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ABSTRACT

In recent years, molecular electronics has becameobthe very popular topics
due to the advances in micro-manufacturing teclgyldhe current increases
non-linearly with the increment of the voltage whetectrons tunnel in
low-dimensional devices, such as one-dinmensionakban nanotubes,
zero-dimensional semiconductor quantum dots oreinglecules based on C60,
Co-polymer. The conventional Ohm’s law is no longeplicable, and quantum
mechanics has to be considered. Different from s@miuctor quantum dots
(GaAs/AlGaAs), in which only energy level quantipatis taken into account, we
need to deal with the effects of potential shifised by van der Waals and static
electric forces when using molecules as SETs Thé sfffects result in
electron-vibron interactions, and these interastiomill change the original
tunneling rate of electrons. In our work, it is fouthat the correlation formed by
electron-vibron is dependent on the temperatureadlsas external voltages. The
results predict that the conductance will rise Bhd as the voltage is increased.
Meanwhile, an obvious conductivity gap occurs betwéhe zeroth and the first
phonon side-bands, implying that the phonon askistate is a virtual state.
Additionally, we also derive the generalized EPisedormula and investigate the
thermal fluctuation and shot noise behavior respantb the voltage. We find that
at large voltages, the electrons will move randgméturning to the classical
behavior. The predictions coincide with the expemtal results.
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CHAPTER 1

INTRODUCTION

One of the main difference between SMTs and QDs is that SMTs have molecular structure
and small mass, so oscillation tends to occur due to van der Waals forces and static electric
forces. Brandes et.al [46] used Mater equation to study the non-linear current of double
quantum dots in semiconductor. He concluded that non-linear mechanism stemmed from
the interference of phonons. Because the phonons are easily destroyed by heat and struc-
tures, the DOS is assumed as ohmic loss distribution, and the phonons possess continuous
modes. However, it is single mode in SMTs owing to the fact that van der Waals potential
can be further approximated as single harmonic structure. Many scientists started to inves-
tigate in this field because of the advances in nanotechnology. Making thin films oscillation

as molecules is no longer a critical issue. The following are the recent progress in this topic.

1.1 The Single-molecule Transistor

In recent years, it becomes more and more important to use a single-molecule transistor as
conducting single electron transistors (SETs). In molecular electronics, due to the advance
of nano-device technology. One special phenomenon is the discovery of the non-linear stair
current. This phenomena, however, has been discovered widespread in a single molecule
transistor, but not in the semiconductor quantum dot due to vibrational motion of the
atoms. In the pioneering work by H. Park et al,[1] reported that the current increase
presented the stair profile with the increment of bias voltage when the C60 molecule was
connected to a gold wire, see Fig. 1. They deduced that the step behavior resulted from
the vibrons assisting in the transport[1].

The vibrons originated from the quantization of the oscillating energy. In fact, when a
C60 molecule is near the metal, it would be attracted weakly through van der Waals force.

The trapping well could be roughly described by a harmonic potential, as seen from the
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Figure 1: The current vs. the bias voltage obtained from C60 transistor at T = 1.5K.
Reprinted from Ref.[1]

upper inset of Fig. 2a. This is a SET, as a consequence, electrons may leave from the metal
surface to C60 (in the middle of Fig. 2b). The holes in the metal and the electrons in

C60 would form a static electric field, and the C60 would be pulled to the metal, causing a

position shift, as shown in the right inset of Fig.2b.

Figure 2: The mechanism for the C60-SMT. The van der Waals force and the static electric
field play an essential role. Reprinted from Ref.[1]

1.1.1 Vibronic transitions: the Source of the Staircase Current

The Franck—Condon principle is a rule that explains the intensity of vibrational mode

(vibron) transitions. Vibronic transitions are the simultaneous changes in electronic and



Figure 3: Schematic description of the displacement of the vibron potential for weak
electron-vibron coupling (a) and strong electron-vibron coupling (b) The lower insets depict
the electron-vibron coupling probability among different vibrational states in two potentials
|My,.m|?, where the the coupling strength are given by A = 0.2, 1.0 and 4.0, respectively.
The diagonal term denotes the probability for emission/absorption of n bosons of frequency
wp. M is positve for emission and negative for absorption. ¢; denotes the quantized number
before compressing the atom and ¢ is that of compressed. Reprinted from Ref.[39] and
Ref.[45].



vibrational energy levels of a molecule due to the absorption or emission of a vibron of
appropriate energy. Because C60 was pulled to the metal due to forming the electron-hole
electric field, causing a mechanical motion of C60. As a result, the overlap of two vibrational
wave functions over a physical displacement, i.e. (m|z |n), highly renormalizes the electron
tunneling rate of the SET (without vibronic transitions, the transition rate is determined
by the Fermi’s golden rule).

The profiles of the strong and the weak electron-vibron interaction are depicted in Fig.
3(a) and Fig. 3(b), respectively. Fig. 3(a) and Fig. 3(b) reveal the semi-classical diagram
of Franck-Condon behavior. In the weak electron-vibron interaction case (see g << 1
in Fig. 3(a), where g represents the electron-vibron coupling strength), there is neither
vertical shift of the potential nor horizontal shift of the position.  — 0 and hence the
off-diagonal vibronic transitions does not exist. Strong electron-vibron interaction leads to
great potential deviation, and the energy level is accompanied changed, which results in less
overlapping of low-energy vibrational states (see Fig. 3(b)). The less overlapping means a
small amount of electrons may transport at low bias voltage, leading to the so-called "vibron
blockade" (Franck-Condon blockade), as mentioned in Ref.[45][40][39]. On the contrary, the
overlap of the vibrational wavefunctions at high energy region becomes larger, that is, the
transmission between energy levels in this field is rather active and we expect to measure

the current at large bias.

1.2 The Conductance Oscillation in the SMT

The physical quantities of interest, such as current, conductance and higher order correlation
functions, e.g. noise, can be obtained as the spectral density (density of states) is solved.
In experiments, the differential conductance has structure similar to the zero-bias spectral

function.
1.2.1 Nanomechanical Oscillations in a single-C60 transistor

A single-C60 molecule is considered to have a single level of degeneracy. The vibrons may
changed the single-level molecule into a multiple-level structure, as shown in Fig. 4. It can

be seen that more and more vibron side-bands enter the transport window (the chemical
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Figure 4: The density plot of the spectral function A(w) at different bias, where the left
denotes the small one and the right is the larger. The right figure shows the differential
conductance as a function of the bias voltage and the gate voltage. The white triangle
denotes the vibron sidebands. Reprinted from Ref.[1].

potential of the metal wire) as the bias is enhanced (the red arrow). As a result, the current
abruptly increases when the chemical of the leads across the level energy of vibronic channel.
Usually the hole states are distributed above the chemical potential of the leads and the
electron states below. Therefore, it is expected to obtain a symmetric conductance map
as the coupling of the molecule to the leads is symmetric. The right figure shows the 2D
distribution of the conductance vs. the bias (vertical-axis) and the gate voltage (horizontal-
axis) for four C60 transistors of various sizes. The white arrow indicates the occurrence of

vibron side-band[1].
1.2.2 Coulomb blockade and the Kondo effect in single -atom transistors

In 2002, J. Park et al.[2] examined two related molecules containing a Co ion bonded to
polypyridyl ligands to make a quantum dot and to observed the Kondo effect. In their work,
a set of symmetric satellite Kondo peaks due to emission of the vibrons were observed as
the bias matches multiples of the vibrational frequency. The model is given as follows.
The left pictures in Fig. 6 show the 2D conductance for three devices of various sizes. In
the black region (the blockade zone in Fig. 6a), Co2+ and Co3+ represent the molecular

ground state and the excited state. In the transport bias window, the white line denotes
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Figure 5: Preparation of the Co polymer transistors. Reprinted from Ref.[2].

the vibron-side band. Fig. 6(b) shows the level-splitting of ground state for the Co polymer
when a magnetic field of B = 67T is exerted in Fig. 6(a). The white triangle indicates the
new energy levels after the magnetic field is turned on. This is the Zeeman splitting effect
measured in the conductance. The splitting energy is linearly increased with the magnetic
field (inset below Fig. 6(b)). At low temperature, the conductance peak starting from
the Kondo effect is probed near eV, = 0 in the Coulomb blockade region, as seen in Fig.
7(b). The right picture shows the differential conductance vs. the bias at 7' = 1.5K, where
a maximum Kondo peak is found at eV = 0. As usual we may find maximum peak at
Vi, = 0. Due to the vibron assisting tunneling, we observe, furthermore, symmetric satellite
maxima. The lower inset (c) shows that the conductance owns a logarithmic temperature
dependence in the range of T'= 30 to T' = 20K. The lower-right figure (d): The splitting

of the Kondo peak caused by a series of magnetic field.
1.2.3 Suspended Semiconductor Quantum Dot (Phonon Cavity)

Besides using molecules to confirm the phonon side-bands, E. M. Weig et al.[8]. designed
a suspended quantum dot device embedded in a freestanding GaAs/AlGaAs membrane to
verify the phonon blockade in the low bias region. There, the phonon of single frequency
is applied by the suspended phonon cavity[31][32][33], as seen in Fig. 8. The conductance
under different magnetic fields are shown on the RHS of Fig. 8. The right inset profiles the
corresponding conductance vs. V, at Vj, = 0, where no conductance is found at Fig. 8(b).

reflecting the phonon blockade. At higher temperature (T = 350mK), the conductance
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Figure 6: (a)Coulomb blockade and the Kondo effect in Co polymer transistors. The right
figure (b) presents that the quantum dot with a magnetic field of B = 67" . The below inset
denotes the Zeeman splitting as a function of the magnetic field. Reprinted from Ref.[2].

that phonon blockade starts to be decreased because of thermal broadening of the Fermi

function helping hole states transport through the dot system.
1.2.4 Suspended Carbon Nanotube Quantum Dot

In 2006, S. Sapaz et al.[5] produced a suspended carbon nanotube quantum dot (CNT-QD),
which was connected to metal wires and the step current was observed, as shown in Fig.
9. They deduced that the step current was from the longitudinal phonon waves in the
carbon-nanotube. Besides, E. Onac et al.[6] adopted the same model and, furthermore,
used a superconductor-insulator-superconductor device to measure the (a) current, (b) con-
ductance, (c) noise and (d) differential noise. With current and noise, they calculated the
Fano factor of the CNT-QD. They verify that in the Coulomb blockade regime, the inelastic
co-tunneling yields a super-Poissonian noise, whereas poisson for the elastic co-tunneling.
Fig. 27(a) shows the Fano factor according to F' = S/2e (I), where (I) is the current given

by Fig.10(c) and S is the noise shown in Fig.10(a).

In 2009, Leturcq et al.[39] took advantage of a suspended carbon nanotube (CNT) to
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Figure 7: The Kondo effect in the Coulomb Blockade region (at eV}, = 0). Reprinted with
permission from Ref.[2]

generate a vibrating quantum dot for the observation of strong electron-vibron coupling
effects on the current, as seen in Fig. 12. They demonstrate the vibron frequency is
governed by the longitudinal stretching vibrons in the CNT, and more importantly, they
shows strong evidence of the vibron-blockade behavior at low-bias. In addition, they probed
the conductance peaks in the blockade regions. At high temperature, the absorption of the
vibron energy becomes active, and vibron-mediated states assist the electron transport,
even at the coulomb blockade area. This nontrivial phenomena, however, not reported in
previous studies of this kind, is believed to associate with the higher-order co-tunneling of
vibrons, especially, when the strong elecron-vibron interaction is considered. On the other
hand, to understand the electron-vibron interaction (EVI) again becomes an hot topic in

recent years.

1.3 Theoretical Development of the Vibron-assisted Tunnel-
ing Problem

Theoretically, many efforts have been made to solve the electron transport the vibrating

quantum dot or the SMT. Theoretical methods in this field include the scattering rate
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Figure 8: The left depicts the suspended quantum dot in a freestanding phonon cavity
(130nm thin GaAs/AlGaAs) membrane. The right insets show conductance maps under
B =500mT and B = 0. Inset (b) and (c) exhibit the conductance gap around V;, = 0 (linear
response area). However, higer temperatue may reduce the suppress behavior. Reprinted
from Ref.[8].

equation, the master equation and the non-equilibrium Green’s function. The rate equation
(RE)[37], the master equation[12][46][36] and the NEGF[14][15] have successfully explained
many transport experiments. Each of these theoretical approaches has its own advantages
and limitations. Among theses approaches, the RE may rapidly yield the equation of motion
for every state by directly replacing the density p (¢') by p(¢) In the report by Brandes[46],
they calculated the main current of double quantum dots via the RE and concluded that
the non-linear electric current stemmed from the shake-up effects of the vibrons. However,
different treatment of methods owes it convenience, however, the convenience is often based
on the decoupling assumption. For example, the RE can be quickly solved only if we omitted
the influence of self-energy, which causes the error message of the energy shift and the level
broadening of the quantum dot. That is, the RE is an effective method for predicting that
the hopping (correlation) time is much smaller than time spent in the quantum dot, i.e.
valid for a weak-tunneling regime. To our knowledge, the non-equilibrium Green’s function

is the most convincing tool to solve quantum transport at finite bias because it contains
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Figure 9: The upper figure presents the staircase current as a function of source-drain
voltage at a fixed gate voltage. The lower inset depicts the experimental setup of a suspended
carbon nanotube quantum dot (CNT-QD). Reprinted from Ref.[5]

both the hopping ( correlation) and the self-energy of the interacting system. The early
application of this technique on quantum transport were established by M. Wingreen and
Y. Meir[15]. Later A. P. Jauho and his co-workers[14] extended this technique to other
fields, like spin-dependent transport, superconductors and optical lattaice. For quantum

transport, there is a basic current formula expressed as

e [ T @)
7= [ o e (@)~ fa @] A ). )

This formula, however, is well-defined in the EVI problem. Usually, th function I" (w) and
f (w) is related to the metal wire, can be solved by Fermi’s golden rule and the Fermi-Dirac
distribution. The problem lies in the determination of the function A (w). Jauho et.al[11]
solved this function by imposing the identical relation of A (w) = 2ImG" (w), and they

directly decoupled the total system’s retarded Green’s function as

G (t) ~ G () exp [~ (1), 2)
A2 . .
) = (w—o) [(1—e7™0!) (No+ 1) + (1 — e°") No] . (3)
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Figure 10: The density plot of (a) current, (b) conductance, (c¢) noise and (d) differential
noise, where the vertical-axis is the bias and horizontal-axis is the gate voltage. Reprinted
with permission from Ref.[6]

where the function G denotes the electron Green’s function and exp [~® (¢)] is the vibron
correlation. Later, Zhu and Balatsky extended this method to calculate the zero-frequency
noise. At high temperature, this method gives the same tendency of the conductance as
found in experiments, where the conductance peak does exists in the blockade area. How-
ever, this method fails at low temperature, that is, no conductance shall be found in this
limit. The erroneous prediction arises from the ill treatment of electron-vibron decoupling.
As a matter of fact, G* (t) = [G" (t)]" but ®* (t) = ® (—t) # P (), as a consequence, Eq.(2)
is not appropriate for studying current—voltage characteristic of vibron assisted tunneling.
Instead, it is convenient to start from function G<~ (¢). Based on this, Chen and his co-
workers solved this problem and quickly obtained the symmetric conductance, agreement
with the experimental observations. However, in Chen’s work, since an averaged field con-
cept has been executed to simplify the EVI self-energy, they missed an important thermal
broadening information from vibron Green’s functions. In this thesis, we will examine the

properties of the vibron correlation and address how to interpret the EVI transport question

11
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Figure 11: (a) The dashed line represents the transport bias window and the dot line is for
the Coulomb blockade area. (b): Fano factor vs. the applied bias voltage at different gate
voltages. Reprinted from Ref.[30]

in a more physical way. More importantly, a conductance gap between the chemical poten-

tial of the leads and the first vibron excited state, specifically, e |V;| > 2wy, is also examined.

12
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Figure 12: Left: The inset depicts the experimental setup of a CNT-QD, where S, D, and
TG stands for the source, the drain, and the gate voltage. The quantum dots are located
below the gate and in the left and right leads. The frequency is decided by the longitudinal
stretching mode. Right: Franck-Condon blockade in suspended carbon nanotube QD, where
higher temperature yields phonon side-bands appearing outside the bias transport area
(Coulomb Blockade region). Reprinted from Ref.[39]
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CHAPTER II

THEORY OF QUANTUM TRANSPORT

Our formalism is based on the nonequilibrium Keldysh Green’s function method. The
Keldysh Green’s function is used to deal with the system coupled to a time-dependent
external fields. This function describes how the system evolves with time from the initial
state. Before the interaction is on, the system and the environment are at their equilibrium,
and the their physical quantities can be described by the Matsubara Green’s function. As the
interaction is turned on, the transfer function of the system can be extended via the Dyson
equation approach[14][16]. Next we briefly describe the mechanism behind the Keldysh

Green’s Function.

2.1 The Keldysh Green’s Function

We consider a system under the Hamiltonian
H(t)=Hs+ H ().

The time-independent Hamiltonian H can be split into Hg = Hy + Hintra, Where Hipirg
denotes the interaction in the system Hg, such as the Coulomb repulsion. A quantum

statistical expectation value of an field operator O at time ¢ is given by

(O ) =trp(t) O] = tr[pgOn (£)] = (On (1)) , (4)

where p(t) = U (t,t0) poU™ (t,t9) and the quantity p, is the equilibrium density matrix
given by
eiﬁHS
T
Note here that U (¢,t9) = exp [—% fi, dtH (t)} At t > to,
On(t) = Ul(t,to) OU™ (¢ to)

= Uns (t,t0) Ong (t) Vi, (t,t0) ,

14
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Figure 13: The contour time path ¢

where the unitary function Upy (¢,%0) is given by

ro1
Upng (1) = Texp —% X (t)],
tl
H}fs t) = e Hs(t—to) r/ () o~ 1 Hs(t—to)

Therefore, Eq.(4) can be rewritten as

(O(t)) =tr {po exp [—% [dt'Hy, (1)

Ct

Omnyg (t)} ; (5)

Opg (t) is the time-dependent operator of the system, and the contour ¢; is depicted in
Fig. 13Since Eq.(5) is expreseed in terms of the equilibrium Hamiltonian H.,, the contour-
ordered Green’s function plays a similar role as the equilibrium Green’s function. Compared
to the equilibrium Green’s Function, we have two additional contour ordered Green’s func-

tions:

< N = _; + (1/ 1 Ty
Gy =) O 01 =i n UG ).m < .

GZ (L) =+i (Y (1) ¥ (1)), 71> 71

where (1) = (r1,t1). The detailed description of G< (1,1) is
< / . —Fi f dt/H}(t/) _%f(‘/ dt,H}(t/) + /
c<(,1) = —i{r et atmOy L, Lo MO ) 1Y g
_ 4 , dt' H' (¢
- <T01+c/1 {6 B fc1+cl ' H (L )@DH (1) zbE (1/)}> '

It implies that the contour ¢; stretches from ¢y and passes through ¢; and ¢ and back to

to, The last equality in Eq.(7) combines the contours c¢; + ¢}, as plotted in Fig.14:

15
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Figure 14: Parts of contour evolution operators canceling in Eq.(7). Reprinted from Ref.

2.1.1 Analytical Continuum

In general, the interaction complicates the evolving path in the contour-ordered Green’s
function. The procedure of converting this complex-time Green’s function into a real-time
one is called the analytic continuation or Langreth theorem, which is developed by Kadanoff,

Baym|[44] and Langreth.[17] The useful Langreth theorem is listed as follows:
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Contour (Complex) Time

Real Time

C(r,m')=[.dm
A(r,71) B(11,7)

C= (t, ') = [ dt1 [A" (t,11) BS (t1,1)

FAS (4,41) B® (t, t’)]
(t,t1) B"@ (t1,¢').

@ (t,¢') = [ dt; A™(@)

D(r,7")= [ dr1 [ qdr2
A(r,71) B (11,72) C (12, 7")

DS (t,t')= [dt1 [ dts [A" (t,t1) B (t1,t2) x

CS (tg, ') + AT (t,t1) BS (t1,t2) C (2, ') .
+A5 (t,t1) B* (t1,t2) C* (t2,1)]

=[dt [ dta AT (t,1,) -

BT (t1,t5) C™(@) (t9,1') .

D@ (¢, 1))

C= (t,t") = AS (t, V') BS (t,t').
Cr@) (¢, 1) =

+A"@ (¢, ') B< ()

A< (t,t') B"@ (¢, 1))

+A"@) (. ¢) B @ (¢, 1)
=40 (£t Ft)-

(A= (t,t') B7 (t,¢') — A= (t,¥') B~ (¢, )]

D (r,7y=A(r,7)B(7',7)

D= (t,t')= AS (t,t') BS (,t).

D@ (t,1') = A= (t,¢) B0 (¢, 1)

+A"@ (¢, ') BS (¢, t)

2.2 The Single Molecular Transistor

Here we begin with a description of the system of interest, that is, the single-molecule
transistor. The experimental setup of this vibrating single-molecule transistor is shown in

Fig. 15. Here the spin degree of freedom and the influence of Coulomb interaction are

omitted. The model Hamiltonian of the C60 and the metal wires reads

— +
Hleads - Z €kallnCka
ko
H = dtd
dot(c60) €d ,
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Figure 15: The experimental setup of a vibrating single-molecule transistor (C60). The dot
level is cotrolled by the gate voltage and the transport window is tuned by the bias voltage
in the terminal.

When the C60 molecule is connected to a gold wire, the van der Waals potential energy

appears. This potential energy may be described as the harmonic potential,

P(z) 1 2 2
th = —2m0+§mgw0m0
= wobth. (10)

We consider an electron-hole electric force will depart in the direction from the source to
C60. As the electron is added to the molecule, the hole in the wire then attracts the
electron in C60, forming a constant electric field and pulling C60 towards the source wire.

This behavior is described by
Hy = qFExod'd (11)
= A (bJr + b) dtd,\ = qF /\/2muwy.
It is worth noting that the electric field causes the original harmonic potential to shift xg,
but it does not change the harmonic potential much. In the second quantization picture,
Eq.(11) interprets an electron in the transport process, where A reflects the EVI coupling

strength. The system will emit (or absorb) a vibron at the same time. However, it only

emits vibrons at zero temperature.
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Basically, there are interactions among the QD system, the wire, and the vibrons. For
convenience, two of them are usually dealt with as one quasi-particle. In previous studies,
a quasi-particle polaron may result from the combination of vibron and QD. Here, we first
combine the vibron and the non-interacting wire, and then perform the EOM expansion on
the coupling of QD and the wire. In this case, the model is simplified as the coupling of
multi-channel leads and a QD system with simple energy levels. That is to say, the electrons

jump to the QD system from the chemical potentials and then to the wire.

2.3 The Current and the Spectral function
In this section, we derive the standard EVI current formula through the SMT.

2.3.1 Discrete Spectrum: The Anderson-Holstein Model

The electron transport between the leads and the central region is considered as shown in
Fig. 15. In our study only one level of the dot system is considered, and electrons vibrate at
a single frequency wg. The EVI system is studied theoretically through a non-perturbative
canonical transformation H = e“He ™ with S = (M/wg) dtd (b* — b) (the detailed deriva-

tion is shown in Appendix A). Under this unitary transformation, the Hamiltonian now

reads:
FT = Fcen + Flead + ﬁT?
ﬁcen =< (qu) dtd + wob+b, (12)
Hicqd = Z 5ka02—ackaa (13)
ko,a€L,R
Hi= Y Vi dX +he, (14)
ko,a€L,R
where
X =exp A (b" +b) (15)
wo ’

The operators d* (d) and CZQ (ck,, ) represent the creation (annihilation) operators of electron
in the QD (or SMT) and the « lead, respectively. The operator b* (b) is the creation

annihilation) operator of the vibron. g9 = ¢g — A 1s the dot level energy controlle
( ihilation) op f the vib (Vg) A is the dot level gy lled
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by the gate voltage, with the canonical energy shift A = X\?/wg. The coupling strength of
EVI is denoted by A and the tunneling matrix element between the QD (or SMT) and the
a lead is defined as Vj,. Here ¢y, is the energy of the electron in « lead, which remains

unchanged because of the absence of vibron field in the « lead.

2.3.2 The Jauho’s Current Formula (from the Perspective of the Quantum
Dot)

The current from the left lead to the central region can be defined[11] as

2e
JL (t) = % Re kZL Vkdeika (t, t,) |t’—>t (16)
7046

where the Green’s function G, (t,t') = i(cf, (t') X (t')d(t)) together with its conjugate
property are applied above. Note that the electron-hole interaction between the metal leads
and the dot is mutual, both terminals are vibrating from the perspective of the quantum

dot, hence C;a and X evolves at the same time. Ggq (7,7’) can be solved by

Gd,ka (7‘, 7'/) 3 /dtlédd (t, t1> Vk*a,dgk‘a (tl, t/) (17)

C

Performing the continuation rules[11] on G ka (7, 7") and substituting the resulting Gy, (¢,t')

into Eq.(16), we obtain:

Jp, (t) = —2—; Im [/too At Gy (8, 11) S5, (t1,1)
+ Gy (t1) They (11,1)] (18)

The main task is to calculate the self-energy ¥,.

2.3.3 Self-Energy

In frequency space, the appliance of the LT on the self-consistent Dyson equation of the elec-

tron Green’s function in the QD (or SMT)[14][16] leads to G73} (w) = [w—%0 — 7% (w)] -

where the contour-ordered self-energy 37 induced by the tunneling process reads Y1 (w) =

FT (w) X7 (w), they carry all the same time information on the lead electrons and vibrons.
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Figure 16: The diagrammatic representation of the perturbative expansion of the electron
Green’s function, where the electron-phonon interaction is depicted by the wave curve; the
solid line denotes for the fermion line.

In Eq.(18), the partial part of the tunneling self-energy in the current formula can be

found as
X (tt) = =0 (—t+t) >, [Xa. (61) =25, (61)]. (19)

Here

Sam = FS R, Veal g™ F (1= 1) = (X (1) X (1) (20)

Q

and F*=<(t —t') = (X (t) Xt (t')) are the greater and lesser vibron Green’s functions, and

gk<05>) (t — ') is the lesser (greater) Green’s function for the free electron in the « lead. The

Fourier transform of the self-energies in Eq.(19) lead to:

ViV,
7,a ZE : ka ' kQ <
a,n (W) - |:pnw + nwo o €ka :l: 25 [e% (Ska)
«

*
Vka Vka >

"W nwy — Epg £i0°

* >
257” (W) = Z VkavkapZan;a (w + nwo)
ka

= Fi quznf‘a (w + nwo) £2 (w4 nwo) , (22)

(gk) ) (21)

+p—

where f5 (€xa) and f7 (€ga) are the electron and hole Fermi functions in the « lead. In
this paper, Ty (W) = 273, [Vial? 0 (W — €ra) represents the rate of a particle leaving
the quantum dot system without the EVI. The factor p, denotes the weighting func-
tion of the interactions between the electron and n vibrons, which is found as p, =
6_29(N0+%)e”w0/2kBTIn (Qg\/m> [16], where Ny and I,, are the Bose function and

the modified Bessel function.

21



Following Eq.(18), we obtain the EVI current formula, where the first term in the RHS
of Eq.(18) explains the in-tunneling current .J;,,, where electrons entering the single-energy-
level quantum dot system through the non-interacting wire with multi-channel. The second
term in the RHS in Eq.(18) describes the out-tunneling current Jo,:, where the electron
in the central region tunnels out of the central region via two channels, the transmission

scheme is depicted in Fig.17.

x e
Ak

Figure 17: Jauho’s transport picture. Reprinted with from Ref.[11]

Note here that the source wire emits vibrons when electrons transfer from one end to
the other in a non-equilibrium system at low temperature. In addition, the quantum dot
will couple with the multi-channel leads and forms step bandwidth (decay), which decides
not only the lifetime of electron in the system but also the probability distribution. We
have so far derived the diagrammatic formula and the Jauho’s transport formula. Now we

shall analyze the spectral function.

2.3.4 The Spectra Function A, (w)

From the definition of the spectral function Ag (w) = —2Im égd (w), we obtain:

S pnlafs (w+ nwo) + p_nlafy (w+ nwo)]

Adw) == (w—720)2+ [W (w) /2] ’ (23)

where €9 = £ (V) — ReX’, (w) denotes the renormalized level position, and W (w) =

—2Im ¥, (w) represents the life-time broadening (bandwidth) of the dot state. A compari-

son with the conventional JWM’s formula in Ref.[14] assures that the life-time broadening
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of a dot state W (w) in Eq.(23) equals to the summation of out-tunneling rates between
the leads and the system, i.e. Eq.(21); Eq.(18) is therefore self-consistent and meaning-
ful. Note that éjd (w) in Eq.(18) can be quickly solved via using the Keldysh equation
C:’;d = ]ng]2 Y% (w)[11]. The remaining goal is to decide the retarded self-energy Y7 (w).
To this end, ), is replaced by [dwp(w), and the Lorentz density of states with band-
width E¢ at the chemical potential pu, is assumed[19][20]. With this auxiliary function,
the integral becomes convergent, and the retarded self-energy of the electron in QD (SMT)

reads

ReXf () = 3 (o — po) L0 10) [m < e )

— 2rkgT
1 wHnwo— gy
Re¢<2+z kT )} , (24)
1
Im ¥ (w) = o nz; [ nLa (W4 nwo) fis (w + nwp)
+ p—nla (W + nwo) f5 (w + nwo)] . (25)

¥ (2) is the digamma function with a complex argument. It can be seen from Eq.(24)
that besides the energy shift A due to the canonical transformation, another energy shift
Re X7 (w) is obtained from the vibron correlation function. In addition to the renormaliza-
tion shift, we find that the life-time broadening of Eq.(25) from the LT is more complicated
than that from the MFT[18], which is a constant. This is because, in non-equilibrium,
the LT preserves the properties of electrons and holes in the leads via the vibron Green’s

functions.

2.3.5 The Physical Meaning of the Function G< (w)

Basically, the lesser Green’s function is associated with the particle density[11]. This
function can be solved via the continuous condition for the steady state, i.e. <N > =
<8C~¥< /(9t> = 0 (see appendix A) or solved with the Keldysh equation, i.e. é;d (w) =
C:’Zld (W) X5 (w) égd (w) (The relation of the particle conservation together with the Keldysh

equation for G< (w) are proven in Appendix A). Consequently, the lesser/greater Green
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function is found as

Fiy [p;nI‘a (w4 nwo) f5 (w + nwo)] - Ag (W)

Caa @) = > [Pnla (w +7nw0) f& (w+nwo) + p—nl'a (w + nwo) f& (w4 nwo)] (26)

n,a

where Ay (w) is defined in Eq.(23) and the stationary probability for an empty state and an

occupied state can be found as

dw ~-

Pst={d(t)d" (), ,=— %Gdd (w), (27)
Pt = (d* (¢) d(t)), , = / %é;d (). (28)

Comparing the expression of P!

o(1) With D(9) in Ref.[19], we see that the life-time broad-

ening of the system is identical in all treatments there except that an EVI-assisted out-
tunneling rate is maintained throughout our calculation. Nonetheless, owing to the relation
of Im (N?jd —Im é;d = Ay (w), the normalization B§ + P}t = i g—“;gd (w) =1 is guaranteed

in our calculation.
2.3.6 The Landauer-Biittiker Formula

The Landauer-Biittiker formula[23][24] can be used to describe the electron tunneling from
one lead to another, and may be derived through the Green’s function[11]: Using the
identical relations of G" —G% = G~ — G< and ¥" — £ = > — %< on Eq.(18), an alternative
expression of current is acquired as:

Jor = %/Z_: ) [@3 (w) £5 (w +nwo) £2 (w — n'wo)

n,n’

T (@) £ (w = mwo) £ (w+n'wo) | (29)

where the tunneling function fﬁg is defined as

I (w + nwo) I'* (w — n'wo) ~
7 ) CAg(w), (30)

T9% (w) = Papu

Eq.(29) and Eq.(30) are the central formulas for studying the joint effect due to the vibron-

assisted tunneling rate. Moreover, Eq.(29) provides a clearer picture of EVI transport
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than Eq.(18) does, that is, the electron departs from the n-th (electron) state in the a-lead
(source), tunnels through the dot, and arrives at the n’-th (hole) state in the a-lead (drain).
In general, the electron states are located below the chemical potential and the hole states
above. Fig. 18(a) shows a graphical illustration for this description for a low-lying level
position g = —wq (left), medium level €y = 0 (central), and higher level £y = wy (right),
where the bias is at eV}, = 2wg, and the red arrows indicate the significant channels for
particles passing through the dot.

From Eq.(30), we see that 79 is expressed in terms of the tunneling function, tunneling
rates, and weight factors on both terminals p,, and p,+ due to the EVI effect. At zero temper-
ature, the weight factor p,, is zero for n < 0[18], the Fermi function goes towards a step func-
tion, and the transport window for each channel, i.e. 6 (u, —w — nwg) 0 (w — n'wo — pg), in
Eq.(29) is given by ef _, — 5§,n' =, — fg — (n+n')wo. At low temperature, the particle
transport practices are within p; and pp. However, at high temperature, p_, is non-
zero, and hence the vibron-mediated states outside the transport window also participate.
Therefore, the current in this field is probable.[39]

An analogous transport scheme[12],[14],[11],[9],[13],[18],[28],[38], has been presented in
previous publications although the background physics is different. For example, in Refs.
[9] and [18] the n-th vibron-mediated state exists in the QD (or SMT) because the vibron
field is treated as being involved in the evolution of the dot, so the vibron sidebands come
from the SMT electrons and holes. Note that the quantized number is labeled from the
energy of the dot, not from the chemical potential of the leads. Furthermore, Dong et
al.[28]performed a mapping technique to reach a Landauer-Biittiker formula similar to the
one in Eq.(29). However, since the vibron correlation is not involved in the tunneling self-
energy, this technique results in a bias-independent bandwidth in the tunneling function,
no matter what approximation is adopted. It is worth mentioning that the results obtained
by Braig and Flensberg[38] through the RE are similar to those of ours. In fact, the report
by Braig and Flensberg was to obtain the current through the RE method, which only

contained the lowest-order term, i.e., the sequential tunneling current.
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2.4 The Bias-dependent Tunneling Rate and the Differential
Conductance

In this section, we start to numerically study the stationary properties of the spectral func-
tion, current and the its conductance through a single molecule system based on Eq.(23),
Eq.(29) and Eq.(30). For simplicity, here and in the following we ignore the energy depen-

dence of I'* (w) (wide band approximation).
2.4.1 The Bias-dependent Tunneling Rate

First we examine the spectral function. According to Eq.(23) one could anticipate that
gd (w) approximately behaves as a Lorentzian function with maximum value at £y and the
lifetime broadening is given by W (w) (see Fig.19(a)).

Usually this broadening function is equivalent to a tunneling rate from Fermi golden
rule[25] so that we obtain I'y,; = W (w). This identical relation can also be verified in
Eq.(21). When increasing the bias voltage, the amplitude of spectral function is suppressed
as shown in Fig.19(a), which means that in the presence of EVI, the tunneling rate is strongly
associated with an increased transport window. Since the quantum fluctuation mainly
takes place near the surface of continuum states, one focuses on the energy change near the
chemical potential. Fig.19(b) depicts the total transmission rate of the particle in the system
as a function of the bias voltage with a LT method (blue curve) and with a MFA method
(red line), respectively.[18] We find that the out-tunneling rate I'oy: (w = €V}/2) shows a
staircase curve along the increase of eV, whereas the MFA method produces a flat line,
irrelevant to the bias voltage. This is an important difference between the LT and the
MFA. In LT results, I',,: increases abruptly in the neighborhood of eV}, = nwg. The abrupt
increment results from the opening an additional channel for particle transport through the
system when the bias voltage exceeds the required tunneling energy. The plateau maintains
till the nth channel fully enters the transport window, where the plateau is generated
around eV}, = (n+ 1)wp/2. Note that the result of LT calculation is in agreement with
that obtained by the MFA as one sets e|V4| < wp. In this restriction the tunneling rate

is reduced to I'yyr = po (I‘L + I‘R), and spectral function together with the current formula
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are given by

Ao (@) = po (T4 +T%) / {(w %0 + [po (T + T%) /2] }, (31)
and
e w LTR
D=4 [ s @) [£5 () - 5 ). (32)

This is consistent with earlier study with MFA theory because only the channel with n — 0

in the lead is allowed for particle transport through the system.

2.4.2 The Spectral Function A" (w)

In addition to comparing the tunneling rate, we now inspect the difference between spectrum
function with different approaches. For comparison, one needs to replace I‘,Ofg (w4 nwo) —
2> (w) in the integrand of Eq.(49) and redefine A% (w) = S°°° _ p. Ay (w — nw) for
the system spectral function. In this way, we have
a non-interacting lead and an interacting system. This system could now be regarded as an
EVI quasi-particle (a spectrum function with multiple satellite peaks).

Fig.20 depicts the spectral function for two different renormalized level position (2o =
+4wg) with eV}, = 0.04wg. We see that no peaks appear in the left side of the level position
and the LT spectral function is always in the form of skewed distribution (see Fig.20(a))

with a tail in the large energy rather than a mirror symmetry function (see Fig.20(b)) in

MFA theory, i.e,
A(w =%y — Aw,gy = 4wy, eVp) = A(w =8y + Aw, gg = —4wyp, —€eV})

.[18] Due to the fact that the spectral function in Eq.(23) satisfies the a identical mirror

(tot) can be

symmetry relation as MFA, the skewed distribution of the spectral function A
traced back to the fact that no available vibron states for absorption before tunneling at low
temperature.[28] Note that in Fig.20(a) the variation of g only modulates the magnitude
of spectrum function but without changing its skewness. This is different from the MFA

spectra in which an electron or hole picture can be readily achieved by shifting the level

position of the system. Note that the current formula can be expressed in terms of the
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product of A(t"t)( ) and a bare tunneling rate with weight p,,, which is analogy to the

expression in earlier researches.[9][18][21]

2.4.3 Differential Conductance

Taking derivative of Eq.(29) with respect to the bias voltage, the differential conductances

can be expressed as:

G = Glead + Gdota (33)

Glead / Taa ) an’ (w) ’ (34)
G = & / ik e 0 @, (35)

Jon (W) = £ (w+ nwo) fg (w—n'wo) —
fa (w+nwo) f7 (w—n'wo), (36)
where the wide-bad limit is considered, and Gj..q and Ggo respectively reflect the conduc-
tance in the leads and in the QD (or SMT) system. J, (w) is the current density, f,, (w)

determines the effective transport window and F,,,» (w) (= 0 fp (w) /OV}) denotes a thermal

broadening function in the leads[27],

I7 (nw — n'wo)

an’ (w) - B +
nezil 8 cosh? [ (w + nnwo — uL)]
f; (77“ B TLOJQ) (37)
8 cosh? { (w—nn'wy — ,LLR)}
For eV, > 0, F,,s (w) shows multiple peaks at w = 657_,1 (= p, —nwp) and w =

sgn (= pg + nwo) ,where n and n’ = 0,1,2 and so on. Substituting Eq.(37) back into

Eq.(34), it is found that Gje.q reaches its maximum when the dot level (o (V;)) matches
those peaks. Therefore, when drawing Gieqq vs. Vy, the satellite peaks of differential con-

ductance are at Vy = el and ef

a,n’

symmetrically distributed with respect to V,; = 0.
Figure 2(A) depicts the vibron-assisted tunneling process under a new transport scheme

for a low-lying level position €9 = —wyq (left), medium level €y = 0 (central), and higher level
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€0 = wo (right), where the bias is at eV}, = 2wq, and the red arrows indicate the significant
channels for particles passing through the dot. The differential conductance for each path
is plotted in Fig. 2(B), where the quantum pair (n,n’) means that the particle transports
from the nth vibron-mediated state in the « lead to the n'th vibron-mediated state in the
@ lead. An analogous transport scheme has been presented in previous publications of the
rate equation method[12][13], although the background physics is different. For example,
the nth vibron-mediated state exists in the QD (or SMT) because the vibron field is treated
to involve in the evolution of the dot. The quantized number is labeled from the energy
of the dot, not from the chemical potential of the leads. Furthermore, Dong et al.[28]
performed a mapping technique to reach the Landauer-Biittiker formula similar to the one
in Eq.(29). However, since the vibron correlation is not involved in the tunneling self-energy,
this technique results in a bias-independent bandwidth in the tunneling function, no matter

what approximation is adopted.
2.4.4 The Influence of the EVI Energy Shift

According to Eq.(35), the conductivity probed in the dot can be further divided into two

parts,

s e [ dw
Gy = i / 5 Ja (W) Ky (W), (38)

where G, and G&Ot respectively characterize the conductance induced by the energy shift

and the bandwidth of the dot level, and K, (w) and K (w) are solved as

ReGT(W)'[ > (pn—pon) T (=1)ke

K, (w) =— n,a€L,R
B Imay (% + z% (w+ nwp — ,ua))] +
K (w) = Aq (w) K; (W), (40)
(pn — pn) T (—1)°0

K (w) = oW (w) /OV;, = 3 .
n.oel.r 16 cosh? {g (w4 nwo — ,ua)}

A comparison between G, and Gldot in Fig.21 gives that Gfiot is always negative while G,

is positive at the quantized levels of vibron-mediated states (eV = nwp). In addition, G2,
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also exhibits an energy-shift dependence near the quantized level, as depicted in the inset
of Fig.21. This is due to the consideration of the EVI-renormalized energy shift during
particle transport. Compared with G, in Fig.22, the energy-shift dependence becomes
more apparent (dot line) as the electron-electron coupling is increased (I'y, = I'g = 0.6wy),
whereas it is reduced when increasing the intensity of the EVI. This is because of the

existence of e79 in the weighting factor p,,.
2.4.5 The Mean-field Approximation

In this section we investigate an experimentally observable feature induced by the vibron-
assisted tunneling rate, the conductance gap[l] (cg). Compared to Fig.23(a), Fig.23(b)
suggests that a gap always exists between the edge of conductance (chemical potential,
n = 0) and the first vibron-mediated state (n = 1); however, no conductance gap appears
in the MFT calculation. In the MFT, the current can be understood as an effective par-
ticle propagating in an average field between the multi-channel leads, where the spectral
function of the dressed electron in the dot is given by Ay (w) = I'/[(w —0)? + '] with
I = (I +T'r) (X)? /2, which is independent of the bias, analogous to the model without
EVI. Taking Ay (w) into Eq.(33) to Eq.(36), we obtain G = Gjeeq, and hence the con-
ductance peak represents the vacant vibron-mediated states in the wire. In general, the
bandwidth is the decay rate, i.e., the out-tunneling rate. At dynamic equilibrium, the total
out-tunneling rate is supposed to balance the sum of the in-tunneling rate so as to satisfy
the continuity rule. Nevertheless, in the MFT the in-tunneling rate is bias-related while the
out-tunneling rate is a constant, which signifies that some information, such as electrical
properties, will be lost during the transport.

Fig.24(d) gives the profile of Gjeqq and Ggor vs. eVy at eV, = 2.5wg. We can see that
Ggot presents a similar peak-structure as Gjeqq, but with negative amplitude. In order to

analyze those peaks, we can perform the weak-coupling limit[14].

2.4.6 The Weak Electron—Electron Coupling Limit

30



This assumption means that the lead-dot coupling is much smaller than the electron-vibron
coupling. In other words, the electron life-time is far larger than the vibron relaxation time.
The occupied state of vibron will not respond to the change of dot or lead. So the evolution
of vibron can be described by the zero-order vibron correlation. That is to say, the DOS
of vibron exhibits many delta peaks, reflecting the numbers of vibrons absorbed or emitted
at various levels. But this is not the practical case for the time dimension of electron
relaxation could be close to that of vibron. The effects of electrons on vibrons is more than
the delta-peak distribution of energy level. We must consider the level-broadening effect
on the vibron energy levels. This non-equilibrium process destroy the original statistical
distribution and new behavior is generated, such as the vibron blockade, which has been a
very important topic in recent years.

Taking the weak coupling, that is, the spectral function in Eq.(23) taking the form of
Aq(w) = 276 (w — o), on Eq.(34), Eq.(35) and Eq.(29), which gives

e ToT®

= —— 7 7. n n/ ! 12 € 5 41

Glead nW (EO) nET;p D fnn (50) ( )

G = 37 @)W (). (42)
. erer® }

J (Eo) = TG (EO) ;pnpn’fnn’ (50) (43)

G, does not exist since Re X7, (w) approaches zero at small I'. This is a good approximation
because Eq.(41), Eq.(42) and Eq.(43) satisfies the definition of G = 0.J (2y) /0V4. Moreover,
when rewriting p_, = p,e™?"° in W (¢) and f,, (Z0), and performing some algebra, we
readily reach the same current expression for a single resonant model as reported by Braig
and Flensberg[38]. This is because the appliance of the RE, a method used to describe the
quantum transport as the correlations in the system is much shorter than electron transfer

time, is equivalent to the expression of Ay (w) = 276 (w — o) in NEGF[40][21].
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2.4.7 The Origin of the Conductance Gap

Here, we investigate the source of conductance gap. At zero temperature, the summation

of Eq.(41) and Eq.(42) leads to:

G = Gdot‘l'Glead (44)

e TLTRe—29 gn+n’ , 3 . _ , _
= R o) O gt |Wr=0(50) e (B0) 4 Wrmo (B0) £ B0)]

n,n’

where Wr—_g and f,,s consist of multiple step functions, and W}:o (50) and f,., (Zo) com-
prise delta functions. In the MET, Wr—q (Zo) = I', which is a constant such that Wi-_, (89) =
0 and G = Gjeqq. Consequently, Eq.(44) is directly proportional to the thermal broadening
function f] ,(%0), and results in a multiple peak structure, as depicted in Fig.24(c). At
eVy/wo = 0.75, three available channels (0,0), (0,1), and (0,2) contribute to the tunneling
current (see the left inset of Fig.24(c)). However, for the LT method, W._, (Zo) is non-zero
at eV, /wo = 0.75. Taking those quantum pair into Eq.(44), it reveals that Ggo¢ and Gieqd
are are of the same order and cancel each other out (see Fig.24(d)), suggesting that the
existence of vibron-assisted tunneling rate would greatly scale down the current and leads
to a conductance gap in this field. The current-voltage characteristics in the right inset
of Fig.24(d) reflect this phenomenon. From the viewpoint of physics, this means that an
virtual state is generated in this energy field. It is the first time that such the conductivity

gap is examined theoretically in the quantum dot system.

2.4.8 The Rate Equation (the Master Equation)

In this case, the behavior of a electron was described by the semi-classical sequential tun-
neling when the life-time for the electron to stay in the system is much bigger than the
tunneling time. Then the equation of motion for the system affected by surroundings can
be described by the RE. Referring to the work done by S. Brag and K. Flensberg[38], the

occupancy of the dot are defined by:the stationary probability for an empty state and an
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occupied state can be found as

B = (A0 d" (1)), = = [ 3G @),

Owing to the fact that

and J, (t) is solved as

2e t ~
Jr, (t) :—Elm |:/ dthgd (t,tl)E;L (tl,t)

+ G (1) Sher, (01,1)]
2e t ~> <
~ G (100) 57 (11,1)]

Substituting Eq.(49) into Eq.(47), we readily obtain the RE given by:

0 dw ~
= U [/ G5, (w an (w + nwo)

Zp WIS (w+nwe)| =0,

9 st
il = Gdd Zp WL (w + nw)
— G5y (@)D palZ (w+nwo) | =0,

with

Ff (W) =T4 (w+ nwo) ff (w + nwo)

(48)

(49)

(50)

(51)

(52)

We can see that no corresponding P§! and P;? in the RHS of Eq.(50) and Eq.(51). In order

to solve this problem, we consider a special case that a particle’s relaxation time is much

longer than its correlation time, as a consequence, the spectral function of the quantum dot

reads

Ag~ 21 (w—gq).
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and the kinetics becomes semi-classical (sequential tunneling). The corresponding occu-

pancy density is therefore given by

<

G5, (w) — £2mid (w — eq) Pily) (53)
Taking Eq.(53) back into Eq.(50) and Eq.(51), we obtain

=Y naP—nl'y (ea+nwo) 3, Pl (4 + nwo) rg
YonaP—nl's (€a+nwo) =30, Iy (€a + nwo) Pyt

forming the well-known Rate equation. Here the occupancfofO) can be solved with

Z ijnré (5d + nwo)
n,o

Pst — .
10) = S [pTs (@ + 1000) + pnl% (@ + 10)] (55)
In conclusion, a generalized RE can be recovered from the JWM’s formula. However, if one

wanted to acquire P$!

(o) from G<> (w), it is necessary to let Aq(w) to be a delta function.

On the other hand, electrons have a great period of transport time in the system, far more
than the time when they pass through the barrier.

To sum up, we can understand that NEGF reflects the transition rate and relaxation
rate of systems, but it has limits in calculating EPI current. During the last decade, many
theoretical works have studied the EPI current with the NEGF method. However, some of
their results disagree with experiments. For example, at zero temperature, they acquired
the phonon side-band conductance in the Coulomb blockade region. It results from the EVI
correlation being decomposed using high-temperature approximation. As another example,
a gap exists between the chemical potential and the first phonon excited state. The band-
width of conductance will blur as the bias is increased. Although Chen et.al proposed MFT
theory to fix the conductance at low temperature, the second issue remains unsolved. Rate
equation clearly illustrates the changes in systems, it can only apply for weak interaction
and sequential tunneling. The bandwidth of conductance reflects the thermal information
of the wire for the resonant tunneling only takes place near the chemical potential. It’s
insufficient to describe the change of the quantum system, like the blurred behavior of the

conductance at large bias area. To sum up, the NEGF with the LT is the most well-rounded
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approach to tackle nonequilibrium problems, especially the nonequilibrium mechanism is
determined by the bias. Besides the above-mentioned advantages as mentioned in the RE,
the NEGF further shows the renormalization of energy levels. This result is coincident with

experiments as well.
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Figure 18: (a) A schematic description of the transport channels and tunneling coefficient
at different gate voltages. Here e represents the electron state (labeled from the chemical
potentail of the left lead uj) and o for the hole state (from the chemical potential of the
right lead pp). The red arrow denotes the transport path. (b) The differential conductance
for each channel, where the quantum pair (n,n’) means that the particle transports from
the nth phonon-mediated state in the « lead (electron state @) to the n’th phonon-mediated
state in the @ lead (hole state o). The parameters of the system are I';, = I'r = 0.2wy,
kT = 0.05wg, A = 1.5wq, py = —pp = wo and the Lorentz cut-off is Ec = 100 in the
integral calculation[20].
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Figure 19: (a) The out-tunneling rate I'S,; (w = V}/2) vs. bias voltage. (b) The maps of
differential conductance as a function of gate and bias voltage is calculated with MFA’s
approach and (c) is worked with Langreth theorem.
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Figure 20: (a) The spectral function of the strong EPI system v.s. energy w for different
energy levels for €g. The chemical potential in the leads are fixed at u; = —pup = 0.1wp.
The parameters used are I'y, = I'g = 0.4wq, kT = 0.05wg, A = 1.6wyg.
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Figure 21: Differential conductance in the leads Gjeqq (blue line) and in the dot Glséla g (red
lines), where G%,, (solid line) is induced by the EPI renormalization), and G% , (dot line)

is caused by the level broadening .

Figure 22: The conductance G , becomes sibnificant at strong electron-electron coupling
(red dot line, I', = I'p = 0.6wp) while it is highly supressed at strong electron-phonon

coupling (blue line, A\ = 2wy).
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Figure 23: The conductance map vs. the gate voltage V, and the bias voltage V}, where
(a) is solved with the MFT method and (b) with the LT method. In figure (b), a gap
always exists between the edge of conductance (chemical potential, n = 0) and the first

phonon-mediated state (n = 1).
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Figure 24: Note that the parameters are the same in Fig. 2 and Fig. 3. The differnetial
conductance as a fnction of the gate voltage is plotted at eV, = 2.5wqg. Left inset: The
schematic description of particle transport through the dot at eV, = 0.75wg. There exist
three channels for particle transport, (0,0), (0,1), and (0,2). Right inset: The MFT-PAT

current.
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CHAPTER II1

THE LOW-FREQUENCY NOISE

3.1 FEzxperimental Motivation and Recent Progress

The electrical current through a device always fluctuates around the average value due
to the discreteness of the charge carriers, as shown in Fig. 25. As a matter of fact, these
deviation contains the system’s correlation function. One of the ways to read the correlation
is to calculate the current-current correlation function via the Fourier transform.

The average current (I) is defined by (I) = limp 7 [ T{ﬁ /2 dtI (t) ,where I is the current
operator and T is the time interval. I (¢) and (I) form an identical relation I (¢t) = (I)+41 (¢),

where 01 denotes the deviation current caused by the transfer particle.

A

1(0)

<I>

Figure 25: Current flucuation around the average current (I). Reprinted from Ref.

In 1918, Walter Schottky took advantage of a vacuum tube and discovered the shot noise.
Since nothing existed in the vacuum tube, he deduced the nose relation of S = 2¢ (I) con-
sists, with ¢ denoting the charge. This is the traditional shot noise, S = Sp. Nonetheless,
not all carriers carry single charge, for example, the free carriers in superconductor are with
two charges (cooper-pair), and in quantum Hall effect, the carrier possesses one third of an

electron charge. The unit charge cannot be probed via the average current, but it can be
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Figure 26: The shot noise normalized by 2e as a function of the current. The inset de-

picts the experimental setup with the STM tip and a single tunneling barrier to Au-metal.
Reprinted from Ref.[41]

obtained from the shot noise.

In contrast to the equilibrium thermal noise, shot noise dominates the current corre-
lation in large bias condition, besides, shot noise provides additional information about
transport properties, not available in conventional conductance, such as the loss of phase
coherence and the Pauli exclusion principals in mesoscopic system. Fig.26 depicts the noise
as a function of the current (or bias). The solid line shows the theoretical prediction and
the dot reveals for the experimental data. It can be seen that (a) at high temperature
(T =300K), and the thermal noise can be described by the well-known Johnson-Nyquist
formula.(b) at low temperature, the shot noise governs the current correlation, where the
correlation comes from the interaction among carriers, e.g. Pauli exclusion principle or the
Coulomb interaction. However, since Birk et al.[41] apply Au-metal in the central region,
the transfer process is completely random. There is no correlation inside, and the shot noise

is directly proportional to the average current (or the bias). Sometimes it is useful to define
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a dimensionless quantity, as known as Fano factor, F' = S (w — 0) /Sp, to probe the devi-
ation from the uncorrelated Poisson noise, with Sp = 2e (I). When F = 1, it suggests that
the motion of transporting electron is completely random (uncorrelated). While F' < 1, it
has correlation inside.

In 2006, E. Onac et al.[30] took advantage of a suspended carbon nanotube (CNT) and
s SIS to measure a vibrating quantum dot for the observation of strong electron-vibron
coupling effects on the current, as depicted in Fig. 27. With current and noise, they

calculated the Fano factor of the CNT-QD.

Figure 27: (a) The the dashed rectangle shows the Fano factor inside transport bias window.
The dotted rectangle is for the Coulomb blockade. (b) Fano factor versus the applied bias
at different gate voltages. Reprinted from Ref.[30].

Fig. 27(b) presents the Fano factor vs.V; at different gate voltages V;. When the gate
voltage is located within the range of the chemical potential (transport bias window), the
transport is dominated by the sequential tunneling, meanwhile, F' is less than one (sub-
Poissonian). At large bias, the interference of the channels becomes significant, and electron
motion becomes random, as a consequence, F' approaches unity. In the Coulomb blockage
region, the sequential tunneling is suppressed, and the higher-order tunneling process, e.g.
the elastic co-tunneling and inelastic co-tunneling become active. Note that the elastic
co-tunneling does not change the ground state of the dot system, thus the electron motion

is uncorrleated, so F' = 1. However, inelastic co-tunneling yields the change of states, two
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channels takes part in quantum transport, and thus the Fano factor is beyond unity. At
F =1, the electron relaxation is from high energy level to a lower one and then leaves
the system. As for F > 1, the electrons directly depart from high levels as a bundle.
Meanwhile, the relaxation among levels remains, and induces the sequential tunneling.
After the occurrence of the sequential tunneling, the Fano factor starts to be less than

three..

3.2 Motivation for Noise Calculation

In 2000, Q. F. Sun and J. Wang[29] studied the shot noise of a quantum dot in the presence
of a microwave field. They concluded the following results: First, At zero temperature,
the shot noise noise can be measured even the current is zero, as illustrated in Fig. 28(b).
They deduced the zero-bias noise is supplied by the assistance of the photons. Second,
the zero-bias differential noise as a function of the gate voltage shows an anti-symmetric
structure and exhibits satellite PSD at multiple energy of the photon frequency, as shown in
Fig. 28(a). In practice, the above description conflicts with the experimental observations,
as shown in Fig. [5], where a suspended carbon nanotube quantum dot (CNT-QD) is
considered. At T = 20mK, only emission of photons are allowed, and conductance peaks is
forbidden to take place within the Coulomb blockade, as shown in Fig. 29(b). Besides, at
Vi, = 0, the current is very weak, and the noise shall approach zero. Therefore, to investigate
the differences between theoretical and experimental methods becomes the key goal of this

research.

3.3 Theoretical Calculation of Zero-Frequency Noise

To our knowledge, there are two theoretical formulations that are used to explore the
quantum transport in nanoscale systems, i.e. Rate equation method (RE) and the non-
equilibrium Keldysh Green’s function (NEGF). In contrast to the weak perturbation method
for the electron-electron coupling in Rate equation, the NEGF provides a general physical

condition for particle transport through a non-equilibrium system, valid from the small

43



o
a

008

]
b

o
=3

P

-

o
3

{ark. wnity) dg,/avy (arb. units)
Pl
&

i
d

had
o
@

d<l>/dY

fad
o
&

£, (arb. units)

Figure 28: The plot of the differential conductance and differential noise vs. V; for an
photon-assisted tunneling model. Reprinted from Ref.[29]

bias to the large bias in the leads, where the influence of EVI is explicitly considered when
applying the small polaron canonical transformation on the vibrating quantum dot system.
The relevant Green’s function can be solved via the Dyson equation and the Langreth
rule. Among the NEGF approach, there are two different physical picture that are used
to interpret the vibron-assisted process. Firstly, a concept of effective one-body tunneling
scheme (with no fluctuations inside) is imposed to interpret the particle scattering in the
QD system, i.e. replacing the electron-vibron interaction to a an average field. In practice,
the relevant transport quantities such as current and the differential noise were discussed
and reported by Chen et al[18], while the current correlation is not yet exposed before. In
this work, we employ the mean-field approach to examine the zero-frequency noise, and
then compare with an exact analytical solution to that solved by the analytic continuation.
Basically, the EVI not only breaks the symmetry properties of electrons and holes in the
quantum dot system, but also yields a significant staircase phenomenon on the tunneling
rate as well as on the bandwidth of a single state for the central system. The main difference
between the MFT approach and LT are: The EVI correlation is regarded as scalar, and
therefore the vibron correlation will not couple to the Fermi function of the leads, irrelevant

to the chemical potential difference. This resulting correlation gives the Oth quantized state
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Figure 29: The upper shows G = dI /dV}, vs. V; (gate volatge) and V4 (bias voltage, vertical
axis). The lower density plot reveals the differential noise dS/dV;. Reprinted from Ref.

of the LT method, proving that the LT treatment is beyond than previous researches of
this kind. Note that in this paper, we ignore higher order tunneling process from heating
of vibration or mutual influence within the sub-electronic and sub-vibronic subsystems,[22]
we focus only on the lowest order electron-vibron interaction. Besides we neglect the spin

degree of freedom and the influence of Coulomb interaction.
3.3.1 The JWM Transport Formula (from the perspective of the metal wire)

The current from the left lead to the central region can be defined by:

2e
JL (t) == % Re kZL Vk%dGika (tv t/) |t’—>t ) (56)
,o€

where the Green’s function G, (t,t) =i (¢, (") X (t)d (t)). The first-order expansion of

Dyson series on G rq gives

Gapa (1,7) = /dTlédd (7,71) F (1, 71) Vi gk (71,7) - (57)
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Figure 30: The vibrating quantum dot model. Here the equilibrium vibronic is coupled to
the QD system. Reprinted from Ref.[11]

Performing the continuation rules[11] on G kq (7, 7") and substituting the resulting Gy, (¢,t')

into Eq.(56), the steady current is written as:

2e t
1) ==t | [ Gt S (00

+ G(jd (t7 tl) iBgeL (tla t)] ) (58)
where 357 (£, t1) = Yoa |Vka|29k>0’l< (11,72), and Gfd (t,t1) are defined as:
G5, (t,t1) = F= (t,t) G5, (t,1)) (59)

where Ft> (t —t/) = (XT (') X (t)) and FT<(t —t') = (X (¢) X (¢')) denote the greater
and lesser vibron Green’s functions, and the lesser (greater) Green’s function for a free

<(>) (t

electron in the o lead is denoted by g, —t'). Moreover, the (self-consistent) Dyson

expansion of the electron Green’s function Gyq is found as:[14][16]
édd (7’, 7") = ég}} (T, 7'/) + /1 drq /2 dra
@é? (1,71) B7 (11, 72) Gaa (72,7 , (60)
where the contour-ordered self-energy reads

Xr(r1,72) = Y, |Vka|29ka(71772)<TCX+(7—1)X(7_2)>
kacL,R

= F (11— 79)Sp (11 — 72). (61)
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The self-energy contains all correlations about lead electrons and the vibrons. F'* (11 — 79) =

(T.X* (1) X (7)) is the vibron Green’s function and

51 (m1 = 72) = Ykacrn Vial Gra (71, 72) (62)

is the self-energy due to the electron coupling. The retarded (advanced) self-energy can be

easily found as

SP () = £ Vel 0 (£t F 1)

ko
FTT (=) gp, (=) = FT= (6 —1) g, (1))
=20 (£t F) (S5, (1) =25, (1)) (63)

The Fourier transform further gives the retarded and the lesser self-energies

TS (W) =) Ehs W), (64)
ViV
T — 3 ka ko < o
o ) %1: [p W+ nwo — ke + idfo‘ (Eka)
V¥ Via
- +p- — L ()|, (65)

"W+ nwy — € + 367

Ein (w) = Z Vk*avkap:anlfa (w + nwo)
ka

= Fi ijFnFa (w4 nwo) f2 (w4 nwo) , (66)

where f5” (ero) denotes the electron and the hole Fermi functions in the a lead, and
Lo (w) = 27 Y [Vial® 0 (w — €1a) shows the tunneling rate without EVI. Also, the Fourier
ko

transform of Eq.(59) leads to

G?d (w) = Zp;néfd (w4 nwp) . (67)

The weighting factor p,, which indicates the probability of the electron interacting with n

vibrons, is
pn = e (Norz)eren e T L (9 /Ny (No + 1)) (68)

where g = (A\/wo)?, Np is the Bose function, and I, is the modified Bessel function. As

to G2 (w) in Eq.(67), this propagator can be evaluated using the Keldysh formulation[14],
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that is,

Gy (w) = 55 )| Gra @) (69)
— :FinanF§ (w — nwo) ‘égd (w)‘2 ,
Gii (@) = [0 =20 — 25" (@)] 7, (70)

where I's (w) =T (w) f2 (w) and G5% is derived from Eq.(60).
Eq.(18) can be recast into the effective expression derived by Wingreen and Meir[15],
where the current is expressed as the product of the transport window and the tunneling

function. Performing some algebra on Eq.(18), we get:

Ju= " [ [f5 @)~ £ @] T ), ()
L w R w

T(0) = rroe g A W), (72)

AW =iTp, [é;d (w — nwo) — G (w + nwo)} , (73)

where T (w) (A (w)) denotes the EVI tunneling (spectral) function for the vibrating QD (or
SMT). Substituting the results of Eq.(69) back into Eq.(72), the EVI tunneling function
T (w) is written as

L (W) T8 (w
T = (i) e (gj)' (74)
s PnP T2 w4+ (n+n")wo] + prp—w TS [w+ (n 4+ n') w)

>

[w + nwy — o (w + nwo)]? + [W (w + nwo) /2]

)

where €9 = go (V) — Re X7, (w) denotes the renormalized level position of the quantum dot
state. W (w) = —2Im X}, (w) represents the life-time broadening (bandwidth).[19] it is worth

mentioning that 7" (w) possesses some symmetries such as T (w, Vy, Vp) = T (w, Vg, —V3), and
T(w=¢)—Aw, =V, V) =T (w=%0+ Aw, V,, V}) .

3.3.2 Zero-Frequency Noise formula

Now we proceed to calculate the noise. Generally, the noise is the current correlation

defined as So (,¢) = ({01n (t), 0Ly ()} = ({In (t), Lo (£)}) — 2J2, where 81, (t) =
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I, (t) — (I, (t)) together with the stationary fact of J, = (I, (t)) = (I (t')) are performed
for previous description. Substituting the current operator of Eq.(56) into the definition
of noise and taking the Fourier transform Sy (¢) = [ d(t — ') ect=t) g o (t —t') with
e — 0[22][14][26], we obtain the current correlation from the zero-frequency noise (see
Appendix E).

62
Saw (6= 0) = 2 [ {G7 ) TF (@) + G5 ()57 (@)

—25F (@) 27 (@) |Gl (@) = 1} (@) } (75)

In steady state, (J) = J;, = —Jg, and the summation of current in Eq.(18), Jr, + Jg =

0, ensures the relation Gfd (w) = iz’%%)T(w). Combining this relation and the

integrand in Eq.(58), Eq.(75) is rewritten as

5= [ {17 @) 7 @)+ 17 @) f7 @)] T ()
+ [ff @) = f7 @ T @[ -T @)} (76)

3.3.3 Thermal Noise and Shot Noise

The advantage of Eq.(76) is that all the EVI effects are kept in the dot system T (w),
not in the leads. Besides, the first term, which vanishes at zero temperature, means the
thermal noise Si,. As the bias voltage is smaller than kg7, i.e. the equilibrium system,
the second term (shot noise) disappears, and the equilibrium noise is Sy, = 4kg7 G,
aka the Johnson-Nyquist formula. Here, the differential conductance is defined as Gr =
2—22 [ dwFy, (w) T (w), and
Fy (w) = ! S sec h? (w——,ua>
4kpT & 2kpT

is referred to the thermal broadening function in the leads[27]. Considering the inverse case

of e|Vy| > kT, the second term of Eq.(76) dominates the non-equilibrium noise, which is
basically proportional to the average current and inversely proportional to 1 — 7" (w), saying

that the fluctuation of the electrical current due to the discreteness of the charge carriers
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in mesoscopic devices behaves the fluctuation of the occupation number. If the particles
randomly transmitted, i.e. uncorrected, then the shot noise is Sp = 2e (I), this is the shot
noise which was firstly proposed by Schottky and was observed in vacuum diodes.

At zero temperature, the Fermi functions goes forward the step functions, and the
weighting factors are given by p, = e 9¢"/n! for n =2 0 and p, = 0 for n < 0. Applying
these rules on Eq.(76) leads to

2¢2 [PL dw

s = 5 [ ETen-Te), ()
R
LR L g(n+n’)
T@ = frypre ! 2 Tt (78)
[0 [w — (n +n') wo — p,]
[w — nw — &0 (w — nwo)]? + W2_, (w— nwy) /4

D0 1, — w — (n+ ') o)
[w + nwg — Eo (w + nwo)]? + W2_, (w +nwo) /4 |

where the life-time broadening is given by
Wr—o(w)=¢e"9 Z %F"‘ [0 (w — nwo — pg) + 0 (e — w — o)), (79)
no

different from previous studies with a mean-field approximation. For simplicity, we ig-
nored the energy dependence of I'“ (wide-band approximation) here and in the following.
Furthermore, it can be checked that Eq.(76) also satisfies the symmetric relations such as
S Vg, Vo) =S (Vy,=Vp), and S (V,, Vp) = S (—V,, Vp). Next we study the stationary proper-
ties of the tunneling function, the current, and its zero-frequency noise according to Eq.(74),
Eq.(71) and Eq.(76).

In general, there exist two sources of correlations in the mesoscopic device: The first
is the Pauli principal for the non-interacting electrons, and the other is the EVI effect
stemming from the vibrons, both effects are revealed in Eq.(78). Before study this tunneling
coeflicient, first of all, it is convenient to assume that the energy level of the QD is aligned
with the chemical potential of leads. When applying an external bias to the leads, it is
expected that the chemical potential in the leads would asymmetrically deviate from the

level energy of the dot, that is, yir gy = E0(Vy = 0) £ eV}/2 and &y(V; = 0) = BLFlE  The
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Figure 31: The density plot of the tunneling function. The left (right) inset in the middle

ut

figure depicts the distribution of the left (rigth) out-tunneling rate ' OL( R)"

tunneling probabilities are depicted for high- and low-lying levels at g = wg and gy = —wg
in Fig. 31(a)(c) and for medium level at €9 = 0 in Fig. 31(b), with the bias eV}, = 2w and

the tunneling rate I';, = I'r = 0.4wy.

Fig. 31shows that the amplitude of tunneling function are distributed asymmetrically with
respect to o(£Vj) symmetrically for Z¢(eVy = 0), implying the broken symmetry between
electrons and holes in the QD (or SMT)[18]. In addition, it is found that the satellite
peaks in the LT tunneling function are nonuniformly broaden, and its amplitude is much
smaller than the MFT one[18]. This is because a staircase change of the vibron-assisted
tunneling rate has been considered as the particle tunneling through the junction. Owing
to the vibron emission and absorption, the statistical probabilities of finding n vibrons in
occupied states and available states are different, breaking the electron-hole symmetry in
the QD (or SMT). Generally, the electron states are located below the chemical potential
of the leads, while the hole states are above. Such a non-uniform tunneling phenomenon

results in a step-like tunneling rate (W,,) in energy space, with the symmetric centers at
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Figure 32: The current profile as a function of the gate voltage. The upper is wih the
MFT method and the lower with the LT method. The upper inset in each figure denotes
the total out-tunneling rate (or the level-broadening), where the blue (red) curve denotes
for the left (right) out-tunneling rate. The lower inset depicts the corresponding differential
conductance. The density plot of the conducatnce is accompnied attached.

pr, and pp. The left (right) profile in Fig. 31(b) exhibits the vibron-assisted tunneling
rate from the vibrating QD (or SMT) to the « lead, where the solid curve stands for the
LT method, and the dashed line for the MFT one.[18] Note that the MFT tunneling rate
remains constant, which coincides with the Oth vibron mode of the LT one, no matter
whether the bias voltage is changed or not. This owes to the fact that the average-field
approximation, i.e. VixqoX — Vio (X), is relevant to the time evolution of the vibron field,
thus F+><(t —t') — (X)? = po.

Fig. 32 shows the profile of the current as a function of the gate voltage. Compared to
the MFT results (Up), we find that the LT current is strongly suppressed at V;/wo = £0.75
(Down). This can be understood as follows: In Eq.(18), the current is expressed as the tun-
neling function 7' (w), multiplied by the transport window, f5 (w)— f= (w). Basically, T' (w)
is composed of G (w —nwp) and G< (w + nwo), corresponding to the hole and electron oc-
cupation density, respectively. At zero temperature, p, = 0 for n < 0, ff (w) — 0 (£, Fw)

~ 2
and ‘G” (w)‘ = A (w) /Wr—o (w), and therefore the tunneling function 7" (w) is expanded
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as the summation of rectangular functions multiplied by the sideband peaks A (w =+ nwy).

In the weak coupling limit, i.e. A (w) — 27d (w), the current is found as:

e TLTRe=39 2 gin/ipe
= T = g {0 (uy — o — nwo) — 0 (i — o —
d AT Wr—g (EO> Rt nln/! {[ (//JL €0 nwo) (,MR €0 nwo)]

-0 (20 — n'wo — p1g) + [0 (g, — Eo + nwo) — 6 (g — Eo + nwo)]
)

-6 (ua — %o —n'wo } ) (80)

For the nth transport channel, electrons are allowed to transmit within p5; < w < p,, —nwo,
and holes within pgz + nwo < w < p,. In addition, there exists a broadening function
Wr—o (20) which renormalizes the current distribution (see Fig. 31(b2)). Note it stays the
same (Wr=o (50) — I') in the MFT method. This effect results from the fact that the bias-
associated information are included into the self-energy as the particle transport from the
a lead to the @ lead, that is, the analytic continuation on Eq.(19). According to Eq.(79),
WT_io (o) behaves as multiple decreasing steps at the resonant energies and symmetric
about eV = 0, and hence the height of the electron (hole) current is suppressed along with
the decrease (increase) of the gate voltage. Based on this, the peak-structure current at

eVy/wo = £0.75 disappears, resulting in a remarkable conductance gap in Fig. 32(b).
3.3.4 Zero-frequency Noise

Now let we study the energy dependence of the shot noise. Fig. 33(a) to Fig. 33(d) shows
the zero-frequency noise S vs Vj at various bias voltages, and the insets denote the dif-
ferential noise. For comparison, we further plot the MFT noise as red dashed lines. For
eVp/wo = 0.02 (nearly zero dc bias), the current approaches zero. However, because the
electrons tunneling through the QD can absorb or emit photons (here n = 0), the thermal
noise changes significantly. It is noticed that no noise change occurs around eV, = nwy
(n = £1,42, and so on) because the current stream is forbidden to flow. In other words,
satellite peaks of the differential noise dS/dV}, do not occur in this area, as is shown in
the inset of Fig. 34(a). These phenomena are different from previous theoretical predic-
tions reported by Sun et al.[29] and Balatsky et al.[9] but agrees with the experimental

observations[30] of the single resonant peak (see Fig. 28 and Fig. 29).
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Figure 33: Zero-frequency noise vs. the gate voltage under four different bias voltage (form
left to rgiht, eV} /wo = 0.02,1.5,2.5 and 3). The insets denote the corresponding differential
noise. The black line represents the LT method and the gray line for the MFT one. Noe
that the shot noise is normalized by 2e

Fig. 34(a) depicts the detailed profiles for dSy;,/dV; (red curve) and dS.;,/dV; (blue curve)
vs. Vg, where the vibron-free case is labeled by dashed lines. Here, a sudden decline appears

at V, = 0 for the thermal noise because the PAT process is slightly forbidden by the Pauli

exclusion principle[29].

3.3.5 Probing the EVI Coupling Strength

At T = 0, the thermal noise vanishes, and a remarkable peak structure of dS.p/dV} is left, as
seen in Fig. 34(a). This is different from the vibron-free case with a double-peak structure.
Such behavior can be explained by the following: For eV}, < wq, only the Oth channel makes

the contribution, and the tunneling function of Eq.(78) reduces to

Ty (w) = PHe . (81)

2
(w— ?0)2 + (—FL'QFR 6*9)
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Figure 34: (a) dS;,/dVy (red curve) and dSc,/dV; (blue curve) vs. V, the dashed lines
denotes A = 0 (no EPI) and the solid lines for A = 1.5wg. (b) The renormalized noise
function S/Sp vs. Vp, where Sy is the noise without EPI. The black line denotes the LT
method and the gray line as the MF'T one. The inset reveals the original noise function 5,
an additional blue-dashed line is the noise without EPI. (¢) The Fano factor vs. V;. The
left inset here denotes the corresponding noise and the right inset shows the Fano factor
vs. Vg at Vj, = 6wp. (d) shows the renormalized factor (F'/Fy) vs. V4, we can see that they
depart from each other at V}, = 2wy.
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Substituting Eq.(81) into Eq.(77) and taking the derivative over Vj, we obtain

5_56 _ 2% 3 Tole) 1= T ()] (82)

In the equilibrium case, p; ~ pp = g9 (Vy =0), and a double-peak structure of Eq.(82)

exists when Tp (€9) > 1/2, that is,
2 2
(TE 4+ TR)? o (2) _srire <. (83)

On the other hand, for the symmetric electron coupling I'* = I'® = T, the single peak
structure of dS/dV; appears as A > 0.83wq. This is useful in verifying the coupling strength
of the EVI in the experiments.

Next, we examine the noise for eV, > wg. As shown from Fig. 32(b) to Fig. 32(d), large
bias voltages yield a staircase noise with the steps occurring at the resonant energies and
symmetric about eV, = 0. This is in contrary to the MFT results, where the heights of the

noise are close, analogous to that observed in current.

Thermal noise becomes significant with finite temperature. Performing the weak cou-

pling limit on the first term of Eq.(76), we obtain

2¢2 Tk 3 S
Stn Y. Pnbw {Fth (B0 +nwo — 1) T2, (50 -n wo)

h T2W (20) pr e

+ Fip, (B0 — nwo — fiy,) Fi, (EO + n'wo)} , (84)
which exhibits peaks at eV, = £eV},/2F nwo, as shown in Fig. 32(d). Note that these peaks
are not apparent in the LT curve because the LT shot noise is much larger than its thermal
noise. As one plots S, vs. V,, we find that thermal broadening peaks occurs at eV}, = 2nwy.
Nonetheless, due to the staircase structure of the vibron-assoicated tunneling rate W (gy),
LT thermal noise decays faster than the MFT one along with the increasing bias, as shown
in Fig. 32(b). In the large bias limit, e.g. py > pg, f1 = fr =1, f{ = f5 =0, the
thermal noise vanishes and the shot noise are found as

MR (PEr" + p-n?) (Pwy" + p—?)

§=2e{D)q1 r L R L R)2 n2 2] (7
nn/=—o0 (yk + 7 )[(7 +9%)" + (n—n) wo}

(85)
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Figure 35: The density plot of the Fano factor as studied in a CNT-QD. Reprinted from
Ref.[5].

where v* — e 9T'* for the MFT method and v — I'*® for the LT one. It is noticeable that

both approach result in the same current expression in large bias limit, that is, (I) = %FLIF “

(see also in the left inset of Fig. 34(c)), but not for the shot noise (see the inset in Fig. 34
(b)), which implies that the shot noise gives additional and complementary information on
the current-voltage characteristic. Substituting (I) and Eq.(85) back into the definition of

the Fano factor and considering the primary correlation of n = n’, the Fano factors become

00
Fyrr~=1— FLPR@Q Z (pnFL +p—nFR) and Frr ~1— FLFR Z (pnFL +p—nFR)2>

respectively. Apparently, FLT shows the higher value than Fi;pr due to the absence of €9. In
the absence of EVI effect (A — 0), Eq.(85) reduces to Sp = 2e (I) (1 —2rirk/ (Tt + I‘R)2),
and we obtain F' = 0.5 for the symmetric electron-electron coupling. This is in agreement

with that observed in experiments[5], as shown in Fig. 35.
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CHAPTER IV

SUMMARY AND FUTURE WORKS

By applying the small polaron transformation and the non-equilibrium Green’s function
(NEGF) technique, we examine the joint effects due to the vibron-assisted tunneling rate.

We conclude that:

(1) As the vibrons coupled to the electron tunneling process, the relevant vibron corre-
lation will break the electron-hole symmetry in the non-interacting terminals, making the

tunneling rate change in a quantized feature of the vibration frequency.

(2) The electrons through a SMT can be remodeled into to a single-level quantum dot
coupling to multi-channel leads, and the current is described as a sum of all tunneling flux
via various channels.

(3) The conductance gap between the chemical potential of the leads and the first
vibron excited state is in agreement with recent experimental results and is recognized as
an occurrence of a virtual state.

(4) We can reproduce our results to that worked with the rate equation method, only
if we replaced the single particle spectral function as delta function. That is, the NEGF
approach gives more general information than the RE method, such as the energy shift and

the level broadening.

(5) At high temperature, the holes may occupy higher energy levels above the chemical
potential due to the absorption of vibrons, and thus we can measure conductance peaks in
the Coulomb blockade region, in agreement with the recent CNT-QD experiments.

(6) When coupling to the vibrational modes, the zero-frequency noise still can be de-

composed into the standard formation of thermal noise (Johnson-Nyquist noise) and the
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shot noise, the same with that without EVI.

(7) In contrast to previous theoretical works of this kind with an anti-symmetric struc-
ture in noise and conductance, we obtain symmetric results, both in differential conductance
and differential noise, fulfilling with recent CNT-QD experiments.

(8) We demonstrate that the differential noise could be a feasible tool for probing the
EVI coupling strength.

(9) The first vibron excited state changes the noise, which is proportional to A not
previous prediction A?. This is in agreement with the First principal calculation.

Finally, we have to admit that, in comparison with recent theoretical work done by Felix
von Oppen’s group, our method is insufficient to interpret the Franck-Condon blockade
at low bias. Usually this behavior takes places in the strong electron-vibron interaction
area. The lacking of suppression in our calculation is due to the usage of the equilibrium
vibron assumption through the whole calculation. In the weak EVI, our results matches
the experiments, including the conductance gap between the chemical potential od the
leads and the position of the vibron sidebands. However, as the EVI is increased, the
theoretical and experimental results are far from each other. We believe the difference lies
on the assumption of the equilibrium vibron bath is insufficient to interpret the influence
of vibrational motion of the atoms. In fact, it makes sense that the time scale of the vibron
relaxation is comparable to the flow of the electrons into and out of the molecule. In the
NEGF’s calculation, the shorter life-time of the vibrons means more explicit calculation of
the self-energy in vibron Green’s function. We will briefly describe the numerical recipe of
this project in the Appendix F.

In conclusion, we hope that this new transport scheme together with the noise formula
could provide useful insights into the quantum transport field, and more studies, such as
non-equilibrium vibrons bath, can be explored, allowing a systematic description of inter-

esting physical effects in the future.
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APPENDIX A

CALCULATION OF OCCUPATION DENSITY G*< (w)

A.1 Conservation Rule

In this appendix,we present the detailed derivation for (N}jd (w) in Eq.(26). We follow the
derivation proposed by Sun and Guo[42][43]. In the stationary limit, the occupation number
operator of the system is zero, i.e., <Nd> (t) = 0, where Ny = d*d and mcen(lead), Ng] =0.

Using the equation-of-motion[11][14], we readily find

0
N (6) = T2 (6) + T (1) (56)
Z [VkaGika (ta tl) - Vk*aGlja,d (t’ t/)}t’—%
ka€L,R

The lesser Green’s function can be derived using the S-matrix expansion and Langreth
theorem. Here the contour-ordered Green’s function can be obtained from Eq.(57). By

using the analytic continuum[11][14][17] we get

Gipa (1) V,m/dtl {G ha (1) [gke (b1,8) F7T (t1,2)]°
51 (0 1) [ga (1, 0) P (12,1)]°} (87)
Groa (6,7 Vka/dtl gka (8, 11) FT (t,11)] G5, (t1,1)

+ [gra (t,t1) F* (t,11)] = Gy (tl,t’)}. (88)

Substituting Eq.(87) and Eq.(88) into Eq.(86) and then applying the Fourier transform, we

obtain
[ 52 [ @) T B () + G ) T B8 0] (89)
— [ 5 [Sa T @) G (0) + £ 550 ) Gl @)

Eq.(89) has a particular solution when the left and right integrands are equivalent. By

substituting ¥4, (w) (see Eq.(21) and Eq.(22)) into Eq.(89) and doing some simple algebra,
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the lesser Green function is found as

Ti 3 pnla (w + nwo) f5 (w + nwo) Ag (w)

Gy (w) = (90)

[pnla (w + nwo) f5 (w + nwo) + p—nla (w + nwo) f (w + nwo)]’

A.2 The Keldysh Formulation for EVI System

Using Langreth theorem on the Dyson equation of Eq.(60) for G44 and performing the

Fourier transform G (w) = [ dte™™G (1), Eq.(60) leads to

G5y = QO + GO snGy + GO ssas, + AU s4.GY,. (91)

Eq.(91) can be written as
~ -~ ~ ~ T ~a ~ Tr -1
Gag = [GE&K (1 +37 §d> + G((i?i) o7 dd} [1 - G((i?l) ET}
_ ~ - - 2
= GO (1+25Ga) [1 + G+ (GOSE) ] +

~ ~ 25 ~ 2
G s G [1 + GO (G&S}"zg) + } . (92)

Regrouping the first infinity iteration into C:’ZdE% and combing the second bracket together

with éggr as G, , Eq.(91) can be written in the form of
G = (1+ Cuasr) G~ (1+ ClaSt) + GZ7 Gl (93)
Due to CN{%K (w) =2mif; (w)d (w — wq) we obtain a formal Keldysh equation:
éjd = ~2d2; Ngdv (94)

where Y5 (w) is introduced in Eq.(61) and G} can be solved with the Dyson equation.
Note that Eq.(94) is identical to Eq.(90), showing that our calculation for the occupation
G*< is self-consistent. When considering the imaginary part of C:‘jd (w), Eq.(94) gives the

exact equivalent expression to Eq.(26).
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APPENDIX B

LANG-FIRSOV TRANSFORMATION OF THE SMT

The SMT setup is described in Eq.(8) "Eq.(11). We want to eliminate the coupling between
electrons and vibrons, i.e. Eq.(11). This can be explicitly removed by the canonical trans-
formation S = 2ng4 (b* — b)[34], where ng = d*d. Based on the Baker-Campbell-Hausdorff

wo

formula[16], we have

S0e =0 +[5,0] + 5 [S.15,0]] + 5 [5,[5,[5,0]] + .. (95)

The appliance of this transformation on the relevant operators leads to

0)

d = deo : (96)
ng = ng, (97)
= A
=2\
wo nd, (98)
Eka = Cko- (99)
Here the relations of [ng4,d],, = (—1)" d and [b™ — b, b] = —1 have been used. As a conse-

quence, the Hamiltonian can be diagonalized as:

H = ﬁcen + ﬁlead + FTa

Heen =0 (V) dTd + wob™b, (100)
Hicad = Y EkaCf Chor (101)
ko, 0€L,R
Hr= Y Vil dX+he (102)
ko, a€L,R
where €9 = €¢g — ;\}—z and the function X represents a shift operator, given by
X =exp A (b —b)|. (103)
wo
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For the time-dependent displacement function, we have

. + . +
X(t) — ezwob the iwob™ bt

_<A>2/2 S a4 A iwonbt
= e \wo . giwob bt exp [— (—b+ + b)] g iwob™ bt (104)
wo

As the Feynman’s disentangling theorem is applied, that is, e T8 = edeBe[4:51/2 Eq.(104)

can be further written as

2
(X . 4 _ 2+ . 4 . + Ay +
X(t) —e (wo) /2 k (ezwgb bte wob efzwob bt> . (ezwob btewobe iwob bt), (105)
where
A \"
eiwob+bt€—%0b+e—iwob+bt — Z <_w0> bne—iwont
n=0 TL'
A —iwqt
2y 0
= e me (106)
and
iwobtbt oo —iwobtbt _  pebe” w0t
e'o? Peuwg e W0 T = ewo . (107)

Taking these back into Eq.(105), we have

X(t) = o (@) /2, dpeir gppeint
2?2 . .
— ef(w_o) /2 - exp [—i (bTe™ ot — be_"*’ot)] (108)
wo
and its conjugate is
)2 , ,
XT(t) = e_(wo) 2. exp [—i (be~ "ot — b+e’w°t)] (109)
wo
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APPENDIX C

THE ELECTRON-VIBRON CORRELATION F (T,T")

For the calculation of the function F (¢,t"), we need to introduce the function

Yo g {nl e PlX (8) XF (t) n)
Yoz (nf e=wob™bn)

where |n) = (b7)" [0) /v/n! is the bosonic state with n vibrons and the denominator part of

(110)

Ftt)=(X@#®) X" ()=

Eq.(110) equals

o0 1
55 (nl e P ) = o e (0 1) = e,
n=0 —€

Ny is the Bose-Einstein distribution. Now we take the time-dependent vibron operator

X (t) and Xt (') from Eq.(108) and Eq.(109), the function F (¢,¢') then gives

—Bwo oo =
Pt) = S 5emiee @) )
n—=
A + iwot —iwot A —iwot’ + iwot’
(nexp [—— (bTe™°" — be ") | exp ——(be " —bpTe 0) |n)
wo wo
— 2 . . ’ ; ’
B 6]5“0 i e—nAeng=(25) (n| o g e e IOt g bTeT IO mgpbem it In).
0 n=0

Next we have to switch b and b to make the destruction operators to the right. This can

be done by performing

A pe—iwgt A pte—iwgt! A pte—iwgt! < _ A pre—iwgt! A po—iwgt Lb+eiw0tl>
ewo ewo = ewo e wo . ewo ewo
A —iwgt! A —iw (X 2 —iwq (t—t’
_ ew_obJre ot 'ew_obe 0t€ (wo) e—iwo( )' (112)
As a result, b is shifted to the right and Eq.(111) can be written as
—Bwo 2?2 e—iw (t t/) 00
e (A
F(t,t) = € (wo) [1 ’ ] S e nhwo (113)
0 n=0
A s ! ! -
<n’ exp |:w_0b+ (ezwot zwot) exp |:__b ( —iwopt’ e—zwot):| |7’L>
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Owing to the fact that

bln) = Vnln—1), (114)
¥n) = Vnn—1)|n—-2), (115)

V" |n) = |————|n—m), (116)

therefore,

)\ s / . n (—].)m )\ . / .z m n'
A iwot’ iwol — A iwot’ iwot
P Lugb <€ ‘ )} n) mgo m! L}O (e ¢ )} (n—m)! n 147)
(n|exp —ibJr (ei“"t, — ei“°t> = (n—m)| Zn: 1A (e*i‘*’ot/ — e*i“’ot) " 4”! 118)
wo m=o m! [wo (n —m)!

The combination of Eq.(117) and Eq.(118) leads to
A + iwot! wot A —iwot’ —iwot
(n|exp _w_ob <e —e ) exp _w_ob (e —e > In) (119)

- par_d <>]m

m=o m! m!(n—m)! [wo

(i>2 (e—iwot’ - e—iwot>2] ’
wo

where L,, (z) is the Laguerre polynomials. As a consequence,

—Bw 2 —iwg(t—t')] o0 2 L .
F (t,t') = 6N Oe_<w_)\0> [l_e of )] 3 efnﬁwoLn [(wi) (efzwot _ ezwot)2] . (120)
0

0 n=0

= L,

With the identical relation of > >° (4™ L, (x) = (1 — y) ! evT and the replacement of y by

e B0 Eq.(120) can be simplified as

F (t,t) = exp {— <i>2 [(1 . e—iwo(t—t’>) (No+1) + (1 . eiwo(t—t’>) No} } . (121)

wo

The Fourier transform of Eq.(121) then leads to

F(w) = 3 pud(w—rnwo), 12
n=0
) 2
oy = 6_(‘“_)\0) (1+2N0)enw0/2kBTIn (2 (%) Ny (NO + 1)) ) (123)
0

where I, (2) is the nth Bessel function of the complex argument.

68



APPENDIX D

AN EXACTLY SOLVABLE MODEL

We examine the simple case of a single-resonant quantum dot, which is an idealistic model
with spin-degenerate, non-interacting level, and coupled to two leads. According to Ref.[11],

the generalized current formula can be obtained by

_ € I" (w) TR (w) < <
I = 4 em e 5 @) - F @] 4). (124)
Aw) = I («) (125)

(w—e0)® + (T (w) /2)*

Considering the wide-band limit of I'* (w) — I'*, Eq.(124) can be solved as

e TITE 1 1 W — g,
= S — 7 - : 12
hTE + TR m{w (2+47rkBT“27rkBT> (126)

1 1 W — R
4 (2 T TkaT +Z27rk:BT> }

where the relation of Im1) (z) = § tanh (72) has been used, and v (z) denotes the digamma

function. In order to understand the effects of the resonant tunneling processes, we consider
the lowest order contributions. This can be solved by expanding Eq.(126) in orders of T,

which gives

e TLITE
I = gm—lm[ff(%)—fﬁ(ao)] (127)

e B Lpr (1 1 W —
€ 2 pLpRy =
Thon m{w <2 T ksT ' 2mkyT

1 1 W=
YA R
v (2+4nkBT“2kaT>}+“'

where the first term corresponds to the sequential tunneling current and the second term

reflects the co-tunneling current. The detailed discussion can be referred to Ref.[40].
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APPENDIX E

THE CALCULATION OF ZERO-FREQUENCY NOISE
Saw (0)

Here we study the noise for a single-level quantum dot coupled to a vibronic degrees of

freedom.

Saar (t,) = ({01, (t), 01 (t')})
= (o (t) = Jo] [Ia (V') = Jor] + [Lor (t') = T ] [ (8) = Ja])
= (In(t) 1y (t')) + (Lo (¢') 1o (t))
—2(Io (1)) Jor = 20 (Ios (t)) + 2J 0o (128)
Note that in the stationary state (I, (t)) = (I (t')) = Ja, and J, = Ju» = J. Thus the
noise function becomes
Saar (6,) = (Ia () Ior (t')) + (o (¢) Ia (1)) — 27 (129)

Using the current definition of

L (t) = % S Veacf () d () — Vead" () ke (1)] (130)
ka

Eq.(129) can be found as

62
Soar (1.8) = —25 D [ViaVhor (Gl D (0) el () d (¢)) - (131)
ka,ka!
)

Via Vi <cka( )d(t)d" (') crar (¢
Vi Viar (4 () era (8) cf () d (¢))

d+ t) Cka ( dr (L‘/) Cho! (t/)> + h.c. — 2J2] .

Vl:ozvka' <
Each (...) in Eq.(131) denotes the two-particle Green’s functions. In the non-equilibrium

case, these functions are evolving in the contour plane, and they are defined as
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Gy (1.7) = #(Tf, (A X (1) (7) d (7) X (7)) (132)
Gf(ld) (7’, 7") = 2 <ch;:a (T)d (1) X (7)d* (7”) X* (7") Chat (7")> , (133)
Gy (r7) = B (Ted™ (1) X+ (1) cka (7) iy () d () X (). (134)
Gf(i@ (r,7) = *{Td" (1) X1 (T) epa (1) dT () X (') cher (7)), (135)

and Eq.(131) equals

2
Saa’ (t, tl) = _% Z [Vkavka’G?(l;) (7—7 7—,) - VkaV]:a’Gé%l;) (7—7 7_/) + (136)
ka,ka’

V/:aVka'Ggg) (r,7") - Vk*aVka/Gﬁz) (7,7') + hc. — 2Jg] .

(2) (2)

Next we need an expression for G1?2737 4 (7,7") . The Dyson equation for G} (7,7’) gives

Gty (r7) = = [ ary [ dra 37 Vi Vi, (Tt (7) s (7) s ()i (7))
¢ < k1,k2
<Tcd (1) X (r)d (7'/) X (7”) dt (1) X (r1)d" (12) X (72)>]

= /dﬁ/ dra g Vi Vit [0k1kaOkaka Gka (T1,7) Groy (T1,7)
cl c2
k1,k2

_5k1ka(5k2ko/ Iko! (7_17 T) Ika (7—17 T)}

<Tcd (r) X (r)d (7") X (7") dt (11) Xt (11) dr (12) X+ (72)>] .

= ViV /1 dry /2 dragk, (T1,7) 9!, (T2,7") Gf&d) (7,7, 71,72)(137)

and

Gl(f(ld) (7-7 7—,) = 7Vk1 VI:; / dTl / dTngoz (Ta 7-1) 9o (7-,7 7-2) G4(12(2ld) (7-7 T,a 1, 7-2) (138)
cl c2
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The performance of the second order Dyson equation on Eq.(133) and Eq.(134) gives

G@ oy (1.7) = —Orakartha (7' 7) GO (7,7') - / (dn / dr (139)
kik: Vle,;; [5k1ka’5kLkzgk’L (TI, 7’1) Gkr, (12,71) —
1,R2

o 5k1k,l‘5kLk2gkL (7—/7 7—) gk‘L (7—27 7—1)]

<Tcd (1) X (1) dt (T/) X+ (T') d(11) X (71) dr (12) X+ (7'2)>

Q

_5kLk§;gkL (TI,T)G(T,T/) - > Vkav,:a,/ dTl/ dro (140)
k1,k2 cl c2

gk,L (TI’ 7—1) 9kr, (T2,7) Gz(f(?jd) (T> 7—/7 T1, 7’2) )

where we combine the first term of Eq.(139) together with the second term in the integral,

yielding a formal Green’s function G (7,7’). Similarly, the function G (1,7") in Eq.(134)

3(cd)
reads
G:(f(ld) (7’,7'/) = —Okaka'Jka (TI,T)G(T/,T)— > VkaVk*a// dTl/ drs
k1,k2 cl 2

ko (T,T1) Gkat (7277/) G;(),Q(Zld) (777'771772) . (141)

Here
GOy (7 1,m) = 2(Td(r) X (7)dt (1) XT (1) d¥ (r2) X (12) d (') X (7)i42)
GOy (7 1, m0) = 2(Td(7) X (7)d (1) X (r1) dF (72) X (r2) d* (') X T (~/)iu3)
GOy (7 1, m0) = (T (r) X (7)d (1) X (r1) dF (72) X (r2) d* (') XT (~)iua)
G (17 m1,m) = 2 (Td (7) X (1) d* (11) X+ (r1) dt (72) X T (r2) d (') X (7)iu5)

72



The noise function now can be concluded as

e? 2 / / / /
Sow (1,7) = E{ZIVMI [9ka (7, 7) G (7,7) + gra (7,7') G (7', 7)]

ka
+ Z |Vka|2|vko/|2/ dTl/ dTQX
ka,ka/ cl c2

[~k (717) gt (72.7) Gy (77, 71,72)
+ka (T2, T) Grar (77, 71) G?(sz) (7, 7,71, 72)
~Gka (7, 71) Ghar (72, 7) Gy (7.7, 71,72)
Gk (7,71) G (7' 72) Clhy (7771, 72)} } +hee. (146)

So far only the Wick’s theorem has been applied for decoupling a non-interacting electron
Green’s function in the leads. Next, we need to determine two-particle dot Green’s functions,
as shown in Eq.(142)7Eq.(145). However, it is not trivial to calculate these functions
since they contain interactions. As a result, we need to import a method to simplify
our calculation. Usually, the Hatree-Fock approximation is one of the candidates to solve
the problem since it admits a direct decomposition of many-body Green’s function into
pairs of single-particle Green’s function. Therefore, the two-particle Green’s functions are

approximately described as:

GOy (17 mm) & [G(rm2)G (7 m1) = G (r,m) G (7, 72) ] F? (7,7, 71, T2 147)
Gy (17 m1,m) &[G (7,7) G (r1,72) = G (7,72) G (71,7)] Y (7,7, 71, 72)148)
GOy (17 m1,m) & [G(r,7) G (7, 72) = G (7,7) G (71,72)] FSY (7,7, 71, 72)149)
GOy (17 m1,m) & [G(r2,7) G (r11,7) = G (r1,7) G (72, 7) ] F(Y (7,7, 71, 72)150)

and the vibron correlation functions can be further calculated as
F? (r,7,11,m) = (T.X (1) X+ (r) X" (r2) X () (151)
= {(T.X (1) X (r)) (T.X T (r2) X () +
(T.X (1) Xt (r) ) (TXF (1) X (7)) +
(T.X (1) X (F))(T.XF (r1) X (72))

~ F(r,7)F* (7'/,7'2) +F(r,m2) F* (7”,7’1) ,
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and

F2(2) (7'77",7'1,7'2) = F(r,79) F (7’1,7") + F (r1,72) F (7',7") , (152)
F§2) (r.7',71,7m2) = F(r,72) F(r1,7") + F (7,7") F (11,72), (153)
F352) (.7, 71,72) = F(r,m) F* (7', 72) + F (7,72) Ft(11,72), (154)

where we omit terms like (T.X (1) XH) (7 )) in the stationary state. For further cal-
culation, however, we include only the boson lines connected to the tunneling lines, and

consequently we have

G@ld) (r.7',71,72) =~ |[G(r,72)G (7', 71) F (r,72) F (7', 71) (155)
—G (1,71)G (7', 72) F (r,71) F (7', 72)] ,
Géled) (r.7,71,72) =~ [G(7,7)G(r1,72) F (7,7') F (11, 72) (156)

—G (1,72) G (11, 7") F (1,72) F (11,7)]

Q

G:(S%Zld) (7’,7",7’1,7'2) [G (11,7)G (7",7’2) F(r,7)F (7",7’2) (157)
-G (7'/,7') G(r1,m2) F (7'/,7') F (71,72)] )
Gé(jzld) (7’, .11, 7'2) ~ [G (12,7)G (7’1, 7'/) F (r9,7)F (7’1, 7'/) (158)

—G (11,7) G (12, 7) F (11,7) F (12,7)] .

Substituting Eq.(155) "Eq.(158) into Eq.(146), we obtain

2

S%s, (7,7) = %{m% Vial? [Via |2 / dn /CQdTQ (159)
[9ka (T1,7) Gkar (T2,7") G (7,71) G (7', 72) F (7,71) F (7', 72)
—Gka (T2,7) Grev (7, 71) G (7,72) G (71,7') F (7,72) F (11, 7)
ko (T, 71) Gher (T2, 7) G (71,7) G (7, 72) F (11,7) F (7', 72)

ko (7,71) gk (7', 72) G (71,7) G (72, 7') F (71,7) F (72,7')] } + h-c..
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and

2
Pt (7’,7”) = = {Z |V;m| [gka (7",7') G (7’, 7") + Gra (7',7") G (7",7’)] (160)

/dﬁ/ drg X
[—Zka (71, 7) ko (12,7") G (1,72) G (7', 71) F (7,72) F (7', 71)
+Yka (72, 7) Bt (7', 71) G (7,7) G (11, 72) F (7,7') F (71, 72)
—Yka (7,71) o (72,7') G (7/,7) G (71, 72) F (7', 7) F (11, 72)
~Ska (1,71) Spor (7,72) G (72, 7) G (71, 7') F (72,7) F (11, 7) ]} + hec,

with Yo (7,7') = D 14 [Vial? gk (7, 7). Note that Sdis (7,7') does not contribute to the

noise. When applying the Langreth rule on Eq.(159), we find

62
Saer (1.7) = ﬁ{ ) |Vka|2|vka/|2/ dﬁ/ drs (161)
ka,ka! cl c2

]
- [Qka(Tsz)gka' (7",7'1)G(TaTQ)G(7'1,7")F(7'77'2)F(T1,T')]>
)]

— [gka (T,71) Gkar (7'/, 72) G(r1,7)G (7’2, 7") F(ry,7)F (TQ, T')] >}} + h.c.,

- [gkoc (T, 7_1) [9) 7% (7-2a 7_/) G (Tla T) G (Tl? 7—2) F (Tl’ T) F (T,’ T2

where the first term with double integrations is solved with

[Vka/ dTlgka(TlvT)G(TaTl)F(TaTl)'Vka’/
cl

>
dT20ka! (7'2,7'/) G (7'/,7'2) F (7'/,7'2):|
c2

= Gika (1,7) Gika (7",7") . (162)

The remaining terms in Eq.(161) can be analyzed accordingly. When substituting Eq.(162)
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and the disconnected terms into Eq.(161), we obtain

62

ngj (t,t’) = > VkaVka/Gika(T’T)Gika(T,’T,)
ka,ka’

—VkaVk*a,Gika (1,7) Gika, (7", 7")
—Vkavk*a’G;,ka (r,7) Gika’ (7’7 7/)
—l—VkaVk*a,Gika (1,7) Gika, (7’7 7/)] + h.c.

2
= 25 ¥ [VeaGige (1 7) = ViaGipa (7.7)]
ka,ka!
% Vi G s (7.7) = Vi G (77

= 2J2

which exactly cancels 2.J2 in Eq.(128).

The appliance of the Langreth theorem on S¢%; (7, 7') results in

e

seonz (r,7') = (ﬁ)2 { [Ska (7',7) G (7,7") F (7,7') + S (7,7) G (7', 7) F (7",7‘)]>

+/d7’1/d7‘2><

{~Ska (T1,7) Sk (72,7) G (1,71) G (',72) F (7, 71) F (7', 72)

% (71, 7) Sk (72,7) G (71,7) G (7,72) F (11,7') F (7, 72)

o (7, 71) S (72,7) G (71,7) G (7',72) F (11,7) F (1, 72)

5o (7:71) Spar (12,7) G (11,7) G (72,7) F (11,7') F (1,72)}~ H168)

where the first term in Eq.(163) gives
[Eka (7'/,7') G (7',7'/) F (7’,7'/) + Yka (7',7'/) G (7",7') F (7'/,7')]> (164)

=X (1,0 &7 (8.0) 7 (6.8) + 2, (10) G (88 F= (¢1).

The terms with the double integrations are
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/d [G (7’ 7'1) (7’ ,7'1) Yo (7'1,7')]< . /dT2 [G (1,72) F (7,72) Xk (7’2,7")]>
/ (' ma) F (7', m)]" S (0,0) 4 G (7o) F (7', m1)] < 5 (7,1)
/ (r,72) F (1, 72)" S2, (b2, ) + [G (ro72) F (r,72)” S0 (82,8) Y, (165)

and

[G (r,7) / dry / dr1Sker (7',71) G (11,72) F (11,72) &, (Tzﬁ’)}

Shor (M 11) [G (71, 72) F (11, 72)]" BF 5 (f2,1) +
=G (T’ T,) /dtl /dt2 Yo (t',t1) [G (11, 72) F (11, 72)] Z+< (to, )+ | - (166)

S (', 11) [G (71, 72) F (71, 72)] S8 (t2, 1)

The remaining terms in Eq.(163) are treated in the same way. We could study the finite

frequency noise by taking the Fourier transform, then function S (w) reads

St (@) = 57 (@) + 55 (&) (167)
517 (@) = 257 [ SEAICFIS (wHw) -5, () + 55, () GFF (@) + ag8)
557 (@) = 257 [ REA(GHT (w+) BF, (o) +

(GF)” (w+ ) B (w ) x

([GF)" (w') B (W) + [GFI™ (&) o (&) +

[GF]” (w+ ') [Pha () G7 (&) 25y ()

T () [GFI (&) o ()

Sia (@) [GF)* (W) B4, (@')] + e} (169)

where
[AB]® (w) = AS (w)B®(w)+ A" (w) BS (w), (170)
L e e e B

In this paper, we focus on the calculation of the zero-frequency noise w — 0, thus the S;

7



and Sy are

Siw=0) = 257 [ ECF @5 @ + 55 @)GF7 @, (™)
Siw—0) = 25 [ 2 [2ICFT @S, @S @+ B @] am

where

Jalw) = [G"(w) -G ()] T, @) - 6% (@) [SF, (@) — B, @)]

= 07 (@) S, (@)~ G% (@) 5, ).
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APPENDIX F

STRONG ELECTRON-VIBRON COUPLING
CALCULATION

Based on NEGF, the current formula is given by

Jo=5 [ 52 [55 @)6 @) - 5, (@) 6= )]

Note that Sga (w) = S ke | Vial® gka (W) is the Keldysh self-energy due to coupling to the

leads and ifa (w) are given by
52 () = HifF (@) T° ().
The Keldysh Green’s function for the vibrating system is defined by
G (r,7') = —i(T.d (r) X (1) d* (') X+ (')

. Via the Langreth rule, lesser (greater) Green’s function are found as

G> (7’,7'/) =G5 (7’,7'/) F§(T,T/).

Here the electron lesser (greater) Green’s function and the vibron lesser (greater) Green’s

function are respectively defined by
G=> (r,7) = —i(T.d(r)d" (7)) (174)

F3(r,7) = (T.X(r) X" (7)) (175)

Since X = eA(bfbﬂ, via the Taylor expansion, F'S (1,7") can be retained up to the second

order, and rewritten by

FS(r,7') = NP7 (rm)=(P?)]

where D(7,7") = —i (TP (1) P (7)), and P = —i(b—b"). The reaming procedure is to

determine G= (7, 7') and DS (7, 7).
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The Dyson equation for the electron Green’s function and the vibron Green’s function

are found as

éd(T,T,) = gd(T,T/)—I—/dTl/ dggd(T,Tl)Ek(Tl,Tg)éd(7’2,7'/), (176)

D (T,T/) = CT(T,T/) + /C dry /C dgCT(T,Tl) H(Tl,Tg)ﬁ (7'2,7") , (177)

where the functions ¥, (71, 72) and II (71, 72) are given by

Sk (T1,72) = Ska (11,72) FY (11, 72), (178)
(1, 72) = —i)2 {i,m (r1,72) - GF (11, 72) F* (11,72) (179)

Sia (r1,72) - G (71,72) F (11,72)}

The application of the Keldysh rule on Eq.(176) and Eq.(177) leads to

G = |@] wzFw (180)
_ Ef (w
[w—eq —ReXf (w)]2 + [Im % ((,u)]27
D) = D[ ()T (w) (181)

It (o) |
[(w2 — w%) /2wo — ReII” (w)]2 + [Im II7 (w)}2

The remaining task is to determine ¥}”"~ (w) and II">"< (w).

From Eq.(178) and Eq.(179), we understand that
SE(t) =60 —t) [S7 () -2 (61)] (182)

which denotes the retarded self-energy of the interacting quantum dot and the function

I1" (¢,t') represents for the retarded vibron Green’s function

I (¢,¢") =0 (t —t') [II7 (¢,¢") — 11 (¢,1')] (183)
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In energy space, Eq.(182) and Eq.(183) can be expressed as

ST @) = JWEF (- w) FE ()
= +iy [d'T5 (w— ') F'= (W) (184)
15 (@) = —iX[do' [do {SF (w—o') - GJ7 (& =) F'= (&)
+ 5% (o) GF (v - o) FE ()], (185)

and the retarded self-energies appearing in Eq.(180) are

ViaViafs (Eka) FF= (w)
w—w — o + 10

S = S|

* > +> ()
+ VkaVka.fal(Eka> F : (w ):| ’ (186)
w—w — gpo +10
. Vi Viafs (Era) - G3 = (W' — ") FF< (W)
T —  _i)\2 / " ka o d 1
1" (w) iN° [ do [ dw { SR ——— (187)

n Vk*avkocf;_< (Eka) - 6’; (W' — w") F< (W)
w—w —Eko +10
Vi Vil (60) - G (of — ) > ()
W—w — Epy + 10
Vk*avkaf;—> (Eka) - éi (W' — ") > (W") }

w—w — gy +10
This is a self-consistent procedure to solve strong electron-vibron coupling molecule. We

can see that the vibron Green’s function is strongly affected by the bias-dependent electron

Green’s function, such that the boson modes are nonuniformly broadening.
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