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應 用 於 時 滯 系 統 之 輸 出 回 授 積 分 型 順 滑 模 態 控 制 

學生：丁桓展 

 

指導教授：陳永平教授 

張浚林教授 

 

國立交通大學電控工程研究所博士班 

摘 要       
 

基於線性多輸入多輸出系統，在部分參數不確定且受到外界未知干擾之環境，本論

文提出一動態輸出回授積分型順滑模態控制法則，使受控系統穩定並抑制非匹配干擾之

影響。順滑模態控制為一強健非線性的控制方法，先設計一穩定之順滑平面，再設計控

制輸入使系統在有限時間內進入該平面，具有設計簡單、可消除匹配性雜訊等優點。當

系統只有部分狀態或是輸出訊號可量測，應用於此類系統之傳統輸出回授順滑模態控制

器存在著受限於系統結構的控制器合成問題，且只能滿足區域性的逼近與順滑條件。本

論文採用積分型順滑平面，可保留順滑模態控制原有之優點，並解決控制器合成問題，

當系統進入順滑平面後也可提供一自由度去抑制非匹配型干擾之影響。另外為了滿足全

域逼近與順滑條件，在控制輸入中設計了一個適應性法則，計算部份未知量的範數上

限。此動態輸出回授積分型順滑模態控制法則，經過修正後亦可應用於參數不確定且受

到外界未知干擾之時滯系統。針對於固定但未知延遲時間之狀態延遲時滯系統，沿用輸

出回授積分型順滑平面之結構，並加入一全階補償器以完成動態控制器之設計。當系統

進入順滑平面，利用一強健干擾抑制分析技術可以推理出一線性矩陣不等式作為穩定性

與保證干擾抑制效能的充分條件；若修正補償器結構，則該線性矩陣不等式可分解為兩

個維度較小之代數 Riccati 不等式以利計算，兩種不等式之解皆可用來決定順滑平面、

補償器、控制器之參數。當延遲時間未知且時變，讓系統在某些延遲時間造成不穩定，

使得控制難度大幅提升。利用上述動態輸出回授積分型順滑模態控制器架構，本論文亦

針對此複雜系統完成穩定性充分條件分析與控制器設計。 
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ABSTRACT 

For linear multi-input multi-output uncertain systems with external unknown disturbances, 

this thesis proposed a dynamic output feedback integral sliding mode control method to 

stabilize the system and suppress the effect of mismatched disturbances. The advantages of 

sliding mode control are its simple design procedure, great robustness against matched 

disturbances, etc. As part of system states or outputs are only measurable, conventional output 

feedback sliding mode controllers involved a synthesis problem by a structural constraint and 

ensured the approaching and sliding condition locally. The thesis adopted an integral sliding 

surface to improve the controller synthesis problem, reserved inherent benefits of sliding 

mode control, and offered an extra degree of freedom to suppress the effect of mismatched 

disturbances when the system is in the sliding mode, simultaneously. For satisfying the 

approaching and sliding condition globally, an adaption law was added in the controller to 

estimate the bound of part of unknown terms. The proposed control method can be modified 

to apply to uncertain time-delay systems with disturbances. For state delays with a fixed and 

unknown delay time, combined the output feedback integral sliding mode technique with a 

full-order compensator can complete the dynamic controller design. Since the system is in the 

sliding mode, using the property of robust disturbance attenuation can derive a linear matrix 

inequality as a sufficient condition for the stability; this linear matrix inequality can be 

decomposed into two smaller algebraic Riccati inequalities by modifying the structure of 

compensator. Solutions to two types of inequalities can both determine parameters of sliding 

surface, compensator, and controller. In the case of time-varying and unknown delay time, 

some delay times caused the instability of system and worsened the difficulty designing the 

controller. The proposed structure of dynamic sliding mode control can also complete the 

stability analysis and control law design for systems with time-varying delay. 
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Symbols 

  : Collection of real numbers 

  : Collection of complex numbers 

2L  : Hilbert space of matrix-valued (or scalar-valued) function 

nI  : Identity matrix of size n n  

0 : Zero matrix with appropriate dimension 
TA  : Transpose of the matrix A 

1A  : Inverse of the matrix A 
A  : Pseudo inverse of the matrix A 

  A  : Eigenvalues of the square matrix A 

 min A : Minimum eigenvalue of the square matrix A 

 max A : Maximum eigenvalue of the square matrix A 

x  : Absolute value of the scalar x 

 tx  : 2-norm of the vector x at time t 

A  : 2-norm of the matrix A defined as max 
2

2

Ax

x
 

  : Equal to by definition 

 tx  : Time derivative of the vector  tx , i.e.    t d t dtx x  

 diag  : Diagonal matrix with the element   

  A  : Range space of A 

  : Union between two sets 

  : Intersection between two sets 

  : Empty set 

LMI : Linear Matrix Inequality 

LTI : Linear Time-Invariant 

MIMO : Multi-Input, Multi-Output 
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I. INTRODUCTION 

In practice, most of system state signals cannot be measured fully to complete a state 

feedback control scheme. For the same system suffering uncertainties and external 

disturbances, output feedback sliding mode control method can reserve the original 

advantages to regulate the system behavior and avoid the design complexity of other robust 

output feedback control approaches. In contrast with other complex stability criteria, the 

approaching and sliding condition is simpler as a sufficient condition ensuring the stability 

while the system enters the stable sliding surface in a finite time. 

Time-delay phenomenon means that parts of system states, inputs, or outputs affect the 

system after a fixed time, or random but finite period. There exists this phenomenon in several 

various practical systems, such as chemical processes, electrical networks, nuclear reactors, 

biological reactions, economic models, etc. Therefore controller designs for continuous-time 

time-delay systems are important and necessary. 

1.1  Sliding Mode Control 

Sliding mode control [1-28] is one of efficient robust control approaches to stabilize 

systems in the presence of external disturbances and interior uncertainties. It is well known 

for the complete invariance to matched disturbances and uncertainties. The design procedure 

normally follows the rule: 1) choose a stable manifold so-called sliding surface; 2) design a 

nonlinear switching controller satisfying the approaching and sliding condition such that the 

system enters the sliding surface in a finite time. The simple and explicit design procedure is 

another advantage of sliding mode control. Based on Utkin’s research [1], the relative papers 

are continuing presented over a couple of decade. Edwards and Spurgeon [2] contributed the 

analysis and complete introduction of sliding mode methods, state and output feedback 

controllers, observers, and other applications. Since the system states are all available, 

researchers have proposed many significant reports [3-6]. For instance, Chiang and Chiu [5] 
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presented a sliding mode control method based on a TS recurrent fuzzy neural network to 

stabilize the time-delay systems and compensate system uncertainties effectively. In the field 

of output feedback sliding mode control methods [7-14], previous researches have designed 

the output feedback controllers via sliding mode technique to stabilize multivariable plants 

with matched uncertainties. Early on, Zak and Hui [7] developed an algorithm for 

output-dependent sliding surface design of uncertain systems, using the eigenstructure method. 

Yallapragada et al. [8] addressed the reaching problem for the static output feedback sliding 

mode controller design. Thereafter, Kwan [9] presented an adapted dynamic output feedback 

controller to remove two major limits from the scheme in [7]. Yan et al. [14] applied an 

effective sliding mode design technique using output only to control the systems with 

disturbances. 

However, the abovementioned papers considered the matched uncertainty and 

disturbance only. Unlike the matched case, any mismatched uncertainty and external 

disturbance always affect the system performance even if the plant is in the sliding mode. As a 

result, the existence condition and robust stability for using an output feedback sliding mode 

controller to tackle a system with the mismatched uncertainty and disturbance are worth 

further investigation. Choi [15] proposed a static output-dependent sliding surface design 

developed from LMI technique [29], in which a class of system considered both matched and 

mismatched uncertainties. Further, Park et al. [16] extended Choi’s method and proposed a 

dynamical output feedback variable structure control law to deal with the same problem. 

Since the dynamics of the sliding surface is always related to the unmeasured system states, 

the high gain control in [15] was introduced to maintain the global convergence. Upon 

examining the static output feedback control, Xiang et al. [17] applied an iterative LMI 

technique to avoid the high gain problem. To prepare for obtaining a bounded 2L  gain 

performance, Juang and Lee [18] developed an observer-based output feedback sliding mode 
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controller which can guarantee the system stability with robust performance. Lewis [19] used 

the eigenvalue perturbation analysis for an uncertain matrix to guarantee the closed-loop 

stability. Pai and Sinha [20] used the small gain theorem to analyze the behavior of 

closed-loop system with parameter uncertainties. Although the advantages of applying LMI 

technique to output feedback sliding mode control for uncertain systems have been addressed 

explicitly in these aforementioned papers, the solutions including the constrained LMIs 

[15-16] or a set of LMIs [18, 21] are difficult to obtain. 

Recent researches [22-26] have studied a control scheme called integral sliding mode 

control, in which an integral controller is added to a sliding mode controller. The main 

advantages of integral sliding mode controller are to offer the robustness of system stability 

and the elimination of steady state error within step inputs. Based on the integral sliding mode 

control structure, several researchers [23-25] developed different observer design methods to 

accomplish the estimation. In observer-based approaches, the proper observer gain selection 

which gives reasonable estimation both in steady state and transient state is a difficult task. 

Since the controlled systems usually involve parameter uncertainties and external unknown 

disturbances, the use of state observers may reduce robustness. Consequently, it is important 

to study the integral sliding mode control using output information only for uncertain systems. 

1.2  Time-Delay Systems 

For the stability analysis of time-delay systems, two kinds of conditions can be 

adopted — delay-independent and delay-dependent conditions. When delayed states with an 

unknown but bounded constant delay time are independent of the original stability of systems, 

the systems satisfy the so-called delay-independent condition within a simple rule assuring the 

stability of closed-loop systems. If the system belongs to the delay-dependent condition, 

delayed states with part or all of delay times will cause the instability of system whether the 

delay time is fixed or time-varying. This condition also brings the complexity and difficulty 
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deriving a sufficient condition of the stability of closed-loop systems. Since time-delay terms 

frequently induce the system instability and bad performance, the analysis and control of 

time-delay systems have been an interesting topic over the past decades whether state, input, 

or output delays. 

Focusing on the state delay systems, researchers [3-5, 12-14, 27-28, 30-52] had 

presented many effective state feedback control methods to various system models. Xia and 

Jia [3] carried out a robust control method comprising of the sliding mode control and LMI 

technique for uncertain time-delay systems with matched disturbances. Lee et al. [32] 

developed a control method based on the receding horizon concept to stabilize the closed-loop 

system and to assure the H norm bound from the disturbances to the controlled outputs. For a 

continuous linear state-delay system involving a class of integral term, Santos and Mondié 

[33] proposed an iterative procedure to complete their state feedback controller design. Wang 

et al. [34] designed a state feedback control law of time-delay systems with system 

uncertainties and matched unknown nonlinear terms. They combined the LMI technique and 

adaptive parameter searching law to the controller design ensuring the stability of the 

closed-loop system. Chen and Chen [35] presented an LMI-based state feedback controller 

and a disturbance observer to stabilize linear state-delay systems with uncertainties and 

matched disturbances. 

Providing the obtainable system states partly, state observers [36-40] and output 

feedback controllers [12-14, 28, 41-43, 48-52] are both feasible schemes to regulate 

time-delay systems. In the field of state observers, Darouach [39-40] have recently developed 

an observer methodology to estimate states of linear time-delay systems with noises and 

mismatch disturbances. On the other hand, in the field of output feedback control methods, 

Niu et al. [12] extended an observer-based sliding mode control using LMI technique to 

regulate uncertain time-delay systems. Pai [28] proposed a Luenberger observer-based output 
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feedback controller for a class of nonlinear uncertain state-delayed systems with matched 

uncertainties and disturbances. The controller was comprised of integral sliding mode 

technique and solutions to an LMI, which switching gain parameters were calculated by 

adaptation laws. Fridman and Shaked [41] described explicitly a significant H control 

method using the descriptor system transformation for time-delay systems with mismatched 

external disturbances and measurement noises. The descriptor system transformation can 

simplify the analysis of time-delay systems and effectively perform the disturbance 

attenuation. As a result, the stability analysis [44-47] and various controller designs [48-52] of 

time-delay systems are still interesting topics so far. 

1.3  Motivation 

There exists two difficulties in the design of output feedback sliding mode control. The 

first difficulty is a synthesis problem. Synthesizing a control law using the outputs only is 

significant since the derivative of the sliding surface is always involved with the unmeasured 

system states. For resolving the synthesis problem, a normal strategy is to add an extra 

constraint on the controller parameters. The existence of controller parameters is constrained 

by the extra constraint simultaneously. The local stability is another problem. In the 

conventional output feedback sliding mode control, the dynamics of sliding surface always 

involves unknown state function as an obstacle to complete the controller using output 

information only. Common strategies dealing with this problem adopted the assumption in 

which the system trajectories are close to the origin or high-gain control forces covering the 

effect of unknown states. Unfortunately, these strategies have no ability to complete the global 

stability and increase the conservation. 

Focusing on the case of state-delay, the state delayed for a fixed or varying time usually 

worsened the performance even caused the instability. In frequency domain the delay term 

can be transformed into an exponential function with delay time. As a result, the 
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corresponding controller can be designed easily in the frequency domain but very difficult to 

implement in the time domain. On the other hand, since a time-delay system is subject to 

uncertainties and disturbances, the robust controller design will become more complex and 

the related stability condition will be more difficult to fulfill. A sliding mode control method 

which has improved the previous two problems, within such features as uncomplicated design 

procedure and strong robustness against the matched unknown terms, is a proper and feasible 

candidate to complete the controller design of time-delay systems with less design difficulty 

in the time domain. 

1.4  Contribution 

For modifying two problems mentioned above in output feedback sliding mode control, 

this thesis develops a dynamic output feedback integral sliding mode control method with the 

robust stability guaranteed for linear MIMO systems within mismatched norm-bounded 

uncertainties along with disturbances and matched nonlinear perturbation. The main 

advantages of using the integral sliding surface are that, once the system is in the sliding 

mode, the effect of matched perturbation can be completely eliminated and the robust stability 

problem of the closed-loop system becomes a standard output feedback controller design 

problem for a system with mismatched uncertainty and disturbance. Applying H control for 

the stability analysis, the proposed method can guarantee robust stability where the existence 

condition is determined by solving an algebraic Riccati equation involving with the original 

system parameters. When the number of outputs is equal to the number of inputs and the 

mismatched disturbance is slowly time-varying, the system outputs are proved to finally 

approach zero because of the integral action. Without requiring any coordinate transformation, 

the proposed method is a straightforward design scheme and the controller parameters can be 

easily solved by the algorithm proposed by Gadewadikar et al. [53-54] or the LMI technique 

[29]. If the mismatched disturbance is defined in 2L -norm space, the proposed control 
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algorithm can satisfy the robust disturbance attenuation and guarantee robust stability as the 

consistent algebraic Riccati equation has a solution. Introducing an additional dynamics into 

the control law using output information only, the proposed controller can satisfy the global 

reaching and sliding condition and obtain the closed-loop stability. Although the dynamic 

output feedback controller raises control complexity, the magnitude of control input in the 

proposed method is more effectively reduced in comparison with that in the other papers 

[15-17]. 

Based on the proposed integral sliding mode control technique, the related controller 

design for uncertain time-delay systems with mismatched disturbances is presented. An 

auxiliary integration function is used to increase a degree of freedom of the system in the 

sliding mode and to suppress the effect of mismatched disturbances. Moreover, the controller 

design combined with a full-order compensator for time-delay systems also improves the 

synthesis problem in traditional output feedback sliding mode control methods. Since 

mismatched disturbances cannot be eliminated completely even the system is in the sliding 

mode, the disturbance attenuation technique [55-57] can reduce the effect from mismatched 

disturbances to the controlled outputs acting on a system to an acceptable level over all 

frequencies. Consequently, an LMI is derived as a sufficient condition of robust stability and 

its solutions are used to determine parameters of compensator and controller simultaneously. 

Modifying the structure of compensator can obtain a set of algebraic Riccaiti inequalities as 

another stability condition. Solutions to the Ricccati inequalities can also obtain the controller 

parameters. 

The controller design for time-delay systems with a time-varying state delay has been 

derived within the delay-dependent condition. In the delay-dependent condition, the system is 

stable for part of unknown delay time and vice versa, i.e. the system stability depends on 

delay times. For such time-delay systems with mismatched disturbances and uncertainties, an 
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output feedback integral sliding mode control law combined with a compensator is completed 

in this thesis. An LMI as a sufficient condition of robust disturbance attenuation is derived 

successfully. 

1.5  Organization of Thesis 

The sliding mode controller using output information only [2] is introduced in Chapter 

II. Edwards and Spurgeon [2] contributed a complete analysis for an output feedback sliding 

mode control and related applications in their book. Chapter III proposed the dynamic output 

feedback integral sliding mode controller of uncertain systems with matched and mismatched 

disturbances. Based on the research of integral sliding mode control technique, the output 

feedback controller with a compensator is applied to time-delay systems with mismatched 

uncertainties and disturbances in Chapter IV. This chapter discusses two kinds of sufficient 

conditions guaranteed the property of robust disturbance attenuation. For the case of 

time-varying delay within delay-dependent condition, the same chapter derived the dynamic 

output feedback integral sliding mode control algorithm for such disturbed time-delay 

systems correspondingly. The final chapter comments the overall concluding remarks and 

some future works. 
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II. OUTPUT FEEDBACK SLIDING MODE CONTROL 

In practice, state variables of most systems are not fully observable. As part of state 

variables is only measurable, the corresponding controller design is more difficult than the 

conventional state feedback controller design. Since output variables are only available, 

referring to [2], this chapter describes the output feedback sliding mode controller and 

analyzes its merits/demerits. After introducing the target system and some assumptions, 

section 2.2 presents the sliding mode controller using output variables directly and the 

corresponding sliding vector. 

2.1  Problem Formulation 

Consider a continuous-time LTI system as 

 
        
   

, ,t t t t

t t

  



x Ax B u f x u

y Cx


 (2.1) 

where nx   is the unmeasurable system state vector, mu   is the control input vector, 

py   is the measurable output vector, and  , , mt f x u   is consisted of the matched 

uncertainties and disturbances. The real constant matrices A, B, and C are known and with 

appropriate dimensions. Since the outputs are the only available signals, next section will 

present an output-dependent sliding vector design method and then the control algorithm 

involving the information of outputs is designed to satisfy the stability condition and to force 

the controlled system (2.1) to enter the sliding mode. Before introducing main results, the 

following four assumptions are fulfilled throughout this chapter. 

Assumption 2.1: The matched term  , , tf x u  is norm-bounded as 

      1, , ,t k t t f x u u y  (2.2) 

where  ,t y  is a known function : p       and 10 1k  . 

Assumption 2.2: There is no finite zero in the system (2.1), or exists finite zeros all on the 
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open left-half complex plane, i.e., the triple  , ,A B C  is minimum phase. 

Assumption 2.3: The pairs  ,A B  and  ,C A  are controllable and observable, 

respectively. Matrices B and C are full rank,  rank mB  and  rank pC . 

Assumption 2.4: The number of output variables is not smaller than input variables, p m . 

Moreover, the relative degree of system (2.1) is one, i.e.  rank mCB . 

2.2  Output Feedback Sliding Mode Controller Design 

2.2.1 System decomposition and analysis 

Define a transformation matrix as 

 
T
c

c

 
  
 

N
T

C
 (2.3) 

where  n n p
c

 N   whose columns span the null space of C. Changing the coordinates 

cx T x , the output matrix is transformed into p   C 0 I . The input matrix in the 

transformed system is given by 1

2

c

c

 
  
 

B
B

B
 where  

1
n p m

c
 B  . Since matrix 2

p m
c

B   

is full row rank due to 2cCB B  and Assumption 2.4, the left pseudo inverse of 2cB  is 

defined as   1†
2 2 2 2

T T
c c c c


B B B B  and there exists an orthogonal matrix p pT   such that 

 2
2

T
c

 
  
 

0
T B

B
 (2.4) 

where 2
m mB   is invertible and T is full rank. Further the second transformation matrix is 

defined as 

 
†

1 2n p c c
b T

 
  
 

I B B
T

0 T
. (2.5) 

Provided bT  is nonsingular, transforming the coordinate bx T x  can attain the following 
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system matrices, 

 11 12

21 22

 
  
 

A A
A

A A
, 

2

 
  
 

0
B

B
, and  C 0 T  (2.6) 

where    
11

n m n m  A   and remaining matrices in A are partitioned to appropriate 

dimensions. Defining a matrix m pF   with full rank and multiplying it to C can obtain 

    1 1 2 FC 0 FT F C F  (2.7) 

where  1 2 F F FT ,  
1

m p m F  , 2
m mF  , and 

 1 p m  C 0 I . (2.8) 

As a result, 2 2FCB F B  and 2F  is invertible because of    rank rank m CB F . 

Notice that the pair  , ,A B C  in (2.6) can be viewed as a system used in sliding mode 

controller design [2], and the reduced-order sliding mode motion is dominated by the stable 

system matrix 11
sA , 

 
1

11 11 12 2 1 1

11 12 1     

s 
 

A A A F F C

A A KC


 (2.9) 

where 1
2 1
K F F . From (2.9) it is a static output feedback problem to design K stabilizing 

11 12 1A A KC . For checking the controllability of the pair  11 12,A A , the following 

relationship within (2.6) is established, 

 

  

  

11 12

21 22 2

11 12

rank rank

                              rank

                              

s
s

s

s m

n

   
       

  



I A A 0
I A B

A I A B

I A A  (2.10) 

for all s . It can conclude that   11 12rank s n m  I A A  and  11 12,A A  is 

controllable. On the other hand, for ensuring the observability of  1 11,C A , the detail of 11A  

can be expresses as 
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 1111 1112
11

1121 1122

 
  
 

A A
A

A A
 (2.11) 

where    
1111

n p n p  A   and the other matrices in 11A  are partitioned accordingly. Hence 

the rank test can be written as 

 

1111 1112
11

1121 1122
1

1111

1121

rank rank

                           rank

p m

s
s

s

s
p m



   
              
       

  
    

  

I A A
I A

A I A
C

0 I

I A

A

 (2.12) 

for all s . Consequently, the observable pair  1121 1111,A A  is a sufficient condition of the 

observability of the pair  1 11,C A . If the pair  1121 1111,A A  is not observable, there exists a 

matrix    n p n p
obs

  T   putting this pair into the following observability canonical form 

[58], 

 1 11 12
1111

22

o o

obs obs o

  
  
 

A A
T A T

0 A
 and 1

1121 21
o

obs
    A T 0 A  (2.13) 

where 11
o r rA  ,    

22
n p r n p ro     A  ,    

21
p m n p ro    A  , the pair  21 22,o oA A  is 

completely observable, and 0r   represents the number of unobservable nodes of 

 1121 1111,A A . Define the third transformation matrix as 

 obs

a
p

 
  
 

T 0
T

0 I
 (2.14) 

and then the transformed system matrices are similar as (2.6) with different 11A , 

 
1211

12

2211

21 22

oo
m

o

o m

 
 

  
 
 

AA
A

A0A

0 A A

. (2.15) 

Furthermore, decompose 12A  and 12
mA  as 
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 121
12

122

 
  
 

A
A

A
 and 121

12

122

m
m

m

 
  
 

A
A

A
 (2.16) 

where  
122

n m r m  A   and    
122

n p r p mm    A   forming a subsystem represented by the 

triple  11 122 1, ,A A C  , where 

 22 122
11

21 22

o m

o m

 
 
 

A A
A

A A
   and 1 p m  C 0 I  . (2.17) 

Before discussing the stability of (2.9), three lemmas are introduced below. 

Lemma 2.1 [2] The spectrum of 11
sA  decomposes as 

      11 12 1 11 11 122 1
o     A A KC A A A KC    

Lemma 2.2 [2] The spectrum of 11
oA  represents the invariant zeros of  , ,A B C .  

Since Assumption 2.2 held, the present target is to design K stabilizing 11 122 1A A KC   

such that 11 12 1A A KC  is stable. Suppose that  122rank mA  and the following equation 

is given, 

 122 1m    A T B 0  (2.18) 

where m m
m


 T   is of full rank and constructed such that  

1
n m r m  B  . Defining a 

matrix 11

2
m m


 

 
   

 

K
K T K

K
 where  

1
m p m K   and    

2
m m p m  K   can attain that 

 11 122 1 11 1 1 11 1 1 1m      A A KC A B 0 K C A B K C       . (2.19) 

As a result, the problem stabilizing 11 122 1A A KC   is transferred to stabilize 11 1 1 1A B K C  . 

Next lemma presents the controllability of  11 1,A B   and observability of  1 11,C A   

respectively. 

Lemma 2.3 [2] The pair  11 1,A B   is completely controllable and  1 11,C A  is completely 
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observable.  

Remark 2.1 The reason replacing the system pair  11 1 1, ,A B C   with  11 122 1, ,A A C   is for 

utilizing the standard output feedback results. Consequently, the triple  11 1 1, ,A B C   must be 

controllable, observable, and fulfill Kimura-Davison condition as 1m p r n     .  

2.2.2 Sliding mode controller synthesis 

The output-dependent sliding vector is designed as 

    t ts Fy  (2.20) 

where  2
T

mF F K I T  and 2
m mF   is invertible and designed later. Define the fourth 

transformation matrix as 

 
1

n m

m

 
  
 

I 0
T

KC I
 (2.21) 

and hence the triple  , ,A B FC  via x Tx  can be obtained as 

 11 12

21 22

 
  
 

A A
A

A A
, 

2

 
  
 

0
B

B
, and  2FC 0 F  (2.22) 

where 11 11 12 1 A A A KC . According to Lemma 2.3, there exists 1K  such that 11 1 1 1A B K C   

is stable and the stability of 11A  can be guaranteed by Lemmas 2.1 and 2.2 as for the system 

is minimum system. 

Along with system (2.22), design a positive definite matrix P as 

 1

2

0
 

  
 

P 0
P

0 P
 (2.23) 

where    
1

n m n m  P   and 2
m mP   are both positive definite. Since 11A  is stable, 1P  

satisfies the following Lyapunov equation, 

 1 11 11 1 1
T  P A A P Q  (2.24) 
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where    
1

n m n m  Q   is a positive definite matrix. If matrix 2P  is chosen such that 

 2 2
TF B P  (2.25) 

then P satisfies the following structural constraint 

 T TPB C F . (2.26) 

Define the following matrices, 

 2 1 12 21 2
TQ P A A P  (2.27) 

 3 2 22 22 2
TQ P A A P  (2.28) 

and a scalar as 

     1 1 1
0 max 2 3 2 1 2 2

1

2

T T    F Q Q Q Q F . (2.29) 

Notice that 0  is a real number due to the symmetry of matrix on the right in (2.29). 

Moreover, design the sliding mode control input as 

 

     

 
   

   , if  

otherwise

t t v t

t
t t

tv t





  


 




u Fy

s
y s 0

s

0

 (2.30) 

where 0   and       1 1
1

1
, ,

1
t k t t

k
     


y s y  based on Assumption 2.1. The 

positive scalar 1  will be designed later. Lemma 2.4 below will assist to prove the stability 

of the closed-loop system. 

Lemma 2.4 [2] The symmetric matrix   0 0
T  L PA A P  where 0  A A BFC  is 

negative definite if and only if 0  .  

Based on (2.22), the controlled system (2.1) can be rewritten as 

         , ,t t t t  x Ax B u f x u . (2.31) 

Choose a Lyapunov function as the following, 
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   0TV  x x Px . (2.32) 

Provided the structural constraint (2.26) and controller (2.30), the derivative of  V x  is 

given by 

 

   
   
 
   
      1

2 2

   2

   2 2

   2 , 2

   2 , , .

T T T T T

T T T

T T T

T

T

V

t

t k t







 

  

    

  

  

  

   

x A P PA C F FC x x PB f v

x L x y F f v

x L x y F v s f

x L x y s s f

x L x s y u y



 (2.33) 

Through some operation, it follows that 

 

     
   

 

1 1 1

1 1

1 1

, , ,

           ,

           , .

t k t k t

k t

k t

    

  

 

   

   

  

y y s y

v s y

u y

 (2.34) 

According to Lemma 2.4 and (2.34), the negative derivative of  V x  can be proved by 

  12 0TV    x L x s  and conclude that the system is quadratically stable. 

For assuring that an ideal sliding motion takes place on the vector  t s 0 , from (2.31) 

the dynamics of   s x FCx  is expressed as 

  0 2  s FCA x FB f v . (2.35) 

From (2.25), it follows that  1 1 1
2 0 2 0

T

L
  F P F FCA B A  which 0LA  is the last m rows of 

0A . Using this relationship, define a Lyapunov function    1 1
22

TT
cV  s s F P F s  and its 

derivative is shown as 

 
 1

2 0

1
2 0 1

2 2

   2 2 .

T T
c L

L

V







  

 

s B A x s f v

s B A x s


 (2.36) 

If x  where  1
2 0 1:n

L      x B A x  and 10    , it follows that 
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2cV   s . Since the system is quadratically stable, there exists a finite time 0t  that 

 t x  for all 0t t . Therefore it can be concluded that the ideal sliding motion will take 

place in a finite time. The simulation results are used to verify the feasibility of the proposed 

sliding mode controller in the example below. 

Example 2.1 Consider the system with the matched disturbance as 

        

   

0 1 0
0

0 0 1
1

1
11 1

3

8
1 1

3 .
2

4 2
3

t t u t d t

t t

                  
 
 

  
   

x x

y x



 

The demonstrated system is controllable and observable, having no finite zero and 0r  . 

Therefore the system satisfies Assumptions 2.2-2.4. Set the matched disturbance as 

   0.1 sin 1 sin 2 cos3 cos 2 sin 3 cosd t t t t t t t    . Transform the system into the form of 

(2.6), and the transformed matrices are given by 

1.5816 0.0192 0.1457

1.4071 0.3845 1.708

0.2953 0.34 0.1971

 
   
  

A , 

0

0

3.9016

 
   
  

B , and 
0 0.3417 0.9398

0 0.9398 0.3417

 
  
 

C . 

Hence matrices 2B  and T can be obtained as 2 3.9016B    and 
0.3417 0.9398

0.9398 0.3417

 
  
 

T . 

Further the triple  11 1 1, ,A B C   from (2.17) and (2.18) can be determined as 

11

1.5816 0.0192

1.4071 0.3845

 
  
 

A , 1

0.1457

1.708

 
   

B , and  1 0 1C . 

Referring to [59], the gain matrix is designed as 1 1.0556K K    locating eigenvalues of 

11 1 1KA B C   on the stable nodes 1  and 2 . Based on the transformation in (2.21), matrix 
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11A  is given by 

11

1.5816 0.1729

1.4071 1.4184

 
   

A  

which eigenvalues are also 1  and 2 . Design 1

0.3368 0.1891
0

0.1891 0.5401

 
  
 

P  and 2 1P   

such that 1

0.5332 0.2509
0

0.2509 1.4668

 
   

Q  fulfilling (2.24) and 2 3.9016F   . Consequently 

the parameter 0  is 0.2452 and matrix F is determined as 

 
 

 

2

2

1

   1.3005 0.6503

   5.0741 2.537 .

TF K

F



  



F T

 

Design the output-dependent sliding vector as        5.0741 2.537s t t t Fy y . Using 

the structure of control input (2.30), design the related parameters as 0.25  , 1 0.7k  , 

0.2  , and 1 0.01  . 

For avoiding the chattering phenomenon, the switching term  v t  in the control input 

is modified as       , sat ,v t t t  y s , where 0.05   is the thickness of the so-called 

sliding layer. Since the initial condition is set as    0 1 0 0
Tx , the simulation results are 

depicted in Fig. 2.1-2.4. The state and output responses are shown in Figs. 2.1 and 2.2 

respectively, converging around zero successfully. Since (2.26) holds, all trajectories of 

system states in Fig. 2.1 converge to zero quadratically as the analysis of (2.33). Figure 2.3 

showed the sliding vector and verified that the system entered into the sliding layer in a finite 

time. Matching the derivation of (2.36), the approaching behavior occurs after the sliding 

vector entering the local region around zero in Fig. 2.3. According to the control input shape 

in Fig. 2.4, the sliding mode controller has avoided the chattering phenomenon indeed due to 

the replacement of saturation function in the control input. 
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Fig. 2.1. System state responses in Example 2.1. 
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Fig. 2.2. System output responses in Example 2.1. 
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Fig. 2.3. Sliding vector in Example 2.1. 
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Fig. 2.4. System input response in Example 2.1. 

2.3  Summary 

This chapter has introduced a series of coordinate transformations, the sliding vector 

design method, and the sliding mode controller design, demonstrating the feasibility by the 

numerical example. Output feedback sliding mode control method still possesses the 

robustness against matched disturbances as the state feedback sliding mode controller. The 
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designed controller can satisfy the approaching condition simply and improve the chattering 

phenomenon by the replacement of saturation function. Nevertheless, the static output 

feedback sliding vector has no ability locating eigenvalues of the system in the sliding mode 

arbitrary even though the system is controllable and observable. Besides the difficulty of 

designing the sliding vector, the output feedback sliding mode controller design suffered a 

structural constraint as a synthesis problem. Even though the synthesis constraint was 

satisfied, the designed controller guaranteed the local stability quadratically only rather than 

the global one. 

For improving drawbacks of the static output feedback sliding mode controller 

mentioned above, next chapter will propose a dynamic output feedback sliding mode 

controller based on an integral sliding surface. The dynamic controller design can avoid the 

synthesis problem and assure the global stability using an adaptive law to estimate one of the 

controller parameters. The integral sliding surface and controller parameters will be offered 

by solutions to an algebraic Riccati equation. 
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III OUTPUT FEEDBACK INTEGRAL SLIDING MODE 

CONTROL 

This chapter addresses the problem of designing an output feedback integral sliding 

mode control algorithm for linear MIMO systems with mismatched parameter uncertainties 

along with disturbances and matched nonlinear perturbations. Once the system is in the 

sliding mode, the proposed method of output-dependent integral sliding surface can robustly 

stabilize the closed-loop system and obtain the desired system performance. Two types of 

mismatched disturbances are considered and their effects in the sliding mode are explored. By 

introducing an additional dynamics into the controller design, the developed control law can 

guarantee that the system globally reaches to the stable sliding surface in a finite time. Finally, 

the feasibility of the proposed method is illustrated by numerical examples. 

The system and the problem formulation are described in section 3.1. Section 3.2 

presents the design of output-dependent integral sliding surface using the static output 

feedback technique and develops the controller design. The effectiveness of the proposed 

controller is illustrated in section 3.3 with numerical examples. A concluding summary is 

given in section 3.4. 

3.1  Problem Formulation 

Consider a continuous-time uncertain system described in the state space form as 

 
             
   

, ,t t t t t t

t t

     



x A D H x B u f x u Ed

y Cx


 (3.1) 

where   nt x   is the system state vector,   lt y   is the system output vector, 

  mt u   is the control input vector, and   pt d   is the mismatched disturbance vector. 

The system matrices A, B, C, D, E and H are known matrices and have appropriate 

dimensions with l m . Notice that E belongs to the columns of  n n m  B   which span 
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the null space of TB  [10]. The function  , , mt f x u   is a time-varying vector in which it 

represents the lump sum of matched nonlinearities and/or uncertainties. In addition,  t  is 

an unknown matrix satisfying    T t t   I . Although system (3.1) contains the 

mismatched disturbance, we design in this chapter an output-dependent integral sliding 

surface so that the proposed method can guarantee robust stability [55] of the closed-loop 

system once the system is in the sliding mode. A control law using output information and an 

additional dynamics is then designed to make the system globally satisfy the reaching and 

sliding condition [2]. Before introducing the proposed method, the following five assumptions 

are made throughout this chapter. 

Assumption 3.1 The matched uncertain term is norm-bounded as 

      1 2, , t a a t t  f x u x u  (3.2) 

where 0 1   , 1a  and 2a  are known positive constants. 

Assumption 3.2 The mismatched disturbance is bounded as 

  t dd  (3.3) 

where 0d   is a known constant. 

Assumption 3.3 The pairs of  ,A B  and  ,C A  are stabilizable and detectable, 

respectively. 

Assumption 3.4 The triple  , ,C A B  is of minimum phase. 

Assumption 3.5 Matrices B and C have full rank, and    rank rank m CB B . 

As for Assumption 3.1, it is different from that in other papers [2, 7-8, 15-17, 21] in 

which the matched uncertainty  , , tf x u  is bounded by a function of the system outputs. 

Yan et al. [60] have shown that the condition is quite restrictive. Our proposed control scheme 

can eliminate the limitation. Assumptions 3.2-3.5 are generally developed from the 
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conventional output feedback sliding mode control methods [2, 7-9, 15-21, 29]. 

3.2  Dynamic Output Feedback Sliding Mode Control 

In this section, a design method of using the output-dependent integral sliding surface is 

proposed, in which robust stability of the closed-loop system can be guaranteed once the 

system is in the sliding mode. Seeking next to design the integral-type sliding surface for both 

matched and mismatched uncertain systems, Cao and Xu [22] developed a state-dependent 

integral sliding surface design in which the system is maintained on the sliding surface from 

the initial moment. However, the main problem related to the implementation of their method 

[22] is the requirement of the system states and their corresponding initial condition. In this 

work, we extend Cao and Xu’s method to the uncertain system with regard to which only the 

output information is obtainable. Applying H control analyzing technique, the existence 

condition of the sliding surface is determined by solving an algebraic Riccati equation which 

is involved with the original system parameters. In comparison with the other output feedback 

sliding mode controllers [15-18, 21, 23-26, 60], our proposed control law can obtain global 

robust stability and avoid the high gain phenomenon in the transient time. Moreover, our 

control algorithm does not need any observer structure to estimate the system states. 

3.2.1 Integral sliding surface design 

Design the output-dependent integral sliding surface as 

        
0

t
t t d 
  s CB y v  (3.4) 

where       
1T T m l
  CB CB CB CB  , ms  , and the vector mv   is designed 

later. Taking the derivative of  ts  with respect to time and substituting (3.1) into it, we can 

obtain 

                   , ,t t t t t t t
       s CB C A D H x v u f x u CB CEd . (3.5) 

From (3.5), the control input is written as 
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                   , ,t t t t t t t
       u f x u s v CB C A D H x CB CEd  (3.6) 

and then substitute it into (3.1) to obtain 

 

              
   

          1 1 1

          

       

n nt t t t

t t

t t t t t

 
     

 

     

x I B CB C A D H x I B CB C Ed

Bv Bs

A D H x E d Bv Bs







 (3.7) 

where   1 n

 A I B CB C A ,   1 n

 D I B CB C D , and   1 n

 E I B CB C E . 

Suppose that the system is in the sliding mode,  t s 0  for 1t t  where 1 0t   is a finite 

time. Then from (3.7) we obtain the system dynamics as 

           1 1 1t t t t t    x A D H x E d Bv  for 1t t . (3.8) 

Once the system is in the sliding mode, it follows from (3.8) that the robust stability problem 

of the closed-loop system becomes a standard output feedback controller design. As a result, 

the vector  tv  is a variable in the designed integral sliding surface, playing a role to affect 

the behavior of the system in the sliding mode. For system (3.8), a robust static output 

feedback controller is to be designed with the control algorithm in the form [17, 53-54, 56] 

      t t t   v FCx Fy  (3.9) 

so that the closed-loop system       1 1t t t   x A BFC D H x  is stable for all 

admissible uncertainties. Before introducing the main result, we have the following lemmas. 

Lemma 3.1 If Assumptions 3.3 to 3.5 hold, then the pairs  1,A B  and  1,C A  are 

stabilizable and detectable, respectively. 

Proof: Since state feedback control methods cannot change the controllability, from 

 1

 A A B CB CA , we can conclude that the pair  1,A B  is stabilizable. From 

 
1nn n

m

s s


     
    

     

I 0I A B I A B

C 0 C 0CB CA I
, one can obtain 
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 1rank rankn ns s        
      

      

I A B I A B

C 0 C 0
. (3.10) 

From Assumption 3.4 and the above equation, we know that the triple  1, ,C A B  is of 

minimum phase. Since  rank mCB , the realization  1, ,C A B  can be written in a special 

form [2] as 

 11 12
1

21 22

 
  
 

A A
A

A A
, 1 

  
 

B
B

0
, and  1 2C C C  (3.11) 

where the matrix 1
m mB   is invertible and the matrix 1

l mC   has full rank. From 

Assumption 3.4 and 

 

11 12 1
1

21 22

1 2

21 22

1 2

rank rank

                                  rank

m
n

n m

n m

s
s

s

s
m





    
                    

   
   

  

I A A B
I A B

A I A 0
C 0

C C 0

A I A

C C

 (3.12) 

it follows that 

 21 22

1 2

rank n ms
n   

  
  

A I A

C C
   Re 0s  . (3.13) 

Because the dimension of the matrix 1ns  
 
 

I A

C
 is  n l n  , from the linear algebraic 

theory and the above rank condition, we can obtain 

 
11 12

1
21 22

1 2

rank rank
m

n
n m

s
s

s n

    
                     

I A A
I A

A I A
C

C C

   Re 0s  . (3.14) 

As a result, the pair  1,C A  is detectable. We complete the proof of the lemma.  

Lemma 3.2 [17] Consider the following uncertain system 

       t t t  x A D H x , (3.15) 
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where A, D and H are constant matrices of appropriate dimensions, and    T t t   I . The 

above system is asymptotically stable if and only if there exists a symmetric positive definite 

matrix P and a positive constant   such that 

 
1

0T T T


   A P PA PDD P H H .  

Since the pair  1,A B  is stabilizable and the pair  1,C A  is detectable, we can use 

the static output feedback technique to design 

          1 Tt t t t      v Fy FCx R B P L x  (3.16) 

where 0R  and 0Q  are the weighting matrices, and the matrices L and 0P  satisfy 

the following algebraic Riccati equation 

 1 1
1 1 1 1

1T T T T T


       A P PA PBR B P L R L PD D P H H Q 0 . (3.17) 

Hence the system states are bounded once the system is in the sliding mode, as the following 

theorem. 

Theorem 3.1 Consider system (3.1) satisfying Assumptions 3.1 to 3.5 with the 

output-dependent integral sliding surface (3.4). Suppose that the system is in the sliding mode, 

and its behavior has been described as (3.8). If the mismatched disturbance is bounded and the 

matrix      1
1 1 1 1

Tt t        A D H BFC A D H BR B P L  is Hurwitz, then all states 

of system (3.8) are bounded as 

    
 
 

1 max

minmin

2
T T

d
t







PE P
x

PQ C F RFC
 (3.18) 

where 0 1   is a constant. 

Proof: Substitute (3.16) into (3.8) to obtain the closed-loop system dynamics in the sliding 

mode as 
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          

      

1
1 1 1

1 1       

T

s

t t t t

t t t

     

   

x A BR B P L D H x E d

A D H x E d


 (3.19) 

where  1
1

T
s

  A A BR B P L . First we need to show that the matrix  1s t A D H  is 

Hurwitz. Without considering the mismatched disturbance term in system (3.19), we rewrite 

the dynamic equation of  tx  as 

              1
1 1 1

T
st t t t t       x A BR B P L D H x A D H x . (3.20) 

Rearranging the algebraic Riccati equation (3.17) yields 

 1 1

1
0T T T T T

s s 


      A P PA PD D P H H Q C F RFC . (3.21) 

From Lemma 3.2, the above equation implies that the matrix  1s t A D H  is 

asymptotically stable. Then choose a Lyapunov function      1
TV t t t x Px  where the 

positive definite matrix P satisfies (3.17), and take the time derivative of  1V t  to obtain 

 

     

         
        

     

            

1 1 1

1 1

1

2

min 1

2

min min 1

1

           2 2

       2

       2

       1 2

T T T T T

T T

T T T T

T T

V t t t
β

t t t t t

t t t t

t d t

t t t d





  

 
     

 
  

   

   

    

x Q C F RFC PD D P H H x

x PD Hx x PE d

x Q C F RFC x x PE d

Q C F RFC x PE x

Y x x Y x PE



 (3.22) 

where 0 1   is a constant and 0T T  Y Q C F RFC . If    
1

min

2d
t




PE
x

Y
, then the 

above equation becomes 

         2

1 min1V t t    Y x  for    
1

min

2d
t




PE
x

Y
. (3.23) 

Since            2 2

min max
Tt t t t  P x x Px P x , we can conclude from [61] that the 

system states are finally ultimately bounded 
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    
 
 

1 max

minmin

2
T T

d
t







PE P
x

PQ C F RFC
. (3.24) 

From    t ty Cx , we have that the system outputs are also bounded in a known region. 

Hence, the proof of the theorem is completed.   

Remark 3.1 Since  rank mB , there exists a matrix  n m n U   such that UB 0 . 

According to the linear algebraic theory, we know from UB 0  and   m

 CB CB I  that 

the matrix 
 
 
 
  

U

CB C
 is invertible. Let 

 

1

g





 
    

  

U
U B

CB C
 where the matrix 

 n n m
g

 U   satisfies g n mUU I  and g CU 0 . Define a system transformation as 

follows 

 
 
   

 1

2

t
t

t 

  
   
    

Uw
x

w CB C
 and    

 
1

2
g

t
t

t

 
    

 

w
x U B

w
 (3.25) 

where  1
n mt w   and  2

mt w  . From (3.19) and the above transformation, the state 

equations of  1 tw  and  2 tw  can be written as 

 
 
 

 
   

 11 1

2 2 1

A

t t
t

t t 

    
       

      

UEw w
d

w w CB CE




 (3.26) 

where 
 

  1 1A gt

 
       

  

U
A BFC D H U B

CB C
  is a stable matrix. Since the 

system is in the sliding mode, using direct calculations can yield 

            2 0 0

t t
t t t d d        w CB y s Fy Fy . (3.27) 

If l m  and the mismatched disturbance varies slowly, it follows from Barbalat’s lemma 

[61] and the above equation that  t y 0  as t  . As a result, introducing the integral 

action into the sliding surface can yield a good system performance.  
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3.2.2 Integral sliding surface design for   2t Ld  

More specifically, when the mismatched disturbance is defined in 2L -norm space, i.e. 

  2t Ld , we can use the property of robust disturbance attenuation to design the controller. 

The problem of ensuring robust disturbance attenuation is to design a controller such that the 

closed-loop system is stable and there exists a constant 0     with respect to which the 

performance bound [56] 

              2

0 0

t tT T Td d          y y u Ru d d   0t   (3.28) 

is satisfied for all   2t Ld . The disturbance attenuation problem encountered is to design an 

output feedback control law which can ensure that the effect of the disturbance acting on a 

system is reduced to an accepted level. As a whole, H optimization technique [53-54, 56] is 

an effective method to be used for solving this problem of which the design objective is to 

minimize the gain from disturbance input to the controlled output covering all frequencies. 

For system (3.8), it is required to find a static output feedback gain matrix F such that the 

closed-loop system is stable and its 2L  gain is bounded by a prescribed value  . 

Theorem 3.2 Consider system (3.1) with the output-dependent integral sliding surface (3.4), 

satisfying these Assumptions 3.1 to 3.5. Suppose that the system is in the sliding mode for 

1t t  and its behavior of the reduced-order system has described as equation (3.8). If the 

mismatched disturbance is of   2t Ld  and the vector  tv  is designed as 

        1 Tt t t    v FCx R B P L x  (3.29) 

where the matrices L and 0P  satisfy the following algebraic Riccati equation 

 1 1
1 1 1 12

1 1T T T T T T T
 

        A P PA C C PE E P PBR B P L R L PD D P H H 0  (3.30) 

then the matrix  1
1 1

T   A BFC A BR B P L  is Hurwitz and the system performance 
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satisfies 

                  
1 1

2
1 1

t tT T T T

t t
d d t t           y y v Rv d d x Px  (3.31) 

for 1t t . Hence, the robust stability of the closed-loop system and the robust disturbance 

attenuation can be guaranteed. 

Proof: The main approach employed here is the standard Hamilton-Jacobi-Isaac method [56]. 

First, we define a quadratic energy function 

 ( ) TE x x Px  (3.32) 

where 0P  satisfies the algebraic Riccati equation (3.30). Then the Hamiltonian function is 

given by 

   2, T T T dE
H

dt
   v d y y v Rv d d . (3.33) 

A sufficient condition for assuring the robust disturbance attenuation is that [56] 

  , 0H v d  for all 2Ld . (3.34) 

From ( ) TE x x Px  and y Cx , one can obtain 

 
       1 1 1 1

2
1

,

                2 2 .

TT T T T

T T T

H t t



          
  

v d x C Cx v Rv x A D H P P A D H x

x PBv d d x PE d
 (3.35) 

From the H control theory [56] and the above equation, the worst case  dv
d

,sup
2

H
L

 occurs 

when    12

1 Tt t


d E Px  and then yields 

 

   

       
2

1

1 1

sup ,

         2

L

TT T T

H H

g t t




         

d
v v d

x v Rv x D H P P D H x x PBv
 (3.36) 

where   1 1 1 12

1T T T Tg


 
    

 
x x C C A P PA PE E P x . Since    T t t   I , the following 

inequality can be obtained 
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      1 1 1 1

1TT T T Tt t 


           
x D H P P D H x x PD D P H H x  (3.37) 

and then  ,H v d  satisfies the following inequalities 

      1 1 1

1
,  2T T T T TH H g 


 

      
 

v d v x v Rv x PBv x PD D P H H x . (3.38) 

If the vector  tv  is chosen as 

        1 Tt t t    v FCx R B P L x  (3.39) 

where the matrices L and 0P  satisfy the following algebraic Riccati equation 

 1 1
1 1 1 1 1 12

1 1T T T T T T T
 

  
        

 
A P PA C C P E E D D BR B P L R L H H 0  (3.40) 

then it follows that 

   2, 0T T T dE
H

dt
    v d y y v Rv d d  for all 2Ld . (3.41) 

Integrating this equation yields 

          
1 1

2
1

t tT T T

t t
E t E t d d      x x y y v Rv d d  for 1t t . (3.42) 

Rearranging the above inequality and noting    0E t z , we can obtain 

        
1 1

2
1 1

t tT T T T

t t
d d t t     y y v Rv d d x Px  for 1t t . (3.43) 

Hence we know that the property of robust disturbance attenuation is guaranteed and 

complete the proof of this theorem.   

Remark 3.2 Gadewadikar et al. [53-54] have developed the search algorithm to solve the 

coupled design equations (3.16), (3.17), and (3.30). Using well-developed techniques for 

solving available algebraic Riccati equations is the main advantage of their method. We 

summarize their proposed method as follows. 

1) Initialize: set 0n   and 0 L 0 , and select  , Q, and R. 



 33

2) At the nth iteration, solve for nP  in algebraic Riccati equations (3.17) or (3.30). Evaluate 

gain F and update L 

     11
1

T T T
n n n


   F R B P L C CC  (3.44) 

 1 1
T

n n n   L RF C B P . (3.45) 

Check the convergence condition 1n n   F F  where 0   is a given small number. 

If the convergence condition is satisfied, then go to Step 3. Otherwise, set 1n n   and go 

to Step 2. 

3) Terminate: set 1nF F .  

3.2.3 Control law synthesis 

Having analyzed the system performance in the sliding mode, we focus on the synthesis 

of a control algorithm to induce the sliding mode within a finite time. Define a new state 

vector 

      t t t z x Bs  (3.46) 

and from (3.7) obtain its dynamic equation as 

                1 1 1 1 1t t t t t t t       z A D H z E d Bv A D H Bs . (3.47) 

Substitute      v FCx FC z Bs  into (3.47) to obtain 

 
             

           
1 1 1 1 1

1 1 1      s s

t t t t t t

t t t t t

        

      

z A BFC D H z E d A D H BFC Bs

A D H z E d A D H Bs


 (3.48) 

where  1
1 1

T
s

    A A BFC A BR B P L  is a stable matrix. Moreover, the algebraic 

Riccati equation (3.17) can be rewritten as 

 1 1

1T T T T T
s s 


     A P PA C F RFC PD D P H H Q . (3.49) 

Since 0P , there exists a symmetric and nonsingular matrix n nM   such that 
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TP M M . Now choose a Lyapunov function as 

          
   

 2

T
T

T

t t
V t t t t

t t
  

z Pz
z Pz Mz

z Pz
 (3.50) 

where the positive definite matrix P satisfies (3.49). Let  1
0

2
T T  X Q C F RFC . 

Differentiating (3.50) with respect to time and using (3.48) and (3.49) yield 

 

 
   

             

          

   
       

      

2 1 1

1 1 1

1

1

1
2 2 2

2

1
           2

1
        

           .

T T T

T

T T T T
s

T T

T

T
s

V t t t t t t t t
t t

t t t t t

t t t t
t t

t t t




    

 
      

  

  

  

z Xz z PE d z PD Hz
z Pz

z P A D HB s z PD D P H H z

z Xz z PE d
z Pz

z P A D H Bs



 (3.51) 

From TP M M  and 0P , the following inequalities can be attained 

          1 1 1
T T Tt t t t t d z PE d z M ME d Mz ME  (3.52) 

and 

 
             

     
1 1

1                                                 .

T T T
s s

s

t t t t t t

t t

    

 

z P A D H Bs z M M A D H Bs

Mz MA B MD HB s
 (3.53) 

Moreover, we have          1
min

T Tt t t t z Xz P X z Pz . Substitute these inequalities into 

(3.51) to obtain 

 
           

   

1
2 min 1 1

1
min 2 1 2        ( )

T
sV t t t d t

V t b b t









    

   

P X z Pz ME MA B MD HB s

P X s


 (3.54) 

where 1 1b d ME  and 2 1sb  MA B MD HB  are known constants. An auxiliary 

variable  t  is now introduced as 

      1 2wt t b b t      s  (3.55) 
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with  0 0   and  1
min0 w    P X . Note that the three parameters w , 1b , and 2b  

are known. Comparing (3.54) and (3.55) indicates that there exists a finite time 2 0t   such 

that [9] 

          2
TV t t t t t  z Pz Mz  for 2t t . (3.56) 

Substitute  x z Bs  and  v Fy  into the derivative of  ts  to obtain 

 

               
     

             
         

1

          , ,

      

          , , .

t t t t t t

t t

t t t t

t t t t





 



     

 

     

   

s CB C A D H z Bs Fy u

f x u CB CEd

CB C A D H M Mz CB C A D H Bs

Fy u f x u CB CEd



 (3.57) 

Although the system state vector  tz  cannot be measured, we can manage an upper bound 

of ( )tMz  to drive the system into the sliding mode. Let 

         3 mt t b t
  p Fy CB CAB I s  (3.58) 

where  3b
 CB CD HB . From the auxiliary variable  t  in (3.55),  x z Bs , and 

Assumption 3.1, we can obtain 

              1 1t t t t t t t      x z Bs M Mz Bs M B s  (3.59) 

and 

             1
1 2 1 2, , t a a t t a a t t t        f x u x u M B s u . (3.60) 

We design the control inputs  tu  as 

        
 
t

t t t
t

  
s

u p
s

 (3.61) 

where            1
4 2 1 2

1

1
t b a t t d a a t   


         

M p CB CE B s , 
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0   is a small constant, and    1 1
4b

   CB CAM CB CD HM . From (3.61), we 

have      t t t u p  and then multiply both sides of  t  with 1   to obtain 

 

       

     

          

 

         

1 2

1
2 4

1
2 4

1 2

1
1 2 2 4

         

       

         

       

t t d a a t

a b t t

t t d a b t

a a t

t d a a t a b t

 

  

  



  





 

 

   

   

    

  

      

CB CE B s

M p

p CB CE M

B s

u CB CE B s M

 (3.62) 

Substituting (3.61) into (3.57) and pre-multiplying both sides of (3.57) with  T ts  can attain 

 

                  
           

            

        
     

1

2

3

4 1 2

1
4 1 2

                   , ,

               

               

                   

  

T Tt t t t t t t

t t t t b t

b t a a t t d t t

b t a a t t t

d t t



 

  



 









    

   

     

    

 

s s s CB C A D H M Mz CB CD HBs

CB CEd f x u s s

Mz x u CB CE s

M B s u

CB CE s



              .t  s

 (3.63) 

This aforementioned inequality proves that the reaching and sliding condition is satisfied. 

Therefore, the system will be driven to the sliding surface in a finite time and the sliding 

motion can be upheld. In past output feedback sliding mode researches, the controllers were 

designed to be stabilized the uncertain system locally and caused the high-gain control 

problem [15-17, 21]. For improving the existing problems and expanding the range of stability, 

we designed an adaptive variable,  t  in (3.55), to suppress a bound of unknown term in 

the controller. It can be adjusted following the variation of sliding surface and avoid the 

high-gain phenomenon in the transient time. Further it helps to complete the global stability 

of the closed-loop system. Consequently, avoiding the high-gain control force and assuring 

the robust global stability improve the effectiveness of proposed controller design. 
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Remark 3.3 If the vector  tv  is designed by Theorem 3.2, then the same procedure for the 

control law design should be obtained where the main difference is that the symmetric 

positive definite matrix X must be altered to 1 12

1 1
0

2
T T T T


 

    
 

X C C PE E P C F RFC . 

Remark 3.4 Since the dynamics of the sliding surface is always related to the unmeasured 

system states, Hu [26] used a variable structure observer to estimate the system states. Using 

the transformation matrix, Yan et al. [60] applied a dynamic observer to estimate the system 

states and then designed a sliding surface for the augmented space. For uncertain systems, 

adding the estimated states from the observer into the controller will undermine robust 

stability and thus deteriorate the worse performance. Without using any observer structure, 

our proposed formula is designed in a way that only original system matrices are involved.  

3.3  Numerical Examples 

Example 3.1 Consider an unstable batch reactor from [25]. To demonstrate the effectiveness 

of the proposed method, the system uncertain matrix and the mismatched disturbance are 

introduced into the system and its state space form is given by 

     

      

1.38 0.2077 6.715 5.676

0.5814 4.29 0 0.675

1.067 4.273 6.654 5.893

0.048 4.273 1.343 2.104

0.2 0 0

0.4 5.679 0
          

0.5 1.136 3.146

0.7 1.136 0

t t t

d t t t

    
         
     
   
        
   
   
   

x A x

u f



 

   
1 0 1 1

 
0 1 0 0

t t
 

  
 

y x  

where   4cos 1d t t   and  
0.5sin 2

cos 2

t
t

t

 
  
  

f . The mismatched uncertainty is set as 
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 

0.15 0.1 1 0 0 0

0.2 0.25 0 cos 0 cos 2 0 1 0 0

0.2 0.3 sin 0 sin 2 0 0 0 1 0

0.35 0.1 0 0 0 1

t t
t

t t

   
               
      

A . 

It is easy to check that this system satisfies all assumptions proposed in section 3.1. Choosing 

5d  , 1 1.12a  , 2 0a  , 0  , 0.2  , 0.2Q I , and R I  and using the solution 

algorithm proposed by Gadewadikar et al. [53-54], we can obtain the solution to the algebraic 

Riccati equation (3.17) as 

0.2591 0.0112 0.2049 0.2013

0.0112 0.1893 0.0255 0.0888

0.2049 0.0255 0.2151 0.1342

0.2013 0.0888 0.1342 0.2887

  
  
 
   

P  and 

0.1078 0.0634

0 0

0.4042 0.0956

0.5121 0.1590

T 
 
 
 
  

L . 

The sliding surface is determined as 

     
0

0 0.1761 0.1676 1.2046

0.3179 0 0.5811 0.0802

t
t t d 

   
         

s y y . 

In order to avoid the chattering problem, the unit vector function s
s

 in the control law 

should be replaced with the saturation function  sat ,s  where 0   is a small scalar. It 

can be visualized that as 0  , the function  sat ,s  tends to the unit vector function. The 

variable  can be used to trade off the requirement of maintaining ideal performance with that 

of ensuring a smooth control action. Therefore, we design the control input as 

     

          

1.52 0.1856 10.6401

0.1676 1.2046 3.6668 0.5271
sat ,

0.5811 0.0802 0.4554 1.5281

t t d t

t t t t t

 

 

   

   
           

s

u y s s


 

where    11.7069 0.0704 1.8t t d δ     , 0.1  , and 0.01  . Figures 3.1-3.6 

illustrate the simulation results using the initial conditions    0 1 2 1 1
T  x  and 

 0 0.1  . Figure 3.1 shows trajectories of all system states and Fig. 3.2 shows the norm of 
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states and its upper bound. In Fig. 3.2, the norm of states is indeed bounded by a certain value 

 
 
 

1 max

minmin

2
T T

d 
 

PE P

PQ C F RFC
 in (3.18), and Theorem 3.1 is guaranteed. The estimation 

result of (3.55) is depicted in Fig. 3.3; as it demonstrates the reality of (3.56) the adaptation 

law (3.55) can be applied to the controller design ensuring the global approaching condition. 

Figure 3.4 plots the evolution of the system outputs. Since this example is a square system 

(numbers of inputs and outputs are the same) and the mismatched disturbance varies slowly, 

the outputs in Fig. 3.4 converge to zero asymptotically based on Remark 3.1. Although the 

nominal system has the uncertain term and mismatched disturbance, our proposed control law 

involving the integral action can successfully restrain the effect of mismatched disturbance 

and obtain a good performance. Figure 3.5 depicts the control inputs without chattering 

phenomenon due to the replacement of saturation function. The response of  ts  is given 

in Fig. 3.6. The system trajectories enter the sliding mode globally in a finite time. 
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Fig. 3.1. System states in Example 3.1. 
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Fig. 3.2. Norm of states and its upper bound in Example 3.1. 
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Fig. 3.3. Norm of  tMz  and its upper bound  t  in Example 3.1. 
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Fig. 3.4. System outputs in Example 3.1. 
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Fig. 3.5. System inputs in Example 3.1. 
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Fig. 3.6. Response of  ts  in Example 3.1. 

Example 3.2 As for the case of l m , a system presented by Xiang et al. [17] is considered 

as the following state space form 

        

   

0.001

2 2 0 1 0.3

1 2 1 1 sin 2 0.4 cos

0 3 4 0 0.5

0 1 0

1 1 0

tt t t u t t e t

t t



       
                  
             
 

  
 

x A x

y x


 

where the initial condition is altered as    0 2 4 1
T

 x  to illustrate the high-gain 

phenomenon of Xiang’s method [17]. Note that this example satisfies Assumptions 3.1-3.5 

and the mismatched disturbance belongs to 2L  space. Choose 1 1a d  , 2 0a  , and 

0  . Moreover, the mismatched uncertainty is determined by 

 
1 0 1 0 0

sin 0 sin 2
0 0 0 1 0

0 sin 3 0
0 1 0 0 1

t t
t

t

   
                 

A . 

Setting 1  , 2  , 2Q I , and 1R   and then solving the algebraic Riccati equation 

(3.30), we can obtain its solution 
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0.7841 0.5962 0.1875

0.5962 1.8160 0.2411

0.1875 0.2411 1.0717

 
   
  

P  and  0 0 0.2410 L . 

In this case, we introduce the initial condition of the system outputs into the output-dependent 

integral sliding surface as 

         
0

0.5 0.5 1.3198 0.5962
t

s t t d   y y . 

Then we design the control input including the dynamics of the auxiliary variable  t  as 

     
             

1.7 0.5899 3.7204

1.3198 0.5962 2.5 2.7932 0.25 1 sat ,

t t d s t

u t t s t t d δ s t

 

 

   

      y


 

where 0.5  , 0.05  , and  0 3  . For comparison, the static sliding function 

     4.4132 1.3153s t t y  and the control law       2 1.5sat ,u t s t s t     proposed 

by Xiang et al. [17] are simultaneously simulated. The time responses of the system states in 

the two cases are shown in Figs. 3.7 to 3.9, respectively. Figure 3.10 shows that the estimation 

function  t  is indeed larger than the norm of  tMz  in our proposed method. Therefore, 

we can apply the linear combination of  t  to design the controller ensuring the global 

approaching condition. The time responses of the system outputs in the two cases are shown 

in Figs. 3.11 and 3.12, respectively. Figure 3.13 presents the controlled performance. The 

robust disturbance attenuation (3.31) is verified successfully in this figure. Figure 3.14 depicts 

the control inputs of two cases without chattering. By adjusting the parameter matrices Q and 

R, from Fig. 3.14 the input gain in our method is smaller than the one in the method of Xiang 

et al. [17]. The response of sliding function in our method is given in Fig. 3.15. Although the 

dynamic output feedback control law raises the control complexity and incurs the additional 

software, our proposed control scheme can guarantee globally robust stability of the 

closed-loop system and effectively tackle the high gain control problem. 
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Fig. 3.7. System states  1x t  of two cases in Example 3.2. 
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Fig. 3.8. System states  2x t  of two cases in Example 3.2. 
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Fig. 3.9. System states  3x t  of two cases in Example 3.2. 
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Fig. 3.10. Norm of  tMz  and its upper bound  t  of our proposed method in Example 

3.2. 
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Fig. 3.11. System outputs  1y t  of two cases in Example 3.2. 
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Fig. 3.12. System outputs  2y t  of two cases in Example 3.2. 
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Fig. 3.13. Performance of robust disturbance attenuation of our proposed method in Example 

3.2. 
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Fig. 3.14. System inputs  u t  of two cases in Example 3.2. 

 



 48

0 1 2 3 4 5 6 7 8 9 10
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Time (sec)  

Fig. 3.15. Response of  s t  in our proposed method in Example 3.2. 

3.4  Summary 

In this chapter, we have proposed a design method of the dynamic output feedback 

sliding mode control law for a linear MIMO uncertain system having the mismatched 

uncertainty and matched nonlinear perturbation. Once the system is in the sliding mode, the 

proposed output-dependent integral sliding surface design can obtain robust stability of the 

closed-loop system. Moreover, we discuss two types of mismatched disturbances and explore 

their effects on the sliding mode. The dynamic output feedback control law is then designed to 

guarantee that the system globally reaches and maintains in the sliding surface in a finite time. 

Our proposed method is simple in nature involving only its original system matrices and does 

not need any observer structure. The numerical examples also demonstrate that the proposed 

algorithm can be successfully implemented. 
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IV. OUTPUT FEEDBACK INTEGRAL SLIDING MODE 

CONTROL FOR TIME-DELAY SYSTEMS 

For time-delay systems with mismatched disturbances and uncertainties, this chapter 

applies the output feedback integral sliding mode control algorithm developed in previous 

chapter to stabilize the system. The integral sliding surface is comprised of output signals and 

an auxiliary full-order compensator. The proposed output feedback sliding mode controller 

can satisfy the reaching and sliding condition and maintain the system on the sliding surface 

from the initial moment. Among the delay-independent condition, two types of analysis 

methods can assure the property of robust disturbance attenuation and determine the 

parameters of controller and compensator simultaneously. On the other hand, the stability 

analysis under delay-dependent condition is also considered. This condition is with less 

conservative and strengthens the complexity of controller design and difficulty analyzing the 

robust stability. 

The first section of this chapter formulates the objective of problem. In section 4.2, a 

combination of an integral sliding surface and the related output feedback sliding mode 

controller is presented. Under the delay-independent condition, two types of robust stability 

conditions for the system in the sliding mode are given in section 4.3 with each corresponding 

compensator respectively. Section 4.4 proves the important sufficient condition of stability 

when the system is in the sliding mode and determines parameters of the controller and 

compensator as for the delay-dependent condition holds. A summary is given in the last 

section. 

4.1  Problem Formulation 

Consider a continuous-time time-delay system described by the state-space form as 

 
                  
   

, ,d dt t t t t t t t

t t

         



x A A x A A x B u f x u Ed

y Cx


 (4.1) 
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      , ,0t t t   x  (4.2) 

where nx   is the system state vector, ly   is the system output vector, mu   is the 

control input vector, pd   is the mismatched disturbance vector. The function 

 , , mt f x u   represents the unknown matched uncertainty. The constant   is an 

unknown delay time but bounded by a known constant  , where 0    . The vector 

 t  is a continuous initial function. The real constant matrices A, dA , B, E, and C are 

known and have appropriate dimensions with l m . The structure uncertainties  tA  and 

 d tA  satisfy  t  A D H  and  d d d dt  A D H , where D, dD , H, and dH  are 

non-unique known constant matrices with appropriate dimensions. Moreover, the matrices 

 t  and  d t  are unknown, satisfying    T t t   I  and    T
d dt t   I  for all t, 

respectively. As a result, the controlled plant (4.1) can be rewritten as 

 

             
    

   
          , ,

.

d d d dt t t t t t

t t

t t

       

 



x A D H x A D H x Ed

B u f x u

y Cx



 (4.3) 

Suppose that the triple  , ,A B C  is completely controllable and observable. Edwards and 

Spurgeon [2] have shown that there exists a stable static output feedback sliding mode 

controller if 

(C1)    rank rank m CB B , 

(C2) The triple  , ,A B C  is minimum phase. 

In the case of time-delay systems satisfying conditions (C1) and (C2), Castanos and Fridman 

[10] mentioned the state-dependent integral sliding surface design for linear systems with 

mismatched disturbances to ensure the robust disturbance attenuation. Niu et al. [12] 

proposed the observer-based sliding mode controller involving a synthesis condition to 
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stabilize uncertain time-delay systems. Since the output is the only available signal, next 

section will present the output-dependent integral sliding surface and the corresponding 

sliding mode controller. The control algorithm including the information of integral sliding 

surface without any synthesis condition is designed to satisfy the approaching condition and 

force the system trajectories to enter the sliding mode. Before introducing main results, the 

following three assumptions are fulfilled throughout this chapter. 

Assumption 4.1 The matched term  , , tf x u  and mismatched disturbance  td  are 

norm-bounded as 

      , , ,t t t  f x u y u  and  t dd  (4.4) 

where 0 1  ,  ,t y , and d  are all known positive constants. 

Assumption 4.2 The triple  , ,A B C  is minimum phase. 

Assumption 4.3:    rank rank m CB B . 

4.2  Integral Sliding Surface and Sliding Mode Controller 

Since Assumption 4.3 holds, we design the output-dependant integral sliding surface as 

           1

0
0

t
t t q dq


   s GCB G y y v  (4.5) 

where m lG   is chosen such that GCB is invertible. The integral term mv   will be 

designed later. Substituting system (4.3) into the derivative of  ts  with respect to time can 

obtain 

 

           
        

            
     

          , ,

      

          , ,

d d d d

d d d d

t t t t t

t t t t

t t t t t

t t t





      

   

       

  

s G A D H x A D H x

B u f x u Ed v

G A D H x A D H x Ed

u f x u v



 (4.6) 

where   1
G GCB GC . Referring to [14], define two regions 1  and 2  as 
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        1 1|t t t       x G A D H x  (4.7) 

        2 2| d d d dt t t          x G A D H x  (4.8) 

where 1 0   and 2 0   are known and bounded constants. The region n    is a 

neighborhood of the origin. Consider system (4.3) in 1 2   and design the control input as 

        
 
t

t t t
t

 
s

u v
s

 (4.9) 

       1 2

1
,

1
t t t d      


     


y v . (4.10) 

The remaining control parameters   GE  and   are also positive constants. Through 

straightforward calculations, we know that 

 
       

   
1 2

1 2

,

       , .

t t t t d

t t d

       

     

      

     

v y

u y
 (4.11) 

Substituting (4.9) into (4.6) can attain the following approaching and sliding condition 

 

                  
     

              
   
            
 

                   , ,

               

                   , ,

               ,

               

T T
d d d d

d d d d

t t t t t t t t

t t t

t t t t t t

t t

t t t y t d t t

t









     



       

 

       

 

     



s s s G A D H x A D H x Ed

f x u s

s G A D H x A D H x Ed

f x u

u s

    
 

1 2

               

t t

t

   



   

 

s

s

(4.12) 

where       ,t t t   x G A D H x  and       , d d d dt t t    x G A D H x . 

Since  0 s 0 , the control input (4.9) can guarantee the following identities 

    t t s s 0  0    t . (4.13) 

Therefore, the design of integral sliding surface (4.5) can shorten the transient time that the 
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system entered the sliding mode efficiently. Subsequently, this chapter focuses on the stability 

analysis when the system is in the sliding mode. 

4.3  Robust Stability in the Sliding Mode for Delay-Independent Condition 

From (4.6), once the system is in the sliding mode,    t t s s 0 , the corresponding 

equivalent control [2] is given by 

 
             

   
, ,

                                  .

eq eq d d d dt t t t t t

t t

        

 

u f x u G A D H x A D H x

Ed v
 (4.14) 

Deriving the closed-loop system dynamics in the sliding mode from substituting (4.14) into 

system (4.3) can obtain 

 

             
            

     

              
 

         
   

, ,

 

 , ,

       

 

       

 

d d d d eq

d d d d

eq

n d d d d

d d d d

t t t t t t

t t t t t

t t t

t t t t t

t

t t t t

t t









       

       

  

        



      

 

x A D H x A D H x Bf x u

BG A D H x A D H x Ed

Bf x u Bv Ed

I BG A D H x A D H x Ed

Bv

N A D H x N A D H x

NEd Bv

 (4.15) 

where 
n N I BG . Since  NA A BGA , we have the following relationship 

     n
n n n

n

s s s
 

         
 

I 0
I NA B I A BGA B I A B

GA I
. (4.16) 

Since the pair  ,A B  is controllable,   rank ns n I A B  for s , the controllability 

of  ,NA B  can be guaranteed by 

     rank rank n
n n

n

s s n
  

     
  

I 0
I NA B I A B

GA I
, s . (4.17) 

It implies that the pair  ,NA B  is also controllable. Referring to [55-57], the robust 

disturbance attenuation for system (4.15) is to design an auxiliary input function  tv  such 
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that the system is stable and satisfies the following inequality: 

    2

0 0

t tT T Tdq dq  y y v Rv d d  0    t  (4.18) 

where 0     and 0R  is a weighting matrix. By using two similar full-order 

compensators, we will derive two sufficient conditions to complete the design of  tv  

fulfilling the robust disturbance attenuation in the following subsections. Before designing 

compensators, define several matrices as 

     l

    U B CB Y I CB CB  (4.19) 

 n M I UC  (4.20) 

  l   L I CU MAU  (4.21) 

where       
1T T CB CB CB CB , n lY   is an arbitrary matrix, and L is a gain matrix 

designed later. Notice that the product of MB is given by 

            MB B UCB B B CB CB Y CB CB CB CB 0  (4.22) 

and  rank n m M  from Assumption 4.3. 

Remark 4.1 In [10], the integration term in the sliding manifold can be thought as a trajectory 

of the system in the absence of perturbations and in the presence of the nominal control, that 

is, as a nominal trajectory for a given initial condition. In this chapter, adding the integration 

term  tv  into the sliding surface (4.5) can compensate the degree of freedom to attenuate 

the effects of disturbances and uncertainties in the closed-loop system. Involving the 

integrator is also helpful to analyze the stability and robustness of the closed-loop system.  

4.3.1 Robust disturbance attenuation by LMI 

The input function  tv  in this section is generated from the following full-order 

dynamic compensator 
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        t t t    MA LC y  (4.23) 

       t t t  v K Uy  (4.24) 

where the auxiliary state vector n   is available. The feedback gain matrix m nK  is 

designed later. According to (4.23) and MB 0 , the dynamics of error vector  e Mx  

can be given by 

 

                
   

            
 

      

         .

d d d d

d d d d

t t t t t t t

t

t t t t t

t







         

 

       



e y M A D H x Ed A D H x

MA LC

MD Hx MA LC e M A D H x

MEd

 (4.25) 

On the other hand,  tv  can be rewritten as 

      t t t  v Kx Ke . (4.26) 

Substituting (4.26) into (4.15) can obtain the system dynamics in the sliding mode as 

 
              

           .

d d d dt t t t t t

t

        



x N A D H BK x N A D H x BKe

NEd
 (4.27) 

Combining (4.25) with (4.27), the overall closed-loop system is shown as below 
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 

 
 

 
   
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 
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t

t t







         
                

     
         

   
        



x NA BK ND H BK x NE

d
e MD H MA LC e ME

NA ND H 0 x

MA MD H 0 e

x x
A B G d

e e

 (4.28) 

where 
 

 
=w

t

t

   
   

NA BK ND H BK
A

MD H MA LC
, 

 
 

= d d d d
w

d d d d

t

t

  
   

NA ND H 0
B

MA MD H 0
, and 

=w

 
 
 

NE
G

ME
. Moreover, to represent the term T Ty y v Rv  in (4.18), we define the controlled 

output l mz   as 
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         

     
 

      

v v v

v w

t t t t t

t
t t

t

      
                 

 
    

 

0 C 0C
z x v x e

C C K C K0

x
Cx C e C

e

 (4.29) 

where T
v v C C R  and w v

v v

 
       

C 0
C C C

C K C K
. The auxiliary matrix vC  is implicit 

and does not appear in the controller, but T
v vC C  is defined as the matrix R which is the 

weighting gain of input  tv . The next step is to design the matrices K and L, and analyze 

the robust stability of the closed-loop system (4.28) by the following lemma and Theorem 4.1. 

Lemma 4.1 Given real matrices D,  t , and H of appropriate dimensions, suppose 

   T t t   I , for any positive scalar  , then 

(i) [42]     1T T T T Tt t      D H H D DD H H ; 

 (ii) [11] 
 

  1

T T T T

T

t

t




   
      

0 H D H H 0

D H 0 0 DD
.  

Theorem 4.1 Consider system (4.15) with the full-order compensator (4.23). Given  , 

0i  , 1,2, ,10i   , and a positive definite matrix R, if there exists 11 12

12 22

0T

 
  
 

P P
P

P P
, 

11 12
T
12 22

0
 

  
 

Q Q
Q

Q Q
, 22 P I ,  1 1 1 1

11 6 7 8 9
T
d d         Q H H , and a scalar 0  , 

satisfying the following LMI 

 

11 12 13 15 16 17
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    
           
 
      

       
 
         

0 0

0 0

0 0 0 0

0 0 0 0

0 0 0

0 0

0

 (4.30) 
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where   symbols the transpose of the corresponding symmetric element and 

   1 1
11 11 11 1 2 3 4 11

T T T            NA P P NA H H C C Q  

 12 12 12 12

T   NA P P MA Q  

13 11 12d d  P NA P MA  

  1
22 22 22 22 102

T T T T      P MA MA P Q C C C CC C  

23 12 22
T

d d  P NA P MA  

  1 1 1 1
33 11 6 7 8 9

T
d d            Q H H  

34 12  Q  

44 22  Q  

15 11 12  P NE P ME  

16 11  P B  

 17 12 11 11 12 12d d  P MD P ND P ND P MD P  

25 12 22
T  P NE P ME  

26 12
T  P B  

1
28 12 22 11 12 11 12 22

T T T T
d d

    P ND P MD P BR B P P B P ND P MD  

2
55    I  

66  R  

 1 1 1 1 1 1
77 1 4 6 7 10diag , , , ,2             I I I I I  

 1 1 1
88 2 3 5 5 8 9diag , , , , , ,          I I I I R I I  

then robust disturbance attenuation (4.18) can be guaranteed. Furthermore, matrices K and L 

are given by 
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 1
11

TK R B P  and 1
222

T L P C . (4.31) 

Proof: The detail is in Appendix 1.  

Remark 4.2 For determining the parameter matrices 11P  and 22P , we recommend to follow 

the flowchart in Fig. 4.1. Adjusting  , R, and 0i  , 1,2, ,10i    can solve different P 

and Q. If solutions satisfy requirements of Theorem 4.1 and the performance index   is 

acceptable, substituting 11P  and 22P  into K and L can complete the controller design.  

The following numerical example demonstrates the proposed controller design in this section. 

Start

End

  1. Assign R,

  2. Solve

      in (4.30)

   Check:

Design

 
22

1 1 1 1
11 6 7 8 9

0

0

T
d d      



   




P I

Q H H

P

Q

1
11

1
220.5

T

T









K R B P

L P C

,  and 0,  1, 2, ,10i i    

Yes

No

11 12 11 12
T

12 22 12 22

 and T

   
    
   

P P Q Q
P Q

P P Q Q

 

Fig. 4.1. Flowchart for solving parameters K and L by an LMI of controller and compensator. 
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Example 4.1 Consider the real example of chemical reactor system [32] within the 

corresponding form of system (4.3) with delay time 1   as 

4.93 1.01 0 0

3.20 5.30 12.8 0

6.40 0.347 32.5 1.04

0 0.833 11.0 3.96

  
    
   
  

A , 

1 0

0 1

0 0

0 0

 
 
 
 
 
 

B , 

1 0

0 1

0.2 0

0 0.1

T
 
 
 
 
 
 

C , 

1

0

1

0

 
 
 
 
 
 

E , 

and  diag 1.92,1.92,1.87, 0.724d A . The known parts of uncertainties in the system are 

given by 

0.47 1.01 0 0

0.22 0.17 1.21 0

0.63 0.347 0.91 1.04

0 0 0.14 0.96

 
   
 
  

D , 

0.55 0.02 0 0

0.78 0.35 0 0

0 0.72 0.49 0

0 0.33 0.54 0.39

  
  
  
   

H , 

 diag 0.47, 0.26, 0.85,1.53d  D , and  diag 1.11, 0.21,1.26, 0.47d   H . The external 

disturbances and unknown parts of uncertainties for system (4.3) are set as    1 4t r t  I , 

   2 4d t r t  I ,   0.001 sin 2td t e t , and 

  1 2 1

1 2 2

0.12 sin 0.08 cos1.3 0.2sin
, ,

0.07 cos3 0.03 sin 5 0.3cos

u t u t x
t

u t u t x

  
    

f x u  

where 1 2
T Tu u   u ,  1r t  and  2r t  are different random functions with values between 

1  and 1. Notice that the triple  , ,A B C  has invariant zeros 4.4463  and 33.377 , and 

 rank 2CB , satisfying Assumptions 4.2 and 4.3. For solving the LMI (4.30) of this 

example, select the parameters as 1000  , 20.002R I , 1 4 2   , 2 3 0.1   , 

6 7 8 9 3       , and 5 10 1   . Then the solutions to (4.30) are given by 

11

0.0139 0.0013 0.0668 0.0046

0.0013 0.0012 0.0127 0.0005

0.0668 0.0127 0.6492 0.1044

0.0046 0.0005 0.1044 0.1945

  
   
  
   

P  
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12

0.0030 0.0001 0.0028 0.0072

0.0019 0.0005 0.0003 0.0094

0.0012 0.0011 0.0841 0.0242

0.0128 0.0044 0.0080 0.0734

   
   
    
  

P  

22

38.6114 0.0364 4.8448 0.4358

0.0364 38.9961 0.0304 3.4802

4.8448 0.0304 17.5268 0.4054

0.4358 3.4802 0.4054 6.0693

  
   
  
 
 

P  

12

0.1010 0.0014 0.3402 0.1593

0.0501 0.0023 0.1692 0.0971

0.0227 0.0090 0.1059 0.1096

0.0121 0.0338 0.0276 0.4093

 
    
   
    

Q  

22

38.7504 0.0190 0.0192 0.1867

0.0190 38.5812 0.1953 2.6922

0.0192 0.1953 38.7613 2.5084

0.1867 2.6922 2.5084 14.4394

 
  
 
  

Q  

and 11 43Q I . The performance index   computed via the LMI is 0.9233. Notice that the 

solutions of (4.30) above fulfill the conditions of Theorem 4.1. Hence, we construct the 

full-order compensator as 

     

13.9652 0.0678 3.9630 0.2082 1.28 0.0694

0.0827 12.8218 1.0835 0.8778 0 0.0833

4.2199 0.3461 32.9360 1.0401 6.4 0.3470

0.8127 0.1007 10.8375 4.0534 0 0.8330

t t t 

    
        
    
       

 y  

and design the sliding surface as 

       

 

0

0

6.9387 0.6675
0

0.6675 0.6178

6.9387 0.6675 33.4124 2.2778
          .

0.6675 0.6178 6.3451 0.2742

t

t

t t q dq

q dq

 
     

  
    





s y y y

 

Moreover, in order to avoid the chattering problem, the term 
 
 
t

t

s

s
 in the controller (4.9) is 

replaced with the saturation function [11], and the new version of the controller is given by 
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     

       1 2

6.9387 0.6675 33.4124 2.2778 6.9387 0.6675

0.6675 0.6178 6.3451 0.2742 0.6675 0.6178

1
          , sat ,

1

t t t

t t d t



      


     
         

     


u y

y v s

 

where 1 2 5   ,  , 2t y , 0.8   , 1d  , 2.5  , and 0.002  . Figures 

4.2-4.8 chart the simulation results using the initial state    0 2 3 4 1
Tx  and 

   0 0 0 0 0
T  . Figure 4.2 presents the system states which are bounded around zero. 

The time responses of the system outputs are shown in Fig. 4.3. The property (4.18) of robust 

disturbance attenuation is shown in Fig. 4.4. The integration of quadratic form of controlled 

output  tz  is indeed smaller than one of mismatched disturbance  d t  and hence the 

proposed controller has assured the robust disturbance attenuation. Figures 4.5 and 4.6 show 

 ts  and  ts , respectively. In Fig. 4.6, the trajectory representing the controlled system 

can maintain in the sliding layer in the whole time. It fits in with the design of integral sliding 

surface (4.5). Figure 4.7 shows that the trajectories of  te  are bounded around zero as 

system states. The responses of the control inputs  tu  are given in Fig. 4.8. The 

replacement of the saturation function eliminates the chattering phenomenon. From Fig. 4.3, 

although the nominal system contains the state delay term and the mismatched disturbance, 

the system outputs  ty  are finally bounded around zero. The simulation results 

demonstrate that the proposed controller design can guarantee the robust disturbance 

attenuation to outputs  ty  once the system is in the sliding mode. 

4.3.2 Robust disturbance attenuation by algebraic Riccati inequalities 

This section will alter the LMI (4.30) to algebraic Riccati inequalities as an equivalent 

sufficient condition assuring the property of robust disturbance attenuation. The full-order 

dynamic compensator is modified as 
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Fig. 4.2. System states in Example 4.1. 
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Fig. 4.3. System outputs in Example 4.1. 
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Fig. 4.4. Performance of robust disturbance attenuation in Example 4.1. 
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Fig. 4.5. Sliding functions in Example 4.1. 
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Fig. 4.6. Response of  ts  in Example 4.1. 
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Fig. 4.7. Trajectories of  te  in Example 4.1. 
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Fig. 4.8. System inputs in Example 4.1. 

          t t t      MA LC F FU y  (4.32) 

       t t t  v K Uy  (4.33) 

where K and n nF   are gain matrices determined later. According to (4.32) and MB 0 , 

the dynamics of error vector  te  can be given by 

 

              
       

             
        
         

     

      

     

      

     .

d d d d

d d d d

d d d d

t t t t t t

t t

t t t t t

t t t t

t t t t

t t











       

     

      

     

      

   

e M A D H x A D H x Ed

FU y MA LC F

MA LC Mx MEd MA LC Fx Fe

MD Hx M A D H x

MD H F x M A D H x

MA LC F e MEd

 (4.34) 

Combining (4.27) with (4.34), the integrated closed-loop system can be expressed as 

 

 
 

 
 

 
   

 
 

 
 

           .d d d d

d d d d

t t t
t

t t t

t t

t t




         
                   

     
         



x NA BK ND H BK x NE

d
e F MD H MA LC F e ME

NA ND H 0 x

MA MD H 0 e

 (4.35) 

The objective is transferred to design matrices K, L, and F, and analyze the robust stability of 
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the closed-loop system (4.35). Define a quadratic energy function as 

          11 22 11 22,
t tT T T T

n t t
E d d

 
     

 
    x e x P x e P e x Q x e Q e  (4.36) 

where the positive definite matrices 11 0P , 22 0P , 11 0Q , and 22 0Q  are determined 

later. Choosing the same Hamiltonian function   2T T ndE
H

dt
  d z z d d  and sufficient 

condition   0H d  for all 2Ld  as (A.2) and (A.3) respectively, the detail of the 

proposed Hamilton function is given by 

 

              

           

           
          
      

11 11

11 11

11 22

11

2

           

           

           

           

T T T T T T T

T T

T T
d d d d

T T

T
d d d d

H t t t t t t

t t t t t

t t t t t

t t t t t

t t t

  

 



   

    

      

      

   

d x C C K RK x x K RKe e K RKe

NA BK ND H x P x x Q x

N A D H x P x x Q x

x P NA BK ND H x e Q e

x P N A D H x    
               

            

          

11

2
11 22 22

22

22 22

2

           2 2

           2

           .

T

T T T T

T

d d d d

TT T

t t

t t t t t t t t

t t t t t

t t t t







   

      

     

x P NEd

x P BKe e P MEd e Q e d d

MD H F x M A D H x P e

e P MA LC F e e MA LC F P e

 (4.37) 

Based on the above equation, the worst case  
2

sup
L

H
d

d  occurs when 

      2
11 22

T T Tt t t  d E N P x M P e , and it follows that 

 

              

               
          
             

22

11 11 22

11 11

11

2

           

           

           2

           

T T T T T T

T
T T

T T

T T T
d d d d

H t t t t t t

t t t t t t t

t t t t t

t t t t t t

 

 



     

     

      

     

  

d x C C K RK x x K RKe e Q e

NA BK ND H x P x x Q x e Q e

x P NA BK ND H x x Q x

x P BKe N A D H x e K RKe

MA LC             
            
       
       

22 22

22

2 2
11 11 22 11

2 2
11 22 22 22

           2

            +

           .

T T

T
d d d d

T T T T T T

T T T T T T

t t t t

t t t t t

t t t t

t t t t



 

 

 

 

  

      



 

F e P e e P MA LC F e

e P MD H F x M A D H x

x P NEE N P x e P MEE N P x

x P NEE M P e e P MEE M P e

 (4.38) 
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According to Lemma 4.1, inequality (4.38) can be rewritten as 

  

 
 

 
 

 

 
 

 
 

11 12 11

22 22

1 1
2 4 11

22

T
d

d

T
d d

t t

t t
H

t t

t t

  
 

 

     
                  
    

            

P NA 0x x
P MA 0e e

d
H H Q 0x x

e eQ

 (4.39) 

where 

 
   

   
11 11 11 11

2 1 1
11 1 2 11 1 3         

T T T

T T T T T
d d      

       

    

NA BK P P NA BK C C K RK Q

P N EE DD D D N P H H
 (4.40) 

 
   

 
22 22 22 22

2
22 3 4 22         

T T

T T T T
d d  

        

  

MA LC F P P MA LC F K RK Q

P M EE DD D D M P
 (4.41) 

 2
12 11 22 11 22

T T T T     P BK K RK F P P NEE M P . (4.42) 

Notice that i  are positive constants, 1, , 4i   . The sufficient condition satisfying the 

robust disturbance attenuation,  
2

sup 0
L

H



d

d , is altered to fulfill the following matrix 

inequality 

   

11 12 11

12 22 22

1 1
11 22 11 2 4

22

0

d
T

d

T T T T T
d d d d  

  
       
 
  

P NA 0

P MA 0

A N P A M P Q H H 0

0 0 0 Q

. (4.43) 

Moreover, the following theorem transfers (4.43) into two algebraic Riccati inequalities using 

Schur decomposition and develops the designs of K, L, and F which guarantee the robust 

disturbance attenuation. 

Theorem 4.2 Consider the system (4.15) with the integral sliding surface (4.5) and full-order 

compensator (4.32). Given 0R  11 0Q , 22 0Q , 0  , and 0i  , 1, 2, , 4i   , if 

there exists matrices 11 0P  and 22 0P  satisfying the following algebraic Riccati 

inequalities 
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     

   
1 1 1

11 11 11 11 11 1 3 11

1
2 1 1

1 2 2 4 11 11 0

T T T T

T T T T T T
d d d d d d

 

    

  


  

      

      

NA P P NA P BR B P C C Q H H P N

EE DD D D A H H Q A N P
 (4.44) 

 
    

   
1 2

22 22 11 11 22 22

1
1 1

3 4 2 4 11 22 0

T T T T

T T T T T
d d d d d d

 

   

 


 

      

     

MA F P P MA F P BR B P C C Q P M EE

DD D D A H H Q A M P
 (4.45) 

where 2 0   and 4 0   are designed such that  1 1
11 2 4 0T

d d    Q H H , then robust 

disturbance attenuation (4.18) can be guaranteed. Furthermore, matrices K, L, and F are given 

by 1
11

TK R B P , 1
222

T L P C , and 

    1
2 1 1

2 4 11 11
T T T T

d d d d  


     F M EE A H H Q A N P . (4.46) 

Proof: Since the condition  1 1
2 4 11 0T

d d    H H Q  holds, by Schur decomposition, 

inequality (4.43) is equivalent to 

 11 12

12 22

0T

 
 

 

J J

J J
 (4.47) 

where 

 

     
  

 

1 1
11 11 11 1 3 11

1
1 1

11 2 4 11 11

2
11 1 2 11

       

       

T T

T T T T T
d d d d

T T T T
d d

 

 

  

 


 



      

    

  

J NA BK P P NA BK H H Q

P NA H H Q A N P C C K RK

P N EE DD D D N P

 (4.48) 

 
  

2
12 11 22 11 22

1
1 1

11 2 4 11 22       

T T T T

T T T
d d d d



 




 

   

  

J P BK K RK F P P NEE M P

P NA H H Q A M P
 (4.49) 

 

   
 

  

22 22 22 22

2
22 3 4 22 22 22

1
1 1

22 2 4 11 22

       

       .

T T

T T T T T
d d

T T T
d d d d

  

 




 

       

  

  

J MA LC F P P MA LC F K RK Q

P M DD D D M P P MEE M P

P MA H H Q A M P

 (4.50) 

Design    1
2 1 1

2 4 11 11
T T T T

d d d d  


     F M EE A H H Q A N P , 1
11

TK R B P , and 
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1
222

T L P C . Then substituting them into (4.47) can attain 

 

     
   

1 1 1
11 11 11 11 11 11 1 3

1
2 1 1

11 1 2 2 4 11

11

         

         

T T T T

T T T T T
d d d d d d

T

 

    

  


  

      

     



J NA P P NA P BR B P C C Q H H

P N EE DD D D A H H Q A

N P

 (4.51) 

 12 J 0  (4.52) 

 

   

   
1

22 22 22 11 11 22

1
2 1 1

22 3 4 2 4 11

22

         

         .

T T T

T T T T T
d d d d d d

T



    




  

      

     



J MA F P P MA F P BR B P C C Q

P M EE DD D D A H H Q A

M P

 (4.53) 

Therefore, if there exists 11 0P  and 22 0P  such that 11 0J  and 22 0J , it implies to 

 
2

sup 0
L

H



d

d , and to guarantee the robust disturbance attenuation. The proof of this theorem 

is completed.   

Remark 4.3 Figure 4.9 shows the flowchart to solve parameters of controller and 

compensator. First adjusting  , 11Q , and 0i  , 1,2, ,4i    can determine different 11P . 

Substituting 11P  into (4.46) can obtain matrix F. Then choose   to determine 22P  from 

(4.45). Generally, for any   that there exists a solution 11P  to (4.44) (which is used for the 

state feedback gain), we can find a   large enough such that there exists a solution 22P  to 

the inequality (4.45). It means that a high gain compensator can be used to accomplish the 

work. Besides, LMI technique [3] can be used to solve the two inequalities (4.44) and (4.45). 

Finally, we summarize the output feedback integral sliding mode controller as 

 

         

             

          
 

1

0
0

.

t

t t t

t t q q dq

t
t t t t

t

 



 



     

   

   



MA LC F FU y

s GCB G y y K Uy

s
u K Uy

s



  
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 1 1
11 2 4

T
d d   Q H H

11P

1
11

1
220.5

T

T









K R B P

L P C

11,  0,  1,2,3,4,  and i i    Q

11 0P


22P

22 0P

 

Fig. 4.9. Flowchart for solving parameters K and L by algebraic Riccati inequalities of 

controller and compensator. 

 

The following examples are simulated to verify the proposed controller design in this 

section. The results of comparison with [28] are in Example 4.2. Further the proposed method 

is simulated for an unstable system to verify the feasibility in the last example. 
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Example 4.2 Consider a nonlinear uncertain state-delayed system [28] within the following 

form 

                  
   

,d dt t t t t t t t

t t

          



x A A x A A x B B u w x

y Cx


 

where 

1.8 1 0

0.6 1.5 0

0 1 1

 
   
  

A , 

0.2 0.1 0.1

0.1 0.1 0

0 0.1 0
d

 
   
  

A , 

2 0

0 1

1 1

 
   
  

B , 

1 3

5 1

2 0

T
 
   
  

C , 

and delay time 1  ,  tB  is the input uncertainty. The external disturbances and 

unknown uncertainties are set as 

 
0.4sin 2 0.2cos2 0.3cos

0.1sin 2 0.2cos2 0.1cos

0.3sin 2 0.3cos2 0.25cos

t t t

t t t t

t t t

 
    
  

A ,  
0.2sin 0.2cos 0.4sin3

0.2sin 0.2cos 0.1sin3

0.3sin 0.1cos 0.1sin3
d

t t t

t t t t

t t t

 
     
  

A  

 
0.4sin 0.3cos3

0.15sin 0.1cos3

0.35sin 0.25cos3

t t

t t t

t t

 
    
  

B , and  
1 1

2 2

1 1 2 2

0.4 sin

, 0.3 cos

0.2 sin 0.3 cos

x x

t x x

x x x x

 
   
  

w x . 

Notice that the triple  , ,A B C  has an invariant zero 1.3368  and  rank 2CB  

satisfying Assumptions 4.2 and 4.3. For solving algebraic Riccati inequalities (4.44) and (4.45) 

of this example, select the parameters as 0.01  , 10  , 20.02R I , 11 32Q I , 

22 30.002Q I , 1 0.333  , 2 1  , 3 0.6  , and 4 5  . Then a set of solutions is 

11

0.3684 0.2725 0.2493

0.2725 0.9441 0.2735

0.2493 0.2735 0.5813

 
   
   

P  and 22

8.8627 3.0587 0.2814

3.0587 14.4483 4.4264

0.2814 4.4264 4.3339

 
   
  

P . 

The parameters designed above all satisfy the requirement of Theorem 4.2. Hence, we 

construct the full-order compensator as 
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     
5.0534 1.6143 0.1594 0.0177 0.0188

1.6742 8.0701 2.6512 0.0532 0.0565

0.1452 2.3519 2.3132 0.1241 0.1318

t t t 
      
           
         

y  

     
24.3778 13.5769 4.1372 1.4050 7.8788

1.1628 33.5294 15.3885 7.2577 1.8861
t t t

       
          

v y  

and design the sliding surface as 

        1 0

0.0263 0.1842
0

0.1579 0.1053

t
t t q dq

 
    

s y y v . 

Moreover, in order to avoid the chattering problem, the term 
 
 

1

1

t

t

s

s
 in the controller (4.9) is 

replaced with the saturation function [11], and the new version of the controller is given by 

           1 2 1

1
, sat ,

1
t t t t t     


     


u v y v s  

where 1 2 5   ,  , 2t y , 0.8  , 2.5  , and 0.1  . 

On the other hand, the controller in [28] was designed as 

         1 2ˆ0.1 sat
0.1e

t
t t   
    

 

s
u Kx GB  

where 
0.2796 0.2580 0.1676

0.1152 0.3624 0.1952

   
     

K  and 
0.02 0.1 0.04

0.15 0.05 0

 
  
 

G . The parameter 

 0 1
ˆ ˆ ˆg g t   y  is obtained by the adaptation laws 0 20

ˆ
t

g dt  s  and 0 20
ˆ

t
g dt  y s . 

The estimated state  e tx  and the switching function  2 ts  are given by the following 

structure 

          
              2 0 0

e e d e e

t t

e e e d e

t t t t t

t t t t q dq q dq





    

       

x Ax A x L y Cx

s N y Cx Gx G A BK x G A x


 

where 
0.3094 1.0149 2.0751

1.7152 0.0940 0.3489

T
 

   
L  and 

0.02 0

0 0.05

 
  
 

N . Figures 4.10-4.18 chart 
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the simulation results using the initial state    0 1 1 1
T

x  and 

     0 0 0 0 0
T

e  x . Time responses of system states in two cases are shown in Figs. 

4.10-4.12 respectively. All states in both cases converge around zero. The time responses of 

the system outputs are shown in Figs. 4.13 and 4.14. All system outputs underlying these two 

methods converge around zero quickly, and two outputs controlled by the proposed method 

have no overshooting. Figure 4.15 charts the property of robust disturbance attenuation and 

demonstrates that the inequality (4.18) is guaranteed. Figure 4.16 depicts the comparison of 

the responses of  ts  in detail, which both trajectories of  ts  indeed enter the bounded 

layer around zero in a finite time, and the proposed method keeps the response  ts  in the 

layer consistently from the initial moment. The responses of the control inputs  tu  are 

given in Figs 4.17 and 4.18. There exists no high gain in all inputs and the replacement of the 

saturation function eliminates the chattering. Although there exists the state delay term and 

uncertainties in the nominal system, the system outputs are finally bounded around zero. The 

simulation results demonstrate that the proposed controller design can guarantee the robust 

disturbance attenuation to outputs  ty  once the system is in the sliding mode. 
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Fig. 4.10. System states  1x t  of two cases in Example 4.2. 
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Fig. 4.11. System states  2x t  of two cases in Example 4.2. 
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Fig. 4.12. System states  3x t  of two cases in Example 4.2. 
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Fig. 4.13. System output  1y t  of two cases in Example 4.2. 
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Fig. 4.14. System output  2y t  of two cases in Example 4.2. 
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Fig. 4.15. Performance of robust disturbance attenuation of our proposed method in Example 

4.2. 
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Fig. 4.16. Responses of  ts  of two cases in Example 4.2. 
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Fig. 4.17. Control inputs  1u t  of two cases in Example 4.2. 
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Fig. 4.18. Control inputs  2u t  of two cases in Example 4.2. 
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Example 4.3 Consider an unstable example modified from the real example of chemical 

reactor system [32] within the corresponding form of system (4.3) with delay time 1  . The 

system structure and parameters are the same as Example 4.1, and matrix A is altered to 

4.93 1.01 0 0

3.20 0.3 12.8 0

6.40 0.347 32.5 1.04

0 0.833 11.0 3.96

  
   
   
  

A  

such that the open-loop system is unstable. For solving algebraic Riccati inequalities (4.44) 

and (4.45) of this example, select the parameters as 0.53  , 10  , 20.02R I , 

11 42Q I , 22 40.002Q I , 1 0.333  , 2 1  , 3 0.6  , and 4 5   such that 

 1 1
11 2 4 0T

d d    Q H H  and conditions in Theorem 4.2 are fulfilled. Then a set of 

solutions is 

11

0.3493 0.0274 0.0731 0.0453

0.0274 0.3308 0.0096 0.0028

0.0731 0.0096 0.1228 0.1475

0.0453 0.0028 0.1475 0.3863

   
  
 
  

P  

22

1.8870 0.0822 0.1077 0.4531

0.0822 2.0885 0.0778 0.2438

0.1077 0.0778 4.0664 0.3196

0.4531 0.2438 0.3196 0.3283

 
  
  
  

P . 

Hence, we construct the full-order compensator as 

     

5.8010 0.1534 5.4216 0.0241 1.2852 0.0760

0.6640 2.4837 1.0249 0.0067 0.0178 0.0706
,

5.4708 0.3417 31.8148 0.0781 6.4260 0.3802

7.4909 0.8308 10.0792 2.3331 0.1780 0.7062

t t t 

     
           
     
       

y  

and design the sliding surface as 

       
0

17.4651 1.3691 3.6532 2.2646
0

1.3691 16.5404 0.4786 0.1376

t
t t q dq

 
       

s y y  
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 
0

17.4651 1.3691
          .

1.3691 16.5404

t
q dq

 
   
 y  

For avoiding the chattering problem, the term    t ts s  in the controller is also replaced 

with the saturation function, and the new version of the controller is given by 

     

       1 2

17.4651 1.3691 3.6532 2.2646 17.4651 1.3691

1.3691 16.5404 0.4786 0.1376 1.3691 16.5404

1
          , sat ,

1

t t t

t t d t



      


    
          

     


u y

y v s

 

where 1 2 5   ,  , 2t y , 0.8   , 1d  , 2.5  , and 0.002  .  

Figures 4.19-4.25 chart the simulation results of the new version of controller using the 

initial state    0 2 3 4 1
T

x  and    0 0 0 0 0
T  . Figure 4.19 depicts responses 

of system states. All trajectories of system states converge around zero. The time responses of 

the system outputs are shown in Fig. 4.20. The outputs also converge to zero quickly. The 

integrations of    T t tz z  and  2d t  are shown in Fig. 4.21. This figure verifies that robust 

disturbance attenuation (4.18) is guaranteed. Figures 4.22 and 4.23 illustrate  ts  and 

 ts , respectively. In Fig. 4.23, the controlled system can maintain in the sliding layer in the 

whole time. Figure 4.24 depicts that the trajectories of  te  are bounded around zero and do 

not converge to zero as system states because of the mismatched disturbance. The responses 

of the control inputs  tu  are given in Fig. 4.25. The replacement of the saturation function 

eliminates the chattering. In Fig. 4.20, although the nominal system contains an unstable root, 

the state delay term, and the mismatched disturbance, the system outputs  ty  are finally 

bounded around zero. The simulation results demonstrated that the proposed controller design 

can guarantee the robust disturbance attenuation to outputs  ty  once the system is in the 

sliding mode. 
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Fig. 4.19. System states in Example 4.3. 
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Fig. 4.20. System outputs in Example 4.3. 
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Fig. 4.21. Performance of robust disturbance attenuation in Example 4.3. 
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Fig. 4.22. Sliding functions in Example 4.3. 
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Fig. 4.23. Response of  ts  in Example 4.3. 
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Fig. 4.24. Trajectories of  te  in Example 4.3. 
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Fig. 4.25. System inputs in Example 4.3. 

 

4.4  Robust Stability in the Sliding Mode for Delay-Dependent Condition 

Define an unknown time-varying function  t   as the state delay time satisfying 

  0 t    and  t    (4.54) 

where   and    are known bounds of the delay time and its derivative. Altering   by 

 t , the system (4.3) can be rewritten as 

 

            
      

   
          , ,

.

d d d dt t t t t t

t t t

t t

      

  



x A D H x A D H x

B u f x u Ed

y Cx



 (4.55) 

Among the delay-dependent condition, the autonomous system       dt t t t  x Ax A x  

is stable for some  t ; otherwise, the system is unstable for the other delay time — the 

stability of system depends on the delay time. The integral sliding surface (4.5), controller 

(4.9), and full-order compensator (4.23) are continued using. The closed-loop system with 

time-varying delay in the sliding mode is modified as 
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 
 

 
 

 
   

 
 

  
  

           d d d d

d d d d

t t t
t

t t t

t tt

t t t





         
                

   
         

x NA BK ND H BK x NE
d

e MD H MA LC e ME

xNA ND H 0

MA MD H 0 e




 (4.56) 

    
 

.w

t
t

t

 
  

 

x
z C

e
 (4.57) 

Before introducing main results, an extra assumption is introduced. 

Assumption 4.4: The delay time and its derivative are bounded,  0 t    and 

  1t     where   and    are known constants. 

Defining a new state vector    
 
t

t
t

 
  
 

x
q

e
, the dynamics (4.56) and (4.57) can be 

expressed as 

 
        
   

d

w

t t t t t

t t

   



q Aq A q Dd

z C q

  
 (4.58) 

where 
 

 
t

t

   
    

NA BK ND H BK
A

MD H MA LC
 , 

 
 

d d d d
d

d d d d

t

t

  
    

NA ND H 0
A

MA MD H 0
 , and 

 
  
 

NE
D

ME
 . The following lemma is cited to complete the stability analysis in Theorem 4.3. 

Lemma 4.2 (Jensen inequality) [62] For any constant matrix m mM  , 0T M M , 

scalar 0  , and vector function  : 0, m    such that the integrations concerned are 

well defined, then 

          0 0 0

T
T d d d

  
             M M .  

For the closed-loop system (4.58), the following theorem presents the stability criterion and 

the design of matrices K and L. 

Theorem 4.3 Consider the system (4.58) in the sliding mode with the full-order compensator 
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(4.23). Given  , 0i  , 1, 2, ,11i   , and a positive definite matrix R, if there exists  

11 0P , 22 P I , 11 0Q , 
1 1 1 1

3 4 7 8
11 1

1

1
T
d d

   
 

   



  
 


Q Z H H , 22 0Q , 1 0Z , 

2 0Z , and a scalar 0  , satisfying the following LMI 

 

11 13 15 16 18

22 23 24 25 27 29

33 36 37

44

55 56 57

66 6

77 7

88

99

a

b

aa

bb

     
        
     
     
       
 
       

        

       

         
          
            

0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0

0 0 0

0 0

0

0








 (4.59) 

where 

     1 1 1 1 1
11 11 11 1 2 5 6 1 111

T T T                    P NA NA P C C H H Z Q  

   
2

1
22 22 22 2 22 111

4

T T T T           P MA MA P C C Z Q C CC C  

 1
13 11 11d      P NA Z  

23 22 d  P MA  

    1 1 1 1 1
33 3 4 7 8 11 11T

d d                 H H Q Z  

 1
24 21      Z  

  1
44 22 21       Q Z  

15 11  P NE  

25 22  P ME  

2
55    I  
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 16 1

T  NA Z  

 36 1

T

d  NA Z  

 56 1

T  NE Z  

66 1   Z  

 27 2

T  MA Z  

 37 2

T

d  MA Z  

 57 2

T  ME Z  

77 2   Z  

 18 11 11 11d   P ND P ND P B  

 1 1 1
88 1 3 9diag , ,       I I I  

 29 11 22 22 11d   P B P MD P MD P B  

 1 1 1
99 2 4 10diag , , ,       R I I I  

1
6 1 1 1a d      Z ND Z ND Z BR  

  11 1 1 1
5 7 9 10diag , ,aa    

      I I I  

 7 2 2 2b d    Z MD Z MD Z  

 1 1
6 8 11diag , ,bb       I I I  

then robust disturbance attenuation (4.18) can be guaranteed. Furthermore, matrices K and L 

are given by 

 1
11

TK R B P  and 1
222

T L P C . (4.60) 

Proof: The detail is in Appendix 2.  
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The method determining matrices K and L is similar to Remark 4.2 by replacing (4.30) with 

(4.59). Choose suitable parameters  , 
i  for 1,2, ,11i   , and R to obtain 

11P  and 
22P  

in (4.59). Of course all solutions to (4.59) must satisfy the requirement in Theorem 4.3. The 

following example demonstrates the proposed method. 

Example 4.4 Refer to the real example of chemical reactor system [32] within the 

corresponding form of system (4.55) as 

4.93 1.01 0 0

3.20 5.30 12.8 0

6.40 0.347 32.5 1.04

0 0.833 11.0 3.96

  
    
   
  

A , 

1 0

0 1

0 0

0 0

 
 
 
 
 
 

B , 

0.1 0

0 0.5

0.2 0

0 0.1

T
 
 
 
 
 
 

C , 

1

0

1

0

 
 
 
 
 
 

E , 

and  diag 1.92,1.92,1.87, 0.724d A . The known parts of uncertainties in the system are 

given by 

0.47 1.01 0 0

0.22 0.17 1.21 0

0.63 0.347 0.91 1.04

0 0 0.14 0.96

 
   
 
  

D , 

0.55 0.02 0 0

0.78 0.35 0 0

0 0.72 0.49 0

0 0.33 0.54 0.39

  
  
  
   

H , 

 diag 0.47, 0.26, 0.85,1.53d  D , and  diag 1.11, 0.21,1.26, 0.47d   H . The external 

disturbances and unknown parts of uncertainties for system (4.55) are set as    1 4t r t  I , 

   2 4d t r t  I ,   0.001 sin 2td t e t , and 

  1 2 1

1 2 2

0.12 sin 0.08 cos1.3 0.2sin
, ,

0.07 cos3 0.03 sin 5 0.3cos

u t u t x
t

u t u t x

  
    

f x u  

where 1 2
T Tu u   u ,  1r t  and  2r t  are different random functions with values between 

1  and 1. The time-varying delay is set as   0.4cos 0.5 0t t     with 1   and 

0.5   . Notice that the triple  , ,A B C  has invariant zeros 4.4252  and 45.0014 , and 

 rank 2CB , satisfying Assumptions 4.2 and 4.3. 
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For solving the corresponding LMI (4.59) of this example, select the parameters as 

1.5  , 20.01R I , 10i   for 1, ,8i   , 9 10 0.1   , and 11 28  . Then the 

solutions are given by 

11

5.0181 1.2310 5.4493 6.5153

1.2310 4.3124 1.2474 2.9403

5.4493 1.2474 22.3435 7.0087

6.5153 2.9403 7.0087 19.4398

  
   
  
   

P  

22

6.8922 1.4873 8.9189 7.0708

1.4873 28.0807 1.5531 1.1411

8.9189 1.5531 28.5323 7.7643

7.0708 1.1411 7.7643 20.9222

  
  
  
  

P  

22

11.4726 2.8032 6.7521 11.8654

2.8032 5.3647 0.4501 5.6781

6.7521 0.4501 38.2936 2.5132

11.8654 5.6781 2.5132 26.8219

 
   
 
   

Q  

1

0.004 0 0.007 0.0007

0 0.0041 0 0.0009

0.007 0 1.0984 0.9233

0.0007 0.0009 0.9233 4.1742

  
 
 
 
  

Z  

2

0.022 0.0005 0.0005 0.0021

0.0005 0.0221 0 0.001

0.0005 0 0.0174 0.0001

0.0021 0.001 0.0001 0.0174

  
 
 
 
  

Z  

and 11 45Q I  satisfying the sufficient condition in Theorem 4.3. Notice that the finite 

performance index   is 0.9598 in this case. Hence, we construct the full-order compensator 

as 

     

12.8013 0.694 64.9973 2.08 128 1.388

0.0001 0.1733 2.1998 0.7907 0 0.3332

6.3997 0.347 32.5005 1.04 64 0.694

0.0006 0.8315 10.9989 3.9603 0 1.666

t t t 

      
          
      
      

y  
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and design the sliding surface as 

          

 

1

0

0

5018.1 246.2
0

1231 862.5

501.8113 123.0986 544.9341 651.5326
          

123.0986 431.2409 124.7431 294.0253

t

t

t t q dq

q dq

  
     

  
    





s GCB G y y y

 

where 2G I . Moreover, in order to avoid the chattering problem, the term 
 
 
t

t

s

s
 in the 

controller (4.9) is replaced with the saturation function [11], and the new version of the 

controller is given by 

   

      
  

1 2

501.8113 123.0986 544.9341 651.5326

123.0986 431.2409 124.7431 294.0253

5018.1 246.2 1
          ,

1231 862.5 1

          sat ,

t t

t t t d

t



     




  
    

 
         


u

y y v

s

 

where 
1 2 10   ,  , 2t y , 0.8  , 1  , 1d  , 25  , and 0.002  . Figures 

4.26-4.34 chart the simulation results using the initial state    0 2 3 4 1
T

x  and 

   0 6 3.2 0 0
T   . The first one in these figures depicts all system states which 

converge around zero. The time responses of the system outputs are shown in Fig. 4.27. Since 

  2d t L , the system and controller designed above satisfy Theorem 4.3 so that both system 

outputs converge to zero asymptotically. Although the control law design completely fulfilled 

Theorem 4.3, the dominant pole of the closed-loop system was very close to the origin such 

that the output responses converged toward zero slowly. The performance of robust 

disturbance attenuation is shown in Fig. 4.28. The robust disturbance attenuation (4.18) in this 

case is guaranteed. Figures 4.29-4.31 illustrate  1s t ,  2s t , and  ts  respectively. In Fig. 

4.31, the trajectory representing the controlled system can maintain in the sliding layer in the 

whole time. Figure 4.32 shows that the trajectories of  te  affecting by the mismatched 
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disturbance also converged toward zero slowly due to the dominant pole. The responses of the 

control inputs  tu  are given in Figs. 4.33-4.34. The replacement of the saturation function 

eliminates the chattering. The simulation results demonstrate that the proposed controller 

design can guarantee the robust disturbance attenuation to outputs  ty  once the system is in 

the sliding mode. 
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Fig. 4.26. System states in Example 4.4. 

0 5 10 15 20 25 30 35 40 45 50
-1

-0.5

0

0.5

1

1.5

2

Time (min)

 

 

y1

y2

 

Fig. 4.27. System outputs in Example 4.4. 
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Fig. 4.28. Performance of robust disturbance attenuation in Example 4.4. 
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Fig. 4.29. Sliding function  1s t  in Example 4.4. 
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Fig. 4.30. Sliding function  2s t  in Example 4.4. 
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Fig. 4.31. Response of  ts  in Example 4.4. 
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Fig. 4.32. Responses of  te  in Example 4.4. 
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Fig. 4.33. Control input  1u t  in Example 4.4. 
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Fig. 4.34. Control input  2u t  in Example 4.4. 

4.5  Summary 

This chapter has presented the output feedback integral sliding mode controller for a 

class of time-delay systems with structure uncertainties and mismatched disturbances. The 

auxiliary full-order compensator added into the design of the integral sliding surface can 

improve the synthesis problem of static output feedback sliding mode control. For ensuring 

the property of robust disturbance attenuation in the delay-independent condition, two types 

of sufficient conditions are derived successfully for time-delay systems with uncertainties. In 

contrast with two conditions, the two control performances are similar. In the field of the 

computing time and complexity of solving procedure, solving algebraic Riccai inequalities is 

faster and simpler than solving the LMI. The enormous dimension of LMI caused the 

complexity of solution and increased the computing time. Adding a matrix F into the 

compensator and modifying the quadratic energy function can decompose the LMI to two 

algebraic Riccati inequalities and bring the simplicity for solving parameters of compensator 

and controller. When the LMI or two algebraic Riccati inequalities have solutions, both the 

stability of the closed-loop system and the condition of robust disturbance attenuation can be 
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guaranteed. Moreover, the designed controller can maintain that the system is always in the 

sliding mode from the initial moment. The simulation results in examples demonstrated the 

feasibility of the propose control scheme successfully. 

Provided the delay-dependent condition, this chapter has also completed the output 

feedback integral sliding mode controller design for the same time-varying delay systems. 

The proposed control method utilized the disturbance rejection condition in H theory to 

derive the LMI comprised of the parameters of the system, controller, and compensator. While 

the LMI has a set of solutions, both the stability of the closed-loop system and the property of 

robust disturbance attenuation have been proved. Finally, the simulation results of the real 

chemical reactor example also demonstrated the stable system trajectories by the proposed 

control scheme. 
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V. CONCLUSION 

5.1  Concluding Remarks 

Sliding mode control method has several advantages such as the robustness against 

matched disturbances, short transient time, simplicity in contrast with other nonlinear control 

schemes, etc. For linear MIMO systems which output signals are only available, this thesis 

reserved the original properties and developed the output feedback integral sliding mode 

control method. In many research reports, the design of sliding surface, synthesis of the 

controller, and local stability limited the development and applicability of the output feedback 

sliding mode control in practice. For improving these constraints, the integral term and 

adaption law were added into the sliding surface and controller, respectively. They released 

the synthesis problem and offered an extra degree of freedom for the system in the sliding 

mode, rather than depending on a stable matrix only. Solutions to an algebraic Riccati 

equation are used to determine the stability and robust disturbance attenuation against 

mismatched disturbances of the closed-loop system. Moreover, the adaption law in the 

controller played an important role to complete global stability and to avoid the high-gain 

problem. 

The applications applied to time-delay systems have been developed by including the 

full-order compensator to perform the integral term in the sliding surface. Equally, the 

introduction of integral term in the sliding surface improved the synthesis problem. As for the 

stability problem of the system in the sliding mode, the LMI and a set of algebraic Riccati 

inequalities were derived respectively as a sufficient condition of the robust disturbance 

attenuation for the systems in the delay-independent condition. In contrast with two kinds of 

inequalities, algebraic Riccati inequality was with smaller space dimensions and spent less 

computing time, than LMI. For the delay-dependent condition, Chapter IV has also developed 

a sufficient condition as an LMI for ensuring the property of robust disturbance attenuation. 
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As the systems located in such severe conditions, disturbing by mismatched uncertainties and 

having time-varying delay feedback states, the primary LMI became very large for covering 

all disturbed terms to guarantee the stability and robust disturbance attenuation. Several 

examples in two kinds of delay conditions are simulated the feasibility of the proposed 

methods. 

5.2  Future Works 

For all output feedback controller designs in this thesis, two conditions are necessary to 

satisfy: the system must be minimum phase and with relative degree one. Position states are 

the only measurable variables in many mechanical systems whose relative degree in general is 

larger than one, e.g. inverted pendulum systems. Hence the development for the output 

feedback controller of systems with larger relative degree is necessary. How to compensate 

the relative degree problem and elaborate merits of sliding mode methods is essential. 

In the field of output feedback controller design, an important topic is how to design a 

sliding mode controller assuring that the system approaches the sliding mode in a finite time 

globally. Present methods can complete it locally and cause high-gain control force due to the 

shortage of state information. Although Chapter III has offered a global stabilizing method, 

how to apply this stabilizing method to time-delay systems is still a challenge. On the other 

hand, solving an LMI with large dimensions is not easy in the delay-dependent condition. 

Finding out a simpler sufficient condition to ensure the stability and robust disturbance 

attenuation is also an important research topic in the future. 
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Appendix 1 

Proof of Theorem 4.1 

Define    
 
t

t
t

 
  
 

x
q

e
 and a quadratic energy function as 

      
tT T

n t
E d


  


  q q Pq q Qq  (A.1) 

where the matrices 0P  and 0Q  are determined later. Then define the Hamiltonian 

function as 

   2T T ndE
H

dt
  d z z d d  (A.2) 

where ndE

dt
 is the derivative of nE  along the trajectory of the closed-loop system (4.28). A 

sufficient condition satisfying the robust disturbance attenuation is that 

   0H d  for all 2Ld  (A.3) 

where all functions  sd  fulfilled that    
0

trace T s s ds


     d d  are bounded. Since 

(A.3) holds,  nE q  is a strict radially unbounded Lyapunov function of the closed-loop 

system (4.28), and hence the robust stability can be guaranteed [55]. Notice that (A.3) is 

equivalent to  
2

sup 0
L

H



d

d . As    wt tz C q , (A.2) can be rewritten as 

 

            
               

2

2         

            .

T T n

TT T T T
w w w w w

T T T T T T
w w w

dE
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d z z d d

q A P PA Q C C q d d q PB q

q Qq q PG d q B Pq d G Pq

 

Based on the above equation, the worst case  
2

sup
L

H
d

d  occurs when    2 T
wt t d G Pq , 

and it follows that 

      2T T T T
w w w w w wH t t     d q A P PA Q C C PG G P q  
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                       .T T T T
w wt t t t t t         q B Pq q PB q q Qq  (A.4) 

If there exists 22 P I , according to Lemma 4.1 (ii), the following inequality is established as 

       
1

10 12 1212 22
11

1022 12

TT
T T

T TT T
t t t t








  
      

P P 00 P P C C
q q q q

0 C CC CC CP P 0
 

where 10 0  . Applying Lemma 4.1 and designing 1
11

TK R B P  and 1
222

T L P C , the 

upper bound of  H d  can be expressed as    
 

 
 

11 12

12 22

T

T

t t
H

t t 
     

           

q q
d

q q
 where 

 
   

11 11
11

12 12 22 22

1
10 12 12 11 12

1 1
10 12 12

1 1
11 11 1 12 12 1

1
12 11

2        

2

        

    

T T

T TT T

T T

T T T T

T T T T T

T T

 

 

 



 

 



  
  
   
  

  
   
  

   

NA P P NA C C 0

P NA MA P P MA MA P

P P P BR B P

0 C CC C P BR B P

P BR B P P MDD M P H H 0

P BR B P 0

 

2 3
1 1

2 12 12 5 12 12

1
4 11 11 4

1
11 11

12 12
1 1 1

5 11 11 3 22 22

6 11 11 7

    

        

        

        

T T

T T T T

T T T

T

T

T T T T

T T
d d

 
 

 

 

 

 





  

 
   
 

  
 
 

  
  




H H H H 0

0 P NDD N P P P

P NDD N P H H 0

0 P BR B P

0 NA P P MA

0 P BR B BR B P P MDD M P

P ND D N P 12 12

2

8 12 12 9 22 22

        ,

T T T
d d

T

T
w wT T T T T

d d d d




 



 
  
 

    

P MD D M P 0

0 C C

0 0
PG G P Q

0 P ND D N P P MD D M P

 

 1 1 1 1
6 7 8 9

22

T
d d         

   
  

H H 0
Q

0 0
, and 11 12

12
12 22

d d
T

d d

 
    

P NA P MA 0

P NA P MA 0
. Notice 

that 11 12

12 22

0T

 
  
 

P P
P

P P
, 11 12

T
12 22

0
 

  
 

Q Q
Q

Q Q
, and 0i  , 1, 2, ,9i   . Provided 
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11 12

12 22

0T

  
   

, then   0H d  and the property of robust disturbance attenuation (4.18) is 

also satisfied. Through Schur decomposition, if there exists 

 1 1 1 1
11 7 8 9 10 0T

d d          Q H H , inequality 11 12

12 22

0T

  
   

 is equivalent to the LMI 

(4.30). If there exists  , 11P , 12P , 22P , 11Q , 12Q , and 22Q  satisfying the LMI, it implies 

to  
2

sup 0
L

H



d

d  and to guarantee the robust disturbance attenuation. The proof of this 

theorem is completed. 
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Appendix 2 

Proof of Theorem 4.3 

Among the delay-dependent condition, choose three quadratic energy functions as 

   11
1 11 22

22

, T T T TE
 

    
 

P 0
x e x P x e P e q q q Pq

0 P
 (B.1) 

 

     
 

   
 

   
 

   
 

2 11 22

11

22

,

             

t tT T

t t t t

t tT T

t t t t

E d d

d d

 

 

     

     

 

 

 

 
  

 

 

 

x e x Q x e Q e

Q 0
q q q Qq

0 Q

 (B.2) 

 

     
 

   
 

   
 

   
 

0 0

3 1 2

0 01

2

,

             

t tT T

t t t t

t tT T

t t t t

E d d d d

d d d d

   

   

       

       

   

   

 

 
  

 

   

   

x e x Z x e Z e

Z 0
q q q Zq

0 Z

   

   
 (B.3) 

where 11

22

 
  
 

P 0
P

0 P
, 11

22

 
  
 

Q 0
Q

0 Q
, and 1

2

 
  
 

Z 0
Z

0 Z
. The positive definite matrices 

11 0P , 22 0P , 11 0Q , 22 0Q , 1 0Z , and 2 0Z  are determined later. Then define 

a Hamiltonian function as 

   2 1 2 3T T dE dE dE
H

dt dt dt
    d z z d d  (B.4) 

where idE

dt
 is the derivative of iE  along the trajectory of the closed-loop system (4.58) , 

1,2,3i  . A sufficient condition satisfying the robust disturbance attenuation (4.18), i.e. 

   2

0 0

t tT T Tdq dq  y y v Rv d d  0    t , is 

  0H d , for all  2 0,L d . 

Along arbitrary trajectories of system (4.58), the derivative of 1E  with respect to time is 

              1 2 2T T T T
d

dE
t t t t t t t

dt
    q PA A P q q PA q q PDd    . (B.5) 
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Similarly, the derivatives of 2E  and 3E  with respect to time are given by 

           
           

2 1

       1

T T

T T

dE
t t t t t t

dt

t t t t t t

  

  

    

    

q Qq q Qq

q Qq q Qq


 

and 

           
 

         
 

3 1

       1 .

tT T

t t

tT T

t t

dE
t t t d

dt

t t d





    

    





  

  





q Zq q Zq

q Zq q Zq

   

   
 

Lemma 4.2 can assist to determine the bound of integral term of the derivative of 3E  as 

       
    

  
     

    
  

               
   

3 1

1
       

1
       2

          

Tt tT

t t t t

Tt tT

t t t t

T T T

T

dE
t t d d

dt t

t t d d

t t t t t t t t t

t t

 

 

    

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

   




 



 




 


 


      



 

 

q Zq q Z q

q Zq q Z q

q Zq q Zq q Zq

q Zq

   

   

 

 

where  
 

    t

t t
d t t t


  


   q q q . Summing up 1dE

dt
, 2dE

dt
, and 3dE

dt
, the 

Hamiltonian function is bounded by 

               
               

               
   

 

2 2

            2 1

1
            2

            

1
         

T T T T T T
w w d

T T T

T T T

T

T T T
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H t t t t t t t

t t t t t t t t

t t t t t t t t t
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t

 

  
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












     

     
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

 
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d q C C q d d q PA A P q q PA q

q PDd q Qq q Qq
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q PA A P C C Q Z

  



 

           

    

       

2

2

1
            2

1
            1 .

T T

T T
d

T

t t t t t

t t t

t t t t



  


  







  

 
 

    
 

      
 

q q Zq q PDd

q PA Z q d d

q Q Z q

 



 

According to the Lemma 4.1, the bound of the uncertainty variations in the inequality above 
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can be obtained by known quantities as 

 

        

           
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   

1
1 2

1

1
3

2

1

            2 1 2

            1

            

T T T
w w

T T
d

T

T T

H t t

t t t t t

t t t t

t t

 

  

   

 

 

 

 
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 

d q PA A P C C Q Z P P q

q PA Z q q PDd

q Q Z q

q Zq d d


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 (B.6) 

where 

 
   

NA BK BK
A

0 MA LC
, d

d
d

 
  
 

NA 0
A

MA 0
, 

 
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1 3

1

2 4

T T T
d d

T T T
d d

 

 

 
  
  

N DD D D N 0

0 M DD D D M
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 1 1
1 2

2

T   
   

  

H H 0

0 0
, and 

 1 1
3 4

3

T
d d   

   
  

H H 0

0 0
. 

The constants 1 0  , 2 0  , 3 0  , and 4 0   are designed such that 

  1
3 1 0      Q Z . The inequality (B.6) can be written as the matrix form 

 

 
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  

 
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d

T

T

T
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T

t
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t

t

t t

t

 

    



 

 
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               
         

  
           
   

    

P P PA Z PD
q

d q PA Z Q Z 0

d PD 0 I

A q
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D d






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

 (B.7) 

where  1
21T T

w w          PA A P C C Q Z . Applying Schur decomposition to 

(B.7), if the following matrix inequality is satisfied, 
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 
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 
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0
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PD 0 I D Z
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



 

  

, (B.8) 

then   0H d . Furthermore, matrices A  and 
dA  in the nonlinear matrix inequality above 

involve uncertainties, hence applying Lemma 4.1 again can attain 

  

 
     

 

1
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T
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P P PA Z PD A Z

PA Z Q Z 0 A Z
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

 



 (B.9) 

where 

 
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5 7
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d d
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d d
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 
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5
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  

H H 0

0 0
, and  1 1

7 8
6

T
d d   

   
  

H H 0

0 0
. 

Notice that positive scalars i , 1, 2,...,8i  , must be chosen such that 

  1
3 6 1 0        Q Z . Therefore, if there exists positive matrices P, Q, and Z 

satisfying (B.9), then the stability and robust disturbance attenuation of the system can be 

guaranteed. 

Since designing 1
11

TK R B P  and 1
222

T L P C , the matrix A  can be rewritten as 

 

1 1
11 11

1
222

T T

T

 



             

NA BR B P BR B PNA BK BK
A

0 MA LC 0 MA P C C
. (B.10) 

Define a matrix W representing identity to the one of (B.9) as 
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11 12 13 14

22 24

33 34

44

0

 
   
  
    

W W W W

W 0 W
W

W W

W

. 

Substituting (B.10) into W, the details of W are given by 

1111
11 1 5

1122

 
       

 

W 0
W P P

0 W
, 

 
 

 

1
11 11

12 1
22 2

1
1

1

d

d

d

 
 

 

 

 

 

  
    
   

P NA Z 0
W PA Z

P MA Z
, 

     
22111

22 3 6 1
22 2

1
1

 
 

 
 

 
         

    

W 0
W Q Z

0 Q Z
, 

11
13

22

 
   

 

P NE
W PD

P ME
 , 2

33  W I , 

 

 

1
1 11 1

14 1 1
11 1 2 22 22

T T

T
TT T

 
  



 

 
      

NA Z P BR B Z 0
W A Z

P BR B Z MA Z C CP Z
, 

   1 2
24

T T
T d d
d

 
 

   
  

NA Z MA Z
W A Z

0 0
,  

   34 1 2

T TT      W D Z NE Z ME Z , 44112
44 4

4422

 
 

     
 

W 0
W Z Z Z

0 W
, 

where 

     
 

1 1 1 1 1
1111 11 11 1 2 5 6 1 11

1
11 11 11 1 3 11

1

           ,

T T T

T T T T
d d

     

 

     



         

  

W P NA NA P C C H H Z Q

P BR B P P N DD D D N P
 

   
 

1 1
1122 22 22 2 22 11 11

22 2 4 22

1

           ,

T T T

T T T
d d

  

 

        

 

W P MA MA P C C Z Q P BR B P

P M DD D D M P
 

    1 1 1 1 1
2211 3 4 7 8 11 11T

d d                W H H Q Z  
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 2
4411 1 5 7 1 1

T T T
d d     W Z N DD D D N Z Z  

 2
4422 2 6 8 2 2

T T T
d d     W Z M DD D D M Z Z . 

After decomposing nonlinear terms in the upper triangular area except the diagonal line by 

Lemma 4.1, an upper bound of W is obtained as 

11 12 13 14

22 24

33 34

44

0

 
    
  
 
   

W W W W

W 0 W
W W

W W

W

 

where 1111
11

1122

 
  
 

W 0
W

0 W
, 

 
 

1
14

2

T

T





 
 
  

NA Z 0
W

0 MA Z
, 4411

44

4422

 
  
 

W 0
W

0 W
, and 

     
 

1 1 1 1 1
1111 11 11 1 2 5 6 1 11

2
11 1 3 11 9 11 11

1

           ,

T T T

T T T T
d d

     

   

              

  

W P NA NA P C C H H Z Q

P N DD D D N P P BB P
 

   

 

1 1
1122 22 22 2 22 11 11

2
2

22 2 4 22 10 11 11 11

1

           ,
4

T T T

T T T T T T
d d

  

    

        

   

W P MA MA P C C Z Q P BR B P

P M DD D D M P P BB P C CC C
 

 2 1 1 1
4411 1 5 7 1 1 9 1 1

1 1 1
10 1 1           ,

T T T T
d d

T

    



  

  

   



W Z N DD D D N Z Z Z BR R B Z

Z BR R B Z
 

 2 1 2
4422 2 6 8 2 2 11 2 2

T T T
d d        W Z M DD D D M Z Z Z Z . 

Finally, using Schur decomposition can transfer W  to the LMI (4.59). If there exists 

solutions of LMI (4.59), the negative Hamiltonian function   0H d  is guaranteed to 

maintain the property of robust disturbance attenuation (4.18). The proof of theorem 4.3 is 

completed. 
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