

國 立 交 通 大 學

資訊科學與工程研究所

博 士 論 文

六子棋之區域證明搜尋

Relevance-Zone-Oriented Proof Search for Connect6

研 究 生：林秉宏

指導教授：吳毅成 教授

中 華 民 國 九 十 九 年 十一 月

六子棋之區域證明搜尋
Relevance-Zone-Oriented Proof Search for Connect6

研 究 生：林秉宏 Student：Ping-Hung Lin

指導教授：吳毅成 Advisor：I-Chen Wu

國 立 交 通 大 學
資 訊 科 學 與 工 程 研 究 所

博 士 論 文

A Dissertation

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

November 2010

Hsinchu, Taiwan, Republic of China

中華民國九十九年十一月

 i

六子棋之區域證明搜尋

研究生：林秉宏 指導教授：吳毅成 博士

國立交通大學資訊科學與工程研究所博士班

摘要

西元 2005 年，吳毅成教授提出了一系列新的 K 子棋遊戲，在這類遊戲中，六子

棋特別引起高度的關注。本論文提出了一種新的迫著證明搜尋方式，稱之為區域證明

搜尋（RZOP），以 Thomesn 所提出的 lambda 搜尋為基礎，此方法會建構出相關證明

區域。區域證明搜尋是一種全新、通用而且優雅的方法。本論文已成功有效的解出許

多六子棋盤面的勝敗，其中包含多個開局，例如米老鼠開局，在過去是很受歡迎的一

種的開局。除了解題，本論文進一步改進區域證明搜尋的效率，稱之為區域內線段證

明搜尋（SRZOP），此方法有效加速證明盤面勝敗所需花費的時間。根據實驗數據中

12 種開局的統計結果，區域內線段證明搜尋可加快 2.04 倍的時間。最後，附錄 F 展

示作者和交大六號（六子棋 AI 程式）的相關比賽成果。例如在 2008 年第十三屆國際

奧林匹亞電腦賽局競賽的六子棋組，交大六號輕量版獲得冠軍，作者也因此榮獲交大

98 年度（春季）重要學術獎；第二屆人腦對電腦六子棋大賽，交大六號更得到 8 勝 0

敗的好成績。

 ii

Relevance-Zone-Oriented Proof Search for Connect6

Student：Ping-Hung Lin Advisor：Dr. I-Chen Wu

Institute of Computer Science and Engineering
National Chiao Tung University

Abstract

Wu and Huang presented a new family of k-in-a-row games, among which Connect6 (a

kind of six-in-a-row) attracted much attention. For Connect6 as well as the family of

k-in-a-row games, this thesis proposes a new threat-based proof search method, named

Relevance-Zone-Oriented Proof (RZOP) search, developed from the lambda search

proposed by Thomsen. The proposed RZOP search is a novel, general and elegant method

of constructing and promoting relevance zones. This thesis solved effectively and

successfully many new Connect6 game positions, including several Connect6 openings,

especially the Mickey-Mouse Opening, which used to be one of the popular openings before

we solved it. In addition to solvability, this thesis further improves the RZOP method,

named Segmented Relevance-Zone-Oriented Proof (SRZOP) search, which speeds up the

time to solve Connect6 game positions. The experimental results show 2.04 speedups in

total to solve 12 openings. Finally, this thesis demonstrates records of our Connect6

program, NCTU6, which won the gold in the 13th Computer Olympiads in 2008; and also

won eight games and lost none against top Connect6 players in Taiwan in 2009.

 iii

致謝

 經過了孜孜矻矻的多年，我終於在 2010 年 11 月拿到了博士學位。

 感謝指導老師吳毅成教授多年來的提攜與照顧，不斷地鞭策我的研究和指點我為

人處事的道理。老師在理論和實務方面的教學研究，也給予我學習的方向，我將秉持

老師的教導，在人生的道路上，一步步努力前進。

 除了影響我最深的老師之外，一直鼓勵、扶持和砥礪我，給予我持之以恆的動力，

讓我能通過這佈滿大大小小石頭、充滿歡笑和眼淚的博士道路的人，就是我的太太。

她要修習自己的學業，還要照顧我的生活起居，我由衷地感謝。

 感謝論文口試委員朱正忠教授、林順喜教授、徐慰中教授、徐讚昇教授、許舜欽

教授、陳穎平教授和顏士淨教授（以上按姓氏筆劃排列），對論文的改進方向，提出

寶貴的意見，讓我的研究能更上一層樓。

 培育了我多年的交大和我在 CYC Lab 的所有親朋好友們，給予我各式各樣的支

持，在此衷心的感謝大家，包括陳隆彬學長、蘇瑞元學長、徐建智學長、hangten、coboy、

阿杰、ricky、sarten、uncle、RC、BJ、益嘉、德中、宏軒、家茵、lida、小熊、QQting…

等等，特別感謝 Mark 和草莓在我的口試時細心地幫我準備餐點。

 最後，感謝我摯愛的爸爸、媽媽和尊敬的岳父、岳母。提供我麵包，讓我可以專

心在論文研究；提供我避風港，讓我在遇到困難時，內心仍能充滿溫暖，不畏懼。沒

有您們，這篇論文將無法完成。謹以此論文獻給我最摯愛的家人。

林秉宏

2010 年 10 月 29 日

 iv

Contents

摘要 ... i
Abstract .. ii
致謝 ... iii
List of Figures ... vi
List of Tables ... viii
Chapter 1 Introduction .. 1

1.1 Game Positions ... 2
1.2 Playing Strategies for Connect6 ... 3
1.3 Winning Strategies for Connect6 ... 5
1.4 Motivation .. 10

Chapter 2 Related Works .. 14
2.1 Search Trees ... 14
2.2 Null Move Heuristics for Connect6 ... 17
2.3 Lambda Search for Connect6 ... 20

Chapter 3 Relevance-Zone-Oriented Proof Search for Connect6 23
3.1 Relevance Zones .. 23
3.2 The Proposed Verifier VC6 .. 28

3.2.1 Endgame Positions ... 28
3.2.2 Positions in Attacker’s Turn ... 31
3.2.3 Positions in Defender’s Turn .. 32

3.2.3.1. Three Threats or More .. 33
3.2.3.2. Two Threats .. 36
3.2.3.3. One Threat .. 40
3.2.3.4. No Threats .. 43

3.3 Conclusion for the Verifier VC6 .. 45
Chapter 4 Segmented Relevance-Zone-Oriented Proof Search for Connect6 46

4.1 Irrelevant vs. Relevant Sequences of Squares .. 46
4.1.1 The Proposed Verifier VC6-O1 .. 50

4.1.1.1. Endgame Positions ... 50
4.1.1.2. Positions in Attacker’s Turn .. 51
4.1.1.3. Positions in Defender’s Turn .. 52

4.1.1.3.1. Three Threats or More .. 52
4.1.1.3.2. Two Threats .. 54
4.1.1.3.3. One Threat .. 55

 v

4.1.1.3.4. No Threats .. 57
4.1.2 Conclusion for the Verifier VC6-O1 .. 59

4.2 Counter-threat Sequences of Squares ... 60
4.2.1 The Proposed Verifier VC6-O2 .. 63

4.2.1.1. Endgame Positions ... 63
4.2.1.2. Positions in Attacker’s Turn .. 64
4.2.1.3. Positions in Defender’s Turn .. 64

4.2.1.3.1. Three Threats or More .. 65
4.2.1.3.2. Two Threats .. 65
4.2.1.3.3. One Threat .. 66
4.2.1.3.4. No Threats .. 67

4.2.2 Conclusion for the Verifier VC6-O2 .. 69
Chapter 5 Experiments .. 70

5.1 Assistant Programs ... 71
5.1.1 Solver ... 71
5.1.2 Verifier .. 72
5.1.3 Desktop Grids and Volunteer Computing for Connect6 75
5.1.4 Job-Level Proof-Number Search for Connect6 .. 78

5.2 Illustration of Solving Positions ... 80
5.3 Results .. 83

Chapter 6 Conclusions .. 90
References .. 92
Appendix A Sample Positions .. 98
Appendix B Results of RZOP Benchmark ... 115
Appendix C Results of SRZOP Benchmark ... 119
Appendix D Verifiers for General Connect Games .. 125
Appendix E Draw K-in-a-row Games .. 130
Appendix F Author’s Records .. 131
Vita ... 138

 vi

List of Figures

Figure 1. Threat patterns for Connect6. (a) One threat, (b) two threats and (c) three threats. ... 4
Figure 2. (a) Normal critical defense and (b) relaxed critical defense. 5
Figure 3. A sequence of VCDT winning strategy. .. 6
Figure 4. A sequence of VCST winning strategy. .. 7
Figure 5. A sequence of VCNT winning strategy. .. 8
Figure 6. Black’s winning move in Conect(6,2,3). .. 9
Figure 7. (a) A position with Black winning. (b) A positon with White winning. 10
Figure 8. (a) A VCDT for the null move in Figure 7 (a). (b) A winning single-threat move 9

for the semi-null move 8. ... 11
Figure 9. (a) A winning single-threat move 8 for a null move in Figure 7 (b). (b) A winning

non-threat move 8 for a semi-null move 7. .. 11
Figure 10. (a) A search tree and (b) a solution tree. ... 15
Figure 11. (a) Making squares of moves by inserting small boxes. (b) Combining the same

edges from (a). .. 16
Figure 12. (a) A VCDT for a null move in Figure 6. (b) A VCDT for a semi-null move 2. 18
Figure 13. The proof search tree for solving Connect(6,2,3). .. 19
Figure 14. A Λ3-tree. ... 21
Figure 15. A Λ3-strategy. .. 22
Figure 16. A sequence of zones <Z1, Z2, Z3>. ... 24
Figure 17. A sequence of relevance zones Ψ = <Z1, Z2> for the winning position in Figure

12 (a). ... 25
Figure 18. (a) Relevance zones in a line and (b) in a board, upon winning with a win

segment. .. 29
Figure 19. (a) Relevance zones in a line and (b) in a board, upon winning with three or more

threats. .. 34
Figure 20. A winning positon with two threats for Black (Attacker) and the constructed

Ψ(P). ... 37
Figure 21. A winning positon with two threats for Black (Attacker) and the constructed

Ψ(P). ... 39
Figure 22. (a) A VCDT for the semi-null move 9. (b) A relaxed critical defense at 9. (c) The

constructed zones for the semi-null move 9 in (a). .. 41
Figure 23. An example proof search tree for the Verifer VC6(P,S). .. 45

 vii

Figure 24. An example proof search tree, where Ż2 = Z2\Z1, for the Verifer VC6-O1(P,S). 59
Figure 25. Two types of moves M'D(D12, G11) and M''D(D6, G6). ... 60
Figure 26. For Defender’s first square s, the dash line indicates the possible area for the

second square s' that may form counter-threat segments. .. 62
Figure 27. An example proof search tree, where Ż2 = Z2\Z1, for the Verifer VC6-O2(P,S). 69
Figure 28. (a) A proof search tree of NCTU6-Verifier and (b) the verifier of one higher order.73
Figure 29. Desktop grid architecture. ... 76
Figure 30. The proof search tree for the position in Figure 7 (a). .. 80
Figure 31. The proof search tree for the position in Figure 7 (b). .. 81
Figure 32. A sequence of Λ3-move starting from 7. ... 82
Figure 33. Six openings in which Black wins at 3. .. 86
Figure 34. 65 winning positions. .. 98
Figure 35. P. H. Lin, I-C. Wu and H.J. van den Herik. .. 133
Figure 36. L. Lee (BITSTRONGER) and P. H. Lin (NCTU6-LITE). 134
Figure 37. The certificate of the 13th Computer Olympiad by NCTU. 134
Figure 38. Go Champion Chou Jun Xun, the operating staff and P. H. Lin. 135
Figure 39. Professor Shun-Chin Hsu (right most) and members of the Connect6 team lead

by I-C. Wu. ... 136
Figure 40. Human players, I-C. Wu (center) and P. H. Lin (left most). 136

 viii

List of Tables

Table 1. The solvability of verifiers for the three puzzles. “yes” means solved and “no”

means unsolved. ... 84
Table 2. (a) The statistics of verifiers for the three puzzles in number of nodes. (b) Speedups

compare to VC6. .. 84
Table 3. (a) The statistics of verifiers for the three puzzles in time (in seconds). (b)

Speedups compare to VC6. .. 85
Table 4. The solvability of verifiers for 65 winning positions. .. 87
Table 5. (a) The statistics of verifiers for 65 winning positions in number of nodes. (b)

Speedups compare to VC6. .. 87
Table 6. (a) The statistics of verifiers for 65 winning positions in time (in seconds). (b)

Speedups compare toVC6. ... 87
Table 7. (a) The statistics of verifiers for 12 openings in number of nodes. (b) Speedups

compare to VC6. .. 88
Table 8. (a) The statistics of verifiers for 12 openings in time (in seconds). (b) Speedups

compare to VC6. .. 88
Table 9. The solvability of verifiers for 65 winning positions in Appendix A, where “yes”

means solved and “no” means unsolved. ... 115
Table 10. The statistics of verifiers for 65 winning positions in Appendix A: (a) number of

nodes and (b) times. ... 119
Table 11. The participants and the final standings of the Connect6 Tournament in the 13th

Computer Olympiad (2008). .. 133

 1

Chapter 1 Introduction

A generalized family of k-in-a-row games, named Connect(m, n, k, p, q) [65][66], were

introduced and presented by Wu et al. Two players, named Black and White, alternately

place p stones on empty squares1 of an m × n board in each turn. Black plays first and

places q stones initially. The player who first gets k consecutive stones of his own

horizontally, vertically and diagonally wins. Both players tie the game when the board is

filled up with neither player winning. Games in this family are also called Connect games2

in this thesis. For example, Tic-tac-toe is Connect(3, 3, 3, 1, 1), Go-Moku in the free style (a

traditional five-in-a-row game) is Connect(15, 15, 5, 1, 1), and Connect6 played on the

traditional Go board is Connect(19, 19, 6, 2, 1). For simplicity, let Connect(k,p,q) denote the

game Connect(∞,∞,k,p,q), played on infinite boards. For example, when played on infinite

boards, Go-Moku becomes Connect(5,1,1) and Connect6 becomes Connect(6,2,1).

Among these Connect games, Connect6 attracted much attention due to three merits,

fairness, simplicity of rules and high game complexity as described in [65][66]. Since

Connect6 was introduced, hundreds of thousands of Connect6 games have been played on

web sites, such as littlegolem.net [33] and cycgame.com [51]. Since 2006, several Connect6

open tournaments [50] for human players have been held, such as NCTU Open,

ThinkNewIdea Open, Russian Open and World Open. Connect6 has also been included as

one of the computer game tournaments in Computer Olympiad [55] and Chinese Computer

Games Contest [16], since 2006 and 2007 respectively.

1 Practically, stones are placed on empty intersections of Renju or Go boards. In this thesis, by squares, we
mean intersections.
2 The term of connect games defined in [22] covers the games such as Hex, Connect Four, etc. In this thesis,
Connect are capitalized to indicate all the games in the family of Connect(m,n,k,p,q).

 2

In Connect6, a segment is defined to be a set of six consecutive squares horizontally,

vertically or diagonally on the board; while in Connect(m,n,k,p,q), a segment is a set of k

consecutive squares. A segment is called an empty segment if all the squares on it are

unoccupied yet. A segment is called an active segment of one player, if none of the squares

are occupied by the opponent’s stones. An active segment of one player is called a win

segment of the player, if all the squares on it are occupied by the player. Obviously, one

player wins if the player makes a win segment. From the definition of Connect games, a

game ends when one makes some win segment or all the squares of the board are already

occupied. According to this definition, it is impossible for both players to have win

segments simultaneously.

1.1 Game Positions

In Connect games, a game position P includes the information of all the stones and

their occupied squares on the board and the turn of whom to play. The player to be proved

to win, either Black or White, is called Attacker and the other Defender in this thesis. Both

input and output game positions are in the standard format, named SGF [40]. Let σA(s)

denote the information of an Attacker stone placed on the unoccupied square s, and P +

σA(s) denote the position after placing an Attacker stone on s in position P without changing

the turn. σD(s) and P + σD(s), are similarly defined for Defender. From the strategy stealing

argument by Nash (cf. [7][65]), we obtain the following. If Attacker wins in P, Attacker

wins in P + σA(s), too; and if Attacker wins in P + σD(s), Attacker wins in P, too.

In this thesis, P⊕M denotes the position after one player makes move M and before the

other makes the next move. In Connect6, let MA(s1,s2) denote an Attacker move where two

Attacker stones are placed on both unoccupied squares s1 and s2. MD(s1,s2) and P⊕MD(s1,s2)

 3

are similarly defined for Defender. Note that in contrast to P + σA(s1) + σA(s2), the position

P⊕MA(s1,s2) indicates changing the turn from Attacker to Defender.

In Connect6, one player, say Attacker, is allowed to make a null move, MA,φφ; that is, to

place no stones, and a semi-null move, MA,φ(s1); that is, to place one stone only on square s1

in P. Thus, the position P⊕MA(s1,s2) is equivalent to (P⊕MA,φ(s1)) + σA(s2) and (P⊕MA,φφ) +

σA(s1) + σA(s2). From another viewpoint, null or semi-null moves are to place some null

stones while placing normal stones. In Connect(m,n,k,p,q), we place p null stones for a null

move, while placing one to p–1 null stones for semi-null moves.

1.2 Playing Strategies for Connect6

In Connect6 (other Connect games are similar), threats are the key to great reduction

of the proof search tree. An active segment in which Attacker occupied four or five squares

is called a threat segment of Attacker. The segment poses a threat and Defender has to block

it, or Attacker wins by making a win segment in the next move.

A move is called a single-threat move if the player who makes the move has one and

only one threat after the move, a double-threat move if two, a triple-threat move if three,

and a non-threat move if none. In Connect6, one player clearly wins by a

triple-threat-or-more move (a move with at least three threats). Examples of the line

patterns with one, two and three threats are shown in Figure 1 (below).

 4

(a)

(b)

(c)

Figure 1. Threat patterns for Connect6. (a) One threat, (b) two threats and (c) three threats.

The defensive moves that block all the threats are called critical defenses, while

removing any stones in the moves unblocks some threats. For example, White’s semi-null

moves MD,φ(A) and moves MD(B,C) in both Figure 2 (a) and (b) are critical defenses, while

moves MD(A,B) are not because the threats are still blocked without B. (Note that null

moves are also critical defenses in positions without any threats according to the above

definition.) Critical defenses are said to be normal if the numbers of stones in the defenses

are the same as the numbers of threats; and relaxed, otherwise. For example, in Figure 2,

semi-null moves MD,φ(A) are normal, while moves MD(B,C) are relaxed. In Connect6,

relaxed critical defenses are not played frequently due to their inefficiency (using two stones

to block only one threat).

 5

(a)

(b)

Figure 2. (a) Normal critical defense and (b) relaxed critical defense.

1.3 Winning Strategies for Connect6

In [65][66], they showed a type of winning strategy, called Victory by Continuous

Double-Threat-or-more moves (VCDT) in this thesis. It is similar to Victory by Continuous

Four (VCF), a common term for winning strategies in the Renju community [41]. More

specifically, the type of VCDT strategy is to win by making continuously double-threat

moves and ending with a triple-or-more-threat move or connecting up to six in all variations.

For example, in Figure 3 (below), White’s VCDT 12-18 (18 is a triple-threat move).

 6

Figure 3. A sequence of VCDT winning strategy.

Soon after the introduction of Connect6, many human experts found another type of

winning strategy in which additional single-threat moves are involved, i.e., single-threat and

double-threat moves are mixed (before ending with a triple-or-more-threat move). This type

of winning strategy is herein called Victory by Continuous Single-Threat-or-more moves

(VCST). For example, Lee [32], a Renju 3-dan player, found and claimed in late 2005 that

White won starting from move 8 (both 8 and 10 are single-threat moves) in the game as

shown in Figure 4 (below).

 7

Figure 4. A sequence of VCST winning strategy.

Similarly, the type of winning strategy with additional non-threat moves involved is

called Victory by Continuous Non-Threat-or-more moves (VCNT). For example, Black won

starting from move 1 (1 is a non-threat move) in Connect(6,2,3) as shown in Figure 5

(below).

 8

Figure 5. A sequence of VCNT winning strategy.

Although VCST was unknown then, Wu and Huang [65][66] were already able to

solve a simple VCNT case, that Black wins Connect(6,2,3). This clearly is a case of VCNT,

since Black’s first winning move, as shown in Figure 6 (below), must be a non-threat move.

 9

Figure 6. Black’s winning move in Conect(6,2,3).

To solve it, they used a simple threat proof search method involving null or semi-null

moves and relevance zones, as briefly described in Section 2.2. In the search method for

solving the case Connect(6,2,3) with VCNT, both winning strategies for the null move (3-9

in Figure 12 (a) of Section 2.2) and the semi-null move (3-11 in Figure 12 (b) of Section 2.2)

must be VCDT. However, with more and more winning Connect6 positions investigated, we

found that winning strategies for null and semi-null moves may be VCSTs or even VCNTs,

thus making these positions much more difficult to solve.

 10

1.4 Motivation

Consider the two winning non-threat moves (proved in this thesis), moves 7 in Figure

7 (a) and 6 in Figure 7 (b), respectively.

 (a) (b)

Figure 7. (a) A position with Black winning. (b) A positon with White winning.

The former, found in 2006 [50], was the key used to help prove that Black wins at

move 3 in Figure 7 (a); that is, the opening move 2 is solved. In this case, for the null move

in Figure 7 (a), Black wins by a VCDT as shown in Figure 8 (a). However, for the semi-null

move 8 in Figure 8 (b), Black has no double-threat moves to win by a VCDT, though Black

wins by a VCST starting at 9 in Figure 8 (b).

 11

 (a) (b)

Figure 8. (a) A VCDT for the null move in Figure 7 (a). (b) A winning single-threat move 9

for the semi-null move 8.

 (a) (b)

Figure 9. (a) A winning single-threat move 8 for a null move in Figure 7 (b). (b) A winning

non-threat move 8 for a semi-null move 7.

 12

The latter, the position in Figure 7 (b) found by Huang [25], was investigated to see

whether the semi-null move 5 was safe enough, since the position at 5 was popular in the

following sense. Among all the first-five-move positions of Connect6 games played by the

players ranked above 1800 in [33] about 2% covered (or superset) the position according to

the statistics discussed in [50]. The proof for this position is extremely complicated. Even

for a null move by Black, White has no double-threat moves to win by a VCDT, but can

actually win by a VCST starting at 8 as shown in Figure 9 (a). In addition, if a semi-null

move is made at 7 in Figure 9 (b), White cannot win by a VCDT or even a VCST, thus

making the position in Figure 7 (b) much more complicated to solve.

This thesis proposes a new threat-based proof search method in Chapter 3, named

Relevance-Zone-Oriented Proof (RZOP) search, developed from the lambda search

proposed by Thomsen [52]. The proposed RZOP method is also generalized to all Connect

games in the Appendix D. In the past, many researchers [1][2][11][12][52] had proposed

threat-based search methods. Lambda search is to formalize the search trees with null

moves and to solve positions of games such as Go and Chess. In lambda search, null moves

are involved with different orders of threat sequences, also called lambda-trees.

From the viewpoint of lambda search, a VCDT is a typical λ1-tree with value 1 (cf.

[52]). However, the definition of lambda search cannot be directly applied to Connect6 or

Connect games with p ≥ 2. For Connect games, this thesis modifies the definition of lambda

search in Section 2.3, and replaces the notation λi by Λi. Under the new definition, a VCST

is a Λ2-tree with value 1, the winning strategy for the position in Figure 7 (a) is a Λ3-tree

with value 1, while that in Figure 7 (b) is a Λ4-tree with value 1. The Λ search formalized in

this thesis is able to solve Λ1-trees to Λ4-trees with value 1 for Connect6.

Related works are given in Chapter 2. Together with a proof number search

[3][9][23][27][35][36][43][46][54][64], this thesis solved effectively and successfully many

 13

new Connect6 game positions, including several Connect6 openings, especially the

Mickey-Mouse Opening, as described in Section 5.3. This opening used to be one of the

popular openings before we solved it.

Chapter 4 further presents an improved method, named Segmented

Relevance-Zone-Oriented Proof (SRZOP) search, which speeds up the time to solve

Connect6 game positions. Experiments are illustrated in Chapter 5, where the detail results

are shown in Appendix A, B and C. Chapter 6 concludes this thesis. Appendix E explains

draw k-in-a-row games. Appendix F demonstrates records of our Connect6 program NCTU6,

which won the gold in the 11th and 13th Computer Olympiads [59][67] in 2006 and 2008,

respectively; and also won eight games and lost none against top Connect6 players in

Taiwan in 2009 [30].

 14

Chapter 2 Related Works

This chapter gives definitions and notation related to search trees and lambda search in

Sections 2.1 and 2.2 respectively.

2.1 Search Trees

This thesis basically follows the definitions of search trees in [10][37]. A search tree is

shown in Figure 10 (a) below, where rectangle and circle nodes indicate the positions in

Attacker’s and Defender’s turns3, respectively. The value of a leaf is 1, if Attacker makes a

win segment, and 0, otherwise. The value of a search tree is the minimax value of the tree.

Attacker wins in the root position if the search tree has value 1 and all the internal circles

expand all Defender’s legal moves.

A strategy S of Attacker is viewed as a move-generating function of positions P that

are in Attacker’s turn. Naming, S(P) indicates the move that Attacker chooses to make

according to the strategy S. In a search tree following S, each position P expands at most

one move S(P). A strategy S of Attacker is called a winning strategy for position P, if and

only if the value of the search tree rooted at P is 1 following S and all Defender’s legal

moves are generated in the tree. Thus, we obtain Corollary 1 (below). A tree as shown in

Figure 10 (b) is called a solution tree in [10][37].

Corollary 1. Attacker wins in a position P if and only if there exists at least one winning

strategy of Attacker in P. ▌

3 When we say that a position P is in Attacker’s (Defender’s) turn, we mean that Attacker (Defender) is to
move next in P.

 15

(a)

(b)

Figure 10. (a) A search tree and (b) a solution tree.

 16

(a)

(b)

Figure 11. (a) Making squares of moves by inserting small boxes. (b) Combining the same

edges from (a).

 17

In order to investigate more closely squares of defensive moves, insert small rectangles

onto the corresponding edges that are broken into two, marked s1 and s2 respectively, as

shown in Figure 11 (a). Furthermore, the edges are combined with the same s1, as shown in

Figure 11 (b). Note that null stones are marked as φ and the corresponding edges are

indicated by dashes.

2.2 Null Move Heuristics for Connect6

To solve Connect(6,2,3), Wu and Huang [65][66] used a simple threat proof search

method involving null or semi-null moves and relevance zones, as briefly described in the

following. Let White place no stones, called a null move in [65][66]. Obviously, Black wins

by VCDT 3-9 as shown in Figure 12 (a) below. Then, a relevance zone Z, the area of gray

squares in Figure 12 (a), can be derived to indicate that White must place at least one of the

two stones inside this zone, or Black wins by simply replaying the same VCDT. Next, all

squares s in Z are verified as follows. Let White place one stone on s only, called a

semi-null move in [65][66]; for example, move 2 in Figure 12 (b). Again, Black is able to

win by another VCDT 3-11. Thus, another relevance zone Z', the gray area in Figure 12 (b),

can be derived again to indicate that White must place another stone inside Z', or Black wins

by replaying the same VCDT. Finally, all s are verified such that Black wins over all moves

placed at s and s', where s' is in the Z' corresponding to the semi-null move at s. Hence,

Black was proved to win.

 18

(a)

(b)

Figure 12. (a) A VCDT for a null move in Figure 6. (b) A VCDT for a semi-null move 2.

 19

Figure 13. The proof search tree for solving Connect(6,2,3).

A verifier V (for Attacker) is to verify whether Attacker wins in a position P by

following a strategy S. Specifically, if V(P,S) returns the value 1, then Attacker wins in P

and S is a winning strategy for P. A straightforward verifier is to verify it by traversing

exhaustively the whole solution tree. Clearly, it is infeasible in most cases, especially in

case of very large boards or even infinite boards. Fortunately, in Connect games, the

traversal of the search tree for proof can be greatly reduced according to threats, as

described in Chapter 1. The traversed search tree for proof by a verifier is called a proof

search tree. The proof search tree for solving Connect(6,2,3) is shown in Figure 13.

 20

2.3 Lambda Search for Connect6

In [52], Thomsen proposed using the lambda search to express how direct Attacker can

achieve a goal. In Connect games, the goal is normally to make a win segment. The

formalization of lambda search is modified for Connect games as follows.

Definition 1. In Connect games, a Λr-tree is a search tree which comprises all legal

Λr-moves. If a Λr-move is an Attacker move, the following condition holds. For all

subsequent null moves or semi-null moves MD made by Defender, if MD have exactly u null

stones, where 1 ≤ u ≤ p, there exists at least one subsequent Λi-tree with value 1, where 0 ≤ i

≤ r – u or i = 0 if r < u. If a Λr-move is a Defender move, the following condition holds.

There exist no subsequent Λi-trees with value 1, where 0 ≤ i ≤ r – 1. In a Λr-tree, a node is a

leaf (without any children) if there are no Λr-moves following it. The value of a leaf is 1 if

Defender is to move, and 0 if Attacker is to move. The value of a Λr-tree is either 1

(indicating that Attacker wins) or 0 (otherwise), derived using minimax calculation. The

value of a Λ0-tree (where Attacker to move) is simply 1 if Attacker makes a win segment in

the next move. ▌

 21

Figure 14. A Λ3-tree.

In case of p = 1, the definition of Λr is the same as that of λr (the goal is to win) in [52];

that is, a Λr-tree is a λr-tree and a Λr-move is a λr-move, and vice versa. In case of p = 2,

such as Connect6, a Λ3-tree is illustrated in Figure 14 and move Ma in the tree is a Λ3-move,

since the values of Λ1-tree and all Λ2-trees in the left box are all 1. In addition, moves M3,

M4, M7 and M8 are Λ3-moves, if Attacker has no subsequent Λ0-moves, Λ1-moves or

Λ2-moves. By following the proof of Theorem 1 in [52], we derive the following theorem

(whose proof is omitted).

Theorem 1. For a Λr-tree rooted in a position P, if a minimax search on it returns the value

1, Attacker wins in P. ▌

Definition 2. A winning strategy is called a Λr-strategy for a position P, if the subsequent

non-null moves following the strategy are all Λi-moves, where 0 ≤ i ≤ r. ▌

 22

Figure 15. A Λ3-strategy.

From the above definition, a VCDT is a Λ1-strategy, while a VCST is a Λ2-strategy.

For example, there exists a Λ2-strategy for winning position 7 in Figure 4 (Attacker is

White), where moves 8 to 18 are all Λ2-moves. VCNTs are Λ3-strategies or strategies of

higher orders, as illustrated in the following. In Figure 6, move M623 is a Λ3-move, and the

rest of Attacker moves are Λ1-moves, so it is a Λ3-strategy for Connect6(6,2,3). In Figure 7

(a), move 7 is a Λ3-move, and the rest of Attacker moves are Λ1-moves or Λ2-moves, so it is

a Λ3-strategy. Figure 15 shows a general Λ3-strategy. However, it is more complicated in

Figure 7 (b), where move 6 is a Λ4-move. Section 5.2 shows that it is a Λ4-strategy.

From Definition 2, a Λr-strategy, r ≥ 1, also implies that for a move with u null stones

Attacker has a Λr– u-strategy. For example, in the Λ3-strategy in Figure 15, Attacker has a

Λ1-strategy for the null move and Λ2-strategies for all the semi-null moves.

 23

Chapter 3 Relevance-Zone-Oriented Proof Search for

Connect6

As seen in Section 2.3, the lambda search is a powerful method for proving the

winning positions with different orders of threat sequences. The next important issue for

lambda search is to construct relevance zones to reduce greatly the search space. In general,

different applications construct relevance zones in different ways. In Connect games, it is

critical to construct relevance zones in order to propagate relevance zones across different

orders of threat sequences. For example, in Figure 15, the relevance zones derived in the

VCDT (Λ1-strategy) or VCSTs (Λ2-strategies) can be used in the whole search tree

(Λ3-strategy). This chapter defines relevance zones and proposes the

relevance-zone-oriented proof search for Connect6.

3.1 Relevance Zones

This section defines relevance zones, which are elegantly employed to solve Connect

games. A set of squares on the board is called a zone. A sequence of zones with size r, Ψ =

<Z1, Z2, …, Zr>, is incremental, if the condition Z1 ⊆ Z2 ⊆…⊆ Zr holds. In the rest of this

thesis, sequences of zones with different sizes are all incremental and are thus not explicitly

specified. In addition, these zones usually indicate the squares to be chosen for stones to be

placed on, so only unoccupied (or empty) squares are of interest.

 24

Figure 16. A sequence of zones <Z1, Z2, Z3>.

In a position P, its unoccupied zone, denoted by Zun(P), is the zone that comprises all

the unoccupied squares. That is, Zun(P) = Zboard\ZP, where Zboard is the zone for the whole

board and ZP is the set of all occupied squares in P. Let ¬P(Z) denote Zun(P)\Z and indicate

the set of unoccupied squares outside Z. Consider a sequence of zones Ψ = <Z1, Z2, …, Zr>

in P. A sequence of unoccupied squares ϕ = <s1, s2, …, sr'>, where r' ≤ r, is said to be

outside Ψ or irrelevant to Ψ, if all si∉Zi or si∈¬P(Zi). Let ϕ∈¬P(Ψ) denote the relation that

ϕ is irrelevant to Ψ in P. Implicitly, ¬P(Ψ) denotes <¬P(Z1), ¬P(Z2), …, ¬P(Zr)>. For

example, in Figure 16, <s', s'', s'''>, <s', s'' >, <s'', s'''>, <s'>, <s'''> and even the empty

sequence <> are all irrelevant to <Z1, Z2, Z3>, while <s>, <s', t'>, <s', s'', t''>, <s', s'', s''', t'''>,

<s'', s'>, <s, s', s''> are not. For simplicity, let σA(ϕ) denote σA(s1) + σA(s2) + … + σA(sr') =

Σ1≤i≤r'σA(si). Similarly, σD(ϕ) = Σ1≤i≤r'σD(si).

Definition 3. A sequence of zones Ψ is called a sequence of relevance zones for Attacker in

a position P, if and only if Attacker wins in P + σD(ϕ) for all irrelevant ϕ; that is, ϕ∈¬P(Ψ).

Let RZ(P) denote the set of all the sequences of relevance zones for Attacker in P. (Use the

notation RZ(P) instead of RZA(P), since only relevance zones for Attacker are discussed in

this thesis). ▌

 25

From Definition 3, if RZ(P) is not empty, there must exist some Ψ in RZ(P). This

implies that Attacker wins in P by choosing the empty sequence of squares <> for ϕ, since ϕ

is irrelevant to Ψ as described above. Thus, Corollary 2 is obtained.

Corollary 2. If there exists at least one sequence of zones Ψ in RZ(P), then Attacker wins in

P. ▌

Figure 17. A sequence of relevance zones Ψ = <Z1, Z2> for the winning position in Figure

12 (a).

For the winning sequence in Figure 12 (a), Figure 17 illustrates relevance zones Ψ =

<Z1, Z2>, where Z1 is the set of empty squares marked with a small “1”, and Z2 marked “1”

and “2”. Note that in the rest of this thesis, a sequence of zones is shown in this manner.

Interestingly, Z2 is the same as Z in Figure 12 (a). From observation, Black still wins over

all irrelevant ϕ∈¬P(Ψ). That is, if White places one in ¬P(Z1) and the other in ¬P(Z2), Black

still wins by replaying the winning sequence in Figure 12 (a). The result is slightly stronger

than that in [65][66].

Lemma 1 shows an important property that appending extra Zboard to a sequence of

 26

relevance zones is still in RZ(P). Note that we use Zboard, instead of Zun(P), in order to be

independent of the position P, for simplicity. For example, in Figure 17, <Z1, Z2, Zboard> is

also in RZ(P).

Lemma 1. Assume that Ψ = <Z1, Z2, …, Zr> is in RZ(P). Then, Ψ' = <Z1, Z2, …, Zr, Zboard>

is also in RZ(P).

Proof. Consider all irrelevant ϕ∈¬P(Ψ'). For this lemma, it suffices to prove that Attacker

wins in P + σD(ϕ). Since ¬P(Zboard) is empty, ϕ must not have the (r + 1)-st item. From the

definition, we also obtain ϕ∈¬P(Ψ). Since Ψ is assumed to be in RZ(P), Attacker wins in P

+ σD(ϕ) due to ϕ∈¬P(Ψ). ▌

From Lemma 1, two sequences of relevance zones with different sizes can be adjusted

to those with the same size by appending extra Zboard or removing Zboard at the end. For

simplicity of discussion, this thesis uses some more notation for operations on sequences of

zones with the same size in P, say Ψ = <Z1, Z2, …, Zr> and Ψ' = <Z'1, Z'2, …, Z'r>, as

follows.

 Let Ψ ⊆ Ψ' indicate that Ψ is contained in Ψ' pair wise; that is, Zi ⊆ Z'i over all 1 ≤ i ≤r.

 Let Ψ∪Ψ' = <Z1∪Z'1, Z2∪Z'2, …, Zr∪Z'r>.

 Let Ψ∪Z = <Z1∪Z, Z2∪Z, …, Zr∪Z> and Ψ\Z = <Z1\Z, Z2\Z, …, Zr\Z>, where Z is a

zone.

 Let Ψ≪1 denote <Z2, Z3, …, Zr, Zboard> and indicate promotion of the zones in Ψ (that

is, shifting zones to the left by 1) with extra Zboard. Similarly, let Ψ≪2 denote

(Ψ≪1)≪1, and Ψ≪i denote (Ψ≪(i–1))≪1, where i ≥ 2.

From the above notation and definitions, more properties are shown in Lemma 2 and

Lemma 3 as follows.

 27

Lemma 2. Assume that Ψ is in RZ(P) and Ψ ⊆ Ψ'. Then, Ψ' is also in RZ(P).

Proof. Let Ψ = <Z1, Z2, …, Zr> and Ψ' = <Z'1, Z'2, …, Z'r>. Consider all irrelevant

ϕ∈¬P(Ψ'). It suffices to prove that Attacker wins in P + σD(ϕ). Since Ψ ⊆ Ψ', the condition

ϕ∈¬P(Ψ') also implies ϕ∈¬P(Ψ). Since Ψ is in RZ(P), Attacker wins in P + σD(ϕ) due to

ϕ∈¬P(Ψ). ▌

Lemma 3 (below) shows important properties that are employed to improve the

verifiers in Section 3.2.

Lemma 3. Assume that Ψ = <Z1, Z2, …, Zr> is in RZ(P). The following two properties are

satisfied.

1. Assume that ¬P(Z1) is not empty. Let the unoccupied square be s∈¬P(Z1). Then, Ψ≪1

is in RZ(P+σD(s)).

2. Let ϕ be a sequence of unoccupied squares <s1, s2, …, sr'> in ¬P(Ψ), where r' ≤ r. Then,

Ψ≪r' is in RZ(P + σD(ϕ)).

Proof. It suffices to prove the first property, since the first implies the second by induction.

Let Ψ' = Ψ≪1 and consider all irrelevant ϕ' = <s2, …, sr'>∈¬P(Ψ'), where r' ≤ r. For the

first property, it suffices to prove that Attacker wins in (P + σD(s)) + σD(ϕ'). Let ϕ = <s,

s2, …, sr'>. Then, the condition ϕ∈¬P(Ψ) holds due to s∈¬P(Z1). Since Ψ is in RZ(P),

Attacker wins in P + σD(ϕ) due to ϕ∈¬P(Ψ); that is, Attacker wins in (P + σD(s)) + σD(ϕ')

(= P + σD(ϕ)). ▌

 28

3.2 The Proposed Verifier VC6

For solving positions in Connect6, this section investigates a verifier V(P,S) that also

construct recursively a sequence of zones Ψ(P) = <Z1(P), Z2(P), …, Zr(P)> with the

following property.

Property RZV: In the case that V(P,S) returns the value 1, the sequence of zones Ψ(P)

constructed by V(P,S) is in RZ(P).

This section presents such a verifier, named VC6(P,S), with a new proof search method

for Connect6. This method will be generalized to all Connect games in Appendix D. The

verifier VC6(P,S) is described in Subsections 3.2.1, 3.2.2 and 3.2.3 respectively for three

distinct kinds of P, namely endgame positions, positions in Attacker’s turn and positions in

Defender’s turn. Finally, Section 3.3 concludes with Theorem 2, showing that the verifier

satisfies Property RZV in all cases.

3.2.1 Endgame Positions

If Attacker does not win in the endgame position P, the verifier simply returns the

value 0. If Attacker wins in P (i.e., Attacker has a win segment in P), the verifier returns 1

and constructs Ψ(P) in the following operation.

EP-1. For each active segment G of Defender containing exactly i unoccupied squares,

these squares in G are all added into Zi(P) or higher-order zones; that is, Zj(P) for

all j ≥ i. In other words, for each active segment G of Defender containing at most i

unoccupied squares, add all of these squares in G into Zi(P).

 29

(a)

(b)

Figure 18. (a) Relevance zones in a line and (b) in a board, upon winning with a win

segment.

Let us illustrate the above operation by the line shown in Figure 18 (a), where

Defender is White. Following the operation, the square marked with “1” is in Z1, those

marked with “1” or “2” are in Z2, and so on. For example, segment G has only one

unoccupied square that is in Z1 or higher-order zones, while segment G' has two unoccupied

squares that are in Z2 or higher-order zones. It is observed that placing one white stone on

the square in Z1 forms a counter win segment (e.g., G) or an inversion that may prevent

Attacker from winning. Note that if Defender has an inversion, this position P is

 30

unreachable since neither can have win segments simultaneously (as described in the

previous section), who wins first is thus unknown. On the other hand, Attacker still wins if

one white stone is placed in square s1, where s1∉Z1. Similarly, Attacker still wins if one

white stone is placed on s1, where s1 ∉ Z1, and the other on s2, where s2 ∉ Z2. The above can

be generalized to higher orders, and to all lines (or segments) on a board. An example of

constructing zones <Z1, Z2> on a board is illustrated in Figure 18 (b). Note that move 10 in

the figure is simply one of all defenses and is chosen for illustration. In addition, since move

9 clearly wins already, Subsection 3.2.3 will describe how to speed up the establishment of

relevance zones.

From the above observation, it can be derived that the constructed Ψ(P) in operation

EP-1 is in RZ(P). This implies that VC6(P,S) satisfies Property RZV in the case of endgame

P, as shown in Lemma 4.

Lemma 4. Assume P to be an endgame position. Property RZV is satisfied for VC6(P,S).

Proof. Omitted. ▌

In Connect6, all Zi(P) with i ≥ 6, are nearly the same as Zun(P), except for those

unoccupied squares covered by none of active segments of Defender. For example, if an

unoccupied square is surrounded by Attacker’s squares, it is clearly covered by none of

active segments of Defender and is not included in these Zi(P). However, such squares are

normally not many, especially when board sizes are large and only a small number of stones

are in positions. Practically, we simply ignore all Zi(P) with i ≥ 6 or use Zun(P) whenever

needed.

 31

3.2.2 Positions in Attacker’s Turn

In such positions, Attacker simply follows strategy S to make the move S(P) in P. Let

PA denote P⊕S(P). This verifier first performs VC6(PA,S) recursively. If VC6(PA,S) returns the

value 0, this verifier VC6(P,S) also returns 0. On the other hand, if VC6(PA,S) returns 1, this

verifier VC6(P,S) returns 1, too; and constructs Ψ(P) in the following operation.

AT-1. Let Ψ(P) = Ψ(PA) ∪ ZS, where ZS ={s | s∈S(P)}.

Intuitively, placing any stones on the squares in ZS by Defender in advance may block

attacks and prevent Attacker from winning. In this sense, the squares in ZS are relevant and

are therefore contained in all Zi(P) (or Ψ(P)).

In fact, the above operation AT-1 also implies the property, ¬PΨ(P) = ¬PAΨ(PA), for

the following reason. From the operation, the condition Zi(P) = Zi(PA) ∪ ZS holds for all i. In

addition, since PA = P⊕S(P), it is clear that Zun(PA) = Zun(P)\ZS or Zun(P) = Zun(PA)∪ZS.

Thus, for all i, we derive ¬P Zi(P) = Zun(P)\Zi(P) = (Zun(PA)∪ZS)\(Zi(PA)∪ZS) = Zun(PA)\Zi(PA)

= ¬PAZi(PA). From this property, Lemma 5 (below) shows that this verifier VC6(P,S) satisfies

Property RZV if VC6(PA,S) satisfies Property RZV.

Lemma 5. Assume a position P in Attacker’s turn. From the above, assume that VC6(PA,S)

satisfies Property RZV, where PA = P⊕S(P). This verifier VC6(P,S) satisfies Property RZV.

Proof. Assume that this verifier VC6(P,S) returns the value 1. For this lemma (this verifier

satisfies Property RZV), it suffices to prove that the constructed Ψ(P) is in RZ(P). From the

above operation, VC6(PA,S) must also return 1. Since VC6(PA,S) satisfies Property RZV from

the lemma, Ψ(PA) is in RZ(PA).

Consider all irrelevant ϕ, where ϕ∈¬PΨ(P). It suffices to prove that Attacker wins in P

+ σD(ϕ). Since the property ¬PΨ(P) = ¬PAΨ(PA) is satisfied as described above, the

 32

condition ϕ∈¬PAΨ(PA) holds too. Since Ψ(PA) is in RZ(PA) from above, Attacker wins in PA

+ σD(ϕ) due to ϕ∈¬PAΨ(PA). Since Attacker wins in PA + σD(ϕ) = (P + σD(ϕ))⊕S(P),

Attacker wins in P + σD(ϕ) by choosing the move S(P). ▌

3.2.3 Positions in Defender’s Turn

For positions in Defender’s turn, Lemma 6 shows a very important property used in

this section as well as the Appendix.

Lemma 6. Assume a position P in Defender’s turn. For a given sequence of zones Ψ,

assume that for all Defender moves MD there exists some ΨD such that ΨD ⊆ Ψ and ΨD is in

RZ(P⊕MD). Then Ψ is in RZ(P).

Proof. Consider all irrelevant ϕ∈¬PΨ. For this lemma, it suffices to prove that Attacker

wins in P + σD(ϕ).

Now, consider all Defender moves MD in P + σD(ϕ). From this lemma, there exists

some ΨD such that ΨD ⊆ Ψ and ΨD is in RZ(P⊕MD). Since ΨD ⊆ Ψ, the condition ϕ∈¬PΨ

implies ϕ∈¬PΨD. Since squares in MD and σD(ϕ) are mutually exclusive, ϕ∈¬PΨD also

implies ϕ∈¬P⊕MDΨD. Since ΨD is in RZ(P⊕MD) from above, Attacker wins in (P⊕MD) +

σD(ϕ) due to ϕ∈¬P⊕MDΨD. Since (P⊕MD) + σD(ϕ) = (P + σD(ϕ))⊕MD, Attacker also wins

in (P + σD(ϕ))⊕MD. From the above, since Attacker wins in (P + σD(ϕ))⊕MD over all

Defender moves MD, Attacker wins in P + σD(ϕ). ▌

A straightforward verifier is to verify whether Attacker wins for all Defender moves, as

follows. The verifier VC6(P,S) returns the value 1, if the recursive VC6(P⊕MD,S) returns 1 for

all Defender moves MD; otherwise, it returns 0. In the case that this verifier VC6(P,S) returns

1, the zones Ψ(P) are constructed in the following operation.

 33

DT-1. Initialize all zones in Ψ(P) to be empty. Then, for all Defender moves MD, let Ψ(P)

= Ψ(P)∪Ψ(P⊕MD).

From the above operation, the condition Ψ(P⊕MD) ⊆ Ψ(P) clearly holds for all MD.

Assume that all the recursive VC6(P⊕MD,S) satisfy Property RZV. Then, all Ψ(P⊕MD) are in

RZ(P⊕MD) for all Defender moves MD. From Lemma 6, we obtain that Ψ(P) is in RZ(P);

and therefore, the verifier satisfies Property RZV. By induction, the above straightforward

verifier satisfies Property RZV in all cases.

However, the above straightforward verifier is apparently inefficient, since it searches

exhaustively all Defender moves, even when Attacker moves have some threats. The

situation is even worse in the case that the board size is very large or infinite. In this

subsection, an efficient and elegant verifier is devised to reduce the search space by making

use of both threats and relevance zones. In Connect6, the position P (in Defender’s turn) can

be classified into the following four cases. The number of Attacker threats in P is (1) three

or more, (2) two, (3) one and (4) zero. The four cases are discussed respectively in the

following four subsections.

3.2.3.1. Three Threats or More

In this case, Attacker is sure to win by simply following the strategy, S3T, as follows.

For each Defender move, since the move must leave some threat segments unblocked,

Attacker wins simply by making a win segment from the unblocked one. Since the strategy

is a sure win, the verifier returns the value 1 and constructs the zones (initialized to be

empty) in the following operations.

 34

T3-1. Add all unoccupied squares s on threat segments into all Zi(P).

T3-2. For each active segment G of Defender containing exactly i + 2 unoccupied

squares, all these squares in G are added into all Zj(P) or higher-order zones. In

other words, for each active segment G of Defender containing at most i + 2

unoccupied squares, add all these squares in G into Zi(P).

(a)

(b)

Figure 19. (a) Relevance zones in a line and (b) in a board, upon winning with three or more

threats.

 35

Let us illustrate the above operations by the line shown in Figure 19 (a), where

Defender is White. Zones in the line are marked in a way similar to that in Figure 18 (a). It

is observed that placing one white stone in G or Z1 results in a counter threat segment or an

inversion that may threaten Attacker to defend in some of his earlier moves and prevent

Attacker from winning. On the other hand, Attacker still wins if one white stone is placed

on other squares s1, where s1∉Z1. Similarly, Attacker still wins if one white stone is placed

on s1, where s1 ∉ Z1, and the other on s2, where s2 ∉ Z2. The above can be generalized to

higher orders, and to all lines (or segments) on the board. An example of constructing two

zones <Z1, Z2> on a board is illustrated in Figure 19 (b). Lemma 7 shows that in this case

the verifier satisfies Property RZV; that is, Ψ(P) is in RZ(P).

Lemma 7. Assume that Defender is to move and Attacker has three or more threats in P.

The verifier described above satisfies Property RZV.

Proof. For this lemma, it suffices to prove that the constructed Ψ(P) is in RZ(P). Consider

all Defender moves MD. Attacker simply follows a strategy S3T to connect six from an

unblocked threat segment. Let PD = P⊕MD and P6 = PD⊕S3T(PD). From Lemma 4 and

Lemma 5, Ψ(P6) and Ψ(PD) are in RZ(P6) and RZ(PD), respectively.

To prove that Ψ(P) is in RZ(P), it suffices to prove from Lemma 6 that Ψ(PD) ⊆ Ψ(P),

since Ψ(PD) is already in RZ(PD). From Subsection 3.2.2, Ψ(PD) = Ψ(P6) ∪ ZS, where ZS

={s | s∈S3T(PD)}. From operation T3-1, all squares in ZS are added into Ψ(P). Thus, it

suffices to prove that Ψ(P6) ⊆ Ψ(P).

Since Attacker connects six in P6, operation EP-1 (in Subsection 3.2.1) is employed to

construct zones Ψ(P6). The operation is restated as follows. For each active segment G of

Defender containing at most i unoccupied squares in P6, all the squares in G are added into

Zi(P6). Since one move has at most two squares, at most two occupied squares in G were

occupied by move MD. Therefore, G contains at most 2 + i unoccupied squares back in P

 36

(before making move MD). From operation T3-2, all these unoccupied squares are also

added into Zi(P). For example, let both lines in Figure 18 (a) and Figure 19 (a) be

respectively in positions P6 and P, where move MD is placed on the two leftmost squares

marked “1” in segment G in Figure 19 (a). Thus, the two squares marked “2” in segment G'

in Figure 18 (a) are also added into Z2(P) in Figure 19 (a). From the above observation, we

can derive Ψ(P6) ⊆ Ψ(P). ▌

Since all active segments G of Defender contains at most 6 (= 4 + 2) unoccupied

squares in Connect6, all these squares in G are added into all Zi(P) from operation T3-2,

where i ≥ 4. Thus, these Zi(P) are nearly the same as Zun(P), except for the unoccupied

squares not covered by any active segments of Defender, e.g., the unoccupied squares

surrounded by all Attacker squares. Similar to the argument in Subsection 3.2.2, we

construct zones with size three, and simply use Zun(P) for those higher-order zones,

whenever needed.

3.2.3.2. Two Threats

When Attacker has two threats in P, Defender must defend by blocking the two threats.

In this case, the verifier performs the following operations.

T2-1. For each Defender move MD that blocks the two threats, perform the following.

a. Return the value 0 if the recursive VC6(PD,S) returns the value 0, where PD =

P⊕MD.

b. Let Ψ(P) = Ψ(P)∪Ψ(PD).

T2-2. Continue to construct zones by both operations T3-1 and T3-2, and return 1.

 37

Figure 20. A winning positon with two threats for Black (Attacker) and the constructed

Ψ(P).

For example, for position P in Figure 20 (the grandparent of the position in Figure 19

(b)) where Black has two threats, White has three defensive moves at (B,C), (A,C) and

(B,D). Obviously, since Black still wins for each of the three moves, Black wins in P. From

the above operations, this verifier returns the value 1 and constructs Ψ(P) as shown in

Figure 20. Lemma 8 (below) shows that this verifier satisfies Property RZV if the verifier

satisfies Property RZV for all the defensive moves, too. From this lemma, Ψ(P) in Figure

20 is in RZ(P).

 38

Lemma 8. From the above, assume that Defender is to move and Attacker has two threats in

P. Assume that all the recursive VC6(PD,S) in operation T2-1 satisfy Property RZV. Then, the

verifier VC6(P,S) satisfies Property RZV too.

Proof. Assume that this verifier VC6(P,S) returns 1. For this lemma (this verifier satisfies

Property RZV), it suffices to prove that the constructed Ψ(P) is in RZ(P). Since VC6(P,S)

returns 1, all the recursive VC6(PD,S) in operation T2-1 must return 1. Since these VC6(PD,S)

satisfy Property RZV from this lemma, all constructed Ψ(PD) are in RZ(PD).

To prove Ψ(P)∈RZ(P), it suffices to prove from Lemma 6 the following. For all

Defender moves MD there exists some ΨD such that ΨD is in RZ(P⊕MD) and ΨD ⊆ Ψ(P).

All Defender moves MD are classified into the following cases.

1. All Defender moves MD that block both threats. From the above, Ψ(PD) are in

RZ(PD). In addition, since these Ψ(PD) are merged into Ψ(P) in operation T2-1.b, we

obtain Ψ(PD) ⊆ Ψ(P). Thus, Ψ(PD) is the ΨD.

2. All Defender moves MD that leave some threat segment unblocked. Attacker wins by

connecting six on the segment, like strategy S3T. Since operation T2-2 follows those

steps in T3-1 and T3-2, we simply follow the proof of Lemma 7 to prove that there

exists some ΨD such that ΨD ⊆ Ψ(P) and ΨD is in RZ(PD). ▌

 39

Figure 21. A winning positon with two threats for Black (Attacker) and the constructed

Ψ(P).

Assume that the subsequent winning moves of Attacker are the same for all the

defensive moves. Then, we can optimize the construction of zones by combining these

defensive moves together. For example, in Figure 20, the three defensive moves, (B,C),

(A,C) and (B,D) can be combined into a macro move (A, B, C, D) as shown in Figure 21.

Since the subsequent winning sequences of Attacker are the same, the sizes of relevance

zones are relatively smaller and the threat-based search is also greatly reduced. However,

note that the segment containing both A and B (the same for C and D) in Figure 20 should

be considered to have one white stone only for zone construction. Since the winning

sequences in Figure 12 (a) are the same for all defensive moves, the relevance zones are

constructed as shown in Figure 17.

 40

3.2.3.3. One Threat

When Attacker has one threat, Defender must defend by blocking the threat. In this

case, the verifier performs the following operations.

T1-1. For each normal critical defense (defined in Section 1.2), MD,φ(s) where square s

blocks the threat, perform the operation of semi-null-move proof search as follows.

a. Return the value 0, if the recursive VC6(Ps,S) returns 0 where Ps = P⊕MD,φ(s).

b. Let Ψ(P) = Ψ(P) ∪ (Ψ(Ps)≪1).

c. For each defensive move MD(s,s'), where s'∈Z1(Ps), perform both operations

T2-1.a and T2-1.b.

T1-2. For all relaxed critical defenses MD(s,s'), perform both operations T2-1.a and

T2-1.b.

T1-3. Perform both operations T3-1 and T3-2, and return 1.

Consider a position P, 8 in Figure 22 (a) below (the same as 8 in Figure 4), and another

Ps, with a semi-null move added at 9. White (Attacker) wins in Ps by the winning sequence

in Figure 22 (a). The above operations construct the zones Ψ(Ps) = <Z1(Ps), Z2(Ps), Z3(Ps)>,

with the first two zones shown in Figure 22 (c). According to operation T1-1.b, both zones

Z2(Ps) and Z3(Ps) are shifted and merged into Z1(P) and Z2(P), respectively. For all defensive

moves MD(s,s'), where s'∈Z1(Ps), operation T1-1.c follows both T2-1.a and T2-1.b to

construct zones and verify whether VC6(P⊕MD(s,s'),S) return 1. In addition, operation T1-2

also performs the same for all relaxed critical defenses, such as the one in Figure 22 (b).

From Figure 22 (c), since the number of squares in Z1(Ps) is only 15, the number of

recursive VC6 is relatively small, even in very large or infinite boards.

 41

 (a) (b)

(c)

Figure 22. (a) A VCDT for the semi-null move 9. (b) A relaxed critical defense at 9. (c) The

constructed zones for the semi-null move 9 in (a).

 42

Lemma 9 shows that the verifier satisfies Property RZV if all the recursive VC6 satisfy

Property RZV.

Lemma 9. From the above, assume that Defender is to move and Attacker has one threat in

P. Assume that all the recursive VC6 in both operations T1-1 and T1-2 satisfy Property RZV.

Then, the verifier VC6(P,S) satisfies Property RZV too.

Proof. Assume that this verifier VC6(P,S) returns 1. For this lemma, it suffices to prove that

the constructed Ψ(P) is in RZ(P). Since VC6(P,S) returns 1, all the recursive VC6 in both

operations T1-1 and T1-2 must also return 1. Since all the recursive VC6 satisfy Property

RZV from this lemma, all Ψ(Ps) constructed from T1-1.a are in RZ(Ps) and all Ψ(PD) from

T1-1.c and T1-2 are in RZ(PD).

To prove Ψ(P)∈RZ(P), it suffices to prove from Lemma 6 the following. For all

Defender moves MD, there exists some ΨD such that ΨD is in RZ(P⊕MD) and ΨD ⊆ Ψ(P).

All Defender moves MD are classified into the following cases.

1. All Defender moves MD(s,s') where s blocks the threat as described in T1-1. Let Ps =

P⊕MD,φ(s). Furthermore, this case is separated into the following two subcases.

a. s'∈Z1(Ps). Let PD denote P⊕MD(s,s'). The zones Ψ(PD) is constructed in

operation T1-1.c, and is in RZ(PD) according to the first paragraph of this

proof. Since Ψ(PD) is merged into Ψ(P) in T1-1.c, we obtain Ψ(PD) ⊆ Ψ(P).

Thus, Ψ(PD) is the ΨD.

b. s'∈¬Ps(Z1(Ps)). From the above, Ψ(Ps) is in RZ(Ps). Since s'∈¬Ps(Z1(Ps)),

Lemma 3 shows that Ψ(Ps)≪1 is in RZ(Ps+σD(s')), meaning RZ(P⊕MD(s,s')).

From operation T1-1.b, (Ψ(Ps)≪1) ⊆ Ψ(P). Thus, Ψ(Ps)≪1 is ΨD.

2. All Defender moves MD(s,s') in operation T1-2 are relaxed critical defenses. The

proof is similar to that in Case 1.a and therefore omitted.

All Defender moves MD(s,s') that do not block the threat. Attacker wins by connecting

 43

six on some unblocked threat segments, like strategy S3T. Find ΨD by following the proof of

Lemma 7. ▌

3.2.3.4. No Threats

When Attacker has no threats, it becomes more complicated since Defender has much

more freedom to move. In this case, the verifier makes use of the constructed relevance

zones to minimize the search space in the following operations.

T0-1. Return the value 0 if VC6(Pφ,S) returns 0, where Pφ = P⊕MD,φφ.

T0-2. Let Ψ(P) = Ψ(Pφ)≪2.

T0-3. For each square s in Z2(Pφ), perform the semi-null move proof search, as in

operations T1-1.a to T1-1.c.

T0-4. Return 1.

Let us illustrate the above operations by the example in Figure 6 and Figure 12. From

the winning moves in Figure 12 (a), operation T0-1 constructs relevance zones Ψ(Pφ) =

<Z1(Pφ), Z2(Pφ), Z3(Pφ)>, with only the first two zones shown in Figure 17. Similarly, zone

Z2(Pφ) is the same as Z in Figure 12 (a). According to operation T0-2, zone Z3(Pφ) is shifted

and merged into Z1(P). Then, in operation T0-3, one square s in Z2(Pφ) is chosen to perform

the semi-null move proof search. In the case that 2 in Figure 12 (b) is chosen, the semi-null

move proof search in T0-3 constructs the relevance zones Ψ(Ps) = <Z1(Ps), Z2(Ps), Z3(Ps)>,

where Ps = P⊕MD,φ(s). Zone Z1(Ps) is actually the same as Z' in Figure 12 (b). After

verifying that White wins for all s∈Z2(Pφ) and all s'∈Z1(Ps), the verifier confirms that White

wins in P, as shown in Lemma 10 (below). For the position in Figure 6, the number of the

recursive VC6 in T0-1 to T0-3 is 2656, relatively small when compared with the number of

legal moves.

 44

Lemma 10. Assume that Defender is to move and Attacker has no threats in P. From the

above, assume that all recursive VC6 in both operations T0-1 and T0-3 satisfy Property RZV.

Then, the verifier VC6(P,S) also satisfies Property RZV.

Proof. Assume that this verifier VC6(P,S) returns 1. For this lemma, it suffices to prove that

the constructed Ψ(P) is in RZ(P). Since VC6(P,S) returns 1, all the recursive VC6 in both

operations T0-1 and T0-3 must also return 1. Since these recursive VC6, say for position P',

satisfy Property RZV from this lemma, the constructed zones Ψ(P') are in RZ(P').

To prove Ψ(P)∈RZ(P), it suffices to prove from Lemma 6 the following: For all

Defender moves MD, there exists some ΨD such that ΨD is in RZ(P⊕MD) and ΨD ⊆ Ψ(P).

All Defender moves MD are classified into the following cases:

1. All Defender moves MD(s,s') where s∈¬Pφ(Z2(Pφ)) and s'∈¬Pφ(Z2(Pφ)). From the

first paragraph in this proof, Ψ(Pφ) is in RZ(Pφ). Since s∈¬Pφ(Z2(Pφ)) and

s'∈¬Pφ(Z2(Pφ)), Ψ(Pφ)≪2 is in RZ(Pφ + σD(s) + σD(s')) from Lemma 3. Since Pφ +

σD(s) + σD(s') = P⊕MD(s,s'), Ψ(Pφ)≪2 is also in RZ(P⊕MD(s,s')). In addition,

(Ψ(Pφ)≪2) ⊆ Ψ(P) from operation T0-2. Thus, Ψ(Pφ)≪2 is ΨD.

2. All Defender moves MD(s,s') where s∈Z2(Pφ). By following the proof for Case 1

(including Subcases 1.a and 1.b) in Lemma 9, we obtain that there exists some Ψ in

P⊕MD(s,s') for all s' such that Ψ ⊆ Ψ(P). The details are omitted. ▌

 45

3.3 Conclusion for the Verifier VC6

Theorem 2 (below) concludes that the verifier VC6(P,S) in all cases satisfy Property

RZV. Therefore, if VC6(P,S) returns the value 1, the constructed Ψ(P) is in RZ(P), and

Attacker wins in P from Corollary 2.

Theorem 2. The verifier VC6(P,S) satisfies Property RZV in all cases.

Proof. By induction, the verifier VC6(P,S) satisfies Property RZV in all cases from Lemma 4

to Lemma 10. ▌

Figure 23. An example proof search tree for the Verifer VC6(P,S).

 Figure 23 shows an example proof search tree that gives an overview for the Verifer

VC6(P,S).

 46

Chapter 4 Segmented Relevance-Zone-Oriented Proof

Search for Connect6

As seen in Chapter 3, the RZOP search is a powerful method for proving the winning

positions with different orders of threat sequences and constructs relevance zones to reduce

greatly the search space. However, we observed some issues when solving Connect6

positions with the RZOP search. First issue is that in the RZOP search we found sequences

of squares that are not defined to be irrelevant as shown in Section 4.1. In Section 4.2, we

observed the second issue in which counter-threat segments (Defender’s threat segments)

are the key point that influence whether Attacker can win by simply replaying or not.

Section 4.3 presents that there are interesting moves Attacker can win by replaying. Section

4.4 presents two experimental verifiers modified from Sections 4.1 and 4.2 respectively.

Section 4.5 proposes an advanced improvement which does not implement yet due to the

memory limitation in current NCTU6 program. Finally, we present our SRZOP verifiers

respectively in Subsections 4.1.1, 4.2.1, 4.3.1, 4.4.1 and 4.4.3.

4.1 Irrelevant vs. Relevant Sequences of Squares

In Figure 16 of Chapter 3, <s', s''> is irrelevant to <Z1, Z2, Z3>, while <s'', s'> is not

defined to be irrelevant. However, consider the following situation. Assume Ψ = <Z1, Z2,

Z3> is in RZ(P). Then, according to the definition, Attacker wins in P + σD(s') + σD(s'') for

irrelevant <s', s''>. However, it is clear that Attacker wins in P + σD(s'') + σD(s') too. In this

sense, <s'', s'> should be defined to be irrelevant too, in this sense. Therefore, we define

relevant and not relevant sequences of squares as follows.

 47

Consider a sequence of zones Ψ = <Z1, Z2, …, Zr> in P. A sequence of unoccupied

squares ϕ = <s1, s2, …, sr'>, where r' ≤ r, is said to be relevant to Ψ, if there exists no

permutation ϕ' from ϕ such that ϕ' is irrelevant to Ψ. Otherwise, ϕ is said to be not relevant

to Ψ. Let ϕ∈P(Ψ) denote the relation that ϕ is relevant to Ψ in P and ϕ∈¬P(Ψ) denote the

relation that ϕ is not relevant to Ψ in P. Implicitly, ¬P(Ψ) denotes <¬P(Z1), ¬P(Z2), …,

¬P(Zr)>. With this new definition, in Figure 16, <s>, <s', t'>, <s', s'', t''>, <s', s'', s''', t'''>, <s,

s', s''> are all relevant to <Z1, Z2, Z3>, while <s', s'', s'''>, <s', s'' >, <s'', s'>, <s'', s'''>, <s'>,

<s'''> and <> are not.

Definition 4. A sequence of zones Ψ is called a sequence of relevance zones for Attacker in

a position P, if and only if Attacker wins in P + σD(ϕ) for all not relevant ϕ; that is,

ϕ∈¬P(Ψ). Let RZ(P) denote the set of all the sequences of relevance zones for Attacker in P.

▌

From Definition 4, if RZ(P) is not empty, there must exist some Ψ in RZ(P). This

implies that Attacker wins in P by choosing the empty sequence of squares <> for ϕ, since ϕ

is not relevant to Ψ as described above. Thus, Corollary 3 is obtained.

Corollary 3. If there exists at least one sequence of zones Ψ in RZ(P), then Attacker wins in

P. ▌

The following lemma shows an important property of the SRZOP search.

Lemma 11. Assume that Ψ = <Z1, Z2, …, Zr> is in RZ(P). If ϕ is not relevant to Ψ, then

Attacker wins in P + σD(ϕ).

Proof. Since ϕ∈¬P(Ψ), by definition, these exists some permutation ϕ' such that ϕ' is

irrelevant to Ψ. Let ϕ = <s1, s2, …, sr'> and ϕ' = <s'1, s'2, …, s'r'>, where r' ≤ r. Since ϕ' is

irrelevant to Ψ, Attacker wins in P + σD(ϕ') = P + σD(s'1) + σD(s'2) + … + σD(s'r'). Since ϕ' is

a permutation of ϕ, P + σD(s'1) + σD(s'2) + … + σD(s'r') = P + σD(s1) + σD(s2) + … + σD(sr') =

P + σD(ϕ). Therefore, Attacker wins in P + σD(ϕ) (= P + σD(ϕ')). ▌

 48

With Lemma 11, the proofs of Lemma 1, Lemma 2 and Lemma 3 still hold by

considering all not relevant ϕ as shown in Lemma 12, Lemma 13 and Lemma 14,

respectively.

Lemma 12. Assume that Ψ = <Z1, Z2, …, Zr> is in RZ(P). Then, Ψ' = <Z1, Z2, …, Zr,

Zboard> is also in RZ(P).

Proof. Consider all not relevant ϕ∈¬P(Ψ'). For this lemma, it suffices to prove that Attacker

wins in P + σD(ϕ). Since ¬P(Zboard) is empty, ϕ must not have the (r + 1)-st item. From the

definition, we also obtain ϕ∈¬P(Ψ). Since Ψ is assumed to be in RZ(P), Attacker wins in P

+ σD(ϕ) due to ϕ∈¬P(Ψ). ▌

Lemma 13. Assume that Ψ is in RZ(P) and Ψ ⊆ Ψ'. Then, Ψ' is also in RZ(P).

Proof. Let Ψ = <Z1, Z2, …, Zr> and Ψ' = <Z'1, Z'2, …, Z'r>. Consider all not relevant

ϕ∈¬P(Ψ'). It suffices to prove that Attacker wins in P + σD(ϕ). Since Ψ ⊆ Ψ', the condition

ϕ∈¬P(Ψ') also implies ϕ∈¬P(Ψ). Since Ψ is in RZ(P), Attacker wins in P + σD(ϕ) due to

ϕ∈¬P(Ψ). ▌

Lemma 14. Assume that Ψ = <Z1, Z2, …, Zr> is in RZ(P). The following two properties are

satisfied.

1. Assume that ¬P(Z1) is not empty. Let the unoccupied square be s∈¬P(Z1). Then, Ψ≪1

is in RZ(P+σD(s)).

2. Let ϕ be a sequence of unoccupied squares <s1, s2, …, sr'> in ¬P(Ψ), where r' ≤ r. Then,

Ψ≪r' is in RZ(P + σD(ϕ)).

Proof. It suffices to prove the first property, since the first implies the second by induction.

Let Ψ' = Ψ≪1 and consider all not relevant ϕ' = <s2, …, sr'>∈¬P(Ψ'), where r' ≤ r. For the

 49

first property, it suffices to prove that Attacker wins in (P + σD(s)) + σD(ϕ'). Let ϕ = <s,

s2, …, sr'>. Then, the condition ϕ∈¬P(Ψ) holds due to s∈¬P(Z1). Since Ψ is in RZ(P),

Attacker wins in P + σD(ϕ) due to ϕ∈¬P(Ψ); that is, Attacker wins in (P + σD(s)) + σD(ϕ')

(= P + σD(ϕ)). ▌

Consider Ψ = <Z1, Z2, …, Zr> and a sequence of unoccupied squares ϕ = <s1, s2, …,

sr'>, where r' ≤ r. A sequence of unoccupied squares ϕ' = <sb1, sb2, …, sbi> is said to a

subsequence of ϕ, if 1 ≤ b1 < b2 < … < bi ≤ r'. The definition of relevant ϕ is equivalent to

the following property which means placing i stones inside Zi.

Property INZ: Let Ψ = <Z1, Z2, …, Zr> and ϕ = <s1, s2, …, sr'>, where r' ≤ r. Assume that

ϕ is relevant to Ψ, then there exists some i, where 1 ≤ i ≤ r', and some subsequence ϕ' of

size i such that all squares in ϕ' are in Zi; that is, ϕ is relevant to Ψ.

The following lemma shows that Property INZ holds.

Lemma 15. If Property INZ holds, then there exists some i and some subsequence ϕ' of size

i such that all squares in ϕ' are in Zi; that is, ϕ is relevant to Ψ. Otherwise, ϕ is not relevant

to Ψ.

Proof. Assume by contradictory that Property INZ does not hold and ϕ is relevant to Ψ..

This implies that for all 1 ≤ i ≤ r', there does not exist some subsequence with size i. Let us

investigate each i as follows.

(a) There does not exist some subsequence ϕ' of size r' such that all squares in ϕ' are in Zr'.

Therefore, there exists at least one square, said s'i, not in Zr', that is s'i∈¬P(Zr'). Let sr' = s'i.

(b) Similarly, there does not exist some subsequence ϕ' of size r' – 1 such that all squares in

ϕ' are in Zr'–1. Therefore, there exist at least two squares not in Z r'. In addition to sr', let

another square sr'–1∈¬P(Zr'–1).

 50

(c) Therefore, there exist at least i squares, where 1 ≤ i ≤ r', not in Zi. In addition to sr',

sr'–1, …, si+1, let another square si∈¬P(Zi).

From above, let ϕ = <s1, s2, …, sr'>. Since s1∈¬P(Z1), s2∈¬P(Z2), s3∈¬P(Z3), …,

sr'∈¬P(Zr'), ϕ is not relevant to Ψ. It contradicts the assumption. ▌

In additional, we obtain the following lemma.

Lemma 16. Assume that Ψ is in RZ(P), where Ψ = <Z1, Z2, …, Zr> and ϕ = <s1, s2, …, sr'>,

where r' ≤ r. If Property INZ does not hold, then Attacker wins in P + σD(ϕ).

Proof. From Lemma 11 and Lemma 15, this lemma is trivial and therefore omitted. ▌

4.1.1 The Proposed Verifier VC6-O1

This subsection presents a verifier, named VC6-O1(P,S), with a new proof search method

for Connect6. The verifier VC6-O1(P,S) is described in Subsections 4.1.1.1, 4.1.1.2 and

4.1.1.3 respectively for three distinct kinds of P, namely endgame positions, positions in

Attacker’s turn and positions in Defender’s turn. Finally, Subsection 4.1.2 concludes with

Theorem 3, showing that the verifier satisfies Property RZV in all cases.

4.1.1.1. Endgame Positions

If Attacker does not win in the endgame position P, the verifier simply returns the

value 0. If Attacker wins in P (i.e., Attacker has a win segment in P), the verifier returns 1

and constructs Ψ(P) in the following operation.

O1-EP-1. For each active segment G of Defender containing exactly i unoccupied squares,

these squares in G are all added into Zi(P) or higher-order zones; that is, Zj(P)

for all j ≥ i. In other words, for each active segment G of Defender containing

at most i unoccupied squares, add all of these squares in G into Zi(P).

 51

Lemma 17. Assume P to be an endgame position. Property RZV is satisfied for VC6-O1(P,S).

Proof. Omitted. ▌

4.1.1.2. Positions in Attacker’s Turn

In such positions, Attacker simply follows strategy S to make the move S(P) in P. Let

PA denote P⊕S(P). This verifier first performs VC6-O1(PA,S) recursively. If VC6-O1(PA,S)

returns the value 0, this verifier VC6-O1(P,S) also returns 0. On the other hand, if VC6-O1(PA,S)

returns 1, this verifier VC6-O1(P,S) returns 1, too; and constructs Ψ(P) in the following

operation.

O1-AT-1. Let Ψ(P) = Ψ(PA) ∪ ZS, where ZS ={s | s∈S(P)}.

Lemma 18. Assume a position P in Attacker’s turn. From the above, assume that

VC6-O1(PA,S) satisfies Property RZV, where PA = P⊕S(P). This verifier VC6-O1(P,S) satisfies

Property RZV.

Proof. Assume that this verifier VC6-O1(P,S) returns the value 1. For this lemma (this verifier

satisfies Property RZV), it suffices to prove that the constructed Ψ(P) is in RZ(P). From the

above operation, VC6-O1(PA,S) must also return 1. Since VC6-O1(PA,S) satisfies Property RZV

from the lemma, Ψ(PA) is in RZ(PA).

Consider all not relevant ϕ, where ϕ∈¬PΨ(P). It suffices to prove that Attacker wins in

P + σD(ϕ). Since the property ¬PΨ(P) = ¬PAΨ(PA) is satisfied as described above, the

condition ϕ∈¬PAΨ(PA) holds too. Since Ψ(PA) is in RZ(PA) from above, Attacker wins in PA

+ σD(ϕ) due to ϕ∈¬PAΨ(PA). Since Attacker wins in PA + σD(ϕ) = (P + σD(ϕ))⊕S(P),

Attacker wins in P + σD(ϕ) by choosing the move S(P). ▌

 52

4.1.1.3. Positions in Defender’s Turn

For positions in Defender’s turn, the following lemma shows a very important property

used in this subsection.

Lemma 19. Assume a position P in Defender’s turn. For a given sequence of zones Ψ,

assume that for all Defender moves MD there exists some ΨD such that ΨD ⊆ Ψ and ΨD is in

RZ(P⊕MD). Then Ψ is in RZ(P).

Proof. Consider all not relevant ϕ∈¬PΨ. For this lemma, it suffices to prove that Attacker

wins in P + σD(ϕ).

Now, consider all Defender moves MD in P + σD(ϕ). From this lemma, there exists

some ΨD such that ΨD ⊆ Ψ and ΨD is in RZ(P⊕MD). Since ΨD ⊆ Ψ, the condition ϕ∈¬PΨ

implies ϕ∈¬PΨD. Since squares in MD and σD(ϕ) are mutually exclusive, ϕ∈¬PΨD also

implies ϕ∈¬P⊕MDΨD. Since ΨD is in RZ(P⊕MD) from above, Attacker wins in (P⊕MD) +

σD(ϕ) due to ϕ∈¬P⊕MDΨD. Since (P⊕MD) + σD(ϕ) = (P + σD(ϕ))⊕MD, Attacker also wins

in (P + σD(ϕ))⊕MD. From the above, since Attacker wins in (P + σD(ϕ))⊕MD over all

Defender moves MD, Attacker wins in P + σD(ϕ). ▌

In Connect6, the position P (in Defender’s turn) can be classified into the following

four cases. The number of Attacker threats in P is (1) three or more, (2) two, (3) one and (4)

zero. The four cases are discussed respectively in the following four subsections.

4.1.1.3.1. Three Threats or More

In this case, Attacker is sure to win by simply following the strategy, S3T, as follows.

For each Defender move, since the move must leave some threat segments unblocked,

Attacker wins simply by making a win segment from the unblocked one. Since the strategy

 53

is a sure win, the verifier returns the value 1 and constructs the zones (initialized to be

empty) in the following operations.

O1-T3-1. Add all unoccupied squares s on threat segments into all Zi(P).

O1-T3-2. For each active segment G of Defender containing exactly i + 2 unoccupied

squares, all these squares in G are added into all Zj(P) or higher-order zones. In

other words, for each active segment G of Defender containing at most i + 2

unoccupied squares, add all these squares in G into Zi(P).

Lemma 20. Assume that Defender is to move and Attacker has three or more threats in P.

The verifier described above satisfies Property RZV.

Proof. For this lemma, it suffices to prove that the constructed Ψ(P) is in RZ(P). Consider

all Defender moves MD. Attacker simply follows a strategy S3T to connect six from an

unblocked threat segment. Let PD = P⊕MD and P6 = PD⊕S3T(PD). From Lemma 17 and

Lemma 18, Ψ(P6) and Ψ(PD) are in RZ(P6) and RZ(PD), respectively.

To prove that Ψ(P) is in RZ(P), it suffices to prove from Lemma 19 that Ψ(PD) ⊆ Ψ(P),

since Ψ(PD) is already in RZ(PD). From Subsection 4.1.1.2, Ψ(PD) = Ψ(P6) ∪ ZS, where ZS

={s | s∈S3T(PD)}. From operation O1-T3-1, all squares in ZS are added into Ψ(P). Thus, it

suffices to prove that Ψ(P6) ⊆ Ψ(P).

Since Attacker connects six in P6, operation O1-EP-1 (in Subsection 4.1.1.1) is

employed to construct zones Ψ(P6). The operation is restated as follows. For each active

segment G of Defender containing at most i unoccupied squares in P6, all the squares in G

are added into Zi(P6). Since one move has at most two squares, at most two occupied

squares in G were occupied by move MD. Therefore, G contains at most 2 + i unoccupied

 54

squares back in P (before making move MD). From operation O1-T3-2, all these unoccupied

squares are also added into Zi(P). For example, let both lines in Figure 18 (a) and Figure 19

(a) (in Section 3.2) be respectively in positions P6 and P, where move MD is placed on the

two leftmost squares marked “1” in segment G in Figure 19 (a). Thus, the two squares

marked “2” in segment G' in Figure 18 (a) are also added into Z2(P) in Figure 19 (a). From

the above observation, we can derive Ψ(P6) ⊆ Ψ(P). ▌

4.1.1.3.2. Two Threats

When Attacker has two threats in P, Defender must defend by blocking the two threats.

In this case, the verifier performs the following operations.

O1-T2-1. For each Defender move MD that blocks the two threats, perform the following.

a. Return the value 0 if the recursive VC6-O1(PD,S) returns the value 0,

where PD = P⊕MD.

b. Let Ψ(P) = Ψ(P)∪Ψ(PD).

O1-T2-2. Continue to construct zones by both operations O1-T3-1 and O1-T3-2, and

return 1.

Lemma 21. From the above, assume that Defender is to move and Attacker has two threats

in P. Assume that all the recursive VC6-O1(PD,S) in operation O1-T2-1 satisfy Property RZV.

Then, the verifier VC6-O1(P,S) satisfies Property RZV too.

Proof. Assume that this verifier VC6-O1(P,S) returns 1. For this lemma (this verifier satisfies

Property RZV), it suffices to prove that the constructed Ψ(P) is in RZ(P). Since VC6-O1(P,S)

returns 1, all the recursive VC6-O1(PD,S) in operation O1-T2-1 must return 1. Since these

VC6-O1(PD,S) satisfy Property RZV from this lemma, all constructed Ψ(PD) are in RZ(PD).

To prove Ψ(P)∈RZ(P), it suffices to prove from Lemma 19 the following. For all

 55

Defender moves MD there exists some ΨD such that ΨD is in RZ(P⊕MD) and ΨD ⊆ Ψ(P).

All Defender moves MD are classified into the following cases.

1. All Defender moves MD that block both threats. From the above, Ψ(PD) are in

RZ(PD). In addition, since these Ψ(PD) are merged into Ψ(P) in operation O1-T2-1.b,

we obtain Ψ(PD) ⊆ Ψ(P). Thus, Ψ(PD) is the ΨD.

2. All Defender moves MD that leave some threat segment unblocked. Attacker wins by

connecting six on the segment, like strategy S3T. Since operation O1-T2-2 follows

those steps in O1-T3-1 and O1-T3-2, we simply follow the proof of Lemma 20 to

prove that there exists some ΨD such that ΨD ⊆ Ψ(P) and ΨD is in RZ(PD). ▌

4.1.1.3.3. One Threat

When Attacker has one threat, Defender must defend by blocking the threat. In this

case, the verifier performs the following operations.

O1-T1-1. For each normal critical defense (defined in Section 1.2), MD,φ(s) where

square s blocks the threat, perform the operation of semi-null-move proof

search as follows.

a. Return the value 0, if the recursive VC6-O1(Ps,S) returns 0 where Ps =

P⊕MD,φ(s).

b. Let Ψ(P) = Ψ(P) ∪ (Ψ(Ps)≪1).

c. For each defensive move MD(s,s'), where s'∈Z1(Ps), perform both

operations O1-T2-1.a and O1-T2-1.b.

O1-T1-2. For all relaxed critical defenses MD(s,s'), perform both operations O1-T2-1.a

and O1-T2-1.b.

O1-T1-3. Perform both operations O1-T3-1 and O1-T3-2, and return 1.

 56

Lemma 22. From the above, assume that Defender is to move and Attacker has one threat

in P. Assume that all the recursive VC6-O1 in both operations O1-T1-1 and O1-T1-2 satisfy

Property RZV. Then, the verifier VC6-O1(P,S) satisfies Property RZV too.

Proof. Assume that this verifier VC6-O1(P,S) returns 1. For this lemma, it suffices to prove

that the constructed Ψ(P) is in RZ(P). Since VC6-O1(P,S) returns 1, all the recursive VC6-O1 in

both operations O1-T1-1 and O1-T1-2 must also return 1. Since all the recursive VC6-O1

satisfy Property RZV from this lemma, all Ψ(Ps) constructed from O1-T1-1.a are in RZ(Ps)

and all Ψ(PD) from O1-T1-1.c and O1-T1-2 are in RZ(PD).

To prove Ψ(P)∈RZ(P), it suffices to prove from Lemma 19 the following. For all

Defender moves MD, there exists some ΨD such that ΨD is in RZ(P⊕MD) and ΨD ⊆ Ψ(P).

All Defender moves MD are classified into the following cases.

1. All Defender moves MD(s,s') where s blocks the threat as described in O1-T1-1. Let

Ps = P⊕MD,φ(s). Furthermore, this case is separated into the following two subcases.

a. s'∈Z1(Ps). Let PD denote P⊕MD(s,s'). The zones Ψ(PD) is constructed in

operation O1-T1-1.c, and is in RZ(PD) according to the first paragraph of this

proof. Since Ψ(PD) is merged into Ψ(P) in O1-T1-1.c, we obtain Ψ(PD) ⊆

Ψ(P). Thus, Ψ(PD) is the ΨD.

b. s'∈¬Ps(Z1(Ps)). From the above, Ψ(Ps) is in RZ(Ps). Since s'∈¬Ps(Z1(Ps)),

Lemma 14 shows that Ψ(Ps)≪1 is in RZ(Ps+σD(s')), meaning RZ(P⊕MD(s,s')).

From operation O1-T1-1.b, (Ψ(Ps)≪1) ⊆ Ψ(P). Thus, Ψ(Ps)≪1 is ΨD.

2. All Defender moves MD(s,s') in operation O1-T1-2 are relaxed critical defenses. The

proof is similar to that in Case 1.a and therefore omitted.

All Defender moves MD(s,s') that do not block the threat. Attacker wins by connecting

six on some unblocked threat segments, like strategy S3T. Find ΨD by following the proof of

Lemma 20. ▌

 57

4.1.1.3.4. No Threats

When Attacker has no threats, it becomes more complicated since Defender has much

more freedom to move. In this case, the verifier makes use of the constructed relevance

zones to minimize the search space in the following operations.

O1-T0-1. Return the value 0 if VC6-O1(Pφ,S) returns 0, where Pφ = P⊕MD,φφ.

O1-T0-2. Let Ψ(P) = Ψ(Pφ)≪2.

O1-T0-3. For each square s in Z1(Pφ), perform the semi-null move proof search, as in

operations O1-T1-1.a to O1-T1-1.c.

O1-T0-4. For each square s in Ż2(Pφ), where Ż2(Pφ) = Z2(Pφ)\Z1(Pφ), perform the

operation which satisfies Property INZ as follows.

a. For each defensive move MD(s,s'), where s'∈Ż2(Pφ) and s' ≠ s, perform

both operations O1-T2-1.a and O1-T2-1.b.

O1-T0-5. Return 1.

Lemma 23. Assume that Defender is to move and Attacker has no threats in P. From the

above, assume that all recursive VC6-O1 in operations O1-T0-1, O1-T0-3 and O1-T0-4 satisfy

Property RZV. Then, the verifier VC6-O1(P,S) also satisfies Property RZV.

Proof. Assume that this verifier VC6-O1(P,S) returns 1. For this lemma, it suffices to prove

that the constructed Ψ(P) is in RZ(P). Since VC6-O1(P,S) returns 1, all the recursive VC6-O1 in

operations O1-T0-1, O1-T0-3 and O1-T0-4 must also return 1. Since these recursive VC6-O1,

say for position P', satisfy Property RZV from this lemma, the constructed zones Ψ(P') are

in RZ(P').

 58

To prove Ψ(P)∈RZ(P), it suffices to prove from Lemma 19 the following: For all

Defender moves MD, there exists some ΨD such that ΨD is in RZ(P⊕MD) and ΨD ⊆ Ψ(P).

All Defender moves MD are classified into the following cases:

1. All Defender moves MD(s,s') where s∈¬Pφ(Z2(Pφ)) and s'∈¬Pφ(Z2(Pφ)). From the

first paragraph in this proof, Ψ(Pφ) is in RZ(Pφ). Since s∈¬Pφ(Z2(Pφ)) and

s'∈¬Pφ(Z2(Pφ)), Ψ(Pφ)≪2 is in RZ(Pφ + σD(s) + σD(s')) from Lemma 14. Since Pφ +

σD(s) + σD(s') = P⊕MD(s,s'), Ψ(Pφ)≪2 is also in RZ(P⊕MD(s,s')). In addition,

(Ψ(Pφ)≪2) ⊆ Ψ(P) from operation O1-T0-2. Thus, Ψ(Pφ)≪2 is ΨD.

2. All Defender moves MD(s,s') where s∈Z1(Pφ). By following the proof for Case 1

(including Subcases 1.a and 1.b) in Lemma 22, we obtain that there exists some Ψ in

P⊕MD(s,s') for all s' such that Ψ ⊆ Ψ(P). The details are omitted. ▌

3. All Defender moves MD(s,s') where s∈Ż2(Pφ). By following the proof for Case 2 in

Lemma 22, we obtain that there exists some Ψ in P⊕MD(s,s') for all s' such that Ψ ⊆

Ψ(P). The details are omitted. ▌

 59

4.1.2 Conclusion for the Verifier VC6-O1

Theorem 3 (below) concludes that the verifier VC6-O1(P,S) in all cases satisfy Property

RZV. Therefore, if VC6-O1(P,S) returns the value 1, the constructed Ψ(P) is in RZ(P), and

Attacker wins in P from Corollary 3.

Theorem 3. The verifier VC6-O1(P,S) satisfies Property RZV in all cases.

Proof. By induction, the verifier VC6-O1(P,S) satisfies Property RZV in all cases from

Lemma 17 to Lemma 23. ▌

Figure 24. An example proof search tree, where Ż2 = Z2\Z1, for the Verifer VC6-O1(P,S).

Figure 24 shows an example proof search tree that gives an overview for the Verifer

VC6-O1(P,S).

 60

4.2 Counter-threat Sequences of Squares

In Section 4.1, we propose Property INZ which means ϕ is relevant to Ψ(P) if

Defender places i stones inside Zi(P). Therefore, we consider only relevant ϕ for the verifier

VC6-O1(P,S). However, there exist some ϕ∈P(Ψ) such that Attacker wins by replaying when

we perform the verifier VC6-O1(P,S).

Figure 25. Two types of moves M'D(D12, G11) and M''D(D6, G6).

 61

For example, let P denote the position in Figure 6 and P' = P⊕MD,φφ. Figure 25

shows a VCDT for the position P'. Given two moves M'D(D12, G11) and M''D(D6, G6) as

shown in Figure 25. It is obviously that Attacker wins in P⊕M'D by replaying the same

VCDT in Figure 25. However, Attacker cannot win by simply replaying in P⊕M''D, since

Defender makes a single-threat move 8 before Attacker makes the triple-threat move 9.

Let Ψ = <Z1, Z2> the gray area in P as shown in Figure 25. From the above observation

and Property INZ in Section 4.1, the only chance for Defender to prevent Attacker wins by

replaying is to place at least one stone in Z1 or make a threat move before Attacker’s

triple-threat move. Since placing one stone in Z1 always prevents Attacker from winning by

replaying, we focus on placing two stone in Ż2 = Z2\Z1 by Property INZ.

From examples in Figure 25, we classify Defender moves into two types. First type is

those Defender moves that may form threat segments, also called counter-threat segments,

as M''D(D6, G6) shown in Figure 25. Second type is those Defender moves that are sure not

form threat segments as M'D(D12, G11) shown in Figure 25. Therefore, in this section, we

investigate first type of Defender moves.

Let Ψ = <Z1, Z2> be a sequence of relevance zones in P and a sequence of unoccupied

squares ϕ = <s, s'>. For each square s in Ż2, where Ż2 = Z2\Z1, to form counter-threat

segments, s' and s must be in a same active segment and s' must be in the eight directions

from s. For example, Figure 26 (below) shows the possible area for squares s' after

Defender places the first square s. Since the possible area looks like the Chinese word 米,

we denote the area Ż2 米.

 62

Figure 26. For Defender’s first square s, the dash line indicates the possible area for the

second square s' that may form counter-threat segments.

Definition 5. Let Ψ = <Z1, Z2, …, Zr'> be a sequence of zones. For each square s∈Żi, where

Żi = Zi\Zi-1 and 2 ≤ i ≤ r', Żi 米(s) is constructed from Żi as follows. For each squares s'∈Żi,

where s' ≠ s, if s' and s are both in a same active segment of Defender, put s' into Żi 米(s). ▌

From Definition 5, for squares s and s' in Ż2, if s'∉Ż2 米(s), s' and s must not in a same

active segment of Connect6. This implies that if Ψ is in RZ(P), Attacker wins in P⊕M'D(s, s')

 63

by replaying.

Corollary 4. Assume Ψ is in RZ(P). Let ϕ = <s, s'>, where both s and s'∈Ż2. If s'∉Ż2 米(s),

Attacker wins in P by replaying. ▌

4.2.1 The Proposed Verifier VC6-O2

This subsection presents a verifier, named VC6-O2(P,S), improved from VC6-O1(P,S). The

verifier VC6-O2(P,S) is described in Subsections 4.2.1.1, 4.2.1.2 and 4.2.1.3 respectively for

three distinct kinds of P, namely endgame positions, positions in Attacker’s turn and

positions in Defender’s turn. Finally, Subsection 4.2.2 concludes with Theorem 4, showing

that the verifier satisfies Property RZV in all cases.

4.2.1.1. Endgame Positions

If Attacker does not win in the endgame position P, the verifier simply returns the

value 0. If Attacker wins in P (i.e., Attacker has a win segment in P), the verifier returns 1

and constructs Ψ(P) in the following operation.

O2-EP-1. For each active segment G of Defender containing exactly i unoccupied

squares, these squares in G are all added into Zi(P) or higher-order zones; that

is, Zj(P) for all j ≥ i. In other words, for each active segment G of Defender

containing at most i unoccupied squares, add all of these squares in G into

Zi(P).

Lemma 24. Assume P to be an endgame position. Property RZV is satisfied for VC6-O2(P,S).

Proof. Similar to Lemma 17, therefore omitted. ▌

 64

4.2.1.2. Positions in Attacker’s Turn

In such positions, Attacker simply follows strategy S to make the move S(P) in P. Let

PA denote P⊕S(P). This verifier first performs VC6-O2(PA,S) recursively. If VC6-O2(PA,S)

returns the value 0, this verifier VC6-O2(P,S) also returns 0. On the other hand, if VC6-O2(PA,S)

returns 1, this verifier VC6-O2(P,S) returns 1, too; and constructs Ψ(P) in the following

operation.

O2-AT-1. Let Ψ(P) = Ψ(PA) ∪ ZS, where ZS ={s | s∈S(P)}.

Lemma 25. Assume a position P in Attacker’s turn. From the above, assume that

VC6-O2(PA,S) satisfies Property RZV, where PA = P⊕S(P). This verifier VC6-O2(P,S) satisfies

Property RZV.

Proof. Similar to Lemma 18, therefore omitted. ▌

4.2.1.3. Positions in Defender’s Turn

For positions in Defender’s turn, the following lemma shows a very important property

used in this subsection.

Lemma 26. Assume a position P in Defender’s turn. For a given sequence of zones Ψ,

assume that for all Defender moves MD there exists some ΨD such that ΨD ⊆ Ψ and ΨD is in

RZ(P⊕MD). Then Ψ is in RZ(P).

Proof. Similar to Lemma 19, therefore omitted. ▌

In Connect6, the position P (in Defender’s turn) can be classified into the following

four cases. The number of Attacker threats in P is (1) three or more, (2) two, (3) one and (4)

zero. The four cases are discussed respectively in the following four subsections.

 65

4.2.1.3.1. Three Threats or More

In this case, Attacker is sure to win by simply following the strategy, S3T, as follows.

For each Defender move, since the move must leave some threat segments unblocked,

Attacker wins simply by making a win segment from the unblocked one. Since the strategy

is a sure win, the verifier returns the value 1 and constructs the zones (initialized to be

empty) in the following operations.

O2-T3-1. Add all unoccupied squares s on threat segments into all Zi(P).

O2-T3-2. For each active segment G of Defender containing exactly i + 2 unoccupied

squares, all these squares in G are added into all Zj(P) or higher-order zones.

In other words, for each active segment G of Defender containing at most i +

2 unoccupied squares, add all these squares in G into Zi(P).

Lemma 27. Assume that Defender is to move and Attacker has three or more threats in P.

The verifier described above satisfies Property RZV.

Proof. Similar to Lemma 20, therefore omitted. ▌

4.2.1.3.2. Two Threats

When Attacker has two threats in P, Defender must defend by blocking the two threats.

In this case, the verifier performs the following operations.

O2-T2-1. For each Defender move MD that blocks the two threats, perform the

following.

a. Return the value 0 if the recursive VC6-O2(PD,S) returns the value 0,

where PD = P⊕MD.

b. Let Ψ(P) = Ψ(P)∪Ψ(PD).

 66

O2-T2-2. Continue to construct zones by both operations O2-T3-1 and O2-T3-2, and

return 1.

Lemma 28. From the above, assume that Defender is to move and Attacker has two threats

in P. Assume that all the recursive VC6-O2(PD,S) in operation O2-T2-1 satisfy Property RZV.

Then, the verifier VC6-O2(P,S) satisfies Property RZV too.

Proof. Similar to Lemma 21, therefore omitted. ▌

4.2.1.3.3. One Threat

When Attacker has one threat, Defender must defend by blocking the threat. In this

case, the verifier performs the following operations.

O2-T1-1. For each normal critical defense (defined in Section 1.2), MD,φ(s) where

square s blocks the threat, perform the operation of semi-null-move proof

search as follows.

a. Return the value 0, if the recursive VC6-O2(Ps,S) returns 0 where Ps =

P⊕MD,φ(s).

b. Let Ψ(P) = Ψ(P) ∪ (Ψ(Ps)≪1).

c. For each defensive move MD(s,s'), where s'∈Z1(Ps), perform both

operations O2-T2-1.a and O2-T2-1.b.

O2-T1-2. For all relaxed critical defenses MD(s,s'), perform both operations O2-T2-1.a

and O2-T2-1.b.

O2-T1-3. Perform both operations O2-T3-1 and O2-T3-2, and return 1.

 67

Lemma 29. From the above, assume that Defender is to move and Attacker has one threat

in P. Assume that all the recursive VC6-O2 in both operations O2-T1-1 and O2-T1-2 satisfy

Property RZV. Then, the verifier VC6-O2(P,S) satisfies Property RZV too.

Proof. Similar to Lemma 22, therefore omitted. ▌

4.2.1.3.4. No Threats

When Attacker has no threats, it becomes more complicated since Defender has much

more freedom to move. In this case, the verifier makes use of the constructed relevance

zones to minimize the search space in the following operations.

O2-T0-1. Return the value 0 if VC6-O2(Pφ,S) returns 0, where Pφ = P⊕MD,φφ.

O2-T0-2. Let Ψ(P) = Ψ(Pφ)≪2.

O2-T0-3. For each square s in Z1(Pφ), perform the semi-null move proof search, as in

operations O2-T1-1.a to O2-T1-1.c.

O2-T0-4. For each square s in Ż2(Pφ), where Ż2(Pφ) = Z2(Pφ)\Z1(Pφ), perform the

operation which satisfies Property INZ as follows.

a. For each defensive move MD(s,s'), where s'∈Ż2 米(s) and s' ≠ s, perform

both operations O2-T2-1.a and O2-T2-1.b.

O2-T0-5. Return 1.

Lemma 30. Assume that Defender is to move and Attacker has no threats in P. From the

above, assume that all recursive VC6-O2 in operations O2-T0-1, O2-T0-3 and O2-T0-4 satisfy

Property RZV. Then, the verifier VC6-O2(P,S) also satisfies Property RZV.

Proof. Assume that this verifier VC6-O2(P,S) returns 1. For this lemma, it suffices to prove

that the constructed Ψ(P) is in RZ(P). Since VC6-O2(P,S) returns 1, all the recursive VC6-O2 in

operations O2-T0-1, O2-T0-3 and O2-T0-4 must also return 1. Since these recursive VC6-O2,

 68

say for position P', satisfy Property RZV from this lemma, the constructed zones Ψ(P') are

in RZ(P').

To prove Ψ(P)∈RZ(P), it suffices to prove from Lemma 26 the following: For all

Defender moves MD, there exists some ΨD such that ΨD is in RZ(P⊕MD) and ΨD ⊆ Ψ(P).

All Defender moves MD are classified into the following cases:

1. All Defender moves MD(s,s') where s∈¬Pφ(Z2(Pφ)) and s'∈¬Pφ(Z2(Pφ)). From the

first paragraph in this proof, Ψ(Pφ) is in RZ(Pφ). Since s∈¬Pφ(Z2(Pφ)) and

s'∈¬Pφ(Z2(Pφ)), Ψ(Pφ)≪2 is in RZ(Pφ + σD(s) + σD(s')) from Lemma 14. Since Pφ +

σD(s) + σD(s') = P⊕MD(s,s'), Ψ(Pφ)≪2 is also in RZ(P⊕MD(s,s')). In addition,

(Ψ(Pφ)≪2) ⊆ Ψ(P) from operation O2-T0-2. Thus, Ψ(Pφ)≪2 is ΨD.

2. All Defender moves MD(s,s') where s∈Z1(Pφ). By following the proof for Case 1

(including Subcases 1.a and 1.b) in Lemma 22, we obtain that there exists some Ψ in

P⊕MD(s,s') for all s' such that Ψ ⊆ Ψ(P). The details are omitted. ▌

3. All Defender moves MD(s,s') where s∈Ż2(Pφ) and s'∈Ż2(Pφ). This case is separated

into the following two subcases.

a. s'∈Ż2 米(s). Let PD denote P⊕MD(s,s'). The zones Ψ(PD) is constructed in

operation O2-T2-1.b, and is in RZ(PD) according to the first paragraph of this

proof. Since Ψ(PD) is merged into Ψ(P) in O2-T2-1.b, we obtain Ψ(PD) ⊆

Ψ(P). Thus, Ψ(PD) is the ΨD.

b. s'∉Ż2 米(s). From the above and Corollary 4, Attacker wins by replaying. Since

Ψ(PD) ⊆ (Ψ(Pφ)≪2) and (Ψ(Pφ)≪2) ⊆ Ψ(P), Ψ(PD) is the ΨD. ▌

 69

4.2.2 Conclusion for the Verifier VC6-O2

Theorem 4 (below) concludes that the verifier VC6-O2(P,S) in all cases satisfy Property

RZV. Therefore, if VC6-O2(P,S) returns the value 1, the constructed Ψ(P) is in RZ(P), and

Attacker wins in P from Corollary 3.

Theorem 4. The verifier VC6-O2(P,S) satisfies Property RZV in all cases.

Proof. By induction, the verifier VC6-O2(P,S) satisfies Property RZV in all cases from

Lemma 24 to Lemma 30. ▌

Figure 27. An example proof search tree, where Ż2 = Z2\Z1, for the Verifer VC6-O2(P,S).

Figure 27 shows an example proof search tree that gives an overview for the Verifer

VC6-O2(P,S).

 70

Chapter 5 Experiments

In Chapter 3 and Chapter 4, we present verifies VC6(P,S), VC6-O1(P,S) and VC6-O2(P,S) to

verify whether Attacker wins in a Connect6 position P by following strategy S. However, in

order to solve positions, we still need to provide the verifier with winning strategies S.

Winning strategies can be provided in the following three ways.

1. Let human experts offer the winning strategies manually.

2. Let programs find the winning strategies automatically.

3. Find the winning strategies by mixing the above two.

Traditionally, human experts used the first way to claim that some positions are

winning, e.g., Go-Moku and Renju [44]. However, it becomes complicated and tedious for

human players to traverse all positions to prove it thoroughly. Hence, it is more feasible to

solve these positions by programs using the second way. However, programs may not be

smart enough sometimes to find the correct winning moves. Therefore, some researchers

chose the third way by following human experts’ suggestions for some opening moves and

then letting programs solve the subsequent moves. For example, Allis [1][2] solved

Go-Moku in the free style, and Wágner and Virág [53] solved Renju. In Section 5.1, we

developed some assistant programs to help find the winning strategies for Connect6. In

Section 5.2, we illustrate our new proof search method in Chapter 3 by solving the positions

in Figure 7 (a) and Figure 7 (b). Finally, we give more results in Section 5.3.

 71

5.1 Assistant Programs

This section describes our assistant programs.

5.1.1 Solver

Given a position P in Attacker’s turn, a solver is to return a winning move as well as

the relevance zones, if found; and, otherwise, a null move is returned to indicate failure of

finding a winning move. A solver of finding a VCDT strategy, denoted by SVCDT, is

described as follows.

1. If there exist connect-six moves or triple-threat-or-higher moves, simply choose one

of them to win.

2. Evaluate all the double-threat moves and choose some good ones for further

expansion (according to the evaluations).

3. For each chosen move M, return M if VC6(P⊕M, SVCDT) returns 1.

4. Return the null move to indicate failure of finding a winning move.

A solver of finding a VCST (VCNT) is similar to the above, except that single-threat

(non-threat) moves are also evaluated and chosen at Step 2. Actual solvers are implemented

in a more complicated way to reduce the size of search tree and control the timing. For

example, the techniques of iterative deepening and transposition table are normally

incorporated.

In this thesis, we implemented a solver with VCDT, named VCDT-Solver, and another

solver with VCST, named VCST-Solver. More accurately, the VCDT-Solver is to find a

Λ1-strategy, while the VCST-Solver is to find a Λ2-strategy. Our VCST-Solver also tends to

 72

find VCDTs, if any, unless some single-threat moves are evaluated to be much better.

Currently, this solver is able to find a Λ2-strategy up to depth 25 where the size of the

longest path with Λ2-moves is 13. This solver was also incorporated into our Connect6

program NCTU6, which won the gold in the 11th and 13th Computer Olympiads [59][67] in

2006 and 2008, respectively; and also won eight games and lost none against top Connect6

players in Taiwan in 2009 [30]. From our experiences, VCST-Solver is able to find

Λ2-strategies, if any, in most cases accurately.

5.1.2 Verifier

Regarding solvers for Λ3-strategies or strategies of higher orders, the time complexities

become much higher, since the numbers of defensive moves to be verified grow much

higher. Therefore, we did not implement it directly.

First, we implemented a verifier, named NCTU6-Verifier, to verify whether Attacker

wins for all Defender moves. In other words, given a position P in Defender’s turn as shown

in Figure 28 (a) below, the verifier uses VCDT-Solver for null moves and VCST-Solver for

all semi-null moves and non-null moves. If null and semi-null moves are all solved, then

move M (from the parent of P to P) in Figure 28 (a) is an Attacker Λ3-move. If some

non-null moves are not solved by VCST-Solver, these moves are reported or generated. Note

that Defender Λ3-moves must be reported. Since our VCST-Solver can find Λ2-strategies

accurately in most cases, most reported moves are Defender Λ3-moves in our experiments.

 73

(a)

(b)

Figure 28. (a) A proof search tree of NCTU6-Verifier and (b) the verifier of one higher order.

 74

When our Connect6 program NCTU6 mentioned above cannot find Λ2-strategies

(VCSTs), NCTU6 then chooses some promising moves including non-threat moves using

heuristic evaluations. The details of heuristic evaluations are beyond the scope of this thesis

and therefore omitted.

Since NCTU6 may not be able to find winning moves all the time, human experts are

allowed to help find winning moves. (Like [1][2] and [53], knowledge of human experts

were utilized to help solve Go-Moku and Renju, respectively.) Hence, the above programs,

such as NCTU6 and NCTU6-Verifier, were integrated into a Connect6 editor named

Connect6Lib [14], modified from Renlib [42], in order to accommodate hints from human

experts. In the integrated system [57][58], the users (human experts) are allowed to suggest

some Attacker moves directly or let NCTU6 suggest possibly good moves in a designated

position. Then, for suggested moves, users invoke NCTU6-Verifier to verify and report all

the defensive moves (most are Λ3-moves). Then, users repeat the above for the subsequent

moves, until a Λ3-strategy is found.

Second, for Λ4-strategies, the integrated system (on top of the editor Connect6Lib)

needs to maintain a global verifier and modify the search by incrementing the order by one

as shown in Figure 28 (b).

 75

5.1.3 Desktop Grids and Volunteer Computing for Connect6

In this subsection, we discuss our proposed desktop grids and volunteer computing for

Connect6 [57][58]. Grid computing [20] has recently become a promising trend for both

high performance and high throughput computing. Applications include scientific

computing and bioinformatics. Many universities, research institutes, and commercial

companies have been devoted to the development of related technologies and applications

[4][8][19][20][21][26][68]. Among these grid computing models and applications, desktop

grids [4][47] were developed for volunteer computing which aimed to harvest Internet-scale

idle computing resources for speeding up high throughput applications.

In contrast to most current grid computing applications, the applications investigated in

this subsection are related to games, more specifically for Connect6 [65][66]. In the

Connect6 applications described in this subsection, huge computation resources are

consumed and on-demand responses are required. In order to satisfy these requirements, this

subsection proposes and designs a volunteer-computing-based grid environment or called a

desktop grid environment for Connect6 applications. The Connect6 application described in

this subsection is to let professional Connect6 players to develop or solve openings, based

on two programs NCTU6 and NCTU6-Verifier in Subsections 5.1.1 and 5.1.2. The proposed

desktop grid environment is also allowed to be applied to other computation-intensive

applications requiring on-demand responses.

Most current desktop grid systems, such as BOINC [4][8], XtremWeb [19][68], adopt

the pull model. In such systems, one or more centralized databases or global servers

normally keep many jobs (most for scientific or engineering applications) for idle workers

(desktops). The idle workers automatically request (pull) jobs for execution from the

centralized databases or global servers, and in turn may create new jobs and upload to the

 76

databases or the global servers. These available jobs are usually not aborted.

The desktop grid system for Connect6 aims to achieve on-demand computing, since

the jobs for Connect6 applications are highly dynamic and may be created and aborted at

any time. To better cope with the needs of Connect6 applications, our desktop grid

environment features a push model and has a close collaboration between Connect6Lib and

workers in the grid. Our desktop grid environment is expected to harvest idle resources for

free CPU time and use them collectively to meet the real-time response requirement of

interactive Connect6 applications.

Figure 29. Desktop grid architecture.

Unlike many other desktop grid systems that are normally based on databases in the

pull model, Connect6Lib is directly connected to desktops in our current environment as

shown in Figure 29. When Connect6 jobs, NCTU6s and Verifiers, are created, these jobs are

 77

sent to remote desktops to run. All messages generated by these jobs are directly sent back

(pushed back) to Connect6Lib to create more branches. The push model is used, since users

in the application expect to receive responses real time so that they can decide where to

exploit next. For this purpose, the communication between Connect6Lib and workers is

connection-oriented, using TCP.

In the future we plan to extend our current implementation to support different

applications, and support the automation of helping openings or solving positions.

 78

5.1.4 Job-Level Proof-Number Search for Connect6

This subsection describes a new approach for proof number (PN) search, named

job-level proof-number (JL-PN) search [64]. Proof-number (PN) search, proposed by Allis

et al. [1][3], is a kind of best-first search algorithm that was successfully used to prove or

solve theoretical values [22] of game positions for many games

[1][2][3][23][43][45][46][52], such as Connect-Four, Gomoku, Renju, Checkers, Lines of

Action, Go, Shogi. Like most best-first search, PN search has a well-known disadvantage,

the requirement of maintaining the whole search tree in memory. Therefore, many

variations [9][29][35][36][45][54] were proposed to avoid this problem, such as PN2,

DF-PN, PN*, PDS, and parallel PN search [27][43] were also proposed. For example, PN2

used two-level PN search to reduce the size of the maintained search tree.

The JL-PN search, where the PN search tree is maintained by a process, the client in

this subsection, and search tree nodes are evaluated or expanded by heavy-weight jobs,

which can be executed remotely in a parallel system. Heavy-weight jobs take normally tens

of seconds or more (perhaps up to one day).

For simplicity of discussion about proof-number (PN) search, we follow in principle

the definitions and algorithms in [1][3]. PN search is based on an AND/OR search tree

where each node n is associated with proof/disproof numbers, p(n) and d(n), which

represent the minimum numbers of nodes to be expanded to prove/disprove n. The values

p(n)/d(n) are 0/∞ if the node n is proved, and ∞/0 if it is disproved. PN search repeatedly

chooses a leaf called the most-proving node (MPN) to expand, until the root is proved or

disproved. The details of choosing MPN and maintaining the proof/disproof numbers can be

found in [1][3] and therefore is omitted in this subsection. If the selected MPN is proved

(disproved), the proof (disproof) number of the root of the tree is decreased by one.

 79

Our JL-PN search is parallel PN search with the following two features. First,

well-written programs such as NCTU6 and Verifier are used to expand and generate MPNs.

These programs are viewed as jobs, sent to and done by free workers in a desktop grid.

Second, multiple MPNs are allowed to be chosen simultaneously and therefore can be done

by different workers in parallel.

 80

5.2 Illustration of Solving Positions

In this section, we illustrate the proof search method in Chapter 3 by solving the two

positions in Figure 7 (a) and Figure 7 (b). First, consider the one in Figure 7 (a). The

position is solved by simply running NCTU6-Verifier. In the proof search tree shown in

Figure 30 (below), P indicates the position at 7 in Figure 7 (a); P0, the position at 6; P1, the

position after a null move; P2, the position after the semi-null move 8 in Figure 8 (b); and

P21, the position after another semi-null move at 10 in Figure 8 (b). As can be seen, Attacker

wins in a Λ3-strategy.

Figure 30. The proof search tree for the position in Figure 7 (a).

 81

Second, consider the position in Figure 7 (b), which is much more complicated than

the previous one. This position is solved via the integrated system supporting Λ4-trees, as

described in Section 5.1. In the proof search tree shown in Figure 31 (below), P indicates

this position, P1 does the position after a null move, and P2 does the position after a

semi-null move at 7 in Figure 9 (b). Initially, let NCTU6-Verifier of one higher order run in

P. Since VCST-Solver is able to find the winning move for P1, Defender (Black) should

place at least one stone in zone Z2(P1). Consider one square s in Z2(P1), say square 7 in

Figure 9 (b). For the semi-null move at 7, choose move 8 and then use NCTU6-Verifier

(without raising one order) to derive that Attacker wins at 8. Thus, move 8 is a Λ3-move. By

verifying all null and semi-null moves in P, we show that move 6 in Figure 7 (b) is a

Λ4-move (from Definition 1).

Figure 31. The proof search tree for the position in Figure 7 (b).

 82

Furthermore, Attacker is shown to win at 6 in a Λ4-strategy as follows. In our

experiment, Attacker wins for all defensive (non-null) moves by finding Λ3-strategies. For

example, for move 7 in Figure 32 (below), NCTU6-Verifier is recursively employed to find

a Λ3-strategy, where moves 8 to 12 are shown to be Λ3-moves.

In the proof search tree shown in Figure 31, we found three semi-null moves that are

Λ3-moves with value 1 (like P2 which is also 7 in Figure 9 (b)), and 569 Defender Λ3-moves

in total. Move 12 in Figure 32 is the deepest Λ3-move. In this experiment, human experts

helped find 26 winning non-threat moves, including move 6 discovered by Huang [25].

Figure 32. A sequence of Λ3-move starting from 7.

Now, the question is whether there exist more cases requiring Λ4-strategies like the one

in Figure 7 (b). Since the one in Figure 7 (b) is the only one that we found so far, it is still an

open problem to find some more.

 83

5.3 Results

Initially, we had human experts use the integrated system to help us solve about 10

more positions. Wu et al. [64] had recently automated with success the proof process by

developing a new search algorithm, called job-level proof-number (JL-PN) search

(described in Subsection 5.1.4). Using the JL-PN search together with our RZOP search, we

solved many more positions, up to 65 positions in total, with Λ3-strategy, within a couple of

months. The details of the 65 positions are listed in Appendix A. The detail results are listed

in Appendix B and C. All experiments ran on Intel Pentium Dual 2.00 GHz machines and

were performed on 19 × 19 boards that most current Connect6 tournaments use. Besides,

we develop six verifiers as follows.

 VWu: implement the simple proof search method in Wu et al., 2006.

 VC6: implement the RZOP search method.

 VC6-O1: implement the SRZOP search mehod in Section 4.1.

 VC6-O2: implement the SRZOP search mehod in Section 4.2.

Before we discuss the 65 positions, we illustrate the three puzzles, shown in Figure 6,

Figure 7. The purpose of the verifier VC6 is to solve positions, therefore we measure

sovability first. Since the verifiers VC6-O2 and VC6-O1 are developed from VC6, they have same

sovability. Table 1 (below) shows that VC6-O2, VC6-O1 and VC6 solve all three puzzles, while

VWu can only solve the puzzle, Connect(6,2,3), in Figure 6.

 84

Sovability VC6-O2, VC6-O1 and VC6 VWu

Figure 6 yes yes

Figure 7 (a) yes no

Figure 7 (b) yes no

Table 1. The solvability of verifiers for the three puzzles. “yes” means solved and “no”

means unsolved.

Then, we compare the performace to solve puzzles between RZOP and SRZOP

verifiers in number of nodes and time (in seconds).

Number of nodes VC6-O2 VC6-O1 VC6

Figure 6 35,425 43,689 59,895

Figure 7 (a) 573,818 583,541 808,511

Figure 7 (b) 51,898,841 58,227,391 81,636,536

(a)

Speedups VC6-O2 VC6-O1 VC6

Figure 6 1.69 1.37 －

Figure 7 (a) 1.41 1.39 －

Figure 7 (b) 1.57 1.40 －

(b)

Table 2. (a) The statistics of verifiers for the three puzzles in number of nodes. (b) Speedups

compare to VC6.

 85

Time (in seconds) VC6-O2 VC6-O1 VC6

Figure 6 20.92 28.69 36.77

Figure 7 (a) 147.52 158.30 192.91

Figure 7 (b) 17,919.70 23,656.79 30,184.90

(a)

Speedups VC6-O2 VC6-O1 VC6

Figure 6 1.76 1.28 －

Figure 7 (a) 1.31 1.22 －

Figure 7 (b) 1.68 1.28 －

(b)

Table 3. (a) The statistics of verifiers for the three puzzles in time (in seconds). (b)

Speedups compare to VC6.

Table 2 (a) shows the number of nodes used by verifiers to solve the three puzzles.

Table 2 (b) shows speedups comparing to the RZOP search method. Table 3 (a) shows the

time used by verifiers to solve the three puzzles. Table 3 (b) shows speedups comparing to

the RZOP search method. From Table 3, the verifier VC6-O2 achieves 1.76 speedups, an

improvement, to solve Connect(6,2,3) in Figure 6. For the puzzle in Figure 7 (a), the verifier

VC6-O2 achieves 1.31 speedups. For the hardest puzzle currently in Figure 7 (b), the verifier

VC6-O2 can achieve 1.68 speedups.

 86

 (a) (b) (c)

 (d) (e) (f)

Figure 33. Six openings in which Black wins at 3.

Next, we choose 65 winning positions (shown in Appendix A) which include 12

openings and six of them are shown in Figure 33. In particular, the fifth one, Mickey-Mouse

Opening, used to be one of the popular openings before we solved it. Mickey-Mouse

Opening was so named in [50], since White 2 and Black 1 together look like the face of

Mickey Mouse. The sixth one, also called Straight Opening, is another difficult one.

The purpose of the verifier VC6 is to solve positions, therefore we measure sovability

first. Since the verifiers VC6-O2 and VC6-O1 are developed from VC6, they have same sovability.

Table 4 (below) shows that VC6-O2, VC6-O1 and VC6 solve all 65 positions, while VWu only

solves 31 positions.

 87

Sovability Total solved Total unsolved

VWu 31 34

VC6-O2, VC6-O1 and VC6 65 0

Table 4. The solvability of verifiers for 65 winning positions.

Then, we compare the performace to solve 65 positions between RZOP and SRZOP

verifiers in number of nodes and time (in seconds).

Number of nodes VC6-O2 VC6-O1 VC6

65 positions 178,020,119 179,532,383 304,485,291

(a)

Speedups VC6-O2 VC6-O1 VC6

65 positions 1.71 1.70 －

(b)

Table 5. (a) The statistics of verifiers for 65 winning positions in number of nodes. (b)

Speedups compare to VC6.

Time (in seconds) VC6-O2 VC6-O1 VC6

65 positions 26,356.62 27,981.87 38,753.57

(a)

Speedups VC6-O2 VC6-O1 VC6

65 positions 1.47 1.38 －

(b)

Table 6. (a) The statistics of verifiers for 65 winning positions in time (in seconds). (b)

Speedups compare toVC6.

 88

Table 5 (a) shows the number of nodes used by verifiers to solve 65 positions. Table 5

(b) shows speedups comparing to the RZOP search method. Table 6 (a) shows the time used

by verifiers to solve 65 positions. Table 6 (b) shows speedups comparing to the RZOP

search method. From Table 6, the verifier VC6-O2 achieves 1.47 speedups to solve 65

positions (listed in Appendix A). Since some of positions are easy to solve, so we choose the

12 openings to measure the performance again.

Number of nodes VC6-O2 VC6-O1 VC6

12 openings 66,515,413 67,383,224 161,071,884

(a)

Speedups VC6-O2 VC6-O1 VC6

12 openings 2.42 2.39 －

(b)

Table 7. (a) The statistics of verifiers for 12 openings in number of nodes. (b) Speedups

compare to VC6.

Time (in seconds) VC6-O2 VC6-O1 VC6

12 openings 9,035.26 9,815.09 18,472.73

(a)

Speedups VC6-O2 VC6-O1 VC6

12 openings 2.04 1.88 －

(b)

Table 8. (a) The statistics of verifiers for 12 openings in time (in seconds). (b) Speedups

compare to VC6.

 89

Table 7 (a) shows the number of nodes used by verifiers to solve the 12 openings.

Table 7 (b) shows speedups comparing to the RZOP search method. Table 8 (a) shows the

time used by verifiers to solve the 12 openings. Table 8 (b) shows speedups comparing to

the RZOP search method. From Table 8, the verifier VC6-O2 achieves 2.04 speedups to solve

the 12 openings.

From the above experimental results, the performance of verifiers is roughly VC6-O2 ≥

VC6-O1 ≥ VC6. Surprisingly, the verifier VC6-O2 can save more than half time to solve harder

positions like the 12 openings shown in Appendix A as well as the currently hardest puzzle

shown in Figure 7 (b) that is solved by a Λ4-strategy shown in Figure 31. The experimental

results demonstrate a milestone of NCTU6 and NCTU6-verifiers since year 2005 [65][66].

The author is very proud to announce these surprised solvability and performance of the

RZOP search method and SRZOP search methods.

 90

Chapter 6 Conclusions

This thesis proposes a novel, general and elegant proof search method, named

Relevance-Zone-Oriented Proof (RZOP) search that uses relevance zones to help solve

many positions in Connect6 as well as Connect games. In theory, this method can be

applied to Connect games with infinite boards. Practically, this thesis demonstrates the

method by solving two typical winning positions in Figure 7 (a) and Figure 7 (b) on 19 ×

19 boards, as well as many Connect6 positions and openings in Appendix A. In addition, the

method can also be easily incorporated into Connect6 program, such as NCTU6.

This thesis also leaves some open problems.

 Investigate more winning positions in Connect6 that require Λ4-strategies, such as

the one in Figure 7 (b).

 Investigate whether there exists a Λ5-strategy in Connect6.

 Apply the new method (in the Appendix D) to solving some real positions in general

Connect games.

 Investigate whether dual lambda search [48][49] is useful for Connect6 or Connect

games.

Using the JL-PN search together with our RZOP search, we successfully solved up to

65 positions with Λ3-strategy. The 65 positions include 12 openings; in particular,

Mickey-Mouse Opening, which used to be one of the popular openings before we solved it.

One might ask whether or when Connect6 on 19 × 19 boards will be solved. So far, we still

could not solve tens of the common openings, many of which human experts believed were

 91

well balanced for both players. Hence, the answer to this question is still unknown.

In addition, this thesis further improves the RZOP method, named Segmented

Relevance-Zone-Oriented Proof (SRZOP) search that speeds up the time to solve Connect6

positions. The experimental results in Chapter 5 archive 2.04 speedups to solve the 12

openings. This thesis also demonstrates records of our Connect6 program NCTU6 in

Appendix F, which won the gold in the 11th and 13th Computer Olympiads in 2006 and 2008,

respectively; and also won eight games and lost none against top Connect6 players in

Taiwan in 2009. Finally, this thesis applies the RZOP method and SRZOP method into

NCTU6 and NCTU6-verifiers which are used in the two systems (described in Subsection

5.1.3 and 5.1.4): (a) desktop grid system (b) JL-PN system. These two systems help us solve

many Connect6 openings automatically. The author is very proud to announce this thesis

because it is a milestone of NCTU6 and NCTU6-verifiers since year 2005 [65][66].

 92

References

[1] L.V. Allis, Searching for solutions in games and artificial intelligence, Ph.D. Thesis,

University of Limburg, Maastricht, The Netherlands, 1994.

[2] L.V. Allis, H.J. van den Herik and M.P.H. Huntjens, “Go-Moku Solved by New Search

Techniques,” Computational Intelligence, vol. 12, pp. 7–23, 1996.

[3] L.V. Allis, M. van der Meulen and H.J. van den Herik, “Proof-number Search,” Artificial

Intelligence, vol. 66 (1), pp. 91–124, 1994.

[4] D.P. Anderson, “Boinc: A System for Public-resource Computing and Storage,”

Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing

(GRID'04), IEEE CS Press, Pittsburgh, USA, pp. 4-10, 2004.

[5] J. Beck, “On Positional Games,” Combinatorial Theory Series A 30, pp. 117–133, 1981.

[6] C. Berge, Graphs and Hypergraphs, North Holland, Amsterdam, 1973.

[7] E.R. Berlekamp, J.H. Conway and R.K. Guy, Winning Ways for your Mathematical Plays,

vol. 3, 2nd ed., A K Peters. Ltd. Canada, 2003.

[8] BOINC, Available: http://boinc.berkeley.edu/.

[9] D.M. Breuker, J. Uiterwijk and H. J. van den Herik, “The PN2-search Algorithm,” in H. J.

van den Herik, B. Monien (Eds.), Advances in Computer Games, vol. 9, IKAT,

Universiteit Maastricht, Maastricht, The Netherlands, pp. 115–132, 2001.

[10] A. de Bruin, W. Pijls and A. Plaat, “Solution Trees as a Basis for Game-Tree Search,”

ICCA Journal, vol 17(4), pp. 207–219, December 1994.

[11] T. Cazenave, “Abstract Proof Search,” Computers and Games (eds. T. A. Marsland and I.

Frank), Lecture Notes in Computer Science, vol. 2063, pp. 39–54, 2001.

[12] T. Cazenave, “A Generalized Threats Search Algorithm,” Computers and Games, Lecture

Notes in Computer Science, vol. 2883, pp. 75–87, 2003.

[13] G.M. Chaslot, M.H.M. Winands and H.J. van den Herik, “Parallel Monte-Carlo Tree

Search,” International Conference on Computers and Games (CG2008), Beijing, China,

2008.

 93

[14] C.-P. Chen, I.-C. Wu and Y.-C. Chan, “ConnectLib – A Connect6 Editor,” Available:

http://www.connect6.org/Connect6Lib_Manual.htm, 2009.

[15] S.-H. Chiang, I.-C. Wu and P.-H. Lin, “On Draw K-in-a-row Games,” Advances in

Computer Games Conference (ACG2009), vol. 6048, pp. 158–169, 2010.

[16] Chinese Association for Artificial Intelligence, Chinese Computer Games Contest (in

Chinese), Available: http://www.caai.cn/.

[17] L. Csirmaz, “On a Combinatorial Game with An Application to Go-moku,” Discrete Math.

29, pp. 19–23, 1980.

[18] R. Diestel, Graph Theory, Springer, New York, 2nd edition, 2000.

[19] G. Fedak, C. Germain, V. Neri and F. Cappello, “Xtremweb: A Generic Global Computing

System,” Proceedings of the 1st IEEE/ACM International Symposium on Cluster

Computing and the Grid (CCGRID2001): Workshop on Global Computing on Personal

Devices, IEEE CS Press, Brisbane, Australia, pp. 582–587, 2001.

[20] I. Foster, C. Kesselman, The Grid: Blueprint for a New Computing Infrastructure,

Morgan Kaufmann Publishers, Inc., 1999.

[21] The globus project, Available: http://www.globus.org/.

[22] H.J. van den Herik, J.W.H.M. Uiterwijk and J.V. Rijswijck, “Games solved: Now and in

the future,” Artificial Intelligence, vol. 134 (1-2), pp. 277–311, 2002.

[23] H.J. van den Herik and M.H.M. Winands, “Proof-Number Search and its Variants,”

Oppositional Concepts in Computational Intelligence, pp. 91-118, 2008.

[24] M.-Y. Hsieh and S.-C. Tsai, “On the Fairness and Complexity of Generalized K-in-a-row

Games,” Theoretical Computer Science, vol. 385, pp. 88–100, 2007.

[25] Yu-Chun Huang, private communication, 2008.

[26] B. Jacob, L. Ferreira, N. Bieberstein, C. Gilzean, J.Y. Girard, R. Strachowski and S.S. Yu,

Enabling Applications for Gird Computing with Globus, IBM Redbooks, 2003.

[27] A. Kishimoto and Y. Kotani, “Parallel AND/OR Tree Search Based on Proof and Disproof

Numbers,” Fifth Games Programming Workshop, vol. 99(14) of IPSJ Symposium Series,

pp. 24–30, 1999.

[28] A. Kishimoto and M. Müller, “A general solution to the graph history interaction

problem,” Nineteenth National Conference on Artificial Intelligence (AAAI2004), pp.

 94

644–649, San Jose, CA, 2004.

[29] A. Kishimoto and M. Müller, “Search versus Knowledge for Solving Life and Death

Problems in Go,” Twentieth National Conference on Artificial Intelligence (AAAI2005),

pp. 1374–1379, 2005.

[30] P.-H. Lin and I.-C. Wu, “NCTU6 Wins Man-Machine Connect6 Championship 2009,”

ICGA Journal, vol. 32(4), pp. 230–232, 2009.

[31] P.-H. Lin and I.-C. Wu, “Segmented Relevance-Zone-Oriented Proof Search for

Connect6,” in preparation, 2010.

[32] T.W. Lee, One of Early Tsumegos for Connect6, Available:

http://www.connect6.org/web/index.php?option=com_tsumego&task=loadTsumegoHistor

yList&class_id=32, 2005.

[33] Littlegolem, Online Connect6 games, Available: http://www.littlegolem.net/, 2006.

[34] V. Manohararajah, Parallel Alpha-beta Search on Shared Memory Multiprocessors,

Master’s thesis, Graduate Department of Electrical and Computer Engineering, University

of Toronto, Canada, 2001.

[35] A. Nagai, Df-pn Algorithm for Searching AND/OR Trees and Its Applications, Ph.D.

thesis, University of Tokyo, Japan, 2002.

[36] J. Pawlewicz and L. Lew, “Improving Depth-first pn-search: 1+ε Trick,” In H. J. van den

Herik, P. Ciancarini, and H.H.L.M. Donkers, editors, Fifth International Conference on

Computers and Games, vol. 4630 of LNCS, pp. 160–170, Computers and Games,

Springer, Heidelberg, 2006.

[37] W. Pijls and A. de Bruin, “Game Tree Algorithms and Solution Trees,” Computers and

Games, Lecture Notes in Computer Science, vol. 1558, pp. 195–204, 1999.

[38] A. Pluhar, “The Accelerated K-in-a-row Game,” Theoretical Computer Science, vol.

270(1-2), pp. 865–875, 2002.

[39] V. N. Rao and V. Kumar, “Superlinear Speedup in State-space Search,” Proceedings of the

1988 Foundation of Software Technology and Theoretical Computer Science, no. 338 of

LNCS, pp. 161–174, Springer-Verlag, 1988.

[40] Red-bean.com, SGF File Format, Available: http://www.red-bean.com/sgf/.

[41] Renju International Federation, The International Rules of Renju, Available:

 95

http://www.renju.net/study/rifrules.php, 1998.

[42] Renlib, Renju – A Ranju Editor, Available: http://www.renju.se/renlib/.

[43] J.T. Saito, M.H.M. Winands and H.J. van den Herik, “Randomized Parallel Proof-Number

Search,” Advances in Computer Games Conference (ACG2009), Lecture Notes in

Computer Science (LNCS 6048), pp. 75–87, Palacio del Condestable, Pamplona, Spain,

2009.

[44] G. Sakata and W. Ikawa, Five-In-A-Row, Renju. The Ishi Press, Inc., Tokyo, Japan, 1981.

[45] J. Schaeffer, N. Burch, Y.N. Björnsson, A. Kishimoto, M. Müller, R. Lake, P. Lu and S.

Sutphen, “Checkers is Solved,” Science, vol. 5844(317), pp. 1518–1552, 2007.

[46] M. Seo, H. Iida and J. Uiterwijk, “The PN*-search algorithm: Application to

Tsumeshogi,” Artificial Intelligence, vol. 129(1-2), pp. 253–277, 2001.

[47] SETI@home, Available: http://setiathome.ssl.berkeley.edu.

[48] S. Soeda, T. Kaneko and T. Tanaka, “Dual Lambda Search and its Application to Shogi

Endgames,” Advances in Computer Games Conference (ACG2005), Taipei, Taiwan, 2005.

[49] S. Soeda, T. Kaneko and T. Tanaka, “Dual Lambda Search and Shogi Endgames,”

Advances in Computer Games Conference (ACG'11), Lecture Notes in Computer Science,

vol. 4250, pp. 126–139, 2006.

[50] Taiwan Connect6 Association, Connect6 homepage, Available: http://www.connect6.org/.

[51] ThinkNewIdea Inc, CYC game (in Chinese), Available: http://cycgame.com/, 2005.

[52] T. Thomsen, “Lambda-Search in Game Trees - With Application to Go,” ICGA Journal,

vol. 23(4), pp. 203–217, 2000.

[53] J. Wagner and I. Virag, “Solving Renju,” ICGA Journal, vol. 24(1), pp. 30–34, 2001.

[54] M.H.M. Winands, J.W.H.M. Uiterwijk and H.J. van den Herik, “PDS-PN: A new

proof-number search algorithm: Application to Lines of Action,” In J. Schaeffer, M.

Müller, and Y. Björnson, editors, Computers and Games 2002, vol. 2883 of LNCS, pp.

170–185. Computers and Games, Springer, Heidelberg, 2003.

[55] I.-C. Wu, Proposal for a New Computer Olympiad Game – Connect6, Available:

http://ticc.uvt.nl/icga/news/Olympiad/Olympiad2006/connect6.pdf, or

http://www.connect6.org/articles/RZOP/connect6.pdf, 2005.

 96

[56] I.-C. Wu, B.-H. Lin, L.-B. Chen, J.-Y. Su and P.-C. Hsu, “HybridDiff: An Algorithm for A

New Tree Editing Distance Problem,” International Computer Symposium (ICS2006),

Taipei, Taiwan, 2006.

[57] I.-C. Wu, C.-P. Chen, P.-H. Lin, K.-C. Huang, L.-P. Chen, D.-J. Sun, Y.-C. Chan and H.-Y.

Tsou, “A Volunteer-Computing-Based Grid Environment for Connect6 Applications,”

IEEE International Conference on Computational Science and Engineering (CSE2009),

vol. 1, pp. 110–117, 2009.

[58] I.-C. Wu, C.-P. Chen, P.-H. Lin, G.-Z. Huang, L.-P. Chen, D.-J. Sun and H.-Y. Tsou, “A

Desktop Grid Computing Service for Connect6 Applications,” International Symposium

on Grid Computing (ISGC2009), Taipei, Taiwan, 2009.

[59] I.-C. Wu and P.-H. Lin, “NCTU6-Lite Wins Connect6 Tournament,” ICGA Journal, vol.

31(4), pp. 240–243, 2008.

[60] I.-C. Wu and P.-H. Lin, “Relevance-Zone-Oriented Proof Search for Connect6,” IEEE

Transaction on Computational Intelligence and AI in Games, vol. 2(3), September 2010.

[61] I.-C. Wu and P.-H. Lin, Benchmark for RZOP search, Available:

http://www.connect6.org/articles/RZOP/.

[62] I.-C. Wu and P.-H. Lin, Benchmark for SRZOP search, Available:

http://www.connect6.org/articles/SRZOP/.

[63] I-C. Wu and P.-H. Lin, Search tree for drawn Connect(11,2), Available:

http://www.connect6.org/articles/drawn-connect-games/.

[64] I.-C. Wu, H.-H. Lin, P.-H. Lin, D.-J. Sun, Y.-C. Chan and B.-T. Chen, “Job-Level

Proof-Number Search for Connect6,” International Conference on Computers and Games

(CG2010), Kanazawa, Japan, 2010.

[65] I.-C. Wu, D.-Y. Huang and H.-C. Chang, “Connect6,” ICGA Journal, vol. 28(4), pp.

234–242, 2006.

[66] I.-C. Wu and D.-Y. Huang, “A New Family of K-in-a-row Games,” Advances in

Computer Games Conference (ACG2005), Taipei, Taiwan, 2005.

[67] I.-C. Wu and S.-J. Yen, “NCTU6 Wins Connect6 Tournament,” ICGA Journal, vol. 29(3),

pp. 157–158, September 2006.

[68] XtremWeb, Available: http://www.xtremweb.net/.

 97

[69] T. G. L. Zetters, “8(or more) In a Row,” American Mathematical Monthly 87, pp. 575–576,

1980.

 98

Appendix A Sample Positions

Figure 34. 65 winning positions.

01 02

03 04

 99

05 06

07 08

 100

09 10

11 12

 101

13 14

15 16

 102

17 18

19 20

 103

21 22

23 24

 104

25 26

27 28

 105

29 30

31 32

 106

33 34

35 36

 107

37 38

39 40

 108

41 42

43 44

 109

45 46

47 48

 110

49 50

51 52

 111

53 54

55 56

 112

57 58

59 60

 113

61 62

63 64

 114

65

 115

Appendix B Results of RZOP Benchmark

Table 9. The solvability of verifiers for 65 winning positions in Appendix A, where “yes”

means solved and “no” means unsolved.

Positions
Solvability

VC6-O2, VC6-O1 and VC6 VWu

01 yes yes

02 yes no

03 yes no

04 yes no

05 yes no

06 yes no

07 yes no

08 yes no

09 yes no

10 yes no

11 yes yes

12 yes no

13 yes no

14 yes yes

15 yes yes

16 yes yes

17 yes yes

 116

18 yes yes

19 yes yes

20 yes yes

21 yes yes

22 yes yes

23 yes yes

24 yes yes

25 yes yes

26 yes no

27 yes no

28 yes no

29 yes no

30 yes no

31 yes no

32 yes no

33 yes no

34 yes no

35 yes yes

36 yes yes

37 yes no

38 yes no

39 yes no

40 yes yes

41 yes yes

 117

42 yes no

43 yes no

44 yes no

45 yes no

46 yes no

47 yes yes

48 yes no

49 yes no

50 yes yes

51 yes no

52 yes yes

53 yes yes

54 yes yes

55 yes yes

56 yes no

57 yes yes

58 yes yes

59 yes yes

60 yes yes

61 yes yes

62 yes no

63 yes yes

64 yes no

65 yes yes

 118

Total solved 65 31

Total unsolved 0 34

 119

Appendix C Results of SRZOP Benchmark

Table 10. The statistics of verifiers for 65 winning positions in Appendix A: (a) number of

nodes and (b) times.

(a)

Number of nodes VC6-O2 VC6-O1 VC6

01 530077 571795 565926

02 3523754 3590585 5527224

03 786302 845114 1575020

04 1079619 1116986 1331077

05 6174061 6167216 7317401

06 1661531 2240151 2752565

07 23908274 24134145 35585383

08 20639430 20700223 96128237

09 2548691 2581346 3387769

10 1834412 1460326 1710532

11 1146025 1247001 994735

12 2683237 2728336 4196015

13 28526645 28686442 40210832

14 74803 87805 94972

15 17450 22272 29299

16 16368 16368 16547

17 10718 10718 10778

 120

18 67852 69610 71727

19 84402 92292 90870

20 10145 10145 10708

21 22344 25320 27540

22 135089 135089 135277

23 35420 36960 37823

24 704489 704589 705905

25 37603 39307 46686

26 2119172 2120955 2813168

27 109546 109632 110342

28 408452 420402 426156

29 137182 141895 142339

30 126007 134785 137648

31 551373 552034 902124

32 642143 651712 665022

33 59855 60111 62018

34 181191 149634 172601

35 2105266 2111350 3377070

36 2761 2761 2824

37 9030296 9030296 10674017

38 765141 765705 768514

39 12363329 12492105 18321351

40 731486 731584 732403

41 393962 394038 394528

 121

42 4045655 4046601 5511607

43 56696 56944 57784

44 7660096 7682555 11245412

45 860379 940666 1047951

46 209423 209987 211208

47 22278 22298 22459

48 706779 715971 660724

49 7816945 7819769 6893666

50 5041761 5041761 5042228

51 2054406 2066930 2851817

52 254617 296116 353003

53 898630 899734 954147

54 925359 940417 939580

55 5266143 5276358 5962500

56 297172 300223 456519

57 239318 246013 247606

58 1077354 1093460 1117277

59 1455834 1518244 1512576

60 1292694 1307825 1321979

61 779609 835836 832882

62 256408 257724 261066

63 1336806 1286361 1436594

64 8740 9380 9372

65 9471114 9472070 13272361

 122

Total 178020119 179532383 304485291

(b)

Time (in seconds) VC6-O2 VC6-O1 VC6

01 202.29 255.17 233.15

02 638.47 700.26 824.64

03 182.85 245.59 290.27

04 212.47 245.73 266.15

05 719.22 794.18 750.77

06 700.42 843.82 915.39

07 2309.55 2437.09 3051.79

08 2325.26 2407.76 9998.87

09 413.40 461.54 531.23

10 649.50 592.64 683.68

11 286.61 379.38 382.67

12 395.24 451.95 544.13

13 4121.33 4387.67 5082.57

14 47.79 66.59 66.35

15 7.59 12.41 14.16

16 6.17 6.17 6.28

17 1.91 1.91 1.89

18 10.28 11.23 12.94

19 15.69 25.77 24.55

20 2.91 2.91 3.20

21 14.72 18.25 19.48

 123

22 16.27 16.25 16.34

23 9.27 11.13 11.89

24 78.48 78.24 80.33

25 11.13 13.25 16.66

26 211.06 212.94 240.45

27 44.89 44.67 45.11

28 150.06 189.81 188.37

29 56.56 64.16 64.70

30 113.45 141.08 134.59

31 61.31 62.34 76.09

32 167.33 177.30 191.63

33 15.56 15.80 16.61

34 101.03 84.44 90.84

35 194.44 200.88 264.47

36 1.05 1.05 1.05

37 739.55 738.89 810.45

38 116.78 117.47 117.50

39 1034.14 1048.08 1286.75

40 84.20 84.23 84.42

41 26.28 26.36 26.69

42 329.26 328.83 394.71

43 15.70 16.31 17.44

44 1219.40 1269.82 1648.19

45 608.90 855.99 831.91

 124

46 84.09 85.14 86.02

47 6.47 6.48 6.61

48 202.47 215.02 204.85

49 1974.56 1981.13 1776.99

50 537.95 537.72 534.55

51 489.94 516.23 594.78

52 136.75 182.25 231.73

53 249.05 249.22 262.16

54 112.28 112.85 124.41

55 1153.77 1169.50 1353.61

56 46.30 46.88 58.14

57 65.14 66.37 66.03

58 304.24 305.89 314.13

59 600.23 600.51 625.50

60 362.66 373.33 430.28

61 341.85 381.89 481.20

62 166.36 165.78 185.66

63 160.17 146.62 160.78

64 27.78 27.77 27.91

65 664.81 664.02 866.92

Total 26356.62 27981.87 38753.57

 125

Appendix D Verifiers for General Connect Games

In this Appendix, the verifier VC6(P,S) is generalized to general Connect games,

Connect(m,n,k,p,q), while maintaining Property RZV.

The generalized verifier is denoted by VCK(P,S). In the case that P is an endgame

position or is in Attacker’s turn (described in Subsections 3.2.1 and 3.2.2 respectively), the

verifier VCK(P,S) is the same as VC6(P,S). So, the rest of this appendix describes the verifier

only in the case that P is in Defender’s turn. Furthermore, the position P (in Defender’s turn)

can be classified into the following two. (1) The number of Attacker threats t in P is at least

p + 1, and (2) the number t is at most p. In the first case, Attacker wins already. Therefore,

the verifier returns 1 and construct relevance zones in the following operation.

Tp1-1. Construct relevance zones by following both operations T3-1 and T3-2, except that

the terms “i + 2” are replaced by “i + p”.

Similar to Lemma 7, Lemma 31 shows that the verifier also satisfies Property RZV in

this case.

Lemma 31. Assume that Defender is to move and the number of Attacker threats is at least

p + 1 in P. The verifier described above satisfies Property RZV.

Proof. The proof is similar to that of Lemma 7 and therefore omitted. ▌

 126

In the second case that the number of Attacker threats t is at most p, the verifier

performs the following operations.

Tp-1. For each of critical defenses MD (both normal and relaxed), perform the following.

a. Return 0 if the sub-verifier Vsub(MD,P,S) returns 0. Note that the sub-verifier

is described below.

b. Let Ψ(P) = Ψ(P) ∪ Ψ'(PD).

Tp-2. Continue to construct relevance zones in operation Tp1-1, and return 1.

In operation Tp-1.a, a sub-verifier Vsub(MD,P,S) is used to verify whether Attacker wins

for all Defender moves M'D dominated by MD in P, where M'D has p squares (but MD may

have less than p squares). By dominate, we mean that all squares in MD must also be in M'D,

but may not vice versa. For the sub-verifier Vsub(MD,P,S), the constructed zones is denoted

by Ψ'(PD) = <Z'1(PD), Z'2(PD), …, Z'r(PD)>, where PD = P⊕MD. In addition, the sub-verifier

satisfies the following property (proved in Lemma 32).

Property RZS. If Vsub(MD,P,S) returns 1, the following condition holds. For all Defender

moves M'D dominated by MD, there exists some Ψ'D such that Ψ'D ⊆ Ψ'(PD) and Ψ'D is in

RZ(P⊕M'D).

The sub-verifier Vsub(MD,P,S) performs the following operations.

Par-1. Assume that MD has exactly p – u Defender stones, where u is the number of null

stones in MD and 0 ≤ u ≤ p. In the case that u > 0, move MD is a null or semi-null

move.

Par-2. Return 0 if VCK(PD,S) returns 0, where PD = P⊕MD.

Par-3. Let Ψ'(PD) = Ψ(PD)≪u.

Par-4. Return 1 if u = 0, i.e., the move is not a null or semi-null move.

 127

Par-5. For each of unoccupied square s∈¬PD(Zu(PD)), perform the following.

a. Let Defender move MD,s be MD + σD(s).

b. Return 0 if Vsub(MD,s,P,S) returns 0.

c. Let Ψ'(PD) = Ψ'(PD) ∪ Ψ'(PD,s), where PD,s = P⊕MD,s.

Par-6. Return 1.

Lemma 32 shows that the sub-verifier satisfies Property RZS, if all the recursive Vsub in

Par-5.b satisfy Property RZS and the verifier VCK in Par-2 satisfies Property RZV.

Lemma 32. For a sub-verifier Vsub(MD,P,S) as described above, it satisfies Property RZS by

assuming that all the recursive Vsub in Par-5.b satisfy Property RZS and that the verifier VCK

in Par-2 satisfies Property RZV.

Proof. Assume that Vsub(MD,P,S) returns 1. Consider all Defender moves M'D (including p

stones) that are dominated by MD. Namely, let M'D = MD + σD(ϕ), where ϕ has u additional

unoccupied squares. For this lemma, it suffices to prove that there exists some Ψ'D such that

Ψ'D ⊆ Ψ'(PD) and Ψ'D is in RZ(P⊕M'D). All of these Defender moves M'D are classified into

the following cases.

1. All Defender moves M'D in which all additional squares s in ϕ are in ¬PD(Zu(PD)).

The proof for this case is similar to that for Case 1 in Lemma 10 as follows. Since

this sub-verifier returns 1, the verifier VCK(PD,S) in Par-2 returns 1. Since the verifier

VCK returns 1 and also satisfies Property RZV (from this lemma), Ψ(PD) is in RZ(PD).

Since all additional s∈¬PD(Zu(PD)), we obtain from Lemma 3 that Ψ(PD)≪u is in

RZ(PD + σD(ϕ)). Since PD + σD(ϕ) = (P⊕MD) + σD(ϕ) = P⊕(MD + σD(ϕ)) =

P⊕M'D, Ψ(PD)≪u is also in RZ(P⊕M'D). In addition, since Ψ(PD)≪u ⊆ Ψ'(PD) from

Par-3 in Vsub, Ψ(PD)≪u is the Ψ'D.

2. All Defender moves M'D where some additional square s in ϕ is in Zu(PD). Since this

 128

sub-verifier returns 1, the recursive Vsub(MD,s,P,S) at Par-5.b returns 1 too and

therefore satisfies Property RZS. From Property RZS, there exists some Ψ such that

Ψ ⊆ Ψ'(PD,s) and Ψ is in RZ(P⊕M'D). Since Ψ'(PD,s) ⊆ Ψ'(PD) from operation

Par-5.c, we obtain Ψ ⊆ Ψ'(PD). Thus, Ψ is the Ψ'D. ▌

From Lemma 32, we derive Lemma 33 as follows.

Lemma 33. Assume that Defender is to move and the number of Attacker threats is at most

p in P. The verifier described above satisfies Property RZV by assuming that all the

recursive sub-verifiers in operation Tp-1.a satisfy Property RZS.

Proof. Assume that this verifier returns 1. For this lemma, it suffices to prove that the

constructed Ψ(P) is in RZ(P). Since the verifier returns 1, all the recursive sub-verifiers in

operation Tp-1.a returns 1 too. Assume that these sub-verifiers satisfy Property RZS. For

proving Ψ(P)∈RZ(P), it suffices to prove from Lemma 6 the following: For all Defender

moves MD there exists some ΨD such that ΨD is in RZ(P⊕MD) and ΨD ⊆ Ψ(P). All

Defender moves MD are classified into the following two cases:

1. All Defender moves MD that block all the threats. There must exist some critical

defense M'D (either normal or relaxed) dominating MD. Since Vsub(M'D,P,S) returns 1

and satisfies Property RZS from above, there exists some ΨD from the property such

that ΨD ⊆ Ψ'(P⊕M'D) and ΨD is in RZ(P⊕M'D).

2. All Defender moves MD that leave some threat unblocked. Attacker wins by

connecting up to p on some unblocked threat segment, like S3T. From the proof in

Lemma 31, we obtain that there exists some ΨD such that ΨD ⊆ Ψ'(P) and ΨD is in

RZ(PD). ▌

 129

Theorem 5 (below) concludes that the verifier VCK(P,S) in all cases satisfy Property

RZV. Therefore, if VCK(P,S) returns 1, the constructed Ψ(P) is in RZ(P), and Attacker wins

in P from Corollary 2. It can also be observed that the operations in Subsection 3.2.3 are

special cases of the operations described in this appendix.

Theorem 5. The verifier VCK(P,S) satisfies Property RZV in all cases.

Proof. By induction, the verifier VCK(P,S) satisfies Property RZV in all cases from the

above lemmas. ▌

 130

Appendix E Draw K-in-a-row Games

In the past, many researchers were engaged in solving Connect(m, n, k, p, q) games.

One player, either Black or White, is said to win a game, if he has a winning strategy such

that he wins for all the subsequent moves. Allis et al. [1][2] solved Go-Moku with Black

winning. Herik et al. [22] and Wu et al. [65][66] also mentioned several k-in-a-row games

with Black winning.

A game is said to be drawn if neither player has any winning strategy. For simplicity,

Connect(k, p) refers to the collection of Connect(m, n, k, p, q) games for all m ≥ 1, n ≥ 1, 0 ≤

q ≤ p. Connect(k, p) is said to be drawn if all Connect(m, n, k, p, q) games in Connect(k, p)

are drawn.

In the past, Zetters [69] derived that Connect(8, 1) is drawn. Pluhar [38] derived tight

bounds kdraw(p) = p+Ω(log2p) for all p ≥ 1000 (cf. Theorem 1 in [38]). However, the

requirement of p ≥ 1000 is unrealistic in real games. Thus, it is important to obtain tight

bounds when p < 1000. Hsieh and Tsai [24] have recently derived that kdraw(p) = 4p+7 for

all positive p. The ratio R = kdraw(p)/p is approximately 4 for sufficiently large p.

Given p, Chiang et al. [15] derive the value kdraw(p), such that Connect(m, n, k, p, q)

are drawn for all k ≥ kdraw(p), m ≥ 1, n ≥ 1, 0 ≤ q ≤ p, as follows. (1) kdraw(p) = 11. (2) For all

p ≥ 3, kdraw(p) = 3p+3d–1, where d is a logarithmic function of p. So, the ratio kdraw(p)/p is

approximately 3 for sufficiently large p. The first result was derived with the help of a

program. To our knowledge, our kdraw(p) values are currently the smallest for all 2 ≤ p <

1000.

 131

Appendix F Author’s Records

The game Connect6 was first introduced by Wu and Huang (2005) and then described

in more detail by Wu, Huang and Chang (2006). The rules of Connect6 are very simple.

Two players, henceforth represented as B (designated as the first player) and W, alternately

place two stones, black and white respectively, on one empty intersection of an 19×19 board,

except for that B places one stone initially. The player who first obtains six consecutive

stones (horizontally, vertically or diagonally) wins the game. When all intersections on the

board are occupied without connecting six, the game draws.

Starting from 2007, Lin became the chief designer of the Connect6 program NCTU6.

Though, NCTU6 won the Gold Prize of the Connect6 Tournament in the 11th Computer

Olympiad (2006), there were many unsolved positions and openings. Thus, Lin solved

many unsolved VCST positions in the beginning and help developed some simple openings.

With the improved strength of NCTU6, Lin developed a light weight version with accurate

time control program named NCTU6-LITE, which won the Gold Prize of the Connect6

Tournament in the 13th Computer Olympiad (2008). The participants and the final standings

are listed in Table 11 (below).

In the tournament, the games were played according to a round-robin system in which

one program played twice against all the other programs. In each game, every program had

to complete all of its moves in 30 minutes. For each game, the winner scored 1 point and the

loser scored nothing. However, for a draw game, both scored 0.5. Figure 35 and Figure 36

(below) show some events in the 13th Computer Olympiad. The certificate of the 13th

Computer Olympiad by NCTU is shown in Figure 37 (below).

 132

Ranking Program Author Organization Points

1 NCTU6-LITE

Ping-Hung Lin,

Hong-Xuan Lin,

Yi-Chih Chan,

Ching-Ping Chen and

I-Chen Wu

National Chiao Tung

University, Taiwan.

17

2 BITSTRONGER

Liang Li, Hao Cui,

Ruijian Wang and Siran

Lin

Beijing Institute of

Technology, China 16

3 NEUCONN6
Chang-Ming Xu Northeastern

University, China
13

4

BEAD

CONNECT AND

CHESS

COMBINE

(BCCC)

XiaoChuan Zhang Chongqing Institute of

Technology, China

9

5 KAVALAN
Jung-Kuei Yang and

Shi-Jim Yen

National Dong Hwa

University, Taiwan
8

6 NEU6STAR

Xinhe Xu, Dongxu

Huang, Junjie Tao,

Kang Han, XinXing Li

Northeastern

University, China 8

7 ML

Jiang Ke Guilin University of

Electronic Technology,

China

6.5

 133

8 CV6

Yao Yuping Guilin University of

Electronic Technology,

China

5.5

9 DREAM 6
Siwei Liu and Zhenhua

Huang

Dalian Jiaotong

University, China
4

10 NTNU C6

Shih-Chieh Huang and

Yun-Ching Liu

National Taiwan

Normal University,

Taiwan

3

Table 11. The participants and the final standings of the Connect6 Tournament in the 13th

Computer Olympiad (2008).

Figure 35. P. H. Lin, I-C. Wu and H.J. van den Herik.

 134

Figure 36. L. Lee (BITSTRONGER) and P. H. Lin (NCTU6-LITE).

Figure 37. The certificate of the 13th Computer Olympiad by NCTU.

 135

In Taiwan, National Chiao Tung University hosts the annual NCTU Cup Open

Tournaments for Connect6 human players. We saw more and more players played Connect6

every year. Before the second annual NCTU Cup Open Tournament 2008 took place, Wu

invited Go Champion Chou Jun Xun to play Connect6 against the AI program NCTU6 for

the advertisement. In this championship, NCTU6 won 3 and lost nothing against Chou.

Figure 38 shows an event in the championship.

Figure 38. Go Champion Chou Jun Xun, the operating staff and P. H. Lin.

After annual NCTU Cup Open Tournaments, yearly top human players of Connect6

will appear. To survey the strength of NCTU6, Wu will invite three to four top players to

play against NCTU6. Figure 39 and Figure 40 (below) show events of the first and the

second Man-Machine Connect6 Championships.

 136

Figure 39. Professor Shun-Chin Hsu (right most) and members of the Connect6 team lead

by I-C. Wu.

Figure 40. Human players, I-C. Wu (center) and P. H. Lin (left most).

 137

In Figure 39, Professor Shun-Chin Hsu is respected as the father of Computer Chinese

Chess. He has received many awards and published many important papers. In the first

annual Man-Machine Connect6 Contest, we are very happy to invite Professor Hus to host

the contest. In the contest, NCTU6 won 11 and lost one against top human players. It is a

good record. Next year, in the second annual Man-Machine Connect6 Contest, NCTU6 won

8 and lost nothing which is a memorable record.

From these records, Lin proved the strength of NCTU6. He will continue to develop

NCTU6 and keep NCTU6 the top AI program of Connect6 in the world.

 138

Vita

Ping-Hung Lin was born in Hualien, Taiwan in 1978. He received the B.S.,

M.S. and Ph.D. degree in Computer Science and Information Engineering

from National Chiao Tung University, Hsinchu, Taiwan, in 2000, 2002 and

2010, respectively. He is the current chief designer of the Connect6 program

NCTU6 that won the gold twice in Computer Olympiad in both 2006 and 2008.

His research interests include artificial intelligence and grid and cloud

computing.

