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Studies of Exploratory Silicon Device Fabrication and

Sensor Application

Abstract

In the past decade, SOI CMOSFETs have become attractive because they provide
full dielectric isolation and reduced junction capacitance for high-performance circuit.
Very recently, remarkable progress has been achieved in fully-depleted silicon on
insulator (FD-SOI) technology. However, to maintain sufficient control of the
short-channel effects (SCE), the body. thickness has to be reduced to less than one-third of
the gate length, thus introducing another difficulty on the variation control of the devices.
In the second chapter, a new SOI device scheme featuring thin buried oxide (TBO-SOI)
was investigated. The TBO-SOI scheme alleviates the Si thickness reduction requirement
for shorter channel. It eases the process variation effects on the characteristics of the
devices as well as the parasitic resistance impact due to reduction in the Si thickness.
Furthermore, this SOI technology is able to combine both the benefit of an SOI and bulk
device without additional complicated process. The superior SCE with a bulk-device-like
body effect characteristic makes this device scheme more convincing than the ultra-thin

Si SOL

Beyond the planar SOI, nanowire is the most compelling device channel architecture
for complementary metal-oxide semiconductor (CMOS) device scaling towards 10 nm.
The 2009 ITRS projected that gate lengths below 16 nm will be launched before 2015.
From the perspective of the device gate length scalability, the nanowire channel with

multiple-gate structure is expected to be the prospective candidate due to its superior gate
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control ability. More broadly, not only for the logic operation such as
metal-oxide-semiconductor field-effect transistor (MOSFET), application of such a tiny
semiconductor device for biomolecules sensing is evolving due to their similar
dimensions. Thus, in the third chapter, we introduced three novel poly-Si nanowire
field-effect transistor (NW FET) pH sensors fabrication using the conventional CMOS
process. The nanowire width was scaled to sub-40 nm without requiring expensive
lithography equipment. The surface ionic coupling operation of the buried-channel
field-effect sensor exhibited superior pH sensitivity (threshold voltage shift > 100
mV/pH), which was beyond the Nernst limitation. The DNA detection capability and
built-in memory functionality of NW FET enable interdisciplinary integration in
very-large-scale integration (VLSI) circuits. The simple nanowire fabrication approaches
realized manufacturing of uniform nanowire devices on a VLSI circuit, which provides a

high sensitivity, compact, and cost-efficient biosensor systems-on-a-chip application.

Although optical lithography has been a key driver for semiconductor development,
meeting the resolution requirements for continued shrinkage in the technology roadmap is
making it difficult to use traditional optical imaging systems when the wavelength of the
light source must be reduced. Unlike increasing the exposure tool numerical aperture (NA)
to fulfill the resolution requirement, change of a light source to the ultraviolet region
demands development of its relative component, such as optics system and photoresist.
Thus, extreme ultraviolet (EUV) lithography is a possible solution to the 16-nm node
lithography, but its mask set price (extrapolated from 45- to 32-nm nodes) of up to 3
million US dollars is punitive for testing chips and pilot productions in the 16-nm era.
E-beam lithography, a maskless process, is a highly attractive lithography alternative—at
least in the initial circuit-verification stage. Nevertheless, recent experimental results

revealed that e-beam lithography still suffered from line-width roughness and proximity



effects when preparing high-density patterns. The unwanted secondary electron scattering
increases the extent of chemical reactions in the photoresist, which results in the loss of
resolution for adjacent features. In this chapter, we introduced a novel maskless and
photoresist-free technology, which we named as “Nano Injection Lithography” (NInL)
that prepared fine patterns for highly integrated devices. The application of NInL is to
deposit pattern-transferred materials on the substrate surface directly through electron
beam assisted chemical reactions to form the resulting pattern as etching hard mask for
subsequent anisotropic etch. In the past decade, the electron beam assisted chemical
reactions were used to define nanometer-scale structures having tiny pitches of periodic
gratings, but not for the fabrication of MOSFETs. Herein, we reported the fabrication of a
6T-SRAM cell having an area of 0.039 um® by using the NInL. This lithography
technique disclosed a new way to.explore low-volume and high-value 16-nm CMOS
device and circuit design with mimimal additional investment, and obtained early access
to extreme CMOS scaling.

Finally, an attractive approach to form" the exquisite metallic junction for
ultra-scaled device was reported. The formation of a uniform, high tensile stress and low
interfacial resistance nickel silicide (NiSi) on a 90-nm nMOSFET by introducing pulsed
laser annealing (PLA) was investigated. This annealing approach eases NiSi phase
transformation to NiSi, through sufficient annealing temperatures using a low thermal
budget laser irradiation, and introduces increased silicide tensile stress and a 0.2-eV
reduction in Schottky barrier height (SBH). This NiSi, layer has a superior film
morphology at the silicon interface and avoids {111} NiSi, facet induced junction
leakage for shallow junction devices. By optimizing the laser energy, an 8 % nMOSFET
lon-loff enhancement was achieved, when compared with a conventional two-step rapid
thermal annealing (RTA) process because of strain enhancement and interfacial

resistance reduction.
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