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六子棋之區域證明搜尋 

 

研究生：林秉宏 指導教授：吳毅成 博士 

 
 

國立交通大學資訊科學與工程研究所博士班 

 

摘要 

西元 2005 年，吳毅成教授提出了一系列新的 K 子棋遊戲，在這類遊戲中，六子

棋特別引起高度的關注。本論文提出了一種新的迫著證明搜尋方式，稱之為區域證明

搜尋（RZOP），以 Thomesn 所提出的 lambda 搜尋為基礎，此方法會建構出相關證明

區域。區域證明搜尋是一種全新、通用而且優雅的方法。本論文已成功有效的解出許

多六子棋盤面的勝敗，其中包含多個開局，例如米老鼠開局，在過去是很受歡迎的一

種的開局。除了解題，本論文進一步改進區域證明搜尋的效率，稱之為區域內線段證

明搜尋（SRZOP），此方法有效加速證明盤面勝敗所需花費的時間。根據實驗數據中

12 種開局的統計結果，區域內線段證明搜尋可加快 2.04 倍的時間。最後，附錄 F 展

示作者和交大六號（六子棋 AI 程式）的相關比賽成果。例如在 2008 年第十三屆國際

奧林匹亞電腦賽局競賽的六子棋組，交大六號輕量版獲得冠軍，作者也因此榮獲交大

98 年度（春季）重要學術獎；第二屆人腦對電腦六子棋大賽，交大六號更得到 8 勝 0

敗的好成績。 
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Student：Ping-Hung Lin Advisor：Dr. I-Chen Wu     

 
 

Institute of Computer Science and Engineering 
National Chiao Tung University 

 

Abstract 

Wu and Huang presented a new family of k-in-a-row games, among which Connect6 (a 

kind of six-in-a-row) attracted much attention. For Connect6 as well as the family of 

k-in-a-row games, this thesis proposes a new threat-based proof search method, named 

Relevance-Zone-Oriented Proof (RZOP) search, developed from the lambda search 

proposed by Thomsen. The proposed RZOP search is a novel, general and elegant method 

of constructing and promoting relevance zones. This thesis solved effectively and 

successfully many new Connect6 game positions, including several Connect6 openings, 

especially the Mickey-Mouse Opening, which used to be one of the popular openings before 

we solved it. In addition to solvability, this thesis further improves the RZOP method, 

named Segmented Relevance-Zone-Oriented Proof (SRZOP) search, which speeds up the 

time to solve Connect6 game positions. The experimental results show 2.04 speedups in 

total to solve 12 openings. Finally, this thesis demonstrates records of our Connect6 

program, NCTU6, which won the gold in the 13th Computer Olympiads in 2008; and also 

won eight games and lost none against top Connect6 players in Taiwan in 2009. 
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Chapter 1 Introduction 

A generalized family of k-in-a-row games, named Connect(m, n, k, p, q) [65][66], were 

introduced and presented by Wu et al. Two players, named Black and White, alternately 

place p stones on empty squares1 of an m × n board in each turn. Black plays first and 

places q stones initially. The player who first gets k consecutive stones of his own 

horizontally, vertically and diagonally wins. Both players tie the game when the board is 

filled up with neither player winning. Games in this family are also called Connect games2 

in this thesis. For example, Tic-tac-toe is Connect(3, 3, 3, 1, 1), Go-Moku in the free style (a 

traditional five-in-a-row game) is Connect(15, 15, 5, 1, 1), and Connect6 played on the 

traditional Go board is Connect(19, 19, 6, 2, 1). For simplicity, let Connect(k,p,q) denote the 

game Connect(∞,∞,k,p,q), played on infinite boards. For example, when played on infinite 

boards, Go-Moku becomes Connect(5,1,1) and Connect6 becomes Connect(6,2,1). 

Among these Connect games, Connect6 attracted much attention due to three merits, 

fairness, simplicity of rules and high game complexity as described in [65][66]. Since 

Connect6 was introduced, hundreds of thousands of Connect6 games have been played on 

web sites, such as littlegolem.net [33] and cycgame.com [51]. Since 2006, several Connect6 

open tournaments [50] for human players have been held, such as NCTU Open, 

ThinkNewIdea Open, Russian Open and World Open. Connect6 has also been included as 

one of the computer game tournaments in Computer Olympiad [55] and Chinese Computer 

Games Contest [16], since 2006 and 2007 respectively. 

                                                 
1 Practically, stones are placed on empty intersections of Renju or Go boards. In this thesis, by squares, we 
mean intersections.  
2 The term of connect games defined in [22] covers the games such as Hex, Connect Four, etc. In this thesis, 
Connect are capitalized to indicate all the games in the family of Connect(m,n,k,p,q).  
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In Connect6, a segment is defined to be a set of six consecutive squares horizontally, 

vertically or diagonally on the board; while in Connect(m,n,k,p,q), a segment is a set of k 

consecutive squares. A segment is called an empty segment if all the squares on it are 

unoccupied yet. A segment is called an active segment of one player, if none of the squares 

are occupied by the opponent’s stones. An active segment of one player is called a win 

segment of the player, if all the squares on it are occupied by the player. Obviously, one 

player wins if the player makes a win segment. From the definition of Connect games, a 

game ends when one makes some win segment or all the squares of the board are already 

occupied. According to this definition, it is impossible for both players to have win 

segments simultaneously. 

1.1 Game Positions 

In Connect games, a game position P includes the information of all the stones and 

their occupied squares on the board and the turn of whom to play. The player to be proved 

to win, either Black or White, is called Attacker and the other Defender in this thesis. Both 

input and output game positions are in the standard format, named SGF [40]. Let σA(s) 

denote the information of an Attacker stone placed on the unoccupied square s, and P + 

σA(s) denote the position after placing an Attacker stone on s in position P without changing 

the turn. σD(s) and P + σD(s), are similarly defined for Defender. From the strategy stealing 

argument by Nash (cf. [7][65]), we obtain the following. If Attacker wins in P, Attacker 

wins in P + σA(s), too; and if Attacker wins in P + σD(s), Attacker wins in P, too.  

In this thesis, P⊕M denotes the position after one player makes move M and before the 

other makes the next move. In Connect6, let MA(s1,s2) denote an Attacker move where two 

Attacker stones are placed on both unoccupied squares s1 and s2. MD(s1,s2) and P⊕MD(s1,s2) 
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are similarly defined for Defender. Note that in contrast to P + σA(s1) + σA(s2), the position 

P⊕MA(s1,s2) indicates changing the turn from Attacker to Defender.  

In Connect6, one player, say Attacker, is allowed to make a null move, MA,φφ; that is, to 

place no stones, and a semi-null move, MA,φ(s1); that is, to place one stone only on square s1 

in P. Thus, the position P⊕MA(s1,s2) is equivalent to (P⊕MA,φ(s1)) + σA(s2) and (P⊕MA,φφ) + 

σA(s1) + σA(s2). From another viewpoint, null or semi-null moves are to place some null 

stones while placing normal stones. In Connect(m,n,k,p,q), we place p null stones for a null 

move, while placing one to p–1 null stones for semi-null moves.  

1.2 Playing Strategies for Connect6 

In Connect6 (other Connect games are similar), threats are the key to great reduction 

of the proof search tree. An active segment in which Attacker occupied four or five squares 

is called a threat segment of Attacker. The segment poses a threat and Defender has to block 

it, or Attacker wins by making a win segment in the next move. 

A move is called a single-threat move if the player who makes the move has one and 

only one threat after the move, a double-threat move if two, a triple-threat move if three, 

and a non-threat move if none. In Connect6, one player clearly wins by a 

triple-threat-or-more move (a move with at least three threats). Examples of the line 

patterns with one, two and three threats are shown in Figure 1 (below). 
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(a) 

     

(b) 

 

(c) 

Figure 1. Threat patterns for Connect6. (a) One threat, (b) two threats and (c) three threats. 

 

The defensive moves that block all the threats are called critical defenses, while 

removing any stones in the moves unblocks some threats. For example, White’s semi-null 

moves MD,φ(A) and moves MD(B,C) in both Figure 2 (a) and (b) are critical defenses, while 

moves MD(A,B) are not because the threats are still blocked without B. (Note that null 

moves are also critical defenses in positions without any threats according to the above 

definition.) Critical defenses are said to be normal if the numbers of stones in the defenses 

are the same as the numbers of threats; and relaxed, otherwise. For example, in Figure 2, 

semi-null moves MD,φ(A) are normal, while moves MD(B,C) are relaxed. In Connect6, 

relaxed critical defenses are not played frequently due to their inefficiency (using two stones 

to block only one threat). 
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(a) 

 

(b) 

Figure 2. (a) Normal critical defense and (b) relaxed critical defense. 

1.3 Winning Strategies for Connect6 

In [65][66], they showed a type of winning strategy, called Victory by Continuous 

Double-Threat-or-more moves (VCDT) in this thesis. It is similar to Victory by Continuous 

Four (VCF), a common term for winning strategies in the Renju community [41]. More 

specifically, the type of VCDT strategy is to win by making continuously double-threat 

moves and ending with a triple-or-more-threat move or connecting up to six in all variations. 

For example, in Figure 3 (below), White’s VCDT 12-18 (18 is a triple-threat move). 

 



 

 6

 

Figure 3. A sequence of VCDT winning strategy. 

Soon after the introduction of Connect6, many human experts found another type of 

winning strategy in which additional single-threat moves are involved, i.e., single-threat and 

double-threat moves are mixed (before ending with a triple-or-more-threat move). This type 

of winning strategy is herein called Victory by Continuous Single-Threat-or-more moves 

(VCST). For example, Lee [32], a Renju 3-dan player, found and claimed in late 2005 that 

White won starting from move 8 (both 8 and 10 are single-threat moves) in the game as 

shown in Figure 4 (below). 
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Figure 4. A sequence of VCST winning strategy. 

 

Similarly, the type of winning strategy with additional non-threat moves involved is 

called Victory by Continuous Non-Threat-or-more moves (VCNT). For example, Black won 

starting from move 1 (1 is a non-threat move) in Connect(6,2,3) as shown in Figure 5 

(below). 
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Figure 5. A sequence of VCNT winning strategy. 

 

Although VCST was unknown then, Wu and Huang [65][66] were already able to 

solve a simple VCNT case, that Black wins Connect(6,2,3). This clearly is a case of VCNT, 

since Black’s first winning move, as shown in Figure 6 (below), must be a non-threat move.  
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Figure 6. Black’s winning move in Conect(6,2,3). 

 

To solve it, they used a simple threat proof search method involving null or semi-null 

moves and relevance zones, as briefly described in Section 2.2. In the search method for 

solving the case Connect(6,2,3) with VCNT, both winning strategies for the null move (3-9 

in Figure 12 (a) of Section 2.2) and the semi-null move (3-11 in Figure 12 (b) of Section 2.2) 

must be VCDT. However, with more and more winning Connect6 positions investigated, we 

found that winning strategies for null and semi-null moves may be VCSTs or even VCNTs, 

thus making these positions much more difficult to solve. 
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1.4 Motivation 

Consider the two winning non-threat moves (proved in this thesis), moves 7 in Figure 

7 (a) and 6 in Figure 7 (b), respectively.  

 

     

                (a)                                     (b) 

Figure 7. (a) A position with Black winning. (b) A positon with White winning. 

 

The former, found in 2006 [50], was the key used to help prove that Black wins at 

move 3 in Figure 7 (a); that is, the opening move 2 is solved. In this case, for the null move 

in Figure 7 (a), Black wins by a VCDT as shown in Figure 8 (a). However, for the semi-null 

move 8 in Figure 8 (b), Black has no double-threat moves to win by a VCDT, though Black 

wins by a VCST starting at 9 in Figure 8 (b). 

 



 

 11

   

                   (a)                                     (b) 

Figure 8. (a) A VCDT for the null move in Figure 7 (a). (b) A winning single-threat move 9 

for the semi-null move 8. 

 

   

               (a)                                     (b) 

Figure 9. (a) A winning single-threat move 8 for a null move in Figure 7 (b). (b) A winning 

non-threat move 8 for a semi-null move 7. 
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The latter, the position in Figure 7 (b) found by Huang [25], was investigated to see 

whether the semi-null move 5 was safe enough, since the position at 5 was popular in the 

following sense. Among all the first-five-move positions of Connect6 games played by the 

players ranked above 1800 in [33] about 2% covered (or superset) the position according to 

the statistics discussed in [50]. The proof for this position is extremely complicated. Even 

for a null move by Black, White has no double-threat moves to win by a VCDT, but can 

actually win by a VCST starting at 8 as shown in Figure 9 (a). In addition, if a semi-null 

move is made at 7 in Figure 9 (b), White cannot win by a VCDT or even a VCST, thus 

making the position in Figure 7 (b) much more complicated to solve. 

This thesis proposes a new threat-based proof search method in Chapter 3, named 

Relevance-Zone-Oriented Proof (RZOP) search, developed from the lambda search 

proposed by Thomsen [52]. The proposed RZOP method is also generalized to all Connect 

games in the Appendix D. In the past, many researchers [1][2][11][12][52] had proposed 

threat-based search methods. Lambda search is to formalize the search trees with null 

moves and to solve positions of games such as Go and Chess. In lambda search, null moves 

are involved with different orders of threat sequences, also called lambda-trees.  

From the viewpoint of lambda search, a VCDT is a typical λ1-tree with value 1 (cf. 

[52]). However, the definition of lambda search cannot be directly applied to Connect6 or 

Connect games with p ≥ 2. For Connect games, this thesis modifies the definition of lambda 

search in Section 2.3, and replaces the notation λi by Λi. Under the new definition, a VCST 

is a Λ2-tree with value 1, the winning strategy for the position in Figure 7 (a) is a Λ3-tree 

with value 1, while that in Figure 7 (b) is a Λ4-tree with value 1. The Λ search formalized in 

this thesis is able to solve Λ1-trees to Λ4-trees with value 1 for Connect6.  

Related works are given in Chapter 2. Together with a proof number search 

[3][9][23][27][35][36][43][46][54][64], this thesis solved effectively and successfully many 
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new Connect6 game positions, including several Connect6 openings, especially the 

Mickey-Mouse Opening, as described in Section 5.3. This opening used to be one of the 

popular openings before we solved it.  

Chapter 4 further presents an improved method, named Segmented 

Relevance-Zone-Oriented Proof (SRZOP) search, which speeds up the time to solve 

Connect6 game positions. Experiments are illustrated in Chapter 5, where the detail results 

are shown in Appendix A, B and C. Chapter 6 concludes this thesis. Appendix E explains 

draw k-in-a-row games. Appendix F demonstrates records of our Connect6 program NCTU6, 

which won the gold in the 11th and 13th Computer Olympiads [59][67] in 2006 and 2008, 

respectively; and also won eight games and lost none against top Connect6 players in 

Taiwan in 2009 [30].  
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Chapter 2 Related Works 

This chapter gives definitions and notation related to search trees and lambda search in 

Sections 2.1 and 2.2 respectively. 

2.1 Search Trees 

This thesis basically follows the definitions of search trees in [10][37]. A search tree is 

shown in Figure 10 (a) below, where rectangle and circle nodes indicate the positions in 

Attacker’s and Defender’s turns3, respectively. The value of a leaf is 1, if Attacker makes a 

win segment, and 0, otherwise. The value of a search tree is the minimax value of the tree. 

Attacker wins in the root position if the search tree has value 1 and all the internal circles 

expand all Defender’s legal moves. 

A strategy S of Attacker is viewed as a move-generating function of positions P that 

are in Attacker’s turn. Naming, S(P) indicates the move that Attacker chooses to make 

according to the strategy S. In a search tree following S, each position P expands at most 

one move S(P). A strategy S of Attacker is called a winning strategy for position P, if and 

only if the value of the search tree rooted at P is 1 following S and all Defender’s legal 

moves are generated in the tree. Thus, we obtain Corollary 1 (below). A tree as shown in 

Figure 10 (b) is called a solution tree in [10][37]. 

Corollary 1. Attacker wins in a position P if and only if there exists at least one winning 

strategy of Attacker in P. ▌ 

                                                 
3 When we say that a position P is in Attacker’s (Defender’s) turn, we mean that Attacker (Defender) is to 
move next in P.  
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(a) 

 

(b) 

Figure 10. (a) A search tree and (b) a solution tree. 
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(a) 

 

(b) 

Figure 11. (a) Making squares of moves by inserting small boxes. (b) Combining the same 

edges from (a). 
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In order to investigate more closely squares of defensive moves, insert small rectangles 

onto the corresponding edges that are broken into two, marked s1 and s2 respectively, as 

shown in Figure 11 (a). Furthermore, the edges are combined with the same s1, as shown in 

Figure 11 (b). Note that null stones are marked as φ and the corresponding edges are 

indicated by dashes.  

2.2 Null Move Heuristics for Connect6 

To solve Connect(6,2,3), Wu and Huang [65][66] used a simple threat proof search 

method involving null or semi-null moves and relevance zones, as briefly described in the 

following. Let White place no stones, called a null move in [65][66]. Obviously, Black wins 

by VCDT 3-9 as shown in Figure 12 (a) below. Then, a relevance zone Z, the area of gray 

squares in Figure 12 (a), can be derived to indicate that White must place at least one of the 

two stones inside this zone, or Black wins by simply replaying the same VCDT. Next, all 

squares s in Z are verified as follows. Let White place one stone on s only, called a 

semi-null move in [65][66]; for example, move 2 in Figure 12 (b). Again, Black is able to 

win by another VCDT 3-11. Thus, another relevance zone Z', the gray area in Figure 12 (b), 

can be derived again to indicate that White must place another stone inside Z', or Black wins 

by replaying the same VCDT. Finally, all s are verified such that Black wins over all moves 

placed at s and s', where s' is in the Z' corresponding to the semi-null move at s. Hence, 

Black was proved to win. 
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(a) 

 

(b) 

Figure 12. (a) A VCDT for a null move in Figure 6. (b) A VCDT for a semi-null move 2. 
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Figure 13. The proof search tree for solving Connect(6,2,3). 

 

A verifier V (for Attacker) is to verify whether Attacker wins in a position P by 

following a strategy S. Specifically, if V(P,S) returns the value 1, then Attacker wins in P 

and S is a winning strategy for P. A straightforward verifier is to verify it by traversing 

exhaustively the whole solution tree. Clearly, it is infeasible in most cases, especially in 

case of very large boards or even infinite boards. Fortunately, in Connect games, the 

traversal of the search tree for proof can be greatly reduced according to threats, as 

described in Chapter 1. The traversed search tree for proof by a verifier is called a proof 

search tree. The proof search tree for solving Connect(6,2,3) is shown in Figure 13. 
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2.3 Lambda Search for Connect6 

In [52], Thomsen proposed using the lambda search to express how direct Attacker can 

achieve a goal. In Connect games, the goal is normally to make a win segment. The 

formalization of lambda search is modified for Connect games as follows.  

Definition 1. In Connect games, a Λr-tree is a search tree which comprises all legal 

Λr-moves. If a Λr-move is an Attacker move, the following condition holds. For all 

subsequent null moves or semi-null moves MD made by Defender, if MD have exactly u null 

stones, where 1 ≤ u ≤ p, there exists at least one subsequent Λi-tree with value 1, where 0 ≤ i 

≤ r – u or i = 0 if r < u. If a Λr-move is a Defender move, the following condition holds. 

There exist no subsequent Λi-trees with value 1, where 0 ≤ i ≤ r – 1. In a Λr-tree, a node is a 

leaf (without any children) if there are no Λr-moves following it. The value of a leaf is 1 if 

Defender is to move, and 0 if Attacker is to move. The value of a Λr-tree is either 1 

(indicating that Attacker wins) or 0 (otherwise), derived using minimax calculation. The 

value of a Λ0-tree (where Attacker to move) is simply 1 if Attacker makes a win segment in 

the next move. ▌ 
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Figure 14. A Λ3-tree. 

 

In case of p = 1, the definition of Λr is the same as that of λr (the goal is to win) in [52]; 

that is, a Λr-tree is a λr-tree and a Λr-move is a λr-move, and vice versa. In case of p = 2, 

such as Connect6, a Λ3-tree is illustrated in Figure 14 and move Ma in the tree is a Λ3-move, 

since the values of Λ1-tree and all Λ2-trees in the left box are all 1. In addition, moves M3, 

M4, M7 and M8 are Λ3-moves, if Attacker has no subsequent Λ0-moves, Λ1-moves or 

Λ2-moves. By following the proof of Theorem 1 in [52], we derive the following theorem 

(whose proof is omitted).  

Theorem 1. For a Λr-tree rooted in a position P, if a minimax search on it returns the value 

1, Attacker wins in P. ▌ 

Definition 2. A winning strategy is called a Λr-strategy for a position P, if the subsequent 

non-null moves following the strategy are all Λi-moves, where 0 ≤ i ≤ r. ▌ 
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Figure 15. A Λ3-strategy. 

 

From the above definition, a VCDT is a Λ1-strategy, while a VCST is a Λ2-strategy. 

For example, there exists a Λ2-strategy for winning position 7 in Figure 4 (Attacker is 

White), where moves 8 to 18 are all Λ2-moves. VCNTs are Λ3-strategies or strategies of 

higher orders, as illustrated in the following. In Figure 6, move M623 is a Λ3-move, and the 

rest of Attacker moves are Λ1-moves, so it is a Λ3-strategy for Connect6(6,2,3). In Figure 7 

(a), move 7 is a Λ3-move, and the rest of Attacker moves are Λ1-moves or Λ2-moves, so it is 

a Λ3-strategy. Figure 15 shows a general Λ3-strategy. However, it is more complicated in 

Figure 7 (b), where move 6 is a Λ4-move. Section 5.2 shows that it is a Λ4-strategy. 

From Definition 2, a Λr-strategy, r ≥ 1, also implies that for a move with u null stones 

Attacker has a Λr– u-strategy. For example, in the Λ3-strategy in Figure 15, Attacker has a 

Λ1-strategy for the null move and Λ2-strategies for all the semi-null moves. 
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Chapter 3 Relevance-Zone-Oriented Proof Search for 

Connect6 

As seen in Section 2.3, the lambda search is a powerful method for proving the 

winning positions with different orders of threat sequences. The next important issue for 

lambda search is to construct relevance zones to reduce greatly the search space. In general, 

different applications construct relevance zones in different ways. In Connect games, it is 

critical to construct relevance zones in order to propagate relevance zones across different 

orders of threat sequences. For example, in Figure 15, the relevance zones derived in the 

VCDT (Λ1-strategy) or VCSTs (Λ2-strategies) can be used in the whole search tree 

(Λ3-strategy). This chapter defines relevance zones and proposes the 

relevance-zone-oriented proof search for Connect6. 

3.1 Relevance Zones 

This section defines relevance zones, which are elegantly employed to solve Connect 

games. A set of squares on the board is called a zone. A sequence of zones with size r, Ψ = 

<Z1, Z2, …, Zr>, is incremental, if the condition Z1 ⊆ Z2 ⊆…⊆ Zr holds. In the rest of this 

thesis, sequences of zones with different sizes are all incremental and are thus not explicitly 

specified. In addition, these zones usually indicate the squares to be chosen for stones to be 

placed on, so only unoccupied (or empty) squares are of interest. 
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Figure 16. A sequence of zones <Z1, Z2, Z3>. 

 

In a position P, its unoccupied zone, denoted by Zun(P), is the zone that comprises all 

the unoccupied squares. That is, Zun(P) = Zboard\ZP, where Zboard is the zone for the whole 

board and ZP is the set of all occupied squares in P. Let ¬P(Z) denote Zun(P)\Z and indicate 

the set of unoccupied squares outside Z. Consider a sequence of zones Ψ = <Z1, Z2, …, Zr> 

in P. A sequence of unoccupied squares ϕ = <s1, s2, …, sr'>, where r' ≤ r, is said to be 

outside Ψ or irrelevant to Ψ, if all si∉Zi or si∈¬P(Zi). Let ϕ∈¬P(Ψ) denote the relation that 

ϕ is irrelevant to Ψ in P. Implicitly, ¬P(Ψ) denotes <¬P(Z1), ¬P(Z2), …, ¬P(Zr)>. For 

example, in Figure 16, <s', s'', s'''>, <s', s'' >, <s'', s'''>, <s'>, <s'''> and even the empty 

sequence <> are all irrelevant to <Z1, Z2, Z3>, while <s>, <s', t'>, <s', s'', t''>, <s', s'', s''', t'''>, 

<s'', s'>, <s, s', s''> are not. For simplicity, let σA(ϕ) denote σA(s1) + σA(s2) + … + σA(sr') = 

Σ1≤i≤r'σA(si). Similarly, σD(ϕ) = Σ1≤i≤r'σD(si). 

Definition 3. A sequence of zones Ψ is called a sequence of relevance zones for Attacker in 

a position P, if and only if Attacker wins in P + σD(ϕ) for all irrelevant ϕ; that is, ϕ∈¬P(Ψ). 

Let RZ(P) denote the set of all the sequences of relevance zones for Attacker in P. (Use the 

notation RZ(P) instead of RZA(P), since only relevance zones for Attacker are discussed in 

this thesis). ▌ 
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From Definition 3, if RZ(P) is not empty, there must exist some Ψ in RZ(P). This 

implies that Attacker wins in P by choosing the empty sequence of squares <> for ϕ, since ϕ 

is irrelevant to Ψ as described above. Thus, Corollary 2 is obtained. 

Corollary 2. If there exists at least one sequence of zones Ψ in RZ(P), then Attacker wins in 

P. ▌ 

 

 

Figure 17. A sequence of relevance zones Ψ = <Z1, Z2> for the winning position in Figure 

12 (a). 

 

For the winning sequence in Figure 12 (a), Figure 17 illustrates relevance zones Ψ = 

<Z1, Z2>, where Z1 is the set of empty squares marked with a small “1”, and Z2 marked “1” 

and “2”. Note that in the rest of this thesis, a sequence of zones is shown in this manner. 

Interestingly, Z2 is the same as Z in Figure 12 (a). From observation, Black still wins over 

all irrelevant ϕ∈¬P(Ψ). That is, if White places one in ¬P(Z1) and the other in ¬P(Z2), Black 

still wins by replaying the winning sequence in Figure 12 (a). The result is slightly stronger 

than that in [65][66].  

Lemma 1 shows an important property that appending extra Zboard to a sequence of 
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relevance zones is still in RZ(P). Note that we use Zboard, instead of Zun(P), in order to be 

independent of the position P, for simplicity. For example, in Figure 17, <Z1, Z2, Zboard> is 

also in RZ(P). 

Lemma 1. Assume that Ψ = <Z1, Z2, …, Zr> is in RZ(P). Then, Ψ' = <Z1, Z2, …, Zr, Zboard> 

is also in RZ(P). 

Proof. Consider all irrelevant ϕ∈¬P(Ψ'). For this lemma, it suffices to prove that Attacker 

wins in P + σD(ϕ). Since ¬P(Zboard) is empty, ϕ must not have the (r + 1)-st item. From the 

definition, we also obtain ϕ∈¬P(Ψ). Since Ψ is assumed to be in RZ(P), Attacker wins in P 

+ σD(ϕ) due to ϕ∈¬P(Ψ). ▌ 

 

From Lemma 1, two sequences of relevance zones with different sizes can be adjusted 

to those with the same size by appending extra Zboard or removing Zboard at the end. For 

simplicity of discussion, this thesis uses some more notation for operations on sequences of 

zones with the same size in P, say Ψ = <Z1, Z2, …, Zr> and Ψ' = <Z'1, Z'2, …, Z'r>, as 

follows. 

 Let Ψ ⊆ Ψ' indicate that Ψ is contained in Ψ' pair wise; that is, Zi ⊆ Z'i over all 1 ≤ i ≤r.  

 Let Ψ∪Ψ' = <Z1∪Z'1, Z2∪Z'2, …, Zr∪Z'r>.  

 Let Ψ∪Z = <Z1∪Z, Z2∪Z, …, Zr∪Z> and Ψ\Z = <Z1\Z, Z2\Z, …, Zr\Z>, where Z is a 

zone.  

 Let Ψ≪1 denote <Z2, Z3, …, Zr, Zboard> and indicate promotion of the zones in Ψ (that 

is, shifting zones to the left by 1) with extra Zboard. Similarly, let Ψ≪2 denote 

(Ψ≪1)≪1, and Ψ≪i denote (Ψ≪(i–1))≪1, where i ≥ 2. 

 

From the above notation and definitions, more properties are shown in Lemma 2 and 

Lemma 3 as follows. 
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Lemma 2. Assume that Ψ is in RZ(P) and Ψ ⊆ Ψ'. Then, Ψ' is also in RZ(P). 

Proof. Let Ψ = <Z1, Z2, …, Zr> and Ψ' = <Z'1, Z'2, …, Z'r>. Consider all irrelevant 

ϕ∈¬P(Ψ'). It suffices to prove that Attacker wins in P + σD(ϕ). Since Ψ ⊆ Ψ', the condition 

ϕ∈¬P(Ψ') also implies ϕ∈¬P(Ψ). Since Ψ is in RZ(P), Attacker wins in P + σD(ϕ) due to 

ϕ∈¬P(Ψ). ▌ 

 

Lemma 3 (below) shows important properties that are employed to improve the 

verifiers in Section 3.2. 

Lemma 3. Assume that Ψ = <Z1, Z2, …, Zr> is in RZ(P). The following two properties are 

satisfied. 

1. Assume that ¬P(Z1) is not empty. Let the unoccupied square be s∈¬P(Z1). Then, Ψ≪1 

is in RZ(P+σD(s)). 

2. Let ϕ be a sequence of unoccupied squares <s1, s2, …, sr'> in ¬P(Ψ), where r' ≤ r. Then, 

Ψ≪r' is in RZ(P + σD(ϕ)).  

Proof. It suffices to prove the first property, since the first implies the second by induction.  

Let Ψ' = Ψ≪1 and consider all irrelevant ϕ' = <s2, …, sr'>∈¬P(Ψ'), where r' ≤ r. For the 

first property, it suffices to prove that Attacker wins in (P + σD(s)) + σD(ϕ'). Let ϕ = <s, 

s2, …, sr'>. Then, the condition ϕ∈¬P(Ψ) holds due to s∈¬P(Z1). Since Ψ is in RZ(P), 

Attacker wins in P + σD(ϕ) due to ϕ∈¬P(Ψ); that is, Attacker wins in (P + σD(s)) + σD(ϕ') 

(= P + σD(ϕ)). ▌ 
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3.2 The Proposed Verifier VC6 

For solving positions in Connect6, this section investigates a verifier V(P,S) that also 

construct recursively a sequence of zones Ψ(P) = <Z1(P), Z2(P), …, Zr(P)> with the 

following property. 

Property RZV: In the case that V(P,S) returns the value 1, the sequence of zones Ψ(P) 

constructed by V(P,S) is in RZ(P). 

This section presents such a verifier, named VC6(P,S), with a new proof search method 

for Connect6. This method will be generalized to all Connect games in Appendix D. The 

verifier VC6(P,S) is described in Subsections 3.2.1, 3.2.2 and 3.2.3 respectively for three 

distinct kinds of P, namely endgame positions, positions in Attacker’s turn and positions in 

Defender’s turn. Finally, Section 3.3 concludes with Theorem 2, showing that the verifier 

satisfies Property RZV in all cases. 

3.2.1 Endgame Positions 

If Attacker does not win in the endgame position P, the verifier simply returns the 

value 0. If Attacker wins in P (i.e., Attacker has a win segment in P), the verifier returns 1 

and constructs Ψ(P) in the following operation. 

EP-1. For each active segment G of Defender containing exactly i unoccupied squares, 

these squares in G are all added into Zi(P) or higher-order zones; that is, Zj(P) for 

all j ≥ i. In other words, for each active segment G of Defender containing at most i 

unoccupied squares, add all of these squares in G into Zi(P). 
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(a) 

 

(b) 

Figure 18. (a) Relevance zones in a line and (b) in a board, upon winning with a win 

segment. 

 

Let us illustrate the above operation by the line shown in Figure 18 (a), where 

Defender is White. Following the operation, the square marked with “1” is in Z1, those 

marked with “1” or “2” are in Z2, and so on. For example, segment G has only one 

unoccupied square that is in Z1 or higher-order zones, while segment G' has two unoccupied 

squares that are in Z2 or higher-order zones. It is observed that placing one white stone on 

the square in Z1 forms a counter win segment (e.g., G) or an inversion that may prevent 

Attacker from winning. Note that if Defender has an inversion, this position P is 
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unreachable since neither can have win segments simultaneously (as described in the 

previous section), who wins first is thus unknown. On the other hand, Attacker still wins if 

one white stone is placed in square s1, where s1∉Z1. Similarly, Attacker still wins if one 

white stone is placed on s1, where s1 ∉ Z1, and the other on s2, where s2 ∉ Z2. The above can 

be generalized to higher orders, and to all lines (or segments) on a board. An example of 

constructing zones <Z1, Z2> on a board is illustrated in Figure 18 (b). Note that move 10 in 

the figure is simply one of all defenses and is chosen for illustration. In addition, since move 

9 clearly wins already, Subsection 3.2.3 will describe how to speed up the establishment of 

relevance zones. 

From the above observation, it can be derived that the constructed Ψ(P) in operation 

EP-1 is in RZ(P). This implies that VC6(P,S) satisfies Property RZV in the case of endgame 

P, as shown in Lemma 4.  

Lemma 4. Assume P to be an endgame position. Property RZV is satisfied for VC6(P,S).  

Proof. Omitted. ▌ 

 

In Connect6, all Zi(P) with i ≥ 6, are nearly the same as Zun(P), except for those 

unoccupied squares covered by none of active segments of Defender. For example, if an 

unoccupied square is surrounded by Attacker’s squares, it is clearly covered by none of 

active segments of Defender and is not included in these Zi(P). However, such squares are 

normally not many, especially when board sizes are large and only a small number of stones 

are in positions. Practically, we simply ignore all Zi(P) with i ≥ 6 or use Zun(P) whenever 

needed. 
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3.2.2 Positions in Attacker’s Turn 

In such positions, Attacker simply follows strategy S to make the move S(P) in P. Let 

PA denote P⊕S(P). This verifier first performs VC6(PA,S) recursively. If VC6(PA,S) returns the 

value 0, this verifier VC6(P,S) also returns 0. On the other hand, if VC6(PA,S) returns 1, this 

verifier VC6(P,S) returns 1, too; and constructs Ψ(P) in the following operation. 

AT-1. Let Ψ(P) = Ψ(PA) ∪ ZS, where ZS ={s | s∈S(P)}. 

 

Intuitively, placing any stones on the squares in ZS by Defender in advance may block 

attacks and prevent Attacker from winning. In this sense, the squares in ZS are relevant and 

are therefore contained in all Zi(P) (or Ψ(P)).  

In fact, the above operation AT-1 also implies the property, ¬PΨ(P) = ¬PAΨ(PA), for 

the following reason. From the operation, the condition Zi(P) = Zi(PA) ∪ ZS holds for all i. In 

addition, since PA = P⊕S(P), it is clear that Zun(PA) = Zun(P)\ZS or Zun(P) = Zun(PA)∪ZS. 

Thus, for all i, we derive ¬P Zi(P) = Zun(P)\Zi(P) = (Zun(PA)∪ZS)\(Zi(PA)∪ZS) = Zun(PA)\Zi(PA) 

= ¬PAZi(PA). From this property, Lemma 5 (below) shows that this verifier VC6(P,S) satisfies 

Property RZV if VC6(PA,S) satisfies Property RZV. 

Lemma 5. Assume a position P in Attacker’s turn. From the above, assume that VC6(PA,S) 

satisfies Property RZV, where PA = P⊕S(P). This verifier VC6(P,S) satisfies Property RZV.  

Proof. Assume that this verifier VC6(P,S) returns the value 1. For this lemma (this verifier 

satisfies Property RZV), it suffices to prove that the constructed Ψ(P) is in RZ(P). From the 

above operation, VC6(PA,S) must also return 1. Since VC6(PA,S) satisfies Property RZV from 

the lemma, Ψ(PA) is in RZ(PA). 

Consider all irrelevant ϕ, where ϕ∈¬PΨ(P). It suffices to prove that Attacker wins in P 

+ σD(ϕ). Since the property ¬PΨ(P) = ¬PAΨ(PA) is satisfied as described above, the 
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condition ϕ∈¬PAΨ(PA) holds too. Since Ψ(PA) is in RZ(PA) from above, Attacker wins in PA 

+ σD(ϕ) due to ϕ∈¬PAΨ(PA). Since Attacker wins in PA + σD(ϕ) = (P + σD(ϕ))⊕S(P), 

Attacker wins in P + σD(ϕ) by choosing the move S(P). ▌ 

3.2.3 Positions in Defender’s Turn 

For positions in Defender’s turn, Lemma 6 shows a very important property used in 

this section as well as the Appendix. 

Lemma 6. Assume a position P in Defender’s turn. For a given sequence of zones Ψ, 

assume that for all Defender moves MD there exists some ΨD such that ΨD ⊆ Ψ and ΨD is in 

RZ(P⊕MD). Then Ψ is in RZ(P).  

Proof. Consider all irrelevant ϕ∈¬PΨ. For this lemma, it suffices to prove that Attacker 

wins in P + σD(ϕ).  

Now, consider all Defender moves MD in P + σD(ϕ). From this lemma, there exists 

some ΨD such that ΨD ⊆ Ψ and ΨD is in RZ(P⊕MD). Since ΨD ⊆ Ψ, the condition ϕ∈¬PΨ 

implies ϕ∈¬PΨD. Since squares in MD and σD(ϕ) are mutually exclusive, ϕ∈¬PΨD also 

implies ϕ∈¬P⊕MDΨD. Since ΨD is in RZ(P⊕MD) from above, Attacker wins in (P⊕MD) + 

σD(ϕ) due to ϕ∈¬P⊕MDΨD. Since (P⊕MD) + σD(ϕ) = (P + σD(ϕ))⊕MD, Attacker also wins 

in (P + σD(ϕ))⊕MD. From the above, since Attacker wins in (P + σD(ϕ))⊕MD over all 

Defender moves MD, Attacker wins in P + σD(ϕ). ▌ 

 

A straightforward verifier is to verify whether Attacker wins for all Defender moves, as 

follows. The verifier VC6(P,S) returns the value 1, if the recursive VC6(P⊕MD,S) returns 1 for 

all Defender moves MD; otherwise, it returns 0. In the case that this verifier VC6(P,S) returns 

1, the zones Ψ(P) are constructed in the following operation.  
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DT-1. Initialize all zones in Ψ(P) to be empty. Then, for all Defender moves MD, let Ψ(P) 

= Ψ(P)∪Ψ(P⊕MD). 

 

From the above operation, the condition Ψ(P⊕MD) ⊆ Ψ(P) clearly holds for all MD. 

Assume that all the recursive VC6(P⊕MD,S) satisfy Property RZV. Then, all Ψ(P⊕MD) are in 

RZ(P⊕MD) for all Defender moves MD. From Lemma 6, we obtain that Ψ(P) is in RZ(P); 

and therefore, the verifier satisfies Property RZV. By induction, the above straightforward 

verifier satisfies Property RZV in all cases. 

However, the above straightforward verifier is apparently inefficient, since it searches 

exhaustively all Defender moves, even when Attacker moves have some threats. The 

situation is even worse in the case that the board size is very large or infinite. In this 

subsection, an efficient and elegant verifier is devised to reduce the search space by making 

use of both threats and relevance zones. In Connect6, the position P (in Defender’s turn) can 

be classified into the following four cases. The number of Attacker threats in P is (1) three 

or more, (2) two, (3) one and (4) zero. The four cases are discussed respectively in the 

following four subsections. 

3.2.3.1. Three Threats or More 

In this case, Attacker is sure to win by simply following the strategy, S3T, as follows. 

For each Defender move, since the move must leave some threat segments unblocked, 

Attacker wins simply by making a win segment from the unblocked one. Since the strategy 

is a sure win, the verifier returns the value 1 and constructs the zones (initialized to be 

empty) in the following operations. 
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T3-1. Add all unoccupied squares s on threat segments into all Zi(P).  

T3-2. For each active segment G of Defender containing exactly i + 2 unoccupied 

squares, all these squares in G are added into all Zj(P) or higher-order zones. In 

other words, for each active segment G of Defender containing at most i + 2 

unoccupied squares, add all these squares in G into Zi(P). 

 

 

(a) 

 

(b) 

Figure 19. (a) Relevance zones in a line and (b) in a board, upon winning with three or more 

threats. 
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Let us illustrate the above operations by the line shown in Figure 19 (a), where 

Defender is White. Zones in the line are marked in a way similar to that in Figure 18 (a). It 

is observed that placing one white stone in G or Z1 results in a counter threat segment or an 

inversion that may threaten Attacker to defend in some of his earlier moves and prevent 

Attacker from winning. On the other hand, Attacker still wins if one white stone is placed 

on other squares s1, where s1∉Z1. Similarly, Attacker still wins if one white stone is placed 

on s1, where s1 ∉ Z1, and the other on s2, where s2 ∉ Z2. The above can be generalized to 

higher orders, and to all lines (or segments) on the board. An example of constructing two 

zones <Z1, Z2> on a board is illustrated in Figure 19 (b). Lemma 7 shows that in this case 

the verifier satisfies Property RZV; that is, Ψ(P) is in RZ(P). 

Lemma 7. Assume that Defender is to move and Attacker has three or more threats in P. 

The verifier described above satisfies Property RZV.  

Proof. For this lemma, it suffices to prove that the constructed Ψ(P) is in RZ(P). Consider 

all Defender moves MD. Attacker simply follows a strategy S3T to connect six from an 

unblocked threat segment. Let PD = P⊕MD and P6 = PD⊕S3T(PD). From Lemma 4 and 

Lemma 5, Ψ(P6) and Ψ(PD) are in RZ(P6) and RZ(PD), respectively. 

To prove that Ψ(P) is in RZ(P), it suffices to prove from Lemma 6 that Ψ(PD) ⊆ Ψ(P), 

since Ψ(PD) is already in RZ(PD). From Subsection 3.2.2, Ψ(PD) = Ψ(P6) ∪ ZS, where ZS 

={s | s∈S3T(PD)}. From operation T3-1, all squares in ZS are added into Ψ(P). Thus, it 

suffices to prove that Ψ(P6) ⊆ Ψ(P). 

Since Attacker connects six in P6, operation EP-1 (in Subsection 3.2.1) is employed to 

construct zones Ψ(P6). The operation is restated as follows. For each active segment G of 

Defender containing at most i unoccupied squares in P6, all the squares in G are added into 

Zi(P6). Since one move has at most two squares, at most two occupied squares in G were 

occupied by move MD. Therefore, G contains at most 2 + i unoccupied squares back in P 



 

 36

(before making move MD). From operation T3-2, all these unoccupied squares are also 

added into Zi(P). For example, let both lines in Figure 18 (a) and Figure 19 (a) be 

respectively in positions P6 and P, where move MD is placed on the two leftmost squares 

marked “1” in segment G in Figure 19 (a). Thus, the two squares marked “2” in segment G' 

in Figure 18 (a) are also added into Z2(P) in Figure 19 (a). From the above observation, we 

can derive Ψ(P6) ⊆ Ψ(P). ▌ 

Since all active segments G of Defender contains at most 6 (= 4 + 2) unoccupied 

squares in Connect6, all these squares in G are added into all Zi(P) from operation T3-2, 

where i ≥ 4. Thus, these Zi(P) are nearly the same as Zun(P), except for the unoccupied 

squares not covered by any active segments of Defender, e.g., the unoccupied squares 

surrounded by all Attacker squares. Similar to the argument in Subsection 3.2.2, we 

construct zones with size three, and simply use Zun(P) for those higher-order zones, 

whenever needed. 

3.2.3.2. Two Threats 

When Attacker has two threats in P, Defender must defend by blocking the two threats. 

In this case, the verifier performs the following operations. 

T2-1. For each Defender move MD that blocks the two threats, perform the following.  

a. Return the value 0 if the recursive VC6(PD,S) returns the value 0, where PD = 

P⊕MD.  

b. Let Ψ(P) = Ψ(P)∪Ψ(PD).  

T2-2. Continue to construct zones by both operations T3-1 and T3-2, and return 1. 
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Figure 20. A winning positon with two threats for Black (Attacker) and the constructed 

Ψ(P). 

 

For example, for position P in Figure 20 (the grandparent of the position in Figure 19 

(b)) where Black has two threats, White has three defensive moves at (B,C), (A,C) and 

(B,D). Obviously, since Black still wins for each of the three moves, Black wins in P. From 

the above operations, this verifier returns the value 1 and constructs Ψ(P) as shown in 

Figure 20. Lemma 8 (below) shows that this verifier satisfies Property RZV if the verifier 

satisfies Property RZV for all the defensive moves, too. From this lemma, Ψ(P) in Figure 

20 is in RZ(P). 
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Lemma 8. From the above, assume that Defender is to move and Attacker has two threats in 

P. Assume that all the recursive VC6(PD,S) in operation T2-1 satisfy Property RZV. Then, the 

verifier VC6(P,S) satisfies Property RZV too.  

Proof. Assume that this verifier VC6(P,S) returns 1. For this lemma (this verifier satisfies 

Property RZV), it suffices to prove that the constructed Ψ(P) is in RZ(P). Since VC6(P,S) 

returns 1, all the recursive VC6(PD,S) in operation T2-1 must return 1. Since these VC6(PD,S) 

satisfy Property RZV from this lemma, all constructed Ψ(PD) are in RZ(PD).  

To prove Ψ(P)∈RZ(P), it suffices to prove from Lemma 6 the following. For all 

Defender moves MD there exists some ΨD such that ΨD is in RZ(P⊕MD) and ΨD ⊆ Ψ(P). 

All Defender moves MD are classified into the following cases.  

1. All Defender moves MD that block both threats. From the above, Ψ(PD) are in 

RZ(PD). In addition, since these Ψ(PD) are merged into Ψ(P) in operation T2-1.b, we 

obtain Ψ(PD) ⊆ Ψ(P). Thus, Ψ(PD) is the ΨD. 

2. All Defender moves MD that leave some threat segment unblocked. Attacker wins by 

connecting six on the segment, like strategy S3T. Since operation T2-2 follows those 

steps in T3-1 and T3-2, we simply follow the proof of Lemma 7 to prove that there 

exists some ΨD such that ΨD ⊆ Ψ(P) and ΨD is in RZ(PD). ▌ 
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Figure 21. A winning positon with two threats for Black (Attacker) and the constructed 

Ψ(P). 

Assume that the subsequent winning moves of Attacker are the same for all the 

defensive moves. Then, we can optimize the construction of zones by combining these 

defensive moves together. For example, in Figure 20, the three defensive moves, (B,C), 

(A,C) and (B,D) can be combined into a macro move (A, B, C, D) as shown in Figure 21. 

Since the subsequent winning sequences of Attacker are the same, the sizes of relevance 

zones are relatively smaller and the threat-based search is also greatly reduced. However, 

note that the segment containing both A and B (the same for C and D) in Figure 20 should 

be considered to have one white stone only for zone construction. Since the winning 

sequences in Figure 12 (a) are the same for all defensive moves, the relevance zones are 

constructed as shown in Figure 17. 
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3.2.3.3. One Threat 

When Attacker has one threat, Defender must defend by blocking the threat. In this 

case, the verifier performs the following operations. 

T1-1. For each normal critical defense (defined in Section 1.2), MD,φ(s) where square s 

blocks the threat, perform the operation of semi-null-move proof search as follows.  

a. Return the value 0, if the recursive VC6(Ps,S) returns 0 where Ps = P⊕MD,φ(s). 

b. Let Ψ(P) = Ψ(P) ∪ (Ψ(Ps)≪1). 

c. For each defensive move MD(s,s'), where s'∈Z1(Ps), perform both operations 

T2-1.a and T2-1.b. 

T1-2. For all relaxed critical defenses MD(s,s'), perform both operations T2-1.a and 

T2-1.b.  

T1-3. Perform both operations T3-1 and T3-2, and return 1. 

 

Consider a position P, 8 in Figure 22 (a) below (the same as 8 in Figure 4), and another 

Ps, with a semi-null move added at 9. White (Attacker) wins in Ps by the winning sequence 

in Figure 22 (a). The above operations construct the zones Ψ(Ps) = <Z1(Ps), Z2(Ps), Z3(Ps)>, 

with the first two zones shown in Figure 22 (c). According to operation T1-1.b, both zones 

Z2(Ps) and Z3(Ps) are shifted and merged into Z1(P) and Z2(P), respectively. For all defensive 

moves MD(s,s'), where s'∈Z1(Ps), operation T1-1.c follows both T2-1.a and T2-1.b to 

construct zones and verify whether VC6(P⊕MD(s,s'),S) return 1. In addition, operation T1-2 

also performs the same for all relaxed critical defenses, such as the one in Figure 22 (b). 

From Figure 22 (c), since the number of squares in Z1(Ps) is only 15, the number of 

recursive VC6 is relatively small, even in very large or infinite boards. 
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                 (a)                                  (b) 

 

(c) 

Figure 22. (a) A VCDT for the semi-null move 9. (b) A relaxed critical defense at 9. (c) The 

constructed zones for the semi-null move 9 in (a). 
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Lemma 9 shows that the verifier satisfies Property RZV if all the recursive VC6 satisfy 

Property RZV. 

Lemma 9. From the above, assume that Defender is to move and Attacker has one threat in 

P. Assume that all the recursive VC6 in both operations T1-1 and T1-2 satisfy Property RZV. 

Then, the verifier VC6(P,S) satisfies Property RZV too. 

Proof. Assume that this verifier VC6(P,S) returns 1. For this lemma, it suffices to prove that 

the constructed Ψ(P) is in RZ(P). Since VC6(P,S) returns 1, all the recursive VC6 in both 

operations T1-1 and T1-2 must also return 1. Since all the recursive VC6 satisfy Property 

RZV from this lemma, all Ψ(Ps) constructed from T1-1.a are in RZ(Ps) and all Ψ(PD) from 

T1-1.c and T1-2 are in RZ(PD).   

To prove Ψ(P)∈RZ(P), it suffices to prove from Lemma 6 the following. For all 

Defender moves MD, there exists some ΨD such that ΨD is in RZ(P⊕MD) and ΨD ⊆ Ψ(P). 

All Defender moves MD are classified into the following cases. 

1. All Defender moves MD(s,s') where s blocks the threat as described in T1-1. Let Ps = 

P⊕MD,φ(s). Furthermore, this case is separated into the following two subcases. 

a. s'∈Z1(Ps). Let PD denote P⊕MD(s,s'). The zones Ψ(PD) is constructed in 

operation T1-1.c, and is in RZ(PD) according to the first paragraph of this 

proof. Since Ψ(PD) is merged into Ψ(P) in T1-1.c, we obtain Ψ(PD) ⊆ Ψ(P). 

Thus, Ψ(PD) is the ΨD.  

b. s'∈¬Ps(Z1(Ps)). From the above, Ψ(Ps) is in RZ(Ps). Since s'∈¬Ps(Z1(Ps)), 

Lemma 3 shows that Ψ(Ps)≪1 is in RZ(Ps+σD(s')), meaning RZ(P⊕MD(s,s')). 

From operation T1-1.b, (Ψ(Ps)≪1) ⊆ Ψ(P). Thus, Ψ(Ps)≪1 is ΨD.  

2. All Defender moves MD(s,s') in operation T1-2 are relaxed critical defenses. The 

proof is similar to that in Case 1.a and therefore omitted.  

All Defender moves MD(s,s') that do not block the threat. Attacker wins by connecting 
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six on some unblocked threat segments, like strategy S3T. Find ΨD by following the proof of 

Lemma 7. ▌ 

3.2.3.4. No Threats 

When Attacker has no threats, it becomes more complicated since Defender has much 

more freedom to move. In this case, the verifier makes use of the constructed relevance 

zones to minimize the search space in the following operations. 

T0-1. Return the value 0 if VC6(Pφ,S) returns 0, where Pφ = P⊕MD,φφ.  

T0-2. Let Ψ(P) = Ψ(Pφ)≪2.  

T0-3. For each square s in Z2(Pφ), perform the semi-null move proof search, as in 

operations T1-1.a to T1-1.c.  

T0-4. Return 1. 

 

Let us illustrate the above operations by the example in Figure 6 and Figure 12. From 

the winning moves in Figure 12 (a), operation T0-1 constructs relevance zones Ψ(Pφ) = 

<Z1(Pφ), Z2(Pφ), Z3(Pφ)>, with only the first two zones shown in Figure 17. Similarly, zone 

Z2(Pφ) is the same as Z in Figure 12 (a). According to operation T0-2, zone Z3(Pφ) is shifted 

and merged into Z1(P). Then, in operation T0-3, one square s in Z2(Pφ) is chosen to perform 

the semi-null move proof search. In the case that 2 in Figure 12 (b) is chosen, the semi-null 

move proof search in T0-3 constructs the relevance zones Ψ(Ps) = <Z1(Ps), Z2(Ps), Z3(Ps)>, 

where Ps = P⊕MD,φ(s). Zone Z1(Ps) is actually the same as Z' in Figure 12 (b). After 

verifying that White wins for all s∈Z2(Pφ) and all s'∈Z1(Ps), the verifier confirms that White 

wins in P, as shown in Lemma 10 (below). For the position in Figure 6, the number of the 

recursive VC6 in T0-1 to T0-3 is 2656, relatively small when compared with the number of 

legal moves. 
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Lemma 10. Assume that Defender is to move and Attacker has no threats in P. From the 

above, assume that all recursive VC6 in both operations T0-1 and T0-3 satisfy Property RZV. 

Then, the verifier VC6(P,S) also satisfies Property RZV.  

Proof. Assume that this verifier VC6(P,S) returns 1. For this lemma, it suffices to prove that 

the constructed Ψ(P) is in RZ(P). Since VC6(P,S) returns 1, all the recursive VC6 in both 

operations T0-1 and T0-3 must also return 1. Since these recursive VC6, say for position P', 

satisfy Property RZV from this lemma, the constructed zones Ψ(P') are in RZ(P').  

To prove Ψ(P)∈RZ(P), it suffices to prove from Lemma 6 the following: For all 

Defender moves MD, there exists some ΨD such that ΨD is in RZ(P⊕MD) and ΨD ⊆ Ψ(P). 

All Defender moves MD are classified into the following cases: 

1. All Defender moves MD(s,s') where s∈¬Pφ(Z2(Pφ)) and s'∈¬Pφ(Z2(Pφ)). From the 

first paragraph in this proof, Ψ(Pφ) is in RZ(Pφ). Since s∈¬Pφ(Z2(Pφ)) and 

s'∈¬Pφ(Z2(Pφ)), Ψ(Pφ)≪2 is in RZ(Pφ + σD(s) + σD(s')) from Lemma 3. Since Pφ + 

σD(s) + σD(s') = P⊕MD(s,s'), Ψ(Pφ)≪2 is also in RZ(P⊕MD(s,s')). In addition, 

(Ψ(Pφ)≪2) ⊆ Ψ(P) from operation T0-2. Thus, Ψ(Pφ)≪2 is ΨD. 

2. All Defender moves MD(s,s') where s∈Z2(Pφ). By following the proof for Case 1 

(including Subcases 1.a and 1.b) in Lemma 9, we obtain that there exists some Ψ in 

P⊕MD(s,s') for all s' such that Ψ ⊆ Ψ(P). The details are omitted. ▌ 
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3.3 Conclusion for the Verifier VC6 

Theorem 2 (below) concludes that the verifier VC6(P,S) in all cases satisfy Property 

RZV. Therefore, if VC6(P,S) returns the value 1, the constructed Ψ(P) is in RZ(P), and 

Attacker wins in P from Corollary 2. 

Theorem 2. The verifier VC6(P,S) satisfies Property RZV in all cases.  

Proof. By induction, the verifier VC6(P,S) satisfies Property RZV in all cases from Lemma 4 

to Lemma 10. ▌ 

 

 

Figure 23. An example proof search tree for the Verifer VC6(P,S). 

 

 Figure 23 shows an example proof search tree that gives an overview for the Verifer 

VC6(P,S). 
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Chapter 4 Segmented Relevance-Zone-Oriented Proof 

Search for Connect6 

As seen in Chapter 3, the RZOP search is a powerful method for proving the winning 

positions with different orders of threat sequences and constructs relevance zones to reduce 

greatly the search space. However, we observed some issues when solving Connect6 

positions with the RZOP search. First issue is that in the RZOP search we found sequences 

of squares that are not defined to be irrelevant as shown in Section 4.1. In Section 4.2, we 

observed the second issue in which counter-threat segments (Defender’s threat segments) 

are the key point that influence whether Attacker can win by simply replaying or not. 

Section 4.3 presents that there are interesting moves Attacker can win by replaying. Section 

4.4 presents two experimental verifiers modified from Sections 4.1 and 4.2 respectively. 

Section 4.5 proposes an advanced improvement which does not implement yet due to the 

memory limitation in current NCTU6 program. Finally, we present our SRZOP verifiers 

respectively in Subsections 4.1.1, 4.2.1, 4.3.1, 4.4.1 and 4.4.3. 

4.1 Irrelevant vs. Relevant Sequences of Squares 

In Figure 16 of Chapter 3, <s', s''> is irrelevant to <Z1, Z2, Z3>, while <s'', s'> is not 

defined to be irrelevant. However, consider the following situation. Assume Ψ = <Z1, Z2, 

Z3> is in RZ(P). Then, according to the definition, Attacker wins in P + σD(s') + σD(s'') for 

irrelevant <s', s''>. However, it is clear that Attacker wins in P + σD(s'') + σD(s') too. In this 

sense, <s'', s'> should be defined to be irrelevant too, in this sense. Therefore, we define 

relevant and not relevant sequences of squares as follows. 



 

 47

Consider a sequence of zones Ψ = <Z1, Z2, …, Zr> in P. A sequence of unoccupied 

squares ϕ = <s1, s2, …, sr'>, where r' ≤ r, is said to be relevant to Ψ, if there exists no 

permutation ϕ' from ϕ such that ϕ' is irrelevant to Ψ. Otherwise, ϕ is said to be not relevant 

to Ψ. Let ϕ∈P(Ψ) denote the relation that ϕ is relevant to Ψ in P and ϕ∈¬P(Ψ) denote the 

relation that ϕ is not relevant to Ψ in P. Implicitly, ¬P(Ψ) denotes <¬P(Z1), ¬P(Z2), …, 

¬P(Zr)>. With this new definition, in Figure 16, <s>, <s', t'>, <s', s'', t''>, <s', s'', s''', t'''>, <s, 

s', s''> are all relevant to <Z1, Z2, Z3>, while <s', s'', s'''>, <s', s'' >, <s'', s'>, <s'', s'''>, <s'>, 

<s'''> and <> are not. 

Definition 4. A sequence of zones Ψ is called a sequence of relevance zones for Attacker in 

a position P, if and only if Attacker wins in P + σD(ϕ) for all not relevant ϕ; that is, 

ϕ∈¬P(Ψ). Let RZ(P) denote the set of all the sequences of relevance zones for Attacker in P. 

▌ 

From Definition 4, if RZ(P) is not empty, there must exist some Ψ in RZ(P). This 

implies that Attacker wins in P by choosing the empty sequence of squares <> for ϕ, since ϕ 

is not relevant to Ψ as described above. Thus, Corollary 3 is obtained. 

Corollary 3. If there exists at least one sequence of zones Ψ in RZ(P), then Attacker wins in 

P. ▌ 

The following lemma shows an important property of the SRZOP search. 

Lemma 11. Assume that Ψ = <Z1, Z2, …, Zr> is in RZ(P). If ϕ is not relevant to Ψ, then 

Attacker wins in P + σD(ϕ). 

Proof. Since ϕ∈¬P(Ψ), by definition, these exists some permutation ϕ' such that ϕ' is 

irrelevant to Ψ. Let ϕ = <s1, s2, …, sr'> and ϕ' = <s'1, s'2, …, s'r'>, where r' ≤ r. Since ϕ' is 

irrelevant to Ψ, Attacker wins in P + σD(ϕ') = P + σD(s'1) + σD(s'2) + … + σD(s'r'). Since ϕ' is 

a permutation of ϕ, P + σD(s'1) + σD(s'2) + … + σD(s'r') = P + σD(s1) + σD(s2) + … + σD(sr') = 

P + σD(ϕ). Therefore, Attacker wins in P + σD(ϕ) (= P + σD(ϕ')). ▌ 
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With Lemma 11, the proofs of Lemma 1, Lemma 2 and Lemma 3 still hold by 

considering all not relevant ϕ as shown in Lemma 12, Lemma 13 and Lemma 14, 

respectively. 

Lemma 12.  Assume that Ψ = <Z1, Z2, …, Zr> is in RZ(P). Then, Ψ' = <Z1, Z2, …, Zr, 

Zboard> is also in RZ(P). 

Proof. Consider all not relevant ϕ∈¬P(Ψ'). For this lemma, it suffices to prove that Attacker 

wins in P + σD(ϕ). Since ¬P(Zboard) is empty, ϕ must not have the (r + 1)-st item. From the 

definition, we also obtain ϕ∈¬P(Ψ). Since Ψ is assumed to be in RZ(P), Attacker wins in P 

+ σD(ϕ) due to ϕ∈¬P(Ψ). ▌ 

 

Lemma 13. Assume that Ψ is in RZ(P) and Ψ ⊆ Ψ'. Then, Ψ' is also in RZ(P). 

Proof. Let Ψ = <Z1, Z2, …, Zr> and Ψ' = <Z'1, Z'2, …, Z'r>. Consider all not relevant 

ϕ∈¬P(Ψ'). It suffices to prove that Attacker wins in P + σD(ϕ). Since Ψ ⊆ Ψ', the condition 

ϕ∈¬P(Ψ') also implies ϕ∈¬P(Ψ). Since Ψ is in RZ(P), Attacker wins in P + σD(ϕ) due to 

ϕ∈¬P(Ψ). ▌ 

 

Lemma 14. Assume that Ψ = <Z1, Z2, …, Zr> is in RZ(P). The following two properties are 

satisfied. 

1. Assume that ¬P(Z1) is not empty. Let the unoccupied square be s∈¬P(Z1). Then, Ψ≪1 

is in RZ(P+σD(s)). 

2. Let ϕ be a sequence of unoccupied squares <s1, s2, …, sr'> in ¬P(Ψ), where r' ≤ r. Then, 

Ψ≪r' is in RZ(P + σD(ϕ)).  

Proof. It suffices to prove the first property, since the first implies the second by induction.  

Let Ψ' = Ψ≪1 and consider all not relevant ϕ' = <s2, …, sr'>∈¬P(Ψ'), where r' ≤ r. For the 
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first property, it suffices to prove that Attacker wins in (P + σD(s)) + σD(ϕ'). Let ϕ = <s, 

s2, …, sr'>. Then, the condition ϕ∈¬P(Ψ) holds due to s∈¬P(Z1). Since Ψ is in RZ(P), 

Attacker wins in P + σD(ϕ) due to ϕ∈¬P(Ψ); that is, Attacker wins in (P + σD(s)) + σD(ϕ') 

(= P + σD(ϕ)). ▌ 

 

Consider Ψ = <Z1, Z2, …, Zr> and a sequence of unoccupied squares ϕ = <s1, s2, …, 

sr'>, where r' ≤ r. A sequence of unoccupied squares ϕ' = <sb1, sb2, …, sbi> is said to a 

subsequence of ϕ, if 1 ≤ b1 < b2 < … < bi ≤ r'. The definition of relevant ϕ is equivalent to 

the following property which means placing i stones inside Zi.  

Property INZ: Let Ψ = <Z1, Z2, …, Zr> and ϕ = <s1, s2, …, sr'>, where r' ≤ r. Assume that 

ϕ is relevant to Ψ, then there exists some i, where 1 ≤ i ≤ r', and some subsequence ϕ' of 

size i such that all squares in ϕ' are in Zi; that is, ϕ is relevant to Ψ. 

 

The following lemma shows that Property INZ holds. 

Lemma 15. If Property INZ holds, then there exists some i and some subsequence ϕ' of size 

i such that all squares in ϕ' are in Zi; that is, ϕ is relevant to Ψ. Otherwise, ϕ is not relevant 

to Ψ. 

Proof. Assume by contradictory that Property INZ does not hold and ϕ is relevant to Ψ.. 

This implies that for all 1 ≤ i ≤ r', there does not exist some subsequence with size i. Let us 

investigate each i as follows. 

(a) There does not exist some subsequence ϕ' of size r' such that all squares in ϕ' are in Zr'. 

Therefore, there exists at least one square, said s'i, not in Zr', that is s'i∈¬P(Zr'). Let sr' = s'i. 

(b) Similarly, there does not exist some subsequence ϕ' of size r' – 1 such that all squares in 

ϕ' are in Zr'–1. Therefore, there exist at least two squares not in Z r'. In addition to sr', let 

another square sr'–1∈¬P(Zr'–1). 
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(c) Therefore, there exist at least i squares, where 1 ≤ i ≤ r', not in Zi. In addition to sr', 

sr'–1, …, si+1, let another square si∈¬P(Zi). 

From above, let ϕ = <s1, s2, …, sr'>. Since s1∈¬P(Z1), s2∈¬P(Z2), s3∈¬P(Z3), …, 

sr'∈¬P(Zr'), ϕ is not relevant to Ψ. It contradicts the assumption. ▌ 

 

In additional, we obtain the following lemma. 

Lemma 16. Assume that Ψ is in RZ(P), where Ψ = <Z1, Z2, …, Zr> and ϕ = <s1, s2, …, sr'>, 

where r' ≤ r. If Property INZ does not hold, then Attacker wins in P + σD(ϕ). 

Proof. From Lemma 11 and Lemma 15, this lemma is trivial and therefore omitted. ▌ 

4.1.1 The Proposed Verifier VC6-O1 

This subsection presents a verifier, named VC6-O1(P,S), with a new proof search method 

for Connect6. The verifier VC6-O1(P,S) is described in Subsections 4.1.1.1, 4.1.1.2 and 

4.1.1.3 respectively for three distinct kinds of P, namely endgame positions, positions in 

Attacker’s turn and positions in Defender’s turn. Finally, Subsection 4.1.2 concludes with 

Theorem 3, showing that the verifier satisfies Property RZV in all cases. 

4.1.1.1. Endgame Positions 

If Attacker does not win in the endgame position P, the verifier simply returns the 

value 0. If Attacker wins in P (i.e., Attacker has a win segment in P), the verifier returns 1 

and constructs Ψ(P) in the following operation. 

O1-EP-1. For each active segment G of Defender containing exactly i unoccupied squares, 

these squares in G are all added into Zi(P) or higher-order zones; that is, Zj(P) 

for all j ≥ i. In other words, for each active segment G of Defender containing 

at most i unoccupied squares, add all of these squares in G into Zi(P). 
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Lemma 17. Assume P to be an endgame position. Property RZV is satisfied for VC6-O1(P,S).  

Proof. Omitted. ▌ 

4.1.1.2. Positions in Attacker’s Turn 

In such positions, Attacker simply follows strategy S to make the move S(P) in P. Let 

PA denote P⊕S(P). This verifier first performs VC6-O1(PA,S) recursively. If VC6-O1(PA,S) 

returns the value 0, this verifier VC6-O1(P,S) also returns 0. On the other hand, if VC6-O1(PA,S) 

returns 1, this verifier VC6-O1(P,S) returns 1, too; and constructs Ψ(P) in the following 

operation. 

O1-AT-1. Let Ψ(P) = Ψ(PA) ∪ ZS, where ZS ={s | s∈S(P)}. 

 

Lemma 18. Assume a position P in Attacker’s turn. From the above, assume that 

VC6-O1(PA,S) satisfies Property RZV, where PA = P⊕S(P). This verifier VC6-O1(P,S) satisfies 

Property RZV.  

Proof. Assume that this verifier VC6-O1(P,S) returns the value 1. For this lemma (this verifier 

satisfies Property RZV), it suffices to prove that the constructed Ψ(P) is in RZ(P). From the 

above operation, VC6-O1(PA,S) must also return 1. Since VC6-O1(PA,S) satisfies Property RZV 

from the lemma, Ψ(PA) is in RZ(PA). 

Consider all not relevant ϕ, where ϕ∈¬PΨ(P). It suffices to prove that Attacker wins in 

P + σD(ϕ). Since the property ¬PΨ(P) = ¬PAΨ(PA) is satisfied as described above, the 

condition ϕ∈¬PAΨ(PA) holds too. Since Ψ(PA) is in RZ(PA) from above, Attacker wins in PA 

+ σD(ϕ) due to ϕ∈¬PAΨ(PA). Since Attacker wins in PA + σD(ϕ) = (P + σD(ϕ))⊕S(P), 

Attacker wins in P + σD(ϕ) by choosing the move S(P). ▌ 
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4.1.1.3. Positions in Defender’s Turn 

For positions in Defender’s turn, the following lemma shows a very important property 

used in this subsection. 

Lemma 19. Assume a position P in Defender’s turn. For a given sequence of zones Ψ, 

assume that for all Defender moves MD there exists some ΨD such that ΨD ⊆ Ψ and ΨD is in 

RZ(P⊕MD). Then Ψ is in RZ(P).  

Proof. Consider all not relevant ϕ∈¬PΨ. For this lemma, it suffices to prove that Attacker 

wins in P + σD(ϕ).  

Now, consider all Defender moves MD in P + σD(ϕ). From this lemma, there exists 

some ΨD such that ΨD ⊆ Ψ and ΨD is in RZ(P⊕MD). Since ΨD ⊆ Ψ, the condition ϕ∈¬PΨ 

implies ϕ∈¬PΨD. Since squares in MD and σD(ϕ) are mutually exclusive, ϕ∈¬PΨD also 

implies ϕ∈¬P⊕MDΨD. Since ΨD is in RZ(P⊕MD) from above, Attacker wins in (P⊕MD) + 

σD(ϕ) due to ϕ∈¬P⊕MDΨD. Since (P⊕MD) + σD(ϕ) = (P + σD(ϕ))⊕MD, Attacker also wins 

in (P + σD(ϕ))⊕MD. From the above, since Attacker wins in (P + σD(ϕ))⊕MD over all 

Defender moves MD, Attacker wins in P + σD(ϕ). ▌ 

 

In Connect6, the position P (in Defender’s turn) can be classified into the following 

four cases. The number of Attacker threats in P is (1) three or more, (2) two, (3) one and (4) 

zero. The four cases are discussed respectively in the following four subsections. 

4.1.1.3.1. Three Threats or More 

In this case, Attacker is sure to win by simply following the strategy, S3T, as follows. 

For each Defender move, since the move must leave some threat segments unblocked, 

Attacker wins simply by making a win segment from the unblocked one. Since the strategy 
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is a sure win, the verifier returns the value 1 and constructs the zones (initialized to be 

empty) in the following operations. 

 

 

O1-T3-1. Add all unoccupied squares s on threat segments into all Zi(P).  

O1-T3-2. For each active segment G of Defender containing exactly i + 2 unoccupied 

squares, all these squares in G are added into all Zj(P) or higher-order zones. In 

other words, for each active segment G of Defender containing at most i + 2 

unoccupied squares, add all these squares in G into Zi(P). 

 

Lemma 20. Assume that Defender is to move and Attacker has three or more threats in P. 

The verifier described above satisfies Property RZV.  

Proof. For this lemma, it suffices to prove that the constructed Ψ(P) is in RZ(P). Consider 

all Defender moves MD. Attacker simply follows a strategy S3T to connect six from an 

unblocked threat segment. Let PD = P⊕MD and P6 = PD⊕S3T(PD). From Lemma 17 and 

Lemma 18, Ψ(P6) and Ψ(PD) are in RZ(P6) and RZ(PD), respectively. 

To prove that Ψ(P) is in RZ(P), it suffices to prove from Lemma 19 that Ψ(PD) ⊆ Ψ(P), 

since Ψ(PD) is already in RZ(PD). From Subsection 4.1.1.2, Ψ(PD) = Ψ(P6) ∪ ZS, where ZS 

={s | s∈S3T(PD)}. From operation O1-T3-1, all squares in ZS are added into Ψ(P). Thus, it 

suffices to prove that Ψ(P6) ⊆ Ψ(P). 

Since Attacker connects six in P6, operation O1-EP-1 (in Subsection 4.1.1.1) is 

employed to construct zones Ψ(P6). The operation is restated as follows. For each active 

segment G of Defender containing at most i unoccupied squares in P6, all the squares in G 

are added into Zi(P6). Since one move has at most two squares, at most two occupied 

squares in G were occupied by move MD. Therefore, G contains at most 2 + i unoccupied 
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squares back in P (before making move MD). From operation O1-T3-2, all these unoccupied 

squares are also added into Zi(P). For example, let both lines in Figure 18 (a) and Figure 19 

(a) (in Section 3.2) be respectively in positions P6 and P, where move MD is placed on the 

two leftmost squares marked “1” in segment G in Figure 19 (a). Thus, the two squares 

marked “2” in segment G' in Figure 18 (a) are also added into Z2(P) in Figure 19 (a). From 

the above observation, we can derive Ψ(P6) ⊆ Ψ(P). ▌ 

4.1.1.3.2. Two Threats 

When Attacker has two threats in P, Defender must defend by blocking the two threats. 

In this case, the verifier performs the following operations. 

O1-T2-1. For each Defender move MD that blocks the two threats, perform the following.  

a. Return the value 0 if the recursive VC6-O1(PD,S) returns the value 0, 

where PD = P⊕MD.  

b. Let Ψ(P) = Ψ(P)∪Ψ(PD).  

O1-T2-2. Continue to construct zones by both operations O1-T3-1 and O1-T3-2, and 

return 1. 

 

Lemma 21. From the above, assume that Defender is to move and Attacker has two threats 

in P. Assume that all the recursive VC6-O1(PD,S) in operation O1-T2-1 satisfy Property RZV. 

Then, the verifier VC6-O1(P,S) satisfies Property RZV too.  

Proof. Assume that this verifier VC6-O1(P,S) returns 1. For this lemma (this verifier satisfies 

Property RZV), it suffices to prove that the constructed Ψ(P) is in RZ(P). Since VC6-O1(P,S) 

returns 1, all the recursive VC6-O1(PD,S) in operation O1-T2-1 must return 1. Since these 

VC6-O1(PD,S) satisfy Property RZV from this lemma, all constructed Ψ(PD) are in RZ(PD).  

To prove Ψ(P)∈RZ(P), it suffices to prove from Lemma 19 the following. For all 
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Defender moves MD there exists some ΨD such that ΨD is in RZ(P⊕MD) and ΨD ⊆ Ψ(P). 

All Defender moves MD are classified into the following cases.  

1. All Defender moves MD that block both threats. From the above, Ψ(PD) are in 

RZ(PD). In addition, since these Ψ(PD) are merged into Ψ(P) in operation O1-T2-1.b, 

we obtain Ψ(PD) ⊆ Ψ(P). Thus, Ψ(PD) is the ΨD. 

2. All Defender moves MD that leave some threat segment unblocked. Attacker wins by 

connecting six on the segment, like strategy S3T. Since operation O1-T2-2 follows 

those steps in O1-T3-1 and O1-T3-2, we simply follow the proof of Lemma 20 to 

prove that there exists some ΨD such that ΨD ⊆ Ψ(P) and ΨD is in RZ(PD). ▌ 

4.1.1.3.3. One Threat 

When Attacker has one threat, Defender must defend by blocking the threat. In this 

case, the verifier performs the following operations. 

O1-T1-1. For each normal critical defense (defined in Section 1.2), MD,φ(s) where 

square s blocks the threat, perform the operation of semi-null-move proof 

search as follows.  

a. Return the value 0, if the recursive VC6-O1(Ps,S) returns 0 where Ps = 

P⊕MD,φ(s). 

b. Let Ψ(P) = Ψ(P) ∪ (Ψ(Ps)≪1). 

c. For each defensive move MD(s,s'), where s'∈Z1(Ps), perform both 

operations O1-T2-1.a and O1-T2-1.b. 

O1-T1-2. For all relaxed critical defenses MD(s,s'), perform both operations O1-T2-1.a 

and O1-T2-1.b.  

O1-T1-3. Perform both operations O1-T3-1 and O1-T3-2, and return 1. 
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Lemma 22. From the above, assume that Defender is to move and Attacker has one threat 

in P. Assume that all the recursive VC6-O1 in both operations O1-T1-1 and O1-T1-2 satisfy 

Property RZV. Then, the verifier VC6-O1(P,S) satisfies Property RZV too. 

Proof. Assume that this verifier VC6-O1(P,S) returns 1. For this lemma, it suffices to prove 

that the constructed Ψ(P) is in RZ(P). Since VC6-O1(P,S) returns 1, all the recursive VC6-O1 in 

both operations O1-T1-1 and O1-T1-2 must also return 1. Since all the recursive VC6-O1 

satisfy Property RZV from this lemma, all Ψ(Ps) constructed from O1-T1-1.a are in RZ(Ps) 

and all Ψ(PD) from O1-T1-1.c and O1-T1-2 are in RZ(PD).   

To prove Ψ(P)∈RZ(P), it suffices to prove from Lemma 19 the following. For all 

Defender moves MD, there exists some ΨD such that ΨD is in RZ(P⊕MD) and ΨD ⊆ Ψ(P). 

All Defender moves MD are classified into the following cases. 

1. All Defender moves MD(s,s') where s blocks the threat as described in O1-T1-1. Let 

Ps = P⊕MD,φ(s). Furthermore, this case is separated into the following two subcases. 

a. s'∈Z1(Ps). Let PD denote P⊕MD(s,s'). The zones Ψ(PD) is constructed in 

operation O1-T1-1.c, and is in RZ(PD) according to the first paragraph of this 

proof. Since Ψ(PD) is merged into Ψ(P) in O1-T1-1.c, we obtain Ψ(PD) ⊆ 

Ψ(P). Thus, Ψ(PD) is the ΨD.  

b. s'∈¬Ps(Z1(Ps)). From the above, Ψ(Ps) is in RZ(Ps). Since s'∈¬Ps(Z1(Ps)), 

Lemma 14 shows that Ψ(Ps)≪1 is in RZ(Ps+σD(s')), meaning RZ(P⊕MD(s,s')). 

From operation O1-T1-1.b, (Ψ(Ps)≪1) ⊆ Ψ(P). Thus, Ψ(Ps)≪1 is ΨD.  

2. All Defender moves MD(s,s') in operation O1-T1-2 are relaxed critical defenses. The 

proof is similar to that in Case 1.a and therefore omitted.  

All Defender moves MD(s,s') that do not block the threat. Attacker wins by connecting 

six on some unblocked threat segments, like strategy S3T. Find ΨD by following the proof of 

Lemma 20. ▌ 
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4.1.1.3.4. No Threats 

When Attacker has no threats, it becomes more complicated since Defender has much 

more freedom to move. In this case, the verifier makes use of the constructed relevance 

zones to minimize the search space in the following operations. 

O1-T0-1. Return the value 0 if VC6-O1(Pφ,S) returns 0, where Pφ = P⊕MD,φφ.  

O1-T0-2. Let Ψ(P) = Ψ(Pφ)≪2.  

O1-T0-3. For each square s in Z1(Pφ), perform the semi-null move proof search, as in 

operations O1-T1-1.a to O1-T1-1.c.  

O1-T0-4. For each square s in Ż2(Pφ), where Ż2(Pφ) = Z2(Pφ)\Z1(Pφ), perform the 

operation which satisfies Property INZ as follows.  

a. For each defensive move MD(s,s'), where s'∈Ż2(Pφ) and s' ≠ s, perform 

both operations O1-T2-1.a and O1-T2-1.b. 

O1-T0-5. Return 1. 

 

Lemma 23. Assume that Defender is to move and Attacker has no threats in P. From the 

above, assume that all recursive VC6-O1 in operations O1-T0-1, O1-T0-3 and O1-T0-4 satisfy 

Property RZV. Then, the verifier VC6-O1(P,S) also satisfies Property RZV.  

Proof. Assume that this verifier VC6-O1(P,S) returns 1. For this lemma, it suffices to prove 

that the constructed Ψ(P) is in RZ(P). Since VC6-O1(P,S) returns 1, all the recursive VC6-O1 in 

operations O1-T0-1, O1-T0-3 and O1-T0-4 must also return 1. Since these recursive VC6-O1, 

say for position P', satisfy Property RZV from this lemma, the constructed zones Ψ(P') are 

in RZ(P').  
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To prove Ψ(P)∈RZ(P), it suffices to prove from Lemma 19 the following: For all 

Defender moves MD, there exists some ΨD such that ΨD is in RZ(P⊕MD) and ΨD ⊆ Ψ(P). 

All Defender moves MD are classified into the following cases: 

1. All Defender moves MD(s,s') where s∈¬Pφ(Z2(Pφ)) and s'∈¬Pφ(Z2(Pφ)). From the 

first paragraph in this proof, Ψ(Pφ) is in RZ(Pφ). Since s∈¬Pφ(Z2(Pφ)) and 

s'∈¬Pφ(Z2(Pφ)), Ψ(Pφ)≪2 is in RZ(Pφ + σD(s) + σD(s')) from Lemma 14. Since Pφ + 

σD(s) + σD(s') = P⊕MD(s,s'), Ψ(Pφ)≪2 is also in RZ(P⊕MD(s,s')). In addition, 

(Ψ(Pφ)≪2) ⊆ Ψ(P) from operation O1-T0-2. Thus, Ψ(Pφ)≪2 is ΨD. 

2. All Defender moves MD(s,s') where s∈Z1(Pφ). By following the proof for Case 1 

(including Subcases 1.a and 1.b) in Lemma 22, we obtain that there exists some Ψ in 

P⊕MD(s,s') for all s' such that Ψ ⊆ Ψ(P). The details are omitted. ▌ 

3. All Defender moves MD(s,s') where s∈Ż2(Pφ). By following the proof for Case 2 in 

Lemma 22, we obtain that there exists some Ψ in P⊕MD(s,s') for all s' such that Ψ ⊆ 

Ψ(P). The details are omitted. ▌ 
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4.1.2 Conclusion for the Verifier VC6-O1 

Theorem 3 (below) concludes that the verifier VC6-O1(P,S) in all cases satisfy Property 

RZV. Therefore, if VC6-O1(P,S) returns the value 1, the constructed Ψ(P) is in RZ(P), and 

Attacker wins in P from Corollary 3. 

Theorem 3. The verifier VC6-O1(P,S) satisfies Property RZV in all cases.  

Proof. By induction, the verifier VC6-O1(P,S) satisfies Property RZV in all cases from 

Lemma 17 to Lemma 23. ▌ 

 

 

Figure 24. An example proof search tree, where Ż2 = Z2\Z1, for the Verifer VC6-O1(P,S). 

 

Figure 24 shows an example proof search tree that gives an overview for the Verifer 

VC6-O1(P,S). 
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4.2 Counter-threat Sequences of Squares 

In Section 4.1, we propose Property INZ which means ϕ is relevant to Ψ(P) if 

Defender places i stones inside Zi(P). Therefore, we consider only relevant ϕ for the verifier 

VC6-O1(P,S). However, there exist some ϕ∈P(Ψ) such that Attacker wins by replaying when 

we perform the verifier VC6-O1(P,S).  

 

 

Figure 25. Two types of moves M'D(D12, G11) and M''D(D6, G6). 
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For example, let P denote the position in Figure 6 and P' = P⊕MD,φφ. Figure 25  

shows a VCDT for the position P'. Given two moves M'D(D12, G11) and M''D(D6, G6) as 

shown in Figure 25. It is obviously that Attacker wins in P⊕M'D by replaying the same 

VCDT in Figure 25. However, Attacker cannot win by simply replaying in P⊕M''D, since 

Defender makes a single-threat move 8 before Attacker makes the triple-threat move 9.  

Let Ψ = <Z1, Z2> the gray area in P as shown in Figure 25. From the above observation 

and Property INZ in Section 4.1, the only chance for Defender to prevent Attacker wins by 

replaying is to place at least one stone in Z1 or make a threat move before Attacker’s 

triple-threat move. Since placing one stone in Z1 always prevents Attacker from winning by 

replaying, we focus on placing two stone in Ż2 = Z2\Z1 by Property INZ.  

From examples in Figure 25, we classify Defender moves into two types. First type is 

those Defender moves that may form threat segments, also called counter-threat segments, 

as M''D(D6, G6) shown in Figure 25. Second type is those Defender moves that are sure not 

form threat segments as M'D(D12, G11) shown in Figure 25. Therefore, in this section, we 

investigate first type of Defender moves. 

Let Ψ = <Z1, Z2> be a sequence of relevance zones in P and a sequence of unoccupied 

squares ϕ = <s, s'>. For each square s in Ż2, where Ż2 = Z2\Z1, to form counter-threat 

segments, s' and s must be in a same active segment and s' must be in the eight directions 

from s. For example, Figure 26 (below) shows the possible area for squares s' after 

Defender places the first square s. Since the possible area looks like the Chinese word 米, 

we denote the area Ż2 米. 
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Figure 26. For Defender’s first square s, the dash line indicates the possible area for the 

second square s' that may form counter-threat segments. 

 

Definition 5. Let Ψ = <Z1, Z2, …, Zr'> be a sequence of zones. For each square s∈Żi, where 

Żi = Zi\Zi-1 and 2 ≤ i ≤ r', Żi 米(s) is constructed from Żi as follows. For each squares s'∈Żi, 

where s' ≠ s, if s' and s are both in a same active segment of Defender, put s' into Żi 米(s). ▌ 

 

From Definition 5, for squares s and s' in Ż2, if s'∉Ż2 米(s), s' and s must not in a same 

active segment of Connect6. This implies that if Ψ is in RZ(P), Attacker wins in P⊕M'D(s, s') 
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by replaying. 

Corollary 4. Assume Ψ is in RZ(P). Let ϕ = <s, s'>, where both s and s'∈Ż2. If s'∉Ż2 米(s), 

Attacker wins in P by replaying. ▌ 

4.2.1 The Proposed Verifier VC6-O2 

This subsection presents a verifier, named VC6-O2(P,S), improved from VC6-O1(P,S). The 

verifier VC6-O2(P,S) is described in Subsections 4.2.1.1, 4.2.1.2 and 4.2.1.3 respectively for 

three distinct kinds of P, namely endgame positions, positions in Attacker’s turn and 

positions in Defender’s turn. Finally, Subsection 4.2.2 concludes with Theorem 4, showing 

that the verifier satisfies Property RZV in all cases. 

4.2.1.1. Endgame Positions 

If Attacker does not win in the endgame position P, the verifier simply returns the 

value 0. If Attacker wins in P (i.e., Attacker has a win segment in P), the verifier returns 1 

and constructs Ψ(P) in the following operation. 

O2-EP-1. For each active segment G of Defender containing exactly i unoccupied 

squares, these squares in G are all added into Zi(P) or higher-order zones; that 

is, Zj(P) for all j ≥ i. In other words, for each active segment G of Defender 

containing at most i unoccupied squares, add all of these squares in G into 

Zi(P). 

 

Lemma 24. Assume P to be an endgame position. Property RZV is satisfied for VC6-O2(P,S).  

Proof. Similar to Lemma 17, therefore omitted. ▌ 
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4.2.1.2. Positions in Attacker’s Turn 

In such positions, Attacker simply follows strategy S to make the move S(P) in P. Let 

PA denote P⊕S(P). This verifier first performs VC6-O2(PA,S) recursively. If VC6-O2(PA,S) 

returns the value 0, this verifier VC6-O2(P,S) also returns 0. On the other hand, if VC6-O2(PA,S) 

returns 1, this verifier VC6-O2(P,S) returns 1, too; and constructs Ψ(P) in the following 

operation. 

O2-AT-1. Let Ψ(P) = Ψ(PA) ∪ ZS, where ZS ={s | s∈S(P)}. 

 

Lemma 25. Assume a position P in Attacker’s turn. From the above, assume that 

VC6-O2(PA,S) satisfies Property RZV, where PA = P⊕S(P). This verifier VC6-O2(P,S) satisfies 

Property RZV.  

Proof. Similar to Lemma 18, therefore omitted. ▌ 

4.2.1.3. Positions in Defender’s Turn 

For positions in Defender’s turn, the following lemma shows a very important property 

used in this subsection. 

Lemma 26. Assume a position P in Defender’s turn. For a given sequence of zones Ψ, 

assume that for all Defender moves MD there exists some ΨD such that ΨD ⊆ Ψ and ΨD is in 

RZ(P⊕MD). Then Ψ is in RZ(P).  

Proof. Similar to Lemma 19, therefore omitted. ▌ 

 

In Connect6, the position P (in Defender’s turn) can be classified into the following 

four cases. The number of Attacker threats in P is (1) three or more, (2) two, (3) one and (4) 

zero. The four cases are discussed respectively in the following four subsections. 
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4.2.1.3.1. Three Threats or More 

In this case, Attacker is sure to win by simply following the strategy, S3T, as follows. 

For each Defender move, since the move must leave some threat segments unblocked, 

Attacker wins simply by making a win segment from the unblocked one. Since the strategy 

is a sure win, the verifier returns the value 1 and constructs the zones (initialized to be 

empty) in the following operations. 

O2-T3-1. Add all unoccupied squares s on threat segments into all Zi(P).  

O2-T3-2. For each active segment G of Defender containing exactly i + 2 unoccupied 

squares, all these squares in G are added into all Zj(P) or higher-order zones. 

In other words, for each active segment G of Defender containing at most i + 

2 unoccupied squares, add all these squares in G into Zi(P). 

 

Lemma 27. Assume that Defender is to move and Attacker has three or more threats in P. 

The verifier described above satisfies Property RZV.  

Proof. Similar to Lemma 20, therefore omitted. ▌ 

4.2.1.3.2. Two Threats 

When Attacker has two threats in P, Defender must defend by blocking the two threats. 

In this case, the verifier performs the following operations. 

O2-T2-1. For each Defender move MD that blocks the two threats, perform the 

following.  

a. Return the value 0 if the recursive VC6-O2(PD,S) returns the value 0, 

where PD = P⊕MD.  

b. Let Ψ(P) = Ψ(P)∪Ψ(PD).  
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O2-T2-2. Continue to construct zones by both operations O2-T3-1 and O2-T3-2, and 

return 1. 

 

Lemma 28. From the above, assume that Defender is to move and Attacker has two threats 

in P. Assume that all the recursive VC6-O2(PD,S) in operation O2-T2-1 satisfy Property RZV. 

Then, the verifier VC6-O2(P,S) satisfies Property RZV too.  

Proof. Similar to Lemma 21, therefore omitted. ▌ 

4.2.1.3.3. One Threat 

When Attacker has one threat, Defender must defend by blocking the threat. In this 

case, the verifier performs the following operations. 

O2-T1-1. For each normal critical defense (defined in Section 1.2), MD,φ(s) where 

square s blocks the threat, perform the operation of semi-null-move proof 

search as follows.  

a. Return the value 0, if the recursive VC6-O2(Ps,S) returns 0 where Ps = 

P⊕MD,φ(s). 

b. Let Ψ(P) = Ψ(P) ∪ (Ψ(Ps)≪1). 

c. For each defensive move MD(s,s'), where s'∈Z1(Ps), perform both 

operations O2-T2-1.a and O2-T2-1.b. 

O2-T1-2. For all relaxed critical defenses MD(s,s'), perform both operations O2-T2-1.a 

and O2-T2-1.b.  

O2-T1-3. Perform both operations O2-T3-1 and O2-T3-2, and return 1. 
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Lemma 29. From the above, assume that Defender is to move and Attacker has one threat 

in P. Assume that all the recursive VC6-O2 in both operations O2-T1-1 and O2-T1-2 satisfy 

Property RZV. Then, the verifier VC6-O2(P,S) satisfies Property RZV too. 

Proof. Similar to Lemma 22, therefore omitted. ▌ 

4.2.1.3.4. No Threats 

When Attacker has no threats, it becomes more complicated since Defender has much 

more freedom to move. In this case, the verifier makes use of the constructed relevance 

zones to minimize the search space in the following operations. 

O2-T0-1. Return the value 0 if VC6-O2(Pφ,S) returns 0, where Pφ = P⊕MD,φφ.  

O2-T0-2. Let Ψ(P) = Ψ(Pφ)≪2.  

O2-T0-3. For each square s in Z1(Pφ), perform the semi-null move proof search, as in 

operations O2-T1-1.a to O2-T1-1.c.  

O2-T0-4. For each square s in Ż2(Pφ), where Ż2(Pφ) = Z2(Pφ)\Z1(Pφ), perform the 

operation which satisfies Property INZ as follows.  

a. For each defensive move MD(s,s'), where s'∈Ż2 米(s) and s' ≠ s, perform 

both operations O2-T2-1.a and O2-T2-1.b. 

O2-T0-5. Return 1. 

 

Lemma 30. Assume that Defender is to move and Attacker has no threats in P. From the 

above, assume that all recursive VC6-O2 in operations O2-T0-1, O2-T0-3 and O2-T0-4 satisfy 

Property RZV. Then, the verifier VC6-O2(P,S) also satisfies Property RZV.  

Proof. Assume that this verifier VC6-O2(P,S) returns 1. For this lemma, it suffices to prove 

that the constructed Ψ(P) is in RZ(P). Since VC6-O2(P,S) returns 1, all the recursive VC6-O2 in 

operations O2-T0-1, O2-T0-3 and O2-T0-4 must also return 1. Since these recursive VC6-O2, 



 

 68

say for position P', satisfy Property RZV from this lemma, the constructed zones Ψ(P') are 

in RZ(P').  

To prove Ψ(P)∈RZ(P), it suffices to prove from Lemma 26 the following: For all 

Defender moves MD, there exists some ΨD such that ΨD is in RZ(P⊕MD) and ΨD ⊆ Ψ(P). 

All Defender moves MD are classified into the following cases: 

1. All Defender moves MD(s,s') where s∈¬Pφ(Z2(Pφ)) and s'∈¬Pφ(Z2(Pφ)). From the 

first paragraph in this proof, Ψ(Pφ) is in RZ(Pφ). Since s∈¬Pφ(Z2(Pφ)) and 

s'∈¬Pφ(Z2(Pφ)), Ψ(Pφ)≪2 is in RZ(Pφ + σD(s) + σD(s')) from Lemma 14. Since Pφ + 

σD(s) + σD(s') = P⊕MD(s,s'), Ψ(Pφ)≪2 is also in RZ(P⊕MD(s,s')). In addition, 

(Ψ(Pφ)≪2) ⊆ Ψ(P) from operation O2-T0-2. Thus, Ψ(Pφ)≪2 is ΨD. 

2. All Defender moves MD(s,s') where s∈Z1(Pφ). By following the proof for Case 1 

(including Subcases 1.a and 1.b) in Lemma 22, we obtain that there exists some Ψ in 

P⊕MD(s,s') for all s' such that Ψ ⊆ Ψ(P). The details are omitted. ▌ 

3. All Defender moves MD(s,s') where s∈Ż2(Pφ) and s'∈Ż2(Pφ). This case is separated 

into the following two subcases. 

a. s'∈Ż2 米(s). Let PD denote P⊕MD(s,s'). The zones Ψ(PD) is constructed in 

operation O2-T2-1.b, and is in RZ(PD) according to the first paragraph of this 

proof. Since Ψ(PD) is merged into Ψ(P) in O2-T2-1.b, we obtain Ψ(PD) ⊆ 

Ψ(P). Thus, Ψ(PD) is the ΨD.  

b. s'∉Ż2 米(s). From the above and Corollary 4, Attacker wins by replaying. Since 

Ψ(PD) ⊆ (Ψ(Pφ)≪2) and (Ψ(Pφ)≪2) ⊆ Ψ(P), Ψ(PD) is the ΨD. ▌ 
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4.2.2 Conclusion for the Verifier VC6-O2 

Theorem 4 (below) concludes that the verifier VC6-O2(P,S) in all cases satisfy Property 

RZV. Therefore, if VC6-O2(P,S) returns the value 1, the constructed Ψ(P) is in RZ(P), and 

Attacker wins in P from Corollary 3. 

Theorem 4. The verifier VC6-O2(P,S) satisfies Property RZV in all cases.  

Proof. By induction, the verifier VC6-O2(P,S) satisfies Property RZV in all cases from 

Lemma 24 to Lemma 30. ▌ 

 

 

Figure 27. An example proof search tree, where Ż2 = Z2\Z1, for the Verifer VC6-O2(P,S). 

 

Figure 27 shows an example proof search tree that gives an overview for the Verifer 

VC6-O2(P,S). 
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Chapter 5 Experiments 

In Chapter 3 and Chapter 4, we present verifies VC6(P,S), VC6-O1(P,S) and VC6-O2(P,S) to 

verify whether Attacker wins in a Connect6 position P by following strategy S. However, in 

order to solve positions, we still need to provide the verifier with winning strategies S. 

Winning strategies can be provided in the following three ways. 

1. Let human experts offer the winning strategies manually. 

2. Let programs find the winning strategies automatically. 

3. Find the winning strategies by mixing the above two. 

 

Traditionally, human experts used the first way to claim that some positions are 

winning, e.g., Go-Moku and Renju [44]. However, it becomes complicated and tedious for 

human players to traverse all positions to prove it thoroughly. Hence, it is more feasible to 

solve these positions by programs using the second way. However, programs may not be 

smart enough sometimes to find the correct winning moves. Therefore, some researchers 

chose the third way by following human experts’ suggestions for some opening moves and 

then letting programs solve the subsequent moves. For example, Allis [1][2] solved 

Go-Moku in the free style, and Wágner and Virág [53] solved Renju. In Section 5.1, we 

developed some assistant programs to help find the winning strategies for Connect6. In 

Section 5.2, we illustrate our new proof search method in Chapter 3 by solving the positions 

in Figure 7 (a) and Figure 7 (b). Finally, we give more results in Section 5.3. 

 



 

 71

5.1 Assistant Programs 

This section describes our assistant programs. 

5.1.1 Solver 

Given a position P in Attacker’s turn, a solver is to return a winning move as well as 

the relevance zones, if found; and, otherwise, a null move is returned to indicate failure of 

finding a winning move. A solver of finding a VCDT strategy, denoted by SVCDT, is 

described as follows. 

1. If there exist connect-six moves or triple-threat-or-higher moves, simply choose one 

of them to win.  

2. Evaluate all the double-threat moves and choose some good ones for further 

expansion (according to the evaluations).  

3. For each chosen move M, return M if VC6(P⊕M, SVCDT) returns 1.  

4. Return the null move to indicate failure of finding a winning move. 

 

A solver of finding a VCST (VCNT) is similar to the above, except that single-threat 

(non-threat) moves are also evaluated and chosen at Step 2. Actual solvers are implemented 

in a more complicated way to reduce the size of search tree and control the timing. For 

example, the techniques of iterative deepening and transposition table are normally 

incorporated. 

In this thesis, we implemented a solver with VCDT, named VCDT-Solver, and another 

solver with VCST, named VCST-Solver. More accurately, the VCDT-Solver is to find a 

Λ1-strategy, while the VCST-Solver is to find a Λ2-strategy. Our VCST-Solver also tends to 
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find VCDTs, if any, unless some single-threat moves are evaluated to be much better. 

Currently, this solver is able to find a Λ2-strategy up to depth 25 where the size of the 

longest path with Λ2-moves is 13. This solver was also incorporated into our Connect6 

program NCTU6, which won the gold in the 11th and 13th Computer Olympiads [59][67] in 

2006 and 2008, respectively; and also won eight games and lost none against top Connect6 

players in Taiwan in 2009 [30]. From our experiences, VCST-Solver is able to find 

Λ2-strategies, if any, in most cases accurately.  

5.1.2 Verifier 

Regarding solvers for Λ3-strategies or strategies of higher orders, the time complexities 

become much higher, since the numbers of defensive moves to be verified grow much 

higher. Therefore, we did not implement it directly. 

First, we implemented a verifier, named NCTU6-Verifier, to verify whether Attacker 

wins for all Defender moves. In other words, given a position P in Defender’s turn as shown 

in Figure 28 (a) below, the verifier uses VCDT-Solver for null moves and VCST-Solver for 

all semi-null moves and non-null moves. If null and semi-null moves are all solved, then 

move M (from the parent of P to P) in Figure 28 (a) is an Attacker Λ3-move. If some 

non-null moves are not solved by VCST-Solver, these moves are reported or generated. Note 

that Defender Λ3-moves must be reported. Since our VCST-Solver can find Λ2-strategies 

accurately in most cases, most reported moves are Defender Λ3-moves in our experiments. 
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(a) 

 

(b) 

Figure 28. (a) A proof search tree of NCTU6-Verifier and (b) the verifier of one higher order. 
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When our Connect6 program NCTU6 mentioned above cannot find Λ2-strategies 

(VCSTs), NCTU6 then chooses some promising moves including non-threat moves using 

heuristic evaluations. The details of heuristic evaluations are beyond the scope of this thesis 

and therefore omitted. 

Since NCTU6 may not be able to find winning moves all the time, human experts are 

allowed to help find winning moves. (Like [1][2] and [53], knowledge of human experts 

were utilized to help solve Go-Moku and Renju, respectively.) Hence, the above programs, 

such as NCTU6 and NCTU6-Verifier, were integrated into a Connect6 editor named 

Connect6Lib [14], modified from Renlib [42], in order to accommodate hints from human 

experts. In the integrated system [57][58], the users (human experts) are allowed to suggest 

some Attacker moves directly or let NCTU6 suggest possibly good moves in a designated 

position. Then, for suggested moves, users invoke NCTU6-Verifier to verify and report all 

the defensive moves (most are Λ3-moves). Then, users repeat the above for the subsequent 

moves, until a Λ3-strategy is found. 

Second, for Λ4-strategies, the integrated system (on top of the editor Connect6Lib) 

needs to maintain a global verifier and modify the search by incrementing the order by one 

as shown in Figure 28 (b). 
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5.1.3 Desktop Grids and Volunteer Computing for Connect6 

In this subsection, we discuss our proposed desktop grids and volunteer computing for 

Connect6 [57][58]. Grid computing [20] has recently become a promising trend for both 

high performance and high throughput computing. Applications include scientific 

computing and bioinformatics. Many universities, research institutes, and commercial 

companies have been devoted to the development of related technologies and applications 

[4][8][19][20][21][26][68]. Among these grid computing models and applications, desktop 

grids [4][47] were developed for volunteer computing which aimed to harvest Internet-scale 

idle computing resources for speeding up high throughput applications.  

In contrast to most current grid computing applications, the applications investigated in 

this subsection are related to games, more specifically for Connect6 [65][66]. In the 

Connect6 applications described in this subsection, huge computation resources are 

consumed and on-demand responses are required. In order to satisfy these requirements, this 

subsection proposes and designs a volunteer-computing-based grid environment or called a 

desktop grid environment for Connect6 applications. The Connect6 application described in 

this subsection is to let professional Connect6 players to develop or solve openings, based 

on two programs NCTU6 and NCTU6-Verifier in Subsections 5.1.1 and 5.1.2. The proposed 

desktop grid environment is also allowed to be applied to other computation-intensive 

applications requiring on-demand responses. 

Most current desktop grid systems, such as BOINC [4][8], XtremWeb [19][68], adopt 

the pull model. In such systems, one or more centralized databases or global servers 

normally keep many jobs (most for scientific or engineering applications) for idle workers 

(desktops). The idle workers automatically request (pull) jobs for execution from the 

centralized databases or global servers, and in turn may create new jobs and upload to the 
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databases or the global servers. These available jobs are usually not aborted.  

The desktop grid system for Connect6 aims to achieve on-demand computing, since 

the jobs for Connect6 applications are highly dynamic and may be created and aborted at 

any time. To better cope with the needs of Connect6 applications, our desktop grid 

environment features a push model and has a close collaboration between Connect6Lib and 

workers in the grid. Our desktop grid environment is expected to harvest idle resources for 

free CPU time and use them collectively to meet the real-time response requirement of 

interactive Connect6 applications. 

 

 

Figure 29. Desktop grid architecture. 

 

Unlike many other desktop grid systems that are normally based on databases in the 

pull model, Connect6Lib is directly connected to desktops in our current environment as 

shown in Figure 29. When Connect6 jobs, NCTU6s and Verifiers, are created, these jobs are 
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sent to remote desktops to run. All messages generated by these jobs are directly sent back 

(pushed back) to Connect6Lib to create more branches. The push model is used, since users 

in the application expect to receive responses real time so that they can decide where to 

exploit next. For this purpose, the communication between Connect6Lib and workers is 

connection-oriented, using TCP.  

In the future we plan to extend our current implementation to support different 

applications, and support the automation of helping openings or solving positions. 
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5.1.4 Job-Level Proof-Number Search for Connect6 

This subsection describes a new approach for proof number (PN) search, named 

job-level proof-number (JL-PN) search [64]. Proof-number (PN) search, proposed by Allis 

et al. [1][3], is a kind of best-first search algorithm that was successfully used to prove or 

solve theoretical values [22] of game positions for many games 

[1][2][3][23][43][45][46][52], such as Connect-Four, Gomoku, Renju, Checkers, Lines of 

Action, Go, Shogi. Like most best-first search, PN search has a well-known disadvantage, 

the requirement of maintaining the whole search tree in memory. Therefore, many 

variations [9][29][35][36][45][54] were proposed to avoid this problem, such as PN2, 

DF-PN, PN*, PDS, and parallel PN search [27][43] were also proposed. For example, PN2 

used two-level PN search to reduce the size of the maintained search tree. 

The JL-PN search, where the PN search tree is maintained by a process, the client in 

this subsection, and search tree nodes are evaluated or expanded by heavy-weight jobs, 

which can be executed remotely in a parallel system. Heavy-weight jobs take normally tens 

of seconds or more (perhaps up to one day).  

For simplicity of discussion about proof-number (PN) search, we follow in principle 

the definitions and algorithms in [1][3]. PN search is based on an AND/OR search tree 

where each node n is associated with proof/disproof numbers, p(n) and d(n), which 

represent the minimum numbers of nodes to be expanded to prove/disprove n. The values 

p(n)/d(n) are 0/∞ if the node n is proved, and ∞/0 if it is disproved. PN search repeatedly 

chooses a leaf called the most-proving node (MPN) to expand, until the root is proved or 

disproved. The details of choosing MPN and maintaining the proof/disproof numbers can be 

found in [1][3] and therefore is omitted in this subsection. If the selected MPN is proved 

(disproved), the proof (disproof) number of the root of the tree is decreased by one.  
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Our JL-PN search is parallel PN search with the following two features. First, 

well-written programs such as NCTU6 and Verifier are used to expand and generate MPNs. 

These programs are viewed as jobs, sent to and done by free workers in a desktop grid. 

Second, multiple MPNs are allowed to be chosen simultaneously and therefore can be done 

by different workers in parallel.  
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5.2 Illustration of Solving Positions 

In this section, we illustrate the proof search method in Chapter 3 by solving the two 

positions in Figure 7 (a) and Figure 7 (b). First, consider the one in Figure 7 (a). The 

position is solved by simply running NCTU6-Verifier. In the proof search tree shown in 

Figure 30 (below), P indicates the position at 7 in Figure 7 (a); P0, the position at 6; P1, the 

position after a null move; P2, the position after the semi-null move 8 in Figure 8 (b); and 

P21, the position after another semi-null move at 10 in Figure 8 (b). As can be seen, Attacker 

wins in a Λ3-strategy. 

 

Figure 30. The proof search tree for the position in Figure 7 (a). 
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Second, consider the position in Figure 7 (b), which is much more complicated than 

the previous one. This position is solved via the integrated system supporting Λ4-trees, as 

described in Section 5.1. In the proof search tree shown in Figure 31 (below), P indicates 

this position, P1 does the position after a null move, and P2 does the position after a 

semi-null move at 7 in Figure 9 (b). Initially, let NCTU6-Verifier of one higher order run in 

P. Since VCST-Solver is able to find the winning move for P1, Defender (Black) should 

place at least one stone in zone Z2(P1). Consider one square s in Z2(P1), say square 7 in 

Figure 9 (b). For the semi-null move at 7, choose move 8 and then use NCTU6-Verifier 

(without raising one order) to derive that Attacker wins at 8. Thus, move 8 is a Λ3-move. By 

verifying all null and semi-null moves in P, we show that move 6 in Figure 7 (b) is a 

Λ4-move (from Definition 1). 

 

 

Figure 31. The proof search tree for the position in Figure 7 (b). 
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Furthermore, Attacker is shown to win at 6 in a Λ4-strategy as follows. In our 

experiment, Attacker wins for all defensive (non-null) moves by finding Λ3-strategies. For 

example, for move 7 in Figure 32 (below), NCTU6-Verifier is recursively employed to find 

a Λ3-strategy, where moves 8 to 12 are shown to be Λ3-moves. 

In the proof search tree shown in Figure 31, we found three semi-null moves that are 

Λ3-moves with value 1 (like P2 which is also 7 in Figure 9 (b)), and 569 Defender Λ3-moves 

in total. Move 12 in Figure 32 is the deepest Λ3-move. In this experiment, human experts 

helped find 26 winning non-threat moves, including move 6 discovered by Huang [25]. 

 

 

Figure 32. A sequence of Λ3-move starting from 7. 

 

Now, the question is whether there exist more cases requiring Λ4-strategies like the one 

in Figure 7 (b). Since the one in Figure 7 (b) is the only one that we found so far, it is still an 

open problem to find some more. 
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5.3 Results 

Initially, we had human experts use the integrated system to help us solve about 10 

more positions. Wu et al. [64] had recently automated with success the proof process by 

developing a new search algorithm, called job-level proof-number (JL-PN) search 

(described in Subsection 5.1.4). Using the JL-PN search together with our RZOP search, we 

solved many more positions, up to 65 positions in total, with Λ3-strategy, within a couple of 

months. The details of the 65 positions are listed in Appendix A. The detail results are listed 

in Appendix B and C. All experiments ran on Intel Pentium Dual 2.00 GHz machines and 

were performed on 19 × 19 boards that most current Connect6 tournaments use. Besides, 

we develop six verifiers as follows. 

 VWu: implement the simple proof search method in Wu et al., 2006. 

 VC6: implement the RZOP search method. 

 VC6-O1: implement the SRZOP search mehod in Section 4.1. 

 VC6-O2: implement the SRZOP search mehod in Section 4.2. 

 

Before we discuss the 65 positions, we illustrate the three puzzles, shown in Figure 6, 

Figure 7. The purpose of the verifier VC6 is to solve positions, therefore we measure 

sovability first. Since the verifiers VC6-O2 and VC6-O1 are developed from VC6, they have same 

sovability. Table 1 (below) shows that VC6-O2, VC6-O1 and VC6 solve all three puzzles, while 

VWu can only solve the puzzle, Connect(6,2,3), in Figure 6. 

 

 

 



 

 84

Sovability VC6-O2, VC6-O1 and VC6 VWu

Figure 6 yes yes

Figure 7 (a) yes no

Figure 7 (b) yes no

Table 1. The solvability of verifiers for the three puzzles. “yes” means solved and “no” 

means unsolved. 

 

Then, we compare the performace to solve puzzles between RZOP and SRZOP 

verifiers in number of nodes and time (in seconds). 

 

Number of nodes VC6-O2 VC6-O1 VC6 

Figure 6 35,425 43,689 59,895 

Figure 7 (a) 573,818 583,541 808,511 

Figure 7 (b) 51,898,841 58,227,391 81,636,536 

(a) 

Speedups VC6-O2 VC6-O1 VC6

Figure 6 1.69 1.37 －

Figure 7 (a) 1.41 1.39 －

Figure 7 (b) 1.57 1.40 －

(b) 

Table 2. (a) The statistics of verifiers for the three puzzles in number of nodes. (b) Speedups 

compare to VC6. 
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Time (in seconds) VC6-O2 VC6-O1 VC6 

Figure 6 20.92 28.69 36.77 

Figure 7 (a) 147.52 158.30 192.91 

Figure 7 (b) 17,919.70 23,656.79 30,184.90 

(a) 

Speedups VC6-O2 VC6-O1 VC6

Figure 6 1.76 1.28 －

Figure 7 (a) 1.31 1.22 －

Figure 7 (b) 1.68 1.28 －

(b) 

Table 3. (a) The statistics of verifiers for the three puzzles in time (in seconds). (b) 

Speedups compare to VC6. 

 

Table 2 (a) shows the number of nodes used by verifiers to solve the three puzzles. 

Table 2 (b) shows speedups comparing to the RZOP search method. Table 3 (a) shows the 

time used by verifiers to solve the three puzzles. Table 3 (b) shows speedups comparing to 

the RZOP search method. From Table 3, the verifier VC6-O2 achieves 1.76 speedups, an 

improvement, to solve Connect(6,2,3) in Figure 6. For the puzzle in Figure 7 (a), the verifier 

VC6-O2 achieves 1.31 speedups. For the hardest puzzle currently in Figure 7 (b), the verifier 

VC6-O2 can achieve 1.68 speedups.  
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         (a)                       (b)                       (c) 

      

         (d)                       (e)                       (f) 

Figure 33. Six openings in which Black wins at 3. 

 

Next, we choose 65 winning positions (shown in Appendix A) which include 12 

openings and six of them are shown in Figure 33. In particular, the fifth one, Mickey-Mouse 

Opening, used to be one of the popular openings before we solved it. Mickey-Mouse 

Opening was so named in [50], since White 2 and Black 1 together look like the face of 

Mickey Mouse. The sixth one, also called Straight Opening, is another difficult one.  

The purpose of the verifier VC6 is to solve positions, therefore we measure sovability 

first. Since the verifiers VC6-O2 and VC6-O1 are developed from VC6, they have same sovability. 

Table 4 (below) shows that VC6-O2, VC6-O1 and VC6 solve all 65 positions, while VWu only 

solves 31 positions. 
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Sovability Total solved Total unsolved 

VWu 31 34 

VC6-O2, VC6-O1 and VC6 65 0 

Table 4. The solvability of verifiers for 65 winning positions. 

 

Then, we compare the performace to solve 65 positions between RZOP and SRZOP 

verifiers in number of nodes and time (in seconds). 

 

Number of nodes VC6-O2 VC6-O1 VC6 

65 positions 178,020,119 179,532,383 304,485,291 

(a) 

Speedups VC6-O2 VC6-O1 VC6

65 positions 1.71 1.70 － 

(b) 

Table 5. (a) The statistics of verifiers for 65 winning positions in number of nodes. (b) 

Speedups compare to VC6. 

Time (in seconds) VC6-O2 VC6-O1 VC6 

65 positions 26,356.62 27,981.87 38,753.57 

(a) 

Speedups VC6-O2 VC6-O1 VC6

65 positions 1.47 1.38 － 

(b) 

Table 6. (a) The statistics of verifiers for 65 winning positions in time (in seconds). (b) 

Speedups compare toVC6. 
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Table 5 (a) shows the number of nodes used by verifiers to solve 65 positions. Table 5 

(b) shows speedups comparing to the RZOP search method. Table 6 (a) shows the time used 

by verifiers to solve 65 positions. Table 6 (b) shows speedups comparing to the RZOP 

search method. From Table 6, the verifier VC6-O2 achieves 1.47 speedups to solve 65 

positions (listed in Appendix A). Since some of positions are easy to solve, so we choose the 

12 openings to measure the performance again. 

 

Number of nodes VC6-O2 VC6-O1 VC6 

12 openings 66,515,413 67,383,224 161,071,884 

(a) 

Speedups VC6-O2 VC6-O1 VC6

12 openings 2.42 2.39 － 

(b) 

Table 7. (a) The statistics of verifiers for 12 openings in number of nodes. (b) Speedups 

compare to VC6. 

 

Time (in seconds) VC6-O2 VC6-O1 VC6 

12 openings 9,035.26 9,815.09 18,472.73 

(a) 

Speedups VC6-O2 VC6-O1 VC6

12 openings 2.04 1.88 － 

(b) 

Table 8. (a) The statistics of verifiers for 12 openings in time (in seconds). (b) Speedups 

compare to VC6. 
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Table 7 (a) shows the number of nodes used by verifiers to solve the 12 openings. 

Table 7 (b) shows speedups comparing to the RZOP search method. Table 8 (a) shows the 

time used by verifiers to solve the 12 openings. Table 8 (b) shows speedups comparing to 

the RZOP search method. From Table 8, the verifier VC6-O2 achieves 2.04 speedups to solve 

the 12 openings.  

From the above experimental results, the performance of verifiers is roughly VC6-O2 ≥ 

VC6-O1 ≥ VC6. Surprisingly, the verifier VC6-O2 can save more than half time to solve harder 

positions like the 12 openings shown in Appendix A as well as the currently hardest puzzle 

shown in Figure 7 (b) that is solved by a Λ4-strategy shown in Figure 31. The experimental 

results demonstrate a milestone of NCTU6 and NCTU6-verifiers since year 2005 [65][66]. 

The author is very proud to announce these surprised solvability and performance of the 

RZOP search method and SRZOP search methods. 
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Chapter 6 Conclusions 

This thesis proposes a novel, general and elegant proof search method, named 

Relevance-Zone-Oriented Proof (RZOP) search that uses relevance zones to help solve 

many positions in Connect6 as well as Connect games. In theory, this method can be 

applied to Connect games with infinite boards. Practically, this thesis demonstrates the 

method by solving two typical winning positions in Figure 7 (a) and Figure 7 (b) on 19 × 

19 boards, as well as many Connect6 positions and openings in Appendix A. In addition, the 

method can also be easily incorporated into Connect6 program, such as NCTU6. 

This thesis also leaves some open problems. 

 Investigate more winning positions in Connect6 that require Λ4-strategies, such as 

the one in Figure 7 (b).  

 Investigate whether there exists a Λ5-strategy in Connect6.  

 Apply the new method (in the Appendix D) to solving some real positions in general 

Connect games. 

 Investigate whether dual lambda search [48][49] is useful for Connect6 or Connect 

games. 

 

Using the JL-PN search together with our RZOP search, we successfully solved up to 

65 positions with Λ3-strategy. The 65 positions include 12 openings; in particular, 

Mickey-Mouse Opening, which used to be one of the popular openings before we solved it. 

One might ask whether or when Connect6 on 19 × 19 boards will be solved. So far, we still 

could not solve tens of the common openings, many of which human experts believed were 
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well balanced for both players. Hence, the answer to this question is still unknown. 

In addition, this thesis further improves the RZOP method, named Segmented 

Relevance-Zone-Oriented Proof (SRZOP) search that speeds up the time to solve Connect6 

positions. The experimental results in Chapter 5 archive 2.04 speedups to solve the 12 

openings. This thesis also demonstrates records of our Connect6 program NCTU6 in 

Appendix F, which won the gold in the 11th and 13th Computer Olympiads in 2006 and 2008, 

respectively; and also won eight games and lost none against top Connect6 players in 

Taiwan in 2009. Finally, this thesis applies the RZOP method and SRZOP method into 

NCTU6 and NCTU6-verifiers which are used in the two systems (described in Subsection 

5.1.3 and 5.1.4): (a) desktop grid system (b) JL-PN system. These two systems help us solve 

many Connect6 openings automatically. The author is very proud to announce this thesis 

because it is a milestone of NCTU6 and NCTU6-verifiers since year 2005 [65][66]. 
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Appendix A  Sample Positions 

Figure 34. 65 winning positions. 

01 02 

03 04 
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05 06 

07 08 
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09 10 

11 12 
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13 14 

15 16 



 

 102

17 18 

19 20 
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21 22 

23 24 
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25 26 

27 28 
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29 30 

31 32 
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33 34 

35 36 
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37 38 

39 40 
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41 42 

43 44 
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45 46 

47 48 
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49 50 

51 52 
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53 54 

55 56 
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57 58 

59 60 
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61 62 

63 64 
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65 
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Appendix B  Results of RZOP Benchmark 

Table 9. The solvability of verifiers for 65 winning positions in Appendix A, where “yes” 

means solved and “no” means unsolved. 

Positions 
Solvability 

VC6-O2, VC6-O1 and VC6 VWu

01 yes yes

02 yes no

03 yes no

04 yes no

05 yes no

06 yes no

07 yes no

08 yes no

09 yes no

10 yes no

11 yes yes

12 yes no

13 yes no

14 yes yes

15 yes yes

16 yes yes

17 yes yes
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18 yes yes

19 yes yes

20 yes yes

21 yes yes

22 yes yes

23 yes yes

24 yes yes

25 yes yes

26 yes no

27 yes no

28 yes no

29 yes no

30 yes no

31 yes no

32 yes no

33 yes no

34 yes no

35 yes yes

36 yes yes

37 yes no

38 yes no

39 yes no

40 yes yes

41 yes yes
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42 yes no

43 yes no

44 yes no

45 yes no

46 yes no

47 yes yes

48 yes no

49 yes no

50 yes yes

51 yes no

52 yes yes

53 yes yes

54 yes yes

55 yes yes

56 yes no

57 yes yes

58 yes yes

59 yes yes

60 yes yes

61 yes yes

62 yes no

63 yes yes

64 yes no

65 yes yes
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Total solved 65 31

Total unsolved 0 34
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Appendix C  Results of SRZOP Benchmark 

Table 10. The statistics of verifiers for 65 winning positions in Appendix A: (a) number of 

nodes and (b) times. 

(a) 

Number of nodes VC6-O2 VC6-O1 VC6 

01 530077 571795 565926 

02 3523754 3590585 5527224 

03 786302 845114 1575020 

04 1079619 1116986 1331077 

05 6174061 6167216 7317401 

06 1661531 2240151 2752565 

07 23908274 24134145 35585383 

08 20639430 20700223 96128237 

09 2548691 2581346 3387769 

10 1834412 1460326 1710532 

11 1146025 1247001 994735 

12 2683237 2728336 4196015 

13 28526645 28686442 40210832 

14 74803 87805 94972 

15 17450 22272 29299 

16 16368 16368 16547 

17 10718 10718 10778 
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18 67852 69610 71727 

19 84402 92292 90870 

20 10145 10145 10708 

21 22344 25320 27540 

22 135089 135089 135277 

23 35420 36960 37823 

24 704489 704589 705905 

25 37603 39307 46686 

26 2119172 2120955 2813168 

27 109546 109632 110342 

28 408452 420402 426156 

29 137182 141895 142339 

30 126007 134785 137648 

31 551373 552034 902124 

32 642143 651712 665022 

33 59855 60111 62018 

34 181191 149634 172601 

35 2105266 2111350 3377070 

36 2761 2761 2824 

37 9030296 9030296 10674017 

38 765141 765705 768514 

39 12363329 12492105 18321351 

40 731486 731584 732403 

41 393962 394038 394528 
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42 4045655 4046601 5511607 

43 56696 56944 57784 

44 7660096 7682555 11245412 

45 860379 940666 1047951 

46 209423 209987 211208 

47 22278 22298 22459 

48 706779 715971 660724 

49 7816945 7819769 6893666 

50 5041761 5041761 5042228 

51 2054406 2066930 2851817 

52 254617 296116 353003 

53 898630 899734 954147 

54 925359 940417 939580 

55 5266143 5276358 5962500 

56 297172 300223 456519 

57 239318 246013 247606 

58 1077354 1093460 1117277 

59 1455834 1518244 1512576 

60 1292694 1307825 1321979 

61 779609 835836 832882 

62 256408 257724 261066 

63 1336806 1286361 1436594 

64 8740 9380 9372 

65 9471114 9472070 13272361 
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Total 178020119 179532383 304485291 

(b) 

Time (in seconds) VC6-O2 VC6-O1 VC6 

01 202.29 255.17 233.15 

02 638.47 700.26 824.64 

03 182.85 245.59 290.27 

04 212.47 245.73 266.15 

05 719.22 794.18 750.77 

06 700.42 843.82 915.39 

07 2309.55 2437.09 3051.79 

08 2325.26 2407.76 9998.87 

09 413.40 461.54 531.23 

10 649.50 592.64 683.68 

11 286.61 379.38 382.67 

12 395.24 451.95 544.13 

13 4121.33 4387.67 5082.57 

14 47.79 66.59 66.35 

15 7.59 12.41 14.16 

16 6.17 6.17 6.28 

17 1.91 1.91 1.89 

18 10.28 11.23 12.94 

19 15.69 25.77 24.55 

20 2.91 2.91 3.20 

21 14.72 18.25 19.48 
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22 16.27 16.25 16.34 

23 9.27 11.13 11.89 

24 78.48 78.24 80.33 

25 11.13 13.25 16.66 

26 211.06 212.94 240.45 

27 44.89 44.67 45.11 

28 150.06 189.81 188.37 

29 56.56 64.16 64.70 

30 113.45 141.08 134.59 

31 61.31 62.34 76.09 

32 167.33 177.30 191.63 

33 15.56 15.80 16.61 

34 101.03 84.44 90.84 

35 194.44 200.88 264.47 

36 1.05 1.05 1.05 

37 739.55 738.89 810.45 

38 116.78 117.47 117.50 

39 1034.14 1048.08 1286.75 

40 84.20 84.23 84.42 

41 26.28 26.36 26.69 

42 329.26 328.83 394.71 

43 15.70 16.31 17.44 

44 1219.40 1269.82 1648.19 

45 608.90 855.99 831.91 
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46 84.09 85.14 86.02 

47 6.47 6.48 6.61 

48 202.47 215.02 204.85 

49 1974.56 1981.13 1776.99 

50 537.95 537.72 534.55 

51 489.94 516.23 594.78 

52 136.75 182.25 231.73 

53 249.05 249.22 262.16 

54 112.28 112.85 124.41 

55 1153.77 1169.50 1353.61 

56 46.30 46.88 58.14 

57 65.14 66.37 66.03 

58 304.24 305.89 314.13 

59 600.23 600.51 625.50 

60 362.66 373.33 430.28 

61 341.85 381.89 481.20 

62 166.36 165.78 185.66 

63 160.17 146.62 160.78 

64 27.78 27.77 27.91 

65 664.81 664.02 866.92 

Total 26356.62 27981.87 38753.57 
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Appendix D  Verifiers for General Connect Games 

In this Appendix, the verifier VC6(P,S) is generalized to general Connect games, 

Connect(m,n,k,p,q), while maintaining Property RZV.  

The generalized verifier is denoted by VCK(P,S). In the case that P is an endgame 

position or is in Attacker’s turn (described in Subsections 3.2.1 and 3.2.2 respectively), the 

verifier VCK(P,S) is the same as VC6(P,S). So, the rest of this appendix describes the verifier 

only in the case that P is in Defender’s turn. Furthermore, the position P (in Defender’s turn) 

can be classified into the following two. (1) The number of Attacker threats t in P is at least 

p + 1, and (2) the number t is at most p. In the first case, Attacker wins already. Therefore, 

the verifier returns 1 and construct relevance zones in the following operation. 

Tp1-1. Construct relevance zones by following both operations T3-1 and T3-2, except that 

the terms “i + 2” are replaced by “i + p”. 

 

Similar to Lemma 7, Lemma 31 shows that the verifier also satisfies Property RZV in 

this case. 

Lemma 31. Assume that Defender is to move and the number of Attacker threats is at least 

p + 1 in P. The verifier described above satisfies Property RZV.  

Proof. The proof is similar to that of Lemma 7 and therefore omitted. ▌ 
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In the second case that the number of Attacker threats t is at most p, the verifier 

performs the following operations. 

Tp-1. For each of critical defenses MD (both normal and relaxed), perform the following.  

a. Return 0 if the sub-verifier Vsub(MD,P,S) returns 0. Note that the sub-verifier 

is described below.  

b. Let Ψ(P) = Ψ(P) ∪ Ψ'(PD). 

Tp-2. Continue to construct relevance zones in operation Tp1-1, and return 1. 

 

In operation Tp-1.a, a sub-verifier Vsub(MD,P,S) is used to verify whether Attacker wins 

for all Defender moves M'D dominated by MD in P, where M'D has p squares (but MD may 

have less than p squares). By dominate, we mean that all squares in MD must also be in M'D, 

but may not vice versa. For the sub-verifier Vsub(MD,P,S), the constructed zones is denoted 

by Ψ'(PD) = <Z'1(PD), Z'2(PD), …, Z'r(PD)>, where PD = P⊕MD. In addition, the sub-verifier 

satisfies the following property (proved in Lemma 32). 

Property RZS. If Vsub(MD,P,S) returns 1, the following condition holds. For all Defender 

moves M'D dominated by MD, there exists some Ψ'D such that Ψ'D ⊆ Ψ'(PD) and Ψ'D is in 

RZ(P⊕M'D). 

 

The sub-verifier Vsub(MD,P,S) performs the following operations. 

Par-1. Assume that MD has exactly p – u Defender stones, where u is the number of null 

stones in MD and 0 ≤ u ≤ p. In the case that u > 0, move MD is a null or semi-null 

move.  

Par-2. Return 0 if VCK(PD,S) returns 0, where PD = P⊕MD.  

Par-3. Let Ψ'(PD) = Ψ(PD)≪u.  

Par-4. Return 1 if u = 0, i.e., the move is not a null or semi-null move.  
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Par-5. For each of unoccupied square s∈¬PD(Zu(PD)), perform the following.  

a. Let Defender move MD,s be MD + σD(s). 

b. Return 0 if Vsub(MD,s,P,S) returns 0. 

c. Let Ψ'(PD) = Ψ'(PD) ∪ Ψ'(PD,s), where PD,s = P⊕MD,s.  

Par-6. Return 1. 

 

Lemma 32 shows that the sub-verifier satisfies Property RZS, if all the recursive Vsub in 

Par-5.b satisfy Property RZS and the verifier VCK in Par-2 satisfies Property RZV. 

Lemma 32. For a sub-verifier Vsub(MD,P,S) as described above, it satisfies Property RZS by 

assuming that all the recursive Vsub in Par-5.b satisfy Property RZS and that the verifier VCK 

in Par-2 satisfies Property RZV.  

Proof. Assume that Vsub(MD,P,S) returns 1. Consider all Defender moves M'D (including p 

stones) that are dominated by MD. Namely, let M'D = MD + σD(ϕ), where ϕ has u additional 

unoccupied squares. For this lemma, it suffices to prove that there exists some Ψ'D such that 

Ψ'D ⊆ Ψ'(PD) and Ψ'D is in RZ(P⊕M'D). All of these Defender moves M'D are classified into 

the following cases. 

1. All Defender moves M'D in which all additional squares s in ϕ are in ¬PD(Zu(PD)). 

The proof for this case is similar to that for Case 1 in Lemma 10 as follows. Since 

this sub-verifier returns 1, the verifier VCK(PD,S) in Par-2 returns 1. Since the verifier 

VCK returns 1 and also satisfies Property RZV (from this lemma), Ψ(PD) is in RZ(PD). 

Since all additional s∈¬PD(Zu(PD)), we obtain from Lemma 3 that Ψ(PD)≪u is in 

RZ(PD + σD(ϕ)). Since PD + σD(ϕ) =  (P⊕MD) + σD(ϕ) = P⊕(MD + σD(ϕ)) = 

P⊕M'D, Ψ(PD)≪u is also in RZ(P⊕M'D). In addition, since Ψ(PD)≪u ⊆ Ψ'(PD) from 

Par-3 in Vsub, Ψ(PD)≪u is the Ψ'D.  

2. All Defender moves M'D where some additional square s in ϕ is in Zu(PD). Since this 
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sub-verifier returns 1, the recursive Vsub(MD,s,P,S) at Par-5.b returns 1 too and 

therefore satisfies Property RZS. From Property RZS, there exists some Ψ such that 

Ψ ⊆ Ψ'(PD,s) and Ψ is in RZ(P⊕M'D). Since Ψ'(PD,s) ⊆ Ψ'(PD) from operation 

Par-5.c, we obtain Ψ ⊆ Ψ'(PD). Thus, Ψ is the Ψ'D. ▌ 

 

From Lemma 32, we derive Lemma 33 as follows. 

Lemma 33. Assume that Defender is to move and the number of Attacker threats is at most 

p in P. The verifier described above satisfies Property RZV by assuming that all the 

recursive sub-verifiers in operation Tp-1.a satisfy Property RZS.  

Proof. Assume that this verifier returns 1. For this lemma, it suffices to prove that the 

constructed Ψ(P) is in RZ(P). Since the verifier returns 1, all the recursive sub-verifiers in 

operation Tp-1.a returns 1 too. Assume that these sub-verifiers satisfy Property RZS. For 

proving Ψ(P)∈RZ(P), it suffices to prove from Lemma 6 the following: For all Defender 

moves MD there exists some ΨD such that ΨD is in RZ(P⊕MD) and ΨD ⊆ Ψ(P). All 

Defender moves MD are classified into the following two cases: 

1. All Defender moves MD that block all the threats. There must exist some critical 

defense M'D (either normal or relaxed) dominating MD. Since Vsub(M'D,P,S) returns 1 

and satisfies Property RZS from above, there exists some ΨD from the property such 

that ΨD ⊆ Ψ'(P⊕M'D) and ΨD is in RZ(P⊕M'D). 

2. All Defender moves MD that leave some threat unblocked. Attacker wins by 

connecting up to p on some unblocked threat segment, like S3T. From the proof in 

Lemma 31, we obtain that there exists some ΨD such that ΨD ⊆ Ψ'(P) and ΨD is in 

RZ(PD). ▌ 
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Theorem 5 (below) concludes that the verifier VCK(P,S) in all cases satisfy Property 

RZV. Therefore, if VCK(P,S) returns 1, the constructed Ψ(P) is in RZ(P), and Attacker wins 

in P from Corollary 2. It can also be observed that the operations in Subsection 3.2.3 are 

special cases of the operations described in this appendix. 

Theorem 5. The verifier VCK(P,S) satisfies Property RZV in all cases.  

Proof. By induction, the verifier VCK(P,S) satisfies Property RZV in all cases from the 

above lemmas. ▌ 
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Appendix E  Draw K-in-a-row Games 

In the past, many researchers were engaged in solving Connect(m, n, k, p, q) games. 

One player, either Black or White, is said to win a game, if he has a winning strategy such 

that he wins for all the subsequent moves. Allis et al. [1][2] solved Go-Moku with Black 

winning. Herik et al. [22] and Wu et al. [65][66] also mentioned several k-in-a-row games 

with Black winning.  

A game is said to be drawn if neither player has any winning strategy. For simplicity, 

Connect(k, p) refers to the collection of Connect(m, n, k, p, q) games for all m ≥ 1, n ≥ 1, 0 ≤ 

q ≤ p. Connect(k, p) is said to be drawn if all Connect(m, n, k, p, q) games in Connect(k, p) 

are drawn.  

In the past, Zetters [69] derived that Connect(8, 1) is drawn. Pluhar [38] derived tight 

bounds kdraw(p) = p+Ω(log2p) for all p ≥ 1000 (cf. Theorem 1 in [38]). However, the 

requirement of p ≥ 1000 is unrealistic in real games. Thus, it is important to obtain tight 

bounds when p < 1000. Hsieh and Tsai [24] have recently derived that kdraw(p) = 4p+7 for 

all positive p. The ratio R = kdraw(p)/p is approximately 4 for sufficiently large p. 

Given p, Chiang et al. [15] derive the value kdraw(p), such that Connect(m, n, k, p, q) 

are drawn for all k ≥ kdraw(p), m ≥ 1, n ≥ 1, 0 ≤ q ≤ p, as follows. (1) kdraw(p) = 11. (2) For all 

p ≥ 3, kdraw(p) = 3p+3d–1, where d is a logarithmic function of p. So, the ratio kdraw(p)/p is 

approximately 3 for sufficiently large p. The first result was derived with the help of a 

program. To our knowledge, our kdraw(p) values are currently the smallest for all 2 ≤ p < 

1000. 
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Appendix F  Author’s Records 

The game Connect6 was first introduced by Wu and Huang (2005) and then described 

in more detail by Wu, Huang and Chang (2006). The rules of Connect6 are very simple. 

Two players, henceforth represented as B (designated as the first player) and W, alternately 

place two stones, black and white respectively, on one empty intersection of an 19×19 board, 

except for that B places one stone initially. The player who first obtains six consecutive 

stones (horizontally, vertically or diagonally) wins the game. When all intersections on the 

board are occupied without connecting six, the game draws. 

Starting from 2007, Lin became the chief designer of the Connect6 program NCTU6. 

Though, NCTU6 won the Gold Prize of the Connect6 Tournament in the 11th Computer 

Olympiad (2006), there were many unsolved positions and openings. Thus, Lin solved 

many unsolved VCST positions in the beginning and help developed some simple openings. 

With the improved strength of NCTU6, Lin developed a light weight version with accurate 

time control program named NCTU6-LITE, which won the Gold Prize of the Connect6 

Tournament in the 13th Computer Olympiad (2008). The participants and the final standings 

are listed in Table 11 (below).  

In the tournament, the games were played according to a round-robin system in which 

one program played twice against all the other programs. In each game, every program had 

to complete all of its moves in 30 minutes. For each game, the winner scored 1 point and the 

loser scored nothing. However, for a draw game, both scored 0.5. Figure 35 and Figure 36 

(below) show some events in the 13th Computer Olympiad. The certificate of the 13th 

Computer Olympiad by NCTU is shown in Figure 37 (below). 
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Ranking Program Author Organization Points

1 NCTU6-LITE  

Ping-Hung Lin, 

Hong-Xuan Lin, 

Yi-Chih Chan, 

Ching-Ping Chen and 

I-Chen Wu 

National Chiao Tung 

University, Taiwan. 

17

2 BITSTRONGER  

Liang Li, Hao Cui, 

Ruijian Wang and Siran 

Lin 

Beijing Institute of 

Technology, China 16

3 NEUCONN6 
Chang-Ming Xu Northeastern 

University, China 
13

4 

BEAD 

CONNECT AND 

CHESS 

COMBINE 

(BCCC) 

XiaoChuan Zhang Chongqing Institute of 

Technology, China 

9

5 KAVALAN 
Jung-Kuei Yang and 

Shi-Jim Yen 

National Dong Hwa 

University, Taiwan 
8

6 NEU6STAR  

Xinhe Xu, Dongxu 

Huang, Junjie Tao, 

Kang Han, XinXing Li 

Northeastern 

University, China 8

7 ML 

Jiang Ke Guilin University of 

Electronic Technology, 

China 

6.5
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8 CV6 

Yao Yuping Guilin University of 

Electronic Technology, 

China 

5.5

9 DREAM 6 
Siwei Liu and Zhenhua 

Huang 

Dalian Jiaotong 

University, China 
4

10 NTNU C6 

Shih-Chieh Huang and 

Yun-Ching Liu 

National Taiwan 

Normal University, 

Taiwan 

3

Table 11. The participants and the final standings of the Connect6 Tournament in the 13th 

Computer Olympiad (2008). 

 

 

Figure 35. P. H. Lin, I-C. Wu and H.J. van den Herik. 
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Figure 36. L. Lee (BITSTRONGER) and P. H. Lin (NCTU6-LITE). 

 

Figure 37. The certificate of the 13th Computer Olympiad by NCTU. 
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In Taiwan, National Chiao Tung University hosts the annual NCTU Cup Open 

Tournaments for Connect6 human players. We saw more and more players played Connect6 

every year. Before the second annual NCTU Cup Open Tournament 2008 took place, Wu 

invited Go Champion Chou Jun Xun to play Connect6 against the AI program NCTU6 for 

the advertisement. In this championship, NCTU6 won 3 and lost nothing against Chou. 

Figure 38 shows an event in the championship. 

 

 

Figure 38. Go Champion Chou Jun Xun, the operating staff and P. H. Lin. 

 

After annual NCTU Cup Open Tournaments, yearly top human players of Connect6 

will appear. To survey the strength of NCTU6, Wu will invite three to four top players to 

play against NCTU6. Figure 39 and Figure 40 (below) show events of the first and the 

second Man-Machine Connect6 Championships. 
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Figure 39. Professor Shun-Chin Hsu (right most) and members of the Connect6 team lead 

by I-C. Wu. 

 

Figure 40. Human players, I-C. Wu (center) and P. H. Lin (left most). 
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In Figure 39, Professor Shun-Chin Hsu is respected as the father of Computer Chinese 

Chess. He has received many awards and published many important papers. In the first 

annual Man-Machine Connect6 Contest, we are very happy to invite Professor Hus to host 

the contest. In the contest, NCTU6 won 11 and lost one against top human players. It is a 

good record. Next year, in the second annual Man-Machine Connect6 Contest, NCTU6 won 

8 and lost nothing which is a memorable record.  

From these records, Lin proved the strength of NCTU6. He will continue to develop 

NCTU6 and keep NCTU6 the top AI program of Connect6 in the world. 
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