1. Introduction

1.1 Research background and motivation

Queuing delay models in the manufacturing system have attracted great attention from
many researchers. These models constitute a majority of the manufacturing lead time. Lead
time is generally defined as the duration of job arrival and job completion, which can be
divided into several manufacturing processes such as pre-production waiting time, setup time,
and processing time. The manufacturer should provide the estimated lead time to customers
so that they will have an idea how long it will take to complete their job order. Thus, lead time
has a significant impact on manufacturing schedule because it is extensively used to
determine the target completion date of a customer’s order even during sales negotiation
(Gordon et al. [1]).

Two measures can be used in evaluating the performance of a lead time estimate: first is
accuracy and the second is.precision. Accuracy.is a measure of how closely the estimated lead
time agrees with the actual lead time, that is to say, lead time prediction. If lead time
prediction can be significantly improved, then the costs incurred between actual completion
times and committed delivery-dates can be reduced based on lead time prediction. These costs,
reflected in various earliness- and tardiness-related measures, are considered as key indicators
of performance in the negotiation of the due date with the customer (Enns [2]). Precision is a
measure of the variability of the lead time, which can be used to establish appropriate safety
stock levels and safety lead times as protection in the uncertainties in demand and supply (e.g.,
Chopra et al. [3], Wang and Hill [4], Ruiz-Torres and Mahmoodi [5], Van Kampen et al. [6]).

In general, if variability in the lead time estimates is low, then better estimates can be obtained

and more accurate due dates can be given.

For a single finite-capacity machine that can process several product types, the setup is
necessary to adjust current machine settings in order to complete a particular job. It was
reported that 20% or even as much as 50% loss of available capacity may arise from setup
activities (Liu and Chang [7], Trovinger and Bohn [8]). Market demand, uncertainties in job
arrival time and types of product, make the setup estimation time very complicated. Hence
setting output targets may have significant errors compared with actual levels due to the
possible heavy loss of capacity and the difficulty in calculating required setup time. This gap
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cannot be disregarded. At least three additional factors affect the magnitude of required setup

time. They are as follows:
I.  The total arrival rate of all types of incoming jobs.
[I. The combination of the arrival rates of various types of jobs.
lll. The dispatching rule applied in selecting the next job for processing by the machine.

If a lengthy setup is required in product type change, then the setup activities may
exhaust the machine capacity and increase the work-in-process (WIP). An overloaded system
with large WIP would cause long waiting time, resulting in extended lead time and late job

deliveries.

Based on the discussion, the difficulty in calculating the required setup time leads to the
challenge of developing a system capable of accurately estimating waiting time. Therefore,
this research aims to develop a relatively simple yet accurate model of queuing delays with

setup time.
1.2 Research goals

Setup activities may cause wastage in machine capacity and extend job lead time.
Uncertainties in job arrival time‘and product type can complicate the calculation of required
setup time and the setting of output target. Thus, this research aims to estimate the lead time
for each product type using the First-In First-Out (FIFO) rule to facilitate performance

evaluation from the customer’s perspective.

The family-based scheduling rule (FSR), which consecutively handles jobs belonging to
the same product family, and which require the same machine setting, can be used to reduce
setup frequency and amount of setup time. Both expected setup time and service time are
estimated by FSR analytic model to efficiently evaluate the effects on capacity saving. The
effect of FSR in reducing setup time and capacity loss is explored further by comparing the
results with those of the FIFO rule.

1.3 Research domain and assumptions

In order to simplify the problem, this research focuses on the production system with a
single finite-capacity machine providing several different product types of services for jobs,
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and is built under an environment with the assumptions:

I.  The inter-arrival time of a specific product type of job is distributed independently

and exponentially.
[I. Jobs are serviced by FIFO rule and FSR for the next job.
. A setup time is incurred between jobs of different product.
IV. Sum of the processing time and the setup time is treated as the service time.
1.4 Research process

Figure 1-1 is the flowchart of this research.
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2. Literature Review

As stated in Section 1.2, this research aims to estimate the lead time for each product
type with setup time using FIFO rule and to evaluate the effects on capacity saving by FSR.
Related literatures of analytic models are discussed in this chapter. Specifically, Section 2.1
discusses an analytic model under FIFO, and Section 2.2 describes an analytic model under

FSR. Section 2.3 reviews other related work.
2.1 Analytic model under FIFO

The estimate of setups under the FIFO has been investigated in several studies. The
FIFO rule describes the principle of processing in queue by a first-come first-served
process—what job comes in first is dispatched first, what job comes in next waits until the

first is finished.
2.1.1 Analytic model of setupsunder FIFO
Probability of setups under FIFO

Missbauer [9] defined the probability-of setups for producing several types of services
with a single machine underlying.the FIFO rule: In Missbauer [9], each product type consists
of severalindividual jobs and is assumed to be an independent Poisson distribution for the
number of arriving jobs of the product typwith parametef;, wherej=1, 2, ...,J, andJ is
the number of product type. The probabilif¥t is used to represent the probability that an
arriving job is product typg, and the probability (1 4/4) is used to represent the probability

that an arriving job is from a different product typ&or a single machine, setup occurs when

each of the two consecutive jobs belongs to different product types.

According to Missbauer [9], the probability that a setup is necessarily a produgt type
job under FIFO rule on a single machine is equal to the probability of a produgt jtipe
arriving at the system multiplied by the probability that this arriving job has a different

product type as its predecessor, as shown in Equation (2-1).



Pr[Setup is necessary for product type job under FIFC]) rule

=Pr[ Typej job arrives
Pr[ Setup is necessary for an arrivjog| an arriving job is of typja]

=Pr[ Typej job arrivek (2-1)
PI’[ The type of therpdecessor is different from typ}e

/1j A
= 1—_'
A A

The calculation result only depends on the job arrival rate; hence, it is constant if the job

arrival rates are known.

Chern and Liu [10] extended Missbauer’s research [9] to parallel machines scheduling
under FIFO. The probability of requiring setup of a job for parallel machines under FIFO
must consider the number of jobs existing in the system. This can be divided into three parts:

1.) there is no job in the system; 2.) therergj@bs in the system angd<m; and 3.) there are
n jobs in the system ami=m, wherem is the number of parallel machines. First, if there is

no job in the system and a job of product typerjved at the system, then a setup is necessary
if no jobs belonging to the product typere among the last jobs being processed on the
parallel machines. Second, if there argobs in the system and<m, setup would be
necessary for this newly arrived job while no jobs belonging to the product &ypeamong

the last jobs being processed on' the idle-machines. Finally, if thergj@los in the system
andn=m, setup would not be necessary for this newly arrived job while the last job being
processed on the assigned machine belongs to producf.typeis, the probability that a
setup is necessary for product typmb in parallel machines under FIFO can be shown as
Equation (2-2).

Pr[ Setup is necessary for an arriving|jnbarriving job is of typg'a]
AN ma AN e 1 (2-2)
=p,|1-—| + 1-—- + 1-—-1L
po( /1] ;p{ Aj Zmp( /1]

where g and p are the probabilities that there are no jobs in the system and therenaré)n (

jobs in the system.

Studies on setup time estimation are quite limited. The same setup time for each product

type is assumed to simplify the model by Missbauer [9].



Service time under FIFO

Karmarkar et al. [11] and Kuik and Tielemans [12][13][14] studied the service time
probability distribution of batches with setup time for a single-machine system by using
FIFO.

In their model, the batch service time of a specific product type is defined as the sum of
the batch processing time and the setup time, which can be shown as Equation (2-3).

X; =T+ Srbatchj (2-3)

wherex; represents the batch service time of product fyperepresents the setup time of

product typej, and STbatchj represents the batch service time of product typ&he

corresponding probability is given by the relative arrival rates of the batches, which can be

written as Equation (2-4).

A
Pr[Xj :xj]=7‘ (2-4)
where/; represents the batch arrival rate of product fygéus, the moments of the service

time of batches can be calculated based on this probability distribution.
Waiting time under FIFO

The methodology of previous studies on waiting time estimation was applied to the
gueuing analysis because their properties and results are relatively well understood and are
available for many important system characteristics (Cheng and Jiang [15], Enns [2][16],
Baykas@lu et al. [17]). In these models, job arrivals aaadomly generated by the Poisson
process and processing times follow the negative exponential distribution. However, setup
times are ignored or are assumed as 2deanwhile, literature on queue analysis with setup
times studied the expected waiting time of batches with setup time for single-machine system
by applying the Pollaczek—Khintchine formula for &Y/G/1 queue in Equation (2-5)
(Karmarkar et al. [11], Kuik and Tielemans [12][13][14], Koo et al. [18][19], Missbauer [20]).

AE Srpleo
EI:VVCJM/Gll - 2(1_/][E[STFEO])

(2-5)

where/ is the total arrival rateg[STriro] and E[STZ.,] are the first and second moments of
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the service time under FIFO, respectively, &id/4]wc1 is the expected waiting time for an
M/G/1 queue.

Karmarker et al. [11] presented a multi-item heuristic batching aimed to minimize
queuing delays, and developed the upper and lower bounds on the optimal batch size. Kuik
and Tielemans [12] studied the upper bound for the setup utilization at optimal batch sizes by
gueuing delay batching model for multiple products. Kuik and Tielemans [13] discussed the
analytical expressions for the optimal multi-item batch sizes and the minimal expected
queuing delay. Kuik and Tielemans [14] also investigated the relationship between batch size
and lead time at the low levels of machine utilization for multi-items. Koo et al. [18][19]
presented a linear search algorithm to find the optimal throughput rate and batch size with
single product and multi-products. Missbauer [20] analyzed the impact of lot sizing on the
functional relationships between WIP level and flow time or capacity utilization in lot sizing
models. In addition to the batch waiting time, Kuik and Tielemans [21] also investigated the
variance of batch waiting time with setup-time by applying Mi&/1 queuing system in
Equation (2-6) because these are important for the safety stock or safety time determination

and due date assignment.

Varw], o, = L]

MIGIL 3(1_/]E[STF|F0]) E[\NGI] (2-6)

M/G/1

Among the abovementioned literature that studied batch waiting time, an analytical
model for estimating waiting time was modeled byMi&/1 queue because the superposition
of the batch arrival processes for different products can be approximated by a Poisson process
(Jonsson and Silver [22], Zipkin [23], Karmarkar [24], Tielemans and Kuik [25]). Thus, the
expected value and variance of waiting time for a batch can be obtained easily if the first and
second moments of the service time are given. Batch service time is defined as the sum of
batch processing time and setup time. As such, an analytical expression in standard form for
the expected value and variance of waiting time by queuing theory can be applied if the batch
process is assumed. However, it cannot respond completely to the impact of setup time to
waiting time by substituting the first and second moments of the service time into the formula
for anM/G/1 queue. There are at least three additional factors relevant to the magnitude of the
required setup time: the total arrival rate of all incoming jobs, the mix of the jobs arrival rates
of various types, and the dispatching rule used in queuing jobs on the machine. The influence

of these factors on setup time and the relationship between setup time, service time, and



waiting time should be discussed to estimate the waiting time in the setup time.
2.2 Analytic model under FSR

2.2.1 Family-based scheduling (FSR) rule

FSR has been assessed in several studies. According to FSR, when a job arrives at the
system and there already exists one or more jobs belonging to the same product type, then this
arriving job is jointed with the same product type jobs and these jobs become a batch. The
jobs within each batch and each batch are dispatched under FIFO rule. When a job arrives at
the system and if there are no jobs belonging to the same product type, then this arriving job
is dispatched under the FIFO rule.

Missbauer [9] proved that setup time could be saved using FSR for the single-machine
system. Jensen et al. [26] considered the case of the semiconductor testing facility with
parallel machines and dynamic job arrival; FSR has been credited for reducing setup time in
batch production industries. Chern and. Liu {10] proposed FSR to dispatch wafer lots in the
photolithography stage of the wafer fabrication system. Kannan and Lyman [27] examined the
combined effect of lot splitting and FSR in'a manufacturing cell by simulation and showed
that FSR can reduce the negative impact on.flow time by lot splitting. Nomden et al. [28]
refined the existing rules for family-based scheduling by including data on upcoming jobs and
showed that flow time performance can-be improved significantly. Therefore, FSR not only

has an effect on saving machine setups, it also indirectly reduces job flow time.

In the foregoing investigations, except for Missbauer [9] and Chern and Liu [10], the
simulation approach is applied to evaluate the effect of FSR in reducing setups and flow time.
Numerous computer runs are needed to produce reliable results; thus, this method is both

time-consuming and costly.
2.2.2 Analytic model of setupsunder FSR
Probability of setups under FSR

To simplify the setups for single machine under FSR, the system state can be divided
into two parts according to the number of jobs processed in the system. First, assume that no
jobs are in the system and there is a job arriving; thus, a setup is needed if the product type
of the last job that has been processed completely on the machine is different from the
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arriving job. Second, assume that there are one or more jobs in the system and a job is coming;
thus, a setup is needed if the product types of jobs among the jobs in the system are all
different from the arriving job. Therefore, the probability that a setup is necessary for product

type jjob in a single machine under FSR by Missbauer [9] can be shown as Equation (2-7).

Pr[Setup is necessary for product typeb for single machine under F$

A, A & AY (2-7)
:7{9)(1_7]4-; pn[l—7j ]

where g and p are the probabilities that there are no jobs in the system and thergnaré)n

jobs in the system, respectively.

Chern and Liu [10] extended the result by Missbauer [9] to a more complicated system
with parallel machines and multiple job re-entrances under FSR. Based on FSR, the
probability of requiring setup for jobs in parallel machines has to consider the number of jobs
existing in the system. These can be divided into three parts: there is no job in the system,
there are fjobs in the system andim, and there are jobs in the system andxm, where m
is the number of parallel machines. First, if there are no jobs in the system and the product
typej job arrived, then a setup is necessary if no jobs belonging to the produgtaygpe
among the last jobs processed on the parallel machines. Second, if therplasen the
system and<m, setup would be necessary for this newly arrived job while there is no job
belonging to the product typeamong the last jobs processed on the idle machines. Finally, if
there aren jobs in the system ami=m, setup would be necessary for this newly arrived job
while all last jobs being processed do not belong to produci tyfpais, the probability that a

setup is necessary for product tyjpmb in parallel machines under FSR can be shown as
Equation (2-8).

Pr[Setup IS necessary for product typeb yith parallel machines under F}E
AN AN @ A (2-8)
= 1-—L | + 1-—L + 1-—-1L
po( Aj nZ:;,pn[ Aj an[ Aj

n=m

Results show that the setup time can be saved by FSR as compared with FIFO and the

utilization rate can be increased by FSR as compared with FIFO.

Number of setups under FSR



Vieira et al. [29] considered the number of setups to be observed in a time interval for
producing several types of services with a single machine, in which the FSR is used to
dispatch the jobs. Each product type consists ofdividual jobs in the time interval. Vieira
et al. [29] assumed an independent Poisson arrival of jobs with produgtaggearrival rate
Jj. The probability of product typjejob arriving in the time interva®, is equal to Pij=P],
whereT; is the inter-arrival time of product typgobs and is an exponential distribution with
parametey;, andj=1, 2, ...,J. They simplified the setup probability to constantly be (1)
without considering the effect of the product type of an arriving job. Therefore, the expected
total number of setufor a single machine depends on probabilitied;BrP,] and (1-1/),

which can be shown as Equation (2-9).

1 J
N, = (1—3j; P{T,<P] (2-9)

With regard to parallel machine; Vieira et al. [30] also extended the result to the
parallel-machine system in case of machine failure. The expected total number of@etups

parallel machine is given by Equation (2-10).

N J
N, = (1—7"*); P{T <P ] (2-10)

whereNp, represents the number of parallel-machines. Based onNgSpRroduct types will

not require a setup and-(IN/J) represents the probability of requiring setups.

According to the discussion, Vieira et al. [29][30] did not consider the possible
differences in the arrival rates of various job types; instead, they simplified the setup

probability by categorizing all types of arriving jobs as a constant.
2.3 Other related work

Rossetti and Stanford [31] considered the aforementioned problem on the single machine
and presented a case study that examined the use of heuristics to estimate the expected
number of setups. Bagherpour et al. [32] estimated the sequence-dependent setup time for the
single machine using the fuzzy approach. However, their fuzzy estimation was significantly
lower compared with the simulated results. Estimation error of the fuzzy setup time cannot be

controlled in an acceptable range.
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2.4 Summary

The primary focus of this research is to conduct an analytic methodology. New
closed-form analytical expressions of queuing delays with setup time for the case of a Poisson
arrival process by FIFO and FSR rules are constructed in the following sections.
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3. FIFO analytic model for estimating lead time

In this chapter, an analytical expression of queuing delays with setup time for the case of
a Poisson arrival process by FIFO rule is discussed to estimate lead time. Two parts are

derived: one is the estimator of the lead time, and the other is the variance of the lead time
3.1 Problem Analysis

In this research, a single finite-capacity machine for processing several product types of
jobs is considered. We assume that the jobs arrive at the system in a time inteRi@) (O,
which is a positive integer. Beginning time is labeled as 0. We also assume that the number of
newly arrived jobs of product tygefollows the Poisson distribution for the arrival of jobs at

rate4;, thus there arrives=/; RT product typg jobs at time interval (GRT]. In addition, the

arrival time of thei™ arrived job of product typg, Tj, is the gamma distribution with
parameters and4; under the given Poisson assumption. Thus, the probability of job of
product typej arrived at the ‘system-in the time interval RI] can be shown as Equation
(3-1).

PI[T, <RT =] r—i)(tij) et (3-1)
wherej=1, 2, ...,J, i=1, 2, ...,n, andJ represents the number of product type. The

probability ofi™ job of product typg arriving at the system but out of time interval R0] is

denoted by Pl > RT] =1—Pr[T;; =RT].
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Figure 3-2 Estimator and variance of lead time under FIFO

We know that the probability Pif=RT] depends on the length of the time interval (O,
RT], the sequence of the arrived jolos &nd the job arrival rate,}. Figure 3-1 (a) plots the
probability Pr[l;; =RT] against the sequence of the arrived jabsvhen1;=1/3 for RT=5,

20, and Figure 3-1 (b) plots-the probability RrE RT] against the job arrival rate; wheni
=3 for RT=5, 20. From Figure 3-1 (a) to-Figure 3-1 (b), we ¢leat the probability

Pr(T; SRT]‘RT:20 is larger then the probabilityDr[I'istT]‘RT:S. This means that the

possibility of jobs arrived at the system is increasing when the length of the time interval is
longer, that is, more jobs will arrive at the system to process in the time intertl] (0n

Figure 3-1 (a), the probability FAi[<RT] is decreasing as the sequence of the arrived jpbs (
climbing up for givenRT and job arrival rate, which implies that the possibility of the later
jobs arrived at the system is decreasing progressively. Moreover, the probabillitst RT]

Is also decreasing as the job arrival rate is smaller for given parafR&tansli in Figure 3-1

(b). To decrease arrival rate means increasing inter-arrival time, thus the possibility of jobs

arrived at the system in the time interval (0] B&comes lower.

When a jobs in specific type of demand, arrives at the system, it will enter the waiting
line and be serviced in a FIFO rule. A job will be processed after a period time of waiting.
Before starting the processing of next job, the machine should be occupied and proceeds setup
if a new setup is required. Therefore, not only job processing but also machine setup
consumes the capacity of machine, which indicates that total setup time is related to the
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utilization rate of capacity and is the cost must be paid due to the sharing of a machine for
providing various services. The lead time of jobs can be determined with the summation of
the waiting time of jobs in queue and the service time of jobs on the machine. The waiting
time of job relates to the expected service time of some specific number of jobs already
arrived. The service time of jobs is defined by adding the estimated setup time and the
processing time of jobs. Since the service time is independent of its waiting time in queue,
and then the variance of lead time is expressed as the sum of variances of the service time and
the waiting time in queue. Both the estimator and the variance of lead time are shown in

Figure 3-2 and are presented as follows.
3.2 Estimator of lead time of jobs under FIFO

The job’s lead time for each product type is defined as the time that is spent in the system
from their arrival until the job completed its processing on the machine. Therefore, the lead
time of jobs for each product type can be.estimated with the summation of the average
waiting time of jobs in queue and the average service time of jobs, where the service time of
jobs includes both its setup.time and its processing time. T,et-o, Wy, riro, andST; riro be
the lead time, waiting time and service time of the product jtypke under FIFO, hence the

estimate of lead time of the product tygeb under FIFO, E[LT, ..], is given by Equation
(3-2).

E[LT]',FIFO] = E[Vvq,j,FIFO] + E[STj,FIFO] (3-2)

where E[W;; riro] and E[ST; riro] represent the expected waiting time and expected service

time of product typg jobs in queue under FIFO, ape-1, 2, ...,J. The calculations of

E[WG,,Firo] andE[ST; riro] are presented as follows.
3.2.1 Expected servicetimeunder FIFO

The service time of jobs is defined by the time that is spent on the machine from the
setup process until the jobs completed its processing. Therefore, the service time of jobs
equals its setup time plus its processing time, where the processing time of jobs depends on its
product type and the setup time depends on the product type change between any two
consecutive jobs. LeST; riro be the service time of th¥8 job of product typg under FIFO.

The probability mass function & riro can be classified three parts according to the case of

arriving time and the setup case and is explained in the below discussion.
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In the first part, the service time of tife job of product typé would be zero because
this job not arrived in time interval (QRT] with the probability (1-Pr[T;;=RT]). In the
second part, th&" job of product typ¢ arrived within the time interval (RT] but no setup is
required, then the service time of this arrived job would be equal to its processing time with
the probability PiTi; =RT](1—Psjriro). In the last part, th&" job of product typé arrived in
the time interval (ORT] and a setup is necessary, which implies that the arrived job is
different from its predecessor. The different product type of the predecekasthe fixed
finite number §—1) of classifications with the probabilities/A° and the setup time for
product typg job after product type job is defined as,j. Thus, the service time of thf8 job
of product typg would be equal to its processing time plus its setup time with the probability

Pr[T; = RT]Ps; riro(A/2°), wherer=1, 2, ...,J, r#j, A°=3%),,,;A , and the probability
Psj riFo represents the probability that a setup is required given a job of produgtatyped

at the system in time interval (BJ], at where jobs are dispatched by the FIFO rule. It can be

seen that the probability mass function-of Sfo can be showed as Equation (3-3).

1-P{T, <RT |, it = 0
Pr|T. <RT [(1-P,, , Ifst, = pt;
P(STij,FIFO =t ) = [ | ]( ’J‘;FO) J . (3-3)
Pr[Tij < RT] Ps,j,FlFo/]_rc’ ifStij =pt; +s;,
r= 1,23 r#%j

In Equation (3-3)pt; is the processing time of product tyjpebs. The expected service time
of the product typg jobs is defined byE[ST, ..,] = Hn'Y ST, o] and is given by

Equation (3-4) according to the probability mass function @f=%b.

E[ST]',FIFO} = E|:n;lz STij,FIFOj|
i=1
(3-4)
el 5
= AT SR Pt +Ry a2 50,

r=1
rj

wherenj=A4RT andj=1, 2, ...,J. The result in Equation (3-4) asserts that the decomposition

of the expected mean service time of the product jypbs into two parts according to the

definition of the service timeresults in the expected mean processing time
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( n'SLPrT, <RTlpt, ) and the  expected mean setup  time
(NS4 P S RTIR, firo Xy (4, /A%)s; ) of the product typg jobs, respectively. Finally,

the expected service time of jobs is defined BYST, o] = H(X].n) 21432 ST frol

and can be shown as equation (3-5).

(3-5)

J 1, J )
:(Z ”jj > Pr[Tij = RT] pt; + PS,j,F.FoZA—LS,,-
: oy £

r£j

3.2.1.1 Probability of requiring setups under FIFO

To solve the expected service time of jobs, the probalBiityiro has to be calculated in
advance. LePsjjriro be the probability for théhjob of product typg arriving at the system
in time interval (O,RT] with a_setup under FIFO. Ifjobs not arrive at the system in the time
interval (0,RT], a setup is not needed for this job. If jobs arrive at the system in the time
interval (0,RT], it can be classified into two categories, “setup” and “not setup”. A setup of
job is not needed with the single machine according to the FIFO rule if it has the same
product type as its predecessor..On the contrary; a setup of job is necessary with the single
machine according to FIFO if it have the different product type as its predecessor. Therefore,

the probability Rj; riro can be calculated with Equation (3-6).

P

S,

Ji.FIFO — Prl:Tij S RT}X R riro (3-6)

where the probabilitys; riro represents the probability that a setup is required given a job of
product typg arriving at the system in time interval @T], at where jobs are dispatched by

the FIFO rule. The calculation &%jrro must consider the number of jobs already in the
system, which can be partitioned into two parts: when there are no jobs in the system and

when there ar@=1 jobs in the system. Therefore, the probabMtyrro can be calculated

by Equation (3-7).

00
— n=0 n=1
Ps,j,FIFO = pO,FIFOPsetups,FIFO +z Pn.riFo Psetups,FIFO (3-7)
n=1

wherepo riFo andpn riro are the probabilities that there are no jobs in the system and there are
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n=1 jobs in the system under FIFQ). o is the probability of an arriving job of the

product typg requiring a setup under FIFO with no jobs in the system, Bﬁg&FlFo is the

probability that an arriving job of the product typegeds a setups under FIFO with hjobs

in the system. The calculation ofj Bro is presented as follows.

First, for the case if there are no jobs in the system andf"tj@b of product typg
arrives during the time interval (&T], then a setup is necessary if the new arriving job is
different from the product type of the last job on the machine currently being idle with the

probability (1-4j/4), that is to say, the probability of an arrivingoj@f product typej
requiring a setup with no jobs in the syste@f@sf,m) can be rewritten as the probability

that the last job on the machines currently being idle is different from the produgttypes
equal to (1-4/2).

Second, for the case if there.arg 1 jobs'in the system and tif&job of product typé
arrives at the system in the time interval R}, then-a setup is necessary if the new arriving
job has the different product type as its predecessor. Therefore, the probaﬁijst’y,Fo is
also equal to (1#/4), and the probability of an arriving job of produgpej not requiring a

setup with n=1 jobs in the systemFLgflsauple,Fo) is equal to /.

Thus it can be seen that the probabilitysjrro can be rewritten as

P

S

irro = Popeo (L= A; [A)+ 20 Py o (LA, /A) . Therefore, the probabilit?si;riro can be

updated as Equation (3-8).

A © A
Ps,ij,FIFO = Prl:Tij < RT}{ Po FiFo (1_7Jj + Zl Pn.FiFo (1_7JH

A

= P[T; < RT]( }j}

According to Equation (3-8), the probability that a setup does not need faf fbb of

(3-8)

product type under the FIFO rule can be expressedagdto=1—Psijriro-

3.2.1.2. Expected number of setupsunder FIFO

Thei™ job of product typg arriving at the system in the time interval RI] have two
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possible categories and is labelled by value 1 and value 0, in which value 1 responses "setup

occurs" and value 0 responses "no setup occurs".

According to Equation (3-8), a setup of iffgob of product typg takes value 1 with the

probability P,; ;o =Pr[T; <RT](1-4,/4) and takes value O with the probability
1-P.

s,ij,FIFO

for thei™ job of product typg equals E[NS; ,-o] =Pr[T, < RTI(1- 4, /1) .

={L-Pr[T, <RT]+Pr[T, <RT]A, /A} . Therefore, the expected number of setups

Suppose that there would arriggjobs in the time interval (RT] for the product typ¢

and the jobs are all independent arriving at the system, then the expected number of setups for
product typej can be computed a&[NS, ] =y H NS, rrol » Wheren=4RT, andj=1,
2, ..., J. Finally, the expected number of setups for all jobs is calculated as

E[NS; o] = Z\j]:la: NSj,FIFO] :
3.2.1.3. Expected setup time under FIFO

Since an analytical model_for the number of setups can be calculated, and then the
analytical model for the setup time can be developed. The definition of the setup time of jobs
is the time required to change a process over from-one product type to the next product type.
Considering the sequence-dependent setup-time for all product types in dynamic single-
machine problem, in which jobs are assumed to be processed according to the FIFO rule. Let
s be the setup time for the job of product typm which the previous processed job belongs
to product type. The calculation of the expected setup time of jobs can be divided into three

parts based on the setup cases and then is presented as follows.

In the first part, considering the case thatithgob of product typg does not arrive in
the time interval (ORT], then the setup time should be zero with the probability;PrRT].
In the second part, considering iffgob of product typg arriving in the time interval (GRT]
and the previous job processed on the machine belonging to the same product type, the setup
time would be equal tgj=0 and the probability is PF{ =RT](1—Psj riro). In the last part,
thei™ job of product typg arriving in the time interval (GRT] and a setup is necessary, which
imply that the job with different product type as predecessor. The different producthgpe

the fixed finite number {—1) of classifications, with probabilitied, (%) for r=1, 2, ...,J,

r#, and A° =3, ., A . Therefore, the setup time would be equaitand the probability is
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Pr[Ti; = RT]Ps; riro(A/A%) while thei™ job of product typé arrives in the time interval (&RT]

and the earlier job processed on the machine belongs to product &§pderer=1, 2, ...,J,

and k.

According to these three parts, Equation (3-9) shows the calculation of the expected

setup time for théijob of product type jn the time interval (0, RT

E[S;rro | =PI T, >RT [x0+ Pr[T < RT](l— F;LF,FO)Sjj +

AT, <RT R, HFOZ s (3-9)

r#—l

A
PE’T < RT} s,j,FlFoz/]rc S

r=1

r£j

Suppose that there angjobs of product typg arrive in the time interval (GRT] for each
product types and the jobs are all independent arriving at the system, then the expected value
of the mean setup time for product typ@bs arriving in the time interval (BRT] can be

computed as Equation (3-10).

E[ i, FIFO] { _12 Sj FIFO:| = n_lz PI’I: } s,j,FIFOé% Si (3-10)

r£j

wheren=4RT, andj=1, 2, ...,J. The expected value of the overall mean setup time of jobs

arriving in the time interval (0, RTcan be derived as Equation (3-11).

taoi-e$0] g5

=1

(3-11)

J 15 o J
. A
=(Z n,—j Z Pr[Tij s RT] P rro /‘rc S
j=1 j=1i=1 :;2]1.

3.2.2 Waiting time of jobs under FIFO

When the ' job of product type arrives at the system in the time interval (0], RTmay
be required to wait in queue until its turn to be served, and the job processing on the machine
would activate the rule of FIFO. The setup process is required to switch from one product
type to another before starting the processing. The waiting time of jobs occurs if the machine

is still busy when the jobs arrived. This can be decomposed into two components
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corresponding to the number of jobs in the system (see Figure 3-3): one is the residual service
time of the unfinished job on the machine and the other is the total service time of all jobs in
queue ahead of the newly arrived job. The former occurs if the system is busy, whereas the
latter occurs if there are at least two jobs in the system. When there is one job in the system
during the arrival time of jobs, the newly arrived job has to wait in queue until one job has
completed its processing on the machine, which implies that the waiting time of the newly

arrived job is equal to the former. Thus, when therenafe=2) jobs in the system at the
arrival time of jobs, the newly arrived job has to wait in queue unfii=2) jobs completed

their processing on the machine. This means that the waiting time of the newly arrived job is

equal to the sum of the two components mentioned earlier.

Case of arrival One job of specific product type arrived
time of a job at the system in the time interval (0, RT]
A
Status of the There aren (n=2) | There are n (n=1)

Machine is busy

system jobs in the system [~ job in the system
y A
?a'lses‘of the This arrived job has to wait in.queue This arrived job has to wait in queue
waiting in queue til n jobs:(n=2) completed their processin until one job completed its processin
for arrived job untitrr) B P P g J P P g
y A

The residual service time of the
unfinished job on the machine

The residual service time of the
unfinished job on the machine

Waiting time of
the arrived job

The total service time of all waiting jobs

|

|

|

| 3
|

| in queue ahead of the arrived job
|

—_—— e e — — — —

Figure 3-3 Classifications of the waiting time of the arrived job for single machine under
FIFO

According to the above discussion, lettig;;rro be the time of thé" arrived job of
product typg that has to wait in queue for the service under FIFO, then its expected value,
E[Wi,ijriro], can be defined by Equation (3-12), where the notadR) riro] is used for the
expected time of th&" arrived job of product typgthat has to wait until one unfinished job
has completed its processing on the machine, Vill&T;; riro] is used for the expected time
of thei™ job of product type that has to wait until all jobs waiting in queue have completed
their processing ahead of the newly arrived job. Both the expected vall®sief and

TSTij riro are presented as follows.

EI:VVq,ij,FIFO} = E[Rj,FIFo:I + E':TSTij,FIFo:I (3-12)

20



3.2.2.1 Expected residual service time of unfinished job on the machine

The remaining portion of service time for a partially served job is called the residual
service time. Therefore, the residual service time of unfinished job only occurs if there are
(n=1) jobs in the system. If there are no jobs in tystesn, the residual service time is equal
to zero. Supposing that there arén=1) jobs in the system during the arrival time of ifie
job of product typg, then the expected residual service time until one unfinished job has
completed its processing on the machine can be shown as Equation (3-13)py¢iere

represents the probability that there aréh=1) jobs present in the system under FIFO and
this is equal to(1- prro )Prro: PRIFO FEpresents the utilization rate of the machine under
FIFO; R(t) represents the residual service time of the unfinished job on the madqliji(t@)

represents the probability density function of the gamma varigbhgth parameters and;
andt;; >0.

E[R]n,FIFO] = pn,Fu:o'[:T%'[;ij R(t)dt fr, (tij )dtij (3-13)

1]

Considering the interval of tintg and O0<tj; =RT, the value ofJ';” R(t)dt in Equation

(3-13) can be calculated as ‘Equation (3-14) by dividing the sum of the areas of the triangles
by the length of the intervd, in'the Figure 3-4. Supposing that there grériangles of

product typg in the interval of time;;, which is determined by the arrival rdfeand is equal

to Atj, wherej=1, 2, ...,J, we assume that the probability of belonging to product jfype
triangle is equal taj/A. The triangles in Figure 3-4 are isosceles triangles, thus their area
equals the base multiplied by the height and then divided by two, where the base and the
height of the triangles are the same; they have two possible categories based on the setup
condition of the jobs. First, the base or the height of the triangles of produg¢tvypsd be

equal to its processing timet) with the probability (1 Psjriro) if Nno setup is required.
Second, a setup is necessary, the base or the height of the triangles of proquebtydeoe

equal to its processing time plus its setup tipteHs;) with the probabilityPs; riro(4/1°),
wherePsj riro=(1—4/4),r=1,2, ....,J, r £ j and A° :Z,J:Wj/L . Accordingly,E[Rijnriro]
can be rewritten as Equation (3-15) by using Equation (3-14) in Equation (3-13), where

J'ORT fTij (tij )dtij = Pr[T; <RT]. Using the summation &[Rjnriro] for all n, the expected time
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of the i™ job of product typej has to wait until one unfinished job has completed its

processing on the machine under FIFO, which can be shovli Bs: o] = >0 H Ry, rirdl -

2
t J t. +S. :
Jo ROt 227 Z Acw%l— P o) o (3-14)

I’¢j

J

E[Rpeiro ] = Prriro 22;] 213 10 A (pt, +5, ) +(1-P o) PE |1 515

rj

j=1

height

t

base

Figure 3-4 Diagram of the calculation of the residual service time of the unfinished job

3.2.2.2 Expected total servicetime of all waitingjobin queue

The expected total service time ‘of all'waiting jobs in queue ahead of the newly arrived
job would be necessary when there are at least two jobs in the system at the arrival time of the
newly arrived job. Therefore, the calculation of this time is related to the number of jobs in

gueue and the service time of some specific product type jobs that have already arrived before
the newly arrived job.

First, in case there are two jobs in the system at the arrival time 8t jible of product
typej, between two jobs in the system, one would stay in queue while the other is processed
on the machine. Thus, when tH&job of product typg arrives at the system in the time
interval (0, RT], the expected total service time of one waiting job in queue ahead of the
newly arrived job can be computed as Equation (3-16), wipgrgo represents the
probability that there are twobs present in the system under FIFO atdrepresents the
probability that the waiting job in queue belongs to the productjtyipeconsideration of the
setup condition of the jobs, the expected service time of the waiting job in queue can have two
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components: one is equal tpt; +¥),,.;(4,/A%)s, with the probabilityPs;riro and the

other is equal to pwith the probability (1 Ps;riFo).

J A J A
ETsrl,ij FIFO — Pr[Tij s RT} pZ,FIFOZj Ps,j,FIFO ptj +Z/]—rcsrj +
j=1 r=1
r£j
I A
F[rTij = RT] pz,Fu:o;j( _lps,j,FIFO) ptj (3-16)
)
= F{ﬂ-lj s RT} pz,Fu:oZ7J j Sj FIFOZ = )¢ Si
1= r¢J
= F1}-I—Ij = RT} ETST riro
3 I A A,
ETSTz,ij,FlFo _Pr[ ]psFIFOZZ L1 x
) A
F)Sj FIFO s; FIFO Z z (ptj1 X pth +Sr1j1+srzjz) *
r¢Ji :2¢:JL
S| L
Ps,jl,FIFO (1_ Ps,jz,FIFO) rlzﬂ: /]_rcl( ptj1 [+ ptj2 +Srljl) * (3-17)
rizjt

( ﬂ:Ps,jl,HFo) Ps,jZ,FIFO ZZJ: jfz (ptj1 + ptj2 +Sr2j2) +

re=1
r2zj?

( ips; FIFO)( _1P51 F|Fo)(ptj1+ptj2)}
= AT, <RT | pyppo X

J AL A, J A, LA,
LLipt,+P it Pt =S,
]12_‘41]22_‘41/] /1 j S, j FIFOZlAc S] F|F021AC r]

rizijt r2#j?

= FT; <RT |ETST, ¢

Second, for the case where there are three jobs in the system at the arrival tim® of the
job of product typg, among these three jobs in the system, two jobs would stay in queue
while one job is processed on the machine. Thus, wheif' flob of product typé arrives at

the system in the time interval (R]], the expected total service time of the two waiting jobs
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in queue ahead of the newly arrived job can be computed as Equation (3-17)paxiere
the probability that there are thrgds present in the system under FIFO, the supersaingt
r, andc refers to thek" waiting job in queue,A, /A is the probability that th&" waiting

jobs in queue belongs to product typand =1, 2, ..., J

The setup cases for these two waiting jobs in queue list are as follows: “setup, setup,”

“setup, no setup,” “no setup, setup,” and “no setup, no setup.” Thus, the expected total service

time of these two waiting jobs in queue can have four components:

[Pty +S.. + Pt +s..] with the probability, , .. P .. (A./A%)(A./A%)
Il. [pt +S.,+ Pt ] with the probablllt)PJ FIFO( - S’]_ZVHFO)(/]H//]"I)
[l [pt]_1 +pt, +Sr2j2] with the probability1— Ps,jl,FIFO)Ps,jZ,FIFO (Arz//Vz)

V. [pt +pt, .] with the probability{1- P )A-P

i*FIFO s,j? FIFO)

wherer*=1, 2, ..., J, r*4* and 1¢ =3 e - INcOrder to simplify the calculation of

Equation (3-17),ETST,rro In Equation (3-17) ‘can be reformulated B3ST2riro =
PrFOETST1 FiFo + priFoETST 1 FiFo = 2priFoETST1FiFo, Which is the function ofETST:firo
(see Appendix A).

For this reason, when th®8 job of product typg arrives at the system in the interval (0,
RT] and there are (n=2) jobs present in the system, the expected totaicgetime of (—1)
waiting jobs in queue ahead of the newly arrived job can be shown as Equation (3-18), which

is the function of ETSI 1 riro in Equation (3-19) (see Appendix B).

ETsrn—l,ij FIFO — Pr[Tij S RT} Pn.FiFo *

J —l/] n J /‘k

rk¢]k
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ETST firo where =
ETsrn—l,FIFO = n-2 ' (3‘19)
Priro ETSTl,FIFO + Priro ETSTn—Z,FIFO’ where >
J /]j J /]r
ETsrn—l,ij FIFO = Pr[Tij < RT] pn,FIFO (n_ )27 ptj + Ps,j,FIFOZF Srj (3'20)
j=1 r=1
r#£j

Note that ETST,omro In Equation (3-19) can be expressed as
ETST, . reo =,02[5’0ETSI'LHFO+,0F|FOETSTn_3,FIFO from Equation (3-19) and can be used in
Equation (3-19). By repeating the aforementioned steps, we easily get
ETST, . riro :(n—l),oEl‘FZOETSI'LF,FO for n=3. GettingETST; firo from Equation (3-16) and

then substituting it into ETSI piro, ETSTh1j,rir0 Can be reformulated as Equation (3-20).

From Equation (3-20):-TST,.1jjriro represents the expected total service timerefl)

waiting jobs in queue ahead of tiearrived job of product typg This occurs if there ane
jobs in the system at the arrival time of thgob of product typé. Thus, the probability of
the i™ job of product typg arriving at the system in the time interval @[] is equal to
Pr[T;=RT]. The probability that there are jobs present in the system is equal to

Porro = (1= Prro ) PRro - The-total service time-of(-1) waiting jobs in queue ahead of the

i™ arrived job of product typeis‘equal to the number of jobs in queue multiplied by the mean

service time, where there are{1) jobs in queue and the mean service time can d@&rshs

Z]]:l(/‘j I ptj + Ps,j,FlFozgzl,mj (A //]C)Srj] .

Thus, the expected total service time of all waiting jobs in queue aheadi8fatieved

job of product typg is equal to the summation &TST.1jirro for all n (n=2), which is
given by E[TST; rrol = X0 ETST, 5 firo -
3.2.2.3 Approximation of expected waiting time

Looking at the expected valuBR; riro] and E[TST;; riro), the expected waiting time of
product typg jobs can be determined accurately by using these two expected values and this
is given by Equation (3-21), wheree,RT and j =1, 2, ..., J

E[Wy, o = M"Y E[R ro |+ E[TST, o (3-21)
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However, an analytical model for estimating waiting time with setup time for single-machine
system was modeled by &G/1 queue in many literatures. Thus, an approximation of the
expected waiting time related to the formula for alGN queue is derived in this section, and

then the relative performance of this approximation is assessed.

WhenRT is long enough, the expected mean waiting time of productjtygdes under
FIFO in Equation (3-21) can be shown %—’m EW, ; rral =0 HW] yjcn,» Which is

proportional to the expected waiting time for th&/G/1 queuing theory

(EW,lwien =1H STaed /{2(1 = Priro)] ) (see Appendix C).

J

2. nAL]

a; =W, Priro (1_pFIFO) = + (3-22)
b injAA'j' 1+C?
=1
"N A 2 :
INEDY Ps,i,FlFoF( pt; +Srj) "'(1‘ Ps,j,FIFO) pt; (3-23)

In Equation (3-22), the gradienf corresponds to machine utilization rateido), w; is

the mean of all probabilities of product typgbs arriving at the system in the time interval
(0, RT] and is given byw, =2{‘;1Pr[‘|'ij sRT]/nj, and C’ is the squared coefficient of
variation of the service time and is defined @ =Var[ST...]/H ST >. The variance of
the service time under FIFO can be showNa§STriro] = E[STZ ] — E[STriro]? The first
and second moments of the service time under FEST{ o] and E[STA..]) are defined
by (X1.n) " iaXhEIST, fro] and (X14n,) T YL E[ST el and then they can be
calculated according to the probability mass functionS8frro in Equation (3-3). An
inequality expressed as= f(priro) is derived becaus@/ (1+C?)= p,,., from Equation (C.8)

in Appendix C, wher&prro) is given by Equation (3-24).

J
Z;njAjA’Jf
f (pFIFO) =W, Priro (1_ :OFlFo)]_J— * Priro (3-24)
Z;nj/mj
]:

Thus, it can be seen '[hcﬂdipu:o)zo andaj =0 if p|:||:o:O andf(ppu:o):l andaj =1 if PFIFO—
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1 whenRT is long enough, WhereRIlm w; =1. Moreover, the first derivative of the gradient
a; With respect tprro is given by Equation (3-25) (see Appendix D).

J

da, ;n‘/]jA" 6w,
d =W (1_ 2pFIFO) 3 1+C2 >0 (3-25)
PriFo znj/]A" v

j=

Note that the first derivative of this gradiemth respect tgprro IS a positive number with O
<prro=1 and/;>0. Hence, the gradiewnj increases with the rise in the utilization rate of

the machine.

According to the abovementioned results, two distinct possibilities exist. Fifsf,<01
when the machine utilization rate is smaller, which implies that the expected waiting time of
product type jobs is lower than the expected waiting time for /1 queuing model.
Second; =1 when the machine utilization-rate_is higher, which implies that the expected
waiting time of product typgjobs-is-higher than the expected waiting time for Mi&/1
queuing model. The gap between the expected mean waiting time of producjalypeand
the expected waiting time for thd/G/1 queuing model grows with high levels of workload

on the machine because gradigns more than one:
3.3 Variance of lead time of jobsunder FIFO

Suppose that the service time of jobs on the machine and the waiting time of jobs in
queue are independent, the variance of lead time is equal to the sum of variances of the
service time and the waiting time in queue. Both the variances of the service time and the

waiting time in queue are presented as follows.
3.3.1 Varianceof servicetimeunder FIFO

In Section 3.2.1, the service time is equal to the sum of the processing time and setup
time. Accordingly, the variance of the service time of the productjtyges can be given by
Var([ST; riro] = Var[PT; + S rirol, WwherePT; and $eiro are the variables of processing time and
setup time of the product tygejobs, and they are independent. Thus, the variance of the

service time of the product typgops is equal to the sum of the variances qféill $riro.

If the i™ job of product typg does not arrive in the time interval (BT], then its
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processing time should be zero with the probabilityiPHRT]. If the i job of product typg

arriving in the time interval (ORT], then its processing time would be equaptowith the

probability Pr[l;; =RT]. The first and second moments of the processing of the produgt type
jobs are defined byE[PT ] =n*YLPrT, <RT]pt; and E[PT’]=n 'Y "Pr[T, < RT]pt?,
respectively. Therefore, the variance of the processing time of producj jgps can be
shown asVar[PT,] = PTf] —H PT] 2. In addition, the variance of the setup time of the

product type jobs can be expressed as Equation (3-26) according to Equation (3-9).

Var [SLF,FO] = E[sz,HFo] - E[SJ' ,FlFOT

~ N J )
= njlé PE.TU s RT] Ps,j,FIFOEA_:;Sij - (3-26)
r#j

2
R 5 A
njlz F[ﬂ_u = RT] Ps,j,FIFOZFSrj
= &5
where the second moment of the setup time of the producj igps, E[Sf’F,FO] , Is defined
by the arithmetic means of-the second moment of the setup time for all produgidipse

which can be expressed by[S’ ol =N ELH S ped if there aren=4RT jobs of

product type prrived at the system-in the time-interval (0].RT

WhenRT is long enough, the limit of the variance of the processing time of product type

j jobs equals zero Rﬂrm Var[PT] =0) becauseRIlm Pr[T; <RT]=1. Consequently, the

variance of the service time of the product typgobs can be easy to simplify as

Var[ST, ;o] =Var[ S, ;o] WhenRT is long enough.

3.3.2 Variance of waiting time under FIFO

The variance of the waiting time of the product typebs is defined as the second

moment of Wyjrro minus the first moment squared and then can be derived as

Var[W, ; rrol = EW mrdd —~HW, red °- Suppose that there arg=A4RT jobs of product

typej arrived at the system in the time interval RO}, the first and the second moments of

Wi, riro are defined by the arithmetic means of the first and second of the waiting time for all

product type j jobs and are given by E[V\/qyij,Fo]=nj’12{11E[V\/q,”,F,FO] and
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E[V\/q iArol =Ny Z,_lE[ i, 2 ced - The time of the™ arrived job of product typghas to wait

in queue for the service under FIF®jjriro, is defined byWyj riro=Rjriro+ TSTijriFo,

then it is easy to establish the formula for calculatingWay riro] in Equation (3-27).

| -
=
m
—
—
A
o
S
(I
+

Var[ q]FIFO} i E[R; FIFO}

n] i=1 n i=1

2

. W, (3-27)

i q,ij ,FIFO

2 SVE[R, mro | E[TST, o | ~E| Z——

n; =1 n

N

where Rjrro and TSTjjriro are assumed to be independent. In Equation (3-27), the first
moments oRjj riro, TSTjjriFo andWgj riFo can be obtained in Section 3.2. As for the second

moments of Rriro and TS riro, they are presented as follows.
3.3.2.1. Second moment of residual servicetimeof unfinished job on the machine

The residual service time of unfinished job. only occurs if theragne=1) jobs in the

system. For the case if there are no jobs in the system, this time is equal to zero. Suppose that

there aren (n=1) jobs present in the system.at.the arrival time of'ffjeb of product typg,

and then the second moment. of.residual service.time until one unfinished job completed its

processing on the machine can be'shown as Equation (3-28).

0
1

EI:Rjzn,FIFo:I = pn,F|FojRT%I: R(t)2 dt fTii (tii )dtii (3-28)

whereR(t) represents the residual service time of the unfinished job on the mad‘@ji(tg)

represents the probability density function of the gamma varigbléath parameters andj;
and f;>0.
Consider the interval of timg and 0<t;=RT, Equation (3-29) shows the value of

J':)” R(t)zdt in Equation (3-28) and can be computed by dividing the sum of the areas under

the parabola (HeightBasé) by the length of the intervaj; in the Figure 3-5, where the

height represents the square of the residual serviceR{t)fe and the base represents the

residual service time and ranges from zero to the service time. Suppose that theagca®
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belonging to the product tygen the interval of time;;, which is determined by the its arrival

rate/; and is equal t@jtj. The probability of belonging to the product tyjpie given by the

relative arrival rates of the product typég/). In the Figure 3-5, the area under the parabola
equals the cube of the base divide by 3, where the base has two possible categories depending

on the setup condition of the jobs.

"

height=base”

k v >t

-
base

Figure 3-5 Diagram of the calculation of the square of the residual service time of the
unfinished job

ij

First, the base of the product typaould be‘equal to its processing tinp)(with the
probability (1—Psjriro) if No setup is required. Second, the base of the producf typeld

be equal to its processing time plus its setup tipye-&;) with the probabilityPs; riro(4/A°)

if the setup is necessary, whePg riro=(1—A4/4, r=1, 2, ...,J, rZj, A°=3), ./ A.
Accordingly, E[anyFlFo] can be rewritten as Equation (3-30) by using Equation (3-28) in
Equation (3-29).

i J A J 2 (pt +s. : pt.3
J.; R(t)zdt:ZZj F)Syi,FlFOZ/]_L%*'(l_ Ps,j,FIFO)?I (3'29)

E[Rjzn,Fu:o] - Prl:Tij < RT] Pn.FiFo *

1 )2 3 (pt+s, : t3 (3-30)
27] Ps,j,FIFOZ/‘_rc( ]3 J) +(1_Ps,j,FIFO)%

j=1 r=1
r#j
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3.3.2.2. Second moment of total servicetimeof all waitingjob in queue

Total service time of all waiting job in queue ahead of the arrived job would be necessary
while there are at least two jobs in the system at the arrival time of the arrived job. Therefore,
the calculation of the second moment of this time relates to the number of jobs in queue and

the service time of some specific product type jobs already arrived before the new arrived job.

First, for the case of there are two jobs in the system at the arrival timei6‘fjdteof
product typg, this means that one is staying in queue and the other is processing present on
the machine between these two jobs in the system. Thus, whéh jtie of product type
arrived at the system in the time interval KT}, the second moment of total service time of
one waiting job in queue ahead of the arrived B8TGT i riro) IS the expected value of the
square of total service time of one waiting job in queue ahead of the arrived job, which is

computed as Equation (3-31).

I) J A
ESTSTl,ij FIFO — Pr[Tij < RT} p2,FIFOZ7J Ps,j FlFoz/]_rc( ptj + Srj )2 +
j=1 r=1

r#j

( / Psr!'j,FIFO) ptﬂ (3-31)
= F{ﬂ_u S RT} P firo SSTriro

where 4/4 represents the probability that the-waiting job in queue belongs to the product type |

Depending on the setup condition of the jobs, the square of service time of this waiting job in

queue can have two components: one is equabtfo with the probability (+Psjriro) and
the other is equal tqpt, +Srj)2 with the probabilityPsj riro(4/2°), wherer=1, 2, ..., J,

r# J ’ /1(: :Z;]=1,r¢j/1r .

Second, for the case of there are three jobs in the system at the arrival timé"gbthe
of product typg, this means that two jobs are staying in queue and one job is processing
present on the machine among these three jobs in the system. Thus, wiiBrjothef
product typg arrived at the system in the time interval RJ}], the second moment of total
service time of two waiting jobs in queue ahead of the arrivedg8BST,jj riro, IS equal to
the expected value of the square of total service time of two waiting jobs in queue ahead of

the arrived job, which can be computed as Equation (3-32).
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DA A,
Esrsrz,ij,FlFo :Pr[ < RT] p3FIFOZZ /; /]] x
iT=12=1
L&A A, 2
31 FIFO 31 FIFO Z z /1c1 /]cz (ptj1 +Srljl + ptj2 +Srziz) *
121 r221
r¢j1r 222
I} 2
rt 3-32
Ps,jl,FIFO( _}'Ps,jz,FIFO) Z /]cl (ptj1 +Srljl + ptiz) + ( )
ri=1
rizjt
J Arz 2
( iF)S,jl,F”:O) Ps,jZ,FIFO ; ACZ (pt]:[ + ptlz +Sr2j2) +
r2zj?

( _1Ps,j1,FIFO)( 4'Ps,jz,FlFo)(r"tj1 + ptjz)z}

where Ajk//] is the probability that the™ waiting jobs in queue belongs to the product type

j, andj=1, 2, ...,J. The setup cases for these two waiting jobs in queue list as follows: “setup,

setup”, “setup, no setup”, “no setup, setup”,-and “no setup, no setup”. Thus, the square of total

service time of these two waiting jobs in queue can-have four components:

V. [pt,+s,.+pt, +§..]° with the probability . .. P .. (A./A%)(A./A%)
VI. [pt]_1 +S.t ptl_z] with the probability?, & S R F’SJZ'HFO)(/]H//]&)

VII. [ptj1 + ptj2 + Srzjz] with the probability1- P,

C
1|:||:o Sj FIFO //]

VIII. [pt +pt, .]? with the probability1- P 1FIFO)(1—

s,j? FIFO)

wherer*=1, 2, ....J, 4% and A =% wer A - In Equation (3-32), all terms of these

four components on the right hand side of the equal sign are shown in Table 3-1. In Table 3-1,
the main diagonal represents the square terms of the processing times and the setup times of
two waiting jobs in queue, and the elements outside the main diagonal represent the product

of the processing time and setup time of two waiting jobs in queue and are symmetric.
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Table 3-1 All terms on the right hand side of the equal sign in Equation (3-32)

Processing time of first

Processing time of
second waiting job in

Setup time of first waiting job in Setup time of second waiting job

waiting job in queue ueue in queue
g] q queue q q
Processing 'y 1)
. . S r’
t|meOf f'II‘St pt21 ptl pt2 PS,jl,FlFO pt]1 z Acl I,1J1 PS,jZ,F|FO th1 z Acz Sr i
waiting job I i = =
in queue e el
Processing 1)
. . A
t'm.e_Of f"rSt pt.pt. pt>, Ps,jl,FIFO ptj2 z 2 S s; FIFO p z
waiting job e J =L
in queue e i
r r r r
o Ps,jl,FlFo ptj1 Z ?Srlj1 Ps,jl,FlFo pt12 12 /]_clsrljl Ps,jl,FIFO i YLjt l:l Ps i* FIFO Z Z 4 Sk jk
waiting job ot o Bt ) Pl
in queue
Setup time
of second t t - P 4 A S P ZJ: A s2
s; FIFOp 2'2 s; FIFOp 2'2 H s,*,FIFO 1 & H /]ck kjk 5.2, FIFO y /162 12j2
iti i = r-=1 r re=1
waiting job o e Haitrege o
in queue
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For this reason, when th® job of product typg arrives at the system in the interval (0,

RT] and there ara (n=2) jobs present in the system, the second momenbtaifservice time
of (h—1) waiting jobs in queue ahead of the newly arriyaal can be shown as Equation

(3-33) according to Table 3-2.

Esrsr n-1,j ,FIFO
=PI T, <RT | priro

]-1:1 n 1_1 k=1 =1
r ¢j

J J n—l/]]k n-1 J /]k
ZZ( /]] p SIFIFOpt Z/‘Trl-i-

(3-33)

k<k rK¢jK

J
3

A
szk FIFO pt Z ATSrkjk 1

r—1
ek

J 73 AKA
P2, 2
si.7¢ FIFO Sj " FIFO KoK ” Tk ¥
rk=1 =1
k ]krk¢1k

= PI’[T”- < RT] Pn.FiFo (S% + Progl')

From Equation (3-33)ESTST 1 riFo represents the second moment of total service time

of (n— 1) waiting jobs in queue ahead of iffearrived job of product typg which is equal to

the expected value of the square of total service time-ofLj waiting jobs in queue ahead of
thei™ arrived job of product typg This occurs if there anejobs in the system at the arrival
time of thei™ job of product typg. Thus, the probability of thé" job of product typg
arriving at the system in the time interval I is equal to PiT;j =RT]. The probability that
there aren jobs present in the system is equal pRrro = (1 Orr0 ) Priro - Besides, the square

of total service time ofn(— 1) waiting jobs in queue ahead of tiarrived job of product
typej equals the sum of the squares of each service tinme-id) waiting jobs in queue (S5

plus twice the product of all combinations of the two service times of getting exactly two jobs
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in (n—1) waiting jobs in queue (Preg. These two terms (SSand Progr) are presented as

follows.
I. Sum of the squares of each servicetimein (n —1) waiting jobs in queue (SSsr)

In Equation (3-33), the term §Sincludes the elements in Table 3-2 with gray

background and can be rewritten as Equation (3-34), where
{S7A AP riro Ziars; (A [AS)(PY; +5;)? +(1=P,; 1o )PEET is the square of the service
time. Thus, the term SEequals the sum of the squares of each service tinre-id) waiting

jobs in queue.

J /]k

J J 1A,
S%:zz(l" /; ] Zptz P, F'Foptlk,kzzl: Fsrkjﬁ
rkzjk

A

P Y
ik i D kk
S, j<FIFO et

rk=1 /]

= (3-34)

J
:(n—])z7J pt + 2P %jiFiFo P Z/]c St s;FIFOZ/‘c Srl

r£j [

=(n- ])ijj %LFIFOZ%( Pt s, )2 +(1_ Ps,,-,mpo) pt;

[1. Twice the product of all combinations of the two service times of getting exactly two jobsin

(n—1) waiting jobs in queue

In Equation (3-33), the term Prgdincludes the elements in Table 2 with white
background and can be rewritten as Equation (3-35) , where thei@)dre (n—1)(n- 2)/ 2
combinations of two jobs can be selected from-1) waiting jobs in queue, and the product
of the two service times is equal to the square of the mean service time of job
({Z 74 A /AP, iro rarej (A /AT)(PE +8,) + (1= P, rieo ) PE ?). Thus, the term Preglis

the twice the product of all combinations of the two service times of getting exactly two jobs

in (h—1) waiting jobs in queue. Thus we have succeeded in writing the square of total service

time of (— 1) waiting jobs in queue ahead of tiffearrived job of product typgin terms of

35



SSsr, plus Progr.

The second moment of total service time of all waiting jobs in queue ahead i8f the

arrived job of product type is equal to the summation &STST,.1jrro for all n (n=2)

according to Equation (3-33), which is given B{TST," ? o] =3 ESTST, i FIFO -

Prod, = Z z( ik J

n-1 J /]k,

2(2)t pt + Es; FIFOp Z /]c r"'jk'+

k,k'=1 K=

k<k' rk¢jk

J Ak
Sj FIFOpjkr; Ak rJ
rkzjk
(3-35)
J J /]k /]
Es; FIFO Sj FIFOr; rkzl /1ck /]c rklk ik
AETAETI
2
1 : /]J'
= 1

2 ;A jFlFOZ/‘c ir

r#j
— 2
. J A J /1r
= Z:2 ' 2;47] Ps,j,FIFOZlF(ptj +Srj)+(1_Ps,j,F|Fo) ptj
= r=

r£j

3.3.2.3. Approximation of variance of waiting time

From Equation (2-6), the variance of waiting time fWG/1 queueing system

(Var[Wylmiei1) depends on the square of the expected waiting timelfGr1 queueing system
(EDM]fA/G,l). In this section, an approximation of the variance of waiting time related to
E[\/\/q]f,l/G/l is derived when the length of time interv&T] is long enough. In order to do

this, the limit of the second moment of waiting time of product fyjpés under FIFO has to
be found afkT approaches infinity, and then the relative performance of an approximation of

the variance of waiting time is also assessed.
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Table 3-2 All terms in the square bracket on the right hand side of the equal sign in Equation (3-34)
Processing time of first Processing time of final Setup time of first Setup time of final waiting job
waiting job in queue "7 waiting job in queue waiting job in queue in queue

Processing tim
of first waiting
job in queue

Pt Pt

J

Processing tim 2 A A S
Ps,jl,FIFO ptjn—1 12 /]_Cl Srljl . Ps,j"'l,FIFO ptjn—l Z n-1 Srn—ljn—l
r-=1

of final waiting Pt pt.. e
job in queue et (gt
; I:)s j*,FIFO X
Setup time of g o
first waiting job , 1

in queue S
rt=1 r"=1 k={1,n-3 A° !

r1¢j1 r"'1¢j"'l

Setup time of
final waiting jo
in queue

P .

S, ]

r

S
4 4 Ack YKk
ri=1 r"™=1 k={1n-3

r1¢j1 r"'1¢j"'l
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When RT is long enough, the second moment of waiting time of product jtyples

under FIFO can be shown adim EW;, ool = B H R yicn 2 By HW] en  (se

Appendix E), the coefficients/and f; are expressed as Equations (3-36) and (3-37).

J

Z_;‘n")le"'"

:311' :ijFu:oj_J—Sl (3-36)
n. AA"
;l i
J N
By = (1= o) g | 142002 s ZZJ >0 (3-37)
2] i FIFO 1+Cv2 1 pre 1+Cv2 FIFO z n AA,}
j=1i=1

Thus, it can be seen thah, =2/(1+C?) if prro=0 and f,; =[2/(A+C2)* if prro=1

whenRT is long enough, WhereF!lm w; =1. Additionally, the first derivative of the gradient
B2 with respect toriro is given by Equation (3-38) (see Appendix F).

J

p 3y 23
;nj/]iAJ’ +4(:0F|Fo_8j +R

>0 (3.38)

dg,; —w 2 5 2 2% &
dOrieo '1+Cy 1+C; AN in_/}A'{ Priro
i1
=1

Note that the first derivative of the gradightwith respect tpg o is a positive number with
0<prro=1 and/;>0. Hence, the gradiefit; increases with the rise in the utilization rate of

the machine.

Now forming an approximation of the variance of waiting time of product jtyjpbs

under FIFO in terms oleIlrpw E[W, rrol and in terms ofF!lrpm E[W?, rirol + it can be derived

as Equation (3-39) &T is increased and becomes vary large.

Appl= JTirpwvar [Wq,j,HFo]
= ,31,- EI:RZ]M/G/l +(2'821' _aiz) E[V\/(J;/Gll

According to Equation (3-39), an approximation of the variance of waiting time of product

(3-39)

typej jobs under FIFO depends on the parametefrsandﬁzj. Note that an approximation of
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the expected waiting time of product types given by RIlm EW, ; rral =0 HW] vjcn
whenRT is long enough. From Equation (3-40), the latter on the right hand side of the equals

sign (afE[VVq]fA o) Mmeans thatF!lrpm EW,, nrol IS Used to substitute the expected waiting

time E[Wylmic1 as compared with Equation (2-6).

App2= ﬁli E[Rz]M/Gll * a'sz[V\/q];/G/l (3-40)

In order to compare Appl in Equation (3-39) with App2 in Equation (3-40), the

properties of the parametelzrzsj2 andpy; are discussed as follows.

. The gradientsaj2 and fy increase with the rise in the utilization rate of the

machine.

Il. According to Equation (3-22) and Equation (3-3Dsa’<[2/(1+CZ)F and

2/(1+CV2)S B < [ﬂ @+C2)F with O=prro=1 and 4 >0, where lim w; =1.

RT -
The minimum of ajz is-less than the minimum @% and the maximums otrj2

andpy are the same.

[ll.  The first derivative of the gradiepit; with respect tgr o is more than or equal to

the first derivative of the gradienzl:fj2 with respect trrofor 0=prro=1 andj

>0, where lim w; =1. The difference between the first derivative of the gradient

RT - o

P With respect tpriroand the first derivative of the gradielzntj2 with respect to
priro 1S shown in Equation (3-41) (see Appendix G). The functgpriro) in

Equation (3-41) depends gmiro and 7=y 7,nAA; />],n A" and is plotted
againstoriroandz in Figure 3-6. It is seen thgb(oriro) =0 with 0= prro=1 and
0=z=1, and thengx(priro) = 0s(priFo) can be derived becausesPrro=1 and
O0=z=1. The proof oDi(priro) — gz(priro) >0 with 4;= (2/3)1 andJ> 1 is shown in
Appendix H, which implies thai(priro) — 92(priro) > 0. Thus, change ifl; is more

than or equal to change in'j2 with respect to increase jmro with 4= (2/3)t andJ

>1.

39



According to the discussion above, we concluded thgt> a'j2 and then an inequality

(28, —af)za’f can be derived if the variation among job arrival rates is controlled in an

adequate range. Consequently, an approximation of the variance of waiting time Appl is

greater than or equal to an approximation of the variance of waiting time App2.

dg,  da?
2] _ i — -
q q 2 gl(pFIFO) g, (IOFIFO) (3-41)
Priro Priro
— -1
9 (Priro) = 2P5ir0 — 2Prr0 + 2 (3-42)
J J
2 NAL] 2 NAL]
— j=1 _ _ _ J:]_
9, (pFIFO) =Prro—3 8 SPkiro + 2(1 pFIFO)( i 20F|F0)J—
PIULY PIULY
j=1 j=1
J (3-43)
2 NAL]
j=1 _ = V 4 _
SJ—[S 510FIFO Ny 2(1 pFIFO)( I 20FIFO)} - g3(10FIFO)
n
Z”jMJ
j=1
CoT T ey
/// ! T\‘\\
el ! | Tl
9 A~ - <
Pie ! P ! -
e : e :A\ : I ! 1T
el a7 e T | \\\\‘r\ | T~
P T Tl |
35— o7 : //r :/’/ : ///\L\\\\ ! :\\\\\\ : | \\\\\\‘
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25— : : !
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E 2 | ‘
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Figure 3-6 Plot of functiongz(oriro)
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In general, the square of the expected waiting time is more than the second moment of
the residual service time greatly; hence a large proportion of the variance of waiting time is
the square of the expected waiting time. Valuegjofin Equation (3-22) has two distinct

possibilities: (1) 0=¢; <1 when the machine utilization rate is smaller é)d(=1 when the
machine utilization rate is higher. This means that an approximation of the square of the

expected waiting time of product typgobs ({ng BW,  red} ?) may be higher than the

square of the expected waiting time for MA&G/1 queuing model[(/\/qm,G,l), that is to say,

the variance of waiting time of product typgbs of this research could be greater than the
variance of waiting time in Equation (2-6) by substituting the moments of the service time

into the formula for atM/G/1 queue with high levels of workload on the machine.
3.4 Summary

In this section, a single machine system for processing several product types according to
the FIFO rule is considered, and a setup of job to-switch from the current setting to a different
one is necessary. The expected values and the variances of the service time and the waiting
time for multi-product types with setup time are determined. The advantage of using these
estimates is that it can estimate important performance measure like the lead time, which

contributes to the possibility of providing a due date for the order.
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4. FSR analytic model for evaluating the effect of capacity-saving

FSR implies following the criterion for selecting jobs that are of the same product type
and need the same machine setting, hence those that are processed consecutively. Queued job:
with the same product type as the previous job on the machine indicates higher priority for
processing (Missbauer [9]).

In this section, FSR analytic model is developed to estimate the number of setups and the
setup time for the single-machine problem in order to evaluate the effect of capacity-saving
with the adoption of FSR. Due to the difficulty in directly solving analytical solutions for the
expected setup time and service time, a numerical analysis is used. If the numerical solutions
of the expected setup time and service time are solved, then the amounts of capacity wastage
due to changes in the machine setting across several product types are evaluated. In Section 3,
FIFO analytic model is adopted to estimate the expected setup time, and consequently, for
comparison with those under FSR. After replacing FIFO with FSR, the effect of the latter on
reducing setup time and capacity-loss is explored further. The flowchart of FSR analytic
model on the reduction of setup time and capacity loss is shown in Figure 4-1.

Inputs
Job characteristics Machine Results of
of each product status FIFO analytic
type information model

Section 4.1.2 Section 4.2.1

Expected num%ﬁ;‘;f setups under Effects of FSR

Section 4.1.3 Section 4.2.2
Relationship between the reduction of]

Expected setup time under FSR service time and the saving of
utilization rate

Section 4.1.4 Section 4.2.3

Decision criterion on the reduction of

Expected service time under FSR .
setup time

Figure 4-1 Flowchart of FSR analytic model on the reduction of setup time and capacity loss
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4.1 FSR analytic model

When a job of specific product type arrives at the system, it may enter the queue of the
batch (i.e., by product type) and wait for processing on machine, as required by FSR. FSR
consists of two parts: (1) the assignment of a newly arrived job to a specific batch on queue
based on the type of product family, which cannot be dispatched immediately on the machine,
and (2) the dispatching of a next candidate job from several batches on queue that should be

processed by the busy machine.

Arrival time of he job arrived at the system in the tim
ajob interval (0, RT]
]

Status
i ?
of the machine rYeS No

e there at least one jobs, in queue or on mac|

Operations : ived iob 2
executed by Yes arrying the same type as the arrived job
FSR:
The batch Move this arrived job to Sort jobs within each batch No
assignmentand 1 4o yateh which has the [ according to the job arriving ime
sequencing same product type in-increasing order

; Y
asr(:xi::ttcil::: :;ig:dﬁtft?o:]h; bl This arrived job becomes | | Dispatch this arrived job on
v v . . . .
Sequence Sequence of jobs ™. - anew batch by itself machine leedlater
of batches within each batch ¥
| | - (Busy machine has completed one) .
M job.from a specific batch "/

END

Consider another batch with arriving time of
the first job being earliest among all jobs in
queue, and then dispatch the first job in the

considered batch on the machine

Figure 4-2 Flow chart of family-based scheduling rule

Process the job with the first
order in such batch on the |¢—Ye

machine job on the machine 2

The operation executed by FSR is illustrated in Figure 4-2. When a job of a specific
product type arrives at the system, if the machine is idle, FSR immediately dispatches this
newly arrived job on machine. However, if the machine is busy and there is at least one job on
gueue or on machine, by carrying the same type as the new arrived job, FSR moves the
arrived job to the batch with the same product type. If the machine is busy but there are no
jobs (i.e., either on queue or on machine), by carrying the same type as the newly arrived job,
FSR by itself transforms the arrived job into a new batch. When an arrived job is moved into

an existing batch, jobs are sorted according to job arrival time in increasing order. Once the
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busy machine has completed one job on a specific batch, then the job with the first order in
the same batch is processed. After all jobs in this batch are completed, another batch
designated as having the earliest arrival time of the first job among all jobs on queue is picked.
Then, the first job is dispatched on machine. If FSR cannot find another batch on queue for
machine processing, implying that no jobs are waiting on queue, then the machine becomes
idle.

4.1.1 Probability of requiring setups under FSR

Note that before starting the processing of a new job, a setup is required if the type of job
is different from the last completed job on machine. Similarly, when a job of specific product
type arrives at the system at a time when the machine is busy, a setup is required if there is an
additional new batch generated. For this purposéslgiss be the probability of requiring a
setup under FSR, given thiftjob of product typg arrives at the system at time interval (0,

RT]. The probabilityPsjjrsr is given by: Equation (4-1), whefsjrss is the probability of
requiring a setup under FSR, given that product fypab arrives at the system at time
interval (O, RT.

Pire =PI T, SRT %P, s (4-1)

sij,FSR —
The probability Psjrsr should” consider the number of jobs queued in the system. This
includes two cases: (1) no jobs and 2fn=1) jobs. ThusPsjrs is defined by Equation

(4-2).

— n=0 n=1
I:)s,j,FSR - pO,FSR Psetups,FSR + z pn,FSR Psetups,FSR (4'2)

n=1
In Equation (4-2)pors andpn e are the probabilities under FSR under conditions that there
are no jobs and there are(n=1) jobs in the system, an@, .« and P, .« are the

probabilities of requiring a setup under FSR for a job of jypeiving at a time when there

are no jobs and there arén=1) jobs in the system.

The probabilityPs; rs= is presented as follows: For the first condition,il’hﬁmb of typej
arrives at time interval (RT] and there are no jobs in the system. A setup is necessary if this

arrived job is different from the job previously completed by the current idle machine.

Therefore, Psgj(,’)sfs? can be expressed as—(1/1), which indicates the probability that the
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previously completed job on the current idle machine is different fromjtyfpa the second

condition, the™ job of typej arrives at time interval (GRT] and there ara (n=1) jobs in the
system. A setup is necessary if there are no jobs in the system belonging jtoTtiypesfore,

Pamsrs 1S equal to (1-4/4)".

By referring to Equations (4-1) and (4-2), the probability of requiring a setuf fob
of product typg under FSRRsjjrsr) IS rewritten as Equation (4-3). Note th&tj rss is the
probability of a setup that is not required yjob of product typg under FSR, which is

given as (1 Ps;jj r)-

n=1

AN & ALY
Ps,ij,FSR = Pr[Tij < RT}{ Po rsr (l_jj"'z Pn Fr (ijj ] (4-3)

To simplify the calculation oPsjjrsr, the probabilities forsr and pnrsr) Need to be
defined. Ifporsr andpnesk are approximated by tHd/G/1 formula, therpo sz andp, sk are

approximately set to (1prsr) and (1 —prsR)(PEsR)", respectively, as executed in Missbauer [9]

and Chern and Liu [10]. Subsequent®j ez can be reformulated as Equation (4-4), where
prsk IS the machine utilization rate under FSR for the single machine. It is eqidSlr],

where/ is the total arrival rate and §¢sg] 1s the-expected service time of jobs under FSR.

/‘i Pesxr /11' N
Ps,ij,FSR = Pr[Tij < RT}(]._?]{]._ pFSR!]'_( B@;j ]} (4'4)

4.1.2 Expected number of setupsunder FSR

Psijrsr represents the probability of requiring “one” setup under FSR and givéh by
new job of typg; (1—Psjjrsr) represents the probability of requiring “no” setup under FSR

and given by newjob of type j The expected number of setups under FSR fof"theived

job of product type ¢an be derived as Equation (4-5).

EI:NS]',FSR} =1x Ps,ij,FSR +0x (1_ Ps,ij,FSR) = Ps,ij,FSR (4-5)

Suppose there arrives independent product tyggobs at time interval (ORT]. Using

the summation ofE[NS; (] for alli, the expected number of setups of product jypeder

FSR is computed a€[NS; (] = > H NS o] , Wheren=/4RT andj=1, 2, ...,J. Finally,
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using the summation oE[NS, ] for allj, the expected number of setups for all jobs under

FSR is calculated a[NS.g] = ¥, ¥ % E[NS; (] -

4.1.3 Expected setup time under FSR

For this purpose, let; be the setup time prior to the processing of a job with product
typej right after the last completed job belonging to product typeferred to as predecessor.
The length of the required setup time depends on product type change between any two
consecutive jobs. We consider the following three cases with the inclusion of job arrival time:
(1) Thei™ job of product typg does not arrive at time interval (B]]. Then, the setup time
should equal 0 with the probability {1Pr[T;; =RT]). (2) Thei™ job of product typg arrives
at time interval (ORT] but a setup is not needed. Thus, the setup $meuld be equal to 0
with the probability PiTij=RT](1—Psjrxr). (3) Thei™ job of product typg arrives at time
interval (0,RT] and a setup is needed. This implies that the product type of the arrived job is

different from the predecessor. Therefore, the setup time would be egsalwith the

probability Pr[lij = RT]Psj rsr(4/A°), Wwherer=1,2,.....0; rZ j,and A° =37, . A .

Based on the abovementioned three cases, Equation (4-6) can be used to estimate the

expected setup time fdf job of produict typ¢ artiving at time interval (ORT] under FSR.

E[Sjr ] =(1-PT; < RT])xo+ Pr[Ti. SRT|(1-P,) ) xS, +

AT, < RT | S,FSRZ

f#]

= PIT,<RT P JFSRZ/]csn

r¢]

(4-6)

2 )
= Ps,ii,FSRZ Arc Si
=1

oy
Then, the expected mean setup time for productjtyqes and the expected mean setup time

for a job under FSR are expressed aE[Sj,qu]zE[Z{';ls,j’qu/ n] and

E[Se] =HZ)aXhS e/ 27,1, respectively. Applying Equation (4-6) €[S sl and
E[S] yields Equations (4-7) and (4-8), whete/;RT andj=1, 2, ...,J.
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n;

E[S )= ZPS.. FsRZ),cSr. (4-7)

i=
r#j

nj

J 1, 3]

E[SFSR] :(znj] z Ps,ij,FSR /]_rcsrj (4'8)

i=1 j=1i=1 r=1
r#j

4.1.4 Expected servicetime under FSR

The service time of a job is equal to the sum of its processing time and its setup time.
Therefore, the expected service time for a job also relates to the three cases when estimating
the setup time, as mentioned in Section 4.1.3. Moreover, the processing time of a job depends

on its product type.

In this context, 1eSTj; ez be the random variable of service time ifBrjob of product
typej under FSR. The probability mass functionSif rz can then be shown as Equation
(4-9). The expected mean service time for specific fypbs and expected mean service time

for a job are defined by E[SI'J.YFSR]=E[Z{’;1$I'”'FSR/ nJ and
E[STe] = HX )40 ST, rr 120]20;] . respectively. | According to the probability mass

function of STj rx=, E[ST; rrl-and E[STesr]-can-be derived as Equations (4-10) and (4-11),
where ptis the job processing time of product typg¥/4RT, and 1, 2, ..., J

1-P{T, <RT |, ist, = 0
Pr A , ifst, = pt.
P(STij,FSRZStij)z [ P ]( ]FSR) ' J : (4-9)
Ps,ij,FSR/]_rc' lﬁij =ptt+s;
21... ), r#j
nt JA
E[ IFSR] zpr[ } Pt +Ps,;,FsRZA—LSn (4-10)
r=1
r7]
T I )
E[STFSR] (Z” J ZZPV[TU S RT} ptj +Ps,j,F5Rz/1_rcSrj (4'11)
=) j=1i=1 r=1
oy

4.2 Analyzing the effect of FSR on the reduction of setup time and capacity
loss
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With the analytic model developed in Section 4.1, the effect of FSR on the reduction of
setup time and capacity loss is further explored by comparing the results with the FIFO rule.
Relative to FSR, FIFO dispatches jobs even without batching some jobs into the same type in
order to process them consecutively. This implies wastage in setup frequency. Based on the
FIFO principle, a setup occurs when any two consecutive jobs in the sequence have different
product types and the total setup time may take up a large part of the machine capacity.
Therefore, selecting FSR instead of FIFO may contribute to a reduction in setup frequency,
setup time, and machine capacity utilization rate, and consequently, lessened capacity loss. In
this section, we first compare the effect of FSR with FIFO in terms of reduced setup time and
machine utilization rate. Second, we provide details on how machine utilization rate is saved
by FSR while dispatching jobs as a result of setup time reduction, and then demonstrate how

the effect of FSR on reducing utilization rate is related to the level of total arrival rate.
4.2.1 Effects of FSR

According to Equation (4-4) and the definition R riro asPsijriro=Pr[Tij=RT](1—
4;/2) in Equation (3-8), the probability ¢fsj;rsz Can be rewritten as Equation (4-12), where
PsijriFo IS the probability of requiring a setup under FIFO, given thaﬁ“fh'eb of type]j
arrives at time interval (0, RT

A
Poirs = P miFo {1_ Prsr [1_[1"'%7]} ]} (4-12)

The following theorems can then be used to state the effect of FSR in relation to FIFO.
Theorem 1. Psjj rsr=PsjjriFo, if >0 and 0= per<1 with ;>0 for all j.
Theorem 2. Ps,ij,FSR< Ps,ij,FIFO, if >0 and 0<p|:sq< 1 with /11' >0 for all J

An inequality expressed as Equation (4-13) can be used to explain the above theorems.
In particular, the probability of requiring a setup under FSR is always less than or equal to the
probability of requiring a setup under FIFO. Therefore, FSR can be used to reduce the setup
frequency by assigning jobs on queue to a specific batch according to their product type. The
effect of FSR on reducing setup time, service time, and capacity loss based on Theorem 1 can

be expressed as the following.
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|FL s =Y P =0 with A, > 0,0
1+ ; PR 7J n=1 ) (4-13)
Pes 151, it 00p = . By ree <1 With A, > 0, O

n=1

Lemma 1. E[Sr] = E[Srir0]
The expected mean setup time under FIFO for jobs arriving at time intervalr)(0,
E[S=Fo] in Equation (3-11) can be expressed as Equation (4-14). According to Theorem 1, the

expected mean setup time under FSR in Equation B8)s], is always less than or equal
to that under FIFO.

n

i '
j=1i=1

E[Sieo] = (inj J

j=1

A
Ps,i,-,HFOZA—L s, (4-14)
r=1

Lemma 2. E[SFFSR] = E[Sﬂ:u:o]

The expected mean service time of jobs under FEFEYr o] in Equation (3-5) can be
given by Equation (4-15) based on Equation (4-14). The expected mean service time of jobs
under FSRE[STes], can be reformulated as Equation (4-16) based on Equations (4-8) and
(4-11).

> > P, <RT | pt; +E[Seeo] (4-15)

=1 i=

)

J N
=1 ]

n;

iZ Pl T, <RT | pt; + E[Sil] (4-16)

j=li=

E[ST.x] =(inj J

j=1

Then,E[STriro] — E[STexR]l = E[Sriro] — E[Sesr] Is derived from Equations (4-15) and (4-16).
Note thatE[STrsr] = E[STriFo] Is the result oE[Sro] = E[S]. This means that service time

can be reduced by using FSR when dispatching jobs.

Lemma 3. prsr=priro

For a single machine, machine utilization rates under FIFO and FSR are shawi as

= AE[STrro] and prsr=AE[STr], respectively. In accordance with[STrsr] = E[STFiFo),

prsR=priro if the total arrival rate is given. This implies that machine utilization rate can be
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reduced by replacing FIFO with FSR when dispatching jobs.

Savings in machine utilization rate by replacing FIFO with FSR canriteen asAp=
peiro—pPrsr=AME[SeiFo] —E[S]). From Equations (4-8), (4-12), and (4-1A), can then be

written as Equation (4-17) depending on the machine utilization rate undepFR (

Prior to the discussion of the influencepeéz on the savings in machine utilization rate,
the first derivative ofAp with respect tgrss is used and given by Equation (4-18). Note that
dAp/dpese= 0 with 0 =<prsr<<1 and 4>0 based on Equation (4-13). Letm and gz be two
different machine utilization rates under FSR ameki = prsre. USINg prsri @and pegze in
Equation (4-17)Ap(prsr1) andAp(pesre) can then be computed. NeAp(prsr1) = Ap(prsre) IS
set in accordance with Equation (4-18), wherems <1 and 0 prsr2 < 1. Thus, savings in
machine utilization rate achieved by replacing FIFO with FSR increases with the rise in

utilization rate of the machine. This implies that more savings in machine utilization rate is

achieved with high levels of workload on machine.

n;

i Peiriro ZAC Si [l (1"' L ij } (4-17)

j=1i=1 1 IOFSR A

AP = APeq (Zn j

=1
r#j

J 0 J /]
Z IDS,ij,FIFO 2/1_:: Srj
r=1

j=1i=1 1
%] (4-18)
-1 -2
1_( :H.pF_SRﬁJ +ﬁ Prs > (14_ Prx ij >0
1- P A A (1- peg) 1- P A

4.2.2 Relationship between the reduction of service time and the saving of utilization rate

-]

dIOFSR j=1

by varying total arrival rate

In earlier discussions, we mentioned that savings in machine utilization Aafe (
depends on machine utilization rate under F&dsk), which also depends on total arrival rate
(4) and reduced service time. Next, we investigate how savings in machine utilization rate can
be affected by the changes in total arrival rate and reduction of service time. The result is
plotted in Figure 4-3.

For a single machine system, by referring to the queuing theory, the expected service
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time (E[ST]) is proportional to the utilization rate of maching (ith gradient 14; this

denotes an inverse of total arrival rate (Ross [33]). Thus, the expected service time behaves as
a function of machine utilization rate. In relation, the straight line in Figure 4-3 can be
depicted, which passes through the origin with the slope equal to the inverse of total arrival

rate (14). In Figure 4-3(a), a line with slopeilland intercept zeroE[ST]=p/. can be

obtained for a given specific total arrival rafeand the vector of job processing tiR&.

Therefore, the expected service time under FIIE[:STHFO]‘ ) is calculated by Equation

A PT

(4-15) usingl” and PT. The machine utilization rate under FIFQF(CO‘ ) can then be

A PT

computed by A" E[STco]| , o -
Similarly, a curve of expected service time under F5RTFs]) by varying the machine

utilization rate under can be seen in Figure 4-3(a). Based on Equations (4-4), (4-8), and (4-16),

the estimation of expected service.timerunder FEFSTes]) is required by the machine

utilization rate under FSRods) in order to compute the expected setup tiBESHx]).

However, by referring to the queuing theary, the machine utilization rate underpERR (

also depends on the expected service time under EfSR:&]). Therefore, it is difficult to

solve an analytical solution-foll &Tg]. Instead; a numerical analysis can be used to compute

E[STex]. The numerical solution OE[STrsz] can be solved by solving the two equations,

E[STrR] =prsr//4 and HSTrxw] = E[STriro]l—E[SFiFo] + E[S ], derived from Equations (4-15)

and (4-16). IfE[STrx] =prsr/4 is substituted iNE[STrsx] = E[STriro] — E[SriFo] + E[SesRls

then a new equation can be writtenf(@ssr) = E[STriro] — E[Sriro] + E[Sesr] —prsr/A=0 and

then it can be rewritten as Equation (4-19) based on Equation (4-15), B[i$esg can be
derived by substituting Equation (4-4) with Equation (4-8).

N

S P T < RT ] pt, + E[ S0 ] - 265 =0 (4-19)
2.2 Pi|T, <RT | pt, + E[S] -5

i=1i=1

f(ors) =(inj J

j=1

As f(prsr) is the function opess and is differentiable, the Newton's method can be used

to solve the nonlinear equatidifprx) =0. According tdf(prsr) and its derivative with respect
to prsr, We begin with a first guess gb;, by setting 0< p°, < 1. An approximate solution
Or& Can be obtained by calculating®y — f (02%x)/ f'(0%&), in which pts should be a

better approximation to the solution f§hrsz) =0. Once we haveprs,, the process can be
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repeated to obtaino?s, . After n steps, if we have an approximate solutiongff,, then the

n+l n+l _

next step is to calculatgt and ol = ofe — f(08s)/ f'(0Ls) - Note that value ofplq,
moving closer to the value opls indicate that the approximate solutionf@fs)=0 after

n steps has been determined.

The curve of the functiof(prsz) =0 for various machine utilization rates is plotted in
Figure 4-3(a). The function d{prsr) =0 is the expected service time under FERS(rsR])

that shifts down with shifts in quantupgsz/A. Thus, a root of(prsr) =0; that is, oty is

identified using the Newton's method. By giving.4 = prs for Equation (4-16) to

calculate E[STes], then machine utilization rate under FSR is obtained; that is,

Prsay pr s TAEISTeal | pr -

In Figure 4-3(b), by changing thé total.arrival rate fronio A, A~ is found to be
smaller compared with along with the same vector of job processing titiie A line E[ST]
=pl)” is drawn with slope 2/ ; that is, the inverse of the total arrival rate and this line is
steeper becausell/is larger compared with/i/ By repeating the aforementioned steps, the
expected service time and the machine utilization under FSR can then be depicted as

E[ STl and A" E[ST ] The ‘expected service time and machine

A" PT i NPT frg

utilization rate under FIFO can be computed a&[ST..] and

A" PT frs

A" E[STpo]

A PTG

The varied total arrival rate froth to 2~ with small increment is depicted by the two
bold curves in Figure 4-3(c). They represent the relationships between the expected service
time and the machine utilization rate for various total arrival rates under FIFO and FSR,
respectively. Figure 4-3(c) also illustrates the effect of varying total arrival rates on the
reduction of service time, which corresponds to the pairs of machine utilization rates under
FIFO and FSR. These show that the reductions of service time and machine utilization rate
become larger as total arrival rate increases. Therefore, FSR can effectively reduce service

time and machine utilization rate at peak demand times.
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Figure 4-3(a) The expected service time under FSR for a given total arrival rate A

Expected T
service time o0&
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Figure 4-3(b) The expected service time by changing total arrival rate fraon//
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Figure 4-3(c) Two curves of expected service time for various total arrival rates under FIFO
and FSR

4.2.3 Decision criterion on the reduction of setup time
In this section, we develop a decision criterion to conclude on which condition the setup

time can be saved significantly by replacing FIFO with FSR. According to Lemma 1, the
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expected mean setup time under FSR is always less than or equal to that under FIFO. To
evaluate the magnitude of setup time reduction by replacing FIFO with FSR, the difference of

setup time for the!" job of typej by comparing FIFO and FSR is definedlS; riro-rsr=
Sjriro— Sjrsr, WhereS; riro andS; ek represent the setup time for tﬁbjob of typej under

FIFO and FSRi=1, 2, ...,n;, andj=1, 2, ...,J. Therefore, the mean differend@Srro-rs:

is expressed as Equation (4-20).

D_SFIFO—FSR =(;n J ZZ DS, FIFO-FSR (Zn ] ZZj(Sj,FIFO _Sj,FSR) (4-20)

j=1i=1 j=li=1

Let DSriro-rs > U, represent the magnitude of setup time reduction is moreutimn

replacing FIFO with FSR, whergo = 0. Therefore, by replacing FIFO with FSR,

Pr[D_SFIFO—FSR > 1,] 21-a indicates the probability of having the setup time reduction larger

than g is more than or equal tdl- ), where 0<a <1.

0-E [D_SFH:O—FSR:I

Pr|:D_SFIFO—FSR > 0} =Prz> —
\/Var I:DSFlFo—FSR:|

=2 tFa

O0-E |:D_SFIFO—FSR:|
= — <-z, (4-21)
\/Var [DSFIFO—FSR:|

= E[D_SFIFO—FSR] > za\/Var I:D_SFIFO—FSR]

where the expected value @Srro-rsx and the variance oDSrro-rz are derived as
Equation (4-22) and Equation (4-23).

n

E[D_SF'FO‘FSR] =E [Zn j_ ZJ:ZI:(Sj,FlFo B Sj,FSR)} = E[SFIFO] - E[SFSR] (4-22)

=1 j=1i=1

n;

>

j=1i=1

Var |:D_SFIFO—FSR] = i n, j_

J
( S,ij, FIFO su FSR) z%srzj -
=1

r£j

(4-23)

J “aon I )
(Z;njj Z;‘ ( s,ij, FIFO Pszu FSR) z/‘c Sr;
j= i=

i= r=1
r£j
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The further detail of mathematical proof féar[DSriro-rsz] is shown in Appendix I.

Thus, the probabilityPr[DSrro-rsx >0]=1-a can be computed as Equation (4-21),

where z, indicates the proportion of the area under the curve, from 0 to positive, of a

standardized normal distribution is equal to-@). To calculate the probability in Equation
(4-21), the random variablg is defined as Equation (4-24), whose value is given by the

difference betweenDSrro-r and its expected valueE[DSrro-rx]), divided by the

standard error of the mea\/Var[D_SnFo—qu] ). According to the central limit theorem, the
distribution of the random variablé approaches that of a standard normal distribution as

n—oo, where n=3_n, =ART .

DSkiro-Fs — E|:D_SFIFO—FSRj|
Z= —
\/Var |:DSFIFO—FSRj|

(4-24)

Thus, if E[DSrro-rsx] is larger thanz,Var[DSrro-rsr] , then the probability that the

setup time of jobs can be saved by replacing FIFO with FSR is guaranteed to be more than or

equal to (- ).
4.3 Summary

In this section, FSR analytic model is proposed to estimate the number of setups, the
setup time, and the service time for a single-machine system facing uncertain job arrival.
Through this analytic model, the amount of the capacity waste can be evaluated due to the
changing of machine setting among several product types and the effect of the setup time
reduction by replacing FIFO with FSR can be analyzed.
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5. Performance analysisfor the proposed analytic models

In order to evaluate the FIFO and FSR analytical models, simulation models are built to
test the performance of FIFO and FSR analytical models in several different scenarios. In the
simulation models, the inter-arrival time of jobs is an exponential distribution; the dispatching
of jobs for processing on a single machine depends on FIFO and FSR; and the setups occur

for two different types of jobs being consecutively processed on the machine.

As stated in Section 3, the lead time under FIFO consists of two parts: the waiting time
in queue and the service time on the machine. If these two parts are accurate, then the
performance of the estimate of the lead time by FIFO analytical mode is guaranteed.
Therefore, the accuracy of the waiting time in queue and the service time on the machine
under FIFO are presented in the following sections. Next, the simulation results under FSR

are collected from a fixed time period_of jobs arriving with various arriving rates.
5.1 Experimental design

Missbauer [20] and Vieira et al. [29] assumed that five and ten job types can arrive to the
system. Eight is simply the middle humber. Therefore eight product types are processed in the

simulated production system.

In FIFO simulation model, the machine is implemented to work 24 hours &R@lay24
hours= 86,400 seconds). In FSR simulation model, threeldewd run time RT) are
considered: 8, 16, and 24 hours. The simulation model contains the vector of job processing
time among eight product typeBT() and the matrix of setup tim&T =[s;]) for switching
product types on the machine, whetds the setup time for product typgob when product
typej job follows product type job and is the element at ti{& row andr™ column ofST.

“Second” is the unit of processing time and setup time.

According to the queuing theory, the utilization rate of the machine, which depends on
the total arrival rate, has great impact on the waiting time of jobs. Thus, the total arrival rates
(1) are set to control the machine utilization ralidse arrival rates among eight product types

are defined byi; =d7; and the corresponding valuesmpfare shown in Table 5-1. The total

arrival rate can be calculated ak= fo:l/h = 5Z?=1rj jobs in 60 seconds and is proportional
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to the sum oft; with the parameted. The difference between any two adjacent level$ isf
the same and equals 0.05.

In addition to the total arrival rate, the mix of the arrival rates of various types of jobs
can also affect the waiting time in queue because different products have different processing
time and setup frequency, as well as time consumed on the machine. Thus, the coefficient of
variation among job arrival rates (symliV) is considered and is defined as the ratio of the
standard deviations{) of the job arrival rate of product types to the medn of the job

arrival rate of product types multiplied by 100. Thus, it is calculated
asCV =(s,/1)x100%= &, /T )x 100%, where T and s, are the mean and the standard

deviation ofzj, respectively, which are shown in Table 1. Using the informatiom onds,

in Table 1, theCVs for job arrival rates can easily be calculated as 0, 27.9753%, and
53.7234%. The higher theV means the greater dispersion in the jobs arrival rates among
eight product types.

Different scenarios are created by varying the total arrival rates and by varyi@yshe
for job arrival rates. All other parameters remained constant. Note that the simulated
production system is always stable (i.e. the production system has enough capacity to process
all jobs) becauspriro=AE[STgiro] @andprsr=4E[ST¢xR] are always smaller than one. Note
that each scenario is simulated.for five replications and the simulation results for each
combination are collected after 10,000 independent simulation runs.

PT=[ 15 75 85 45 55 10 80 12§

0 90 60 15 15 30 45 3
15 0 75 30 45 75 90 4
30 60 O 45 90 90 75 6
: |45 75 90 0 45 30 60 4
ST=|s, =
60 75 45 45 0 45 75 1
45 30 30 30 75 0 60 7
60 45 60 15 45 15 0 4
115 30 15 30 60 30 45
Table 5-1 Total arrival rate and coefficient of variation
Parameters among eight product types Mean of | Standard deviatior CVs (%)
71 T2 73 T4 15 T6 77 78 parameter B Of pal’ameters
0.001250 0.001250 0.001250 0.001250 0.001250 0.001250 0.001250 0.001250 0.001250 0 0

0.001342 0.001577 0.001804) 0.000917] 0.001145/ 0.001443 0.000817 0.000955 0.001250 3.49691x1d 27.9753

0.001821] 0.001255 0.000297) 0.001721] 0.000946 0.000363 0.001467 0.002130 0.001250 6.71543x1d 53.7234
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Let X varrue and sfj,VAR,RULE be the sample mean and the sample variance of specific

VAR of product typg jobs for thek™ simulation run under specifRULE by the simulation
model. The suffix symbol oWAR represents the variance, wheV&R=S (Setup time),
VAR=ST (Service time)VAR=W;, (Waiting time), and/AR=Ps (Probability of setups), and the
suffix symbol ofRULE represents the dispatching rule, whetd E=FIFO andRULE=FSR.

In simulation model, we have 10,000 sets of data contaiNing ..., andNigooq jobs of

- . — — . 2
product type with means X g rue s -+ @Nd X000 yar rute » @NA VarianCess); g ruie s -+

and oo yar rue » @nd then the combined mean and the combined variance of all product

type jjobs are given by Equations (5-1) and (5-2), respectively.

_1 K
jVAR RULE (Z Ny j Z Nkj)_(kj,VAR,RULE (5-1)
k=1
K , N B 5
]VAR RULE (z N, j z Nkj |:§<j,VAR,RULE +(ij,\/AR,RULE - Xj,VAR,RULE) } (5-2)
k k=1

whereN is the sample size of product typ@bs. for thek™ simulation run. The average size

of product typej jobs can.be computed as, =ZkK=1Nk,-/K and the combined standard

deviations can be calculated by taking the square roo,af q.c -

5.2 Accuracy analysis of FIFOanalytic model in estimating lead time

To analyze the accuracy of FIFO analytic model on estimating lead time, an
experimental design with various arrival conditions among eight types of services, which
correspond to various resource utilization rates, is conducted. Furthermore, the numerical
result of the proportionalityy in Equation (3-22) is also presented compared wijth1
because an approximation of the expected waiting time for each product type is equivalent to

the expected waiting time for the/GI1 queuing theory if o= 1.

In terms of the accuracy of FIFO analytic model, the initial and final levelsad 0.75
and 0.95, respectively. For the case of the numerical analysis of the proportiapéatlitsy

initial and final levels ob are 0.05 and 0.95, respectively.

5.2.1 Accuracy analysis of expected servicetime
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By substituting the probabilityPs; rro=(1—24/4) into Equation (3-4), the expected
service time of the product tyggobs can be easy to simplify as Equations (5-3), and then the

limit of the expected service time of the product tyebs can be given by Equations (5-4) as

RT approaches infinity becauséim w. = lim YiLPI[T, < RT] / n =1.

ER-oc )

J ) 3 )
EI:ST]-,HFO}:W]- ptj+2:1:7rsrj :Wj(ptj+;7rs”.j (5-3)

rj

lim E[ ST, peo | = (5-4)

RT -

I, ) I, )
pt; +z7rsri :(ptj +27rsrij
r=1 r=1
r#£]
wherew; is the mean of all probabilities of product typpbs arrived at the system in the
time interval (O,RT]. The expected service times of single job for each product type and their
limits asRT approaches infinity by varying th@Vs of job arrival rate and total arrival rates
are drawn in Figure 5-1.
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Figure 5-1 Service time and its limit by FIFO analytic model



Owing to the probabilityy, =1, the service times by analytic model are less than their
limits, which is apparent in Figure 5-1. In addition, the probabilities that the predecessor of
the arrived job belongs to the specific product typl@/(i :Jrj/dz‘?:lrj =rj/2?:17j) is
unconcerned with the constanirvthe experimental design. These probabilities are fixed even

the total arrival rate is changed. Thus, the change of the service time for varying total arrival

rates is insignificant in Figure 5-1.

According to Equations (5-3) and (5-4), the expected service time and its limit depend on
arrival rate, processing time, and setup time. W@&his equal to zero, the arrival rate
parameters among eight product typgp dre the same and then the expected service time
depends on the processing time and the setup time. Thus, the expected service times for each
product type by analytic model are near to their average service tin@@&¢=8s where the
average service time of product tygel is defined by the sum of the processing time and the
average setup time of product tyjp@b, and the average setup time of product fyjoé can
be computed as the summationfrs ST for all-r divided by the number of product type.

When CV is equal to 27.9753% or 53.7234%, the arrival rate parameters among eight
product types are unequal and then it makes setup time and service time to be changed as
compared withCV=0. Taking product type 1 as-an example, the setup times of product type 1
are the elements at the first row 8. Note that the setup times of product type 1 after
product type 2 and product type 3:are larger (90 and 60), but otherwise the setup times of
product type 1 are smaller. WhE&V is equal to 27.9753%, the arrival rates of product type 2
and product type 3 (0.00157a#hd 0.001804sare increasing as compared w@k=0. Thus,
the setup time of single job of product type 1 becomes larger and then it leads to the larger
service time for product type 1 whedV is equal to 27.9753%. Whe@V is equal to
53.7234%, the arrival rates of product type 4 and product type 8 (0.004ra1.002136)
are increasing as compared WitvW=0. This result causes the saving in setup time and service
time. It can be apparent from Figure 5-1(a).

Apart from the foregoing, there are some specific cases in Figure 5-1(c) and Figure
5-1(h). First, the expected service time of product type 3 decreases but its limit increases

when CVincreases from 27.9753% to 53.7234%. According to Equations (5-4), an increase of

the limit of the expected service time is caused because of an incredge, of (4, //1°)srj :

As for the expected service time in Equations (5-3), it depenag and Zlem ()lr/)l°)sH .
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The decrease by a wide margin of the arrival rate of product type 3 leads to the prolability
being far less than one whe&V increases from 27.9753% to 53.7234%. Relative to an
increase of its limit, the expected service time of product type 3 decrease€Whareases

from 27.9753% to 53.7234%. On the contrary, the expected service time of product type 8
increases but its limit decreases wi@nincreases from 27.9753% to 53.7234% because the
increasing margin of the probabilityy; is larger than the decreasing margin of

PR (/L/Ac)srj . Thus, the lower and higher arrival rate resulted in the trend of the expected

service time being different from its limit.

Next, to evaluate the limit of the expected service time by analytical model the
simulation results of the service time are compared with the values that analytical model
predicted in the experimental design. In the simulation model, the sample mean of the service

time of product typé jobs for thek" simulation run under FIFOX| & rr0) Can be shown as

Equation (5-5).

N, .
ki s, (5-5)

J
X5t FiFo = Pt +Z N
=1 Ny

whereN; represents the number of product typeb when the product tyggob follows the

product type job for thek™ simulation run, andNy; is the sample size of product typpbs

for the K" simulation run andNy =34 N~ The combined mean of the service time of

product typej jobs can be calculated by Equation (5-1). Because each combination is
simulated for five replications, average of five combined means of jobs service time and the
limit of the expected service time by varying @@¥s of job arrival rate and total arrival rates

are plotted in Figure 5-2. It can be seen that the average service times of jobs by simulation
model are close to the limits of the expected service time by analytic model. Meanwhile, the
average service times of jobs by simulation model are smaller than the limits of the expected
service time by analytic model in many cases. The further analyses are to be described as

follows.

To compare the results of service time of single job generated respectively by the
simulation model and analytic model, the error of estimated service time is defined by
Equation (5-6).
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Error, = 'liTHw E[STJ,FIFo:I_Yj,ST,FIFO (5-6)

j,ST,FIFO

where X; o 1o represents the sample mean of the service time of producy {gbs by

simulation model and[ST; riro] represents the expected service time of product jtyples

by analytic model. Figure 5-3 shows the mean errors of estimated service time by varying the
CVs of job arrival rate and the total arrival rates. Note that these errors are almost positive.
This indicates that the average service times of jobs by simulation model are smaller than the

limits of the expected service time by analytic model, thusd >N, /N, according to

krj

Equation (5-4) and Equation (5-5).
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Figure 5-3 Errors of estimated service time by varying@\s of job arrival rate and the total
arrival rates

Figure 5-4 shows the relationship between the errors of estimated service time for each
product type and the arrival rate parameters among eight product types. Whguoaly/zero,
the errors are vertical because the arrival rate parameters among eight product types are the
same and the errors range between 0.005716 and 0.01478. Moreover, there is a increasing
relationship between the errors of the estimated service time and the arrival rate parameters
among eight product types whé@v=27.9753% andCV=53.7234%. WhelCV=27.9753%
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and CV=53.7234%, the correlation coefficients are 0.6228 arv456, respectively. This
means that the value for the errors of the estimated service time increase as the value for the
arrival rate parameters among eight product types increases. The error may be negative for the
smaller arrival rate of jobs and may be positive for the larger arrival rate of jobs because there

is a greater possibility o4, /A >N, /N, when the arrival rate of jobs is large.
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Figure 5-4 Scatter plot for errors of estimated service time under FIFO

5.2.2 Accuracy analysis of standard deviation of service time

The standard deviations of service time and their limits for each product type by varying
the CVs of the job arrival rate and the total arrival rates by FIFO analytic model are plotted in
Figure 5-5. In FIFO analytical model, the variance of the service time of the produgt type
jobs is given bywar[ST; riro] = Var[PT;] + Var[S riro] and its limit is shown as Equation (5-7)
based on Equation (3-26).
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lim Var STj,Fu:o] = R'lrpwvar [Sj,FIFO}

RT - o
2
AV A AV A
o I e N N S P B B N P 5-7
r#j r#]
Ny I A 2
2 ERbve)

wherePT; andSriro are the variables of processing time and setup time of the produgt type
jobs.
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Figure 5-5 Standard deviations of service time and their limits by FIFO analytic model

In Figure 5-5, the differences between the standard deviation of service time and their
limits for product type 6 and product type 8 by FIFO analytic model are minimum and
maximum, respectively. The difference between the standard deviation of service time and
their limits is equivalent to the standard deviation of processing time. There are two possible
categories of the processing time of product fyped are labelled by valys; and value 0, in
which value ptresponses "job arrives in (0, REnd value O responses "job does not arrive in

(0, RT]". Thus there is a greater dispersion in the jobs processing time when the jobs
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processing time becomes larger, and then the gaps between the standard deviations of service
time and their limits are widened as the processing time of jobs increases.

Next, the simulation results of the standard deviation of service time are compared with
the values that FIFO limit analytical model predicted in order to evaluate the limit of the
standard deviation of service time by FIFO analytical model. In simulation model, the service
time of the product typejpbs is equal to its processing plus its setup tighe-(s;), where the
processing time of the product typéot;)) depends on its product type and the setup taye (
depends on its product type and the product type of its predecessor. Thus, the sample variance

of the service time of the product typfbs in simulation models ¢ ., ) can be calculated

as Equation (5-8).

2

J
zl Nkrj ( ptj + Srj )2 - Nkjijz,ST,FIFO
S ==

j,ST,FIFO
: N

2
DN, DN,
:ZN—k.‘sfj —(z Nk.J s”.] (5-8)

=S

i,S,FIFO

According to Equation (5-8), the sample variance of the service time of the produicjalype

in simulation model is equal to the sample variance of the setup time of the prodygobge

2
i,S,FIFO

in simulation model ) because the processing time of the product }yigefixed. In

other words, a comparison of the limits of standard deviation of service time from FIFO
analytical model to the values of standard deviation of service time from simulation model is
equivalent to a comparison of the limits of standard deviation of setup time from FIFO

analytical model to the values of standard deviation of setup time from simulation model.
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Figure 5-6 Limit of standard deviation of service time by FIFO analytic model and standard

deviation of service time by simulation model
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Figure 5-6 shows the limits of standard deviation of service time from FIFO analytical
model and the values of standard deviation of service time from simulation model for each
product type by varying th€Vs of the job arrival rate and the total arrival rates. The error of

estimated standard deviation of service time is defined by Equation (5-9).

Errorj,SDST,FIFO = ,liTrpwvar ':STJ,FIFO:I =S, st Aro (5-9)

According to the discussion of the service time under FIFO, it is obvious that the average

service times of jobs by simulation model are smaller than the limits of the expected service
time by analytic model, which implies that /A >N, /N, based on Equation (5-4) and

Equation (5-5). By referring to Equation (5-7) and Equation (5-8), the error of estimated

standard deviation of service time can be updated as Equation (5-10).

2
J Ar N ’ J Ar 2 J N ’
ErrOrj,gDST'F,FO = ;(7— Nkvj jsrzj _{(;78” _[; N: Srj] ]

K

N a N, ; N
4 Z i+ s, Z A Ny s,
ki r=1 A Nkj r=l /1 N'@

Il
M-
~ |>-
|
< &y
.:mN
|

11,
-

(5-10)

IA
M(_n
~ |>-
|
Z :Z
7
[
M“
N |>a
|
Z |z
=1 -
v
N

1
N

IN
i
N

|
z|z
:U)N )
l—ll

Note that the sum of squares is less than or equal to the square of the sum. Thus, the error

Error, o, ., IS @ negative value if4 /A>N_ /N, , that is, the standard deviations of

service times of jobs by simulation model are larger than the limits of the standard deviation

of service time by FIFO analytic model il,/A>N,. /N, , which are apparent in Figures
5-6.

Figure 5-7 shows the mean errors of the estimated standard deviation of service time by
varying theCVs of job arrival rate and the total arrival rates. According to Equation (5-10), the

relationship between Errorjsrriro and Error; o_ riro IS given by

Error, o o S 2004 /A-N, /N, )*s —Error/g ... Thus, it is obvious that the error

Error

j,Dg; ,FIFO

is negative growth if the errdrror; srriro is the positive growth. In Figure 5-2,
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the value oError;srriro for CV=53.7234% is minimum, the value Bfror; srriro for CV=
27.9753% is maximum, and the valuekfor; srriro for CV=0 is in between. In Figure 5-15,

thus, the absolute value dError. for CV=53.7234% is minimum, the absolute value

j,SDgr ,FIFO

of Error. for CV=27.9753% is maximum, and the absolute valueEofor.

j,9Dg; ,FIFO j,SDg ,FIFO
for CV=0 is in between. From smaller to largeév, overall means of the errors of estimated

standard deviation of service time are equal to -0.2862, -0.3288, and -0.1072, respectively.
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Figure 5-7 Mean errors of estimated standard deviation of service time by varyiQlyshef
job arrival rate and the total arrival rates

Then, the values of the mean errors of estimated standard deviation of service time
versus the corresponding values of the arrival rate parameters are also plotted in Figure 5-8 in
order to interpret the influence of the arrival rate parameters among eight product types on

estimating the standard deviation of service time.

In Figure 5-8, the graph is used to show relationship between the mean errors of
estimated standard deviation of service time and the arrival rate parameters among eight
product types. It can be seen that the error tends to usually go down as the arrival rate of jobs

goes up excepCV=0. This implies that the higher arrival rates of ieas job types
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contribute to decrease not only the error percentage of the estimated service time but also the
error percentage of the estimated standard deviation of service time.
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Figure 5-8 Scatter plot for errors of estimated.standard deviation of service time under FIFO

5.2.3 Accuracy analysis of expected waiting time

In this research, the waiting time is decomposed into two components: one is the residual
service time of the unfinished job on the machiRgr(0) and the other is the total service
time of all jobs in queue ahead of the newly arrived 8 rir0). Both the expected values

of Rjrro and TSTjmro depend on the probability Hi[=RT]. Note that
Pr[T, 2 RT]< F!lrpwPrrl'ij > RT]=1 whenRT is long enough. Thus, the limits of the expected
values ofR;rro and TST; riro are larger than or equal to the expected valuds; ko and

TSTij riro and consequently the limit of the expected waiting time is more than or equal to the

expected waiting timeRﬂrm EW, ;i rirol 2 HW,; ried ), Which are apparent in Figures 9. In

Figure 9, the waiting times grow steeper with the rise in the total arrival rate because of the
growth of the number of jobs in the system, which is a characteristic of almost all queuing

systems.
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Figure 5-9 Waiting time for each product type jobs and its limit by FIFO analytic model
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In order to compare the results of the waiting time of a single job generated by the
simulation model and the analytic model, we have to identify the error of the estimated
waiting time, which is defined by Equation (5-11).

EP =1lim E[W, .0 | =X (5-11)

waiting time,j gy o W, FIFO

where X;,, rro represents the overall sample mean of the waiting time of a single job of

product typg by the simulation model E[W, ] represents the expected waiting time of a

.J,FIFO
single job of product typg by the analytic model. Figure 5-10 shows the mean error of the
estimated waiting time by varying tk/s of job arrival rate and the total arrival rates. Clearly,

the error of estimated waiting time ascends as the level of the total arrival rate increases. The
higher level of the total arrival rate leads to the high level of WIP. The high level of WIP
means jobs are waiting in queue for longer. Thus, relatively few jobs have long waiting time

at higher level of total arrival rate causing larger error of the estimated waiting time.
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Figure 5-10 Mean error of estimated waiting time by varying @ws of job arrival rate and
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Besides, the arrival rates among various product types affect the performance of the
analytic model in estimating waiting time because the waiting time depends on the service
time. The values of the mean error of estimated waiting time versus the corresponding values
of the arrival rate parameters are plotted in Figure 5-11. ExclWcvf=®, the pattern of the
mean error of the estimated waiting time for each product type slopes from the lower left to
the upper right part wheV=27.9753% andCV=53.7234%, respectively. The error of
estimated waiting time is similar to the error of estimated service time, which is negative for
the smaller arrival rate of jobs and is positive for the larger arrival rate of jobs. Thus, the
extreme of the arrival rates of jobs would affect the performance of the analytic model more
in estimating waiting time when the dispersion of the arrival rates of jobs increases.
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Figure 5-11 Scatter plot for errors of estimated waiting time under FIFO
5.2.4. Accuracy analysis of standard deviation of waiting time
Three standard deviations of the waiting time for each product type by varyi@yshe
of the job arrival rate and the total arrival rates in the analytic model are given graphically in
Figure 5-12:
I.  According to Equation (3-27), the standard deviation of waiting time by analytical
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model can be shown as

- L
LS e[ R 3 E[TST o ]+ 2
jisl j i=l
n; 2
UWq,i.FlFo = n, ZW Jii FIFO
nzzl‘,{ E[Pu,HFo] E[TSTij,FIFO}} -E %
ji= j

J

II. According to Equation (3-39), an approximation of the standard deviation of

waiting time with the parameters'j2 and g is given by

1
a\;‘/q,jwo = [’811 E[RZ]M/Gll +(2ﬂ2vi _aiz) E[V\G];/G/Jz

[ll. According to Equation (3-40), an_.approximation of the standard deviation of

waiting time with the parametenf is given by

1
J"’:’q,i.FlFo - ['811 E[RZ:IM/GII * aiZE[Wq];’G’JZ

Note that oy, =[lim o 172y ] %5 because lim Pr[T, <RT]=1. Thus,

q,j,FIFO

!

is an upper bound of the standard deviation of waiting timA%gFO ). Meanwhile,

Wq,j,FIFO

r U 2 2 H _ " -
Uwq,j,F.FOZOqu,,-,F.m because (25, —a;)>a; . In Figure 5-12, the value oy, is

minimum. Thus, gy, can be treated as the lower bound of the standard deviation of
waiting time (UWquIFO ). Moreover, approximations of the standard deviation of waiting time

are the function of the square of the expected waiting timeMi@/1 queueing model

(E[V\/q]f,,,G,l). Thus, they have a characteristic of the expected waiting timevifG/l

queueing model, which grow steeper with the rise in the total arrival rate.
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Figure 5-12 Standard deviation of waiting time and its approximation by FIFO analytic

model
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>0, =20,

q,j ,FIFO Wq,j,FIFO

In Figure 5-12, it can be seen thaltvq . If the larger standard

deviation of the waiting time is used in the variability of the lead time, then it will lead to the
due-date slackness. On the other hand, the due-date tightness will occur if the lower standard
deviation of the waiting time is used in the variability of the lead time. The accuracy of
due-date assignment has a profound effect on the production management. In order to obtain

the better standard deviation of waiting time, a new approximation of the standard deviation

of waiting time is defined the square roots of the meam@f‘m and avf which is
given by Equation (5-12).
_ 1
m 0-\;\/2 +0-\;(12 :
WqVJFIFO - q.] .| 9.
- -
_ 2
- _ﬂljE[RZJM/G/1+ﬁ2jE[\A/‘1:|M/G/1:| (5_12)

2

RT S0
i

I Bt 2
BE[R] +721{ M EPW, o |
The accuracy analysis of this new approximation.is discussed as follows.

To compare the results of the standard deviation of the waiting time generated
respectively by the simulation.model and approximation form developed in Equation (5-12),
we compute the error of estimated standard deviation of the waiting time defined by Equation
(5-13).

EP =g, -8 (5-13)

sd of waiting time, j fo.j FIFO W, ,FIFO

where s, koIS the combined standard deviation of the waiting time of product; tyjies.

Figure 5-13 shows the mean error of the estimated standard deviation of waiting time by
varying theCVs of job arrival rate and the total arrival rates. Note that an approximation of the

standard deviation of waiting tlmev;V in Equation (5-12) depends on the limit of the

expected waiting time A{rpm EW, -] ) and the performance oF[iTrpw EW, 0l can be

J 1L FIF ,j,FIF

influence by the high level of the total arrival rate. Thus, the error of estimated standard
deviation of waiting time increases as the level of the total arrival rate increases in Figure
5-13.
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Figure 5-13 Mean errors of estimated standard deviation of waiting time by varyir@he
of job arrival rate and the ‘total arrival rates

In addition to standard deviation, the coefficient of variation is also useful to describe the
dispersion of variable. The coefficient of variation of waiting time is defined as the ratio of its

standard deviation to its mean, which is given by Equation (5-14) i ®hg enough.

m

e M e
Rl'i'rpoo E I:Vvq,] ,FIFO}

1

:{ﬂljE[RZ]M/Gll+ﬂ2jE[Wq:|2M/G/1}2 (5-14)

a; E [Wq ]M G
VB

a

where p;E[RP]wen is assumed to be ignored. From Equation (5-14), the coefficient of
variation of waiting time by analytic model is the function of the proportionakiiesd Ss;
and is plotted in Figure 5-14 as compared with the coefficient of variation of waiting time by

simulation model.
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Figure 5-14 Coefficient of variation-of waiting time by varying tB&'s of job arrival rate and
the total arrival rates in the simulation model and analytic model

In Figure 5-14, the coefficient of variation by analytic model is larger than the coefficient
of variation by simulation model, which implies that the waiting time by analytic model has
greater dispersion. Meanwhile, the _coefficient of variations of waiting time in the simulation
model and analytic model are decreasing with the rise in total arrival rate, indicating that the
waiting time has the lower dispersion of waiting time and then the waiting time is more stable
and lies close to the mean. The difference in the coefficient of variation of waiting time
between analytic model and simulation model is stable except the high level of the total
arrival rate. It causes the larger error of estimated standard deviation of the waiting time at

higher level of total arrival rate.

Moreover, the relationship between the values of the mean error of estimated waiting
time and the corresponding values of the arrival rate parameters is plotted in Figure 5-15.
Excluding CV=0, the errors of the estimated waiting time tend to increase as the arrival rate
parameters increase whelv=27.9753% andCV=53.7234%, respectively. The error of
estimated standard deviation of waiting time is similar to the error of estimated waiting time,
which is negative for the smaller arrival rate of jobs and is positive for the larger arrival rate

of jobs. Thus, the performance of the analytic model more in estimating waiting time is
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affected by the extreme of the arrival rates of jobs.
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Figure 5-15 Scatter plot or errors of estimated standard deviation of waiting time under FIFO

Based on the results of test for-service-time and waiting time under FIFO, we know that
the differences in the service time and the waiting time between the simulation model and the
limit FIFO analytic model are insignificant. This shows that the service time and the waiting
time can be estimated accurately using our models, thus managers can set lead time and
assign customer order due date for internal control and due dates quoted to customers based

on the predicted service time and waiting time.

5.2.5 Numerical analysis of approximations of expected value and variance of waiting

time

An approximation of the expected waiting time is proportional to the expected waiting
time for the M/G/1 queuing theory withy; if RT is long enough. This indicates that an
approximation of the expected waiting time and the expected waiting time fov/G&

queuing theory are the samedf=1. Figure 5-16 shows the proportionality for each

product type by varying th€Vs of job arrival rate and the machine utilization rates; the
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machine utilization rates vary along with the total arrival rates.

In Figure 5-16, the proportionality for each product type is drawn in pink and closely
corresponds to a linear growth as the machine utilization rate increases. The proportionality
for each product type is more than one when the machine utilization rates are higher,
indicating that the expected waiting time with setup time is underestimated by the formula for
the queuing theory. Meanwhile, the proportionatifyfor each product type is smaller than
one when the machine utilization rates are lower, showing that the expected waiting time with

setup time is overestimated by the formula for the queuing theory.

Utilization Utilization
rate Product type rate O Product type
(b)CV=27.9753% (©)CV=53.7234%

Figure 5-16 Values of the proportionality;

Besides, the variance of waiting time M/G/1 queueing system depends on the square

of the expected waiting time fdd/G/1 queueing system in Equation (2-6). In approximations

of the standard deviations App2 and App3; andp, are the coefficients of the square of

the expected waiting time for th&l/G/1 queuing theory. Figure 5-17 displays the

proportionalities af andp, for each product type by varying t8¥s of job arrival rate and
the machine utilization rates. The proportionalitie§ and fy grow as the machine

utilization rate increases, yet the rate of changerﬁ;f is increasing and the rate of change of

pojis decreasing. Moreover, the proportionafftyis not only more than the proportionality

ajz but also more than one.
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Compared with the results in the sections 5.2.2 and 5.2.4, it can be seen that the
estimation error of the waiting time and its variance with setup time by the formula for the
queuing theory can not be restricted in_an accepted range, especially at condition of high
machine utilization rate. Thus, if the formula fdt/G/1 queue is used to calculate the
expected value and variance of-the waiting time including setup time for a single
finite-capacity machine, then the proportionalisgsndf, should be established to be able

to obtain more accurate and precise waiting time and its variance.

5.3 Accuracy analysisfor FSR analytic madel on the reduction of setup time
and capacity loss

Simulation results under FSR for the number of setups and setup time are compared with
those calculated by FSR analytic model. Then, the numerical results of the sensitivity analysis
on the reductions of the expected setups and expected setup time for each product type are
conducted by replacing FIFO with FSR analytic models. Finally, an analysis on the reduction

of setup time by replacing FIFO with FSR is conducted.
5.3.1. Accuracy analysisfor FSR analytic model in estimating number of setups

Figure 5-18 shows that the probability of setups and the limit of the probability of setups
for each product type in the FSR analytic model by varyingCWt of job arrival rate, total
arrival rates, and run times. For FSR analytic model, the expected number of setups of
product type punder FSR can be shown as Equation (5-15).
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nj n;

E[ NSJUFSR] = z E[ NSj,FSR] = z Ps,ij,FSR (5-15)

i=1 i=1

It is seen thaE[NS rs] depends on the probability of requiring a setupitfbjob of product
typej under FSRRsjj rsr), Which is given by Equations (4-4). Wh& is long enough, the

limit of the probability can be expressed as Equation (5-16).

I Py s = Jim PrT, < RT R e

RT oo sij,FSRR —

= limP; . (5-16)

A AT
= 1-_] a:pFER 3 -1'0F_SR_]
A 1= P A
This means that the probabilities of setups under FSR are the same for all product types when

RT is long enough. Therefore,RIlm Pirs IS always larger thanPsjrsr because

Pr[T; =RT] =1, which is apparent in Figure 5-20.

Meanwhile, the first derivative ofRIlrpw P, rsr With respect ters is given by Equation

(5-17) and is negative with=0pr=x<1 andi; >0 based on Equation (4-13).

. -1 -2
d F!%rrlw PS'”'FSR - [1_ij _ 1_(1_,_ Prx ﬁ} _ﬁ PR (1_'_ P ij <0
d P A 17 P 4 A (1—,0,:SR)2 1= P A

(5-17)

Hence, the probabilityRIlm P.jr= decreases with the rise in the utilization rate of the

machine, which implies that the probability of setups of product jypeder FSR is lower

and then it lead to lower setup frequency when the machine utilization rate is higher. The
dispersions of the probability of setups for each product type in the FSR analytic model
increase with the rise I@V. This implies that the extreme values of the arrival rate parameters

among various product type increase and can lead to higher and lower setup frequencies.
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Figure 5-18 Probability of setups and its limit in FSR analytic model
For FSR simulation model, |1&Sy; r= be the number of setups of the product tyjods
for the K" simulation run. The probability-of setups of the product typgebs for thek™
simulation run is defined by the number of setups of the productijtyples for thek"

simulation run divided by the number of the product typebs for thek™ simulation run
(R psrsr = NSKj,FSR/Nkj ). To compare the result of the probability of setups generated by the

FSR simulation model and the FSR limit analytic model, the error of estimated probability of
setups is given by Equation (5-18).

Error, =lIm P o =X o (5-18)

,Ps,FSR

Figures 5-19 illustrates the mean errors of estimated probability of setups under FSR by
varying theCVs of job arrival rate, total arrival rates, and run times.
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Figure 5-19 Mean errors of estimated the probability of setups between FSR limit analytic
model and simulation-model

When the total arrival < rate._ increases, the mean error percentage increases
correspondingly, as shown in Figures 5-19(a) to 5-19(c). In particular, the larger error occurs
at a higher level of machine utilization rate. In Figures 5-19(d) to 5-19(f), the value and the
dispersion of the error for ea@V decrease with a lengthenBd. The larger error occurs at
RT=8 hours because of the few setups. When the run time becomes longer, the error decreases
as a result of the larger setups. The overall means of the errors are equal to -0.01383, -0.01530,
and -0.01348, as Rihanges from 8 hours to 24 hours.

In Figure 5-20, the scatter plot provides a graphical display of the relationship between
the errors of estimated probability of setups and the arrival rates among eight product types.
WhenCV equal to zero, the errors are vertical because the values for the arrival rates are the
same. WherCV equal to 27.9753% and 53.7234%, the values of the errors are negative
growth as the values of the arrival rates increase. The extreme values of the arrival rate
parameters among various product types increase with I@xgéerhis can lead to an increase

in extreme values in the number of setups and can make the error of estimated probability of
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setups rise as well. Thus, the moderate dispersion of job arrival rate among various types is
related to the accuracy of the proposed FSR analytic model in estimating the number of

setups.
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Figure 5-20 Scatter plot for errors of estimated probability of setups under FSR

5.3.2. Accuracy analysisfor FSR analytic modél in estimating setup time

Figure 5-21 shows the setup times of single job and their limits in FSR analytic model by
varying the C\ of job arrival rate, run times, and total arrival rates. The setup time of a single
job is defined by the total setup time of all jobs with the same product type at a time interval
divided by the total number of jobs arrival specific for that. According to Equation (4-7), the
limit of the setup time of the product typgp can be shown as Equation (5-19).

. H J A
lim E[SLFSR] = Rurpw W, Ps,j,FSRZA_rc S

RT - ey
r£j

A
L STEP YL
r=1

r#]

(5-19)

It can be seen that the limit of the setup time depends on the probBbikity, the arrival
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rates, and setup time matrix. Because the probability- nj‘lz:’:"lPr[ﬁj <RT]<1, thus

J

F!lm B S sl 2H S, ;o , Which is depicted on the diagram of Figure 5-21.
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Limit of setup time by FSR analytic model
Setup time by FSR analytic model

Figure 5-21 Setup times of single job and their limits in FSR analytic model

WhenCV is equal to zero (i.e., the arrival rates among eight product types are the same),
the setup time of a single job only depends on the setup time matrix. The average setup time

of product typg job (S;) can be calculated as the summatios;ah ST for all r divided by
the number of product type. Product types 3 has the largest average setug) £15€.2500),

and product type 8 has the minimum value of average setup §me28.125(). The setup

times of a single job for each product type and their limits in FSR analytic model, as shown in
Figures 5-21(a) to 5-21(c), are near their average setup tini@¢=s WhenCV is equal to
27.9753%, product type 3 obtains the larger arrival rate, whereas product type 4 achieves the
smaller arrival rate. In Figures 5-21(d) to 5-21(f), thus, a vast amount of setup time of product
type 3 is saved because its larger arrival rate as comparedVath. In contrast, product

type 3 has the smaller arrival rate while product type 4 has the larger arrival rate with
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CV=53.7234%. Thus, the wider reduction in setup time for product type 4 leads to the larger
gap between the setup times of product type 3 and product type 4 as comparéd=0ith
which is apparent in Figures 5-21(g) to 5-21(i). Product type 8 also has the smaller arrival rate
as Cv=27.9753% and the larger arrival rate @¥=53.7234%. However, its setup time
reduction is limited a€V=53.7234% because of the shorter average setup time. Thus, the
setup times of product type 8 upon varying @s are nearly equal, whether to adopt the

FSR analytic model or to implement the FSR limit analytic model.

A comparison of the results of setup time for single jobs generated by the simulation
model and the analytic model suggests that the error percentage of estimated setup time is
defined by Equation (5-20).

Error g, = iM E[ S, (o |~ %, e (5-20)

Figures 5-22(a) to 5-22(c) show the mean errors of the estimated setup time between FSR
limit analytic model and the simulation model by varying @ws of job arrival rate, total

arrival rates, and run times:. Meanwhile, the mean errors of estimated setup time for each
product type between FSR-limit analytic model and simulation model by varyil@y/thef

job arrival rate and the run times are shown by Figures 5-22(d) to 5-22(f).

As setup time depends on the probability of setups, the behavior of the error of estimated
setup time in Figure 5-22 is similar to that in Figure 5-19. From shorter to longer run time, the
error of estimated setup time decreases and the lower error of estimated setup time is attained
at longer run time, regardless of {@¥s of job arrival rate and total arrival rates. The overall
means of the error of estimated setup time range from -0.856 to -0.63A changes from 8
hours to 24 hours. Meanwhile, wh€W equals 27.9753%, the lowest error of estimated setup
time is obtained. Finally, when total arrival rate increases, the error of estimated setup time
increases correspondingly; that is, lower error of estimated setup time occurs at lower levels

of machine utilization rate.
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Figure 5-22 Mean errors of estimated setup time between FSR analytic model and simulation
model

In Figure 5-23, the scatter plot is used to.investigate the relationship between the errors
of estimated setup time under FSR and the arrival rates among eight product types. Owing to
the same values for the arrival rates, the errors are vertical @hequal to zero. Moreover,
the values of the errors are negative growth as the values of the arrival rates increase when CV
equal to 27.9753% and 53.7234% because the behavior of the error of estimated setup time in
Figure 5-22 is similar to the behavior of the error of estimated probability of setups. Thus, the
moderate dispersion of job arrival rate among various types is related to the accuracy of the

proposed FSR analytic model in estimating the setup time.

In general, the number of setups and the setup time can be estimated accurately using our
models to a certain extent. Based on the analysis, better accuracy of the proposed FSR
analytic models in estimating the number of setups and setup time can be obtained for longer
run times, smaller total arrival rates, and moderate dispersion of job arrival rates among
various types. This result can be offered to managers as reference for evaluating capacity loss

and others.
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Figure 5-23 Scatter plot for errors of estimated setup time under FSR

5.3.3 Sensitivity analysis of thereduction of number of setupsfor each product type

The differences of the expected number-of setups between FIFO and FSR are defined by
the expected number of setups under FIFO minus the expected number of setups under FSR.
The mean of the difference of the expected number of setups between FIFO and FSR for each
product type by varying theVs of job arrival rate is illustrated in Figure 5-24(a).
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Figure 5-24 Mean of the difference of the expected number of setups between FIFO and FSR
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The mean of the difference of the expected number of setups between FIFO and FSR for
each product type is constant whevf equals zero. Moreover, the dispersion of the mean of
the difference of the expected number of setups between FIFO and FSR increasag, with
which implies that the extreme value of arrival rate parameters among various product type
increases and can influence the performance of the FSR analytic model in reducing setup
frequency. The positive correlation coefficients are calculated as 0.998 and 0.991 when the
CVs equal 27.9753% and 53.7234%, respectively. These positive correlation coefficients
indicate a relationship between the mean of the difference of the expected number of setups
between FIFO and FSR and the arrival rate parameters among eight product types. As values
for the arrival rate parameters among eight product types increase, the values for reducing
setup frequencylso increase. Therefore, by replacing FIFO with FSR, the largest reduction
of the number of setups occurs@f =53.7234%, which is apparent in Figures 5-24(b) and
5-24(c).

5.3.4 Sensitivity analysis of the reduction of expected setup timefor each product type

The differences of the expected setup time between FIFO and FSR are defined by the
expected setup time under-FIFO minus the expected setup time under FSR, and the mean of
the difference of the expected setup time between FIFO and FSR for each product type by
varying theCVs of job arrival rate 'is displayed in Figure 5-25(a). The dispersion of the mean
of the difference of the expected setup-time between FIFO and FSR increas€¥ withe
correlation coefficients are positive and are calculated as 0.906 and 0.845 w¥fis tpual
27.9753 and 53.7234%, respectively. Therefore, the arrival rate parameters among eight
product types and the mean of the difference of the expected setup time tend to increase and

decrease, respectively, along with each other.
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Figure 5-25 Mean of the difference of the expected setup time between FIFO and FSR
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Job arrivals tend to concentrate on fewer product type€Vascreases. The types
obtaining high possibilities of setup reduction leading to the largest reductions of the setup
time occur at C\£53.7234%, which are showed in Figures 5-25(b) and 5-25(c).

5.3.5 Evaluation of the effect on the setup time reduction

A set of numerical data are used to evaluate the effect of the decision criterion developed
in Section 4.2.3, by which we can find the conditions that the setup time can be saved

significantly by replacing FIFO with FSR. According to Equation (4-24), letting DS represent

E[DSriro-rx] and CP represemza\/Var[D_SHFo-Fsa], and then the setup time can be

reduced significantly by applying FSR instead of FIFO if DS is larger than CP.

There are two control factors included, the total arrival r@teaiid the coefficient of

variation among job arrival rate€Y). The total arrival raté (jobs in 60 seconds) is given by

A= 52?:1)lj , Where 0.880=1.00. The};/parameters an@V are identical to those in Table

5-1. The vector of job processing timeT(-among-eight product typemnd the matrix of
sequence-dependent setup-tirs&)(are consistent with the experimental design in Section
5.1. Set the run timeR() to 8 hours and. to 0.05, Thus, two lines, DS and CP, are depicted
in Figure 5-26(a) ~ 5-26(c)-by varying the total arrival rates from 0.0088 to 0.0100 and for
three levels oCV. We note that the intersection-of the two lines, DS and CP, is the condition

identified by the decision criterion developed in Section 4.2.3.
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Figure 5-26 Magnitudes of DS and CP by varying the total arrival rate anG\tkef job
arrival rate
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In Figure 5-26(a) ~ 5-26(c), according to the level<¥f the intersections of the two
lines, DS and CP, occur at various levels of total arrival ragdter the identification of the
intersection point of CP and DS, the setup time reduction would be increasing as the raising of
total arrival rate. Therefore, this implies that the total arrival rate of various types of incoming

jobs and the mix of the arriving rates of various types of job both affect the effect in reducing

the setup time by applying FSR to replace FIFO.
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6. Conclusions and futureresearch

6.1 Conclusions

This research considers a system with finite capacity to process several types of jobs; a
setup process is necessary before the machine is switched from the current setting to a
different one, and this cannot be regarded as a part of the job processing time. With
uncertainties in job arrival time and types of demand, setting an output target may be
significantly different from actual scenarios due to possible heavy capacity loss and difficulty
in calculating the required setup time. Thus, a relatively simply yet accurate analytic method
Is established to estimate the lead time for each product type by FIFO rule in order to facilitate
the performance evaluation from the customer’s perspective. Besides, FSR analytic model is
developed to estimate expected setup time and service time. The effect on capacity wastage
due to changes in machine setting. among:several product types can then be evaluated. Due to
the difficulty in obtaining analytical solutions for the expected setup time and service time,
the numerical solutions of expected setup time and service time are provided in this research.

The lead time for each product type Is estimated with the summation of the expected
waiting time in queue and the expected service time for each product type, where the service
time of jobs includes both its setup.time and its processing time. Results of the proposed FIFO
analytic model in estimating service time and waiting time in queue are compared with
simulation results. Computational results show that overall means of the error percentages of
estimated service time and waiting time in queue are equal to 4.7551% and 4.4548%,
respectively. Meanwhile, the dispersions of error percentages of estimated service time,
waiting time in queue, and lead time for each product type are increasing as the coefficient of
variation among job arrival rate€C{) becomes larger. Generally speaking, these error

percentages can be controlled in an acceptable range.

As regards the results of the proposed FSR analytic model, it is also compared with
simulation results. Computational results show that error percentages of estimated setups and
setup time are larger whe@V and total arrival rate increase, but they are reduced when run
time is lengthened. Generally speaking, the smaller error percentage of estimated setups and
setup time can be obtained with longer run time, smaller total arrival rate, and moderate

dispersion of job arrival rate among various types. In this paper, we also provide the
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sensitivity analyses to discuss how the reductions of the setup frequency and the setup time
can be affected by the changes of three factovs {, andRT). Compared with FIFO, FSR

can be used to reduce the frequency of setups and the length of the setup time, hence leading
to a reduction in machine utilization rate, especially at conditions of high total arrival rate and

high dispersion of arrival rates among several types of job.

The FIFO analytic model can estimate accurately the service time and waiting time, and
then evaluate efficiently the lead time based on the estimations of the service time and waiting
time. Managers can utilize the lead time prediction to set the due date of customer orders. The
FSR models can, to some extent, estimate accurately the setup time and evaluate efficiently
the capacity of wastage arising from switching the machine setting responding to uncertainties
in job arrivals. Managers can utilize the expected setup time as threshold and tolerance during

production planning.
6.2 Futureresearch

This research proposes the lead time estimation of single bottleneck machine to represent
a production system. In the future, we can extend the result to the parallel-machine or flexible
flow shop environment. These types of problems are applicable in process industry. Then, the
extreme error percentages affect the performance of the analytic model in estimating lead time
when the mix of the arrival rates of.various_jeb types is unbalanced. Thus, we can divide the
mix of the arrival rates of various™ job" types into several subgroups for balancing the
dispersion within subgroups to reduce the influence of the extreme error percentages on the
performance of the analytic model in estimating lead time.

Moreover, the sequence of batches by FSR is sorted according to arrival time of the first
jobs in each batch in increasing order. In the future, the rule of sorting batches may change to
using the setup time for any two batches in increasing order in order to minimize total setup

time.
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Appendixes
Appendix A:
To prove the following statement:

ETSTZ,FIFO = Priro ETSI—l,FIFO * Priro ETSTl,FIFO = 2:0F|Fo ETSTl,FIFO
Proof:

According to Equation (6TST2fro can be shown as

J Ajl J Ajz
ETSTZ,FIFO = p3,FIFOZ7 ‘1 SJ FIFO c1 r z A +
jl:]_ j2=1
l¢J
J A J
> o 3k
e A j? S .FlFOrZ::l Acz r?j
r2#j?
where
s
=1
~)
I A, A J A J
j rk - j
pt - =>» —| pt. +P.
ij::l A i s FlFogl: Pk ;/] j SJF”:O; S
rk¢jk r#]

(A.1)
(A.2)
(A.3)
ETST, riro (A.4)
P2 riro

according to Equation (5). From Equation (A.3) and Equation (A4BT.rro0 can be

rewritten as

ETSTlFIFO +i/111 ET lFIFO}

b FIFO =1 A P, firo

ETSI—Z FIFO pS FIFO {

A,
_ Psriro DSFEO ETST p3 FIFO Z /; ETST, ;o

P2 riro b FIFO ji=1
= PeroETST firo + Prieo ETST firo
= Drro ETSTl,FIFO

where p, o = (1= Pro )Piro and Psriro = (1= Priro )Piiro
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It has now been proven that



ETST,riro can be reformulated as the function of EfSfo.
Appendix B:
Mathematical induction can be used to prove that the statement
ETST, - riro = PEoETST firo + Prieo ETST, s ko (B.1)
holds for n=3.
Proof:

(1) Base case: Show that the statement holds+d n
According to Equation (A.1) in Appendix A, we obtain the following:

ETST, riro = PrroETST piro + Priro ETST g0 (B.2)

From Equation (B.1), we have‘this equation:
ETSI—Z,FIFO pFIFO ETSTl FIFO + IOFIFO ETSI—S— 2FIFO (Bs)
Thus, they are equal.

(2) Inductive step: Show that BETST4 k0 bolds, thenETST,rro also holds. This can be

done as follows.
Suppos&TST .1 riro holds, such that

J J n-1 A I A,
ETST 1rir0 = pnFIFOZ z (H 1 ] +Psyjk‘,:|,:o 21: ﬁsrkjk (B.4)

=1 =
= pFIFO ETSTl FIFO + pFIFO ETSTn 2 FIFO

It must then be shown thBT ST, ro holds, such that
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E-I—STn,FI FO

J J n J )
k
j— r
= Pray, FlFOZ Z H Z ptjk + Ps,jk,FIFO Z c“ Srkjk
=1 jh=1 k=1 rk:lk A

r"#j

_ I A, J /]rl 3 Jd (o (B.5)
= pn+1,FIFOZ7] ptj1+Ps,j1,FIFOr1:1 /]_clsrlj1 {; Zl(l_! H

i*=1
rizjt

33 n I ),
2 Z — 2P D TS
S] ,FIFO Ack rkjk
J2_1 jn_l k=2 rk_

rkzjk

Note that we have the following relations according to Equation (B.4):

ZZ( AA j=1 (8.6)

33 (A, )| J A, ETST
j ¢ _ n-1,FIFO
ZZ(D J z Py +Ps'jk'F|Fork:1 /]Tsrkjk ) Pn FiFo ®1

rkz jk

From Equation (A.3), Equation (A.4), Equation (B.6), and Equation (ET3T,rro Can be

rewritten as follows:

ETST, s A, ETST
ETSTn,FIFO = pn+l,FIFO{ LAFO L NY T n 1FIFO}

2 FIFO jt=1 A pn FIFO
_ Prapro ETST pn+1 FIFO z J ETST
1rro T n-1,FIFO
P2 firo hFIFO ji=1 A (B.8)
/1
= pFIFO ETSI—1 riro T PrroETST,

= pFIFO ETSTl FIFO + pFIFO E-I_STn 1FIFO

where p, reo = (1= Prro ) Pheo- This shows that ETSEiro indeed holds. Since both the base
case and the inductive step have been proven, it has now also been proven by mathematical

induction that ETSJ 1 riro in Equation (7-2) holds forza 3.
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Appendix C:
To prove the following statement:

J

an/le'j'

F!'i'rpooE[Vvq:j'FlFO]:ijHFo (1_pF|FO) le . +1+C2 E[VvquM/G/l (Cl)
;nj/mj v
Proof:
The ratio n*Y%, E[TST, JFIFO]/E[TSF] wen Can be shown as
S t +P v A
nj + r
nj‘lz E[TSI'”’HFO] WJ,Z.Z Pt +F), FIFO%AC Sir
- =t
| = (C.2)
E[TST]M/Gu 1+C2 0
2 ’ ]Z:; ~ Prl:Tij = RT:' Sj FIFOZ AC jr
r¢J

whereE[TST]wcn represents the expected total service time of all waiting jobs ahead in queue
for the M/G/1 queuing model and'is shown BETST]wci1=E[Ng E[STriro], where E[Ng]

represents the expected number of jobs in queue and can be computed as
[(1+C2)/2[P2eo /L~ Pero)] and E[STrro] can be calculated by the probability mass

function of ST;; riroin Equation (3-3). IRT is large enough, then the following holds:

lim n; 12 E[TST, 10 | = o CZ E[TST],, s (C.3)
where Rllrmer['I'” <RT]=1.
Next, the ratio n; "3, E[ Rj,FIFO]/E[ R..c. Can be given by
y 1< Tan .
E[R B 1o '
[ ]M/G/l ;{ZjlnlJ ZJ: /]PI’[TU < RT]A'J' /]ZZPI’[ ; J
=1 =11 J=L =

whereE[R]mc1 represents the expected residual service time foMil#1l queuing model
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and is shown a€[Rlwe1= AE[ST2]/2, where the second moment of service time

(E[ST2.,]) can be calculated by the probability mass functioBTgkiroin Equation (3-3). If

RT is large enough, then the following holds:

J
~ nj Z AJA';

Rumoo n]lz EI:Rj,FIFO:I Wi Oriro J:1J|:lnj E[R]M/G/l
133w
e (C.5)
J
.Z_;‘ni/]JA';
:ijFIFOJ_—E[R]M/Gll

where F!%m PrT; <RT] =1.
According to Equation (C.3) and Equation (C.SRI)rm HW, mrol Can be shown as

R!HPOOE[ q]FIFO] “m n] Z {EI:Rj,FlFo:I"'EI:TSTij,FlFo]}
Zn AL

=W, Lriro -
> nAA

TN
j=1

2Wj

[R]M/Gll [ 1+ C2 E[TST]M/GII

J

Z ;A4 0° (C.6)
=W, pFIFOJ—E[R]M/G/l o E[SrFIFO]

znj/]A',' 1= Priro
j=1

nA A
_WpFIFOE[R] ZJ: — Fore E[STHFO]
MG/ ZI‘I-/]N 1= Preo E[R]M/G/l

1777
=1

where

AE| ST?
E[R]M/G/l [ 2FIFO:| :(1_'0F'FO) EI:VVq]M/G/l (C.7)

0 E[STFIFO] _ 2pFIFOE[STFIFO] _ ZE[SI-FIFO] 2 (C.8)
FIFO E[R]M/G/1 /]E[Sszmo] E[STFZ,FO] 1+C2

103



Then, F!;m E[er,mpo] can be rewritten as follows:

J

an/le'j'
j=1

F!ermE[VVq,j,HFo]:ijHFO (1_pFIFO) J +1+C2 E[\Nq]M/Gﬂ (C.9)

D nAn"

j=1

It has now been proven that the expected mean waiting time of the produgtjiygseis

proportional to the expected waiting time for théG/1 queuing theory wheRT is long

enough.
Appendix D:
To prove the following statement:

J

2 AL
d—ijFIFO (1_10FIFO) j:Jl +1+2C2 >0 (D.1)
p n V.
FIFO znj/‘Aj
j=1
Proof:
The gradient in Equation’(10-1) can be reformulated as
>
nAAN
s 17 2,02
a; = W;Priro (1_10FIFO) JJl o (D.2)

oo PE o]
=1

becauseE[ ST ] =(L+C))E ST, o]> and priro=AE[STriro]. The first derivative of this

gradientwith respect togro is then given by the following:

J

D MAL

da, -= 6,07
d ==, (120000 ) 7 W, AE ;Ff;
Priro an/]A'j' [ F'F0]
=1
| (D.3)
Z;nj/ijA'}
:Wj(l_ 27F|FO)I_J +Wj 1+C2

D AL
=1
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According to Equation (C.8)2/(1+C?)> 0., becauseE[ST..]=HR, .- Thus,

we get
J
2 AL
0']- j=1
d Z W, (1_ ZpFIFO).]—+3ijFIFO
PriFo z nj/‘A';
j=1

) , (D.4)
Z_;nj/hA'} Zinj/]jA';
2W, Opeo| 3 25 +W;

i3 >0
DAL DAL
=1 =1

where Y] nAAT 2 Y7 n A AT, andJ>0 and O<prro=1 with 4;>0 for allj. It has now

been proven that the first derivative of the gradignwith respect toprro is a positive
number.

Appendix E:

To prove the following statement:

lim E[Vqu,j,FlFO] =B E[RZ}

RT -

+2B,E[w, T

M1G/1

(E.1)

M./G/1

Proof:

When RT is long enough, the second moment of waiting time of product jtypbs
under FIFO in Equation (3-27) can be shown as

n.

tim E[W], o )= I 'Y E[R o [+ im " E[TST 0]+

N (E.2)
RTJioom rgl;{ E[Rj,FIFO] E[TSTij,FIFo }}

First, the ratio lim n*S B[R} ¢l / HRY,,, canbe shown as
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-1
n; 1 J J N .
7Y Rio] W"’FFo{s(E”JJ Z}

lim 1= = lim

"o EI:RZ:IM/G/l AN S
~ , PriT. <RT |A7
B(ZHJ 22 P RT)e E3)
3
Z_lniAJA'l"
Wi Priro 5
2 ALY
=1
m J Ar
Aj= Ps,j,FIFOZ_( pt; +s; )3 +(1_ Ps,j,FIFO) pt? (E.4)

= A¢

r£j
where the second moment of the residual service timelf/@Gr1l queueing system is given by
E[R?],y,cn =AH STS./ 3, E[STS..] is the third moment of the service time under FIFO
and can be computed according to the probability mass functi®h; gfoin Equation (3-3),

and lim Pr[T, < RT] =1. Thus, the"limit of N SLER qeol s the function ofE[R:wen

whenRT approaches infinity:

Second, the second moment of total service time of all waiting jobs in queue ahead of the

product typg jobs can be expressed as Equation (E.5).

n]_lz EI:TS-I—ijZ,FlFO:I = nj_lzz ES—I—S-I—n—l,ij JFIFO
i=1 i=1 n=2
=YY" BT, SRT|p, oSSy + (E5)
i=1 n=2
Ny E’Tij < RT} Pn o PTOC

i=1

>
1l
N

The limits of nle&‘lZ?:szfﬁj < RT]P,rroSSr and an?:‘lZ?:szfﬁj < RT1P, riroPrody
divide by E[N,]y,c.H ST2.J] asRT approaches infinity can be shown in Equation (E.6)

and Equation (E.7). wherB[Nq] e represents the expected number of jobs in queue for the
M/G/1 queuing model and can be computed@s C?)/2][ 030 /1~ Prro)] » aNdE[STrirq]

and E[STZ.,] represent the first and second moments of the service time under FIFO and
can be computed by the probability mass functiorShfriro in Equation (3-3) and are

expressed as Equation (E.8) and Equation (E.9).
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E
M
Y
=
-
IN
s

] PrriroS Sy

. = &= 2

lim 1=l n=2 =W, (E.6)
KT E Nq:IM/G/l E[STFZ'FO] | 1+C3

n;* j iPr[Tij < RT | p, rroPrody n? i iPr[Tij <RT | p, peoPrody
lim i=1 n=2 = lim i=1 n=2
KT E Nq]M/GllE[STFZ'FO] o E[N} E[STFZIFO]Z [ FIFO]2 (E7)
91miGn E[STFIFO]
—w 2Pxik0 2
"1~ Prro (1+ CV2)2

where

(E.8)
J
{PSJ'F'FOE%( Pty +s; ) +(1_ Ps,j,FlFo) pt; }

r£j

(E.9)
J
{Ps,j,FFOZ]-%( pt;+§; )2 +(1_ PS,j,FIFO) ptjz}

Thus, the limit of n/*>" E[TST,*. o] can be derived as the function of the square of the

expected waiting time fdvl/G/1 queueing systerrE([V\/q]f,,,G,l) asRT approaches infinity and
is given by Equation (E.10).

i 073 E[TST o

2 200k0 2 E[STae | )
{W] 1+C? Y 1- Prro (1+CV2)2] E[Nq:IM/(Bll E[STFIFO]Z E[STFlFo] (E.10)

_ _ 2 Priro 2 2
- 2Wi (1 IOFIFO)1+CV2 {1"' 1- Oppo 1+ Cv2 E[VVq:IM/Gll

where
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E|ST;
ERI »
E[STFIFO]
_AE[SI-FZIFO] _14+C P
E[VVQ:IM/G/]_ - 2(1_10FIFO) T oo E[STFIFO] (E.12)

Finally, the limit of 2n*Y% E[R; (o ]E[TST, reol  divide by E[R]y,c, HTST] 6, as

RT approaches infinity is considered and is given by Equation (E.13), V&8 |wci1
represents the expected total service time of all waiting jobs ahead in queue NbGthe

queuing model and is shown asTB[1wcin= E[NglE[STriro]-

J

Zn;lz_jl‘t{ E[RinlFO] E[TSTij,HFo]} 5 ]Z:; njAjA';

lim = =2W. O (E.13)
e E[R], o, E[TST], ., G S
j=1
" : Ar 2 2
A = Ps,j,FIFOZF(ptj +s”.) +(1— Ps,,j,FlFO) pt; (E.14)
r=1

r£j

From Equation (E.13), the limit o2n "> E[R, -0 ]E[TST; o] can be also derived as the
function of the square of the expected waiting timeMdéG/1 queueing systemEQ\Nq]fMG,l)

as RTapproaches infinity and is given by Equation (E.15).

n.

tim 207 {E[R, 10 |E[TST, o |

J

2 ;nM;A'} E[RE, . E[N,] E[STero] (E.15)
117FIFO 1+Cv2 inj/m.; MIGH A-mren E[R]M/G/l |
=1
— | ji:;,ni)'jA'i' E[W T
= 2W,; Oti0 \ 1~ Priro 2 3 9 m/en
1+C jZ:;‘nj)lA'}
where
(E.16)

E[R]M/G/l = (1_pF'F0) E[Vvq:'M/Gll
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E[STFIFO]: E[STF|FO] _ 2E[STF|F0]2 = ok 2 (EA7)
E[R]M/Gll /‘EI:STFZIFO]/Z pFIFOEI:STFZH:O} AFO1+¢?

Referring Equation (E.3), Equation (E.10) and Equation (E.15), the IimEE[kmzvj,FlFo]

can be obtained as Equation (E.18).

2

lim E[Vqu'j":lFo]:ﬂle[RZ}M/Gll+2ﬂ2]E|:VVq]M/G/1 (E.18)

RT -

where

J

Z;‘n")le"'"
B, :ijFu:o]_J—Sl (E.19)

3 n Aa"
=1

J

nAA"
By =W, (1_pFIFO) 2 2| 1+ Fe 2 2 +:0|§|Foi >0 (E.20)
1+C, 1= Prpo 1+ C Zlnj/]A']{
=

It has now been proven that the second moment of the waiting time of the prodygbbgpe
is proportional to the second moment of the residual service time and the square of the

expected waiting time for the/f/1 queuing theory when R§ long enough.

Appendix F:

To prove the following statement:

J
q 5 0 5 , Z;;ni/]jA’i'
w, (1- 1+-—HFO + = (>0 F.1
i i ( pF.Fo)1+CV2 - O pF.Foin_W (F.1)
J J
=

B =

Proof:

The gradiengy; in Equation (3-37) can be reformulated as
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J
Zn.)l.A'.'
182]- =W 2[)EIFO_ZIOI:EIFO + 4'IOIEIFO + ZOéIFO_ IEIFO j=1 b (F2)

j AZE[SI-FZIFO] /]4E[SI-F2IFO]4 /]ZE[STFZ'FO] inj)lA'j'
j=1

because[2/(1+¢2)] =203, /A’E[ST2,] . The first derivative of the gradienty with
respect tyrro IS then given by the following:

J
> nAL
d'BZi =W 4pFIFO_6pI§IFO + zqoén:o + &)EIFO_ 1Q)I§IFO =1 s

drro | VE[STo]  AE[STio] AE[STio] 3y
j=1

2
—w. 4P¢iro -3 2 + 2 +
I AZE[STFZIFO} 1+CV2 1+CV2
J
L Al (F.3)
( Priro ~ 5’|§|Fo) 2 jzal
1+CV an/]Aljl
j=1

J

n.AA"

=W, 2 5 2 —p2 ; Z + 1 4| p —§ 2+£3
'l+CV2 1+Cv2 FIFO in_/]A'( D FIFO

J J

j=1

In Equation (3.22), the gradient; =2/(1+C?)=1 if prro=1 whenRT is long enough,
where lim w; =1. Thus, we getdB,; /dpqe >0, where 37 n AN 237 nAA7, andJ

>0 and < priro=1 with ;>0 for allj. It has now been proven that the first derivative of the

gradientf,; with respect teriro is a positive number.
Appendix G:
To prove the following statement:

dg, da’
- > - G1
o dp 9 (Prro ) = 92 (Priro) (G.1)

Proof:

According to Equation (3.22) and Equation (3.25), the first derivativeejzofand Boi
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with respect to pro can be reformulated as Equation (G.2) and Equation (G.3).

da? _ oy 99
dPreo : d e
3 2
;nj/le’j’
= $FIFO( ]'_pFIFO)( o pFIFO) ]_J— +

D n AN (G.2)
i=1
J
5 IV 5 Y
27F|Fo( & bFIFO) 2 jzjl +610FIFO £—2j

=1

J

nAA"
dB,, (2)2 , 2;"‘ 2[2 j
=5 -5p, ! + +40.06—3 (G.3)
d oo 1+C\f o 1+Cv2 Zj:nj/]A'j' 1+Cv2 Priro e
j=1

where Rllrpwwj =1. The difference betweer s, /dp; ., and daf/dpFlFo IS given by
Equation (G.4).

dg,; _ da; AR g
- =(5-6 + +4P0r0 =3 |-
dpFIFO dpFIFO ( Pero ) 1+ C\/2 1+C7 Priro Prreo

V

J 2

;nj/]jA’j'
ﬂHFo( _1'0FIFO)( -1 :[%Fo) J_J— -
an)IA’j'
j=1
P, ) ;nj)le'; (G4)

2 J
G > n AN
i=1

2( 5 @FIFO)+( +4pFIFO_3]_
FIFO
J J
Z;nj/‘jA'f Z;,nj/‘jA'f
5 ﬁFIFO( _1'0FIFO)( 1 [gIFO)]_J—'*'SpFlFo -50% 0

i n A" > n AN
i=1 j=1

where 2/(1+C?)= 1, and
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9, (IOFIFO) = (5_ 6pFIFO) +( +400e0 — 3j (G.5)

FIFO

J J
;ni)'jA'i' ;ni)'jA'i'

9, (pFIFO) = Priro J_J— 8- 5pFIFO + 2( 1- pFIFO)( 1- 20F|FO)J_J— (G-6)
> n AN > n AN
=1 j=1

Thus, an inequality expressed 8%, /d oo ~da’ /dpgro 2 9, (Prro) — 92 (Preo) can be
derived.
Appendix H:

To prove the following statement:

d1(oriFo) — Ga(priFo) >0 .
where g(priro) and g(priro) are.shown as Equation (3-42) and Equation (3-43).
Proof:

The law of trichotomy reminds us-that there exist three distinct possibilities, exactly one
of the following holds:

Case 1.91(priFo) — 93(priFo) <O (H.2)
Case Il.g1(priro) — 93(priF0) =0 (H.3)
Case lll. d(priro) —093(priFo) >0 (H.3)

For Case | and Case I, an inequality expressed as Equation (H.4) can be derived. Moreover,

another inequality expressed as Equation (H.5) can be got under conditign(dhab) —
g3(priFo) > 0.

N ] 2

ZniAin _ZpFIFO +2

E— s (H.4)
J - .
zn-/]A'-' 8= S0rro 2( - IOFIFO)( - mFIFO)
72
j=1
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3
n 2
znj/] A; ~2Ppp0 t

i= IOF|FO

" 8_ SPriro + 2( 1- pFIFO)( I- 20F|Fo)
Zn AL

(H.5)

where 0 <priro=1 and then

2

Priro

2_
8= 300 t 2( 1- IOFIFO)( - %FIFO) <

In Case | and Case II, the solution seg;afan be shown as Equation (H.6) and may be

~20n0 *

N

more thari. This is illegitimate becaus& j.,A; = A . In Case llI, the solution set gfcan be

shown as Equation (H.6) and is legitimate.

J J 2

21(3/1].)njA'; zzl(zA)njA'; =422/ (H.6)
i= i=

J J 2

Z;(sAj)njA'j'<Z;(2/1)njA'}:>/1j <3/ (H.7)
j= i=

Therefore an inequality expresse®a®riro) — 93(priFo) = 0 can be derived, whede> 1.

Appendix I:
The variance ofDSriro-rz (Var[DSrro-rsr] ) is determined as the follows:

The variance ofDSriro-rs IS given by using the definition of covariance and is defined
as the equation below.

n;

i
j=1 j=1i=1

Var [ DSriro-ren | =V l(in,] (S0 - JFSR)]

(Z njj ZZVW [S\j,HFo - S\j,FSR]

i=1 (ll)

=

(é L ] éi:1{Var[SJ—,F.FO]+Var[SLFSR}_
2680 S o)

where Var[Sj,FIFO] = HSJ’Z,FIFO] - Sj,Fch] > and Var[Sj,FSR] = E[SIZFSR] - Sj,FSJ ?
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According to the probability mass functions &frro and Sjrs, then E[SiFlFO] and
E[S,szFSR] are respectively expressed as Equations (1.2) and (1.3). For associated reference of

the probability mass functions of &0, refer to Equation (3-3).

J
E[sz,HFo] = Prl:Tij > RT]xOZ + Pr[T”- = RT}(]-_ Ps,j,FIFO)S + Psu FIFOE].%%ZI'
r#]
(1.2)

—_ 2 Ar 2
- Ps,ij ,FIFOZF S”
r=1

r#j

E[S'r | =PI >RT [x0*+ P T, <RT |(1-P | )] +P; FSRZ
r#—l
1.3
i S (1.3)
- Ps,ij,FSRZF Sr]
r=1
r£j
The covariance for two.random.  variableS;rro and Sjrr is defined by
COV(Sj,FIFO ’Sj,FSR)z E[Sj,FIFOSj,FSR]_ E[Sj,HFo]E[Sj,Fsp] . LetY be equal toY=S;riroS;Fs;
whereY is a discrete distribution having two possible values labelled-bh§ and Y =s; s,..,
r=1,2,...,.Jand r#j,andr =1, 2,...,Jand r' £ j. According to the probability mass
functions of §jrro and §jrx, the probability mass function of the random variailés

shown as Equation (1.4).

23 AN
1_22 Foii miroPsii Fr 2° 2 ify=0
r=1r'=1
PI’[Y = y] = r£jr'¢j (1.4)
A A

P

sij,FIFO " sjij FSR FF )

ify = SiS

Then the expected value ofc#n be calculated as Equation (I.5).

E[Y] = EI:S],FIFOSj,FSR]

r=1

r=1r'=1
rj r£jr'zj

J A A J /1 /1
I~ ZZPS” FIFO su FSR/]r /]_rc X0+zz Psu FIFO su FSR/] /1c JrSr| (|-5)
:
2

)
= R miro Psij Fr Z/}—LS”
r=1

r£j
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Substituting E[S; rr0Sj el » E[S;rrol » and E[S; el iNt0 COV(S; o 1S pr) s the

covariance for two random variabl8sriro andS; e is rewritten as Equation (1.6).

COV(SIj,FlFo ’Sj,FSR) = E[Sj,FIFOSj,FSR} - E[Slj,Fu:o] E[Sj,FSR]

2
3. A
:Ps,ij,FIFOPs,ij,FSR Zl:/]_::srj -
rj (|.6)
J /]r J /]r
Ps,ij,FIFO ZFSH‘ Ps,ij,FSR ZFSH‘
r=1 r=1
r£j r#j

= 0
Then the variance oDSrro-rs is given Equation (1.7).

N

>

j=1i=1

{E[Sierol* E[ o]~
E[Sj,FIFOT . E[Sjm]z}

J 2 i) J /]r , J /L ,
znj z Psij,FIFOéF Srj A Ps,ij,FSR;F Srj

ar | DSriro-r | = (z n, ]

=1

r#j rj

2 2 (1.7)
J Ar J Ar

Ps,ij.FIFOZF Srj + Ps,ij ,FSRZF Srj
r=1 r=1
r#j r#j

J
ZA_:;STZJ (Ps,ij,FIFO + Ps,ij ,FSR) -

J 2o P i , ,
an] z ;/‘_rcsrj (Ps,ij,FIFO+Ps,ij,FSR)
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