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單 分 子 電 晶 體 內 部 之 力 學 震 盪 對 電 子 傳 輸 的 影 響 

學生：唐英瓚 

 

指導教授：褚德三 

國立交通大學電子物理學系所博士班 

摘 要       

由於微製成技術的進步,分子電子學在這幾年成為熱門的議題。當電子穿越

低維尺度元件 ,如一維的奈米碳管(carbon nanotubes),零維的半導體量子點

(semiconductor quantum dot)或分子聚合物(single molecules based on C60), 電

流隨 bias的增長呈現非線性關係, 傳統的歐姆定律不再適用。這時候,我們必

須從能階量化角度研究這個問題。不同於傳統的半導體量子點(GaAs/AlGaAs)
單純考慮能階量化，以分子當 SET元件必須考慮 van der Walls力造成的分子

震盪, 該力可簡諧位勢用近，所以我們額外獲得聲子自由度。因為是 SET 元

件，分子裡的電子與金屬導線裡的電洞形成靜電力，該力造成位勢的偏移。

最後，聲子-聲子之間的 hoping行為改變電子的傳輸性質。一般，聲子輔助傳

輸分佈範圍很廣，即使在 bias-transport區域(Coulomb Blockade)外也可以測到. 
這些通道的數量可經由溫度, bias-voltage, EPI強度來調節。在這份論文裡,我們

分析了單分子電晶體裡的電流與雜訊受熱與 bias的影響。在這個研究,我們使

用非平衡態 Green function的方法求得標準的 EPI 電流公式。經由電流的計算, 
我們瞭解系統的電導如何受聲子的影響. 除此之外,我們也建立廣義的 EPI 
noise公式, 其中包涵對導線裡 thermal fluctuation與系統裡 shot noise的描述,
也包涵了各級(e.g., sequential tunneling與 co-tunneling) tunneling的行為。更重

要的,這個方法預測的結果與實驗很接近。 
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ABSTRACT 

In recent years, molecular electronics has become one of the very popular topics 
due to the advances in micro-manufacturing technology. The current increases 
non-linearly with the increment of the voltage when electrons tunnel in 
low-dimensional devices, such as one-dinmensional carbon nanotubes, 
zero-dimensional semiconductor quantum dots or single molecules based on C60, 
Co-polymer. The conventional Ohm’s law is no longer applicable, and quantum 
mechanics has to be considered. Different from semiconductor quantum dots 
(GaAs/AlGaAs), in which only energy level quantization is taken into account, we 
need to deal with the effects of potential shift caused by van der Waals and static 
electric forces when using molecules as SETs The shift effects result in 
electron-vibron interactions, and these interactions will change the original 
tunneling rate of electrons. In our work, it is found that the correlation formed by 
electron-vibron is dependent on the temperature as well as external voltages. The 
results predict that the conductance will rise and blur as the voltage is increased. 
Meanwhile, an obvious conductivity gap occurs between the zeroth and the first 
phonon side-bands, implying that the phonon assisted state is a virtual state. 
Additionally, we also derive the generalized EPI noise formula and investigate the 
thermal fluctuation and shot noise behavior responding to the voltage. We find that 
at large voltages, the electrons will move randomly, returning to the classical 
behavior. The predictions coincide with the experimental results.  
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CHAPTER I

INTRODUCTION

One of the main difference between SMTs and QDs is that SMTs have molecular structure

and small mass, so oscillation tends to occur due to van der Waals forces and static electric

forces. Brandes et.al [46] used Mater equation to study the non-linear current of double

quantum dots in semiconductor. He concluded that non-linear mechanism stemmed from

the interference of phonons. Because the phonons are easily destroyed by heat and struc-

tures, the DOS is assumed as ohmic loss distribution, and the phonons possess continuous

modes. However, it is single mode in SMTs owing to the fact that van der Waals potential

can be further approximated as single harmonic structure. Many scientists started to inves-

tigate in this field because of the advances in nanotechnology. Making thin films oscillation

as molecules is no longer a critical issue. The following are the recent progress in this topic.

1.1 The Single-molecule Transistor

In recent years, it becomes more and more important to use a single-molecule transistor as

conducting single electron transistors (SETs). In molecular electronics, due to the advance

of nano-device technology. One special phenomenon is the discovery of the non-linear stair

current. This phenomena, however, has been discovered widespread in a single molecule

transistor, but not in the semiconductor quantum dot due to vibrational motion of the

atoms. In the pioneering work by H. Park et al,[1] reported that the current increase

presented the stair profile with the increment of bias voltage when the C60 molecule was

connected to a gold wire, see Fig. 1. They deduced that the step behavior resulted from

the vibrons assisting in the transport[1].

The vibrons originated from the quantization of the oscillating energy. In fact, when a

C60 molecule is near the metal, it would be attracted weakly through van der Waals force.

The trapping well could be roughly described by a harmonic potential, as seen from the
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Figure 1: The current vs. the bias voltage obtained from C60 transistor at T = 1.5K.
Reprinted from Ref.[1]

upper inset of Fig. 2a. This is a SET, as a consequence, electrons may leave from the metal

surface to C60 (in the middle of Fig. 2b). The holes in the metal and the electrons in

C60 would form a static electric field, and the C60 would be pulled to the metal, causing a

position shift, as shown in the right inset of Fig.2b.

Figure 2: The mechanism for the C60-SMT. The van der Waals force and the static electric
field play an essential role. Reprinted from Ref.[1]

1.1.1 Vibronic transitions: the Source of the Staircase Current

The Franck—Condon principle is a rule that explains the intensity of vibrational mode

(vibron) transitions. Vibronic transitions are the simultaneous changes in electronic and

2



(a) (b)

(c)

Figure 3: Schematic description of the displacement of the vibron potential for weak
electron-vibron coupling (a) and strong electron-vibron coupling (b) The lower insets depict
the electron-vibron coupling probability among different vibrational states in two potentials
|Mn,m|2, where the the coupling strength are given by λ = 0.2, 1.0 and 4.0, respectively.
The diagonal term denotes the probability for emission/absorption of n bosons of frequency
ω0. n is positve for emission and negative for absorption. qi denotes the quantized number
before compressing the atom and qf is that of compressed. Reprinted from Ref.[39] and
Ref.[45].
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vibrational energy levels of a molecule due to the absorption or emission of a vibron of

appropriate energy. Because C60 was pulled to the metal due to forming the electron-hole

electric field, causing a mechanical motion of C60. As a result, the overlap of two vibrational

wave functions over a physical displacement, i.e. 〈m|x |n〉, highly renormalizes the electron

tunneling rate of the SET (without vibronic transitions, the transition rate is determined

by the Fermi’s golden rule).

The profiles of the strong and the weak electron-vibron interaction are depicted in Fig.

3(a) and Fig. 3(b), respectively. Fig. 3(a) and Fig. 3(b) reveal the semi-classical diagram

of Franck-Condon behavior. In the weak electron-vibron interaction case (see g << 1

in Fig. 3(a), where g represents the electron-vibron coupling strength), there is neither

vertical shift of the potential nor horizontal shift of the position. x → 0 and hence the

off-diagonal vibronic transitions does not exist. Strong electron-vibron interaction leads to

great potential deviation, and the energy level is accompanied changed, which results in less

overlapping of low-energy vibrational states (see Fig. 3(b)). The less overlapping means a

small amount of electrons may transport at low bias voltage, leading to the so-called "vibron

blockade" (Franck-Condon blockade), as mentioned in Ref.[45][40][39]. On the contrary, the

overlap of the vibrational wavefunctions at high energy region becomes larger, that is, the

transmission between energy levels in this field is rather active and we expect to measure

the current at large bias.

1.2 The Conductance Oscillation in the SMT

The physical quantities of interest, such as current, conductance and higher order correlation

functions, e.g. noise, can be obtained as the spectral density (density of states) is solved.

In experiments, the differential conductance has structure similar to the zero-bias spectral

function.

1.2.1 Nanomechanical Oscillations in a single-C60 transistor

A single-C60 molecule is considered to have a single level of degeneracy. The vibrons may

changed the single-level molecule into a multiple-level structure, as shown in Fig. 4. It can

be seen that more and more vibron side-bands enter the transport window (the chemical

4



Figure 4: The density plot of the spectral function A(ω) at different bias, where the left
denotes the small one and the right is the larger. The right figure shows the differential
conductance as a function of the bias voltage and the gate voltage. The white triangle
denotes the vibron sidebands. Reprinted from Ref.[1].

potential of the metal wire) as the bias is enhanced (the red arrow). As a result, the current

abruptly increases when the chemical of the leads across the level energy of vibronic channel.

Usually the hole states are distributed above the chemical potential of the leads and the

electron states below. Therefore, it is expected to obtain a symmetric conductance map

as the coupling of the molecule to the leads is symmetric. The right figure shows the 2D

distribution of the conductance vs. the bias (vertical-axis) and the gate voltage (horizontal-

axis) for four C60 transistors of various sizes. The white arrow indicates the occurrence of

vibron side-band[1].

1.2.2 Coulomb blockade and the Kondo effect in single -atom transistors

In 2002, J. Park et al.[2] examined two related molecules containing a Co ion bonded to

polypyridyl ligands to make a quantum dot and to observed the Kondo effect. In their work,

a set of symmetric satellite Kondo peaks due to emission of the vibrons were observed as

the bias matches multiples of the vibrational frequency. The model is given as follows.

The left pictures in Fig. 6 show the 2D conductance for three devices of various sizes. In

the black region (the blockade zone in Fig. 6a), Co2+ and Co3+ represent the molecular

ground state and the excited state. In the transport bias window, the white line denotes

5



Figure 5: Preparation of the Co polymer transistors. Reprinted from Ref.[2].

the vibron-side band. Fig. 6(b) shows the level-splitting of ground state for the Co polymer

when a magnetic field of B = 6T is exerted in Fig. 6(a). The white triangle indicates the

new energy levels after the magnetic field is turned on. This is the Zeeman splitting effect

measured in the conductance. The splitting energy is linearly increased with the magnetic

field (inset below Fig. 6(b)). At low temperature, the conductance peak starting from

the Kondo effect is probed near eVb = 0 in the Coulomb blockade region, as seen in Fig.

7(b). The right picture shows the differential conductance vs. the bias at T = 1.5K, where

a maximum Kondo peak is found at eVb = 0. As usual we may find maximum peak at

Vb = 0. Due to the vibron assisting tunneling, we observe, furthermore, symmetric satellite

maxima. The lower inset (c) shows that the conductance owns a logarithmic temperature

dependence in the range of T = 30 to T = 20K. The lower-right figure (d): The splitting

of the Kondo peak caused by a series of magnetic field.

1.2.3 Suspended Semiconductor Quantum Dot (Phonon Cavity)

Besides using molecules to confirm the phonon side-bands, E. M. Weig et al.[8]. designed

a suspended quantum dot device embedded in a freestanding GaAs/AlGaAs membrane to

verify the phonon blockade in the low bias region. There, the phonon of single frequency

is applied by the suspended phonon cavity[31][32][33], as seen in Fig. 8. The conductance

under different magnetic fields are shown on the RHS of Fig. 8. The right inset profiles the

corresponding conductance vs. Vg at Vb = 0, where no conductance is found at Fig. 8(b).

reflecting the phonon blockade. At higher temperature (T = 350mK), the conductance

6



1/ 2S = 0S =

N 1N +

Figure 6: (a)Coulomb blockade and the Kondo effect in Co polymer transistors. The right
figure (b) presents that the quantum dot with a magnetic field of B = 6T . The below inset
denotes the Zeeman splitting as a function of the magnetic field. Reprinted from Ref.[2].

that phonon blockade starts to be decreased because of thermal broadening of the Fermi

function helping hole states transport through the dot system.

1.2.4 Suspended Carbon Nanotube Quantum Dot

In 2006, S. Sapaz et al.[5] produced a suspended carbon nanotube quantum dot (CNT-QD),

which was connected to metal wires and the step current was observed, as shown in Fig.

9. They deduced that the step current was from the longitudinal phonon waves in the

carbon-nanotube. Besides, E. Onac et al.[6] adopted the same model and, furthermore,

used a superconductor-insulator-superconductor device to measure the (a) current, (b) con-

ductance, (c) noise and (d) differential noise. With current and noise, they calculated the

Fano factor of the CNT-QD. They verify that in the Coulomb blockade regime, the inelastic

co-tunneling yields a super-Poissonian noise, whereas poisson for the elastic co-tunneling.

Fig. 27(a) shows the Fano factor according to F = S/2e 〈I〉, where 〈I〉 is the current given

by Fig.10(c) and S is the noise shown in Fig.10(a).

In 2009, Leturcq et al.[39] took advantage of a suspended carbon nanotube (CNT) to

7



Figure 7: The Kondo effect in the Coulomb Blockade region (at eVb = 0). Reprinted with
permission from Ref.[2]

generate a vibrating quantum dot for the observation of strong electron-vibron coupling

effects on the current, as seen in Fig. 12. They demonstrate the vibron frequency is

governed by the longitudinal stretching vibrons in the CNT, and more importantly, they

shows strong evidence of the vibron-blockade behavior at low-bias. In addition, they probed

the conductance peaks in the blockade regions. At high temperature, the absorption of the

vibron energy becomes active, and vibron-mediated states assist the electron transport,

even at the coulomb blockade area. This nontrivial phenomena, however, not reported in

previous studies of this kind, is believed to associate with the higher-order co-tunneling of

vibrons, especially, when the strong elecron-vibron interaction is considered. On the other

hand, to understand the electron-vibron interaction (EVI) again becomes an hot topic in

recent years.

1.3 Theoretical Development of the Vibron-assisted Tunnel-

ing Problem

Theoretically, many efforts have been made to solve the electron transport the vibrating

quantum dot or the SMT. Theoretical methods in this field include the scattering rate
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Figure 8: The left depicts the suspended quantum dot in a freestanding phonon cavity
(130nm thin GaAs/AlGaAs) membrane. The right insets show conductance maps under
B = 500mT and B = 0. Inset (b) and (c) exhibit the conductance gap around Vb = 0 (linear
response area). However, higer temperatue may reduce the suppress behavior. Reprinted
from Ref.[8].

equation, the master equation and the non-equilibrium Green’s function. The rate equation

(RE)[37], the master equation[12][46][36] and the NEGF[14][15] have successfully explained

many transport experiments. Each of these theoretical approaches has its own advantages

and limitations. Among theses approaches, the RE may rapidly yield the equation of motion

for every state by directly replacing the density ρ (t′) by ρ (t) In the report by Brandes[46],

they calculated the main current of double quantum dots via the RE and concluded that

the non-linear electric current stemmed from the shake-up effects of the vibrons. However,

different treatment of methods owes it convenience, however, the convenience is often based

on the decoupling assumption. For example, the RE can be quickly solved only if we omitted

the influence of self-energy, which causes the error message of the energy shift and the level

broadening of the quantum dot. That is, the RE is an effective method for predicting that

the hopping (correlation) time is much smaller than time spent in the quantum dot, i.e.

valid for a weak-tunneling regime. To our knowledge, the non-equilibrium Green’s function

is the most convincing tool to solve quantum transport at finite bias because it contains

9



Figure 9: The upper figure presents the staircase current as a function of source-drain
voltage at a fixed gate voltage. The lower inset depicts the experimental setup of a suspended
carbon nanotube quantum dot (CNT-QD). Reprinted from Ref.[5]

both the hopping ( correlation) and the self-energy of the interacting system. The early

application of this technique on quantum transport were established by M. Wingreen and

Y. Meir[15]. Later A. P. Jauho and his co-workers[14] extended this technique to other

fields, like spin-dependent transport, superconductors and optical lattaice. For quantum

transport, there is a basic current formula expressed as

J =
e

�

∫
dω

ΓL (ω) ΓR (ω)

ΓL (ω) + ΓR (ω)
[fL (ω)− fR (ω)]A (ω) . (1)

This formula, however, is well-defined in the EVI problem. Usually, th function Γ (ω) and

f (ω) is related to the metal wire, can be solved by Fermi’s golden rule and the Fermi—Dirac

distribution. The problem lies in the determination of the function A (ω). Jauho et.al [11]

solved this function by imposing the identical relation of A (ω) = 2 ImGr (ω), and they

directly decoupled the total system’s retarded Green’s function as

Gr,a (t) ≈ G̃r,a (t) exp [−Φ(t)] , (2)

Φ(t) =

(
λ

ω0

)2 [(
1− e−iω0t

)
(N0 + 1) +

(
1− eiω0t

)
N0

]
. (3)
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Diff Noise

Figure 10: The density plot of (a) current, (b) conductance, (c) noise and (d) differential
noise, where the vertical-axis is the bias and horizontal-axis is the gate voltage. Reprinted
with permission from Ref.[6]

where the function G̃ denotes the electron Green’s function and exp [−Φ(t)] is the vibron

correlation. Later, Zhu and Balatsky extended this method to calculate the zero-frequency

noise. At high temperature, this method gives the same tendency of the conductance as

found in experiments, where the conductance peak does exists in the blockade area. How-

ever, this method fails at low temperature, that is, no conductance shall be found in this

limit. The erroneous prediction arises from the ill treatment of electron-vibron decoupling.

As a matter of fact, Ga (t) = [Gr (t)]∗ but Φ∗ (t) = Φ (−t) �= Φ(t), as a consequence, Eq.(2)

is not appropriate for studying current—voltage characteristic of vibron assisted tunneling.

Instead, it is convenient to start from function G<,> (t). Based on this, Chen and his co-

workers solved this problem and quickly obtained the symmetric conductance, agreement

with the experimental observations. However, in Chen’s work, since an averaged field con-

cept has been executed to simplify the EVI self-energy, they missed an important thermal

broadening information from vibron Green’s functions. In this thesis, we will examine the

properties of the vibron correlation and address how to interpret the EVI transport question

11



Figure 11: (a) The dashed line represents the transport bias window and the dot line is for
the Coulomb blockade area. (b): Fano factor vs. the applied bias voltage at different gate
voltages. Reprinted from Ref.[30]

in a more physical way. More importantly, a conductance gap between the chemical poten-

tial of the leads and the first vibron excited state, specifically, e |Vb| > 2ω0, is also examined.
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Figure 12: Left: The inset depicts the experimental setup of a CNT-QD, where S, D, and
TG stands for the source, the drain, and the gate voltage. The quantum dots are located
below the gate and in the left and right leads. The frequency is decided by the longitudinal
stretching mode. Right: Franck-Condon blockade in suspended carbon nanotube QD, where
higher temperature yields phonon side-bands appearing outside the bias transport area
(Coulomb Blockade region). Reprinted from Ref.[39]
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CHAPTER II

THEORY OF QUANTUM TRANSPORT

Our formalism is based on the nonequilibrium Keldysh Green’s function method. The

Keldysh Green’s function is used to deal with the system coupled to a time-dependent

external fields. This function describes how the system evolves with time from the initial

state. Before the interaction is on, the system and the environment are at their equilibrium,

and the their physical quantities can be described by the Matsubara Green’s function. As the

interaction is turned on, the transfer function of the system can be extended via the Dyson

equation approach[14][16]. Next we briefly describe the mechanism behind the Keldysh

Green’s Function.

2.1 The Keldysh Green’s Function

We consider a system under the Hamiltonian

H (t) = HS +H ′ (t) .

The time-independent Hamiltonian H can be split into HS = H0 + Hintra, where Hintra

denotes the interaction in the system HS , such as the Coulomb repulsion. A quantum

statistical expectation value of an field operator O at time t is given by

〈O (t)〉 = tr [ρ (t)O] = tr [ρ0OH (t)] = 〈OH (t)〉 , (4)

where ρ (t) = U (t, t0)ρ0U
+ (t, t0) and the quantity ρ0 is the equilibrium density matrix

given by

ρ0 =
e−βHS

Tr [e−βHS ]
.

Note here that U (t, t0) = exp
[
− i
�

∫ t
t′ dtH (t)

]
. At t > t0,

OH (t) = U (t, t0)OU+ (t, t0)

= UHS (t, t0)OHS (t)V
+
HS

(t, t0) ,
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Figure 13: The contour time path ct

where the unitary function UHS (t, t0) is given by

UHS
(
t, t′

)
= T exp

[
− i

�

t∫
t′
dtH ′

HS
(t)

]
,

H ′
HS (t) = e

i
�
HS(t−t0)H ′ (t) e−

i
�
HS(t−t0)

Therefore, Eq.(4) can be rewritten as

〈O (t)〉 = tr

{
ρ0 exp

[
− i

�

∫
ct

dt′H ′
HS

(
t′
)
]
OHS (t)

}
, (5)

OHS (t) is the time-dependent operator of the system, and the contour ct is depicted in

Fig. 13Since Eq.(5) is expreseed in terms of the equilibrium Hamiltonian Heq, the contour-

ordered Green’s function plays a similar role as the equilibrium Green’s function. Compared

to the equilibrium Green’s Function, we have two additional contour ordered Green’s func-

tions:

G
(
1, 1′

)
=





G< (1, 1′) = −i
〈
ψH (1)ψ+H (1′)

〉
, τ1 < τ1′

G> (1, 1′) = +i
〈
ψH (1)ψ+H (1′)

〉
, τ1 > τ1′

(6)

where (1) ≡ (r1, t1). The detailed description of G< (1, 1′) is

G<
(
1, 1′

)
= −i

〈
Tc1

{
e
− i
�

∫
c1
dt′H′

I(t
′)
ψH (1)

}
· Tc′

1

{
e
− i
�

∫
c′
1

dt′H′

I
(t′)

ψ+H
(
1′
)}〉

(7)

= −i

〈
Tc1+c′1

{
e
− i
�

∫
c1+c

′

1

dt′H′

I
(t′)

ψH (1)ψ+H
(
1′
)}〉

.

It implies that the contour ci stretches from t0 and passes through t1 and t1′ and back to

t0, The last equality in Eq.(7) combines the contours c1 + c′1, as plotted in Fig.14:
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Figure 14: Parts of contour evolution operators canceling in Eq.(7). Reprinted from Ref.

2.1.1 Analytical Continuum

In general, the interaction complicates the evolving path in the contour-ordered Green’s

function. The procedure of converting this complex-time Green’s function into a real-time

one is called the analytic continuation or Langreth theorem, which is developed by Kadanoff,

Baym[44] and Langreth.[17] The useful Langreth theorem is listed as follows:
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Contour (Complex) Time Real Time

C (τ, τ ′)=
∫
c dτ1 C≶ (t, t′)=

∫
dt1

[
Ar (t, t1)B

≶ (t1, t
′)

A (τ, τ1)B (τ1, τ
′) +A≶ (t, t1)B

a (t1, t
′)
]

Cr(a) (t, t′)=
∫
dt1A

r(a) (t, t1)B
r(a) (t1, t

′) .

D (τ, τ ′)=
∫
c1 dτ1

∫
c2 dτ2 D≶ (t, t′)=

∫
dt1

∫
dt2 [A

r (t, t1)B
r (t1, t2)×

A (τ, τ1)B (τ1, τ2)C (τ2, τ
′) C≶ (t2, t

′) +Ar (t, t1)B
≶ (t1, t2)C

a (t2, t
′) .

+A≶ (t, t1)B
a (t1, t2)C

a (t2, t
′)
]

Dr(a) (t, t′)=
∫
dt1

∫
dt2A

r(a) (t, t1) ·

Br(a) (t1, t2)C
r(a) (t2, t

′) .

C (τ, τ ′)= A (τ, τ ′)B (τ, τ ′) C≶ (t, t′)= A≶ (t, t′)B≶ (t, t′) .

Cr(a) (t, t′)= A< (t, t′)Br(a) (t, t′)

+Ar(a) (t, t′)B< (t, t′)

+Ar(a) (t, t′)Br(a) (t, t′) .

= ±θ (±t∓ t′) ·

[A> (t, t′)B> (t, t′)−A< (t, t′)B< (t, t′)]

D (τ, τ ′)= A (τ, τ ′)B (τ ′, τ) D≶ (t, t′)= A≶ (t, t′)B≶ (t′, t) .

Dr(a) (t, t′)= A≶ (t, t′)Ba(r) (t′, t)

+Ar(a) (t, t′)B≶ (t′, t)

2.2 The Single Molecular Transistor

Here we begin with a description of the system of interest, that is, the single-molecule

transistor. The experimental setup of this vibrating single-molecule transistor is shown in

Fig. 15. Here the spin degree of freedom and the influence of Coulomb interaction are

omitted. The model Hamiltonian of the C60 and the metal wires reads

Hleads =
∑

kα

εkαc
+
kαckα (8)

Hdot(c60) = εdd
+d, (9)
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Figure 15: The experimental setup of a vibrating single-molecule transistor (C60). The dot
level is cotrolled by the gate voltage and the transport window is tuned by the bias voltage
in the terminal.

When the C60 molecule is connected to a gold wire, the van der Waals potential energy

appears. This potential energy may be described as the harmonic potential,

Hph =
p20
2m0

+
1

2
m0ω

2
0x
2
0

= ω0b
+b. (10)

We consider an electron-hole electric force will depart in the direction from the source to

C60. As the electron is added to the molecule, the hole in the wire then attracts the

electron in C60, forming a constant electric field and pulling C60 towards the source wire.

This behavior is described by

Hdb = qEx0d
+d (11)

= λ
(
b+ + b

)
d+d, λ = qE/

√
2mω0.

It is worth noting that the electric field causes the original harmonic potential to shift x0,

but it does not change the harmonic potential much. In the second quantization picture,

Eq.(11) interprets an electron in the transport process, where λ reflects the EVI coupling

strength. The system will emit (or absorb) a vibron at the same time. However, it only

emits vibrons at zero temperature.
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Basically, there are interactions among the QD system, the wire, and the vibrons. For

convenience, two of them are usually dealt with as one quasi-particle. In previous studies,

a quasi-particle polaron may result from the combination of vibron and QD. Here, we first

combine the vibron and the non-interacting wire, and then perform the EOM expansion on

the coupling of QD and the wire. In this case, the model is simplified as the coupling of

multi-channel leads and a QD system with simple energy levels. That is to say, the electrons

jump to the QD system from the chemical potentials and then to the wire.

2.3 The Current and the Spectral function

In this section, we derive the standard EVI current formula through the SMT.

2.3.1 Discrete Spectrum: The Anderson-Holstein Model

The electron transport between the leads and the central region is considered as shown in

Fig. 15. In our study only one level of the dot system is considered, and electrons vibrate at

a single frequency ω0. The EVI system is studied theoretically through a non-perturbative

canonical transformation H = eSHe−S with S = (λ/ω0) d
+d (b+ − b) (the detailed deriva-

tion is shown in Appendix A). Under this unitary transformation, the Hamiltonian now

reads:

HT = Hcen +H lead +HT ,

Hcen ≡ ε0 (Vg) d
+d+ ω0b

+b, (12)

H lead =
∑

kα,α∈L,R

εkαc
+
kα

ckα , (13)

Ht =
∑

kα,α∈L,R

Vkαc
+
kα

dX + h.c, (14)

where

X ≡ exp

[
− λ

ω0

(
b+ + b

)]
, (15)

The operators d+ (d) and c+kα (ckα) represent the creation (annihilation) operators of electron

in the QD (or SMT) and the α lead, respectively. The operator b+ (b) is the creation

(annihilation) operator of the vibron. ε0 ≡ ε0 (Vg) −∆ is the dot level energy controlled
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by the gate voltage, with the canonical energy shift ∆ = λ2/ω0. The coupling strength of

EVI is denoted by λ and the tunneling matrix element between the QD (or SMT) and the

α lead is defined as Vkα . Here εkα is the energy of the electron in α lead, which remains

unchanged because of the absence of vibron field in the α lead.

2.3.2 The Jauho’s Current Formula (from the Perspective of the Quantum
Dot)

The current from the left lead to the central region can be defined[11] as

JL (t) =
2e

�
Re

∑
k,α∈L

Vkα,dG
<
d,kα

(
t, t′

)
|t′→t (16)

where the Green’s function G<d,kα (t, t
′) ≡ i

〈
c+kα (t

′)X (t′)d (t)
〉
together with its conjugate

property are applied above. Note that the electron-hole interaction between the metal leads

and the dot is mutual, both terminals are vibrating from the perspective of the quantum

dot, hence c+kα and X evolves at the same time. Gd,kα (τ , τ
′) can be solved by

Gd,kα
(
τ, τ ′

)
=

∫

c
dt1G̃dd (t, t1)V

∗
kα,dgkα

(
t1, t

′
)

(17)

Performing the continuation rules[11] onGd,kα (τ, τ
′) and substituting the resultingG<d,kα (t, t

′)

into Eq.(16), we obtain:

JL (t) = −
2e

�
Im

[∫ t

−∞

dt1G̃
r
dd (t, t1)Σ

<
αǫL (t1, t)

+ G̃<dd (t, t1)Σ
a
αǫL (t1, t)

]
, (18)

The main task is to calculate the self-energy Σα.

2.3.3 Self-Energy

In frequency space, the appliance of the LT on the self-consistent Dyson equation of the elec-

tron Green’s function in the QD (or SMT)[14][16] leads to G̃r,add (ω) =
[
ω − ε0 −Σr,aT (ω)

]−1
,

where the contour-ordered self-energy ΣT induced by the tunneling process reads ΣT (ω) =

F+ (ω) Σ̃T (ω), they carry all the same time information on the lead electrons and vibrons.
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Figure 16: The diagrammatic representation of the perturbative expansion of the electron
Green’s function, where the electron-phonon interaction is depicted by the wave curve; the
solid line denotes for the fermion line.

In Eq.(18), the partial part of the tunneling self-energy in the current formula can be

found as

Σaα
(
t, t′

)
= −θ

(
−t+ t′

)∑
n

[
Σ>α,n

(
t, t′

)
−Σ<α,n

(
t, t′

)]
. (19)

Here

Σ>,<α,n = F+>,< ·∑kα
|Vkα|2 g>,<kα .F+>

(
t− t′

)
≡
〈
X+

(
t′
)
X (t)

〉
(20)

and F+< (t− t′) ≡ 〈X (t)X+ (t′)〉 are the greater and lesser vibron Green’s functions, and

g
<(>)
kα (t− t′) is the lesser (greater) Green’s function for the free electron in the α lead. The

Fourier transform of the self-energies in Eq.(19) lead to:

Σr,aα,n (ω) =
∑

kα

[
pn

V ∗kαVkα
ω + nω0 − εkα ± iδ

f<α (εkα)

+p−n
V ∗kαVkα

ω + nω0 − εkα ± iδ
f>α (εk)

]
, (21)

Σ≷α,n (ω) =
∑

kα

V ∗kαVkαp∓ng
≷
kα (ω + nω0)

= ∓i
∑

n

p∓nΓα (ω + nω0) f
≷
α (ω + nω0) , (22)

where f<α (εkα) and f>α (εkα) are the electron and hole Fermi functions in the α lead. In

this paper, Γα (ω) = 2π
∑
kα |Vkα|

2 δ (ω − εkα) represents the rate of a particle leaving

the quantum dot system without the EVI. The factor pn denotes the weighting func-

tion of the interactions between the electron and n vibrons, which is found as pn =

e−2g(N0+
1

2)enω0/2kBT In
(
2g
√

N0 (N0 + 1)
)
[16], where N0 and In are the Bose function and

the modified Bessel function.
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Following Eq.(18), we obtain the EVI current formula, where the first term in the RHS

of Eq.(18) explains the in-tunneling current Jin, where electrons entering the single-energy-

level quantum dot system through the non-interacting wire with multi-channel. The second

term in the RHS in Eq.(18) describes the out-tunneling current Jout, where the electron

in the central region tunnels out of the central region via two channels, the transmission

scheme is depicted in Fig.17.

Figure 17: Jauho’s transport picture. Reprinted with from Ref.[11]

Note here that the source wire emits vibrons when electrons transfer from one end to

the other in a non-equilibrium system at low temperature. In addition, the quantum dot

will couple with the multi-channel leads and forms step bandwidth (decay), which decides

not only the lifetime of electron in the system but also the probability distribution. We

have so far derived the diagrammatic formula and the Jauho’s transport formula. Now we

shall analyze the spectral function.

2.3.4 The Spectra Function Ãd (ω)

From the definition of the spectral function Ãd (ω) = −2 Im G̃rdd (ω), we obtain:

Ãd (ω) =

∑
n,α

[pnΓαf
<
α (ω + nω0) + p−nΓαf

>
α (ω + nω0)]

(ω − ε̃0)
2 + [W (ω) /2]2

, (23)

where ε̃0 = ε0 (Vg) − ReΣrT (ω) denotes the renormalized level position, and W (ω) =

−2 ImΣrT (ω) represents the life-time broadening (bandwidth) of the dot state. A compari-

son with the conventional JWM’s formula in Ref.[14] assures that the life-time broadening
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of a dot state W (ω) in Eq.(23) equals to the summation of out-tunneling rates between

the leads and the system, i.e. Eq.(21); Eq.(18) is therefore self-consistent and meaning-

ful. Note that G̃<dd (ω) in Eq.(18) can be quickly solved via using the Keldysh equation

G̃<dd = |Grdd|
2Σ<T (ω)[11]. The remaining goal is to decide the retarded self-energy ΣrT (ω).

To this end,
∑
kα is replaced by

∫
dωρ (ω), and the Lorentz density of states with band-

width EC at the chemical potential µα is assumed[19][20]. With this auxiliary function,

the integral becomes convergent, and the retarded self-energy of the electron in QD (SMT)

reads

ReΣrT (ω) =
∑

n,α

(pn − p−n)
Γα (ω + nω0)

2π

[
ln

(
EC

2πkBT

)

−Reψ

(
1

2
+ i

ω + nω0 − µα
2πkBT

)]
, (24)

ImΣrT (ω) =
1

2π

∑

n,α

[
pnΓα (ω + nω0) f

<
α (ω + nω0)

+ p−nΓα (ω + nω0) f
>
α (ω + nω0)

]
. (25)

ψ (z) is the digamma function with a complex argument. It can be seen from Eq.(24)

that besides the energy shift ∆ due to the canonical transformation, another energy shift

ReΣrT (ω) is obtained from the vibron correlation function. In addition to the renormaliza-

tion shift, we find that the life-time broadening of Eq.(25) from the LT is more complicated

than that from the MFT[18], which is a constant. This is because, in non-equilibrium,

the LT preserves the properties of electrons and holes in the leads via the vibron Green’s

functions.

2.3.5 The Physical Meaning of the Function G̃< (ω)

Basically, the lesser Green’s function is associated with the particle density[11]. This

function can be solved via the continuous condition for the steady state, i.e.

〈
·

N

〉
=

〈
∂G̃</∂t

〉
= 0 (see appendix A) or solved with the Keldysh equation, i.e. G̃<dd (ω) =

G̃rdd (ω)Σ
<
T (ω) G̃add (ω) (The relation of the particle conservation together with the Keldysh

equation for G< (ω) are proven in Appendix A). Consequently, the lesser/greater Green
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function is found as

G̃≷dd (ω) =

∓i
∑
n,α

[
p∓nΓα (ω + nω0) f

≷
α (ω + nω0)

]
· Ãd (ω)

∑
n,α

[pnΓα (ω + nω0) f<α (ω + nω0) + p−nΓα (ω + nω0) f>α (ω + nω0)]
(26)

where Ãd (ω) is defined in Eq.(23) and the stationary probability for an empty state and an

occupied state can be found as

P st0 =
〈
d (t) d+

(
t′
)〉
t′→t

= −
∫

dω

2πi
G̃>dd (ω) , (27)

P st1 =
〈
d+

(
t′
)
d (t)

〉
t′→t

=

∫
dω

2πi
G̃<dd (ω) . (28)

Comparing the expression of P st0(1) with D(9) in Ref.[19], we see that the life-time broad-

ening of the system is identical in all treatments there except that an EVI-assisted out-

tunneling rate is maintained throughout our calculation. Nonetheless, owing to the relation

of Im G̃<dd − Im G̃>dd = Ãd (ω), the normalization P st0 + P st1 =
∫
dω
2π Ãd (ω) = 1 is guaranteed

in our calculation.

2.3.6 The Landauer-Büttiker Formula

The Landauer-Büttiker formula[23][24] can be used to describe the electron tunneling from

one lead to another, and may be derived through the Green’s function[11]: Using the

identical relations of G̃r−G̃a = G̃>−G̃< and Σr−Σa = Σ>−Σ< on Eq.(18), an alternative

expression of current is acquired as:

Jα =
e

�

∫
dω

2π

∑

n,n′

[
T̃ααnn′ (ω) f

<
α (ω + nω0) f

>
α

(
ω − n′ω0

)

−T̃ααn′n (ω) f
>
α (ω − nω0) f

<
α

(
ω + n′ω0

)]
, (29)

where the tunneling function T̃ααnn′ is defined as

T̃ααnn′ (ω) = pnpn′
Γα (ω + nω0) Γ

α (ω − n′ω0)

W (ω)
Ãd (ω) , (30)

Eq.(29) and Eq.(30) are the central formulas for studying the joint effect due to the vibron-

assisted tunneling rate. Moreover, Eq.(29) provides a clearer picture of EVI transport
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than Eq.(18) does, that is, the electron departs from the n-th (electron) state in the α-lead

(source), tunnels through the dot, and arrives at the n′-th (hole) state in the α-lead (drain).

In general, the electron states are located below the chemical potential and the hole states

above. Fig. 18(a) shows a graphical illustration for this description for a low-lying level

position ε0 = −ω0 (left), medium level ε0 = 0 (central), and higher level ε0 = ω0 (right),

where the bias is at eVb = 2ω0, and the red arrows indicate the significant channels for

particles passing through the dot.

From Eq.(30), we see that Tααnn′ is expressed in terms of the tunneling function, tunneling

rates, and weight factors on both terminals pn and pn′ due to the EVI effect. At zero temper-

ature, the weight factor pn is zero for n < 0[18], the Fermi function goes towards a step func-

tion, and the transport window for each channel, i.e. θ (µα − ω − nω0) θ (ω − n′ω0 − µα), in

Eq.(29) is given by εFα,−n − εFα,n′ = µα − µα − (n+ n′)ω0. At low temperature, the particle

transport practices are within µL and µR. However, at high temperature, p−n is non-

zero, and hence the vibron-mediated states outside the transport window also participate.

Therefore, the current in this field is probable.[39]

An analogous transport scheme[12],[14],[11],[9],[13],[18],[28],[38], has been presented in

previous publications although the background physics is different. For example, in Refs.

[9] and [18] the n-th vibron-mediated state exists in the QD (or SMT) because the vibron

field is treated as being involved in the evolution of the dot, so the vibron sidebands come

from the SMT electrons and holes. Note that the quantized number is labeled from the

energy of the dot, not from the chemical potential of the leads. Furthermore, Dong et

al.[28]performed a mapping technique to reach a Landauer-Büttiker formula similar to the

one in Eq.(29). However, since the vibron correlation is not involved in the tunneling self-

energy, this technique results in a bias-independent bandwidth in the tunneling function,

no matter what approximation is adopted. It is worth mentioning that the results obtained

by Braig and Flensberg[38] through the RE are similar to those of ours. In fact, the report

by Braig and Flensberg was to obtain the current through the RE method, which only

contained the lowest-order term, i.e., the sequential tunneling current.
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2.4 The Bias-dependent Tunneling Rate and the Differential

Conductance

In this section, we start to numerically study the stationary properties of the spectral func-

tion, current and the its conductance through a single molecule system based on Eq.(23),

Eq.(29) and Eq.(30). For simplicity, here and in the following we ignore the energy depen-

dence of Γα (ω) (wide band approximation).

2.4.1 The Bias-dependent Tunneling Rate

First we examine the spectral function. According to Eq.(23) one could anticipate that

Ãd (ω) approximately behaves as a Lorentzian function with maximum value at ε̃0 and the

lifetime broadening is given by W (ω) (see Fig.19(a)).

Usually this broadening function is equivalent to a tunneling rate from Fermi golden

rule[25] so that we obtain Γout = W (ω). This identical relation can also be verified in

Eq.(21). When increasing the bias voltage, the amplitude of spectral function is suppressed

as shown in Fig.19(a), which means that in the presence of EVI, the tunneling rate is strongly

associated with an increased transport window. Since the quantum fluctuation mainly

takes place near the surface of continuum states, one focuses on the energy change near the

chemical potential. Fig.19(b) depicts the total transmission rate of the particle in the system

as a function of the bias voltage with a LT method (blue curve) and with a MFA method

(red line), respectively.[18] We find that the out-tunneling rate Γout (ω = eVb/2) shows a

staircase curve along the increase of eVb whereas the MFA method produces a flat line,

irrelevant to the bias voltage. This is an important difference between the LT and the

MFA. In LT results, Γout increases abruptly in the neighborhood of eVb = nω0. The abrupt

increment results from the opening an additional channel for particle transport through the

system when the bias voltage exceeds the required tunneling energy. The plateau maintains

till the nth channel fully enters the transport window, where the plateau is generated

around eVb = (n+ 1)ω0/2. Note that the result of LT calculation is in agreement with

that obtained by the MFA as one sets e |Vb| < ω0. In this restriction the tunneling rate

is reduced to Γout = p0
(
ΓL + ΓR

)
, and spectral function together with the current formula
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are given by

Ã0 (ω) = p0
(
ΓL + ΓR

)
/
{
(ω − ε0)

2 +
[
p0
(
ΓL + ΓR

)
/2
]2}

, (31)

and

J0 =
e

�

∫
dω

2π

ΓLΓR

ΓL +ΓR
p0A0 (ω)

[
f<α (ω)− f<α (ω)

]
. (32)

This is consistent with earlier study with MFA theory because only the channel with n→ 0

in the lead is allowed for particle transport through the system.

2.4.2 The Spectral Function A(tot) (ω)

In addition to comparing the tunneling rate, we now inspect the difference between spectrum

function with different approaches. For comparison, one needs to replace Γα≶n (ω + nω0)→

Γα≶n (ω) in the integrand of Eq.(49) and redefine A(tot) (ω) ≡ ∑∞
n=−∞ pnÃd (ω − nω0) for

the system spectral function. In this way, we have

a non-interacting lead and an interacting system. This system could now be regarded as an

EVI quasi-particle (a spectrum function with multiple satellite peaks).

Fig.20 depicts the spectral function for two different renormalized level position (ε0 =

±4ω0) with eVb = 0.04ω0. We see that no peaks appear in the left side of the level position

and the LT spectral function is always in the form of skewed distribution (see Fig.20(a))

with a tail in the large energy rather than a mirror symmetry function (see Fig.20(b)) in

MFA theory, i.e,

A (ω = ε0 −△ω, ε0 = 4ω0, eVb) = A (ω = ε0 +△ω, ε0 = −4ω0,−eVb)

.[18] Due to the fact that the spectral function in Eq.(23) satisfies the a identical mirror

symmetry relation as MFA, the skewed distribution of the spectral function A(tot) can be

traced back to the fact that no available vibron states for absorption before tunneling at low

temperature.[28] Note that in Fig.20(a) the variation of ε0 only modulates the magnitude

of spectrum function but without changing its skewness. This is different from the MFA

spectra in which an electron or hole picture can be readily achieved by shifting the level

position of the system. Note that the current formula can be expressed in terms of the
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product of A(tot) (ω) and a bare tunneling rate with weight pn, which is analogy to the

expression in earlier researches.[9][18][21]

2.4.3 Differential Conductance

Taking derivative of Eq.(29) with respect to the bias voltage, the differential conductances

can be expressed as:

G = Glead +Gdot, (33)

Glead =
e

�

∫
dω

2π

∑

n,n′

Tααnn′ (ω)Fnn′ (ω) , (34)

Gdot = −
e

�

∫
dω

2π

∑

n,n′

∂Tααnn′ (ω)

∂Vb
fnn′ (ω) , (35)

fnn′ (ω) = f<α (ω + nω0) f
>
α

(
ω − n′ω0

)
−

f<α (ω + nω0) f
>
α

(
ω − n′ω0

)
, (36)

where the wide-bad limit is considered, and Glead and Gdot respectively reflect the conduc-

tance in the leads and in the QD (or SMT) system. Jα (ω) is the current density, fnn′ (ω)

determines the effective transport window and Fnn′ (ω) (= ∂fnn′ (ω) /∂Vb) denotes a thermal

broadening function in the leads[27],

Fnn′ (ω) = β
∑

η∈±1





f>R (ηω − n′ω0)

8 cosh2
[
β
2 (ω + ηnω0 − µL)

]+

f<L (ηω − nω0)

8 cosh2
[
β
2 (ω − ηn′ω0 − µR)

]



 . (37)

For eVb > 0, Fnn′ (ω) shows multiple peaks at ω = εFα,−n (= µα − nω0) and ω =

εFα,n (= µα + nω0) ,where n and n′ = 0, 1, 2 and so on. Substituting Eq.(37) back into

Eq.(34), it is found that Glead reaches its maximum when the dot level (ε̃0 (Vg)) matches

those peaks. Therefore, when drawing Glead vs. Vg, the satellite peaks of differential con-

ductance are at Vg = εFα,−n and εFα,n, symmetrically distributed with respect to Vg = 0.

Figure 2(A) depicts the vibron-assisted tunneling process under a new transport scheme

for a low-lying level position ε0 = −ω0 (left), medium level ε0 = 0 (central), and higher level
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ε0 = ω0 (right), where the bias is at eVb = 2ω0, and the red arrows indicate the significant

channels for particles passing through the dot. The differential conductance for each path

is plotted in Fig. 2(B), where the quantum pair (n, n′) means that the particle transports

from the nth vibron-mediated state in the α lead to the n′th vibron-mediated state in the

α lead. An analogous transport scheme has been presented in previous publications of the

rate equation method[12][13], although the background physics is different. For example,

the nth vibron-mediated state exists in the QD (or SMT) because the vibron field is treated

to involve in the evolution of the dot. The quantized number is labeled from the energy

of the dot, not from the chemical potential of the leads. Furthermore, Dong et al.[28]

performed a mapping technique to reach the Landauer-Büttiker formula similar to the one

in Eq.(29). However, since the vibron correlation is not involved in the tunneling self-energy,

this technique results in a bias-independent bandwidth in the tunneling function, no matter

what approximation is adopted.

2.4.4 The Influence of the EVI Energy Shift

According to Eq.(35), the conductivity probed in the dot can be further divided into two

parts,

G
s(l)
dot = −

e

�

∫
dω

2π
Jα (ω)Ks(l) (ω) , (38)

where Gsdot and Gldot respectively characterize the conductance induced by the energy shift

and the bandwidth of the dot level, and Ks (ω) and Kl (ω) are solved as

Ks (ω) = −





ReGr (ω) ·
[

∑
n,α∈L,R

(pn − p−n) Γα (−1)δL,α

β Imψ1

(
1
2 + i β2π (ω + nω0 − µα)

)]
+





, (39)

Kl (ω) = Ad (ω)Kl (ω) , (40)

Kl (ω) = ∂W (ω) /∂Vb = β
∑

n,α∈L,R

(pn − p−n) Γ
α (−1)δL,α

16 cosh2
[
β
2 (ω + nω0 − µα)

] .

A comparison between Gsdot and Gldot in Fig.21 gives that Gldot is always negative while Gsdot

is positive at the quantized levels of vibron-mediated states (eVg = nω0). In addition, Gsdot
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also exhibits an energy-shift dependence near the quantized level, as depicted in the inset

of Fig.21. This is due to the consideration of the EVI-renormalized energy shift during

particle transport. Compared with Gsdot in Fig.22, the energy-shift dependence becomes

more apparent (dot line) as the electron-electron coupling is increased (ΓL = ΓR = 0.6ω0),

whereas it is reduced when increasing the intensity of the EVI. This is because of the

existence of e−g in the weighting factor pn.

2.4.5 The Mean-field Approximation

In this section we investigate an experimentally observable feature induced by the vibron-

assisted tunneling rate, the conductance gap[1] (cg). Compared to Fig.23(a), Fig.23(b)

suggests that a gap always exists between the edge of conductance (chemical potential,

n = 0) and the first vibron-mediated state (n = 1); however, no conductance gap appears

in the MFT calculation. In the MFT, the current can be understood as an effective par-

ticle propagating in an average field between the multi-channel leads, where the spectral

function of the dressed electron in the dot is given by Ãd (ω) = Γ̃/[(ω − ε0)
2 + Γ̃2] with

Γ̃ = (ΓL + ΓR) 〈X〉2 /2, which is independent of the bias, analogous to the model without

EVI. Taking Ãd (ω) into Eq.(33) to Eq.(36), we obtain G = Glead, and hence the con-

ductance peak represents the vacant vibron-mediated states in the wire. In general, the

bandwidth is the decay rate, i.e., the out-tunneling rate. At dynamic equilibrium, the total

out-tunneling rate is supposed to balance the sum of the in-tunneling rate so as to satisfy

the continuity rule. Nevertheless, in the MFT the in-tunneling rate is bias-related while the

out-tunneling rate is a constant, which signifies that some information, such as electrical

properties, will be lost during the transport.

Fig.24(d) gives the profile of Glead and Gdot vs. eVg at eVb = 2.5ω0. We can see that

Gdot presents a similar peak-structure as Glead, but with negative amplitude. In order to

analyze those peaks, we can perform the weak-coupling limit[14].

2.4.6 The Weak Electron—Electron Coupling Limit
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This assumption means that the lead-dot coupling is much smaller than the electron-vibron

coupling. In other words, the electron life-time is far larger than the vibron relaxation time.

The occupied state of vibron will not respond to the change of dot or lead. So the evolution

of vibron can be described by the zero-order vibron correlation. That is to say, the DOS

of vibron exhibits many delta peaks, reflecting the numbers of vibrons absorbed or emitted

at various levels. But this is not the practical case for the time dimension of electron

relaxation could be close to that of vibron. The effects of electrons on vibrons is more than

the delta-peak distribution of energy level. We must consider the level-broadening effect

on the vibron energy levels. This non-equilibrium process destroy the original statistical

distribution and new behavior is generated, such as the vibron blockade, which has been a

very important topic in recent years.

Taking the weak coupling, that is, the spectral function in Eq.(23) taking the form of

Ãd (ω) = 2πδ (ω − ε0), on Eq.(34), Eq.(35) and Eq.(29), which gives

Glead =
e

�

ΓαΓα

W (ε0)

∑

n,n′

pnpn′f
′
nn′ (ε0) , (41)

G
(l)
dot = −e

�
J (ε0)W

′ (ε0) , (42)

J (ε0) =
e

�

ΓαΓα

W (ε0)

∑

n,n′

pnpn′fnn′ (ε0) (43)

Gsdot does not exist since ReΣ
r
T (ω) approaches zero at small Γ. This is a good approximation

because Eq.(41), Eq.(42) and Eq.(43) satisfies the definition of G = ∂J (ε0) /∂Vb. Moreover,

when rewriting p−n = pne
−βnω0 in W (ε0) and fnn′ (ε0), and performing some algebra, we

readily reach the same current expression for a single resonant model as reported by Braig

and Flensberg[38]. This is because the appliance of the RE, a method used to describe the

quantum transport as the correlations in the system is much shorter than electron transfer

time, is equivalent to the expression of Ãd (ω) = 2πδ (ω − ε0) in NEGF[40][21].
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2.4.7 The Origin of the Conductance Gap

Here, we investigate the source of conductance gap. At zero temperature, the summation

of Eq.(41) and Eq.(42) leads to:

G = Gdot +Glead (44)

=
e

�

ΓLΓRe−2g

W 2
T=0 (ε0)

∑

n,n′

gn+n
′

n!n′!

[
W

′

T=0 (ε0) fnn′ (ε0) +WT=0 (ε0) f
′
nn′ (ε0)

]
,

where WT=0 and fnn′ consist of multiple step functions, and W
′

T=0 (ε0) and f ′nn′ (ε0) com-

prise delta functions. In the MFT,WT=0 (ε0) = Γ̃, which is a constant such thatW
′

T=0 (ε0) =

0 and G = Glead. Consequently, Eq.(44) is directly proportional to the thermal broadening

function f ′nn′ (ε0), and results in a multiple peak structure, as depicted in Fig.24(c). At

eVg/ω0 = 0.75, three available channels (0, 0), (0, 1), and (0, 2) contribute to the tunneling

current (see the left inset of Fig.24(c)). However, for the LT method, W
′

T=0 (ε0) is non-zero

at eVg/ω0 = 0.75. Taking those quantum pair into Eq.(44), it reveals that Gdot and Glead

are are of the same order and cancel each other out (see Fig.24(d)), suggesting that the

existence of vibron-assisted tunneling rate would greatly scale down the current and leads

to a conductance gap in this field. The current-voltage characteristics in the right inset

of Fig.24(d) reflect this phenomenon. From the viewpoint of physics, this means that an

virtual state is generated in this energy field. It is the first time that such the conductivity

gap is examined theoretically in the quantum dot system.

2.4.8 The Rate Equation (the Master Equation)

In this case, the behavior of a electron was described by the semi-classical sequential tun-

neling when the life-time for the electron to stay in the system is much bigger than the

tunneling time. Then the equation of motion for the system affected by surroundings can

be described by the RE. Referring to the work done by S. Brag and K. Flensberg[38], the

occupancy of the dot are defined by:the stationary probability for an empty state and an
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occupied state can be found as

P st0 =
〈
d (t) d+

(
t′
)〉
t′→t

= −
∫

dω

2πi
G̃>dd (ω) , (45)

P st1 =
〈
d+

(
t′
)
d (t)

〉
t′→t

=

∫
dω

2πi
G̃<dd (ω) . (46)

Owing to the fact that

e
∂

∂t
P st0(1) = ∓ [JL + JR] , (47)

and Jα (t) is solved as

JL (t) = −
2e

�
Im

[∫ t

−∞

dt1G̃
r
dd (t, t1)Σ

<
αǫL (t1, t)

+ G̃<dd (t, t1)Σ
a
αǫL (t1, t)

]
, (48)

=
2e

�

[∫ t

−∞

dt1G̃
>
dd (t, t1)Σ

<
L (t1, t)

− G̃<dd (t, t1)Σ
>
L (t1, t)

]
. (49)

Substituting Eq.(49) into Eq.(47), we readily obtain the RE given by:

∂

∂t
P st0 = i

[∫
dω

2π
G̃<dd (ω) ·

∑

n,α

pnΓ
>
α (ω + nω0)

− G̃>dd (ω) ·
∑

n,α

p−nΓ
<
α (ω + nω0)

]
= 0, (50)

∂

∂t
P st1 = i

[∫
dω

2π
G̃>dd (ω) ·

∑

n,α

p−nΓ
<
α (ω + nω0)

− G̃<dd (ω) ·
∑

n,α

pnΓ
>
α (ω + nω0)

]
= 0, (51)

with

Γ≶α (ω) ≡ Γα (ω + nω0) f
≶
α (ω + nω0) (52)

We can see that no corresponding P st0 and P st1 in the RHS of Eq.(50) and Eq.(51). In order

to solve this problem, we consider a special case that a particle’s relaxation time is much

longer than its correlation time, as a consequence, the spectral function of the quantum dot

reads

Ãd ≈ 2π (ω − εd) .

33



and the kinetics becomes semi-classical (sequential tunneling). The corresponding occu-

pancy density is therefore given by

G̃≶dd (ω)→±2πiδ (ω − εd)P
st
1(0) (53)

Taking Eq.(53) back into Eq.(50) and Eq.(51), we obtain



−∑

n,α p−nΓ
<
α (εd + nω0)

∑
n,α pnΓ

>
α (εd + nω0)

∑
n,α p−nΓ

<
α (εd + nω0) −∑

n,α pnΓ
>
α (εd + nω0)







P st0

P st1


 = 0, (54)

forming the well-known Rate equation. Here the occupancyP st1(0) can be solved with

P st1(0) =

∑
n,α

p∓nΓ
<
α (εd + nω0)

∑
n,α

[pnΓ<α (ω + nω0) + p−nΓ>α (ω + nω0)]
. (55)

In conclusion, a generalized RE can be recovered from the JWM’s formula. However, if one

wanted to acquire P st1(0) from G̃<,> (ω), it is necessary to let Ãd(ω) to be a delta function.

On the other hand, electrons have a great period of transport time in the system, far more

than the time when they pass through the barrier.

To sum up, we can understand that NEGF reflects the transition rate and relaxation

rate of systems, but it has limits in calculating EPI current. During the last decade, many

theoretical works have studied the EPI current with the NEGF method. However, some of

their results disagree with experiments. For example, at zero temperature, they acquired

the phonon side-band conductance in the Coulomb blockade region. It results from the EVI

correlation being decomposed using high-temperature approximation. As another example,

a gap exists between the chemical potential and the first phonon excited state. The band-

width of conductance will blur as the bias is increased. Although Chen et.al proposed MFT

theory to fix the conductance at low temperature, the second issue remains unsolved. Rate

equation clearly illustrates the changes in systems, it can only apply for weak interaction

and sequential tunneling. The bandwidth of conductance reflects the thermal information

of the wire for the resonant tunneling only takes place near the chemical potential. It’s

insufficient to describe the change of the quantum system, like the blurred behavior of the

conductance at large bias area. To sum up, the NEGF with the LT is the most well-rounded
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approach to tackle nonequilibrium problems, especially the nonequilibrium mechanism is

determined by the bias. Besides the above-mentioned advantages as mentioned in the RE,

the NEGF further shows the renormalization of energy levels. This result is coincident with

experiments as well.
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Figure 18: (a) A schematic description of the transport channels and tunneling coefficient
at different gate voltages. Here • represents the electron state (labeled from the chemical
potentail of the left lead µL) and ◦ for the hole state (from the chemical potential of the
right lead µR). The red arrow denotes the transport path. (b) The differential conductance
for each channel, where the quantum pair (n, n′) means that the particle transports from
the nth phonon-mediated state in the α lead (electron state •) to the n′th phonon-mediated
state in the α lead (hole state ◦). The parameters of the system are ΓL = ΓR = 0.2ω0,
kBT = 0.05ω0, λ = 1.5ω0, µL = −µR = ω0 and the Lorentz cut-off is EC = 100 in the
integral calculation[20].
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Figure 19: (a) The out-tunneling rate Γαout (ω = Vb/2) vs. bias voltage. (b) The maps of
differential conductance as a function of gate and bias voltage is calculated with MFA’s
approach and (c) is worked with Langreth theorem.

Figure 20: (a) The spectral function of the strong EPI system v.s. energy ω for different
energy levels for ε̃0. The chemical potential in the leads are fixed at µL = −µR = 0.1ω0.
The parameters used are ΓL = ΓR = 0.4ω0, kBT = 0.05ω0, λ = 1.6ω0.
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Figure 21: Differential conductance in the leads Glead (blue line) and in the dot Gs,llead (red
lines), where Gsdot (solid line) is induced by the EPI renormalization), and Gldot (dot line)
is caused by the level broadening .

Figure 22: The conductance Gsdot becomes sibnificant at strong electron-electron coupling
(red dot line, ΓL = ΓR = 0.6ω0) while it is highly supressed at strong electron-phonon
coupling (blue line, λ = 2ω0).
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Figure 23: The conductance map vs. the gate voltage Vg and the bias voltage Vb, where
(a) is solved with the MFT method and (b) with the LT method. In figure (b), a gap
always exists between the edge of conductance (chemical potential, n = 0) and the first
phonon-mediated state (n = 1).

Figure 24: Note that the parameters are the same in Fig. 2 and Fig. 3. The differnetial
conductance as a fnction of the gate voltage is plotted at eVb = 2.5ω0. Left inset: The
schematic description of particle transport through the dot at eVg = 0.75ω0. There exist
three channels for particle transport, (0, 0), (0, 1), and (0, 2). Right inset: The MFT-PAT
current.
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CHAPTER III

THE LOW-FREQUENCY NOISE

3.1 Experimental Motivation and Recent Progress

The electrical current through a device always fluctuates around the average value due

to the discreteness of the charge carriers, as shown in Fig. 25. As a matter of fact, these

deviation contains the system’s correlation function. One of the ways to read the correlation

is to calculate the current-current correlation function via the Fourier transform.

The average current 〈I〉 is defined by 〈I〉 = limT
1
T

∫ T/2
−T/2 dtI (t) ,where I is the current

operator and T is the time interval. I (t) and 〈I〉 form an identical relation I (t) = 〈I〉+δI (t),

where δI denotes the deviation current caused by the transfer particle.

Figure 25: Current flucuation around the average current 〈I〉. Reprinted from Ref.

In 1918,Walter Schottky took advantage of a vacuum tube and discovered the shot noise.

Since nothing existed in the vacuum tube, he deduced the nose relation of S = 2q 〈I〉 con-

sists, with q denoting the charge. This is the traditional shot noise, S = SP . Nonetheless,

not all carriers carry single charge, for example, the free carriers in superconductor are with

two charges (cooper-pair), and in quantum Hall effect, the carrier possesses one third of an

electron charge. The unit charge cannot be probed via the average current, but it can be
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Figure 26: The shot noise normalized by 2e as a function of the current. The inset de-
picts the experimental setup with the STM tip and a single tunneling barrier to Au-metal.
Reprinted from Ref.[41]

obtained from the shot noise.

In contrast to the equilibrium thermal noise, shot noise dominates the current corre-

lation in large bias condition, besides, shot noise provides additional information about

transport properties, not available in conventional conductance, such as the loss of phase

coherence and the Pauli exclusion principals in mesoscopic system. Fig.26 depicts the noise

as a function of the current (or bias). The solid line shows the theoretical prediction and

the dot reveals for the experimental data. It can be seen that (a) at high temperature

(T = 300K), and the thermal noise can be described by the well-known Johnson-Nyquist

formula.(b) at low temperature, the shot noise governs the current correlation, where the

correlation comes from the interaction among carriers, e.g. Pauli exclusion principle or the

Coulomb interaction. However, since Birk et al.[41] apply Au-metal in the central region,

the transfer process is completely random. There is no correlation inside, and the shot noise

is directly proportional to the average current (or the bias). Sometimes it is useful to define
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a dimensionless quantity, as known as Fano factor, F ≡ S (ω → 0) /SP , to probe the devi-

ation from the uncorrelated Poisson noise, with SP = 2e 〈I〉. When F = 1, it suggests that

the motion of transporting electron is completely random (uncorrelated). While F < 1, it

has correlation inside.

In 2006, E. Onac et al.[30] took advantage of a suspended carbon nanotube (CNT) and

s SIS to measure a vibrating quantum dot for the observation of strong electron-vibron

coupling effects on the current, as depicted in Fig. 27. With current and noise, they

calculated the Fano factor of the CNT-QD.

Figure 27: (a) The the dashed rectangle shows the Fano factor inside transport bias window.
The dotted rectangle is for the Coulomb blockade. (b) Fano factor versus the applied bias
at different gate voltages. Reprinted from Ref.[30].

Fig. 27(b) presents the Fano factor vs.Vb at different gate voltages Vg. When the gate

voltage is located within the range of the chemical potential (transport bias window), the

transport is dominated by the sequential tunneling, meanwhile, F is less than one (sub-

Poissonian). At large bias, the interference of the channels becomes significant, and electron

motion becomes random, as a consequence, F approaches unity. In the Coulomb blockage

region, the sequential tunneling is suppressed, and the higher-order tunneling process, e.g.

the elastic co-tunneling and inelastic co-tunneling become active. Note that the elastic

co-tunneling does not change the ground state of the dot system, thus the electron motion

is uncorrleated, so F = 1. However, inelastic co-tunneling yields the change of states, two
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channels takes part in quantum transport, and thus the Fano factor is beyond unity. At

F = 1, the electron relaxation is from high energy level to a lower one and then leaves

the system. As for F > 1, the electrons directly depart from high levels as a bundle.

Meanwhile, the relaxation among levels remains, and induces the sequential tunneling.

After the occurrence of the sequential tunneling, the Fano factor starts to be less than

three..

3.2 Motivation for Noise Calculation

In 2000, Q. F. Sun and J. Wang[29] studied the shot noise of a quantum dot in the presence

of a microwave field. They concluded the following results: First, At zero temperature,

the shot noise noise can be measured even the current is zero, as illustrated in Fig. 28(b).

They deduced the zero-bias noise is supplied by the assistance of the photons. Second,

the zero-bias differential noise as a function of the gate voltage shows an anti-symmetric

structure and exhibits satellite PSD at multiple energy of the photon frequency, as shown in

Fig. 28(a). In practice, the above description conflicts with the experimental observations,

as shown in Fig. [5], where a suspended carbon nanotube quantum dot (CNT-QD) is

considered. At T = 20mK, only emission of photons are allowed, and conductance peaks is

forbidden to take place within the Coulomb blockade, as shown in Fig. 29(b). Besides, at

Vb = 0, the current is very weak, and the noise shall approach zero. Therefore, to investigate

the differences between theoretical and experimental methods becomes the key goal of this

research.

3.3 Theoretical Calculation of Zero-Frequency Noise

To our knowledge, there are two theoretical formulations that are used to explore the

quantum transport in nanoscale systems, i.e. Rate equation method (RE) and the non-

equilibrium Keldysh Green’s function (NEGF). In contrast to the weak perturbation method

for the electron-electron coupling in Rate equation, the NEGF provides a general physical

condition for particle transport through a non-equilibrium system, valid from the small
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Figure 28: The plot of the differential conductance and differential noise vs. Vg for an
photon-assisted tunneling model. Reprinted from Ref.[29]

bias to the large bias in the leads, where the influence of EVI is explicitly considered when

applying the small polaron canonical transformation on the vibrating quantum dot system.

The relevant Green’s function can be solved via the Dyson equation and the Langreth

rule. Among the NEGF approach, there are two different physical picture that are used

to interpret the vibron-assisted process. Firstly, a concept of effective one-body tunneling

scheme (with no fluctuations inside) is imposed to interpret the particle scattering in the

QD system, i.e. replacing the electron-vibron interaction to a an average field. In practice,

the relevant transport quantities such as current and the differential noise were discussed

and reported by Chen et al [18], while the current correlation is not yet exposed before. In

this work, we employ the mean-field approach to examine the zero-frequency noise, and

then compare with an exact analytical solution to that solved by the analytic continuation.

Basically, the EVI not only breaks the symmetry properties of electrons and holes in the

quantum dot system, but also yields a significant staircase phenomenon on the tunneling

rate as well as on the bandwidth of a single state for the central system. The main difference

between the MFT approach and LT are: The EVI correlation is regarded as scalar, and

therefore the vibron correlation will not couple to the Fermi function of the leads, irrelevant

to the chemical potential difference. This resulting correlation gives the 0th quantized state
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Conductance

Diff Noise

Figure 29: The upper shows G = dI/dVb vs. Vg (gate volatge) and Vb (bias voltage, vertical
axis). The lower density plot reveals the differential noise dS/dVb. Reprinted from Ref.

of the LT method, proving that the LT treatment is beyond than previous researches of

this kind. Note that in this paper, we ignore higher order tunneling process from heating

of vibration or mutual influence within the sub-electronic and sub-vibronic subsystems,[22]

we focus only on the lowest order electron-vibron interaction. Besides we neglect the spin

degree of freedom and the influence of Coulomb interaction.

3.3.1 The JWM Transport Formula (from the perspective of the metal wire)

The current from the left lead to the central region can be defined by:

JL (t) =
2e

�
Re

∑
k,α∈L

Vkα,dG
<
d,kα

(
t, t′

)
|t′→t , (56)

where the Green’s function G<d,kα (t, t
′) ≡ i

〈
c+kα (t

′)X (t)d (t)
〉
. The first-order expansion of

Dyson series on Gd,kα gives

Gd,kα
(
τ, τ ′

)
=

∫
dτ1G̃dd (τ, τ1)F

+ (τ, τ1)V
∗
kαgkα

(
τ1, τ

′
)
. (57)
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Figure 30: The vibrating quantum dot model. Here the equilibrium vibronic is coupled to
the QD system. Reprinted from Ref.[11]

Performing the continuation rules[11] onGd,kα (τ, τ
′) and substituting the resultingG<d,kα (t, t

′)

into Eq.(56), the steady current is written as:

JL (t) = −
2e

�
Im

[∫ t

−∞

dt1G
r
dd (t, t1) Σ̃

<
αǫL (t1, t)

+ G<dd (t, t1) Σ̃
a
αǫL (t1, t)

]
, (58)

where Σ̃>,<α (t, t1) =
∑
α |Vkα|

2 g>,<kα (τ1, τ2), and G
≶
dd (t, t1) are defined as:

G≶dd (t, t1) ≡ F+≶
(
t, t′

)
G̃≶dd

(
t, t′

)
, (59)

where F+> (t− t′) ≡ 〈X+ (t′)X (t)〉 and F+< (t− t′) ≡ 〈X (t)X+ (t′)〉 denote the greater

and lesser vibron Green’s functions, and the lesser (greater) Green’s function for a free

electron in the α lead is denoted by g
<(>)
kα (t− t′) . Moreover, the (self-consistent) Dyson

expansion of the electron Green’s function G̃dd is found as:[14][16]

G̃dd
(
τ, τ ′

)
= G̃

(0)
dd

(
τ, τ ′

)
+

∫

c1
dτ1

∫

c2
dτ2

G̃
(0)
dd (τ, τ1)ΣT (τ1, τ2) G̃dd

(
τ2, τ

′
)
, (60)

where the contour-ordered self-energy reads

ΣT (τ1, τ2) =
∑

kα∈L,R

|Vkα|2 gkα (τ 1, τ2)
〈
TcX

+ (τ1)X (τ2)
〉

= F+ (τ1 − τ2) Σ̃T (τ1 − τ2) . (61)
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The self-energy contains all correlations about lead electrons and the vibrons. F+ (τ1 − τ2) ≡

〈TcX+ (τ)X (τ ′)〉 is the vibron Green’s function and

Σ̃T (τ1 − τ2) =
∑
kα∈L,R |Vkα|

2 gkα (τ1, τ2) (62)

is the self-energy due to the electron coupling. The retarded (advanced) self-energy can be

easily found as

Σr,aT
(
t, t′

)
= ±

∑

kα

|Vkα|2 θ
(
±t∓ t′

)

·
[
F+>

(
t− t′

)
g>kα

(
t− t′

)
− F+<

(
t− t′

)
g<kα

(
t− t′

)]

= ±θ
(
±t∓ t′

) [
Σ>α,n

(
t, t′

)
−Σ<α,n

(
t, t′

)]
. (63)

The Fourier transform further gives the retarded and the lesser self-energies

Σr,<α (ω) =
∑

n

Σr,<α,n (ω) , (64)

Σrα,n (ω) =
∑

kα

[
pn

V ∗kαVkα
ω + nω0 − εkα + iδ

f<α (εkα)

· +p−n
V ∗
kαVkα

ω + nω0 − εkα + iδ
f>α (εk)

]
, (65)

Σ≷α,n (ω) =
∑

kα

V ∗kαVkαp∓ng
≷
kα (ω + nω0)

= ∓i
∑

n

p∓nΓα (ω + nω0) f
≷
α (ω + nω0) , (66)

where f<,>α (εkα) denotes the electron and the hole Fermi functions in the α lead, and

Γα (ω) = 2π
∑
kα

|Vkα|2 δ (ω − εkα) shows the tunneling rate without EVI. Also, the Fourier

transform of Eq.(59) leads to

G≷dd (ω) =
∑

n

p∓nG̃
≷
dd (ω + nω0) . (67)

The weighting factor pn, which indicates the probability of the electron interacting with n

vibrons, is

pn = e−2g(N0+
1

2)enω0/2kBT In
(
2g
√

N0 (N0 + 1)
)
, (68)

where g = (λ/ω0)
2, N0 is the Bose function, and In is the modified Bessel function. As

to G̃≷ (ω) in Eq.(67), this propagator can be evaluated using the Keldysh formulation[14],
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that is,

G̃≷dd (ω) = Σ
≷
d (ω)

∣∣∣G̃rdd (ω)
∣∣∣
2

(69)

= ∓i
∑

n,α

p∓nΓ
≷
α (ω − nω0)

∣∣∣G̃rdd (ω)
∣∣∣
2
,

G̃r,add (ω) =
[
ω − ε0 −Σr,aT (ω)

]−1
, (70)

where Γ≷α (ω) = Γα (ω) f
≷
α (ω) and G̃r,add is derived from Eq.(60).

Eq.(18) can be recast into the effective expression derived by Wingreen and Meir[15],

where the current is expressed as the product of the transport window and the tunneling

function. Performing some algebra on Eq.(18), we get:

Jα =
ie

h

∫
dω

[
f<α (ω)− f<α (ω)

]
T (ω) , (71)

T (ω) =
ΓL (ω) ΓR (ω)

ΓL (ω) + ΓR (ω)
A (ω) , (72)

A (ω) = i
∑
n

pn
[
G̃>dd (ω − nω0)− G̃<dd (ω + nω0)

]
, (73)

where T (ω) (A (ω)) denotes the EVI tunneling (spectral) function for the vibrating QD (or

SMT). Substituting the results of Eq.(69) back into Eq.(72), the EVI tunneling function

T (ω) is written as

T (ω) =
ΓL (ω) ΓR (ω)

ΓL (ω) + ΓR (ω)
· (74)

∞∑

n,n′=−∞,α

p−npn′Γ
>
α [ω + (n+ n′)ω0] + pnp−n′Γ

<
α [ω + (n+ n′)ω0]

[ω + nω0 − ε̃0 (ω + nω0)]
2 + [W (ω + nω0) /2]

2 ,

where ε̃0 = ε0 (Vg)−ReΣrT (ω) denotes the renormalized level position of the quantum dot

state. W (ω) = −2 ImΣrd (ω) represents the life-time broadening (bandwidth).[19] it is worth

mentioning that T (ω) possesses some symmetries such as T (ω, Vg, Vb) = T (ω, Vg,−Vb), and

T (ω = ε̃0 −∆ω,−Vg, Vb) = T (ω = ε̃0 +∆ω, Vg, Vb) .

3.3.2 Zero-Frequency Noise formula

Now we proceed to calculate the noise. Generally, the noise is the current correlation

defined as Sαα′ (t, t
′) ≡ 〈{δIα (t) , δIα′ (t′)}〉 = 〈{Iα (t) , Iα′ (t′)}〉 − 2J2α, where δIα (t) =
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Iα (t)− 〈Iα (t)〉 together with the stationary fact of Jα = 〈Iα (t)〉 = 〈Iα′ (t′)〉 are performed

for previous description. Substituting the current operator of Eq.(56) into the definition

of noise and taking the Fourier transform Sαα′ (ε) =
∫∞
−∞

d (t− t′) eiε(t−t
′)Sαα′ (t− t′) with

ε → 0[22][14][26], we obtain the current correlation from the zero-frequency noise (see

Appendix E).

Sαα′ (ε→ 0) =
2e2

h

∫
dω

{
G>dd (ω)Σ

<
L (ω) +G<dd (ω)Σ

>
L (ω)

−2Σ<L (ω)Σ>L (ω) |Grdd|2 (ω)− I2L (ω)
}
. (75)

In steady state, 〈J〉 = JL = −JR, and the summation of current in Eq.(18), JL + JR =

0, ensures the relation G≶dd (ω) = ±i
Γ
≶
L
(ω)+Γ

≶
R
(ω)

ΓL(ω)ΓR(ω)
T (ω). Combining this relation and the

integrand in Eq.(58), Eq.(75) is rewritten as

S =
2e2

h

∫
dω

{[
f<L (ω) f>L (ω) + f<R (ω) f>R (ω)

]
T (ω)

+
[
f<L (ω)− f<R (ω)

]2
T (ω) [1− T (ω)]

}
. (76)

3.3.3 Thermal Noise and Shot Noise

The advantage of Eq.(76) is that all the EVI effects are kept in the dot system T (ω),

not in the leads. Besides, the first term, which vanishes at zero temperature, means the

thermal noise Sth. As the bias voltage is smaller than kBT , i.e. the equilibrium system,

the second term (shot noise) disappears, and the equilibrium noise is Sth = 4kBT GT ,

aka the Johnson-Nyquist formula. Here, the differential conductance is defined as GT =

2e2

h

∫
dωFth (ω)T (ω), and

Fth (ω) =
1

4kBT
∑
α
sech2

(
ω − µα
2kBT

)

is referred to the thermal broadening function in the leads[27]. Considering the inverse case

of e |Vb| > kBT , the second term of Eq.(76) dominates the non-equilibrium noise, which is

basically proportional to the average current and inversely proportional to 1−T (ω), saying

that the fluctuation of the electrical current due to the discreteness of the charge carriers
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in mesoscopic devices behaves the fluctuation of the occupation number. If the particles

randomly transmitted, i.e. uncorrected, then the shot noise is SP = 2e 〈I〉, this is the shot

noise which was firstly proposed by Schottky and was observed in vacuum diodes.

At zero temperature, the Fermi functions goes forward the step functions, and the

weighting factors are given by pn = e−ggn/n! for n ≧ 0 and pn = 0 for n < 0. Applying

these rules on Eq.(76) leads to

S =
2e2

h

∫ µL

µR

dω

2π
T (ω) [1− T (ω)] , (77)

T (ω) =
ΓLΓR

ΓL + ΓR
e−2g

∑

n,n′,α

g(n+n
′)

n!n′!
· (78)

{
Γαθ [ω − (n+ n′)ω0 − µα]

[ω − nω0 − ε̃0 (ω − nω0)]
2 +W 2

T =0 (ω − nω0) /4

+
Γαθ [µα − ω − (n+ n′)ω0]

[ω + nω0 − ε̃0 (ω + nω0)]
2 +W 2

T =0 (ω + nω0) /4

}
,

where the life-time broadening is given by

WT =0 (ω) = e−g
∑

n,α

gn

n!
Γα [θ (ω − nω0 − µα) + θ (µα − ω − nω0)] , (79)

different from previous studies with a mean-field approximation. For simplicity, we ig-

nored the energy dependence of Γα (wide-band approximation) here and in the following.

Furthermore, it can be checked that Eq.(76) also satisfies the symmetric relations such as

S (Vg, Vb) = S (Vg,−Vb), and S (Vg, Vb) = S (−Vg, Vb). Next we study the stationary proper-

ties of the tunneling function, the current, and its zero-frequency noise according to Eq.(74),

Eq.(71) and Eq.(76).

In general, there exist two sources of correlations in the mesoscopic device: The first

is the Pauli principal for the non-interacting electrons, and the other is the EVI effect

stemming from the vibrons, both effects are revealed in Eq.(78). Before study this tunneling

coefficient, first of all, it is convenient to assume that the energy level of the QD is aligned

with the chemical potential of leads. When applying an external bias to the leads, it is

expected that the chemical potential in the leads would asymmetrically deviate from the

level energy of the dot, that is, µL(R) = ε0(Vg = 0)± eVb/2 and ε0(Vg = 0) = µL+µR
2 . The
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Figure 31: The density plot of the tunneling function. The left (right) inset in the middle
figure depicts the distribution of the left (rigth) out-tunneling rate ΓoutL(R).

tunneling probabilities are depicted for high- and low-lying levels at ε0 = ω0 and ε0 = −ω0

in Fig. 31(a)(c) and for medium level at ε0 = 0 in Fig. 31(b), with the bias eVb = 2ω0 and

the tunneling rate ΓL = ΓR = 0.4ω0.

Fig. 31shows that the amplitude of tunneling function are distributed asymmetrically with

respect to ε0(±Vg) symmetrically for ε0(eVg = 0), implying the broken symmetry between

electrons and holes in the QD (or SMT)[18]. In addition, it is found that the satellite

peaks in the LT tunneling function are nonuniformly broaden, and its amplitude is much

smaller than the MFT one[18]. This is because a staircase change of the vibron-assisted

tunneling rate has been considered as the particle tunneling through the junction. Owing

to the vibron emission and absorption, the statistical probabilities of finding n vibrons in

occupied states and available states are different, breaking the electron-hole symmetry in

the QD (or SMT). Generally, the electron states are located below the chemical potential

of the leads, while the hole states are above. Such a non-uniform tunneling phenomenon

results in a step-like tunneling rate (Wα) in energy space, with the symmetric centers at
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Figure 32: The current profile as a function of the gate voltage. The upper is wih the
MFT method and the lower with the LT method. The upper inset in each figure denotes
the total out-tunneling rate (or the level-broadening), where the blue (red) curve denotes
for the left (right) out-tunneling rate. The lower inset depicts the corresponding differential
conductance. The density plot of the conducatnce is accompnied attached.

µL and µR. The left (right) profile in Fig. 31(b) exhibits the vibron-assisted tunneling

rate from the vibrating QD (or SMT) to the α lead, where the solid curve stands for the

LT method, and the dashed line for the MFT one.[18] Note that the MFT tunneling rate

remains constant, which coincides with the 0th vibron mode of the LT one, no matter

whether the bias voltage is changed or not. This owes to the fact that the average-field

approximation, i.e. VkαX → Vkα 〈X〉, is relevant to the time evolution of the vibron field,

thus F+>< (t− t′)→ 〈X〉2 = p0.

Fig. 32 shows the profile of the current as a function of the gate voltage. Compared to

the MFT results (Up), we find that the LT current is strongly suppressed at Vg/ω0 = ±0.75

(Down). This can be understood as follows: In Eq.(18), the current is expressed as the tun-

neling function T (ω), multiplied by the transport window, f<α (ω)−f<α (ω). Basically, T (ω)

is composed of G̃> (ω − nω0) and G̃< (ω + nω0), corresponding to the hole and electron oc-

cupation density, respectively. At zero temperature, pn = 0 for n < 0, f
≶
α (ω)→ θ (±µα ∓ ω)

and
∣∣∣G̃r (ω)

∣∣∣
2
= Ã (ω) /WT =0 (ω), and therefore the tunneling function T (ω) is expanded
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as the summation of rectangular functions multiplied by the sideband peaks A (ω ± nω0).

In the weak coupling limit, i.e. A (ω)→ 2πδ (ω), the current is found as:

J =
e

�

ΓLΓRe−3g

ΓWT =0 (ε0)

∞∑

n,n′=0

g(n+n
′)Γα

n!n′!
{[θ (µL − ε0 − nω0)− θ (µR − ε0 − nω0)]

· θ
(
ε0 − n′ω0 − µα

)
+ [θ (µL − ε0 + nω0)− θ (µR − ε0 + nω0)]

· θ
(
µα − ε0 − n′ω0

)}
, (80)

For the nth transport channel, electrons are allowed to transmit within µα < ω < µα−nω0,

and holes within µα + nω0 < ω < µα. In addition, there exists a broadening function

WT =0 (ε0) which renormalizes the current distribution (see Fig. 31(b2)). Note it stays the

same (WT =0 (ε0)→ Γ) in the MFT method. This effect results from the fact that the bias-

associated information are included into the self-energy as the particle transport from the

α lead to the α lead, that is, the analytic continuation on Eq.(19). According to Eq.(79),

W−1
T =0 (ε0) behaves as multiple decreasing steps at the resonant energies and symmetric

about eVg = 0, and hence the height of the electron (hole) current is suppressed along with

the decrease (increase) of the gate voltage. Based on this, the peak-structure current at

eVg/ω0 = ±0.75 disappears, resulting in a remarkable conductance gap in Fig. 32(b).

3.3.4 Zero-frequency Noise

Now let we study the energy dependence of the shot noise. Fig. 33(a) to Fig. 33(d) shows

the zero-frequency noise S vs Vg at various bias voltages, and the insets denote the dif-

ferential noise. For comparison, we further plot the MFT noise as red dashed lines. For

eVb/ω0 = 0.02 (nearly zero dc bias), the current approaches zero. However, because the

electrons tunneling through the QD can absorb or emit photons (here n = 0), the thermal

noise changes significantly. It is noticed that no noise change occurs around eVg = nω0

(n = ±1,±2, and so on) because the current stream is forbidden to flow. In other words,

satellite peaks of the differential noise dS/dVb do not occur in this area, as is shown in

the inset of Fig. 34(a). These phenomena are different from previous theoretical predic-

tions reported by Sun et al.[29] and Balatsky et al.[9] but agrees with the experimental

observations[30] of the single resonant peak (see Fig. 28 and Fig. 29).
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Figure 33: Zero-frequency noise vs. the gate voltage under four different bias voltage (form
left to rgiht, eVb/ω0 = 0.02, 1.5, 2.5 and 3). The insets denote the corresponding differential
noise. The black line represents the LT method and the gray line for the MFT one. Noe
that the shot noise is normalized by 2e

Fig. 34(a) depicts the detailed profiles for dSth/dVb (red curve) and dSch/dVb (blue curve)

vs. Vg, where the vibron-free case is labeled by dashed lines. Here, a sudden decline appears

at Vg = 0 for the thermal noise because the PAT process is slightly forbidden by the Pauli

exclusion principle[29].

3.3.5 Probing the EVI Coupling Strength

At T = 0, the thermal noise vanishes, and a remarkable peak structure of dSch/dVb is left, as

seen in Fig. 34(a). This is different from the vibron-free case with a double-peak structure.

Such behavior can be explained by the following: For eVb < ω0, only the 0th channel makes

the contribution, and the tunneling function of Eq.(78) reduces to

T0 (ω) =
ΓLΓRe−g

(ω − ε0)
2 +

(
ΓL+ΓR

2 e−g
)2 . (81)
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Figure 34: (a) dSth/dVb (red curve) and dSch/dVb (blue curve) vs. Vg, the dashed lines
denotes λ = 0 (no EPI) and the solid lines for λ = 1.5ω0. (b) The renormalized noise
function S/S0 vs. Vb, where S0 is the noise without EPI. The black line denotes the LT
method and the gray line as the MFT one. The inset reveals the original noise function S,
an additional blue-dashed line is the noise without EPI. (c) The Fano factor vs. Vb. The
left inset here denotes the corresponding noise and the right inset shows the Fano factor
vs. Vg at Vb = 6ω0. (d) shows the renormalized factor (F/F0) vs. Vb, we can see that they
depart from each other at Vb = 2ω0.
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Substituting Eq.(81) into Eq.(77) and taking the derivative over Vb, we obtain

dS

dVb
=

2e2

h

∑
α∈L,R

T0 (µα) [1− T0 (µα)] . (82)

In the equilibrium case, µL ≈ µR = ε0 (Vg = 0), and a double-peak structure of Eq.(82)

exists when T0 (ε0) > 1/2, that is,

(
ΓL + ΓR

)2
e
−
(
λ
ω0

)2

− 8ΓLΓR < 0. (83)

On the other hand, for the symmetric electron coupling ΓL = ΓR = Γ, the single peak

structure of dS/dVb appears as λ > 0.83ω0. This is useful in verifying the coupling strength

of the EVI in the experiments.

Next, we examine the noise for eVb > ω0. As shown from Fig. 32(b) to Fig. 32(d), large

bias voltages yield a staircase noise with the steps occurring at the resonant energies and

symmetric about eVg = 0. This is in contrary to the MFT results, where the heights of the

noise are close, analogous to that observed in current.

Thermal noise becomes significant with finite temperature. Performing the weak cou-

pling limit on the first term of Eq.(76), we obtain

Sth =
2e2

h

ΓLΓR

Γ2W (ε0)

∑
n,n′,α,α′

pnpn′
{
Fth (ε0 + nω0 − µα) Γ

>
α′
(
ε0 − n′ω0

)

+ Fth (ε0 − nω0 − µα) Γ
<
α′
(
ε0 + n′ω0

)}
, (84)

which exhibits peaks at eVg = ±eVb/2∓nω0, as shown in Fig. 32(d). Note that these peaks

are not apparent in the LT curve because the LT shot noise is much larger than its thermal

noise. As one plots Sth vs. Vb, we find that thermal broadening peaks occurs at eVb = 2nω0.

Nonetheless, due to the staircase structure of the vibron-assoicated tunneling rate W (ε0),

LT thermal noise decays faster than the MFT one along with the increasing bias, as shown

in Fig. 32(b). In the large bias limit, e.g. µL ≫ µR, f<L = f>R = 1, f>L = f<R = 0, the

thermal noise vanishes and the shot noise are found as

S = 2e 〈I〉



1− 2ΓLΓR

Γ

∞∑
n,n′=−∞

(
pLnγ

L + p−nγ
R
) (

pn′γ
L + p−n′γ

R
)

(γL + γR)
[
(γL + γR)2 + (n− n′)2 ω20

]



 , . (85)
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Noise

Figure 35: The density plot of the Fano factor as studied in a CNT-QD. Reprinted from
Ref.[5].

where γα → e−gΓα for the MFT method and γα → Γα for the LT one. It is noticeable that

both approach result in the same current expression in large bias limit, that is, 〈I〉 = e
�

ΓLΓR

Γ

(see also in the left inset of Fig. 34(c)), but not for the shot noise (see the inset in Fig. 34

(b)), which implies that the shot noise gives additional and complementary information on

the current-voltage characteristic. Substituting 〈I〉 and Eq.(85) back into the definition of

the Fano factor and considering the primary correlation of n = n′, the Fano factors become

FMFT ≈ 1− 2ΓLΓR

Γ2
eg

∞∑
n=−∞

(
pnΓ

L + p−nΓ
R
)2

and FLT ≈ 1− 2ΓLΓR

Γ2

∞∑
n=−∞

(
pnΓ

L + p−nΓ
R
)2
,

respectively. Apparently, FLT shows the higher value than FMFT due to the absence of eg. In

the absence of EVI effect (λ→ 0), Eq.(85) reduces to S0 = 2e 〈I〉
(
1− 2ΓLΓR/

(
ΓL + ΓR

)2)
,

and we obtain F = 0.5 for the symmetric electron-electron coupling. This is in agreement

with that observed in experiments[5], as shown in Fig. 35.
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CHAPTER IV

SUMMARY AND FUTURE WORKS

By applying the small polaron transformation and the non-equilibrium Green’s function

(NEGF) technique, we examine the joint effects due to the vibron-assisted tunneling rate.

We conclude that:

(1) As the vibrons coupled to the electron tunneling process, the relevant vibron corre-

lation will break the electron-hole symmetry in the non-interacting terminals, making the

tunneling rate change in a quantized feature of the vibration frequency.

(2) The electrons through a SMT can be remodeled into to a single-level quantum dot

coupling to multi-channel leads, and the current is described as a sum of all tunneling flux

via various channels.

(3) The conductance gap between the chemical potential of the leads and the first

vibron excited state is in agreement with recent experimental results and is recognized as

an occurrence of a virtual state.

(4) We can reproduce our results to that worked with the rate equation method, only

if we replaced the single particle spectral function as delta function. That is, the NEGF

approach gives more general information than the RE method, such as the energy shift and

the level broadening.

(5) At high temperature, the holes may occupy higher energy levels above the chemical

potential due to the absorption of vibrons, and thus we can measure conductance peaks in

the Coulomb blockade region, in agreement with the recent CNT-QD experiments.

(6) When coupling to the vibrational modes, the zero-frequency noise still can be de-

composed into the standard formation of thermal noise (Johnson—Nyquist noise) and the
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shot noise, the same with that without EVI.

(7) In contrast to previous theoretical works of this kind with an anti-symmetric struc-

ture in noise and conductance, we obtain symmetric results, both in differential conductance

and differential noise, fulfilling with recent CNT-QD experiments.

(8) We demonstrate that the differential noise could be a feasible tool for probing the

EVI coupling strength.

(9) The first vibron excited state changes the noise, which is proportional to λ4, not

previous prediction λ2. This is in agreement with the First principal calculation.

Finally, we have to admit that, in comparison with recent theoretical work done by Felix

von Oppen’s group, our method is insufficient to interpret the Franck-Condon blockade

at low bias. Usually this behavior takes places in the strong electron-vibron interaction

area. The lacking of suppression in our calculation is due to the usage of the equilibrium

vibron assumption through the whole calculation. In the weak EVI, our results matches

the experiments, including the conductance gap between the chemical potential od the

leads and the position of the vibron sidebands. However, as the EVI is increased, the

theoretical and experimental results are far from each other. We believe the difference lies

on the assumption of the equilibrium vibron bath is insufficient to interpret the influence

of vibrational motion of the atoms. In fact, it makes sense that the time scale of the vibron

relaxation is comparable to the flow of the electrons into and out of the molecule. In the

NEGF’s calculation, the shorter life-time of the vibrons means more explicit calculation of

the self-energy in vibron Green’s function. We will briefly describe the numerical recipe of

this project in the Appendix F.

In conclusion, we hope that this new transport scheme together with the noise formula

could provide useful insights into the quantum transport field, and more studies, such as

non-equilibrium vibrons bath, can be explored, allowing a systematic description of inter-

esting physical effects in the future.
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APPENDIX A

CALCULATION OF OCCUPATION DENSITY G< (ω)

A.1 Conservation Rule

In this appendix,we present the detailed derivation for G̃<dd (ω) in Eq.(26). We follow the

derivation proposed by Sun and Guo[42][43]. In the stationary limit, the occupation number

operator of the system is zero, i.e.,

〈
·

Nd

〉
(t) = 0, where Nd = d+d and

[
Hcen(lead), Nd

]
= 0.

Using the equation-of-motion[11][14], we readily find

∂

∂t
〈Nd〉 (t) = JL (t) + JR (t) (86)

=
∑

kα∈L,R

[
VkαG

<
d,kα

(
t, t′

)
− V ∗kαG

<
kα,d

(
t, t′

)]
t′→t

.

The lesser Green’s function can be derived using the S-matrix expansion and Langreth

theorem. Here the contour-ordered Green’s function can be obtained from Eq.(57). By

using the analytic continuum[11][14][17] we get

G<d,kα
(
t, t′

)
= V ∗kα

∫
dt1

{
G̃rdd (t, t1)

[
gkα

(
t1, t

′
)
F+

(
t1, t

′
)]<

+ G̃<dd (t, t1)
[
gkα

(
t1, t

′
)
F+

(
t1, t

′
)]a}

, (87)

G<kα,d
(
t, t′

)
= Vkα

∫
dt1

{[
gkα (t, t1)F

+ (t, t1)
]r

G̃<dd
(
t1, t

′
)

+
[
gkα (t, t1)F

+ (t, t1)
]<

G̃add
(
t1, t

′
)}

. (88)

Substituting Eq.(87) and Eq.(88) into Eq.(86) and then applying the Fourier transform, we

obtain

∫
dω

2π

[
G̃rdd (ω)

∑
αΣ

<
α,n (ω) + G̃<dd (ω)

∑
αΣ

a
α,n (ω)

]
(89)

=

∫
dω

2π

[∑
αΣ

r
α,n (ω) G̃

<
dd (ω) +

∑
αΣ

<
α,n (ω) G̃

a
dd (ω)

]
.

Eq.(89) has a particular solution when the left and right integrands are equivalent. By

substituting Σr,<α,n (ω) (see Eq.(21) and Eq.(22)) into Eq.(89) and doing some simple algebra,

63



the lesser Green function is found as

G̃<dd (ω) =

∓i
∑
n,α

p∓nΓα (ω + nω0) f
<
α (ω + nω0) Ãd (ω)

∑
n,α

[pnΓα (ω + nω0) f<α (ω + nω0) + p−nΓα (ω + nω0) f>α (ω + nω0)]
. (90)

A.2 The Keldysh Formulation for EVI System

Using Langreth theorem on the Dyson equation of Eq.(60) for Gdd and performing the

Fourier transform G (ω) =
∫
dteiωτG (τ), Eq.(60) leads to

G̃<dd = G̃
(0)<
dd + G̃

(0)r
dd ΣrT G̃

<
dd + G̃

(0)r
dd Σ<T G̃

<
dd + G̃

(0)<
dd ΣaT G̃

a
dd. (91)

Eq.(91) can be written as

G̃<dd =
[
G̃
(0)<
dd

(
1 + ΣaT G̃

a
dd

)
+ G̃

(0)r
dd Σ<T G̃

a
dd

] [
1− G̃

(0)r
dd ΣrT

]−1

= G̃
(0)<
dd

(
1 + ΣaT G̃

a
dd

)[
1 + G̃

(0)r
dd ΣrT +

(
G̃
(0)r
dd ΣrT

)2
+ ...

]
+

G̃addΣ
<
T G̃

(0)r
dd

[
1 + G̃

(0)r
dd ΣrT +

(
G̃
(0)r
dd ΣrT

)2
+ ...

]
. (92)

Regrouping the first infinity iteration into G̃rddΣ
r
T and combing the second bracket together

with G̃
(0)r
dd as G̃rdd , Eq.(91) can be written in the form of

G̃<dd =
(
1 + G̃rddΣ

r
T

)
G̃
(0)<
dd

(
1 + G̃addΣ

a
T

)
+ G̃rddΣ

<
T G̃

a
dd. (93)

Due to G̃
(0)<
dd (ω) = 2πif<d (ω) δ (ω − ωd) we obtain a formal Keldysh equation:

G̃<dd = G̃rddΣ
<
T G̃

a
dd, (94)

where Σ<T (ω) is introduced in Eq.(61) and G̃r,add can be solved with the Dyson equation.

Note that Eq.(94) is identical to Eq.(90), showing that our calculation for the occupation

G< is self-consistent. When considering the imaginary part of G̃<dd (ω), Eq.(94) gives the

exact equivalent expression to Eq.(26).
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APPENDIX B

LANG-FIRSOV TRANSFORMATION OF THE SMT

The SMT setup is described in Eq.(8)~Eq.(11). We want to eliminate the coupling between

electrons and vibrons, i.e. Eq.(11). This can be explicitly removed by the canonical trans-

formation S = λ
ω0

nd (b
+ − b)[34], where nd = d+d. Based on the Baker-Campbell-Hausdorff

formula[16], we have

eSOe−S = O + [S,O] +
1

2!
[S, [S,O]] +

1

3!
[S, [S, [S,O]]] + ... (95)

The appliance of this transformation on the relevant operators leads to

d = de
λ
ω0
(b+−b), (96)

nd = nd, (97)

b = b− λ

ω0
nd, (98)

ckα = ckα. (99)

Here the relations of [nd, d]m = (−1)m d and [b+ − b, b] = −1 have been used. As a conse-

quence, the Hamiltonian can be diagonalized as:

H = Hcen +H lead +HT ,

Hcen ≡ ε0 (Vg) d
+d+ ω0b

+b, (100)

H lead =
∑

kα,α∈L,R

εkαc
+
kα

ckα , (101)

HT =
∑

kα,α∈L,R

Vkαc
+
kα

dX + h.c, (102)

where ε0 = ε0 − λ2

ω0
and the function X represents a shift operator, given by

X ≡ exp

[
λ

ω0

(
b+ − b

)]
. (103)
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For the time-dependent displacement function, we have

X (t) = eiω0b
+btXe−iω0b

+bt

= e
−
(
λ
ω0

)2
/2 · eiω0b+bt exp

[
λ

ω0

(
−b+ + b

)]
e−iω0b

+bt. (104)

As the Feynman’s disentangling theorem is applied, that is, eA+B = eAeBe−[A,B]/2 , Eq.(104)

can be further written as

X (t) = e
−
(
λ
ω0

)2
/2 ·

(
eiω0b

+bte
− λ
ω0
b+

e−iω0b
+bt

)
·
(
eiω0b

+bte
λ
ω0
b
e−iω0b

+bt
)
, (105)

where

eiω0b
+bte

− λ
ω0
b+

e−iω0b
+bt =

∑
n=0

(
− λ
ω0

)n

n!
bne−iω0nt

= e
− λ
ω0
be−iω0t

, (106)

and

eiω0b
+bte

λ
ω0
b
e−iω0b

+bt = e
λ
ω0
be−iω0t

. (107)

Taking these back into Eq.(105), we have

X (t) = e
−
(
λ
ω0

)2
/2 · e−

λ
ω0
be−iω0t · e

λ
ω0
be−iω0t

= e
−
(
λ
ω0

)2
/2 · exp

[
− λ

ω0

(
b+eiω0t − be−iω0t

)]
(108)

and its conjugate is

X+ (t) = e
−
(
λ
ω0

)2
/2 · exp

[
− λ

ω0

(
be−iω0t − b+eiω0t

)]
(109)
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APPENDIX C

THE ELECTRON-VIBRON CORRELATION F (T, T ′)

For the calculation of the function F (t, t′), we need to introduce the function

F
(
t, t′

)
=
〈
X (t)X+

(
t′
)〉

=

∑∞
n=0 〈n| e−βω0b

+bX (t)X+ (t′) |n〉∑∞
n=0 〈n| e−βω0b

+b |n〉 (110)

where |n〉 = (b+)
n |0〉 /

√
n! is the bosonic state with n vibrons and the denominator part of

Eq.(110) equals

∞∑
n=0

〈n| e−βω0b+b |n〉 = 1

1− e−βω0
= eβω0/

(
eβω0 − 1

)
= eβω0N0.

N0 is the Bose-Einstein distribution. Now we take the time-dependent vibron operator

X (t) and X+ (t′) from Eq.(108) and Eq.(109), the function F (t, t′) then gives

F
(
t, t′

)
=

e−βω0

N0

∞∑
n=0

e−nβω0e
−
(
λ
ω0

)2

· (111)

〈n| exp
[
− λ

ω0

(
b+eiω0t − be−iω0t

)]
exp

[
− λ

ω0

(
be−iω0t

′ − b+eiω0t
′

)]
|n〉

=
e−βω0

N0

∞∑
n=0

e−nβω0e
−
(
λ
ω0

)2

〈n| e−
λ
ω0
b+eiω0t

e
λ
ω0
be−iω0t

e
λ
ω0
b+e−iω0t

′

e
− λ
ω0
be−iω0t

′

|n〉 .

Next we have to switch b and b+ to make the destruction operators to the right. This can

be done by performing

e
λ
ω0
be−iω0t

e
λ
ω0
b+e−iω0t

′

= e
λ
ω0
b+e−iω0t

′
(
e
− λ
ω0
b+e−iω0t

′

· e
λ
ω0
be−iω0t

e
λ
ω0
b+e−iω0t

′
)

= e
λ
ω0
b+e−iω0t

′

· e
λ
ω0
be−iω0t

e
−
(
λ
ω0

)2
e−iω0(t−t

′)
. (112)

As a result, b is shifted to the right and Eq.(111) can be written as

F
(
t, t′

)
=

e−βω0

N0
e
−
(
λ
ω0

)2[
1−e−iω0(t−t

′)
]
∞∑
n=0

e−nβω0 (113)

〈n| exp
[
λ

ω0
b+

(
eiω0t

′ − eiω0t
)]

exp

[
− λ

ω0
b
(
e−iω0t

′ − e−iω0t
)]
|n〉
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Owing to the fact that

b |n〉 =
√
n |n− 1〉 , (114)

b2 |n〉 =
√

n (n− 1) |n− 2〉 , (115)

...

bm |n〉 =

√
n!

(n−m)!
|n−m〉 , (116)

therefore,

exp

[
λ

ω0
b
(
e−iω0t

′ − e−iω0t
)]
|n〉 =

n∑
m=0

(−1)m
m!

[
λ

ω0

(
e−iω0t

′ − e−iω0t
)]m√ n!

(n−m)!
|n−m〉(117)

〈n| exp
[
− λ

ω0
b+

(
eiω0t

′ − eiω0t
)]

= 〈n−m|
n∑
m=0

1

m!

[
λ

ω0

(
e−iω0t

′ − e−iω0t
)]m√ n!

(n−m)!
.(118)

The combination of Eq.(117) and Eq.(118) leads to

〈n| exp
[
− λ

ω0
b+

(
eiω0t

′ − eiω0t
)]

exp

[
− λ

ω0
b
(
e−iω0t

′ − e−iω0t
)]
|n〉 (119)

=
n∑
m=0

(−1)m
m!

n!

m! (n−m)!

[
λ

ω0

(
e−iω0t

′ − e−iω0t
)]2m

= Ln

[(
λ

ω0

)2 (
e−iω0t

′ − e−iω0t
)2
]
,

where Ln (z) is the Laguerre polynomials. As a consequence,

F
(
t, t′

)
=

e−βω0

N0
e
−
(
λ
ω0

)2[
1−e−iω0(t−t

′)
]
∞∑
n=0

e−nβω0Ln

[(
λ

ω0

)2 (
e−iω0t

′ − e−iω0t
)2
]
. (120)

With the identical relation of
∑∞
n=0 y

nLn (x) = (1− y)−1 e
xy
y−1 and the replacement of y by

e−βω0 , Eq.(120) can be simplified as

F
(
t, t′

)
= exp

{
−
(

λ

ω0

)2 [(
1− e−iω0(t−t

′)
)
(N0 + 1) +

(
1− eiω0(t−t

′)
)
N0

]}
. (121)

The Fourier transform of Eq.(121) then leads to

F (ω) =
∞∑
n=0

pnδ (ω − nω0) , (122)

pn = e
−
(
λ
ω0

)2
(1+2N0)enω0/2kBT In

(
2

(
λ

ω0

)2√
N0 (N0 + 1)

)
, (123)

where In (z) is the nth Bessel function of the complex argument.
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APPENDIX D

AN EXACTLY SOLVABLE MODEL

We examine the simple case of a single-resonant quantum dot, which is an idealistic model

with spin-degenerate, non-interacting level, and coupled to two leads. According to Ref.[11],

the generalized current formula can be obtained by

I =
e

h

∫
dω

ΓL (ω) ΓR (ω)

ΓL (ω) + ΓR (ω)

[
f<α (ω)− f<α (ω)

]
A (ω) , (124)

A (ω) =
Γ (ω)

(ω − ε0)
2 + (Γ (ω) /2)2

. (125)

Considering the wide-band limit of Γα (ω)→ Γα, Eq.(124) can be solved as

I =
e

h

ΓLΓR

ΓL + ΓR
Im

{
ψ

(
1

2
+

1

4πkBT
+ i

ω − µL
2πkBT

)
(126)

−ψ

(
1

2
+

1

4πkBT
+ i

ω − µR
2πkBT

)}
,

where the relation of Imψ (z) = π
2 tanh (πz) has been used, and ψ (z) denotes the digamma

function. In order to understand the effects of the resonant tunneling processes, we consider

the lowest order contributions. This can be solved by expanding Eq.(126) in orders of Γ,

which gives

I =
e

h

ΓLΓR

ΓL + ΓR
[
f<L (ε0)− f<R (ε0)

]
(127)

+
e

h

β

2π
ΓLΓR Im

{
ψ′
(
1

2
+

1

4πkBT
+ i

ω − µL
2πkBT

)

−ψ′
(
1

2
+

1

4πkBT
+ i

ω − µR
2πkBT

)}
+ ...

where the first term corresponds to the sequential tunneling current and the second term

reflects the co-tunneling current. The detailed discussion can be referred to Ref.[40].
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APPENDIX E

THE CALCULATION OF ZERO-FREQUENCY NOISE

Sαα′ (0)

Here we study the noise for a single-level quantum dot coupled to a vibronic degrees of

freedom.

Sαα′
(
t, t′

)
=

〈{
δIα (t) , δIα′

(
t′
)}〉

=
〈
[Iα (t)− Jα]

[
Iα′

(
t′
)
− Jα′

]
+
[
Iα′

(
t′
)
− Jα′

]
[Iα (t)− Jα]

〉

=
〈
Iα (t) Iα′

(
t′
)〉

+
〈
Iα′

(
t′
)
Iα (t)

〉

−2 〈Iα (t)〉Jα′ − 2Jα
〈
Iα′

(
t′
)〉

+ 2JαJα′ . (128)

Note that in the stationary state 〈Iα (t)〉 = 〈Iα (t′)〉 = Jα, and Jα = Jα′ = J . Thus the

noise function becomes

Sαα′
(
t, t′

)
=
〈
Iα (t) Iα′

(
t′
)〉

+
〈
Iα′

(
t′
)
Iα (t)

〉
− 2J2. (129)

Using the current definition of

Iα (t) =
ie

�

∑

kα

[
Vkαc

+
kα (t) d (t)− Vkαd

+ (t) ckα (t)
]
, (130)

Eq.(129) can be found as

Sαα′
(
t, t′

)
= −e2

�2

∑

kα,kα′

[
VkαVkα′

〈
c+kα (t)d (t) c

+
kα′

(
t′
)
d
(
t′
)〉
− (131)

VkαV
∗
kα′

〈
c+kα (t)d (t) d

+
(
t′
)
ckα′

(
t′
)〉

V ∗kαVkα′
〈
d+ (t) ckα (t) c

+
kα′

(
t′
)
d
(
t′
)〉

V ∗kαVkα′
〈
d+ (t) ckα (t) d

+
(
t′
)
ckα′

(
t′
)〉

+ h.c.− 2J2
]
.

Each 〈...〉 in Eq.(131) denotes the two-particle Green’s functions. In the non-equilibrium

case, these functions are evolving in the contour plane, and they are defined as
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G
(2)
1(cd)

(
τ, τ ′

)
= i2

〈
Tcc

+
kα (τ)d (τ)X (τ) c+kα′

(
τ ′
)
d
(
τ ′
)
X
(
τ ′
)〉

, (132)

G
(2)
2(cd)

(
τ, τ ′

)
= i2

〈
Tcc

+
kα (τ)d (τ)X (τ) d+

(
τ ′
)
X+

(
τ ′
)
ckα′

(
τ ′
)〉

, (133)

G
(2)
3(cd)

(
τ, τ ′

)
= i2

〈
Tcd

+ (τ)X+ (τ) ckα (τ ) c
+
kα′

(
τ ′
)
d
(
τ ′
)
X
(
τ ′
)〉

, (134)

G
(2)
4(cd)

(
τ, τ ′

)
= i2

〈
Tcd

+ (τ)X+ (τ) ckα (τ )d
+
(
τ ′
)
X+

(
τ ′
)
ckα′

(
τ ′
)〉

, (135)

and Eq.(131) equals

Sαα′
(
t, t′

)
= −e2

�2

∑

kα,kα′

[
VkαVkα′G

(2)>
1(cd)

(
τ, τ ′

)
− VkαV

∗
kα′G

(2)>
2(cd)

(
τ, τ ′

)
+ (136)

V ∗kαVkα′G
(2)>
3(cd)

(
τ, τ ′

)
− V ∗

kαVkα′G
(2)>
4(cd)

(
τ, τ ′

)
+ h.c.− 2J2L

]
.

Next we need an expression for G
(2)
1,2,3,4 (τ , τ

′) .The Dyson equation for G
(2)
1 (τ, τ ′) gives

G
(2)
1(cd)

(
τ, τ ′

)
= −

∫

c1
dτ1

∫

c2
dτ2

∑

k1,k2

Vk1V
∗
k2

[〈
Tcc

+
kα (τ) c

+
kα′

(
τ ′
)
ck1 (τ1) ck2 (τ2)

〉

〈
Tcd (τ)X (τ)d

(
τ ′
)
X
(
τ ′
)
d+ (τ1)X

+ (τ1) d
+ (τ2)X

+ (τ2)
〉]

=

∫

c1
dτ1

∫

c2
dτ2

∑

k1,k2

Vk1V
∗
k2

[
δk1kαδk2kα′gkα (τ1, τ) gkα′ (τ1, τ)

−δk1kαδk2kα′gkα′ (τ1, τ) gkα (τ1, τ)
]

〈
Tcd (τ)X (τ)d

(
τ ′
)
X
(
τ ′
)
d+ (τ1)X

+ (τ1) d
+ (τ2)X

+ (τ2)
〉]

.

= −Vk1V
∗
k2

∫

c1
dτ1

∫

c2
dτ2gkL (τ1, τ) gk′

L

(
τ2, τ

′
)
G
(2)
1(dd)

(
τ, τ ′, τ1, τ2

)
.(137)

and

G
(2)
4(cd)

(
τ, τ ′

)
= −Vk1V

∗
k2

∫

c1
dτ1

∫

c2
dτ2gkα (τ, τ1) gkα′

(
τ ′, τ2

)
G
(2)
4(dd)

(
τ, τ ′, τ1, τ2

)
(138)
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The performance of the second order Dyson equation on Eq.(133) and Eq.(134) gives

G
(2)
2(cd)

(
τ, τ ′

)
= −δkαkα′gkα

(
τ ′, τ

)
G(0)

(
τ, τ ′

)
−
∫

c1
dτ1

∫

c2
dτ2 (139)

∑
k1,k2

Vk1V
∗
k2

[
δk1kα′ δkLk2gk′L

(
τ ′, τ1

)
gkL (τ2, τ1)−

− δ
k1k

′

L

δkLk2gkL
(
τ ′, τ

)
gkL (τ2, τ1)

]

〈
Tcd (τ)X (τ)d+

(
τ ′
)
X+

(
τ ′
)
d (τ1)X (τ1) d

+ (τ2)X
+ (τ2)

〉

≈ −δkLk′LgkL
(
τ ′, τ

)
G
(
τ , τ ′

)
− ∑
k1,k2

VkαV
∗
kα′

∫

c1
dτ1

∫

c2
dτ2 (140)

gk′
L

(
τ ′, τ1

)
gkL (τ2, τ)G

(2)
4(dd)

(
τ, τ ′, τ1, τ2

)
,

where we combine the first term of Eq.(139) together with the second term in the integral,

yielding a formal Green’s function G (τ, τ ′). Similarly, the function G
(2)
3(cd) (τ, τ

′) in Eq.(134)

reads

G
(2)
3(cd)

(
τ, τ ′

)
= −δkαkα′gkα

(
τ ′, τ

)
G
(
τ ′, τ

)
− ∑
k1,k2

VkαV
∗
kα′

∫

c1
dτ1

∫

c2
dτ2

gkα (τ, τ1) gkα′
(
τ2, τ

′
)
G
(2)
3(dd)

(
τ, τ ′, τ1, τ2

)
. (141)

Here

G
(2)
1(dd)

(
τ, τ ′, τ1, τ2

)
= i2

〈
Tcd (τ)X (τ) d+ (τ1)X

+ (τ1)d
+ (τ2)X

+ (τ2)d
(
τ ′
)
X
(
τ ′
)〉

,(142)

G
(2)
2(dd)

(
τ, τ ′, τ1, τ2

)
= i2

〈
Tcd (τ)X (τ) d (τ1)X (τ1)d

+ (τ2)X
+ (τ2)d

+
(
τ ′
)
X+

(
τ ′
)〉

,(143)

G
(2)
3(dd)

(
τ, τ ′, τ1, τ2

)
= i2

〈
Tcd (τ)X (τ) d (τ1)X (τ1)d

+ (τ2)X
+ (τ2)d

+
(
τ ′
)
X+

(
τ ′
)〉

,(144)

G
(2)
4(dd)

(
τ, τ ′, τ1, τ2

)
= i2

〈
Tcd (τ)X (τ) d+ (τ1)X

+ (τ1)d
+ (τ2)X

+ (τ2)d
(
τ ′
)
X
(
τ ′
)〉

.(145)
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The noise function now can be concluded as

Sαα′
(
τ, τ ′

)
=

e2

�2

{∑
kα

|Vkα|2
[
gkα

(
τ ′, τ

)
G
(
τ, τ ′

)
+ gkα

(
τ, τ ′

)
G
(
τ ′, τ

)]

+
∑

kα,kα′
|Vkα|2 |Vkα′ |2

∫

c1
dτ1

∫

c2
dτ2 ×

[
−gkα (τ1, τ) gkα′

(
τ2, τ

′
)
G
(2)
1(dd)

(
τ, τ ′, τ1, τ2

)

+gkα (τ2, τ) gkα′
(
τ ′, τ1

)
G
(2)
2(dd)

(
τ, τ ′, τ1, τ2

)

−gkα (τ, τ1) gkα′
(
τ2, τ

′
)
G
(2)
3(dd)

(
τ, τ ′, τ1, τ2

)

−gkα (τ, τ1) gkα′
(
τ ′, τ2

)
G
(2)
4(dd)

(
τ, τ ′, τ1, τ2

)]}
+ h.c. (146)

So far only the Wick’s theorem has been applied for decoupling a non-interacting electron

Green’s function in the leads. Next, we need to determine two-particle dot Green’s functions,

as shown in Eq.(142)~Eq.(145). However, it is not trivial to calculate these functions

since they contain interactions. As a result, we need to import a method to simplify

our calculation. Usually, the Hatree-Fock approximation is one of the candidates to solve

the problem since it admits a direct decomposition of many-body Green’s function into

pairs of single-particle Green’s function. Therefore, the two-particle Green’s functions are

approximately described as:

G
(2)
1(dd)

(
τ, τ ′, τ1, τ2

)
≈

[
G (τ, τ2)G

(
τ ′, τ1

)
−G (τ, τ1)G

(
τ ′, τ 2

)]
F
(2)
1

(
τ, τ ′, τ1, τ2

)
,(147)

G
(2)
2(dd)

(
τ, τ ′, τ1, τ2

)
≈

[
G
(
τ, τ ′

)
G (τ1, τ2)−G (τ, τ2)G

(
τ1, τ

′
)]

F
(3)
2

(
τ, τ ′, τ1, τ2

)
,(148)

G
(2)
3(dd)

(
τ, τ ′, τ1, τ2

)
≈

[
G (τ1, τ)G

(
τ ′, τ2

)
−G

(
τ ′, τ

)
G (τ1, τ2)

]
F
(3)
3

(
τ, τ ′, τ1, τ2

)
,(149)

G
(2)
4(dd)

(
τ, τ ′, τ1, τ2

)
≈

[
G (τ2, τ)G

(
τ1, τ

′
)
−G (τ1, τ)G

(
τ2, τ

′
)]

F
(4)
4

(
τ, τ ′, τ1, τ2

)
.(150)

and the vibron correlation functions can be further calculated as

F
(2)
1

(
τ, τ ′, τ1, τ2

)
=

〈
TcX (τ)X+ (τ1)X

+ (τ2)X
(
τ ′
)〉

(151)

=
〈
TcX (τ)X+ (τ1)

〉 〈
TcX

+ (τ2)X
(
τ ′
)〉

+

〈
TcX (τ)X+ (τ2)

〉 〈
TcX

+ (τ1)X
(
τ ′
)〉

+

〈
TcX (τ)X

(
τ ′
)〉 〈

TcX
+ (τ1)X

+ (τ2)
〉

≈ F (τ, τ1)F
+
(
τ ′, τ2

)
+ F (τ, τ2)F

+
(
τ ′, τ1

)
,
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and

F
(2)
2

(
τ, τ ′, τ1, τ2

)
= F (τ, τ2)F

(
τ1, τ

′
)
+ F (τ1, τ2)F

(
τ, τ ′

)
, (152)

F
(2)
3

(
τ, τ ′, τ1, τ2

)
= F (τ, τ2)F

(
τ1, τ

′
)
+ F

(
τ, τ ′

)
F (τ1, τ2) , (153)

F
(2)
3

(
τ, τ ′, τ1, τ2

)
= F (τ, τ1)F

+
(
τ ′, τ2

)
+ F (τ, τ2)F

+ (τ1, τ2) , (154)

where we omit terms like
〈
TcX(+) (τ)X(+) (τ ′)

〉
in the stationary state. For further cal-

culation, however, we include only the boson lines connected to the tunneling lines, and

consequently we have

G
(2)
1(dd)

(
τ, τ ′, τ1, τ2

)
≈

[
G (τ, τ2)G

(
τ ′, τ1

)
F (τ, τ2)F

(
τ ′, τ1

)
(155)

−G (τ, τ1)G
(
τ ′, τ2

)
F (τ, τ1)F

(
τ ′, τ2

)]
,

G
(2)
2(dd)

(
τ, τ ′, τ1, τ2

)
≈

[
G
(
τ, τ ′

)
G (τ1, τ2)F

(
τ, τ ′

)
F (τ1, τ2) (156)

−G (τ, τ2)G
(
τ1, τ

′
)
F (τ, τ2)F

(
τ1, τ

′
)]

,

G
(2)
3(dd)

(
τ, τ ′, τ1, τ2

)
≈

[
G (τ1, τ)G

(
τ ′, τ2

)
F (τ1, τ)F

(
τ ′, τ2

)
(157)

−G
(
τ ′, τ

)
G (τ1, τ2)F

(
τ ′, τ

)
F (τ1, τ2)

]
,

G
(2)
4(dd)

(
τ, τ ′, τ1, τ2

)
≈

[
G (τ2, τ)G

(
τ1, τ

′
)
F (τ2, τ)F

(
τ1, τ

′
)

(158)

−G (τ1, τ)G
(
τ2, τ

′
)
F (τ1, τ)F

(
τ2, τ

′
)]

.

Substituting Eq.(155)~Eq.(158) into Eq.(146), we obtain

Sdisαα′
(
τ, τ ′

)
=

e2

�2

{
∑

kα,kα′
|Vkα|2 |Vkα′ |2

∫

c1
dτ1

∫

c2
dτ2 (159)

[
gkα (τ 1, τ) gkα′

(
τ2, τ

′
)
G (τ, τ1)G

(
τ ′, τ2

)
F (τ, τ1)F

(
τ ′, τ2

)

−gkα (τ2, τ) gkα′
(
τ ′, τ1

)
G (τ, τ2)G

(
τ1, τ

′
)
F (τ, τ2)F

(
τ1, τ

′
)

−gkα (τ, τ1) gkα′
(
τ2, τ

′
)
G (τ1, τ)G

(
τ ′, τ2

)
F (τ1, τ)F

(
τ ′, τ2

)

−gkα (τ, τ1) gkα′
(
τ ′, τ2

)
G (τ1, τ)G

(
τ2, τ

′
)
F (τ 1, τ)F

(
τ2, τ

′
)]}

+ h.c..
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and

Sconαα′
(
τ, τ ′

)
=

e2

�2

{∑
kα

|Vkα|2
[
gkα

(
τ ′, τ

)
G
(
τ, τ ′

)
+ gkα

(
τ, τ ′

)
G
(
τ ′, τ

)]
(160)

+

∫

c1
dτ1

∫

c2
dτ2 ×

[
−Σkα (τ1, τ)Σkα′

(
τ2, τ

′
)
G (τ, τ 2)G

(
τ ′, τ 1

)
F (τ, τ2)F

(
τ ′, τ1

)

+Σkα (τ2, τ)Σkα′
(
τ ′, τ1

)
G
(
τ, τ ′

)
G (τ1, τ2)F

(
τ, τ ′

)
F (τ1, τ2)

−Σkα (τ, τ1)Σkα′
(
τ2, τ

′
)
G
(
τ ′, τ

)
G (τ1, τ2)F

(
τ ′, τ

)
F (τ1, τ2)

−Σkα (τ, τ1)Σkα′
(
τ ′, τ2

)
G (τ2, τ)G

(
τ1, τ

′
)
F (τ2, τ)F

(
τ1, τ

′
)]}

+ h.c,

with Σkα (τ, τ
′) =

∑
kα |Vkα|2 gkα (τ, τ ′). Note that Sdisαα′ (τ, τ

′) does not contribute to the

noise. When applying the Langreth rule on Eq.(159), we find

Sdis>αα′
(
τ, τ ′

)
=

e2

�2

{
∑

kα,kα′
|Vkα|2 |Vkα′ |2

∫

c1
dτ1

∫

c2
dτ2 (161)

{[
gkα (τ1, τ) gkα′

(
τ2, τ

′
)
G (τ, τ1)G

(
τ ′, τ2

)
F (τ, τ1)F

(
τ ′, τ2

)]>

−
[
gkα (τ2, τ) gkα′

(
τ ′, τ1

)
G (τ , τ2)G

(
τ1, τ

′
)
F (τ, τ2)F

(
τ1, τ

′
)]>

−
[
gkα (τ, τ1) gkα′

(
τ 2, τ

′
)
G (τ 1, τ)G

(
τ ′, τ2

)
F (τ1, τ)F

(
τ ′, τ2

)]>

−
[
gkα (τ, τ1) gkα′

(
τ ′, τ2

)
G (τ1, τ)G

(
τ2, τ

′
)
F (τ1, τ)F

(
τ2, τ

′
)]>}}

+ h.c.,

where the first term with double integrations is solved with

[
Vkα

∫

c1
dτ1gkα (τ1, τ)G (τ, τ1)F (τ, τ1) · Vkα′

∫

c2
dτ2gkα′

(
τ2, τ

′
)
G
(
τ ′, τ2

)
F
(
τ ′, τ2

)]>

= G>d,kα (τ, τ)G
>
d,kα

(
τ ′, τ ′

)
. (162)

The remaining terms in Eq.(161) can be analyzed accordingly. When substituting Eq.(162)
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and the disconnected terms into Eq.(161), we obtain

Sdisαα′
(
t, t′

)
=

e2

�2

∑
kα,kα′

[
VkαVkα′G

>
d,kα (τ, τ)G

>
d,kα

(
τ ′, τ ′

)

−VkαV
∗
kα′G

>
d,kα (τ, τ)G

>
d,kα′

(
τ ′, τ ′

)

−VkαV
∗
kα′G

>
d,kα (τ, τ)G

>
d,kα′

(
τ ′, τ ′

)

+VkαV
∗
kα′G

>
d,kα (τ, τ)G

>
d,kα′

(
τ ′, τ ′

)]
+ h.c.

= 2
e2

�2

∑
kα,kα′

[
VkαG

>
d,kα (τ, τ)− V ∗kαG

>
d,kα (τ, τ)

]

×
[
Vkα′G

>
d,kα′

(
τ ′, τ ′

)
− V ∗

kα′G
>
d,kα′

(
τ ′, τ ′

)]

= 2J2,

which exactly cancels 2J2 in Eq.(128).

The appliance of the Langreth theorem on Sconαα′ (τ, τ
′) results in

Scon>αα′
(
τ, τ ′

)
= (

e

�
)2
{[

Σkα
(
τ ′, τ

)
G
(
τ, τ ′

)
F
(
τ, τ ′

)
+Σkα

(
τ, τ ′

)
G
(
τ ′, τ

)
F
(
τ ′, τ

)]>

+

∫

c
dτ1

∫

c
dτ2 ×

{
−Σkα (τ1, τ)Σkα′

(
τ2, τ

′
)
G (τ, τ1)G

(
τ ′, τ2

)
F (τ, τ1)F

(
τ ′, τ2

)

+Σkα
(
τ1, τ

′
)
Σkα′ (τ2, τ)G

(
τ1, τ

′
)
G (τ, τ2)F

(
τ1, τ

′
)
F (τ, τ2)

+Σkα (τ, τ1)Σkα′
(
τ2, τ

′
)
G (τ1, τ)G

(
τ ′, τ2

)
F
(
τ1, τ

′
)
F (τ, τ2)

−Σkα (τ, τ1)Σkα′
(
τ2, τ

′
)
G (τ1, τ)G

(
τ2, τ

′
)
F
(
τ1, τ

′
)
F (τ, τ2)

}>
+ h.c,(163)

where the first term in Eq.(163) gives

[
Σkα

(
τ ′, τ

)
G
(
τ, τ ′

)
F
(
τ , τ ′

)
+Σkα

(
τ , τ ′

)
G
(
τ ′, τ

)
F
(
τ ′, τ

)]>
(164)

= Σ<kα
(
t′, t

)
G>

(
t, t′

)
F>

(
t, t′

)
+Σ>kα

(
t, t′

)
G<

(
t′, t

)
F<

(
t′, t

)
.

The terms with the double integrations are
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∫
dτ1

[
G
(
τ ′, τ1

)
F
(
τ ′, τ1

)
Σkα (τ1, τ)

]< ·
∫

dτ2
[
G (τ, τ2)F (τ, τ2)Σkα′

(
τ2, τ

′
)]>

=

∫
dt1

{[
G
(
τ ′, τ1

)
F
(
τ ′, τ1

)]r
Σ<kα (t1, t) +

[
G
(
τ ′, τ1

)
F
(
τ ′, τ1

)]<
Σakα

(
t′, t1

)}
×

∫
dt2

{
[G (τ, τ 2)F (τ, τ 2)]

r Σ>kα
(
t2, t

′
)
+ [G (τ, τ2)F (τ, τ2)]

>Σakα
(
t2, t

′
)}

, (165)

and

[
G
(
τ, τ ′

) ∫
dτ2

∫
dτ1Σkα′

(
τ ′, τ1

)
G (τ1, τ2)F (τ1, τ2)Σ

+
L′

(
τ2, τ

′
)]

= G
(
τ, τ ′

) ∫
dt1

∫
dt2




Σrkα′ (t
′, t1) [G (τ1, τ2)F (τ1, τ2)]

r Σ+<kα′ (t2, t)+

Σrkα′ (t
′, t1) [G (τ1, τ2)F (τ1, τ2)]

<Σ+<kα′ (t2, t)+

Σ<kα′ (t
′, t1) [G (τ1, τ2)F (τ1, τ2)]

aΣ+akα′ (t2, t)




. (166)

The remaining terms in Eq.(163) are treated in the same way. We could study the finite

frequency noise by taking the Fourier transform, then function S (ω) reads

Sαα′ (ω) = Sαα
′

1 (ω) + Sαα
′

2 (ω) (167)

Sαα
′

1 (ω) = 2(
e

�
)2
∫

dω′

2π

{
[GF ]<

(
ω + ω′

)
· Σ>kα

(
ω′
)
+Σ<kα

(
ω′
)
· [GF ]>

(
ω + ω′

)
+ c.c

}
,(168)

Sαα
′

2 (ω) = 2(
e

�
)2
∫

dω′

2π

{(
[GF ]r

(
ω + ω′

)
Σ>kα

(
ω + ω′

)
+

[GF ]>
(
ω + ω′

)
Σakα

(
ω + ω′

))
×

(
[GF ]r

(
ω′
)
Σ<kα

(
ω′
)
+ [GF ]<

(
ω′
)
Σakα

(
ω′
))

+

[GF ]>
(
ω + ω′

) [
Σrkα

(
ω′
)
Gr

(
ω′
)
Σ<kα

(
ω′
)

Σrkα
(
ω′
)
[GF ]<

(
ω′
)
Σakα

(
ω′
)

Σ<kα
(
ω′
)
[GF ]a

(
ω′
)
Σakα

(
ω′
)]

+ c.c.
}
. (169)

where

[AB]≶ (ω) = A≶ (ω)Ba (ω) +Ar (ω)B≶ (ω) , (170)

[AB]r,a (ω) =
∫
dω′

{
A> (ω − ω′)B> (ω′)

ω − ω′ + iδ+
− A< (ω − ω′)B< (ω′)

ω − ω′ + iδ+

}
. (171)

In this paper, we focus on the calculation of the zero-frequency noise ω → 0, thus the S1
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and S2 are

S1 (ω → 0) = 2(
e

�
)2
∫

dω

2π
[GF ]< (ω)Σ>kα (ω) + Σ<kα (ω) [GF ]> (ω) , (172)

S2 (ω → 0) = −2(e
�
)2
∫

dω

2π

[
2 |[GF ]r (ω)|2Σ>kα (ω)Σ<kα (ω) + J2α (ω)

]
(173)

where

Jα (ω) =
[
G̃r (ω)− G̃a (ω)

]
Σ<kα (ω)− G̃< (ω)

[
Σ>kα (ω)−Σ<kα (ω)

]

= G̃> (ω)Σ<kα (ω)− G̃< (ω)Σ>kα (ω) .

78



APPENDIX F

STRONG ELECTRON-VIBRON COUPLING

CALCULATION

Based on NEGF, the current formula is given by

Jα =
e

�

∫
dω

2π

[
Σ̃<kα (ω)G

> (ω)− Σ̃>kα (ω)G
< (ω)

]

Note that Σ̃kα (ω) =
∑
kα |Vkα|2 gkα (ω) is the Keldysh self-energy due to coupling to the

leads and Σ̃≶kα (ω) are given by

Σ̃≶kα (ω) = ±if≶α (ω) Γα (ω) .

The Keldysh Green’s function for the vibrating system is defined by

G
(
τ, τ ′

)
= −i

〈
Tcd (τ)X (τ) d+

(
τ ′
)
X+

(
τ ′
)〉

. Via the Langreth rule, lesser (greater) Green’s function are found as

G≶
(
τ , τ ′

)
= G̃≶

(
τ, τ ′

)
F≶(τ , τ ′).

Here the electron lesser (greater) Green’s function and the vibron lesser (greater) Green’s

function are respectively defined by

G≶
(
τ, τ ′

)
= −i

〈
Tcd (τ) d

+
(
τ ′
)〉

(174)

F≶(τ, τ ′) =
〈
TcX (τ)X+

(
τ ′
)〉

(175)

Since X ≡ eλ(b−b
+), via the Taylor expansion, F≶(τ, τ ′) can be retained up to the second

order, and rewritten by

F≶(τ, τ ′) = eλ
2[iD≶ (τ,τ ′)−〈P 2〉]

where D(τ, τ ′) = −i 〈TcP (τ )P (τ ′)〉, and P = −i (b− b+) . The reaming procedure is to

determine G̃≶ (τ, τ ′) and D≶(τ, τ ′).
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The Dyson equation for the electron Green’s function and the vibron Green’s function

are found as

G̃d
(
τ, τ ′

)
= g̃d

(
τ, τ ′

)
+

∫

c
dτ1

∫

c
d2g̃d (τ, τ1)Σk (τ1, τ2) G̃d

(
τ2, τ

′
)
, (176)

D̃
(
τ, τ ′

)
= d̃

(
τ, τ ′

)
+

∫

c
dτ1

∫

c
d2d̃ (τ, τ1)Π (τ1, τ2) D̃

(
τ2, τ

′
)
, (177)

where the functions Σk (τ1, τ2) and Π(τ1, τ2) are given by

Σk (τ1, τ2) = Σ̃kα (τ1, τ2)F
+ (τ1, τ2) , (178)

Π(τ1, τ2) = −iλ2
{
Σ̃kα (τ1, τ2) · G̃+ (τ1, τ2)F

+ (τ1, τ2) (179)

Σ̃+kα (τ1, τ2) · G̃ (τ1, τ2)F (τ1, τ2)
}

The application of the Keldysh rule on Eq.(176) and Eq.(177) leads to

G̃≶d (ω) =
∣∣∣G̃rd

∣∣∣
2
(ω)Σ

≶
k (ω) (180)

=
Σ≶k (ω)

[
ω − εd −ReΣrk (ω)

]2
+
[
ImΣrk (ω)

]2 ,

D̃≶ (ω) =
∣∣∣D̃r

∣∣∣
2
(ω)Π≶ (ω) (181)

=
Π≶ (ω)

[(
ω2 − ω20

)
/2ω0 −ReΠr (ω)

]2
+ [ImΠr (ω)]2

.

The remaining task is to determine Σr,>,<k (ω) and Πr,>,< (ω).

From Eq.(178) and Eq.(179), we understand that

Σrk
(
t, t′

)
= θ

(
t− t′

) [
Σ>k

(
t, t′

)
−Σ<k

(
t, t′

)]
, (182)

which denotes the retarded self-energy of the interacting quantum dot and the function

Πr (t, t′) represents for the retarded vibron Green’s function

Πr
(
t, t′

)
= θ

(
t− t′

) [
Π>

(
t, t′

)
−Π<

(
t, t′

)]
(183)
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In energy space, Eq.(182) and Eq.(183) can be expressed as

Σ≶k (ω) =
∫
dω′Σ̃≶k

(
ω − ω′

)
F+≶

(
ω′
)

= ±i
∑
α

∫
dω′Γ≶α

(
ω − ω′

)
F+≶

(
ω′
)

(184)

Π≶ (ω) = −iλ2
∫
dω′

∫
dω′′

{
Σ̃≶k

(
ω − ω′

)
· G̃+≶d

(
ω′ − ω′′

)
F+≶

(
ω′′
)

+ Σ̃+≶k
(
ω − ω′

)
· G̃≶d

(
ω′ − ω′′

)
F≶

(
ω′′
)}

, (185)

and the retarded self-energies appearing in Eq.(180) are

Σrk (ω) =
∑
α

∫
dω′

[
V ∗kαVkαf

<
α (εkα)F

+< (ω′)

ω − ω′ − εkα + iδ

+
V ∗kαVkαf

>
α (εkα)F

+> (ω′)

ω − ω′ − εkα + iδ

]
, (186)

Πr (ω) = −iλ2
∫
dω′

∫
dω′′

{
V ∗kαVkαf

<
α (εkα) · G̃+<d (ω′ − ω′′)F+< (ω′′)

ω − ω′ − εkα + iδ
(187)

+
V ∗kαVkαf

+<
α (εkα) · G̃<d (ω′ − ω′′)F< (ω′′)

ω − ω′ − εkα + iδ

− V ∗kαVkαf
>
α (εkα) · G̃+>d (ω′ − ω′′)F+> (ω′′)

ω − ω′ − εkα + iδ

− V ∗kαVkαf
+>
α (εkα) · G̃>d (ω′ − ω′′)F> (ω′′)

ω − ω′ − εkα + iδ

}
.

This is a self-consistent procedure to solve strong electron-vibron coupling molecule. We

can see that the vibron Green’s function is strongly affected by the bias-dependent electron

Green’s function, such that the boson modes are nonuniformly broadening.
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