國 立 交 通 大 學

經營管理研究所

博士論文

No.136

成長模型第一層次誤差共變異結構之鑑定準則

Guidelines for Identifying Level-1 Error Covariance Structures in Latent Growth Modeling

研究生:鄭天德

指導教授:丁 承 教授

中華民國一00年一月

國立交通大學

經營管理研究所

博士論文

No.136

成長模型第一層次誤差共變異結構之鑑定準則

Guidelines for Identifying Level-1 Error Covariance Structures in Latent Growth Modeling

研究生:鄭天德

研究指導委員會:丁 承 教授

胡均立 教授

周雨田 教授

指導教授:丁 承 教授

中華民國一00年一月

成長模型第一層次誤差共變異結構之鑑定準則

Guidelines for Identifying Level-1 Error Covariance Structures in Latent Growth Modeling

研	究	生	•	鄭天	德	Student :	Ten-Der Jane
指	尊教	授	•	丁	承	Advisor:	Cherng G. Ding

國立交通大學

經營管理研究所

博士論文

A Dissertation Submitted to Institute of Business and Management College of Management National Chiao Tung University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Business and Management January, 2011 Taipei, Taiwan, Republic of China

中 華 民 國一00年一月

成長模型第一層次誤差共變異結構之鑑定準則

研究生:鄭天德

指導教授:丁承

國立交通大學經營管理研究所博士班

中文摘要

本研究提出潛在成長模型(LGM)之第一層次誤差共變異結構的鑑定準 則,並假設第二層次誤差共變異沒有特定結構,該準則係基於改編自 Anderson 與 Gerbing (1988)之循序卡方差異檢定法;此外,本研究也特別 說明如何檢定誤差過程的穩態性。無論是就外顯變數或潛在構念之成長建 模,所提供之鑑定準則皆適用,有助於正確設定成長模型之誤差共變異結 構。針對模擬以及實際資料,我們利用 SAS 軟體之 PROC CALIS,具體示 範說明所提準則在鑑定誤差共變異結構上的操作程序,以供實證研究者參 考引用。

關鍵詞:誤差共變異結構、潛在成長模型、穩態性、結構方程式模型

Guidelines for Identifying Level-1 Error Covariance Structures in Latent Growth Modeling

Student : Ten-Der Jane

Advisor : Dr. Cherng G. Ding

Institute of Business and Management National Chiao Tung University

ABSTRACT

In this study, guidelines for identifying the first-level error covariance structures in latent growth modeling (LGM) are proposed, assuming that the second-level error covariances are unstructured. The guidelines are based on the sequential chi-square difference test, adapted from Anderson and Gerbing (1988). Moreover, how to test for stationarity of an error process is specifically addressed. The guidelines are useful for correctly specifying the first-level error covariance structures, regardless of modeling growth curves for manifest variables or latent constructs. Simulated and real data were used to demonstrate identifying the first-level error covariance structures with the guidelines by using SAS PROC CALIS.

Keywords: error covariance structure, latent growth model, stationarity, structural equation modeling

本論文得以順利完成,首先衷心感謝恩師丁承教授。從碩士班開始, 十多年來受業於恩師門下,在這漫長的學習過程中,老師嚴謹的治學態度 求真的精神與對人尊重,一直是我學習效法的典範。老師以無比的耐心與 關懷的指導與鼓勵,每每讓我如沐春風,得以突破種種學習瓶頸,終能順 利完成學業,浩浩師恩,難以爲報,謹致以最深之謝意。

本研究蒙丁教授主持之國科會專題計畫(計畫編號NSC98-2410-H-009-010-MY2)補助, 謹此向國科會敬致謝忱!

研究指導委員會胡均立教授學養專精,周雨田教授豐沛的研究成果, 都是我敬佩與學習的目標。感謝論文口試委員邱皓政教授、胡昌亞教授、 黃家齊教授及溫福星教授,口試過程中對本論文提出諸多寶貴意見,使本 論文內容更加完備。此外,學習過程中尙有許多關心、愛護我的良師,包 括:毛治國教授、李正福教授、林介鵬教授、唐瓔璋教授、曾芳代教授、 陳宜廷教授、楊千教授、蔡維奇教授,非常感謝他們在我的學習過程中給予 的指導與鼓勵,讓我受益良多,將永銘於心,在此一倂申謝。

在學期間,吳秋慧同學、林翰榮同學、同班同學們的相互砥礪,也是 我能堅持完成學業的重要動力來源。特別要感謝的是博委會蕭慧娟小姐各 方面的提醒、幫忙與協助。而來自於台灣電力公司大潭發電廠陳廠長禎南、 陳副廠長建益、洪副廠長福洋、通霄電廠湯廠長松垣、台中電廠鄭副廠長 仁和等長官,諸多長官與同仁的關懷,也讓我在繁忙的工作與學業交織過 程中,倍覺溫馨。

最後要感謝我摯愛的家人及內人文萍及兩位兒女羽珈、韋延之體諒, 因修讀學位而常無法周全照顧家人,心中深感歉意,且讓我能在學術研究 領域中進一步充實,並完成此一學位,一圓人生之夢。

千言萬語,都無法完整表達我的謝意,許多夥伴無法一一感恩,也請你們原諒。最後謹將此一喜悅獻給最親愛的家人及所有關心我的人!

鄭天德 謹誌

2010年1月

iii

錄

目

頁次

中文摘要		i
英文摘要		ii
誌謝		iii
目錄		iv
表目錄		viii
圖目錄		xi
符號說明		х
<u> </u>	結論	1
1.1	研究背景	1
1.2	研究動機	2
1.3	研究問題與目的	4
1.4	研究架構	4
1.5	研究方法	5
1.6	研究範圍	6
1.7	論文結構	6
<u> </u>	LGM 文獻回顧與評述	7
2.1	LGM 之統計模式	7
2.1.1	LGM 之多層次線性模式(HLM)	7
2.1.2	LGM 之線性結構模式(SEM)	12
2.1.3	SEM 與 HLM 模型比較	14
2.2	一階 LGM 研究架構	16
2.3	二階 LGM 研究架構	18
2.3.1	二階 LGM 統計模式	19
2.3.2	因素的不變性	23
2.4	參數估計方法	24
2.4.1	SEM 參數估計方法	24
2.4.2	HLM 參數估計方法	25

	2.4.3	估計方法比較	25
	2.5	模型的評估與選擇	25
	2.5.1	SEM 方法評估適合度指標	26
	2.5.1.1	SEM 推論式指標	26
	2.5.1.2	SEM 敍述式指標	26
	2.5.2	HLM 方法評估適合度指標	28
	2.5.3	SEM 及 HLM 方法評估適合度指標比較	28
	2.6	ECM 之分類及文獻常用種類	28
	2.6.1	常用 ECM 種類及其分類	28
	2.6.2	ECM 弱穩態定義	30
	2.6.3	LGM 之自我相關共變數及自我相關係數定義	31
	2.6.4	ECM 依穩態及期差自我相關函數分類	31
	2.6.5	傳統時間序列與 LGM 之自我相關共變異數差異	32
	2.7	ECM 選擇亟待解決議題	34
	2.7.1	Level-1 ECM 誤設對成長因素參數估計影響	34
	2.7.2	ECM 選擇策略	35
	2.8	本研究解決 ECM 之議題	36
	2.8	LGM 模型基本假設	36
<u> </u>		ECM 鑑定之研究方法	37
	3.1	ECM 在 SEM 之設定方法	37
	3.1.1	PROC Mixed 設定 ECM 之指令	37
	3.2	模擬多變量常態分配樣本資料方上去	37
	3.2.1	因素分析法模擬多變量常態資料	38
	3.2.2	SAS/IML 之 RANDNORMAL 模擬多變量常態資料	39
	3.3	多變量與單變量資料結構之轉換	40
	3.4	HLM 與 SEM 概似函數比較	40
	3.5	Level-1 ECM 穩態性檢定	41
	3.5.1	概似比檢定 ECM 穩態性	41
	3.5.2	SEM 方式檢定 ECM 之穩態性	43
	3.5.2.1	卡方差異性檢定穩態性	43

	3.5.2.2	SIMTESTS 方法檢定穩態性	43
	3.5.3	二階 LGM 之 ECM 獨立性檢定	43
	3.5.4	二階 LGM 之 ECM 穩態性檢定	47
	3.5.4.1	卡方差異方法檢定 ECM 穩態性	49
	3.5.4.2	SIMETESTS 方法檢定穩態性	49
	3.6	二階 LGM 之 ECM 因素不變性之檢定	50
	3.6.1	卡方差異性檢定因素不變性	50
	3.6.2	SIMTESTS 方法檢定因素不變性	50
	3.7	ECM 選擇準則及鑑定	50
	3.7.1	ECM 選擇準則	51
	3.7.2	SCDT 鑑定 ECM	53
	3.8	鑑定一階 ECM 之導引	58
	39	本論文研究流程	59
꼬	•	ECM 鑑定之實例操作示範	61
	4.1	ECM 在 SEM 之設定方法	61
	4.1.1	ARMA(1,1) 之 ECM 在 PROC CALIS 程式說明	61
	4.1.2	TOEPH 之 ECM 在 PROC CALIS 程式說明	63
	4.2	一階 LGM ECM 鑑定之釋例	65
	4.2.1	一階 LGM 母體參數設計	68
	4.2.2	一階 LGM 模擬一組樣本資料	69
	4.2.3	一階 LGM 多變量資料結構及單變量資料之轉換	69
	4.2.4	一階LGM樣本資料相關時序圖	71
	4.2.5	一階 LGM ECM 穩態性檢定	72
	4.2.5.1	一階 LGM 概似比檢定穩態性	72
	4.2.5.2	一階 LGM 卡方差異性檢定穩態性	72
	4.2.5.3	一階LGMSIMTESTS 檢定穩態性	73
	4.2.6	一階LGM SCDT 鑑定 ECM	74
	4.3	一階LGM ECM 鑑定之實證資料	76
	4.3.1	一階 LGM ECM 穩態性檢定	76

	4.3.2	一階 LGM SCDT 鑑定 ECM	77
	4.4	二階 LGM ECM 鑑定之釋例	80
	4.4.1	二階 LGM 母體參數設計	80
	4.4.2	二階 LGM 模擬一組樣本資料	81
	4.4.3	二階 LGM 問項誤差結構獨立性檢定	81
	4.4.4	二階 LGM 弱因素不變性檢定	81
	4.4.4.1	二階LGM卡方差異性檢定弱因素不變性	82
	4.4.4.2	二階 LGM SIMTESTS 檢定弱因素不變性	82
	4.4.5	二階LGMECM 隱態性檢定	83
	4.4.5.1	二階 LGM 卡方差異性檢定隱態性	83
	4.4.5.2	二階 LGM SIMTESTS 檢定隱態性	83
	4.4.6	二階 LGM SCDT 鑑定 ECM	84
	4.4.7	二階 LGM ECM 程式說明	85
<i>Æ</i> ،		結論與研究建議	93
	5.1	結論	93
	5.2	研究限制	97
	5.3	後續研究建議	98
參考	行文獻		99
附錄 A		各章附註	105
	詿 A-2.1	LGM level-1 及 level-2 誤差之示意圖	105
	詿 A-2.2	PROC MIXED 空間與期問誤差共變結構	107
	詿 A-3.1	ECM 限制式個數 (以 T=4 爲例說明)	109
	詿 A-3.2	ARMA(p,q)之 ECM	118
附錡	k Β	SAS 軟體程式	133
	B-1	一階條件式 LGM 模擬資料程式	133
	B-2	一階條件式 LGM 示例程式	135
	B-3	一階條件式 LGM(Singer and Willett (2003) 資料) 為示例程式	147
	B-4	二階條件式 LGM 模擬資料程式	154
	B-5	二階條件式 LGM 釋例程式	158

B-6	一階條件式LGM ECM=ARMA(1,1)範例	192
B-7	二階條件式 LGM ECM=AR(1)範例	193
自傳		195

表 目 錄

表 2.1	SEM 與 HLM 之 LGM 統計模型比較	16
表 2.2	文獻常用等期間 ECM 彙整表	29
表 2.3	等期間 ECM 分類	32
表 3.1	常用穩態及非穩態等期間 ECM 彙整表	54
表 4.1	PROC CALIS 建構 ECM 之程式指令	66
表 4.2	圖 2.3 母體參數及 ECM 為 ARH(1)之母體與樣本共變異數矩陣	70
表 4.3	ECM 穩態性及二階 LGM 弱因素不變性檢定	75
表 4.4	SCDT 鑑定一階 LGM 之 ECM 過程及模型參數推論彙總表	77
表 4.5	Singer and Willett's (2003, Ch7)實證資料	79
表 4.6	SCDT 鑑定 ECM 過程及參數推論彙總表(實證資料)	80
表 4.7	圖2.3 二階LGM 母體參數値及樣本共變異數矩陣	89
表 4.8	SCDT 鑑定二階 LGM 之 ECM 過程及模型參數推論彙總表	91
表 5.1	穩態性檢定	95
表 5.2	循序卡方差異檢定(SCDT)1.896	96
表 A-2.1	SEM 及 HLM 表示 LGM 各種名詞定義	106
表 A-2.2	等期間 ECM 共變結構	107
表 A-2.3	空間 ECM 共變結構	108

昌	Ħ	錄

頁次

圖 1.1	研究架構	4
圖 1.2	Level-1 ECM 鑑定之研究方法	5
圖 2.1	一階條件式 LGM 之 SEM 一般架構	12
圖 2.2	HLM 及 LGM 與 SEM 關係圖	15
圖 2.3	一階 LGM 研究架構	17
圖 2.4	二階 LGM 研究架構	19
圖 2.5	自我相關係數及自我相關共變數示意圖	32
圖 2.6	Level-1 ECM 誤設對成長因素參數估計影響關係圖	35
圖 3.1	SEM 多變量常態分配模擬方法	40
圖 3.2	多變量資料與單變量資料結構	41
圖 3.3	Level-1 ECM 鑑別之流程	58
圖 3.4	ECM 鑑定之實例示範流程	60
圖 4.1	300 個受測者之線性成長趨勢線(不含 level-1 ECM(TOEP(1)))	71
圖 4.2	300 個受測者之隨機效果成長趨勢線(含 level-1 ECM(TOEP(1)))	71
圖 4.3	ECM 為 TOEP(1)時殘差時序圖	72
圖 4.4	ECM 為 ARH(1)時殘差時序圖	76
圖 4.5	35 個受測者實證資料線性成長趨勢線	78
圖 4.6	35 個受測者實證資料 level-1 殘差時序圖	78
圖 A.2.1	第 <i>j</i> 個受測者之LGM	104

符號說明

 $E(\varepsilon_t)$ 表示隨機變數 ε_t 取期望值

 μ_{ϵ} 隨機變數 \mathcal{E}_{t} 的期望值(平均數)

- $Var(\varepsilon_t)$ 表示隨機變數 ε_t 取變異數
 - σ_{ε}^{2} 隨機變數 \mathcal{E}_{t} 的變異數
 - σ₀ 表示期差爲零之共變數(相當於變異數)
- $Cov(\varepsilon_{t}, \varepsilon_{t-k})$ 表示隨機變數 ε_{t} 與本身期差 k 期之自我共變數
 - σ_k 表示隨機變數 \mathcal{E}_t 與本身期差 k 期之自我共變數
 - ρ_k 表示隨機變數 \mathcal{E}_t 期差k自我相關係數
 - y_{ii} 表示第 j 個受測者在時間 t 之觀察值
 - β_{0i} 表示 level-1 中第 *j* 個受測者之截距
 - λ_{ij}^{k} 表示 LGM 第 k 個變數 λ_{ij}
 - β_{ki} 表示 level-1 中第 j 個受測者對第 λ_i^k 個變數 y 在時點 t 之迴歸係數
 - w_{mi} 表示 level-2 之預測變數 2
 - γ_{k0} 表示第 k 個隨機係數(β_{ki})之截距成長因素的固定效果
 - γ_{k1} 表示第 k 個斜率為成長因素之固定效果
 - *u_{oi}* 表示第*j* 個受測者之偏離本身截距成長因素平均值之誤差
 - *u_{ki}* 表示第*j* 個受測者之偏離本身第*k* 個斜率成長因素平均値之誤差
 - y_i 表示第*j* 個受測者反應變數向量

 X_j
 代表第 j 個受測者在 level-1 預測變數(包含一個截距為 1 之行向量)

 所形之設計矩陣

W_j 代表第 j 個受測者在 level-2 預測變數(包含一個截距為 1 之行向量) 所形之設計矩陣

- γ 表示 level-2 固定效果迴歸係數向量
- \mathbf{r}_i 表示 level-1 之誤差向量
- **u**_i 表示 level-2 之誤差向量
- β_i 表示 level-1 隨機之迴歸係數向量
- $\Sigma_{\mathbf{r}}$ 表示 level-1 第 j 個受測者之誤差向量 \mathbf{r}_i 所形成之共變異數矩陣
- T 表示 level-2 之誤差向量 u_i所形成之共變異數矩陣

$E(\mathbf{y}_i | \mathbf{X}_i, \mathbf{W}_i, \mathbf{\gamma})$ 表示固定 $\mathbf{X}_i, \mathbf{W}_i, \mathbf{\gamma}$ 條件之下, \mathbf{y}_i 之條件期望值

 $Var(\mathbf{y}_{i} | \mathbf{X}_{i}, \mathbf{W}_{i}, \boldsymbol{\gamma})$ 表示固定 $\mathbf{X}_{i}, \mathbf{W}_{i}, \boldsymbol{\gamma}$ 條件之下, \mathbf{y}_{i} 之條件變異數

- $\mu(\boldsymbol{\theta}_i)$ 蘊涵平均數向量
- $\Sigma(\theta_i)$ 蘊涵共變數矩陣
 - Λ_v^* 表示第j個受測者之因素負荷矩陣
 - η_i 表示成長因素構念所形成之向量
 - ϵ_i 表示 level-1 測量誤差所形成之向量
 - ζ_n表示成長因素構念誤差所形成之向量
- Ψ_{ζ-}表示成長因素構念誤差所形成之共變異數矩陣
- Θ 表示 level-1 測量誤差所形成之共變異數矩陣
- Γ₀ 表示成長因素構念迴歸截距項係數所形成之向量
- Γ_w 表示成長因素構念預測變數 w 之迴歸係數所形成之矩陣 (或向量)
- F 表示二階 LGM 第一階之測量構念形成之向量
- *ξ* 表示二階 LGM 第二階成長因素之預測構念所形成之向量
- Λ_{y} 表示測量構念 F 對變數 y 之因素負荷矩陣
- Λ_x 表示測量構念 ξ 對變數x之因素負荷矩陣
- Γ_ξ 表示二階 LGM 第二階之截距及斜率兩個成長因素構念對預測變數 之迴歸係數 1896
- ζ_F 表示二階 LGM 第一階之測量構念誤差所形成之向量
- Ψ_ζ 表示二階 LGM 第一階之測量構念誤差所形成之共變異數矩陣
- δ 表示二階 LGM 第二階成長因素之預測構念 ξ 所對應測量變數 x 之 誤差所形成之向量
- *L*(θ) 概數函數
- S 樣本共變異數矩陣
- **y** 樣本平均數向量
- $F_{M}(\theta)$ 概數函數之差距函數
- *df* 自由度
- ℓ_{ii} 表示第*i*個變數在第*j*個因素之負荷
- *f*_i 表示因素分析第*j* 個因素
- z, 表示因素分析第j個外生變數y,標準化之得分
- $\lambda(y)$ 表示概似函數之比值(λ)
- $L_{R}(\boldsymbol{\theta}_{0} \mid y)$ 表示限制式下模型之概似函數最大值

- L_U(θ|y) 表示沒有限制式下模型之概似函數最大值
 - φ_i 表示 ARMA(p,q)中自我迴歸部份之係數
 - θ_i 表示 ARMA(p,q)中移動平均部份之係數
 - v_t 表示 ε_t 之干擾項且服從 white noise

第一章 緒論

1.1 研究背景

潛在成長模型(Latent Growth Model,簡稱LGM)在研究大量受測者之樣本而且有限 重複測量時點之縱橫斷面資料(panel data)扮演重要角色 (e.g., Meredith & Tisak, 1990; Muthén & Khoo, 1998; Preacher, Wichman, MacCallum, & Briggs, 2008, p. 12; Singer & Willett, 2003, p. 9),該模型不但可以藉由成長因素構念參數(growth factor parameters)刻劃 全部受測者隨著時間趨勢而變動或受測者彼此間(Inter-individual; between subject)隨着不 同屬性而變動,而且可描述受測者本身(Intra-individual; within subject)隨時間改變狀況; 該模型為時間巢套於受測者(time is nested within an individual)。因此,LGM 是一個典型 多層次模型(multilevel modeling or hierarchical linear modeling,簡稱 HLM)。典型的 HLM 具有兩個層次之誤差,就LGM 而言,在第一層次模式用以描述受測者本身測量變數隨 著時間而變動,該層次測量誤差共變異結構矩陣(error covariance structure matrix,稱為 level-1 ECM)[註 A-1.1];而第二層次成長構念因素用以刻劃受測者彼此間成長趨勢之變 動,其誤差共變異結構矩陣稱為 level-2 ECM。

LGM 可採用結構方程模式(structural equation models, 簡稱 SEM)的理論架構推導 (e.g., Bauer, 2003; Boolen & Curran, 2006; Chan, 1998; Curran, 2003; Duncan, Duncan, & Hops, 1996; Mehta & Neal 2005; Meredith & Tisak, 1990; Willet & Sayer, 1994)。雖然 HLM 與 SEM 建構 LGM 是源自於不同統計理論,各有其採用的專有術語(terminology)、符號 及問題研究架構,但兩個方法在 LGM 是有重疊之處。因此,LGM 在 SEM 與 HLM 兩 方法之解析式是相同的 (e.g., Bauer, 2003; Bovaird, 2007; Curran, 2003; MacCallum, Kim, Malarkey, & Kiecolt-Glaser, 1997; Raudenbush, 2001; Rovine & Molenaar, 2000; Willett & Sayer, 1994)。雖兩種方法採用不同資料結構(Singer, 1998)之概似函數及不同演算法進行 參數估計,但估計結果很相近 (Bovaird, 2007; Rovine & Molenaar, 2000)。因 SEM 方法 有提供模型配適度推論指標(Raudenbush, 2001)而且可處理測量構念之問題,故 SEM 方法 比 HLM 方法優勢(e.g., Bollen & Curran, 2006, Chap. 7, 8; Bovaird, 2007; Chan, 1998; Duncan, Duncan, & Strycker, 2006, Chap. 4; Hancock, Kuo, & Lawrence, 2001; MacCallum, et al., 1997; Rovine & Molenaar, 2000)。而且一些統計套裝軟體如 Mplus (Muthén & Muthén, 2007), Mx (Neale, Boker, Xie, & Maes, 2003), AMOS (Arbuckle, 2006), EQS (Bentler & Wu, 2005), LISREL (Jöreskog & Sörbom, 2001), and SAS PROC CALIS (SAS Institute Inc., 2010) 皆可用來進行 SEM 分析。又一般化之非穩態 ECM 是沒有特定的結構為 UN (unstructured),該結構之變異數與共變異數,在估計過程若 level-1 ECM 為 UN 時,易導 致成長因數固定效果參數估計產生型 I 誤差膨脹(inflate),同時過多的自由參數會造成模型認定(identification)、估計收斂(convergence)問題、及參數不易解釋。因此,level-1 ECM 誤設會對成長因素構念的固定參數及隨機效果變異數(誤差)產生估計影響(Ferron, Dailey, & Yi, 2002; Kwok et al., 2007; Murphy & Pituch, 2009),例如誤設較少參數 level-1 ECM 時,會導致 level-2 成長因素構念隨機效果 ECM 變異數估計高估及成長因素固定效果參數檢定力降低。因此,本論文研究主要議題是如何找到合適 level-1 ECM 提供一個指導 方針(guideline),並以 SEM 方法進行參數估計與檢定。

1.2 研究動機

成長模型中,level-1 ECM(後文以 ECM 表之)隨着不同時間點重複測量變數所形成 誤差共變異數矩陣,其誤差常被假設無關(或/且)同質變異數(homogenious)是不符實際之 假設(e.g., Ferron, Dailey, & Yi, 2002; Raudenbush, 2001; Singer, 1998; Singer & Willett, 2003, Ch7)。如各期測量之間可能因記憶、實務效果、其他再測效果或模型未被設定 (unmodeled) (Grimm & Widaman, 2010; Sivo & Fan, 2008)造成各期之間誤差會產生自我 相關。Sivo et al. (2005) 及 Sivo and Fan (2008)提出 LGM ARMA(p, q)模型, 試圖將誤差 自我相關排除掉(filter out)。同時許多文獻(e.g., Ferron, Dailey & Yi, 2002; Marsh, 1993; Marsh & Grayson, 1994a, 1994b; Murphy & Pituch, 2009; Kwok, West, & Green, 2007; Sivo, Fan, & Witta, 2005)已指出誤差共變異數結構矩陣若未配以適當之結構,則模型之成長因 素參數估計值會造成偏誤(bias)。因而, PROC MIXED(HLM 方法處理 LGM) 提供 30 多 種不同內定之誤差共變異數矩陣結構(ECM)之型態供研究者選用。因此,在 LGM 有很 多基本的 level-1 ECM 可以設定(e.g., Newsom, 2002; Singer & Willett, 2003, Chap. 7; Wolfinger, 1996)。雖 PROC MIXED 在設定 ECM 非常方便,但却不允許使用者任意更改 既設定誤差型態結構。例如時間序列 MA(1), MA(2) 或 AR(2)模型, PROC MIXED 並無 提供。為了發揮 SEM 方法優點處理 LGM 且結合 HLM 所提供 ECM。因而,面臨第一個 研究問題即為如何將 PROC MIXED 之 ECM 有效應用在 SEM 方法。

因此,本文所解決問題之1:以 SEM 方法建構 ECM。

事實上,這些誤差過程之 ECM 可利用穩態性與非穩態性 (stationary and nonstationary)性質加以分類。在時間序列定義過程(如誤差) { ε_t } 為穩態條件是 ε_t 的平均

2

數及變異數爲常數,各期差(*k*)之間的共變異數與時間無關僅與期差有關。更具體而言, { ε_t } 爲穩態條件為 (a) $E(\varepsilon_t) = \mu_{\varepsilon}$ (爲常數,常設定為 0); (b) $Var(\varepsilon_t) = \sigma_{\varepsilon}^2 = \sigma_0$ (爲常數); (c) $Cov(\varepsilon_t, \varepsilon_{t-k}) = \sigma_k, k > 0$ (與期差 *k* 有關),又定義期差 *k* 自我相關係數為 $\rho_k = \sigma_k / \sigma_0, k \ge 0,$ σ_k 稱爲期差 *k* 自我共變異數 (see Box, Jenkins, & Reinsel, 1994, Chap. 3)。

如何將眾多 ECM 以適當統計性質加以分門別類,將有助於研究者有效選擇合適誤 差結構。

因此,本文所解決問題之 2: ECM 依穩態性與否分類及檢定。

接下來問題是即使 ECM 已加以分類,但如何從分類後各族群再找到合適 ECM 呢? Hedeker and Mermelstein (2007)指出若有實質的理論基礎者,則依理論選擇 ECM 結構; 然而 Kwok et al. (2007)指出在心理學理論很少清楚提供設定特定的 ECM 之基礎。Sivo and Fan (2008)文中說明自我相關是一種麻煩的事情(nuisance),因其常發生在序列觀察的 資料,誤差也較少的理論所興趣。Grimm and Widaman (2010)指出若成長模型誤設為較 簡單的成長趨勢線,則會產生複雜 level-1 ECM。因而,理論上建議當 LGM 有可解釋性 參數且能補捉較好成長趨勢線,則會使得 level-1 ECM 變成很簡單;換言之,正確設定 成長趨勢線導致獲得簡單的 ECM;因而,以最簡單線性成長趨勢線尋找 "最適" (optimal)ECM 是不值得的。上述告訴我們有理論為基礎之 ECM 者則以理論為主。若沒 有實質理論基礎,基本上仍採用探索性。Grimm and Widaman (2010)指出模型簡單或精 簡(simplicity or parsimony)是模型期望性質;正如 Browne and du Toit (1991)指出用太多 參數去滿足模型配適度可能導致參數不易解釋。因此,垃圾參數(wastebasket parameters) 應該避免。例如當兩個模型之配適度沒有存在顯著性差異時,則優選考量較簡單模型 (Littell et al., 2006, p. 184; Wolfinger, 1996)。因此,本文依參數精簡程度及解釋能力而有 系統性之選擇順序,即

本文所解決問題之 3: 提出 ECM 選擇順序。

至此仍面臨一個問題便是,即使已有ECM選擇順序,但那一個ECM才合適呢? Littell et al. (2006)以 PROC MIXED 為工具,介紹兩種選擇 level-1 ECM 策略分別為(1)圖形法: 即觀察誤差各期間相關係數型態;(2)IC(information criteria)方法:即測試各種 ECM 之 LGM 的 AIC (Akaike, 1974) 及 BIC (Schwarz, 1978)為最小者,即為選定 ECM。但 Kwok et al. (2007)指出發展比 AIC 及 BIC 方法更正確的 ECM 是需要的。因此,本文依據 Anderson and Gerbing (1988)提出 SCDT (sequential chi-square difference test, Anderson &

3

Gerbing,1988)方法進行解決該議題,爲研究第四個問題,即

本文所解決問題之 4: 提出 SCDT 鑑定 ECM。

1.3 研究問題與目的

本文之目的是提出一個有系統性找尋 level-1 ECM 之準則(guideline),並輔以 PROC CALIS(SEM 方法)操作示範,以供有趣讀者更易了解及使用。為達成此目的,有四點問 題需解決分別為:

(1)以 SEM 方法建構 ECM。

(2) ECM 依穩態性與否分類及檢定。

(3)提出 ECM 選擇順序。

(4)提出 SCDT 鑑定 ECM。

1.4 研究架構

茲將本論文研究架構,以流程圖之方式整理如圖 1.1,圖中虛線表示研究之結論與 研究目的需前呼後應,達成研究之一致性。

圖 1.1 研 究 架 構

1.5 研究方法

在本研究提出篩 level-1 ECM 之流圖,主要分為兩大部份,其一為 ECM 穩態性檢定, 另一個則為比較選定暫時性 ECM(以 M_r 表之)與飽和 ECM(以 M_s 表之,穩態 ECM 之 M_s =TOEP 而非穩態 ECM 之 M_s =UN),最後選定合適 ECM。其簡略之方法如圖 1.2 所 示。(各 ECM 結構見附錄 A 之表 A-2.1)。在統計方法上,雖然 HLM(PROC MIXED)可以 很方便使用內定 ECM,但其無法解決測量構念問題且無提供模型配適度檢定指標,因此 本以主要 SEM(PROC CALIS)為主,並在兩者均可操作模型下比較參數估計結果,以驗 證 HLM (PROC MIXED)提供內定的 ECM 轉換到 SEM (PROC CALIS)參數估計之差異 性。

圖 1.2 Level-1 ECM 鑑定之研究方法

圖中 M_T 表示一個暫時選定 ECM 結構,而 M_T更新依序分為穩態結構及非穩態結構: 穩態結構: TOEP(1) → MA(1) → CS → AR(1) → MA(2) → ARMA(1,1) → AR(2) → MA(3) → ARMA(1,2) → ARMA(2,1) → AR(3) →··· → AR(T-1). 非穩態結構: TOEPH(1) → TOEPH(2) → CSH → ARH(1) → TOEPH(3) →··· → TOEPH(T) → UN(2) →··· → UN(T).

在研究架構以一階(first order) LGM 及二階(second order) LGM 兩個模型,而後者因含有測量構念故無法以 HLM (PROC MIXED)操作。

1.6 研究範圍

本研究有關 ECM 僅探討與期間有關且測量時點為等距(equal space)之 level-1 ECM。

1.7 論文結構

本論文除第一章緒論外,再區分爲四章,各章內容簡述如下:

第二章 LGM 文獻回顧與評述說明 SEM 與 HLM 差異性、說明本文兩個釋例 LGM 架構及估檢方法、模型評估指標、ECM 依穩態分類、及 ECM 選擇方法。

第三章 ECM 鑑定之研究方法,本章將做為第四章 ECM 實例操作示範之理論及方法依據。因此,包含多變量常態分配資料模擬、SEM 方法與 HLM 方法資料結構差異、 HLM 穩態性檢定理論與方法、SEM 穩態性檢定理論與方法、ECM 依限制式強弱決定 ECM 篩選順序、並提出 ECM 鑑定準則。

第四章 ECM 實例操作示範,本章依據第二章之 LGM 兩個釋例架構及第三章 ECM 鑑定之研究方法配合 PROC CALIS 及 PROC MIXED 為釋例進行操作示範及比較。

最後,第五章 結論與建議,本章對全文研究解決問題點做一總結及研究限制,並 建議一些可供後續研究之議題。

第二章 LGM 文獻回顧與評述

如前章所述 LGM 適用於大量受測者之樣本而且有限重複測量時點之縱橫斷面資料,藉以探討全部受測者隨著時間變動趨勢或受測者彼此間隨着不同屬性而變動、受測者本身隨時間改變以及受測者彼此間變化隨着本身變化而變動情況。而其統計建模方式可分別以階層線性模式(HLM)或線性結構模式(SEM),雖HLM 和 SEM 兩種模型源自於不同統計理論及研究問題之對象;然而在 LGM 兩個模型有其重疊性,是為本單元探討之一部份。另外 SEM 及 HLM 估計方法及模型評估指標也簡單說明,同時依據文獻一階LGM 及二階 LGM 稍加稍正之後推導出統計性質及文獻上常使用 LGM level-1 ECM 加以系統性分類,以供第四章釋例操作使用。

2.1 LGM 之統計模式

本單元說明 LGM 分別以多層次線性模式(HLM)及線性結構模式(SEM)表示統計模式,並比較兩者之關係。

2.1.1 LGM 之多層次線性模式(HLM)

不失一般情況下,兩階層線性模式可視為傳統線性迴歸模式之延伸,若考慮縱橫斷 面之資料有 N 個受測者(participants, subjects)且有 T 個不同時點(occasions, times),對每 個受測者進行重複施測所得之變數值為 y_i ($j = 1, \dots, N$; $t = 1, \dots, T$), (occasions t nested within subject j)即為成長模型取樣資料之方法,第一層次(level-1)可以下列方程式表示 (Curran, 2003)

$$y_{ij} = \beta_{0j} + \sum_{k=1}^{K} \beta_{kj} \lambda_{ij}^{k} + r_{ij} = \sum_{k=0}^{K} \beta_{kj} \lambda_{ij}^{k} + r_{ij}$$
(2.1)

式中 β_{0j} 為 level-1 中第j 個受測者之截距; λ_{ij}^{k} 表示第k 個變數 λ , $k = 1, \dots, K$; β_{kj} 為 level-1 中第j 個受測者被吸收在 λ_{ij}^{k} 下之迴歸係數; r_{ij} 表示第j 個受測者在時點 t 之誤差。在成長模型中 λ_{ij}^{k} 經常表示依照年代或時間排序(chronological)的變數如年齡; 又每個受測著之截距 β_{0j} 及斜率迴歸係數 β_{kj} 是隨機變動(randomly varying), 在 SEM 稱之為成長因素(growth factors)或在 HLM 以隨機係數(random coefficients)稱之,係代表第二層次(level-2)依變數,若每個受測者j包含一個或m數個 level-2 之預測變數 $w_{nj}, m = 1, \dots, M$, 該成長因素

$$\begin{cases} \beta_{0j} = \gamma_{00} + \sum_{m=1}^{M} \gamma_{0m} w_{mj} + u_{0j} \\ \vdots , \\ \beta_{kj} = \gamma_{k0} + \sum_{m=1}^{M} \gamma_{km} w_{mj} + u_{kj} \end{cases}$$
(2.2)

式中 γ_{00} 表示截距成長因素的固定效果; γ_{k1} 表示第k個斜率成長因素之固定效果; u_{oj} 表示第j個受測者之偏離截距成長因素平均値之誤差; u_{kj} 表示第j個受測者之偏離第k個斜率成長因素平均値之誤差(示意圖見[附註 A-2.1]);因而 $u_{oj} \cong u_{kj}$ 稱之為隨機效果(random effects)。將式(2.2)代入式(2.1)即可得二層次成長模型之混合模式(mixed model)或稱之為簡化型式(reduced form),即下列方程式

$$y_{ij} = \beta_{0j} + \sum_{k=1}^{K} \beta_{kj} \lambda_{ij}^{k} + r_{ij}$$

$$= (\gamma_{00} + \sum_{m=1}^{M} \gamma_{0m} w_{mj} + u_{oj}) + \sum_{k=1}^{K} (\gamma_{k0} + \sum_{m=1}^{M} \gamma_{km} w_{mj} + u_{kj}) \lambda_{ij}^{k} + r_{ij}$$

$$= \gamma_{00} + \sum_{m=1}^{M} \gamma_{0m} w_{mj} + \sum_{k=1}^{K} \gamma_{k0} \lambda_{ij}^{k} + \sum_{k=1}^{K} \sum_{m=1}^{M} \gamma_{km} w_{mj} \lambda_{ij}^{k} + (u_{oj} + \sum_{k=1}^{K} \lambda_{ij}^{k} u_{kj} + r_{ij})$$

$$= \sum_{k=0}^{K} \sum_{m=0}^{M} \lambda_{ij}^{k} w_{mj} \gamma_{km} + (\sum_{k=0}^{K} \lambda_{ij}^{k} u_{kj} + r_{ij})$$
1896
(2.3)

若式(2.1)~(2.3) 以矩陣型式表示,則為 $\mathbf{y}_j = \mathbf{X}_j \mathbf{\beta}_j + \mathbf{r}_j$

$$\boldsymbol{\beta}_j = \mathbf{W}_j \boldsymbol{\gamma} + \mathbf{u}_j \tag{2.5}$$

(2.4)

$$\mathbf{y}_{j} = \mathbf{X}_{j} \mathbf{W}_{j} \boldsymbol{\gamma} + \mathbf{X}_{j} \mathbf{u}_{j} + \mathbf{r}_{j}$$
(2.6)

因此,式(2.6)混合模式之 LGM 模型可分成兩部份,分別為固定效果($X_j W_j \gamma$)及隨機效 果($X_j u_j + r_j$)。式中 y_j 表示第j 個受測者反應變數向量,該向量為 $T \times 1$ 之維度(相當於第j 個受測者在每一個時點所量測之反應變數値所形成之向量); X_j 代表第j 個受測者在 level-1 預測變數(包含一個截距為 1 之行向量)所形之設計矩陣(design matrix)其維度為 $T \times (K+1)$; W_j 代表第j 個受測者在 level-2 預測變數(包含一個截距為 1 之行向量)所形 之設計矩陣(design matrix)其維度為 $(K+1) \times (M+1)(K+1)$; γ 為固定效果迴歸係數向量,其維度為 $(M+1)(K+1) \times 1$ 。 \mathbf{r}_j 表示 level-1 具 $T \times 1$ 維度之誤差向量; \mathbf{u}_j 表示 level-2 為

(K+1)×1維度之誤差向量。且一般假設二層次模式第一層隨機誤差向量r與第二層隨機效果向量u之平均數均為0且不相關*Cov*(u,r)=0,每一個受測者均服從多變量常態分配為

$$\mathbf{r}_{j} \sim MVN(\mathbf{0}, \boldsymbol{\Sigma}_{\mathbf{r}_{j}}), \qquad (2.7)$$

$$\mathbf{u}_{i} \sim MVN(\mathbf{0}, \mathbf{T}), \forall j .$$
(2.8)

式中

$$\boldsymbol{\Sigma}_{\mathbf{r}_{j}} = \begin{bmatrix} \sigma_{1}^{2} & \sigma_{12} & \cdots & \sigma_{1T} \\ \sigma_{21} & \sigma_{2}^{2} & \cdots & \sigma_{2T} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{T1} & \sigma_{T2} & \cdots & \sigma_{T}^{2} \end{bmatrix}_{j}, \qquad (2.9)$$

$$\mathbf{T} = \begin{bmatrix} \sigma_{u_0}^2 & \sigma_{u_0u_1} & \cdots & \sigma_{u_0u_K}^2 \\ \sigma_{u_1u_0} & \sigma_{u_1}^2 & \cdots & \sigma_{u_1u_K} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{u_Ku_0} & \sigma_{u_Mu_2} & \cdots & \sigma_{u_K}^2 \end{bmatrix}$$
(2.10)

其中 Σ_{r_j} 維度為 $T \times T$ 之共變異數矩陣用以反應第j 個受測者本身成長趨勢線在不同期誤差變化,又T Σ_{r_j} 維度為 $(K+1) \times (K+1)$ 之共變異數矩陣用以反應受測者成長趨勢線彼此間截距及斜率之變化。

若我們對式(2.6)取平均數及變異數,假設每個受測者間均獨立 $Cov(\mathbf{y}_j, \mathbf{y}_{j'}) = 0$ 則條 件平均數及條件變異數分別為:

$$E(\mathbf{y}_j | \mathbf{X}_j, \mathbf{W}_j, \mathbf{\gamma}) = \mathbf{X}_j \mathbf{W}_j \mathbf{\gamma}$$
(2.10)

$$Var(\mathbf{y}_{j} | \mathbf{X}_{j}, \mathbf{W}_{j}, \mathbf{\gamma}) = \mathbf{X}_{j} Var(\mathbf{u}) \mathbf{X}_{j}' + Var(\mathbf{r}_{j}) = \mathbf{X}_{j} \mathbf{T} \mathbf{X}_{j}' + \mathbf{\Sigma}_{\mathbf{r}_{j}}$$
(2.11)

在多層次模式中, \mathbf{u}_{j} 和 \mathbf{r}_{j} 為隨機效果及誤差隨機向量服從於多變量常態分配。因此, \mathbf{y}_{j} 之條件分配(conditional distribution)亦服從多變量常態分配為:

 $\mathbf{y}_{j} \sim MVN(\mathbf{X}_{j}\mathbf{W}_{j}\boldsymbol{\gamma}, \mathbf{X}_{j}\mathbf{T}\mathbf{X}_{j}' + \boldsymbol{\Sigma}_{\mathbf{r}_{j}})$ (2.12)

又假設為平衡設計(balance design)時,則 $X_j = X \mathcal{D} \Sigma_{r_j} = \Sigma_r, \forall j$,又每個受測者均假設

 \mathbf{W}_{j} = W $\forall j$,因此,式(2.12) \mathbf{y}_{j} 之條件分配可進一步簡化為

$$\mathbf{y}_{j} \sim MVN(\mathbf{XW}\boldsymbol{\gamma}, \mathbf{XTX}' + \boldsymbol{\Sigma}_{\mathbf{r}}), \ \forall j$$
(2.13)

則式(2.10)及式(2.11)可以重新寫成

 $E(\mathbf{y}_{j} | \mathbf{X}_{j}, \mathbf{W}_{j}, \boldsymbol{\gamma}) = \mathbf{X} \mathbf{W} \boldsymbol{\gamma}, \forall j$ (2.14)

$$Var(\mathbf{y}_{j} | \mathbf{X}_{j}, \mathbf{W}_{j}, \mathbf{\gamma}) = \mathbf{V} = \mathbf{XTX}' + \mathbf{\Sigma}_{\mathbf{r}}, \forall j, \qquad (2.15)$$

г ¬

由該式表示每個受測者本身之隨機誤差(即 level-1 誤差)所形成變異數共變異數矩陣結構 (error covariance matrix structure,簡稱 level-1 ECM) Σ_r 均相同。

爲清楚說明式(2.6)之資料結構,我們以 level-1 之預測變數 K=1、level-2 之預測變數 M=2, 且爲線性成長模型爲例,將式(2.6)表成矩陣型式

$$\mathbf{y}_{j} = \begin{bmatrix} y_{1j} \\ \vdots \\ y_{Tj} \end{bmatrix}, \mathbf{X}_{j} = \begin{bmatrix} 1 & Time_{1} \\ \vdots & \vdots \\ 1 & Time_{T} \end{bmatrix}, \mathbf{W}_{j} = \begin{bmatrix} 1 & w_{1j} & w_{2j} & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & w_{1j} & w_{2j} \end{bmatrix},$$

$$\boldsymbol{\gamma} = \begin{bmatrix} \gamma_{00} \ \gamma_{10} \ \gamma_{20} \ \gamma_{01} \ \gamma_{11} \ \gamma_{21} \end{bmatrix}', \ \boldsymbol{u}_{j} = \begin{bmatrix} u_{0j} \\ u_{1j} \end{bmatrix}, \ \boldsymbol{r}_{j} = \begin{bmatrix} e_{1j} \\ \vdots \\ e_{Tj} \end{bmatrix}.$$

因此,對所有受測者 j=1,...,N 而言,則為

$$\begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \\ \vdots \\ \mathbf{y}_N \end{bmatrix} = \begin{bmatrix} \mathbf{X}_1 \mathbf{W}_1 \\ \mathbf{X}_2 \mathbf{W}_2 \\ \vdots \\ \mathbf{X}_N \mathbf{W}_N \end{bmatrix} \mathbf{\gamma} + \begin{bmatrix} \mathbf{X}_1 & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & \mathbf{X}_2 & \dots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \dots & \dots & \mathbf{X}_N \end{bmatrix} \begin{bmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \\ \vdots \\ \mathbf{u}_N \end{bmatrix} + \begin{bmatrix} \mathbf{r}_1 \\ \mathbf{r}_2 \\ \vdots \\ \mathbf{r}_N \end{bmatrix}$$

亦即

 $Time_1 W_{21}$ w₂₁ Time, $Time_1$ 0 0 0 0 $\stackrel{r_{11}}{\vdots}$ $\stackrel{y_{11}}{\vdots}$ $Time_1w_{11}$ 1 W_{11} ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ u_{01} Time_T $Time_T w_{11}$ $Time_T w_{21}$ $Time_{\tau}$ 0 0 0 0 ... 0 0 1 1 y_{1T} W_{11} W_{21} r_{1T} u_{11} $Time_1 w_{12}$ $Time_1 w_{22}$ $\stackrel{y_{21}}{\vdots}$ Time₁ 0 1 0 0 ... 0 0 1 0 $Time_1$ $\stackrel{r_{21}}{:}$ W_{12} W_{22} γ_{00} u_{02} ÷ ÷ ... ÷ ÷ ÷ γ_{10} . . . ÷ u_{12} 0 0 0 Time₁ $Time_T w_{12}$ $Time_T w_{22}$ 0 $Time_{T}$ 0 ... 0 1 W₂₂ γ_{20} 1 r_{2T} \mathcal{Y}_{2T} W_{12} = + + 0 0 0 ÷ ÷ ÷ ÷ 0 ÷ ... : γ_{01} ÷ : : ÷ ÷ ÷ . . . γ_{11} ÷ ÷ ÷ ÷ : 0 ÷ ÷ : ••• 0 ÷ γ_{21} u_{0N} $Time_1 w_{1N}$ $Time_1 W_{2N}$ $\overset{\mathcal{Y}_{N1}}{\vdots}$ 1 ... 1 Time₁ W_{1N} W_{2N} Time, $\stackrel{r_{N1}}{\vdots}$ u_{1N} ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ . . . ÷ ÷ 0 0 0 $0 \ 0 \ 0 \ 1 \ Time_{T}$ 1 Time_T $Time_T W_{2N}$ 0 $Time_T w_{1N}$ \mathcal{Y}_{NT} W_{1N} W_{2N} r_{NT} x xw

而每個受測者之隨機效果變異數為 $Var(\mathbf{X}_{j}\mathbf{u}_{j}+\mathbf{r}_{j}) = \mathbf{V}_{j} = \mathbf{X}_{j}\mathbf{T}\mathbf{X}_{j}' + \Sigma_{\mathbf{r}_{j}}$,當平衡設計時 $Var(\mathbf{X}_{j}\mathbf{u}_{j}+\mathbf{r}_{j}) = \mathbf{V}_{j} = \mathbf{X}\mathbf{T}\mathbf{X}' + \Sigma_{\mathbf{r}}, \forall j$,且每個受測者間彼此均獨立。因此,對所有受測者

$$Var(\mathbf{y} | \mathbf{X}, \mathbf{W}, \gamma) = \mathbf{V} = \mathbf{Z}\mathbf{G}\mathbf{Z}' + \mathbf{R}$$

$$= \begin{bmatrix} \mathbf{X}_{1} & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & \mathbf{X}_{2} & \dots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \dots & \dots & \mathbf{X}_{N} \end{bmatrix} \begin{bmatrix} \mathbf{T} & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & \mathbf{T} & \dots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \dots & \dots & \mathbf{T} \end{bmatrix} \begin{bmatrix} \mathbf{X}_{1} & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & \mathbf{X}_{2} & \dots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \dots & \dots & \mathbf{X}_{N} \end{bmatrix}^{\prime} + \begin{bmatrix} \mathbf{\Sigma}_{r_{1}} & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & \mathbf{\Sigma}_{r_{2}} & \dots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \dots & \dots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \dots & \dots & \mathbf{X}_{N} \mathbf{T}\mathbf{X}_{N}' + \mathbf{\Sigma}_{r_{N}} \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{X}_{1}\mathbf{T}\mathbf{X}_{1}' + \mathbf{\Sigma}_{r_{1}} & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & \mathbf{X}_{2}\mathbf{T}\mathbf{X}_{2}' + \mathbf{\Sigma}_{r_{2}} & \dots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \dots & \dots & \mathbf{X}_{N}\mathbf{T}\mathbf{X}_{N}' + \mathbf{\Sigma}_{r_{N}} \end{bmatrix}$$

$$(2.16)$$

式中

$$\mathbf{G} = \begin{bmatrix} \mathbf{T} & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & \mathbf{T} & \dots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \dots & \mathbf{T} \end{bmatrix}$$
(2.17)
$$\mathbf{R} = \begin{bmatrix} \mathbf{\Sigma}_{\mathbf{r}_{1}} & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & \mathbf{\Sigma}_{\mathbf{r}_{2}} & \dots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \dots & \mathbf{\Sigma}_{\mathbf{r}_{N}} \end{bmatrix}$$
(2.18)
$$\mathbf{T} = \begin{bmatrix} \sigma_{u_{0}}^{2} & \sigma_{u_{0}u_{1}} \\ \sigma_{u_{0}u_{1}} & \sigma_{u_{1}}^{2} \end{bmatrix},$$
(2.19)

$$\boldsymbol{\Sigma}_{\mathbf{r}_{j}} = \begin{bmatrix} \sigma_{11}^{2} & \sigma_{12} & \cdots & \sigma_{1T} \\ \sigma_{21} & \sigma_{22}^{2} & \cdots & \sigma_{2T} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{T1} & \sigma_{T2} & \cdots & \sigma_{TT} \end{bmatrix}, \forall j$$
(2.20)

已獲得樣本資料所形成之維度為($TN \times 1$)之行向量,X代表一個已知設計矩陣(design matrix)其維度為($TN \times 2$); γ 代表未知固定效果(fixed effect)之參數所形成維度為(M+1)(K+1)×1之行向量;而XW代表一個維度為($TN \times (M+1)(K+1)$)之已知設計矩陣; u代表未知隨機效果(random effect)之參數所形成維度為($2N \times 1$)之隨機向量,用以表示 受測者線性成長趨勢線彼此間之變化;r用以表示受測者本身隨機誤差之行向量(維度為($TN \times 1$))。

2.1.2 LGM 之線性結構模式(SEM)

潛在成長模式(LGM)為線性結構方程式(structural equation model,簡稱 SEM)之一個 特定形式(e.g., Bauer, 2003; Boolen & Curran, 2006; Chan, 1998; Curran, 2003; Duncan, Duncan, & Hops, 1996; Mehta & Neal 2005; Meredith & Tisak, 1990; Willet & Sayer, 1994)。為清楚說明起見,以圖 2.1 表示,圖中所示共可分為一階 SEM,在測量模式中觀 察不同時點(occasion 或 time 以 "t" 表之)、受測者(subject 或 individual 以 "j" 表之)及 有趣研究之可測變數(y),對每個受測者進行重複施測所得之變數值為 y_{it} ,如圖中 t 共有 T 期而 "j" 省略,而各期測量誤差則分別以 ε_t (t=1,...,T)表之。在結構模式之截距 (intercept)及斜率(slope)為潛在變數(latent variables)係無法直接測量構念(constructs),該構 念即為稱為成長因素(growth factors),用以表示受測者成長趨勢線彼此間截距及斜率之變 動;若潛在變數另有預測變數(如 w 表之),則該 LGM 稱為條件式的 LGM (conditional LGM)。反之若無預測變數稱為非條件式的 LGM (unconditional LGM)。另以三角形符號 表示截距及斜率兩個潛在變數之平均數(Curran & Bauer, 2007)。(註 A-2.2)

Time 1Time 2Time 3---Time T圖 2.1 一階條件式 LGM 之 SEM 一般架構

不失一般情況下,為了與前一節比較,在測量模式之預測變數除了截距項 η_{α} ,另再考慮 一個斜率之預測變數 η_{β} ,在結構模式之潛在變項考慮兩個預測變數 $W_1 \gtrsim W_2$,故該模型 即為條件式 LGM,利用 SEM 方法時,測量變數可以矩陣型式表示為:

$$\mathbf{y}_{j} = \mathbf{\Lambda}_{\mathbf{y}}^{*} \mathbf{\eta}_{j} + \mathbf{\varepsilon}_{j} \tag{2.21}$$

其中

$$\mathbf{y}_{j} = \begin{bmatrix} y_{1j} \\ y_{2j} \\ \vdots \\ y_{Tj} \end{bmatrix}, \quad \mathbf{\Lambda}_{\mathbf{y}}^{*} = \begin{bmatrix} 1 & Time_{1} \\ 1 & Time_{2} \\ \vdots & \vdots \\ 1 & Time_{T} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ \vdots & \vdots \\ 1 & T - 1 \end{bmatrix}, \quad \mathbf{\eta}_{j} = \begin{bmatrix} \eta_{\alpha_{i}} \\ \eta_{\beta_{i}} \end{bmatrix}, \quad \mathbf{\varepsilon}_{j} = \begin{bmatrix} \varepsilon_{1j} \\ \varepsilon_{2j} \\ \vdots \\ \varepsilon_{Tj} \end{bmatrix}.$$

結構模式可以表示為(Bollen and Curran, 2006, p134-135):

$$\boldsymbol{\eta}_{j} = \boldsymbol{\Gamma}_{0} + \boldsymbol{\Gamma}_{w} \boldsymbol{w}_{j} + \boldsymbol{\zeta}_{\boldsymbol{\eta}_{j}}$$
(2.22)

其中

$$\Gamma_{0} = \begin{bmatrix} \gamma_{00} \\ \gamma_{01} \end{bmatrix}, \ \zeta_{\eta} = \begin{bmatrix} \zeta_{\eta_{\alpha_{j}}} \\ \zeta_{\eta_{\beta_{j}}} \end{bmatrix}, \ \boldsymbol{w}_{j} = \begin{bmatrix} w_{1} \\ w_{2} \end{bmatrix}, \ \Gamma = \begin{bmatrix} \gamma_{10} & \gamma_{20} \\ \gamma_{11} & \gamma_{21} \end{bmatrix}, \ \nabla$$
利於與 HLM 比較起見重新定義式
(2.22)如下式
$$\eta_{j} = \mathbf{W}_{j}\gamma + \zeta_{\eta_{j}}$$
(2.23)

Juliu

將式(2.23)代入式(2.21),可得到簡化模式即

$$\mathbf{y}_{j} = \mathbf{\Lambda}_{\mathbf{y}_{j}}^{*}(\mathbf{W}_{j}\boldsymbol{\gamma} + \boldsymbol{\zeta}_{\mathbf{\eta}_{j}}) + \boldsymbol{\varepsilon}_{j} = \mathbf{\Lambda}_{\mathbf{y}_{j}}^{*}\mathbf{W}_{j}\boldsymbol{\gamma} + \mathbf{\Lambda}_{\mathbf{y}_{j}}^{*}\boldsymbol{\zeta}_{\mathbf{\eta}_{j}} + \boldsymbol{\varepsilon}_{j}$$
(2.24)

對式(2.24)取變異數可得蘊涵平均數向量(implied mean vector)及蘊涵共變數矩陣(implied covariance matrix)分別如下:

$$\boldsymbol{\mu}(\boldsymbol{\theta}_j) = \boldsymbol{\Lambda}_{\mathbf{y}_j}^* \mathbf{W}_j \boldsymbol{\gamma} , \qquad (2.25)$$

及

$$\Sigma(\boldsymbol{\theta}_{j}) = \boldsymbol{\Lambda}_{\mathbf{y}_{j}}^{*} \boldsymbol{\Psi}_{\boldsymbol{\zeta}_{\boldsymbol{\eta}_{j}}} \boldsymbol{\Lambda}_{\mathbf{y}_{j}}^{*'} + \boldsymbol{\Theta}_{\boldsymbol{\varepsilon}_{j}}.$$
(2.26)

此處 θ_j 為模型參數: $\gamma, \mu_{\eta_j}, \Psi_{\zeta_{\eta_j}}, \mathcal{D} \Theta_s$ 所形成之參量,而為潛在變數誤差所形成共變異數 矩陣,以圖 2.1 為例即為

$$\Psi_{\eta} = \begin{bmatrix} \sigma_{\eta_{\alpha}}^{2} & \sigma_{\eta_{\alpha}\eta_{\beta}} \\ \sigma_{\eta_{\alpha}\eta_{\beta}} & \sigma_{\eta_{\beta}}^{2} \end{bmatrix}, \qquad (2.27)$$

 Θ_{ϵ_i} 為測量變數誤差所形成變異數共變異數矩陣,以圖 2.1 為例,即為

$$\boldsymbol{\Theta}_{\boldsymbol{\varepsilon}_{j}} = \begin{bmatrix} \sigma_{\varepsilon_{1}}^{2} & \sigma_{\varepsilon_{1}\varepsilon_{2}} & \cdots & \sigma_{\varepsilon_{1}\varepsilon_{T}} \\ \sigma_{\varepsilon_{2}\varepsilon_{1}} & \sigma_{\varepsilon_{2}}^{2} & \cdots & \sigma_{\varepsilon_{2}\varepsilon_{T}} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{\varepsilon_{T}\varepsilon_{1}} & \sigma_{\varepsilon_{T}\varepsilon_{2}} & \cdots & \sigma_{\varepsilon_{T}}^{2} \end{bmatrix}, \forall j$$

$$(2.28)$$

2.1.3 SEM 與 HLM 模型比較

由上兩單元得知 LGM 可分別以 SEM 方法及 HLM 方法表示,並比較兩者統計模 式各參數向量及矩陣對映關係(如表 2.1 所示)。若以圖 2.2 型表示兩者等價關係,則更清 楚,在圖 2.2 (a) y_{ij} , x_{ij} , 1_i 及粗實線上之迴歸係數 β_{0j} 及 β_{1j} 分別代表 HLM 第一層次迴 歸方程式模式,是爲個體層次,表示個個體層次的可觀察解釋變項 x_{ij} (預測變項)與常數 項 (1_i) ,對可觀察的依變項 y_{ij} 的影響,其解釋變項的影響效果以迴歸係數 β_{0j} 及 β_{ij} 來表 示,對 y_{ij} 無法解釋部份則以誤差 r_{ij} 表之。而第二層次的總體層次之迴歸方程式,是總體 的可觀察解釋變數 w_{1j} 與常數項 (1_2) 對第一層次迴歸係數 β_{0j} 及 β_{1j} 的影響,其迴歸係數以 細實線表之,代表第二層解釋變項的固定效果 γ_{00} , γ_{01} , γ_{10} 及 γ_{11} ,對迴歸係數 β_{0j} 及 β_{1j} 無 法解釋部份則以 u_{0j} 及 u_{1j} 表示第二層次誤差。又今若我們將指標"i"改爲時間"t"並 x_{ij} 改成 λ_{ij} (=t-1),此時即形時間巢套於"j"變動,即形成圖 2.2 (b)之 LGM,若調整 β_{0j} , β_{1j} 及 1_1 , λ_{ij} 之位置可得圖 2.2 (c),再將該圖以t=1,2,3,4展開可得圖 2.2 (d),且將該圖順時鐘 旋轉 90 度可得圖 2.2 (c) LGM 圖形,若將圖 (e)之符號 β_{0j} 改成 η_{a_j} 、 β_{1j} 改成 η_{β_j} 及 r_{ij} 改 成 ε_{ij} 則形成圖 2.2 (f) SEM 常用符號體系。以上符號方框、圓形及三角形是以 Curran and Baucer (2007)之符號體系,亦即 SEM 中方框表示可觀察變數、圖形(或橢圓形)表示無法 觀察變數(如構念),而三角形表截距項之解釋變數。

由表 2.1 得知 SEM 及 HLM 在 LGM 之數學式是等價的。然而 SEM 可用來處理測 量構念、具有模型配適度推論指標、並可以處理具仲介變數(mediator)模型,此為 HLM

圖 2.2 HLM 及 LGM 與 SEM 關係圖

表 2.1 SEM 與 HLM 之 LGM 統計模型比較

由上可知 SEM 之測量誤差形成之誤差矩陣 Θ_{s} 即為 HLM level-1 之誤差矩陣 Σ_{r} ; SEM 之潛在變項之誤差矩陣 $\Psi_{s_{r}}$ 即為 HLM level-2 之誤差矩陣 T。

2.2 一階 LGM 研究架構

不失一般性,一階條件式 LGM (SEM)且 T=4,成長因素構念的預測變數僅考慮一個 W 之連續隨機變數,如圖 2.3 所示,該圖將當成第四章本研究釋例架構。

因此,測量模式之可測變數問項與因素負荷矩陣之關係為

$$\mathbf{y} = \boldsymbol{\Lambda}_{\mathbf{y}}^* \boldsymbol{\eta} + \boldsymbol{\varepsilon} \,, \tag{2.29}$$

而結構方程式可以表示爲

$$\boldsymbol{\eta} = \boldsymbol{\Gamma}_0 + \boldsymbol{\Gamma}_w \boldsymbol{w} + \boldsymbol{\zeta}_{\boldsymbol{\eta}}, \qquad (2.30)$$

其中 $\Gamma_0 = [\gamma_{00} \ \gamma_{01}]', \ \Gamma_w = [\gamma_{10} \ \gamma_{11}]', w = [W] 及 \ \zeta_\eta = [\zeta_{\eta_\alpha} \ \zeta_{\eta_\beta}] \circ$ 由式(2.29)代入式(2.30)可得 混合模型為

$$\boldsymbol{y} = \boldsymbol{\Lambda}_{\boldsymbol{y}}^{*} (\boldsymbol{\Gamma}_{0} + \boldsymbol{\Gamma}_{\boldsymbol{w}} \boldsymbol{w}) + \boldsymbol{\Lambda}_{\boldsymbol{y}}^{*} \boldsymbol{\zeta}_{\eta} + \boldsymbol{\varepsilon} , \qquad (2.31)$$

(由 Bollen and Curran, 2006, p. 69; Preachers et al., 2008, p. 29 改編).

則內生變數 $y_1 - y_4$ 及外生變數 w 的蘊涵平均數向量 μ 及蘊涵共變異數矩陣 Σ ,均可以表示成模型參數之函數如下(Bollen & Curran, 2006, p.134-135):

$$\boldsymbol{\mu} = \begin{bmatrix} \boldsymbol{\mu}_{\mathrm{y}} \\ \boldsymbol{\mu}_{\mathrm{w}} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\Lambda}_{\mathrm{y}}^{*} (\boldsymbol{\Gamma}_{0} + \boldsymbol{\Gamma}_{\mathrm{w}} \boldsymbol{\mu}_{\mathrm{w}}) \\ \boldsymbol{\mu}_{\mathrm{w}} \end{bmatrix}, \qquad (2.32)$$

及

$$\Sigma = \begin{bmatrix} \Lambda_{y}^{*} (\Gamma_{w} \Sigma_{ww} \Gamma_{w}' + \Psi_{\zeta_{\eta}}) \Lambda_{y}^{*'} + \Theta_{\varepsilon} & \Lambda_{y}^{*} \Gamma_{w} \Sigma_{ww} \\ \Sigma_{ww} \Gamma_{w}' \Lambda_{y}^{*'} & \Sigma_{ww} \end{bmatrix}.$$
 (2.33)

上述式(2.32)及式(2.33)將供第3及第4章模擬多變量常態分配所需母體參數。

2.3 二階 LGM 研究架構

由上述單元可知目前 HLM 方法是無法處理具有構念的測量模型。不失一般情況下, 考慮線性成長二階的 LGM (second-order LGM) (e.g., Bollen & Curran, 2006, Chap. 8; Blozis, 2006; Hancock, Kuo, & Lawrence, 2001; Preacher et al., 2008, Chap. 3; Sayer & Cumsille, 2001),如圖 2.4 所示第一階(order-1)有 4 個量測時點 (t = 1,2,3,4),每個構念有 三個可測量問項(指標),第二階兩個構念分別表示截距及斜率,並有一個與時間無關的 構念做為預測變數(ξ),該構念亦有三個可測量問項(指標)。在圖 2.3 為一階之 LGM 與 圖 2.4 為二階 LGM 其差異有三部份(Blozis, 2006; Hancock, Kuo, & Lawrence, 2001; Preacher et al., 2008, Chap. 3),第一部份:一階 LGM 中,測量誤差(ε_t)包含著測量誤差 及每個時點對平均成長趨勢之誤差,而二階 LGM 卻可將此兩種誤差拆解,亦即

$$\underbrace{\mathcal{E}_{t}}_{\substack{\text{first-order}\\ \text{LGM}}} \xrightarrow{\text{first-order}} \underbrace{\mathcal{E}_{t} + \zeta_{F}}_{\substack{\text{second-ordr}\\ \text{LGM}}}.$$

二階 LGM 之 ε_t 僅為測量誤差,而 ζ_F 則為在特定時點對平均成長趨勢之誤差。第二部份: 二階 LGM 能夠檢定同一時間內各構念各指標因素負荷(factor loading)是否相等, Leite (2007)已研究過二階 LGM 之構念 F 之得分(score)採用 Summated score (essential tau-equivalent)及採用 CFA 自由估計因素負荷再計算 F 之得分,則以後者較佳。最後, 第三部份:二階 LGM 可以檢定不同期各構念因素的不變性 (factorial invariance)(Blozis, 2006; Bollen and Curran, 2006, p. 255; Hancock & Lawrence, 2006; Preacher et al., 2008, p. 63; Sayer & Cumsille, 2001)之探討,此三點為有二階 LGM 所具有優點。

2.3.1 二階 LGM 統計模式

圖 2.4 為二階 LGM 典型範例,將利用該圖之架構當成第四章操作之釋例。

二階 LGM 統計模型以矩陣方式可表示成如下 測量模式:

$$\mathbf{y} = \mathbf{\Lambda}_{\mathbf{y}} \mathbf{F} + \boldsymbol{\varepsilon},$$

$$\mathbf{x} = \mathbf{\Lambda}_{\mathbf{x}} \boldsymbol{\xi} + \boldsymbol{\delta}.$$
(2.34)

路徑模式:

$$\mathbf{F} = \mathbf{\Lambda}_{\mathbf{y}}^* \mathbf{\eta} + \boldsymbol{\zeta}_F,$$

$$\mathbf{\eta} = \boldsymbol{\Gamma}_0 + \boldsymbol{\Gamma}_{\boldsymbol{\xi}} \mathbf{\xi} + \boldsymbol{\zeta}_{\boldsymbol{\eta}}.$$

(2.35)

其中

為模型可鑑定(identification)起見,經常將每個構念其中一個因素負荷設為1((Blozis, 2006; Hancock & Lawrence, 2006; Sayer & Cumsille, 2001; Chan, 1998)。 Λ_{y}^{*} 矩陣數為第一階構念 F_{t} 對第二階構念 η 之迴歸係數,該矩陣為已知時間函可用以表示成長趨勢為一次式線性或二次式成長趨勢,如以一次式線性成長趨勢,即

$$\mathbf{A}_{\mathbf{y}}^{*} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ T_{1} - 1 & T_{2} - 1 & T_{3} - 1 & T_{4} - 1 \end{bmatrix}' = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{bmatrix}'$$

而 Γ₀ 向量表示截距及斜率兩個成長因素構念之截距,即

$$\boldsymbol{\Gamma}_0 = \begin{bmatrix} \gamma_{00} & \gamma_{01} \end{bmatrix}'.$$

 Γ_{ξ} 向量表示截距及斜率兩個成長因素構念對預測變數之迴歸係數,即

$$\boldsymbol{\Gamma}_{\boldsymbol{\xi}} = \begin{bmatrix} \boldsymbol{\gamma}_{01} & \boldsymbol{\gamma}_{11} \end{bmatrix}'.$$

ε和 δ兩個測量誤差隨機向量為相互獨立且服從平均數為0向量而共變異數矩陣 Θ_{s} 及 Θ_{s} 之多變量常態分配,即

$$\boldsymbol{\varepsilon} \sim MVN(\boldsymbol{\theta}, \boldsymbol{\Theta}_{\boldsymbol{\varepsilon}}), \qquad (2.36)$$

$$\boldsymbol{\delta} \sim MVN(\boldsymbol{\theta}, \boldsymbol{\Theta}_{\boldsymbol{\delta}}). \tag{2.37}$$

 $\Theta_{\delta} = Diag[\sigma_{\delta_1}^2 \ \sigma_{\delta_2}^2 \ \sigma_{\delta_3}^2]$;而就第一階之測量誤差僅有相同問項(items)不同時點才有共變存在(以雙箭頭直線相連接)、不同問項相同時點為不相關、不同問項不相同時點亦不相關(see, e.g., Blozis, 2006; Bollen & Curran, 2006, p. 249; Preacher et al., 2008, p. 63; Sayer & Cumsille, 2001),因此, Θ_{δ} 可表示爲式(2.38)。
			T	ime 1		T	ime 2		Tir	ne 3	_	,	Time	4	
			<u>j = 1</u>	j=2	j = 3	j=1	<u>j = 2</u>	$\underline{j=3}$	j=1 j	i=2 j	$=3$ \underline{j}	<u>i = 1</u>	<u>j</u> = 2	j = 3	
		$\boldsymbol{\Theta}_{\varepsilon} = C \boldsymbol{\alpha}$	ον[ε ₁₁	\mathcal{E}_{21}	\mathcal{E}_{31}	\mathcal{E}_{12}	\mathcal{E}_{22}	ε_{32}	<i>E</i> ₁₃	<i>E</i> ₂₃	<i>E</i> 33	ε_{14}	<i>E</i> ₂₄	$arepsilon_{34}]'$	
Time 1	<u>j = 1</u>	\mathcal{E}_{11}	$\sigma_{\epsilon_{11}}^2$]
	<u>j = 2</u>	\mathcal{E}_{21}	0	$\sigma^2_{arepsilon_{21}}$											
	<u>j = 3</u>	\mathcal{E}_{31}	0	0	$\sigma^2_{arepsilon_{31}}$										
2	<u>j = 1</u>	\mathcal{E}_{12}	$\sigma_{_{\mathcal{E}_{12}\mathcal{E}_{11}}}$	0	0	$\sigma^2_{arepsilon_{12}}$									
ime	<u>j = 2</u>	\mathcal{E}_{22}	0	$\sigma_{\scriptscriptstyle{\mathcal{E}_{22}\mathcal{E}_{21}}}$	0	0	$\sigma^2_{arepsilon_{22}}$								
H	<u>j = 3</u>	\mathcal{E}_{32}	0	0	$\sigma_{arepsilon_{32}arepsilon_{31}}$	0	0	$\sigma^2_{arepsilon_{32}}$							
33	<u>j = 1</u>	<i>E</i> ₁₃	$\sigma_{_{\mathcal{E}_{13}\mathcal{E}_{11}}}$	0	0	$\sigma_{\epsilon_{13}\epsilon_{12}}$	0	0	$\sigma^2_{arepsilon_{13}}$						(2.38)
ime	<u>j = 2</u>	\mathcal{E}_{23}	0	$\sigma_{_{\mathcal{E}_{23}\mathcal{E}_{21}}}$	0	0	$\sigma_{_{arepsilon_{23}arepsilon_{22}}}$	0	0	$\sigma^2_{arepsilon_{23}}$					
Ĥ	$\underline{j=3}$	\mathcal{E}_{33}	0	0	$\sigma_{_{\mathcal{E}_{33}\mathcal{E}_{31}}}$	0	0	$\sigma_{_{\mathcal{E}_{33}\mathcal{E}_{32}}}$	0	0	$\sigma^2_{arepsilon_{33}}$				
ime 4	<u>j = 1</u>	\mathcal{E}_{14}	$\sigma_{_{\mathcal{E}_{14}\mathcal{E}_{11}}}$	0	0	$\sigma_{_{\mathcal{E}_{14}\mathcal{E}_{12}}}$	0	0	$\sigma_{_{\mathcal{E}_{14}\mathcal{E}_{13}}}$	0	0	$\sigma_{arepsilon_{14}}^2$			
	$\underline{j=2}$	\mathcal{E}_{24}	0	$\sigma_{_{\mathcal{E}_{24}\mathcal{E}_{21}}}$	0	0	$\sigma_{\epsilon_{24}\epsilon_{22}}$	0	0	$\sigma_{_{arepsilon_{24}arepsilon_{23}}}$	0	0	$\sigma^2_{arepsilon_{24}}$		
L	$\underline{j=3}$	<i>E</i> ₃₄	0	0	$\sigma_{_{\mathcal{E}_{34}\mathcal{E}_{31}}}$	0	0	$\sigma_{_{arepsilon_{34}arepsilon_{32}}}$	0	0	$\sigma_{_{arepsilon_{34}arepsilon_{33}}}$	0	0	$\sigma^2_{arepsilon_{34}}$	
		:				·			I			1.00			

爲易於閱讀起見,將同一問項不同期集中在一起,即 $\varepsilon_1 = [\varepsilon_{11} \ \varepsilon_{12} \ \varepsilon_{13} \ \varepsilon_{14}]',$ $\varepsilon_2 = [\varepsilon_{21} \ \varepsilon_{22} \ \varepsilon_{23} \ \varepsilon_{24}]', \ \varepsilon_3 = [\varepsilon_{31} \ \varepsilon_{32} \ \varepsilon_{33} \ \varepsilon_{34}]',$ 則式(2.38)可重新改寫爲式(2.39)。

			問項1		問項2 / 5			問項3							
			<u>t=1</u>	<u>t=2</u>	<u>t=3</u>	<u>t=4</u>	<u>t=1</u>	<u>t=2</u>	<u>t=3</u>	<u>t=4</u>	<u>t=1</u>	<u>t=2</u>	<u>t=3</u>	<u>t=4</u>	
	Θ_{ε}	=	\mathcal{E}_{11}	\mathcal{E}_{12}	\mathcal{E}_{13}	\mathcal{E}_{14}	<i>E</i> ₂₁	ε_{22}	<i>E</i> ₂₃	\mathcal{E}_{24}	\mathcal{E}_{31}	\mathcal{E}_{32}	<i>E</i> ₃₃	<i>E</i> ₃₄	
	<u>t=1</u>	\mathcal{E}_{11}	$\sigma_{\epsilon_{11}}^2$												
頁 1	<u>t=2</u>	\mathcal{E}_{12}	$\sigma_{_{\mathcal{E}_{12}\mathcal{E}_{11}}}$	$\sigma^2_{arepsilon_{12}}$											
E	<u>t=3</u>	\mathcal{E}_{13}	$\sigma_{_{arepsilon_{13}arepsilon_{11}}}$	$\sigma_{_{arepsilon_{13}arepsilon_{12}}}$	$\sigma^2_{arepsilon_{13}}$										
	<u>t=4</u>	\mathcal{E}_{14}	$\sigma_{_{\mathcal{E}_{14}\mathcal{E}_{11}}}$	$\sigma_{_{arepsilon_{14}arepsilon_{12}}}$	$\sigma_{_{arepsilon_{14}arepsilon_{13}}}$	$\sigma_{arepsilon_{14}}^2$									
	<u>t=1</u>	\mathcal{E}_{21}	0	0	0	0	$\sigma^2_{arepsilon_{21}}$								
2	<u>t=2</u>	\mathcal{E}_{22}	0	0	0	0	$\sigma_{_{\mathcal{E}_{22}\mathcal{E}_{21}}}$	$\sigma^2_{arepsilon_{22}}$							(2.39)
間項	<u>t=3</u>	\mathcal{E}_{23}	0	0	0	0	$\sigma_{_{arepsilon_{23}arepsilon_{21}}}$	$\sigma_{_{arepsilon_{23}arepsilon_{22}}}$	$\sigma^2_{arepsilon_{23}}$						
	<u>t=4</u>	\mathcal{E}_{24}	0	0	0	0	$\sigma_{_{\mathcal{E}_{24}\mathcal{E}_{21}}}$	$\sigma_{_{\mathcal{E}_{24}\mathcal{E}_{22}}}$	$\sigma_{_{arepsilon_{24}arepsilon_{23}}}$	$\sigma^2_{arepsilon_{24}}$					
	<u>t=1</u>	\mathcal{E}_{31}	0	0	0	0	0	0	0	0	$\sigma^2_{arepsilon_{31}}$				
問項3	t=2	\mathcal{E}_{32}	0	0	0	0	0	0	0	0	$\sigma_{arepsilon_{32}arepsilon_3}$	$\sigma_{arepsilon_{32}}^2$			
	<u>t=3</u>	\mathcal{E}_{33}	0	0	0	0	0	0	0	0	$\sigma_{arepsilon_{33}arepsilon_3}$	$\sigma_{arepsilon_{33}arepsilon_{32}}$	$\sigma_{arepsilon_{33}}^2$		
	<u>t=4</u>	<i>E</i> ₃₄	0	0	0	0	0	0	0	0	$\sigma_{_{arepsilon_{34}arepsilon_{31}}}$	$\sigma_{arepsilon_{34}arepsilon_{32}}$	$\sigma_{_{arepsilon_{34}arepsilon_{3}}}$	$\sigma_{\varepsilon_{34}}^2$	

 Ψ_{ζ_F} 矩陣為問項合成構念之誤差共變異數矩陣, $\Psi_{\zeta_{\eta}}$ 為成長因素構念殘差之共異數矩陣 分別爲:

$$\Psi_{\zeta_{F}} = Cov[\zeta_{F_{1}} \quad \zeta_{F_{2}} \quad \zeta_{F_{3}} \quad \zeta_{F_{4}}]' = \begin{bmatrix} \sigma_{\zeta_{F_{1}}}^{2} & & & \\ \sigma_{\zeta_{F_{1}}\zeta_{F_{2}}} & \sigma_{\zeta_{F_{2}}}^{2} & & \\ \sigma_{\zeta_{F_{1}}\zeta_{F_{3}}} & \sigma_{\zeta_{F_{2}}\zeta_{F_{3}}} & \sigma_{\zeta_{F_{3}}}^{2} & \\ \sigma_{\zeta_{F_{1}}\zeta_{F_{4}}} & \sigma_{\zeta_{F_{2}}\zeta_{F_{4}}} & \sigma_{\zeta_{F_{3}}}\zeta_{F_{4}} & \sigma_{\zeta_{F_{4}}}^{2} \end{bmatrix}, \qquad (2.40)$$

及

$$\Psi_{\zeta_{\eta}} = Cov[\zeta_{\eta_{\alpha}} \quad \zeta_{\eta_{\beta}}]' \\
= \begin{bmatrix} \sigma_{\zeta_{\eta_{\alpha}}}^{2} \\ \sigma_{\zeta_{\eta_{\alpha}}\zeta_{\eta_{\beta}}} & \sigma_{\zeta_{\eta_{\beta}}}^{2} \end{bmatrix}.$$
(2.41)

並且假設各種誤差向量 $\varepsilon,\delta,\zeta_{\eta}$ 及 ζ_{F} 彼此無關。我們可以推得 LGM 之參數化平均數 向量(或蘊涵平均數向量)及參數化共變異數矩陣(或蘊涵共變異數矩陣)分別如下。由式 EI IE 8 (2.34)及式(2.35)可得

$$F = \Lambda_{y}^{*} (\Gamma_{0} + \Gamma_{\xi} \xi + \zeta_{\eta}) + \zeta_{F}$$

= $\Lambda_{y}^{*} \Gamma_{0} + \Lambda_{y}^{*} \Gamma_{\xi} \xi + \Lambda_{y}^{*} \zeta_{\eta} + \zeta_{F}^{2}$
$$y = \Lambda_{y} F + \varepsilon$$

= $\Lambda_{y} (\Lambda_{y}^{*} \Gamma_{0} + \Lambda_{y}^{*} \Gamma_{\xi} \xi + \Lambda_{y}^{*} \zeta_{\eta} + \zeta_{F}) + \varepsilon$
= $\Lambda_{y} \Lambda_{y}^{*} \Gamma_{0} + \Lambda_{y} \Lambda_{y}^{*} \Gamma_{\xi} \xi + \Lambda_{y} \Lambda_{y}^{*} \zeta_{\eta} + \Lambda_{y} \zeta_{F} + \varepsilon$
$$x = \Lambda_{x} \xi + \delta.$$

因此,y及x平均數向量為:

$$\mu_{\mathbf{y}} = E(\mathbf{y}) = \mathbf{\Lambda}_{\mathbf{y}} \mathbf{\Lambda}_{\mathbf{y}}^* \mathbf{\Gamma}_0 + \mathbf{\Lambda}_{\mathbf{y}} \mathbf{\Lambda}_{\mathbf{y}}^* \mathbf{\Gamma}_{\boldsymbol{\xi}} \mu_{\boldsymbol{\xi}},$$
$$\mu_{\mathbf{x}} = E(\mathbf{x}) = \mathbf{\Lambda}_{\mathbf{x}} \mu_{\boldsymbol{\xi}}.$$

故二階LGM蘊涵平均數向量為:

$$\boldsymbol{\mu}(\boldsymbol{\theta}) = \begin{bmatrix} \boldsymbol{\mu}_{y} \\ \boldsymbol{\mu}_{x} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\Lambda}_{y} \boldsymbol{\Lambda}_{y}^{*} \boldsymbol{\Gamma}_{0} + \boldsymbol{\Lambda}_{y} \boldsymbol{\Lambda}_{y}^{*} \boldsymbol{\Gamma}_{\xi} \boldsymbol{\mu}_{\xi} \\ \boldsymbol{\Lambda}_{x} \boldsymbol{\mu}_{\xi} \end{bmatrix}, \qquad (2.42)$$

及

$$\begin{split} \boldsymbol{\Sigma}_{yy} &= Cov(\mathbf{y}) = \boldsymbol{\Lambda}_{y} \boldsymbol{\Lambda}_{y}^{*} \boldsymbol{\Gamma}_{\xi} \boldsymbol{\Phi}_{\xi} \boldsymbol{\Gamma}_{\xi}' \boldsymbol{\Lambda}_{y}'' \boldsymbol{\Lambda}_{y}' + \boldsymbol{\Lambda}_{y} \boldsymbol{\Lambda}_{y}^{*} \boldsymbol{\Psi}_{\zeta_{\eta}} \boldsymbol{\Lambda}_{y}'' \boldsymbol{\Lambda}_{y}' + \boldsymbol{\Lambda}_{y} \boldsymbol{\Psi}_{\zeta_{F}} \boldsymbol{\Lambda}_{y}' + \boldsymbol{\Theta}_{s} \\ &= \boldsymbol{\Lambda}_{y} (\boldsymbol{\Lambda}_{y}^{*} \boldsymbol{\Gamma}_{\xi} \boldsymbol{\Phi}_{\xi} \boldsymbol{\Gamma}_{\xi}' \boldsymbol{\Lambda}_{y}^{*\prime} + \boldsymbol{\Lambda}_{y}^{*} \boldsymbol{\Psi}_{\zeta_{\eta}} \boldsymbol{\Lambda}_{y}'' + \boldsymbol{\Psi}_{\zeta_{F}}) \boldsymbol{\Lambda}_{y}' + \boldsymbol{\Theta}_{s} , \\ \boldsymbol{\Sigma}_{xx} &= Cov(\mathbf{x}) = \boldsymbol{\Lambda}_{x} \boldsymbol{\Phi}_{\xi} \boldsymbol{\Lambda}_{x}' + \boldsymbol{\Theta}_{\delta} \\ \boldsymbol{\Sigma}_{yx} &= Cov(\mathbf{y}, \mathbf{x}) = \boldsymbol{\Lambda}_{y} \boldsymbol{\Lambda}_{y}^{*} \boldsymbol{\Gamma}_{\xi} \boldsymbol{\Phi}_{\xi} \boldsymbol{\Lambda}_{x}', \\ \boldsymbol{\Sigma}_{xy} &= \boldsymbol{\Lambda}_{x} \boldsymbol{\Phi}_{\xi}' \boldsymbol{\Gamma}_{\xi}' \boldsymbol{\Lambda}_{y}^{*\prime} \boldsymbol{\Lambda}_{y}' . \end{split}$$

因此,可得二階LGM蘊涵共變異數矩陣為:

$$\Sigma(\boldsymbol{\theta}) = \begin{bmatrix} \Sigma_{yy} & \Sigma_{yx} \\ \Sigma_{xy} & \Sigma_{xx} \end{bmatrix} = \begin{bmatrix} \Lambda_{y} (\Lambda_{y}^{*} \Gamma_{\xi} \Phi_{\xi} \Gamma_{\xi}' \Lambda_{y}^{*'} + \Lambda_{y}^{*} \Psi_{\zeta_{\eta}} \Lambda_{y}^{*'} + \Psi_{\zeta_{F}}) \Lambda_{y}' + \Theta_{\varepsilon} & \Lambda_{y} \Lambda_{y}^{*} \Gamma_{\xi} \Phi_{\xi} \Lambda_{x}' \\ \Lambda_{x} \Phi_{\xi}' \Gamma_{\xi}' \Lambda_{y}^{*'} \Lambda_{y}' & \Lambda_{x} \Phi_{\xi} \Lambda_{x}' + \Theta_{\delta} \end{bmatrix}.$$
(2.43)

式(2.42)及式(2.43)將供第四章 ECM 鑑定之實例操作示範時,模擬多變量常態分配資料時使用。

2.3.2 因素的不變性

因素不變性(factorial invariance)可分成三種(Blozis, 2006; Sayer and Cumsille, 2002),兩在 LGM 可分別定義如下:

(1) 弱因素不變性

弱因素不變性(weak factorial invariance 或稱 configural invariance),其定義為各期因素負荷矩陣相同,即 $\Lambda_{y,t=1} = \Lambda_{y,t=2} = \Lambda_{y,t=4}$,換言之,因素負荷矩陣對應元素相同,即相同問項在不同期之因素負荷均需相同。

(2) 強因素不變性

強因素不變性(strong factorial invariance),其定義為除了滿足弱因素不變性之外(各期因素負荷矩陣相同),另外各期問項的平均數向量亦需相同。然而 Sayer and Cumsille (2002)指出由於 LGM 中是各期問項得分會隨著時間成長,故必不相等,亦即不可能有強因素不變性存在。

(3)嚴格因素不變性

嚴格因素不變性(strict factorial invariance)除了滿足強因素不變性之外,測量誤差的變異了數矩陣各期均相等。由於 LGM 中強因素不變性已不存在,即使測量誤差的變異了數矩陣各期均相等也不滿足嚴格因素不變性。

換言之,在LGM僅需檢定是否具有弱因素不變性即可。

2.4 參數估計方法

LGM 採用 HLM 或 SEM 方法時,就一階 LGM 數學式是相同,然而各方法參數估 計之演算法並不一樣,因而參數估計值可能會有些許差異,而就 SAS/STAT Version 9.2 而言,在 HLM (Proc Mixed)係採 ML(maximum likelihood)及 REML(restricted/residual ML),而 SEM (Proc CALIS)係採 ML、ADF(Brown, 1982, 1984)、 WLS(或 ADF)、GLS 等等(SAS PROC CALIS V9.2, p859)。本研究僅採 ML,因而分別就 HLM 及 SEM 以 ML(REML)說明如下:

2.4.1 SEM 參數估計方法

SEM 利用 ML 估計方法之基本假設為測量變數服從多變量常態分配,

$$\ln L(\boldsymbol{\theta}) = -\left(\frac{N}{2}\right) \left\{ \ln |\boldsymbol{\Sigma}(\boldsymbol{\theta})| + \operatorname{tr}[\boldsymbol{S}^* \boldsymbol{\Sigma}^{-1}(\boldsymbol{\theta})] + [\boldsymbol{\overline{y}} - \boldsymbol{\mu}(\boldsymbol{\theta})]' \boldsymbol{\Sigma}^{-1}(\boldsymbol{\theta}) [\boldsymbol{\overline{y}} - \boldsymbol{\mu}(\boldsymbol{\theta})] \right\} + \boldsymbol{\ddot{\mathbb{B}}} \boldsymbol{\underline{\mathbb{B}}}_1 \qquad (2.44)$$

而 Jöreskog (1967) 提出差距函數(discrepancy function)F_{ML}

$$F_{M}(\boldsymbol{\theta}) = \ln |\boldsymbol{\Sigma}(\boldsymbol{\theta})| - \ln |\boldsymbol{S}| + tr[(\boldsymbol{S}\boldsymbol{\Sigma}^{-1}(\boldsymbol{\theta})] + [\overline{\boldsymbol{y}} - \boldsymbol{\mu}(\boldsymbol{\theta})]'\boldsymbol{\Sigma}^{-1}(\boldsymbol{\theta})[\overline{\boldsymbol{y}} - \boldsymbol{\mu}(\boldsymbol{\theta})] + \boldsymbol{\ddot{\mathbb{B}}}_{2} \qquad (2.45)$$

式中,N為樣本數; $\Sigma(\theta)$ 為蘊涵共變異數矩陣及 $\mu(\theta)$ 為蘊涵平均數向量,兩者係由模型 待估參數所形成;S樣本共變異數矩陣, $S^* = \{(N-1)/N\}S; \bar{y}$ 為樣本平均數向量;又當 量測資料均已標準化則 F_{ML} 最後一項 $[\bar{y} - \mu(\theta)]'\Sigma^{-1}(\theta)[\bar{y} - \mu(\theta)]$ 為 θ 。

Bollen (1989, p135) 亦有說明 $\ln L(\theta)$ 及 $F_{M}(\theta)$ 之關係式(未包含平均數向量)為

$$\ln L(\boldsymbol{\theta}) = -\left(\frac{N-1}{2}\right) \underbrace{\left\{\ln | \boldsymbol{\Sigma}(\boldsymbol{\theta})| + tr[\boldsymbol{S}\boldsymbol{\Sigma}^{-1}(\boldsymbol{\theta})]\right\}}_{F_{ML}, \mathscr{R}^{\text{BAC}} \to \mathfrak{S}^{\text{BAC}}} + \mathring{\mathbb{R}} \underbrace{\mathbb{B}}_{3}$$
(2.46)

當獲得樣本資料時,則 $\ln |S|$ 為已知值,則 $\ln L(\theta)$ 與 $F_{_{ML}}(\theta)$ 具有式(2.46)關係式,亦即若存在 $\hat{\theta}$ 使得 $\ln L(\theta)$ 最大化,相當於使得 $F_{_{ML}}(\theta)$ 達到最小。而 $F_{_{ML}}$ 亦廣為 SEM 套裝軟體所採用,如 SAS PROC CALIS、Lisrel、Mplus 等。又由式(2.46)可得到下列關係式(Iacobucci,

2010)

$$-2\ln L(\mathbf{\theta}) = (N-1)F_{ML} \sim \chi_{df}^{2}$$
(2.47)

2.4.2 HLM 參數估計方法

SAS PROC MIXED 處理 HLM 參數估計方法,分別有最大概似函數(ML)及限制最 大概似函數或是殘差最大概似函數(restricted maximum likelihood/residual maximum likelihood, REML),分別如下式

ML : ln(**G**, **R** | **y**, **X**, **W**) =
$$-\frac{1}{2}\log |\mathbf{V}| - \frac{1}{2}\mathbf{r'V}^{-1}\mathbf{r} - \frac{N}{2}\log 2\pi$$
 (2.48)

REML:
$$\ln_{R}(\mathbf{G}, \mathbf{R} | \mathbf{y}, \mathbf{X}, \mathbf{W}) = -\frac{1}{2} \log |\mathbf{V}| - \frac{1}{2} \mathbf{r}' \mathbf{V}^{-1} \mathbf{r} - \frac{1}{2} \log |(\mathbf{X}\mathbf{W})' \mathbf{V}^{-1} \mathbf{X}\mathbf{W}| - \frac{N - Q}{2} \log 2\pi \quad (2.49)$$

式中, $\mathbf{r} = \mathbf{y} - \mathbf{XW}((\mathbf{XW})'\mathbf{V}^{-1}(\mathbf{XW}))^{-}(\mathbf{XW})'\mathbf{V}^{-1}\mathbf{y}$ 為殘差向量; N 為樣本數; Q = (M + 1)(K + 1)為 γ 固定效果待估參數個數; G 為一階 LGM 第一層重覆測量誤差所形成之誤差共變異 數矩陣,即式(2.17); R 為第一階 LGM 成長因素誤差所形成之誤差共變異數矩陣,即式 (2.18)。

而V 為獨立變數y 向量之條件共變異數矩陣,即式(2.16): V = ZGZ'+R。X 為第一層預 測變了數所形成之設計矩陣,而W 為第二層預測變了數所形成之設計矩陣。

式(2.48)與(2.49)最大差異在於 REML 多了 " $-\frac{1}{2}\log|(XW)'V^{-1}XW|$ "該項,也即估計固定 效果Q參數會使用Q個自由度,因而在估計隨機效果參數所剩自由度為(N-Q),所估計 出隨機效果參數才會不偏(unbias)。反之,若利用式(2.48)所得參數估計值會有偏差(bias)。

2.4.3 估計方法比較

利用 SEM 及 HLM 兩種不同概似法最大差異,在於 SEM 是以樣本變異數矩陣為基礎的概似函數極大化下,找出 $\hat{\Sigma}(\theta)$ 及 $\hat{\mu}(\theta)$ (Bollen, 1989, Ch.7; Singer & Willett, p118);而 HLM 是以殘差矩陣為基礎的概似函數之極大化下,估計出 $\hat{G}(\theta)$ 及 $\hat{R}(\theta)$,再利用 GLS 求 出 固 定 效 果 參 數 $\tilde{\beta} = XW((XW)'\hat{V}^{-1}(XW))^{-}(XW)'\hat{V}$ 及 隨 機 效 果 參 數 $\hat{u} = \hat{G}Z'\hat{V}^{-1}(y - XW\tilde{\beta})$ (Little et al., 2006, p742~750; Singer & Willett, p118);此兩種所表 示除了概似不同之外,其演算過程亦不同,但所得固定效果參數值相差不大(Curran, 2002)。

2.5 模型的評估與選擇

利用 LGM 模式配適資料所得模型配適度之指標,就 SEM 及 HLM 兩種方式所提供

指標說明如下。

2.5.1 SEM 方法評估適合度指標

SEM 方法用以評估理論模型與資料之配適度之指標,可區分為推論式指標(inferential fit index)及描述性指標(descriptive fit indices) (Fan et al., 2007, p146),其中描述性指標各種套裝軟體(SAS, AMOS, LISREL 等等)均有提供多種不同指標供使用者使用,例如常被使用 NNFI、CFI、RMSEA、SRMR (Iacobucci, 2010; Preacher et al., 2008, p18~p19)。

2.5.1.1 SEM 推論式指標

在 SEM 欲檢定理論模型與資料之配適度其虛無假設(null hypothesis)與對立假設 (alternative hypothesis)分別為(Bollen and Curran, 2006, p44):

$$H_{0}: \begin{cases} \Sigma = \Sigma(\theta), \\ \text{and} \quad \text{vs } H_{1}: \\ \begin{cases} \text{or/and} \\ \mu \neq \mu(\theta). \end{cases}$$
(2.50)
$$\alpha \neq \mu(\theta). \end{cases}$$
$$\boxed{\text{cases of } A = 1 \\ \text{cases of } A = 1 \\ T_{ML} = (N-1)F_{ML} \sim \chi_{df}^{2} \end{cases}$$
(2.51)

式中F_{ML}即為式(2.45)差距函數,N為樣本數,df自由度為可觀測變所形成平均數向量之 個數及共變異數矩陣個數之上三角矩陣(或下三角矩陣)元素個數扣除模型待估自由參數 之個數。

2.5.1.2 SEM 敘述性式指標

實證上由模型與資料之配適度之卡方檢定虛無假設不易被接受。因此,一般採用其他指標,如RMSEA、SRMR、NNFI、CFI分別說明於下:

1. RMSEA

RMSEA(root mean square error of approximate) (Browne & Cudeck, 1993; Steiger & Lind, 1980) :

RMSEA =
$$\sqrt{\frac{\max\{(\hat{F}_{ML} - \frac{df}{N-1}), 0\}}{df}}$$
 (2.52)

該値愈小愈好,一般以小於 0.05 為判斷準則(Bollen & Long, 1993, p144),

2. SRMR

SRMR (standardized root mean square residual) (Joreskog & Sorbom, 2001),以PROC CALIS procedure (V9.22 p1232)之表現式:

SRMR =
$$\sqrt{\frac{2}{p(p+1+2\delta)}} \left(\sum_{i=1}^{p} \sum_{j=1}^{i} \frac{(s_{ij} - \hat{\sigma}_{ij})^{2}}{s_{ii}s_{jj}} + \delta \sum_{i=1}^{p} \frac{(\overline{x}_{i} - \hat{\mu}_{i})^{2}}{s_{ij}} \right)$$
 (2.53)

式中 p 代表可量測變數的個數, \bar{x}_i 為樣本平均數, s_{ij} 為樣本共變異數, s_{ii} 及 s_{jj} 樣本 變異數, $\hat{\mu}_i$ 為平均數估計值, $\hat{\sigma}_{ij}$ 共變異數估計值, δ 表示模型中有無包含平均數。該值 愈小表示模型配適資料愈好, 一般以小於 0.09 為判斷準則(Hu & Bentler, 1999)。

3. CFI

CFI (comparative fit index) (Bentler, 1995) 為一種增量指標 (Incremental Index) 該式以 PROC CALIS procedure (V9.22, p1236) 之表現式為:

$$CFI = 1 - \frac{Max[(N-g)f_{model} - df_{model}), 0]}{Max[(N-g)f_{null} - df_{null}), 0]}.$$
 (2.54)

其中 f_{model} 為我們有趣研究模型差距函數的最小值; g 表示研究群體之個數,若單一 群體則 g=1; N 代表樣本數; df_{model} 為我們有趣研究模型的自由度; f_{null} 表示模型之變數 均為獨立(含各構念間均沒有路徑關係)之差距函數的最小值,其所對應自由度為 df_{null}; 該指標之值介於 0 到 1 之間,愈大愈好,一般以不小於 0.95 表示模型配適度很好(Hu & Bentler, 1999)。

4.NNFI

NNFI (Bentler-Bonett nonnormal coefficient)(Bentler & Bonett, 1980; Tucker & Lewis, 1973),為一種增量指標 (Incremental Index) 該式以PROC CALIS procedure (V9.22, p1236)之表現式為:

NNFI =
$$\frac{f_{\text{null}} / df_{\text{null}} - f_{\text{model}} / df_{\text{model}}}{f_{\text{null}} / df_{\text{null}} - 1 / (N - g)}$$
 (2.55)

2.5.2 HLM 方法評估適合度指標

在 SAS PROC MIXED (HLM)並沒有提供推論式指標而僅描述性指標如 AIC、BIC、-2LLR、SBC(SAS/STAT V9.22, p.4530),本研究僅取-2LL、AIC 及 BIC 為指標,分別說 明如下:PROC MIXED 計算-2LL = $-2 \times \log$ likelihood function、 AIC=-2LL+2d (Akaike, 1974)及 BIC= $-2LL+d \log N$ (Schwarz,1978),其中 LL 為對數槪似函數最大值,而 d 為模 型之參數個數, N 為概似函數在估計過程中有效之觀測值個數。

2.5.3 SEM 及 HLM 方法評估適合度指標比較

在 SEM 及 HLM 評估模型合適性之指標最大差異在於 SEM 方法有提供推論式之卡 方檢定指標,另外 SEM 亦提供多種描述性指標 AIC、SBC(BIC)、NNFI、CFI、RMSEA 及 SRMR 等等。

2.6 ECM 之分類及文獻常用種類

本研究之重點為提供 LGM 之 Level-1ECM 之鑑定準則(Guideline)程序,首先我們檢 視 PROC MIXED 使用手冊(SAS PROC MIXED, V9.22, p4583~4584)提供 ECM 分別有空 間共變結構(spatial covariance structure) 及期間共變結構(occasion covariance structure) (附表 A-2.2 及附表 A-2.3),本研究將焦點放在等距期間(equal space)測量誤差之共變結 構為主,即為等期間 ECM,後文所提 Level-1 ECM 均為等期間 ECM。本節將依據 PROC MIXED 所提供 ECM 做一個有系統分類及回顧文獻在研究 LGM 時常用 ECM。最後, 引出本研究採用 ECM。

2.6.1 常用 ECM 種類及其分類

如附表 A-2.1 之 SAS PROC MIXED 提供 ECM 共有 30 幾種以上供研究者使用,但 回顧文獻研究 LGM 使用 ECM 彙整如表 2.2. (e.g., Beck & Katz, 1995; Blozis et al., 2008; Dawson, Gennings, & Carter 1997; Eyduran & Akbaş, 2010; Ferron et al., 2002; Goldstein, 1994; Heitjan & Sharma, 1997; Keselman et al., 1998; Kowalchuk & Keselman, 2001; Kwok et al., 2007; Littell, Henry, & Ammerman ,1998; Littell, Rendergast, & Natarajan, 2000; Mansour, Nordheim, & Rutledge, 1985; Murphy & Pituch, 2009; Orhan, Eyduran, & Akbaş, 2010; Rovine & Molennaar,1998, 2000; Reynolds et al., 2007; Singer & Willett, 2003, Chap. 7; Velicer & Fava, 2003; Verbeke & Molenberghs, 1997; West & Hepworth, 1991; Willett & Sayer, 1994; Wolfinger, 1993, 1996; Wulff & Robinson, 2009)。事實上,可以採用 ECM 結 構是 否穩態(stationary)以及前後期之期差間(lag)是否具自我相關函數(autocorrelation function)加以分類,如表 2.3 所示。然而,以理論為基礎探討 ECM 卻很少加以說明。另外一個有趣的事,常出現的 ECM 僅 PROC MIXED 有提供者,而 AR(2),MA(1)及 MA(2) 則無出現,這也顯示 ECM 被使用與否與套裝軟體有無提供者息息相關。

表 2.2 文獻常用等期間 ECM 彙整表

ECM	套裝軟體	參考文獻
TOEP(1), AR(1), ARMA(1,1), TOEP(2), UN	PROC MIXED (simulation)	Kwok et al. (2007)
AR(1)	PROC MIXED (simulation)	Heitjan and Sharma (1997)
CS, HF, AR(1), UN, ARH(1), CSH, HF	PROC MIXED (simulation)	Keselman et al., (1998)
AR(1), UN, ARH(1), CSH, HF, RC	PROC MIXED (simulation)	Kowalchuk and Keselman (2001)
CS, AR(1)	PROC MIXED (empirical study)	Littell, Henry, and Ammerman (1998)
CS, AR(1), UN, CSH, ARH, ANTE(1), ARH(1),TOEPH	PROC MIXED (empirical study)	Wolfinger (1996)
ARMA(1,1), MA(1), AR(1), VC,UN	Fortran, S-Plus (simulation)	Murphy and Pituch (2009)
AR(1), UN	PROC MIXED (simulation)	Ferron, Dailey, and Yi .(2002)
TOEP(1), CS, AR(1), TOEP, UN	PROC MIXED, BMDP	Littell, Pendergast, and Nataraja (2000)
AR(1), UN	(empirical study) PROC MIXED, PROC IML. Lisrel (simulation)	Rovine and Molenaar (2000)
TOEP(1), CS, AR(1), TOEP, UN	PROC MIXED (simulation)	Dawson, Gennings, and Carter (1997)
TOEP(1),CS,UN(2), AR(1),TOEP, UN, TOEPH(1), UN(2),CSH, ARH(1), TOEPH	PROC MIXED (empirical study)	Verbeke and Molenberghs (1997)
TOEP(1), VC,CS,AR(1),TOEP, TOEP(2), UN, UN(2)	PROC MIXED (simulation)	Wolfinger (1993)
CS,AR(1), VC, TOEP, CSH, ARH(1), UN(1), UN	PROC MIXED (simulation)	AL-Marshadi (2008)
AR(1)	SHAZAM, RATS (simulation)	Beck and Katz (1995)

表 2.2 (續)

ECM	套裝軟體	參考文獻
AR(1), TOEP(2), UN	LISREL 8.8	Blozis et al.(2008)
CS, AR(1), TOEP, CSH, UN, HF , ARH(1), ANTE(1), TOEPH	PROC MIXED (empirical study)	Eyduran and Akbaş (2010)
AR(1), AR(2), UN	未說明	Goldstein (1994)
AR(1), CS, TOEP, VC, UN, ARH(1), CSH, TOEPH	PROC MIXED (tutorial in SAS user guide)	Kincaid (2005)
AR(1)	未說明 (simulation and empirical study)	Mansour, Nordheim, and Rutledge (1985)
AR(1), CS, TOEP, UN	Lisrel and PROC MIXED.LISREL(si mulation)	Rovine and Molenaar (1998)
CS, AR(1), UN	PROC MIXED (empirical study)	Singer (1998)
CS, AR(1), TOEP, CSH, UN, HF , ARH(1), ANTE(1), TOEPH	PROC MIXED (empirical study)	Orhan, Eyduran, and Akbaş (2010)
TOEP(1), UN(2)	Lisrel II (empirical study)	Willett and Sayer (1994)

備註:()表示該文主要爲實證或模擬

2.6.2 ECM 弱穩態定義

按照 Box, Jenkins and Reinsel (1994, p24~26)之時間序列對穩態之定義如下:

設誤差過程 { ε_t }, t = 1, ..., T 滿足下列三條件,則稱該過程爲弱穩態(weakly stationary)過 程。

- (1).序列各期平均數為常數, 即 $E(\varepsilon_t) = \mu_{\varepsilon}$, 一般均設為 0。
- (2).序列各期之變異數為常數,即 $Var(\varepsilon_t) = \sigma_{\varepsilon}^2$;亦即變異數為齊質(homogenious)或與時間無關(time invariant)。
- (3).序列各期差間之共變異數存在自我共變數,僅與期差(k)有關而與時間(t)無關,即

 $Cov(\varepsilon_t, \varepsilon_{t-k}) = \sigma_k \circ$

傳統時間序列之目的是要補捉 $Cov(\varepsilon_{t}, \varepsilon_{t-k}) = \sigma_{k}$ 之結構,如 ARMA(p,q)結構。又當 $Cov(\varepsilon_{t}, \varepsilon_{t-k}) = 0$ 則上述穩態定義則變成 white noise。

2.6.3 LGM 之自我相關共變數及自我相關係數定義

1.在 LGM 之樣本期差 k 期樣本自我共變數可定義如下:

$$\hat{\sigma}_{k} = \frac{\sum_{i=1}^{N} \sum_{t=1}^{T} (\hat{\varepsilon}_{it} - \hat{\mu}_{\varepsilon}) (\hat{\varepsilon}_{it-k} - \hat{\mu}_{\varepsilon})}{NT - 1}$$
(2.56)

2.期差 k 期樣本自我相關係數為

$$\hat{\rho}_{k} = \frac{\sum_{i=1}^{N} \sum_{t=1}^{T} (\hat{\varepsilon}_{it} - \hat{\mu}_{\varepsilon}) (\hat{\varepsilon}_{it-k} - \hat{\mu}_{\varepsilon})}{\sqrt{\sum_{i=1}^{N} \sum_{t=1}^{T} (\hat{\varepsilon}_{it} - \hat{\mu}_{\varepsilon})^{2}} \sqrt{\sum_{i=1}^{N} \sum_{t=1}^{T} (\hat{\varepsilon}_{it'} - \hat{\mu}_{\varepsilon})^{2}}},$$
(2.57)

故可得期差 k 之樣本自我共變數與樣本自我相關係數之關係為:

$$\hat{\sigma}_{k} = \hat{\rho}_{k} \hat{\sigma}_{\varepsilon_{t}} \hat{\sigma}_{\varepsilon_{t-k}}$$
(2.58)

3.當 $\{\varepsilon_i\}$ 為穩態時, 期差 k 期樣本自我相關係數為:

$$\hat{\rho}_{k} = \frac{\sum_{i=1}^{N} \sum_{t=1}^{T} (\hat{\varepsilon}_{it} - \hat{\mu}_{\varepsilon}) (\hat{\varepsilon}_{it-k} - \hat{\mu}_{\varepsilon})}{\sum_{i=1}^{N} \sum_{t=1}^{T} (\hat{\varepsilon}_{it'} - \hat{\mu}_{\varepsilon})^{2}}$$
(2.59)

故可得在穩態時,期差 k 之樣本自我共變數與樣本自我相關係數之關係為:

$$\hat{\sigma}_k = \hat{\rho}_k \hat{\sigma}_\varepsilon^2 \tag{2.60}$$

4.受測者彼此間交錯相關係數為

$$\rho_{jj'}(k) = \frac{Cov(y_{jt}, y_{j'(t-k)})}{\sqrt{Var(y_{jt})Var(y_{j'(t-k)})}} = \frac{\sigma_{jj'}(k)}{\sqrt{\sigma_{jj}(0)\sigma_{j'j'}(0)}}$$
(2.61)

因在 LGM 中受測者彼此間為獨立,故交錯相關係數為 $\rho_{jj'}(k)=0$

2.6.4 ECM 依穩態及期差自我相關函數分類

由表 2.2 中文獻常用 ECM,若依穩態與否之分類及各期差間是否有自我相關函數,可分類成如表 2.3。

其中 UN(1)=TOEPH(1)=UNR(1), TOEP(1)=VC (i.i.d).

l(A)表示當條件 A 成立則為 1 否則為 0,例如l(|t-t'| < q)表示當|t-t'| < q條件成立則為 1 否則為 0,又如 $[\rho l(t \neq t') + l(t = t')]$ 當 $(t \neq t')$ 成立則為 ρ 否則為 1。

2.6.5 傳統時間序列與 LGM 之自我相關共變異數差異

傳統時間序列(time series, 簡稱 TS)基本上次對一個反應變數進行重複測量而獲得 一組實現值 (one realization),且受測者或觀察變數(y)少但觀察期(*T*)長;但LGM 是受測 者或觀察變數(y)多但觀察期(*T*)少;為 TS 與LGM 兩者就受測者數目及觀察期長短之差 異。而就資料結構而言,基本假設亦不一樣,如以下圖 2.5 爲例說明。如以下圖有四個 變數($y_{y}^{(\ell)} = [y_{y}^{(1)}, y_{y}^{(2)}, y_{y}^{(3)}, y_{y}^{(4)}]'$),其中上標(ℓ)表示第幾個變數, $\ell = 1, 2, 3, 4$ 說明之。當傳 統 TS 爲時受測者 j = 1,該多變量時間序列(Multivariate TS, 簡稱 MTS),每一個變數在 每一期僅有一個實現值,且各個變數彼此之間各期差(k)具有交錯相關係數 $\rho_{y^{(0)}y^{(\ell)}}(k)$ (cross correlation),及本身各期差(k)自我相關係數 $\rho_{y^{(0)}y^{(\ell)}}(k)$ 可存在且可不一樣。

圖 2.5 自我相關係數及交互相關係數示意圖

但在 LGM 如上圖假設有 6 個受測者而四個受測者反應相同變數 $y_{ij}^{(\ell)} = [y_{ij}^{(1)}, y_{ij}^{(2)}, y_{ij}^{(3)}, y_{ij}^{(4)}]'$ 其中 j=1,2,...,6.,雖每一個受測者在每一期僅有一個實現值,但各個受測者變數彼此之 間各期差(k)不具有交錯相關係數 $\rho_{y_{j}^{(0)}y_{j}^{(0)}}(k) = 0, \forall j \neq j', \forall \ell$,相同受測者不同問項當各同項 獨立時則 $\rho_{y_{j}^{(0)}y_{j}^{(0)}}(k) = 0, \forall k$ 僅相同受測者相同同項在各期差(k)自我相關係數 $\rho_{y_{j}^{(0)}y_{j}^{(0)}}(k)$ 可存在,此為兩者在自我相關係數及交互相關係數差異之處。事實上,若我們將LGM 相關係數限制條件放弱而允許如同MTS,則式(2.16)修改爲式(2.62),變成一個很複雜估 計上之問題。

$$Var(\mathbf{y} | \mathbf{X}, \mathbf{W}, \boldsymbol{\gamma}) = \mathbf{V} = \mathbf{Z}\mathbf{G}\mathbf{Z}' + \mathbf{R}$$

$$= \begin{bmatrix} \mathbf{X}_{1}\mathbf{T}\mathbf{X}_{1}' + \boldsymbol{\Sigma}_{r_{1}} & \boldsymbol{\Sigma}_{\mathbf{y}_{1}\mathbf{y}_{2}} & \dots & \boldsymbol{\Sigma}_{\mathbf{y}_{1}\mathbf{y}_{N}} \\ \boldsymbol{\Sigma}_{\mathbf{y}_{1}\mathbf{y}_{2}} & \mathbf{X}_{2}\mathbf{T}\mathbf{X}_{2}' + \boldsymbol{\Sigma}_{r_{2}} & \dots & \boldsymbol{\Sigma}_{\mathbf{y}_{1}\mathbf{y}_{N}} \\ \vdots & \vdots & \ddots & \vdots \\ \boldsymbol{\Sigma}_{\mathbf{y}_{1}\mathbf{y}_{N}} & \dots & \dots & \mathbf{X}_{N}\mathbf{T}\mathbf{X}_{N}' + \boldsymbol{\Sigma}_{r_{N}} \end{bmatrix}$$

$$(2.62)$$

$$V = \mathbf{Z}\mathbf{G}\mathbf{Z}' + \mathbf{R}$$

Hamaker et al. (2003)研究指出受測者或變數僅有 1 個而觀察期有 50 以上宜採用 TS;而受測者 100 以上而觀察期小於 10 期宜採 LGM。

2.7 ECM 選擇亟待解決議題

由上述諸多 ECM,如何選擇合適 Level-1ECM 呢?變成一個很重要議題,如第一章 所言,若未妥善設定 ECM 會產生成長因數參數型 I 誤差、參數估計之偏誤(bias)或模型 估計收斂問題。然而,如何選擇 ECM 呢?若有理論之基礎則依理論(Hedeker & Mermelstein, 2007);但事實上,心理學理論很少有清楚設定 ECM 理論基礎(Kwok et al., 2007)。因此, 探討 ECM 則需採用探索性(Sivo & Fan,2008)。再者若以探索性尋找 ECM 其評估指標為 何呢? Littell et al. (2006)提供兩種方法,分別為圖示法及 IC(AIC 或 BIC)方法,然而 Kwok et al.(2007)指出發展比 AIC 及 BIC 找到更正確選擇 ECM 的策略是需要的。其次是在探 索 ECM 何者優選被選用呢?此一系列議題均為本研究所欲解決問題。因此,本研究擬提 出一套系統性尋找 ECM 引導方針,以供實證者使用。

2.7.1 level-1ECM 誤設對成長因素估計之影響

許多文獻已指出 ECM 誤設會對成長因素的參數及隨者效果變異數產生估計影響 (e.g.,Ferron, Dailey, & Yi, 2002; Kwok et al., 2007; Murphy & Pituch, 2009)。但以Kwok et al (2007)之文章針對該主題探討最爲細膩,該文採用不包含成長因素構念預測因子之非條 件式一階 LGM(即圖 2.3 不含 w 之 predictor),探討誤設 level-1 ECM 對成長因素構念參 數估計值與標準誤及成長因素構念變異數(亦即成長因素構念誤差變異數)之影響。以 level-1 AR(1)為母體 ECM 進行模擬不同樣本數(N=30, 210)、不同等距期間(T=4,8),兩種 成長趨勢線(一次式、二次式)重複執行 500 次,並誤設 ECM 以較 AR(1)少的參數 TOEP(1) (稱為 under-specification)、較 AR(1)多的參數 ARMA(1,1) (稱為 over-specification)及 UN 進行對 level-2 各參數估計及檢定,並將結果整理成圖 2.6。

由該圖可知當誤設較少參數之 level-1 ECM(TOEP(1))會造成高估隨機效果誤差之變 異數($\sigma_{\eta_s}^2, \sigma_{\eta_s}^2$)、及高估成長因數固定效果參數標準誤(($se(\hat{\gamma}_{00}), se(\hat{\gamma}_{01})$),但對成長因素 固定效果參數估計值($\hat{\gamma}_{00}$, $\hat{\gamma}_{01}$)沒有很大偏誤(bias),導致獲得 $\hat{\gamma}_{00}$ 及 $\hat{\gamma}_{01}$ 有較低統計檢定 力。反之,較多參數之 level-1 ECM (ARMA(1,1))會造成稍為低估隨機效果誤差之變異數 ($\sigma_{\eta_{\alpha}}^{2}$, $\sigma_{\eta_{\beta}}^{2}$)、及稍為低估或相對估計成長因素參數標準誤(($se(\hat{\gamma}_{00}), se(\hat{\gamma}_{01})$),但對成長因 素參數估計值($\hat{\gamma}_{00}, \hat{\gamma}_{01}$)沒有很大偏誤(bias),導致獲得 $\hat{\gamma}_{00}$ 及 $\hat{\gamma}_{01}$ 有較高統計檢定力。但若 level-1 ECM 設定飽和模式 ECM (UN)時,則對成長因素參數標準誤(($se(\hat{\gamma}_{00}), se(\hat{\gamma}_{01})$)造 成低估,致型 I 誤差會膨脹。以上研究告訴我們 level-1 ECM 設定不好,將造成對 level-2 成長因素各種參數估計產生影響。

圖 2.6 level-1ECM 誤設對成長因素估計之影響關係圖 (摘至 Kwok et al., 2007)

2.7.2 ECM 選擇策略

文獻上對於 level-1 ECM 選擇策略文獻有 Keselman et al (1998)以 IC (AIC, BIC)為準則

選定 ECM。Littell et al (2006) 以 IC (AIC, BIC)及觀察 ECM 各期差圖形以鑑定 ECM。其他以參數精簡原則文獻如 Grimm and Widaman (2010), Little et al. (2006, p.148)及 Wolfinger (1996)等等。根據 ECM 結構特徵者篩選 ECM,如 AR(1), TOEP,及 ARMA(1,1) 適用於等期間 (e.g., Little et al., 2006, p.199)。依據參數可解釋性者,如 Browne and du Toit(1991)指出避免產生垃圾參數及估計收斂問題及參數解釋不易。以上文獻基本上篩選 是以敘述性質為主,因而 Kwok et al. (2007)亦指出發展比 AIC 或 BIC 合適指標鑑定 ECM 是必要的,此亦為本文要解決之一部份。

2.8 本研究解決 ECM 之議題

由上述文獻回顧可得到 SEM 方法處理 LGM 有其優勢之處,然而文獻上處理特定型 式 ECM(除了 i.i.d)大部份以 HLM 方法(或因可以自由選定 ECM)。而且如何用 SEM 方法 建立上述表中各類 ECM,文獻上很少被討論。因此,爲能結合兩種方法之優點,將 HLM 提供 ECM 轉換到 SEM 便是一個關鍵步驟是爲本文研究重點之一。又如何從眾多 ECM 有系統分類並且找出選擇 ECM 之順序均有待解決之問題,最後如何評估所選定之 ECM 爲合適便是一個重要議題,綜合上述本文要解決之議題,即爲第一章 1.3 研究問題與目 的所歸納四點:

(1)以 SEM 方法建構 ECM 。

(2) ECM 依穩態性與否分類及檢定

(3)提出 ECM 選擇順序。

(4)提出 SCDT 鑑定 ECM。

上述議題將分別於第三章 ECM 鑑定之研究方法逐一詳細說明。

2.9 ECM 鑑定之基本假設

本研究是僅探討 ECM 鑑定,因此,在模型之一些基本假設為有(1)成長因素模型需 正確設定、假設各時點之間為等距(equal space)、相同受測者(same individual)且彼此獨 立、各時點之觀察數均相同(complete data)、每一個受測者 ECM 均相同結構,資料為大 樣本且服從多變量常態分配。

第三章 ECM 鑑定之研究方法

本章將做為第四章 ECM 實例操作示範之理論及方法依據。因此,包含多變量常態 分配資料模擬、SEM 方法與 HLM 方法資料結構差異、HLM 與 SEM 對 ECM 穩態性檢 定理論與方法、ECM 依限制式強弱決定 ECM 篩選順序、並提出 SCDT 鑑定 ECM 方法 與準則。

3.1 ECM 在 SEM 之設定方法

本單元說明如何將PROC MIXED(HLM 方法)所提供內定 ECM,轉換成 PROC CALIS (SEM 方法)以利鑑定 ECM 之研究。

3.1.1 PROC Mixed 設定 ECM 之指令

在PROC Mixed (HLM)提供 REPEATED statement供使用者設定 LGM Level-1 ECM 藉由 TYPE=option (e.g., Singer, 1998)指令,設定[註A-2.3]之表A-2.1各種ECM名稱即 可,如ECM為AR(1),程式指令即為 TYPE=AR(1),程式語法見附註B[B-2] 之PROC MIXED部份。

3.1.2 PROC CALIS (SEM) 設定 ECM 之指令

PROC CALIS設定ECM方式是採用STD, COV及 PARAMETERS 三個 statements設定ECM,如第二章式(2.27)、式(2.28)、式(2.39)~(2.41)之ECM,其中 STD statement用以設定ECM主對角線之變異數,COV statement用以設定ECM非對角線之共變異數,而PARAMETERS statement用以設定模型以外之參數(不包含在LINEQS, STD及COV內)之參數,用以表示各種ECM共變異數具特定函數之型態。由於PROC CALIS可供使用者自由設定研究者有趣研究之ECM。因而,就ECM設定而言,CALIS較MIXED為彈性,諸如MA(1)、MA(2)或AR(2)在MIXED無法設定,但在CALIS則可處理。因此,只要瞭解各式各樣ECM結構,即可利用STD,COV及PARAMETERS三個statements予以設定。

3.2 模擬多變量常態分配樣本資料方法

SEM 為多變量資料結構,文獻以 SEM 角度提出模擬方法,分別有 Fan et al.(2001) 以因素分析法方法,以及 PROC /IML Version 9.2 (2008) 之 RANDNORMAL function 功能,由於本文所提出 ECM 鑑定輔以模擬資料為釋例。因此,SEM 資料之模擬是必需具

備統計技術之一,茲將此兩種方法說明如下(見圖 3.1):

3.2.1 因素分析方法模擬多變量常態資料

為了產生 LGM 含有不同型式 ECM 之模擬資料,可利用 Fan et al., (2001, 2005)所提 出 SEM 模擬方式或 SAS IML (V9.2, 2008)以上版本有提供直接模擬多變量常態分配樣本 資料之函數。Fan et al.多變量常態分配資料模擬方法,其過程係應用因素分析的技巧, 並取因素的個數等於可觀察變數個數,使得因素分析時沒有特定誤差。

如以圖 2.3 為例說明,首先以 SAS PROC IML 產生式(2.32)蘊涵平均數向量及式(2.33) 蘊涵共變異數矩陣並計算其相關係數矩陣 **R**(θ),此時以該相關係數矩陣進行因素分析。 如每一個可觀察的變數標準化後的得分,可以表示成未知的因素負荷與不可觀的因數 (factor)及不可觀察之特定誤差,即

$$\begin{aligned} z_{y_1} &= \ell_{11} f_1 + \ell_{12} f_2 + \ell_{13} f_3 + \ell_{14} f_4 + \ell_{15} f_5 + \varepsilon_1 \\ z_{y_2} &= \ell_{21} f_1 + \ell_{22} f_2 + \ell_{23} f_3 + \ell_{24} f_4 + \ell_{25} f_5 + \varepsilon_2 \\ z_{y_3} &= \ell_{31} f_1 + \ell_{32} f_2 + \ell_{33} f_3 + \ell_{34} f_4 + \ell_{35} f_5 + \varepsilon_3 \\ z_{y_4} &= \ell_{41} f_1 + \ell_{42} f_2 + \ell_{43} f_3 + \ell_{44} f_4 + \ell_{45} f_5 + \varepsilon_4 \\ z_{x_1} &= \ell_{51} f_1 + \ell_{52} f_2 + \ell_{53} f_3 + \ell_{54} f_4 + \ell_{55} f_5 + \varepsilon_5 \end{aligned}$$
(3.1)

式(3.1)中, ℓ_{ij} 表示第 *i* 個變數在第 *j* 個因素之負荷, f_j 表示第 *j* 個因素, z_{y_i} 表示第 *j* 個 內 生 變 數 y_j 標準化之得分, ε_j 爲 對 應 到 z_{y_i} 第 *j* 個 特 定 誤 差, 且 $Cov(f_j, f_{j'}) = 0, Cov(f_j, \varepsilon_j) = 0$, 又因素的個數等於可觀察變數個數, 故 $\varepsilon_j = 0, \forall j$ 。因此, 式(3.1)可修正爲

$$z_{y_{1}} = \ell_{11}f_{1} + \ell_{12}f_{2} + \ell_{13}f_{3} + \ell_{14}f_{4} + \ell_{15}f_{5}$$

$$z_{y_{2}} = \ell_{21}f_{1} + \ell_{22}f_{2} + \ell_{23}f_{3} + \ell_{24}f_{4} + \ell_{25}f_{5}$$

$$z_{y_{3}} = \ell_{31}f_{1} + \ell_{32}f_{2} + \ell_{33}f_{3} + \ell_{34}f_{4} + \ell_{35}f_{5}$$

$$z_{y_{4}} = \ell_{41}f_{1} + \ell_{42}f_{2} + \ell_{43}f_{3} + \ell_{44}f_{4} + \ell_{45}f_{5}$$

$$z_{x_{1}} = \ell_{51}f_{1} + \ell_{52}f_{2} + \ell_{53}f_{3} + \ell_{54}f_{4} + \ell_{55}f_{5}$$
(3.2)

表成矩陣型式即為

$$\begin{bmatrix} z_{y_1} \\ z_{y_2} \\ z_{y_3} \\ z_{y_4} \\ z_{x_1} \end{bmatrix} = \begin{bmatrix} \ell_{11} & \ell_{12} & \ell_{13} & \ell_{14} & \ell_{15} \\ \ell_{21} & \ell_{22} & \ell_{23} & \ell_{24} & \ell_{25} \\ \ell_{31} & \ell_{32} & \ell_{33} & \ell_{34} & \ell_{35} \\ \ell_{41} & \ell_{42} & \ell_{43} & \ell_{44} & \ell_{45} \\ \ell_{51} & \ell_{52} & \ell_{53} & \ell_{54} & \ell_{55} \end{bmatrix} \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \\ f_5 \end{bmatrix}$$
(3.3)

或者表示爲

$$\mathbf{z} = \mathbf{\Lambda}_{\mathbf{z}} \mathbf{F} \,. \tag{3.4}$$

其中 $\mathbf{z} = [z_{y_1} \ z_{y_2} \ z_{y_3} \ z_{y_4} \ z_{x_1}]'$ 為維度 5×1 可觀察之隨機向量, Λ_z 為維度 5×5 未知的因素 負荷矩陣(matrix of factor loading), $\mathbf{F} = [f_1 \ f_2 \ f_3 \ f_4 \ f_5]'$ 為維度 5×1 之相互獨立不可觀察 的因素向量。其中 Λ_z 可由 \mathbf{z} 之相關係數矩陣藉由因素分析找出,而 \mathbf{F} 為可利用單變量標 準常態分配模擬 f_1, \dots, f_5 之樣本資料。再由式(3.4)可以求得 \mathbf{z} 為具有 $\mathbf{R}(\mathbf{0})$ 之標準化多變 量常態資料,並可透過 $y_j = \mu_{y_j} + z_{y_j}\sigma_{y_j}$ 將標準化資料轉換成非標準化資料。Fan et al.提 出該法將有助於研究者於 SEM 模擬多變量常態分配資料(e.g., Chen & Ding, 2009; Ding & Jane, 2010, working paper(a); Ding & Jane, 2010, working paper(b))。

3.2.2 SAS/ IML 之 RANDNORMAL 模擬多變量常態資料

SAS/IML (Version 9.2, 2008)已有提供一些多變量抽樣之內定函數,例如多變量 Dirichlet分配 (內定函數為RANDDIRICHLET)、多變量二項分配(內定函數為 RANDMULTINOMIAL)、多變量t分配(內定函數為RANDMVT)、多變量常態分配(內定 函數為RANDNORMAL)、及多變量Wishart分配(內定函數為RANDWISHART)五種多變 量分配函數。本研究樣本資料假設為多變量常態分配;因此,資料模擬採RANDNORMAL 之函數,其SAS語法為:

RANDNORMAL (N, Mean, Cov)

其中N代表樣本數大小,Mean 代表母體平均數向量、及Cov母體共變異數矩陣。因此, 先利用PROCIML分別計算出一階LGM(如圖 2.3)之蘊涵平均數向量(式(2.32))及蘊涵共 變異數矩陣(式(2.33))。二階LGM(如圖 2.4)之蘊涵平均數向量(式(2.42))及蘊涵共變異數 矩陣((式(2.43))。

圖 3.1 SEM 多變量常態分配模擬方法

3.3 多變量與單變量資料結構之轉換

SAS 處理重複測量資料(repeated measure)可採用 procedure 有 PROC GLM、PROC CALIS 及 PROC MIXED,而前二者處理多變量模式(multiple variables data set)而後者 PROC MIXED 處理單變量模式(multiple record data set),因此,若資料為多變量型式結構 則需轉成單變量的資料結構型式(Singer, 1998)以供 PROC MIXED 分析。其資料結構型式 如圖 3.2 所示。同時亦可利用單變量結構繪出一些觀察値時序圖,或者殘差圖,以幫助 研究者瞭解資料本身結構。

3.4 HLM 與 SEM 概似函數

在一階LGM分別以PROC CALIS及PROC MIXED估計,本研究均以最大概似方法進行參數估計,如第二章2.4 參數估計方法所述式(2.45)及式(2.48),雖兩者概似函數並不

相同,且估計過程演算方法也不同,但其估計結果相當接近(Rovine & Molenaar, 2000)。

$$F_{M}(\boldsymbol{\theta}) = \ln |\boldsymbol{\Sigma}(\boldsymbol{\theta})| - \ln |\boldsymbol{S}| + tr[(\boldsymbol{S}\boldsymbol{\Sigma}^{-1}(\boldsymbol{\theta})] + [\overline{\boldsymbol{y}} - \boldsymbol{\mu}(\boldsymbol{\theta})]'\boldsymbol{\Sigma}^{-1}(\boldsymbol{\theta})[\overline{\boldsymbol{y}} - \boldsymbol{\mu}(\boldsymbol{\theta})] + \ddot{\boldsymbol{B}}\boldsymbol{B}_{2} \quad (2.45)$$

同一個人彼此間相關 (within subject) items (responses)(多變量)	
愛數 items (responses)(多變量) 愛奴	
subject Y1 Y2 Y3 Y4 subject Y	
1 4 5 3 2 不同人 1 4 !< for Y1	
不同人彼 2 3 4 4 2 w 彼此間 1 5 < for Y2	
此間獨立 1 3 < for Y3	
(between the set of th	
subjects) $2 \ 3 \ <$ for Y1	_
2 4 < for Y2	
(共100筆)100 1 2 5 4 / / / / / · · · · · · · · · · · · · ·	
·····································	
(列與列間獨立,或者是)	_
observations間獨立.或者是 (within	
hetween subjects 獨立)	
(行開石潤立 武老早) 1896 100 1 I< for Yl	_
(日來日间下週里,來日定 observations問不獨立 武夹具 100 2 (< for Y2	
within subject 不理士)	
within subject (100 ± 1) , $(\pm 400 \pm)$	

ML: ln(**G**, **R** | **y**, **X**, **W**) =
$$-\frac{1}{2}\log |\mathbf{V}| - \frac{1}{2}\mathbf{r'V}^{-1}\mathbf{r} - \frac{N}{2}\log 2\pi$$
 (2.48)

圖 3.2 多變量資料與單變量資料結構

3.5 Level-1 ECM 穩態性檢定

依據第2章表 2.3,可先將 ECM 依穩態性與否進序檢定而加以分類。因此,接下來 要解決問題是如何檢定穩態,計有三種檢定方式:其一為在 PROC MIXED (HLM)可用 概似比檢定(likelihood ratio test, LRT),另二者為在 PROC CALIS (SEM)可使用,分別為 卡方差異性檢定(Chi-square difference test, CDT)及 SAS 本身提供的 SIMTESTS statement 採聯合檢定(simultaneously or joint test),分別詳述於下:

3.5.1 概似比檢定 ECM 穩態性

設兩個具巢套關係(nested)模型,其概似函數之比值(λ),定義為

$$\lambda(y) = \frac{L_R(\boldsymbol{\theta}_0 \mid y)}{L_U(\boldsymbol{\theta} \mid y)}, \qquad (3.5)$$

其中 $0 < \lambda(y) < 1$, $L_{R}(\theta_{0} | y)$ 為在限制式下模型之概似函數最大值, 而 $L_{U}(\theta | y)$ 為沒有限制式下模型之概似函數最大值, 而且 L_{R} 之值不可高於 L_{U} 之值。又因概似比取自然對數再乘負 2 會服從卡方檢定, 即

$$-2\ln\lambda = -2\ln\frac{L_{R}(\boldsymbol{\theta}_{0}\mid\boldsymbol{y})}{L_{U}(\boldsymbol{\theta}\mid\boldsymbol{y})} \sim \chi_{df}^{2},$$

$$\Rightarrow -2\ln L_{R}(\boldsymbol{\theta}_{0}\mid\boldsymbol{y}) + 2\ln L_{U}(\boldsymbol{\theta}\mid\boldsymbol{y})] \sim \chi_{df}^{2},$$

$$\Rightarrow \{[-2\ln L_{R}(\boldsymbol{\theta}_{0}\mid\boldsymbol{y})] - [-2\ln L_{U}(\boldsymbol{\theta}\mid\boldsymbol{y})]\} \sim \chi_{df}^{2}$$
(3.6)

df 為卡方檢定統計量之自由度,即由非限制式改為限制式參數減少之個數。

本研究中 $L_{R}(\theta_{0}|y)$ 係 ECM 為 TOEP (穩態)下之 LGM 的概似函數,而 $L_{v}(\theta|y)$ 表示 ECM 為 UN(非穩態)下之 LGM 的概似函數,UN 與 TOEP 兩者需有巢套(nested)關係,即 TOEP 巢套於(nested within) UN。亦即 UN 加入適當的限制式可以得到 TOEP,如以 T=4 為例,即為式(3.7)及式(3.8)可知 UN 加入 6 個限制式可簡化為 TOEP。又因 PROC MIXED 在模型配適度有提供-2ln $L(\mathbb{P}-2LL)$ 之值,因此計算式(3.6)變成很容易。惟 HLM 僅適 用於可觀察外生變數,如本研究中二階 LGM 則無法適用。

式中由 UN 簡化為 TOEP 共需 6 個限制式。又 UN 共有 10 個參數, TOEP 有 4 個參數, 故兩個 ECM 參數相差為 6,亦即兩個模型 LGM 在估計時自由度相差 6,其限制式可以表示如下:

$$\begin{cases} \sigma_{\varepsilon_{1}}^{2} = \sigma_{\varepsilon_{2}}^{2} = \sigma_{\varepsilon_{3}}^{2} = \sigma_{\varepsilon_{4}}^{2}, \\ \sigma_{\varepsilon_{2}\varepsilon_{1}} = \sigma_{\varepsilon_{3}\varepsilon_{2}} = \sigma_{\varepsilon_{4}\varepsilon_{3}}, \\ \sigma_{\varepsilon_{3}\varepsilon_{1}} = \sigma_{\varepsilon_{4}\varepsilon_{2}}. \end{cases} \begin{cases} \sigma_{\varepsilon_{1}}^{2} - \sigma_{\varepsilon_{2}}^{2} = 0, \\ \sigma_{\varepsilon_{2}}^{2} - \sigma_{\varepsilon_{3}}^{2} = 0, \\ \sigma_{\varepsilon_{2}\varepsilon_{1}} - \sigma_{\varepsilon_{3}\varepsilon_{2}} = 0, \\ \sigma_{\varepsilon_{2}\varepsilon_{1}} - \sigma_{\varepsilon_{4}\varepsilon_{3}} = 0, \\ \sigma_{\varepsilon_{3}\varepsilon_{1}} - \sigma_{\varepsilon_{4}\varepsilon_{2}} = 0. \end{cases}$$
(3.8)

3.5.2 SEM 方式檢定 ECM 之穩態性

利用 PROC CALIS 檢定 level-1 ECM 是否穩態,可採用兩種方法,分別為卡方差異 性檢定及 SIMTESTS 方法檢定,分別詳述於下:

3.5.2.1 卡方差異性檢定穩態性

該法檢定穩態性需找出兩個具有巢套關係之 ECM。因此,在非穩態 ECM 選擇 UN, 而穩態 ECM 選擇 TOEP,其兩者具有巢套關係,如式(3.7)。其中 UN 變成 TOEP 需有 6 個限制式,而參數個數差為 6。因此,要檢定 level-1 ECM 是否穩態,可以先求出在 ECM 為 UN 條件下 LGM 模型之配適值及卡方值(N-1)× $F_{ML}(UN) = \chi^2(UN)$,另外當 ECM 為 TOEP 條件下 LGM 模型之配適值及卡方值(N-1)× $F_{ML}(TOEP) = \chi^2(TOEP)$,並檢視兩者 卡方差異及自由度之差($\Delta df = 6$)(即爲式(3.7)參數個數差),即可求出卡方差異性檢定, 若不顯著表示 ECM 爲穩態性獲得支持。

3.5.2.2 SIMTESTS 方法檢定穩態性

圖 2.3 為一階 LGM T=4 為例,其穩態條件為各期間變異數相等、各等期差共變異數相等。因此,檢定穩態性之虛無假設為:

H₀:
$$\sigma_{\varepsilon_1}^2 = \sigma_{\varepsilon_2}^2 = \sigma_{\varepsilon_3}^2 = \sigma_{\varepsilon_4}^2$$
, $\sigma_{\varepsilon_2\varepsilon_1} = \sigma_{\varepsilon_3\varepsilon_2} = \sigma_{\varepsilon_4\varepsilon_3}$, $\sigma_{\varepsilon_3\varepsilon_1} = \sigma_{\varepsilon_4\varepsilon_2}$.

或者是表示為下式:

$$\begin{split} H_{0}:\sigma_{\epsilon_{1}}^{2}-\sigma_{\epsilon_{2}}^{2}=0,\,\sigma_{\epsilon_{1}}^{2}-\sigma_{\epsilon_{3}}^{2}=0,\,\sigma_{\epsilon_{1}}^{2}-\sigma_{\epsilon_{4}}^{2}=0,\,\sigma_{\epsilon_{2}\epsilon_{1}}-\sigma_{\epsilon_{3}\epsilon_{2}}=0,\,\sigma_{\epsilon_{2}\epsilon_{1}}-\sigma_{\epsilon_{4}\epsilon_{3}}=0,\,\sigma_{\epsilon_{3}\epsilon_{1}}-\sigma_{\epsilon_{4}\epsilon_{2}}=0. \end{split}$$
因此,檢定穩態時,若採用 SIMTESTS statement 時,則需依照上式之關係式撰寫程式。 又因 SIMTESTS 是採卡方檢定,若卡方檢定結果不顯著,表示 ECM 爲穩態獲得支持。

3.5.3 二階 LGM 之 ECM 獨立性檢定

若我們以第 2 章圖 2.4 二階 LGM 為例,其 ECM 結構為式(2.39),圖 2.4 中第一階 測量誤差 ECM 之一般式,為測量誤差間彼此之間任何期間均允許相關,則 ECM 之矩 陣結構為式(3.9),該矩陣結構參數共有 78 個待估參數($p \times (p+1)/2 = 12 \times 13/2 = 78$)。為 便於瞭解及閱讀起見,將式(3.9)內各個小方框以矩陣表示,改寫為式(3.10),式中 $\Theta_{r=1}^{(0)}$ 表 示三個問項誤差在第 1 個時點(以下指標 "t = 1"表示)、當期(以上指標 "(0)"表示)之共 變異數矩陣, $\Theta_{r=2}^{(0)}$ 表示三個問項誤差在第 2 個時點、期差為 0 之共變異數矩陣, $\Theta_{r=3}^{(0)}$ 表 示三個問項誤差在第 3 個時點、期差為 0 之共變異數矩陣, $\Theta_{r=1/2}^{(1)}$ 表示三個問項誤差在第 1 個時點與第 2 個時點與第 3 個時點期差為 1 期之共變異數矩陣, $\Theta_{r=1/3}^{(1)}$ 表示三個問項誤差在第 2 個時點與第 3 個時點期差為 1 期之共變異數矩陣, $\Theta_{r=1/3}^{(2)}$ 表示三個問項誤差在第 3 個時點與第 4 個時點期差為 2 期之共變異數矩陣, $\Theta_{r=1/4}^{(2)}$ 表示三個問 項誤差在第 1 個時點與第 4 個時點期差為 2 期之共變異數矩陣, $\Theta_{r=1/4}^{(3)}$ 表示三個問 項誤差在第 2 個時點與第 4 個時點期差為 2 期之共變異數矩陣, $\Theta_{r=1/4}^{(3)}$ 表示三個問 項誤差在第 2 個時點與第 4 個時點期差為 2 期之共變異數矩陣, $\Theta_{r=1/4}^{(3)}$ 表示三個問項誤差 在第 1 個時點與第 4 個時點期差為 2 期之共變異數矩陣, $\Theta_{r=1/4}^{(3)}$ 表示三個問項誤差

						S		ES							
			1	Time 1	L I		Time	2		Time :	3		Time	: 4	
			j = 1	<i>j</i> = 2	<i>j</i> = 3	j=1	<i>j</i> = 2	<i>j</i> = 3	<u>j=1</u>	j = 2	j = 3	j = 1	<i>j</i> = 2	<i>j</i> = 3	
	Θ_{ε}	=Co	$pv[\varepsilon_{11}]$	\mathcal{E}_{21}	<i>E</i> ₃₁	<i>E</i> ₁₂	<i>E</i> ₂₂	\mathcal{E}_{32}	<i>ε</i> ₁₃	E23	<i>E</i> ₃₃	\mathcal{E}_{14}	\mathcal{E}_{24}	$\varepsilon_{34}]'$	
1	<u>j = 1</u>	\mathcal{E}_{11}	$\sigma_{\epsilon_{11}}^2$						Ţ,						
ime	<u>j = 2</u>	\mathcal{E}_{21}	$\sigma_{_{\mathcal{E}_{21}\mathcal{E}_{11}}}$	$\sigma^2_{arepsilon_{21}}$											
L	<u>j = 3</u>	\mathcal{E}_{31}	$\sigma_{_{\mathcal{E}_{31}\mathcal{E}_{11}}}$	$\sigma_{\scriptscriptstyle \mathcal{E}_{31}\mathcal{E}_{21}}$	$\sigma^2_{arepsilon_{31}}$										
5	<u>j = 1</u>	\mathcal{E}_{12}	$\sigma_{arepsilon_{12}arepsilon_{11}}$	$\sigma_{arepsilon_{12}arepsilon_{21}}$	$\sigma_{arepsilon_{12}arepsilon_{31}}$	$\sigma^2_{arepsilon_{12}}$									
lime	j=2	\mathcal{E}_{22}	$\sigma_{arepsilon_{22}arepsilon_{11}}$	$\sigma_{arepsilon_{22}arepsilon_{21}}$	$\sigma_{\scriptscriptstyle{arepsilon_{22}arepsilon_{31}}}$	$\sigma_{arepsilon_{22}arepsilon_{12}}$	$\sigma^2_{arepsilon_{22}}$								
	<u>j = 3</u>	<i>E</i> ₃₂	$\sigma_{_{arepsilon_{32}arepsilon_{11}}}$	$\sigma_{_{\mathcal{E}_{32}\mathcal{E}_{21}}}$	$\sigma_{_{\mathcal{E}_{32}\mathcal{E}_{31}}}$	$\sigma_{_{\mathcal{E}_{32}\mathcal{E}_{12}}}$	$\sigma_{_{\mathcal{E}_{32}\mathcal{E}_{22}}}$	$\sigma^2_{arepsilon_{32}}$							(3.9)
3	<u>j = 1</u>	\mathcal{E}_{13}	$\sigma_{arepsilon_{13}arepsilon_{11}}$	$\sigma_{arepsilon_{13}arepsilon_{21}}$	$\sigma_{arepsilon_{13}arepsilon_{31}}$	$\sigma_{\epsilon_{l3}\epsilon_{l2}}$	$\sigma_{\varepsilon_{13}\varepsilon_{22}}$	$\sigma_{\varepsilon_{13}\varepsilon_{32}}$	$\sigma^2_{arepsilon_{13}}$						(3.5)
ime	<u>j = 2</u>	\mathcal{E}_{23}	$\sigma_{_{arepsilon_{23}arepsilon_{11}}}$	$\sigma_{\varepsilon_{23}\varepsilon_{21}}$	$\sigma_{_{arepsilon_{23}arepsilon_{31}}}$	$\sigma_{arepsilon_{23}arepsilon_{12}}$	$\sigma_{arepsilon_{23}arepsilon_{22}}$	$\sigma_{\varepsilon_{23}\varepsilon_{32}}$	$\sigma_{arepsilon_{23}arepsilon_{13}}$	$\sigma^2_{arepsilon_{23}}$					
Ľ	j=3	<i>E</i> ₃₃	$\sigma_{_{\mathcal{E}_{33}\mathcal{E}_{11}}}$	$\sigma_{arepsilon_{33}arepsilon_{21}}$	$\sigma_{_{\mathcal{E}_{33}\mathcal{E}_{31}}}$	$\sigma_{arepsilon_{33}arepsilon_{12}}$	$\sigma_{arepsilon_{33}arepsilon_{22}}$	$\sigma_{arepsilon_{33}arepsilon_{32}}$	$\sigma_{arepsilon_{33}arepsilon_{13}}$	$\sigma_{arepsilon_{33}arepsilon_{23}}$	$\sigma^2_{arepsilon_{33}}$				
lime 4	$\frac{j=1}{j=1}$	\mathcal{E}_{14}	$\sigma_{_{arepsilon_{14}arepsilon_{11}}}$	$\sigma_{_{\mathcal{E}_{14}\mathcal{E}_{21}}}$	$\sigma_{_{\mathcal{E}_{14}\mathcal{E}_{31}}}$	$\sigma_{arepsilon_{14}arepsilon_{12}}$	$\sigma_{_{\mathcal{E}_{14}\mathcal{E}_{22}}}$	$\sigma_{_{\mathcal{E}_{14}\mathcal{E}_{32}}}$	$\sigma_{_{arepsilon_{14}arepsilon_{13}}}$	$\sigma_{arepsilon_{14}arepsilon_{23}}$	$\sigma_{_{\mathcal{E}_{14}\mathcal{E}_{33}}}$	$\sigma^2_{arepsilon_{l4}}$			
	j=2	<i>E</i> ₂₄	$\sigma_{_{\mathcal{E}_{24}\mathcal{E}_{11}}}$	$\sigma_{\varepsilon_{24}\varepsilon_{21}}$	$\sigma_{\varepsilon_{24}\varepsilon_{31}}$	$\sigma_{\scriptscriptstyle{arepsilon_{24}arepsilon_{12}}}$	$\sigma_{arepsilon_{24}arepsilon_{22}}$	$\sigma_{\varepsilon_{24}\varepsilon_{32}}$	$\sigma_{\scriptscriptstyle{\mathcal{E}_{24}\mathcal{E}_{13}}}$	$\sigma_{arepsilon_{24}arepsilon_{23}}$	$\sigma_{\varepsilon_{24}\varepsilon_{33}}$	$\sigma_{_{\mathcal{E}_{24}\mathcal{E}_{14}}}$	$\sigma^2_{arepsilon_{24}}$		
L	j=3	<i>E</i> ₃₄	$\sigma_{arepsilon_{34}arepsilon_{11}}$	$\sigma_{arepsilon_{34}arepsilon_{21}}$	$\sigma_{_{\mathcal{E}_{34}\mathcal{E}_{31}}}$	$\sigma_{_{\mathcal{E}_{34}\mathcal{E}_{12}}}$	$\sigma_{_{\mathcal{E}_{34}\mathcal{E}_{22}}}$	$\sigma_{arepsilon_{34}arepsilon_{32}}$	$\sigma_{_{\mathcal{E}_{34}\mathcal{E}_{13}}}$	$\sigma_{arepsilon_{34}arepsilon_{23}}$	$\sigma_{arepsilon_{34}arepsilon_{33}}$	$\sigma_{_{\mathcal{E}_{34}\mathcal{E}_{14}}}$	$\sigma_{arepsilon_{34}arepsilon_2}$	$\sigma_{\varepsilon_{34}}^2$	

$$\begin{bmatrix} \boldsymbol{\Theta}_{t=1}^{(0)} \\ \boldsymbol{\Theta}_{t=1/2}^{(1)} \end{bmatrix} \begin{bmatrix} \boldsymbol{\Theta}_{t=2}^{(0)} \\ \boldsymbol{\Theta}_{t=1/3}^{(2)} \end{bmatrix} \begin{bmatrix} \boldsymbol{\Theta}_{t=2/3}^{(1)} \end{bmatrix} \begin{bmatrix} \boldsymbol{\Theta}_{t=3}^{(0)} \\ \boldsymbol{\Theta}_{t=3/4}^{(1)} \end{bmatrix} \begin{bmatrix} \boldsymbol{\Theta}_{t=2/4}^{(1)} \end{bmatrix} \begin{bmatrix} \boldsymbol{\Theta}_{t=3/4}^{(0)} \end{bmatrix} \begin{bmatrix} \boldsymbol{\Theta}_{t=4}^{(0)} \end{bmatrix} \end{bmatrix}$$
(3.10)

若將該式相同問項誤差不同期集中在一起,分別以 $\boldsymbol{\varepsilon}_1 = [\boldsymbol{\varepsilon}_{11} \ \boldsymbol{\varepsilon}_{12} \ \boldsymbol{\varepsilon}_{13} \ \boldsymbol{\varepsilon}_{14}]',$

$$\begin{bmatrix} \begin{bmatrix} \boldsymbol{\Theta}_{\boldsymbol{\varepsilon}_{1},t} \end{bmatrix} \\ \begin{bmatrix} \boldsymbol{\Theta}_{\boldsymbol{\varepsilon}_{2},\boldsymbol{\varepsilon}_{1},t} \end{bmatrix} \begin{bmatrix} \boldsymbol{\Theta}_{\boldsymbol{\varepsilon}_{2},t} \end{bmatrix} \\ \begin{bmatrix} \boldsymbol{\Theta}_{\boldsymbol{\varepsilon}_{3},\boldsymbol{\varepsilon}_{1},t} \end{bmatrix} \begin{bmatrix} \boldsymbol{\Theta}_{\boldsymbol{\varepsilon}_{3},\boldsymbol{\varepsilon}_{2},t} \end{bmatrix} \begin{bmatrix} \boldsymbol{\Theta}_{\boldsymbol{\varepsilon}_{3},t} \end{bmatrix} \end{bmatrix}$$
(3.12)

又當不同問項測量誤差在當期及不同期均無關時,即式(3.11)及式(3.12)中限制 $\left[\Theta_{\epsilon_{2}\epsilon_{1},t}\right] = 0, \left[\Theta_{\epsilon_{3}\epsilon_{1},t}\right] = 0$ 及 $\left[\Theta_{\epsilon_{3}\epsilon_{2},t}\right] = 0$ 。換言之,下列三式均為0

$$\begin{bmatrix} \boldsymbol{\Theta}_{\boldsymbol{\varepsilon}_{2}\boldsymbol{\varepsilon}_{1},t} \end{bmatrix} = \begin{bmatrix} \sigma_{\varepsilon_{21}\varepsilon_{11}} & \sigma_{\varepsilon_{21}\varepsilon_{12}} & \sigma_{\varepsilon_{21}\varepsilon_{13}} & \sigma_{\varepsilon_{21}\varepsilon_{14}} \\ \sigma_{\varepsilon_{22}\varepsilon_{11}} & \sigma_{\varepsilon_{22}\varepsilon_{12}} & \sigma_{\varepsilon_{22}\varepsilon_{13}} & \sigma_{\varepsilon_{22}\varepsilon_{14}} \\ \sigma_{\varepsilon_{23}\varepsilon_{11}} & \sigma_{\varepsilon_{23}\varepsilon_{12}} & \sigma_{\varepsilon_{23}\varepsilon_{13}} & \sigma_{\varepsilon_{23}\varepsilon_{14}} \\ \sigma_{\varepsilon_{24}\varepsilon_{11}} & \sigma_{\varepsilon_{24}\varepsilon_{12}} & \sigma_{\varepsilon_{24}\varepsilon_{13}} & \sigma_{\varepsilon_{24}\varepsilon_{14}} \end{bmatrix} = \mathbf{0}, \qquad (3.13)$$

$$\begin{bmatrix} \Theta_{\varepsilon_{31}\varepsilon_{11}} & \sigma_{\varepsilon_{31}\varepsilon_{12}} & \sigma_{\varepsilon_{31}\varepsilon_{13}} & \sigma_{\varepsilon_{31}\varepsilon_{14}} \\ \sigma_{\varepsilon_{32}\varepsilon_{11}} & \sigma_{\varepsilon_{32}\varepsilon_{12}} & \sigma_{\varepsilon_{32}\varepsilon_{13}} & \sigma_{\varepsilon_{32}\varepsilon_{14}} \\ \sigma_{\varepsilon_{33}\varepsilon_{11}} & \sigma_{\varepsilon_{33}\varepsilon_{12}} & \sigma_{\varepsilon_{33}\varepsilon_{13}} & \sigma_{\varepsilon_{32}\varepsilon_{14}} \\ \sigma_{\varepsilon_{33}\varepsilon_{11}} & \sigma_{\varepsilon_{33}\varepsilon_{12}} & \sigma_{\varepsilon_{33}\varepsilon_{13}} & \sigma_{\varepsilon_{33}\varepsilon_{14}} \\ \sigma_{\varepsilon_{34}\varepsilon_{11}} & \sigma_{\varepsilon_{34}\varepsilon_{12}} & \sigma_{\varepsilon_{34}\varepsilon_{13}} & \sigma_{\varepsilon_{34}\varepsilon_{14}} \end{bmatrix} = \mathbf{0}, \qquad (3.14)$$

$$\begin{bmatrix} \Theta_{\varepsilon_{3}\varepsilon_{2}, t} \end{bmatrix} = \begin{bmatrix} \sigma_{\varepsilon_{31}\varepsilon_{21}} & \sigma_{\varepsilon_{31}\varepsilon_{22}} & \sigma_{\varepsilon_{31}\varepsilon_{23}} & \sigma_{\varepsilon_{31}\varepsilon_{24}} \\ \sigma_{\varepsilon_{32}\varepsilon_{21}} & \sigma_{\varepsilon_{32}\varepsilon_{22}} & \sigma_{\varepsilon_{32}\varepsilon_{23}} & \sigma_{\varepsilon_{32}\varepsilon_{24}} \\ \sigma_{\varepsilon_{33}\varepsilon_{21}} & \sigma_{\varepsilon_{33}\varepsilon_{22}} & \sigma_{\varepsilon_{33}\varepsilon_{23}} & \sigma_{\varepsilon_{33}\varepsilon_{24}} \\ \sigma_{\varepsilon_{33}\varepsilon_{21}} & \sigma_{\varepsilon_{33}\varepsilon_{22}} & \sigma_{\varepsilon_{33}\varepsilon_{23}} & \sigma_{\varepsilon_{33}\varepsilon_{24}} \\ \sigma_{\varepsilon_{34}\varepsilon_{21}} & \sigma_{\varepsilon_{34}\varepsilon_{22}} & \sigma_{\varepsilon_{34}\varepsilon_{23}} & \sigma_{\varepsilon_{34}\varepsilon_{24}} \end{bmatrix} = \mathbf{0}. \qquad (3.15)$$

因此,式(3.11)及(3.12)則分別可表示為式(3.16)及式(3.17)。式(3.17)非對角線之子矩陣皆為0,亦即式(3.11)中,不同問項誤差在同期及不同期均不相關,表示三個問項測量誤差為獨立。

因此,卡方差異檢定誤差獨立性,是比較兩個模式特定 ECM 是否有差異,其中一個 模式之 ECM 設為式(3.11)為三個問項誤差在同期或不同期均相關,而另一個模式之 ECM 設為式(3.16)為三個問項誤差在同期或不同期均不相關。可分別找到兩個模型在不同 ECM 設定之下整個模型配適卡方値,而將兩者卡方値相減及其自由度差(*Δdf*)(兩者自由 度差,即為式(3.13)~(3.15)限制式個數為 48)。若兩個模型卡方差異檢定不顯著表示三個 問項誤差爲獨立獲得支持。

3.5.4 二階 LGM 之 ECM 穩態性檢定

三個問項測量誤差獨立,相當於僅考慮相同的問項誤差在不同期才有關(see, e.g., Blozis, 2006; Bollen & Curran, 2006, p. 249; Preacher et al., 2008, p. 63; Sayer & Cumsille, 2001),此時,可以分別獨立考量各個問項測量誤差是否穩態。針對問項誤差 1 之 ECM 為式(3.16)及式(3.17)之 $\Theta_{\epsilon_{i},i}$ 為非穩態飽和 ECM 為 UN,而穩態飽和 ECM 為則為 TOEP, 即式(3.18)。

換言之,針對問項誤差1之 ECM 而言,其穩態條件之虛無假設 H_0 為:

$$H_{0}:\begin{cases} \sigma_{\varepsilon_{11}}^{2} - \sigma_{\varepsilon_{12}}^{2} = 0, \sigma_{\varepsilon_{11}}^{2} - \sigma_{\varepsilon_{13}}^{2} = 0, \sigma_{\varepsilon_{11}}^{2} - \sigma_{\varepsilon_{14}}^{2} = 0, \\ \sigma_{\varepsilon_{12}\varepsilon_{11}} - \sigma_{\varepsilon_{13}\varepsilon_{12}} = 0, \sigma_{\varepsilon_{12}\varepsilon_{11}} - \sigma_{\varepsilon_{14}\varepsilon_{13}} = 0, \\ \sigma_{\varepsilon_{13}\varepsilon_{11}} - \sigma_{\varepsilon_{14}\varepsilon_{12}} = 0. \end{cases}$$
(3.19)

針對問項誤差 2 之 ECM 為式(3.16)及式(3.17)之 $\Theta_{s_2,t}$ 為非穩態 UN,而穩態則為 TOEP, 即式(3.20)。

針對問項誤差 3 之 ECM 為式(3.16)及式(3.17)之 $\Theta_{s_3,t}$ 為非穩態 UN, 而穩態則為 TOEP, 即式(3.22)。

UN(非穩態飽和ECM) TOEP(穩態飽和ECM)
$$\begin{bmatrix} \Theta_{\varepsilon_{3},t} \end{bmatrix} = \begin{bmatrix} \sigma_{\varepsilon_{31}}^{2} & & & \\ \sigma_{\varepsilon_{32}\varepsilon_{31}} & \sigma_{\varepsilon_{32}}^{2} & & & \\ \sigma_{\varepsilon_{33}\varepsilon_{31}} & \sigma_{\varepsilon_{33}\varepsilon_{32}} & \sigma_{\varepsilon_{33}}^{2} & & \\ \sigma_{\varepsilon_{33}\varepsilon_{31}} & \sigma_{\varepsilon_{33}\varepsilon_{32}} & \sigma_{\varepsilon_{33}}^{2} & & \\ \sigma_{\varepsilon_{34}\varepsilon_{33}} & \sigma_{\varepsilon_{34}\varepsilon_{33}} & \sigma_{\varepsilon_{34}}^{2} & \sigma_{\varepsilon_{34}\varepsilon_{33}}^{2} & \sigma_{\varepsilon_{34}}^{2} & \sigma_{\varepsilon_{33}}^{2} & \sigma$$

換言之,針對問項誤差3之ECM而言,其穩態條件之虛無假設H₀為:

$$H_{0}:\begin{cases} \sigma_{\varepsilon_{31}}^{2} - \sigma_{\varepsilon_{32}}^{2} = 0, \ \sigma_{\varepsilon_{31}}^{2} - \sigma_{\varepsilon_{33}}^{2} = 0, \ \sigma_{\varepsilon_{31}}^{2} - \sigma_{\varepsilon_{34}}^{2} = 0, \\ \sigma_{\varepsilon_{32}\varepsilon_{31}} - \sigma_{\varepsilon_{33}\varepsilon_{32}} = 0, \ \sigma_{\varepsilon_{32}\varepsilon_{31}} - \sigma_{\varepsilon_{34}\varepsilon_{33}} = 0, \\ \sigma_{\varepsilon_{33}\varepsilon_{31}} - \sigma_{\varepsilon_{34}\varepsilon_{32}} = 0. \end{cases}$$
(3.23)

3.5.4.1 卡方差異方法檢定 ECM 穩態性

由於三個問項誤差為獨立,因此,卡方差異檢定可分別個別比較每個問項 level-1 ECM 在 UN 及 TOEP 兩個不同特定模式是否有差異,據以推論 ECM 之穩態性。例如以 第一個問項 ECM 為例,其中一個模式之 ECM 為式(3.18) UN(非穩態),而另一個模式之 ECM 為式(3.18) TOEP(穩態),可分別找到 UN 及 TOEP 兩個不同 ECM 特定模型設定之 下,兩個模型配適卡方值,而兩者卡方值相減及其自由度差(Δdf)(兩者自由度差,為式 (3.19)限制式個數為 6),可計算卡方差機率値($p_r > \chi^2_{\Delta df}$),若兩個模型卡方差異檢定不顯 著,則表示第一個問項 ECM 為穩態。

同理,就第二個問項 ECM 而言,其中一個模式之 ECM 設為式(3.20)為 UN(非穩態), 而另一個模式之 ECM 設為式(3.20) TOEP(穩態),可分別找到 UN 及 TOEP 兩個不同 ECM 特定模型設定之下,两個模型配適卡方值,而將兩者卡方值相減及其自由度差(Δdf)(兩 者自由度差,為式(3.21)限制式個數為 6),可計算卡方差機率值($p_r > \chi^2_{\Delta df}$),若兩個模 型卡方差異檢定不顯著,則表示第二個問項 ECM 為穩態。

最後,就第三個問項 ECM 而言,其中一個模式之 ECM 設為式(3.22)為 UN(非穩態), 而另一個模式之 ECM 設為式(3.22) TOEP(穩態),可分別找到 UN 及 TOEP 兩個不同 ECM 特定模型設定之下,两個模型配適卡方值,而將兩者卡方值相減及其自由度差(Δdf)(兩 者自由度差,為式(3.23)限制式個數為 6),可計算卡方差機率值($p_r > \chi^2_{\Delta df}$),若兩個模 型卡方差異檢定不顯著,則表示第三個問項 ECM 為穩態。

3.5.4.2 SIMETESTS 方法檢定穩態性

另一種檢定三個問項測量誤差為穩態之方法為 SIMTESTS,虛無假設即為式(3.19)、 式(3.21)及式(3.23),因三個問項之測量誤差為獨立,可個別檢定各問項之測量誤差,若 卡方檢定結果沒有差異,則表示問項測量誤差間為穩態。

3.6 二階 LGM 之 ECM 因素不變性之檢定

由第二章文獻回顧可知二階 LGM,其優點可以檢定弱因素不變性,亦即檢定不同期 的因素負荷矩陣是否相等,亦即

$$\Lambda_{\mathbf{y},1} = \Lambda_{\mathbf{y},2} = \Lambda_{\mathbf{y},3} = \Lambda_{\mathbf{y},4}$$

上式矩陣相等,其條件為矩陣對應元素相等,又因每一期第1個問項因素負荷設為1, $印 \lambda_{y_1} = \lambda_{y_2} = \lambda_{y_3} = \lambda_{y_4}$ 則不用檢定,故僅需檢定第2個問項及第3個問項因素負荷,在 各期均相同即可,其虛無假設為:

$$\begin{aligned} \lambda_{y_{21}} &= \lambda_{y_{22}} = \lambda_{y_{23}} = \lambda_{y_{24}}, \\ \lambda_{y_{31}} &= \lambda_{y_{32}} = \lambda_{y_{33}} = \lambda_{y_{34}}. \end{aligned} (3.24)$$

檢定式(3.24)在 PROC CALIS 可採用兩種方式,分別為卡方差異性檢定及 SIMTESTS 檢定,如下敘述。

3.6.1 卡方差異性檢定因素不變性

當檢定弱因素不變性,採用卡方差異性檢定時,需選擇兩個具有巢套的模型,其一 爲同問項不同期的各因素負荷可以不相等之模型,另一個是在前一個模型限制因素負荷 相等之模型;因此,後者模型附屬於前者模型,可分別求出兩個模型配適之卡方差値及 其自由度差値,並計算其機率値($p_r > \chi^2_{\Delta df}$)以檢定模型之弱因素不變性,當檢定結果不 顯著,表示弱因素不變性獲得支持。

3.6.2 SIMTESTS 檢定因素不變性

另一種檢定弱因素不變性,採用 PROC CALIS 內定 SIMTESTS statement,檢定弱因素不變性之虛無假設是將式(3.24)修正為式(3.25)

$$H_{0}:\begin{cases} \lambda_{y_{21}} - \lambda_{y_{22}} = 0, \ \lambda_{y_{21}} - \lambda_{y_{23}} = 0, \ \lambda_{y_{21}} - \lambda_{y_{24}} = 0, \\ \lambda_{y_{31}} - \lambda_{y_{32}} = 0, \ \lambda_{y_{31}} - \lambda_{y_{33}} = 0, \ \lambda_{y_{31}} - \lambda_{y_{34}} = 0. \end{cases}$$
(3.25)

當檢定結果不顯著,表示弱因素不變性獲得支持。

3.7 ECM 選擇準則及鑑定

文章至此,已將 ECM 獨立性、穩態性檢定方法清楚介紹。接下來之問題是如何從

表 2.3 穩態 ECM 族群及非穩態 ECM 族群中優先選擇那一個 ECM,並且所選擇 ECM 是 否合適是為本單元所要探討之方法。

3.7.1 ECM 選擇準則

Hedeker and Mermelstein (2007)指出若 ECM 有實質的理論基礎者,則依理論選擇 ECM 結構;然而 Kwok et al. (2007) 指出在心理學理論很少清楚提供設定特定的 ECM 之 基礎,例如當誤差的變異數隨著時間而變化時(Hedeker & Mermelstein, 2007),則ECM 可用 TOEPH(1)。Sivo and Fan (2008)說明自我相關是一種麻煩的事情,因其常發生在序 列觀察的資料,誤差也較少的理論所興趣。Grimm and Widaman (2010)指出若成長模型 誤設為較簡單的成長趨勢線,則會產生複雜 level-1 ECM。因而,理論上建議當 LGM 有 可解釋性參數且能補捉較好成長趨勢線,則會使得 level-1 ECM 變成很簡單;換言之, 正確設定成長趨勢線導致獲得簡單的 ECM; 因而, 以最簡單線性成長趨勢線尋找 "最適" (optimal)ECM 是不值得的。上述告訴我們有理論為基礎之 ECM 者則以理論為主。若沒 有實質理論基礎,基本上仍採用探索性。Grimm and Widaman (2010)指出模型簡單或精 簡(simplicity or parsimony)是模型期望性質,正如 Browne and du Toit (1991) 指出用太多 參數去滿足模型配適度可能導致參數不易解釋。因此,垃圾參數(wastebasket parameters) 應該避免。例如當兩個模型之配適度沒有存在顯著性差異時,則優選考量較簡單模型 (Littell et al., 2006, p. 184; Wolfinger, 1996)。又當 ECM 與資料特性不一致時,則優先排 除不適 ECM (Littell et al., 2006, p.177),例如 TOEP(1)與 TOEPH(1),則不適用於存在有 顯著誤差共變異數之資料;又如 ARMA 族群則適用於穩態等期間資料。因此,本文依 參數精簡度(parsimony)、限制式強弱及解釋能力(interpretability)以達成模型配適度(model fit)而建立有系統性之選擇順序。首先,我們定義 M_r 表示暫時性選定之 ECM,則 M_r 之 選擇順序標準,依據限制條件程度(見附錄 A-3.1)而定,例如若兩個 M_r之 ECM 具有不 同參數個數時,則以較少參數,依參數精簡原則為最優先選擇之 ECM;.若兩個M_r之 ECM 具有相同參數個數但限制式不同,則以較制式較多者為優先選擇之 ECM;若兩個 M_r之 ECM 參數個數及限制式個數相同,則以限制式較弱程度者,限制式較強者爲優先 選擇之 ECM。例如當 T=4 時, AR(1), CS, TOEP(2)及 MA(1)均為 2 個參數的 ECM 之穩 態結構。而 AR(1)是由飽和結構 TOEP 中,限制 $\rho_k = \rho_1^k$, $k \ge 1$ 所獲得(見式(3.26));而 CS 是由飽和結構 TOEP 中,限制 ρ_k 均相同, $k \ge 0$ 所獲得(見式(3.27)); TOEP(2) 即由 TOEP 限制 $\rho_k = 0$, $\forall k \ge 1$ 所獲得; 然而 AR(1), CS 及 TOEP(2)在 TOEP 上之限制式個數均相 同為 *T*-2。而 MA(1)是由 TOEP 限制 $\rho_1 = -\theta_1/(1+\theta_1^2)$ 及 $\rho_k = 0$ ($\forall k \ge 1$)所獲得(見式 (3.29)),因為 ρ_1 具有特定型式之函數關係式,故其限制式個數為 *T*-1。因此,AR(1),CS, TOEP(2)及 MA(1)雖然均有相同參數個數,但限制式個數以 MA(1)較多,故優先選擇 MA(1)。雖 TOEP(2)及 MA(1)結構不同,然而兩者期差 1 期自我相關係數存在 1 對 1 關 係,但兩個模型配適所得配適函數(fitting function)是相同,因此,我們選擇 MA(1)具有 特定結構誤差型態,而捨去 TOEP(2)。另一方面,CS 要求各期差之自我相關係數均相同, 一般而言,重複測量誤差會隨著期差增加自我相關係數會隨之衰減現象(e.g., Diggle, Liang, & Zeger, 2002, p. 82; Littell et al., 2006, p.175; Tsay, 2005, p. 89),因而 ARMA 族群 似乎是較合適,又以 AR(1)最常被使用(Littell et al., 2006, p.175),且 AR(1)模式精簡 (parsimony)又可反映相關程度隨時間呈現指數方式遞減之性質。似乎反映 CS 比 AR(1) 較強限制結構;因此,CS 比 AR(1)優先被選定 ECM 。

至此,我們依據限制式之強弱程度,在穩態 ECM 選擇順序為 MA(1), CS,及 AR(1)。 此外,MA(q)及 TOEP(q+1)是相同配適度且亦無對 ECM 特殊解釋效果,因而 TOEP(q+1) 不再納入 ECM 選擇過程中之候選者。因此,若 ECM 為穩態結構則 SCDT 過程挑選順序 為 TOEP(1), MA(1), CS, AR(1), MA(2), ARMA(1,1), AR(2), MA(3), ARMA(1,2), ARMA(2,1), AR(3), ...,及 AR(T-1)。而若 ECM 為非穩態結構則 SCDT 過程挑選順序為 TOEPH(1), TOEPH(2), CSH, ARH(1), TOEPH(3), ..., TOEPH(T), UN(2), ...,及 UN(T);且 各種非穩態結構均為 UN(T)在一些限制條件下即可獲得之 ECM 均巢套於 UN(T) (nested within UN(T))。

其中 AR(1): $\varepsilon_t = \phi_1 \varepsilon_{t-1} + v_t$, $|\phi_1| < 1$. $\rho_k = \phi_1^k$.

在 TOEP 期差一期之共變數: σ_1 必然與 AR(1) 期差一期之共變數: $\rho_1 \sigma_{\varepsilon}^2$ 相等。因此在 T=4 由 TOEP 減化成 AR(1)僅需兩個限制式: $\sigma_2 = \phi_1^2 \sigma_{\varepsilon}^2$, $\sigma_3 = \phi_1^3 \sigma_{\varepsilon}^2$ 。一般情況下,由 TOEP 簡化 到 AR(1)則限制式個數為 T-2。

 $MA(1): \varepsilon_{t} = v_{t} - \theta_{1}v_{t-1}, |\theta_{1}| < 1., \rho_{1} = \frac{-\theta_{1}}{1 + \theta_{1}^{2}} \sigma_{\varepsilon}^{2}, \rho_{k} = 0, k > 1.$ 因此,在 *T*=4 由 TOEP 減化成 MA (1) 限制式個數需參個限制式: $\sigma_{1} = \frac{-\theta_{1}}{1 + \theta_{1}^{2}} \sigma_{\varepsilon}^{2}, \sigma_{2} = 0, \sigma_{3} = 0. \circ - 般情況下, 由 TOEP 簡化到 MA(1)則為$ *T*-1 °

3.7.2 SCDT 鑑定 ECM

當 ECM 選擇順序已被確定,接下來問題便是要解決所選定之 ECM 是否合適呢?以

達成模型配適度(model fit)、精簡度(parsimony)及解釋能力(interpretability)。在此,我們 改編 Anderson and Gerbing (1988)所提 SCDT (sequential chi-square difference test)進行篩 選 M_T 之 ECM。依據上述篩選順序選擇 M_T 之 ECM 與飽和 M_s 之 ECM 進行卡方差異檢 定,若模型配適度沒有差異,則以較簡單 ECM。而最簡單之穩態結構 ECM 為 TOEP(1), 最簡單之非穩態結構 ECM 為 TOEPH(1)。在每一個步驟,均循序以卡方差異性檢定目前 選定暫時性 ECM (temporary structure, M_T)與飽和結構(saturated structure, M_s ,穩態為 TOEP,非穩態為 UN)是否有顯著差異,假如有顯著差異表示目前所選擇之 ECM 較飽和 M_s 模式配適度不好,依序選擇較少限制 M_T ,並再與 M_s 比較卡方差異性檢定是否有差 異,直到所選擇新的 M_T 與 M_s 之卡方差異性檢定沒有差異,則終止再次找尋下一個 M_T ,並以當前所選定 M_T 當成最終 ECM。其中 M_T 是巢套於 M_s (M_T nested within M_s),亦即 M_T 係由一些限制條件加諸在 M_s 所獲得(見[附註 A-3.1],同時表示出參數的 個數及由飽和結構簡化到對映各種 ECM時限制式的個數)。至於 SCDT 均可應用於 PROC MIXED(惟二階 LGM 仍不可)及 PROC CALIS,其中 SEM 係以卡方差異檢定,而 HLM 則以概似比檢定(仍為卡方差異檢定),如同穩態性檢定方式,則不再贅述。

Θ ε結構 Level	參數個數 (限制式個數)	ECM (for $T = 4$)				
穩態:						
ARMA(p, q): $\varepsilon_{t} = \phi_{1}\varepsilon_{t-1} + \dots + \phi_{p}\varepsilon_{t-p} + v_{t} - \theta_{1}v_{t-1} - \dots - \theta_{q}v_{t-q}$	<i>p</i> + <i>q</i> +1 (<i>T</i> -1) 除 AR(1) (<i>T</i> -2)	$\sigma_{arepsilon}^2 egin{bmatrix} 1 & & & \ ho_1 & 1 & & \ ho_2 & ho_1 & 1 & \ ho_3 & ho_2 & ho_1 & 1 \end{bmatrix}$				
$\overline{\operatorname{AR}(1): \varepsilon_t = \phi_1 \varepsilon_{t-1} + v_t}$ $ \phi_1 < 1, \ \rho_k = \phi_1^k, \ k > 0.$						
MA(1): $\varepsilon_t = v_t - \theta_1 v_{t-1}$ $ \theta_1 < 1, \ \rho_1 = -\theta_1 / (1 + \theta_1^2),$	$ \rho_k = 0, \ k > 1. $					
ARMA(1,1): $\varepsilon_t = \phi_1 \varepsilon_{t-1} + v_t - \theta_1 v_t$ $ \phi_1 < 1, \theta_1 < 1; \rho_1 = [(\phi_1 - \theta_1) + \phi_1]$	$(1-\phi_1, \theta_1) = \frac{1}{1-2\phi_1} + \frac{1}$	ρ_1^2), $\rho_k = \phi_1 \rho_{k-1}, \ k > 1.$				
AR(2): $\varepsilon_{t} = \phi_{1}\varepsilon_{t-1} + \phi_{2}\varepsilon_{t-2} + v_{t}$ $ \phi_{2} < 1, \phi_{2} + \phi_{1} < 1, \phi_{2} - \phi_{1} < 1;$ $\rho_{1} = \phi_{1} / (1 - \phi_{2}), \ \rho_{k} = \phi_{1}\rho_{k-1}$ MA(2): $\varepsilon_{t} = v_{t} - \theta_{1}v_{t-1} - \theta_{2}v_{t-2}$ $ \theta_{2} < 1, \theta_{2} + \theta_{1} < 1, \theta_{2} - \theta_{1} < 1; \mu$	$+\phi_{2}\rho_{k-2}, k > 1.$ 1896 $p_{1} = (-\theta_{1} + \theta_{1}\theta_{2}) / (1 + \theta_{1}^{2})$	$+\theta_{2}^{2}), \ \rho_{2} = -\theta_{2} / (1 + \theta_{1}^{2} + \theta_{2}^{2}).$				
$ARMA(1,2): \varepsilon_{t} = \phi_{1}\varepsilon_{t-1} + v_{t} - \theta_{1}v_{t-1} - \theta_{2}v_{t-2} \phi_{1} < 1, \theta_{2} < 1, \theta_{1} + \theta_{2} < 1, \theta_{2} - \theta_{1} < 1; \rho_{0} = 1, \rho_{1} = \frac{(-\theta_{1} + \theta_{1}\theta_{2}) + [\phi_{1}(1 + \theta_{2}^{2}) + \phi_{1}(\theta_{1}^{2} - \theta_{2}) - \phi_{1}^{2}\theta_{1}(1 - \theta_{2}) - \phi_{1}^{3}\theta_{2}]}{(1 + \theta_{1}^{2} + \theta_{2}^{2}) - [2\phi_{1}(\theta_{1} - \theta_{1}\theta_{2} + \phi_{1}\theta_{2})]}, \rho_{2} = \frac{-\theta_{2} - [\phi_{1}\theta_{1}(1 - \theta_{2}) + \phi_{1}^{2}(1 + \theta_{1}^{2} + \theta_{2}^{2}) - [2\phi_{1}(\theta_{1} - \theta_{1}\theta_{2} + \phi_{1}\theta_{2})]}{(1 + \theta_{1}^{2} + \theta_{2}^{2}) - [2\phi_{1}(\theta_{1} - \theta_{1}\theta_{2} + \phi_{1}\theta_{2})]}, \rho_{k} = \phi_{1}\rho_{k-1}, k > 2.$						
ARMA(2,1): $\varepsilon_t = \phi_1 \varepsilon_{t-1} + \phi_2 \varepsilon_{t-2} + \phi_2 \varepsilon_{t-2}$	$+v_t - \theta_1 v_{t-1}$,					
$ \phi_2 < 1, \phi_2 + \phi_1 < 1, \phi_2 - \phi_1 < 1$	$, \theta_{1} < 1;$					
$\rho_0 = 1, \rho_1 = [(\phi_1 - \theta_1)(1 - \phi_1\theta_1)]$	$+\phi_2^2\theta_1]/[(1-\phi_2)(1+\theta_1^2)]$	$-2\phi_{\mathrm{I}}\theta_{\mathrm{I}}$],				

表 3.1 常用穩態及非穩態等期間 ECM 彙整表

 $\rho_k = (\phi_1 \rho_{k-1} + \phi_2 \rho_{k-2}), \ k > 1.$

表	3.1	(續)
		(1/)

O _e 結構	參數個數 (限制式個數)	ECM (for $T = 4$)
穩態:		
CS: $\sigma_{\varepsilon}^{2}[\rho \ 1(t \neq t') + 1(t = t')],$ $\rho_{k} = \rho = \sigma_{1} / \sigma_{\varepsilon}^{2}, k > 0$	2 (T-2)	$\begin{bmatrix} \sigma_{\varepsilon}^2 & & \\ \sigma_1 & \sigma_{\varepsilon}^2 & & \\ \sigma_1 & \sigma_1 & \sigma_{\varepsilon}^2 & \\ \sigma_1 & \sigma_1 & \sigma_1 & \sigma_{\varepsilon}^2 \end{bmatrix}$
TOEP(q) (Toeplitz with q bands, q = 1,,T): $\sigma_{ t-t' } 1(t-t' < q),$ $\sigma_0 = \sigma_{\varepsilon}^2, \sigma_k = \rho_k \sigma_{\varepsilon}^2, k > 0$	q (T–q)	$\begin{bmatrix} \sigma_{\varepsilon}^{2} & & \\ 0 & \sigma_{\varepsilon}^{2} & \\ 0 & 0 & \sigma_{\varepsilon}^{2} & \\ 0 & 0 & 0 & \sigma_{\varepsilon}^{2} \end{bmatrix}, \begin{bmatrix} \sigma_{\varepsilon}^{2} & & \\ \sigma_{1} & \sigma_{\varepsilon}^{2} & \\ 0 & \sigma_{1} & \sigma_{\varepsilon}^{2} & \\ 0 & 0 & \sigma_{1} & \sigma_{\varepsilon}^{2} \end{bmatrix},$
	STATES	$\begin{bmatrix} \sigma_{\varepsilon}^{2} & & \\ \sigma_{1} & \sigma_{\varepsilon}^{2} & \\ \sigma_{2} & \sigma_{1} & \sigma_{\varepsilon}^{2} \\ 0 & \sigma_{2} & \sigma_{1} & \sigma_{\varepsilon}^{2} \end{bmatrix}, \begin{bmatrix} \sigma_{\varepsilon}^{2} & & \\ \sigma_{1} & \sigma_{\varepsilon}^{2} & \\ \sigma_{2} & \sigma_{1} & \sigma_{\varepsilon}^{2} \\ \sigma_{3} & \sigma_{2} & \sigma_{1} & \sigma_{\varepsilon}^{2} \end{bmatrix}$
非穩態:	189	6
UN: $\sigma_{_{arepsilon_tarepsilon_{t'}}}$	<i>T</i> (<i>T</i> +1)/2 (0)	$\begin{bmatrix} \sigma_{\varepsilon_1}^2 & & \\ \sigma_{\varepsilon_2\varepsilon_1} & \sigma_{\varepsilon_2}^2 & \\ \sigma_{\varepsilon_3\varepsilon_1} & \sigma_{\varepsilon_3\varepsilon_2} & \sigma_{\varepsilon_3}^2 \\ \sigma_{\varepsilon_4\varepsilon_1} & \sigma_{\varepsilon_4\varepsilon_2} & \sigma_{\varepsilon_4\varepsilon_3} & \sigma_{\varepsilon_4}^2 \end{bmatrix}$
CSH (heterogeneous CS): $\sigma_{\varepsilon_t} \sigma_{\varepsilon_t} [\rho \ l(t \neq t') + l(t = t')],$ $\rho_k = \rho, k > 0$	<i>T</i> +1 (<i>T</i> (<i>T</i> -1)/2 -1)	$\begin{bmatrix} \sigma_{\epsilon_1}^2 & & & \\ \sigma_{\epsilon_2}\sigma_{\epsilon_1}\rho & \sigma_{\epsilon_2}^2 & & \\ \sigma_{\epsilon_3}\sigma_{\epsilon_1}\rho & \sigma_{\epsilon_3}\sigma_{\epsilon_2}\rho & \sigma_{\epsilon_3}^2 & \\ \sigma_{\epsilon_4}\sigma_{\epsilon_1}\rho & \sigma_{\epsilon_4}\sigma_{\epsilon_2}\rho & \sigma_{\epsilon_4}\sigma_{\epsilon_3}\rho & \sigma_{\epsilon_4}^2 \end{bmatrix}$
TOEPH (heterogeneous Toeplitz) $\sigma_{\varepsilon_t} \sigma_{\varepsilon_t} \rho_{ t-t' }$	2T-1 (T(T+1)/2 -2T+1)	$\begin{bmatrix} \sigma_{\varepsilon_1}^2 & & \\ \sigma_{\varepsilon_2}\sigma_{\varepsilon_1}\rho_1 & \sigma_{\varepsilon_2}^2 & \\ \sigma_{\varepsilon_3}\sigma_{\varepsilon_1}\rho_2 & \sigma_{\varepsilon_3}\sigma_{\varepsilon_2}\rho_1 & \sigma_{\varepsilon_3}^2 \\ \sigma_{\varepsilon_4}\sigma_{\varepsilon_1}\rho_3 & \sigma_{\varepsilon_4}\sigma_{\varepsilon_2}\rho_2 & \sigma_{\varepsilon_4}\sigma_{\varepsilon_3}\rho_1 & \sigma_{\varepsilon_4}^2 \end{bmatrix}$
表 3.1 (續)

Θ_{ϵ} 結構	參數個數 (限制式個數)	ECM (for $T = 4$)
非穩態:		
ARH(1) (heterogeneous AR(1)): $\sigma_{\varepsilon_{t}}\sigma_{\varepsilon_{t'}}\rho^{ t-t }$	T+1 (T(T-1)/2 -1)	$\begin{bmatrix} \sigma_{\epsilon_1}^2 & & \\ \sigma_{\epsilon_2}\sigma_{\epsilon_1}\rho & \sigma_{\epsilon_2}^2 & \\ \sigma_{\epsilon_3}\sigma_{\epsilon_1}\rho^2 & \sigma_{\epsilon_3}\sigma_{\epsilon_2}\rho & \sigma_{\epsilon_3}^2 \\ \sigma_{\epsilon_4}\sigma_{\epsilon_1}\rho^3 & \sigma_{\epsilon_4}\sigma_{\epsilon_2}\rho^2 & \sigma_{\epsilon_4}\sigma_{\epsilon_3}\rho & \sigma_{\epsilon_4}^2 \end{bmatrix}$
TOEPH(q) (heterogeneous Toeplitz with q bands, q = 1,, T): $\sigma_{\varepsilon_t} \sigma_{\varepsilon_t} \rho_{ t-t' } 1(t-t' < q)$	T+q-1 (T(T+1)/2- (T+q-1))	$\begin{bmatrix} \sigma_{\varepsilon_{1}}^{2} & \sigma_{\varepsilon_{2}}^{2} \\ 0 \sigma_{\varepsilon_{2}}^{2} & \sigma_{\varepsilon_{1}}^{2} \rho_{1} & \sigma_{\varepsilon_{2}}^{2} \\ 0 & 0 \sigma_{\varepsilon_{3}}^{2} & \sigma_{\varepsilon_{4}}^{2} \rho_{1} & \sigma_{\varepsilon_{2}}^{2} \\ 0 & \sigma_{\varepsilon_{3}} \sigma_{\varepsilon_{2}} \rho_{1} & \sigma_{\varepsilon_{3}}^{2} \\ 0 & \sigma_{\varepsilon_{3}} \sigma_{\varepsilon_{2}} \rho_{1} & \sigma_{\varepsilon_{3}}^{2} \\ 0 & \sigma_{\varepsilon_{4}} \sigma_{\varepsilon_{3}} \rho_{1} & \sigma_{\varepsilon_{4}}^{2} \end{bmatrix}$
		$\begin{bmatrix} & \text{TOEPH}(3) \\ \sigma_{\varepsilon_{1}}^{2} & \sigma_{\varepsilon_{2}}^{2} \\ \sigma_{\varepsilon_{3}}\sigma_{\varepsilon_{1}}\rho_{1} & \sigma_{\varepsilon_{2}}^{2} \\ \sigma_{\varepsilon_{3}}\sigma_{\varepsilon_{1}}\rho_{2} & \sigma_{\varepsilon_{3}}\sigma_{\varepsilon_{2}}\rho_{1} & \sigma_{\varepsilon_{3}}^{2} \\ 0 & \sigma_{\varepsilon_{4}}\sigma_{\varepsilon_{2}}\rho_{2} & \sigma_{\varepsilon_{4}}\sigma_{\varepsilon_{3}}\rho_{1} & \sigma_{\varepsilon_{4}}^{2} \\ 0 & \text{TOEPH}(4) \\ \\ \sigma_{\varepsilon_{2}}^{2} & \sigma_{\varepsilon_{1}}\rho_{1} & \sigma_{\varepsilon_{2}}^{2} \\ \sigma_{\varepsilon_{3}}\sigma_{\varepsilon_{1}}\rho_{2} & \sigma_{\varepsilon_{3}}\sigma_{\varepsilon_{2}}\rho_{1} & \sigma_{\varepsilon_{3}}^{2} \\ \sigma_{\varepsilon_{4}}\sigma_{\varepsilon_{1}}\rho_{3} & \sigma_{\varepsilon_{4}}\sigma_{\varepsilon_{2}}\rho_{2} & \sigma_{\varepsilon_{4}}\sigma_{\varepsilon_{3}}\rho_{1} & \sigma_{\varepsilon_{4}}^{2} \\ \end{bmatrix}.$
UN(q) (UN with q bands, q = 1,, T): $\sigma_{\varepsilon_t \varepsilon_t} 1(t - t' < q)$.	$\frac{T(T+1)/2-}{\frac{(T-q+1)(T-q)}{2}}$ $(\frac{(T-q+1)(T-q)}{2})$	$\begin{bmatrix} \sigma_{\varepsilon_{1}}^{2} & & & \\ 0 & \sigma_{\varepsilon_{2}}^{2} & & \\ 0 & 0 & \sigma_{\varepsilon_{3}}^{2} & \\ 0 & 0 & 0 & \sigma_{\varepsilon_{4}}^{2} \end{bmatrix}, \begin{bmatrix} \sigma_{\varepsilon_{1}}^{2} & & & \\ \sigma_{\varepsilon_{2}\varepsilon_{1}} & \sigma_{\varepsilon_{2}}^{2} & & \\ 0 & \sigma_{\varepsilon_{3}\varepsilon_{2}} & \sigma_{\varepsilon_{3}}^{2} & \\ 0 & 0 & \sigma_{\varepsilon_{4}\varepsilon_{3}} & \sigma_{\varepsilon_{4}}^{2} \end{bmatrix}, \begin{bmatrix} \sigma_{\varepsilon_{1}}^{2} & & & \\ \sigma_{\varepsilon_{2}\varepsilon_{1}} & \sigma_{\varepsilon_{2}}^{2} & & \\ 0 & 0 & \sigma_{\varepsilon_{4}\varepsilon_{3}} & \sigma_{\varepsilon_{4}}^{2} \end{bmatrix}, \begin{bmatrix} \sigma_{\varepsilon_{1}}^{2} & & & \\ \sigma_{\varepsilon_{2}\varepsilon_{1}} & \sigma_{\varepsilon_{2}}^{2} & & \\ \sigma_{\varepsilon_{3}\varepsilon_{1}} & \sigma_{\varepsilon_{3}\varepsilon_{2}} & \sigma_{\varepsilon_{3}}^{2} & \\ 0 & \sigma_{\varepsilon_{4}\varepsilon_{2}} & \sigma_{\varepsilon_{4}\varepsilon_{3}} & \sigma_{\varepsilon_{4}}^{2} \end{bmatrix}, \begin{bmatrix} \sigma_{\varepsilon_{1}}^{2} & & & \\ \sigma_{\varepsilon_{2}\varepsilon_{1}} & \sigma_{\varepsilon_{2}}^{2} & & \\ \sigma_{\varepsilon_{2}\varepsilon_{1}} & \sigma_{\varepsilon_{2}}^{2} & & \\ \sigma_{\varepsilon_{3}\varepsilon_{1}} & \sigma_{\varepsilon_{3}\varepsilon_{2}} & \sigma_{\varepsilon_{3}}^{2} & \\ \sigma_{\varepsilon_{3}\varepsilon_{1}} & \sigma_{\varepsilon_{3}\varepsilon_{2}} & \sigma_{\varepsilon_{3}}^{2} & \\ \sigma_{\varepsilon_{4}\varepsilon_{1}} & \sigma_{\varepsilon_{4}\varepsilon_{2}} & \sigma_{\varepsilon_{4}\varepsilon_{3}} & \sigma_{\varepsilon_{4}}^{2} \end{bmatrix}$

備註: *T* 表全部期數。 1(A) 表示當 A 條件為真則為 1,例如 1(|t-t'| < q)=1 當|t-t'| < q則為 1 否則為 0。 ρ_k 表示期差為 k 的自我相關係數, ρ_0 =1。 TOEPH(*T*) = TOEPH; UN(*T*) = UN; TOEPH(1) = UN(1). (限制式個數)為對 *M*_s 限制後可得到特定結構 ECM。

3.8 鑑定一階 ECM 之準則

綜合前兩節,本文提供鑑定一階 ECM 之準則(guideline),如圖 3.3 所述,共兩個檢 定步驟分別為:

圖 3.3 Level-1 ECM 鑑別之流程

其中 M_s表示飽和模式 ECM 結構,當穩態時則為 TOEP,當非穩態時則為 UN;M_T表示一個暫時選定 ECM 結構,而 M_T 更新依序為: 穩態結構:

 $TOEP(1) \rightarrow MA(1) \rightarrow CS \rightarrow AR(1) \rightarrow MA(2) \rightarrow ARMA(1,1) \rightarrow AR(2) \rightarrow MA(3) \rightarrow ARMA(1,2) \rightarrow ARMA(2,1) \rightarrow AR(3) \rightarrow \cdots \rightarrow AR(T-1);$

非穩態結構: TOEPH(1) \rightarrow TOEPH(2) \rightarrow CSH \rightarrow ARH(1) \rightarrow TOEPH(3) $\rightarrow \cdots \rightarrow$ TOEPH(*T*) \rightarrow UN(2) $\rightarrow \cdots \rightarrow$ UN(*T*)

步驟1:穩態性檢定

穩態性檢定方式本文採用三種方法,在一階 LGM 分別有卡方差異檢定、PROC CALIS 內定 SIMTESTS 之聯合檢定及概似比檢定,前二者供 PROC CALIS (SEM)使用、最後者供 PROC MIXED (HLM)使用。在二階 LGM 僅 PROC CALIS 方法可使用。

步驟 2:SCDT 方法鑑定 ECM

依據前一單 ECM 之限制式多寡及其限制式強弱關係選擇 ECM 並以 SCDT 依序檢定 找出合適 ECM。當 ECM 檢定穩態性檢定之後,則下一步合適 ECM,首先選擇限制最 多(或最簡單)ECM。而最簡單之穩態結構 ECM 為 TOEP(1),最簡單之非穩態結構 ECM 為 TOEPH(1),在每一個步驟,均循序以卡方差異性檢定(sequential chi-square difference test, SCDT)檢視目前選定暫時性 M_T之 ECM 與飽和結構 M_s之 ECM (穩態為 TOEP,非 穩態為 UN)是否有顯著差異,假如有顯著差異表示目前所選擇之 ECM 較飽和 M_s模式配 適度不好,依序選擇較少限制 M_T,並依序再與 M_s比較卡方差異性檢定是否有差異,直 到所選擇新的 M_T 與 M_s之卡方差異性檢定沒有差異,則終止再次找尋下一個 M_T,並以 當前所選定 M_T 當成最終 ECM。

3.9 本論文研究流程

為具體展現本研究所提出方法,將以第二章圖 2.3(一階 LGM)及圖 2.4(二階 LGM) 為例,分別以模擬及實際資料並輔以 PROC CALIS(SEM)及 PROC MIXED(HLM)兩種方 法進行示範操作。整個資料分析流程如圖 3.4 所示,以供第四章 ECM 之實例操作示範。

1896

註:其中在二階 LGM 時於 ECM 選擇流程 步驟 1 之前先行檢定各問項之獨立性

圖 3.4 第四章 ECM 鑑定之實例示範流程

第四章 ECM 鑑定之實例操作示範

本章將以分別以一階 LGM(圖 2.3)及二階 LGM(圖 2.4)為架構,並以模擬資料為例示範本文所提出 ECM 鑑定。同時為能以 SEM 及 HLM 方法進行 ECM 鑑定。本章依據第二章之 LGM 兩個釋例架構及第三章 ECM 鑑定之研究方法配合 PROC CALIS 及 PROC MIXED 為釋例進行操作示範及比較。

4.1 ECM 在 SEM 之設定方法

第二章表 2.3 或第三章表 3.1 文獻上常用 ECM 轉成 PROC CALIS(SEM)語法,由第 三章所述在 PROC CALIS 是採用 STD, COV 及 PARAMETERS 三個 statements 即可定義 ECM 結構。本單元將舉二個 ECM 例子說明之,其一例爲穩態 ARAM(1,1),另一爲非穩 態 TOEPH 且 T = 4 個時點(t =1,2,3,4)爲例,其它穩態 ECM 如:AR(1)、MA(1)、AR(2)、 MA(2)及非穩態 ECM 如:ARH(1)、UN 等之 PROC CALIS 程式,則分別展現於表 4.1。

4.1.1 ARMA(1,1) 之 ECM 在 PROC CALIS 程式說明

依 Box, Jenkins, and Reinsel (1994, p.77)時間序列書中定義 Level-1 誤差為 ARMA(1,1) 過程,即 $\varepsilon_t = \phi_t \varepsilon_{t-1} + v_t - \theta_t v_{t-1}$,其中 ϕ_t 表示自我迴歸參數, θ_t 表示移動平均參數,及 v_t 是 i.i.d 干擾過程(disturbance process)。其意義即為在時間t的 level-1 誤差,能被前一期誤差 及前一期干優項所解釋,若以第二章圖 2.3 且 T=4 爲例,則 level-1 之 ECM 爲

$$\boldsymbol{\Theta}_{\boldsymbol{\varepsilon}} = \sigma_{\boldsymbol{\varepsilon}}^{2} \begin{bmatrix} 1 & & & \\ \rho_{1} & 1 & & \\ \rho_{2} & \rho_{1} & 1 & \\ \rho_{3} & \rho_{2} & \rho_{1} & 1 \end{bmatrix},$$
(4.1)

其中 $\rho_1 = \frac{(\phi_1 - \theta_1)(1 - \phi_1 \theta_1)}{(1 - 2\phi_1 \theta_1 + \theta_1^2)}$, $\rho_k = \phi_1 \rho_{k-1}$, k > 1且兩個參數限制 $|\phi_1| < 1$ 及 $|\theta_1| < 1$ 。而 Level-2 成長因素構念誤差之 ECM 假設為 UN,且不隨著時間變化。依據第二章穩態定義,即為 式(4.1)矩陣之主對角線變異數相同、期差一期共變異數相同及期差二期共變異數相同。因此,level-1 及 level-2 之 ECM 在 PROC CALIS 以 STD 及 COV 分別表示變異數及兩期 差間共變異數,如下程式(完整程式見程式附錄[B-6]):

STD

E1=VARE, E2=VARE, E3=VARE, E4=VARE, D0=VARD0, D1=VARD1;

COV

E1 E2=COV_lag1, E2 E3=COV_lag1, E3 E4=COV_lag1,

E1 E3=COV_lag2, E2 E4=COV_lag2,

E1 E4=COV_lag3,

D0 D1=COVD0D1;

在 STD statement 之 VARE 表示 level-1,四期誤差 $\varepsilon_1 - \varepsilon_4$ (以 E1–E4 表示)的變異數均 相同為 $\sigma_{\varepsilon}^2 \circ$ VARD0 及 VARD1 表示圖 2.3 之 level-2 成長因素構念誤差 $\zeta_{\eta_{\alpha}}$ 及 $\zeta_{\eta_{\beta}}$ (以 D0 及 D1 表示)之變異數(即 $\sigma_{\zeta_{\eta_{\alpha}}}^2 \gtrsim \sigma_{\zeta_{\eta_{\beta}}}^2$)。E

在 COV statement 之 COV_lag1 及 COV_lag2 分別表示期差 1 期相同共變異數(即 $Cov(\varepsilon_1, \varepsilon_2), Cov(\varepsilon_2, \varepsilon_3)$ 及 $Cov(\varepsilon_3, \varepsilon_4)$)及期差 2 期之相同共變異數(如

 $Cov(\varepsilon_1, \varepsilon_3), Cov(\varepsilon_2, \varepsilon_4))$ 均相同。而 COV_lag3 表示期差 3 期之共變異數(即 $Cov(\varepsilon_1, \varepsilon_4))$ 。

CD0D1表示成長因素構念誤差之共變異數(即 σ_{ζ_n,ζ_n})。參數 ρ_1 及 ϕ_1 均未在LINEQS,

STD, COV 出現之參數,此時利用 PARAMETERS statement 引進兩額外參數,此兩個額 外參數,分別建立式(4.1)參數 Ø 及 ρ₁ 在各期差共變異數之關係,其程式如下:

PARAMETERS

PHI1 RHO1;

COV_lag1=RHO1*VARE;

COV_lag2=PHI1* COV_lag1; /* i.e., COV_lag2=PHI1*RHO1* VARE; */

COV_lag3=PHI1* COV_lag2; /* i.e., COV_lag3=(PHI1**2)*RHO1*VARE; */

上述 PARAMETERS statement 引進兩額外參數名稱 'PHI1 及 RHO1'分別代表 ϕ 及 ρ_1 。 'COV_lag1=RHO*VARE'表示期差一期均為相同的自我共變異數,代表 $\sigma_{\varepsilon}^2 \rho_1$,另外期差 2期之自我共變異數為 $\sigma_{\varepsilon}^2 \phi \rho_1$,其程式語法為 COV_lag2=PHI1* COV_lag1; /* i.e.,

COV_lag2=PHI1*RHO1* VARE; */。期差 3 期之自我共變異數為 $\sigma_{\varepsilon}^{2}\phi_{1}\rho_{2} = \sigma_{\varepsilon}^{2}\phi_{1}^{2}\rho_{1}$,其程 式語法為 COV_lag3=PHI1* COV_lag2; /* i.e., COV_lag3=(PHI1**2)*RHO1*VARE; */。 而限制式 | ϕ_{1} |<1則以 BOUNDS statement 陳述,其程式如下:

−1. < PHI1 < 1.;

另一個例子為 TOEPH 之 ECM,如式(4.2)所示:

$$\boldsymbol{\Theta}_{\boldsymbol{\varepsilon}} = \begin{bmatrix} \sigma_{\varepsilon_1}^2 & \sigma_{\varepsilon_2} \sigma_{\varepsilon_1} \rho_1 & \sigma_{\varepsilon_2}^2 \\ \sigma_{\varepsilon_2} \sigma_{\varepsilon_1} \rho_1 & \sigma_{\varepsilon_2}^2 & \sigma_{\varepsilon_3} \sigma_{\varepsilon_2} \rho_1 & \sigma_{\varepsilon_3}^2 \\ \sigma_{\varepsilon_3} \sigma_{\varepsilon_1} \rho_2 & \sigma_{\varepsilon_3} \sigma_{\varepsilon_2} \rho_1 & \sigma_{\varepsilon_3}^2 \\ \sigma_{\varepsilon_4} \sigma_{\varepsilon_1} \rho_3 & \sigma_{\varepsilon_4} \sigma_{\varepsilon_2} \rho_2 & \sigma_{\varepsilon_4} \sigma_{\varepsilon_3} \rho_1 & \sigma_{\varepsilon_4}^2 \end{bmatrix},$$
(4.2)

式中 σ_{ϵ_t} 表示測量誤差 ε_t 在t = 1, 2, 3, 4各期之標準差, ρ_k 爲期差k(=1,2,3)的自我相關係數。 level-1 各期誤差變異數可以不相同,但相同期差的自我相關係數需相同。PROC CALIS 使用 STD 及 COV statements 兩個敘述刻劃 ECM 的誤差變異數及自我共變異數, 其程式如下:

STD

E1=VARE1, E2=VARE2, E3=VARE3, E4=VARE4,

D0=VARD0, D1=VARD1;

COV

E1 E2=COVE1E2, E1 E3=COVE1E3, E1 E4=COVE1E4,

E2 E3=COVE2E3, E2 E4=COVE2E4, E3 E4=COVE3E4,

D0 D1=COVD0D1;

程式中 VARE1–VARE4 分別表示 level-1 四個誤差 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 及 ε_4 之變異數, VARD0 及 VARD1 則分別為 level-2 誤差 ζ_{η_a} 及 ζ_{η_p} 之變異數。COVE1E2–COVE3E4 分別反應 level-1 誤差間彼此自我共變異數, COVD0D1 反應 level-2 自我共變異數的估計。因為誤差 ε_i 及 ε_i 之共變異數為 $\sigma_{\varepsilon_i\varepsilon_i}$ 具有特定關係式 $\sigma_{\varepsilon_i\varepsilon_i} = \sigma_{\varepsilon_i} \sigma_{\varepsilon_i} \rho_{\varepsilon_i\varepsilon_i}$ 且相同期差之自我相關係數均相 同。因此,程式中需增加 PARAMETERS statement 敘述如下:

PARAMETERS

RHO1 RHO2 RHO3;

COVE1E2=SQRT(VARE1)*SQRT(VARE2)*RHO1;

COVE1E3=SQRT(VARE1)*SQRT(VARE3)*RHO2;

COVE1E4=SQRT(VARE1)*SQRT(VARE4)*RHO3;

COVE2E3=SQRT(VARE2)*SQRT(VARE3)*RHO1;

COVE2E4=SQRT(VARE2)*SQRT(VARE4)*RHO2;

COVE3E4=SQRT(VARE3)*SQRT(VARE4)*RHO1;

雖然 PROC MIXED 提供很多內定的 ECM,但卻不允許使用者對有趣 ECM 進行修改。相反地,PROC CALIS 允許研究者設定自己有趣的 ECM。例如若誤差為 AR(2): $\varepsilon_{t} = \phi \varepsilon_{t-1} + \phi_{2} \varepsilon_{t-2} + v_{t}$,其中 ϕ_{t} 和 ϕ_{2} 是自我迴歸參數而 v_{t} 是i.i.d.的過程 (Box, Jenkins, & Reinsel, 1994, p.54),可以推導出如下之 ECM(見附註 A-3.2):

$$\sigma_{\varepsilon}^{2} \begin{bmatrix} 1 & & & \\ \rho_{1} & 1 & & \\ \rho_{2} & \rho_{1} & 1 & \\ \rho_{3} & \rho_{2} & \rho_{1} & 1 \end{bmatrix},$$
(4.3)

其中 $\rho_0 = 1$, $\rho_1 = \phi_1 / (1 - \phi_2)$ 及 $\rho_k = \phi_1 \rho_{k-1} + \phi_2 \rho_{k-2}$, k = 2, 3,限制條件為| $\phi_2 | < 1$, $\phi_2 + \phi_1 < 1$,及 $\phi_2 - \phi_1 < 1$ 。利用 PROC CALIS 撰寫式(4.3)之程式(如表 4.1 所示),而兩個線性組合的限制條件" $\phi_2 + \phi_1 < 1$ "及" $\phi_2 - \phi_1 < 1$ "則以LINCON statement 敘述指令撰寫如下:

LINCON

然而 PROC MIXED 卻無提供 AR(2)可使用,另外如 MA(1)及 MA(2)之 ECM 在 PROC MIXED 亦無法使用,但 PROC CALIS 均能處理(程式見表 4.1)。因此,PROC CALIS 在 處理 ECM 較 PROC MIXED 為彈性。另外表 3.1 包含 ARMA(*p*,*q*) (autoregressive moving average of order (*p*, *q*)), CS (compound symmetry); TOEP(*q*)及 UN(*q*) (*q* bands, *q* = 1,...,*T* (全部時點數目),表示低於 *q* 個矩陣帶(band)之參數不爲零,但高於 *q* 個矩陣帶之參數均 爲零,矩陣帶 *q* 相當於"期差 *k*-1"。在表 3.1 中除了包含表 4.1 之外,另外還有 ARMA(*p*,*q*), CS,及 TOEP(*q*);上述 ECM 可仿照表 4.1 方式,以 PROC CALIS 之 VAR, STD, PARAMETERS, BOUND 及 LINCON 等敘述撰寫 ECM。另 TOEP(1) 為 i.i.d. ECM 為 VC。

4.2 一階 LGM ECM 鑑定之釋例

為達列本文所提出鑑定 level-1 ECM 準則之說明,本單元以圖 2.1 一階 LGM 為架 構,進行母体參數設計、模擬一組樣本資料、多變量資料結構轉成單變量資料結構、基 本資料描述、資料的穩態性檢定、依照圖 3.3 之流程示範、最終結果說明及比較 HLM 與 SEM 之異同。

表 4.1 PROC CALIS 建構 ECM 之程式指令

Θ_{ϵ} 結構及 ECM (for $T = 4$)	參數個數 (限制式個數)	PROC CALIS (for T=4)程式指令
AR(1): $\varepsilon_{t} = \phi_{1}\varepsilon_{t-1} + v_{t}, \phi_{1} < 1;$ $\sigma_{\varepsilon}^{2} \begin{bmatrix} 1 & & \\ \rho_{1} & 1 & \\ \rho_{2} & \rho_{1} & 1 \\ \rho_{3} & \rho_{2} & \rho_{1} & 1 \end{bmatrix},$ $\rho_{k} = \phi_{1}^{k}, k > 0.$	2 (T-2)	STD E1=VARE, E2=VARE, E3=VARE, E4=VARE, D0 =VARD0, D1 =VARD1; COV E1 E2=COV_lag1, E2 E3=COV_lag1, E3 E4=COV_lag1, E1 E3=COV_lag2, E2 E4=COV_lag2, E1 E4=COV_lag3, D0 D1=CD0D1; PARAMETERS PHI1; COV_lag1= PHI1*VARE; COV_lag2=(PHI1**2)*VARE; COV_lag3= (PHI1**3) *VARE; BOUNDS -1. < PHI1 < 1. ;
$\begin{split} \text{MA}(1): \\ \varepsilon_{t} &= v_{t} - \theta_{1} v_{t-1}, \ \theta_{1} < 1 \\ \\ \sigma_{\varepsilon}^{2} \begin{bmatrix} 1 & & \\ \rho_{1} & 1 & \\ 0 & \rho_{1} & 1 \\ 0 & 0 & \rho_{1} & 1 \end{bmatrix}, \\ \rho_{1} &= \frac{-\theta_{1}}{(1+\theta_{1}^{2})}, \\ \rho_{k} &= 0, k > 1. \end{split}$	2 (T-1)	STD E1=VARE, E2=VARE, E3=VARE, E4=VARE, D0 =VARD0, D1 =VARD1; COV E1 E2=COV_lag1, E2 E3=COV_lag1, E3 E4=COV_lag1, D0 D1=CD0D1; PARAMETERS THE1; COV_lag1= (-THE1/(1+ THE1**2))*VARE; BOUNDS -1. < THE1 < 1. ;
$ \overline{\text{ARMA}(1,1):} $ $ \varepsilon_{t} = \phi_{1}\varepsilon_{t-1} + v_{t} - \theta_{1}v_{t-1}, $ $ \phi_{1} < 1, \theta_{1} < 1; $ $ \sigma_{\varepsilon}^{2} \begin{bmatrix} 1 & & \\ \rho_{1} & 1 & \\ \rho_{2} & \rho_{1} & 1 & \\ \rho_{3} & \rho_{2} & \rho_{1} & 1 & \\ \rho_{3} & \rho_{2} & \rho_{1} & 1 & \\ \rho_{1} = \frac{(\phi_{1} - \theta_{1})(1 - \phi_{1}\theta_{1})}{(1 - 2\phi_{1}\theta_{1} + \theta_{1}^{2})}, $ $ \rho_{k} = \phi_{1}\rho_{k-1}, \ k > 1. $	3 (T-1)	STD E1=VARE, E2=VARE, E3=VARE, E4=VARE, D0=VARD0, D1=VARD1; COV E1 E2=COV_lag1, E2 E3=COV_lag1, E3 E4=COV_lag1, E1 E3=COV_lag2, E2 E4=COV_lag2, E1 E4=COV_lag3, D0 D1=CD0D1; PARAMETERS PHI1 RHO1; COV_lag1=RHO1*VARE; COV_lag2=PHI1* COV_lag1; COV_lag3=PHI1* COV_lag2; BOUNDS -1. < PHI1 < 1.;

表 4.1 (續)

$\Theta_{\epsilon}結構及 ECM$ (for $T = 4$)	參數個數 (限制式 個數)	PROC CALIS (for T = 4)程式指令
$\overline{\text{AR}(2):} \\ \varepsilon_{t} = \phi_{1}\varepsilon_{t-1} + \phi_{2}\varepsilon_{t-2} + v_{t}, \\ \phi_{2} < 1, \phi_{2} + \phi_{1} < 1, \phi_{2} - \phi_{1} < 1; \\ \sigma_{\varepsilon}^{2} \begin{bmatrix} 1 & & \\ \rho_{1} & 1 & \\ \rho_{2} & \rho_{1} & 1 \\ \rho_{3} & \rho_{2} & \rho_{1} & 1 \end{bmatrix}, \\ \rho_{1} = \phi_{1} / (1 - \phi_{2}), \\ \rho_{\varepsilon} = \phi_{1} \rho_{\varepsilon} + \phi_{1} \rho_{\varepsilon} + k > 1$	3 (T-1)	STD E1-E4=4*VARE, D0=VARD0, D1=VARD1; COV E1 E2=COV_lag1, E2 E3=COV_lag1, E3 E4=COV_lag1, E1 E3=COV_lag2, E2 E4=COV_lag2, E1 E4=COV_lag3, D0 D1=CD0D1; PARAMETERS PHI1 PHI2; RH01= PHI1/(1–PHI2); COV_lag1=RH01*VARE; COV_lag2=PHI1*COV_lag1+ PHI2 *VARE; COV_lag3=PHI1*COV_lag2+PHI2*COV_lag1; LINCON PHI2 + PHI1 < 1., PHI2 –PHI1 < 1.; BOUNDS -1. < PHI2 < 1.;
$ \frac{P_{k} - P_{l} v_{k-1} - P_{2} v_{k-2}}{MA(2):} $ $ \frac{\varepsilon_{t} = v_{t} - \theta_{l} v_{t-1} - \theta_{2} v_{t-2}, \\ \theta_{2} < 1, \theta_{2} + \theta_{1} < 1, \theta_{2} - \theta_{1} < 1; \\ \theta_{2} < 1, \theta_{2} + \theta_{1} < 1, \theta_{2} - \theta_{1} < 1; \\ \rho_{1} = \frac{1}{\rho_{1}} \frac{1}{\rho_{2}} \rho_{1} - \frac{1}{\rho_{2}} \rho_{1} - \frac{1}{\rho_{1}} \frac{1}{\rho_{2}} \rho_{1} - \frac{1}{\rho_{2}} \rho_{2} \rho_{1} - \frac{1}{\rho_{2}} \rho_{1} - \frac{1}{\rho_{2}} \rho_{1} - \frac{1}{\rho_{2}} \rho_{2} \rho_{1} - \frac{1}{\rho_{2}} \rho_{2} \rho_{1} - \frac{1}{\rho_{2}} \rho_{1} - \frac{1}{\rho_{2}} \rho_{2} \rho_{1} - \frac{1}{\rho_{2}} \rho_{2} \rho_$	3 (<i>T</i> -1)	STD E1=VARE, E2=VARE, E3=VARE, E4=VARE, D0=VARD0, D1=VARD1; COV E1 E2=COV_lag1, E2 E3=COV_lag1, E3 E4=COV_lag1, E1 E3=COV_lag2, E2 E4=COV_lag2, D0 D1=CD0D1; PARAMETERS THE1 THE2; COV_lag1=((-THE1+THE1*THE2)/ (1+THE1*2+THE2*2))*VARE; COV_lag2=(-THE2/(1+THE1**2+THE2**2))*VARE; LINCON THE2+ THE1 < 1., THE2 - THE1 < 1.; BOUNDS -1. < THE2 < 1. ;
ARH(1) (heterogeneous AR(1)): $\begin{bmatrix} \sigma_{\varepsilon_{1}}^{2} & & \\ \sigma_{\varepsilon_{2}}\sigma_{\varepsilon_{1}}\rho & \sigma_{\varepsilon_{2}}^{2} & \\ \sigma_{\varepsilon_{3}}\sigma_{\varepsilon_{1}}\rho^{2} & \sigma_{\varepsilon_{3}}\sigma_{\varepsilon_{2}}\rho & \sigma_{\varepsilon_{3}}^{2} \\ \sigma_{\varepsilon_{4}}\sigma_{\varepsilon_{1}}\rho^{3} & \sigma_{\varepsilon_{4}}\sigma_{\varepsilon_{2}}\rho^{2} & \sigma_{\varepsilon_{4}}\sigma_{\varepsilon_{3}}\rho & \sigma_{\varepsilon_{4}}^{2} \end{bmatrix}$	<i>T</i> +1 (<i>T</i> (<i>T</i> -1)/2 -1)	STD E1=VARE1, E2=VARE2, E3=VARE3, E4=VARE4, D0=VARD0, D1=VARD1; COV E1 E2=COVE1E2, E1 E3=COVE1E3, E1E4=COVE1E4, E2 E3=COVE2E3, E2 E4=COVE2E4, E3 E4=COVE3E4, D0 D1=CD0D1; PARAMETERS RHO; COVE1E2=SQRT(VARE1)*SQRT(VARE2)*RHO; COVE1E3=SQRT(VARE1)*SQRT(VARE3)*RHO**2; COVE1E4=SQRT(VARE1)*SQRT(VARE4)*RHO**3; COVE2E3=SQRT(VARE2)*SQRT(VARE4)*RHO**2; COVE2E4=SQRT(VARE2)*SQRT(VARE4)*RHO**2; COVE3E4=SQRT(VARE3)*SQRT(VARE4)*RHO**2; COVE3E4=SQRT(VARE3)*SQRT(VARE4)*RHO**2;

表 4.1 (續)

Θ_{ε} 結構及 ECM (for $T = 4$)	參數個 數 (限制 式個數	PROC CALIS (for $T = 4$)程式指令
TOEPH (heterogeneous Toeplitz): $\begin{bmatrix} \sigma_{\varepsilon_1}^2 & & \\ \sigma_{\varepsilon_2}\sigma_{\varepsilon_1}\rho_1 & \sigma_{\varepsilon_2}^2 & & \\ \sigma_{\varepsilon_2}\sigma_{\varepsilon_1}\rho_1 & \sigma_{\varepsilon_2}\rho_1 & & \\ \sigma_{\varepsilon_1}\sigma_{\varepsilon_2}\sigma_{\varepsilon_1}\rho_1 & & \\ \sigma_{\varepsilon_2}\sigma_{\varepsilon_1}\rho_1 & & \\ \sigma_{\varepsilon_1}\sigma_{\varepsilon_1}\rho_1 & & \\ \sigma_{\varepsilon_1}\sigma_{\varepsilon_2}\sigma_{\varepsilon_1}\rho_1 & & \\ \sigma_{\varepsilon_2}\sigma_{\varepsilon_1}\rho_1 & & \\ \sigma_{\varepsilon_1}\sigma_{\varepsilon_1}\sigma_{\varepsilon_1}\rho_1 & & \\ \sigma_{\varepsilon_1}\sigma_{\varepsilon_1}\sigma_{\varepsilon_1}\rho_1 & & \\ \sigma_{\varepsilon_1}\sigma_{\varepsilon_1}\sigma_{\varepsilon_1}\sigma_{\varepsilon_1}\rho_1 & & \\ \sigma_{\varepsilon_1}\sigma_{\varepsilon_1}\sigma_{\varepsilon_1}\sigma_{\varepsilon_1}\rho_1 & & \\ \sigma_{\varepsilon_1}\sigma_{\varepsilon_1}\sigma_{\varepsilon_1}\sigma_{\varepsilon_1}\sigma_{\varepsilon_1}\rho_1 & & \\ \sigma_{\varepsilon_1}$	2 <i>T</i> -1 (<i>T</i> (<i>T</i> +1)/ 2 - 2 <i>T</i> +1)	STD E1=VARE1, E2=VARE2, E3=VARE3, E4=VARE4, D0=VARD0, D1=VARD1; COV E1 E2=COVE1E2, E1 E3=COVE1E3, E1 E4=COVE1E4, E2 E3=COVE2E3, E2 E4=COVE2E4, E3 E4=COVE3E4, D0 D1_CD0D1
$\begin{bmatrix} \sigma_{\varepsilon_3} \sigma_{\varepsilon_1} \rho_2 & \sigma_{\varepsilon_3} \sigma_{\varepsilon_2} \rho_1 & \sigma_{\varepsilon_3} \\ \sigma_{\varepsilon_4} \sigma_{\varepsilon_1} \rho_3 & \sigma_{\varepsilon_4} \sigma_{\varepsilon_2} \rho_2 & \sigma_{\varepsilon_4} \sigma_{\varepsilon_3} \rho_1 & \sigma_{\varepsilon_4}^2 \end{bmatrix}$		D0 D1=CD0D1; PARAMETERS RHO1 RHO2 RHO3; COVE1E2=SQRT(VARE1)*SQRT(VARE2)*RHO1; COVE1E3=SQRT(VARE1)*SQRT(VARE3)*RHO2; COVE1E4=SQRT(VARE1)*SQRT(VARE4)*RHO3; COVE2E3=SQRT(VARE2)*SQRT(VARE3)*RHO1; COVE2E4=SQRT(VARE2)*SQRT(VARE4)*RHO2; COVE3E4=SQRT(VARE3)*SQRT(VARE4)*RHO1;
UN: $\begin{bmatrix} \sigma_{\varepsilon_1}^2 & & \\ \sigma_{\varepsilon_2\varepsilon_1} & \sigma_{\varepsilon_2}^2 & \\ \sigma_{\varepsilon_3\varepsilon_1} & \sigma_{\varepsilon_3\varepsilon_2} & \sigma_{\varepsilon_3}^2 \\ \sigma_{\varepsilon_4\varepsilon_1} & \sigma_{\varepsilon_4\varepsilon_2} & \sigma_{\varepsilon_4\varepsilon_3} & \sigma_{\varepsilon_4}^2 \end{bmatrix}$	<i>T</i> (<i>T</i> +1)/2 (0)	E1=VARE1, E2=VARE2, E3=VARE3, E4=VARE4, D0=VARD0, D1=VARD1; COV E1 E2=COVE1E2, E1 E3=COVE1E3, E1 E4=COVE1E4, E2 E3=COVE2E3, E2 E4=COVE2E4, E3 E4=COVE3E4, D0 D1=CD0D1;
備註: Level-2之ECM 為UN,	即 $\Psi_{\zeta_{\eta}} = $	$\sigma_{\zeta_{\eta_a}}^2$, ρ_k 表示在期差為 k 之自我相關係數。

飽和模式結構 M_S 在不同限制式之下,可形成各種不同之特定結構之 ECM。中間欄位限制 式個數是針對飽和模式而言。PROC MIXED 在 ARMA(p, q)族群中,僅提供 ARMA(1,1) 及 AR(1)。

4.2.1 一階 LGM 母體參數設計

因在 SEM 參數估計時,是使用樣本變異數共變異數矩陣及樣本平均數向量,藉由 式(2.45)離差函數找出模型所有待估之參數。然而樣本平均數向量及樣本共變異數矩 陣,可藉蘊涵平均數向量及蘊涵共變異數矩陣,利用模擬方式產生一組多變量結構資 料。其中一階 LGM 之蘊涵平均數向量及蘊涵共變異數矩陣,分別為式(2.32)及式(2.33) 所示。

$$\boldsymbol{\mu} = \begin{bmatrix} \boldsymbol{\mu}_{\mathrm{y}} \\ \boldsymbol{\mu}_{\mathrm{w}} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\Lambda}_{\mathrm{y}}^{*} (\boldsymbol{\Gamma}_{0} + \boldsymbol{\Gamma}_{\mathrm{w}} \boldsymbol{\mu}_{\mathrm{w}}) \\ \boldsymbol{\mu}_{\mathrm{w}} \end{bmatrix}, \qquad (2.32)$$

及

$$\Sigma = \begin{bmatrix} \Lambda_{y}^{*} (\Gamma_{w} \Sigma_{ww} \Gamma_{w}' + \Psi_{\zeta_{\eta}}) \Lambda_{y}^{*'} + \Theta_{\varepsilon} & \Lambda_{y}^{*} \Gamma_{w} \Sigma_{ww} \\ \Sigma_{ww} \Gamma_{w}' \Lambda_{y}^{*'} & \Sigma_{ww} \end{bmatrix}.$$
 (2.33)

另外,表4.2包含設定式(2.32)及式(2.33)內各矩陣或向量之母體參數值。

4.2.2 一階 LGM 模擬一組樣本資料

在 SEM 資料模擬可採用圖 3.2 SEM 多變量常態分配模擬方法,分別有 Fan et al. (2001, 2005)配合因素分析方法、或直接利用 SAS/IML (V9.2)所提供 RANDNORM function,本研究直接採用後者。因此,利用表 4.2 之資料可利用 SAS/IML 之矩陣直接 計算出式(2.32)及式(2.33)母體平均數向量、母體共變異矩陣、及樣本數大小 N=300 (Muthén & Muthén, 2002),由 RANDNORM(N, μ, Σ),即可模擬出一組多變量資料結構,其中 level-1 ECM 為 ARH(1)(見表 4.2 所示),模擬程式見[附錄 B-1]。

4.2.3 一階 LGM 多變量資料結構及單變量資料之轉換

為比較 HLM 興 SEM 兩種方法估計結果之差異,因 PROC CALIS (SEM 方法)與 PROC MIXED (HLM 方法)之資料結構不同,故需將模擬所得多變量資料結構藉由程式 轉換成單變量資料,程式如[附錄 B_2]摘錄。

原模擬所得多變量資料結構儲存在檔名為 "DATA_Sim_ARH1_SEM", 透過轉換後之單

變量資料結構存放在檔名為 "DATA_Sim_ARH1_HLM"供 PROC MIXED 使用及繪製 樣本資料一些基本圖形。

$\boldsymbol{\Lambda}_{\mathbf{y}}^{*} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix}, \boldsymbol{\Gamma}_{\mathbf{x}} = \begin{bmatrix} \gamma_{10} \\ \gamma_{11} \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix}, \boldsymbol{\Sigma}_{ww} = \boldsymbol{\sigma}_{w}^{2} = 1,$	$\Psi_{\zeta_{\eta}} = \begin{bmatrix} \sigma_{\zeta_{\eta_{\alpha}}}^{2} \\ \sigma_{\zeta_{\eta_{\alpha}}\zeta_{\eta_{\beta}}} & \sigma_{\zeta_{\eta_{\beta}}}^{2} \end{bmatrix} = \begin{bmatrix} 15 \\ 7 & 10 \end{bmatrix},$
$\boldsymbol{\mu}_{\mathbf{x}} = \boldsymbol{\mu}_{X} = 0, \ \boldsymbol{\Gamma}_{0} = \begin{bmatrix} \gamma_{00} \\ \gamma_{01} \end{bmatrix} = \begin{bmatrix} 10 \\ 4 \end{bmatrix},$	$\boldsymbol{\Theta}_{\varepsilon} = \begin{bmatrix} \sigma_{\varepsilon_{1}}^{2} & & \\ \sigma_{\varepsilon_{2}}\sigma_{\varepsilon_{1}}\rho & \sigma_{\varepsilon_{2}}^{2} & \\ \sigma_{\varepsilon_{3}}\sigma_{\varepsilon_{1}}\rho^{2} & \sigma_{\varepsilon_{3}}\sigma_{\varepsilon_{2}}\rho & \sigma_{\varepsilon_{3}}^{2} \\ \sigma_{\varepsilon_{4}}\sigma_{\varepsilon_{1}}\rho^{3} & \sigma_{\varepsilon_{4}}\sigma_{\varepsilon_{2}}\rho^{2} & \sigma_{\varepsilon_{4}}\sigma_{\varepsilon_{3}}\rho & \sigma_{\varepsilon_{4}}^{2} \end{bmatrix}$
	$\sigma_{\varepsilon_1}^2 = 36, \sigma_{\varepsilon_2}^2 = 25, \sigma_{\varepsilon_3}^2 = 49, \sigma_{\varepsilon_4}^2 = 64,$

表4.2 圖2.3 母體參數及ECM為ARH(1)之母體與樣本共變異數矩陣

 $\rho = .7$

母體蘊涵平均數及蘊涵共變異數矩陣												
	\mathcal{Y}_1	<i>y</i> ₂	<i>y</i> ₃	\mathcal{Y}_4	Х							
y_1	67.000		1896									
y_2	83.000	164.000										
<i>Y</i> 3	113.580	240.500	388.000									
\mathcal{Y}_4	140.464	312.600	501.200	695.000								
Х	4.000	10.000	16.000	22.000	1.000							
MEAN	10.000	14.000	18.000	22.000	.000							
樣本平均數及樣本共變異數矩陣												
	\mathcal{Y}_1	<i>Y</i> 2	Уз	<i>Y</i> 4	X							
<i>y</i> 1	<i>y</i> ₁ 66.557	<i>Y</i> 2	Уз	<i>y</i> ₄	Х							
<i>Y</i> 1 <i>Y</i> 2	y ₁ 66.557 80.505	y ₂ 157.888	Уз	<i>Y</i> 4	X							
<i>Y</i> 1 <i>Y</i> 2 <i>Y</i> 3	y ₁ 66.557 80.505 109.910	<i>y</i> ₂ 157.888 233.411	<i>y</i> ₃ 385.350	<i>Y</i> 4	X							
<i>Y</i> 1 <i>Y</i> 2 <i>Y</i> 3 <i>Y</i> 4	y ₁ 66.557 80.505 109.910 140.643	<i>y</i> ₂ 157.888 233.411 307.945	<i>y</i> ₃ 385.350 501.530	y ₄ 703.510	X							
y1 y2 y3 y4 X	y ₁ 66.557 80.505 109.910 140.643 3.103	y ₂ 157.888 233.411 307.945 8.685	<i>y</i> ₃ 385.350 501.530 14.137	y ₄ 703.510 19.714	X .855							

4.2.4 一階LGM 樣本資料相關時序圖

首先觀察模擬樣本資料之時序圖 4.1,由該圖粗略可每一個受測者呈線性成長趨勢, 又當我們僅考慮固定效果而誤差設為 i.i.d 時(即 TOEP(1)),則圖 4.2 為隨機效果之誤差仍 具線性成長之趨勢(見附錄 A-2 式(A.2.2));又若同時考量固定效果與隨機效果,且 Level-1 ECM 設為 TOEP(1),則圖 4.3 之 level-1 誤差之時序圖,粗略可看出各期誤差變異並不相 同,表示仍有些結構可補捉。

圖 4.3 300 個受測者 ECM 為 TOEP(1)時,殘差時序圖

4.2.5 一階 LGM ECM 穩態性檢定

其次依據圖 3.3 level-1ECM 鑑定流程圖,第一階段為穩態性檢定共有三種方式,如 第三章 3.5 節所示,在 PROC MIXED (HLM 方法)採用概似比檢定,而 PROC CALIS (SEM 方法),可採用卡方差異性檢定及 SIMTESTS statement。

4.2.5.1 一階 LGM 概似比檢定穩態性

利用式(3.6) $[-2\ln L_R(\theta_0 | y)] - [-2\ln L_U(\theta | y)] \sim \chi^2_{\lambda df}$,其中 $L_U(\theta | y)$ 表示 ECM 為 UN(非穩態)下之 LGM 的概似函數可得到 $-2\ln L_U(\theta | y) = 7795.6$; $L_R(\theta_0 | y)$ 係 ECM 為 TOEP (穩態)下之 LGM 的概似函數而可得到 $-2\ln L_R(\theta | y) = 7849.0$,故 $-2\ln \lambda = 53.4$ 、 $\Delta df = 6$ (見式(3.7)說明)。因此, $\chi^2_{\Delta df=6} = -2\ln L_R - (-2\ln L_U) = 7849 - 7795.6 = 53.4$, p < .0001),表示拒絕 ECM 穩態結構。其中 PROC MIXED 指令為 REPEATED statement 之 TYPE=TOEP,另外 TYEP=UN 可分別找到-2* Log Likelihood statistics 之値,並利用 SAS PROBCHI function 計算檢定之 *p*-value, 其結果如表 4.3 所示, SAS 程式見[附錄 B-2]。

4.2.5.2 一階 LGM 卡方差異性檢定穩態性

由第三章 3.5.2.1 卡方差異性檢定,先求出在 ECM 為 UN 條件下 LGM 模型之配適 値及卡方値(*N*-1)×*F_{ML}*(*UN*) = χ^2 (*UN*)=5.170,另外當 ECM 為 TOEP 條件下 LGM 模型 之配適値及卡方値(*N*-1)×*F_{ML}*(TOEP) = χ^2 (TOEP)=58.411,檢視兩者卡方差異仍為卡方 分配,而自由度為兩者自由度之差($\Delta df = 6$),因此 $\chi^2_{\Delta df=6} = \chi^2$ (TOEP) - χ^2 (UN) = 58.411-5.17 = 53.241 其 *p* < .0001,故拒絕 ECM 為穩態結構,其結果如表 4.3 所示,SAS 程式見[附錄 B-2]。

4.2.5.3 一階 LGM SIMTESTS 檢定穩態性

由第三章 3.5.2.2 PROC CALIS 本身內定 SIMTESTS statement 指令,其檢定穩態之虛 無假設為

H₀: $\sigma_{\varepsilon_1}^2 = \sigma_{\varepsilon_2}^2 = \sigma_{\varepsilon_3}^2 = \sigma_{\varepsilon_4}^2$, $\sigma_{\varepsilon_2\varepsilon_1} = \sigma_{\varepsilon_3\varepsilon_2} = \sigma_{\varepsilon_4\varepsilon_3}$, $\sigma_{\varepsilon_3\varepsilon_1} = \sigma_{\varepsilon_4\varepsilon_2}$. 或者是表示爲式(4.4):

$$\mathbf{H}_{0} : \begin{cases} \sigma_{\varepsilon_{1}}^{2} - \sigma_{\varepsilon_{2}}^{2} = 0, \sigma_{\varepsilon_{1}}^{2} - \sigma_{\varepsilon_{3}}^{2} = 0, \sigma_{\varepsilon_{1}}^{2} - \sigma_{\varepsilon_{4}}^{2} = 0, \\ \sigma_{\varepsilon_{2}\varepsilon_{1}} - \sigma_{\varepsilon_{3}\varepsilon_{2}} = 0, \sigma_{\varepsilon_{2}\varepsilon_{1}} - \sigma_{\varepsilon_{4}\varepsilon_{3}} = 0, \\ \sigma_{\varepsilon_{3}\varepsilon_{1}} - \sigma_{\varepsilon_{4}\varepsilon_{2}} = 0. \end{cases}$$
(4.4)

VAREQ_1=VARE1-VARE2;

VAREQ_2=VARE1-VARE3;

VAREQ_3=VARE1-VARE4;

COVLag1EQ_1=COVE1E2-COVE2E3;

COVLag1EQ_2=COVE1E2-COVE3E4;

COVLag2EQ=COVE1E3-COVE2E4;

由上可知上述三種檢定方式均可獲得相同結論:圖 2.3 一階 LGM level-1ECM 為非 穩態結構。

4.2.6 一階 LGM SCDT 鑑定 ECM

依據圖 3.3 流程圖中第一階段,已檢視 level-1 ECM 為非穩態,而在第二階段,則 係在非穩態的族群中,依照第三章 3.7 所述找尋 ECM 之順序,並利用 SCDT 鑑定合適的 ECM。首先,以最簡單之 TOEPH(1)開始,採用 SEM 方法(PROC CALIS)檢視 TOEPH(1) 與 M_s =UN(飽和 ECM)兩個結構所對應之下,兩模型配適的卡方值差異為 25.789 且 df = 6,可計算得 p < .0001 為顯著,表示 TOEPH(1)不合適(inappropriate);或是以 HLM 方法 (PROC MIXED)檢視 TOEPH(1)與 M_s =UN 兩個結構所對應之下,採用概似比方法獲得 $-2\ln \lambda = 25.9$ 且 df = 6,可計算得 p < .0001 為顯著,仍表示 TOEPH(1)不合適。換言之, 不論以 SEM 或 HLM 方法檢定所獲得結論:TOEPH(1)皆不合適,SAS 程式見[附錄 B-2]。

其次選擇比 TOEPH(1)較少限制式 (less constrained)之 TOEPH(2)當作 M_r ,再與 M_s =UN兩個結構所對應之下,兩模型配適的卡方値之差為 13.771 且 df =5 可計算得 p= .017 為顯著,表示 TOEPH(2)仍不合適;或者是以概似比方法得到 $-2\ln\lambda=14.8$ 且 df = 5 可得 p = .011 為顯著,仍表示 TOEPH(2)不合適,其結果如表 4.3 所示, SAS 程式見[附 錄 B-2]。

再次更新選擇比 TOEPH(2)較少限制式之 CSH 當作 M_T ,再與 M_s =UN 兩個結構所 對應之下,兩模型配適的卡方値之差為 13.206 且 df =5 可得 p = .022 為顯著,表示 CSH 仍為不合適結構;或者是概似比 $-2\ln \lambda = 13.2$ 且 df = 5 可得 p = .0221 為顯著,仍表示 CSH 不合適,其結果如表 4.3 所示, SAS 程式見[附錄 B-2]。

再次更新比 CSH 較少限制式之 ARH(1)當作 M_T 再與 M_s =UN 兩個結構所對應之下, 兩模型配適的卡方値之差為 5.906 且 df =5 可計算得 p = .315 為不顯著,表示 ARH(1) 為合適之 ECM;或者是以概似比方法得到 $-2\ln \lambda = 5.9$ 且 df = 5 可計算得 p = .0221 為不 顯著,仍表示 ARH(1)合適之 ECM。

最後,再檢視 ARH(1)是否比 TOEPH(1)是否有顯著改善,在兩個結構對應之下可得 卡方差異為 19.884 且 df = 1 可計算得 p < .0001 為顯著差異;同時當 ECM 為 TOEPH(1) 時,則對應模型配適度卡方値為 30.960 且 df =7 可計算得 p=0.0002 為顯著,即模型配適 度為不合適;但當 ECM 為 ARH(1)時,則對應模型配適度卡方値為 11.076 且 df =6 可計 算得 p=0.086 為不顯著,即模型配適度為合適,SAS 程式見[附錄 B-2]。

另從 PROC MIXED (HLM 方法)可獲得,當 ECM 為 ARH(1)時,其模型配適度一

74

些指標:-2LL, BIC 及 AIC 均為最小;顯然地,以 SEM 或 HLM 兩種方法 level-1 ECM 均以 ARH(1)為較合適。另外在 level-1 ECM 為 ARH(1)之下,表 4.2 中 Γ_0 , Γ_w , Θ_c 及 Ψ_{ξ_n} 各 參數以 PROC CALIS 及 PROC MIXED 估計及檢定結果彙整於表 4.4,兩者所對應參數估 計結果很接近。PROC MIXED 對 Θ_c 之參數推論,僅提供 Θ_c 主對角線之變異數有推論結 果,但其餘共變異數參數只提供估計值;但 PROC CALIS 對 Θ_c 均有提供各參數之估計 及檢定,且提供模型配適度之推論指標(卡方檢定)。顯然地,以 SEM 方法在模型配適度 及參數的推論提供較多之訊息。最後,當 ECM 為 ARH(1)正確設定時,則最後殘差圖展 現於圖 4.4,由該圖可看出已沒有特殊結構,其結果如表 4.4, SAS 程式見[附錄 B-2]。

表 4.3 ECM	[穩熊性及]	二階 LGM	獨立性、	穩態性及弱因素	不變性檢定
X X		1			

			PROC CALIS (SEM)								OC ME	XED ((HLM)	
步	ECM 結構		卡7	与差異性	生檢定	-		SIMTE	ESTS		概似比檢定			
同禾	がロ1 1サ	χ^{2}	df	$\Delta \chi^2$	$\Delta df P_{i}$	$Q_r > \Delta \chi^2_{\Delta df}$	df	χ^{2}	$P_r > \chi^2_{df}$	-2ln L	$-2\ln\lambda$	Δdf	$P_r > \chi^2_{\Delta df}$	
	一階 LGM 穩態性檢定													
0	UN	5.170	1			/=	6	859.50	< 0.0001	7795.6	52 /	6	<0.0001	
1	TOEP	58.411	7	53.24	6	< 0.0001				7849.0	33.4	0	<0.0001	
	Singer and Willett (2003) 資料													
0	UN	2.053	1			<u></u>	6	3.302	0.770	1262.1			0.000	
1	TOEP	4.231	7	2.178	6	0.903				1264.4	2.3	6	0.890	
0	UN	44.441	31											
1	TOEP	69.979	79	24.538										
						階 LGM	誤	差穩態性	主檢定					
0	UN	73.529	85				6	3.037	0.840					
1(ɛ 1) TOEP	76.424	91	2.894	6	0.822	-							
0	UN	73.529	85				6	4.153	0.656					
1(ɛ 2) TOEP	77.524	91	3.995	6	0.677	-							
0	UN	73.529	85				6	4.326	0.633					
1(ɛ ₃) TOEP	77.958	91	4.428	6	0.619	-							
					<u> </u>	皆 LGM 導	弱因	素不變	性檢定					
0	負荷不等	68.979	79				6	4.581	0.599					
1	負荷相等	73.529	85	4.551	6	0.603	-							

圖 4.4 ECM 為 ARH(1)時殘差時序圖

4.3 一階 LGM ECM 鑑定之實證資料

其次再以 Singer and Willett (2003,ch7)之資料為例說明 ECM 鑑定流程,表 4.5 資料 共有 35 個受測者,分別四個等距的時間點之觀察値,且每個受測者皆可獲得四期之觀 察値,故總共有 140 個觀測値,全部觀察値之資料時序圖,如圖 4.5 所示,由該圖可觀 察到每個受測者在初始狀態(如 wave=1)其値有所差異,且受測者彼此間四期變動斜率亦 不盡相同,但卻呈現線性成長之趨勢。在 level-2 含有一個連續之預測變數(COG),其中 心化為($CCOG_i = COG_i - \overline{COG}$)。因此,該筆資料以線性成長模型配適之。另該資料之架 構對映到圖 2.3 時,W = CCOG。

4.3.1 一階 LGM ECM 穩態性檢定

根據圖 3.3 level-1 ECM 鑑定之流程,第一階段為穩態性檢定,其結果彙整於表 4.3,以卡方異性檢定為 $\chi^2_{df=6} = \chi^2$ (TOEP) $-\chi^2$ (UN) = 4.2311 - 2.053 = 2.178 可計算得 p = .903;或以 SIMTESTS 可得 $\chi^2_{df=6}$ = 3.302 可計算得 p = .77,或汲概似比檢定得 $-2\ln \lambda = -2\ln L_R - (-2\ln L_U) = 1264.4 - 1262.1 = 2.3 其 <math>p = .89$ 。因此,不論以 SEM 方法或 HLM 方法檢定之結果均獲得 ECM 為穩態結構,其結果彙整於表 4.3,SAS 程式見[附錄 B-3]。

表 4.4 SCDT 鑑定 ECM 過程及 ARH(1)條件下模型參數推論彙總表 (樣本共變異數資料見表 4.2)

				H	$_0:M_T$	模型配適度					
步	ECM	CALIS					MI	XED	CALIS	MIXED	
驟	結構	χ^2	df	$\Delta \chi^2$	Δdf	$P_r > 2$	$-2\ln\lambda$	$P_r > 2$	$P_r >$	-2LL AIC	BIC
						$\Delta \chi^2_{\Delta df}$		$\Delta \chi^2_{\Delta df}$	χ^2		
0	UN	5.170	1						.023	7795.67829.6	7892.6
1	TOEPH(1)	30.960	7	25.789	6	<.0001	25.9	<.0001	.0002	7821.57843.5	7884.2
2	TOEPH(2)	19.941	6	13.771	5	.017	14.8	.011	.003	7810.47834.4	7878.9
3	CSH	18.376	6	13.206	5	.022	13.2	.022	.005	7808.87832.8	7877.3
4	ARH(1)	11.076	6	5.906	5	.315	5.9	.316	.086	7801.57825.5	7870.0

 Θ_{ϵ} 為 ARH(1) 及 $\Psi_{\zeta_{t}}$ 為 UN 條件下模型參數推論

備註: $M_T = \{\text{TOEPH}(1), \text{TOEPH}(2), \text{CSH}, \text{ARH}(1)\}, M_S = \text{UN}, \Delta \chi^2 = M_T 與 M_S 卡方差異値 , \Delta df M_T 與 M_S 自由度的差, <math>P_r > \Delta \chi^2_{\Delta df}$ 表示卡方差異度在自由度為 Δdf 之機率値。"表示未提供參數檢定 *p < .05, **p < .01, ***p < .001。

4.3.2 一階 LGM SCDT 鑑定 ECM

依據圖 3.3 流程圖,當第一階段已檢視 level-1 ECM 為穩態結構,第二階段則係在 穩態的族群中,依照第三章 3.7 找尋 ECM 之順序,並利用 SCDT 鑑定合適的 ECM。首 先,以最簡單之 TOEP(1)開始,探 SEM 方法(PROC CALIS)檢視 TOEP(1)與*M_s*=TOEP (飽 和 ECM)兩個結構所對應之下,兩模型配適的卡方値之差為 2.448 且 df =36 可計算得 *p* = .485 為不顯著,表示 TOEP(1)為合適之 ECM;或是以 HLM 方法(PROC MIXED)檢視 TOEP(1)與 M_s =TOEP 兩個結構所對應之下, 概似比方法得到 $-2\ln \lambda = 2.5$ 且 df = 6 可計 算得 p = .475 為不顯著,表示 TOEP(1)為合適。換言之,不論以 SEM 或 HLM 方法檢定 獲得 TOEP(1)均合適。因此, level-1 ECM 為 TOEP(1)時,整個模型配適度為 $\chi^2_{df=10} = 6.68$ 其 p = .755,表示利用線性 LGM 且 level-1 ECM 為 TOEP(1)配適該筆資料很合適。同時, 不論以 PROC CALIS 或 PROC MIXED 整個模型參數估計結果很相近,並將結果彙整於 表 4.6。並將殘差時序圖繪製於圖 4.6,由該圖大致上可觀察各期誤差間已沒有特定結構, SAS 程式見[附錄 B-3]。

圖 4.5 35 個受測者實證資料線性成長趨勢線(Singer and Willett, 2003, p244)

圖 4.6 35 個受測者實證資料 level-1 殘差時序圖

ID	OPP1	OPP2	OPP3	OPP4	COG	$COG_i - \overline{COG}$
1	205	217	268	302	137	23.5429
2	219	243	279	302	123	9.5429
3	142	212	250	289	129	15.5429
4	206	230	248	273	125	11.5429
5	190	220	229	220	81	-32.4570
6	165	205	207	263	110	-3.4571
7	170	182	214	268	99	-14.4571
8	96	131	159	213	113	-0.4571
9	138	156	197	200	104	-9.4571
10	216	252	274	298	96	-17.4571
11	180	225	215	249	125	11.5429
12	97	136	168	222	115	1.5429
13	145	161	151	177	109	-4.4571
14	195	184	209	213	95	-18.4571
15	162	138	204	195	118	4.5429
16	119	148	164	208	120	6.5429
17	144	166	236 \$	261	118	4.5429
18	107	165	193	262	115	1.5429
19	167	201	233	216	120	6.5429
20	156	156	197 ¹⁸	96 246	118	4.5429
21	165	228	279	290	126	12.5429
22	197	181	185	217	121	7.5429
23	206	209	230	255	108	-5.4571
24	182	196	217	199	104	-9.4571
25	174	198	229	236	118	4.5429
26	199	238	253	282	104	-9.4571
27	160	178	189	229	124	10.5429
28	184	231	260	292	130	16.5429
29	174	194	189	188	87	-26.4571
30	215	226	257	310	131	17.5429
31	147	188	197	232	109	-4.4571
32	127	172	222	273	115	1.5429
33	165	217	230	286	104	-9.4571
34	76	139	150	214	110	-3.4571
35	166	197	203	233	110	-3.4571

表4.5. Singer and Willett's (2003, Ch7) 實證資料

註:在第一層次共有35個人、每個人在4個等距時點均可得到觀察值(OPP1~ OPP4),在第二層次含 有一個連續之預測變數(COG)

失	步 ECM 驟 結構	$\underline{\qquad} H_0: M_T = M_S$								模型配適度			
少题		CALIS					ML	XED	CALIS	MIXED			
厥		χ^2	df	$\Delta \chi^2$	\df	$P_r > \Delta \chi^2_{\Delta df}$	$-2\ln\lambda$	$P_r > \Delta \chi^2_{\Delta df}$	$P_r > \chi^2$	-2LL AIC BIC			
0	TOEP	4.231	7						.753	1264.4 1286.4 1303.5			
1	TOEP(1)	6.680	10	2.448	3	.485	2.5	.475	.755	1266.9 1282.9 1295.3			

表 4.6 SCDT 鑑定 ECM 過程及 TOEP(1)條件下模型參數推論彙總表 (樣本資料 Singer and Willetts (2003, Chap. 7)

 Θ_{ϵ} 為 TOEP(1) 及 $\Psi_{\zeta_{n}}$ 為 UN 條件下模型參數推論

備註: $M_T = \text{TOEP}(1), M_s = \text{TOEP}, \Delta \chi^2 = M_T 與 M_s 卡方差異値 , \Delta df 爲 M_T 與 M_s 自由度的差,$ $P_r > \Delta \chi^2_{\Delta df}$ 表示卡方差異値及自由度爲 Δdf 之機率値。 ${}^*p < .05, {}^{**}p < .01, {}^{***}p < .001$ 。

4.4 二階 LGM ECM 鑑定之釋例

首先以圖 2.4 之二階 LGM 為例,說明如何鑑定二階 LGM level-1 ECM,為達此目的,本單元包括有母體參數設計,並據此模擬一組多變量常態分配樣本資料、並檢視資料的獨立性、穩態性及弱因素不變性、依照圖 3.3 之流程鑑定合適 ECM,整個過程操作 SAS 程式見[附錄 B-4]及[附錄 B-5]。

4.4.1 二階 LGM 母體參數設計

首先我們以圖 2.4 之二階 LGM 爲架構, 假設第一階測量誤差在相同問項、不同期才 有相關性存在(see, e.g., Blozis, 2006; Bollen & Curran, 2006, p. 249; Preacher et al., 2008, p. 63; Sayer & Cumsille, 2001), 且均設為 AR(1), 而整個模型母體參數如表 4.7 所示,以供 模擬資料時使用。

4.4.2 二階 LGM 模擬一組樣本資料

由表 4.7 之資料,利用 SAS/IML 直接計算出式(2.42)及式(2.43)母體平均數向量及母 體共變異數矩陣,並以樣本數大小 N=300,直接由 RANDNORM (N, μ, Σ) ,即可模擬出 一組多變量常態分配資料結構,其中 level-1 ECM $\varepsilon_1, \varepsilon_2 \subset \varepsilon_3$ 均為 AR(1),其樣本資料共 變異數矩陣(見表 4.7 所示), SAS 程式見[附錄 B-4]。

$$\boldsymbol{\mu} = \begin{bmatrix} \boldsymbol{\mu}_{\mathbf{y}} \\ \boldsymbol{\mu}_{\mathbf{x}} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\Lambda}_{\mathbf{y}} \boldsymbol{\Lambda}_{\mathbf{y}}^{*} \boldsymbol{\Gamma}_{0} + \boldsymbol{\Lambda}_{\mathbf{y}} \boldsymbol{\Lambda}_{\mathbf{y}}^{*} \boldsymbol{\Gamma}_{\boldsymbol{\xi}} \boldsymbol{\mu}_{\boldsymbol{\xi}} \\ \boldsymbol{\Lambda}_{\mathbf{x}} \boldsymbol{\mu}_{\boldsymbol{\xi}} \end{bmatrix}, \qquad (2.42)$$

及

$$\Sigma = \begin{bmatrix} \Sigma_{yy} & \Sigma_{yx} \\ \Sigma_{xy} & \Sigma_{xx} \end{bmatrix} = \begin{bmatrix} \Lambda_{y} (\Lambda_{y}^{*} \Gamma_{\xi} \Phi_{\xi} \Gamma_{\xi}' \Lambda_{y}^{*'} + \Lambda_{y}^{*} \Psi_{\zeta_{y}} \Lambda_{y}^{*'} + \Psi_{\zeta_{F}}) \Lambda_{y}' + \Theta_{s} & \Lambda_{y} \Lambda_{y}^{*} \Gamma_{\xi} \Phi_{\xi} \Lambda_{x}' \\ \Lambda_{x} \Phi_{\zeta}' \Gamma_{\zeta}' \Lambda_{y}^{*'} \Lambda_{y}' & \Lambda_{x} \Phi_{\zeta} \Lambda_{x}' + \Theta_{\delta} \end{bmatrix}.$$
(2.43)

4.4.3 二階 LGM 問項誤差結構獨立性檢定

由第三章之 3.5.3 節探討二階獨立性,可知利用卡方差異性差異檢定各誤差僅同問 項在不同期才有關,其餘的同期不同問項或不同期不同問項均無關;換言之,問項誤差 爲獨立。爲採差方差異性檢定問項誤差獨立,需選擇二個具有巢屬關係模型,其一LGM 模型之 level-1 ECM 爲式(3.11)(表各問項誤差在各期均有關),另一個 LGM 模型之 level-1 ECM 爲式(3.16)(表各問項誤僅同問項不同期才有關),後者 LGM 模型巢屬於前者,兩者 卡方値差異爲 24.538 且自由度差爲 48,可計算得 p=.998,表示 ε_1 , ε_2 ,及 ε_3 三者爲獨立 獲得支持,結果彙整於表 4.3, SAS 程式見[附錄 B-5]。

4.4.4 二階 LGM 弱因素不變性檢定

第二章文獻回顧已探討圖 2.4 二階 LGM 之優點之一是:可以檢定因素的不變性 (Blozis,2006; Sayer & Cumislle, 2002),及第三章 3.5.3.2 說明 LGM 弱因素不變性定義為 每個問項在不同期的因素負荷均相同,又因第一個問項因素負荷設為1的固定常數,故 弱因素不變性僅需檢定第二個問項及第三個問項在不同期之因素負荷均相等,其虛無假 設 $H_0: \lambda_{y_{21}} = \lambda_{y_{22}} = \lambda_{y_{23}} = \lambda_{y_{24}}$, $\lambda_{y_{31}} = \lambda_{y_{32}} = \lambda_{y_{33}} = \lambda_{y_{34}}$ 。又檢定方法在 PROC CALIS 可採兩 種方式,分別為模型配適的卡方差異性檢定及 SIMTESTS,分別敘述於下。

4.4.4.1 二階 LGM 卡方差異性檢定弱因素不變性

當弱因素不變性之檢定採用模型配適的卡方差異性檢定時,需設定兩個有巢屬關係 之模型,其中一個模型假設同一問項各期之因素負荷可不相等。而另一個模型則限制各 期之因素負荷可均相等;因此,兩個模型有巢屬關係。在 PROC CALIS 設定因素負荷可 均相等,可使用 LINCON statement,其指令如下:

LINCON

LY21F1=LY22F2, LY21F1=LY23F3, LY21F3=LY24F4,

LY31F1=LY32F2, LY31F1=LY33F3, LY31F3=LY34F4;

此處 LY21F1, LY22F2, LY23F3 及 LY24F4 表示第二個問項在四期之因素負荷 $(\lambda_{y_{21}}, \lambda_{y_{22}}, \lambda_{y_{23}} 及 \lambda_{y_{24}})$ 均設相等。LY31F1, LY32F2, LY33F3 及 LY34F4 表示第三個問項在 四期之因素負荷 $(\lambda_{y_{31}}, \lambda_{y_{32}}, \lambda_{y_{33}} Q \lambda_{y_{34}})$ 均設相等。因此,可得到兩個模型(因素負荷相等 及不相等)之卡方差異檢定為: $\chi^2_{df=6} = 73.529 - 68.979 = 4.55$ 經計算可得 p = .603為不 顯著,表示弱因素不變性獲得支持,結果彙整於表 4.3, SAS 程式見[附錄 B-5]。

4.4.4.2 二階 LGM SIMTESTS 檢定弱因素不變性

另一種檢定弱因素不變性之方法,採用 PROC CALIS 內定 SIMTESTS statement,是同時檢定式(3.25) 六個函數皆為 0,其虛無假設如式(3.25):

$$H_{0}:\begin{cases} \lambda_{y_{21}} - \lambda_{y_{22}} = 0, \ \lambda_{y_{21}} - \lambda_{y_{23}} = 0, \ \lambda_{y_{21}} - \lambda_{y_{24}} = 0, \\ \lambda_{y_{31}} - \lambda_{y_{32}} = 0, \ \lambda_{y_{31}} - \lambda_{y_{33}} = 0, \ \lambda_{y_{31}} - \lambda_{y_{34}} = 0. \end{cases}$$
(3.25)

LOADEQ_3= LY21F1-LY24F4; LOADEQ_4= LY31F1-LY32F2; LOADEQ_5= LY31F1-LY33F3; LOADEQ_6= LY31F1-LY34F4;

上述程式指令 'LOADEQ_1-LOADEQ_6'六個函數,在 SIMTESTS statement 同了時以 WEAK_INVARIANCE_TEST 為名稱,置於 SIMTESTS statement。檢定結果 $\chi^2_{df=6} = 4.581$ 經計算可得 p = .599 為不顯著,表示弱因素不變性獲得支持,結果彙整於表 4.3, SAS 程式見[附錄 B-5]。

4.4.5 二階 LGM ECM 穩態性檢定

二階 LGM 之 level-1ECM 經由獨立性檢定及弱因素負荷不變性檢定,均獲支持。下一個 步驟則依據圖 3.3 ECM 鑑定流程圖,共有兩個階段分別為:第一階段為穩態性檢定、第 二個階段 SCDT 鑑定 ECM。而就穩態性檢定而言,在 PROC CALIS 可採用卡方差異性 檢定及 SIMTESTS 兩種檢定方法。

4.4.5.1 二階 LGM 卡方差異性檢定穩態性

第三章 3.5.4.1 單元已說明以卡方差異性檢定各問項誤差之穩態性,如以第一個問項 ECM 爲例,其中一個模式之 ECM 爲式(3.18) UN(非穩態結構),而另一個模式之 ECM 爲 式(3.18) TOEP(穩態結構)。可分別找到兩個模型在不同 ECM 設定之下,整個模型配適 卡方値,兩者卡方値差及其自由度差(Δdf)(兩者自由度差,爲式(3.18)限制式個數爲 6), 可計算卡方差機率値($p_r > \chi^2_{\Delta df}$);若兩個模型卡方差異檢定不顯著,則表示第一個問項 ECM 爲穩態結構。類似地,第二、三個問項亦可仿照第一個問項獲得卡方差異檢定結果。 最後,可獲得 ε_1 , $\varepsilon_2 风 \varepsilon_3$ 之卡方差異値分別爲 $\chi^2_{df=6} = 2.895$, 3.995 及 4.428 其對應 p= .822, .677 及.619 ,表示沒有顯著差異。換言之, ε_1 , $\varepsilon_2 风 \varepsilon_3$ 之 ECM 皆爲穩態結構, 結果彙整於表 4.3, SAS 程式見[附錄 B-5]。

4.4.5.2 二階 LGM SIMTESTS 檢定穩態性

另一種檢定三個問項測量誤差 ε_1 , $\varepsilon_2 风 \varepsilon_3$ 為穩態性之方法,已於第三章 3.5.4.1 單元 中介紹 SIMTESTS,該檢定之虛無假設分別為式(3.19)、式(3.21)及式(3.23),因三個問項 之測量誤差均爲獨立,故可個別檢定各問項測量誤差的穩態性;若卡方檢定結果沒有差 異,則表示問項測量誤差間爲穩態。其 SAS 程式類似一階 LGM 如式(4.4)方式,故不再 贅述。

第一個問項測量誤差 *ε*1 穩態之虛無假設:

$$H_{0}:\begin{cases} \sigma_{\varepsilon_{11}}^{2} - \sigma_{\varepsilon_{12}}^{2} = 0, \sigma_{\varepsilon_{11}}^{2} - \sigma_{\varepsilon_{13}}^{2} = 0, \sigma_{\varepsilon_{11}}^{2} - \sigma_{\varepsilon_{14}}^{2} = 0, \\ \sigma_{\varepsilon_{12}\varepsilon_{11}} - \sigma_{\varepsilon_{13}\varepsilon_{12}} = 0, \sigma_{\varepsilon_{12}\varepsilon_{11}} - \sigma_{\varepsilon_{14}\varepsilon_{13}} = 0, \\ \sigma_{\varepsilon_{13}\varepsilon_{11}} - \sigma_{\varepsilon_{14}\varepsilon_{12}} = 0. \end{cases}$$
(3.19)

第二個問項測量誤差ε,穩態之虛無假設:

$$H_{0} \begin{cases} \sigma_{\varepsilon_{21}}^{2} - \sigma_{\varepsilon_{22}}^{2} = 0, \ \sigma_{\varepsilon_{21}}^{2} - \sigma_{\varepsilon_{23}}^{2} = 0, \ \sigma_{\varepsilon_{21}}^{2} - \sigma_{\varepsilon_{24}}^{2} = 0, \\ \sigma_{\varepsilon_{22}\varepsilon_{21}}^{2} - \sigma_{\varepsilon_{23}\varepsilon_{22}}^{2} = 0, \ \sigma_{\varepsilon_{22}\varepsilon_{21}}^{2} - \sigma_{\varepsilon_{24}\varepsilon_{23}}^{2} = 0, \\ \sigma_{\varepsilon_{23}\varepsilon_{21}}^{2} - \sigma_{\varepsilon_{24}\varepsilon_{22}}^{2} = 0. \end{cases}$$
(3.21)

第三個問項測量誤差ε,穩態之虛無假設:

$$H_{0}:\begin{cases} \sigma_{\varepsilon_{31}}^{2} - \sigma_{\varepsilon_{32}}^{2} = 0, \ \sigma_{\varepsilon_{31}}^{2} - \sigma_{\varepsilon_{33}}^{2} = 0, \ \sigma_{\varepsilon_{31}}^{2} - \sigma_{\varepsilon_{34}}^{2} = 0, \\ \sigma_{\varepsilon_{32}\varepsilon_{31}} - \sigma_{\varepsilon_{33}\varepsilon_{32}} = 0, \ \sigma_{\varepsilon_{32}\varepsilon_{31}} - \sigma_{\varepsilon_{34}\varepsilon_{33}} = 0, \\ \sigma_{\varepsilon_{33}\varepsilon_{31}} - \sigma_{\varepsilon_{34}\varepsilon_{32}} = 0. \end{cases}$$
(3.23)

經檢定結果三個問項 ε_1 , $\varepsilon_2 \gtrsim \varepsilon_3$ 之卡方差異値分別為 $\chi^2_{df=6} = 3.037$, 4.153 及 4.326 其對應 p = .804, .656 及 .633 ,表示沒有顯著差異。換言之, ε_1 , $\varepsilon_2 \gtrsim \varepsilon_3$ 之 ECM 皆為穩態,結果彙整於表 4.3, SAS 程式見[附錄 B-5]。

4.4.6 二階 LGM SCDT 鑑定 ECM

依據圖 3.3 流程圖,當第一階段已檢視三個誤差 ε_1 , $\varepsilon_2 及 \varepsilon_3$ 為獨立且 ECM 為穩態。 因此,每個誤差可獨立地進行第二階段 SCDT 進行 ECM 鑑定,如以第一個問項為例, 首先在穩態的族群中,依照第三章 3.7 所述找尋 ECM 之順序,以最簡單之 TOEP(1)開始 (另兩個 $\varepsilon_2 及 \varepsilon_3 之$ ECM 設為 TOEP),SEM 方法(PROC CALIS)檢視 M_T =TOEP(1)與 M_S =TOEP(飽和 ECM)兩個結構所對應之下,兩個模型配適的卡方值差為 31.93 且 df =3 可計算得 p < .0001為顯著,表示 TOEP(1)為不合適 ECM 結構。其次選擇比 TOEP(1)較 少限制式之 MA(1)當作 M_T 再與 M_S =TOEP 兩個結構所對應之下,兩個模型配適的卡方 值之差為 7.31 且 df =2 可計算得 p = .026為顯著,表示 MA(1)不合適;再次更新比 MA(1) 較少限制式之 CS 當作 M_T 再與 M_S =TOEP 兩個結構所對應之下,兩個模型配適的卡方 差為 15.05 且 df =2 可計算得 p = .001 為顯著,表示 CS 不合適;再次更新比 CS 較少限 制式之 AR(1)當作 M_T 再與 M_s =TOEP 兩個結構所對應之下,兩個模型配適的卡方値差為 2.84 且 df =2 可計算得 p = .242 為不顯著,表示 AR(1)為合適之 ECM。同理以 SCDT 鑑 定 ε_2 之 ECM (此時 ε_1 及 ε_3 之 ECM 設為 TOEP);SCDT 鑑定 ε_3 之 ECM (此時 ε_1 及 ε_2 之 ECM 設為 TOEP);最後,檢視當 $\varepsilon_1, \varepsilon_2$ 及 ε_3 皆為 AR(1)時,整個模型配適度 $\chi^2_{df=109} = 90.490, p$ = .9009,表示 $\varepsilon_1, \varepsilon_2,$ 及 ε_3 皆為 AR(1)之二階 LGM 模型配適表 4.7 樣本資料很合適。最後, 將二階 LGM 各參數估計結果,整理成表 4.8 樣本參數估計値與表 4.7 母體參數値比較結 果均很接近,SAS 程式見[附錄 B-5]。

4.4.7 二階 LGM ECM 程式說明

本單元說明二階 LGM ECM 之 PROC CALIS 程式,如程式[附錄 B-7]。首先假設 該二階 LGM 為線性成長,且四個等距之測量時點, ζ_F 及 δ 之 ECM 設定 TOEPH(1),成 長因素構誤差 ζ_n 設為 UN,三個誤差 ε_j (j=1,2,3)均設為 AR(1),包含參數 $\sigma_{\varepsilon_j}^2$ 及 ϕ_{ε_j} , j=1,2,3,因此,式(3.16) ε 之誤差結構可寫成具有 AR(1)特定型式之 ECM,如式(4.5) 所示。

				問項	頁1			問項26				問項3			
			<u>t=1</u>	<u>t=2</u>	<u>t=3</u>	<u>t=4</u>	<u>t=1</u>	<u>t=2</u>	<u>t=3</u> t=	=4	<u>t=1 t</u>	<u>=2 t</u> =	<u>=3 t</u> =	<u>=4</u>	
		Θε :	= Cov[8	$\mathcal{E}_{11} \mathcal{E}_{12}$	<i>E</i> ₁₃	\mathcal{E}_{14}	\mathcal{E}_{21}	\mathcal{E}_{22}	\mathcal{E}_{23}	\mathcal{E}_{24}	\mathcal{E}_{31}	\mathcal{E}_{32}	<i>E</i> ₃₃	$arepsilon_{34}]'$	
	<u>t=1</u>	\mathcal{E}_{11}	$\sigma_{\epsilon_1}^2$												
承1	<u>t=2</u>	\mathcal{E}_{12}	$\phi_{1arepsilon_1}\sigma_{arepsilon_1}^2$	$\sigma_{\scriptscriptstyle arepsilon_1}^2$											
Ē	<u>t=3</u>	\mathcal{E}_{13}	$\phi_{1arepsilon_1}^2\sigma_{arepsilon_1}^2$	$\phi_{1arepsilon_1}\sigma_{arepsilon_1}^2$	$\sigma^2_{arepsilon_1}$										
	<u>t=4</u>	\mathcal{E}_{14}	$\phi^3_{1arepsilon_1}\sigma^2_{arepsilon_1}$	$\phi_{1arepsilon_1}^2\sigma_{arepsilon_1}^2$	$\phi_{1arepsilon_1}\sigma_{arepsilon_1}^2$	$\sigma^{\scriptscriptstyle 2}_{\scriptscriptstyle {\cal E}_1}$									
	<u>t=1</u>	\mathcal{E}_{21}	0	0	0	0	$\sigma^2_{\scriptscriptstyle arepsilon_2}$								
) 1	<u>t=2</u>	\mathcal{E}_{22}	0	0	0	0	$\phi_{1arepsilon_2}\sigma_{arepsilon_2}^2$	$\sigma^2_{arepsilon_2}$							(4.5)
	<u>t=3</u>	\mathcal{E}_{23}	0	0	0	0	$\phi_{\!1arepsilon_2}^2\sigma_{\!arepsilon_2}^2$	$\phi_{1arepsilon_2}\sigma_{arepsilon_2}^2$	$\sigma^2_{arepsilon_2}$						
	<u>t=4</u>	\mathcal{E}_{24}	0	0	0	0	$\phi_{1arepsilon_2}^3\sigma_{arepsilon_2}^2$	$\phi_{1arepsilon_2}^2\sigma_{arepsilon_2}^2$	$\phi_{1arepsilon_2}\sigma_{arepsilon_2}^2$	$\sigma^2_{arepsilon_2}$					
	<u>t=1</u>	\mathcal{E}_{31}	0	0	0	0	0	0	0	0	$\sigma^2_{arepsilon_3}$				
) ろ	t=2	\mathcal{E}_{32}	0	0	0	0	0	0	0	0	$\phi_{1arepsilon_3}\sigma_{arepsilon_3}^2$	$\sigma^2_{arepsilon_3}$			
Π	t=3	E ₃₃	0	0	0	0	0	0	0	0	$\phi_{1arepsilon_3}^2\sigma_{arepsilon_2}^2$	$\phi_{1arepsilon_3}\sigma_{arepsilon_3}^2$	$\sigma_{\scriptscriptstyle arepsilon_3}^2$		
	t <u>=4</u>	<i>E</i> ₃₄	0	0	0	0	0	0	0	0	$\phi^3_{1_{\mathcal{E}_3}}\sigma^2_{_{\mathcal{E}_3}}$	$\phi_{1arepsilon_3}^2\sigma_{arepsilon_2}^2$	$\phi_{1arepsilon_3}\sigma_{2}$	$\sigma_{\varepsilon_3}^2 \sigma_{\varepsilon_3}^2$	

同、期差為一期之自我共變異數相同、期差為二期之自我共變異數也相同。因此, STD 及 COV statements 指令程式如下:

STD

EY11-EY14=4*VARE1, EY21-EY24=4*VARE2, EY31-EY34=4*VARE3,

EX1=VAREX1, EX2=VAREX2, EX3=VAREX3,

EZF1=VARZF1, EZF2=VARZF2, EZF3=VARZF3, EZF4=VARZF4,

EZF5=VARE_Intercept, EZF6=VARE_Slope, EZF7=VARZF7;

COV

/* for the first-level measurement errors associated with indicator 1 */
EY11 EY12=COV1_lag1, EY12 EY13=COV1_lag1, EY13 EY14=COV1_lag1,
EY11 EY13=COV1_lag2, EY12 EY14=COV1_lag2, EY11 EY14=COV1_lag3,
 /* for the first-level measurement errors associated with indicator 2 */
EY21 EY22=COV2_lag1, EY22 EY23=COV2_lag1, EY23 EY24=COV2_lag1,
EY21 EY23=COV2_lag2, EY22 EY24=COV2_lag2, EY21 EY24=COV2_lag3,
 /* for the first-level measurement errors associated with indicator 3 */
EY31 EY32=COV3_lag1, EY32 EY33=COV3_lag1, EY33 EY34=COV3_lag1,
EY31 EY33=COV3_lag2, EY32 EY34=COV3_lag2, EY31 EY34=COV3_lag3,
 /* for the second-level errors associated with growth factors */

EZF5 EZF6=CZF5ZF6;

VARZF1-VARZF4 分別代表 $\zeta_{F_1} - \zeta_{F_4}$ (程式命名為 EZF1-EZF4)之變異數。 VARE_Intercept, VARE_Slope 及 CZF5ZF6分別代表二階成長因素誤差 ζ_{η_a} 及 ζ_{η_p} (程式命 名為 EZF5 及 EZF6)的變異數及共變異數。VARZF7 代表第二階成長構念的預測因子 ζ (程式命名為 EZF7) 之變異數。COV1_lag1, COV1_lag2 及 COV1_lag3 分別表示第一 個誤差(ε_1) $\varepsilon_{11} - \varepsilon_{14}$ 在四期中,期差為 1,2 及 3 期之自我共變異數。同理 COV2_lag1, COV2_lag2 及 COV2_lag3 分別表示第二個誤差(ε_2) $\varepsilon_{21} - \varepsilon_{24}$ 在四期中,期差為 1,2 及 3 期之自我共變異數。最後,COV3_lag1,COV3_lag2 及 COV3_lag3 分別表示第三個誤差 (ε_3) $\varepsilon_{31} - \varepsilon_{34}$ 在四期中,期差為 1,2 及 3 期之自我共變異數。

此外,需利用 PARAMETERS statement 依據式(4.5)定義三個額外參數: $\phi_{l_{\varepsilon_1}}, \phi_{l_{\varepsilon_2}} \mathcal{D} \phi_{l_{\varepsilon_3}}$ 與各期差共變異數之關係,其程式指令如下:

/* for the first-level measurement errors associated with indicator 1 */
COV1_lag1=PHI1*VARE1; COV1_lag2=(PHI1**2)*VARE1;
COV1_lag3=(PHI1**3)*VARE1;

/* for the first-level measurement errors associated with indicator 2 */
COV2_lag1=PHI2*VARE2; COV2_lag2=(PHI2**2)*VARE2;

COV2_lag3=(PHI2**3)*VARE2;

/* for the first-level measurement errors associated with indicator 3 */

COV3_lag1=PHI3*VARE3; COV3_lag2=(PHI3**2)*VARE3;

COV3_lag3=(PHI3**3)*VARE3;

此處 PHI1, PHI2 及 PHI3 分別表示 $\phi_{l_{\varepsilon_1}}, \phi_{l_{\varepsilon_2}} \gtrsim \phi_{l_{\varepsilon_3}} \equiv laaghebber$

述。另外 AR(1)自我迴歸係數之限制式 $|\phi_{l_{\varepsilon_1}}| < 1$, $|\phi_{l_{\varepsilon_2}}| < 1$, $\mathcal{D} |\phi_{l_{\varepsilon_3}}| < 1$ 則以 BOUNDS statement 敘述撰寫 SAS 程式如下:

BOUNDS

-1.< PHI1<1., -1.< PHI2<1., -1.< PHI3<1.;

此外,因已檢定爲弱因素不變性,故需用 LINCON statement 限制相同問項不同期因素 負荷相,而 PROC CALIS 程式指令同前所述不再贅述。

表4.7 圖2.4 二階LGM 母體參數值及樣本數為300之共變異數矩陣

表	4.7	(續)
1		

母體蘊涵平均數及蘊涵共變異數矩陣															
	<i>Y</i> 11	<i>Y</i> 21	Y 31	<i>Y</i> 12	<i>Y</i> 22	<i>Y</i> 32	<i>Y</i> 13	<i>Y</i> 23	<i>Y</i> 33	<i>Y</i> 14	<i>Y</i> 24	<i>Y</i> 34	x_1	<i>x</i> ₂	<i>x</i> ₃
<i>Y</i> 11	145.30														
<i>Y</i> 21	108.79	81.95													
<i>Y</i> 31	123.29	92.47	105.20												
<i>Y</i> 12	157.18	117.79	133.49	171.51											
<i>Y</i> 22	117.79	88.59	100.12	128.45	96.69										
<i>Y</i> 32	133.49	100.12	113.71	145.57	109.18	124.14									
<i>Y</i> 13	169.36	126.98	143.91	184.88	138.56	157.04	200.94								
<i>Y</i> 23	126.98	95.41	107.93	138.56	104.17	117.78	150.52	113.25							
<i>Y</i> 33	143.91	107.93	122.46	157.04	117.78	133.72	170.59	127.94	145.40						
<i>Y</i> 14	181.58	136.16	154.32	198.66	148.95	168.81	215.78	161.74	183.30	233.59					
<i>Y</i> 24	136.16	102.25	115.74	148.95	111.89	126.61	161.74	121.56	137.48	175.01	131.61				
<i>Y</i> 34	154.32	115.74	131.26	168.81	126.61	143.63	183.30	137.48	156.05	198.34	148.75	168.99			
x_1	24.00	18.00	20.40	26.00	19.50	22.10	28.00	21.00	23.80	30.00	22.50	25.50	4.81		
x_2	18.00	13.50	15.30	19.50	14.63	16.58	21.00	15.75	17.85	22.50	16.88	19.13	3.00	2.61	
x_3	16.80	12.60	14.28	18.20	13.65	15.47	19.60	14.70	16.66	21.00	15.75	17.85	2.80	2.10	2.96
MEAN	90.00	67.50	76.50	97.10	72.83	82.54	104.20	78.15	88.57	111.30	83.48	94.61	13.00	9.75	9.10
					樣本	平均婁	 	本共變	異數知	巨陣					
	<i>Y</i> 11	<i>Y</i> 21	Y 31	<i>Y</i> 12	<i>y</i> 22	Y 32	<i>Y</i> 138	9 У 23	<i>y</i> 33	<i>Y</i> 14	<i>Y</i> 24	<i>Y</i> 34	x_1	<i>x</i> ₂	<i>x</i> ₃
<i>V</i> 11	147.01														
<i>V</i> 21	109.81	82.57						11.							
V31	124.47	93.16	105.99												
V12	158.66	118.63	134.42	172.82											
V22	118.87	89.22	100.79	129.40	97.42										
V32	134.12	100.36	113.97	145.95	109.46	123.87									
V13	171.53	128.31	145.36	186.96	140.12	157.94	203.88								
<i>V</i> 23	127.89	95.91	108.45	139.39	104.82	117.87	152.01	113.85							
V33	144.92	108.44	123.04	157.91	118.44	133.76	172.06	128.45	145.84						
y 55	182.10	136.18	154.29	198.88	149.11	168.06	216.81	161.76	183.06	232.49					
V24	137.16	102.74	116.25	149.83	112.54	126.66	163.35	122.20	137.99	175.04	132.28				
V 34	154.50	115.60	131.06	168.81	126.64	142.83	183.98	137.38	155.67	197.21	148.66	167.89			
x ₁	24.39	18.28	20.68	26.40	19.74	22.29	28.51	21.27	24.07	30.08	22.68	25.53	4.94		
<i>x</i> ₂	18.66	14.02	15.81	20.15	15.14	17.04	21.80	16.29	18.42	23.11	17.45	19.60	3.10	2.77	
x_3	18.01	13.47	15.28	19.36	14.55	16.40	20.93	15.60	17.69	22.20	16.73	18.85	3.07	2.34	3.22
MEAN	91.24	68.43	77.64	98.60	73.96	83.90	105.81	79.37	89.96	113.04	84.81	96.12	13.21	9.92	9.30

表 4.8 SCDT 鑑定 ECM 之過程及 $\boldsymbol{\varepsilon}_1, \boldsymbol{\varepsilon}_2, \mathcal{D} \boldsymbol{\varepsilon}_3$ 均為 AR(1)時模型參數推論彙總表

月月1日	止	ECM		配適度						
间項 誤差	ッ 驟	ECM 結構	χ^{2}	df	$\Delta \chi^2$	Δdf	$P_r > \Delta \chi^2_{\Delta df}$	$P_r > \chi^2$		
	0	TOEP	85.55	103				.8935		
$oldsymbol{\mathcal{E}}_1$	1	TOEP(1)	117.48	106	31.93	3	<.0001	.2199		
	2	MA(1)	92.86	105	7.31	2	.0260	.7957		
	3	CS	100.60	105	15.05	2	.0010	.6092		
	4	AR(1)	88.39	105	2.84	2	.2420	.8783		
$\boldsymbol{\varepsilon}_2$	1	TOEP(1)	278.96	106	193.41	3	<.0001	<.0001		
	2	MA(1)	156.98	105	71.43	2	<.0001	.0008		
	3	CS	154.42	105	68.87	2	<.0001	.0012		
	4	AR(1)	85.59	105	.05	2	.9780	.9170		
$\boldsymbol{\mathcal{E}}_3$	1	TOEP(1)	209.37	106	123.82	3	<.0001	<.0001		
	2	MA(1)	114.85	105	29.30	2	<.0001	.2403		
	3	CS	136.97	105	51.42	2	<.0001	.0197		
	4	AR(1)	86.34	105	.79	2	.6707	.9075		
1896 最終 ECM										
$\boldsymbol{\varepsilon}_1, \boldsymbol{\varepsilon}_2, \boldsymbol{\varepsilon}_3$		AR(1)	90.49	109			•	.9009		
最終模型參數推論($\boldsymbol{\varepsilon}_1, \boldsymbol{\varepsilon}_2, \boldsymbol{\varepsilon}_3$ 均為AR(1))										
$\hat{\Lambda}_{\mathbf{y}} = \begin{bmatrix} 1.00 & 0 & 0 & 0 \\ .75^{***} & 0 & 0 & 0 \\ .85^{***} & 0 & 0 & 0 \\ 0 & 1.00 & 0 & 0 \\ 0 & .75^{***} & 0 & 0 \\ 0 & .85^{***} & 0 & 0 \\ 0 & 0 & 1.00 & 0 \\ 0 & 0 & .75^{***} & 0 \\ 0 & 0 & .75^{***} & 0 \\ 0 & 0 & .85^{***} & 0 \\ 0 & 0 & .85^{***} & 0 \\ 0 & 0 & 0 & .85^{***} \\ 0 & 0 & 0 & .85^{***} \\ 0 & 0 & 0 & .85^{***} \\ \end{bmatrix}, \hat{\Lambda}_{x} = \begin{bmatrix} 1.00 \\ .75^{***} \\ .70^{***} \\ .70^{***} \\ \end{bmatrix}, \hat{\Phi}_{\xi} = 4.22^{***}, \hat{\mu}_{\xi} = 13.20^{***}, \\ \hat{\Theta}_{\delta} = Diag[.847^{***} & .375^{***} & .988^{***}], \\ \hat{\Psi}_{\zeta_{\eta}} = \begin{bmatrix} .88 \\ .40^{**} & .67^{***} \\ .67^{***} \\ \end{bmatrix}, \hat{\Psi}_{\zeta_{\eta}} = \begin{bmatrix} .88 \\ .40^{**} & .67^{***} \\ .67^{***} \\ \end{bmatrix},$										
					$\zeta_F - L$					

(樣本數為 300 之變異數及共變異數矩陣如表 4.7 所示)

表 4.8 (續)

最終模型參數推論($\boldsymbol{\varepsilon}_1, \boldsymbol{\varepsilon}_2, \boldsymbol{\varepsilon}_3$ 均為AR(1))

	Г <u>а</u> ***												
	.271												
	.137***	.271***											
	.069**	.137***	.271***										
	.036*	.069**	.137***	.271***									
	0	0	0	0	.367***								
Â-	0	0	0	0	.254***	.367***							
$\Theta_{\varepsilon} =$	0	0	0	0	.176***	.254***	.367***						
	0	0	0	0	.122***	.176***	.254***	.367***					
	0	0	0	0	0	0	0	0	.422***				
	0	0	0	0	0	0	0	0	.243***	.422***			
	0	0	0	0	0	0	0	0	.140***	.243***	.422***		
	0	0	0	0	0	0	0	0	.081***	.140***	.243***	.422***	
Ŷ		*** • • • •	**	*	Ŷ		2		Ŷ	***	• 2	***	
$\phi_{1\varepsilon_1} = .508^{-1}, \hat{\sigma}_{\varepsilon_1}^2 = .271^{-1}, \phi_{1\varepsilon_2} = .693^{-1}, \hat{\sigma}_{\varepsilon_2}^2 = .367^{-1}, \phi_{1\varepsilon_3} = .576^{-1}, \hat{\sigma}_{\varepsilon_3}^2 = .422^{-1}$													
備註: $M_T = \{\text{TOEP}(1), \text{MA}(1), \text{CS}, \text{AR}(1)\}, M_S = \text{TOEP}, \Delta \gamma^2 = M_T 與 M_S 卡方差異值, \Delta df 為$										爲			
M 的 M 白山府的羊 $D > \Lambda a^2$ 丰平上士羊用估大白山府受 Λdf 力继交信 a^* , 05													

第五章 結論與研究建議

5.1 結論

本文提出 LGM 測量誤差 ECM 在 SEM 設定及有系統之鑑定程序(如圖 3.3),並輔以 SAS PROC CALIS 及 PROC MIXED 實作本研究整個流程。因此,本文可供後續研究者 在 LGM 實證時,在鑑定 ECM 有所幫助。諸將全文結論歸納於下:

圖 3.3 Level-1 ECM 鑑定流程

5.1.1 ECM 在 SEM 之構建

將 SAS PROC MIXED(HLM)內定 ECM 轉換到 SEM 可用程式,文獻上似未有研究 者提出,雖這只是程式撰寫技巧,但卻是 LGM 由 HLM 方法過渡到 SEM 方法關鍵性步 驟。本文已於第四章詳細地說明 PROC CALIS 撰寫 ECM 指令,同時於表 4.1 也清楚列 舉 ECM 與程式相互對映,以利瞭解程式之撰寫,並可供實證者引用。

5.1.2 ECM 依穩態性分類

事實上, PROC MIXED 提供一些可應用於等期間之 ECM, 結合時間序列穩態性及 期差自我共變數關係予以週延分類, 如表 2.3 所示。此種分類方法將可以在找尋 ECM 時, 更具效率。

表 2.3 等期間 ECM 分類

其中 UN(1)=TOEPH(1)=UNR(1), TOEP(1)=VC (i.i.d). 1(A) 表示當條件 A 成立則為 1 否則為 0,例如1(|t-t'| < q)表示當|t-t'| < q條件成立則為 1 否則為 0,又如[ρ 1($t \neq t'$)+1(t = t')]當($t \neq t'$)成立則為 ρ 否則為 1。

5.1.3 歸納 ECM 篩選順序

本研究回顧文獻上研究 LGM 常用 ECM,並彙整成 ECM 篩選族群,同時推導出由 穩態(或非穩態)飽和 ECM 結構,加以限制條件可以得到簡化之 ECM,並依據限制條件 個數及程度、參數精簡原則多寡及解釋性分別決定出在 ECM 穩態(或非穩態)族群進行 SCDT 篩選順序,在圖 3.3 中 M_T 表示一個暫時選定 ECM 結構,而 M_T更新依序分為穩 態結構及非穩態結構: 穩態結構: TOEP(1) \rightarrow MA(1) \rightarrow CS \rightarrow AR(1) \rightarrow MA(2) \rightarrow ARMA(1,1) \rightarrow AR(2) \rightarrow MA(3) \rightarrow ARMA(1,2) \rightarrow ARMA(2,1) \rightarrow AR(3) $\rightarrow \cdots \rightarrow$ AR(T-1). 非穩態結構: TOEPH(1) \rightarrow TOEPH(2) \rightarrow CSH \rightarrow ARH(1) \rightarrow TOEPH(3) $\rightarrow \cdots \rightarrow$ TOEPH(T) \rightarrow UN(2) $\rightarrow \cdots \rightarrow$ UN(T).

5.1.4 提出卡方差異檢定應用於 HLM 及 SEM 鑑定 ECM 穩態

本文提出在 PROC MIXED (HLM)如何以概似比進行穩態性檢定(表 5.1),見第 3 章 3.5.1 詳述檢定方法,亦爲本文貢獻之一。

表 5.1 穩態性檢定

PROC MIXED (HLM)	PROC CALIS (SEM)		
LRT	卡方差異性檢定	SIMTESTS (Joint Test)	
$\begin{split} \lambda &= \frac{L_R(\boldsymbol{\theta}_0 \mid y)}{L_U(\boldsymbol{\theta} \mid y)} \\ -2\ln \lambda \\ &= -2\ln \frac{L_R(\boldsymbol{\theta}_0 \mid y)}{L_U(\boldsymbol{\theta} \mid y)} \sim \chi_{df}^2, \end{split}$	$\ln L(\mathbf{\theta}) = -\left(\frac{N-1}{2}\right)$ $\left\{\ln \mathbf{\Sigma}(\mathbf{\theta}) + tr[\mathbf{S}\mathbf{\Sigma}^{-1}(\mathbf{\theta})]\right\}$ $-2\ln L(\mathbf{\theta})$ $= (N-1)F_{ML} \sim \chi_{df}^{2}$	$H_0 \begin{cases} \sigma_{\varepsilon_1}^2 = \sigma_{\varepsilon_2}^2 = \sigma_{\varepsilon_3}^2 = \sigma_{\varepsilon_4}^2, \\ \sigma_{\varepsilon_2 \varepsilon_1} = \sigma_{\varepsilon_3 \varepsilon_2} = \sigma_{\varepsilon_4 \varepsilon_3}, \\ \sigma_{\varepsilon_3 \varepsilon_1} = \sigma_{\varepsilon_4 \varepsilon_2}. \end{cases}$	
$\Rightarrow \{ [-2 \ln L_R(\mathbf{\theta}_0 \mid y)] \\ - [-2 \ln L_U(\mathbf{\theta} \mid y)] \} \\ \sim \chi_{df}^2$	$\begin{cases} -2 \ln L(\boldsymbol{\theta}) \\ = (N-1)F_{ML}(UN) \sim \chi^2_{df_1} \\ -2 \ln L(\boldsymbol{\theta}) \\ = (N-1)F_{ML}(TOEP) \sim \chi^2_{df_2} \\ \Rightarrow \Delta \chi^2_{\Delta df} \end{cases}$	$H_0 \begin{cases} \sigma_{\varepsilon_1} - \sigma_{\varepsilon_2} = 0, \sigma_{\varepsilon_1} - \sigma_{\varepsilon_3} = 0, \\ \sigma_{\varepsilon_1}^2 - \sigma_{\varepsilon_4}^2 = 0, \sigma_{\varepsilon_{2\varepsilon_1}} - \sigma_{\varepsilon_{3\varepsilon_2}} = 0, \\ \sigma_{\varepsilon_{2\varepsilon_1}} - \sigma_{\varepsilon_{4\varepsilon_3}} = 0, \\ \sigma_{\varepsilon_{3\varepsilon_1}} - \sigma_{\varepsilon_{4\varepsilon_2}} = 0. \end{cases}$	
IIN(#Par - 10) 阻制式個數-6 參數個數主-6 TOED(#Par - 4)			

$egin{bmatrix} \sigma^2_{arepsilon_1} & \ \sigma^2_{arepsilon_2 arepsilon_2} & \ \sigma^2_{arepsilon_2 arepsilon_2} & \ \sigma^2_{arepsilon_2 arepsilon_2 arepsilon_1} & \ \sigma^2_{arepsilon_2 arepsilon_2 arepsilon_2} & \ \sigma^2_{arepsilon_2 arepsilon_2 arepsilon_1} & \ \sigma^2_{arepsilon_2 arepsilon_2 arepsilon_2} & \ \sigma^2_{arepsilon_2 arepsilon_2 are$	$\sigma_{\varepsilon_3}^2 = \sigma_{\varepsilon_2}^2 = \sigma_{\varepsilon_2}^2 = \sigma_{\varepsilon_4}^2 = \sigma_{$	$\longrightarrow \begin{bmatrix} \sigma_{\varepsilon}^{2} & & \\ \sigma_{1} & \sigma_{\varepsilon}^{2} & \\ \sigma_{2} & \sigma_{1} & \sigma_{\varepsilon}^{2} \\ \sigma_{3} & \sigma_{2} & \sigma_{1} & \sigma_{\varepsilon}^{2} \end{bmatrix}$

5.1.5 提出 SCDT 應用於 SEM 穩態及鑑定 ECM

本文提出在 PROC CALIS (SEM)如何以卡方差異性進行穩態性並搭配 SCDT 進行鑑定 ECM(表 5.2),詳細說明見第 3 章 3.5.2 及 3.5.4,該法具統計檢定基礎選擇 ECM,較 Littell et al. (2006)採圖形法及敘述性之 AIC 及 BIC 為佳,也呼應 Kwok et al. (2007)指出 發展比 AIC 及 BIC 找到更正確的 ECM 是需要的。並搭配 SCDT 進行鑑定 ECM,亦為本文貢獻之一,。

表 5.2 循序卡方差異檢定(SCDT)

PROC MIXED (HLM)	PROC CALIS (SEM)
LRT	卡方差異性檢定
$\lambda = \frac{L_{R}(\boldsymbol{\theta}_{0} \mid y)}{L_{U}(\boldsymbol{\theta} \mid y)}$	$\ln L(\boldsymbol{\theta}) = -\left(\frac{N-1}{2}\right) \left\{ \ln \boldsymbol{\Sigma}(\boldsymbol{\theta}) + \operatorname{tr}[\boldsymbol{S}\boldsymbol{\Sigma}^{-1}(\boldsymbol{\theta})] \right\}$
$-2\ln\lambda = -2\ln\frac{L_{R}(\boldsymbol{\theta}_{0} \mid y)}{L_{U}(\boldsymbol{\theta} \mid y)} \sim \chi_{df}^{2},$	$-2\ln L(\mathbf{\theta}) = (N-1)F_{ML} \sim \chi_{df}^2$
$\Rightarrow \{ [-2 \ln L_{R}(\boldsymbol{\theta}_{0} \mid \boldsymbol{y})] - [-2 \ln L_{U}(\boldsymbol{\theta} \mid \boldsymbol{y})] \}$ $\sim \chi_{df}^{2}$	$\begin{cases} -2\ln L(\mathbf{\theta}) = (N-1)F_{ML}(M_s) \sim \chi^2_{df_1} \\ -2\ln L(\mathbf{\theta}) = (N-1)F_{ML}(M_T) \sim \chi^2_{df_2} \end{cases} \Rightarrow \Delta \chi^2_{\Delta df} \end{cases}$
非穩態飽和 M _s : UN	非穩態M _r :
$\begin{bmatrix} \sigma_{\varepsilon_1}^2 & & & \\ \sigma_{\varepsilon_2\varepsilon_1} & \sigma_{\varepsilon_2}^2 & & \\ \sigma_{\varepsilon_3\varepsilon_1} & \sigma_{\varepsilon_3\varepsilon_2} & \sigma_{\varepsilon_3}^2 & \\ \sigma_{\varepsilon_4\varepsilon_1} & \sigma_{\varepsilon_4\varepsilon_2} & \sigma_{\varepsilon_4\varepsilon_3} & \sigma_{\varepsilon_4}^2 \end{bmatrix}$	$\longrightarrow \begin{cases} \text{TOEPH}(1) \rightarrow \text{TOEPH}(2) \rightarrow \\ \text{CSH} \rightarrow \text{ARH}(1) \rightarrow \\ \text{TOEPH}(3) \rightarrow \cdots \rightarrow \text{TOEPH}(T) \\ \rightarrow \text{UN}(2) \rightarrow \cdots \rightarrow \text{UN}(T) \end{cases}$
穩態飽和 M_s : TOEP $\begin{bmatrix} \sigma_{\varepsilon}^2 & & & \\ \sigma_1 & \sigma_{\varepsilon}^2 & & \\ \sigma_2 & \sigma_1 & \sigma_{\varepsilon}^2 & \\ \sigma_3 & \sigma_2 & \sigma_1 & \sigma_{\varepsilon}^2 \end{bmatrix}$	穩態 M_T : TOEP(1) \rightarrow MA(1) \rightarrow CS \rightarrow AR(1) \rightarrow MA(2) \rightarrow ARMA(1,1) \rightarrow AR(2) \rightarrow MA(3) \rightarrow ARMA(1,2) \rightarrow ARMA(2,1) \rightarrow AR(3) $\rightarrow \cdots \rightarrow$ AR(T-1)

註:PROC MIXED 方法無法用在二階 LGM.

5.1.6 提供教學式撰寫,供後續研究者易於仿效

本文除了提供一些重要檢定虛無假設及 LGM 模型,並提供 SAS 程式對各指令均詳細的解說,類似教學式撰寫方式,以供後續研究者克服程式撰寫的障礙。

5.1.7 本研究可應用其他 SEM 套裝軟體

雖然本研究僅以 SAS 所提供 PROC CALIS 進行本研究之示範,如卡方檢定,Lisrel 及 Mplus 等套裝軟體研究 SEM 仍可適用;至於 ECM 程式之撰寫就 Lisrel 而言,可參見 Lisrel 8.0 User's Reference Guide (Jöreskog & Sörbom, 2001, p347);就 Mplus 而言,可參 見 Mplus 5.0 User's Reference Guide (Muthén & Muthén, 2007, p118)。

5.1.8 供實證者使用

本文提出一個系統性尋找 ECM 策略,如圖 3.3 所示,可供後續研究者選擇 ECM 準則。

5.2 研究限制

在研究限制除了 HLM (LGM)本身之基假如下:

一階 LGM 中 level-1 誤差與 level-2 成長構念誤差無關;而二階 LGM 中第一階 (order-1)可測量誤差(ε)、不可測量構念誤差(ζ_F)、第一階(order-1)成長構念誤差(ζ_η)及 預測構念之測量誤差(δ)四者彼此間無關。受測者間彼此獨立,但同一個受測者在不同 期所形成之 ECM 均相同,即 Θ_{ε} , $\forall i$ 。

另外,要求各期樣本數均相同即平衡設計(balance design)在參數估計時較易處理, 但 FIML(full information maximum likelihood)估計方法,可用以克服各期有遺漏値 (missing values)之問題(Baucer, 2003; Enders & Bandalos, 2001),在 PROC CALIS 在最新 版本 SAS 9.22 已有提供 FIML 以處理未平衡設計(unbalance design);或者利用 SAS/STAT 提供 PROC MI 專門處理遺漏値之 procedure,可以先將含有遺漏値之資料庫(data set)藉 由 PROC MI 填補完成之完整資料庫轉到 PROC CALIS 進行分析 (Allison, 2003)。

因此,本研究所提出系統性鑑定 level-1 ECM 其限制為:

5.2.1 各時點需等距

爲檢視穩態性各測量時點距均需等距,也即與空間(spatial)有關之 ECM 無法適用本研究。

5.2.2 大樣本資料

採用 SEM 時,為達到參數有最佳不偏估計,需要求資料為大樣本。

5.2.3 成長模型及成長因素構念誤差 ECM 正確設定

本文僅探討 level-1 ECM,除此之外如 LGM 成長趨勢線之結構(如一次線性成長或 二次成長曲線成長)、成長因素構念誤差之 ECM 結構或二階 LGM 第一層次測量構念誤 差均需正確設定(well specified)。此外,若成長趨勢線或 level-1 ECM 有理論依據,則以 理論爲主(Grimm & Widaman, 2010)。

5.3 後續研究建議

雖本文已提出等期間 ECM 鑑定策略,但研究過程中仍有一些值得後續研究。

5.3.1 二階 LGM 一般化 ECM 之鑑定

當二階 LGM 之誤差間不獨立時,此時如何選擇同問項誤差不同期、不同問項誤差 但同期、不同問項誤差在不同期設定 ECM,變成一很複雜 ECM 之結構仍值得後續研究。

5.3.2 非等距的空間 ECM 之鑑定

本研究為等距,若非等距或空間 ECM 之鑑定仍為一個可以研究之議題。

5.3.3 單變量與多變量資料結構估計差異

在 HLM (PROC MIXED)採用之資料結構為單變量結構、而 SEM(PROC CALIS) 採 用之資料結構為多變量結構(Singer, 1998),兩者參數估計出來結果相近(Bovaird, 2007; Rovine & Molenaar, 2000),但本研究估計結果在成長因素固定效果參數相近而隨機誤差 參數 (level-1/2 ECM)稍許出入且概似函數值(表 4.3)差異很大,均值得後續研究且釐清。

參考文獻

- [1] Allison, P. D. (2003). Missing data techniques for structural equation modeling. *Journal of Abnormal Psychology*, *4*, 545–557.
- [2] Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. *Psychological Bulletin*, 103, 411–423.
- [3] Akaike, H. (1974). A new look at the statistical model identification, *IEEE Transaction* on Automatic Control. AC-19, 716–723.
- [4] Arbuckle, J. L. (2006). Amos 7.0 User's Guide. Chicago: SPSS.
- [5] Bauer, D. J. (2003). Estimating multilevel linear models as structural models. *Journal of Educational and Behavioral Statistics*, 28, 135–167.
- [6] Curran, P. J., & Baucer, D. J. (2007). Building path diagrams for multilevel models. *Psychological Methods*. 12, 283–297.
- [7] Beck, N., & Katz, J. N. (1995). What to do (and not to do) with time-series cross-section data. American Political Science Review, 89, 634–647.
- [8] Bentler, P. M. (1995). *EQS, Structural Equations Program Manual*, Program Version 5.0, Encino,CA: Multivariate Software.
- [9] Bentler, P. M. and Bonett, D. G. (1980). Significance Tests and Goodness of Fit in the Analysis of Covariance Structures. *Psychological Bulletin*, 88, 588–606.
- [10] Bentler, P. M., & Wu, E. J. C. (2005). EQS 6.1 Structural Equation Modeling Software for Windows. Encino, CA: Multivariate Software, Inc.
- [11] Blozis, S. A. (2006). A second-order structured latent curve model for longitudinal data. In K. van Montfort, H. Oud, & A. Satorra (Eds.), *Longitudinal Models in the Behavioral and Related Sciences* (pp. 189–214). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
- [12] Blozis, S. A., Harring, J. R., & Mels, G. (2008). Using lisrel to fit nonlinear latent curve models. *Structural Equation Modeling*, 15, 346–369.
- [13] Bollen, K. A., & Long, J. S. (1993). Testing Structural Equation Models. Newburyk : Sage Publication.
- [14] Bollen, K. A., & Curran, P. J. (2006). Latent Curve Models: A Structural Equation Perspective. Hoboken, NJ: Wiley & Sons.
- [15] Bovaird, J. A. (2007). Multilevel structural equation models for contextual factors. In T. D. Little, J. A. Bovaird, & N. A. Card (Eds.), *Modeling Contextual Effects in*

Longitudinal Studies (pp. 149–182). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.

- [16] Box, G. E. P., Jenkins, G. M., & Reinsel, G. C. (1994). *Time Series Analysis: Forecasting and Control* (3rd ed.). Englewood Cliffs, NJ: Prentice-Hall.
- [17] Browne, M. W. & Cudeck, R. (1993). Alternative Ways of Assessing Model Fit. In: Bollen, K. A. & Long, J. S. (Eds.), *Testing Structural Equation Models*. (pp. 136–162). Newbury Park, CA:Sage.
- [18] Browne, M. W., & du Toit, S. H. C. (1991). Models for learning data. In L. Collins & J. L. Horn (Eds.), *Best Methods for the Analysis of Change* (pp. 47–68). Washington, DC: APA.
- [19] Chan, D. (1998). The conceptualization and analysis of change over time: An integrative approach incorporating longitudinal mean and covariance structures analysis (LMACS) and multiple indicator latent growth modeling (MLGM). Organizational Research Methods, 1, 421–483.
- [20] Chen, M. F. & Ding, C. G. (2009). Comparing Two-Stage Approaches to Detect Continuous Manifest Moderating Effects on Construct Relationships, Asia Pacific Management Review, 14, 137-157. (TSSCI)
- [21] Curran, P. J. (2003). Have multilevel models been structural equation models all along? *Multivariate Behavioral Research*, 38, 529–569.
- [22] Dawson, K. S., Gennings, C., & Carter, W. H. (1997). Two graphical techniques useful in detecting correlation structure in repeated measures data. *American Statistician*, 4, 275–283.
- [23] Diggle, P. J., Liang, K., and Zeger, S. L. (2002), Analysis of Longitudinal Data, New York: Oxford University Press.
- [24] Ding, C. G., & Jane, T. D. On the reliability, consistency, and method-specificity in multitrait-multimethod models. submitted to *Applied Psychological Measurement*. (Working Paper(a)).
- [25] Ding, C. G., & Jane, T. D. Dealing with error covariances in SEM: Recommendations for behavioral studies. submitted to *Multivariate Behavior Research*. (Working Paper(b)).
- [26] Duncan, S. C., Duncan, T. E., & Hops, H. (1996). Analysis of longitudinal data within accelerated longitudinal design. *Psychological Methods*, 1, 236–248.
- [27] Duncan, T. E., Duncan, S. C. & Strycker, L. A. (2006). An introduction to latent variable growth curve modeling: Concepts, issues, and applications (2nd ed.). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.

- [28] Enders, C. K., & Bandalos, D. L. (2001). The relative performance of full information maximum likelihood estimation for missing data in structural equation models. *Structural Equation Modeling*, 8, 430–457.
- [29] Eyduran, E., & Akbaş, Y. (2010). Comparison of different covariance structure used for experimental design with repeated measurement. *Journal of Animal & Plant Sciences*, 20, 44–51.
- [30] Ferron, J., Dailey, R. F., & Yi, Q. (2002). Effects of misspecifying the first-level error structure in two-level models of change. *Multivariate Behavioral Research*, *37*, 379-403.
- [31] Goldstein, H., Healy, M. J. R., & Rasbash, J. (1994). Multilevel time series models with applications to repeated measures data. *Statistics in Medicine*, *13*, 1643–1655.
- [32] Grimm, K. J., & Widaman, K. F. (2010) Residual structures in latent growth curve modeling. Structural Equation Modeling, 17, 424–442.
- [33] Hamaker, E. L., Dolan, C. V., & Molenaar, C. M. (2003). ARMA-based SEM when the number of time points *T* exceeds the number of cases *N*: Raw data maximum likelihood. *Structural Equation Modeling*, 10, 352–379.
- [34] Hancock, G. R., Kuo, W. L., & Lawrence, F. R. (2001). An illustration of second-order latent growth models. *Structural Equation Modeling*, 8, 470–489.
- [35] Hedeker, D., & Mermelstein, R. J. (2007). Mixed-Effects Regression Models with Heterogeneous Variance: Analyzing Ecological Momentary Assessment (EMA) Data of Smoking. In T. D. Little, J. A. Bovaird, & N. A. Card (Eds.), *Modeling contextual effects in longitudinal studies* (pp. 183–206). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
- [36] Heitjan, D. F., & Sharma, D. (1997). Modeling repeated series longitudinal data. *Statistics in Medicine*, *16*, 347–355.
- [37] Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. *Structural Equation Modeling*, 6(1), 1–55.
- [38] Iacobucci, D. (2010). Structural equation modeling: Fit indices, sample size, and advanced topics. *Journal of Consumer Psychology*, 20, 90-98.
- [39] Jöreskog, K. (1967). Some contributions to maximum likelihood factors analysis, *Psymetrika*, 32, 443–482.
- [40] Jöreskog, K., & Sörbom, D. (2001). LISREL 8: User's Reference Guide, Chicago: Scientific Software International.
- [41] Keselman, H. J., Algina, J., Kowalchuk, R. K., and Wolfinger, R. D. (1998), "A

comparison of two approaches for selecting covariance structures in the analysis of repeated measurements," *Communications in Statistics: Simulation and Computation*, 27, 91–604.

- [42] Kowalchuk, R. K., & Keselman, H. J. (2001). Mixed-model pairwise multiple comparisons of repeated measures means. *Psychological Methods*, 6, 282–296.
- [43] Kwok, O. M., West, S. G., & Green, S. B. (2007). The impact of misspecifying the within-subject covariance structure in multiwave longitudinal multilevel models: A Monte Carlo study. *Multivaraite Behavioral Research*, 42, 557–592.
- [44] Littell R. C., Henry, P. R., & Ammerman, C. B. (1998). Statistical analysis of repeated measures data using SAS procedures. *American Society of Animal Science.*, 76, 1216–1231.
- [44] Littell, R. C., Milliken, G. A., Stroup, W. W., Wolfinger, R. D., & Schabenberger, O. (2006). SAS for Mixed Models (2nd ed.), Cary, NC: SAS Institute Inc.
- [46] Littell R. C., Rendergast J., & Natarajan, R. (2000), Modeling covariance structure in the analysis of repeated measures data. *Statistics in Medicine*, 19, 1793–1819.
- [47] MacCallum, R. C., Kim, C, Malarkey, W. B., and Kiecolt-Glaser, J. K. (1997). Studying multivariate change using multilevel models and latent curve models. *Multivariate Behavioral Research*, 32, 215–253.
- [48] Mansour, H., Nordheim, E. V., & Rutledge, J. J. (1985). Maximum likelihood estimation of variance components in repeated measures designs assuming autoregressive errors. *Biometrics*, 41, 287–294.
- [49] Mehta, P. D., & Neale, M. C. (2005). People are variables too: Multilevel structural equations modeling, *Psychological Methods*, *10*, 259–284.
- [50] Meredith, W., & Tisak, J. (1990). Latent curve analysis. Psychometrika, 55, 107–122.
- [51] Murphy, D. L., & Pituch, K. A. (2009). The Performance of multilevel growth curve models under an autoregressive moving average process. *Journal of Experimental Education*, 77, 255–282.
- [52] Muthén, B. O., & Khoo, S. T. (1998). Longitudinal studies of achievement growth using latent variable modeling. *Learning and Individual Differences*, 10, 73–101.
- [53] Muthén, L. K., & Muthén, B. O. (2002). How to use a Monte Carlo study to decide on sample size and determine power. *Structural Equation Modeling*, 9, 599–620.
- [54] Muthén, L. K., & Muthén, B. O. (2007). Mplus User's Guide (5th ed.). Los Angeles, CA: Author.

- [55] Neale, M. C., Boker, S. M., Xie, G., & Maes, H. H. (2003). Mx: Statistical Modeling (6th ed.). Richmond: Virginia Commonwealth University.
- [56] Newsom, J. T. (2002). A multilevel structural equation model for dyadic data. *Structural Equation Modeling*, *9*, 431–447.
- [57] Orhan, H., Eyduran, E., & Akbaş, Y. (2010). Defining the best covariance structure for sequential variation on live weights of anatolian merinos male lambs. *Journal of Animal* & *Plant Sciences*, 20, 158–163.
- [58] Preacher, K. J., Wichman, A. L., MacCallum, R. C., & Briggs, N. E. (2008). Latent Growth Curve modeling. Thousand Oaks, CA: Sage.
- [59] Rabe-Hesketh, S., & Skrondal, A., (2008). Multilevel and Longitudinal Modeling Using Stata. 2nd ed. College Station, TX: Stata Press
- [60] Raudenbush, S. W. (2001). Comparing personal trajectories and drawing causal inferences from longitudinal data. *Annual Review of Psychology*, *52*, 501–525.
- [61] Rovine, M. J., & Molenaar, P. C. M. (1998). A LISREL model for the analysis of repeated measure with a patterned covariance matrix, *Structural Equation Modeling*, 5, 318–343.
- [62] Rovine, M. J., & Molenaar, P. C. M. (2000). A structural modeling approach to a multilevel random coefficients model. *Multivariate Behavioral Research*, 35, 51–88.
- [63] Sayer, A. G., & Cumsille, P. E. (2001). Second-order latent growth models. In L. Collins & A. G. Sayer (Eds.), *New Methods for the Analysis of Change* (pp. 179-200). Washington DC: American Psychological Association.
- [64] SAS Institute Inc. (2010). SAS/STAT User's Guide (SAS 9.22). Cary, NC: Author.
- [65] Schwarz, G. (1978). Estimating the dimension of a model, Annals of Statistics, 6, 461–464.
- [66] Singer, J. D. (1998). Using SAS PROC MIXED to fit multilevel models, hierarchical models, and individual growth models. *Journal of Educational and Behavioral Statistics*, 24, 323–355.
- [67] Singer, J. D., & Willett, J. B. (2003). *Applied longitudinal data analysis: Modeling change and event occurrence*. New York: Oxford University Press.
- [68] Sivo, S. (2001). Multiple Indicator Stationary Time Series Models. Structural Equation Modeling, 8, 599–612.
- [69] Sivo, S., Fan, X., & Witta, L. (2005). The biasing effects of unmodeled ARMA time series processes on latent growth curve model estimates. *Structural Equation Modeling*, 12, 215–231.

- [70] Sivo, S., & Fan, X. (2008). The latent curve ARMA (p, q) panel model: Longitudinal data analysis in educational research and evaluation. *Educational Research and Evaluation*, 14, 363–376.
- [71] Steiger, J. H. and Lind, J. C. (1980). Statistically Based Tests for the Number of Common Factors. Paper presented at the annual meeting of the Psychometric Society, Iowa City, IA.
- [72] Tsay, R. S. (2005). Analysis of Financial Time Series (2nd ed.), New York: John Wiley& Sons.
- [73] Tucker, L. R., & Lewis, C. (1973), "A reliability coefficient for maximum likelihood factor analysis," *Psychometrika*, 38, 1–10.
- [74] Velicer, W. F., & Fava, J. L. (2003). Time series analysis. In J. A. Schinka & W. F. Velicer (Eds.), *Handbook of psychology. Vol. 2: Research Methods in Psychology* (pp. 581–606). Hoboken, NJ: Wiley.
- [75] Verbeke G., & Molenberghs G. (1997). *Linear Mixed Models in Practice: A SAS-Oriented Approach*. Lecture Notes in Statistics 126, New York: Springer-Verlag.
- [76] West, S. G., & Hepworth, J. T. (1991). Data analytic strategies for temporal data and daily events. *Journal of Personality*, 59, 609–662.
- [77] Willett, J. B., & Sayer, A. G. (1994). Using covariance structure analysis to detect correlates and predictors of individual change over time. *Psychological Bulletin*, 116, 363–381.
- [78] Wolfinger, R. (1993). Covariance structure selection in general mixed models. *Communications in Statistics-Simulation and Computation*, 22, 1079–1106.
- [79] Wolfinger, R. (1996). Covariance structures for repeated measures. *Journal of Agricultural, Biological, and Environmental Statistics, 1,* 205–230.
- [80] Wulff, S. S. & Robinson, T. J. (2009). Assessing the uncertainty of regression estimates in a response surface model for repeated measures. *Quality Technology & Quantitative Management*, 6, 309–324.

A-1: 第一章 附 註

[註 A-1.1] ECM (Singer and Willett, 2003, ch7)

本文之 ECM 係指 LGM (HLM)中第一層測量誤差或第二層成長因素誤差之共變結構 之矩陣(error covariance structural matrix,簡稱 ECM),該名詞引用 Singer and Willett((2003), Ch7.此有別於計量經濟學 error correlation model (ECM)。

A-2: 第二章 附 註

[註 A-2.1] LGM 以 HLM 表示時 level-1 及 level-2 誤差之示意圖 (Rabe-Hesketh and Skrondal,2008, ch4).

在 LGM 固定效果係數 β_0 和 β_1 表示整個成長模型截距的平均值及斜率的平均值;隨機效果係數 u_{0j} 和 u_{1j} (即 u 向量之元素)表示第 j 個受測者成長模型截距及斜率和整個成長模型截距的平均值及斜率的平均值之偏差(deviation),用以表示**受測者彼此之間**成長趨勢之變化;隨機效果 r_{ji} (即 r 向量之元素)表示第 t 個時點及第 j 個受測者之量測值偏離本身成長曲線之誤差。為更清楚 u_{0j} 、 u_{1j} 及 r_{jj} 之意義,我們以第 j 個受測者成長模型為

$$y_{ji} = \beta_0 + \beta_1 (Time_{ij}) + u_{0j} + u_{1j} (Time_{ij}) + r_{ij}$$

= $\beta_0 + u_{0j} + (\beta_1 + u_{1j}) Time_{ij} + r_{ij}$ (A.2.1)

設由母體抽出第j 個受測者之 LGM,就全部受測者而言,整體線性趨勢線(trajectory line) 可表爲式(A.2.1),即圖 A.2.1 線 \overline{AB} ,該迴歸線對所有受測者($\forall j$)而言均成立。

$$E(y_t) = \beta_0 + \beta_1(Time_t) \tag{A.2.2}$$

今假設抽到第 j 個人設隨機效果之得分為 u_{0j} 及 u_{1j} ,則式(A.2.2)之條件期望值,即為式 (A.2.3)

$$E(y_{it} | u_{0i}, u_{1i}, Time_{ii}) = \beta_0 + u_{0i} + (\beta_1 + u_{1i})Time_{ii}$$
(A.2.3)

而式(A.2.3)之迴歸線,即為圖 A.2.1 線 \overline{CE} 。為易於說明式(A.2.2)及式(A.2.3)起見,我們 將線 \overline{AB} 平行移動 u_{0i} 大小,相當於固定 u_{0i} 之迴歸線,即為式(A.2.4)及圖 A.2.1 線 \overline{CD}

$$E(y_{it} | u_{0i}, Time_{it}) = \beta_0 + u_{0i} + \beta_1(Time_{it})$$
(A.2.4)

因而 \overline{CE} 即為線 $\overline{CD}(\overline{AB}$ 往上平移 u_{0j})以C為圓心旋轉遞增 u_{1j} ,因此 u_{0j} 及 u_{1j} 分別表示每 一個受測者對整體迴歸線偏差(deviance)程度,故u隨機向量反映**受測者彼此間**(between subjects)之 LGM 是否有變化。又今假設第*j* 個受測者已固定,再對受測者本身在不同時 點進行抽樣所得分數即為 y_{ij} ,即為曲線 \overline{FGHI} ,其與 \overline{CE} 之偏差程度為 ε_{ij} ,故 $\varepsilon_{j} = [\varepsilon_{1j} \ \varepsilon_{2j} \ \varepsilon_{3j} \ \varepsilon_{4j}]'隨機誤差向量反映第$ *j*個**受測者本身**(within subjects)偏離本身迴歸線程度。

[註 A-2.2] HLM 及 SEM 名詞定義

由於以 HLM 及 SEM,源自於不同之統計模型,以圖 2.1 一階 LGM 而言,在 HLM 才有層次(level)之觀念(Raudenbush and Bryk, 2002, Ch2),而 SEM 為測量模式(measure model)及結構方程(structural equation) (Bollen, 1998, Ch8)各有其要解決之了問題,唯 LGM 在 HLM 及 SEM 其解析式卻相同,如圖 2.1 在 SEM 稱潛在變數(intercept(或 level) 及 slope(shape))為成長因素構念,而在 HLM 稱為 random coefficients,其他變數在不同 統計模型之術語其對對映關係如表表 A-2.1 所示。

表 A-2.1 SEM 及 HLM 表示 LGM 各種名詞定義

	SEM	HLM
y_1, y_2, y_3, y_4	稱為可觀測變數,以測量模式表示	稱為 Level-1(第一層次),為可觀測變數
η_{lpha},η_{eta}	稱為成長因素構念,以結構方程表 式; η_{α} 稱為 level(水準)、 η_{β} 稱為 shape(形式)	稱為 Level-2(第二層次),隨機係數; η_{α} 稱為 Intercept(截距項)、 η_{β} 稱為 slope(斜率項)
level 概念	沒有層次概念	有層次概念

ECM	說明	參數個數	矩陣第(i,j)的元素
ANTE(1)	Ante-dependence	2 <i>t</i> –1	$\sigma_i\sigma_j\prod_{k=i}^{j-1} ho_k$
AR(1)	Autoregressive(1)	2	$\sigma^2 ho^{_{ i-j }}$
ARH(1)	Heterogenous AR(1)	<i>t</i> +1	$\sigma_i \sigma_j ho^{ert_{i-jert}}$
ARMA(1,1)	ARMA(1,1)	3	$\sigma^{2}[\gamma \rho^{ i-j -1} 1(i \neq j) + (i-j)]$
CS	Compound Symmetry	2	$\sigma_1 + \sigma^2 1(i=j)$
CSH	Heterogenous CS	<i>t</i> +1	$\sigma_i \sigma_j [\rho 1(i \neq j) + 1(i - j)]$
FA(q)	Factor Analytic	(q/2)(2t-q+1)+t	$\sum_{k=1}^{\max(i,j,q)} \lambda_{ik} \lambda_{jk} + \sigma_i^2 1(i=j)$
FA0(<i>q</i>)	No Diagonal FA	(q/2)(2t-q+1)	$\sum_{k=1}^{\max(i,j,q)} \lambda_{ik} \lambda_{jk}$
FA1(<i>q</i>)	Equal Diagonal FA	(q/2)(2t-q+1)+1	$\sum_{k=1}^{\max(i,j,q)} \lambda_{ik} \lambda_{jk} + \sigma^2 1(i=j)$
HF	Huynh-Feldt	t+1 ES A	$(\sigma_i^2 + \sigma_j^2) / 2 + \lambda l (i \neq j)$
LIN(q)	General Linear	q	$\sum_{k=1}^{q} heta_k \mathbf{A}_{ij}$
TOEP	Toeplitz	t 1896	$\sigma_{_{ i-j +1}}$
TOEP(q)	Banded Toeplitz	q	$\sigma_{ i-j +1} \mathbb{I}(i-j < q)$
ТОЕРН	Heterogeneous TOEP	2 <i>t</i> -1	$\sigma_i \sigma_i ho_{\scriptscriptstyle i-j }$
TOEPH(q)	Band TOEPH	t+q-1	$\sigma_i \sigma_j \rho_{ i-j } 1(i-j < q)$
UN	Unstructured	t(t+1)/2	$\sigma_{_{ij}}$
UN(q)	Banded UN	(q/2)(2t-q+1)+1	$\sigma_{ii} 1(i-j < q)$
UNR	UN Correlations	t(t+1)/2	$\sigma_i \sigma_j ho_{ \max(i,j)\min(i,j) }$
UNR(q)	Banded UNR	(q/2)(2t-q+1)+1	$\sigma_i \sigma_j ho_{ \max(i,j)\min(i,j) }$
UN@AR(1)	Direct Product AR(1)	$t_1(t_1+1)/2+1$	$\sigma_{_{i,j,}} ho^{_{ i_2-j_2 }}$
UN@CS	Direct Product CS	$t_1(t_1+1)/2+1$	$\sigma_{i_1,j_1}, i_2 = j_2; \sigma^2 \sigma_{i_1,j_1}, i_2 \neq j_2; 0 \le \sigma^2 \le 1$
UN@UN	Direct Product UN	$t_1(t_1+1)/2+$ t (t +1)/2-1	$\sigma_{\mathrm{l},i_l,i_l}\sigma_{\mathrm{2},i_2,i_2}$
VC	Variance Components	q	$\sigma_k^2 \mathbf{l}(i=j)$

表 A-2.2 等期間 ECM 共變結構(引用 PROC MIXED V9.22, p3593)

說明:*t* 為 ECM 之維度。1(A)表示當 A 條件成立則為 1 否則為 0,例如 1(*i=j*)表示當 *i=j* 則為 1 否 則為 0,1(*i-j*|<*q*)表示當|*i-j*|<*q* 則為 1 否則為 0。在 TOEPH 結構 $\rho_0 = 1$,在 UNR 結構 $\rho_{ii} = 1$ 。 @表示矩陣直積(direct product);在具矩陣直積之 ECM 中,下標 "1"及 "2"分別表示第 1 個 ECM 及 第 2 個 ECM , *i*₁ = int((*i*+*t*₂-1)/*t*₂) , *j*₁ = int((*j*+*t*₂-1)/*t*₂) , *i*₂ = mod(*i*-1),*t*₂)+1 及 *j*₂ = mod(*j*-1),*t*₂)+1.

ECM	說明	參數個數	矩陣第(i,j)的元素
SP(EXP)(c-list)	Exponential	2	$\sigma^2 \exp\{-d_{ij} / \theta\}$
SP(EXPA)(c-list)	Anistropic Exponential	2c+1	$\sigma^2 \prod_{k=1}^{c} \exp\{-\theta_k d(i,j,k)^{pk}\}$
$SP(EXPGA)(c_1 c_2)$	2D Exponential, Geometrically Anisotropic	4	$\sigma^2 \exp\{-d_{ij}(\theta,\lambda) / \rho\}$
SP(GAU) (c-list)	Gaussian	2	$\sigma^2 \exp\{-d_{ij}^2 / \rho^2\}$
$SP(GAUGA) (c_1 c_2)$	2D Gaussian, GA	4	$\sigma^2 \exp\{-d_{ij}(\theta,\lambda)^2 / \rho^2\}$
SP(LIN) (c-list)	Linear	2	$\sigma^2(1-\rho d_{ij})\mathbf{l}(\rho d_{ij}\leq 1)$
SP(LIN) (c-list)	Linear Log	2	$\sigma^2(1-\rho\log(d_{ij}))1(\rho\log(d_{ij})\leq 1)$
SP(MATERN) (c-list)	Matérn	3	$\sigma^2 \frac{1}{\Gamma(\nu)} \left(\frac{d_{ij}}{2\rho}\right)^{\nu} 2K_{\nu}(d_{ij}/\rho)$
SP(MATERN) (c-list)	Matérn (Handcock-Stein-Wallis)	3 S	$\sigma^2 \frac{1}{\Gamma(\nu)} \left(\frac{d_{ij} \sqrt{\nu}}{\rho} \right)^{\nu} 2K_{\nu} \left(\frac{2d_{ij} \sqrt{\nu}}{\rho} \right)$
SP(POW)	Power	2 0	$\sigma^2\rho^{d_{ij}}$
SP(POWA)(c-list)	Anisotropic Power	c+16	$\sigma^2 ho_1^{d(i,j,1)} ho_1^{d(i,j,2)} ho_1^{d(i,j,c)}$
SP(SPH)(c-list)	Spherical	2	$\sigma^2 \left[1 - \left(\frac{3d_{ij}}{2\rho}\right) + \left(\frac{3d_{ij}^3}{2\rho}\right)\right] l(d_{ij} < \rho)$
$SP(SPHGA)(c_1 c_2)$	2D Spherical, GA	4	$\sigma^{2}\left[1-\left(\frac{3d_{ij}}{2\rho}\right)+\left(\frac{3d_{ij}^{3}}{2\rho}\right)\right]l(d_{ij}(\theta,\lambda) \leq \rho)$

表 A-2.3 空間 ECM 共變結構(引用 PROC MIXED V9.22, p3594)

c-list 表示在空間位置座標可數的變數。 d_{ij} 表示在座標中第*i* 個觀測向量與第*j* 個觀側向量歐幾理 德(Euclidean distance)距離。如 SP(POWA)和 SP(EXPA)中的"c"代表座標的數目,d(i, j, k)表第*i* 個觀測向量與第*j* 個觀側向量在第*k* 個座標軸中絕對距離。在幾何異向性結構 SP(EXPGA)、 SP(GAUGA)及 SP(SPHGA)两個空間座標變數 c₁和 c₂需設定,如對座標系統之旋轉(rotation)參 數 θ 及尺度參數(scaling) λ 可用來做幾何異向性之校正,例如 $d_{ij}(\theta, \lambda)$ 表示两點在轉換空間座標 两個點之歐幾理德距離。SP(MATERN)及 SP(MATHSW)表示共變數結構,由 Matern (1986), Handcock and Stein (1993), Handcock and Wallis (1994)所提出一系列結構。 K_v 代表第二類修正員 氏函數(Bessel function), v>0.

A-3: 第 三 章 附 註

[註 A-3.1]: ECM 限制式個數 (以 T=4 爲例說明)

本附註說明由飽和 ECM 經由限制式後,可得到簡化 ECM,其中穩態的飽和 ECM 為 TOEP,而非穩態的飽和 ECM 為 UN。

1.穩態結構

(1) AR(1)

因此,在 *T*=4 由 TOEP 減化成 MA (1) 限制式個數需參個限制式: $\sigma_1 = \frac{-\theta_1}{1+\theta_{\epsilon}^2} \sigma_{\epsilon}^2, \ \sigma_2 = 0, \ \sigma_3 = 0.$ 。一般情況下,由 TOEP 簡化到 MA(1)則為 *T*-1。

(3) ARMA(1,1) :

$$\begin{split} & \varepsilon_t = \phi_1 \varepsilon_{t-1} - \theta_1 v_{t-1} + v_t, \ |\theta_1| < 1 |\phi_1| < 1. \\ & \rho_1 = [(\phi_1 - \theta_1)(1 - \phi_1 \theta_1)] / (1 - 2\phi_1 \theta_1 + \theta_1^2), \ \rho_k = \phi_1 \rho_{k-1}, k > 1. \\ & \boxtimes \mathfrak{U}, \ \check{\mathbf{T}} = 4 \text{ in TOEP 派化成 ARMA (1)需 3 個限制式:} \end{split}$$

 $\sigma_{1} = \frac{(\phi_{1} - \theta_{1})(1 - \phi_{1}\theta_{1})}{(1 - 2\phi_{1}\theta_{1} + \theta_{1}^{2})} \sigma_{\varepsilon}^{2}, \ \sigma_{2} = \phi_{1}\rho_{1}\sigma_{\varepsilon}^{2}, \ \sigma_{3} = \phi_{1}^{2}\rho_{1}\sigma_{\varepsilon}^{2}. \ \circ - \theta_{2} \text{ 情况下 , 由 TOEP 简化到}$ ARMA(1,1),則限制式個數為 *T*-1 。

(4) AR(2)

因此,在 *T*=4 由 TOEP 減化成 AR (2)需 3 個限制式: $\sigma_1 = \phi_1 / (1-\phi_1)\sigma_{\varepsilon}^2, \sigma_2 = \rho_2 \sigma_{\varepsilon}^2 = (\phi_1 \rho_1 + \phi_2 \rho_0)\sigma_{\varepsilon}^2, \sigma_3 = \rho_2 \sigma_{\varepsilon}^2 = (\phi_1 \rho_2 - \phi_2 \rho_1)\sigma_{\varepsilon}^2 \circ -$ 般情況下, 由 TOEP 簡化到 ARMA(1,1)則限制式個數為 *T*-1。

(5) MA(2)

$$\begin{split} \varepsilon_{t} &= v_{t} - \theta_{1} v_{t-1} - \theta_{2} v_{t-2}, \quad | \; \theta_{2} \mid < 1, \; \theta_{2} + \theta_{1} < 1, \; \theta_{2} - \theta_{1} < 1. \\ \rho_{1} &= (-\theta_{1} + \theta_{1} \theta_{2}) / (1 + \theta_{1}^{2} + \theta_{2}^{2}), \; \rho_{2} = -\theta_{2} / (1 + \theta_{1}^{2} + \theta_{2}^{2}), \; \rho_{k} = 0, k > 2. \end{split}$$

因此,在*T*=4由TOEP減化成AR(2)需參個限制式: $\sigma_1 = \phi_1 / (1-\phi_1)\sigma_{\varepsilon}^2, \sigma_2 = \rho_2 \sigma_{\varepsilon}^2 = (\phi_1 \rho_1 + \phi_2 \rho_0)\sigma_{\varepsilon}^2, \sigma_3 = \rho_2 \sigma_{\varepsilon}^2 = (\phi_1 \rho_2 - \phi_2 \rho_1)\sigma_{\varepsilon}^2 - 般情況下,由$ TOEP 簡化到ARMA(1,1)則限制式個數為*T*-1。

(6) ARMA(2,1)

 $\varepsilon_{t} = \phi_{1}\varepsilon_{t-1} + \phi_{2}\varepsilon_{t-2} - \theta_{1}v_{t-1} + v_{t}, |\theta_{1}| < 1, |\phi_{2}| < 1, \phi_{2} + \phi_{1} < 1, \phi_{2} - \phi_{1} < 1., \rho_{0} = 1,$ 因此,在 *T*=4 由 TOEP 減化成 ARMA (2,1)需參個限制式:

TOEP 簡化到 ARMA(2,1)則限制式個數為 T-1。//

 $\varepsilon_{t} = \phi_{1}\varepsilon_{t-1} - \theta_{1}v_{t-1} + \theta_{1}v_{t-1} + v_{t}, |\phi_{1}| < 1, |\theta_{2}| < 1, \theta_{2} + \theta_{1} < 1, \theta_{2} - \theta_{1} < 1., \rho_{0} = 1,$ 因此,在 *T*=4 由 TOEP 減化成 ARMA (2,1)需參個限制式:

$$\sigma_{1} = \frac{(-\theta_{1} + \theta_{1}\theta_{2}) + [\phi_{1}(1 + \theta_{2}^{2}) + \phi_{1}(\theta_{1}^{2} - \theta_{2}) - \phi_{1}^{2}\theta_{1}(1 - \theta_{2}) - \phi_{1}^{3}\theta_{2}]}{(1 + \theta_{1}^{2} + \theta_{2}^{2}) - [2\phi_{1}(\theta_{1} - \theta_{1}\theta_{2} + \phi_{1}\theta_{2})]} \sigma_{\varepsilon}^{2},$$

$$\sigma_{2} = \frac{-\theta_{2} - [\phi_{1}\theta_{1}(1 - \theta_{2}) + \phi_{1}^{2}(1 + \theta_{1}^{2} + \theta_{2}^{2}) - \phi_{1}^{3}\theta_{1}(1 - \theta_{2}) - \phi_{1}^{4}\theta_{2}]}{(1 + \theta_{1}^{2} + \theta_{2}^{2}) - [2\phi_{1}(\theta_{1} - \theta_{1}\theta_{2} + \phi_{1}\theta_{2})]} \sigma_{\varepsilon}^{2},$$

$$\sigma_{3} = \rho_{k}\sigma_{\varepsilon}^{2} = \phi_{1}\rho_{k-1}\sigma_{\varepsilon}^{2}$$

一般情況下,由 TOEP 簡化到 ARMA(2,1)則限制式個數為 T-1。

因此,在 T=4由 TOEP 減化成 CS 需二個限制式: $\sigma_2 = \sigma_1, \sigma_3 = \sigma_1.$ 。一般情況下,由 TOEP 簡化到 CS 則限制式個數為 T-2.

(9) TOEP(q)

因此,在T=4由TOEP 減化成TOEP(q)所需之限制式個隨著q增加而遞減。 一般情況下,由TOEP 簡化到TOEP(q)則限制式個數為T-q。

2.非穩態結構

(1) CSH

UN (#Par.=10) 限制式個數=
$$\frac{T(T-1)}{2}$$
-1=5 CSH (#Par.=5)

$$\begin{bmatrix} \sigma_{\varepsilon_{1}}^{2} & & \\ \sigma_{\varepsilon_{2}\varepsilon_{1}} & \sigma_{\varepsilon_{2}}^{2} & \\ \sigma_{\varepsilon_{3}\varepsilon_{1}} & \sigma_{\varepsilon_{3}\varepsilon_{2}} & \sigma_{\varepsilon_{3}}^{2} \\ \sigma_{\varepsilon_{3}\varepsilon_{1}} & \sigma_{\varepsilon_{3}\varepsilon_{2}} & \sigma_{\varepsilon_{3}}^{2} \\ \sigma_{\varepsilon_{4}\varepsilon_{1}} & \sigma_{\varepsilon_{4}\varepsilon_{2}} & \sigma_{\varepsilon_{4}}^{2} & \\ \sigma_{\varepsilon_{4}\varepsilon_{1}} & \sigma_{\varepsilon_{4}} & \sigma_{\varepsilon_{4}} & \sigma_{\varepsilon_{2}} & \\ \sigma_{\varepsilon_{4}\varepsilon_{1}} & \sigma_{\varepsilon_{4}} & \sigma_{\varepsilon_{4}} & \sigma_{\varepsilon_{2}} & \\ \sigma_{\varepsilon_{4}\varepsilon_{1}} & \sigma_{\varepsilon_{4}} & \sigma_{\varepsilon_{4}}$$

雖然由 UN 簡化成 CSH 限制式有 6 個,但需扣除 1 個多餘的(redundant)關係式,故剩下 5 個。

(2) TOEPH

UN (#Par.=10) 限制式個數=
$$\frac{T(T+1)}{2}$$
-2T+1=3 TOEPH (#Par.=7)

$$\begin{bmatrix} \sigma_{\varepsilon_{1}}^{2} & & \\ \sigma_{\varepsilon_{2}\varepsilon_{1}} & \sigma_{\varepsilon_{2}}^{2} & \\ \sigma_{\varepsilon_{3}\varepsilon_{1}} & \sigma_{\varepsilon_{3}\varepsilon_{2}} & \sigma_{\varepsilon_{3}}^{2} \\ \sigma_{\varepsilon_{4}\varepsilon_{1}} & \sigma_{\varepsilon_{4}\varepsilon_{2}} & \sigma_{\varepsilon_{4}\varepsilon_{3}} & \sigma_{\varepsilon_{4}}^{2} \end{bmatrix} \xrightarrow{\mathbb{R} \oplus \mathbb{R}} \begin{bmatrix} \sigma_{\varepsilon_{1}}^{2} & & \\ \sigma_{\varepsilon_{2}\sigma_{1}} - \sigma_{\sigma_{2}\sigma_{2}\sigma_{1}\rho_{1}}, & \\ \sigma_{\varepsilon_{2}\sigma_{2}} - \sigma_{\sigma_{3}\sigma_{2}\sigma_{2}\rho_{1}}, & \\ \sigma_{\varepsilon_{4}\sigma_{5}} - \sigma_{\varepsilon_{4}\sigma_{5}} - \sigma_{\varepsilon_{4}}^{2} & \sigma_{\varepsilon_{3}} - \sigma_{\varepsilon_{4}\sigma_{5}} - \sigma_{\varepsilon_{4}} \\ \sigma_{\varepsilon_{4}\sigma_{5}} - \sigma_{\varepsilon_{5}\sigma_{5}\rho_{2}}, & \\ \sigma_{\varepsilon_{4}\sigma_{5}} - \sigma_{\varepsilon_{5}\sigma_{5}\rho_{2}}, & \\ \sigma_{\varepsilon_{4}\sigma_{5}\rho_{3}} - \sigma_{\varepsilon_{5}\sigma_{5}\rho_{2}}, & \\ \sigma_{\varepsilon_{4}\sigma_{5}\rho_{5}\rho_{3}} - \sigma_{\varepsilon_{5}\sigma_{5}\rho_{5}\rho_{5}}, & \\ \sigma_{\varepsilon_{5}\sigma_{5}\rho_{5}\rho_{5}} - \sigma_{\varepsilon_{5}\sigma_{5}\rho_{5}}, & \\ \sigma_{\varepsilon_{5}\sigma_{5}\rho_{5}\rho_{5}} - \sigma_{\varepsilon_{5}\sigma_{5}\rho_{5}\rho_{5}}, & \\ \sigma_{\varepsilon_{5}\sigma_{5}\rho_{5}\rho_{5}} - \sigma_{\varepsilon_{5}\sigma_{5}\rho_{5}}, & \\ \sigma_{\varepsilon_{5}\sigma_{5}\rho_{5}\rho_{5}} - \sigma_{\varepsilon_{5}\sigma_{5}\rho_{5}}, & \\ \sigma_{\varepsilon_{5}\sigma_{5}\rho_{5}} - \sigma_{\varepsilon_{5}\sigma_{5}}, & \\ \sigma_{\varepsilon_{5}\sigma_{5}} - \sigma$$

雖然由 UN 簡化成 TOEPH 限制式有 5 個,但需扣除 2 個多餘的(redundant)關係式,故剩下 3 個。

$$\sigma_{\varepsilon_{2}\varepsilon_{1}} = \sigma_{\varepsilon_{2}}\sigma_{\varepsilon_{1}}\rho_{1}, \sigma_{\varepsilon_{3}\varepsilon_{2}} = \sigma_{\varepsilon_{3}}\sigma_{\varepsilon_{2}}\rho_{1}, \sigma_{\varepsilon_{4}\varepsilon_{3}} = \sigma_{\varepsilon_{4}}\sigma_{\varepsilon_{3}}\rho_{1},$$

$$\sigma_{\varepsilon_{4}\varepsilon_{2}} = \sigma_{\varepsilon_{4}}\sigma_{\varepsilon_{2}}\rho_{2}, \sigma_{\varepsilon_{3}\varepsilon_{1}} = \sigma_{\varepsilon_{3}}\sigma_{\varepsilon_{1}}\rho_{2}.$$

又因存在有二個關係式,

$$\begin{split} \rho_1 &= \frac{\sigma_{\varepsilon_2 \varepsilon_1}}{\sigma_{\varepsilon_2} \sigma_{\varepsilon_1}} = \frac{\sigma_{\varepsilon_3 \varepsilon_2}}{\sigma_{\varepsilon_3} \sigma_{\varepsilon_2}} = \frac{\sigma_{\varepsilon_4 \varepsilon_3}}{\sigma_{\varepsilon_4} \sigma_{\varepsilon_3}}, \ \rho_2 &= \frac{\sigma_{\varepsilon_4 \varepsilon_2}}{\sigma_{\varepsilon_4} \sigma_{\varepsilon_2}} = \frac{\sigma_{\varepsilon_3 \varepsilon_1}}{\sigma_{\varepsilon_3} \sigma_{\varepsilon_1}} \ \text{observed} 3 \ \text{Imserved} \text{Imserved} 3 \\ &- \text{般情況下}, \ \text{R制式個數} = \frac{T(T+1)}{2} - 2T + 1 \ \text{observed} 3 \\ \end{split}$$

- (3) TOEPH(*q*)
- A. TOEPH(1)

因爲期差1期共變數限制式有3個,分別爲 $\sigma_{\epsilon_{3}\epsilon_{1}} = \sigma_{\epsilon_{2}}\sigma_{\epsilon_{1}}\rho_{1}, \sigma_{\epsilon_{3}\epsilon_{2}} = \sigma_{\epsilon_{3}}\sigma_{\epsilon_{2}}\rho_{1}, \sigma_{\epsilon_{4}\epsilon_{3}} = \sigma_{\epsilon_{4}}\sigma_{\epsilon_{3}}\rho_{1}$ 但有一共同關係式 $\rho_{1} = \frac{\sigma_{\epsilon_{2}\epsilon_{1}}}{\sigma_{\epsilon_{1}}\sigma_{\epsilon_{2}}} = \frac{\sigma_{\epsilon_{3}\epsilon_{2}}}{\sigma_{\epsilon_{3}}\sigma_{\epsilon_{2}}} = \frac{\sigma_{\epsilon_{4}\epsilon_{3}}}{\sigma_{\epsilon_{4}}\sigma_{\epsilon_{3}}},$ 故僅需2個限制式;而期差2期共變數, 有2個限制式 $\sigma_{\epsilon_{3}\epsilon_{1}} = 0, \sigma_{\epsilon_{4}\epsilon_{2}} = 0$;期差3期,僅有1個限制式 $\sigma_{\epsilon_{4}\epsilon_{1}} = 0$;故當T=4時,由 UN 簡化到TOEPH(2)時,共需要5個限制式。

C. TOEPH(3)

因 爲 期 差 1 期 共 變 數 , 雖 有 3 個 限 制 式 , 分 別 爲 $\sigma_{\epsilon_3\epsilon_1} = \sigma_{\epsilon_2}\sigma_{\epsilon_1}\rho_1$, $\sigma_{\epsilon_3\epsilon_2} = \sigma_{\epsilon_3}\sigma_{\epsilon_2}\rho_1, \sigma_{\epsilon_4\epsilon_3} = \sigma_{\epsilon_4}\sigma_{\epsilon_3}\rho_1$, 但有一共同關係式 $\rho_1 = \frac{\sigma_{\epsilon_2\epsilon_1}}{\sigma_{\epsilon_1}\sigma_{\epsilon_2}} = \frac{\sigma_{\epsilon_3\epsilon_2}}{\sigma_{\epsilon_3}\sigma_{\epsilon_2}} = \frac{\sigma_{\epsilon_4\epsilon_3}}{\sigma_{\epsilon_4}\sigma_{\epsilon_3}}$,故僅需 2 個限制式; 而期差 2 期共變數,雖有 2 個限制式 $\sigma_{\epsilon_3\epsilon_1} = \sigma_{\epsilon_3}\sigma_{\epsilon_1}\rho_2, \sigma_{\epsilon_4\epsilon_2} = \sigma_{\epsilon_4}\sigma_{\epsilon_2}\rho_2$, 但有 一共同關係式 $\rho_2 = \frac{\sigma_{\epsilon_3\epsilon_1}}{\sigma_{\epsilon_3}\sigma_{\epsilon_1}} = \frac{\sigma_{\epsilon_4\epsilon_2}}{\sigma_{\epsilon_4}\sigma_{\epsilon_2}} \sigma_{\epsilon_3\epsilon_1} = 0, \sigma_{\epsilon_4\epsilon_2} = 0$,故僅需 1 個限制式; 期差 3 期,僅 有 1 個限制式 $\sigma_{\epsilon_4\epsilon_1} = 0$ 。因此,當 T=4 時,由 UN 簡化到 TOEPH(3)時,共需要 4 個限制 式。

因 爲 期 差 1 期 共 變 數 , 雖 有 3 個 限 制 式 , 分 別 爲 $\sigma_{\epsilon_3\epsilon_1} = \sigma_{\epsilon_2}\sigma_{\epsilon_1}\rho_1$, $\sigma_{\epsilon_3\epsilon_2} = \sigma_{\epsilon_3}\sigma_{\epsilon_2}\rho_1, \sigma_{\epsilon_4\epsilon_3} = \sigma_{\epsilon_4}\sigma_{\epsilon_3}\rho_1$, 但有一共同關係式 $\rho_1 = \frac{\sigma_{\epsilon_2\epsilon_1}}{\sigma_{\epsilon_1}\sigma_{\epsilon_2}} = \frac{\sigma_{\epsilon_3\epsilon_2}}{\sigma_{\epsilon_3}\sigma_{\epsilon_2}} = \frac{\sigma_{\epsilon_4\epsilon_3}}{\sigma_{\epsilon_4}\sigma_{\epsilon_3}}$,故僅需 2 個限制式;而期差 2 期共變數,雖有 2 個限制式 $\sigma_{\epsilon_3\epsilon_1} = \sigma_{\epsilon_3}\sigma_{\epsilon_1}\rho_2, \sigma_{\epsilon_4\epsilon_2} = \sigma_{\epsilon_4}\sigma_{\epsilon_2}\rho_2$, 但有 一共同關係式 $\rho_2 = \frac{\sigma_{\epsilon_3\epsilon_1}}{\sigma_{\epsilon_3}\sigma_{\epsilon_1}} = \frac{\sigma_{\epsilon_4\epsilon_2}}{\sigma_{\epsilon_4}\sigma_{\epsilon_2}} \sigma_{\epsilon_3\epsilon_1} = 0, \sigma_{\epsilon_4\epsilon_2} = 0$,故僅需 1 個限制式;期差 3 期, $\sigma_{\epsilon_4\epsilon_1} = \sigma_{\epsilon_4}\sigma_{\epsilon_1}\rho_3$ 必然成立,故爲 0 個限制式。因此,當 T=4 時,由 UN 簡化到 TOEPH(4) 時,共需要 3 個限制式。 因此,一般式由 UN 簡化到 TOEPH(q)之限制式個數爲: 限制式個數= $\frac{T(T+1)}{2} - (T+q) + 1$

115

(3) UN(q) A.UN(1) UN (#Par.=10) 限制式個數= $\frac{(T-q+1)(T-q)}{2}$ =6 UN(1) (#Par.=4) $\begin{bmatrix} \sigma_{\varepsilon_{1}}^{2} & & \\ \sigma_{\varepsilon_{2}\varepsilon_{1}} & \sigma_{\varepsilon_{2}}^{2} & & \\ \sigma_{\varepsilon_{3}\varepsilon_{1}} & \sigma_{\varepsilon_{3}\varepsilon_{2}} & \sigma_{\varepsilon_{3}}^{2} & \\ \sigma_{\varepsilon_{3}\varepsilon_{1}} & \sigma_{\varepsilon_{3}\varepsilon_{2}} & \sigma_{\varepsilon_{3}}^{2} & \\ \sigma_{\varepsilon_{4}\varepsilon_{1}} & \sigma_{\varepsilon_{4}\varepsilon_{2}} & \sigma_{\varepsilon_{4}\varepsilon_{3}} & \sigma_{\varepsilon_{4}}^{2} \end{bmatrix}$ B. UN(2)

[註 A-3.2]: ARMA(p,q)之 ECM

ARMA(p,q)之 level-1 ECM 推導

首先定義誤差 $\{\varepsilon_i\}$ 過程為 ARMA(p,q)

$$\begin{split} & \varepsilon_{i} = \underbrace{\phi_{\varepsilon_{i-1}} + \cdots + \phi_{p} \varepsilon_{i-p}}_{AR \text{ part}} + \underbrace{v_{i} - \theta_{i} v_{i-1} - \cdots - \theta_{q} v_{i-q}}_{MA \text{ part}}, v_{i} \sim \text{white noise}(0, \sigma_{v}^{2}). \\ & \overline{\mathsf{m}} \mathbb{B} \text{end} \mathcal{R} \varepsilon_{i-k} \\ & \varepsilon_{i} \varepsilon_{i-k} = \phi_{i} \varepsilon_{i-1} \varepsilon_{i-k} + \cdots + \phi_{p} \varepsilon_{i-p} \varepsilon_{i-k} + v_{i} \varepsilon_{i-k} - \theta_{i} v_{i-1} \varepsilon_{i-k} - \cdots - \theta_{q} v_{i-q} \varepsilon_{i-k} \\ & \overline{\mathsf{n}} \mathbb{E} \phi_{i} \sigma_{k-1} + \cdots + \phi_{p} \sigma_{k-p} + \sigma_{v_{i} \varepsilon_{i-k}} - \theta_{i} \sigma_{v_{i} \varepsilon_{i-k}} - \cdots - \theta_{q} \sigma_{v_{i-q} \varepsilon_{i-k}} \\ & \overline{\mathsf{n}} \mathbb{E} \mathbf{n} \sigma_{v_{i-q} \varepsilon_{i-k}} = Cov(v_{i-q}, \varepsilon_{i-k}) = E(v_{i-q} \varepsilon_{i-k}) - \underbrace{E(v_{i-q})}_{=0} \underbrace{E(\varepsilon_{i-k})}_{=0} = E(v_{i-q} \varepsilon_{i-k}) = \sigma_{v_{i} \varepsilon_{i}}(k-q) \\ & \overline{\mathsf{m}} \mathbb{I} \mathbb{I} \sigma_{v_{i-q} \varepsilon_{i-k}} = Cov(v_{i-q}, \varepsilon_{i-k}) = \sigma_{v_{i} \varepsilon_{i}}(k-q) \mathbb{E} \mathbb{I} \mathbb{I} \mathbb{I} \\ & \overline{\mathsf{m}} \mathbb{I} \mathbb{I} \mathbb{I} \\ & \overline{\mathsf{n}} \varepsilon_{i} (k-q) > 0 \mathbb{I} \mathbb{I} \sigma_{v_{i-q} \varepsilon_{i-k}} = 0 \\ & \overline{\mathsf{m}}_{k} = \phi_{i} \sigma_{k-1} + \cdots + \phi_{p} \sigma_{k-p} + \sigma_{v_{i} \varepsilon_{i}}(k) - \theta_{i} \sigma_{v_{i} \varepsilon_{i}}(k-1) - \cdots - \theta_{q} \sigma_{v_{i} \varepsilon_{i}}(k-q) \\ & \text{where } \sigma_{v_{i}}(k) = Cov(v_{i}, \varepsilon_{i-k}) \\ & = E(v_{i+k} [\phi_{i} \varepsilon_{i-1} + \cdots + \phi_{p} \varepsilon_{i-p} + v_{i-q}] + \varepsilon_{i-k} v_{i-q}) - \overline{E}(v_{i-k} v_{i-1}) - \cdots - \theta_{q} \varepsilon_{i-k} v_{i-q}) \\ & = \phi_{k} E(v_{i+k} \varepsilon_{i-1}) + \cdots + \phi_{p} E(v_{i+k} \varepsilon_{i-p}) + E(v_{i+k} v_{i}) - \theta_{k} E(v_{i+k} v_{i-1}) - \cdots - \theta_{q} \sigma_{w_{i}}(k+q) \\ & \text{where } \sigma_{\varepsilon_{i}}(k) = Cov(v_{i+k} \varepsilon_{i}) = 0, \text{ if } k > 0. \\ & \sigma_{w}(k) = Cov(v_{i+k} \varepsilon_{i}) = 0, \text{ if } k > 0. \\ & \sigma_{w}(k) = Cov(v_{i+k} \varepsilon_{i}) = 0, \text{ if } k > 0. \\ & \sigma_{w}(k) = Cov(v_{i+k} \varepsilon_{i}) = 0, \text{ if } k > 0. \\ & \sigma_{\varepsilon_{i}}(1 + \cdots + \phi_{p} \sigma_{w_{i}}(-1) + \psi_{p} \sigma_{w_{i}}(-1) + \psi_{p} \sigma_{w_{i}}(-1) + \psi_{i-q} \sigma_{w_{i}}(-1) + \psi_{i-q$$

$$\begin{aligned} \sigma_{\varepsilon v}(-2) &= \phi_{1}\sigma_{v\varepsilon}(-1) + \phi_{2}\sigma_{v\varepsilon}(0) + \dots + \phi_{p}\sigma_{v\varepsilon}(-2+p) + \\ \sigma_{vv}(-2) - \theta_{1}\sigma_{vv}(-2+1) - \theta_{2}\sigma_{vv}(-2+2) \dots - \theta_{q}\sigma_{vv}(-2+q) \\ \sigma_{\varepsilon v}(-2) &= \phi_{1}\sigma_{v\varepsilon}(-1) + \phi_{2}\sigma_{v\varepsilon}(0) - \theta_{2}\sigma_{vv}(0) \\ &= \phi_{1}\sigma_{v}^{2}(-1) + \phi_{2}\sigma_{v}^{2} - \theta_{2}\sigma_{v}^{2} \\ &= \phi_{1}(\phi_{1} - \theta_{1})\sigma_{v}^{2} + \phi_{2}\sigma_{v}^{2} - \theta_{2}\sigma_{v}^{2} \\ &= [\phi_{1}(\phi_{1} - \theta_{1}) + \phi_{2} - \theta_{2}]\sigma_{v}^{2} \end{aligned}$$

The autocovariance function

$$\sigma_{\varepsilon\varepsilon'}(k) = Cov(\varepsilon_t, \varepsilon_{t-k}) = \phi_1 \sigma_{\varepsilon\varepsilon'}(k-1) + \dots + \phi_p \sigma_{\varepsilon\varepsilon'}(k-p) + \sigma_{v\varepsilon}(k) - \theta_1 \sigma_{v\varepsilon}(k-1) - \dots - \theta_q \sigma_{v\varepsilon}(k-q)$$

For k = 0,1,2,...,q, q ≤ k
$$\sigma_{\varepsilon\varepsilon'}(0) = \phi_1 \sigma_{\varepsilon\varepsilon'}(-1) + \dots + \phi_p \sigma_{\varepsilon\varepsilon'}(-p) + \sigma_{v\varepsilon}(0) - \theta_1 \sigma_{v\varepsilon}(-1) - \dots - \theta_q \sigma_{v\varepsilon}(-q)$$
$$= \phi_1 \sigma_{\varepsilon\varepsilon'}(1) + \dots + \phi_p \sigma_{\varepsilon\varepsilon'}(p) + \sigma_{v\varepsilon}(0) - \theta_1 \sigma_{v\varepsilon}(-1) - \dots - \theta_q \sigma_{v\varepsilon}(-q)$$
$$\sigma_{\varepsilon\varepsilon'}(1) = \phi_1 \sigma_{\varepsilon\varepsilon'}(1-1) + \dots + \phi_p \sigma_{\varepsilon\varepsilon'}(1-p) + = \underbrace{\sigma_{v\varepsilon}(1)}_{=0} - \theta_1 \sigma_{v\varepsilon}(1-1) - \dots - \theta_q \sigma_{v\varepsilon}(1-q)$$
$$= \phi_1 \sigma_{\varepsilon\varepsilon'}(0) + \dots + \phi_p \sigma_{\varepsilon\varepsilon'}(-p+1) - \theta_1 \sigma_{v\varepsilon}(0) - \dots - \theta_q \sigma_{v\varepsilon}(-q+1)$$

$$\begin{aligned} \sigma_{\varepsilon\varepsilon'}(2) &= Cov(\varepsilon_t, \varepsilon_{t-2}) \\ &= \phi_1 \sigma_{\varepsilon\varepsilon'}(2-1) + \dots + \phi_p \sigma_{\varepsilon\varepsilon'}(2-p) + \sigma_{v\varepsilon}(2) - \theta_1 \sigma_{v\varepsilon}(2-1) - \theta_2 \sigma_{v\varepsilon}(2-2) - \dots - \theta_q \sigma_{v\varepsilon}(2-q) \\ &= \phi_1 \sigma_{\varepsilon\varepsilon'}(1) + \dots + \phi_p \sigma_{\varepsilon\varepsilon'}(-p+2) + \underbrace{\sigma_{v\varepsilon}(2) - \theta_1 \sigma_{v\varepsilon}(1)}_{=0} - \theta_2 \sigma_{v\varepsilon}(0) - \dots - \theta_q \sigma_{v\varepsilon}(2-q) & \dots \\ &= \phi_1 \sigma_{\varepsilon\varepsilon'}(1) + \dots + \phi_p \sigma_{\varepsilon\varepsilon'}(-p+2) - \theta_2 \sigma_{v\varepsilon}(0) - \dots - \theta_q \sigma_{v\varepsilon}(2-q) \\ \sigma_{\varepsilon\varepsilon'}(q) &= \phi_1 \sigma_{\varepsilon\varepsilon'}(q-1) + \dots + \phi_p \sigma_{\varepsilon\varepsilon'}(q-p) + \underbrace{\sigma_{v\varepsilon}(q) - \theta_1 \sigma_{v\varepsilon}(q-1) - \dots}_{=0} - \theta_q \sigma_{v\varepsilon}(q-q) \\ &= \phi_1 \sigma_{\varepsilon\varepsilon'}(q-1) + \dots + \phi_p \sigma_{\varepsilon\varepsilon'}(-p+q) - \theta_q \sigma_{v\varepsilon}(0) \end{aligned}$$

For k>q

$$\sigma_{\varepsilon\varepsilon'}(k) = \phi_{l}\sigma_{\varepsilon\varepsilon'}(k-1) + \dots + \phi_{p}\sigma_{\varepsilon\varepsilon'}(k-p) \underbrace{+\sigma_{v\varepsilon}(k) - \theta_{l}\sigma_{v\varepsilon}(k-1) - \dots - \theta_{q}\sigma_{v\varepsilon}(k-q)}_{=0}$$
$$= \phi_{l}\sigma_{\varepsilon\varepsilon'}(k-1) + \dots + \phi_{p}\sigma_{\varepsilon\varepsilon'}(k-p)$$

$$\varepsilon_{t} = \phi_{1}\varepsilon_{t-1} + v_{t} - \theta_{1}v_{t-1}, v_{t} \sim iid(0, \sigma_{v}^{2})$$

For k = 0,1 (k ≤ q = 1))
$$\sigma_{\varepsilon\varepsilon'}(0) = \phi_{1}\sigma_{\varepsilon\varepsilon'}(1) + \sigma_{v\varepsilon}(0) - \theta_{1}\sigma_{v\varepsilon}(-1) = \phi_{1}\sigma_{\varepsilon\varepsilon'}(1) + \sigma_{v}^{2} - \theta_{1}(\phi_{1} - \theta_{1})\sigma_{v}^{2}$$
(A.3.1)
$$\sigma_{\varepsilon\varepsilon'}(1) = \phi_{1}\sigma_{\varepsilon\varepsilon'}(0) - \theta_{1}\sigma_{v\varepsilon}(0) = \phi_{1}\sigma_{\varepsilon\varepsilon'}(0) - \theta_{1}\sigma_{v}^{2}$$
(A.3.2)

k>q=1

$$\sigma_{\varepsilon\varepsilon'}(k) = \phi_1 \sigma_{\varepsilon\varepsilon'}(k-1) \tag{A.3.3}$$

式(A.3.1)代入式(A.3.2)得:

$$\sigma_{\varepsilon\varepsilon'}(0) = \phi_{1}\sigma_{\varepsilon\varepsilon'}(1) + \sigma_{v}^{2} - \theta_{1}(\phi_{1} - \theta_{1})\sigma_{v}^{2}$$

$$\sigma_{\varepsilon\varepsilon'}(1) = \phi_{1}[\phi_{1}\sigma_{\varepsilon\varepsilon'}(1) + \sigma_{v}^{2} - \theta_{1}(\phi_{1} - \theta_{1})\sigma_{v}^{2}] - \theta_{1}\sigma_{v}^{2}$$

$$\sigma_{\varepsilon\varepsilon'}(1) = \frac{(\phi_{1} - \theta_{1}) - \phi_{1}\theta_{1}(\phi_{1} - \theta_{1})}{1 - \phi_{1}^{2}}\sigma_{v}^{2} = \frac{(\phi_{1} - \theta_{1})(1 - \phi_{1}\theta_{1})}{1 - \phi_{1}^{2}}\sigma_{v}^{2}$$
(A.3.4)

式(A.3.4)代入式(A.3.1)得:

$$\begin{split} \sigma_{zz'}(0) &= \sigma_{z}^{2} \\ &= \phi_{1}^{2} \frac{(\phi_{1} - \theta_{1})(1 - \phi_{1}\theta_{1})}{1 - \phi_{1}^{2}} \sigma_{v}^{2} + \sigma_{v}^{2} - \theta_{1}(\phi_{1} - \theta_{1})\sigma_{v}^{2} \\ &= \frac{\phi_{1}^{2}(\phi_{1} - \theta_{1})(1 - \phi_{1}\theta_{1}) + 1 - \phi_{1}^{2} - (1 - \phi_{1}^{2})\theta_{1}(\phi_{1} - \theta_{1})}{1 - \phi_{1}^{2}} \sigma_{v}^{2} \\ &= \frac{(\phi_{1}^{2} - \phi_{1}\theta_{1})(1 - \phi_{1}\theta_{1}) + 1 - \phi_{1}^{2} - (1 - \phi_{1}^{2})(\phi_{1}\theta_{1} - \theta_{1}^{2})}{1 - \phi_{1}^{2}} \sigma_{v}^{2} \\ &= \frac{(\phi_{1}^{2} - \phi_{1}\theta_{1} - \phi_{1}^{3}\theta_{1} + \phi_{1}^{2}\theta_{1}^{2}) + 1 - \phi_{1}^{2} - (\phi_{1}\theta_{1} - \theta_{1}^{2})}{1 - \phi_{1}^{2}} \sigma_{v}^{2} \\ &= \frac{(\phi_{1}^{2} - \phi_{1}\theta_{1} - \phi_{1}^{3}\theta_{1} + \phi_{1}^{2}\theta_{1}^{2}) + 1 - \phi_{1}^{2} - (\phi_{1}\theta_{1} - \theta_{1}^{2}) + (\phi_{1}^{3}\theta_{1} - \phi_{1}^{2}\theta_{1}^{2})}{1 - \phi_{1}^{2}} \sigma_{v}^{2} \\ &= \frac{1 + \theta_{1}^{2} - 2\phi_{1}\theta_{1}}{1 - \phi_{1}^{2}} \sigma_{v}^{2} \Rightarrow \sigma_{v}^{2} = \frac{1 - \phi_{1}^{2} - 2\phi_{1}\theta_{1}}{1 + \theta_{1}^{2} - 2\phi_{1}\theta_{1}} \sigma_{z}^{2} \\ &= \frac{(\phi_{1} - \theta_{1})(1 - \phi_{1}\theta_{1})}{1 - \phi_{1}^{2}} \sigma_{v}^{2} \Rightarrow \sigma_{v}^{2} = \frac{(\phi_{1} - \theta_{1})(1 - \phi_{1}\theta_{1})}{1 + \theta_{1}^{2} - 2\phi_{1}\theta_{1}} \sigma_{z}^{2} \\ &= \rho_{1} - \frac{(\phi_{1} - \theta_{1})(\theta_{1} - \phi_{1})}{1 - \phi_{1}^{2}} \sigma_{v}^{2} \Rightarrow \sigma_{v}^{2} = \frac{(\phi_{1} - \theta_{1})(1 - \phi_{1}\theta_{1})}{1 + \theta_{1}^{2} - 2\phi_{1}\theta_{1}} \sigma_{z}^{2} \\ &= \rho_{1} - \frac{(\phi_{1} - \phi_{1})(1 - \phi_{1}\theta_{1})}{1 - \phi_{1}^{2}} \sigma_{v}^{2} \Rightarrow \sigma_{v}^{2} = \frac{(\phi_{1} - \theta_{1})(1 - \phi_{1}\theta_{1})}{1 + \theta_{1}^{2} - 2\phi_{1}\theta_{1}} \sigma_{z}^{2} \\ &= \rho_{1} - \sigma_{z}^{2} \\ &= \phi_{1} - \sigma_{z}^{2} (h - h) \\ &= \phi_{1} - \phi_{z}^{2} (h - h) \\ &= \phi_{1} - \phi_{z}^{2} (h - h)(1 - \phi_{1}\theta_{1})}{1 + \theta_{1}^{2} - 2\phi_{1}\theta_{1}} \sigma_{z}^{2} = \phi_{1} \rho_{z} - \phi_{z}^{2} \\ &= \phi_{1} - \phi_{z} - \phi_{z}^{2} \\ &= \phi_{1} - \phi_{z}^{2} \\ &= \phi_{1} - \phi_{z}^{2} (h - h) \\ &= \phi_{1} - \phi_{z}^{2} (h - h)(1 - \phi_{1}\theta_{1}) \\ &= \phi_{1} - \phi_{z}^{2} (h - h)(1 - \phi_{1}\theta_{1}) \\ &= \phi_{1} - \phi_{z}^{2} (h - h)(1 - \phi_{1}\theta_{1}) \\ &= \phi_{1} - \phi_{z}^{2} (h - h)(1 - \phi_{1}\theta_{1}) \\ &= \phi_{1} - \phi_{z}^{2} (h - h)(1 - \phi_{1}\theta_{1}) \\ &= \phi_{1} - \phi_{z}^{2} (h - h)(1 - \phi_{1}\theta_{1}) \\ &= \phi_{1} - \phi_{z}^{2} (h - h)(1 - \phi_{1}\theta_{1}) \\ &= \phi_{1} - \phi_{z}^{2} (h - h)(1 - \phi_{1}\theta_{1}) \\ &= \phi_{1} - \phi_{z}^{2} (h - h)(1 - \phi_{1}\theta_{$$

 \square . Example for ARMA(2,1) (p=2,q=1)

$$\varepsilon_t = \phi_1 \varepsilon_{t-1} + \phi_2 \varepsilon_{t-2} + v_t - \theta_1 v_{t-1}, v_t \sim iid(0, \sigma_v^2)$$

(1) 自我共變數

For $k = 0, 1(k \le q = 1)$

$$k = 0, \ \sigma_{\varepsilon\varepsilon'}(0) = \phi_1 \sigma_{\varepsilon\varepsilon'}(1) + \phi_2 \sigma_{\varepsilon\varepsilon'}(2) + \sigma_{\nu\varepsilon}(0) - \theta_1 \sigma_{\nu\varepsilon}(-1)$$
(A.3.5)

$$k = 1,$$

$$\sigma_{\varepsilon\varepsilon'}(1) = \phi_1 \sigma_{\varepsilon\varepsilon'}(0) + \phi_2 \sigma_{\varepsilon\varepsilon'}(-1) - \theta_1 \sigma_{v\varepsilon}(0) = \phi_1 \sigma_{\varepsilon\varepsilon'}(0) + \phi_2 \sigma_{\varepsilon\varepsilon'}(1) - \theta_1 \sigma_{v\varepsilon}(0)$$

$$= \phi_1 \sigma_{\varepsilon}^2 + \phi_2 \sigma_{\varepsilon\varepsilon'}(1) - \theta_1 \sigma_{v}^2$$
(A.3.6)

1=q < k < T

$$k = 2, \quad \sigma_{\varepsilon\varepsilon'}(2) = \phi_1 \sigma_{\varepsilon\varepsilon'}(1) + \phi_2 \sigma_{\varepsilon\varepsilon'}(0) = \phi_1 \sigma_{\varepsilon\varepsilon'}(1) + \phi_2 \sigma_{\varepsilon}^2 \tag{A.3.7}$$

$$k = 3, \qquad \sigma_{\varepsilon\varepsilon'}(3) = \phi_1 \sigma_{\varepsilon\varepsilon'}(2) + \phi_2 \sigma_{\varepsilon\varepsilon'}(1)$$
(A.3.8)

:

$$k = k$$
, $\sigma_{\varepsilon\varepsilon'}(k) = \phi_1 \sigma_{\varepsilon\varepsilon'}(k-1) + \phi_2 \sigma_{\varepsilon\varepsilon'}(k-2)$ (A.3.9)
.6)得 1896

由式(A.3.6)得

$$\sigma_{\varepsilon\varepsilon'}(1) = \phi_{1}\sigma_{\varepsilon\varepsilon'}(0) + \phi_{2}\sigma_{\varepsilon\varepsilon'}(1) - \theta_{1}\sigma_{v\varepsilon}(0) = \phi_{1}\sigma_{\varepsilon}^{2} + \phi_{2}\sigma_{\varepsilon\varepsilon'}(1) - \theta_{1}\sigma_{v}^{2}$$

$$\sigma_{\varepsilon\varepsilon'}(1) = \frac{\phi_{1}\sigma_{\varepsilon}^{2} - \theta_{1}\sigma_{v}^{2}}{1 - \phi_{2}} = \frac{\phi_{1}}{1 - \phi_{2}}\sigma_{\varepsilon}^{2} - \frac{\theta_{1}}{1 - \phi_{2}}\sigma_{v}^{2}$$
(A.3.10)

式(A.3.2)、(A.3.7)(A.3.10)代入式(A.3.5)得

$$\begin{aligned} \sigma_{\varepsilon\varepsilon'}(0) \\ &= \phi_1 \sigma_{\varepsilon\varepsilon'}(1) + \phi_2 \sigma_{\varepsilon\varepsilon'}(2) + \sigma_{v\varepsilon}(0) - \theta_1(\phi_1 - \theta_1) \sigma_v^2 \\ &= \phi_1 \sigma_{\varepsilon\varepsilon'}(1) + \phi_2 [\phi_1 \sigma_{\varepsilon\varepsilon'}(1) + \phi_2 \sigma_{\varepsilon\varepsilon'}(0)] + \sigma_v^2 - \theta_1(\phi_1 - \theta_1) \sigma_v^2 \\ &= [\phi_1 + \phi_1 \phi_2] \sigma_{\varepsilon\varepsilon'}(1) + \phi_2^2 \sigma_{\varepsilon\varepsilon'}(0) + [1 - \theta_1(\phi_1 - \theta_1)] \sigma_v^2 \\ \sigma_{\varepsilon}^2 &= [\phi_1 + \phi_1 \phi_2] \sigma_{\varepsilon\varepsilon'}(1) + \phi_2^2 \sigma_{\varepsilon}^2 + [1 - \theta_1(\phi_1 - \theta_1)] \sigma_v^2 \end{aligned}$$

$$\begin{aligned} \sigma_{\varepsilon}^{2} &= (\phi_{1} + \phi_{1}\phi_{2})\sigma_{\varepsilon\varepsilon'}(1) + \phi_{2}^{2}\sigma_{\varepsilon}^{2} + [1 - \theta_{1}(\phi_{1} - \theta_{1})]\sigma_{v}^{2} \\ &= (\phi_{1} + \phi_{1}\phi_{2})\left[\frac{\phi_{1}}{1 - \phi_{2}}\sigma_{\varepsilon}^{2} - \frac{\theta_{1}}{1 - \phi_{2}}\sigma_{v}^{2}\right] + \phi_{2}^{2}\sigma_{\varepsilon}^{2} + [1 - \theta_{1}(\phi_{1} - \theta_{1})]\sigma_{v}^{2} \\ &= \left[\frac{\phi_{1}(\phi_{1} + \phi_{1}\phi_{2})}{1 - \phi_{2}}\sigma_{\varepsilon}^{2} - \frac{(\phi_{1} + \phi_{1}\phi_{2})\theta_{1}}{1 - \phi_{2}}\sigma_{v}^{2}\right] + \phi_{2}^{2}\sigma_{\varepsilon}^{2} + [1 - \theta_{1}(\phi_{1} - \theta_{1})]\sigma_{v}^{2} \\ &= \left[\frac{\phi_{1}(\phi_{1} + \phi_{1}\phi_{2})}{1 - \phi_{2}} + \phi_{2}^{2}\right]\sigma_{\varepsilon}^{2} + \left[-\frac{(\phi_{1} + \phi_{1}\phi_{2})\theta_{1}}{1 - \phi_{2}} + [1 - \theta_{1}(\phi_{1} - \theta_{1})]\right]\sigma_{v}^{2} \end{aligned}$$

$$\begin{aligned} \sigma_{\varepsilon}^{2} &= \left[\frac{\phi_{1}(\phi_{1} + \phi_{1}\phi_{2})}{1 - \phi_{2}} + \phi_{2}^{2}\right]\sigma_{\varepsilon}^{2} + \left[-\frac{(\phi_{1} + \phi_{1}\phi_{2})\theta_{1}}{1 - \phi_{2}} + [1 - \theta_{1}(\phi_{1} - \theta_{1})]\right]\sigma_{v}^{2} \\ \sigma_{\varepsilon}^{2} &- \left[\frac{\phi_{1}(\phi_{1} + \phi_{1}\phi_{2})}{1 - \phi_{2}} + \phi_{2}^{2}\right]\sigma_{\varepsilon}^{2} = \left[-\frac{(\phi_{1} + \phi_{1}\phi_{2})\theta_{1}}{1 - \phi_{2}} + [1 - \theta_{1}(\phi_{1} - \theta_{1})]\right]\sigma_{v}^{2} \\ \left[(1 - \phi_{2}) - \phi_{1}(\phi_{1} + \phi_{1}\phi_{2}) - \phi_{2}^{2}(1 - \phi_{2})]\sigma_{\varepsilon}^{2} = \{-(\phi_{1} + \phi_{1}\phi_{2})\theta_{1} + (1 - \phi_{2})[1 - \theta_{1}(\phi_{1} - \theta_{1})]\}\sigma_{v}^{2} \\ \left[(1 - \phi_{2} - \phi_{1}^{2} - \phi_{1}^{2}\phi_{2} - \phi_{2}^{2} + \phi_{2}^{2})]\sigma_{\varepsilon}^{2} = \{-\phi_{1}\theta_{1} - \phi_{1}\phi_{2}\theta_{1} + (1 - \phi_{2}) - \theta_{1}(\phi_{1} - \theta_{1})(1 - \phi_{2})\}\sigma_{v}^{2} \\ \left[(1 - \phi_{2} - \phi_{1}^{2} - \phi_{2}^{2} - \phi_{1}^{2}\phi_{2} + \phi_{2}^{2})]\sigma_{\varepsilon}^{2} = \{-\phi_{1}\theta_{1} - \phi_{1}\phi_{2}\theta_{1} + (1 - \phi_{2}) - (\phi_{1}\theta_{1} - \theta_{1}^{2})(1 - \phi_{2})\}\sigma_{v}^{2} \\ \left[(1 - \phi_{2} - \phi_{1}^{2} - \phi_{2}^{2} - \phi_{1}^{2}\phi_{2} + \phi_{2}^{2})]\sigma_{\varepsilon}^{2} = \{-\phi_{1}\theta_{1} - \phi_{1}\phi_{2}\theta_{1} + (1 - \phi_{2}) - (\phi_{1}\theta_{1} - \theta_{1}^{2})(1 - \phi_{2})\}\sigma_{v}^{2} \\ \left[(1 - \phi_{2} - \phi_{1}^{2} - \phi_{2}^{2} - \phi_{1}^{2}\phi_{2} + \phi_{2}^{2})]\sigma_{\varepsilon}^{2} = \{-\phi_{1}\theta_{1} - \phi_{1}\phi_{2}\theta_{1} + (1 - \phi_{2}) - (\phi_{1}\theta_{1} - \theta_{1}^{2})(1 - \phi_{2})\}\sigma_{v}^{2} \\ \left[(1 - \phi_{2} - \phi_{1}^{2} - \phi_{2}^{2} - \phi_{1}^{2}\phi_{2} + \phi_{2}^{2})]\sigma_{\varepsilon}^{2} = \{-\phi_{1}\theta_{1} - \phi_{1}\phi_{2}\theta_{1} + (1 - \phi_{2}) - (\phi_{1}\theta_{1} - \theta_{1}^{2}) + \phi_{2}(\phi_{1}\theta_{1} - \theta_{1}^{2})\}\sigma_{v}^{2} \\ \left[(1 - \phi_{2} - \phi_{1}^{2} - \phi_{2}^{2} - \phi_{1}^{2}\phi_{2} + \phi_{2}^{2})]\sigma_{\varepsilon}^{2} = (-\phi_{1}\theta_{1} - \phi_{1}\phi_{2}\theta_{1} + 1 - \phi_{2} - \phi_{1}\theta_{1} + \theta_{1}^{2} + \phi_{1}\phi_{2}\theta_{1} - \phi_{2}\theta_{1}^{2})\sigma_{v}^{2} \\ \left[(1 - \phi_{2} - \phi_{1}^{2} - \phi_{2}^{2} - \phi_{1}^{2}\phi_{2} + \phi_{2}^{2})]\sigma_{\varepsilon}^{2} = (-2\phi_{1}\theta_{1} + 1 - \phi_{2} + \theta_{1}^{2} - \phi_{2}\theta_{1}^{2})\sigma_{v}^{2} \end{aligned}\right\}$$

$$\begin{aligned} (1-\phi_2-\phi_1^2-\phi_2^2-\phi_1^2\phi_2+\phi_2^3)\sigma_{\varepsilon}^2 &= (-2\phi_1\theta_1+1-\phi_2+\theta_1^2-\phi_2\theta_1^2)\sigma_{v}^2\\ \sigma_{\varepsilon}^2 &= \frac{(-2\phi_1\theta_1+1-\phi_2+\theta_1^2-\phi_2\theta_1^2)}{(1-\phi_2-\phi_1^2-\phi_2^2-\phi_1^2\phi_2+\phi_2^3)}\sigma_{v}^2 = \frac{(-2\phi_1\theta_1+1-\phi_2+\theta_1^2-\phi_2\theta_1^2)}{[(1-\phi_2)-\phi_1^2(1+\phi_2)-\phi_2^2(1-\phi_2)]}\\ &= \frac{[-2\phi_1\theta_1+1-\phi_2+\theta_1^2(1-\phi_2)]}{[(1-\phi_2)(1-\phi_2^2)-\phi_1^2(1+\phi_2)]}\sigma_{v}^2 = \frac{[(1-\phi_2)-2\phi_1\theta_1+\theta_1^2(1-\phi_2)]}{[(1-\phi_2)^2(1+\phi_2)-\phi_1^2(1+\phi_2)]}\sigma_{v}^2\\ &= \frac{(1-\phi_2)(1+\theta_1^2)-2\phi_1\theta_1}{(1+\phi_2)[(1-\phi_2)^2-\phi_1^2]}\sigma_{v}^2\end{aligned}$$

$$\begin{split} \sigma_{\varepsilon\varepsilon'}(1) &= \frac{\phi_{1}\sigma_{\varepsilon}^{2} - \theta_{1}\sigma_{v}^{2}}{1 - \phi_{2}} = \left[\frac{\phi_{1}}{1 - \phi_{2}} \frac{\left[(1 - \phi_{2})(1 + \theta_{1}^{2}) - 2\phi_{1}\theta_{1}\right]}{(1 + \phi_{2})\left[(1 - \phi_{2})^{2} - \phi_{1}^{2}\right]} - \frac{\theta_{1}}{1 - \phi_{2}}\right]\sigma_{v}^{2} \\ &= \left[\frac{\phi_{1}\left[(1 - \phi_{2})(1 + \theta_{1}^{2}) - 2\phi_{1}\theta_{1}\right] - \theta_{1}\left\{(1 + \phi_{2})\left[(1 - \phi_{2})^{2} - \phi_{1}^{2}\right]\right\}}{(1 - \phi_{2})\left\{(1 + \phi_{2})\left[(1 - \phi_{2})^{2} - \phi_{1}^{2}\right]\right\}}\right]\sigma_{v}^{2} \\ &= \left[\frac{\phi_{1}\left[(1 - \phi_{2})(1 + \theta_{1}^{2}) - 2\phi_{1}\theta_{1}\right] - \theta_{1}\left\{(1 + \phi_{2})\left[(1 - \phi_{2})^{2} - \phi_{1}^{2}\right]\right\}}{(1 - \phi_{2}^{2})\left[(1 - \phi_{2})^{2} - \phi_{1}^{2}\right]}\right]\sigma_{v}^{2} \\ &= \left[\frac{\left[(\phi_{1} - \phi_{1}\phi_{2})(1 + \theta_{1}^{2}) - 2\phi_{1}^{2}\theta_{1} - (\theta_{1} + \phi_{2}\theta_{1})\left[(1 - \phi_{2})^{2} - \phi_{1}^{2}\right]}{(1 - \phi_{2}^{2})\left[(1 - \phi_{2})^{2} - \phi_{1}^{2}\right]}\right]\sigma_{v}^{2} \end{split}$$

分子部份

$$\begin{split} (\phi_{1} - \phi_{1}\phi_{2})(1 + \theta_{1}^{2}) &- 2\phi_{1}^{2}\theta_{1} - (\theta_{1} + \phi_{2}\theta_{1})[(1 - \phi_{2})^{2} - \phi_{1}^{2}] \\ &= (\phi_{1} - \phi_{1}\phi_{2}) + \theta_{1}^{2}(\phi_{1} - \phi_{1}\phi_{2}) - 2\phi_{1}^{2}\theta_{1} - [(\theta_{1} + \phi_{2}\theta_{1})(1 - \phi_{2})^{2} - \phi_{1}^{2}(\theta_{1} + \phi_{2}\theta_{1})] \\ &= \phi_{1} - \phi_{1}\phi_{2} + \phi_{1}\theta_{1}^{2} - \phi_{1}\phi_{2}\theta_{1}^{2} - 2\phi_{1}^{2}\theta_{1} - [(\theta_{1} + \phi_{2}\theta_{1})(1 - 2\phi_{2} + \phi_{2}^{2}) - \phi_{1}^{2}\theta_{1} - \phi_{1}^{2}\phi_{2}\theta_{1}] \\ &= \phi_{1} - \phi_{1}\phi_{2} + \phi_{1}\theta_{1}^{2} - \phi_{1}\phi_{2}\theta_{1}^{2} - 2\phi_{1}^{2}\theta_{1} - [(\theta_{1} + \phi_{2}\theta_{1}) - 2\phi_{2}(\theta_{1} + \phi_{2}\theta_{1}) + \phi_{2}^{2}(\theta_{1} + \phi_{2}\theta_{1}) - \phi_{1}^{2}\theta_{1} - \phi_{1}^{2}\phi_{2}\theta_{1}] \\ &= \phi_{1} - \phi_{1}\phi_{2} + \phi_{1}\theta_{1}^{2} - \phi_{1}\phi_{2}\theta_{1}^{2} - 2\phi_{1}^{2}\theta_{1} - [(\theta_{1} + \phi_{2}\theta_{1}) - 2\phi_{2}(\theta_{1} - \phi_{2}^{2}\theta_{1} + \phi_{2}^{2}\theta_{1} - \phi_{1}^{2}\theta_{2} - \phi_{1}^{2}\theta_{1} - \phi_{1}^{2}\phi_{2}\theta_{1}] \\ &= \phi_{1} - \phi_{1}\phi_{2} + \phi_{1}\theta_{1}^{2} - \phi_{1}\phi_{2}\theta_{1}^{2} - 2\phi_{1}^{2}\theta_{1} - [(\theta_{1} + \phi_{2}\theta_{1}) - 2\phi_{2}\theta_{1} - 2\phi_{2}^{2}\theta_{1} - \phi_{2}^{2}\theta_{1} + \phi_{2}^{2}\theta_{1} - \phi_{1}^{2}\theta_{2} - \phi_{1}^{2}\theta_{2} - \phi_{1}^{2}\theta_{2} - \phi_{1}^{2}\theta_{2} - \phi_{1}^{2}\theta_{1} - \phi_{1}^{2}\phi_{2}\theta_{1}] \\ &= \phi_{1} - \phi_{1}\phi_{2} + \phi_{1}\theta_{1}^{2} - \phi_{1}\phi_{2}\theta_{1}^{2} - 2\phi_{1}^{2}\theta_{1} - \theta_{1} - \phi_{2}\theta_{1} + 2\phi_{2}\theta_{1} + 2\phi_{2}^{2}\theta_{1} - \phi_{2}^{2}\theta_{1} - \phi_{2}^{2}\theta_{1} + \phi_{1}^{2}\theta_{1} - \phi_{1}^{2}\phi_{2}\theta_{1}] \end{split}$$

$$\begin{split} &= (\phi_{1} - \phi_{1}\phi_{2}) + (\phi_{1}\theta_{1}^{2} - \phi_{1}\phi_{2}\theta_{1}^{2}) - \phi_{1}^{2}\theta_{1} - \theta_{1} + \phi_{2}\theta_{1} + \phi_{2}^{2}\theta_{1} - \phi_{2}^{3}\theta_{1} + \phi_{1}^{2}\phi_{2}\theta_{1} \\ &= (\phi_{1} - \phi_{1}\phi_{2}) + (\phi_{1}\theta_{1}^{2} - \phi_{1}\phi_{2}\theta_{1}^{2}) - (\phi_{1}^{2}\theta_{1} - \phi_{1}^{2}\phi_{2}\theta_{1}) - (\theta_{1} - \phi_{2}\theta_{1}) + (\phi_{2}^{2}\theta_{1} - \phi_{2}^{3}\theta_{1}) \\ &= \phi_{1}(1 - \phi_{2}) + \phi_{1}\theta_{1}^{2}(1 - \phi_{2}) - \phi_{1}^{2}\theta_{1}(1 - \phi_{2}) - \theta_{1}(1 - \phi_{2}) + \phi_{2}^{2}\theta_{1}(1 - \phi_{2}) \\ &= (\phi_{1} + \phi_{1}\theta_{1}^{2} - \phi_{1}^{2}\theta_{1} - \theta_{1} + \phi_{2}^{2}\theta_{1})(1 - \phi_{2}) \\ &= (\phi_{1} - \theta_{1} + \phi_{1}\theta_{1}^{2} - \phi_{1}^{2}\theta_{1} + \phi_{2}^{2}\theta_{1})(1 - \phi_{2}) \\ &= [(\phi_{1} - \theta_{1}) - \phi_{1}\theta_{1}(\phi_{1} - \theta_{1}) + \phi_{2}^{2}\theta_{1}](1 - \phi_{2}) \\ &= [(\phi_{1} - \theta_{1})(1 - \phi_{1}\theta_{1}) + \phi_{2}^{2}\theta_{1}](1 - \phi_{2}) \\ &= [(\phi_{1} - \theta_{1})(1 - \phi_{1}\theta_{1}) + \phi_{2}^{2}\theta_{1}](1 - \phi_{2})^{2} - \phi_{1}^{2}] \\ &= \left[\frac{[(\phi_{1} - \theta_{1})(1 - \phi_{1}\theta_{1}) + \phi_{2}^{2}\theta_{1}](1 - \phi_{2})^{2}}{(1 - \phi_{2})^{2} - \phi_{1}^{2}}\right] \sigma_{v}^{2} \end{split}$$

$$= \frac{(\phi_{1} - \theta_{1})(1 - \phi_{1}\theta_{1}) + \phi_{2}^{2}\theta_{1}}{(1 - \phi_{2})^{2} - \phi_{1}^{2}}\right] \sigma_{v}^{2}$$

$$= \frac{(\phi_{1} - \theta_{1})(1 - \phi_{1}\theta_{1}) + \phi_{2}^{2}\theta_{1}}{(1 - \phi_{2})^{2} - \phi_{1}^{2}}} \sigma_{v}^{2}$$

$$= \frac{(\phi_{1} - \theta_{1})(1 - \phi_{1}\theta_{1}) + \phi_{2}^{2}\theta_{1}}{(1 - \phi_{2})^{2} - \phi_{1}^{2}}} \sigma_{v}^{2}$$

$$= \frac{(\phi_{1} - \theta_{1})(1 - \phi_{1}\theta_{1}) + \phi_{2}^{2}\theta_{1}}{(1 - \phi_{2})^{2} - \phi_{1}^{2}}} \sigma_{v}^{2}$$

$$= \frac{(\phi_{1} - \theta_{1})(1 - \phi_{1}\theta_{1}) + \phi_{2}^{2}\theta_{1}}{(1 - \phi_{2})^{2} - \phi_{1}^{2}}} \sigma_{v}^{2}$$

$$= \frac{(\phi_{1} - \theta_{1})(1 - \phi_{2}) + \phi_{2}^{2}\theta_{1}}{(1 + \phi_{2})^{2} - \phi_{1}^{2}}} \sigma_{v}^{2}$$

$$= \frac{(\phi_{1} - \theta_{1})(1 - \phi_{2}) + \phi_{2}^{2}\theta_{1}}{(1 + \phi_{2})^{2} - \phi_{1}^{2}} \sigma_{v}^{2}} \qquad (A.3.11)$$

$$= \sigma_{cc'}^{2}(2) = \phi_{1}\sigma_{cc'}(1) + \phi_{2}\sigma_{cc'}(0) = \phi_{1}\sigma_{cc'}(1) + \phi_{2}\sigma_{c}^{2}} \qquad (A.3.12)$$

Summary:

$$\sigma_{\varepsilon}^{2} = \frac{[(1-\phi_{2})(1+\theta_{1}^{2})-2\phi_{1}\theta_{1}]}{(1+\phi_{2})[(1-\phi_{2})^{2}-\phi_{1}^{2}]}\sigma_{\nu}^{2} \Longrightarrow \rho_{0} = \frac{\sigma_{\varepsilon}^{2}}{\sigma_{\varepsilon}^{2}} = 1$$

三.Example for ARMA(1,2) (p=1,q=2) $\varepsilon_t = \phi_1 \varepsilon_{t-1} + v_t - \theta_1 v_{t-1} - \theta_2 v_{t-2}, v_t \sim iid(0, \sigma_v^2)$ (For k = 0,1,2 (k ≤ q = 2)) $\sigma_{\varepsilon\varepsilon'}(0) = \sigma_{\varepsilon}^2$ $= \phi_1 \sigma_{\varepsilon\varepsilon'}(-1) + \sigma_{v\varepsilon}(0) - \theta_1 \sigma_{v\varepsilon}(-1) - \theta_2 \sigma_{v\varepsilon}(-2)$ $= \phi_1 \sigma_{\varepsilon\varepsilon'}(1) + \sigma_{v\varepsilon}(0) - \theta_1 \sigma_{v\varepsilon}(-1) - \theta_2 \sigma_{v\varepsilon}(-2)$ $\sigma_{\varepsilonv}(-1) = \phi_1 \sigma_{v\varepsilon}(0) - \theta_1 \sigma_{vv}(0) = \phi_1 \sigma_v^2 - \theta_1 \sigma_v^2 = (\phi_1 - \theta_1) \sigma_v^2$ $\sigma_{\varepsilonv}(-2) = \phi_1 \sigma_{v\varepsilon}(-1) + \theta_2 \sigma_{vv}(0) = \phi_1 [(\phi_1 - \theta_1) \sigma_v^2] - \theta_2 \sigma_v^2 = [\phi_1(\phi_1 - \theta_1) - \theta_2] \sigma_v^2$ (1).自我共變數

$$\begin{split} \sigma_{ee'}(0) &= \sigma_{e}^{2} \\ &= \phi_{1}\sigma_{ee'}(-1) + \sigma_{ve}(0) - \theta_{1}\sigma_{ve}(-1) - \theta_{2}\sigma_{ve}(-2) \\ &= \phi_{1}\sigma_{ee'}(1) + \sigma_{v}^{2} - \theta_{1}[(\phi_{1} - \theta_{1})\sigma_{v}^{2}] - \theta_{2}\{[\phi_{1}(\phi_{1} - \theta_{1}) - \theta_{2}]\sigma_{v}^{2}\} \\ &= \phi_{1}\sigma_{ee'}(1) + \sigma_{v}^{2} - \theta_{1}(\phi_{1} - \theta_{1})\sigma_{v}^{2} - [\phi_{1}\theta_{2}(\phi_{1} - \theta_{1}) - \theta_{2}^{2}]\sigma_{v}^{2} \\ &= \phi_{1}\sigma_{ee'}(1) + \sigma_{v}^{2} - \theta_{1}(\phi_{1} - \theta_{1})\sigma_{v}^{2} - [(\phi_{1}^{2}\theta_{2} - \phi_{1}\theta_{2}\theta_{2}) - \theta_{2}^{2}]\sigma_{v}^{2} \\ &= \phi_{1}\sigma_{ee'}(1) + (1 - \phi_{1}\theta_{1} + \theta_{1}^{2} - \phi_{1}^{2}\theta_{2} + \phi_{1}\theta_{1}\theta_{2} + \theta_{2}^{2})\sigma_{v}^{2} \\ &= \phi_{1}\sigma_{ee'}(1) + [1 - \theta_{1}(\phi_{1} - \theta_{1}) - \phi_{1}\theta_{2}(\phi_{1} - \theta_{1}) + \theta_{2}^{2}]\sigma_{v}^{2} \\ &= \phi_{1}\sigma_{ee'}(1) + [(1 + \theta_{2}^{2}) - (\theta_{1} + \phi_{1}\theta_{2})(\phi_{1} - \theta_{1})]\sigma_{v}^{2} \\ &= \phi_{1}\sigma_{ee'}(1) + [(1 + \theta_{2}^{2}) - (\theta_{1} + \phi_{1}\theta_{2})(\phi_{1} - \theta_{1})]\sigma_{v}^{2} \\ &= \phi_{1}\sigma_{ee'}(1) + \cdots + \phi_{p}\sigma_{ee'}(2 - p) + \sigma_{ve}(2) - \theta_{1}\sigma_{ve}(2 - 1) - \theta_{2}\sigma_{ve}(2 - 2) - \cdots - \theta_{q}\sigma_{ve}(2 - q) \\ &= \phi_{1}\sigma_{ee'}(1) + \cdots + \phi_{p}\sigma_{ee'}(-p + 2) + \sigma_{ve}(2) - \theta_{1}\sigma_{ve}(1) - \theta_{2}\sigma_{ve}(0) - \cdots - \theta_{q}\sigma_{ve}(2 - q) \\ &= \phi_{1}\sigma_{ee'}(1) + \cdots + \phi_{p}\sigma_{ee'}(-p + 2) - \theta_{2}\sigma_{ve}(1 - 2) \\ &= \phi_{1}\sigma_{ee'}(1) + \cdots + \phi_{p}\sigma_{ee'}(-p + 2) - \theta_{2}\sigma_{ve}(1 - 2) \\ &= \phi_{1}\sigma_{ee'}(0) - \theta_{1}\sigma_{ve}(1 - 1) - \theta_{2}\sigma_{ve}(1 - 2) \\ &= \phi_{1}\sigma_{ee'}(0) - \theta_{1}\sigma_{ve}(-1) \\ &= \phi_{1}\sigma_{e}^{2} - \theta_{1}\sigma_{v}^{2} - \theta_{2}\sigma_{ve}(-1) \\ &= \phi_{1}\sigma_{e}^{2} - \theta_{1}\sigma_{v}^{2} - \theta_{2}(\phi_{1} - \theta_{1})\sigma_{v}^{2} \\ &= \phi_{1}\sigma_{e}^{2} - (\theta_{1} + \theta_{2}(\phi_{1} - \theta_{1})\sigma_{v}^{2} \\ &= \phi_{1}\sigma_{e}^{2} - (\theta_{1} + \theta_{2}(\phi_{1} - \theta_{1})\sigma_{v}^{2} \\ &= \phi_{1}\sigma_{e}^{2} - (\theta_{1} + \theta_{2}(\phi_{1} - \theta_{1})\sigma_{v}^{2} \\ &= \phi_{1}\sigma_{e}^{2} - (\theta_{1} + \phi_{1}(\theta_{2} - \theta_{1}(\theta_{2})\sigma_{v}^{2}) \\ &= \phi_{1}\sigma_{e}^{2} - (\theta_{1} + \phi_{1}(\theta_{2} - \theta_{1}(\theta_{2})\sigma_{v}^{2} \\ &= \phi_{1}\sigma_{e}^{2} - (\theta_{1} + \phi_{1}(\theta_{2} - \theta_{1}(\theta_{2})\sigma_{v}^{2} \\ &= \phi_{1}\sigma_{e}^{2} - (\theta_{1} + \phi_{1}(\theta_{2} - \theta_{1}(\theta_{2})\sigma_{v}^{2}) \\ &= \phi_{1}\sigma_{e}^{2} - (\theta_{1} + \phi_{1}(\theta_{2} - \theta_{1}(\theta_{2})\sigma_{v}^{2}) \\ &= \phi_{1}\sigma_{e}^{2} - (\theta_{1} + \phi_{1}(\theta_{2} - \theta_{1}(\theta_{2})\sigma_{v}^{2}) \\ &= \phi_{1}$$

$$\begin{split} \sigma_{\varepsilon\varepsilon'}(2) &= Cov(\varepsilon_{l}, \varepsilon_{l-2}) \\ &= \phi_{l}\sigma_{\varepsilon\varepsilon'}(2-1) - \theta_{2}\sigma_{v\varepsilon}(2-2) \\ &= \phi_{l}\sigma_{\varepsilon\varepsilon'}(1) - \theta_{2}\sigma_{v}(0) \\ &= \phi_{l}\sigma_{\varepsilon\varepsilon'}(1) - \theta_{2}\sigma_{v}^{2} \\ &= \phi_{l}\{\phi_{l}\sigma_{\varepsilon}^{2} - [\theta_{l} + \theta_{2}(\phi_{l} - \theta_{l})]\sigma_{v}^{2}\} - \theta_{2}\sigma_{v}^{2} \\ &= \{\phi_{l}^{2}\sigma_{\varepsilon}^{2} - \phi_{l}[\theta_{l} + \theta_{2}(\phi_{l} - \theta_{l})]\sigma_{v}^{2}\} - \theta_{2}\sigma_{v}^{2} \\ &= \{\phi_{l}^{2}\sigma_{\varepsilon}^{2} - [\phi_{l}\theta_{l} + \phi_{l}\theta_{2}(\phi_{l} - \theta_{l})]\sigma_{v}^{2}\} - \theta_{2}\sigma_{v}^{2} \\ &= \phi_{l}^{2}\sigma_{\varepsilon}^{2} - [\phi_{l}\theta_{l} + \phi_{l}\theta_{2}(\phi_{l} - \theta_{l})]\sigma_{v}^{2}\} - \theta_{2}\sigma_{v}^{2} \\ &= \phi_{l}^{2}\sigma_{\varepsilon}^{2} - [(\phi_{l}\theta_{l} + \theta_{2}) + \phi_{l}\theta_{2}(\phi_{l} - \theta_{l})]\sigma_{v}^{2} \\ k > q = 2 \\ \sigma_{\varepsilon\varepsilon'}(k) &= \phi_{l}\sigma_{\varepsilon\varepsilon'}(k-1) + \dots + \phi_{p}\sigma_{\varepsilon\varepsilon'}(k-p) \underbrace{+\sigma_{v\varepsilon}(k) - \theta_{l}\sigma_{v\varepsilon}(k-1) - \dots - \theta_{q}\sigma_{v\varepsilon}(k-q)}_{=0} \\ &= \phi_{l}^{2}\sigma_{\varepsilon\varepsilon'}(3) = \phi_{l}\sigma_{\varepsilon\varepsilon'}(3-1) = \phi_{l}\sigma_{\varepsilon\varepsilon'}(2) \\ \vdots \\ \sigma_{\varepsilon\varepsilon'}(k) &= \phi_{l}\sigma_{\varepsilon\varepsilon'}(k-1) \end{split}$$

(2)Autocorrelation

等號右邊第二項

$$\phi_{1}(\theta_{1} + \phi_{1}\theta_{2} - \theta_{1}\theta_{2}) - (1 + \theta_{2}^{2}) + (\theta_{1} + \phi_{1}\theta_{2})(\phi_{1} - \theta_{1})$$

$$= \phi_{1}\theta_{1} + \phi_{1}^{2}\theta_{2} - \phi_{1}\theta_{1}\theta_{2} - 1 - \theta_{2}^{2} + \phi_{1}(\theta_{1} + \phi_{1}\theta_{2}) - \theta_{1}(\theta_{1} + \phi_{1}\theta_{2})$$

$$= \phi_{1}\theta_{1} + \phi_{1}^{2}\theta_{2} - \phi_{1}\theta_{1}\theta_{2} - 1 - \theta_{2}^{2} + \phi_{1}\theta_{1} + \phi_{1}^{2}\theta_{2} - \theta_{1}^{2} - \phi_{1}\theta_{1}\theta_{2}$$

$$= 2\phi_{1}\theta_{1} + 2\phi_{1}^{2}\theta_{2} - 2\phi_{1}\theta_{1}\theta_{2} - 1 - \theta_{2}^{2} - \theta_{1}^{2}$$

$$= 2\phi_{1}\theta_{1} - 2\phi_{1}\theta_{1}\theta_{2} + 2\phi_{1}^{2}\theta_{2} - 1 - \theta_{2}^{2} - \theta_{1}^{2}$$

$$= 2\phi_{1}(\theta_{1} - \theta_{1}\theta_{2} + \phi_{1}\theta_{2}) - (1 + \theta_{2}^{2} + \theta_{1}^{2})$$

故

$$\begin{aligned} \sigma_{\varepsilon\varepsilon'}(0) &= \sigma_{\varepsilon}^{2} \\ &= \phi_{1}\sigma_{\varepsilon\varepsilon'}(1) + [(1+\theta_{2}^{2}) - (\theta_{1} + \phi_{1}\theta_{2})(\phi_{1} - \theta_{1})]\sigma_{v}^{2} \\ &= \phi_{1}[\phi_{1}\sigma_{\varepsilon}^{2} - (\theta_{1} + \phi_{1}\theta_{2} - \theta_{1}\theta_{2})\sigma_{v}^{2}] + [(1+\theta_{2}^{2}) - (\theta_{1} + \phi_{1}\theta_{2})(\phi_{1} - \theta_{1})]\sigma_{v}^{2} \\ &= \phi_{1}^{2}\sigma_{\varepsilon}^{2} - \phi_{1}(\theta_{1} + \phi_{1}\theta_{2} - \theta_{1}\theta_{2})\sigma_{v}^{2} + [(1+\theta_{2}^{2}) - (\theta_{1} + \phi_{1}\theta_{2})(\phi_{1} - \theta_{1})]\sigma_{v}^{2} \\ &= \phi_{1}^{2}\sigma_{\varepsilon}^{2} - [\phi_{1}(\theta_{1} + \phi_{1}\theta_{2} - \theta_{1}\theta_{2}) - (1+\theta_{2}^{2}) + (\theta_{1} + \phi_{1}\theta_{2})(\phi_{1} - \theta_{1})]\sigma_{v}^{2} \\ &= \phi_{1}^{2}\sigma_{\varepsilon}^{2} - [\phi_{1}(\theta_{1} + \phi_{1}\theta_{2} - \theta_{1}\theta_{2}) - (1+\theta_{2}^{2}) + (\theta_{1} + \phi_{1}\theta_{2})(\phi_{1} - \theta_{1})]\sigma_{v}^{2} \\ &= \phi_{1}^{2}\sigma_{\varepsilon}^{2} - [2\phi_{1}(\theta_{1} - \theta_{1}\theta_{2} + \phi_{1}\theta_{2}) - (1+\theta_{2}^{2} + \theta_{1}^{2})]\sigma_{v}^{2} \end{aligned}$$

$$\sigma_{\varepsilon}^{2} = \frac{-[2\phi_{1}(\theta_{1} - \theta_{1}\theta_{2} + \phi_{1}\theta_{2}) - (1 + \theta_{2}^{2} + \theta_{1}^{2})]}{1 - \phi_{1}^{2}}\sigma_{v}^{2} = \frac{(1 + \theta_{2}^{2} + \theta_{1}^{2}) - 2\phi_{1}(\theta_{1} - \theta_{1}\theta_{2} + \phi_{1}\theta_{2})}{1 - \phi_{1}^{2}}\sigma_{v}^{2}$$

$$\rho_0 = \frac{\sigma_{\varepsilon}^2}{\sigma_{\varepsilon}^2} = 1$$

$$\sigma_{\varepsilon\varepsilon'}(1) = \phi_{1}\sigma_{\varepsilon}^{2} - (\theta_{1} + \phi_{1}\theta_{2} - \theta_{1}\theta_{2})\sigma_{v}^{2} \\
= \frac{\phi_{1}[(1 + \theta_{2}^{2} + \theta_{1}^{2}) - 2\phi_{1}(\theta_{1} - \theta_{1}\theta_{2} + \phi_{1}\theta_{2})]}{1 - \phi_{1}^{2}}\sigma_{v}^{2} - (\theta_{1} + \phi_{1}\theta_{2} - \theta_{1}\theta_{2})\sigma_{v}^{2} \\
= \frac{\phi_{1}[(1 + \theta_{2}^{2} + \theta_{1}^{2}) - 2\phi_{1}(\theta_{1} - \theta_{1}\theta_{2} + \phi_{1}\theta_{2})] - (1 - \phi_{1}^{2})(\theta_{1} + \phi_{1}\theta_{2} - \theta_{1}\theta_{2})}{1 - \phi_{1}^{2}}\sigma_{v}^{2} \\$$
式中分子化簡如下:

式中分子化簡如下:

$$\begin{split} \phi_{1}[(1+\theta_{2}^{2}+\theta_{1}^{2})-2\phi_{1}(\theta_{1}-\theta_{1}\theta_{2}+\phi_{1}\theta_{2})]-(1-\phi_{1}^{2})(\theta_{1}+\phi_{1}\theta_{2}-\theta_{1}\theta_{2}) \\ &= [(\phi_{1}+\phi_{1}\theta_{2}^{2}+\phi_{1}\theta_{1}^{2})-2\phi_{1}^{2}(\theta_{1}-\theta_{1}\theta_{2}+\phi_{1}\theta_{2})]-(1-\phi_{1}^{2})(\theta_{1}+\phi_{1}\theta_{2}-\theta_{1}\theta_{2}) \\ &= (\phi_{1}+\phi_{1}\theta_{2}^{2}+\phi_{1}\theta_{1}^{2}-2\phi_{1}^{2}\theta_{1}+2\phi_{1}^{2}\theta_{1}\theta_{2}-2\phi_{1}^{3}\theta_{2})-(1-\phi_{1}^{2})(\theta_{1}+\phi_{1}\theta_{2}-\theta_{1}\theta_{2}) \\ &= (\phi_{1}+\phi_{1}\theta_{2}^{2}+\phi_{1}\theta_{1}^{2}-2\phi_{1}^{2}\theta_{1}+2\phi_{1}^{2}\theta_{1}\theta_{2}-2\phi_{1}^{3}\theta_{2})-(\theta_{1}+\phi_{1}\theta_{2}-\theta_{1}\theta_{2})+\phi_{1}^{2}(\theta_{1}+\phi_{1}\theta_{2}-\theta_{1}\theta_{2}) \\ &= \phi_{1}+\phi_{1}\theta_{2}^{2}+\phi_{1}\theta_{1}^{2}-2\phi_{1}^{2}\theta_{1}+2\phi_{1}^{2}\theta_{1}\theta_{2}-2\phi_{1}^{3}\theta_{2}-\theta_{1}-\phi_{1}\theta_{2}+\theta_{1}\theta_{2}+\phi_{1}^{2}\theta_{1}+\phi_{1}^{3}\theta_{2}-\phi_{1}^{2}\theta_{1}\theta_{2} \\ &= \phi_{1}+\phi_{1}\theta_{2}^{2}+\phi_{1}\theta_{1}^{2}-\phi_{1}^{2}\theta_{1}+\phi_{1}^{2}\theta_{1}\theta_{2}-\phi_{1}^{3}\theta_{2}-\theta_{1}-\phi_{1}\theta_{2}+\theta_{1}\theta_{2} \\ &= \phi_{1}-\theta_{1}-\phi_{1}^{3}\theta_{2}+\phi_{1}\theta_{2}^{2}-\phi_{1}\theta_{2}+\phi_{1}\theta_{1}^{2}-\phi_{1}^{2}\theta_{1}+\phi_{1}^{2}\theta_{1}\theta_{2}-\phi_{1}^{3}\theta_{2} \\ &= -\theta_{1}+\theta_{1}\theta_{2}+\phi_{1}+\phi_{1}\theta_{2}^{2}-\phi_{1}\theta_{2}+\phi_{1}\theta_{1}^{2}-\phi_{1}^{2}\theta_{1}+\phi_{1}^{2}\theta_{1}\theta_{2}-\phi_{1}^{3}\theta_{2} \\ &= -\theta_{1}+\theta_{1}\theta_{2}+\phi_{1}(1+\theta_{2}^{2})+\phi_{1}(\theta_{1}^{2}-\theta_{2})-\phi_{1}^{2}\theta_{1}(1-\theta_{2})-\phi_{1}^{3}\theta_{2} \\ &= -\theta_{1}+\theta_{1}\theta_{2}+\phi_{1}(1+\theta_{2}^{2})+\phi_{1}(\theta_{1}^{2}-\theta_{2})-\phi_{1}^{2}\theta_{1}(1-\theta_{2})-\phi_{1}^{3}\theta_{2} \end{split}$$

$$\begin{split} \sigma_{\varepsilon\varepsilon'}(1) &= \phi_1 \sigma_{\varepsilon}^2 - (\theta_1 + \phi_1 \theta_2 - \theta_1 \theta_2) \sigma_{v}^2 \\ &= \frac{\phi_1 [(1 + \theta_2^2 + \theta_1^2) - 2\phi_1(\theta_1 - \theta_1 \theta_2 + \phi_1 \theta_2)]}{1 - \phi_1^2} \sigma_{v}^2 - (\theta_1 + \phi_1 \theta_2 - \theta_1 \theta_2) \sigma_{v}^2 \\ &= \frac{\phi_1 [(1 + \theta_2^2 + \theta_1^2) - 2\phi_1(\theta_1 - \theta_1 \theta_2 + \phi_1 \theta_2)] - (1 - \phi_1^2)(\theta_1 + \phi_1 \theta_2 - \theta_1 \theta_2)}{1 - \phi_1^2} \sigma_{v}^2 \\ &= \frac{-\theta_1 + \theta_1 \theta_2 + \phi_1(1 + \theta_2^2) + \phi_1(\theta_1^2 - \theta_2) - \phi_1^2 \theta_1(1 - \theta_2) - \phi_1^3 \theta_2}{1 - \phi_1^2} \sigma_{v}^2 \end{split}$$

故 lag-1 自我共變數

$$\begin{split} \sigma_{\varepsilon\varepsilon'}(1) &= \frac{-\theta_1 + \theta_1\theta_2 + \phi_1(1+\theta_2^2) + \phi_1(\theta_1^2 - \theta_2) - \phi_1^2\theta_1(1-\theta_2) - \phi_1^3\theta_2}{1-\phi_1^2} \sigma_v^2 \\ \rho_1 &= \frac{\sigma_{\varepsilon\varepsilon'}(1)}{\sigma_\varepsilon^2} = \frac{\frac{-\theta_1 + \theta_1\theta_2 + \phi_1(1+\theta_2^2) + \phi_1(\theta_1^2 - \theta_2) - \phi_1^2\theta_1(1-\theta_2) - \phi_1^3\theta_2}{(1+\theta_2^2+\theta_1^2) - 2\phi_1(\theta_1 - \theta_1\theta_2 + \phi_1\theta_2)} \sigma_v^2 \\ &= \frac{(-\theta_1 + \theta_1\theta_2) + [\phi_1(1+\theta_2^2) + \phi_1(\theta_1^2 - \theta_2) - \phi_1^2\theta_1(1-\theta_2) - \phi_1^3\theta_2]}{(1+\theta_1^2+\theta_2^2) - [2\phi_1(\theta_1 - \theta_1\theta_2 + \phi_1\theta_2)]} \\ \text{therefore a large strength of the set of$$

$$\vec{x} (\vec{\mu} \not(\vec{j}) \vec{j} \cdot \vec{j})$$

$$\phi_{1}^{2} [(1 + \theta_{2}^{2} + \theta_{1}^{2}) - 2\phi_{1}(\theta_{1} - \theta_{1}\theta_{2} + \phi_{1}\theta_{2})] - (1 - \phi_{1}^{2})[(\phi_{1}\theta_{1} + \theta_{2}) + \phi_{1}\theta_{2}(\phi_{1} - \theta_{1})]$$

$$= (\phi_{1}^{2} + \phi_{1}^{2}\theta_{2}^{2} + \phi_{1}^{2}\theta_{1}^{2}) - 2\phi_{1}^{3}(\theta_{1} - \theta_{1}\theta_{2} + \phi_{1}\theta_{2}) - (1 - \phi_{1}^{2})[(\phi_{1}\theta_{1} + \theta_{2}) + (\phi_{1}^{2}\theta_{2} - \phi_{1}\theta_{1}\theta_{2})]$$

$$= \phi_{1}^{2} + \phi_{1}^{2}\theta_{2}^{2} + \phi_{1}^{2}\theta_{1}^{2} - 2\phi_{1}^{3}\theta_{1} + 2\phi_{1}^{3}\theta_{1}\theta_{2} - 2\phi_{1}^{4}\theta_{2} - \phi_{1}\theta_{1} - \theta_{2} - \phi_{1}^{2}\theta_{2} + \phi_{1}\theta_{1}\theta_{2} + \phi_{1}^{2}\theta_{1} + \theta_{2}) + (\phi_{1}^{2}\theta_{2} - \phi_{1}\theta_{1}\theta_{2})]$$

$$= \phi_{1}^{2} + \phi_{1}^{2}\theta_{2}^{2} + \phi_{1}^{2}\theta_{1}^{2} - 2\phi_{1}^{3}\theta_{1} + 2\phi_{1}^{3}\theta_{1}\theta_{2} - 2\phi_{1}^{4}\theta_{2} - \phi_{1}\theta_{1} - \theta_{2} - \phi_{1}^{2}\theta_{2} + \phi_{1}\theta_{1}\theta_{2} + \phi_{1}^{3}\theta_{1} + \phi_{1}^{2}\theta_{2} + \phi_{1}^{3}\theta_{1}\theta_{2} - \phi_{1}^{3}\theta_{1}\theta_{2} - 2\phi_{1}^{4}\theta_{2} - \phi_{1}\theta_{1} - \theta_{2} - \phi_{1}^{2}\theta_{2} + \phi_{1}\theta_{1}\theta_{2} + \phi_{1}^{3}\theta_{1} + \phi_{1}^{2}\theta_{2} + \phi_{1}^{3}\theta_{1}\theta_{2} - \phi_{1}^{3}\theta_{1}\theta_{2} - 2\phi_{1}^{4}\theta_{2} - \phi_{1}\theta_{1} - \theta_{2} - \phi_{1}^{2}\theta_{2} + \phi_{1}\theta_{1}\theta_{2} + \phi_{1}^{3}\theta_{1} + \phi_{1}^{2}\theta_{2} + \phi_{1}^{3}\theta_{1}\theta_{2} - \phi_{1}^{3}\theta_{1}\theta_{2} - 2\phi_{1}^{4}\theta_{2} - \phi_{1}\theta_{1} - \theta_{2} - \phi_{1}^{2}\theta_{2} + \phi_{1}\theta_{1}\theta_{2} + \phi_{1}^{3}\theta_{1} + \phi_{1}^{2}\theta_{2} - \phi_{1}^{3}\theta_{1}\theta_{2} - 2\phi_{1}^{4}\theta_{2} - \phi_{1}\theta_{1} - \theta_{2} - \phi_{1}^{2}\theta_{2} + \phi_{1}\theta_{1}\theta_{2} + \phi_{1}^{3}\theta_{1} + \phi_{1}^{2}\theta_{2} + \phi_{1}^{3}\theta_{1}\theta_{2} - \phi_{1}^{3}\theta_{1}\theta_{2} - \phi_{1}^{3}\theta_{1} - \theta_{2} - \phi_{1}^{2}\theta_{2} + \phi_{1}\theta_{1}\theta_{2} + \phi_{1}^{2}\theta_{2} - \phi_{1}^{3}\theta_{1}\theta_{2} - \phi_{1}^{3}\theta_{1} - \theta_{2} - \phi_{1}^{3}\theta_{1} + \phi_{1}^{3}\theta_{1}\theta_{2} - \phi_{1}^{3}\theta_{1} + \phi_{1}^{3}\theta_{1}\theta_{2} - \phi_{1}^{3}\theta_{1} - \theta_{2} + \phi_{1}\theta_{1}\theta_{2} - \phi_{1}^{3}\theta_{2} - \phi_{1}^{3}\theta_{2} - \phi_{1}^{3}\theta_{1} + \phi_{1}^{3}\theta_{1}\theta_{2} - \phi_{1}^$$

所以 lag-2 autocovariance 為

$$\begin{split} \sigma_{\varepsilon\varepsilon'}(2) &= Cov(\varepsilon_{t}, \varepsilon_{t-2}) \\ &= \phi_{1}^{2}\sigma_{\varepsilon}^{2} - [(\phi_{1}\theta_{1} + \theta_{2}) + \phi_{1}\theta_{2}(\phi_{1} - \theta_{1})]\sigma_{v}^{2} \\ &= \frac{\phi_{1}^{2}[(1 + \theta_{2}^{2} + \theta_{1}^{2}) - 2\phi_{1}(\theta_{1} - \theta_{1}\theta_{2} + \phi_{1}\theta_{2})]}{1 - \phi_{1}^{2}}\sigma_{v}^{2} - [(\phi_{1}\theta_{1} + \theta_{2}) + \phi_{1}\theta_{2}(\phi_{1} - \theta_{1})]\sigma_{v}^{2} \\ &= \frac{\phi_{1}^{2}[(1 + \theta_{2}^{2} + \theta_{1}^{2}) - 2\phi_{1}(\theta_{1} - \theta_{1}\theta_{2} + \phi_{1}\theta_{2})] - (1 - \phi_{1}^{2})[(\phi_{1}\theta_{1} + \theta_{2}) + \phi_{1}\theta_{2}(\phi_{1} - \theta_{1})]}{1 - \phi_{1}^{2}}\sigma_{v}^{2} \\ &= \frac{-\theta_{2} - \phi_{1}\theta_{1}(1 - \theta_{2}) + \phi_{1}^{2}(1 + \theta_{1}^{2} + \theta_{2}^{2}) - \phi_{1}^{3}\theta_{1}(1 - \theta_{2}) - \phi_{1}^{4}\theta_{2}}{1 - \phi_{1}^{2}}\sigma_{v}^{2} \end{split}$$

Lag-2 自我共變數為

$$\rho_{2} = \frac{\sigma_{\varepsilon\varepsilon'}(2)}{\sigma_{\varepsilon}^{2}} = \frac{\frac{-\theta_{2} - \phi_{1}\theta_{1}(1 - \theta_{2}) + \phi_{1}^{2}(1 + \theta_{1}^{2} + \theta_{2}^{2}) - \phi_{1}^{3}\theta_{1}(1 - \theta_{2}) - \phi_{1}^{4}\theta_{2}}{1 - \phi_{1}^{2}} \sigma_{v}^{2}}{\frac{(1 + \theta_{2}^{2} + \theta_{1}^{2}) - 2\phi_{1}(\theta_{1} - \theta_{1}\theta_{2} + \phi_{1}\theta_{2})}{1 - \phi_{1}^{2}} \sigma_{v}^{2}}{1 - \phi_{1}^{2}}$$
$$= \frac{-\theta_{2} - \phi_{1}\theta_{1}(1 - \theta_{2}) + \phi_{1}^{2}(1 + \theta_{1}^{2} + \theta_{2}^{2}) - \phi_{1}^{3}\theta_{1}(1 - \theta_{2}) - \phi_{1}^{4}\theta_{2}}{(1 + \theta_{2}^{2} + \theta_{1}^{2}) - 2\phi_{1}(\theta_{1} - \theta_{1}\theta_{2} + \phi_{1}\theta_{2})}$$
$$\sigma_{\varepsilon\varepsilon'}(k) = \phi_{1}\sigma_{\varepsilon\varepsilon'}(k - 1) = \phi_{1}\rho_{k-1}\sigma_{\varepsilon}^{2}, \quad k \ge 3$$
Summary

ARMA(1,2): $\varepsilon_t = \phi_1 \varepsilon_{t-1} + v_t - \theta_1 v_{t-1} - \theta_2 v_{t-2}, v_t \sim iid(0, \sigma_v^2)$

$$\sigma_{\varepsilon}^{2} \begin{bmatrix} 1 & & & \ & \rho_{1} & 1 & & \ & \rho_{2} & \rho_{1} & 1 & \ & \rho_{3} & \rho_{2} & \rho_{1} & 1 \end{bmatrix}_{r}$$

$$\rho_0 = 1$$
,

$$\rho_{1} = \frac{(-\theta_{1} + \theta_{1}\theta_{2}) + [\phi_{1}(1 + \theta_{2}^{2}) + \phi_{1}(\theta_{1}^{2} - \theta_{2}) - \phi_{1}^{2}\theta_{1}(1 - \theta_{2}) - \phi_{1}^{3}\theta_{2}]}{(1 + \theta_{1}^{2} + \theta_{2}^{2}) - [2\phi_{1}(\theta_{1} - \theta_{1}\theta_{2} + \phi_{1}\theta_{2})]},$$

$$\rho_{2} = \frac{-\theta_{2} - [\phi_{1}\theta_{1}(1-\theta_{2}) + \phi_{1}^{2}(1+\theta_{1}^{2} + \theta_{2}^{2}) - \phi_{1}^{3}\theta_{1}(1-\theta_{2}) - \phi_{1}^{4}\theta_{2}]}{(1+\theta_{1}^{2}+\theta_{2}^{2}) - [2\phi_{1}(\theta_{1}-\theta_{1}\theta_{2} + \phi_{1}\theta_{2})]}$$
$$\begin{split} \sigma_{\varepsilon\varepsilon'}(k) &= \phi_{1}\sigma_{\varepsilon\varepsilon'}(k-1) = \phi_{1}\rho_{k-1}\sigma_{\varepsilon}^{2} = \rho_{k}\sigma_{\varepsilon}^{2}, \ k \geq 3\\ \rho_{k} &= \phi_{1}\rho_{k-1}, k \geq 3 \end{split},\\ & \mathbb{P} 穩條件 : |\phi_{1}| < 1, \\ & \mathbb{P} 遠條件 : \begin{cases} |\theta_{2}| < 1, \\ \theta_{1} + \theta_{2} < 1, \\ \theta_{2} - \theta_{1} < 1. \end{cases} \end{split}$$

,

本部份推導極為複雜 (一般教科書僅提供 ARMA(1,1)),彙整如下:

Structure	#(Doro	ECM (for $T-4$)
Structure	#(r aia-	ECM(101 1-4)
	meters)	
Stationary:		
ARMA(p, q) (autoregressive	p+q+1	
moving average of order (p, q))		$_{-2}$ ρ_1 1
$\mathcal{E}_t = \phi_1 \mathcal{E}_{t-1} + \dots + \phi_n \mathcal{E}_{t-n} +$		$\sigma_{\varepsilon} \rho_{2} \rho_{1} 1$
$v_t - \theta_1 v_{t-1} - \dots - \theta_a v_{t-a}$		$\left \rho_{3} \rho_{2} \rho_{1} 1 \right $
ARMA(1,1): $\varepsilon_t = \phi_1 \varepsilon_{t-1} + v_t - \theta_1 v_{t-1}$		
$\rho_{1} = \frac{(\phi_{1} - \theta_{1})(1 - \phi_{1}\theta_{1})}{(1 - \phi_{1}\theta_{1})} \rho_{2} = \phi_{1}\rho_{2}$	<i>k</i> >1	
$\rho_1 = (1 - 2\phi_1\theta_1 + \theta_1^2)^{-1}, \rho_k = \phi_1\rho_{k-1},$	<i>N</i> > 1.	
$ \phi_1 < 1, \theta_1 < 1.$		
$\operatorname{ARMA}(1,2): \varepsilon_t = \phi_1 \varepsilon_{t-1} + v_t - \theta_1 v_{t-1}$	$-\theta_2 v_{t-2}$	
$\rho_0 = 1, \ \rho_1 = \frac{(-\theta_1 + \theta_1 \theta_2) + [\theta_1(1 + \theta_2^2) + \theta_2(1 + \theta_2^2)]}{(1 + \theta_2^2 + \theta_2^2)}$	$-\phi_1(\theta_1^2 - \theta_2) - \frac{12}{2}\phi_1(\theta_1^2 - \theta_2) -$	$\frac{-\phi_1^{-}\phi_1(1-\theta_2)-\phi_1^{-}\theta_2}{(1-\theta_2)!},$
$(1+\theta_1+\theta_2) =$	$-12\phi_1(\theta_1-\theta_1\theta)$	$\left[\frac{1}{2}+\phi_{1}\phi_{2}\right]$
$\rho_2 = -\theta_2 - [\phi_1 \theta_1 (1 - \theta_2) + \phi_1^2 (1 + \theta_1^2 + \theta_2^2) - \theta_2 (1 + \theta_2^2) - $	$\phi_1^3\theta_1(1-\theta_2)-$	$(\phi_1^{\dagger}\theta_2], \rho_k = \phi, \rho_{k-1}, k > 2$.
$(1+\theta_1^2+\theta_2^2)-[2\phi_1(\theta_1-\theta_1\theta_2)]$	$[\theta_2 + \phi_1 \theta_2)]$	
$ \phi_1 < 1; \theta_2 < 1, \ \theta_1 + \theta_2 < 1, \ \theta_2 - \theta_1 < 0$	<1.	
	2	
$\operatorname{ARMA}(2,1): \mathcal{E}_t = \phi_1 \mathcal{E}_{t-1} + \phi_2 \mathcal{E}_{t-2} + v$	$v_t - \theta_1 v_{t-1}$,	
$(\phi - \theta)(1 - \phi \theta) + \phi^2 \theta$		
$\rho_0 = 1, \ \rho_1 = \frac{(\psi_1 - v_1)(1 - \psi_1 v_1) + \psi_2 v_1}{(1 - v_1)(1 + v_2) - 2 v_1 v_2}$	$-, \rho_k = (\phi_1 \rho_j)$	$_{k-1} + \phi_2 \rho_{k-2}), \ k > 1, ,$

$$\rho_{0} = 1, \ \rho_{1} = \frac{(\phi_{1} - \theta_{1})(1 - \phi_{1}\theta_{1}) + \phi_{2}^{2}\theta_{1}}{(1 - \phi_{2})(1 + \theta_{1}^{2}) - 2\phi_{1}\theta_{1}}, \ \rho_{k} = (\phi_{1}\rho_{k-1} + \phi_{2}\rho_{k-2}), \ k > 1, ,$$
$$|\phi_{2}| < 1, \ \phi_{2} + \phi_{1} < 1, \ \phi_{2} - \phi_{1} < 1, |\theta_{1}| < 1.$$

Model		Stationary	Invertibility
		conditions	conditions
MA(1)	$\varepsilon_t = v_t - \theta_1 v_{t-1}$	None	<i>θ</i> ₁ <1
AR(1)	$\mathcal{E}_t = \phi_1 \mathcal{E}_{t-1} + \mathcal{V}_t$	$ \phi_1 < 1$	None
ARMA(1,1)	$\mathcal{E}_t = \phi_1 \mathcal{E}_{t-1} + v_t - \theta_1 v_{t-1}$	$ \phi_1 < 1$	$ \theta_1 < 1$
AR(2)	$\mathcal{E}_t = \phi_1 \mathcal{E}_{t-1} + \phi_2 \mathcal{E}_{t-2} + v_t$	$ \phi_2 < 1,$ $\phi_2 + \phi_1 < 1,$ $\phi_2 - \phi_1 < 1.$	None
MA(2)	$\varepsilon_t = v_t - \theta_1 v_{t-1} - \theta_2 v_{t-2}$	None	$ \theta_2 < 1,$ $\theta_1 + \theta_2 < 1,$ $\theta_2 - \theta_1 < 1.$
ARMA(2,1)	$\mathcal{E}_{t} = \phi_{1}\mathcal{E}_{t-1} + \phi_{2}\mathcal{E}_{t-2} + v_{t} - \theta_{1}v_{t-1}$	$ \phi_2 < 1,$ $\phi_2 + \phi_1 < 1,$ $\phi_2 - \phi_1 < 1.$	$ \theta_1 < 1$
ARMA(1,2)	$\varepsilon_t = \phi_1 \varepsilon_{t-1} + v_t - \theta_1 v_{t-1} - \theta_2 v_{t-2} $	\$\$ <1	$\begin{split} & \ \theta_2 \ < 1, \\ & \ \theta_1 + \theta_2 < 1, \\ & \ \theta_2 - \theta_1 < 1. \end{split}$
ARMA(2,2)	$\mathcal{E}_t = \phi_1 \mathcal{E}_{t-1} + \phi_2 \mathcal{E}_{t-2} + v_t - \theta_1 v_{t-1} - \theta_2 v_{t-2}$	$ \phi_2 < 1,$ $\phi_2 + \phi_1 < 1,$ $\phi_2 - \phi_1 < 1.$	$ \theta_2 < 1,$ $\theta_1 + \theta_2 < 1,$ $\theta_2 - \theta_1 < 1.$

常見 ARMA(p,q) stationarity 及 invertibility 條件彙整如下

附錄B: SAS 程式

[B-1]:一階條件式LGM模擬資料程式

%MACRO SIMUTOEPH (GA00, GA01, Sigma2_alpha, Sigma2_beta, C_alpha_beta VARE1, VARE2, VARE3, VARE4, CE1E2, CE1E3, CE1E4, CE2E3, CE2E4, CE3E4, Mu_X, Sigma_X, GA10, GA11, N);
%DO runs= 1 % to 1; /***僅模擬一組樣本*****/
DM 'LOG; CLEAR; output; clear; ODS; Clear;';

PROC IML; /***呼叫 IML 計算式(2.32)蘊涵平均數向量 及式(2.33) 蘊涵共變異數矩陣*****/

```
LY = \{ 1 \}
         0,
     1
         1.
     1
         2,
     1
         3};
                                    MuEta={&GA00,
      &GA01};
Mu_X = \{\&Mu_X\};
Sigma_X={&Sigma_X};
GA={&GA10,
    &GA11};
PSI = {&Sigma2_alpha &C_alpha_beta,
     &C alpha beta
                  &Sigma2 beta};
TE = \{\&VARE1 \&CE1E2 \&CE1E3 \}
                             &CE1E4,
     &CE1E2 &VARE2 &CE2E3
                              &CE2E4,
     &CE1E3 &CE2E3
                     &VARE3 &CE3E4,
     &CE1E4 &CE2E4
                     &CE3E4
                              &VARE4};
COVY = LY*(GA*Sigma_X*GA`+PSI)*LY`+TE;
COVXY = LY*GA*Sigma_X;
COVYX = Sigma X*GA`*LY`;
COVX = Sigma_X;
UPPER = COVY \parallel COVXY;
LOWER = COVYX \parallel COVX;
COV = UPPER // LOWER;
                      /***式(2.33) 蘊涵共變異數矩陣****/
MEANY= LY*(MuEta+GA*Mu_X);
MEANX=Mu X;
MEAN=MEANY//MEANX; /***式(2.32)蘊涵平均數向量 ********/
print COV MEAN;
SERIES = RANDNORMAL( &N, Mean, Cov ); /*Multinormal distribution*******/
```

CREATE DATA_Sim_ARH1_SEM FROM series[COLNAME={Y1 Y2 Y3 Y4 X }]; **APPEND FROM series:** RUN: PROC CORR COV DATA=DATA_Sim_ARH1_SEM OUTP=ARH1_data noprint; RUN: proc print data=ARH1_data; title'ARH(1) data'; run. PROC PRINT DATA=DATA_Sim_ARH1_SEM /*NOOBS*/; title'DATA_Sim_ARH(1)_SEM'; RUN: %END: %MEND SIMUTOEPH: %MACRO compute (GA00, GA01, Sigma2_alpha, Sigma2_beta, C_alpha_beta, VARE1, VARE2 VARE3, VARE4, MuX, SigmaX, GA10, GA11, RHO, VN); %let SQRTVARE1=%sysfunc(sqrt(&VARE1)); %let SQRTVARE2=%sysfunc(sqrt(&VARE2)); %let SQRTVARE3=%sysfunc(sqrt(&VARE3)); %let SQRTVARE4=%sysfunc(sqrt(&VARE4)); %let COVE1E2=%sysevalf(&RHO*&SQRTVARE1*&SQRTVARE2); %let COVE1E3=%sysevalf(&RHO*&RHO*&SQRTVARE1*&SQRTVARE3); %let COVE1E4=%sysevalf(&RHO*&RHO*&RHO*&SORTVARE1*&SORTVARE4); %let COVE2E3=%sysevalf(&RHO*&SQRTVARE2*&SQRTVARE3); %let COVE2E4=%sysevalf(&RHO*&RHO*&SORTVARE2*&SORTVARE4); %let COVE3E4=%sysevalf(&RHO*&SQRTVARE3*&SQRTVARE4); %SIMUTOEPH (&GA00, &GA01, &Sigma2_alpha, &Sigma2_beta, &C_alpha_beta, &VARE1, &VARE2, &VARE3, &VARE4, &COVE1E2, &COVE1E3, &COVE1E4, &COVE2E3, &COVE2E4, &COVE3E4, &MuX, &SigmaX, &GA10, &GA11, &VN); %MEND compute; data overall; run: /* (GA00, GA01, Sigma2_alpha, Sigma2_beta, C_alpha_beta, VARE1, VARE2, VARE3, VARE4, MuX, SigmaX, GA10, GA11, RHO, VN); */ title 'Case 1:ECM as ARH(1), sample size=300'; %*compute* (10, 4, 15, 10, 7, 36, 25, 49, 64, 0, 1, 4, 6, 0.7, 300);

[B-2]:一階條件式LGM示例程式

DM 'LOG; CLEAR; output; clear; PGM;recall;ODS; Clear;';

OPTIONS REPLACE notes NODATE PS=58 PAGENO=1 LS=120;

DATA DATA_Sim_ARH1_SEM;

input ID \$ Y1 Y2 Y3 Y4 X;

CARDS;

1	9.7768	13.7517	26.7902	24.5863	1.30071
2	11.0136	7.2623	-9.0843	-17.2914	-1.18663
3	8.7716	15.8737	18.8068	34.8630	-0.14151
4	13.2355	10.3903	18.3230	23.0752	-0.58842
5	5.3543	29.1544	43.0840	61.6083	1.84097
÷	:		•	:	
297	11.7894	12.4805	25.0691	34.2727	0.02925
298	8.9546	22.4916	35.1654	49.7859	0.47039
299	15.6898	30.7820	40.0494	58.1095	1.11542
300	3.9201	2.7427	3.3958	-0.9987	-1.29144

RUN;

```
PROC CORR COV DATA=DATA_Sim_ARH1_SEM OUTP=ARH1_data noprint ;
```

VAR Y1 Y2 Y3 Y4 X;

RUN;

proc print data=ARH1_data; title'ARH(1) data';

run;

PROC PRINT DATA=DATA_Sim_ARH1_SEM;

Title'DATA_Sim_ARH1_SEM';

RUN;

```
/****多變量資料結構(SEM方法)轉成單變量資料結構(HLM方法)***********************/
```

DATA DATA_Sim_ARH1_HLM;

```
SET DATA_Sim_ARH1_SEM;
```

```
I=_N_;
```

array YDATA{4} Y1-Y4;

```
DO Wave=1 to 4;
```

```
Time=Wave-1;
```

Y= YDATA{Wave};

```
OUTPUT;
```

END;

Keep I ID Wave TIME Y X;

RUN;

PROC PRINT DATA=DATA_Sim_ARH1_HLM;

VAR I ID TIME WAVE Y X;

```
TITLE'DATA_Sim_ARH(1)_HLM';
RUN:
OUIT:
PROC TCALIS METHOD=ML data=DATA Sim ARH1 SEM MAXFUNC=1500
             MAXITER=1500 OUTRAM=OUT_RAM OUTEST=OUT_EST PRINT;
LINEQS
      Y1 = F_alpha + 0 F_beta + E1,
       Y2 = F_alpha + 1 F_beta + E2,
      Y3 = F alpha + 2 F beta + E3,
      Y4 = F_alpha + 3 F_beta + E4,
      F_alpha = GA00(10) intercept + GA10(4) X+D0,
      F_{beta} = GA01(4) intercept + GA11(6) X+D1;
STD
      E1 =VARE1(36), E2 =VARE2(25), E3 = VARE3(49), E4 = VARE4(64),
      D0 = VARD0(15), D1 = VARD1(10);
COV
      E2 E1 = COVE2E1(21).
                        E3 E2 = COVE3E2(24.5), E4 E3 = COVE4E3(39.2),
      E3 E1 = COVE3E1(20.58), E4 E2 = COVE4E2(19.6), E4 E1 = COVE4E1(16.46),
       D0 D1 = CD0D1(7);
VAR
      Y1 Y2 Y3 Y4 X;
SIMTESTS
  ERR STATIONARY TEST =[VAREQ 1 VAREQ 2 VAREQ 3 COVLag1EQ 1 COVLag1EQ 2
                     COVLag2EQ ];
/*SAS Programming statements for defining the parametric functions****************/
   VAREQ_1 = VARE1-VARE2; VAREQ_2 = VARE1-VARE3; VAREQ_3 = VARE1-VARE4;
   COVLag1EO 1=COVE2E1-COVE3E2;
                              COVLag1EO 2=COVE2E1-COVE4E3;
   COVLag2EQ=COVE3E1-COVE4E2;
TITLE 'ECM UN SEM';
 RUN:
OUIT:
/**表4.4 步驟1, 檢定H0:MT=MS, 當MT=TOEPH (1) 時所需卡方値及自由度之程式**************/
PROC TCALIS METHOD=ML data=DATA Sim ARH1 SEM MAXFUNC=1500
          MAXITER=1500 OUTRAM=OUT_RAM OUTEST=OUT_EST PRINT;
LINEOS
      Y1 = F alpha
                      + E1.
      Y2 = F_alpha + 1 F_beta + E2,
      Y3 = F_alpha + 2 F_beta + E3,
```

```
Y4 = F alpha + 3 F beta + E4,
```

```
F_alpha = GA00(10) intercept + GA10(4) X+D0,
       F_{beta} = GA01(4) intercept + GA11(6) X+D1;
STD
      E1 =VARE1(36), E2 =VARE2(25), E3 = VARE3(49), E4 = VARE4(64),
      D0 = VARD0(15), D1 = VARD1(10);
COV
       D0 D1 = CD0D1(7);
VAR
      Y1 Y2 Y3 Y4 X;
TITLE 'ECM_UN(1)_SEM';
RUN;
OUIT:
/**表4.4 步驟1:虛無假設 H0:MT=MS, MT=TOEPH (1), MS=UN之卡方差異檢定程式*********/
DATA Chisquare_Diff_Prob_TOEPH1_UN;
 Saturated_M_UN_Chisquare=5.1700;
 Saturated M UN DF=1;
 Restricted_M_TOEPH1_Chisquare=30.9590;
                                 Restricted_M_TOEPH1_DF=7;
 ChisquareDIFF=Restricted M TOEPH1 Chisquare-Saturated M UN Chisquare;
 DF DIFF=Restricted M TOEPH1 DF-Saturated M UN DF;
 ChiSquareProb=1-PROBCHI(ChisquareDIFF, DF_DIFF,0); output;
RUN;
PROC PRINT DATA= Chisquare_Diff_Prob_TOEPH1_UN;
title'SCDT TOEPH(1) UN SEM';
RUN:
/**表4.4 步驟2, 檢定H0:MT=MS,當MT=TOEPH (2) 時所需卡方值及自由度之程式**********/
PROC TCALIS METHOD=ML data=DATA Sim ARH1 SEM MAXFUNC=1500
            MAXITER=1500 OUTRAM=OUT_RAM OUTEST=OUT_EST PRINT;
LINEOS
       Y1 = F_alpha
                        + E1.
       Y2 = F alpha + 1 F beta + E2,
       Y3 = F_alpha + 2 F_beta + E3,
       Y4 = F_alpha + 3 F_beta + E4,
       F alpha = GA00(10) intercept + GA10(4) X+D0,
       F_{beta} = GA01(4) intercept + GA11(6) X+D1;
STD
       E1 =VARE1(17.54), E2 =VARE2(9.46), E3 = VARE3(23.35), E4 = VARE4(31.4),
       D0 = VARD0(15), D1 = VARD1(10);
COV
       E2 E1 = COVE2E1(3.96), E3 E2 = COVE3E2(4.57), E4 E3 = COVE4E3(8.3069),
```

```
D0 D1 = CD0D1(7);
PARAMETERS RHO (0.3);
      COVE2E1=SQRT(VARE2)*SQRT(VARE1)*RHO;
      COVE3E2=SQRT(VARE3)*SQRT(VARE2)*RHO;
      COVE4E3=SQRT(VARE4)*SQRT(VARE3)*RHO;
BOUNDS
      -1.<RHO<1.;
VAR
      Y1 Y2 Y3 Y4 X;
TITLE 'ECM_TOEPH(2)_SEM';
 RUN:
OUIT:
/**表4.4 步驟2:虛無假設 H0:MT=MS, MT=TOEPH (2), MS=UN之卡方差異檢定程式********/
DATA Chisquare_Diff_Prob_TOEPH2_UN;
 Saturated_M_UN_Chisquare=5.1700;
 Saturated M UN DF=1;
 UnRestricted_M_TOEPH2_Chisquare=18.9406;
 UnRestricted_M_TOEPH2_DF=6;
 ChisquareDIFF=Unrestricted M TOEPH2 Chisquare-Saturated M UN Chisquare;
 DF DIFF=Unrestricted M TOEPH2 DF-Saturated M UN DF;
 ChiSquareProb=1-PROBCHI(ChisquareDIFF, DF_DIFF,0); output;
RUN;
PROC PRINT DATA= Chisquare_Diff_Prob_TOEPH2_UN;
title'SCDT TOEPH(2) UN SEM';
RUN:
/**表4.4 步驟3, 檢定H0:MT=MS, 當MT=CSH 時所需卡方値及自由度之程式*****************/
PROC TCALIS METHOD=ML data=DATA Sim ARH1 SEM MAXFUNC=1500
            MAXITER=1500 OUTRAM=OUT_RAM OUTEST=OUT_EST PRINT;
LINEOS
     Y1 = F_alpha
                      + E1.
     Y2 = F alpha + 1 F beta + E2,
     Y3 = F_alpha + 2 F_beta + E3,
     Y4 = F_alpha + 3 F_beta + E4,
     F alpha = GA00(10) intercept + GA10(4) X+D0,
     F_{beta} = GA01(4) intercept + GA11(6) X+D1;
STD
     E1 =VARE1(36), E2 =VARE2(25), E3 = VARE3(49), E4 = VARE4(56),
     D0 = VARD0(15), D1 = VARD1(10);
COV
```

```
E2 E1= COVE2E1(21), E3 E2 = COVE3E2(24.5), E4 E3 = COVE4E3(31.0),
```

```
E3 E1 = COVE3E1(20.58), E4 E2 = COVE4E2(15.484), E4 E1 = COVE4E1(13.02),
    D0 D1 = CD0D1(7);
PARAMETERS RHO (0.7);
    COVE2E1=SQRT(VARE2)*SQRT(VARE1)*RHO;
    COVE3E1=SQRT(VARE3)*SQRT(VARE1)*RHO;
    COVE3E2=SORT(VARE3)*SORT(VARE2)*RHO;
    COVE4E1=SQRT(VARE4)*SQRT(VARE1)*RHO;
    COVE4E2=SQRT(VARE4)*SQRT(VARE2)*RHO;
    COVE4E3=SQRT(VARE4)*SQRT(VARE3)*RHO;
BOUNDS
    -1.<RHO<1.;
VAR
    Y1 Y2 Y3 Y4 X;
TITLE 'ECM_CSH_SEM';
 RUN:
OUIT:
/**表4.4 步驟3:虛無假設 H0:MT=MS, MT=CSH, MS=UN之卡方差異檢定程式********************************
DATA Chisquare Diff Prob CSH UN;
 Saturated M UN Chisquare=5.1700;
 Saturated M UN DF=1;
 UnRestricted_M_CSH_Chisquare=18.3761;
 UnRestricted_M_CSH_DF=6;
 ChisquareDIFF=Unrestricted_M_CSH_Chisquare-Saturated_M_UN_Chisquare;
 DF_DIFF=Unrestricted_M_CSH_DF-Saturated_M_UN_DF;
 ChiSquareProb=1-PROBCHI(ChisquareDIFF, DF DIFF,0); output;
RUN:
PROC PRINT DATA= Chisquare_Diff_Prob_CSH_UN;
title'SCDT CSH UN SEM':
RUN:
/**表4.4 步驟4, 檢定H0:MT=MS, 當MT=ARH(1) 時所需卡方値及自由度之程式***********/
PROC TCALIS METHOD=ML data=DATA Sim ARH1 SEM MAXFUNC=1500
           MAXITER=1500 OUTRAM=OUT_RAM OUTEST=OUT_EST PRINT;
LINEOS
      Y1 = F alpha
                      + E1.
      Y2 = F_alpha + 1 F_beta + E2,
      Y3 = F_alpha + 2 F_beta + E3,
      Y4 = F_alpha + 3 F_beta + E4,
      F_alpha = GA00(10) intercept + GA10(4) X+D0,
      F_{beta} = GA01(4) intercept + GA11(6) X+D1;
STD
```

E1 =VARE1(36), E2 =VARE2(25), E3 = VARE3(49), E4 = VARE4(64), D0 = VARD0(15), D1 =VARD1(10);

COV

```
E2 E1 = COVE2E1(21), E3 E2 = COVE3E2(24.5), E4 E3 = COVE4E3(39.2),
E3 E1 = COVE3E1(20.58), E4 E2 = COVE4E2(19.6), E4 E1 = COVE4E1(16.46),
D0 D1= CD0D1(7);
```

PARAMETERS RHO(0.7);

```
COVE2E1=SQRT(VARE2)*SQRT(VARE1)*RHO;
COVE3E1=SQRT(VARE3)*SQRT(VARE1)*RHO*RHO;
COVE3E2=SQRT(VARE3)*SQRT(VARE2)*RHO;
COVE4E1=SQRT(VARE4)*SQRT(VARE1)*RHO*RHO*RHO;
COVE4E2=SQRT(VARE4)*SQRT(VARE2)*RHO*RHO;
COVE4E3=SQRT(VARE4)*SQRT(VARE3)*RHO;
```

BOUNDS

-**1.**<RHO<**1.**;

VAR

Y1 Y2 Y3 Y4 X;

TITLE 'ECM_ARH(1)_SEM';

RUN;

QUIT;

```
/***表4.4 步驟4:虛無假設 H0:MT=MS, MT=ARH(1), MS=UN之卡方差異檢定程式*********/
DATA Chisquare_Diff_Prob_ARH1_UN;
Saturated_M_UN_Chisquare=5.1700;
```

Saturated_M_UN_DF=1;

```
UnRestricted_M_ARH1_Chisquare=11.0760;
```

UnRestricted_M_ARH1_DF=6;

 $Chisquare DIFF = Unrestricted_M_ARH1_Chisquare-Saturated_M_UN_Chisquare;$

DF_DIFF=Unrestricted_M_ARH1_DF-Saturated_M_UN_DF;

ChiSquareProb=1-PROBCHI(ChisquareDIFF, DF_DIFF,0); output;

RUN;

PROC PRINT DATA= Chisquare_Diff_Prob_ARH1_UN;

title'SCDT_ARH(1)_UN_SEM';

RUN;

/**4.2.5.1 利用概似比檢定ECM穩態性,計算非穩態為UN之-2LLu值************/

PROC MIXED DATA=DATA_Sim_ARH1_HLM METHOD=ML noclprint

MAXFUNC=1500 MAXITER=1500 noinfo covtest noitprint;

CLASS I wave;

MODEL Y=time X time*X / solution ddfm=bw notest;

REPEATED wave / subject=I type=UN R RCORR; RANDOM intercept time / sub=I type=UN G GCORR /*solution*/; PARMS (14.53, 4.58, 9.28, 32.66, 21.85, 28.92, 23.67, 26.97, 48.84, 22.31, 20.31, 31.72, 40); TITLE 'ECM UN HLM': RUN: **OUIT:** /**4.2.5.1 利用概似比檢定ECM穩態性,計算穩態為TOEP之-2LLr値***********************/ PROC MIXED DATA=DATA_Sim_ARH1_HLM METHOD=ML noclprint MAXFUNC=1500 MAXITER=1500 noinfo covtest noitprint; **CLASS** I wave: MODEL Y=time X time*X / solution ddfm=bw notest; **REPEATED** wave / subject=I type=TOEP R RCORR; **RANDOM** intercept time / sub=i type=UN G GCORR /*solution*/; TITLE 'ECM_TOEP_HLM'; RUN: **OUIT:** /***4.2.5.1 計算-2LLr-(-2LLu)之卡方值,自由度為UN參數TOEP參數個數差=10-4=6************************* DATA Minu 2 LRT TOEPH UN; Minu_2_logLikelihood_UN=7795.6; Minu 2 logLikelihood TOEP=7849.0; Minu_2_LRT=Minu_2_logLikelihood_TOEP-Minu_2_logLikelihood_UN; DF DIFF=6; ChiSquareProb=1-PROBCHI(Minu_2_LRT, DF_DIFF,0); output; RUN: **PROC PRINT DATA**= Minu 2 LRT TOEPH UN; title'Stationarity TEST HLM'; RUN: PROC MIXED DATA=DATA_Sim_ARH1_HLM METHOD=ML noclprint noinfo covtest noitprint; CLASS I wave: MODEL Y=time X time*X / solution ddfm=bw notest; **REPEATED** wave / subject=I type=TOEPH(1) R RCORR; RANDOM intercept time / sub=i type=un G GCORR /*solution*/; TITLE 'ECM_TOEPH(1)_HLM'; RUN: **OUIT**: /***表4.4 步驟1:計算-2LLr-(-2LLu)卡方值,自由度為UN與TOEPH(1)參數個數差=10-4=6******/

DATA Minu_2_LRT_TOEPH1_UN;

```
Minu_2_logLikelihood_UN=7795.6;
 Minu 2 logLikelihood TOEPH1=7821.5;
 Minu_2_LRT=Minu_2_logLikelihood_TOEPH1-Minu_2_logLikelihood_UN;
 DF DIFF=6;
 ChiSquareProb=1-PROBCHI(Minu_2_LRT, DF_DIFF,0); output;
RUN:
PROC PRINT DATA= Minu 2 LRT TOEPH1 UN;
title'SCDT_TOEPH(1)_UN_HLM';
RUN:
PROC MIXED DATA=DATA_Sim_ARH1_HLM METHOD=ML noclprint noinfo covtest noitprint;
 CLASS
       I wave:
 MODEL Y=time X time*X / solution ddfm=bw notest;
 REPEATED wave / subject=I type=TOEPH(2) R RCORR;
         intercept time / sub=i type=un G GCORR /*solution*/;
 RANDOM
 TITLE 'ECM_TOEPH(2)_HLM';
                         RUN:
OUIT:
/**表4.4 步驟2:計算-2LLr-(-2LLu)卡方值,自由度為UN與TOEPH(2)參數個數差=10-5=5*******//
DATA Minu 2 LRT TOEPH2 UN;
 Minu_2_logLikelihood_UN=7795.6;
 Minu_2_logLikelihood_TOEPH2=7810.4;
 Minu 2 LRT=Minu 2 logLikelihood TOEPH2-Minu 2 logLikelihood UN;
 DF_DIFF=5;
 ChiSquareProb=1-PROBCHI(Minu 2 LRT, DF DIFF,0); output;
RUN:
PROC PRINT DATA= Minu_2_LRT_TOEPH2_UN;
title'SCDT TOEPH(2) UN HLM';
RUN:
PROC MIXED DATA=DATA_Sim_ARH1_HLM METHOD=ML noclprint noinfo
covtest noitprint;
 CLASS
       I wave:
 MODEL Y=time X time*X / solution ddfm=bw notest;
 REPEATED wave / subject=I type=CSH R RCORR;
 TITLE 'ECM CSH HLM';
RUN:
OUIT:
```

/**表4.4 步驟2:計算-2LLr-(-2LLu)卡方值,自由度為UN與CSH參數個數差=10-5=5*************/ DATA Minu 2 LRT CSH UN; Minu_2_logLikelihood_UN=7795.6; Minu_2_logLikelihood_CSH=7808.8; Minu_2_LRT=Minu_2_logLikelihood_CSH-Minu_2_logLikelihood_UN; DF DIFF=5; ChiSquareProb=1-PROBCHI(Minu_2_LRT, DF_DIFF,0); output; RUN: **PROC PRINT** DATA= Minu_2_LRT_CSH_UN; title'SCDT CSH UN HLM'; RUN: PROC MIXED DATA=DATA_Sim_ARH1_HLM METHOD=ML noclprint noinfo covtest noitprint; CLASS I wave; MODEL Y=time X time*X / solution ddfm=bw notest: REPEATED wave / subject=I type=ARH(1) R RCORR; RANDOM intercept time / sub=i type=un G GCORR /*solution*/; TITLE 'ECM ARH(1) HLM'; RUN: **OUIT**: ****** /***表4.4 步驟2:計算-2LLr-(-2LLu)卡方值,自由度為UN與ARH(1)參數個數差=10-5=5*********/ **DATA** Minu_2_LRT_ARH1_UN; Minu 2 logLikelihood UN=7795.6; Minu_2_logLikelihood_ARH1=7801.5; Minu_2_LRT=Minu_2_logLikelihood_ARH1-Minu_2_logLikelihood_UN; DF DIFF=5; ChiSquareProb=1-PROBCHI(Minu_2_LRT, DF_DIFF,0); output; RUN: **PROC PRINT** DATA= Minu_2_LRT_ARH1_UN; title'SCDT ARH(1) UN HLM'; RUN: PROC MIXED DATA=DATA_Sim_ARH1_HLM METHOD=ML noclprint MAXFUNC=1500 MAXITER=1500 noinfo covtest noitprint; **CLASS** I wave; MODEL Y=time X time*X / solution ddfm=bw notest OUTPRED=Pre Out OUTPM=PreM Out **Residual:** REPEATED wave / subject=I type=TOEP(1) R RCORR;

```
RANDOM
            intercept time / sub=i type=UN G GCORR /*solution*/;
 TITLE 'ECM TOEP HLM';
RUN:
OUIT:
proc print data=Pre Out;
title'Pre_Out For ECM_TOEP(1)';
run:
proc print data=PreM_Out;
title'PreM Out ECM TOEP(1)';
run;
goptions reset=(axis, legend, pattern, symbol, title, footnote) norotate hpos=0 vpos=0 htext= ftext=
           ctext= target= gaccess= gsfmode= colors= csymbol=; goptions device=WIN
           ctext=black graphrc interpol=join;
axis1 color=black width=2.0 value=(h=4 pct) label=(f=kai h=3 pct '期間');
axis2 color=black width=2.0 order=-80 to 100 by 20 value=(h=4 pct)
         label=(angle=90 f=kai h=3 pct '觀察值');
goptions display;
proc gplot data=DATA_Sim_ARH1_HLM ;
  plot Y*WAVE =I / overlay haxis=axis1 vaxis=axis2 frame nolegend;
  title '圖4-1 300個受測者, level-1 ECM=ARH(1)之趨勢圖';
run:
goptions reset=(axis, legend, pattern, symbol, title, footnote) norotate hpos=0 vpos=0 htext= ftext=
           ctext= target= gaccess= gsfmode= colors= csymbol=;
goptions device=WIN ctext=black graphrc interpol=join;
axis1 color=black
              width=2.0 value=(h=4 pct) label=(f=kai h=3 pct '期間');
axis2 color=black
              width=2.0 order=-60 to 60 by 10 value=(h=4 pct)
     label=(angle=90 f=kai h=3 pct 'Random effect error');
goptions display;
proc gplot data=PreM_Out ;
  plot Resid*WAVE =I / overlay haxis=axis1 vaxis=axis2 frame nolegend;
  title '圖4.2 ECM=TOEP(1) 300個受測者,level-1及level-2之殘差時序圖';
run:
goptions reset=(axis, legend, pattern, symbol, title, footnote) norotate hpos=0 vpos=0 htext= ftext=
           ctext= target= gaccess= gsfmode= colors= csymbol=;
goptions device=WIN ctext=black
graphrc interpol=join;
axis1 color=black width=2.0 value=(h=4 pct) label=(f=kai h=3 pct '期間');
```

```
axis2 color=black width=2.0 order=-12 to 12 by 2 value=(h=4 pct)
   label=(angle=90 f=kai h=3 pct 'Measurement error ');
goptions display;
proc gplot data=Pre_Out gout=cat50 ;
  plot Resid*WAVE =I / overlay haxis=axis1 vaxis=axis2 frame nolegend;
  title '圖 4.3 ECM=TOEP(1) 300個受測者, level-1之殘差時序圖';
run:
goptions display;
/*********
         goptions reset=(axis, legend, pattern, symbol, title, footnote) norotate hpos=0 vpos=0 htext= ftext=
          ctext= target= gaccess= gsfmode= colors= csymbol=;
goptions device=WIN ctext=black
graphrc interpol=join;
axis1 color=black width=2.0 value=(h=4 pct);
axis2 color=black width=2.0 order=-12 to 12 by 2 value=(h=4 pct);
proc gplot data=Pre_Out gout=cat62;
  where i=1;
  plot Resid*WAVE=i / overlay haxis=axis1 vaxis=axis2 frame nolegend;
  title '第1個人殘差圖';
run:
proc gplot data=Pre_Out gout=cat62;
  where i=2;
  plot Resid*WAVE=i / overlay haxis=axis1 vaxis=axis2 frame nolegend ;
  title '第2個人殘差圖';
run:
proc gplot data=Pre_Out gout=cat62;
  where i=3;
  plot Resid*WAVE=i / overlay haxis=axis1 vaxis=axis2 frame nolegend;
  title '第3個人殘差圖';
run:
proc gplot data=Pre_Out gout=cat62;
  where i=4;
  plot Resid*WAVE=i / overlay haxis=axis1 vaxis=axis2 frame nolegend;
  title '第4個人殘差圖';
run.
proc gslide gout=cat62;
title1 height=6pct '四個人殘差圖, R_it';
goptions display;
```

```
proc greplay nofs igout=cat62 gout=cat62 tc=mytemps;
 tdef t1x2
/* Upper Left Panel */
 1 / llx= 0 ulx= 0 urx=49 lrx=49
    lly=49 uly=93 ury=93 lry=49
/* Upper Right Panel */
2 / llx=50 ulx=50 urx=99 lrx=99
   lly=49 uly=93 ury=93 lry=49
/* Lower Left Panel */
3 / llx= 0 ulx= 0 urx=49 lrx=49
    lly=7 uly=50 ury=50 lry=7
/* Lower Right Panel */
4 / llx=50 ulx=50 urx=99 lrx=99
   lly=7 uly=50 ury=50 lry=7
/* Title */
5/llx=0
       ulx=0 urx=100 lrx=100
        uly=100 ury=100 lry=0
  11y=0
                                      ;
  template t1x2;
   tplay 1:1 2:2 3:3 4:4 5:5;
run;
/***********
                                                      *********************************
```

[B-3]:一階條件式LGM, Singer and Willett (2003)之資料為示例程式

DM 'LOG;CLEAR;OUTPUT;CLEAR;';

OPTIONS REPLACE PS=76 NODATE PAGENO=1 LS=120;

data CH7_MVDATA;

input ID \$ Y1 Y2 Y3 Y4 CCOG;

```
CARDS;
```

~ …	<u> </u>				
1	205	217	268	302	23.5429
2	219	243	279	302	9.5429
3	142	212	250	289	15.5429
4	206	230	248	273	11.5429
5	190	220	229	220	-32.4570
6	165	205	207	263	-3.4571
7	170	182	214	268	-14.4571
8	96	131	159	213	-0.45710
9	138	156	197	200	-9.4571
10	216	252	274	298	-17.4571
11	180	225	215	249	11.5429
12	97	136	168	222	1.5429
13	145	161	151	177	-4.4571
14	195	184	209	213	-18.4571
15	162	138	204	195	4.5429
16	119	148	164	208	6.5429
17	144	166	236	261	4.5429
18	107	165	193	262	1.5429
19	167	201	233	216	6.5429
20	156	156	197	246	4.5429
21	165	228	279	290	12.5429
22	197	181	185	217	7.5429
23	206	209	230	255	-5.4571
24	182	196	217	199	-9.4571
25	174	198	229	236	4.5429
26	199	238	253	282	-9.4571
27	160	178	189	229	10.5429
28	184	231	260	292	16.5429
29	174	194	189	188	-26.4571
30	215	226	257	310	17.5429
31	147	188	197	232	-4.4571
32	127	172	222	273	1.5429
33	165	217	230	286	-9.4571
34	76	139	150	214	-3.4571
35	166	197	203	233	-3.4571

RUN;

```
DATA CH7_MIXED;
```

```
SET CH7_MVDATA;
```

```
ID=_N_;
```

array YDATA{4} Y1-Y4;

DO Wave=1 to 4;

Time=Wave-1;

```
OPP= YDATA{Wave};
    OUTPUT:
  END:
Keep ID Wave TIME OPP CCOG;
RUN:
PROC PRINT DATA=CH7_MIXED;
title'CH7 MIXED';
RUN:
PROC PRINT DATA=CH7_MVDATA;
title'CH7 MVDATA';
RUN:
PROC TCALIS METHOD=ML data=CH7_MVDATA MAXFUNC=1500 MAXITER=1500
         OUTRAM=OUT_RAM OUTEST=OUT_EST PRINT;
LINEOS
     Y1 = F_alpha
                   + E1.
                         Y2 = F_alpha + 1 F_beta + E2,
     Y3 = F alpha + 2 F beta + E3,
     Y4 = F_alpha + 3 F_beta + E4,
     F alpha =GA00 intercept + GA10 CCOG+D0,
     F_beta = GA01 intercept + GA11 CCOG+D1;
STD
     E1 =VARE1(413), E2 =VARE2(269), E3 = VARE3(364), E4 = VARE4(92),
     D0 = VARD0(860), D1 = VARD1(12);
COV
     E2 E1 = COVE2E1(109), E3 E1 = COVE3E1(85), E3 E2 = COVE3E2(162),
     E4 E1 = COVE4E1(-241), E4 E2 = COVE4E2(-4.0), E4 E3 = COVE4E3(92),
     D0 D1 = CD0D1(-23);
SIMTEST
  ERR_Stationary_test =[VARE1_EQ_VARE2
                            VARE1_EQ_VARE3 VARE1_EQ_VARE4
               Lag1 CE2E1 EQ CE3E2 Lag1 CE2E1 EQ CE4E3
               Lag2_CE3E1_EQ_CE4E2];
VARE1_EQ_VARE2 = VARE1-VARE2; VARE1_EQ_VARE3 = VARE1-VARE3;
  VARE1 EQ VARE4 = VARE1-VARE4;
  Lag1 CE2E1 EQ CE3E2=COVE2E1-COVE3E2;
```

```
Lag1_CE2E1_EQ_CE4E3=COVE2E1-COVE4E3;
```

```
Lag2_CE3E1_EQ_CE4E2=COVE3E1-COVE4E2;
```

VAR Y1 Y2 Y3 Y4 CCOG: TITLE 'ECM_UN_Ms_SEM'; RUN: /**表4.6 步驟1, 檢定H0:MT=MS, 當MT=TOEP 時所需卡方值及自由度之程式****************/ PROC TCALIS METHOD=ML data=CH7_MVDATA MAXFUNC=1500 MAXITER=1500 OUTRAM=OUT RAM OUTEST=OUT EST PRINT; **LINEOS** $Y1 = F_alpha$ + E1.Y2 = F alpha + 1 F beta + E2, $Y3 = F_alpha + 2 F_beta + E3,$ $Y4 = F_alpha + 3 F_beta + E4$, F_alpha =GA00 intercept + GA10 CCOG+D0, F_beta = GA01 intercept + GA11 CCOG+D1; **STD** E1 = VARE, E2 = VARE, E3 = VARE, E4 = VARE, D0 = VARD0(860),D1 = VARD1(12); COV E2 E1 = COV_lag1, E3 E2 = COV_lag1, E4 E3 = COV_lag1, E3 E1 = COV_lag2, $E4 E2 = COV_{lag2}, E4 E1 = COV_{lag3}, D0 D1 = CD0D1(-23);$ VAR Y1 Y2 Y3 Y4 CCOG; TITLE 'ECM_TOEP_Ms_SEM'; RUN: /***表4.3 穩態性檢定,虛無假設 H0:MT=MS, MT=TOEPH (1), MS=UN之卡方差異檢定程式******/ **DATA** Chisquare Diff Prob TOEP UN; Saturated_M_UN_Chisquare=2.0531; Saturated_M_UN_DF=1; Restricted_M_TOEP_Chisquare=4.2311; Restricted M TOEP DF=7; ChisquareDIFF=Restricted_M_TOEP_Chisquare-Saturated_M_UN_Chisquare; DF DIFF=Restricted M TOEP DF-Saturated M UN DF; ChiSquareProb=1-PROBCHI(ChisquareDIFF, DF_DIFF,0); output; RUN: **PROC PRINT** DATA= Chisquare_Diff_Prob_TOEP_UN; title'Stationary_test_TOEP_UN_SEM'; RUN: /**表4.6 步驟1, 檢定H0:MT=MS, 當MT=TOEP (1) 時所需卡方値及自由度之程式********// PROC TCALIS METHOD=ML data=CH7 MVDATA MAXFUNC=1500 MAXITER=1500

```
OUTRAM=OUT_RAM OUTEST=OUT_EST PRINT;
LINEOS
       Y1 = F_alpha
                      + E1.
       Y2 = F_alpha + 1 F_beta + E2,
       Y3 = F_alpha + 2 F_beta + E3,
       Y4 = F alpha + 3 F beta + E4,
       F_alpha = GA00 intercept + GA10 CCOG+D0,
       F beta = GA01 intercept + GA11 CCOG+D1;
STD
       E1 =VARE, E2 =VARE, E3 = VARE, E4 = VARE, D0 = VARD0, D1 =VARD1;
COV
      D0 D1=CD0D1;
VAR
      Y1 Y2 Y3 Y4 CCOG;
TITLE 'ECM_TOEP(1)_SEM';
 RUN:
/***表4.6 步驟1:虛無假設 H0:MT=MS, MT=TOEP (1), MS=TOEP之卡方差異檢定程式********/
DATA Chisquare Diff Prob TOEP1 TOEP;
 Saturated M TOEP Chisquare=4.2311;
 Saturated M TOEP DF=7;
 Restricted_M_TOEP1_Chisquare=6.6793;
 Restricted_M_TOEP1_DF=10;
 ChisquareDIFF=Restricted_M_TOEP1_Chisquare-Saturated_M_TOEP_Chisquare;
 DF_DIFF=Restricted_M_TOEP1_DF-Saturated_M_TOEP_DF;
 ChiSquareProb=1-PROBCHI(ChisquareDIFF, DF DIFF,0); output;
RUN:
PROC PRINT DATA= Chisquare_Diff_Prob_ TOEP1_TOEP;
title'SCDT TOEP(1) TOEP SEM';
RUN:
/***底下程式係以PROC MIXED,進行-2* Log Likelihood ratio檢定
                                                                  */
/***ECM穩態性及利用SCDT 鑑定ECM
                                                                  */
/**表4.3 及4.2.5.1 利用概似比檢定ECM穩態性,計算非穩態為UN之-2LLu值***********/
proc mixed data=CH7 MIXED method=ML MAXFUNC=1500 MAXITER=1500 noclprint
         /*noinfo*/ covtest /*noitprint*/;
 title 'ECM UN HLM':
 class id wave;
 model opp=time ccog time*ccog / solution ddfm=bw notest;
 repeated wave / subject=id type=UN R RCORR;
 random intercept time / sub=id type=UN G GCORR;
```

run;

/**表4.3, 4.6 及4.2.5.1 利用概似比檢定ECM穩態性,計算穩態為TOEP之-2LLr值*************/ proc mixed data=CH7_MIXED method=ML MAXFUNC=1500 MAXITER=1500 noclprint /*noinfo*/ covtest /*noitprint*/; title 'ECM TOEP HLM': class id wave; model opp=time ccog time*ccog / solution ddfm=bw notest; repeated wave / subject=id type=TOEP R RCORR; random intercept time / sub=id type=UN G GCORR; run: /***表4.3,4.6 步驟:計算-2LLr-(-2LLu)卡方值,自由度為UN與TOEP參數個數差=10-4=6*********// DATA Minu 2 LRT TOEPH UN; Minu_2_logLikelihood_UN=1262.1; Minu_2_logLikelihood_TOEP=1264.4; Minu 2 LRT=Minu 2 logLikelihood TOEP-Minu 2 logLikelihood UN; DF_DIFF=6; ChiSquareProb=1-PROBCHI(Minu 2 LRT, DF DIFF,0); output; RUN: PROC PRINT DATA= Minu 2 LRT TOEPH UN; title'Stationarity test TOPE UN HLM'; RUN: proc mixed data=CH7_MIXED method=ML MAXFUNC=1500 MAXITER=1500 noclprint /*noinfo*/ covtest /*noitprint*/; title 'ECM TOEP(1) HLM'; class id wave; model opp=time ccog time*ccog / solution ddfm=bw notest OUTPRED=Pre_Out **OUTPM=PreM** Out Residual; repeated wave / subject=id type=TOEP(1) R RCORR; random intercept time / sub=id type=UN G GCORR; run; /****表,4.6 步驟1:計算-2LLr-(-2LLu)卡方值,自由度為TOEP與TOEP(1)參數個數差=4-1=3*******/ DATA Minu 2 LRT TOEP1 TOEP; Minu_2_logLikelihood_TOEP=1264.4; Minu_2_logLikelihood_TOEP1=1266.9; Minu_2_LRT=Minu_2_logLikelihood_TOEP1-Minu_2_logLikelihood_TOEP; DF DIFF=3; ChiSquareProb=1-PROBCHI(Minu_2_LRT, DF_DIFF,0); output; RUN:

```
PROC PRINT DATA= Minu_2_LRT_TOEP1_TOEP;
title'SCDT_TOPE(1)_TOEP_HLM';
RUN:
proc print data=Pre_Out;
title'Pre Out ECM TOEP(1)';
run:
proc print data=PreM_Out;
title'PreM_Out_ECM_TOEP(1)';
run:
goptions reset=(axis, legend, pattern, symbol, title, footnote) norotate
     hpos=0 vpos=0 htext= ftext= ctext= target= gaccess= gsfmode=
     colors= csymbol=;
                       goptions device=WIN ctext=black
     graphrc interpol=join;
axis1
    color=black
           width=2.0;
axis2
    color=black
            width=2.0 order=80 to 340 by 20;
goptions display;
proc gplot data=CH7_MIXED ;
 plot OPP*Wave =ID / overlay haxis=axis1 vaxis=axis2 frame nolegend;
 title1 '圖4.5 35個受測者實證資料(Singer and Willett, 2003, p244)';
run:
goptions reset=(axis, legend, pattern, symbol, title, footnote) norotate
     hpos=0 vpos=0 htext= ftext= ctext= target= gaccess= gsfmode=
     colors= csymbol=;
goptions device=WIN ctext=black
     graphrc interpol=join;
axis1
    color=black
           width=2.0
    color=black
axis2
           width=2.0 order=-24 to 24 by 4;
goptions display;
proc gplot data=Pre_Out ;
 plot Resid*WAVE =ID / overlay haxis=axis1 vaxis=axis2 frame nolegend ;
 title1 '圖4.6 35個受測者,Level-1殘差時序圖';
run:
```

goptions reset=(axis, legend, pattern, symbol, title, footnote) norotate hpos=0 vpos=0 htext= ftext= ctext= target= gaccess= gsfmode= colors= csymbol=; goptions device=WIN ctext=black graphrc interpol=join; axis1 color=black width=2.0 : color=black width=2.0 order=-80 to 80 by 10; axis2 goptions display; proc gplot data=PreM_Out ; plot Resid*WAVE =ID / overlay haxis=axis1 vaxis=axis2 frame nolegend ; title1 '35個受測者,Level_1 and Level-2殘差時序圖'; run;

[B-4]:二階條件式LGM模擬資料程式

%MACRO SIMUAR1 (LY11, LY21, LY31, LY12, LY22, LY32, LY13, LY23, LY33, LY14, LY24, LY34, LX11, LX21, LX31, GA00, GA10, GA01, GA11, Sigma2_Zeta_alpha, Sigma2_Zeta_beta, C_Zeta_alpha_beta, VARE1, CEY11EY12, CEY11EY13, CEY11EY14, CEY12EY13, CEY12EY14, CEY13EY14, VARE2, CEY21EY22, CEY21EY23, CEY21EY24, CEY22EY23, CEY22EY24, CEY23EY24, VARE3, CEY31EY32, CEY31EY33, CEY31EY34, CEY32EY33, CEY32EY34, CEY33EY34, VAREX11, VAREX21, VAREX31, VARZE1, VARZE2, VARZE3, VARZE4, CZE1ZE2, CZE1ZE3, CZE1ZE4, CZE2ZE3, CZE2ZE4, CZE3ZE4, Mu_Xi, Sigma2_Xi, N);

%DO runs=1%to1; /*僅抽取一組樣本資料**********// /*DM 'LOG; CLEAR; output; clear; ODS; Clear;';*/ PROC IML;

```
LY = \{\&Ly11\}
                0
                          0
                                   0.
     &Ly21
                          0
                                    0,
                0
      &Ly31
                0
                                   0,
                           0
         0
               &Ly12
                           0
                                    0
         0
                &Ly22
                                    0.
                          0
         0
                &Ly32
                          0
                                    0,
         0
                  0
                         &Ly13
                                   0,
         0
                  0
                         &Ly23
                                   0.
         0
                  0
                         &Ly33
                                   0,
         0
                  0
                           0
                                  &Ly14,
         0
                  0
                           0
                                  &Ly24,
         0
                  0
                           0
                                   &Ly34};
LX = \{\&Lx11, \\
     &Lx21.
     &Lx31};
B = \{1
         0.
    1
          1,
    1
          2,
    1
          3};
Mu_Eta_star={&GA00,
              &GA10};
Mu_Xi = \{\&Mu_Xi\};
PHI_Xi={&Sigma2_Xi};
GA={&GA01,
      &GA11};
```

```
PSI_Zeta = {&VARZE1 &CZE1ZE2 &CZE1ZE3 &CZE1ZE4,
         &CZE1ZE2 &VARZE2
                              &CZE2ZE3 &CZE2ZE4,
         &CZE1ZE3 &CZE2ZE3 &VARZE3
                                         &CZE3ZE4,
         &CZE1ZE4 &CZE2ZE4 &CZE3ZE4 &VARZE4};
PSI_Zeta_star = {&Sigma2_Zeta_alpha &C_Zeta_alpha_beta,
             &C_Zeta_alpha_beta &Sigma2_Zeta_beta};
TE = {&VARE1 0 0 &CEY11EY12 0 0 &CEY11EY13 0 0 &CEY11EY14 0 0,
    0 &VARE2 0 0 &CEY21EY22 0 0 &CEY21EY23 0 0 &CEY21EY24 0,
    0 0 &VARE3 0 0 &CEY31EY32 0 0 &CEY31EY33 0 0 &CEY31EY34.
    &CEY11EY12 0 0 &VARE1 0 0 &CEY12EY13 0 0 &CEY12EY14 0 0,
    0 &CEY21EY22 0 0 &VARE2 0 0 &CEY22EY23 0 0 &CEY22EY24 0,
    0 0 &CEY31EY32 0 0 &VARE3 0 0 &CEY32EY33 0 0 &CEY32EY34,
    &CEY11EY13 0 0 &CEY12EY13 0 0 &VARE1 0 0 &CEY13EY14 0 0.
    0 &CEY21EY23 0 0 &CEY22EY23 0 0 &VARE2 0 0 &CEY23EY24 0,
    0 0 &CEY31EY33 0 0 &CEY32EY33 0 0 &VARE3 0 0 &CEY33EY34,
    &CEY11EY14 0 0 &CEY12EY14 0 0 &CEY13EY14 0 0 &VARE1 0 0.
     0 &CEY21EY24 0 0 &CEY22EY24 0 0 &CEY23EY24 0 0 &VARE2 0,
    0 0 &CEY31EY34 0 0 &CEY32EY34 0 0 &CEY33EY34 0 0 &VARE3;
TD = \{\&VAREX11
                  0
                                0.1
        0
                &VAREX21
                                0.
        0
                  0
                            &VAREX31};
print Ly LX Mu_Eta_star Mu_Xi PHI_Xi GA PSI_Zeta PSI_Zeta_star TE TD;
COVYY = LY*(B*GA*PHI_Xi*GA`*B`+B*PSI_Zeta_star*B`+PSI_Zeta)*LY`+TE;
COVYX = LY*B*GA*PHI_Xi*LX`;
COVXX = LX*PHI_Xi*LX`+TD;
COVXY = LX*PHI Xi`*GA`*B`*LY`;
UPPER = COVYY \parallel COVYX;
LOWER = COVXY \parallel COVXX;
COV = UPPER // LOWER;
                        /*計算式(2.43) 二階LGM 隱函共變異數矩陣***/
print COVYY COVYX UPPER COVXY
                                      COVXX
                                               LOWER:
MEANY= LY*(B*Mu_Eta_star+B*GA*Mu_Xi);
MEANX=LX*Mu Xi;
MEAN=MEANY//MEANX; /*計算式(2.42) 二階LGM 隱函平均數向量****/
print COV MEAN;
/**calculating correlation matrix to compare with sample correlation matrix*********/
 S=SQRT(DIAG(COV));
                     *** obtain the matrix with standard deviations on the diagonal;
 S INV=INV(S);
                    *** the inverse of S matrix;
 R=S_INV*COV*S_INV;
                      *** obtain correlation matrix;
print S R;
SERIES = RANDNORMAL( &N, Mean, Cov ); /*模擬多變量常態分配資料*****/
CREATE DATA_Sim_AR1_SEM FROM series[COLNAME={Y11 Y21 Y31 Y12 Y22 Y32 Y13
Y23 Y33 Y14 Y24 Y34 X11 X21 X31}];
```

APPEND FROM series; RUN: PROC CORR COV DATA=DATA_Sim_AR1_SEM OUTP=AR1_data noprint; RUN: proc print data=AR1_data; title'AR1_data'; run; PROC PRINT DATA=DATA_Sim_AR1_SEM; title'DATA Sim AR1 SEM'; RUN: %END: %MEND SIMUAR1; **%MACRO** compute (LY11, LY21, LY31, LY12, LY22, LY32, LY13, LY23, LY33, LY14, LY24, LY34, LX11, LX21, LX31, GA00, GA10, GA01, GA11, Sigma2 Zeta alpha, Sigma2_Zeta_beta, C_Zeta_alpha_beta, VARE1, VARE2, VARE3, VAREX11, VAREX21, VAREX31, VARZE1, VARZE2, VARZE3, VARZE4, Mu_Xi, Sigma2_Xi, RHO1, RHO2, RHO3, RHOZ, VN); /**第1個問項不同期間之ECM為AR(1)*********** %let COVEY11EY12=%sysevalf(&RHO1*&VARE1); %let COVEY11EY13=%sysevalf(&RHO1*&RHO1*&VARE1); %let COVEY11EY14=%sysevalf(&RHO1*&RHO1*&RHO1*&VARE1); %let COVEY12EY13=%sysevalf(&RHO1*&VARE1); %let COVEY12EY14=%sysevalf(&RHO1*&RHO1*&VARE1); %let COVEY13EY14=%sysevalf(&RHO1*&VARE1); %let COVEY21EY22=%sysevalf(&RHO2*&VARE2); %let COVEY21EY23=%sysevalf(&RHO2*&RHO2*&VARE2); %let COVEY21EY24=%sysevalf(&RHO2*&RHO2*&RHO2*&VARE2); %let COVEY22EY23=%sysevalf(&RHO2*&VARE2); %let COVEY22EY24=%sysevalf(&RHO2*&RHO2*&VARE2); %let COVEY23EY24=%sysevalf(&RHO2*&VARE2); %let COVEY31EY32=%sysevalf(&RHO3*&VARE3); %let COVEY31EY33=%sysevalf(&RHO3*&RHO3*&VARE3); %let COVEY31EY34=%sysevalf(&RHO3*&RHO3*&RHO3*&VARE3); %let COVEY32EY33=%sysevalf(&RHO3*&VARE3); %let COVEY32EY34=%sysevalf(&RHO3*&RHO3*&VARE3); %let COVEY33EY34=%sysevalf(&RHO3*&VARE3);

```
%let COVZE1ZE2=%sysevalf(&RHOZ*(&VARZE1**0.5)*(&VARZE2**0.5));
```

- %let COVZE1ZE3=%sysevalf(&RHOZ*&RHOZ*(&VARZE1**0.5)*(&VARZE3**0.5));
- %let COVZE1ZE4=%sysevalf(&RHOZ*&RHOZ*&RHOZ*(&VARZE1**0.5)*(&VARZE4**0.5));
- %let COVZE2ZE3=%sysevalf(&RHOZ*(&VARZE2**0.5)*(&VARZE3**0.5));
- %let COVZE2ZE4=%sysevalf(&RHOZ*&RHOZ*(&VARZE2**0.5)*(&VARZE4**0.5));
- %let COVZE3ZE4=%sysevalf(&RHOZ*(&VARZE3**0.5)*(&VARZE4**0.5));

%*SIMUAR1* (&LY11, &LY21, &LY31, &LY12, &LY22, &LY32, &LY13, &LY23, &LY33, &LY14, &LY24, &LY34, &LX11, &LX21, &LX31, &GA00, &GA10, &GA01, &GA11,

&Sigma2_Zeta_alpha, &Sigma2_Zeta_beta, &C_Zeta_alpha_beta, &VARE1, &COVEY11EY12, &COVEY11EY13, &COVEY11EY14, &COVEY12EY13, &COVEY12EY14, &COVEY13EY14, &VARE2, &COVEY21EY22, &COVEY21EY23, &COVEY21EY24, &COVEY22EY23, &COVEY22EY24, &COVEY23EY24, &VARE3, &COVEY31EY32, &COVEY31EY33, &COVEY31EY34, &COVEY32EY33, &COVEY32EY34, &COVEY33EY34, &VAREX11, &VAREX21, &VAREX31, &VARZE1, &VARZE2, &VARZE3, &VARZE4, &COVZE1ZE2, &COVZE1ZE3,

&COVZE1ZE4, &COVZE2ZE3, &COVZE2ZE4, &COVZE3ZE4,

&Mu_Xi, &Sigma2_Xi, &VN);

%MEND compute;

data overall;

run;

LX31, GA00, GA10, GA01, GA11, Sigma2_Zeta_alpha, Sigma2_Zeta_beta, C_Zeta_alpha_beta, VARE1, VARE2, VARE3, VAREX11, VAREX21, VAREX31, VARZE1, VARZE2, VARZE3, VARZE4, Mu_Xi, Sigma2_Xi, RHO1, RHO2, RHO3, RHOZ, VN); */

title 'Level-1 indicators and composite constructs ECM with AR(1) and TOEPH(1), respectively, sample size=300';

% compute (1, 0.75, 0.85, 1.00, 0.75, 0.85, 1, 0.75, 0.85, 1, 0.75, 0.85, 1, 0.75, 0.70,

12, 0.6, 6.0, 0.50, 0.80, 0.60, 0.25, 0.25, 0.36, 0.40, 0.81, 0.36, 1.0, 0.25, 0.36, 0.49, 0.64, 13, 4,0.5, 0.7, 0.6, 0.0, 300);

[B-5]:二階條件式LGM 釋例程式

DM 'LOG; CLEAR; output; clear; PGM; recall; ODS; Clear; '; OPTIONS REPLACE notes NODATE PS=72 PAGENO=1 LS=160; DATA DATA_Sim_AR1_SEM; input ID \$ Y11 Y21 Y31 Y12 Y22 Y32 Y13 Y23 Y33 Y14 Y24 Y34 X11 X21 X31; 1 73.331 54.9036 61.390 77.356 58.5656 65.349 82.690 62.042 69.329 87.47 65.626 74.955 10.8298 8.2307 7.1716 2 82.023 61.2336 69.598 90.003 67.0400 76.643 96.759 72.997 82.411 105.947 79.309 89.500 10.6772 9.3844 8.5395 3 91.055 67.7048 76.980 97.514 73.7897 83.158 104.776 79.67 89.788 112.126 84.383 95.562 11.8431 9.8837 10.4344 ÷ ÷ : 298 93.168 70.2392 79.4357 101.444 75.8599 85.956 108.906 82.410 93.490 118.586 88.664 101.382 14.3802 9.7744 9.0548 299 85.705 65.0671 73.5770 94.176 70.6763 80.181 101.547 76.677 87.613 107.734 81.319 92.555 13.0138 8.4259 8.5905 300 78.543 59.8158 66.4545 84.921 64.1943 72.6 68 92.320 69.423 78.724 97.804 73.332 83.615 12.7546 7.5136 6.5252 CARDS: **RUN**: proc print data=DATA_Sim_AR1_SEM; title'DATA Sim AR1 SEM'; MILLI, RUN: PROC CORR COV DATA=DATA_Sim_AR1_SEM OUTP=DATA_Sim_AR1_SEM_COV; VAR Y11 Y21 Y31 Y12 Y22 Y32 Y13 Y23 Y33 Y14 Y24 Y34 X11 X21 X31: RUN: PROC PRINT DATA=DATA Sim AR1 SEM COV; title'DATA_Sim_AR1_SEM_COV'; RUN: /*****計算ECM為同問項誤差各期同期有關條件下之卡方值,以供獨立性檢定************/ PROC TCALIS METHOD=ML data=DATA_Sim_AR1_SEM OUTRAM=OUT_RAM OUTEST=OUT EST MAXFUNC=15000 MAXITER=15000 PRINT: LINEOS Y11 = 1 F1 + EY11, Y21 = LY21F1 F1 + EY21, Y31 = LY31F1 F1 + EY31, Y12 = 1 F2 + EY12, Y22 = LY22F2 F2 + EY22, Y32 = LY32F2 F2 + EY32, Y13 = 1 F3 + EY13, Y23 = LY23F3 F3 + EY23, Y33 = LY33F3 F3 + EY33, Y14 = 1 F4 + EY14, Y24 = LY24F4 F4 + EY24, Y34 = LY34F4 F4 + EY34, X11=1 F7 + EX11.X21=LX21F7 F7+ EX21, X31=LX31F7 F7 +EX31, F1=1 F_Alpha + 0 F_Beta + EZF1, F2=1 F Alpha + 1 F Beta + EZF2, F3=1 F_Alpha + 2 F_Beta + EZF3, F4=1 F_Alpha + 3 F_Beta + EZF4,

F_Alpha= GA00 INTERCEPT + GA10 F7 + EZF5,

F_Beta= GA01 INTERCEPT + GA11 F7 + EZF6,

```
F7 = F7_int INTERCEPT + EZF7;
```

STD

```
EY11=VAREY11(0.25), EY12=VAREY12(0.25), EY13=VAREY13(0.25), EY14=VAREY14(0.25),
 EY21=VAREY21(0.36), EY22=VAREY22(0.36), EY23=VAREY23(0.36), EY24=VAREY24(0.36),
 EY31=VAREY31(0.16), EY32=VAREY32(0.16), EY33=VAREY33(0.16), EY34=VAREY34(0.16),
 EX11=VAREX11(0.65), EX21=VAREX21(0.41), EX31=VAREX31(0.90),
 EZF1=VARZF1(0.25), EZF2=VARZF2(0.36), EZF3=VARZF3(0.49),
 EZF4=VARZF4(0.64), EZF5=VAR Intercept(0.80), EZF6=VAR Slope(0.60),
 EZF7=VARF7;
COV
EY21 EY11=COVEY21EY11(0.0), EY31 EY21=COVEY31EY21(0.0),
 EY31 EY11=COVEY31EY11(0.0),
 EY22 EY12=COVEY22EY12(0.0), EY32 EY22=COVEY32EY22(0.0),
 EY32 EY12=COVEY32EY12(0.0),
 EY23 EY13=COVEY23EY13(0.0), EY33 EY23=COVEY33EY23(0.0),
 EY33 EY13=COVEY33EY13(0.0),
 EY24 EY14=COVEY24EY14(0.0), EY34 EY24=COVEY34EY24(0.0),
                             EY34 EY14=COVEY34EY14(0.0),
EY12 EY11=COVEY12EY11(0.12), EY22 EY21=COVEY22EY21(0.24),
 EY32 EY31=COVEY32EY31(0.11),
 EY22 EY11=COVEY22EY11(0.00), EY32 EY21=COVEY32EY21(0.00),
                           \mathcal{N}
 EY32 EY11=COVEY32EY11(0.00),
 EY12 EY21=COVEY12EY21(0.00), EY22 EY31=COVEY22EY31(0.00),
                            EY12 EY31=COVEY12EY31(0.00).
EY13 EY12=COVEY13EY12(0.12), EY23 EY22=COVEY23EY22(0.24),
 EY33 EY32=COVEY33EY32(0.11),
 EY23 EY12=COVEY23EY12(0.00), EY33 EY22=COVEY33EY22(0.00),
 EY33 EY12=COVEY33EY12(0.00),
 EY13 EY22=COVEY13EY22(0.00), EY23 EY32=COVEY23EY32(0.00),
 EY13 EY32=COVEY13EY32(0.00),
EY14 EY13=COVEY14EY13(0.12), EY24 EY23=COVEY24EY23(0.24),
 EY34 EY33=COVEY34EY33(0.11),
 EY24 EY13=COVEY24EY13(0.00), EY34 EY23=COVEY34EY23(0.00),
 EY34 EY13=COVEY34EY13(0.00),
 EY14 EY23=COVEY14EY23(0.00), EY24 EY33=COVEY24EY33(0.00),
 EY14 EY33=COVEY14EY33(0.00),
EY13 EY11=COVEY13EY11(0.058), EY23 EY21=COVEY23EY21(0.17),
 EY33 EY31=COVEY33EY31(0.06),
```

```
EY23 EY11=COVEY23EY11(0.000), EY33 EY21=COVEY33EY21(0.00),
 EY33 EY11=COVEY33EY11(0.00),
 EY13 EY21=COVEY13EY21(0.000), EY23 EY31=COVEY23EY31(0.00),
 EY13 EY31=COVEY13EY31(0.00),
EY14 EY12=COVEY14EY12(0.058), EY24 EY22=COVEY24EY22(0.17),
 EY34 EY32=COVEY34EY32(0.06),
 EY24 EY12=COVEY24EY12(0.000), EY34 EY22=COVEY34EY22(0.00),
 EY34 EY12=COVEY34EY12(0.00),
 EY14 EY22=COVEY14EY22(0.000), EY24 EY32=COVEY24EY32(0.00),
 EY14 EY32=COVEY14EY32(0.00),
EY14 EY11=COVEY14EY11(0.028), EY24 EY21=COVEY24EY21(0.11),
 EY34 EY31=COVEY34EY31(0.04),
 EY24 EY11=COVEY24EY11(0.000), EY34 EY21=COVEY34EY21(0.00),
 EY34 EY11=COVEY34EY11(0.00),
 EY14 EY21=COVEY14EY21(0.000), EY24 EY31=COVEY24EY31(0.00),
 EY14 EY31=COVEY14EY31(0.00),
                                  ******
/***第二階成長因素構念誤差共變異數****
 EZF5 EZF6=CZF5ZF6(0.3478);
title'三個問項誤差在各期均有關:ECM=UN ';
VAR
  Y11 Y21 Y31 Y12 Y22 Y32 Y13 Y23 Y33 Y14 Y24 Y34 X11 X21 X31;
RUN:
/***計算ECM為同問項誤差不同期才有關條件下之卡方值,以供獨立性檢定**********************/
PROC TCALIS METHOD=ML data=DATA Sim AR1 SEM OUTRAM=OUT RAM
           OUTEST=OUT EST MAXFUNC=2500 MAXITER=2500 PRINT;
LINEOS
  Y11 = 1 F1 + EY11, Y21 = LY21F1 F1 + EY21, Y31 = LY31F1 F1 + EY31,
  Y_{12} = 1 F_2 + EY_{12}, \quad Y_{22} = LY_{22}F_2 F_2 + EY_{22}, \quad Y_{32} = LY_{32}F_2 F_2 + EY_{32},
  Y13 = 1 F3 + EY13, Y23 = LY23F3 F3 + EY23, Y33 = LY33F3 F3 + EY33,
  Y14 = 1 F4 + EY14. Y24 = LY24F4 F4 + EY24. Y34 = LY34F4 F4 + EY34.
  X11=1 F7 + EX11, X21=LX21F7 F7+ EX21, X31=LX31F7 F7 + EX31,
  F1=1 F_Alpha + 0 F_Beta + EZF1,
  F2=1 F Alpha + 1 F Beta + EZF2,
  F3=1 F_Alpha + 2 F_Beta + EZF3,
  F4=1 F_Alpha + 3 F_Beta + EZF4,
  F Alpha= GA00 INTERCEPT + GA10 F7 + EZF5,
  F Beta= GA01 INTERCEPT + GA11 F7 + EZF6,
  F7 = F7_{int}(13) INTERCEPT + EZF7;
STD
```

```
EY11=VAREY11(0.25), EY12=VAREY12(0.25), EY13=VAREY13(0.25), EY14=VAREY14(0.25),
 EY21=VAREY21(0.36), EY22=VAREY22(0.36), EY23=VAREY23(0.36), EY24=VAREY24(0.36),
 EY31=VAREY31(0.16), EY32=VAREY32(0.16), EY33=VAREY33(0.16), EY34=VAREY34(0.16),
 EX11=VAREX11(0.65), EX21=VAREX21(0.41), EX31=VAREX31(0.90),
 EZF1=VARZF1(0.25), EZF2=VARZF2(0.36), EZF3=VARZF3(0.49),
 EZF4=VARZF4(0.64), EZF5=VAR Intercept(0.80), EZF6=VAR Slope(0.60),
 EZF7=VARF7;
COV
EY12 EY11=COVEY12EY11(0.12), EY22 EY21=COVEY22EY21(0.24),
 EY32 EY31=COVEY32EY31(0.11),
/*********期差為1,時點2與時點3僅有主對角線共變異數**************************/
 EY13 EY12=COVEY13EY12(0.12), EY23 EY22=COVEY23EY22(0.24),
 EY33 EY32=COVEY33EY32(0.11),
/********期差為1,時點3與時點4僅有主對角線共變異數**************************/
 EY14 EY13=COVEY14EY13(0.12), EY24 EY23=COVEY24EY23(0.24),
 EY34 EY33=COVEY34EY33(0.11).
EY13 EY11=COVEY13EY11(0.058), EY23 EY21=COVEY23EY21(0.17),
 EY33 EY31=COVEY33EY31(0.06),
/*******期差為2,時點2與時點4僅有主對角線共變異數*******************************/
 EY14 EY12=COVEY14EY12(0.058), EY24 EY22=COVEY24EY22(0.17),
 EY34 EY32=COVEY34EY32(0.06),
/*******期差為3,時點1與時點4僅有主對角線共變異數*******************************/
 EY14 EY11=COVEY14EY11(0.028), EY24 EY21=COVEY24EY21(0.11),
                           EY34 EY31=COVEY34EY31(0.04).
EZF5 EZF6=CZF5ZF6(0.3478);
title'三個問項誤差在同問項誤差不同期才有關:ECM=Diag(UN)';
VAR
   Y11 Y21 Y31 Y12 Y22 Y32 Y13 Y23 Y33 Y14 Y24 Y34 X11 X21 X31:
RUN:
/****執行4.4.3及表4.3:以卡方檢定問項誤差獨立性****************************/
DATA Chi_Diff_Prob_UN_Diag_VUN_VUN;
 Saturated M VUN Chi=44.4414;
 Saturated_M_VUN_DF=31;
 Restricted_M_UN_Diag_VUN_Chi=68.9798;
 Restricted M UN Diag VUN DF=79;
 Chi_DIFF=Restricted_M_UN_Diag_VUN_Chi-Saturated_M_VUN_Chi;
 DF_DIFF=Restricted_M_UN_Diag_VUN_DF-Saturated_M_VUN_DF;
```

ChiSquareProb=1-PROBCHI(Chi_DIFF, DF_DIFF,0); output;

```
PROC PRINT DATA= Chi_Diff_Prob_UN_Diag_VUN_VUN;
title'4.4.3:卡方檢定問項誤差獨立性';
RUN:
PROC TCALIS METHOD=ML data=DATA Sim AR1 SEM OUTRAM=OUT RAM
           OUTEST=OUT_EST MAXFUNC=2500 MAXITER=2500 PRINT;
LINEQS
  Y11 = 1 F1 + EY11, Y21 = LY21F1 F1 + EY21, Y31 = LY31F1 F1 + EY31,
  Y12 = 1 F2 + EY12, Y22 = LY22F2 F2 + EY22, Y32 = LY32F2 F2 + EY32,
  Y13 = 1 F3 + EY13, Y23 = LY23F3 F3 + EY23, Y33 = LY33F3 F3 + EY33,
  Y14 = 1 F4 + EY14, Y24 = LY24F4 F4 + EY24, Y34 = LY34F4 F4 + EY34,
  X11=1 F7 + EX11, X21=LX21F7 F7+ EX21, X31=LX31F7 F7 + EX31,
  F1=1 F Alpha + 0 F Beta + EZF1,
  F2=1 F_Alpha + 1 F_Beta + EZF2,
  F3=1 F_Alpha + 2 F_Beta + EZF3,
  F4=1 F Alpha + 3 F Beta + EZF4,
  F_Alpha= GA00 INTERCEPT + GA10 F7 + EZF5,
  F Beta= GA01 INTERCEPT + GA11 F7 + EZF6,
  F7 = F7 int(13) INTERCEPT + EZF7;
STD
 EY11=VAREY11(0.25), EY12=VAREY12(0.25), EY13=VAREY13(0.25), EY14=VAREY14(0.25),
 EY21=VAREY21(0.36), EY22=VAREY22(0.36), EY23=VAREY23(0.36), EY24=VAREY24(0.36),
 EY31=VAREY31(0.16), EY32=VAREY32(0.16), EY33=VAREY33(0.16), EY34=VAREY34(0.16),
 EX11=VAREX11(0.65), EX21=VAREX21(0.41), EX31=VAREX31(0.90),
 EZF1=VARZF1(0.25), EZF2=VARZF2(0.36), EZF3=VARZF3(0.49),
 EZF4=VARZF4(0.64), EZF5=VAR_Intercept(0.80), EZF6=VAR_Slope(0.60),
 EZF7=VARF7:
COV
/*********期差為1,時點1與時點2僅有主對角線共變異數******************************//
 EY12 EY11=COVEY12EY11(0.12), EY22 EY21=COVEY22EY21(0.24),
 EY32 EY31=COVEY32EY31(0.11),
/********期差為1,時點2與時點3僅有主對角線共變異數**************************/
 EY13 EY12=COVEY13EY12(0.12), EY23 EY22=COVEY23EY22(0.24),
 EY33 EY32=COVEY33EY32(0.11),
EY14 EY13=COVEY14EY13(0.12), EY24 EY23=COVEY24EY23(0.24),
 EY34 EY33=COVEY34EY33(0.11),
/********期差為2,時點1與時點3僅有主對角線共變異數**************************/
 EY13 EY11=COVEY13EY11(0.058), EY23 EY21=COVEY23EY21(0.17),
 EY33 EY31=COVEY33EY31(0.06),
/*********期差為2,時點2與時點4僅有主對角線共變異數***************************/
 EY14 EY12=COVEY14EY12(0.058), EY24 EY22=COVEY24EY22(0.17),
```

```
EY34 EY32=COVEY34EY32(0.06),
EY14 EY11=COVEY14EY11(0.028), EY24 EY21=COVEY24EY21(0.11),
 EY34 EY31=COVEY34EY31(0.04),
EZF5 EZF6=CZF5ZF6(0.3478);
SIMTESTS
ECM_Item1_Invariant =[VAREY11_EQ_VAREY12 VAREY11_EQ_VAREY13
        VAREY11_EQ_VAREY14 COVEY12EY11_EQ_COVEY13EY12
        COVEY12EY11_EQ_COVEY14EY13 COVEY13EY11_EQ_COVEY14EY12]
ECM_Item2_Invariant =[VAREY21_EQ_VAREY22 VAREY21_EQ_VAREY23
        VAREY21_EQ_VAREY24 COVEY22EY21_EQ_COVEY23EY22
        COVEY22EY21_EQ_COVEY24EY23 COVEY23EY21_EQ_COVEY24EY22]
ECM_Item3_Invariant =[VAREY31_EQ_VAREY32 VAREY31_EQ_VAREY33
        VAREY31_EQ_VAREY34 COVEY32EY31_EQ_COVEY33EY32
        COVEY32EY31 EQ COVEY34EY33 COVEY33EY31 EQ COVEY34EY32]
weak_factirial_Invariant =[LY21F1_EQ_LY22F2 LY21F1_EQ_LY23F3 LY21F1_EQ_LY24F4
        LY31F1_EQ_LY32F2 LY31F1_EQ_LY33F3 LY31F1_EQ_LY34F4];
VAREY11 EQ VAREY12 = VAREY11-VAREY12;
 VAREY11_EQ_VAREY13 = VAREY11-VAREY13;
 VAREY11_EQ_VAREY14= VAREY11-VAREY14;96
 COVEY12EY11_EQ_COVEY13EY12=COVEY12EY11-COVEY13EY12;
 COVEY12EY11 EQ COVEY14EY13=COVEY12EY11-COVEY14EY13;
 COVEY13EY11_EQ_COVEY14EY12=COVEY13EY11-COVEY14EY12;
/***第2個問項誤差ECM穩態性之虛無假設,式(3.21)*******************************//
 VAREY21_EQ_VAREY22 = VAREY21-VAREY22;
 VAREY21 EQ VAREY23 = VAREY21-VAREY23;
 VAREY21_EQ_VAREY24= VAREY21-VAREY24;
 COVEY22EY21 EQ COVEY23EY22=COVEY22EY21-COVEY23EY22;
 COVEY22EY21_EQ_COVEY24EY23=COVEY22EY21-COVEY24EY23;
 COVEY23EY21 EQ COVEY24EY22=COVEY23EY21-COVEY24EY22;
 /***第2個問項誤差ECM穩態性之虛無假設,式(3.23)*******************************//
 VAREY31_EQ_VAREY32 = VAREY31-VAREY32;
 VAREY31 EQ VAREY33 = VAREY31-VAREY33;
 VAREY31_EQ_VAREY34=VAREY31-VAREY34;
 COVEY32EY31_EQ_COVEY33EY32=COVEY32EY31-COVEY33EY32;
 COVEY32EY31_EQ_COVEY34EY33=COVEY32EY31-COVEY34EY33;
 COVEY33EY31 EQ COVEY34EY32=COVEY33EY31-COVEY34EY32;
 LY21F1 EQ LY22F2=LY21F1-LY22F2; LY21F1 EQ LY23F3=LY21F1-LY23F3;
```

title' SIMTEST 各項誤差穩態性及弱因素不變性檢定';

VAR

Y11 Y21 Y31 Y12 Y22 Y32 Y13 Y23 Y33 Y14 Y24 Y34 X11 X21 X31;

RUN;

```
/***4.4.4.1及表4.3 卡方差異性檢定,當弱因素不變性成立所需之卡方值*******************/
PROC TCALIS METHOD=ML data=DATA Sim AR1 SEM OUTRAM=OUT RAM
```

OUTEST=OUT_EST MAXFUNC=2500 MAXITER=2500 PRINT;

LINEQS

```
Y11 = 1 F1 + EY11, Y21 = LY21F1 F1 + EY21, Y31 = LY31F1 F1 + EY31,
  Y12 = 1 F2 + EY12, Y22 = LY22F2 F2 + EY22, Y32 = LY32F2 F2 + EY32,
  Y13 = 1 F3 + EY13, Y23 = LY23F3 F3 + EY23, Y33 = LY33F3 F3 + EY33,
  Y14 = 1 F4 + EY14, Y24 = LY24F4 F4 + EY24, Y34 = LY34F4 F4 + EY34,
  X11=1 F7 + EX11, X21=LX21F7 F7+ EX21,
                                             X31=LX31F7 F7 +EX31,
  F1=1 F Alpha + 0 F Beta + EZF1,
  F2=1 F Alpha + 1 F Beta + EZF2,
  F3=1 F Alpha + 2 F Beta + EZF3.
  F4=1 F Alpha + 3 F Beta + EZF4,
  F_Alpha= GA00 INTERCEPT + GA10 F7 + EZF5,
  F_Beta= GA01 INTERCEPT + GA11 F7 + EZF6, 89
  F7 = F7 int(13) INTERCEPT + EZF7;
STD
  EY11=VAREY11(0.25), EY12=VAREY12(0.25), EY13=VAREY13(0.25), EY14=VAREY14(0.25),
 EY21=VAREY21(0.36), EY22=VAREY22(0.36), EY23=VAREY23(0.36), EY24=VAREY24(0.36),
 EY31=VAREY31(0.16), EY32=VAREY32(0.16), EY33=VAREY33(0.16), EY34=VAREY34(0.16),
  EX11=VAREX11(0.65), EX21=VAREX21(0.41), EX31=VAREX31(0.90),
  EZF1=VARZF1(0.25), EZF2=VARZF2(0.36), EZF3=VARZF3(0.49),
 EZF4=VARZF4(0.64), EZF5=VAR Intercept(0.80), EZF6=VAR Slope(0.60),
  EZF7=VARF7;
COV
/********期差為1,時點1與時點2僅有主對角線共變異數*******************************//
```

```
EY12 EY11=COVEY12EY11(0.12), EY22 EY21=COVEY22EY21(0.24),
```

EY32 EY31=COVEY32EY31(0.11),

/********期差為1,時點2與時點3僅有主對角線共變異數*****************************/

```
EY13 EY12=COVEY13EY12(0.12), EY23 EY22=COVEY23EY22(0.24),
```

EY33 EY32=COVEY33EY32(0.11),

```
/*********期差為1,時點3與時點4僅有主對角線共變異數***************************/
```

EY14 EY13=COVEY14EY13(0.12), EY24 EY23=COVEY24EY23(0.24),

EY34 EY33=COVEY34EY33(**0.11**),
```
EY13 EY11=COVEY13EY11(0.058), EY23 EY21=COVEY23EY21(0.17),
 EY33 EY31=COVEY33EY31(0.06),
/*********期差為2,時點2與時點4僅有主對角線共變異數***************************/
 EY14 EY12=COVEY14EY12(0.058), EY24 EY22=COVEY24EY22(0.17),
 EY34 EY32=COVEY34EY32(0.06),
/*********期差為3,時點1與時點4僅有主對角線共變異數***************************/
 EY14 EY11=COVEY14EY11(0.028), EY24 EY21=COVEY24EY21(0.11),
 EY34 EY31=COVEY34EY31(0.04),
EZF5 EZF6=CZF5ZF6(0.3478);
LINCON
 LY21F1=LY22F2, LY21F1 =LY23F3, LY23F3= LY24F4,
 LY31F1=LY32F2, LY31F1=LY33F3, LY33F3=LY34F4;
title'計算弱因素不變性模型之卡方殖 ';
VAR
 Y11 Y21 Y31 Y12 Y22 Y32 Y13 Y23 Y33 Y14 Y24 Y34 X11 X21 X31;
RUN:
******
/***卡方差異性檢定弱因素不變性模型***
DATA CDT Factorial invariance test;
 Diff_Loading_Chisq=68.9789;
 Diff_Loading_DF=79;
 Same_Loading_Chisq=73.5294;
 Same Loading DF=85;
 ChisquareDIFF=Same_Loading_Chisq-Diff_Loading_Chisq;
 DF DIFF=Same Loading DF-Diff Loading DF;
 ChiSquareProb=1-PROBCHI(ChisquareDIFF, DF_DIFF,0); output;
PROC PRINT DATA= CDT Factorial invariance test;
title'卡方差異性檢定弱因素不變性模型';
RUN:
                ******
/*********
PROC TCALIS METHOD=ML data=DATA Sim AR1 SEM OUTRAM=OUT RAM
          OUTEST=OUT_EST MAXFUNC=2500 MAXITER=2500 PRINT;
LINEQS
  Y11 = 1 F1 + EY11, Y21 = LY21F1 F1 + EY21, Y31 = LY31F1 F1 + EY31,
  Y_{12} = 1 F_2 + EY_{12}, \quad Y_{22} = LY_{22}F_2 F_2 + EY_{22}, \quad Y_{32} = LY_{32}F_2 F_2 + EY_{32}.
  Y13 = 1 F3 + EY13, Y23 = LY23F3 F3 + EY23, Y33 = LY33F3 F3 + EY33,
  Y14 = 1 F4 + EY14, Y24 = LY24F4 F4 + EY24, Y34 = LY34F4 F4 + EY34,
  X11=1 F7 + EX11,
              X21=LX21F7 F7+ EX21, X31=LX31F7 F7 +EX31,
```

```
F1 = 1 F_Alpha + 0 F_Beta + EZF1,
```

```
F2=1 F_Alpha + 1 F_Beta + EZF2,
  F3=1 F Alpha + 2 F Beta + EZF3,
  F4=1 F_Alpha + 3 F_Beta + EZF4,
  F_Alpha= GA00 INTERCEPT + GA10 F7 + EZF5,
  F_Beta= GA01 INTERCEPT + GA11 F7 + EZF6,
  F7 = F7 int(13) INTERCEPT + EZF7;
STD
 EY11=VAREY1(0.25), EY12=VAREY1(0.25), EY13=VAREY1(0.25), EY14=VAREY1(0.25),
 EY21=VAREY21(0.36), EY22=VAREY22(0.36), EY23=VAREY23(0.36), EY24=VAREY24(0.36),
 EY31=VAREY31(0.16), EY32=VAREY32(0.16), EY33=VAREY33(0.16), EY34=VAREY34(0.16),
 EX11=VAREX11(0.65), EX21=VAREX21(0.41), EX31=VAREX31(0.90),
 EZF1=VARZF1(0.25), EZF2=VARZF2(0.36), EZF3=VARZF3(0.49),
 EZF4=VARZF4(0.64), EZF5=VAR_Intercept(0.80), EZF6=VAR_Slope(0.60),
 EZF7=VARF7;
COV
EY12 EY11=COVEY1 lag1(0.12), EY13 EY12=COVEY1 lag1(0.12),
 EY14 EY13=COVEY1_lag1(0.12), EY13 EY11=COVEY1_lag2(0.058),
 EY14 EY12=COVEY1 lag2(0.058), EY14 EY11=COVEY1 lag3(0.028),
EY22 EY21=COVEY22EY21(0.24), EY23 EY22=COVEY23EY22(0.24),
 EY24 EY23=COVEY24EY23(0.24), EY23 EY21=COVEY23EY21(0.17),
 EY24 EY22=COVEY24EY22(0.17), EY24 EY21=COVEY24EY21(0.11),
EY32 EY31=COVEY32EY31(0.11), EY33 EY32=COVEY33EY32(0.11),
 EY34 EY33=COVEY34EY33(0.11), EY33 EY31=COVEY33EY31(0.06),
 EY34 EY32=COVEY34EY32(0.06), EY34 EY31=COVEY34EY31(0.04),
EZF5 EZF6=CZF5ZF6(0.3478);
LINCON
 LY21F1=LY22F2, LY21F1 =LY23F3, LY23F3= LY24F4,
 LY31F1=LY32F2, LY31F1 =LY33F3, LY33F3= LY34F4;
title 'CDT_E1: ECM:TOEP且爲弱因素不變性';
VAR
Y11 Y21 Y31 Y12 Y22 Y32 Y13 Y23 Y33 Y14 Y24 Y34 X11 X21 X31;
RUN
DATA CDT E1 Stationary test;
 Diff_Loading_UN_Chisq=73.5294;
```

Diff_Loading_UN_DF=85;

```
Diff_Loading_E1_TOEP_Chisq=76.4242;
 Diff Loading E1 TOEP DF=91;
 ChisquareDIFF=Diff_Loading_E1_TOEP_Chisq-Diff_Loading_UN_Chisq;
 DF_DIFF=Diff_Loading_E1_TOEP_DF-Diff_Loading_UN_DF;
 ChiSquareProb=1-PROBCHI(ChisquareDIFF, DF_DIFF,0); output;
RUN:
PROC PRINT DATA= CDT_E1_Stationary_test;
title'卡方性差異檢定第1個問項誤差爲穩態性';
RUN:
PROC TCALIS METHOD=ML data=DATA_Sim_AR1_SEM OUTRAM=OUT_RAM
           OUTEST=OUT EST MAXFUNC=2500 MAXITER=2500 PRINT;
LINEQS
  Y11 = 1 F1 + EY11, Y21 = LY21F1 F1 + EY21, Y31 = LY31F1 F1 + EY31,
  Y12 = 1 F2 + EY12, Y22 = LY22F2 F2 + EY22, Y32 = LY32F2 F2 + EY32,
  Y13 = 1 F3 + EY13, Y23 = LY23F3 F3 + EY23, Y33 = LY33F3 F3 + EY33,
  Y14 = 1 F4 + EY14, Y24 = LY24F4 F4 + EY24, Y34 = LY34F4 F4 + EY34,
  X11=1 F7 + EX11, X21=LX21F7 F7+ EX21,
                                      X31=LX31F7 F7 +EX31,
  F1=1 F Alpha + 0 F Beta + EZF1,
  F2=1 F Alpha + 1 F Beta + EZF2.
  F3=1 F Alpha + 2 F Beta + EZF3,
  F4=1 F_Alpha + 3 F_Beta + EZF4,
  F_Alpha= GA00 INTERCEPT + GA10 F7 + EZF5,
  F_Beta= GA01 INTERCEPT + GA11 F7 + EZF6,
  F7 = F7 int(13) INTERCEPT + EZF7;
```

```
STD
```

```
EY24 EY22=COVEY2_lag2(0.17), EY24 EY21=COVEY2_lag3(0.11),
EY32 EY31=COVEY32EY31(0.11), EY33 EY32=COVEY33EY32(0.11),
 EY34 EY33=COVEY34EY33(0.11), EY33 EY31=COVEY33EY31(0.06),
 EY34 EY32=COVEY34EY32(0.06), EY34 EY31=COVEY34EY31(0.04),
EZF5 EZF6=CZF5ZF6(0.3478);
LINCON
 LY21F1=LY22F2, LY21F1 =LY23F3, LY23F3= LY24F4,
 LY31F1=LY32F2, LY31F1 =LY33F3, LY33F3= LY34F4;
title 'CDT_E2: ECM:TOEP且爲弱因素不變性';
VAR
  Y11 Y21 Y31 Y12 Y22 Y32 Y13 Y23 Y33 Y14 Y24 Y34 X11 X21 X31;
RUN:
/***4.4.5.1 卡方性差異檢定第2個問項誤差爲穩態性*******************************/
DATA CDT E2 Stationary test;
 Diff Loading UN Chisq=73.5294;
 Diff Loading UN DF=85;
 Diff_Loading_E2_TOEP_Chisq=77.5239;
 Diff_Loading_E2_TOEP_DF=91;
 ChisquareDIFF=Diff_Loading_E2_TOEP_Chisq-Diff_Loading_UN_Chisq;
 DF_DIFF=Diff_Loading_E2_TOEP_DF-Diff_Loading_UN_DF;
 ChiSquareProb=1-PROBCHI(ChisquareDIFF, DF DIFF,0); output;
PROC PRINT DATA= CDT_E2_Stationary_test;
title'卡方性差異檢定第2個問項誤差爲穩態性';
RUN:
PROC TCALIS METHOD=ML data=DATA Sim AR1 SEM OUTRAM=OUT RAM
          OUTEST=OUT_EST MAXFUNC=2500 MAXITER=2500 PRINT;
LINEOS
  Y11 = 1 F1 + EY11, Y21 = LY21F1 F1 + EY21, Y31 = LY31F1 F1 + EY31,
  Y12 = 1 F2 + EY12, Y22 = LY22F2 F2 + EY22, Y32 = LY32F2 F2 + EY32,
  Y13 = 1 F3 + EY13, Y23 = LY23F3 F3 + EY23, Y33 = LY33F3 F3 + EY33,
  Y14 = 1 F4 + EY14, Y24 = LY24F4 F4 + EY24, Y34 = LY34F4 F4 + EY34,
  X11=1 F7 + EX11, X21=LX21F7 F7+ EX21, X31=LX31F7 F7 + EX31,
  F1=1 F Alpha + 0 F Beta + EZF1,
  F2=1 F Alpha + 1 F Beta + EZF2,
  F3=1 F_Alpha + 2 F_Beta + EZF3,
```

```
F4=1 F_Alpha + 3 F_Beta + EZF4,
```

```
F_Alpha= GA00 INTERCEPT + GA10 F7 + EZF5,
  F Beta= GA01 INTERCEPT + GA11 F7 + EZF6,
  F7 = F7_{int}(13) INTERCEPT + EZF7;
STD
 EY11=VAREY11(0.25), EY12=VAREY12(0.25), EY13=VAREY13(0.25), EY14=VAREY14(0.25),
 EY21=VAREY21(0,36), EY22=VAREY22(0,36), EY23=VAREY23(0,36), EY24=VAREY24(0,36),
 EY31=VAREY3(0.16), EY32=VAREY3(0.16), EY33=VAREY3(0.16), EY34=VAREY3(0.16),
 EX11=VAREX11(0.65), EX21=VAREX21(0.41), EX31=VAREX31(0.90),
 EZF1=VARZF1(0.25), EZF2=VARZF2(0.36), EZF3=VARZF3(0.49),
 EZF4=VARZF4(0.64), EZF5=VAR_Intercept(0.80), EZF6=VAR_Slope(0.60),
 EZF7=VARF7;
COV
EY12 EY11=COVEY12EY11(0.12), EY13 EY12=COVEY13EY12(0.12),
 EY14 EY13=COVEY14EY13(0.12), EY13 EY11=COVEY13EY11(0.058),
 EY14 EY12=COVEY14EY12(0.058), EY14 EY11=COVEY14EY11(0.028),
EY22 EY21=COVEY22EY21(0.24), EY23 EY22=COVEY23EY22(0.24),
 EY24 EY23=COVEY24EY23(0.24), EY23 EY21=COVEY23EY21(0.17),
 EY24 EY22=COVEY24EY22(0.17), EY24 EY21=COVEY24EY21(0.11),
EY32 EY31=COVEY3_lag1 (0.11), EY33 EY32=COVEY3_lag1 (0.11),
 EY34 EY33=COVEY3_lag1 (0.11), EY33 EY31=COVEY3_lag2 (0.06),
 EY34 EY32=COVEY3_lag2 (0.06), EY34 EY31=COVEY3_lag3 (0.04),
EZF5 EZF6=CZF5ZF6(0.3478);
LINCON
 LY21F1=LY22F2, LY21F1 =LY23F3, LY23F3= LY24F4,
 LY31F1=LY32F2, LY31F1 =LY33F3, LY33F3= LY34F4;
title 'CDT E3: ECM:TOEP 目為弱因素不變性';
VAR
   Y11 Y21 Y31 Y12 Y22 Y32 Y13 Y23 Y33 Y14 Y24 Y34 X11 X21 X31;
RUN:
DATA CDT E3 Stationary test;
 Diff_Loading_UN_Chisq=73.5294;
 Diff_Loading_UN_DF=85;
 Diff_Loading_E3_TOEP_Chisq=77.9577;
 Diff_Loading_E3_TOEP_DF=91;
 ChisquareDIFF=Diff_Loading_E3_TOEP_Chisq-Diff_Loading_UN_Chisq;
 DF DIFF=Diff Loading E3 TOEP DF-Diff Loading UN DF;
```

```
ChiSquareProb=1-PROBCHI(ChisquareDIFF, DF_DIFF,0); output;
PROC PRINT DATA= CDT E3 Stationary test;
 title'卡方性差異檢定第3個問項誤差爲穩態性';
RUN:
PROC TCALIS METHOD=ML data=DATA_Sim_AR1_SEM OUTRAM=OUT_RAM
           OUTEST=OUT EST MAXFUNC=2500 MAXITER=2500 PRINT;
LINEOS
  Y11 = 1 F1 + EY11, Y21 = LY21F1 F1 + EY21, Y31 = LY31F1 F1 + EY31,
  Y12 = 1 F2 + EY12, Y22 = LY22F2 F2 + EY22, Y32 = LY32F2 F2 + EY32,
  Y13 = 1 F3 + EY13, Y23 = LY23F3 F3 + EY23, Y33 = LY33F3 F3 + EY33,
  Y_{14} = 1 F_4 + EY_{14}, Y_{24} = LY_{24}F_4 F_4 + EY_{24}, Y_{34} = LY_{34}F_4 F_4 + EY_{34},
  X11=1 F7 + EX11, X21=LX21F7 F7+ EX21, X31=LX31F7 F7 + EX31,
  F1=1 F_Alpha + 0 F_Beta + EZF1,
  F2=1 F_Alpha + 1 F_Beta + EZF2,
  F3=1 F Alpha + 2 F Beta + EZF3,
  F4=1 F_Alpha + 3 F_Beta + EZF4,
  F_Alpha= GA00 INTERCEPT + GA10 F7 + EZF5,
  F Beta= GA01 INTERCEPT + GA11 F7 + EZF6,
  F7 = F7_{int}(13) INTERCEPT + EZF7;
STD
 EY11=VAREY1(0.25), EY12=VAREY1(0.25), EY13=VAREY1(0.25), EY14=VAREY1(0.25),
 EY21=VAREY2(0.36), EY22=VAREY2(0.36), EY23=VAREY2(0.36), EY24=VAREY2(0.36),
 EY31=VAREY3(0.16), EY32=VAREY3(0.16), EY33=VAREY3(0.16), EY34=VAREY3(0.16),
 EX11=VAREX11(0.65), EX21=VAREX21(0.41), EX31=VAREX31(0.90),
 EZF1=VARZF1(0.25), EZF2=VARZF2(0.36), EZF3=VARZF3(0.49),
 EZF4=VARZF4(0.64),
                 EZF5=VAR Intercept(0.80), EZF6=VAR Slope(0.60),
 EZF7=VARF7:
COV
EY12 EY11=COVEY1 lag1 (0.12), EY13 EY12=COVEY1 lag1 (0.12),
 EY14 EY13=COVEY1_lag1 (0.12), EY13 EY11=COVEY1_lag2 (0.058),
 EY14 EY12=COVEY1 lag2 (0.058), EY14 EY11=COVEY1 lag3 (0.028),
EY22 EY21=COVEY2_lag1 (0.24), EY23 EY22=COVEY2_lag1 (0.24),
 EY24 EY23=COVEY2 lag1 (0.24), EY23 EY21=COVEY2 lag2 (0.17),
 EY24 EY22=COVEY2_lag2(0.17), EY24 EY21=COVEY2_lag3 (0.11),
EY32 EY31=COVEY3_lag1 (0.11), EY33 EY32=COVEY3_lag1 (0.11),
 EY34 EY33=COVEY3_lag1 (0.11), EY33 EY31=COVEY3_lag2 (0.06),
 EY34 EY32=COVEY3_lag2 (0.06), EY34 EY31=COVEY3_lag3 (0.04),
```

```
EZF5 EZF6=CZF5ZF6(0.3478);
LINCON
 LY21F1=LY22F2, LY21F1 =LY23F3, LY23F3= LY24F4,
 LY31F1=LY32F2, LY31F1 =LY33F3, LY33F3= LY34F4;
title 'CDT_E1,2,3: ECM:TOEP且爲弱因素不變性';
VAR
  Y11 Y21 Y31 Y12 Y22 Y32 Y13 Y23 Y33 Y14 Y24 Y34 X11 X21 X31;
RUN:
/**表4.8 問項誤差1_步驟1 第1個問項ECM皆為MT=TOEP(1),計算模型之卡方値及自由度*******/
PROC TCALIS METHOD=ML data=DATA_Sim_AR1_SEM OUTRAM=OUT_RAM
          OUTEST=OUT_EST MAXFUNC=2500 MAXITER=2500 PRINT;
LINEOS
  Y11 = 1 F1 + EY11, Y21 = LY21F1 F1 + EY21, Y31 = LY31F1 F1 + EY31,
  Y12 = 1 F2 + EY12, Y22 = LY22F2 F2 + EY22, Y32 = LY32F2 F2 + EY32,
  Y13 = 1 F3 + EY13, Y23 = LY23F3 F3 + EY23, Y33 = LY33F3 F3 + EY33,
  Y14 = 1 F4 + EY14, Y24 = LY24F4 F4 + EY24, Y34 = LY34F4 F4 + EY34,
  X11=1 F7 + EX11.
               X21=LX21F7 F7+ EX21, X31=LX31F7 F7 +EX31,
  F1=1 F Alpha + 0 F Beta + EZF1,
  F2=1 F_Alpha + 1 F_Beta + EZF2,
  F3=1 F_Alpha + 2 F_Beta + EZF3,
  F4=1 F_Alpha + 3 F_Beta + EZF4,
  F_Alpha= GA00 INTERCEPT + GA10 F7 + EZF5,
  F Beta= GA01 INTERCEPT + GA11 F7 + EZF6,
  F7 = F7_{int}(13) INTERCEPT + EZF7;
STD
  EY11=VAREY1(0.25), EY12=VAREY1(0.25), EY13=VAREY1(0.25), EY14=VAREY1(0.25),
  EY21=VAREY2(0.36), EY22=VAREY2(0.36), EY23=VAREY2(0.36), EY24=VAREY2(0.36),
  EY31=VAREY3(0.16), EY32=VAREY3(0.16), EY33=VAREY3(0.16), EY34=VAREY3(0.16),
  EX11=VAREX11(0.65), EX21=VAREX21(0.41), EX31=VAREX31(0.90),
  EZF1=VARZF1(0.25), EZF2=VARZF2(0.36), EZF3=VARZF3(0.49),
  EZF4=VARZF4(0.64), EZF5=VAR_Intercept(0.80), EZF6=VAR_Slope(0.60),
  EZF7=VARF7:
COV
/*
  EY12 EY11=COVEY1 lag1 (0.12), EY13 EY12=COVEY1 lag1 (0.12),
```

```
EY14 EY13=COVEY1_lag1 (0.12), EY13 EY11=COVEY1_lag2 (0.058),
EY14 EY12=COVEY1_lag2 (0.058), EY14 EY11=COVEY1_lag3 (0.028),
```

*/		
/****第2個問項ECM=TO)EP********************	***************************************
EY22 EY21=COVEY2	2_lag1 (0.24), EY23 EY22=C	COVEY2_lag1 (0.24),
EY24 EY23=COVEY2	2_lag1 (0.24), EY23 EY21=C	COVEY2_lag2 (0.17),
EY24 EY22=COVEY2	2_lag2(0.17), EY24 EY21=C	OVEY2_lag3 (0.11),
/****第3個問項ECM=TO)EP********************	***************************************
EY32 EY31=COVEY3	3_lag1 (0.11), EY33 EY32=C	COVEY3_lag1 (0.11),
EY34 EY33=COVEY3	3_lag1 (0.11), EY33 EY31=C	COVEY3_lag2 (0.06),
EY34 EY32=COVEY3	3_lag2 (0.06), EY34 EY31=C	OVEY3_lag3 (0.04),
/*********** 第二階	成長因素構念誤差共變異數	£*************************************
EZF5 EZF6=CZF5ZF6	6(0.3478) ;	
/****同問項不同期因素質	負荷相同**************	***************************************
LINCON		
LY21F1=LY22F2, LY2	1F1 =LY23F3, LY23F3= LY	² 4F4,
LY31F1=LY32F2, LY31F1 =LY33F3, LY33F3= LY34F4;		
/**********************	**************************	***********************************/
title 'SCDT_E1_STEP1: I	ECM:TOEP(1)';	
VAR		I.F.
Y11 Y21 Y31 Y12 Y2	2 Y32 Y13 Y23 Y33 Y14 Y2	4 Y34 X11 X21 X31;
RUN;	S m	
/**************************************	*********	***************************************
/***表4.8 第1個問項誤差	E1_STEP1:H0=MT=MS;	ECM:MT=TOEP(1), MS=TOEP************/
DATA Chisquare_Diff_Pr	ob_TOEP1_TOEP;	
Saturated_M_TOEP_Ch	isquare= 85.5475 ;	396
Saturated_M_TOEP_DF	<i>i</i> =103;	
Restricted_M_TOEP1_0	Chisquare=117.4747;	
Restricted_M_TOEP1_I	DF= 106 ;	
ChisquareDIFF=Restrict	ted_M_TOEP1_Chisquare-Sa	aturated_M_TOEP_Chisquare;
DF_DIFF=Restricted_M	I_TOEP1_DF-Saturated_M_	TOEP_DF;
ChiSquareProb=1-PROF	3CHI(ChisquareDIFF, DF_D	IFF,0); output;
RUN ;	, she	u u u u u u u u u u u u u u u u u u u

PROC PRINT DATA=	Chisquare_Diff_Prob_TOEP	1_10EP;
title E1_S1EP1, H0: J	IOEP(1)=IOEP;	
KUN;	****	******
/**主40 胆石胆辛1 止晒		⇒上答按刑→ とナ/古ひ 宀 宀 守*********************************
「本本衣4.8 回頃決左1_少弱 PPOC TCALIS METHON	》2 弗I1回问項ECM=MA(I),	訂昇模型之下力値及日田度
OUTEST	$D = ML \text{ data} = DATA_SIII_AF$	$C_{Sem} OUTRAM=OUT_RAM$
LINEOS	=001_EST MAAFUNC=23	00 MAATTER=2300 FKINT,
$\frac{1}{1} = 1 = 1 = 1 = 1 = 1$	V21 – I V21E1 E1 + EV21	V31 - IV31E1E1 + EV31
$Y_{11} = 1 F_1 + E_1 F_1,$ $Y_{12} = 1 F_2 = F_2 V_12$	$Y_{22} = U_{121} + U_{121} + U_{121}$, $Y_{22} = U_{22} + U_{22}$	$V_{32} = L_{32} V_{32} V_{32} = L_{32} = L_{32} V_{32} = L_{32} = L_{32} V_{32} = L_{32} V_{32} = L_{32} V_{32} = L_{32} = L$
112 - 112 + E112, V13 - 1E2 + EV12	$122 - L122\Gamma2\Gamma2 + E122$, V22-1V22E2 E2 + EV22	$1.52 = 1.1521^{\circ}2.1^$
113 - 173 + E113,	123 - L123F3F3 + E123,	155 - L1551515 + E155,

```
Y14 = 1 F4 + EY14, Y24 = LY24F4 F4 + EY24, Y34 = LY34F4 F4 + EY34,
  X11=1 F7 + EX11.
                X21=LX21F7 F7+ EX21.
                                   X31=LX31F7 F7 +EX31.
  F1=1 F_Alpha + 0 F_Beta + EZF1,
  F2=1 F_Alpha + 1 F_Beta + EZF2,
  F3=1 F_Alpha + 2 F_Beta + EZF3,
  F4=1 F_Alpha + 3 F_Beta + EZF4,
  F_Alpha= GA00 INTERCEPT + GA10 F7 + EZF5,
  F Beta= GA01 INTERCEPT + GA11 F7 + EZF6,
  F7 = F7_{int}(13) INTERCEPT + EZF7;
STD
 EY11=VAREY1(0.25), EY12=VAREY1(0.25), EY13=VAREY1(0.25), EY14=VAREY1(0.25),
 EY21=VAREY2(0.36), EY22=VAREY2(0.36), EY23=VAREY2(0.36), EY24=VAREY2(0.36),
 EY31=VAREY3(0.16), EY32=VAREY3(0.16), EY33=VAREY3(0.16), EY34=VAREY3(0.16),
 EX11=VAREX11(0.65), EX21=VAREX21(0.41), EX31=VAREX31(0.90),
 EZF1=VARZF1(0.25),
                 EZF2=VARZF2(0.36), EZF3=VARZF3(0.49),
 EZF4=VARZF4(0.64),
                 EZF5=VAR_Intercept(0.80), EZF6=VAR_Slope(0.60),
 EZF7=VARF7:
COV
EY12 EY11=COVEY1_lag1 (0.12), EY13 EY12=COVEY1_lag1 (0.12),
 EY14 EY13=COVEY1 lag1 (0.12),
/*
 EY13 EY11=COVEY1_lag2 (0.058),
 EY14 EY12=COVEY1_lag2 (0.058), EY14 EY11=COVEY1_lag3 (0.028),
*/
EY22 EY21=COVEY2_lag1 (0.24), EY23 EY22=COVEY2_lag1 (0.24),
 EY24 EY23=COVEY2 lag1 (0.24), EY23 EY21=COVEY2 lag2 (0.17),
 EY24 EY22=COVEY2 lag2(0.17), EY24 EY21=COVEY2 lag3 (0.11),
EY32 EY31=COVEY3 lag1 (0.11), EY33 EY32=COVEY3 lag1 (0.11),
 EY34 EY33=COVEY3 lag1 (0.11), EY33 EY31=COVEY3 lag2 (0.06),
 EY34 EY32=COVEY3_lag2 (0.06), EY34 EY31=COVEY3_lag3 (0.04),
EZF5 EZF6=CZF5ZF6(0.3478);
LINCON
 LY21F1=LY22F2, LY21F1 =LY23F3, LY23F3= LY24F4,
 LY31F1=LY32F2, LY31F1 =LY33F3, LY33F3= LY34F4;
/*********MA(1) for item1 with 4 occasions*********/
PARAMETERS THE1 (-0.3);
  COVEY1_lag1=(-THE1/(1+THE1**2))*VAREY1;
```

```
BOUNDS
```

```
-1.<THE1<1.;
```

```
title 'E1_STEP2:H0=MA(1)_TOEP';
VAR
    Y11 Y21 Y31 Y12 Y22 Y32 Y13 Y23 Y33 Y14 Y24 Y34 X11 X21 X31;
RUN:
/***表4.8 第1個問項誤差_E1_STEP1:H0=MT=MS; ECM:MT=MA(1), MS=TOEP************//
DATA PrChi MA1 TOEP1 TOEP1 TOEP Ms;
  Saturated_Ms_TOEP_Chi=85.5475;
  Saturated_Ms_TOEP_DF=103;
 ECM MA1 TOEP1 TOEP1 TOEP1 Chi=92.8525;
 ECM_MA1_TOEP1_TOEP1_TOEP1_DF=105;
  Chi DIFF=ECM MA1 TOEP1 TOEP1 TOEP1 Chi-Saturated Ms TOEP Chi;
 DF_DIFF=ECM_MA1_TOEP1_TOEP1_TOEP1_DF-Saturated_Ms_TOEP_DF;
 ChiSquareProb=1-PROBCHI(Chi_DIFF, DF_DIFF, 0); output;
PROC PRINT DATA= PrChi_MA1_TOEP1_TOEP1_TOEP_Ms;
 title' E1 STEP2, H0: MA(1)=TOEP ';
RUN:
/**表4.8 問項誤差1 步驟3 第1個問項ECM=CS,計算模型之卡方値及自由度***************/
PROC TCALIS METHOD=ML data=DATA Sim AR1 SEM OUTRAM=OUT RAM
            OUTEST=OUT_EST MAXFUNC=2500 MAXITER=2500 PRINT;
LINEQS
  Y11 = 1 F1 + EY11, Y21 = LY21F1 F1 + EY21, Y31 = LY31F1 F1 + EY31,
  Y12 = 1 F2 + EY12, Y22 = LY22F2 F2 + EY22, Y32 = LY32F2 F2 + EY32,
  Y13 = 1 F3 + EY13, Y23 = LY23F3 F3 + EY23, Y33 = LY33F3 F3 + EY33,
  Y14 = 1 F4 + EY14, Y24 = LY24F4 F4 + EY24, Y34 = LY34F4 F4 + EY34,
  X11=1 F7 + EX11, X21=LX21F7 F7 + EX21, X31=LX31F7 F7 + EX31,
  F1=1 F Alpha + 0 F Beta + EZF1,
  F2=1 F Alpha + 1 F Beta + EZF2,
  F3=1 F Alpha + 2 F Beta + EZF3,
  F4=1 F Alpha + 3 F Beta + EZF4,
  F Alpha= GA00 INTERCEPT + GA10 F7 + EZF5,
  F Beta= GA01 INTERCEPT + GA11 F7 + EZF6,
  F7 = F7_{int}(13) INTERCEPT + EZF7;
 STD
  EY11=VAREY1(0.25), EY12=VAREY1(0.25), EY13=VAREY1(0.25), EY14=VAREY1(0.25),
 EY21=VAREY2(0.36), EY22=VAREY2(0.36), EY23=VAREY2(0.36), EY24=VAREY2(0.36),
 EY31=VAREY3(0.16), EY32=VAREY3(0.16), EY33=VAREY3(0.16), EY34=VAREY3(0.16),
  EX11=VAREX11(0.65), EX21=VAREX21(0.41), EX31=VAREX31(0.90),
```

```
EZF1=VARZF1(0.25), EZF2=VARZF2(0.36), EZF3=VARZF3(0.49),
```

```
EZF4=VARZF4(0.64), EZF5=VAR_Intercept(0.80), EZF6=VAR_Slope(0.60),
```

EZF7=VARF7;

COV

```
EY12 EY11=COV1 (0.12), EY13 EY12=COV1 (0.12),
 EY14 EY13=COV1 (0.12), EY13 EY11=COV1 (0.12),
 EY14 EY12=COV1 (0.12), EY14 EY11=COV1 (0.12),
EY22 EY21=COVEY2_lag1 (0.24), EY23 EY22=COVEY2_lag1 (0.24),
EY24 EY23=COVEY2 lag1 (0.24), EY23 EY21=COVEY2 lag2 (0.17),
EY24 EY22=COVEY2_lag2(0.17), EY24 EY21=COVEY2_lag3 (0.11),
EY32 EY31=COVEY3_lag1 (0.11), EY33 EY32=COVEY3_lag1 (0.11),
 EY34 EY33=COVEY3_lag1 (0.11), EY33 EY31=COVEY3_lag2 (0.06),
 EY34 EY32=COVEY3_lag2 (0.06), EY34 EY31=COVEY3_lag3 (0.04),
EZF5 EZF6=CZF5ZF6(0.3478);
                          /****同問項不同期因素負荷相同*******
LINCON
 LY21F1=LY22F2, LY21F1 =LY23F3, LY23F3= LY24F4,
 LY31F1=LY32F2, LY31F1 =LY33F3, LY33F3= LY34F4;
title 'SCDT E1 STEP1:H0=MA(1) TOEP';
VAR
  Y11 Y21 Y31 Y12 Y22 Y32 Y13 Y23 Y33 Y14 Y24 Y34 X11 X21 X31;
RUN;
DATA PrChi_CS_TOEP1_TOEP1_TOEP_Ms;
 Saturated Ms TOEP Chi=85.5475;
 Saturated_Ms_TOEP_DF=103;
 ECM CS TOEP1 TOEP1 TOEP1 Chi=100.6032;
 ECM_CS_TOEP1_TOEP1_TOEP1_DF=105;
 Chi_DIFF=ECM_CS_TOEP1_TOEP1_TOEP1_Chi-Saturated_Ms_TOEP_Chi;
 DF_DIFF=ECM_CS_TOEP1_TOEP1_DF-Saturated_Ms_TOEP_DF;
 ChiSquareProb=1-PROBCHI(Chi DIFF, DF DIFF,0); output;
PROC PRINT DATA= PrChi_CS_TOEP1_TOEP1_TOEP_Ms;
title'E1 STEP3, H0: CS=TOEP ';
RUN:
            *******
/*******
/**表4.8 問項誤差1_步驟4 第1個問項ECM=AR(1),計算模型之卡方値及自由度***********//
PROC TCALIS METHOD=ML data=DATA_Sim_AR1_SEM OUTRAM=OUT_RAM
         OUTEST=OUT_EST MAXFUNC=2500 MAXITER=2500 PRINT;
LINEQS
  Y11 = 1 F1 + EY11, Y21 = LY21F1 F1 + EY21, Y31 = LY31F1 F1 + EY31,
  Y12 = 1 F2 + EY12, Y22 = LY22F2 F2 + EY22, Y32 = LY32F2 F2 + EY32,
```

```
Y13 = 1 F3 + EY13, Y23 = LY23F3 F3 + EY23, Y33 = LY33F3 F3 + EY33,
```

```
Y14 = 1 F4 + EY14, Y24 = LY24F4 F4 + EY24, Y34 = LY34F4 F4 + EY34,
  X11=1 F7 + EX11.
                X21=LX21F7 F7+ EX21, X31=LX31F7 F7 +EX31,
  F1=1 F_Alpha + 0 F_Beta + EZF1,
  F2=1 F_Alpha + 1 F_Beta + EZF2,
  F3=1 F_Alpha + 2 F_Beta + EZF3,
  F4=1 F_Alpha + 3 F_Beta + EZF4,
  F_Alpha= GA00 INTERCEPT + GA10 F7 + EZF5,
  F Beta= GA01 INTERCEPT + GA11 F7 + EZF6,
  F7 = F7_{int}(13) INTERCEPT + EZF7;
STD
 EY11=VAREY1(0.25), EY12=VAREY1(0.25), EY13=VAREY1(0.25), EY14=VAREY1(0.25),
 EY21=VAREY2(0.36), EY22=VAREY2(0.36), EY23=VAREY2(0.36), EY24=VAREY2(0.36),
 EY31=VAREY3(0.16), EY32=VAREY3(0.16), EY33=VAREY3(0.16), EY34=VAREY3(0.16),
 EX11=VAREX11(0.65), EX21=VAREX21(0.41), EX31=VAREX31(0.90),
 EZF1=VARZF1(0.25),
                EZF2=VARZF2(0.36), EZF3=VARZF3(0.49),
 EZF4=VARZF4(0.64),
                EZF5=VAR_Intercept(0.80), EZF6=VAR_Slope(0.60),
 EZF7=VARF7:
COV
EY12 EY11=COVEY1 lag1 (0.12), EY13 EY12=COVEY1 lag1 (0.12),
 EY14 EY13=COVEY1 lag1 (0.12), EY13 EY11=COVEY1 lag2 (0.058),
 EY14 EY12=COVEY1_lag2 (0.058), EY14 EY11=COVEY1_lag3 (0.028),
EY22 EY21=COVEY2_lag1 (0.24), EY23 EY22=COVEY2_lag1 (0.24),
 EY24 EY23=COVEY2_lag1 (0.24), EY23 EY21=COVEY2_lag2 (0.17),
 EY24 EY22=COVEY2 lag2(0.17), EY24 EY21=COVEY2 lag3 (0.11),
EY32 EY31=COVEY3 lag1 (0.11), EY33 EY32=COVEY3 lag1 (0.11),
 EY34 EY33=COVEY3_lag1 (0.11), EY33 EY31=COVEY3_lag2 (0.06),
 EY34 EY32=COVEY3_lag2 (0.06), EY34 EY31=COVEY3_lag3 (0.04),
EZF5 EZF6=CZF5ZF6(0.3478):
LINCON
 LY21F1=LY22F2, LY21F1 =LY23F3, LY23F3= LY24F4,
 LY31F1=LY32F2, LY31F1 =LY33F3, LY33F3= LY34F4;
/*****AR(1) for item1 with 4 occasions*********/
PARAMETERS RHO1 (0.5);
 COVEY1_lag1=RHO1*VAREY1; COVEY1_lag2=RHO1* RHO1*VAREY1;
 COVEY1 lag3=RHO1* RHO1* RHO1*VAREY1;
BOUNDS
```

```
-1.<RHO1<1.:
```

title' E1_STEP4: ECM:AR(1)';

VAR

```
Y11 Y21 Y31 Y12 Y22 Y32 Y13 Y23 Y33 Y14 Y24 Y34 X11 X21 X31;
```

RUN;

```
/***表4.8 第1個問項誤差_E1_STEP4:H0:MT=MS; ECM:MT=AR(1), MS=TOEP***********//
```

DATA PrChi_AR1_TOEP1_TOEP1_TOEP_Ms;

```
Saturated_Ms_TOEP_Chi=85.5475;
```

Saturated_Ms_TOEP_DF=103;

ECM_AR1_TOEP1_TOEP1_TOEP1_Chi=88.3893;

ECM_AR1_TOEP1_TOEP1_TOEP1_DF=105;

Chi_DIFF=ECM_AR1_TOEP1_TOEP1_TOEP1_Chi-Saturated_Ms_TOEP_Chi;

DF_DIFF=ECM_AR1_TOEP1_TOEP1_TOEP1_DF-Saturated_Ms_TOEP_DF;

ChiSquareProb=1-PROBCHI(Chi_DIFF, DF_DIFF,0); output;

PROC PRINT DATA= PrChi_AR1_TOEP1_TOEP1_TOEP_Ms;

title' E1_STEP4_H0: AR(1)=TOEP ';

RUN;

```
/*****底下程式為表4.8 第2問項誤差ECM鑑定, 第1,3問項誤差ECM=TOEP*****************/
```

```
/**表4.8 問項誤差1_步驟1 第2個問項ECM=TOEP(1),計算模型之卡方値及自由度***********/
```

PROC TCALIS METHOD=ML data=DATA_Sim_AR1_SEM OUTRAM=OUT_RAM OUTEST=OUT_EST MAXFUNC=2500 MAXITER=2500 PRINT;

```
LINEQS
```

```
 \begin{array}{l} \textbf{Y11} = \textbf{1} \ \textbf{F1} + \textbf{EY11}, \quad \textbf{Y21} = \textbf{LY21F1} \ \textbf{F1} + \textbf{EY21}, \quad \textbf{Y31} = \textbf{LY31F1} \ \textbf{F1} + \textbf{EY31}, \\ \textbf{Y12} = \textbf{1} \ \textbf{F2} + \textbf{EY12}, \quad \textbf{Y22} = \textbf{LY22F2} \ \textbf{F2} + \textbf{EY22}, \quad \textbf{Y32} = \textbf{LY32F2} \ \textbf{F2} + \textbf{EY32}, \\ \textbf{Y13} = \textbf{1} \ \textbf{F3} + \textbf{EY13}, \quad \textbf{Y23} = \textbf{LY23F3} \ \textbf{F3} + \textbf{EY23}, \quad \textbf{Y33} = \textbf{LY33F3} \ \textbf{F3} + \textbf{EY33}, \\ \textbf{Y14} = \textbf{1} \ \textbf{F4} + \textbf{EY14}, \quad \textbf{Y24} = \textbf{LY24F4} \ \textbf{F4} + \textbf{EY24}, \quad \textbf{Y34} = \textbf{LY34F4} \ \textbf{F4} + \textbf{EY34}, \\ \textbf{X11=1} \ \textbf{F7} + \textbf{EX11}, \quad \textbf{X21} = \textbf{LX21F7} \ \textbf{F7} + \textbf{EX21}, \quad \textbf{X31} = \textbf{LX31F7} \ \textbf{F7} + \textbf{EX31}, \\ \textbf{F1} = \textbf{1} \ \textbf{F}_{A} \ \textbf{lpha} + \textbf{0} \ \textbf{F}_{B} \ \textbf{eta} + \textbf{EZF1}, \end{array}
```

 $F2=1 F_Alpha + 1 F_Beta + EZF2,$

```
F3=1 F_Alpha + 2 F_Beta + EZF3,
```

```
F4=1 F_Alpha + 3 F_Beta + EZF4,
```

F_Alpha= GA00 INTERCEPT + GA10 F7 + EZF5,

```
F_Beta= GA01 INTERCEPT + GA11 F7 + EZF6,
```

```
F7 = F7_int(13) INTERCEPT + EZF7;
```

STD

```
EY11=VAREY1(0.25), EY12=VAREY1(0.25), EY13=VAREY1(0.25), EY14=VAREY1(0.25),
EY21=VAREY2(0.36), EY22=VAREY2(0.36), EY23=VAREY2(0.36), EY24=VAREY2(0.36),
EY31=VAREY3(0.16), EY32=VAREY3(0.16), EY33=VAREY3(0.16), EY34=VAREY3(0.16),
EX11=VAREX11(0.65), EX21=VAREX21(0.41), EX31=VAREX31(0.90),
EZF1=VARZF1(0.25), EZF2=VARZF2(0.36), EZF3=VARZF3(0.49),
EZF4=VARZF4(0.64), EZF5=VAR_Intercept(0.80), EZF6=VAR_Slope(0.60),
EZF7=VARF7:
```

COV

COV
/****第1個問項ECM=TOEP************************************
EY12 EY11=COVEY1_lag1 (0.12), EY13 EY12=COVEY1_lag1 (0.12),
EY14 EY13=COVEY1_lag1 (0.12), EY13 EY11=COVEY1_lag2 (0.058),
EY14 EY12=COVEY1_lag2 (0.058), EY14 EY11=COVEY1_lag3 (0.028),
/****第2個問項ECM=TOEP(1)************************************
/*
EY22 EY21=COVEY2_lag1 (0.24), EY23 EY22=COVEY2_lag1 (0.24),
EY24 EY23=COVEY2_lag1 (0.24), EY23 EY21=COVEY2_lag2 (0.17),
EY24 EY22=COVEY2_lag2(0.17), EY24 EY21=COVEY2_lag3 (0.11),
*/
/****第3個問項ECM=TOEP************************************
EY32 EY31=COVEY3_lag1 (0.11), EY33 EY32=COVEY3_lag1 (0.11),
EY34 EY33=COVEY3_lag1 (0.11), EY33 EY31=COVEY3_lag2 (0.06),
EY34 EY32=COVEY3_lag2 (0.06), EY34 EY31=COVEY3_lag3 (0.04),
/*********** 第二階成長因素構念誤差共變異數************************************
EZF5 EZF6=CZF5ZF6(0.3478);
/****同問項不同期因素負荷相同************************************
LINCON
LY21F1=LY22F2, LY21F1 =LY23F3, LY23F3= LY24F4,
LY31F1=LY32F2, LY31F1 =LY33F3, LY33F3= LY34F4;
/**************************************
title 'E2_STEP1_H0:TOEP(1)=TOEP';
VAR 1896
Y11 Y21 Y31 Y12 Y22 Y32 Y13 Y23 Y33 Y14 Y24 Y34 X11 X21 X31;
RUN;
/**************************************
/***表4.8 第2個問項誤差_E2_STEP1:H0:TOEP(1)=TOEP************************************
DATA Chisquare_Diff_Prob_TOEP1_TOEP;
Saturated_M_TOEP_Chisquare=85.5475;
Saturated_M_TOEP_DF=103;
Restricted_M_TOEP1_Chisquare=278.9624;
Restricted_M_TOEP1_DF=106;
ChisquareDIFF=Restricted_M_TOEP1_Chisquare-Saturated_M_TOEP_Chisquare;
DF_DIFF=Restricted_M_TOEP1_DF-Saturated_M_TOEP_DF;
ChiSquareProb=1-PROBCHI(ChisquareDIFF, DF_DIFF,0); output;
RUN;
/**************************************
PROC PRINT DATA= Chisquare_Diff_Prob_TOEP1_TOEP;
title'E2_STEP1_H0:TOEP(1)=TOEP';
RUN;
/**************************************
/**表4.8 問項誤差2_步驟2 第2個問項ECM=MA(1),計算模型之卡方値及自由度**************/

PROC TCALIS METHOD=ML data=DATA_Sim_AR1_SEM OUTRAM=OUT_RAM OUTEST=OUT EST MAXFUNC=2500 MAXITER=2500 PRINT;

LINEQS

```
Y11 = 1 F1 + EY11, Y21 = LY21F1 F1 + EY21, Y31 = LY31F1 F1 + EY31,
  Y12 = 1 F2 + EY12, Y22 = LY22F2 F2 + EY22, Y32 = LY32F2 F2 + EY32,
  Y_{13} = 1 F_3 + EY_{13}, Y_{23} = LY_{23}F_3 F_3 + EY_{23}, Y_{33} = LY_{33}F_3 F_3 + EY_{33}.
  Y14 = 1 F4 + EY14, Y24 = LY24F4 F4 + EY24, Y34 = LY34F4 F4 + EY34,
  X11=1 F7 + EX11,
                X21=LX21F7 F7+ EX21, X31=LX31F7 F7 +EX31,
  F1=1 F_Alpha + 0 F_Beta + EZF1,
  F2=1 F_Alpha + 1 F_Beta + EZF2,
  F3=1 F Alpha + 2 F Beta + EZF3,
  F4=1 F_Alpha + 3 F_Beta + EZF4,
  F_Alpha= GA00 INTERCEPT + GA10 F7 + EZF5,
  F Beta= GA01 INTERCEPT + GA11 F7 + EZF6,
  F7 = F7_{int}(13) INTERCEPT + EZF7;
STD
 EY11=VAREY1(0.25), EY12=VAREY1(0.25), EY13=VAREY1(0.25), EY14=VAREY1(0.25),
 EY21=VAREY2(0.36), EY22=VAREY2(0.36), EY23=VAREY2(0.36), EY24=VAREY2(0.36),
 EY31=VAREY3(0.16), EY32=VAREY3(0.16), EY33=VAREY3(0.16), EY34=VAREY3(0.16),
 EX11=VAREX11(0.65), EX21=VAREX21(0.41), EX31=VAREX31(0.90),
 EZF1=VARZF1(0.25), EZF2=VARZF2(0.36), EZF3=VARZF3(0.49),
 EZF4=VARZF4(0.64),
                  EZF5=VAR_Intercept(0.80), EZF6=VAR_Slope(0.60),
 EZF7=VARF7;
COV
EY12 EY11=COVEY1_lag1 (0.12), EY13 EY12=COVEY1_lag1 (0.12),
 EY14 EY13=COVEY1_lag1 (0.12), EY13 EY11=COVEY1_lag2 (0.058),
 EY14 EY12=COVEY1 lag2 (0.058), EY14 EY11=COVEY1 lag3 (0.028),
EY22 EY21=COVEY2_lag1 (0.24), EY23 EY22=COVEY2_lag1 (0.24),
 EY24 EY23=COVEY2_lag1 (0.24),
/*
 EY23 EY21=COVEY2_lag2 (0.17),
 EY24 EY22=COVEY2 lag2(0.17), EY24 EY21=COVEY2 lag3 (0.11),
*/
EY32 EY31=COVEY3 lag1 (0.11), EY33 EY32=COVEY3 lag1 (0.11),
 EY34 EY33=COVEY3_lag1 (0.11), EY33 EY31=COVEY3_lag2 (0.06),
 EY34 EY32=COVEY3_lag2 (0.06), EY34 EY31=COVEY3_lag3 (0.04),
EZF5 EZF6=CZF5ZF6(0.3478);
```

LINCON

```
LY21F1=LY22F2, LY21F1 =LY23F3, LY23F3= LY24F4,
 LY31F1=LY32F2, LY31F1 =LY33F3, LY33F3= LY34F4;
PARAMETERS THE1 (-0.45);
 COVEY2_lag1=(-THE1/(1+THE1**2))*VAREY2;
BOUNDS
  -1.<THE1<1.;
title 'E2_STEP2:H0:MA(1)=TOEP';
VAR
   Y11 Y21 Y31 Y12 Y22 Y32 Y13 Y23 Y33 Y14 Y24 Y34 X11 X21 X31;
RUN:
DATA Chisquare_Diff_Prob_MA1_TOEP;
 Saturated M TOEP Chisquare=85.5475;
 Saturated_M_TOEP_DF=103;
 Restricted_M_MA1_Chisquare=156.9785;
 Restricted M MA1 DF=105;
 ChisquareDIFF=Restricted_M_MA1_Chisquare-Saturated_M_TOEP_Chisquare;
 DF DIFF=Restricted M MA1 DF-Saturated M TOEP DF;
 ChiSquareProb=1-PROBCHI(ChisquareDIFF, DF_DIFF,0); output;
PROC PRINT DATA= Chisquare_Diff_Prob_MA1_TOEP:
title' E2_STEP2_ H0:MA(1)=TOEP ';
                              RUN:
/**表4.8 問項誤差2 步驟3 第2個問項ECM=CS,計算模型之卡方値及自由度******************/
PROC TCALIS METHOD=ML data=DATA_Sim_AR1_SEM OUTRAM=OUT_RAM
          OUTEST=OUT EST MAXFUNC=2500 MAXITER=2500 PRINT;
LINEQS
  Y11 = 1 F1 + EY11, Y21 = LY21F1 F1 + EY21, Y31 = LY31F1 F1 + EY31,
  Y_{12} = 1 F_2 + EY_{12}, \quad Y_{22} = LY_{22}F_2 F_2 + EY_{22}, \quad Y_{32} = LY_{32}F_2 F_2 + EY_{32},
  Y13 = 1 F3 + EY13, Y23 = LY23F3 F3 + EY23, Y33 = LY33F3 F3 + EY33,
  Y14 = 1 F4 + EY14, Y24 = LY24F4 F4 + EY24, Y34 = LY34F4 F4 + EY34,
  X11=1 F7 + EX11, X21=LX21F7 F7 + EX21, X31=LX31F7 F7 + EX31,
  F1=1 F Alpha + 0 F Beta + EZF1,
  F2=1 F_Alpha + 1 F_Beta + EZF2,
  F3=1 F_Alpha + 2 F_Beta + EZF3,
  F4=1 F_Alpha + 3 F_Beta + EZF4,
  F_Alpha= GA00 INTERCEPT + GA10 F7 + EZF5,
  F_Beta= GA01 INTERCEPT + GA11 F7 + EZF6,
  F7 = F7 int(13) INTERCEPT + EZF7;
```

STD

EY11=VAREY1(0.25), EY12=VAREY1(0.25), EY13=VAREY1(0.25), EY14=VAREY1(0.25),
EY21=VAREY2(0.36), EY22=VAREY2(0.36),EY23=VAREY2(0.36), EY24=VAREY2(0.36),
EY31=VAREY3(0.16), EY32=VAREY3(0.16), EY33=VAREY3(0.16), EY34=VAREY3(0.16),
EX11=VAREX11(0.65), EX21=VAREX21(0.41), EX31=VAREX31(0.90),
EZF1=VARZF1(0.25), EZF2=VARZF2(0.36), EZF3=VARZF3(0.49),
EZF4=VARZF4(0.64), EZF5=VAR_Intercept(0.80), EZF6=VAR_Slope(0.60),
EZF7=VARF7;
COV
/****第1個問項ECM=TOEP************************************
EY12 EY11=COVEY1_lag1 (0.12), EY13 EY12=COVEY1_lag1 (0.12),
EY14 EY13=COVEY1_lag1 (0.12), EY13 EY11=COVEY1_lag2 (0.058),
EY14 EY12=COVEY1_lag2 (0.058), EY14 EY11=COVEY1_lag3 (0.028),
/****第2個問項ECM=CS***********************************
EY22 EY21=COVEY (0.24), EY23 EY22=COVEY2 (0.24),
EY24 EY23=COVEY2 (0.24), EY23 EY21=COVEY2 (0.24),
EY24 EY22=COVEY2(0.24), EY24 EY21=COVEY2 (0.24),
/****第3個問項ECM=TOEP************************************
EY32 EY31=COVEY3_lag1 (0.11), EY33 EY32=COVEY3_lag1 (0.11),
EY34 EY33=COVEY3_lag1 (0.11), EY33 EY31=COVEY3_lag2 (0.06),
EY34 EY32=COVEY3_lag2 (0.06), EY34 EY31=COVEY3_lag3 (0.04),
/*********** 第二階成長因素構念誤差共變異數************************************
EZF5 EZF6=CZF5ZF6(0.3478);
/****同問項不同期因素負荷相同************************************
LINCON
LY21F1=LY22F2, LY21F1 =LY23F3, LY23F3= LY24F4,
LY31F1=LY32F2, LY31F1 =LY33F3, LY33F3= LY34F4;
/**************************************
title 'E2_STEP3_H0_CS=TOEP';
VAR
Y11 Y21 Y31 Y12 Y22 Y32 Y13 Y23 Y33 Y14 Y24 Y34 X11 X21 X31;
RUN;
/***表4.8 第2個問項誤差_E2_STEP3_H0:CS=TOEP************************************
DATA Chisquare_Diff_Prob_CS_TOEP;
Saturated_M_TOEP_Chisquare=85.5475;
Saturated_M_TOEP_DF=103;
Restricted_M_CS_Chisquare=154.4227;
Restricted_M_CS_DF=105;
ChisquareDIFF=Restricted_M_CS_Chisquare-Saturated_M_TOEP_Chisquare;
DF_DIFF=Restricted_M_CS_DF-Saturated_M_TOEP_DF;
ChiSquareProb=1-PROBCHI(ChisquareDIFF, DF_DIFF,0); output;
PROC PRINT DATA = Chisquare_Diff_Prob_CS_TOEP;
title' E2_STEP3_H0_CS=TOEP ';

RUN;

```
/**表4.8 問項誤差2_步驟4 第2個問項ECM=AR(1),計算模型之卡方値及自由度***********/
PROC TCALIS METHOD=ML data=DATA_Sim_AR1_SEM OUTRAM=OUT_RAM
          OUTEST=OUT_EST MAXFUNC=2500 MAXITER=2500 PRINT;
LINEOS
  Y11 = 1 F1 + EY11, Y21 = LY21F1 F1 + EY21, Y31 = LY31F1 F1 + EY31,
  Y12 = 1 F2 + EY12, Y22 = LY22F2 F2 + EY22, Y32 = LY32F2 F2 + EY32,
  Y13 = 1 F3 + EY13, Y23 = LY23F3 F3 + EY23, Y33 = LY33F3 F3 + EY33,
  Y14 = 1 F4 + EY14, Y24 = LY24F4 F4 + EY24, Y34 = LY34F4 F4 + EY34,
  X11=1 F7 + EX11, X21=LX21F7 F7+ EX21, X31=LX31F7 F7 + EX31,
  F1=1 F_Alpha + 0 F_Beta + EZF1,
  F2=1 F_Alpha + 1 F_Beta + EZF2,
  F3=1 F_Alpha + 2 F_Beta + EZF3,
  F4=1 F_Alpha + 3 F_Beta + EZF4,
  F_Alpha= GA00 INTERCEPT + GA10 F7 + EZF5,
  F Beta= GA01 INTERCEPT + GA11 F7 + EZF6,
  F7 = F7_{int}(13) INTERCEPT + EZF7;
                             STD
 EY11=VAREY1(0.25), EY12=VAREY1(0.25), EY13=VAREY1(0.25), EY14=VAREY1(0.25),
 EY21=VAREY2(0.36), EY22=VAREY2(0.36), EY23=VAREY2(0.36), EY24=VAREY2(0.36),
 EY31=VAREY3(0.16), EY32=VAREY3(0.16), EY33=VAREY3(0.16), EY34=VAREY3(0.16),
 EX11=VAREX11(0.65), EX21=VAREX21(0.41), EX31=VAREX31(0.90),
 EZF1=VARZF1(0.25), EZF2=VARZF2(0.36), EZF3=VARZF3(0.49),
 EZF4=VARZF4(0.64),
                EZF5=VAR_Intercept(0.80), EZF6=VAR_Slope(0.60),
                            EZF7=VARF7:
COV
EY12 EY11=COVEY1_lag1 (0.12), EY13 EY12=COVEY1_lag1 (0.12),
 EY14 EY13=COVEY1 lag1 (0.12), EY13 EY11=COVEY1 lag2 (0.058),
 EY14 EY12=COVEY1 lag2 (0.058), EY14 EY11=COVEY1 lag3 (0.028),
EY22 EY21=COVEY2_lag1 (0.24), EY23 EY22=COVEY2_lag1 (0.24),
 EY24 EY23=COVEY2 lag1 (0.24), EY23 EY21=COVEY2 lag2 (0.17),
 EY24 EY22=COVEY2_lag2(0.17), EY24 EY21=COVEY2_lag3 (0.11),
EY32 EY31=COVEY3 lag1 (0.11), EY33 EY32=COVEY3 lag1 (0.11),
 EY34 EY33=COVEY3_lag1 (0.11), EY33 EY31=COVEY3_lag2 (0.06),
 EY34 EY32=COVEY3_lag2 (0.06), EY34 EY31=COVEY3_lag3 (0.04),
EZF5 EZF6=CZF5ZF6(0.3478);
LINCON
```

```
LY21F1=LY22F2, LY21F1 =LY23F3, LY23F3= LY24F4,
 LY31F1=LY32F2, LY31F1 =LY33F3, LY33F3= LY34F4;
PARAMETERS RHO2 (0.7);
  COVEY2_lag1=RHO2*VAREY2;
                      COVEY2 lag2=RHO2* RHO2*VAREY2;
  COVEY2 lag3=RHO2* RHO2* RHO2*VAREY2;
BOUNDS
  -1.<RHO2<1.;
title 'E2 STEP4:H0:AR(1)=TOEP';
VAR
   Y11 Y21 Y31 Y12 Y22 Y32 Y13 Y23 Y33 Y14 Y24 Y34 X11 X21 X31;
RUN:
DATA PrChi AR1 TOEP1 TOEP1 TOEP Ms;
 Saturated_Ms_TOEP_Chi=85.5475;
                        Saturated_Ms_TOEP_DF=103;
 ECM AR1 TOEP1 TOEP1 TOEP1 Chi=85.5929;
 ECM AR1 TOEP1 TOEP1 TOEP1 DF=105;
 Chi_DIFF=ECM_AR1_TOEP1_TOEP1_TOEP1_Chi-Saturated_Ms_TOEP_Chi;
 DF_DIFF=ECM_AR1_TOEP1_TOEP1_TOEP1_DF-Saturated_Ms_TOEP_DF;
 ChiSquareProb=1-PROBCHI(Chi_DIFF, DF_DIFF,0); output;
RUN:
PROC PRINT DATA= PrChi_AR1_TOEP1_TOEP1_TOEP_Ms;
 title' E2 STEP4:H0:AR(1)=TOEP ';
RUN:
/*****底下程式為表4.8 第3問項ECM鑑定, 第1,2問項ECM=TOEP****************************/
/**表4.8 問項誤差1_步驟1 第3問項誤差ECM=TOEP(1),計算模型之卡方値及自由度*********/
PROC TCALIS METHOD=ML data=DATA Sim AR1 SEM OUTRAM=OUT RAM
         OUTEST=OUT_EST MAXFUNC=2500 MAXITER=2500 PRINT;
LINEOS
  Y11 = 1 F1 + EY11, Y21 = LY21F1 F1 + EY21, Y31 = LY31F1 F1 + EY31.
  Y12 = 1 F2 + EY12, Y22 = LY22F2 F2 + EY22, Y32 = LY32F2 F2 + EY32,
  Y13 = 1 F3 + EY13, Y23 = LY23F3 F3 + EY23, Y33 = LY33F3 F3 + EY33,
  Y14 = 1 F4 + EY14, Y24 = LY24F4 F4 + EY24, Y34 = LY34F4 F4 + EY34,
  X11=1 F7 + EX11,
             X21=LX21F7 F7+ EX21, X31=LX31F7 F7 +EX31,
  F1=1 F_Alpha + 0 F_Beta + EZF1,
  F2=1 F Alpha + 1 F Beta + EZF2,
```

```
F3=1 F_Alpha + 2 F_Beta + EZF3,
  F4=1 F Alpha + 3 F Beta + EZF4,
  F_Alpha= GA00 INTERCEPT + GA10 F7 + EZF5,
  F_Beta= GA01 INTERCEPT + GA11 F7 + EZF6,
  F7 = F7_{int}(13) INTERCEPT + EZF7;
STD
 EY11=VAREY1(0.25), EY12=VAREY1(0.25), EY13=VAREY1(0.25), EY14=VAREY1(0.25),
 EY21=VAREY2(0.36), EY22=VAREY2(0.36), EY23=VAREY2(0.36), EY24=VAREY2(0.36),
 EY31=VAREY3(0.16), EY32=VAREY3(0.16), EY33=VAREY3(0.16), EY34=VAREY3(0.16),
 EX11=VAREX11(0.65), EX21=VAREX21(0.41), EX31=VAREX31(0.90),
 EZF1=VARZF1(0.25),
               EZF2=VARZF2(0.36), EZF3=VARZF3(0.49),
 EZF4=VARZF4(0.64), EZF5=VAR_Intercept(0.80), EZF6=VAR_Slope(0.60),
 EZF7=VARF7;
COV
EY12 EY11=COVEY1_lag1 (0.12), EY13 EY12=COVEY1_lag1 (0.12),
 EY14 EY13=COVEY1 lag1 (0.12), EY13 EY11=COVEY1 lag2 (0.058),
 EY14 EY12=COVEY1_lag2 (0.058), EY14 EY11=COVEY1_lag3 (0.028),
EY22 EY21=COVEY2 lag1 (0.24), EY23 EY22=COVEY2 lag1 (0.24),
 EY24 EY23=COVEY2 lag1 (0.24), EY23 EY21=COVEY2 lag2 (0.17),
 EY24 EY22=COVEY2 lag2(0.17), EY24 EY21=COVEY2 lag3 (0.11),
/*
 EY32 EY31=COVEY3_lag1 (0.11), EY33 EY32=COVEY3_lag1 (0.11),
 EY34 EY33=COVEY3 lag1 (0.11), EY33 EY31=COVEY3 lag2 (0.06),
 EY34 EY32=COVEY3_lag2 (0.06), EY34 EY31=COVEY3_lag3 (0.04),
*/
EZF5 EZF6=CZF5ZF6(0.3478);
LINCON
 LY21F1=LY22F2, LY21F1 =LY23F3, LY23F3= LY24F4,
 LY31F1=LY32F2. LY31F1 =LY33F3. LY33F3= LY34F4:
title 'E3_STEP1_H0:TOEP(1)=TOEP';
VAR
 Y11 Y21 Y31 Y12 Y22 Y32 Y13 Y23 Y33 Y14 Y24 Y34 X11 X21 X31;
RUN
DATA Chisquare_Diff_Prob_TOEP1_TOEP;
```

Saturated_M_TOEP_Chisquare=85.5475;

```
Saturated_M_TOEP_DF=103;
 Restricted M TOEP1 Chisquare=209.3751;
 Restricted_M_TOEP1_DF=106;
 ChisquareDIFF=Restricted_M_TOEP1_Chisquare-Saturated_M_TOEP_Chisquare;
 DF_DIFF=Restricted_M_TOEP1_DF-Saturated_M_TOEP_DF;
 ChiSquareProb=1-PROBCHI(ChisquareDIFF, DF DIFF,0); output;
PROC PRINT DATA= Chisquare_Diff_Prob_TOEP1_TOEP;
  title' E3 STEP1 H0:TOEP(1)=TOEP ';
RUN:
PROC TCALIS METHOD=ML data=DATA_Sim_AR1_SEM OUTRAM=OUT_RAM
            OUTEST=OUT_EST MAXFUNC=2500 MAXITER=2500 PRINT;
LINEQS
  Y11 = 1 F1 + EY11, Y21 = LY21F1 F1 + EY21, Y31 = LY31F1 F1 + EY31,
  Y12 = 1 F2 + EY12, Y22 = LY22F2 F2 + EY22, Y32 = LY32F2 F2 + EY32,
  Y13 = 1 F3 + EY13, Y23 = LY23F3 F3 + EY23, Y33 = LY33F3 F3 + EY33,
  Y_{14} = 1 F_4 + EY_{14}, Y_{24} = LY_{24}F_4 F_4 + EY_{24}F_4,
                                      Y34 = LY34F4 F4 + EY34,
  X11=1 F7 + EX11, X21=LX21F7 F7+ EX21,
                                      X31=LX31F7 F7 +EX31,
  F1=1 F Alpha + 0 F Beta + EZF1,
  F2=1 F_Alpha + 1 F_Beta + EZF2,
  F3=1 F_Alpha + 2 F_Beta + EZF3,
  F4=1 F_Alpha + 3 F_Beta + EZF4,
  F_Alpha= GA00 INTERCEPT + GA10 F7 + EZF5,
  F_Beta= GA01 INTERCEPT + GA11 F7 + EZF6,
  F7 = F7 int(13) INTERCEPT + EZF7;
                               STD
 EY11=VAREY1(0.25), EY12=VAREY1(0.25), EY13=VAREY1(0.25), EY14=VAREY1(0.25),
 EY21=VAREY2(0.36), EY22=VAREY2(0.36), EY23=VAREY2(0.36), EY24=VAREY2(0.36),
 EY31=VAREY3(0.16), EY32=VAREY3(0.16), EY33=VAREY3(0.16), EY34=VAREY3(0.16),
 EX11=VAREX11(0.65), EX21=VAREX21(0.41), EX31=VAREX31(0.90),
 EZF1=VARZF1(0.25), EZF2=VARZF2(0.36), EZF3=VARZF3(0.49),
 EZF4=VARZF4(0.64), EZF5=VAR_Intercept(0.80), EZF6=VAR_Slope(0.60),
 EZF7=VARF7:
COV
EY12 EY11=COVEY1 lag1 (0.12), EY13 EY12=COVEY1 lag1 (0.12),
 EY14 EY13=COVEY1_lag1 (0.12), EY13 EY11=COVEY1_lag2 (0.058),
 EY14 EY12=COVEY1_lag2 (0.058), EY14 EY11=COVEY1_lag3 (0.028),
EY22 EY21=COVEY2_lag1 (0.24), EY23 EY22=COVEY2_lag1 (0.24),
 EY24 EY23=COVEY2_lag1 (0.24), EY23 EY21=COVEY2_lag2 (0.17),
 EY24 EY22=COVEY2 lag2(0.17), EY24 EY21=COVEY2 lag3 (0.11),
```

185

```
EY32 EY31=COVEY3 lag1 (0.11), EY33 EY32=COVEY3 lag1 (0.11),
 EY34 EY33=COVEY3_lag1 (0.11),
/*
 EY33 EY31=COVEY3_lag2 (0.06),
 EY34 EY32=COVEY3_lag2 (0.06), EY34 EY31=COVEY3_lag3 (0.04),
*/
EZF5 EZF6=CZF5ZF6(0.3478);
LINCON
 LY21F1=LY22F2, LY21F1 =LY23F3, LY23F3= LY24F4,
 LY31F1=LY32F2, LY31F1 =LY33F3, LY33F3= LY34F4;
PARAMETERS THE1 (-0.45);
 /*****AR(1) for item1 with 4 occasions***********/
 COVEY3 lag1=(-THE1/(1+THE1**2))*VAREY3;
******
                         BOUNDS
 -1.<THE1<1.:
/********
title 'E3 STEP2 H0:MA(1)=TOEP';
VAR
   Y11 Y21 Y31 Y12 Y22 Y32 Y13 Y23 Y33 Y14 Y24 Y34 X11 X21 X31;
RUN:
DATA Chisquare Diff Prob MA1 TOEP;
 Saturated_M_TOEP_Chisquare=85.5475;
 Saturated_M_TOEP_DF=103;
 Restricted_M_MA1_Chisquare=114.8538;
 Restricted M MA1 DF=105;
 ChisquareDIFF=Restricted_M_MA1_Chisquare-Saturated_M_TOEP_Chisquare;
 DF DIFF=Restricted M MA1 DF-Saturated M TOEP DF;
 ChiSquareProb=1-PROBCHI(ChisquareDIFF, DF_DIFF,0); output;
PROC PRINT DATA= Chisquare_Diff_Prob_MA1_TOEP;
 title' E3 STEP2 H0:MA(1)=TOEP ';
RUN
/**表4.8 問項誤差1_步驟3 第3問項ECM=CS,計算模型之卡方値及自由度******************/
PROC TCALIS METHOD=ML data=DATA Sim AR1 SEM OUTRAM=OUT RAM
        OUTEST=OUT_EST MAXFUNC=2500 MAXITER=2500 PRINT;
```

LINEQS

```
Y11 = 1 F1 + EY11, Y21 = LY21F1 F1 + EY21, Y31 = LY31F1 F1 + EY31,
  Y12 = 1 F2 + EY12, Y22 = LY22F2 F2 + EY22, Y32 = LY32F2 F2 + EY32,
  Y13 = 1 F3 + EY13, Y23 = LY23F3 F3 + EY23, Y33 = LY33F3 F3 + EY33,
  Y14 = 1 F4 + EY14, Y24 = LY24F4 F4 + EY24, Y34 = LY34F4 F4 + EY34,
  X11=1 F7 + EX11,
                X21=LX21F7 F7+ EX21,
                                   X31=LX31F7 F7 +EX31,
  F1=1 F Alpha + 0 F Beta + EZF1,
  F2=1 F_Alpha + 1 F_Beta + EZF2,
  F3=1 F Alpha + 2 F Beta + EZF3,
  F4=1 F_Alpha + 3 F_Beta + EZF4,
  F_Alpha= GA00 INTERCEPT + GA10 F7 + EZF5,
  F Beta= GA01 INTERCEPT + GA11 F7 + EZF6,
  F7 = F7_{int}(13) INTERCEPT + EZF7;
STD
 EY11=VAREY1(0.25), EY12=VAREY1(0.25), EY13=VAREY1(0.25), EY14=VAREY1(0.25),
 EY21=VAREY2(0.36), EY22=VAREY2(0.36), EY23=VAREY2(0.36), EY24=VAREY2(0.36),
 EY31=VAREY3(0.16), EY32=VAREY3(0.16), EY33=VAREY3(0.16), EY34=VAREY3(0.16),
 EX11=VAREX11(0.65), EX21=VAREX21(0.41), EX31=VAREX31(0.90),
 EZF1=VARZF1(0.25),
                 EZF2=VARZF2(0.36), _ EZF3=VARZF3(0.49),
 EZF4=VARZF4(0.64), EZF5=VAR_Intercept(0.80), EZF6=VAR_Slope(0.60),
 EZF7=VARF7;
COV
EY12 EY11=COVEY1_lag1 (0.12), EY13 EY12=COVEY1_lag1 (0.12),
 EY14 EY13=COVEY1_lag1 (0.12), EY13 EY11=COVEY1_lag2 (0.058),
 EY14 EY12=COVEY1_lag2 (0.058), EY14 EY11=COVEY1_lag3 (0.028),
EY22 EY21=COVEY2_lag1 (0.24), EY23 EY22=COVEY2_lag1 (0.24),
 EY24 EY23=COVEY2 lag1 (0.24), EY23 EY21=COVEY2 lag2 (0.17),
 EY24 EY22=COVEY2_lag2(0.17), EY24 EY21=COVEY2_lag3 (0.11),
EY32 EY31=COVEY3 (0.11), EY33 EY32=COVEY3 (0.11),
 EY34 EY33=COVEY3 (0.11), EY33 EY31=COVEY3 (0.11),
 EY34 EY32=COVEY3 (0.11), EY34 EY31=COVEY3 (0.11),
EZF5 EZF6=CZF5ZF6(0.3478);
LINCON
 LY21F1=LY22F2, LY21F1 =LY23F3, LY23F3= LY24F4,
 LY31F1=LY32F2, LY31F1 =LY33F3, LY33F3= LY34F4;
title 'E3 STEP3 H0:CS(1)=TOEP';
VAR
  Y11 Y21 Y31 Y12 Y22 Y32 Y13 Y23 Y33 Y14 Y24 Y34 X11 X21 X31:
```

RUN:

```
DATA Chisquare_Diff_Prob_CS_TOEP;
 Saturated_M_TOEP_Chisquare=85.5475;
 Saturated_M_TOEP_DF=103;
 Restricted_M_CS_Chisquare=136.9767;
 Restricted M CS DF=105;
 ChisquareDIFF=Restricted_M_CS_Chisquare-Saturated_M_TOEP_Chisquare;
 DF_DIFF=Restricted_M_CS_DF-Saturated_M_TOEP_DF;
 ChiSquareProb=1-PROBCHI(ChisquareDIFF, DF_DIFF,0); output;
PROC PRINT DATA= Chisquare_Diff_Prob_CS_TOEP;
title' E3 STEP3 H0:CS=TOEP ':
RUN:
/**表4.8 問項誤差1_步驟4 第3問項ECM=AR(1),計算模型之卡方値及自由度****************/
PROC TCALIS METHOD=ML data=DATA Sim AR1 SEM OUTRAM=OUT RAM
           OUTEST=OUT_EST MAXFUNC=2500 MAXITER=2500 PRINT;
LINEOS
  Y11 = 1 F1 + EY11, Y21 = LY21F1 F1 + EY21, Y31 = LY31F1 F1 + EY31,
  Y12 = 1 F2 + EY12, Y22 = LY22F2 F2 + EY22, Y32 = LY32F2 F2 + EY32,
  Y13 = 1 F3 + EY13, Y23 = LY23F3 F3 + EY23, Y33 = LY33F3 F3 + EY33,
  Y14 = 1 F4 + EY14, Y24 = LY24F4 F4 + EY24, Y34 = LY34F4 F4 + EY34,
  X11=1 F7 + EX11, X21=LX21F7 F7 + EX21, <sup>1</sup> <sup>8</sup> X31=LX31F7 F7 + EX31,
  F1 = 1 F_Alpha + 0 F_Beta + EZF1,
  F2=1 F_Alpha + 1 F_Beta + EZF2,
  F3=1 F_Alpha + 2 F_Beta + EZF3,
  F4=1 F_Alpha + 3 F_Beta + EZF4,
  F_Alpha= GA00 INTERCEPT + GA10 F7 + EZF5,
  F Beta= GA01 INTERCEPT + GA11 F7 + EZF6,
  F7 = F7_{int}(13) INTERCEPT + EZF7;
STD
 EY11=VAREY1(0.25), EY12=VAREY1(0.25), EY13=VAREY1(0.25), EY14=VAREY1(0.25),
 EY21=VAREY2(0.36), EY22=VAREY2(0.36), EY23=VAREY2(0.36), EY24=VAREY2(0.36),
 EY31=VAREY3(0.16), EY32=VAREY3(0.16), EY33=VAREY3(0.16), EY34=VAREY3(0.16),
 EX11=VAREX11(0.65), EX21=VAREX21(0.41), EX31=VAREX31(0.90),
 EZF1=VARZF1(0.25), EZF2=VARZF2(0.36), EZF3=VARZF3(0.49),
 EZF4=VARZF4(0.64), EZF5=VAR_Intercept(0.80), EZF6=VAR_Slope(0.60),
 EZF7=VARF7;
COV
```

```
EY12 EY11=COVEY1_lag1 (0.12), EY13 EY12=COVEY1_lag1 (0.12),
```

EY14 EY13=COVEY1 lag1 (0.12), EY13 EY11=COVEY1 lag2 (0.058),

```
EY14 EY12=COVEY1_lag2 (0.058), EY14 EY11=COVEY1_lag3 (0.028),
EY22 EY21=COVEY2_lag1 (0.24), EY23 EY22=COVEY2_lag1 (0.24),
 EY24 EY23=COVEY2_lag1 (0.24), EY23 EY21=COVEY2_lag2 (0.17),
 EY24 EY22=COVEY2_lag2(0.17), EY24 EY21=COVEY2_lag3 (0.11),
EY32 EY31=COVEY3_lag1 (0.11), EY33 EY32=COVEY3_lag1 (0.11),
 EY34 EY33=COVEY3 lag1 (0.11), EY33 EY31=COVEY3 lag2 (0.06),
 EY34 EY32=COVEY3_lag2 (0.06), EY34 EY31=COVEY3_lag3 (0.04),
EZF5 EZF6=CZF5ZF6(0.3478);
LINCON
 LY21F1=LY22F2, LY21F1 =LY23F3, LY23F3= LY24F4,
 LY31F1=LY32F2, LY31F1 =LY33F3, LY33F3= LY34F4;
/******AR(1) for item3
              PARAMETERS RHO3 (0.6);
 COVEY3_lag1=RHO3*VAREY3; COVEY3_lag2=RHO3* RHO3*VAREY3;
 COVEY3 lag3=RHO3* RHO3* RHO3*VAREY3;
******
                     ******
BOUNDS
 -1.<RHO3<1.:
/*******
              ********
title 'E3_STEP4_H0:AR(1)=TOEP';
VAR
   Y11 Y21 Y31 Y12 Y22 Y32 Y13 Y23 Y33 Y14 Y24 Y34 X11 X21 X31:
RUN:
DATA PrChi AR1 TOEP1 TOEP1 TOEP Ms;
 Saturated_Ms_TOEP_Chi=85.5475;
 Saturated Ms TOEP DF=103;
 ECM_AR1_TOEP1_TOEP1_TOEP1_Chi=86.3463;
 ECM AR1 TOEP1 TOEP1 TOEP1 DF=105;
 Chi_DIFF=ECM_AR1_TOEP1_TOEP1_TOEP1_Chi-Saturated_Ms_TOEP_Chi;
 DF_DIFF=ECM_AR1_TOEP1_TOEP1_TOEP1_DF-Saturated_Ms_TOEP_DF;
 ChiSquareProb=1-PROBCHI(Chi DIFF, DF DIFF,0); output;
PROC PRINT DATA= PrChi_AR1_TOEP1_TOEP1_TOEP_Ms;
title' E3_STEP4_H0:AR(1)=TOEP ';
RUN:
```

```
PROC TCALIS METHOD=ML data=DATA_Sim_AR1_SEM OUTRAM=OUT_RAM
```

OUTEST=OUT_EST MAXFUNC=2500 MAXITER=2500 PRINT;

LINEQS

```
Y11 = 1 F1 + EY11, Y21 = LY21F1 F1 + EY21, Y31 = LY31F1 F1 + EY31,
  Y_{12} = 1 F_2 + EY_{12}, \quad Y_{22} = LY_{22}F_2 F_2 + EY_{22}, \quad Y_{32} = LY_{32}F_2 F_2 + EY_{32}.
  Y13 = 1 F3 + EY13, Y23 = LY23F3 F3 + EY23, Y33 = LY33F3 F3 + EY33,
  Y14 = 1 F4 + EY14, Y24 = LY24F4 F4 + EY24, Y34 = LY34F4 F4 + EY34,
  X11=1 F7 + EX11,
                 X21=LX21F7 F7+ EX21, X31=LX31F7 F7 +EX31,
  F1=1 F_Alpha + 0 F_Beta + EZF1,
  F2=1 F_Alpha + 1 F_Beta + EZF2,
  F3=1 F_Alpha + 2 F_Beta + EZF3,
  F4=1 F_Alpha + 3 F_Beta + EZF4,
  F_Alpha= GA00 INTERCEPT + GA10 F7 + EZF5,
  F_Beta= GA01 INTERCEPT + GA11 F7 + EZF6,
  F7 = F7_{int}(13) INTERCEPT + EZF7;
STD
 EY11=VAREY1(0.25), EY12=VAREY1(0.25), EY13=VAREY1(0.25), EY14=VAREY1(0.25),
 EY21=VAREY2(0.36), EY22=VAREY2(0.36), EY23=VAREY2(0.36), EY24=VAREY2(0.36),
 EY31=VAREY3(0.16), EY32=VAREY3(0.16), EY33=VAREY3(0.16), EY34=VAREY3(0.16),
 EX11=VAREX11(0.65), EX21=VAREX21(0.41), EX31=VAREX31(0.90),
 EZF1=VARZF1(0.25), EZF2=VARZF2(0.36), EZF3=VARZF3(0.49),
 EZF4=VARZF4(0.64), EZF5=VAR_Intercept(0.80), EZF6=VAR_Slope(0.60),
                             1896
 EZF7=VARF7;
COV
EY12 EY11=COVEY1_lag1 (0.12), EY13 EY12=COVEY1_lag1 (0.12),
 EY14 EY13=COVEY1 lag1 (0.12), EY13 EY11=COVEY1 lag2 (0.058),
 EY14 EY12=COVEY1_lag2 (0.058), EY14 EY11=COVEY1_lag3 (0.028),
EY22 EY21=COVEY2_lag1 (0.24), EY23 EY22=COVEY2_lag1 (0.24),
 EY24 EY23=COVEY2 lag1 (0.24), EY23 EY21=COVEY2 lag2 (0.17),
 EY24 EY22=COVEY2_lag2(0.17), EY24 EY21=COVEY2_lag3 (0.11),
EY32 EY31=COVEY3_lag1 (0.11), EY33 EY32=COVEY3_lag1 (0.11),
 EY34 EY33=COVEY3_lag1 (0.11), EY33 EY31=COVEY3_lag2 (0.06),
 EY34 EY32=COVEY3 lag2 (0.06), EY34 EY31=COVEY3 lag3 (0.04),
EZF5 EZF6=CZF5ZF6(0.3478);
LINCON
 LY21F1=LY22F2, LY21F1 =LY23F3, LY23F3= LY24F4,
 LY31F1=LY32F2, LY31F1 =LY33F3, LY33F3= LY34F4;
```

PARAMETERS RHO1 RHO2 RHO3 (0.5 0.7 0.6); COVEY1_lag1=RHO1*VAREY1; COVEY1_lag2=RHO1* RHO1* VAREY1; COVEY1_lag3=RHO1* RHO1* RHO1*VAREY1; COVEY2_lag1= RHO2*VAREY2; COVEY2_lag2= RHO2* RHO2*VAREY2; COVEY2_lag3= RHO2* RHO2* RHO2*VAREY2; COVEY3_lag1=RHO3*VAREY3; COVEY3_lag2=RHO3* RHO3*VAREY3; COVEY3 lag3=RHO3* RHO3* RHO3*VAREY3; **BOUNDS** -1.<RHO1<1. , -1.<RHO2<1. ,-1.<RHO3<1. ; title '最終模型_三個問項誤差_ECM均為AR(1)'; VAR Y11 Y21 Y31 Y12 Y22 Y32 Y13 Y23 Y33 Y14 Y24 Y34 X11 X21 X31; RUN: ****

```
[B-6]: 一階條件式LGM ECM=ARMA(1,1)範例
```

```
PROC CALIS METHOD=ML UCOV AUG:
  LINEQS
     Y1 = 1 F_Alpha + 0 F_Beta + E1,
     Y2 = 1 F_Alpha + 1 F_Beta + E2,
     Y3 = 1 F Alpha + 2 F Beta + E3,
     Y4 = 1 F_Alpha + 3 F_Beta + E4,
     F_Alpha = GA00 INTERCEPT + GA01 X + D0,
     F_Beta = GA10 INTERCEPT + GA11 X + D1;
  STD
     E1=VARE, E2=VARE, E3=VARE, E4=VARE, X=VARX,
     D0=VARD0, D1=VARD1;
  COV
     E1 E2=COV lag1, E2 E3=COV lag1, E3 E4=COV lag1,
     E1 E3=COV_lag2, E2 E4=COV_lag2, E1 E4=COV_lag3,
     D0 D1=COVD0D1;
  PARAMETERS PHI1 RHO1;
     COV_lag1=RHO1*VARE;
                                          COV_lag2=PHI1* COV_lag1;
     COV_lag3=PHI1* COV_lag2;
  BOUNDS
     -1. < PHI1 < 1.;
  VAR Y1 Y2 Y3 Y4 X;
  TITLE 'Linear Growth Modeling with Four Occasions by Specifying';
  TITLE2 'ARMA(1,1) for Level-1 Error Covariance Structure';
                                       TITLE3 'by the SEM approach';
RUN;
PROC MIXED METHOD=ML COVTEST;
```

MODEL Y=TIME X TIME*X / SOLUTION DDFM=BW; REPEATED / SUBJECT=ID TYPE=ARMA(1,1) R RCORR;

RANDOM INTERCEPT TIME / SUBJECT=ID TYPE=UN G GCORR;

CLASS ID;

RUN:

TITLE3 'by the HLM approach';

192

[B-7]: 二階條件式LGM ECM=AR(1)範例

PROC CALIS METHOD=ML UCOV AUG;

```
LINEOS
  Y11 = 1 F1 + EY11, Y21 = LY21F1 F1 + EY21, Y31 = LY31F1 F1 + EY31,
  Y12 = 1 F2 + EY12, Y22 = LY22F2 F2 + EY22, Y32 = LY32F2 F2 + EY32,
  Y13 = 1 F3 + EY13, Y23 = LY23F3 F3 + EY23, Y33 = LY33F3 F3 + EY33,
  Y14 = 1 F4 + EY14, Y24 = LY24F4 F4 + EY24, Y34 = LY34F4 F4 + EY34,
  X1 = 1 F7 + EX1,
                     X2 = LX2F7 F7 + EX2,
                                              X3 = LX3F7 F7 + EX3,
  F1 = 1 F Alpha + 0 F Beta + EZF1,
  F2 = 1 F_Alpha + 1 F_Beta + EZF2,
  F3 = 1 F Alpha + 2 F Beta + EZF3,
  F4 = 1 F_Alpha + 3 F_Beta + EZF4,
  F_Alpha = GA00 INTERCEPT + GA10 F7 + EZF5,
  F Beta = GA01 INTERCEPT + GA11 F7 + EZF6,
  F7 = F7_int INTERCEPT + EZF7;
STD
  EY11-EY14=4*VARE1, EY21-EY24=4*VARE2, EY31-EY34=4*VARE3,
  EX1=VAREX1, EX2=VAREX2, EX3=VAREX3,
  EZF1=VARZF1, EZF2=VARZF2, EZF3=VARZF3, EZF4=VARZF4,
  EZF5=VARE Intercept, EZF6=VARE Slope, EZF7=VARZF7;
COV
  /* for the first-level errors associated with indicator 1 */
  EY11 EY12=COV1_lag1, EY12 EY13=COV1_lag1, EY13 EY14=COV1_lag1,
  EY11 EY13=COV1_lag2, EY12 EY14=COV1_lag2, EY11 EY14=COV1_lag3,
  /* for the first-level errors associated with indicator 2 */
  EY21 EY22=COV2 lag1, EY22 EY23=COV2 lag1, EY23 EY24=COV2 lag1,
  EY21 EY23=COV2_lag2, EY22 EY24=COV2_lag2, EY21 EY24=COV2_lag3,
 /* for the first-level errors associated with indicator 3 */
  EY31 EY32=COV3_lag1, EY32 EY33=COV3_lag1, EY33 EY34=COV3_lag1,
  EY31 EY33=COV3_lag2, EY32 EY34=COV3_lag2, EY31 EY34=COV3_lag3,
  /* for the second-level errors associated with growth factors */
  EZF5 EZF6=CZF5ZF6;
PARAMETERS PHI1 PHI2 PHI3;
  /* for the first-level errors associated with indicator 1 */
  COV1 lag1=PHI1*VARE1; COV1 lag2= (PHI1**2)*VARE1;
  COV1_lag3=(PHI1**3)*VARE1;
  /* for the first-level errors associated with indicator 2 */
  COV2_lag1=PHI2*VARE2; COV2_lag2=(PHI2**2)*VARE2;
  COV2 lag3=(PHI2**3)*VARE2;
 /* for the first-level errors associated with indicator 3 */
  COV3_lag1=PHI3*VARE3; COV3_lag2=(PHI3**2)*VARE3;
  COV3_lag3=(PHI3**3)*VARE3;
```

BOUNDS

-1.< PHI1<1., -1.< PHI2<1., -1.< PHI3<1.;

LINCON /* invariance over time is assumed */

```
LY21F1=LY22F2, LY21F1=LY23F3, LY21F3=LY24F4,
```

LY31F1=LY32F2, LY31F1=LY33F3, LY31F3=LY34F4;

TITLE 'Second-Order Linear Growth Modeling';

TITLE2 'with Three Indicators and Four Occasions';

TITLE3 'by Specifying AR(1) for Each of Level-1 Error Covariance Structures';

VAR Y11 Y21 Y31 Y12 Y22 Y32 Y13 Y23 Y33 Y14 Y24 Y34 X1 X2 X3;

RUN;

姓名: 鄭天德

籍貫:臺灣省苗栗縣

出生日期:民國49年5月1日

傳

學歷:

1. 國立臺灣科技大學機械工程系(民國 78 年畢業)。

自

2. 國立交通大學經營管理研究所碩士班(民國 91 年畢業)。

3. 國立交通大學經營管理研究所博士班(民國 91 年入學)

1896

經歷:

1. 臺灣電力公司通霄發電廠機械工程師(民國 78 年 6 月~ 84 年 4 月)。

2. 臺灣電力公司通霄發電廠值班主任(民國 84 年 4 月~93 年 12)。

3. 新竹科學園區新宇汽電共生廠顧問(民國 88 年 3 月~88 年 5 月)。

4. 臺灣電力公司大潭發電廠值班主任(民國 93 年 12 月~94 年 7 月)。

5. 臺灣電力公司大潭發電廠值班經理(民國 94 年 7 月~)。

學術期刊及研討會論文:

(A) 期刊論文

[01].鄭天德,台灣電力需求模型及預測,中國科技發展精典文庫,2003。

[02].Jane, T. D., & Ding, C. G. (2009). On the multivariate EGARCH model. Applied Economics Letters, 16, 1757–1761. (SSCI, Impact Factor = 0.241, 2009)

- [03].Wang, M. J., Tzeng, G. H., & Jane, T. D. (2009). A Fuzzy ARIMA model by using quadratic programming approach for time series data, *International Journal of Information Systems for Logistics and Management*. 5, 41–51.
- [04].Ding, C. G., & Jane, T. D. (2010). An alternative estimate of reliability for test-retest data. *Journal of Management*,(管理學報) 27, 355–369. (TSSCI)
- [05].Ding, C. G., & Jane, T. D. Using SAS PROC CALIS to Fit Error Covariance Structures of Latent Growth Models. submitted to *Structural Equation Modeling: A Multidisciplinary Journal* (submitted 2010/3/29; resubmitted 2010/12/06).(SSCI, Impact Factor=3.153, 2009).
- [06].Ding, C. G., & Jane, T. D. On the reliability, consistency, and method-specificity in multitrait-multimethod models. submitted to *Applied Psychological Measurement*. (submitted 2010/7/15; under revision). (SSCI, Impact Factor = 0.714, 2009).
- [07].Ding, C. G., & Jane, T. D. Dealing with error covariances in SEM: Recommendations for behavioral studies. submitted to *Multivariate Behavior Research*. (submitted 2010/5/13; under major revision).(SSCI, Impact Factor=2.238, 2009).
- [08].Ding, C. G., & Jane, T. D. On the reduction of self-report scales. submitted to *Journal of Business Research*. (2010/11/29, under review).

1891

[09]. Ding, C. D., Lee, M. C., Wang, H. J., Hung, W. C. & Jane, T. D. Assessing the change in investor sentiment over time. (Working Paper).

(B)研討會論文

- [01].**鄭天德**、丁承, "VAR-TBGARCH 模型及對 VaR 之預測應用", 2003 現代財務 論壇學術研討會, 2003。
- [02].Ding, C. G., & Jane, T. D. (2007). A composite reliability index for test-retest data, Presentation at the Academy of Management 2007 Annual Meeting – Research Methods Division, Philadelphia, PA, USA, August 6–8, 2007.
- [03].Ding, C. G., & Jane, T. D. (2008). Corrected indices for reliability assessment. Presentation at the Academy of Management 2008 Annual Meeting – Research Methods Division, Anaheim, CA, USA, August 8–13, 2008.
- [04].Ding, C. G., & Jane, T. D. (2009). The influence of misspecification of error covariances on the reliability and path estimation in SEM. Presentation at the Academy of Management 2009 Annual Meeting –Research Methods Division, Chicago, USA, August 7–11, 2009.

[05].Ding, C. G., & Jane, T. D. (2010). On the reliability analysis after controlling for common method variance. Presentation at the Academy of Management 2010 Annual Meeting –Research Methods Division, Montréal, Canada, August 6–10, 2010.

台灣電力公司內部期刊

(一).節約能源經濟

- [01]. 82 年度獲選納編節約能源論文,並赴南投區處報告論文 葉錫勳、鄭天德,「通霄第四、五號機鍋爐(HRSG)及氣渦輪機(GT)停機方式改善 報告」。
- [02]. 83 年度獲選納編節約能源論文,並赴嘉義區處報告論文 葉錫勳、**鄭天德**,「通霄第四、五號機組冷凝水補給改善」。
- (二).能源經濟研究期刊

鄭天德,「Ω 値降低與除硝蒸汽供需平衡探討及改善」,能源經濟期刊,民國 84 年。

(三).發電通訊

- [01].**鄭天德**,「通霄 ABB 機組控制室 CRT 操作劃面增設高壓飼水泵運轉監視系統」, 發電通訊,民國 84 年 4 月,第 290 期。
- [02].**鄭天德**,「通霄第四、五號機大氣洩水槽噴水減溫水源改善」,發電通訊,民國 84年5月,第291期。
- [03].鄭天德,「通六機 GT 負載與天然氣用量模式構建暨 EXCEL 統計軟體操作」,民國 89 年。
- [04].**鄭天德**,「氣渦輪機進氣溫度 TIT 理論與比較」,發電通訊,民國 90 年 9 月,第 367 期。
- [05].**鄭天德**,「統計方法驗證氣渦輪機 TIT 公式---通霄 GT6-1 為例」,發電通訊,民國 91 年。
- [06].鄭天德,「氣渦輪機熱效率與效率試驗」,發電通訊,民國 92 年 9 月,第 391 期。
- [07].**鄭天德**,「自動發電控制(AGC)控制模式及應用---以通六機為例」,發電通訊,民 國 93 年 12 月,第 404 期。
- [08].林文地、鄭天德,「員工提案制度撰寫制式化範本既多目標決策分析方法的導

入」,發電通訊,民國 94 年 07 月,第 411 期。

- [09].**鄭天德**、陳保甫,「三菱 M501 型氣機之溫度控制」,發電通訊,民國 96 年 10 月,第 440 期。
- [10].鄭天德、凌竟銘,「蒸汽吹管理論與實務---以大潭電廠三號機為範例」,發電通訊,民國 96 年 11 月,第 441 期。
- (四).台電工程月刊
- [01].**鄭天德**、吳嘉燿,「汽機轉軸受熱變形與重量變形之研究」,台電工程月刊,民國 89 年 9 月,第 625 期。
- [02].鄭天德,「台灣電力需求之時間序列分析」,台電工程月刊,民國 90 年 9 月, 第 637 期,63-77。
- [03].**鄭天德**,「通霄第六號機氣渦輪機負載與天然氣使用量關係模式建立」,台電工程月刊,民國 90 年 11 月,第 639 期,23-37。
- [04].**鄭天德**,「大氣溫度對氣渦輪機發電量影響實證研究—以通霄電廠 GT4-1 為例」,台電工程月刊,民國 91 年 6 月,第 646 期,1-23。
- [05].**鄭天德**,「氣渦輪機進氣溫度 TIT 理論與實證——以通霄電廠 GT6-1 爲例」,台電 工程月刊,民國 92 年 1 月,第 653 期,11-32。
- [06].**鄭天德**,「燃油及天燃氣能源期貨商品風險値預測」,台電工程月刊,民國 92 年 9月,第 661 期,113-136。
- [07].**鄭天德**,「氣渦輪機循環熱效率理論與實務」,台電工程月刊,民國 93 年 4 月, 第 668 期,1-24。
- [08].**鄭天德**,「氣渦輪滿載發電量檢定方法---以大潭火力電廠 GT1-1 爲例」,台電工 程月刊,民國 95 年 2 月,第 690 期,1-13。
- [09].**鄭天德**、林翰榮,「WTI油價報酬波動模式之構建」,台電工程月刊,民國 96 年 9月,第 709 期,83-101。
- [10].鄭天德「統計不確定性理論在電廠效率評估之應用」,台電工程月刊,民國 97 年5月,第717期,106–123。
- [11].江政隆、陳建益、**鄭天德**「大潭蒸汽輪機轉軸熱應力分析」,台電工程月刊,修 改中。
- [12].林翰榮、鄭天德「韋伯分配在電廠設備維護策略之應用」,台電工程月刊, 民國 97 年 4 月,第 728 期,9-20。

[13].鄭天德、彭俊寧「冷凝器效能分析理論與實務---以大潭電廠為例」,台電工程月刊,民國 98 年 12 月,第 736 期,1–15。

