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ABSTRACT

A semi-analytical solution for analyzing the tip-off responses of a vehicle moving
along a guideway is developed by considering the dynamic interaction between the
vehicle and the guideway. Accurately determined tip-off responses are important for
designing a launch system for a missile, in which the missile can be treated as the
vehicle in the present study. Two models are proposed to determine those dynamic
responses, namely, R.E. model and E.E. model. In the R.E. model, the vehicle is as-
sumed rigid and its guideway is modeled asa flexible beam, while both of the vehicle
and guideway are modeled as flexible beams in the E.E model:: The inertia, Coriolis,
and centrifugal forces are considered in these' models. The vehicle contacts with its
guideway through two rigid shoes.

Equations for governing the motions of the vehicle and the guideway are devel-
oped using the Lagrangian approach and the modal superposition method, on the
basis of the Euler-Bernoulli beam theory. The governing equations, which are a set of
nonlinear differential equations, are solved by the Petzold-Gear backward differentia-
tion formula numerical method. It takes time lower than the traditional step-by-step
numerical integration methods. Comparisons of the presented solutions with those
based on different published models for the vehicle and guideway reveal the advan-
tages of the present approach.

The solutions are further employed to investigate the effects of the length of the

guideway, distance between the shoes of the vehicle, and mass and rigidity ratios of

ii



the vehicle to the guideway on the tip-off responses of the vehicle. The results pre-

sented herein provide valuable information for designing vehicle launch systems.

keywords: moving load; moving beam model; Lagrangian approach; mode superpo-

sition; tip-off effect.
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CHAPTER ONE

Introduction

1.1 Background and Motivation

In real designs of all vehicle launch systems, one of the main concerns is to mini-
mize the transverse motions of the vehicle, which can be a missile, moving along its
guideway, especially when the vehicle takes off. In the field of control engineering, a
vehicle and its guideway are typically modeled as rigid bodies for the tip-off analy-
sis. Although such medeling is quite simple and easily used, it:.does not consider the
dynamic interactions between the vehicle and its guideway. Toreduce the transverse
motions of the vehicle; it is important to accurately consider the vehicle acting forces
and the associated vehicle-guideway interactions during the launch phase.

At present, much research has been devoted to the structural dynamic analysis of
a flexible flight vehicle, whereasuntil now there has been no investigated study for
vehicle launch system design considering the vehicle and guideway as flexible bod-
ies in real applications. The bending flexibilities of vehicle and guideway can have
a remarkable influence on the behaviors of the vehicle as it leaves the guideway of
launcher, and hence on the resulting accuracy of control. The responses of the ve-
hicle at take-off significantly affect its flight control, and accurately determining the
responses of the vehicle in the tip-off phase is crucial. The motivation of this study is
to develop an analysis method to efficiently and accurately study dynamic behaviors

of a vehicle-guideway system with time-dependent constraints between the vehicle



and the guideway.

1.2 Statement of the Problems

When a vehicle moves along the guideway, the vehicle is mainly subjected to thrust,
inertia, and gravity forces, and two phases can be identified (see Fig. 1.1). Before
the front shoe of the vehicle loses contact with the guideway, the vehicle is in a two-
shoe contact phase (see Fig. 1.1). The vehicle rotates with respect to its rear shoe
when its front shoe loses contact with the guideway, and this phenomenon is known
as tip-off. When the vehicle exhibits tip-off, it is referred to as being “in the tip-off
phase” (see Fig. 1.2). In the published literature;such a vehicle and its guideway are
typically modeled as rigid bodies for the tip-off analysis, the model is not sufficiently
accurate to present the real behaviors of the vehicle. In real applications, the mass of
the launched vehicle substantially exceeds that of its guideway, and both of the vehicle

and the guideway are flexible.

Figure 1.1: A typical vehicle launch system in a two-shoe contact phase.



Figure 1.2: A typical vehicle launch system in a tip-off phase.

It is very important to accurately determine the behaviors of the vehicle When the
vehicle excessively moves in the transverse direction during take-off, it is very possible
that the vehicle collidesiwith the guideway system. When the velocity of a vehicle
is too low to develop the aerodynamic force forcontrolling its attitude or direction
during the tip-off phase, its control fins can not function well, and the balance between
the aerodynamic and other forces do not yet reach a stable state. Therefore, the control
fins must be locked during the initial trajectory, and the initial flight conditions, which
mainly result from the behaviors of the vehicle in the tip-off phase, must be accurately

determined.

1.3 Literature Review

The dynamic responses of a beam subjected to a moving vehicle (or structure) have at-

tracted the attention of researchers for a long time. An excellent state-of-the-art review
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is given by the subcommittee on vibration problems associated with flexural member
on transit systems [1]. The moving vehicle is often modeled as a moving force, a mov-
ing mass, a moving oscillator (also called a sprung mass model) or a moving beam.
Modeling as a moving force is the simplest and oldest approach, which neglects the
interaction between the vehicle and the beam [2-6]. Research work on this topic can
be traced back to the 19" century [2]. Timoshenko [3] derived numerous approximate
solutions to the problem of a simply-supported beam under moving loads. Ayre et
al. [4] studied the transverse vibrations of a two-span beam under a moving constant
force. The moving force model is well known to apply only to the case in which the
mass of the moving vehicle is much smaller than that of the beam, and only when
the dynamic responses of the moving vehicle are not of interest. N. Sridharan et al.
[5] presented a numerical.analysis of vibration of beams subjected to moving loads.
Numerical results obtained for the-case of a constant force ' moving over a uniform
simply supported beam have been compared with those obtained by using the analyt-
ical method. Hamada [5] has been presented a method , based on the double Laplace
transformation, for dynamic analysis of a simply supported and damped Bernoulli-
Euler uniform beam of finite length subjected to_the action of a moving concentrated
force. K. Henchi et al. [6] developed an exact dynamic stiffness element under the
frame work of finite element approximation is presented to study the dynamic re-
sponse of multi-span structures under a convoy of moving loads.

A moving mass model is a simple model that to some extent accounts for the in-
teraction between the dynamic interaction between a moving structure and a beam
[7-11]. The model was first proposed by Jeffcott [7] in 1929. Stanisi¢ [8] employed
the Fourier technique to investigate the responses of beams to an arbitrary number of
concentrated moving masses. Akin and Mofid [9] presented a numerical solution by
using the separation of variables technique to analyze the dynamic responses of an
Euler-Bernoulli beam to a moving mass. Their solution scheme was very simple and

can be used to determine the responses of beams under various boundary conditions.



Cifuentes [12] presents a combined finite element/finite difference technique to deter-
mine the response of a beam excited by a moving mass. The technique introduced
herein is based on a Lagrange Multiplier formulation that allows one to represent the
compatibility condition at the beam/mass interface using a set of auxiliary functions.
This approach can be easily adapted to a standard finite element code. Michaltsos
et al. [13] studied the linear dynamic response of a simply supported uniform beam
under a moving load of constant magnitude and velocity by considering the effect of
its mass. They highlighted the importance of considering the effect of the load mass.
As the ratio M /ml (moving mass/mass of beam) increases, depending on the velocity,
the ratio wy, /wp (displacement of moving mass/displacement of load because of mov-
ing force) can increase considerably. Lee [14] studied the equation of motion in matrix
form for an Euler beam acted upon by a concentrated mass moving at a constant speed
is formulated by using the Lagrangian approach and the assumed mode method. Lee
[15] also analysed extensively the-transverse vibration of a Timoshenko beam acted
on by an accelerating mass and compared with the corresponding behaviour of a Tim-
oshenko beam subjected to an equivalent moving force neglecting the inertial effects
of the mass. The effects of prescribed values of constant acceleration or deceleration
of the moving mass on the deflection under the moving mass, as well as the contact
forces, are investigated. Michaltsos.[16] also studied the linear dynamic response of
a simply supported elastic single-span beam under a moving load of constant magni-
tude and variable velocity, with an emphasis on the effect of acceleration or deceler-
ation on the behaviour of the beam under a single load, or an actual vehicle model.
Dehestani et al. [10] showed that it is necessary to consider the Coriolis acceleration
associated with a mass moving along a vibrating beam. Wu [11] examined the effects
of the inertial, Coriolis, and centrifugal forces induced by non-coupled moving masses
on the dynamic responses of an inclined simply-supported beam. Further, Fryba [17]
compiled a book containing descriptions of almost all studies on the vibration of solids

and structures under a moving load.



A moving oscillator model includes mass, springs and dampers to capture the
real dynamic characteristics of a moving vehicle. It is more complicated than a mov-
ing mass model [18-20]. Biggs [18] presented a semi-analytical solution to the prob-
lem of a sprung mass moving on a simply-supported beam. Using a series expansion
technique, Pesterev et al. [19] examined the responses of an elastic continuum to mul-
tiple moving oscillators. Yang et al. [20] proposed a vehicle-bridge interaction element
(VBI) to investigate the vibrations of simply-supported beams during the passage of
high-speed trains.

The vehicle-bridge interaction dynamics has been also extensively studied for ap-
plication to high-speed railways [21-28]. In particular, Yang et al. [21] investigated
the vibration of simple beams during the passage of high-speed trains. Cojocaru et al.
[27] studied the vibrations.of an elastic bridge loaded bya second elastic beam moving
with a constant speed. Zhang et al.-[24] proposed a space model for train carriages and
introduced a dynamic analysis for-train-bridge interaction. Delgado and dos Santos
[22] modeled the railway bridge-vehicle interaction on high-speed tracks.

Unlike a moving oscillator model, which treats a moving vehicle as a discrete sys-
tem, a moving beam model considers a vehicle as a continium and represents it as a
beam. Cojocaru et al. [27] first studied the vibrations of an elastic bridge loaded by a
second elastic beam that moved along the bridge at a constant speed. The vehicle was
assumed to be connected to the bridge by means of a rigid interface. The quasi-static
deformation of the bridge was obtained through the Laplace transform, while the dy-
namic responses of the bridge were determined via the Galerkin method. Delgado and
dos Santos [22] modeled the railway bridge-vehicle interaction on high-speed tracks.
The action of railway traffic on bridges is considered as a set of moving masses, being
the effects of the moving forces and masses implied. Zhang et al. [29] investigated
the dynamic responses of a simply-supported beam on which was moving an elastic
beam at a constant speed using the modal superposition method. The model consisted

of two Euler-Bernoulli beams that were connected by flexible springs at two points, so



that the interactive forces between the simply-supported beam and the moving beam
were easily found from the relative deflection of the two points. A small rotation an-
gle in rigid body motions was assumed. They developed a set of linear differential
equations for the motions of two beams. Sreeram et al. [30] employ the Lagrangian
multiplier technique to develop a h-p version finite element model for a certain class
of dynamics problems. Variational principle is the basis of this formulation with es-
sential conditions applied via Lagrangian multipliers. The example considered here is
a problem of a beam moving over supports. Lagrangian multiplier implementation of
the problem with finite element technique, is very effective compared to other global
methods such as assumed mode technique. Kim [31] investigate the vibration and
stability of an infinite Bernoulli-Euler beam resting on a Winkler-type elastic founda-
tion when the system is subjected to a static axial force and a moving load with ei-
ther constant or harmonic amplitude variations. Chen et al. [32] investigates dynamic
stability in transverse parametric-vibration of an axially accelerating viscoelastic ten-
sioned beam. The beam is described by the Kelvin model, and the Galerkin method is
applied to discretize the governing equation into a infinite set of ordinary-differential
equations under the fixed-fixed boundary conditions. Fungef al. [33] studied a flexible
beam slides in and out of the rigid‘'wall. The equations of motion for a deploying beam
with a tip mass are derived by using Hamilton’s principle. Four dynamic models: Tim-
oshenko, Euler, simple-flexible and rigid-body beam theories are used to describe the
axially moving beam.

All of the aforementioned studies mainly focused on the dynamic responses of
beams and were applicable to the design of railroad tracks, railroad bridges, and high-
way bridges. Relatively few studies focused on the dynamic behaviors of a vehicle,
such as a missile, when the vehicle moves along the guideway, which can represent a
launcher system (see Fig. 1.1). Analyses of various aspects of flexible vehicle behav-
ior in free flight or with time-dependent constraints have appeared frequently in the

literature. The interaction between the vehicle and its guideway differs considerably



between the two-shoe contact phase and the tip-off phase, and the vehicle displays
very different behaviors. Consequently, the corresponding dynamic responses of the

vehicle have to be modeled in these two phases.

1.4 Objectives, Approach and Research Coverage

Because the responses of the vehicle at take-off significantly affect the flight control
of the vehicle, accurately determining the responses of the vehicle in the tip-off phase
is crucial. This study applied the models of rigid vehicle and rigid guideway (R.R.
model) [34], rigid vehicle and elastic guideway (R.E. model) [35], and elastic vehicle
and elastic guideway (E.E. model).[36] for tip-offanalysis of the vehicle at take-off.

In the R.E. model, the vehicle and the guideway are:modeled as a rigid free-free
beam and an inclined elastic simply-supported beam, respectively. The flexible guide-
way is assumed to be Euler-Bernoulli beam. The vehicle is connected to the guideway
through two points of contact, which are considered to be rigid connections, so that
their dynamic responses are the same during vehicle take-off. The equations of motion
for the vehicle and its guideway, in terms of functions of the configuration coordinates
and time, are established via the Newton’s second law based on the free body diagram
of the vehicle with appropriate displacement constraints.

In the E.E. model, the guideway is modeled as an inclined simply-supported uni-
form flexible beam, and the vehicle is treated as a flexible free-free beam under a
pre-specified thrust force. Equations for governing the motions of the vehicle and
the guideway are developed using the Lagrangian approach and the assumed mode
method, on the basis of the Euler-Bernoulli beam theory. The governing equations
take into account the inertia, Coriolis, and centrifugal forces that are induced by the
vehicle as well as the dynamic interaction between the vehicle and its guideway. Table
1.1 summarizes the comparisons among the three models.

To solve for the governing equations in the R.E. model and E.E. model, a modal

superposition technique is adopted to convert the governing equations, which are

8



nonlinear partial differential equations, into a set of nonlinear first-order differential
equations with time as the independent variable. Then, the Petzold-Gear backward
differentiation formula (BDF) numerical method [37] is employed to solve these first-
order differential algebraic equations (DAEs). The proposed solutions are validated by
comparing the results with published results obtained from models of a rigid vehicle
on a rigid guideway. The effects of the length of the guideway, distance between the
shoes of the vehicle, and mass and flexural rigidity ratios of the vehicle to the guide-
way upon tip-off of the vehicle are thoroughly studied. The results presented here

provide valuable information for designing vehicle launch systems.

1.5 Dissertation Outline

The contents of the dissertation are organized as:

Chapter 1 describes the relevant literature review, the motivation and main pur-
poses of the work.

Chapter 2 presents the R.R. model and re-develops solutions for the governing
equations of the model. The equations of motion of the vehicle are derived by New-
ton’s second law. The pitch angle and the pitch rate of the vehicle in this model were
directly determined from the displacement and velocity of the vehicle at the points of
two shoes.

Chapter 3 proposes the R.E. model and develops solutions for the governing equa-
tions of the model. Equations for governing the motion of the the guideway is derived
by taking into account equations for the influences of the inertia force, Coriolis force,
and centrifugal force induced by the vehicle as well as the dynamic interaction be-
tween the vehicle and its guideway, on the basis of the Euler-Bernoulli beam theory
and the assumed mode method. Notably, the pitch angle and the pitch rate of the ve-
hicle in this model were indirectly determined from the displacements and velocity of
the guideway at the points of contact with the two shoes of the vehicle.

Chapter 4 proposes the E.E. model and develops solutions for the governing equa-

9



tions of the model. The equations of motion for the vehicle and the guideway are de-
veloped using the Lagrangian approach and the assumed mode method based on the
Euler-Bernoulli hypothesis. Notably, the pitch angle and the pitch rate of the vehicle
in this model were directly determined from the displacements and velocity of two
shoes of the vehicle.

Chapter 5 shows the conclusions of the present study and suggestions for the

future studies.
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CHAPTER TWO

A rigid vehicle moving along an inclined
rigid guideway

2.1 Theory and Formulation

Figure 2.1 schematically depicts a typical guideway foraunching a vehicle. The
guideway is considered as an inclined fixed rigid beam, while the vehicle is regarded
as arigid beam moving along the guideway under the action of a predetermined thrust
force. This model is referred as R.R. model and the derivation of these formulas is

based on Yao and Zhang [34].

Figure 2.1: A typical rigid guideway used for rigid vehicle launch.

12



The vector of thrust is assumed to be along the vehicle’s centerline (C.L.) and
always coincides with the line joining the two contact points (see Fig. 2.1). While the
vehicle moves, the two shoes of the vehicle are assumed to slide along the guideway
by means of a rigid contact. The thrust force, P(¢) in Fig. 2.1, acting on a vehicle is
predetermined in real applications. A typical real thrust-time curve is shown in Fig.
2.2. An ideal thrust-time curve in the design is obtained from full scale ground tests

for a vehicle booster.

80000.00 —

60000.00 —
3
g 40000.00 —
=
—

20000.00 —

0.00 ! \ \ \ \
0.0 2.0 4.0 6.0 8.0 10.0
Time (s)
Figure 2.2: A typical real thrust-time curve.
P(t),

P’ITLCLI """"""" 4
'
1

~V

tb tR

Figure 2.3: A typical thrust-time curve to simulate.
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In order to simplify the analyses conducted in this work, we considered a simpli-
fied thrust-time curve given in Fig. 2.3, where ¢, is the thrust build-up time. Normally,
the time for the thrust force reaching a steady state is about 100 ms in real design. P,
is the value of P(¢) in the steady state; ¢t and ¢y are the times when the vehicle front
shoe and rear shoe lose contact with the guideway, respectively. The term ¢y is called
the tip-off time. Between ¢ty and ¢y, vehicle tip-off occurs.

When such a vehicle moves along a guideway, the vehicle is mainly subjected
to the thrust, inertia, and gravity forces, and two different phases can be specified,
namely, two-shoe contact phase and tip-off phase. In the two shoe contact phase (cor-
responding to 0 < ¢ < ¢, in Fig. 2.3), the two shoes of the vehicle contact with the
guideway, while in the tip-off phase (corresponding to ¢, < ¢t < ¢, in Fig. 2.3), only
the rear shoe contact with.the guideway.

From the typical thrust-time curve in Fig. 2.3 and the design parameters of a
vehicle and its guideway, one can easily find the position ((¢)and velocity ((t) of the
rear shoe (see Fig. 2.1), and ¢y and ¢z can be easily determined. Consequently, one is

able to identify in which phase the vehicle is at a particular moment.

2.2 Two-shoe contact phase

e When 0<t <1, :

Based on the aforementioned assumptions and the relationship of geometry in

Fig. 2.1, the equations of motion of the vehicle can be written as

myC(t) = P(t) — mygsin O (2.1)

myii(t) = —R(t) — F(t) + m,g cosfg (2.2)

14



JO=F(t)(d—d,)— R(t)d, (2.3)

where m, and J denote the mass and the mass moment of inertia of the vehicle; d
denotes the distance between the front and rear shoes of the vehicle; d, is the distance
between the rear shoe and the center of gravity of the vehicle; 0 is the angle of incli-
nation of the guideway; ¢ is the gravitational acceleration; F'(t) and R(t) represent the
moving loads of the contact points at front shoe and rear shoe, respectively. Assume
the system is initially at rest.

From the thrust-time curve. in Fig. 2.3 and the design parameters of the vehicle

and its guideway, integrating Eq. (2.1) yields ¢(t), ((t) and () as follows.

((t) = Trll (szt — my,gsin 0E> (2.4)
((t) = Trll (%ﬁ - m,gsinfp - t) +¢(0) (2.5)
C(t) = ”}L (Pg;”t?’ — %mvg sin 0z - t2) +¢(0) -t + ¢, (2.6)

¢(0) is the initial velocity of the vehicle and ((0) is the x coordinate from the rear shoe

of vehicle to the left end of the guideway. When the system is initially at rest ¢(0) = 0
and g(O) = (g

When ¢ = t,, the thrust reaches steady state, and ((t,) and ((t,) are given in Eqs.
(2.7) and (2.8), which are obtained from Egs. (2.5) and (2.6).

15



é(tb) =— (Pﬂ;au’l? — Myg sin 6)E) (27)

2
g(tb) — t_b (Pma:c _ %mngiDQE) + CR (28)

My 6

These values are the initial values of the two-shoe contact phase when thrust force is

in steady state.

Before the tip-off phase, the relative motion and rotation in y -direction and pitch
direction are zero respectively. ;As-a-result, the reaction forces /() and R(t) between

the vehicle and guideway can be obtained from Egs. (2.2) and (2.3),
dl
F(t) = — Mg co8 Ok (2.9)

R(t) = (d%‘ldl> Myg coS O p (2.10)

The reaction forces F'(t) and R(t) are constant before the tip-off phase of vehicle.
o When t, <t<t,:

When the thrust reaches steady state, two shoes of the vehicle are still constrained

by the guideway. The motion of vehicle is governed by,

((t) = ! (Praz — mygsinfg) (2.11)

v
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Integrating Eq. (2.11) and employing ¢(t,) and ((t,) as the initial conditions yields

C(t) = — (Prge — mypgsinfg) - (t —t,) + C(t,) (2.12)
(1) = 5 (P = magsind) - (1 = 6,2+ C(8) - (£ ) + () (213)

When t = ¢, just before a vehicle moves into the tip-off phase, ¢(¢,) and ((t,) of

the vehicle can be obtained from Egs. (2.14) and (2.15) given in the following,

C(tp) = WlL (Prae — Mg 8i0p) - (Le=-ty)t é(tb) (2.14)
() = 5 (Pt g S8 (b )2+ G0, B+ (1) (2.15)

When ((t,.) = (,, and the distance ¢, between the front shoe of vehicle at¢ = 0
and the right end of guideway is predetermined in real application. Substituting ((¢,.)
into Eq. (2.15), one can-determine ¢,. from Eq. (2.16) when the front shoe of vehicle

loses contact. Then, substituting:¢,. into Eq. (2.14), one finds ¢ (t,.) of vehicle.

My

t,=t 7
r ’ maz — Myg sin GE)

[\/g + - C - C( )] ( maz — Myd sin QE) - é(tb) (216)

2.3 Tip-off phase

e When t, <t<t,:

17



Figure 2.4 presents the diagram of a vehicle and a guideway at ¢, <t <t,, when
the rear shoe remains in contact with the guideway but the front shoe of the vehicle
does not. Since the front shoe of the vehicle has lost contact with the guideway, the

constraint on displacement, given in Eq. (2.9), vanishes.

Figure 2.4: Motion of vehicledn tip-off phase:

When the vehicle is leaving the guideway at ¢ =, the velocity and position of

vehicle are ((t,) and ((t,) respectively. Using Eqs. (2.12) and (2.13) one finds

é_(tR) T (Praz — mygsinbg) - (t, —t,) + é(tb) (2.17)
g(tR) = 27,1,1 (Pmam — Mg sin QE) ' (tR - tb)Q + é(tb) ' (tR - tb) + C(tb) (218)

When ((t,,) = (. +d is predetermined in real application, one can find ¢,, from Eq.
(2.19) by substituting ((t,) into Eq. (2.18). Then, substituting ¢, into Eq. (2.17) gives
C(t).

18



My

Praz — mygsin0g)

e

When ¢, <t <t,, the motion of vehicle is governed by

tR:thr

C(tb) + d] (Pmax — Myg sin QE) - C(tb> (219)

m0C(t) = Praw — mug sin [ + 0(0)] (2.20)

Myii(t) = Prgs sin @adin, g cos [HE + é(t)] L R(t) (2.21)

JO(t) = —R(t)d: (2.22)
where

0(t) : The pitch angle ofwehicle.

7 (t) : The pitch acceleration of vehicle:

Since 6(t) is very small, cos [0 + 0(t)] ~ cosfr and sin6(t) ~ 6(t). Because y = d,0(t)
and ¢ = dlé(t) , Egs. (2.21) and (2.22) can be simplified as

Mpd,0(t) = Praa0(t) — myg cos O + R(t) (2.23)

. [mvdlé(t) 4 mygcosfp — Prasd(?)] d, (2.24)
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Arranging Egs. (2.23) and (2.24) one obtains the second order linear differential

equation shown as follows,

(J +myd?) @(t) — Prazd, 0(t) = —mygd, cos O (2.25)
Denoting
2 _ Prazd, _ —my,gd, cosfg
J+myd J +myd’

and substituting A and B into Eq.(2.25) yield,

o(t) — A0(t) = B (2.26)

It is easy to find the general solution of Eq. (2.26)

Q(t) — C’l . eA(t—tp) > 02 \ e_A(t_tF) - (227)

The constants of C, and C, can be determined from the initial conditions for the ve-
hicle. One is able to determine ¢ = ¢, from Eq. (2.16). Notably, the front shoe of
vehicle loses contact with the guideway at ¢t = ¢, and 0(¢,.) = 0 and @(t ») = 0. Then,

C, = C, = ;5; are obtained. Substituting C, and C, into Eq. (2.27), one obtains

i BT ag—ey | -t

o) = 53 [e P) 4 e~ Alt=te 2} (2.28)
00e B Alt—t ) —A(t—t,.)

Q(t) = ﬂ [6 F/—e F :| (229)
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Substituting the tip-off time of vehicle ¢, determined from Eq. (2.19) into Egs.
(2.28) and (2.29), the pitch angle 6(¢,,) and the pitch rate é(t ) of vehicle are obtained,

respectively. They are

_ B _ At
at,) = he [eA(tR tp) 4 e Altg—tp) _ 2] (2.30)
- B _ At —
0(t,) = oA [eA(tR tr) — o= Alg tF)} (2.31)

2.4 Numerical examples and parametric study

The parameters of the vehicle launch system considered herein are listed in Table 2.1.
Based on the formulations given in preceding sections, it is easy to determine ¢, =
0.5136 sand ¢,, = 0.6876 s. Figures 2.5 and 2.6 depict the variations of pitch angle and
pitch rate of the vehicle with time, respectively. The minimum pitch angle and pitch
rate of the vehicle on the rigid guideway are —2.0953° and’ =24.794° /s, respectively.
The vehicle maintains ainiform rotational acceleration with respect to its rear shoe
when the front shoe loses contact with the rigid guideway. The slope of the pitch rate
with respect to time should be constant when the motion has a uniform rotational
acceleration. Accordingly, one finds a nearly straight line in Fig. 2.6.

The responses of the vehicle at take-off significantly affect its flight control, and
accurately determine the responses of the vehicle in the tip-off phase is crucial. The-
oretically, a launch system should be designed to minimize the pitch angle and pitch
rate of a vehicle at tip-off with consideration of space requirements in the launch sys-
tem. In the following, we are going to investigate the effects of some parameters, such
as inclination angle and length of guideway and the distance between two shoes of a

vehicle, on the pitch angle and pitch rate of vehicle at tip-off time.
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Table 2.1: Parameters of the vehicle launch system.

Parameters Design value of launch system

0, 0.5 rad
My 1.6 x10% kg
J 4.7 x103 m*
d 3.7 m

d, 25 m

Cn 0.1 m

Cp 42 m

i, 0.1 s
Prax 7.0 x10* N
¢(0) 0.0 m/s
At 0.0001 s

0.00

025 t, =0.5136 s
-0.50
-0.75
-1.00
-1.25

-1.50

Pitch angle of vehicle (o)

-1.75

-2.00
t, =0.6876 s

-2.25 I I I I I I I I I
0.52 0.54 0.56 0.58 0.60 0.62 0.64 0.66 0.68 0.70

Time (s)

Figure 2.5: Pitch angle 6 — ¢ of vehicle on rigid guideway.
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0.00
t, =0.5136s
-2.50
-5.00
-7.50
-10.00
-12.50

-15.00 -

-17.50

Pitch rate of vehicle (°/s)

-20.00

-22.50 -

t, =0.6876 s

-25.00 I I \ \ I I I I I
0.52 0.54 0.56 0.58 0.60 0.62 0.64 0.66 0.68 0.70

Time (s)
Figure2.6: Pitch rate . — ¢ of vehicle on rigid guideway.

2.4.1 Influence of angle of inclination of guideway

The force component in the transverse direction of the moving loads decreases when
the angle of inclination @, of the guideway increases. Although an increase in 6, de-
creases the tip-off of the vehicle, it also reduces the initial speed of the vehicle before
take-off. The initial speed of the vehicle strongly affects the tolerance of a flight control
system. Therefore, the angle of inclination of the guideway has to be carefully selected
when one designs a launch system.

Using the parameters listed in Table 2.1 , we varied 6, from 0.0 rad to 1.0 rad and
computed the corresponding pitch angle and pitch rate at ¢, (see Figs. 2.7 and 2.8). As
mentioned before, the inclination angle of the guideway affects the vehicle speed and
the transverse force acting on the vehicle before take-off. The larger the angle of incli-
nation 6, of the guideway is, the lower is longitudinal acceleration of vehicle before its
take-off, and the smaller is the transverse force acting on the launched vehicle. When

the longitudinal acceleration of vehicle decreases, the time interval ¢, — ¢, increases,
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-1.40

-1.60

-1.80

-2.00

Pitch angle of vehicle (°)

-2.20

-2.40 I I I \ I ] I I I
0.0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0

Angle of inclination of guideway (rad)

Figure 2.7: Effect of angle of inclination on pitch angle of vehicle (6 — 0, diagram).

-16.0

-20.0

-24.0

Pitch rate of vehicle (°/s)

-28.0 I I I I I I I I I
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Angle of inclination of guideway (rad)

Figure 2.8: Effect of angle of inclination on pitch rate of vehicle (é — 0, diagram).
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this is disadvantageous because this increases the time of the vehicle tip-off phase.
While, increasing the inclination angle of the guideway decreases the transverse force
acting on the vehicle, which is desirable to reduce the tip-off response. Consequently,

it is not easy to determine an appropriate inclination angle of the guideway.

2.4.2 Influence of length of guideway

An increase in the length of guideway raises the speed of vehicle during take-off and
reduces the time interval ¢, —¢,, in the tip-off phase. This is highly useful for decreasing
the dynamic responses of a vehicle. To investigate the effect of the length of guideway
on the pitch angle and pitch rate of a vehicle moving on the guideway, we changed
L from 4.0 m to 12.0 m and used the other parametets listed in Table 2.1 to compute
the corresponding pitch angle and pitch rate at ¢, and the results are shown in Figs.
2.9 and 2.10. As expected, as the length of the guideway increases, the values of pitch

angle and pitch rate of vehicle at tip-off time are gradually decreased.

0.0

-2.0

-4.0

-6.0 -

-8.0 4

Pitch angle of vehicle (°)

-10.0

-12.0 T T T T T T T
4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0

Guideway length (m)

Figure 2.9: Effect of guideway length on pitch angle of vehicle (§ — L diagram).
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-10.0

-20.0

-30.0

-40.0

-50.0

Pitch rate of vehicle (°/s)

-60.0

-70.0 T ] T T T T T
4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0

Guideway length (m)

Figure 2.10: Effect of guideway length on pitch rate of vehicle (5 — L diagram).

Although Figs. 2.9 and 2.10 indicate that the increase of the guideway length
decreases of the tip-off pitch angle and pitch rate of vehicle, the guideway length has
to be determined carefully not only by considering the wanted tip-off pitch angle and
pitch rates of vehicle but also by fitting the spacelimits in launch systems. Normally,

the length of a guideway is slightly greater than that of a vehicle.

2.4.3 Influence of distance between shoes of vehicle

Figures 2.11 and 2.12, respectively, depict the variations of the pitch angle and pitch
rate of vehicle at the tip-off time with the distance between shoes of a vehicle. The
range of the distance between shoes of a vehicle is between 2.6 m to 4.8 m. A decrease
in the distance between the shoes of a vehicle leads to a decrease in the time interval
of the tip-off phase. That is, the time interval ¢,, — ¢, corresponding to the two shoes

losing contact with the guideway decreases. However, this situation could cause stress
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Pitch angle of vehicle (o)
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|

-5.0 T T T T T
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Distance between shoes of vehicle (m)

Figure 2.11: Effect of distance between the shoes of the vehicle on pitch angle of vehicle (§ — d

diagram).

-15.0

-20.0

-25.0

-30.0

Pitch rate of vehicle (°/s)

-35.0

-40.0 T \ \ \ \
2.8 3.2 3.6 4.0 4.4 4.8

Distance between shoes of vehicle (m)
Figure 2.12: Effect of distance between the shoes of the vehicle on pitch rate of vehicle 6—d

diagram).
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concentration in the guideway and unstable behaviors of the vehicle. Some other prob-

lems may also arise, and those are beyond the scope of this study.
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CHAPTER THREE

A rigid vehicle moving along an inclined
flexible guideway

3.1 Mathematical modeling behaviors of a guideway

Similar to Fig. 2.1, a schematic of a typical straight guideway used for a vehicle launch
is shown in Fig. 3.1, in which the guideway is not assumed rigid. The launch system is
considered as an inclined simply supported uniform elastic beam, whereas the vehicle

is still regarded as a rigid beam. This model is referred as R.E. model.

Figure 3.1: A typical flexible guideway used for rigid vehicle launch.

During the motion of the vehicle, the two shoes of the vehicle are assumed to

slide along the guideway by means of a rigid contact. The thrust vector is assumed
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to be along the vehicle’s centerline (C.L.) and it always coincides with the line joining
the two contact points. The vehicle and the guideway are considered to be two free
bodies in Fig. 3.2. The typical displacement relationship between the vehicle and its

guideway is shown in Fig. 3.3.

Figure3:2: Free-body diagrams of a vehicle and its guideway.

Figure 3.3: Typical displacements of vehicle and its guideway:.
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3.1.1 Position history of vehicle

As mentioned in Chapter 2, two phases exist with the vehicle during take-off, i.e.,
the two-shoe contact phase and the tip-off phase. From the typical thrust-time curve
shown in Fig. 2.3 and the design parameters of the vehicle and its guideway, one can
easily find the position of the rear shoe, ((¢) (see Fig. 3.2), ¢, and t, by using the

formulas for ((t), t, and ¢, given in Chapter 2.

3.1.2 Two-shoe contact phase

The vibration of the guideway is modeled as a simply supported Euler-Bernoulli beam
with viscous damping and is subjected to given initial conditions and specified bound-
ary conditions. Let ' and R denote the moving loads of the contact points (see Fig.
3.2). Assume small deformations for beams, and the governing equation of transverse

vibrations can be given by the following partial differential equation:

o*w (z,1) —|—pA82w (x,t) 4 ow(w, t)

Bl
Dt oL Tt

= RO (2, C) + F6 (my + d) (3.1)

where w (z, t) is the transverse displacement of the guideway; £/, the constant flexural
rigidity of the guideway; pA; theimass per unit length'of the guideway; ¢, the damping
coefficient per unit length; 0 (.), the Dirac delta function; and R¢ (z,¢) + Fo (z,{ + d),
an external force acting on the guideway because of the motion of the vehicle in the
two shoe contact phase.

Based on the aforementioned assumptions and the relationship of geometry in

Fig. 3.3, the transverse displacement y of the vehicle can be expressed as

_— d1 (d - dl)
J="¥rt (7 Vn (3.2)

where d denotes the distance between the shoes of the vehicle; d, is the distance be-

tween the rear shoe and the center of gravity of the vehicle. For simplicity, y,, = w((,?)
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and y, = w(¢ + d,t) denote the displacements of the two shoe contact points in the
y-direction, respectively, when the vehicle is moving along the deformed guideway.

The pitch angle 6 of vehicle can be obtained by

n__ Yer — Ypr
g=tr—dn (3.3)

Accordingly, the equations of motion of the vehicle can be written as

myy = —R— F +m,gcosf, (3.4)

JO=d R—(d—d,)F (3.5)

where the overhead dot(+) denotes the differentiation with respect to time ¢; m, de-
notes the mass of the vehicle; J is the mass moment of inertia of the vehicle; ,, presents
the angle of inclination of the guideway; and g is the gravitational acceleration.

Ditferentiation Egs. (3.2) and (3.3) twice with respect to time ¢ yields

. dy (d—d, ).

y= et 0 la (3.6)
n yF - yR

0 = T (3.7)

Substituting y from Eq. (3.6) into Eq. (3.4) results in

d,  (d—d,)
F=_— hat'§ 1
R+ mv{dyF+ 7

QR} + myg cos b, (3.8)

Substituting 0 from Eq. (3.7) into Eq. (3.5) results in

R:

8= 4] 09

1
d,
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Substituting R from Eq. (3.9) into Eq. (3.8), we have

(d_dl
d

. d
J(yp yR) + (d _ dl)F:| +F =—m, |:_1yF + )QR —|—mngOSQE (3.10)

1
d, d d
Solving for R and F in Egs. (3.9) and (3.10), we obtain

F=m,(gr, + hi, — Ji,) (3.11a)

R=m,(gr, — J3ij, + J1§,) (3.11b)

where r,, r,, Ji, Jo, J3, and g are constants defined as follows:

r, = "l r, = 7 J1 = 2 T,
_ 2 / : g/="gcosf 12
Jo vd2—|—7"1 Jg—mvd2+r2 g/=gcost, (3.12)

The expressions (§,, ¥,), (Qy;C 4 2y;§ ), and (y;;éQ, yggz) denote the acceleration
of the inertia force, Coriolis force, and centrifugal force, respectively, at the shoes, at
the rear and front contact points; ¢ denotes the velocity of the moving vehicle in the

local z-direction (see Fig. 3.2); the prime (') denotes the differentiation with respect to

coordinate x. Because y, = w((,t) and y, = w((+d,t), y, = azigit)' Ve = agwa(gf;d’t)r
y! = FuCh and o = ZwlCrdd)

The equations of the contact load between the vehicle and its guideway are de-
rived by taking into account the effects of the inertia force, Coriolis force, and cen-
trifugal force of the moving vehicle. Equations (3.11a) and (3.11b) can be rewritten as

follows:
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R =m, {97“2 — Js (yR +2¢ ¢+ yj;é’Q) + (QF +2y ¢+ y;’@)} (3.13a)
F=m, {grl 1 (i + 20,8+ 938) = I (G + 20,6 + yzéz)] (3.13)
In order to obtain the approximate solution of the coupled system of equations,

the transverse displacement of the guideway, w (z,t), can be expressed as the super-

position of the normal mode, shown as follows:

w(z,t) =Y ¢i(x)Yi(t) ; 0<t<t, (3.14)

where ¢, (z) denotes the ith mode of the guideway, satisfying the boundary conditions,
and Y; () is the generalized coordinate corresponding to the ith mode. The modes of
natural vibrations of a simply supported homogeneous beam can be easily found and

are given as follows:

¢; (x) = sin (f;x) (3.15)
where 3} = w? - %, BiL = im; L is the length of the guideway; w; is circular frequency

of the ith vibration of the guideway [38].
Substituting Egs. (3.13), (3.14), and (3.15) into Eq. (3.1), multiplying both sides of
the equation by ¢, (x), and integrating with respect to = from 0 to L, we obtain the

following expression:

Y; () + 26w;Yi(t) + wiY; (t)

om, [ (inC al . N :
= pAL gr, sim T - émz’j}/j (t) - ¢cij}/j (t)

j=1 j=1
N .
d
=6, Y; (1) + gr, sin {@]} (3.16)
j=1
Then, Eq. (3.16) can be rewritten as
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N

Vi) + oy Y 9,75 (8) + 26wiYi(1)

=1
N ' N
DI ACEN AOEY NP ACELe] (3.17)
=1 =1
where p,, = 2 p, = 228 and Q,, @, @, and @, are expressed as follows:
Q, =p,{7T,sin i + 7, sin M (3.18)
1 L L
: : ) :
¢ .= {Jg sin (%) — Jysin {MT—F) }sin <%)
. (I . |7 (C+d L alim(C+d
— {J1 sin (jTC) = Jysin [‘#} } sin [%} (3.19a)

e, = % {J3 Cos (‘%) —_J; cos []_'” <<L+ d)} } sin (%)

2jm¢ 76 gr €+ ad)] | [ir (€ +d)
— T {Jl COS (T) — JQ COS [T:| } Sin [T} (319b)

Q= (%)2 { — Jssin <‘%> + J; sin {‘&;d)] } sin (%)
i (%) | {Jl o (%) Ifi {jw (CL+ d)] } sin {_m (<L+ d)] (3.190)

Wherei:l, 2,..,N and j=1,2,..,N

Because the system is initially at rest, the guideway’s initial velocity and acceler-
ation are zero. Hence, the initial conditions are Y; (0) =0, Y; (0) =0, ¢ =0, and
®,,, = 0. Application of these initial conditions leads to the initial displacement Y; (0)

k

of the guideway because of the static load of the vehicle is

vi(0) = { sin (”f) 47, sin {M} } (3.20)
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3.1.3 Tip-off phase

When the front shoe loses contact with the guideway, F' reduces to zero in the tip-off
phase. The vehicle and guideway can be considered as two free bodies shown in Fig.

3.4.

Figure 3.4: Free-body diagrams of vehicle in tip-off phase.

In the tip-off phase, Eq.(3.13b) equal to zero

*

F*=m, [gnul (i + 20,8 +25C?) = o (yF+2y;<'+yj;<'2)]=o (3.21)

Therefore,

} [grl + (z'JR +24,C + yﬁ@)*} (3.22)

(i +20.+ 01 ) =
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Substituting (yF + 29, ¢+ yg@)* from Eq.(3.22) into Eq.(3.13a) results in

* J1+ T, - - A ni2\*
R =m, (IT) [g - (yR +2¢,.C + y;@) } (3.23)
2

The transverse vibrations in the guideway can be expressed as

0w (z,t) Pw (x,t)  Ow(x,t) .
In the tip-off phase, we set
N
= ¢ ()Y ()t <t < t, (3.25)
i=1

Hence, by using a procedure similar-to-that described above, we obtain

Vi () + 26w Y7(E) + o Y (@)

goin (T L g = 3" 3.26
gsin L Z mw] Z CUJ Z ka ( )

J=1 3

Then, Eq. (3.26) can be rewritten as

N
Y (t) + 0, Z Y (t) + 26w Y (1)

j 1
>s< * * * * * ot ZT‘-C
+ 03, Z Y )+ wiY(t) + o, Z 7 Y/ (t) = p; sin (T) (3.27)
where Py = W—;ZM; = vaﬁ(,i;+r2) nd Qr, e @:ij, and (IDZZ_J_ are expressed
as follows:
Q' = psin (%) (3.28)
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®* =sgin (ﬂ) sin (iWC (3.29a)

”4) (3.29b)

o\ 2
« _ famC\ . (JmC\ . [imC
(Dkij = — (T) Sin <T> Sin (T) (329C)

These equations are subject to the continuity conditions Y;* (0) = Y; (¢,.) and Y;* (0) =

Y; (t,), i.e., the displacements and velocities of the guideway are continuous.

3.2 Calculation of dynamic response of guideway

It should be emphasized that Egs.(3:17) and (3.27) represent a-set of coupled second-
order differential equations. Equations (3.17) and (3.27) can berewritten in the form

of a matrix, as follows:

MY + CY +KY = Q (3.30)

where

Here, Y is a generalized coordinate; Y, a generalized velocity; Y, a generalized
acceleration; Q, a generalized force; M, a generalized mass matrix; C, a generalized

damping matrix; and K, a generalized stiffness matrix.
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In the two-shoe contact phase, expanding Egs.(3.17), (3.18) and (3.19), yields the

following M, C, and K
]‘ + pM @mll
pM @m21
M =
L pM @le

251"'-)1 + P C

JN

pM¢cN1

w? + Py P,

Par P

Par Loy

pM@mIQ pM@mlN
]‘ + pM(bm22 pM®m2N
pM(PmN? 1+pM(DmNN_

c

ParPra
wg + pM¢k22

w? + 0y P,

Prs Pina

39
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In the tip-off phase, expanding Eqgs.(3.27), (3.28) and (3.29), one obtains the follow-

ing M*, C*, and K*
14,8,
P P
M* =
P P

C*

)

W2+ py,

*
k21

P ®

K*

*
¢kN1

P

*
k11

Pr®l Pr iy
140, % P Loy
1+ p;, @7
P L+ p;, 9%,

*
pM c1N

X
'OM 2N

2€nwn + pM (I):NN

pM q)k12 pM(I)ZlN
w; + pM(I)Zm pM(I);N
w? + Y q)Zij
pM(I):Nz wJQV + pM(I)ZNN_
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The differential-algebraic system technique was used to obtain numerical solu-
tions of these equations. Eq. (3.30) was transformed into a system of first-order differ-
ential equations in the state space form by taking time as an additional variable. The
procedure of the same is described below.

Suppose that at time ¢, the generalized coordinate is Y = [Y1, Y, ..., Yy]T. We set a
group of functions Z = [Z1, ..., Zn | Zni1, .- Zon]t = [Zy, | Z4)" with time-dependent

variables and assume that they have the following relationships:

Y =7, (3.31a)

Y =Z, (3.31b)
Hence,

Zw = Z4 (3.32)
At the same time, we define a set of function G = [Gy,....Gx | Gni1,...,Gon|T =

(G, | G4]* related to time ¢ as follows:

Gy =2, —Z4 (3.33)

Equation (3.30) is expanded to N independent equations, and they can be trans-

formed into a system of first-order differential equations as follows:

Gy=MZ,+CZ;+KZ, — Q (3.34)

Hence, Egs. (3.33) and (3.34) can be rewritten as

41



[G]ngl

I 01 .17
- Y
O M 2N x1
! 2N xX2N
T
01 —I T 02
+ [z] _ (3.35)
K C 2N x1
2N x2N 2N x1

where O, is an N x N zero matrix, O, is an N x 1 zero matrix, and I is an N x N unit
matrix.
Then, solves a first order differential-algebraic system of equations, G(t, Z, Z) = 0,

using the Petzold-Gear BDF method.

3.3 Modelling the dynamic responses of vehicle at tip-off

If the dynamic responses of the guideway, w (z;¢),w (z + d, t), w(x,t),and w (x + d, t),
at any time ¢ corresponding to the two phases are determined, the dynamic responses
of the guideway at any position z can be obtained. Using these results, we can formu-
late the tip-off dynamic responses of the vehicle. The needed equations are summa-

rized as follows:

e For ¢t = 0: The system is initially at rest.

The position displacement of the guideway, w (z, 0) is given by

N : _ : .
w(z,0) = Zsin (?) p%:zi]z {7“2 sin <Z7T[§R) + 7, sin {M} } (3.36)

=1

The displacement of the vehicle’s center of gravity, y (0) is given by
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y(0) =r,w (¢, +d,0) +r,w ((,,0)

N _ : . 2
2m, , d :
= 2 pﬂig {rl sin [%] + 7, sin (%) } (3.37)

The pitch angle of the vehicle, § (0) is determined by

. [in(, . [im (¢, +d)
. {TQ sin ( i3 ) + 7, s1n |:—L :| } (338)

eForO<t<t,:

The position displacement of the guideway, w ((, t) is given by

N
w (¢, t) = Zcbi (C) Yult)
N _ . | .
= Z % {r2 sin (%) +r, sin {M} } sin (%) (3.39)

The displacement of the vehicle’s center of gravity, y (), is

y (t> = g<0) +rw (C +d, t) +r,w (ga t)

N _ ) ) 2
= Z —pQIZZi? {7’1 sin {—m (g’z+ d)} -+ 1, sin <ZWI§R) }

P35 e [T (2
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Then, the velocity of the vehicle’s center of gravity, y (), is

y(t)=rw(C+dt)+ryuw((t)
-3 e [ (5 L a1

=1

The pitch angle of the vehicle, 6 (¢), is

6(t)=0(0)+ = [w(g‘—i—d,t)—w(g,t)]

N . .
+ é { o [M] g d <”TL(O> } Y; (1) (3.42)
The pitch rate of the vehicle, 0 (t),1s

o -]

1
d
N , ,
= é Z {sin {M} — sin (%) } Y; () (3.43)
i=1
eFor t, <t <t,:

In the vehicle tip-off phase, the front shoe loses contact with the guideway, while
the rear shoe of the vehicle remains to move along the guideway. The vehicle is sub-

jected to the thrust force, inertia force, Coriolis force, and centrifugal force. The vehicle
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rotates with respect to its rear shoe. The free-body diagram of the vehicle (see Fig. 3.4)
shows that its center of gravity is subjected to the gravitational acceleration, and its
rear shoe is subjected to the acceleration (g’jR + 2y, ¢+ Y ¢ 2) in the y-direction. The

equations of equilibrium for the vehicle body are

Z F,=m, [g - (QR + 2y;é + yg@) } = mya, (3.44a)
ST M, = 16" = d,mya, (3.44b)

Hence, the rotational acceleration of the vehicle with respect to its rear shoe is defined

as follows:

F)sin (%) + QZZC hos (”f) (1)

} (3.45)

From the continuity of the displacements and wvelocities of the guideway in the

_ ") 4
~ hd g_;

two phases, we can obtain the continuity conditions/¥;*(0) = Y;(¢,) and Y;* (0) =
Yi(t,).
The pitch angle of the vehicle, §* (), is obtained by

+ QZZQ COS (2724)

Then, the pitch rate of the vehicle, 0 (1), is
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3 V7 (¢) sin (%)

L (54) v - (%) (5 vt >] } (t—t,) (47)

The rear shoe displacement of the vehicle, y7 (1), is

é(tF>+le{gZ

yh () =w(( t) = quz Y, (3.48)

The displacement of the vehicle’s center of gravity, y*(¢), is given by

- (%>n (%) Y:(t)] } (Y% (349)

The velocity of the vehicle’s center of gravity, y* (¢), is given by

g (1) =, (1) + d,0" (t)

é (m<> )+d1é(tF)+;_i{g§: [W@Sm (%)
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3.4 Numerical validation and examples

3.4.1 Case 1: Displacement of contact points between vehicle and guideway

0.00

A-1.OO n \

n
o
S
!
Z

@
o
S
\
2

»
o
S
!
g
N

500 |~ Present \ p
©-0-0 Wu [11]

Transverse displacements under moving
concentrated mass (mm

'600 I I T I i I I I I
0.00 0:10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Axial coordinates of moving concentrated mass (/L

Figure 3.5: Time histories of transverse displacements under simulated moving concentrated

mass.

We first considered a simply-supported horizontal undamped beam subjected to
a moving concentrated mass, which was studied by Wu [11] using the moving mass
element. The concentrated mass m = 21.8 kg is assumed to move from the left end to
the right end of the beam with a constant speed V' = 27.49 m/s. The size and physical
constants of the uniform undamped beam are as follows: a rectangular cross-section
with width b = 0.018113m and thickness h = 0.072322 m; total length, L = 4.352m;
mass density, p = 15267.1756 kg/m?; Young’s modulus, F = 2020.797216 x 10®* N/m?;
At = 0.001s; and £ = 0.005. Although the solution proposed in this study is for
the dynamic analysis of an inclined flexible guideway with a moving rigid vehicle,

it can be used for a horizontal beam if the angle of inclination of the guideway is
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considered to be close to zero. Furthermore, the distance between two contact points
(two shoes of the vehicle) is set close to zero (1 x 107 m) to simulate the single moving
mass problem. Figure 3.5 shows a comparison of the time histories of the transverse
displacement of the contact point of the moving mass obtained by Wu [11] and those
obtained in this study. The figure shows that the difference between the results is

negligible.

3.4.2 Case 2: Comparison between tip-off results of rigid and pseudo-rigid guide-

ways

We analyzed a rigid vehicle moving on a inclined rigid beam here. We assumed the
flexural rigidity of the guideway to be 1.2 X 10" N - m? to simulate a rigid guideway
in the solutions given in this chapter; this value is equal to that of a pseudo-rigid
guideway. The parameters listed in Table 3.1 were used. Figures 3.6 and 3.7 depict
the pitch angle and pitch rate of vehicle in the tip-off phase, respectively. The figures
also show the results by Yao and Zhang [34], who ignored both the Coriolis force
and the centrifugal force in their analyses: For comparison, the results obtained from
the present approach shown in Figs. 3.6 and-3.7 also neglected the Coriolis and the
centrifugal forces. Someresults at particular time are also listed in Tables 3.2 and 3.3.
The present results are somewhat different from those of Yao and Zhang [34]. The
results of Yao and Zhang [34] may not be accurate enough. The vehicle maintains
its uniform rotational acceleration with respect to its rear shoe when the front shoe
loses contact with the rigid guideway. Hence, the slope of the pitch rate with respect
to time should be constant when the motion is a uniform rotational acceleration. A
nearly straight line is obtained from the present approach, while the results of Yao and

Zhang [34] clearly deviate from a straight line.
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Figure 3.6: Comparison of pitch angles-# — ¢ of vehicle on pseudo-rigid (PR.) guideway and

rigid guideway.
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guideway.

49



Table 3.1: Parameters of the vehicle launch system.

Parameters Design value of launch system
EI 1.2 10N - m?
pA 1.5 x10% kg/m

13 0.03

L 8.0 m

0, 0.5 rad

My 1.6 x103kg
J 4.7 x10° m*

d 3.7 m

d, 25 m

Cr 0.1 m

Cr 42 m

t, 0:1 s
Prax 7.0 x10* N
(0) 0.0 m/s
At 0.0001 s

Table 3.2: Comparison of pitch angles for pseudo-rigid guideway and rigid guideway.

Pitch angle of vehicle (?)

Time (s) PR. Rigid
0.5136 / —7.6262E=08" —7.5517E — 08
0.5250 —8.6705E = 03 = —8.6716E — 03
0.5500 —8.8755E — 02 —8.8872F — 02
0.5750  —2.5273FE — 01 —2.5367F — 01
0.6000  —5.0059FE — 01 —5.0431F — 01
0.6250 —8.3234E — 01 —8.4263F — 01
0.6500 —1.2480E + 00 —1.2712E + 00
0.6750  —1.7475E +00 —1.7931E + 00
0.6876  —2.0311E+00 —2.0928FE + 00
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Table 3.3: Comparison of pitch rates for pseudo-rigid guideway and rigid guideway.

Pitch rate of vehicle (°/s)
Time (s) PR. Rigid
0.5136 4.5025EF — 03 4.5025F — 03

0.5250 —1.5256E + 00 —1.5260E + 00
0.5500 —4.8812FE +00 —4.8940F + 00
0.5750  —8.2367E + 00 —8.2984F + 00
0.6000 —1.1592E +01 —1.1765E + 01
0.6250 —1.4948E+01 —1.5318E +01
0.6500 —1.8303& + 01,, —1.8986E + 01
0.6750+ © =21609E 401 —2.2795F + 01
0.6876 « —2.3350F + 01 —2.4778Ek + 01

3.4.3 Case 3: Behavior of rigid vehicle on elastic guideway

After confirming the correctness of the presentsolutions, we further applied the solu-
tions to study the behaviors of a rigid vehicle on a flexible beam. The parameters of
the vehicle launch system used in this case are listed in Table 3.1.

In this test example, we obtained the time interval'of the tip-off phase; this started
att, = 0.5136 sand ended at ¢, = 0.6876 s. Figure 3.8 shows the transverse displacement-
time graph of the center of gravity of the vehicle. It shows that the position of the
center of gravity of the vehicle tends to move upward before the tip-off phase. Figure
3.9 shows the transverse velocity-time graph of the center of gravity of the vehicle.

After the front shoe of the vehicle loses contact with the guideway, the constraint
force acting on the shoe suddenly vanishes. Figure 3.9 shows an abrupt variation in
the vertical velocity of the center of gravity of the vehicle in the initial tip-off phase.
Although the transverse velocity of the center of gravity of the vehicle varied abruptly,
the transverse displacements of the center of gravity of the vehicle were not obvious.

The pitch angles as well as the pitch rates for the two guideway models were com-
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Figure 3.8: Transverse displacement of vehicle’s center of gravity.
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Figure 3.9: Transverse velocity of vehicle’s center of gravity.
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Figure 3.10: Comparison of pitch angles of vehicle on elastic guideway and rigid guideway.
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Figure 3.11: Comparison of pitch rates of vehicle on elastic guideway and rigid guideway.
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pared with those obtained from the rigid guideway model in the previous section, as
shown in Figs. 3.10 and 3.11. As shown in Figs. 3.10 and 3.11, the computed minimum
pitch angles of the vehicle on the elastic guideway and rigid guideway are —2.6060°
and —2.0953°, respectively; the corresponding minimum pitch rates are —30.556°/s
and —24.794°/s.

The tip-off analysis results indicate that the vehicle vibrates excessively at approx-
imately 0.6 s when the tip-off phase begins. This vibration is because of the dynamic
interaction of the rear shoe of the vehicle and the elastic guideway when the front
shoe of the vehicle loses contact with the guideway. In addition, the behavior of the
dynamic interaction between the vehicle and the guideway cannot be observed and
computed using the rigid guideway model. ‘Therefore, the elastic guideway model

has to be used for this purpose.

3.5 Parametric study

This study aims to investigate the motion of a vehicle on an elastic guideway before
the take-off phase as well as the initial movement at the end of the phase. Therefore,
in the parametric study, we focused on the effect of the dynamic interaction between a
vehicle and its guideway on the tip-off analysis results of the vehicle. For this purpose,
we determined the transverse displacement of the center of gravity, pitch angle, and
pitch rate of the vehicle. For the parametric study, we used the nominal values of
the parameters listed in Table 3.1. We estimated the values of parameters such as the
damping ratio £, angle of inclination ¢, length of guideway L, and distance between
shoes of the vehicle d, and used L and d for the tip-off analysis. We performed a series

of numerical simulations; the obtained results are shown in the graphs below.
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3.5.1 Influence of damping ratio of guideway

The results obtained in this study clearly indicate that the damping ratio of the guide-
way £ is sensitive to the analysis results, and the value of { is approximately less than
0.01. However, when ¢ is greater than 0.01, the dynamic responses of the vehicle tend
toward becoming linear.

According to the parameters listed in Table 3.1, we selected four different values
for the damping ratio of the guideway, £ = 0.00 , 0.01, 0.03, and 0.05, in order to
analyze the tip-off effect. Figures 3.12, 3.13, and 3.14 show the obtained results. We
compared these results with those obtained for the rigid guideway model in the pre-
vious section. As indicated by the.time history.plots, with a larger damping ratio,
the response to high-frequency variations reduces.more sharply in the tip-off phase.
Moreover, the dynamic response obtained for the elastic guideway model was 20%
greater than that obtained for the rigid guideway model. The results of the simulation
are listed in Table 3.4. For £ = 0.03, the differences in the transverse displacement
of the center of gravity, pitch angle, and pitch rate are 24.40%, 24.37%, and 23.24%,
respectively.

We selected 1000 sets of ¢ values ranging from 0.00 t00.06 in this study. Figures
3.15, 3.16, and 3.17 show the dynamic responses of-the vehicle with changes in the
damping ratio. When ¢ is greater than 0.01; the dynamic response of the vehicle tends
toward becoming linear. Therefore, it would be preferable to select an appropriate
guideway material or heavily damped guideways to minimize the dynamic response

when designing launch systems.
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Table 3.4: Comparison of dynamic responses between elastic guideway model with different

damping ratios and rigid guideway model.

Case. 7 (m) % 9 (°) % b (°/s) %
Rigid guideway —8.0231E —02 —  —2.0953E400 —  —24794E+01  —
& =0.00 —9.4929F — 02 18.32 —24787TFE +00 18.30 —2.9082FE + 01 17.29
£=0.01 —1.0086F — 01 25.71 —2.6337E +00 25.70 —3.0867FE + 01 24.49
£=10.03 —9.9806F — 02 24.40 —2.6060FE +00 24.37 —3.0556F + 01 23.24
& =10.05 —9.8314F — 02 22.54 —2.5670FE +00 22.51 —-3.0114F+01 21.46

3.5.2 Influence of angle of inclination of guideway

The force component induced ‘in the transverse direction by the moving loads de-
creases when the angle of inclination 6, of the guideway increases. Although an in-
crease in the value of ¢, is advantageous in that it minimizes the dynamic responses
of the launched vehicle, it also leads to a decrease in the initial speed of the vehicle
before take-off. The. initial speed of the vehicle will affect the tolerance of its flight
control system. Therefore, the angle of inclination of the guideway has to be carefully
selected when designing a launch system.

According to the parameters listed in Table 3.1, weselected 1000 sets of 6, values
ranging from 0.0 rad to 1.0 rad in this'study. Figures 3.18, 3.19, and 3.20 show the ob-
tained results. We compared these results with those obtained for the rigid guideway
model in Chapter two. As mentioned before, the angle of inclination of the guideway
affects the vehicle speed and the transverse force acting on the launched vehicle be-
fore take-off. In other words, the larger the angle of inclination 6, of the guideway,
the lower is the take-off speed and the smaller is the transverse force acting on the
launched vehicle. When the take-off speed of the launched vehicle decreases, the time
interval ¢,, — ¢, increases. This is disadvantageous because this decreases the vehicle
tip-off effect. However, increasing the angle of inclination of the guideway may de-

crease the transverse force acting on the launched vehicle; this is advantageous in that
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it reduces the dynamic interactions between the vehicle and its guideway. The figures
indicate that when the angle of inclination @, increases, the differences between the
dynamic responses for the two models decrease. In other words, selecting the angle of

inclination of the guideway is difficult.

3.5.3 Influence of length of guideway

An increase in the length of the guideway will help increase the speed of the vehicle
during take off. Further, the time interval ¢, — ¢, of the tip-off phase corresponding
to the two shoes of the vehicle losing contact with the guideway will decrease. This is
highly useful for decreasing the dynamic responses of the vehicle.

According to the parameters listed in Table 3.1, we selected 1000 sets of L values
ranging from 4.0 m to 12.0 m to investigate the results of the variation of the tip-off
effect. Figures 3.21, 3.22, and 3.23 show the obtained results. We compared these

results with those obtained for the rigid guideway model in Chapter two. Obviously,
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as the length of the guideway increases, the results of the tip-off effect analysis of the
rigid guideway model tend to decrease smoothly.

Although the analysis results of the elastic guideway model exhibit a similar be-
havior, they fluctuate along the cutves of the rigid guideway model. The disturbance
of this phenomenon is particularly.evident in the analysis of the pitch rate. Although
the results indicate that the increase in the guideway length decreases the dynamic
interaction because of the tip-off effect, the guideway length has to be selected care-
tully considering the fluctuation in the results and the space limits of certain launch
systems. In most cases, the length of the guideway must be limited to satisfy the space
requirements of a launch system. Normally, the length of the guideway is slightly

greater than that of the vehicle.
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3.5.4 Influence of distance between shoes of vehicle

According to the parameters listed in Table 3.1, we selected 1000 sets of d values rang-
ing from 2.6 m to 4.8 m to investigate the effect of d on the tip-off responses. Figures
3.24,3.25, and 3.26 show the transverse displacement, pitch angle and pitch rate of ve-
hicle varying with d, respectively. We compared the results with those obtained from
the rigid guideway model described in Chapter 2. Obviously, the larger the distance,
the more dynamic is the response in the tip-off phase of the vehicle. The dynamic re-
sponse obtained from the elastic guideway model was 30% greater than that obtained
from the rigid guideway model. The differences in the vertical displacement of the
center of gravity, pitch angle, and pitch rate at d .= 2.8706 m are 30.96%, 30.82%, and
31.35%, as shown in Table 3.5. The influence of the distance between the shoes on the
maximum difference of the vehicle’s dynamic response are computed to be 3.0170 cm
for the transverse displacement of the center of gravity, 0.7888° for the pitch angle, and
6.7160° /s for the pitch rate‘at d = 4.4 m, as shown in Table 3.5.

A decrease in the distance between the shoes of the vehicle leads to a decrease in
the time interval of the tip-off phase. That is, the time interval ¢, — ¢, corresponding
to the two shoes losing.contact with the guideway decreases..However, this situation
could cause stress concentration in the guideway andunstable behavior of the vehicle.
More problems may arise, and these need.to be investigated. However, this is beyond

the scope of this study.

3.5.5 Influence of Coriolis force and centrifugal force

A launch system should be designed by considering two important factors: the mass
of the vehicle and the length of the guideway. Generally, the time interval of the take-
off phase of a heavy vehicle is less than 1, and the speed of the vehicle is around

30m/s before take-off. When the vehicle is moving along a deformed guideway at
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Table 3.5: Effect of distance between the shoes on maximum difference in dynamic response of
vehicle.
d(m) Guideway g (m) % 9 (°) % 9 (°/s) %
2.8706 Rigid —4.4018F — 02 — —1.1495E + 00 — —1.8009F + 01 —
Elastic —=5.7647FE — 02 30.96 —1.5038F 400 30.82 —2.3654F +01 31.35
4.2830 Rigid -1.1597E —01  —  —3.0287TE4+00 —  —3.0368E+01  —
FElastic —1.4561F — 01 25.56 —3.8032E +00 25.57 —3.7084F +01 22.12
4.4238 Rigid —1.2621F — 01 — —3.2961EF + 00 — —3.1846F + 01 —
Elastic —1.5638E — 01 2391 —4.0845FE 400 23.92 -—-3.8196F+01 19.94
4.4304 Rigid —1.2671E — 01 - —3.3091F + 00 - —3.1916E + 01 —
Elastic —1.5688E — 01 23.81 —4.0979E +00 23.84 —3.8246F +01 19.83
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the abovementioned speed, the behavior of dynamic interactions should be studied
by considering the effect of the Coriolis force and centrifugal force. According to the
parameters listed in Table 3.1, we analyzed the tip-off effect of the vehicle under the
action of the Coriolis force and centrifugal force. In this test example, the dynamic
interaction was not significant. Figures 3.27, 3.28, and 3.29 show the results of the tip-
off effect analysis. The figures indicate that the dynamic response under the action of
the Coriolis force and centrifugal force is approximately 2.0% greater than that in the
absence of these forces. The differences in the transverse displacement of the center of
gravity, pitch angle, and pitch rate are 2.02%, 2.02%, and 1.95%, as shown in Table 3.6.

Dehestani et al. [10] and Wu [11] showed that it is important to consider the Cori-
olis force and centrifugal force associated with a high-speed vehicle moving along a
vibrating guideway. Generally,in the interest of accuracy, the take-off attitude of a
vehicle should be precisely comptited. Therefore, if would be preferable to consider

the effects of the Coriolis force and centrifugal force in the formulations.

Table 3.6: Effect of Coriolis and centrifugal forces on dynamic response of vehicle.

Case. 7 (m) % 0 (°) % 0 (°/s) %
C1 —9.7830F — 02 — —2.5543F + 00 2 —2.9971F + 01 —

C2 —9.9806FE —02 2.02  =2.6060£+00 202 —3.0556E+01 1.95
C3  —99016E —02 1.21 —2.5834E4+00 1.22 -3.0305E+01 1.11
C4 —98453E—-02 0.64 —2.5706E+00 0.63 —3.0174E+01 0.68

3.5.6 Influence of guideway length and distance between the shoes

According to the parameters listed in Table 3.1, we selected d values ranging from
2.4 m to 5.0 m and L values ranging from 6.0 m to 10.0 m, to investigate their effects

on the tip-off responses. Figures 3.30 and 3.31 show the results of the pitch angle and
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pitch rate analysis of'the vehicle. From the contour lines, we can easily select a set of

optimum parameters for designing launch systems.
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CHAPTER FOUR

A flexible vehicle moving along an in-
clined flexible guideway

4.1 Theory and Formulation

Similar to the development of solutions in Chapters two and three, Fig. 4.1 schemat-
ically depicts a typical straight flexible guideway that is used for launching a flexible
vehicle. This model is referred as E.E. model. While the vehicle moves, the two shoes
of the flexible vehicle are assumed to slide along the elastic guideway by means of a
rigid contact. The vector of thrust is assumed to be along the vehicle’s centerline (C.L.)

and always coincides with the line joining the two contact points.

Figure 4.1: A typical flexible guideway used for flexible vehicle launch.
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4.1.1 Position history of vehicle

As mentioned in Chapter 2, two phases exist when a vehicle moves along a guideway,
i.e., the two-shoe contact phase and the tip-off phase. From the typical thrust-time
curve shown in Fig. 2.3 and the design parameters of the vehicle and its guideway,
one can easily find the position of the rear shoe, ((¢) (see Fig. 4.2), tr and ¢y can be
easily determined to identify the particular phase with which the vehicle is associated

at each instant. The formulas for ((¢), t and tp are given in Chapter 2.

Figure 4.2: Free-body diagrams of a vehicle and its guideway.

4.1.2 Two-shoe contact phase

The dynamic response of the vehicle can be split into two parts, i.e., the elastic defor-
mation and rigid body motion, known to be completely uncoupled. The equations
of motion and relevant boundary conditions can be derived using the Lagrangian ap-

proach. The kinetic energy and potential energy of the vehicle and the guideway are
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1 1 ) . 1 -2

K, = - / wv + (w, ) dzi 4+ =m, (;if + QTQ) +=J60, (4.1a)
2/, 2 2
1

K, = 5/ g Agw d:BQ (4.1b)
1 L

V, = 5/ E’ I, w Pw )dml —l—/ PuAyg cos Opw,dx,

+ (mygsinbg) T, + (myg cos ) g, 4.1c)

1 [F p

‘/g = 5 nggwgzdxg (41d)

0

where subscripts (,,) and () refer to the vehicle and the guideway, respectively; the
overhead dot (-) and the prime (') denote differentiation with respect to time ¢ and
coordinate z, respectively; /K and V' are the kinetic energy and the potential energy, re-
spectively; £ is the constant flexural rigidity; pA represents the mass per unit length;
J is the mass moment.of inertia of the vehicle; ¢ (#) denotes thewvelocity of the vehicle
in the local z,-direction; z, (¢) is the axial coordinate of the vehicle under rigid body
motion in the fixed coordinate system z3O0sys; ¥, (t) is the transverse displacement of
the vehicle under rigid body motion, and 4, (t) is the angle of rotation of the vehicle
under rigid body motion. The transverse elastic displacements of the vehicle w, (1, t)
and the guideway w,(z2,t) are described-as-functions of the axial coordinates z; and
x5, respectively.

The two shoes of the vehicle are assumed to slide along the elastic guideway by

means of a rigid contact. Hence, the corresponding constraint equations are

w (dRa t) = wg (C? t) (42&)

w (dp,t) = w, (C+d, 1) (4.2b)

where dy is the distance between the left end and the rear shoe of vehicle; dr is the

distance between the left end and the front shoe of vehicle, and w (dg,t) and w (dp, t)
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are the total transverse displacements at the rear shoe and the front shoe of the vehicle,
respectively. These displacements w (dg,t) and w (dp,t) comprise a rigid part and an
elastic part.

The transverse elastic displacements of the beams can be expressed in terms of

their normal modes as,

N
wy (21,8) = Y bj (1) Y} (1) (4.3a)
wy (2,1) = Z by (z2) Y7 (1) (4.3b)

where Y (t) and Y/ (t) are the generalized coordinates corresponding to the jth mode
of the vehicle and guideway, respectively; ¢; (z,) and ¥; (x2) denote the jth mode
shape functions of the vehicle and guideway, respectively.

The vehicle is modeled as a beam with two free ends, and itsmode shape functions

¢; (x1) are [38]

¢; (z1) = cos (By;x1)+ cosh (B,;x1) — L |'si(B,;21) + sinh (ﬁvjxl)l (4.4)

where j =1,2,...,. N

4 wz, . )OvAv e cos (61)ij> — cosh (ﬁ’uij>
v) V] EU[U ) J Sin (BUJLU) — Sinh (ﬁUij)

9 6ijv ~ (] + %) ™ (45)

wy; is the circular frequency of the jth mode of the vehicle, L, is the length of the

vehicle.

The guideway is modeled as a simply-supported beam whose mode shape func-

tions are

) , =12 ., N (4.6)



where L, is the length of the guideway.

The motions of vehicle and guideway have to satisfy Lagrange’s equations,

% {8£(q, 4, t)} _0L(a,q,1) 0, k=1,2..N (4.7)

aq, dq,

where functional £, which depends on the generalized coordinates ¢, and velocities
q,, represents the difference between the kinetic energy and the potential energy of a
conservative dynamic system. To account for the displacement constraints equations
in Eqs. (4.2) (w (dg,t) — w, (¢,t) = 0 andw(dp,t) — w, (¢ +d,t) = 0), extra terms
are added to functional £ usingthe Lagrange multiplier method. Accordingly, the
Lagrangian functional £ with the Lagrange multipliers Ay and )\, is further expressed

as,

L= (K,+ Ky) (Vo + Vy) + MGi+ 0,

- /0 " |3 (0, +-co07)

=1

1 Lo "IN 1 _fLa a :
+ 5/ PgAg (Z wjy}g> dy — 5/ Bl (Z %’ Y?) d
0 j=1 0 j=1
1 LU N 1 v 2 ! v 2
_5/0 Z{Evlv <¢>ij) —P(quyj) }dml
j=1

Ly N
— / PoAygcosbp Z ¢; Y dry — (mygsinbg) T, — (mygcosbg) g,
0

j=1

2

1 4 . 1 - 2
d$1 + émv (i'r2 + gr2> + §J0r

N

Z@ (dr)Y; + y(dr,t) = > i(

Jl Jj=1

qu] (dp)Y} +y(dp, 1) Z (C+ad)Y,

+ A (4.8)
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T, (t) = C (t) + rid cos b, (t) (4.9a)
y (dg,t) = 9, (t) — ridsind, (t) (4.9b)
y(dp,t) =7, (1) + rodsinf, (1) (4.90)

G1 = w(dr,t) —wy (¢, 1)

=z

Z o;(dp) Y} (t Z Ui QY () + g (t) — ridsind, (¢) (4.9d)
Go = w(dp,t) —wy (¢ + d, 1)
N

- Z i (dp)YP(t Z Ui (C+ d)YS(t) + g (t) + radsin 6, (t) (4.9¢)

=

r = (dg—dgr)/d; ro = (dp —dg) /d; y (drst) and y.(d o, t) denote the transverse displace-
ments of the vehicle’s rigid body motion at the rear shoe and front shoe, respectively,
and G; and G, are the displacement constraints. The two unknowns \; and A, can be
obtained if Lagrange’s equations are solved with the constrained equations. Notably,
no damping is considered in the preceding formulations.

Substituting Eqgs. (4.2), (4.3), (4.4) and (4.6) into Eq.(4.8), and substituting the re-

sulting expression for L into Eq. (4.7) yield

MyZy (1) + mygsinp —P(t)= 0 (4.10a)
myYy (t) +mygcosfp — A\ — Ay =0 (4.10b)
Jér (t) + (1M1 — roXg) dcos b, (t) — mygridsinfgsin, (t) = 0 (4.10¢)

HEVE (8) 4+ G (0) 4+ (w2 HE o+ LCHE + CHE + CHE) Y (1)

- 14 [Al@(dg) + )\gqﬁi(dp)] + gcosfpHY =0 (4.10d)
V7 (t) + W;‘Y{q (t) + i [)\ﬂ/}i (C) + Xt (C + d)] =0 (4.10e)
Zcp, dr)Y;(t ij Y7 (t) + §r (t) — rdsin, (t) = 0 (4.10f)
Z o;(dp)Y(t) — Z Ui (C+ d)YI(t) + 3 (1) + radsinf, (£) = 0 (4.10g)
j=1 j=1
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where, i = 1,2,..., N, my = p,A4L,, wy is the circular frequency of the ith mode of the

guideway, 34 = w? - 292 3L, = ir, and (see Appendix A.1)

9i " Eyly’

Ly

oy = RECALICALA
= g | (0 1) cosh (L) i (L) = 2 cos? (L)
+2(Y7 + 1) sin (BuiLy) cosh (BuiLy) + 284 Lo
—47Y; sin (B4 L,) sinh (8, L) (4.11a)
A= [ Gie)o oo

0

= % (Tf + 1) cosh? (ByiLy) — Ly cosh (B Ly ) sin (Byi Ly) — 2
— Y cosh (Byi L) sinh (By; L,) + Y5 sit(Busley, )sinh (B, L) (4.11b)
~ Ly "
= [ ol anadgie,

— lﬁm. [ (Tf o+ 1) cosh (Byilz) sinhi( 8L, )< 2X; cosh? (B L.,

2
~ L’U
Hid = ¢i($1)dl’1
0
- BL |:Sin <5WLU) + sinh (ﬁva) - Tz cosh (61)@1411) (411d)

To include the effect of damping in the system of the vehicle and the guideway,
an approach that is commonly used in structural dynamics (Clough and Penzien [39])
is adopted to add the distributed viscous damping term to Eqgs. (4.10d) and (4.10e).

These equations are thus modified as,

HEVE (1) + (2 H? + 26w HE) V2 (8) + (w3 HY + LoCH

vt 2

+CPHE + 5?[5) Y2 () — ; 1,4 {Ald)i(dR) + A2¢i(dF)] + gcosOpHY =0 (4.12a)
VI (1) + 2§gwgi3>;g (t) + wgiy;'g (t) + mi {Alwi (C) + Aot (C + d)] =0 (4.12b)
g

where 2¢,w,; and 2§,w,; are the added damping terms, and &, and ¢, are the damping

ratios corresponding to the mode shapes ¢;(x;) and v;(z3), respectively.
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Equations (4.10a-4.10c, 4.10f, 4.10g) and (4.12) form a set of nonlinear ordinary
differential equations for describing the rigid body motions of the vehicle and elastic
deformations of the vehicle and the guideway. Equation (4.10a) describes the rigid
body motion of the vehicle in the z; direction (see Fig. 4.2). This equation can be
easily derived from Newton’s second law and the free body diagram of the vehicle in
Fig. 4.2. This equation was utilized to find the solution for ((¢) given in Egs. (2.6) and
(2.13) where ((t) = z,(t) —r1d. Consequently, Egs. (4.10b, 4.10c, 4.10f, 4.10g) and (4.12)
can be employed to find the transverse displacements of the vehicle and the guideway.
A total of 2N + 4 equations with 2N + 4 to-be-determined functions, Y*(t), Y’ (t), 4. (t),
0,.(t), \1(t) and \(t), are thus obtained. To solve these equations efficiently, Eqs. (4.10f)

and (4.10g) are differentiated twice with respect.to time, and using Eqgs. (4.12) yield

3 2 72 2 N
Al {Z {dzjwj(o § dquﬁj(dR)} + mi | M}

i=1 i

N N\
+ A2 {Z [@ﬂ/’j(o = elj¢j(dR):| + rni 7 %}305&}

j=1

N
-> {cb] dr) (bljy + e VP (bgjy +CQJY9>

Jj=1

} miygrid>sin O sin 6, cos 0,
J

L2l (OV + [é’w;@) XA }

+ r1d§2 sin @, — gosfp =0 (4.13a)
r g

N i -
{Z [Wﬂ Gt d) dljcbj(dF)} mi - w}

j=1 Y
N —
1 72d?cos?é,
{Z e2;th;(C +d) — €1j¢j(dF)] +o— %}

v

j=1
S (o) (5 5 ) 6 ) (17 )
j=1

+200;(C+ d)YF + [cw (C+d) + Py (¢ + d)] Yy }

Mygrir2d? sin O sin 0, cos 0,
J

— rgdéf siné, — gcosfp =0 (4.13b)
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2l H? L,CHS + (2HS + CH?
bij = 2§,wy; + C:V L C1j=ng+ ¢ J E J ¢ .
H¢ HY
g ¢;(dr) _ ¢(dp) _ gcosOgpHY
Ve e T T o YT T e
poAyHS poAyH HS
2¢; 20, (C+d
boj = gy, o =Wy, daj = wgl(C), €2j = —%ifl ) (4.14)

g

Consequently, Egs. (4.10b, 4.10c), (4.12) and (4.13) are used to determine the trans-
verse motions of the vehicle and the guideway when 0 < ¢ < ¢,, as discussed below.

To solve the above governing equations, the initial conditions are required. The
system (vehicle and guideway) is initially at rest,’and the initial velocity and accelera-
tion of the vehicle and the guideway are zero. However, the vehicle and guideway are
both deformed under the weight of the vehicle. The initial displacement of the system
can be determined from Eqs. (4.10b, 4.10c, 4.10f, 4.10g) and (4.12) by setting Y} (0) = 0,
Y7 (0) =0,Y(0) = 0,¥¢ (0) = 0,¢(0) = 0and ¢(0) = 0. The equations which contain
2N + 4 unknowns are expressed as a system of nonlinear algebraic equations having

a real general coefficientshown as,

Mg cos 0 — A1 (0) — Ag(0) =0 (4.15a)
{rl)\l(o) - mz(())} dcosf, (0) — mygridsinfgsinf,.(0) = 0 (4.15b)
LY 0) = L [M0)0dn) + u(0)0(dr)| + geos e =0 (4150
LY (0) + mi [M(om (Ca) + (05 (G, + d)} 0 (4.15d)
i;(;sj(d,%)y;(m - ile(CR)ng(O) + 7,(0) — r1dsin 6,(0) = 0 (4.15e)
iwwi@”(m - f;wj@ +d)Y7(0) + §,(0) + radsin,(0) = 0 (4.15f)

where, —1 2 N
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Then, the initial values of Y7 (0), Y;* (0), %,(0), 6,(0), A1(0) and A2(0) can be easily de-

termined.

4.1.3 Tip-off phase

Figure 4.3 presents the free body diagram of the vehicle and the guideway for {5 <
t < tr, when the front shoe of the vehicle has lost contact with the guideway while the
rear shoe remains in contact with the guideway. Similar to that in the two-shoe contact

phase, the Lagrangian functional £ in the tip-off phase is,

Figure 4.3: Free body diagrams of vehicle in tip-off phase.
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L= (K+K)—(Vi+V))+ NG

1 b al
:_/ vav
2 0
2

> (677 + o)
1 (Lo Ny 1 (Lo N,
+§/ J v Z%Y}g* dx2—§/0 E,l, Z%ng* dzo
j=1

2

1 . . 1 - 2
d.ﬁlﬁl + Emv <.Cf:2 + Q:Z) + §J9:

Jj=1
0

j=1
1 L J "'\ ok 2 !y Uk 2
-5 [ B (@) - p (o)
=1
Ly N
- / pPoAygcosbp Z ¢;Y;"dxy — (mygsinbdp) T, — (mygcos k) v
0 o
N N )
AT | D (A =D Y — radsin e;f] (4.16)
=1 =1

where the superscript (x) indicates that the physical quantities are in the tip-off phase.
Since the front shoe of the vehicle has lost contact with the guideway, the constraint
on displacement, given in Eq. (4.2b), vanishes. Following the procedure described in

the preceding section, the following governing equations are obtained.

m, Ty (t) + mygsinfg - P () =0 (4.17a)
myy (t) +mygcosOp — ) =0 (4.17b)
J@: (t) + Nirid cos 0F (t) — mygridsin g sin@* (t) = 0 (4.17¢)

HEV (8) + (26wl + 20 ) V7 (0) + (w3, HE + LuCH; + CH;

—|—C}~If) Y, (t) — %ﬁ{dm + g cos GEI:L."Z =0 (4.17d)
V9% (1) + 26,8 (1) + 2 () + 2 g (4.17¢)
N N ! B
S 65(d)Y (8 — 30OV (1) + 5 (6) — rdsind (£) = 0 (4179
P =1

Again, Eq. (4.17a) is not needed for determining the transverse displacements of

the vehicle and the guideway. Differentiating Eq. (4.17f) twice with respect to time
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and applying Eqgs. (4.17d) and (4.17e) yield

’ My J

J=1

3 272 2 N«
g {Z d05,(0) — diy5(d)] + —— + d_e}
N

= {an (1175 i 1) = 0 (77 + )
j=1

B m,grid? sin 0 sin 0% cos 0

waO% + (G50 + ] v

J
+ rldé;fQ sin@* — gcosfy =0 (4.18)
where di; = dyj, e1; = ey, [1; = fij, 055 = baj, c3; = 25, and
HY L,CHS+C?HS + CHY
ij:2€vwvj+ ~]> Cij:ng—i_ ‘ - 'CV ! ¢ ]7
H HY
. 205 (¢ o 205 (Ghd
g, = 25O, st ol (gR ) (4.19)
my 20

Equations (4.17b) to (4.17e) and Eq:(4:18)describe the transverse motions of the
vehicle and the guideway in the tip-off phase; they form a set of 2N + 3 nonlin-
ear equations. The initial conditions for solving.these equations are obtained from
the continuity conditions between the motions in the two phases: Y*(0) = Y/ (t)),
YPH0) = Y2(t), 5:(0) = g,(t)), 0:(0) = 6.(t]), Y7(0) = Y(t]), Y(0) = Y/(¢)),
G:(0) = G (£7), 6:(0) = 6,(t7), and A{(0) = M (1)),

4.1.4 Dynamic responses of vehicle and guideway

The governing equations given in sections 4.1.2 and 4.1.3 are a set of coupled second
order differential nonlinear equations. They can be expressed in the following vector

form
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G, (t,Y,Y,Y, A) —0 (4.20)

where Y, Y, Y and ) are generalized coordinate, velocity, acceleration vectors and

Lagrange multiplier vector, respectively.

Y =Y, Y 5,0, (4.21)

17727 i

Y — [Y“ y? YY]
N

Y — [Yg Y9 ...,Yg,...,Y]g}

17727 i

To solve for Eq. (4.20) by the Petzold-Gear BDE method [37], one has to reduce the
set of the second order differential equations to a set of the first ordinary differential

equations. Hence, we define

T

Z = (2 | Zon |2l = [ YO0, 00 | 30 Y95, 6, | X (4.22)
where

=Y (4.23a)
Zm =Y (4.23b)
Zg= A\ (4.23¢)
Lo = Zy, (4.24)

Then, Egs. (4.20) and (4.24) can be rewritten as

G=[G,]| Gy =0 (4.25)
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where,

Gy=2y—Zn, (4.26)

Equation (4.26) contains 2N + 2 independent equations. In the two-shoe con-
tact phase and the tip-off phase, A = [\, \,] and A = [),], respectively. Equation
(4.20) consists of 2N + 4 and 2N + 3 independent equations in the two phases, respec-
tively. Consequently, Eq. (4.25) consists of 4N + 6 and 4N + 5 equations in the two
phases, respectively. Then, solves a first order differential-algebraic system of equa-
tions, G(t, Z,Z,\) = 0, using the Petzold-Gear BDF method.

After Y and Y have been determined, the transverse displacement and velocity
of the center of gravity of the vehicle can be determined by applying the following

equations, respectively;

w (de ) = Gr(t) bl (der ) = 3elt) + 32 0oV 1) 27)

N

J=1

The pitch angle and pitch rate of the vehicle are found, respectively, by applying

0(t) =0, (t) + sin~* {é > [¢j<dF> - @(dm] Yf<t>} (4.29)

=1

} XN: { {% (dr) = aﬁj(dpb)} Yi(t)

<.

+¢ o) - czs’«(dR)] Vo) (4.30)



4.2 Numerical validation and examples

This section considers three case studies to validate the proposed solutions, and the
results herein are compared with the results published by Yao and Zhang [34] and
the results shown in Chapter three. As shown in Chapters two and three, two typical
models were applied to study the tip-off phenomenon of a vehicle when it moved
along its guideway. Yao and Zhang [34] utilized the model of a rigid vehicle’s moving
along a rigid guideway (R.R. model), while Chou et al. [35] adopted the model of
a rigid vehicle’s moving on an elastic guideway (R.E. model). In this chapter, the
vehicle and guideway are assumed to be elastic, and the model is denoted by E.E.
model. Without special mention, the material properties and geometric parameters of
the vehicle and guideway.and the parameters defining a typical thrust-time diagram
(Fig. 2.3) given in Table 4.1 were used in the following. Ten modes (N = 10 in Eq.

(4.3)) and a time increment of 0.0001s were used to obtain the present results.

Table'4.1: Parameters of the vehicle launch system.

Design value of launch system

Parameters Vehicle Guideway
E. I, 1.2 %107 N - m? 1.2 %107 N - m?
Pi Ay 4.0 x10% kg/m 1.5 x102 kg/m

&x 0.03 0.03

L, 40 m 8.0 m
0, - 0.5 rad
d 3.7 m -

Tld 25 m -

Cn - 0.1 m
Cp - 42 m
t, 0.1 s -

Prax 7.0 x10* N -

At 0.0001 s -

« denote the subscript of vehicle (v) and guideway (g).
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4.2.1 Case 1: displacement of contact points between vehicle and guideway

Figure 4.4 shows a comparison of the time histories of the transverse displacement of
the contact point of the moving mass obtained by Wu [11] and those obtained from the
E.E. model. The result shows the time histories of displacement of R.E. model without
considering Coriolis and centrifugal force is near to the result presented in Wu’s [11]
study. In E.E. model analysis, the formulations are derived including the Coriolis and
centrifugal force. The results show the time histories of displacement of R.E. model
with considering Coriolis and centrifugal force is near to the E.E. model analysis. The

tigure shows that the difference between the results is negligible.

(@) 5
c 0.00
>
o
€  -1.00-
[ —~
% E N X Y
c E o0 N
> (2}
N on \
-
c @© \ y
© £ -3.00 - <
E © X \ 7 4
3L \
7
® g 4.00 d /
@S N /
g © -5.00 - e g
2 8 [ -[=E- E] E.E. model [36]
CI>J 6.00 - X—X—X R.E. model (with Coriolis & centrifugal force considered) [35]
N ' @0 @ R.E. model (without Coriolis & centrifugal force considered) [35]
% fffff JJ-Wu (without Coriolis & centrifugal force considered) [11]
|: '700 I I I I I I I I I

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Axial coordinates of moving concentrated mass ((¢)/L

Figure 4.4: Time histories of transverse displacements under simulated moving concentrated

mass.

Although the technique proposed in this chapter is meant for the dynamic anal-

ysis of an inclined guideway with contact points with a moving vehicle, it can be
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used for a horizontal beam if the angle of inclination of the guideway is considered
to be close to zero. At the same time, the distance between two contact points is
considered to be close to zero (1 x 107!* m) to simulate the single moving mass
problem. Wu [11] studied the influence of the effects of the inertial force, Coriolis
force, and centrifugal force induced by the moving mass on the dynamic response
of a simply supported inclined beam. Wu also validated an example of a horizon-
tal undamped pinned-pinned beam under a moving concentrated mass. The concen-
trated mass m = 21.8 kg is assumed to move from the left end to the right end of
the beam with a constant speed V' = 27.49 m/s. The size and physical constants of
the uniform undamped beam studied by Wu [11] are as follows: a rectangular cross-
section with width b = 0.018113 m and thickness i = 0.072322 m; moment of inertia,
I =571 x 1077 m*; total length, L = 4.352 m; mass.density, p = 15267.1756 kg/m?;
Young’s modulus, F =2020.797216 % 10% N /m?; At = 0.001 s;'and ¢ = 0.005.

4.2.2 Case 2: Two shoes constraint condition verification

If the proposed solutions are correct, the computed displacement and velocity of two
shoes of the vehicle must also satisfy the constraints condition. Figure 4.5 shows the
time histories of the transverse displacement, velocity and acceleration of the two
shoes of vehicle relative to the guideway. The results were obtained by using 10
modes. These relative displacement, velocity and acceleration are theoretically zero
in the two-shoe contact phase according to the constraint conditions from G, to Gg,
respectively. To check the velocity constraints G5 and G4 and acceleration constrains
G5 and Gg at the rear shoe and front shoe, Egs. (4.9d) and (4.9¢) are differentiated once
and twice with respect to time to obtain these constraints. Figure 4.5 demonstrates the
present solutions satisfy the constraint conditions from G, to G, respectively. Notably,
the transverse displacement and velocity are still near to zero in tip-off phase, whereas
small values of the relative accelerations are observed at this phase. The relative accel-

erations in the tip-off phase mote closely satisfy the constraint when more modes are
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used to determine the relative accelerations (see Fig. 4.6).

Table 4.2: Comparison of pitch angles of vehicle obtained using different models.

Pitch angles of vehicle (°)

Time (s) EE. RE. RR.
0.5000 2.9900F — 09 —8.0295E — 10 0.0000E + 00
0.5100 2.6181F —09 —-7.5991F — 10 0.0000E + 00
0.5136 —8.1001F — 07 —9.2237F — 08 —9.1492F — 08
0.5250 —1.0819F — 02 —1.0505F —02 —1.0506F — 02
0.5500 —1.0856F — 01 —1.0753F —01 —1.0770F — 01
0.5750 —3.0806F — 01 —3.0619F —01 —3.0758F — 01
0.6000 —6.0949F —01 —6.0648E —01 —6.1194F —01
0.6250 —1.0112E +00 —1.0084E+ 00 —1.0235E + 00
0.6500 —1.5193E'+ 00 —1.5120E +00 —1.5461E + 00
0.6750  —2.1288F + 00 . —=21172E +00 —2.1843E + 00
0.6876  —2.4725F +00 —2.4607E+ 00 —2.5546F + 00

Table 4.3: Comparison of pitch rates of vehicle obtained using different models.

Pitch rates of vehicle (°/s)

Time (8) EE: RE. RR.
0.5000 2.0902F — 08 1.3295E — 09 0:0000F + 00
0.5100 2.2225FE — 08 1.4172E — 09 0.0000F + 00
0.5136 —1:6232E.— 02 5.4549F —03 5.4549F — 03
0.5250 —1.8539F + 00 —1.8321K+ 00 —1.8489F + 00
0.5500 —5.9375E +00 | —5.9137F+ 00 —5.9325E + 00
0.5750 —1.0011F+01 —-9.9791F +00 —1.0070F + 01
0.6000 —1.4094F +01 —1.4044F +01 —1.4298F + 01
0.6250 —1.8192F +01 —1.8110F +01 —1.8655F + 01
0.6500 —2.2310F +01 —22175F +01 —2.3180F + 01
0.6750 —2.6454F +01 —2.6241F +01 —-2.7914F + 01
0.6876  —2.8538F +01 —2.8289F +01 —3.0413F +01

4.2.3 Case 3: Arigid vehicle moves along a rigid guideway

In this case, the flexural rigidities of the vehicle and guideway were again assumed

to be 1.2 x 10" N -m? to simulate the behavior of a pseudo-rigid body. Figures 4.7
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Velocity constraints (m/sec) Displacement constraints (m)

Acceleration constraints (m/sec”2)
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10 modes
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10 modes
Bl Velocity
iR | B G3: Rear shoe
G4: Front shoe
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Figure 4.5: Verification of constraint conditions of the two shoes of the vehicle relative to the

guideway.
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and 4.8 display the numerical results concerning the pitch angle and the pitch rate
of the vehicle obtained using three models, respectively. Tables 4.2 and 4.3 present
detailed comparative results. In the two-shoe contact phase, the pitch angle and the
pitch rate of the vehicle in the R.R. model are theoretically zero, while in the R.E. and
E.E. models, they have very small values, because the vehicle and guideway had very
large flexural rigidities. The results in Tables 4.2 and 4.3 reflect these facts.

The results of Yao and Zhang [34] (R. R. model) in the tip-off phase differ signif-
icantly from the results based on the other models. As mentioned before, the results
of Yao and Zhang are somewhat inconsistent with a theoretical physical phenomenon.
A rigid vehicle should maintain its uniform rotational acceleration about its rear shoe
when the front shoe loses contact with the rigid guideway. Consequently, the slope of
the pitch rate in Fig. 4.8 should'be constant. A nearly straight line was obtained by
both the present results.and those-of Chou ef al. [35], whereas the results of Yao and
Zhang [34] did not yield a straightline.

4.2.4 Case 4: A rigidvehicle moves alongan elastic guideway

Figures 4.9 and 4.10 plot the time histories of the pitch angle and pitch rate of vehicle
according to the R.E. and E.E. models. For comparisen, the flexural rigidity of the
vehicle is set equal to 1.2 x 10" N'=m?_in the E.-E. model. The pitch angles and the
pitch rates of the vehicle are directly obtained from Egs. (4.29) and (4.30), which are
called the “vehicle formulation”. Notably, the pitch angles and the pitch rates of the
vehicle in the R.E. model were indirectly determined from the displacements of the
guideway at the points of contact with the shoes of the vehicle [35]. This approach is
called “guideway formulation”. For consistency, the pitch angles and the pitch rates of
the vehicle in the E.E. model were also computed using the “guideway formulation”.

The excellent agreement between the results of the R.E. model and the results of
the E.E. model that are based on the “guideway formulation” further confirm the cor-

rectness of the proposed solutions. The considerable differences in the tip-off phase be-
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tween the results of the R.E. model and the results of the E.E. model based on the “ve-
hicle formulation” indicates the importance of the present solution in predicting the

dynamic responses of the vehicle.

4.2.5 Case 5: An elastic vehicle moves along an elastic guideway

Case 3 concerns the motion of an elastic vehicle along an elastic guideway. Table
4.1 presents the material properties and geometric parameters of the vehicle and the
guideway. To demonstrate the accuracy of the results obtained herein using ten modes
and a time increment of 0.0001s, Fig. 4.11 compares the pitch angles and pitch rates of
the vehicle obtained by using one mode, ten modes and 50 modes, while Fig. 4.12 com-
pares those obtained using At = 0.01,0.001, 0.0001 and. 0.00001s. The excellent agree-
ment between the results ©btained using 10 and 50 modes in Fig. 4.11 demonstrates
that solutions obtained using ten modes are sufficiently accurate. Similarly, the consis-
tency between the results obtained tising At/ =0.0001 and 0.00001s in Fig. 4.12 reveals
the accuracy of the solutions obtained herein using ten modes and At = 0.0001s.

Figures 4.13 and. 4.14 compare the pitch angles and pitch rates of the vehicle ob-
tained using three models - R.R., R.E. and E.E.. The tip-off phase starts at ¢, = 0.5136 s
and ends at ¢, = 0.6876"s. In the two-shoe contact phase, the R.R. model only con-
siders rigid body motions so/that the.pitch angle and pitch rate of the vehicle equal
to zero, and underestimates the magnitude of the pitch angle of the vehicle, while the
E.E. model includes the elastic deformations of the vehicle and guideway and yields
a higher results pitch rate of the vehicle than do the other two models. In the tip-off
phase, the agreement between the results obtained using the R.R. and E.E. models are
better than that between the results obtained using the R.E. and E.E. models.

The maximum difference in pitch angle between the results of the R.E. and E.E.
models is 0.5780° at ¢t = 0.6350 s, while the maximum difference in pitch rate is
10.2670°/s at t = 0.6876 s. The considerable differences between the results obtained

using the R.E. and E.E. models are because, as shown in Section 3.2, different formu-
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lations were employed to determine the pitch angles and pitch rates of the vehicle.
However, at the end of the tip-off phase (¢ = 0.6876 s), the E.E., R.E. and R.R. models
yield pitch angles of the vehicle of —2.3622°, —2.9886° and —2.5546°, respectively, and
pitch rates of —27.914°/s, —38.181°/s and —30.41°/s. These differences significantly

influence the trajectory of the vehicle after the vehicle leaves the guideway.

4.3 Parametric Study

After the accuracy of the proposed approach was confirmed, the solutions are utilized
to examine the effects of some important parameters on the pitch angle and pitch rate
of the vehicle at take-off. The impeortant parameters of interest are the length of the

guideway, L,; the distance between the shoes of the vehicle, d, the mass ratio, M,,

S PUA Ly EUIU

defined a AT

and the flexural rigidity ratio, R,, defined as In control engi-
neering, the pitch angle and pitch rate of a vehicle at take-off are the main concerns
because they are the factors that dominate the trajectory of the vehicle after it has left

the guideway.

4.3.1 Influence of length of guideway

The length of the guideway affects the duration of avehicle’s moving along the guide-
way. Increasing the length of the guideway increases the period for which the two
shoes are in contact with the guideway. Increasing the length of the guideway also
increases the velocity of the vehicle when it enters the tip-off phase, because of in-
creasing the period for which the motor thrust acts, and reduces the duration ¢ - tp.
Consequently, the length of the guideway substantially affects the tip-off responses of
the vehicle.

Table 4.4 presents three combinations of flexural rigidities of the vehicle and the
guideway that are considered herein. Case EI01 involves a flexible vehicle and a flex-
ible guideway; case EI02 involves a rigid vehicle and a flexible guideway, while case

EIO3 involves a rigid vehicle and a rigid guideway.
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Figures 4.15 and 4.16, respectively, display the variations of the pitch angle and
the pitch rate of vehicle at take-off with the length of the guideway between 4 m and
12 m. Tables 4.1 and 4.4 present the other parameters that must be known to solve for
the dynamic responses of the vehicle and the guideway. Both the pitch angle and the
pitch rate of the vehicle at take-off generally decrease as the length of the guideway
increases, because the duration ¢y - t » decreases. Accordingly, a longer guideway is as-
sociated with a weaker vehicle tip-off effect. Nevertheless, the length of the guideway

must still be selected to fit the spatial limits on the launcher system.

Table 4.4: Combinations of flexural rigidities of vehicle and guideway.

Flexural rigidity (N'«m?)
Case Lol A
EI0O1——1:2 x 109, 1.2 x,10°7
EI02 1.2x 10 1.2 x10%
EIO3 1.2x 10" 1.2x10"

The results given in Figs. 4.15 and 4.16 also reveal that the flexural rigidity com-
bination EI02 always yields a smaller pitch angle'and pitch rate of the vehicle than
the combination EI03. Combination EI01 yields results that may be larger or smaller
than obtained using the other two combinations of flexural rigidity, depending on the
length of the guideway. Consequently, the results imply that the vehicle should be to

the maximum extent possible stiffer than the guideway.

4.3.2 Influence of distance between shoes of vehicle

As stated in the previous section, the value of ¢y - tp significantly affects the tip-off
response. The distance between the shoes of the vehicle is a design factor that critically

influences tp - tp. Hence, it is worth showing the variations of pitch angle and pitch
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rate of the vehicle at take-off with the distance between the shoes of the vehicle. The
three combinations of flexural rigidities of the vehicle and the guideway in Table 4.4
are also considered here.

Figures 4.17 and 4.18, respectively, plot the variations of the pitch angle and pitch
rate of the vehicle at take-off with the distance between the shoes of the vehicle from 2
m to 4 m. As expected, as the distance between the shoes of the vehicle increases, the
magnitudes of the pitch angle and the pitch rate of the vehicle at take-off increases.
Again, the vehicle and the guideway with the flexural rigidity combination EI02 al-
ways gives a smaller pitch angle and pitch rate of the vehicle than does combination

EI03. Combination EIO1 yields a larger pitch angle than does combination EI02.

4.3.3 Influence of mass ratio and flexural rigidity ratio

The mass ratio M, and flexural rigidity ratio /2, can be designed for various real appli-
cations. The effects of these two ratios on the pitch-angle and pitch rate of the vehicle
at take-off is of interest. These two ratios are changed herein by changing the mass
and flexural rigidity, respectively, of the guideway only.

Figures 4.19 and 4.20 plot the variations of pitch-angle and pitch rate of the vehicle
at take-off with M, and R,, respectively. Each figure displays three-dimensional plots
and contours. Figure 4.19 reveals that the pitch-angle decreases as R, increases but a
change in M, has no significant effect. Figure 4.20 indicates that as both R, and M,
increase, the pitch rate of the vehicle at take-off decreases. The contour plots are very

useful for selecting a set of optimum parameters of launch systems.
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CHAPTER FIVE

Conclusions and Future works

5.1 Conclusions

This study investigated the tip-off dynamic responses of a vehicle moving along its
guideway. Two models were developed to determine those dynamic responses, namely,
R.E. model and E.E. model." In the R.E. model, the vehicle is assumed rigid and its
guideway is modeled.as a flexible-beam, while both of the vehicle and guideway are
modeled as flexible beams in the E.E. model.  The inertia, Coriolis, and centrifugal
forces are considered in these models. ‘Theoretically, the proposed models capture
more closely the practical reality than the commonly used R.R.‘model which assumes
both of the vehicle and the guideway rigid.

The governing equations of the proposed models were reduced to a set of non-
linear ordinary differential equations via the modal superposition method along with
the Lagrangian approach. Then, the set of nonlinear differential equations were solved
using the Petzold-Gear BDF method. The proposed solutions were validated through
the convergence studies using various numbers of modes and time increments and by
comparing them with published results for the special cases of a rigid vehicle moving
along a rigid guideway. The excellent agreement between the published results and
the present results confirmed the correctness of the proposed solutions.

The proposed solutions were further employed to investigate the pitch angle and

the pitch rate of the vehicle at take-off influenced by the length of the guideway L,

105



the distance between the shoes of the vehicle d, the damping ratio &, the angle of in-
clination 6, the mass ratio M, and the flexural rigidity ratio R, of the vehicle to the
guideway. The numerical results revealed several facts, which are useful in designing

a launch system, as follows:

1. Increasing in the length of the guideway reduces the pitch angle and the pitch
rate of the vehicle at take-off. Reducing the distance between the shoes of the

vehicle has a similar effect.

2. Increasing the flexural rigidity ratio of the vehicle to the guideway also reduces
the pitch angle and the pitch rate of the vehicle at take-off, while increasing only

the mass ratio significantly reduces the pitch rate.

3. When the damping ratio of the guideway is less than0.01, the tip-off responses of
the vehicle are too sensitive. - Therefore, it would be preferable to select appropri-
ate guideway materials or heavily damped guideways to minimize the dynamic

responses when designing launch systems:

4. The tip-off dynamic responses of a vehicle under the action of the Coriolis force
and centrifugal force are approximately 2.0% greater than those in the absence
of these forces. In this study; the initial speed of the launched vehicle before take-
off is only approximately one-tenth of that of a high-speed train. Therefore, the

effects of the Coriolis force and centrifugal force are not significant

5. The dynamic responses obtained from an elastic guideway model could be 30%
greater than that obtained from the R.R. model. This highlights the importance

of adopting an elastic guideway model when designing actual launch systems.

6. The models of elastic vehicle and elastic guideway, rigid vehicle and elastic guide-
way, and rigid vehicle and rigid guideway yield significant different values of
pitch angle and pitch rate of the vehicle at take-off, which are very important for

controlling the trajectory of the vehicle after it has left the guideway.
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5.2 Future works

1. In real applications, the guideway are exactly simply supported. To simulate the
reality, the vehicle and the guideway can be both modeled as free-free beams,
and the shoes of the vehicle and the supports of the guideway are modeled by

appropriate springs.

2. The movement of a vehicle along its guideway is more complex than the present
study due to thrust asymmetry and manufacturing defects, which can induce
the vehicle to rotate, pitch, or yaw. Therefore, a more rigorous analysis of the

dynamic interactions is required.

3. When a vehicle-guideway system locates in a.moving warship, the angle of in-
clination of guideway is a time-dependent function (6,(¢)), which depends on
the movement of the warship-including rotating, pitching, or yawing. New solu-
tions have to further develop to accurately determine the behaviors in the tip-off

phase.
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Appendix

A.1 Derivation of H", H?, H¢, H'.

The mode shape functions of free-free beam are

¢i (1) = cos (Byix1) & cosh (Byizy) =X [sin(Byix1) + sinh (ﬁmxl)l (A.1)

wherei =1,2,.... N

PoAy _ cos (ByiLg) —cosh (BuiL,)
2 ~ sin (ByiLy) — sinh (ByiLy)

Accordingly, ¢, (z1) and ¢, () ate

¢; (371) = Bui { — sin (ﬁm‘l’l) + sinh (ﬁm’xl) -7 {COS (ﬂm’%) + cosh (ﬁvixl)- }

(A.3a)

"

¢; (x1) = 32 { — c08 (Byix1) + cosh (Byiz1) + T4 [sin (Byizy) — sinh (ﬁmxl)- }

(A.3b)
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Ly
m / o1 () bs(1 )y
0

2

= /Lv {cos (Buizy) + cosh (Byixy) — Yy | sin (Byx1) + sinh (ﬁmxl)] } dx;
0

— /OLv {0052 (Buiw1) + 2 cos (Byix1) cosh (Byiw1) 4 cosh? (Byry)
— 27 cos (Byixy) sin (Byixr) — 27T ; cosh (Byixy ) sin (Byizy)
— 27 cos (Byixq) sinh (Byx1) — 27 cosh (Byix1) sinh (By:x1)
+ Y7 sin® (Byiz1) + 277 sin Bgim ysinh (B,71)

—|—TZZ sinh2 (ﬁm‘il?l) :| daxy

= 46 ] {4/6111‘371 + 4COSh<ﬁm'.’II1) sin(ﬁmxl) = sin(Z@ﬂ-xl)

2
+ 4COS(ﬁm'CE1) Sinh(ﬁvi$1) + Sinh(Qﬁm'l‘l) P 4: Sin(ﬁvixl) =+ Sinh(ﬁm‘l’l) Tz

+ [4 cosh(B,;x1) sin(Byizry) = sin(20,:21) — 4 cos(Byix1) sinh(Byx1)
Ly

+ sinh(2ﬁmx1)} T?}

0

— 4; ' {4ﬁm-Lv + 4 cosh(ByiLy,) sin(Sy; Ly) + sin258y; L)

2

+ 4 cos(ByiLy) sinh(By; Ly ) 4+ sinh(28,; L,) — 4 | sin(By; Ly) + sinh(By; L,) | s
+ [4 cosh(Byi Ly) sin(By; Ly) — sin(2By; Ly,) — 4 cos(ByiLy) sinh(S,; Ly)

+ sinh(2ﬁva)] Tf} (A.4)

Using sin(20,;L,) = 2sin(B,;L,) cos(ByiLy) , sinh(26,;L,) = 2 sinh(B,; L) cosh(5y; Ly)
, c08(ByiLy) = 0, and sinh*(B,;L,) = cosh?(8,;L,) — 1, one can simplify Eq. (A.4) as
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~ Ly
7 / 61 (1)1 )

=33, [(T? + 1) cosh (8y:Ly) sinh (B, Ly) — 27, cosh? (B, L)

+2(Y7 + 1) sin (BuiLy) cosh (BuiLy) + 284 Lo

—47; sin (Byi Ly) sinh (By; Ly) ] (A.5)

A= [ davatean
- /0 " {— sin (Bn) + sinh (Byan) — T [cos (Bui1) + cosh (mm)} }
- {COS (Buiz1)ek eosh(Byir1) — T [Sin (Buix1) + sinh (ﬁmxl)} } dxy
-/ " | — e ) cosh () Sl B
+ cos (4 o e A SRR NS 2 (5,
— 27,.¢08 (Byiz1 ) cosh (Busy) — s cosh? (Byix1) + Ly sin? (Byiz)
T, sinh ) P08 o) it i) + 17 008h (G sin (i)

+Y2 cos (Bgiwy ) sinh(Bx1) + T? cosh (Biz4)sinh (5,;x1) } dxy

1
=1 { cos (28yir1) + 4 cos (28py) cosh (26,2, ) + cosh (26,,x1)

27, [2 cosh (Byix1) sin (Byixy) + sin (28,:21) + 2 cos (Byixy) sinh (Byizy)
Ly

2
+ sinh (28,;x1) } 4272 {sin (Buiz1) + sinh (ﬁmxl)} }

0

= - { — 6+ cos (206y;Ly) + 4 cos (By; Ly,) cosh (By; Ly,) + cosh (28, L)
+ 27, [sin (ByiLy) + sinh (ﬁva)} {—2 {cos (ByiLy) + cosh (ﬁmLU)}

+7; {sm (ByiLy) + sinh (%Lv)} } } (A.6)
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Using cos(20,;Ly) = 2 cos®(ByiLy)—1, sinh?(By;Ly) = cosh?(B,:L,)—1, cosh (283, L,) =
cosh?(Byi L) + sinh?(B,;:L,) and cos(B,:L,) = 0, one can simplify Eq. (A.6) as

(2

H = i {2 cosh? (B, Ly,) + 27, [Sin (BviLy) + sinh (6,”-[/1,)}

At [ )+ sn (9uL0) | - 2eosh (8,80 } - 8}

— % (T7 +1) cosh® (BuiLy,) — Ty cosh (B Ly) sin (B L) — 2
— T, cosh (B Ly,) sinh (B, Ly,) + Y7 sin (B, L) sinh (B, L) (A.7)
~ Lv "
B 0= ¢; (1) (1) day
0

— /OLU 32 {— c0S/(Buiry)==cosh (Buwr ) + i [sin (Buir1).— sinh (@Jixl)] }
{COS (Buiwr) + cosh (Buizr) = T {Sin (Buswr)etsinh (ﬁmxl)} } day
- /OLU 32 [— o8 (Byiz1) 4 cosh® (Boan) + 27 cos (Bu@y) sin (Buiz)
—27; coshi (Byy ) sinh (Bygwn) = TEsin® (Biir1 ) 4L sinh? (8,521) } day

1
— Z/Bvi { — sin (28,@1) + sinh (20,;21) — 47; cos® (Byizy) — 47, cosh? (Buizy)

L,

—4Tfﬁv,~x1 + T? sin (20,:21) + Tf sinh (251”-3:1)}
0

— iﬁm { sinh (23,;L,,) — sin (28, Ly,) + 27 [2 — c0s (2fyi Ly) — cosh (Qﬁm-Lv)}
—? [45va — sin (28, L,) — sinh (2ﬁmLU)] } (A.8)
Using sin(203,;L,) = 2sin(By; Ly ) cos(BpiLy) , €08(284: Ly) = 2 cos*(ByiLy)—1, cosh(28,,L,) =

2 cosh?(ByiLy) — 1, and sinh(283,;L,) = 2sinh(B,;L,) cosh(ByL,) , one can simplify Eq.

(A.8) as
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= _}lﬁvi {2 08 (ByiLy) sin (ByiLy) — 2 cosh (By; Ly ) sinh (5, L)
+ 27, [ — 4+ 2cos? (Buily) +2 cosh? (ﬂva)} — T? [ — 408, L,

+2 cos (Byi Ly) sin (By; Ly,) + 2 cosh (B L) sinh (B, L) 1 } (A.9)

Using cos(fy:L,) = 0, one can simplify Eq. (A.9) as

~ 1
Hf = §ﬂm~ [ (TIQ + 1) cosh (B, L) sinh (B Ly ) — 27Y; cosh? (B L)

+47,; — QQUiLUT?] (A.10)

‘*&

ZL‘1 dl’l

/ {COS Bpit1) + cosh (Bar )= Y; [Sin (Bviz1) +/sinh (ﬁmxl)} } dz,
1
Bui

{ ;
A

Using cos(3,iL,) = 0, one can simplify Eq. (A.11) as

sin (Byiz1) +sinh (By; 21 ) + 715 {cos (Byiz1) = cosh (ﬁmxl)] }

0

5 sin (Byi L) + sinh/(Byely) + X [cos (BuiLy) — cosh (BM-LU)} } (A.11)

ﬁid = % {sin (ByiLy) + sinh (B, Ly,) — T cosh (ﬁva)} (A.12)
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