
deviation of parameter variations, AJ is chosen to be suffi- 
ciently large. 

In order to check the stability of the discrete TVCNF,, its 
difference equation was solved by a sequential procedure 
using a digital computer for a = 0.999 andf, = 0.1. The fre- 
quency F was increased from F = IO-’ up to F =fo = 0.1. 
For each F the values of Aj for which the system becomes 
unstable was found. Fig. 1 shows the results obtained. There 
exist unstable regions represented by shaded zones. It is seen 
that in order to get oscillations for low F a large Afis needed. 
Such a relationship between F and Af also follows from the 
analysis of the Mathieu equation3 as well as the fact that there 
exist such frequencies F for which the system is stable even for 
large A$ 

Filter with t w o  controlled coefficients-TVCNF,: As shown in 
Reference 4, to reject any sine signal with a time varying 
frequency, given by A cos [ ( ~ ( k )  + 91, the two coefficients of 
TVCNF, have to be functions of the instantaneous phase ~ ( k )  

with 0 < $(k  - 1) - +(k  - 2) < II as we are dealing with posi- 
tive frequency less than II. 

Our goal is to check whether TVCNF, described by eqn. 1 
and having the coefficients given by eqn. 4 is asymptotically 
stable, i.e., to check if the output response of the unforced 
system (AR part of eqn. 1) approaches zero as k + 00, far any 
arbitrary initial conditions. For that purpose let us consider 
an exponentially damped FM signal 

y(k)  = Aa(k-’o’ cos [ $ ( k )  + 91 k > ko ( 5 )  

It can be proved by constructing an augmented Casarati’s 
determinant associated with y(k), that all independent solu- 
tions of the difference eqn. 1 with coefficients given by eqn. 4 
may be derived from eqn. 5. The values of A and 4 in eqn. 5 
depend on the initial conditions y(ko - 2) and y(ko - I). It 
follows from eqn. 5 that y(k)  + 0 for k + CO for any A and 4, 
and therefore for any initial conditions, i.e., the system is 
asymptotically stable. It is interesting to see that TVCNF, 
even though is a stable system may have ‘poles’ lying outside 
the unit circle. This is not surprising since the concept of 
poles, developed for time-invariant systems, can not be gener- 
ally applied to time-varying systems. 

139312/ 
Fig. 2 Asymptotic stability area and stability triangle 

Consider a structural relationship between a,(k)  and a,(k) 

a , ( k )  = -cos [$(k)  - $(k - 1)l 

which follows from eqn. 4 

+ cos CW - 1) - W - 211&), a,W) > 0 (6) 

From eqn. 6 the structural constraines are obtained 

I a, (k)  I I 1 + 4) > 0 (7) 

The conditions of eqn. 7 are sufficient conditions for asymp- 
totic stability and may be represented by the asymptotic sta- 
bility area-the area between two semi-infinite lines which 
start at-points D and G respectively and the axis a,, as shown 
in Fig. 2. A stability triangle ABC,5 which determines the 
stability of time-invariant system, is also shown for compari- 
son purposes. As expected, the asymptotic stability area and 
the stability triangle overlap but do not coincide. 

Conclusion: Stability of second order TVCNFs, which are 
capable of rejecting a sine signal with time-varying frequency, 
was analysed. If the coefficients a&) and a&) of TVCNF, 
are found as functions of the instantaneous phase of the sine 
signal, then using the relationships between them it is proved 
that TVCNF, is asymptotically stable. On the other hand, it 
is shown that the AR-part of TVCNF, can be explicitly 
described by the Mathieu equation and therefore such a lilter 
possesses unstable regions, i.e., becomes generally unstable. 
This fact explains why, for processing a sine signal with time 
varying frequency (FM), CANF with two controlled coeffi- 
cients is always preferable to a CANF having only one coefi- 
cient. 

D. WULICH 
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M. N. S. SWAMY 
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MAXIMUM BITRATE-LENGTH PRODUCT IN 
THE HIGH DENSITY W D M  OPTICAL FIBRE 
COM M U NI CATION SYSTEM 

Indexina Ootical communications. Raman scatterina 

The bitrate-length product in the high density WDM optical 
fibre communication system is analysed by numerical simula- 
tion in which both dispersion and Raman crosstalk are wn- 
sidered, and the maximum bitrate-length product is obtained 
under certain constraints. 

In a wavelength division multiplexed (WDM) optical fibre 
communication system, the bitrate-length product NBL (N:  
channel number, B :  bitrate for a single channel, L: propaga- 
tion length) measures the capacity of the systems. In this letter 
we use computer simulation to find the maximum NBL 
product under certain constraints. 
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In the analysis, we do not consider any nonlinear effects 
except Raman crosstalk between channels. In order to get the 
maximum NBL value, dispersion-shift fibre is used whose zero 
dispersion wavelength 1, is shifted to 1.55pm. The loss coeffi- 
cient is assumed to be constant. Here we also assume that the 
polarisation of the fibre is maintained and the laser source is 
monochromatic. 

The differential equations governing the signal propagation 
are given by1.' 

Since the channel of the shortest wavelength (the first channel) 
is degraded most severely by the Raman crosstalk, and the 
dispersion curve is hearly symmetry in the zero dispersion 
region, the first channel determines both the bitrate and the 
propagation length. The signal pulses are assumed to be of 
Gaussian form with constant energy. For a given channel 
number, N, and channel spacing, AA, eqn. 1 is solved by the 
split-step Fourier method. Then the maximum propagation 
length can be obtained by checking the propagation length of 
the first channel. The maximum NBL product is obtained by 
using eqns. 2 and 3. Plotting these maximum NBL values as a 
function of N and A1 in Fig. 2, we can find an overall 

- 

where the subscript i = 1, 2, . . . , N denotes the ith channel, 
and v. I ,  A are the group velocity, wavelength and slowly 
varying amplitude of the electric field intensity, respectively, 
and are the first and second order dispersion coefficients. 
gl, is the Raman gain constant coupling the ith and jth chan- 
nels, c( is the loss constant and A ,  is the effective core area 
In our analysis, we assume a = 0.18dB/km and A,, = 6.36 
x 10-"m2. We also assume that I ,  < I , ,  ..., < L, and the 
N channels are placed symmetrically at the both side of 1, 
with equal channel spacing AI.  In order to calculate gi, we use 
a near triangle function (solid curve in Fig. 1) to approximate 
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freqwncyshift c6 '  
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Fig. 1 Measured andfitted Raman gain profile 
. . . . . . . measured curve 

fitted curve __ 

the actual Raman gain profile of silica (dashed curve in Fig. I), 
i.e., the peak Raman gain, go, occurs at 440 cm-'. For the 
frequency separation larger than 500 cm-' the Raman gain 
curve drops as an exponential decay function. 

Several criterion are used in our analysis to set up the 
system model. The minimum detectable energy at the output 
end is lo4 photons' (about 1.3 x lo-" Joules). When the 
channel spacing AA is larger than the modulation spectrum 
width of the signal pulse, the minimum output pulse width for 
a fixed L is obtained by differentiating the following equation4 
with respect to ui: 

where U and U, are the root mean square width at the output 
and input end, respectively. When AI is smaller than the 
modulation spectrum, the above formula will no longer be 
useful, because the modulation spectrums of two neighbouring 
channels must be resolvable in the frequency domain. Here we 
take A1 (nm) as four times of the root-mean-square width of 
the modulation spectrum (g 2.55/u,, ui in picoseconds). The 
largest bitrate B to guarantee a clear detection in the time 
domain is given by' 

1 B = -  
4u (3) 
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Fig. 2 Three dimensional diagram oJNBL product 

maximum NBL product. In our example, pulses with lo-'' 
joule (about several milliwatt in peak power) are launched, and 
the maximum value is found to be 3.27 x 10' km Gbit/s at 
N = 240 and A1 = 0.2 nm. It is noticeable that the 3D surface 
in Fig. 2 composes of infinite 2D curves, and each curve has a 
local maximum point either for a fixed N (Fig. 3) or for a fixed 

005 015 025 035 
channei spacing AA nm 

rn 
Fig. 3 N B L  product against channel spacing for various channel 
number 

AI (Fig. 4). The reason for the existence of these local 
maximum values is that for a fixed channel number, larger AI 
induces more Raman crosstalk and dispersion and conse- 
quently decreases the NBL product. For smaller AI the 
NBL curve crops owing to the limitation of modulation spec- 
trum. On the other side, for fixed AA, larger N induces more 
Raman crosstalk and dispersion and hence reduces the NBL 
product, when N is small this degrading effect is not evident 
and is less than the increasing rate of N, the NBL product 
increases as N increases. 

It was also found that if we change the launching energy 
and repeat the same procedure we will obtain a set of 3D 
surfaces as in Fig. 2. The maximum NBL product of each 
surface changes as the launching energy changes and we can 
get a optimum launching energy for the NBL product. In 
summary, if we fix any two of the parameters channel number, 
channel spacing, and launching energy we can obtain a 
concave down curve as in Fig. 3 or Fig. 4. This conclusion is 
applicable not only for the constant loss assumption but is 
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also applicable for the wavelength dependent loss. The differ- 
ence between these two cases is that the N B L  curve goes 

0 100 200 3cc 400 
channel number 

@I% 

Fig. 4 NBL product against channel number for various channel 
spacing 

sharper in the latter one and the position of zero dispersion 
wavelength 1, will play an important role. 

S. CHI 17th July I990 
S.-C. WANG 
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National Chiao Tung University, 
Hsinchu, Taiwan, Republic of China 
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UNIFIED APPROACH TO ANALYSE MASS 
SENSITIVITIES OF ACOUSTIC GRAVIMETRIC 
SENSORS 

Indexing terms: Acoustic transducers, Sensitivity 

A unified approach based on Rayleigh’s hypothesis for evalu- 
ating the mass sensitivities, S,, of bulk, surface, plate and 
thin rod flexural acoustic gravimetric sensors is presented. 
The estimation of S, uses the ‘equivalent depth’ which is 
determined by the displacement distribution of the acoustic 
mode. The S,’s for the lowest order torsional and longitudi- 
nal mode of a thin rod are reported for the first time. 

Introduction: Research and development In the area of inte- 
grated acoustic gravimetric sensors based on bulk (BAW),’ 
surface (SAW),’ plate’ and thin rod4 flexural acoustic waves 
has become of increasing interest. In order to have high accu- 
racy and sensitivity, these acoustic sensing devices normally 
operate in the single mode regime. Thus, the BAW of a bulk 
material,’ the SAW of a semi-infinite substrate,’ the lowest 
antisymmetric Lamb, A0,3.5 and shear horizontal, SH0,5,6 
modes of a thin plate, and the lowest order longitudinal, Lo,,’ 
torsional, and flexural, F1,,4.5 acoustic modes of a thin 
rod, which can be excited and received predominantly in a 
single mode regime, are of interest. 

For acoustic gravimetric sensors the oscillator mode is 
often used.’-3 With this method, an acoustic resonator is used 

as the frequency control element for the oscillator circuit. A 
perturbation in the oscillator frequency is monitored in 
response to changes caused by the measurands. Using Ray- 
leigh’s hypothesis, Lu’ analysed the dependence of the bulk 
wave resonator frequency on the mass loading. Martin et al.: 
also used this hypothesis to analyse mass sensitivities S,’s of 
the gravimetric sensors comprised of SH mode plate wave 
resonators. In this letter, Rayleigh’s hypothesis is further 
extended to analyse the S,’s of SAW,’.’ thin plate flexural A,  
acoustic3 and thin rod F,,,4 To, and Lo, devices. 

Rayleigh hypothesis approach: According to Rayleigh’s 
a mechanical resonant system oscillates at a fre- 

quency at which the peak kinetic energy U, is equal to the 
peak potential energy U, in the same volume. The energy that 
appears as a potential energy at a particular time must be 
totally converted into a kinetic energy after a quarter cycle. For 
acoustic gravimetric sensors, if the loaded mass layer is very 
thin and does not contribute to the elastic property of the 
resonator, the added mass layer will not store any potential 
energy during the vibration cycle. The peak kinetic energy of 
the perturbed system will therefore remain unchanged for the 
unperturbed resonator. ‘A 

The kinetic energy of a mechanical resonator can be 
expressed by 

V 

where o, = 2rrl; and 1; is the resonant frequency, p is the 
density of the vibrator material, uXxz) is the displacement of 
the component polarised in the xi direction at a position xz, 
and V is the volume of the mechanical resonator. Later in the 
text, xl, x2 and x, refer to Cartesian X, Y and Z axes or 
cylindrical R ,  6 and Z axes. The analysis here is restricted to 
two dimensional structures. We assume that the acoustic field 
distribution is independent of x for the rectangular structures, 
and that it is azimuthally symmetric for the rod structures. 
For the sake of simplicity, the modes with only one displace- 
ment component will be discussed. We further assume the y 
direction to be the propagation direction for bulk waves and 
the z direction for othep wave modes. Based on eqn. 1 the 
kinetic energy density per unit area on the principal plane for 
the rectangular structures is 

0 

where d is the depth of the acoustic energy distribution in the 
substrate. For SAW devices the integration limit, d, can be 
replaced by a few wavelengths. The kinetic energy density per 
unit length for the rod structures can be expressed as 

U ,  = ( 2 4  I u(r) I’r dr 
2 

0 

where a is the radius of the rod and u(y) or u(r) is the displace- 
ment distribution of the corresponding mode. 

When a mass layer is deposited on the surface of the reson- 
ator, and if the loaded layer is very thin so that the mass 
loading does not alter the distribution of the acoustic fields in 
the resonator, the kinetic energy density of the perturbed res- 
onator can be expressed by 

d 

0 

for the rectangular structures and 
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