It is found that they control the resonant length of the coupling element and 
shifts the position of maximum isolation in the frequency range. 
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Fig. 5.2.4 Parametric study of the coupling element. 
  

5.3 Simulated and Measured Results 
 
From measurement, the isolation between the two PIFA antennas is -8 dB at 2.45 

GHz for the reference antenna without coupling element. With the proposed coupling 
element occupied between the PIFAs, a maximum isolation below -22 dB for 2.4 GHz 
WLAN band can be obtained. Although there is a slight frequency shift of the S11, this 
effect can be compensated by modifying the antenna length. According to the 
measurement result, it shows that the antenna isolation can be below -15 dB from 2.4 
GHz to 2.5 GHz. 

The FDTD is employed for antenna simulation. In this simulation, the FDTD 
parameters 　Δx = 0.3 mm, Δy = 0.5 mm,　Δz = 0.8 mm, and Δt = 0.8 ps are used. 
Ten layer PML is employed for boundary condition. The simulation is performed 
10000 time step to allow field convergence. The simulated S parameters of FDTD are 
compared with HFSS simulation and measurement results as shown in Fig. 5.3.2. 
From FDTD simulation, -10dB insertion loss and -15dB isolation can be observed 
from 2.4GHz to 2.5GHz.  
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Fig. 5.3.1 Measured S parameters for the reference antenna elements. 
 

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3
Freq(GHz)

-35

-30

-25

-20

-15

-10

-5

0

5

dB

S11_measured
S11_FDTD
S11_HFSS

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3
Freq(GHz)

-30

-25

-20

-15

-10

-5

dB

S21_measured
S21_FDTD
S21_HFSS

 
Fig. 5.3.2 Simulated and measured S parameters of the proposed design with 

isolation enhancement. 
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Fig. 5.3.3 Radiation pattern comparison 

 
To further confirm the performance of the design, the antenna gain pattern is also 

carried out. The measured antenna patterns for exciting port 1 (left Port) at 2.4 GHz is 
shown in Fig. 5.3.2. The peak gain for the reference antenna and the proposed design 
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are -1.93 dB and -2.5 dB, respectively. Although the antenna pattern will be somewhat 
affected with the additional coupling element, the maximum antenna gain can be less 
affected with the proposed design. 

 
5.4 Discussion 
In this paper, a coupling element to enhance isolation for closely packed antennas 

operating at 2.4 GHz WLAN band is proposed. We artificially create an additional 
coupling path by utilizing a coupling element to enhance the coupling between the 
antenna elements. The concept of improving isolation for proposed coupling element 
is discussed. The antenna isolation below -15 dB can be achieved with their spacing 
just 5 mm. The parameters of the proposed coupling element are evaluated to control 
the frequency band of the maximum isolation, peak isolation and the bandwidth of the 
transmission reduction. 
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Chapter 6 
 
Conclusion 
 
  The basic finite difference time domain (FDTD) method including the absorbing 
boundary conditions (ABCs), near field to far field transformation, and lumped 
elements modeling are introduced in Chapter 2. The specific absorption rate (SAR) 
reduction in the human head with metamaterials is studied. The human head model in 
this study is obtained from discretization of the MRI human head model and the peak 
SAR value in the human head is calculated by FDTD method. To study the 
electromagnetic characteristics of metamaterials, the FDTD with Drude model is 
developed. From our study, we find that the placement of metamaterials between the 
antenna and human head can reduce the peak SAR in the human head. The effects of 
medium parameter, placement location, and size of metamaterials on SAR reduction 
efficiency and antenna radiation power are discussed in Chapter 3. The metamaterials 
can be designed at cellular phone operation frequency. In this study, we also design 
split ring resonators (SRRs) to operate at 900 MHz and 1800 MHz. The operation 
frequency of SRR is affected by the structure parameters. The detail of the SRR 
design procedure is also described in Chapter 3. When placing the designed SRRs 
between the antenna and dielectric cube, it is found that the peak SAR in the dielectric 
cube can be reduced significantly. The simulation results of SAR reduction with SRRs 
can validate previous SAR reduction studies by FDTD method with Drude model. 
The developed method for metamaterials simulation can be used for designing and 
studying the electromagnetic characteristics of metamaterials in the future work. The 
SAR reduction with metamaterials can provide helpful information for cellular phone 
design to meet the safety regulation.    
  We also develop the ADI-FDTD method. However, when employing the ABCs for 
ADI-FDTD method, it can cause instability problem. First, the stability analysis of the 
Mur’s first order ABC for ADI-FDTD is investigated. The effect of wave propagation 
direction and different time step size on the stability of this scheme is studied. It is 
found that the Mur’s first order ABC can also lead to instability. The numerical 
dispersion relation of this scheme is demonstrated. Then, we study the stability of 
split-field perfect matched layer (PML) for ADI-FDTD method. The amplification 
matrix of this scheme is derived with considering different PML conductivity profiles. 
From the theoretical analysis and numerical simulation, it is found that the split-field 
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PML for ADI-FDTD method can lead to unstable condition. The effect of the PML 
conductivity profile on this scheme is investigated. We propose the modified PML 
conductivity profile to improve the instability of split-field PML for ADI-FDTD 
method. The ADI-FDTD method can be seen as a second order perturbation of the 
Crank-Nicolson FDTD (CN-FDTD) scheme. The CN-FDTD can remain 
unconditionally stable with PML implementation. The stability of split-field PML and 
unsplit-field PML schemes for ADI-FDTD and CN-FDTD is studied. It is found that 
the PML equations for ADI-FDTD method will be unstable due to the perturbation 
term. The stability studies of CN-FDTD and ADI-FDTD can provide information to 
develop a stable PML scheme for ADI-FDTD in future work.   
 Finally, we use the proposed modified ADI-FDTD PML scheme to study the time 
domain and frequency domain characteristics of VLSI circuits. The multilevel 
crossover of VLSI circuit and high frequency RF inductor are studied. From 
simulation results, it is found that the proposed scheme can model the VLSI circuits 
accurately and efficiently. 
 In this work, a coupling element to enhance isolation for closely packed antennas 
operating at 2.4 GHz WLAN band is proposed. We artificially create an additional 
coupling path by utilizing a coupling element to enhance the coupling between the 
antenna elements. The concept of improving isolation for proposed coupling element 
is discussed. The antenna isolation below -15 dB can be achieved with their spacing 
just 5 mm. The parameters of the proposed coupling element are evaluated to control 
the frequency band of the maximum isolation, peak isolation and the bandwidth of the 
transmission reduction. 
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