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Chapter I

Introduction

1 Background

Webster defines the word ”factor” as ”one that actively contributes to the

production of a result”. A general and reasonable working definition of ”sys-

tem” is ”a set of interacting or interdependent entities, real or abstract,

forming an integrated whole”.

Given an unknown system, signals are sequences of values collected by

sampling the behavioral observation values in a system. Based on the working

definition of system, the interactions among signals, sampled from a system,

can be regarded as the behavior of a system.

As shown in Figure I.1, the relation between factors can be visualized

by drawing the data distribution of sampled signals. Both of the two data

distributions shown in Figure I.1 can be expressed by a line with slope equal

to 0.5. That is, using a line to represent the data distribution is appropriate.

However, the phenomenon that most sample data points in Figure I.1(b)

converged around (40, 40), can not be explained by such line models.

Since most real-world systems belong to open system, analyzing a system

by inspecting all factors is almost impossible or impracticable. Thus, most

analyses mainly focus on major factors only. However, ignoring minor factors
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may cause the sampled signals noisy and randomness. That is, describing

a data distribution by equations may not be good enough because some

information contributed by the not-considered factors are ignored. As shown

in Figure I.2, two exemplar data distributions are plotted using the stock

price and earn per share(EPS) signals sampled from Taiwan Stock Market

in March 1996 and March 2006.

Finding equations to describe the relation between stock price and EPS in

these two example is difficult or impracticable. That is, for data distributions

sampled from a real-world system, a shape-based numerical model could be

more appropriate to quantitively represent the region of the distribution by

its shape.

Since the shape of sample data distribution implies the relation among

factors (random variables), system behavior can therefore be represented by

the shape model in quantitative form.

2 Motivation and Goal

In order to do data mining on abstract system behavior, system behavior

has to be represented in a numerical form first. That is, we have to translate

the observed in data mining applications to a computable form. The design

of such a computable form has to characterize the system behavior in a

reasonable way.

System behavior results from the interaction and interdependency among

acting entities, which are called factors in a system. For example, tempera-

ture, humidity, and so on are factors in a weather system. Stock price, earn

per share (EPS), etc,. are factors in an economic system.

According to the general definition of systems, human life is related to

various systems, such as weather system, economic system, ecology system,
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cultural system, and so on. Thus, realizing how a system works is useful

to help people make decisions, control risk and so on. Since the interaction

or interdependence among factors of a system determines the behavior of

a system, a quantitative representation of system behavior is essential to

system analysis for tracking the evolution of system, comparing between sys-

tems, etc. Therefore, the motivation of this research is to design a model for

capturing system behavior in numerical form and measure similarity between

system behavior quantitatively.

Proposing a data model to enable the computation of data distribution

is the goal of this dissertation. Although statistical quantities of a data

distribution can be used for computing, there are too much details lost when

measuring statistical values. On the other hand, while general data models

could emulate the coverage area of data distribution well, its complexity in

computation is demanding.

In summary, the goal of this dissertation is to design a numerical model

which is capable to meet the following requirements. First of all, the model

has to be suitable for representing a noisy and randomness data set. Be-

sides, the numerical representation should allow for geometry operations. As

shown as Figure I.3, the proposed model has to facilitate the work of shape

comparison in account of the following four kind of representational invari-

ance due to geometry operation - 1) translation, 2) scale, 3) aspect ratio,

and 4) rotation. 1) Translation invariance means that translating the data

distribution to another position can’t change the shape representation; 2)

Scale invariance means that resizing the data distribution can’t change the

shape representation; 3) Aspect ratio invariance means that resizing the data

distribution without keeping its aspect ratio can’t change the shape repre-

sentation; 4) Rotation invariance means that rotating the data distribution
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can’t change the shape representation.

Aiming for measuring the similarity between data distributions of data

sets, the shape of data distribution should be represented by an quantitative

mathematical forms. Besides, to let the similarity measurement be invariant

against translation, resize, and rotation operations, the location, size, and

orientation of the shape of data distribution should be extractable from the

proposed shape representation.

3 Dissertation Organization

This dissertation is organized as follows. At first, related works, including

statistical methods and data models, are introduced in Chapter II. Then the

proposed model, Polygon descriptor, is introduced, evaluated, and discussed

in Chapter III. Based on Polygon descriptor, three extensions are proposed to

bring the Polygon descriptor to real world applications. The first extension,

measurement of shape deformation (see Chapter IV), is the major goal of

this dissertation. It measures the similarity of abstract system behavior in

different time periods of stock market by describing the data distribution as

a polygon descriptor, and comparing two polygon descriptors by deforming

distance. Polygon descriptor can also be used to improve the functionality of

similarities based clustering algorithm. Section V introduces a method which

estimating variance values for similarity based clusterings, such as K-medoid.

Since the only available information for a similarity based clustering is the

pairwise similarity between sample data, Polygon descriptor is required for

estimating virtual variances of each clusters. The last extension is introduced

in Section VI. Since a polygon descriptor can be used to represent a polygonal

region in feature space, Polygon descriptor can also be used as the unit of

tracking objects. Last, conclusion remarks are drawn in Chapter VII
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Chapter II

Related Works

People collect data samples to find relations among system factors. For

example, we measure the falling distance and elapsed time of dropping a

object to figure out how gravity system works. To show the behavior of

a system, numerous methods, including statistics, data models, and so on,

were proposed to represent system behavior by numbers, equations, or data

models. Mostly, these methods use sample data distribution for estimation.

Sample data distribution actually shows how a system works.

In this chapter, data representation methods, including statistics, and

data models, are discussed. Statistical methods, including Moment, Mean,

Variance, Covariance, and Correlation Coefficient, are introduced in section

1. Each statistical quantity represents a characteristic of a data distribution.

Several statistical quantities could describe a data distribution. Section 2

introduces several modeling techniques, including Linear Regression, Gaus-

sian Model, K-Means, Gaussian Mixture, and Histogram. Data models try

to fit a data distribution with the coverage area by adjusting its numerical

parameters. Most data models are useful to partition the (feature) space into

regions for recognition applications. Last, concluding remarks are drawn in

section 3.
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1 Statistical Methods

By representing a factor of an unknown system by a random variable X,

a signal is a sequence of experiment outcomes of random variable X. The

characteristic of a factor can be described by statistic of the corresponding

random variables, such as Mean, Variance, Covariance, and so on.

1.1 Moment

Given a random variable X, the moment generating function, M(t), of the

random variable X is defined for all real values of t by

M(s) = E[esX ] =
∫ ∞

−∞
esXf(X)dx (II.1)

where f(X) is the distribution function of X.

By differentiating Equation II.1 n times, we obtain

M (n)(s) = E{XnesX} (II.2)

By assigning n and s to Equation II.2, moment functions are generated to

measures various characteristics of a random variable. For example, when

n = 1 and s = 0, M ′(0) = E[X], named mean, measures the expected value

of the experiment outcomes of a random variable X.

1.2 Mean

The expected value E[X] of a random variable X, named mean, is defined

by

E[X] =
∑

X:p(X)>0

Xp(X),

where p(X) is the associated probability distribution of X. Theoretically, the

average of numerous experimental outcomes of a random variable X should

approximate the mean value.
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1.3 Variance

Let X be a random variable and µ be the mean of random variable X.

Variance of a random variable X, denoted by var(X), is defined by

var(X) = E[(X − µ)2] = E[X2]− (E[X])2.

Variance indicates the distributing range of experiment outcomes of random

variable.

1.4 Covariance

Covariance between two random variable X and Y , denoted by cov(X, Y ),

is defined by

cov(X, Y ) = E[(X − E[X])(Y − E[Y ])]

That’s, Covariance measures the variance between each pair of random vari-

ables. For example, cov(X, Y ) is a matrix containing four variance measure-

ment - E[X2], E[XY ], E[Y X], and E[Y 2].

Covariance is a measure of how much two variables change together. Since

Covariance matrix describes the variance for each pair of random variables,

a Covariance matrix can indicate the orientation of data distribution.

1.5 Correlation Coefficient

Correlation of two random variables X and Y , denoted by ρ(X, Y ), is defined,

as long as var(X) var(Y ) is positive, by

ρ(X, Y ) =
cov(X, Y )

√

var(X) var(Y )

Correlation Coefficient indicates the strength and direction of a linear

relationship between two random variables.
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2 Data Models

Data model uses predefined mathematical kernel, such as lines, normal dis-

tribution, etc., to approximate the coverage area of a data distribution.

2.1 Linear Regression, and Auto-regression

Linear Regression models the relation between a output signal and several

input signals by a line, defined as follows,

Yi =
N
∑

j=1

Xijβj + εi,

where Yi is the i-th element of output signal, Xij is the i-th element of the

j-th input signal, and the coefficients βj are estimated to minimize εi. Since

the coefficients βj show how the input signals X compose the output signal

Y , the coefficients βj can be used to describe the relation between input

signals and output signal.

On the other hand, auto-regression models the relation between current

element and the latest N elements in a signal by the following Equation,

Yt =
N
∑

i=1

φiYt−i + εt

where φi are the auto-regression coefficients, Yt is the signal under investi-

gation, and N is the order(length) of the filter which is generally very much

less than the length of the series.

2.2 Gaussian Model

Unlike linear regression method, Gaussian model[14] uses Gaussian/Normal

distribution to describe the data distribution of input signals. Gaussian/Normal

distribution f(x) with parameters µ and σ2 is given by

f(x) =
1√
2πσ

e
−(x−µ)2

2σ2
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According to Bayes’ rule, probability density functions of Gaussian model

can be used to measure the probability of a particular class Cj given as input

pattern x. That is, given a input pattern x, the probability P (Cj|x) of a

particular class Cj, corresponding to the Gaussian model, can be estimated

as follows,

P (Cj|x) = P (x|Cj)
P (Cj)

P (x)

where P (Cj|x) is the probability that an input vector x belongs to class Cj;

P (x|Cj) is the probability density function of an input vector x if the class

was known to be j, P (Cj) is the prior probability for class j, and P (x) is the

overall probability density function of x.

The unimodal Gaussian method generates an estimate of P (x|Cj) as fol-

lows,

P (x|Cj) =
1

(2π)n/2|Vj|1/2
e[−1/2(x−Mj)

T V −1
j

(x−Mj)]

Free parameters include the mean Mj of input vectors of each class and the

covariance matrix Vj of each class j.

2.3 K Means

K-Means model[11] uses K mean points to represent a data distribution. K

mean points are estimated by minimizing

N
∑

i=1

min
x̄k∈X̄

‖xi − x̄k‖2

where X̄ = {x̄1, ..., x̄K} is a set of mean vectors.

The training algorithm[15] is stated as follows:

1. Initial K mean vectors x̄k, for k = 1, ..., K, by randomly selecting from

training data points.
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2. Compute cluster assignments C(xi) of data points xi ∈ X, where X is

the training data set, by

C(xi) = argmin
x̄k∈X̄

‖xi − x̄k‖2.

where X̄ is the set of mean vectors.

3. Measure the means vectors x̄k ∈ X̄ by using the cluster assignments

C(xi) and the following equation,

x̄k :=
1

Nk

∑

C(xi)=x̄k

xi,

where Nk is the number data points with cluster assignment C(xi) =

x̄k.

4. Repeat steps 2 and 3 until the mean vectors converged.

2.4 Gaussian Mixture Model

Gaussian Mixture model[16] combines multiple Gaussian models to describe

the coverage area of a data distribution in arbitrary shape. A Gaussian

Mixture Model is defined as follows,

P (x|C) =
Nc
∑

k=1

wkGk

where wk is the weight for the k-th Gaussian Gk,
∑Nc

k=1 wk = 1, and a Gaus-

sian component Gk is defined as:

Gk =
1

(2π)n/2|Vk|1/2
e[−1/2(X−Mk)T V −1

k
(X−Mk)]

where Mk and Vk are the mean and covariance matrix of the k-th Gaussian

component respectively.
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Generally, parameters, including weight, mean, and covariance matrix, of

a Gaussian Mixture Model are estimated using an iterative procedure called

EM algorithm[5]. EM algorithm maximize the likelihood L or log-likelihood

ln(L) between a given training set X = {x1, ..., xNtrain
} and the probability

density function of a Gaussian Mixture Model. The likelihood function L for

a class C is defined as,

L =
Ntrain
∏

i=0

P (xi|C).

The log-likelihood is defined as,

ln(L) =
Ntrain
∑

i=0

ln(P (xi|C)).

where Ntrain is the number of sample data points, P (xi|C) is the probability

of a data point xi in C.

The training algorithm of Gaussian Mixture Model with K Gaussian is

stated as follows:

1. Initialize the K Gaussian means µi, i = 1, ..., K by using K-Means

algorithm.

2. Initialize the K Gaussian covariance matrices Vi to the distance to the

nearest cluster and the weights πi to 1/K.

3. Let the probability of a data point x in the i-th Gaussian component

Gi be

p(x|Gi) =
1

(2π)d/2|Vi|1/2
e[−1/2(x−µi)

T V −1
i

(x−µi)],

where µi and Vi are the mean and covariance of a Gaussian component

Gi. d is the dimension of x.

4. Compute the probability p(Gi|x) for each Gaussian component Gi, for

14



i = 1...K in condition of a given data point x.

p(Gi|x) =
πip(x|Gi)

p(x)
=

πip(x|Gi)
∑G

i=1 πjp(x|Gj)

5. Update the weights πi, means µi and covariance matrices Vi for each

Gaussian component Gi:

πi :=
1

Nc

∑

x∈X

p(Gi|x),

µi :=
1

Ncπi

∑

x∈X

p(Gi|x)x,

Vi :=
1

Ncπi

∑

x∈X

p(Gi|x)
(

(x− µi)(x− µi)
T
)

,

where X is the training data set and Nc is the number of training data

points in X.

6. Repeat step 3,4,5 until π converges.

2.5 Histogram

As the example shown in Figure II.1, a feature space is partitioned into

several bins. The number of data points in each bins are used to represent the

data distribution. By referencing the maxima and minima in each dimension,

a feature space is partitioned into several bins. By counting the number of

data points in each bins, a histogram is constructed. Since the location of

bins are based on the the maximal and minimal value in each dimension,

representing a data distribution by a histogram is capable to be invariant to

translation, scale, and aspect.

2.6 Polar Histogram

As the example shown in Figure II.2, Polar histogram[9] can be invariant to

rotation by segmenting a feature space by radial cuts and concentric circles.
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Figure II.1: According to the maximal and minimal value in each dimension,
a feature space is partitioned into several bins. By counting the number of
data points in each bins, a histogram is constructed to represent the original
data distribution.

That is, the data bins of Polar histogram is decided according to the radius δ

and the angle α. Since Mean is subtracted from data points, polar histograms

are invariant to translation. Since the radius δ is normalized by the distance

from farthest elements to Origin, polar histogram is also invariant to scale.

Since α is the angel between the line from the data point to origin and the

line from the farthest point to origin, polar histogram is invariant to rotation,

too.
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Figure II.2: Polar histogram. Referencing the farthest points from center, a
disc-shaped partition is created to computing the polar histogram.
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3 Concluding Remarks

In general, representing a data distribution by several statistical values, such

as Mean, Variance, and so on, dropped too much details. Besides, since most

statistical values represents the global characteristic of a sample distribution,

characteristics of local regions are usually unattended.

On the other hand, data models, such as Gaussian Mixture, K-Means,

and so on, try to create a best fit coverage area for sample data distribution

by mixing components. That is, by using a data model which is estimated

from a set of sample data points A, we can examine whether a test data is

contained in the region expanded by sample data A. However, since a data

model is usually a mixture of several kernel models, extracting characteristics

of data distribution from a data model is often difficult.

In order to describe the shape of a data distribution, and reveal char-

acteristics of a data distribution, a statistical shape model, which uses a

simple single structure to represent the shape of a sample data distribution,

is required. Without fitting the region of a data distribution, a model may

lost too much details of sample distribution. Without using a simple single

structure, a model may be difficult to analyze or to make extensions. Thus,

Polygon descriptor is proposed in Chapter III to model a data distribution

in terms of a single generalized polygonal region.
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Chapter III

Polygon Descriptor

In general, linear or non-linear mathematical model is very difficult to rep-

resent the randomness of data distribution, because they describe a system

by analytical functions. Thus, modeling data by complex mixture models

are proposed to preserve more inherent characteristics of a data distribu-

tion. However, mixture models often lack of operational flexibilities, such

as translation, scale, and rotation invariant operations, which are useful in

computation of shape difference. In the past, shape analysis[20][29] methods

with transform, scale, and rotation invariance were proposed for similarity

measurement among images. However, most of these methods require shape

features, such as edges or boundaries to represent an object or a data distri-

bution.

In this chapter, a polygon-based shape model, named Polygon descriptor,

is proposed to represent a random and noisy data distribution in a transla-

tion, scale, and rotation invariant manner. In the following, we first present

the Polygon descriptor in a formal mathematical form.
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1 Model Definition

Polygon descriptor is proposed to formulate a data distribution. Given a set

of data points, a polygon descriptor can be used as feature objects to char-

acterize the dependencies among data variables. Since Polygon descriptor

represents the geometry of a data distribution in numerical form, the feature

represented by a polygon descriptor is useful for translation, scaling, and

rotation invariant comparisons.

In order to extend the Polygon descriptor concepts to any dimensionality,

a generalized Polygon is first defined as follows:

1. A generalized Polygon is an union of several Convex Units.

2. A Convex Unit is a hyperspace surrounded by several hyperplane.

3. A Polygon descriptor is the mathematical formulation of a convex unit.

A Polygon descriptor contains a reference center and N normal vectors.

A normal vector represents: 1) the normal direction of a hyperplane which

encloses the convex unit, and 2) the distance from the reference center to

each hyperplane. Figure III.1(a) shows an exemplar Polygon descriptor for

the representation of a 2D data distribution in a convex unit. The reference

center is located at (20, 20) and five normal vectors are

(

15
0

)

,

(

7.5
7.5

)

,
(

−7.5
7.5

)

,

(

−15
0

)

, and

(

0
−15

)

. By binding a 1-D probability function

to each normal vectors, a polygonal probability model is created as shown

in Figure III.1(b). Suppose the 1-D probability function is a Gaussian func-

tion, then the polygonal probability model (distribution) can be centered at

(20, 20) and the variance corresponds to each normal vector can be the length

of each normal vectors respectively.
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By combining several polygon descriptors, a generalized Polygon can be

represented by the proposed mathematical form. By using a generalized

Polygon to model a set of data points, the data points may often need to be

clustered into several groups (convex units) according to the requirements of

applications. Since a single convex unit is enough to describe the data depen-

dencies among data variables, which is the motivation of this dissertation,

this section will focus on the case of single convex unit only.

Symbols related to Polygon descriptor are defined as follows.

~C Reference Center. The Medoid among a set of data points are
selected to be the reference center.

Sj Pseudo boundary. A set of imagine hyperplane which wraps the
distributed area of a data set. The space wrapped by pseudo bound-
aries should reflect the shape of data distribution.

~aj Normal Axes. A set of data vectors starting from the reference
center to the pseudo boundaries of data distribution. Basically, a
normal vector aj is orthogonal to a pseudo boundary Sj.

~Gj Side Cluster. As shown in Figure III.2, a side cluster contains data
points located in a pyramidal space defined by a tip point at C and
a bottom side Sj.

α Normal-to-Boundary ratio. As shown in Figure III.3, Normal-to-

Boundary ratio is defined by the length of a normal vector aj

the length of a pseudo boundary Sj

.
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Figure III.1: (a) An exemplar of Polygon descriptor, where its center is
at (20, 20) and normal vectors (drawn as solid arrow) to each surrounding
hyperplane are (15, 0)T ,(7.5, 7.5)T ,(−7.5, 7.5)T ,(−15, 0)T , and (0,−15)T . (b)
The pentagonal probability distribution for the polygon descriptor of (a).
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Sj

−→
C

O

Gj

−→aj

Figure III.2: An exemplar Polygon descriptor is given to show the meaning
of symbols related to Polygon descriptor.

−→
C

−→aj α‖−→aj‖

Figure III.3: An exemplar side cluster is given to show the meaning of
Normal-to-Boundary ratio. A smaller Normal-to-Boundary ratio represents
a narrower side cluster.
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2 Model Estimation

To describe the data distribution for a set of data points by a polygon de-

scriptor, a learning (fitting) algorithm is proposed to iteratively approximate

the shape of data distribution by adjusting the model parameters.

2.1 An Idea of Polygon Description Estimation

Figure III.4 depicts a data distribution Da resulting from a uniform distri-

bution in a diamond region Db and a uniform distribution in a square region

Dc. The dashed lines in Figure III.4 show the desired boundaries of data

distributions Da, Db, and Dc.

Da

DcDb

Figure III.4: A data distribution may be composed by several components
in different shape. In this example, a data distribution Da is consisting of a
uniform distribution in a diamond region Db and a uniform distribution Dc.
The boundaries for Dc is supposed to be the average boundaries of its two
components.
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By plotting such composite component in 3-D layout, the density function

will like Figure III.5. The z-axis implies the density in everywhere. Figure

III.5 (A) draws the density function of data distribution Da given in Figure

III.4. A radial cut θ from the center point c is shown in Figure III.5 (A.1) and

(A.2). As shown as the example, the data distribution can be decomposed

into several horizontal density layers (red line). si is the distance from center

to distribution boundary for each density layer. ai is the average distance

from center to data points in each density layer. The example also shows

that s ≈ ka where k is a constant when the data dimension is fixed. Another

example for a data distribution consisting of infinite number of density layers

is given in (B), (B.1), and (B.2). Since the ratio between s and a is fixed, a

down-sized shape for a data distribution can be estimated by connecting the

average distance from center to data points in every radial cuts. That is, the

shape of data distribution can be approximated by 1) partitioning the feature

space into segments by using hyperplane passing through the center point,

2) computing the mean points for each segments and 3) connecting mean

points of neighboring segments to represent the shape of data distribution.

Therefore, the average boundaries of each uniform components are pro-

posed to represent the shape of a data distribution, which may be composed

by various uniform distributed regions.

Figure III.6 shows another example. The density in dark gray region

is higher than in light dark region. Besides, the high density region is not

connected. Therefore, with a reference center in one high density peak, the

other one will cause a raising part in the resulted contour. Such results are

quite nature, because there is supposed to have a spread over that direction

where plenty of data samples, far apart from the reference, are distributed

along the direction.
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On the other way, another observation is required to develop the learning

(fitting) algorithm for Polygon descriptor. Figure III.7 uses an example to

explain the Polygon descriptor learning method introduced in this section.

By partitioning the feature space by two hyperplane x = 0 and y = 0, the

estimated polygon contour is the solid square. By partitioning the feature

space into more segments with two extra hyperplane y = x and y = −x, the

estimated polygon shape is drawn in dashed lines. Apparently, the estimated

polygon approximates the shape of data distribution better when more hy-

perplane are used to segment the feature space. However, the robustness of

mean estimation for each segment is related to the size of segments. That is,

to be robust to noisy data, the size of segment has to be large. Therefore,

much delicate learning algorithm is required to estimate a polygon descriptor

to approximate the shape of data distribution.
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Figure III.5: The 3-D plot of two composite uniform regions. The density
function of the data distribution Da given in Figure III.4 is drawn in bird’s
view (A). A radial cut θ from the center point c is shown in (A.1) and (A.2).
The density function can be considered as a composition of multiple density
layer (red line). si is the distance from center to distribution boundary for
each density layer. ai is the average distance from center to data points in
each density layer. As the example shown, s = ka where k is a constant
when the data dimension is fixed. (B), (B.1), and (B.2) are another set of
examples with infinite number of density layers.
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Figure III.6: Density in dark gray region is higher than in light gray region.
The high density part results the contour sharp in left/right side. The dis-
connected high density region in the left part push the contour more left,
and gap between two high density region results the contour in the left side
much more similar to the contour of light gray region.

Figure III.7: An observation about the partial statistics of data clustering
in pyramidal region. An example is given to introduce a simple method for
the learning of Polygon descriptor. By using two hyperplane to segment
the feature space into four segments, the solid square is estimated. When
increasing the number of segments, the estimated polygon approximates the
shape of data distribution better (dashed and dotted contours).
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2.2 Learning Algorithm

According to the statistical characteristics of a data distribution, a Poly-

gon descriptor can be estimated from a data distribution by an iterative

process. Figure III.8 shows the flow chart of a polygon descriptor learn-

ing process. First, a reference center is estimated, and N normal vectors

,A = {a1, ..., aj, ..., aN}, is initialized in a random manner. According to

these normal vectors, data points are clustered into groups (side clusters) in

associated with each normal vectors in A. For each side cluster, a normal

vector is estimated by using data points in each side cluster. Two processes

- 1) cluster data points according to normal vectors, and 2) estimate nor-

mal vectors according to the result of data clustering, are repeatedly applied

until the orientation of normal vectors converges. Last, the length of nor-

mal vectors are estimated. As stated in Section 2.3, the number of normal

vectors N can be determined by gradually increasing the number of normal

vectors until the number of distinguishable normal vectors converges. In the

followings, the learning algorithm for Polygon descriptor is presented in four

parts: (1) Reference center estimation, (2) Data point clustering, (3) Normal

vector orientation estimation, and (4) Normal vector length estimation.

(1) Reference Center Estimation

The reference center c of a polygon descriptor is defined as the Medoid of

a set of data points P . According to the definition of Medoid, the reference

center of a polygon descriptor can be estimated as follows,

c = argmin
pi∈P





∑

pj∈P

norm(pi, pj)



 , (III.1)

where pi and pj are two data points in P and norm(pi, pj) is the norm from

pi to pj.
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Data point clustering

normal vector initialization

Reference center estimation and

Normal vector orientation estimation

Normal vector length estimation

Yes

No

Figure III.8: The flow chart of Polygon descriptor learning process. Given a
set of data points, the learning process finds a reference center and normal
vectors which represents the polygon descriptor that can be best fitted to the
data distribution of training data set.

(2) Data Points Clustering

Data point clustering process partitions data points into side clusters

according to N normal vectors. That is, the data point clustering process

associates each data point pi to a normal vector ~aw, in the normal vector set

A = {~a1, ..., ~aj, ..., ~aN}. The associated normal vector for a data point pi can

be measured by

~aw = argmax
~aj∈A

~aj · ~cpi

‖~aj‖2
, (III.2)

where ~cpi is the vector from reference center to a data point pi.

In Eq. III.2, ~aw is the normal vector that causes the largest projection

length ~aj · ~cpi

‖ ~aj‖2
. As shown in Figure III.9, projection ratio is the ratio between

the projection length ~aj · ~cpi

‖ ~aj‖
and the length of the normal vector ‖aj‖. Since a
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data point pi having identical projection ratios on two distinguishable normal

vectors ~a1 and ~a2 satisfy the following Equation,

~a1 · ~cpi

‖~a1‖2
− ~a2 · ~cpi

‖~a2‖2
= 0

⇒
(

~a1

‖~a1‖2
− ~a2

‖~a2‖2

)

· ~cpi = 0.

Data points having the same projection ratio on ~a1 and ~a2 are located at a

hyperplane passing through the reference center and orthogonal to the vector
(

~a1

‖ ~a1‖2
− ~a2

‖ ~a2‖2

)

. Therefore, the clustering process divides a convex unit into

N pyramid regions, where N is the number of normal vectors.

l =
−→aj ·
−→cpi

‖
−→aj ‖

−→aj

c

Projection Ratio = l/‖−→aj‖

pi−→cpi

Figure III.9: The projection ratio for a data point pi on a normal vector
~aj can be calculated by dividing the projection length l by the length of a
normal vector aj.

When the normal vector is point to outside of the pyramid data distribut-

ing area, the projection ratio may become negative. However, the relation,

between projection ratios, still holds.

(3) Normal Vector Orientation Estimation

Data points in a side cluster can be used to estimate the orientation of a

normal vector.

As shown in Figure III.11, data points associated to a normal vector ~a
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are displayed in a gray-scale region. A hyperplane H, which passes through

the reference center c, partitions a side cluster into two segments, I and II.

Let µ1 and µ2 be mean points of segments I and II respectively. According

to Similar Triangle properties (see Figure III.10), the line that connects µ1

and µ2 is supposed to be orthogonal to the normal vector ~a. Therefore, for

2-D data distribution, the orientation of a normal vector can be estimated

as follows:

1. Partition the cluster into 2 segments by a hyperplane passing through

reference center;

2. Computing mean points, µ1 and µ2 for each segments;

3. Find a vector which is orthogonal to −−→µ1µ2.

b′

C

a′
a

c′
c

A

B

E

F

b

Figure III.10: An example to depict the similar triangle property. Since
a
a′

= b
b′
= c

c′
, △CAB and △CEF are similar and AB and EF are parallel.

A generalized normal vector estimation for higher dimension data distri-

bution are introduced as followings.

When segmenting feature space using hyperplane passing through the

reference center, a value Rb
a which represents the average distance between
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the reference center and data points can be measured for each segment by

the following Equation.

Rb
a =

∫ b
θ=a

∫∞
l=0 l cos(θ) pdf(l, θ)dldθ

∫ b
θ=a

∫∞
l=0 pdf(l, θ)dldθ

where ~pi is the vector from reference center to point pi. l and θ are the

length of ~pi and the angle between ~pi and X-axis, respectively. pdf(l, θ) is

the probability of a point located at (l,θ).

Based on the similar triangle property, for two segments, a < θ < b and

c < θ < d, sharing the same bottom side, Rb
a is equal to Rd

c . That is,

∀a < b and c < d, Rb
a = Rd

c .

Since, the average distances Rb
a for every segments are the same, weight-

ing data points by any function of angle doesn’t change the value of Rb
a.

That is, the angle between a normal vector and X-axis can be estimated by

minimizing the following Equation,

Q(θ) =

[

∑

i f(ωi)li cos(ωi − θ)
∑

i f(ωi)
−
∑

i g(ωi)li cos(ωi − θ)
∑

i g(ωi)

]2

,

where f(wi) and g(wi) are two arbitrary functions of angle.

By expanding this objective function Q(θ), the θ minimizing Q(θ) can be

computed as follows,

Q(θ) =

[

∑

i f(ωi)li cos(ωi − θ)
∑

i f(ωi)
−
∑

i g(ωi)li cos(ωi − θ)
∑

i g(ωi)

]2

=

[

∑

i f(ωi)li cos ωi cos θ +
∑

i f(ωi)li sin ωi sin θ
∑

i f(ωi)
−

∑

i g(ωi)li cos ωi cos θ +
∑

i g(ωi)li sin ωi sin θ
∑

i g(ωi)

]2

.
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Let

a =

∑

i f(ωi)li cos ωi
∑

i f(ωi)
−
∑

i g(ωi)li cos ωi
∑

i g(ωi)

b =

∑

i g(ωi)li sin ωi
∑

i g(ωi)
−
∑

i f(ωi)li sin ωi
∑

i f(ωi)

Q(θ) = [a cos θ + b sin θ]2

=

[√
a2 + b2 cos

(

θ − tan−1 b

a

)]2

When θ = ±π
2

+ tan−1 b
a
, Q(θ) = 0.

To generalize the solution for data points in any dimension, a vector

(1, n2, . . . , nk) which is orthogonal to the side can be computed by solving

the following equations array.

σ(1, 1) +σ(1, 2)n2 +... +σ(1, k)nk = 0
σ(2, 1) +σ(2, 2)n2 +... +σ(2, k)nk = 0

...
σ(k − 1, 1) +σ(k − 1, 2)n2 +... +σ(k − 1, k)nk = 0

where σ(i, j) =
∑

fipj
∑

fi
−
∑

gipj
∑

gi
. That is, the orientation of normal vectors

can be calculate by using the following Equation,









n2
...

nk









=









σ(1, 2) ... σ(1, k)
...

. . .
...

σ(k − 1, 2) ... σ(k − 1, k)









−1 







σ(1, 1)
...

σ(k − 1, 1)









.

In this dissertation, Sigmoid functions are applied to measure the orien-

tation of normal vectors for Polygon descriptor. For example, 1
1+eθ and 1

1+e−θ

are applied for 2-D data points; 1
1+eθ1

, 1
1+e−θ1

, and 1
1+eθ2

are applied for 3-D

data points. In order to use coordinates of data points directly instead of
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angles, a Sigmoid function of cosine values as shown as follows can be used

instead.

1− 1

1 + exp(1−~pi· ~aj

~aj · ~aj
)

where ~aj is the normal vector of a side cluster Sj and ~pi is a vector from

reference center c to a data point pi.

(4) Mean Length of a Normal Vector Estimation

To draw a boundary or outlines of a data distribution is often not feasible

or in fact is not very meaningful. Thus to estimate the length of a normal

vector is also meaningless. Hence, we propose to estimate the mean length of

a normal vector, so that the approximated shape of a data distribution can

be visualized. The mean length of a normal vector are adjusted as follows,

‖~aj‖ :=
~aj · ~µj
√

~aj · ~aj

,

where ~µj is the mean vector estimated using all data points associated to

~aj. That is, the mean length of normal vector is adjusted to be equal to the

projection length of the mean vector along the normal vector.

As shown in Figure III.11, the pentagon drawn in solid line illustrate

the Polygon descriptor which holds the approximated shape of a given data

distribution. In fact, the data points can not be enclosed by any distinct

distinct boundary hyperplane.
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Figure III.11: An example to show the partitions of data cluster and the
normal vector orientation estimation.
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2.3 Self-Growing Learning Algorithm

To decide the number of normal vectors of a polygon descriptor, a systematic

process is proposed in this Section to gradually add/remove normal vectors

until the number of normal vectors converges. Since side clusters which share

the same side boundary are associated to identical normal vectors, these side

clusters can be merged by removing identical normal vectors. That is, the

number of normal vectors will converge to the number of pseudo boundaries

when gradually increasing the number of normal vectors.

The flow chart of the proposed self-growing learning process for Polygon

descriptor is shown in Figure III.12. At first, Medoid is subtracted from every

data points. That’s, the data distribution is translated to let its Medoid

located at Origin. Then, normal vectors are initialized in a random manner.

According to the normal vectors, data points are clustered into side clusters.

For each side cluster, a normal vector is estimated according to the data

distribution of data points in the side cluster. Then, for side clusters with

identical normal vectors, their normal vectors are merged and the data points

are marked as frozen. For the rest of side clusters, their normal vectors will

be used by another round of clustering and estimating processes until all data

points are marked as frozen.

When implementation, identical normal vectors usually means that the

angle between two normal vectors is smaller than a threshold, because there

may exist precision or rounding error. Such approximation let a polygon

descriptor doesn’t need to use infinite boundaries to describe a curve. How-

ever, a data distribution may has more than one possible polygon descriptor

because errors may be approximated in different way.

As shown as the exemplar learning process in Figure III.13, a set of data

points which uniformly distributed in a triangular region is given. At first,
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All normal vectors are frozen.

Start

Freeze Normal Vectors

Merge Normal Vectors

Estimate Normal Vectors

Cluster Side Clusters

Initialize Normal Vectors

Zero Medoid

Split Normal Vectors

Figure III.12: The flow chart of self-growing learning process for Polygon de-
scriptor. By iteratively splitting, clustering, estimating, and merging normal
vectors, the number of normal vectors can be decided automatically, when
learning the shape of data distribution.

two normal vectors are initialized. And, the data points are clustered into two

side clusters according to the normal vectors. Then, the normal vectors are

re-estimated according to the data points in each side clusters. By iteratively

applying the clustering, estimating, and splitting process several times, 3

pairs of identical normal vectors are found (the third row). By merging

these identical normal vectors, data points located in the dark-gray area are

marked as frozen. Such processes will be repeatedly invoked until most of

the data points are marked as frozen.

Steps of freezing data points, is essential to ensure that the learning (fit-

ting) will converge. However, freezing data points decreases the number of

available sample point for mean computing. To increase the robustness of

normal vector estimation, using related frozen data points to support mean

computation could minimize the damage of freezing data points in imple-

mentation.

Although the proposed method try to fit the distribution shape as pre-
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Figure III.13: An exemplar learning process of Polygon descriptor. At
first, two normal vectors are initialized. When the number of normal vectors
increased to 8 (third row), 3 pairs of axes are merged and the normal vectors
points associated to the side clusters in dark-gray area are marked as frozen
(3th row, 2nd col). Such processes will be repeatedly invoked until most of
the data points are marked as frozen.

cisely as possible, the proposed method may find more than one possible

polygon descriptor with random based initialization for some situation. For

example, if data distributed within a circular region, changing initial condi-

tions could make the estimated polygon descriptor rotate, because a polygon

with infinite boundaries is impractical and the fitting method has to allow

a tolerance to approximate the circular distribution by a polygon with finite

boundaries. Figure III.14 shows an example about the alignment problem

of polygon description estimation. When approximating a smooth circle by
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finite number of boundaries, there are more than one result can achieve the

best precision. That’s, how to align the estimation polygon descriptors is an

important issue of extensions of real world application.

Figure III.14: More than one polygon descriptors model the same circular
data distribution. If a polygon can have infinite boundaries, then these poly-
gon descriptors will be identical. However, we have to approximate a circular
distribution by a polygon with finite boundaries. And rotating an estimated
polygon descriptor can have another one with the same precision, because
the real data in distributed in a circular region.
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3 Evaluation and Experimental Results

An exemplar Polygon descriptor estimated from a data set sampled from

Taiwan Stock Market is shown in Figure III.15. According to the price and

earn per share (EPS) of stocks collected in February 2003, a data distribution

is drawn. The data distribution is normalized and translated to let the

Medoid of data point located at origin. By using the learning algorithm

introduced in Section 2.3, four normal vectors and four side clusters are

estimated. Data points in different side clusters are painted in different colors

and the pseudo boundaries of each side clusters are drawn in bold lines.

Synthesis data are generated by random number generator with various

random seeds to test the performance of learning algorithm. Figure III.16

shows how the number of data points affects the precision of learning algo-

rithm. The precision of learning algorithm is represented by the cosine value

cos(δ) of the angle between estimated normal vectors and ground truth. More

data points makes the synthesis data distribution approximates the uniform

distribution better. Thus, the estimated normal vectors match the ground

truth better. The horizontal axis is for the number of data points and the

vertical axis is for the precision As the results shown in Figure III.16, the

precision rate converges when data points are more than 1000. Therefore,

the number of synthesis data points for experiments in this dissertation is

set to 3000.

Figure III.17 shows the efficiency of learning algorithm. 12000 random

generated data points are located uniformly in a diamond-shape region. At

the beginning, four axes are initialized as (1, 0),(0, 1),(−1, 0), and (0,−1).

The precision of estimated normal vectors are represented by the average

of four cosine value between the estimated normal vectors and the ground
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Figure III.15: An exemplar Polygon descriptor estimated from a data set
collected from Taiwan Stock Market. The horizontal axis is for stock price
and the vertical axis is for EPS (earn per share). According to the price and
EPS of a stock, a data point is drawn in the data distribution. The data
distribution is normalized and translated to let the Medoid of data point
located at origin. Four normal vectors are found, and the corresponding
pseudo boundaries are drawn in bold lines. Data points in different side
clusters are painted in different colors.

truth. As the results shown in Figure III.17, the estimated normal vectors

converges to ground truth in less than 10 iterations.

Generally speaking, wider a data distribution along a pseudo boundary,

more precise the estimation of normal vector orientation can achieve. For 2-

D data, the vertex angle, located at reference center, of a side cluster can be

used to represent how width a data set distributes along a pseudo boundary.

Figure III.18 shows how the vertex angle of a side cluster affects the precision

of normal vectors orientation estimation. The horizontal axis is for the angel
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Figure III.16: Number of data points V.S Precision of learning algorithm.
The horizontal axis is for the number of data points and the vertical axis
is for the precision of normal vectors estimation. More data points makes
the synthesis data distribution approximates the uniform distribution better.
Therefore, the estimated orientation of normal vectors match the ground
truth better.

of a side cluster and the vertical axis is for the precision of learning algorithm.

As the results shown, when the vertex angle is smaller than 15 degree, the

precision of normal vector estimation is decreased.

Since the proposed method merges similar normal vectors in learning

process, when the angle between two pseudo boundaries is very small, the

corresponding side clusters/normal vectors may be merged by mistake. Fig-

ure III.19 shows how the angle between two pseudo boundaries affects the

precision of learning algorithm. The horizontal axis is for the angle between

two neighboring pseudo boundaries and the vertical axis is for the preci-

sion of learning algorithm. According to the experimental results, the learn-
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Figure III.17: Learning Iteration V.S Precision of learning algorithm. The
horizontal axis is for the number of learning iterations and the vertical axis
is for the precision of normal vectors estimation. In this experiments, the
learning algorithm converges in less than 10 iteration.

ing algorithm merges two side cluster when the angle between their pseudo

boundaries is smaller than 11 degree (0.98 in cosine value).
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Figure III.18: Angle of a side cluster V.S Precision of learning algorithm.
The angle of a side cluster reflects how width a data set distributed along
the pseudo boundaries. Generally, wider a data distribution along a pseudo
boundary, more precise the estimation of normal vector orientation can
achieve.

45



 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0  0.2  0.4  0.6  0.8  1

P
re

c
is

io
n

cos(Angle)

0
1
2
3
4

Figure III.19: Angle between two pseudo boundaries V.S Precision of learn-
ing algorithm. Since the proposed method merges similar normal vectors in
learning process, when the angel between two pseudo boundaries is small, the
corresponding side clusters are merged by mistake. Thus, the precision of
learning algorithm decrease when the angle between two pseudo boundaries
decrease.
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4 Variant Polygon Descriptors

This section is beyond the scope of this dissertation. That is, information

in this section is not essential for the later materials of this dissertation.

Because I mentioned that Polygon descriptor is potentially to have a variant

form which works for clustering problem, I am going to show some possible

designs for such a clustering variant. However, since this dissertation is not

going create any application based on these variants, the methods proposed in

this section only suggest the idea of what’s useful when designing extensions.

Two variants are suggested to be the variants of polygon description in

clustering - 1) Joint Polygon Descriptor and 2) Composite Polygon

Descriptor. Joint Polygon Descriptor represents unconnected data dis-

tributions with multiple polygon descriptors. On the other hand, Compos-

ite Polygon Descriptor is used to separate a composite data distribution

to several regular components, which will be defined in Figure III.20. As

shown in Figure III.20, a regular component is defined as data distribution

which is composed by various uniform regions in the same shape and sharing

the same center.

��� ���

Figure III.20: An example of equivalent component for Composite Polygon
Descriptor. (A) Since the regions of three densities are in the same shape
and share the same center, they are treated as a single regular component.
(B) Since each region with uniform densities are in different shape or having
different center, they are treated as three different regular components.
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4.1 Joint Polygon Descriptors

Joint Polygon Descriptor try to separate unconnected region to multiple

polygon descriptors. For example, two unconnected region in Figure III.21

are supposed to be represented by two polygon descriptors. Without using

multiple polygon descriptors, the contour of estimated polygon descriptor

will looks like a (the blue lines). Based on the shape a, data samples can

be weighted according to the projection ratio on each normal vectors. Then,

the shape b (the red lines) can be estimated based on the weighted data

samples. By repeating such process, the exact shape of left rectangle c will

be available.

�
�

�

Figure III.21: By weighting data samples according to the projection ratio
on each normal vectors, the estimated polygon descriptor changed from a,b,
to c.

Joint Polygon Descriptor relies on the following property: ”When remov-

ing data samples in outer region by resizing of Polygon descriptor without

changing its shape, the estimated shape will remain the same if the data dis-

tribution is composed by uniform distribution regions in the same shape and

sharing the same center.” Based on the polygon probability density function

shown in Figure III.1 (b), data samples can be weighted according to the

projected distance from reference center. And the job of removing data sam-

ples in outer bands can be done by simply adjusting the variance in each
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orientation of normal vectors. The estimation process could be designed as

follows,

step 1. Let weights of all data samples in the first polygon descriptor equal to

1.

step 2. Estimate polygon descriptors based on the weighted sample data dis-

tribution.

step 3. If the estimation didn’t changed the shape of polygon descriptor, goto

step 6..

step 4. Re-weight data samples by polygon probability density function(see

Figure III.1 (b)).

step 5. Goto step 2..

step 6. Compute the complement of weights by subtracting the weights of ex-

isting polygon descriptors.

step 7. If the complement of weights almost equal to zero, goto step 10..

step 8. Initialize a new polygon descriptor with the weight of data samples

equal to the complement of existing weights.

step 9. Goto step 2..

step 10. [DONE]
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4.2 Composite Polygon Descriptors

Composite Polygon Descriptor separates a composite data distribution

to several regular components, which is defined in Figure III.20. Unlike

Joint Polygon Descriptor, the weight of data samples can not be extracted

directly because the components are overlapped. The overlapped ratio should

be tested gradually until various shape regions are extracted one by one.

Figure III.22 shows an example data distribution which requires Com-

posite Polygon Descriptor to separate components. The inner component,

dark gray diamond area, can be located by repeatedly estimating Polygon

Descriptor and Removing data samples in outer band, like Joint Polygon

Descriptor does.

�

�

�

Figure III.22: A data distribution composed by two uniform distributed re-
gions. The diamond shaped region is overlapped above the rectangle region,
and the diamond one is completed contained by the rectangle one. By chang-
ing the weight of data samples, the estimated polygon description (eg. blue,
red, green contour) changed.

After locating the centered small region, the estimation for larger re-

gions need to find a weight to remove the centered small region. The weight
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σ should be tested gradually. That is, as shown as Figure III.23, various

weighting curve are applied and validated to find which one can correctly

remove the affect from inner small region.
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Figure III.23: The curve is the complement of a weighted Gaussian function.
1− σex2

Composite Polygon Descriptor could be designed as follows,

step 1. Let weights of all data samples in the first polygon descriptor equal to

1. σ, the overall weight of last component, equal to 0.

step 2. Estimate polygon descriptors based on the weighted sample data dis-

tribution.

step 3. If the estimation didn’t changed the shape of polygon descriptor, goto

step 5..

step 4. Shorten the length of each normal by a small fixed ratio, updated the

weight of data samples, and goto step 2..
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step 5. If the estimated polygon descriptor didn’t similarity to the last com-

ponent, goto step 8..

step 6. Increase σ, and apply the weighted probability function of complement

polygon descriptor,p′(x) = 1 − (σp(x)), to gradually remove the data

samples in the last component.

step 7. Goto step 2..

step 8. Report last component, extract it, and reset σ to 0.

step 9. If all data samples are located inside the region of last component, goto

step 11..

step 10. Goto step 2..

step 11. [DONE]
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5 Concluding Remarks

Polygon descriptor is designed to be a numerical representation of a data

distribution. This representation should be suitable for data samples in any

dimension. By describing a high dimensional data as polygon descriptors,

we can analyze the characteristics of a high dimension data distribution. By

applying some user interfaces design, we can even visualize the high dimen-

sional data distribution. However, most of such applications depending on

the requirements of the related real world application.

Discovering the trend of data distribution is one motivation of design-

ing Polygon Descriptor. Therefore, the estimation method depending on

the global statistic information instead of the boundaries on its contour.

However, the other estimation methods can be designed to achieve differ-

ent target. For example, Since multi-layer perceptron can be used to learn

the boundaries of a data distribution, the normal vector could be decided by

perceptrons too. Based on different motivation, different estimation methods

can be created to let the estimated polygon in desired shape.

In this dissertation, three Polygon descriptor based methods, 1) mea-

surement of shape deformationIV, 2) virtual geometry for similarity based

clusteringV, and 3) polygon-based region representationVI, are proposed.

Measurement of shape deformation estimates the similarity of data distribu-

tions. The proposed measurement method computes the similarity of data

sample groups collected from Taiwan stock market. Since the shape of data

distribution implies the system behavior of a system, the behavior in peri-

ods of stock market can therefore be clustered. Then, virtual geometry is

proposed to emulate the geometry of a virtual feature space. That is, for

similarity based clustering, such as K-medoid, there is no geometry informa-
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tion about data points. To estimate variances for these clustering models,

a virtual geometry is required. Last, Since Polygon descriptor measures the

shape and coverage area of a data distribution, the region selection and region

tracking methods can also be developed based on Polygon descriptor.
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Chapter IV

Measurement of Shape
Deformation

Based on Polygon descriptor, a data distribution can be represented by a nu-

merical/model form. By using the numerical form of a polygon descriptor, a

value can be measured to represent the similarity between two data distribu-

tions. In Section 1, general methods that measure the similarity between two

numerical/model representation are introduced at first. Then the similarity

measurement method, named Deforming distance, is proposed in Section 2

to measure the similarity value between two polygon descriptors. Since the

deforming distance is difficult to handle high dimension data, Minimal-cost

normal vectors matching is then proposed in Section 3 to measure the sim-

ilarity between polygon descriptors in high dimension space. A real world

application, which shows the similarity between every two periods of Taiwan

Stock Market, is demonstrated in Section 4. Last, the concluding remarks

are drawn in Section 5.
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1 Related Works

1.1 Correlation Coefficient

Beside extracting statistical characteristic from a data distribution, Corre-

lation coefficients can also be used to compare the similarity between two

number sequences. Given two number sequences HA = {a1, ..., aN} and

HB = {b1, ..., bN}, µA and µB are the means of HA and HB respectively.

Covariance can be defined as follows,

KCV =
1

N

N
∑

i=1

{(ai − µA)(bi − µB)} (IV.1)

By normalizing the data sequences with standard derivations σA and σB,

correlation coefficient can be defined as

KCR =
KCV

σAσB

(IV.2)

Let H ′
B be another sequence generated by translating and scaling HB.

Since

µH′
B

=
α

m

m
∑

i=1

bi + β = αµHB
+ β

σH′
B

=
α

m

√

√

√

√

m
∑

i=1

b2
i = ασHB

CVH′ =
α

m

m
∑

i=1

{(ai − µHA
)(bi − µHB

)} = αCVH

CRH′ =
1

mσHA
σHB

m
∑

i=1

{(ai − µHA
)(bi − µHB

)}

= CRH ,

therefore, correlation coefficient is invariant to translate and scale.

1.2 K-L Divergence

When a data distribution is represented by continuous data models, such as

Gaussian Mixture model, K-L divergence can be used for similarity measure-
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ment. K-L divergence, also called relative entropy, is defined as follows

DKL(p‖q) =
∫

p(x) log
p(x)

q(x)
dx (IV.3)

where p(x) and q(x) are two probability distributions. K-L divergence is

widely used as a quantity which measures the difference from a true proba-

bility distribution p(x) to an arbitrary probability distribution q(x).

Equation IV.3 can be expanded as follows

DKL(p‖q) =
∫

p(x) log p(x)−
∫

p(x) log q(x) (IV.4)

The first term is the entropy of p(x). The entropy of p(x) is the lower bound

of average bit-length to encode data with probability distribution p(x). The

second term represents the average bit-length to encode data with proba-

bility distribution p(x) with the optimal encoding scheme for probability

distribution q(x). When p(x) is equal to q(x), K-L divergence is zero. Since

K-L divergence is not symmetric, DKL(p‖q) + DKL(q‖p) is generally used to

represent the similarity between two models.

Although mixing multiple Gaussian components makes a data model ca-

pable to approximate all kinds of distribution shapes, integration operation

is difficult to implement for mixing model. That is, there is no close-form ex-

pression for the KL-divergence between two mixtures of Gaussian. Therefore,

Monte-Carlo simulation is used to approximate the KL-divergence between

two Gaussian Mixtures p and q:

DKL(p‖q) =
∫

f log
p

q
≈ 1

n

n
∑

i=1

p(xi)

q(xi)
(IV.5)

where xi is sampled from f(x).

1.3 Chi Square(χ2) Test

χ2 test is generally used to test the fitness of distribution assumptions for

statistical applications. Giving a distribution function p(x) and a set of data

57



points X = {x1, ..., xN}, χ2 test measures the fitness of a given probability

density function p(x) and a point set X.

Fukunaga et al.[8] discuss several related applications of optimum error-

reject functions. Based on several thresholds of probability values, a space

is divided into regions. If the distribution of data points fits the probability

density function, the ratio of points belong to X located in each region should

be similar to the ratio of distributed area of p(x) in each regions.

Giving k thresholds (t1 < ... < tk), the space is partitioned into k regions.

χ2 test is defined as follows

Q =
k
∑

i=1

[

(N [Ri−1 −Ri]−N [ri−1 − ri])
2

N [ri−1 − ri]

]

(IV.6)

where N is the total number of points in X, k is the number of testing

regions, ri = P (p(x) > ti), and

Ri =
1

N
( number of p(x1), p(x2), ..., p(xN) > ti)

Figure IV.1 gives an example of χ2 test. In this example, k = 2, N = 8,

R1 = 8/8 = 1, R2 = 6/8 = 0.75, r1 = 2wh
2wh

= 1, r2 = 1.5wh
2wh

= 0.75, and

Q = [8(1−0.75)−8(1−0.75)]2

8(1−0.75)
= 0.

2w

w
h

h

t1

t2

Figure IV.1: An example of χ2 test. In this example, k = 2, N = 8, R1 =
8/8 = 1, R2 = 6/8 = 0.75, r1 = 2wh

2wh
= 1, r2 = 1.5wh

2wh
= 0.75, and Q =

[8(1−0.75)−8(1−0.75)]2

8(1−0.75)
= 0.
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The similarity value between two random sets can therefore be estimated

by cross validating a data set and a statistical model using χ2 test.

1.4 Hausdorff Distance

Hausdorff distance is used to measure the difference between two data sets.

Hausdorff metric couples elements in one set and the other depending on

their distance. That is, for each data element in one data set, the smallest

distance to a data point in the other set is measured to represent the point-

to-set distance. The largest point-to-set distance is used to represent the

distance between two data sets.

Hausdorff distance between two sets A and B, is defined as

H(A, B) = max (h(A, B), h(B, A)) , (IV.7)

where

h(A, B) = max
a∈A

min
b∈B

‖a− b‖,

and ‖ · ‖ is some underlying norm of A and B. h(A, B) is called the direct

Hausdorff distance from A to B.

An example of Hausdorff distance measurement is shown in Figure IV.2.

The Hausdorff distance from set A to B is measured from an element in

A that has the largest minimal distance to an element in B. Obviously,

h(A, B) may not equal to h(B, A). In order to have a symmetric distance

measurement, the Hausdorff distance between A and B is defined to be the

larger one of h(A, B) and h(B, A).

Huttenlocher et al.[13] use Hausdorff metric to measure the similarity be-

tween images. Since the Hausdorff distance computation differs from many

other image comparison methods in that no correspondence between the
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h(A, B)

:ai ∈ A :bi ∈ B

h(B, A)

Figure IV.2: An example of Hausdorff distance measurement. The largest
minimal distance from an element in set A to an element in set B is measured
to represent the similarity value between two sets A and B. In this example,
h(A, B) is 2, h(B, A) is 4, and the Hausdorff distance H(A, B) is 4.

model and the image is derived. The method is quite tolerant of small po-

sition errors such as those that occur with edge detectors and other fea-

ture extraction methods. However, since the Hausdorff distance may involve

computation of largest minimal distance from outlier points, the Hausdorff

distance measurement can be very sensitive to outliers.
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2 Deforming Distance

Deforming distance is proposed to represent the difference between polygon

descriptors. Given a polygon descriptor with N normal vectors {n0, ..., nN−1},
a number sequence, {a0, a1, ..., aN−1}, can be used to represent the Polygon

descriptor. The number sequence {a0, a1, ..., aN−1} can be enumerated as

follows:

ai = ‖a′i‖ =

∥

∥

∥

∥

∥

cos−1

(

ni · n(i+1)%N

‖ni‖‖n(i+1)%N‖

)∥

∥

∥

∥

∥

, for i = 0, ..., N − 1,

where a′i is the angle between two adjacent normal vectors ni and ni+1, ai

is the magnitude of a′i and “%N” is the modular N operation. Given a

polygon descriptor, the shape of corresponding polygon is encoded by the

number sequence {a0, a1, ..., aN−1}, since the angles between any two adjacent

boundary edges of the corresponding polygon is equal to π−a′i where ni and

ni+1 are the corresponding normal vectors of the boundary edges.

The problem of measuring the difference between two polygon descriptors

are reduced to the problem of measuring the difference between two number

sequences. The Deforming distance defined in Section 2.1 is used to measure

the difference between two number sequences. The methods that estimating

the Deforming Distance are then introduced in Section 2.2.

2.1 The Definition of Deforming Distance

Let {a0, ..., aN−1} be a number sequence, three deforming operations are

defined as follows:

1. Deletion: delete(i) - if ai = 0, remove ai from the number sequence.

2. Insertion: insert(i) - insert a zero in the number sequence next to ai.
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3. Chang: change(i, δ) - add 2δ to ai and subtract one δ from both

a(i−1)%N and a(i+1)%N .

Given two number sequences S = {s0, ..., sn} and T = {t0, ..., tM}, a

sequence of deforming operations can change S to T . The cost of the sequence

of deforming operations is defined as the sum of change amount δ for all the

needed Change operators. Insertion and Deletion operations require zero

cost of the sequence of deforming operations, because these two operations

just insert or remove a zero to or from number sequence. The minimal cost

to convert a number sequence S to T using deforming operations is defined

as the Deforming distance. And, the corresponding sequence of deforming

operations for the Deforming distance is called Deforming path.

Based on the three deforming operations: 1) deletion, 2) insertion, and

3) change, the deforming distance is invariant to translation, rotation, and

scaling. By defining more specific deforming operations, the invariance of

similarity measurement, deforming distance, is changed. By appending two

extra deforming operations: 4) rotation, and 5) extension, the measuring of

deforming distance can do exact match between two polygon descriptors.

The functions of five complete deforming operations can de illustrated

by Figure IV.3. As the figure shown, a change sharpen/widen a side cluster

of a polygon descriptor. A deletion removes an existing side cluster from a

polygon descriptor and an insertion appends a new side cluster into a polygon

descriptor. A rotation rotates a polygon descriptor and an extension stretch

normal vectors of a polygon descriptor. Since Deforming distance is required

to do translation, rotation and scaling invariant similarity measurement for

this dissertation, only the first three deforming operations are discuss in

the section. As the example shown in Figure IV.4, by applying a series

of deforming operations, a triangle can be transformed into a diamond. By
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estimating the minimal transformation cost to transform a polygon descriptor

to another, the similarity between them can therefore be measured.

(change) (deletion) (insertion)

(rotation) (extension)

Figure IV.3: The physical meaning of all five deforming operations are
shown. A change sharpen/widen a side cluster. A deletion/insertion re-
moves/appends a side cluster. A rotation rotate a polygon descriptor, and
a extension stretch a normal vector of a polygon descriptor. There five de-
forming operations are for 2-D shape only. Polygon descriptors in higher
dimension requires more operations to from a transforming process, because
the angle between normal vectors is a high dimension space angle.

SharpenRaise Rotate Sharpen

Figure IV.4: By applying a series of deforming operations, a triangle can be
transformed into a diamond.

In considering that a polygon descriptor represents the distribution shape

of data samples, each deforming operation implies one kind of system behav-

ior change. For example, applying a changing operator to decrease an angle

between two normal vectors will results the shape sharper. Usually, a sharp

angle means that the data distribution on the orientation sticky to a line.

Thus, related factors may getting more independent.
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2.2 The Estimation of Deforming Distance

Many well-known algorithms, such as shortest-path[21][3], traveling sales-

man problem[22], string-to-string correction problems[23][28], are proposed

to find the optimal path for path-finding problems. Among these algorithms,

string-to-string correction problem is very similar to the problem of finding

the Deforming path and Deforming distance described in Section 2.1. By

referencing the correction path of the string-to-string correction problem,

match assignments are proposed to divide the problem of Deforming path

finding to several smaller sub-problems. Then, the Deforming distance for

the sub-problems can be estimated.

A match assignment describes the relationship of elements between source

and target number sequence. Let S = (s0, ..., sn−1) and T = (t0, ..., tm−1) be

source and target sequences. Let a match assignment between S and T

be M = {(ls0, lt0), ..., (lsk−1, l
t
k−1)}, where k is the number of entries in M ,

0 ≤ lsi ≤ n − 1, 0 ≤ lti ≤ m − 1, 0 ≤ i < k − 1, and lsi and lti are the labels

of the i-th number in S and T respectively. An element (lsi , l
t
i) in a match

assignment means that tlt
i

in T is associated with sls
i

in S. For example, the

match assignment {(0,1),(1,1),(1,2),(2,0)} means that s0 in S is associated

with t1 in T , s1 in S is associated to t2 and t3, in T , and s2 in S is associated

to t0 in T .

When the relationship between the elements of source sequence and the

elements of target sequence is fixed, the minimal cost of deforming operations

to convert the source sequence to the target sequence can be measured by

the methods presented in Section 2.2. By computing the minimal cost of

deforming operations for every possible relationship between the elements of

source sequence and the elements of target sequences, the deforming distance

which is the minimal cost of deforming operations without constraining the
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relationship of the elements between source sequence and the elements of

target sequence, is available. The method that generates match assignments

for every possible relationship between the elements of source sequence and

the elements of target sequence is illustrated in Section 2.2.

Local Estimating of Deforming Distance

Given a match assignment M between two number sequences S and T , a

number of zeros are inserted into S and T to equalize the number of elements

in these two sequences. Two modified source and target sequences S ′ and T ′

of equal number of elements are generated as follows:

• For two entries (lsi , l
t
i) and (lsi+1, l

t
i+1) in M , if lti = lti+1, then a zero is

inserted right after tlt
i
.

• For two entries (lsi , l
t
i) and (lsi+1, l

t
i+1) in M , if lsi = lsi+1, then a zero is

inserted right after sls
i
.

Both of the modified sequences S ′ = {s′0, ..., s′N ′−1} and T ′ = {t′0, ..., t′N ′−1}
contain N ′ elements. By transferring a partial amount of value from ele-

ments in S ′ to the elements next to them, S ′ can be converted into T ′, where

transferring a partial amount of value di from s′i to s′i+1 means that di are

subtracted from s′i and added to s′i+1.

A sequence D = {d0, ..., dN ′−1}, called Shift amount, indicates the min-

imal transferring values di needed to convert S ′ to T ′. Using the match

assignment M between S ′ = {s′0, ..., s′N ′−1} and T ′ = {t′0, ..., t′N ′−1}, Shift

amount can be evaluated as follows:

1. First, let us map S ′ and T ′ to a coordinate system (x, y), as shown in

Figure IV.5.
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2. Then, plot N ′ points {m0, ...,mN ′−1} where the point mi is located

at (
∑i

j=0 t′j,
∑i

j=0 s′j), for i = 0, ..., N ′ − 1. In Figure IV.5, the points

{m0, ...,mN ′−1} are marked in solid black dots.

3. Draw a line y = x + β, and plot another N ′ points {p0, ..., pN ′−1}
which are one-to-one corresponds to {m0, ...,mN ′−1} and each point pi

is located at (
∑i

j=0 t′j, β +
∑i

j=0 t′j), for i = 0, ..., N ′− 1. In Figure IV.5,

the points {p0, ..., pN ′−1} are drawn in solid squares.

4. Change the value of β, such that
∑N ′−1

i=0 (xm
i − xp

i ) equals to zero where

(xm
i , ym

i ) and (xp
i , y

p
i ) are the coordinate of mi and pi respectively.

5. Calculate shift amount di in D. For each point mi, the shift amount

di is equal to ym
i − yp

i . Thus, the Shift amount di can be rewritten as

follows:

di =





i
∑

j=0

s′j



−


β +
i
∑

j=0

t′j)



 , for i = 0, ..., N ′ − 1.

The shift amounts di can be solved by finding β which minimizes
∑N ′−1

i=0 ‖di‖.

Since the deforming distance is defined as the sum of deforming oper-

ations, the shift amounts di have to be converted to δi which is used by

the changing operations. An example shown in Figure IV.6 illustrates the

relation between δi and di. In general, the relation between δi and di are

summarized as follows,

di = δi − δ(i+1)%N ′ , for i = 0, 1, ..., N ′ − 1.
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p1 : (t′0 + t′1, t
′
0 + t′1 + β)

m0 : (t′0, s
′
0)

m1 : (t′0 + t′1, s
′
0 + s′1)

m3 : (t′0 + t′1 + t′2 + t′3, s
′
0 + s′1 + s′2 + s′3)

p3 : (t′0 + t′1 + t′2 + t′3, t
′
0 + t′1 + t′2 + t′3 + β)

y = x + β

x

y

p2 : (t′0 + t′1 + t′2, t
′
0 + t′1 + t′2 + β)

p0 : (t′0, t
′
0 + β)

m2 : (t′0 + t′1 + t′2, s
′
0 + s′1 + s′2)

Figure IV.5: An example which depicts how the Shift amounts are estimated.
The points {m0, ...,mN ′−1} that correspond to the match assignment are
marked in solid black dots and the match assignment corresponding points
{p0, ..., pN ′−1} at y = x + β are drawn in solid squares. The Shift amount di

is measured by subtracting the y coordinate value of pi from the y coordinate
value of mi.

Then, the change amount δi for the changing operations can be estimated

by solving the following linear equations.



















1 −1 0 . . . 0 0
0 1 −1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 −1
−1 0 0 . . . 0 1































δ0

δ1
...

δN ′−1
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d0

d1
...

dN ′−2

dN ′−1



















.

Let δ0 = α, then















































−1 0 . . . 0 0
1 −1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 −1





















δ1
...

δN ′−1









=













d0 − α
d1
...

dN ′−2













.

δN ′−1 = dN ′−1 + α = α− (
∑N ′−2

i=0 di)
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Thus,






















δ0

δ1

δ2
...

δN ′−2

δN ′−1























=























α
α− d0

α− d0 − d1
...

α− (
∑N ′−3

i=0 di)

α− (
∑N ′−2

i=0 di)























.

In other words,

δ0 = α, and δj = α− (
j−1
∑

i=0

di) for j = 1, ..., N ′ − 1. (IV.8)

Since the Deforming distance is defined as the sum of change amount δi

for all the needed change operations. That is the Deforming distance is equal

to
∑N ′−1

i=0 |δi|. Thus, the Deforming distance can be determined by finding α,

such that
∑N ′−1

i=0 |δi| is minimized.

Given a value α, a set of values can be partitioned into two subsets A and

B, where elements in A is larger than α and elements in B is smaller than α.

Let nA and nB are the number of elements in A and B respectively, and S is

the sum of difference between α and elements in A and B. By increasing or

decreasing α by σ, the change amount of S, ∆S, is equal to |σ| × |nA − nB|.
Since ∆S ≥ 0, S is minimal when nA = nB. Therefore, α can be determined

by assigning its value equal to the Median of {0, δ0, ...,
∑N ′−1

i=0 δi,
∑N ′−2

i=0 δi}. By

substituting α to Equation IV.8, the Deforming distance under the constraint

of a given match assignment can be estimated.

Global Deforming Distance

To generate all possible match assignments of two given number sequences,

the algorithms to solve the string-to-string correction problem are considered.

Let A = {a1, a2, ..., an} and B = {b1, b2, ..., bm} be two strings of char-

acters and let three edit operations: 1) insertion - insert a character into a
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string, 2) deletion - delete a character from a string, and 3) replacement -

replace one character by a different character, be used to correct the string

A to string B.

Let A(i) and B(i) be two sub-strings which contain the first i characters

of A and B, respectively. Since the minimal editing cost from A(i + 1) to

B(i+1) can be estimated based on the combined cost correcting A(i) to B(i),

A(i + 1) to B(i), and A(i) to B(i + 1). String-to-string correction problem

is generally solved by dynamic programming[24]. As shown in Figure IV.7,

a diagram is created according to strings A and B. C(i, j) which represents

the minimal cost from A(i) to B(j), can be formulated as follows:

C(i, 0) = i, for i = 0, ..., n;

C(0, j) = j, for j = 0, ...,m;

C(i, j) = min



















C(i− 1, j) + 1,
C(i, j − 1) + 1,

C(i− 1, j − 1) +

{

1 , ai 6= bj

0 , ai = bj



















, for i = 1, .., n and j = 1, ...,m.

If C(i, j) is estimated based on C(i− 1, j), that means a deletion is applied.

If C(i, j) is estimated based on C(i, j−1), that means a insertion is applied.

If C(i, j) is estimated based to C(i − 1, j − 1), that means a replacement is

applied, or no operations is performed.

In Section 2.1, three deforming operations - insertion, deletion, and chang-

ing are defined to convert a number sequence to another. When considering

an insertion of deforming operation to be an insertion of string-editing op-

erations, a deletion of deforming operation to be a deletion of string-editing

operations, and a changing of deforming operation to be a replacement of

string-editing operations, a match assignment can be represented as a path

in a dynamic programming diagram for string-to-string correction problem.

Figure IV.8 shows an example of the graphical representation of a match
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assignment between two number sequence S and T . In this example, there

are one insertion next to s0, and two deletion at s2 and sm−1, respectively.

By generating all the possible correction path for the corresponding string-

to-string correction problem, possible match assignments of two given num-

ber sequences are available. However, dynamic programming is not capable

of estimating the deforming distance of two number sequences, due to the

deforming distance of two number sequences may not relate to the deform-

ing distance of two sub-sequences of the two original number sequences. For

example, given two number sequence S = {1, 6, 1} and T = {2, 4, 2}, the

deforming distance is 1. Although, S ′ = {1, 6} and T ′ = {2, 4} are sub-

sequences of S and T respectively, the deforming distance between S ′ and T ′

is 4/3, which is larger than the deforming distance between S and T . That

is, the deforming operations that are used to convert S to T may not include

the deforming operations to convert S ′ to T ′.

Let S = {s1, ..., sn} and T = {t1, ..., tm} be two number sequences, and

Si = {si, ..., sn, s1, ..., si−1} be the number sequence created by rotating i −
1 elements in S. For each Si, a Deforming distance between Si and T is

measured using the methods proposed in Section 2.2. The minimum among

all the n deforming distances are selected as the global Deforming distance.

Figure IV.9 shows the Deforming distance of all the possible match as-

signments which convert a number sequence with 3 elements to a number

sequence with 2 elements. The graphical representation of each match as-

signment is shown as a solid line in each block. The brightness of blocks or

numerical values under the block represent the minimal magnitude among

the local Deforming distance under the constraint of the corresponding match

assignment.

As the example shown in Figure IV.9, the global Deforming distance
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can be found by searching every possible match assignments if the number

of normal vectors in a polygon descriptor is small. If the number of nor-

mal vectors in a polygon descriptor becomes larger, the global Deforming

distance can be approximated by using Evolutionary Computation[17].
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δ0

δ1 δ1

δ2

δ2

δ0

s0 s1 s2

d0 d1

d2

Figure IV.6: An exemplar sequence S ′ is used to show the relation between
shift amounts di and the change amounts δi for the chang operation. The
sequence S ′ contains three elements s0, s1, and s2. Three shift amounts d0, d1,
and d2 are moved from s0, s1, and s2 respectively. The movement of change
amounts δ0, δ1, and δ2 indicate how to use change operations to achieve
the proper shift amounts among s0, s1, and s2. The dotted lines indicate
how the partial amount of values di are transferred between elements. The
solid lines indicate how the changing operations distributed partial amount
of values δi to the adjacent elements. The light gray blocks show the related
transfer between adjacent elements in number sequence. Since the amount
of values transferred between elements should be the same for di and δi, thus
di = δi − δi+1.
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C(i, n)

b1

bm

b2

C(1, 1)

ana2a1

C(1, 2) C(1, j) C(1, n)

C(2, 1)

C(i, 1)

C(m, 1) C(m, 2)

C(i, 2)

C(2, 2) C(2, j)

C(i, j)

C(m, j) C(m,n)

C(2, n)

Figure IV.7: Solving the string correction problem by dynamic programming.
Let ai be the i-th character of string A and bj is the j-th character of string B,
and C(i, j) represents the editing cost of to correct the first i characters in A
to the first j characters in B. Each arrow represents a dynamic programming
operation. The operation starts from the left-top corner and terminates
at the right-bottom corner. A minimal cost correction path from the left-
top corner to right-bottom corner is searched by the dynamic programming
method.
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s0

t1

t0
s1 s2 s3 sm−1sm−2sm−3

tn−1

tn−2

tn−3

t2

Figure IV.8: An example of the graphical representation of a match assign-
ment between {s0, ..., sm−1} and {t0, ..., tn−1}. The graphical representation
is similar to a correction-path on the dynamic programming diagram for
string-to-string correction problem. In this example, there are one insertion

next to s0 and two deletions at s2 and sm−1.
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0.141

0.139

0.353

0.097 0.081

0.133 0.025 0.122

0.137 0.027 0.031

0.339 0.033 0.026

0.117 0.027 0.021

0.102 0.016 0.108

0.057 0.071

0.094

0.111
0.322

Figure IV.9: The Deforming distance of possible match assignments to con-
vert a sequence containing 3 elements to a sequence containing 2 elements.
A block represents the match assignment corresponding a correction path
of string-to-string correction problem. The solid line in each block is the
graphical representation (see. Figure IV.8) of a match assignment. And
the darkness of blocks or the value under the block represent the minimal
magnitude among the Deforming distance of the match assignments.
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2.3 Evaluation and Experimental Results

According to the news paper and some popular stock investment magazines,

Taiwan stock market experienced a clear turning point at the fourth quarter

of 2002. In this section, we will use the information as ground truth to evalu-

ate the proposed methods and three other methods, which are: (1) Hausdorff

distance based, (2) histogram based, and (3) mixture Gaussian model based

methods. The price-EPS data during the period between 1998 and 2002 are

used as source data. Four similarity measurement results, which are esti-

mated by using the proposed methods and three other methods, are shown

in Figure IV.10. In the following, PD+MDP represents the proposed Poly-

gon descriptor and Deforming distance. GMM+KLD represents the method

that use Gaussian Mixture Model to describe the distribution of data points

and K-L distance to measure the distance between two Gaussian Mixture

Models. Hausdorff represents the method that measures the similarity based

on the Hausdorff distance. And, Hist+Corr represents the method that de-

scribes the distribution of data points by histogram and uses the correlation

coefficient to represent the similarity between two data sets.

As shown in Figure IV.10, the Hausdorff-distance and histogram based

methods show that 1999 is the end of the first stage, then the market went

into another stage immediately. The result pattern of Gaussian mixture

based method shows that the market finished its first stage after the middle

of 2000 (i.e. 30th months after 1998) and started the second stage at the be-

ginning of 2002. The pattern associated with proposed method, PD+MDP,

shows that the market finished its first stage at July 2001 (i.e 43th months

after 1998) and started the second stage at the first quarter of 2003. Appar-

ently, the end of the first stage and the start of the second stage reported by

the proposed method is quiet match with the ground truth.

76



98 99 00 01 02 03 04 05 06

9
8

9
9

0
0

0
1

0
2

0
3

0
4

0
5

0
6

98 99 00 01 02 03 04 05 06

9
8

9
9

0
0

0
1

0
2

0
3

0
4

0
5

0
6

(a) PD+MDP (b) GMM+KLD
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(c) Hausdorff (d) Hist+Corr

Figure IV.10: The resulted similarity pattern of the proposed method and
three common used methods. For each similarity pattern, there are 96
columns and 96 rows corresponding to 96 months price-EPS data from Jan-
uary 1998 to December 2005. (a) pattern of PD+MDP shows the similarity
results created by using Polygon descriptor and Minimal Deforming distance.
(b) pattern of GMM+KLD shows the similarity results created by using
Gaussian Mixture model and K-L distance. (c) pattern of Hausdorff shows
the similarity results created by using Hausdorff distance. And, (d) pattern
of Hist+Corr shows the similarity results created by using histogram and
correlation measurement.
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Among the 4 methods under evaluation, only the proposed method can

show the turning points of stock market behavior in a precise manner. We

believe this measurement accuracy comes from the inherent invariant natu-

rals, i.e., translation, scale and rotation invariant in the Polygon descriptor.

These invariant operations make the proposed method to concentrate on core

stock market information and to ignore surface and/or human made infer-

ences while performing similarity measurement. However, the other three

methods use the coverage area techniques for data modeling, which usually

are sensitive to some surface disturbances and/or human inference on stock

price information.

Figure IV.11 shows more similarity matrices by using the other meth-

ods introduced in Section 1. HistDiff is the similarity matrix created using

histogram to represent the data distribution and measuring the similarity be-

tween histograms by residual. PolDiff is created by using polar histogram

instead. And PolCorr is created by polar histogram and correlation coeffi-

cient. CSQ is created by using Chi square error to measure the difference

between mixture Gaussian models. Obviously, these results by using these

methods are no good.
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(a) HistDiff (b) PolDiff

(c) PolCorr (d) CSQ

Figure IV.11: Four resulted similarity matrices created by - a)
histogram+residual, b) polar histogram+residual, c) polar his-
togram+coefficient correlation, and d) Gaussian mixture model+chi
square error.
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3 Minimal-Cost Normal Vectors Match

As shown as the example given in Figure IV.12, X = {X1, X2, X3, X4} and

Y = {Y1, Y2, Y3, Y4} are sets of normal vectors for two polygon descrip-

tors. For each normal vector, the angle magnitudes between it and the

other normal vectors are measured to represent the normal vector. That’s,

Xi = {xij‖j 6= i}, where xij is the angle magnitude between Xi and Xj. The

similarity between X and Y can be defined as the minimal cost to create a

multiple-to-multiple onto match from normal vectors in X to normal vectors

in Y . As shown as the example given in Figure IV.14, a multiple-to-multiple

onto match from X to Y is searched according to the similarities between

elements in X and Y to represent the similarity between two polygon descrip-

tors. The match in this example represents that Y1 and Y2 are split from X1,

X2 and X3 are merged to Y3, and X4 becomes Y4.

As shown as the example given in Figure IV.13, the similarity between

two normal vectors Xi and Yj is measured by finding a one-to-one onto[19]

match with maximal sum of similarity Sim(xik, ylj).

Y1 = (y12, y13, y14)

y13

y12

y34 y23

y14

y24 Y2 = (y21, y23, y24)

Y3 = (y31, y32, y34)

x13

x12

x34 x23

x14

X1 = (x12, x13, x14)

x24 X2 = (x21, x23, x24)

X3 = (x31, x32, x34)

Y4 = (y41, y42, y43)X4 = (x41, x42, x43)

Figure IV.12: For each normal vector, the amplitude of angles between ad-
jacent normal vectors are measured to represent the normal vector.
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x13 x14x12

y12 y13 y14

x13 x14x12

y12

X1
Y1

Sim(x12, y12) Sim(x13, y12) Sim(x14, y12)

Sim(x14, y14)Sim(x13, y14)Sim(x12, y14)y14

Sim(x12, y13) Sim(x13, y13) Sim(x14, y13)y13

x13 x14x12

y12

y13

y14

X1
Y1

Sim(x12, y14) Sim(x13, y14) Sim(x14, y14)

Sim(x12, y13) Sim(x13, y13) Sim(x14, y13)

Sim(x12, y12) Sim(x13, y12) Sim(x14, y12)

X1 = {x12, x13, x14}Y1 = {y12, y13, y14}

Figure IV.13: For two normal vectors X1 and Y1, a similarity matrix for
any two angles in two corresponding angle values is computed first. Then
the similarity of two normal vectors are measured by finding a minimal cost
one-to-one onto match

3.1 One to One Onto Matching

For each normal vector, the angle magnitudes between it and the other nor-

mal vectors are measured to represent the normal vector. To measure the

similarity between two normal vectors, a one-to-one and onto match[19] be-

tween elements in two set of angle magnitudes can be performed by the

following proposed method.

Giving two set of angle magnitudes Xi = {xi1, ..., xiN} and Yj = {yj1, ..., YjM}.
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Sim(X1, Y4) Sim(X2, Y4) Sim(X3, Y4) Sim(X4, Y4)

Sim(X1, Y3) Sim(X2, Y3) Sim(X3, Y3) Sim(X4, Y3)

Sim(X1, Y2) Sim(X2, Y2) Sim(X3, Y2) Sim(X4, Y2)

Sim(X1, Y1) Sim(X2, Y1) Sim(X3, Y1) Sim(X4, Y1)

X1 X2 X3 X4

Y1 Y2 Y4Y3

Figure IV.14: The overall similarity between two Polygon Descriptors are
measured by finding a minimal cost multiple-to-multiple onto match.

An N ×N matrix M is built as follows,

M(Xi, Yj) =









m11 · · · m1N
...

. . .
...

mN1 · · · mNN









, where mkl = S(xik, yjl),

where S(xik, yjl) is the similarity between two angle magnitudes xik and yjl.

Since an element mkl represents the similarity value when xik and yjl

are considered to be matched with each other. Finding an one to one and

onto match between Xi and Yj is equivalent to selecting N elements from

each column of M , and no two elements are from the same row. To have

the largest overall similarity of a one-to-one and onto match between Xi

and Yj, the N elements should be selected such that the sum of selected

elements is maximized. In order to regularize the computing procedure,

row exchanges are performed to have the N selected elements aligned on

the diagonal position. Thus, the similarity value between two set of angle

magnitudes can be computed as the sum of diagonal elements.
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Figure IV.15 shows the flow chart of the proposed method that maximize

the sum of diagonal elements by properly exchanging rows. Giving a similar-

ity matrix M , the method is performed as follows. Find an element mij with

the largest value. Swap the i-th row and j-th row such that the element mij

is at (j, j). Then mark all elements in j-th row and j-th column. Repeatedly

find elements with maximal value from un-marked elements and exchange

the maximal element to diagonal position until all elements are marked.

Although the procedure stated above are efficient, its results may not be

good enough. Therefore, a decision step is applied on each rows and columns

to find if any possible row exchange can further maximize the sum of diagonal

elements in the similarity matrix M . The decision step is described as follows,
IF mii + mjj > mij + mji

THEN exchange the i-th and j-th rows.

This decision step is performed repeatedly until no further row exchange

can be performed to increase the sum of diagonal elements. In other words,

the near maximum similarity value S(Xi, Yj) between normal vectors X〉 and

Y| is achieved.

An example of the one-to-one onto match method is shown in Figure

IV.16. At first, since m11 = 178 is the largest value in the 5× 4 matrix, the

elements in first row and first column are marked. Since the value m23 = 169,

the largest value among the unmarked elements, is located in the third row,

the second row and the third row are exchanged. Then the elements in second

row and second column are marked too. Similar process are repeated until

all columns are marked. According to the decision step, the second and the

fourth rows are exchanged since 80 + 143 > 60 + 162.
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Get the largest element e(i,j)

No

No

Create Similarity Matrix

among unmarked elements

Swap the i-th row and the j-th row

Mark the j-th row and the j-th column

Are all elements marked ?

i := 1

j := i + 1

e(i, i) + e(j, j) < e(i, j) + e(j, i)

Swap the i-th row and the j-th column

Yes

Yes

S

j ≤ number of columns
No

No

No
Are any rows swaped in this round ?

i ≤ number of columns

Yes

Yes

Yes

j := j + 1

i := i + 1

Figure IV.15: The flow chart of the proposed matching method. At the
beginning, a similarity matrix is constructed. The order of rows are then
initialized by greedily exchanging the largest element to diagonal position.
Then further decision steps are applied on the diagonal elements to maximize
the result.
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Figure IV.16: An example of the proposed matching method. The similarity
matrix constructed from the pair-wise similarity values is shown in (a). By
greedily picking the smallest elements from selectable elements of similarity
matrix and exchanging them to the diagonal position, the order of rows in
matrix is initialized as shown as (b). Then the decision steps are applied
to find more row exchanges to maximize the sum of diagonal elements. The
final results are shown in (c).
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3.2 Multiple to Multiple Onto Matching

By referencing the bipartile graph matching algorithm stated in [25], a greedy

method is proposed to find a best multiple-to-multiple onto match between

two set of normal vectors.

According to the similarity between normal vectors (see Section 3.1), a

dis-similarity matrix M is created as follows,

M(X ,Y) =









m11 · · · m1N
...

. . .
...

mN1 · · · mNN









, where mij = 1− S(Xi, Yj).

Then a set of elements in M is selected to let every row an column of dis-

similarity matrix M contains at least one selected elements and the sum of

selected elements is minimized.

Figure IV.17 shows the flow chart of proposed multiple-to-multiple onto

match method. At the beginning, the dis-similarity matrix M is created

by using the similarity values between normal vectors. First, an element

e(i, j) having largest value among all unmarked elements are selected. Then

all selected elements are checked and modified to decrease the total value of

selected elements in constraint of that all matrix rows and columns containing

selected elements still contain at least one selected element.

Figure IV.18 shows an example to introduce the proposed multiple-to-

multiple onto match method. At the beginning, the largest value 0.02 is

selected. Then 0.08, 0.28, and 0.29 is selected, too. When 0.35 is tested,

although the third row and first column already contains 0.08 and 0.28. 0.35

is still selected to replace 0.08 and 0.28, because 0.35 > 0.08+0.28 and there

are other elements in the second column and the fourth row.

86



No

Locate the minimal element e(i,j)
among unmarked elements

Create Similarity Matrix

S

COST := e(i, j)

COST := COST − e(ks, ls)

COST := −∞

COST := COST − e(ms, ns)

COST := −∞

COST := ∞ COST := ∞

COST := COST + e(ka, la) COST := COST + e(ma, na)

Mark e(i, j) selected
If e(ks, ls) exist, mark e(ks, ls) abandoned
If e(ms, ns) exist, mark e(ms, ns) abandoned
If e(ka, la) exist, mark e(ka, la) abandoned
If e(ma, na) exist, mark e(ma, na) abandoned

Mark e(i, j) abandoned

Find element e(ma, na) with

abandoned mark in the ms-th row

Find element e(ka, la) with

abandoned mark in the ls-th column

Find element e(kd, ld) with

selected mark in the ls-th column

Find element e(md, nd) with
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selected mark in the i-th row

Found Not Found Not Found

FoundNot Found Found Not Found

Found Not Found Found

Found

Not Found

COST < 0
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No

No unmarked elements
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Figure IV.17: The flow chart of the proposed multiple-to-multiple onto match
method. At first, a dis-similarity matrixM is created by using the similarity
between normal vectors. Then the elements in dis-similarity matrix M are
checked from large to small to find matches having minimal sum of values in
constraint of that all matrix rows and columns contain at least one selected
element.
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Figure IV.18: An example of multiple-to-multiple onto match method.
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3.3 Evaluation and Experimental Results

In order to evaluate the performance of the proposed one-to-one and onto

match algorithm, synthesis testing data sets are generated by a random num-

ber generator. To evaluate different size of similarity matrices, 10 groups of

test data sets with row dimension from 2 to 11, are generated. For each

group, random seeds from 0 to 5999 are used to generate test data.

The testing results are listed in Table IV.1. OST(Optimizing Sorting

Test) is performed by the proposed method. TAT(Testing All Test) is per-

formed by an exhaustive search method which validates all the possible so-

lutions and the TAT results are considered as the ground truth. The per-

formance is measured by the total spending time in milliseconds to process

all the test data. Apparently, the proposed method is quite efficient. Be-

sides, based on the 60000 (10 group of 6000 random seeds) testing data, the

proposed method generates the same results as the ground truth.

In addition, the proposed multiple-to-multiple onto match method is also

evaluated by 60000 random number sets. The spending time of the proposed

method (GMT) and the exhaustive searching method (ESM) are listed and

compared in Table IV.2. Obviously, the proposed method is efficient when

comparing to the exhaustive searching method. Besides, the error rate is

only 0.00165(99/60000).

By applying the proposed methods on stock price and EPS (earn per

share) data collected during the period from 1986 January to 2006 March,

the similarity matrix is created. Monthly stock price and earn per share(EPS)

data are collected during the period from 1986 January to 2006 March. Then,

collected stock price and EPS data are used to create data distributions of

stock price and EPS for each month. After modeling the shape of monthly

data distribution by Polygon descriptor, the proposed Minimal-Cost Nor-
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Table IV.1: The performance comparison of the proposed one-to-one match
algorithm (OST) and the exhaustive search method (TAT). To evaluate dif-
ferent size of similarity matrices, 10 groups of test data sets with row dimen-
sion from 2 to 11, are generated. The data listed in table are the averaged
computing time in milliseconds spent by the matching process. TAT/OST is
the ratio of the spending time by these two methods.

Matrix Computing Time (in milliseconds)
Dimension TAT OST TAT/OST

2 206 175 1.2
3 295 214 1.4
4 855 216 4.0
5 5440 228 23.9
6 40853 232 176.1
7 349117 255 1369.1
8 3582596 301 11902.3
9 39197125 327 119868.9
10 469318748 362 1296460.6
11 6219635476 408 15244204.6

mal Vector Match method is used to measure the similarities between data

distributions of every two months. A similarity matrix is created by using

the measured similarities between monthly data. The brightness of a pixel

at (i, j) in similarity matrix represents the similarity between i-th and j-th

months since 1986 January. As the results shown, the similarity matrix is

still capable to reflect the behavior change of market.
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Table IV.2: The performance comparison between the proposed multiple-
to-multiple onto match method (GMT) and exhaustive searching method
(ESM). By using 60000 random number sets, matrix in different
dimension(2 × 2,3 × 3,4 × 4, and 5 × 5) are created and tested using the
two methods. When the matrix dimension is very small, ESM performs
better. However, when the matrix dimension gets larger, the performance
of the proposed method (GMT) is better than exhaustive searching method
(ESM) obviously.

Matrix Computing Time (in milliseconds)
Dimension ESM GMT ESM/GMT

2 347 667 0.5202
3 9634 1480 6.5095
4 1993646 3035 656.8850
5 1568824936 5065 309738.3882

Figure IV.19: The similarity matrix created using the stock price and EPS
(earn per share) data collected during the period from 1986 January to 2006
March. The brightness of pixel (i, j) represents the similarity between the
i-th and j-th month since 1986 January.
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