

國 立 交 通 大 學

資訊學院資訊學院資訊學院資訊學院

資訊科學與工程研究所資訊科學與工程研究所資訊科學與工程研究所資訊科學與工程研究所

博博博博 士士士士 論論論論 文文文文

以以以以 Microsoft Office 文件作文件作文件作文件作

資訊隱藏資訊隱藏資訊隱藏資訊隱藏之之之之新研究新研究新研究新研究

A Study on New Techniques for Data Hiding

via Microsoft Office Documents

研研研研 究究究究 生生生生: 劉劉劉劉 宗宗宗宗 原原原原

指指指指 導導導導 教教教教 授授授授: 蔡蔡蔡蔡 文文文文 祥祥祥祥 博士博士博士博士

中華民國中華民國中華民國中華民國 九十九九十九九十九九十九 年年年年 七七七七 月月月月

以以以以 Microsoft Office 文件作文件作文件作文件作

資訊隱藏之新研究資訊隱藏之新研究資訊隱藏之新研究資訊隱藏之新研究

A Study on New Techniques for Data Hiding via

Microsoft Office Documents

研研研研 究究究究 生生生生 : 劉劉劉劉 宗宗宗宗 原原原原 Student: Tsung-Yuan Liu

指指指指 導導導導 教教教教 授授授授 : 蔡蔡蔡蔡 文文文文 祥祥祥祥 博士博士博士博士 Advisor: Dr. Wen-Hsiang Tsai

國國國國 立立立立 交交交交 通通通通 大大大大 學學學學 資資資資 訊訊訊訊 學學學學 院院院院

資資資資 訊訊訊訊 科科科科 學學學學 與與與與 工工工工 程程程程 研研研研 究究究究 所所所所

博博博博 士士士士 論論論論 文文文文

A Dissertation Submitted to

Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

in Computer and Information Science

July 2010

Hsinchu, Taiwan, 300

Republic of China

中華民國中華民國中華民國中華民國 九十九九十九九十九九十九 年年年年 七七七七 月月月月

i

以以以以Microsoft Office文件作資訊隱藏之新研究文件作資訊隱藏之新研究文件作資訊隱藏之新研究文件作資訊隱藏之新研究

研究生：劉宗原 指導教授： 蔡文祥博士

國立交通大學資訊學院

資訊科學與工程研究所

摘摘摘摘 要要要要

數位資訊處理與網際網路技術的快速發展，使資訊隱藏技術的發展愈為重要，其應

用也更多元化。目前之研究偏重在影像、聲音、影片等檔案中藏入資訊，但在產官學界

經常產生、使用、互通之Microsoft Office文件卻少有人研究探討。該類檔案之格式及特

性迥異於影像、聲音、影片等檔案，需要嶄新之方法以達到版權保護、資料驗證及秘密

傳輸等目的，極具研究價值。本論文針對Microsoft Office文件探討其特性並提出了六個

在Office文件隱藏資訊之研究範圍，包括於Microsoft Office文件之文字中隱藏資訊、於

文字編排中隱藏資訊、於嵌入之多媒體物件中隱藏資訊、於嵌入物件編排方式中隱藏資

訊、於Microsoft Office文件輔助數據資料中隱藏資訊以及於實體檔案格式中隱藏資訊。

本論文亦提出了六種具體的新的資訊隱藏方法及應用，可適用於常見之Microsoft

Word、Microsoft Excel、Microsoft PowerPoint以及Microsoft Visio等檔案類型。

首先，本論文針對Microsoft Office 文件可多人編輯之特性提出在Microsoft Word文

件中利用追蹤修訂資訊以及賀夫曼編碼(Huffman Coding)技術隱藏秘密之新方法。針對

文件內容常被轉載之應用，我們提出多重適用性簽章方法(MUST)以及單樹根簽章方法

(TRUST)兩種雜湊值及簽章處理方法並結合資訊隱藏技術以在Word文件中有效的達到

轉貼資訊之來源驗證之目的，並提出二維多重適用性簽章方法(2D-MUST)及二維單樹根

簽章方法(2D-TRUST)兩種二維雜湊值及簽章處理方法以在Microsoft Excel二維試算表

文件中做轉貼表格之來源驗證，以及利用二維多重適用性簽章方法以偵測二維試算表文

件內容可能遭竄改之應用。而針對文件內容常被剪貼、複製、收集之特性，本論文提出

利用透明字元顏色及依權重統計偽隨機資訊隱藏順序之技術以在PowerPoint等文件中藏

入隱密浮水印之新方法以達到來源追蹤等目的。另外，Microsoft Office 文件中常包含各

ii

式影像、繪圖等，本論文提出了利用物件群組套疊關係以隱藏資訊以及利用創新的複合

式一對一映射理論在影像中嵌入可逆式可視浮水印之新方法，而其中提出的可逆式可視

浮水印方法可用於嵌入多種浮水印如單色不透明浮水印以及半透明全彩浮水印等。以上

六種方法，皆為創新之作，實驗結果顯示論文提出的方法皆具有可行性及實用性。

iii

A Study on New Techniques for Data Hiding via

Microsoft Office Documents

Student: Tsung-Yuan Liu Advisor: Dr. Wen-Hsiang Tsai

Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

Abstract

With the advancement of digital information processing and Internet technologies, the

field of data hiding has become more and more important, and their applications have become

more and more diversified. Many techniques have been proposed for hiding data in images,

videos, and audios, but there are relatively few researches devoted to data hiding in the

popular Microsoft Office documents. Microsoft Office documents are in very different

formats and have unique characteristics compared to images, videos, and audios, and so new

techniques are needed for embedding data in such media for the purpose of copyright

protection, covert communication, authentication, and so on. In this study, we investigate the

characteristics of Microsoft Office documents pertaining to data hiding applications and

identify six areas for researches of data hiding via such documents: data hiding via texts; data

hiding via text formatting and layout; data hiding via multimedia contents; data hiding via

multimedia formatting and layout; data hiding via auxiliary data; and data hiding via physical

file formats. We also propose six specific new methods and applications for hiding data in

Microsoft documents of Word, Excel, PowerPoint, and Visio.

First, exploiting the characteristic that documents can be written by multiple authors, a

new method is proposed for embedding data in Microsoft Word documents for the purpose of

covert communication by using change-tracking information and the Huffman coding

technique. Then, to tackle the problem that contents in a document are often cited and

included in another document and that there is a need to authenticate the fidelity and source of

the cited content, a method is proposed in this study which combines data hiding techniques

iv

with two different hash value processing techniques – MUST and TRUST – that can

efficiently verify the fidelity of cited contents in a Word document. Furthermore, two

two-dimensional hash value processing techniques 2D-MUST and 2D-TRUST are proposed

that allow quotations of the form of a two-dimensional table from a Microsoft Excel

spreadsheet to be authenticated. Also, the 2D-MUST is demonstrated to allow effective

fidelity authentication and modification detection of spreadsheet contents. To address the

characteristic that contents within Microsoft Office documents are often moved, copied, and

collected together, a new method is proposed for embedding invisible watermarks into slide

presentations for the purpose of source tracking by using blank space coloring and weighted

voting techniques. Finally, via rich media such as drawings and images contained in Microsoft

Office documents, two data hiding methods are proposed, with the first using the different

nested grouping relationships of objects to embed information in Microsoft Visio drawings,

and the second method using a new generic approach of compound one-to-one mappings to

embed completely-removable visible watermarks into images. The latter method was shown

to be able to embed opaque monochrome watermarks as well as translucent full color visible

watermarks, which is the first in publications to the best of the author’s knowledge.

Experimental results are included to demonstrate the feasibility of all the proposed methods.

v

Acknowledgements

I would like to express my sincere appreciation to my advisor, Professor Wen-Hsiang

Tsai, for his patience and kind guidance throughout the course of this dissertation study. I

would also like to acknowledge the very helpful comments and suggestions from the

members of the oral defense committee and also those from the reviewers for parts of this

dissertation that were submitted for journal publication. Thanks are also extended to the

colleagues in the Computer Vision Laboratory at National Chiao Tung University for their

valuable help and comments during this study.

I would also like to acknowledge the financial support received from the National

Science Council and the ZyXEL Scholarship, as well as the support from my current

employer, Google, during the course of this dissertation study.

Finally, I am so grateful to my parents, brothers, wife, and children for their love, support,

and endurance. This dissertation is dedicated to them.

vi

Table of Contents

摘 要 ... i

Abstract.. iii

Acknowledgements ...v

Table of Contents... vi

List of Tables ... ix

List of Figures..x

Chapter 1 Introduction...1

1.1 Scope of Data Hiding Research..1

1.2 Motivation of Study..4

1.3 Contributions of This Study..5

1.4 Dissertation Organization ...8

Chapter 2 Six Areas for Researches of Data Hiding via Office Documents and Surveys of

Related Studies ..9

2.1 Data Hiding via Texts ...9

2.2 Data Hiding via Text Formatting and Layout...11

2.3 Data Hiding via Multimedia Contents..12

2.4 Data Hiding via Multimedia Formatting and Layout ...15

2.5 Data Hiding via Auxiliary Data ..16

2.6 Data Hiding via Physical File Formats...17

2.7 Summary...18

Chapter 3 A New Steganographic Method for Data Hiding in Microsoft Word Documents by a

Change-Tracking Technique..19

3.1 Introduction ..19

3.2 Overview and Merits of Proposed Method...20

3.3 Proposed Message Embedding Process..23

3.4 Proposed Message Extraction Process ...27

3.5 Experimental Results..28

3.6 Security Considerations..32

3.7 Summary...33

Chapter 4 Quotation Authentication: A New Approach and Efficient Solutions by Data Hiding

and Cascade Hashing Techniques..36

4.1 Introduction ..36

vii

4.2 Overview of Proposed Method...38

4.3 Basic Signature Generation Techniques for Quotation Authentication......................40

4.4 Multi-Use Signatures Technique (MUST)..41

4.4.1 Generation of MUST Source and Quotation Signatures41

4.4.2 Verification of MUST Quotation Signatures ..42

4.4.3 Total Overhead Size of MUST..43

4.5 Tree Root Uni-Signature Technique (TRUST)...43

4.5.1 Generation of TRUST Source Signatures ...43

4.5.2 Generation of TRUST Quotation Signatures ..44

4.5.3 Verification of TRUST Quotation Signatures ...45

4.5.4 Total Overhead Size of TRUST ..46

4.6 Data Hiding Techniques for Quotation Authentication ..46

4.6.1 Quotation Authentication Add-in ..46

4.6.2 Integrated Authenticable-Quotation ..48

4.7 Summary...49

Chapter 5 Quotation Authentication and Content Authentication for Spreadsheet Documents51

5.1 Introduction ..51

5.2 Two-Dimensional Multi-Use Signatures Technique (2D-MUST)52

5.2.1 Generation of 2D-MUST Source Signatures...53

5.2.2 Generation and Verification of 2D-MUST Quotation Signatures.....................54

5.2.3 Total Overhead Size of 2D-MUST..55

5.3 Two-Dimensional Tree Root Uni-Signature Technique (2D-TRUST).......................56

5.3.1 Generation of 2D-TRUST Source Signatures ...56

5.3.2 Generation of 2D-TRUST Quotation Signatures ..57

5.3.3 Verification of 2D-TRUST Quotation Signatures...58

5.3.4 Total Overhead Size of 2D-TRUST ..60

5.3.5 Including Column and Row Headers in Quotations..60

5.4 Authentication of Spreadsheet Contents...60

5.5 Summary...63

Chapter 6 Invisible Watermarking in Slides of Presentations by Blank Space Coloring and

Weighted Voting of Partial Sequences...64

6.1 Introduction ..64

6.2 Overview of Proposed Method...66

6.3 Proposed Watermark Embedding Process ..68

viii

6.4 Proposed Weighted Voting of Partial Sequences Technique for Watermark Extraction69

6.5 Proposed Watermark Extraction Process..72

6.6 Embedding Capacity and Expected Reconstruction Coverage73

6.7 Robustness of Proposed Method against Common Operations75

6.8 Experimental Results..76

6.9 Summary...80

Chapter 7 Data Hiding in Graphic Drawings by Structures of Object Groupings82

7.1 Overview of Proposed Method...82

7.2 Proposed Data Embedding Process ..84

7.3 Analysis of Data Embedding Capacity...86

7.4 Proposed Data Extraction Process..87

7.5 Possible Data Hiding Applications ...88

7.6 Experimental Results..89

7.7 Summary...91

Chapter 8 Generic Lossless Visible Watermarking − A New Approach....................................92

8.1 Introduction ..92

8.2 Proposed New Approach to Lossless Visible Watermarking......................................92

8.2.1 Reversible One-To-One Compound Mapping ..93

8.2.2 Lossless Visible Watermarking Scheme ..94

8.2.3 Security Considerations...97

8.3 Lossless Visible Watermarking of Opaque Monochrome Watermarks98

8.4 Lossless Visible Watermarking of Translucent Color Watermarks100

8.5 Two-Fold Monotonically Increasing Compound Mapping103

8.6 Experimental Results..106

8.7 Summary...112

Chapter 9 Conclusions and Suggestions for Future Works ...113

Appendix A Programmatic Manipulation of Office Documents ...116

Appendix B Proofs of Theorems and Lemmas in Section 8.5 ..118

References ...120

Vitae...129

List of Publications..130

ix

List of Tables

Table 1.1. A summary of requirements for different data hiding applications.2

Table 3.1. Occurrence probabilities and Huffman codes for the entries in an example

degeneration set of “travel.” ..26

Table 3.2. Summary of common English errors database used as Rd..28

Table 3.3. Occurrence probabilities and Huffman codes of “study” and its synonyms.29

Table 3.4. Experimental results of message embedding capacity and increase in file size.......30

Table 4.1. TRUST tree of hash values for five sentences..44

Table 4.2. Summary of total overhead sizes and signature sizes of the proposed techniques...50

Table 5.1. Hash values selected in the 2D-TRUST complementary hash set when quoting a

cell s3, 2 from a 5×5 spreadsheet. ...58

Table 5.2. Summary of signature sizes and total overhead sizes of the proposed techniques...63

Table 6.1. Characteristics of presentations used in the experiments. ..77

Table 7.1. Distances between all pairs of objects in Figure 7.3. ...85

Table 7.2. Experimental results of embedding capacity for different drawings........................91

Table 8.1. Characteristics of watermarks A through G used in experiments.108

Table 8.2. Comparison of reversible visible watermarking techniques................................... 111

Table 9.1. Summary of proposed data hiding methods in this dissertation study.................... 115

x

List of Figures

Figure 2.1. A spam-like message generated with spammimic [16] with the secret message

“Hello NCTU!” embedded. ...10

Figure 2.2. Illustration of slide designs. (a) A slide from a tutorial from Xilinx, Inc. with black

texts on white background; (b) the slide in (a) with a slide design template of bluish

background applied..12

Figure 2.3. An image of Lena with a translucent full-color watermark “Globe” superimposed.14

Figure 2.4. A floor plan diagram of an office composed of different objects from stencils......16

Figure 3.1. Screenshot of Microsoft Word in a case of collaborative document authoring.20

Figure 3.2. Author A sends a stego-document S with embedded message M to a recipient B

after embedding M into a cover document D to form S that appears to be the

collaborative product of multiple authors A and A'. ..21

Figure 3.3. Huffman tree constructed by Algorithm 3.2 for the entries listed in Table 3.1.......26

Figure 3.4. Extracts of stego-documents produced using the proposed method with databases

1 and 3. ..34

Figure 3.5. Extracts of stego-documents produced using the proposed method with databases

1 and 2. ..35

Figure 4.1. Illustration of processes performed by and information passed between a source

author, one or more document authors, and a document reader.39

Figure 4.2. A screenshot of Microsoft Word with the prototype add-in installed, which has

added buttons in the toolbar for the purpose of quotation authentication.48

Figure 5.1. Two-dimensional quotation in a spreadsheet document. (Source: Google Investor

Relations)...51

Figure 5.2. Illustration of cascaded hash value calculation for a cell sx, y in 2D-MUST.54

Figure 5.3. Experimental result of spreadsheet authentication using an add-in that implements

the proposed 2D-MUST...61

Figure 6.1. Illustration of slide designs. (a) A slide from a tutorial from Xilinx, Inc. with black

texts on white background; (b) the slide in (a) with a slide design template of bluish

background applied..65

Figure 6.2. Illustration of watermark image embedding using blank space coloring.67

Figure 6.3. Two series of watermark logos with different percentages of blocks reconstructed.68

Figure 6.4. Illustration of watermark reconstruction coverage. (a) Three watermarks each with

a recovered percoverage of 50%; (b) the three watermarks with 80% coverage.75

xi

Figure 6.5. An experimental result of file format conversion. (a) Two slides in Microsoft

PowerPoint. (b) The two slides after file format conversion from PPT to ODP and

back..77

Figure 6.6. Plot of average correct watermark pixel extractions from presentations constructed

from randomly drawn slides. ...78

Figure 6.7. An experimental result of the three extracted watermarks with N ranging from 3 to

10. ..79

Figure 6.8. Normalized plot of average correct watermark pixel extractions from presentations

constructed from randomly drawn slides. ...80

Figure 7.1. A floor plan diagram of an office composed of different objects from stencils......82

Figure 7.2. Illustration of object groupings for data embedding in a drawing.83

Figure 7.3. A simple drawing used as an example for embedding by object grouping.............85

Figure 7.4. Resulting structure of object groupings of Figure 7.3 after embedding 1010010011.

...86

Figure 7.5. A network layout diagram used in the experiments (source: UCF).90

Figure 8.1. An illustration of mapping the center pixel of a 3×3 image using Algorithm 8.1.

Only the mapping of the center pixel is shown for clarity; the east and south pixels are

depicted as TBD (to be determined) in W. ..96

Figure 8.2. An illustration of pixels in a watermark. (a) A monochrome watermark. (b) Area of

P (yellow pixels). (c) Area of P' (yellow pixels). ..99

Figure 8.3. Experimental results of monochrome watermark embedding and removal. (a)

Image Lena. (e) Image Sailboat. (b) and (f) Watermarked images of (a) and (e),

respectively. (c) and (g) Images losslessly recovered from (b) and (f), respectively,

with correct keys. (d) and (h) Images recovered from (b) and (f) with incorrect keys.100

Figure 8.4. Watermarked image of Lena with a translucent image of “Globe” superimposed

using alpha blending..101

Figure 8.5. Illustration of pixel processing order in watermark embedding and removal. (a)-(d)

Intermediate results of image watermarking when 25%, 50%, 75%, and 100% of the

watermark pixels have been processed, respectively. (e)-(h) Intermediate results of

image recovery when 25%, 50%, 75%, and 100% of the watermark pixels have been

recovered, respectively. ...103

Figure 8.6. Test images used in experiments: (a) Lena; (b) Baboon; (c) Jet; (d) Sailboat; (e) A

satellite image of NCTU campus; and (f) Pepper..107

Figure 8.7. Watermarks A through G used in experiments..107

xii

Figure 8.8. Average values of PSNRW obtained after watermark embedding and average

values of PSNRR and PSNRQ obtained after illicit image recoveries. (a) Results yielded

by parameter randomization. (b) Results yielded by mapping randomization............109

Figure 8.9. Watermarked images, licitly recovered images, and illicitly recovered images.

(a)-(c) Watermarked images. (d)-(f) Licitly recovered images from images (a)-(c),

respectively. (g)-(i) Illicitly recovered images from images (a)-(c), respectively. 110

Figure A.1. Code excerpt demonstrating the manipulation of a Microsoft Word document

programmatically. .. 117

1

Chapter 1

Introduction

1.1 Scope of Data Hiding Research

Data hiding is the study of embedding data into various media such that the information

is accessible for later uses. The media into which data are embedded are called cover media
1
,

such as cover documents, cover images, and cover videos, and the resulting media with the

data embedded are usually called stego-media
2
, such as stego-documents, stego-images, and

stego-videos. The data embedded into various media can be used for various applications,

including covert communication, copyright protection, data association, media authentication,

and so on [1]. The above-mentioned applications are described in the following.

1. Covert communication – data is hidden imperceptibly into a cover medium for the

purpose of secret communication. For example, a sender may wish to transmit a secret

message to a receiver secretly and so employs appropriate data hiding techniques to

embed the message into a stego-medium. In this way, only the intended receiver can

identify and retrieve the data hidden in the stego-medium. Data hiding for the purpose

of covert communication is sometimes called steganography. Contrast to data

protection techniques such as encryption that prevents observers from knowing the

secret being transmitted, the goal of steganography is to conceal the very act of secret

message transmission from outside observers.

2. Copyright protection – the data embedded into a cover medium is used to identify the

copyright holder of the medium. The data embedded is usually called a watermark, and

can be visible or invisible. A visible watermark advertises the copyright holder directly

on a stego-medium, and can deter attempts of copyright infringements as a result,

though at the cost of degrading the quality of the cover medium. On the other hand, a

cover medium embedded with an invisible watermark is usually of a higher quality,

but the copyright holder will need to prove the presence of the invisible watermark

after the act of copyright infringement. In both the visible and invisible cases, the

embedded watermark should be robust to removal attacks.

1
 Cover media can also be called host media or carrier media in the literature.

2
 Stego-media is often called watermarked media if the data embedding is for the copyright protection purpose.

2

3. Data association – the data embedded into a cover medium is the related information,

such as the metadata, origin, and change history of the medium. Data hidden in this way

facilitate the transmission and storage of the stego-medium along with the related

information. It is desirable for the embedded data to be resilient against modifications

to the stego-medium by programs unaware of the data association application.

4. Media authentication – the data embedded in a cover medium is used to verify the

fidelity or the integrity of the stego-medium. This is important when a stego-medium

needs to be transmitted over an insecure channel, where an attacker can alter the

contents of the stego-medium.

A summary of the requirements for the above-mentioned data hiding applications is

shown in Table 1.1 below. Is it noted that even if an attacker is not confident in the presence

of hidden data in the covert communication application, a cautious attacker (often called an

active warden in the literature) can nonetheless choose to perform small-scale transformations

on all passing media. In this way, if there were no hidden information in the media, the

transformations would be harmless to the communicating parties in normal circumstances, but

if there were hidden information embedded, such transformations may be able to destroy the

embedded data.

Table 1.1. A summary of requirements for different data hiding applications.

Removal robustness

Data hiding application Imperceptibility

Deliberate Non-deliberate

Covert communication Y *

Copyright protection Y Y

Data association Y

Media authentication N N

In this study we investigate data hiding techniques for office documents, which are

digital files used by the collection of programs in office software suites such as Microsoft

Office and OpenOffice, with more emphasis on Microsoft Office documents. A number of

3

office document types are in popular use today. The popularity of office documents is largely

due to the versatile nature of the documents and the wide spread installment of office software

suites. Some of the most common office document types are described in the following.

1. Word processing documents – these are very generic documents that can be used for

all sorts of printable materials. It can be used, for example, in businesses for preparing

letters, contracts, and reports, or in colleges for homework and publications. Such

documents are most commonly processed using the applications “Microsoft Word”

and “OpenOffice Writer”, and are mostly commonly saved in the proprietary DOC

format, the Office Open XML format (with the file extension “.docx”), or the

OpenDocument text format (with the file extension “.odt”). Today’s word processors

allow text to be freely styled, and offer many productivity enhancing tools such as

automatic detection or correction of typographical, spelling, or grammatical errors;

automatic generation of tables of contents and lists of tables and figures; style

management for format consistency; change tracking and commenting for multi-author

collaboration; and so on.

2. Spreadsheet documents – these contain sheets of two-dimensional arrays of cells that

simulate accounting worksheets. Such documents are most commonly used for

numeric calculations or visualization of numerical values, and are mostly commonly

processed using the applications “Microsoft Excel” (most commonly saved with the

file extensions “.xls” or “.xlsx”) and “OpenOffice Calc” (saved with file extension

“.ods”).

3. Slide presentation documents – these contain printable or projectable slides that can be

used to aid a presentation. Such documents usually contain rich colors, animations, and

various multimedia such as videos, images, drawings, or audios to emphasis the key

points delivered via short sentences or phrases in the slides. The most commonly used

presentation editing and viewing applications are “Microsoft PowerPoint” (which

typically saves presentations with the file extensions “.ppt”, “.pptx”, or “.pps”) and

“OpenOffice Impress” (which typically saves presentations with the file extension

“.odp”).

4. Vector graphics documents – these are created using applications such as “Microsoft

Visio” (most commonly saved with the file extension “.vsd”) and “OpenOffice Draw”

(saved with file extension “.odg”). Drawing applications typically supply templates

containing various graphical objects as well as intelligent connectors connecting the

4

objects to allow efficient drawing of diagrams such as flowcharts and system

architectures.

In the following sections, the motivation of this study is given in Section 1.2, followed

by the contributions of this study in Section 1.3. Finally, the organization of this dissertation is

described in Section 1.4.

1.2 Motivation of Study

Microsoft Office documents and other office documents are widely used in industry,

government, and academia. Searching in Google reveals that over one hundred million of

such documents are accessible online. Despite the popularity of office documents, currently

there are few data hiding researches that address such documents compared to other media

such as images, videos, and audios [2]-[6]. One reason is that earlier office documents are in

proprietary binary formats. The only mention of data hiding in office documents known to the

author that predates our study [7] did not attempt to understand the document format but

instead just utilized the slack space at the end of the file or scanned in the binary file for

consecutive bytes of 00’s or FF’s and replaced them with the intended payload for the purpose

of covert communication.

Another reason why there is relatively little research in data hiding via office documents

is that office documents can be extremely complex and can contain an assortment of

heterogeneous, rich contents. The Office Open XML file format, for example, is a four-part

ISO/IEC 29500:2008 standard [8] that contains 5560, 129, 40, and 1464 pages, respectively.

In this study, we focus on techniques that manipulate office documents at the logical

level instead of modifying the underlying physical file formats. Such an approach is more

generic and simpler, such that the proposed techniques can be applied to various office

document formats. Also, data embedded into an office document in this way can often survive

common editing operations as well as file format conversions. Details of accessing and

manipulating office documents in the logical way can be found in Appendix A.

For data hiding to be effective, the characteristics of a cover medium must be taken into

account so that the embedded data can be suitably blended with the cover medium for various

desired purposes. For example, embedding data into an image would require different data

hiding techniques than embedding data into an audio. Also, data hiding for different purposes

has different considerations and hence requires different data hiding techniques. An invisible

watermark embedded in a stego-image for the copyright protection purpose, for example,

5

should be robust against common image operations such as resizing, cropping, and format

conversion [9], [10]. On the other hand, data embedded for the purpose of media

authentication do not need to be resilient against such modifications.

Office documents have several characteristics that are unique compared to other media

such as images or videos, and require new techniques or approaches for effective data hiding.

One characteristic of office documents is that they are frequently processed and manipulated

by multiple parties. Examples of multi-party collaborations include workflows with office

documents as attachments; collaborative authoring of journal manuscripts; and filling-in of

forms in the office document formats. The collaborative nature of such use cases facilitates

the application of steganography since it is natural for office documents to be transmitted

between the collaborating parties. Data hiding applications such as data association and

content authentication are also important considerations in such collaborative cases. In this

dissertation study, we investigate data hiding techniques and their applications that take into

consideration the collaborative nature of office documents.

Another important distinction between office documents and other cover media is the

relative ease in copying, editing, and moving around parts of a document. This is especially

evident in, for example, slide presentations, where the ordering of slides can be easily

changed by drag-and-drop operations using a mouse. Also, it is common to compose a new

set of slides by copying slides from several previously-authored slide presentations. The ease

of reusing and manipulating portions of an office document poses challenges in copyright

protection, data association, and media authentication applications, which are investigated in

this study.

In summary, the goal of this research is to study the properties of office documents and

propose new data hiding techniques that are suitable for office documents. Studies of data

hiding via office documents are still few so far but are of great theoretical as well as practical

importance because office documents are very popular and are created, transmitted, and

consumed worldwide every day.

1.3 Contributions of This Study

In this study, we investigate and discuss the properties of office documents pertaining to

data hiding applications and identify regions of office documents that may be used for data

hiding applications. New techniques and approaches for hiding data via office documents are

then proposed with applications that range from covert communication, authentication, data

6

association, to copyright protection and for office document types that range from

word-processing documents, spreadsheets, slide presentations, to drawings (a summary of the

proposed methods can be found in Table 9.1 in the last chapter). In more details, the

contributions of this study are as follows.

1. The properties of office documents pertaining to data hiding applications are

investigated and six areas for researches of data hiding via office documents, including

data hiding via texts; data hiding via text formatting and layout; data hiding via

multimedia contents; data hiding via multimedia formatting and layout; data hiding via

auxiliary data; and data hiding via physical file formats, are identified and discussed.

2. A new approach to covert communication is proposed by using change-tracking

information, where the data embedding is disguised such that the stego-document

appears to be the product of a collaborative writing effort. Text segments in a document

are degenerated, mimicking to be the work of an author with inferior writing skill, with

the secret message embedded in the choices of degenerations. The degenerations are

then revised with the changes being tracked, making it appear as if a cautious author is

correcting the mistakes. The change-tracking information contained in the

stego-document allows the original cover, the degenerated document, and hence the

secret message, to be recovered. It is proposed to use the Huffman coding technique for

determining the choices of degeneration to make the method more innocuous, which is

important for the application of covert communication. Also, one of the strengths of

the proposed approach is that the extra change-tracking information added during

message embedding is vital in a normal collaboration scenario, and so hinders ignorant

removals by skeptics. Experimental results in Microsoft Word are presented to

demonstrate the feasibility of the proposed method.

3. The problem of quotation authentication is investigated in this study to tackle the

problem that contents in a document are often cited and included in another document

and there is a need to authenticate the fidelity and source of the cited content. A new

approach is proposed in this study that combines data hiding techniques with two

different hash value processing techniques – the Multi-Use Signatures Technique

(MUST) and the Tree-Root Uni-Signature Technique (TRUST) – that can efficiently

verify the fidelity of cited contents in a document. Experimental results in Microsoft

Word are presented to demonstrate the feasibility of the proposed method.

4. The problem of two-dimensional quotation authentication is described in this study.

Such quotations can come from tables in a Word document or spreadsheets from Excel

7

documents. Two two-dimensional hash value processing techniques 2D-MUST and

2D-TRUST are proposed that allows efficient generation and verification of signatures

required for authentication of two-dimensional quotations. Furthermore, it is shown

that the 2D-MUST can be used for effective authentication and modification detection

of spreadsheet content, and experimental results in Microsoft Excel are presented to

demonstrate the feasibility of the proposed technique.

5. A new method is proposed for embedding invisible watermarks into office documents

to address the characteristic that contents within office documents are often moved,

copied, and collected together. In more detail, a watermark image is embedded

imperceptibly into the slides of a slide presentation by partitioning the watermark into

blocks and embedding them into the space characters existing in the slides in a repeating

pseudo-random sequence. The embedding is achieved by changing the colors of the

space characters into new ones which are results of encoding the contents and indices of

the blocks. The embedded watermark is resilient against many common modifications

on slides, including copying and pasting of slides; insertion, deletion and reordering of

slides; slide design changes; and file format conversions. A security key is used during

embedding and extraction of a watermark, such that if a presentation contains slides

taken from presentations watermarked with different security keys, each watermark can

be extracted reliably in turn with the respective key using a weighted voting technique

also proposed in this study.

6. Data hiding in the drawings and images that can be embedded in office documents is

also investigated in this study and two methods are proposed for drawings and images,

respectively. The first proposed method embeds information into the structure of object

groupings in a drawing. The objects in a drawing are grouped skillfully according to the

data being embedded and the geometrical relationship between the objects. The

groupings of objects in the stego-drawing are visually imperceptible, and the resulting

stego-drawing is robust against translation, scaling, and rotation attacks. The proposed

method can be used for data hiding applications such as drawing authentication and

covert communication. Experiments conducted on Microsoft Visio drawings confirm

the feasibility of the proposed method.

7. A new approach to lossless reversible visible watermarking in images is also proposed,

in which deterministic one-to-one compound mappings of the pixel values in an image

to those of a watermarked image is performed in such a way that the mappings tend to

yield pixel values close to those of the desired visible watermark, making the resulting

8

visible watermark more distinctive. The compound mappings are proved reversible, to

allow lossless recovery of the original image from the watermarked image. Different

types of visible watermarks can be embedded as applications of the proposed generic

approach, and two applications have been described where opaque monochrome

watermarks as well as translucent color watermarks are embedded. Security protection

measures by parameter and mapping randomizations have also been proposed to deter

attackers from illicit image recoveries. Experimental results proving the effectiveness of

the proposed approach as well as the invariability of the method when the images are

embedded into Microsft Word or PowerPoint documents are included.

1.4 Dissertation Organization

In the remainder of this dissertation, the six regions for data hiding in office documents

are explored in Chapter 2, along with surveys of related studies. In Chapter 3, the proposed

method for data hiding via change-tracking information and Huffman coding is described. In

Chapter 4, the new proposed approach to text quotation authentication is described, while the

two-dimensional case is presented in Chapter 5. In Chapter 6, the proposed method for

embedding invisible watermarks in slides of a presentation is described. In Chapter 7, the

proposed method for hiding data in the structure of drawing object groupings is described. In

Chapter 8, the proposed new approach for embedding removable visible watermarks into

images is described. Finally, in the last chapter, conclusions of this study and some

suggestions for future research are included.

9

Chapter 2

Six Areas for Researches of Data Hiding via Office

Documents and Surveys of Related Studies

Office documents are very versatile and contain many types of contents, including rich

text, images, drawings, videos, or even other office documents. We describe below six

research directions using office documents for data hiding applications, and describe related

works that can be used for hiding in the different regions.

2.1 Data Hiding via Texts

Most office documents contain texts, and so data hiding techniques such as linguistic

steganography [11] that apply to the text itself can be used for data hiding via office

documents. One approach to data hiding via texts is to generate the text content directly based

on the data to be embedded, which is sometimes called text mimicking. By storing the text

generated in such a way in an office document, the document can be used for the covert

communication purpose because the intended receiver can easily extract the text contained

within the office document and decode the text to extract the secret message contained

therein.

A number of methods have been proposed in the past for text mimicking, such as using

probabilistic context-free grammars [12], [13] for generating grammatically correct (though

sometimes illogical) texts; or using several predefined sentence structures with swappable

verbs, adverbs, adjectives, and other parts of speech [14]-[15] for embedding information.

Figure 2.1 shows an example of a message generated by spammimic [16], a web-based

steganography tool that uses context-free grammars to generate spam-like texts, with the

secret message “Hello NCTU!” embedded.

Another approach to data hiding via texts is to apply semantically equivalent

transformations of the text based on the embedded message. Examples include replacing

words with their synonyms [15], [17]; performing syntactic transformations [18] like

passivization (rendering a sentence into the passive form) and clefting (changing a simple

10

sentence into a complex sentence with a main clause and a dependent clause)
3
 [19] on a

sentence’s structure with little effect on its meaning; or performing one-way or multi-way
4

machine translations on a text [20]-[21].

Dear Friend , Especially for you - this breath-taking

news . If you are not interested in our publications

and wish to be removed from our lists, simply do NOT

respond and ignore this mail . This mail is being sent

in compliance with Senate bill 1916 ; Title 7 ; Section

302 . THIS IS NOT MULTI-LEVEL MARKETING ! Why work

for somebody else when you can become rich as few as

33 days ! Have you ever noticed society seems to be

moving faster and faster & nobody is getting any younger

! Well, now is your chance to capitalize on this !

WE will help YOU increase customer response by 160%

plus process your orders within seconds ! You can begin

at absolutely no cost to you ! But don't believe us

! Ms Jones who resides in New Hampshire tried us and

says "My only problem now is where to park all my cars"

! We are licensed to operate in all states ! We beseech

you - act now . Sign up a friend and your friend will

be rich too ! Thank-you for your serious consideration

of our offer !

Figure 2.1. A spam-like message generated with spammimic [16] with the secret message

“Hello NCTU!” embedded.

A third approach to data hiding via texts is to use invisible characters or make

small-scale modifications to the text so that the change is not noticeable. Examples of this

approach include adding or removing spaces before or after punctuations and symbols; using

two spaces instead of one and vice versa; introducing occasional typos or misspellings [22];

inserting non-visible special characters such as unused ASCII codes [23]-[24], directional

formatting codes, or Unicode joiner characters [25]; or replacing characters by identically or

similarly looking alternatives such as replacing a space by its non-breaking version [26] or

using alternative character sequences that produce identical rendering [27].

As mentioned previously, it is possible to apply the aforementioned techniques for data

hiding via office documents. The feasibility of this approach is demonstrated in Chapter 3,

3
 An example of passivization is to change the sentence “Renee gave a speech” into “A speech was given by

Renee,” and an example of clefting is to change the sentence “We are looking for Biwi” into “It is Biwi whom

we are looking for.”

4
 For example, translating a text from English to Chinese and then back to English, or from English to Japanese,

to Korean, and then to French.

11

where the text in a Microsoft Word document is modified in a certain way using some of the

techniques described above for the steganography application. In addition, since techniques

of data hiding via texts sometimes produce illogical texts that are susceptible to human

inspection, it is proposed to leverage the collaborative nature of office document editing to

make covert communication more effective in face of steganalysis [28]-[30] and active

warden attacks [31], which are discussed in more detail in Chapter 3.

2.2 Data Hiding via Text Formatting and Layout

Office documents such as Microsoft Word documents allow very flexible formatting and

layout of texts, including the precise controllability of text font sizes, colors, cases, styles, and

effects; selection of various list and numbering options; flexible adjustability of inter-word,

inter-line, and inter-paragraph spacings as well as line, tab, and paragraph indentations;

setting of page and section margins; and so on.

It is possible to embed information into an office document by making small adjustments

to the above-mentioned attributes in ways similar to those proposed for other media types. For

example, Maxemchuk et al. [32]-[33] proposed to shift word and line spacings slightly (such

as by 1/150 or 1/300 inch) in a document image to embed information; Zhong et al. [34]

modified the spacing between characters within a line in a PDF to embed data; Villán et al [35]

proposed to use color quantization to store data in electronic or printed documents; and

Walton [36] described a technique of replacing the least-significant bits (LSBs) of the pixels

of a cover image to embed information. Specifically, instead of shifting word or line spacings

in a text image, we can modify the word or line spacing attributes in an office document

slightly to embed information. And instead of changing the LSB values of pixel values, we

could instead change the LSB values of the text color values in an office document.

Figure 2.2 shows an example of applying the technique of LSB replacement on text

colors in an office document, where the word “Partial” in the first bullet-point in a slide is

changed from completely black to a very dark gray. Such a modification is imperceptible, as

seen in the left slide in the figure. The right slide in Figure 2.2 shows the result of applying

automatic style formatting to the left slide, where the white background is changed into a dark

blue one, and the black text color is changed into white. In this case, the data previously

embedded using LSB replacement is still intact since the color remains unchanged as dark

gray. However, the color modification is no longer imperceptible.

12

The challenge of using LSB replacement for data hiding via office documents in the

presence of automatic style formatting as well as other attacks such as copying-and-pasting of

contents are discussed in more detail in Chapter 6, and a novel technique is proposed for

effective data hiding in slide presentations.

Digital Filtering - 3 - 11 © 2003 Xilinx, Inc. All Rights Reserved For Academic Use Only

= Sign Extension

-23 22 21 20

C0 = 1 0 0 1 (-7)
X0 = 0 1 1 1 (7)X

(1 0 0 1
(1 0 0 1
(1 0 0 1
(0 0 0 0

1 1 0 0 1 1 1 1 (-49)

-23 22 21 20

C1 = 0 1 1 0 (6)
X1 = 0 1 0 1 (5)X

0 1 1 0)
0 0 0 0)

0 1 1 0)
0 0 0 0)

0 0 0 1 1 1 1 0 (30)

1 1 1 1
1 0 0 1

1 1 1 1
0 0 0 0

= 1 1 1 0 1 1 0 1

+
+
+
+

(-1)
(-14)
(-4)
(0)
(-19)

(Serial-Data / Tap-Parallel Multiply)

Distributed Arithmetic
for a 2-Tap Filter

• Partial products of equal weight are added together before being

summed to next higher partial product weight

• Create look-up table of summed partial products

(a)

= Sign Extension

-23 22 21 20

C0 = 1 0 0 1 (-7)
X0 = 0 1 1 1 (7)X

(1 0 0 1
(1 0 0 1
(1 0 0 1
(0 0 0 0

1 1 0 0 1 1 1 1 (-49)

-23 22 21 20

C1 = 0 1 1 0 (6)
X1 = 0 1 0 1 (5)X

0 1 1 0)
0 0 0 0)

0 1 1 0)
0 0 0 0)

0 0 0 1 1 1 1 0 (30)

1 1 1 1
1 0 0 1

1 1 1 1
0 0 0 0

= 1 1 1 0 1 1 0 1

+
+
+
+

(-1)
(-14)
(-4)
(0)
(-19)

(Serial-Data / Tap-Parallel Multiply)

Distributed ArithmeticDistributed Arithmetic
for a 2for a 2--Tap FilterTap Filter

�� PartialPartial products of equal weight are added together before products of equal weight are added together before

being summed to next higher partial product weightbeing summed to next higher partial product weight

�� Create lookCreate look--up table of summed partial productsup table of summed partial products

(b)

Figure 2.2. Illustration of slide designs. (a) A slide from a tutorial from Xilinx, Inc. with black

texts on white background; (b) the slide in (a) with a slide design template of

bluish background applied.

2.3 Data Hiding via Multimedia Contents

Office documents can contain an assortment of multimedia contents such as drawings,

images, videos, and audios. Office software suites that are in common use today typically

cannot manipulate audio or video contents, so these media are often stored as standalone files

and an office document simply stores a reference to the external file. On the other hand,

drawings and images are usually embedded directly into an office document for ease of

manipulation, transmission, and storage. It is thus possible to achieve data hiding via office

documents by applying existing data hiding techniques for drawings and images and then

embed them into an office document.

For example, since the embedding of text images such as hand-written signatures or

specially-styled headlines into an office document is a plausible scenario, we can apply

techniques proposed for covert communication via text images [37]-[39] on these embedded

images for the purpose of conveying a secret message via office documents. Such an approach

is desirable as the sending of a hand-written signature by itself is relatively improbable

compared to the case of embedding it in an office document. Also, steganalysis of a text

13

image inside an office document is computationally more expensive than processing a

stand-alone text image.

Compared to the cases of embedding text images, it is more common to embed various

color images into an office document such as a slide presentation to illustrate or emphasize

the key points mentioned in the document. One can thus use techniques proposed for

embedding secret information into color images [40], [41] for the steganography application

using a similar method as that mentioned previously. One may also use techniques proposed

for embedding watermarks into images [42]-[48] for the copyright protection application by

embedding watermarked images into an office document.

Digital watermarking methods for images are usually categorized into two types:

invisible and visible
5
. The first type aims to embed copyright information imperceptibly into

host media such that in cases of copyright infringements, the hidden information can be

retrieved to identify the ownership of the protected host. It is important for the watermarked

image to be resistant to common image operations to ensure that the hidden information is

still retrievable after such alterations. Methods of the second type, on the other hand, yield

visible watermarks which are generally clearly visible after common image operations are

applied. In addition, visible watermarks convey ownership information directly on the media

and can deter attempts of copyright violations.

Embedding of watermarks, either visible or invisible, degrades the quality of the host

media in general. A group of techniques, named reversible watermarking [49]-[59], allow

legitimate users to remove the embedded watermark and restore the original content as needed.

However, not all reversible watermarking techniques guarantee lossless image recovery,

which means that the recovered image is identical to the original, pixel by pixel. Lossless

recovery is important in many applications where serious concerns about image quality arise.

Some examples include forensics, medical image analysis, historical art imaging, or military

applications.

Compared with their invisible counterparts, there are relatively few mentions of lossless

visible watermarking in the literature. Several lossless invisible watermarking techniques have

been proposed in the past. The most common approach is to compress a portion of the original

host and then embed the compressed data together with the intended payload into the host

[52]-[54]. Another approach is to superimpose the spread-spectrum signal of the payload on

5
 There is also the “cocktail” watermarking scheme [48] that embeds both types of watermarks simultaneously

into an image, which makes it harder for an attacker to remove both types of watermarks.

14

the host so that the signal is detectable and removable [42]. A third approach is to manipulate

a group of pixels as a unit to embed a bit of information [55]-[57]. Although one may use

lossless invisible techniques to embed removable visible watermarks [51], [58], the low

embedding capacities of these techniques hinder the possibility of implanting large-sized

visible watermarks into host media.

As to lossless visible watermarking, the most common approach is to embed a

monochrome watermark using deterministic and reversible mappings of pixel values or DCT

coefficients in the watermark region [50], [59]. Another approach is to rotate consecutive

watermark pixels to embed a visible watermark [59]. One advantage of these approaches is

that watermarks of arbitrary sizes can be embedded into any host image. However, only

binary visible watermarks can be embedded using these approaches, which is too restrictive

since most company logos are colorful.

In Chapter 8, we describe a new method for lossless visible watermarking which allows

the embedding of different types of visible watermarks into cover images, including the

embedding of non-uniformly translucent full-color ones such as that illustrated in Figure 2.3

below. Such watermarks provide significantly better advertising effects than traditional

monochrome ones when the images are embedded within office documents.

Figure 2.3. An image of Lena with a translucent full-color watermark “Globe” superimposed.

15

2.4 Data Hiding via Multimedia Formatting and Layout

In addition to hiding data inside the multimedia content themselves, it is also possible to

leverage the formatting or the layout of the multimedia content embedded in an office

document for data hiding applications. For example, images are often created in external

programs and then embedded in office documents. For convenience, office application suites

often allow these images to be adjusted, including their brightness and contrast values, size of

appearances, amounts of cropping for the four edges, and positioning properties. Many of

these formatting or layout properties may be used for various data hiding applications.

On the other hand, drawings are often created inside an office document using the office

application software. Also, such drawings are usually vector drawings that contain objects of

different shapes and sizes with uniform or gradient fills. Data hiding in vector drawings is

comparatively less studied compared to data hiding in images, due to the relatively low

information content in such a kind of media that can be manipulated.

Data hiding in a vector drawing is most commonly achieved by altering the geometry or

positioning of the shapes in the drawing to embed data, the manipulation of which can be

done in the spatial domain or in one of the transform domains such as DFT, DWT, and DCT

[60]-[66]. Kwon et al. [61] embedded invisible watermark signals into lines, arcs, and circles

in a CAD drawing by modifying their lengths, angles, and radii, respectively. Detection of the

watermark, however, requires the use of the original drawing. Solachidis and Pitas [62]

achieved blind watermark detection by modifying the coordinates of the vertices in a

polygonal line using Fourier descriptors. The embedded watermark is resilient to scaling,

rotation, and translation attacks, but vulnerable to distortion attacks. The method was later

enhanced by Doncel et al. [63]. Im et al. [64] proposed the use of wavelet descriptors for

embedding watermarks that are robust against global and local geometrical distortions.

It is noted that techniques that manipulate the internal coordinates of a shape itself

cannot be applied to drawings such as flowcharts, network topologies, floor plans, and circuit

diagrams, because objects in these diagrams come from stencils. Figure 2.4 shows an example

of a floor plan drawing created in Microsoft Visio, where the shapes representing desks,

chairs, servers, walls, doors, etc. all come from standard stencils, and cannot be individually

altered. In Chapter 7, we describe how to manipulate the way that drawing objects are

embedded in a Microsoft Visio drawing for data hiding applications.

Another technique for data hiding in multimedia formatting is that proposed by Yang and

Chen [67], where the animation effects of objects in a Microsoft PowerPoint presentation are

16

modified according to an animation codebook to embed a secret message for the

steganography application. The work was later extended by Jing et al. [68] by further

leveraging the animation timing effect variations for message embedding. One advantage of

these techniques and that proposed in Chapter 7 is that the main content in the document is

not distorted during message embedding. Another advantage is that these techniques can in

general be used in conjunction with each other to extend the data hiding capacity as well as

increase the complexity of steganalysis.

Figure 2.4. A floor plan diagram of an office composed of different objects from stencils.

2.5 Data Hiding via Auxiliary Data

Another approach to data hiding via an office document is simply to store information

inside document metadata [69] such as the author, organization, description, and keyword

fields that generally allow arbitrary information to be entered and stored. Liu et al. [70]

proposed to store a secret message inside the notes pages of a Microsoft PowerPoint

document. The embedding is made innocuous by generating the notes based on the sentences

contained in the slides.

A type of interesting auxiliary data that can be embedded into an office document is

program code, or macro [71]. Normal uses of macros can make document processing easier

and more efficient [72], but it can also be used for new approaches to active data hiding [73].

17

However, since malicious codes such as viruses and worms can easily be embedded into

macros, their uses are being limited by anti-virus software applications as well as the office

applications themselves.

The technique of embedding information inside document auxiliary data is suitable for

data hiding applications such as data association or media authentication (the technique is

used in Chapter 4 and Chapter 5 for exactly these purposes), but is in general undesirable for

applications such as copyright protection. This is because document metadata can usually be

modified or removed easily without affecting the main content of the document, insofar as

Microsoft has provided detailed how-to documents as well as tools [74], [75] for removing

information embedded in the metadata of an office document.

2.6 Data Hiding via Physical File Formats

Data hiding via the physical file format of office documents has gained research traction

recently, thanks to Microsoft’s adoption of standardized file formats and opening-up of

previous proprietary binary formats. One approach to data hiding via physical document files

is to utilize unused spaces such as slack spaces at the end of data streams in a file [76] or

redundant data that are created during consecutive file updates to a document [77], [78].

Another approach to data hiding via physical file formats is to exploit the

forward-compatible nature of the document format, that is, application software will typically

silently ignore unknown data blocks encountered while reading a file. Park et al. [79]

described how unknown parts and unknown relationships in the Office Open XML documents

(which is a zipped file containing XML documents and other supporting files
6
) can be used

for steganography applications.

Finally, since the standard-based office document formats such as Office Open XML and

OpenDocument are (compressed) XML files, one may use data hiding techniques proposed

for XML files on such documents. For example, the five techniques proposed by Inoue et al.

[80] for embedding data into XML documents may be applied to office documents for data

hiding applications: 1) alternate representation of empty elements; 2) use of white spaces in

tags; 3) utilizing the order of appearance of elements; 4) utilizing the order of appearance of

attributes; and 5) alternate representation of elements that can contain other elements.

6
 This is also true for the OpenDocument format.

18

2.7 Summary

In this chapter we presented six areas for data hiding via office documents and point out

related works that can be used for data hiding in each area. The first five areas (i.e., data

hiding in text, data hiding in text formatting and layout, data hiding in multimedia content,

data hiding in multimedia formatting and layout, and data hiding in auxiliary data) can be

regarded as data hiding in the logical regions of the office document. These techniques are in

general more resilient to common operations performed on office documents compared to

techniques that exploit the physical file format directly. One reason is that an office software

application has no obligation to preserve the content and structure of non-user-visible data.

This is especially true in file format conversions, such as converting a file between the Office

Open XML and the OpenDocument formats, where unknown and hence unconvertible

contents are simply discarded.

In the subsequent chapters, we focus on data hiding in the logical areas of the office

document (i.e., data hiding via texts, data hiding via text formatting and layout, data hiding

via multimedia contents, data hiding via multimedia formatting and layout, and data hiding

via auxiliary data) as opposed to hiding in the physical file formats. Experimental results are

included to demonstrate that the proposed data hiding techniques can indeed embed data that

survive attacks such as file format conversions and common editing operations. A summary of

the areas utilized for data hiding via office documents for each of the proposed method can be

found in Table 9.1 in the last chapter.

19

Chapter 3

A New Steganographic Method for Data Hiding in

Microsoft Word Documents by a Change-Tracking

Technique

3.1 Introduction

Office documents are sometimes written by multiple authors who may be physically

distant from each other. To facilitate communications between the authors during the

collaborative document authoring process, a word processor such as Microsoft Word can be

used to record the exact modifications performed by an author and embeds the ways of

revisions as change-tracking information into the document. From such change-tracking

information, one can discern the exact changes made by a prior author, and can recover a prior

version of the document if necessary.

Figure 3.1 shows an example of the collaborative document authoring process in

Microsoft Word, where an author is modifying a document and the word processor is tracking

the author’s modifications. The modifications by the author are clearly marked, with the

deleted words stroked-through and newly inserted text underlined
7
. Formatting changes are

displayed as comment bubbles at the right side margin of the page. Each collaborating author

can accept or reject each of the modifications made by another author. It is a common practice

for a collaborating author to review and then accept or reject each of the modifications in a

document first before performing his/her own corrections.

We have chosen Microsoft Word documents as cover media, which provide

change-tracking facilities to materialize the proposed method. Communications via Word

documents are commonplace for personal, business, or academic purposes nowadays, so

transmissions of such documents will not be under close scrutiny. We note that any other

document format that offer change-tracking facilities, such as OpenDocument, can also be

7
 There are commands and options to change the ways the modifications are displayed, for example showing

deletions and insertions as comment bubbles at the side or listing the modifications line-by-line in a separate

panel.

20

used for data hiding using the proposed method, though for simplicity we shall limit

subsequent discussions to Microsoft Word documents only.

Figure 3.1. Screenshot of Microsoft Word in a case of collaborative document authoring.

3.2 Overview and Merits of Proposed Method

In this chapter we describe the proposed technique to embed a secret message into a

Microsoft Word document by using change-tracking information. The basic idea of the

proposed method is to degenerate the contents of a cover document D to arrive at another

document D' by embedding a secret message M in D during the transformation process, as

shown in Figure 3.2. The degeneration process introduces errors into the degenerated

document D' (or performs semantically-equivalent transformations), such that the degenerated

document appears to be a preliminary work by a virtual author A', which is to be revised later

by another author A. A stego-document S is then produced from D' by revising D' back to D

with the changes being tracked, making it appear as if author A is correcting the errors in D'.

On the other hand, by making use of the change-tracking information in the stego-document S,

a recipient B of S can easily recover the original document D as well as the degenerated

document D', from both of which the embedded message can be extracted.

21

In more detail, the cover document D is partitioned into text segments d1, d2, …, and dn,

and each segment di is either kept unchanged or degenerated into a new version during the

degeneration stage to arrive at a degenerated document D' containing degenerated text

segments, d'1, d'2, …, d'n. The secret message is embedded during the degeneration process. In

the revision stage, each previously degenerated text segment d'i is revised back to di with the

revisions made being tracked using the “Track Changes” feature of Microsoft Word, resulting

in a final stego-document S consisting of revised text segments s1, s2, …, and sn. Here each si

includes its original text segment di and the associated change-tracking information.

As an example, suppose the text segment d5 = “travel” was degenerated to be d'5 =

“move,” the revised text segment s5 might be seen as “movetravel” in Microsoft Word. To an

outside observer, it appears as if A' has originally written “move,” but it was corrected to be

“travel” by A.

Figure 3.2. Author A sends a stego-document S with embedded message M to a recipient B

after embedding M into a cover document D to form S that appears to be the

collaborative product of multiple authors A and A'.

We describe below some advantages of the proposed approach over previous methods

such as those described in Section 2.1. First, communication via a Word document, especially

for collaborative authoring, is a common and natural scenario and hence will not be under

close scrutiny.

M

A'

M

D S D'

A B
S D'

Degenerate Revision

22

Next, the use of known cover media is in general impossible with most prior

steganography techniques because discrepancies between the cover medium and the

corresponding stego-medium are generally illogical. For example, if the synonym

replacement technique [15] was used on known cover text, an adversary can simply compare

the original and the stego-text and easily conclude that the synonym replacement technique

was used. On the other hand, the proposed method provides legitimate cases in using a known

cover document. For example, an already published document that is collaboratively authored

can be used as a cover document. The stego-document S appears to be the version of the paper

before change-tracking information removal and submission for publication. The transmission

of S by one of the collaborating authors to another author, a colleague, or a supervised student

of the author is reasonable – a colleague or a student receiving the document containing the

change-tracking information can learn of the mistakes made by a colleague and the

appropriate corrections thereof.

Linguistic steganography methods that generate the cover text directly, such as that

described by Wayner [12], do not have the known cover problem. However, the text produced

using these methods are often implausible. Similarly, linguistic steganography methods [11]

that manipulate cover text by performing semantically-equivalent transformations also often

produce contents that are easily detectable by a human reader. This is especially true if the

characteristics of the sender is known (e.g., if A is a well-known Professor), meaning the

content produced via text manipulations will easily cause suspicion to readers familiar with

the sender’s work. Many of the prior techniques, however, can be used to a greater effect in

the proposed method in degenerating a cover document D to another D'. The inconsistencies

and errors in D' are more tolerable in this setting because D' is disguised to be the draft work

of an inferior author.

Most of the proposed steganography techniques embed secret information in the

subliminal channel of a cover medium, that is, the unnoticeable, redundant, or useless parts of

a cover medium are manipulated to embed secret data. These techniques are vulnerable,

however, in the presence of active wardens, who are allowed to introduce subtle modifications

to passing stego-objects between two parties, as long as the modifications do not interfere

with normal communications of the parties. For example, if information is hidden in HTML

files by adding useless spaces and line breaks or special codes [81], [82], an active warden

can simply remove all redundant spaces and special codes in a passing HTML file because he

is certain that such actions will not affect normal communications, while any information

hidden that could have been in the file are removed. Similarly, if information is hidden in

23

HTML files by changing the case of letters in the tags [83], an active warden can simply alter

all letters in the tags to be lower case to remove all possible hidden communications. In

contrast, the proposed method embeds secret data in the change-tracking information, which

are vital in collaborative document authoring and cannot be tampered with ignorantly.

3.3 Proposed Message Embedding Process

During the proposed message embedding process, a subset of the text segments in the

cover document is degenerated. The indices of the chosen text segments are called the

embedding places, denoted as a set by P = {i1, i2, ..., iG}, where G is the number of text

segments degenerated and 1 ≤ ik ≤ n for 1 ≤ k ≤ G.

One type of degeneration is to introduce common spelling mistakes and typos. For

example, we may degenerate the words accidentally, influential, paid, remuneration, and

weather to accidently, influencial, payed, renumeration, and wether, respectively. Such errors

are commonly made by a careless author, making the existence of the errors and the

corrections of them in a stego-document innocuous.

Another type of degeneration is to make use of words frequently confused with each

other. Some examples of pairs of such words and their mixed-up versions are advice/advise,

aisle/isle, and complement/compliment. Specifically, we can degenerate, for example, a text

segment d = “advice” in the cover document into d' = “advise” by using the pair of words

advice/advise.

There are also many other types of degenerations, such as synonym replacements,

syntactic transformations, and other techniques from linguistic steganography studies

reviewed in Section 2.1. As mentioned previously, the use of existing degeneration techniques

in the proposed framework makes the resulting imperfect text less conspicuous.

In general, we define a degeneration set Rd to be the ordered set of possible degenerated

text segments for a text segment d. We use the notation Rd(j) to denote the j
th

 element in Rd,

and the notation Pr{Rd(j)} to denote the probability of occurrence for Rd(j). The probabilities

of occurrences are used during message embedding so that the system prefers common

substitutions and thus produces a more natural stego-document. It is noted that Pr{Rd(1)} +

Pr{Rd(2)} + … + Pr{Rd(c)} = 1, where c = |Rd|, the size of Rd.

With the previously-defined notations, the text segments di, i ∈ P, are individually

degenerated to be Rdi(ji), 1 ≤ ji ≤ |Rdi|, with the degeneration indices ji dependent on the

message M being embedded.

24

The message is treated as an m-bit bit string M = b1b2...bm, where each bi is a bit. A

message length header H is added in front of M and strings of random 0’s and 1’s are padded

to the end of M as necessary during the message embedding. That is, we embed into the cover

document the bit string M' = l1l2...lLb1b2...bmx1x2..., with H = [l1 l2 ... lL] being the message

length header with the value m, and xi being the padding bits that are selected randomly. The

communicating parties should agree on the magnitude of L beforehand, such that it can

accommodate the longest message that is to be communicated between the parties.

To face the common assumption made in covert communication that the data hiding

algorithms used may be known to the public, it is suggested to randomize the secret message

in advance by some symmetric encryption algorithm such as AES [84] before it is taken as

input to the proposed data embedding process.

The message bits are embedded using Huffman coding at each embedding place in a way

similar to that proposed by Wayner [13]. The previously-mentioned probabilities of

occurrences of Rd(j) are used to assign variable-length Huffman codes to different

degenerations. Shorter Huffman codes are assigned to degenerations with higher probabilities

of occurrences and longer ones to those with lower probabilities of occurrences. A

degeneration with a shorter Huffman code is more likely to match the message bits being

embedded and hence more possible to be selected as the choice of degeneration. The details

of the message embedding process are presented in the algorithm below.

Algorithm 3.1: embedding a message by text degeneration and revision.

Input: a cover document D partitioned into text segments d1, d2, ..., dn; a message to be

embedded M' = l1l2...lLb1b2...bmx1x2... = b'1b'2b'3…; and a secret key K.

Output: a stego-document S = {s1, s2, ..., sn}.

Steps:

1. Initialize the set P of embedding places to be empty.

2. Define an index p pointing to the position of the message bit b'p which we are currently

encoding, with initial p = 1.

3. Select an embedding place i randomly using K such that i is in the range of 1 ≤ i ≤ n and

not in the set P; and then add i to P.

4. Construct as follows a Huffman tree T for the text segment di with degeneration set Rdi

of size c.

25

a. Create leaf nodes n1, n2, …, nc, and assign a weight of wk = Pr{Rdi(k)} to node nk for

all 1 ≤ k ≤ c.

b. Initialize a set Q to contain all the leaf nodes n1, n2, …, nc.

c. Find in Q the node n' with the minimum weight w' and the node n" with the second

smallest weight w"; and then remove n' and n" from Q.

d. Create a new node η with weight w' + w", and assign n' as its left child and n" as its

right child.

e. If Q is empty, then tree T has been constructed and take η as its root; else, add node η

to Q and go to Step 4c.

5. Degenerate text segment di to be di' = Rdi(j), where the degeneration choice j is

determined as follows.

a. Starting from the root of tree T, traverse T to the left child if b'p is 1 or to the right

child if b'p is 0.

b. Increment p and continue node traversal in a similar way until a leaf node nj is

reached.

c. Take the index j of nj as the desired degeneration choice.

6. Repeat Steps 3 through 5 until the entire message has been embedded, that is, until p >

L + m.

7. Revise each previously degenerated text segment d'i back to di with the revisions made

being tracked to yield stego-text si for all i in P.

We note that the proposed embedding procedure is generic with no restriction imposed

on the elements in a degeneration set Rd. In our experiments, we used a common English

errors database, a synonym database, and a collection of real-world collaborative editing

entries to construct the degeneration database.

As an example, suppose that the degeneration set Rd for d = “travel” contains the seven

entries go, travel, trip, journey, jaunt, locomote, and move, with the respective probabilities of

occurrences as shown in Table 3.1. Then steps 4 and 5 of Algorithm 3.1 will essentially

generate the Huffman tree shown in Figure 3.3. The text d in a document D is degenerated to

one of the seven choices depending on the message being embedded. In the case that the

message to be embedded is 1100, d will be degenerated as d' = “trip.” Finally, d' is revised

back to d with the changes being tracked to yield the stego-text s = “triptravel.”

26

Table 3.1. Occurrence probabilities and Huffman codes for the entries in an example

degeneration set of “travel.”

j Rd(j) Pr{Rd(j)} Huffman code

1 go 0.6306889 0

2 travel 0.2118223 10

3 trip 0.0536723 1100

4 journey 0.0273936 11010

5 jaunt 0.0004189 110110

6 locomote 0.0000347 110111

7 move 0.0759693 111

move

0.0759693

locomote

0.0000347

jaunt

0.0004189

journey

0.0273936

trip

0.0536723

travel

0.2118223

go

0.6306889

0.0004536

0.0278472

0.0815195

0.1574888

0.3693111

01

1

1

1

1

1

0

0

0

0

0

Figure 3.3. Huffman tree constructed by Algorithm 3.2 for the entries listed in Table 3.1.

27

3.4 Proposed Message Extraction Process

The change-tracking information included in the stego-document S allows simple

recovery of the original document D and the degenerated document D', from both of which

the embedded message can be extracted. The proposed message extraction method is

described in the following algorithm.

Algorithm 3.2: extracting a message by text degeneration and revision.

Input: a stego-document S = {s1, s2, ..., sn} and a secret key K.

Output: the extracted message M' = b'1b'2b'3 = l1l2...lLb1b2...bmx1x2....

Steps:

1. Recover the original documents D = {d1, d2, ..., dn} and the degenerated document D' =

{d'1, d'2, ..., d'n} from S by using the change-tracking information and the related

operations provided by Microsoft Word.

2. Initialize the set of embedding places P to be empty.

3. Define an index p pointing to the position of the message bit b'p which we are currently

decoding, with initial p = 1.

4. Select the same embedding place i as that in message embedding using K and P; and

then add i to P.

5. Construct a Huffman tree T for the text segment di with degeneration set Rdi in the same

way as that in message embedding.

6. Determine the choice of degeneration j such that Rd(j) = d'i.

7. Decode the message bits encoded in j in the following way:

a. Starting from the root of the tree T, traverse it to the leaf node nj and note the path

traversed.

b. Analyze the path traversed, and set b'p to be 1 if the path goes down a left child; or to

be 0 if the path goes down the right. Increment the value of p for each child traversed.

8. Repeat Steps 4 through 7 until the entire message has been extracted, that is, until p >

L + m.

As an example, given a revised text segment s = “movetravel,” we can recover the

original and the degenerated text segments to be d = “travel” and d' = “move,” respectively.

Suppose that the degeneration set Rd is the same as that in the example of Algorithm 3.1 and

hence Step 5 of Algorithm 3.2 will construct the same Huffman tree shown in Figure 3.3.

28

Since the degenerated text segment is “move,” we can conclude that the bits “111” were

previously embedded.

3.5 Experimental Results

The proposed method was implemented
8
 using Microsoft C

#
.NET and Microsoft Office

2003, and the Automation technique provided by Microsoft was used to manipulate Word

documents. The degeneration sets were constructed by using public linguistic databases as

well as real past collaborative editing files kept by Dr. Tsai.

The first degeneration database was constructed by using entries from the list of common

errors in English compiled by Brians [85]. We filtered out entries that are automatically

corrected by Microsoft Word by its AutoCorrect feature (such as parallelled, therefor, etc.), as

these are unsuitable candidates for degeneration. Table 3.2 summarizes the resultant database

used, which contains 760 degeneration sets in total. We have included the text d itself in the

set Rd, such that if it is chosen as the degeneration choice, the text is effectively not

degenerated.

Table 3.2. Summary of common English errors database used as Rd.

|Rd| Examples of d and d' Entries

2 breach (breech), criteria (criterion), loose (lose), ordnance (ordinance) … 675

3 palette (palate, pallet), imminent (eminent, immanent), … 71

4 morale (ethics, morals, moral), carat (caret, carrot, karat), … 14

We have also utilized the WordNet 2.1 lexical database [86] to obtain sets of synonyms

for the degeneration purpose. The occurrence probabilities of the entries in Rd for both the

common English errors and the synonyms are estimated by making use of the Google SOAP

Search API [87]
9
. Specifically, we query the Google web index to get the approximate number

8
 The implementation can be downloaded at

http://sites.google.com/site/ktyliu/data-hiding-in-microsoft-word-by-change-tracking.

9
 The Google SOAP Search API is unfortunately no longer available for public use at the time of this writing.

One simple alternative is to analyze a large public text copora and count the occurrences instead of querying the

web.

29

of web pages that contain an entry in Rd. After the occurrences of each entry in Rd are

determined, the occurrence probabilities for the entries can be calculated. As an example, for

d = “study,” we use WordNet to find its synonyms “report,” “subject,” “work,” “field,”

“survey,” “discipline,” “sketch,” “bailiwick,” and “cogitation.” Table 3.3 shows the

approximate number of pages in Google web search, the occurrence probabilities, and the

resulting Huffman codes for these words.

Table 3.3. Occurrence probabilities and Huffman codes of “study” and its synonyms.

Word Pages on Google Occurrence probability Huffman code

report 1560000000 0.1733984 000

subject 1180000000 0.1311603 001

work 2630000000 0.2923319 01

field 1850000000 0.2056327 10

survey 838000000 0.0931461 111

study 758000000 0.0842538 1100

discipline 108000000 0.0120045 11010

sketch 71500000 0.0079474 110110

bailiwick 775000 0.0000861 1101110

cogitation 348000 0.0000387 1101111

We have also collected files of Dr. Tsai’s editing of his students’ works, including 157

thesis chapters and 20 journal and conference papers, in recent years. The collaborative

editing entries were collected by first identifying sentences in the documents that contain

change-tracking information. The text before and that after editing were then extracted, and

identical starting and ending phrases in the two text segments are trimmed away so that the

entry can be more widely applicable. Finally, we group the entries according to the text after

editing. The database constructed using these real-life collaboration entries are then used

during the degeneration stage. The degenerations made by using this database are realistic and

the resulting stego-documents are indistinguishable from a document in real collaborative

30

editing scenarios. For simplicity, we name the common errors in English database, the

synonym database, and the real collaboration entries database as databases 1, 2, and 3,

respectively in the subsequent discussions.

Figure 3.4 shows some extracts of the stego-documents produced using the proposed

method by using a combination of databases 1 and 3, and Figure 3.5 shows some extracts of

the stego-documents produced by using a combination of databases 1 and 2. We observe that

the ways of degenerations are distinctively different when using different databases.

A set of experiments are then conducted to quantitatively measure the message

embedding capacity of the proposed method when using the above databases. In more details,

five theses and eight journal and conference papers are selected as test documents, and the

numbers of words and sentences of the documents are listed in Table 3.4. The maximum

message length that is embeddable for a document is message-dependent due to the Huffman

coding used in the message embedding. In this set of experiments, we embedded random 0’s

and 1’s into all embeddable places in the test document and repeated the embedding ten times

for each test document. The average bits embeddable for each document are shown in Table

3.4. The increases in file size after the embedding was also measured and recorded in Table

3.4.

Table 3.4. Experimental results of message embedding capacity and increase in file size.

Databases 1 & 2 Databases 1 & 3

Document
Sentences /

Words
Capacity

(bits)

File size

increase (bytes

/ percentage)

Capacity

(bits)

File size

increase (bytes

/ percentage)

Paper 1
240

4075
1,558

+415,744

+308%
261

+198,144

+147%

Paper 2
351

4903
1,768

+419,328

+244%
374

+245,760

+143%

Paper 3
143

2596
782

+158,208

+15%
181

+85,504

+8%

Paper 4
287

3518
1,163

+265,216

+253%
207

+119,808

+114%

31

Table 3.4 (cont.). Experimental results of message embedding capacity and increase in file

size.

Paper 5
223

4341
1,421

+262,144

+261%
321

+128,512

+128%

Paper 6
222

3857
1,241

+306,688

+216%
301

+159,744

+113%

Paper 7
350

5545
2,141

+457,216

+367%
470

+269,312

+216%

Paper 8
338

8978
2,178

+489,472

+296%
451

+176,128

+107%

Thesis 1
1204

15414
4,121

+924,672

+237%
1,605

+869,888

+188%

Thesis 2
1415

20547
7,282

+1,443,840

+312%
1,620

+954,880

+224%

Thesis 3
1213

18918
6,585

+1,478,656

+347%
1,750

+1,061,376

+183%

Thesis 4
1456

21903
7,276

+1,614,336

+279%
1,477

+439,808

+112%

Thesis 5
1150

20254
6,773

+1,009,664

+257%
1,145

+691,200

+177%

On average, 0.33 bits can be embedded into each word and 5.42 bits can be embedded

into each sentence when using a combination of databases 1 and 2, and 0.07 bits per word and

1.19 bits per sentence can be embedded when using a combination of databases 1 and 3. On

average, the stego-document increases by 21.7 bytes for each bit embedded when using

databases 1 and 2, and by 53.8 bytes for each bit embedded when using databases 1 and 3.

The embedding capacity is higher when using databases 1 and 2 because the WordNet

database used produced many synonyms for a text segment. This in turn also lowers the

increase in file size for each bit embedded.

32

3.6 Security Considerations

In the proposed method, it is assumed that the degeneration sets and the key used are

agreed upon by the sending and receiving parties beforehand. The degenerations in the

degeneration database should model realistic errors to counter visual steganalysis. Our way of

using existing collaborative data as done in the experiments described previously can achieve

this purpose. Specifically, an adversary inspecting a stego-document yielded by our

experiments could not tell whether it is really an actual author making the mistakes, or

whether the mistakes are introduced for the steganographic purpose by using the proposed

method.

Next, it is noted that the proposed approach is robust against statistical steganalysis

because the degenerations are chosen according to their occurrence probabilities, resulting in

occurrence frequencies of degenerations in a stego-document being in line with those of

normal documents. To ensure the statistical properties of the degenerations of a

stego-document is close to that of a normal document, we can encrypt the message first before

embedding so that the bits of the encrypted message are randomly distributed. Nevertheless,

there is still a chance for the statistics of the degenerations to stray away from that of a normal

document. To ensure maximal statistical coherence, we can alter the occurrence probabilities

of the degenerations appropriately during message embedding. For example, we can halve the

occurrence probability of a degeneration option after it has been chosen so that it is less likely

to be chosen later again, thus achieving the desired statistical coherence with a normal

document.

In addition, to ensure that the scheme is as inconspicuous as possible to adversaries, the

degeneration database used should only be known by the communicating parties. This can be

achieved for example by using an evolving degeneration database by modifying the

degeneration database dynamically when normal collaborative documents are transmitted

between the parties. One way to implement this idea is for the communicating parties to add

into the degeneration database a key-dependent subset of the degenerations derived from

collaboratively working on a normal document. In this way, an adversary cannot determine

the exact contents of the degeneration database being used.

Another technique that can be employed is for a sender to use the proposed method to

embed the intended payload into a stego-document and then manipulate the unused portions

(essentially the padding parts of M') of the stego-document to include degenerations outside

33

their agreed degeneration database to mislead adversaries. The extra degenerations so

introduced are assumed to be ignored by the receiver.

3.7 Summary

A new steganographic method for data hiding in Microsoft Word documents have been

presented in this chapter. The data embedding is disguised such that the stego-document

appears to be the product of a collaborative writing effort. Information is embedded in the

degeneration stage of document transformation with steganographic effects. The degeneration

stage introduces different degenerations mimicking an author with inferior writing skill, with

the secret message embedded in the choices of degenerations using Huffman coding. The

proposed message embedding and extraction methods have been implemented, proving the

feasibility of the proposed method.

The proposed change-tracking technique for the steganography purpose is special in that

the modifications made during embedding are essential information not to be tampered with

ignorantly. On the contrary, methods that are based on redundant or unused information,

imperceptibility, or alternative representations, are more vulnerable against attacks by an

active warden, who can process all suspects without affecting normal cases of usage. The

degeneration database used during degeneration does not need to be private to the sender and

the receiver if the degenerations are realistic, as the warden cannot distinguish between

legitimate collaboration cases and covert communication cases.

34

Figure 3.4. Extracts of stego-documents produced using the proposed method with databases

1 and 3.

35

Figure 3.5. Extracts of stego-documents produced using the proposed method with databases 1

and 2.

36

Chapter 4

Quotation Authentication: A New Approach and

Efficient Solutions by Data Hiding and Cascade

Hashing Techniques

4.1 Introduction

The advancement of digital technology and the Internet has greatly eased the publication

of information to the mass, whether in the form of web pages, e-mails, PDF files, or office

documents. The abundance of contents made available is mostly beneficial to the general

public, but significant amounts of annoying or even harmful information are also being

distributed on the Internet.

There are many ways to help identify useful information. Search engines, such as Google

and Yahoo, analyze the inter-linkage of documents on the web and deduce the relative degrees

of importance of the documents by using their page ranking technology [88], with the result

that documents ranked high in their search results tend to be more trustworthy. Also, people

tend to trust information published by credible sources, for example, announcements by

federal or local governments; publications from the IEEE, ACM, or other famous publishers

with stringent peer review processes; news reported by CNN, ABC, or other well-known

news agencies; and so on.

There are however numerous information publishers and distributors which are less

known to the public and yet provide useful information. In particular, they sometimes

organize valuable contents published by credible sources by quoting, aggregating, or

disseminating them to make the edited data more relevant or accessible to readers. For

example, it is common for an article to quote significant findings from technical journals or

government reports that would otherwise never be read by the general public.

Unfortunately, there is no easy way for a reader to verify that the quotations contained in

these documents are really from the claimed sources. This vulnerability is frequently used in

Internet hoaxes, such as virus warnings and sympathy letters. One mobile phone virus hoax,

for example, claims that if a user answers a call without caller identity, the user’s phone can

be infected and no longer usable. The hoax lures the reader by claiming that the information

has been confirmed by credible mobile phone companies (like Nokia and Motorola), and that

37

the news was reported on CNN. Due to the credibility of the claimed sources, most people

forwarded the message without performing any further verification. The multiplicative effect

of such blind message passing puts unnecessary burdens on the network and servers, and

costs the reader valuable time to process them. Another example is nutrition and health

recommendations that point out unhealthy food, products, or life styles. The contents are

mixed with myths, true pieces of information, forged allegations on competitor companies,

and so on. Such contents come from a variety of sources, some of which may not be

accessible online or require special subscriptions, making it difficult for a reader to verify the

truthfulness of the information.

In this study, we investigate this problem of quotation authentication, where a new

approach is proposed to allow efficient authentication of quotations from trusted sources but

embedded in documents created by unknown authors. The three parties involved in quotation

authentication are respectively the source author A
S
 of a source document S, the document

author A
D
 of a document D that contains quotations from S, and the document reader R

D
 of D.

We assume that R
D
 recognizes A

S
 as a credible source but does not know A

D
. The goal of

quotation authentication is to allow R
D
 to efficiently and undisputedly verify the fidelity and

source of the quotations contained in D.

It is noted that methods to authenticate a message as a whole are relatively well studied.

Typically, two communicating parties are assumed to share a secret key that is used to

generate an appropriate message authentication code (MAC) for verifying the fidelity of

contents transmitted over an insecure channel. Bellare et al. [90], [91] proposed the

keyed-hash message authentication code (HMAC) that can generate provably secure message

authentication codes based on standard hash functions such as MD5 and SHA1. Cipher-based

MAC (CMAC) techniques such as XMAC and OMAC use standard block ciphers such as

DES and AES to construct message authentication codes [92]. In the asymmetric case, a

sender creates, using its private key, an appropriate digital signature for the transmitted

content, such that the receiver can verify the fidelity of the content using the public key of the

sender. A straightforward way to generate a digital signature is to generate a hash value for the

content and encrypt the value using asymmetric encryption such as the RSA algorithm, as

described in PKCS#1 [93]. A related research area is digital certificate works, which provide

means for associating the human recognizable identity of an entity with that entity’s public

key. HTTPS is an example of such works where websites register and use X.509 certificates

that are issued by trusted certificate authorities [94], allowing users to authenticate the

websites they connect to.

38

We will describe in the subsequent sections how to efficiently generate quotation

signatures using the above-mentioned primitives. Specifically, in the proposed method we

assume that signatures contain (or contain a reference to) an appropriate digital certificate of

the source author so that a document reader can obtain a source author’s public key and verify

its fidelity. The public key can then be used to authenticate quotations that were previously

signed using the source author’s private key.

There is a branch of research in stream authentication [95] that bears some resemblance

to the problem of quotation authentication, where receivers need to verify whether the

received stream of packets are from the intended source. The problem is made complex when

dealing with authenticating multicast traffic in the face of packet losses. Efficient schemes for

multicast authentication have been proposed by using the temporal relationships of network

packets, that is, later packets can be used to verify the authenticity of prior packets [96]. These

techniques, however, cannot be applied to the problem of quotation authentication studied

here since there’s no notion of time in documents and quotations.

The importance to verify quotations within a document was recognized by Fernstrom

[89]. However, assumed in the proposed solutions is either that the document reader has

access to the original source document or that there is a trusted party to which document

authors can send arbitrary quotations and source documents in order to get endorsed

quotations that are verifiable by the document reader.

4.2 Overview of Proposed Method

A more practical approach is proposed in this dissertation to solve the quotation

authentication problem, where each of the three parties only needs to perform certain simple

and deterministic processes, as described by the following scenario:

1. A
S
 processes the source S to create a certain source signature G

S
, and then publishes S

along with G
S
 to the general public;

2. A
D
 cites a text segment q of interest within S, uses G

S
 to create an appropriate quotation

signature G
q
 for q, applies data hiding techniques to create an integrated

authenticable-quotation q', and puts q' into D;

3. finally R
D
, when reading D, verifies that the quotation q, which is contained in q', is

indeed authored by A
S
.

39

The benefit of using data hiding techniques in Stage 2 above to create an integrated

authenticable-quotation q' is that the quotation can be distributed multiple times using

standard copy-and-paste operations by several document authors without hindering the ability

for the final document reader to identify such authenticable-quotations and to verify that the

quotation is indeed authored by A
S
. This is illustrated in Figure 4.1 below.

It is assumed in the above proposed method that an appropriate quotation signature G
q

can be generated using the source signature G
S
, thus alleviating the need for a third-party to

endorse quotations. Also, G
q
 alone is sufficient for R

D
 to verify that the quotation q is indeed

from A
S
, so that R

D
 does not have to access the original source S. Although the digital

signatures G
S
 and G

q
, attached to S and q, respectively, are the overhead required to achieve

the goal of quotation authentication, yet we propose techniques for generating appropriate

source and quotation signatures to minimize the sizes of the overhead, as described in the

sequel. In more detail, assume that texts are quoted from S by P document authors to generate

P documents, which are consumed by Q document readers. The size of the total overhead of

all G
S
 and G

q
 for such quotation authentication, called total overhead size, is P|G

S
| + P|G

q
| +

Figure 4.1. Illustration of processes performed by and information passed between a source

author, one or more document authors, and a document reader.

S

q q'

A
S

G
S

Sign

Generate

Signature

Quote
Data

Hiding

G
q

Compose

Message
D

q'

A
D

A
D

2 D2
q'

Data

Extraction

q

G
q

Verify

R
D

Compose

Message

Identify

Quotation

q'

40

Q|G
q
|, since each of the P document authors needs to receive S as well as G

S
 from the source

author and include q as well as G
q
 in his/her document, and each document reader needs to

receive q and G
q
 from a document author.

4.3 Basic Signature Generation Techniques for Quotation

Authentication

In this section, we describe two basic techniques to generate appropriate source and

quotation signatures for the purpose of quotation authentication, and point out their

shortcomings. The proposed more efficient techniques are then described subsequently.

A basic quotation authentication technique is for the source author to generate a digital

signature for every possible quotation in a source document and to publish the signatures

along with the source document on a certain website. A document author then only needs to

quote the desired text and bundle it with the associated published digital signature to generate

a valid authenticable-quotation. This technique is however inefficient since a quotation may

start and end at any position of a document, and so the number of possible quotations required

for a document of length L is, as can be figured out, of the complexity order O(L
2
). This

means in turn that the number of digital signatures is also of the order O(L
2
). This scheme is

referred to as the enumerate-all-quotations technique in the sequel.

Another basic technique is to include the entire source document S, together with an

appropriate digital signature, into the quotation signature G
q
 of a quotation q. A document

reader can then easily extract S from G
q
 and verify that the quotation really came from S.

However, including the whole article will bloat the size of G
q
 to be of the order O(L), and the

act of attaching the entire article S might violate copyright law. This scheme is referred to as

the quote-the-whole technique in the sequel.

The total overhead size of the enumerate-all-quotations technique is of O(PL
2
 + P + Q),

or equivalently, O(PL
2
 + Q) since G

S
 contains O(L

2
) digital signatures and G

q
 contains a

single digital signature. On the other hand, the total overhead size of the quote-the-whole

technique is of O(P + PL + QL), or equivalently, O(PL + QL), since G
S
 is a simple digital

signature, but the size of G
q
 is of the order O(L).

If Q is significantly larger than P, that is, if there are many more document readers than

document authors, then the enumerate-all-quotations technique is more efficient than the

quote-the-whole one in view of the total overhead size. However, if the magnitudes of P and

Q are comparable, then the quote-the-whole technique is more efficient. Since the two

41

techniques have their respective merits for different application cases, we propose in this

study two better techniques which improve them respectively with the same goal of

minimizing the total overhead size, as described in the following.

4.4 Multi-Use Signatures Technique (MUST)

The basic idea of the enumerate-all-quotations technique is to include in the source

signature G
S
 the digital signatures for all possible quotations so that the size of the quotation

signature G
q
 is small for any quotation. This is, however, overly inefficient for large S, and we

describe in the following a multi-use signatures technique (MUST) where the size of G
q

remains to be of the order O(1) for all quotations while the size of G
S
 required is reduced to be

of the order O(L) instead of O(L
2
).

Assume that S consists of L concatenated sentences denoted as s1 || s2 || s3 || … || sL where

“||” specifies the concatenation operator, and that the length of each sentence is bounded,

meaning that each sentence si is of the order O(1) in size. Also assumed is that the quotations

include complete sentences, that is, q includes a set of consecutive sentences in S such that q =

sa || sa+1 || … || sb where 1 ≤ a ≤ b ≤ L. This assumption is reasonable because quoting only a

portion of a sentence may change its meaning significantly. If this is not the case, a remedy

technique has also been proposed in this study, as described later in Section 4.6.2.

4.4.1 Generation of MUST Source and Quotation Signatures

The idea of the proposed MUST is for the source author to generate L multi-use

signatures gj, where 1 ≤ j ≤ L, such that the signature gj can be used as part of the quotation

signature for any of the quotations sa || sa+1 || … || sj, where 1 ≤ a ≤ j. In addition to the

multi-use signatures, we also generate L cascaded hash values hj, where 1 ≤ j ≤ L, and include

the hash value hj into the quotation signature for a quotation sj || sj+1 || … || sb, where j ≤ b ≤ L.

The generation of the multi-use signatures and cascaded hash values is described in detail in

the following algorithm.

Algorithm 4.1: generation of a MUST source signature.

Input: a source document S consisting of L sentences sj where 1 ≤ j ≤ L.

Output: a source signature G
S
, which contains L cascaded hash values hj and L multi-use

signatures gj where 1 ≤ j ≤ L.

Steps:

42

1. Set the first cascaded hash value to be the hash value of the entire source, that is, set

h1 = H(S), where H(·) is some hash function.

2. For each j from 2 to L, compute the cascaded hash value hj as hj = H(hj-1 || H(sj-1)).

3. For 1 ≤ j ≤ L, calculate the multi-use signature gj as gj = Sign(hj || H(sj)), where Sign(·) is

a signing function of some digital signature algorithm.

As a simple example, the cascaded hash values generated by the above algorithm for a

source document with three sentences is as follows: h1 = H(S), h2 = H(h1 || H(s1)), and h3 =

H(h2 || H(s2)). And the quotation signature for the quotation q = s3 contains h3 and g3, where g3

= Sign(h3 || H(s3)). Note that in detail h3 equals H(h2 || H(s2)) = H(H(h1 || H(s1)) || H(s2)) =

H(H(H(S) || H(s1)) || H(s2)), which is a value derived by a cascade of concatenation and

hashing operations, hence the name cascaded hash value.

4.4.2 Verification of MUST Quotation Signatures

When a document reader receives a quotation q = sa || sa+1 || … || sb and a quotation

signature G
q
 that includes ha and gb, the following algorithm is proposed to verify the

quotation.

Algorithm 4.2: quotation verification using MUST.

Input: a quotation q = sa || sa+1 || … || sb, where a ≤ b, a cascaded hash value ha, and a

multi-use signature gb.

Output: result of quotation verification.

Steps:

1. Perform the following steps to compute hb while a is smaller than b:

a. compute the cascaded hash value ha+1 to be H(ha || H(sa));

b. increment the value of a by 1.

2. Verify the quotation by Verify(hb || H(sb), gb) and output the result, where Verify is the

reciprocal digital signature verification function of the Sign function used by the source

author.

The above verification works for any quotation q = sa || sa+1 || … || sb, where 1 ≤ a ≤ b ≤ L,

because the cascaded hash value hb calculated by Algorithm 4.2 using ha and q is the same as

that calculated in Algorithm 4.1. This is easily seen since the computations performed by Step

1a of Algorithm 4.2 are the same as those by Step 2 of Algorithm 4.1.

43

Since the cascaded hash value hb is constructed by using cascaded operations of hashing

and concatenation, an attacker needs to find exact collisions of hash values in order to craft a

forged quotation as well as a matching quotation signature that can ensure the same hb to be

constructed using Algorithm 4.2. The proposed technique is thus attack-resilient if the

functions H and Sign are chosen properly, such as using the hash function SHA1 or SHA2 and

the signing function RSA with sufficiently long keys [92], [97].

4.4.3 Total Overhead Size of MUST

A MUST source signature G
S
 for a source document S with L sentences always contain

exactly L cascaded hash values and L multi-use signatures, and so the size of G
S
 is of the

order O(L). A MUST quotation signature G
q
 always contain one cascaded hash value and one

multi-use signature, and thus the size of G
q
 is of the order O(1). The total overhead size of the

MUST with P document authors and Q document readers is thus O(PL + P + Q), or

equivalently, O(PL + Q), contrasted with the total overhead size of O(PL
2
 + Q) for the basic

enumerate-all-quotations technique.

4.5 Tree Root Uni-Signature Technique (TRUST)

The previously described quote-the-whole technique requires the complete source

document S to be included in the G
q
 of a certain q. This is overly inefficient for large S, and

the proposed improving technique, called tree root uni-signature technique (TRUST), is

described in this section. The TRUST uses a tree-like construction of hash values such that the

size of G
q
 can be reduced to be of the order O(log2L). Only the root of the tree of the hash

values needs to be signed by the source author, thus maintaining the size of G
S
 to be of O(1).

4.5.1 Generation of TRUST Source Signatures

We assume as before that S consists of L sentences and that quotations include complete

sentences. In the proposed TRUST, the source author generates a binary tree of hash values h
i
j

from S by the following algorithm, where i is the depth of the tree node and j is the index of

the nodes at depth i. The hash value of the tree root h
r
1, where r = log2L + 1, is then signed

with some digital signature algorithm to get the tree root uni-signature g
r
1 = Sign(h

r
1). We

note that this part of signature generation is similar to that of a traditional Merkle tree.

Algorithm 4.3: generation of a TRUST tree of hash values.

44

Input: a source document S consisting of L sentences s1, s2, …, sL.

Output: a tree of hash values h
i
j, where 1 ≤ i ≤ r, and j is the index of the nodes at depth i.

Steps:

1. Calculate a hash value for each sentence sj to get the lowest-level hash values, that is, set

h
1

j = H(sj) for 1 ≤ j ≤ L, where H(·) is some hash function.

2. Concatenate the hash values in pairs and compute the second-level hash values as h
2
j =

H(h
1

2j–1 || h
1

2j) for 1 ≤ j ≤ L/2 where · means the floor operation. If L is odd, take the

final hash value for j = (L + 1)/2 to be h
2

j = h
1

2j–1.

3. Repeat the above step to calculate the third-level hash values h
3

j = H(h
2
2j–1 || h

2
2j) and so

on, each time calculating a half (plus one if odd) of the number of the hash values

computed in the previous step, until finally the hash value h
r
1 is generated for the tree

root.

As an illustration, the TRUST tree of hash values generated by the above algorithm for

L = 5 is shown in Table 4.1 below. The number of hash values at each level i is denoted as |h
i
|.

Table 4.1. TRUST tree of hash values for five sentences.

i Hash values |h
i
|

1 h
1

1 = H(s1) h
1

2 = H(s2) h
1

3 = H(s3) h
1

4 = H(s4) h
1

5 = H(s5) 5

2 h
2

1 = H(h
1
1 || h

1
2) h

2
2 = H(h

1
3 || h

1
4) h

2
3 = h

1
5 3

3 h
3

1 = H(h
2
1 || h

2
2) h

3
2 = h

2
3 2

4 h
4

1 = H(h
3
1 || h

3
2) 1

4.5.2 Generation of TRUST Quotation Signatures

For any quotation q from S, a TRUST quotation signature contains the signature g
r
1

generated by the source author and a quotation-dependent set H
q
, called the complementary

hash set, of some of the hash values generated by Algorithm 4.3 above. In more detail, for a

quotation q = sa || sa+1 || … || sb where 1 ≤ a ≤ b ≤ L, the complementary hash set is selected

using the algorithm below.

Algorithm 4.4: generation of a TRUST complementary hash set.

Input: a source document S = s1 || s2 || … || sL and a quotation q = sa || sa+1 || … || sb.

45

Output: a complementary hash set H
q
.

Steps:

1. Calculate the TRUST tree of hash values h
i
j for S using Algorithm 4.3.

2. Set the hash set H
q
 to be the empty set initially, and set the value of i to be 1.

3. If a is even, then add the value h
i
a–1 to H

q
.

4. If b is odd and is smaller than |h
i
|, then add the value h

i
b+1 to H

q
.

5. Set a to be a/2 and b to be b/2, where · means the ceiling operation.

6. Increment the value of i by 1, and go to Step 3 if i is smaller than r.

As an example, if S has five sentences and we wish to quote the second and third

sentences, then according to Algorithm 4.4, the value of i is set to 1 initially, and is increased

to 2, then to 3, and finally to 4; the value of a decreases from 2 to 1, and remains at 1; and the

value of b decreases from 3 to 2, and then to 1. And so the hash values h
1

1, h
1
4, and h

3
2 are

added to H
q
. It can be seen that the hash value of the tree root h

r
1 can be reconstructed as

follows using only H
q
 and q:

h
r
1 = H(h

3
1 || h

3
2) = H(H(h

2
1 || h

2
2) || h

3
2)) = H(H(H(h

1
1 || h

1
2)) || H(h

1
3 || h

1
4)) || h

3
2)

= H(H(H(h
1

1 || H(s2))) || H(H(s3) || h
1

4)) || h
3

2).

This property is used for quotation verification, as described in the following.

4.5.3 Verification of TRUST Quotation Signatures

It is assumed that a document reader R
D
 can identify a TRUST authenticable-quotation q'

in a document and can extract or reconstruct from q' the quotation q = sa || sa+1 || … || sb, the

values a and b, the signature g
r
1, and the complementary hash set H

q
. Also, we assume that R

D

can retrieve hash values from H
q
 in the same order as hash values were added to H

q
 by the

document author, and that the magnitudes |h
i
| can be determined correctly. To verify q, R

D

performs the steps described by the following algorithm to reconstruct the tree root hash value

using q and H
q
, and finally verify the quotation using g

r
1.

Algorithm 4.5: quotation verification using the TRUST.

Input: a tree root uni-signature g
r
1, a quotation q = sa || sa+1 || … || sb where a ≤ b, and a

complementary hash set H
q
.

Output: result of quotation verification.

Steps:

46

1. Set the value of i to be 1, and calculate the lowest-level hash values for the sentences in

the quotation, that is, set h
1

j = H(sj) for a ≤ j ≤ b.

2. If a is even, then retrieve the next value from H
q
, which is h

i
a–1.

3. If b is odd and is smaller than |h
i
|, then retrieve the next value from H

q
, which is h

i
b+1.

4. Set a to be a/2 and b to be b/2.

5. Compute the next-level hash values h
i+1

j = H(h
i
2j–1 || h

i
2j) for a ≤ j ≤ b.

6. Increment the value of i by 1, and go to Step 3 if i is smaller than r.

7. Verify the quotation by Verify(h
r
1, g

r
1) where h

r
1 is the tree root hash value and output

the result.

Why H
q
 is called the complementary hash set should now be clear from the above

algorithm  it fills in where needed such that the next-level hash values can be calculated

from the sequence of hash values h
i
a, h

i
a+1, …, h

i
b. The process continues until the final tree

root hash value h
r
1 is computed. Since h

r
1 is constructed by repeated applications of hashing

followed by concatenation, it is difficult for an attacker to craft a forged quotation and a

corresponding hash set that can ensure the same value of h
r
1 to be constructed in the same

way as that in the case of a legitimate quotation.

4.5.4 Total Overhead Size of TRUST

A TRUST source signature always contains just a single digital signature g
r
1, and is thus

of the order O(1). On the other hand, a TRUST complementary hash set can have no more

than 2r hash values, and hence the size of H
q
, and also that of G

q
, have an order of O(log2L).

The total overhead size of the TRUST is thus O(P + Plog2L + Qlog2L), or equivalently,

O(Plog2L + Qlog2L), contrasted with the total overhead size of O(PL + QL) for the basic

quote-the-whole technique.

4.6 Data Hiding Techniques for Quotation Authentication

In this section, the proposed data hiding techniques for the purpose of quotation

authentication in Microsoft Word documents is described. For simplicity, this study assumes

that quotations contain only text and all formatting of text are ignored.

4.6.1 Quotation Authentication Add-in

The Microsoft Word application allows add-ins [98] to be installed to customarily

47

expand their capabilities. A prototype quotation authentication add-in has been implemented

in this study using C
#
.NET and VSTO technologies

10
, which installs several buttons on the

toolbar of the Word application, as shown in Figure 4.2. In this way, the three parties involved

in the problem of quotation authentication can perform their respective tasks as simple as a

click of a button.

In more detail, a source author performs a one-time setup using “QA Setup” of the add-in

to select the desired technique to use (MUST or TRUST) and a file that contains the author’s

digital certificate and private key. Then, the source author can generate a source signature for

any source document by simply clicking on the “QA Sign” button of the add-in, which

performs the following steps:

1. generate an appropriate source signature for the source document using the selected

technique and the file containing digital certificate and private key information;

2. transform the binary source signature into text by Base64 encoding; and

3. store the transformed signature in the document properties of the document.

It is convenient to embed the source signature directly into the document as described

above so that the signature does not have to be published separately. This is possible because

Word documents allow arbitrary string values to be stored as key-value pairs in their special

document properties dictionary.

When a document author receives a source document produced by the above process,

he/she can select any quotation in the document and click on the “QA Copy” button of the

add-in to activate the authenticable-quotation generation functionality, which performs the

following steps:

1. extract the transformed text version of the source signature from the document

properties dictionary of the source document;

2. transform the text signature back to the binary original using Base64 decoding;

3. generate a quotation signature G
q
 for the selected quotation q using the proposed

technique as described previously;

4. create an integrated authenticable-quotation q' from q and G
q
 using the proposed data

hiding techniques described in the sequel; and put q' into the system clipboard so that the

document author can easily paste q' into his/her own document.

10
 The implementation can be downloaded at

http://sites.google.com/site/ktyliu/quotation-authentication-in-microsoft-word.

48

Figure 4.2. A screenshot of Microsoft Word with the prototype add-in installed, which has

added buttons in the toolbar for the purpose of quotation authentication.

4.6.2 Integrated Authenticable-Quotation

An authenticable-quotation created by the prototype implementation carries three

different pieces of information. The first is the quotation itself and the second is the

human-readable source author identity, both of which should be conveyed to the document

reader directly. The third is an appropriate quotation signature that can be processed by the

add-in to verify the fidelity and source of the quotation, and should ideally be invisible to the

reader.

We propose to store the source author information in the visible comments section of a

Word document, as shown in Figure 4.2. Such comments are usually displayed at the right

hand side in Microsoft Word and clearly recognizable. A comment in Microsoft Word can be

attached to any range of texts in the document, and we use this property to demarcate the span

of a quotation. Also, each comment in a Word document has an author field to help

distinguish different commentators during collaborative editing. This author field is utilized in

this study to mark comments that are used for quotation authentication by using a special

value of “AUTH”. Finally, if a document author quotes an incomplete sentence, we include

49

the unquoted parts of the sentence in the comments as well for the reader’s reference, and also

to allow reconstruction of complete sentences for the purpose of quotation authentication.

We propose to embed the authentication information invisibly into an

authenticable-quotation by first transforming the binary data into normal text by Base64

encoding to avoid misinterpretation. The transformed text is then inserted just after the first

character of the quotation and made invisible by setting its “Font Effects” to “Hidden” [99]. It

has been verified by experiments that this technique can be used to embed arbitrary long

information invisibly into a Microsoft Word document.

The integrated authenticable-quotation that contains the quotation itself, the visible

comment, and the invisible authentication information as described is generated automatically

by the add-in by a click of the button. It has been verified in experiments that the

authenticable-quotation is always copied in its entirety in copy-and-paste operations, making

it easy for a document author to include such authenticable-quotations when composing

documents.

On receiving a document containing authenticable-quotations, a document reader can

verify the quotations by clicking on the “QA Verify” button installed by the authentication

add-in, which scans the document for comments that contain the special author field ‘AUTH’

and performs the following verification for each authenticable-quotation:

1. identify the span of a quotation by the range covered by the comment;

2. extract the hidden authentication information in the quotation and reversely transform

the text version back to the binary original by Base64 decoding;

3. if there exists partial sentences in the comment then extract them and reconstruct the full

quotation sentences;

4. verify the fidelity of the quotation using the proposed quotation verification technique;

and format the comment of the quotation to show the result of quotation verification, as

illustrated in Figure 4.2.

4.7 Summary

The problem of quotation authentication is described in this chapter, and a new approach

to solving the problem has been proposed that allows document readers to efficiently verify

quotations cited from known sources but embedded in messages by untrusted document

authors. The proposed approach only requires the three parties involved in the problem to

perform simple steps, without requiring a trusted third party to endorse quotations or requiring

50

a document reader to access the original source document. Specifically, a source author is

allowed to generate an appropriate source signature, such that any document author can

generate a suitable quotation signature for arbitrary quotations from the source. The quotation

signature is bundled together with the quotation using the proposed data hiding techniques to

form an integrated authenticable-quotation that can easily be copied and pasted to any

document. Finally, a document reader can identify any authenticable-quotations present in a

document, and efficiently verify the source and the fidelity of the quotation.

We have started by describing the basic enumerate-all-quotations and quote-the-whole

techniques, followed by the multi-use signatures technique and the tree root uni-signature

technique that allow more efficient generation of source and quotation signatures. The two

techniques have their respective merits depending on whether the message is widely

distributed or not. The MUST is more efficient if there are a large number of document

readers for a document, while the TRUST is better otherwise. The total overhead sizes and the

signature sizes of the proposed techniques are summarized in Table 4.2 below.

 Also, specific data hiding techniques suitable for embedding source and quotation

signatures in Microsoft Word documents have been proposed to demonstrate the feasibility of

the proposed techniques. Furthermore, add-ins that can be installed in the Microsoft Word

applications were described, which allows the three parties of the quotation authentication

problem to perform their tasks easily.

Table 4.2. Summary of total overhead sizes and signature sizes of the proposed techniques.

Technique |G
S
| |G

q
| Total overhead size

Enumerate-all-quotations O(L
2
) O(1) O(PL

2
 + Q)

Quote-the-whole O(1) O(L) O(PL + QL)

MUST O(L) O(1) O(PL + Q)

TRUST O(1) O(log2L) O(Plog2L + Qlog2L)

51

Chapter 5

Quotation Authentication and Content

Authentication for Spreadsheet Documents

5.1 Introduction

The discussions in Chapter 4 assumed that documents and quotations contain texts that

flow consecutively. However, contents in some documents are not sequential texts. For

example, a Microsoft Excel spreadsheet document contains sheets of two-dimensional data, or

cells. A typical quotation from a spreadsheet document is not sequential cells but a

two-dimensional cutout of the cells. There are many large spreadsheets that contain

information suitable for quoting, for example company financial statements, results of

national voting, sales figures, and so on. It is common for a portion of such a large

spreadsheet be quoted and included as a table in a Microsoft Word document.

As an example, a company’s income statement may list the details of the revenue and

expense figures in rows, with the values for different years or quarters across columns, as

shown in Figure 5.1. If a business analyst (analogous to the document author in our problem

of quotation authentication) quotes the figures of the revenues for a few selected years, the

selection would be a two-dimensional subset of the spreadsheet, as illustrated in the figure.

Figure 5.1. Two-dimensional quotation in a spreadsheet document. (Source: Google Investor

Relations)

Although Microsoft Excel documents can contain multiple worksheets where each is a

two-dimensional array of cells, for simplicity we assume in this study that a source

52

spreadsheet document S consists simply of X columns and Y rows of cells
11

. A cell at column

x and row y is denoted to be sx, y where 1 ≤ x ≤ X and 1 ≤ y ≤ Y, and each cell can be empty or

can contain a value such as a text string or a numerical value. In this study we assume each

cell value has a string representation and that sx, y means the string representation of the cell

whenever the context is clear. For example, if the top-left cell contains the value 53, this is

denoted as s1, 1 = “53.”

A two-dimensional quotation in this study, denoted as q
(a, b)

(c, d), is a rectangular cut-out

of the cells of size A × B that has a top-left cell sa, b and a bottom-right one sc, d where 1 ≤ a ≤

c ≤ X, 1 ≤ b ≤ d ≤ Y, A = (c – a + 1), and B = (d – b + 1).

The basic signature generation techniques described in Section 4.3 can be applied to the

two-dimensional case here, but are inefficient. Specifically, for a spreadsheet containing X

columns by Y rows of cells, the enumerate-all-quotations technique requires the source author

to generate a signature for every possible rectangle that can be quoted. Since a rectangular

quote can have a top-left corner starting at any position and a right-bottom corner ending at

any position as well, the number of signatures generated may be figured out to be of the order

O((X × Y)
2
). On the other hand, all X × Y cells need to be included in a quotation signature for

the quote-the-whole technique. The total overhead size for the two techniques are thus

O(P(XY)
2
 + Q) and O(PXY + QXY), respectively.

We describe below two better techniques, 2D-MUST and 2D-TRUST, that improves the

total overhead size to be O(PXY + Qmin(A, B)) and O(Plog2XY + Qlog2XY), respectively.

Furthermore, we show that the proposed 2D-MUST can be applied to authenticate the

contents of a spreadsheet document effectively. Specifically, source signatures can be

generated and embedded into a Microsoft Excel document, such that modifications to the cell

contents, transpositions of rows or columns, as well as additions and removals of rows or

columns can be detected and changes highlighted.

5.2 Two-Dimensional Multi-Use Signatures Technique

(2D-MUST)

The proposed improving technique, called the two-dimensional multi-use signatures

technique (2D-MUST) generates a set of cascaded hash values and multi-use signatures of

11
 Microsoft Excel documents can contain contents other than cells, but we limit our discussion to cells and their

authentication in this study.

53

size O(XY) such that these can be used to cover all two-dimensional quotations q
(a, b)

(c, d) with

a top-left cell sa, b and a bottom-right one sc, d where 1 ≤ a ≤ c ≤ X and 1 ≤ b ≤ d ≤ Y. The

quotation signature however is no longer O(1) but linear with the minimum of the number of

rows or columns that the quotation spans, as described in detail in the following.

5.2.1 Generation of 2D-MUST Source Signatures

The first part of generating source signatures is similar to that of the one-dimensional

case, where each row is considered to be an independent one-dimensional document

consisting of sequential cells. Specifically, we perform the first two steps of Algorithm 4.1 for

each row where the input is taken to be the row’s content Sy = s1, y || s2, y || … || sX, y for row

number y (1 ≤ y ≤ Y) to yield the cascaded hash values h1, y, h2, y, …, hX, y. However, we do not

simply sign these cascaded hash values as we did in Step 3 of Algorithm 4.1. This is because

for a quotation with a top-left cell sa, b and a bottom-right one sc, d:

1. each row in the quotation needs a separate digital signatures, meaning that a total of

(d – b + 1) digital signatures need to be included in G
q
;

2. each digital signature can only verify the integrity of that row’s content, so the digital

signatures cannot be used to detect transpositions of complete rows.

In the second part of the proposed technique, a second series of cascaded hash values,

denoted as h'x, y where 1 ≤ x ≤ X and 1 ≤ y ≤ Y, are generated. To avoid ambiguity, we call the

first series of cascaded hash values the 1D cascaded hash values, while the second series the

2D cascaded hash values. The reason of this naming will be made apparent in the following.

The 2D cascaded hash values are generated in a downward direction in a column, in

contrast to the 1D cascaded hash values that was generated in a rightward horizontal direction.

Also, in contrast to the 1D cascaded hash values that use the cell contents to generate

subsequent cascaded hash values, the 2D cascaded hash values are calculated using the 1D

cascaded hash values, as illustrated in Figure 5.2 below. That is, whereas hx + 1, y is calculated

as H(hx – 1, y || H(sx, y)), h'x, y is calculated as H(h'x, y – 1 || hx, y). The details of the proposed

technique are described below as an algorithm.

Algorithm 5.1: generation of a 2D-MUST source signature.

Input: a source document S consisting of X columns by Y rows of cells sx, y where 1 ≤ x ≤ X

and 1 ≤ y ≤ Y.

Output: X × Y 1D cascaded hash values hx, y, X × Y 2D cascaded hash values h'x, y, and X × Y

54

hx–1, y hx, y sx, y sx–1, y gx, y

h'x, y

h'x, y–1
hx, y–1

multi-use signatures gx, y where 1 ≤ x ≤ X and 1 ≤ y ≤ Y, which are included as part of a

source signature G
S
.

Steps:

1. For each y from 1 to Y, compute the 1D cascaded hash values for row y as follows.

a. Set h1, y = H(Sy) where H(·) is some hash function and Sy is the content of the whole

row, that is, Sy = s1, y || s2, y || … || sX, y.

b. For each x from 2 to X, compute hx, y as hx, y = H(hx – 1, y || H(sx – 1, y)).

2. For each x from 1 to X, compute the 2D cascaded hash values for column x as follows.

a. Set h'x, 1 = H(S'x) where S'x is the content of the whole column, that is, S'x = sx, 1 ||

sx, 2 || … || sx, Y.

b. For each y from 2 to Y, compute h'x, y as h'x, y = H(h'x, y – 1 || hx, y – 1).

3. For each y from 1 to Y and for each x from 1 to X, compute the multi-use signature gx, y

as gx, y = Sign(H(h'x, y || H(hx, y || H(sx, y)))), where Sign(·) is a signing function of some

digital signature algorithm.

5.2.2 Generation and Verification of 2D-MUST Quotation Signatures

When a quotation q
(a, b)

(c, d) is quoted from S, an appropriate quotation signature G
q
 is

generated using S and G
S
 that includes the following.

1. A digital certificate of the source author A
S
, so that the document reader can verify the

association of the identity of A
S
 and its public key.

2. The starting 1D cascaded hash values for each row in the quotation, that is, ha, y for b ≤ y

≤ d.

3. The starting 2D cascaded hash value for the last column in the quotation, that is, h'c, b.

4. The multi-use signature gc, d.

Figure 5.2. Illustration of cascaded hash value calculation for a cell sx, y in 2D-MUST.

55

Similar to the case of one-dimensional MUST, the starting 1D cascaded hash values

included in step 2 above are used by a document reader R
D
 to regenerate the 1D cascaded

hash values hc, y using q
(a, b)

(c, d) for b ≤ y ≤ d by a process similar to Step 1b of Algorithm 5.1.

Then, the starting 2D cascaded hash value h'c, b and the regenerated 1D cascaded hash values

hc, y where b ≤ y ≤ d are used to calculate the 2D cascaded hash value h'c, d by a process similar

to Step 2b of Algorithm 5.1. If any of the cells in the quotation has been modified, or if rows

in the quotation has been transposed, then the value h'c, d so generated by R
D
 will not be the

same as that generated by A
D
, and so failing the verification performed by R

D
 – Verify(H(h'c, d

|| H(hc, d || H(sc, d)))), gc, d) – where Verify(·) is the reciprocal digital signature verification

function of the Sign(·) function used by the source author.

5.2.3 Total Overhead Size of 2D-MUST

A 2D-MUST source signature G
S
 for a source document S with X columns by Y rows of

cells always contain exactly X × Y 1D cascaded hash values, X × Y 2D cascaded hash values,

and X × Y multi-use signatures, and so the size of G
S
 is of the order O(XY). A 2D-MUST

quotation signature G
q
 for a quotation of size A × B contains B 1D cascaded hash values, one

2D cascaded hash value, and one multi-use signature, and thus the size of G
q
 is of the order

O(B). It can be figured out that the proposed technique may be flipped around, where 1D

cascaded hash values are generated for columns and 2D cascaded hash values across rows,

meaning that the quotation signature G
q
 for a quotation of size A × B can be made to contain

A 1D cascaded hash values and hence to be of the size of order O(A) instead of O(B). If both

types of cascaded hash values and multi-use signatures are generated by the source author, the

size of G
S
 will double but still be of the order O(XY), while the size of G

q
 will be O(min(A, B))

since a document author can choose one of the two sets of cascaded hash values and multi-use

signatures that yield the smaller quotation signature.

Consequently, the total overhead size of the 2D-MUST with P document authors and Q

document readers, assuming that the average numbers of columns and rows quoted are A and

B respectively, is O(PXY + Pmin(A, B) + Qmin(A, B)), or equivalently, O(PXY + Qmin(A, B)),

contrasted with the total overhead size of O(P(XY)
2
 + Q) for the enumerate-all-quotations

technique.

56

5.3 Two-Dimensional Tree Root Uni-Signature Technique

(2D-TRUST)

The next proposed improving technique, called the two-dimensional tree root

uni-signature technique (2D-TRUST), uses a tree-like construction of hash values similar to

that of the previously-described one-dimensional TRUST such that the size of quotation

signatures can be reduced to be of the order O(log2XY), instead of O(XY), for the basic

quote-the-whole technique. Only the root of the two-dimensional tree of hash values needs to

be signed by the source author, thus maintaining the size of the source signature to be of the

order O(1).

5.3.1 Generation of 2D-TRUST Source Signatures

For a source spreadsheet document S consisting of X × Y cells, the source author

generates a two-dimensional tree of hash values for the cells in S in a way similar to that of

the one-dimensional TRUST, as described in detail in the following algorithm. The hash value

h
r
1, 1 of the tree root is then signed with some digital signature algorithm to get a

two-dimensional tree root uni-signature g
r
1, 1 = Sign(h

r
1, 1).

Algorithm 5.2: generation of a 2D-TRUST tree of hash values.

Input: a source spreadsheet S consisting of X × Y cells sx, y where 1 ≤ x ≤ X and 1 ≤ y ≤ Y.

Output: a two-dimensional tree of hash values h
i
x, y where i is the depth of the tree node; x and

y are the indices of the nodes at depth i; and h
r
1, 1 is the hash value of the tree root.

Steps:

1. Calculate a hash value for each cell sx, y to get the lowest-level hash values, that is, set

h
1

x, y = H(sx, y) for 1 ≤ x ≤ X and 1 ≤ y ≤ Y.

2. Initialize the value of i to be 1.

3. For all values of x and y where 1 ≤ x ≤ X/2 and 1 ≤ y ≤ Y/2, concatenate the hash

values in fours to compute the next-level hash values as h
i+1

x, y = H(h
i
2x–1, 2y–1 || h

i
2x–1, 2y ||

h
i
2x, 2y–1 || h

i
2x, 2y).

4. Perform one of the following operations, depending on the values of X and Y:

a. if both X and Y are even, then set X to be X/2 and set Y to be Y/2;

b. if X is odd and Y is even, then set X to be (X + 1)/2 and Y to be Y/2; and set h
i+1

X, Y =

H(h
i
2X–1, 2Y–1 || h

i
2X–1, 2Y);

57

c. if X is even and Y is odd, then set X to be X/2 and Y to be (Y + 1)/2; and set h
i+1

X, Y =

H(h
i
2X–1, 2Y–1 || h

i
2X, 2Y–1);

d. if both X and Y are odd, then set X to be (X + 1)/2 and Y to be (Y + 1)/2; and set h
i+1

X, Y

= h
i
2X–1, 2Y–1.

5. Increment the value of i by 1.

6. Denote the numbers of columns and rows of hash values for level i as X
i
 = X and Y

i
 = Y,

respectively.

7. Go to Step 3 if the tree root hash value has not been calculated, or equivalently, if X or Y

is larger than 1.

8. Set the total number of levels r to be i.

5.3.2 Generation of 2D-TRUST Quotation Signatures

When a document author A
D
 quotes a two-dimensional rectangle of cells in a source

spreadsheet, the quotation signature G
q
 is generated by including the signature g

r
1, 1 and a set

of complementary hash values H
q
 containing some of the hash values generated in Algorithm

5.2. Specifically, for a rectangular quotation q
(a, b)

(c, d) with a top-left cell sa, b and a

bottom-right one sc, d where 1 ≤ a ≤ c ≤ X and 1 ≤ b ≤ d ≤ Y, the complementary hash set is

selected using the algorithm below. The purpose of H
q
 is the same as that in the one

dimensional TRUST, that is, the tree root hash value h
r
1, 1 can be reconstructed from q and H

q
.

Algorithm 5.3: generation of a 2D-TRUST complementary hash set.

Input: a source spreadsheet S consisting of X×Y cells sx, y where 1 ≤ x ≤ X and 1 ≤ y ≤ Y, and a

two-dimensional rectangle of quoted cells q
(a, b)

(c, d) with a top-left cell sa, b and a

bottom-right one sc, d where 1 ≤ a ≤ c ≤ X and 1 ≤ b ≤ d ≤ Y.

Output: a complementary hash set H
q
.

Steps:

1. Calculate from S the tree of hash values h
i
x, y using Algorithm 5.2, with X

i
×Y

i
 hash values

generated for level i.

2. Set H
q
 to be the empty set initially, and set the value of i to be 1.

3. Add to H
q
 the following hash values so that the next-level hash values can be

reconstructed from q:

a. if a is even and b is odd, then add the values h
i
a–1, b and h

i
a–1, b+1 to H

q
;

b. if a is odd and b is even, then add the values h
i
a, b–1 and h

i
a+1, b–1 to H

q
;

c. if both a and b are even, then add the values h
i
a–1, b–1, h

i
a, b–1 and h

i
a–1, b to H

q
;

58

d. if c is even, d is odd, and d < Y
i
, then add the values h

i
c–1, d+1 and h

i
c, d+1 to H

q
;

e. if c is odd, d is even, and c < X
i
, then add the values h

i
c+1, d–1 and h

i
c+1, d to H

q
;

f. if both c and d are odd, then:

i. add the value h
i
c+1, d to H

q
 if c < X

i
;

ii. add the value h
i
c, d+1 to H

q
 if d < Y

i
;

iii. add the value h
i
c+1, d+1 to H

q
 if c < X

i
 and d < Y

i
.

4. Set a to be a/2, b to be b/2, c to be c/2, and d to be d/2.

5. Increment the value of i by 1, and go to Step 3 if i is smaller than r.

As a simple example, when quoting a single cell s3, 2 from a 5×5 spreadsheet, we add the

values h
1

3, 1, h
1
4, 1, and h

1
4, 2 to H

q
 when i is 1 (note the hash value h

1
4, 1 is added twice, once in

Step 3b, and once in Step 3e). The values of a and c are then set to be 2 while the values of b

and d are set to be 1 in Step 4. In the next iteration, the values h
2

1, 1, h
2

1, 2, and h
2

2, 2 are added

to H
q
 when i is 2, and the values of a, b, c, and d are all set to be 1. In the last iteration, the

hash values h
3

2, 1, h
3
1, 2, and h

3
2, 2 are added to H

q
 when i is 3. The hash values added to H

q
 for

this example is illustrated in Table 5.1 below.

Table 5.1. Hash values selected in the 2D-TRUST complementary hash set when quoting a

cell s3, 2 from a 5×5 spreadsheet.

 1 2 3 4 5

1

2

h
2

1, 1 h
2

1, 2

3 h
1

3, 1 s3, 2

4 h
1

4, 1 h
1

4, 2

h
2

2, 2

h
3

1, 2

5 h
3

2, 1 h
3

2, 2

5.3.3 Verification of 2D-TRUST Quotation Signatures

It is assumed that a document reader R
D
 can identify a 2D-TRUST

authenticable-quotation in a message and can extract or reconstruct the two-dimensional

quotation q
(a, b)

(c, d), the signature g
r
1, 1, the complementary hash set H

q
, and the values X

i
 and

59

Y
i
 for 1 ≤ i ≤ r. Also, we assume that R

D
 can retrieve hash values from H

q
 in the same order as

hash values were added to H
q
 by A

D
. To verify q, R

D
 performs the steps described by the

following algorithm to reconstruct the tree root hash value h
r
1, 1 using q and H

q
, and then

verify the quotation using g
r
1, 1.

Algorithm 5.4: verification of a 2D-TRUST quotation signature.

Input: a two-dimensional quotation q
(a, b)

(c, d) with a top-left cell of sa, b and a bottom-right one

of sc, d where a ≤ c and b ≤ d, a signature g
r
1, 1, and a complementary hash set H

q
.

Output: result of quotation verification.

Steps:

1. Set the value of i to be 1, and calculate the lowest-level hash values for the cells in the

quotation, that is, set h
1
x, y = H(sx, y) for a ≤ x ≤ c and b ≤ y ≤ d.

2. Retrieve the following values from H
q
 to calculate the next-level hash values:

a. if a is even and b is odd, then retrieve the values h
i
a–1, b and h

i
a–1, b+1 from H

q
;

b. if a is odd and b is even, then retrieve the values h
i
a, b–1 and h

i
a+1, b–1 from H

q
;

c. if both a and b are even, then retrieve the values h
i
a–1, b–1, h

i
a, b–1, and h

i
a–1, b;

d. if c is even, d is odd, and d < Y
i
, then retrieve the values h

i
c–1, d+1 and h

i
c, d+1;

e. if c is odd, d is even, and c < X
i
, then retrieve the values h

i
c+1, d–1 and h

i
c+1, d;

f. if both c and d are odd, then:

i. retrieve the value h
i
c+1, d from H

q
 if c < X

i
;

ii. retrieve the value h
i
c, d+1 from H

q
 if d < Y

i
;

iii. retrieve the value h
i
c+1, d+1 from H

q
 if c < X

i
 and d < Y

i
.

3. Set a to be a/2, b to be b/2, c to be c/2, and d to be d/2.

4. Compute the next-level hash values as h
i+1

x, y = H(h
i
2x–1, 2y–1 || h

i
2x–1, 2y || h

i
2x, 2y–1 || h

i
2x, 2y)

for a ≤ x ≤ c and b ≤ y ≤ d.

5. Increment the value of i by 1, and go to Step 2 if i is smaller than r.

6. Verify the quotation by Verify(h
r
1, 1, g

r
1, 1) and output the result.

The above algorithm basically retrieves values from H
q
 where needed such that the

next-level hash values can be calculated from the currently-available hash values in a form of

a rectangle with a top-left hash value h
i
a, b and a bottom-right one h

i
c, d. The process continues

until the tree root hash value h
r
1, 1 is computed finally. Since h

r
1, 1 is constructed by repeated

applications of hashing followed by concatenation, it is difficult for an attacker to craft a

60

forged quotation and a corresponding hash set that can ensure the same value h
r
1, 1 to be

constructed in the same way as that in the case of a legitimate quotation.

5.3.4 Total Overhead Size of 2D-TRUST

A 2D-TRUST source signature always contains just a single digital signature g
r
1, 1, and

its size is thus of the order O(1). On the other hand, it can be figured out that a 2D-TRUST

complementary hash set contains no more than 6r hash values, and hence the size of H
q
, and

also that of G
q
, have an order of O(log2XY). The total overhead size of the 2D-TRUST is thus

O(Plog2XY + Qlog2XY), contrasted with the total overhead size of O(PXY + QXY) for the

basic quote-the-whole technique.

5.3.5 Including Column and Row Headers in Quotations

When a document author A
D
 quotes a two-dimensional rectangle of cells, the

corresponding column and row headers should also be included to put the quotation in context.

In the example illustrated by Figure 5.1, the column headers specify the fiscal year of the

quoted revenue figures (“2006”, “2007”, and “2008” in Figure 5.1), while the row headers

specify the types of income or expenditure (“Revenues,” “Google web sites,” and “Google

Network web sites” in Figure 5.1). Both headers are critical and thus must be quoted along

with the cells containing the actual revenue figures.

Since column and row headers are typically one-dimensional, we can use the same

techniques that are proposed in Section 4.4 or 4.5 to quote the corresponding headers

efficiently. In cases where the column or row headers contain multiple rows/columns, we can

apply the same technique (either 2D-TRUST or 2D-MUST) that is used for quoting cells to

quote the extra column and row headers. It is noted that if the 2D-TRUST was used for both

the quote as well as the headers, the size of the quotation signature required may actually

decrease compared to only quoting the cells. This is because the headers can be used to

calculate the first level hashes, and so reducing the number of hash values required for the

complementary hash set for the quotation.

5.4 Authentication of Spreadsheet Contents

As mentioned previously, in addition to the application of quotation authentication, the

proposed 2D-MUST can also be applied for effective authentication of the contents in a

spreadsheet document. In more detail, a sender can generate and embed suitable cascaded

61

hash values and multi-use signatures into a document and then send the stego-document to the

receiver through an insecure channel. If an attacker modifies any of the cell’s content during

transit, the receiver can detect the modifications made.

In one of our experiments, we prototyped the 2D-MUST for authentication of a

spreadsheet document by using C
#
.NET and VSTO technologies in Microsoft Excel 2003.

Specifically, an add-in similar to that described in Section 4.6 was implemented
12

, which

added buttons to the toolbar of the Excel application for generating and verifying 2D-MUST

signatures. The generated signatures for each cell, which include a 1D cascaded hash value, a

2D cascaded hash value, and a multi-use signature, are concatenated and stored into a cell as a

comment. It is assumed that the sender and intended receiver of a document shares a private

key and so the multi-use signature can be implemented using secure message authentication

codes such as HMAC that has a significantly smaller size compared to asymmetric digital

signatures. Our implementation used SHA1 as the hash function H(·) as well as for the

signature generation and verification function (using HMAC backed by SHA1), and so the

size of the signature for a cell is 3 × 160 bits. This signature is converted using base-64

encoding into an 80-character long string and included in the corresponding cell as a

comment
13

, as shown in Figure 5.3.

Figure 5.3. Experimental result of spreadsheet authentication using an add-in that implements

the proposed 2D-MUST.

A receiver can easily verify the validity of a spreadsheet document by using the Add-In,

which performs the following verification for each cell sx, y in the document.

12
 The implementation can be downloaded at http://sites.google.com/site/ktyliu/excel-spreadsheet-authentication.

13
 Microsoft Excel marks a cell that contains a comment by a small red triangle at the top-right corner of the cell

and shows the content of the comment when the mouse is moved over a cell (the screenshot shown in Figure 5.3

was captured when the mouse was over the cell C2).

62

1. First, the comment of the cell is extracted and converted back into the three individual

values hx, y, h'x, y, and gx, y using base-64 decoding.

2. The extracted signature gx, y is then compared against the result of computing Sign(h'x, y

|| H(hx, y || H(sx, y))). A mismatch between the two means the cell is likely to be modified

and the Add-In will highlight the cell background color to be red.

3. For cells not in the first column, that is, x > 1, the extracted 1D cascaded hash value

hx, y is compared against the result of computing H(hx – 1, y || H(sx – 1, y)). A mismatch

between the two means the cells sx – 1, y and sx, y are likely not next to each other in the

original spreadsheet document, and so we label the cell by drawing a diagonal line

running from the top-left corner to the bottom-right one.

4. For cells not in the first row, that is, y > 1, the extracted 2D cascaded hash value h'x, y is

compared against H(h'x, y – 1 || hx, y – 1), a mismatch of which signals that the cells sx, y – 1

and sx, y are likely not next to each other in the original spreadsheet document. Cells

failing the comparison are labeled with a diagonal line that slopes from the bottom-left

corner to the top-right one in the prototype implementation.

5. Finally, the value h1, y is compared against H(Sy) for each row y, and the value hx, 1 is

compared against H(S'x) for each column x. A mismatch for each comparison likely

means that either: 1) the row (or column) has been cropped; or 2) one or more cell

contents in the row (or column) was modified; and so we highlight the whole row

(column) by setting the cell background pattern to a dotted pattern.

In the example in Figure 5.3, the numbers in cells I2 thru I6 are individually decreased

by some amount while the contents in cells I8 and I9 are copied from those in C8 and C9. It is

verified that the modification to cells I2 thru I6 are correctly detected and highlighted (by step

2 of the above-mentioned verification process). Since the cells I8 and I9 are copied directly

from C8 and C9, they passed the signature verification (step 2) but failed the cascaded hash

value checks. Specifically, I8 failed both the 1D and 2D cascaded hash value checks (steps 3

and 4) while I9 failed the 1D cascaded hash value check (step 3). Although cell I10 was not

modified, it failed the 2D cascaded hash value check (step 4), signaling that cells I9 and I10

are not sequential in the original spreadsheet document. Finally, column I as well as rows 2, 3,

4, 5, 6, 8, and 9 are highlighted with a background pattern by step 5, signaling that content in

these columns/rows have been modified.

63

5.5 Summary

In this chapter we pointed out the existence of non-sequential quotations, in particular,

quotations that are two-dimensional rectangles of cells in spreadsheet documents. The basic

techniques of the enumerate-all-quotations and the quote-the-whole techniques may be

applied for authentication of such quotations but are nevertheless inefficient in terms of the

total overhead size. A two-dimensional multi-use signatures technique (2D-MUST) and a

two-dimensional tree root uni-signature technique (2D-TRUST) were then proposed that can

reduce the total overhead size, as summarized in Table 5.2 below.

Furthermore, it has been proposed that the 2D-MUST can be applied for effective

authentication of spreadsheet contents. Experimental results were shown, demonstrating that

various modifications to cells of a Microsoft Excel document can be detected and highlighted

by using a prototype add-in that implements the proposed method.

Table 5.2. Summary of signature sizes and total overhead sizes of the proposed techniques.

Technique |G
S
| |G

q
| Total overhead size

Enumerate-all-quotations O((XY)
2
) O(1) O(P(XY)

2
 + Q)

Quote-the-whole O(1) O(XY) O(PXY + QXY)

2D-MUST O(XY) O(min(A, B)) O(PXY + Qmin(A, B))

2D-TRUST O(1) O(log2XY) O(Plog2XY + Qlog2XY)

64

Chapter 6

Invisible Watermarking in Slides of Presentations by

Blank Space Coloring and Weighted Voting of

Partial Sequences

6.1 Introduction

Slide presentation is an increasingly popular way of communication, thanks to cheap

projectors and a widespread deployment of them in institutions and businesses. Slide

presentations are used for numerous purposes, including lecturing, training, idea presentation,

and sales reporting. The slides of a presentation usually are crafted carefully and include texts,

images, animations, audios, videos, etc., in order to present valuable contents concisely and

lively.

It is common for a person to take slides from others’ presentations when composing

his/her own slide presentation. One should be careful before releasing such a composed

presentation to the general public since including others’ slides is an act of copyright violation.

Another different but related application scenario is where there are confidential internal

slides and public marketing slides in a company, and while it is perfectly fine to mix those

slides in an internal talk, it is undesirable for the confidential slides to be carelessly shown in

external presentations. It will be convenient if there is an automatic means to detect whether a

set of slides contain any of the confidential slides.

One way to track the source of slides is to embed digital watermarks into them. To the

best knowledge of the authors, digital watermarking of slides has not been investigated before.

The traditional means to achieve source identification of slides is to place an annoying visible

logo in the slide background.

In this chapter, a watermarking method for slide presentations is proposed, which

embeds an invisible watermark image imperceptibly into the slides of a presentation. The

embedded watermark survives common operations performed on the slides, such as copying

and pasting of slides, addition of new slides, removal of slides, reordering of slides, editing of

slide contents, and modification to the slide design. The last operation is often applied by a

presentation designer to quickly change the style of slides for a desired appearance. The fonts,

styles, and colors of texts in the slides, among others, are automatically modified according to

65

a slide design template, as seen in the example shown in Figure 2.2 in the introductory chapter

(the figure is repeated below in Figure 6.1 for convenience).

Digital Filtering - 3 - 11 © 2003 Xilinx, Inc. All Rights Reserved For Academic Use Only

= Sign Extension

-23 22 21 20

C0 = 1 0 0 1 (-7)
X0 = 0 1 1 1 (7)X

(1 0 0 1
(1 0 0 1
(1 0 0 1
(0 0 0 0

1 1 0 0 1 1 1 1 (-49)

-23 22 21 20

C1 = 0 1 1 0 (6)
X1 = 0 1 0 1 (5)X

0 1 1 0)
0 0 0 0)

0 1 1 0)
0 0 0 0)

0 0 0 1 1 1 1 0 (30)

1 1 1 1
1 0 0 1

1 1 1 1
0 0 0 0

= 1 1 1 0 1 1 0 1

+
+
+
+

(-1)
(-14)
(-4)
(0)
(-19)

(Serial-Data / Tap-Parallel Multiply)

Distributed Arithmetic
for a 2-Tap Filter

• Partial products of equal weight are added together before being

summed to next higher partial product weight

• Create look-up table of summed partial products

(a)

= Sign Extension

-23 22 21 20

C0 = 1 0 0 1 (-7)
X0 = 0 1 1 1 (7)X

(1 0 0 1
(1 0 0 1
(1 0 0 1
(0 0 0 0

1 1 0 0 1 1 1 1 (-49)

-23 22 21 20

C1 = 0 1 1 0 (6)
X1 = 0 1 0 1 (5)X

0 1 1 0)
0 0 0 0)

0 1 1 0)
0 0 0 0)

0 0 0 1 1 1 1 0 (30)

1 1 1 1
1 0 0 1

1 1 1 1
0 0 0 0

= 1 1 1 0 1 1 0 1

+
+
+
+

(-1)
(-14)
(-4)
(0)
(-19)

(Serial-Data / Tap-Parallel Multiply)

Distributed ArithmeticDistributed Arithmetic
for a 2for a 2--Tap FilterTap Filter

�� PartialPartial products of equal weight are added together before products of equal weight are added together before

being summed to next higher partial product weightbeing summed to next higher partial product weight

�� Create lookCreate look--up table of summed partial productsup table of summed partial products

(b)

Figure 6.1. Illustration of slide designs. (a) A slide from a tutorial from Xilinx, Inc. with

black texts on white background; (b) the slide in (a) with a slide design template

of bluish background applied.

There are two different ways of setting the colors of texts in presentations. The first,

more common approach is to select a color from a color palette, and the selected index in the

color palette is actually stored. The second approach is to directly set the color of the text

usually in the RGB color space, which is a triplet specifying the relative intensities of the red,

green, and blue components of the color, usually each in the range of 0 to 255, such as (red: 0,

green: 255, blue: 255) for the color yellow. A slide editing software application usually allows

any of the two approaches to be used for any text in a slide, and it is possible, for example, to

have a whole sentence colored using the color palette approach except the first word which is

highlighted using a special RGB color.

For automatic modifications of text colors to work when applying different slide design

templates, the first approach of text coloring is used. In more details, different slide design

templates have different color palettes, and the colors of the titles of a slide, the texts and the

hyperlinks in a slide, etc. are set to specific colors from the color palette. The color palette in a

design template supplied by a slide editing software application is designed to ensure high

contrast texts and an overall appealing appearance. For example, slide templates with a white

background will have matching black texts, and templates with a dark background will have

texts in light colors. By adhering to the color palettes when editing slides, one can ensure that

66

the colors will be modified appropriately and automatically when selecting a different slide

design.

The automatic modifications made during slide design changes pose great challenges to

watermarking in slides, and make many previously proposed watermarking techniques

ineffective. As mentioned previously, text watermarking by making use of the LSBs of the

text colors is revealed after a slide design change. This is because the manipulation of the

LSBs of the text colors mean that the colors will no longer be palette entries but specific RGB

colors, and thus not altered automatically when a different design template is applied,

explaining why the word “Partial” in the right slide of Figure 6.1 remains to be dark gray

instead of changing to white like the other text. It is also noted that the visible logo and the

copyright information in the slide background have been removed automatically after the

application of the slide design.

6.2 Overview of Proposed Method

In this chapter, we propose to use the colors of space characters (called simply as spaces

hereafter) to embed watermarks, that is, to embed watermark data by altering the color of a

space between two words. The colors of the spaces in a slide can be changed without affecting

the visual appearance of the slide, and these colors are unchanged during application of other

slide designs, changing of slide layouts, reordering of slides, reordering of texts in slides, and

conversion of file formats, as found in this study. As the spaces are transparent, we can

manipulate the colors freely for the purpose of information embedding, using either the color

palette or the RGB coloring approach, without any visual side-effects. The latter is chosen due

to its greater embedding capacity.

Specifically, we divide a watermark image into blocks and encode the index and data of

each block into a RGB color value which is then taken to replace the original color of a space,

accomplishing the embedding of a watermark block’s information into a space character, as

illustrated in Figure 6.2 below. The watermark image to be embedded is assumed to be an

X × Y black-and-white image, such as a logo of an institution. The image is divided into M

blocks, each containing N pixels, where N = XY/M. The N pixel values of each block are

concatenated in a raster scan order into a string, which we call a block data string in the

sequel. The data string and the index of each block are encoded into an RGB color, with

which the color of a text space in a slide is replaced.

67

Since one might copy only some of the watermarked slides of a presentation, we choose

to embed the watermark repeatedly throughout the slides. The embedding of the block index

along with the block data string means that the embedded data are invariant against insertion

and reordering of slides or slide contents. For resilience to common editing operations of

slides, the watermark blocks are embedded into the slides in a random sequence created by a

pseudo-number generator with a user-specified key. To extract the embedded watermark, a

weighted voting technique is proposed to extract the embedded watermark from a

stego-presentation.

Figure 6.2. Illustration of watermark image embedding using blank space coloring.

The embedding of the blocks of a watermark image in a predefined random sequence has

several benefits, as described in the following.

1. A recognizable partial watermark can be extracted if a person copies only a portion of

the watermarked material. Figure 6.3 shows two series of watermark images with

different percentages of blocks successfully reconstructed. The watermark can be

recognized already when only half of the blocks (i.e., M/2 blocks) are present.

2. If some of the watermarked slides are placed together with other non-watermarked ones,

the watermarked slides can still be correctly identified using the weighted voting

technique proposed in this study (described later), which gives more weights to

extracted block data strings with indices in right orders defined by the random sequence.

3. Furthermore, if watermarked slides from multiple sources with different user keys and

watermark images are mixed together in a slide presentation, the individual watermark

images can be extracted correctly in turn by using the respective user keys, as confirmed

in the experiments.

Color

Encoding

WatermarkedSlide

Block index

Block data

string

RGB Color

68

Figure 6.3. Two series of watermark logos with different percentages of blocks reconstructed.

6.3 Proposed Watermark Embedding Process

The detailed process of the proposed watermark embedding technique is described as an

algorithm below. During watermark embedding, the spaces are taken for data embedding in

the reading/presentation order, that is, the spaces in the first slide are used first in a

top-to-bottom and left-to-right order, followed by the spaces in the second slide, and so on.

While the blocks of the watermark are embedded into this normal sequence of spaces, the

indices of the embedded blocks instead follow a pseudo-random sequence controlled by a key,

as mentioned previously.

Algorithm 6.1: embedding a watermark image into slides of a presentation.

Input: a set P of slides of a presentation; a watermark image I to be embedded, which is

partitioned into M block data strings B1, B2, …, BM; and a user-specified key K.

Output: watermarked slides of P with I embedded by coloring the spaces in P appropriately.

Steps:

1. Generate a random integer sequence E = {i1, i2, …, iM} in the range of {1, 2, …, M}

without repetitive values, using K and a pseudo-random number generator f.

2. Find all spaces s1, s2, …, sL in P in the reading/presentation order, and repeat the

sequence E for L/M times to arrive at another sequence E
+
 = {j1, j2, …, jL'}, where

L' = M × L/M ≥ L.

3. For each space sk in P, 1 ≤ k ≤ L, pick out the index jk in E
+
 and the corresponding

block data string Bjk
, and encode the pair (jk, Bjk

) into a color C to replace that of sk in

the following way:

a. combine jk and Bjk
 into an integer A = jk × 2

N
 + Bjk

, regarding Bjk
 as an N-bit

number;

69

b. compute color C = (R, G, B) by taking the three components respectively to be

B = Amod 2n, G = A/2
nmod 2n, and R = A/2

2n, where each component is assumed to

have n bits;

c. replace the color of space sk with C.

6.4 Proposed Weighted Voting of Partial Sequences Technique for

Watermark Extraction

During watermark extraction, it might happen that a given set of slides includes both

watermarked slides and non-watermarked ones, as mentioned previously. Since a space with

no embedded data in a non-watermarked slide also has a color value which may be as well

decoded into a block data string and a block index, a weighted voting technique is proposed in

this study to identify the spaces that really contain watermark data, so that a correct

watermark can be reconstructed. We assume that the block indices extracted from

non-watermarked slides to be uniformly distributed in the range of {1, 2, …, M} for the

subsequent discussions
14

.

More specifically, since one usually copies a complete slide or an entire sentence in a

slide at a time, the order of the spaces in the copied contents are preserved. The basic idea of

the proposed weighted voting technique is to analyze the sequence of block indices extracted

from the spaces of the slides of a suspect presentation, and check whether the extracted

sequence follows an expected sequence. Blocks that follow the expected sequence are more

likely to contain watermark data than those that do not, and thus are given larger weights in

using them for reconstructing the watermark image.

We denote the sequence of pairs of block indices and block data strings that have been

extracted from the spaces of a suspect presentation as S = {(j1, B1), (j2, B2), …, (jL, BL)},

where jk is the index of block data string Bk. The expected sequence E = {i1, i2, …, iM}, as

generated by Step 1 of Algorithm 6.1, is a random integer sequence in the range of {1, 2, …,

M} without repetitive values. As the blocks of the watermark are embedded repeatedly

according to the sequence E, we regard the sequence to be cyclic and use the new notation E
+

to specify a sequence of arbitrary length formed by concatenating sequence E repeatedly.

14
 In practice, space characters in a typical slide presentation have very few distinct colors, so the performance

of the proposed technique in reality is better than that of the theoretical calculations.

70

Also, we use the notation {ja, ja+1, …, jb} ⊂ E
+
 to mean that the sequence {ja, ja+1, …, jb} is a

subsequence of E
+
.

Now consider a text space sk which does not contain previously embedded watermark

data, and from which the pair (jk, Bk) in S is extracted. There are three cases here.

1. For k = 1 (corresponding to the case that sk is the first space of the suspect presentation),

the probability that the index sequence {jk, jk+1} ⊂ E
+
 is 1/2

M
, irrespective of whether the

block with index jk+1 contains embedded watermark data or not. The probability that

{jk, jk+1} ⊄ E
+
 is 1 – 1/2

M
.

2. For k = L (corresponding to the case that sk is the last space of the suspect presentation),

the probability that {jk–1, jk} ⊂ E
+
 is 1/2

M
, irrespective of whether the block with index

jk–1 contains embedded watermark data or not. The probability that {jk–1, jk} ⊄ E
+
 is

1 – 1/2
M

.

3. For 1 < k < L, the probability that {jk–1, jk, jk+1} ⊂ E
+
 is 1/2

M
×1/2

M
 = 1/2

2M
, irrespective of

whether the blocks with block indices jk–1 and jk+1 contain embedded watermark data or

not. The probability that {jk–1, jk, jk+1} ⊄ E
+
 but {jk–1, jk} ⊂ E

+
 is 1/2

M
 × (1 – 1/2

M
), and so

is the probability that {jk–1, jk, jk+1} ⊄ E
+
 but {jk, jk+1} ⊂ E

+
. The probability that

{jk–1, jk} ⊄ E
+
 and {jk, jk+1} ⊄ E

+
 is (1 – 1/2

M
) × (1 – 1/2

M
).

We propose to weigh the block data strings in S according to the minus base-2 logarithm

values of the above probabilities in using the data string values in the process of watermark

extraction. That is, for k = 1, block data string Bk is given a weight of –log2(1/2
M

), which we

denote as WA, if {jk, jk+1} ⊂ E
+
; and if {jk, jk+1} ⊄ E

+
, then block data string Bk is given a

weight of –log2(1 – 1/2
M

), which we denote as WB. Similarly, if k = L, block data string Bk

receives a weight of WA if {jk–1, jk} ⊂ E
+
, and a weight of WB if {jk–1, jk} ⊄ E

+
. For 1 < k < L,

the block data string Bk is given a weight of −log2(1/2
2M

) = 2WA if {jk–1, jk, jk+1} ⊂ E
+
, a

weight of −log2[1/2
M

 × (1 – 1/2
M

)] = WA + WB if either {jk–1, jk} ⊂ E
+
 or {jk, jk+1} ⊂ E

+
, and a

weight of −log2[(1 – 1/2
M

) × (1 – 1/2
M

)] = 2WB if none of the above are true. The block data

strings with the largest weights are then chosen for watermark reconstruction, as described in

the following algorithm.

Algorithm 6.2: weighted voting of partial index sequences for watermark extraction.

Input: an expected cyclic sequence E
+
 = {i1, i2, …}; an input sequence of extracted block

indices and data strings S = {(j1, B'1), (j2, B'2), …, (jL, B'L)}; and a threshold T.

71

Output: block data strings B1, B2, …, BM of the M blocks that comprise a watermark image I.

Steps:

1. Initialize W1, W2, …, WM to be M empty sequences of 2-tuples.

2. For each pair (jk, B'k) in S with block index jk and block data string B'k, 1 ≤ k ≤ L, add

the pair (B'k, W) to the sequence Wjk
 where:

a. for k = 1, W = WA if {jk, jk+1} ⊂ E
+
, and W = WB if {jk, jk+1} ⊄ E

+
;

b. for k = L, W = WA if {jk–1, jk} ⊂ E
+
, and W = WB if {jk–1, jk} ⊄ E

+
;

c. for 1 < k < L, W = 2WA if {jk–1, jk, jk+1} ⊂ E
+
; else W = WA + WB if either

{jk–1, jk} ⊂ E
+
 or {jk, jk+1} ⊂ E

+
; or else W = 2WB.

3. Derive the data string Bi of the ith block of I as follows where 1 ≤ i ≤ M:

a. sum up the weights with identical data strings in Wi;

b. select the data string B'max in Wi with the maximum weight Wmax;

c. if there are no such B'max’s, or if there were multiple such B'max’s, or if Wmax is

smaller than the threshold T, then regard Bi as missing, and represent the ith block

as a gray-colored block; else set the data string Bi to be B'max.

As an example, let M = 4, E = {3, 1, 4, 2}, S = {(2, A), (3, B), (1, C), (4, D), (1, E), (4, F),

(2, A)}, and T = WA. Then E
+
 = {3, 1, 4, 2, 3, 1, 4, 2, 3, …}. After Step 2 of the above

algorithm, we have W1 = {(C, 2WA), (E, WA + WB)} because the partial data set {(3, B), (1, C),

(4, D)} in S forms an index sequence of {3, 1, 4} which fits well with the first three indices of

E
+
, yielding the result of the pair (C, 2WA) in W1; and the partial data set {(1, E), (4, F)} forms

an index sequence of {1, 4} found also in E
+
, yielding (E, WA + WB) in W1. In similar ways,

we can compute W2 = {(A, WA), (A, WA)}, W3 = {(B, 2WA)}, and W4 = {(D, WA + WB), (F,

WA)}. Accordingly, in Step 3 the block data strings B1, B2, B3 and B4 are set to C, A, B and D,

respectively, with the weighting for data string A summed to be 2WA.

The above method ensures that sequences of blocks that contain watermark data

dominate during the watermark image reconstruction in Step 3. However, if only a small

portion of the watermarked contents are copied, then some of the blocks of the reconstructed

watermark image may be missing. The threshold T is useful in this case, where setting T to a

large value causes noise from non-watermarked blocks to be ignored. A value of at least WA is

recommended, since block weights from any partial sequences of the watermark contents are

at least of the value of WA.

72

In Step 3c of the algorithm, instead of ignoring all of the multiple candidate block data

strings with the same weights, we could use a voting algorithm to restore the correct

watermark pixel values amid noise, as described in the following. The basic idea of the

algorithm is that the block data strings decoded from text spaces that do not contain

watermark data can be considered to contain random values. For each pixel, the number of

blocks that have the corresponding pixel value of black is approximately the same as that

having a pixel value of white. The assumption of inclusion of the correct block data string

causes the scale to tip towards the correct side. To handle the case where no correct blocks is

available, as the case may be when only a few watermarked slides are taken, the value of H

can be increased to reduce the resulting noise in the extracted watermark image.

Algorithm 6.3: intra-block voting for pixel value reconstruction.

Input: a set SC of V block data strings B1, B2, …, BV; and an adjustable threshold H, where

0.5 ≤ H < 1.

Output: colors (black or white) p1, p2, …, pL of the pixels comprising a block P of a

watermark image.

Steps:

1. Set the color of each pixel pj, 1 ≤ j ≤ L, as follows:

a. count the number of blocks in SC, whose corresponding pixel value is black (i.e.,

with bit value 1), and denote the number as CB;

b. count the number of blocks in SC, whose corresponding pixel value is white (i.e.,

with bit value 0), and denote the number as CW;

c. set the color of pj to be black if CB /V > H; else set the color of the pixel to be white

if CW /V > H; or else set the color of the pixel to be gray, meaning the pixel color

was indeterminate.

6.5 Proposed Watermark Extraction Process

In the proposed watermark extraction process, the spaces in the slides of a suspect

presentation are analyzed to extract a sequence of block indices and block data strings.

Algorithm 6.2 is then used to analyze the extracted block indices and data strings to

reconstruct the previously embedded watermark image. The algorithm below describes the

details.

73

Algorithm 6.4: extracting a watermark image from the slides of a suspect presentation.

Input: a set P of slides of a suspect presentation and a key K.

Output: a watermark image in P comprised by M block data strings B1, B2, …, BM.

Steps:

1. Generate the random integer sequence E = {i1, i2, …, iM} in the range of {1, 2, …, M}

without repetitive values, using K and the same pseudo-random number generator f

used during watermark embedding.

2. Initialize S to be an empty sequence of pairs of block indices and block data strings.

3. Find all spaces s1, s2, …, sL in P in the same order as that of embedding, and for each

space sk, 1 ≤ k ≤ L, decode the color C = (R, G, B) of sk into a pair (j, D) of a block

index j and a block data string D and put it into S in the following way:

a. compute an integer A = R×2
2n

 + G×2
n
 +B, assuming that the RGB color space has n

bits per channel;

b. compute j and D as j = A/2
n and D = Amod 2n, respectively (because presumably

A = j×2
n
 + D according to Step 3a of Algorithm 6.1);

c. add (j, D) to S.

4. Reconstruct B1, B2, …, BM using Algorithm 6.2 (and Algorithm 6.3) with E and S as

inputs.

6.6 Embedding Capacity and Expected Reconstruction

Coverage

When embedding the blocks of a watermark image into the spaces of slides, popular

slide presentation formats like Microsoft PowerPoint and OpenOffice Impress can be used.

Eight bits per color channel and hence 24 bits can be embedded into each text space in slides

of such formats. This embedding capacity allows us to embed a black-and-white watermark

image as large as 64×64 into the slides of a presentation of normal sizes. When embedding a

watermark image of such a size, we first divide it into M = 256 blocks with each block

containing N = 16 pixels. Each space then is used to store an 8-bit block index and 16-bits of

pixel values. For a presentation we use in this study that contains slides with 40 spaces per

slide on average, only seven slides is required to embed a complete watermark, and four slides

may be sufficient to extract a recognizable watermark. The watermark image is embedded

repeatedly into the slides as mentioned previously. Figure 6.3 shows a series of 64×64 logos

with different coverages that have been divided into 256 blocks of 4×4 pixels. If a smaller

74

watermark image was used during watermark embedding, the number of spaces required to

extract a recognizable watermark is reduced.

When slides are taken selectively, instead of consecutively, from a watermarked

presentation, the block data contained in these slides may overlap with each other, meaning

that a higher number of spaces are required to reconstruct a recognizable watermark. We now

analyze the estimated number of watermarked spaces that are required to achieve a particular

watermark image coverage G, that is, the percentage of the watermark image that can be

reconstructed. It is assumed that R spaces are drawn from a watermarked presentation

randomly, and that the block index in each of the drawn spaces is uniformly distributed in the

sample space {1, 2, …, M}. We denote the R random block indices as i1, i2, …, iR, and so G is

essentially the number of distinct values in {i1, i2, …, iR} over the value M. The expected

coverage E(G) is the expected percentage of the watermark image that can be reconstructed

from the R randomly chosen spaces.

To derive E(G), we first introduce random variables I1, I2, …, IM, where Ij = 1 if none of

the values of i1, i2, …,iR is equal to j, and Ij = 0 if at least one of the values is equal to j. It

should not be difficult to see that the probability of Ij = 1 is (1 – 1/M)
R
, and thus the expected

value of Ij is E(Ij) = (1 – 1/M)
R
. On the other hand, since G = [Σ(1 – Ij)]/M, the expected

coverage can be derived to be

()

() .11

)1(
)(

1
R

M

j

j

M

IEM

M

I
EGE

−−=

−
=













 −
=

∑

∑

 (6.1)

From (6.1), the number of spaces R required for a desired expected coverage E(G) is

()

()M

GE
R

11log

)(1log

−

−
= . (6.2)

Using the above equation, we can estimate the number of spaces that are required to

achieve a recognizable watermark image. A recognizable watermark should have at least 50%

coverage, as seen in Figure 6.4. With E(G) = 0.5 and M = 256, approximately R = 177 spaces,

or about four to five slides, for a presentation containing on average 40 spaces per slide, are

required according to Equation (6.2); and for a good quality watermark image with 80%

coverage, approximately 411 spaces, or 10 slides, are required. On the other hand, if a smaller

20×16 watermark image was embedded, that is, M = 16 and N = 20, then only 11 spaces

75

would be required to achieve 50% coverage and only 25 spaces to achieve 80% coverage. In

other words, only about half a slide’s worth of content is required for extracting a

recognizable watermark of the size 20×16.

Finally, it is noted that in the case where a slide contained few spaces that can be used for

watermark embedding using the proposed method, then the slide is likely to contain other

multimedia contents such as images and drawings that they themselves can be used to embed

watermarks by using the corresponding watermarking techniques for those media types.

(a)

(b)

Figure 6.4. Illustration of watermark reconstruction coverage. (a) Three watermarks each with

a recovered percoverage of 50%; (b) the three watermarks with 80% coverage.

6.7 Robustness of Proposed Method against Common Operations

The watermark embedded into the slides of a presentation using the proposed method is

resilient against many common operations performed on slides. In particular, the embedded

watermark is robust against changes to the slide design template, as described in the

introduction, whereas traditional visible logos are removed automatically in the process.

The watermark is resilient against copying and pasting of watermarked slides, as the

colors and orderings of the spaces in the slides are unaltered during these types of operations.

If we assume reasonably that there are at least two spaces in a slide, the block data strings

embedded in the spaces of the slide will receive a sufficiently large weight using the proposed

technique, allowing for correct reconstruction of the embedded watermark image. Reordering

of the slides in a presentation is a similar operation to copying and pasting of slides, and has

little impact on correct watermark extraction. Reordering of slide contents is often conducted

by moving pictures and text blocks around or by exchanging the order of the sentences in a

slide. The former operation does not have any effect, while the latter is the same as reordering

of slides if there are at least two spaces in a sentence.

Insertion of new non-watermarked slides or watermarked slides created with a different

key into a slide set does not affect the watermarked contents, but only increases the amount of

noise during reconstruction. Algorithms 6.2 and 6.3 are capable of selecting out the correct

76

watermark data amid noise, as is verified in the experiments conducted in this study, where

correct watermark images were reconstructed from watermarked slides that have been

reordered and put together with slides that have been watermarked with different keys.

The proposed method is also resilient against removals of slides or slide contents, as long

as sufficient watermarked contents remain. Experiments have shown that a recognizable

watermark of size 64×64 can be reconstructed from approximately five watermarked slides.

Lastly, the watermark embedded using the proposed method has been proven to be

robust against file format conversion attacks. Specifically, a presentation with slides

watermarked using the proposed method was first saved in Microsoft PowerPoint in its PPT

format. The file was then opened by another slide presentation editing software, OpenOffice

Impress, and saved in the OpenDocument ODP format. The ODP format file was then

reopened by OpenOffice Impress, and finally saved back into the PPT format. Figure 6.5(a)

shows the first two slides of a test presentation before file format conversion, and Figure 6.5(b)

shows the same two slides after the above described format conversions from PPT to ODP

and back to PPT. We note that the font type (changed from Arial to Times New Roman) and

the font size (changed from 42pt to 44pt) of the title on the first slide, and the drawing on the

second slide, among others, were changed during the file format conversions. The watermark

image embedded in the coloring of blank spaces, however, was untouched during the process

and can be perfectly reconstructed.

6.8 Experimental Results

The proposed watermark embedding and extraction methods were implemented
15

 using

C
#
.NET and a series of experiments are conducted on Microsoft PowerPoint 2003. We have

collected slides from the presentations of some past projects of Dr. Tsai, as well as some

presentations that are available from the web [100]-[102]. The average numbers of spaces per

slide in these samples range from 35 to 60. Three slides, named A, B, and C, respectively,

with the characteristics listed in Table 6.1, are chosen for the experiments.

15
 The implementation can be downloaded at

http://sites.google.com/site/ktyliu/invisible-watermarking-in-powerpoint-by-blank-space-coloring.

77

1

Robust Watermarking of Slide

Presentations

Tsung-Yuan Liu and Wen-Hsiang Tsai

National Chiao Tung University

2006.02.10

2

Motivation

� Copyright protection of slide

presentations (Microsoft PowerPoint,

OpenOffice Impress, etc.)

(a)

1

Robust Watermarking of Slide

Presentations

Tsung-Yuan Liu and Wen-Hsiang Tsai

National Chiao Tung University

2006.02.10

2

Motivation

� Copyright protection of slide
presentations (Microsoft PowerPoint,
OpenOffice Impress, etc.)

(b)

Figure 6.5. An experimental result of file format conversion. (a) Two slides in Microsoft

PowerPoint. (b) The two slides after file format conversion from PPT to ODP and back.

Table 6.1. Characteristics of presentations used in the experiments.

 A B C

Number of slides 35 28 51

Total number of spaces 2,086 1,029 2,605

Average number of spaces per slide 59.6 36.8 51.1

Maximum number of spaces in a slide 352 159 339

Minimum number of spaces in a slide 0 1 1

Standard deviation of spaces per slide 73.0 37.4 53.7

78

In the experiments, three logo images, each of size 64×64, are used as watermarks. Each

of them was divided into 256 blocks of 4×4 pixels each, and individually embedded into the

slides of the three presentations with different security keys using Algorithm 6.1. A

presentation was then constructed by drawing slides randomly from the watermarked

presentations. Specifically, N slides were drew randomly from each of the three presentations

and then combined to form an experimental presentation that contains 3N slides. The three

watermark logos were then extracted from the experimental presentation with the three

respective keys in turn using Algorithm 6.4.

The number of pixels that were correctly reconstructed in each of the three extracted

watermark logos was counted, and the fractions of correct pixel extraction for the three

images were recorded for each trial. This process was repeated 10,000 times for each value of

N ranging from 1 to 19, and the average correct coverages of the three extracted watermarks

are plotted in Figure 6.6. To reconstruct a recognizable extracted watermark with at least 50%

correct coverage, 3, 5, and 4 slides are required from presentations A, B, and C, respectively;

and to reconstruct one with 80% correct coverage, 7, 11, and 8 slides are required from A, B,

and C, respectively.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16 18 20

Number of slides taken from each presentation

A
v

e
ra

g
e

 c
o

v
e

ra
g

e
 o

f
c

o
rr

e
c

t
w

a
te

rm
a

rk
 l

o
g

o
 p

ix
e
ls

A

B

C

Figure 6.6. Plot of average correct watermark pixel extractions from presentations constructed

from randomly drawn slides.

79

Figure 6.7 shows one result of the three extracted watermarks for N ranging from 3 to 10.

The result is imperfect because of the large variations in the number of spaces in each slide.

Specifically, some slides in the presentations used in the experiments contain more than one

hundred spaces. The selection of just a few of these slides will result in perfect reconstruction

of the watermark image. For example, the presence of a slide from presentation C that

contains 339 spaces (shown in Figure 6.1) alone would allow for perfect reconstruction of the

embedded watermark.

 N = 3 N = 10

A

B

C

Figure 6.7. An experimental result of the three extracted watermarks with N ranging

from 3 to 10.

On the other hand, if slides that contain less than ten spaces were picked during a trial of

the experiment, then many blocks of the reconstructed watermark image will be missing. We

note that the randomly constructed presentation contains slides watermarked with a key

different to the one used for extraction, and can thus include incorrect data for these missing

blocks. However, since such erroneous blocks do not follow the expected sequence specific

for the extraction key, they are effectively filtered out by the proposed weighted voting

technique, as observed in the figure. The average percentages of the watermark that was

incorrectly recovered fall in the range of 0.02%~0.24% in the experiments.

The plot in Figure 6.6 was normalized by multiplying the number of slides taken from

each of the presentation by the average number of spaces per slide. The normalized plot, with

the average number of spaces taken from each presentation as the x-axis, is shown in Figure

6.8. It is clear that the performance of the proposed method is relatively insensitive to the

properties of the slides in a presentation. The estimated coverage of the extracted watermark

derived as Equation (6.1) is also plotted in the figure for comparison.

80

To achieve a correct coverage of 50% and 80% respectively, approximately 165 and 385

spaces are required respectively according to the figure, which are close to the theoretical

estimates of 178 and 412. The actual experimental results are slightly better than the

theoretical estimates because we assumed that all spaces were drawn randomly for the

estimate, whereas in the experiments a whole slide that contains spaces in sequence was taken

at a time. As observed in the experimental results, the interferences between the different sets

of watermarked slides have been eliminated by the application of the proposed weighted

voting technique.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400 450 500 550 600

Average number of spaces taken from each presentation

A
v

e
ra

g
e

 c
o

v
e
ra

g
e

 o
f

c
o

rr
e

c
t

w
a

te
rm

a
rk

 l
o

g
o

 p
ix

e
ls

A B C Estimate

Figure 6.8. Normalized plot of average correct watermark pixel extractions from presentations

constructed from randomly drawn slides.

6.9 Summary

In this chapter we described a novel method for embedding watermark images

imperceptibly into the slides of presentations. The watermarked presentation is visually

indistinguishable from the original version, and is resilient against many common editing

operations. Specifically, the watermarked presentation is resilient against insertions, removals,

and reordering of slides, copying and pasting of slides, changes to the slide design templates,

and file format conversions.

81

Furthermore, if slides taken from multiple presentations that have been watermarked

using different keys are combined into a single presentation, each of the previously embedded

watermark images can be individually extracted correctly with the respective keys using the

proposed method.

The watermark embedding and extraction methods have been tested using the popular

presentation software Microsoft PowerPoint, and good experimental results demonstrate the

feasibility and resilience of the proposed method. On average, five slides taken from a

watermarked presentation using a certain security key is sufficient to extract a recognizable

watermark of size 64×64.

82

Chapter 7

Data Hiding in Graphic Drawings by Structures of

Object Groupings

7.1 Overview of Proposed Method

Drawings such as flowcharts, network topologies, and floor plans are commonly seen in

office documents. Figure 2.4 (repeated below as Figure 7.1 for convenience) shows an

example of a floor plan drawing, where the shapes representing desks, chairs, servers, walls,

doors, etc. all come from standard stencils. A drawing of this kind can contain numerous

objects, and for ease of manipulation, drawing editing applications allow objects to be

grouped together such that each group can be manipulated as a unit. Each group can then be

translated, scaled, rotated, mirrored, or colored as a whole. It is also possible for the groupings

to be nested, that is, a group can contain several groups of objects.

Figure 7.1. A floor plan diagram of an office composed of different objects from stencils.

83

In this chapter a new approach to embedding data into drawings is proposed by

manipulating the structure of object groupings. Such a structure can be represented by a tree,

as illustrated in Figure 7.2, where the internal nodes are the groups, and the leaves are the

objects. In the figure, for example, Group 4 contains two simple objects while Group 1

includes two simple objects as well as two smaller groups. It is the use of such different

combinations of the object groupings that fulfills information embedding in the proposed

approach.

 Group 1

Group 2 Square Group 3 Circle

Group 4 Circle

Line

Cube Text

Oval

Figure 7.2. Illustration of object groupings for data embedding in a drawing.

Compared to previous data hiding techniques for vector drawings that are described in

Section 2.4, the proposed method has several merits.

1. The method can be used to embed multiple data bits with a blind extraction capability,

allowing for different types of data hiding applications, whereas some techniques

require the use of the original media (called non-blind methods) or can only embed

watermarks with no message data (called zero-bit watermarking methods) [60], [63].

2. Manipulations of object groupings do not change the visual appearance of a drawing at

all, whereas most other techniques degrade the quality of a drawing [60]-[65].

3. Any collection of shapes, lines, or text blocks that can be grouped together may be used

by the proposed method for data embedding, whereas many other techniques can only be

applied to specific drawing objects such as polylines, polygons, B-spline curves, etc.

[60]-[62], [65]-[66].

4. The method can be used to embed information in any graphical file format that supports

nested grouping of objects, for example, AutoCAD drawings, Visio drawings, and

PowerPoint presentation files.

84

7.2 Proposed Data Embedding Process

The basic idea of the proposed data embedding process is to determine the inter-object

distances for all objects in the drawing, sort the distances between pairs of objects, and then

group the pairs of objects in turn or left them ungrouped, depending on the bits to be

embedded. Since the grouping of objects can be nested, for simplicity we will refer to a

simple object or a group of objects both as an object. That is, a drawing is composed of a

collection of objects, where some objects are composed of smaller constituent objects. It is

assumed in this study that the cover drawing D consists of simple objects and no groups. The

details of the proposed data embedding process are described in the algorithm below.

Algorithm 7.1: data embedding by structure of object groupings.

Input: a drawing with objects D = {o1, o2, …, oL} and a bit string S = b1b2…bN to be

embedded.

Output: a stego-drawing D' with an appropriate structure of object groupings representing S.

Steps:

1. Set D' to be equal to D initially.

2. Create an auxiliary helper set P and set it to be empty initially.

3. Take in order a bit bi from the input bit string S, where 1 ≤ i ≤ N, and perform the

following steps.

a. Calculate the distances between every pair of objects in D' that are not in P.

b. Find the two objects oj and ok in D' such that their distance is the smallest among

those of all object pairs in D' that are not in P.

c. If bi = 1, then group oj and ok in D' together; otherwise, add the pair (oj, ok) to P as

an ungrouped one.

4. Take the final D' with the resulting structure of object groupings as the output

stego-drawing.

The purpose of creating the set P in the above algorithm is to record pairs of objects that

are not grouped together for embedding 0’s, so that these object pairs are not considered

further. As an example, supposed that we want to embed the bits 1010010011 into the drawing

shown in Figure 7.3 with the inter-object distances listed in Table 7.1.

85

Application ServerFile Server

Switch 1
Switch 2

Router

Workstations

Figure 7.3. A simple drawing used as an example for embedding by object grouping.

Table 7.1. Distances between all pairs of objects in Figure 7.3.

 Workstations Router Switch 2 Switch 1 File Server

Application Server 0.9139 1.7557 0.9903 0.4134 0.2791

File Server 1.9525 2.1690 1.7464 0.8552

Switch 1 1.5705 1.0851 0.5998

Switch 2 0.4977 0.7566

Router 1.9052

We find that the objects “File server” and “Application server” are the closest two

objects (with distance 0.2791), and is so the first pair considered. Since the first bit to be

embedded is “1,” the two objects are grouped together to form a new object, called Group 1,

according to Step 3c of the algorithm. The closest object pair in the resulting drawing is then

Group 1 and the object “Switch 1” (with distance 0.4134). These two objects are not grouped

in order to embed a “0,” and the pair is recorded in the set P so that they are not considered

further for grouping. The objects “Switch 2” and “Workstations” (with distance 0.4977) are

then considered, and grouped to form Group 2 to embed a “1,” and so on. The resulting

structure of object groupings after embedding 1010010011 is shown in Figure 7.4.

86

Figure 7.4. Resulting structure of object groupings of Figure 7.3 after embedding

1010010011.

7.3 Analysis of Data Embedding Capacity

In Algorithm 7.1, when two objects are grouped into one for every bit of 1 embedded

(Step 3c), the number of objects in the stego-drawing D' decreases by one. The maximum

number of 1’s that can be embedded using the proposed method is thus L – 1 where L is the

number of objects in the input drawing D.

On the other hand, the method can embed 0’s more efficiently. Specifically, it can be

seen from the following analysis of performing the steps of Algorithm 7.1 that for a drawing

with L objects, the maximum number of bits that can be embedded is (L – 1)
2
 when the input

data string is of the form:

 {{{ { {
(1)

2
(2) 1 (3) 1 3 1 2 11

00...0100...0100...01...1001 0 11
L L L L− − − − − − −−

. (7.1)

Performance analysis of Algorithm 7.1 for embedding the maximum number of bits.

1. All object pairs except “the pair G1 with the farthest in-pair distance” are ungrouped

and added to the set P to embed the first (1)
1

2

L L −
− 

 
 0’s, where the term “in-pair

distance” means the distance between the two objects in an object pair.

2. G1 is taken as Group 1 to embed the first “1” in the data string, which results in L – 2 new

distance relationships between Group 1 and the remaining L – 2 objects.

3. All object pairs, each with Group 1 and an object of the remaining L – 2 ones, except the

pair G2 with the farthest in-pair distance are ungrouped and added to the set P to embed

the next [(L – 2) – 1] 0’s.

87

4. G2 is taken as Group 2 to embed the second “1” in the data string, resulting in L – 3 new

distance relationships.

5. Steps 3 and 4 above are repeated in a similar way for the remaining objects and groups

until no more objects can be considered for grouping.

Accordingly, the maximum number of bits that can be embedded is

{[L(L – 1)/2 – 1] + 1} + {[(L – 2) – 1] + 1} + {[(L – 3) – 1] + 1} + … + {[2 – 1] + 1} + 1

= L(L – 1)/2 + (L – 2) + (L – 3) + … + 1

= L(L – 1)/2 + (L – 1)(L – 2)/2

= (L – 1)
2
,

as mentioned previously.

On the other hand, the expected number of random bits (equal occurrence probabilities

of 0’s and 1’s) that can be embedded by the proposed method using a drawing with L objects

is smaller than 2(L – 1), as discussed now.

First, as mentioned previously, at most (L – 1) 1’s can be embedded for a drawing with L

objects. Also, from the above performance analysis of the proposed algorithm for embedding

the maximum number of bits, we see that at least one “0” can be embedded for each “1”

embedded except the last one. If the input string includes 0’s and 1’s alternatively as in the

extremely random case, then exactly 2(L – 1) – 1 bits can be embedded. In real cases, 1’s may

appear consecutively, such that objects in a drawing will be exhausted faster than appropriate

numbers of 0’s are embedded, resulting in less 0’s being embedded when compared with the

extremely random case. In short, for the average case, the number of random bits that can be

embedded with a drawing containing L objects is roughly 2(L – 1) – 1 ≈ 2L if L is large

enough.

7.4 Proposed Data Extraction Process

The process for extracting the data embedded in a stego-drawing using Algorithm 7.1 is

described below. Basically, the algorithm first removes the structure of object groupings to

recover the original cover drawing. It then uses the same procedure as that of data embedding

to gradually reconstruct the same structure of object groupings, and checks in the meantime

the object grouping structure in the stego-drawing to determine the previously embedded bits

one by one.

88

Algorithm 7.2: data extraction from structure of object groupings.

Input: a stego-drawing D' with a certain structure of object groupings generated by Algorithm

7.1.

Output: a bit string S = b1b2…bN extracted from the structure of object groupings in D'.

Steps:

1. Ungroup all existing object groups in D' to recover the original drawing D =

{o1, o2, …, oL}.

2. Create an auxiliary helper set P and set it to be empty initially.

3. Initialize an empty bit string S.

4. Extract a bit bi and append it to the end of S, where 1 ≤ i ≤ N, by performing the

following steps.

a. Calculate the distances between every pair of objects in D that are not in P.

b. Find the two objects oj and ok in D such that their distance is the smallest among

those of all object pairs in D that are not in P.

c. Check if the object pair (oj, ok) is a group in the grouping structure of the original

stego-drawing D': if so, then set bi to be 1 and take (oj, ok) as a group in D;

otherwise, set bi to be 0 and add the pair (oj, ok) to P as an ungrouped one.

5. Take the final S as the desired output bit string.

In the above algorithm, it is assumed that the number of bits N in the embedded bit string

is either previously known or determinable during data extraction in a certain way, like

prefixing the data bit string S with a fixed-length bit segment that contains the value N,

similar to that described in Section 3.3.

7.5 Possible Data Hiding Applications

The proposed method uses relative inter-object distances as the basis for forming the

structure of object groupings. It can be figured out that the technique is robust to attacks such

as translation, scaling, rotation, and mirroring of the drawing as a whole since these

transformations do not alter the inter-object distances. Based on this property, we describe

below two possible data hiding applications using the proposed method.

First, the proposed method can be used for authenticating a drawing by embedding a

random-key controlled bit string with (L – 1) 1’s as an authentication signal such that all

objects in the drawing are grouped together, forming a structure of mutually-validating object

89

groups. If an attacker attempts to modify the stego-drawing by changing some of the object

groupings, moving some of the objects around, or adding or removing one or more objects,

then some of the inter-object distances in the drawing will be changed. The data extracted

from such a drawing will thus be different from the expected embedded authentication signal

and tampering with the drawing be detected.

It is noted that the above method by itself cannot detect attacks where an object is

replaced by another with the same dimension, or where an object’s internal properties (such as

color and caption) are modified. For such cases, the proposed method can be combined with

other authentication mechanisms which cover the objects’ properties. For example, one simple

technique is to create an encrypted hash value [91] from all the objects’ properties and then

embed this hash value as an authentication signal using the proposed algorithms, resulting in

the combined method of object-grouping and object-property encryption techniques.

Tampering with an object’s property in a stego-drawing can then be detected since the

authentication signal extracted from such a tampered drawing using the proposed algorithms

will be different from that re-calculated directly from the changed objects’ properties

Second, since communications via drawings such as flowcharts are common and the

proposed data hiding procedure does not affect the visual appearance of the drawing, the

method is suitable for the covert communication purpose as well. Specifically, a secret

message in the form of a bit string can be embedded into a cover drawing imperceptibly using

the proposed algorithms. Also, grouping of objects for object manipulations in a drawing is a

subjective choice by the author and usually does not follow a predictable rule, making

automatic steganalysis difficult.

To face the common assumption made in covert communication that the data hiding

algorithms used are known to the public, it is suggested to randomize the secret message in

advance by some symmetric encryption algorithm before it is taken as input to the proposed

data embedding process.

7.6 Experimental Results

A series of experiments were conducted on some drawings created with Microsoft Visio

2003, a popular package for drawing flowcharts, network diagrams, floor plans, etc. Two

examples of them are shown in Figure 7.1 and Figure 7.5. The proposed method can be

90

conveniently implemented
16

 in Visio, which supports nested grouping of objects as well as

functionality that allows distances between any two objects to be computed [103]. Three

different types of drawings as listed in Table 7.2 were tested to demonstrate the generic

applicability of the proposed method. The table lists the number of objects available for

grouping in each drawing, and the average number of random bits embeddable over ten

independent trials. The average number of bits embeddable is approximately twice the

number of objects in the drawing, which matches the theoretical prediction mentioned in

Section 7.3.

The stego-drawings were then attacked by translation, scaling, and rotation operations in

the experiments. Specifically, we translated, scaled, and/or rotated all the objects in the

drawing simultaneously in the attacks and applied the algorithms subsequently. The results

show that the bits embedded in the object grouping structures survive these attacks.

20 Workstations

File Server

Application Server 1

Application Server 2

1 2 3 4 5 6

7 8 9101112

A
B

12x

6x

8x

2x

9x

3x

10x

4x

11x

5x

7x

1x

E
th

e
rn

e
t

A

12x

6x

8x

2x

9x

3x

10x

4x

11x

5x

7x

1x

C 25 Rooms/50 FE Connections

1 2 3 4 5 6

7 8 9101112

A
B

12x

6x

8x

2x

9x

3x

10x

4x

11x

5x

7x

1x

E
th

er
n

e
t

A

12x

6x

8x

2x

9x

3x

10x

4x

11x

5x

7x

1x

C 25 Rooms/50 FE Connections

1 2 3 4 5 6

7 8 9101112

A
B

12x

6x

8x

2x

9x

3x

10x

4x

11x

5x

7x

1x

Et
h

e
rn

e
t

A

12x

6x

8x

2x

9x

3x

10x

4x

11x

5x

7x

1x

C 25 Rooms/50 FE Connections

1 2 3 4 5 6

7 8 9101112

A
B

12x

6x

8x

2x

9x

3x

10x

4x

11x

5x

7x

1x

E
th

er
n

e
t

A

12x

6x

8x

2x

9x

3x

10x

4x

11x

5x

7x

1x

C 25 Rooms/50 FE Connections

WAP 1

WAP 2

WAP 4

WAP 3

File Server

Application Server

FE Printer 1 100Mbps

FE Printer 2 100 Mbps

25 Workstations

Student Dormitories

Intranet Router

Frame Relay to Main Campus (WAN)

Computer Lab RouterAdministration Offices Router Classroom Router

Admin Switch (Layer 3) Admin Switch (Layer 2)
Computer Lab

Switch (Layer 3)
Dorm Switch (Layer 2)

Computer Lab
Switch (Layer 2)

Classroom
Switch (Layer 2)

25 Workstations

25 Workstations

25 Workstations

20

Wireless
Access

Points

Each WAP
goes to an

individual
switch port

Administration Offices,
Student Dormitories,
Computer Lab and

Classroom Topology

All servers, WAPs and workstations
are directly connected to separate
switch ports. Shown chained for
neatness.

Student Dormitories

Internet Router

T4 Channel Bank/CSU-DSU
Internet

We have rebalanced the workload
on the computer lab servers to

increase the efficiency of the
underutilized file server.

T4 = 274 Mbps

Frame Relay CIR = 45

Mbps

S7

R8R7

R6

R5R4

S10S9 S11S8 S12

S15

S14

S13

W24

W23

W22

W21

S16

W1
to 20

Dormitory FirewallF2

Switched Gigabit
Ethernet

Backbone
Layer

Distribution

Layer

Access
Layer

Figure 7.5. A network layout diagram used in the experiments (source: UCF).

16
 A prototype implementation can be downloaded at

http://sites.google.com/site/ktyliu/data-hiding-by-structures-of-object-grouping.

91

Table 7.2. Experimental results of embedding capacity for different drawings.

 Type of drawing Number of objects Bits embeddable

A Network topology 113 235.0

B Office layout 78 156.4

C Flowchart 44 82.0

7.7 Summary

In this chapter, a new data hiding method has been proposed, which embeds message

data imperceptibly into the structure of object groupings in a drawing, in contrast with prior

works that alter objects themselves for data hiding applications. The proposed method is

generic and can be applied to a variety of drawings, including flowcharts, network diagrams,

circuit schematics, floor plans, etc. The method creates a structure of object groupings based

on the data to be embedded as well as inter-object distances in the drawing, yielding a

stego-drawing that is robust against attacks such as translation, scaling, rotation, and

mirroring operations. The proposed method can be applied to different data hiding

applications, such as drawing authentication and covert communication. Finally, experiments

conducted with Microsoft Visio documents confirm the feasibility of the proposed method.

92

Chapter 8

Generic Lossless Visible Watermarking −−−− A New

Approach

8.1 Introduction

In this chapter, a new method for lossless visible watermarking is proposed by using

appropriate compound mappings that allow mapped values to be controllable. The mappings

are proved to be reversible for lossless recovery of the original image. The approach is

generic, leading to the possibility of embedding different types of visible watermarks into

cover images. Two applications of the proposed method are demonstrated, where opaque

monochrome watermarks and non-uniformly translucent full-color ones are respectively

embedded into color images. More specific compound mappings are also created and proved

to be able to yield visually more distinctive visible watermarks in the watermarked image. To

the best knowledge of the authors, this is the first method ever proposed for embedding

removable translucent full-color watermarks which provide better advertising effects than

traditional monochrome ones. It is also demonstrated in this study that the embedding of a

watermarked image in a Microsoft Word or a Microsoft PowerPoint document does not affect

the lossless recoverability of the original image.

In the remainder of this chapter, the proposed method for deriving one-to-one compound

mappings is described in Section 8.2. Related lemmas and theorems are also proved and

security protection measures described. Applications of the proposed method for embedding

opaque monochrome and translucent color watermarks into color images are described in

Sections 8.3 and 8.4, respectively. In Section 8.5, the specific compound mapping for yielding

more distinctive visible watermarks is described. In Section 8.6, experimental results are

presented to demonstrate the effectiveness of the proposed method. Finally, a summary is

included in Section 8.7.

8.2 Proposed New Approach to Lossless Visible Watermarking

In this section, we describe the proposed approach to lossless reversible visible

watermarking, based on which appropriate one-to-one compound mappings can be designed

for embedding different types of visible watermarks into images. The original image can be

93

recovered losslessly from a resulting watermarked image by using the corresponding reverse

mappings.

8.2.1 Reversible One-To-One Compound Mapping

First, we propose a generic one-to-one compound mapping f for converting a set of

numerical values P = {p1, p2, …, pM} to another set Q = {q1, q2, …, qM}, such that the

respective mapping from pi to qi for all i = 1, 2, ..., M is reversible. Here, for the copyright

protection applications investigated in this study, all the values pi and qi are image pixel

values (grayscale or color values). The compound mapping f is governed by a one-to-one

function Fx with one parameter x = a or b in the following way:

 q = f(p) = Fb
–1

(Fa(p)) (8.1)

where Fx
–1

 is the inverse of Fx which, by the one-to-one property, leads to the fact that if Fa(p)

= p', then Fa
–1

(p') = p for all values of a and p. On the other hand, Fa(p) and Fb(p) generally

are set to be unequal if a ≠ b.

The compound mapping described by (8.1) is indeed reversible, that is, p can be derived

exactly from q using the following formula:

 p = f
-–1

(q) = Fa
–1

(Fb(q)), (8.2)

as proved below.

Lemma 8.1 (reversibility of compound mapping). If q = Fb
–1

(Fa(p)) for any one-to-one

function Fx with a parameter x, then p = Fa
–1

(Fb(q)) for any values of a, b, p, and q.

Proof. Substituting (8.1) into Fa
–1

(Fb(q)), we get

Fa
–1

(Fb(q)) = Fa
–1

(Fb(Fb
–1

(Fa(p)))).

By regarding Fa(p) as a value c, the right-hand side becomes Fa
–1

(Fb(Fb
–1

(c))), which,

after Fb and Fb
–1

 are cancelled out, becomes Fa
–1

(c). But Fa
−1

(c) = Fa
–1

(Fa(p)), which is

just p after Fa and Fa
–1

 are cancelled out. That is, we have proved p = Fa
–1

(Fb(q)). 

As an example, if Fx(p) = xp + d, then Fx
–1

(p') = (p' – d)/x. Thus

q = Fb
–1

(Fa(p)) = Fb
–1

(ap + d) = (ap + d – d)/b = ap/b.

And so, we have

Fa
–1

(Fb(q)) = Fa
–1

(b(ap/b) + d) = Fa
–1

(ap + d) = [((ap + d) – d)/a] = (ap/a) = p,

94

as expected by Lemma 8.1.

8.2.2 Lossless Visible Watermarking Scheme

Based on Lemma 8.1, we will now derive the proposed generic lossless visible

watermarking scheme in the form of a class of one-to-one compound mappings, which can be

used to embed a variety of visible watermarks into images. The embedding is reversible, that

is, the watermark can be removed to recover the original image losslessly. For this aim, a

preliminary lemma is first described as follows.

Lemma 8.2 (preference of compound-mapped value q). It is possible to use the compound

mapping q = Fb
–1

(Fa(p)) to convert a numerical value p to another value close to a

preferred value l.

Proof. Let Fx(p) = p – x where x is the parameter for F. Then Fx
–1

(p') = p' + x. Also, let

a = p − ε and b = l where ε is a small value. Then, the compound mapping Fb
–1

(Fa(p)) of

p yields q as

q = Fb
–1

(Fa(p)) = Fb
–1

(p – a) = Fb
–1

(ε) = ε + b = ε + l,

which means that the value q is close to the preferred value l. 

The above lemma relies on two assumptions. The first is that a is close to p, or

equivalently, that a = p − ε. The reason why we derive the above lemma for a = p − ε instead

of for a = p, is that in the reverse mapping we want to recover p from q without knowing p,

which is a requirement in the applications of reversible visible watermarking investigated in

this study. Although the value of p cannot be known in advance for such applications, it can

usually be estimated, and we will describe some techniques for such estimations in the

subsequent sections.

The second assumption is that Fx(p) yields a small value if x and p are close. Though the

basic difference function Fx(p) = p – x used in the above proof satisfies this requirement for

most cases, there is a possible problem where the mapped value may exceed the range of valid

pixel values for some values of a, b, and p. For example, when a = 255, b = 255, and p = 253,

we have q = 255 – 253 + 255 = 257 > 255. It is possible to use the standard modulo technique

(i.e., taking q = 257mod 256 = 1) to solve this issue; however, such a technique will make q far

from the desired target value of b, which is 255. Nevertheless, we will show in Section 3 that

using such a standard modulo function, Fx(p) = (p – x)mod 256, can still yield reasonable

95

experimental results. Furthermore, we show in Section 8.5 a more sophisticated one-to-one

function that is free from such a wraparound problem.

By satisfying the above two requirements, the compound mapping yields a value q that is

close to the desired value l. We now prove a theorem about the desired lossless reversible

visible watermarking in the following.

Theorem 8.1 (lossless reversible visible watermarking). There exist one-to-one compound

mappings for use to embed into a given image I a visible watermark Q whose pixel

values are close to those of a given watermark L, such that the original image I can be

recovered from Q losslessly.

Proof. This is a consequence of Lemmas 8.1 and 8.2 after regarding the individual pixel

values in I, L, and Q respectively as those of p, l, and q mentioned in Lemma 8.2. And it

is clear by Lemma 8.1 that the value p can be recovered losslessly from the mapped

value q which is derived in Lemma 8.2. 

The above discussions are valid for embedding a watermark in a grayscale image. If

color images are used both as the cover image and the watermark, we can apply the mappings

to each of the color channels to get multiple independent results. The resulting visible

watermark is the composite result of the color channels.

Based on Theorem 8.1, the proposed generic lossless reversible visible watermarking

scheme with a given image I and a watermark L as input is described as an algorithm as

follows.

Algorithm 8.1: generic visible watermark embedding.

Input: an image I and a watermark L.

Output: watermarked image W.

Steps:

1. Select a set P of pixels from I where L is to be embedded, and call P a watermarking

area.

2. Denote the set of pixels corresponding to P in W by Q.

3. For each pixel X with value p in P, denote the corresponding pixel in Q as Z and the

value of the corresponding pixel Y in L as l, and conduct the following steps.

a. Apply an estimation technique to derive a to be a value close to p, using the values of

the neighboring pixels of X (excluding X itself).

96

b. Set b to be the value l.

c. Map p to a new value q = Fb
–1

(Fa(p)).

d. Set the value of Z to be q.

4. Set the value of each remaining pixel in W, which is outside the region P, to be equal to

that of the corresponding pixel in I.

Note that we do not use the information of the original image pixel value of X itself for

computing the parameters a and b for X. This ensures that identical parameter values can be

calculated by the receiver of a watermarked image for the purpose of lossless image recovery.

As an example, the process performed by Step 3 of the above algorithm for a pixel is

illustrated by Figure 8.1, where the north and west pixels are used to estimate the color of the

center pixel. Note that the east and south pixels are not used because these pixels are covered

by the watermark and unknown to the receiver. It is important to allow as many neighbors of a

pixel as possible to be known by the receiver to ensure that a good estimate can be calculated

for that pixel. We will describe in Section 8.4 techniques for processing pixels, which can

ensure that sufficiently many neighbor colors are known by a receiver for each pixel in the

watermarking area.

Figure 8.1. An illustration of mapping the center pixel of a 3×3 image using Algorithm 8.1.

Only the mapping of the center pixel is shown for clarity; the east and south pixels

are depicted as TBD (to be determined) in W.

R: 229
G: 141
B: 115

R: 230
G: 132
B: 109

R: 230
G: 134
B: 105

R: 227
G: 142
B: 117

R: 227
G: 139
B: 112

R: 225
G: 130
B: 108

R: 227
G: 131
B: 106

R: 223
G: 131
B: 112

R: 224
G: 132
B: 106

R: 229
G: 141
B: 115

R: 230
G: 132
B: 109

R: 230
G: 134
B: 105

R: 227
G: 142
B: 117

R: 227
G: 139
B: 112

R: 225
G: 130
B: 108

R: 227
G: 131
B: 106

R: 223
G: 131
B: 112

R: 224
G: 132
B: 106

R: 12
G: 12
B: 120

R: 20
G: 13
B: 109

R: 30
G: 33
B: 145

R: 12
G: 12
B: 120

R: 20
G: 13
B: 109

R: 30
G: 33
B: 145

R: 229
G: 141
B: 115

TBD
R: 230
G: 134
B: 105

TBD
R: 33
G: 41
B: 147

R: 225
G: 130
B: 108

R: 227
G: 131
B: 106

R: 223
G: 131
B: 112

R: 224
G: 132
B: 106

R: 229
G: 141
B: 115

TBD
R: 230
G: 134
B: 105

TBD
R: 225
G: 130
B: 108

R: 227
G: 131
B: 106

R: 223
G: 131
B: 112

R: 224
G: 132
B: 106

a = (224, 131, 110)

p = (227, 139, 112)

b = (30, 33, 145)

I L W

q = Fb
–1

(Fa(p)) = (33, 41, 147)

P Q

Step 3a

Step 3b

Step 3c

Step 3d

97

The corresponding watermark removal process for a watermarked image W generated by

Algorithm 8.1 is described as an algorithm as follows.

Algorithm 8.2: generic watermark removal for lossless image recovery.

Input: a watermarked image W and a watermark L.

Output: the original image R recovered from W.

Steps:

1. Select the same watermarking area Q in W as that selected in Algorithm 8.1.

2. Set the value of each pixel in R, which is outside the region Q, to be equal to that of the

corresponding pixel in W.

3. For each pixel Z with value q in Q, denote the corresponding pixel in the recovered

image R as X and the value of the corresponding pixel Y in L as l, and conduct the

following steps.

a. Obtain the same value a as that derived in Step 3a of Algorithm 8.1 by applying the

same estimation technique used there.

b. Set b to be the value l.

c. Restore p from q by setting p = Fa
–1

(Fb(q)).

d. Set the value of X to be p.

8.2.3 Security Considerations

As mentioned previously, although we want legitimate users to be able to recover the

original image from a watermarked one, we do not want an attacker to be able to do the same.

Herein, we propose some security protection measures against illicit recoveries of original

images.

First, we make the parameters a and b in the above algorithms to be dependent on certain

secret keys that are known only by the creator of the watermarked image and the intended

receivers. One simple technique to achieve this is to use a secret key to generate a

pseudo-random sequence of numerical values and add them to either or both of a and b for the

pixels in the watermarking area. This technique is hereinafter referred to as parameter

randomization.

Another way of security protection is to make the choices of the positions for the pixels

to be dependent on a secret key. Specifically, we propose to process two randomly chosen

pixels (based on the security key) in P simultaneously as follows. Let the two pixels be

denoted as X1 and X2 with values p1 and p2, respectively. The color estimates a1 and a2

98

corresponding to X1 and X2, respectively, are individually derived as before using their

respective neighbors. The parameters b1 and b2 are set to be the values l1 and l2 of the

respective watermark pixels Y1 and Y2. Then, instead of setting the values of the watermarked

pixels Z1 and Z2 to be q1 = Fb1

–1
(Fa1

(p1)) and q2 = Fb2

–1
(Fa2

(p2)) as before, we swap the

parameters and set

q1 = Fb1

–1
(Fa2

(p2)) and q2 = Fb2

–1
(Fa1

(p1)).

This parameter exchange does not affect the effectiveness of lossless recoverability,

because we can now recover the original pixel values by the following compound mappings:

p1 = Fa1

–1
(Fb2

(q2)) and p2 = Fa2

–1
(Fb1

(q1)).

We will refer to this technique in the sequel as mapping randomization. We may also

combine this technique with the above-mentioned parameter randomization technique to

enhance the security further.

Last, the position in the image where a watermark is embedded affects the resilience of

the watermarked image against illicit image recovery attempts. In more detail, if the

watermark is embedded in a smooth region of the image, an attacker can simply fill the region

with the background color to remove the watermark irrespective of the watermarking

technique used. To counter this problem, an appropriate position should be chosen, using, for

example, the adaptive positioning technique [104] when embedding a watermark. However,

for ease of discussions and comparisons, we always embed a watermark in the lower

right-hand corner of an image in this study.

8.3 Lossless Visible Watermarking of Opaque Monochrome

Watermarks

As an application of the proposed generic approach to lossless visible watermarking, we

describe now how we embed a losslessly-removable opaque monochrome watermark L into a

color image I such that the watermark is visually distinctive in the watermarked image W.

First, we denote the sets of those pixels in I corresponding spatially to the black and

white pixels in L by P and P', respectively. An illustration of such areas of P and P' is shown

in Figure 8.2. We define Q and Q' in a similar way for the watermarked image W, which

correspond to P and P', respectively.

99

Then, we adopt the simple one-to-one function Fa(p) = p – a, and use the same pair of

parameters a and b for all mappings of pixels in P. Also, we apply the “modulo-256”

operation to the results of all computations so that they are within the valid range of color

values. Our experiments show that this method still yields reasonable results.

As to the values of parameters a and b, we set a to be the average of the color

component values of the pixels in P'. This average value presumably is close to the value p of

pixel X in P, fulfilling the condition a = p − ε mentioned previously. To ensure that the

watermark is distinctive in W, we do not simply embed black values for pixels in

watermarking area P (that is, we do not embed l = 0 for P), but set l to be a value which is

distinctive with respect to the pixel colors in the surrounding region P'. To achieve this, we set

b = l = a + 128, which is a value distinctive with respect to a. As a result, the value of a pixel

in Q, according to Lemma 8.2, becomes q = Fb
–1

(Fa(p)) = b + ε = a + 128 + ε, meaning that

the pixel values of Q are also distinctive with respect to those of the surrounding pixels in Q'

as desired.

On the other hand, since both a and b are derived from P' during watermark embedding,

the exact same values of a and b can be derived during watermark removal because Q' is

identical to P'. The original image can therefore be recovered losslessly using Algorithm 8.2.

To demonstrate the effectiveness of the proposed method, in one of our experiments we

embedded the watermark of Figure 8.2 (a) into the images Lena and Sailboat, respectively,

and the results are shown in Figure 8.3. For security protection, we applied both the mapping

randomization and the parameter randomization techniques described in Section 8.2.3.

Specifically, for the latter technique we added random integer values in the range of −12 to

+12 to the parameter b.

(a) (b) (c)

Figure 8.2. An illustration of pixels in a watermark. (a) A monochrome watermark. (b) Area of

P (yellow pixels). (c) Area of P' (yellow pixels).

100

The images recovered by using correct keys for the parameter and mapping

randomization processes are shown in Figures. 7.3(c) and 7.3(g), and those recovered with

incorrect keys are shown in Figures. 7.3(d) and 7.3(h). We observe from these figures that the

embedded opaque watermarks are distinctive with respect to their surroundings and can be

removed completely when the input key is correct. On the contrary, when the key was

incorrect, the inserted watermark cannot be removed cleanly, with noise remaining in the

watermarking area.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8.3. Experimental results of monochrome watermark embedding and removal. (a)

Image Lena. (e) Image Sailboat. (b) and (f) Watermarked images of (a) and (e),

respectively. (c) and (g) Images losslessly recovered from (b) and (f), respectively,

with correct keys. (d) and (h) Images recovered from (b) and (f) with incorrect

keys.

8.4 Lossless Visible Watermarking of Translucent Color

Watermarks

As another application of the proposed approach, we describe now how we embed more

complicated translucent color watermarks. A translucent color watermark used in this study is

an arbitrary RGB image with each pixel being associated with an alpha component value

defining its opacity. The extreme alpha values of 0 and 255 mean that the watermark pixel is

completely transparent and totally opaque, respectively. A translucent full-color watermark is

101

visually more attractive and distinctive in a watermarked image than a traditional transparent

monochrome watermark, as mentioned previously. Such a kind of watermark can better

represent trademarks, emblems, logos, etc., and thus is more suitable for the purpose of

advertising or copyright declaration.

If recoverability is not an issue, we can overlay the translucent watermark over the

original image with an application package like Photoshop using the standard alpha blending

operation to obtain a watermarked image, as illustrated in Figure 2.3, repeated below as

Figure 8.4 for convenience. Such an image will be called a non-recoverable watermarked

image in the sequel, and will be used as a benchmark in our experiments.

Figure 8.4. Watermarked image of Lena with a translucent image of “Globe” superimposed

using alpha blending.

The proposed algorithm for embedding a translucent color watermark is similar to

Algorithm 8.1 and is described below. To ensure that the parameter a is close to p for each

pixel, we keep track of the pixels that have been processed throughout the embedding process.

The pixels outside region P need not be processed and are regarded as having been processed

in the following discussion.

Algorithm 8.3: watermark embedding of a translucent color watermark.

Input: an image I and a translucent watermark L.

Output: a watermarked image W.

Steps:

1. Select the watermarking area P in I to be the set of pixels corresponding spatially to

those in L which are non-transparent (with alpha values larger than zero).

102

2. Denote the set of pixels corresponding to P in W as Q.

3. For each pixel X with value p in P, denote the corresponding pixel in Q as Z and the

value of the corresponding pixel Y in L as l, and conduct the following steps.

a. Set the parameter a to be a neighbor-based color estimate value that is close to p by

using the colors of the neighboring pixels of X that have already been processed (see

discussion below).

b. Perform alpha blending with l over a to get the parameter b according to the formula

b = l × α + a × (255 − α) where α is the opacity of Y.

c. Map p to a new value q = Fb
–1

(Fa(p)).

d. Set the value of Z to be q.

e. Set the value of each remaining pixel in W, which is outside the region P, to be equal

to that of the corresponding pixel in I.

For Step 3a above, there are several ways to determine the color estimate of a pixel using

the colors of its neighbors that have already been processed, such as simply averaging the

colors of the processed 4-neighbors of the pixel, or averaging those of the processed

8-neighbors with more weights on the horizontal and vertical members. We may also use

more sophisticated techniques such as edge-directed prediction [105] for this purpose, as long

as we use only processed pixels.

The reason for using only processed pixels is that these pixels are the ones that a receiver

can reliably recover during watermark removal. This is to ensure that the same color estimates

can be computed for lossless recovery. Specifically, the value q of the first processed pixel is

computed from the neighboring pixels outside the region P. Since the values of these pixels

outside P are unchanged, a receiver can therefore reliably recover the first pixel using a

reverse mapping using q and the values of neighboring pixels outside P. Each of the other

unprocessed pixels is handled by using the processed pixels in a similar way.

To ensure that there always exists processed neighbors for accurate color estimates, we

limit the pixels to be selected and processed next to be those with at least two

already-processed neighbors in a four-pixel neighborhood. A consequence of this is that pixels

around the outer edges of the watermark region are processed before those in the center. This

can be clearly seen in Figure 8.5, where some of the intermediate outputs yielded during

watermark embedding and removing are shown (the most obvious outer edges are seen in

Figure 8.5(a)).

103

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8.5. Illustration of pixel processing order in watermark embedding and removal. (a)-(d)

Intermediate results of image watermarking when 25%, 50%, 75%, and 100% of the

watermark pixels have been processed, respectively. (e)-(h) Intermediate results of

image recovery when 25%, 50%, 75%, and 100% of the watermark pixels have been

recovered, respectively.

8.5 Two-Fold Monotonically Increasing Compound Mapping

In Section 8.2, we mapped a pixel value to a preferred value by using a simple

one-to-one function Fx(p) = (p – x)mod 256. A problem of this mapping is that for certain values

of a, b, and p, the mapped value will wrap around and deviate from the intended value. To

solve this problem, we propose an alternative one-to-one function Fx such that the compound

mapping q = Fb
–1

(Fa(p)) does not exhibit the wrap-around phenomenon. Specifically, the

mapping always yields a value close to b if a and p are close to each other for all values of a,

b, and p. We will call this a two-fold monotonically increasing property, and will prove by a

theorem that such a property holds if the one-to-one function Fx has a one-fold monotonically

increasing property. The definitions of both of these properties and the detail of the theorem

are described in the following.

Definition 8.1 (one-fold monotonically increasing one-to-one function). A one-to-one

function Fa is one-fold monotonically increasing if for all values of a, p1, and p2,

Fa(p1) < Fa(p2) implies |a – p1| ≤ |a – p2|.

104

Lemma 8.3 (inverse monotonicity). The inverse of a one-fold monotonically increasing

function Fx exhibits the following characteristic of inverse monotonicity:

for all values of b, p1', and p2', p1' < p2' implies |b – Fb
–1

(p1')| ≤ |b – Fb
–1

(p2')|.

Proof. Let p1' = Fb(p1) and p2' = Fb(p2) for some b, p1 and p2. Then

|b – p1| ≤ |b – p2|

by Definition 1. Also, we have Fb
–1

(p1') = Fb
–1

(Fb(p1)) = p1, and Fb
–1

(p2') = Fb
–1

(Fb(p2))

= p2, similarly. Substituting p1 and p2 into the above inequality, we get |b – Fb
–1

(p1')| ≤

|b – Fb
–1

(p2')|. This completes the proof. 

Definition 8.2 (two-fold monotonically increasing). The compound mapping q = Fb
–1

(Fa(p))

is two-fold monotonically increasing if for all values of a, b, p1 and p2, |a – p1| < |a – p2|

(i.e., if a is closer to p1 than p2) implies |b – q1| ≤ |b – q2| (i.e., b is at least as close to q1

as q2), where q1 = Fb
–1

(Fa(p1)) and q2 = Fb
–1

(Fa(p2)).

Theorem 8.2 (two-fold monotonically increasing). If Fx is a one-fold monotonically

increasing one-to-one function with a parameter x, then the compound mapping

q = Fb
–1

(Fa(p)) is two-fold monotonically increasing.

The proof of the above theorem can be found in Appendix B. We now show the existence

of a one-fold monotonically increasing function Fa(p) and how it works for any pixel value a

and p in the range of 0 to 255, by way of an algorithm below.

Algorithm 8.4: one-to-one mapping exhibiting one-fold monotonically increasing

property.

Input: a parameter a and an input value p, each in the range of 0 to 255.

Output: a mapped output p' in the range from 0 to 255.

Steps:

1. Initialize p' to be zero.

2. Create a set S with initial elements being the 256 values of 0 through 255.

3. Find a value r in S such that |a – r| is the minimum, preferring a smaller r in case of ties.

4. If r is not equal to p, then remove r from S, increment p' by one, and go to Step 3;

otherwise, take the final p' as the output.

105

As an example, if we want to determine the function value Fa(p) for a = 3 and p = 1 by

the above algorithm, then we will find r = 3 in Step 3 of the above algorithm. But r = 3 ≠ 1 =

p, so 3 is removed from S with p' being incremented from 0 to 1. The subsequent iterations

will compute r to be 2, 4, and finally 1 which is equal to p, with the final value of p' being

taken to be 3 as the output.

The inverse of the one-to-one function described by Algorithm 8.4 is described below.

Algorithm 8.5: inverse of the mapping function described by Algorithm 8.4.

Input: a parameter b and an input value p', each in the range of 0 to 255.

Output: an output value p that is in the range from 0 to 255.

Steps:

1. Create a set S with the initial elements being the 256 values of 0 through 255.

2. Find a value p in S such that |b – p| is the minimum, preferring a smaller p in case of ties.

3. If p' is larger than zero, then remove p from S, decrement p' by one, and go to Step 2;

otherwise, take the final p as the output.

As an example, if we want to compute Fb
–1

(p') for b = 3 and p' = 3 by the above

algorithm, then we will find in Step 2 the sequence of 3, 2, 4, and 1 for the values of p, with p'

decreasing from 3, 2, 1 and then 0. The output is hence p = 1.

Note that in practice, we can pre-compute all 256×256 possible one-to-one mappings in

both Algorithms 8.4 and 8.5 beforehand, so that the mapping Fx and its inverse Fx
–1

 can be

implemented by efficient lookup-table operations of constant-time complexity. As proved by

Theorem 8.2 and two extra lemmas (Lemmas 8.4 and 8.5) included in Appendix B, we can

use the mapping and its inverse described in Algorithms 8.4 and 8.5, respectively, to map the

pixel values of an image to the desired values of a watermarked image, such that the

watermark is visually clear if a is close to p. It is guaranteed that the original image can be

recovered losslessly from the watermarked image, as proved by Theorem 8.1.

106

8.6 Experimental Results

A series of experiments implementing the proposed methods were conducted using the

Java SE platform
17

. To quantitatively measure the effectiveness of the proposed method, we

define a set of performance metrics here. First, the quality of a watermarked image W is

measured by the peak signal-to-noise ratio (PSNR) of W with respect to the non-recoverable

watermarked image B in the following way:

() ()
2

10

1 1

1
20 log 255 , ,

h w

W

y x

PSNR W x y B x y
w h = =

 
 = × −   × 

∑∑ .

Also, the quality of a recovered image R is measured by the PSNR of R with respect to

the original image I in a similar way:

() ()
2

10

1 1

1
20 log 255 , ,

h w

R

y x

PSNR R x y I x y
w h = =

 
 = × −   × 

∑∑ .

It is desired to have the value of the PSNRW to be as high as possible, so that the

watermarked image can be visually as close to the benchmark image as possible. For illicit

recoveries, the PSNRR should be as low as possible to make the recovered image visually

intolerable (e.g., very noisy). In particular, we want the region obscured by the watermark to

be as noisy as possible in an illicitly recovered image. For this purpose, we introduce an

additional quality metric for an illicitly recovered image that only takes into account the

region Q covered by the watermark. Specifically, we measure the quality of the recovered

image R by the following PSNR measure:

10

1 1

1
20 log 255 (,)

| |

h w

Q Q

y x

PSNR SE x y
Q = =

 
= ×   

 
∑∑ ,

where

()
() () ()

()

2

, , if , ;
,

0 if , .
Q

R x y I x y x y Q
SE x y

x y Q

 − ∈ = 
∉

Six test images, each of dimensions 512×512, were used in the experiments. They are

shown in Figure 8.6, referred to as “Lena,” “baboon,” “jet,” “boat,” “satellite,” and “pepper,”

respectively, in the sequel. And seven test watermarks were used in the experiments as shown

in Figure 8.7, hereinafter referred to as watermarks A, B, C, D, E, F, and G, respectively.

17
 The source code of the implementation can be downloaded at

http://sites.google.com/site/ktyliu/lossless-visible-watermarking.

107

(a) (b) (c)

(d) (e) (f)

Figure 8.6. Test images used in experiments: (a) Lena; (b) Baboon; (c) Jet; (d) Sailboat; (e) A

satellite image of NCTU campus; and (f) Pepper.

A B C D

E F G

Figure 8.7. Watermarks A through G used in experiments.

108

The width and height of each watermark are shown in Table 8.1, along with the number

of non-transparent pixels in each watermark (|P|) and several other properties described next.

The average opacity, as shown in the fourth column, is the average of the opacities of the

pixels in the watermark, and the coverage, as shown in the last column, is the size of the

watermark over the original image, which is computed as |P|/(w×h). The watermarks are listed

in an increasing order of |P|, and the pixels in watermarks A, B, C, and E are either totally

opaque or totally transparent, while watermarks D, F, and G contain semi-transparent pixels.

Table 8.1. Characteristics of watermarks A through G used in experiments.

Watermark
Watermark

Dimension

Non-transparent

Pixels

Average

Opacity

Watermark

Coverage

A 162×160 12,226 255 4.7%

B 160×143 17,453 255 6.7%

C 168×268 28,001 255 10.7%

D 320×240 30,317 233 11.6%

E 274×263 32,995 255 12.6%

F 320×240 72,564 151 27.7%

G 440×330 88,424 125 33.7%

Each of the seven test watermarks was embedded in the six test images using the method

described in Section 8.4 with the one-to-one compound mapping described in Section 8.5.

The color estimate of a pixel was derived by averaging the available four-neighbors of that

pixel. Such an experiment was conducted twice to test the effectiveness of the two proposed

security protection measures: the mapping and the parameter randomization techniques. For

the latter, both the parameters a and b of the compound mapping were adjusted randomly

within a range of 25 with a uniform probability distribution.

A total of 7 × 6 × 2 = 84 watermarked images were generated and for each watermarked

image, recoveries using correct as well as incorrect keys were conducted. It was verified that

the original images can be recovered losslessly from the watermarked ones for all the 84 test

cases if correct keys were used. In Figure 8.8, we plot the average values of the PSNRW

obtained after embedding a particular watermark in the six test images, as well as the average

109

corresponding values of the PSNRR and PSNRQ obtained when incorrect keys were used for

image recoveries.

(a) (b)

Figure 8.8. Average values of PSNRW obtained after watermark embedding and average

values of PSNRR and PSNRQ obtained after illicit image recoveries. (a) Results

yielded by parameter randomization. (b) Results yielded by mapping

randomization.

Figure 8.9 shows three sets of the results, where Figures 8.9(c), 8.9(f), and 8.9(i) show

the results where the parameter randomization technique was applied, while the other six

images show the results where mapping randomization was applied. As can be seen from

Figures 8.9(a) through 8.9(c), the watermarked images are visually close to the respective

benchmark images, and the translucent color watermarks are distinctive in the watermarked

images. There is some noise in the watermarking area of the watermarked images (yielded by

large values of |b – q|) due to bad color estimations (with large values of |a – p|), which

happen at edges in the images. The noise is scattered in the watermarking area when the

mapping randomization technique was used, and coincides with the edges in the images when

parameter randomization was applied.

The images recovered with correct keys are shown in Figures 8.9(d) through 8.9(f). As

expected, the pixels of the recovered images are exactly identical to those of the original

images. The robustness of the mapping randomization technique against illicit recoveries is

evident as shown by the low PSNRQ in Figure 8.8. This comes from the fact that the incorrect

110

recovery of one pixel value affects subsequent color estimations around that pixel. This error

avalanche can be visually seen as patches of blurry noise in illicitly recovered images, as

shown in Figures 8.9(g) through 8.9(h). On the other hand, the parameter randomization

technique is weaker against illicit recoveries, especially in regions where the watermark has

low opacity.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8.9. Watermarked images, licitly recovered images, and illicitly recovered images.

(a)-(c) Watermarked images. (d)-(f) Licitly recovered images from images (a)-(c),

respectively. (g)-(i) Illicitly recovered images from images (a)-(c), respectively.

A comparison of the capabilities of the proposed reversible visible watermarking method

with those of four recently-published techniques is shown in Table 8.2. All but Hu [50] allows

111

lossless recovery of the original image. Only Hu [50] and this study reported the PSNR for

attempted recoveries using incorrect keys, and our results are better. In more detail, we

embedded binary transparent watermarks similar to those used in Hu [50] using the proposed

method, and obtained much better results (very low values of PSNR in the range of 12~14dB)

than Hu’s (37~39dB). More importantly, the proposed approach allows embedding of

arbitrary-sized watermarks and has wider applicability than all four methods.

Table 8.2. Comparison of reversible visible watermarking techniques.

Method
Legitimate

recovery

Illegitimate

recovery

Watermark

size

Binary

transparent

watermark

Binary

opaque

watermark

Color

translucent

watermark

Hu [50] 43~44 dB 37~39dB Unlimited Yes – –

Hu [51] Lossless
Not

reported
Limited Yes – –

Tsai [58] Lossless
Not

reported
Limited Yes – –

Yip [59] Lossless
Not

reported
Unlimited Yes Yes –

Proposed Lossless 12~14dB Unlimited Yes Yes Yes

Finally, we conducted an experiment where a watermarked image produced using the

proposed method was embedded into a Microsoft Word document, and it was verified that the

lossless recoverability of the original image is unaffected by this embedding. Specifically, we

embedded a visible watermark into a cover image to yield a watermarked image using the

application written for the experiments; embedded the watermarked image into a Microsoft

Word document; saved the Word document to disk and then reloaded the document later;

saved the document in the Web page (html) format; located the saved image file (which is in

the PNG file format) and ran watermark removal on the image file, which produced the

original image losslessly. The experiment is repeated in a similar way using Microsoft

PowerPoint, and it was verified that embedding the watermarked image into a Microsoft

PowerPoint slide presentation does not affect the lossless recoverability of the image,

provided that the image is not resized to a very small size.

112

8.7 Summary

In this chapter a new method for reversible visible watermarking with lossless image

recovery capability has been proposed. The method uses one-to-one compound mappings that

can map image pixel values to those of the desired visible watermarks. Relevant lemmas and

theorems are described and proved to demonstrate the reversibility of the compound

mappings for lossless reversible visible watermarking. The compound mappings allow

different types of visible watermarks to be embedded, and two applications have been

described for embedding opaque monochrome watermarks as well as translucent full-color

ones. A translucent watermark is clearly visible and visually appealing, thus more appropriate

than traditional transparent binary watermarks in terms of advertising effect and copyright

declaration. The two-fold monotonically increasing property of compound mappings was

defined and an implementation proposed that can provably allow mapped values to always be

close to the desired watermark if color estimates are accurate. Also described are parameter

randomization and mapping randomization techniques, which can prevent illicit recoveries of

original images without correct input keys. Experimental results have demonstrated the

feasibility of the proposed method and the effectiveness of the proposed security protection

measures. Also, it is verified via experiments that the proposed method can be used for data

hiding via office documents (using “data hiding in multimedia content”). Specifically,

embedding a watermarked image into office documents does not affect the lossless

recoverability of the original image.

113

Chapter 9

Conclusions and Suggestions for Future Works

In this dissertation, we investigated the problem of data hiding via office documents for

various data hiding applications including covert communication, content authentication,

copyright protection, and data association. We identified six areas of office documents where

data can be hidden, five of which – texts, text formatting and layout, multimedia contents,

multimedia formatting and layout, and auxiliary data – are logical areas for data hiding, where

techniques devised for data hiding can in general be applied across multiple office document

formats. Some unique characteristics of office documents compared to other media were

described, and new methods for data hiding in office documents that takes into account these

characters have been proposed.

In particular, a new approach to covert communication that leverages collaborative

authoring was proposed. The data are hidden using the “data hiding via texts” approach in the

experimental results, but it is also possible to hide the data in the other areas mentioned above

as well under the proposed approach. By using change-tracking information, the

degenerations to the content are more logical and hinder ignorant modification by skeptics

compared to prior works that do not take advantage of the collaborative authoring

characteristics. Future works can investigate into alternate degeneration databases and also

using arithmetic coding instead of Huffman coding in data embedding for greater embedding

capacity. Other data hiding methodologies based on disguising under collaborative efforts are

open future research topics. In particular, data hiding in source code versioning using the CVS

is an interesting future work.

The problem of quotation authentication is discussed in this dissertation in light of the

frequent copying-and-pasting performed in office documents. The two-dimensional case is in

particularly interesting as this is a new area that has not been studied before. The problem of

quotation authentication is an under-studied area of research, and studies of techniques

suitable for other popular formats such as e-mail messages and Internet web pages, for

example, are possible future works. Another interesting future work is to consider the case

where document authors sign their documents too, which will result in nested

authenticable-quotations.

The challenge of the partial editing characteristics of office documents was also

investigated in this dissertation study, and a weighted voting technique of expected sequence

114

numbers was proposed. The technique was demonstrated to be able to successful identify

sentences or slides that are copied from multiple sources for the source identification and the

copyright protection applications. Adaptability of the proposed method for other data hiding

applications can be pursued in future works. Other data hiding techniques appropriate for

slides of presentations are also good future research topics.

It has also been demonstrated that the way of multimedia content embedding can be used

for various data hiding applications where the structure of object groupings in a Microsoft

Visio drawing was used for embedding data that can be used for applications such as drawing

authentication and covert communication. It has been shown that the amount of data

embeddable by the proposed method is on average twice the number of objects in the drawing.

Alternate encodings that use more bits of 0’s may be investigated in the future, as well as

other variations of structures of object groupings which can provide larger data embedding

capacities.

Finally, it was demonstrated that hiding data in a multimedia content and then

embedding the stego-media into an office document is a viable way for data hiding via office

documents. Specifically, we can embed a visible watermark into an image and then embed the

watermarked image into a Microsoft Word or PowerPoint document. The watermarked image

can be extracted from the stego-document, and it is demonstrated that the original image can

be recovered losslessly from the extracted image.

Table 9.1 shows a summary of the proposed methods described in Chapter 3 through

Chapter 8, including the data hiding applications that were described, the office document

types that were used, and the areas for data hiding leveraged. It is noted that some of the

proposed methods may be extended to allow for other data hiding applications or office

document types. The table only lists those that are explicitly discussed or mentioned in the

chapters.

As mentioned in the motivation of this study, there are still few techniques proposed that

address the problem of data hiding via office documents. This research area is of great

theoretical as well as practical importance considering the flexibility and ubiquity of office

documents. It is expected that there will be new techniques proposed in the future for data

hiding in all of the six areas for researches described in Chapter 2. New approaches to data

hiding and new data hiding applications that take into consideration the properties of office

documents are also exciting future research topics.

115

Table 9.1. Summary of proposed data hiding methods in this dissertation study.

Data Hiding Applications

Covert communication Chapter 3, Chapter 7

Copyright protection Chapter 8

Data association Chapter 4, Chapter 5, Chapter 6

Media authentication Chapter 4, Chapter 5, Chapter 7

Office Document Types

Word processing documents Chapter 3, Chapter 4, Chapter 8

Spreadsheet documents Chapter 5

Slide presentation documents Chapter 6, Chapter 8

Vector graphics documents Chapter 7

Data Hiding Research Directions in Office Documents

Data hiding via texts Chapter 3

Data hiding via text formatting and layout Chapter 4, Chapter 6

Data hiding via multimedia contents Chapter 8

Data hiding via multimedia formatting and layout Chapter 7

Data hiding via auxiliary data Chapter 3, Chapter 4, Chapter 5

116

Appendix A

Programmatic Manipulation of Office Documents

As mentioned in the introductory chapter, office documents are very versatile and their

document format specifications can be extremely complicated. To ease the manipulation of

office documents and hence extend the capabilities of existing office software applications in

user-defined ways, many of the office applications allow documents to be manipulated

programmatically. Such a technique is often called Automation [71], and involves the calling

or embedding of the relevant office software components in a user’s program.

The office software application typically exposes and documents a set of public APIs

(Application Programming Interface) that a caller can use to open, read, or manipulate office

documents. The automation can be performed inside an office software application, in which

case the user’s program is often called a macro, or outside the application using inter-process

communication techniques such as COM (Component Object Model).

As an example, the code excerpt in Figure A.1 demonstrates the manipulation of a

Microsoft Word document from an external program using the C
#
 programming language and

the Microsoft Office .NET APIs (Microsoft.Office.Interop.Word). Specifically, when an

object of the class “Word.ApplicationClass” is created, the Microsoft Word application is

essentially launched, albeit hidden and not visible to the user initially (it is possible to set the

“Visible” property of the object to true to make the application visible, in which case the

application will appear no different to that launched manually by a user).

Any method invocations on the object (named “wordApp” in the figure) essentially

results in inter-process calls that command the Word application to execute the desired

functionality. In this example, the Word application is commanded to open a certain existing

document; all existing tracked changes are accepted; the number of sentences contained in the

document is queried; and selected sentences in the document are degenerated and revised (the

excerpt is taken from a prototype that implements the method proposed in Chapter 3).

Using such an Automation technique allows different office documents to be

manipulated easily, allowing us to focus on the algorithms and approaches of effective data

hiding techniques specific to office documents rather than delving into the details of office

document formats.

117

Using Word = Microsoft.Office.Interop.Word;

...

Word.Application wordApp = new Word.ApplicationClass();

Word.Document doc = wordApp.Documents.Open(file, …);

doc.Revisions.AcceptAll();

int sentences = doc.Sentences.Count;

int[] permutation = GetPermutation(sentences);

for (int i = 0; i < sentences && !msgEncoder.EOF(); ++i) {

 Word.Range sentence = doc.Sentences[permutation[i]];

 string d = sentence.Text;

 ...

 string d_ = degenerator.Degenerate(d, msgEncoder);

 if (d_ == null) continue;

 // Degenerate

 doc.TrackRevisions = false;

 DegenerateLevenshtein(sentence, d_);

 // Revert

 doc.TrackRevisions = true;

 DegenerateLevenshtein(doc.Sentences[permutation[i]], d);

}

Figure A.1. Code excerpt demonstrating the manipulation of a Microsoft Word

document programmatically.

118

Appendix B

Proofs of Theorems and Lemmas in Section 8.5

Theorem 8.2 (two-fold monotonically increasing). If Fx is a one-fold monotonically

increasing one-to-one function with a parameter x, then the compound mapping

q = Fb
–1

(Fa(p)) is two-fold monotonically increasing.

Proof. In the beginning, we prove that for all values of a, p1, and p2, Fa(p1) < Fa(p2) if |a – p1|

< |a – p2| by showing that both the inequality (i) Fa(p1) > Fa(p2) and the equality (ii)

Fa(p1) = Fa(p2) are impossible if |a – p1| < |a – p2|. First, (i) is impossible by the

definition of one-fold monotonically increasing function (Definition 1), since if not so,

it will then imply that |a – p2| ≤ |a – p1|, which is a contradiction. Next, (ii) is also

impossible because Fx is a one-to-one function, implying p1 = p2 , which contradicts the

condition |a – p1 | < |a – p2 |. This completes the first part of the proof that

Fa(p1) < Fa(p2) if |a – p1| < |a – p2|.

In the second part of proof, by regarding Fa(p1) as p1' and Fa(p2) as p2', and

substituting them into the inequalities of Lemma 3, we reach the fact that for all values

of a, b, p1 and p2,

|b – Fb
–1

(Fa(p1))| ≤ |b – Fb
–1

(Fa(p2))| if Fa(p1) < Fa(p2).

Combining the results of the two parts of proof above, we have

|b – Fb
–1

(Fa(p1))| ≤ |b – Fb
–1

(Fa(p2))| if |a – p1| < |a – p2|,

or equivalently,

|b – q1| ≤ |b – q2| if |a – p1| < |a – p2|,

where q1 = Fb
–1

(Fa(p1)), and q2 = Fb
–1

(Fa(p2)). That is, the two-fold monotonically

increasing property holds. This completes the proof. 

Lemma 8.4 The function described by Algorithm 8.4 is one-to-one and one-fold

monotonically increasing.

Proof. In Step 4 of Algorithm 8.4, we always remove a unique element from the set S and in

turn increment p', and so each of the 256 possible input values of p will yield its own

unique output p' value. Thus Algorithm 8.4 indeed describes a one-to-one function for

all values of a.

Furthermore, since we remove values of r from S in an increasing order of |a – r|, a

119

larger value of p' means that r is farther away from a. This means that the value of p' =

Fa(p) yielded by Algorithm 8.4 satisfies the one-fold monotonically increasing property:

Fa(p) < Fa(p') implies |a – p| ≤ |a – p'|. 

Lemma 8.5 The function described in Algorithm 8.5 is the inverse of the function described

in Algorithm 8.4.

Proof. If we set the value of input b in Algorithm 8.5 to be the input a in Algorithm 8.4, then

the set S in Algorithms 8.4 and 8.5 will always contain exactly the same elements for

each iteration. This is because in each iteration the value r picked by Step 3 of

Algorithm 8.4 will be the same as the value p picked by Step 2 of Algorithm 8.5, and

this same value is removed respectively in Step 4 of Algorithm 8.4 and Step 3 of

Algorithm 8.5.

For all values of input p', Algorithm 8.5 will pick the (p' + 1)-th item in the

sequence of p’s computed in Step 2 as the final output p, which we denote as p*. Since

the sequence of p’s selected in Step 2 of Algorithm 8.5 is exactly identical to the

sequence of r’s picked in Step 3 of Algorithm 8.4, if the value p* is used as the input p

to Algorithm 8.4, then r will match p* exactly after (p' + 1) iterations. Algorithm 8.4

will therefore output the same p' value, demonstrating that the function it described is

the inverse of that described by Algorithm 8.5. Since the functions described by the two

algorithms are one-to-one, the function described by Algorithm 8.5 is the inverse of that

described by Algorithm 8.4. This completes the proof. 

120

References

[1] P. Moulin and R. Koetter, “Data-hiding codes,” Proceedings of the IEEE, vol. 93, no. 12,

pp. 2083-2126, 2005.

[2] W. Bender, D. Gruhl, N. Morimoto, and A. Lu, “Techniques for data hiding,” IBM

Systems Journal, vol. 35, no. 3-4, pp. 313-336, 1996.

[3] F. A. P. Petitcolas, R. J. Anderson, and M. G. Kuhn, “Information hiding  a survey,”

Proceedings of the IEEE,vol. 87, no. 7, pp. 1062-1078, July 1999.

[4] I. J. Cox, and M. L. Miller, “The first 50 years of electronic watermarking,” Journal of

Applied Signal Processing, 2002, 2, pp. 126-132.

[5] N. F. Johnson, Z. Duric, and S. Jajodia, Information hiding: steganography and

watermarking - attacks and countermeasures, Kluwer Academic Publishers, Boston,

2001.

[6] R. Chandramouli, M. Kharrazi, and N. Memon, “Image steganography and steganalysis

concepts and practice,” Digital Watermarking Lecture Notes in Computer Science, vol.

2939, pp. 35-49, 2004.

[7] G. Cantrell and D. D. Dampier , “Experiments in hiding data inside the file structure of

common office documents: a stegonography application,” Proceedings of the 2004

International Symposium on Information and Communication Technologies, Las Vegas,

Nevada, pp. 146-151, 2004.

[8] ISO/IEC 29500:2008, Information technology -- Document description and processing

languages -- Office Open XML File Formats.

[9] C. Y. Lin, M. Wu, J. A. Bloom, I. J. Cox, M. L. Miller, and Y. M. Lui, “Rotation, scale,

and translation resilient watermarking for images,” IEEE Transactions on Image

Processing, vol. 10, no. 5, pp. 767-782, 2001.

[10] J. J. K. O' Ruanaidh and T. Pun, “Rotation, scale and translation invariant digital image

watermarking,” in Proceedings of IEEE International Conference on Image Processing,

Santa Barbara, CA USA, vol. 1, pp. 536-539, October 1997.

[11] K. Bennett, “Linguistic steganography: survey, analysis, and robustness concerns for

hiding information in text,” CERIAS Tech Report 2004-13, Center for Education and

Research in Information Assurance and Security, Purdue University, West Lafayette,

May 2004.

[12] P. Wayner, “Mimic functions,” Cryptologia, XVI(3), pp.193-214, 1992.

121

[13] P. Wayner, Disappearing Cryptography: Information Hiding: Steganography and

Watermarking, Morgan Kaufmann, 2nd edition, pp. 81-128, 2002.

[14] K. Maher, Texto, circulating on the web, February 1995.

[15] M. Chapman, I. D. George, and R. Marc, “A practical and effective approach to

large-scale automated linguistic steganography,” in Proceedings of the Information

Security Conference (ISC '01), Malaga, Spain, pp. 156-165, October 2001.

[16] “Spam Mimic,” online at http://www.spammimic.com (accessed: March 12, 2010).

[17] I. A. Bolshakov, “A method of linguistic steganography based on

collocationally-verified synonymy,” in Proceedings of the 6th Information Hiding

Workshop (IH 2004), Toronto, Ontario, Canada, pp. 180-191, May 2004.

[18] H. M. Meral, E. Sevinc, E. Unkar, B. Sankur, A. S. Ozsoy, and T. Gungor, “Syntactic

tools for text watermarking,” in Proceedings of the SPIE International Conference on

Security, Steganography, and Watermarking of Multimedia Contents IX, San Jose, CA,

January-February 2007.

[19] M. Topkara, C. Taskiran, and E. J. Delp, “Natural Language Text Watermarking,” in

Proceedings of the SPIE International Conference on Security, Steganography, and

Watermarking of Multimedia Contents VI, San Jose, CA, January 2005.

[20] C. Grothoff, K. Grothoff, L. Alkhutova, R. Stutsman, and M. Atallah “Translation-based

steganography,” in Proceedings of Information Hiding Workshop (IH 2005), pp.

213-233, 2005

[21] R. Stutsman, C. Grothoff, M. Attallah, and K. Grothoff, “Lost in just the translation,” in

Proceedings of the 2006 ACM symposium on Applied computing, pp. 338-345, 2006.

[22] M. Topkara, U. Topkara, and M. J. Atallah, “Information hiding through errors: a

confusing approach,” in Proceedings of the SPIE International Conference on Security,

Steganography, and Watermarking of Multimedia Contents IX, San Jose, CA,

January-February 2007.

[23] I. S. Lee and W. H. Tsai, “Data hiding in emails and applications by unused ASCII

control codes,” Journal of Information Technology and Applications, vol. 3, no. 1, pp.

13-24, September 2008.

[24] I. S. Lee and W. H. Tsai, “Security protection of software programs by information

sharing and authentication techniques using invisible ASCII control codes,”

International Journal of Network Security, vol. 10, no. 1, pp. 1-10, January 2010.

[25] A. E. Ali, “A new text steganography method by using non-printing unicode

characters,” Eng. & Tech. Journal, vol.28, no.1, 2010.

122

[26] I. S. Lee and W. H. Tsai, “A new approach to covert communication via PDF Files,”

Signal Processing, vol. 90, no. 2, pp. 557-565, February 2010.

[27] F. J. Mabry, J. R. James, and A. J. Ferguson, “Unicode steganographic exploits:

maintaining enterprise border security,” IEEE Security and Privacy, vol. 5, no. 5, 32-39,

2007.

[28] N. F. Johnson and S. Jajodia, “Steganalysis: The Investigation of Hidden Information,”

in Proceedings of the IEEE Information Technology Conference, Syracuse, New York,

USA, pp. 113-116, September 1998.

[29] M. Taskiran, U. Topkara, M. Topkara, and E. Delp, “Attacks on lexical natural

language steganography systems,” in Proceedings of SPIE, vol. 6072, pp. 97-105, 2006.

[30] Z. S. Yu, L. S. Huang, Z. L. Chen, L. J. Li, X. X. Zhao, and Y. W. Zhu, “Steganalysis

of synonym-substitution based natural language watermarking,” International Journal

of Multimedia and Ubiquitous Engineering, vol. 4, pp. 21-34, 2009.

[31] G. Simmons, “The prisoners’ problem and the subliminal channel,” in Advances in

Cryptology: Proceedings of Crypto, vol. 83, pp. 51-67, 1984.

[32] N. Maxemchuk and S. Low, “Marking text documents,” in International Conference of

Image Processing, vol. 3, pp. 13-17, 1997.

[33] J. T. Brassil, and N. F. Maxemchuk, “Copyright protection for the electronic distribution

of text Documents,” Proceedings of the IEEE, vol. 87, no. 7, pp. 1181-1196, July 1999.

[34] S. Zhong, X. Cheng, and T. Chen, “Data hiding in a kind of PDF texts for secret

communication,” International Journal of Network Security, vol. 4, pp. 17-26, 2007.

[35] R. Villán, S. Voloshynovskiy, O. Koval, J. E. Vila-Forcén, E. Topak, F. Deguillaume, Y.

Rytsar, and T. Pun, “Text data-hiding for digital and printed documents: theoretical and

practical considerations,” in Proceedings of the SPIE International Conference on

Security, Steganography, and Watermarking of Multimedia Contents VIII, vol. 6072,

2006.

[36] S. Walton, “Image authentication for a slippery new age,” Dr. Dobb's Journal-Software

Tools for the Professional Programmer, vol. 20, no. 4, pp. 18-27, 1995.

[37] Q. Mei, E. Wong, and N. Memon, “Data hiding in binary text documents,” in

Proceedings of the SPIE International Conference on Security, Steganography, and

Watermarking of Multimedia Contents III, vol. 4314, pp. 369–375, August 2001.

[38] M. Wu and B. Liu, “Data hiding in binary image for authentication and annotation,”

IEEE Transactions on multimedia, vol. 6, no. 4, pp. 528-538, 2004.

123

[39] C. H. Tzeng and W. H. Tsai, “A new approach to authentication of binary images for

multimedia communication with distortion reduction and security enhancement,” IEEE

Communication Letters, vol. 7, no. 9, pp. 443–445, September 2003.

[40] D. C. Wu, and W. H. Tsai, “A steganographic method for images by pixel-value

differencing,” Pattern Recognition Letters, vol. 24, no. 9-10, pp. 1613-1626, 2003.

[41] P. C. Su and C. C. Kuo, “Steganography in JPEG2000 compressed images,” IEEE

Transactions on Consumer Electronics, 49, 4, pp. 824–832, 2003.

[42] I. J. Cox, J. Kilian, F. T. Leighton, and T. Shamoon, “Secure spread spectrum

watermarking for multimedia,” IEEE Transactions on Image Processing, vol. 6, no. 12,

pp. 1673−1687, June 1997.

[43] M. Swanson, M. Kobayashi, and A. Tewfik, “Multimedia data-embedding and

watermarking technologies,” Proceedings of the IEEE, vol. 86, pp. 1064-1088, 1998.

[44] M. S. Kankanhalli, Rajmohan, and K. R. Ramakrishnan, “Adaptive visible

watermarking of images,” in IEEE International Conference on Multimedia Computing

and Systems, vol. 1, pp. 568–573, 1999.

[45] Y. Hu, and S. Kwong, “Wavelet domain adaptive visible watermarking,” Electronics

Letters, vol. 37, no. 20, pp. 1219–1220, September 2001.

[46] S. P. Mohanty, K. R. Ramakrishnan, and M. S. Kankanhalli, “A DCT domain visible

watermarking technique for images,” in IEEE International Conference in Multimedia

and Expo, vol. 2, pp. 1029–1032, Jul. 2000.

[47] G. Braudaway, K. A. Magerlein, and F. Mintzer, “Protecting publicly available images

with a visible image watermark,” in Proceedings of the SPIE International Conference

on Electronic Imaging, vol. 2659, pp. 126–133, February 1996.

[48] C. Lu, S. Huang, C. Sze, and H. Liao, “Cocktail watermarking for digital image

protection,” IEEE Transactions on Multimedia, vol. 2, no. 4, pp. 209-224, 2000.

[49] Y. J. Cheng, and W. H. Tsai, “A new method for copyright and integrity protection for

bitmap images by removable visible watermarks and irremovable invisible

watermarks,” presented at the 2002 International Computer Symposium – Workshop on

Cryptology and Information Security, Hualien, Taiwan, R.O.C., December 2002.

[50] Y. Hu, S. Kwong, and J. Huang, “An algorithm for removable visible watermarking,”

IEEE Transactions on Circuits and Systems for Video Technology, vol. 16, no. 1,

pp.129–133, January 2006.

124

[51] Y. Hu and B. Jeon, “Reversible visible watermarking and lossless recovery of original

images,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 16, no.

11, pp. 1423–1429, November 2006.

[52] M. Awrangjeb, and M. S. Kankanhalli, “Lossless watermarking considering the human

visual system,” in Proceedings of the International Workshop on Digital Watermarking

(IWDW 2003), Seoul, Korea, October 2003.

[53] M. Awrangjeb, and M. S. Kankanhalli, “Reversible watermarking using a perceptual

model,” Journal of Electronic Imaging, vol. 14, no. 013014, March 2005.

[54] C. Chang, P. Pai, C. Yeh, and Y. Chan, “A high payload frequency-based reversible

image hiding method,” Information Sciences, vol. 180, no. 11, pp. 2286-2298, June

2010.

[55] C. De Vleeschouwer, J. F. Delaigle, and B. Macq, “Circular interpretation of bijective

transformations in lossless watermarking for media asset management,” IEEE

Transactions on Multimedia, vol. 5, no. 1, pp.97–105, March 2003.

[56] J. Tian, “Reversible data embedding using a difference expansion,” IEEE Transactions

on Circuits and Systems for Video Technology, vol. 13, no. 8, pp.890–896, August 2003.

[57] C. Tsai, H. Chiang, K. Fan, and C. Chung, “Reversible data hiding and lossless

reconstruction of binary images using pair-wise logical computation mechanism,”

Pattern Recognition, vol. 38, no. 11, pp. 1993-2006, 2005.

[58] H. M. Tsai and L. W. Chang, “A high secure reversible visible watermarking scheme,”

in Proceedings of the IEEE International Conference on Multimedia & Expo

(ICME2007), Beijing, China, pp. 2106–2109, July 2007.

[59] S. K. Yip, O. C. Au, C. W. Ho, and H. M. Wong, “Lossless visible watermarking,” in

IEEE International Conference on Multimedia & Expo, pp.853–856, July 2006.

[60] X. Niu, C. Shao, and X. Wang, “A survey of digital vector map watermarking,”

International Journal of Innovative Computing, Information and Control, vol. 2, no. 6,

pp. 1301–1316, 2006.

[61] K. R. Kwon, B. J. Jang, E. J. Lee, and Y. Huh, “Copyright protection of architectural

CAD drawing using the multiple watermarking scheme,” in Proceedings of the

International Conference on Multimedia & Expo (ICME 2004), pp. 871–874, June

2004.

[62] V. Solachidis and I. Pitas, “Watermarking polygonal lines using fourier descriptors,”

IEEE Computer Graphics and Applications, vol. 24, no. 3, pp. 44–51, 2004.

125

[63] V. R. Doncel and N. Nikolaidis and I. Pitas, “An optimal detector structure for the

Fourier descriptors domain watermarking of 2D vector graphics,” IEEE Transactions on

Visualization and Computer Graphics, vol. 13, no. 5, pp. 851–863, 2007.

[64] D. H. Im and H. Y. Lee, S. J. Ryu and H. K. Lee, “Vector watermarking robust to both

global and local geometrical distortions,” IEEE Signal Processing Letters, vol. 15, pp.

789–792, 2008.

[65] A. Giannoula, N. Nikolaidis, and I. Pitas, “Watermarking of sets of polygonal lines

using fusion techniques,” in Proceedings of the International Conference on Multimedia

& Expo (ICME2002), Laussane, Switzerland, pp. 26–29, August 2002.

[66] R. Ohbuchi, “A shape-preserving data embedding algorithm for NURBS curves and

surfaces,” in Proceedings of the Computer Graphics International, Canmore, Canada,

pp. 177–180, 1999.

[67] W. Yang and L. Chen, “A novel steganography method via various animation effects in

PowerPoint files,” in International Conference on Machine Learning and Cybernetics,

Kunming, China, pp. 3102-3107, July 2008.

[68] M. Q. Jing, W. C. Yang and L. H. Chen, 2009, "A new steganography method via

various animation timing effects in Powerpoint files," in International Conference on

Machine Learning and Cybernetics, Baoding China, pp. 2840-2845, July 2009.

[69] A. Castiglione, A. De Santis, and C. Soriente, “Taking advantages of a disadvantage:

Digital forensics and steganography using document metadata,” The Journal of Systems

& Software, vol. 80, no. 5, pp. 750-764, 2007.

[70] Y. Liu, X. Sun, Y. Liu, and C. Li, “MIMIC-PPT: Mimicking-based steganography for

Microsoft PowerPoint document,” Information Technology Journal, vol. 7, no. 4, pp.

654-660, 2008.

[71] Microsoft Office 97 Visual Basic Programmer's Guide (Microsoft Professional Editions

Series), 1997.

[72] S. Page, T. Johnsgard, U. Albert, and C. Allen, “User customization of a word

processor,” in Proceedings of the ACM SIGCHI Conference on Human Factors in

Computing Systems: Common Ground, p. 346, 1996.

[73] H. Yu, P. Yin, S. Cheng, X. Kong, A. Gelman, and R. Fish, “Smart Media: empower

media with active data hiding,” Lecture Notes in Computer Science, pp. 5-16, 2001.

[74] Microsoft, “Remove personal or hidden information,” online at

http://office.microsoft.com/en-us/word/HP051901021033.aspx (accessed: March 15,

2010).

126

[75] Microsoft, “The remove hidden data tool for Office 2003 and Office XP,” online at

http://support.microsoft.com/kb/834427 (accessed: March 15, 2010).

[76] H. Kwon, Y. Kim, S. Lee, and J. Lim, “A tool for the detection of hidden data in

Microsoft compound document file format,” in Proceedings of 2008 International

Conference on Information Science and Security (ICISS 2008), Seoul, Korea, pp.

141-146, January, 2009.

[77] Y. Liu, X. Sun, Y. Liu, and R. Xiao, “File-update based steganography for Microsoft

PowerPoint files,” in Proceedings of the 2008 International Conference on Intelligent

Information Hiding and Multimedia Signal Processing, pp. 11-15, August 2008.

[78] J. Park, B. Park, S. Lee, S. Hong, and J. Park, “Extraction of residual information in the

Microsoft PowerPoint file from the viewpoint of digital forensics considering PerCom

environment,” in Proceedings of the 2008 Sixth Annual IEEE International Conference

on Pervasive Computing and Communications, pp. 584-589, Washington, DC, USA,

2008.

[79] B. Park, J. Park, S. Lee, “Data concealment and detection in Microsoft Office 2007

files,” Digital Investigation, vol. 5, no. 3-4, pp.104-114, March 2009.

[80] S. Inoue, K. Makino, I. Murase, O. Takizawa, T. Matsumoto, and H. Nakagawa, “A

proposal on information hiding methods using XML,” in Proceedings of the 1st NLP

and XML Workshop, pp. 55-62, November 2001.

[81] Y. H. Chang and W. H. Tsai, “Steganographic method for copyright protection of

HTML documents”, in Proceedings of 2003 National Computer Symposium, Taichung,

Taiwan, December 2003.

[82] I. S. Lee and W. H. Tsai, “Secret communication through web pages using special codes

in HTML files,” International Journal of Applied Science and Engineering, vol. 6, no. 2,

November 2008, pp. 141-149.

[83] X. G. Sui and H. Luo, “A new steganography method based on hypertext,” in

Proceedings of the Radio Science Conference, pp. 181-184, August 2004.

[84] Advanced Encryption Standard (AES), FIPS Pub 197, November 2001, online at

http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf (accessed: January 11,

2010)

[85] P. Brian, Common Errors in English, online at http://www.wsu.edu/~brians/errors/

(accessed: 25 August, 2006).

[86] Princeton University, WordNet v2.1, a lexical database for the English language, 2005.

[87] Google, Google SOAP Search API (beta), online at: http://www.google.com/apis/.

127

[88] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web search engine,”

Computer Networks and ISDN systems, vol. 30, pp. 107-117, 1998.

[89] C. Fernstrom, “Management of trusted citations,” in Proceedings of 2003 ACM

Symposium on Document Engineering, Grenoble, France, pp. 243-245, 2003.

[90] M. Bellare, R. Canetti, and H. Krawczyk, “Keying hash functions for message

authentication,” in Advances in Cryptology - Crypto 96 Proceedings, Lecture Notes in

Computer Science, 1109, Springer-Verlag, 1996.

[91] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: keyed-hashing for message

authentication,” Internet RFC 2104, February 1997.

[92] W. Stallings, Cryptography and Network Security, Principles and Practice, 2
nd

 ed.,

Prentice-Hall International, 1999.

[93] PKCS #1 v2.1: RSA Cryptography Standard, RSA Laboratories, June 2002.

[94] S. Josefsson, “RFC 4398 - Storing certificates in the domain name system (DNS),”

March 2006, online at http://www.ietf.org/rfc/rfc4398.txt (accessed: March 19, 2010).

[95] R. Gennaro and P. Rohatgi, “How to sign digital streams,” Information and

Computation archive, vol. 165, no. 1, pp. 100–116, 2001.

[96] A. Perrig, R. Canetti, D. Song, and J.D. Tygar, “Efficient and secure source

authentication for multicast,” in Proceedings of Network and Distributed System

Security Symposium, pp. 35–46, 2001.

[97] X. Wang, Y. L. Yin, and H. Yu, “Finding collisions in the full SHA-1,” Lecture Notes in

Computer Science, vol. 3621, pp. 17–36, 2005.

[98] F. C. Rice, “Building a COM Add-in for Microsoft Office XP Using Microsoft Visual

Basic 6.0,” Microsoft Office XP Technical Articles, Microsoft Corporation, 2002.

[99] Harlan Carvey, Windows Forensics and Incident Recovery, Addison-Wesley

Professional, 2004.

[100] M. Muterspaugh, H. Liu, and W. Gao, “Thomson proposal outline for WRAN,”

proposal for IEEE P802.22 Wireless RANs, doc.: IEEE802.22-05/0096r1, 2005.

[101] S. S. Tseng and W. H. Tsai, “High confidence information systems mid-term report,”

NSC Advanced Technologies and Applications for Next Generation Information

Networks, October 2002.

[102] Xilinx, “Digital Filtering,” DSP Design Flow, 2003, online at

http://users.ece.gatech.edu/~hamblen/4006/xup/dsp_flow/slides/ (accessed: March 19,

2010).

128

[103] Microsoft Corporation, Visio 2003 SDK Documentation, MSDN Library, Office

Developer Center, Visio 2003, online at

http://msdn.microsoft.com/en-us/library/bb421578(office.11).aspx (accessed: January 2,

2010).

[104] A. Lumini and D. Maio, “Adaptive positioning of a visible watermark in a digital

image,” in Proceedings of the International Conference on Multimedia & Expo

(ICME2004), Taipei, Taiwan, R.O.C., pp.967–970, June 2004.

[105] X. Li, and M. T. Orchard, “Edge-directed prediction for lossless compression of natural

images,” IEEE Transactions on Image Processing, vol. 10, no. 6, pp. 813–817, June

2001.

129

Vitae

Tsung-Yuan Liu was born in Taipei, Taiwan on September 15, 1977, and studied in

Johannesburg, South Africa from 1987 to 1998. He received the B.S. degree in electrical

engineering from the University of the Witwatersrand, Johannesburg, South Africa, the

M.B.A. degree from National Taiwan University, Taipei, Taiwan, R.O.C., and is studying

towards the Ph.D. degree at the Department of Computer Science, National Chiao Tung

University, Hsinchu, Taiwan, R. O. C.

He is currently a Software Engineer at Google, Taipei, Taiwan. His research interests

include data hiding, image processing, web search, data mining, and artificial intelligence.

130

List of Publications

1. Tsung-Yuan Liu and Wen-Hsiang Tsai, “A new steganographic method for data hiding

in microsoft word documents by a change tracking technique,” IEEE Transactions on

Information Forensics and Security, vol. 2, no. 1, March 2007, pp. 24-30 (based on the

content of Chapter 3).

2. Tsung-Yuan Liu and Wen-Hsiang Tsai, “Generic lossless visible watermarking -- A

new approach,” IEEE Transactions on Image Processing, vol. 19, no. 5, pp. 1224-1235,

May 2010 (based on the content of Chapter 8).

3. Tsung-Yuan Liu and Wen-Hsiang Tsai, “Robust watermarking in slides of presentations

by blank space coloring: a new approach,” LNCS Transactions on Data Hiding and

Multimedia Security IV, Lecture Notes in Computer Science (LNCS), vol. 5510, Y. Q.

Shi (ed.), Springer, pp. 49-64, 2009 (based on the content of Chapter 6).

4. Tsung-Yuan Liu and Wen-Hsiang Tsai, “Data hiding in graphic drawings by structures

of object groupings,” Journal of Information Science and Engineering, accepted and to

appear (based on the content of Chapter 7).

5. Tsung-Yuan Liu and Wen-Hsiang Tsai, “Quotation authentication: a new approach and

efficient solutions by data hiding and cascade hashing techniques,” submitted to IEEE

Transactions on Information Forensics and Security (based on the content of Chapters

4 and 5).

6. Tsung-Yuan Liu and Wen-Hsiang Tsai, “Active quotation authentication in Microsoft

Word documents using block signatures,” Proceedings of the 3rd International

Conference on Information Technology: Research and Education (ITRE 2005), pp.

260-264, Hsinchu, Taiwan, Republic of China, June 27-30, 2005 (based on the content

of Chapter 4).

