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載具沿滑軌運動之傾墜分析

學生：周勝男 指導教授：黃炯憲博士

鄭復平博士

國立交通大學土木工程學系博士班

摘要

本研究考量載具與滑軌間的結構互制行為，發展半解析方法分析載具沿著滑軌運

動的傾墜反應。對於飛彈發射系統設計而言，精確的計算其傾墜反應是極為重要的課

題，飛彈可視為本研究之載具。本文提出 R.E.與 E.E.兩種模型進行動態反應分析。其

中 R.E.模型係將載具視為剛性梁，滑軌視為彈性梁，而在 E.E.模型中將載具與滑軌皆

視為彈性梁。在上述分析模型的解析時，皆考慮了慣性力、科氏力與離心力的影響，

同時載具與滑軌之間皆透過兩個剛性滑腳來接觸。

本研究基於 Euler-Bernoulli梁理論，採用振態疊加法與拉格蘭日乘子法來推導載

具與滑軌運動的控制方程式。此系統的運動方程式是由一組非線性的微分方程式所

組成，其數值解採用 Petzold-Gear的後向微分法（Backward Differentiation Formula,

BDF）來求算此動態系統的數值模擬結果，所需花費時間較少於一般傳統逐步數值積

分的方法，對於載具與滑軌的分析模擬經與文獻實際特殊案例的結果比較，可呈現本

研究所提出之方法的優點。

利用此分析方法進一步探討滑軌的長度、載具滑腳的距離、載具與滑軌的質量比

與剛性比等各參數對載具傾墜反應的影響，經由本研究之成果，於載具發射系統設計

時，可以提供非常有價值的資訊。

關鍵字：移動荷重;移動梁;拉格蘭日法;振態疊加法;傾墜效應
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ABSTRACT

A semi-analytical solution for analyzing the tip-off responses of a vehicle moving

along a guideway is developed by considering the dynamic interaction between the

vehicle and the guideway. Accurately determined tip-off responses are important for

designing a launch system for a missile, in which the missile can be treated as the

vehicle in the present study. Two models are proposed to determine those dynamic

responses, namely, R.E. model and E.E. model. In the R.E. model, the vehicle is as-

sumed rigid and its guideway is modeled as a flexible beam, while both of the vehicle

and guideway are modeled as flexible beams in the E.E model. The inertia, Coriolis,

and centrifugal forces are considered in these models. The vehicle contacts with its

guideway through two rigid shoes.

Equations for governing the motions of the vehicle and the guideway are devel-

oped using the Lagrangian approach and the modal superposition method, on the

basis of the Euler-Bernoulli beam theory. The governing equations, which are a set of

nonlinear differential equations, are solved by the Petzold-Gear backward differentia-

tion formula numerical method. It takes time lower than the traditional step-by-step

numerical integration methods. Comparisons of the presented solutions with those

based on different published models for the vehicle and guideway reveal the advan-

tages of the present approach.

The solutions are further employed to investigate the effects of the length of the

guideway, distance between the shoes of the vehicle, and mass and rigidity ratios of

ii



the vehicle to the guideway on the tip-off responses of the vehicle. The results pre-

sented herein provide valuable information for designing vehicle launch systems.

keywords: moving load; moving beam model; Lagrangian approach; mode superpo-

sition; tip-off effect.
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CHAPTER ONE

Introduction

1.1 Background and Motivation

In real designs of all vehicle launch systems, one of the main concerns is to mini-

mize the transverse motions of the vehicle, which can be a missile, moving along its

guideway, especially when the vehicle takes off. In the field of control engineering, a

vehicle and its guideway are typically modeled as rigid bodies for the tip-off analy-

sis. Although such modeling is quite simple and easily used, it does not consider the

dynamic interactions between the vehicle and its guideway. To reduce the transverse

motions of the vehicle, it is important to accurately consider the vehicle acting forces

and the associated vehicle-guideway interactions during the launch phase.

At present, much research has been devoted to the structural dynamic analysis of

a flexible flight vehicle, whereas until now there has been no investigated study for

vehicle launch system design considering the vehicle and guideway as flexible bod-

ies in real applications. The bending flexibilities of vehicle and guideway can have

a remarkable influence on the behaviors of the vehicle as it leaves the guideway of

launcher, and hence on the resulting accuracy of control. The responses of the ve-

hicle at take-off significantly affect its flight control, and accurately determining the

responses of the vehicle in the tip-off phase is crucial. The motivation of this study is

to develop an analysis method to efficiently and accurately study dynamic behaviors

of a vehicle-guideway system with time-dependent constraints between the vehicle
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and the guideway.

1.2 Statement of the Problems

When a vehicle moves along the guideway, the vehicle is mainly subjected to thrust,

inertia, and gravity forces, and two phases can be identified (see Fig. 1.1). Before

the front shoe of the vehicle loses contact with the guideway, the vehicle is in a two-

shoe contact phase (see Fig. 1.1). The vehicle rotates with respect to its rear shoe

when its front shoe loses contact with the guideway, and this phenomenon is known

as tip-off. When the vehicle exhibits tip-off, it is referred to as being“in the tip-off

phase” (see Fig. 1.2). In the published literature, such a vehicle and its guideway are

typically modeled as rigid bodies for the tip-off analysis, the model is not sufficiently

accurate to present the real behaviors of the vehicle. In real applications, the mass of

the launched vehicle substantially exceeds that of its guideway, and both of the vehicle

and the guideway are flexible.

Figure 1.1: A typical vehicle launch system in a two-shoe contact phase.
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Figure 1.2: A typical vehicle launch system in a tip-off phase.

It is very important to accurately determine the behaviors of the vehicle When the

vehicle excessively moves in the transverse direction during take-off, it is very possible

that the vehicle collides with the guideway system. When the velocity of a vehicle

is too low to develop the aerodynamic force for controlling its attitude or direction

during the tip-off phase, its control fins can not function well, and the balance between

the aerodynamic and other forces do not yet reach a stable state. Therefore, the control

fins must be locked during the initial trajectory, and the initial flight conditions, which

mainly result from the behaviors of the vehicle in the tip-off phase, must be accurately

determined.

1.3 Literature Review

The dynamic responses of a beam subjected to a moving vehicle (or structure) have at-

tracted the attention of researchers for a long time. An excellent state-of-the-art review
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is given by the subcommittee on vibration problems associated with flexural member

on transit systems [1]. The moving vehicle is often modeled as a moving force, a mov-

ing mass, a moving oscillator (also called a sprung mass model) or a moving beam.

Modeling as a moving force is the simplest and oldest approach, which neglects the

interaction between the vehicle and the beam [2–6]. Research work on this topic can

be traced back to the 19th century [2]. Timoshenko [3] derived numerous approximate

solutions to the problem of a simply-supported beam under moving loads. Ayre et

al. [4] studied the transverse vibrations of a two-span beam under a moving constant

force. The moving force model is well known to apply only to the case in which the

mass of the moving vehicle is much smaller than that of the beam, and only when

the dynamic responses of the moving vehicle are not of interest. N. Sridharan et al.

[5] presented a numerical analysis of vibration of beams subjected to moving loads.

Numerical results obtained for the case of a constant force moving over a uniform

simply supported beam have been compared with those obtained by using the analyt-

ical method. Hamada [5] has been presented a method , based on the double Laplace

transformation, for dynamic analysis of a simply supported and damped Bernoulli-

Euler uniform beam of finite length subjected to the action of a moving concentrated

force. K. Henchi et al. [6] developed an exact dynamic stiffness element under the

frame work of finite element approximation is presented to study the dynamic re-

sponse of multi-span structures under a convoy of moving loads.

A moving mass model is a simple model that to some extent accounts for the in-

teraction between the dynamic interaction between a moving structure and a beam

[7–11]. The model was first proposed by Jeffcott [7] in 1929. Stanis̆ić [8] employed

the Fourier technique to investigate the responses of beams to an arbitrary number of

concentrated moving masses. Akin and Mofid [9] presented a numerical solution by

using the separation of variables technique to analyze the dynamic responses of an

Euler-Bernoulli beam to a moving mass. Their solution scheme was very simple and

can be used to determine the responses of beams under various boundary conditions.
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Cifuentes [12] presents a combined finite element/finite difference technique to deter-

mine the response of a beam excited by a moving mass. The technique introduced

herein is based on a Lagrange Multiplier formulation that allows one to represent the

compatibility condition at the beam/mass interface using a set of auxiliary functions.

This approach can be easily adapted to a standard finite element code. Michaltsos

et al. [13] studied the linear dynamic response of a simply supported uniform beam

under a moving load of constant magnitude and velocity by considering the effect of

its mass. They highlighted the importance of considering the effect of the load mass.

As the ratio M/ml (moving mass/mass of beam) increases, depending on the velocity,

the ratio wM/wP (displacement of moving mass/displacement of load because of mov-

ing force) can increase considerably. Lee [14] studied the equation of motion in matrix

form for an Euler beam acted upon by a concentrated mass moving at a constant speed

is formulated by using the Lagrangian approach and the assumed mode method. Lee

[15] also analysed extensively the transverse vibration of a Timoshenko beam acted

on by an accelerating mass and compared with the corresponding behaviour of a Tim-

oshenko beam subjected to an equivalent moving force neglecting the inertial effects

of the mass. The effects of prescribed values of constant acceleration or deceleration

of the moving mass on the deflection under the moving mass, as well as the contact

forces, are investigated. Michaltsos [16] also studied the linear dynamic response of

a simply supported elastic single-span beam under a moving load of constant magni-

tude and variable velocity, with an emphasis on the effect of acceleration or deceler-

ation on the behaviour of the beam under a single load, or an actual vehicle model.

Dehestani et al. [10] showed that it is necessary to consider the Coriolis acceleration

associated with a mass moving along a vibrating beam. Wu [11] examined the effects

of the inertial, Coriolis, and centrifugal forces induced by non-coupled moving masses

on the dynamic responses of an inclined simply-supported beam. Further, Frýba [17]

compiled a book containing descriptions of almost all studies on the vibration of solids

and structures under a moving load.
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A moving oscillator model includes mass, springs and dampers to capture the

real dynamic characteristics of a moving vehicle. It is more complicated than a mov-

ing mass model [18–20]. Biggs [18] presented a semi-analytical solution to the prob-

lem of a sprung mass moving on a simply-supported beam. Using a series expansion

technique, Pesterev et al. [19] examined the responses of an elastic continuum to mul-

tiple moving oscillators. Yang et al. [20] proposed a vehicle-bridge interaction element

(VBI) to investigate the vibrations of simply-supported beams during the passage of

high-speed trains.

The vehicle-bridge interaction dynamics has been also extensively studied for ap-

plication to high-speed railways [21–28]. In particular, Yang et al. [21] investigated

the vibration of simple beams during the passage of high-speed trains. Cojocaru et al.

[27] studied the vibrations of an elastic bridge loaded by a second elastic beam moving

with a constant speed. Zhang et al. [24] proposed a space model for train carriages and

introduced a dynamic analysis for train-bridge interaction. Delgado and dos Santos

[22] modeled the railway bridge-vehicle interaction on high-speed tracks.

Unlike a moving oscillator model, which treats a moving vehicle as a discrete sys-

tem, a moving beam model considers a vehicle as a continuum and represents it as a

beam. Cojocaru et al. [27] first studied the vibrations of an elastic bridge loaded by a

second elastic beam that moved along the bridge at a constant speed. The vehicle was

assumed to be connected to the bridge by means of a rigid interface. The quasi-static

deformation of the bridge was obtained through the Laplace transform, while the dy-

namic responses of the bridge were determined via the Galerkin method. Delgado and

dos Santos [22] modeled the railway bridge-vehicle interaction on high-speed tracks.

The action of railway traffic on bridges is considered as a set of moving masses, being

the effects of the moving forces and masses implied. Zhang et al. [29] investigated

the dynamic responses of a simply-supported beam on which was moving an elastic

beam at a constant speed using the modal superposition method. The model consisted

of two Euler-Bernoulli beams that were connected by flexible springs at two points, so
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that the interactive forces between the simply-supported beam and the moving beam

were easily found from the relative deflection of the two points. A small rotation an-

gle in rigid body motions was assumed. They developed a set of linear differential

equations for the motions of two beams. Sreeram et al. [30] employ the Lagrangian

multiplier technique to develop a h-p version finite element model for a certain class

of dynamics problems. Variational principle is the basis of this formulation with es-

sential conditions applied via Lagrangian multipliers. The example considered here is

a problem of a beam moving over supports. Lagrangian multiplier implementation of

the problem with finite element technique, is very effective compared to other global

methods such as assumed mode technique. Kim [31] investigate the vibration and

stability of an infinite Bernoulli-Euler beam resting on a Winkler-type elastic founda-

tion when the system is subjected to a static axial force and a moving load with ei-

ther constant or harmonic amplitude variations. Chen et al. [32] investigates dynamic

stability in transverse parametric vibration of an axially accelerating viscoelastic ten-

sioned beam. The beam is described by the Kelvin model, and the Galerkin method is

applied to discretize the governing equation into a infinite set of ordinary-differential

equations under the fixed-fixed boundary conditions. Fung et al. [33] studied a flexible

beam slides in and out of the rigid wall. The equations of motion for a deploying beam

with a tip mass are derived by using Hamilton’s principle. Four dynamic models: Tim-

oshenko, Euler, simple-flexible and rigid-body beam theories are used to describe the

axially moving beam.

All of the aforementioned studies mainly focused on the dynamic responses of

beams and were applicable to the design of railroad tracks, railroad bridges, and high-

way bridges. Relatively few studies focused on the dynamic behaviors of a vehicle,

such as a missile, when the vehicle moves along the guideway, which can represent a

launcher system (see Fig. 1.1). Analyses of various aspects of flexible vehicle behav-

ior in free flight or with time-dependent constraints have appeared frequently in the

literature. The interaction between the vehicle and its guideway differs considerably
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between the two-shoe contact phase and the tip-off phase, and the vehicle displays

very different behaviors. Consequently, the corresponding dynamic responses of the

vehicle have to be modeled in these two phases.

1.4 Objectives, Approach and Research Coverage

Because the responses of the vehicle at take-off significantly affect the flight control

of the vehicle, accurately determining the responses of the vehicle in the tip-off phase

is crucial. This study applied the models of rigid vehicle and rigid guideway (R.R.

model) [34], rigid vehicle and elastic guideway (R.E. model) [35], and elastic vehicle

and elastic guideway (E.E. model) [36] for tip-off analysis of the vehicle at take-off.

In the R.E. model, the vehicle and the guideway are modeled as a rigid free-free

beam and an inclined elastic simply-supported beam, respectively. The flexible guide-

way is assumed to be Euler-Bernoulli beam. The vehicle is connected to the guideway

through two points of contact, which are considered to be rigid connections, so that

their dynamic responses are the same during vehicle take-off. The equations of motion

for the vehicle and its guideway, in terms of functions of the configuration coordinates

and time, are established via the Newton’s second law based on the free body diagram

of the vehicle with appropriate displacement constraints.

In the E.E. model, the guideway is modeled as an inclined simply-supported uni-

form flexible beam, and the vehicle is treated as a flexible free-free beam under a

pre-specified thrust force. Equations for governing the motions of the vehicle and

the guideway are developed using the Lagrangian approach and the assumed mode

method, on the basis of the Euler-Bernoulli beam theory. The governing equations

take into account the inertia, Coriolis, and centrifugal forces that are induced by the

vehicle as well as the dynamic interaction between the vehicle and its guideway. Table

1.1 summarizes the comparisons among the three models.

To solve for the governing equations in the R.E. model and E.E. model, a modal

superposition technique is adopted to convert the governing equations, which are
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nonlinear partial differential equations, into a set of nonlinear first-order differential

equations with time as the independent variable. Then, the Petzold-Gear backward

differentiation formula (BDF) numerical method [37] is employed to solve these first-

order differential algebraic equations (DAEs). The proposed solutions are validated by

comparing the results with published results obtained from models of a rigid vehicle

on a rigid guideway. The effects of the length of the guideway, distance between the

shoes of the vehicle, and mass and flexural rigidity ratios of the vehicle to the guide-

way upon tip-off of the vehicle are thoroughly studied. The results presented here

provide valuable information for designing vehicle launch systems.

1.5 Dissertation Outline

The contents of the dissertation are organized as:

Chapter 1 describes the relevant literature review, the motivation and main pur-

poses of the work.

Chapter 2 presents the R.R. model and re-develops solutions for the governing

equations of the model. The equations of motion of the vehicle are derived by New-

ton’s second law. The pitch angle and the pitch rate of the vehicle in this model were

directly determined from the displacement and velocity of the vehicle at the points of

two shoes.

Chapter 3 proposes the R.E. model and develops solutions for the governing equa-

tions of the model. Equations for governing the motion of the the guideway is derived

by taking into account equations for the influences of the inertia force, Coriolis force,

and centrifugal force induced by the vehicle as well as the dynamic interaction be-

tween the vehicle and its guideway, on the basis of the Euler-Bernoulli beam theory

and the assumed mode method. Notably, the pitch angle and the pitch rate of the ve-

hicle in this model were indirectly determined from the displacements and velocity of

the guideway at the points of contact with the two shoes of the vehicle.

Chapter 4 proposes the E.E. model and develops solutions for the governing equa-
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tions of the model. The equations of motion for the vehicle and the guideway are de-

veloped using the Lagrangian approach and the assumed mode method based on the

Euler-Bernoulli hypothesis. Notably, the pitch angle and the pitch rate of the vehicle

in this model were directly determined from the displacements and velocity of two

shoes of the vehicle.

Chapter 5 shows the conclusions of the present study and suggestions for the

future studies.
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CHAPTER TWO

A rigid vehicle moving along an inclined
rigid guideway

2.1 Theory and Formulation

Figure 2.1 schematically depicts a typical guideway for launching a vehicle. The

guideway is considered as an inclined fixed rigid beam, while the vehicle is regarded

as a rigid beam moving along the guideway under the action of a predetermined thrust

force. This model is referred as R.R. model and the derivation of these formulas is

based on Yao and Zhang [34].

mv, J

ζ(t), ζ̇(t), ζ̈(t)

θE
P (t)

R(t)

F (t)

mvg

d1

ζ
R

d

ζ
F

x

y

Figure 2.1: A typical rigid guideway used for rigid vehicle launch.
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The vector of thrust is assumed to be along the vehicle’s centerline (C.L.) and

always coincides with the line joining the two contact points (see Fig. 2.1). While the

vehicle moves, the two shoes of the vehicle are assumed to slide along the guideway

by means of a rigid contact. The thrust force, P (t) in Fig. 2.1, acting on a vehicle is

predetermined in real applications. A typical real thrust-time curve is shown in Fig.

2.2. An ideal thrust-time curve in the design is obtained from full scale ground tests

for a vehicle booster.

0.0 2.0 4.0 6.0 8.0 10.0

0.00

20000.00

40000.00

60000.00

80000.00

Figure 2.2: A typical real thrust-time curve.

Pmax

P (t)

t
b

t
F

t
R

t

Figure 2.3: A typical thrust-time curve to simulate.
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In order to simplify the analyses conducted in this work, we considered a simpli-

fied thrust-time curve given in Fig. 2.3, where tb is the thrust build-up time. Normally,

the time for the thrust force reaching a steady state is about 100 ms in real design. Pmax

is the value of P (t) in the steady state; tF and tR are the times when the vehicle front

shoe and rear shoe lose contact with the guideway, respectively. The term tR is called

the tip-off time. Between tF and tR, vehicle tip-off occurs.

When such a vehicle moves along a guideway, the vehicle is mainly subjected

to the thrust, inertia, and gravity forces, and two different phases can be specified,

namely, two-shoe contact phase and tip-off phase. In the two shoe contact phase (cor-

responding to 0 ≤ t ≤ t
F

in Fig. 2.3), the two shoes of the vehicle contact with the

guideway, while in the tip-off phase (corresponding to t
F

< t ≤ t
R

in Fig. 2.3), only

the rear shoe contact with the guideway.

From the typical thrust-time curve in Fig. 2.3 and the design parameters of a

vehicle and its guideway, one can easily find the position ζ(t) and velocity ζ̇(t) of the

rear shoe (see Fig. 2.1), and tF and tR can be easily determined. Consequently, one is

able to identify in which phase the vehicle is at a particular moment.

2.2 Two-shoe contact phase

• When 0 ≤ t ≤ t
b

:

Based on the aforementioned assumptions and the relationship of geometry in

Fig. 2.1, the equations of motion of the vehicle can be written as

mv ζ̈(t) = P (t) − mvg sin θE (2.1)

mvÿ(t) = −R(t) − F (t) + mvg cos θE (2.2)
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Jθ̈ = F (t) (d − d1) − R(t)d1 (2.3)

where mv and J denote the mass and the mass moment of inertia of the vehicle; d

denotes the distance between the front and rear shoes of the vehicle; d1 is the distance

between the rear shoe and the center of gravity of the vehicle; θE is the angle of incli-

nation of the guideway; g is the gravitational acceleration; F (t) and R(t) represent the

moving loads of the contact points at front shoe and rear shoe, respectively. Assume

the system is initially at rest.

From the thrust-time curve in Fig. 2.3 and the design parameters of the vehicle

and its guideway, integrating Eq. (2.1) yields ζ(t), ζ̇(t) and ζ̈(t) as follows.

ζ̈(t) =
1

mv

(
Pmax

t
b

t − mvg sin θE

)
(2.4)

ζ̇(t) =
1

mv

(
Pmax

2t
b

t2 − mvg sin θE · t
)

+ ζ̇(0) (2.5)

ζ(t) =
1

mv

(
Pmax

6t
b

t3 − 1

2
mvg sin θE · t2

)
+ ζ̇(0) · t + ζ

R
(2.6)

ζ̇(0) is the initial velocity of the vehicle and ζ(0) is the x coordinate from the rear shoe

of vehicle to the left end of the guideway. When the system is initially at rest ζ̇(0) = 0

and ζ(0) = ζ
R

.

When t = t
b
, the thrust reaches steady state, and ζ̇(t

b
) and ζ(t

b
) are given in Eqs.

(2.7) and (2.8), which are obtained from Eqs. (2.5) and (2.6).

15



ζ̇(t
b
) =

t
b

mv

(
Pmax

2
− mvg sin θE

)
(2.7)

ζ(t
b
) =

t2
b

mv

(
Pmax

6
− 1

2
mvg sin θE

)
+ ζ

R
(2.8)

These values are the initial values of the two-shoe contact phase when thrust force is

in steady state.

Before the tip-off phase, the relative motion and rotation in y -direction and pitch

direction are zero respectively. As a result, the reaction forces F (t) and R(t) between

the vehicle and guideway can be obtained from Eqs. (2.2) and (2.3),

F (t) =
d1

d
mvg cos θE (2.9)

R(t) =

(
d − d1

d

)
mvg cos θE (2.10)

The reaction forces F (t) and R(t) are constant before the tip-off phase of vehicle.

• When t
b
< t ≤ t

F
:

When the thrust reaches steady state, two shoes of the vehicle are still constrained

by the guideway. The motion of vehicle is governed by,

ζ̈(t) =
1

mv

(Pmax − mvg sin θE) (2.11)
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Integrating Eq. (2.11) and employing ζ̇(t
b
) and ζ(t

b
) as the initial conditions yields

ζ̇(t) =
1

mv

(Pmax − mvg sin θE) · (t − t
b
) + ζ̇(t

b
) (2.12)

ζ(t) =
1

2mv

(Pmax − mvg sin θE) · (t − t
b
)2 + ζ̇(t

b
) · (t − t

b
) + ζ(t

b
) (2.13)

When t = t
F

, just before a vehicle moves into the tip-off phase, ζ̇(t
F
) and ζ(t

F
) of

the vehicle can be obtained from Eqs. (2.14) and (2.15) given in the following,

ζ̇(t
F
) =

1

mv

(Pmax − mvg sin θE) · (t
F
− t

b
) + ζ̇(t

b
) (2.14)

ζ(t
F
) =

1

2mv

(Pmax − mvg sin θE) · (t
F
− t

b
)2 + ζ̇(t

b
) · (t

F
− t

b
) + ζ(t

b
) (2.15)

When ζ(t
F
) = ζ

F
, and the distance ζ

F
between the front shoe of vehicle at t = 0

and the right end of guideway is predetermined in real application. Substituting ζ(t
F
)

into Eq. (2.15), one can determine t
F

from Eq. (2.16) when the front shoe of vehicle

loses contact. Then, substituting t
F

into Eq. (2.14), one finds ζ̇(t
F
) of vehicle.

t
F

= t
b
+

mv

(Pmax − mvg sin θE)

·

[√
ζ̇(t

b
)
2
+

2

mv

[ζ
F
− ζ(t

b
)] (Pmax − mvg sin θE) − ζ̇(t

b
)

]
(2.16)

2.3 Tip-off phase

• When t
F

< t 6 t
R

:
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Figure 2.4 presents the diagram of a vehicle and a guideway at t
F

< t 6 t
R

, when

the rear shoe remains in contact with the guideway but the front shoe of the vehicle

does not. Since the front shoe of the vehicle has lost contact with the guideway, the

constraint on displacement, given in Eq. (2.9), vanishes.

mv, J

θ(t), θ̇(t), θ̈(t)

θE

P (t)

R(t)

mvg

d1

x

y

Figure 2.4: Motion of vehicle in tip-off phase.

When the vehicle is leaving the guideway at t = t
R

, the velocity and position of

vehicle are ζ̇(t
R
) and ζ(t

R
) respectively. Using Eqs. (2.12) and (2.13) one finds

ζ̇(t
R
) =

1

mv

(Pmax − mvg sin θE) · (t
R
− t

b
) + ζ̇(t

b
) (2.17)

ζ(t
R
) =

1

2mv

(Pmax − mvg sin θE) · (t
R
− t

b
)2 + ζ̇(t

b
) · (t

R
− t

b
) + ζ(t

b
) (2.18)

When ζ(t
R
) = ζ

F
+d is predetermined in real application, one can find t

R
from Eq.

(2.19) by substituting ζ(t
R
) into Eq. (2.18). Then, substituting t

R
into Eq. (2.17) gives

ζ̇(t
R
).
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t
R

= t
b
+

mv

(Pmax − mvg sin θE)

·

[√
ζ̇(t

b
)
2
+

2

mv

[ζ
F
− ζ(t

b
) + d] (Pmax − mvg sin θE) − ζ̇(t

b
)

]
(2.19)

When t
F

< t ≤ t
R

, the motion of vehicle is governed by

mv ζ̈(t) = Pmax − mvg sin
[
θE + θ̄(t)

]
(2.20)

mvÿ(t) = Pmax sin θ̄(t) − mvg cos
[
θE + θ̄(t)

]
+ R(t) (2.21)

J ¨̄θ(t) = −R(t)d1 (2.22)

where
θ̄(t) ： The pitch angle of vehicle.

¨̄θ(t) ： The pitch acceleration of vehicle.

Since θ̄(t) is very small, cos
[
θE + θ̄(t)

]
≈ cos θE and sin θ̄(t) ≈ θ̄(t). Because y = d1 θ̄(t)

and ÿ = d1

¨̄θ(t) , Eqs. (2.21) and (2.22) can be simplified as

mvd1

¨̄θ(t) = Pmaxθ̄(t) − mvg cos θE + R(t) (2.23)

J ¨̄θ(t) = −R(t)d1

= −
[
mvd1

¨̄θ(t) + mvg cos θE − Pmaxθ̄(t)
]
d1 (2.24)
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Arranging Eqs. (2.23) and (2.24) one obtains the second order linear differential

equation shown as follows,

(
J + mvd

2
1

) ¨̄θ(t) − Pmaxd1 θ̄(t) = −mvgd1 cos θE (2.25)

Denoting

A2 =
Pmaxd1

J + mvd
2

1

, B =
−mvgd1 cos θE

J + mvd
2

1

and substituting A and B into Eq.(2.25) yield,

¨̄θ(t) − A
2

θ̄(t) = B (2.26)

It is easy to find the general solution of Eq. (2.26)

θ̄(t) = C1 · eA(t−t
F

) + C2 · e−A(t−t
F

) − B

A2 (2.27)

The constants of C1 and C2 can be determined from the initial conditions for the ve-

hicle. One is able to determine t = t
F

from Eq. (2.16). Notably, the front shoe of

vehicle loses contact with the guideway at t = t
F

and θ̄(t
F
) = 0 and ˙̄θ(t

F
) = 0. Then,

C1 = C2 = B
2A2 are obtained. Substituting C1 and C2 into Eq. (2.27), one obtains

θ̄(t) =
B

2A2

[
eA(t−t

F
) + e−A(t−t

F
) − 2

]
(2.28)

˙̄θ(t) =
B

2A

[
eA(t−t

F
) − e−A(t−t

F
)
]

(2.29)
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Substituting the tip-off time of vehicle t
R

determined from Eq. (2.19) into Eqs.

(2.28) and (2.29), the pitch angle θ̄(t
R
) and the pitch rate ˙̄θ(t

R
) of vehicle are obtained,

respectively. They are

θ̄(t
R
) =

B

2A2

[
eA(t

R
−t

F
) + e−A(t

R
−t

F
) − 2

]
(2.30)

˙̄θ(t
R
) =

B

2A

[
eA(t

R
−t

F
) − e−A(t

R
−t

F
)
]

(2.31)

2.4 Numerical examples and parametric study

The parameters of the vehicle launch system considered herein are listed in Table 2.1.

Based on the formulations given in preceding sections, it is easy to determine t
F

=

0.5136 s and t
R

= 0.6876 s. Figures 2.5 and 2.6 depict the variations of pitch angle and

pitch rate of the vehicle with time, respectively. The minimum pitch angle and pitch

rate of the vehicle on the rigid guideway are −2.0953◦ and −24.794◦/s, respectively.

The vehicle maintains a uniform rotational acceleration with respect to its rear shoe

when the front shoe loses contact with the rigid guideway. The slope of the pitch rate

with respect to time should be constant when the motion has a uniform rotational

acceleration. Accordingly, one finds a nearly straight line in Fig. 2.6.

The responses of the vehicle at take-off significantly affect its flight control, and

accurately determine the responses of the vehicle in the tip-off phase is crucial. The-

oretically, a launch system should be designed to minimize the pitch angle and pitch

rate of a vehicle at tip-off with consideration of space requirements in the launch sys-

tem. In the following, we are going to investigate the effects of some parameters, such

as inclination angle and length of guideway and the distance between two shoes of a

vehicle, on the pitch angle and pitch rate of vehicle at tip-off time.
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Table 2.1: Parameters of the vehicle launch system.

Parameters Design value of launch system

θE 0.5 rad

mv 1.6 ×103 kg

J 4.7 ×103 m4

d 3.7 m

d1 2.5 m

ζR 0.1 m

ζF 4.2 m

t
b

0.1 s

Pmax 7.0 ×104 N

ζ̇(0) 0.0 m/s

∆t 0.0001 s

0.52 0.56 0.60 0.64 0.680.54 0.58 0.62 0.66 0.70

-2.00

-1.50

-1.00

-0.50

0.00

-2.25

-1.75

-1.25

-0.75

-0.25



t
F

= 0.5136 s

t
R

= 0.6876 s •

•

Figure 2.5: Pitch angle θ̄ − t of vehicle on rigid guideway.
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0.52 0.56 0.60 0.64 0.680.54 0.58 0.62 0.66 0.70
-25.00

-20.00

-15.00

-10.00

-5.00

0.00

-22.50

-17.50

-12.50

-7.50

-2.50



t
F

= 0.5136 s

t
R

= 0.6876 s
•

•

Figure 2.6: Pitch rate ˙̄θ − t of vehicle on rigid guideway.

2.4.1 Influence of angle of inclination of guideway

The force component in the transverse direction of the moving loads decreases when

the angle of inclination θ
E

of the guideway increases. Although an increase in θ
E

de-

creases the tip-off of the vehicle, it also reduces the initial speed of the vehicle before

take-off. The initial speed of the vehicle strongly affects the tolerance of a flight control

system. Therefore, the angle of inclination of the guideway has to be carefully selected

when one designs a launch system.

Using the parameters listed in Table 2.1 , we varied θ
E

from 0.0 rad to 1.0 rad and

computed the corresponding pitch angle and pitch rate at t
R

(see Figs. 2.7 and 2.8). As

mentioned before, the inclination angle of the guideway affects the vehicle speed and

the transverse force acting on the vehicle before take-off. The larger the angle of incli-

nation θ
E

of the guideway is, the lower is longitudinal acceleration of vehicle before its

take-off, and the smaller is the transverse force acting on the launched vehicle. When

the longitudinal acceleration of vehicle decreases, the time interval t
R
− t

F
increases,
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0.0 0.2 0.4 0.6 0.8 1.00.1 0.3 0.5 0.7 0.9
-2.40

-2.20

-2.00

-1.80

-1.60

-1.40



Figure 2.7: Effect of angle of inclination on pitch angle of vehicle (θ̄ − θE diagram).

0.0 0.2 0.4 0.6 0.8 1.00.1 0.3 0.5 0.7 0.9
-28.0

-24.0

-20.0

-16.0



Figure 2.8: Effect of angle of inclination on pitch rate of vehicle ( ˙̄θ − θE diagram).
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this is disadvantageous because this increases the time of the vehicle tip-off phase.

While, increasing the inclination angle of the guideway decreases the transverse force

acting on the vehicle, which is desirable to reduce the tip-off response. Consequently,

it is not easy to determine an appropriate inclination angle of the guideway.

2.4.2 Influence of length of guideway

An increase in the length of guideway raises the speed of vehicle during take-off and

reduces the time interval t
R
−t

F
in the tip-off phase. This is highly useful for decreasing

the dynamic responses of a vehicle. To investigate the effect of the length of guideway

on the pitch angle and pitch rate of a vehicle moving on the guideway, we changed

L from 4.0 m to 12.0 m and used the other parameters listed in Table 2.1 to compute

the corresponding pitch angle and pitch rate at t
R

and the results are shown in Figs.

2.9 and 2.10. As expected, as the length of the guideway increases, the values of pitch

angle and pitch rate of vehicle at tip-off time are gradually decreased.

4.0 6.0 8.0 10.0 12.05.0 7.0 9.0 11.0
-12.0

-10.0

-8.0

-6.0

-4.0

-2.0

0.0



Figure 2.9: Effect of guideway length on pitch angle of vehicle (θ̄ − L diagram).
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4.0 6.0 8.0 10.0 12.05.0 7.0 9.0 11.0
-70.0

-60.0

-50.0

-40.0

-30.0

-20.0

-10.0



Figure 2.10: Effect of guideway length on pitch rate of vehicle ( ˙̄θ − L diagram).

Although Figs. 2.9 and 2.10 indicate that the increase of the guideway length

decreases of the tip-off pitch angle and pitch rate of vehicle, the guideway length has

to be determined carefully not only by considering the wanted tip-off pitch angle and

pitch rates of vehicle but also by fitting the space limits in launch systems. Normally,

the length of a guideway is slightly greater than that of a vehicle.

2.4.3 Influence of distance between shoes of vehicle

Figures 2.11 and 2.12, respectively, depict the variations of the pitch angle and pitch

rate of vehicle at the tip-off time with the distance between shoes of a vehicle. The

range of the distance between shoes of a vehicle is between 2.6 m to 4.8 m. A decrease

in the distance between the shoes of a vehicle leads to a decrease in the time interval

of the tip-off phase. That is, the time interval t
R
− t

F
corresponding to the two shoes

losing contact with the guideway decreases. However, this situation could cause stress
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2.8 3.2 3.6 4.0 4.4 4.8
-5.0

-4.0

-3.0

-2.0

-1.0

0.0



Figure 2.11: Effect of distance between the shoes of the vehicle on pitch angle of vehicle (θ̄ − d

diagram).

2.8 3.2 3.6 4.0 4.4 4.8
-40.0

-35.0

-30.0

-25.0

-20.0

-15.0



Figure 2.12: Effect of distance between the shoes of the vehicle on pitch rate of vehicle ( ˙̄θ − d

diagram).
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concentration in the guideway and unstable behaviors of the vehicle. Some other prob-

lems may also arise, and those are beyond the scope of this study.

28



CHAPTER THREE

A rigid vehicle moving along an inclined
flexible guideway

3.1 Mathematical modeling behaviors of a guideway

Similar to Fig. 2.1, a schematic of a typical straight guideway used for a vehicle launch

is shown in Fig. 3.1, in which the guideway is not assumed rigid. The launch system is

considered as an inclined simply supported uniform elastic beam, whereas the vehicle

is still regarded as a rigid beam. This model is referred as R.E. model.

                                                                                              

θE

ζ
R

d

ζ
F

P (t)

mv, J
d1

ζ(t), ζ̇(t), ζ̈(t) EI, ρA, c

x

y

Figure 3.1: A typical flexible guideway used for rigid vehicle launch.

During the motion of the vehicle, the two shoes of the vehicle are assumed to

slide along the guideway by means of a rigid contact. The thrust vector is assumed
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to be along the vehicle’s centerline (C.L.) and it always coincides with the line joining

the two contact points. The vehicle and the guideway are considered to be two free

bodies in Fig. 3.2. The typical displacement relationship between the vehicle and its

guideway is shown in Fig. 3.3.

θE

L
ζ(t)

d

P (t)

R(t)

R(t)

F (t)

F (t)mvg

d1

¨̄y(t)
ζ̇(t), ζ̈(t)

x

y

Figure 3.2: Free-body diagrams of a vehicle and its guideway.

y
R
(t)

w(ζ, t) mvg

w(ζ + d, t)

C.L.

ȳ(t)

θ̄(t)
y

F
(t)

x

Figure 3.3: Typical displacements of vehicle and its guideway.
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3.1.1 Position history of vehicle

As mentioned in Chapter 2, two phases exist with the vehicle during take-off, i.e.,

the two-shoe contact phase and the tip-off phase. From the typical thrust-time curve

shown in Fig. 2.3 and the design parameters of the vehicle and its guideway, one can

easily find the position of the rear shoe, ζ(t) (see Fig. 3.2), t
F

and t
R

by using the

formulas for ζ(t), t
F

and t
R

given in Chapter 2.

3.1.2 Two-shoe contact phase

The vibration of the guideway is modeled as a simply supported Euler-Bernoulli beam

with viscous damping and is subjected to given initial conditions and specified bound-

ary conditions. Let F and R denote the moving loads of the contact points (see Fig.

3.2). Assume small deformations for beams, and the governing equation of transverse

vibrations can be given by the following partial differential equation:

EI
∂4w (x, t)

∂x4
+ ρA

∂2w (x, t)

∂t2
+ c

∂w(x, t)

∂t
= Rδ (x, ζ) + Fδ (x, ζ + d) (3.1)

where w (x, t) is the transverse displacement of the guideway; EI , the constant flexural

rigidity of the guideway; ρA, the mass per unit length of the guideway; c, the damping

coefficient per unit length; δ (.), the Dirac delta function; and Rδ (x, ζ) + Fδ (x, ζ + d),

an external force acting on the guideway because of the motion of the vehicle in the

two shoe contact phase.

Based on the aforementioned assumptions and the relationship of geometry in

Fig. 3.3, the transverse displacement ȳ of the vehicle can be expressed as

ȳ =
d1

d
y

F
+

(d − d1)

d
y

R
(3.2)

where d denotes the distance between the shoes of the vehicle; d1 is the distance be-

tween the rear shoe and the center of gravity of the vehicle. For simplicity, y
R

= w(ζ, t)

31



and y
F

= w(ζ + d, t) denote the displacements of the two shoe contact points in the

y-direction, respectively, when the vehicle is moving along the deformed guideway.

The pitch angle θ̄ of vehicle can be obtained by

θ̄ =
y

F
− y

R

d
(3.3)

Accordingly, the equations of motion of the vehicle can be written as

mv ¨̄y = −R − F + mvg cos θ
E

(3.4)

J ¨̄θ = d1R − (d − d1)F (3.5)

where the overhead dot (·) denotes the differentiation with respect to time t; mv de-

notes the mass of the vehicle; J is the mass moment of inertia of the vehicle; θ
E

presents

the angle of inclination of the guideway; and g is the gravitational acceleration.

Differentiation Eqs. (3.2) and (3.3) twice with respect to time t yields

¨̄y =
d1

d
ÿ

F
+

(d − d1)

d
ÿ

R
(3.6)

¨̄θ =
ÿ

F
− ÿ

R

d
(3.7)

Substituting ¨̄y from Eq. (3.6) into Eq. (3.4) results in

R + F = −mv

[
d1

d
ÿ

F
+

(d − d1)

d
ÿ

R

]
+ mvg cos θ

E
(3.8)

Substituting ¨̄θ from Eq. (3.7) into Eq. (3.5) results in

R =
1

d1

[
J

(ÿ
F
− ÿ

R
)

d
+ (d − d1)F

]
(3.9)
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Substituting R from Eq. (3.9) into Eq. (3.8), we have

1

d1

[
J

(ÿ
F
− ÿ

R
)

d
+ (d − d1)F

]
+ F = −mv

[
d1

d
ÿ

F
+

(d − d1)

d
ÿ

R

]
+ mvg cos θ

E
(3.10)

Solving for R and F in Eqs. (3.9) and (3.10), we obtain

F = mv (ḡr1 + J1ÿR
− J2ÿF

) (3.11a)

R = mv (ḡr2 − J3ÿR
+ J1ÿF

) (3.11b)

where r1 , r2 , J1, J2, J3, and ḡ are constants defined as follows:

r1 =
d1

d
r2 =

d − d1

d
J1 =

J

mvd2
− r1r2

J2 =
J

mvd2
+ r2

1
J3 =

J

mvd2
+ r2

2
ḡ = g cos θ

E
(3.12)

The expressions (ÿ
R
, ÿ

F
), (2ẏ′

R
ζ̇ , 2ẏ′

F
ζ̇), and (y′′

R
ζ̇2, y′′

F
ζ̇2) denote the acceleration

of the inertia force, Coriolis force, and centrifugal force, respectively, at the shoes, at

the rear and front contact points; ζ̇ denotes the velocity of the moving vehicle in the

local x-direction (see Fig. 3.2); the prime (′) denotes the differentiation with respect to

coordinate x. Because y
R

= w(ζ, t) and y
F

= w(ζ + d, t) , ẏ′
R

= ∂2w(ζ,t)
∂x∂t

, ẏ′
F

= ∂2w(ζ+d,t)
∂x∂t

,

y′′
R

= ∂2w(ζ,t)
∂x2 and y′′

F
= ∂2w(ζ+d,t)

∂x2 .

The equations of the contact load between the vehicle and its guideway are de-

rived by taking into account the effects of the inertia force, Coriolis force, and cen-

trifugal force of the moving vehicle. Equations (3.11a) and (3.11b) can be rewritten as

follows:
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R = mv

[
ḡr2 − J3

(
ÿ

R
+ 2ẏ′

R
ζ̇ + y′′

R
ζ̇2

)
+ J1

(
ÿ

F
+ 2ẏ′

F
ζ̇ + y′′

F
ζ̇2

)]
(3.13a)

F = mv

[
ḡr1 + J1

(
ÿ

R
+ 2ẏ′

R
ζ̇ + y′′

R
ζ̇2

)
− J2

(
ÿ

F
+ 2ẏ′

F
ζ̇ + y′′

F
ζ̇2

)]
(3.13b)

In order to obtain the approximate solution of the coupled system of equations,

the transverse displacement of the guideway, w (x, t), can be expressed as the super-

position of the normal mode, shown as follows:

w (x, t) =
N∑

i=1

φi (x) Yi (t) ; 0 ≤ t ≤ t
F

(3.14)

where φi (x) denotes the ith mode of the guideway, satisfying the boundary conditions,

and Yi (t) is the generalized coordinate corresponding to the ith mode. The modes of

natural vibrations of a simply supported homogeneous beam can be easily found and

are given as follows:

φi (x) = sin (βix) (3.15)

where β4
i = ω2

i ·
ρA
EI

, βiL = iπ; L is the length of the guideway; ωi is circular frequency

of the ith vibration of the guideway [38].

Substituting Eqs. (3.13), (3.14), and (3.15) into Eq. (3.1), multiplying both sides of

the equation by φn (x), and integrating with respect to x from 0 to L, we obtain the

following expression:

Ÿi (t) + 2ξiωiẎi(t) + ω2
i Yi (t)

=
2mv

ρAL

{
ḡr2 sin

(
iπζ

L

)
−

N∑
j=1

Φ
mij

Ÿj (t) −
N∑

j=1

Φ
cij

Ẏj (t)

−
N∑

j=1

Φ
kij

Yj (t) + ḡr1 sin

[
iπ (ζ + d)

L

]}
(3.16)

Then, Eq. (3.16) can be rewritten as
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Ÿi (t) + ρ
M

N∑
j=1

Φ
mij

Ÿj (t) + 2ξiωiẎi(t)

+ ρ
M

N∑
j=1

Φ
cij

Ẏj (t) + ω2
i Yi (t) + ρ

M

N∑
j=1

Φ
kij

Yj (t) = Q
i

(3.17)

where ρ
M

= 2mv

ρAL
; ρ

F
= 2mv ḡ

ρAL
; and Q

i
, Φ

mij
, Φ

cij
, and Φ

kij
are expressed as follows:

Q
i
= ρ

F

{
r2 sin

(
iπζ

L

)
+ r1 sin

[
iπ (ζ + d)

L

]}
(3.18)

Φ
mij

=

{
J3 sin

(
jπζ

L

)
− J1 sin

[
jπ (ζ + d)

L

]}
sin

(
iπζ

L

)

−

{
J1 sin

(
jπζ

L

)
− J2 sin

[
jπ (ζ + d)

L

]}
sin

[
iπ (ζ + d)

L

]
(3.19a)

Φ
cij

=
2jπζ̇

L

{
J3 cos

(
jπζ

L

)
− J1 cos

[
jπ (ζ + d)

L

]}
sin

(
iπζ

L

)

− 2jπζ̇

L

{
J1 cos

(
jπζ

L

)
− J2 cos

[
jπ (ζ + d)

L

]}
sin

[
iπ (ζ + d)

L

]
(3.19b)

Φ
kij

=

(
jπζ̇

L

)2 {
− J3 sin

(
jπζ

L

)
+ J1 sin

[
jπ (ζ + d)

L

]}
sin

(
iπζ

L

)

+

(
jπζ̇

L

)2 {
J1 sin

(
jπζ

L

)
− J2 sin

[
jπ (ζ + d)

L

]}
sin

[
iπ (ζ + d)

L

]
(3.19c)

where i = 1, 2, ..., N and j = 1, 2, ..., N

Because the system is initially at rest, the guideway’s initial velocity and acceler-

ation are zero. Hence, the initial conditions are Ÿi (0) = 0, Ẏi (0) = 0, ζ̇ = 0, and

Φ
kij

= 0. Application of these initial conditions leads to the initial displacement Yi (0)

of the guideway because of the static load of the vehicle is

Yi (0) =
ρ

F

ω2
i

{
r2 sin

(
iπζ

R

L

)
+ r1 sin

[
iπ (ζ

R
+ d)

L

]}
(3.20)
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3.1.3 Tip-off phase

When the front shoe loses contact with the guideway, F reduces to zero in the tip-off

phase. The vehicle and guideway can be considered as two free bodies shown in Fig.

3.4.

ζ(t)θE

y

P (t)

R∗(t)

R∗(t)

x

mvg
θ̄(t), ˙̄θ(t), ¨̄θ(t)

d1
mv

¨̄y∗(t) ζ̇(t), ζ̈(t)

Figure 3.4: Free-body diagrams of vehicle in tip-off phase.

In the tip-off phase, Eq.(3.13b) equal to zero

F ∗ = mv

[
ḡr1 + J1

(
ÿ

R
+ 2ẏ′

R
ζ̇ + y′′

R
ζ̇2

)∗
− J2

(
ÿ

F
+ 2ẏ′

F
ζ̇ + y′′

F
ζ̇2

)∗
]

= 0 (3.21)

Therefore,

(
ÿ

F
+ 2ẏ′

F
ζ̇ + y′′

F
ζ̇2

)∗
=

1

J2

[
ḡr1 + J1

(
ÿ

R
+ 2ẏ′

R
ζ̇ + y′′

R
ζ̇2

)∗]
(3.22)
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Substituting
(
ÿ

F
+ 2ẏ′

F
ζ̇ + y′′

F
ζ̇2

)∗
from Eq.(3.22) into Eq.(3.13a) results in

R∗ = mv

(
J1 + r1r2

J2

)[
ḡ −

(
ÿ

R
+ 2ẏ′

R
ζ̇ + y′′

R
ζ̇2

)∗
]

(3.23)

The transverse vibrations in the guideway can be expressed as

EI
∂4w (x, t)

∂x4
+ ρA

∂2w (x, t)

∂t2
+ c

∂w(x, t)

∂t
= R∗δ (x, ζ) (3.24)

In the tip-off phase, we set

w (x, t) =
N∑

i=1

φi (x) Y ∗
i (t) ; t

F
≤ t ≤ t

R
(3.25)

Hence, by using a procedure similar to that described above, we obtain

Ÿ ∗
i (t) + 2ξiωiẎ

∗
i (t) + ω2

i Y
∗
i (t)

= ρ∗
M

[
ḡ sin

(
iπζ

L

)
−

N∑
j=1

Φ∗
mij

Ÿ ∗
j (t) −

N∑
j=1

Φ∗
cij

Ẏ ∗
j (t) −

N∑
j=1

Φ∗
kij

Y ∗
j (t)

]
(3.26)

Then, Eq. (3.26) can be rewritten as

Ÿ ∗
i (t) + ρ∗

M

N∑
j=1

Φ∗
mij

Ÿ ∗
j (t) + 2ξiωiẎ

∗
i (t)

+ ρ∗
M

N∑
j=1

Φ∗
cij

Ẏ ∗
j (t) + ω2

i Y
∗
i (t) + ρ∗

M

N∑
j=1

Φ∗
kij

Y ∗
j (t) = ρ∗

F
sin

(
iπζ

L

)
(3.27)

where ρ∗
F

=
2mv ḡ(J1+r1r2)

ρALJ2
; ρ∗

M
=

2mv(J1+r1r2)
ρALJ2

; and Q∗
i
, Φ∗

mij
, Φ∗

cij
, and Φ∗

kij
are expressed

as follows:

Q∗
i

= ρ∗
F

sin

(
iπζ

L

)
(3.28)
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Φ∗
mij

= sin

(
jπζ

L

)
sin

(
iπζ

L

)
(3.29a)

Φ∗
cij

=
2jπζ̇

L
cos

(
jπζ

L

)
sin

(
iπζ

L

)
(3.29b)

Φ∗
kij

= −

(
jπζ̇

L

)2

sin

(
jπζ

L

)
sin

(
iπζ

L

)
(3.29c)

where i = 1, 2, ..., N and j = 1, 2, ..., N

These equations are subject to the continuity conditions Y ∗
i (0) = Yi (tF

) and Ẏ ∗
i (0) =

Ẏi (tF
), i.e., the displacements and velocities of the guideway are continuous.

3.2 Calculation of dynamic response of guideway

It should be emphasized that Eqs. (3.17) and (3.27) represent a set of coupled second-

order differential equations. Equations (3.17) and (3.27) can be rewritten in the form

of a matrix, as follows:

MŸ + CẎ + KY = Q (3.30)

where

Y =
[
Y1 , Y2 , ..., Yi

, ..., Y
N

]T

Ẏ =
[
Ẏ1 , Ẏ2 , ..., Ẏi

, ..., Ẏ
N

]T

Ÿ =
[
Ÿ1 , Ÿ2 , ..., Ÿi

, ..., Ÿ
N

]T

Q =
[
Q1 , Q2 , ..., Qi

, ..., Q
N

]T

Here, Y is a generalized coordinate; Ẏ, a generalized velocity; Ÿ, a generalized

acceleration; Q, a generalized force; M, a generalized mass matrix; C, a generalized

damping matrix; and K, a generalized stiffness matrix.
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In the two-shoe contact phase, expanding Eqs.(3.17), (3.18) and (3.19), yields the

following M, C, and K

M =



1 + ρ
M

Φm11 ρ
M

Φm12 . . . . . . . . . ρ
M

Φ
m1N

ρ
M

Φm21 1 + ρ
M

Φm22 . . . . . . . . . ρ
M

Φ
m2N

. . . . . .
. . . . . . . . . . . .

. . . . . . . . . 1 + ρ
M

Φ
mij

. . . . . .

. . . . . . . . . . . .
. . . . . .

ρ
M

Φ
mN1

ρ
M

Φ
mN2

. . . . . . . . . 1 + ρ
M

Φ
mNN



C =



2ξ1ω1 + ρ
M

Φc11 ρ
M

Φc12 . . . . . . . . . ρ
M

Φ
c1N

ρ
M

Φc21 2ξ2ω2 + ρ
M

Φc22 . . . . . . . . . ρ
M

Φ
c2N

. . . . . .
. . . . . . . . . . . .

. . . . . . . . . 2ξiωi + ρ
M

Φ
cij

. . . . . .

. . . . . . . . . . . .
. . . . . .

ρ
M

Φ
cN1

ρ
M

Φ
cN2

. . . . . . . . . 2ξnωn + ρ
M

Φ
cNN



K =



ω2
1
+ ρ

M
Φ

k11
ρ

M
Φ

k12
. . . . . . . . . ρ

M
Φ

k1N

ρ
M

Φ
k21

ω2
2
+ ρ

M
Φ

k22
. . . . . . . . . ρ

M
Φ

k2N

. . . . . .
. . . . . . . . . . . .

. . . . . . . . . ω2
i
+ ρ

M
Φ

kij
. . . . . .

. . . . . . . . . . . .
. . . . . .

ρ
M

Φ
kN1

ρ
M

Φ
kN2

. . . . . . . . . ω2

N
+ ρ

M
Φ

kNN


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In the tip-off phase, expanding Eqs.(3.27), (3.28) and (3.29), one obtains the follow-

ing M∗, C∗, and K∗

M∗ =



1 + ρ∗
M

Φ∗
11

ρ∗
M

Φ∗
12

. . . . . . . . . ρ∗
M

Φ∗
1N

ρ∗
M

Φ∗
21

1 + ρ∗
M

Φ∗
22

. . . . . . . . . ρ∗
M

Φ∗
2N

. . . . . .
. . . . . . . . . . . .

. . . . . . . . . 1 + ρ∗
M

Φ∗
ij

. . . . . .

. . . . . . . . . . . .
. . . . . .

ρ∗
M

Φ∗
N1

ρ∗
M

Φ∗
N2

. . . . . . . . . 1 + ρ∗
M

Φ∗
NN



C∗ =



2ξ1ω1 + ρ
M

Φ∗
c11

ρ
M

Φ∗
c12

. . . . . . . . . ρ
M

Φ∗
c1N

ρ
M

Φ∗
c21

2ξ2ω2 + ρ
M

Φ∗
c22

. . . . . . . . . ρ
M

Φ∗
c2N

. . . . . .
. . . . . . . . . . . .

. . . . . . . . . 2ξiωi + ρ
M

Φ∗
cij

. . . . . .

. . . . . . . . . . . .
. . . . . .

ρ
M

Φ∗
cN1

ρ
M

Φ∗
cN2

. . . . . . . . . 2ξnωn + ρ
M

Φ∗
cNN



K∗ =



ω2
1
+ ρ

M
Φ∗

k11
ρ

M
Φ∗

k12
. . . . . . . . . ρ

M
Φ∗

k1N

ρ
M

Φ∗
k21

ω2
2
+ ρ

M
Φ∗

k22
. . . . . . . . . ρ

M
Φ∗

k2N

. . . . . .
. . . . . . . . . . . .

. . . . . . . . . ω2
i
+ ρ

M
Φ∗

kij
. . . . . .

. . . . . . . . . . . .
. . . . . .

ρ
M

Φ∗
kN1

ρ
M

Φ∗
kN2

. . . . . . . . . ω2

N
+ ρ

M
Φ∗

kNN


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The differential-algebraic system technique was used to obtain numerical solu-

tions of these equations. Eq. (3.30) was transformed into a system of first-order differ-

ential equations in the state space form by taking time as an additional variable. The

procedure of the same is described below.

Suppose that at time t, the generalized coordinate is Y = [Y1, Y2, ..., YN ]T . We set a

group of functions Z = [Z1, ..., ZN | ZN+1, ..., Z2N ]T = [Zu | Zd]
T with time-dependent

variables and assume that they have the following relationships:

Y = Zu (3.31a)

Ẏ = Zd (3.31b)

Hence,

Żu = Zd (3.32)

At the same time, we define a set of function G = [G1, ..., GN | GN+1, ..., G2N ]T =

[Gu | Gd]
T related to time t as follows:

Gu = Żu − Zd (3.33)

Equation (3.30) is expanded to N independent equations, and they can be trans-

formed into a system of first-order differential equations as follows:

Gd = MŻd + CZd + KZu − Q (3.34)

Hence, Eqs. (3.33) and (3.34) can be rewritten as
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[G]T2N×1

=

 I O1

O1 M


2N×2N

[
Ż

]T

2N×1

+

 O1 −I

K C


2N×2N

[
Z

]T

2N×1
−

 O2

Q

T

2N×1

(3.35)

where O1 is an N × N zero matrix, O2 is an N × 1 zero matrix, and I is an N × N unit

matrix.

Then, solves a first order differential-algebraic system of equations, G(t,Z, Ż) = 0,

using the Petzold-Gear BDF method.

3.3 Modelling the dynamic responses of vehicle at tip-off

If the dynamic responses of the guideway, w (x, t), w (x + d, t), ẇ (x, t), and ẇ (x + d, t),

at any time t corresponding to the two phases are determined, the dynamic responses

of the guideway at any position x can be obtained. Using these results, we can formu-

late the tip-off dynamic responses of the vehicle. The needed equations are summa-

rized as follows:

• For t = 0 : The system is initially at rest.

The position displacement of the guideway, w (x, 0) is given by

w (x, 0) =
N∑

i=1

sin

(
iπx

L

)
2mvḡ

ρALω2
i

{
r2 sin

(
iπζ

R

L

)
+ r1 sin

[
iπ (ζ

R
+ d)

L

]}
(3.36)

The displacement of the vehicle’s center of gravity, ȳ (0) is given by
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ȳ(0) = r1w (ζ
R

+ d, 0) + r2w (ζ
R
, 0)

=
N∑

i=1

2mvḡ

ρALω2
i

{
r1 sin

[
iπ (ζ

R
+ d)

L

]
+ r2 sin

(
iπζ

R

L

)}2

(3.37)

The pitch angle of the vehicle, θ̄ (0) is determined by

θ̄ (0) =
1

d

[
w (ζ

R
+ d, 0) − w (ζ

R
, 0)

]
=

N∑
i=1

2mvḡ

ρALdω2
i

{
sin

[
iπ (ζ

R
+ d)

L

]
− sin

(
iπζ

R

L

)}
·
{

r2 sin

(
iπζ

R

L

)
+ r1 sin

[
iπ (ζ

R
+ d)

L

]}
(3.38)

• For 0 < t ≤ t
F

:

The position displacement of the guideway, w (ζ, t) is given by

w (ζ, t) =
N∑

i=1

φi (ζ) Yi (t)

=
N∑

i=1

2mvḡ

ρALω2
i

{
r2 sin

(
iπζ

L

)
+ r1 sin

[
iπ (ζ + d)

L

]}
sin

(
iπζ

L

)
(3.39)

The displacement of the vehicle’s center of gravity, ȳ (t), is

ȳ (t) = ȳ(0) + r1w (ζ + d, t) + r2w (ζ, t)

=
N∑

i=1

2mvḡ

ρALω2
i

{
r1 sin

[
iπ (ζ

R
+ d)

L

]
+ r2 sin

(
iπζ

R

L

)}2

+
N∑

i=1

{
r1 sin

[
iπ (ζ + d)

L

]
+ r2 sin

(
iπζ

L

)}
Yi (t) (3.40)
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Then, the velocity of the vehicle’s center of gravity, ˙̄y (t), is

˙̄y (t) = r1ẇ (ζ + d, t) + r2ẇ (ζ, t)

=
N∑

i=1

{
r1 sin

[
iπ (ζ + d)

L

]
+ r2 sin

(
iπζ

L

)}
Ẏi (t) (3.41)

The pitch angle of the vehicle, θ̄ (t), is

θ̄ (t) = θ̄(0) +
1

d

[
w (ζ + d, t) − w (ζ, t)

]
=

N∑
i=1

2mvḡ

ρALdω2
i

{
sin

[
iπ (ζ

R
+ d)

L

]
− sin

(
iπζ

R

L

)}
·
{

r2 sin

(
iπζ

R

L

)
+ r1 sin

[
iπ (ζ

R
+ d)

L

]}
+

N∑
i=1

1

d

{
sin

[
iπ (ζ + d)

L

]
− sin

(
iπ (ζ)

L

)}
Yi (t) (3.42)

The pitch rate of the vehicle, ˙̄θ (t), is

˙̄θ (t) =
1

d

[
ẇ (ζ + d, t) − ẇ (ζ, t)

]
=

1

d

N∑
i=1

{
sin

[
iπ (ζ + d)

L

]
− sin

(
iπζ

L

)}
Ẏi (t) (3.43)

• For t
F

< t ≤ t
R

:

In the vehicle tip-off phase, the front shoe loses contact with the guideway, while

the rear shoe of the vehicle remains to move along the guideway. The vehicle is sub-

jected to the thrust force, inertia force, Coriolis force, and centrifugal force. The vehicle
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rotates with respect to its rear shoe. The free-body diagram of the vehicle (see Fig. 3.4)

shows that its center of gravity is subjected to the gravitational acceleration, and its

rear shoe is subjected to the acceleration
(
ÿ

R
+ 2ẏ′

R
ζ̇ + y′′

R
ζ̇2

)∗
in the y-direction. The

equations of equilibrium for the vehicle body are

∑
Fy = mv

[
ḡ −

(
ÿ

R
+ 2ẏ′

R
ζ̇ + y′′

R
ζ̇2

)∗
]

= mvay (3.44a)∑
Mo = Io

¨̄θ∗ = d1mvay (3.44b)

Hence, the rotational acceleration of the vehicle with respect to its rear shoe is defined

as follows:

¨̄θ∗ (t) =
r1

J2d

ḡ −
N∑

i=1

Ÿ ∗
i (t) sin

(
iπζ

L

)
+

2iπζ̇

L
cos

(
iπζ

L

)
Ẏ ∗

i (t)

−

(
iπζ̇

L

)2

sin

(
iπζ

L

)
Y ∗

i (t)

 (3.45)

From the continuity of the displacements and velocities of the guideway in the

two phases, we can obtain the continuity conditions Y ∗
i (0) = Yi (tF

) and Ẏ ∗
i (0) =

Ẏi (tF
).

The pitch angle of the vehicle, θ̄∗ (t), is obtained by

θ̄∗ (t) = θ̄(t
F
) + (t − t

F
) ˙̄θ (t

F
) +

1

2
¨̄θ∗ (t) (t − t

F
)2

= θ̄(t
F
) + (t − t

F
) ˙̄θ (t

F
) +

r1

2J2d

ḡ −
N∑

i=1

Ÿ ∗
i (t) sin

(
iπζ

L

)

+
2iπζ̇

L
cos

(
iπζ

L

)
Ẏ ∗

i (t) −

(
iπζ̇

L

)2

sin

(
iπζ

L

)
Y ∗

i (t)

 (t − t
F
)2 (3.46)

Then, the pitch rate of the vehicle, ˙̄θ∗ (t), is
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˙̄θ∗ (t) = ˙̄θ (t
F
) + ¨̄θ∗ (t) (t − t

F
)

= ˙̄θ (t
F
) +

r1

J2d

ḡ −
N∑

i=1

Ÿ ∗
i (t) sin

(
iπζ

L

)

+
2iπζ̇

L
cos

(
iπζ

L

)
Ẏ ∗

i (t) −

(
iπζ̇

L

)2

sin

(
iπζ

L

)
Y ∗

i (t)

 (t − t
F
) (3.47)

The rear shoe displacement of the vehicle, y∗
R

(t), is

y∗
R

(t) = w (ζ, t) =
N∑

i=1

φi (ζ) Y ∗
i (t) (3.48)

The displacement of the vehicle’s center of gravity, ȳ∗ (t), is given by

ȳ∗ (t) = y∗
R

(t) + d1 θ̄
∗ (t)

=
N∑

i=1

sin

(
iπζ

L

)
Y ∗

i (t) + d1 θ̄(tF
) + d1 (t − t

F
) ˙̄θ (t

F
)

+
r2

1

2J2

ḡ −
N∑

i=1

Ÿ ∗
i (t) sin

(
iπζ

L

)
+

2iπζ̇

L
cos

(
iπζ

L

)
Ẏ ∗

i (t)

−

(
iπζ̇

L

)2

sin

(
iπζ

L

)
Y ∗

i (t)

 (t − t
F
)2 (3.49)

The velocity of the vehicle’s center of gravity, ˙̄y∗ (t), is given by

˙̄y∗ (t) = ẏ∗
R

(t) + d1

˙̄θ∗ (t)

=
N∑

i=1

sin

(
iπζ

L

)
Ẏ ∗

i (t) + d1

˙̄θ (t
F
) +

r2
1

J2

ḡ −
N∑

i=1

Ÿ ∗
i (t) sin

(
iπζ

L

)

+
2iπζ̇

L
cos

(
iπζ

L

)
Ẏ ∗

i (t) −

(
iπζ̇

L

)2

sin

(
iπζ

L

)
Y ∗

i (t)

 (t − t
F
) (3.50)
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3.4 Numerical validation and examples

3.4.1 Case 1: Displacement of contact points between vehicle and guideway

0.00 0.20 0.40 0.60 0.80 1.000.10 0.30 0.50 0.70 0.90
-6.00

-4.00

-2.00

0.00

-5.00
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-1.00

ζ/L

Present
Wu [11]

Figure 3.5: Time histories of transverse displacements under simulated moving concentrated

mass.

We first considered a simply-supported horizontal undamped beam subjected to

a moving concentrated mass, which was studied by Wu [11] using the moving mass

element. The concentrated mass m = 21.8 kg is assumed to move from the left end to

the right end of the beam with a constant speed V = 27.49 m/s. The size and physical

constants of the uniform undamped beam are as follows: a rectangular cross-section

with width b = 0.018113 m and thickness h = 0.072322 m; total length, L = 4.352 m;

mass density, ρ = 15267.1756 kg/m3; Young’s modulus, E = 2020.797216 × 108 N/m2;

∆t = 0.001 s; and ξ = 0.005. Although the solution proposed in this study is for

the dynamic analysis of an inclined flexible guideway with a moving rigid vehicle,

it can be used for a horizontal beam if the angle of inclination of the guideway is
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considered to be close to zero. Furthermore, the distance between two contact points

(two shoes of the vehicle) is set close to zero (1×10−15 m) to simulate the single moving

mass problem. Figure 3.5 shows a comparison of the time histories of the transverse

displacement of the contact point of the moving mass obtained by Wu [11] and those

obtained in this study. The figure shows that the difference between the results is

negligible.

3.4.2 Case 2: Comparison between tip-off results of rigid and pseudo-rigid guide-

ways

We analyzed a rigid vehicle moving on a inclined rigid beam here. We assumed the

flexural rigidity of the guideway to be 1.2 × 1015 N · m2 to simulate a rigid guideway

in the solutions given in this chapter; this value is equal to that of a pseudo-rigid

guideway. The parameters listed in Table 3.1 were used. Figures 3.6 and 3.7 depict

the pitch angle and pitch rate of vehicle in the tip-off phase, respectively. The figures

also show the results by Yao and Zhang [34], who ignored both the Coriolis force

and the centrifugal force in their analyses. For comparison, the results obtained from

the present approach shown in Figs. 3.6 and 3.7 also neglected the Coriolis and the

centrifugal forces. Some results at particular time are also listed in Tables 3.2 and 3.3.

The present results are somewhat different from those of Yao and Zhang [34]. The

results of Yao and Zhang [34] may not be accurate enough. The vehicle maintains

its uniform rotational acceleration with respect to its rear shoe when the front shoe

loses contact with the rigid guideway. Hence, the slope of the pitch rate with respect

to time should be constant when the motion is a uniform rotational acceleration. A

nearly straight line is obtained from the present approach, while the results of Yao and

Zhang [34] clearly deviate from a straight line.
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Figure 3.6: Comparison of pitch angles θ̄ − t of vehicle on pseudo-rigid (P.R.) guideway and

rigid guideway.
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Figure 3.7: Comparison of pitch rates ˙̄θ−t of vehicle on pseudo-rigid (P.R.) guideway and rigid

guideway.
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Table 3.1: Parameters of the vehicle launch system.

Parameters Design value of launch system
EI 1.2 ×107 N · m2

ρA 1.5 ×102 kg/m
ξ 0.03
L 8.0 m
θE 0.5 rad
mv 1.6 ×103 kg
J 4.7 ×103 m4

d 3.7 m
d1 2.5 m
ζR 0.1 m
ζF 4.2 m
t
b

0.1 s
Pmax 7.0 ×104 N
ζ̇(0) 0.0 m/s
∆t 0.0001 s

Table 3.2: Comparison of pitch angles for pseudo-rigid guideway and rigid guideway.

Pitch angle of vehicle (◦)

Time (s) P.R. Rigid

0.5136 −7.6262E − 08 −7.5517E − 08

0.5250 −8.6705E − 03 −8.6716E − 03

0.5500 −8.8755E − 02 −8.8872E − 02

0.5750 −2.5273E − 01 −2.5367E − 01

0.6000 −5.0059E − 01 −5.0431E − 01

0.6250 −8.3234E − 01 −8.4263E − 01

0.6500 −1.2480E + 00 −1.2712E + 00

0.6750 −1.7475E + 00 −1.7931E + 00

0.6876 −2.0311E + 00 −2.0928E + 00
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Table 3.3: Comparison of pitch rates for pseudo-rigid guideway and rigid guideway.

Pitch rate of vehicle (◦/s)

Time (s) P.R. Rigid

0.5136 4.5025E − 03 4.5025E − 03

0.5250 −1.5256E + 00 −1.5260E + 00

0.5500 −4.8812E + 00 −4.8940E + 00

0.5750 −8.2367E + 00 −8.2984E + 00

0.6000 −1.1592E + 01 −1.1765E + 01

0.6250 −1.4948E + 01 −1.5318E + 01

0.6500 −1.8303E + 01 −1.8986E + 01

0.6750 −2.1659E + 01 −2.2795E + 01

0.6876 −2.3350E + 01 −2.4778E + 01

3.4.3 Case 3: Behavior of rigid vehicle on elastic guideway

After confirming the correctness of the present solutions, we further applied the solu-

tions to study the behaviors of a rigid vehicle on a flexible beam. The parameters of

the vehicle launch system used in this case are listed in Table 3.1.

In this test example, we obtained the time interval of the tip-off phase; this started

at t
F

= 0.5136 s and ended at t
R

= 0.6876 s. Figure 3.8 shows the transverse displacement-

time graph of the center of gravity of the vehicle. It shows that the position of the

center of gravity of the vehicle tends to move upward before the tip-off phase. Figure

3.9 shows the transverse velocity-time graph of the center of gravity of the vehicle.

After the front shoe of the vehicle loses contact with the guideway, the constraint

force acting on the shoe suddenly vanishes. Figure 3.9 shows an abrupt variation in

the vertical velocity of the center of gravity of the vehicle in the initial tip-off phase.

Although the transverse velocity of the center of gravity of the vehicle varied abruptly,

the transverse displacements of the center of gravity of the vehicle were not obvious.

The pitch angles as well as the pitch rates for the two guideway models were com-
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Figure 3.8: Transverse displacement of vehicle’s center of gravity.
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Figure 3.9: Transverse velocity of vehicle’s center of gravity.
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Figure 3.10: Comparison of pitch angles of vehicle on elastic guideway and rigid guideway.
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Figure 3.11: Comparison of pitch rates of vehicle on elastic guideway and rigid guideway.
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pared with those obtained from the rigid guideway model in the previous section, as

shown in Figs. 3.10 and 3.11. As shown in Figs. 3.10 and 3.11, the computed minimum

pitch angles of the vehicle on the elastic guideway and rigid guideway are −2.6060◦

and −2.0953◦, respectively; the corresponding minimum pitch rates are −30.556◦/s

and −24.794◦/s.

The tip-off analysis results indicate that the vehicle vibrates excessively at approx-

imately 0.6 s when the tip-off phase begins. This vibration is because of the dynamic

interaction of the rear shoe of the vehicle and the elastic guideway when the front

shoe of the vehicle loses contact with the guideway. In addition, the behavior of the

dynamic interaction between the vehicle and the guideway cannot be observed and

computed using the rigid guideway model. Therefore, the elastic guideway model

has to be used for this purpose.

3.5 Parametric study

This study aims to investigate the motion of a vehicle on an elastic guideway before

the take-off phase as well as the initial movement at the end of the phase. Therefore,

in the parametric study, we focused on the effect of the dynamic interaction between a

vehicle and its guideway on the tip-off analysis results of the vehicle. For this purpose,

we determined the transverse displacement of the center of gravity, pitch angle, and

pitch rate of the vehicle. For the parametric study, we used the nominal values of

the parameters listed in Table 3.1. We estimated the values of parameters such as the

damping ratio ξ, angle of inclination θ
E

, length of guideway L, and distance between

shoes of the vehicle d, and used L and d for the tip-off analysis. We performed a series

of numerical simulations; the obtained results are shown in the graphs below.
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3.5.1 Influence of damping ratio of guideway

The results obtained in this study clearly indicate that the damping ratio of the guide-

way ξ is sensitive to the analysis results, and the value of ξ is approximately less than

0.01. However, when ξ is greater than 0.01, the dynamic responses of the vehicle tend

toward becoming linear.

According to the parameters listed in Table 3.1, we selected four different values

for the damping ratio of the guideway, ξ = 0.00 , 0.01, 0.03, and 0.05, in order to

analyze the tip-off effect. Figures 3.12, 3.13, and 3.14 show the obtained results. We

compared these results with those obtained for the rigid guideway model in the pre-

vious section. As indicated by the time history plots, with a larger damping ratio,

the response to high-frequency variations reduces more sharply in the tip-off phase.

Moreover, the dynamic response obtained for the elastic guideway model was 20%

greater than that obtained for the rigid guideway model. The results of the simulation

are listed in Table 3.4. For ξ = 0.03, the differences in the transverse displacement

of the center of gravity, pitch angle, and pitch rate are 24.40%, 24.37%, and 23.24%,

respectively.

We selected 1000 sets of ξ values ranging from 0.00 to 0.06 in this study. Figures

3.15, 3.16, and 3.17 show the dynamic responses of the vehicle with changes in the

damping ratio. When ξ is greater than 0.01, the dynamic response of the vehicle tends

toward becoming linear. Therefore, it would be preferable to select an appropriate

guideway material or heavily damped guideways to minimize the dynamic response

when designing launch systems.
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Figure 3.12: Effect of guideway damping on transverse displacement of vehicle’s center of

gravity (ȳ − t diagram).

0.52 0.56 0.60 0.64 0.680.54 0.58 0.62 0.66 0.70
-4.00

-3.00

-2.00

-1.00

0.00

-3.50

-2.50

-1.50

-0.50

0.50



Figure 3.13: Effect of guideway damping on pitch angle of vehicle (θ̄ − t diagram).
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Figure 3.14: Effect of guideway damping on pitch rate of vehicle ( ˙̄θ − t diagram).
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Figure 3.15: Effect of guideway damping on transverse displacement of vehicle’s center of

gravity (ȳ − ξ diagram).
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Figure 3.16: Effect of guideway damping on pitch angle of vehicle (θ̄ − ξ diagram).
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Figure 3.17: Effect of guideway damping on pitch rate of vehicle ( ˙̄θ − ξ diagram).
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Table 3.4: Comparison of dynamic responses between elastic guideway model with different

damping ratios and rigid guideway model.

Case. ȳ (m) % θ̄ (◦) % ˙̄θ (◦/s) %

Rigid guideway −8.0231E − 02 − −2.0953E + 00 − −2.4794E + 01 −

ξ = 0.00 −9.4929E − 02 18.32 −2.4787E + 00 18.30 −2.9082E + 01 17.29

ξ = 0.01 −1.0086E − 01 25.71 −2.6337E + 00 25.70 −3.0867E + 01 24.49

ξ = 0.03 −9.9806E − 02 24.40 −2.6060E + 00 24.37 −3.0556E + 01 23.24

ξ = 0.05 −9.8314E − 02 22.54 −2.5670E + 00 22.51 −3.0114E + 01 21.46

3.5.2 Influence of angle of inclination of guideway

The force component induced in the transverse direction by the moving loads de-

creases when the angle of inclination θ
E

of the guideway increases. Although an in-

crease in the value of θ
E

is advantageous in that it minimizes the dynamic responses

of the launched vehicle, it also leads to a decrease in the initial speed of the vehicle

before take-off. The initial speed of the vehicle will affect the tolerance of its flight

control system. Therefore, the angle of inclination of the guideway has to be carefully

selected when designing a launch system.

According to the parameters listed in Table 3.1, we selected 1000 sets of θ
E

values

ranging from 0.0 rad to 1.0 rad in this study. Figures 3.18, 3.19, and 3.20 show the ob-

tained results. We compared these results with those obtained for the rigid guideway

model in Chapter two. As mentioned before, the angle of inclination of the guideway

affects the vehicle speed and the transverse force acting on the launched vehicle be-

fore take-off. In other words, the larger the angle of inclination θ
E

of the guideway,

the lower is the take-off speed and the smaller is the transverse force acting on the

launched vehicle. When the take-off speed of the launched vehicle decreases, the time

interval t
R
− t

F
increases. This is disadvantageous because this decreases the vehicle

tip-off effect. However, increasing the angle of inclination of the guideway may de-

crease the transverse force acting on the launched vehicle; this is advantageous in that
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Figure 3.18: Effect of angle of inclination on transverse displacement of vehicle’s center of

gravity (ȳ − θE diagram).
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Figure 3.19: Effect of angle of inclination on pitch angle of vehicle (θ̄ − θE diagram).
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Figure 3.20: Effect of angle of inclination on pitch rate of vehicle ( ˙̄θ − θE diagram).

it reduces the dynamic interactions between the vehicle and its guideway. The figures

indicate that when the angle of inclination θ
E

increases, the differences between the

dynamic responses for the two models decrease. In other words, selecting the angle of

inclination of the guideway is difficult.

3.5.3 Influence of length of guideway

An increase in the length of the guideway will help increase the speed of the vehicle

during take off. Further, the time interval t
R
− t

F
of the tip-off phase corresponding

to the two shoes of the vehicle losing contact with the guideway will decrease. This is

highly useful for decreasing the dynamic responses of the vehicle.

According to the parameters listed in Table 3.1, we selected 1000 sets of L values

ranging from 4.0 m to 12.0 m to investigate the results of the variation of the tip-off

effect. Figures 3.21, 3.22, and 3.23 show the obtained results. We compared these

results with those obtained for the rigid guideway model in Chapter two. Obviously,
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Figure 3.21: Effect of guideway length on transverse displacement of vehicle’s center of gravity

(ȳ − L diagram).
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Figure 3.22: Effect of guideway length on pitch angle of vehicle (θ̄ − L diagram).
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Figure 3.23: Effect of guideway length on pitch rate of vehicle ( ˙̄θ − L diagram).

as the length of the guideway increases, the results of the tip-off effect analysis of the

rigid guideway model tend to decrease smoothly.

Although the analysis results of the elastic guideway model exhibit a similar be-

havior, they fluctuate along the curves of the rigid guideway model. The disturbance

of this phenomenon is particularly evident in the analysis of the pitch rate. Although

the results indicate that the increase in the guideway length decreases the dynamic

interaction because of the tip-off effect, the guideway length has to be selected care-

fully considering the fluctuation in the results and the space limits of certain launch

systems. In most cases, the length of the guideway must be limited to satisfy the space

requirements of a launch system. Normally, the length of the guideway is slightly

greater than that of the vehicle.
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3.5.4 Influence of distance between shoes of vehicle

According to the parameters listed in Table 3.1, we selected 1000 sets of d values rang-

ing from 2.6 m to 4.8 m to investigate the effect of d on the tip-off responses. Figures

3.24, 3.25, and 3.26 show the transverse displacement, pitch angle and pitch rate of ve-

hicle varying with d, respectively. We compared the results with those obtained from

the rigid guideway model described in Chapter 2. Obviously, the larger the distance,

the more dynamic is the response in the tip-off phase of the vehicle. The dynamic re-

sponse obtained from the elastic guideway model was 30% greater than that obtained

from the rigid guideway model. The differences in the vertical displacement of the

center of gravity, pitch angle, and pitch rate at d = 2.8706 m are 30.96%, 30.82%, and

31.35%, as shown in Table 3.5. The influence of the distance between the shoes on the

maximum difference of the vehicle’s dynamic response are computed to be 3.0170 cm

for the transverse displacement of the center of gravity, 0.7888◦ for the pitch angle, and

6.7160◦/s for the pitch rate at d ; 4.4 m, as shown in Table 3.5.

A decrease in the distance between the shoes of the vehicle leads to a decrease in

the time interval of the tip-off phase. That is, the time interval t
R
− t

F
corresponding

to the two shoes losing contact with the guideway decreases. However, this situation

could cause stress concentration in the guideway and unstable behavior of the vehicle.

More problems may arise, and these need to be investigated. However, this is beyond

the scope of this study.

3.5.5 Influence of Coriolis force and centrifugal force

A launch system should be designed by considering two important factors: the mass

of the vehicle and the length of the guideway. Generally, the time interval of the take-

off phase of a heavy vehicle is less than 1 s, and the speed of the vehicle is around

30 m/s before take-off. When the vehicle is moving along a deformed guideway at
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Figure 3.24: Effect of distance between the shoes of the vehicle on transverse displacement of

vehicle’s center of gravity (ȳ − d diagram).
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Figure 3.25: Effect of distance between the shoes of the vehicle on pitch angle of vehicle (θ̄ − d

diagram).
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Figure 3.26: Effect of distance between the shoes of the vehicle on pitch rate of vehicle ( ˙̄θ − d

diagram).

Table 3.5: Effect of distance between the shoes on maximum difference in dynamic response of

vehicle.

d (m) Guideway ȳ (m) % θ̄ (◦) % ˙̄θ (◦/s) %

2.8706 Rigid −4.4018E − 02 − −1.1495E + 00 − −1.8009E + 01 −
Elastic −5.7647E − 02 30.96 −1.5038E + 00 30.82 −2.3654E + 01 31.35

4.2830 Rigid −1.1597E − 01 − −3.0287E + 00 − −3.0368E + 01 −
Elastic −1.4561E − 01 25.56 −3.8032E + 00 25.57 −3.7084E + 01 22.12

4.4238 Rigid −1.2621E − 01 − −3.2961E + 00 − −3.1846E + 01 −
Elastic −1.5638E − 01 23.91 −4.0845E + 00 23.92 −3.8196E + 01 19.94

4.4304 Rigid −1.2671E − 01 − −3.3091E + 00 − −3.1916E + 01 −
Elastic −1.5688E − 01 23.81 −4.0979E + 00 23.84 −3.8246E + 01 19.83
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the abovementioned speed, the behavior of dynamic interactions should be studied

by considering the effect of the Coriolis force and centrifugal force. According to the

parameters listed in Table 3.1, we analyzed the tip-off effect of the vehicle under the

action of the Coriolis force and centrifugal force. In this test example, the dynamic

interaction was not significant. Figures 3.27, 3.28, and 3.29 show the results of the tip-

off effect analysis. The figures indicate that the dynamic response under the action of

the Coriolis force and centrifugal force is approximately 2.0% greater than that in the

absence of these forces. The differences in the transverse displacement of the center of

gravity, pitch angle, and pitch rate are 2.02%, 2.02%, and 1.95%, as shown in Table 3.6.

Dehestani et al. [10] and Wu [11] showed that it is important to consider the Cori-

olis force and centrifugal force associated with a high-speed vehicle moving along a

vibrating guideway. Generally, in the interest of accuracy, the take-off attitude of a

vehicle should be precisely computed. Therefore, if would be preferable to consider

the effects of the Coriolis force and centrifugal force in the formulations.

Table 3.6: Effect of Coriolis and centrifugal forces on dynamic response of vehicle.

Case. ȳ (m) % θ̄ (◦) % ˙̄θ (◦/s) %

C1 −9.7830E − 02 − −2.5543E + 00 − −2.9971E + 01 −

C2 −9.9806E − 02 2.02 −2.6060E + 00 2.02 −3.0556E + 01 1.95

C3 −9.9016E − 02 1.21 −2.5854E + 00 1.22 −3.0305E + 01 1.11

C4 −9.8453E − 02 0.64 −2.5705E + 00 0.63 −3.0174E + 01 0.68

3.5.6 Influence of guideway length and distance between the shoes

According to the parameters listed in Table 3.1, we selected d values ranging from

2.4 m to 5.0 m and L values ranging from 6.0 m to 10.0 m, to investigate their effects

on the tip-off responses. Figures 3.30 and 3.31 show the results of the pitch angle and
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Figure 3.27: Effect of Coriolis and centrifugal forces on displacement of vehicle’s center of

gravity (ȳ − t diagram).
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Figure 3.28: Effect of Coriolis and centrifugal forces on pitch angle of vehicle (θ̄ − t diagram).
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Figure 3.29: Effect of Coriolis and centrifugal forces on pitch rate of vehicle ( ˙̄θ − t diagram).

pitch rate analysis of the vehicle. From the contour lines, we can easily select a set of

optimum parameters for designing launch systems.
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Figure 3.30: Effect of guideway length and distance between shoes on pitch angle of vehicle:

(a) 3D plot (b) contour plot.
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Figure 3.31: Effect of guideway length and distance between shoes on pitch rate of vehicle: (a)

3D plot (b) contour plot.
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CHAPTER FOUR

A flexible vehicle moving along an in-
clined flexible guideway

4.1 Theory and Formulation

Similar to the development of solutions in Chapters two and three, Fig. 4.1 schemat-

ically depicts a typical straight flexible guideway that is used for launching a flexible

vehicle. This model is referred as E.E. model. While the vehicle moves, the two shoes

of the flexible vehicle are assumed to slide along the elastic guideway by means of a

rigid contact. The vector of thrust is assumed to be along the vehicle’s centerline (C.L.)

and always coincides with the line joining the two contact points.

                                                                                              θE

Lg

ζ
R

d

ζ
F

mv, J

O2

x2

O1

x1

dR

dG

dF

Lv

wg(x2, t)

wv(x1, t)

Figure 4.1: A typical flexible guideway used for flexible vehicle launch.
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4.1.1 Position history of vehicle

As mentioned in Chapter 2, two phases exist when a vehicle moves along a guideway,

i.e., the two-shoe contact phase and the tip-off phase. From the typical thrust-time

curve shown in Fig. 2.3 and the design parameters of the vehicle and its guideway,

one can easily find the position of the rear shoe, ζ(t) (see Fig. 4.2), tF and tR can be

easily determined to identify the particular phase with which the vehicle is associated

at each instant. The formulas for ζ(t), tF and tR are given in Chapter 2.

                                                                                              θE ζ(t)

d

y
R(t)

R(t)

F (t)

F (t)

mvg

P (t)

x2

x1¨̄y(t)
ζ̇(t), ζ̈(t)

Figure 4.2: Free-body diagrams of a vehicle and its guideway.

4.1.2 Two-shoe contact phase

The dynamic response of the vehicle can be split into two parts, i.e., the elastic defor-

mation and rigid body motion, known to be completely uncoupled. The equations

of motion and relevant boundary conditions can be derived using the Lagrangian ap-

proach. The kinetic energy and potential energy of the vehicle and the guideway are
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Kv =
1

2

∫ Lv

0

ρvAv

(
ẇv + ζ̇w

′

v

)2

dx1 +
1

2
mv

(
˙̄xr

2
+ ˙̄yr

2
)

+
1

2
J ˙̄θ

2

r (4.1a)

Kg =
1

2

∫ Lg

0

ρgAgẇ
2
gdx2 (4.1b)

Vv =
1

2

∫ Lv

0

(
EvIvw

′′2
v − Pw

′2
v

)
dx1 +

∫ Lv

0

ρvAvg cos θEwvdx1

+ (mvg sin θE) x̄r + (mvg cos θE) ȳr (4.1c)

Vg =
1

2

∫ Lg

0

EgIgw
′′2
g dx2 (4.1d)

where subscripts (v) and (g) refer to the vehicle and the guideway, respectively; the

overhead dot (·) and the prime (′) denote differentiation with respect to time t and

coordinate x, respectively; K and V are the kinetic energy and the potential energy, re-

spectively; EI is the constant flexural rigidity; ρA represents the mass per unit length;

J is the mass moment of inertia of the vehicle; ζ̇ (t) denotes the velocity of the vehicle

in the local x2-direction; x̄r (t) is the axial coordinate of the vehicle under rigid body

motion in the fixed coordinate system x2O2y2; ȳr (t) is the transverse displacement of

the vehicle under rigid body motion, and θ̄r (t) is the angle of rotation of the vehicle

under rigid body motion. The transverse elastic displacements of the vehicle wv(x1, t)

and the guideway wg(x2, t) are described as functions of the axial coordinates x1 and

x2, respectively.

The two shoes of the vehicle are assumed to slide along the elastic guideway by

means of a rigid contact. Hence, the corresponding constraint equations are

w (dR, t) = wg (ζ, t) (4.2a)

w (dF , t) = wg (ζ + d, t) (4.2b)

where dR is the distance between the left end and the rear shoe of vehicle; dF is the

distance between the left end and the front shoe of vehicle, and w (dR, t) and w (dF , t)
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are the total transverse displacements at the rear shoe and the front shoe of the vehicle,

respectively. These displacements w (dR, t) and w (dF , t) comprise a rigid part and an

elastic part.

The transverse elastic displacements of the beams can be expressed in terms of

their normal modes as,

wv (x1, t) =
N∑

j=1

φj (x1) Y v
j (t) (4.3a)

wg (x2, t) =
N∑

j=1

ψj (x2) Y g
j (t) (4.3b)

where Y v
j (t) and Y g

j (t) are the generalized coordinates corresponding to the jth mode

of the vehicle and guideway, respectively; φj (x1) and ψj (x2) denote the jth mode

shape functions of the vehicle and guideway, respectively.

The vehicle is modeled as a beam with two free ends, and its mode shape functions

φj (x1) are [38]

φj (x1) = cos (βvjx1) + cosh (βvjx1) − Υj

[
sin (βvjx1) + sinh (βvjx1)

]
(4.4)

where j = 1, 2, ..., N

β4
vj = ω2

vj ·
ρvAv

EvIv

, Υj =
cos (βvjLv) − cosh (βvjLv)

sin (βvjLv) − sinh (βvjLv)
, βvjLv ≈

(
j +

1

2

)
π (4.5)

ωvj is the circular frequency of the jth mode of the vehicle, Lv is the length of the

vehicle.

The guideway is modeled as a simply-supported beam whose mode shape func-

tions are

ψj (x2) = sin

(
jπx2

Lg

)
, j = 1, 2, ..., N (4.6)
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where Lg is the length of the guideway.

The motions of vehicle and guideway have to satisfy Lagrange’s equations,

d

dt

[
∂L(q, q̇, t)

∂q̇
k

]
− ∂L(q, q̇, t)

∂q
k

= 0, k = 1, 2, ..., N (4.7)

where functional L, which depends on the generalized coordinates q
k

and velocities

q̇
k
, represents the difference between the kinetic energy and the potential energy of a

conservative dynamic system. To account for the displacement constraints equations

in Eqs. (4.2) ( w (dR, t) − wg (ζ, t) = 0 and w (dF , t) − wg (ζ + d, t) = 0), extra terms

are added to functional L using the Lagrange multiplier method. Accordingly, the

Lagrangian functional L with the Lagrange multipliers λ1 and λ2 is further expressed

as,

L = (Kv + Kg) − (Vv + Vg) + λ1G1 + λ2G2

=
1

2

∫ Lv

0

ρvAv

[
N∑

j=1

(
φjẎ

v
j + ζ̇φ

′

jY
v
j

)]2

dx1 +
1

2
mv

(
˙̄xr

2
+ ˙̄yr

2
)

+
1

2
J ˙̄θr

2

+
1

2

∫ Lg

0

ρgAg

(
N∑

j=1

ψjẎ
g
j

)2

dx2 −
1

2

∫ Lg

0

EgIg

(
N∑

j=1

ψ
′′

j Y g
j

)2

dx2

− 1

2

∫ Lv

0

N∑
j=1

[
EvIv

(
φ

′′

j Y
v
j

)2

− P
(
φ

′

jY
v
j

)2
]

dx1

−
∫ Lv

0

ρvAvg cos θE

N∑
j=1

φjY
v
j dx1 − (mvg sin θE) x̄r − (mvg cos θE) ȳr

+ λ1

[
N∑

j=1

φj(dR)Y v
j + y(dR, t) −

N∑
j=1

ψj(ζ)Y g
j

]

+ λ2

[
N∑

j=1

φj(dF )Y v
j + y(dF , t) −

N∑
j=1

ψj(ζ + d)Y g
j

]
(4.8)
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where
x̄r (t) = ζ (t) + r1d cos θ̄r (t) (4.9a)

y (dR, t) = ȳr (t) − r1d sin θ̄r (t) (4.9b)

y (dF , t) = ȳr (t) + r2d sin θ̄r (t) (4.9c)

G1 = w (dR, t) − wg (ζ, t)

=
N∑

j=1

φj(dR)Y v
j (t) −

N∑
j=1

ψj(ζ)Y g
j (t) + ȳr (t) − r1d sin θ̄r (t) (4.9d)

G2 = w (dF , t) − wg (ζ + d, t)

=
N∑

j=1

φj(dF )Y v
j (t) −

N∑
j=1

ψj(ζ + d)Y g
j (t) + ȳr (t) + r2d sin θ̄r (t) (4.9e)

r1 = (dG−dR)/d; r2 = (dF −dG)/d; y (dR, t) and y (dF , t) denote the transverse displace-

ments of the vehicle’s rigid body motion at the rear shoe and front shoe, respectively,

and G1 and G2 are the displacement constraints. The two unknowns λ1 and λ2 can be

obtained if Lagrange’s equations are solved with the constrained equations. Notably,

no damping is considered in the preceding formulations.

Substituting Eqs. (4.2), (4.3), (4.4) and (4.6) into Eq.(4.8), and substituting the re-

sulting expression for L into Eq. (4.7) yield

mv ¨̄xr (t) + mvg sin θE − P (t) = 0 (4.10a)

mv ¨̄yr (t) + mvg cos θE − λ1 − λ2 = 0 (4.10b)

J ¨̄θr (t) + (r1λ1 − r2λ2) d cos θ̄r (t) − mvgr1d sin θE sin θ̄r (t) = 0 (4.10c)

H̃a
i Ÿ v

i (t) + 2ζ̇H̃b
i Ẏ

v
i (t) +

(
ω2

viH̃
a
i + Lv ζ̈H̃c

i + ζ̇2H̃c
i + ζ̈H̃b

i

)
Y v

i (t)

− 1

ρvAv

[
λ1φi(dR) + λ2φi(dF )

]
+ g cos θEH̃d

i = 0 (4.10d)

Ÿ g
i (t) + ω2

giY
g
i (t) +

2

mg

[
λ1ψi (ζ) + λ2ψi (ζ + d)

]
= 0 (4.10e)

N∑
j=1

φj(dR)Y v
j (t) −

N∑
j=1

ψj(ζ)Y g
j (t) + ȳr (t) − r1d sin θ̄r (t) = 0 (4.10f)

N∑
j=1

φj(dF )Y v
j (t) −

N∑
j=1

ψj(ζ + d)Y g
j (t) + ȳr (t) + r2d sin θ̄r (t) = 0 (4.10g)
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where, i = 1, 2, ..., N , mg = ρgAgLg, ωgi is the circular frequency of the ith mode of the

guideway, β4
gi = ω2

gi ·
ρgAg

EgIg
, βgiLg = iπ, and (see Appendix A.1)

H̃a
i =

∫ Lv

0

φi(x1)φi(x1)dx1

=
1

2βvi

[ (
Υ2

i + 1
)
cosh (βviLv) sinh (βviLv) − 2Υi cosh2 (βviLv)

+ 2
(
Υ2

i + 1
)
sin (βviLv) cosh (βviLv) + 2βviLv

−4Υi sin (βviLv) sinh (βviLv)

]
(4.11a)

H̃b
i =

∫ Lv

0

φ
′

i(x1)φi(x1)dx1

=
1

2

(
Υ2

i + 1
)
cosh2 (βviLv) − Υi cosh (βviLv) sin (βviLv) − 2

− Υi cosh (βviLv) sinh (βviLv) + Υ2
i sin (βviLv) sinh (βviLv) (4.11b)

H̃c
i =

∫ Lv

0

φ
′′

i (x1)φi(x1)dx1

=
1

2
βvi

[ (
Υ2

i + 1
)
cosh (βviLv) sinh (βviLv) − 2Υi cosh2 (βviLv)

+4Υi − 2βviLvΥ
2
i

]
(4.11c)

H̃d
i =

∫ Lv

0

φi(x1)dx1

=
1

βvi

[
sin (βviLv) + sinh (βviLv) − Υi cosh (βviLv)

]
(4.11d)

To include the effect of damping in the system of the vehicle and the guideway,

an approach that is commonly used in structural dynamics (Clough and Penzien [39])

is adopted to add the distributed viscous damping term to Eqs. (4.10d) and (4.10e).

These equations are thus modified as,

H̃a
i Ÿ v

i (t) +
(
2ζ̇H̃b

i + 2ξvωviH̃
a
i

)
Ẏ v

i (t) +
(
ω2

viH̃
a
i + Lv ζ̈H̃c

i

+ζ̇2H̃c
i + ζ̈H̃b

i

)
Y v

i (t) − 1

ρvAv

[
λ1φi(dR) + λ2φi(dF )

]
+ g cos θEH̃d

i = 0 (4.12a)

Ÿ g
i (t) + 2ξgωgiẎ

g
i (t) + ω2

giY
g
i (t) +

2

mg

[
λ1ψi (ζ) + λ2ψi (ζ + d)

]
= 0 (4.12b)

where 2ξvωvi and 2ξgωgi are the added damping terms, and ξv and ξg are the damping

ratios corresponding to the mode shapes φi(x1) and ψi(x2), respectively.
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Equations (4.10a-4.10c, 4.10f, 4.10g) and (4.12) form a set of nonlinear ordinary

differential equations for describing the rigid body motions of the vehicle and elastic

deformations of the vehicle and the guideway. Equation (4.10a) describes the rigid

body motion of the vehicle in the x1 direction (see Fig. 4.2). This equation can be

easily derived from Newton’s second law and the free body diagram of the vehicle in

Fig. 4.2. This equation was utilized to find the solution for ζ(t) given in Eqs. (2.6) and

(2.13) where ζ(t) = x̄r(t)−r1d. Consequently, Eqs. (4.10b, 4.10c, 4.10f, 4.10g) and (4.12)

can be employed to find the transverse displacements of the vehicle and the guideway.

A total of 2N +4 equations with 2N +4 to-be-determined functions, Y v
i (t), Y g

i (t), ȳr(t),

θ̄r(t), λ1(t) and λ2(t), are thus obtained. To solve these equations efficiently, Eqs. (4.10f)

and (4.10g) are differentiated twice with respect to time, and using Eqs. (4.12) yield

λ1

{
N∑

j=1

[
d2jψj(ζ) − d1jφj(dR)

]
+

1

mv

+
r2
1d

2 cos2 θ̄r

J

}

+ λ2

{
N∑

j=1

[
e2jψj(ζ) − e1jφj(dR)

]
+

1

mv

− r1r2d
2 cos2 θ̄r

J

}

−
N∑

j=1

{
φj(dR)

(
b1jẎ

v
j + c1jY

v
j + f1j

)
− ψj(ζ)

(
b2jẎ

g
j + c2jY

g
j

)
+2ζ̇ψ

′

j(ζ)Ẏ g
j +

[
ζ̈ψ

′

j(ζ) + ζ̇2ψ
′′

j (ζ)

]
Y g

j

}
− mvgr2

1d
2 sin θE sin θ̄r cos θ̄r

J

+ r1d
˙̄θ2
r sin θ̄r − g cos θE = 0 (4.13a)

λ1

{
N∑

j=1

[
d2jψj(ζ + d) − d1jφj(dF )

]
+

1

mv

− r1r2d
2 cos2 θ̄r

J

}

+ λ2

{
N∑

j=1

[
e2jψj(ζ + d) − e1jφj(dF )

]
+

1

mv

+
r2
2d

2 cos2 θ̄r

J

}

−
N∑

j=1

{
φj(dF )

(
b1jẎ

v
j + c1jY

v
j + f1j

)
− ψj(ζ + d)

(
b2jẎ

g
j + c2jY

g
j

)
+2ζ̇ψ

′

j(ζ + d)Ẏ g
j +

[
ζ̈ψ

′

j(ζ + d) + ζ̇2ψ
′′

j (ζ + d)

]
Y g

j

}
+

mvgr1r2d
2 sin θE sin θ̄r cos θ̄r

J
− r2d

˙̄θ2
r sin θ̄r − g cos θE = 0 (4.13b)
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where,

b1j = 2ξvωvj +
2ζ̇H̃b

j

H̃a
j

, c1j = ω2
vj +

Lv ζ̈H̃c
j + ζ̇2H̃c

j + ζ̈H̃b
j

H̃a
j

,

d1j = − φj(dR)

ρvAvH̃a
j

, e1j = − φj(dF )

ρvAvH̃a
j

, f1j =
g cos θEH̃d

j

H̃a
j

,

b2j = 2ξgωgj, c2j = ω2
gj , d2j =

2ψj (ζ)

mg

, e2j =
2ψj (ζ + d)

mg

(4.14)

Consequently, Eqs. (4.10b, 4.10c), (4.12) and (4.13) are used to determine the trans-

verse motions of the vehicle and the guideway when 0 < t ≤ t
F

, as discussed below.

To solve the above governing equations, the initial conditions are required. The

system (vehicle and guideway) is initially at rest, and the initial velocity and accelera-

tion of the vehicle and the guideway are zero. However, the vehicle and guideway are

both deformed under the weight of the vehicle. The initial displacement of the system

can be determined from Eqs. (4.10b, 4.10c, 4.10f, 4.10g) and (4.12) by setting Ÿ g
i (0) = 0,

Ẏ g
i (0) = 0, Ÿ v

i (0) = 0, Ẏ v
i (0) = 0, ζ̈(0) = 0 and ζ̇(0) = 0. The equations which contain

2N + 4 unknowns are expressed as a system of nonlinear algebraic equations having

a real general coefficient shown as,

mvg cos θE − λ1(0) − λ2(0) = 0 (4.15a)[
r1λ1(0) − r2λ2(0)

]
d cos θ̄r (0) − mvgr1d sin θE sin θ̄r(0) = 0 (4.15b)

ω2
viH̃

a
i Y v

i (0) − 1

ρvAv

[
λ1(0)φi(dR) + λ2(0)φi(dF )

]
+ g cos θEH̃d

i = 0 (4.15c)

ω2
giY

g
i (0) +

2

mg

[
λ1(0)ψi (ζR

) + λ2(0)ψi (ζR
+ d)

]
= 0 (4.15d)

N∑
j=1

φj(dR)Y v
j (0) −

N∑
j=1

ψj(ζR
)Y g

j (0) + ȳr(0) − r1d sin θ̄r(0) = 0 (4.15e)

N∑
j=1

φj(dF )Y v
j (0) −

N∑
j=1

ψj(ζR
+ d)Y g

j (0) + ȳr(0) + r2d sin θ̄r(0) = 0 (4.15f)

where i = 1, 2, ..., N
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Then, the initial values of Y g
i (0), Y v

i (0), ȳr(0), θ̄r(0), λ1(0) and λ2(0) can be easily de-

termined.

4.1.3 Tip-off phase

Figure 4.3 presents the free body diagram of the vehicle and the guideway for tF <

t 6 tR, when the front shoe of the vehicle has lost contact with the guideway while the

rear shoe remains in contact with the guideway. Similar to that in the two-shoe contact

phase, the Lagrangian functional L in the tip-off phase is,

                                                                                              θE

ζ(t)

y

R(t)

R(t)

P (t)
mvg

x2

x1¨̄y(t)

ζ̇(t), ζ̈(t)

θ̄∗(t), ˙̄θ∗(t), ¨̄θ∗(t)

Figure 4.3: Free body diagrams of vehicle in tip-off phase.
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L =
(
K∗

v + K∗
g

)
−

(
V ∗

v + V ∗
g

)
+ λ∗

1G∗
1

=
1

2

∫ Lv

0

ρvAv

[
N∑

j=1

(
φjẎ

v∗
j + ζ̇φ

′

jY
v∗
j

)]2

dx1 +
1

2
mv

(
˙̄x∗
r
2
+ ˙̄y∗

r
2
)

+
1

2
J ˙̄θ∗r

2

+
1

2

∫ Lg

0

ρgAg

(
N∑

j=1

ψjẎ
g∗
j

)2

dx2 −
1

2

∫ Lg

0

EgIg

(
N∑

j=1

ψ
′′

j Y g∗
j

)2

dx2

− 1

2

∫ Lv

0

N∑
j=1

[
EvIv

(
φ

′′

j Y
v∗
j

)2

− P
(
φ

′

jY
v∗
j

)2
]

dx1

−
∫ Lv

0

ρvAvg cos θE

N∑
j=1

φjY
v∗
j dx1 − (mvg sin θE) x̄∗

r − (mvg cos θE) ȳ∗
r

+ λ∗
1

[
N∑

j=1

φj(dR)Y v∗
j −

N∑
j=1

ψj(ζ)Y g∗
j + ȳ∗

r − r1d sin θ̄∗r

]
(4.16)

where the superscript (∗) indicates that the physical quantities are in the tip-off phase.

Since the front shoe of the vehicle has lost contact with the guideway, the constraint

on displacement, given in Eq. (4.2b), vanishes. Following the procedure described in

the preceding section, the following governing equations are obtained.

mv ¨̄x∗
r (t) + mvg sin θE − P (t) = 0 (4.17a)

mv ¨̄y∗
r (t) + mvg cos θE − λ∗

1 = 0 (4.17b)

J ¨̄θ∗r (t) + λ∗
1r1d cos θ̄∗r (t) − mvgr1d sin θE sin θ̄∗r (t) = 0 (4.17c)

H̃a
i Ÿ v∗

i (t) +
(
2ξvωviH̃

a
i + 2ζ̇H̃b

i

)
Ẏ v∗

i (t) +
(
ω2

viH̃
a
i + Lv ζ̈H̃c

i + ζ̇2H̃c
i

+ζ̈H̃b
i

)
Y v∗

i (t) − λ∗
1φi(dR)

ρvAv

+ g cos θEH̃d
i = 0 (4.17d)

Ÿ g∗
i (t) + 2ξgωgiẎ

g∗
i (t) + ω2

giY
g∗
i (t) +

2λ∗
1ψi (ζ)

mg

= 0 (4.17e)

N∑
j=1

φj(dR)Y v∗
j (t) −

N∑
j=1

ψj(ζ)Y g∗
j (t) + ȳ∗

r (t) − r1d sin θ̄∗r (t) = 0 (4.17f)

Again, Eq. (4.17a) is not needed for determining the transverse displacements of

the vehicle and the guideway. Differentiating Eq. (4.17f) twice with respect to time
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and applying Eqs. (4.17d) and (4.17e) yield

λ∗
1

{
N∑

j=1

[
d∗

2jψj(ζ) − d∗
1jφj(dR)

]
+

1

mv

+
r2
1d

2 cos2 θ̄∗r
J

}

−
N∑

j=1

{
φj(dR)

(
b∗1jẎ

v∗
j + c∗1jY

v∗
j + f∗

1j

)
− ψj(ζ)

(
b∗2jẎ

g∗
j + c∗2jY

g∗
j

)
+2ζ̇ψ

′

j(ζ)Ẏ g∗
j +

[
ζ̈ψ

′

j(ζ) + ζ̇2ψ
′′

j (ζ)
]
Y g∗

j

}
− mvgr2

1d
2 sin θE sin θ̄∗r cos θ̄∗r

J

+ r1d
˙̄θ∗2r sin θ̄∗r − g cos θE = 0 (4.18)

where d∗
1j = d1j , e∗1j = e1j , f∗

1j = f1j , b∗2j = b2j , c∗2j = c2j , and

b∗1j = 2ξvωvj +
2ζ̇H̃b

j

H̃a
j

, c∗1j = ω2
vj +

Lv ζ̈H̃c
j + ζ̇2H̃c

j + ζ̈H̃b
j

H̃a
j

,

d∗
2j =

2ψj (ζ)

mg

, e∗2j =
2ψj (ζ + d)

mg

(4.19)

Equations (4.17b) to (4.17e) and Eq.(4.18) describe the transverse motions of the

vehicle and the guideway in the tip-off phase; they form a set of 2N + 3 nonlin-

ear equations. The initial conditions for solving these equations are obtained from

the continuity conditions between the motions in the two phases: Y v∗
j (0) = Y v

j (t+
F
),

Y g∗
j (0) = Y g

j (t+
F
), ȳ∗

r(0) = ȳr(t
+
F
), θ̄∗r(0) = θ̄r(t

+
F
), Ẏ v∗

j (0) = Ẏ v
j (t+

F
), Ẏ g∗

j (0) = Ẏ g
j (t+

F
),

˙̄y∗
r(0) = ˙̄yr(t

+
F
), ˙̄θ∗r(0) = ˙̄θr(t

+
F
), and λ∗

1(0) = λ1(t
+
F
).

4.1.4 Dynamic responses of vehicle and guideway

The governing equations given in sections 4.1.2 and 4.1.3 are a set of coupled second

order differential nonlinear equations. They can be expressed in the following vector

form
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Gd

(
t,Y, Ẏ, Ÿ,λ

)
= 0 (4.20)

where Y, Ẏ, Ÿ and λ are generalized coordinate, velocity, acceleration vectors and

Lagrange multiplier vector, respectively.

Y = [Yv,Yg, ȳr, θ̄r]
T (4.21)

Yv =
[
Y v

1
, Y v

2
, ..., Y v

i
, ..., Y v

N

]
Yg =

[
Y g

1
, Y g

2
, ..., Y g

i
, ..., Y g

N

]
To solve for Eq. (4.20) by the Petzold-Gear BDF method [37], one has to reduce the

set of the second order differential equations to a set of the first ordinary differential

equations. Hence, we define

Z = [Zu | Zm | Zd]
T =

[
Yv,Yg, ȳr, θ̄r | Ẏv, Ẏg, ˙̄yr,

˙̄θr | λ
]T

(4.22)

where

Zu = Y (4.23a)

Zm = Ẏ (4.23b)

Zd = λ (4.23c)

Żu = Zm (4.24)

Then, Eqs. (4.20) and (4.24) can be rewritten as

G = [Gu | Gd]
T = 0 (4.25)
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where,

Gu = Żu − Zm (4.26)

Equation (4.26) contains 2N + 2 independent equations. In the two-shoe con-

tact phase and the tip-off phase, λ = [λ1 , λ2 ] and λ = [λ1 ], respectively. Equation

(4.20) consists of 2N + 4 and 2N + 3 independent equations in the two phases, respec-

tively. Consequently, Eq. (4.25) consists of 4N + 6 and 4N + 5 equations in the two

phases, respectively. Then, solves a first order differential-algebraic system of equa-

tions, G(t,Z, Ż,λ) = 0, using the Petzold-Gear BDF method.

After Y and Ẏ have been determined, the transverse displacement and velocity

of the center of gravity of the vehicle can be determined by applying the following

equations, respectively;

w (dG, t) = ȳr(t) + wv (dG, t) = ȳr(t) +
N∑

j=1

φj(dG)Y v
j (t) (4.27)

ẇ (dG, t) = ˙̄yr(t) + ẇv (dG, t) = ˙̄yr(t) +
N∑

j=1

[
φj(dG)Ẏ v

j (t) + ζ̇φ
′

j(dG)Y v
j (t)

]
(4.28)

The pitch angle and pitch rate of the vehicle are found, respectively, by applying

θ (t) = θ̄r (t) + sin−1

{
1

d

N∑
j=1

[
φj(dF ) − φj(dR)

]
Y v

j (t)

}
(4.29)

θ̇ (t) = ˙̄θr (t) +
1

d cos
[
θ (t) − θ̄r (t)

] N∑
j=1

{[
φj(dF ) − φj(dR)

]
Ẏ v

j (t)

+ζ̇

[
φ

′

j(dF ) − φ
′

j(dR)

]
Y v

j (t)

}
(4.30)
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4.2 Numerical validation and examples

This section considers three case studies to validate the proposed solutions, and the

results herein are compared with the results published by Yao and Zhang [34] and

the results shown in Chapter three. As shown in Chapters two and three, two typical

models were applied to study the tip-off phenomenon of a vehicle when it moved

along its guideway. Yao and Zhang [34] utilized the model of a rigid vehicle’s moving

along a rigid guideway (R.R. model), while Chou et al. [35] adopted the model of

a rigid vehicle’s moving on an elastic guideway (R.E. model). In this chapter, the

vehicle and guideway are assumed to be elastic, and the model is denoted by E.E.

model. Without special mention, the material properties and geometric parameters of

the vehicle and guideway and the parameters defining a typical thrust-time diagram

(Fig. 2.3) given in Table 4.1 were used in the following. Ten modes (N = 10 in Eq.

(4.3)) and a time increment of 0.0001s were used to obtain the present results.

Table 4.1: Parameters of the vehicle launch system.

Design value of launch system
Parameters Vehicle Guideway

E∗I∗ 1.2 ×107 N · m2 1.2 ×107 N · m2

ρ∗A∗ 4.0 ×102 kg/m 1.5 ×102 kg/m
ξ∗ 0.03 0.03
L∗ 4.0 m 8.0 m
θE - 0.5 rad
d 3.7 m -

r1d 2.5 m -
ζR - 0.1 m
ζF - 4.2 m
t
b

0.1 s -
Pmax 7.0 ×104 N -
∆t 0.0001 s -

∗ denote the subscript of vehicle (v) and guideway (g).
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4.2.1 Case 1: displacement of contact points between vehicle and guideway

Figure 4.4 shows a comparison of the time histories of the transverse displacement of

the contact point of the moving mass obtained by Wu [11] and those obtained from the

E.E. model. The result shows the time histories of displacement of R.E. model without

considering Coriolis and centrifugal force is near to the result presented in Wu’s [11]

study. In E.E. model analysis, the formulations are derived including the Coriolis and

centrifugal force. The results show the time histories of displacement of R.E. model

with considering Coriolis and centrifugal force is near to the E.E. model analysis. The

figure shows that the difference between the results is negligible.

0.00 0.20 0.40 0.60 0.80 1.000.10 0.30 0.50 0.70 0.90

-6.00

-4.00

-2.00

0.00

-7.00

-5.00

-3.00

-1.00

[36]
[35]

[35]
[11]

ζ(t)/L

Figure 4.4: Time histories of transverse displacements under simulated moving concentrated

mass.

Although the technique proposed in this chapter is meant for the dynamic anal-

ysis of an inclined guideway with contact points with a moving vehicle, it can be
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used for a horizontal beam if the angle of inclination of the guideway is considered

to be close to zero. At the same time, the distance between two contact points is

considered to be close to zero (1 × 10−15 m) to simulate the single moving mass

problem. Wu [11] studied the influence of the effects of the inertial force, Coriolis

force, and centrifugal force induced by the moving mass on the dynamic response

of a simply supported inclined beam. Wu also validated an example of a horizon-

tal undamped pinned-pinned beam under a moving concentrated mass. The concen-

trated mass m = 21.8 kg is assumed to move from the left end to the right end of

the beam with a constant speed V = 27.49 m/s. The size and physical constants of

the uniform undamped beam studied by Wu [11] are as follows: a rectangular cross-

section with width b = 0.018113 m and thickness h = 0.072322 m; moment of inertia,

I = 5.71 × 10−7 m4; total length, L = 4.352 m; mass density, ρ = 15267.1756 kg/m3;

Young’s modulus, E = 2020.797216 × 108 N/m2; ∆t = 0.001 s; and ξ = 0.005.

4.2.2 Case 2: Two shoes constraint condition verification

If the proposed solutions are correct, the computed displacement and velocity of two

shoes of the vehicle must also satisfy the constraints condition. Figure 4.5 shows the

time histories of the transverse displacement, velocity and acceleration of the two

shoes of vehicle relative to the guideway. The results were obtained by using 10

modes. These relative displacement, velocity and acceleration are theoretically zero

in the two-shoe contact phase according to the constraint conditions from G1 to G6,

respectively. To check the velocity constraints G3 and G4 and acceleration constrains

G5 and G6 at the rear shoe and front shoe, Eqs. (4.9d) and (4.9e) are differentiated once

and twice with respect to time to obtain these constraints. Figure 4.5 demonstrates the

present solutions satisfy the constraint conditions from G1 to G6, respectively. Notably,

the transverse displacement and velocity are still near to zero in tip-off phase, whereas

small values of the relative accelerations are observed at this phase. The relative accel-

erations in the tip-off phase mote closely satisfy the constraint when more modes are
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used to determine the relative accelerations (see Fig. 4.6).

Table 4.2: Comparison of pitch angles of vehicle obtained using different models.

Pitch angles of vehicle (◦)
Time (s) E.E. R.E. R.R.
0.5000 2.9900E − 09 −8.0295E − 10 0.0000E + 00
0.5100 2.6181E − 09 −7.5991E − 10 0.0000E + 00
0.5136 −8.1001E − 07 −9.2237E − 08 −9.1492E − 08
0.5250 −1.0819E − 02 −1.0505E − 02 −1.0506E − 02
0.5500 −1.0856E − 01 −1.0753E − 01 −1.0770E − 01
0.5750 −3.0806E − 01 −3.0619E − 01 −3.0758E − 01
0.6000 −6.0949E − 01 −6.0648E − 01 −6.1194E − 01
0.6250 −1.0112E + 00 −1.0084E + 00 −1.0235E + 00
0.6500 −1.5193E + 00 −1.5120E + 00 −1.5461E + 00
0.6750 −2.1288E + 00 −2.1172E + 00 −2.1843E + 00
0.6876 −2.4725E + 00 −2.4607E + 00 −2.5546E + 00

Table 4.3: Comparison of pitch rates of vehicle obtained using different models.

Pitch rates of vehicle (◦/s)
Time (s) E.E. R.E. R.R.
0.5000 2.0902E − 08 1.3295E − 09 0.0000E + 00
0.5100 2.2225E − 08 1.4172E − 09 0.0000E + 00
0.5136 −1.6232E − 02 5.4549E − 03 5.4549E − 03
0.5250 −1.8539E + 00 −1.8321E + 00 −1.8489E + 00
0.5500 −5.9375E + 00 −5.9137E + 00 −5.9325E + 00
0.5750 −1.0011E + 01 −9.9791E + 00 −1.0070E + 01
0.6000 −1.4094E + 01 −1.4044E + 01 −1.4298E + 01
0.6250 −1.8192E + 01 −1.8110E + 01 −1.8655E + 01
0.6500 −2.2310E + 01 −2.2175E + 01 −2.3180E + 01
0.6750 −2.6454E + 01 −2.6241E + 01 −2.7914E + 01
0.6876 −2.8538E + 01 −2.8289E + 01 −3.0413E + 01

4.2.3 Case 3: A rigid vehicle moves along a rigid guideway

In this case, the flexural rigidities of the vehicle and guideway were again assumed

to be 1.2 × 1015 N · m2 to simulate the behavior of a pseudo-rigid body. Figures 4.7
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Figure 4.5: Verification of constraint conditions of the two shoes of the vehicle relative to the

guideway.
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Figure 4.6: Verification of acceleration constraint using different numbers of modes.
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Figure 4.7: Comparisons of pitch angles θ − t of vehicle obtained using different models.
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Figure 4.8: Comparisons of pitch rates θ̇ − t of vehicle obtained using different models.

92



and 4.8 display the numerical results concerning the pitch angle and the pitch rate

of the vehicle obtained using three models, respectively. Tables 4.2 and 4.3 present

detailed comparative results. In the two-shoe contact phase, the pitch angle and the

pitch rate of the vehicle in the R.R. model are theoretically zero, while in the R.E. and

E.E. models, they have very small values, because the vehicle and guideway had very

large flexural rigidities. The results in Tables 4.2 and 4.3 reflect these facts.

The results of Yao and Zhang [34] (R. R. model) in the tip-off phase differ signif-

icantly from the results based on the other models. As mentioned before, the results

of Yao and Zhang are somewhat inconsistent with a theoretical physical phenomenon.

A rigid vehicle should maintain its uniform rotational acceleration about its rear shoe

when the front shoe loses contact with the rigid guideway. Consequently, the slope of

the pitch rate in Fig. 4.8 should be constant. A nearly straight line was obtained by

both the present results and those of Chou et al. [35], whereas the results of Yao and

Zhang [34] did not yield a straight line.

4.2.4 Case 4: A rigid vehicle moves along an elastic guideway

Figures 4.9 and 4.10 plot the time histories of the pitch angle and pitch rate of vehicle

according to the R.E. and E.E. models. For comparison, the flexural rigidity of the

vehicle is set equal to 1.2 × 1015 N · m2 in the E.E. model. The pitch angles and the

pitch rates of the vehicle are directly obtained from Eqs. (4.29) and (4.30), which are

called the“vehicle formulation”. Notably, the pitch angles and the pitch rates of the

vehicle in the R.E. model were indirectly determined from the displacements of the

guideway at the points of contact with the shoes of the vehicle [35]. This approach is

called“guideway formulation”. For consistency, the pitch angles and the pitch rates of

the vehicle in the E.E. model were also computed using the“guideway formulation”.

The excellent agreement between the results of the R.E. model and the results of

the E.E. model that are based on the“guideway formulation”further confirm the cor-

rectness of the proposed solutions. The considerable differences in the tip-off phase be-
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Figure 4.9: Comparisons of pitch angles θ − t of vehicle obtained using different models and

formulations.
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Figure 4.10: Comparisons of pitch rates θ̇ − t of vehicle obtained using different models and

formulations.
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tween the results of the R.E. model and the results of the E.E. model based on the“ve-

hicle formulation”indicates the importance of the present solution in predicting the

dynamic responses of the vehicle.

4.2.5 Case 5: An elastic vehicle moves along an elastic guideway

Case 3 concerns the motion of an elastic vehicle along an elastic guideway. Table

4.1 presents the material properties and geometric parameters of the vehicle and the

guideway. To demonstrate the accuracy of the results obtained herein using ten modes

and a time increment of 0.0001s, Fig. 4.11 compares the pitch angles and pitch rates of

the vehicle obtained by using one mode, ten modes and 50 modes, while Fig. 4.12 com-

pares those obtained using ∆t = 0.01, 0.001, 0.0001 and 0.00001s. The excellent agree-

ment between the results obtained using 10 and 50 modes in Fig. 4.11 demonstrates

that solutions obtained using ten modes are sufficiently accurate. Similarly, the consis-

tency between the results obtained using ∆t = 0.0001 and 0.00001s in Fig. 4.12 reveals

the accuracy of the solutions obtained herein using ten modes and ∆t = 0.0001s.

Figures 4.13 and 4.14 compare the pitch angles and pitch rates of the vehicle ob-

tained using three models - R.R., R.E. and E.E.. The tip-off phase starts at t
F

= 0.5136 s

and ends at t
R

= 0.6876 s. In the two-shoe contact phase, the R.R. model only con-

siders rigid body motions so that the pitch angle and pitch rate of the vehicle equal

to zero, and underestimates the magnitude of the pitch angle of the vehicle, while the

E.E. model includes the elastic deformations of the vehicle and guideway and yields

a higher results pitch rate of the vehicle than do the other two models. In the tip-off

phase, the agreement between the results obtained using the R.R. and E.E. models are

better than that between the results obtained using the R.E. and E.E. models.

The maximum difference in pitch angle between the results of the R.E. and E.E.

models is 0.5780◦ at t = 0.6350 s, while the maximum difference in pitch rate is

10.2670◦/s at t = 0.6876 s. The considerable differences between the results obtained

using the R.E. and E.E. models are because, as shown in Section 3.2, different formu-
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modes.
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Figure 4.13: Comparison of pitch angles of vehicle obtained using different models.
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Figure 4.14: Comparison of pitch rates of vehicle obtained using different models.
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lations were employed to determine the pitch angles and pitch rates of the vehicle.

However, at the end of the tip-off phase (t = 0.6876 s), the E.E., R.E. and R.R. models

yield pitch angles of the vehicle of −2.3622◦, −2.9886◦ and −2.5546◦, respectively, and

pitch rates of −27.914◦/s, −38.181◦/s and −30.41◦/s. These differences significantly

influence the trajectory of the vehicle after the vehicle leaves the guideway.

4.3 Parametric Study

After the accuracy of the proposed approach was confirmed, the solutions are utilized

to examine the effects of some important parameters on the pitch angle and pitch rate

of the vehicle at take-off. The important parameters of interest are the length of the

guideway, Lg; the distance between the shoes of the vehicle, d, the mass ratio, Mr,

defined as ρvAvLv

ρgAgLg
, and the flexural rigidity ratio, Rr, defined as EvIv

EgIg
. In control engi-

neering, the pitch angle and pitch rate of a vehicle at take-off are the main concerns

because they are the factors that dominate the trajectory of the vehicle after it has left

the guideway.

4.3.1 Influence of length of guideway

The length of the guideway affects the duration of a vehicle’s moving along the guide-

way. Increasing the length of the guideway increases the period for which the two

shoes are in contact with the guideway. Increasing the length of the guideway also

increases the velocity of the vehicle when it enters the tip-off phase, because of in-

creasing the period for which the motor thrust acts, and reduces the duration tR - tF .

Consequently, the length of the guideway substantially affects the tip-off responses of

the vehicle.

Table 4.4 presents three combinations of flexural rigidities of the vehicle and the

guideway that are considered herein. Case EI01 involves a flexible vehicle and a flex-

ible guideway; case EI02 involves a rigid vehicle and a flexible guideway, while case

EI03 involves a rigid vehicle and a rigid guideway.
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Figures 4.15 and 4.16, respectively, display the variations of the pitch angle and

the pitch rate of vehicle at take-off with the length of the guideway between 4 m and

12 m. Tables 4.1 and 4.4 present the other parameters that must be known to solve for

the dynamic responses of the vehicle and the guideway. Both the pitch angle and the

pitch rate of the vehicle at take-off generally decrease as the length of the guideway

increases, because the duration tR - tF decreases. Accordingly, a longer guideway is as-

sociated with a weaker vehicle tip-off effect. Nevertheless, the length of the guideway

must still be selected to fit the spatial limits on the launcher system.

Table 4.4: Combinations of flexural rigidities of vehicle and guideway.

Flexural rigidity (N · m2)

Case EvIv EgIg

EI01 1.2 × 1006 1.2 × 1007

EI02 1.2 × 1015 1.2 × 1006

EI03 1.2 × 1015 1.2 × 1015

The results given in Figs. 4.15 and 4.16 also reveal that the flexural rigidity com-

bination EI02 always yields a smaller pitch angle and pitch rate of the vehicle than

the combination EI03. Combination EI01 yields results that may be larger or smaller

than obtained using the other two combinations of flexural rigidity, depending on the

length of the guideway. Consequently, the results imply that the vehicle should be to

the maximum extent possible stiffer than the guideway.

4.3.2 Influence of distance between shoes of vehicle

As stated in the previous section, the value of tR - tF significantly affects the tip-off

response. The distance between the shoes of the vehicle is a design factor that critically

influences tR - tF . Hence, it is worth showing the variations of pitch angle and pitch
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4.0 6.0 8.0 10.0 12.0

-12.00

-8.00

-4.00

0.00

4.00



Figure 4.15: Effect of length of guideway on pitch angle of vehicle at take-off (θ−Lg diagram).
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Figure 4.16: Effect of length of guideway on pitch rate of vehicle at take-off (θ̇ − Lg diagram).
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rate of the vehicle at take-off with the distance between the shoes of the vehicle. The

three combinations of flexural rigidities of the vehicle and the guideway in Table 4.4

are also considered here.

Figures 4.17 and 4.18, respectively, plot the variations of the pitch angle and pitch

rate of the vehicle at take-off with the distance between the shoes of the vehicle from 2

m to 4 m. As expected, as the distance between the shoes of the vehicle increases, the

magnitudes of the pitch angle and the pitch rate of the vehicle at take-off increases.

Again, the vehicle and the guideway with the flexural rigidity combination EI02 al-

ways gives a smaller pitch angle and pitch rate of the vehicle than does combination

EI03. Combination EI01 yields a larger pitch angle than does combination EI02.

4.3.3 Influence of mass ratio and flexural rigidity ratio

The mass ratio Mr and flexural rigidity ratio Rr can be designed for various real appli-

cations. The effects of these two ratios on the pitch angle and pitch rate of the vehicle

at take-off is of interest. These two ratios are changed herein by changing the mass

and flexural rigidity, respectively, of the guideway only.

Figures 4.19 and 4.20 plot the variations of pitch angle and pitch rate of the vehicle

at take-off with Mr and Rr, respectively. Each figure displays three-dimensional plots

and contours. Figure 4.19 reveals that the pitch angle decreases as Rr increases but a

change in Mr has no significant effect. Figure 4.20 indicates that as both Rr and Mr

increase, the pitch rate of the vehicle at take-off decreases. The contour plots are very

useful for selecting a set of optimum parameters of launch systems.
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Figure 4.17: Effect of distance between shoes of vehicle on pitch angle of vehicle at take-off.
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Figure 4.18: Effect of distance between shoes of vehicle on pitch rate of vehicle at take-off.
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Figure 4.19: Effect of mass ratio and flexural rigidity ratio on pitch angle of vehicle: (a) 3D plot

(b) contour plot.
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Figure 4.20: Effect of mass ratio and flexural rigidity ratio on pitch rate of vehicle: (a) 3D plot

(b) contour plot.
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CHAPTER FIVE

Conclusions and Future works

5.1 Conclusions

This study investigated the tip-off dynamic responses of a vehicle moving along its

guideway. Two models were developed to determine those dynamic responses, namely,

R.E. model and E.E. model. In the R.E. model, the vehicle is assumed rigid and its

guideway is modeled as a flexible beam, while both of the vehicle and guideway are

modeled as flexible beams in the E.E. model. The inertia, Coriolis, and centrifugal

forces are considered in these models. Theoretically, the proposed models capture

more closely the practical reality than the commonly used R.R. model which assumes

both of the vehicle and the guideway rigid.

The governing equations of the proposed models were reduced to a set of non-

linear ordinary differential equations via the modal superposition method along with

the Lagrangian approach. Then, the set of nonlinear differential equations were solved

using the Petzold-Gear BDF method. The proposed solutions were validated through

the convergence studies using various numbers of modes and time increments and by

comparing them with published results for the special cases of a rigid vehicle moving

along a rigid guideway. The excellent agreement between the published results and

the present results confirmed the correctness of the proposed solutions.

The proposed solutions were further employed to investigate the pitch angle and

the pitch rate of the vehicle at take-off influenced by the length of the guideway L,
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the distance between the shoes of the vehicle d, the damping ratio ξ, the angle of in-

clination θ
E

, the mass ratio Mr and the flexural rigidity ratio Rr of the vehicle to the

guideway. The numerical results revealed several facts, which are useful in designing

a launch system, as follows:

1. Increasing in the length of the guideway reduces the pitch angle and the pitch

rate of the vehicle at take-off. Reducing the distance between the shoes of the

vehicle has a similar effect.

2. Increasing the flexural rigidity ratio of the vehicle to the guideway also reduces

the pitch angle and the pitch rate of the vehicle at take-off, while increasing only

the mass ratio significantly reduces the pitch rate.

3. When the damping ratio of the guideway is less than 0.01, the tip-off responses of

the vehicle are too sensitive. Therefore, it would be preferable to select appropri-

ate guideway materials or heavily damped guideways to minimize the dynamic

responses when designing launch systems.

4. The tip-off dynamic responses of a vehicle under the action of the Coriolis force

and centrifugal force are approximately 2.0% greater than those in the absence

of these forces. In this study, the initial speed of the launched vehicle before take-

off is only approximately one-tenth of that of a high-speed train. Therefore, the

effects of the Coriolis force and centrifugal force are not significant

5. The dynamic responses obtained from an elastic guideway model could be 30%

greater than that obtained from the R.R. model. This highlights the importance

of adopting an elastic guideway model when designing actual launch systems.

6. The models of elastic vehicle and elastic guideway, rigid vehicle and elastic guide-

way, and rigid vehicle and rigid guideway yield significant different values of

pitch angle and pitch rate of the vehicle at take-off, which are very important for

controlling the trajectory of the vehicle after it has left the guideway.
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5.2 Future works

1. In real applications, the guideway are exactly simply supported. To simulate the

reality, the vehicle and the guideway can be both modeled as free-free beams,

and the shoes of the vehicle and the supports of the guideway are modeled by

appropriate springs.

2. The movement of a vehicle along its guideway is more complex than the present

study due to thrust asymmetry and manufacturing defects, which can induce

the vehicle to rotate, pitch, or yaw. Therefore, a more rigorous analysis of the

dynamic interactions is required.

3. When a vehicle-guideway system locates in a moving warship, the angle of in-

clination of guideway is a time-dependent function (θ
E
(t)), which depends on

the movement of the warship including rotating, pitching, or yawing. New solu-

tions have to further develop to accurately determine the behaviors in the tip-off

phase.
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Appendix

A.1 Derivation of H̃a
i , H̃b

i , H̃c
i , H̃d

i .

The mode shape functions of free-free beam are

φi (x1) = cos (βvix1) + cosh (βvix1) − Υi

[
sin (βvix1) + sinh (βvix1)

]
(A.1)

where i = 1, 2, ..., N

β4
vi = ω2

vi ·
ρvAv

EvIv

, Υi =
cos (βviLv) − cosh (βviLv)

sin (βviLv) − sinh (βviLv)
, βviLv ≈

(
i +

1

2

)
π (A.2)

Accordingly, φ
′
i (x1) and φ

′′
i (x1) are

φ
′

i (x1) = βvi

{
− sin (βvix1) + sinh (βvix1) − Υi

[
cos (βvix1) + cosh (βvix1)

]}
(A.3a)

φ
′′

i (x1) = β2
vi

{
− cos (βvix1) + cosh (βvix1) + Υi

[
sin (βvix1) − sinh (βvix1)

]}
(A.3b)
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¥ H̃a
i ≡

∫ Lv

0

φi(x1)φi(x1)dx1

=

∫ Lv

0

{
cos (βvix1) + cosh (βvix1) − Υi

[
sin (βvix1) + sinh (βvix1)

]}2

dx1

=

∫ Lv

0

[
cos2 (βvix1) + 2 cos (βvix1) cosh (βvix1) + cosh2 (βvix1)

− 2Υi cos (βvix1) sin (βvix1) − 2Υi cosh (βvix1) sin (βvix1)

− 2Υi cos (βvix1) sinh (βvix1) − 2Υi cosh (βvix1) sinh (βvix1)

+ Υ2
i sin2 (βvix1) + 2Υ2

i sin (βvix1) sinh (βvix1)

+Υ2
i sinh2 (βvix1)

]
dx1

=
1

4βvi

{
4βvix1 + 4 cosh(βvix1) sin(βvix1) + sin(2βvix1)

+ 4 cos(βvix1) sinh(βvix1) + sinh(2βvix1) − 4

[
sin(βvix1) + sinh(βvix1)

]2

Υi

+

[
4 cosh(βvix1) sin(βvix1) − sin(2βvix1) − 4 cos(βvix1) sinh(βvix1)

+ sinh(2βvix1)

]
Υ2

i

} ∣∣∣∣Lv

0

=
1

4βvi

{
4βviLv + 4 cosh(βviLv) sin(βviLv) + sin(2βviLv)

+ 4 cos(βviLv) sinh(βviLv) + sinh(2βviLv) − 4

[
sin(βviLv) + sinh(βviLv)

]2

Υi

+

[
4 cosh(βviLv) sin(βviLv) − sin(2βviLv) − 4 cos(βviLv) sinh(βviLv)

+ sinh(2βviLv)

]
Υ2

i

}
(A.4)

Using sin(2βviLv) = 2 sin(βviLv) cos(βviLv) , sinh(2βviLv) = 2 sinh(βviLv) cosh(βviLv)

, cos(βviLv) = 0, and sinh2(βviLv) = cosh2(βviLv) − 1, one can simplify Eq. (A.4) as
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H̃a
i =

∫ Lv

0

φi(x1)φi(x1)dx1

=
1

2βvi

[ (
Υ2

i + 1
)
cosh (βviLv) sinh (βviLv) − 2Υi cosh2 (βviLv)

+ 2
(
Υ2

i + 1
)
sin (βviLv) cosh (βviLv) + 2βviLv

−4Υi sin (βviLv) sinh (βviLv)

]
(A.5)

¥ H̃b
i ≡

∫ Lv

0

φ
′

i(x1)φi(x1)dx1

=

∫ Lv

0

βvi

{
− sin (βvix1) + sinh (βvix1) − Υi

[
cos (βvix1) + cosh (βvix1)

]}
·
{

cos (βvix1) + cosh (βvix1) − Υi

[
sin (βvix1) + sinh (βvix1)

]}
dx1

=

∫ Lv

0

βvi

[
− cos (βvix1) sin (βvix1) − cosh (βvix1) sin (βvix1)

+ cos (βvix1) sinh (βvix1) + cosh (βvix1) sinh (βvix1) − Υi cos2 (βvix1)

− 2Υi cos (βvix1) cosh (βvix1) − Υi cosh2 (βvix1) + Υi sin
2 (βvix1)

− Υi sinh2 (βvix1) + Υ2
i cos (βvix1) sin (βvix1) + Υ2

i cosh (βvix1) sin (βvix1)

+Υ2
i cos (βvix1) sinh (βvix1) + Υ2

i cosh (βvix1) sinh (βvix1)

]
dx1

=
1

4

{
cos (2βvix1) + 4 cos (2βvix1) cosh (2βvix1) + cosh (2βvix1)

−2Υi

[
2 cosh (βvix1) sin (βvix1) + sin (2βvix1) + 2 cos (βvix1) sinh (βvix1)

+ sinh (2βvix1)

]
+ 2Υ2

i

[
sin (βvix1) + sinh (βvix1)

]2
}∣∣∣∣∣

Lv

0

=
1

4

{
− 6 + cos (2βviLv) + 4 cos (βviLv) cosh (βviLv) + cosh (2βviLv)

+ 2Υi

[
sin (βviLv) + sinh (βviLv)

]{
−2

[
cos (βviLv) + cosh (βviLv)

]
+Υi

[
sin (βviLv) + sinh (βviLv)

]}}
(A.6)
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Using cos(2βviLv) = 2 cos2(βviLv)−1, sinh2(βviLv) = cosh2(βviLv)−1, cosh(2βviLv) =

cosh2(βviLv) + sinh2(βviLv) and cos(βviLv) = 0 , one can simplify Eq. (A.6) as

H̃b
i =

1

4

{
2 cosh2 (βviLv) + 2Υi

[
sin (βviLv) + sinh (βviLv)

]

·
{

Υi

[
sin (βviLv) + sinh (βviLv)

]
− 2 cosh (βviLv)

}
− 8

}

=
1

2

(
Υ2

i + 1
)
cosh2 (βviLv) − Υi cosh (βviLv) sin (βviLv) − 2

− Υi cosh (βviLv) sinh (βviLv) + Υ2
i sin (βviLv) sinh (βviLv) (A.7)

¥ H̃c
i ≡

∫ Lv

0

φ
′′

i (x1)φi(x1)dx1

=

∫ Lv

0

β2
vi

{
− cos (βvix1) + cosh (βvix1) + Υi

[
sin (βvix1) − sinh (βvix1)

]}
{

cos (βvix1) + cosh (βvix1) − Υi

[
sin (βvix1) + sinh (βvix1)

]}
dx1

=

∫ Lv

0

β2
vi

[
− cos2 (βvix1) + cosh2 (βvix1) + 2Υi cos (βvix1) sin (βvix1)

−2Υi cosh (βvix1) sinh (βvix1) − Υ2
i sin2 (βvix1) + Υ2

i sinh2 (βvix1)

]
dx1

=
1

4
βvi

[
− sin (2βvix1) + sinh (2βvix1) − 4Υi cos2 (βvix1) − 4Υi cosh2 (βvix1)

−4Υ2
i βvix1 + Υ2

i sin (2βvix1) + Υ2
i sinh (2βvix1)

]∣∣∣∣Lv

0

=
1

4
βvi

{
sinh (2βviLv) − sin (2βviLv) + 2Υi

[
2 − cos (2βviLv) − cosh (2βviLv)

]

−Υ2
i

[
4βviLv − sin (2βviLv) − sinh (2βviLv)

]}
(A.8)

Using sin(2βviLv) = 2 sin(βviLv) cos(βviLv) , cos(2βviLv) = 2 cos2(βviLv)−1, cosh(2βviLv) =

2 cosh2(βviLv) − 1, and sinh(2βviLv) = 2 sinh(βviLv) cosh(βviLv) , one can simplify Eq.

(A.8) as
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H̃c
i = −1

4
βvi

{
2 cos (βviLv) sin (βviLv) − 2 cosh (βviLv) sinh (βviLv)

+ 2Υi

[
− 4 + 2 cos2 (βviLv) + 2 cosh2 (βviLv)

]
− Υ2

i

[
− 4βviLv

+2 cos (βviLv) sin (βviLv) + 2 cosh (βviLv) sinh (βviLv)

]}
(A.9)

Using cos(βviLv) = 0 , one can simplify Eq. (A.9) as

H̃c
i =

1

2
βvi

[ (
Υ2

i + 1
)
cosh (βviLv) sinh (βviLv) − 2Υi cosh2 (βviLv)

+4Υi − 2βviLvΥ
2
i

]
(A.10)

¥ H̃d
i ≡

∫ Lv

0

φi(x1)dx1

=

∫ Lv

0

{
cos (βvix1) + cosh (βvix1) − Υi

[
sin (βvix1) + sinh (βvix1)

]}
dx1

=
1

βvi

{
sin (βvix1) + sinh (βvix1) + Υi

[
cos (βvix1) − cosh (βvix1)

]}∣∣∣∣∣
Lv

0

=
1

βvi

{
sin (βviLv) + sinh (βviLv) + Υi

[
cos (βviLv) − cosh (βviLv)

]}
(A.11)

Using cos(βviLv) = 0 , one can simplify Eq. (A.11) as

H̃d
i =

1

βvi

[
sin (βviLv) + sinh (βviLv) − Υi cosh (βviLv)

]
(A.12)
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