Relevance-Zone-Oriented Proof Search for Connect6

= A 1

R RS R

SE AR L4 &L

A3 RBEP F
Relevance-Zone-Oriented Proof Search for Connect6

VSR SRR | Student : Ping-Hung Lin
R IR Advisor : I-Chen Wu
Bz i~ F
AN S S S = B R 1 A S
7 1 m
A Dissertation

Submitted to Institute.of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

in
Computer Science
November 2010

Hsinchu, Taiwan, Republic of China

S EARL L EL

B

& A 2005 £ £

q\'%ﬁﬁﬂzﬂl - A

S 3 RREEP A

R S gL

WL A BB o 2B DT - BATOE FERPIF N L L RBEP

TR oo R i]iﬂ;}f’ze{—;f

12 46 B chiazt B % 0 B

T T’F'%z‘fr'*i S

(RZOP) - 17 Thomesn #7# i€ lambda ¥&F 5 A # -

¢ 5 BB A Bl X BE R
o e FOE R HOR e o AL B R
(SRZOP) » 4= & § cbeid MR e 1
SPOSEREP EH

A3 ALAZS) rdp Bt F 3 % o Blde

EREER £ TR E1
DR R AR R 2
v i AR Eien-
BN SREE
B enpE R o 395 F % Hdp
SeP-2.04 BepER oo Bt o e F B

£ 2008 & 5 - = B R%

BHTH TR A EF D L AR R REFFE TR TR

WVER (5F) L& Fjivi

PreridF & 8 o

o EAGHT A THAE A 8% 0

%&bi fFI t.

Relevance-Zone-Oriented Proof Search for Connect6

Student : Ping-Hung Lin Advisor : Dr. I-Chen Wu

Institute of Computer Science and Engineering
National Chiao Tung University

Abstract

Wu and Huang presented a new family of k-in-a-row games, among which Connect6 (a
kind of six-in-a-row) attracted much attention. For Connect6 as well as the family of
k-in-a-row games, this thesis proposes a new threat-based proof search method, named
Relevance-Zone-Oriented Proof -(RZOP) search, developed from the lambda search
proposed by Thomsen. The proposed RZOP-search-is a novel, general and elegant method
of constructing and promoting relevance zones. This thesis solved effectively and
successfully many new Connect6 game positions, including several Connect6 openings,
especially the Mickey-Mouse Opening, which used to be one of the popular openings before
we solved it. In addition to solvability, this thesis further improves the RZOP method,
named Segmented Relevance-Zone-Oriented Proof (SRZOP) search, which speeds up the
time to solve Connect6 game positions. The experimental results show 2.04 speedups in
total to solve 12 openings. Finally, this thesis demonstrates records of our Connect6
program, NCTU6, which won the gold in the 13™ Computer Olympiads in 2008; and also

won eight games and lost none against top Connect6 players in Taiwan in 2009.

il

&

R 3Tt s £ AN A 2010 F 11 2 £F] T L E = o

BHp FR LR g S R G AR 7 BT B R frdp B S
AR E ARETR o REFATGIcR A 6 K EFT 2 BAAEY e o AL

Kk Al A gy - HH Y S B

FORFABIFOEF L - B R R oA e AR fp g 4

. T s

ES %

/!

=N

S

v i

=

-ﬂu¥4

L APl BE S RRE S ek L Bt et

5
Ly pe R

T
e

aﬁﬁﬁ@)@?;\m’—l —ﬁé,\,& A d R \;5:]—0

/3*]"/‘? g pé‘i ﬁ %_L. ,\,?{:};Q *#)xlgiﬁk‘ fﬁﬁﬁ ?5(#7»“ i&;?t‘_ﬂj{;}jg ﬁ:»fli_ j\‘
Fobt PRATT FoiRfegi L % HoHE (1 DRAES 4P F) > Bk v et 5o R
FHerL Lo EAG T L =k

BT A5 E S A fost i CYC Lab e4 LA 4 19 5 353 54 & N fRent
Foal ReHREHL Fo EMBEE L Iy~ 8 & 525 £ ~hangten - coboy

e A ~ricky ~ sarten ~uncle ~RC ~BJ ~ &£ ~ 46 ® ~ 2 # ~ g ~lida~ - f= ~ QQting---

252 U R Mark frX F A che @@ m e FIAEF g o

B RHARE NG ¢ MBI E R B cRENFE RAT UL

it

;Z R EAER B ’g*\"ﬁf'Jr‘IﬁﬁiE&’F\‘u g vhE R 0 B RIE X

™
N

~=i
=
=
i

R R R o W R R AR E R

HA 2

2010 # 10 * 29 p

iii

Contents

B B ettt ettt e et e e e e et e et et e st e e et e et et e raeeaeanans i
W 0] 1 ¢ o1 A RSP SRRRUSRRRUSt i
R BB et e e et e e et e et e e et e e et e ea—teeeteeeatteeeetteeeataeeaaeens 111
LAST O FIGUIES ..vviiiiiieeiiee ettt ettt st e et e e et e e essbaeesaaeessseeensseesnsaeesnseeennnes vi
| A 21 o) (<RSPPI viii
Chapter 1 INETOAUCTION ..ttt et e e e e e e eebeeesnneeenneeennes 1
1.1 GAME POSITIONS....ccuviiiiiiieciieeciieeetee et et e et e et e et e e s teeesabeeesaseeesaaeenssaeennnas 2

1.2 Playing Strategies for CONNECtOcccueeeeiieeiiiieeiiieeiee et e 3

1.3 Winning Strategies for CONNECLOc.eeeeieeeiiiieeiiieciee et 5

1.4 IMOTIVALION «...eeeiiieeiiie et ettt e e et e e et e e sbeeessaeeesaseeessseeesnseeensseesnnseeens 10
Chapter 2 Related WOTKScoceviiiiieece et 14
2.1 SEATCH TTEES ...vveeeiie ettt et ae e s e e e be e e enreeenseeensaeas 14

2.2 Null Move Heuristics for CONNECtOcccveeeviieeiieeeiieeeiie e 17

2.3 Lambda Search for Confeetoccku i 20
Chapter 3 Relevance-Zone-Oriented Proof Search for Connect6...........cccccecvveeviveennennnns 23
3.1 Relevance Zones .. o s o Bl W, 23

32 The Proposed VErTHIEr Vg v ciiaiieaiie ittt 28
3.2.1 ENndgame POSIHIONS ...viieei it iitiee e deesfeeeeeiee e eeiee e e e e e 28

322 Positions in Attacker’s TUIm ...l oiieiieiiieieccceee e 31

323 Positions in Defender’s Turn..............ccooooiieeeiieeeeee e, 32

3.2.3.1. Three Threats or MOTEcccuveeevieeriieeieeeeee e 33

3.2.3.2. TWO TRICALS ...eeevieeiiieee e e e 36

3.2.3.3. ONE TRreatcccvveeiieeeeeeeee e e 40

3.2.34. INO THICALS ..eevviieeiieeciie ettt e 43

33 ConClUSION FOr the VeI IET Vi rg wemnneeeeeeeeeeeee et 45
Chapter 4 Segmented Relevance-Zone-Oriented Proof Search for Connecté6.................. 46
4.1 Irrelevant vs. Relevant Sequences of SQUAres..........cccveeviveerieeeiieeeiiee e, 46
4.1.1 The Proposed Verifier Vg0 ooeeeeeueeeeieeeeieeeieeeie et 50

4.1.1.1. Endgame PoSItionsccccueeeiiiieeciiieeiie e 50

4.1.1.2. Positions in Attacker’s TurN.........cccveeeciveeeiieeciie e, 51

4.1.1.3. Positions in Defender’s Turnccccoecveeeiieeeiieecieeeieeeen 52

4.1.1.3.1. Three Threats or MOTe........ccceeeevieeciiieeiieeeiieeeiens 52

4.1.1.3.2. TWo Threatsccovvveeiieeeiieeeee e 54

4.1.1.3.3. One Threat........oooveeecieeeieecee e 55

v

4.1.1.3.4. INO TRICALS . 57

4.1.2 Conclusion fOr the VEITTIET Vg 07 cveeeeeeeeeeeeeeeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 59

4.2 Counter-threat Sequences of SQUATES.........cceeriieiierieeiiienie et 60
42.1 The Proposed Verifier Vs.02. eeeeereeeneenieeiiieeie ettt 63

4.2.1.1. Endgame PoOSItioNsScccoevieiiienieeiieieeieeee e 63

4.2.1.2. Positions in Attacker’s TuIm.........cccceevevierieiciieniecieeieeeeee. 64

4.2.1.3. Positions in Defender’s Turnccccoevveeciienienieeniecieene. 64

4.2.1.3.1. Three Threats or MOT€........ccoecveevieeciieieeiieiee e, 65

4.2.1.3.2. TWO TRIEatsccvveviieiieeiieieeeee e 65

4.2.1.3.3. One Threatcoevieriieeieieeee e 66

4.2.1.34. NO TRICALS ..ot 67

422 Conclusion for the VETTIIET Ves.02 cvveeeeeeeeieeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 69

Chapter 5 EXPEITMENLS.....eeiiieiiieiieiiie ettt ettt ettt et te et e s e e taesebeeaeesnseennes 70
5.1 ASSIStANt PrOZIAMS ..ottt ettt 71
5.1.1 SOLVET ..ttt ettt et et e e e 71

5.1.2 Verifier....covveeeeeen g BRI By .- e eevveenveennrernreeesessseessesssesereessseensees 72

5.1.3 Desktop Grids and Volunteer Computing for Connect6cccu....... 75

5.14 Job-Level Proof-Number Search for Connect6............cceeevvevieeiiennennen. 78

52 [lustration of Solving POSITIONS .iiviieeiii et 80

53 RESUIS .cuvvireen s ol i i e eeeeerreerteertersreeerreessaensnesssasereansns 83
Chapter 6 CONCIUSIONS ...ttt e e teeeieeeetee e Ba ot e et esteeenbeesteeenbeeseessbeeseesnseenseesnnes 90
RETEIEICES ..ot e e ER SRS TR 20t b et eentteenaeenseeenbeenseesnbeenseessbeenseesnseenseennnas 92
Appendix A SamPple POSTHIONSccuvieiieiiiieiieeiieiie ettt 98
Appendix B Results of RZOP Benchmarkccocoeviiiiiiiiieiiiieieceeeee 115
Appendix C Results of SRZOP Benchmarkcccooviiiiiiniiieniiiiieiecieeiee 119
Appendix D Verifiers for General Connect Gamescoeevververeenieniieneenenieennens 125
Appendix E Draw K-in-a-row Games..........ccceeevvierieeiiienieeiienieeieeseeevee e eveenenes 130
Appendix F AUthOr’S RECOTAS....cuiiiiiiiiieiieieetee e 131
VL@ .ottt h bt a ettt h e e bt h e h e e n e n et et et e b e ebe bt neeneenes 138

List of Figures

Figure 1. Threat patterns for Connect6. (a) One threat, (b) two threats and (c) three threats. ... 4

Figure 2. (a) Normal critical defense and (b) relaxed critical defense.c.cccceevveniriiiennns 5
Figure 3. A sequence of VCDT Winning Strate@@y.cccueerueerieeiuienieeiieeniieeiienieeieesseesseesseeens 6
Figure 4. A sequence of VCST WINNing Strategy.ccceerveerieerieeniienieeiienieesieeseeeseesneenseens 7
Figure 5. A sequence of VCNT Winning Strat@@y.ccveeueerieeiueenieeieeniieeirienieeeveenseesseenseeans 8
Figure 6. Black’s winning move in Conect(6,2,3).coeveriirierienenienieeieeienieesie e 9
Figure 7. (a) A position with Black winning. (b) A positon with White winning. 10

Figure 8. (a) A VCDT for the null move in Figure 7 (a). (b) A winning single-threat move 9
for the semi-Null MOVE 8.coouiiiiiiiiiii e 11

Figure 9. (a) A winning single-threat move 8 for a null move in Figure 7 (b). (b) A winning

non-threat move 8 for a semi-null MOVE 7. il veeveriiniiiiiiieieeceeeee e 11
Figure 10. (a) A search tree and (b) a SOIUIONAIEE. wou.iiiilinnvieneieeiiiiieiieeie e 15
Figure 11. (a) Making squares of moves by mserting small boxes. (b) Combining the same

©AZES TTOMN (@)..eeeuiieiiiiiie et eriee e eastteeseessnashntaannasateeenbaasseessseenseessseenseasnseenseessseenseasnseenseens 16
Figure 12. (a) A VCDT for a null move in Figure 6. (b) A VCDT for a semi-null move 2. 18
Figure 13. The proof search tree for sOlvVINg Connect(6,2,3).ccocuvvuervueneenenvuenieneniennns 19
FAGUIE 14, A AP -TCC. cov.eeeeeeeeeeeeee st SRS T ot e e e e e e ees e s eaeneeeens 21
FAGUIE 15, A AP-SIIALCEY. ..o e s e e e e e eeeeesee s s e eeeeeans 22
Figure 16. A sequence 0f ZONES <Zj, Z2, Z53 . .cccueuereiieniesieeieetesteeee sttt 24

Figure 17. A sequence of relevance zones ¥ = <Z;, Z,> for the winning position in Figure

L2 (). ettt et h et h et e h e bt et eh e bt et ehe e bt et 25
Figure 18. (a) Relevance zones in a line and (b) in a board, upon winning with a win

141115 1L AU PO ORRTPORUUPRRRTRO 29

Figure 19. (a) Relevance zones in a line and (b) in a board, upon winning with three or more

ERTEALS. ..ttt 34
Figure 20. A winning positon with two threats for Black (Attacker) and the constructed

(P ettt bbbttt ettt a e bbbttt 37
Figure 21. A winning positon with two threats for Black (Attacker) and the constructed

(P ettt bbbt ettt bbbttt 39
Figure 22. (a) A VCDT for the semi-null move 9. (b) A relaxed critical defense at 9. (c) The

constructed zones for the semi-null Move 9 1in ().ceeeveveieeiiiiieiieeee e 41
Figure 23. An example proof search tree for the Verifer Veg(P,S). «veovvevveneenenieniiiinienieeene 45

vi

Figure 24. An example proof search tree, where 7, = 7,\Z;, for the Verifer V¢s.01(P,S). 59
Figure 25. Two types of moves M'p(D12, G11) and M"p(D6, GO).....ccvevveevreeecrieiieeiaaeeanene. 60
Figure 26. For Defender’s first square s, the dash line indicates the possible area for the

second square s’ that may form counter-threat SEgments.ccceevveeviiencieeniescieennenns 62
Figure 27. An example proof search tree, where 7, = 7,\Z;, for the Verifer V¢s.02(P,S). 69
Figure 28. (a) A proof search tree of NCTUG6-Verifier and (b) the verifier of one higher order.73
Figure 29. Desktop grid archit@Cture.ccueeiiieriiiiiieiie ettt 76
Figure 30. The proof search tree for the position in Figure 7 ().cccoceeverveneineniieneeniennne 80
Figure 31. The proof search tree for the position in Figure 7 (b).....c.cccocevvieriinenieniinenienene 81
Figure 32. A sequence of A’-move Starting from 7.c.oeeeeueveeeeeeeeeeeeeeeeeeeeereseeereeseseeseeeeen. 82
Figure 33. Six openings in which Black wins at 3.cc.coccoviiiiiiiiiiniiiceeee 86
Figure 34. 65 WINNING POSILIONS. ..c..vietieriieriieeiieriie et erite et estteereesseeeteesseeesbeesssesseessseenseessnes 98
Figure 35. P. H. Lin, I-C. Wu and H.J. van den Herik.ccccoociiiininiiniiiiniicee 133
Figure 36. L. Lee (BITSTRONGER) and P. H. Lin (NCTUG-LITE)..........ccceoceverceniriaenennne. 134
Figure 37. The certificate of the 13th Computer Olympiad by NCTU.cccccccvvevvieiiennnnne 134
Figure 38. Go Champion Chou Jun Xun, the operating staff and P. H. Lin..........cccccoceeeee 135
Figure 39. Professor Shun-Chin Hsu.(right most) and meémbers of the Connect6 team lead

[2)'20 CUON" ") FOURUURUPRORRRRRRRRR- (B == ' = 5 B = WL~ TR 136
Figure 40. Human players, I-C. Wu (center) and P. H. Lin (left most).ccoceeverenvennenn 136

vii

List of Tables

Table 1. The solvability of verifiers for the three puzzles. “yes” means solved and “no”

MEANS UNSOIVEA. ..c.eiiiiiiiiiiiiiiiece ettt st eaees 84
Table 2. (a) The statistics of verifiers for the three puzzles in number of nodes. (b) Speedups

COMIPATE O V06 wveeenrreeitieeniie ettt te et te ettt e ettt e ettt e st e e st e e et e e e taeesabbeesabeeesaseeenaseesnnseeens 84
Table 3. (a) The statistics of verifiers for the three puzzles in time (in seconds). (b)

Speedups COMPATE 1O V. «ouveerrreeiieniiieiieeie ettt ettt ettt et te et eesbeeseesnaeeseesnnas 85
Table 4. The solvability of verifiers for 65 winning positions.ceecveereeerieerieerieenveennnens 87
Table 5. (a) The statistics of verifiers for 65 winning positions in number of nodes. (b)

Speedups COMPATE 1O V6. «ouveerureeiieniieeiieeiie ettt ettt ettt e te et eebeesseesnaeeseeennas 87
Table 6. (a) The statistics of verifiers for 65 winning positions in time (in seconds). (b)

Speedups COMPATe tOV 4. ..euveerereene sl et s B et 87
Table 7. (a) The statistics of verifiers for 12 openings in‘number of nodes. (b) Speedups

COMIPATE O V06 wveernrreerrieenneeiiannee e thtessanassanss o odesabs e sabE e e eseeeneseeensneesnsneesseeesaseeesnseesnseenns 88
Table 8. (a) The statistics of verifiers for 12 openings in time (in seconds). (b) Speedups

COMPATE O V06 wveeenrreerrieenuuetmmnbee e baesthnsasnsssssssssasessesbsbaeenseeennseesnnseesnsseesnssessnseessnseesnnseenns 88
Table 9. The solvability of verifiersfor 65winning positions in Appendix A, where “yes”

means solved and “no” means UNSOIVEds st ruciiieeerieiiiieeecceeeee e 115

Table 10. The statistics of verifiers for 65 winning positions in Appendix A: (a) number of

N0AdES aNd (D) LIMES. ...cccuiiiiiiiieiieeeeee ettt et et e et e e bee e eabeeeeaseeeaseeeeaseeenns 119
Table 11. The participants and the final standings of the Connect6 Tournament in the 13th
Computer Olympiad (2008).oeciieiiieiiieiieeie ettt e saaeebeeneeas 133

viii

Chapter 1 Introduction

A generalized family of k-in-a-row games, named Connect(m, n, k, p, q) [65][66], were
introduced and presented by Wu et al. Two players, named Black and White, alternately
place p stones on empty squares’ of an m x n board in each turn. Black plays first and
places ¢ stones initially. The player who first gets k consecutive stones of his own
horizontally, vertically and diagonally wins. Both players tie the game when the board is
filled up with neither player winning. Games in this family are also called Connect games’
in this thesis. For example, Tic-tac-toe is Connect(3, 3, 3, 1, 1), Go-Moku in the free style (a
traditional five-in-a-row game) is Comnect(15, 15, 5,°1, 1), and Connect6 played on the
traditional Go board is Connect(19, 19, 6, 2, 1). For simplicity, let Connect(k,p,q) denote the
game Connect(eo,5k,p,q), played.on infinite boards. For example, when played on infinite
boards, Go-Moku becomes Connect(3,1,1) and Connect6 becomes Connect(6,2,1).

Among these Connect games, Connect6 attracted much attention due to three merits,
fairness, simplicity of rules and high game complexity as described in [65][66]. Since
Connect6 was introduced, hundreds of thousands of Connect6 games have been played on
web sites, such as littlegolem.net [33] and cycgame.com [51]. Since 2006, several Connect6
open tournaments [50] for human players have been held, such as NCTU Open,
ThinkNewldea Open, Russian Open and World Open. Connect6 has also been included as
one of the computer game tournaments in Computer Olympiad [55] and Chinese Computer

Games Contest [16], since 2006 and 2007 respectively.

! Practically, stones are placed on empty intersections of Renju or Go boards. In this thesis, by squares, we
mean intersections.

% The term of connect games defined in [22] covers the games such as Hex, Connect Four, etc. In this thesis,
Connect are capitalized to indicate all the games in the family of Connect(m,nk,p,q).

1

In Connect6, a segment is defined to be a set of six consecutive squares horizontally,
vertically or diagonally on the board; while in Connect(m,n.k,p,q), a segment is a set of k
consecutive squares. A segment is called an empty segment if all the squares on it are
unoccupied yet. A segment is called an active segment of one player, if none of the squares
are occupied by the opponent’s stones. An active segment of one player is called a win
segment of the player, if all the squares on it are occupied by the player. Obviously, one
player wins if the player makes a win segment. From the definition of Connect games, a
game ends when one makes some win segment or all the squares of the board are already
occupied. According to this definition, it is impossible for both players to have win

segments simultaneously.

1.1 Game Positions

In Connect games, a game position' P-includes the information of all the stones and
their occupied squares on the board"and the turn of whom to play. The player to be proved
to win, either Black or White, is called Attacker and the other Defender in this thesis. Both
input and output game positions are in the standard format, named SGF [40]. Let oy(s)
denote the information of an Attacker stone placed on the unoccupied square s, and P +
o4(s) denote the position after placing an Attacker stone on s in position P without changing
the turn. op(s) and P + op(s), are similarly defined for Defender. From the strategy stealing
argument by Nash (cf. [7][65]), we obtain the following. If Attacker wins in P, Attacker
wins in P + gy(s), too; and if Attacker wins in P + op(s), Attacker wins in P, too.

In this thesis, P®M denotes the position after one player makes move M and before the
other makes the next move. In Connect6, let M,(s;,s,) denote an Attacker move where two

Attacker stones are placed on both unoccupied squares s; and s,. Mp(s;,s2) and POMp(s;,s2)

are similarly defined for Defender. Note that in contrast to P + oy(s;) + ou(s>), the position
P®M (s,,s2) indicates changing the turn from Attacker to Defender.

In Connect6, one player, say Attacker, is allowed to make a null move, M, ¢; that is, to
place no stones, and a semi-null move, M 4 4(s); that is, to place one stone only on square s;
in P. Thus, the position P@M(s,,s2) is equivalent to (POM 4 (s;)) + ou(s2) and (POM 4 4) +
o4(s;) + ou(s2). From another viewpoint, null or semi-null moves are to place some nul//
stones while placing normal stones. In Connect(m,n,k,p,q), we place p null stones for a null

move, while placing one to p—/ null stones for semi-null moves.

1.2 Playing Strategies for Connect6

In Connect6 (other Connect games are similar), threats are the key to great reduction
of the proof search tree. An active segment in which Attacker occupied four or five squares
is called a threat segment of Attacker. The segment poses a-threat and Defender has to block
it, or Attacker wins by making a win segment in the next move.

A move is called a single-threat move if the player who makes the move has one and
only one threat after the move, a double-threat move if two, a triple-threat move if three,
and a non-threat move if none. In Connect6, one player clearly wins by a
triple-threat-or-more move (a move with at least three threats). Examples of the line

patterns with one, two and three threats are shown in Figure 1 (below).

(b)

?
;

(©)

Figure 1. Threat patterns for Connect6. (a) One-threat, (b) two threats and (c) three threats.

The defensive moves that block all the threats are called critical defenses, while
removing any stones in the moves unblocks some threats. For example, White’s semi-null
moves Mp ¢(4) and moves Mp(B,C) in both Figure 2 (a) and (b) are critical defenses, while
moves Mp(A4,B) are not because the threats are still blocked without B. (Note that null
moves are also critical defenses in positions without any threats according to the above
definition.) Critical defenses are said to be normal if the numbers of stones in the defenses
are the same as the numbers of threats; and relaxed, otherwise. For example, in Figure 2,
semi-null moves Mp(A4) are normal, while moves Mp(B,C) are relaxed. In Connect6,
relaxed critical defenses are not played frequently due to their inefficiency (using two stones

to block only one threat).

O

- 0000

(b)

Figure 2. (a) Normal critical defense and (b) relaxed critical defense.

1.3 Winning Strategies for Connect6

In [65][66], they showed a type of winning strategy, called Victory by Continuous
Double-Threat-or-more moves (VCDT) in this thesis. It is similar to Victory by Continuous
Four (VCF), a common term for winning strategies in the Renju community [41]. More
specifically, the type of VCDT strategy is to win by making continuously double-threat
moves and ending with a triple-or-more-threat move or connecting up to six in all variations.

For example, in Figure 3 (below), White’s VCDT 12-18 (18 is a triple-threat move).

19
18
17
16
15
14
13
12

—%
=

R W & tn b =~ i D

—

AA°B ¢CDEFGH I J KL MMNOZP QIR S

Figure 3. A sequence of VCDT winning strategy.

Soon after the introduction of Connect6, many human experts found another type of
winning strategy in which additional single-threat moves are involved, i.e., single-threat and
double-threat moves are mixed (before ending with a triple-or-more-threat move). This type
of winning strategy is herein called Victory by Continuous Single-Threat-or-more moves
(VCST). For example, Lee [32], a Renju 3-dan player, found and claimed in late 2005 that
White won starting from move 8 (both 8 and 10 are single-threat moves) in the game as

shown in Figure 4 (below).

19
18
17
16
15
14
13
12

—%
=

R W & tn b =~ i D

—

AA°B ¢CDEFGH I J KL MMNOZP QIR S

Figure 4. A sequence of VCST winning strategy.

Similarly, the type of winning strategy with additional non-threat moves involved is
called Victory by Continuous Non-Threat-or-more moves (VCNT). For example, Black won
starting from move 1 (1 is a non-threat move) in Connect(6,2,3) as shown in Figure 5

(below).

19

18

17

16

15

14 4)
13

12 8)
1

10

9

8

7 0
6

5

4

3

2

:
ABCDETFG GHTI JKLMNGOTPA QTR R S

Figure 5. A sequence of VCNT winning strategy.

Although VCST was unknown then, Wu and Huang [65][66] were already able to
solve a simple VCNT case, that Black wins Connect(6,2,3). This clearly is a case of VCNT,

since Black’s first winning move, as shown in Figure 6 (below), must be a non-threat move.

Figure 6. Black’s winning move in Conect(6,2,3).

To solve it, they used a simple threat proof search method involving null or semi-null
moves and relevance zones, as briefly described in Section 2.2. In the search method for
solving the case Connect(6,2,3) with VCNT, both winning strategies for the null move (3-9
in Figure 12 (a) of Section 2.2) and the semi-null move (3-11 in Figure 12 (b) of Section 2.2)
must be VCDT. However, with more and more winning Connect6 positions investigated, we
found that winning strategies for null and semi-null moves may be VCSTs or even VCNTs,

thus making these positions much more difficult to solve.

1.4 Motivation

Consider the two winning non-threat moves (proved in this thesis), moves 7 in Figure

7 (a) and 6 in Figure 7 (b), respectively.

h.

vy

P
o ° s
6 2/

(a) (b)

Figure 7. (a) A position with Black winning. (b) A positon with White winning.

The former, found in 2006 [50], was the key used to help prove that Black wins at
move 3 in Figure 7 (a); that is, the opening move 2 is solved. In this case, for the null move
in Figure 7 (a), Black wins by a VCDT as shown in Figure 8 (a). However, for the semi-null
move 8§ in Figure 8 (b), Black has no double-threat moves to win by a VCDT, though Black

wins by a VCST starting at 9 in Figure 8 (b).

10

®

)
©
7
R

X
@
@
@

(a) (b)

Figure 8. (a) A VCDT for the null move in.Figure 7 (a). (b) A winning single-threat move 9

for'the semi=null-move 8.

(8) (7
i
O Clmm,
T8 N
T8),
8
I T -
@ | @,
N ~
-, N S PPN
@ o

(a) (b)
Figure 9. (a) A winning single-threat move 8 for a null move in Figure 7 (b). (b) A winning

non-threat move 8 for a semi-null move 7.

11

The latter, the position in Figure 7 (b) found by Huang [25], was investigated to see
whether the semi-null move 5 was safe enough, since the position at 5 was popular in the
following sense. Among all the first-five-move positions of Connect6 games played by the
players ranked above 1800 in [33] about 2% covered (or superset) the position according to
the statistics discussed in [50]. The proof for this position is extremely complicated. Even
for a null move by Black, White has no double-threat moves to win by a VCDT, but can
actually win by a VCST starting at 8§ as shown in Figure 9 (a). In addition, if a semi-null
move is made at 7 in Figure 9 (b), White cannot win by a VCDT or even a VCST, thus
making the position in Figure 7 (b) much more complicated to solve.

This thesis proposes a new threat-based proof search method in Chapter 3, named
Relevance-Zone-Oriented Proof (RZOP) search, ‘developed from the lambda search
proposed by Thomsen [52]. The proposed RZOP method is also generalized to all Connect
games in the Appendix D. In the past, many tesearchers [1][2][11][12][52] had proposed
threat-based search methods. Lambda ‘search-is-to formalize the search trees with null
moves and to solve positions of games such as Go and Chess. In lambda search, null moves
are involved with different orders of threat sequences, also called lambda-trees.

From the viewpoint of lambda search, a VCDT is a typical A'-tree with value 1 (cf.
[52]). However, the definition of lambda search cannot be directly applied to Connect6 or
Connect games with p > 2. For Connect games, this thesis modifies the definition of lambda
search in Section 2.3, and replaces the notation A’ by A’. Under the new definition, a VCST
is a A’-tree with value 1, the winning strategy for the position in Figure 7 (a) is a A’-tree
with value 1, while that in Figure 7 (b) is a A*-tree with value 1. The A search formalized in
this thesis is able to solve A’-trees to A*-trees with value 1 for Connect6.

Related works are given in Chapter 2. Together with a proof number search

[31[91123]1[27][35][36][43][46][54][64], this thesis solved effectively and successfully many

12

new Connect6 game positions, including several Connect6 openings, especially the
Mickey-Mouse Opening, as described in Section 5.3. This opening used to be one of the
popular openings before we solved it.

Chapter 4 further presents an improved method, named Segmented
Relevance-Zone-Oriented Proof (SRZOP) search, which speeds up the time to solve
Connect6 game positions. Experiments are illustrated in Chapter 5, where the detail results
are shown in Appendix A, B and C. Chapter 6 concludes this thesis. Appendix E explains
draw k-in-a-row games. Appendix F demonstrates records of our Connect6 program NCTUG6,
which won the gold in the 11™ and 13™ Computer Olympiads [59][67] in 2006 and 2008,
respectively; and also won eight games and lost none against top Connect6 players in

Taiwan in 2009 [30].

13

Chapter 2 Related Works

This chapter gives definitions and notation related to search trees and lambda search in

Sections 2.1 and 2.2 respectively.

2.1 Search Trees

This thesis basically follows the definitions of search trees in [10][37]. A search tree is
shown in Figure 10 (a) below, where rectangle and circle nodes indicate the positions in
Attacker’s and Defender’s turns’, respectivelys The value of a leaf is 1, if Attacker makes a
win segment, and 0, otherwise. The value of @ search tree is the minimax value of the tree.
Attacker wins in the root position- if the search tree has value 1 and all the internal circles
expand all Defender’s legal moves:

A strategy S of Attacker is viewed as a move-generating function of positions P that
are in Attacker’s turn. Naming, S(P) indicates the move that Attacker chooses to make
according to the strategy S. In a search tree following S, each position P expands at most
one move S(P). A strategy S of Attacker is called a winning strategy for position P, if and
only if the value of the search tree rooted at P is 1 following S and all Defender’s legal
moves are generated in the tree. Thus, we obtain Corollary 1 (below). A tree as shown in
Figure 10 (b) is called a solution tree in [10][37].

Corollary 1. Attacker wins in a position P if and only if there exists at least one winning

strategy of Attacker in P. I

3 When we say that a position P is in Attacker’s (Defender’s) turn, we mean that Attacker (Defender) is to
move next in P.

14

Attackertoplay | |
Maf
Defender to play .

Mdf MdZ

(2)

Attacker to play

(b)

Figure 10. (a) A search tree and (b) a solution tree.

15

Attackerto play

Defender to play
dy

(2)

Attackerto play

(b)
Figure 11. (a) Making squares of moves by inserting small boxes. (b) Combining the same

edges from (a).

16

In order to investigate more closely squares of defensive moves, insert small rectangles
onto the corresponding edges that are broken into two, marked s; and s, respectively, as
shown in Figure 11 (a). Furthermore, the edges are combined with the same s;, as shown in
Figure 11 (b). Note that null stones are marked as ¢ and the corresponding edges are

indicated by dashes.

2.2 Null Move Heuristics for Connect6

To solve Connect(6,2,3), Wu and Huang [65][66] used a simple threat proof search
method involving null or semi-null moves and relevance zones, as briefly described in the
following. Let White place no stones, called a null move in [65][66]. Obviously, Black wins
by VCDT 3-9 as shown in Figure 12.(a) below. Then, a relevance zone Z, the area of gray
squares in Figure 12 (a), can be derived to indicate that White must place at least one of the
two stones inside this zone, or Black wins.by simply replaying the same VCDT. Next, all
squares s in Z are verified as follows. Let White place one stone on s only, called a
semi-null move in [65][66]; for example, move 2 in Figure 12 (b). Again, Black is able to
win by another VCDT 3-11. Thus, another relevance zone Z', the gray area in Figure 12 (b),
can be derived again to indicate that White must place another stone inside Z’, or Black wins
by replaying the same VCDT. Finally, all s are verified such that Black wins over all moves
placed at s and s', where s’ is in the Z’ corresponding to the semi-null move at s. Hence,

Black was proved to win.

17

(b)

Figure 12. (a) A VCDT for a null move in Figure 6. (b) A VCDT for a semi-null move 2.

18

VCDT VCDT VCDT vCDT VCDT VCDT VCDT VCDT VCDT

Figure 13. The proof search tree for solving Connect(6,2,3).

A verifier V (for Attacker) is to verifyywhether Attacker wins in a position P by
following a strategy S. Specifically, 1f ¥(P,S) returns the value 1, then Attacker wins in P
and S is a winning strategy for P. A straightforward verifier is to verify it by traversing
exhaustively the whole solution tree. Clearly, it is infeasible in most cases, especially in
case of very large boards or even infinite boards. Fortunately, in Connect games, the
traversal of the search tree for proof can be greatly reduced according to threats, as
described in Chapter 1. The traversed search tree for proof by a verifier is called a proof

search tree. The proof search tree for solving Connect(6,2,3) is shown in Figure 13.

19

2.3 Lambda Search for Connect6

In [52], Thomsen proposed using the lambda search to express how direct Attacker can
achieve a goal. In Connect games, the goal is normally to make a win segment. The
formalization of lambda search is modified for Connect games as follows.

Definition 1. In Connect games, a A'-treec is a search tree which comprises all legal
A'-moves. If a A'-move is an Attacker move, the following condition holds. For all
subsequent null moves or semi-null moves Mp made by Defender, if M) have exactly u null
stones, where 1 < u < p, there exists at least one subsequent A'-tree with value 1, where 0 < i
<r—wuori=0ifr<u. Ifa A-move is a Defender move, the following condition holds.
There exist no subsequent A'-trees with value 1, where 0 <i <r— 1. In a A’-tree, a node is a
leaf (without any children) if there ‘are no A’-moves following it. The value of a leaf is 1 if
Defender is to move, and 0 if Attacker is to 'move. The value of a A'-tree is either 1
(indicating that Attacker wins) or+0 (otherwise), derived using minimax calculation. The
value of a A’-tree (where Attacker to move)is simply 1 if Attacker makes a win segment in

the next move. I

20

Figure 14. A A’tree.

In case of p = 1, the definition of A" is the same as that of A" (the goal is to win) in [52];
that is, a A'-tree is a A'-tree and a ' A’-move is'a"A’=-move, and vice versa. In case of p = 2,
such as Connect6, a A’-tree is illustrated in Figure 14 and move M, in the tree is a A’-move,
since the values of A’-tree and all A’-trees in the left box are all 1. In addition, moves M3,
M, M; and Mg are N -moves, if Attacker has no subsequent Ao-moves, Al-moves or
A’-moves. By following the proof of Theorem 1 in [52], we derive the following theorem
(whose proof is omitted).
Theorem 1. For a A'-tree rooted in a position P, if a minimax search on it returns the value
1, Attacker wins in P. I
Definition 2. A winning strategy is called a A’-strategy for a position P, if the subsequent

non-null moves following the strategy are all A'-moves, where 0 <i < r. I

21

VCDT VCST A-strategy VCST \-strategy

Figure'l5: A A=strategy.

From the above definition, a VCDT is a-A’-strategy, while a VCST is a A’-strategy.
For example, there exists a A’-strategy for winning position 7 in Figure 4 (Attacker is
White), where moves 8 to 18 are all A*-moves. VCNTs are A’-strategies or strategies of
higher orders, as illustrated in the following. In Figure 6, move M;;; is a N -move, and the
rest of Attacker moves are A’-moves, so it is a A’-strategy for Connect6(6,2,3). In Figure 7
(a), move 7 is a A3—move, and the rest of Attacker moves are A’-moves or A’ -moves, so it is
a A’-strategy. Figure 15 shows a general A’-strategy. However, it is more complicated in
Figure 7 (b), where move 6 is a A-move. Section 5.2 shows that it is a A*-strategy.

From Definition 2, a A’-strategy, » > 1, also implies that for a move with u null stones
Attacker has a A” “-strategy. For example, in the A’-strategy in Figure 15, Attacker has a

Al-strategy for the null move and A’-strategies for all the semi-null moves.

22

Chapter 3 Relevance-Zone-Oriented Proof Search for

Connect6

As seen in Section 2.3, the lambda search is a powerful method for proving the
winning positions with different orders of threat sequences. The next important issue for
lambda search is to construct relevance zones to reduce greatly the search space. In general,
different applications construct relevance zones in different ways. In Connect games, it is
critical to construct relevance zones in order to propagate relevance zones across different
orders of threat sequences. For example, in Figure 15, the relevance zones derived in the
VCDT (A’-strategy) or VCSTs (A’-strategies)ican be used in the whole search tree
(A'-strategy). This chapter - defines relevance ~zones and proposes the

relevance-zone-oriented proof search for Connect6:

3.1 Relevance Zones

This section defines relevance zones, which are elegantly employed to solve Connect
games. A set of squares on the board is called a zone. A sequence of zones with size r, ¥ =
<Zi, 2>, ..., Z,>, 1s incremental, if the condition Z; Z, c...C Z, holds. In the rest of this
thesis, sequences of zones with different sizes are all incremental and are thus not explicitly
specified. In addition, these zones usually indicate the squares to be chosen for stones to be

placed on, so only unoccupied (or empty) squares are of interest.

23

-
"
-

W

e

Figure 16. A sequence of zones <Z,, Z,, Z3>.

In a position P, its unoccupied zone, denoted by Z,,(P), is the zone that comprises all
the unoccupied squares. That is, Z,,(P) = Zseaalpr, Where Zp,qq is the zone for the whole
board and Zp is the set of all occupied squaresiin P. et —p(Z) denote Z,,(P)\Z and indicate
the set of unoccupied squares outside Z. Consider a sequence of zones ¥ = <7;, 2>, ..., Z,>
in P. A sequence of unoccupied squares: @==r<sypso, ..., 5>, Where ' < r, is said to be
outside ¥ or irrelevant to P, if all s,2'Z; ot s,€ —p(Z;). Let o —p('¥) denote the relation that
¢ is irrelevant to ¥ in P. Implicitly, —p('¥) denotes <—p(Z;), —p(Z2), ..., —p(Z,)>. For
example, in Figure 16, <s', 5", s">, <s', s" >, <s", ">, <¢™>, <¢"”> and even the empty
sequence <> are all irrelevant to <Z;, Z,, Z3>, while <s>, <s', t>, <s', s", t'">, <s', 5", s"", t""™>,
<s", s>, <s, s', s'> are not. For simplicity, let o4(®) denote oy(s;) + ou(s2) + ... + ou(s,) =
Zi<i<rrou(si). Similarly, op(@) = Zi<i<0p(s)).

Definition 3. A sequence of zones WV is called a sequence of relevance zones for Attacker in
a position P, if and only if Attacker wins in P + op() for all irrelevant @; that is, € —p(\V').
Let RZ(P) denote the set of all the sequences of relevance zones for Attacker in P. (Use the
notation RZ(P) instead of RZ,(P), since only relevance zones for Attacker are discussed in

this thesis). |}

24

From Definition 3, if RZ(P) is not empty, there must exist some ¥ in RZ(P). This
implies that Attacker wins in P by choosing the empty sequence of squares <> for ¢, since ¢
is irrelevant to W as described above. Thus, Corollary 2 is obtained.

Corollary 2. If there exists at least one sequence of zones ¥ in RZ(P), then Attacker wins in

P.|

Figure 17. A sequence of relevance zones W =<Z,, Z,> for the winning position in Figure

12 (a).

For the winning sequence in Figure 12 (a), Figure 17 illustrates relevance zones ¥ =
<Z, Z,>, where Z; is the set of empty squares marked with a small “1”, and Z, marked “1”
and “2”. Note that in the rest of this thesis, a sequence of zones is shown in this manner.
Interestingly, Z> is the same as Z in Figure 12 (a). From observation, Black still wins over
all irrelevant e —p('¥'). That is, if White places one in —p(Z;) and the other in —p(Z>), Black
still wins by replaying the winning sequence in Figure 12 (a). The result is slightly stronger
than that in [65][66].

Lemma 1 shows an important property that appending extra Zy,,« to a sequence of

25

relevance zones is still in RZ(P). Note that we use Zpouq, instead of Z,,(P), in order to be
independent of the position P, for simplicity. For example, in Figure 17, <Z;, Z,, Zpoari™ 18
also in RZ(P).

Lemma 1. Assume that ¥ = <7, Z,, ..., Z>i1s in RZ(P). Then, Y'=<Z,;, Z>, ..., Z, Zpoawrd™
is also in RZ(P).

Proof. Consider all irrelevant ¢e —p(\V"). For this lemma, it suffices to prove that Attacker
wins in P + op(P). Since —p(Zpoara) 1s empty, @ must not have the (» + 1)-st item. From the
definition, we also obtain @€ —p(‘¥). Since W is assumed to be in RZ(P), Attacker wins in P

+ op(@) due to e —p(*F). I

From Lemma 1, two sequences of relevance zones with different sizes can be adjusted
to those with the same size by appending extra Zs,» Or removing Zp,,q at the end. For
simplicity of discussion, this thesis uses some more notation for operations on sequences of
zones with the same size in P, say ¥ = <Z), Zs;..., Z> and V' = <Z';, 75, ..., Z'>, as
follows.
® [ect'V c YV indicate that ¥ is contained in Y' pair wise; that is, Z; € Z';over all 1 <i <r.
® [t VYUY =<Z,0Z"), 2,07, ..., Z 0L >.
® [ctVYuZ=<Z)0Z Z,0Z, ..., 2 07> and Y\Z = <Z)\Z, Z,\Z, ..., Z,\Z>, where Z is a

zone.
® [ect WK1 denote <7, Z3, ..., Z, Zpoars” and indicate promotion of the zones in ¥ (that

is, shifting zones to the left by 1) with extra Z,,q. Similarly, let WY<2 denote

(W«K1)«1, and Y«i denote (WY« (i—1))<1, where i > 2.

From the above notation and definitions, more properties are shown in Lemma 2 and

Lemma 3 as follows.

26

Lemma 2. Assume that ¥ is in RZ(P) and ¥ < V'. Then, V' is also in RZ(P).
Proof. Let ¥ = <Z;, Z5, ..., Z> and ¥' = <7}, Z'5, ..., Z'>. Consider all irrclevant
@ —p("P"). It suffices to prove that Attacker wins in P + op(¢). Since ¥ < V', the condition

o —p('P") also implies @e —p(‘¥). Since W is in RZ(P), Attacker wins in P + op(¢) due to

oc—p(P). |

Lemma 3 (below) shows important properties that are employed to improve the
verifiers in Section 3.2.
Lemma 3. Assume that ¥ = <Z,, Z,, ..., Z,> is in RZ(P). The following two properties are
satisfied.
1. Assume that —p(Z)) is not empty. Let the unoccupied square be s€ —p(Z;). Then, ¥«K1
is in RZ(P+op(s)).
2. Let @ be a sequence of unoccupied squares <sy, s>, ..., 5> in —p(‘V), where ' < r. Then,
Y<«<r'is in RZ(P + op()).
Proof. It suffices to prove the first property, since the first implies the second by induction.
Let W' = WK1 and consider all irrelevant @'= <s,, ..., s,>€—=p('Y"), where r’' < r. For the
first property, it suffices to prove that Attacker wins in (P + op(s)) + op(@'). Let ¢ = <s,
S2, ..., s,>. Then, the condition @€ —p(*t) holds due to s€ —p(Z;). Since ¥ is in RZ(P),

Attacker wins in P + op(p) due to ¢ —p(‘¥); that is, Attacker wins in (P + op(s)) + op(¢')

=P+ on(9)). |

27

3.2 The Proposed Verifier Vg

For solving positions in Connect6, this section investigates a verifier V(P,S) that also
construct recursively a sequence of zones W(P) = <Z)(P), ZxP), ..., Z{P)> with the
following property.

Property RZV: In the case that V(P,S) returns the value 1, the sequence of zones Y(P)
constructed by V(P,S) is in RZ(P).

This section presents such a verifier, named Ves(P,S), with a new proof search method
for Connect6. This method will be generalized to all Connect games in Appendix D. The
verifier Veo(P,S) is described in Subsections 3.2.1, 3.2.2 and 3.2.3 respectively for three
distinct kinds of P, namely endgame positions, positions in Attacker’s turn and positions in
Defender’s turn. Finally, Section 3:3 cencludes with Theorem 2, showing that the verifier

satisfies Property RZV in all cases.

3.2.1 Endgame Positions

If Attacker does not win in the endgame position P, the verifier simply returns the
value 0. If Attacker wins in P (i.e., Attacker has a win segment in P), the verifier returns 1
and constructs ‘W(P) in the following operation.

EP-1. For each active segment G of Defender containing exactly i unoccupied squares,
these squares in G are all added into Z(P) or higher-order zones; that is, Z(P) for
all j = i. In other words, for each active segment G of Defender containing at most i

unoccupied squares, add all of these squares in G into Z(P).

28

G!

+6-5-4-322(Y X X y2 3 4-5-5-56

Figure 18. (a) Relevance zones in a line and (b) in a board, upon winning with a win

segment.

Let us illustrate the above operation by the line shown in Figure 18 (a), where
Defender is White. Following the operation, the square marked with “1” is in Z;, those
marked with “1” or “2” are in Z,, and so on. For example, segment G has only one
unoccupied square that is in Z; or higher-order zones, while segment G' has two unoccupied
squares that are in Z, or higher-order zones. It is observed that placing one white stone on
the square in Z; forms a counter win segment (e.g., G) or an inversion that may prevent

Attacker from winning. Note that if Defender has an inversion, this position P is

29

unreachable since neither can have win segments simultaneously (as described in the
previous section), who wins first is thus unknown. On the other hand, Attacker still wins if
one white stone is placed in square s;, where s, Z;. Similarly, Attacker still wins if one
white stone is placed on s;, where s; ¢ Z;, and the other on s,, where s, ¢ Z,. The above can
be generalized to higher orders, and to all lines (or segments) on a board. An example of
constructing zones <Z;, Z,> on a board is illustrated in Figure 18 (b). Note that move 10 in
the figure is simply one of all defenses and is chosen for illustration. In addition, since move
9 clearly wins already, Subsection 3.2.3 will describe how to speed up the establishment of
relevance zones.

From the above observation, it can be derived that the constructed W(P) in operation
EP-1 is in RZ(P). This implies that Ve(P,S) satisfies Property RZV in the case of endgame
P, as shown in Lemma 4.

Lemma 4. Assume P to be an endgame position. Property RZV is satisfied for Veg(P,S).

Proof. Omitted. I

In Connect6, all Z(P) with i > 6, are nearly the same as Z,,(P), except for those
unoccupied squares covered by none of active segments of Defender. For example, if an
unoccupied square is surrounded by Attacker’s squares, it is clearly covered by none of
active segments of Defender and is not included in these Z(P). However, such squares are
normally not many, especially when board sizes are large and only a small number of stones
are in positions. Practically, we simply ignore all Z,(P) with i > 6 or use Z,,(P) whenever

needed.

30

3.2.2 Positions in Attacker’s Turn

In such positions, Attacker simply follows strategy S to make the move S(P) in P. Let
P, denote P@S(P). This verifier first performs Veg(Py4,S) recursively. If Vieg(P4,S) returns the
value 0, this verifier V¢g(P,S) also returns 0. On the other hand, if Vg(Py,S) returns 1, this
verifier Veg(P,S) returns 1, too; and constructs W(P) in the following operation.

AT-1. Let¥(P)=Y(P,) U Zs, where Zs={s | s€ S(P)}.

Intuitively, placing any stones on the squares in Zg by Defender in advance may block
attacks and prevent Attacker from winning. In this sense, the squares in Zg are relevant and
are therefore contained in all Z(P) (or Y(P)).

In fact, the above operation AT=1 also implies the property, —p'¥(P) = —ps'¥V(P,), for
the following reason. From the operation, the condition Z(P) = Z(P,) U Zs holds for all i. In
addition, since P4 = P®S(P), it is clear that Z,,(Py) = Z,,(P)\Zs or Z,,(P) = Z,,(P4)JZs.
Thus, for all i, we derive —p Z(P) = ZyP)\Z{(P) = (Zin(P 1) I Zs)\(Z(P4)IZs) = Zn(P4)\Z{(P4)
= —psZ(P4). From this property, Lemma 5 (below) shows that this verifier V¢s(P,S) satisfies
Property RZV if Vs(P4,S) satisfies Property RZV.

Lemma 5. Assume a position P in Attacker’s turn. From the above, assume that Ves(Py4,S)
satisfies Property RZV, where P, = P@S(P). This verifier V4(P,S) satisties Property RZV.
Proof. Assume that this verifier Ves(P,S) returns the value 1. For this lemma (this verifier
satisfies Property RZV), it suffices to prove that the constructed W(P) is in RZ(P). From the
above operation, Ves(P4,S) must also return 1. Since Vg(P4,S) satisfies Property RZV from
the lemma, W(P,) is in RZ(P,).

Consider all irrelevant @, where @ —p'P'(P). It suffices to prove that Attacker wins in P

+ op(@). Since the property —p¥(P) = —p¥(P,) is satisfied as described above, the

31

condition @ —p4'Y'(P4) holds too. Since W(P,) is in RZ(P,) from above, Attacker wins in P,
+ op(@) due to @e —ps'Y(P4). Since Attacker wins in Py + op(@) = (P + op(9))DS(P),

Attacker wins in P + op(@) by choosing the move S(P). I
3.2.3 Positions in Defender’s Turn

For positions in Defender’s turn, Lemma 6 shows a very important property used in
this section as well as the Appendix.

Lemma 6. Assume a position P in Defender’s turn. For a given sequence of zones ‘P,
assume that for all Defender moves Mp there exists some W¥p such that ¥p c ¥ and W¥p is in
RZ(P®Mp). Then V¥ is in RZ(P).

Proof. Consider all irrelevant @€ —p'¥. For this lemma, it suffices to prove that Attacker
wins in P + op(0).

Now, consider all Defender moves Mp in P + op(@). From this lemma, there exists
some ‘¥p such that Wp < ¥ and ¥p is in RZ(P@®Mp). Since Wp < P, the condition g —p'¥
implies @€ —p¥p. Since squares in Mp and op(P) are mutually exclusive, g€ —p'¥p also
implies @€ —peyp¥p. Since Wy is in RZ(P®Mp) from above, Attacker wins in (P®Mp) +
op(@) due to € —peup¥p. Since (POMp) + op(¢) = (P + op(9))®M)p, Attacker also wins
in (P + op(9))®Mp. From the above, since Attacker wins in (P + op(@))®Mp over all

Defender moves Mp, Attacker wins in P + op(Q). I

A straightforward verifier is to verify whether Attacker wins for all Defender moves, as
follows. The verifier V¢g(P,S) returns the value 1, if the recursive Veg(P@Mp,S) returns 1 for
all Defender moves Mp; otherwise, it returns 0. In the case that this verifier Ves(P,S) returns

1, the zones ‘W(P) are constructed in the following operation.

32

DT-1. [Initialize all zones in ¥(P) to be empty. Then, for all Defender moves M), let ‘¥(P)

— P(P)UP(POM)).

From the above operation, the condition W (P®Mp) < ¥(P) clearly holds for all Mp.
Assume that all the recursive Veg(P@M),S) satisfy Property RZV. Then, all W(P®M)) are in
RZ(P®Mp) for all Defender moves Mp. From Lemma 6, we obtain that Y(P) is in RZ(P);
and therefore, the verifier satisfies Property RZV. By induction, the above straightforward
verifier satisfies Property RZV in all cases.

However, the above straightforward verifier is apparently inefficient, since it searches
exhaustively all Defender moves, even when Attacker moves have some threats. The
situation is even worse in the case that the board'size is very large or infinite. In this
subsection, an efficient and elegant verifier is devised to reduce the search space by making
use of both threats and relevance zones. In Connect6, the position P (in Defender’s turn) can
be classified into the following four cases.. The-number of Attacker threats in P is (1) three
or more, (2) two, (3) one and (4) zero. The four cases are discussed respectively in the

following four subsections.

3.2.3.1. Three Threats or More

In this case, Attacker is sure to win by simply following the strategy, Sz, as follows.
For each Defender move, since the move must leave some threat segments unblocked,
Attacker wins simply by making a win segment from the unblocked one. Since the strategy
is a sure win, the verifier returns the value 1 and constructs the zones (initialized to be

empty) in the following operations.

33

T3-1. Add all unoccupied squares s on threat segments into all Z(P).

T3-2. For each active segment G of Defender containing exactly i + 2 unoccupied
squares, all these squares in G are added into all Z(P) or higher-order zones. In
other words, for each active segment G of Defender containing at most i + 2

unoccupied squares, add all these squares in G into Z(P).

(b)
Figure 19. (a) Relevance zones in a line and (b) in a board, upon winning with three or more

threats.

34

Let us illustrate the above operations by the line shown in Figure 19 (a), where
Defender is White. Zones in the line are marked in a way similar to that in Figure 18 (a). It
is observed that placing one white stone in G or Z; results in a counter threat segment or an
inversion that may threaten Attacker to defend in some of his earlier moves and prevent
Attacker from winning. On the other hand, Attacker still wins if one white stone is placed
on other squares s;, where s;¢ Z;. Similarly, Attacker still wins if one white stone is placed
on s;, where s; ¢ Z;, and the other on s,, where s, ¢ Z,. The above can be generalized to
higher orders, and to all lines (or segments) on the board. An example of constructing two
zones <Z;, Z»> on a board is illustrated in Figure 19 (b). Lemma 7 shows that in this case
the verifier satisfies Property RZV; that is, ‘W(P) is in RZ(P).

Lemma 7. Assume that Defender is to ‘move and Attacker has three or more threats in P.
The verifier described above satisfies Pioperty RZV.

Proof. For this lemma, it suffices to prove that the constructed W(P) is in RZ(P). Consider
all Defender moves Mp. Attacker-simply. follows a strategy S;r to connect six from an
unblocked threat segment. Let Pp = P®Mp and Ps = Pp®S;1(Pp). From Lemma 4 and
Lemma 5, W(Ps) and W(Pp) are in RZ(Ps) and RZ(Pp), respectively.

To prove that W(P) is in RZ(P), it suffices to prove from Lemma 6 that W(Pp) < ‘Y(P),
since W(Pp) is already in RZ(Pp). From Subsection 3.2.2, WY(Pp) = WY(Ps) U Zs, where Zg
={s | s€ S37(Pp)}. From operation T3-1, all squares in Zs are added into W(P). Thus, it
suffices to prove that W(Ps) < Y(P).

Since Attacker connects six in Pg, operation EP-1 (in Subsection 3.2.1) is employed to
construct zones W(Ps). The operation is restated as follows. For each active segment G of
Defender containing at most i unoccupied squares in Pg, all the squares in G are added into
Z{(Ps). Since one move has at most two squares, at most two occupied squares in G were

occupied by move Mp. Therefore, G contains at most 2 + i unoccupied squares back in P

35

(before making move Mp). From operation T3-2, all these unoccupied squares are also
added into Z(P). For example, let both lines in Figure 18 (a) and Figure 19 (a) be
respectively in positions Ps and P, where move M) is placed on the two leftmost squares
marked “1” in segment G in Figure 19 (a). Thus, the two squares marked “2” in segment G’
in Figure 18 (a) are also added into Z,(P) in Figure 19 (a). From the above observation, we
can derive W(Ps) < WY(P). I

Since all active segments G of Defender contains at most 6 (= 4 + 2) unoccupied
squares in Connect6, all these squares in G are added into all Z(P) from operation T3-2,
where i > 4. Thus, these Z(P) are nearly the same as Z,,(P), except for the unoccupied
squares not covered by any active segments of Defender, e.g., the unoccupied squares
surrounded by all Attacker squares. Similar to the argument in Subsection 3.2.2, we
construct zones with size three, ~and |simply use Z,(P) for those higher-order zones,

whenever needed.
3.2.3.2. Two Threats

When Attacker has two threats in P, Defender must defend by blocking the two threats.
In this case, the verifier performs the following operations.
T2-1. For each Defender move M), that blocks the two threats, perform the following.
a. Return the value 0 if the recursive Veg(Pp,S) returns the value 0, where Pp =
POMp.
b. Let Y(P)=Y(P)U¥(Pp).

T2-2. Continue to construct zones by both operations T3-1 and T3-2, and return 1.

36

Figure 20. A winning positon with two threats-for-Black (Attacker) and the constructed

y(p).

For example, for position P in Figure 20 (the grandparent of the position in Figure 19
(b)) where Black has two threats, White has three defensive moves at (B,C), (A,C) and
(B,D). Obviously, since Black still wins for each of the three moves, Black wins in P. From
the above operations, this verifier returns the value 1 and constructs W(P) as shown in
Figure 20. Lemma 8 (below) shows that this verifier satisfies Property RZV if the verifier
satisfies Property RZV for all the defensive moves, too. From this lemma, ¥(P) in Figure

20 is in RZ(P).

37

Lemma 8. From the above, assume that Defender is to move and Attacker has two threats in
P. Assume that all the recursive Veg(Pp,S) in operation T2-1 satisfy Property RZV. Then, the
verifier Veg(P,S) satisfies Property RZV too.

Proof. Assume that this verifier Veg(P,S) returns 1. For this lemma (this verifier satisfies

Property RZV), it suffices to prove that the constructed W(P) is in RZ(P). Since Ve(P,S)

returns 1, all the recursive Veg(Pp,S) in operation T2-1 must return 1. Since these Veg(Pp,S)

satisfy Property RZV from this lemma, all constructed W(Pp) are in RZ(Pp).

To prove W(P)e RZ(P), it suffices to prove from Lemma 6 the following. For all
Defender moves M) there exists some ¥p such that ¥ is in RZ(P®Mp) and ¥p < W(P).
All Defender moves M), are classified into the following cases.

1. All Defender moves Mp that block both threats. From the above, W(Pp) are in
RZ(Pp). In addition, since these W(Pp) are merged into ‘Y'(P) in operation T2-1.b, we
obtain W(Pp) < W(P). Thus, Y(Pp) is the ¥p.

2. All Defender moves M), that leave some threat segment unblocked. Attacker wins by
connecting six on the segment, like strategy S3r. Since operation T2-2 follows those
steps in T3-1 and T3-2, we simply follow the proof of Lemma 7 to prove that there

exists some ¥ such that Wp < W(P) and W) is in RZ(Pp). I

38

\?/
I
Figure 21. A winning positon with two threats-for-Black (Attacker) and the constructed

Y(P).

Assume that the subsequent winning moves of Attacker are the same for all the
defensive moves. Then, we can optimize the construction of zones by combining these
defensive moves together. For example, in Figure 20, the three defensive moves, (B,C),
(A,C) and (B,D) can be combined into a macro move (A, B, C, D) as shown in Figure 21.
Since the subsequent winning sequences of Attacker are the same, the sizes of relevance
zones are relatively smaller and the threat-based search is also greatly reduced. However,
note that the segment containing both 4 and B (the same for C and D) in Figure 20 should
be considered to have one white stone only for zone construction. Since the winning
sequences in Figure 12 (a) are the same for all defensive moves, the relevance zones are

constructed as shown in Figure 17.

39

3.2.3.3. One Threat

When Attacker has one threat, Defender must defend by blocking the threat. In this
case, the verifier performs the following operations.
T1-1. For each normal critical defense (defined in Section 1.2), Mp (s) where square s
blocks the threat, perform the operation of semi-null-move proof search as follows.
a. Return the value 0, if the recursive Ves(Py,S) returns 0 where Py = P@M)p o(s).
b. Let'WY(P)=Y(P)u (Y(P)K]).
c¢. For each defensive move Mp(s,s"), where s'e Z;(Ps), perform both operations
T2-1.a and T2-1.b.
T1-2. For all relaxed critical defenses Mp(s,s), perform both operations T2-1.a and
T2-1.b.

T1-3. Perform both operations T3-1.and T3-2, and return 1.

Consider a position P, 8 in Figure 22 (a) below.(the same as 8 in Figure 4), and another
Py, with a semi-null move added at 9. White (Attacker) wins in P, by the winning sequence
in Figure 22 (a). The above operations construct the zones W(P,) = <Z;(Ps), Z:(Ps), Z3(P)>,
with the first two zones shown in Figure 22 (c). According to operation T1-1.b, both zones
Z,(Ps) and Z;(Py) are shifted and merged into Z;(P) and Z,(P), respectively. For all defensive
moves Mp(s,s’), where s'e Z;(Ps), operation T1-1.c follows both T2-1.a and T2-1.b to
construct zones and verify whether Ves(P@Mp(s,s"),S) return 1. In addition, operation T1-2
also performs the same for all relaxed critical defenses, such as the one in Figure 22 (b).
From Figure 22 (c), since the number of squares in Z;(P;) is only 15, the number of

recursive Vg 1s relatively small, even in very large or infinite boards.

40

(a) (b)
+ 2
2 -2
2.
2 2

(c)
Figure 22. (a) A VCDT for the semi-null move 9. (b) A relaxed critical defense at 9. (c) The

constructed zones for the semi-null move 9 in (a).

41

Lemma 9 shows that the verifier satisfies Property RZV if all the recursive Vs satisty
Property RZV.

Lemma 9. From the above, assume that Defender is to move and Attacker has one threat in
P. Assume that all the recursive V¢4 in both operations T1-1 and T1-2 satisfy Property RZV.
Then, the verifier Vo(P,S) satisties Property RZV too.

Proof. Assume that this verifier Vg(P,S) returns 1. For this lemma, it suffices to prove that
the constructed W(P) is in RZ(P). Since V¢g(P,S) returns 1, all the recursive Vs in both
operations T1-1 and T1-2 must also return 1. Since all the recursive Vs satisfy Property
RZV from this lemma, all W(P;) constructed from T1-1.a are in RZ(P;) and all ¥(Pp) from
T1-1.c and T1-2 are in RZ(Pp).

To prove W(P)e RZ(P), it suffices to prove from Lemma 6 the following. For all
Defender moves Mp, there exists some ¥p such that Wp is in RZ(P®Mp) and ¥p < W(P).
All Defender moves M), are classified into the following cases.

1. All Defender moves Mp(s,s”) where s blocks the threat as described in T1-1. Let Py =
P®Mp ¢(s). Furthermore, this case'is separated into the following two subcases.
a. s'e Z;(Ps). Let Pp denote P@Mp(s,s’). The zones W(Pp) is constructed in
operation T1-1.c, and is in RZ(Pp) according to the first paragraph of this
proof. Since W(Pp) is merged into Y(P) in T1-1.c, we obtain WY (Pp) < Y(P).
Thus, W(Pp) is the ¥p.
b. s'e —pi(Z1(Py)). From the above, W(P;) is in RZ(Ps). Since s'e —pi(Z;(Py)),
Lemma 3 shows that W(P,)«<1 is in RZ(Pstop(s’)), meaning RZ(POMp(s,s")).
From operation T1-1.b, (¥(P;)<1) < Y(P). Thus, WY(P,)K1 is ¥p.
2. All Defender moves Mp(s,s’) in operation T1-2 are relaxed critical defenses. The
proof is similar to that in Case 1.a and therefore omitted.

All Defender moves Mp(s,s") that do not block the threat. Attacker wins by connecting

42

six on some unblocked threat segments, like strategy S;7. Find Wp by following the proof of

Lemma 7. ||
3.2.3.4. No Threats

When Attacker has no threats, it becomes more complicated since Defender has much
more freedom to move. In this case, the verifier makes use of the constructed relevance
zones to minimize the search space in the following operations.

TO0-1. Return the value 0 if Vs(Py,S) returns 0, where Py = P@Mp ¢o.

T0-2. Let W(P) =Y (Py)K2.

T0-3. For each square s in Zx(P,), perform the semi-null move proof search, as in
operations T1-1.a to T1-1.c.

T0-4. Return 1.

Let us illustrate the above operations by the example in Figure 6 and Figure 12. From
the winning moves in Figure 12 (a), operation T0O-1 constructs relevance zones W(P) =
<Zi(Py), Z:(Py), Z3(Py)>, with only the first two zones shown in Figure 17. Similarly, zone
Z(Py) is the same as Z in Figure 12 (a). According to operation T0-2, zone Z3(P,) is shifted
and merged into Z;(P). Then, in operation T0-3, one square s in Z>(Py) is chosen to perform
the semi-null move proof search. In the case that 2 in Figure 12 (b) is chosen, the semi-null
move proof search in TO-3 constructs the relevance zones Y(P;) = <Z;(P;), Z:(P;), Z3(Ps)>,
where Py = P®Mp(s). Zone Z;(Ps) is actually the same as Z' in Figure 12 (b). After
verifying that White wins for all se Z,(Py) and all s'e Z;(Py), the verifier confirms that White
wins in P, as shown in Lemma 10 (below). For the position in Figure 6, the number of the
recursive Vg in TO-1 to TO-3 is 2656, relatively small when compared with the number of

legal moves.

43

Lemma 10. Assume that Defender is to move and Attacker has no threats in P. From the
above, assume that all recursive Vg in both operations TO-1 and TO-3 satisfy Property RZV.
Then, the verifier Ves(P,S) also satisfies Property RZV.

Proof. Assume that this verifier Vg(P,S) returns 1. For this lemma, it suffices to prove that
the constructed W(P) is in RZ(P). Since V¢g(P,S) returns 1, all the recursive Vs in both
operations TO-1 and TO-3 must also return 1. Since these recursive Vg, say for position P/,
satisfy Property RZV from this lemma, the constructed zones W(P’) are in RZ(P’).

To prove W(P)e RZ(P), it suffices to prove from Lemma 6 the following: For all
Defender moves M), there exists some ¥p such that ¥p is in RZ(P@®Mp) and ¥p < W(P).
All Defender moves M), are classified into the following cases:

1. All Defender moves Mp(s,s') where se—=py(Z>(Py)) and s'e —py(Z>(Py)). From the
first paragraph in this proof, Y(Py) 1S In RZ(P,). Since se—py(Z2(Py)) and
s'e =po(Z2(Py)), Y (Py)K2 is in RZ(Py + 0p(s) + 0p(s')) from Lemma 3. Since P, +
op(s) + op(s) = POMp(s;s)), WY(Ps)<&2is also in RZ(P®Mp(s,s)). In addition,
(Y (Py)<2) c ¥(P) from operation TO-2. Thus, W(Py)<2 is ‘¥p.

2. All Defender moves Mp(s,s') where se Z»(Py). By following the proof for Case 1
(including Subcases 1.a and 1.b) in Lemma 9, we obtain that there exists some ¥ in

P®Mp(s,s") for all s' such that ¥ < W(P). The details are omitted. I

44

3.3 Conclusion for the Verifier Vg

Theorem 2 (below) concludes that the verifier Veg(P,S) in all cases satisfy Property
RZV. Therefore, if Ves(P,S) returns the value 1, the constructed W(P) is in RZ(P), and
Attacker wins in P from Corollary 2.

Theorem 2. The verifier Vg(P,S) satisties Property RZV in all cases.
Proof. By induction, the verifier V¢4(P,S) satisfies Property RZV in all cases from Lemma 4

to Lemma 10. I

4

<Zf, Zz, Z3> <Zr1, r ' >

Figure 23. An example proof search tree for the Verifer Veg(P,S).

Figure 23 shows an example proof search tree that gives an overview for the Verifer

VC6(P:'S)‘

45

Chapter 4 Segmented Relevance-Zone-Oriented Proof

Search for Connect6

As seen in Chapter 3, the RZOP search is a powerful method for proving the winning
positions with different orders of threat sequences and constructs relevance zones to reduce
greatly the search space. However, we observed some issues when solving Connect6
positions with the RZOP search. First issue is that in the RZOP search we found sequences
of squares that are not defined to be irrelevant as shown in Section 4.1. In Section 4.2, we
observed the second issue in which countersthreat segments (Defender’s threat segments)
are the key point that influence whether Attacker can win by simply replaying or not.
Section 4.3 presents that there are-intéresting moves Attacker can win by replaying. Section
4.4 presents two experimental verifiers modified—from Sections 4.1 and 4.2 respectively.
Section 4.5 proposes an advanced improvement which does not implement yet due to the
memory limitation in current NCTU6 program. Finally, we present our SRZOP verifiers

respectively in Subsections 4.1.1, 4.2.1,4.3.1,4.4.1 and 4.4.3.

4.1 Irrelevant vs. Relevant Sequences of Squares

In Figure 16 of Chapter 3, <s', s'> is irrelevant to <Z;, Z,, Z3>, while <s"”, s> is not
defined to be irrelevant. However, consider the following situation. Assume ¥ = <Z;, Z,,
Z3> 1s in RZ(P). Then, according to the definition, Attacker wins in P + op(s”) + op(s'"’) for
irrelevant <s’, s">. However, it is clear that Attacker wins in P + op(s”) + op(s’) too. In this
sense, <s”, s> should be defined to be irrelevant too, in this sense. Therefore, we define

relevant and not relevant sequences of squares as follows.

46

Consider a sequence of zones W = <Z;, Z,, ..., Z> in P. A sequence of unoccupied

squares @ = <sj, S2, ..., 8>, where r' < r, is said to be relevant to ‘P, if there exists no
permutation @' from ¢ such that @' is irrelevant to V. Otherwise, @ is said to be not relevant
to . Let @€ p('¥) denote the relation that @ is relevant to ¥ in P and @€ —p(¥') denote the
relation that @ is not relevant to ¥ in P. Implicitly, —p('¥) denotes <—p(Z;), —p(Z>), ...,
—p(Z,)>. With this new definition, in Figure 16, <s>, <s', t>, <s',s", t'">, <s',s", s"", t"™>, <s,
s', s"> are all relevant to <Z;, Z,, Z3>, while <s', 5", s""™>, <s', s" >, <g", s>, <s", s"">, <s>,
<s""™> and <> are not.
Definition 4. A sequence of zones WV is called a sequence of relevance zones for Attacker in
a position P, if and only if Attacker wins in P + op(¢) for all not relevant @; that is,
@ —p('P). Let RZ(P) denote the set of all the sequences of relevance zones for Attacker in P.
I

From Definition 4, if RZ(P) is not empty, there must exist some ¥ in RZ(P). This
implies that Attacker wins in P by choosing the-empty sequence of squares <> for ¢, since ¢
is not relevant to ¥ as described above. Thus, Corollary 3 is obtained.

Corollary 3. If there exists at least one sequence of zones ¥ in RZ(P), then Attacker wins in
I |

The following lemma shows an important property of the SRZOP search.

Lemma 11. Assume that ¥ = <Z,, Z,, ..., Z> is in RZ(P). If ¢ is not relevant to ¥, then
Attacker wins in P + op(0).

Proof. Since @e—p('Y), by definition, these exists some permutation @' such that @' is
irrelevant to . Let ¢ = <s;, s2, ..., 5, and @' = <s'j, 5", ..., s>, where ' < r. Since @' is
irrelevant to ¥, Attacker wins in P+ op(¢') = P+ op(s';) + op(s’2) + ... + op(s'»). Since @' is
a permutation of @, P+ op(s';) + op(s"2) + ... + op(s') = P+ op(s;) + op(sz2) + ... + op(s,) =

P + op(@). Therefore, Attacker wins in P + op(@) (= P + op(@")). I

47

With Lemma 11, the proofs of Lemma 1, Lemma 2 and Lemma 3 still hold by
considering all not relevant ¢ as shown in Lemma 12, Lemma 13 and Lemma 14,
respectively.

Lemma 12. Assume that ¥ = <Z;, Z,, ..., Z> is in RZ(P). Then, ¥Y' = <Z,, Z,, ..., Z,,
Zpoars™ 18 also in RZ(P).

Proof. Consider all not relevant @€ —p('V"). For this lemma, it suffices to prove that Attacker
wins in P + op(@). Since —p(Zpoara) 18 €mpty, @ must not have the (» + 1)-st item. From the
definition, we also obtain ¢ —p(¥). Since ¥ is assumed to be in RZ(P), Attacker wins in P

+ op(@) due to e —p('P). ||

Lemma 13. Assume that ¥ is in RZ(P) and ¥ ¥'. Then, V' is also in RZ(P).
Proof. Let ¥ = <Z;, Z,, ..., Z>and W' = <Z';, 7", ..., Z'>. Consider all not relevant
o —p(\P"). It suffices to prove that Attacker wins-in P + op(). Since ¥ < V', the condition

@ —p(P") also implies @e —p(*Y). Since W is in RZ(P), Attacker wins in P + op(¢) due to

oc—n(?P). ||

Lemma 14. Assume that ¥ = <Z;, Z>, ..., Z> is in RZ(P). The following two properties are

satisfied.

1. Assume that —p(Z)) is not empty. Let the unoccupied square be s€ —p(Z;). Then, ¥«K1
is in RZ(P+op(s)).

2. Let @ be a sequence of unoccupied squares <sy, s, ..., s> in —=p(‘¥'), where r' < r. Then,
Y<«Kr'is in RZ(P + op(Q)).

Proof. It suffices to prove the first property, since the first implies the second by induction.

Let W' = W« and consider all not relevant ¢'= <s,, ..., 5,>€ —p('V"), where ' < r. For the

48

first property, it suffices to prove that Attacker wins in (P + op(s)) + op(@'). Let ¢ = <s,
S2, ..., s,>. Then, the condition @€ —p(*t) holds due to s€ —p(Z;). Since ¥ is in RZ(P),
Attacker wins in P + op(p) due to ¢ —p(‘¥); that is, Attacker wins in (P + op(s)) + op(¢')

=P+ on(9)). |

Consider ¥ = <Z,, Z», ..., Z> and a sequence of unoccupied squares ¢ = <sy, s, ...,
s>, where 7' < r. A sequence of unoccupied squares @' = <sp;, Sp2, ..., Sp> 18 said to a
subsequence of @, if 1 < b; < b, < ... < b; <r'. The definition of relevant ¢ is equivalent to
the following property which means placing i stones inside Z;.
Property INZ: Let ¥ = <7, Z,, ..., Z> and ¢ = <sy, s2, ..., 5,»>, where r' < r. Assume that
¢ is relevant to ‘P, then there exists some 7, where 1,< i < ', and some subsequence @' of

size i such that all squares in @' are«din Z; that is, @ 1s televant to V.

The following lemma shows that Property INZ holds.
Lemma 15. If Property INZ holds, then there exists some i and some subsequence @' of size
i such that all squares in @' are in Z;; that is, @ is relevant to Y. Otherwise, ¢ is not relevant
to \V.
Proof. Assume by contradictory that Property INZ does not hold and ¢ is relevant to V..
This implies that for all 1 <7 < 7', there does not exist some subsequence with size i. Let us
investigate each i as follows.
(a) There does not exist some subsequence @' of size 7’ such that all squares in @' are in Z,.
Therefore, there exists at least one square, said s';, not in Z,-, that is s’,€ —p(Z,"). Let s, = s".
(b) Similarly, there does not exist some subsequence @' of size »'— I such that all squares in

¢' are in Z,- ;. Therefore, there exist at least two squares not in Z,. In addition to s,, let

another square s, ;€ —p(Z,).

49

(c) Therefore, there exist at least i squares, where 1 < i < 7/, not in Z,. In addition to s,,
Sr1, -5 Sit1, let another square s,€ —p(Z;).
From above, let ¢ = <s;, s2, ..., 5,>. Since s;€ —p(Z)), $26 —p(Z2), 36 =p(Z3), ...,

sr€—p(Z), @ is not relevant to . It contradicts the assumption. I

In additional, we obtain the following lemma.
Lemma 16. Assume that ¥ is in RZ(P), where ¥ =<Z;, Z,, ..., Z> and @ = <sy, 52, ..., §,>,
where r' < r. If Property INZ does not hold, then Attacker wins in P + op(Q).

Proof. From Lemma 11 and Lemma 15, this lemma is trivial and therefore omitted. I

4.1.1 The Proposed Verifier Vs o;

This subsection presents a verifier, named Ves.0i(P,S), with a new proof search method
for Connect6. The verifier Vs oi(P,S) 18 described in Subsections 4.1.1.1, 4.1.1.2 and
4.1.1.3 respectively for three distinct kinds of P, namely endgame positions, positions in
Attacker’s turn and positions in Defender’s turn. Finally, Subsection 4.1.2 concludes with

Theorem 3, showing that the verifier satisfies Property RZV in all cases.
4.1.1.1. Endgame Positions

If Attacker does not win in the endgame position P, the verifier simply returns the
value 0. If Attacker wins in P (i.e., Attacker has a win segment in P), the verifier returns 1
and constructs W(P) in the following operation.

O1-EP-1. For each active segment G of Defender containing exactly i unoccupied squares,
these squares in G are all added into Z(P) or higher-order zones; that is, Z(P)
for all j > i. In other words, for each active segment G of Defender containing

at most 7 unoccupied squares, add all of these squares in G into Z(P).

50

Lemma 17. Assume P to be an endgame position. Property RZV is satisfied for Veg.0:(P,S).

Proof. Omitted. ||
4.1.1.2. Positions in Attacker’s Turn

In such positions, Attacker simply follows strategy S to make the move S(P) in P. Let
P, denote P®S(P). This verifier first performs Veg.oi/(P4,S) recursively. If Vigoi(P4,S)
returns the value 0, this verifier Vego;(P,S) also returns 0. On the other hand, if Vs 0i(P4,S)
returns 1, this verifier Vego/(P,S) returns 1, too; and constructs W(P) in the following
operation.

O1-AT-1. LetWY(P)=Y(P,) v Zs, where Zs ={s| s€ S(P)}.

Lemma 18. Assume a position. P in Attacker’s turn.. From the above, assume that
Ves-01(Pa,S) satisfies Property RZV, where Py = P®S(P): This verifier Ves.o:(P,S) satisfies
Property RZV.
Proof. Assume that this verifier V¢s.0,(P,S) returns the value 1. For this lemma (this verifier
satisfies Property RZV), it suffices to prove that the constructed W(P) is in RZ(P). From the
above operation, Veg.01(P4,S) must also return 1. Since Vig.01(P4,S) satisfies Property RZV
from the lemma, W(P,) is in RZ(P,).

Consider all not relevant ¢, where e —p'¥'(P). It suffices to prove that Attacker wins in
P + op(9). Since the property —pY(P) = —ps'P(P4) is satisfied as described above, the
condition @€ —p4'¥'(P,4) holds too. Since Y (P,) is in RZ(P,) from above, Attacker wins in P,
+ op(@) due to @ —ps'P(P,4). Since Attacker wins in Py + op(@) = (P + op(9))DS(P),

Attacker wins in P + op(¢) by choosing the move S(P). I

51

4.1.1.3. Positions in Defender’s Turn

For positions in Defender’s turn, the following lemma shows a very important property
used in this subsection.

Lemma 19. Assume a position P in Defender’s turn. For a given sequence of zones V,
assume that for all Defender moves Mp there exists some Wp such that W¥p < ¥ and ¥p is in
RZ(P®Mp). Then V¥ is in RZ(P).

Proof. Consider all not relevant ¢e —p'¥. For this lemma, it suffices to prove that Attacker
wins in P + op(o).

Now, consider all Defender moves Mp in P + op(¢). From this lemma, there exists
some Wp such that Wp < ¥ and W) is in RZ(P@Mp). Since ¥p < W, the condition g€ —p¥
implies @€ —p'¥p. Since squares in.Mp and.op(®) are mutually exclusive, ¢ —p'¥p also
implies @€ —peyp¥p. Since Wy is inRZ(POMp) from-above, Attacker wins in (PO®Mp) +
op(@) due to @€ —peyp'¥p. Since (POMp) + op(0Q).= (P + op(9))®Mp, Attacker also wins
in (P + op(9))®Mp. From the above, since Attacker wins in (P + op(@))®Mp over all

Defender moves Mp, Attacker wins in P + op(@). I

In Connect6, the position P (in Defender’s turn) can be classified into the following
four cases. The number of Attacker threats in P is (1) three or more, (2) two, (3) one and (4)

zero. The four cases are discussed respectively in the following four subsections.
4.1.1.3.1. Three Threats or More

In this case, Attacker is sure to win by simply following the strategy, S3r, as follows.
For each Defender move, since the move must leave some threat segments unblocked,

Attacker wins simply by making a win segment from the unblocked one. Since the strategy

52

is a sure win, the verifier returns the value 1 and constructs the zones (initialized to be

empty) in the following operations.

O1-T3-1. Add all unoccupied squares s on threat segments into all Z;(P).

01-T3-2. For each active segment G of Defender containing exactly i + 2 unoccupied
squares, all these squares in G are added into all Z,(P) or higher-order zones. In
other words, for each active segment G of Defender containing at most i + 2

unoccupied squares, add all these squares in G into Zi(P).

Lemma 20. Assume that Defender is to-move and Attacker has three or more threats in P.
The verifier described above satisfies Pioperty RZV.

Proof. For this lemma, it suffices to prove that the constructed W(P) is in RZ(P). Consider
all Defender moves Mp. Attacker-simply. follows a strategy S;r to connect six from an
unblocked threat segment. Let Pp = P®Mp and Ps = Pp®S;1(Pp). From Lemma 17 and
Lemma 18, W(Ps) and W(Pp) are in RZ(Ps) and RZ(Pp), respectively.

To prove that W(P) is in RZ(P), it suffices to prove from Lemma 19 that ¥(Pp) < W(P),
since W(Pp) is already in RZ(Pp). From Subsection 4.1.1.2, W(Pp) = W(Ps) U Zs, where Zg
={s | s€ S37(Pp)}. From operation O1-T3-1, all squares in Zs are added into ¥(P). Thus, it
suffices to prove that W(Ps) < WY(P).

Since Attacker connects six in Pg operation O1-EP-1 (in Subsection 4.1.1.1) is
employed to construct zones Y(Ps). The operation is restated as follows. For each active
segment G of Defender containing at most i unoccupied squares in Pg, all the squares in G
are added into Z(Ps). Since one move has at most two squares, at most two occupied

squares in G were occupied by move Mp. Therefore, G contains at most 2 + i unoccupied

53

squares back in P (before making move Mp). From operation O1-T3-2, all these unoccupied
squares are also added into Z(P). For example, let both lines in Figure 18 (a) and Figure 19
(a) (in Section 3.2) be respectively in positions Ps and P, where move Mp is placed on the
two leftmost squares marked “1” in segment G in Figure 19 (a). Thus, the two squares
marked “2” in segment G' in Figure 18 (a) are also added into Z,(P) in Figure 19 (a). From

the above observation, we can derive W(Ps) < W(P). I
4.1.1.3.2. Two Threats

When Attacker has two threats in P, Defender must defend by blocking the two threats.
In this case, the verifier performs the following operations.
O1-T2-1. For each Defender move Mp that blocks 'the two threats, perform the following.
a. Return the value 0 if the recursive Vcs.0,(Pp,S) returns the value 0,
where Pp = P@M).
b. Let ¥Y(P)=Y(P)V¥(Pp).
O1-T2-2. Continue to construct zones by both operations O1-T3-1 and O1-T3-2, and

return 1.

Lemma 21. From the above, assume that Defender is to move and Attacker has two threats
in P. Assume that all the recursive Ves.0:(Pp,S) in operation O1-T2-1 satisfy Property RZV.
Then, the verifier Veg.o(P,S) satisfies Property RZV too.

Proof. Assume that this verifier V¢s.0:(P,S) returns 1. For this lemma (this verifier satisfies
Property RZV), it suffices to prove that the constructed W(P) is in RZ(P). Since Veg.0:1(P,S)
returns 1, all the recursive Vig.0i(Pp,S) in operation O1-T2-1 must return 1. Since these
Ves-01(Pp,S) satisfy Property RZV from this lemma, all constructed W(Pp) are in RZ(Pp).

To prove W(P)e RZ(P), it suffices to prove from Lemma 19 the following. For all

54

Defender moves M), there exists some ¥p such that ¥ is in RZ(P®Mp) and ¥p < W(P).

All Defender moves M), are classified into the following cases.

1. All Defender moves Mp that block both threats. From the above, W(Pp) are in
RZ(Pp). In addition, since these W(Pp) are merged into Y(P) in operation O1-T2-1.b,
we obtain W(Pp) < W(P). Thus, W(Pp) is the ¥p.

2. All Defender moves M), that leave some threat segment unblocked. Attacker wins by
connecting six on the segment, like strategy S3r. Since operation O1-T2-2 follows
those steps in O1-T3-1 and O1-T3-2, we simply follow the proof of Lemma 20 to

prove that there exists some ¥ such that Wp < W(P) and W) is in RZ(Pp). I
4.1.1.3.3. One Threat

When Attacker has one threat, Defender must defend by blocking the threat. In this
case, the verifier performs the following operations.
0O1-T1-1. For each normal critical* defense(defined in Section 1.2), Mp(s) where
square s blocks the threat, perform ‘the operation of semi-null-move proof
search as follows.
a. Return the value 0, if the recursive Vs.0:(Ps,S) returns 0 where Py =
POMp o(s).
b. LetWY(P)="Y(P)u (Y(P)K]).
C. For each defensive move Mp(s,s’), where s'e Z;(P;), perform both
operations O1-T2-1.a and O1-T2-1.b.
0O1-T1-2. For all relaxed critical defenses Mp(s,s’), perform both operations O1-T2-1.a
and O1-T2-1.b.

0O1-T1-3. Perform both operations O1-T3-1 and O1-T3-2, and return 1.

55

Lemma 22. From the above, assume that Defender is to move and Attacker has one threat
in P. Assume that all the recursive V¢gp; in both operations O1-T1-1 and O1-T1-2 satisfy
Property RZV. Then, the verifier Ves.0:(P,S) satisfies Property RZV too.

Proof. Assume that this verifier Vs.0,(P,S) returns 1. For this lemma, it suffices to prove
that the constructed W(P) is in RZ(P). Since Veg.0:(P,S) returns 1, all the recursive Veg.or in
both operations O1-T1-1 and O1-T1-2 must also return 1. Since all the recursive Ves.os
satisfy Property RZV from this lemma, all ¥(Ps) constructed from O1-T1-1.a are in RZ(P;)
and all W(Pp) from O1-T1-1.c and O1-T1-2 are in RZ(Pp).

To prove W(P)e RZ(P), it suffices to prove from Lemma 19 the following. For all
Defender moves Mp, there exists some ¥p such that Wp is in RZ(P@Mp) and ¥p < W(P).
All Defender moves M), are classified into the following cases.

1. All Defender moves Mp(s,s) where s blocks the threat as described in O1-T1-1. Let
Pg= P®M0p (s). Furthermore, this case is separated into the following two subcases.
a. s'e Z;(Ps). Let Pp denote POMp(s,s’). The zones W(Pp) is constructed in
operation O1-T1-1.c, and is'in RZ(Pp) according to the first paragraph of this
proof. Since Y(Pp) is merged into Y(P) in O1-T1-1.c, we obtain ¥(Pp)
Y(P). Thus, W(Pp) is the Wp.
b. s'e —pi(Zi(Py)). From the above, W(Ps) is in RZ(P;). Since s'e —py(Z(Ps)),
Lemma 14 shows that W(P;)<1 is in RZ(Ps+op(s’)), meaning RZ(P@Mp(s,s")).
From operation O1-T1-1.b, (‘Y(Ps)<1) € W(P). Thus, Y(Py)K1 is ¥p.
2. All Defender moves Mp(s,s") in operation O1-T1-2 are relaxed critical defenses. The
proof is similar to that in Case 1.a and therefore omitted.

All Defender moves Mp(s,s") that do not block the threat. Attacker wins by connecting

six on some unblocked threat segments, like strategy S;r. Find ¥p by following the proof of

Lemma 20. I

56

4.1.1.3.4. No Threats

When Attacker has no threats, it becomes more complicated since Defender has much
more freedom to move. In this case, the verifier makes use of the constructed relevance
zones to minimize the search space in the following operations.

O1-TO-1. Return the value 0 if Ves0:(Py,S) returns 0, where Py = POMp 0.

01-To0-2. Let W(P) = W(Py)K2.

01-T0-3. For each square s in Z;(Py), perform the semi-null move proof search, as in
operations O1-T1-1.a to-O1-T1-1.c.

01-T0-4. For each square ssn Zx(Py), where ZA(Py) = Z:(Py)\Zi(Py), perform the
operation which satisfies Property INZ as follows.
a. For each defensive move Mp(s,s"), where s'e Zx(P,) and s’ # s, perform

both operations O1-T2-1.a and O1-T2-1.b.

O01-TO-5. Return 1.

Lemma 23. Assume that Defender is to move and Attacker has no threats in P. From the
above, assume that all recursive V¢s.0; in operations O1-T0-1, O1-T0-3 and O1-T0-4 satisfy
Property RZV. Then, the verifier V¢s.0,(P,S) also satisfies Property RZV.

Proof. Assume that this verifier Vg o,(P,S) returns 1. For this lemma, it suffices to prove
that the constructed W(P) is in RZ(P). Since Vee.0:(P,S) returns 1, all the recursive Veg.or in
operations O1-T0-1, O1-T0-3 and O1-T0-4 must also return 1. Since these recursive Vs,
say for position P’, satisfy Property RZV from this lemma, the constructed zones W(P’) are

in RZ(P").

57

To prove W(P)e RZ(P), it suffices to prove from Lemma 19 the following: For all
Defender moves Mp, there exists some ¥p such that Wp is in RZ(P®@Mp) and ¥p < W(P).
All Defender moves M), are classified into the following cases:

1. All Defender moves Mp(s,s") where se—py(Z:2(Py)) and s'e —py(Z2(Py)). From the
first paragraph in this proof, W(Py) is in RZ(P,). Since s€—py(Z:(Py)) and
s'e —py(Z2(Py)), Y(Pp)K2 1s in RZ(Py + op(s) + op(s)) from Lemma 14. Since Py +
op(s) + op(s") = POMp(s,s"), W(Py)K2 is also in RZ(P®Mp(s,s")). In addition,
(P(Py)<2) < ¥(P) from operation O1-T0-2. Thus, W¥(Py)<2 is ¥p.

2. All Defender moves Mp(s,s’) where se Z;(P,). By following the proof for Case 1
(including Subcases 1.a and 1.b) in Lemma 22, we obtain that there exists some ¥ in
P®Mp(s,s") for all s' such that . € W(P). The details are omitted. I

3. All Defender moves Mp(s,s’) where'se Zs(Py). By following the proof for Case 2 in
Lemma 22, we obtain that there exists some ¥ in P@&Mp(s,s") for all s' such that ¥ <

Y(P). The details are omitted. I

58

4.1.2 Conclusion for the Verifier Vs.0;

Theorem 3 (below) concludes that the verifier Ves.0,(P,S) in all cases satisfy Property
RZV. Therefore, if Viso,(P,S) returns the value 1, the constructed W(P) is in RZ(P), and
Attacker wins in P from Corollary 3.

Theorem 3. The verifier Ves.0:(P,S) satisfies Property RZV in all cases.
Proof. By induction, the verifier Vg oi(P,S) satisfies Property RZV in all cases from

Lemma 17 to Lemma 23. |

P, P, s
<zl <Z',Z'p>

Figure 24. An example proof search tree, where Z>=Z)\Z,, for the Verifer Ves.o1(P,S).

Figure 24 shows an example proof search tree that gives an overview for the Verifer

Ves.oi1(P,S).

59

4.2 Counter-threat Sequences of Squares

In Section 4.1, we propose Property INZ which means ¢ is relevant to ‘W(P) if
Defender places i stones inside Z(P). Therefore, we consider only relevant ¢ for the verifier
Ves-01(P,S). However, there exist some @€ p(\¥) such that Attacker wins by replaying when

we perform the verifier Veg.0:(P,S).

M L = n @~ 0 W

1
(22)B c D EFGH I JKLMNOPRO QRS

Figure 25. Two types of moves M'p(D12, G11) and M"p(D6, G6).

60

For example, let P denote the position in Figure 6 and P’ = P®Mp 4. Figure 25
shows a VCDT for the position P’. Given two moves M'n(D12, G11) and M"p(D6, G6) as
shown in Figure 25. It is obviously that Attacker wins in P@M'p by replaying the same
VCDT in Figure 25. However, Attacker cannot win by simply replaying in P@M"p, since
Defender makes a single-threat move 8 before Attacker makes the triple-threat move 9.

Let ¥ = <Z,, Z,> the gray area in P as shown in Figure 25. From the above observation
and Property INZ in Section 4.1, the only chance for Defender to prevent Attacker wins by
replaying is to place at least one stone in Z; or make a threat move before Attacker’s
triple-threat move. Since placing one stone in Z; always prevents Attacker from winning by
replaying, we focus on placing two stone in Z, = Z,\Z; by Property INZ.

From examples in Figure 25, we classify Defender moves into two types. First type is
those Defender moves that may form threat segments, also called counter-threat segments,
as M"p(D6, G6) shown in Figure 25. Second type is those Defender moves that are sure not
form threat segments as M'p(D12, G1l)-shown in -Figure 25. Therefore, in this section, we
investigate first type of Defender moves.

Let ¥ = <Z,, Z,> be a sequence of relevance zones in P and a sequence of unoccupied
squares @ = <s, s™. For each square s in 7>, where Z, = Z,\Z;, to form counter-threat
segments, s’ and s must be in a same active segment and s’ must be in the eight directions
from s. For example, Figure 26 (below) shows the possible area for squares s’ after
Defender places the first square s. Since the possible area looks like the Chinese word >,

we denote the area Z; .

61

18
17 2
16 2
15 2
14
13 2-2-2
12 2-2-2
« N
*
*40 2
*
.
a ‘.n 1 2
8 "o ? P i
7 22" 2 {6]
Wy
imnmfum ’-i— ﬁ
+* i’t
5 +T = ;
w.i . "0
4 +' b '.‘0-
3 ’.‘. o ’.‘
s . '-r‘
""E ; *
* -
o *e

;
(22)B Cc D EF GH I JKLMNOTPRO QRS

Figure 26. For Defender’s first square s, the dash line indicates the possible area for the

second square s’ that may form counter-threat segments.

Definition 5. Let ¥ = <Z,, Z,, ..., Z,> be a sequence of zones. For each square se Z;, where
Zi=27Z\Z.;and 2 < i < r', Z;+(s) is constructed from Z; as follows. For each squares s'e Z;,

where s'# s, if s and s are both in a same active segment of Defender, put s’ into Z; «(s). I

From Definition 5, for squares s and s’ in Z,, if s'& Z, x(s), s" and s must not in a same

active segment of Connect6. This implies that if ¥ is in RZ(P), Attacker wins in POM'p(s, s”)

62

by replaying.
Corollary 4. Assume ¥ is in RZ(P). Let ¢ = <s, s>, where both s and s'e Z,. If s'& Z; x(s),

Attacker wins in P by replaying. I
4.2.1 The Proposed Verifier Vg0

This subsection presents a verifier, named V¢s.02(P,S), improved from Veg.o;(P,S). The
verifier Veg.02(P,S) is described in Subsections 4.2.1.1, 4.2.1.2 and 4.2.1.3 respectively for
three distinct kinds of P, namely endgame positions, positions in Attacker’s turn and
positions in Defender’s turn. Finally, Subsection 4.2.2 concludes with Theorem 4, showing

that the verifier satisfies Property RZV in all cases.
4.2.1.1. Endgame Positions

If Attacker does not win in.the endgame position P, the verifier simply returns the
value 0. If Attacker wins in P (i.c.,”Attacker has a win segment in P), the verifier returns 1
and constructs W(P) in the following operation.
02-EP-1. For each active segment G of Defender containing exactly i unoccupied

squares, these squares in G are all added into Z;(P) or higher-order zones; that
is, Z(P) for all j = i. In other words, for each active segment G of Defender
containing at most i unoccupied squares, add all of these squares in G into

Z(P).

Lemma 24. Assume P to be an endgame position. Property RZV is satisfied for Vs 02(P,S).

Proof. Similar to Lemma 17, therefore omitted. ||

63

4.2.1.2. Positions in Attacker’s Turn

In such positions, Attacker simply follows strategy S to make the move S(P) in P. Let
P, denote P®S(P). This verifier first performs Ves.02(P4,S) recursively. If Ves.o2(Pa,S)
returns the value 0, this verifier Vs 02(P,S) also returns 0. On the other hand, if Vs 02(P4,S)
returns 1, this verifier Vg p2(P,S) returns 1, too; and constructs W(P) in the following
operation.

02-AT-1. Let W(P)=Y(P,) U Zs, where Zg={s | s€ S(P)}.

Lemma 25. Assume a position P in Attacker’s turn. From the above, assume that
Ves.02(Pa,S) satisfies Property RZV, where Py = P®S(P). This verifier Vg 02(P,S) satisfies
Property RZV.

Proof. Similar to Lemma 18, therefore . omitted. I
4.2.1.3. Positions in Defender’s Turn

For positions in Defender’s turn, the following lemma shows a very important property
used in this subsection.
Lemma 26. Assume a position P in Defender’s turn. For a given sequence of zones ‘P,
assume that for all Defender moves Mp there exists some W¥p such that ¥p c ¥ and W¥p is in
RZ(P®Mp). Then V¥ is in RZ(P).

Proof. Similar to Lemma 19, therefore omitted. I

In Connect6, the position P (in Defender’s turn) can be classified into the following
four cases. The number of Attacker threats in P is (1) three or more, (2) two, (3) one and (4)

zero. The four cases are discussed respectively in the following four subsections.

64

4.2.1.3.1. Three Threats or More

In this case, Attacker is sure to win by simply following the strategy, S;r, as follows.
For each Defender move, since the move must leave some threat segments unblocked,
Attacker wins simply by making a win segment from the unblocked one. Since the strategy
is a sure win, the verifier returns the value 1 and constructs the zones (initialized to be
empty) in the following operations.
02-T3-1. Add all unoccupied squares s on threat segments into all Z;(P).
02-T3-2. For each active segment G of Defender containing exactly i + 2 unoccupied
squares, all these squares in G are added into all Zi(P) or higher-order zones.
In other words, for each active segment G of Defender containing at most i +

2 unoccupied squares, add all these squares in G into Z;(P).

Lemma 27. Assume that Defender is to.move and Attacker has three or more threats in P.
The verifier described above satisfies'Property RZV.

Proof. Similar to Lemma 20, therefore omitted. ||
4.2.1.3.2. Two Threats

When Attacker has two threats in P, Defender must defend by blocking the two threats.
In this case, the verifier performs the following operations.
02-T2-1. For each Defender move Mp that blocks the two threats, perform the
following.
a. Return the value 0 if the recursive Vg p2(Pp,S) returns the value 0,
where Pp = POM).

b. Let ¥(P) = ¥(P)U¥(Pp).

65

02-T2-2. Continue to construct zones by both operations O2-T3-1 and O2-T3-2, and

return 1.

Lemma 28. From the above, assume that Defender is to move and Attacker has two threats
in P. Assume that all the recursive Ves.02(Pp,S) in operation O2-T2-1 satisfy Property RZV.
Then, the verifier Vg 02(P,S) satisfies Property RZV too.

Proof. Similar to Lemma 21, therefore omitted. I
4.2.1.3.3. One Threat

When Attacker has one threat, Defender must defend by blocking the threat. In this
case, the verifier performs the following eperations.
02-T1-1. For each normal critical defense (defined in Section 1.2), Mp(s) where
square s blocks the threat, perform the operation of semi-null-move proof
search as follows.
a. Return the value 0, if the recursive Vs 02(Ps,S) returns 0 where Py =
POMp o(s).
b. Let'W(P)=Y(P)u (Y(P)K]).
C. For each defensive move Mp(s,s’), where s'e Z;(P;), perform both
operations O2-T2-1.a and O2-T2-1.b.
02-T1-2. For all relaxed critical defenses Mp(s,s’), perform both operations O2-T2-1.a
and O2-T2-1.b.

02-T1-3. Perform both operations O2-T3-1 and O2-T3-2, and return 1.

66

Lemma 29. From the above, assume that Defender is to move and Attacker has one threat

in P. Assume that all the recursive Vg0, in both operations O2-T1-1 and O2-T1-2 satisfy

Property RZV. Then, the verifier Ves.02(P,S) satisfies Property RZV too.

Proof. Similar to Lemma 22, therefore omitted. I

4.2.1.3.4. No Threats

When Attacker has no threats, it becomes more complicated since Defender has much

more freedom to move. In this case, the verifier makes use of the constructed relevance

zones to minimize the search space in the following operations.

02-T0-1.

02-T0-2.

02-T0-3.

02-T0-4.

02-TO0-5.

Return the value 0 if Vis02(Py,S) returns 0, where Py = POMp 0.

Let W(P) = W(Py)K2.

For each square s in Z;(P;), perform the semi-null move proof search, as in

operations O2-T1-1.a to O2-T1-1.c.

For each square s in Zs(Py), where Zy(Py) = Z:(Py)\Zi(Ps), perform the

operation which satisfies Property INZ as follows.

a. For each defensive move M(s,s"), where s'e Z, «(s) and s’ # s, perform
both operations O2-T2-1.a and O2-T2-1.b.

Return 1.

Lemma 30. Assume that Defender is to move and Attacker has no threats in P. From the

above, assume that all recursive V¢s.02 in operations O2-T0-1, O2-T0-3 and O2-T0-4 satisfy

Property RZV. Then, the verifier V¢s.02(P,S) also satisfies Property RZV.

Proof. Assume that this verifier Vg p2(P,S) returns 1. For this lemma, it suffices to prove

that the constructed W(P) is in RZ(P). Since Vie.02(P,S) returns 1, all the recursive Vg2 in

operations O2-T0-1, O2-T0-3 and O2-T0-4 must also return 1. Since these recursive Vcs.02,

67

say for position P’, satisfy Property RZV from this lemma, the constructed zones W(P') are

in RZ(P").

To prove W(P)e RZ(P), it suffices to prove from Lemma 26 the following: For all
Defender moves Mp, there exists some ¥p such that Wp is in RZ(P®@Mp) and ¥p < W(P).
All Defender moves M), are classified into the following cases:

1. All Defender moves Mp(s,s") where se—py(Z:2(Py)) and s'e —py(Z2(Py)). From the
first paragraph in this proof, W(Py) is in RZ(P;). Since s€—py(Z:(Ps)) and
s'e —py(Z2(Py)), W(Py)K2 1s in RZ(Py + op(s) + op(s')) from Lemma 14. Since P, +
op(s) + op(s) = POMp(s,s"), W(Py)K2 is also in RZ(P®Mp(s,s")). In addition,
(‘W(Py)<2) < ¥(P) from operation O2-T0-2. Thus, W(Py)<K2 is ¥p.

2. All Defender moves Mp(s,s") where seZj(Pg). By following the proof for Case 1
(including Subcases 1.a and 1.b) in Lemma 22, we-obtain that there exists some ¥ in
POM(s,s") for all s' such that ¥ < W(P). The details are omitted. I

3. All Defender moves Mp(s,s?) where se€ Z5(Py) and s'e Z5(P,). This case is separated
into the following two subcases.

a. s'eZ, «s). Let Pp denote P@®Mp(s,s"). The zones W(Pp) is constructed in
operation O2-T2-1.b, and is in RZ(Pp) according to the first paragraph of this
proof. Since Y(Pp) is merged into W(P) in O2-T2-1.b, we obtain ¥(Pp)
Y(P). Thus, W (Pp) is the Wp.

b. s'¢Z, «(s). From the above and Corollary 4, Attacker wins by replaying. Since

W(Pp) € (W(Pe)<2) and (¥(Pe)<2) < W(P), ¥(Pp) is the W), ||

68

4.2.2 Conclusion for the Verifier V.02

Theorem 4 (below) concludes that the verifier Ves.02(P,S) in all cases satisty Property
RZV. Therefore, if Vs 02(P,S) returns the value 1, the constructed W(P) is in RZ(P), and
Attacker wins in P from Corollary 3.

Theorem 4. The verifier Ves.02(P,S) satisfies Property RZV in all cases.
Proof. By induction, the verifier Vg p2(P,S) satisfies Property RZV in all cases from

Lemma 24 to Lemma 30. |

i 3k

<Ly, Ly <L Z'p»>

Figure 27. An example proof search tree, where Z>=7Z)\Z,, for the Verifer Ves.02P,S).

Figure 27 shows an example proof search tree that gives an overview for the Verifer

Ves.02(P,S).

69

Chapter S Experiments

In Chapter 3 and Chapter 4, we present verifies Veg(P,S), Ves.01(P,S) and Veg.02(P,S) to
verify whether Attacker wins in a Connect6 position P by following strategy S. However, in
order to solve positions, we still need to provide the verifier with winning strategies S.

Winning strategies can be provided in the following three ways.

1. Let human experts offer the winning strategies manually.
2. Let programs find the winning strategies automatically.
3. Find the winning strategies by mixing the above two.

Traditionally, human experts used the fitst. way to claim that some positions are
winning, e.g., Go-Moku and Renju [44]. However, it becomes complicated and tedious for
human players to traverse all positions.to prove it thoroughly. Hence, it is more feasible to
solve these positions by programs using the second way. However, programs may not be
smart enough sometimes to find the correct winning moves. Therefore, some researchers
chose the third way by following human experts’ suggestions for some opening moves and
then letting programs solve the subsequent moves. For example, Allis [1][2] solved
Go-Moku in the free style, and Wagner and Viradg [53] solved Renju. In Section 5.1, we
developed some assistant programs to help find the winning strategies for Connect6. In
Section 5.2, we illustrate our new proof search method in Chapter 3 by solving the positions

in Figure 7 (a) and Figure 7 (b). Finally, we give more results in Section 5.3.

70

5.1 Assistant Programs

This section describes our assistant programs.

5.1.1 Solver

Given a position P in Attacker’s turn, a solver is to return a winning move as well as
the relevance zones, if found; and, otherwise, a null move is returned to indicate failure of
finding a winning move. A solver of finding a VCDT strategy, denoted by Sycpr, is
described as follows.

1. If there exist connect-six moves or triple-threat-or-higher moves, simply choose one
of them to win.

2. Evaluate all the double-threat moves and choose some good ones for further
expansion (according to the evaluations).

3. For each chosen move M, retutn M if Ves(POM, Sycpr) returns 1.

4. Return the null move to indicate failure of finding a winning move.

A solver of finding a VCST (VCNT) is similar to the above, except that single-threat
(non-threat) moves are also evaluated and chosen at Step 2. Actual solvers are implemented
in a more complicated way to reduce the size of search tree and control the timing. For
example, the techniques of iterative deepening and transposition table are normally
incorporated.

In this thesis, we implemented a solver with VCDT, named VCDT-Solver, and another
solver with VCST, named VCST-Solver. More accurately, the VCDT-Solver is to find a

A'-strategy, while the VCST-Solver is to find a A’-strategy. Our VCST-Solver also tends to

71

find VCDTs, if any, unless some single-threat moves are evaluated to be much better.
Currently, this solver is able to find a A’-strategy up to depth 25 where the size of the
longest path with A”-moves is 13. This solver was also incorporated into our Connect6
program NCTUS6, which won the gold in the 11™ and 13™ Computer Olympiads [59][67] in
2006 and 2008, respectively; and also won eight games and lost none against top Connect6
players in Taiwan in 2009 [30]. From our experiences, VCST-Solver is able to find

2 . . .
A”-strategies, if any, in most cases accurately.

5.1.2 Verifier

Regarding solvers for A’-strategies or strategies of higher orders, the time complexities
become much higher, since the numbers of defensive moves to be verified grow much
higher. Therefore, we did not implement it directly.

First, we implemented a vetifier, named NCTU6- Verifier, to verify whether Attacker
wins for all Defender moves. In other words, givena position P in Defender’s turn as shown
in Figure 28 (a) below, the verifier uses VCDT-Solver for null moves and VCST-Solver for
all semi-null moves and non-null moves. If null and semi-null moves are all solved, then
move M (from the parent of P to P) in Figure 28 (a) is an Attacker A’-move. If some
non-null moves are not solved by VCST-Solver, these moves are reported or generated. Note
that Defender A’-moves must be reported. Since our VCST-Solver can find A’-strategies

. 3 . .
accurately in most cases, most reported moves are Defender A’-moves in our experiments.

72

VCDT VCST VCOST VCST, .. VCST

(a)

VCST .\’-strategy \’-strategy

(b)

Figure 28. (a) A proof search tree of NCTUG6-Verifier and (b) the verifier of one higher order.

73

When our Connect6 program NCTUG6 mentioned above cannot find A’-strategies
(VCSTs), NCTU6 then chooses some promising moves including non-threat moves using
heuristic evaluations. The details of heuristic evaluations are beyond the scope of this thesis
and therefore omitted.

Since NCTU6 may not be able to find winning moves all the time, human experts are
allowed to help find winning moves. (Like [1][2] and [53], knowledge of human experts
were utilized to help solve Go-Moku and Renju, respectively.) Hence, the above programs,
such as NCTU6 and NCTUG6-Verifier, were integrated into a Connect6 editor named
Connect6Lib [14], modified from Renlib [42], in order to accommodate hints from human
experts. In the integrated system [57][58], the users (human experts) are allowed to suggest
some Attacker moves directly or let NCTU6 suggest,possibly good moves in a designated
position. Then, for suggested moves, users invoke NCTUG6-Verifier to verify and report all
the defensive moves (most are A*=moves). Then, users repeat the above for the subsequent
moves, until a A’-strategy is found:

Second, for A’-strategies, the integrated System (on top of the editor Connect6Lib)
needs to maintain a global verifier and modify the search by incrementing the order by one

as shown in Figure 28 (b).

74

5.1.3 Desktop Grids and Volunteer Computing for Connect6

In this subsection, we discuss our proposed desktop grids and volunteer computing for
Connect6 [57][58]. Grid computing [20] has recently become a promising trend for both
high performance and high throughput computing. Applications include scientific
computing and bioinformatics. Many universities, research institutes, and commercial
companies have been devoted to the development of related technologies and applications
[4][8][19][20][21][26][68]. Among these grid computing models and applications, desktop
grids [4][47] were developed for volunteer computing which aimed to harvest Internet-scale
idle computing resources for speeding up high throughput applications.

In contrast to most current grid computing applications, the applications investigated in
this subsection are related to games, more specifically for Connect6 [65][66]. In the
Connect6 applications described in this subsection, huge computation resources are
consumed and on-demand responses are‘required. In order to satisfy these requirements, this
subsection proposes and designs a volunteer-computing-based grid environment or called a
desktop grid environment for Connect6 applications. The Connect6 application described in
this subsection is to let professional Connect6 players to develop or solve openings, based
on two programs NCTU6 and NCTUG6-Verifier in Subsections 5.1.1 and 5.1.2. The proposed
desktop grid environment is also allowed to be applied to other computation-intensive
applications requiring on-demand responses.

Most current desktop grid systems, such as BOINC [4][8], XtremWeb [19][68], adopt
the pull model. In such systems, one or more centralized databases or global servers
normally keep many jobs (most for scientific or engineering applications) for idle workers
(desktops). The idle workers automatically request (pull) jobs for execution from the

centralized databases or global servers, and in turn may create new jobs and upload to the

75

databases or the global servers. These available jobs are usually not aborted.

The desktop grid system for Connect6 aims to achieve on-demand computing, since
the jobs for Connect6 applications are highly dynamic and may be created and aborted at
any time. To better cope with the needs of Connect6 applications, our desktop grid
environment features a push model and has a close collaboration between Connect6Lib and
workers in the grid. Our desktop grid environment is expected to harvest idle resources for
free CPU time and use them collectively to meet the real-time response requirement of

interactive Connect6 applications.

Connectélib

Our Desktop
Grid System

- v

Worker

Figure 29. Desktop grid architecture.

Unlike many other desktop grid systems that are normally based on databases in the
pull model, Connect6Lib is directly connected to desktops in our current environment as

shown in Figure 29. When Connect6 jobs, NCTU6s and Verifiers, are created, these jobs are

76

sent to remote desktops to run. All messages generated by these jobs are directly sent back
(pushed back) to Connect6Lib to create more branches. The push model is used, since users
in the application expect to receive responses real time so that they can decide where to
exploit next. For this purpose, the communication between Connect6Lib and workers is
connection-oriented, using TCP.

In the future we plan to extend our current implementation to support different

applications, and support the automation of helping openings or solving positions.

77

5.1.4 Job-Level Proof-Number Search for Connect6

This subsection describes a new approach for proof number (PN) search, named
job-level proof-number (JL-PN) search [64]. Proof-number (PN) search, proposed by Allis
et al. [1][3], is a kind of best-first search algorithm that was successfully used to prove or
solve theoretical values [22] of game positions for many games
[11[2][3]1[23][43][45][46][52], such as Connect-Four, Gomoku, Renju, Checkers, Lines of
Action, Go, Shogi. Like most best-first search, PN search has a well-known disadvantage,
the requirement of maintaining the whole search tree in memory. Therefore, many
variations [9][29][35][36][45][54] were proposed to avoid this problem, such as PN?
DF-PN, PN*, PDS, and parallel PN seatch [27][43]‘were also proposed. For example, PN*
used two-level PN search to reduce the size of the maintained search tree.

The JL-PN search, where the PN search tree is maintained by a process, the client in
this subsection, and search tree nodes‘are evaluated or expanded by heavy-weight jobs,
which can be executed remotely in a parallel system. Heavy-weight jobs take normally tens
of seconds or more (perhaps up to one day).

For simplicity of discussion about proof-number (PN) search, we follow in principle
the definitions and algorithms in [1][3]. PN search is based on an AND/OR search tree
where each node n is associated with proof/disproof numbers, p(n) and d(n), which
represent the minimum numbers of nodes to be expanded to prove/disprove n. The values
p(n)/d(n) are 0/ if the node n is proved, and /0 if it is disproved. PN search repeatedly
chooses a leaf called the most-proving node (MPN) to expand, until the root is proved or
disproved. The details of choosing MPN and maintaining the proof/disproof numbers can be
found in [1][3] and therefore is omitted in this subsection. If the selected MPN is proved

(disproved), the proof (disproof) number of the root of the tree is decreased by one.

78

Our JL-PN search is parallel PN search with the following two features. First,
well-written programs such as NCTUG6 and Verifier are used to expand and generate MPNs.
These programs are viewed as jobs, sent to and done by free workers in a desktop grid.

Second, multiple MPNs are allowed to be chosen simultaneously and therefore can be done

by different workers in parallel.

79

5.2 Illustration of Solving Positions

In this section, we illustrate the proof search method in Chapter 3 by solving the two
positions in Figure 7 (a) and Figure 7 (b). First, consider the one in Figure 7 (a). The
position is solved by simply running NCTUG6-Verifier. In the proof search tree shown in
Figure 30 (below), P indicates the position at 7 in Figure 7 (a); Py, the position at 6; P,, the
position after a null move; P,, the position after the semi-null move 8 in Figure 8 (b); and
P;,, the position after another semi-null move at 10 in Figure 8 (b). As can be seen, Attacker

wins in a A’-strategy.

Figure 30. The proof search tree for the position in Figure 7 (a).

80

Second, consider the position in Figure 7 (b), which is much more complicated than
the previous one. This position is solved via the integrated system supporting A’-trees, as
described in Section 5.1. In the proof search tree shown in Figure 31 (below), P indicates
this position, P; does the position after a null move, and P, does the position after a
semi-null move at 7 in Figure 9 (b). Initially, let NCTU6-Verifier of one higher order run in
P. Since VCST-Solver is able to find the winning move for P;, Defender (Black) should
place at least one stone in zone Z,(P;). Consider one square s in Z»(P;), say square 7 in
Figure 9 (b). For the semi-null move at 7, choose move 8 and then use NCTUG6-Verifier
(without raising one order) to derive that Attacker wins at 8. Thus, move 8 is a A>-move. By

verifying all null and semi-null moves in P, we show that move 6 in Figure 7 (b) is a

A*-move (from Definition 1).

Figure 31. The proof search tree for the position in Figure 7 (b).

81

Furthermore, Attacker is shown to win at 6 in a A’-strategy as follows. In our
experiment, Attacker wins for all defensive (non-null) moves by finding A’-strategies. For
example, for move 7 in Figure 32 (below), NCTU6-Verifier is recursively employed to find
a A’-strategy, where moves 8 to 12 are shown to be A’-moves.

In the proof search tree shown in Figure 31, we found three semi-null moves that are
A’-moves with value 1 (like P, which is also 7 in F igure 9 (b)), and 569 Defender A’-moves
in total. Move 12 in Figure 32 is the deepest A’-move. In this experiment, human experts

helped find 26 winning non-threat moves, including move 6 discovered by Huang [25].

ps

a
p
O]

Figure 32. A sequence of A*-move starting from 7.
Now, the question is whether there exist more cases requiring A*-strategies like the one

in Figure 7 (b). Since the one in Figure 7 (b) is the only one that we found so far, it is still an

open problem to find some more.

82

5.3 Results

Initially, we had human experts use the integrated system to help us solve about 10
more positions. Wu et al. [64] had recently automated with success the proof process by
developing a new search algorithm, called job-level proof-number (JL-PN) search
(described in Subsection 5.1.4). Using the JL-PN search together with our RZOP search, we
solved many more positions, up to 65 positions in total, with A’-strategy, within a couple of
months. The details of the 65 positions are listed in Appendix A. The detail results are listed
in Appendix B and C. All experiments ran on Intel Pentium Dual 2.00 GHz machines and
were performed on 19 x 19 boards that most current Connect6 tournaments use. Besides,
we develop six verifiers as follows.

® [y, implement the simple proof search method in Wu et al., 2006.

® [implement the RZOP search method.

® V0 implement the SRZOP search mehod in Section 4.1.

® V.02 implement the SRZOP search mehod in Section 4.2.

Before we discuss the 65 positions, we illustrate the three puzzles, shown in Figure 6,
Figure 7. The purpose of the verifier V¢4 is to solve positions, therefore we measure
sovability first. Since the verifiers Ves.02 and Veso; are developed from Vg, they have same
sovability. Table 1 (below) shows that Vesoz, Ves.or and Vg solve all three puzzles, while

Vw, can only solve the puzzle, Connect(6,2,3), in Figure 6.

83

SOVﬁbility ch.oz, VC6—01 and ch VWu

Figure 6 yes yes
Figure 7 (a) yes no
Figure 7 (b) yes no

Table 1. The solvability of verifiers for the three puzzles. “yes” means solved and “no”

means unsolved.

Then, we compare the performace to solve puzzles between RZOP and SRZOP

verifiers in number of nodes and time (in seconds).

Number of nodes Vcs-02 Vcs-o1 Vs

Figure 6 35,425 43,689 59,895

Figure 7 (a) 573,818 583,541 808,511

Figure 7 (b) 51,898,841 58,227,391 | 81,636,536
(a)

Speedups | Vcs02 | Vesor | Ves

Figure 6 1.69 | 137 —

Figure 7 (a) 1.41 1.39 | —

Figure 7(b) | 157 | 1.40| —

(b)

Table 2. (a) The statistics of verifiers for the three puzzles in number of nodes. (b) Speedups

compare to Vcg.

84

Time (in seconds) Ves-02 Ves-o1 Vs

Figure 6 20.92 28.69 36.77

Figure 7 (a) 147.52 158.30 192.91

Figure 7 (b) 17,919.70 | 23,656.79 | 30,184.90
(a)

Speedups | Vcs.02 | Vesor | Vs

Figure 6 .76 | 128 | —

Figure 7 (a) 1.31 122 —

Figure 7(b) | 1.68 | 1.28| —

(b)
Table 3. (a) The statistics of verifiers for the three puzzles in time (in seconds). (b)

Speedups compare to. Veg:

Table 2 (a) shows the number.of nodes used by verifiers to solve the three puzzles.
Table 2 (b) shows speedups comparing to the 'RZOP search method. Table 3 (a) shows the
time used by verifiers to solve the three puzzles. Table 3 (b) shows speedups comparing to
the RZOP search method. From Table 3, the verifier Vg, achieves 1.76 speedups, an
improvement, to solve Connect(6,2,3) in Figure 6. For the puzzle in Figure 7 (a), the verifier
Ves.02 achieves 1.31 speedups. For the hardest puzzle currently in Figure 7 (b), the verifier

Ves.02 can achieve 1.68 speedups.

85

e
-
©
5

(a) (b) (c)

o
9%“ ©

@) @)
@ © (0

Figure 33. Six openings in which Black wins at 3.

Next, we choose 65 winning positions (shown in Appendix A) which include 12
openings and six of them are shown in Figure 33. In particular, the fifth one, Mickey-Mouse
Opening, used to be one of the popular openings before we solved it. Mickey-Mouse
Opening was so named in [50], since White 2 and Black 1 together look like the face of
Mickey Mouse. The sixth one, also called Straight Opening, is another difficult one.

The purpose of the verifier Vs is to solve positions, therefore we measure sovability
first. Since the verifiers Vg0, and Ves.o; are developed from Vg, they have same sovability.
Table 4 (below) shows that Vg2, Ves.or and Vg solve all 65 positions, while Vi, only

solves 31 positions.

86

Sovability Total solved | Total unsolved
VWu 3 1 34
Vcs-025 Vis-o1 and Vg 65 0

Table 4. The solvability of verifiers for 65 winning positions.

Then, we compare the performace to solve 65 positions between RZOP and SRZOP

verifiers in number of nodes and time (in seconds).

Table 5. (a) The statistics of verifiers for 65 winning positions in number of nodes. (b)

Speedups compare to V.

Number of nodes Vcs-02 Vcs-o1 Vs
65 positions 178,020,119 | 179,532,383 | 304,485,291
(a)
Speedups | Vcs.02 | Vesor | Vs
65 positions | 1.71 1.70 —
(b)

Table 6. (a) The statistics of verifiers for 65 winning positions in time (in seconds). (b)

Speedups compare toVcs.

87

Time (in seconds) Ves-02 Ves-o1 Ves
65 positions 26,356.62 | 27,981.87 | 38,753.57
(a)
Speedups | V02 | Veso1 | Vs
65 positions | 1.47 | 1.38 | —
(b)

Table 5 (a) shows the number of nodes used by verifiers to solve 65 positions. Table 5
(b) shows speedups comparing to the RZOP search method. Table 6 (a) shows the time used
by verifiers to solve 65 positions. Table 6 (b) shows speedups comparing to the RZOP
search method. From Table 6, the verifier Vs, achieves 1.47 speedups to solve 65
positions (listed in Appendix A). Since some of positions are easy to solve, so we choose the

12 openings to measure the performance again.

Number of nodes VC6-02 VC6-01 ch
12 openings 66,515,413 | 67,383,224 | 161,071,884
(a)

Speedups | Vcs02 | Veso1 | Ves

12 openings | 242 | 2.39 | —

(b)
Table 7. (a) The statistics of verifiers for12 openings in number of nodes. (b) Speedups

compare to Vcs.

Time (in seconds) VC6-02 VC6-0 7 ch
12 openings 9,035.26 | 9,815.09 | 18,472.73
(a)

Speedups | Vcs02 | Veso1 | Ves

12 openings | 2.04 | 1.88 —

(b)
Table 8. (a) The statistics of verifiers for 12 openings in time (in seconds). (b) Speedups

compare to Vcg.

88

Table 7 (a) shows the number of nodes used by verifiers to solve the 12 openings.
Table 7 (b) shows speedups comparing to the RZOP search method. Table 8 (a) shows the
time used by verifiers to solve the 12 openings. Table 8 (b) shows speedups comparing to
the RZOP search method. From Table 8, the verifier Vs 02 achieves 2.04 speedups to solve
the 12 openings.

From the above experimental results, the performance of verifiers is roughly Vg0, 2
Ves.or = Ves. Surprisingly, the verifier Veg. 02 can save more than half time to solve harder
positions like the 12 openings shown in Appendix A as well as the currently hardest puzzle
shown in Figure 7 (b) that is solved by a A*-strategy shown in Figure 31. The experimental
results demonstrate a milestone of NCTU6 and NCTU6-verifiers since year 2005 [65][66].
The author is very proud to announce, these surprised solvability and performance of the

RZOP search method and SRZOP search methods.

89

Chapter 6 Conclusions

This thesis proposes a novel, general and elegant proof search method, named
Relevance-Zone-Oriented Proof (RZOP) search that uses relevance zones to help solve
many positions in Connect6 as well as Connect games. In theory, this method can be
applied to Connect games with infinite boards. Practically, this thesis demonstrates the
method by solving two typical winning positions in Figure 7 (a) and Figure 7 (b) on 19 X
19 boards, as well as many Connect6 positions and openings in Appendix A. In addition, the
method can also be easily incorporated into Connect6 program, such as NCTUG6.

This thesis also leaves some open problems.

o Investigate more winning positions in Connect6 that require A’-strategies, such as
the one in Figure 7 (b).

® Investigate whether there existsa A”-strategy in Connect6.

° Apply the new method (in the Appendix D) to solving some real positions in general
Connect games.

o Investigate whether dual lambda search [48][49] is useful for Connect6 or Connect

games.

Using the JL-PN search together with our RZOP search, we successfully solved up to
65 positions with A’-strategy. The 65 positions include 12 openings; in particular,
Mickey-Mouse Opening, which used to be one of the popular openings before we solved it.
One might ask whether or when Connect6 on 19 x 19 boards will be solved. So far, we still

could not solve tens of the common openings, many of which human experts believed were

90

well balanced for both players. Hence, the answer to this question is still unknown.

In addition, this thesis further improves the RZOP method, named Segmented
Relevance-Zone-Oriented Proof (SRZOP) search that speeds up the time to solve Connect6
positions. The experimental results in Chapter 5 archive 2.04 speedups to solve the 12
openings. This thesis also demonstrates records of our Connect6 program NCTU6 in
Appendix F, which won the gold in the 11"™ and 13™ Computer Olympiads in 2006 and 2008,
respectively; and also won eight games and lost none against top Connect6 players in
Taiwan in 2009. Finally, this thesis applies the RZOP method and SRZOP method into
NCTUG6 and NCTUG6-verifiers which are used in the two systems (described in Subsection
5.1.3 and 5.1.4): (a) desktop grid system (b) JL-PN system. These two systems help us solve
many Connect6 openings automatically. The author is very proud to announce this thesis

because it is a milestone of NCTU6 and NCTUG6-verifiers since year 2005 [65][66].

91

[1]

(2]

[3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]

References

L.V. Allis, Searching for solutions in games and artificial intelligence, Ph.D. Thesis,
University of Limburg, Maastricht, The Netherlands, 1994.

L.V. Allis, H.J. van den Herik and M.P.H. Huntjens, “Go-Moku Solved by New Search
Techniques,” Computational Intelligence, vol. 12, pp. 7-23, 1996.

L.V. Allis, M. van der Meulen and H.J. van den Herik, “Proof-number Search,” Artificial
Intelligence, vol. 66 (1), pp. 91-124, 1994.

D.P. Anderson, “Boinc: A System for Public-resource Computing and Storage,”
Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing
(GRID'04), IEEE CS Press, Pittsburgh, USA, pp. 4-10, 2004.

J. Beck, “On Positional Games,” Combinatorial Theory Series A 30, pp. 117-133, 1981.
C. Berge, Graphs and Hypergraphs;North Holland, Amsterdam, 1973.

E.R. Berlekamp, J.H. Conway and R.K. Guy, Winning Ways for your Mathematical Plays,
vol. 3, 2nd ed., A K Peters. Ltd. Canada,2003.

BOINC, Available: http://boinc.berkeley.edu/.

D.M. Breuker, J. Uiterwijk and H. J. van den Herik, “The PN2-search Algorithm,” in H. J.
van den Herik, B. Monien (Eds.), Advances in Computer Games, vol. 9, IKAT,
Universiteit Maastricht, Maastricht, The Netherlands, pp. 115-132, 2001.

A. de Bruin, W. Pijls and A. Plaat, “Solution Trees as a Basis for Game-Tree Search,”
ICCA Journal, vol 17(4), pp. 207-219, December 1994.

T. Cazenave, “Abstract Proof Search,” Computers and Games (eds. T. A. Marsland and I.
Frank), Lecture Notes in Computer Science, vol. 2063, pp. 39-54, 2001.

T. Cazenave, “A Generalized Threats Search Algorithm,” Computers and Games, Lecture
Notes in Computer Science, vol. 2883, pp. 75-87, 2003.

GM. Chaslot, M.H.M. Winands and H.J. van den Herik, “Parallel Monte-Carlo Tree
Search,” International Conference on Computers and Games (CG2008), Beijing, China,
2008.

92

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

C.-P. Chen, 1.-C. Wu and Y.-C. Chan, “ConnectLib — A Connect6 Editor,” Available:
http://www.connect6.org/Connect6Lib_Manual.htm, 2009.

S.-H. Chiang, 1.-C. Wu and P.-H. Lin, “On Draw K-in-a-row Games,” Advances in
Computer Games Conference (ACG2009), vol. 6048, pp. 158-169, 2010.

Chinese Association for Artificial Intelligence, Chinese Computer Games Contest (in

Chinese), Available: http://www.caai.cn/.

L. Csirmaz, “On a Combinatorial Game with An Application to Go-moku,” Discrete Math.
29, pp. 19-23, 1980.

R. Diestel, Graph Theory, Springer, New York, 2nd edition, 2000.

G. Fedak, C. Germain, V. Neri and F. Cappello, “Xtremweb: A Generic Global Computing
System,” Proceedings of the Ist IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGRID2001): Workshop on Global Computing on Personal
Devices, IEEE CS Press, Brisbane, Australia, pp. 582-587, 2001.

I. Foster, C. Kesselman, The Grid: Blueprint. for a New Computing Infrastructure,
Morgan Kaufmann Publishers, Inc., 1999.

The globus project, Available: http://www.globus.org/.

H.J. van den Herik, JJ W.H.M. Uiterwijk'and J.V. Rijswijck, “Games solved: Now and in
the future,” Artificial Intelligence, vol. 134.(1-2), pp. 277-311, 2002.

H.J. van den Herik and M.H.M. Winands, “Proof-Number Search and its Variants,”
Oppositional Concepts in Computational Intelligence, pp. 91-118, 2008.

M.-Y. Hsieh and S.-C. Tsai, “On the Fairness and Complexity of Generalized K-in-a-row
Games,” Theoretical Computer Science, vol. 385, pp. 88—100, 2007.

Yu-Chun Huang, private communication, 2008.

B. Jacob, L. Ferreira, N. Bieberstein, C. Gilzean, J.Y. Girard, R. Strachowski and S.S. Yu,
Enabling Applications for Gird Computing with Globus, IBM Redbooks, 2003.

A. Kishimoto and Y. Kotani, “Parallel AND/OR Tree Search Based on Proof and Disproof
Numbers,” Fifth Games Programming Workshop, vol. 99(14) of IPSJ Symposium Series,
pp- 24-30, 1999.

A. Kishimoto and M. Miiller, “A general solution to the graph history interaction
problem,” Nineteenth National Conference on Artificial Intelligence (AAAI12004), pp.

93

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

644649, San Jose, CA, 2004.

A. Kishimoto and M. Miiller, “Search versus Knowledge for Solving Life and Death
Problems in Go,” Twentieth National Conference on Artificial Intelligence (AAAI2005),
pp. 1374-1379, 2005.

P.-H. Lin and L.-C. Wu, “NCTU6 Wins Man-Machine Connect6 Championship 2009,”
ICGA Journal, vol. 32(4), pp. 230-232, 2009.

P-H. Lin and I[.-C. Wu, “Segmented Relevance-Zone-Oriented Proof Search for

Connect6,” in preparation, 2010.

T.W. Lee, One of Early Tsumegos for Connect6, Available:

http://www.connect6.org/web/index.php?option=com_tsumego&task=loadTsumegoHistor
yList&class _id=32, 2005.

Littlegolem, Online Connect6 games, Available: http://www.littlegolem.net/, 2006.

V. Manohararajah, Parallel Alpha-beta Search- .on Shared Memory Multiprocessors,
Master’s thesis, Graduate Departmeént of Electrical and. Computer Engineering, University
of Toronto, Canada, 2001.

A. Nagai, Df-pn Algorithm for Searching AND/OR Trees and Its Applications, Ph.D.
thesis, University of Tokyo, Japan, 2002.

J. Pawlewicz and L. Lew, “Improving Depth-first pn-search: 1+¢ Trick,” In H. J. van den
Herik, P. Ciancarini, and H.H.L.M. Donkers, editors, Fifth International Conference on
Computers and Games, vol. 4630 of LNCS, pp. 160-170, Computers and Games,
Springer, Heidelberg, 2006.

W. Pijjls and A. de Bruin, “Game Tree Algorithms and Solution Trees,” Computers and

Games, Lecture Notes in Computer Science, vol. 1558, pp. 195-204, 1999.

A. Pluhar, “The Accelerated K-in-a-row Game,” Theoretical Computer Science, vol.
270(1-2), pp. 865875, 2002.

V. N. Rao and V. Kumar, “Superlinear Speedup in State-space Search,” Proceedings of the
1988 Foundation of Software Technology and Theoretical Computer Science, no. 338 of
LNCS, pp. 161-174, Springer-Verlag, 1988.

Red-bean.com, SGF File Format, Available: http://www.red-bean.com/sgf/.

Renju International Federation, The International Rules of Renju, Available:

94

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

http:// www.renju.net/study/rifrules.php, 1998.

Renlib, Renju — A Ranju Editor, Available: http://www.renju.se/renlib/.

J.T. Saito, M.H.M. Winands and H.J. van den Herik, “Randomized Parallel Proof-Number
Search,” Advances in Computer Games Conference (ACG2009), Lecture Notes in
Computer Science (LNCS 6048), pp. 75-87, Palacio del Condestable, Pamplona, Spain,
20009.

G. Sakata and W. Ikawa, Five-In-A-Row, Renju. The Ishi Press, Inc., Tokyo, Japan, 1981.

J. Schaeffer, N. Burch, Y.N. Bjornsson, A. Kishimoto, M. Miiller, R. Lake, P. Lu and S.
Sutphen, “Checkers is Solved,” Science, vol. 5844(317), pp. 1518-1552, 2007.

M. Seo, H. lida and J. Uiterwijk, “The PN*-search algorithm: Application to
Tsumeshogi,” Artificial Intelligence, vol. 129(1-2), pp. 253-277, 2001.

SETI@home, Available: http://setiathome.ssl.berkeley.edu.

S. Soeda, T. Kaneko and T. Tanaka, ““Dual Lambda Search and its Application to Shogi
Endgames,” Advances in Computer Games Conference(ACG2005), Taipei, Taiwan, 2005.

S. Soeda, T. Kaneko and T. Tanaka, “Dual Lambda Search and Shogi Endgames,”
Advances in Computer Games Conference (ACG'I1), Lecture Notes in Computer Science,
vol. 4250, pp. 126-139, 2006.

Taiwan Connect6 Association, Connect6"homepage, Available: http://www.connect6.org/.

ThinkNewldea Inc, CYC game (in Chinese), Available: http://cycgame.com/, 2005.

T. Thomsen, “Lambda-Search in Game Trees - With Application to Go,” ICGA Journal,
vol. 23(4), pp. 203-217, 2000.

J. Wagner and 1. Virag, “Solving Renju,” ICGA Journal, vol. 24(1), pp. 30-34, 2001.

M.H.M. Winands, JW.H.M. Uiterwijk and H.J. van den Herik, “PDS-PN: A new
proof-number search algorithm: Application to Lines of Action,” In J. Schaeffer, M.
Miiller, and Y. Bjornson, editors, Computers and Games 2002, vol. 2883 of LNCS, pp.
170-185. Computers and Games, Springer, Heidelberg, 2003.

[.-C. Wu, Proposal for a New Computer Olympiad Game — Connect6, Available:
http://ticc.uvt.nl/icga/news/Olympiad/Olympiad2006/connect6.pdf, or
http://www.connect6.org/articles/RZOP/connect6.pdf, 2005.

95

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[.-C. Wu, B.-H. Lin, L.-B. Chen, J.-Y. Su and P.-C. Hsu, “HybridDiff: An Algorithm for A
New Tree Editing Distance Problem,” International Computer Symposium (ICS20006),
Taipei, Taiwan, 2006.

I.-C. Wu, C.-P. Chen, P.-H. Lin, K.-C. Huang, L.-P. Chen, D.-J. Sun, Y.-C. Chan and H.-Y.
Tsou, “A Volunteer-Computing-Based Grid Environment for Connect6 Applications,”
IEEE International Conference on Computational Science and Engineering (CSE2009),
vol. 1, pp. 110-117, 2009.

[.-C. Wu, C.-P. Chen, P.-H. Lin, G-Z. Huang, L.-P. Chen, D.-J. Sun and H.-Y. Tsou, “A
Desktop Grid Computing Service for Connect6 Applications,” International Symposium
on Grid Computing (ISGC2009), Taipei, Taiwan, 2009.

I.-C. Wu and P.-H. Lin, “NCTU6-Lite Wins Connect6 Tournament,” /ICGA Journal, vol.
31(4), pp. 240243, 2008.

I.-C. Wu and P.-H. Lin, “Relevance-Zone-Oriented Proof Search for Connect6,” IEEE

Transaction on Computational Intelligence and Al in Games, vol. 2(3), September 2010.

[..-C. Wu and P-H. Lin, [Benchmark: for RZOP search, Available:
http://www.connect6.org/articles/RZOP/.

I-C. Wu and P-H. Lin, Benchmark - for = SRZOP search, Available:
http://www.connect6.org/articles/SRZOP/.

I-C. Wu and P-H. Lin, Search " tree' "for drawn Connect(11,2), Available:

http://www.connect6.org/articles/drawn-connect-games/.

[.-C. Wu, H.-H. Lin, P-H. Lin, D.-J. Sun, Y.-C. Chan and B.-T. Chen, “Job-Level
Proof-Number Search for Connect6,” International Conference on Computers and Games
(CG2010), Kanazawa, Japan, 2010.

[.-C. Wu, D.-Y. Huang and H.-C. Chang, “Connect6,” ICGA Journal, vol. 28(4), pp.
234-242, 2006.

[.-C. Wu and D.-Y. Huang, “A New Family of K-in-a-row Games,” Advances in
Computer Games Conference (ACG2005), Taipei, Taiwan, 2005.

[.-C. Wu and S.-J. Yen, “NCTU6 Wins Connect6 Tournament,” ICGA Journal, vol. 29(3),
pp. 157158, September 2006.

XtremWeb, Available: http://www.xtremweb.net/.

96

[69] T.G. L. Zetters, “8(or more) In a Row,” American Mathematical Monthly 87, pp. 575-576,
1980.

97

NowWw R 1 N 0 WO

NowWw R 1 N 0 WO

Appendix A

Sample Positions

Figure 34. 65 winning positions.

A B CDEF G H

J

L MNOPQQR ST

A B C DEF G H

J

L MNOPQQRST

01

ey
o = M W A D N W W

- N W A W N o ©

o = N W A D N W

N oW R M N @ o

-

98

© 0
o

A B CDEF GH

J

L M NOPQQR ST

]

A B C D E

F G H

J

L MNOWPQRST

02

04

o = N W A D N W

B S R 2 = -~}

o = N W A D N W

NowWw R 1 N 0 WO

A B C DEF G H

I J L M NOPQRST

05

A B C DEF G H

I J L M NOPQRST

o = N W A D N W

N N - - -}

o = N W A D N W

N oW R M N @ o

-

99

DanC

A°B CDEF GH ! J L MNIOPQRST
e
D

A°B CDEF GH ! J L MNIOPQRST

06

08

o = N W A D N W

B S R 2 = -~}

o = N W A D N W

NowWw R 1 N 0 WO

A B C DEF G H L MNOPQQRST

A B C DEF G H L MNOPQQRST

o = N W A D N W

N oW R M N @ o

-

09

ey
o = M W A D N W W

Now R N e o

11

100

@{%é

A B C D E

F G H | J

L MNOWPQRST

A B C D E

H I J

L M NOPQRST

10

12

o = N W A D N W

B S R 2 = -~}

o = N W A D N W

NowWw R 1 N 0 WO

A B C DEF G H

I J L M NOPQRST

QL
o
o

A B C DEF G H

I J L M NOPQRST

13

o = N W A D N W

N N - - -}

o = N W A D N W

N oW R M N @ o

-

101

o
AAB CDEFGH I J L MNUOPQRST
2
4
2%°
5@
AAB CDEFGH I J L MNUOPQRST

14

16

o = N W A D N W

B S R 2 = -~}

o = N W A D N W

NowWw R 1 N 0 WO

A B C DEF G H

J

L MNOPQQRST

A B C DEF G H

J

L MNOPQQRST

o = N W A D N W

N oW R M N @ o

-

17

o = N W A D N W

N oW R M N @ o

-

102

o

¢

ok

A°B CDEUFGMH 1 J L MNUOWPIOQRST
4
2 2
4

A°B CDEUFGMH 1 J L MNUOWPIOQRST

18

20

= N W A~ 0 WO

o

B S R 2 = -~}

= N W A~ 0 WO

o

NowWw R 1 N 0 WO

w

=)

]

@

o

S
W A
s

o

0 0

N oW R M N @ o

-

AB CDEFGH 1 JLMNOPQRST AAB CDEFGH I J L MNUOPQRST

21 22

w

=)

]

@

o

S

w

[¥]

%0

o o°

)

\¢]

o

N oW R M N @ o

-

AB CDEFGH 1 JLMNOPQRST AAB CDEFGH I J L MNUOPQRST

24

103

o = N W A D N W

B S R 2 = -~}

o = N W A D N W

NowWw R 1 N 0 WO

(s

o @
o

A B CDUEVFGH I J L MNOPQRST
4
2 2
4
A B CDUEVFGH I J L MNOPQRST

o = N W A D N W

N oW R M N @ o

-

25

o = N W A D N W

N oW R M N @ o

-

104

A B CDEVFGH 11 J L MNOPIQRST
26
2
O+
A B CDEVFGH 11 J L MNOPIQRST
28

o = N W A D N W

B S R 2 = -~}

o = N W A D N W

NowWw R 1 N 0 WO

A B C DEF G H

I J L M NOPQRST

A B C DEF G H

I J L M NOPQRST

o = N W A D N W

N oW R M N @ o

-

29

o = N W A D N W

N oW R M N @ o

-

31

105

o 00

A B C D E

F G H |

J

L MNOWPQRST

oo

A B C D E

F G H |

J

L MNOWPQRST

30

32

o = N W A D N W

B S R 2 = -~}

o = N W A D N W

NowWw R 1 N 0 WO

D OE

A B C DEF G H

J

L MNOPQQRST

o
°

A B C DEF G H

J

L MNOPQQRST

33

o = N W A D N W

N N - - -}

o = N W A D N W

N oW R M N @ o

-

106

O

A B C D E

F G H

J

L MNOWPQRST

A B C D E

F G H

J

L MNOWPQRST

34

36

o = N W A D N W

B S R 2 = -~}

o = N W A D N W

NowWw R 1 N 0 WO

w

=)

]

@

o

W A

S
[¥]

S

[=]
[\¥]
o

N oW R M N @ o

-

A B C DEF G H

I J L M NOPQRST

37

w

=)

]

@

o

S

@
Now

S

=
o

N oW R M N @ o

-

A B C DEF G H

I J L M NOPQRST

107

6
AAB CDEFGH I J L MNUOPQRST
38
AAB CDEFGH I J L MNUOPQRST
40

o = N W A D N W

B S R 2 = -~}

o = N W A D N W

NowWw R 1 N 0 WO

®
=
e
=
o

A B C DEF G H I

J

L MNOPQQRST

5

%

A B C DEF G H I

J

L MNOPQQRST

41

o = N W A D N W

N N - - -}

o = N W A D N W

N oW R M N @ o

-

108

A B C D E

F G H

J

L MNOWPQRST

A B C D E

F G H

J

L MNOWPQRST

42

44

o = N W A D N W

B S R 2 = -~}

o = N W A D N W

NowWw R 1 N 0 WO

{

A B C DEF G H

J

L MNOPQQRST

A B C DEF G H

J

L MNOPQQRST

o = N W A D N W

N oW R M N @ o

-

45

o = N W A D N W

N oW R M N @ o

-

109

@

=

A B C D E

F G H

J

L MNOWPQRST

SCCORN |

A B C D E

F G H

J

L MNOWPQRST

46

48

B S R 2 = -~}

B S R 2 = -~}

A B C DEF G H L MNOPQQRST

A B C DEF G H L MNOPQQRST

N N - - -}

49

N N - - -}

51

110

A B C D E L MNOWPQRST

A B C D E L MNOWPQRST

50

52

B S R 2 = -~}

A B C DEF G H L MNOPQQRST

A B C DEF G H P Q R § T

N N - - -}

53

N N - - -}

111

A B C D E

FGH I J L MNUOPQRST

54

A B C D E

FGH I J L MNUOPQRST

56

B S R 2 = -~}

B S R 2 = -~}

A B C DEF G H P Q R § T

A B C DEF G H J LM NOPQRST

N N - - -}

57

N N - - -}

112

AAB CDEFGH I J L MNUOPQRST

58

AAB CDEFGH I J L MNUOPQRST

60

B S R 2 = -~}

B S R 2 = -~}

N N - - -}

AB CDEFGH 1 JLMNOPQRST AAB CDEFGH I J L MNUOPQRST

61 62

N N - - -}

g

AB CDEFGH 1 JLMNOPQRST AAB CDEFGH I J L MNUOPQRST

64

113

65

J LM N OP QR ST

&
A°B CDEF GH

D L M~ O W T M N o~ O

D 0 M~ O W o= N

114

Appendix B Results of RZOP Benchmark

Table 9. The solvability of verifiers for 65 winning positions in Appendix A, where “yes”

means solved and “no” means unsolved.

Solvability
Positions

Ves-025 Ves-or and Vs | Vi
01 yes yes
02 yes no
03 yes no
04 yes no
05 yes no
06 yes no
07 yes no
08 yes no
09 yes no
10 yes no
11 yes yes
12 yes no
13 yes no
14 yes yes
15 yes yes
16 yes yes
17 yes yes

115

18 yes yes
19 yes yes
20 yes yes
21 yes yes
22 yes yes
23 yes yes
24 yes yes
25 yes yes
26 yes no
27 yes no
28 yes no
29 yes no
30 yes no
31 yes no
32 yes no
33 yes no
34 yes no
35 yes yes
36 yes yes
37 yes no
38 yes no
39 yes no
40 yes yes
41 yes yes

116

42 yes no
43 yes no
44 yes no
45 yes no
46 yes no
47 yes yes
48 yes no
49 yes no
50 yes yes
51 yes no
52 yes yes
53 yes yes
54 yes yes
55 yes yes
56 yes no
57 yes yes
58 yes yes
59 yes yes
60 yes yes
61 yes yes
62 yes no
63 yes yes
64 yes no
65 yes yes

117

Total solved

65

31

Total unsolved

34

118

Appendix C Results of SRZOP Benchmark

Table 10. The statistics of verifiers for 65 winning positions in Appendix A: (a) number of

nodes and (b) times.

(a)

Number of nodes Vce-02 Vce-o1 Vs
01 530077 571795 565926
02 3523754 3590585 5527224
03 786302 845114 1575020
04 1079619 1116986 1331077
05 6174061 6167216 7317401
06 1661531 2240151 2752565
07 23908274 | 24134145 | 35585383
08 20639430 | 20700223 | 96128237
09 2548691 2581346 3387769
10 1834412 1460326 1710532
11 1146025 1247001 994735
12 2683237 2728336 4196015
13 28526645 | 28686442 | 40210832
14 74803 87805 94972
15 17450 22272 29299
16 16368 16368 16547
17 10718 10718 10778

119

18 67852 69610 71727
19 84402 92292 90870
20 10145 10145 10708
21 22344 25320 27540
22 135089 135089 135277
23 35420 36960 37823
24 704489 704589 705905
25 37603 39307 46686
26 2119172 2120955 2813168
27 109546 109632 110342
28 408452 420402 426156
29 137182 141895 142339
30 126007 134785 137648
31 551373 552034 902124
32 642143 651712 665022
33 59855 60111 62018
34 181191 149634 172601
35 2105266 2111350 3377070
36 2761 2761 2824
37 9030296 9030296 | 10674017
38 765141 765705 768514
39 12363329 | 12492105 | 18321351
40 731486 731584 732403
41 393962 394038 394528

120

42 4045655 4046601 5511607
43 56696 56944 57784
44 7660096 7682555 | 11245412
45 860379 940666 1047951
46 209423 209987 211208
47 22278 22298 22459
48 706779 715971 660724
49 7816945 7819769 6893666
50 5041761 5041761 5042228
51 2054406 2066930 2851817
52 254617 296116 353003
53 898630 899734 954147
54 925359 940417 939580
55 5266143 5276358 5962500
56 297172 300223 456519
57 239318 246013 247606
58 1077354 1093460 1117277
59 1455834 1518244 1512576
60 1292694 1307825 1321979
61 779609 835836 832882
62 256408 257724 261066
63 1336806 1286361 1436594
64 8740 9380 9372
65 9471114 9472070 | 13272361

121

Total 178020119 | 179532383 | 304485291
(b)

Time (in seconds) Vcs-02 Vcs-o1 Vs
01 202.29 255.17 233.15
02 638.47 700.26 824.64
03 182.85 245.59 290.27
04 212.47 245.73 266.15
05 719.22 794.18 750.77
06 700.42 843.82 915.39
07 2309.55 | 2437.09 | 3051.79
08 2325.26 | 2407.76 | 9998.87
09 413.40 461.54 531.23
10 649.50 592.64 683.68
11 286.61 379.38 382.67
12 395.24 451.95 544.13
13 4121.33 | 4387.67 | 5082.57
14 47.79 66.59 66.35
15 7.59 12.41 14.16
16 6.17 6.17 6.28
17 1.91 1.91 1.89
18 10.28 11.23 12.94
19 15.69 25.77 24.55
20 291 291 3.20
21 14.72 18.25 19.48

122

22 16.27 16.25 16.34
23 9.27 11.13 11.89
24 78.48 78.24 80.33
25 11.13 13.25 16.66
26 211.06 212.94 240.45
27 44.89 44.67 45.11
28 150.06 189.81 188.37
29 56.56 64.16 64.70
30 113.45 141.08 134.59
31 61.31 62.34 76.09
32 167.33 177.30 191.63
33 15.56 15.80 16.61
34 101.03 84.44 90.84
35 194.44 200.88 264.47
36 1.05 1.05 1.05
37 739.55 738.89 810.45
38 116.78 117.47 117.50
39 1034.14 | 1048.08 | 1286.75
40 84.20 84.23 84.42
41 26.28 26.36 26.69
42 329.26 328.83 394.71
43 15.70 16.31 17.44
44 1219.40 | 1269.82 | 1648.19
45 608.90 855.99 831.91

123

46 84.09 85.14 86.02
47 6.47 6.48 6.61
48 202.47 215.02 204.85
49 1974.56 | 1981.13 | 1776.99
50 537.95 537.72 534.55
51 489.94 516.23 594.78
52 136.75 182.25 231.73
53 249.05 249.22 262.16
54 112.28 112.85 124.41
55 1153.77 | 1169.50 | 1353.61
56 46.30 46.88 58.14
57 65.14 66.37 66.03
58 304.24 305.89 314.13
59 600.23 600.51 625.50
60 362.66 373.33 430.28
61 341.85 381.89 481.20
62 166.36 165.78 185.66
63 160.17 146.62 160.78
64 27.78 27.77 2791
65 664.81 664.02 866.92
Total 26356.62 | 27981.87 | 38753.57

124

Appendix D Verifiers for General Connect Games

In this Appendix, the verifier Ves(P,S) is generalized to general Connect games,
Connect(m,n,k,p,q), while maintaining Property RZV.

The generalized verifier is denoted by Vek(P,S). In the case that P is an endgame
position or is in Attacker’s turn (described in Subsections 3.2.1 and 3.2.2 respectively), the
verifier Vex(P,S) is the same as Vg(P,S). So, the rest of this appendix describes the verifier
only in the case that P is in Defender’s turn. Furthermore, the position P (in Defender’s turn)
can be classified into the following two. (1) The number of Attacker threats ¢ in P is at least
p + 1, and (2) the number ¢ is at most p. In the first case, Attacker wins already. Therefore,
the verifier returns 1 and construct relevance zones. in the following operation.

Tpl-1. Construct relevance zones by following both operations T3-1 and T3-2, except that

the terms “i + 27 are replaced by “i + p”.

Similar to Lemma 7, Lemma 31 shows that the verifier also satisfies Property RZV in
this case.
Lemma 31. Assume that Defender is to move and the number of Attacker threats is at least
p + 1 in P. The verifier described above satisfies Property RZV.

Proof. The proof is similar to that of Lemma 7 and therefore omitted. I

125

In the second case that the number of Attacker threats ¢ is at most p, the verifier
performs the following operations.
Tp-1. For each of critical defenses M) (both normal and relaxed), perform the following.
a. Return 0 if the sub-verifier V,,(Mp,P,S) returns 0. Note that the sub-verifier
is described below.
b. LetW(P)=Y¥(P)u Y'(Pp).

Tp-2. Continue to construct relevance zones in operation Tpl-1, and return 1.

In operation Tp-1.a, a sub-verifier V,,(Mp,P,S) is used to verify whether Attacker wins
for all Defender moves M'p dominated by M) in P, where M'p has p squares (but Mp may
have less than p squares). By dominate; we mean thatall squares in Mp must also be in M,
but may not vice versa. For the sub-verifier V,,(Mp,P,S), the constructed zones is denoted
by W'(Pp) = <Z'1(Pp), Z's(Pp), ...,.Z"(Pp)>, where P, = P@Mp. In addition, the sub-verifier
satisfies the following property (proved in LLemma 32).

Property RZS. If V,,(Mp,P,S) returns 1, the following condition holds. For all Defender
moves M'p dominated by Mp, there exists some ¥'p such that ¥'p < W'(Pp) and ¥'p is in

RZ(POM'p).

The sub-verifier Vi,,(Mp,P,S) performs the following operations.

Par-1. Assume that M) has exactly p — u Defender stones, where u is the number of null
stones in Mp and 0 < u < p. In the case that u > 0, move M) is a null or semi-null
move.

Par-2. Return 0 if Veg(Pp,S) returns 0, where Pp = POM).

Par-3. LetW'(Pp) =Y (Pp)<Ku.

Par-4. Return 1 if u = 0, i.e., the move is not a null or semi-null move.

126

Par-5. For each of unoccupied square s€ —pp(Z,(Pp)), perform the following.
a. Let Defender move Mp be Mp + op(s).
b. Return 0 if V,p(Mps,P,S) returns 0.
C. Let W'(Pp) =Y'(Pp) U Y'(Pps), where Pps = POMp5.

Par-6. Return 1.

Lemma 32 shows that the sub-verifier satisfies Property RZS, if all the recursive Vs, in

Par-5.b satisfy Property RZS and the verifier V¢k in Par-2 satisfies Property RZV.

Lemma 32. For a sub-verifier V,,(Mp,P,S) as described above, it satisfies Property RZS by

assuming that all the recursive V,;, in Par-5.b satisfy Property RZS and that the verifier Vg

in Par-2 satisfies Property RZV.

Proof. Assume that V,,(Mp,P,S) returns 1. Consider all Defender moves M’y (including p

stones) that are dominated by Mp. Namely, let M'p = Mp + op(¢9), where ¢ has u additional

unoccupied squares. For this lemma, it suffices-to-prove that there exists some ¥'p such that

Y'p < W'(Pp) and ¥'p is in RZ(P@M'p).”All of these Defender moves M'p are classified into

the following cases.

1. All Defender moves M'p in which all additional squares s in ¢ are in —pp(Z,(Pp)).
The proof for this case is similar to that for Case 1 in Lemma 10 as follows. Since
this sub-verifier returns 1, the verifier Vex(Pp,S) in Par-2 returns 1. Since the verifier
Ve returns 1 and also satisfies Property RZV (from this lemma), W(Pp) is in RZ(Pp).
Since all additional s€ —pp(Z,(Pp)), we obtain from Lemma 3 that W(Pp)<u is in
RZ(Pp + op(9)). Since Pp + op(¢) = (POMp) + op(9) = PO(Mp + 0p(9)) =
POM'p, W(Pp)<u is also in RZ(P@®M'p). In addition, since W(Pp)<Ku < V'(Pp) from
Par-3 in V,, W(Pp)<u is the ¥'p.

2. All Defender moves M'p where some additional square s in @ is in Z,(Pp). Since this

127

sub-verifier returns 1, the recursive V(Mp,,P,S) at Par-5.b returns 1 too and
therefore satisfies Property RZS. From Property RZS, there exists some ¥ such that
Y c Y'(Pps) and V¥ is in RZ(P®M'p). Since Y'(Pp;s) < Y'(Pp) from operation

Par-5.c, we obtain ¥ < W'(Pp). Thus, ¥ is the ¥'p. I

From Lemma 32, we derive Lemma 33 as follows.

Lemma 33. Assume that Defender is to move and the number of Attacker threats is at most

p in P. The verifier described above satisfies Property RZV by assuming that all the

recursive sub-verifiers in operation Tp-1.a satisfy Property RZS.

Proof. Assume that this verifier returns 1. For this lemma, it suffices to prove that the

constructed W(P) is in RZ(P). Since the verifier returns 1, all the recursive sub-verifiers in

operation Tp-1.a returns 1 too. Assume that these sub-verifiers satisfy Property RZS. For

proving ‘Y(P)e RZ(P), it suffices to prove from Lemma 6 the following: For all Defender

moves Mp there exists some ¥p-such- that W¥p'is in RZ(P®Mp) and ¥p < WY(P). All

Defender moves M), are classified into the following two cases:

1.

All Defender moves Mp that block all the threats. There must exist some critical
defense M'p (either normal or relaxed) dominating Mp. Since Vi,,(M'p,P,S) returns 1
and satisfies Property RZS from above, there exists some ‘¥'p from the property such
that ¥p c W' (P®M'p) and W) is in RZ(POM'p).

All Defender moves M) that leave some threat unblocked. Attacker wins by
connecting up to p on some unblocked threat segment, like S;7. From the proof in

Lemma 31, we obtain that there exists some ¥y such that ¥p < W'(P) and ¥p is in

RZ(Pp). ||

128

Theorem 5 (below) concludes that the verifier Vex(P,S) in all cases satisfy Property
RZV. Therefore, if Veg(P,S) returns 1, the constructed W(P) is in RZ(P), and Attacker wins
in P from Corollary 2. It can also be observed that the operations in Subsection 3.2.3 are
special cases of the operations described in this appendix.

Theorem 5. The verifier Vex(P,S) satisfies Property RZV in all cases.
Proof. By induction, the verifier Vex(P,S) satisties Property RZV in all cases from the

above lemmas. I

129

Appendix E Draw K-in-a-row Games

In the past, many researchers were engaged in solving Connect(m, n, k, p, q) games.
One player, either Black or White, is said to win a game, if he has a winning strategy such
that he wins for all the subsequent moves. Allis ef al. [1][2] solved Go-Moku with Black
winning. Herik ef al. [22] and Wu et al. [65][66] also mentioned several k-in-a-row games
with Black winning.

A game is said to be drawn if neither player has any winning strategy. For simplicity,
Connect(k, p) refers to the collection of Connect(m, n, k, p, q) games forallm>1,n>1,0<
q < p. Connect(k, p) is said to be drawn if all Connect(m, n, k, p, q) games in Connect(k, p)
are drawn.

In the past, Zetters [69] derived that Connect(8, 1) is-drawn. Pluhar [38] derived tight
bounds kgan(p) = p+Q(logzp) for“all p > 1000 (cf. Theorem 1 in [38]). However, the
requirement of p > 7000 is unrealistic in real games. Thus, it is important to obtain tight
bounds when p < 7000. Hsieh and Tsai [24] have recently derived that kg...(p) = 4p—+7 for
all positive p. The ratio R = kyqw(p)/p is approximately 4 for sufficiently large p.

Given p, Chiang et al. [15] derive the value kyq(p), such that Connect(m, n, k, p, q)
are drawn for all k> ky0(p), m>1,n> 1, 0 < g <p, as follows. (1) kzaw(p) = 11. (2) For all
p = 3, kiraw(p) = 3p+3d—1, where d is a logarithmic function of p. So, the ratio kg..(p)/p is
approximately 3 for sufficiently large p. The first result was derived with the help of a
program. To our knowledge, our ky.w(p) values are currently the smallest for all 2 <p <

1000.

130

Appendix F Author’s Records

The game Connect6 was first introduced by Wu and Huang (2005) and then described
in more detail by Wu, Huang and Chang (2006). The rules of Connect6 are very simple.
Two players, henceforth represented as B (designated as the first player) and W, alternately
place two stones, black and white respectively, on one empty intersection of an 19x19 board,
except for that B places one stone initially. The player who first obtains six consecutive
stones (horizontally, vertically or diagonally) wins the game. When all intersections on the
board are occupied without connecting six, the game draws.

Starting from 2007, Lin became the chief designer of the Connect6 program NCTUG.
Though, NCTU6 won the Gold Prize of the Connect6 Tournament in the 11th Computer
Olympiad (2006), there were many unsolved positions and openings. Thus, Lin solved
many unsolved VCST positions in the beginning and help developed some simple openings.
With the improved strength of NCTUS6, Lin developed a light weight version with accurate
time control program named NCTU6-LITE, which won the Gold Prize of the Connect6
Tournament in the 13th Computer Olympiad (2008). The participants and the final standings
are listed in Table 11 (below).

In the tournament, the games were played according to a round-robin system in which
one program played twice against all the other programs. In each game, every program had
to complete all of its moves in 30 minutes. For each game, the winner scored 1 point and the
loser scored nothing. However, for a draw game, both scored 0.5. Figure 35 and Figure 36
(below) show some events in the 13th Computer Olympiad. The certificate of the 13th

Computer Olympiad by NCTU is shown in Figure 37 (below).

131

Ranking Program Author Organization Points
Ping-Hung Lin, National Chiao Tung
Hong-Xuan Lin, University, Taiwan.
1 NCTUG-LITE Yi-Chih Chan, 17
Ching-Ping Chen and
[-Chen Wu
Liang Li, Hao Cui, Beijing Institute of
2 BITSTRONGER | Ruijian Wang and Siran | Technology, China 16
Lin
Chang-Ming Xu Northeastern
3 NEUCONNG6 13
University, China
BEAD XiaoChuan Zhang Chongqing Institute of
CONNECT AND Technology, China
4 CHESS 9
COMBINE
(BCCC)
Jung-Kuei Yang and National Dong Hwa
5 KAVALAN 8
Shi-Jim Yen University, Taiwan
Xinhe Xu, Dongxu Northeastern
6 NEUG6STAR Huang, Junjie Tao, University, China 8
Kang Han, XinXing Li
Jiang Ke Guilin University of
7 ML Electronic Technology, 6.5

China

132

Yao Yuping Guilin University of

8 Cve6 Electronic Technology, 5.5
China
Siwei Liu and Zhenhua | Dalian Jiaotong
9 DREAM 6 4
Huang University, China

Shih-Chieh Huang and | National Taiwan
10 NTNU C6 Yun-Ching Liu Normal University, 3

Taiwan

Table 11. The participants and the final standings of the Connect6 Tournament in the 13th

Computer Olympiad (2008).

R CHESS ngAPISHI
IE i ™
UMES AMPI(" 4

Figure 35. P. H. Lin, I-C. Wu and H.J. van den Herik.

133

Figure 36. L. Lee (Bl_:f’;s'%RONE';%JR-.j_'._gpd P. H.-Lin (NCTUG-LITE).

Figure 37. The certificate of the 13th Computer Olympiad by NCTU.

134

In Taiwan, National Chiao Tung University hosts the annual NCTU Cup Open
Tournaments for Connect6 human players. We saw more and more players played Connect6
every year. Before the second annual NCTU Cup Open Tournament 2008 took place, Wu
invited Go Champion Chou Jun Xun to play Connect6 against the Al program NCTU6 for
the advertisement. In this championship, NCTU6 won 3 and lost nothing against Chou.

Figure 38 shows an event in the championship.

Figure 38. Go Champion Chou Jun Xun, the operating staff and P. H. Lin.

After annual NCTU Cup Open Tournaments, yearly top human players of Connect6
will appear. To survey the strength of NCTU6, Wu will invite three to four top players to
play against NCTU6. Figure 39 and Figure 40 (below) show events of the first and the

second Man-Machine Connect6 Championships.

135

5.2 o Rl R 311\
¥ —BABHTES F AR

Figure 39. Professor Shun-Chin Hsu (right most).and members of the Connect6 team lead

byl-C.Wu.

GREMITALIFIL® 17308 HO12F 2002.10.11 - The Sscond Annual Man-Machine Connects Contest

Figure 40. Human players, [-C. Wu (center) and P. H. Lin (left most).

136

In Figure 39, Professor Shun-Chin Hsu is respected as the father of Computer Chinese
Chess. He has received many awards and published many important papers. In the first
annual Man-Machine Connect6 Contest, we are very happy to invite Professor Hus to host
the contest. In the contest, NCTU6 won 11 and lost one against top human players. It is a
good record. Next year, in the second annual Man-Machine Connect6 Contest, NCTU6 won
8 and lost nothing which is a memorable record.

From these records, Lin proved the strength of NCTU6. He will continue to develop

NCTUG6 and keep NCTUG the top Al program of Connect6 in the world.

137

Vita

Ping-Hung Lin was born in Hualien, Taiwan in 1978. He received the B.S.,
M.S. and Ph.D. degree in Computer Science and Information Engineering
from National Chiao Tung University, Hsinchu, Taiwan, in 2000, 2002 and
2010, respectively. He is the current chief designer of the Connect6 program
NCTUG6 that won the gold twice in Computer Olympiad in both 2006 and 2008.
His research interests include artificial intelligence and grid and cloud

computing.

138

