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THE METHODS ON IMPROVING DESIGN
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STAGE

Student: Meng-Chen Wu Advisor: Dr. Jing-Yang Jou

Department of Electronics Engineering
Istitute of Engineering
National Chiao Tung University

Abstract

In the IC-design flow nowadays, the physical design is the critical stage which
implements the design from gate-level netlist into geometric layout. Floorplanning
is the first step in physical design. According to different constraints, floorplanning
step arranges the location of each block and is useful to estimate some critical design
metrics, such as area, power consumption, boundaries of critical paths, and total

wirelength.

The wirelength of nets is an important issue for timing optimization. To
maintain the chip performance, we have to bound the wirelength of critical nets for
meeting timing issues. To minimaize the total wirelength, non-Manhattan structures,
such as the X and Y architectures, propose different flavors in reducing the use of
physical resources. However, the placement and routing steps are after floorplanning
step and the layout of design is decided by floorplanning step. Thus, we need to con-

stder wirelength optimization at floorplanning step for reducing wirelength. Besides,

v



using voltage island methodology to reduce power consumption for System-on-a-Chip
(SoC) designs has become popular recently. Currently this approach has been con-
stdered either in system-level architecture or post-placement step. Since hierarchical
design and reusable intellectual property (IP) are widely used, it is necessary to op-
timize floorplanning/placement methodology considering voltage islands generation

to solve power consumption problems.

In the first part of this dissertation, we present two algorithms considering
design constraints at floorplanning step. The first algorithm deals with isosceles right
triangular and trapezoidal blocks for X-architecture routing strategy. This approach
can be further applied to pack with any block, which can be divided into rectangles
and isosceles right triangles. The second one handles floorplanning considering volt-
age islands generation and performance constraints, which restrict the boundaries of
critical nets. This method is flexible and can be extended to hierarchical design. The
experimental results show that our method is not only effective in meeting perfor-
mance constraints but also simultaneously takes the consideration about the balance

between power routing cost and total power dissipation.

On the other hand, the first silicon of design is often failed and using failed
chips to improve the yield for next silicon is very important. The design-for-test
(DFT) and design-for-debug (DFD) circuits are often generated and integrated dur-
ing logic synthesis stage. With these circuits, we can verify the functionality of
design after manufacturing. Because of limitation of resource, the DFT and DFD
circuits only deliver a small portion of internal signals and we need other approaches
to get more information for failure analysis. The focused ion beam (FIB) is one of

techniques to obtain the signals after manufacturing chips. While the technology



node continually and aggressively scales, the resolution of FIB techniques does not
scale as fast. Thus, the percentage of signals which can be observed through FIB
probing is significantly decreased for advanced process technologies, which limits the
candidates that can be physically examined through the FIB techniques during the

debugging process.

The last part of the dissertation introduces a methodology to modify the lay-
out and increase the signals for FIB observation. In the post-routing step, the lay-
out modification is made through pre-defined simple operations subject to design
rules and timing constraints. Hence, the proposed methodology does not require a
complicated router as its core and can be applied to the layout generated with any
commercial APR tool. The experimental result based on an 90nm technology has
demonstrated that the proposed methodology can effectively increase the number of
signals for FIB observation while the overall area and circuit performance remain

the same.
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Chapter 1

Introduction

| System level design |

v . .
| RTL level design | Physical design stage
¢ rm— - - - - I
. - : | Floorplanning | '
| Logic synthesis | | :
[ |
v I | Placement & routin, | |
| Layout level design : £ :
[
v I : :
| Post-layout verification : . :
[ |
¢ : | Layout modification for FIB | :
| Tape-out | P S see—— O W _ _ _ ]
v

| Silicon debug/diagnosis |

Figure 1.1: The IC design flow and the related fileds of our works.

In the IC-design flow nowadays as illustrated in Figure 1.1, electronic design
automation (EDA) tools are involved in all design stages and the development of
tools in each stage is necessary for designers to overcome the dramatically increased
circuit complexity. The physical design stage is the critical stage which implements
the design from gate-level netlist into geometric layout. This stage consists of several
steps and each step targets on different issues for optimization. The floorplanning
is the first step in physical design. Based on the structure of design, this step
decides the initial layout and a bad floorplan will give the large unused deadspace

of chips and routing congestion problems. According to different constraints, the



floorplanning step arranges the location of each block and is useful to estimate some
critical design metrics, such as area, power consumption, boundaries of critical paths,

and total wirelength.

After getting the floorplanning of design, the step of place and route deter-
mines wirelength of the design. Generally speaking, the nets can be divied into
critical and non-critical nets, depending on whether they are on critical paths or
not. To maintain the chip performance, the wirelength of critical nets have to be
bounded for meeting timing issues. Further, to minimize the total wirelength, non-
Manhattan structures, such as the X and Y architectures, propose different flavors
in reducing the use of physical resources. Taking the X architecture as an example,
it has routing layers for 45- and 135-degree angles at upper layers [45] and the wire-
length reduction is significant with proper routing system [10]. However, the layout
of the design is decided by floorplanning step, we have to consider the wirelength

optimization at floorplanning step if possible.

With the process of today’s technologies, more and more devices can be
integrated into a signal chip. To cope with the increasing design complexity, hierar-
chical design and reusable intellectual property (IP) modules are widely used within
the System-on-a-Chip (SoC) design [12][50]. Meanwhile, increased circuit density
and performance compel the need to reduce power consumption that increases sig-
nificantly as designers strive to utilize the advancing silicon capabilities [20][29].
Using voltage island methodology to reduce power consumption for SoC designs
has become popular recently. Currently this approach has been considered either
in system-level architecture or post-placement step. Since the power planning is
significantly impacted with the layout of designs, it is necessary to optimize floor-
planning/placement methodology considering voltage islands generation to solve

power consumption problems.



In the first half of this dissertation, we present two algorithms consider-
ing design constraints at floorplanning step. The first algorithm introduces non-
rectangular blocks, such as isosceles right triangular and trapezoidal blocks, into
normal floorplanner. This algorithm not only reduces total wirelength with X-
architecture routing strategy but also has the same performance when performing
rectangular and non-rectangular block packing. The second algorithm targets on re-
ducing power consumption with voltage island techniques and meeting performance
constraints, which restrict the boundaries of critical nets. The proposed algorithm
is effective in meeting performance constraints and can simultaneously consider the
tradeoff between power routing cost and total power dissipation. With proposed
algorithms, we can consider several constraints in the early step and have the better

initial solutions for the following steps of physical design.

On the other hand, today’s modern designs are often failed with their first sil-
icon because of the high complexity, high variation, and incomplete characterization
of advanced process technologies. To extract the internal signals, the design-for-test
(DFT) and design-for-debug (DFD) circuits are often generated during logic syn-
thesis stage. With these circuits, such as scan chains [5] or trace buffers [2][3][4][57],
we can verify the functionality of design after manufacturing. Although pre-silicon
verifications are performed before tape-out, the verification tools are bounded by
performance and capacity and cannot guarantee there is no escaped errors [49]. It
is emergency to debug/diagnose these failed chips and improve the quality of next
design or next silicon. Because of the limitation of resource, the DFT and DFD cir-
cuits only deliver a small portion of internal signals and we need other approaches

to get more information for failure analysis with silicon chips [19].

Besides DF'T and DFD circuits, there are several techniques to obtain the sig-

nals from silicon, such as electron beam (E-beam) [41], laser voltage probe (LVP) [58]



Table 1.1: FIB observable rates for 0.18m and 90nm technologies.

circuit technology difference
0.18um(a) | 90nm(b) | (a)-(b)
838417 72.66 36.57 36.09
838584 60.72 28.62 32.11
835932 85.06 50.84 34.21
bl7 41.95 17.86 24.09
b20 50.87 25.62 25.23
b21 46.57 23.47 23.10
b22 46.91 23.56 23.36

| avg. | 57.82 | 2950 | 28.32 |

and focused ion beamn (FIB) techniques [1][40][43]. Among these techniques, the FIB
requires no area overhead within the design and has the shorter process time com-
pared to others. The utilization of observing signals with FIB usually targets on
silicons and is not taken into consideration at physical design stage. As shown in
Table 1.1, the average rate of observing signals through FIB techniques is under
30% with 90nm technology, and it will be worse with 65nm or 40nm technology in
the future. However, the automatic place and route (APR) tools only focus on some
design constraints, such as routability or timing issues, and we need an approach to

take the advantage of FIB techniques.

In the last part of the dissertation, we propose a methodology with layout
modification for FIB observation. This methodology uses some pre-defined opera-
tions to change the routing layers of signals and do not need any complicated routing
system. It can be used in the post-routing step of physical design stage and applied
with the layout generated by any APR tool. With the proposed methodology, we
greatly increase the number of observable signals with FIB techniques while the

overall area and circuit performance are the same to the original design.



Chapter 2

Preliminary

2.1 Review of B*-trees

The B*-tree is an ordered binary tree for modeling a non-slicing floorplan.
Given an admissible placement [16] (in which no module can move left or down),
we can construct a unique B*-tree in linear time. Further, given a B*-tree, we
can also obtain a placement by packing the blocks in linear time with a contour

structure [16]. The construction of a B*-tree has three properties:

Root node presents the block at the bottom-left corner, whose z- and y-

coordinates is associated (Z,o0t, Yroot) = (0, 0).

Left child of a node is placed on the right-hand side and adjacent to its

parent block in the placement; i.e., z; = ; + w;.

Right child of a node is placed above its parent block and has the same
z-coordinate; i.e., r; = ;. With the contour structure, we can compute the y-

coordinate of a block in constant time.

Figure 2.1 illustrates an admissible placement and its corresponding B*-tree.
To construct this placement from the B*-tree, we first pick ng, the root of the tree,
and place by on the bottom-left corner. Then we reach the left child of ng, n;. Block
by is then placed on the right of by. The process repeats recursively in the depth-first

search (DFS) order. Therefore, since n; does not have a left child, we traverse ns,
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Figure 2.1: (a) An admissible placement. (b) The B*-tree representing the place-
ment.

the right child of n,;. The process continues until all nodes are traversed, and finally

we will have the corresponding placement.

2.2 Non-Manhattan Routing Architectures

(a) Manhattan routing (b) X routing

Figure 2.2: Examples of two routing architectures.

With today’s advanced integrated circuits (ICs) manufacturing technology in
deep submicron (DSM) environment, there are billions of transistors on a single chip.
In interconnect-dominated IC design regime, due to the demand of high performance
and low power consumption, we need more merits in basic wiring architectures to
pave the road. Recently the X architecture [45] and the Y architecture [8], featuring
non-Manhattan structures [23], propose more powerful approaches in reducing the

use of physical resources, such as total wirelength and number of vias. Especially



by the X architecture shown in Figrue 2.2, the wirelength reduction could reach
20% and the via reduction could reach 30% [45]. However, in order to take the
advantage of the X or Y architectures, it is essential to develop new tools for these

architectures, especially for early stages in physical design.

From triangular blocks packed in the Y architecture [27], they place right
triangular blocks in hexagonal cells on a rectangular chip to fit the routing track of
Y-architecture. Although their area usage is 94% in average, the runtime of their
approach is much longer (3 and 5 hours for 33 and 49 blocks) than normal floor-
planner and they do not reveal the wirelength optimization between their approach

and Y architecture.

Thus, we believe that it is necessary to explore the situation in which rect-
angular blocks are packed with right isosceles triangular blocks. The right isosceles
right triangular blocks have 45-degree angle and are the same with X architecture.
Moreover, by using these special/flexible blocks, we can obtain more choices for pin
assignment and more shapes can be used in floorplans. B*-trees [7] have reported
good packing results in the Manhattan architecture, so we attempt to use this data

structure to achieve good packing with the X architecture.

2.3 Voltage Island Techniques

The dynamic and static power dissipation in CMOS digital circuits both have
direct relationship with supply voltage Vdd: dynamic power is proportional to V dd?
and static power is proportional to Vdd. Applying lower V dd under the performance
requirements is obviously one of the effective ways to reduce power consumption.
One of the techniques to reduce power consumption is voltage island methodology,

which is proposed by IBM [25]. A voltage island is a group of on-chip cores powered
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Voltage island A: 1.0V {bs, bs, bg, bg}
Voltage island B: 1.1V {by, by, bg, byo}
Voltage island C: 1.2V {by, b4, b7}

Figure 2.3: An example of a design with three voltage islands.

by the same voltage source, independently from the chip-level voltage supply. This
concept (in use of voltage islands) permits operating different portions of the design
at different supply voltage levels. As illustrated in Figure 2.3, the design has 10
blocks which have their own operating voltages. It has three voltage islands and

each block is set to its lowest operating voltage to minimize the power consumption.

2.4 Floorplanning with Performance Constraints

Traditional floorplanners/placers minimize total wirelength but they can not
guarantee critical nets to meet bounded delay. This problem becomes more impor-
tant because timing convergence is a big issue in DSM design. In order to meet
critical delay constraint, there are methods proposed in [44, 55] during floorplan-
ning. Since actual interconnect delay after appropriate buffer insertions will be close
to linear in terms of distance, they assume linear function in terms of distance to
estimate delay is used. In their assumption, there are a source at (z;,y,;) and a sink
at (24,ys), and the delay of the net D,y = dDistsy = 6(| @ — x5 | + | v — s |),

where § is a constant to scale the distance to timing, and Dists; is the maxi-



mum distance between source and sink, equal to the half perimeter of the bounding
box of the two points. Thus, the delay could be represented with distance as:
Distey = (|t — x5 | + | v+ — Ys |) = Dst/0 < Dpgs/d, where Dy is the given

maximum delay bound.

In [44], they use a method that adjusts the width and height for the bonding
box of performance-constrained blocks dynamically into the rectilinear super blocks.
The width and height for the bounding box of these constrained blocks are denoted
with Wpyers and Hperp. For their simulated-annealing based method, they restrict
constrained blocks in the bounding box, where the Wye,r = Hperp < Dy /6 at
the beginning. Simulated annealing is characterized as chaotic process where a
square range-box is appropriate to use for approximate guidance. And at lower
temperature, a specific range box is almost fixed and cannot be changed easily to

exactly capture delay bound.

In [55], it uses the linear delay model to do sub-placement (to place a set of
feasible sub-placements for the performance-constrained blocks) by restricting the
longest distance of performance-constrained blocks. First, they handle the set of
performance-constrained blocks into several kinds of rectilinear blocks. For these
rectilinear blocks, they have to satisfy the performance constraint: Wye, s + Hperp <
Doz /6. Besides, among these rectilinear blocks, they choose the one with minimum
deadspace and fix the shape of these blocks (thus fix the delay) for further processing
with other blocks. By using the pre-clustered shape-fixed appropriate rectilinear
block, they guarantee that the performance constraints will be satisfied throughout

the remaining processing.

However, these approaches focus on single operating voltage and are not

suitable for today’s multiple voltages design. In this dissertation, we improve these



techniques and propose the method to meet performance constraints in multiple

voltages design.

2.5 Background of Focus Ion Beam

Because of the high complexity, high variation, and incomplete characteri-
zation of advanced process technologies, the first silicon of today’s design is often
failed. Besides, the current design verification flow are bounded by performance
and capacity and cannot guarantee there is no escaped errors [49]. Thus, Failure
analysis, or post-silicon debug, takes the critical roles to identify the root of errors
with the information from failed chips and further fix them in next design or next

silicon.

Post-silicon debug has few ways to access the internal signals, such as scan
chains [5] or trace buffers [2][3][4][57]. In order to have more internal signals from
silicon chips, the physical probing techniques have been used over years. One of these
techniques is Focus Ion Beam (FIB). The operations of FIB system are similar with
scanning electron microscope (SEM) or a transmission electron microscope (TEM).
The FIB system uses a focused beam of ions (Ga+ in most today’s FIB system)
instead of electrons in SEM and TEM. Because of using large, heavy, and positive
ion beams, there are some features about FIB system. The FIB can image the
sample surface with high resolution during operating with a low beam current and,

further, it can mill the sample surface with a high beam current [60].

One of the most important features of FIB is quickly observing signals on
silicon chips without re-fabrication. Figure 2.4 demonstrates the concept to observe
signals with FIB techniques. First, the FIB system is applying with a high beam

current (Ga+) to remove the inter-layer dielectric (ILD) and form a hole until reach-
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Ton Beam Ion Beam
Charge Charge
Neutralization Gas Assisted Etching Neutralization Deposition
Flood gun l Gas Needle Flood gun l ‘/ Gas Needle
ILD
M6 Target signal M6 Target signal
M5 M5
(a) Milling process (b) Deposit process

Figure 2.4: An example of FIB probing using (a) FIB surface mill and (b) FIB
deposition.

ing the target signal. The optional gas (XeFy in the case) is used for preventing
the re-deposition of sputtered surface material. After successful milling process, the
FIB deposits conduct (Pt in the case) onto the dug hole and forms a probe pad [60]

to access the target signal.

With the two features, milling and deposition, the FIB is very suitable with
circuit editing, such as cutting existing metal and reconnecting it to a desired loca-
tion (other metal lines or pre-placed space cells). The process of circuit-editing can
be quickly applied to modify silicon circuits without another tape-out, and it need
no area overhead in design when performing milling or deposition. Thus, FIB tech-
niques are useful for physical probing or circuit editing and popular for observing

signals at post-silicon debug.

2.6 Organization

The remainder of this dissertation is organized as follows. In Chapter 3,

we present a packing method which takes the advantage of X architecture and

11



uses non-rectangular blocks to reduce total wirelength. The proposed method is
very efficient and effective in area/wirelength optimization, and its performance is
compatible with normal floorplanners. In Chapter 4, we propose the another method
to simultaneously generate voltage islands and meet performance constraints, which
restrict the boundaries of critical nets. This method not only get the good balance
in the trade-off between power consumption and power routing cost, but also achieve
very good area usage while meeting performance constraints, even if these blocks are
at different voltage islands. In Chapter 5, we develop a layout-adjustment framework
to increase the observable signals with FIB probing techniques. We propose several
simple operations to adjust the metal layers of routed signals. Hence, it could
be quickly integrated into today’s design flow and applied to the layout generated
with any APR tool. Finally, we give conclusion and discuss the future works in

Chapter 6.

12



Chapter 3

Floorplanning with Non-rectangular Blocks

In this chapter, we propose the packing scheme for floorplanning with isosceles
right triangular blocks for X-architecture routing structures. First, we propose the
motivation and our problem formulation. Then, we give the solution for packing
with rectangular and isosceles right triangular blocks. Further, to demonstrate that
our method could handle any combination with these two block shapes, the pack-
ing scheme with trapezoidal blocks is presented. Finally, the experimental results
show that our method has almost the same performance with normal floorplanner.
Besides, we also show the wirelength estimation for the comparison between our

method and one normal floorplanner.

3.1 Motivation

The non-Manhattan routing structures, such as X architecture and Y archi-
tectures, propose more choices in routing directions besides horizontal and vertical
routing tracks and there are several researches working with these architectures in
the routing step [8][9][45]. In floorplanning/placement steps, Li at al [27] present the
packing algorithm for non-rectangular blocks with Y architecture. In order to take
the advantage of Y architectures, they use Hexagon/Triangle blocks for placement.

However, these layouts are very different with today’s design and hard to realize.

13



Although they have 94% area usage in average, which is closed to 95% - 96% area
usage with Manhattan placement, their run time is quite long (few hours). Besides,
their experiments only target on area with two benchmarks and have no discussion

about wirelength with Y architectures.

In this chapter, we develop the first packing algorithm with non-rectangular
blocks for X architectures. Taking the advantage of special angles, such as 45- and
135-degree, we add the isosceles right triangular blocks and trapezoidal blocks into
normal floorplanner. With these special blocks, we have more choices for block
shapes in floorplanning step and more locations for pin assignments for wirelength
optimization. This approach can be quickly implemented into the floorplanning step
and much suitable for current designs. Even with non-rectangular blocks, the aver-
age area usage is above 95%, which is comparable to normal floorplanner. We also
report the wirelength reduction with Manhattan-half-perimeter wirelength (MH-
PWL) and X-half-perimeter wirelength (XHPWL) [10] to demonstrate the better

results of proposed algorithm.

3.2 Problem Formulation

In this section, we define the problem about packing with rectangular blocks,

isosceles right triangular blocks, and trapezoidal blocks.

|

| |
Hr : TR¢; : Hrrei
\L TRLi : : TRRi l
<—Hr—> <—Hrrey Wrrey Hrrei™
(2) (b)

Figure 3.1: (a) An isosceles right triangular blocks. (b) A trapezoidal blocks and
its sub-blocks.
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INPUT

e The set of rectangular blocks, B = {b,ba,...,b,}, and their corresponding

widths and heights are denoted as W, and H;, 1 <1 < n.

The set of isosceles right triangular blocks, T' = {t1,...,tm}. As illustrated
in Figure 3.1(a), these blocks have the same widths as heights, and we only
need the heights to present these blocks, denoted by Hy, 1 < ¢ < m. In the

following discussion, we present these blocks as triangular blocks for shortly.

The set of trapezoidal blocks. To handle these blocks, we divide them into
3 sub-blocks, the left-triangular block, the center-rectangular block, and the
right-triangular block, as shown in Figure 3.1(b). Thus, trapezoidal blocks are
denoted with TR = {TRp1,TRc1,TRr1, ..., TR1p, TRcyp, TRRp}. The width
and height for TR¢; are Wrg,, and Hrg,,, 1 < ¢ < p. Because the two
triangular blocks have the same height as the rectangular block, we can use
the height to present both the height and width of their triangular blocks,

which is HTRLi = HTRRi = HTRCH 1 S 1 S p-

ouTPUT

The floorplanning with mixed non-rectangular blocks.

OBJECTIVE

Optimize a pre-defined cost metric, such as maximizing area usage or mini-

mizing total wirelength.
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3.3 Floorplanning with Triangular Blocks

In this section, we first explain the feasibility condition for the floorplanning
with triangular blocks. Then, we present the calculation to explain how to pack

with these blocks.

3.3.1 Feasibility Condition for Mixed Rectangular and Triangular Blocks

|
Sl .
1 —
| | | 2
[
|t i b, b by | O
(@) (b) © @
b, by, '
|
- b bl‘ bbl .
PN R SR
© ® (@ (h)

Figure 3.2: (a)(b)(c)(d) The triangular blocks of type BR, BL, TR, and TL.
(e)(f)(g)(h) After adjustment of (a)(b)(c)(d).

Figure 3.2 show the floorplans with different types of triangular blocks. If we
treat these triangular blocks as rectangular blocks, the deadspace will be quite large
and unaccepted. In actually, we could minimize deadspace by moving down these
triangular blocks or rectangular blocks. According to the property of B*-trees, the
right child of the node N will be placed at the same z-coordinate and just right
upon the block, by. So, the falling down procedure described below can be achieved

easily by B*-trees.



3.3.2 The Packing with Triangular Blocks

According to the packing scheme of B*-trees, it constructs the floorplan by
the DFS ordering of nodes in a B*-tree and the blocks will first obtain z-coordinate,
then y-coordinate. We take the advantage of this scheme, and enhance it to handle

triangular blocks. The phase needed to be adjusted is the calculation of y-coordinate.

The triangular blocks are classified into four kinds according to the positions
of right angles as shown in Figure 3.2 and we define some notations used in the

following sections.

e BR, BL, TR, TL: it indicates the location of right angle. For example, BL
means the right angle locates at bottom-left corner and TR is the right angle

locating at top-right corner.

o Wy, Hy, zp, and y,: the width, height, z- , and y-coordinate of the bottom-left

corner for block b.

o W, H;,, x;,, and y;,: the width and height for the triangular block, and z- , and
y-coordinate of the bottom-left corner for the bounding box of the triangular
block. Although, the value of W, is equal to H;,, we use two notations for

explaining easily.

Case I: BR and BL

From Figure 3.3, we can see the triangular blocks with type BR and BL.
To move down the blocks above the two triangular blocks, we have to modify the
original calculation of their y-coordinate. According to the packing scheme of B*-
trees, we have the z- and y-coordinate of the blocks whose DFS ordering are earlier

than the block b and the z-coordinate of block b is already known before we calculate
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Yy = Y +H;
(XptWy, Yypt+Hy) (Xp+Wp, YptHs) —\L

l

b b
l |
Yi new g
s
(X¢er, YiBR) X Yoor)
(a) )

Figure 3.3: Hllustrations for adjusting blocks tgr and tp;,.

its y-coordinate. Once we need to place the block b upon the triangular block of
type BR, tgg, the y-coordinate of b can be represented as following equation:
U = Ytpg + (@5 + Wi — Ty, ) i 2, < @p+ Wo < Tt + Wiy
b origianl packing scheme of B*-tree otherwise

If we need to place the block b upon the type BL triangular block, g1, the

y-coordinate of b can be represented as following:
yp = Ytgr T (:EtBL + WtBL - xb) if Lt S < Ttgr T WtBL

b origianl packing scheme of B*-tree otherwise

The two adjustments are shown in Figure 3.2(e) and Figure 3.2(f), which
are corresponding to Figure 3.2(a) and Figure 3.2(b). If the width of block b covers

a set of r blocks in the projections of z-coordinate, the y-coordinate of b can be

determined by:

Yn,maz = maz{y;|the y-coordinate of placing block b on the block ¢, where

i=1,2,..,r.}
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This condition is shown by the block b, in Figure 3.2(f). With the above
equation, we pick uUp ¥pmaes, the the maximum y-coordinate of block b, so we can

guarantee there is no overlapping blocks.

Case II: TR and TL

(XerrtWirr, YirrtHirr) (XerrtWore, Y tHirr)

I—\L v

|

| |

| |

| -~ N
- G LIy

YtTanew YtTLincw
(Xb, Yb) (be Yb)
(@) (b)

Figure 3.4: Illustrations for adjusting blocks trg and iry.

The other two types, TR and TL, are shown in Figure 3.4. Different from
the first two types (BR and BL), we move down these triangular blocks. Thus, we
have to calculate the y-coordinate of these triangular blocks when we place them
above other rectangular blocks. We show the y-coordinate of triangular block, y;,.,

as following equation:

_ (yb + Hb) - [(xtTR + WtTR) - (xb + Wb)] if Tipp < Tp + Wp < Tpp + Wigg
Yern origianl packing scheme of B*-tree otherwise

The y-coordinate, y;,, , is presented as:

y — (yb + Hb) - (xb - xtTL) if Ttrp <ap < Tirp, + WtTL
brr origianl packing scheme of B*-tree otherwise
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For these two cases, we should keep v, = 0 if y;,., < 0 after adjustment.
The Figure 3.2(g) and Figure 3.2(h) show the floorplans after applying the two
equations above to Figure 3.2(c) and Figure 3.2(d). Besides, we also need to guar-
antee the triangular blocks, trr or trr, to be placed without overlapping the set of
r blocks covered by them. The equation is the same as we used in Case I, and the

result is like the block ¢77, shown in Figure 3.2(h).

Case III: TR vs BL, TL vs BR

(XirrtWirr, YerrtHirr) (XeretWore, YerotHirr)

—_——

L

-

tBrR

(XtBL, YtBL) (XIBR, YtBR)

(a) (b) (© (d)
Figure 3.5: (a)(b) The triangular blocks match for each other. (c)(d) After adjust-
ment of (a)(b).

There are two special cases from case I and case II. We can see the illustrations
in Figure 3.5. When type TR matches type BL, or type TL matches type BR,
these cases cause the exceptions from all equations discussing above. We need new

equations to handle these two cases.

Yern = Ytgr — [xtTR + WtTR - (:EtBL + WtBL)]

for a type TR triangular block matching a type BL triangular block and

20



Ytr, = Ytgr T (:EtTL - xtBR)

21

for a type TL triangular block matching a type BR triangular block. For these two

cases, we should also keep y;,, = 0 or y;,, = 0 if they are less than zero after

adjustment.

Notice that, the y-coordinates of theses blocks related with triangular blocks

have to be the maximum values of their covered blocks to avoid overlapping other

blocks, so we must take care about choosing ¥;,,., ¥, , and Y¢mqes for the correct

calculation.

3.4 Floorplanning with Trapezoidal Blocks

By the discussions and equations of previous section, we handle floorplans

with triangular blocks. In this section, we first present the feasibility conditions for

trapezoidal blocks, then we show how to solve this problem with B*-trees.

3.4.1 Feasibility Condition for Mixed Rectangular and Trapezoidal Blocks

TRc

TRL

TRc

TRr

(a) (b)

©

Figure 3.6: (a)(b) The floorplan with trapezoidal blocks. (c) Packing with original
B*-tree scheme, block TRy, and T Ry have falling down problems.

The trapezoidal blocks can be placed in horizontal or vertical direction, and



we can see the two directions in Figure 3.6(a) and Figure 3.6(b) respectively. We

divide the trapezoidal block into three sub-blocks: a left-triangular block TRy, a

center-rectangular block T'R¢, and a right-triangular block T'Rgr. The two triangular
blocks should be set to correct types for maintaining the shape of the trapezoidal
block. If we use the standard packing scheme of B*-trees, we may get the falling
down problem as shown in Figure 3.6(c). To fix this problem, we use the dummy
blocks to shift the falling blocks upward their correct positions. This method is
very similar to handle the alignment constraints presented in [55], so we modify the

method to solve the falling down problem in the following discussion.

3.4.2 The Packing with Trapezoidal Blocks

trapezoidal shape

dummy node
TRe | 7N 0 _ -
TR, i
TRr /
Left-triangular node //
@
Center-rectangular /
TR node
TR, € |TRe
I
DL | .
- Dr i Right-triangular node |
(b) (©)
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Figure 3.7: (a) Falling down problems occur at block TRy, and TRg. (b) The final
floorplan of (a) with proper dummy blocks. (c) The B*-tree with the trapezoidal

shape of (b).

For the horizontally trapezoidal blocks, according to the comparison of Fig-

ure 3.7 and the alignment constraints in [55], we can find the similarity between



them. The trapezoidal block can be divided into three sub-blocks and the sub-
blocks form a special case in alignment constraints where the three sub-blocks need
to have the same y-coordinate and abut one by one. Based on this observation, we
can model the trapezoidal block to an alignment constraint and apply the method
of solving alignment constraints in [55]. For each sub-block, we add a dummy block
right below it and their widths are set to be zero. These blocks are only used for
pulling up the target blocks to their correct positions and do not disturb the po-
sition of other blocks. In the B*-tree, we also add the dummy nodes for dummy
blocks. The nodes with corresponding sub-blocks are set to be the right children
of these dummy nodes. Further, the dummy node is the left child of the node of
previous sub-block. This shape, formed by three dummy nodes and three sub-nodes
of sub-blocks, is a special case in alignment shapes and we call it trapezoidal shape

in this chapter and shown in Figure 3.7(c).

First, the heights of dummy blocks will be set to zero. We pack all blocks by
the packing scheme with triangular adjustment and get y-coordinates of all blocks
including sub-blocks of the trapezoidal block. If their y-coordinates are the same,
they already form the horizontally trapezoidal block. Otherwise, there must be
falling problems. So, we need to calculate the heights of their corresponding dummy

blocks to shift them to the right positions by the following equation:

A, = Ymaz — Yb if Ymaz = Yb
b 0 otherwise

where

Ymaz = MaZ{yrr,, YTRy, YRR}, and b= {TR,,TRc,TRp}.

After calculation, the movement of each sub-blocks can be obtained and we

set the height of the corresponding dummy block to each Ay, b = TRy, TRc, T Rg.
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Then, blocks are repacked and the sub-blocks will be placed at the right positions.
To summarize the discussion of horizontally trapezoidal blocks above, we use Fig-
ure 3.7 for illustration. The B*-tree we obtained is shown in Figure 3.7(c), and
we can see there is a trapezoidal shape. After first-packing, the result floorplan
is in Figure 3.7(a) and there are falling problems for block TRy, and TRg. Then
we calculate the heights of these dummy blocks, Arg, and Arg,, and repack the
floorplan with them. Figure 3.7(b) shows the correct floorplan after repacking with
the proper dummy blocks. Note that, the widths of dummy blocks are all zero, we
draw them in dotted line with the same widths of their corresponding blocks for

explaining more easily.

Right-skew sub-tree
dummy node
TRy
Left-triangular node TRc

by

Center-rectangular TRg

node

\ bl

Right-triangular node \ bo

(a) (b)

Figure 3.8: (a) The B*-tree with a right skew sub-tree for the vertically trapezoidal
blocks. (b) The final floorplan of (a).

If we have one vertically trapezoidal block, the shape of this trapezoidal
block could be maintained more easily than horizontal one. Based on the property
of B*-trees, the block, which is corresponding to the right child node of a parent
node, is placed at the same z-coordinate and just upon its parent block. We could
keep dummy nodes and sub-nodes of vertically trapezoidal block into a right-skew

sub-tree as shown in Figure 3.8(a) and set the heights of dummy blocks to be zero.

24



Then we use the triangular packing scheme discussing at the pre-section and the
final floorplan shows in Figure 3.8(b). Note that placing vertically trapezoidal blocks

could be done without repacking.

3.5 The Algorithm of Packing with Non-rectangular Blocks

Algorithm: Packing scheme with isosceles right triangular
and trapezoidal blocks
Input: A set of rectangular blocks, isosceles right triangular blocks,
and trapezoidal blocks.
Output: A floorplan with minimum deadspace.
1. Initialize a B*-tree for the input blocks;
Simulated annealing process:
do
perturb();
first-packing();
if the y-coordinates for sub-blocks of the horizontally
trapezoidal block are not equal
then adjust heights of dummy blocks
to maintain the shape of trapezoid block;
8. re-packing();
9. evaluate the B*-tree cost;
10. until converged or cooling down;
11. return the best solution;

o U o N

=~

Figure 3.9: The packing scheme with isosceles right triangular blocks and trapezoidal
blocks.

The flow of our algorithm is summarized in Figure 3.9. We use simulated
annealing to search the best solution. The B*-tree is perturbed to another by the

following operations:

e Opl: Rotate a node.
e Op2: Flip a node.

e Op3: Move a node to another place.
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Op4: Swap two nodes.

Op5: Rotate a set of trapezoidal nodes.

Op6: Flip a set of trapezoidal nodes.

Op7: Move trapezoidal nodes to another place.

The first four operations are used in [7] and the others are designed for trapezoidal
blocks. In Opl, we rotate a node and this action can be applied to rectangular and
triangular nodes. For triangular node, Opl changes its type to another. In Op2,
we flip a node. Same as Opl, we need to maintain the correct types for triangular
nodes. Op3 and Op4 change the relations of nodes to get a different floorplan. We
do not apply these two operations to trapezoidal nodes. For trapezoidal nodes, we
design Opb - Op7 to perturb these blocks. First, we use the center node to denote
the entire trapezoidal shape. In Op5, we rotate the center node and keep the shape
of the trapezoidal block by maintaining the correct trapezoidal shape in the B*-
trees. The Op6 is almost the same as Opb but it flips these blocks. Finally, we use
Op7 to move all sub-nodes of a trapezoid block to another place and maintain its

shape at the new position.

3.6 Experimental Results

We demonstrate the results of our algorithm with the modified MCNC bench-
marks so that they can be used for floorplanning with triangular and trapezoidal
blocks. We call the modified benchmarks with trapezoidal and triangular blocks in
the following format: tami33-z-y and tami49-z-y, which means we translate x blocks
from rectangles to trapezoids and add y triangular blocks. For example, the bench-

mark tami3d3-3-5 has 38 blocks, which are 30 rectangular blocks, 3 trapezoidal blocks,
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(a) (6)
Figure 3.10: The result floorplans of (a) tami33-0-10 and (b) tami49-4-10.

and 5 extra triangular blocks. To compare with rectangular floorplans, we also use
ami33-0-y and ami49-0-y with additional y rectangular blocks and implement the
B*-tree [7] on the same environment to get the final results. In these benchmarks,

the areas are the same for those extra triangular and rectangular blocks.

Table 3.1 shows the experimental results of our algorithm and it has the
comparable efficiency to the rectangular floorplan. For area usage, the floorplans
with triangular or trapezoidal blocks achieve the same performance as rectangular
floorplanner. Figure 3.10 shows the packing results for modified tami33-0-10 and
tami49-4-10. For every benchmark only with additional triangular blocks, the dif-
ferences of area usage are all less then 1%. The difference between ami49-0-5 and
tami49-0-5 is only 0.29%. This means we can have the same performance if we only
have triangular blocks in our design. Even for the benchmark with many special
blocks, tami49-4-10, the area usage is 93.70% and the difference with ami49-0-10 is
less than 3%. By using these triangular blocks, we can obtain more choices for pin
assignment and more special shapes in floorplan. In fact, any shapes combined by

rectangles and triangles can all be handled by our algorithm.
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Table 3.1: The area and runtime comparison between rectangular floorplanner and
our approach.

28

circuit  |blocks|chip (mm?)|triangles |trapezoids |result (mm?)|usage(%) | Time(secs)
ami33-0-5 0 0 1.21 98.35 11.9
tami3d3-0-5 | 38 1.19 5 0 1.22 97.54 26.6
tami33-3-5 5 3 1.23 96.75 37.0
ami33-0-10 0 0 1.36 97.79 16.0
tami3d3-0-10| 43 1.33 10 0 1.37 97.08 30.9
tami3d3-3-10 10 3 1.38 96.37 69.8
ami49-0-5 0 0 40.36 96.83 14.4
tami49-0-5 | 54 39.08 5 0 40.48 96.54 42.68
tami49-4-5 5 4 41.56 94.03 132.2
ami49-0-10 0 0 40.98 96.22 17.9
tami49-0-10| 59 39.43 10 0 41.14 95.84 48.1
tami49-4-10 10 4 42.08 93.70 107.0

For wirelength results, we add pins into test cases and create connectivity be-

tween original and extra blocks. The pin locations are normalized to be distributed

on the boundary of each block. We use MHPWL and XHPWL [10] to estimate the

wirelength of a net by the bounding box enclosing the net. The MHPWL means

Manhattan-half-perimeter wirelengths estimation and the XHPWL means the X-

half-perimeter wirelength estimation as shown in Figure 3.11. The total wirelength

is the summation of all nets and the results are shown in Table 3.2. We can see com-

®
(2) MHPWL

(b) XHPWL

Figure 3.11: Two kinds of wirelength estimation approach



parable wirelength for both floorplans and we have the better wirelength reduction

with XHPWL and our proposed packing scheme.

Table 3.2: Experimental results for wirelength estimation.

circuit MHPWL(mm)(a) | XHPWL(mm)(b) | (a)-(b)
amid3-0-5 46.0 44.7 1.3
tami33-0-5 46.1 44.5 1.6
ami33-0-10 48.9 47.7 1.2
tami33-0-10 50.6 48.1 2.5
ami49-0-5 667.8 639.1 28.7
tami49-0-5 671.5 640.9 30.6
ami49-0-10 639.6 613.4 26.2
tami49-0-10 637.7 609.6 28.1

3.7 Summary

We have presented an efficient yet effective algorithm to handle the floorplan-
ning with isosceles right triangular blocks based on the the B*-tree representation.
Better than only with rectangular blocks, the floorplan with isosceles triangular
blocks has more choices for block shapes and pin locations on the boundary of a
block. We reveal the solutions to handle isosceles right triangular and trapezoidal
blocks in rectangular floorplans, and guarantee a feasible floorplan with these spe-
cial blocks. Further, our proposed algorithm can deal with all shapes which are
the combination of rectangle and isosceles right triangle. The experimental results
show floorplanning with isosceles right triangular blocks by our method can achieve
the same performance with normal floorplanners in both area usage and wirelength

optimization.



Chapter 4

Floorplanning with Voltage Island Generation
and Performance Constraints

In this chapter, we propose the heuristic method to generate voltage island and
simultaneously meet performance constraints. In the beginning, we reveal the mo-
tivation and problem formation of this chapter. Next, the method for generating
voltage island is proposed. Then, we show the approach to meet performance con-
straints for blocks with different supplying voltages. Finally, we demonstrate our
method with MCNC benchmarks. Comparing with two previous works, our method
has the best performance in reducing deadspace and the cost of level shifters. Be-
sides, we also present the results in meeting performance constraints with the less

cost of level shifters.

4.1 Motivation

Voltage island architecture [25] can achieve power saving and has become
more and more popular [6][11][17][18][25][26][54]. In [17][18], they partition IP cores
into several sub voltage islands, floorplan each sub voltage island independently,
and floorplan all voltage islands to form the final result. This approach somewhat
restricts the exploration of solution space. In [54], a post-placement approach of
generating voltage islands is proposed. However, chip floorplanning level has more

flexibilities and leads the initial solution of power planning. Thus, the better way
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to maximize the power saving is to consider voltage island generation during the

floorplanning/placement stage.

Performance is one of the major concerns since the interconnect delay dom-
inates the circuit performance for DSM VLSI design. Minimizing total wire length,
as traditional floorplanners/placers did, can not guarantee bounded delay for criti-
cal nets. It is desirable to minimize the critical net delay to optimize performance
or to meet the delay constraints by placing these blocks/cores with critical nets
close enough to each other. In [44], the maximum delay of performance-constrained
blocks is bounded by the summation of its height and width of the bounding box
enclosing those blocks. However it is not trivial to bound the maximum delay for
those performance-constrained blocks in voltage island architecture, especially for
those which are not in the same voltage island. Thus, we need an approach to solve
the problem about placing blocks in different voltage islands while meeting their

performance constraints.

The methodology we proposed targets on generating voltage islands in chip
floorplanning stage instead of post-placement one [54], in order to have more flexi-
bilities in design. In this chapter, we still adopt B*-tree [7] as our floorplan represen-
tation and underlying implementation since B*-tree can provide very good quality
of non-slicing floorplans in area and wirelength costs. Our methodology can save
power consumption and routing cost by location constraint [7], and solve the critical
delay problems by performance-constrained consideration [55], even these blocks are
in different voltage islands. Besides, we present heuristics to obtain voltage islands

more easily and efficiently with the original B*-tree.
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o .| | bo 1(1.2,0.8)
7 by 2(1.1,18.2)(1.2,23.4)
bs | by2(1.1,7.8)(1.2,9.2)

bo | bs by 3 (1.0, 1.3) (1.1, 1.5) (1.2, 2.6)
by 1(1.2, 1.8)
) bs 3 (1.0, 0.9) (1.1, 1.5) (1.2, 2.1)
b, "1 by | bg3(1.0,10.2) (1.1, 12.6) (1.2, 15.8)
b;1(1.2,0.7)

| bg3(1.0,9.8) (1.1, 11.2) (1.2, 15.5)
be bio | by 2 (1.1, 15.8) (1.2, 22.2)

bs

bs

b2 (1.1, 6.1) (1.2, 10.0)

Voltage island A: 1.0V {b;, bs, b, bg}
Voltage island B: 1.1V {by, b,, by, bo}
Voltage island C: 1.2V {by, bs, b7}

Figure 4.1: An example of a design with three voltage islands and the corresponding
power table.

4.2 Problem Formulation

In this section, we define the problem about floorplanning with voltage islands

generation while meeting performance constraints.

INPUT

e The set of rectangular blocks, B = {b;,ba,...,b,}, and their corresponding

widths and heights are denoted as W; and H;, 1 <1 < n.

e The power table of blocks. In this table, we have the information about the
number of supplying voltages, SV;, and the pair of supplying voltage and power

consumptions for the voltage, (V;, B;), 1 <1i < n.

e The list of performance constraints. This list has the information about the

blocks connecting with some critical nets.

ouTPUT



e The floorplanning with proper number of voltage islands while meeting per-

formance constraints.
OBJECTIVE

e Optimize a pre-defined cost metric, such as minimizing dead space or being

trade-off between power consumption and the cost of level shifters.

4.3 The Method of Generating Voltage Islands

In this section, we propose the method for voltage islands generation with
B*-tree representation, discuss the strategy to merge different voltage islands in the

B*-trees before packing.

| b,7

bs by | by % @ @

b
TPl e
bs bg b % @ @

(a) (b)

Figure 4.2: An illustration of generating voltage islands with the lowest voltage of
each block to maximize power saving.

First, we use the similar methods with [18] to generate voltage islands. The
way to minimize the power consumptions is to operate each block at its lowest
voltage, floorplan each voltage island, and floorplan all voltage islands to form final

results. Figure 4.2 demonstrates an example of a design with three voltage islands:
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one for {by, bs, b7}, one for {by, ba, by, b0}, and one for {bs, b5, bs, bs}. This solution
could be quickly implement with B*-trees. First, we assign the lowest supplying
voltage to each block, construct the sub-trees for corresponding voltage islands,
combine all sub-trees and pack to obtain the resultant floorpaln. However, this
method is obviously not optimal since the exploration of solution space is limited
and the deadspace/wirelength could be unacceptable. It needs to develop a method
to pack all blocks at the same time and maximize the solution space. With only the
parent-child relationship of each node in the B*-tree and, we build some heuristic
rules for increasing the opportunities to enlarge or merge voltage islands before

packing the floorplanns.

According to the properties of B*-trees at Section 2.1 and the discussion in
the previous chapter, there is an important information that the blocks with parent-
child relationships in the B*-trees have high opportunities to be placed abutted
each other. For example, if n; is the left child (or right child) of n; in the B*-tree
representation, then the block b; right abuts to the block b; (or is visible and above
to the block b;). Thus the probability that a node adds to a compatible subtree, in
which the nodes are all the same voltage, and the subtree grows and maps to the

same voltage island shape will be increased.

For heuristic idea, we build the swapping rules for generating voltage islands
with B*-trees before obtaining geometric information. First, we randomly choose
two nodes n, p in the tree ( V(n) and V(p) denote the adopted voltages of node n
and node p), and if the following conditions appear, we swap the positions of these

two nodes in a B*-tree:

e V(p) = V(n): Node p and node n are compatible, no new voltage islands will

be created, as shown in Figure 4.3(a).

34



39

() @) ()
@-® O~ O
() (9 () (9 @) @)

(a) (b) (c)

Figure 4.3: Three conditions to increase the probability of merging the same voltage
islands.

e V(p.parent) = V(n): Node p’s parent and node n are compatible. We swap
node p and node n, and node n becomes the leaf of the subtree, or connects two
or three compatible subtrees to form a larger subtree (if one or both p’s children

have the same voltage with node p’s parent), as shown in Figure 4.3(b).

e V(p.leftchild) = V(n) and V(p.rightchild) = V(n): Node p’s children both
have the same voltage with node n. We swap node n and node p, and node
n becomes the root of the subtree, and connects two compatible subtrees to

form a larger subtree, as shown in Figure 4.3(c).

Besides the three swapping rules, we also modify Delete_Node and Insert_Node

for perturbing B*-trees:

e Delete_Node: If we want to delete node n, we have to keep the connection
of nodes with the same voltage. If the supply voltage of one child nodes
(n.leftchild or n.rightchild) is compatible with node n’s parent, we choose it
to be new child of node n’s parent. If the children are in the same situation

(both compatible or both not compatible), we randomly choose one of them.



e Insert_ Node: If node n has to be inserted into one subtree and the subtree
exists compatible nodes, the node n will be placed to join the cluster of the
compatible nodes. If there does not exist any node compatible, we randomly

choose one place to insert.

In [53], the location constraint (LC for short) was proposed to maintain the
relation of blocks with packing of B*-trees. The blocks with LC relation will be
placed with the desired shape (L-shape or T-shape) in the final floorplan. In [55],
they extend the LC relation to alignment shape to guarantee the alignment con-
straints will be satisfied at all times. In the previous chapter, we enhance the

alignment shape to trapezoidal shape for trapzoidal blocks.

From observation of these works, we know that if the nodes in the B*-tree
are closer to each other, the chance that blocks are next to each other will be higher
in the final floorplan. Thus, we define the term diameter for our heuristic method

to handle blocks to be placed in a neighborhood:

! b,
bs bo | by @ @

b,

(a) (b)

Figure 4.4: The diameter of two nodes is the number of nodes between them.

Diameter, Dia(n;,n;): the number of nodes between nodes n; and n; in
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the B*-tree.

We use Figure 4.4 (from Figure 4.2) to illustrate this idea. In Figure 4.4, two
nodes with diameter Dia(n;,n;) = 0 are in the direct parent-child relationship and
almost abutting to each other. We can see that the blocks whose Dia(n;,n;) < 2 are
almost adjacent or near to each other. There exists an exception that blocks by and
bs are placed next to each other but their corresponding nodes have the diameter
larger than 2. The reason is that these constraints for locations could only handle
nodes in the same sub-trees or close to others. For different sub-trees, it is very
difficult to predict their locations after packing and do not taken into consideration
in this chapter. Though the diameter does not guarantee the final relation of blocks,
we could use it to guide the desired blocks being placed near each other without

restricting their shapes (as in [55]).

The original B*-tree [7] focuses on normal constraints for floorplanning, such
as deadspace/wirelength minimization or some pre-placed blocks, etc. With these
proposed features, new operations and diameters between nodes, we could have more
opportunities to generate larger voltage islands before obtaining geometric informa-
tion. Since the subtree construction is just a method to increase the possibility to
place blocks/cores together, we need a property checking function to check if there
exists a suitable voltage island. We do it after the contour updated to make sure
the number of voltage islands is acceptable. Our checking is efficient since the block
is only checked one time while it is placed at the segment of contour line, instead of

checking all placed blocks.
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4.4 The Heuristic for Performance Constraints

Traditional floorplanners/placers minimize total wirelength but they can not
guarantee critical nets to meet bounded delay. This problem becomes more impor-
tant because timing convergence is a big issue in DSM design. In order to meet
critical delay constraint, there are methods proposed in [44, 55] during floorplan-
ning. Since actual interconnect delay after appropriate buffer insertions will be close
to linear in terms of distance, linear function in terms of distance to estimate delay
is used. Assume there are a source at (z,,ys) and a sink at (z;,y;), and the delay of
the net D, = dDistsy = 6(| 2 —xs | + | y1—ys |), where d is a constant to scale the
distance to timing, and Dist,; is the maximum distance between source and sink,

equal to the half perimeter of the bounding box of the two points.

There is a major problem in this performance model with voltage island
architecture. The performance of each block is different according to its supplying
voltage and we need to find the suitable bounding box for these blocks even if they
are in different voltage islands. The legal supply voltage has big impact on the
driving strength, thus the bounding box size. If signals are communicated by high
supply voltage, the bounding box for performance-constrained blocks will be larger
than one with lower voltage. In addition, the allowable box size should be a function

of the supply voltage.

Our approach combines the advantages of these methods in [53, 55, 44],
keeping the flexibility of the sub-placement for the performance constraints. In a
B*-tree, we set the diameter, which is defined in previous section, of performance-
constrained nodes and let these nodes be handled with other nodes as if they are not
under restriction. And then, after floorplanning, we check whether these constrained

blocks are placed in the desired bounding box or not. If these constrained blocks
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are in the desired bounding box, we accept this floorplan. The bounding box will
be shrunk at every time we accept a new floorplan until meeting the performance
constraints, like mentioned in [44]. Thus, the total area and wirelength can be
better optimized. This is further verified in the condition that supply voltages of

the performance-constrained blocks are possibly different.

To meet performance constraints, the initial bounding box of each con-
strained group is the bounding box of first floorplan we got after first packing. We
use its half perimeter to calculate first Dyyyng, Wwhere Dyyyng presents the delay of the
shrinking bounding box, and we can also get D; ; of performance-constrained blocks.
There is no doubt we have a first valid floorplan whose D, ; < Dyoyng. Every time we
accept a valid floorplan, we decrease the Dygyng and repeat it until Dygyng <= Dz,
the maximum delay of this constraint. Once the condition D,; <= Dysynd <= Dmas
is achieved, we get a floorplan meeting performance constraints and can use D,
to constrain performance blocks in further process. By reducing Dygung Step by step,
we can get more solution space than [55] and guarantee the final floorplan meets
the performance constraints by Dpoyng <= Dimer s [44]. As mentioned before,
in order to handle the blocks in different voltage islands, the Djygung is adjusted,
Dyoyna X FUNC (v0laz ), with the maximum voltage of corresponding islands. The
function of FUNC(vol ) is related different voltages and could be set by designer
according to the used voltages. We suggest to set FUNC (volye,;) = 1 with the

maximum supplying voltage and reduce the value with other lower voltages.

4.5 The Details of Proposed Algorithm

To floorplan with voltage island generation and meeting performance con-
straints, our algorithm is based on the simulated annealing method and we only

consider hard modules in this chapter. We perturb a B*-tree to another by the
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following operations:

e Opl: Change the supply voltage of a node.
e Op2: Rotate a node.

e (Op3: Flip a node.

e Op4: Swap two node.

e Op5: Move a node to another place.

The first operation Opl is only applied to the blocks with more than two
supplying voltages. In this operation, we change the voltage of target node to be
the same with its parent or child, if possible. If the operation is successfully applied,
we could expect that the larger voltage islands is formed after packing. The next
two operations, Op2 and Op3, are applied to all nodes and they only change the
shape of voltage islands without disturbing the number of islands. For performance
constraints, these two operations do not change any diameter and we only need
to check the bounding box of performance constraints with rorating a node after

packing.

Op4 and Op5 change the relations of blocks to get a different placement and
B*-tree structure based on our heuristics. Like the Opl, these two operations expect
to extend the voltage islands. To get better results with Op4, we give the higher
probability to the two nodes with the same voltage, and lower probability to the
two nodes with different voltages. In the original B*-tree, it gives the random move
for Op5. In our algorithm, we use the new Delete_Node and Insert_Node here
to generate voltage islands as large as possible. Moreover, if we tighten the shape

of performance-constrained blocks at the beginning, we may be forced to raise the

40



Algorithm: Floorplanning with Performance Constraints
for Voltage Islands(blocks, power _table, constraints)
Input: A set of blocks, the power table and performance constraints.
Output: A floorplan with voltage islands and meeting the given constraints.
1. Initialize a B*-tree for the input blocks and constraints;
2. Simulated annealing process;
3. do
4.  perturb();
5. performance constraint check();
6 if diameters of performance-constrained blocks fail to meet constraints
7 then adjust the corresponding nodes in the B*-tree
8.  packing();
9.  voltage island check();
10.  if the property is not good
11. then add the penalty to the cost function
12.  evaluate the cost of this floorplanning;
13. until converged or cooling down;
14. return the best solution;

Figure 4.5: The algorithm of floorplanning with performance constraints for voltage
island generation.

supply voltages of some of them to the higher one to match the voltage of the island
which these blocks belong to; or we will get a malicious B*-tree structure that the
voltage property is withered. When the temperature becomes lower in annealing
process, we do not accept a solution that violates performance constraints even if it
has better cost, the best solution will be kept until next feasible solution with better

cost.

Figure 4.5 shows our algorithm in detail. First, we initialize the B*-tree and
set up the power table and constraints (see line 1). We construct the initial B*-tree
according to the order which the blocks are presented and set all blocks to their
lowest voltage. Then, we start the simulated annealing (SA) process. After each

perturbation (see line 4), we check the performance-constrained blocks (see line 5).
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Because there are no exact coordinates of performance-constrained blocks in this
stage (before packing), we use the diameter to maintain their relation in the B*-
tree (close to each other). If there exists any diameter between each pair of nodes
of performance-constrained blocks larger than 2, we use the probability to decide
whether accepts this perturbation or not. If we do not accept this perturbation,
we will reorder their relations and make sure there is no diameter larger than 2
to expect the more adjacency of performance-constrained blocks (see line 7). The
adjusting function consists two steps: remove the node with the largest diameter
and then insert it into the original group with diameter less then 2. Then we do
the packing, check the performance-constrained blocks, accept a placement without
violating performance constraints (see line 8), and pass it to the next step. If the
performance constraints check fails, we treat it as a failing step in the simulated
annealing process. We check the property of voltage islands for this placement
(see line 9), if the property is not good for this placement (ex. too many voltage
islands or too many level shifters), we penalized the solution so that it will be
rejected by SA. After checking the property of voltage island, the placement is
evaluated by its area, wire length, and the cost of level shifters (see line 12). This
cost function, cost = carea +fpower +7level shifters where o + 5 + v = 1, takes
care of area of the floorplan, the total power consumption and the cost of level
shifters. In our experimental setting, we set & = 0.9, 8 = 0.05, and v = 0.05. The
iteration continues until the end of SA scheme (see lines 3-13) and the best solution
is reported(see line 14). According to this flow, we can guarantee the performance
constraints are met during the perturbation and we will try to get the placement

with good property of voltage islands at each perturbation.
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4.6 Experimental Results

We implemented our algorithm and the benchmarks we used are MCNC
benchmarks with the power table created by us, which is shown in Figure 4.1.
Table 4.1 shows the comparisons between [17], [18] and our approach on deadspace,
power consumption and cost of level shifters. Because we need the level shifters for
changing voltages between different voltage islands, for these costs, we use a simple
evaluation for these benchmarks. We assume all level shifters are placed on the
boundary of every voltage island, except for the boundary of chips. There are two
reasons for supporting this assumption. First, the designers could reserve the thin
area on the boundary of each island, and these area are used for level shifters and
the wire connections between voltage islands. Second, the power pins are placed
outside the boundary of chips and we can ignore these level shifter in our design (it
should be already level shifters at the boundaries between chip and blocks). Thus,
based on the reasons, we evaluate the cost of level shifters with the total boundary

length between different voltage islands except outmost of the floorplan.

Table 4.1: The experimental results on some MCNC benchmarks.

| Table [Hu et al.2004][17] [Hung et al.2005][18] Ours
Circuit Dead | P C |CPU| Dead | P C |[CPU| Dead | P |C|CPU
hp pt2 ||3.10%| 86.4 | 1 23 ||3.10%| 86.4 | 1 18 |13.10% | 86.4 15
pt3 [[2.98%| 783 | 1 25 (|2.98%| 783 | 1 22 |12.98% | 78.3 18
ami33 pt3 [|4.25% |115.8{1.46| 82 |[[5.06% |114.7(3.22| 109 | 2.07% | 123.2 89

pt3-1 [|3.756% | 136.6|2.46 | 86 |/ 4.26% |125.6|5.56| 145 |/ 2.23%|136.3 1 89
pt2 [[4.08% |157.9|1.49| 263 |6.21% |148.3|3.77 | 358 |/ 3.34% | 151.5 243
) pt3 [[4.42% |151.1|1.53 | 246 |6.92% |146.5|3.87 | 398 |/ 3.38% | 156.2 234
ami49 pt3-15.24% | 200.1|1.12| 275 ||7.32%|193.5|2.63 | 366 | 3.52% |196.4 234
pt3-2 | 4.21% | 223.7|1.20 | 255 || 6.54% | 218.9|2.89 | 387 | 3.64% | 222.9 240

Table 4.1 demonstrates the experimental results of the three methods, [17], [18]

and our approach. In Table 4.1, columns 1 and 2 are the name of circuits and their
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corresponding power tables. In the power tables, pt2 means these blocks having
at most two operating voltages, and pt3, pt3 — 1, and pt3 — 2 are with at most
three operating voltages. In the following columns, Dead, P, C, and CPU are
the deadspace, power consumption, the cost of level shifters which is normalized
to us, and run time of each benchmarks, respectively. For power consumption, we
sum up the power consumption of each block with its corresponding operating volt-
age. We implement the work of [17] and [18] based on the B*-tree representation,
which is comparable in experimental setup and assumptions to our work. For these
experimental results, the proposed algorithm shows the best results at the trade-
off between power consumption and the cost of level shifters with the minimum
deadspace at each benchmark. The mehod of [18] gets the best results of power
consumptions, however, their deadspace and the cost of level shifters are the largest
in all benchmarks. Because their method merges voltage islands first and floorplans
these voltage islands, their method has the best results in power consumption but

also gets the larger deadspace and costs for level shifters.

1000 1200

(a) (b) (c)

Figure 4.6: An illustration of ami33 with different voltage assignment methodologies

1000 1200 200 400 600 1200

We propose a simple way to generate voltage island with the original B*-trees.
In this experiment, we fix each block at its lowest power and try to minimize the area
and its dead space is 2.12% and power is 113.6mW. As illustrated in Figure 4.6(a),

the floorplans of circuit am:33 with 3 usable supply voltage demonstrates the final
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result from the original B*-tree. Next, we raise supply voltages of blocks to form
the larger voltage islands. In Figure 4.6(b), there are four voltage islands and its
power consumption is 136.8mW. Further, we reduce the voltage islands again and
the power consumption is raised to 146.3mW. For this heuristic method, we can

reduce much cost of level shifters with no extra area overhead.
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Figure 4.7: Two floorplans of circuit ami33 with 3 usable supply voltage. (a) The
result of original B*-tree. (b) The result of proposed method.

However, this method depends on the initial floorplan. Figure 4.7 demon-
strates the results of ami33 with 3 usable supply voltage. In Figure 4.7(a), the
results has the best results in deadspace (deadspace=1.47%, power=113.6mW) but
it is very difficult to form suitable voltage islands with the heuristic method. With
our proposed method, the cost of level shifters is much smaller than it with a little

deadspace overhead (deadspace=2.07%, power=123.2mW).

Table 4.2 shows the comparison of our results with [55] which considers only
performance constraints. Column 3 gives the number of performance-constrained
blocks, there are one group in ami33 and ami49-2, two groups in ami49-3, and each
group has 3 blocks. Both methods meet performance constraints but our approach

could get much lower cost of level shifters with slightly increased power consumption.
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Table 4.2: The experimental results with performance constraints.

. Perf. Const. Only [55 Ours
Circuit | Table || Perf. Area | Dead P(mw)[ ]C Area | Dead | P(mw) | C
. pt3 113.6 | 4.34 || 1.18 | 2.02% | 121
ami33 | e |l 3 | V18| 22% i3y 203 LSt | 22% | 1451
pt2 1471 | 45 | 36.78 | 3.64% | 156
pt3 142 [ 6.33 || 36.89 | 4.53% | 146.6
amid9-2 | pt3.1 || 3 || 36.56 | 3.1% [T 183.1 | 6.89 || 36.87 | 3.86% | 200.9 .
pt3-2 208 | 6.7 | 36.89 | 3.93% | 221.9
pt2 1471 | 448 | 36.8 | 3.68% | 156.8
pt3 142 [ 6.43 || 36.98 | 4.14% | 149.7
ami49-3 | pt3.1 | 6 || 36.64 | 3.3% [ 1831 | 6.6 | 37.1 | 4.46% | 215.9
pt3-2 208 | 6.25 | 37.07 | 4.38% | 223.3

Figure 4.8 illustrates final floorplanning result of ami49 — 2, pt3 with performance-
constrained blocks 5, 6, and 7, and they are not on the same voltage island. The
comparison between two approaches on power consumption and the cost of level
shifters. With both meeting performance constraints, our approach obtains much

lower cost of level shifters with slightly more power consumption.

4.7 Summary

In this chapter, we propose an algorithm which can simultaneously han-
dle floorplanning with voltage island generation and meet performance constraints.
Given the power table of design, the proposed algorithm generates voltage islands
with appropriate number of blocks according to the trade-off between power con-
sumption and cost of level shifters. Although the proposed algorithm can handle
more than three supplying voltages, the balance between number of voltage islands
and cost of levle shifters needs to be taken into consideration and we suggest three
voltage islands is the better solutions in our experiments. For meeting performance

constraints, we present a heuristic method to have more opportunities placing blocks
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Figure 4.8: An example of ami49 with proposed methodology to generate voltage
islands with performance constraints.

close to each other before packing of B*-trees. Further, we shrink the bounding box
of performance-constrained blocks and guarantee the final solution satisfying the
given constraints. With the experimental results with MCNC benchmarks, our algo-
rithm is effective and efficient to generate voltage islands while meeting performance

constraints, even the blocks are in different voltage islands.
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Chapter 5

Layout Modification for FIB Techniques at
Post-routing Stage

In this chapter, we first give the motivation about signal observation for FIB tech-
niques. Then, we define the FIB observation and our problem formulation. Next,
we propose the operations to modify layout to increase the number of signals to be
observed with FIB techniques. The flow of our work is explained in the following.
Finally, we demonstrate the experimental results and the timing impact between

original and modified layout.

5.1 Motivation

The failure analysis takes the critical role in today’s debugging flow. There
are several physical probing techniques, such as electron beam (E-beam) [41] and
laser voltage probe (LVP) [58]. However, the E-beam techniques are hard to observe
the deeper signals and the LVP techniques need extra area overhead within design,
such as additional cells [31] or larger cells instead the original cells [32]. Compared
to these techniques, the Focused Ion Beam (FIB) techniques utilize the milling and
deposition processes to create additional access points for internal signals on the
surface of chips, require no area overhead within the design, and have shooter process

time in current industry.
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Table 5.1: FIB observable rates for 0.18m and 90nm technologies.

circuit technology difference
0.18um(a) | 90nm(b) | (a)-(b)
838417 72.66 36.57 36.09
838584 60.72 28.62 32.11
835932 85.06 50.84 34.21
bl7 41.95 17.86 24.09
b20 50.87 25.62 25.23
b21 46.57 23.47 23.10
b22 46.91 23.56 23.36

| avg. | 57.82 | 2950 | 28.32 |

To observe signals with FIB techniques, we need the clean space above the
target signal, which means there is only inter-layer dielectric (ILD) above the target
signal and no other metal lines cover it. However, with the high metal density and
advanced technologies, the design is manufacturing with high metal stack technolo-
gies (more than 6 layers). The circuit layout is more denser than before, and the
signals at lower layers are hard to be observed. Besides, the resolution of FIB tech-
niques is limited with physical constraints and cannot scale as fast as technology
node. As shown in Figure 5.1 (the same as Figure 1.1), the FIB observation rate
is about 30% for the large circuits with 90nm technology and it will be worse with
65nm or 40nm technology in the future. However, in the current design flow, the
automatic place and route (APR) tools are responsible for the detailed cell place-
ment and signal routing and focus on some design constraints, such as routability or
timing issues. The routes of design are almost determined at this step and also limit
the observation rate of signals. In order to utilize the FIB techniques for post-silicon
debugging, we have to develop some approaches with minimum impacts to routed

circuits.

In this chapter, we propose the methodology for layout modification at post-
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routing step and greatly increase the number of signals accessed with FIB techniques.
We introduce pre-defined operations which change routing layers of existing metal
lines without performing complicated routing. Therefore, the proposed methodology
is effective and efficient and could be applied to the layout generated with any APR
tool. The experimental results with UMC 90nm technology files demonstrate the
proposed methodology significantly increases the number of signals which can be
observed or edited with FIB techniques while keeping the timing of critical paths

without any area overhead.

5.2 Definition of FIB Observation

In the section, we give the definitions about FIB probing holes and the FIB

observable nets.

5.2.1 Definition of an FIB Probing Hole

Since the first step of observing signals with FIB is surface milling, which
forms the holes, we give the definition about the FIB probing holes. As shown in

Figure 5.1, the FIB probing holes have several features:

¢ Baseline windows: the area for the bottom of the FIB probing hole (usually
square). For higher successful rate about FIB observation, this area needs to
be larger than the square of given minimal width, which is respect to FIB

techniques we used.

e Aspect ratio: because the focused ion beam or its reflection from the surface
may also hit the edge of the dub hole, the edge of the hole is not directly
orthogonal and have a few angles and some offset from bottom to top. The

angles are determined with the power level of the current with FIB. Although
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Figure 5.1: Illustration of an FIB hole.

the more power of current can accelerate the process of surface milling, it

creates larger angles and needs more clean space above the target signal.

e Top windows: the area for the top of the FIB probing hole. Due to the aspect
ratio, the size of top windows is always larger than the baseline window, and
we need larger size at the top if we have to observe the signal in the deeper
layers. However, it is difficult to have a signal at deeper layer without any
metal above it. Even if we use the lower power of FIB current, the probability

to observe signals at deeper layers is much lower than they are on higher layers.

5.2.2 Definition of an FIB Observable Signal

In the previous discussion, we briefly describe the FIB holes for successful
milling to target signals. A signal in the design means a net in the netlist, and it
may correspond to metal lines in different routing layers with via connections. We

give the precisely definition about observable signals as following.

The signal can be observed with FIB techniques if it has the following fea-

tures:
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1. The FIB hole can be formed and reach the surface of target line with the given

parameters, such as baseline window, aspect ratio, and top window.
2. The FIB hole cannot cut any existing metal line.

3. The overlap between the surface of target line and baseline window is larger
than given minimal width according to FIB techniques (800-1000nm for cur-

rent technology).

4. There is only target metal in the middle of baseline window.

5.2.3 Problem Formulation

According to the discussion and the definition about FIB techniques, we have
the idea if we could reserve more signals in the higher layers, we could have more
observable signals. Thus, the problem of our layout modification for FIB observation

can be defined as following:

INPUT

The layout files after placement and routing

The library files for target technology

The parameter of FIB techniques

ouTPUT

The modified layout files

The signals and their feasible locations for FIB observation
OBJECTIVE

e Maximize the number of signals for FIB observation
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5.3 Layout Modification for FIB Techniques

In this section, we first describe several pre-defined operations for layout mod-
ification. Then, we present the ranking method for potentially observable signals.

Finally, we detail flow about our layout modification for FIB observation.

5.3.1 Basic Operations

To make signal be observable, we propose three operations and describe each
operation in the following. Moreover, the operations we proposed only focus on

changing routing layers of signals to minimize the impact to routed signals.

e Move-up operation: moving up the segment of target line.
e Move-down operation: moving down the segment of target line.

e Swapping operation: the combination of Move-up and Move-down opera-

tions.

(a) Before a move-up operation (b) After a move-up operation

Figure 5.2: (a) Signal b cannot be observed. (b) Signal b can be observed through
segment b;.

The first operation, Move-up operation, is moving up the target signal to
higher routing layer. To minimize the impact to original routing, we only move a

part of line segment for target signal. For higher successful FIB rate, the length of
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the segment we moved needs to exceed the minimum width of baseline window. We
use Figure 5.2 for illustration. First, we check whether there is enough space for via
connections and the new segment on the higher layer. If there is enough space, we
divide the target signal, move one segment of target signal to the higher layer for

observation, and maintain the connection with additional vias.

(a) Before a move-down operation  (b) After a move-down operation

Figure 5.3: (a) Signal b cannot be observed. (b) Signal ¢ have been moved down
and the space is released for signal b.

Due to timing constraints or no enough space, some signals cannot be moved
to upper layers. The second operation, Move-down operation, tries to move down
the blockage line to release the space for others. We use Figure 5.3 for illustration.
In Figure 5.3(a), the necessary space for observing signal b is blocked by signal a
and c¢. We check the enough space below the two signals and, then, move signal a
down to release the space for signal b. With successful move-down operation, signal

b is observable in Figure 5.3(b).

(a) Before swapping operation (b) After swapping operation

Figure 5.4: (a) Signal ¢ cannot be observed. (b) After move-down and move-up
operations, signal c is observable.
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The last operation is swapping two signals at different layers. This operation
combines the first two operations in order to create more space for the lower signals.
Figure 5.4 demonstrates the idea of swapping operations. In Figure 5.4(a), the signal
c is blocked by signal a and b, but there is no space for directly observing signal ¢
after moving down signal b. Thus, we divide signal c into ¢; and cp. First, we move
down the signal b to release the space and move up the segment of ¢; to upper layer.

With these operations, signal c is observable through segment c;.

With these operations, some of unobservable signals in the original layout
become observable. Thus, we use potentially observable signals (POSs) for these
signals, and the potentially observable locations (POLs) for these line segments,
which can be observed with FIB after proper movements. However, there are more
than thousands of POLs and the priority of these POLs affects the final signal
observation rate. For example, POL [, of signal a and POL [, of signal b need
the same space. If signal a has another POL for observation, the space should be
reserved for signal b for maximizing the number of observable signals. As the results,

we propose a greedy method for ranking these POLs.

5.3.2 Ranking Method for Potentially Observable Signals

First, we define the cost about observing signals from their POLs. The cost
of a POL is the number of operations to make it be observable. For example, if the
POL only needs one operation to be observable, such as one move-up or move-down
operation, its cost is 1. With the cost of each POL, we set the cost for POSs with
two criterias and rank POSs with them. The first is the number of POLs and the

second is the minimum moving cost of POLs.

First, the POS with less POLs has less chance to be observable. For example,

the POS a with one POL has only one location to become observable. If we adjust

99



other signal first, the location could be blocked by other signal and POS a cannot
be observed with any operation. Thus, we first make these signal with less POLs
to be observable to maximize the observation rate. Second, if there are signals
with the same POLs, we choose the POL which has the minimum moving cost with
high priority. With this criteria, the signal with minimum moving cost is adjusted
with the minimum routing resource, like additional vias, upper routing metals. We
could preserve more space and routing resource for other POSs and maximize the

observation rate in the following steps.

Algorithm: Ranking for Potentially Observable Signals (POSs)
Input: The layout file, the set of unobservable signals,
the aspect ratio, and the width of baseline window of FIB.
Output: The ranking list of POSs.
1. for each unobservable signals
2. check the free space for target signal.
3 if target signal is completely blocked
4 then target signal is unobservable.
5. else
6. for each POL of target signal
7 evaluate the cost of observing the POL with basic operations.
8 record the minimum cost of target POL.
9. sort the cost of POLs from min to max.
10. set the cost of target signal with the min POL
and the number of POLs.
11. sort the number of POLs for each POSs from min to max.
12. if the number of POLs are equal
13. then the POS with minimum cost first.
14. return sorted ranking list of POSs.

Figure 5.5: The mehod of ranking unobservable signals.

We show the algorithm of ranking unobservable signals at Table 5.5. First,
we check whether there is enough space above target signal. If the target signal is
completely blocked by others, we mark it to be unobservable (Lines 3-4). If there is

any POL for target signal, we evaluate the observing cost with proposed operations
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and record the minimum cost of this POL (Lines 6-8). After getting the cost of each
POL, we sort these POLs according to the cost from minimum to maximum (Line
9). Then, we set the cost of target signal, a new POS, with the number of POLs and
the minimum cost of all POLs (Line 10). After we obtain the cost of each POS, we
sort these signals according to the number of POLs from minimum to maximum. If
two or more POSs have the same POLs, we give the high priority to the POS with

minimum cost (Lines 12-13). Finally, we obtain the ranking list of POSs (Line 14).

5.3.3 Layout Modification for Signal Observation with FIB Techniques

With the basic operations and the greedy ranking method, we detail the flow

of layout modification for signal observation with FIB techniques.

Flow: Layout Modification for Signals Observation with FIB Techniques
Input: The original layout file: design.def,
The FIB parameters file: FIB.para,
The physical-design information file: tech.lef,
The gate-level netlist file: netlist.v,
The timing information file: tech.lib.
Output: A modified layout file: design_new.def,
A list of observable signals: Obs.list.
Analysis the original layout file to filter the observable signals.
Rank the unobservable signals according to the proposed ranking method.
For each POS in the ranking list
Perform the basic operations to make it be observable if possible.
Perform the the connection checking, design rule checking, and equivalent checking,.
Perform the timing analysis.
If there is any path violating timing constraints
Report the modified signals on the timing-violated path and recover them.
Output the modified layout file and the list of observable signals.

© 00N oW

Figure 5.6: The flow of layout modification for FIB observation.

There are several input files:

o design.def: the original layout file of design. It can be generated with any
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APR tool.

e FIB.para: the parameters about current FIB techniques, including the base-

line window and aspect ratio.

e tech.lef: the physical-design information for current cell library, including the

size and space of each routing layer, the size of vias, and etc.

e netlist.v: the original netlist file of design. It describes the gate-level infor-

mation for equivalence checking with modified layout file.

e tech.lib: the timing library for current cell library. It is used in timing analysis

to check whether there is any timing violation or not with modified layout file.

There are two output files:

o design new.def: the modified layout file of design.

e Obs.list: the list of FIB observable signals, and the POLs of each observable

signal.

After getting the input files and parsing the metal lines of signals respect to
FIB parameters, the first step is to filter the signals which are already observable
in the original layout. Then, we apply the ranking method in previous section to
extract the POSs and obtain the ranking list. With the ranking list, the layout
modification operations are used to make these POSs become observable if possible.
After checking all POSs in the ranking list, we perform several checking to guar-
antee the modified layout has the same relation as original layout, such connection
checking, design rule checking, and equivalence checking. Then, the timing analy-

sis is performed to make sure the modified layout meets the timing constraints. If
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there is any timing-violated paths, we report the modified signals on the paths and
recover these signals for satisfying timing constraints. Finally, the modified layout
file is generated, and we also report the list of observable signals and the POLs of

each observable signal.

5.4 Experimental Results

We implement our layout modification and give the experimental results in
this section. The benchmarks we used are the large circuits from ISCAS’89 and
ITC’99. The library is set for UMC 90nm and we constrain metal 6 to be the top
layer for routing signals. We first synthesis these benchmarks with Synopsys Design
Compiler, and the layouts are obtained from the commercial APR tool, Cadence
SoC encounter [61]. The SoC encounter outputs the original layout file in DEF
format and timing information in SPEF format. We extract the timing information
with PrimeTime [62]. The proposed flow is applied to the original layout file and
we feedback the modified layout file to encounter for verifying the interconnection
and other properties. Finally, we return the verified layout and a list of observable

signals signals.

We set the width of baseline window to 1000nm and the aspect ratio of FIB
holes to 1-t0-10 in our experiments. Table 5.2 demonstrates the experimental results
about FIB observation and the cell-utilized rate is 80%, which can present the cell
density in the layout. In Table 5.2, Column 1 and 2 show the name of circuits and
their total signals. Column 3 and 4 demonstrate the FIB observation rate before
and after the proposed flow. Column 5 presents the difference of the Column 3 and
4. The upper bounds of observation rate list in Column 6. The runtime is presented
at last column. As the results, our proposed flow for FIB observation significantly

improves the rate of observable signals from 39.15% to 69.28% in average with the
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Table 5.2: Result of applying the flow of FIB observation.

FIB observable rate (%) .
circuit jcotal initial | modified imp. upper runtime
signals (a) (b) (b) - (a) | bound (sec)
838417 | 9296 36.57 69.86 33.30 71.72 106
838584 | 5711 28.62 64.96 36.34 67.17 66
835932 | 5912 50.84 83.12 32.28 83.85 51
bl7 16826 | 17.86 46.71 28.85 48.90 476
b20 7183 25.62 57.48 31.87 59.36 85
b21 6448 23.47 54.12 30.65 56.54 81
b22 9432 23.56 55.45 31.89 57.96 162
| avg. - [ 2950 | 6167 | 3217 | 6364 || -

basic operations.

Table 5.3: The FIB observation rate with 800nm for width of baseline window.

FIB observable rate (%) )
circuit || initial | modified imp. upper runtime

(a) ®) | (b)- (a) | bound || (®e€)

838417 || 58.21 76.85 18.65 77.86 74
s38b84 || 47.25 69.63 22.38 70.97 50
835932 || 71.78 87.02 15.24 87.48 34
bl7 29.15 49.98 20.83 51.40 387
b20 40.23 61.95 21.72 63.20 67
b21 36.54 58.18 21.63 59.73 65
b22 37.80 59.76 21.95 61.31 129

ave 45.85 66.20 20.34 67.42 -

Similar trend to Table 5.2, we demonstrate the efficient of proposed flow with
different width of baseline window (800nm) in Table 5.3. It is obviously not only the
initial observation rates but also the modified observation rates are higher than the
experiments with larger width of baseline window. In the current industry, the two
settings for width of baseline windows are all acceptable. However, the successful

rate for larger width (1000nm) is higher than smaller one (800nm) and it also need
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longer process time. Hence, it is a trade-off problem and could be determined with

failure-analysis engineers.

Table 5.4: FIB observable rates based on the initial layout with different cell-
utilization rates.

cell-utilization rates

circuit 80 85 90

initial | modified | initial | modified | initial | modified

838417 || 36.57 69.86 34.04 67.76 32.95 67.55

838584 || 28.62 64.96 27.20 64.90 25.12 62.82

835932 || 50.84 83.12 47.42 80.13 43.15 77.87
bl7 17.86 46.71 16.64 43.80 16.11 42.51
b20 25.62 57.48 23.49 53.00 22.67 50.54
b21 23.47 54.12 23.34 52.40 19.61 50.93
b22 23.56 55.45 21.03 51.91 20.45 52.05

| avg. | 2950 | 61.67 | 27.60 | 59.13 | 25.72 | 57.75 |

In the current designs, the cell-utilization rates are usually set from 80% to
85% and we demonstrate the proposed flow on the initial layout with 3 kinds of
cell-utilization rate in this experiment. Table 5.4 presents the experimental results
with different rates from 80% to 90%. The initial observation rates become lower
from 80% to 90% because it is difficult to observe signals with high-density design.
With applying the proposed flow to each circuit, the modified observation rates are
all increased in average. These experiments show the proposed flow is very efficient

for improving FIB observation rates within different cell-utilization rates.

Table 5.5 lists the most critical path before and after applying our proposed
flow. The RC extraction is obtained from encounter [61] and these information is
reported from PrimeTime [62]. With the layout modification, there are extra vias
added into the circuit and these vias affect the timing of the original circuit. Even
with these impacts, the timing of modified circuit becomes a little faster than the

initial one for the first two cases.



Table 5.5: The timing of most critical path with FIB observation.

circuit initial layout modified layout

critical path (ns) || critical path (ns)
s38417 1.09575 1.09486
s38H84 1.49767 1.49481
s35932 1.79810 1.79595
bl7 6.72669 6.71904
b20 4.26175 4.25394
b21 4.32446 4.31786
b22 5.39416 5.39174

Table 5.6: Timing comparison between MFOB with and without locking the top 50
longest paths.

critical path avg. timing diff. FIB observable
circuit (ns) for top 50 paths (%) rate (%)
no lock | lock no lock lock no lock | lock

838417 || 1.09486 | 1.09485 | -0.07770 | -0.07887 69.86 | 67.22
538584 (| 1.49481 | 1.49698 |[ -0.10887 | -0.10907 64.96 | 64.38
835932 (| 1.79595 | 1.79602 || -0.07860 | -0.07907 83.12 | 82.78
bl7 | 6.71904 | 6.71894 || -0.10497 | -0.10731 46.71 | 45.97
b20 || 4.25394 | 4.25793 || -0.12390 | -0.10775 57.48 | 54.40
b21 || 4.31786 | 4.31997 || -0.10199 | -0.05618 54.12 | 51.74
b22 || 5.39174 | 5.39194 || -0.12210 | -0.13058 55.45 | 53.55

[avg. | - | - [-0.10259] -0.09555 | 61.67 | 60.01 |

To demonstrate the proposed flow with less impact for timing-critical paths,
we lock the nets of 50 timing-critical paths and apply the same flow to maximize
the signal observation rate. Table 5.6 shows the experimental results. The first
column shows the name of circuits. The second and third columns show the timing
of most critical path. The fourth and fifth columns demonstrate the average timing
difference of these 50 paths in percentage. The last column give the observation
rates. The timing difference of unlocking paths is 0.10259% and it decreases to
0.09555% with locking nets but the observation rate also decreases from 61.67% to

60.01%. As the results, the timing impact of proposed flow is very small and we can
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minimize the timing impact by locking the nets of some desired paths.

After comparing the initial and modified layouts, we conclude two reasons
for the faster timing. First, in our flow, we perform more move-up operations than
move-down operations. According to the physical-design information file (.lef), the
metals at upper layers have smaller capacitance per unit-length, compared to the
lower layers. Thus, the overall metal capacitance of modified signals are often smaller
than initial one. Second, we often break a long metal line and move a portion of it
to upper layers. This action indeed reduces the coupling capacitance from some long
paralleled lines, which affect the timing of critical paths. With these conclusions, the
overall metal capacitance of paths with modified signals often decrease and, thus,

the timing of critical paths is also decrease with it.

5.5 Summary

In this chapter, we present the methodology for layout modification at post-
routing step in physical design stage. First, we propose the basic operations to
modify layout for observing potentially observable signals (POSs) and a ranking
method with greedy selection is used for these POSs. Then, we detail the flow for
FIB observation. The experimental results demonstrate the effective and efficient
about our proposed flow. Within the same size and slightly better timing, the
signals for FIB observation are significantly increased than original layout. Besides,
the basic operations are simple and do not need any complicated routing system.
Thus, the proposed flow can be easily integrated with today’s design flow and applied
to the layout generated by any commercial APR. tool.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this dissertation, we have presented several efficient and effective algo-

rithms to consider different design constraints in physical design stage.

First, the packing scheme with isosceles right triangular blocks within normal
floorplanner is developed. With new equations for calculating y-coordinates, the
proposed scheme could handle floorplan with any block combined with rectangles
and isosceles right triangles. Thus, the scheme gives more choices of block shapes and
more locations for pin assignment. Further, this scheme reduces more wirelength
under the same area usage compared to normal floorplanner and can be quickly
integrated with today’s design flow. Then, we propose the method to generate
the voltage island and reduce the power consumption while meeting performance
constraints, which limits the delay of critical nets. Considering the trade-off between
power consumption and power routing cost, the proposed method gives the best
solutions within the experimental results. Even the performance-constrained blocks
are in different voltage islands, our method still has the best solutions and it is
flexible and can be extended to different level. Finally, to obtain more signals
after chip manufacturing, the framework of layout adjustment for FIB observation
and FIB circuit-editing is proposed. This framework uses the pre-defined functions

to change the routing layer of signals and greatly increases the signal observation
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rate. Without complicated routing operations, it can be applied to layout from any
commercial APR tools. The framework not only increases the number of observable
signals but also remains the same size and give the slight impact to the timing of

original designs.

6.2 Future Work

There are some improvements could be done in the future:

The methodology for pin assignment: The pin assignment is an impor-
tant issue to reduce the wirelength. In this dissertation, we use normal distribution
to assign the pin at the boundary of each extra block. With more accurate method-
ology for pin assignment, the wirelength for critical nets or non-critical nets could be
reduced more effectively and, further, the floorplanning/placement can be improved

better than the algorithm with normal distribution method.

The method for calculating bounding box for performance con-
straints: In this dissertation, we increase the entire bounding box according to the
block with highest voltage. In order to get more accurate estimation, the calculation
of bounding box can be divided into several sub-box according to different voltages.
Finally, the bounding box could be the combination of rectangles with different size

according to the voltages of different island.

The flow for circuit editing: Besides observations, there is one feature
for FIB techniques, which is circuit-editing. The actions about circuit-editing are
most often cutting one existing line and reconnecting it to another location, such
as another line or pre-placed sparse cell. By circuit-editing with FIB techniques,
we can quickly change the function of silicon chips for reducing the time of failure

analysis.



(a) Initial layout (b) After cutting and reconnecting

Figure 6.1: (a) The initial layout. (b) Reconnect line @ to line b with circuit-editing.

However, there are some different properties compared to FIB observations.
First, we only need one location for creating one probing pad, but we have to form
two probing pads corresponding to different signals and connect them with extra
conductor (usually the same as probing pads) on the surface of chips. Further, we
need one more FIB hole for cutting the connection with original signal. Figure 6.1
illustrates an example about circuit-editing. In order to connect line a¢ and b, we
need two FIB holes with line a. One for cutting original connection, and one for
reconnecting with line b.

[] : location for FIB cut or connection

b, X b -
| —
bo il
T e
| b 2 g

(a) One signal net has several branches  (b) Cut & connect for each branch

Figure 6.2: (a) The observable location could be any branch for signal A. (b) The
feasible locations for FIB in different branches.

The other property about circuit-editing is shown in Figure 6.2. During FIB
observation, the observable location could be at any branch since their source is

signal A. However, if we want to perform circuit-editing, each branch from by to b3
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has different meaning and, hence, each branch needs two observable locations for
successful circuit-editing. For example, if we need to change the source about all
outputs of signal A, we could use branch by to save the most resource. On the other
hand, if we only want to change the input of signal X, we just use the branch b, for

cutting and reconnecting.

In order to handle the new properties of circuit-editing, we need to develop

new method based on the proposed flow about FIB observation in the future.
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