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1. Introduction 

1.1 Research background and motivation 

Queuing delay models in the manufacturing system have attracted great attention from 

many researchers. These models constitute a majority of the manufacturing lead time. Lead 

time is generally defined as the duration of job arrival and job completion, which can be 

divided into several manufacturing processes such as pre-production waiting time, setup time, 

and processing time. The manufacturer should provide the estimated lead time to customers 

so that they will have an idea how long it will take to complete their job order. Thus, lead time 

has a significant impact on manufacturing schedule because it is extensively used to 

determine the target completion date of a customer’s order even during sales negotiation 

(Gordon et al. [1]). 

Two measures can be used in evaluating the performance of a lead time estimate: first is 

accuracy and the second is precision. Accuracy is a measure of how closely the estimated lead 

time agrees with the actual lead time, that is to say, lead time prediction. If lead time 

prediction can be significantly improved, then the costs incurred between actual completion 

times and committed delivery dates can be reduced based on lead time prediction. These costs, 

reflected in various earliness- and tardiness-related measures, are considered as key indicators 

of performance in the negotiation of the due date with the customer (Enns [2]). Precision is a 

measure of the variability of the lead time, which can be used to establish appropriate safety 

stock levels and safety lead times as protection in the uncertainties in demand and supply (e.g., 

Chopra et al. [3], Wang and Hill [4], Ruiz-Torres and Mahmoodi [5], Van Kampen et al. [6]). 

In general, if variability in the lead time estimates is low, then better estimates can be obtained 

and more accurate due dates can be given.  

For a single finite-capacity machine that can process several product types, the setup is 

necessary to adjust current machine settings in order to complete a particular job. It was 

reported that 20% or even as much as 50% loss of available capacity may arise from setup 

activities (Liu and Chang [7], Trovinger and Bohn [8]). Market demand, uncertainties in job 

arrival time and types of product, make the setup estimation time very complicated. Hence 

setting output targets may have significant errors compared with actual levels due to the 

possible heavy loss of capacity and the difficulty in calculating required setup time. This gap 
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cannot be disregarded. At least three additional factors affect the magnitude of required setup 

time. They are as follows:  

I. The total arrival rate of all types of incoming jobs. 

II.  The combination of the arrival rates of various types of jobs. 

III.  The dispatching rule applied in selecting the next job for processing by the machine.  

If a lengthy setup is required in product type change, then the setup activities may 

exhaust the machine capacity and increase the work-in-process (WIP). An overloaded system 

with large WIP would cause long waiting time, resulting in extended lead time and late job 

deliveries. 

Based on the discussion, the difficulty in calculating the required setup time leads to the 

challenge of developing a system capable of accurately estimating waiting time. Therefore, 

this research aims to develop a relatively simple yet accurate model of queuing delays with 

setup time. 

1.2 Research goals 

Setup activities may cause wastage in machine capacity and extend job lead time. 

Uncertainties in job arrival time and product type can complicate the calculation of required 

setup time and the setting of output target. Thus, this research aims to estimate the lead time 

for each product type using the First-In First-Out (FIFO) rule to facilitate performance 

evaluation from the customer’s perspective. 

The family-based scheduling rule (FSR), which consecutively handles jobs belonging to 

the same product family, and which require the same machine setting, can be used to reduce 

setup frequency and amount of setup time. Both expected setup time and service time are 

estimated by FSR analytic model to efficiently evaluate the effects on capacity saving. The 

effect of FSR in reducing setup time and capacity loss is explored further by comparing the 

results with those of the FIFO rule. 

1.3 Research domain and assumptions 

In order to simplify the problem, this research focuses on the production system with a 

single finite-capacity machine providing several different product types of services for jobs, 
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and is built under an environment with the assumptions: 

I. The inter-arrival time of a specific product type of job is distributed independently 

and exponentially. 

II.  Jobs are serviced by FIFO rule and FSR for the next job. 

III.  A setup time is incurred between jobs of different product. 

IV.  Sum of the processing time and the setup time is treated as the service time. 

1.4 Research process 

Figure 1-1 is the flowchart of this research. 

 
Figure 1-1 Research Process 
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2. Literature Review 

As stated in Section 1.2, this research aims to estimate the lead time for each product 

type with setup time using FIFO rule and to evaluate the effects on capacity saving by FSR. 

Related literatures of analytic models are discussed in this chapter. Specifically, Section 2.1 

discusses an analytic model under FIFO, and Section 2.2 describes an analytic model under 

FSR. Section 2.3 reviews other related work. 

2.1 Analytic model under FIFO 

The estimate of setups under the FIFO has been investigated in several studies. The 

FIFO rule describes the principle of processing in queue by a first-come first-served 

process—what job comes in first is dispatched first, what job comes in next waits until the 

first is finished. 

2.1.1 Analytic model of setups under FIFO 

Probability of setups under FIFO 

Missbauer [9] defined the probability of setups for producing several types of services 

with a single machine underlying the FIFO rule. In Missbauer [9], each product type consists 

of several individual jobs and is assumed to be an independent Poisson distribution for the 

number of arriving jobs of the product type j with parameter λj, where j＝1, 2, …, J , and J is 

the number of product type. The probability λj/λ is used to represent the probability that an 

arriving job is product type j, and the probability (1－λj/λ) is used to represent the probability 

that an arriving job is from a different product type j. For a single machine, setup occurs when 

each of the two consecutive jobs belongs to different product types.  

According to Missbauer [9], the probability that a setup is necessarily a product type j 

job under FIFO rule on a single machine is equal to the probability of a product type j job 

arriving at the system multiplied by the probability that this arriving job has a different 

product type as its predecessor, as shown in Equation (2-1). 
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The calculation result only depends on the job arrival rate; hence, it is constant if the job 

arrival rates are known. 

Chern and Liu [10] extended Missbauer’s research [9] to parallel machines scheduling 

under FIFO. The probability of requiring setup of a job for parallel machines under FIFO 

must consider the number of jobs existing in the system. This can be divided into three parts: 

1.) there is no job in the system; 2.) there are n jobs in the system and n＜m; and 3.) there are 

n jobs in the system and n≧m, where m is the number of parallel machines. First, if there is 

no job in the system and a job of product type j arrived at the system, then a setup is necessary 

if no jobs belonging to the product type j are among the last jobs being processed on the 

parallel machines. Second, if there are n jobs in the system and n＜m, setup would be 

necessary for this newly arrived job while no jobs belonging to the product type j are among 

the last jobs being processed on the idle machines. Finally, if there are n jobs in the system 

and n≧m, setup would not be necessary for this newly arrived job while the last job being 

processed on the assigned machine belongs to product type j. Thus, the probability that a 

setup is necessary for product type j job in parallel machines under FIFO can be shown as 

Equation (2-2). 
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where p0 and pn are the probabilities that there are no jobs in the system and there are n (n≧1) 

jobs in the system. 

Studies on setup time estimation are quite limited. The same setup time for each product 

type is assumed to simplify the model by Missbauer [9].  
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Service time under FIFO 

Karmarkar et al. [11] and Kuik and Tielemans [12][13][14] studied the service time 

probability distribution of batches with setup time for a single-machine system by using 

FIFO.  

In their model, the batch service time of a specific product type is defined as the sum of 

the batch processing time and the setup time, which can be shown as Equation (2-3). 

= +
jj j batchx STτ                                                           (2-3) 

where xj represents the batch service time of product type j, τj represents the setup time of 

product type j, and 
jbatchST  represents the batch service time of product type j. The 

corresponding probability is given by the relative arrival rates of the batches, which can be 

written as Equation (2-4). 
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j

j jX x
λ
λ

                                                      (2-4) 

where λj represents the batch arrival rate of product type j. Thus, the moments of the service 

time of batches can be calculated based on this probability distribution. 

Waiting time under FIFO 

The methodology of previous studies on waiting time estimation was applied to the 

queuing analysis because their properties and results are relatively well understood and are 

available for many important system characteristics (Cheng and Jiang [15], Enns [2][16], 

Baykasoğlu et al. [17]). In these models, job arrivals are randomly generated by the Poisson 

process and processing times follow the negative exponential distribution. However, setup 

times are ignored or are assumed as zero. Meanwhile, literature on queue analysis with setup 

times studied the expected waiting time of batches with setup time for single-machine system 

by applying the Pollaczek–Khintchine formula for an M/G/1 queue in Equation (2-5) 

(Karmarkar et al. [11], Kuik and Tielemans [12][13][14], Koo et al. [18][19], Missbauer [20]).  
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where λ is the total arrival rate, E[STFIFO] and 2[ ]FIFOE ST  are the first and second moments of 
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the service time under FIFO, respectively, and E[Wq]M/G/1 is the expected waiting time for an 

M/G/1 queue. 

Karmarker et al. [11] presented a multi-item heuristic batching aimed to minimize 

queuing delays, and developed the upper and lower bounds on the optimal batch size. Kuik 

and Tielemans [12] studied the upper bound for the setup utilization at optimal batch sizes by 

queuing delay batching model for multiple products. Kuik and Tielemans [13] discussed the 

analytical expressions for the optimal multi-item batch sizes and the minimal expected 

queuing delay. Kuik and Tielemans [14] also investigated the relationship between batch size 

and lead time at the low levels of machine utilization for multi-items. Koo et al. [18][19] 

presented a linear search algorithm to find the optimal throughput rate and batch size with 

single product and multi-products. Missbauer [20] analyzed the impact of lot sizing on the 

functional relationships between WIP level and flow time or capacity utilization in lot sizing 

models. In addition to the batch waiting time, Kuik and Tielemans [21] also investigated the 

variance of batch waiting time with setup time by applying the M/G/1 queuing system in 

Equation (2-6) because these are important for the safety stock or safety time determination 

and due date assignment. 
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Among the abovementioned literature that studied batch waiting time, an analytical 

model for estimating waiting time was modeled by an M/G/1 queue because the superposition 

of the batch arrival processes for different products can be approximated by a Poisson process 

(Jönsson and Silver [22], Zipkin [23], Karmarkar [24], Tielemans and Kuik [25]). Thus, the 

expected value and variance of waiting time for a batch can be obtained easily if the first and 

second moments of the service time are given. Batch service time is defined as the sum of 

batch processing time and setup time. As such, an analytical expression in standard form for 

the expected value and variance of waiting time by queuing theory can be applied if the batch 

process is assumed. However, it cannot respond completely to the impact of setup time to 

waiting time by substituting the first and second moments of the service time into the formula 

for an M/G/1 queue. There are at least three additional factors relevant to the magnitude of the 

required setup time: the total arrival rate of all incoming jobs, the mix of the jobs arrival rates 

of various types, and the dispatching rule used in queuing jobs on the machine. The influence 

of these factors on setup time and the relationship between setup time, service time, and 
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waiting time should be discussed to estimate the waiting time in the setup time.  

2.2 Analytic model under FSR 

2.2.1 Family-based scheduling (FSR) rule 

FSR has been assessed in several studies. According to FSR, when a job arrives at the 

system and there already exists one or more jobs belonging to the same product type, then this 

arriving job is jointed with the same product type jobs and these jobs become a batch. The 

jobs within each batch and each batch are dispatched under FIFO rule. When a job arrives at 

the system and if there are no jobs belonging to the same product type, then this arriving job 

is dispatched under the FIFO rule.  

Missbauer [9] proved that setup time could be saved using FSR for the single-machine 

system. Jensen et al. [26] considered the case of the semiconductor testing facility with 

parallel machines and dynamic job arrival; FSR has been credited for reducing setup time in 

batch production industries. Chern and Liu [10] proposed FSR to dispatch wafer lots in the 

photolithography stage of the wafer fabrication system. Kannan and Lyman [27] examined the 

combined effect of lot splitting and FSR in a manufacturing cell by simulation and showed 

that FSR can reduce the negative impact on flow time by lot splitting. Nomden et al. [28] 

refined the existing rules for family-based scheduling by including data on upcoming jobs and 

showed that flow time performance can be improved significantly. Therefore, FSR not only 

has an effect on saving machine setups, it also indirectly reduces job flow time.  

In the foregoing investigations, except for Missbauer [9] and Chern and Liu [10], the 

simulation approach is applied to evaluate the effect of FSR in reducing setups and flow time. 

Numerous computer runs are needed to produce reliable results; thus, this method is both 

time-consuming and costly.  

2.2.2 Analytic model of setups under FSR 

Probability of setups under FSR 

To simplify the setups for single machine under FSR, the system state can be divided 

into two parts according to the number of jobs processed in the system. First, assume that no 

jobs are in the system and there is a job arriving; thus, a setup is needed if the product type  

of the last job that has been processed completely on the machine is different from the 
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arriving job. Second, assume that there are one or more jobs in the system and a job is coming; 

thus, a setup is needed if the product types of jobs among the jobs in the system are all 

different from the arriving job. Therefore, the probability that a setup is necessary for product 

type j job in a single machine under FSR by Missbauer [9] can be shown as Equation (2-7). 
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where p0 and pn are the probabilities that there are no jobs in the system and there are n (n≧1) 

jobs in the system, respectively. 

Chern and Liu [10] extended the result by Missbauer [9] to a more complicated system 

with parallel machines and multiple job re-entrances under FSR. Based on FSR, the 

probability of requiring setup for jobs in parallel machines has to consider the number of jobs 

existing in the system. These can be divided into three parts: there is no job in the system, 

there are n jobs in the system and n＜m, and there are n jobs in the system and n≧m, where m 

is the number of parallel machines. First, if there are no jobs in the system and the product 

type j job arrived, then a setup is necessary if no jobs belonging to the product type j are 

among the last jobs processed on the parallel machines. Second, if there are n jobs in the 

system and n＜m, setup would be necessary for this newly arrived job while there is no job 

belonging to the product type j among the last jobs processed on the idle machines. Finally, if 

there are n jobs in the system and n≧m, setup would be necessary for this newly arrived job 

while all last jobs being processed do not belong to product type j. Thus, the probability that a 

setup is necessary for product type j job in parallel machines under FSR can be shown as 

Equation (2-8). 
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       (2-8) 

Results show that the setup time can be saved by FSR as compared with FIFO and the 

utilization rate can be increased by FSR as compared with FIFO. 

Number of setups under FSR 
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Vieira et al. [29] considered the number of setups to be observed in a time interval for 

producing several types of services with a single machine, in which the FSR is used to 

dispatch the jobs. Each product type consists of nj individual jobs in the time interval. Vieira 

et al. [29] assumed an independent Poisson arrival of jobs with product type j and arrival rate 

λj. The probability of product type j job arriving in the time interval Pr is equal to Pr[Tj≦Pr], 

where Tj is the inter-arrival time of product type j jobs and is an exponential distribution with 

parameter λj, and j=1, 2, …, J. They simplified the setup probability to constantly be (1－1/J) 

without considering the effect of the product type of an arriving job. Therefore, the expected 

total number of setup for a single machine depends on probabilities Pr[Tj≦Pr] and (1－1/J), 

which can be shown as Equation (2-9). 
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With regard to parallel machine, Vieira et al. [30] also extended the result to the 

parallel-machine system in case of machine failure. The expected total number of setups for 

parallel machine is given by Equation (2-10). 
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where Nm represents the number of parallel machines. Based on FSR, Nm product types will 

not require a setup and (1－Nm/J) represents the probability of requiring setups.  

According to the discussion, Vieira et al. [29][30] did not consider the possible 

differences in the arrival rates of various job types; instead, they simplified the setup 

probability by categorizing all types of arriving jobs as a constant. 

2.3 Other related work 

Rossetti and Stanford [31] considered the aforementioned problem on the single machine 

and presented a case study that examined the use of heuristics to estimate the expected 

number of setups. Bagherpour et al. [32] estimated the sequence-dependent setup time for the 

single machine using the fuzzy approach. However, their fuzzy estimation was significantly 

lower compared with the simulated results. Estimation error of the fuzzy setup time cannot be 

controlled in an acceptable range. 
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2.4 Summary 

The primary focus of this research is to conduct an analytic methodology. New 

closed-form analytical expressions of queuing delays with setup time for the case of a Poisson 

arrival process by FIFO and FSR rules are constructed in the following sections. 
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3. FIFO analytic model for estimating lead time 

In this chapter, an analytical expression of queuing delays with setup time for the case of 

a Poisson arrival process by FIFO rule is discussed to estimate lead time. Two parts are 

derived: one is the estimator of the lead time, and the other is the variance of the lead time 

3.1 Problem Analysis 

In this research, a single finite-capacity machine for processing several product types of 

jobs is considered. We assume that the jobs arrive at the system in a time interval (0, RT], 

which is a positive integer. Beginning time is labeled as 0. We also assume that the number of 

newly arrived jobs of product type j follows the Poisson distribution for the arrival of jobs at 

rate λj, thus there arrives nj＝λj RT product type j jobs at time interval (0, RT]. In addition, the 

arrival time of the ith arrived job of product type j, Tij, is the gamma distribution with 

parameters i and λj under the given Poisson assumption. Thus, the probability of the ith job of 

product type j arrived at the system in the time interval (0, RT] can be shown as Equation 

(3-1). 
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where j＝1, 2, …, J, i＝1, 2, …, nj, and J represents the number of product type. The 

probability of ith job of product type j arriving at the system but out of time interval (0, RT] is 

denoted by Pr[Tij＞RT]＝1－Pr[Tij≦RT]. 
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Figure 3-1 Plot of probability Pr[Tij≦RT] 
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Figure 3-2 Estimator and variance of lead time under FIFO 

We know that the probability Pr[Tij≦RT] depends on the length of the time interval (0, 

RT], the sequence of the arrived jobs (i), and the job arrival rate (λj). Figure 3-1 (a) plots the 

probability Pr[Tij≦RT] against the sequence of the arrived jobs (i) when λj＝1/3 for RT＝5, 

20, and Figure 3-1 (b) plots the probability Pr[Tij≦RT] against the job arrival rate (λj) when i

＝3 for RT＝5, 20. From Figure 3-1 (a) to Figure 3-1 (b), we see that the probability 

20
Pr[ ]ij RT

T RT
=

≤  is larger then the probability 
5

Pr[ ]ij RT
T RT

=
≤ . This means that the 

possibility of jobs arrived at the system is increasing when the length of the time interval is 

longer, that is, more jobs will arrive at the system to process in the time interval (0, RT]. In 

Figure 3-1 (a), the probability Pr[Tij≦RT] is decreasing as the sequence of the arrived jobs (i) 

climbing up for given RT and job arrival rate, which implies that the possibility of the later 

jobs arrived at the system is decreasing progressively. Moreover, the probability Pr[Tij≦RT] 

is also decreasing as the job arrival rate is smaller for given parameters RT and i in Figure 3-1 

(b). To decrease arrival rate means increasing inter-arrival time, thus the possibility of jobs 

arrived at the system in the time interval (0, RT] becomes lower. 

When a jobs in specific type of demand, arrives at the system, it will enter the waiting 

line and be serviced in a FIFO rule. A job will be processed after a period time of waiting. 

Before starting the processing of next job, the machine should be occupied and proceeds setup 

if a new setup is required. Therefore, not only job processing but also machine setup 

consumes the capacity of machine, which indicates that total setup time is related to the 
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utilization rate of capacity and is the cost must be paid due to the sharing of a machine for 

providing various services. The lead time of jobs can be determined with the summation of 

the waiting time of jobs in queue and the service time of jobs on the machine. The waiting 

time of job relates to the expected service time of some specific number of jobs already 

arrived. The service time of jobs is defined by adding the estimated setup time and the 

processing time of jobs. Since the service time is independent of its waiting time in queue, 

and then the variance of lead time is expressed as the sum of variances of the service time and 

the waiting time in queue. Both the estimator and the variance of lead time are shown in 

Figure 3-2 and are presented as follows. 

3.2 Estimator of lead time of jobs under FIFO 

The job’s lead time for each product type is defined as the time that is spent in the system 

from their arrival until the job completed its processing on the machine. Therefore, the lead 

time of jobs for each product type can be estimated with the summation of the average 

waiting time of jobs in queue and the average service time of jobs, where the service time of 

jobs includes both its setup time and its processing time. Let LTj,FIFO, Wq,j,FIFO, and STj,FIFO be 

the lead time, waiting time and service time of the product type j job under FIFO, hence the 

estimate of lead time of the product type j job under FIFO, ,[ ]j FIFOE LT , is given by Equation 

(3-2). 

, , , ,j FIFO q j FIFO j FIFOE LT E W E ST     = +                                            (3-2) 

where E[Wq,j,FIFO] and E[STj,FIFO] represent the expected waiting time and expected service 

time of product type j jobs in queue under FIFO, and j＝1, 2, …, J. The calculations of 

E[Wq,j,FIFO] and E[STj,FIFO] are presented as follows. 

3.2.1 Expected service time under FIFO 

The service time of jobs is defined by the time that is spent on the machine from the 

setup process until the jobs completed its processing. Therefore, the service time of jobs 

equals its setup time plus its processing time, where the processing time of jobs depends on its 

product type and the setup time depends on the product type change between any two 

consecutive jobs. Let STij,FIFO be the service time of the ith job of product type j under FIFO. 

The probability mass function of STij,FIFO can be classified three parts according to the case of 

arriving time and the setup case and is explained in the below discussion. 
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In the first part, the service time of the ith job of product type j would be zero because 

this job not arrived in time interval (0, RT] with the probability (1－Pr[Tij≦RT]). In the 

second part, the ith job of product type j arrived within the time interval (0, RT] but no setup is 

required, then the service time of this arrived job would be equal to its processing time with 

the probability Pr[Tij≦RT](1－Ps,j,FIFO). In the last part, the ith job of product type j arrived in 

the time interval (0, RT] and a setup is necessary, which implies that the arrived job is 

different from its predecessor. The different product type of the predecessor r has the fixed 

finite number (J－1) of classifications with the probabilities λr/λ
c and the setup time for 

product type j job after product type r job is defined as srj. Thus, the service time of the ith job 

of product type j would be equal to its processing time plus its setup time with the probability 

Pr[Tij≦RT]Ps,j,FIFO(λr/λ
c), where r＝1, 2, …, J, jr ≠ , 1,

c J
r r j rλ λ= ≠= ∑ , and the probability 

Ps,j,FIFO represents the probability that a setup is required given a job of product type j arrived 

at the system in time interval (0, RT], at where jobs are dispatched by the FIFO rule. It can be 

seen that the probability mass function of STij,FIFO can be showed as Equation (3-3). 
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              (3-3) 

In Equation (3-3), ptj is the processing time of product type j jobs. The expected service time 

of the product type j jobs is defined by 1
1, ,[ ] [ ]jn

ij FIFO j ij FIFOE ST E n ST−
== ∑  and is given by 

Equation (3-4) according to the probability mass function of STij,FIFO. 
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                         (3-4) 

where nj＝λjRT and j=1, 2, …, J. The result in Equation (3-4) asserts that the decomposition 

of the expected mean service time of the product type j jobs into two parts according to the 

definition of the service time results in the expected mean processing time 
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( 1
1Pr[ ]jn

ij ij jn T RT pt−
= ≤∑ ) and the expected mean setup time 

( 1
1 1,, ,Pr[ ] ( )−

= = ≠≤∑ ∑jn cJ
i r r jj ij s j FIFO r rjn T RT P sλ λ ) of the product type j jobs, respectively. Finally, 

the expected service time of jobs is defined by 1
1 1 1 ,[ ] [( ) ]jnJ J

j j iFIFO j ij FIFOE ST E n ST−
= = == ∑ ∑ ∑  

and can be shown as equation (3-5). 
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                  (3-5) 

3.2.1.1 Probability of requiring setups under FIFO  

To solve the expected service time of jobs, the probability Ps,j,FIFO has to be calculated in 

advance. Let Ps,ij,FIFO be the probability for the ith job of product type j arriving at the system 

in time interval (0, RT] with a setup under FIFO. If jobs not arrive at the system in the time 

interval (0, RT], a setup is not needed for this job. If jobs arrive at the system in the time 

interval (0, RT], it can be classified into two categories, “setup” and “not setup”. A setup of 

job is not needed with the single machine according to the FIFO rule if it has the same 

product type as its predecessor. On the contrary, a setup of job is necessary with the single 

machine according to FIFO if it have the different product type as its predecessor. Therefore, 

the probability Ps,ij,FIFO can be calculated with Equation (3-6). 

, , , ,Prs ij FIFO ij s j FIFOP T RT P = ≤ ×                                               (3-6) 

where the probability Ps,j,FIFO represents the probability that a setup is required given a job of 

product type j arriving at the system in time interval (0, RT], at where jobs are dispatched by 

the FIFO rule. The calculation of Ps,j,FIFO must consider the number of jobs already in the 

system, which can be partitioned into two parts: when there are no jobs in the system and 

when there are n≧1 jobs in the system. Therefore, the probability Ps,j,FIFO can be calculated 

by Equation (3-7). 

0 1
, , 0, , , ,

1

n n
s j FIFO FIFO setups FIFO n FIFO setups FIFO

n

P p P p P
∞

= ≥

=

= +∑                                   (3-7) 

where p0,FIFO and pn,FIFO are the probabilities that there are no jobs in the system and there are 
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n≧1 jobs in the system under FIFO, 0
,

n
setups FIFOP =  is the probability of an arriving job of the 

product type j requiring a setup under FIFO with no jobs in the system, and 1
,

n
setups FIFOP ≥  is the 

probability that an arriving job of the product type j needs a setups under FIFO with n≧1 jobs 

in the system. The calculation of Ps,j,FIFO is presented as follows. 

First, for the case if there are no jobs in the system and the ith job of product type j 

arrives during the time interval (0, RT], then a setup is necessary if the new arriving job is 

different from the product type of the last job on the machine currently being idle with the 

probability (1－λj/λ), that is to say, the probability of an arriving job of product type j 

requiring a setup with no jobs in the system (0 ,
n

setups FIFOP = ) can be rewritten as the probability 

that the last job on the machines currently being idle is different from the product type j and is 

equal to (1－λj/λ). 

Second, for the case if there are n≧1 jobs in the system and the ith job of product type j 

arrives at the system in the time interval (0, RT], then a setup is necessary if the new arriving 

job has the different product type as its predecessor. Therefore, the probability 1
,

n
setups FIFOP ≥  is 

also equal to (1－λj/λ), and the probability of an arriving job of product type j not requiring a 

setup with n≧1 jobs in the system ( 1
 ,

n
not setups FIFOP ≥ ) is equal to λj/λ.  

Thus it can be seen that the probability Ps,j,FIFO can be rewritten as 

1, , 0, ,(1 ) (1 )ns j FIFO FIFO j n FIFO jP p pλ λ λ λ∞
== − + −∑ . Therefore, the probability Ps,ij,FIFO can be 

updated as Equation (3-8). 

, , 0, ,
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Pr 1 1
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λ λ
λ λ
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∞

=

    
 = ≤ − + −     

    

 
 = ≤ −  

 

∑
                      (3-8) 

According to Equation (3-8), the probability that a setup does not need for the ith job of 

product type j under the FIFO rule can be expressed as Pns,ij,FIFO＝1－Ps,ij,FIFO. 

3.2.1.2. Expected number of setups under FIFO 

The ith job of product type j arriving at the system in the time interval (0, RT] have two 
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possible categories and is labelled by value 1 and value 0, in which value 1 responses "setup 

occurs" and value 0 responses "no setup occurs". 

According to Equation (3-8), a setup of the ith job of product type j takes value 1 with the 

probability , , Pr[ ](1 )s ij FIFO ij jP T RT λ λ= ≤ −  and takes value 0 with the probability 

, ,1 {1 Pr[ ] Pr[ ] }s ij FIFO ij ij jP T RT T RT λ λ− = − ≤ + ≤ . Therefore, the expected number of setups 

for the ith job of product type j equals ,[ ] Pr[ ](1 )ij FIFO ij jE NS T RT λ λ= ≤ − . 

Suppose that there would arrive nj jobs in the time interval (0, RT] for the product type j 

and the jobs are all independent arriving at the system, then the expected number of setups for 

product type j can be computed as 1, ,[ ] [ ]jn
ij FIFO ij FIFOE NS E NS== ∑ , where nj=λjRT, and j=1, 

2, …, J. Finally, the expected number of setups for all jobs is calculated as 

1 ,[ ] [ ]J
jFIFO j FIFOE NS E NS== ∑ . 

3.2.1.3. Expected setup time under FIFO 

Since an analytical model for the number of setups can be calculated, and then the 

analytical model for the setup time can be developed. The definition of the setup time of jobs 

is the time required to change a process over from one product type to the next product type. 

Considering the sequence-dependent setup time for all product types in dynamic single- 

machine problem, in which jobs are assumed to be processed according to the FIFO rule. Let 

srj be the setup time for the job of product type j, in which the previous processed job belongs 

to product type r. The calculation of the expected setup time of jobs can be divided into three 

parts based on the setup cases and then is presented as follows.  

In the first part, considering the case that the ith job of product type j does not arrive in 

the time interval (0, RT], then the setup time should be zero with the probability Pr[Tij＞RT]. 

In the second part, considering the ith job of product type j arriving in the time interval (0, RT] 

and the previous job processed on the machine belonging to the same product type, the setup 

time would be equal to sjj＝0 and the probability is Pr[Tij≦RT](1－Ps,j,FIFO). In the last part, 

the ith job of product type j arriving in the time interval (0, RT] and a setup is necessary, which 

imply that the job with different product type as predecessor. The different product type r has 

the fixed finite number (J－1) of classifications, with probabilities (λr/λ
c) for r＝1, 2, …, J, 

r≠j, and 1,
c J

r r j rλ λ= ≠= ∑ . Therefore, the setup time would be equal to srj and the probability is 
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Pr[Tij≦RT]Ps,j,FIFO(λr/λ
c) while the ith job of product type j arrives in the time interval (0, RT] 

and the earlier job processed on the machine belongs to product type r, at where r＝1, 2, …, J, 

and r≠j. 

According to these three parts, Equation (3-9) shows the calculation of the expected 

setup time for the ith job of product type j in the time interval (0, RT]. 
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                     (3-9) 

Suppose that there are nj jobs of product type j arrive in the time interval (0, RT] for each 

product types and the jobs are all independent arriving at the system, then the expected value 

of the mean setup time for product type j jobs arriving in the time interval (0, RT] can be 

computed as Equation (3-10). 
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               (3-10) 

where nj=λjRT, and j=1, 2, …, J. The expected value of the overall mean setup time of jobs 

arriving in the time interval (0, RT] can be derived as Equation (3-11). 
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                         (3-11) 

3.2.2 Waiting time of jobs under FIFO 

When the ith job of product type j arrives at the system in the time interval (0, RT], it may 

be required to wait in queue until its turn to be served, and the job processing on the machine 

would activate the rule of FIFO. The setup process is required to switch from one product 

type to another before starting the processing. The waiting time of jobs occurs if the machine 

is still busy when the jobs arrived. This can be decomposed into two components 
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corresponding to the number of jobs in the system (see Figure 3-3): one is the residual service 

time of the unfinished job on the machine and the other is the total service time of all jobs in 

queue ahead of the newly arrived job. The former occurs if the system is busy, whereas the 

latter occurs if there are at least two jobs in the system. When there is one job in the system 

during the arrival time of jobs, the newly arrived job has to wait in queue until one job has 

completed its processing on the machine, which implies that the waiting time of the newly 

arrived job is equal to the former. Thus, when there are n (n≧2) jobs in the system at the 

arrival time of jobs, the newly arrived job has to wait in queue until n (n≧2) jobs completed 

their processing on the machine. This means that the waiting time of the newly arrived job is 

equal to the sum of the two components mentioned earlier.  

 
Figure 3-3 Classifications of the waiting time of the arrived job for single machine under 

FIFO 

According to the above discussion, letting Wq,ij,FIFO be the time of the ith arrived job of 

product type j that has to wait in queue for the service under FIFO, then its expected value, 

E[Wq,ij,FIFO], can be defined by Equation (3-12), where the notation E[Rij,FIFO] is used for the 

expected time of the ith arrived job of product type j that has to wait until one unfinished job 

has completed its processing on the machine, while E[TSTij,FIFO] is used for the expected time 

of the ith job of product type j that has to wait until all jobs waiting in queue have completed 

their processing ahead of the newly arrived job. Both the expected values of Rij,FIFO and 

TSTij,FIFO are presented as follows. 

, , , ,q ij FIFO ij FIFO ij FIFOE W E R E TST     = +                                           (3-12) 
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3.2.2.1 Expected residual service time of unfinished job on the machine 

The remaining portion of service time for a partially served job is called the residual 

service time. Therefore, the residual service time of unfinished job only occurs if there are n 

(n≧1) jobs in the system. If there are no jobs in the system, the residual service time is equal 

to zero. Supposing that there are n (n≧1) jobs in the system during the arrival time of the ith 

job of product type j, then the expected residual service time until one unfinished job has 

completed its processing on the machine can be shown as Equation (3-13), where pn,FIFO 

represents the probability that there are n (n≧1) jobs present in the system under FIFO and 

this is equal to (1 ) n
FIFO FIFOρ ρ− ; ρFIFO represents the utilization rate of the machine under 

FIFO; R(t) represents the residual service time of the unfinished job on the machine; ( )
ijT ijf t  

represents the probability density function of the gamma variable Tij with parameters i and λj 

and tij＞0. 

( ) ( ), , 0 0

1 ij

ij

RT t

ijn FIFO n FIFO T ij ij
ij

E R p R t dt f t dt
t

  =  ∫ ∫                                 (3-13) 

Considering the interval of time tij and 0＜tij≦RT, the value of ( )
0

ijt
R t dt∫  in Equation 

(3-13) can be calculated as Equation (3-14) by dividing the sum of the areas of the triangles 

by the length of the interval tij in the Figure 3-4. Supposing that there are nj triangles of 

product type j in the interval of time tij, which is determined by the arrival rate λj and is equal 

to λjtij, where j=1, 2, …, J, we assume that the probability of belonging to product type j 

triangle is equal to λj/λ. The triangles in Figure 3-4 are isosceles triangles, thus their area 

equals the base multiplied by the height and then divided by two, where the base and the 

height of the triangles are the same; they have two possible categories based on the setup 

condition of the jobs. First, the base or the height of the triangles of product type j would be 

equal to its processing time (ptj) with the probability (1－Ps,j,FIFO) if no setup is required. 

Second, a setup is necessary, the base or the height of the triangles of product type j would be 

equal to its processing time plus its setup time (ptj＋srj) with the probability Ps,j,FIFO(λr/λ
c), 

where Ps,j,FIFO＝(1－λj/λ), r＝1, 2, …, J, jr ≠  and 1,
c J

r r j rλ λ= ≠= ∑ . Accordingly, E[Rijn,FIFO] 

can be rewritten as Equation (3-15) by using Equation (3-14) in Equation (3-13), where 

( )
0

Pr[ ]
ij

RT

T ij ij ijf t dt T RT= ≤∫ . Using the summation of E[Rijn,FIFO] for all n, the expected time 
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of the ith job of product type j has to wait until one unfinished job has completed its 

processing on the machine under FIFO, which can be shown as 1, ,[ ] [ ]nij FIFO ijn FIFOE R E R∞
== ∑ . 
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ijt
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Figure 3-4 Diagram of the calculation of the residual service time of the unfinished job 

3.2.2.2 Expected total service time of all waiting job in queue 

The expected total service time of all waiting jobs in queue ahead of the newly arrived 

job would be necessary when there are at least two jobs in the system at the arrival time of the 

newly arrived job. Therefore, the calculation of this time is related to the number of jobs in 

queue and the service time of some specific product type jobs that have already arrived before 

the newly arrived job. 

First, in case there are two jobs in the system at the arrival time of the ith job of product 

type j, between two jobs in the system, one would stay in queue while the other is processed 

on the machine. Thus, when the ith job of product type j arrives at the system in the time 

interval (0, RT], the expected total service time of one waiting job in queue ahead of the 

newly arrived job can be computed as Equation (3-16), where p2,FIFO represents the 

probability that there are two jobs present in the system under FIFO and λj/λ represents the 

probability that the waiting job in queue belongs to the product type j. In consideration of the 

setup condition of the jobs, the expected service time of the waiting job in queue can have two 
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components: one is equal to 1, ( )= ≠+∑ cJ
r r jj r rjpt sλ λ  with the probability Ps,j,FIFO and the 

other is equal to ptj with the probability (1－Ps,j,FIFO). 
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Second, for the case where there are three jobs in the system at the arrival time of the ith 

job of product type j, among these three jobs in the system, two jobs would stay in queue 

while one job is processed on the machine. Thus, when the ith job of product type j arrives at 

the system in the time interval (0, RT], the expected total service time of the two waiting jobs 
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in queue ahead of the newly arrived job can be computed as Equation (3-17), where p3,FIFO is 

the probability that there are three jobs present in the system under FIFO, the superscript k in j, 

r, and c refers to the kth waiting job in queue, kj
λ λ  is the probability that the kth waiting 

jobs in queue belongs to product type j, and j＝1, 2, …, J. 

The setup cases for these two waiting jobs in queue list are as follows: “setup, setup,” 

“setup, no setup,” “no setup, setup,” and “no setup, no setup.” Thus, the expected total service 

time of these two waiting jobs in queue can have four components:  

I. 1 1 1 2 2 2[ ]+ + +
j r j j r j

pt s pt s  with the probability
1 2

1 2 1 2, , , ,
( )( )c c

s j FIFO s j FIFO r r
P P λ λ λ λ  

II.  1 1 1 2[ ]+ +
j r j j

pt s pt  with the probability
1

1 2 1, , , ,
(1 )( )c

s j FIFO s j FIFO r
P P λ λ−  
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pt pt s  with the probability
2

1 2 2, , , ,
(1 ) ( )c

s j FIFO s j FIFO r
P P λ λ−  

IV.  1 2[ ]+
j j

pt pt  with the probability 1 2, , , ,
(1 )(1 )

s j FIFO s j FIFO
P P− −  

where rk＝1, 2, …, J, rk
≠jk, and 

1,

k

k k k k

c J
r r j r

λ λ= ≠= ∑ . In order to simplify the calculation of 

Equation (3-17), ETST2,FIFO in Equation (3-17) can be reformulated as ETST2,FIFO＝

ρFIFOETST1,FIFO＋ρFIFOETST1,FIFO＝2ρFIFOETST1,FIFO, which is the function of ETST1,FIFO  

(see Appendix A). 

For this reason, when the ith job of product type j arrives at the system in the interval (0, 

RT] and there are n (n≧2) jobs present in the system, the expected total service time of (n－1) 

waiting jobs in queue ahead of the newly arrived job can be shown as Equation (3-18), which 

is the function of ETSTn-1,FIFO in Equation (3-19) (see Appendix B). 
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1,

1, 2
1, 2,

,                                                    where 2

,             where 3
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n FIFO n
FIFO FIFO FIFO n FIFO

ETST n
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== 
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          (3-20) 

Note that ETSTn-2,FIFO in Equation (3-19) can be expressed as 

3
2, 1, 3,

n
n FIFO FIFO FIFO FIFO n FIFOETST ETST ETSTρ ρ−

− −= +  from Equation (3-19) and can be used in 

Equation (3-19). By repeating the aforementioned steps, we easily get 

2
1, 1,( 1) n

n FIFO FIFO FIFOETST n ETSTρ −
− = −  for n≧3. Getting ETST1,FIFO from Equation (3-16) and 

then substituting it into ETSTn-1,FIFO, ETSTn-1,ij,FIFO can be reformulated as Equation (3-20). 

From Equation (3-20), ETSTn-1,ij,FIFO represents the expected total service time of (n－1) 

waiting jobs in queue ahead of the ith arrived job of product type j. This occurs if there are n 

jobs in the system at the arrival time of the ith job of product type j. Thus, the probability of 

the ith job of product type j arriving at the system in the time interval (0, RT] is equal to 

Pr[Tij≦RT]. The probability that there are n jobs present in the system is equal to 

, (1 ) n
n FIFO FIFO FIFOp ρ ρ= − . The total service time of (n－1) waiting jobs in queue ahead of the 

ith arrived job of product type j is equal to the number of jobs in queue multiplied by the mean 

service time, where there are (n－1) jobs in queue and the mean service time can be shown as 

1 1,, ,( / )[ ( ) ]cJ J
j r r jj j s j FIFO r rjpt P sλ λ λ λ= = ≠+∑ ∑ . 

Thus, the expected total service time of all waiting jobs in queue ahead of the ith arrived 

job of product type j is equal to the summation of ETSTn-1,ij,FIFO for all n (n≧2), which is 

given by 2, 1, ,[ ] ∞
= −= ∑nij FIFO n ij FIFOE TST ETST . 

3.2.2.3 Approximation of expected waiting time 

Looking at the expected values E[Rij,FIFO] and E[TSTij,FIFO], the expected waiting time of 

product type j jobs can be determined accurately by using these two expected values and this 

is given by Equation (3-21), where nj = λjRT and j = 1, 2, …, J.  

1
, , , ,

1

jn

q j FIFO j ij FIFO ij FIFO
i

E W n E R E TST−

=

     = +     ∑                                 (3-21) 
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However, an analytical model for estimating waiting time with setup time for single-machine 

system was modeled by an M/G/1 queue in many literatures. Thus, an approximation of the 

expected waiting time related to the formula for an M/G/1 queue is derived in this section, and 

then the relative performance of this approximation is assessed. 

When RT is long enough, the expected mean waiting time of product type j jobs under 

FIFO in Equation (3-21) can be shown as , , / /1lim [ ] [ ]q j FIFO j q M GRT
E W E Wα

→∞
= , which is 

proportional to the expected waiting time for the M/G/1 queuing theory 

( 2
/ /1[ ] [ ] [2(1 )]q M G FIFO FIFOE W E STλ ρ= − ) (see Appendix C). 
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In Equation (3-22), the gradient αj corresponds to machine utilization rate (ρFIFO), wj is 

the mean of all probabilities of product type j jobs arriving at the system in the time interval 

(0, RT] and is given by 1Pr[ ]jn
ij ij jw T RT n== ≤∑ , and 2

vC  is the squared coefficient of 

variation of the service time and is defined as 2 2[ ] [ ]v FIFO FIFOC Var ST E ST= . The variance of 

the service time under FIFO can be shown as Var[STFIFO]＝ 2[ ]FIFOE ST －E[STFIFO]2. The first 

and second moments of the service time under FIFO (E[STFIFO] and 2[ ]FIFOE ST ) are defined 

by 1
1 1 1 ,( ) [ ]−

= = =∑ ∑ ∑ jnJ J
j j ij ij FIFOn E ST  and 1 2

1 1 1 ,( ) [ ]−
= = =∑ ∑ ∑ jnJ J

j j ij ij FIFOn E ST , and then they can be 

calculated according to the probability mass function of STij,FIFO in Equation (3-3). An 

inequality expressed as αj≧f(ρFIFO) is derived because 22 (1 )+ ≥v FIFOC ρ from Equation (C.8) 

in Appendix C, where f(ρFIFO) is given by Equation (3-24). 
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Thus, it can be seen that f(ρFIFO)＝0 and αj≧0 if ρFIFO＝0 and f(ρFIFO)＝1 and αj≧1 if ρFIFO＝
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1 when RT is long enough, where lim 1
→∞

=jRT
w . Moreover, the first derivative of the gradient 

αj with respect to ρFIFO is given by Equation (3-25) (see Appendix D).  
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                                (3-25) 

Note that the first derivative of this gradient with respect to ρFIFO is a positive number with 0

＜ρFIFO≦1 and λj＞0. Hence, the gradient αj increases with the rise in the utilization rate of 

the machine.  

According to the abovementioned results, two distinct possibilities exist. First, 0≦αj＜1 

when the machine utilization rate is smaller, which implies that the expected waiting time of 

product type j jobs is lower than the expected waiting time for the M/G/1 queuing model. 

Second, αj≧1 when the machine utilization rate is higher, which implies that the expected 

waiting time of product type j jobs is higher than the expected waiting time for the M/G/1 

queuing model. The gap between the expected mean waiting time of product type j jobs and 

the expected waiting time for the M/G/1 queuing model grows with high levels of workload 

on the machine because gradient αj is more than one.  

3.3 Variance of lead time of jobs under FIFO 

Suppose that the service time of jobs on the machine and the waiting time of jobs in 

queue are independent, the variance of lead time is equal to the sum of variances of the 

service time and the waiting time in queue. Both the variances of the service time and the 

waiting time in queue are presented as follows. 

3.3.1 Variance of service time under FIFO 

In Section 3.2.1, the service time is equal to the sum of the processing time and setup 

time. Accordingly, the variance of the service time of the product type j jobs can be given by 

Var[STj,FIFO]＝Var[PTj＋Sj,FIFO], where PTj and Sj,FIFO are the variables of processing time and 

setup time of the product type j jobs, and they are independent. Thus, the variance of the 

service time of the product type j jobs is equal to the sum of the variances of PTj and Sj,FIFO. 

If the ith job of product type j does not arrive in the time interval (0, RT], then its 
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processing time should be zero with the probability Pr[Tij＞RT]. If the ith job of product type j 

arriving in the time interval (0, RT], then its processing time would be equal to ptj with the 

probability Pr[Tij≦RT]. The first and second moments of the processing of the product type j 

jobs are defined by 1
1[ ] Pr[ ]−

== ≤∑ jn
ij j ij jE PT n T RT pt  and 2 1 2

1[ ] Pr[ ]−
== ≤∑ jn

ij j ij jE PT n T RT pt , 

respectively. Therefore, the variance of the processing time of product type j jobs can be 

shown as 2 2[ ] [ ] [ ]= −j j jVar PT E PT E PT . In addition, the variance of the setup time of the 

product type j jobs can be expressed as Equation (3-26) according to Equation (3-9). 
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                           (3-26) 

where the second moment of the setup time of the product type j jobs, 2
,[ ]j FIFOE S , is defined 

by the arithmetic means of the second moment of the setup time for all product type j jobs, 

which can be expressed by 2 1 2
1, ,[ ] [ ]−

== ∑ jn
ij FIFO j ij FIFOE S n E S  if there are nj＝λjRT jobs of 

product type j arrived at the system in the time interval (0, RT].  

When RT is long enough, the limit of the variance of the processing time of product type 

j jobs equals zero (lim [ ] 0
→∞

=jRT
Var PT ) because lim Pr[ ] 1

→∞
≤ =ijRT

T RT . Consequently, the 

variance of the service time of the product type j jobs can be easy to simplify as 

, ,[ ] [ ]=j FIFO j FIFOVar ST Var S  when RT is long enough. 

3.3.2 Variance of waiting time under FIFO 

The variance of the waiting time of the product type j jobs is defined as the second 

moment of Wq,j,FIFO minus the first moment squared and then can be derived as 

2 2
, , , , , ,[ ] [ ] [ ]q j FIFO q j FIFO q j FIFOVar W E W E W= − . Suppose that there are nj＝λjRT jobs of product 

type j arrived at the system in the time interval (0, RT], the first and the second moments of 

Wq,j,FIFO are defined by the arithmetic means of the first and second of the waiting time for all 

product type j jobs and are given by 1
1, , , ,[ ] [ ]jn

iq j FIFO j q ij FIFOE W n E W−
== ∑  and 
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2 1 2
1, , , ,[ ] [ ]jn

iq j FIFO j q ij FIFOE W n E W−
== ∑ . The time of the ith arrived job of product type j has to wait 

in queue for the service under FIFO, Wq,ij,FIFO, is defined by Wq,ij,FIFO＝Rij,FIFO＋TSTij,FIFO, 

then it is easy to establish the formula for calculating Var[Wq,j,FIFO] in Equation (3-27).  
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                (3-27) 

where Rij,FIFO and TSTij,FIFO are assumed to be independent. In Equation (3-27), the first 

moments of Rij,FIFO, TSTij,FIFO and Wq,ij,FIFO can be obtained in Section 3.2. As for the second 

moments of Rij,FIFO and TSTij,FIFO, they are presented as follows. 

3.3.2.1. Second moment of residual service time of unfinished job on the machine 

The residual service time of unfinished job only occurs if there are n (n≧1) jobs in the 

system. For the case if there are no jobs in the system, this time is equal to zero. Suppose that 

there are n (n≧1) jobs present in the system at the arrival time of the ith job of product type j, 

and then the second moment of residual service time until one unfinished job completed its 

processing on the machine can be shown as Equation (3-28). 

( ) ( )22
, , 0 0

1
  =  ∫ ∫

ij

ij

RT t

ijn FIFO n FIFO T ij ij
ij

E R p R t dt f t dt
t

                               (3-28) 

where R(t) represents the residual service time of the unfinished job on the machine, ( )
ijT ijf t  

represents the probability density function of the gamma variable Tij with parameters i and λj 

and tij＞0. 

Consider the interval of time tij and 0＜tij≦RT, Equation (3-29) shows the value of 

( )2

0

ijt
R t dt∫  in Equation (3-28) and can be computed by dividing the sum of the areas under 

the parabola (Height＝Base2) by the length of the interval tij in the Figure 3-5, where the 

height represents the square of the residual service time R(t)2, and the base represents the 

residual service time and ranges from zero to the service time. Suppose that there are nj areas 
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belonging to the product type j in the interval of time tij, which is determined by the its arrival 

rate λj and is equal to λjtij. The probability of belonging to the product type j is given by the 

relative arrival rates of the product types (λj/λ). In the Figure 3-5, the area under the parabola 

equals the cube of the base divide by 3, where the base has two possible categories depending 

on the setup condition of the jobs.  

( )2
R t

ijt

 
Figure 3-5 Diagram of the calculation of the square of the residual service time of the 

unfinished job 

First, the base of the product type j would be equal to its processing time (ptj) with the 

probability (1－Ps,j,FIFO) if no setup is required. Second, the base of the product type j would 

be equal to its processing time plus its setup time (ptj＋srj) with the probability Ps,j,FIFO(λr/λ
c) 

if the setup is necessary, where Ps,j,FIFO＝(1－λj/λ, r＝1, 2, …, J, jr ≠ , 1,
c J

r r j rλ λ= ≠= ∑ . 

Accordingly, 2
,[ ]ijn FIFOE R  can be rewritten as Equation (3-30) by using Equation (3-28) in 

Equation (3-29). 
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3.3.2.2. Second moment of total service time of all waiting job in queue 

Total service time of all waiting job in queue ahead of the arrived job would be necessary 

while there are at least two jobs in the system at the arrival time of the arrived job. Therefore, 

the calculation of the second moment of this time relates to the number of jobs in queue and 

the service time of some specific product type jobs already arrived before the new arrived job. 

First, for the case of there are two jobs in the system at the arrival time of the ith job of 

product type j, this means that one is staying in queue and the other is processing present on 

the machine between these two jobs in the system. Thus, when the ith job of product type j 

arrived at the system in the time interval (0, RT], the second moment of total service time of 

one waiting job in queue ahead of the arrived job (ESTST1,ij,FIFO) is the expected value of the 

square of total service time of one waiting job in queue ahead of the arrived job, which is 

computed as Equation (3-31). 
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               (3-31) 

where λj/λ represents the probability that the waiting job in queue belongs to the product type j. 

Depending on the setup condition of the jobs, the square of service time of this waiting job in 

queue can have two components: one is equal to 2
jpt  with the probability (1－Ps,j,FIFO) and 

the other is equal to 2( )j rjpt s+  with the probability Ps,j,FIFO(λr/λ
c), where r＝1, 2, …, J, 

jr ≠ , 1,
c J

r r j rλ λ= ≠= ∑ . 

Second, for the case of there are three jobs in the system at the arrival time of the ith job 

of product type j, this means that two jobs are staying in queue and one job is processing 

present on the machine among these three jobs in the system. Thus, when the ith job of 

product type j arrived at the system in the time interval (0, RT], the second moment of total 

service time of two waiting jobs in queue ahead of the arrived job, ESTST2,ij,FIFO, is equal to 

the expected value of the square of total service time of two waiting jobs in queue ahead of 

the arrived job, which can be computed as Equation (3-32). 
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where kj
λ λ  is the probability that the kth waiting jobs in queue belongs to the product type 

j, and j＝1, 2, …, J. The setup cases for these two waiting jobs in queue list as follows: “setup, 

setup”, “setup, no setup”, “no setup, setup”, and “no setup, no setup”. Thus, the square of total 

service time of these two waiting jobs in queue can have four components:  

V. 1 1 1 2 2 2
2[ ]

j r j j r j
pt s pt s+ + +  with the probability

1 2

1 2 1 2, , , ,
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j r j j
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VIII.  1 2
2[ ]

j j
pt pt+  with the probability 1 2, , , ,

(1 )(1 )
s j FIFO s j FIFO

P P− −  

where rk＝1, 2, …, J, rk
≠jk, and 

1,

k

k k k k

c J
r r j r

λ λ= ≠= ∑ . In Equation (3-32), all terms of these 

four components on the right hand side of the equal sign are shown in Table 3-1. In Table 3-1, 

the main diagonal represents the square terms of the processing times and the setup times of 

two waiting jobs in queue, and the elements outside the main diagonal represent the product 

of the processing time and setup time of two waiting jobs in queue and are symmetric.  
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Table 3-1 All terms on the right hand side of the equal sign in Equation (3-32) 
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For this reason, when the ith job of product type j arrives at the system in the interval (0, 

RT] and there are n (n≧2) jobs present in the system, the second moment of total service time 

of (n－1) waiting jobs in queue ahead of the newly arrived job can be shown as Equation 

(3-33) according to Table 3-2. 
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From Equation (3-33), ESTSTn-1,ij,FIFO represents the second moment of total service time 

of (n－1) waiting jobs in queue ahead of the ith arrived job of product type j, which is equal to 

the expected value of the square of total service time of (n－1) waiting jobs in queue ahead of 

the ith arrived job of product type j. This occurs if there are n jobs in the system at the arrival 

time of the ith job of product type j. Thus, the probability of the ith job of product type j 

arriving at the system in the time interval (0, RT] is equal to Pr[Tij≦RT]. The probability that 

there are n jobs present in the system is equal to , (1 ) n
n FIFO FIFO FIFOp ρ ρ= − . Besides, the square 

of total service time of (n－1) waiting jobs in queue ahead of the ith arrived job of product 

type j equals the sum of the squares of each service time in (n－1) waiting jobs in queue (SSST) 

plus twice the product of all combinations of the two service times of getting exactly two jobs 
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in (n－1) waiting jobs in queue (ProdST). These two terms (SSST and ProdST) are presented as 

follows. 

I. Sum of the squares of each service time in (n－1) waiting jobs in queue (SSST) 

In Equation (3-33), the term SSST includes the elements in Table 3-2 with gray 

background and can be rewritten as Equation (3-34), where 

2 2
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j r r jj s j FIFO r j rj s j FIFO jP pt s P ptλ λ λ λ  is the square of the service 

time. Thus, the term SSST equals the sum of the squares of each service time in (n－1) waiting 

jobs in queue. 
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II. Twice the product of all combinations of the two service times of getting exactly two jobs in 

(n－1) waiting jobs in queue 

In Equation (3-33), the term ProdST includes the elements in Table 2 with white 

background and can be rewritten as Equation (3-35) , where there are 1
2 ( 1)( 2) 2nC n n− = − −  

combinations of two jobs can be selected from (n－1) waiting jobs in queue, and the product 

of the two service times is equal to the square of the mean service time of job 

( 2
1 1,, , , ,{ ( )[ ( )( ) (1 ) ]}cJ J

j r r jj s j FIFO r j rj s j FIFO jP pt s P ptλ λ λ λ= = ≠ + + −∑ ∑ ). Thus, the term ProdST is 

the twice the product of all combinations of the two service times of getting exactly two jobs 

in (n－1) waiting jobs in queue. Thus we have succeeded in writing the square of total service 

time of (n－1) waiting jobs in queue ahead of the ith arrived job of product type j in terms of 
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SSST, plus ProdST. 

The second moment of total service time of all waiting jobs in queue ahead of the ith 

arrived job of product type j is equal to the summation of ESTSTn-1,ij,FIFO for all n (n≧2) 

according to Equation (3-33), which is given by 2
2, 1, ,[ ] ∞

= −= ∑nij FIFO n ij FIFOE TST ESTST . 
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3.3.2.3. Approximation of variance of waiting time 

From Equation (2-6), the variance of waiting time for M/G/1 queueing system 

(Var[Wq]M/G/1) depends on the square of the expected waiting time for M/G/1 queueing system 

( 2
/ /1[ ]q M GE W ). In this section, an approximation of the variance of waiting time related to 

2
/ /1[ ]q M GE W  is derived when the length of time interval (RT) is long enough. In order to do 

this, the limit of the second moment of waiting time of product type j jobs under FIFO has to 

be found as RT approaches infinity, and then the relative performance of an approximation of 

the variance of waiting time is also assessed. 
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Table 3-2 All terms in the square bracket on the right hand side of the equal sign in Equation (3-34) 
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When RT is long enough, the second moment of waiting time of product type j jobs 

under FIFO can be shown as 2 2 2
, , 1 / /1 2 / /1lim [ ] [ ] 2 [ ]

→∞
= +q j FIFO j M G j q M G

RT
E W E R E Wβ β  (see 

Appendix E), the coefficients β1j and β2j are expressed as Equations (3-36) and (3-37). 
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Thus, it can be seen that 2
2 2 (1 )= +j vCβ  if ρFIFO＝0 and 2 2

2 [2 (1 )]= +j vCβ  if ρFIFO＝1 

when RT is long enough, where lim 1
→∞

=jRT
w . Additionally, the first derivative of the gradient 

β2j with respect to ρFIFO is given by Equation (3-38) (see Appendix F).  
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Note that the first derivative of the gradient β2j with respect to ρFIFO is a positive number with 

0＜ρFIFO≦1 and λj＞0. Hence, the gradient β2j increases with the rise in the utilization rate of 

the machine.  

Now forming an approximation of the variance of waiting time of product type j jobs 

under FIFO in terms of , ,lim [ ]
→∞ q j FIFORT

E W  and in terms of 2
, ,lim [ ]

→∞ q j FIFO
RT

E W , it can be derived 

as Equation (3-39) as RT is increased and becomes vary large. 
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According to Equation (3-39), an approximation of the variance of waiting time of product 

type j jobs under FIFO depends on the parameters 2
jα  and β2j. Note that an approximation of 
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the expected waiting time of product type j is given by , , / /1lim [ ] [ ]
→∞

=q j FIFO j q M GRT
E W E Wα  

when RT is long enough. From Equation (3-40), the latter on the right hand side of the equals 

sign ( 2 2
/ /1[ ]j q M GE Wα ) means that , ,lim [ ]

→∞ q j FIFORT
E W  is used to substitute the expected waiting 

time E[Wq]M/G/1 as compared with Equation (2-6). 
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App E R E Wβ α                                       (3-40) 

In order to compare App1 in Equation (3-39) with App2 in Equation (3-40), the 

properties of the parameters 2jα  and β2j are discussed as follows. 

I. The gradients 2
jα  and β2j increase with the rise in the utilization rate of the 

machine.  

II.  According to Equation (3-22) and Equation (3-37), 2 2 20 [2 (1 )]≤ ≤ +j vCα  and 

2 2 2
22 (1 ) [2 (1 )]+ ≤ ≤ +v j vC Cβ  with 0≦ρFIFO≦1 and λj＞0, where lim 1

→∞
=jRT

w . 

The minimum of 2
jα  is less than the minimum of β2j and the maximums of 2

jα  

and β2j are the same. 

III.  The first derivative of the gradient β2j with respect to ρFIFO is more than or equal to 

the first derivative of the gradient 2jα  with respect to ρFIFO for 0≦ρFIFO≦1 and λj

＞0, where lim 1
→∞

=jRT
w . The difference between the first derivative of the gradient 

β2j with respect to ρFIFO and the first derivative of the gradient 2jα  with respect to 

ρFIFO is shown in Equation (3-41) (see Appendix G). The function g2(ρFIFO) in 

Equation (3-41) depends on ρFIFO and 1 1
J J
j jj j j j jn nπ λ λ= =′′ ′′= ∆ ∆∑ ∑  and is plotted 

against ρFIFO and π in Figure 3-6. It is seen that g2(ρFIFO)≧0 with 0≦ρFIFO≦1 and 

0≦π≦1, and then g2(ρFIFO)≦g3(ρFIFO) can be derived because 0≦ρFIFO≦1 and 

0≦π≦1. The proof of g1(ρFIFO)－g3(ρFIFO)＞0 with λj≦(2/3)λ and J＞1 is shown in 

Appendix H, which implies that g1(ρFIFO)－g2(ρFIFO)＞0. Thus, change in β2j is more 

than or equal to change in 2jα  with respect to increase in ρFIFO with λj≦(2/3)λ and J

＞1. 
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According to the discussion above, we concluded that 2
2 ≥j jβ α  and then an inequality 

2 2
2(2 )− ≥j j jβ α α  can be derived if the variation among job arrival rates is controlled in an 

adequate range. Consequently, an approximation of the variance of waiting time App1 is 

greater than or equal to an approximation of the variance of waiting time App2. 
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Figure 3-6 Plot of function g2(ρFIFO) 
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In general, the square of the expected waiting time is more than the second moment of 

the residual service time greatly; hence a large proportion of the variance of waiting time is 

the square of the expected waiting time. Value of αj in Equation (3-22) has two distinct 

possibilities: (1) 0≦αj＜1 when the machine utilization rate is smaller and (2) αj≧1 when the 

machine utilization rate is higher. This means that an approximation of the square of the 

expected waiting time of product type j jobs ( 2
, ,{ lim [ ]}

→∞ q j FIFO
RT

E W ) may be higher than the 

square of the expected waiting time for the M/G/1 queuing model ( 2
/ /1[ ]q M GW ), that is to say, 

the variance of waiting time of product type j jobs of this research could be greater than the 

variance of waiting time in Equation (2-6) by substituting the moments of the service time 

into the formula for an M/G/1 queue with high levels of workload on the machine. 

3.4 Summary 

In this section, a single machine system for processing several product types according to 

the FIFO rule is considered, and a setup of job to switch from the current setting to a different 

one is necessary. The expected values and the variances of the service time and the waiting 

time for multi-product types with setup time are determined. The advantage of using these 

estimates is that it can estimate important performance measure like the lead time, which 

contributes to the possibility of providing a due date for the order. 
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4. FSR analytic model for evaluating the effect of capacity-saving 

FSR implies following the criterion for selecting jobs that are of the same product type 

and need the same machine setting, hence those that are processed consecutively. Queued jobs 

with the same product type as the previous job on the machine indicates higher priority for 

processing (Missbauer [9]).  

In this section, FSR analytic model is developed to estimate the number of setups and the 

setup time for the single-machine problem in order to evaluate the effect of capacity-saving 

with the adoption of FSR. Due to the difficulty in directly solving analytical solutions for the 

expected setup time and service time, a numerical analysis is used. If the numerical solutions 

of the expected setup time and service time are solved, then the amounts of capacity wastage 

due to changes in the machine setting across several product types are evaluated. In Section 3, 

FIFO analytic model is adopted to estimate the expected setup time, and consequently, for 

comparison with those under FSR. After replacing FIFO with FSR, the effect of the latter on 

reducing setup time and capacity loss is explored further. The flowchart of FSR analytic 

model on the reduction of setup time and capacity loss is shown in Figure 4-1. 

 
Figure 4-1 Flowchart of FSR analytic model on the reduction of setup time and capacity loss 
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4.1 FSR analytic model 

When a job of specific product type arrives at the system, it may enter the queue of the 

batch (i.e., by product type) and wait for processing on machine, as required by FSR. FSR 

consists of two parts: (1) the assignment of a newly arrived job to a specific batch on queue 

based on the type of product family, which cannot be dispatched immediately on the machine, 

and (2) the dispatching of a next candidate job from several batches on queue that should be 

processed by the busy machine.  

 
Figure 4-2 Flow chart of family-based scheduling rule 

The operation executed by FSR is illustrated in Figure 4-2. When a job of a specific 

product type arrives at the system, if the machine is idle, FSR immediately dispatches this 

newly arrived job on machine. However, if the machine is busy and there is at least one job on 

queue or on machine, by carrying the same type as the new arrived job, FSR moves the 

arrived job to the batch with the same product type. If the machine is busy but there are no 

jobs (i.e., either on queue or on machine), by carrying the same type as the newly arrived job, 

FSR by itself transforms the arrived job into a new batch. When an arrived job is moved into 

an existing batch, jobs are sorted according to job arrival time in increasing order. Once the 
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busy machine has completed one job on a specific batch, then the job with the first order in 

the same batch is processed. After all jobs in this batch are completed, another batch 

designated as having the earliest arrival time of the first job among all jobs on queue is picked. 

Then, the first job is dispatched on machine. If FSR cannot find another batch on queue for 

machine processing, implying that no jobs are waiting on queue, then the machine becomes 

idle. 

4.1.1 Probability of requiring setups under FSR 

Note that before starting the processing of a new job, a setup is required if the type of job 

is different from the last completed job on machine. Similarly, when a job of specific product 

type arrives at the system at a time when the machine is busy, a setup is required if there is an 

additional new batch generated. For this purpose, let Ps,ij,FSR be the probability of requiring a 

setup under FSR, given that ith job of product type j arrives at the system at time interval (0, 

RT]. The probability Ps,ij,FSR is given by Equation (4-1), where Ps,j,FSR is the probability of 

requiring a setup under FSR, given that product type j job arrives at the system at time 

interval (0, RT]. 

, , , ,Prs ij FSR ij s j FSRP T RT P = ≤ ×                                                (4-1) 

The probability Ps,j,FSR should consider the number of jobs queued in the system. This 

includes two cases: (1) no jobs and (2) n (n≧1) jobs. Thus, Ps,j,FSR is defined by Equation 

(4-2). 

0 1
, , 0, , , ,

1

n n
s j FSR FSR setups FSR n FSR setups FSR

n

P p P p P
∞

= ≥

=

= +∑                                      (4-2) 

In Equation (4-2), p0,FSR and pn,FSR are the probabilities under FSR under conditions that there 

are no jobs and there are n (n≧1) jobs in the system, and 0
,

n
setups FSRP =  and 1

,
n

setups FSRP ≥  are the 

probabilities of requiring a setup under FSR for a job of type j arriving at a time when there 

are no jobs and there are n (n≧1) jobs in the system. 

The probability Ps,j,FSR is presented as follows: For the first condition, the ith job of type j 

arrives at time interval (0, RT] and there are no jobs in the system. A setup is necessary if this 

arrived job is different from the job previously completed by the current idle machine. 

Therefore, 0
,

n
setups FSRP =  can be expressed as (1－λj/λ), which indicates the probability that the 
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previously completed job on the current idle machine is different from type j. For the second 

condition, the ith job of type j arrives at time interval (0, RT] and there are n (n≧1) jobs in the 

system. A setup is necessary if there are no jobs in the system belonging to type j. Therefore, 

1
,

n
setups FSRP ≥  is equal to (1－λj/λ)

n.  

By referring to Equations (4-1) and (4-2), the probability of requiring a setup for ith job 

of product type j under FSR (Ps,ij,FSR) is rewritten as Equation (4-3). Note that Pns,ij,FSR is the 

probability of a setup that is not required by ith job of product type j under FSR, which is 

given as (1－Ps,ij,FSR). 

, , 0, ,
1

Pr 1 1
n

j j
s ij FSR ij FSR n FSR

n

P T RT p p
λ λ
λ λ

∞

=

    
   = ≤ − + −    

     
∑                        (4-3) 

To simplify the calculation of Ps,ij,FSR, the probabilities (p0,FSR and pn,FSR) need to be 

defined. If p0,FSR and pn,FSR are approximated by the M/G/1 formula, then p0,FSR and pn,FSR are 

approximately set to (1－ρFSR) and (1－ρFSR)(ρFSR)n, respectively, as executed in Missbauer [9] 

and Chern and Liu [10]. Subsequently, Ps,ij,FSR can be reformulated as Equation (4-4), where 

ρFSR is the machine utilization rate under FSR for the single machine. It is equal to λE[STFSR], 

where λ is the total arrival rate and E[STFSR] is the expected service time of jobs under FSR. 

1

, , Pr 1 1 1 1
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λ λρρ
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                   (4-4) 

4.1.2 Expected number of setups under FSR 

Ps,ij,FSR represents the probability of requiring “one” setup under FSR and given by ith 

new job of type j; (1－Ps,ij,FSR) represents the probability of requiring “no” setup under FSR 

and given by ith new job of type j. The expected number of setups under FSR for the ith arrived 

job of product type j can be derived as Equation (4-5). 

( ), , , , , , ,1 0 1  = × + × − = ij FSR s ij FSR s ij FSR s ij FSRE NS P P P                                (4-5) 

Suppose there arrives nj independent product type j jobs at time interval (0, RT]. Using 

the summation of ,[ ]ij FSRE NS  for all i, the expected number of setups of product type j under 

FSR is computed as 1, ,[ ] [ ]jn
ij FSR ij FSRE NS E NS== ∑ , where nj=λjRT and j=1, 2, …, J. Finally, 
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using the summation of ,[ ]j FSRE NS  for all j, the expected number of setups for all jobs under 

FSR is calculated as 1 1 ,[ ] [ ]jnJ
j iFSR ij FSRE NS E NS= == ∑ ∑ . 

4.1.3 Expected setup time under FSR 

For this purpose, let srj be the setup time prior to the processing of a job with product 

type j right after the last completed job belonging to product type r, referred to as predecessor. 

The length of the required setup time depends on product type change between any two 

consecutive jobs. We consider the following three cases with the inclusion of job arrival time: 

(1) The ith job of product type j does not arrive at time interval (0, RT]. Then, the setup time 

should equal 0 with the probability (1－Pr[Tij≦RT]). (2) The ith job of product type j arrives 

at time interval (0, RT] but a setup is not needed. Thus, the setup time sjj would be equal to 0 

with the probability Pr[Tij≦RT](1－Ps,j,FSR). (3) The ith job of product type j arrives at time 

interval (0, RT] and a setup is needed. This implies that the product type of the arrived job is 

different from the predecessor. Therefore, the setup time would be equal to srj with the 

probability Pr[Tij≦RT]Ps,j,FSR(λr/λ
c), where r＝1, 2, …, J, jr ≠ , and 1,

c J
r r j rλ λ= ≠= ∑ . 

Based on the abovementioned three cases, Equation (4-6) can be used to estimate the 

expected setup time for ith job of product type j arriving at time interval (0, RT] under FSR. 
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Then, the expected mean setup time for product type j jobs and the expected mean setup time 

for a job under FSR are expressed as 1, ,[ ] [ / ]jn
ij FSR ij FSR jE S E S n== ∑  and 

1 1 1,[ ] [ / ]jnJ J
j i jFSR ij FSR jE S E S n= = == ∑ ∑ ∑ , respectively. Applying Equation (4-6) to E[Sj,FSR] and 

E[SFSR] yields Equations (4-7) and (4-8), where nj=λjRT and j=1, 2, …, J. 



 47

1
, , ,

1 1

−

= =
≠

  =  ∑ ∑
jn J

r
j FSR j s ij FSR rjc

i r
r j

E S n P s
λ
λ

                                            (4-7) 

[ ]
1

, ,
1 1 1 1

−

= = = =
≠

 
=  
 
∑ ∑∑ ∑

jnJ J J
r

FSR j s ij FSR rjc
j j i r

r j

E S n P s
λ
λ

                                     (4-8) 

4.1.4 Expected service time under FSR 

The service time of a job is equal to the sum of its processing time and its setup time. 

Therefore, the expected service time for a job also relates to the three cases when estimating 

the setup time, as mentioned in Section 4.1.3. Moreover, the processing time of a job depends 

on its product type.  

In this context, let STij,FSR be the random variable of service time for ith job of product 

type j under FSR. The probability mass function of STij,FSR can then be shown as Equation 

(4-9). The expected mean service time for specific type j jobs and expected mean service time 

for a job are defined by 1, ,[ ] [ / ]jn
ij FSR ij FSR jE ST E ST n== ∑  and 

1 1 1,[ ] [ / ]jnJ J
j i jFSR ij FSR jE ST E ST n= = == ∑ ∑ ∑ , respectively. According to the probability mass 

function of STij,FSR, E[STj,FSR] and E[STFSR] can be derived as Equations (4-10) and (4-11), 

where ptj is the job processing time of product type j, nj=λjRT, and j=1, 2, …, J. 
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4.2 Analyzing the effect of FSR on the reduction of setup time and capacity 

loss 
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With the analytic model developed in Section 4.1, the effect of FSR on the reduction of 

setup time and capacity loss is further explored by comparing the results with the FIFO rule. 

Relative to FSR, FIFO dispatches jobs even without batching some jobs into the same type in 

order to process them consecutively. This implies wastage in setup frequency. Based on the 

FIFO principle, a setup occurs when any two consecutive jobs in the sequence have different 

product types and the total setup time may take up a large part of the machine capacity. 

Therefore, selecting FSR instead of FIFO may contribute to a reduction in setup frequency, 

setup time, and machine capacity utilization rate, and consequently, lessened capacity loss. In 

this section, we first compare the effect of FSR with FIFO in terms of reduced setup time and 

machine utilization rate. Second, we provide details on how machine utilization rate is saved 

by FSR while dispatching jobs as a result of setup time reduction, and then demonstrate how 

the effect of FSR on reducing utilization rate is related to the level of total arrival rate. 

4.2.1 Effects of FSR 

According to Equation (4-4) and the definition of Ps,ij,FIFO as Ps,ij,FIFO＝Pr[Tij≦RT](1－

λj/λ) in Equation (3-8), the probability of Ps,ij,FSR can be rewritten as Equation (4-12), where 

Ps,ij,FIFO is the probability of requiring a setup under FIFO, given that the ith job of type j 

arrives at time interval (0, RT]. 

1

, , , , 1 1 1
1

−    
 = − − +  −     

jFSR
s ij FSR s ij FIFO FSR
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P P
λρρ

ρ λ
                             (4-12) 

The following theorems can then be used to state the effect of FSR in relation to FIFO. 

Theorem 1. Ps,ij,FSR≦Ps,ij,FIFO, if J＞0 and 0≦ρFSR＜1 with λj＞0 for all j. 

Theorem 2. Ps,ij,FSR＜Ps,ij,FIFO, if J＞0 and 0＜ρFSR＜1 with λj＞0 for all j. 

An inequality expressed as Equation (4-13) can be used to explain the above theorems. 

In particular, the probability of requiring a setup under FSR is always less than or equal to the 

probability of requiring a setup under FIFO. Therefore, FSR can be used to reduce the setup 

frequency by assigning jobs on queue to a specific batch according to their product type. The 

effect of FSR on reducing setup time, service time, and capacity loss based on Theorem 1 can 

be expressed as the following. 
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Lemma 1. E[SFSR]≦E[SFIFO] 

The expected mean setup time under FIFO for jobs arriving at time interval (0, RT] 

E[SFIFO] in Equation (3-11) can be expressed as Equation (4-14). According to Theorem 1, the 

expected mean setup time under FSR in Equation (4-8), E[SFSR], is always less than or equal 

to that under FIFO. 
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                                   (4-14) 

Lemma 2. E[STFSR]≦E[STFIFO] 

The expected mean service time of jobs under FIFO E[STFIFO] in Equation (3-5) can be 

given by Equation (4-15) based on Equation (4-14). The expected mean service time of jobs 

under FSR, E[STFSR], can be reformulated as Equation (4-16) based on Equations (4-8) and 

(4-11).  
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Then, E[STFIFO]－E[STFSR]＝E[SFIFO]－E[SFSR] is derived from Equations (4-15) and (4-16). 

Note that E[STFSR]≦E[STFIFO] is the result of E[SFIFO]≧E[SFSR]. This means that service time 

can be reduced by using FSR when dispatching jobs. 

Lemma 3. ρFSR≦ρFIFO 

For a single machine, machine utilization rates under FIFO and FSR are shown as ρFIFO

＝λE[STFIFO] and ρFSR＝λE[STFSR], respectively. In accordance with E[STFSR]≦E[STFIFO], 

ρFSR≦ρFIFO if the total arrival rate is given. This implies that machine utilization rate can be 
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reduced by replacing FIFO with FSR when dispatching jobs.  

Savings in machine utilization rate by replacing FIFO with FSR can be written as ∆ρ＝

ρFIFO－ρFSR＝λ(E[SFIFO]－E[SFSR]). From Equations (4-8), (4-12), and (4-14), ∆ρ can then be 

written as Equation (4-17) depending on the machine utilization rate under FSR (ρFSR). 

Prior to the discussion of the influence of ρFSR on the savings in machine utilization rate, 

the first derivative of ∆ρ with respect to ρFSR is used and given by Equation (4-18). Note that 

d∆ρ/dρFSR≧0 with 0≦ρFSR＜1 and λj＞0 based on Equation (4-13). Let ρFSR1 and ρFSR2 be two 

different machine utilization rates under FSR and ρFSR1≧ρFSR2. Using ρFSR1 and ρFSR2 in 

Equation (4-17), ∆ρ(ρFSR1) and ∆ρ(ρFSR2) can then be computed. Next, ∆ρ(ρFSR1)≧∆ρ(ρFSR2) is 

set in accordance with Equation (4-18), where 0≦ρFSR1＜1 and 0≦ρFSR2＜1. Thus, savings in 

machine utilization rate achieved by replacing FIFO with FSR increases with the rise in 

utilization rate of the machine. This implies that more savings in machine utilization rate is 

achieved with high levels of workload on machine.  
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4.2.2 Relationship between the reduction of service time and the saving of utilization rate 

by varying total arrival rate 

In earlier discussions, we mentioned that savings in machine utilization rate (∆ρ) 

depends on machine utilization rate under FSR (ρFSR), which also depends on total arrival rate 

(λ) and reduced service time. Next, we investigate how savings in machine utilization rate can 

be affected by the changes in total arrival rate and reduction of service time. The result is 

plotted in Figure 4-3. 

For a single machine system, by referring to the queuing theory, the expected service 
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time (E[ST]) is proportional to the utilization rate of machine (ρ) with gradient 1/λ; this 

denotes an inverse of total arrival rate (Ross [33]). Thus, the expected service time behaves as 

a function of machine utilization rate. In relation, the straight line in Figure 4-3 can be 

depicted, which passes through the origin with the slope equal to the inverse of total arrival 

rate (1/λ). In Figure 4-3(a), a line with slope 1/λ* and intercept zero, E[ST]＝ρ/λ* can be 

obtained for a given specific total arrival rate λ
* and the vector of job processing time PT. 

Therefore, the expected service time under FIFO ( * ,
[ ]FIFOE ST λ PT

) is calculated by Equation 

(4-15) using λ* and PT. The machine utilization rate under FIFO ( * ,FIFO λρ
PT

) can then be 

computed by *
*

,
[ ]FIFOE ST λλ

PT
. 

Similarly, a curve of expected service time under FSR (E[STFSR]) by varying the machine 

utilization rate under can be seen in Figure 4-3(a). Based on Equations (4-4), (4-8), and (4-16), 

the estimation of expected service time under FSR (E[STFSR]) is required by the machine 

utilization rate under FSR (ρFSR) in order to compute the expected setup time (E[SFSR]). 

However, by referring to the queuing theory, the machine utilization rate under FSR (ρFSR) 

also depends on the expected service time under FSR (E[STFSR]). Therefore, it is difficult to 

solve an analytical solution for E[STFSR]. Instead, a numerical analysis can be used to compute 

E[STFSR]. The numerical solution of E[STFSR] can be solved by solving the two equations, 

E[STFSR]＝ρFSR/λ and E[STFSR]＝E[STFIFO]－E[SFIFO]＋E[SFSR], derived from Equations (4-15) 

and (4-16). If E[STFSR]＝ρFSR/λ is substituted in E[STFSR]＝E[STFIFO]－E[SFIFO]＋E[SFSR], 

then a new equation can be written as f(ρFSR)＝E[STFIFO]－E[SFIFO]＋E[SFSR]－ρFSR/λ＝0 and 

then it can be rewritten as Equation (4-19) based on Equation (4-15), where E[SFSR] can be 

derived by substituting Equation (4-4) with Equation (4-8). 
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As f(ρFSR) is the function of ρFSR and is differentiable, the Newton’s method can be used 

to solve the nonlinear equation, f(ρFSR)＝0. According to f(ρFSR) and its derivative with respect 

to ρFSR, we begin with a first guess of 0FSRρ  by setting 00 1FSRρ< ≤ . An approximate solution 

1
FSRρ  can be obtained by calculating 0 0 0( ) ( )FSR FSR FSRf fρ ρ ρ′− , in which 1

FSRρ  should be a 

better approximation to the solution of f(ρFSR)＝0. Once we have 1
FSRρ , the process can be 
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repeated to obtain 2
FSRρ . After n steps, if we have an approximate solution of n

FSRρ , then the 

next step is to calculate 1n
FSRρ +  and 1 ( ) ( )n n n n

FSR FSR FSR FSRf fρ ρ ρ ρ+ ′= − . Note that value of n
FSRρ  

moving closer to the value of 1n
FSRρ +  indicate that the approximate solution of f(ρFSR)＝0 after 

n steps has been determined. 

The curve of the function f(ρFSR)＝0 for various machine utilization rates is plotted in 

Figure 4-3(a). The function of f(ρFSR)＝0 is the expected service time under FSR (E[STFSR]) 

that shifts down with shifts in quantum ρFSR/λ. Thus, a root of f(ρFSR)＝0; that is, FSRρ ∗  is 

identified using the Newton’s method. By giving FSR FSRρ ρ∗=  for Equation (4-16) to 

calculate E[STFSR], then machine utilization rate under FSR is obtained; that is, 

* * *
*

, , , ,
[ ] ∗=

PT PTFSR FSR
FSR FSRE STλ ρ λ ρρ λ . 

In Figure 4-3(b), by changing the total arrival rate from λ
* to λ** , λ**  is found to be 

smaller compared with λ* along with the same vector of job processing time PT. A line E[ST]

＝ρ/λ**  is drawn with slope 1/λ** ; that is, the inverse of the total arrival rate and this line is 

steeper because 1/λ**  is larger compared with 1/λ*. By repeating the aforementioned steps, the 

expected service time and the machine utilization under FSR can then be depicted as 

** **, ,
[ ]

FSR
FSRE ST λ ρPT

 and ** **
**

, ,
[ ]

FSR
FSRE ST λ ρλ

PT
. The expected service time and machine 

utilization rate under FIFO can be computed as ** **, ,
[ ]

FSR
FIFOE ST λ ρPT

 and 

** **
**

, ,
[ ]

FSR
FIFOE ST λ ρλ

PT
. 

The varied total arrival rate from λ* to λ**  with small increment is depicted by the two 

bold curves in Figure 4-3(c). They represent the relationships between the expected service 

time and the machine utilization rate for various total arrival rates under FIFO and FSR, 

respectively. Figure 4-3(c) also illustrates the effect of varying total arrival rates on the 

reduction of service time, which corresponds to the pairs of machine utilization rates under 

FIFO and FSR. These show that the reductions of service time and machine utilization rate 

become larger as total arrival rate increases. Therefore, FSR can effectively reduce service 

time and machine utilization rate at peak demand times.  
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Figure 4-3(a) The expected service time under FSR for a given total arrival rate λ* 
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Figure 4-3(b) The expected service time by changing total arrival rate from λ* to λ**  
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Figure 4-3(c) Two curves of expected service time for various total arrival rates under FIFO 

and FSR 

4.2.3 Decision criterion on the reduction of setup time  

In this section, we develop a decision criterion to conclude on which condition the setup 

time can be saved significantly by replacing FIFO with FSR. According to Lemma 1, the 
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expected mean setup time under FSR is always less than or equal to that under FIFO. To 

evaluate the magnitude of setup time reduction by replacing FIFO with FSR, the difference of 

setup time for the ith job of type j by comparing FIFO and FSR is defined as DSij,FIFO-FSR＝

Sij,FIFO－Sij,FSR, where Sij,FIFO and Sij,FSR represent the setup time for the ith job of type j under 

FIFO and FSR, i＝1, 2, …, nj, and j=1, 2, …, J. Therefore, the mean difference FIFO FSRDS −  

is expressed as Equation (4-20).  

( )
1 1

, , ,
1 1 1 1 1 1

j jn nJ J J J

FIFO FSR j ij FIFO FSR j ij FIFO ij FSR
j j i j j i

DS n DS n S S

− −

− −
= = = = = =

   
= = −   
   
∑ ∑∑ ∑ ∑∑           (4-20) 

Let 0FIFO FSRDS µ− >  represent the magnitude of setup time reduction is more than µ0 by 

replacing FIFO with FSR, where µ0≧ 0. Therefore, by replacing FIFO with FSR, 

0Pr[ ] 1FIFO FSRDS µ α− > ≥ −  indicates the probability of having the setup time reduction larger 

than µ0 is more than or equal to (1 )α− , where 0< <1α .  

0
Pr 0 Pr 1

0

FIFO FSR

FIFO FSR

FIFO FSR

FIFO FSR

FIFO FSR

FIFO FSR FIFO FSR

E DS
DS Z

Var DS

E DS
z

Var DS

E DS z Var DS

α

α

α
−

−

−

−

−

− −

  −    > = > ≥ −       

 −  ⇒ ≤ −
 
 

   ⇒ ≥   

                        (4-21) 

where the expected value of FIFO FSRDS −  and the variance of FIFO FSRDS −  are derived as 

Equation (4-22) and Equation (4-23). 

( ) [ ] [ ]
1

, ,
1 1 1

jnJ J

FIFO FSR j ij FIFO ij FSR FIFO FSR
j j i

E DS E n S S E S E S

−

−
= = =

  
   = − = −      

∑ ∑∑           (4-22) 
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The further detail of mathematical proof for [ ]−FIFO FSRVar DS  is shown in Appendix I. 

Thus, the probability Pr[ 0] 1FIFO FSRDS α− > ≥ −  can be computed as Equation (4-21), 

where zα indicates the proportion of the area under the curve, from 0 to positive, of a 

standardized normal distribution is equal to (1－α). To calculate the probability in Equation 

(4-21), the random variable Z is defined as Equation (4-24), whose value is given by the 

difference between FIFO FSRDS −  and its expected value ([ ]FIFO FSRE DS − ), divided by the 

standard error of the mean ( [ ]FIFO FSRVar DS − ). According to the central limit theorem, the 

distribution of the random variable Z approaches that of a standard normal distribution as 

n→∞, where 1
J
j jn n RTλ== =∑ . 

FIFO FSR FIFO FSR

FIFO FSR

DS E DS
Z

Var DS

− −

−

 −  =
 
 

                                            (4-24) 

Thus, if [ ]FIFO FSRE DS −  is larger than [ ]FIFO FSRz Var DSα − , then the probability that the 

setup time of jobs can be saved by replacing FIFO with FSR is guaranteed to be more than or 

equal to (1－α).  

4.3 Summary 

In this section, FSR analytic model is proposed to estimate the number of setups, the 

setup time, and the service time for a single-machine system facing uncertain job arrival. 

Through this analytic model, the amount of the capacity waste can be evaluated due to the 

changing of machine setting among several product types and the effect of the setup time 

reduction by replacing FIFO with FSR can be analyzed. 
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5. Performance analysis for the proposed analytic models 

In order to evaluate the FIFO and FSR analytical models, simulation models are built to 

test the performance of FIFO and FSR analytical models in several different scenarios. In the 

simulation models, the inter-arrival time of jobs is an exponential distribution; the dispatching 

of jobs for processing on a single machine depends on FIFO and FSR; and the setups occur 

for two different types of jobs being consecutively processed on the machine. 

As stated in Section 3, the lead time under FIFO consists of two parts: the waiting time 

in queue and the service time on the machine. If these two parts are accurate, then the 

performance of the estimate of the lead time by FIFO analytical mode is guaranteed. 

Therefore, the accuracy of the waiting time in queue and the service time on the machine 

under FIFO are presented in the following sections. Next, the simulation results under FSR 

are collected from a fixed time period of jobs arriving with various arriving rates.  

5.1 Experimental design  

Missbauer [20] and Vieira et al. [29] assumed that five and ten job types can arrive to the 

system. Eight is simply the middle number. Therefore eight product types are processed in the 

simulated production system.  

In FIFO simulation model, the machine is implemented to work 24 hours a day (RT＝24 

hours＝86,400 seconds). In FSR simulation model, three levels of run time (RT) are 

considered: 8, 16, and 24 hours. The simulation model contains the vector of job processing 

time among eight product types (PT) and the matrix of setup time (ST＝[srj]) for switching 

product types on the machine, where srj is the setup time for product type j job when product 

type j job follows product type r job and is the element at the jth row and rth column of ST. 

“Second” is the unit of processing time and setup time. 

According to the queuing theory, the utilization rate of the machine, which depends on 

the total arrival rate, has great impact on the waiting time of jobs. Thus, the total arrival rates 

(λ) are set to control the machine utilization rates. The arrival rates among eight product types 

are defined by λj＝δτj and the corresponding values of τj are shown in Table 5-1. The total 

arrival rate can be calculated as 8 8
1 1j jj jλ λ δ τ= == =∑ ∑  jobs in 60 seconds and is proportional 
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to the sum of τj with the parameter δ. The difference between any two adjacent levels of δ is 

the same and equals 0.05. 

In addition to the total arrival rate, the mix of the arrival rates of various types of jobs 

can also affect the waiting time in queue because different products have different processing 

time and setup frequency, as well as time consumed on the machine. Thus, the coefficient of 

variation among job arrival rates (symbol CV) is considered and is defined as the ratio of the 

standard deviation (sλ) of the job arrival rate of product types to the mean (λ ) of the job 

arrival rate of product types multiplied by 100. Thus, it is calculated 

as ( ) 100% ( ) 100%CV s sλ τλ τ= × = × , where τ  and sτ are the mean and the standard 

deviation of τj, respectively, which are shown in Table 1. Using the information of τ  and sτ 

in Table 1, the CVs for job arrival rates can easily be calculated as 0, 27.9753%, and 

53.7234%. The higher the CV means the greater dispersion in the jobs arrival rates among 

eight product types. 

Different scenarios are created by varying the total arrival rates and by varying the CVs 

for job arrival rates. All other parameters remained constant. Note that the simulated 

production system is always stable (i.e. the production system has enough capacity to process 

all jobs) because ρFIFO＝λE[STFIFO] and ρFSR＝λE[STFSR] are always smaller than one. Note 

that each scenario is simulated for five replications and the simulation results for each 

combination are collected after 10,000 independent simulation runs. 

[ ]12580105545857515=PT  

0 90 60 15 15 30 45 30

15 0 75 30 45 75 90 45

30 60 0 45 90 90 75 60

45 75 90 0 45 30 60 45

60 75 45 45 0 45 75 15

45 30 30 30 75 0 60 75

60 45 60 15 45 15 0 45

15 30 15 30 60 30 45 0

 
 
 
 
 
  = =   
 
 
 
 
  

ST rjs  

Table 5-1 Total arrival rate and coefficient of variation 
Parameters among eight product types 

τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 
Mean of 

parameters 
Standard deviation 

of parameters 
CVs (%) 

0.001250 0.001250 0.001250 0.001250 0.001250 0.001250 0.001250 0.001250 0.001250 0 0 
0.001342 0.001577 0.001804 0.000917 0.001145 0.001443 0.000817 0.000955 0.001250 3.49691×10-4 27.9753 
0.001821 0.001255 0.000297 0.001721 0.000946 0.000363 0.001467 0.002130 0.001250 6.71543×10-4 53.7234 
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Let , ,kj VAR RULEx  and 2
, ,kj VAR RULEs  be the sample mean and the sample variance of specific 

VAR of product type j jobs for the kth simulation run under specific RULE by the simulation 

model. The suffix symbol of VAR represents the variance, where VAR=S (Setup time), 

VAR=ST (Service time), VAR=Wq (Waiting time), and VAR=Ps (Probability of setups), and the 

suffix symbol of RULE represents the dispatching rule, where RULE=FIFO and RULE=FSR. 

In simulation model, we have 10,000 sets of data containing N1j , …, and N10000j jobs of 

product type j with means 1 , ,j VAR RULEx , …, and 10000 , ,j VAR RULEx , and variances 2
1 , ,j VAR RULEs , …, 

and 2
10000 , ,j VAR RULEs , and then the combined mean and the combined variance of all product 

type j jobs are given by Equations (5-1) and (5-2), respectively. 

1

, , , ,
1 1

−

= =

 =  
 
∑ ∑

K K

j VAR RULE kj kj kj VAR RULE
k k

x N N x                                        (5-1) 

( )
1

22 2
, , , , , , , ,

1 1

−

= =

   = + −     
∑ ∑

K K

j VAR RULE kj kj kj VAR RULE kj VAR RULE j VAR RULE
k k

s N N s x x                 (5-2) 

where Nkj is the sample size of product type j jobs for the kth simulation run. The average size 

of product type j jobs can be computed as 1== ∑K
kj kjN N K  and the combined standard 

deviations can be calculated by taking the square roots of 2
, ,j VAR RULEs . 

5.2 Accuracy analysis of FIFO analytic model in estimating lead time 

To analyze the accuracy of FIFO analytic model on estimating lead time, an 

experimental design with various arrival conditions among eight types of services, which 

correspond to various resource utilization rates, is conducted. Furthermore, the numerical 

result of the proportionality αj in Equation (3-22) is also presented compared with αj＝1 

because an approximation of the expected waiting time for each product type is equivalent to 

the expected waiting time for the M/G/1 queuing theory if αj＝1. 

In terms of the accuracy of FIFO analytic model, the initial and final levels of δ are 0.75 

and 0.95, respectively. For the case of the numerical analysis of the proportionality αj, the 

initial and final levels of δ are 0.05 and 0.95, respectively.  

5.2.1 Accuracy analysis of expected service time 
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By substituting the probability Ps,j,FIFO＝(1－λj/λ) into Equation (3-4), the expected 

service time of the product type j jobs can be easy to simplify as Equations (5-3), and then the 

limit of the expected service time of the product type j jobs can be given by Equations (5-4) as 

RT approaches infinity because 1lim lim Pr[ ] 1=→∞ →∞
= ≤ =∑ jn

ij ij j
ER ER

w T RT n . 

,
1 1

J J
r r

j FIFO j j rj j j rj
r r
r j

E ST w pt s w pt s
λ λ
λ λ= =

≠

 
    = + = +       

 

∑ ∑                           (5-3) 

,
1 1

lim
J J

r r
j FIFO j rj j rjRT

r r
r j

E ST pt s pt s
λ λ
λ λ→∞ = =

≠

 
    = + = +       

 

∑ ∑                            (5-4) 

where wj is the mean of all probabilities of product type j jobs arrived at the system in the 

time interval (0, RT]. The expected service times of single job for each product type and their 

limits as RT approaches infinity by varying the CVs of job arrival rate and total arrival rates 

are drawn in Figure 5-1.  
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Figure 5-1 Service time and its limit by FIFO analytic model  
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Owing to the probability wj≦1, the service times by analytic model are less than their 

limits, which is apparent in Figure 5-1. In addition, the probabilities that the predecessor of 

the arrived job belongs to the specific product type ( 8 8
1 1= == =∑ ∑j jj j j j jλ λ δτ δ τ τ τ ) is 

unconcerned with the constant δ in the experimental design. These probabilities are fixed even 

the total arrival rate is changed. Thus, the change of the service time for varying total arrival 

rates is insignificant in Figure 5-1.  

According to Equations (5-3) and (5-4), the expected service time and its limit depend on 

arrival rate, processing time, and setup time. When CV is equal to zero, the arrival rate 

parameters among eight product types (τj) are the same and then the expected service time 

depends on the processing time and the setup time. Thus, the expected service times for each 

product type by analytic model are near to their average service times as CV=0, where the 

average service time of product type j job is defined by the sum of the processing time and the 

average setup time of product type j job, and the average setup time of product type j job can 

be computed as the summation of sjr in ST for all r divided by the number of product type. 

When CV is equal to 27.9753% or 53.7234%, the arrival rate parameters among eight 

product types are unequal and then it makes setup time and service time to be changed as 

compared with CV=0. Taking product type 1 as an example, the setup times of product type 1 

are the elements at the first row of ST. Note that the setup times of product type 1 after 

product type 2 and product type 3 are larger (90 and 60), but otherwise the setup times of 

product type 1 are smaller. When CV is equal to 27.9753%, the arrival rates of product type 2 

and product type 3 (0.001577δ and 0.001804δ) are increasing as compared with CV=0. Thus, 

the setup time of single job of product type 1 becomes larger and then it leads to the larger 

service time for product type 1 when CV is equal to 27.9753%. When CV is equal to 

53.7234%, the arrival rates of product type 4 and product type 8 (0.001721δ and 0.002130δ) 

are increasing as compared with CV=0. This result causes the saving in setup time and service 

time. It can be apparent from Figure 5-1(a). 

Apart from the foregoing, there are some specific cases in Figure 5-1(c) and Figure 

5-1(h). First, the expected service time of product type 3 decreases but its limit increases 

when CV increases from 27.9753% to 53.7234%. According to Equations (5-4), an increase of 

the limit of the expected service time is caused because of an increase of 1, ( )= ≠∑
cJ

r r j r rjsλ λ . 

As for the expected service time in Equations (5-3), it depends on wj and 1, ( )= ≠∑
cJ

r r j r rjsλ λ . 
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The decrease by a wide margin of the arrival rate of product type 3 leads to the probability wj 

being far less than one when CV increases from 27.9753% to 53.7234%. Relative to an 

increase of its limit, the expected service time of product type 3 decreases when CV increases 

from 27.9753% to 53.7234%. On the contrary, the expected service time of product type 8 

increases but its limit decreases when CV increases from 27.9753% to 53.7234% because the 

increasing margin of the probability wj is larger than the decreasing margin of 

1, ( )= ≠∑
cJ

r r j r rjsλ λ . Thus, the lower and higher arrival rate resulted in the trend of the expected 

service time being different from its limit. 

Next, to evaluate the limit of the expected service time by analytical model the 

simulation results of the service time are compared with the values that analytical model 

predicted in the experimental design. In the simulation model, the sample mean of the service 

time of product type j jobs for the kth simulation run under FIFO ( , ,kj ST FIFOx ) can be shown as 

Equation (5-5). 

, ,
1=

= +∑
J

krj
kj ST FIFO j rj

r kj

N
x pt s

N
                                                  (5-5) 

where Nkrj represents the number of product type r job when the product type j job follows the 

product type r job for the kth simulation run, and Nkj is the sample size of product type j jobs 

for the kth simulation run and 1
J
rkj krjN N== ∑ . The combined mean of the service time of 

product type j jobs can be calculated by Equation (5-1). Because each combination is 

simulated for five replications, average of five combined means of jobs service time and the 

limit of the expected service time by varying the CVs of job arrival rate and total arrival rates 

are plotted in Figure 5-2. It can be seen that the average service times of jobs by simulation 

model are close to the limits of the expected service time by analytic model. Meanwhile, the 

average service times of jobs by simulation model are smaller than the limits of the expected 

service time by analytic model in many cases. The further analyses are to be described as 

follows. 

To compare the results of service time of single job generated respectively by the 

simulation model and analytic model, the error of estimated service time is defined by 

Equation (5-6). 
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Figure 5-2 Limit of service time by analytic model and average service time by simulation 

model 
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, , , , ,lim
→∞

 = − j ST FIFO j FIFO j ST FIFORT
Error E ST x                                        (5-6) 

where , ,j ST FIFOx  represents the sample mean of the service time of product type j jobs by 

simulation model and E[STj,FIFO] represents the expected service time of product type j jobs 

by analytic model. Figure 5-3 shows the mean errors of estimated service time by varying the 

CVs of job arrival rate and the total arrival rates. Note that these errors are almost positive. 

This indicates that the average service times of jobs by simulation model are smaller than the 

limits of the expected service time by analytic model, thus r krj kjN Nλ λ >  according to 

Equation (5-4) and Equation (5-5). 
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Figure 5-3 Errors of estimated service time by varying the CVs of job arrival rate and the total 

arrival rates 

Figure 5-4 shows the relationship between the errors of estimated service time for each 

product type and the arrival rate parameters among eight product types. When CV equals zero, 

the errors are vertical because the arrival rate parameters among eight product types are the 

same and the errors range between 0.005716 and 0.01478. Moreover, there is a increasing 

relationship between the errors of the estimated service time and the arrival rate parameters 

among eight product types when CV＝27.9753% and CV＝53.7234%. When CV＝27.9753% 
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and CV＝53.7234%, the correlation coefficients are 0.6225 and 0.7456, respectively. This 

means that the value for the errors of the estimated service time increase as the value for the 

arrival rate parameters among eight product types increases. The error may be negative for the 

smaller arrival rate of jobs and may be positive for the larger arrival rate of jobs because there 

is a greater possibility of r krj kjN Nλ λ >  when the arrival rate of jobs is large. 
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Figure 5-4 Scatter plot for errors of estimated service time under FIFO 

5.2.2 Accuracy analysis of standard deviation of service time 

The standard deviations of service time and their limits for each product type by varying 

the CVs of the job arrival rate and the total arrival rates by FIFO analytic model are plotted in 

Figure 5-5. In FIFO analytical model, the variance of the service time of the product type j 

jobs is given by Var[STj,FIFO]＝Var[PTj]＋Var[Sj,FIFO] and its limit is shown as Equation (5-7) 

based on Equation (3-26). 
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where PTj and Sj,FIFO are the variables of processing time and setup time of the product type j 

jobs.  
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Figure 5-5 Standard deviations of service time and their limits by FIFO analytic model 

In Figure 5-5, the differences between the standard deviation of service time and their 

limits for product type 6 and product type 8 by FIFO analytic model are minimum and 

maximum, respectively. The difference between the standard deviation of service time and 

their limits is equivalent to the standard deviation of processing time. There are two possible 

categories of the processing time of product type j and are labelled by value ptj and value 0, in 

which value ptj responses "job arrives in (0, RT]" and value 0 responses "job does not arrive in 

(0, RT]". Thus there is a greater dispersion in the jobs processing time when the jobs 
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processing time becomes larger, and then the gaps between the standard deviations of service 

time and their limits are widened as the processing time of jobs increases. 

Next, the simulation results of the standard deviation of service time are compared with 

the values that FIFO limit analytical model predicted in order to evaluate the limit of the 

standard deviation of service time by FIFO analytical model. In simulation model, the service 

time of the product type j jobs is equal to its processing plus its setup time (ptj＋srj), where the 

processing time of the product type j (ptj) depends on its product type and the setup time (srj) 

depends on its product type and the product type of its predecessor. Thus, the sample variance 

of the service time of the product type j jobs in simulation model (2, ,j ST FIFOs ) can be calculated 

as Equation (5-8). 
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According to Equation (5-8), the sample variance of the service time of the product type j jobs 

in simulation model is equal to the sample variance of the setup time of the product type j jobs 

in simulation model (2

, ,j S FIFOs ) because the processing time of the product type j is fixed. In 

other words, a comparison of the limits of standard deviation of service time from FIFO 

analytical model to the values of standard deviation of service time from simulation model is 

equivalent to a comparison of the limits of standard deviation of setup time from FIFO 

analytical model to the values of standard deviation of setup time from simulation model.  
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Figure 5-6 Limit of standard deviation of service time by FIFO analytic model and standard 

deviation of service time by simulation model 
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Figure 5-6 shows the limits of standard deviation of service time from FIFO analytical 

model and the values of standard deviation of service time from simulation model for each 

product type by varying the CVs of the job arrival rate and the total arrival rates. The error of 

estimated standard deviation of service time is defined by Equation (5-9). 

, , , , ,lim
→∞

 = − STj SD FIFO j FIFO j ST FIFORT
Error Var ST s                                  (5-9) 

According to the discussion of the service time under FIFO, it is obvious that the average 

service times of jobs by simulation model are smaller than the limits of the expected service 

time by analytic model, which implies that r krj kjN Nλ λ >  based on Equation (5-4) and 

Equation (5-5). By referring to Equation (5-7) and Equation (5-8), the error of estimated 

standard deviation of service time can be updated as Equation (5-10). 
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           (5-10) 

Note that the sum of squares is less than or equal to the square of the sum. Thus, the error 

, ,STj SD FIFOError  is a negative value if r krj kjN Nλ λ > , that is, the standard deviations of 

service times of jobs by simulation model are larger than the limits of the standard deviation 

of service time by FIFO analytic model if r krj kjN Nλ λ > , which are apparent in Figures 

5-6. 

Figure 5-7 shows the mean errors of the estimated standard deviation of service time by 

varying the CVs of job arrival rate and the total arrival rates. According to Equation (5-10), the 

relationship between Errorj,ST,FIFO and , ,STj SD FIFOError  is given by 

2 2 2
1, , , ,( )=≤ − −∑

ST

J
rj SD FIFO r krj kj rj j ST FIFOError N N s Errorλ λ . Thus, it is obvious that the error 

, ,STj SD FIFOError  is negative growth if the error Errorj,ST,FIFO is the positive growth. In Figure 5-2, 
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the value of Errorj,ST,FIFO for CV＝53.7234% is minimum, the value of Errorj,ST,FIFO for CV＝

27.9753% is maximum, and the value of Errorj,ST,FIFO for CV=0 is in between. In Figure 5-15, 

thus, the absolute value of , ,STj SD FIFOError  for CV＝53.7234% is minimum, the absolute value 

of , ,STj SD FIFOError  for CV＝27.9753% is maximum, and the absolute value of , ,STj SD FIFOError  

for CV=0 is in between. From smaller to larger CV, overall means of the errors of estimated 

standard deviation of service time are equal to -0.2862, -0.3288, and -0.1072, respectively. 
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Figure 5-7 Mean errors of estimated standard deviation of service time by varying the CVs of 

job arrival rate and the total arrival rates 

Then, the values of the mean errors of estimated standard deviation of service time 

versus the corresponding values of the arrival rate parameters are also plotted in Figure 5-8 in 

order to interpret the influence of the arrival rate parameters among eight product types on 

estimating the standard deviation of service time. 

In Figure 5-8, the graph is used to show relationship between the mean errors of 

estimated standard deviation of service time and the arrival rate parameters among eight 

product types. It can be seen that the error tends to usually go down as the arrival rate of jobs 

goes up except CV＝0. This implies that the higher arrival rates of various job types 
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contribute to decrease not only the error percentage of the estimated service time but also the 

error percentage of the estimated standard deviation of service time. 
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Figure 5-8 Scatter plot for errors of estimated standard deviation of service time under FIFO 

5.2.3 Accuracy analysis of expected waiting time 

In this research, the waiting time is decomposed into two components: one is the residual 

service time of the unfinished job on the machine (Rij,FIFO) and the other is the total service 

time of all jobs in queue ahead of the newly arrived job (TSTij,FIFO). Both the expected values 

of Rij,FIFO and TSTij,FIFO depend on the probability Pr[Tij≦RT]. Note that 

Pr[ ] lim Pr[ ] 1
→∞

≥ ≤ ≥ =ij ijRT
T RT T RT  when RT is long enough. Thus, the limits of the expected 

values of Rij,FIFO and TSTij,FIFO are larger than or equal to the expected values of Rij,FIFO and 

TSTij,FIFO and consequently the limit of the expected waiting time is more than or equal to the 

expected waiting time ( , , , ,lim [ ] [ ]
→∞

≥q ij FIFO q ij FIFORT
E W E W ), which are apparent in Figures 9. In 

Figure 9, the waiting times grow steeper with the rise in the total arrival rate because of the 

growth of the number of jobs in the system, which is a characteristic of almost all queuing 

systems. 
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Figure 5-9 Waiting time for each product type jobs and its limit by FIFO analytic model 
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In order to compare the results of the waiting time of a single job generated by the 

simulation model and the analytic model, we have to identify the error of the estimated 

waiting time, which is defined by Equation (5-11). 

 , , , , ,lim
→∞

 = −  qwaiting time j q j FIFO j W FIFORT
EP E W x                                        (5-11) 

where , ,qj W FIFOx  represents the overall sample mean of the waiting time of a single job of 

product type j by the simulation model, , ,[ ]q j FIFOE W  represents the expected waiting time of a 

single job of product type j by the analytic model. Figure 5-10 shows the mean error of the 

estimated waiting time by varying the CVs of job arrival rate and the total arrival rates. Clearly, 

the error of estimated waiting time ascends as the level of the total arrival rate increases. The 

higher level of the total arrival rate leads to the high level of WIP. The high level of WIP 

means jobs are waiting in queue for longer. Thus, relatively few jobs have long waiting time 

at higher level of total arrival rate causing larger error of the estimated waiting time. 
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Figure 5-10 Mean error of estimated waiting time by varying the CVs of job arrival rate and 

the total arrival rates 
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Besides, the arrival rates among various product types affect the performance of the 

analytic model in estimating waiting time because the waiting time depends on the service 

time. The values of the mean error of estimated waiting time versus the corresponding values 

of the arrival rate parameters are plotted in Figure 5-11. Excluding CV=0, the pattern of the 

mean error of the estimated waiting time for each product type slopes from the lower left to 

the upper right part when CV=27.9753% and CV=53.7234%, respectively. The error of 

estimated waiting time is similar to the error of estimated service time, which is negative for 

the smaller arrival rate of jobs and is positive for the larger arrival rate of jobs. Thus, the 

extreme of the arrival rates of jobs would affect the performance of the analytic model more 

in estimating waiting time when the dispersion of the arrival rates of jobs increases. 
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Figure 5-11 Scatter plot for errors of estimated waiting time under FIFO 

5.2.4. Accuracy analysis of standard deviation of waiting time 

Three standard deviations of the waiting time for each product type by varying the CVs 

of the job arrival rate and the total arrival rates in the analytic model are given graphically in 

Figure 5-12:  

I. According to Equation (3-27), the standard deviation of waiting time by analytical 
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model can be shown as 
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II.  According to Equation (3-39), an approximation of the standard deviation of 

waiting time with the parameters 2jα  and β2j is given by 

      ( )
, ,

1
2 22 2

1 2, / /1/ /1
2 ′    = + −     q j FIFOW j j j q M GM G

E R E Wσ β β α  

III.  According to Equation (3-40), an approximation of the standard deviation of 

waiting time with the parameter 2
jα  is given by 

    
, ,

1
2 22 2

1 / /1/ /1

 ′′    = +     q j FIFOW j j q M GM G
E R E Wσ β α  

Note that 
, , , , , ,

2 0.5 2 0.5[ lim ] [ ]
→∞

′ = ≥
q j FIFO q j FIFO q j FIFOW W W

RT
σ σ σ  because lim Pr[ ] 1

→∞
≤ =ijRT

T RT . Thus, 

, ,
′

q j FIFOWσ  is an upper bound of the standard deviation of waiting time (
, ,q j FIFOWσ ). Meanwhile, 

, , , ,
′ ′′≥

q j FIFO q j FIFOW Wσ σ  because 2 2
2(2 )− >j j jβ α α . In Figure 5-12, the value of 

, ,
′′

q j FIFOWσ  is 

minimum. Thus, 
, ,

′′
q j FIFOWσ  can be treated as the lower bound of the standard deviation of 

waiting time (
, ,q j FIFOWσ ). Moreover, approximations of the standard deviation of waiting time 

are the function of the square of the expected waiting time for M/G/1 queueing model 

( 2
/ /1[ ]q M GE W ). Thus, they have a characteristic of the expected waiting time for M/G/1 

queueing model, which grow steeper with the rise in the total arrival rate. 
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Figure 5-12 Standard deviation of waiting time and its approximation by FIFO analytic 
model 
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In Figure 5-12, it can be seen that 
, , , , , ,

′ ′′≥ ≥
q j FIFO q j FIFO q j FIFOW W Wσ σ σ . If the larger standard 

deviation of the waiting time is used in the variability of the lead time, then it will lead to the 

due-date slackness. On the other hand, the due-date tightness will occur if the lower standard 

deviation of the waiting time is used in the variability of the lead time. The accuracy of 

due-date assignment has a profound effect on the production management. In order to obtain 

the better standard deviation of waiting time, a new approximation of the standard deviation 

of waiting time is defined the square roots of the mean of 
, ,

2′
q j FIFOWσ  and 

, ,

2′′
q j FIFOWσ , which is 

given by Equation (5-12). 
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j j qM G M G

j

j q j FIFOM G RT
j

E R E W

E R E W

σ σ
σ

β β

β
β

α

                             (5-12) 

The accuracy analysis of this new approximation is discussed as follows. 

To compare the results of the standard deviation of the waiting time generated 

respectively by the simulation model and approximation form developed in Equation (5-12), 

we compute the error of estimated standard deviation of the waiting time defined by Equation 

(5-13). 

, ,   , , ,
′′′= −

q j FIFO qsd of waiting time j W j W FIFOEP sσ                                             (5-13) 

where , ,qj W FIFOs is the combined standard deviation of the waiting time of product type j jobs. 

Figure 5-13 shows the mean error of the estimated standard deviation of waiting time by 

varying the CVs of job arrival rate and the total arrival rates. Note that an approximation of the 

standard deviation of waiting time 
, ,

′′′
q j FIFOWσ  in Equation (5-12) depends on the limit of the 

expected waiting time ( , ,lim [ ]
→∞ q j FIFORT

E W ) and the performance of , ,lim [ ]
→∞ q j FIFORT

E W  can be 

influence by the high level of the total arrival rate. Thus, the error of estimated standard 

deviation of waiting time increases as the level of the total arrival rate increases in Figure 

5-13. 
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Figure 5-13 Mean errors of estimated standard deviation of waiting time by varying the CVs 

of job arrival rate and the total arrival rates 

In addition to standard deviation, the coefficient of variation is also useful to describe the 

dispersion of variable. The coefficient of variation of waiting time is defined as the ratio of its 

standard deviation to its mean, which is given by Equation (5-14) if RT is long enough. 
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  

   +   
=

  

≈

q j FIFOW
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j q M G
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j
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E W

σ

β β

α

β
α

                                    (5-14) 

where β1jE[R2]M/G/1 is assumed to be ignored. From Equation (5-14), the coefficient of 

variation of waiting time by analytic model is the function of the proportionalities αj and β2j 

and is plotted in Figure 5-14 as compared with the coefficient of variation of waiting time by 

simulation model.  
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Figure 5-14 Coefficient of variation of waiting time by varying the CVs of job arrival rate and 

the total arrival rates in the simulation model and analytic model 

In Figure 5-14, the coefficient of variation by analytic model is larger than the coefficient 

of variation by simulation model, which implies that the waiting time by analytic model has 

greater dispersion. Meanwhile, the coefficient of variations of waiting time in the simulation 

model and analytic model are decreasing with the rise in total arrival rate, indicating that the 

waiting time has the lower dispersion of waiting time and then the waiting time is more stable 

and lies close to the mean. The difference in the coefficient of variation of waiting time 

between analytic model and simulation model is stable except the high level of the total 

arrival rate. It causes the larger error of estimated standard deviation of the waiting time at 

higher level of total arrival rate. 

Moreover, the relationship between the values of the mean error of estimated waiting 

time and the corresponding values of the arrival rate parameters is plotted in Figure 5-15. 

Excluding CV=0, the errors of the estimated waiting time tend to increase as the arrival rate 

parameters increase when CV=27.9753% and CV=53.7234%, respectively. The error of 

estimated standard deviation of waiting time is similar to the error of estimated waiting time, 

which is negative for the smaller arrival rate of jobs and is positive for the larger arrival rate 

of jobs. Thus, the performance of the analytic model more in estimating waiting time is 
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affected by the extreme of the arrival rates of jobs. 
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Figure 5-15 Scatter plot or errors of estimated standard deviation of waiting time under FIFO 

Based on the results of test for service time and waiting time under FIFO, we know that 

the differences in the service time and the waiting time between the simulation model and the 

limit FIFO analytic model are insignificant. This shows that the service time and the waiting 

time can be estimated accurately using our models, thus managers can set lead time and 

assign customer order due date for internal control and due dates quoted to customers based 

on the predicted service time and waiting time. 

5.2.5 Numerical analysis of approximations of expected value and variance of waiting 

time 

An approximation of the expected waiting time is proportional to the expected waiting 

time for the M/G/1 queuing theory with αj if RT is long enough. This indicates that an 

approximation of the expected waiting time and the expected waiting time for the M/G/1 

queuing theory are the same if αj＝1. Figure 5-16 shows the proportionality αj for each 

product type by varying the CVs of job arrival rate and the machine utilization rates; the 
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machine utilization rates vary along with the total arrival rates. 

In Figure 5-16, the proportionality αj for each product type is drawn in pink and closely 

corresponds to a linear growth as the machine utilization rate increases. The proportionality αj 

for each product type is more than one when the machine utilization rates are higher, 

indicating that the expected waiting time with setup time is underestimated by the formula for 

the queuing theory. Meanwhile, the proportionality αj for each product type is smaller than 

one when the machine utilization rates are lower, showing that the expected waiting time with 

setup time is overestimated by the formula for the queuing theory. 
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Figure 5-16 Values of the proportionality αj 

Besides, the variance of waiting time for M/G/1 queueing system depends on the square 

of the expected waiting time for M/G/1 queueing system in Equation (2-6). In approximations 

of the standard deviations App2 and App3, 2
jα  and β2j are the coefficients of the square of 

the expected waiting time for the M/G/1 queuing theory. Figure 5-17 displays the 

proportionalities 2
jα  and β2j for each product type by varying the CVs of job arrival rate and 

the machine utilization rates. The proportionalities 2
jα  and β2j grow as the machine 

utilization rate increases, yet the rate of change of 2
jα  is increasing and the rate of change of 

β2j is decreasing. Moreover, the proportionality β2j is not only more than the proportionality 

2
jα  but also more than one.  
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Figure 5-17 Values of the proportionalities 2
jα  and β2j 

Compared with the results in the sections 5.2.2 and 5.2.4, it can be seen that the 

estimation error of the waiting time and its variance with setup time by the formula for the 

queuing theory can not be restricted in an accepted range, especially at condition of high 

machine utilization rate. Thus, if the formula for M/G/1 queue is used to calculate the 

expected value and variance of the waiting time including setup time for a single 

finite-capacity machine, then the proportionalities αj and β2j should be established to be able 

to obtain more accurate and precise waiting time and its variance. 

5.3 Accuracy analysis for FSR analytic model on the reduction of setup time 

and capacity loss 

Simulation results under FSR for the number of setups and setup time are compared with 

those calculated by FSR analytic model. Then, the numerical results of the sensitivity analysis 

on the reductions of the expected setups and expected setup time for each product type are 

conducted by replacing FIFO with FSR analytic models. Finally, an analysis on the reduction 

of setup time by replacing FIFO with FSR is conducted. 

5.3.1. Accuracy analysis for FSR analytic model in estimating number of setups 

Figure 5-18 shows that the probability of setups and the limit of the probability of setups 

for each product type in the FSR analytic model by varying the CVs of job arrival rate, total 

arrival rates, and run times. For FSR analytic model, the expected number of setups of 

product type j under FSR can be shown as Equation (5-15). 
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It is seen that E[NSj,FSR] depends on the probability of requiring a setup for ith job of product 

type j under FSR (Ps,ij,FSR), which is given by Equations (4-4). When RT is long enough, the 

limit of the probability can be expressed as Equation (5-16). 
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This means that the probabilities of setups under FSR are the same for all product types when 

RT is long enough. Therefore, , ,lim
→∞ s ij FSRRT

P  is always larger than Ps,ij,FSR because 

Pr[Tij≦RT]≦1, which is apparent in Figure 5-20. 

Meanwhile, the first derivative of , ,lim
→∞ s ij FSRRT

P  with respect to ρFSR is given by Equation 

(5-17) and is negative with 0≦ρFSR＜1 and λj＞0 based on Equation (4-13). 
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(5-17) 

Hence, the probability , ,lim
→∞ s ij FSRRT

P  decreases with the rise in the utilization rate of the 

machine, which implies that the probability of setups of product type j under FSR is lower 

and then it lead to lower setup frequency when the machine utilization rate is higher. The 

dispersions of the probability of setups for each product type in the FSR analytic model 

increase with the rise in CV. This implies that the extreme values of the arrival rate parameters 

among various product type increase and can lead to higher and lower setup frequencies.  
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  Limit of the probability of setups by FSR analytic model

  Probability of setups by FSR analytic model  
Figure 5-18 Probability of setups and its limit in FSR analytic model 

For FSR simulation model, let NS,kj,FSR be the number of setups of the product type j jobs 

for the kth simulation run. The probability of setups of the product type j jobs for the kth 

simulation run is defined by the number of setups of the product type j jobs for the kth 

simulation run divided by the number of the product type j jobs for the kth simulation run 

( , , ,=kj Ps FSR kj FSR kjx NS N ). To compare the result of the probability of setups generated by the 

FSR simulation model and the FSR limit analytic model, the error of estimated probability of 

setups is given by Equation (5-18). 

, , , , , ,lim
→∞

= −j Ps FSR s j FSR kj Ps FSRRT
Error P x                                            (5-18) 

Figures 5-19 illustrates the mean errors of estimated probability of setups under FSR by 

varying the CVs of job arrival rate, total arrival rates, and run times.  
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Figure 5-19 Mean errors of estimated the probability of setups between FSR limit analytic 

model and simulation model 

When the total arrival rate increases, the mean error percentage increases 

correspondingly, as shown in Figures 5-19(a) to 5-19(c). In particular, the larger error occurs 

at a higher level of machine utilization rate. In Figures 5-19(d) to 5-19(f), the value and the 

dispersion of the error for each CV decrease with a lengthened RT. The larger error occurs at 

RT=8 hours because of the few setups. When the run time becomes longer, the error decreases 

as a result of the larger setups. The overall means of the errors are equal to -0.01383, -0.01530, 

and -0.01348, as RT changes from 8 hours to 24 hours. 

In Figure 5-20, the scatter plot provides a graphical display of the relationship between 

the errors of estimated probability of setups and the arrival rates among eight product types. 

When CV equal to zero, the errors are vertical because the values for the arrival rates are the 

same. When CV equal to 27.9753% and 53.7234%, the values of the errors are negative 

growth as the values of the arrival rates increase. The extreme values of the arrival rate 

parameters among various product types increase with larger CV. This can lead to an increase 

in extreme values in the number of setups and can make the error of estimated probability of 
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setups rise as well. Thus, the moderate dispersion of job arrival rate among various types is 

related to the accuracy of the proposed FSR analytic model in estimating the number of 

setups.  

0.0002 0.0004 0.0006 0.0008 0.0010 0.0012 0.0014 0.0016 0.0018 0.0020 0.0022
-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

Arrival rates among eight product types

 

 

CV=0
CV=27.9753%
CV=53.7234%

 
Figure 5-20 Scatter plot for errors of estimated probability of setups under FSR 

5.3.2. Accuracy analysis for FSR analytic model in estimating setup time 

Figure 5-21 shows the setup times of single job and their limits in FSR analytic model by 

varying the CVs of job arrival rate, run times, and total arrival rates. The setup time of a single 

job is defined by the total setup time of all jobs with the same product type at a time interval 

divided by the total number of jobs arrival specific for that. According to Equation (4-7), the 

limit of the setup time of the product type j job can be shown as Equation (5-19). 

, , ,
1

, ,
1

lim lim

                       

→∞ →∞ =
≠

=
≠

  = 

=

∑

∑

J
r

j FSR j s j FSR rjcRT RT
r
r j

J
r

s j FSR rjc
r
r j

E S w P s

P s

λ
λ

λ
λ

                                      (5-19) 

It can be seen that the limit of the setup time depends on the probability Ps,j,FRS, the arrival 
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rates, and setup time matrix. Because the probability 1

1
Pr[ ] 1−

=
= ≤ ≤∑ jn

j j iji
w n T RT , thus 

, ,lim [ ] [ ]
→∞

≥j FSR j FSRRT
E S E S , which is depicted on the diagram of Figure 5-21.  
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  Limit of setup time by FSR analytic model

  Setup time by FSR analytic model  
Figure 5-21 Setup times of single job and their limits in FSR analytic model 

When CV is equal to zero (i.e., the arrival rates among eight product types are the same), 

the setup time of a single job only depends on the setup time matrix. The average setup time 

of product type j job ( js ) can be calculated as the summation of srj in ST for all r divided by 

the number of product type. Product types 3 has the largest average setup time (3 56.2500s = ), 

and product type 8 has the minimum value of average setup time (8 28.1250s = ). The setup 

times of a single job for each product type and their limits in FSR analytic model, as shown in 

Figures 5-21(a) to 5-21(c), are near their average setup times as CV=0. When CV is equal to 

27.9753%, product type 3 obtains the larger arrival rate, whereas product type 4 achieves the 

smaller arrival rate. In Figures 5-21(d) to 5-21(f), thus, a vast amount of setup time of product 

type 3 is saved because its larger arrival rate as compared with CV=0. In contrast, product 

type 3 has the smaller arrival rate while product type 4 has the larger arrival rate with 
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CV=53.7234%. Thus, the wider reduction in setup time for product type 4 leads to the larger 

gap between the setup times of product type 3 and product type 4 as compared with CV=0, 

which is apparent in Figures 5-21(g) to 5-21(i). Product type 8 also has the smaller arrival rate 

as CV=27.9753% and the larger arrival rate as CV=53.7234%. However, its setup time 

reduction is limited as CV=53.7234% because of the shorter average setup time. Thus, the 

setup times of product type 8 upon varying the CVs are nearly equal, whether to adopt the 

FSR analytic model or to implement the FSR limit analytic model. 

A comparison of the results of setup time for single jobs generated by the simulation 

model and the analytic model suggests that the error percentage of estimated setup time is 

defined by Equation (5-20). 

, , , , ,lim
→∞

 = − j S FSR j FSR kj S FSRRT
Error E S x                                           (5-20) 

Figures 5-22(a) to 5-22(c) show the mean errors of the estimated setup time between FSR 

limit analytic model and the simulation model by varying the CVs of job arrival rate, total 

arrival rates, and run times. Meanwhile, the mean errors of estimated setup time for each 

product type between FSR limit analytic model and simulation model by varying the CVs of 

job arrival rate and the run times are shown by Figures 5-22(d) to 5-22(f). 

As setup time depends on the probability of setups, the behavior of the error of estimated 

setup time in Figure 5-22 is similar to that in Figure 5-19. From shorter to longer run time, the 

error of estimated setup time decreases and the lower error of estimated setup time is attained 

at longer run time, regardless of the CVs of job arrival rate and total arrival rates. The overall 

means of the error of estimated setup time range from -0.856 to -0.634, as RT changes from 8 

hours to 24 hours. Meanwhile, when CV equals 27.9753%, the lowest error of estimated setup 

time is obtained. Finally, when total arrival rate increases, the error of estimated setup time 

increases correspondingly; that is, lower error of estimated setup time occurs at lower levels 

of machine utilization rate.  
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Figure 5-22 Mean errors of estimated setup time between FSR analytic model and simulation 

model 

In Figure 5-23, the scatter plot is used to investigate the relationship between the errors 

of estimated setup time under FSR and the arrival rates among eight product types. Owing to 

the same values for the arrival rates, the errors are vertical when CV equal to zero. Moreover, 

the values of the errors are negative growth as the values of the arrival rates increase when CV 

equal to 27.9753% and 53.7234% because the behavior of the error of estimated setup time in 

Figure 5-22 is similar to the behavior of the error of estimated probability of setups. Thus, the 

moderate dispersion of job arrival rate among various types is related to the accuracy of the 

proposed FSR analytic model in estimating the setup time.  

In general, the number of setups and the setup time can be estimated accurately using our 

models to a certain extent. Based on the analysis, better accuracy of the proposed FSR 

analytic models in estimating the number of setups and setup time can be obtained for longer 

run times, smaller total arrival rates, and moderate dispersion of job arrival rates among 

various types. This result can be offered to managers as reference for evaluating capacity loss 

and others. 
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Figure 5-23 Scatter plot for errors of estimated setup time under FSR 

5.3.3 Sensitivity analysis of the reduction of number of setups for each product type 

The differences of the expected number of setups between FIFO and FSR are defined by 

the expected number of setups under FIFO minus the expected number of setups under FSR. 

The mean of the difference of the expected number of setups between FIFO and FSR for each 

product type by varying the CVs of job arrival rate is illustrated in Figure 5-24(a).  
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Figure 5-24 Mean of the difference of the expected number of setups between FIFO and FSR 
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The mean of the difference of the expected number of setups between FIFO and FSR for 

each product type is constant when CV equals zero. Moreover, the dispersion of the mean of 

the difference of the expected number of setups between FIFO and FSR increases with CV, 

which implies that the extreme value of arrival rate parameters among various product type 

increases and can influence the performance of the FSR analytic model in reducing setup 

frequency. The positive correlation coefficients are calculated as 0.998 and 0.991 when the 

CVs equal 27.9753% and 53.7234%, respectively. These positive correlation coefficients 

indicate a relationship between the mean of the difference of the expected number of setups 

between FIFO and FSR and the arrival rate parameters among eight product types. As values 

for the arrival rate parameters among eight product types increase, the values for reducing 

setup frequency also increase. Therefore, by replacing FIFO with FSR, the largest reduction 

of the number of setups occurs at CV =53.7234%, which is apparent in Figures 5-24(b) and 

5-24(c). 

5.3.4 Sensitivity analysis of the reduction of expected setup time for each product type 

The differences of the expected setup time between FIFO and FSR are defined by the 

expected setup time under FIFO minus the expected setup time under FSR, and the mean of 

the difference of the expected setup time between FIFO and FSR for each product type by 

varying the CVs of job arrival rate is displayed in Figure 5-25(a). The dispersion of the mean 

of the difference of the expected setup time between FIFO and FSR increases with CV. The 

correlation coefficients are positive and are calculated as 0.906 and 0.845 when the CVs equal 

27.9753 and 53.7234%, respectively. Therefore, the arrival rate parameters among eight 

product types and the mean of the difference of the expected setup time tend to increase and 

decrease, respectively, along with each other.  

2 4 6 8
1

2

3

4

5

6

7

8

Product type
(a)

M
ea

n 
of

 t
he

 d
iff

er
en

ce
 o

f 
th

e 
ex

pe
ct

ed
 

se
tu

p 
tim

e 
be

tw
ee

n 
F
IF

O
 a

nd
 F

S
R

 

 

10 15 20
1

2

3

4

5

6

7

8

Run time
(b)

M
ea

n 
of

 t
he

 d
iff

er
en

ce
 o

f 
th

e 
ex

pe
ct

ed
 

se
tu

p 
tim

e 
be

tw
ee

n 
F
IF

O
 a

nd
 F

S
R

 

 

8 9 10

x 10
-3

1

2

3

4

5

6

7

8

Total arrival rate
(c)

M
ea

n 
of

 t
he

 d
iff

er
en

ce
 o

f 
th

e 
ex

pe
ct

ed
 

se
tu

p 
tim

e 
be

tw
ee

n 
F
IF

O
 a

nd
 F

S
R

 

 

CV=0

CV=27.9753%
CV=53.7234%

CV=0

CV=27.9753%
CV=53.7234%

CV=0

CV=27.9753%
CV=53.7234%

 
Figure 5-25 Mean of the difference of the expected setup time between FIFO and FSR 
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Job arrivals tend to concentrate on fewer product types as CV increases. The types 

obtaining high possibilities of setup reduction leading to the largest reductions of the setup 

time occur at CV =53.7234%, which are showed in Figures 5-25(b) and 5-25(c). 

5.3.5 Evaluation of the effect on the setup time reduction 

A set of numerical data are used to evaluate the effect of the decision criterion developed 

in Section 4.2.3, by which we can find the conditions that the setup time can be saved 

significantly by replacing FIFO with FSR. According to Equation (4-24), letting DS represent 

[ ]FIFO FSRE DS −  and CP represent [ ]−FIFO FSRz Var DSα , and then the setup time can be 

reduced significantly by applying FSR instead of FIFO if DS is larger than CP. 

There are two control factors included, the total arrival rate (λ) and the coefficient of 

variation among job arrival rates (CV). The total arrival rate λ (jobs in 60 seconds) is given by 

8
1j jλ δ λ== ∑ , where 0.88≦δ≦1.00. The λj parameters and CV are identical to those in Table 

5-1. The vector of job processing time (PT) among eight product types and the matrix of 

sequence-dependent setup time (ST) are consistent with the experimental design in Section 

5.1. Set the run time (RT) to 8 hours and α to 0.05, Thus, two lines, DS and CP, are depicted 

in Figure 5-26(a) ~ 5-26(c) by varying the total arrival rates from 0.0088 to 0.0100 and for 

three levels of CV. We note that the intersection of the two lines, DS and CP, is the condition 

identified by the decision criterion developed in Section 4.2.3.  
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Figure 5-26 Magnitudes of DS and CP by varying the total arrival rate and the CVs of job 

arrival rate 
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In Figure 5-26(a) ~ 5-26(c), according to the levels of CV, the intersections of the two 

lines, DS and CP, occur at various levels of total arrival rate λ. After the identification of the 

intersection point of CP and DS, the setup time reduction would be increasing as the raising of 

total arrival rate. Therefore, this implies that the total arrival rate of various types of incoming 

jobs and the mix of the arriving rates of various types of job both affect the effect in reducing 

the setup time by applying FSR to replace FIFO.  
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6. Conclusions and future research 

6.1 Conclusions 

This research considers a system with finite capacity to process several types of jobs; a 

setup process is necessary before the machine is switched from the current setting to a 

different one, and this cannot be regarded as a part of the job processing time. With 

uncertainties in job arrival time and types of demand, setting an output target may be 

significantly different from actual scenarios due to possible heavy capacity loss and difficulty 

in calculating the required setup time. Thus, a relatively simply yet accurate analytic method 

is established to estimate the lead time for each product type by FIFO rule in order to facilitate 

the performance evaluation from the customer’s perspective. Besides, FSR analytic model is 

developed to estimate expected setup time and service time. The effect on capacity wastage 

due to changes in machine setting among several product types can then be evaluated. Due to 

the difficulty in obtaining analytical solutions for the expected setup time and service time, 

the numerical solutions of expected setup time and service time are provided in this research. 

The lead time for each product type is estimated with the summation of the expected 

waiting time in queue and the expected service time for each product type, where the service 

time of jobs includes both its setup time and its processing time. Results of the proposed FIFO 

analytic model in estimating service time and waiting time in queue are compared with 

simulation results. Computational results show that overall means of the error percentages of 

estimated service time and waiting time in queue are equal to 4.7551% and 4.4548%, 

respectively. Meanwhile, the dispersions of error percentages of estimated service time, 

waiting time in queue, and lead time for each product type are increasing as the coefficient of 

variation among job arrival rates (CV) becomes larger. Generally speaking, these error 

percentages can be controlled in an acceptable range. 

As regards the results of the proposed FSR analytic model, it is also compared with 

simulation results. Computational results show that error percentages of estimated setups and 

setup time are larger when CV and total arrival rate increase, but they are reduced when run 

time is lengthened. Generally speaking, the smaller error percentage of estimated setups and 

setup time can be obtained with longer run time, smaller total arrival rate, and moderate 

dispersion of job arrival rate among various types. In this paper, we also provide the 
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sensitivity analyses to discuss how the reductions of the setup frequency and the setup time 

can be affected by the changes of three factors (CV, λ, and RT). Compared with FIFO, FSR 

can be used to reduce the frequency of setups and the length of the setup time, hence leading 

to a reduction in machine utilization rate, especially at conditions of high total arrival rate and 

high dispersion of arrival rates among several types of job.  

The FIFO analytic model can estimate accurately the service time and waiting time, and 

then evaluate efficiently the lead time based on the estimations of the service time and waiting 

time. Managers can utilize the lead time prediction to set the due date of customer orders. The 

FSR models can, to some extent, estimate accurately the setup time and evaluate efficiently 

the capacity of wastage arising from switching the machine setting responding to uncertainties 

in job arrivals. Managers can utilize the expected setup time as threshold and tolerance during 

production planning. 

6.2 Future research 

This research proposes the lead time estimation of single bottleneck machine to represent 

a production system. In the future, we can extend the result to the parallel-machine or flexible 

flow shop environment. These types of problems are applicable in process industry. Then, the 

extreme error percentages affect the performance of the analytic model in estimating lead time 

when the mix of the arrival rates of various job types is unbalanced. Thus, we can divide the 

mix of the arrival rates of various job types into several subgroups for balancing the 

dispersion within subgroups to reduce the influence of the extreme error percentages on the 

performance of the analytic model in estimating lead time. 

Moreover, the sequence of batches by FSR is sorted according to arrival time of the first 

jobs in each batch in increasing order. In the future, the rule of sorting batches may change to 

using the setup time for any two batches in increasing order in order to minimize total setup 

time. 

 

 

 

 



 95

References 

[1] Gordon, V., Proth, J. M., and Chu, C., “A survey of the state-of-the-art of common due 

date assignment and scheduling research,” European Journal of Operational Research, 

139, 1-25, 2002. 

[2] Enns, S. T., “Job shop flowtime prediction and tardiness control using queueing 

analysis,” International Journal of Production Research, 31, 2045-2057, 1993. 

[3] Chopra, S., Reinhardt, G., and Dada, M., “The effect of lead time uncertainty on safety 

stocks,” Decision Sciences, 35, 1-24, 2004. 

[4] Wang, P., and Hill, J. A., “Recursive behavior of safety stock reduction: the effect of 

lead-time uncertainty,” Decision Sciences, 37, 285-290, 2006. 

[5] Ruiz-Torres, A. J., and Mahmoodi, F., “Safety stock determination based on parametric 

lead time and demand information,” International Journal of Production Research, 48, 

2841–2857, 2010. 

[6] Van Kampen, T. J., Van Donk, D. P., and Van der Zee, D. J., “Safety stock or safety lead 

time: coping with unreliability in demand and supply,” International Journal of 

Production Research, 48, 7463–7481, 2010. 

[7] Liu, C. Y., and Chang, S. C., “Scheduling flexible flow shops with sequence-dependent 

setup effects,” IEEE Transactions on Robotics and Automation, 16, 408–419, 2000. 

[8] Trovinger, S. C., and Bohn, R. E., “Setup time reduction for electronics assembly: 

Combining simple (SMED) and IT-based methods,” Production and Operations 

Management, 14, 205–217, 2005. 

[9] Missbauer, H., “Order release and sequence-dependent setup times,” International 

Journal of Production Economics, 49, 131-143, 1997. 

[10] Chern, C. C., and Liu, Y. L., “Family-based scheduling rules of a sequence-dependent 

wafer fabrication system,” IEEE Transactions on Semiconductor Manufacturing, 16, 

15-25, 2003. 

[11] Karmarkar, U. S., Kekre, S., and Kekre, S., “Multi-item batching heuristics for 

minimization of queueing delays,” European Journal of Operational Research, 58, 



 96

99-111, 1992. 

[12] Kuik, R., and Tielemans, P. F. J., “Setup utilization as a performance indicator in 

production planning and control,” International Journal of Production Economics, 49, 

175-182, 1997. 

[13] Kuik, R., and Tielemans, P. F. J., “Analysis of expected queueing delays for decision 

making in production planning,” European Journal of Operational Research, 110, 

658-681, 1998. 

[14] Kuik, R., and Tielemans, P. F. J., “Expected time in system analysis of a single-machine 

multi-item processing center,” European Journal of Operational Research, 156, 287-304, 

2004. 

[15] Cheng, T. C. E., & Jiang, J., “Job shop scheduling for missed due date performance,” 

Computes & Industrial Engineering, 4, 297-307, 1998. 

[16] Enns, S. T., “A dynamic forecasting model for job shop flowtime prediction and 

tardiness control,” International Journal of Production Research, 33, 1295-1312, 1995. 

[17] Baykasoğlu, A., Göçken, M., and Unutmaz, Z. U., “New approaches to due date 

assignment in job shop,” European Journal of Operational Research, 187, 31-45, 2008. 

[18] Koo, P. H., Bulfin, R., and Koh, S. G., “Determination of batch size at a bottleneck 

machine in manufacturing systems,” International Journal of Production Research, 45, 

1215-1231, 2007. 

[19] Koo, P. H., Lee, W. S., and Kim, Y., “Production batch sizing at multi-product bottleneck 

machines,” International Conference on Computers and Industrial Engineering, 814-818, 

2009. 

[20] Missbauer, H., “Lot sizing in workload control systems,” Production Planning and 

Control, 13, 649-664, 2002. 

[21] Kuik, R., and Tielemans, P. F. J., “Lead-time variability in a homogeneous queueing 

model of batching,” International Journal of Production Economics, 59, 435-441, 1999. 

[22] Jönsson, H., and Silver, E. A., “Impact of processing and queueing times on order 

quantities,” Material Flow, 2, 221-230, 1985. 



 97

[23] Zipkin, P. H., “Models for design and control of stochastic, multi-item batch production 

system,” Operations Research, 34, 91-104, 1986. 

[24] Karmarkar, U. S., “Lot sizes, lead times and in-process inventories,” Management 

Science, 33, 409-419, 1987. 

[25] Tielemans, P. F. J., and Kuik, R., “An exploration of models that minimize leadtime 

through batching of arrived orders,” European Journal of Operational Research, 95, 

374-389, 1996. 

[26] Jensen, J. B., Malhotra, M. K., and Philipoom, P. R., “Family-based scheduling of shops 

with functional layouts,” International Journal of Production Research, 36, 2687-2700, 

1998. 

[27] Kannan, V. R., and Lyman, S. B., “Impact of family-based scheduling on transfer batches 

in a job shop manufacturing cell,” International Journal of Production Research, 32, 

2777-2794, 1994. 

[28] Nomden, G., Van Der Zee, D. J., and Slomp, J., “Family-based dispatching: anticipating 

future jobs,” International Journal of Production Research, 46, 73-97, 2008. 

[29] Vieira, G. M. E., Herrmann, J. W., and Lin, E., “Analytical models to predict the 

performance of a single machine system under periodic and event-driven rescheduling 

strategies,” International Journal of Production Research, 38, 1899-1915, 2000a. 

[30] Vieira, G. M. E., Herrmann, J. W., and Lin, E., “Predicting the performance of 

rescheduling strategies for parallel machine systems,” Journal of Manufacturing Systems, 

19, 256-266, 2000b. 

[31] Rossetti, M. D., and Stanford, K. J. A., “Group sequencing a PCB assembly system via 

an expected sequence dependent setup heuristic,” Computers and Industrial Engineering, 

45, 231 – 254, 2003. 

[32] Bagherpour, M., Noghondarian, K., and Noori, S., “Applying fuzzy logic to estimate 

setup times in sequence dependent single machine scheduling problems,” International 

Journal of Computer Science and Network Security, 7, 111-118, 2007. 

[33] Ross, S. M., Introduction to Probability Models, Ninth Edition, Massachusetts: 

Academic Press, 2007. 



 98

[34] Freund, J. E., and Simon, G. A., Statistics: A first course, Sixth Edition, Prentice-Hall, 

1995. 

[35] Allahverdi, A., Gupta, J. N. D., and Aldowaisan, T., “A review of scheduling research 

involving setup considerations,” Omega, 27, 219-239, 1999. 

[36] Allahverdi, A., and Soroush, H. M., “The significance of reducing setup times/setup 

costs,” European Journal of Operational Research, 187, 978-984, 2008. 

[37] Allahverdi, A., Ng, C. T., Cheng, T. C. E., and Kovalyov, M. Y., “A survey of scheduling 

problem with setup time,” European Journal of Operational Research, 187, 985-1032, 

2008. 

[38] Blackstone Jr., J. H., and Cox III, J. F., APICS Dictionary, Twelfth Edition, American 

Production and Inventory Control Society, Inc., USA, 2008. 

[39] Yang, M. H., Chung, S. H., and Kao, C. K., “To Calculate the Sequence-Dependent 

Setup Time for a Single-Machine Problem with Uncertain Job Arriving Time,” 16th ISPE 

International Conference on Concurrent Engineering, 3-15, July 20-24, Taipei, Taiwan, 

2009. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 99

Appendixes 

Appendix A: 

To prove the following statement: 

2, 1, 1, 1,2FIFO FIFO FIFO FIFO FIFO FIFO FIFOETST ETST ETST ETSTρ ρ ρ= + =                    (A.1) 

Proof: 

According to Equation (6), ETST2,FIFO can be shown as 
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according to Equation (5). From Equation (A.3) and Equation (A.4), ETST2,FIFO can be 

rewritten as  
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where 2
2, (1 )FIFO FIFO FIFOp ρ ρ= −  and 3

3, (1 )FIFO FIFO FIFOp ρ ρ= − . It has now been proven that 
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ETST2,FIFO can be reformulated as the function of ETST1,FIFO. 

Appendix B: 

Mathematical induction can be used to prove that the statement 

2
1, 1, 2,

n
n FIFO FIFO FIFO FIFO n FIFOETST ETST ETSTρ ρ−

− −= +                                (B.1) 

holds for n≧3. 

Proof: 

(1) Base case: Show that the statement holds for n＝3 

According to Equation (A.1) in Appendix A, we obtain the following:  

2, 1, 1,FIFO FIFO FIFO FIFO FIFOETST ETST ETSTρ ρ= +                                   (B.2) 

From Equation (B.1), we have this equation: 

3 2
2, 1, 3 2,FIFO FIFO FIFO FIFO FIFOETST ETST ETSTρ ρ−

−= +                                  (B.3) 

Thus, they are equal. 

(2) Inductive step: Show that if ETSTn-1,FIFO holds, then ETSTn,FIFO also holds. This can be 

done as follows.  

Suppose ETSTn-1,FIFO holds, such that 
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It must then be shown that ETSTn,FIFO holds, such that 
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Note that we have the following relations according to Equation (B.4): 
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From Equation (A.3), Equation (A.4), Equation (B.6), and Equation (B.7), ETSTn,FIFO can be 

rewritten as follows: 
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where ( ), 1 n
n FIFO FIFO FIFOp ρ ρ= − . This shows that ETSTn,FIFO indeed holds. Since both the base 

case and the inductive step have been proven, it has now also been proven by mathematical 

induction that ETSTn-1,FIFO in Equation (7-2) holds for n≧3. 
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Appendix C: 

To prove the following statement: 
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where E[TST]M/G/1 represents the expected total service time of all waiting jobs ahead in queue 

for the M/G/1 queuing model and is shown as E[TST]M/G/1＝E[Nq]E[STFIFO], where E[Nq] 

represents the expected number of jobs in queue and can be computed as 

2 2[(1 ) 2][ (1 )]v FIFO FIFOC ρ ρ+ −  and E[STFIFO] can be calculated by the probability mass 

function of STij,FIFO in Equation (3-3). If RT is large enough, then the following holds: 
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where E[R]M/G/1 represents the expected residual service time for the M/G/1 queuing model 
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and is shown as E[R]M/G/1＝
2[ ] 2FIFOE STλ , where the second moment of service time 

( 2[ ]FIFOE ST ) can be calculated by the probability mass function of STij,FIFO in Equation (3-3). If 

RT is large enough, then the following holds: 
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Then, ,lim j FIFO
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It has now been proven that the expected mean waiting time of the product type j jobs is 

proportional to the expected waiting time for the M/G/1 queuing theory when RT is long 

enough. 

Appendix D: 

To prove the following statement: 
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Proof: 

The gradient in Equation (10-1) can be reformulated as  
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because 2 2 2[ ] (1 ) [ ]FIFO v FIFOE ST C E ST= +  and ρFIFO＝λE[STFIFO]. The first derivative of this 

gradient with respect to ρFIFO is then given by the following: 
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According to Equation (C.8), 22 (1 )+ ≥v FIFOC ρ  because / /1[ ] [ ]≥FIFO M GE ST E R . Thus, 

we get 
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where 1 1
J J
j jj j j j jn nλ λ= =′′ ′′∆ ≥ ∆∑ ∑ , and J＞0 and 0＜ρFIFO≦1 with λj＞0 for all j. It has now 

been proven that the first derivative of the gradient αj with respect to ρFIFO is a positive 

number. 

Appendix E: 

To prove the following statement: 

22 2
, , 1 2 / /1/ /1

lim 2
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     = +     q j FIFO j j q M GM GRT
E W E R E Wβ β                             (E.1) 

Proof: 

When RT is long enough, the second moment of waiting time of product type j jobs 

under FIFO in Equation (3-27) can be shown as  
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First, the ratio 1 2 2
1 , / /1lim [ ] [ ]−

=→∞
∑ jn

ij ij FIFO M G
RT

n E R E R  can be shown as  
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where the second moment of the residual service time for M/G/1 queueing system is given by 

2 3
/ /1[ ] [ ] / 3=M G FIFOE R E STλ , 3[ ]FIFOE ST  is the third moment of the service time under FIFO 

and can be computed according to the probability mass function of STij,FIFO in Equation (3-3), 

and lim Pr[ ] 1
→∞

≤ =ijRT
T RT . Thus, the limit of 1 2

1 ,[ ]−
=∑ jn

ij ij FIFOn E R  is the function of E[R2]M/G/1 

when RT approaches infinity. 

Second, the second moment of total service time of all waiting jobs in queue ahead of the 

product type j jobs can be expressed as Equation (E.5). 
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                         (E.5) 

The limits of 1
1 2 ,Pr[ ] SS− ∞

= = ≤∑ ∑jn
i nj ij n FIFO STn T RT p  and 1

1 2 ,Pr[ ] Prod− ∞
= = ≤∑ ∑jn

i nj ij n FIFO STn T RT p  

divide by 2
/ /1[ ] [ ]q M G FIFOE N E ST  as RT approaches infinity can be shown in Equation (E.6) 

and Equation (E.7). where, E[Nq]  M/G/1 represents the expected number of jobs in queue for the 

M/G/1 queuing model and can be computed as 2 2[(1 ) 2][ (1 )]v FIFO FIFOC ρ ρ+ − , and E[STFIFO] 

and 2[ ]FIFOE ST  represent the first and second moments of the service time under FIFO and 

can be computed by the probability mass function of STij,FIFO in Equation (3-3) and are 

expressed as Equation (E.8) and Equation (E.9). 
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Thus, the limit of 1 2
1 ,[ ]−

=∑ jn
ij ij FIFOn E TST  can be derived as the function of the square of the 

expected waiting time for M/G/1 queueing system ( 2
/ /1[ ]q M GE W ) as RT approaches infinity and 

is given by Equation (E.10). 
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where 
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Finally, the limit of 1
1 , ,2 [ ] [ ]−

=∑ jn
ij ij FIFO ij FIFOn E R E TST  divide by / /1 / /1[ ] [ ]M G M GE R E TST  as 

RT approaches infinity is considered and is given by Equation (E.13), where E[TST]M/G/1 

represents the expected total service time of all waiting jobs ahead in queue for the M/G/1 

queuing model and is shown as E[TST]M/G/1＝E[Nq]E[STFIFO]. 
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From Equation (E.13), the limit of 1
1 , ,2 [ ] [ ]−

=∑ jn
ij ij FIFO ij FIFOn E R E TST  can be also derived as the 

function of the square of the expected waiting time for M/G/1 queueing system ( 2
/ /1[ ]q M GE W ) 

as RT approaches infinity and is given by Equation (E.15). 
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where 
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Referring Equation (E.3), Equation (E.10) and Equation (E.15), the limit of 2, ,[ ]q j FIFOE W  

can be obtained as Equation (E.18).  
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It has now been proven that the second moment of the waiting time of the product type j jobs 

is proportional to the second moment of the residual service time and the square of the 

expected waiting time for the M/G/1 queuing theory when RT is long enough. 

Appendix F: 

To prove the following statement: 
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Proof: 

The gradient β2j in Equation (3-37) can be reformulated as  
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because 2 2 2 2[2 / (1 )] 2 [ ]+ =v FIFO FIFOc E STρ λ . The first derivative of the gradient β2j with 

respect to ρFIFO is then given by the following: 
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In Equation (3.22), the gradient 22 (1 ) 1= + ≥j vCα  if ρFIFO＝1 when RT is long enough, 

where lim 1
→∞

=jRT
w . Thus, we get 2 0>j FIFOd dβ ρ , where 1 1

J J
j jj j j j jn nλ λ= =′′ ′′∆ ≥ ∆∑ ∑ , and J

＞0 and 0＜ρFIFO≦1 with λj＞0 for all j. It has now been proven that the first derivative of the 

gradient β2j with respect to ρFIFO is a positive number. 

Appendix G: 

To prove the following statement: 
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Proof: 

According to Equation (3.22) and Equation (3.25), the first derivatives of 2
jα  and β2j 



 111 

with respect to ρFIFO can be reformulated as Equation (G.2) and Equation (G.3). 
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where lim 1jRT
w

→∞
= . The difference between 2 j FIFOd dβ ρ  and 2

j FIFOd dα ρ  is given by 

Equation (G.4). 
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where 22 (1 ) 1vC+ ≥ , and  



 112 

( ) ( )1

2
5 6 4 3FIFO FIFO FIFO

FIFO

g ρ ρ ρ
ρ

 
= − + + − 

 
                                  (G.5) 

( ) ( )( )1 1
2

1 1

8 5 2 1 1 2

J J

j j j j j j
j j

FIFO FIFO FIFO FIFO FIFOJ J

j j j j
j j

n n

g
n n

λ λ
ρ ρ ρ ρ ρ

λ λ

= =

= =

 ′′ ′′∆ ∆ 
 = − + − − 
 ′′ ′′∆ ∆
  

∑ ∑

∑ ∑
         (G.6) 

Thus, an inequality expressed as ( ) ( )2
2 1 2j FIFO j FIFO FIFO FIFOd d d d g gβ ρ α ρ ρ ρ− ≥ −  can be 

derived. 

Appendix H: 

To prove the following statement: 

g1(ρFIFO)－g3(ρFIFO)＞0                                                (H.1) 

where g1(ρFIFO) and g3(ρFIFO) are shown as Equation (3-42) and Equation (3-43). 

Proof: 

The law of trichotomy reminds us that there exist three distinct possibilities, exactly one 

of the following holds: 

Case I. g1(ρFIFO)－g3(ρFIFO)＜0                                          (H.2) 

Case II. g1(ρFIFO)－g3(ρFIFO)＝0                                         (H.3) 

Case III. g1(ρFIFO)－g3(ρFIFO)＞0                                        (H.3) 

For Case I and Case II, an inequality expressed as Equation (H.4) can be derived. Moreover, 

another inequality expressed as Equation (H.5) can be got under condition that g1(ρFIFO)－

g3(ρFIFO)＞0. 
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                               (H.5) 

where 0＜ρFIFO≦1 and then  

( )( )

2
2 2

2

8 5 2 1 1 2 3

FIFO
FIFO

FIFO FIFO FIFO

ρ
ρ

ρ ρ ρ

− +
≥

− + − −
 

In Case I and Case II, the solution set of λj can be shown as Equation (H.6) and may be 

more than λ. This is illegitimate because 1= =∑ J
j jλ λ . In Case III, the solution set of λj can be 

shown as Equation (H.6) and is legitimate. 

( ) ( )
1 1

2
3 2
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′′ ′′∆ < ∆ ⇒ <∑ ∑                                       (H.7) 

Therefore an inequality expressed as g1(ρFIFO)－g3(ρFIFO)＞0 can be derived, where J＞1. 

Appendix I: 

The variance of FIFO FSRDS −  ( [ ]FIFO FSRVar DS − ) is determined as the follows: 

The variance of FIFO FSRDS −  is given by using the definition of covariance and is defined 

as the equation below. 
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                    (I.1) 

where 2 2
, , ,[ ] [ ] [ ]ij FIFO ij FIFO ij FIFOVar S E S E S= −  and 2 2

, , ,[ ] [ ] [ ]ij FSR ij FSR ij FSRVar S E S E S= − . 
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According to the probability mass functions of Sij,FIFO and Sij,FSR, then 2
,[ ]ij FIFOE S  and 

2
,[ ]ij FSRE S  are respectively expressed as Equations (I.2) and (I.3). For associated reference of 

the probability mass functions of Sij,FIFO, refer to Equation (3-3). 
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The covariance for two random variables Sij,FIFO and Sij,FSR is defined by 

, , , , , ,cov( , ) [ ] [ ] [ ]ij FIFO ij FSR ij FIFO ij FSR ij FIFO ij FSRS S E S S E S E S= − . Let Y be equal to Y＝Sij,FIFOSij,FSR, 

where Y is a discrete distribution having two possible values labelled by Y＝0 and jr jrY s s ′= , 

r＝1, 2, …, J and jr ≠ , and r ′＝1, 2, …, J and jr ≠′ . According to the probability mass 

functions of Sij,FIFO and Sij,FSR, the probability mass function of the random variable Y is 

shown as Equation (I.4). 
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Then the expected value of Y can be calculated as Equation (I.5). 
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Substituting , ,[ ]ij FIFO ij FSRE S S , ,[ ]ij FIFOE S , and ,[ ]ij FSRE S  into , ,cov( , )ij FIFO ij FSRS S , the 

covariance for two random variables Sij,FIFO and Sij,FSR is rewritten as Equation (I.6). 

( ), , , , , ,

2

, , , ,
1

, ,
1

cov ,

                             

                                 

=
≠

=
≠

     = −     

 
 = −
  
 

∑

∑

ij FIFO ij FSR ij FIFO ij FSR ij FIFO ij FSR

J
r

s ij FIFO s ij FSR rjc
r
r j

J
r

s ij FIFO rjc
r
r j

S S E S S E S E S

P P s

P s

λ
λ

λ
λ , ,

1

                             0

=
≠

   
   
      
   

=

∑
J

r
s ij FSR rjc

r
r j

P s
λ
λ

                       (I.6) 

Then the variance of FIFO FSRDS −  is given Equation (I.7). 
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