
國立交通大學

資訊工程學系

博 士 論 文

非種子萃取器之設計與分析

Seedless Extractors: Constructions and Analysis

研 究 生 : 李佳蓉

指導教授 : 蔡錫鈞 教授

中 華 民 國 九 十 九 年 五 月

非種子萃取器之設計與分析

Seedless Extractors: Constructions and Analysis

研_究_生：李佳蓉 Student：Chia-Jung Lee

指導教授：蔡錫鈞 Advisor：Shi-Chun Tsai

國立交通大學資訊學院

資訊工程學系

博士論文

A dissertation is submitted to

Department of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

May 2010

Hsinchu, Taiwan, Republic of China

中華民國九十九年五月

摘 要

我們討論從各種隨機源中萃取出隨機元的問題。首先，我們考慮多個獨立的

隨機源。當有兩個獨立的隨機源時，我們利用延伸的剩餘雜湊引理建造出一個萃取

器。接著我們進而延伸此建造方法從更多個獨立的隨機源中萃取出隨機元。值得一

提的是，即使除了一個隨機源外，所有的隨機源都被暴露，我們的萃取器依然可以

萃取出隨機元。此外，我們可以將此萃取器應用到密碼學上，解決有一群人希望能

透過一個不安全的管道且不使用當地的理想隨機元而能決定一個將用在群體通訊之

秘密金鑰的問題。

 我們也考慮獨立符號隨機源。一個獨立符號隨機源包含 n 個獨立的符號，其

中每個符號都是屬於{0,1}
d，且獨立符號隨機源僅保證整個隨機源的 min-entropy

為 k 。我們提出一個對任何 , ,n d k ，可萃取出大概  log k 個隨機元的決定性

萃取器。接著我們證明當 logck n (對某個常數 c>0)時，我們幾乎可以萃取出所有

包含於來源中的隨機元。更進一步地，我們證明只要滿足 min-entropy

  log /k d n   ，則存在一個可萃取出   log 1/m k   個隨機元的決定

性萃取器，其中為誤差。最後，我們亦證明任何針對固定某些位元的萃取器，不

論 其 需 要 種 子 與 否 ， 其 min-entropy 損 失 為   log 1/k m   ， 此 為

Radhakrishnan 與 Ta-Shma 針對一般弱隨機源之結果的一個延伸。

 然後，我們由另一角度出發去尋找一種更廣義的隨機源，其亦存在決定性萃

取器。我們在這裡所考慮的是一種條件的來源(f(X)|X)，其中 X 是一個在  10,1
n
上

的分布，而    1: 0,1 0,1
n n

f  為某個函數。假設當輸入 x 是依照分布 X 所產生時，

任何大小為 2k 的電路最多只有 2 k 的機率可以猜對 f(x)的值時，則我們說這種條件

分布(f(X)|X)擁有計算的 min-entropy k。我們首先證明無法從單一個只擁有計算

的 min-entropy 之來源中萃取出一個隨機元。接著我們證明可從一個只擁有計算

的 min-entropy 與另一個擁有統計的 min-entropy 之隨機源中萃取出隨機元。更

進一步地，我們亦證明可從兩個只擁有計算的 min-entropy 之隨機源中萃取出隨

機元。這可看成是把原先在統計的環境中針對多隨機源萃取器的研究延伸到計算的

環境。我們把建造此種萃取器的工作轉成是一個在學習理論上的問題: 利用任何一

個分布，在對手雜訊(adversarial noise)的模型下學習線性函數。針對此問題，

我們亦提出一個學習演算法。

 最後，我們考慮計算的獨立符號隨機源。如同獨立符號隨機源，計算的獨立

符號隨機源亦包含 n 個獨立的符號 (f1(X1)|X1)，…，(fn(Xn)|Xn)，其中每個 fi(Xi)

都是分布在{0,1}
d
，使得當輸入 xi是依照分布 Xi所產生時，任何一個大小為 s 的電

路最多只有 2-ki的機率可以猜對 fi(Xi) 對某個數 kid，且 k1+…+kn=k。我們延伸核

心集引理來證明我們針對獨立符號隨機源的萃取器亦可作用於計算的獨立符號隨機

源。事實上，此針對計算的獨立符號隨機源的萃取器之結果隱含延伸的 XOR 引

理。我們亦提供一個在黑箱子建造法中，二元的核心集大小的上限。

Abstract

In this thesis, we consider the problem of extracting randomness from several classes of

random sources. First, we consider multiple independent sources. With two independent

sources, we have an explicit extractor, via generalized leftover hash lemma. We also

extend our construction to extract randomness from more independent sources. One nice

feature is that the extractor still works even with all but one source exposed. Moreover,

we apply our extractor for a cryptographic task in which a group of parties want to agree

on a secret key for group communication over an insecure channel, without using ideal

local randomness.

We also consider the independent-symbol sources which consist of a sequence of n

independent symbols from {0, 1}d, and the only randomness guarantee on such a source

is that the whole source has min-entropy k. We give an explicit deterministic extractor

which extracts about Ω(log k) bits, for any n, d, k ∈ N. When k ≥ logc n, we can extract

almost all randomness. Moreover, we show the existence of a non-explicit deterministic

extractor which can extract m = k − O(log(1/ε)) bits whenever k = ω(d + log(n/ε)).

Finally, we show that even to extract from bit-fixing sources, any extractor, seeded or

not, must suffer an entropy loss k −m = Ω(log(1/ε)). This generalizes a lower bound of

Radhakrishnan and Ta-Shma on extracting from general sources.

Then, we go to the other direction to look for a more general class of sources from

which seedless extraction is still possible. The sources we consider have the form of a

conditional distribution (f(X)|X), for some function f and some distribution X , and

we say that such a source has computational min-entropy k if any circuit of size 2k

can only predict f(x) correctly with probability at most 2−k given input x sampled

from X . We first show that it is impossible to have a seedless extractor to extract

from one single source of this kind. Then we show that it becomes possible if we are

allowed a seed which is weakly random (instead of perfectly random) but contains some

statistical min-entropy, or even a seed which is not random at all but contains some

computational min-entropy. This can be seen as a step toward extending the study

of multi-source extractors from the traditional, statistical setting to a computational

setting. We reduce the task of constructing such extractors to a problem in learning

theory: learning linear functions under arbitrary distribution with adversarial noise. For

this problem, we provide a learning algorithm, which may have interest of its own.

Finally, we consider computational independent-symbol sources, which consist of n

mutually independent parts, (f1(X1)|X1), · · · , (fn(Xn)|Xn), each fi(Xi) of length d such

that for each i if given input xi sampled from Xi, any circuit of size s can only predict

fi(xi) with probability at most 2−ki for some ki ≤ d, and the sum of ki’s is k. We

generalize the well-known hardcore set lemma to show that our extractor for independent-

symbol sources still works for computational independent-symbol sources. In fact, the

result of computational extractors for computational independent-symbol sources implies

a generalization of the well-known XOR lemma. Besides, we provide a size upper bound

on a binary hardcore set in any black-box construction.

Acknowledgements

I would like to thank my advisor, Dr. Shi-Chun Tsai, for his guidance and

encouragement. I also thank Dr. Chi-Jen Lu for many useful discussions. I also want

to thank my family and all members in CCIS lab for their support.

Seedless Extractors: Constructions and Analysis

Chia-Jung Lee

Contents

1 Introduction 1

1.1 Extracting Randomness from Multiple Independent Sources 3

1.2 Deterministic Extractors for Independent-Symbol Sources 5

1.2.1 Independent-Symbol Sources . 5

1.2.2 Main Results . 5

1.2.3 Techniques . 7

1.3 Extracting Computational Entropy and Learning Noisy Linear Functions 8

1.3.1 Computational min-entropy . 9

1.3.2 Main Results . 10

1.3.3 Techniques. 12

1.4 Extracting Computational Entropy from Computational Independent-Symbol

Sources . 14

1.5 The Rest of This Thesis . 16

2 Preliminaries 17

2.1 Distances . 18

2.2 Min-entropy and Computational Min-entropy 19

2.3 Multiple Independent Sources . 21

2.4 Independent-Symbol Sources . 21

2.5 Computational Extractors . 22

2.6 Computational Independent-Symbol Sources 24

2.7 Some Useful Tools . 24

i

3 Extracting Randomness from Multiple Independent Sources 27

3.1 Generalized Leftover Hash Lemma . 27

3.2 Extracting from Two Independent Sources 28

3.3 Extracting from t Independent Sources 29

3.4 Application . 30

4 Deterministic Extractors for Independent-Symbol Sources 33

4.1 Extractor from Random Walk . 33

4.1.1 Independent-symbol Sources and Circulant Matrices 35

4.2 Extracting More Randomness . 37

4.2.1 Construction . 38

4.2.2 Sampling and Partitioning . 44

4.2.2.1 The Sampler Using a Longer Seed 44

4.2.2.2 The Sampler Using a Shorter Seed 46

4.2.3 The Extractor for Sources with Large Min-entropy 48

4.2.4 The Extractor for Sources with Smaller Min-entorpy 50

4.3 Existential Upper Bound on Entropy Loss 51

4.4 Lower Bound on Entropy Loss . 55

4.4.1 Size Lower Bound on Almost k-wise Independent Spaces 58

4.5 Open Problems . 61

5 Extracting Computational Entropy and Learning Noisy Linear Func-

tions 63

5.1 The Goldreich-Levin Theorem . 64

5.2 An Impossibility Result . 66

5.3 Hybrid and Computational Extractors 67

5.4 Learning Noisy Linear Functions . 69

5.4.1 Analysis on the Forward Phase 73

5.4.2 Analysis on the Backward Phase 74

6 Extracting Computational Entropy from Computational Independent-

Symbol Sources 83

ii

6.1 Generalized Hardcore Set Lemma . 83

6.2 Computational Extractors . 87

6.3 Generalized XOR Lemma . 92

6.4 Hardcore Set Size in Black-Box Constructions 94

6.5 Open Problems . 96

7 Conclusion and Future Works 97

A An Example of Pair-wise Independent Hash Family 109

B An Elementary Proof of Extractors for Independent-Symbol Sources 111

iii

iv

List of Figures

4.1 Let M = 7, and kβ = 2. The left diagram shows the sum of 1, e4πi/M ,

e8πi/M , and e10πi/M , while the right diagram shows the sum of e12πi/M , 1,

e2πi/M , and e4πi/M . In these diagrams, it is easy to see that the maximum

occurs when these 4 nonzero entries are consecutive. 37

5.1 The construction of the algorithm P 65

5.2 Forward Phase . 71

5.3 Backward Phase . 71

5.4 If D̃(t−1) is close to D(t−1), then D̃(t) is close to D(t), conditioned on R(t) . 78

6.1 The construction of the function g : {0, 1}ℓ → [D] 85

6.2 The decision tree of function g for D = 4 85

6.3 The construction of the source Yi 88

6.4 The construction of the distinguisher C ′ 90

6.5 The construction of the distinguisher E ′ 91

6.6 The construction of the distinguisher EP 93

6.7 The function f . 95

6.8 The function gI for I = {i1, i2} . 95

v

vi

Chapter 1

Introduction

Randomness has become a useful tool in computer science. For many computational prob-

lems, the most efficient algorithms known are randomized. In cryptography, randomness

is essential in generating secret keys. However, when using randomness in designing

algorithms or protocols, people usually assume the randomness being perfect, and the

performance guarantees are based on this assumption. In reality, the random sources we

(or computers) have access to are typically not so perfect at all, but only contain some

crude randomness. From weakly random sources, we would like to extract almost perfect

randomness, which can then be used for randomized algorithms.

The history of this extraction can be traced back to von Neumann [57] who showed

how to use a biased coin (with unknown bias) to simulate a fair coin: Flip the bi-

ased coin twice; if the result is tail-head (respectively head-tail), the simulated coin

outputs a head (respectively tail), otherwise repeat the process. We call the functions,

which can extract almost perfect randomness from weakly random sources, extractors

[61, 42]. Extractors turn out to have close connections to other fundamental objects

such as (a) pseudorandom generators, (b) hash functions, (c) error-correcting

codes, (d) expander graphs, and (e) samplers, and they have found a wide range

of applications in areas such as (a) complexity theory, (b) cryptography, (c) data

structures, (d) coding theory, (e) distributed computing, and (f) combina-

torics (e.g. [50, 42, 62, 63, 58, 54, 53, 36, 56, 15]). A nice survey can be found

in [48].

We measure the amount of randomness in a source by its min-entropy ; a source is

1

said to have min-entropy k if every element occurs with probability at most 2−k. Given

sources with enough min-entropy, one would like to construct an extractor which can

extract a string with distribution close to uniform. However, it is easy to see that one

cannot deterministically extract even one bit from an n-bit source with min-entropy n−1

[10]. Assume that Ext : {0, 1}n → {0, 1} is any such extractor, let S be the bigger set

of the preimages Ext−1(0) and Ext
−1(1). Clearly, the uniform distribution over S is a

weak source with min-entropy at least n− 1. However, since Ext takes the same value

for all x ∈ S, it must fail to extract from this weak source.

In contrast, it becomes possible if we are allowed a few random bits, called a seed, to

aid the extraction. Such a procedure is called a seeded extractor. During the past decades,

a long line of research has worked on using a shorter seed to extract more randomness

(e.g. [42, 41, 46, 29, 47, 54, 52, 49]), and finally an optimal (up to constant factors)

construction has been given recently [37].

However, there is an issue of using seeded extractors. Namely, we need a seed which

is perfectly random and independent of the source we extract from. How do we get such

a seed? For some applications, this issue can be taken care of (e.g. by enumerating

through all possible seed values). The most important case is simulating BPP algorithms

[62]. BPP is the set of languages L satisfying that there exists a polynomial-time TM

AL(w, r) such that for every w ∈ L, Prr[AL(w, r) = 1] ≥ 2/3 and for every w /∈ L,

Prr[AL(w, r) = 0] ≥ 2/3. Consider a language L ∈ BPP, then given access to a weak

random source with enough min-entropy, we can decide whether w ∈ L as follows: On

an input w and an element x sampled from the weak source, we output the majority of

AL(w,Ext(x, y)) over all seed values y. Unfortunately, the trick of enumerating over all

possible seed values does not work for every application. Hence, for these applications,

the issue seems to go back to the original problem which we try to solve using extractors.

Can we get rid of the need for a seed and have seedless extractors?

When the sources are restricted and have special structures, it becomes possible to

have seedless extractors. One example is samplable sources, which are generated by

some efficient sampling algorithms [55]. Trevisan and Vadhan [55] showed that when

extractors are allowed more computational resources (e.g. circuit size) than the sampling

algorithms, seedless extracting becomes possible. Another example is bit-fixing sources,

2

in which each bit is either fixed (containing no randomness) or random and is independent

of others [11]. From such a source of length n with min-entropy n1/2+γ , for any constant

γ ∈ (0, 1/2), Kamp and Zuckerman [33] gave a seedless extractor which can extract

Ω(n2γ) bits of randomness. Building on this result together with some new idea, Gabizon

et al. [17] were able to extract even more randomness. In particular, when the source has

min-entropy k > n1/2+γ , they can extract k − n1/2+γ bits and when k > logc n for some

constant c, they can extract k − kΩ(1) bits.

On the other hand, it is also possible to have seedless extractors for multiple indepen-

dent sources [10]. A recent breakthrough by Barak et al. [3] provides a seedless extractor

for a constant number of independent sources each with some constant min-entropy rate

(average min-entropy per bit). This has been improved subsequently [4, 45, 44], which

now allows one to extract from three independent sources each with any constant min-

entropy rate. For the case of extracting from two independent sources, Bourgain [8] gave

a seedless extractor which lowers the requirement of min-entropy rate from a previous

barrier of 1/2 to slightly below. Note that in the case of two independent sources, we

can see one of them as the seed which now is only slightly random, instead of perfectly

random as in the case for seeded extractors.

In this thesis, we will consider the task of deterministically extracting randomness

from several classes of weak random sources. Note that for deterministic extractors, the

goal is to maximize the number m of extracted bits (or equivalently to minimize the

entropy loss k −m) and to minimize the statistical distance ε, which we call error, of its

output distribution to the uniform one, where the statistical distance of two distributions

X and Y are defined as (1/2) ·∑z |Pr[X = z]− Pr[Y = z]|.

1.1 Extracting Randomness from Multiple Indepen-

dent Sources

We first work on deterministic extraction from multiple independent sources. Our first

result is a simple extractor for two sources. One of our main technical contribution is

a generalization of the well-known leftover hash lemma [28]. The leftover hash lemma

3

says that if we sample a function h uniformly from a family H of pair-wise independent

functions and apply it on an input x sampled from a source with enough min-entropy, the

output h(x) will look almost like random. This is usually applied in the setting of seeded

extractors, in which the perfect random seed is used to sample uniformly from H . We

generalize the leftover hash lemma to allow sampling fromH according to any distribution

with high enough min-entropy. This provides us a way to extract from two independent

weakly random sources: one source to sample the input x while the other to sample the

function h. More precisely, our extractor takes two input strings v, w ∈ {0, 1}n, sees
them as vectors from F ℓ, where F = GF (2m) for some m with n = mℓ, and outputs their

inner product 〈v, w〉 =∑ℓ
i=1 viwi over F . Then, from two independent sources of length

n and of min-entropy k1 and k2, we can extract k1+ k2+2−n− 2 log 1
ε
bits with error ε.

We also extend our construction for the case when there are t ≥ 3 independent sources

available. Our deterministic extractor can extract k1 + k2 + 2 − n − 2 log 1
ε
bits, where

k1 and k2 are the two largest min-entropies of the t sources. It has the following nice

features. First, our extractor works as long as two sources have enough min-entropy; it

can work even when only two sources contain randomness (thus with a very low average

min-entropy rate). Second, as is in [14, 13], our extractor can still work even with all but

one source exposed. In fact, the best result of [13] is a special case of ours. Finally, to

construct our extractor, we do not need to know beforehand the specific min-entropy of

each source.

Next, we introduce one possible application with strong multi-source extractors. We

consider the following cryptographic task which generalizes the two-party case in [14].

Suppose a group of parties P1, . . . , Pt are together initially and later go far away from

each other, and then they want to establish a secret key for group communication over

an insecure channel. Can this task be achieved without using ideal local randomness?

We give one solution. Initially these parties share some X sampled from a weak source

when they are together. After departing from each other, each party Pi samples Xi from

his/her own local weak source, and sends it to the others. Once receiving all Xi’s, each

party computes the secret key Ext(X ,X1, . . . ,Xt) using our extractor Ext, which is

secure even against an adversary who knows X2, . . . ,Xt. This can be augmented with an

authentication process to prevent an adversary from impersonating a legitimate party.

4

1.2 Deterministic Extractors for Independent-Symbol

Sources

Note that the researches for multiple independent sources and bit-fixing sources discussed

above can be seen as belonging to two extremes of a spectrum in the following sense.

Sources in both cases consist of multiple parts which are mutually independent. In the

first case, one usually has in mind sources with relatively few parts while each part is

long and contains a substantial amount of randomness. In the second case, a bit-fixing

source consists of many parts, while each part is only a single bit either random or fixed.

We would like to put both cases in the same framework and study sources that lie in

between these two extremes.

1.2.1 Independent-Symbol Sources

We consider the following more general class of sources, characterized by the parameters

n, d, k ∈ N, which we call independent-symbol sources. Each source in the class consists

of n mutually independent parts, each of length d, and the whole source has min-entropy

k. For small n and large d, this covers sources of the first type, while for large n and

d = 1, this covers sources of the second type. For other ranges of n and d, very little is

known, and we attempt to extract randomness from such sources.

Previously, [35, 34] were able to extract randomness from such a source with the

condition that there are two parts in it with a combined min-entropy slightly above

d. Independent of our work, Kamp et al. [32] recently also considered the same class

of sources as ours and obtained some similar results. Furthermore, they showed that

extractors for such sources also work for a more general class of sources which can be

generated in small space.

1.2.2 Main Results

For independent-symbol sources, we first give an explicit extractor which works for any

min-entropy k but extracts only about log k random bits. More precisely, for any n, d, k ∈
N and ε ∈ (0, 1), our extractor can extract Ω(log k− log log(1/ε)) bits with error ε. This

5

can be seen as a generalization of the extractor of Kamp and Zuckerman [33], but note

that theirs only works for bit-fixing sources and does not seem to work for the case that

allows each bit having arbitrary bias. In fact, our extractor works for sources in which

randomness could be distributed very non-uniformly among the n parts (e.g., some may

have no min-entropy at all, but we do not know which ones), while previous constructions

such as [3, 4, 45] do not seem to work for such sources. Independent of our work, Kamp

et al. [32] also gave the same construction but used a different analysis.

To extract more randomness, we borrow the technique of Gabizon et al. [17]. Now,

as in [17], we need n to be at least some large enough constant, and we have two con-

structions, both built on our first construction mentioned above. First, when k ≥ n1/2+γ ,

for any constant γ ∈ (0, 1/2), we can extract m = k − O(d log(1/ε)) random bits with

any error ε ≥ 2−Ω(nγ). Second, when k ≥ logc n, for some constant c > 0, we can extract

m = k− (1/ε)O(1) bits with error ε ≥ k−Ω(1). That is, when the min-entropy k is high, we

can have a small entropy loss and a small error, but when k is small, the loss and error

become larger. Note that the two main results in [17] only work for bit-fixing sources

(with d = 1) and follow from our two with ε = 2−Ω(nγ) and m = k−O(nγ), and ε = k−Ω(1)

and m = k − kΩ(1), respectively. On the other hand, we cover a large range of d and ε,

and capture the tradeoff between error and entropy loss. For example, for constant d and

ε, we show that the entropy loss can be lowered to a constant.

One may wonder if the entropy loss can be further reduced. We show that this

is indeed possible, by proving the existence of a seedless extractor which can extract

m = k−O(log(1/ε)) random bits whenever k = ω(d+ log(n/ε)). However, the existence

is not shown in an explicit way; we only know such an extractor exists but we do not

know how to construct it. Still, this shows that better explicit constructions than ours

may be possible. Only for the case with d = O(1), k ≥ n1/2+γ , and ε ≥ 2−Ω(nγ) do we

have an explicit construction matching this bound.

On the other hand, one may also wonder whether this existential upper bound we

derive on entropy loss is tight. We show that this is indeed the case by giving a matching

lower bound. In fact, we show that even for the case of bit-fixing sources and even

allowing a seed of length s, any extractor can only extract k + s − Ω(log(1/ε)) random

bits. That is, even to extract from bit-fixing sources, any extractor, seeded or not, must

6

suffer an entropy loss of Ω(log(1/ε)). This generalizes the result of Radhakrishnan and

Ta-Shma [43], which has the same bound on seeded extractors for general sources. The

idea in [43] is to show that for any extractor with output longer than the bound, one can

find a (general) source on which it fails, and our task is much harder because we need to

find one from the much more restricted class of bit-fixing sources.

1.2.3 Techniques

Our first extractor for independent-symbol sources, which extracts about log k bits, was

inspired by that of Kamp and Zuckerman [33], but our approach is quite different. Instead

of taking a random walk on an odd cycle, we walk on the group ZM for a prime M . More

precisely, given a source X = X1 ◦ · · · ◦Xn where ◦ denotes concatenation, we see each Xi

as an element of ZM and output X1+ · · ·+Xn over ZM . More precisely, after reading the

i’th symbol Xi, we walk from the state S = X1+ · · ·+Xi−1 to the state S+Xi. As in [33],

we will show that each step of our walk brings the distribution closer to uniform when the

symbol from the source contains some randomness. We observe that the transition matrix

of each step is a circulant matrix, in which each row is a cyclic shift of the previous row.

Hence, we can use the properties of circulant matrices to show the progress we can make

after each step. Our proof has the following interesting point. The recent breakthrough

construction of multi-source extractors [3] and its subsequent works all relied on using

both sums and products to increase entropy. We show that in fact even doing sums alone

can increase entropy. The increase, however, is slower, so we need a larger number of

sources (as opposed to a constant number in [3]).

To extract more randomness, we apply the technique of [17]. Our constructions and

proofs in this part follow very closely those in [17]. The only difference is that we deal with

a more general classes of sources, do a more careful analysis, and use our first extractor

instead of that in [33] as a building block.

Our existential upper bound on entropy loss is proved via a probabilistic argument.

That is, we generate a seedless extractor randomly, and show that it works for all of our

sources with a positive probability. For each source, we can show that it fails with a

small probability. However, the number of all possible sources is in fact infinite. Instead,

7

we show that it suffices to consider only a small set of sources, since any source is close

to a convex combination of them. Sources in this set are those with the property that

their distributions in each dimension are “almost flat” and have only a small number of

possible min-entropy values.

Our lower bound proof of entropy loss follows the outline of that in [43]. Namely, given

any function Ext : {0, 1}n × {0, 1}s → {0, 1}m with m ≥ k + s − o(log(1/ε)), we show

the existence of a bit-fixing source with min-entropy k on which the error of Ext exceeds

ε, again using a probabilistic argument. We generate a source by randomly picking n−k

bits of the source and fixing them to some random values; the remaining k bits are left

free and given a uniform distribution. The difficult part is to show that any such Ext fails

on such a randomly chosen source with a positive probability. This probability turns out

to be related to the size of some “almost” t-wise independent space, whose distribution

is close to random on most sets of t dimensions. This can be seen as a relaxation of

the standard notion of approximate t-wise independent space, in which the close-to-

randomness property is required on every set of t dimensions. We prove a size lower

bound on such a sample space, which seems to have an interest of its own. In particular,

it immediately implies a size lower bound on any approximate t-wise independent space.

1.3 Extracting Computational Entropy and Learn-

ing Noisy Linear Functions

Next, we would like to go the other direction to look for a more general class of sources

from which seedless extraction is still possible. In particular, we will consider sources

which may contain no randomness at all in a statistical sense, but look slightly random

to computational-bounded observers, such as small circuits. That is, we will go from

a traditional, statistical setting to a computational one. It is conceivable that in many

situations when we consider a source random, it may in fact only appear so to us, while its

actual statistical min-entropy may be much smaller (or even zero) especially if we take into

account some correlated information which we can observe. Another application of this

notion is in cryptography, and in fact the idea of extracting computational randomness

8

has appeared implicitly long ago [59, 19, 23], for the task of constructing pseudo-random

generators from one-way functions. The idea is that given a one-way function g, it is

hard to invert g(y) to get y, and this means that given the (correlated) information g(y),

y still looks somewhat random, from which one can extract some bits that look almost

random. However, while there is a natural and well-accepted definition for what we mean

that a distribution looks almost random [59], it seems less clear for what we mean that a

distribution looks slightly random and for how to measure the amount of randomness in

it. In fact, there are several alternatives which all seem reasonable, but there are provable

discrepancies among them [5, 25]. To extract randomness from a source with so-called

HILL-entropy [5], the strongest among them, one can simply use any statistical extractor.

Here we consider a weaker (more general) notion of computational randomness, which

appears in [25], and we call it computational min-entropy.

1.3.1 Computational min-entropy

To model the more general situation that one may observe some correlated information

about the sources, we consider sources of a conditional form (V|X), where V is the source

from which we want to extract and X (could be empty) is some distribution which one

can observe. The correlation between V and X is modeled by V = f(X) for some function

f . In the example of the one-way function, f is the inverse function g−1, which is hard

to compute, and X is the distribution of g(y) over a random y. Here in our definition,

we allow f to be probabilistic and we even do not require it to have an efficient (or even

computable) algorithm, and furthermore, we do not require X to be efficiently samplable

either. We say that such a distribution (f(X)|X) has computational min-entropy k if

given input x sampled from X , any circuit of size 2k can only predict f(x) correctly

with probability at most 2−k (a more general definition is to have the circuit size as

a separate parameter, but our extractor construction does not seem to work for this

general definition). From the distribution f(X), we would like to extract randomness

which when given X still looks random to circuits of a certain size. Note that a source Y
with statistical min-entropy k can be seen as such a source (f(X)|X) with computational

min-entropy k, where we can simply have no X or just have X taking a fixed value,

9

and let f be a probabilistic function with Y as its output distribution. This means that

extractors for sources with computational min-entropy can immediately work for sources

with statistical min-entropy, and thus results in the computational setting can be seen as

a generalization of those in the traditional, statistical setting. On the other hand, for a

deterministic function f , f(x) has no statistical min-entropy at all when given x. Still,

according to our definition, as long as f is hard to compute, (f(X)|X) in fact can have

high computational min-entropy.

Extractors for such sources were implicitly proposed before [19, 23], and they are

seeded ones. In fact, any seeded statistical extractor with some additional reconstruc-

tion property (in the sense of [54]) gives a seeded extractor for such sources [5, 53, 25].

However, just as in the statistical setting, several natural questions arise in the compu-

tational setting too. To extract from such sources, do we really need a seed? Can we use

a weaker seed which is only slightly random, instead of perfectly random, but still in a

statistical sense, or an even weaker seed which only looks slightly random in a computa-

tional sense but may contain no randomness at all in a statistical sense? We will try to

answer these questions. Seeing the seed as an additional independent source, a general

question is: Can we have seedless extractors for multiple independent sources, each with

some computational min-entropy? One can see this as a step toward extending the study

of multi-source extractors from the traditional, statistical setting to a new, computational

setting. One can also see this as providing a finer map for the landscape of statistical

extractors, according to the degree of their reconstruction property.

1.3.2 Main Results

First, we show that it is impossible to have seedless extractors for one single source, even

if the source of length n can have a computational min-entropy as high as n−2 and even

if we only want to extract one bit.

Next, we show that with the help of a weak seed, it becomes possible to extract ran-

domness from such sources. We use a two-source extractor of Lee et al. [35], denoted as

Ext. As shown in [35], it works for any two independent sources both containing some

statistical min-entropy. Moreover, it is also known to work when one source contains some

10

computational min-entropy and the other, the seed, is perfectly random (in a statistical

sense) [21]. Our second result shows that it even works when the seed only contains some

statistical min-entropy. More precisely, we show that given any source (f(X)|X) with

computational min-entropy k1 = n − k + O(k/ log k) and another independent source

W with statistical min-entropy k, Ext(f(X),W) given X cannot be distinguished from

random with advantage ε = 2−O(
√

k/ log k) by circuits of size s = 2n−k+O(k/ log k). Then

we proceed to show that it works even when the seed only contains computational

min-entropy. More precisely, for a source (g(Y)|Y) with computational min-entropy k,

Ext(f(X), g(Y)) given (X ,Y) still cannot be distinguished with advantage ε by circuits

of size about s. This can be seen as a seedless extractor for two independent sources,

both with computational min-entropy.

We do not know if the statistical extractors of [3, 4, 45, 8, 44] for multiple independent

sources can work in the computational setting, since to work in this setting, we need them

to have some reconstruction property. For the extractors from [19, 21], this property can

be translated to a task in learning theory, and the proofs there can be recast as providing

an algorithm for learning linear functions under uniform distribution with adversarial

noise. Our second result can be seen as a generalization of [19, 21], and we are facing a

more challenging learning problem: learning linear functions under arbitrary distribution

with adversarial noise. Our third result provides an algorithm for this problem, which,

in addition to being used to prove our second result, may have interest of its own.

In the learning problem, there is an unknown linear function v : F ℓ → F which we

want to learn, and a distribution W over F ℓ from which we can sample w to obtain a

training example (w, q(w)), for some function q : F ℓ → F . The function q can be seen

as a noisy version of v with some noise rate α, and there are two noise models. In the

adversarial-noise model, q is a deterministic function such that Prw∈W [q(w) 6= v(w)] ≤ α.

In the random-noise model, q is a probabilistic function such that independently for any

w, Pr[q(w) 6= v(w)] ≤ α. We consider the more difficult adversarial-noise model, and

our algorithm works for an arbitrary distribution W, while its complexity depends on

the min-entropy k of W. More precisely, our algorithm samples 2O(k/ log k) examples, runs

in time 2n−k+O(k/ log k), and with high probability outputs a list containing every linear

function v satisfying Prw∈W [q(w) 6= v(w)] ≤ α, for α = 1−2−O(
√

k/ log k). The factor 2n−k

11

in our running time is in fact unavoidable because one can easily find a distribution W
for which the number of such v’s, and thus the running time, is in fact at least 2n−k.

Note that when W is the uniform distribution (with k = n), our algorithm runs in time

2O(n/ logn) and takes 2O(n/ logn) samples.

Previously, the algorithm of Blum et al. [7] can learn under arbitrary distribution but

in the random-noise model, while that of Feldman et al. [16] can learn in the adversarial-

noise model but under the uniform distribution. Both algorithms learn the parity func-

tions on n variables, tolerate a noise rate α ≤ 1/2−Ω(1), run in time 2O(n/ logn), and take

2O(n/ logn) samples. Very recently, Kalai et al. [31] gave an algorithm which can learn

the parity functions under arbitrary distribution in the adversarial-noise model, but the

hypothesis they produce is not in the linear form, so it cannot be used for our extrac-

tors. Furthermore, they only produce one hypothesis instead of all the legitimate ones,

and their technique does not seem to generalize from the parity functions to the linear

functions over larger fields. Thus, to the best of our knowledge, the task our learning

algorithm achieves has not been accomplished before. Finally, just as the result of [19]

can yield a list-decoding algorithm for Hadamard codes, so can ours, while that of [31]

can not. In fact, our list-decoding algorithm can work even when all but 2k symbols from

the codeword are erased and an α fraction of the remaining symbols are corrupted. It

can also be seen as list-decoding a punctured Hadamard code, where a punctured code is

obtained from a code by deleting all but a small number of symbols from the codeword.

1.3.3 Techniques.

For our impossibility result, we show that for any function Ext : {0, 1}n → {0, 1}, there
exists a function f : {0, 1}3n → {0, 1}n such that (f(X)|X) has computational min-

entropy n−2, but Ext(f(x)) takes an identical value for all x. We show the existence of

such a function f by a standard probabilistic argument: in fact, a random function from

{0, 1}3n to Ext
−1(b) is likely to work, for b ∈ {0, 1} giving a larger Ext−1(b).

To show that our extractor works in the computational setting, we follow the approach

of [19] and reduce it to the task of learning linear functions as we just discussed. Now

more precisely, for the case when the source (f(X)|X) has computational min-entropy

12

and the seed W has statistical min-entropy, the reduction works as follows. Assume our

extractor Ext does not work, then some efficient distinguisher can tell the distribution

of Ext(f(x),W) = 〈f(x),W〉 from random given x, for a large fraction of x from X .

For any such x, we can then predict the value 〈f(x),W〉 with a good probability, given

the ability to sample from W, which can then be used by the learning algorithm to

learn f(x). This would give us an efficient algorithm for predicting f(x) for those x’s,

if we could in fact sample W efficiently, but this may not be the case in general as W
could be any arbitrary distribution. Still, by an average argument, there exist some fixed

samples which maintain the predicting probability, so we can hard-wire them in to get a

circuit for predicting f well. If the function f is hard, this is impossible, so the assumed

distinguisher cannot exit, and Ext indeed works. For the case that the seed comes from a

distribution (g(Y)|Y) with computational min-entropy, observe that g(Y) alone (without

conditioning on Y) must have some statistical min-entropy, because otherwise it becomes

easy to predict. Then a very similar argument as above can be used.

Note that our results on extractors still depend on the existence of a good learning

algorithm, and our main technical contribution can be seen as providing such an algo-

rithm. Our algorithm can be seen as extending that of [7] from the random-noise model

to the adversarial-noise model.

Our learning algorithm works as follow. We start by sampling some number K of

training examples (w, q(w)) from (W, q(W)). Note that each example (w, q(w)) gives us

a linear equation 〈v, w〉 = q(w) for the v which we want to learn, so the K examples

gives us a system of K linear equations, some of which may be wrong. We reduce the

original problem of learning the unknown v to the problem of solving such a noisy system

of learning equations, and to solve it, we proceed in two phases. In the forward phase, we

start from the system, and use several iterations to produce smaller and smaller systems

with fewer and fewer variables. When we have a small enough system which we can

afford to solve using brute force, we enter the backward phase. In the backward phase,

we start from the last system produced by the forward phase, and work backward on

larger and larger systems produced in the forward phase to obtain solutions for more and

more variables. Since the possible solutions may not be unique, we keep them all in a list

in each iteration, and the list in the final iteration of the backward phase is our output,

13

which we hope contains the correct v.

The forward phase is similar in spirit to an approach in [7]. The key is to guarantee

that after each iteration, the new system still contains a good fraction of correct equations

with respect to the solution v, so that v will not be lost when solving this new system.

Using an argument similar to that in [7], we can show that this does hold with some

significant probability. On the other hand, it is not clear whether or not some system

produced in the forward phase could turn many originally-bad solutions into good ones

for it (satisfying a good fraction of its equations). That is, not only is v a good solution

for the system, there are in fact too many good solutions for it. If this happens, then

in the backward when we try to solve this system, we cannot afford to keep all such

solutions, and we have the risk of losing the actual solution v. This tricky situation does

not arise in the random-noise model considered in [7], so a much simpler algorithm works

there. In the adversarial-noise model, this seems unavoidable. Fortunately, we can show

that with high probability, the systems we produce indeed do not have too many good

solutions. This turns out to rely on the fact that our extractor is also a good statistical

extractor, together with the property, which we will show, that each system is likely to

be close to some good distribution with high statistical min-entropy.

1.4 Extracting Computational Entropy from Com-

putational Independent-Symbol Sources

Finally, we consider computational independent-symbol sources, characterized by the

parameters n, d, k ∈ N, and s. Just as independent-symbol sources, each computational

independent-symbol source consists of n mutually independent parts, (f1(X1)|X1), · · · ,
(fn(Xn)|Xn), each fi(Xi) of length d such that for each i if given input xi sampled from

Xi, any circuit of size s can only predict fi(xi) with probability at most 2−ki for some

ki ≤ d, and the sum of ki’s is k. Note that we can allow to set circuit size as a separate

parameter to define the computational independent-symbol sources.

We show that our extractor for independent-symbol sources, defined as Ext(V1, · · · ,
Vn) =

∑

i Vi, still works for computational independent-symbol sources. One of our main

14

technical contribution is a generalization of the well-known hardcore set lemma [26]. The

well-known Impagliazzo’s hardcore set lemma says that if a function f : {0, 1}ℓ → {0, 1}
is mildly hard, that is, any small circuit must fail to compute it correctly on more than

some fraction of inputs, then there exists a large enough hardcore set H , such that f

is extremely hard on H , in the sense that any somewhat smaller circuit must fail to

compute f correctly on more than a 1
2
− ε fraction of inputs in H , for some small ε.

We extend the case of f : {0, 1}ℓ → {0, 1} to f : {0, 1}ℓ → {0, 1}d. More precisely, we

show that if any circuit of size s must fail to compute f : {0, 1}ℓ → {0, 1}d correctly

on more than a δ fraction of inputs, then there exist some disjoint binary hardcore sets

H1, · · · , Hr of total size at least (δ/2) · 2ℓ, where for any i ∈ [r], Hi ⊆ f−1(Ii) for

some Ii ⊆ {0, 1}d with |Ii| = 2, such that any circuit of size Ω(ε2δ2s/26d) must fail

to compute f correctly on more than a 1
2
− ε fraction of inputs in H , for some small

ε. Moreover, using the generalized hardcore set lemma and the technique of Sudan et

al. [51], we can find a source Y such that the two distributions X ◦ f(X) and X ◦ Y
cannot be distinguished with advantage εδ by circuits of size Ω(ε2δ2s/26d) and with a

significant probability, (Y|X) has enough min-entropy. Hence, we can reduce the problem

of constructing computational extractors for computational independent-symbol sources

to that of constructing extractors for independent-symbol sources, and show that no

circuit of size Ω(s(log n/nk2d)2)) can distinguish the distributions X1◦· · ·◦Xn◦
∑n

i=1 fi(Xi)

and X1 ◦ · · · ◦ Xn ◦ U[M], where U[M] is the uniform distribution over {1, 2, · · · ,M}, with
advantage O(M2 logn/k) for k ≥ Ω(M2d2).

In fact, the result of computational extractors for computational independent-symbol

sources implies a generalization of the well-known XOR lemma [59]. The XOR lemma

says that if f : {0, 1}ℓ → {0, 1} is ”mildly hard” for small circuits, then F (x1, · · · , xt) ≡
⊕t

i=1f(xi) for sufficiently large t, is ”extreme hard” for smaller size circuits. We show

that if there are n functions f1, · · · , fn such that for each i, any circuit of size s must

fail to compute fi : {0, 1}ℓi → {0, 1}d correctly for a δi fraction of inputs, and δ =
∑n

i=1 δi ≥ Ω(M2d), then any circuit of size Ω(s(log n/nδ2d)2)) with input x1, · · · , xn can

only compute
∑n

i=1 fi(xi) correctly on no more than a 1
M

+ M2 logn
δ

fraction of inputs.

For the generalized hardcore set lemma, one may wonder if there exists a larger binary

hardcore set, for example, with size δ ·2ℓ/2d. We show that in any black-box construction,

15

one can only prove the existence of a binary hardcore set with size O(δ2ℓ/22d). We say

that an oracle algorithm Dec
(·) is a black-box (δ, ε, d)-construction of a hardcore set, if

the following holds. Given any function f : {0, 1}ℓ → {0, 1}d, where ℓ = Ω(d), and a

family of functions G = {gI |I ⊆ {0, 1}d with |I| = 2} satisfying that for each gI ∈ G and

H ⊆ f−1(I) with size s, gI must fail to compute f(x) on at most a (1 − ε)/2 fraction

of inputs in H , then Dec
G must fail to compute f on at most a δ fraction of inputs.

We call s the size complexity of black-box construction. We use a probabilistic method

to show that any black-box (δ, ε, d)-construction must have size complexity O(δ2ℓ/22d)

where Ω(2−cd) ≤ δ for some constant c, ε ≤ 1/5 and d ≥ 2.

1.5 The Rest of This Thesis

In Chapter 2, we give some preliminaries, and define several classes of sources which we

will consider in this thesis. In Chapter 3, we consider the case of multiple independent

sources, while in Chapter 4, we consider a new class of weak random sources, independent-

symbol sources, which can be seen as sources that lie in between multiple independent

sources and bit-fixing sources. In Chapter 5, we will go to a computational setting

and consider a more general class of sources, weak random sources with computational

min-entropy. In Chapter 6, we consider the computational independent-symbol sources.

Finally, we will discuss the future work in Chapter 7.

16

Chapter 2

Preliminaries

In this chapter, we describe some notations, and define some classes of sources which we

will consider in this thesis. Throughout this thesis, we will use the terms random variable

and distribution interchangeably. All logarithms will have base two. Let SIZE(s) be the

class of functions computable by Boolean circuits of size s. For n ∈ N, let [n] denote

the set {1, . . . , n}. For i, j ∈ N with i ≤ j, let [i, j] denote the set {i, i + 1, · · · , j}. For

convenience, let D = 2d, and M = 2m. For x ∈ {0, 1}n, i ∈ [n] and I ⊆ [n], let xi denote

the bit in the i’th dimension of x and xI denote the projection of x onto those dimensions

in I. For a set S, let P (S) denote the collection of subsets of S, and let P (S, t), for t ∈ N,

denote the collection of t-element subsets of S.

When we sample from a finite set, the default distribution is the uniform one. For

n ∈ N, let Un denote the uniform distribution over {0, 1}n. We will sometimes see a

distribution X over a set S as an |S|-dimensional vector, with Pr[X = x] at dimension x ∈
S, and we say that a distribution X is a convex combination of distributions X 1, . . . ,X t

over a set S, if there exist numbers α1, . . . , αt ≥ 0 with
∑

i∈[t] αi = 1 such that for every

x ∈ S, Pr[X = x] =
∑

i∈[t] αi Pr[X i = x]. A distribution is called flat if it is a uniform

distribution over some set S.

17

2.1 Distances

We will mainly measure the distance between two distributions X ,Y over a set S by their

statistical distance or variational distance, defined as

∆(X ,Y) = max
T⊆S

|Pr[X ∈ T]− Pr[Y ∈ T]| .

Note that this distance is exactly half of the L1-distance, defined as

‖X − Y‖1 =
∑

x∈S
|Pr[X = x]− Pr[Y = x]| .

Call a distribution ε-random if its statistical distance to the uniform distribution is at

most ε.

The statistical distance has the following nice properties.

Proposition 2.1.1. For any two distributions X and Y , 0 ≤ ∆(X ,Y) ≤ 1.

Proposition 2.1.2. For any three distribution X ,Y , and Z, ∆(X ,Z) ≤ ∆(X ,Y) +

∆(Y ,Z).

Proposition 2.1.3. If ∆(X ,Y) ≤ ε for two distributions X and Y over a set S, then for

any function f : S → T , ∆(f(X), f(Y)) ≤ ε.

Proof.

∆(f(X), f(Y)) =
1

2

∑

t∈T
|Pr[f(X) = t]− Pr[f(Y) = t]|

=
1

2

∑

t∈T

∣

∣

∣

∣

∣

∣

∑

s∈f−1(t)

Pr[X = s]−
∑

s∈f−1(t)

Pr[Y = s]

∣

∣

∣

∣

∣

∣

≤ 1

2

∑

t∈T

∑

s∈f−1(t)

|Pr[X = s]− Pr[Y = s]| (2.1)

=
1

2

∑

s∈S
|Pr[X = s]− Pr[Y = s]|

= ∆(X ,Y)

≤ ε,

where (2.1) is due to the triangle inequality.

18

Lemma 2.1.4. Suppose that ε1, ε2 > 0. For any independent sources X1,X2,Y1, and Y2

satisfying that ∆(X1,Y1) = ε1 and ∆(X2,Y2) = ε2, then

∆(X1 ◦ X2,Y1 ◦ Y2) ≤ ε1 + ε2

where ◦ denotes concatenation.

Proof. Applying the triangle inequality and the fact that X1,X2,Y1, and Y2 are indepen-

dent, we obtain that

∆(X1 ◦ X2,Y1 ◦ Y2) ≤ ∆(X1 ◦ X2,Y1 ◦ X2) + ∆(Y1 ◦ X2,Y1 ◦ Y2)

= ∆(X1,Y1) + ∆(X2,Y2)

= ε1 + ε2.

We can easily generalize the above lemma to 2ℓ independent sources for any integer

ℓ.

Corollary 2.1.5. Suppose that ℓ ∈ N, and ε1, · · · , εℓ > 0. For any independent sources

X1, · · · ,Xℓ,Y1, · · · , Yℓ satisfying that for any i ∈ [ℓ], ∆(Xi,Yi) = εi, then

∆(X1 ◦ · · · ◦ Xℓ,Y1 ◦ · · · ◦ Yℓ) ≤
ℓ
∑

i=1

εi.

Another distance measure that will be used sometimes is the L2-distance, defined as

‖X − Y‖2 =
√

∑

x∈S
(Pr[X = x]− Pr[Y = x])2.

2.2 Min-entropy and Computational Min-entropy

We mainly measure the amount of randomness in a distribution X by its (statistical)

min-entropy.

Definition 2.2.1. We say that a distribution X has (statistical) min-entropy k, denote

by H∞(X) = k, if for any x, Pr[X = x] ≤ 2−k.

The notion of min-entropy has the following properties.

19

Proposition 2.2.2. Let X be a source over {0, 1}n. Then 0 ≤ H∞(X) ≤ n.

Proposition 2.2.3. For any deterministic function f and any distribution X , H∞(f(X))

≤ H∞(X).

Proof. Note that for any z, Pr[f(X) = z] =
∑

x∈f−1(z) Pr[X = x]. Hence, maxz Pr[f(X) =

z] ≥ maxx Pr[X = x], which implies H∞(f(X)) ≤ H∞(X).

In fact, if we can extract randomness from X , then X is close to have high min-

entropy [48].

Remark 2.2.4. The more familiar notion of entropy is the Shannon entropy, H(X) =

−∑x Pr[X = x] log(Pr[X = x]). However, consider a source X which outputs 0n with

probability 0.9 and outputs a random value in {0, 1}n with probability 0.1. Note that

H(X) ≥ 0.1n, but any function will output the same value at least 0.9 of the times.

Hence, we will not use the Shannon entropy to measure the amount of randomness.

Proposition 2.2.5. For any k ∈ N, any source with min-entropy k is a convex combi-

nation of flat sources with min-entropy k.

Proof. Consider any X over {0, 1}n with H∞(X) = k. Let N = 2n, and see {0, 1}n = [N].

We can see any source over {0, 1}n with min-entropy k as a vector (p1, . . . , pN) with the

property that
∑

j∈[N] pj = 1 and 0 ≤ pj ≤ 2−k for every j ∈ [N]. Since all these

inequalities are linear, the set of such vectors forms a convex polytope. Hence, each

vector in the set can be represented as a convex combination of vertices (corners) of the

polytope, where a vertex of the polytope is a vector satisfying a maximal subset of these

inequalities when treat these inequalities as equalities. Note that a vector is a vertex of

the polytope if and only if it has 2k values of j such that pj = 2−k, and for the rest of j,

pj = 0. That is, the vertices of the polytope correspond exactly to the vectors given by

those flat sources over [N], and we complete the proof.

According to the above proposition, it suffices to work for flat distributions to analyze

extractors.

Next, we define the notion of computational min-entropy. Here, we consider condi-

tional distributions of the form (V|X), with V = f(X), for some distribution X and some

20

function f , which could be either probabilistic or deterministic, and we say that it has

some computational min-entropy if v = f(x) is hard to predict given x ∈ X .

Definition 2.2.6. We say that a conditional distribution (V|X) has computational min-

entropy k, denoted by Hc(V|X) = k, if for any C ∈ SIZE(2k), Pr[C(X) = V] ≤ 2−k.

Note that for a deterministic function f , when given x ∈ X , f(x) has no randomness

left and thus has no statistical min-entropy, but it still can have high computational

min-entropy if f is in fact hard to compute.

2.3 Multiple Independent Sources

In Chapter 3, we will study deterministic extractors for multiple independent sources.

Definition 2.3.1. For t ∈ N, a function Ext : ({0, 1}n)t → {0, 1}m is called a (k1, k2, ...,

kt, ε)-extractor if for any t independent random variables X1, . . . ,Xt, with each Xi dis-

tributed over {0, 1}n and H∞(Xi) ≥ ki, we have

∆(Ext(X1, . . . ,Xt),Um) ≤ ε.

Ext is called a (k1, . . . , kt, ε)-strong-multi-source-extractor if it satisfies the stronger prop-

erty that

∆
(

X[2,t] ◦ Ext(X1, . . . ,Xt),X[2,t] ◦ Um

)

≤ ε.

2.4 Independent-Symbol Sources

In Chapter 4, we will focus on a special kind of sources which consist of n independent

symbols over some set [D].

Definition 2.4.1. A distribution X = X1 ◦ · · · ◦ Xn over the set [D]n is called an (n,D)-

source if the n symbols X1, . . . ,Xn are distributed independently from each other. An

(n,D)-source with min-entropy k is called an (n,D, k)-source. A bit-fixing source is an

(n, 2)-source with the additional condition that each bit of the source has min-entropy

either 0 or 1.

21

When we talk about an (n,D, k)-source, we always assume k ≤ n logD since any

(n,D)-source has min-entropy at most n logD. The task of Chapter 4 is to extract

randomness from such (n,D, k)-sources.

Definition 2.4.2. For n,D, k, s,m ∈ N and ε ∈ [0, 1], a function Ext : [D]n ×{0, 1}s →
{0, 1}m is called an (n,D, k, ε)-extractor if for any (n,D, k)-source X ,

∆(Ext(X ,Us),Um) ≤ ε.

The second input, of s-bit long, to an extractor is called its seed. We allow the case

of s = 0 (i.e. without a seed) and we call such an extractor a seedless (or deterministic)

extractor. The entropy loss of an extractor is defined as the value k + s − m, which is

the difference between the amount of randomness given to the extractor and the amount

of randomness it can extract. Minimizing this entropy loss is one of the main goals of

extractor construction. Moreover, one usually prefers constructions which are explicit, in

the sense that given any input, one can compute the output in polynomial time.

2.5 Computational Extractors

We say that a function D : {0, 1}n → {0, 1} is an ε-distinguisher for two distributions X
and Y over {0, 1}n if

|Pr[D(X) = 1]− Pr[D(Y) = 1]| ≥ ε.

In Chapter 5, we consider two kinds of extractors: hybrid extractors and computational

extractors for extracting computational min-entropy.

Definition 2.5.1. A function Ext : {0, 1}n × {0, 1}n → {0, 1}m is called a

• (k1, k2, ε, s)-hybrid-extractor if for any source (V|X) with Hc(V|X) ≥ k1 and any

source W, independent of (V|X), with H∞(W) ≥ k2, there is no ε-distinguisher in

SIZE(s) for the distributions X ◦W ◦ Ext(V,W) and X ◦W ◦ Um.

• (k1, k2, ε, s)-computational-extractor if for any source (V|X) with Hc(V|X) ≥ k1

and any source (W|Y), independent of (V|X), with Hc(W|Y) ≥ k2, there is no

ε-distinguisher in SIZE(s) for the distributions X ◦Y ◦W ◦Ext(V,W) and X ◦Y ◦
W ◦ Um.

22

Remark 2.5.2. Note that if Ext is a (k1, k2, ε)-strong-two-source-extractor then for any

source V withH∞(V) ≥ k1 and any sourceW, independent of V, withH∞(W) ≥ k2, there

is no ε-distinguisher (without any complexity bound) for the distributions W◦Ext(V,W)

and W ◦ Um.

We will need the following fact about strong-two-source extractor.

Lemma 2.5.3. Let Ext : {0, 1}n×{0, 1}n → {0, 1}m be any (k1, k2, ε)-strong-two-source-

extractor. Then for any source W over {0, 1}n with H∞(W) = k2 and any function

q : {0, 1}n → {0, 1}m, there are at most 2k1 different v’s satisfying

Pr
w∈W

[q(w) = Ext(v, w)] ≥ 1/M + ε.

Proof. Let V be the set consisting of such v’s and let V be the uniform distribution over

V . Consider the distinguisher D defined as D(w ◦ u) = 1 if q(w) = u and D(w ◦ u) = 0

otherwise. Then, we have

Pr
v∈V ,w∈W

[D(w ◦ Ext(v, w)) = 1]− Pr
w∈W ,u∈Um

[D(w ◦ u) = 1]

= Pr
v∈V ,w∈W

[q(w) = Ext(v, w)]− Pr
w∈W ,u∈Um

[q(w) = u]

≥ 1/M + ε− 1/M

= ε.

This implies that log |V | = H∞(V) ≤ k1, because otherwise it would contradict the fact

that Ext is a good strong-two-source-extractor.

Finally, we will need the following lemma about obtaining predictors from distinguish-

ers. The Boolean case (m = 1) is well known, and a proof for general m can be found in

[21].

Lemma 2.5.4. For any source Z over {0, 1}n and any function b : {0, 1}n → {0, 1}m, if
there is an ε-distinguisher E for the distributions Z ◦ b(Z) and Z ◦ Um, then there is a

predictor P with E as oracle which calls E once and runs in time O(m) such that

Pr
z∈Z

[

PE(z) = b(z)
]

≥ (1 + ε)/M.

23

2.6 Computational Independent-Symbol Sources

We generalized the definition of independent-symbol sources to consider independent-

symbol sources with computational entropy in Chapter 6. Unlike the definition of com-

putational entropy, we can have the circuit size as a separate parameter to define com-

putational independent-symbol sources.

Definition 2.6.1. A distribution (V|X) = (V1|X1) ◦ · · · ◦ (Vn|Xn), where for each i, Vi

is over the set [D] and Xi is over {0, 1}ℓi, is called a computational (n,D, k, s)-source if

the n symbols (V1|X1), . . . , (Vn|Xn) are distributed independently from each other and for

every i ∈ [n], any circuit C ∈ SIZE(s), Pr[C(Xi) = Vi] ≤ 2−ki for some 0 ≤ ki ≤ logD,

and
∑n

i=1 ki = k.

Then, our target is to extract randomness from such computational independent-

symbol sources.

Definition 2.6.2. A function Ext : [D]n → [M] is called an (n,D, k, ε, s1, s2) - computa-

tional - extractor if for any computational (n,D, k, s1)-source, there is no ε-distinguisher

in SIZE(s2) for the distributions X[1,n] ◦ Ext(V1, · · · ,Vn) and X[1,n] ◦ U[M], where U[M]

denotes the uniform distribution over the set [M].

2.7 Some Useful Tools

In this section, we introduce some useful tools which will be used in this thesis. The first

two lemmas are the well-known Jensen’s inequality and Cauchy-Schwartz inequality.

Lemma 2.7.1 (Jensen’s inequality [39]). Let X be a random variable. If f is a convex

function, then

E[f(X)] ≥ f(E[X]).

Lemma 2.7.2 (Cauchy-Schwartz inequality). For any x, y ∈ R
n,

|〈x, y〉| ≤ ‖x‖2‖y‖2,

where 〈x, y〉 is the standard inner product of x and y.

24

In this thesis, we often need to bound the tail distribution [39], which is the prob-

ability of a random variable taking values far from its expectation. One useful tool is

the Markov’s inequality, when we only know the expectation of an nonnegative random

variable.

Lemma 2.7.3 (Markov’s inequality [39]). Let X be a random variable that assumes only

nonnegative values. Then, for all a > 0,

Pr[X ≥ a] ≤ E[X]

a
.

Sometimes, we will apply the following corollary, which is an application of Lemma 2.7.3.

Corollary 2.7.4. Let X be a random variable taking values in the interval [0, 1]. Then

for 0 < δ < E[X],

Pr [X ≥ δ] ≥ E[X]− δ.

Proof. Here we give two different proofs. The first one is by the Markov’s inequality of

Lemma 2.7.3, while the second one proves the corollary directly.

1. Define a random variable Y = 1−X . Note that E[Y] = 1− E[X]. Then,

Pr[X < δ] ≤ Pr[Y ≥ 1− δ]

≤ E[Y]

1− δ
(2.2)

=
1− E[X]

1− δ

< 1− (E[X]− δ),

where (2.2) is due to the Markov’s inequality of Lemma 2.7.3. Hence,

Pr [X ≥ δ] = 1− Pr[X < δ] ≥ E[X]− δ.

2. Note that

E[X] =
∑

x

x · Pr[X = x]

≤ Pr[X ≥ δ] · 1 + Pr[X < δ] · δ

≤ Pr[X ≥ δ] + δ,

which implies that Pr[X ≥ δ] ≥ E[X]− δ.

25

When we can bound the variance of the random variable, the following Chebyshev’s

inequality is useful.

Lemma 2.7.5 (Chebyshev’s inequality [39]). Let X be a random variable. For any

positive a,

Pr[|X − E[X]| ≥ a] ≤ Var[X]

a2
.

Moreover, if the random variables are independent, then we can obtain a much better

bound on the tail distribution of the sum of these random variables by Chernoff bound.

Lemma 2.7.6 (Chernoff bound [27]). Let X1, · · · , Xt be independent random variables

taking values in the interval [0, 1]. Let X =
∑t

i=1 Xi, and µ = E[X]. For any 0 < λ ≤ 1,

Pr[|X − µ| ≥ λµ] ≤ 2 · e−λ2µ/3.

26

Chapter 3

Extracting Randomness from

Multiple Independent Sources

In this chapter, we study the problem of deterministically extracting almost perfect ran-

dom bits from multiple weakly random sources that are mutually independent. First, we

prove the generalized leftover hash lemma in Section 3.1. Then we consider extracting

randomness from two independent sources in Section 3.2, and extend this result to t ≥ 3

independent sources in Section 3.3. Finally, we give an application in Section 3.4.

3.1 Generalized Leftover Hash Lemma

Definition 3.1.1. We call a family H of functions from {0, 1}n to {0, 1}m pair-wise

independent if

∀x1 6= x2 : Pr
h∈H

[h(x1) = h(x2)] =
1

2m
.

The well-known leftover hash lemma [28] says that if h is sampled uniformly from

such a family H and x is sampled from a distribution with enough min-entropy, the

distribution of h ◦ h(x) is close to uniform. We extend it to the case that h is sampled

from a large enough subset G of H . Note that the original leftover hash lemma is a

special case of our lemma with G = H .

Lemma 3.1.2. (Generalized leftover hash lemma) Let H be any family of pair-wise in-

dependent functions from {0, 1}n to {0, 1}m. Let G denote the uniform distribution over

27

a set G ⊆ H and let X denote the uniform distribution over a set X ⊆ {0, 1}n. Then

∆(G ◦ G(X),G ◦ Um) ≤
1

2

√

2m|H|
|X||G| .

Proof.

4∆ (G ◦ G(X),G ◦ Um)
2 =





∑

h∈G

∑

z∈{0,1}m

1

|G|

∣

∣

∣

∣

Pr
x∈X

[h(x) = z]− 1

2m

∣

∣

∣

∣





2

≤ 2m

|G|





∑

h∈H

∑

z∈{0,1}m

(

Pr
x∈X

[h(x) = z]− 1

2m

)2


 (3.1)

=
2m

|G|









∑

h∈H

∑

z∈{0,1}m
Pr

x,x′∈X
[h(x) = h(x′) = z]



− |H|
2m





=
2m|H|
|G|

(

Pr
h∈H;x,x′∈X

[h(x) = h(x′)]− 1

2m

)

≤ 2m|H|
|G| (Pr[x = x′] + Pr[h(x) = h(x′) | x 6= x′]− 1/2m)

≤ 2m|H|
|G|

(

1

|X| +
1

2m
− 1

2m

)

(3.2)

=
2m|H|
|X||G| ,

where (3.1) is due to the Jensen’s inequality of Lemma 2.7.1, and (3.2) holds because H

is pair-wise independent.

3.2 Extracting from Two Independent Sources

We apply the generalized leftover hash lemma to extract randomness from two inde-

pendent sources X and Y over {0, 1}n with H∞(X) ≥ k1 and H∞(Y) ≥ k2. For any

n,m ∈ N with m|n, let ℓ = n
m
, and we treat any v ∈ {0, 1}n as an ℓ-dimensional

vector v = (v1, v2, . . . , vℓ) with each vi ∈ F = GF (2m). Now define our extractor

Ext
2 : {0, 1}n × {0, 1}n → {0, 1}m as

Ext
2(x, y) = 〈x, y〉m =

ℓ
∑

i=1

xi · yi ∈ F ,

which is the inner product of x and y over F .

28

Theorem 3.2.1. The function Ext
2 is a (k1, k2, ε)-strong-two-source-extractor with ε =

2−(k1+k2+2−n−m)/2.

Proof. Let H = {hy | y ∈ {0, 1}n}, where hy(x) = 〈x, y〉m for x, y ∈ {0, 1}n. It is easy to

check that the family H is pair-wise independent. Then the theorem follows immediately

from Lemma 3.1.2 and the fact that H∞(X) ≥ k1 implies |X| ≥ 2k1.

3.3 Extracting from t Independent Sources

Next, we show how to extract randomness from t independent sources X1, . . . ,Xt. Define

the extractor Extt : ({0, 1}n)t → {0, 1}m as

Ext
t(x1, . . . , xt) =

∑

1≤i<j≤t

〈xi, xj〉m.

Theorem 3.3.1. The function Ext
t is a (k1, . . . , kt, ε)-strong-multi-source-extractor with

ε = 2−(k1+k+2−n−m)/2, where k = max{k2, . . . , kt}.

Proof. Assume without loss of generality that X2 is the source with the largest min-

entropy among X2, . . . ,Xt. Fix any values x3, . . . , xt, let s = x3 + · · · + xt, and let

α =
∑

3≤i<j≤t〈xi, xj〉m. Then

Ext
t(X1,X2, x3, . . . , xt) = 〈X1,X2〉m + 〈X1, s〉m + 〈X2, s〉m + α.

Consider the family of functions H = {hy | y ∈ {0, 1}n} where hy(x) = 〈x, y〉m+〈x, s〉m+

〈y, s〉m + α. It is pair-wise independent because for any x 6= x′,

Pr
y
[hy(x) = hy(x

′)]

= Pr
y
[〈x, y〉m + 〈x, s〉m = 〈x′, y〉m + 〈x′, s〉m]

= Pr
y
[〈x− x′, y〉m = 〈x′ − x, s〉m]

=
1

2m
.

Therefore, Theorem 3.2.1 implies for any x3, . . . , xt,

∆(X2 ◦ Extt(X1,X2, x3, . . . , xt),X2 ◦ Um) ≤ 2−(k1+k2+2−n−m)/2.

29

Thus

∆
(

X[2,t] ◦ Extt(X1, . . . ,Xt),X[2,t] ◦ Um

)

≤
∑

x[3,t]

{

Pr
[

X[3,t] = x[3,t]

]

·∆
(

X2 ◦ Extt(X1,X2, x3, . . . , xt),X2 ◦ Um

)}

≤ 2−(k1+k2+2−n−m)/2.

If the sources are not exposed, we can have a slightly better result. Note that

∆
(

Ext
t(X1, . . . ,Xt),Um

)

≤ ∆
(

X[2,t] ◦ Extt(X1, . . . ,Xt),X[2,t] ◦ Um

)

,

so by taking X1 in Theorem 3.3.1 to be the source with the highest min-entropy, we have

the following.

Corollary 3.3.2. The function Ext
t is a (k1, . . . , kt, ε)-extractor with ε = 2−(b1+b2+2−n−m)/2,

where b1 and b2 are the two largest values among k1, . . . , kt.

Note that in the construction of our extractor Extt, we do not need to know before-

hand the specific min-entropy of each source. It works as long as the sum of the two

largest min-entropies is large enough.

3.4 Application

Consider the following cryptographic setting in which a group of parties P1, P2, . . . , Pu

want to establish a secret key for group communication. Suppose initially these parties are

together and can sample A1,B1, . . . ,Au,Bu,X from some block-wise source [10], where

each block (Ai, Bi, or X) is n-bit long and has min-entropy at least k even given all the

previous blocks. After that, all parties go far away from each other but are connected

by an insecure network. If they want to communicate securely later on, they can execute

the following protocol:

1. In the order of i from 1 to u, party Pi samples Xi from his/her own local source,

computes Yi = AiXi + Bi, and sends (Xi,Yi) to all other parties.

30

2. When receiving (X̃j , Ỹj) from an alleged party Pj, each Pi verifies whether Ỹj =

AjX̃j +Bj . Let T = {Pi1, Pi2 , . . . , Pit−1} be the set of parties who pass this authen-

tication test.

3. Each party in T computes the secret key K = Ext
t(X ,Xi1,Xi2, . . . ,Xit−1), which

can be used, for example, as the secret key of the one-time pad encryption.

We discuss two security issues. For authentication, we know that after seeing (Xi,Yi)

for every i < j, (Aj,Bj) still has min-entropy 2k, so from [14], an adversary can only

impersonate a party Pj with probability 2−(2k−n). For the security of K, note that X is

assumed to have min-entropy k even given A1,B1, . . . ,Au,Bu, and we can assume that

X ,Xi1,Xi2 , . . . ,Xit−1 are mutually independent as they are generated in distant places.

Thus, Theorem 3.3.1 implies ∆(Xi1 ◦· · ·◦Xit−1 ◦K,Xi1 ◦· · ·◦Xit−1 ◦Um) ≤ 2−(k+b+2−n−m)/2,

where b = max{H∞(Xi1), . . . ,H∞(Xit−1)}. That is, K is secure enough when k + b ≫
n+m. Note that any strong extractor will also work.

31

32

Chapter 4

Deterministic Extractors for

Independent-Symbol Sources

In this chapter, we consider (n,D, k)-sources which consist of a sequence of n independent

symbols from [D], and the only randomness guarantee on such a source is that the whole

source has min-entropy k. First, we give an explicit deterministic extractor which extracts

about log k bits in Section 4.1. Then, in Section 4.2, we use the technique of Gabizon

et al. [17] to extract more random bits. Moreover, in Section 4.3, we show the existence

of a non-explicit deterministic extractor which can extract m = k − O(log(1/ε)) bits

with error ε whenever k = ω(d + log(n/ε)). Finally, we show that even to extract from

bit-fixing sources, any extractor, seeded or not, must suffer an entropy loss Ω(log(1/ε))

in Section 4.4.

4.1 Extractor from Random Walk

In this section, we give an explicit seedless extractor for independent-symbol sources,

which works for any min-entropy k but only extracts about log k bits1.

Theorem 4.1.1. For any n, k,D ∈ N and any prime number M ≥ D, there is an explicit

(n,D, k, ε)-extractor Ext0 : [D]n → [M], with ε ≤ 1
2
·
√
M · 2−Ω(k/M2).

1For this extractor, we provide a different and completely elementary proof in Appendix B, which

achieves the same asymptotic bound as [32].

33

Note that for k ≥ Ω(M2 logM), our extractor has ε ≤ 2−Ω(k/M2). Moreover, Theo-

rem 4.1.1 achieves the same bound as [32], but here we provide a proof from a different

point of view.

To extract randomness, we will work on the group ZM , for a prime M , and see any

symbol Xi ∈ [D] of the source as an element in ZM . Throughout this section, operation +

or − on elements in ZM is understood as an operation over the group ZM . Our extractor

Ext0 : [D]n → [M] is then defined as Ext0(X) =
∑

i Xi, which can be seen as taking

an n-step walk on the group ZM , using the n symbols from the source in the following

way. Each time when we are at some state v ∈ ZM (initially at 0 ∈ ZM) and read a

symbol a from the source, we go to the state v + a ∈ ZM . The extractor of Kamp and

Zuckerman [33] for bit-fixing sources can be seen as a special case of ours, with D = 2

and Xi ∈ {−1, 1}.
To prove Theorem 4.1.1, we need the following lemma in [32], which implies that we

only need to consider flat independent-symbol sources.

Lemma 4.1.2. [32] Any (n,D, k)-source is e−k/9-close to a convex combination of flat

(n,D, k/(2 log 3))-sources.

Now, assume that X is a flat (n,D, k)-source. Then, as in [33], we will show that

each step of the walk brings the distribution closer to uniform if the symbol read from the

source contains some randomness. See a distribution over ZM as anM-dimensional vector

in the natural way. More precisely, suppose the current distribution is P = [P1, . . . ,PM]T

and the next symbol in the source has a distribution β = [β1, . . . , βM]T (let βi = 0 for

D + 1 ≤ i ≤ M). Then the next distribution is P̄ = [P̄1, . . . , P̄M]T with

P̄i =
∑

j∈ZM

βjPi−j ,

for i ∈ ZM . Let U denote the uniform distribution over ZM . Let δ = P−U and δ̄ = P̄−U ,
i.e., δi = Pi− 1/M and δ̄i = P̄i− 1/M for i ∈ ZM . The following is our key lemma which

shows the progress we can make after each step.

Lemma 4.1.3. If the symbol is a flat source with distribution β, we have

‖δ̄‖2 ≤ ‖δ‖2 · e−
22H∞(β)

−1
M2−1 .

34

We will prove this lemma in Subsection 4.1.1. Now let us see how it can be used to

prove the theorem.

Proof. (of Theorem 4.1.1) By Lemma 4.1.2, it is sufficient to consider flat (n,D, k)-

sources. Given a flat (n,D, k)-source X = X1 ◦ · · · ◦ Xn, for t ∈ [n], let Kt = 2H∞(Xt).

According to Lemma 4.1.3, we have

‖Ext0(X)− U‖22 ≤
∏

t∈[n]
e
−2·K

2
t −1

M2−1 < e−
2
∑

t(K
2
t −1)

M2 < e−
2n(22k/n−1)

M2 ,

where the last inequality is due to the power mean inequality,
∑

t K
2
t ≥ n22k/n. Let

k = δn. Then we obtain that

‖Ext0(X)− U‖22 < e−
2n(22k/n−1)

M2 = e
2k
M2 · 2

2δ
−1
δ .

Since (22δ − 1)/δ > 2 ln 2 for δ > 0, we have

‖Ext0(X)− U‖22 < e
2k
M2 · 2

2δ
−1
δ < e−

4(ln 2)k

M2 = 2−4k/M2

.

Hence, after n steps, the L2-distance from the uniform distribution is at most 2−2k/M2
.

Then the theorem follows from the Cauchy-Schwartz inequality of Lemma 2.7.2 and

Lemma 4.1.2.

4.1.1 Independent-symbol Sources and Circulant Matrices

In this subsection, we will prove Lemma 4.1.3 according to the relation between independent-

symbol sources and circulant matrices [12], where a circulant matrix is a square matrix

with the following form

C = circ[c1, c2, · · · , cn]

=

















c1 c2 · · · cn

cn c1 · · · cn−1

... · · · ...

c2 c3 · · · c1

















,

where each row is a cyclic shift of the previous row. We observe that the transition matrix

of each step is a circulant matrix, where the transition matrix is an M ×M matrix, in

35

which the ith row and jth column element is the probability of going to the state i from

state j. That is, let B = circ[βM , βM−1, . . . , β1] be a circulant matrix. Then P̄ = BP.

Due to the special structure of circulant matrices, we can obtain their eigenvalues and

corresponding eigenvectors.

Theorem 4.1.4. [12] For j ∈ [n], the j-th eigenvalue of a circulant matrix C = circ[c0,

c1, · · · , cn−1] is

λj(C) =

n−1
∑

ℓ=0

cℓ · ωjℓ
n ,

where ωn = e
2πi
n , and the corresponding eigenvector is V(j)

n = [1, ωj
n, ω

2j
n , · · · , ω(n−1)j

n]T .

Note that the eigenvectors of a circulant matrix are orthogonal. Hence, we can ob-

tain the following lemma which shows that the progress we can make after each step

is corresponding to the second largest (in absolute value) eigenvalue of the transition

matrix.

Lemma 4.1.5.

‖δ̄‖2 ≤ λ(B) · ‖δ‖2,

where λ(B) is the second largest (in absolute value) eigenvalue of B.

Proof. Since the vector U is invariant under B in the sense that BU = U and the vector

δ is orthogonal to U , we have

‖δ̄‖2 = ‖BP − U‖2 = ‖B(P − U)‖2 ≤ λ(B) · ‖P − U‖2 = λ(B) · ‖δ‖2.

Let kβ = H∞(β). Recall that the distribution β is flat. Hence, there are Kβ =

2kβ nonzero entries in each row of B, and each nonzero entry is 2−kβ . According to

36

1

e4πi/M

e8πi/M

e10πi/M

1 + e4πi/M + e8πi/M + e10πi/M

1

e2πi/M

e12πi/M

e4πi/M

e12πi/M + 1 + e2πi/M + e4πi/M

Figure 4.1: Let M = 7, and kβ = 2. The left diagram shows the sum of 1, e4πi/M , e8πi/M ,

and e10πi/M , while the right diagram shows the sum of e12πi/M , 1, e2πi/M , and e4πi/M . In

these diagrams, it is easy to see that the maximum occurs when these 4 nonzero entries

are consecutive.

Theorem 4.1.4, the square of λ(B) is

max
j 6=0

λj(B)2 ≤
∣

∣

∣

∣

2−kβ + 2−kβ · e 2·πi
M + · · ·+ 2−kβ · e

2·(Kβ−1)πi

M

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∣

2−kβ ·
Kβ−1
∑

ℓ=0

e
2πiℓ
M

∣

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

2−kβ · 1− e
2·Kβπi

M

1− e
2πi
M

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∣

2−kβ ·
e

Kβπi

M

(

e−
Kβπi

M − e
Kβπi

M

)

e
πi
M

(

e−
πi
M − e

πi
M

)

∣

∣

∣

∣

∣

∣

2

=



2−kβ ·
sin
(

πKβ

M

)

sin
(

π
M

)





2

=



2−kβ

πKβ

M

∏∞
ℓ=1

(

1− K2
β

M2ℓ2

)

π
M

∏∞
ℓ=1

(

1− 1
M2ℓ2

)





2

=

(∞
∏

ℓ=1

(

1−
K2

β − 1

M2ℓ2 − 1

)

)2

<

(

1−
K2

β − 1

M2 − 1

)2

< e−2(22kβ−1)/(M2−1),

where the first inequality is because it is easy to see in the diagram (see Figure 4.1.1 as

an example) that the maximum occurs when these Kβ nonzero entries are consecutive,

and the fourth equality is due to the infinite product representation of sine [22].

4.2 Extracting More Randomness

The extractor in the previous section can extract about log k bits of randomness. Building

on this, we show how to extract more randomness in this section. More precisely, we have

the following two extractors, which generalize the corresponding ones in [17]. The first

one works for the case of large min-entropy and can achieve a smaller error and a smaller

37

entropy loss, while the second can work for the case of smaller min-entropy but has a

larger error and a larger entropy loss.

Theorem 4.2.1. For any constant γ ∈ (0, 1/2), and D = 2d ∈ N, there exist constants

n0 > 0, c > 0 such that for any n ≥ n0, k ≥ n1/2+γ, and ε ≥ 2−cnγ
, there exists an explicit

seedless (n,D, k, ε)-extractor Ext : [D]n → {0, 1}m with m ≥ k −O(d log(1/ε)).

Theorem 4.2.2. There exist constants n0 > 0, c0 ∈ (0, 1), c1 > 0, c2 ∈ (0, 1), c3 ∈
(0, 1/c2) such that for any n ≥ n0, D = 2d with d ≤ kc0, k ≥ logc1 n, and ε ≥ k−c2,

there exists an explicit seedless (n,D, k, ε)-extractor Ext : [D]n → {0, 1}m with m ≥
k − O((1/ε)c3).

Note that the two main results in [17] only work for bit-fixing sources (with D = 2)

and follow respectively from Theorem 4.2.1 with ε = 2−cnγ
and m = k−O(nγ), and from

Theorem 4.2.2 with ε = k−c2 and m = k − kΩ(1). On the other hand, our two theorems

above cover a large range of the parameters D and ε, and capture the tradeoff between

error and entropy loss. In particular, for a small d, if we allow a large ε, the entropy loss

can become very small.

We will give the proofs of the two theorems in Sections 4.2.3 and 4.2.4 respectively,

which follow closely the corresponding ones in [17]. The main difference is that we

consider independent-symbol sources, so we cannot build on the extractor of [33] as [17]

did, and instead, we build on our extractor in Theorem 4.1.1. Furthermore, we do a

more careful analysis in order to identify the relationship between error and entropy loss.

Before giving the proofs, let us first describe some basic ideas and useful tools.

4.2.1 Construction

Suppose we have extracted a short random string z from the source X . One may think

about using z as a seed for a seeded extractor to extract more randomness from X , but

the problem is that z may have dependence on X . This issue was taken care of in [17]

by constructing the so-called seed obtainer. The idea is to divide z into two parts w ◦ y
and use w to sample a set S(w) ⊆ [n] of positions from the source so that X[n]\S(w) still

has enough min-entropy but becomes independent of y. To guarantee this, we would like

38

the set S(w) to have the property that the min-entropy of the sampled bits is within a

certain range, which can be achieved by using the so-called averaging sampler.

Definition 4.2.3. Suppose n, d, k ∈ N, δ ∈ (0, 1), and kmin, kmax ∈ R, with 0 ≤ kmin ≤
kmax ≤ k ≤ n. An (n, d, k, kmin, kmax, δ)-sampler S : {0, 1}t → P ([n]) is a function such

that for every function h : [n] → [0, d] with
∑

i∈[n] h(i) = k,

Pr
w∈Ut



kmin ≤
∑

i∈S(w)

h(i) ≤ kmax



 ≥ 1− δ.

Throughout this section, for an (n,D)-source X = X1 ◦ · · · ◦ Xn, we will let h be the

function such that h(i) = H∞(Xi) ∈ [0, d]. Note that the definition of samplers used in

[17] is a special case of ours, as it only deals with Boolean functions h : [n] → {0, 1}, which
arise from bit-fixing sources considered there. As shown in [17], after obtaining X[n]\S(w)

of enough min-entropy together with an independent seed y, one can then apply a seeded

extractor to extract more randomness. This is guaranteed by the following lemma2.

Lemma 4.2.4. Suppose there exist explicit constructions for the following three ingredi-

ents: (1) a seedless (n,D, kmin, ε1)-extractor Ext1 : [D]n → {0, 1}t+s, (2) an (n, d, k, kmin,

kmax, δ)-sampler Samp : {0, 1}t → P ([n]), and (3) a seeded (n,D, k − kmax, ε2)-extractor

Ext2 : [D]n × {0, 1}s → {0, 1}m. Then there exists an explicit seedless (n,D, k, ε3)-

extractor Ext3 : [D]n → {0, 1}m with ε3 = 3max{ε1 + δ, 2t+1ε1}+ ε2.

To prove Lemma 4.2.4, we need the following two lemmas3.

Lemma 4.2.5. Let A◦B be a random variable over [D]u×{0, 1}v and for every a ∈ [D]u

with Pr[A = a] > 0, the distribution (B|A = a) is ε-random. Then ∆(A◦B,A◦Uv) ≤ ε,

where Uv is independent of A.

2Note that this was proved in [17] for bit-fixing sources.
3Note that these two lemmas are generalizations of the corresponding ones in [17].

39

Proof.

∆(A ◦ B,A ◦ Uv)

=
1

2

∑

a∈[D]u,b∈{0,1}v
|Pr[A ◦ B = a ◦ b]− Pr[A ◦ Uv = a ◦ b]|

=
1

2

∑

a∈[D]u,b∈{0,1}v
|Pr[A = a] · Pr[(B|A = a) = b]− Pr[A = a] · Pr[Uv = b]|

=
∑

a∈[D]u

Pr[A = a] ·





1

2

∑

b∈{0,1}v
|Pr[(B|A = a) = b]− Pr[Uv = b]|





=
∑

a∈[D]u

Pr[A = a] ·∆((B|A = a),Uv)

≤ ε.

Lemma 4.2.6. Let A ◦ B be a random variable over S × {0, 1}v for some set S. If

∆(A◦B,A′◦Uv) ≤ ε where Uv is independent of A′, then, for every b ∈ {0, 1}v, ∆((A|B =

b),A′) ≤ ε · 2v+1.

Proof. By way of contradiction, assume that there exists b ∈ {0, 1}v such that ∆((A|B =

b),A′) > ε · 2v+1, which implies that there exists T ⊆ S such that

|Pr[(A|B = b) ∈ T]− Pr[A′ ∈ T]| > ε · 2v+1.

Without loss of generality, we can assume that

Pr[(A|B = b) ∈ T]− Pr[A′ ∈ T] > ε · 2v+1,

because otherwise we can consider the set S \ T .

Since Uv and A′ are independent, we have that

Pr[A′ ◦ Uv ∈ T ◦ b] = Pr[Uv = b] · Pr[A′ ∈ T] = 2−v · Pr[A′ ∈ T].

On the other hand, since B is ε-random, we know that Pr[B = b] ≥ 2−v − ε. Therefore,

40

we have that

Pr[A ◦ B ∈ T ◦ b]− Pr[A′ ◦ Uv ∈ T ◦ b]

= Pr[B = b] · Pr[(A|B = b) ∈ T]− Pr[Uv = b] · Pr[A′ ∈ T]

≥ (2−v − ε) Pr[(A|B = b) ∈ T]− 2−v Pr[A′ ∈ T]

≥ 2−v(Pr[(A|B = b) ∈ T]− Pr[A′ ∈ T])− ε

> 2−v · ε2v+1 − ε

= ε,

which contradicts the assumption that ∆(A ◦ B,A′ ◦ Uv) ≤ ε.

We also need the following lemma.

Lemma 4.2.7. [17] Let A,B and C be distributions over {0, 1}n such that A is ε-random

and C = δ · B + (1− δ) · A. Then C is (2δ + ε)-random.

Proof. For any T ⊆ {0, 1}n,

|Pr[C ∈ T]− Pr[Un ∈ T]| = |δ · Pr[B ∈ T] + (1− δ) · Pr[A ∈ T]− Pr[Un ∈ T]|

≤ 2δ + |Pr[A ∈ T]− Pr[Un ∈ T]|

≤ 2δ + ε.

Now we proceed to prove Lemma 4.2.4.

Proof. (of Lemma 4.2.4) Recall that we construct Ext3 : [D]n → {0, 1}m as follows:

1. Given an input source X = X1 ◦ · · · ◦ Xn, compute Z = Ext1(X).

2. Divide Z into two parts W ◦ Y ∈ {0, 1}t × {0, 1}s.

3. Compute Samp(W).

4. Let X ′ be the source over [D]n obtained by padding X[n]\Samp(W) with zeros.

5. Output Ext2(X ′,Y).

41

Next, we prove the correctness of the construction. For an (n,D, k)-source X =

X1 ◦ · · · ◦ Xn, define the function h : [n] → [0, d] by h(i) = H∞(Xi). Note that
∑

i∈[n] h(i)

= k. Since Ext1 is a seedless (n,D, kmin, ε1)-extractor, we have that Z is ε1-random,

which implies that both W and Y are ε1-random.

We say that w ∈ {0, 1}t is good if kmin ≤ ∑i∈Samp(w) h(i) ≤ kmax and bad otherwise.

Since Samp is an (n, d, k, kmin, kmax, δ)-sampler and W is ε1-random, we obtain that

Pr[W is bad] ≤ γ,

for some γ ≤ ε1 + δ.

Note that we can write the output source R = X ′ ◦ Y as a convex combination

R = B · Pr[W is bad] +
∑

w is good

Rw · Pr[W = w]

where B = (R|W is bad) and Rw = (R|W = w). The following claim shows that for a

good w, Rw is close to a pair of random variables Aw ◦ Us where H∞(Aw) ≥ k − kmax

and Aw is independent of Us.

Claim 4.2.8. For any good w ∈ {0, 1}t, there exists a pair of random variables Aw ◦ Us

where H∞(Aw) ≥ k − kmax and Aw is independent of Us, such that

∆(Rw,Aw ◦ Us) ≤ ε1 · 2t+1.

Proof. Fix a good w ∈ {0, 1}t. Set ℓ = |Samp(w)|. For two strings ρ1 ∈ [D]ℓ and

ρ2 ∈ [D]n−ℓ, let [ρ1; ρ2] ∈ [D]n denote the unique string obtained by putting ρ1 in the

indices of Samp(w) and ρ2 in the indices of [n] \ Samp(w). Let Xw = XSamp(w) and

Xw = X[n]\Samp(w). Note that X = [Xw;Xw]. Then for every b ∈ [D]n−ℓ such that

Pr[Xw = b] > 0,

(

Z
∣

∣Xw = b
)

=
(

Ext1(X)
∣

∣Xw = b
)

=
(

Ext1

([

Xw;Xw

])∣

∣Xw = b
)

= Ext1 ([Xw; b]) ,

where the last equality is because X is an (n,D)-source which implies that Xw and Xw

are independent. Since w is good, we have that H∞(Xw) =
∑

i∈Samp(w) h(i) ≥ kmin and

H∞(Xw) ≥ k − kmax. Hence, the source [Xw; b] is an (n,D)-source with min-entropy

42

H∞(Xw) ≥ kmin, and then ∆(Ext1([Xw; b]),Ut+s) ≤ ε1, which implies that ∆((Z|Xw =

b),Ut+s) ≤ ε1. By Lemma 4.2.5, we have that for a good w,

∆(Xw ◦ Z,Xw ◦ Ut+s) ≤ ε1.

Then by Lemma 4.2.6, we obtain that for a good w,

∆((Xw,Y)|W = w), (Xw,Us)) ≤ ε1 · 2t+1,

which implies that ∆(Rw,Aw ◦Us) ≤ ε1 · 2t+1, where Aw is the source over [D]n obtained

by padding Xw with zeros.

Recall that R = B · Pr[W is bad] +
∑

w is goodRw · Pr[W = w]. Then,

Ext2(R) = Pr[W is bad] ·Ext2(B) +
∑

w is good

Pr[W = w] · Ext2(Rw).

For any good w, by Claim 4.2.8, there exists Aw ◦ Us where H∞(Aw) ≥ k − kmax and

Aw is independent of Us, such that ∆(Rw,Aw ◦Us) ≤ ε1 ·2t+1. Then by Proposition 2.1.3,

we have

∆(Ext2(Rw),Ext2(Aw,Us)) ≤ ε1 · 2t+1.

Moreover, since H∞(Aw) ≥ k − kmax and Aw is independent of Us, we have that

∆(Ext2(Aw,Us),Um) ≤ ε2.

By Proposition 2.1.2, we obtain that

∆(Ext2(Rw),Um) ≤ ∆(Ext2(Rw),Ext2(Aw,Us)) + ∆(Ext2(Aw,Us),Um)

≤ ε1 · 2t+1 + ε2.

Hence, by Lemma 4.2.7, we have that

∆(Ext2(R),Um) ≤ 2Pr[W is bad] + ε1 · 2t+1 + ε2

≤ 2γ + ε1 · 2t+1 + ε2

≤ 3max{ε1 + δ, 2t+1ε1}+ ε2.

43

4.2.2 Sampling and Partitioning

For our two extractors, we need the following two samplers respectively. Both construc-

tions basically come from [17], and the proofs are very similar. The first sampler uses a

longer seed and achieves a smaller error probability, while the second one uses a shorter

seed but has a higher error probability.

Lemma 4.2.9. There exist constants n0, c1, c2 such that for any n ≥ n0, k, d ∈ N,

δ ≥ 2−c1k, and kmin ≥ c2d log(1/δ), there exists an explicit (n, d, k, kmin, 6kmin, δ)-sampler

Samp : {0, 1}t → P ([n]) with t = O(logn · log(1/δ)).

Lemma 4.2.10. For any constant α ∈ (0, 1), there exist constants n0 > 0, c0 ∈ (0, 1),

c1 > 0, β ∈ (0, 1), τ ∈ (1/2, 1) such that the following holds. For any n ≥ n0, d ≤ kc0,

k ≥ logc1 n, and δ = O(k−β), there exists an explicit (n, d, k, kτ/2, 3kτ , δ)-sampler Samp :

{0, 1}t → P ([n]) with t = α log k.

The proof of Lemma 4.2.9 is given in Section 4.2.2.1, while Lemma 4.2.10 is given in

Section 4.2.2.2.

4.2.2.1 The Sampler Using a Longer Seed

In this subsection, we prove Lemma 4.2.9, which shows the existence of a sampler using

a longer seed. More precisely, we will use the following lemma to prove Lemma 4.2.9.

Lemma 4.2.11. For any n, k, r, t ∈ N such that r ≤ k ≤ n and 6 logn ≤ t ≤
(k logn)/(20r), there is an explicit (n, d, k, kd/(2r), 3kd/r, 2−Ω(t/ logn))-sampler which uses

a seed of t random bits.

To prove Lemma 4.2.11, we use the following ℓ-wise independent tail inequality.

Theorem 4.2.12. [6] Let ℓ ≥ 6 be an even integer. Suppose that X1, . . . , Xn are ℓ-wise

independent random variables taking values in [0, 1]. Let X =
∑n

i=1 Xi and µ = E(X),

and let ε > 0. Then

Pr[|X − µ| ≥ ε] ≤ 8

(

ℓµ+ ℓ2

ε2

)ℓ/2

.

44

Proof. (of Lemma 4.2.11) First we show that for any t with 6 logn ≤ t ≤ (k logn)/(20r),

there exists an explicit function S : {0, 1}t → P ([n]) such that for any real-valued func-

tion4 h′ : [n] → [0, 1] with
∑

i∈[n] h
′(i) = k,

Pr
w∈Ut





k

2r
≤
∑

i∈S(w)

h′(i) ≤ 3k

r



 ≥ 1− δ′,

for δ′ = 2−Ω(t/ logn). Set q = ⌊log r⌋ ≤ logn. Let ℓ be the largest even integer such that

ℓ logn ≤ t.

We construct the sampler as follows. First, we use t random bits to generate n ℓ-wise

independent random variables Z1, . . . , Zn ∈ {0, 1}q [9]. Fix some value a ∈ {0, 1}q, and
the sampler outputs the index set T = {i|Zi = a}. Then, we show that this sampler

satisfies the requirement.

Define n random variables R1, . . . , Rn such that for 1 ≤ i ≤ n, Ri = h′(i) if i ∈ T and

Ri = 0 otherwise. Note that Ri’s are ℓ-wise independent. Let R =
∑n

i=1 Ri =
∑

i∈T h′(i),

and µ = E[R] =
∑n

i=1 E[Ri] =
∑n

i=1 h
′(i) · Pr[Zi = a] = k/2q ≤ 2k/r.

Then by Theorem 4.2.12 with ε = k/(2r) and the fact that 6 ≤ ℓ ≤ t/ log n ≤ k/(20r),

we have that

Pr[|R− µ| ≥ ε] ≤ 8

(

ℓµ+ ℓ2

ε2

)ℓ/2

≤ 8

(

k
20r

(

2k
r
+ k

20r

)

(

k
2r

)2

)ℓ/2

≤ 8 · 2−ℓ/2

≤ 2−Ω(t/ logn).

Moreover, since r/2 < 2q ≤ r, we have

|R− µ| ≤ k/(2r) ⇒ k/2q − k/(2r) ≤ R ≤ k/2q + k/(2r)

⇒ k/r − k/(2r) ≤ R ≤ 2k/r + k/(2r)

⇒ k/(2r) ≤ R ≤ 3k/r

Thus,

Pr
w∈Ut

[

k

2r
≤
∑

i∈T
h′(i) ≤ 3k

r

]

≥ Pr

[

|R− µ| ≤ k

2r

]

≥ 1− 2−Ω(t/ logn).

4In [17], they showed the case of h′ : [n] → {0, 1}.

45

Now given any real-valued function h : [n] → [0, d], consider the function h′ : [n] →
[0, 1] defined as h′(i) = h(i)/d for i ∈ [n], and note that

Pr
w∈Ut



kd/(2r) ≤
∑

i∈S(w)

h(i) ≤ 3kd/r



 = Pr
w∈Ut



k/(2r) ≤
∑

i∈S(w)

h′(i) ≤ 3k/r



 .

Thus, S is also an (n, d, k, kd/(2r), 3kd/r, δ′)-sampler, which proves Lemma 4.2.11.

Now we proceed to prove Lemma 4.2.9.

Proof. (of Lemma 4.2.9) Suppose δ ≥ 2−c1k for a small enough constant c1, and kmin ≥
c2d log(1/δ) for a large enough constant c2. Let us choose r = kd/(2kmin) ≤ k, so that

kd/(2r) = kmin and

(k logn)/(20r) ≥ (kmin log n)/(10d) ≥ (c2/10) · log n · log(1/δ).

Thus, we can choose t = (c2/10) · log n · log(1/δ) and have 6 logn ≤ t ≤ (k logn)/(20r).

From Lemma 4.2.11, we have an (n, d, k, kmin, 6kmin, δ
′)-sampler, with δ′ = 2−Ω(t/ logn) ≤

2−Ω(c2 log(1/δ)) ≤ δ. This completes the proof of Lemma 4.2.9.

4.2.2.2 The Sampler Using a Shorter Seed

In this subsection, we prove Lemma 4.2.10, which shows the existence of a sampler using

a shorter seed. Lemma 4.2.10 follows immediately from Lemma 4.2.13 below by using T1

as the output of the sampler Samp.

Lemma 4.2.13. For any constant α ∈ (0, 1), there exist constants n0 > 0, c0 ∈ (0, 1),

c1 > 0, β ∈ (0, 1), τ ∈ (1/2, 1) such that the following holds. For any n ≥ n0, d ≤ kc0,

k ≥ logc1 n, and δ = O(k−β), one can use α log k random bits to explicitly partition

[n] into r′ = Ω(kβ) sets T1, . . . , Tr′ such that for any function h : [n] → [0, d] with
∑n

i=1 h(i) = k,

Pr

[

∀v ∈ [r′], kτ/2 ≤
∑

i∈Tv

h(i) ≤ 3kτ

]

≥ 1− δ.

In addition to proving Lemma 4.2.10, Lemma 4.2.13 will also be used to prove Theo-

rem 4.2.2. The proof of Lemma 4.2.13 can be seen as a derandomization of Lemma 4.2.9,

using approximate pair-wise independent variables.

46

Definition 4.2.14. [40] We say that the random variables Z1, . . . , Zn are pair-wise ε-

dependent if the joint distribution of any two of them is ε-random.

Lemma 4.2.15. [2] Let r′ < n be a power of 2. For any n ≥ 16 and 0 < ε < 1/2,

one can use 7 log r′ + 3(log logn + log(1/ε)) random bits to generate n random variables

Z1, . . . , Zn ∈ [r′] that are pair-wise ε-dependent.

Proof. (of Lemma 4.2.13) For any given constant α ∈ (0, 1), let β = α/38, r = kβ , and

ε = k−4β . Let r′ be a power of 2 such that r/2 < r′ ≤ r. We use pair-wise ε-dependent

random variables Z1, . . . , Zn ∈ [r′] to partition the set [n] into r′ sets: T1, . . . , Tr′ where

Tv = {i|Zi = v} for v ∈ [r′]. By Lemma 4.2.15, the number of random bits needed to

generate them is at most

7 log r′ + 3(log log n+ log(1/ε)) ≤ 19β log k + 3 log logn ≤ α/2 log k + 3 log log n.

Let c1 = 6/α. Then we have for all k ≥ logc1 n, 3 log log n ≤ α/2 log k. This shows that

one can generate such random variables Z1, . . . , Zn using α log k random bits.

Now consider any function h : [n] → [0, d] satisfying
∑n

i=1 h(i) = k. For now, let us

fix an v ∈ [r′], and define n random variables R1, . . . , Rn such that for i ∈ [n], Ri = h(i)

if i ∈ Tv and Ri = 0 otherwise. Let R =
∑n

i=1 Ri =
∑

i∈Tv
h(i), and we would like to

bound the probability Pr[|R− k/r′| > k/(2r′)]. Since the expected value of R is close to

k/r′, with

|E[R]− k/r′| =
∣

∣

∣

∣

∣

n
∑

i=1

h(i) · Pr[Zi = v]− k/r′

∣

∣

∣

∣

∣

≤
n
∑

i=1

h(i) · |Pr[Zi = v]− 1/r′| ≤ kε,

we have Pr[|R − k/r′| > k/(2r′)] ≤ Pr[|R − E[R]| > k/(2r′) − kε]. Since kε ≤ k/(6r′)

for some large enough n and k ≥ logc1 n, and thus k/(2r′) − kε ≥ k/(3r′), it suffices to

bound the probability Pr[|R−E[R]| > k/(3r′)]. We would like to apply the Chebyshev’s

inequality of Lemma 2.7.5. Therefore, we need to bound the variance of R, which is

V ar(R) =
∑n

i=1 V ar(Ri) +
∑

i6=j cov(Ri, Rj). For any i ∈ [n], V ar(Ri) is

E[R
2
i]− E[Ri]

2 ≤ E[R
2
i] = h(i)2 · Pr[Zi = v] ≤ h(i)2 · (1/r′ + ε).

47

For any distinct i, j ∈ [n], cov(Ri, Rj) is

E[Ri · Rj]− E[Ri] · E[Rj] = h(i)h(j) · (Pr[Zi = Zj = v]− Pr[Zi = v] Pr[Zj = v])

≤ h(i)h(j) ·
(

(1/r′2 + ε)− (1/r′ − ε)2
)

= h(i)h(j) · (1 + 2/r′ − ε) ε

≤ h(i)h(j) · 2ε,

as r′ ≥ 2. Therefore, V ar(R) is at most

∑

i

h(i)2(1/r′ + ε) +
∑

i6=j

h(i)h(j)2ε ≤ (1/r′)
∑

i

h(i)2 + 2ε

(

∑

i

h(i)

)2

≤ dk/r′ + 2k2ε,

where the last inequality follows from the fact that h(i) ≤ d for every i ∈ [n] and
∑

i h(i) = k.

Now by the Chebyshev’s inequality of Lemma 2.7.5, we have

Pr[|R− E[R]| > k/(3r′)] <
dk/r′ + 2εk2

(k/3r′)2
= 9dr′/k + 18εr′2 = O(εr′2),

for some small enough constant c0 and d ≤ kc0. Thus, setting τ = 1 − β ≥ 1/2, we have

for any v ∈ [r′], Pr[kτ/2 ≤∑i∈Tv
h(i) ≤ 3kτ] ≥ 1−O(k−2β). Then, Lemma 4.2.13 follows

from the union bound.

4.2.3 The Extractor for Sources with Large Min-entropy

In this subsection, we prove Theorem 4.2.1, which shows the existence of an extractor

for independent-symbol sources with large min-entropy. The construction is very similar

to that in [17]. First, as in [33], we have the following seedless extractor5 for the case of

large min-entropy.

Lemma 4.2.16. For any large enough n ∈ N and any k1 ≥ n1/2+γ with γ ∈ (0, 1/2),

there exists an explicit seedless (n,D, k1, ε1)-extractor Ext1 : [D]n → {0, 1}m1 where

m1 = Ω(n2γ/(D2d)) and ε1 = 2−m1.

We need the following lemma to prove Lemma 4.2.16.

5This lemma is a generalization of the main result in [33] for bit-fixing sources.

48

Lemma 4.2.17. [33] Let G be a p-regular graph with 2m1 vertices, and the second largest

eigenvalue (in absolute value) of its adjacency matrix is pλ. Suppose we take a walk on

G for b steps according to b symbols independently chosen in [p], in which ℓ symbols have

distributions within a L2-distance of ε from the uniform distribution. Then the statistical

distance from the uniform distance at the end of the walk is bounded by 1
2
(λ+ε

√
p)ℓ ·2m1/2.

Proof. (of Lemma 4.2.16) The extractor works as follows. Let p be the smallest prime

greater than D. Set k0 = c0p
2 log p, for some large enough constant c0. Partition the

n symbols of the source into b = k1/(2k0) blocks, each consisting of 2nk0/k1 symbols

(assuming for simplicity that k1 is a multiple of 2k0 and 2nk0 is a multiple of k1). Within

each block, use our extractor in Theorem 4.1.1 to extract a symbol in Zp. Then use

the b extracted symbols (one per block) to take a b-step walk on a p-regular graph with

2m1 nodes, for some m1 to be determined later, and the second largest eigenvalue of its

adjacency matrix is pλ ≤ p1−c1, for some constant c1 < 1/2 [24, 38]. The final node of

the walk is the output of the extractor.

Call a block good if it has min-entropy at least k0. Let ℓ denote the number of good

blocks. Since each symbol has min-entropy at most logD ≤ log p, then counting the

min-entropy, we have that

k1 ≤ ℓ · (2nk0/k1) log p+(b− ℓ) ·k0 ≤ ℓ · (2nk0/k1) log p+ b ·k0 = ℓ · (2nk0/k1) log p+k1/2,

which implies that

ℓ ≥ k2
1/(4k0n log p).

Recall that in the proof of Theorem 4.1.1, we show that our extractor can extract

a symbol which has L2-distance from the uniform distance at most 2−Ω(k/p2) from an

independent-symbol source with min-entropy k. Since we can view each good block as

a (2nk0/k1, p, k0)-source, the L2-distance between the extracted symbol and the uniform

distance is at most ε for some ε ≤ 1/p. Then according to Lemma 4.2.17, after the b-step

walk on the expander, the distribution of the final node is ε1-random, for

ε1 ≤
1

2
· (λ+ ε

√
p)ℓ · 2m1/2 ≤ 2−Ω(k21/(k0n)) · 2m1/2 ≤ 2−Ω(n2γ/(D2d))+m1/2.

Then for some m1 = Θ(n2γ/(D2d)), we have ε1 ≤ 2−m1 , which proves the lemma.

49

Following [17], to extract more randomness, we apply Lemma 4.2.4 with Ext1 above

together with two additional ingredients: (1) an (n, d, k, kmin, kmax, ε/4)-sampler Samp :

{0, 1}t → P ([n]) from Lemma 4.2.9, with t = m1/2, kmin = O(d log(1/ε)), and kmax =

6kmin, and (2) a seeded (n,D, k − kmax, ε2)-extractor Ext2 : [D]n × {0, 1}s → {0, 1}m

from [46], with s = m1/2, m = k − kmax, and ε2 = 2−Ω(nγ). Note that the above three

ingredients exist for large enough n. From Lemma 4.2.4, we get an (n,D, k, ε3)-extractor

Ext3 : [D]n × {0, 1}m with ε3 ≤ 2−Ω(nγ) + 3ε/4 + O(2t · ε1) ≤ 2−Ω(nγ) + 3ε/4 ≤ ε, when

ε ≥ 2−cnγ
for a small enough constant c. This proves Theorem 4.2.1.

4.2.4 The Extractor for Sources with Smaller Min-entorpy

In this subsection, we prove Theorem 4.2.2, which shows the existence of an extractor

for independent-symbol sources with smaller min-entropy. The construction is again

very similar to the corresponding one in [17]. Suppose k ≥ logc1 n for a large enough

constant c1. We first use the seedless extractor in Theorem 4.1.1 to extract O(log k) bits

of randomness. To apply Lemma 4.2.4 to extract more randomness, we need a seeded

extractor with such a short seed. Similar to [17], the existence of such an extractor is

guaranteed by the following.

Lemma 4.2.18. For any constant α ∈ (0, 1), there exist constants n0 > 0, c0 ∈ (0, 1), c1 >

0 such that the following holds. For any n ≥ n0, D = 2d with d ≤ kc0, and k ≥ logc1 n,

there exists an explicit seeded (n,D, k, ε′)-extractor Ext
′ : [D]n × {0, 1}s → {0, 1}m with

s = α log k, m = kΩ(1), and ε′ = k−Ω(1).

Proof. The idea is to use the short seed for the partitioner in Lemma 4.2.13 to partition

the source into several parts and then apply our seedless extractor in Theorem 4.1.1 on

each part.

Fix any constant α ∈ (0, 1). Consider any (n,D, k)-source X = X1 ◦ · · · ◦ Xn. Let

h : [n] → [0, d] be the function h(i) = H∞(Xi). Note that
∑n

i=1 h(i) = k. According

to Lemma 4.2.13, using α log k random bits, one can partition the set [n] into r′ subsets

T1, . . . , Tr′ such that the probability that
∑

i∈Tv
h(i) ≥ kτ/2 for every v ∈ [r′] (call such

(T1, . . . , Tr′) good) is at least 1− k−Ω(1).

50

Define our extractor Ext′ as Ext′(x) = z1◦· · ·◦zr′ , where zv = Ext0(xTv ◦0n−|Tv|) for

v ∈ [r′] and Ext0 : [D]n → {0, 1}ℓ is our (n,D, k0, ε0)-extractor in Theorem 4.1.1, with

k0 = kτ/2, ℓ = O(log k), and ε0 = k−ω(1). We want to prove that Ext′(X) is close to Um

where m = ℓ · r′ = kΩ(1). Note that when (T1, . . . , Tr′) is good, the distribution of each

zj is ε0-random, and, by Corollary 2.1.5, the distribution of z1 ◦ · · · ◦ zr′ is (r′ε0)-random,

with r′ε0 = kO(1)k−ω(1) ≤ k−Ω(1). Thus,

∆(Ext′(X),Um) ≤ Pr [(T1, . . . , Tr′) is not good] + k−Ω(1) ≤ k−Ω(1).

Then we can apply Lemma 4.2.4 with the following ingredients: (1) a seedless (n,D, k,

ε1)-extractor Ext1 : [D]n → [M] from Theorem 4.1.1, with ε1 = k−Ω(1) and logM ≥
2α log k for a small enough constant α ∈ (0, 1), (2) an (n, d, k, kmin, kmax, δ)-sampler

Samp : {0, 1}t → P ([n]) from Lemma 4.2.10, with t = α log k, kmin ≤ kc for a con-

stant c ∈ (0, 1), kmax = 6kmin, and δ = k−Ω(1), and (3) a seeded (n,D, k − kmax, ε2)-

extractor Ext2 : [D]n × {0, 1}s → {0, 1}m2 from Lemma 4.2.18 with s = α log k,

m2 = kΩ(1), and ε2 = k−Ω(1). As a result, we obtain a seedless (n,D, k, ε3)-extractor

Ext3 : [D]n → {0, 1}m2, with ε3 = k−Ω(1) +O(2tε1) = k−Ω(1).

To extract even more random bits, we again apply Lemma 4.2.4, but now using the

above extractor Ext3 together with the following two ingredients: (1) an (n, d, k, kmin,

kmax, ε/4)-sampler Samp : {0, 1}t → P ([n]) from Lemma 4.2.10 with t = α log k ≤
m2/2, kmin = O((1/ε)c3), and kmax = 6kmin, and (2) a seeded (n,D, k − kmax, 1/n)-

extractor Ext2 : {0, 1}n×{0, 1}s → {0, 1}m from [46], with s ≤ m2/2 and m = k−kmax.

As a result, we obtain a seedless (n,D, k, ε)-extractor Ext : [D]n → {0, 1}m, since

k−Ω(1) + 3ε/4+O(2t/n) ≤ k−Ω(1) + 3ε/4 ≤ ε, when ε ≥ k−c2 for a small enough constant

c2. This proves Theorem 4.2.2.

4.3 Existential Upper Bound on Entropy Loss

In the previous section, we obtain two explicit extractors for independent-symbol sources.

One may wonder if it is possible to extract more randomness and achieve a smaller entropy

loss for such sources. In this section, we prove the existence of a (non-explicit) seedless

51

extractor for independent-symbol sources with entropy loss O(log(1/ε)). More precisely,

we have the following theorem.

Theorem 4.3.1. Suppose k ≥ c log(Dn/ε) for a large enough constant c. Then there

exists an (n,D, k, ε)-extractor Ext : [D]n → {0, 1}m with m ≥ k − O(log(1/ε)).

We will show the existence of such an extractor by a probabilistic argument. More

precisely, we will show that if we choose a random function as our extractor Ext, then

we succeed with a positive probability.

Proof. (of Theorem 4.3.1) Let F denote the set of all functions f : [D]n → {0, 1}m. We

say that a function f ∈ F fails on an (n,D, k)-source X if ∆(f(X),Um) > ε/2. We have

the following.

Claim 4.3.2. For any (n,D, k)-source X , Prf∈F [f fails on X] ≤ 22
m · 2−Ω(ε22k).

Proof. Consider any (n,D, k)-source X . For a test T ⊆ {0, 1}m, we say that f fails on

(X , T) if |Prx∈X [f(x) ∈ T]− |T |/2m| > ε/2. Clearly, f fails on X if and only if f fails on

(X , T) for some T ⊆ {0, 1}m. Now consider any test T ⊆ {0, 1}m, and we would like to

bound the probability that a random f fails on (X , T).

Suppose |T |/2m = p. For x ∈ [D]n, let Yx be the indicator random variable for the

event f(x) ∈ T . Then

Pr
f∈F

[f fails on (X , T)] = Pr
f∈F

[∣

∣

∣

∣

∣

∑

x

Pr[X = x]Yx − p

∣

∣

∣

∣

∣

> ε/2

]

.

Note that the probability is a weighted sum of the random variables Yx’s, with each

weight Pr[X = x] being at most 2−k. Let us consider instead the random variable

Zx = (Pr[X = x]2k)Yx, which now takes its value in the interval [0, 1], and note that

Ef∈F [
∑

x Zx] ≤ 2kp. Then,

Pr
f∈F

[f fails on (X , T)] = Pr
f∈F

[∣

∣

∣

∣

∣

∑

x

Zx − 2kp

∣

∣

∣

∣

∣

> 2kε/2

]

,

which by the Chernoff bound of Lemma 2.7.6 is at most

2−Ω((ε/p)22kp) ≤ 2−Ω(ε22k).

Since there are 22
m
possible T ’s, a union bound gives the claim.

52

The claim says that a random f fails on each source with a small probability. However,

there are infinitely many sources, since for any i ∈ [n], H∞(Xi) can have an arbitrary

value in the interval [0, k]. The following shows that it suffices to consider sources X ′

with H∞(X ′
i), for each i ∈ [n], being an (integral) multiple of α = 1/⌈Dn/ε⌉.

Claim 4.3.3. For any (n,D, k)-source X , there exists an (n,D, k)-source X ′ such that

∆(X ,X ′) ≤ ε/2 and H∞(X ′
i) is a multiple of α for any i ∈ [n].

Proof. For i ∈ [n], let ki = H∞(Xi). It is not hard to see that there exists (k′
1, . . . , k

′
n)

such that k′
1 + · · ·+ k′

n = k and for each i ∈ [n], k′
i is a multiple of α and |k′

i − ki| < α,

by rounding each ki up or down to its nearest multiple of α.

Next, we construct a source X ′ from X with H∞(X ′
i) = k′

i for every i ∈ [n]. As we

consider (n,D)-sources, we can deal with the n dimensions of the sources separately. For

i ∈ [n] with k′
i < ki, we keep shifting measure into a fixed element until its measure

reaches 2−k′i. For i ∈ [n] with k′
i > ki, we keep shifting measure away from an element

while its measure exceeds 2−k′i. Clearly, we can do this while keeping the measures of

any element in Xi and X ′
i within a distance |2−k′i − 2−ki|. Note that for the function

f(x) = 2−x, its derivative at any x ≥ 0 has an absolute value at most 1, which implies

|2−k′i − 2−ki| ≤ |k′
i − ki| by the mean value theorem in calculus. Thus for any i ∈ [n],

∆(Xi,X ′
i) ≤ D · |k′

i − ki|/2 < D · α/2 ≤ ε/(2n). Then by Corollary 2.1.5, we have

∆(X ,X ′) ≤ ∑

i∈[n]∆(Xi,X ′
i) ≤ ε/2. Since H∞(X ′) = k′

1 + · · · + k′
n = k = H∞(X), we

have the claim.

The other issue is that when D > 2, given any ki ∈ [0, k], for i ∈ [n], there are still

infinitely many Yi over [D] that can have H∞(Yi) = ki. The following shows that it

suffices to consider (n,D, k)-sources Y ’s with each Yi being “almost flat” in the sense

that
⌊

2ki
⌋

elements in [D] have measure 2−ki, one element has measure 1−
⌊

2ki
⌋

2−ki, and

the rest have measure 0.

Claim 4.3.4. Any (n,D, k)-source X ′ can be expressed as a convex combination of

(n,D, k)-sources Y with the property that for any i ∈ [n], H∞(Yi) = H∞(X ′
i) and Yi is

almost flat.

53

Proof. This is a generalization of the well known fact that any source with an integer

min-entropy can be expressed as a convex combination of flat sources. Here, we need to

deal with real-valued min-entropy.

Consider any (n,D, k)-source X ′, with H∞(X ′
i) = ki for i ∈ [n]. We claim that for

each i ∈ [n], the source X ′
i can be expressed as a convex combination of almost-flat

sources over [D] with min-entropy ki. The reason is the following. See any source over

[D] with min-entropy ki as a vector (p1, . . . , pD) with the property that
∑

j∈[D] pj = 1

and 0 ≤ pj ≤ 2−ki for every j ∈ [D]. Since all these inequalities are linear, the set of such

vectors forms a convex polytope. Hence, each vector in the set is expressible as a convex

combination of vertices (corners) of the polytope, where a vertex of the polytope is a

vector satisfying a maximal subset of these inequalities when treat these inequalities as

equalities. Hence, a vector is a vertex of the polytope if and only if it has
⌊

2ki
⌋

values of j

such that pj = 2−ki, one value of j such that pj = 1−
⌊

2ki
⌋

2−ki, and for the rest j, pj = 0.

That is, the vertices of the polytope correspond exactly to the vectors given by those

almost flat sources over [D]. Now as X ′
i is a convex combination of almost-flat sources of

min-entropy ki for each i ∈ [n], the source X ′ is a convex combination of (n,D, k)-sources

Y in which Yi is almost flat and has min-entropy ki for i ∈ [n].

Let S denote the set of (n,D, k)-sources Y with the property that for every i ∈ [n],

Yi is almost flat and H∞(Yi) is a multiple of α. The following gives a bound on the size

of S.

Claim 4.3.5. |S| ≤ 22
O(log(Dn))

.

Proof. Recall that α = 1/⌈Dn/ε⌉ ≤ ε/(Dn). Let us first bound the number of (k1, . . . , kn)

such that k1 + · · ·+ kn = k and each ki ∈ [0, k] is a multiple of α for i ∈ [n]. Note that

this is the same as the number of (z1, . . . , zn) such that z1 + · · ·+ zn = k/α and zi is an

integer in [0, k/α] for i ∈ [n]. This number is exactly

(

k/α + n− 1

n− 1

)

≤ 2O(n log(Dn/ε)).

Now for any (k1, . . . , kn), the number of (n,D, k)-sources Y such that each Yi, for

i ∈ [n], is almost flat with min-entropy ki is at most (2D ·D)n = 2O(Dn). As a result, we

54

have

|S| ≤ 2O(n log(Dn/ε)) · 2O(Dn) ≤ 22
O(log(Dn))

.

From Claim 4.3.2 and Claim 4.3.5 and using a union bound, we have

Pr
f∈F

[∃Y ∈ S, f fails on Y] ≤ 22
O(log(Dn)) · 22m · 2−Ω(ε22k) < 1,

for some m = k − O(log(1/ε)) when k ≥ c log(Dn/ε) for a large enough constant c.

This implies the existence of some Ext ∈ F such that ∆(Ext(Y),Um) ≤ ε/2 for any

Y ∈ S, and thus for any Y which is a convex combination of sources in S. According

to Claim 4.3.3 and Claim 4.3.4, any (n,D, k)-source X has distance at most ε/2 to some

source Y which is a convex combination of sources in S, so by Proposition 2.1.2 and 2.1.3,

∆(Ext(X),Um) ≤ ∆(Ext(X),Ext(Y)) + ∆(Ext(Y),Um)

≤ ∆(X ,Y) + ∆(Ext(Y),Um)

≤ ε.

That is, Ext is an (n,D, k, ε)-extractor, which proves Theorem 4.3.1.

4.4 Lower Bound on Entropy Loss

In this section, we show that the existential upper bound on the entropy loss in Section 4.3

is tight by giving a matching lower bound. In fact, we show that even for bit-fixing sources

and even allowing a seed, any extractor must suffer an entropy loss of Ω(log(1/ε)).

Theorem 4.4.1. Let Ext : {0, 1}n × {0, 1}s → {0, 1}m be an (n, 2, k, ε)-extractor for

bit-fixing sources, with n, s,m ∈ N, log(1/ε) ≤ k ≤ n − log(1/ε), and 0 < ε < 1/c1, for

some large enough constants c1. Then m ≤ k + s− Ω(log(1/ε)).

We will basically follow the proof idea in [43]. Briefly speaking, given any Ext :

{0, 1}n × {0, 1}s → {0, 1}m with m exceeding the bound, we will show the existence of

a bit-fixing source of min-entropy k on which Ext fails, using a probabilistic argument.

55

Before giving the proof, let us first state some definitions and lemmas which will be

needed. For any z ∈ {0, 1}m, consider the set

S(z) = {x ∈ {0, 1}n : ∃y ∈ {0, 1}s s.t. z = Ext(x, y)},

and we say that z is δ-missed by X ⊆ {0, 1}n if

∣

∣

∣

∣

Pr
x∈S(z)

[x ∈ X]− Pr
x∈Un

[x ∈ X]

∣

∣

∣

∣

≥ δ.

We will rely on the following lemma from [43].6

Lemma 4.4.2. Suppose X is the uniform distribution over a set X ⊆ {0, 1}n with |X| =
2k, and ∆(Ext(X ,Us),Um) ≤ ε. Then at most 4

√
ε fraction of z ∈ {0, 1}m can be

(2−(n−k)
√
ε)-missed by X.

For n, t ∈ N, β ∈ (0, 1), I ∈ P ([n], t), u ∈ {0, 1}t, and S ⊆ {0, 1}n, we say that u is

(I, β)-biased in S if
∣

∣

∣

∣

Pr
x∈S

[xI = u]− 2−t

∣

∣

∣

∣

> β.

Our key lemma is the following.

Lemma 4.4.3. Suppose n, t ∈ N and δ ∈ (0, 1), with t ≤ n−Ω(log(1/δ)) and 1/(8
(

n
t

)

2t) <

δ < 1/c2 for some large enough constant c2. Consider any S ⊆ {0, 1}n satisfying the

property that over a random I ∈ P ([n], t) and a random u ∈ {0, 1}t, u is (I, 2−tδ)-biased

in S with probability at most 8δ.7 Then |S| ≥ 2t(1/δ)Ω(1).

Note that a set S satisfying the property in Lemma 4.4.3 can be seen as an “almost”

t-wise independent space, in the sense that the uniform distribution over S looks random

on most sets of t dimensions. This can be seen as a relaxation of the standard notion of

approximate t-wise independent space. Lemma 4.4.3 gives a size lower bound on such a

set, which seems to have an interest of its own. We will prove the lemma in Section 4.4.1.

With this lemma, we can now prove Theorem 4.4.1.

6Note that this lemma does not appear explicitly in [43] but corresponds to Claim 2.7 there, which is

stated in a graph-theoretical term and says that any extractor gives rise to some kind of “slice-extractor”.
7This justifies the condition 1/(8

(

n

t

)

2t) < δ assumed at the beginning of the lemma.

56

Proof. (of Theorem 4.4.1)

Assume for the sake of contradiction that m ≥ k+s−c log(1/ε) for some small enough

constant c. We will show that in this case Ext fails on some bit-fixing source of min-

entropy k. As in [43], the existence of such a source will be shown using a probabilistic

argument. The difference is that [43] had the luxury of having all possible sources of min-

entropy k to search through, while we are limited to the much smaller class of bit-fixing

sources, which makes our task much harder. We randomly generate such a bit-fixing

source in the following way:

• Randomly pick a set I ∈ P ([n], n − k) and a string u ∈ {0, 1}n−k. Generate the

source X u
I which is uniform over the set Xu

I = {x ∈ {0, 1}n : xI = u}.

Next, we will show that Ext fails with a positive probability over such a randomly

generated source X u
I . As in [43], the idea is to show that when m is large, most z’s

in {0, 1}m can only have a small set S(z), and such z’s are (2−(n−k)
√
ε)-missed by Xu

I

with a non-negligible probability. As we will show next, this probability is guaranteed

by Lemma 4.4.3, by observing that the condition that z is (2−(n−k)
√
ε)-missed by Xu

I is

exactly the condition that u is (I, 2−(n−k)
√
ε)-biased in S(z), because

∣

∣

∣

∣

Pr
x∈S(z)

[x ∈ Xu
I]− Pr

x∈Un

[x ∈ Xu
I]

∣

∣

∣

∣

=

∣

∣

∣

∣

Pr
x∈S(z)

[xI = u]− 2−(n−k)

∣

∣

∣

∣

.

Let t = n − k and δ =
√
ε, and note that the conditions on the parameters in the

theorem imply those in Lemma 4.4.3 (in particular, the condition k ≤ n−log(1/ε) implies

the condition δ ≥ 1/(8
(

n
t

)

2t)). Now the average of |S(z)| over z is

2n+s/2m ≤ 2n+s/2k+s−c log(1/ε) = 2t(1/δ)2c.

Call z small if |S(z)| < 2t(1/δ)c
′

for a small enough constant c′. By Markov inequality of

Lemma 2.7.3, at least 1/2 fraction of z’s are small. From Lemma 4.4.3, for any small z,

with |S(z)| < 2t(1/δ)c
′

, the probability over I ∈ P ([n], t) and u ∈ {0, 1}t that z is (2−tδ)-

missed by Xu
I is more than 8δ. By an average argument, there must exist I ∈ P ([n], t)

and u ∈ {0, 1}t such that more than 8δ fraction of small z’s are (2−t
√
ε)-missed by Xu

I .

Thus, for this I and u, more than

(1/2)8δ = 4
√
ε

57

fractions of all possible z ∈ {0, 1}m are (2−t
√
ε)-missed by Xu

I . From Lemma 4.4.2,

this implies that ∆(Ext(X u
I),Um) > ε, a contradiction. Therefore, one must have m ≤

k + s− Ω(log(1/ε)), which proves the theorem.

4.4.1 Size Lower Bound on Almost k-wise Independent Spaces

In this subsection, we prove Lemma 4.4.3, which shows a size lower bound on almost

k-wise independent spaces.

Consider any set S satisfying the property stated in the lemma. Our goal is to show

a lower bound on the size of such a set. We can assume without loss of generality that

|S| < 2t/(2δ), because otherwise we are done. From [1, 11], we know that for an even r,

any r-wise independent space over {0, 1}n must have a size at least
(

n
r/2

)

, and we would

like to apply it to get our bound. However, there are two difficulties in front of us. One

is that S only guarantees some randomness property on most, instead of all, collections

of t dimensions. The other is that the randomness property only guarantees being close

to random instead of perfectly random. We get around these by showing that for some

appropriate r < t to be chosen later, there exists some set J ∈ P ([n], t − r) such that

when we partition S into subsets

SJ,v = {x ∈ S : xJ = v},

for v ∈ {0, 1}t−r, many of these subsets will embed an r-wise independent space.

From the property of S, an average argument shows the existence of some J ∈
P ([n], t − r) such that over a random R ∈ P ([n] \ J, r) and a random u ∈ {0, 1}t, u
is (J ∪ R, 2−tδ)-biased in S with probability at most 8δ. Fix one such set J , and let

J̄ = [n] \ J . Call v ∈ {0, 1}t−r nice for R ∈ P (J̄ , r) if for every w ∈ {0, 1}r, (v, w) is not
(J ∪ R, 2−tδ)-biased in S. The following shows that most v are nice for most R.

Claim 4.4.4. At least 1− 2r+3
√
δ fraction of v ∈ {0, 1}t−r are nice for all but α = 2r

√
δ

fraction of R ∈ P (J̄ , r).

Proof. By the Markov inequality of Lemma 2.7.3, there are at most 8
√
δ fraction of

u = (v, w) ∈ {0, 1}t which are (J ∪ R, 2−tδ)-biased in S for at least
√
δ fraction of

R ∈ P (J̄, r). Thus, at most 2r8
√
δ fraction of v ∈ {0, 1}t−r can have some bad w ∈ {0, 1}r

58

(depending on v) which is bad for at least
√
δ fraction of R ∈ P (J̄ , r) in the sense that

(v, w) is (J ∪R, 2−tδ)-biased in S. As a result, at least 1−2r8
√
δ fraction of v ∈ {0, 1}t−r

do not have such a bad w, and each such v is nice for all but 2r
√
δ fraction of R ∈ P (J̄, r),

as any w now is bad for at most
√
δ fraction of R.

Fix any v ∈ {0, 1}t−r which is nice for all but α = 2r
√
δ fraction of R ∈ P (J̄, r).

Next, we will show that SJ,v embeds an r-wise independent space. For this, we need the

following lemma which shows that if v is nice for R ∈ P (J̄, r), the space SJ,v projected

to dimensions in R gives a uniform distribution.

Claim 4.4.5. Suppose v is nice for R ∈ P (J̄, r). Then for any w ∈ {0, 1}r, Prx∈SJ,v
[xR =

w] = 2−r.

Proof. Suppose v is nice for R, so for every w ∈ {0, 1}r,
∣

∣

∣

∣

Pr
x∈S

[(xJ , xR) = (v, w)]− 2−t

∣

∣

∣

∣

≤ 2−tδ.

As we assume that |S| < 2t/(2δ), this means that all the 2r probabilities Prx∈S[(xJ , xR) =

(v, w)], for w ∈ {0, 1}r, have a distance less than 1/(2|S|) to the value 2−t, so any two of

the probabilities can only have a distance less than 1/|S| from each other. This implies

that all these 2r probabilities must all be equal, because they are all multiples of 1/|S|.
Then note that

Pr
x∈SJ,v

[xR = w] = Pr
x∈S

[(xJ , xR) = (v, w)] / Pr
x∈S

[xJ = v] ,

which is the same for every w ∈ {0, 1}r. As a result, all these 2r probabilities Prx∈SJ,v
[xR =

w], for w ∈ {0, 1}r, must all equal 2−r.

Then we consider the following two cases according to the range of δ. In each case, we

will choose a proper r and show that |SJ,v| ≥ 2r(1/δ)Ω(1). Let k = n− t, so |J̄| = k + r.

Case 1: δ < 1/(4(k + 2)4). In this case, we choose r to be that guaranteed in the

following claim.

Claim 4.4.6. There exists an even integer r such that 2 ≤ r ≤ min{t, k/24} and

(1/δ)Ω(1) ≤
(

k+r
r

)

2r <
√

1/δ.

59

Proof. Note that the value of
(

k+r
r

)

2r increases smoothly as we increase t from 2 to

min{t, k/24}. For r = 2, the value is
(

k + 2

2

)

22 < 2(k + 2)2 <
√

1/δ.

On the other hand, for r = k/24, we have
(

k + r

r

)

2r ≥ 2Ω(k) ≥ (1/δ)Ω(1)

according to the assumption that k ≥ Ω(log(1/δ)), while for r = t, we also have
(

k + t

t

)

2t =

(

n

t

)

2t ≥ 8/δ ≥ (1/δ)Ω(1)

according to the assumption that δ ≥ 1/(8
(

n
t

)

2t). Thus, when increasing r from 2 to

min{t, k/24}, we will encounter an even integer r such that (1/δ)Ω(1) ≤
(

k+r
r

)

2r <
√

1/δ.

With this choice of r, we have

|P (J̄, r)| · α =

(

k + r

r

)

· 2r
√
δ < 1,

which implies that v is nice for every R ∈ P (J̄, r). By Claim 4.4.5, this means that the

set SJ,v projected to dimensions in J̄ forms an r-wise independent space. From [1, 11],

such a set must have size at least
(|J̄ |
r/2

)

≥
(

2(k + r)

r

)r/2

= 2r
(

k + r

2r

)r/2

= 2r
(

k + r

4r
· k + r

r

)r/4

≥ 2r
(

6 · k + r

r

)r/4

,

where the last inequality follows from the condition r ≤ k/24. As a result, we have

|SJ,v| ≥ 2r
((

3 · k + r

r

)r

2r
)1/4

≥ 2r
((

k + r

r

)

2r
)1/4

≥ 2r (1/δ)Ω(1) .

Case 2: δ ≥ 1/(4(k + 2)4). In this case, we choose r = 2, and now α = 4
√
δ. Then

the following claim, together with Claim 4.4.5, implies that the set SJ,v projected to

dimensions in A gives a pair-wise independent space, so by [1, 11] we have

|SJ,v| ≥ |A| ≥ (1/δ)Ω(1) = 2r(1/δ)Ω(1).

Claim 4.4.7. There exists a subset A ⊆ J̄ of size (1/δ)Ω(1) such that v is nice for every

R ∈ P (A, 2).

60

Proof. Consider the undirected graph G with vertex set V = J̄ and edge set E = {R ∈
P (J̄ , 2) : v is nice for R}. Note that |E| is at least

(1− α)

(|V |
2

)

= (1− α)

(

1− 1

|V |

) |V |2
2

>

(

1− α− 1

|V |

) |V |2
2

≥
(

1− δΩ(1)
) |V |2

2
.

Then by the well-known Turan’s theorem in graph theory (e.g., see Theorem 4.7 in [30]),

G must contain a clique A of size at least (1/δ)Ω(1). By the definition of E, v is nice for

every R ∈ P (A, 2), which proves the claim.

In both cases, we have shown that |SJ,v| ≥ 2r(1/δ)Ω(1), for any v which is nice for all

but α fraction of R ∈ P (J̄ , r). Since the number of such v’s is at least

(

1− 2r+3
√
δ
)

2t−r ≥ (1/2)2t−r,

and the corresponding sets SJ,v’s are all disjoint subsets of S, we conclude that

|S| ≥ (1/2)2t−r2r(1/δ)Ω(1) = 2t(1/δ)Ω(1).

This proves Lemma 4.4.3.

4.5 Open Problems

In Section 4.2, we provide two deterministic extractors for (n,D, k)-sources. When k ≥
n1/2+γ , for any constant γ ∈ (0, 1/2), we can extract m = k − O(d log(1/ε)) random

bits with any error ε ≥ 2−Ω(nγ), while when k ≥ logc n, for some constant c > 0, we

can extract m = k − (1/ε)O(1) bits with error ε ≥ k−Ω(1). However, in Section 4.3,

we show the existence of a seedless extractor for (n,D, k)-sources which can extract

m = k−O(log(1/ε)) bits whenever k = ω(d+log(n/ε)). This means that a better explicit

extractor than ours may exist. Hence, we intend to give a better explicit construction.

In Section 4.4, we provide a lower bound on entropy loss for bit-fixing sources. We

mean to provide a better lower bound on entropy loss for independent-symbol sources.

In addition, in the proof of lower bound, we show a size lower bound on an ”almost”

t-wise independent space, which can be seen as a relaxation of the standard notation of

approximation t-wise independent space. Hence, the size lower bound on an ”almost”

t-wise independent space immediately implies a size lower bound on an approximation

61

t-wise independent space. We aim to show a better size lower bound on an approximation

t-wise independent space.

62

Chapter 5

Extracting Computational Entropy

and Learning Noisy Linear Functions

In this chapter, we study the task of deterministically extracting randomness from sources

containing computational entropy. The sources we consider have the form of a conditional

distribution (f(X)|X), for some function f and some distribution X , and we say that

such a source has computational min-entropy k if any circuit of size 2k can only predict

f(x) correctly with probability at most 2−k given input x sampled from X . First, in

Section 5.1, we describe the Goldreich-Levin Theorem, which implicitly provides a seeded

computational extractor. In Section 5.2, we show that it is impossible to have a seedless

extractor to extract from one single source of this kind. Then, in Section 5.3, we show

that it becomes possible if we are allowed a seed which is weakly random (instead of

perfectly random) but contains some statistical min-entropy, or even a seed which is not

random at all but contains some computational min-entropy. This can be seen as a step

toward extending the study of multi-source extractors from the traditional, statistical

setting to a computational setting. We reduce the task of constructing such extractors to

a problem in learning theory: learning linear functions under arbitrary distribution with

adversarial noise. In Section 5.4, we provide a learning algorithm for this problem, which

may have interest of its own.

63

5.1 The Goldreich-Levin Theorem

The idea of extracting computational randomness has appeared implicitly long ago [59,

19, 23], for the task of constructing pseudo-random generators from one-way functions.

Moreover, our extractor is motivated by the Goldreich-Levin Theorem. For completeness,

we give a proof here.

Theorem 5.1.1. [19, 60] Let g be a one-way permutation on n bits, and let A be an

algorithm with running time Time(A) such that

Pr
y,r
[A(g(y), r) = 〈y, r〉] > 1/2 + ε.

Then there is an algorithm P such that

Pr[P (g(y)) = y] > ε/2,

and runs in time O((n3/ε4)Time(A)).

Proof. It is sufficient to show that P outputs a list Y containing the correct y. This is

because g is easy to compute, we can compute g(z) for all z ∈ Y until we find z ∈ Y such

that g(z) = g(y).

Since A is an algorithm such that

Pr
y,r
[A(g(y), r) = 〈y, r〉] > 1/2 + ε,

by the Markov’s inequality of Corollary 2.7.4, we have that at least an ε/2 fraction of y’s

satisfying that

Pr
r
[A(g(y), r) = 〈y, r〉] > (1 + ε)/2.

We call such y’s good. Then we prove that for every good y, we can output a list containing

y.

Fix a good y. First note that when A(g(y), r) = 〈y, r〉 for all r ∈ {0, 1}n, we can

obtain the ith bit of y by

yi = 〈y, ei〉 = A(g(y), ei),

where ei ∈ {0, 1}n is the string whose bits are all zero except the ith bit. Moreover, if

A(g(y), r) = 〈y, r〉 with high probability, then we can compute

yi = 〈A(g(y), r), A(g(y), r⊕ ei)〉,

64

where ⊕ denotes the bitwise exclusive or, with high probability. However, for a good y,

we only can guarantee that Prr[A(g(y), r) = 〈y, r〉] > (1 + ε)/2, which is too small to

apply the above strategy. In fact, if we know one of A(g(y), r) and A(g(y), r ⊕ ei) for

sure, it suffices to do that. Hence, we consider the following algorithm in Figure 5.1.

• Input: z ∈ {0, 1}n.

• Procedure:

1. Randomly choose r1, · · · , rℓ ∈ {0, 1}n for ℓ = log((12n/ε) + 1).

2. For every w = w1 ◦ w2 ◦ · · · ◦ wℓ ∈ {0, 1}ℓ

(a) We guess that 〈y, rj〉 = wj for every j ∈ [ℓ]. Then, for any nonempty

set J ⊆ [ℓ], compute sJ =
∑

j∈J r
j and tJ =

∑

j∈J wj.

(b) For every i ∈ [n], set yi to be the majority value among {〈tJ , A(z, sJ ⊕
ei)〉} over all nonempty set J ⊆ [ℓ].

(c) Include y = y1 ◦ · · · ◦ yn into Y .

3. Output Y .

Figure 5.1: The construction of the algorithm P

Note that there exists w ∈ {0, 1}ℓ, such that 〈y, rj〉 = wj for every j ∈ [ℓ]. Fix

such w. Consider any i ∈ [n]. For every nonempty set J ⊆ [ℓ], let ZJ be the indicator

random variable for the event of A(g(y), sJ ⊕ ei) 6= 〈y, sJ ⊕ ei〉. Set Z =
∑

J 6=∅ ZJ . Then

E[Z] =
∑

J 6=∅ E[ZJ] ≤ (2ℓ− 1) · (1− ε)/2. Moreover, since ZJ ’s are pairwise independent,

we have that V ar[Z] =
∑

J 6=∅ V ar[ZJ] < 2ℓ − 1. Hence, by the Chebyshev’s inequality of

Lemma 2.7.5, we obtain that

Pr[P (g(y))i 6= yi] = Pr
[

Z ≥ 1/2 ·
(

2ℓ − 1
)]

≤ Pr
[

|Z − E[Z]| ≥ (2ℓ − 1) · ε/2
]

<
4

ε2 · (2ℓ − 1)

<
1

3n
.

65

Hence, a union bound shows that for any good y, Pr[P (g(y)) 6= y] = Pr[∃i, P (g(y))i 6=
yi] < 1/3. Moreover, since P calls A at most O((n3/ε4) times, the running time of P is

O((n3/ε4)Time(A)).

Remark 5.1.2. The Goldreich-Levin Theorem implies that Ext(v, w) = 〈v, w〉 is a

seeded extractor for sources (V|X) with computational min-entropy. The reason is that

if there exists a distinguisher E for the two distributions X◦Un◦Ext(V,Un) and X◦Un◦U1

where U1 and Un are independent, then Lemma 2.5.4 shows that there exists a predictor

A which predicts Ext(V,Un) well with input X ◦Un. Hence, by Goldreich-Levin Theorem

of Theorem 5.1.1, we can get an algorithm P which can predict V well with input X , and

this contradicts the assumption that (V|X) has computational min-entropy.

5.2 An Impossibility Result

Just as in the statistical setting [10], we show that seedless extractors do not exist either

in the computational setting. In fact, we show the impossibility result even for sources

with a computational min-entropy as high as n− 2.

Theorem 5.2.1. For any n1, n ∈ N with n1 ≥ 3n and for any function Ext : {0, 1}n →
{0, 1}, there exists a deterministic function f : {0, 1}n1 → {0, 1}n such that Hc(f(X)|X) =

n− 2 for X = Un1 but Ext(f(x)) takes the same value for all x (so can be easily distin-

guished from random).

Proof. Consider any function Ext : {0, 1}n → {0, 1}. Assume without loss of generality

that |Ext−1(1)| ≥ 2n−1. Then we will show the existence of a function f such that

Hc(f(X)|X) = n−2 but Ext(f(x)) = 1 for all x. In fact, a standard argument can show

that a random function is likely to work, as we will describe next.

Consider a random function f : {0, 1}n1 → Ext
−1(1). Fix any C : {0, 1}n1 →

{0, 1}n ∈ SIZE(2n−2), and for each x ∈ {0, 1}n1, define a binary random variable Cx such

that Cx = 1 if and only if C(x) = f(x). Observe that
∑

xCx is the number of x satisfying

C(x) = f(x). Note that

E
f

[

∑

x

Cx

]

=
∑

x

E
f
[Cx] =

∑

x

Pr
f
[C(x) = f(x)] ≤ 2n1−(n−1),

66

and let µ = 2n1−(n−1). Then by the Chernoff bound of Lemma 2.7.6, we have

Pr
f

[

∑

x

Cx ≥ 2µ

]

≤ 2−Ω(µ) = 2−Ω(2n1−n).

Since |SIZE(2n−2)| ≤ 2O(n2n) and n1 ≥ 3n, a union bound gives

Pr
f

[

∃C ∈ SIZE(2n−2) s.t.
∑

x

Cx ≥ 2µ

]

≤ 2O(n2n) · 2−Ω(2n1−n) < 1.

Hence, there exists some f , such that Prx[C(x) = f(x)] < 2µ · 2−n1 = 2−(n−2) for any

C ∈ SIZE(2n−2), but Ext(f(x)) = 1 for any x. This completes the proof.

5.3 Hybrid and Computational Extractors

In this section, we show that the function Ext
2 : F ℓ×F ℓ → F defined in Theorem 3.2.1

as

Ext
2(v, w) = 〈v, w〉m,

which is known to be a good stron-two-source-extractor, is also a good hybrid extractor

and a good computational extractor.

Theorem 5.3.1. For any k ≥ Ω(log2 n), any m ≤ O(
√

k/ log k) dividing n, any ε ≥
2−O(

√
k/ log k), any s ≤ 2n−k+O(k/ log k), and for some k1 = n−k+O(k/ log k), the function

Ext
2 : {0, 1}n × {0, 1}n → {0, 1}m defined above is both a (k1, k, ε, s)-hybrid-extractor

and a (k1, k, ε, s)-computational-extractor.

The proof for Theorem 5.3.1 relies on the following result, which gives an algorithm

for the problem of learning linear functions under arbitrary distribution with adversarial

noise.

Theorem 5.3.2. For any k ≥ Ω(log2 n), any m ≤ O(k/ log k) dividing n, and any

δ ≥ 2−O(
√

k/ log k), there exists a learning algorithm A with the following property. Given

any source W over {0, 1}n = F ℓ with H∞(W) = k and any function q : F ℓ → F ,

the algorithm A samples 2O(k/ log k) training examples from the distribution (W, q(W))

and then runs in time 2n−k+O(k/ log k) to output a list of size 2n−k+O(k/ log k) which with

probability 1− o(1) contains every v ∈ F ℓ satisfying

Pr
w∈W

[q(w) = 〈v, w〉m] ≥ 1/2m + δ.

67

Note that as in a standard learning-theoretical setting, we do not count the com-

plexity of sampling the training examples (or just count each sampling as unit cost) in

Theorem 5.3.2. We will prove the theorem in the next section, and now let us see how it

is used to show Theorem 5.3.1.

Proof. (of Theorem 5.3.1)

First, we prove that the function Ext
2 is a good hybrid extractor. Consider any

source (V|X) with Hc(V|X) = k1 and any source W, which is independent of (V|X), with

H∞(W) = k. Assume for the sake of contradiction that there exists an ε-distinguisher

E ∈ SIZE(s) for the distributions X ◦ W ◦ 〈V,W〉m and X ◦ W ◦ Um. By Lemma 2.5.4,

this implies the existence of a predictor Q ∈ SIZE(s+O(m)) with

Pr
x∈X ,v∈V ,w∈W

[Q(x ◦ w) = 〈v, w〉m] ≥ (1 + ε)/2m.

Let δ = ε/2m+1 ≥ 2−O(
√

k/ log k), and call (x, v) heavy if

Pr
w∈W

[Q(x ◦ w) = 〈v, w〉m] ≥ 1/2m + δ.

Then the Markov inequality of Corollary 2.7.4 shows that Prx∈X ,v∈V [(x, v) is heavy] ≥ δ.

Given any heavy (x, v), we want to predict v from x with a good probability. This

can be reduced to the task of learning the linear function 〈v, ·〉m, through noisy training

examples (w, q(w)), with q(w) = Q(x ◦ w), under the distribution w ∈ W. Consider the

algorithm C which on input x calls the algorithm A in Theorem 5.3.2 using the function

q(·) = Q(x ◦ ·), and outputs a random element in the list produced by A. It samples

2O(k/ log k) independent elements, denoted as W , from W, makes 2O(k/ log k) calls to Q, and

for any heavy (x, v) it outputs v with probability (1− o(1)) · 2−(n−k+O(k/ log k)). Then we

have

Pr
x,v,W

[C(x) = v] ≥ Pr
x,v

[(x, v) is heavy] · Pr
x,v,W

[C(x) = v | (x, v) is heavy]

≥ δ · (1− o(1)) · 2−(n−k+O(k/ log k))

≥ 2−(n−k+O(k/ log k)).

We are almost done except that we still can not bound the complexity of the algorithm

C because it needs a way to sample elements from the source W which may not have

68

an efficient sampling algorithm, unlike in the learning setting where one does not count

the complexity of sampling. Fortunately, by an average argument, the bound above still

holds for some fixed W , and we can simply hard-wire it into C. Similarly, we can do this

for other random choices of C, and it is not hard to show that one can have a resulting

circuit of size

|W |O(1) + 2O(k/ log k) · (s+O(m)) + 2n−k+O(k/ log k) ≤ 2n−k+O(k/ log k).

Thus, for some large enough k1 = n − k + O(k/ log k), we have a circuit of size smaller

than 2k1 which can predict v correctly with probability at least 2−(n−k+O(k/ log k)) > 2−k1 .

This contradicts the assumption that Hc(V|X) = k1, which means that the distinguisher

E assumed at the beginning cannot exist, so Ext
2 is a good hybrid extractor as claimed.

Next, we prove that Ext
2 is also a good computational extractor, and the proof is

almost identical. Consider two independent sources (V|X) and (W|Y), with Hc(V|X) =

k1 and Hc(W|Y) = k. Observe that the distribution of W must have statistical min-

entropy at least k, because otherwise the predictor which always outputs the value with

the largest measure can predict W correctly with probability larger than 2−k, a violation

of the hardness assumption of g. Then we can follow the proof above: assuming the

existence of a distinguisher for Ext2, we can obtain a predictor of size smaller than 2k1 ,

with some 2O(k/ log k) elements from (W,Y) hard-wired in it, which can predict V correctly

with probability larger than 2−k1. This contradicts the fact that Hc(V|X) = k1, so Ext
2

is a good computational extractor.

5.4 Learning Noisy Linear Functions

In this section, we prove Theorem 5.3.2. Recall that given any sourceW over {0, 1}n = F ℓ

with H∞(W) = k, any δ ≥ 2−O(
√

k/ log k), and any function q : F ℓ → F , we would like to

learn some unknown v ∈ F ℓ such that

Pr
w∈W

[q(w) = 〈v, w〉m] ≥ 1/2m + δ. (5.1)

Since such v may not be unique, we will list them all. Let us first imagine one such fixed

v.

69

We start by randomly choosing K = 2c(k/ log k) independent training examples (with

replacement) from the distribution (W, q(W)), for some large enough constant c (de-

pending on δ). Let W (0) denote the K × ℓ matrix and q(0) the K-dimensional vector,

both over F , such that for each training example (w, q(w)), W (0) has w ∈ F ℓ as a row

and q(0) has q(w) ∈ F as an entry. Note that each training example (w, q(w)), with

w = (w1, w2, . . . , wℓ), gives us a linear equation

w1v1 + w2v2 + · · ·+ wℓvℓ = q(w)

for v = (v1, v2, . . . , vℓ) ∈ F ℓ. Thus from these K training examples, we obtain a system

of K linear equations, denoted as [W (0)|q(0)], and we would like to reduce the task of

learning v to that of solving this system of linear equations. However, this system is

highly noisy as about 1−1/2m fraction of the equations are likely to be wrong, according

to (5.1). We will roughly follow the approach of Gaussian Elimination (which works for

noiseless systems of linear equations), but will make substantial changes in order to deal

with our noisy case.

Our algorithm consists of two phases: the forward phase, shown in Figure 5.2, and

the backward phase, shown in Figure 5.3. The forward phase works as follows, which is

similar to an approach of Blum et al. [7]. Starting from the system [W (0)|q(0)] of linear
equations, we use several iterations to produce smaller and smaller systems with fewer

and fewer variables, until we have a small enough system which we can afford to solve

using brute force. More precisely, we choose the parameters

T = log
√

k/ log k and d = k/(mT),

divide each row of W (0) into ℓ/d blocks, with each block containing d elements in F , and

proceed in T iterations, as shown in Figure 5.2. Note that after iteration t, we have the

system [W (t)|q(t)] which has ℓ− dt variables and K(t) equations, with

K(t) ≥ K − t2md = 2c(k/ log k) − t2k/T ≥ 2c(k/ log k)/2 = K/2,

for a large enough constant c. The key is to guarantee that the system still contains a

good fraction of correct equations. Let

δ0 = δ/2 and δt = (δt−1/2)
2 for t ≥ 1,

70

1. For t from 1 to T do

(a) Partition the equations of [W (t−1)|q(t−1)] into at most 2md groups according

to their first blocks in W (t) (same block value in the same group).

(b) Within each group, randomly select an equation which we call pivot.

(c) Within each group, subtract each equation by the pivot.

(d) Remove the pivots and delete the first block from each equation. Let

[W (t)|q(t)] be the resulting system of equations.

Figure 5.2: Forward Phase

1. Set V (T) = F (n−k)/m, and set V (t) = ∅ for 0 ≤ t ≤ T − 1.

2. For t from T − 1 down to 0 do

(a) For any z ∈ Fd × V (t+1) which is δt-good for [W (t)|q(t)], include z into V (t)

if |V (t)| ≤ L, and break otherwise.

3. Output V (0).

Figure 5.3: Backward Phase

and a simple induction shows that

δt ≥ (δ/8)2
t ≥ 2−0.1c(k/ log k) = K−0.1,

for a large enough constant c. We say that any z ∈ F ℓ−dt is δt-good for the system

[W (t)|q(t)] if it satisfies at least 1/2m + δt fraction of equations in the system. Let v(t) ∈
F ℓ−dt denote v without its first t blocks, and we call the forward phase good if for every t,

v(t) is δt-good for [W (t)|q(t)]. Lemma 5.4.1 below, which will be proved in Subsection 5.4.1,

guarantees that the forward phase is good with a significant probability.

Lemma 5.4.1. The forward phase is good with probability at least 2−O(k/ log k).

For the backward phase, we start from the last system [W (T)|q(T)] produced by the

forward phase, and work backward on larger and larger systems produced in the forward

phase to obtain solutions for more and more variables. More precisely, we go from t =

T − 1 down to t = 0, and while in iteration t, we try to find all possible solutions which

71

extend solutions from iteration t+1 and are δt-good for [W (t)|q(t)], as shown in Figure 5.3.

However, in order to bound the running time, we will stop including the solutions once

their number grows beyond the threshold

L = 2n−k+m+T+2 log(1/δT) = 2n−k+O(k/ log k).

If this happens, we may fail to include the actual solution v in our final list. Call the

backward phase good if for every t, the number of such δt-good solutions for [W (t)|q(t)]
is at most L. Lemma 5.4.2 below, which will be proved in Subsection 5.4.2, guarantees

that the backward phase is indeed good with a high probability.

Lemma 5.4.2. The backward phase is not good with probability at most 2−Ω(k).

From Lemma 5.4.1 and Lemma 5.4.2, the probability that both the forward and

backward phases are good is at least

2−O(k/ log k) − 2−Ω(k) = 2−O(k/ log k).

Assuming that both phases are good, a simply induction shows that v(t) ∈ V (t) for any

t and hence v ∈ V (0). Thus, we have shown that any fixed v satisfying the bound in

(5.1) is contained in the list V (0) of size at most L with probability 2−O(k/ log k). We

can further reduce the probability of missing this v to 2−ω(n) by repeating the process

2O(k/ log k) times, and take the union of the produced lists. Then a union bound shows

that some v satisfying (5.1) is not included in the final output with probability only o(1).

Finally, let us measure the complexity of our algorithm. First, K ≤ 2O(k/ log k) training

examples are sampled from the distribution (W, q(W)). Then the forward phase runs in

time

T · poly(K) ≤ 2O(k/ log k),

and the backward phase runs in time T · 2md · L ·K, which is at most

O(log(k/ log k)) · 2O(k/ log k) · 2n−k+O(k/ log k) · 2O(k/ log k) ≤ 2n−k+O(k/ log k).

The process is repeated for 2O(k/ log k) times, and the total running time is

2O(k/ log k) ·
(

2O(k/ log k) + 2n−k+O(k/ log k)
)

≤ 2n−k+O(k/ log k).

Thus, we have Theorem 5.3.2. To complete the proof, it remains to prove Lemma 5.4.1

and Lemma 5.4.2, which we do next.

72

5.4.1 Analysis on the Forward Phase

In this subsection, we prove Lemma 5.4.1, which shows that the forward phase is good

with a significant probability.

First, by the Chernoff bound of Lemma 2.7.6, we know that v = v(0) satisfies less than

1/2m + δ0 fraction of equations in [W (0)|q(0)] with probability at most 2−Ω(δ20K) = o(1).

That is, v(0) is δ0-good for [W (0)|q(0)] with probability 1−o(1). Next, we need the following

lemma.

Lemma 5.4.3. In the forward phase, if v(t−1) is δt−1-good for [W (t−1)|q(t−1)], then v(t) is

δt-good for [W (t)|q(t)] with probability at least δt.

Proof. Let M = 2m and τ = δt−1. Assume that v(t−1) is τ -good, so it satisfies at least

1
M

+ τ fraction of equations in the system [W (t−1)|q(t−1)]. Partition equations in the

system [W (t−1)|q(t−1)] into groups according to their first blocks, as in Step 1(a) of the

forward phase. Suppose group i contains pi fraction of equations in [W (t−1)|q(t−1)] and

v(t−1) satisfies 1
M
+ τi fraction of equations in the group, for some τi ∈ [− 1

M
, 1− 1

M
]. Then

we have

∑

i

pi ·
(

1

M
+ τi

)

≥ 1

M
+ τ. (5.2)

We would like to count the expected fraction of new equations satisfied by v(t−1).

Before doing that, let us first count the fraction with respect to the system obtained

before Step 1(d) (before removing pivots). Fix any group i. For u ∈ F , let αu denote the

fraction of equations in the group which are off by a value u in the sense that

q(t−1)(w(t−1)) = 〈v(t−1), w(t−1)〉m + u.

Note that for v(t−1) to satisfy a new equation, which is the difference between two equa-

tions, these two involved equations must be off by the same value. Therefore, the expected

fraction of new satisfied equations in this group is
∑

u α
2
u, which under the constraint

α0 =
1
M

+ τi achieves its minimum when αu = 1
M

− τi
M−1

for all other u 6= 0. Hence, after

one iteration, the expected fraction of new equations in group i (before removing pivots)

73

satisfied by v(t−1) is at least
(

1

M
+ τi

)2

+ (M − 1) ·
(

1

M
− τi

M − 1

)2

= M ·
(

1

M

)2

+
2− 2

M
· τi +

M − 1 + 1

M − 1
· τ 2i

≥ 1

M
+ τ 2i .

Combing all groups together, the expected fraction of satisfied equations overall (before

removing the pivots) is at least

∑

i

pi

(

1

M
+ τ 2i

)

=
1

M
+
∑

i

piτ
2
i ≥ 1

M
+

(

∑

i

piτi

)2

≥ 1

M
+ τ 2,

where the first inequality is due to Jensen inequality of Lemma 2.7.1, and the second

inequality uses the bound
∑

i piτi ≥ τ implied by that in (5.2).

To get the expected fraction of satisfied equations in the final system [W (t)|q(t)], after
performing Step 1(d), observe that we only need to discard at most 2md = 2O(k/ log k)

equations, each with measure 1
K(t) ≤ 2

K
, so the total discarded measure, denoted as µ, is

at most

2md · 2

K
≤ 2O(k/ log k) · 2 · 2−c(k/ log k) ≤ τ 2

2
,

for a large enough constant c. As a result, the expected fraction of equations in [W (t)|q(t)]
satisfied by v(t) is at least

1

1− µ
·
(

1

M
+ τ 2 − µ

)

≥ 1

M
+ τ 2 − µ ≥ 1

M
+

τ 2

2
=

1

M
+ 2δt,

by recalling that τ = δt−1 and δt = (δt−1/2)
2. Finally, by the Markov inequality of

Corollary 2.7.4, we have the lemma.

Then by Lemma 5.4.3 and an induction, the forward phase is good with probability

at least

(1− o(1))

T
∏

t=1

δt ≥ (1− o(1))

T
∏

t=1

(δ/8)2
t ≥ (1− o(1)) (δ/8)2

T+1 ≥ 2−O(k/ log k).

This proves Lemma 5.4.1.

5.4.2 Analysis on the Backward Phase

In this subsection, we will prove Lemma 5.4.2, which shows that the backward phase is

indeed good with a high probability. Recall that a solution is δt-good for the system

74

[W (t)|q(t)] if it satisfies at least 1/2m + δt fraction of the equations. For any t such that

0 ≤ t ≤ T − 1, consider the following event

• B(t): the number of δt-good solutions for [W (t)|q(t)] exceeds L.

Thus, our goal is to show that

Pr

[

T−1
∨

t=0

B(t)

]

≤ 2−Ω(k).

We will prove this by a union bound, so our goal is reduced to bounding each Pr[B(t)] for

0 ≤ t ≤ T − 1.

To get a quick idea, let us first consider how to bound Pr[B(0)]. Note that since Ext2

is a good strong-two-source-extractor and W has a high min-entropy, Lemma 2.5.3 guar-

antees that the number of z satisfying the probability bound Prw∈W [q(w) = 〈z, w〉m] ≥
1/2m + δ0/2 is at most L. Any other z is very unlike to be δ0-good for [W (0)|q(0)] by a

Chernoff bound because each row of W (0) is sampled independently from W. Since B(0)

happens only when any such z (not satisfying that probability bound) is δ0-good, a union

bound shows that Pr[B(0)] is indeed small.

Now for t ≥ 1, to follow this idea to bound Pr[B(t)], we would also like the distribution

of W (t) to have the nice property that each of its rows comes independently from a high

min-entropy source. Unfortunately, this is not true in general,1 and a much more involved

analysis is needed. Our approach is to consider the condition of restricting pivots in the

first t iterations and to show that the distribution ofW (t) conditioned on most restrictions

is close to a distribution with the nice property. More precisely, a restriction of the pivots

in an iteration includes fixing the indices and the values of some rows as pivots while

leaving other rows free, and we say that two distributions are γ-close if the probabilities

of any event according to the two distributions are within a multiplicative factor of γ

from each other.

Observe that the distribution of W (t) can be generated alternatively in two passes as

follows. In the first pass, we select a restriction of pivots in the first t iterations, denoted

1This is true in the simple case considered by [7] that one has W = Un to start with. In this case, for

each t, one can easily show that each row of W (t) does come independently from the uniform distribution

Un−tmd.

75

as R(1), . . . , R(t), by running the forward phase on the matrix W (0) sampled from W and

collecting the pivots in each iteration. In the second pass, we sample a matrix W (0) from

W and then run the forward phase accordingly for t iterations to derive the matrix W (t),

under the condition that the pivots selected in the t iterations match R(1), . . . , R(t). Let

D̃(t) denote such a conditional distribution of W (t) with respect to R(1), . . . , R(t). Now

consider the following event about D̃(t), over the distribution of R(1), . . . , R(t) selected in

the first pass.

• E(t): the distribution D̃(t) is γt-close to some distribution D(t) which has K(t) rows,

each coming independently from a distribution W(t) with H∞(W(t)) ≥ k−t(md+1),

for some γt ≤ K2md(2t−1) ≤ 2
√
K .

The following lemma, which will be proved later, shows that when conditioned on

E(t), the probability of B(t) is indeed small.

Lemma 5.4.4. For any t such that 0 ≤ t ≤ T − 1, Pr[B(t) | E(t)] ≤ 2−Ω(k).

Proof. Let us first count the number of solution z such that

Pr
w∈W(t)

[

q(t)(w) = 〈z, w〉m
]

≥ 1/2m + δt/2.

Let Z denote the set of such z’s. Note that W(t) is a source over F ℓ−td = {0, 1}(ℓ−td)m

with H∞(W(t)) ≥ k − t(md+ 1). Thus by Theorem 3.2.1 and Lemma 2.5.3, we have

|Z| ≤ 2(ℓ−td)m+m+2 log(2/δt)−2−(k−t(md+1)) = 2n−k+m+t+2 log(1/δt) ≤ L.

This means that for the event B(t) to happen, some z /∈ Z must be δt-good.

Consider any restriction R(1), . . . , R(t) such that the event E(t) happens. If we sample

the matrix W (t) according to the distribution D(t), which has each row coming indepen-

dently from W(t), then any fixed z /∈ Z is δt-good (satisfying at least 1/2m + δt fraction

of equations in [W (t)|q(t)]) with probability at most 2−Ω(δ2tK
(t)) by the Chernoff bound of

Lemma 2.7.6, and a union bound shows that

Pr
D(t)

[

B(t)
]

≤ Pr
D(t)

[∃z /∈ Z : z is δt-good] ≤ 2n · 2−Ω(δ2tK
(t)) ≤ 2−Ω(K0.8).

76

Now if we sample W (t) according to the distribution D̃(t), which is γt-close to D(t) (given

that E(t) happens), the probability is only scaled up by a factor γt. Thus, we have

Pr
D̃(t)

[

B(t)
]

≤ γt · 2−Ω(K0.8) ≤ 2
√
K · 2−Ω(K0.8) ≤ 2−Ω(k).

Since the bound holds for any restriction R(1), . . . , R(t) such that the event E(t) happens,

we have the lemma.

Next, we would like to show that E(t) happens with high probability. Note that for

t = 0, the event E(0) always happens because the initial distribution D̃(0) has the nice

property itself, so we have D(0) = D̃(0) and γ0 = 1. For 1 ≤ t ≤ T − 1, we use induction

to show that

Pr
[

¬E(t)
]

≤ Pr
[

¬E(t) | E(t−1)
]

+ Pr
[

¬E(t−1)
]

≤
t
∑

τ=1

Pr
[

¬E(τ) | E(τ−1)
]

,

and then we rely on the following lemma.

Lemma 5.4.5. For any t such that 1 ≤ t ≤ T − 1, Pr[¬E(t) | E(t−1)] ≤ 2−Ω(K).

Proof. Let us consider any restriction R(1), . . . , R(t−1) such that the event E(t−1) happens,

and we will show that E(t) happens with high probability, over the selection of R(t). More

precisely, the assumption that E(t−1) happens means that we start iteration t from the

distribution D̃(t−1) which is close to some nice distribution D(t−1), and our task is to show

that with high probability over the selection of R(t), the resulting conditional distribution

D̃(t) after iteration t is close to another nice distribution D(t), so that E(t) happens. For

this, we need to figure out which of these R(t)’s make E(t) happen.

Note that for a restriction R(t), the corresponding distribution D̃(t) is obtained by

applying Steps 1(c) and 1(d) on the matrix W (t−1) sampled from D̃(t−1) under the con-

dition that it is consistent with R(t). The restriction R(t) fixes some r ≤ 2md rows of the

matrix W (t−1) as pivots and it has the effect on the distribution D̃(t−1) that all the rows

of W (t−1) must belong to the r groups of those r rows. Consider the following event, over

the selection of R(t).

• G(t): those r groups have a combined measure of ρ ≥ 1/2 in the distribution W(t−1).

77

















D̃(t−1)

















≈
γt−1-close

















D(t−1) :

Independent

rows sampled

from W(t−1)

















↓ ↓

















D̃(t)

















≈
γ2
t−1-close

















D̄(t)

















≈
β-close

















D(t) :

Independent

rows sampled

from W(t)

















Figure 5.4: If D̃(t−1) is close to D(t−1), then D̃(t) is close to D(t), conditioned on R(t)

We will show that if G(t) happens then E(t) happens. For this, let us consider any fixed

restriction R(t) such that G(t) happens, and let us also use R(t) to denote the event that the

pivots chosen in iteration t match those in R(t). Our approach is illustrated in Figure 5.4.

First, let us consider the case of starting iteration t from the nice distribution D(t−1),

instead of D̃(t−1), conditioned on R(t), and let D̄(t) be the resulting distribution after

iteration t. The following claim shows that D̄(t) is in fact close to a nice distribution.

Claim 5.4.6. For some β ≤ K2md
, the distribution D̄(t) is β-close to some nice distribu-

tion D(t) which satisfies the condition in the event E(t).

Proof. Recall that we have fixed a restriction R(t) which fixes some r rows as pivots such

that the event G(t) happens, and we also use R(t) to denote the event that the pivots

selected during iteration t match those in the restriction R(t). In this claim, we consider

the situation of starting iteration t from the nice distribution D(t−1) conditioned on the

event R(t).

First, let us see how the distribution D(t−1) is affected by the conditioning on R(t).

Consider any fixed matrix M of K(t) = K(t−1) − r rows, insert the rows of R(t) at the

proper places to get a fixed matrix W (t−1) of K(t−1) rows, and let us also use W (t−1) to

78

denote the event that a randomly sampled matrix from D(t−1) equals this matrix W (t−1).

If the matrix has a row not in the r groups of R(t), then PrD(t−1)

[

W (t−1) | R(t)
]

= 0.

Otherwise, we have

Pr
D(t−1)

[

W (t−1) | R(t)
]

=

(

∏K(t)

j=1 W(t−1)(Mj)
)

·
(

∏r
i=1

1
ℓ′i+1

)

∑

ℓ1+···+ℓr=K(t);ℓi≥0

(

K(t)

ℓ1,··· ,ℓr
)

·
(
∏r

i=1 ρ
ℓi
i

)

·
(

∏r
i=1

1
ℓi+1

) ,

where W(t−1)(Mj) is the measure of the j’th row of M in W(t−1), ℓ′i is the number of

rows of M in group i, and ρi is the measure of group i in W(t−1). Note that for some

α1, α2 ∈ [K−r, 1], the numerator equals





K(t)
∏

j=1

W(t−1)(Mj)



 · α1,

while the denominator equals

∑

ℓ1+···+ℓr=K(t);ℓi≥0

(

K(t)

ℓ1, · · · , ℓr

)

·
(

r
∏

i=1

ρℓii

)

· α2 =

(

r
∑

i=1

ρi

)K(t)

· α2 = ρK
(t) · α2,

where
∑r

i=1 ρi = ρ ≥ 1/2 as we assume that the event G(t) happens. As a result, for

β = α1

α2
∈ [K−r, Kr], we have

Pr
D(t−1)

[

W (t−1) | R(t)
]

=





K(t)
∏

j=1

W(t−1)(Mj)

ρ



 · β.

Note that the first factor above can be seen as the probability when we sample each row of

the matrix independently according a new distribution W̃(t−1), which is the distribution

W(t−1) restricted to those r groups of R(t) and normalized by their measure ρ. Thus,

although the conditioning on the event R(t) may destroy the independence so that we can

no longer see each row as coming independently from W(t−1), we can somehow have the

independence restored by considering another distribution W̃(t−1) with some distortion

factor β. More precisely, we have shown that the distribution D(t−1) conditioned on

the event R(t) is β-close to a nice distribution, denoted as D̂(t−1), which has each of its

remaining row (not fixed by R(t)) coming independently from W̃(t−1), with

H∞(W̃(t−1)) ≥ H∞(W(t−1))− log(1/ρ) ≥ k − (t− 1)(md+ 1)− 1.

79

Next, let us see what the resulting distribution D̄(t) will be when Steps 1(c) and 1(d)

are performed on the distribution D(t−1) conditioned on R(t). Again, we first consider the

case of applying the two steps on the nice distribution D̂(t−1) instead. When we perform

Step 1(c) to subtract from each row its corresponding pivot, which is a fixed value,

each resulting row still remains independent from others. However, the distribution of

each resulting row is now changed to another distribution which may have a smaller

min-entropy than that of W̃(t−1), because different initial rows after subtracting their

corresponding pivots may result in the same value. Still, the number of such initial rows

can be at most 2md since no two such rows can come from the same group, which implies

that the min-entropy only decreases by at most md. Then after performing Step 1(d) to

remove the pivots and delete the first blocks, the resulting matrix has each row coming

independently from some distribution W(t) with min-entropy at least

H∞(W̃(t−1))−md ≥ k − t(md + 1).

That is, after performing Steps 1(c) and 1(d) on the distribution D̂(t−1), the resulting

distribution, denoted as D(t), satisfies the condition in event E(t). Finally, let us get back

to the actual case of starting with the distribution D(t−1) conditioned on R(t). Since it is

β-close to D̂(t−1), the resulting distribution D̄(t) after applying the two steps is β-close to

the corresponding resulting distribution D(t), which proves the claim.

Next, let us go back to the actual situation of starting iteration t from the distribution

D̃(t−1), instead of D(t−1) as we did in the above claim. Using the assumption that D̃(t−1) is

close to D(t−1), our next claim shows that when we start iteration t from the distribution

D̃(t−1) conditioned on R(t), the resulting distribution D̃(t) is close to the distribution D̄(t).

Claim 5.4.7. The distribution D̃(t) is γ2
t−1-close to the distribution D̄(t).

Proof. In this claim, we go back to the actual situation of starting iteration t from the

distribution D̃(t−1), instead of D(t−1) as we just did. We would like to show that the

resulting distribution D̃(t) when starting from D̃(t−1) is γ2
t−1-close to the distribution

D̄(t) when starting from D(t−1). For this, it suffices to show that for any event A, the

probabilities of PrD(t−1)

[

A | R(t)
]

and PrD̃(t−1)

[

A | R(t)
]

are within a multiplicative factor

80

of γ2
t−1. This is true because from the fact that D(t−1) and D̃(t−1) are γt−1-close, we know

that PrD(t−1)

[

R(t)
]

and PrD̃(t−1)

[

R(t)
]

are within a multiplicative factor of γt−1, and so

are PrD(t−1)

[

A ∧ R(t)
]

and PrD̃(t−1)

[

A ∧R(t)
]

.

From these two claims, we can conclude that D̃(t) is γt-close to D(t), for γt = γ2
t−1β ≤

γ2
t−1K

2md
, which by induction is at most

K2md(2t−2)K2md ≤ K2md(2t−1) ≤ 2
√
K .

This implies that for any restriction R(t) such that the event G(t) happens, the event E(t)

must happen as well. Therefore, the probability that E(t) does not happen is at most the

probability that G(t) does not happen, which we bound by the following claim.

Claim 5.4.8. The probability over the selection of R(t) that G(t) does not happen is at

most 2−Ω(K).

Proof. Note that the restriction R(t) can be selected by sampling a matrix W (t−1) accord-

ing to the distribution D̃(t−1) and then applying Steps 1(a) and 1(b) to select the pivots.

Thus, the probability that G(t) does not happen is at most the probability that all the

K(t−1) rows of W (t−1) lie in some r groups with a combined measure of ρ ≤ 1/2 in the

distribution W(t−1).

Again, let us first consider the case of sampling W (t−1) according to the distribution

D(t−1), instead of D̃(t−1). Note that there are at most 22
md

ways of choosing the r groups

with a combined measure of ρ ≤ 1/2 in W(t−1), and the probability that all the K(t−1) ≥
K/2 independent rows lie in any particular choice of such r groups is at most (1/2)K/2.

Then a union bound shows that the probability of having ρ ≤ 1/2 is at most

22
md · (1/2)K/2 ≤ 2−Ω(K).

Next, let us go back to actual case of sampling W (t−1) according to the distribution

D̃(t−1). Note that the probability of having ρ ≤ 1/2 according to D̃(t−1) can only be larger

than that according to D(t−1) by at most a factor of γt−1, and hence it is still at most

γt−1 · 2−Ω(K) ≤ 2
√
K · 2−Ω(K) ≤ 2−Ω(K).

81

We have shown that for any restriction R(1), . . . , R(t−1) such that the event E(t−1)

happens, the probability, over the selection of R(t), that the event E(t) does not happen is

at most 2−Ω(K). This implies that Pr[¬E(t) | E(t−1)] ≤ 2−Ω(K), which proves Lemma 5.4.5.

From these two lemmas, we have that for any t such that 1 ≤ t ≤ T − 1,

Pr
[

B(t)
]

≤ Pr
[

B(t) | E(t)
]

+ Pr
[

¬E(t)
]

≤ Pr
[

B(t) | E(t)
]

+
t
∑

τ=1

Pr
[

¬E(τ) | E(τ−1)
]

≤ 2−Ω(k).

For t = 0, we have

Pr
[

B(0)
]

= Pr
[

B(0) | E(0)
]

≤ 2−Ω(k).

As a result, a union bound gives us

Pr

[

T−1
∨

t=0

B(t)

]

≤
T−1
∑

t=0

Pr
[

B(t)
]

≤ T · 2−Ω(k) = 2−Ω(k),

which proves Lemma 5.4.2.

82

Chapter 6

Extracting Computational Entropy

from Computational

Independent-Symbol Sources

In this chapter, we consider computational independent-symbol sources. In Section 6.1,

we generalized the well-known Impagliazzo’s hardcore set lemma. Then, in Section 6.2, we

use the generalized hardcore set lemma to show that the extractor described in Section 4.1

also works for computational independent-symbol sources. Using the result of extractors

for computational independent-symbol sources, we can generalize the well-known XOR

lemma in Section 6.3. Finally, we prove the size upper bound on a binary hardcore set

in any black-box construction in Section 6.4.

6.1 Generalized Hardcore Set Lemma

The well-known Impagliazzo’s hardcore set lemma [26] says that if a function f : {0, 1}ℓ →
{0, 1} is mildly hard, that is, any small circuits must fail to compute it correctly on more

than a δ fraction of inputs, then there exists a hardcore set H ⊆ {0, 1}ℓ of density roughly

δ, where the density of H is defined as ρ(H) = |H|/2ℓ, such that f is extremely hard on

H , in the sense that any somewhat smaller circuits must fail to compute f correctly on

more than a 1
2
− ε fraction of inputs in H , for some small ε.

83

Lemma 6.1.1. [26] Let f : {0, 1}ℓ → {0, 1} be a function such that for any h ∈ SIZE(s),

Pr
x∈{0,1}ℓ

[h(x) 6= f(x)] > δ.

Then for any ε > 0, there exists H ⊆ {0, 1}ℓ with |H| = δ · 2ℓ such that for any C ∈
SIZE(Ω(ε2δ2s)),

Pr
x∈H

[C(x) 6= f(x)] >
1

2
− ε.

We extend it to the case that f : {0, 1}ℓ → [D] is mildly hard, that is, any small circuit

must fail to compute it correctly on more than a δ fraction of inputs, and show that there

exist some disjoint binary hardcore sets T1, · · · , Tr of total size at least (δ/2) · 2ℓ, where
for every i ∈ [r], Ti ⊆ f−1(Ii) for some Ii ⊆ [D] with |Ii| = 2, such that f is extremely

hard on H = ∪r
i=1Ti, in the sense that any smaller circuit must fail to compute f correctly

on more than a 1
2
− ε fraction of inputs in H , for some small ε.

Lemma 6.1.2. Let f : {0, 1}ℓ → [D] be a function such that for any h ∈ SIZE(s),

Pr
x∈{0,1}ℓ

[h(x) 6= f(x)] > δ.

Then for any ε > 0, there exists some integer r satisfying that there are I1, · · · , Ir ⊆ [D]

with |Ii| = 2, and disjoint binary hardcore sets T1, · · · , Tr where Ti ⊆ f−1(Ii), such that

the size of H = ∪r
i=1Ti is |H| ≥ (δ/2) · 2ℓ and for any C ∈ SIZE(Ω(ε2δ2s/D6)),

Pr
x∈H

[C(x) 6= f(x)] >
1

2
− ε.

Proof. First, we show that there exists one binary hardcore set. For every I ⊆ [D] with

|I| = 2, let

αI = min
h∈SIZE(s/D2)

{

Pr
x∈{0,1}ℓ

[h(x) 6= f(x)|f(x) ∈ I]

}

βI = Pr
x∈{0,1}ℓ

[f(x) ∈ I]

gI = arg min
h∈SIZE(s/D2)

{

Pr
x∈{0,1}ℓ

[h(x) 6= f(x)|f(x) ∈ I]

}

Then using these gI ’s, we construct a function g : {0, 1}ℓ → [D] as shown in Figure 6.1,

and to give an example, we show the decision tree of function g for the case of D = 4 in

Figure 6.2.

84

• Input: x ∈ {0, 1}ℓ

• Procedure:

1. Set s = 1.

2. For t = 2 to D do

(a) Compute z = g{s,t}(x).

(b) If z = t, set s = t.

3. Output z.

Figure 6.1: The construction of the function g : {0, 1}ℓ → [D]

g{1,2}(x)

g{1,3}(x)

6= 2

g{1,4}(x)

6= 3

1

6= 4

4

= 4

g{3,4}(x)

= 3

3

6= 4

4

= 4

g{2,3}(x)

= 2

g{2,4}(x)

6= 3

2

6= 4

4

= 4

g{3,4}(x)

= 3

3

6= 4

4

= 4

Figure 6.2: The decision tree of function g for D = 4

Since for every I, gI ∈ SIZE(s/D2), we obtain that g ∈ SIZE(s). Hence, we have that

Pr
x∈{0,1}ℓ

[g(x) 6= f(x)] > δ. (6.1)

Next, we claim that for any x, if gI(x) = f(x) for all I with f(x) ∈ I, then the function

g can output the correct value f(x). First suppose that f(x) = 1. To compute g(x), we

first compute g{1,2}(x), which is 1 according to our assumption that gI(x) = f(x) for all I

with f(x) ∈ I. Next, we will consider g{1,3}(x), which is also 1. That is, in the procedure

of computing g(x), we will consider a sequence of values g{1,j}(x) for all j ∈ {2, 3, · · · , D}.
Since g{1,j}(x) = 1 for all j ∈ {2, 3, · · · , D}, the function g will output the correct value

85

f(x) = 1. Similarly, suppose that f(x) = i for some i ∈ {2, 3, · · · , D}. We must consider

g{i1,i}(x) for some i1 < i in the step 2 of Figure 6.1 with t = i. Since g{i1,i}(x) = i

according to our assumption, we will go on to consider g{i,i2}(x) for all i2 > i and the

function g will output the correct value f(x) = i.

Hence, we can bound the error probability of g as

Pr
x∈{0,1}ℓ

[g(x) 6= f(x)] ≤ Pr
x∈{0,1}ℓ

[∃I with f(x) ∈ I, and gI(x) 6= f(x)]. (6.2)

According to equation (6.1) and (6.2), we obtain that

δ < Pr
x∈{0,1}ℓ

[g(x) 6= f(x)]

≤ Pr
x∈{0,1}ℓ

[∃I with f(x) ∈ I, and gI(x) 6= f(x)]

≤
∑

I

Pr[f(x) ∈ I and gI(x) 6= f(x)]

=
∑

I

Pr[gI(x) 6= f(x)|f(x) ∈ I] · Pr[f(x) ∈ I]

=
∑

I

αIβI .

Then, by an average argument, there exists some I, such that αIβI > δ/D2, which

implies that αI > δ/D2. Fix such I, and by the definition of αI , we have that for any

h ∈ SIZE(s/D2), Prx∈f−1(I)[h(x) 6= f(x)] ≥ αI > δ/D2. Then by Lemma 6.1.1, there

exists a hardcore set T1 ⊆ f−1(I) with size at least αIβI · 2ℓ ≥ δ · 2ℓ/D2 such that for any

circuit C ∈ SIZE(Ω(ε2δ2s/D6)),

Pr
x∈T1

[C(x) 6= f(x)] >
1

2
− ε.

If T1 is indeed much larger, say with ρ(T1) ≥ δ/2, then we are done. Otherwise, we can

continue the process on the remaining inputs as follows to amplify the size of hardcore.

By excluding T1, the remaining input must still have hardness at least δ − ρ(T1) in the

sense that for any circuit h ∈ SIZE(s), we must have Prx∈{0,1}ℓ [h(x) 6= f(x) and x /∈ T1] ≥
δ − ρ(T1). The reason is that otherwise using that h, we have

Pr
x∈{0,1}ℓ

[h(x) 6= f(x)] < Pr
x∈{0,1}ℓ

[h(x) 6= f(x) and x /∈ T1] + Pr
x∈{0,1}ℓ

[x ∈ T1] ≤ δ.

Therefore, if ρ(T1) is small, the remaining hardness is still large, so we can find a new

binary hardcore set T2, disjoint from T1. Continuing in this way, we can find a sequence

86

of hardcore sets T1, T2, T3, · · · , as long as the sum of density (in the whole space {0, 1}ℓ)
is small, say at most δ/2. This means that when we stop, we have found a sequence

of disjoint binary hardcore sets T1, · · · , Tr for some integer r such that the density of

H = ∪r
i=1Tr ≥ δ/2. Moreover, since for any circuit C ∈ SIZE(Ω(ε2δ2s/D6)), for each i,

Prx∈Ti
[C(x) 6= f(x)] > 1

2
− ε, we obtain that for any circuit C ∈ SIZE(Ω(ε2δ2s/D6)),

Pr
x∈H

[C(x) 6= f(x)] >
1

2
− ε.

6.2 Computational Extractors

In this section, we show that the extractor Ext0 : [D]n → [M] in Theorem 4.1.1, which

is shown to be a good extractor for independent-symbol sources, also works for computa-

tional independent-symbol sources. Throughout this section, we see any symbol Vi ∈ [D]

of the source as an element in ZM , and operation + on elements in ZM is understood as

an operation over the group ZM . Recall that our extractor Ext0 : [D]n → [M] is defined

as

Ext0(V1, · · · ,Vn) =
∑

t∈[n]
Vt.

Theorem 6.2.1. Suppose that M ≥ D is a prime. For any n, k ∈ N with k ≥
Ω(M2 log2D), the function Ext0 : [D]n → [M] defined above is an (n,D, k, ε, s1, s2)-

computational-extractor, where ε ≤ O(M2 logn/k) and s2 = Ω(s1(logn/nkD)2).

Proof. Let (V|X) = (V1|X1) ◦ · · · ◦ (Vn|Xn) be a computational (n,D, k, s1)-source with

for every i ∈ [n], Vi = fi(Xi) for some function fi : {0, 1}ℓi → [D], satisfying that for any

circuit C ∈ SIZE(s1), Pr[C(Xi) = Vi] ≤ 2−ki for some 0 ≤ ki ≤ logD, and
∑n

i=1 ki = k.

Fix ξ = M2 log n/nk > 0.

First, we use the analysis in [51] to show that for any i ∈ [n] with ki > 0, there exists

a source Yi over [D] such that no small circuit can distinguish the distributions Xi◦fi(Xi)

and Xi ◦ Yi.

Fix any i ∈ [n] with ki > 0. Recall that for any C ∈ SIZE(s1),

Pr[C(Xi) 6= fi(Xi)] > 1− 2−ki.

87

1. Sample x ∈ {0, 1}ℓi.

2. If x ∈ T i
j for some j ∈ [ri], output a random value y ∈ I ij; otherwise, output

fi(x).

Figure 6.3: The construction of the source Yi

For simplicity, let δi = 1 − 2−ki. By Lemma 6.1.2, there exit some integer ri, and

I i1, · · · , I iri ⊆ [D] with |I ij | = 2 for any j ∈ [ri] such that there are disjoint binary

hardcore sets T i
1, · · · , T i

ri
where T i

j ⊆ f−1
i (I ij) satisfying that the size of H i = ∪ri

j=1T
i
j is

|H i| = (δi/2) · 2ℓi. Then we define a source Yi as in Figure 6.3, and the following claim

shows that no small circuit can distinguish the distributions Xi ◦ fi(Xi) and Xi ◦ Yi.

Claim 6.2.2. For any i ∈ [n] with ki > 0, the source Yi defined as in Figure 6.3 satisfying

that for any ε > 0, no (εδi)-distinguisher in SIZE(Ω(ε2δ2i s1/D
6)) for the distributions

Xi ◦ fi(Xi) and Xi ◦ Yi.

Proof. Fix any i ∈ [n] with ki > 0. By way of contradiction, suppose that there exists a

circuit C ∈ SIZE(Ω(ε2δ2i s1/D
6)) such that

Pr[C(Xi ◦ fi(Xi)) = 1]− Pr[C(Xi ◦ Yi) = 1] ≥ εδi,

which implies that

εδi ≤ Pr [C(Xi ◦ fi(Xi)) = 1]− Pr [C(Xi ◦ Yi) = 1]

=

ri
∑

j=1

{

Pr
[

C(Xi ◦ fi(Xi)) = 1|Xi ∈ T i
j

]

− Pr
[

C(Xi ◦ Yi) = 1|Xi ∈ T i
j

]}

Pr
[

Xi ∈ T i
j

]

+
{

Pr
[

C(Xi ◦ fi(Xi)) = 1|Xi /∈ H i
]

− Pr
[

C(Xi ◦ Yi) = 1|Xi /∈ H i
]}

Pr
[

Xi /∈ H i
]

=

ri
∑

j=1

Pr
[

Xi ∈ T i
j

]

{

Pr
x∈T i

j

[C(x ◦ fi(x)) = 1]− Pr
x∈T i

j ,y∈Iij
[C(x ◦ y) = 1]

}

. (6.3)

Let

t = argmax
j

{

Pr
x∈T i

j

[C(x ◦ fi(x)) = 1]− Pr
x∈T i

j ,y∈Iij
[C(x ◦ y) = 1]

}

.

88

Then by equation (6.3), we obtain that

εδi ≤
ri
∑

j=1

Pr[Xi ∈ T i
j]

{

Pr
x∈T i

j

[C(x ◦ fi(x)) = 1]− Pr
x∈T i

j ,y∈Iij
[C(x ◦ y) = 1]

}

≤
{

Pr
x∈T i

t

[C(x ◦ fi(x)) = 1]− Pr
x∈T i

t ,y∈Iit
[C(x ◦ y) = 1]

}

·
ri
∑

j=1

Pr[Xi ∈ T i
j]

=

{

Pr
x∈T i

t

[C(x ◦ fi(x)) = 1]− Pr
x∈T i

t ,y∈Iit
[C(x ◦ y) = 1]

}

· Pr[Xi ∈ H i],

which implies that

Pr
x∈T i

t

[C(x ◦ fi(x)) = 1]− Pr
x∈T i

t ,y∈Iit
[C(x ◦ y) = 1] ≥ εδi

δi/2
= 2ε.

By the standard approach of obtaining predictors from distinguishers (or Lemma 2.5.4

with m = 1), we obtain that there is a predictor P ∈ SIZE(Ω(ε2δ2i s1/D
6)) with

Pr
x∈T i

t

[P (x) = fi(x)] ≥
1 + 2ε

2
=

1

2
+ ε,

which contradicts the fact that T i
t is a hardcore set. Therefore, we conclude that no

(εδi)-distinguisher in SIZE(Ω(ε2δ2i s1/D
6)) for the distributions Xi ◦ fi(Xi) and Xi ◦ Yi.

Hence, for any i ∈ [n] with ki > 0, by claim 6.2.2 with ε = ξ/(1− 2−ki) > 0, we have

that there exists a source Yi such that no ξ-distinguisher in SIZE(Ω(ξ2s1/D
6)) for the

distributions Xi ◦ Vi and Xi ◦ Yi.

On the other hand, for i ∈ [n] such that ki = 0, we can set Yi = Vi. Clearly, no

ξ-distinguisher for the distributions Xi ◦ Vi and Xi ◦ Yi.

Claim 6.2.3. There is no (nξ)-distinguisher in SIZE(Ω(ξ2s1/D
6)) for the distributions

X[1,n] ◦ V[1,n] and X[1,n] ◦ Y[1,n].

Proof. We prove it by the standard hybrid argument (see e.g. [18]). Let, for every i =

0, 1, · · · , n,
Hi = X[1,n] ◦ V[1,i] ◦ Y[i+1,n].

Note that Hn = X[1,n] ◦ V[1,n] and H0 = X[1,n] ◦ Y[1,n]. Suppose that there exists an (nξ)-

distinguisher C in SIZE(Ω(ξ2s1/D
6)) for the distributions X[1,n] ◦ V[1,n] and X[1,n] ◦ Y[1,n],

89

that is

nξ ≤ Pr[C(Hn) = 1]− Pr[C(H0) = 1] =

n−1
∑

i=0

Pr[C(Hi+1) = 1]− Pr[C(Hi) = 1],

which implies that there exists j ∈ {0, 1, · · · , n− 1} such that

Pr[C(Hj+1) = 1]− Pr[C(Hj) = 1] ≥ ξ.

Then, we construct the distinguisher C ′ ∈ SIZE(Ω(ξ2s1/D
6)) for the distributions Xj+1 ◦

Vj+1 and Xj+1 ◦ Yj+1 as in Figure 6.4.

• Input: x ◦ α

• Procedure:

1. Sample xi ◦ vi ∈ Xi ◦ Vi, for all i ≤ j.

2. Sample xi ◦ yi ∈ Xi ◦ Yi for all i > j + 1.

3. Output C(x[1,j] ◦ x ◦ x[j+2,n] ◦ v[1,j] ◦ α ◦ y[j+2,n]).

Figure 6.4: The construction of the distinguisher C ′

By the definition of C ′, we obtain that

Pr[C ′(Xj+1◦Vj+1) = 1]−Pr[C ′(Xj+1◦Yj+1) = 1] = Pr[C(Hj+1) = 1]−Pr[C(Hj) = 1] ≥ ξ,

that is, C ′ is a ξ-distinguisher for the distributions Xj+1 ◦ Vj+1 and Xj+1 ◦ Yj+1, and we

have a contradiction.

Claim 6.2.4. There exists no (nξ)-distinguisher in SIZE(Ω(ξ2s1/D
6)) for the distribu-

tions X[1,n] ◦
∑n

i=1 Vi and X[1,n] ◦
∑n

i=1 Yi.

Proof. By way of contradiction, assume that there exists a circuit E ∈ SIZE(Ω(ξ2s1/D
6))

such that

Pr

[

E

(

X[1,n] ◦
n
∑

i=1

Vi

)

= 1

]

− Pr

[

E

(

X[1,n] ◦
n
∑

i=1

Yi

)

= 1

]

≥ nξ.

Then we can construct E ′ ∈ SIZE(Ω(ξ2s1/D
6)) to distinguish the distributions X[1,n]◦V[1,n]

and X[1,n] ◦ Y[1,n] as in Figure 6.5.

90

• Input: x[1,n] ◦ α[1,n]

• Procedure:

1. Compute α =
∑n

i=1 αi.

2. Output E(x[1,n] ◦ α).

Figure 6.5: The construction of the distinguisher E ′

Hence, we have that

Pr[E ′(X[1,n] ◦ V[1,n]) = 1]− Pr[E ′(X[1,n] ◦ Y[1,n]) = 1]

= Pr

[

E

(

X[1,n] ◦
n
∑

i=1

Vi

)

= 1

]

− Pr

[

E

(

X[1,n] ◦
n
∑

i=1

Yi

)

= 1

]

≥ nξ,

which means that E ′ is an (nξ)-distinguisher for the distributions X[1,n] ◦V[1,n] and X[1,n] ◦
Y[1,n]. This contradicts Claim 6.2.3.

Next, we show that the sources X[1,n] ◦
∑n

i=1 Yi and X[1,n] ◦ U[M] are close.

Claim 6.2.5. ∆(X[1,n] ◦
∑n

i=1 Yi,X[1,n] ◦ U[M]) ≤ e−Ω(k/M2 logD), for k ≥ Ω(M2 log2D).

Proof. For each i ∈ [n] with ki > 0, let Zi be the indicator random variable for the event

of Xi ∈ H i. For the rest of i ∈ [n], let Zi = 0. Define Z =
∑

i∈[n] Zi.

Note that for any i ∈ [n] with ki > 0, H∞(Yi|Zi = 1) = 1. Recall that for each i ∈ [n]

with ki > 0, Pr[Xi ∈ H i] = δi/2 = (1− 2−ki)/2. Then

E[Z] =

n
∑

i=1

(1− 2−ki)/2

≥ 1

2
·
[

n−
⌊

k

logD

⌋

· 1

D
−
(

n−
⌊

k

logD

⌋)

· 1
]

=
1

2
·
[⌊

k

logD

⌋(

1− 1

D

)]

.

Since Zi’s are independent, by the Chernoff bound of Lemma 2.7.6, we have that

Pr

[

Z ≤ E[Z]

2

]

≤ Pr

[

|Z − E[Z]| ≥ E[Z]

2

]

≤ e−Ω(E[Z]) ≤ e−Ω(k/ logD).

91

On the other hand, H∞(Y[1,n]|Z > E[Z]/2) ≥∑n
i=1(1− 2−ki)/4. Therefore, by Theo-

rem 4.1.1,

∆

((

X[1,n] ◦
n
∑

i=1

Yi

∣

∣

∣

∣

Z >
E[Z]

2

)

,

(

X[1,n] ◦ U[M]

∣

∣

∣

∣

Z >
E[Z]

2

)

)

≤ e−Ω(k/M2 logD),

for k ≥ Ω(M2 log2D). Hence, we have

∆

(

X[1,n] ◦
n
∑

i=1

Yi,X[1,n] ◦ U[M]

)

≤ Pr

[

Z ≤ E[Z]

2

]

+∆

((

X[1,n] ◦
n
∑

i=1

Yi

∣

∣

∣

∣

Z >
E[Z]

2

)

,

(

X[1,n] ◦ U[M]

∣

∣

∣

∣

Z >
E[Z]

2

)

)

≤ e−Ω(k/M2 logD),

for k ≥ Ω(M2 log2D).

The above claim implies that no e−Ω(k/M2 logD)-distinguisher (without any complexity

bound) for the distributions X[1,n] ◦
∑n

i=1 Yi and X[1,n] ◦ U[M]. Then by Claim 6.2.4

with ξ = M2 logn/nk > 0, we have that there exists no ((M2 log n/k) + e−Ω(k/M2 logD))-

distinguisher in SIZE(Ω(s1(logn/nkD)2)) for the distributions X[1,n] ◦ Ext(V1, · · · ,Vn)

and X[1,n] ◦ U[M].

6.3 Generalized XOR Lemma

In this section, we will show that the above result about extractors for computational

independent-symbol sources can generalize the well-known XOR lemma [59], which says

that if f : {0, 1}ℓ → {0, 1} is ”mildly hard” for small circuits, then F (x1, · · · , xt) ≡
⊕t

i=1f(xi) for sufficiently large t, is ”extremely hard” for smaller size circuits.

To prove the generalized XOR lemma, we will need the following lemma about ob-

taining distinguishers from predictors.

Lemma 6.3.1. For any source Z over {0, 1}ℓ and any function b : {0, 1}ℓ → [M], if there

is a predictor P such that Prz∈Z [P (z) = b(z)] ≥ 1/M+ε, then there is an ε-distinguisher

E with P as oracle which calls P once and runs in time O(m) for the distributions Z◦b(Z)

and Z ◦ U[M].

92

• Input: z ◦ α

• Procedure:

1. Compute P (z).

2. If P (z) = α, then output 1; otherwise, output 0.

Figure 6.6: The construction of the distinguisher EP

Proof. Consider the distinguisher EP as in Figure 6.6.

Then we have

Pr[EP (Z ◦ b(Z)) = 1]− Pr
[

EP
(

Z ◦ U[M]

)

= 1
]

= Pr[P (Z) = b(Z)]− Pr
[

P (Z) = U[M]

]

≥ 1

M
+ ε− 1

M
= ε.

Hence, EP is an ε-distinguisher for the distributions Z ◦ b(Z) and Z ◦ U[M].

Then, we see any symbol Vi ∈ [D] of the source as an element in ZM , and operation

+ on elements in ZM is understood as an operation over the group ZM .

Theorem 6.3.2. Suppose that s ≥ Ω (m · (n2D/ logn)2). For i ∈ [n], let fi : {0, 1}ℓi →
[D] be a function such that for any circuit h ∈ SIZE(s),

Pr
xi∈{0,1}ℓi

[h(xi) 6= fi(xi)] > δi.

If δ =
∑n

i=1 δi ≥ Ω(M2 logD), then for any circuit C ∈ SIZE(Ω(s(log n/nDδ)2)),

Pr
x1∈{0,1}ℓ1 ,··· ,xn∈{0,1}ℓn

[

C
(

x[1,n]

)

=
n
∑

i=1

fi(xi)

]

<
1

M
+O

(

M2 logn

δ

)

.

Proof. First, note that by the similar argument in Theorem 6.2.1 with ξ = lognM2/δn,

we have that for δ =
∑n

i=1 δi ≥ Ω(M2 logD), there exists no O(M2 logn/δ)-distinguisher

in SIZE(Ω(s(log n/nDδ)2)) for the distributions X[1,n] ◦
∑n

i=1 fi(Xi) and X[1,n] ◦ U[M].

Suppose that there exists a circuit C ∈ SIZE(Ω(s(log n/nDδ)2)) such that

Pr
x1∈{0,1}ℓ1 ,··· ,xn∈{0,1}ℓn

[

C(x1, · · · , xn) =

n
∑

i=1

fi(xi)

]

≥ 1

M
+O

(

M2 log n

δ

)

.

Then by Lemma 6.3.1, there is a O(M2 log n/δ)-distinguisher for the distributions X[1,n] ◦
∑n

i=1 fi(xi) and X[1,n] ◦ U[M], which is a contradiction.

93

6.4 Hardcore Set Size in Black-Box Constructions

For the generalized hardcore set lemma in Section 6.1, one may wonder whether we can

find a larger binary hardcore set, for example, a set with density δ/D. In this section, we

give an upper bound on the size of binary hardcore sets of black-box construction. First,

we introduce a black-box construction of a hardcore set.

Definition 6.4.1. We say that an oracle algorithm Dec
(·) is a black-box (δ, ε,D) - con-

struction of a hardcore set, if the following holds. Given any function f : {0, 1}ℓ → [D],

where ℓ = Ω(logD), and a family of functions G = {gI |I ⊆ [D] with |I| = 2} satisfying

that for each gI ∈ G and H ⊆ f−1(I) with size s, Prx∈H [gI(x) 6= f(x)] ≤ (1− ε)/2, then

Prx∈{0,1}ℓ [Dec
G(x) 6= f(x)] ≤ δ. We call s the size complexity of black-box construction.

Now, we give an upper bound on the size of binary hardcore sets.

Theorem 6.4.2. Suppose that Ω(1/Dc1) ≤ δ for some constant c1, ε ≤ 1/5 and D ≥ 4.

Then, any black-box (δ, ε,D)-construction must have size complexity O(δ2ℓ/D2).

Proof. We use a probabilistic method to show that there exist a function f and a family of

functions G = {gI |I ⊆ [D] with |I| = 2} satisfying that for each gI ∈ G and H ⊆ f−1(I)

with size 10δ2ℓ/D(D − 1), Prx∈H [gI(x) 6= f(x)] ≤ (1 − ε)/2, but Prx∈{0,1}ℓ [Dec
G(x) 6=

f(x)] ≥ δ/2.

Suppose that Dec is a (δ, ε,D)-black-box construction. We choose a random function

f and a random family of functions G = {gI |I ⊆ [D] and |I| = 2} as follows. First, we

pick
(

D
2

)

disjoint sets A{1,2}, A{1,3}, · · · , A{D−1,D} ⊆ {0, 1}ℓ, each with size 4δ ·2ℓ/D(D−1),

and then partition {0, 1}ℓ\
(
⋃

i1<i2
A{i1,i2}

)

into D sets: B1, B2 · · · , BD (note that Bi could

be empty). We define f as in Figure 6.7, and gI for each I = {i1, i2} ⊆ [D] as in Figure 6.8.

Next, we claim that for each gI ∈ G and H ⊆ f−1(I) with size 10δ2ℓ/D(D − 1), gI

predicts f well in H .

Claim 6.4.3. For each gI ∈ G, H ⊆ f−1(I) with size 10δ2ℓ/D(D − 1), and ε ≤ 1/5,

Pr
x∈H

[gI(x) 6= f(x)] ≤ (1− ε)/2.

Proof. Fix any I = {i1, i2} ⊆ [D], and H ⊆ f−1(I) with size 10δ2ℓ/D(D − 1). For each

x ∈ H , let Zx,f,G be the indicator random variable for the event of gI(x) 6= f(x). Note

94

• Input: x ∈ {0, 1}ℓ

• Procedure:

1. If x ∈ A{i1,i2} for some i1 < i2 ∈ [D], let Pr[f(x) = i] = 1/2 for i ∈ {i1, i2}.

2. If x ∈ Bj for some j ∈ [D], set f(x) = j.

Figure 6.7: The function f

• Input: x ∈ {0, 1}ℓ

• Procedure:

1. If x ∈ AI , let Pr[gI(x) = i] = 1/2 for i ∈ {i1, i2}.

2. If x ∈ Bi1 or A{i1,j} for some j ∈ [D] \ I, set gI(x) = i1.

3. If x ∈ Bi2 or A{i2,j} for some j ∈ [D] \ I, set gI(x) = i2.

4. Otherwise, let Pr[gI(x) = i] = 1/D for any i ∈ [D].

Figure 6.8: The function gI for I = {i1, i2}

that for x ∈ H ∩ AI , Prf,gI [Zx,f,G = 1] = 1/2. On the other hand, consider x ∈ H \ AI .

If x ∈ f−1(i1) \ AI ⊆ Bi1 ∪
(

⋃

j /∈I A{i1,j}
)

, then we have gI(x) = i1, and similarly for

x ∈ f−1(i2) \ AI . That is, for x ∈ H \ AI , Zx,f,G = 0. Hence,

∑

x∈H
Zx,f,G =

∑

x∈H∩AI

Zx,f,G ≤
∑

x∈AI

Zx,f,G ≤ 4δ2ℓ

D(D − 1)
.

Therefore, for ε ≤ 1/5,

Pr
x∈H

[gI(x) 6= f(x)] =
1

|H|
∑

x∈H
Zx,f,G ≤ D(D − 1)

10δ2ℓ
· 4δ2ℓ

D(D − 1)
=

2

5
≤ 1− ε

2
.

Then, we claim that f and G are likely to satisfy that Prx∈{0,1}ℓ [Dec
G(x) 6= f(x)] ≥

δ/2. For each x ∈ {0, 1}ℓ, let Bx,f,G be the indicator random variable for the event of

Dec
G(x) 6= f(x).

Claim 6.4.4. Prf,G

[

∑

x∈{0,1}ℓ Bx,f,G < δ2ℓ/2
]

= o(1).

95

Proof. Note that for any x ∈ AI for some I ⊆ [D] with |I| = 2, we have that

Pr
f,G

[Bx,f,G = 1] ≥ 1/2.

Hence, by the Chernoff bound of Lemma 2.7.6, we get

Pr
f,G





∑

x∈{0,1}ℓ
Bx,f,G <

δ2ℓ

2



 ≤ Pr
f,G

[

∑

x∈∪IAI

Bx,f,G <
δ2ℓ

2

]

< e−Ω(δ2ℓ) = o(1),

for ℓ = Ω(logD) and δ > 1/Dc1 for some constant c1.

From Claim 6.4.3, and 6.4.4, we conclude that there exist f and G = {gI |I ⊆
[D] with |I| = 2} such that for each gI ∈ G and H ⊆ f−1(I) with size 10δ2ℓ/D(D − 1),

Prx∈H [gI(x) 6= f(x)] ≤ (1− ε)/2, but Prx∈{0,1}ℓ [Dec
G(x) 6= f(x)] ≥ δ/2.

6.5 Open Problems

In section 6.2, we show that our extractor for independent-symbol sources still works for

computational independent-symbol sources. We would like to find a better extractor for

computational independent-symbol sources or show that our extractor is optimal.

On the other hand, there are several ways to prove the well-known XOR lemma [20],

and one is through the hardcore set lemma. In Section 6.3, we show how to prove the

generalized XOR lemma using the generalized hardcore set lemma. It would be interesting

to consider other proofs for the XOR lemma to prove the generalized XOR lemma.

96

Chapter 7

Conclusion and Future Works

In this thesis, we consider the problem of deterministically extracting almost perfect

random bits from several classes of random sources. First, we consider multiple weakly

random sources that are mutually independent. We generalize the well-known leftover

hash lemma, and this lemma gives us a way to extract randomness from two independent

sources as long as two sources have enough min-entropy. We also extend our construction

to extract randomness from t ≥ 3 independent sources as long as two of them have enough

min-entropy. One nice feature is that the extractor still works even with all but one source

exposed. Moreover, we apply our extractor for a cryptographic task in which a group of

parties want to agree on a secret key for group communication over an insecure channel,

without using ideal local randomness.

We also consider the independent-symbol sources which are the sources lie in between

multiple independent sources and bit-fixing sources. Each independent-symbol source

consists of a sequence of n independent symbols from {0, 1}d, and the only randomness

guarantee on such a source is that the whole source has min-entropy k. We give an explicit

deterministic extractor which extracts about Ω(log k) bits, for any n, d, k ∈ N. For sources

with a larger min-entropy, we can extract even more randomness. When k ≥ n1/2+γ , for

any constant γ ∈ (0, 1/2), we can extract m = k − O(d log(1/ε)) bits with any error

ε ≥ 2−Ω(nγ). When k ≥ logc n, for some constant c > 0, we can extract m = k− (1/ε)O(1)

bits with any error ε ≥ k−Ω(1). Our results generalize those of Kamp and Zuckerman [33]

and Gabizon et al. [17] which only work for bit-fixing sources (with d = 1 and each bit of

the source being either fixed or perfectly random). Moreover, we show the existence of a

97

non-explicit deterministic extractor which can extract m = k−O(log(1/ε)) bits whenever

k = ω(d + log(n/ε)). Finally, we show that even to extract from bit-fixing sources, any

extractor, seeded or not, must suffer an entropy loss k−m = Ω(log(1/ε)). This generalizes

a lower bound of Radhakrishnan and Ta-Shma on extracting from general sources.

Then, we go to the other direction to look for a more general class of sources from

which seedless extraction is still possible. The sources we consider have the form of a

conditional distribution (f(X)|X), for some function f and some distribution X , and we

say that such a source has computational min-entropy k if any circuit of size 2k can only

predict f(x) correctly with probability at most 2−k given input x sampled from X . We

first show that it is impossible to have a seedless extractor for one single source of this kind.

Then we show that it becomes possible if we are allowed a seed which is weakly random

(instead of perfectly random) but contains some statistical min-entropy, or even a seed

which is not random at all but contains some computational min-entropy. This can be

seen as a step toward extending the study of multi-source extractors from the traditional,

statistical setting to a computational setting. We reduce the task of constructing such

extractors to a problem in learning theory: learning linear functions under arbitrary

distribution with adversarial noise. For this problem, we provide a learning algorithm,

which may have interest of its own.

Finally, we consider computational (n,D, k, s)-sources, which, just as (n,D, k)-sources,

consist of n mutually independent parts, (f1(X1)|X1), · · · , (fn(Xn)|Xn), each fi(Xi) of

length d such that for each i if given input xi sampled from Xi, any circuit of size s

can only predict fi(xi) with probability at most 2−ki for some ki ≤ d, and the sum of

ki’s is k. Note that we can set the circuit size as a separate parameter to define the

computational independent-symbol sources. We generalize the well-known hardcore set

lemma to show that our extractor for independent-symbol sources still works for computa-

tional independent-symbol sources. In addition, the result of extractors for computational

independent-symbol sources implies a generalization of the well-known XOR lemma. Fi-

nally, we show an upper bound on the size of a binary hardcore set in any black-box

construction.

Since the proofs of Lemma 4.4.3 and 5.4.2 are complicated, in the future, we would

like to simplify these proofs. Moreover, we will go on to construct better extractors for

98

these classes of sources or prove that these extractors are optimal.

In addition, in the proof of the lower bound on entropy loss for independent-symbol

sources, we provide a size lower bound on an ”almost” t-wise independent space, and this

immediately implies a size lower bound on any approximate t-wise independent space. It

may be interesting to find a better size lower bound on an approximate t-wise independent

space.

On the other hand, there are several ways to prove the well-known XOR lemma [20],

and one is through the hardcore set lemma. In Chapter 6, we generalize the hardcore

set lemma to prove the generalized XOR lemma. It may be interesting to consider other

proofs for the XOR lemma to prove the generalized XOR lemma.

99

100

Bibliography

[1] Noga Alon, László Babai, and Alon Itai. A fast and simple randomized parallel al-

gorithm for the maximal independent set problem. Journal of Algorithms, 7(4):567–

583, 1986.

[2] Noga Alon, Oded Goldreich, Johan H̊astad, and René Peralta. Simple constructions

of almost k-wise independent random variables. In Proc. IEEE 31st Annual IEEE

Symposium on Foundations of Computer Science (FOCS’90), pages 544–553, 1990.

[3] Boaz Barak, Russell Impagliazzo, and Avi Wigderson. Extracting randomness using

few independent sources. In Proc. IEEE 45th Annual IEEE Symposium on Founda-

tions of Computer Science (FOCS’04), pages 384–393, Rome, Italy, October 2004.

[4] Boaz Barak, Guy Kindler, Ronen Shaltiel, Benny Sudakov, and Avi Wigder-

son. Simulating Independence: New Constructions of Condensers, Ramsey graphs,

Dispersers, and Extractors. In Proc. 37th Annual ACM Symposium on Theory of

Computing (STOC’05), pages 1–10, Baltimore, MD, May 2005.

[5] Boaz Barak, Ronen Shaltiel, and Avi Wigderson. Computational analogues of en-

tropy. In Proc. of APPROX 2003 and RANDOM 2003, pages 200–215, 2003.

[6] Mihir Bellare and John Rompel. Randomness-efficient oblivious sampling. In Proc.

IEEE 35th Annual Symposium on Foundations of Computer Science (FOCS’94),

pages 276–287, Santa Fe, New Mexico, November 1994.

[7] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity

problem, and the statistical query model. J. ACM, 50(4):506–519, 2003.

101

[8] Jean Bourgainu. More on the sum-product phenomenon in prime fields and its

applications. International Journal of Number Theory, 1(1):1–32, 2005.

[9] J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions.

In Proc. 9th Annual ACM Symposium on Theory of Computing (STOC’77), pages

106–112, 1977.

[10] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak random-

ness and probabilistic communication complexity. SIAM J. Comput., 17(2):230–261,

April 1988.

[11] Benny Chor, Oded Goldreich, Johan H̊astad, Joel Friedman, Steven Rudich, and

Roman Smolensky. The bit extraction problem of t-resilient functions. In Proc.

IEEE 26th Annual Symposium on Foundations of Computer Science (FOCS’85),

pages 396–407, 1985.

[12] Philip J. Davis. Circulant Matrices. John Wiley, 1979.

[13] Yevgeniy Dodis, Ariel Elbaz, Roberto Oliveira, and Ran Raz. Improved randomness

extraction from two independent sources. In APPROX-RANDOM, pages 334–344,

Cambridge, MA, USA, August 2004.

[14] Yevgeniy Dodis and Roberto Oliveira. On extracting private randomness over a pub-

lic channel. In APPROX-RANDOM, pages 252–263, Princeton, NY, USA, August

2003.

[15] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extrac-

tors: How to generate strong keys from biometrics and other noisy data. SIAM J.

Comput., 38(1):97–139, 2008.

[16] Vitaly Feldman, Parikshit Gopalan, Subhash Khot, and Ashok Kumar Ponnuswami.

New results for learning noisy parities and halfspaces. In Proc. 47th Annual IEEE

Symposium on Foundations of Computer Science (FOCS’06), pages 563–574, 2006.

[17] Ariel Gabizon, Ran Raz, and Ronen Shaltiel. Deterministic extractors for bit-fixing

102

sources by obtaining an independent seed. SIAM Journal on Computing, 36(4):1072–

1094, 2006.

[18] Oded Goldreich. Foundations of Cryptography: Volume 1, Basic Tools. Cambridge

University Press, Cambridge, 2001.

[19] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions.

In Proc. 21st Annual ACM Symposium on Theory of Computing (STOC’89), pages

25–32, 1989.

[20] Oded Goldreich, Noam Nisan, and Avi Wigderson. On Yao’sXOR lemma. Electronic

Colloquium on Computational Complexity (ECCC), 2(50), 1995.

[21] Oded Goldreich, Ronitt Rubinfeld, and Madhu Sudan. Learning polynomials with

queries: the highly noisy case. SIAM J. Disc. Math., 13(4):535–570, 2000.

[22] Eldon R. Hansen. A Table of Series and Products. Prentice-Hall, Englewood Cliffs,

N.J., 1975.

[23] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudo-

random generator from any one-way function. SIAM J. Comput., 28(4):1364–1396,

1999.

[24] Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their

applications. Bulletin (New series) of the American Mathematical Society, 43(4).

[25] Chun-Yuan Hsiao, Chi-Jen Lu, and Leonid Reyzin. Conditional computational en-

tropy, or toward separating pseudoentropy from compressibility. In Proc. Advances

in Cryptology - EUROCRYPT, pages 169–186, 2007.

[26] Russell Impagliazzo. Hard-core distributions for somewhat hard problems. In Proc.

36th Annual IEEE Symposium on Foundations of Computer Science (FOCS’95),

pages 538–545, 1995.

[27] Russell Impagliazzo, Ragesh Jaiswal, Valentine Kabanets, and Avi Wigderson. Uni-

form direct product theorems: simplified, optimized, and derandomized. In Proc.

103

40th Annual ACM Symposium on Theory of Computing (STOC’08), pages 579–588,

2008.

[28] Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random genera-

tion from one-way functions. In Proc. 21st Annual ACM Symposium on Theory of

Computing (STOC’89), pages 12–24, 1989.

[29] Russell Impagliazzo, Ronen Shaltiel, and Avi Wigderson. Extractors and pseudo-

random generators with optimal seed length. In Proc. 32nd Annual ACM Symposium

on Theory of Computing (STOC’00), pages 1–10, 2000.

[30] Stasys Jukna. Extremal Combinatorics. Springer-Verlag, 2001.

[31] Adam Tauman Kalai, Yishay Mansour, and Elad Verbin. On agnostic boosting and

parity learning. In Proc. 40th Annual ACM Symposium on Theory of Computing

(STOC’08), pages 629–638, 2008.

[32] Jesse Kamp, Anup Rao, Salil P. Vadhan, and David Zuckerman. Deterministic

extractors for small-space sources. In Proc. 38rd Annual ACM Symposium on Theory

of Computing (STOC’06), pages 691–700, 2006.

[33] Jesse Kamp and David Zuckerman. Deterministic extractors for bit-fixing sources

and exposure-resilient cryptography. SIAM Journal on Computing, 36(5):1231–1247,

2007.

[34] Robert König and Ueli M. Maurer. Generalized strong extractors and deterministic

privacy amplification. In Proc. Cryptography and Coding, pages 322–339, 2005.

[35] Chia-Jung Lee, Chi-Jen Lu, Shi-Chun Tsai, and Wen-Guey Tzeng. Extracting ran-

domness from multiple independent sources. IEEE Transactions on Information

Theory, 51(6):2224–2227, 2005.

[36] Chi-Jen Lu. Encryption against storage-bounded adversaries from on-line strong

extractors. Journal of Cryptology, 17(1):27–42, 2004.

104

[37] Chi-Jen Lu, Omer Reingold, Salil P. Vadhan, and Avi Wigderson. Extractors: Op-

timal up to constant factors. In Proc. 35th Annual ACM Symposium on Theory of

Computing (STOC’03), pages 602–611, San Diego, California, June 2003.

[38] Alexander Lubotzky, R. Phillips, and Peter Sarnak. Ramanujan graphs. Combina-

torica, 8(3):261–277, 1988.

[39] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Al-

gorithms and Probabilistic Analysis. Cambridge University Press, 2005.

[40] Joseph Naor and Moni Naor. Small-bias probability spaces: efficient constructions

and applications. SIAM Journal on Computing, 22(4):838–856, 1993.

[41] Noam Nisan and Amnon Ta-Shma. Extracting randomness: A survey and new

constructions. J. Comput. Syst. Sci., 58(1):148–173, 1999.

[42] Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of

Computer and System Sciences, 52(1):43–52, February 1996.

[43] Jaikumar Radhakrishnan and Amnon Ta-Shma. Bounds for dispersers, extractors,

and depth-two superconcentrators. SIAM Journal on Discrete Mathematics, 13(1):2–

24, 2000.

[44] Anup Rao. Extractors for a constant number of polynomially small min-entropy in-

dependent sources. In Proc. 38th Annual ACM Symposium on Theory of Computing

(STOC’06), pages 497–506, 2006.

[45] Ran Raz. Extractors with weak random seeds. In Proc. 37th Annual ACM Sympo-

sium on Theory of Computing (STOC’05), pages 11–20, Baltimore, MD, USA, May

2005.

[46] Ran Raz, Omer Reingold, and Salil P. Vadhan. Extracting all the randomness and

reducing the error in Trevisan’s extractors. In Proc. 31st Annual ACM Symposium

on Theory of Computing (STOC’99), pages 149–158, Atlanta, Georgia, USA, May

1999.

105

[47] Omer Reingold, Ronen Shaltiel, and Avi Wigderson. Extracting randomness via

repeated condensing. In Proc. IEEE 41st Annual Symposium on Foundations of

Computer Science (FOCS’00), pages 12–14, 2000.

[48] Ronen Shaltiel. Recent developments in explicit constructions of extractors. Bulletin

of the EATCS, 77:67–95, 2002.

[49] Ronen Shaltiel and Christopher Umans. Simple extractors for all min-entropies and

a new pseudo-random generator. In Proc. IEEE 42nd Annual IEEE Symposium on

Foundations of Computer Science (FOCS’01), pages 648–657, 2001.

[50] Michael Sipser. Expanders, randomness, or time versus space. Journal of Computer

and System Sciences, 36(3):379–383, 1988.

[51] Madhu Sudan, Luca Trevisan, and Salil Vadhan. Pseudorandom generators without

the XOR lemma. Journal of Computer and System Sciences, 62(2):236–266, 2001.

[52] Amnon Ta-Shma, Christopher Umans, and David Zuckerman. Loss-less condensers,

unbalanced expanders, and extractors. In Proc. 33rd Annual ACM Symposium on

Theory of Computing (STOC’01), pages 143–152, Crete, Greece, July 2001.

[53] Amnon Ta-Shma and David Zuckerman. Extractor codes. IEEE Trans. Info. Theory,

50(12):3015–3025, 2004.

[54] Luca Trevisan. Extractors and pseudorandom generators. Journal of ACM,

48(4):860–879, 2001.

[55] Luca Trevisan and Salil P. Vadhan. Extracting randomness from samplable distri-

butions. In Proc. IEEE 41st Annual IEEE Symposium on Foundations of Computer

Science (FOCS’00), pages 32–42, 2000.

[56] Salil P. Vadhan. Constructing locally computable extractors and cryptosystems in

the bounded-storage model. J. Cryptology, 17(1):43–77, 2004.

[57] John von Neumann. Various techniques used in connection with random digits.

National Bureau of Standards Applied Mathematics Series, 12:36–38, 1951.

106

[58] Avi Wigderson and David Zuckerman. Expanders that beat the eigenvalue bound:

Explicit construction and applications. Combinatorica, 19(1):125–138, 1999.

[59] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions. In Proc. IEEE

23rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’82),

pages 80–91, 1982.

[60] David Zuckerman. Lecture notes for CS 395T - pseudorandomness and combinato-

rial constructions. http://userweb.cs.utexas.edu/users/diz/.

[61] David Zuckerman. General weak random sources. In Proc. IEEE 31st Annual Sym-

posium on Foundations of Computer Science (FOCS’90), pages 534–543, 1990.

[62] David Zuckerman. Simulating BPP using a general weak random source. Algorith-

mica, 16(4/5):367–391, 1996.

[63] David Zuckerman. Randomness-optimal oblivious sampling. Random Structures and

Algorithms, 11:345–367, 1997.

107

108

Appendix A

An Example of Pair-wise

Independent Hash Family

We claim that the best result of [13] is a special case of generalized leftover hash lemma.

Let A1, . . . , Am be n × n matrices over GF [2], such that, ∀S ⊆ [m], S 6= ∅, the rank of

AS def
=
∑

i∈S A
i is n. Define a family of hash functions H = {fx|fx : {0, 1}n → {0, 1}m}

by

fx(y) = 〈A1x, y〉 ◦ 〈A2x, y〉 ◦ · · · ◦ 〈Amx, y〉

where Aix is a matrix-vector multiplication over GF [2].

We show that the family H is pair-wise independent. For any y, y′ ∈ {0, 1}n, y 6= y′,

define z = z1 ◦ · · · ◦ zn = y − y′ 6= 0. Let wt(z) denote the Hamming weight of z. Since

z 6= 0, wt(z) = k for some 1 ≤ k ≤ n. W.L.O.G., suppose that z1 = z2 = · · · = zk = 1,

and zk+1 = zk+2 = zn = 0. Let Ai
j denote the transpose of the jth row of Ai, and let

x = x1 ◦ · · · ◦ xn. Then we obtain

Pr
fx∈H

[fx(y) = fx(y
′)] = Pr

fx∈H
[∀i, 〈Aix, y〉 = 〈Aix, y′〉]

= Pr
fx∈H

[∀i, 〈Aix, z〉 = 0]

= Pr
fx∈H

[∀i, 〈Ai
1, x〉z1 + · · ·+ 〈Ai

n, x〉zn = 0]

= Pr
fx∈H

[∀i, 〈Ai
1, x〉+ 〈Ai

2, x〉+ · · ·+ 〈Ai
k, x〉 = 0]

= Pr
fx∈H

[∀i, 〈Ai
1 + Ai

2 + · · ·+ Ai
k, x〉 = 0]

where + is the addition over GF [2].

109

Now we evaluate the number of x = x1 ◦ · · · ◦ xn satisfying the following system of

equations:

〈A1
1 + A1

2 + · · ·+ A1
k, x〉 = 0

〈A2
1 + A2

2 + · · ·+ A2
k, x〉 = 0

...

〈Am
1 + Am

2 + · · ·+ Am
k , x〉 = 0

Suppose that some of the above m equations are dependent, then there exist b1, . . . , bt

for some 2 ≤ t ≤ m such that

(Ab1
1 + Ab1

2 + · · ·+ Ab1
k) + (Ab2

1 + Ab2
2 + · · ·+ Ab2

k) + · · ·+ (Abt
1 + Abt

2 + · · ·+ Abt
k) = 0

It means that the sum of the first k rows of Ab1 + Ab2 + · · ·+ Abt is 0, contradict Ab1 +

Ab2 + · · · + Abt having full rank. Hence these m equations are independent. There are

2n−m different values of x to satisfy the above system of m different equations and n

variables, hence

Pr
fx∈RH

[fx(y) = fx(y
′)] = Pr

fx∈RH
[∀i, 〈Aix, y − y′〉 = 0] =

1

2m
.

We complete the proof.

110

Appendix B

An Elementary Proof of Extractors

for Independent-Symbol Sources

We give an explicit seedless extractor for independent-symbol sources, which works for

any min-entropy k but only extracts about log k bits.

Theorem B.0.1. For any n, k,D ∈ N and any prime number M ≥ D, there is an explicit

(n,D, k, ε)-extractor Ext0 : [D]n → [M], with ε ≤ 1
2
·
√
M · e−k/(8M2 logD).

Note that for k ≥ Ω(M2 log2D), our extractor has ε ≤ 2−Ω(k/(M2 logD)). Alternatively,

for any ε ∈ (0, 1), our extractor can extract Ω(log k − log logD− log log(1/ε)) bits. This

achieves the same asymptotic bound as the recent result in [32], but here we provide a

different and completely elementary proof.

To extract randomness, we will work on the group ZM , for a prime M , and see any

symbol Xi ∈ [D] of the source as an element in ZM . Throughout this section, operation +

or − on elements in ZM is understood as an operation over the group ZM . Our extractor

Ext0 : [D]n → [M] is then defined as

Ext0(X) =
∑

t∈[n]
Xt,

which can be seen as taking an n-step walk on the group ZM , using the n symbols from

the source in the following way. Each time when we are at some state v ∈ ZM (initially

at 0 ∈ ZM) and read a symbol a from the source, we go to the state v + a ∈ ZM . The

111

extractor of Kamp and Zuckerman [33] for bit-fixing sources can be seen as a special case

of ours, with D = 2 and Xt ∈ {−1, 1}.
As in [33], we will show that each step of the walk brings the distribution closer to

uniform if the symbol read from the source contains some randomness. See a distribution

over ZM as an M-dimensional vector in the natural way. Suppose the current distribution

is P = (P1, . . . ,PM) and the next symbol in the source has a distribution β = (β1, . . . , βM)

(let βi = 0 for D + 1 ≤ i ≤ M). Then the next distribution is P̄ = (P̄1, . . . , P̄M) with

P̄i =
∑

j∈ZM

βjPi−j ,

for i ∈ ZM . Let U denote the uniform distribution over ZM . Let δ = P−U and δ̄ = P̄−U ,
i.e., δi = Pi− 1/M and δ̄i = P̄i− 1/M for i ∈ ZM . The following is our key lemma which

shows the progress we can make after each step.

Lemma B.0.2. ‖δ̄‖22 ≤ ‖δ‖22 · (1−H∞(β)/(4M2 logD)).

Proof. Note that for i ∈ ZM , δ̄i =
∑

j∈ZM
βjδi−j. So ‖δ̄‖22 =

∑

i(
∑

j βjδi−j)
2 =

∑

i

∑

j β
2
j δ

2
i−j+

∑

i

∑

j 6=ℓ βjβℓδi−jδi−ℓ which, using the equality ab = (a2 + b2 − (a− b)2)/2 on the second

term, equals

∑

j

β2
j

∑

i

δ2i−j +
∑

j 6=ℓ

βjβℓ

∑

i

(δ2i−j + δ2i−ℓ − (δi−j − δi−ℓ)
2)/2

=
∑

j

β2
j ‖δ‖22 +

∑

j 6=ℓ

βjβℓ‖δ‖22 −
∑

j 6=ℓ

βjβℓ

∑

i

(δi−j − δi−ℓ)
2/2

= ‖δ‖22 −
∑

j 6=ℓ

βjβℓ

∑

i

(δi − δi+j−ℓ)
2 /2,

where the last line follows from the fact that
∑

j β
2
j +

∑

j 6=ℓ βjβℓ = (
∑

j βj)
2 = 1. Then

we need the following two claims.

Claim B.0.3. For any nonzero s ∈ ZM ,
∑

i∈ZM
(δi − δi+s)

2 ≥ ‖δ‖22/M2.

Proof. First, by an average argument, there exists some i0 ∈ ZM such that δ2i0 ≥ ‖δ‖22/M .

Next, since
∑

i δi = 0, there exists some i1 ∈ ZM such that δi1 and δi0 have different

signs, so |δi0 − δi1 |2 ≥ δ2i0 ≥ ‖δ‖22/M . Since M and s are relatively prime, the sequence

of elements i0, i0 + s, i0 + 2s, . . . in ZM must have period M and contain every element

112

of ZM . Thus, there exists an integer t ∈ [1,M − 1] such that i1 = i0 + ts over ZM . By a

triangle inequality,
∑

1≤j≤t |δi0+(j−1)s − δi0+js| ≥ |δi0 − δi0+ts| = |δi0 − δi1 |. Finally,

∑

i∈ZM

(δi − δi+s)
2 ≥

∑

1≤j≤t

(δi0+(j−1)s − δi0+js)
2,

which by the Cauchy-Schwartz inequality of Lemma 2.7.2 is at least

(

∑

1≤j≤t

|δi0+(j−1)s − δi0+js|
)2

/t ≥ |δi0 − δi1 |2/t ≥ ‖δ‖22/M2.

Claim B.0.4.
∑

j 6=ℓ βjβℓ ≥ H∞(β)/(2 logD).

Proof. Let β̂ = max{βi : i ∈ [M]}, so H∞(β) = log(1/β̂). Then we have

∑

j 6=ℓ

βjβℓ =
∑

j

βj

∑

ℓ6=j

βℓ ≥
∑

j

βj(1− β̂) = 1− β̂.

Note that β is a distribution over [D], so β̂ ∈ [1/D, 1]. For β̂ in this range, we have

1− β̂ ≥ (log(1/β̂))(1− 1/D)/ logD ≥ H∞(β)/(2 logD).

Using the bounds of the claims in our derivation before, we have

‖δ̄‖22 ≤ ‖δ‖22 ·
(

1−
∑

j 6=ℓ

βjβℓ/(2M
2)

)

≤ ‖δ‖22 · (1−H∞(β)/(4M2 logD)),

which proves the lemma.

Now let us see how it can be used to prove the theorem.

Proof. (of Theorem B.0.1)

From Lemma B.0.2, we know that after reading the t’th symbol Xt from the source,

the L2-distance between the resulting distribution and the uniform one decreases by a

factor

1−H∞(Xt)/(4M
2 logD) ≤ e−H∞(Xt)/(4M2 logD).

113

Therefore, we have

‖Ext0(X)− U‖22 ≤
∏

t∈[n]
e−H∞(Xt)/(4M2 logD) = e−

∑

t∈[n] H∞(Xt)/(4M2 logD).

Since the n symbols of the source are independent of each other, we have
∑

t∈[n] H∞(Xt) =

H∞(X) = k, so the bound above becomes e−k/(4M2 logD). Then by the Cauchy-Schwartz

inequality of Lemma 2.7.2,

‖Ext0(X)− U‖1 ≤
√
M · ‖Ext0(X)− U‖2 ≤

√
M · e−k/(8M2 logD).

114

