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Output Feedback Integral Sliding Mode Control Applied to Time-Delay
Systems

student : Huan-Chan Ting Advisors : Dr. Yon-Ping Chen
Dr. Jeang-Lin Chang

Institute of Electrical Control Engineering
National Chiao Tung University

ABSTRACT

For linear multi-input multi-output uncertain systems with external unknown disturbances,
this thesis proposed a dynamic output feedback integral sliding mode control method to
stabilize the system and suppress the effect of mismatched disturbances. The advantages of
sliding mode control are its simple. design ‘procedure, great robustness against matched
disturbances, etc. As part of system states or outputs are only measurable, conventional output
feedback sliding mode controllers involved a synthesis problem by a structural constraint and
ensured the approaching and sliding condition locally. The thesis adopted an integral sliding
surface to improve the controller synthesis problem, reserved inherent benefits of sliding
mode control, and offered an extra degree of freedom-to suppress the effect of mismatched
disturbances when the system is in the sliding mode, simultaneously. For satisfying the
approaching and sliding condition globally, an adaption law was added in the controller to
estimate the bound of part of unknown terms. The proposed control method can be modified
to apply to uncertain time-delay systems with disturbances. For state delays with a fixed and
unknown delay time, combined the output feedback integral sliding mode technique with a
full-order compensator can complete the dynamic controller design. Since the system is in the
sliding mode, using the property of robust disturbance attenuation can derive a linear matrix
inequality as a sufficient condition for the stability; this linear matrix inequality can be
decomposed into two smaller algebraic Riccati inequalities by modifying the structure of
compensator. Solutions to two types of inequalities can both determine parameters of sliding
surface, compensator, and controller. In the case of time-varying and unknown delay time,
some delay times caused the instability of system and worsened the difficulty designing the
controller. The proposed structure of dynamic sliding mode control can also complete the
stability analysis and control law design for systems with time-varying delay.
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I. INTRODUCTION

In practice, most of system state signals cannot be measured fully to complete a state
feedback control scheme. For the same system suffering uncertainties and external
disturbances, output feedback sliding mode control method can reserve the original
advantages to regulate the system behavior and avoid the design complexity of other robust
output feedback control approaches. In contrast with other complex stability criteria, the
approaching and sliding condition is simpler as a sufficient condition ensuring the stability
while the system enters the stable sliding surface in a finite time.

Time-delay phenomenon means that parts of system states, inputs, or outputs affect the
system after a fixed time, or random but finite period. There exists this phenomenon in several
various practical systems, such as chemical processes, electrical networks, nuclear reactors,
biological reactions, economic.models,-etc. Therefore controller designs for continuous-time

time-delay systems are important and necessary:.
1.1 Sliding Mode Control

Sliding mode control [1-28] 'is one of efficient robust control approaches to stabilize
systems in the presence of external disturbances and interior uncertainties. It is well known
for the complete invariance to matched disturbances and uncertainties. The design procedure
normally follows the rule: 1) choose a stable manifold so-called sliding surface; 2) design a
nonlinear switching controller satisfying the approaching and sliding condition such that the
system enters the sliding surface in a finite time. The simple and explicit design procedure is
another advantage of sliding mode control. Based on Utkin’s research [1], the relative papers
are continuing presented over a couple of decade. Edwards and Spurgeon [2] contributed the
analysis and complete introduction of sliding mode methods, state and output feedback
controllers, observers, and other applications. Since the system states are all available,

researchers have proposed many significant reports [3-6]. For instance, Chiang and Chiu [5]



presented a sliding mode control method based on a TS recurrent fuzzy neural network to
stabilize the time-delay systems and compensate system uncertainties effectively. In the field
of output feedback sliding mode control methods [7-14], previous researches have designed
the output feedback controllers via sliding mode technique to stabilize multivariable plants
with matched uncertainties. Early on, Zak and Hui [7] developed an algorithm for
output-dependent sliding surface design of uncertain systems, using the eigenstructure method.
Yallapragada et al. [8] addressed the reaching problem for the static output feedback sliding
mode controller design. Thereafter, Kwan [9] presented an adapted dynamic output feedback
controller to remove two major limits from the scheme in [7]. Yan et al. [14] applied an
effective sliding mode design technique using output only to control the systems with
disturbances.

However, the abovementioned papers  considered the matched uncertainty and
disturbance only. Unlike the ‘matched case, any mismatched uncertainty and external
disturbance always affect the System performance even if the plant is in the sliding mode. As a
result, the existence condition and rebust stability for using an output feedback sliding mode
controller to tackle a system with the mismatched uncertainty and disturbance are worth
further investigation. Choi [15] proposed a static output-dependent sliding surface design
developed from LMI technique [29], in which a class of system considered both matched and
mismatched uncertainties. Further, Park et al. [16] extended Choi’s method and proposed a
dynamical output feedback variable structure control law to deal with the same problem.
Since the dynamics of the sliding surface is always related to the unmeasured system states,
the high gain control in [15] was introduced to maintain the global convergence. Upon
examining the static output feedback control, Xiang et al. [17] applied an iterative LMI

technique to avoid the high gain problem. To prepare for obtaining a bounded L, gain

performance, Juang and Lee [18] developed an observer-based output feedback sliding mode



controller which can guarantee the system stability with robust performance. Lewis [19] used
the eigenvalue perturbation analysis for an uncertain matrix to guarantee the closed-loop
stability. Pai and Sinha [20] used the small gain theorem to analyze the behavior of
closed-loop system with parameter uncertainties. Although the advantages of applying LMI
technique to output feedback sliding mode control for uncertain systems have been addressed
explicitly in these aforementioned papers, the solutions including the constrained LMIs
[15-16] or a set of LMIs [18, 21] are difficult to obtain.

Recent researches [22-26] have studied a control scheme called integral sliding mode
control, in which an integral controller is added to a sliding mode controller. The main
advantages of integral sliding mode controller are to offer the robustness of system stability
and the elimination of steady state error.within step inputs. Based on the integral sliding mode
control structure, several researchers [23-25] developed. different observer design methods to
accomplish the estimation. In observer-based approaches, the proper observer gain selection
which gives reasonable estimation both in steady state and transient state is a difficult task.
Since the controlled systems usually. involve parameter uncertainties and external unknown
disturbances, the use of state observers may reduce robustness. Consequently, it is important
to study the integral sliding mode control using output information only for uncertain systems.

1.2 Time-Delay Systems

For the stability analysis of time-delay systems, two kinds of conditions can be

adopted — delay-independent and delay-dependent conditions. When delayed states with an

unknown but bounded constant delay time are independent of the original stability of systems,
the systems satisfy the so-called delay-independent condition within a simple rule assuring the
stability of closed-loop systems. If the system belongs to the delay-dependent condition,
delayed states with part or all of delay times will cause the instability of system whether the

delay time is fixed or time-varying. This condition also brings the complexity and difficulty



deriving a sufficient condition of the stability of closed-loop systems. Since time-delay terms
frequently induce the system instability and bad performance, the analysis and control of
time-delay systems have been an interesting topic over the past decades whether state, input,
or output delays.

Focusing on the state delay systems, researchers [3-5, 12-14, 27-28, 30-52] had
presented many effective state feedback control methods to various system models. Xia and
Jia [3] carried out a robust control method comprising of the sliding mode control and LMI
technique for uncertain time-delay systems with matched disturbances. Lee et al. [32]
developed a control method based on the receding horizon concept to stabilize the closed-loop
system and to assure the H., norm bound from the disturbances to the controlled outputs. For a
continuous linear state-delay system involving a class of integral term, Santos and Mondié
[33] proposed an iterative procedure.to-complete their state feedback controller design. Wang
et al. [34] designed a state feedback control law of time-delay systems with system
uncertainties and matched unknown nonlinear terms. They combined the LMI technique and
adaptive parameter searching law to the controller design ensuring the stability of the
closed-loop system. Chen and Chen [35] presented an LMI-based state feedback controller
and a disturbance observer to stabilize linear state-delay systems with uncertainties and
matched disturbances.

Providing the obtainable system states partly, state observers [36-40] and output
feedback controllers [12-14, 28, 41-43, 48-52] are both feasible schemes to regulate
time-delay systems. In the field of state observers, Darouach [39-40] have recently developed
an observer methodology to estimate states of linear time-delay systems with noises and
mismatch disturbances. On the other hand, in the field of output feedback control methods,
Niu et al. [12] extended an observer-based sliding mode control using LMI technique to

regulate uncertain time-delay systems. Pai [28] proposed a Luenberger observer-based output



feedback controller for a class of nonlinear uncertain state-delayed systems with matched
uncertainties and disturbances. The controller was comprised of integral sliding mode
technique and solutions to an LMI, which switching gain parameters were calculated by
adaptation laws. Fridman and Shaked [41] described explicitly a significant H, control
method using the descriptor system transformation for time-delay systems with mismatched
external disturbances and measurement noises. The descriptor system transformation can
simplify the analysis of time-delay systems and effectively perform the disturbance
attenuation. As a result, the stability analysis [44-47] and various controller designs [48-52] of

time-delay systems are still interesting topics so far.
1.3 Motivation

There exists two difficulties in<the design of output feedback sliding mode control. The
first difficulty is a synthesis problem.-Synthesizing a control law using the outputs only is
significant since the derivative of the sliding surface is always involved with the unmeasured
system states. For resolving ‘the synthesis problem, ‘a.normal strategy is to add an extra
constraint on the controller parameters..The existence of controller parameters is constrained
by the extra constraint simultaneously. The local stability is another problem. In the
conventional output feedback sliding mode control, the dynamics of sliding surface always
involves unknown state function as an obstacle to complete the controller using output
information only. Common strategies dealing with this problem adopted the assumption in
which the system trajectories are close to the origin or high-gain control forces covering the
effect of unknown states. Unfortunately, these strategies have no ability to complete the global
stability and increase the conservation.

Focusing on the case of state-delay, the state delayed for a fixed or varying time usually
worsened the performance even caused the instability. In frequency domain the delay term

can be transformed into an exponential function with delay time. As a result, the



corresponding controller can be designed easily in the frequency domain but very difficult to
implement in the time domain. On the other hand, since a time-delay system is subject to
uncertainties and disturbances, the robust controller design will become more complex and
the related stability condition will be more difficult to fulfill. A sliding mode control method
which has improved the previous two problems, within such features as uncomplicated design
procedure and strong robustness against the matched unknown terms, is a proper and feasible
candidate to complete the controller design of time-delay systems with less design difficulty
in the time domain.

1.4 Contribution

For modifying two problems mentioned above in output feedback sliding mode control,
this thesis develops a dynamic output feedback integral sliding mode control method with the
robust stability guaranteed for. linear-MIMQ systems within mismatched norm-bounded
uncertainties along with disturbances and matched nonlinear perturbation. The main
advantages of using the integral sliding surface-are that, once the system is in the sliding
mode, the effect of matched perturbation can be campletely eliminated and the robust stability
problem of the closed-loop system becomes a standard output feedback controller design
problem for a system with mismatched uncertainty and disturbance. Applying H., control for
the stability analysis, the proposed method can guarantee robust stability where the existence
condition is determined by solving an algebraic Riccati equation involving with the original
system parameters. When the number of outputs is equal to the number of inputs and the
mismatched disturbance is slowly time-varying, the system outputs are proved to finally
approach zero because of the integral action. Without requiring any coordinate transformation,
the proposed method is a straightforward design scheme and the controller parameters can be
easily solved by the algorithm proposed by Gadewadikar et al. [53-54] or the LMI technique

[29]. If the mismatched disturbance is defined in L,-norm space, the proposed control



algorithm can satisfy the robust disturbance attenuation and guarantee robust stability as the
consistent algebraic Riccati equation has a solution. Introducing an additional dynamics into
the control law using output information only, the proposed controller can satisfy the global
reaching and sliding condition and obtain the closed-loop stability. Although the dynamic
output feedback controller raises control complexity, the magnitude of control input in the
proposed method is more effectively reduced in comparison with that in the other papers
[15-17].

Based on the proposed integral sliding mode control technique, the related controller
design for uncertain time-delay systems with mismatched disturbances is presented. An
auxiliary integration function is used to increase a degree of freedom of the system in the
sliding mode and to suppress the effect.of mismatched disturbances. Moreover, the controller
design combined with a full-order compensator for time-delay systems also improves the
synthesis problem in traditional output feedback sliding mode control methods. Since
mismatched disturbances cannot be eliminated completely even the system is in the sliding
mode, the disturbance attenuation technique [55-57] can reduce the effect from mismatched
disturbances to the controlled outputs acting on a system to an acceptable level over all
frequencies. Consequently, an LMI is derived as a sufficient condition of robust stability and
its solutions are used to determine parameters of compensator and controller simultaneously.
Modifying the structure of compensator can obtain a set of algebraic Riccaiti inequalities as
another stability condition. Solutions to the Ricccati inequalities can also obtain the controller
parameters.

The controller design for time-delay systems with a time-varying state delay has been
derived within the delay-dependent condition. In the delay-dependent condition, the system is
stable for part of unknown delay time and vice versa, i.e. the system stability depends on

delay times. For such time-delay systems with mismatched disturbances and uncertainties, an



output feedback integral sliding mode control law combined with a compensator is completed
in this thesis. An LMI as a sufficient condition of robust disturbance attenuation is derived

successfully.
1.5 Organization of Thesis

The sliding mode controller using output information only [2] is introduced in Chapter
I1. Edwards and Spurgeon [2] contributed a complete analysis for an output feedback sliding
mode control and related applications in their book. Chapter 111 proposed the dynamic output
feedback integral sliding mode controller of uncertain systems with matched and mismatched
disturbances. Based on the research of integral sliding mode control technique, the output
feedback controller with a compensator is applied to time-delay systems with mismatched
uncertainties and disturbances in Chapter I\V. This chapter discusses two kinds of sufficient
conditions guaranteed the property—of robust disturbance attenuation. For the case of
time-varying delay within delay-dependent condition, the same chapter derived the dynamic
output feedback integral sliding mode control-algorithm for such disturbed time-delay
systems correspondingly. The final chapter comments the overall concluding remarks and

some future works.



Il. OUTPUT FEEDBACK SLIDING MODE CONTROL

In practice, state variables of most systems are not fully observable. As part of state
variables is only measurable, the corresponding controller design is more difficult than the
conventional state feedback controller design. Since output variables are only available,
referring to [2], this chapter describes the output feedback sliding mode controller and
analyzes its merits/demerits. After introducing the target system and some assumptions,
section 2.2 presents the sliding mode controller using output variables directly and the

corresponding sliding vector.
2.1 Problem Formulation
Consider a continuous-time LTI system as

X(t)= Ax(t)+B(u(t)+ f (xut)) 21)
y(t)=Cx(t)
where x eR" is the unmeasurable system state vector, -u<R" is the control input vector,
yeR" is the measurable output.vector, and f(x,u,t)e]R{m is consisted of the matched
uncertainties and disturbances. The real constant matrices A, B, and C are known and with
appropriate dimensions. Since the outputs are the only available signals, next section will
present an output-dependent sliding vector design method and then the control algorithm
involving the information of outputs is designed to satisfy the stability condition and to force

the controlled system (2.1) to enter the sliding mode. Before introducing main results, the

following four assumptions are fulfilled throughout this chapter.

Assumption 2.1: The matched term  f (x,u,t) is norm-bounded as

| Oxut)| <k Jut)]+7(y.t) 2.2)
where #(y,t) isaknown function 7:R,xR"” >R, and 0<k <1.

Assumption 2.2: There is no finite zero in the system (2.1), or exists finite zeros all on the



open left-half complex plane, i.e., the triple (A, B,C) IS minimum phase.

Assumption 2.3: The pairs (A,B) and (C,A) are controllable and observable,
respectively. Matrices B and C are full rank, rank(B)=m and rank(C)=p.

Assumption 2.4: The number of output variables is not smaller than input variables, p>m.
Moreover, the relative degree of system (2.1) is one, i.e. rank(CB) =m.

2.2 Output Feedback Sliding Mode Controller Design

2.2.1 System decomposition and analysis

Define a transformation matrix as

N¢
o[ .

nx(n—p

where N_eR ) whose columns span the null space of C. Changing the coordinates

X+ T.x, the output matrix-is transformed into C :[0 Ip]. The input matrix in the

. . Bcl (n—p)xm . - xm
transformed system is given by -B= where” B, e R . Since matrix B, eR”
c2

is full row rank due to CB=B_,, and Assumption 2.4, the left pseudo inverse of B, is

defined as B, :(BCTZBcz)f1 B!, and there exists an orthogonal matrix T € R”" such that

)
TB,= (2.4)

where B, e R™™ is invertible and T is full rank. Further the second transformation matrix is

defined as

I, -B,B!
Tb:|: Op _I_lT 2}- (2.5)

Provided T, is nonsingular, transforming the coordinate X+ T, X can attain the following

10



system matrices,

A{Aﬂ A“*}, B:[O},and C=[0 T] (2.6)
A21 A22 BZ

where A, e R"™™"™ and remaining matrices in A are partitioned to appropriate
dimensions. Defining a matrix F e R™" with full rank and multiplying it to C can obtain
FC =[O FT] = [F1C1 Fz] (2.7)

where [F, F,]=FT, F,eR™™™ F,eR™", and

C.2[0 1,,] (2.8)
As a result, FCB=F,B, and F, is invertible because of rank(CB)=rank(F)=m.

Notice that the pair (A,B,C) in.(2.6) can be viewed as a system used in sliding mode
controller design [2], and the reduced-order sliding. mode motion is dominated by the stable

system matrix A,

Aisl 2 Au - A12 inl F1C1 (2_9)
= A, - A,KC,

where K =F,'F,. From (2.9) it is a static output feedback problem to design K stabilizing

A,—-A,KC, . For checking the controllability of the pair (A, A,), the following

relationship within (2.6) is established,

rank ([sl - A B])zrank[rl_A11 e OD
_AQl SI_Azz Bz

=rank([sl - A, A,])+m (2.10)

=n
for all seC. It can conclude that rank([sl—-A, A,])=n-m and (A, A,) is

controllable. On the other hand, for ensuring the observability of (C,, A), the detail of A,

can be expresses as

11



Ailll A1112
= 2.11
Ai |:A1121 A1122 :| ( )

where A, e R" """ and the other matrices in A, are partitioned accordingly. Hence
the rank test can be written as
N _Ail sl _Ailll _A1112
rank c =rank A, SI-AL,
' 0 Iy (2.12)

.
—rank|| A““DJr p—m
AllZl

for all seC. Consequently, the observable pair (A, A;) is a sufficient condition of the
observability of the pair (C,, A;,). If the pair (A,,,, A,;,) is not observable, there exists a

matrix T, e R" " putting“this pair_into the following observability canonical form
[58],

AL A,

Tobs A’llllTogi :|: O A; :| and A1121T0; 53 l:o A§1:I (213)
2

where AioleRrxr, ASZER(n—p—r)x(n—pfr)' A;)leR(p—m)x(n—p—r)’ the pair (A;’l’A;Z) is
completely observable, and r>0 represents the number of unobservable nodes of

(A, Ay ) - Define the third transformation matrix as

LI 2.14
w0 s

p

and then the transformed system matrices are similar as (2.6) with different A,

(2.15)

Furthermore, decompose A, and A} as

12



]

where A,, eR"™ ™ and AT, e R"PMP™ forming a subsystem represented by the

triple (Au Am,él) , where

Aﬂé[ﬁi /:2%} and C, %[0 1I,,]. (2.17)

Before discussing the stability of (2.9), three lemmas are introduced below.

Lemma 2.1 [2] The spectrum of A, decomposes as
A(A = AKC,) = 2(AL)UA( A, ALKC,) O
Lemma 2.2 [2] The spectrum of A represents the invariant zeros of (A, B.C). [
Since Assumption 2.2 held, the-present target is to design K stabilizing A, - A,,KC,

such that A, — A,KC, is stable. Suppose that rank(A,,)=m’' and the following equation
is given,
AT = I:Bl O:I (2.18)

(n=m—r)xm’

where T eR™™ is of full rank and constructed such that B, e R . Defining a

K , ,
matrix K _ =T 'K ={Kl} where K, e R™ "™ and K, eR™™ "™ can attain that

2

A.-A,KC =A,-[B 0]K,C =A,-BKC,. (2.19)
As a result, the problem stabilizing A, — A,,KC, is transferred to stabilize A, -B,K.C,.
Next lemma presents the controllability of (A, B,) and observability of (C,A,)

respectively.

Lemma 2.3 [2] The pair (Au,l_sal) is completely controllable and (Cl,AM)is completely

13



observable. O

Remark 2.1 The reason replacing the system pair (Au,él,cl) with (AM,AM,Q) is for

utilizing the standard output feedback results. Consequently, the triple (Au él,él) must be

controllable, observable, and fulfill Kimura-Davison conditionas m'+ p+r>n+1. U

2.2.2 Sliding mode controller synthesis

The output-dependent sliding vector is designed as
s(t)=Fy(t) (2.20)
where F=F,[K 1 ]T" and F,eR™" is invertible and designed later. Define the fourth

m

transformation matrix as

— |1 0
To| nm (2.21)
KC, I,
and hence the triple (A,B,FC) via x> Tx can be obtained as
_ A A _ 0 _
A:{él @{r B:{ },mm FC=[0 K] (2.22)
Ay Ay B,

where A, = A, - A,KC,. According to Lemma 2.3, there exists K, such that A, -BK,C,

is stable and the stability of A, can be guaranteed by Lemmas 2.1 and 2.2 as for the system

IS minimum system.

Along with system (2.22), design a positive definite matrix P as

P O
P=| >0 (2.23)
0 P,
where P, e R"™ ™ and P,eR™" are both positive definite. Since A, is stable, P,

satisfies the following Lyapunov equation,

PA,+ALP =-Q (2.24)
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where Q, e R"™™™ s a positive definite matrix. If matrix P, is chosen such that
F2BIP, (2.25)
then P satisfies the following structural constraint
PB=C'F'. (2.26)
Define the following matrices,
Q,=PA,+AP, (2.27)
Q,2PA,+A,P, (2.28)
and a scalar as

702 (R (QuQIQIQ) ). 2.29)

Notice that y, is a real number due to the symmetry of matrix on the right in (2.29).

Moreover, design the sliding mode control input as

u(t)=—rFy(t)-v(t)

if s(t)=0 (2.30)

0 otherwise
where y >y, and p(y,t):ﬁ(klyus(t)uwy(y,t)wl) based on Assumption 2.1. The
M

positive scalar y, will be designed later. Lemma 2.4 below will assist to prove the stability
of the closed-loop system.

Lemma 2.4 [2] The symmetric matrix L(y)=PA,+AP where A =A-yBFC is
negative definite if and only if y>y,. O

Based on (2.22), the controlled system (2.1) can be rewritten as

X(t)=AX(t)+B(u(t)+ f (x,u,t)). (2.31)

Choose a Lyapunov function as the following,

15



V(X)=X"Px>0. (2.32)

Provided the structural constraint (2.26) and controller (2.30), the derivative of V (X) is

given by
=X (A"P+PA-2yC"F'FC)X+2X PB(f -v)
=XL(7)x+2y'F(f-v)
<XTL(y)x-2y"FTv+2[s]|f] (2:33)
X'L(r)%-2p(yt ||S||+2||S|||| ||
<X'L(r)%- IISII( )=k Jul=n(y.1))

Through some operation, it follows that

p(y.t)=kp(y.t)+ky|s|+n(y.t)+n
>k (IM+7sl) +72(y.t)+ 7 (2.34)
> kl||u||+77(y,t)+71.

According to Lemma 2.4 and. (2.34),the negative derivative of V (X) can be proved by
V <X"L(y)X-2y,|s|<0 and conclude that the system is quadratically stable.

For assuring that an ideal sliding motion takes place on the vector s(t) =0, from (2.31)
the dynamics of s(X)=FCX is expressed as

$=FCAX+FB,(f-v). (2.35)
From (2.25), it follows that (F‘l)T P,F'FCA, = B;'A,, which A is the last m rows of

A,. Using this relationship, define a Lyapunov function V, (s)=2s' (F’l)T P,F's and its

derivative is shown as
V, =2s"B,"A, X+2s" (f -v)

2.36
< 2J8)[B;* An |27, (2.30)

If XeQ where Q:{XER“:

B£1A0L7H<71—0} and O<o<y , it follows that
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V, <—2c|s|. Since the system is quadratically stable, there exists a finite time t, that

X(t)eQ forall t>t,. Therefore it can be concluded that the ideal sliding motion will take

place in a finite time. The simulation results are used to verify the feasibility of the proposed
sliding mode controller in the example below.

Example 2.1 Consider the system with the matched disturbance as

0 1 0
x(t)= 0 (1) x(t)+]1 (u(t)+d(t))
17 - 1
_1 % 1
t)= X(t
y(t) \ % , (t)

The demonstrated system is controllable and-observable, having no finite zero and r=0.

Therefore the system satisfies ;Assumptions2.2-2.4.~ Set the matched disturbance as

d(t):O.l(sint—1+sin 2t cos3t + cos 2tsin 3tcost). Transform the system into the form of

(2.6), and the transformed matrices are.given by

-1.5816 0.0192 0.1457 0
0 0.3417 -0.9398
A=| 14071 0.3845 -1.708|, B= 0 ,and C = .
0 0.9398 0.3417
02953 034 0.1971 -3.9016

. : 0.3417 -0.9398
Hence matrices B, and T can be obtained as B, =-3.9016 and T = :
0.9398 0.3417

Further the triple (Au Bl,él) from (2.17) and (2.18) can be determined as

. {—1.5816 0.0192} 5 _[0.1457
1_ L

= ,and C. =[0 1].
1.4071 0.3845| * —1.708} v=[0 1]

Referring to [59], the gain matrix is designed as K =K, =-1.0556 locating eigenvalues of

A, -BKC, on the stable nodes —1 and —2. Based on the transformation in (2.21), matrix
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A, is given by

— [-15816 0.1729
'l 1.4071 -1.4184

0.3368 0.1891

which eigenvalues are also -1 and -2. Design Pl{o 1891 0.5401

}>0 and P, =1

-0.5332  0.2509

such that Ql{ 0.2509 —1.4668

}<O fulfilling (2.24) and F, =-3.9016. Consequently

the parameter y, is0.2452 and matrix F is determined as

F=FR[K 1T’
= F,[-1.3005 ~0.6503]
—[5.0741 2.537].

Design the output-dependent sliding-vector as-s(t)=Fy(t)=[5.0741 2.537]y(t). Using
the structure of control input (2.30), design the related parameters as y =0.25, k, =0.7,
n=0.2,and y =0.01.

For avoiding the chattering‘phenomenon, the switching term v(t) in the control input

is modified as v(t)=p(y,t)sat(s(t),s), where £=0.05 is the thickness of the so-called

sliding layer. Since the initial condition is setas x(0)=[1 0 O]T , the simulation results are

depicted in Fig. 2.1-2.4. The state and output responses are shown in Figs. 2.1 and 2.2
respectively, converging around zero successfully. Since (2.26) holds, all trajectories of
system states in Fig. 2.1 converge to zero quadratically as the analysis of (2.33). Figure 2.3
showed the sliding vector and verified that the system entered into the sliding layer in a finite
time. Matching the derivation of (2.36), the approaching behavior occurs after the sliding
vector entering the local region around zero in Fig. 2.3. According to the control input shape
in Fig. 2.4, the sliding mode controller has avoided the chattering phenomenon indeed due to

the replacement of saturation function in the control input.
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Fig. 2.1. System state responses in Example 2.1.
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Fig. 2.2. System output responses in Example 2.1.
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Fig. 2.3. Sliding vector in Example 2.1.
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Fig. 2.4. System input response in Example 2.1.
2.3 Summary
This chapter has introduced a series of coordinate transformations, the sliding vector
design method, and the sliding mode controller design, demonstrating the feasibility by the
numerical example. Output feedback sliding mode control method still possesses the

robustness against matched disturbances as the state feedback sliding mode controller. The
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designed controller can satisfy the approaching condition simply and improve the chattering
phenomenon by the replacement of saturation function. Nevertheless, the static output
feedback sliding vector has no ability locating eigenvalues of the system in the sliding mode
arbitrary even though the system is controllable and observable. Besides the difficulty of
designing the sliding vector, the output feedback sliding mode controller design suffered a
structural constraint as a synthesis problem. Even though the synthesis constraint was
satisfied, the designed controller guaranteed the local stability quadratically only rather than
the global one.

For improving drawbacks of the static output feedback sliding mode controller
mentioned above, next chapter will propose a dynamic output feedback sliding mode
controller based on an integral sliding surface. The dynamic controller design can avoid the
synthesis problem and assure the global stability using an adaptive law to estimate one of the
controller parameters. The integral sliding surface and controller parameters will be offered

by solutions to an algebraic Riccati equation.
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111 OUTPUT FEEDBACK INTEGRAL SLIDING MODE

CONTROL

This chapter addresses the problem of designing an output feedback integral sliding
mode control algorithm for linear MIMO systems with mismatched parameter uncertainties
along with disturbances and matched nonlinear perturbations. Once the system is in the
sliding mode, the proposed method of output-dependent integral sliding surface can robustly
stabilize the closed-loop system and obtain the desired system performance. Two types of
mismatched disturbances are considered and their effects in the sliding mode are explored. By
introducing an additional dynamics into the controller design, the developed control law can
guarantee that the system globally reaches to the stable sliding surface in a finite time. Finally,
the feasibility of the proposed method is illustrated by numerical examples.

The system and the problem formulation are described in section 3.1. Section 3.2
presents the design of output-dependent integral sliding surface using the static output
feedback technique and develops the controller design. The effectiveness of the proposed
controller is illustrated in section 3.3 with numerical examples. A concluding summary is
given in section 3.4.

3.1 Problem Formulation

Consider a continuous-time uncertain system described in the state space form as

X(1)=(A+D®(t)H)x(¢)+B(u(r)+ f(x,u,r))+Ed()
y(1)=Cx()

where x(f)eR" is the system state vector, y(f)eR’ is the system output vector,

(3.1)

u(z)eR™ is the control input vector, and d(7)eR” is the mismatched disturbance vector.

The system matrices A, B, C, D, E and H are known matrices and have appropriate

dimensions with /> m . Notice that E belongs to the columns of B* e R™"™ which span
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the null space of B” [10]. The function f(x,u,z)eR" is a time-varying vector in which it
represents the lump sum of matched nonlinearities and/or uncertainties. In addition, CD(t) IS

an unknown matrix satisfying @ (z)®(z)<1 . Although system (3.1) contains the

mismatched disturbance, we design in this chapter an output-dependent integral sliding
surface so that the proposed method can guarantee robust stability [55] of the closed-loop
system once the system is in the sliding mode. A control law using output information and an
additional dynamics is then designed to make the system globally satisfy the reaching and
sliding condition [2]. Before introducing the proposed method, the following five assumptions
are made throughout this chapter.

Assumption 3.1 The matched uncertain term is norm-bounded as

| (xout)|<a+a|x(o)+2]u(z))| (3.2)
where 0<y <1, g, and a, are known positive constants.
Assumption 3.2 The mismatched disturbance is-boundedas

(o) <d (3.3)
where d >0 isaknown constant.
Assumption 3.3 The pairs of (A/B) and (C,A) are stabilizable and detectable,
respectively.
Assumption 3.4 The triple (C, A,B) is of minimum phase.
Assumption 3.5 Matrices B and C have full rank, and rank(CB)=rank(B)=m.

As for Assumption 3.1, it is different from that in other papers [2, 7-8, 15-17, 21] in

which the matched uncertainty f(x,u,t) is bounded by a function of the system outputs.

Yan et al. [60] have shown that the condition is quite restrictive. Our proposed control scheme

can eliminate the limitation. Assumptions 3.2-3.5 are generally developed from the
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conventional output feedback sliding mode control methods [2, 7-9, 15-21, 29].
3.2 Dynamic Output Feedback Sliding Mode Control

In this section, a design method of using the output-dependent integral sliding surface is
proposed, in which robust stability of the closed-loop system can be guaranteed once the
system is in the sliding mode. Seeking next to design the integral-type sliding surface for both
matched and mismatched uncertain systems, Cao and Xu [22] developed a state-dependent
integral sliding surface design in which the system is maintained on the sliding surface from
the initial moment. However, the main problem related to the implementation of their method
[22] is the requirement of the system states and their corresponding initial condition. In this
work, we extend Cao and Xu’s method to the uncertain system with regard to which only the
output information is obtainable. Applying /.. control analyzing technique, the existence
condition of the sliding surface is determined by solving.an algebraic Riccati equation which
is involved with the original system parameters. In comparison with the other output feedback
sliding mode controllers [15-18, 21, 23-26, 60], our proposed control law can obtain global
robust stability and avoid the high gain_phenomenon in the transient time. Moreover, our
control algorithm does not need any observer structure to estimate the system states.

3.2.1 Integral sliding surface design

Design the output-dependent integral sliding surface as

s(1)=(CB)" y(1)-[ v(r)dr (3.4)
where (CB)" :((CB)T CB)_l(CB)T eR™, seR”, and the vector veR” is designed
later. Taking the derivative of s(t) with respect to time and substituting (3.1) into it, we can
obtain

$(t)=(CB) C(A+D®(¢)H)x(t)-v(t)+u(z)+ f(x,ur)+(CB) CEd(s).  (3.5)

From (3.5), the control input is written as
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u(z)+ f(x,u,)=3(r)+v(r)-(CB) C(A+Dd(r)H ) x(r)—(CB) CEd () (3.6)
and then substitute it into (3.1) to obtain

X(1)=(1,~B(CB) C)(A+Da(1)H)x(r)+(1,-B(CB) C)Ed(r)

+Bv(t)+B3(7) (3.7)
=(A+D®(t)H)x(r)+Ed(r)+Bv(r)+Bs(¢)

where A =(1,-B(CB)'C)A, D,=(1,-B(CB)'C)D, and E,=(1,-B(CB) C|E.
Suppose that the system is in the sliding mode, s(¢)=0 for ¢>¢ where 4 >0 is a finite
time. Then from (3.7) we obtain the system dynamics as

X(t)=(A+D®(t)H)x(¢)+ Ed(r)+Bv(r) for 124. (3.8)

Once the system is in the sliding mode, it follows from (3.8) that the robust stability problem

of the closed-loop system becomes a standard output feedback controller design. As a result,

the vector v(t) is a variable-in the designed integral sliding surface, playing a role to affect

the behavior of the system in-the sliding. mode. For.system (3.8), a robust static output

feedback controller is to be designed‘with the control algorithm in the form [17, 53-54, 56]
v(1)=-FCx(r)=-Fy(z) (3.9)
so that the closed-loop system x(t)=(A —BFC+D®(¢)H)x(t) is stable for all

admissible uncertainties. Before introducing the main result, we have the following lemmas.

Lemma 3.1 If Assumptions 3.3 to 3.5 hold, then the pairs (A,B) and (C,A) are

stabilizable and detectable, respectively.

Proof: Since state feedback control methods cannot change the controllability, from

A =A-B(CB) CA, we can conclude that the pair (A,B) is stabilizable. From

sl, —A B I, 0| [sl,-A B :
N = , one can obtain
C 0 (CB) CA 1, C 0

25



rank@“” A BD = rankﬂ“” A BD (3.10)
C 0 C 0

From Assumption 3.4 and the above equation, we know that the triple (C,AI,B) is of

minimum phase. Since rank(CB)=m, the realization (C,A,B) can be written in a special

form [2] as

A A | B _
Al{Aﬂ AJ, B_[O]and c=[C, C,] (3.11)

where the matrix B, e R™" is invertible and the matrix C, e R”” has full rank. From

Assumption 3.4 and

sl A B _Slm_All -A, B,
rank c oll= rank| |« " =A, sl —A, O

- G C, 0 (3.12)
E St
= rank Aa L, = A +m
L Cl C2
it follows that
_ | -
rankﬂ Aa shi AZZD:n VRe(s)>0. (3.13)
Cl CZ

| —
Because the dimension of the matrix {S ”C Ai} is (n+1)xn, from the linear algebraic

theory and the above rank condition, we can obtain

sl —A st — A, A,
rank@ ”C D:rank -A, sl —A,||=n VRe(s)>0. (3.14)
Cl C2
As a result, the pair (C, A)) is detectable. We complete the proof of the lemma. H

Lemma 3.2 [17] Consider the following uncertain system

(1) =(A+D®(t)H)x(z), (3.15)
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where A, D and H are constant matrices of appropriate dimensions, and ®" (¢)®(¢)<1. The

above system is asymptotically stable if and only if there exists a symmetric positive definite

matrix P and a positive constant £ such that
ATP+PA+%PDDTP+ﬂHTH<O. O

Since the pair (A, B) is stabilizable and the pair (C,A)) is detectable, we can use
the static output feedback technique to design

v(r)=-Fy(t)=-FCx(t)=-R*(B"P +L)x(t) (3.16)
where R>0 and Q >0 are the weighting matrices, and the matrices L and P >0 satisfy

the following algebraic Riccati equation
A'P +PA —PBR'B"P + LTR‘1L+%PD1D1TP +AH"H+Q=0. (3.17)

Hence the system states are bounded once the system is in the sliding mode, as the following
theorem.

Theorem 3.1 Consider system: (3.1). satisfying Assumptions 3.1 to 3.5 with the
output-dependent integral sliding surface (3.4). Suppose that the system is in the sliding mode,

and its behavior has been described as (3.8). If the mismatched disturbance is bounded and the
matrix A + D@ (t)H —-BFC = A + D@(t)H —-BR™(B’P + L) is Hurwitz, then all states

of system (3.8) are bounded as

2||PE,||d Amax (P)
A

HX(Z‘)H_,Oimin (Q+CTFTRFC) min(P) (318)

where 0< p<1 isa constant.

Proof: Substitute (3.16) into (3.8) to obtain the closed-loop system dynamics in the sliding

mode as
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X(£)=(A-BR™(B"P +L)+D®(1)H ) x(r)+ Ed(r) 19
— (A +D®(t)H)x(1)+ Ed(r) |
where A = Al—BR’l(BTP+ L). First we need to show that the matrix A + D,®(¢)H is

Hurwitz. Without considering the mismatched disturbance term in system (3.19), we rewrite

the dynamic equation of x(¢) as
X(t)=(A-BR*(B'P+L)+Dd(t)H)x(r)=(A + Dd()H)x(r). (3.20)
Rearranging the algebraic Riccati equation (3.17) yields

A§P+PAS+%P01D{P+ﬁHTH =-Q-C'F'RFC <0. (3.21)

From Lemma 3.2, the above equation .implies that the matrix A +D®(s)H s
asymptotically stable. Then choose a Lyapunov. function ¥;(¢)=x"(7)Px(z) where the
positive definite matrix P satisfies (3.17), and take the time derivative of Vl(t) to obtain

V'l(t)z—xT(t)(Q+CTFTRFC +%PD1D1TP +,BHTH]X(t)

+2x" (¢)PD,®@(¢) Hx(7)+2x"(¢)PEd (¢)

<—xT()(Q+cTFTRFC) (t)+2x" (t)PE(r) (3.22)
<~/ (Q+CTFTRFC)|x (1) + 24 |PE,[[x (1)
== (1= 2) A (VIO =[x 0 (V)% (1)] - 22 |PE
where 0< p<1 is a constant and Y =Q+C"F'RFC >0. If |x(¢)|= 2;1||PE|1 then the
p mln
above equation becomes
: 2d |PE
V(6) <~ p) s ()X Tor (o)) 2IPE (3.23)

pﬂ’min (Y) .
Since ﬁmin(P)Hx(t)H2 < xT(t)Px(t)gxlmax(P)Hx(t)Hz, we can conclude from [61] that the

system states are finally ultimately bounded
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2||PE,||d
(Q+C"F'RFC)

A (P)
. . (3.24)

min(P)

(0l

From y(¢)=Cx(r), we have that the system outputs are also bounded in a known region.
Hence, the proof of the theorem is completed. [
Remark 3.1 Since rank(B):m, there exists a matrix U e R"™ such that UB=0.

According to the linear algebraic theory, we know from UB =0 and (CB)+ CB=1, that

U

(CB)

U -1
the matrix . is invertible. Let . | =[U, B] where the matrix
(cB)'C c

Uge]R”X(”"”) satisfies UU, =1, and CU,=0. Define a system transformation as

follows

HARRE )%

where w, (1)eR"™ and w,(#)eR™. From:(3.19) and.the above transformation, the state

equations of w, (¢) and w, (¢) can'be written-as
Wl(t) Wl(t) UEl
{Wz(t )} - {Wz(f)} J{(CBY CEl]d (1) (3.26)

U
N }(Al—BFC+D1<D(t)H)[Ug B] is a stable matrix. Since the

where @, =
(CB)'C

system is in the sliding mode, using direct calculations can yield

w,(1)=(CB)" y(t)=s(t)- [ . Fy(r)dr =- | Fy(r)d. (3.27)
If /=m and the mismatched disturbance varies slowly, it follows from Barbalat’s lemma

[61] and the above equation that y(t) —0 as t— . As a result, introducing the integral

action into the sliding surface can yield a good system performance. [
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3.2.2 Integral sliding surface design for d(¢)e L,
More specifically, when the mismatched disturbance is defined in L, -norm space, i.e.
d (t) € L,, we can use the property of robust disturbance attenuation to design the controller.

The problem of ensuring robust disturbance attenuation is to design a controller such that the

closed-loop system is stable and there exists a constant 0 <y <o with respect to which the

performance bound [56]
_[ ;( y' (2') y(r)+ u’ (z') Ru(r))dr < 7/2_[ ;(dT (r)d (r))dr vV t>0 (3.28)
is satisfied for all d (t) € L,. The disturbance attenuation problem encountered is to design an

output feedback control law which can ensure that the effect of the disturbance acting on a
system is reduced to an accepted level."/As a whole, H., optimization technique [53-54, 56] is
an effective method to be used for solving this problem of which the design objective is to
minimize the gain from disturbance input to the controlled output covering all frequencies.
For system (3.8), it is required-to find a static output feedback gain matrix F such that the
closed-loop system is stable and its” Z, - gain-is bounded by a prescribed value .

Theorem 3.2 Consider system (3.1) with the output-dependent integral sliding surface (3.4),
satisfying these Assumptions 3.1 to 3.5. Suppose that the system is in the sliding mode for

t>t, and its behavior of the reduced-order system has described as equation (3.8). If the
mismatched disturbance is of d () e L, and the vector v(z) is designed as
v(r)=-FCx(t)=-R™(B"P+L)x(¢) (3.29)

where the matrices L and P >0 satisfy the following algebraic Riccati equation

A'P +PA+C’C +i2 PE,E’P-PBR'B"P + R+ PD,D/P +H"H =0 (3.30)
/4 B

then the matrix A —BFC = Al—BR‘l(BTP+ L) Is Hurwitz and the system performance
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satisfies

Ly () () + v ()Ru(e))dr <7 (&7 (D) (e jir+ X7 () Px(s)  B3)

for z>1¢. Hence, the robust stability of the closed-loop system and the robust disturbance

attenuation can be guaranteed.
Proof: The main approach employed here is the standard Hamilton-Jacobi-Isaac method [56].
First, we define a quadratic energy function

E(x) = x"Px (3.32)
where P >0 satisfies the algebraic Riccati equation (3.30). Then the Hamiltonian function is
given by

H(v,d):yTy+vTRv—y2de+il—f. (3.33)

A sufficient condition for assuring the robust disturbance attenuation is that [56]

H(v,d)<0 forall del,. (3.34)
From E(x)=x"Px and y=Cx,one can obtain

H(v,d)=x"C"Cx+V'Rv + XT|:(A\1+ Dltb(t)H)T P+ P(A1+ D@(¢)H )JX (3.35)
+2x"PBv —»’d’"d + 2x" PEd.

From the H., control theory [56] and the above equation, the worst case sup H (v,d) occurs

deL,

when d(t)=i2E1TPX(t) and then yields
/4

H,(v)=supH (v,d)
deL,

(3.36)
= g(x)+V'RV+ x| (D@(1)H) P+ P(D(r)H) | x-+2xPBY

where g(x)=x" (CTC +A'P+PA +i2 PElElTP]x. Since @' (7)®(¢)< 1, the following
v

inequality can be obtained
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x| (D (r)H) P+ P(D@(1)H) |x < xr(%PDlDfP +,BHTHJX (3.37)
and then H (v,d) satisfies the following inequalities
H(v,d)<H, (v)<g(x)+V'Rv+ 2x"PBv+x" (%PDlDfP +,BHTHJX. (3.38)

If the vector v(¢) is chosen as
v(r)=-FCx(t)=-R™(B"P+L)x(¢) (3.39)
where the matrices L and P >0 satisfy the following algebraic Riccati equation

AP+ PA+C'C + p[iz EE] + ;0] - BRlBTjP +UR'L+BH'H =0 (3.40)
4

then it follows that
T T 24T dE
H(v,d)=y"y+Vv'Rv—yid d+;s0 forall 'del,. (3.41)
Integrating this equation yields
E(X(t))—E(X(tl))+J.:(yTy+VTRV)dT§72J.:(de)dr for t>1,. (3.42)

Rearranging the above inequality and noting E(z(t)) >0, we can obtain

J';(yTervTRv)dr < sz‘ ;(drd )dr+ X" (1,)Px(z) for t>1,. (3.43)

Hence we know that the property of robust disturbance attenuation is guaranteed and
complete the proof of this theorem. ]
Remark 3.2 Gadewadikar et al. [53-54] have developed the search algorithm to solve the
coupled design equations (3.16), (3.17), and (3.30). Using well-developed techniques for
solving available algebraic Riccati equations is the main advantage of their method. We
summarize their proposed method as follows.

1) Initialize: set »=0 and L, =0, andselect £, Q, andR.
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2) At the nth iteration, solve for P, in algebraic Riccati equations (3.17) or (3.30). Evaluate

gain F and update L

-1

F,.=-R*(B"P,+L,)C"(cC") (3.44)

n+!

L,..=-RF

n+l

C-B'P,. (3.45)

Check the convergence condition |F,,,—F,

<k where x>0 is a given small number.

If the convergence condition is satisfied, then go to Step 3. Otherwise, set n=r+1 and go
to Step 2.

3) Terminate: set F =F

-
3.2.3 Control law synthesis

Having analyzed the system performance.in the sliding mode, we focus on the synthesis
of a control algorithm to induce the-sliding mode within a finite time. Define a new state
vector

z(1)=x(t)-Bs(r) (3.46)
and from (3.7) obtain its dynamic equation.as

2(t)=(A+D@(r)H)z(r)+Ed(r)+Bv(z)+(A +D®(r)H)Bs(z). (3.47)
Substitute v=-FCx=-FC(z+Bs) into (3.47) to obtain

2(t)=(A -BFC+D®(¢)H)z(t)+Ed(t)+(A + D®(:)H - BFC)Bs(¢)

(Av +D,®(¢)H )z(t)+ Ed (t)+(AS + D (1) H)Bs(z) (3.48)

where A =A -BFC=A - BR‘l(BTP + L) is a stable matrix. Moreover, the algebraic

Riccati equation (3.17) can be rewritten as

AP +PA +C"F'RFC + = PD,D/P+ BH H =—Q. (3.49)
N K ﬁ 1¥1

Since P >0, there exists a symmetric and nonsingular matrix M eR™" such that

33



P =M"M . Now choose a Lyapunov function as
= 3.50
=P = o) (350

where the positive definite matrix P satisfies (3.49). Let X=%(Q+CTFTRFC)>O.

Differentiating (3.50) with respect to time and using (3.48) and (3.49) yield

1

0= L ()2 (PES() 22 (PO () el
22 (1P (A + D@(0)HB)s () () SPO0[P e MM )|
i (7 ()0 (OPEA)
+2" ()P (A + D (1) H) B (M)
From P=M"M and P >0 the following inequalities-can be attained
2 (1) PEA (1) = 2" (1) N MED (1)< e [ ME 352)
and
2/ (1)P (A, + DO (1)H)Bs(1)~ /(MM (A + D(1)H)Bs() a5

<Mz (0)](ImAB] + MO, | HB])[s(¢)]-
Moreover, we have z'(¢)Xz(7)> )me(P’lx)zT(t) Pz(¢). Substitute these inequalities into
(3.51) to obtain

Vo (1) < =Aa (PX )27 (1) P2 (1) + d[ME |+
= Ain (P X)W, () + by, + B, s (2))

elsl oy

where b, =|ME,|d and b, =|MAB|+|MD,||HB| are known constants. An auxiliary
variable (z) is now introduced as

i (t)==2,0(t)+b +b,[s(¢) (3.55)
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with »(0)>0 and 0<A <A_ (P™X). Note that the three parameters A , b, and b
w min w 1 2

are known. Comparing (3.54) and (3.55) indicates that there exists a finite time ¢, >0 such

that [9]

V,(t)=42" (t)Pz(t) =|Mz(t)| < @(¢) for t>1,. (3.56)

Substitute x=z+Bs and v=-Fy into the derivative of s(t) to obtain

$(t)=(CB) C(A+D®(¢)H)(z(t)+Bs(z))+ Fy(z)+u(r)
+ f(x,u,¢)+(CB) CEd(r)
=(CB)' C(A+Dd(r)H)M™*Mz(t)+(CB) C(A+Dd(r)H )Bs(¢)

+Fy(¢)+u(t)+ f(x,u,¢)+(CB) CEd(t).

(3.57)

Although the system state vector z(t) cannot be measured, we can manage an upper bound

of [Mz(7)| to drive the systemvinto the-sliding mode. Let
p(1)=Fy(1)+((CB) CAB+h1,,}s(1) (3.58)

where b, =

‘(CB)+ CDH||HB||. From.the auxiliary variable () in (3.55), x=z+Bs, and

Assumption 3.1, we can obtain

x| <z ()] +[Bs ()] < [M]IMz ()] +[Bs ()] < Mo () +[Blls ()] 359
and

It Ol s @t apx (1) + 2 u(e)] < @+ 0 (|Meolo)+[Bffs (1)) + Ju(o)] - .60

We design the control inputs u(¢) as

W)=

(3.61)

where  7(¢) =é[(b4 +a,|M ‘1H)w(f)+ZH p(t)HJrJH(cB)+ CE

ray+a|Bfs(r)]+5]
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>0 is a small constant, and b, =H(CB)+ CAM™

+H(CB)+CDHHHM’1H. From (3.61), we
have Hu(z)”s”p(z)”+77(t) and then multiply both sides of 7(z) with 1- 7 to obtain

n(6)=1n(t)+d|(CB) CE| +a, + a, [B]|s 1)
+(a2HM’1H+b4)a)(t + 7| p(0)]+5
= 7(n(0)+[p(0)]) + @(cB) CE| + (M| + 2. ) () (3.62)
+ay+a[Blfs(1)]+ 5

~—

> y|u(e)]+ (CB) CE|+a + ay [Bls (0)] +(as[M ]+ b,) () + 6
Substituting (3.61) into (3.57) and pre-multiplying both sides of (3.57) with s” (¢) can attain

" (1)3(r) =" (1)((CB) C(A+ DO (1) H)M Mz ) +(CB) CD®(r) HBs(1)
+(CB)' CEd (1) 4 T u e <o) (1) - s (1)
< (bumz (o) < o et (cB) CE| - n (o) s )]
< (Bao(1) + a, ([Maofe) £ B (Y} ()]

+d|(ce) cef- n(e)|s(@)]

<-o]s(1)]

(3.63)

This aforementioned inequality proves that the reaching and sliding condition is satisfied.
Therefore, the system will be driven to the sliding surface in a finite time and the sliding
motion can be upheld. In past output feedback sliding mode researches, the controllers were
designed to be stabilized the uncertain system locally and caused the high-gain control

problem [15-17, 21]. For improving the existing problems and expanding the range of stability,
we designed an adaptive variable, a)(t) in (3.55), to suppress a bound of unknown term in
the controller. It can be adjusted following the variation of sliding surface and avoid the
high-gain phenomenon in the transient time. Further it helps to complete the global stability

of the closed-loop system. Consequently, avoiding the high-gain control force and assuring

the robust global stability improve the effectiveness of proposed controller design.
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Remark 3.3 If the vector v(t) is designed by Theorem 3.2, then the same procedure for the

control law design should be obtained where the main difference is that the symmetric

positive definite matrix X must be altered to X :%(CTC +i2 PE,E/P +CTFTRFCJ >0.0
/4

Remark 3.4 Since the dynamics of the sliding surface is always related to the unmeasured
system states, Hu [26] used a variable structure observer to estimate the system states. Using
the transformation matrix, Yan et al. [60] applied a dynamic observer to estimate the system
states and then designed a sliding surface for the augmented space. For uncertain systems,
adding the estimated states from the observer into the controller will undermine robust
stability and thus deteriorate the worse performance. Without using any observer structure,
our proposed formula is designed in a way that only original system matrices are involved. []

3.3 Numerical Examples

Example 3.1 Consider an unstable batch reactor from [25]. To demonstrate the effectiveness
of the proposed method, the "system uncertain-matrix and the mismatched disturbance are

introduced into the system and its state-space formis given by

1.38 -0.2077 6.715 -5.676

. -0.5814 -4.29 0 0675
x(1) = +AA(7) | x(t)
1.067 4273 -6.654  5.893
0.048 4273 1343 -2.104
0.2 0 0
-0.4 5.679 0
f
0.5 d(t)+ 1.136 -3.146 (u(t)+ (t))
0.7 1.136 0

105 3 o 50

O.5$in”7 i S
where d(t)=4coszt+1 and f(¢)= 2 | . The mismatched uncertainty is set as
COoS 2¢
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0.15 0.1 1 00O
AA(F) = 0.2 -0.25 { 0 cost O cosZt} 0100 |

02 03 |(|[sint 0 sin2t 0 0010

035 -0.1 0 001

It is easy to check that this system satisfies all assumptions proposed in section 3.1. Choosing
d=5, =112, a,=0, y=0, =02, Q=021, and R=1 and using the solution
algorithm proposed by Gadewadikar et al. [53-54], we can obtain the solution to the algebraic

Riccati equation (3.17) as

0.2591 -0.0112 0.2049 -0.2013 ~0.1078 0.0634]
~|-0.0112 0.1893 0.0255 0.0838 and L= 0 0

0.2049 0.0255 0.2151 -0.1342 —0.4042 0.0956

-0.2013 0.0888 -0.1342 0.2887 -0.5121 0.1590

The sliding surface is determined as
0 0.1761 :| =0:1676. 1.2046
s(t)= t)+ d
(1) {—0.3179 0 }y( )+ o[—0.5811 —0.0802}/(7) ‘
In order to avoid the chattering problem, the unit vector function %s” in the control law

should be replaced with the saturation function sat(s,g) where &>0 is a small scalar. It
can be visualized that as ¢ — 0, the function sat(s, g) tends to the unit vector function. The

variable £ can be used to trade off the requirement of maintaining ideal performance with that

of ensuring a smooth control action. Therefore, we design the control input as

o(t)=-1.520(t)+0.1856d +10.6401[s(t)|

01676 1.2046 3.6668 0.5271
= — —_ — t ,
u(t) {—0.5811 —o.osoz}y(t) {—0.4554 1.5281}(0 1(1)sat(s(0).)

where 7(t)=11.7069w(t)+0.0704d +1.8+6 , §=0.1, and £=0.01. Figures 3.1-3.6
illustrate the simulation results using the initial conditions x(0)=[1 -2 1 —1]T and
a)(O) =0.1. Figure 3.1 shows trajectories of all system states and Fig. 3.2 shows the norm of
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states and its upper bound. In Fig. 3.2, the norm of states is indeed bounded by a certain value

2|PE,|d A (P)

P— in (3.18), and Theorem 3.1 is guaranteed. The estimation
Plin (Q +CTFTRFC )\ Ao (P)

result of (3.55) is depicted in Fig. 3.3; as it demonstrates the reality of (3.56) the adaptation
law (3.55) can be applied to the controller design ensuring the global approaching condition.
Figure 3.4 plots the evolution of the system outputs. Since this example is a square system
(numbers of inputs and outputs are the same) and the mismatched disturbance varies slowly,
the outputs in Fig. 3.4 converge to zero asymptotically based on Remark 3.1. Although the
nominal system has the uncertain term and mismatched disturbance, our proposed control law
involving the integral action can successfully restrain the effect of mismatched disturbance

and obtain a good performance. Figure 3.5 depicts the control inputs without chattering

phenomenon due to the replacement-of saturation, function. The response of [s(z)| is given

in Fig. 3.6. The system trajectories enter the sliding mode-globally in a finite time.

_0.5%\( ' \\\:"// |
r\( ,// x1
iy —: |
L\\ J/ ””””” X3
1.5 - ) -
-2 | | | | | | | | |
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (sec)

Fig. 3.1. System states in Example 3.1.
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Fig. 3.2. Norm of states and its upper bound in Example 3.1.

2.5 L ]

150 - ’ ]

0 0.5 1 15 2 2.5 3 3.5 4 4.5 5
Time (sec)

Fig. 3.3. Norm of Mz(7) and its upper bound (¢) in Example 3.1.
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-2 | | | | | | | | |
0 0.5 1 1.5 2 2.5 3 3.5 4 45
Time (sec)
Fig. 3.4. System outputs in Example 3.1.
12

|
0 0.5 1 15 2 25 3 3.5
Time (sec)

Fig. 3.5. System inputs in Example 3.1.
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Fig. 3.6. Response of Hs(t)” in Example 3.1.

Example 3.2 As for the case of [>m,a system presented by Xiang et al. [17] is considered

as the following state space form

-2 -2 0 1 0.3
X(£)=| 1 2 1 |+AA(){%(¢)+}1 (u(t)+$in2t)+ —0.4 |&°%Y cos 7t
-3 4 0 0.5

[0 1 0

W07 3 o<

where the initial condition is altered as x(0)=[2 -4 1]T to illustrate the high-gain

phenomenon of Xiang’s method [17]. Note that this example satisfies Assumptions 3.1-3.5

and the mismatched disturbance belongs to L, space. Choose a,=d =1, a,=0, and

x =0. Moreover, the mismatched uncertainty is determined by

0
sint 0 sin 2¢
AA(t)=|0

0
. }010.

0 sin3r 0
0 0 1

Setting =1, =2, Q=21, and R=1 and then solving the algebraic Riccati equation

(3.30), we can obtain its solution
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0.7841 0.5962 0.1875
P=/05962 1.8160 0.2411| and L=[0 0 -0.2410].
0.1875 0.2411 1.0717

In this case, we introduce the initial condition of the system outputs into the output-dependent

integral sliding surface as
s(t)=[05 05]y(r)+][ [1.3198 05962]y(r)dr.
Then we design the control input including the dynamics of the auxiliary variable a)(t) as

(t)=-1.70(t)+0.5899d +3.7204|s(¢)
u(t)=-[1.3198 0.5962]y(¢)—-2.5s(t)—(2.7932m(¢)+0.25d +1+6)sat(s(¢), )

where 6=05, £=0.05, and a)(O):B. For comparison, the static sliding function

s()=[4.4182 1.3153]y(¢) and the control law w()=-2s(r)—1.5sat(s(),&) proposed

by Xiang et al. [17] are simultaneously simulated. The time responses of the system states in

the two cases are shown in Figs. 3.7 to 3.9, respectively. Figure 3.10 shows that the estimation

function (r) is indeed larger than.the norm of Mz(¢) in our proposed method. Therefore,

we can apply the linear combination of a)(t) to design the controller ensuring the global

approaching condition. The time responses of the system outputs in the two cases are shown
in Figs. 3.11 and 3.12, respectively. Figure 3.13 presents the controlled performance. The
robust disturbance attenuation (3.31) is verified successfully in this figure. Figure 3.14 depicts
the control inputs of two cases without chattering. By adjusting the parameter matrices Q and
R, from Fig. 3.14 the input gain in our method is smaller than the one in the method of Xiang
et al. [17]. The response of sliding function in our method is given in Fig. 3.15. Although the
dynamic output feedback control law raises the control complexity and incurs the additional
software, our proposed control scheme can guarantee globally robust stability of the

closed-loop system and effectively tackle the high gain control problem.
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Proposed x1(t)

— Xiang's x1(t)

Time (sec)

Fig. 3.7. System states x, (¢) of two cases in Example 3.2.

10

Proposed x2(t)

3 — Xiang's x2(t) |

-3.51 _
-4 | | | | | | |
0 1 2 3 4 5 7 8

Time (sec)

Fig. 3.8. System states x, (t) of two cases in Example 3.2.
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0.8 \
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0.4
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—— Proposed x3(t)

— Xiang's x3(t)

Time (sec)

Fig. 3.9. System states x, () of two cases in Example 3.2.

IMz(O)I|

Time (sec)

10

Fig. 3.10. Norm of Mz(#) and its upper bound «(z) of our proposed method in Example

3.2.
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Proposed y1(t)

10

25 .
J —— Xiang's y1(t)
-3 |
3.5 -
- | | | | | |
% 2 3 4 5 7 8
Time (sec)
Fig. 3.11. System outputs y, (¢) of two cases in Example 3.2.
4

Proposed y2(t)

—— Xiang's y2(t)

2 3 4 5
Time (sec)

Fig. 3.12. System outputs y, (t) of two cases in Example 3.2.
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3.13. Performance of robust disturbance attenuation of our proposed method in Example

Proposed u(t)

]
T —— Xiang's u(t)
!

Time (sec)

Fig. 3.14. System inputs u () of two cases in Example 3.2.
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Fig. 3.15. Response of s(¢) in our proposed method in Example 3.2.

3.4 Summary

In this chapter, we have proposed a design method of the dynamic output feedback
sliding mode control law for a linear MIMO uncertain system having the mismatched
uncertainty and matched nonlinear perturbation. Once the system is in the sliding mode, the
proposed output-dependent integral sliding surface design can obtain robust stability of the
closed-loop system. Moreover, we discuss two types of mismatched disturbances and explore
their effects on the sliding mode. The dynamic output feedback control law is then designed to
guarantee that the system globally reaches and maintains in the sliding surface in a finite time.
Our proposed method is simple in nature involving only its original system matrices and does
not need any observer structure. The numerical examples also demonstrate that the proposed

algorithm can be successfully implemented.
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IV. OUTPUT FEEDBACK INTEGRAL SLIDING MODE

CONTROL FOR TIME-DELAY SYSTEMS

For time-delay systems with mismatched disturbances and uncertainties, this chapter
applies the output feedback integral sliding mode control algorithm developed in previous
chapter to stabilize the system. The integral sliding surface is comprised of output signals and
an auxiliary full-order compensator. The proposed output feedback sliding mode controller
can satisfy the reaching and sliding condition and maintain the system on the sliding surface
from the initial moment. Among the delay-independent condition, two types of analysis
methods can assure the property of robust disturbance attenuation and determine the
parameters of controller and compensator simultaneously. On the other hand, the stability
analysis under delay-dependent.condition is also considered. This condition is with less
conservative and strengthens the complexity of controller design and difficulty analyzing the
robust stability.

The first section of this chapter - formulates the objective of problem. In section 4.2, a
combination of an integral sliding surface and the related output feedback sliding mode
controller is presented. Under the delay-independent condition, two types of robust stability
conditions for the system in the sliding mode are given in section 4.3 with each corresponding
compensator respectively. Section 4.4 proves the important sufficient condition of stability
when the system is in the sliding mode and determines parameters of the controller and
compensator as for the delay-dependent condition holds. A summary is given in the last
section.

4.1 Problem Formulation

Consider a continuous-time time-delay system described by the state-space form as

-
—~

—
~

Il

(A+AA(L))x(t)+( A +AA (1)) x(t—7)+B(u(t)+ f(x,ut))+ Ed(t) 1)
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x(t)=¢(t),t e[-7,0] (4.2)
where x eR" is the system state vector, yeR' is the system output vector, ueR" is the

control input vector, deR" is the mismatched disturbance vector. The function

f(x,u,t)eRm represents the unknown matched uncertainty. The constant z is an

unknown delay time but bounded by a known constant 7, where 0<z<7 . The vector

¢(t) is a continuous initial function. The real constant matrices A, A, B, E, and C are
known and have appropriate dimensions with 1>m. The structure uncertainties AA(t) and
AA, (t) satisfy AA=D®(t)H and AA, =D,®,(t)H,, where D, D,, H, and H, are
non-unique known constant matrices with appropriate dimensions. Moreover, the matrices
®(t) and @, (t) are unknown, satisfying ®*(t)@(t)<1 and ®;(t)®,(t)<1 for allt,
respectively. As a result, the controlled plant (4.1) can be rewritten as

X(t)=(A+Dd(t)H)x(t)+( Ay +Dy®, (t) H,) X(t—7)+Ed(t)
+B(u(t)+ f(x,ut)) (4.3)

y(t)=Cx(t).
Suppose that the triple (A, B,C) is completely controllable and observable. Edwards and

Spurgeon [2] have shown that there exists a stable static output feedback sliding mode

controller if

(C1) rank(CB)=rank(B)=m,

(C2) The triple (A,B,C) is minimum phase.
In the case of time-delay systems satisfying conditions (C1) and (C2), Castanos and Fridman
[10] mentioned the state-dependent integral sliding surface design for linear systems with

mismatched disturbances to ensure the robust disturbance attenuation. Niu et al. [12]

proposed the observer-based sliding mode controller involving a synthesis condition to
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stabilize uncertain time-delay systems. Since the output is the only available signal, next
section will present the output-dependent integral sliding surface and the corresponding
sliding mode controller. The control algorithm including the information of integral sliding
surface without any synthesis condition is designed to satisfy the approaching condition and
force the system trajectories to enter the sliding mode. Before introducing main results, the

following three assumptions are fulfilled throughout this chapter.

Assumption 4.1 The matched term f(x,u,t) and mismatched disturbance d(t) are
norm-bounded as
| f(xut)<n(ty)+z|u(t) and d(t)|<d (4.4)
where 0< <1, n(t,y),and d are all known positive constants.
Assumption 4.2 The triple (A,B;C) is minimum phase.
Assumption 4.3: rank(CB)=rank(B)=m.
4.2 Integral Sliding Surface and Sliding Mode Controller
Since Assumption 4.3 holds, we design.the output-dependant integral sliding surface as
s(t):(GCB)flG(y(t)—y(O))—Iov(q)dq (4.5)
where G eR™' is chosen such that GCB is invertible. The integral term veR"™ will be
designed later. Substituting system (4.3) into the derivative of s(t) with respect to time can

obtain
§(t)= G((A+Dc1>() )X () +( Ay + Dy, (t)Hy ) x(t-7)
+B(u(t)+ f(x,u,t))+Ed(t))-v(t)
:G((A+D®() )x(t)+( Ay + Dy®, (t)Hy ) x(t—7)+ Ed (1))
+u(t)+ f(x,ut)—v(t)

where Gz(GCB)_lGC.Referring to [14], define two regions Q; and Q, as

(4.6)

51



0, = {x(1)||G(A+DD()H)x(t)| <oy f = © (4.7)
0, = {X(t=7)[[G(Ay + D@y (1) Hy ) X(t-7)| < o2} = @ (4.8)

where o, >0 and o, >0 are known and bounded constants. The region QcR" is a

neighborhood of the origin. Consider system (4.3) in Q; xQ, and design the control input as

(4.9)

K (t) :é(q +o,+n(ty)+ ;(HV(I)H-H//CT+ ,u) . (4.10)

The remaining control parameters z//:HGEH and u are also positive constants. Through
straightforward calculations, we know.that

K'(t)=}(K(t)+}(HV(t)H+Ul+GZ +7(t, ) Fpd +u

| (4.11)
> y||u(t)|+ oy + ot mfts y) - wd +

Substituting (4.9) into (4.6) can attain the following approaching and sliding condition

sT()$(t) =57 (t)(G ((A+DD)H ) x(t)+(A+ D@, (1) Hy ) x(t—7)+ Ed (1))

+f(xut Hs H
<[s(t))(G ((A+Dd)( JH)x(t)+(A, + D@, (t)Hy ) x(t—7)+ Ed (1))
+f(x,ut)—x(t)) (4.12)
(a(t)+ﬂ( )+77(ty +;(”u H+1//d K ( )Hs(t)”

<(a()+s ~#)s)]
<-ulst H

where  a(t,x)=|G(A+DO(t)H)x(t)| and A(t,x)=[G (A, + D, (t)Hy)x(t-7)| -
Since s(0)=0, the control input (4.9) can guarantee the following identities
s(t)=3(t)=0 Vv t>0. (4.13)

Therefore, the design of integral sliding surface (4.5) can shorten the transient time that the
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system entered the sliding mode efficiently. Subsequently, this chapter focuses on the stability

analysis when the system is in the sliding mode.

4.3 Robust Stability in the Sliding Mode for Delay-Independent Condition
From (4.6), once the system is in the sliding mode, s(t)=3$(t)=0, the corresponding
equivalent control [2] is given by

Uy (1) + f(x,ueq,t) :—G((A+ D (t)H )x(t)+(Ad +D,®, (t)Hd)x(t—r)

(4.14)
+Ed (t))+v(t).

Deriving the closed-loop system dynamics in the sliding mode from substituting (4.14) into
system (4.3) can obtain
X(t)=(A+Dd(t)H)x(t)+(A + D®, (t)H, ) x(t—7)+ BF (X, Uy,t)
—BG((A+ DD (t)H)x(t)+ (A, + D@ (t) Hy ) x(t - 7)+ Ed (1))
— Bf (X,U,t)+ Bv(t) + Ed (1)
=(1,-BG)((A+DD(t)H)x(t)+ (A, + D@, (t)H, ) x(t—7)+ Ed(t)) (4.15)
+Bv(t)

= N(A+Dd(t)H)x(t)+ N (A, + DD (t)H, ) x(t—7)
+ NEd(t)+ Bv(t)

where N =1 _—BG.Since NA=A-BGA, we have the following relationship

[sl,-NA B]=[sl,-A+BGA B]=[sl,—A B]{é”A ﬂ (4.16)

n

Since the pair (A, B) is controllable, ran|<([s|n -A B]) =n for seC, the controllability

of (NA, B) can be guaranteed by

rank ([sl, — NA B]):rank([sln—A B]{é“A |0D=n, seC. (4.17)

n

It implies that the pair (NA,B) is also controllable. Referring to [55-57], the robust

disturbance attenuation for system (4.15) is to design an auxiliary input function v(t) such
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that the system is stable and satisfies the following inequality:
Lo T 24T
jo(y y+V'Rv)dg <y jo(d djdg v t=0 (4.18)
where 0<y<o and R>0 is a weighting matrix. By using two similar full-order

compensators, we will derive two sufficient conditions to complete the design of v(t)

fulfilling the robust disturbance attenuation in the following subsections. Before designing

compensators, define several matrices as

U=-B(CB) +Y(1,-CB(cB)') (4.19)
M =1,+UC (4.20)
r=L(1,+CU)- MAU (4.21)

where (CB)+ = ((cB)T CB)l(CB)T , Y eR™ <is an arbitrary matrix, and L is a gain matrix
designed later. Notice that the product of MB is given by
MB = B+UCB - B-B(CB) CB+Y (CB-CB(CB) CB)=0 (4.22)

and rank(M)=n-m from Assumption 4.3.

Remark 4.1 In [10], the integration term in the sliding manifold can be thought as a trajectory
of the system in the absence of perturbations and in the presence of the nominal control, that

is, as a nominal trajectory for a given initial condition. In this chapter, adding the integration

term v(t) into the sliding surface (4.5) can compensate the degree of freedom to attenuate

the effects of disturbances and uncertainties in the closed-loop system. Involving the
integrator is also helpful to analyze the stability and robustness of the closed-loop system. [

4.3.1 Robust disturbance attenuation by LMI

The input function v(t) in this section is generated from the following full-order

dynamic compensator
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£(t)=(MA-LC)&(t)+Ty(t) (4.23)

v(t)=-K(&(t)-Uy(t)) (4.24)
where the auxiliary state vector &< R" is available. The feedback gain matrix K e R™" is
designed later. According to (4.23) and MB =0, the dynamics of error vector e = Mx —¢&
can be given by

é(t)=-Ty(t)+ M((A+Dd(t)H)x(t) + Ed (t) + (A, + D@, (t)H ) x(t 7))
~(MA-LC)&(t)

4.25
= MD®(t) Hx(t)+(MA—LC)e(t)+ M (A, + D,®, (t)H, ) x(t—7) 29
+ MEd (t).
On the other hand, v(t) can be rewritten as
v(t)=—Kx(t)+Ke(t). (4.26)
Substituting (4.26) into (4.15).can. obtain the system dynamics in the sliding mode as
X(t):(N (A+Dd(t)H)- BK)x(t)+ N (A, + Dy®, (t)H, ) x(t—7)+ BKe(t) w2
+ NEd(t).
Combining (4.25) with (4.27), the overall closed-loop system is shown as below
X(t) NA-BK + ND®(t)H BK x(t) NE
= [ e (1)
é(t) MD®(t)H MA-LC || e(t) {ME}
.| NA +ND,®, (t)H, O x(t-7) (4.28)
MA, + MD,®, (t)H, 0] e(t—7)
X(t X(t—
= A\”[e((t))}_ BWL((t—;))}rGWd (t)
h _| NA-BK + ND®(t)H BK B = NA; + ND;®, (t)H, 0 d
where A= MD® (t)H MA-LC |’ ~""| MA, +MD,®,(t)H, 0|

w

NE
G {ME] Moreover, to represent the term y'y+v'Rv in (4.18), we define the controlled

output zeR"™ as
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(4.29)

C

where CJC,=R and C,=[C C,]=
CK CK

}. The auxiliary matrix C, is implicit

and does not appear in the controller, but C/C, is defined as the matrix R which is the
weighting gain of input v(t). The next step is to design the matrices K and L, and analyze

the robust stability of the closed-loop system (4.28) by the following lemma and Theorem 4.1.

Lemma 4.1 Given real matrices D, ®(t), and H of appropriate dimensions, suppose
@' (t)®(t)< I, for any positive scalar . oy, then
(i) [42] DO(t)H +H O (t)D < pDD "+ p*H'H ;

N 0 H'®" (t)D" | { pH™H 0
(i) 111 {DCD(I)H 0 }S[ 0 p'lDDT}' -

Theorem 4.1 Consider system (4.15).with the full-order compensator (4.23). Given A,

P, P
p, >0, i=12.--10, and a positive definite matrix R, if there exists P :L;Tl P12}>0’
12 22

Q:Bl; gﬂ}o, Po21. Qu>(p"+p" +p" +p")HiH, , and a scalar y>0,
12 22

satisfying the following LMI

_Hn I, Il 0 ILg Il I, 0 |
* 0 I1, Iy, 0 Iy Iy 0 I
£ % I, M, 0 0 0 0
oo M 0000 <0 (4.30)
* * * * Hss 0 0 0
* s * * * Il O 0
* * * * * * H77 0
* * * * * * * H88
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where * symbols the transpose of the corresponding symmetric element and
I, =(NA)' P, + PuNA+(p "+ p, + oy + o' JHTH +CTC +Q,
M,, =(NA)' P, + P,MA+Q,
IT,, = P,NA, + P,MA,
M,, = P,MA+(MA) P, +Q,, - AC'C + %pl_olCTCCTC
I1,, = P,NA, + P,MA,
My =—(Qu-(p"+ 2"+ 5" + 2" ) HI Hy )
I, =-Qp
I, =-Q,,
IT,, =P,NE + P,ME
I, =-P,B
Il = [PleD P,ND P,ND, " P,MD, Plz]
I1,, = P,NE + P,ME
,,=P,B
M, =[P;ND P,MD P,BR'B" P) P,B P;ND, P,MD,]

1_155:_72|

My, =~diag(p*1, 071,051 1,p7"1,227 P01 )

H88 :_dia‘g(pZI!pSIlpS_lllpSI’R’IOB_lI’pg_lI)

then robust disturbance attenuation (4.18) can be guaranteed. Furthermore, matrices K and L

are given by
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K=R'B'P, and L =§P2‘210T. (4.31)

Proof: The detail is in Appendix 1. L]
Remark 4.2 For determining the parameter matrices P, and P,,, we recommend to follow
the flowchart in Fig. 4.1. Adjusting 4, R, and p. >0, i=12,---,10 can solve different P
and Q. If solutions satisfy requirements of Theorem 4.1 and the performance index y is
acceptable, substituting P, and P,, into K and L can complete the controller design. 0l

The following numerical example demonstrates the proposed controller design in this section.

Start

/

1. Assign R, 4, and p, >0, i=1,2,---,10
P, P

2. Solve P:|: lTl 12j| andQ:|:Qll Q12:| P
P

12 PZZ Ql-g Q22
in (4.30)

P,>I
Qu> (o5t + o7 + o5t + oyt JH Hy
P>0
Q>0

. K=R'B'P,
Design it
L=0.51P,C

\ 4
End

Fig. 4.1. Flowchart for solving parameters K and L by an LMI of controller and compensator.
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Example 4.1 Consider the real example of chemical reactor system [32] within the

corresponding form of system (4.3) with delay time 7=1 as

T

-493 -101 0 0 1 0 1 0 1
_|-320 -530 -128 0 5_ 0 1 co 0 1 _|o
-6.40 0347 -325 -1.04| 0 0} -02 0" 1|
0 0833 11.0 -3.96 00 0 01 0

and A, =diag(1.92,1.92,1.87,0.724). The known parts of uncertainties in the system are

given by
-047 101 O 0 -055 -0.02 O 0
|-022 -017 121 0 H 078 -035 0 0
063 0347 091 -104!" | 0 -072 -049 0 |
0 0 014 -0.96 0 0.33 -0.54 -0.39

D, :diag(0.47, 0.26,—0.85,1.53), and H, :diag(—l.ll,—0.21,1.26, 0.47). The external
disturbances and unknown parts of uncertainties for system (4.3) are set as ®(t)=r(t)l,,
O, (t)=r,(t)1,, d(t)=e*""sin2t,and

f(x,u,t):{

0.12u, sint +0.08u, cos1.3t +0.2sin x,
0.07u, cos 3t +0.03u, sin 5t +0.3cos X,

where u :[ulT u;] r(t) and r,(t) are different random functions with values between

—1 and 1. Notice that the triple (A,B,C) has invariant zeros —4.4463 and -33.377, and
rank(CB)=2, satisfying Assumptions 4.2 and 4.3. For solving the LMI (4.30) of this
example, select the parameters as 4=1000, R=0.0021,, p=p,=2, p,=p,=0.1,

Ps=pP; =Py =p,=3,and p, = p, =1. Then the solutions to (4.30) are given by

0.0139 -0.0013 0.0668 —0.0046
-0.0013 0.0012 -0.0127 0.0005

0.0668 -0.0127 0.6492 -0.1044
—0.0046 0.0005 —0.1044 0.1945
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0.0030 -0.0001 -0.0028 —-0.0072
00019 -0.0005 0.0003 0.0094
27100012 -0.0011 -0.0841 -0.0242
0.0128 0.0044 0.0080 -0.0734

38.6114 -0.0364 -4.8448 0.4358

—0.0364 38.9961 -0.0304 3.4802
| -4.8448 -0.0304 17.5268 0.4054
0.4358 3.4802 0.4054 6.0693

[0.1010 0.0014 0.3402 -0.1593]
-0.0501 -0.0023 -0.1692 0.0971

| -0.0227 0.0090 -0.1059 -0.1096

| -0.0121 0.0338 -0.0276 —0.4093

38.7504 -0.0190 0.0192 0.1867 |
—0.0190 38.5812 0.1953 ' ' 2.6922
0.0192 0.1953 «38.7613 -2.5084

| 0.1867  2.6922. —2.5084 . 14.4394 |

Q=

and Q,, =31,. The performance index y computed via the LMI is 0.9233. Notice that the

solutions of (4.30) above fulfill the conditions-of Theorem 4.1. Hence, we construct the

full-order compensator as

13.9652 —0.0678 3.9630  0.2082 128 0.0694
00827 12.8218 10835 0.8778 0  -0.0833

&(t)=- (t)+ y(t)
42199 -03461 329360 1.0401 6.4 03470
08127 01007 -10.8375 4.0534 0 0.8330

and design the sliding surface as

-0 [ 527 2

[ —6.9387 0.6675 —33.4124 2.2778 £(a)
ol 0.6675 -0.6178 6.3451 —0.2742 4)%4

. . . s(t) . .
Moreover, in order to avoid the chattering problem, the term ( ) in the controller (4.9) is

()]
replaced with the saturation function [11], and the new version of the controller is given by
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-6.9387 0.6675 -334124 22778 -6.9387  0.6675
u(t) = (t)+ y(t)
0.6675 -0.6178 63451 —0.2742 0.6675 —0.6178

_é(gl +o, +n(ty)+ x|V (1) +wd + p)sat(s(t), )

where o,=0,=5, n(ty)=2, y=¢=08, d=1, x=25, and £=0.002. Figures
4.2-4.8 chart the simulation results using the initial state x(0)=[2 3 4 1]T and

5(0) = [O 0 0 O]T. Figure 4.2 presents the system states which are bounded around zero.

The time responses of the system outputs are shown in Fig. 4.3. The property (4.18) of robust

disturbance attenuation is shown in Fig. 4.4. The integration of quadratic form of controlled

output z(t) is indeed smaller than one of mismatched disturbance d(t) and hence the
proposed controller has assured the robust disturbance attenuation. Figures 4.5 and 4.6 show
s(t) and [s(t)], respectively. In'Fig.4.6, the trajectory representing the controlled system
can maintain in the sliding layer in the whole time. It fits in with the design of integral sliding
surface (4.5). Figure 4.7 shows that the trajectories of e(t) are bounded around zero as
system states. The responses of the ‘contral” inputs u(t) are given in Fig. 4.8. The

replacement of the saturation function eliminates the chattering phenomenon. From Fig. 4.3,

although the nominal system contains the state delay term and the mismatched disturbance,
the system outputs y(t) are finally bounded around zero. The simulation results
demonstrate that the proposed controller design can guarantee the robust disturbance
attenuation to outputs y(t) once the system is in the sliding mode.

4.3.2 Robust disturbance attenuation by algebraic Riccati inequalities
This section will alter the LMI (4.30) to algebraic Riccati inequalities as an equivalent
sufficient condition assuring the property of robust disturbance attenuation. The full-order

dynamic compensator is modified as
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Time (sec)
Fig. 4.2. System states in Example 4.1.
3.5
yl
| | | |
6 7 8 9 10

Time (sec)

Fig. 4.3. System outputs in Example 4.1.
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Fig. 4.4. Performance of robust disturbance attenuation in Example 4.1.
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1 —F —I
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Fig. 4.5. Sliding functions in Example 4.1.
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0.5
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Fig. 4.6. Response of Hs(t)” in Example 4.1.
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Fig. 4.7. Trajectories of e(t) in Example 4.1.
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Fig. 4.8. System inputs in Example 4.1.
E(t)=(MA-LC +F)&(t) +(D=FU)y(t) (4.32)
v(t)=—-K(&(t)-Uy(t)) (4.33)

where Kand F e R™ are gain matrices determined later, According to (4.32) and MB =0,
the dynamics of error vector e(t) can be given by
é(t)=M((A+Dd(t)H)x(t)+ (A, + D@, (t) Hy ) x(t—7)+ Ed (t))

~(C-FU)y(t)-(MA-LC +F)&(t)
— (MA—-LC)Mx(t)+ MEd (t)—(MA—- LC )& (t) - Fx(t) + Fe(t)

(4.34)
+MD®(t ) X(t)+M (A, +D,®, (t)H, ) x(t-7)
=(MD®(t)H —F)x(t)+ M (A, + D,®, (t)H, ) x(t-7)
+(MA- LC+F)e t)+ MEd (t).
Combining (4.27) with (4.34), the integrated closed-loop system can be expressed as

X(t) NA-BK +ND®(t)H BK x(t) NE

e | e ()

é(t) —-F + MD®(t)H MA-LC+F | e(t) {ME} (4.35)

{ NA, + ND,®@, (t)H, 0}{X(t—7)}

MA, + MD,®, (t)H, 0| e(t-7) |

The objective is transferred to design matrices K, L, and F, and analyze the robust stability of
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the closed-loop system (4.35). Define a quadratic energy function as
E.(x.e)= xTP11x+eTP22e+jtt_ X' (a)Qux(a) da+j e’ (a)Que(a)da (4.36)

where the positive definite matrices P, >0, P,,>0, Q, >0, and Q,, >0 are determined
- - - - T 2 T dE - -
later. Choosing the same Hamiltonian function H[d]zz z—-ydd +d_tn and sufficient

condition H[d]<0 for all del, as (A.2) and (A.3) respectively, the detail of the

proposed Hamilton function is given by

H[d]=x"(t)(C'C + K'RK)x(t)-2x" (t)K"RKe(t)+e' (t) K"RKe(t)
+((NA=BK + NDO(t)H) x(t)) Px(t)+ X (1)Qx(t)
(N (A +D,@, () Hy ) X(t—7)) Pux(t) X" (t—7)Qux(t—7)
+ X" (t) Py (NA- BK+NDq>(t)H) (t)—e' (t—7)Que(t-7)

X" (t) PyN (A, 2D, @5 (t)H, ) x(t= ) +2x" (t)P,NEd(t)

+2x" (t) P, BKe(t) +2e" (t) P,MEd(t)+e"(t)Q,e(t)—y°d" (t)d(t)
+2((MDO () H= F ) x (1) M(Ay+ D,d (1) H, ) x(t 7)) Poe(t)

(4.37)

+e" ()P, (MA-LCH F)e(t) +e" (1) (MA-LC +F) Pe(t).

Based on the above equation, ‘the worst case supH[d] occurs  when
del,

d(t)=y?ET(N"P,x(t)+ MTP,e(t)), and it follows that

H[d]< X (t)(CTC + KTRK) x(t) - 2x" (t)K"RKe(t) —€" (t ~7) Qe (t - 7)
+((NA—BK+NDCD() )x(t)) Pax(t)+ X" (1)Qux(t) + e (t)Qye(t)
+ X" (t)P, (NA-BK + NDO(t)H ) x(t)— x" (t—7)Q,,x(t - 7)
+2x" (t) P, (BKe(t )+N(Ad+DCDd(t) ¢)X(t=7))+e" (1) KTRKe(t) 4.38)
+((MA=LC +F)e(t)) Pue(t)+e ()P, ((MA-LC +F)e(t))

+26" (t)Pzz((MDCD(t)H —F)x(t)+ M (A, + D@, (t)Hd)x(t—r))

+772x" (t)PLNEETNTP, x(t) + 7 %" (t)P,,MEE"N"P,x(t)

+ 772X (t)P,NEETMTP,e(t) + %" (t)P,MEE"MTPe(t).
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According to Lemma 4.1, inequality (4.38) can be rewritten as

X(t) ! —Hn I, P NA, 0 | X(t)
t % II P hA 0 t
H[d]< e(t) IR éd o) (4.39)
X(t—T) * * (Pg N )Hd H, -Qy, 0 X(t—T)
e(t—‘t’) | * * * _sz_ e(t—‘t’)
where
I,, =(NA-BK)' P, +P,(NA-BK)+C'C+K'RK +Q,, (4.40)
+ PN (7 7EE" + p,DD" + 5,0, D NP, + (" + 5" H'H |
I,,=(MA-LC+F) P,+P,(MA-LC+F)+K'RK +Q, @.41)
+P,M(y?EET + p,DD" + p,D,D] )MTP,, '
I1,,=P,BK -K'RK—F"P, + y°P,NEE'M'P,,. (4.42)

Notice that p, are positive constants, i=1_-.,4. The sufficient condition satisfying the

robust disturbance attenuation, supH{d]<0 is altered to fulfill the following matrix

del,
inequality
I Iy I, PiNA 0 ]
HIz I, PpMA, 0 0 (4.43)
<VU. .
ANTP, AIMTP, _(Qll_(p£l+p;1)H;erd) 0
0 0 0 —Qy, |

Moreover, the following theorem transfers (4.43) into two algebraic Riccati inequalities using
Schur decomposition and develops the designs of K, L, and F which guarantee the robust
disturbance attenuation.

Theorem 4.2 Consider the system (4.15) with the integral sliding surface (4.5) and full-order
compensator (4.32). Given R>0 Q,>0, Q, >0, >0, and p, >0, 1=12,---,4, if

there exists matrices P, >0 and P,, >0 satisfying the following algebraic Riccati

inequalities
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(NA)' P, +P,(NA)-P,BR'B'P, +C'C +Q,, +(prt+ o' )JHTH + PN
2T T T 1 1\ yT 1T T (4.44)
x|y "EE" + p,DD +p2DdDd_Ad((p£ +p;)Hde—Q11) Aj)N P, <0

(MA+ F)T P,, + PZZ(MA+ F)+ P,BR'B'P,-AC'C+Q,, + P,M (}/72EET
T T 1, A\ yT RUNATVE (4.45)
+p:DD" + p,D,Df = A, (25" + £ JH{Hy —Qu) AT IMTP, <0

where p, >0 and p, >0 are designed such that Q,; —(,02‘l +p;1) H{H, >0, then robust

disturbance attenuation (4.18) can be guaranteed. Furthermore, matrices K, L, and F are given

by K=R'B'P,, ngP;CT,and

F=M (;/‘zEET ~A((0"+ 2t HIH, —Qﬂ)lA;)NTPM. (4.46)

Proof: Since the condition (p,%p;'JHjH,=Qp.<0 holds, by Schur decomposition,

inequality (4.43) is equivalent to

J, J
[ 0 12} <0 (4.47)
‘J12 'J22

where
Ju=(NA-BK) P, + P.(NA-BK)+(p '+ 0" )HTH +Q,

-1
— P,NA, ((,o;1 + ) HIH, —Qn) AINTP, +C'C + KTRK (4.48)
+P,N (7 °EE" + p,DD" + p,D,D] )N"P,

J,=P,BK-K'RK-F'P, +y?P,NEE'M'P,,

. (4.49)
— P NA, ((pz_l +:04_l) HiH, _Qll) 1 ATMTP,,

J,, =(MA—LC +F) P, +P,(MA-LC +F)+K'RK +Q,
+P,M(p;DD" + p,D,D; )M"P,, +» *P,MEE'M'P,, (4.50)

1
— P, MA, ((:02_1 +,0;1) HiH, _Qn) ATMTP,,.
Design F =M (7_2EET - A ((p2_1+p;1)HJHd _Qll)lAg)NTPn , K=R"B'P,, and
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L= % P,,'C". Then substituting them into (4.47) can attain

3, =(NA) P, +P,(NA)-P,BR'B'P, +C'C +Q, +(p;1 + pgl) H™H
-1

+P,N(y?EE" + pDD" + p,D,D] — A, ((p£l+p;1)Hng _Qn) Ag) (4.51)

x NT P,
J,=0 (4.52)

J,, :(MA+ F )T P,, + PZZ(MA+ F ) + PMBR_lBT P, -AC'C +Q,,
-1

+P,M (72EET +pDD" + p,D,D] - A,((£,"+ pi*)HIH, - Qy AJ) (4.53)

xM'P,,.
Therefore, if there exists P, >0 and P,, >0 such that J,, <0 and J,, <0, it implies to

supH [d] <0, and to guarantee the robust disturbance attenuation. The proof of this theorem
del,

is completed. [
Remark 4.3 Figure 4.9 shows the flowchart to solve parameters of controller and

compensator. First adjusting », Q,,,’and p. >0, i=12,--,4 can determine different P,.
Substituting P, into (4.46) can obtain matrix F. Then choose A to determine P,, from
(4.45). Generally, for any y that there exists a solution P,, to (4.44) (which is used for the
state feedback gain), we can find a 4 large enough such that there exists a solution P,, to

the inequality (4.45). It means that a high gain compensator can be used to accomplish the
work. Besides, LMI technique [3] can be used to solve the two inequalities (4.44) and (4.45).

Finally, we summarize the output feedback integral sliding mode controller as

E(t)=(MA-LC +F)&(t)+(T—FU)y(t)

s(t)=(GCB) "G (y(t) - y(0))+ [ K(&(a)~Uy(a))da 0

0

u(t) =K (£() -y (1)~ (1) S(‘)‘-
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1. Assign 7, p, >0, 1=12,3,4, and Q,,
such that Q; >(,02_1+,0;1) HiH,

2. Solve P, in (4.44)

No

Check P, >0

Design F as (4.46)

v

1. Assign A
2. Solve P,, in (4.45)

]

Check P,, >0

. K=R'B'P,
Design it
L=0.54P,,C

A4
End

Fig. 4.9. Flowchart for solving parameters K and L by algebraic Riccati inequalities of

controller and compensator.

The following examples are simulated to verify the proposed controller design in this
section. The results of comparison with [28] are in Example 4.2. Further the proposed method

Is simulated for an unstable system to verify the feasibility in the last example.
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Example 4.2 Consider a nonlinear uncertain state-delayed system [28] within the following

form

X(t)=(A+AA(L))x(t)+( Ay +AA (1)) x(t—7)+(B+AB(t))u(t)+w(x,t)

y(t)=Cx(t)
where
-18 1 0 0.2 0.1 01 2 0 1 37
A=/06 -15 0|, A,=/01 01 0|, B=|0 1|, C=|5 1],
0 1 - 0 01 O 11 2 0

and delay time r=1, AB(t) is the input uncertainty. The external disturbances and

unknown uncertainties are set as

[0.4sin2t 0.2cos2t 0.3cost 0.2sint 0.2cost  0.4sin3t
AA(t)=|0.1sin2t 0.2cos2t ~0.1cost [, AA,(t)=|0.2sint —0.2cost —-0.1sin3t
| 0.3sin2t  0.3cos2t -0.25cost 0.3sint —0.1cost 0.1sin3t
[ 0.4sint  0.3cos3t 0.4x, sin x,
AB(t)=|0.15sint  0.1cos3t |, and. w(xt)= 0.3x, COS X,
| 0.35sint  0.25C0s3t 0.2x; sin x, +0.3x, COS X,

Notice that the triple (A,B,C) has an'invariant zero -1.3368 and rank(CB)=2

satisfying Assumptions 4.2 and 4.3. For solving algebraic Riccati inequalities (4.44) and (4.45)

of this example, select the parameters as »=0.01, A=10, R=0.021,, Q,=2I,,

Q,, =0.0021,, p,=0.333, p,=1, p,=0.6,and p, =5. Then a set of solutions is

0.3684 0.2725 -0.2493 8.8627 3.0587 0.2814
P,=| 02725 0.9441 -0.2735| and P,,=|3.0587 14.4483 4.4264 |.
—0.2493 -0.2735 0.5813 0.2814 4.4264 4.3339

The parameters designed above all satisfy the requirement of Theorem 4.2. Hence, we

construct the full-order compensator as
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-5.0534 -1.6143 -0.1594 0.0177 -0.0188
£(t)=|-1.6742 -8.0701 -2.6512|&(t)+|-0.0532 0.0565 |y(t)
01452 23519 -2.3132 0.1241 -0.1318

(t)= —24.3778 -13.5769 —4.1372 (t)+ -1.4050 -7.8788 (t)
| -1.1628 -33.5294 -15.3885 —7.2577 1.8861 y

and design the sliding surface as

0-[ 222 22 o010 oo

. : . t) . .
Moreover, in order to avoid the chattering problem, the term ‘Sl( )‘ in the controller (4.9) is

replaced with the saturation function [11], and the new version of the controller is given by
1
() =v(0)- = (o ta @I (5.0 )

where 0,=0,=5, n(t,y)=2, x=08, £=25and ¢=0.1.

On the other hand, the controller in'[28] was designed as

u(t) = Kx, (t)—(GB)l(o.1+ﬁ)sat(Szo—S)j

-0.2796 -0.2580 -0.1676 0.02 0.1 0.04
where K = nd =

. The parameter
-0.1152 -0.3624 -0.1952 015 005 O

7=G§,+G|y(t)| is obtained by the adaptation laws g, =.[;||52||dt and §, :j';||y||||52||dt.

The estimated state x,(t) and the switching function s,(t) are given by the following

structure

X, (t)= Ax, (t)+ Ajx, (t—7)+ L(y(t)-Cx, (1))
s,(t)= N (y(t)-Cx, (1)) +Gx, () -G (A+BK)x, (q)dg—G [ Ax,(q-7)dg

0.3094 1.0149 2.07517 002 0
where L= n =
1.7152 —-0.0940 0.3489 0 0.05

}. Figures 4.10-4.18 chart

72



the  simulation  results using the initial state = x(0)=[1 1 1]T and

£(0)=x,(0)=[0 0 O]T. Time responses of system states in two cases are shown in Figs.

4.10-4.12 respectively. All states in both cases converge around zero. The time responses of
the system outputs are shown in Figs. 4.13 and 4.14. All system outputs underlying these two
methods converge around zero quickly, and two outputs controlled by the proposed method
have no overshooting. Figure 4.15 charts the property of robust disturbance attenuation and

demonstrates that the inequality (4.18) is guaranteed. Figure 4.16 depicts the comparison of

the responses of |s(t)| in detail, which both trajectories of |s(t)| indeed enter the bounded
layer around zero in a finite time, and the proposed method keeps the response [s(t)| in the

layer consistently from the initial. moment.-The responses of the control inputs u(t) are

given in Figs 4.17 and 4.18. There exists no high gain in-all inputs and the replacement of the
saturation function eliminates-the chattering. Although there exists the state delay term and
uncertainties in the nominal system, the system-outputs are finally bounded around zero. The
simulation results demonstrate that the proposed controller design can guarantee the robust
disturbance attenuation to outputs y(t) once the system is in the sliding mode.

1.2

1 [ —
Proposed x1(t)

’ ST — Pai's x1(t) |
o.ﬂ ]

0.4—\ .

0.27\ |

(I

0.2 \ \ \ \ \ \ \ \ \
0 1 2 3 4 5 6 7 8 9 10

Time (sec)

Fig. 4.10. System states x,(t) of two cases in Example 4.2.
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1.2

0.8l(
06|

0.4

-0.2

0.2 \

Proposed x2(t)

— Pai's x2(t)

Time (sec)

Fig. 4.11. System states x, (t) of two cases in Example 4.2.

10

0.8

0.6

—— 4+ — 1

0.4

0.27\

-0.2

-0.4

Proposed x3(t)

— Pai's x3(t)

2 3 4 5
Time (sec)

Fig. 4.12. System states x,(t) of two cases in Example 4.2.
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[*2)
1T — 1T ———F ———

w

Proposed y1(t)

— Pai's y1(t)

3.5

2.5

15

0.5

-0.5

2 3 4 5 6 7 8
Time (sec)

Fig. 4.13. System output y, (t) of two cases in Example 4.2.

10

1T T

Proposed y2(t)

— Pai's y2(t)

2 3 4 5 6 7 8
Time (sec)

Fig. 4.14. System output vy, () of two cases in Example 4.2.
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R =

1.6 -

14 -

1.2f 0

0.8+ i |
— Integration of ||z(t)||

0.6

0.4 -~ - Integration of ||d(t)|| + initial value

0.2

0 \ \ \ \ \ \ \ \ \
0 1 2 3 4 5 6 7 8 9 10

Time (sec)

Fig. 4.15. Performance of robust disturbance attenuation of our proposed method in Example

4.2.

20 ‘

Proposed ||s(t)]

/ \ — Pai's [[s(t)

10 \ / \ .

Time (sec)

Fig. 4.16. Responses of Hs(t)H of two cases in Example 4.2.
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Fig. 4.17. Control inputs y,(t) of two cases in Example 4.2.

10

KR
o
I

N
o
T

w
o
\

—— Proposed u2(t)
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Fig. 4.18. Control inputs u,(t) of two cases in Example 4.2.
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Example 4.3 Consider an unstable example modified from the real example of chemical
reactor system [32] within the corresponding form of system (4.3) with delay time 7 =1. The
system structure and parameters are the same as Example 4.1, and matrix A is altered to

493 -101 0 0
320 03 -128 0
T|-6.40 0347 -32.5 -1.04

0 0833 110 -3.96

such that the open-loop system is unstable. For solving algebraic Riccati inequalities (4.44)

and (4.45) of this example, select the parameters as =053, A1=10, R=0.021,,
Q,=21,, Q,=00021,, p =033, p,=1, p,=06, and p,=5 such that

Qn—(,oz’1+,o;l)HJHd >0 and conditions in Theorem 4.2 are fulfilled. Then a set of

solutions is

0.3493 -0.0274 '—0.0731 —0.0453
—0.0274 0.3308 = 0.0096 0.0028
| -0.0731 0.0096- | 0.1228 ~ 0.1475
—0.0453 0.0028 - 0.1475 0.3863

1.8870 0.0822 0.1077 " © 0.4531
0.0822 2.0885 —0.0778 0.2438
0.1077 -0.0778 4.0664 -0.3196|
0.4531 0.2438 -0.3196 0.3283

Pzz =

Hence, we construct the full-order compensator as

58010 01534 -54216 0.0241 12852 0.0760
06640 24837 -1.0249 —0.0067 0.0178 —0.0706
(t)= &(t)+ y(t),
54708 0.3417 -31.8148 0.0781 64260  0.3802
74909 08308 10.0792 -2.3331 01780  0.7062

and design the sliding surface as

s(t)=y(t)- (0)_J«t -17.4651 1.3691 3.6532 2.2646 (a)
- g of 13691 -16.5404 -0.4786 -0.1376

78



0

_It -17.4651 1.3691 (@)
1.3691 -16.5404 yia)ea.

For avoiding the chattering problem, the term s(t)/||s(t)| in the controller is also replaced

with the saturation function, and the new version of the controller is given by

t
1.3691 -16.5404 -0.4786 -0.1376 1.3691 —16.5404}/()

u(t)=

[—17.4651 1.3691 3.6532 2.2646} (t)+[—17.4651 1.3691

_é(o-l +o, +n(ty)+ ;(Hv(t)H+ z//d_+/¢)sat(s(t),8)

where o, =0,=5, n(t,y)=2, y=¢=08, d=1, u=25,and £=0.002.
Figures 4.19-4.25 chart the simulation results of the new version of controller using the
initial state x(0)=[2 3 4 1]T and £(0)=[0 0 0 O]T. Figure 4.19 depicts responses

of system states. All trajectories of system states converge around zero. The time responses of

the system outputs are shown'in Fig. 4.20. The outputs also converge to zero quickly. The

integrations of z' (t)z(t) and d*(t) areshown in Fig.4.21. This figure verifies that robust

disturbance attenuation (4.18) is guaranteed. Figures 4.22 and 4.23 illustrate s(t) and
Hs(t)” respectively. In Fig. 4.23, the controlled system can maintain in the sliding layer in the

whole time. Figure 4.24 depicts that the trajectories of e(t) are bounded around zero and do

not converge to zero as system states because of the mismatched disturbance. The responses

of the control inputs u(t) are given in Fig. 4.25. The replacement of the saturation function

eliminates the chattering. In Fig. 4.20, although the nominal system contains an unstable root,

the state delay term, and the mismatched disturbance, the system outputs y(t) are finally

bounded around zero. The simulation results demonstrated that the proposed controller design

can guarantee the robust disturbance attenuation to outputs y(t) once the system is in the

sliding mode.
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Fig. 4.20. System outputs in Example 4.3.

80

x1
— X2
fffffffff x3
— - — - x4
| | | | | |
2 3 4 5 6 7
Time (sec)
Fig. 4.19. System states in Example 4.3.
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Fig. 4.21. Performance of robust disturbance attenuation in Example 4.3.
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Fig. 4.22. Sliding functions in Example 4.3.
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Fig. 4.23. Response of Hs(t)” in Example 4.3.
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Fig. 4.24. Trajectories of e(t) in Example 4.3.
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Fig. 4.25. System inputs in Example 4.3.

4.4 Robust Stability in the Shding Mode for Delay-Dependent Condition
Define an unknown time-varying function r(t) € IR as the state delay time satisfying
0<z(t)<7 and 7(t)<7’ (4.54)

where 7 and z° are known bounds of the delay time and its derivative. Altering = by

z(t), the system (4.3) can be rewritten as

X(t):(A+ Do(t) H)X(t)+(Ad +Dy @, (1) Hd)X(t—r(t))
+B(u(t)+ f(x,ut))+Ed(t) (4.55)

y(t)=Cx(t).
Among the delay-dependent condition, the autonomous system X (t) = Ax(t)+ A, x(t—7(t))

is stable for some 7 (t); otherwise, the system is unstable for the other delay time — the

stability of system depends on the delay time. The integral sliding surface (4.5), controller
(4.9), and full-order compensator (4.23) are continued using. The closed-loop system with

time-varying delay in the sliding mode is modified as
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[ Rl ]

NA, +ND,®, (t)H, 0] x(t-z(t)) (4.56)
+{MAd+MDd(Dd (t)Hd O} e(t—r(t))
Z(t)zcwk((tt))}' (4.57)

Before introducing main results, an extra assumption is introduced.

Assumption 4.4: The delay time and its derivative are bounded, 0<z(t)<7 and

z"(t)Sr*<1 where 7 and 7 are known constants.

X(t
Defining a new state vector q(t)z[ ( )} the dynamics (4.56) and (4.57) can be

e(t)
expressed as

d(t)= Aq(t)+ A,q(t - z(t))=+ Dd(t)

z(t) ey (t) (4.58)

, and

where Az{NA—BK+NDCD(t)H BK } > Z[NAd+NDdd>d(t)Hd 0

MD®(t)H MA=LC MA, + MD,®, (t)H, 0

~ E
D {ME} . The following lemma is cited to complete the stability analysis in Theorem 4.3.

Lemma 4.2 (Jensen inequality) [62] For any constant matrix M eR™™, M=M' >0,

scalar ¥ >0, and vector function a):[O,y] — R™ such that the integrations concerned are

well defined, then

71 (B)Ma(p)ap ([ o(p)d8) M([0(5)dp). -

For the closed-loop system (4.58), the following theorem presents the stability criterion and
the design of matrices K and L.

Theorem 4.3 Consider the system (4.58) in the sliding mode with the full-order compensator
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(4.23). Given A4, p.>0, 1=12,---,11, and a positive definite matrix R, if there exists

-1 -1 -1 -1
P50, P21, Q,>0, Qu+27 52 +p41+€7 Py HTH,, Q,>0, Z,>0,
T -7

Z,>0,andascalar y >0, satisfying the following LMI

¥, 0 ¥, 0 ¥, ¥, 0 ¥, 0 0 0
Wy W Wy W 00 W, 00 W, O 0
£+ + W, 0 0 ¥, ¥, 0 0 0 O
s % % ¥, 0 0 0O 0O 0O 0 O
* o * * Y WY Y, 0 0 0 0
£ % % x x W 0 0 0 ¥, 0 |<0 (4.59)
* * * * * * Y. 0 0 0 Y,
* * ® * ® * ¥ W 0 0 0
* * * * * * * S 0 0
* * * * * * # * * Y., 0
* * * * * * * * * * ‘Pbb

where
¥, = P,NA+(NA) Py4C'C o+ ptt ot Ep JHTH -7 (1-7") 2, +Q,
¥, =P,MA+(MA) P, —ACTC=74(1=7")Z, +Q, +p11%2CTCCTC
Wy, =PuNA -7 (1-77)Z,
¥, = P,MA,
Yy=(p'+ o+ o+ o5t JHyHy —(1-77)(Qu +77'Z))
¥, =-7'(1-7")Z,

W, =—(1-7")(Qu+77Z,)

Y. =P, ,NE
Y, =P,ME
Wy =_72|
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¥, =[P,ND P,ND, 7P,B]

Wy =—diag(p,"1, 0,1, 051

¥, =[P,B P,MD P,MD, 7P,B]
W, =—diag(R, p,'1, 0,1, oy L)

W, =[7Z,ND 7ZND, ZBR™]
‘Paa=—diag(p5‘1|,p7‘ll,(p;1+p£ol)_ll)
¥, =[tZ,MD 7Z,MD, 7Z,]

W, =—diag(p5'1, 25"l o1 )

then robust disturbance attenuation (4.18) can be guaranteed. Furthermore, matrices K and L

are given by
K=R'B'P, and L= % P, C". (4.60)
Proof: The detail is in Appendix 2. [
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The method determining matrices K and L is similar to Remark 4.2 by replacing (4.30) with
(4.59). Choose suitable parameters 1, p for i=12,--,11, and R to obtain P, and P,
in (4.59). Of course all solutions to (4.59) must satisfy the requirement in Theorem 4.3. The
following example demonstrates the proposed method.

Example 4.4 Refer to the real example of chemical reactor system [32] within the

corresponding form of system (4.55) as

T

-493 -101 0 0 1 0 01 O 1
|-320 530 -128 O |01 co 0 05 |0
-6.40 0347 -325 -1.04| 0 0} -02 0|’ 1|
0 0.833 11.0 -3.96 00 0 0.1 0

and A, =diag (1.92,1.92,1.87, 0.724). The known parts of uncertainties in the system are

given by
047 101 0 0 ~0.55 -0.02 0 0
|-022 017 121 0 1078 -035 0 0
063 0347 091 -104!1 " |~ 0 /=072 -049 0 |
0 0 014 -0.96 0 0.33 -054 -0.39

D, :diag(0.47, 0.26, —0.85,1.53), and’ 'H, =diag(—1.11, -0.21,1.26, 0.47) . The external
disturbances and unknown parts of uncertainties for system (4.55) are setas ®(t)=r(t)l,,
D, (t)=r,(t)1,, d(t)=e**"sin2t, and

f(x,u,t):{

0.12u, sint +0.08u, cos1.3t + 0.2sin x,
0.07u, cos 3t +0.03u, sin5t +0.3cos X,

where u=[u1T u;] r(t) and r,(t) are different random functions with values between
-1 and 1. The time-varying delay is set as z(t)=0.4cost+0.5>0 with 7=1 and

7" =0.5. Notice that the triple (A,B,C) has invariant zeros —4.4252 and —45.0014, and

rank (CB) = 2, satisfying Assumptions 4.2 and 4.3.

87



For solving the corresponding LMI (4.59) of this example, select the parameters as
A=15, R=0.01l,, p =10 for i=1---,8, p,=p,=0.1, and p,=28. Then the

solutions are given by

5.0181 -1.2310 -5.4493 6.5153 |
o _ ~1.2310 4.3124 12474 -2.9403
Y 154493 1.2474 22.3435 -7.0087
6.5153 -2.9403 -7.0087 19.4398 |
6.8922 -1.4873 -8.9189 7.0708 |
o _ ~1.4873 28.0807 15531 1.1411
? 1-8.9189 15531 285323 -7.7643
70708 1.1411 -7.7643 20.9222 ]
11.4726 -2.8032 6.7521 11.8654
0, - -2.8032 5.3647 0.4501 ' 256781
22 T

6.7521  0.4501 +38:2936 —-2.5132
11.8654 -5.6781 —-2.5132 - 26.8219

0.004 0 . -0.007 -0.0007
0 0.0041~ . 0 0.0009

' | —0.007 0 1.0984 0.9233
—0.0007 0.0009 0.9233 4:1742

0.022 0.0005 -0.0005 -0.0021
| 00005 00221 0 0.001
2 |-0.0005 0 0.0174  0.0001

~0.0021 0.001 0.0001 0.0174

and Q, =51, satisfying the sufficient condition in Theorem 4.3. Notice that the finite
performance index » is 0.9598 in this case. Hence, we construct the full-order compensator
as

-12.8013 0.694 -64.9973 -2.08 -128 1.388
-0.0001 -0.1733 -2.1998 0.7907 0 -0.3332
&(t)= &)+ y(t)
—6.3997  0.347 325005 -1.04 —-64 0.694
0.0006  0.8315 10.9989 —3.9603 0 1.666
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and design the sliding surface as

5(t)=(GCB) "G (y(1)-y(0))-| ;{_501128; _Zggﬂ y(q)da

t| —=501.8113  123.0986 544.9341 -651.5326 £(q)
123.0986 -431.2409 -124.7431 294.0253 44

0

in the

where G =1,. Moreover, in order to avoid the chattering problem, the term

controller (4.9) is replaced with the saturation function [11], and the new version of the

controller is given by

123.0986 -431.2409 -124.7431 294.0253

50181  246.2 1 -
{ 1231 —862.5}y(t)_ g9yt oot y) v ()] +vd )

11
xsat(s(t),¢)

where o, =0, =10, 5(t,y)=2, x=08, y=1, d=1, u=25, and ¢£=0.002. Figures

-501.8113 123.0986 5449341 —651.5326
(t)= (t)

4.26-4.34 chart the simulation results using-the initial state x(0)=[2 3 4 1]T and

§(O)=[6 32 0 o]T. The first ‘one in these figures depicts all system states which

converge around zero. The time responses of the system outputs are shown in Fig. 4.27. Since
d (t) e L,, the system and controller designed above satisfy Theorem 4.3 so that both system
outputs converge to zero asymptotically. Although the control law design completely fulfilled
Theorem 4.3, the dominant pole of the closed-loop system was very close to the origin such

that the output responses converged toward zero slowly. The performance of robust

disturbance attenuation is shown in Fig. 4.28. The robust disturbance attenuation (4.18) in this

case is guaranteed. Figures 4.29-4.31 illustrate s, (t), s, (t), and Hs(t)u respectively. In Fig.

4.31, the trajectory representing the controlled system can maintain in the sliding layer in the

whole time. Figure 4.32 shows that the trajectories of e(t) affecting by the mismatched
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disturbance also converged toward zero slowly due to the dominant pole. The responses of the

control inputs u(t) are given in Figs. 4.33-4.34. The replacement of the saturation function

eliminates the chattering. The simulation results demonstrate that the proposed controller

design can guarantee the robust disturbance attenuation to outputs y(t) once the system is in

the sliding mode.
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Fig. 4.26./System states in Example 4.4.
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Fig. 4.27. System outputs in Example 4.4.
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Fig. 4.28. Performance of robust disturbance attenuation in Example 4.4.
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Fig. 4.29. Sliding function s, (1) in Example 4.4.
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Fig. 4.30. Sliding function s, (t) in Example 4.4.
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Fig. 4.31. Response of Hs(t)H in Example 4.4.
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Fig. 4.32. Responses of e(t) in Example 4.4.
50
0"

50 |
-100- :
-150+ :
_ | | | | | | | | |

20% 5 10 15 20 25 30 35 40 45 50

Time (min)

Fig. 4.33. Control input u,(t) in Example 4.4,
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Fig. 4.34. Control input u,(t) in Example 4.4.

4.5 Summary

This chapter has presented the-output feedback: integral sliding mode controller for a
class of time-delay systems with structure uncertainties.and mismatched disturbances. The
auxiliary full-order compensator added into the design of the integral sliding surface can
improve the synthesis problem of static output feedback sliding mode control. For ensuring
the property of robust disturbance attenuation in the delay-independent condition, two types
of sufficient conditions are derived successfully for time-delay systems with uncertainties. In
contrast with two conditions, the two control performances are similar. In the field of the
computing time and complexity of solving procedure, solving algebraic Riccai inequalities is
faster and simpler than solving the LMI. The enormous dimension of LMI caused the
complexity of solution and increased the computing time. Adding a matrix F into the
compensator and modifying the quadratic energy function can decompose the LMI to two
algebraic Riccati inequalities and bring the simplicity for solving parameters of compensator
and controller. When the LMI or two algebraic Riccati inequalities have solutions, both the

stability of the closed-loop system and the condition of robust disturbance attenuation can be
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guaranteed. Moreover, the designed controller can maintain that the system is always in the
sliding mode from the initial moment. The simulation results in examples demonstrated the
feasibility of the propose control scheme successfully.

Provided the delay-dependent condition, this chapter has also completed the output
feedback integral sliding mode controller design for the same time-varying delay systems.
The proposed control method utilized the disturbance rejection condition in H. theory to
derive the LMI comprised of the parameters of the system, controller, and compensator. While
the LMI has a set of solutions, both the stability of the closed-loop system and the property of
robust disturbance attenuation have been proved. Finally, the simulation results of the real
chemical reactor example also demonstrated the stable system trajectories by the proposed

control scheme.
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V. CONCLUSION

5.1 Concluding Remarks

Sliding mode control method has several advantages such as the robustness against
matched disturbances, short transient time, simplicity in contrast with other nonlinear control
schemes, etc. For linear MIMO systems which output signals are only available, this thesis
reserved the original properties and developed the output feedback integral sliding mode
control method. In many research reports, the design of sliding surface, synthesis of the
controller, and local stability limited the development and applicability of the output feedback
sliding mode control in practice. For improving these constraints, the integral term and
adaption law were added into the sliding surface and controller, respectively. They released
the synthesis problem and offered an-extra degree of freedom for the system in the sliding
mode, rather than depending on a stable matrix only. Solutions to an algebraic Riccati
equation are used to determine the stability and ‘robust disturbance attenuation against
mismatched disturbances of the . closed-loop system. Moreover, the adaption law in the
controller played an important roleto complete global stability and to avoid the high-gain
problem.

The applications applied to time-delay systems have been developed by including the
full-order compensator to perform the integral term in the sliding surface. Equally, the
introduction of integral term in the sliding surface improved the synthesis problem. As for the
stability problem of the system in the sliding mode, the LMI and a set of algebraic Riccati
inequalities were derived respectively as a sufficient condition of the robust disturbance
attenuation for the systems in the delay-independent condition. In contrast with two kinds of
inequalities, algebraic Riccati inequality was with smaller space dimensions and spent less
computing time, than LMI. For the delay-dependent condition, Chapter 1V has also developed

a sufficient condition as an LMI for ensuring the property of robust disturbance attenuation.
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As the systems located in such severe conditions, disturbing by mismatched uncertainties and
having time-varying delay feedback states, the primary LMI became very large for covering
all disturbed terms to guarantee the stability and robust disturbance attenuation. Several
examples in two kinds of delay conditions are simulated the feasibility of the proposed
methods.

5.2 Future Works

For all output feedback controller designs in this thesis, two conditions are necessary to
satisfy: the system must be minimum phase and with relative degree one. Position states are
the only measurable variables in many mechanical systems whose relative degree in general is
larger than one, e.g. inverted pendulum systems. Hence the development for the output
feedback controller of systems with.larger relative degree is necessary. How to compensate
the relative degree problem and-elaborate merits of sliding mode methods is essential.

In the field of output feedback controller design, an important topic is how to design a
sliding mode controller assuring that the system-approaches the sliding mode in a finite time
globally. Present methods can complete.it locally-and cause high-gain control force due to the
shortage of state information. Although Chapter 111 has offered a global stabilizing method,
how to apply this stabilizing method to time-delay systems is still a challenge. On the other
hand, solving an LMI with large dimensions is not easy in the delay-dependent condition.
Finding out a simpler sufficient condition to ensure the stability and robust disturbance

attenuation is also an important research topic in the future.
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Appendix 1

Proof of Theorem 4.1

x(t)
e(t)

Define q(t) = { } and a quadratic energy function as

E,(9)=0"Pg+[ " («)Qu(a)da (A1)

where the matrices P >0 and Q >0 are determined later. Then define the Hamiltonian

function as

H[d]=2z"z-»%d"d +ddEtn (A.2)

where d:t“ is the derivative of E, along the trajectory of the closed-loop system (4.28). A

sufficient condition satisfying the robust disturbance attenuation is that

H[d]<0 forall del, (A.3)

where all functions d(s) fulfilled that j:trace[dT(s)d(s)]ds<w are bounded. Since

(A.3) holds, E,(q) is a strict radially’ unbounded Lyapunov function of the closed-loop

system (4.28), and hence the robust stability can be guaranteed [55]. Notice that (A.3) is

equivalentto supH[d]<0.As z(t)=C,q(t), (A.2) can be rewritten as

del,

H[d]=2"z-y%d"d + ddli”
=q" (t)(AJP+PA,+Q+C]C,)a(t)-»’d(t) d(t)+q" (t)PB,a(t-7)

—-q" (t-7)Qq(t—7)+q" (t)PG,d(t)+q’ (t—7)B,Pq(t)+d" (t)G,Pq(t).

Based on the above equation, the worst case supH[d] occurs when d(t)=y7G,Pq(t),
del,

and it follows that

H[d]<q" (t)(A,P+PA,+Q+C.C,+y°PG,G/P)q(t)
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+q" (t—7)B,Pa(t)+q" (t)PB,a(t-7)—q' (t—7)Qq(t—7). (A.4)
If there exists P,, > 1, according to Lemma 4.1 (ii), the following inequality is established as

0 —-P,P,'C'C 2,P,P. 0
T t 127 22 t) < T t 10" 127 12 t

where p,, >0. Applying Lemma 4.1 and designing K =R'B'P,, and L:%PZJCT, the

it e

[x1 [1]

a(t) | [=
upper bound of H[d] can be expressedas H[d]< at—r)| |=
-7 =
_ (NA)' P, +P,NA+C'C 0
o PINA+(MA) Pl P,MA+(MA) P,

A _
E PP, Plz -P;BR ‘B Py

0 % PrC'CC'C+PIBR'B'P,

P,BR'B'P, +,P,MDD' MR} + pi*HTH 0
I “R'BRB'P, 0
[ p,H'H + p,H™H 0
L 0 pz_lplz NDDTNTP12+/75_1P1£ P,
+_p4P11NDDTNTP11+p4’1HTH 0

0 P,BR'BTP,

0 (NA)' P, +P,MA
+
0 p,P,BR'B'BR'B'P, +p,'P,MDD'M'P,
_pGPIINDdDJNTP11+p7P12MDdDJMTP112- 0
0 ~ic’C

0 0
+ T TN T TAAT +77PG,G,P +Q,
_O PP NDyDy NP, + p,P,MD,Dy M " P,, ]

[1]

_{(p§1+p{l+p§1+p§1)H§Hd 0
22

[P.NA, +P.M 0
}Q, and =Z,=| " As+ P MA, } Notice
0 0

| PoNA, +P,MA; 0

P, P
that P:[ . 12}0, Q{Ql; Qﬂ}o, and p, >0, i=12,-,9 . Provided
P12 I:)22 Q12 Q22
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[11 [1]

{f? 12}< 0, then H[d]<0 and the property of robust disturbance attenuation (4.18) is
S92 22

also satisfied. Through Schur decomposition, if there exists

—_

Qu—(p + 05"+ Py + Py JHyHy >0, inequality {f?

=)
=12

12}< 0 is equivalent to the LMI

22

[11 [1]

(4.30). If there exists y, R,, P,, P,, Q. Q,, and Q,, satisfying the LMI, it implies

to supH[d]<0 and to guarantee the robust disturbance attenuation. The proof of this
del,

theorem is completed.
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Appendix 2

Proof of Theorem 4.3

Among the delay-dependent condition, choose three quadratic energy functions as

El(x,e)zxTPllx+eTP22e:qT{%1 F?}q:qTPq (B.1)
£ (xe) =] X (@)Qux(a)da+[ e (a)Que(a)da
t ) Q, O (B.2)
S <a>{o O Jterda=. " e)0u(e1oe
(xe)=] [, X X(a)dadmﬁ(t)ﬁﬁ@(a)zze-(a)dadﬂ
(B.3)

‘f " ﬁ ;}( dad g = j j 0" (@) Z¢(a)dad 8

P 0 0 Z. 0
where P :{ H } Q :{Q” } and- Z :[ \ } The positive definite matrices
0 P22 0 Q22 O ZZ

P,>0, P,>0, Q,>0, Q,,>0, Z;>0,and Z,>0 are determined later. Then define

a Hamiltonian function as

dE, | dE, _ dE,

Hld]=2"z—%d"d
R T

(B.4)

where % Is the derivative of E; along the trajectory of the closed-loop system (4.58) ,
i=12,3. A sufficient condition satisfying the robust disturbance attenuation (4.18), i.e.
bt T 2[4 qT :
Io(y y+V Rv)dqs;/ jo(d d)dq vV t>0,is
H[d]<O0,forall delL,[0,x).

Along arbitrary trajectories of system (4.58), the derivative of E, with respect to time is

& g (PR AP)a0) 20" (VPAG(- ()20 ()PB).  (B9)
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Similarly, the derivatives of E, and E, with respect to time are given by

e~ (1)Qa(1)~(1- )" (- (1)) Qa(t (1)
9" (1)Qu(t)~(1-7")a" (t-7(t))Qa(t—=(t))

IN

and

Tt (0Z6(0)-0-9)[ 4" (@) Za(@)der

dt

SEQT@)ZQU)—(l—f)fqqu(a)Zq(a)da.

Lemma 4.2 can assist to determine the bound of integral term of the derivative of E, as

s 747 ()24 (t)‘l__f(ﬁir(t)q(a)da)T z (j:_r(t)q(a)da)

dt T(t)
<70 (0200 -2y dida) 2 [ o()de
g_l;f(¢(02qu)-af(Uan-ru»+qTQ—TQ»an-fa»)
+70" (1) Zd(t)
where :_T(t)q(a)da:q(t)—q(t—r(t)). Summing up % % % the

Hamiltonian function is bounded by

H[d]<q" (t)CIC,a(t)—»°d"d +" (t)(PA+ATP)q(t)+2q" (t) PAG(t—7(t))
+29" (1) PDd (t)+q" (1)Qq(t)—(1-7")q" (t-(1))Qu(t—(t))

ST (q7 (t)za(t)-20" (1) Za(t-2()+q" (t-r(1)) Za(t-7(1)))

T
+7q" (t)Z4(t)
1-7°

—q (t)(PA+ ATP+CIC, +Q-——
T

Z]q(t)+rq (t)Zg(t)+2q" (t)PDd (t)

+2q" (t)( A L Z]q(t—r(t))—yszd
-(1-7")q" (t—r(t))(Q +$2Jq(t—r(t)).

According to the Lemma 4.1, the bound of the uncertainty variations in the inequality above
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can be obtained by known quantities as
H[d]<q' (t)(PA+ATP+C,C,+Q-7*(1-7")Z+PI,P+T,)q(t)
+2q" (t)(P,&d ~7(1-7) z)q(t —z(t))+2q" (t)PDd (t) ©6)
+q" (t-7(1))(Ty—(1-7")(Q+77Z))a(t -7 (1))
+7G" (t)Zq(t)—y*d"d
where

/S{NA_BK BK } E\dz[NAd 0]

0 MA-LC MA, 0
N (pDD' +p,D,D )N’ 0
T, = ,
' 0 M (p,DD" + p,D, D5 )M

-1 -1 T &1 -1 T
Fzz(pl +p')JH™H 0 Ry F3:(pg +pJHIH, 0 |
0 0 0 0
The constants p, >0, p,>0, p,>0, and p,>0 are designed such that

I,—(1-7")(Q+7'Z)<0. The inequality (B.6) can be written as the matrix form

a T | TO4PLP PA,-7(1-7")z  PD
Hld]<|a(t-c(t))| ||(PA -7 *(1-7)Z) T,-(1-7)(Q+77Z) o
d(t) I (PD)T 0 —]/2|_ (B.7)
AT q(t)
| A |2[A A B]|at-=(1)
b’ d(t)

where TT=PA+A"P+CIC +Q-7" (l—r*) Z+T,. Applying Schur decomposition to

(B.7), if the following matrix inequality is satisfied,
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I1+PT,P PA,-7*(1-7")Zz PD 7A'Z
(PA,-7(1-7)Z) T,-(1-)(Q+7T'z) 0 7AZ
(PD) 0 2 7D'Z

I TZA TZA, TZD -7Z |

<0, (B.8)

then H [d]<o. Furthermore, matrices A and Ad in the nonlinear matrix inequality above

involve uncertainties, hence applying Lemma 4.1 again can attain

M+PI,P+T PA, 7 (1-7")Z PO FAZ
— % T * > A
(PA-7(1-7)2) Tsl-(-0)(Q+772) 0 TAZ | oo
(PB) 0 -l 7D'Z
I TZA TZA, tZD 7°Z2I',Z-7Z|
where
N (p,DD" + p,D,D] )N* 0
- ,
| 0 M (,o,DD"+ 9,0, D; )M

. (ps'+ps")HTH 0 \Mp o (Pt o) HiH, 0
’ 0 0 ’ 0 0

Notice that positive scalars p , 1=12,.,8 , must be chosen such that

[+, —(1-7")(Q+7Z)<0. Therefore, if there exists positive matrices P, Q, and Z

satisfying (B.9), then the stability and robust disturbance attenuation of the system can be

guaranteed.

Since designing K=R™'B'P, and L :%szcT , the matrix A can be rewritten as

1T 1T
A_[NA_BK BK } NA-BR'B'P,  BR'B'P,

0 MA- LC A

: (B.10)
0 MA-=P,C'C
2

Define a matrix W representing identity to the one of (B.9) as
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W11 W12 W13 W14
W = * sz 0 W24 <0.
* * W33 W34
* * * W

Substituting (B.10) into W, the details of W are given by

W, =I1+PI,P+T. = Wo - 0
11 — + 1 + 5 0 W !
1122

P.NA, -7 %(1-7%)Z 0
W, =PA, -7 (1-7)z=| © AT -r)z ,
P,MA, -7 (1-7")Z,

. . Woos 0
W22:F3+F6_(1_T )(Q+T Z):{ 0 —(1—7*)(Q22+?_1ZZ):|1

. 7(NA)"Z, -7P,BR'B'Z, 0
W, =7A'Z = L\ Y/ S
7P,BRIBTZ, T(MA)' Z, - 7-CTCP,Z,

- w
W, =7D"Z=|7(NE)" Z, 7(ME) zz] W,, =722, Z-72 :{ w0 }
0 W4422

where

Wi, = PsNA+(NA) P, +C'C +(pt+ ot ot ot )HTH =T (1-7") 2, +Q,
~P,BR™B"P, +P,N (DD’ + p,D,D; NP,

Wiz = P MA+(MA)T P,-AC'C —7_'_1(1—2'*)22 +Q,, +P,BR™B'P,
+PM ('OZDDT + 04D DJ)Mszz,

Woan =(p3_1 +p, o +p8_1)H(IHd _(1—T*)(Q11 +f‘121)
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W, =7°Z,N (p,DD" + p,D,D; )N'Z,-7Z,
Wi :?222'\/' (psDDT + 3Dy DJ)MTZ2 -7Z,.

After decomposing nonlinear terms in the upper triangular area except the diagonal line by

Lemma 4.1, an upper bound of W is obtained as

V\_lll W12 W13 V\_/14
wew=| © W O Wal g
- * * W33 W34
* * * _44
(W 0] - |7(NA) z 0 Y 0
where W, = "% || W, = B W= 7 ] and
0 Wiy 0 7(MA)' Z, 0 W,

Wiy, = PuNA+(NA) P, +C'C (ot p ot + ot JHH -7 (1-7")Z,+Q,
+P,N (DD + p,D,D; )N' Py +p,7 Py BB P,

W,y,, = P,MA+(MA)' P, “ACTC -7 (1=7")Z,;+ Q,, + P,,BR'B'P,

2
+P,,M(p,DD" % p,D,Dg )M P, +p,,7°P,BB'P, + pll%CTCCTC,

W, =7°Z,N (pSDDT +p,D,D] ) N'Z —~7Z,+p,"Z,BR'R'B"Z,
+poZ,BR'R'B'Z,,
Wi, =7°Z,M (p,DD" + p,D,D] )M"Z, -7 Z, + p,,7°Z,Z,.
Finally, using Schur decomposition can transfer W to the LMI (4.59). If there exists

solutions of LMI (4.59), the negative Hamiltonian function H[d]<O0 is guaranteed to

maintain the property of robust disturbance attenuation (4.18). The proof of theorem 4.3 is

completed.
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