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摘 要

在不久的將來，可以預期越來越多的機器人工作環境會從工廠移至家庭環境，如

果機器人在面對各種家庭任務時均需有對應的程式是不切實際的。 因此，有學者

提出讓機器人從示範中學習的概念，可以減少使用者分析與程式的負擔。 然而許

多遵循這概念的方法卻需要限制使用者動作或任務計畫進而得以推論使用者的意

圖。 為了避免這些限制，我們提出一個新的方法讓機器人能從工具操作任務執行

的軌跡中推論出示範者的意圖。 在家庭環境中，工具操作任務是常見的任務，但

是分析示範者的意圖卻不容易。 我們的方法乃基於交叉驗證的概念，定位出符合

精細技巧操作的軌跡片段，並且利用動態規劃尋找最有可能的意圖。 我們提出的

方法不需要事先定義可操作的動作或限制動作的速度，並且在示範的過程中允許

變換動作順序，也可加入多餘的動作。 在實驗中，我們提出的方法以三種任務進

行測試，分別是倒水、泡咖啡及塗果醬任務，在示範中改變任務物件的位置和數

目以測試其影響。 更進一步，我們分析任務中各參數的影響來研究方法的適用

性。 實驗結果顯示我們的方法不但對於這三種任務可以推論使用者的意圖，而且

可以讓使用者在沒有限制的情況下以較自然且有效率的方式示範動作。
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Abstract

In the near future, more robots come to the home-like environment, the pro-

gramming for task execution becomes very demanding, if not infeasible. The concept

of learning from demonstration is thus introduced, which may remove the load of

detailed analysis and programming from the user. However, many methods which

follow the concept of learning from demonstration limit the motions of the user or

task plan to deduce the intentions of the user. To avoid these limitations, in this

dissertation, we propose a novel approach for the robot to deduce the intention

of the demonstrator from the trajectories during task execution. We focus on the

tool-handling task, which is common in the home environment, but complicated

for analysis. We apply the concept of cross-validation to locate the portions of the

trajectory that corresponds to delicate and skillful maneuvering, and apply an al-

gorithm based on dynamic programming to search for the most probable intention.

The proposed approach does not predefine motions or put constraints on motion

speed, while allowing the event order to be altered and the presence of redundant

operations during demonstration. In experiments, we apply the proposed approach

for three different kinds of tasks: pouring, coffee-making, and fruit jam, with the

number of objects and their locations varied during demonstrations. To further

investigate its scalability and generality, we also perform intensive analysis on the

parameters involved in the tasks. The results show that our approach can not only

deduce the intentions of user in the three kinds of tasks but also let the demonstra-

tions be executed in a natural and effective manner without the limitations.
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Chapter 1 Introduction

1.1 Background

Due to the progress in service robot, more robots are entering the home or office

environment. It can be expected that many challenging problems shall emerge when

they deal with these highly uncertain and varying environments, such as path plan-

ning and manipulation [1,2]. One issue of interest is how to teach the robot to

perform daily works effectively. To relieve the human operator from detailed task

analysis and program coding, researchers have proposed letting the robot learn how

to execute the task from observing human demonstration by itself [3]. However, the

motions of human demonstration are difficult to be analyzed because the motions

related to home or office environment may not be able to be predefined for robot

learning. Besides, in the trajectory level, it is difficult that human repeats a mo-

tion in exactly the same speed and trajectory during multiple demonstrations, and

the operated objects may be not fixed in the environment. Moreover, in the task

level, some tasks can be accomplished with a varying operating order or redundant

motions. These pose challenges to learning from demonstration.

Many researchers have proposed approaches to tackling these challenges [4–7].

Among them, Calinon proposed an approach using Gaussian Mixture Regression

(GMR) and Lagrange optimization to extract the unchanged motions from the mul-

tiple demonstrations [8,9]. The proposed approach demands the order of the op-

erating motions to be the same during demonstrations. Dautenhahn and Nehaniv

proposed an approach for the robot to learn from human demonstration by imita-

tion [10], referred to as the correspondence problem, and later the team developed a

system that can learn 2D arranging tasks [11,12]. Dillmann proposed a hierarchical

structure for the robot to deal with complex tasks while the motion order can be

changed [13], and later they went on analyzing human motion features for high-

level tasks [14]. With both symbolic and trajectory levels of skill representation,

Ogawara proposed a method that determines the essential motions from the possi-
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ble motions [15]. However, these proposed methods may need to pre-define human

motions, limit the human operator to follow some motion type or speed, or limit

operating order. The robot may, thus, not be able to learn the task automatically or

the human operator not demonstrate the task naturally and efficiently. In contrast,

babies of 7 ∼ 8 month old can learn motions by regular pattern, while it is still

unclear of the learning process [16]. Therefore, it motivates us to propose a method

which can learn motion by demonstration without these shortcomings.

1.2 Contributions of the Dissertation

In this dissertation, we propose an approach for the robot to learn the human in-

tention from her/his demonstration. To allow the human operator for more natural

and efficient manipulation during demonstration, the proposed approach (a) does

not need to pre-define motions, (b) does not constrain the operator to perform the

task with certain motion speed or motion type, (c) allows the order of the events to

be altered, and (d) allows some redundant operations.

For the motions of human manipulations, Dillmann classify them into three dif-

ferent types by their goals: transport operations for moving objects, device handling

for changing the internal states of the objects, and tool handling for using tool to

interact with objects. We focus on the tool-handling task, which is common in daily

life [14]. The motions of this kind of task can be performed continuously without

stopping, because the tool can be operated for multiple objects sequentially without

leaving the hand, and it is complicated for analysis. Without predefined motions, the

method of cross-validation is suitable to decide the unknown parameters of a learn-

ing system. Based on the concept of cross-validation, but with some modification,

we propose an approach to identifying the portions of the trajectory corresponding

to the delicate and dexterous maneuver of the demonstrator, referred to as motion

features. These motion features, in some sense, exhibits the human skill in execut-

ing a certain task. The challenge is how to find the correct intentions, among all

possible ones, that lead to the demonstrated trajectories. To tackle the complexity,
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we apply the method of dynamic programming for the search. For demonstration,

experiments based on three different kinds of tasks, the pouring, coffee-making, and

fruit jam tasks, are performed. During the experiments, the locations of the op-

erated objects and operating sequence may vary, and the motion features derived

from the demonstrated trajectories are used for task execution under different ex-

perimental settings. To further demonstrate the scalability and generality of the

proposed approach, we perform intensive analysis on the parameters involved in the

tasks, such as numbers of objects and demonstrations, among others.

1.3 Organization of the Dissertation

This dissertation is divided into six chapters. In Chapter 1, the background informa-

tion of robot learning from demonstration and the contributions are introduced to

explain why we proposed such a new approach for intention deduction. In Chapter

2, previous approaches are introduced and discussed. In Chapter 3, we describe the

proposed approach, which is based on the concept of cross-validation to deduce the

intention from demonstrations In Chapter 4, the experimental results are reported

for performance evaluation, and the discussion on the proposed approach is given.

Finally, in Chapter 5, the conclusions are presented and suggestions are stated for

future research.
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Chapter 2 Preliminaries and Surveys

Many researchers have proposed letting the robot learn how to execute the tool-

handling task from observing human demonstration by itself [4–7]. The tool-handling

task is of the focus in this dissertation, which involves the interactions between tools

and objects [17]. The resultant trajectory from task execution can be mainly di-

vided into two types of motions: delicate motion (D) for delicate maneuver and

move motion (M) between the delicate motions [15]. The delicate motion is much of

the interest, since it serves to achieve the goal; by contrast, the move motion is not

very critical. Meanwhile the delicate and move motions are executed alternately.

As some delicate motions are noncontact motions, which do not contact the oper-

ated objects, such as those in pouring motions, the operated objects may not be

determined directly. Besides, some tasks may be able to be accomplished when the

order of executing the delicate motions is changed or redundant delicate motions

are added during demonstration. Therefore, in order to tackle the uncertainty in

demonstration, multiple demonstrations are collected. The robot may need to rec-

ognize the delicate motions and analyze the ordering of the delicate motions from

the multiple demonstrations. Among the current approaches, they can basically be

classified into three types based on either using pre-known human motions or certain

assumptions [4].

2.1 Motion Recognition Type

The approaches of the first type are based on pattern recognition methods to clas-

sify motions before analyzing the ordering of the delicate motions [18–27]. In this

type, human needs to predefine a set of operating motions before the robot observes

the human demonstrations. Human collects all possible operating motions, labels

the collected motions into different classes of motions, and uses them as training

data. For example, in [18], the researchers define a set of human motion data,

which consists of Power Grasp, Precision Grasp, Pour, Hand-over, Release, OK-
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sign, Garbage, Start, and End, to classify human motions. Usually, Hidden Markov

Model(HMM) is used to learn and recognize the operating motions because HMM

can process stochastic human motion data in space and time. After motion recog-

nition, in order to analyze the relation between operating motions, the relation of

operating motions may be transformed into a symbolic sequence problem such as

longest common subsequence problem (LCS) to find the common relation in the

multiple demonstrations. Finally, the recognized motions are used to generate an

operating trajectory based on the motion relations for robot execution. The concept

of this type is not complicated, and the system can be implemented easily. However,

it may not be able to handle all possible motions of daily life because the operating

motions need to be collected before recognition.

2.2 Motion Matching Type

The approaches of second type segment human motions and matches the com-

mon motions without predefining motions [14,15,28–35].First, the motions of the

demonstrations are segmented based on some motion features such as the difference

of operating speed [34,36] or the cyclic motion [37] without predefining motions.

The approaches search for the common motions of all demonstrations by motion

matching and they analyze the essential motions and the ordering of the motions.

In [15], the problem of searching the common motions between the demonstrations is

transformed to multiple sequence alignment problem to handle redundant motions.

In [14], the researchers measure the similarities between all possible permutations

of the motions of the subtasks to analyze the hierarchical structure of the common

motions of the task. Finally, the common motions are searched to be the essential

motions of the task and used to generate a new operating trajectory for execution.

These approaches do not need to predefine possible motions, so this type can handle

many known or unknown tasks of daily life. However, the motion hints such as the

difference of operating speed or the cyclic motion, which are used to segment, limit

human motions because only the hint-following motions can be segmented correctly.
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2.3 Motion Synchronization Type

The approaches of the third type find common portions from synchronized oper-

ating trajectories without motion segmentation [8,9,38–55]. First, the operating

trajectories of the multiple demonstrations are synchronized as signals to avoid seg-

mentation. Usually, the synchronization methods such as Dynamic Time Warpping

(DTW) [56] or Continuous Profile Models (CPM) [57,58] are used to synchronize

multiple signals. After synchronization, the difference of each portion of the syn-

chronized trajectories are measured to find common operating motions from multiple

demonstrations. For example, the synchronized trajectories can be transformed to

the probability distribution by using Gaussian Mixture Models (GMM) to measure

the expected operating trajectory [9]. Finally, the common operating trajectory is

used to generate a new operating trajectory for the robot execution in a new envi-

ronment. The approaches of this type can learn tasks without predefining motions

or limiting human to follow some motion hints. However, these synchronization

methods cannot handle permuting motions, so the ordering of the motions must be

the same during multiple demonstrations. The order of operating motions is limited,

and human may not be able to demonstrate task naturally and efficiently.
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Chapter 3 Proposed Approach

In this chapter, we describe the proposed approach which takes the intention de-

duction problem to be that of locating the delicate motion from the demonstrated

trajectory. In Sec. 2.1, we describe the process of intention deduction. In Sec. 2.2,

we explain similar function, which is used in intention deduction. And, in Sec. 2.3,

we design a series of experiments for investigating its extensibility and robustness.

3.1 Intention Deduction

In this section, first, we introduce what the intention is in the tool-handling task, and

then formulate it. Then, we use the concept of validation to evaluate the motion

index candidates. Finally, we use dynamic programming to search the optimal

motion index from all possible candidates.

3.1.1 Intention in Tool-handling Task

Fig. 3.1 shows the conceptual diagram of the proposed approach for intention de-

duction from demonstration. In Fig. 3.1, the robot first observes a series of human

demonstrations and records the corresponding trajectories and environmental states.

From these recorded motion data, the robot searches for the possible intentions that

lead to the delicate motions. The derived intentions can then be used to generate

new trajectories that respond to new environmental states. Let us take the pouring

task shown in Fig. 3.2 as an example. In Fig. 3.2(a), three vessels A, B, and C

are arbitrarily located on the table. And, in Figs. 3.2(b)-(c), the operator pours

the content from vessel A to vessels B and C, respectively, and then places vessel

A back on the table. During the demonstrations, the initial locations of the vessels

may vary, and so does the pouring sequence. From the recorded trajectories and

corresponding locations of the vessels (environmental states), the proposed approach

identifies the intention of the operator, i.e., the portions of the trajectory that cor-
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Figure 1 The conceptual diagram of the proposed approach for 
intention learning by demonstration.

Figure 3.1: Conceptual diagram of the proposed approach.
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Fig. 5: A pouring task: (a) the setting of the vessels, (b) pouring vessel A to vessel B, and (c) pouring vessel A to
vessel C.

A to vessels B and C, respectively, and then places vessel A back on the table. During the demonstrations, the

initial locations of the vessels may vary, and so does the pouring sequence. From the recorded trajectories and

corresponding locations of the vessels (environmental states), the proposed approach will identify the intention of

the operator, i.e., the portions of the trajectory that correspond to the two pouring actions (delicate motions). With

the derived intention, the robot is then able to execute the pouring task with the vessels located at various locations

and possibly altered pouring sequences.

Before the discussion on the process of intention deduction, we first describe how the motion can be generated

under new environmental states when the human intention has already been derived. We start with the representation

of the intention I. Assume that there are N delicate motions and S objects involved in a demonstrated task. Because

the intention is closely related to the delicate motions of the maneuver, I is formulated as a set of delicate motions,

10

Figure 3.2: A pouring task: (a) the setting of the vessels, (b) pouring vessel A to

vessel B, and (c) pouring vessel A to vessel C.

respond to the two pouring actions (delicate motions). With the derived intention,

the robot is then able to execute the pouring task with the vessels located at various

locations and possibly altered pouring sequences.

Before the discussion on the process of intention deduction, we first describe

how the motion can be generated under new environmental states when the human

intention has already been derived. We start with the representation of the intention

I. Assume that there are N delicate motions and S objects involved in a demon-

strated task. Because the intention is closely related to the delicate motions of the

maneuver, I is formulated as a set of delicate motions, Dn(t), associated with the

corresponding objects Objs:

I = {D1(t), D2(t), ..., DN(t);Obj1, Obj2, ..., ObjS} (3.1)

where Dn(t) stands for the part of the demonstrated trajectory for delicate motion

n and Objs the position and orientation of an object s. Note that, because an

object may correspond to one, several, or no delicate motion, the number of delicate

motions may not be equal to that of the objects. We then introduce the motion

index (MI), which serves as an index linking to I. MI is formulated as an ordered

set of the time-point pairs, dj = {nj, lj, sj}, which provides the starting time nj,

8
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Figure 3.3: Process for motion generation.

end time lj, and number of the operated object sj for each of delicate motions D:

MI = {d1, d2, .., dN} (3.2)

where MI represents I. Fig. 3.3 shows the process for motion generation. Ac-

cording to MI, the motion cutting module locates the delicate motions Dj from

the demonstrated motion in order. To respond to the new environmental state, the

motion adjustment module moves these Dj to match the new locations of the ob-

jects and become DGj
. Finally, the motion connection module uses the move motion

MGj
to smoothly connect every two DGj

. As its accuracy is not that critical, MGj

is generated using the cubic polynomial. With both DGj
and MGj

, we now have a

feasible trajectory QG corresponding to the new environmental state:

QG = {MG1 , DG1 ,MG2 , DG2 , ..., DGN
,MGN+1

} (3.3)

Fig. 3.4(a) shows an example for motion cutting based on the pouring task

shown in Fig. 3.2, and Fig. 3.4(b) that of motion generation. In Fig. 3.4(a), the

demonstrated trajectory during task execution is projected on the X-Y plane, where

the yellow and green rectangles indicate the locations of vessels B and C. The yellow

and green trajectories are the delicate motions determined by the motion cutting

module according to the given MI. In Fig. 3.4(b), the yellow and green rectangles

indicate the locations of vessels B and C in the new environmental state. In re-

sponding to these new locations of vessels B and C, the delicate motions identified

in Fig. 3.4(a) are transformed to be the yellow and green trajectories by the motion

adjustment module. Finally, the three move motions, as the red trajectories, are

utilized to smoothly connect the two delicate motions.
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3.1.2 Derivation of Optimal Motion Index

From the motion generation process discussed above, we can take the intention de-

duction process as that of finding proper motion index MI. To find the optimal

MI among all MI candidates, we introduce first the process for MI evaluation,

shown in Fig. 3.5(a). This process evaluates the fitness of the MI candidates de-

rived from the demonstrated motion, based on a reasoning that proper MI should

lead to a generated motion very similar to the human demonstrated motion, which

includes all the delicate motions. In Fig. 3.5(a), from the demonstrated motions,

we select one demonstrated motion as the validating motion and the rest as the

training motions. We will discuss the selection of validating and training motions

later. For an MI candidate derived from the validating motion, the motion gen-

eration module, described above, generates motions based on the training motions

and the environmental state corresponding to the validating motion; the generated

motions, with their lengths set to be equal to that of the validating motion, are then

compared with the validating motion via the motion comparison module, yielding

the differences between them (marked as errors). Because the operator may per-

form the demonstrations in different speeds and possibly with different orders for

the events involved, the corresponding delicate motions are likely to be with various

sampling rates, or to appear in different portions of the demonstrated trajectories.

To tackle this, our strategy is to let each of the delicate motions of the validating

motion be compared with every portion of the training motion, accompanied by

altering sampling rates, showing in Fig. 3.5(b). Through this comparison process,

the generated motion, whose delicate motions lead to the minimum difference when

compared with those of the validating motion, is determined as the output and sent

to the motion comparison module for the following comparison. As a high search

complexity is expected, we come up with an approach analogous to that of dynamic

time warping (DTW) in execution [56]. Details of this strategy will be explained in

next section.

We go on with the process for MI generation, shown in Fig. 3.6. In Fig. 3.6,

among all the demonstrated motions, one demonstrated motion is first selected as
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the validating motion, denoted as QV , and the rest as the training motions, QT ,

for each sequence of the process. The process will be repeated until each of the

demonstrated motions serves as the validating motion once. In next step, the MI

generator will locate all possible MI candidates from QV . Because the proposed

approach does not constrain the human operator to perform the task with certain

motion speed or motion type, and also allows the order of the events to be altered

during demonstration, there is in fact not a priori knowledge for the selection of MI.

The criterion for MI generation is thus to let MI candidate correspond to every

portion of QV with a duration longer than 0.3 second, as human cannot cognize an

event until it happens 0.3 second later [59]. It can be expected that there will be

a huge number of MI candidates. That is why we employ the method of dynamic

programming for the search of the optimal MI.

With the MI evaluation process in Fig. 3.5(b) and MI generation process in

Fig. 3.6, Fig. 3.7 shows the entire process for optimal MI derivation. For the

outer dotted block in Fig. 3.7, the inputs are the demonstrated motions and each

12



of them serves as the validating motion once. Via the MI generation process, MI

candidates along with the validating and training motions are sent into the MI

evaluation process to determine which MI candidate leads to the minimum error,

identified as an optimal MI candidate. As each validating motion corresponds to

one optimal MI candidate, the outputs of the outer dotted block are the optimal

MI candidates for each of them. Finally, the optimal MI is determined to be the

one with the minimum error among all optimal MI candidates.

3.1.3 Implementation of Intention Deduction

For mathematical formulation of this optimal MI derivation process, we start with

the description of MI for a given validating motion QV , denoted as MIV :

MIV = {dV1 , dV2 , .., dVN} (3.4)

with

dVj = {nVj , lVj , sVj} (3.5)

where dVj indexes the delicate motion DVj with nVj , lVj , and sVj the starting time,

end time, and number of the operated object. According to MIV , QV can then be

expressed as the combination of a series of delicate and move motions:

QV = {MV1 , DV1 ,MV2 , DV2 , ..., DVN ,MVN+1
} (3.6)

On the other hand, with the same MIV , the generated motion Qi
G for each training

motion Qi
T can be formulated as

Qi
G = {M i

G1
, Di

G1
,M i

G2
, Di

G2
, ..., Di

GN
,M i

GN+1
} (3.7)

where Di
Gj

and M i
Gj

are its delicate and move motion, respectively. Di
Gj

can be

determined via the MI evaluation process above, of which the minimization between

Di
Gj

and DVj is dealt with a DTW-like method:

Di
Gj

= similar(Qi
T , DVj) (3.8)

In the similar function, the training motion Qi
T is transformed to match the

environment of the validating motion according to the possible operated object sVj ,
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and generated delicate motion Di
Gj

is searched from the transformed motion to be

similar to DVj as close as possible. Therefore, the search can use a DTW-like method

to minimize the difference between Di
Gj

and DVj [56]. Details of this method will

be explained in next section.

After the generated delicate motions are generated, M i
Gj

determined by func-

tion MG, which utilizes the cubic polynomial to smoothly connect the two delicate

motions, Di
Gj−1

and Di
Gj

:

M i
Gj

= MG(Di
Gj−1

, Di
Gj

) (3.9)

To determine the optimal motion index MI∗V , QV will be compared with all

QG generated according to every MIV . Because we are looking for an MIV that

may induce all the necessary delicate motions, MI∗V should not induce too much

deviation between the delicate motions for QV and QG, and consequently between

the move motions for them. By taking Emax as the maximum difference between

the delicate and move motions for QV and those QG generated for all the training

motions corresponding to some MIV , we determine MI∗V , among all MIV , to be the

one that leads to the smallest Emax:

MI∗V = argmin
MIV

Emax (3.10)

with

Emax =
N∑
j=1

ED(DVj) +
N+1∑
j=1

EM(DVj−1
, DVj) (3.11)

where

ED(DV ) = max
i
||DV −Di

G||2 (3.12)

EM(DVa , DVb) = max
i
||MV (DVa , DVb)−MG(Di

Ga
, Di

Gb
)||2 (3.13)

Here, ED computes the difference between the respective delicate motions forQV and

those QG, and EM that for the move motions, with MV as a function which outputs

the move motion part between two delicate motions of the validating motion, DVa

and DVb . Because each demonstrated motion serves as the validating motion once,

the final optimal motion index MI∗∗ for all demonstrated motions will be further

chosen as that MI∗, among those for each QV , with the smallest corresponding
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Emax, demoted as E∗. As the length LV for each QV may not be the same, E∗ needs

to be normalized before the comparison. MI∗∗ is then formulated as

MI∗∗ = argmin
MI∗V

E∗/LV (3.14)

The search for MI∗∗ is of high complexity, as exhibited in Eqs. (3.10)-(3.14) above.

As an attempt to enhance search efficiency, we employ the method of dynamic

programming [60] and let the computation of E∗ in Eq. (3.14) be expressed into a

recursive formulation:

E∗ = min
dVk

ER(DVk) + EM(DVk , DVN+1
) (3.15)

with

ER(DVk) = min
dVk−1

(ER(DVk−1
) + EM(DVk−1

, DVk)) + ED(DVk) (3.16)

where ER(DVk) stands for the minimum difference between the motions from the

first move motion to a given delicate motion; dVk and dVk−1
, described in Eq. (3.5),

index the delicate motions DVk and DVk−1
; and 1 ≤ k ≤ N . Because the number of

delicate motions is not known in advance, N and k are not specific numbers. Also

note that, the first move motion is generated between DV0 and DV1 , and the last

one between DVN and DVN+1
, with DV0 and DVN+1

taken as the first and last point

of the trajectory, respectively. In Eq. (3.15), E∗ is derived as the minimum one for

all ER(DVk) with ER(DVk) computed recursively via Eq. (3.16). With Eqs. (3.15)

and (3.16), dynamic programming can take advantage of the table generated for

ER(DVk) to simplify the computation in deriving E∗.

Based on the discussions above, the algorithm for intention derivation algorithm

is formulated in Algorithm 1. Time complexity for this optimal MI derivation pro-

cess is related to the number (R) and length (LV ) of the demonstrated motions

and the number (S) of objects involved in the task. Here, the lengths of the demon-

strated motions are assumed to be close. In Eqs. (3.15) and (3.16), the generation of

the table for ER(DVk) takes up most of the time consumed. The table has O(LV
2 ·S)

elements, and each element deals with the complexity of the order of O(R ·LV 3 ·S).

During the entire process, the table needs to be generated R times. The final time

complexity is thus computed to be in the order of O(R2 · LV 5 · S2).
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The divide-and-conquer method [60] may also be an alternate to solve Eq.

(3.14). However, because our proposed approach takes every portion of the trajec-

tory of the validation demonstration as the candidate for a possible delicate motion,

it is not that straightforward to divide the trajectory properly. Consequently, the

search for the optimal solution may demand a large number of divisions, leading to

high computational load.

Algorithm 1 Find the intention of the task through R times of demonstrations

Input: the demonstrated trajectories Qi (1 ≤ i ≤ R) for the R times of demonstra-

tions

Output: the optimal MI∗∗

1: for i = 1 to n do

2: Select Qi among the R recorded trajectories as the validating motion QV and

the rest as the training demonstrations QT

3: Apply the method of dynamic programming, based on Eq. (3.10), to deter-

mine the optimal MI∗ for QV

4: end for

5: Utilize Eq. (3.14) to determine the optimal MI∗∗ for the demonstrator among

those MI∗ for the R validating motions

6: return MI∗∗

3.2 Similar Function

In this section, the reason why the similar function is used is first explained, and

the implementation of the similar function, which is based on the dynamic time

wrapping method, is then discussed.

3.2.1 Reasoning for Similar Function

Before we discuss the implementation of the similar function, the reason why we use

the similar function in the validation is explained in the following. In the process

of the intention deduction, it is important to decide the validating data and the
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training data because the fitness of each possible M.I. candidate is evaluated by the

validation. In Fig. 3.8(a), the fitness of each M.I. candidate can be evaluated by

comparing the difference between the generated motion and the validating motion in

the motion comparison module, and the M.I. candidate which leads to the minimum

error is the optimal M.I. candidate. However, the operating speed of the generated

motion and the ordering of the delicate motions may be different from that of the

validating motion because the motion generation module uses the M.I. candidate of

the training motion to generate motion. The motion comparison module may need

to use DTW to deal with the differences of motion speeds [56], but DTW cannot

deal with the different ordering of delicate motions. Therefore, when DTW is used

in the motion comparison module, we need to align the ordering of the delicate

motions of the generated motion as that of the validating motion, as shown in Fig.

3.8(b). In Fig. 3.8(b), the motion speeds of the delicate motions are not included

in the operating order because DTW can handle this.

With the concept of validation, the correct operating order and the optimal

M.I. may be able to be searched simultaneously by validating all possible pairs of

the operating order and the M.I. candidate when single training motion is inputted,

as shown in Fig. 3.8(b). Moreover, the M.I. candidates of the training motion

can be evaluated more accurately by inputting multiple validating motions with

each operating order. However, the number of possible operating orders of each

validating motions increases factorially with the number of the M.I.-assigned delicate

motions. A lot of calculating time is needed to evaluate all operating order for each
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M.I. candidate. In contrast, when multiple training motions and a single validating

motion are inputted, the searching space is much larger because each training motion

has an individual M.I. and an individual operating order. Therefore, we need a

method to tackle this searching problem.

It is known that the optimal M.I. candidate leads to the minimum difference

and the difference between two similar motions is smaller than two randomly chosen

motions. Therefore, a shortcut method is proposed. The M.I. candidate of validating

motion is inputted into the motion generation module without inputting the possible

operating order candidate for the multiple training motions. The motion cutting

module of the motion generation module is modified to use the similar function to

minimize the difference between the delicate motion of the generated motion and

the validating motion, as shown in Fig. 3.5(b). Note that this shortcut method may

not be match the concept of validation.

We use the similar function to search for the part of the motion from each

training motion as closely as possible to the M.I.-assigned delicate motion of the

validating motion, so the difference between generated delicate motion and M.I.-

assigned delicate motion can lead to minimum error. Besides, we use a DTW-like

method to resample the delicate motion of generated motion in the calculation of

the similar function, so the motion comparison module can calculate the difference

without conducting DTW again.

3.2.2 Implementation of Similar Function

To calculate the similar function in Eq. (3.8), we use a DTW-like method, which

uses the technique of dynamic programming to minimize the error between the

delicate motions of the validating motion and the training motion. In the calculation

of the similar function, first, the training motion Qi
T is transformed to match the

environment of the validating motion according to the M.I.-assigned operated object

sVj . Then, the transformed motion is resampled to P i
T for searching the minimum

difference between the M.I.-assigned delicate motion of the validating motion and
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some portion of the training motion. After that, the minimum error between the

M.I.-assigned delicate motion of the validating motion and some portion of the

training motion can be calculated as

Esimilar
∗ = min

1≤%≤2Li
T−1

H(%, lVj − nVj + 1) (3.17)

with

H(%, ς) =


∞, if % ≤ 0,

||P i
T (%)−DVj(ς)||

2
+ min

%−4≤ι≤%−1
H(ι, ς − 1), if % ≥ 1,ς ≥ 1,

0, otherwise.

(3.18)

where Esimilar
∗ is the minimum error between the delicate motions DVj and Di

Gj
,

H(%, ς) is a recursive function that outputs the minimum error between DVj(1 ∼ ς)

and P i
T (u ∼ %) (u is determined automatically during the process of minimization),

and other symbols are explained in the following. The calculation of the similar

function is different from DTW in two parts. First, in order to measure the difference

independently without the influence of the time length of different generated motion,

the generated motion is mapped and resampled to the time of the validating motion

and the difference is measured based on the time of validating demonstration in the

calculation of H(%, ς). Because we want to search the minimum error under the

dynamic speed whose range is from 1/2 to 2 times of the original speed of training

motion, the number of the samples of P i
T is 2LiT − 1, which is the two times of the

sampling rate of Qi
T , and the four answers of the subproblems (H(% − 4, ς − 1) ∼

H(%− 1, ς − 1)) are used to solve the problem H(%, ς). Second, in order to check

each possible start point of P i
T , the number of the cases which H(%, ς) are setted to

zero is more than that using DTW because each sample points of P i
T is a possible

start point of the similar motion. Therefore, H(%, ς) is a function that outputs the

minimum error between DVj(1 ∼ ς) and P i
T (u ∼ %), and the result of similar function

can be obtained by tracking the selections in the calculation of the minimum error

Esimilar
∗. Moreover, some elements of table H(%, ς) can be shared for the different

inputs of DVj to reduce the calculation time, so the time complexity of calculation

of the similar function with the total possible inputs is O(R ·LV 3 ·S) when the range

of the dynamic speed is fixed and the demonstration times of the validating motion

and the training motions are assumed to be close.
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Because the similar function is a shortcut method, which does not calculate the

difference between the move motions of validating motion and generated motions,

this method does not minimize the total difference between the validating motion

and the generated motions. Although the penalty which is the expectative error

between the move motions of the validating motion and the generated motions can

be used in the calculation of the similar function, we do not use it in our experiment

because the expectative error is difficult to be estimated precisely. Note that, in the

experiment, it is observed that to create ER(DV ) table by using the similar function,

many the same EM values have been used. Therefore, if a cache is used to stand for

the EM , the calculation process can be reduced.

3.3 Experimental Design for Extensibility and Ro-

bustness

The proposed approach is developed for general tool-handling tasks, with the ap-

pealing features in (a) no need for pre-defined motions, (b) no constraints on motion

speed or motion type, (c) allowance for event-order altering, and (d) allowance for

redundant operations during demonstration. To further investigate its extensibility

and robustness, we design a series of experiments based on three different kinds of

tasks: the pouring, coffee-making, and fruit jam tasks.

In the pouring task, the operator is asked to hold a vessel and pour the content

into other vessel(s), as described in the example shown in Fig. 3.2. The experiments

are designed to evaluate the influence from the following factors:

• pouring order during execution;

• number of vessels to pour;

• number of demonstrations used for MI derivation.

We also analyze the time complexity during task execution, which is expected to

match that predicted by the algorithm for intention derivation in Sec. 2.1. In the
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coffee-making task, the operator uses a spoon to scoop coffee powder, sugar, or milk

from the jars into the coffee cup and stir it. The number of jars are fixed for the

experiments, but the operator can access the same jar(s) one or several several times.

In addition to the performance on this coffee-making task, the effect of number of

demonstrations on MI derivation and time complexity during task execution are

also evaluated. To further explore its generality, in the fruit jam task, the operator

picks up a knife from the table, scoops the fruit jam from the jar, spreads it on the

toast in a zigzag motion, and places the knife back on the table. Meanwhile, we also

analyze how the presence of the redundant motions affects system performance.

To simulate that the robot learns a task in a home environment, we assume

that the robot uses a vision system to identify objects by comparing the difference

between background and foreground in the multiple demonstrations for obtaining the

positions of the objects. Moreover, the handled tool whose position is varied during

the demonstration can also be identified. We suggest that the operated objects

should change the positions in the multiple demonstrations, but some operated

objects which are heavy or fixed may not be moved in the task. These objects cannot

be identified by the vision system. Fortunately, no matter how many operated

objects hidden in the background, these objects can be seen as a special object -

background object whose position is not changed during demonstrations just like the

origin. In contrast, although we suggest that the positions of the operated objects

should be changed during the multiple demonstrations, we do not require that the

positions of the unoperated objects cannot be changed. For example, there are three

cups in the pouring task of two cups, it is allowed that the position of the unoperated

cup is changed carelessly for some reason during demonstrations. Therefore, even

some identified objects which are not operated in the demonstrations are inputted

into the intention deduction module, our learning method can still handle it.
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Chapter 4 Experiments

In this chapter, first, the system implementation is introduced. Then, the results of

experiments of the pouring, coffee-making, and fruit jam tasks are reported, and its

robustness is evaluated. Finally, we discuss how the proposed approach performs

when compared with previous ones, and an application scenario is proposed for

breakfast preparation to demonstrate the practicality of this approach in daily lives.

4.1 System Implementation

The proposed system is implemented for experiments, as shown in Fig. 4.1. In

Fig. 4.1, the task environment consists of the objects, including the tool, the op-

erated objects, and the background objects. The human operator can see the task

environment and operate the objects. The positions and orientations of the objects

are measured by the tracking system Polhemus FASTRAK. This tracking system

Polhemus FASTRAK consists of a system electronics unit, receivers, a power sup-

ply, which are shown in Fig. 4.2, and a long range transmitter, which are shown

in Fig. 4.3. The update rate of the positions (XYZ) and orientations (ZYX Euler

angles) of receivers is 30Hz, and the specifications of this tracking system Polhemus

FASTRAK is described in Table 4.1. After the human operator demonstrates a

task multiple times, these operating trajectories are recorded as the 7-dimensional

sequences, which consist of positions and orientations (in the form of quaternion)

in 3 and 4 dimensions, respectively. The data for the position is normalized by

its standard deviation to balance the effects of the errors of due positions and ori-

entations. These trajectories with the positions and orientations of all possible

operated objects are then inputted into our learning method to deduce the inten-

tion. The executable operating trajectory for the robot manipulation is generated

as 7-dimensional sequences (positions and orientations) according to the positions

and orientations of the operated objects of the robot-faced environment. In the

experiment, the core of our learning method is programmed by using C language,
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Figure 4.1: System implementation.

and the program is executed in the computer with CPU of Intel E6300, running

at 1.86GHz with 3.62Gbyte RAM. Although this CPU has two cores, the program

only uses one core to measure the time of the calculation. The robot manipulator

Mitsubishi RV-2A is position-controlled, shown in Fig. 4.4, with its specifications

listed in Table 4.2. The Denavit-Hartenberg parameters of this robot manipulator

are specified in Table 4.3 [61], and the transformation matrix of each joint is defined

as

Ai−1
i (θi) =

∣∣∣∣∣∣∣∣∣∣∣∣

cos(θi) − sin(θi) cos(αi) sin(θi) sin(αi) ai cos(θi)

sin(θi) cos(θi) cos(αi) − cos(θi) sin(αi) ai sin(θi)

0 sin(αi) cos(αi) di

0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣
(4.1)

This robot manipulator can accept the position command from internet by Ethernet

interface card, and each position command can be operated at the operation control

time 7.1 ms (≈141Hz). Therefore, the generated robot trajectory is resampled at

141Hz to perform robot manipulator, and the position command (J1∼J6) of each

sampling point is solved by inverse kinematics [61]. In order to avoid damaging the

devices, in the experiments, all vessels are demonstrated with empty content.
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Figure 4.2: Tracking system Polhemus FASTRAK.

Figure 4.3: Long range transmitter.
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Figure 4.4: Mitsubishi RV-2A type six-axis robot arm.

Table 4.1: Specifications of the tracking system Polhemus FASTRAK.

Latency 4 milliseconds

Interface RS-232 with selectable baud rates up to 115.2K baud

Static Accuracy position 0.03” RMS

orientation 0.15 degrees RMS

Resolution position 0.0002 inches

orientation 0.025 degrees

Range 30 feet
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Table 4.2: Specifications of the Mitsubishi RV-2A.

Degrees of freedom 6

Maximum load capacity (rating) 2Kg

Maximum reach radius 621mm

Working area J1 320◦ (-160 to +160)

J2 180◦ (-45 to +135)

J3 120◦ (+50 to +170)

J4 320◦ (-160 to +160)

J5 240◦ (-120 to +120)

J6 400◦ (-200 to +200)

Maximum speed (degree/s) J1 150

J2 150

J3 180

J4 240

J5 180

J6 330

Repeat position accuracy ±0.04mm

Table 4.3: Denavit-Hartenberg parameters of the Mitsubishi RV-2A.

Link ai(m) αi(rad.) di(m) θi(rad.)

1 0.1 −π/2 0.35 θ1

2 0.25 0 0 θ2 − π/2

3 0.13 −π/2 0 θ3 − π/2

4 0 π/2 0.25 θ4

5 0 −π/2 0 θ5

6 0 0 0.24 θ6
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4.2 Pouring Task

We applied the proposed approach for the pouring task shown in Fig. 4.5 first.

The experiment is divided into two stages: (a) human demonstration and (b) robot

execution. Fig. 4.5(a) shows the experimental setup for human demonstration,

which includes the human operator and the Polhemus FASTRAK tracking system.

There are five vessels placed randomly on the table. The human operator held a

vessel (vessel A) and poured the content into the other vessels (vessels B, C, D, and

E) on the table. The Polhemus FASTRAK tracking system, with a sampling rate

of 30 Hz for each of the sensors, was used to measure and record the demonstrated

trajectories and positions of the objects. These trajectories were recorded as the

7-dimensional sequences, which consist of positions and orientations (in the form

of quaternion) in 3 and 4 dimensions, respectively, with the position normalized by

its standard deviation. From these recorded trajectories, we applied the intention

deduction algorithm, discussed in Sec. 2.1, to derive the intention of the operator

from all possible intentions. We then moved on to the second stage of the experiment,

and let the Mitsubishi RV-2A 6-DOF robot manipulator follow the derived intention

to execute the pouring task under new environmental states, as shown in Fig. 4.5(b).

There are two changeable parameters of the pouring tasks in the experiment, which

are the poured vessels ({B,C}, {B,C,D}, and {B,C,D,E}) and the pouring order

(arbitrary order or same order), so there are 6 different settings of the pouring

tasks. The human operator demonstrated 18 times in each setting of the pouring

tasks, and the total number of demonstrations is 108.

To test the results of our method, for each pouring task (6 pouring tasks), the

8 of the demonstrations are randomly selected to be training data to be inputted

into the learning method, and the rest demonstrations whose operating orders are

equal to the operating orders of generated trajectories are selected to be testing

data. In each test, the positions of vessel B∼ E and origin are inputted to test the

effect of the unoperated objects and the background object because the robot does

not know which object is operated. These processes are executed 5 times, and the

average errors, which describe the difference between the generated trajectories and

27



Figure 8. Experimental setups for the pouring 4 cups task: 
(a) human demonstration and (b) robot execution.

(a) Human demonstration    (b) Robot execution

Figure 4.5: Experimental setups for the pouring task: (a) human demonstration

and (b) robot execution.

the trajectories of the testing data, are calculated by DTW. Besides, we then moved

on to the second stage of the experiment, and let the Mitsubishi RV-2A 6-DOF robot

manipulator follow the generated trajectories to execute the pouring tasks under a

new environmental state, as shown in Fig. 4.5(b).

Fig. 4.6 shows the derived intentions for each of the eight demonstrations of

the pouring task in one test. Because the tilt-angle changes are the clear features

of pouring motions, the time series graphs which describe the tilt-angle of the tra-

jectories are used to illustrate the results. In Fig. 4.6, delicate motions related

to vessels B, C, D, and E were identified from the trajectory of vessel A, marked

by the yellow, green, blue, and purple blocks, respectively. It was observed that

most of the delicate motions were located at those portions with evident tilt-angle

changes, implicating the pouring action. The derived intention for demonstration 3

was determined to be optimal among all.

Fig. 4.7 shows one of the generated trajectories and one of the trajectories

of the testing data. In Fig. 4.7, the black line is the trajectory of the testing

data, and the color line is the generated trajectory, which consists of the red lines

(move motions) and the other color lines (delicate motions for operated objects). In

XY-plane subfigure of Fig. 4.7, the color rectangles (yellow,green,blue, and purple)

describe the positions of the operated object (B,C,D, and E). In the XY-plane
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Figure 4.6: The derived intentions for the eight demonstrations of the pouring task.
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Figure 11. Experimental results for the pouring 4 cups task executed by both the human operator and robot 
manipulator under new environmental states:  (a) trajectory of vessel A in X-Y plane. (b) variation of the 
height of vessel A. (c) variation of the tilt angle of vessel A.

----- Human
----- Robot

Figure 4.7: Experimental results for the pouring 4 cups task executed by both

the human operator and robot manipulator under new environmental states: (a)

trajectory in X-Y plane, (b) variation of the height, and (c) variation of the tilt

angle of vessel A.
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subfigure and the height subfigure and the tilt angle subfigure of Figure 4.7, it was

observed that the most of the delicate motions were located at those positions near

the operated objects and those portions with minimum height and those portions

with maximum tilt angle because these features are the features of the pouring

motions. This generated trajectory and human trajectory exhibited certain degree

of similarity, but not exactly the same. However, the generated trajectory can

be used to manipulate the robot to accomplish the pouring tasks. Moreover, the

generated trajectories of the other tasks show the correct delicate motions and match

the human operations.

Table 4.4: Average position error between the trajectories of human operator and

the generated trajectories in the pouring tasks.

Pouring task Order Error (m)

Same 0.052
2 cups

Arbitrary 0.051

Same 0.049
3 cups

Arbitrary 0.049

Same 0.052
4 cups

Arbitrary 0.045

Table 4.4 shows average position errors between the trajectories of the human

operator and the generated trajectories for the six combinations of the pouring task,

and these error are calculated by DTW on 3D positions. First, it was observed that

the orders of the operations do not have a great effect upon the results of our method.

Second, it was observed that the number of the operated objects does not have a

great effect upon the results of our method.

4.2.1 Robustness in Pouring Tasks

Figure 4.8 shows the relation between the errors and the number of demonstrations

(2 to 8) in the pouring 2˜4 cups task, as shown in Table 4.4. First, it was observed

that our method may need 4˜5 demonstrations to learn the goals of the 2˜4-cup
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Figure basic. The errors of the generated trajectories with the 
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Figure 4.8: The errors of the generated trajectories with the different numbers of

the training demonstrations in the pouring 2˜4 cups task.

pouring tasks. Second, it was observed that the number of demonstrations which

is needed to decrease the errors of the 4-cup pouring task is more than those for

the 2˜3-cup pouring tasks. It implies that the difficulty of learning task increases

with the number of the poured cups. Third, it was observed that many errors of

the arbitrary order pouring tasks are smaller than that of the same order pouring

tasks. It implies that human operator may introduce more unusual operations in the

same order pouring tasks because human operator needs to pay more attentions to

unnatural operating orders during demonstrations. As for the time of the calculation

of the pouring tasks, Fig. 4.9 shows that it increases approximately squarely with

the the number of the demonstrations. This matches the expectation of the time

complexity.

We further evaluate how the presence of the redundant operations during

demonstration may affect system performance. The analysis was based on the 2-

vessel pouring task. Among a group of 2-vessel demonstrations, we gradually added

in some demonstrations involving three or four vessels, taken as the introduction

of the redundant operations. With this, we attempted to find out whether the

proposed approach could still successfully recognize that the demonstrations were

intended for the 2-vessel pouring task, even some proportion of the demonstrations
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Figure 4.9: The calculating time with the different numbers of demonstrations in

the six pouring tasks.

involving redundant operations. Table 4.5 lists the number of success out of 10

tests where the number of demonstrations involving 3 or 4 vessels increased from

1 to 4 out of a total 8 demonstrations. Because the redundant operations are not

common motions which can not be searched in each training motion in Eq. (3.8),

larger percent of the redundant operations usually led to larger Emax in deriving the

optimal MI, as shown in Eq. (3.14). When the demonstrations involving redundant

operations consisted of half of the total demonstrations, the proposed approach can

still reach a high success rate at 80%.

Table 4.5: Number of success in the presence of redundant operations

2 vessels 3 vessels 4 vessels number of success

7 1 0 9

6 1 1 9

5 2 1 8

4 2 2 8

About the operating order of the tasks, in the experiment, it is observed that

the path length and demonstration time of the tasks whose operating orders are

arbitrary are smaller than that of the task whose operating orders are same, as
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shown in Table 4.6. Therefore, the arbitrary order of the operations can decrease

the path length and the demonstration time of the operations. Besides, it can

decrease the probability of the mistakes of the operations, the pause motions, and

the redundant operations because the operator does not need to care about the

order of the operations when he/she demonstrates a complex task. From Fig. 4.9

and Table 4.6, it clear that the calculation time increases with the demonstration

time. It means that the arbitrary operating orders can also decrease the calculation

time in the pouring tasks. Therefore, in order to decrease the calculation time of

our method, the operator should accomplish each demonstration as fast as possible

and do not care about the operating order in each demonstration.

Table 4.6: The average path length and demonstration time in the pouring tasks.

path length (m) demonstration time (s)

Same order 1.017 3.450
Pouring 2 cups

Arbitrary order 0.973 3.452

Same order 1.436 4.900
Pouring 3 cups

Arbitrary order 1.320 4.569

Same order 1.776 6.396
Pouring 4 cups

Arbitrary order 1.523 5.856

4.3 Coffee-making Task

In the coffee-making tasks, a spoon (spoon A) and a vessel (vessel B) are placed

randomly on an area of 0.21x0.21 meter2 on the table in each demonstration, and

three vessels (vessel C, D, and E) are placed on the assigned positions where are not

changed during the experiment, as shown in Fig. 4.10. Spoon A is always held as a

tool and operated to do the scooping motions and stirring motions on the vessels.

Two different coffee-making tasks are designed to test the effects of the repeated

operations. The motions of the first coffee-making task are using spoon A to scoop

the content of vessel C into vessel B, to scoop the content of vessel D into vessel B,

to scoop the content of vessel E into vessel B, and to stir the content of vessel B. The
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(a) Human demonstration    (b) Robot execution

Figure 9. Experimental setups for the coffee-making task: 
(a) human demonstration and (b) robot execution.

Figure 4.10: Experimental setups for the coffee-making task: (a) human demonstra-

tion and (b) robot execution.

motions of the second coffee-making task are using spoon A to scoop the content of

vessel C into vessel B, to scoop the content of vessel C into vessel B, to scoop the

content of vessel D into vessel B, and to stir the content of vessel B. Both coffee-

making tasks are demonstrated 22 times, and the total number of demonstrations

is 44.

In the coffee-making task, the Polhemus FASTRAK tracking system, with a

sampling rate of 30 Hz for the sensors attached on the spoon A, were used to

measure the demonstrated trajectories. These trajectories were recorded as the 7-

dimensional sequences, which consist of positions and orientations (in the form of

quaternion) in 3 and 4 dimensions, respectively, with the position normalized by its

standard deviation.

In the coffee-making tasks, vessel C, D, and E never change positions in the

training data. In order to recognize the operated objects in the background, a

background object is created to replace all background objects, and the position of

the background object is the origin. Therefore, in the coffee-making tasks, only two

operated objects are inputted, which are the vessel B and the background object.

For each coffee-making task (2 coffee-making tasks), the 8 of the demonstrations

are randomly selected to be training data to be inputted into the learning method,

and the rest demonstrations are selected to be testing data. These processes are
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executed 5 times, and the average errors, which describe the difference between

the generated trajectories and the trajectories of the testing data, are calculated

by DTW. Then, we let the Mitsubishi RV-2A 6-DOF robot manipulator follow the

generated trajectories to execute the coffee-making tasks under new environmental

states, as shown in Fig. 4.10(b).

Figs. 4.11 and 4.12 show the derived intentions for each of the eight demon-

strations of the two coffee-making tasks. Because the height changes are the clear

features of scooping motions, the time series graphs which describe the height of

the trajectories are used to illustrate the results. Because the locations of the three

vessels (vessels C, D, and E) were not changed during the experiment, they were

viewed as one object fixed on the origin. The two colors blocks mark the delicate

motions (green for vessels C, D, and E, and yellow for vessel B). The derived inten-

tion for demonstration 2 (in coffee-making task 1) and 1 (in coffee-making task 2)

were determined to be the optimal among all.

Figs. 4.13 and 4.14 show the generated trajectories and the trajectories of the

testing data in the two coffee-making tasks. In the subfigures of Figs. 4.13 and 4.14,

the black line is the trajectory of the testing data, and the color line is the generated

trajectory, which consists of the red lines (move motions) and other color lines (deli-

cate motions for operated objects). In each XY-plane subfigure, the color rectangles

(yellow,green,blue, and purple) indicate the positions of the operated object (B,C,D,

and E). Because there are only two operated objects, which are the vessel B and

the background object, in each subfigure of the coffee-making tasks, the delicate

motions which scoop the content of vessel C, D, and E are green lines, which op-

erate only on the background object, but the operated positions of the background

object are different. Although the background objects of both two coffee-making

tasks are operated, the difference of the operated objects of the generated trajecto-

ries are observed clearly in each coffee-making tasks. These generated trajectories

and human trajectories exhibited certain degree of similarity, but not exactly the

same. However, the generated trajectories can be used to manipulate the robot to

accomplish the coffee-making tasks.
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Figure 4.11: The derived intentions for the eight demonstrations of the coffee-making

task 1.
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Figure 4.12: The derived intentions for the eight demonstrations of the coffee-making

task 2.
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Figure 15. Experimental results for the coffee-making task 1 executed by both the human operator and robot 
manipulator under new environmental states:  (a) trajectory of vessel A in X-Y plane. (b) variation of the 
height of vessel A. (c) variation of the tilt angle of vessel A.

--- Human
- - Robot

Figure 4.13: Experimental results for the coffee-making task 1 executed by both

the human operator and robot manipulator under new environmental states: (a)

trajectory in X-Y plane, (b) variation of the height, and (c) variation of the tilt

angle of spoon A.

Table 4.7: Average position error between the trajectories of human operator and

the generated trajectories in the coffee-making tasks.

Task order Error (m)

Pattern 1 0.030
Coffee-making

Pattern 2 0.027
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Figure 16. Experimental results for the coffee-making task 2 executed by both the human operator and robot 
manipulator under new environmental states:  (a) trajectory of vessel A in X-Y plane. (b) variation of the 
height of vessel A. (c) variation of the tilt angle of vessel A.
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Figure 4.14: Experimental results for the coffee-making task 2 executed by both

the human operator and robot manipulator under new environmental states: (a)

trajectory in X-Y plane, (b) variation of the height, and (c) variation of the tilt

angle of spoon A.
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Figure 17. The errors of the generated trajectories with the different 
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Figure 4.15: The errors of the generated trajectories with the different numbers of

the training demonstrations in the coffee-making tasks.

Table 4.7 shows the average errors between the trajectories of the testing data

and the generated trajectories for the two coffee-making tasks, and these errors are

calculated by DTW on 3D positions. In Table 4.7, first, it was observed that the

different operations of two coffee-making tasks do not have a great effect upon the

results of our method. Second, because the working space of the coffee-making

tasks is smaller than that of the pouring tasks, it may cause that the error of the

coffee-making tasks is smaller than that of the pouring tasks.

4.3.1 Robustness in Coffee-making Tasks

Figure 4.15 shows the relation between the errors and the number of demonstrations

(2 to 8) in the two coffee-making tasks, as shown in Table 4.7. First, it was observed

that our method may needs 4 demonstrations to learn the goals of the coffee-making

tasks. Second, it was observed that the errors of the first coffee-making task is larger

than that of the second, and it implicates that learning the first coffee-making task

is more difficult than learning the second one.

Because the coffee-making tasks has only two objects (vessel B and background

object) and the demonstration time of each demonstration is almost equal, we com-

pare the time complexity with the time of the calculation by changing the number

of the demonstrations. Fig. 4.16 shows that the time of the calculation of the

coffee-making tasks increases approximately squarely with the the number of the
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Figure 4.16: The calculating time with the different numbers of demonstrations in

the two coffee-making tasks.

Figure 8. Experimental setups for the fruit jam task: (a) 
human demonstration and (b) robot execution.

(a) Human demonstration   (b) Robot execution

Figure 4.17: Experimental setups for the fruit jam task: (a) human demonstration

and (b) robot execution.

demonstrations. This matches the expectation of the time complexity. Fig. 4.16

also shows that the difference between the calculation time of two coffee-making

tasks is not evident. This is because the number of the operated objects of two

coffee-making tasks are the same and the demonstration time of each demonstration

is almost equal. Therefore, although learning the first coffee-making task is more

difficult than learning the second one, the difficulties of the tasks do not influence

the calculation time evidently.
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Figure 4.18: The derived intentions for the ten demonstrations of the fruit jam task.
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--- Human
- - Robot

Figure 4.19: Experimental results for the fruit jam task executed by both the human

operator and robot manipulator under new environmental states: (a) trajectory in

X-Y plane, (b) variation of the height, and (c) variation of the tilt angle of knife A.
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4.4 Fruit Jam Task

To further explore its generality, we also apply the proposed approach for a fruit

jam task, in which the robot learns how to spread fruit jam on toast. Fig. 4.17

shows the experimental setup, which was also divided into the stages of (a) human

demonstration and (b) robot execution. In Fig. 4.17 (a), the human operator

picked up a knife from the table, scooped the fruit jam from the jar, spread it on

the toast in a zigzag motion, and then placed knife back on the table. A total of

ten demonstrations had been performed, with the locations of the knife, jar, and

toast varied during each demonstration. The intention deduction algorithm was

then applied to derive the intention of the operator from all possible intentions. Fig.

4.18 shows the derived intentions for each of the ten demonstrations. In Fig. 4.18,

delicate motions related to the jar and toast were identified from the trajectory of the

knife, marked by the green and blue blocks, respectively. It was observed that these

two delicate motions were located at the portions of the first local minimum and

a flat region following, implicating the scooping and zigzag motions. The derived

intention for demonstration 1 was determined to be optimal. We then let the robot

manipulator utilize this intention to execute the fruit jam task, in which the jar

and toast were placed in new locations. And, the human operator was also asked

to execute the same task. Fig. 4.19 (a) shows the variations of the height of the

knife during task execution, Fig. 4.19 (b) its trajectories in the X-Y plane, and Fig.

4.19 (c) the variations of its tilt angle. Similar to the phenomenon exhibited in the

pouring and coffee-making tasks, the trajectories for the human operator and robot

manipulator were not exactly the same, while the robot manipulator successfully

accomplished the task.
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4.5 Discussion

4.5.1 Comparison with Previous Approaches

It shall better demonstrate the capability of the proposed approach by comparing its

performance with those of previous works. However, good benchmarks or methods

are still in demand for this field [5]. According to our survey, the illustration in

Calinon [9,38] provides a good example for demonstration. In [9], to illustrate the

objects are operated correctly, the operating trajectory is projected into the X-Y

plane and the positions of the objects are marked to show that the motions operate

the objects correctly. To illustrate the object-operating motions, the time series

graph which describes the probability distribution of the multiple trajectories is

used to show that the motions operate the correct objects at the correct moment.

With these merits, we thus illustrate our results in a similar way, which exhibits the

delicate motions operate the objects correctly at the correct moment. Moreover,

in order to evaluate the correctness of the generated trajectory, we compare the

generated trajectory with that of the human demonstration. As the motion of the

human demonstration may not be perfect, it can be used to distinguish the wrong

operations.

Figs. 4.7, 4.13, 4.14, and 4.19 show that our approach can generate robot tra-

jectories that are similar to the human trajectories, which operate objects correctly.

Figs. 4.6, 4.11, 4.12, and 4.18 show that the derived delicate motions correspond

those of the human and operate the objects correctly. In Figs. 4.8 and 4.15, the

number of demonstrations needed by the proposed approach to deduce the inten-

tion increases with the number of operated objects. However, Fig. 4.9 shows that

the calculating time increases steeply with the number of operated objects and

the demonstration time. This result can be expected from the time complexity

O(R2 · LV 5 · S2), pointing out a major limitation of the proposed approach.
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4.5.2 Application Scenario for Breakfast Preparation

To illustrate how to apply the proposed approach for tasks in daily lives, we take

the task of breakfast preparation as an example, which consists of several sub-tasks.

The breakfast includes one cup of coffee and one slice of toast with fruit jam. For

analysis, each sub-task is distinguished by different tools. During preparation, a set

of objects are put on the table first, including a cup, a spoon, a bottle of hot water,

a coffee jar, a sugar jar, a milk bottle, a disk, a knife, a slice of toast, and a fruit

jam jar. Because these objects may be placed on the table randomly, the positions

of these objects are inputted into the scheme in each demonstration.

First set of sub-tasks are removing and opening the lid of each jar and the cover

of each bottle. The lid or cover can be viewed as a handled tool and the jar or bottle

as the operated object, so that these sub-tasks can be analyzed as the tool-handling

tasks. After that, the preparation of coffee task can be divided into the sub-tasks of

pouring hot water, adding coffee and sugar, and pouring milk, which can be analyzed

as the demonstrated pouring and coffee-making tasks. Note that the weight sensors

or vision may be needed to measure the height changes of the contents of the coffee

jar and the sugar jar for learning the scooping motions in the coffee-making task.

In turn, the sub-task of spreading the toast with fruit jam can be analyzed as that

in the experiment. Similar to this breakfast preparation, various tasks in daily lives

can be deal with alike.
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Chapter 5 Conclusions

In this chapter, the conclusions are presented and suggestions are stated for future

research.

5.1 Conclusions

In this dissertation, we have proposed a novel approach for intention deduction

from demonstrated trajectories for tool-handling tasks. The proposed approach

(a) does not need to pre-define motions, (b) does not constrain the operator to

perform the task with certain motion speed or motion type, (c) allows the order of

the events to be altered, and (d) allows some redundant operations. In realization,

the concept of cross-validation and the algorithm based on dynamic programming

have been employed to search for the optimal intention. We have performed a

series of experiments and analyses to demonstrate its extensibility and robustness

based on the pouring, coffee-making, and fruit jam tasks. As arbitrary order of the

operations decreases path length and demonstration time, the demonstration can

thus be executed in a natural and effective manner.

5.2 Future Research

First, the proposed approach would be applied for more various types of tasks related

to home-like environments. However, the time complexity O(R2 · LV 5 · S2) means

that this approach cannot handle very complex task with long demonstration time.

Therefore, more efficient methods for intention deduction should be developed. Sec-

ond, in our implemented system, the user still needs to prepare sensors for the

operated objects and make an adjustment. To avoid preparing sensors for all pos-

sible operated objects, the implemented system should be improved with a better

vision system, so the robot can observer the human demonstration in the back-

ground without interfering with the daily work. Third, in our approach, the move
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motions are generated by the cubic polynomial to smoothly connect the delicate

motions, but, in the real world, these move motions may lead the tool or the robot

self to collide with other objects. Therefore, the move motions should be generated

not only to smoothly connect the delicate motions but also to let the tool be moved

safely without collision.
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