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Student: Fu-Chang Lin Advisor: Prof. Chin-Teng Lin

Institute of Electrical Control Engineering
National Chiao Tung University

ABSTRACT

A generalized EEG-based Neural Fuzzy system to predict driver’s
drowsiness was proposed in this study. Driver’s. drowsy state monitoring system
has been implicated as a causal factor for the safety driving issue, especially
when the driver fell asleep or-distracted in driving. However, the difficulties in
developing such a system are-lack of significant index for detecting the driver’s
drowsy state in real-time and the interference of the complicated noise in a
realistic and dynamic driving environment. In.our past studies, we found that the
electroencephalogram (EEG) power spectrum- changes.were highly correlated
with the driver’s behavior performance especially the occipital component.
Different from presented  subject-dependent “drowsy state monitor systems,
whose system performance may ‘decrease rapidly when different subject applies
with the drowsiness detection model constructed by others, in this study, we
proposed a generalized EEG-based Self-organizing Neural Fuzzy system

(SONFIN) to monitor and predict the driver’ s drowsy state with the occipital

area. Two drowsiness prediction models, subject-dependent and generalized
cross-subject predictors, were investigated in this study for system performance
analysis. Correlation coefficients and root mean square errors are showed as the
experimental results and interpreted the performances of the proposed system

significantly better than using other traditional Neural Networks (p-value <



0.038). Besides, the proposed EEG-based Self-organizing Neural Fuzzy system
can be generalized and applied in the subjects’ independent sessions. This

unique advantage can be widely used in the real-life applications.
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I Introduction

1.1. Motivation

Drowsy driving is unsafe and dangerous to result in mounts of fatal
accident every year. Many traffic accidents have been implicated to drivers’
fatigue that is the causal factor among these accidents. Driving safety has been
escalated to receive a prior attention of the publics during the past years because
of the growth of traffic accidents caused by the declination in the drivers’
capability of perception, recognition and vehicle control abilities while sleepy.
The 2009 Sleep Report of National Sleep Foundation (NSF) in America poll
shows that 1% or as many-as 1.9 million drivers.have had a car crash or a near
miss due to drowsiness.in‘the past year. Even more surprising, 54% of drivers
(105 million) have.driven while drowsy.at least once in.the past year, and 28%
(54 million) do so.at least once per' month [1].

Therefore, the development of a human drowsy state-monitoring system for
drivers has become a major focus-in the field of safety driving and accident
prevention in recent years. The development of /countermeasures against a
serious threat to driver safety is an urgent necessity..Such an in-vehicle system
requires the capabilities”of continuously monitoring the arousal state of the
driver, accurately predicting the potential impact on the driving performance,
and delivering a timely warning before dropping asleep.

The difficulties in developing such a system are lack of significant index
for detecting drowsiness and complicated noise interferences in a realistic and
dynamic driving environment. Development of the drowsiness monitoring
technology for preventing accidents behind the steering wheel has become a
major interest in the field of safety driving. Thus, developing accurate and
non-invasive real-time driver drowsiness monitoring system would be highly

desirable, particularly if this system can be further integrated into an automatic

1



warning system.

1.2. Literature Survey and Problem Statement

Many studies related to drowsy state monitoring and detection technologies
have been developed during the last decade. Kozak et al. [2] and
Rimini-Doering et al. [3] proposed a similar lane-departure warning system via
tracking lane marks by camera systems for the assisted drivers. A different
approach is to monitor the activities of the drivers themselves such as yawning,
head positions, or eye blink duration by using optical sensors or video cameras
[4]-[5]. However, image- or video-based techniques are sensitive to external
weather conditions, e.g., rain.or snow, and are easily influenced by the driver’s
posture inside the car. McGregor et al. [6] introduced a technique to monitor the
drivers’ physiological  states by directly acquiring and analyzing subject’s
heart-rate variability (HRV)-and electrooculography (EOG) [7] signal, which
can overcome the system disadvantages mentioned above. Nevertheless, the
minute-length scale of HRV and EOG analyses limit the:-monitoring system to a
low-temporal-resolution output.

Recently, numbers of studies in neural engineering are devoted to explore
the informative index «of scalp EEG activities engaging with the particular
cognitive task. With the high-temporal-resolution of the sampling rate and the
portability of the hardware, the EEG has been shown as a promising approach to
effectively assess the physiological states. Review of the existing studies related
to the low performance, fatigue, or drowsiness [8]-[26], the changes in EEG
power spectrum are regarded as the robust index for the change of the cognitive
state. Beatty et al. [8] demonstrated the phenomenon of increasing occipital
theta (4-7 Hz) power when the radar operators were less vigilant. Huang et al. [9]
demonstrated tonic EEG power increase in low-frequency bands in the occipital
cortex during high-error periods in a continuous visual tracking task, and they

also showed similar tonic EEG power increase in low-frequency bands in the
2



occipital cortex in simulated driving experiments [10]. In addition, Lin et al. [11]
have shown the high correlation between o-(8-11 Hz) and 6-(4-7 Hz) band
power and driving error, which is defined as the mean deviation from lane center
in each moving window in the virtual-reality (VR) environment. Besides, the
research [12] showed that changes in EEG spectra in the #- and a-band reflect
changes in the drowsy state and memory performance. Other studies also
showed that the EEG power spectra in the 6- [13] and/or a-band [14] are
associated with drowsiness, and EEG power spectrum has largely linearly
related to subject’s driving performance. According to these fundamental
findings, several algorithms and systems are proposed [11], [15]-[22]. Our
research [11], [15]-[19] have demonstrated an automatic drowsy state prediction
system with EEG power spectra by constructing a linear regression model. In
[17], an independent ‘component analysis-based (ICA-based) Fuzzy Neural
Networks was proposed based-on the independent sources instead of the scalp
EEG activities. \Moreover, the comparison of three neural networks based
monitoring system was shown-in[23]. The performance could reach a low
prediction error across subjects while using-the occipital component. Subasi et al.
[20], Kiymik et al., [21] and Vuckovic et al. [22]also successfully demonstrated
an automatic recognition  algorithm-to classify alertness level with the
combination of EEG power bands ‘among 1-30 Hz. However, most of the
proposed models above are a subject-dependent system, i.e., the parameters of
the system are not a generalization solution for each individual. Consequently,
the performance might be unreliable when different users applied the proposed

model shown above.



1.3. Research Objectives

Based on the discoveries in the researches mentioned above, the objective
of this dissertation is to proposes a generalized EEG-based Self-organizing
Neural Fuzzy Inference Network (SONFIN) system to monitor the occipital 6-
and o-band power and further predict the driver’s reaction time (RT) to an
unexpected event. The main goal of this proposed system is to provide an
practically implementable cross-subject predictor practically to build a common
model that can be also applied to another user whose EEG signals are neither
acquired first nor used for system model construction to still maintain his/her
driving performance.

Two kinds of drowsiness prediction models, the subject-dependent and
generalized cross—subject ones, were investigated. The system performances of
SONFIN are compared with-three benchmark systems including the Multi-Layer
Perceptron Neural Network (MLPNN), the Radial Basis Function Neural
Network (RBFNN) and Support \ector Regression (SVR) with Radial Basis
kernel. The system performance evaluation was accomplished by calculating the
values of Pearson Product-Moment Correlation /Coefficient (PPMCC) and
Root-Mean-of-Square-Error (RMSE) between.recorded and estimated RTSs.
Firstly, ten-fold statistical validation-approach was applied to subject-dependant
drowsiness prediction to test if proposed framework is feasible to work or not.
The acquired EEG signals were fed into the applied four predictors, and
experimental results showed that the prediction performance of each applied
predictor is high and stable in each subject-dependent session. Then, the
generalized cross-subject drowsiness prediction system was applied to evaluate
if such generalized system can predict the moment of driver based on other
subjects’ EEG signals. Hence, we applied leave one subject out cross validation
way to evaluate the prediction performance in the cross-subject session.

Experimental results indicate that the proposed neural fuzzy system performs
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better prediction performance than other systems in correlation analysis and
prediction error especially for the cross-subject model, which means the
proposed system in this dissertation can not only overcome the individual
difference problem occurred by collecting EEG signals from different subjects
but also be applied to the real-world applications. It advantages the development

of in-vehicle protocol to the real-life applications for the publics.

1.4. Organization of the Thesis

This dissertation is organized as follows. Chapter 2 describes the
experimental environment that includes the virtual reality-based dynamic
driving environment, electroencephalogram (EEG) signal acquisition system,
and event-related lane departure experiment. Chapter 3 explores the flowchart of
data analysis procedures for subject-dependent and cross-subject drowsiness
prediction that include Independent-Component Analysis (ICA), power spectra
analysis, drowsiness prediction model introduction and system performance
estimation approaches. Chapter 4 investigates and discusses the experimental
benchmark resultramong four different.drowsiness prediction models. Finally,

the major contribution of this.work is givenin Chapter 5.



Il Materials and Methods

2.1. Virtual Reality (VR)-based Dynamic Driving Simulator

The experiments in this study used a VR-based highway-driving
environment, as shown in Figure 1, which was developed from the VR-based
dynamic platform with its supported emulation software, WorldToolKit (WTK)
library and application programmer’s interface (API) [27]. The detailed
highway-driving environment scene development procedure with the VR-based
dynamic platform was illustrated in Figure 2. Firstly, models of various objects
(such as cars, roads and trees etc.) for the scene were created including the
native parameters, e.g., the relative positions between objects, attitudes, and so
on. Then, the dynamic models among these. virtual objects were developed to
complete the simulated highway scene of full functionality with the aid of the
high-level C-based API program.

This simulator was also developed in our previous studies [17], [18],
[28]-[31] to investigate the changes of the driver’swdrowsy state during
long-term monotonous driving at a fix -speed of 100 km/hr. The experimental
environment includes a 3-D surrounding view projected by seven projectors, and
a real car mounted on a six-degree-of-freedom Stewart platform [22]-[25], as
Figure 1(a) and 1(b) shown, respectively. The vestibular cues, or motion cues,
were stimulated by the motion platform driven by these six hydraulic linear
actuators.

Even driving in the real world on a smooth road, any vehicle deceleration
and acceleration will never been avoided. Therefore, the strong stimulus
capability of Stewart platform can generate accelerations and deceleration in
many ways, such as longitudinal, lateral, and vertical directions of a vehicle as
well as sling, roll, and deflective angular accelerations etc. For example, to

simulate a deceleration situation when driving in a vehicle, the driver would
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experience some strength to push him/her against the seat belt, and then the
platform would simultaneously slant forward to simulate the deceleration force
caused by the change of the gravity in opposite direction. Similarly, the platform
would slant backward to simulate an acceleration force situation. All scenes
move depending on the displacement of the car and the subjects maneuvering of
the wheel during the driving experiments, making drivers feel like they are
driving a real car on a real road, and such (or comparable) technique has been

used widely in driving simulation studies [32], [33].

rightward drift

Figure 1.  VR-based Highway Driving Environment. (a) Driving simulator, (b)
six degree-of-freedom motion platform, and (c) illustration of driving task,
adapted from [9].
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Figure 2. VR-based highway-driving environment scene developed
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procedures. The interactive VR simulated scene was integrated with the dynamic
models and the 3D _shapes objects that are created. and linked to the WTK
library.

2.2. Event-related Lane-Departure Experiment

This study implemented the event-related lane-departure paradigm [10] on
the driving simulator. The simulator.automatically and randomly drifts the car
away from the center of the cruising lane as shown on Figure 1(c). The subjects
were instructed to keep the.car in the third lane using the steering wheel
whenever the occurrence of’ a lane-departure event. During an hour-long
experiment, this unexciting and monotonous task easily makes drivers fall
asleep. Each lane-departure event (or “trial”) captured the acquired EEG data,
deviation distance, and time latency for analysis. Three important time points
(see Figure 3(a) and Figure 4) in this experiment were recorded to determine the
driving trajectory [10]: (1) deviation onset (Dev-on) — the time at which the car
starts to drift away from the cruising lane, (2) response onset (Rps-on) — the time
at which the subject starts responding to the car-drifting event, and (3) response
offset (Rps-off) — the time at which the car returns to the center of the third lane.

The lane-departure event repeated 5-10 s after the “response offset of the
8



preceding lane-departure event.” In Figure 3 (b) and 3(c), the EEG data recorded
1-s before the “deviation onset” was served as the driver’s physiological state
inside the brain, and the time duration from “deviation onset” to “response onset”
was defined as the RT to represent the state of driver’s arousal. When subjects
were alert, their RT to the random drift was short, resulting in a small deviation
from the center of the lane. When the subjects were drowsy, the RT and resulting
lane deviation was long. Based on this relationship between EEG and RT, we
attempt to design a monitor system to process a 1-s EEG data continuously and

to predict the RT for real-world applications.
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Figure 3.  (a) Event-related lane departure paradigm, (b) recorded RT for all
trials, (c) 1-s epoch EEG data of the occipital activation before the deviation
onset (the 1-s EEG before Dev-on part during the cruising period), and (d) signal
processing procedures of the spectral feature extraction including 128-pts
Hamming window, 256-pts FFT, and zero-padding for each 1-s epoch. The
output is a paired data set including the spectral power and the corresponding

RT.
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Figure 4.  Detailed illustration of event-related lane departure experiment,
which is permitted for recreation by [34], [35]. The time duration taken from
Deviation onset to Response onset is defined as Reaction Time (RT) to represent

the state of driver’s arousal.

2.3. Subjects and EEG Data Recording

The six volunteer subjects (aged 20 to 40 .years) participated in the
VR-based highway-driving-experiments. All subjects involved in this study had
good driving skills-and were trained ‘with the \VR-based -highway-driving for one
day extra for familiarization before completing the testing section. Previous
study [26] showed that people often become drowsy after one hour of
continuous driving after lunch. These results indicate that drowsiness is not
necessarily caused by long-hours driving. Hence, to. maximize the chance of
obtaining valuable data‘for this.study, all the-experiments were conducted in the
early afternoon after lunch.

On the first day, participants were instructed regarding the general
procedures of the driving task. In addition, the participants completed an
informed consent form. They began a 15- to 45-min practice session to learn
how to keep the car in the center of the third cruising lane using the steering
wheel. Participants were allowed to unlimited practice.

On the test day, the participants were wired with an EEG electrode cap
connected to a physiology signals amplifier, as shown in Figure 5(a) and 5(b)
respectively, to acquire the EEG signals for analysis. The EEG data acquisition

process used 33 sintered Ag/AgCl EEG/EOG electrodes with a unipolar
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reference at right earlobe and 2 ECG channels with a bipolar connection placed
on the chest. All the 30 unipolar EEG/EOG electrodes were placed according to
a modified International 10-20 system illustrated in Figure 5(c), and referred to
the right ear lobe. Before data acquisition, the contact impedance between EEG
electrodes and cortex was calibrated at less than 5KQ. A NeuroScan NuAmps
Express system (Compumedics Ltd., VIC, Australia) simultaneously recorded
the EEG/EOG/ECG data, lane deviations, and the RT. The EEG data was
recorded with 16-bit quantization at a sampling rate of 500 Hz. Subsequent EEG
data processing procedures employed 250Hz down sampling to decrease the

calculation load.

Figure 5.  (a) The 30 channel EEG electrode cap, (b) EEG signal amplifier,
and (c) The international 10-20 system view from (A) left side and (B) top side
of the head. A = Ear lobe, C = central, Pg = nasopharyngeal, P = parietal, F =

frontal, Fp = frontal polar, O = occipital.

12



I11 Data Analysis

In this study, the EEG data analysis and signal processing were
implemented by scripts running in MATLAB (R2007a) and the EEGLAB
Toolbox (ver. 5.03) was developed by the Swartz Center for Computational
Neruoscience, the University of California San Diego (UCSD) [36]. The
flowchart of data processing procedures was illustrated in Figure 6 that consists
of Independent Component Analysis (ICA), power spectra analysis (see Figure
3(d)), feature extraction, drowsiness predictor model and correlation coefficient

analysis and root mean square error (RMSE) for system performance estimation.

30-channel
EEG data
X
| Socp RT
y. Spectral powers | a- and 6-band {
ICA - /A - gomponent transformed power Feature
decomposition ‘> selection by — > .
_ = by FFT extraction
S=W “X W (seeFig. 3(d))
- : Val
System Correlated coefficient analysis D .
performance <« | & drpwsmesz I
output RMSE estimation TR Moce

Figure 6.  Flowchart of the proposed drowsiness predictor, and the system
performance is verified by correlation-coefficient analysis and RMSE of the
recorded RT and predicted RT.

3.1. Independent Component Analysis

The blind source separation (BSS) problem [37], [38] deserves to be solved
in the EEG signal, which is usually contaminated by various artifacts including
eye movement and indoor power-line noise [39], [40]. One of the popular
methods was applied ICA with the algorithms, such as Infomax [41], FastiICA
[42] and JADE [43], to find the linear projections that maximizes the mutual
independences of estimated components.

The general representation of ICA model can be simply denoted as
13



s=wx, where s=[s;s,;:s,] presents the n independent sources, W tis
the back-projection weighting matrix, and x =[x;;X,;z x,[7 is the n
observed signals. The purpose of ICA algorithm is to find out the

back-projection weighting matrix, W_l, which can be rendered as a 2-D scalp
topographies with n independent components [44]-[49] as the Figure 7(a)
shown, where the weightings distribute around the occipital area is selected as

the component of interest, to have a maximum statistically independency of the

separated components, S. Then, the occipital component [8]-[13], Socp, e,
5™ scalp map in Figure 7(a), was selected by the weighting distribution of the

scalp topography that is rendered from W_1[44] as the region of interest for
power spectra analysis and feature extraction. The scalp topographies shown in
Figure 7(b) are the occipital component selected. from six subjects used in this
study. The input data to the prediction systems was the 6-band and a-band
powers of the “occipital component” instead of “occipital channel” after
processing ICA, so that the number of the occipital-like component should be
one, and the number of features Is 9 (4~12 Hz) that will be illustrated more

detailed in next section.

3.2. Power Spectra Analysis and Feature Extraction

As shown in Figure 7(b), the selected IC, Socp - related to occipital

component were taken for power spectra analysis. The power spectra analysis
flowchart was illustrated in Figure 3(d). In the first step of the spectral
transformation, each 1-s length epoch (250 data points) was divided into several
128-point sub-epochs by Hamming windows. Then, we perform 256-point FFT
with zero-padding for each subepoch to obtain the power spectral density.
Finally, the average of spectral powers of subepochs was used for the spectral
representation of this 1-s length occipital activation. Here, only the spectral
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powers of the #-band (4-7 Hz) and a-band (8-12 Hz), which is reported as the
significant index for the driving error [11], with the corresponding RT were used

as the dataset pair to establish the prediction model.

coesee
20000®
@ooo@w

X

(b)

Figure 7.  (a) The scalp map projection of each independent component,

where the 5-th scalp map is indentified as the occipital source, and the 5-th
sequence of data points is the corresponding component activation. (b) The scalp

topographies of the occipital component of six subjects.used in this study.

3.3. Performance Estimation

To estimate the performance among different predictors, the Pearson
Product-Moment Correlation Coefficient (PPMCC) and Root Mean of Square
Error (RMSE) were applied in this study.

In this study, the PPMCC, denoted by r, between the estimated RTs and
recorded RTs was obtained by Eq.(1).

i%(RTi —RTJeRT; —eRT) , (1)

\/ %(RT,—RT)Z \/ % (erT; —eRT )
i i=1

i=1

r=

where n is the number of trials. The RT and eRT are the average of
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recorded RTs and the estimated RTs, respectively. If r is high, it can be claimed
that two variables have a strong linear relationship and the performance of the
predictor is better [12], [18], [19].

The RMSE was another popular and useful index for assessing the
performance of the predictor [50]. The RMSE could be estimated as the

following:

J ﬁ(RTi —eRT; )2
RMSE = Vi< ’ (2)

n

where a smaller RMSE presents a better prediction for the proposed model.

3.4. Drowsiness Prediction Models

This study adopts four models for drowsiness.prediction: (1) SVR, (2)
MLPNN, (3) RBFNN, and (4)- SONFEIN..Because MLPNN and RBFNN are easy
to be over-fitted \when._the training data contain lots of noises, especially for
multi-hidden layers MLPNN, SVR, as known a popular-regression model, was
also selected for comparisons in-this study. Here, all of the proposed approaches
predict an unseen"RT while confronting an unexpected event in terms of the
spectral features of the ‘occipital activation. The following section briefly

describes the structure of each predictor.

3.4.1. Support Vector Regression

The support vector machine (SVM) is a popular approach for solving the
problem of multidimensional function estimation and has been applied to
various fields such as classification and regression. When SVM is employed
dedicatedly for solving the problems of function approximation and regression
estimation, it was denoted as the support vector regression (SVR). Figure 8(a)
shows the graphical overview for all steps. The SVR is a complicated and
heavy-computation implementation of prediction algorithm based on structuring

risk minimization principles to obtain a good generalization capability [51], [52].
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For ¢-SVR, it is formulated as minimization of the Eq.(3) as the following:

min ;wz +Ci(§i +¢i) (3)

yi — f(x, @) <e+i
subject to { f (X, @) —y; <&+

In this study, a library of LIBSVM [53] was used for SVR model

construction with the radial basis function applied as its kernel function.

3.4.2. Multi-Layer Perceptron Neural Network

The MLPNN is the most.commonly used neural-network architecture
because of its capability to-learn and generalize. relatively small training-set
requirements, fast operation, and ease of implementation [54], [55]. The
MLPNN structure“includes-one input layer, one output layer, and a couple of

hidden layers, as Figure 8(b) shows.

For the n-layer, |-PE (processing element) output, y? can be written as

y§ = f(net?)’ net] = Zw?i yht —~ by’ (4)
I

where f(.) is the activation function, w; is-the weight from i-PE to j-PE and
b; denotes the bias value for net;- The MLPNN estimates the weights to

minimize the cost function using a back propagation-learning algorithm:
E:;(dk -y ) (%)

The Gaussian activation function in Eq.(6) applies to all hidden layers,

while the output layer uses a linear activation function:

F(x) = — = (6)
1+e™

This study employs a 5-layer MLPNN with [10 6 5] processing elements
(PEs) of hidden layers and 8-layer MLPNN with [10 6 5 4 3 2] PEs of hidden
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layers for subject-dependent and generalized cross-subject drowsiness prediction,

respectively.

3.4.3. Radial Basis Function Neural Network

The radial basis function nerual network (RBFNN) is designed for
(nonlinear) function approximation problem with a high-dimension space. The
RBFNN provides a best fitting curve of the training data, and its implementation
IS much simpler than the perceptron approach while retaining the major property
of universal approximation of functions [56]. The RBFNN is a 3-layer feed
forward neural network structure that consists of an input layer, a single hidden
layer with a nonlinear (Gaussian) RBF activation function and a linear output
layer, as Figure 8(c) shows.

The output y,..Can be written as

x—ckl?
M pe 2
Yout Z(D(X):kzwk e oK), (7)
— 1

where W, is“the linear combinational \weight, 'Cyis the center of the

Gaussian RBF and.oy. is its.variance. The Orthogonal Least-Squares (OLS)
and gradient descent learning.algorithms [57]<[59] were employed to minimize
the error cost function

Ix-cil?
I =1
()= 00x ~¥0)” =m0 %3~y ®)

The RBFNN employed 30-40 and 300-500 neurons for subject-dependent
drowsiness prediction and generalized subject-independent drowsiness

prediction, respectively.

3.4.4. Self-Organizing Neural Fuzzy System
The SONFIN [60] combines the nodes with a finite “fan-in” of connections

represented by weight values from other nodes, and a “fan-out” of connections
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to other nodes, and its architecture is illustrated in Figure 8(d). The integration
function f combines information, activation, or evidence from other nodes, and

is denoted as

net - input = f[ulk,u'z‘...u';,,wf,w'z‘...w'gJ, 9

where uy,uf,---,usare inputs to this node, and wy,ws,---,wf are the

associated linking weights. The superscript {k} in this equation indicates the
layer number. The output for each node is an activation function value of its net
input, output=a(f), where a(,) represents the activation function.

The functions of the nodes in each of the five layers of the SONFIN
structure are briefly described as follow:.

Layerl: Transmitinputs to the next node directly, without computation.

f=u® a® =¢. (10)
Layer2: Calculate the output of Layer linto a fuzzy set.
@ P
f[u§2>]=[“'+2m“, a@ = f (11)
O'ij

Layer3: Perform a fuzzy rule with an AND operation.
; [u @ ]: ru® = e ABbem) (01 emi)] o @2 g, (12)

Layer4: Normalize the firing strength calculated in Layer 3.

4

f[uim)]:Zin), a(4)(f):“if. (13)

Layer5: Integrate all the actions from Layer 5 to defuzzify the results. Each
node in this layer corresponds to one output variable.

f[ui(S)J: Zwiui(S), a®(f)=f- (14)

The average rule numbers derived for subject-dependent drowsiness

prediction and generalized cross-subject drowsiness prediction was less than 10.
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MLPNN, (c) RBFNN and (d) five-layer SONFIN.
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IV Experimental Results and Discussion

In this study, a total of six normal healthy subjects participated in the
VR-based highway-driving experiments described in Section 2.1. The observing
driving events of each subject are consisted of 224 to 335 lane-departure events
and the EEG data length for subject 1 to 6 used for ICA decomposition are 44.7
min, 44.7 min, 30.4 min, 29.9 min, 31.5 min and 31.5 min. The occipital
components from six subjects were selected the region of interest for
establishing the prediction model. In total, we collected about 1594 trial samples
as shown in Table 1. The observing data are fed into FFT to transform into EEG
power spectra, which are served as the inputs to the SVR, MLPNN, RBFNN and
SONFIN predictors. This study applied two validation approaches to verify the
performance and .robustness of these predictors. . The subject-dependent
drowsiness prediction using-ten-fold cross-validation- was first utilized to
evaluate the average single-subject performance. In this-evaluation, 90% of the
trials for each subject were used for training, while the remaining ten-percent of
the trials were used for testing. The other validation approach is to evaluate the
generalized cross-subject  drowsiness prediction  performance which was
developed to be compared with the performance of the subject-dependent
models. In the cross-subject drowsiness prediction regime, the EEG power
spectra from randomly selected five subjects are used for training, and the

remaining subject was used for testing samples.

Table 1. Observing Lane-Departure Event Number for Each Subject

Subject 1 2 3 4 5 6 Total
Trials 33 335 228 224 236 236 1,594
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4.1. Subject-dependent Drowsiness Prediction

This drowsiness-prediction procedure is depicted in Figure 9. From
statistical point of view, each subject completed a 10-round ten-fold
cross-validation, in which 90% of the trials were randomly selected as the

training set and the reminding 10% of the trials as testing set.

Testing-fold dataset

S j].:_? /
SiF3 SVR

1
)
A
F

G

[

I

I

I

|

I

I

|

I

I

1

1

Dataset
{a- and B-powers, RT

. = R — | " - -
¢ Training-fold MLPNN | | R C Ol;gla.te(:
== SF1o dataset Estimated RT coefficien ;
- »| comparison an
Ten-fold cross i) RMSE estimation

validation

SONFIN

= = = - Training path
————— Testing path

Drowsiness
predictors model

Figure 9.  Subject-dependent drowsiness predictor ten-fold cross-validation

analysis structure, where S;F; means the j-th fold of the i-th subject.

4.1.1. Boxplots of PPMCC and RMSE

Boxplot is a useful plot-for column data analysis from statistical point of
view, and it can be simply implemented usinga native command in Matlab. In a
boxplot, there are three lines for the boxes at the lower quartile, median, and
upper quartile values, and two additional lines presents the maximum and
minimum values for this vector. Take vector A with values from 0.1 to 1 with a
step of 0.1 for example, its boxplot was depicted below in Figure 10. Line “a”
and line “e” present the maximum and minimum values for vector A, i.e., 1 and
0.1, respectively. Line “c” is the median value for vector A, i.e., 0.55, while line
“b” and line “d” presents the upper and lower quartile values, i.e., 0.8 and 0.3,
respectively.

The averages of PPMCC and RMSE between the actual and estimated RTs

are shown on Table 2 and Table 3, respectively. The PPMCC on the training and
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testing sets obtained by SVR, MLPNN, RBFNN, and SONFIN are 96.8%,
96.6%, 95.4%, 96.7% and 95.2%, 96.2%, 94.8%, 97.2%, respectively The
RMSE of training and testing data obtained by SVR, MLPNN, RBFNN, and
SONFIN are 0.088 s, 0.089 s, 0.074 s, 0.071 s and 0.130 s, 0.084 s, 0.103 s,
0.076 s.

i T a Min. Max.
0ol _:_ (e) Vector A (a)
ogf —b
07+ 0.2[0.3]0.4[0.5 0.60.7/0.5 0.9[1]
061 | ¢ [ |
0.5 Lower Median Upper
8;31 - Quartile  (¢)  Quartile

3 d d b
o3 | (d) (b)
o1l _ie

A

Figure 10. < Boxplot example for vectorA=[0.10.2 ... 1]

Figure 11 depicts the boxplot of the. PPMCC. of subject-dependent
drowsiness prediction” with 10-fold cross-validation using SVR, MLPNN,
RBFNN and SONFIN. Take Subject 1 for example, the median, upper and lower
quartile, maximum-and minimum_PPMCC for subject-dependent drowsy state
predictor with SONFIN are 96.0%, 95.6% and  97.2%, 98.0% and 90.2%,

respectively.
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Figure 11. Correlation coefficient boxplot comparison of subject’s drowsy

state testing evaluation for subject-dependent drowsiness prediction experiment
with SVR, MLPNN, RBENN and SONFIN: The boxes have three lines to

present the values for lower quartile (+), median (red line), and upper quartile

(++) for column data. Two addition lines at both ends of the whisker indicate the

maximum (*) and minimum (**) value of a column data.

Table 2. Correlation.coefficients Comparisons for

Subject-Dependent Drowsiness Prediction

Subject 1 2 3 4 5 6 Average (%)

gyr  Training 96.1% 955% 97.3% 97.2% 97.1% 97.5%  96.8+2.1
Testing 95.2% 955% 94.0% 93.7% 97.3% 95.7% 95.2+1.5

MLPNN Training 94.6% 97.1% 95.7% 97.0% 96.9% 98.3% 96.6+3.9
Testing 94.2% 97.1% 94.7% 96.7% 96.5% 98.2%  96.2+0.4

Training 95.6% 95.3% 92.8% 95.8% 95.9% 96.8% 95.4+1.8

RBFENN  Testing 95.1% 95.7% 91.8% 93.6% 95.4% 97.3% 94.8+0.5
SONFIN Training 95.6% 96.8% 96.6% 97.0% 97.4% 98.3% 96.7+15
Testing 95.7% 97.4% 96.6% 97.3% 97.7% 98.8% 97.2+1.6
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Table 3. RMSE Comparisons for Subject-Dependent Drowsiness Prediction

Subject 1 2 3 4 5 6 Average ()
SVR Training 0.084 0.083 0.093 0.087 0.088 0.093 0.088+0.038
Testing 0.111 0.104 0.164 0.175 0.119 0.155 0.13+0.038
MLPNN Training 0.075 0.054 0.095 0.095 0.071 0.056 0.089+0.025
Testing 0.083 0.059 0.103 0.109 0.083 0.065 0.084+0.034
RBENN Training 0.067 0.070 0.125 0.112 0.088 0.077 0.074+£0.030
Testing 0.073 0.076 0.133 0.143 0.108 0.088 0.103+0.043
Training 0.068 0.057 0.085 0.094 0.069 0.055 0.071%0.020
SONFIN Testing  0.071 -0.059 - 0.088° ©0.100 0.082 0.055 0.076+0.022

4.1.2. Experimental Result Examples

Some experimental results of ‘testing data ' evaluation examples with
subject-dependent drowsiness prediction infrastructure for Subject 1 to Subject 6
using SVR, MLPNN, RBENN and SONFIN were depicted from Figure 12 to
Figure 17, respectively.

Figure 12 shows some evaluation result' examples of testing data for
Subject 1 with subject-dependent drowsiness prediction infrastructure using (a)
SVR (r = 0.9525), (b) MLPNN (r = 0.9596), (c) RBFNN ( r = 0.9353) and (d)
SONFIN (r = 0.9832). The red dashed line and blue dash-dot line present the
golden testing data and estimated evaluation result respectively. The correlation
coefficients of training data validation for SVR, MLPNN, RBFNN and SONFIN
in the sample results of Subject 1 are 95.3%, 98.1%, 96.6% and 98.6%

respectively.
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Figure 12. Evaluation result examples of testing data for Subject 1 with
subject-dependentdrowsiness < prediction -nfrastructure using (@) SVR (r =
0.9525), (b) MLPNN (r =.0.9596), (c) RBFNN (r = 0.9353) and (d) SONFIN (r
= 0.9832). The red dashed line and.blue-dash-dot line present the golden testing

data and estimated evaluation result respectively.

Figure 13 are some evaluation result examples of testing data for Subject 2
with subject-dependent drowsiness prediction experiment using (a) SVR (r =
0.9317), (b) MLPNN (r = 0.9553), (c) RBFNN (r = 0.9464) and (d) SONFIN (r
= 0.9775). The red dashed line and blue dash-dot line present the golden testing
data and estimated evaluation result respectively. The correlation coefficients of
training data validation for SVR, MLPNN, RBFNN and SONFIN in the sample
results of Subject 2 are 93.2%, 94.2%, 94.4% and 96.2% respectively.
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Figure 13. Evaluation result examples of testing data evaluation for Subject 2

with subject-dependent drowsiness-prediction infrastructure using (a) SVR (r =
0.9317), (b) MLPNN (r. = 0.9553), (c) RBFNN (r =.0.9464) and (d) SONFIN (r
= 0.9775). The red dashed line and blue dash-dot line present the golden testing

data and estimated evaluation result respectively.

Figure 14 depicts some evaluation result examples of testing data for
Subject 3 with subject-dependent drowsiness prediction infrastructure using (a)
SVR (r = 0.9483), (b) MLPNN (r = 0.9783), (c) RBFNN ( r = 0.9493) and (d)
SONFIN (r = 0.9784). The red dashed line and blue dash-dot line present the
golden testing data and estimated evaluation result respectively. The correlation
coefficients of training data validation for SVR, MLPNN, RBFNN and SONFIN
in the sample results of Subject 3 are 94.3%, 98.2%, 95.5% and 96.4%

respectively.
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Figure 14. Evaluation result examples of testing data for Subject 3 with
subject-dependent drowsiness prediction infrastructure using (a) SVR (r =
0.9483), (b) MLPNN (r.= 0.9783), (¢) RBFNN (r =.0.9493) and (d) SONFIN (r
=0.9784). The red dashed line and blue dash-dot line present the golden testing

data and estimated evaluation result respectively.

Figure 15 are some evaluation result examples of testing data for Subject 4
with subject-dependent drowsiness prediction infrastructure using (a) SVR (r =
0.9439), (b) MLPNN (r = 0.9542), (c) RBFNN (r = 0.9380) and (d) SONFIN (r
= 0.9870). The red dashed line and blue dash-dot line present the golden testing
data and estimated evaluation result respectively. The correlation coefficients of
training data validation for SVR, MLPNN, RBFNN and SONFIN in the sample
results of Subject 4 are 95.3%, 98.7%, 96.8% and 97.5% respectively.
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Figure 15.

subject-dependent drowsiness prediction infrastructure using (a) SVR (r =
0.9439), (b) MLPNN (r.= 0.9542), (c) RBFNN (r =.0.9380) and (d) SONFIN (r
= 0.9870). The red dashed line and blue dash-dot line present the golden testing

Evaluation result examples of testing data for Subject 4 with

Trials

data and estimated evaluation result respectively.

Figure 16 shows some evaluation result examples of testing data for
Subject 5 with subject-dependent drowsiness prediction infrastructure using (a)
SVR (r = 0.9679), (b) MLPNN (r = 0.9623), (c) RBFNN (r = 0.9462) and (d)
SONFIN (r = 0.9757). The red dashed line and blue dash-dot line present the
golden testing data and estimated evaluation result respectively. The correlation
coefficients of training data validation for SVR, MLPNN, RBFNN and SONFIN
in the sample results of Subject 5 are 96.2%, 94.7%, 96.8% and 97.2%
respectively.
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Figure 16. Evaluation result examples of testing data for Subject 5 with
subject-dependent drowsiness prediction infrastructure using (a) SVR (r =
0.9679), (b) MLPNN (r.= 0.9623), (¢) RBFNN (r =.0.9462) and (d) SONFIN (r
= 0.9757). The red dashed line and blue dash-dot line present the golden testing

data and estimated evaluation result respectively.

Figure 17 illustrates some evaluation result examples of testing data for
Subject 6 with subject-dependent drowsiness prediction infrastructure using (a)
SVR (r = 0.9752), (b) MLPNN (r = 0.9579), (c) RBFNN (r = 0.9610) and (d)
SONFIN (r = 0.9851). The red dashed line and blue dash-dot line present the
golden testing data and estimated evaluation result respectively. The correlation
coefficients of training data validation for SVR, MLPNN, RBFNN and SONFIN
in the sample results of Subject 6 are 95.4%, 95.9%, 98.1% and 97.8%
respectively.
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Figure 17. Evaluation result examples of testing data for Subject 6 with
subject-dependent drowsiness prediction infrastructure using (a) SVR (r =
0.9752), (b) MLPNN (r.= 0.9579), (¢) RBFNN (r =.0.9610) and (d) SONFIN (r
=0.9851). The red dashed line and blue dash-dot line present the golden testing

data and estimated evaluation result respectively.

4.1.3. Derived Parameters for SONFIN

The constructed parameters, such as rules numbers, mean values (m;;) and
variances (¢”;) of membership functions (MF) and weights (w;) for the testing
data evaluation examples taken in the previous section with the
subject-dependent  drowsiness  prediction using SONFIN  will be
comprehensively described in this section.

The RT estimation rule numbers generated by SONFIN for
subject-dependent experimental testing evaluation samples of Subject 1-6 are 11,

11, 12, 10, 12 and 8, as listed in Table 4, respectively. The MFs for Subjectl1-6
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were depicted in Figure 18-23, while the corresponded mean values (m;),

variance (azi,-) and weights (w;) were summarized in Table 5-10 accordingly.

Table 4. Rules Numbers For Sampled Testing Data Evaluation Subjects Derived
by Subject-Dependent Drowsiness Prediction with SONFIN
Subject 1 2 3 4 5 6
Rules 11 11 12 10 12 8
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Figure 18. Constructed Membership Functions for'Sampled Subject 1 with
Subject-Dependent Drowsiness Prediction using SONFIN

Table 5. Constructed:Mean Values, Variances and Weights for Sampled Subject 1
with Subject-Dependent Drowsiness Prediction using SONFIN

Rules Mean‘and Variance(m, azi,-) Weight
4Hz 5Hz 6Hz 7Hz 8Hz 9Hz 10Hz 11Hz 12Hz (w;)
1 (16.86,0.74) (15.39,1.65) (16.47,1.29) (17.91,1.52) (19.63,1.53) (21.04,0.87) (20.77,1.23) (19.88,0.94) (17.58,1.10)  1.84
2 (16.15,1.60) (15.12,1.92) (16.72,0.46) (16.67,0.31) (18.12,0.53) (19.59,1.01) (19.05,1.26) (17.59,1.50) (15.54,1.62)  1.01
3 (16.36,1.70) (14.95,1.77) (15.46,1.65) (16.96,1.34) (18.28,0.85) (19.72,1.27) (20.52,0.49) (19.64,1.06) (18.18,0.87)  1.09
4 (17.64,0.95) (16.72,1.24) (17.39,1.20) (18.56,1.34) (20.35,0.27) (21.84,1.27) (21.70,1.71) (20.78,1.78) (18.73,1.82)  1.86
5 (13.78,1.20) (12.67,1.26) (13.69,1.07) (15.80,1.07) (17.18,1.16) (17.50,1.20) (16.79,1.32) (15.42,1.53) (13.69,1.54) 0.74
6 (14.95,1.17) (14.68,1.17) (16.02,1.15) (18.42,1.15) (20.47,0.92) (22.24,0.13) (21.56,1.01) (19.95,1.15) (17.88,1.16)  -0.48
7 (15.79,1.94) (15.44,1.43) (16.68,1.26) (18.33,1.40) (19.67,1.47) (21.05,1.06) (21.31,0.56) (20.23,1.23) (18.40,1.32)  1.08
8 (16.10,1.14) (14.90,1.61) (16.02,1.28) (17.04,1.07) (18.68,0.80) (19.15,1.15) (18.72,1.03) (17.59,1.24) (15.89,1.49)  1.00
9 (14.31,1.21) (13.69,1.18) (14.32,1.24) (15.95,1.14) (17.74,1.12) (19.07,1.17) (19.75,1.29) (19.94,1.38) (18.28,1.35)  0.77

=
o

(15.43,1.48) (15.35,1.12) (16.67,1.12) (18.46,1.31) (19.70,1.43) (20.85,1.26) (20.62,1.18) (19.32,1.18) (17.58,1.20)  0.84
(15.13,1.20) (14.00,1.15) (15.73,1.20) (17.80,1.20) (18.80,1.20) (18.96,1.18) (18.37,1.13) (17.28,1.16) (15.61,1.18)  0.50

[N
[N
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Figure 19. Constructed Membership Functions for Sampled Subject 2 with
Subject-Dependent Drowsiness Prediction using SONFIN

Table 6. Constructed Mean.Values, Variances and Weights for Sampled Subject 2
with Subject-Dependent Drowsiness Prediction using SONFIN

Rules Mean and Variance(m;;, 6%;) Weight
4Hz 5Hz 6Hz THz 8Hz 9Hz 10Hz 11Hz 12Hz (w;)
1 (15.68,1.09) (15.77,0.15) (15.87,0.97) (17.18,1.07) (18.41,1.13) (18.81,1.02) (18.61,0.72) (18.19,0.87) (16.91,0.92)  -0.19
2 (14.88,1.24) (13.98,1.25) (14.88,1.17) (16.30,1.23) (18.35,1.21) (20.31,1.30) (21.35,1.23) (21.19,1.18) (19.441.21) 077
3 (17.08,1.71) (16.20,1.69) (17.35,0.92) (18.74,0.69) (20.72,0.92) (22.48,0.95) (22.25,1.75) (21.33,1.90) (19.27,1.75)  1.46
4 (18.40,1.10) (17.93,1.24) (17.78,1.04) (18.36,1.24) (20.11,1.34) (21.68,0.88) (22.28,0.99) (22.24,1.27) (20.53,1.17) 1.89
5 (14.93,1.16) (13.71,0.97) (14.17,0.15) (16.54,1.14) (18.44,1.09) (19.78,1.11) (19.85,1.15) (19.05,1.12) (17.531.13) 091
6 (15.75,1.19) (14.79,1.22) (15.52,1.22) (17.26,1.20) (18.58,1.38) (18.97,1.54) (18.27,1.50) (16.86,1.35) (15.24,0.94)  1.00
7 (14.51,1.27) (13.41,1.08) (14.32,1.26) (16.92,1.25) (19.27,0.56) (19.63,0.88) (19.33,0.80) (18.96,1.01) (17.73,1.24)  0.94
8 (15.81,0.70) (15.33,0.67) (16.05,1.36) (17.79,1.59) (18.96,1.90) (20.11,1.52) (19.53,1.08) (18.56,1.25) (16.90,1.39)  0.90
9 (18.32,0.59) (17.45,0.00) (17.93,1.27) (19.04,1.26) (21.30,1.31) (23.35,1.35) (23.87,1.28) (23.31,1.03) (21.13,1.07)  1.40
10 (17.05,1.36) (16.24,1.40) (17.18,0.92) (18.97,0.94) (20.72,1.19) (22.35,1.11) (22.24,150) (21.24,1.61) (19.06,1.60)  0.81
1 (15.53,1.22) (14.59,1.21) (15.24,1.19) (16.60,1.19) (17.92,1.44) (18.92,1.26) (18.91,1.03) (18.21,1.08) (16.84,1.23) 077
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Figure 20. Constructed Membership Functions for Sampled Subject 3 with
Subject-Dependent Drowsiness Prediction using SONFIN

Table 7. Constructed Mean Values, Variances and Weights for Sampled Subject 3
with Subject-Dependent Drowsiness Prediction using SONFIN

Rules Mean and Variance(m;;, 6%; ) Weight
4Hz 5Hz 6Hz THz 8Hz 9Hz 10Hz 11Hz 12Hz (w;)
1 (16.18,1.27) (15.54,1.25) (15.21,1.21) (14.89,1.19) (14.34,1.29) (13.96,1.22) (13.26,1.20) (11.88,1.23) (10.84,1.22)  0.94
2 (17.41,1.24) (15.86,1.27) (15.12,1.31) (14.73,1.32) (15.45,1.24) (15.94,1.30) (16.37,1.08) (15.48,1.32) (13.69,1.77)  1.06
3 (17.41,1.13) (15.63,0.79) (14.73,0.94) (16.81,0.68) (17.24,1.28) (17.67,1.23) (17.94,1.45) (17.67,1.28) (16.71,0.69)  1.60
4 (17.85,1.09) (16.77,0.83) (16.47,0.15) (17.20,1.32) (18.77,1.30) (20.11,1.11) (20.57,1.17) (19.61,1.17) (17.78,0.99)  1.70
5 (16.91,1.29) (15.30,1.59) (15.03,1.70) (17.09,1.46) (19.21,0.96) (20.72,1.61) (21.56,1.47) (20.97,1.28) (19.26,1.14)  1.37
6 (18.76,1.64) (17.31,1.43) (17.02,1.39) (18.01,1.15) (20.33,1.50) (21.95,1.69) (22.51,1.70) (21.22,1.53) (18.46,1.36)  2.06
7 (19.70,1.32) (17.79,1.24) (17.49,1.24) (18.65,1.26) (21.49,1.32) (23.44,1.36) (24.13,1.39) (22.80,1.39) (19.84,1.42)  2.23
8 (16.45,1.26) (14.13,1.17) (13.14,1.04) (14.32,1.21) (16.09,1.24) (17.31,1.26) (17.55,1.28) (16.54,1.30) (14.61,1.34)  1.23
9 (17.36,1.01) (16.23,1.59) (16.43,0.92) (17.16,0.40) (18.74,1.39) (19.87,1.81) (20.32,1.95) (19.57,1.85) (18.10,1.51)  1.88
10 (17.67,1.30) (16.37,1.48) (16.14,1.82) (15.89,1.55) (16.22,1.19) (16.23,0.65) (16.47,0.71) (15.87,1.24) (14.60,1.41)  1.11
1 (17.29,1.56) (16.25,1.26) (15.55,1.20) (16.46,1.28) (17.60,1.38) (18.53,0.66) (18.99,0.90) (18.65,1.09) (17.57,0.36)  1.49
12 (18.16,1.10) (16.60,0.85) (15.40,1.12) (15.66,1.28) (17.30,1.30) (18.68,1.32) (19.03,1.31) (18.33,0.96) (16.31,0.99)  1.09
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Figure 21. Constructed Membership Functions for Sampled Subject 4 with
Subject-Dependent Drowsiness Prediction using SONFIN

Table 8. Constructed Mean.Values, Variances and Weights for Sampled Subject 4
with Subject-Dependent Drowsiness Prediction using SONFIN

Rules Mean and Variance(mj;, azi,-) Weight
4Hz 5Hz 6Hz 7Hz 8Hz 9Hz 10Hz 11Hz 12Hz (w;)
1 (17.01,0.53) (15.43,0.72) (15.47,0.95) (17.38,0.36) (17.90,1.00) (19.74,1.23) (21.23,0.70) (20.51,1.33) (18.85,1.39) 1.19
2 (17.92,1.11) (15.82,1.58) (16.31,1.74) (17.45,1.24) (18.47,1.40) (20.40,1.38) (22.63,0.56) (21.65,1.65) (19.90,1.95) 1.22
3 (18.32,1.12) (17.31,1.57) (16.84,1.15) (17.92,0.96) (20.56,1.13) (23.58,0.57) (24.72,1.37) (24.39,1.10) (21.79,1.38) 1.62
4 (18.53,1.19) (17.78,1.09) (17.57,1.12) (18.75,1.14) (20.96,1.14) (24.00,0.83) (25.70,0.27) (24.63,1.03) (22.25,1.04) -0.54
5 (16.58,1.29) (14.98,1.29) (15.53,1.41) (16.59,1.23) (17.96,0.87) (19.12,1.53) (19.56,1.74) (18.77,1.67) (17.74,1.10) 0.98
6 (18.45,1.30) (18.07,0.61) (17.11,1.26) (17.72,0.62) (20.36,1.48) (22.84,1.54) (24.15,1.56) (24.09,1.65) (21.75,1.71) 2.77
7 (16.60,1.49) (15.28,1.31) (15.90,1.41) (16.88,1.59) (18.41,1.16) (20.10,1.20) (21.36,1.16) (21.56,0.07) (20.14,1.24) 1.00
8 (18.38,1.24) (16.84,1.45) (16.45,1.22) (18.06,1.22) (20.08,1.29) (22.09,1.32) (23.28,1.34) (23.22,1.35) (21.57,1.27) 1.28
9 (17.41,1.27) (16.70,1.22) (17.32,1.34) (17.90,1.34) (18.90,1.31) (20.21,1.33) (21.09,1.36) (20.53,1.39) (19.04,1.41) 0.88

=
o

(16.70,1.21) (15.42,1.23) (14.97,1.20) (15.38,1.22) (16.41,1.28) (18.36,1.31) (19.64,1.34) (19.51,1.37) (19.16,1.28) 0.71
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Figure 22. Constructed Membership Functions for Sampled Subject 5 with
Subject-Dependent Drowsiness Prediction using SONFIN

Table 9. Constructed Mean /Values, Variances and Weights for Sampled Subject 5
with Subject-Dependent Drowsiness Prediction using SONFIN

Rules Mean and Variance(mj;, azi,-) Weight
4Hz 5Hz 6Hz 7Hz 8Hz 9Hz 10Hz 11Hz 12Hz (w;)
1 (18.53,1.26) (16.38,1.17) (15.25,1.02) (15.49,1.13) (16.16,1.13) (16.62,1.17) (17.11,1.07) (17.36,1.09) (16.91,1.27)  0.63
2 (15.65,0.25) (14.33,0.93) (14.02,1.21) (14.98,1.53) (16.21,1.62) (17.92,1.53) (18.72,1.62) (18.82,1.60) (17.98,1.29)  0.92
3 (17.24,0.50) (15.83,1.42) (15.79,1.42) (17.11,1.41) (18.61,1.52) (20.29,1.08) (20.44,1.31) (19.79,1.24) (18.33,1.37)  1.32
4 (18.76,1.17) (17.92,0.07) (17.98,0.80) (19.30,1.14) (20.97,1.14) (21.38,1.13) (21.04,1.10) (20.57,1.13) (19.40,1.12) ~ -0.20
5 (19.02,1.19) (19.60,1.13) (19.43,1.11) (19.52,1.18) (20.89,1.18) (21.89,1.15) (22.01,1.12) (21.61,1.02) (20.47,0.29)  -0.48
6 (16.53,1.07) (15.16,1.33) (14.12,1.25) (13.79,1.29) (14.34,1.53) (15.25,1.58) (16.34,1.29) (17.14,0.92) (16.89,0.79)  0.75
7 (18.99,1.24) (19.70,0.67) (19.65,1.13) (19.62,1.27) (20.38,1.07) (21.16,1.35) (21.22,1.45) (20.50,1.38) (18.83,1.39)  2.02
8 (17.04,0.97) (16.88,1.11) (16.88,1.57) (16.61,1.49) (17.14,1.00) (18.16,0.77) (19.49,1.28) (20.04,1.43) (19.18,1.70)  0.76
9 (18.27,1.31) (17.98,1.43) (17.90,1.40) (18.96,1.22) (20.39,1.19) (21.06,1.28) (20.90,1.34) (20.22,1.35) (18.62,1.26)  1.39
10 (17.10,1.19) (14.98,1.33) (14.12,1.30) (14.49,1.27) (15.95,1.22) (17.39,1.37) (18.59,1.45) (19.28,1.43) (19.43,0.46)  0.71
1 (17.62,1.28) (16.39,1.31) (16.37,1.28) (17.21,1.28) (18.70,1.34) (20.09,1.20) (20.34,1.19) (19.73,1.22) (18.54,1.31)  0.68
12 (17.90,1.21) (15.99,1.22) (14.47,1.22) (14.38,1.21) (14.61,1.25) (15.55,1.23) (15.37,1.23) (15.16,1.24) (14.63,1.26)  0.60
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Figure 23. Constructed Membership Functions for Sampled Subject 6 with
Subject-Dependent Drowsiness Prediction using SONFIN

Table 10.  Constructed Mean Values, Variances and Weights for Sampled
Subject 6 with Subject-Dependent Drowsiness Prediction using SONFIN

Rules Mean and Variance(mj;, ¢%;) Weight
4Hz 5Hz 6Hz THz 8Hz 9Hz 10Hz 11Hz 12Hz (w;)
1 (16.59,1.36) (15.29,1.32) (15.19,1.21) (15.66,1.17) (16.08,1.39) (16.56,1.81) (17.22,1.77) (17.47,1.65) (17.25,1.53)  0.65
2 (17.23,1.78) (15.75,1.82) (16.20,1.33) (17.60,0.51) (17.91,1.32) (18.93,1.21) (19.58,1.30) (19.64,1.21) (18.90,0.56)  0.86
3 (19.28,0.43) (17.23,1.77) (17.24,1.47) (17.81,1.04) (19.37,0.31) (21.65,0.94) (21.93,1.90) (21.54,1.80) (20.29,1.39)  1.03
4 (19.22,1.23) (18.96,1.25) (19.32,1.79) (19.83,1.86) (20.91,1.53) (22.29,0.52) (22.62,0.69) (21.53,1.16) (19.63,1.59)  1.54
5 (20.55,0.56) (20.38,0.81) (21.32,0.98) (22.22,1.10) (22.48,1.32) (22.58,1.40) (22.90,1.44) (22.13,1.45) (19.99,1.39)  2.02
6 (19.81,1.24) (18.39,1.25) (18.01,1.23) (18.98,1.25) (20.73,1.28) (22.85,1.26) (23.84,1.20) (23.47,1.23) (22.38,1.22)  0.95
7 (16.34,0.99) (15.40,1.25) (15.97,1.22) (16.61,1.44) (18.14,1.31) (19.54,1.24) (20.33,1.26) (20.60,1.26) (20.52,1.19)  0.79
8 (18.45,1.34) (16.13,1.22) (15.88,1.26) (16.30,1.35) (17.58,1.36) (19.12,1.29) (19.98,1.27) (20.24,1.30) (19.76,1.30)  0.66
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4.1.4. Section Discussion

The performances of all four predictors are comparable in
subject-dependent drowsiness prediction, and SONFIN has a better PPMCC and
a smaller RMSE value on testing data in this experiment (r = 97.2% and RMSE
= 0.076). However, subject-dependent prediction system is not applicable in real
world to be generalized for other users. Developer must record user’s EEG data
in advance and only the recorded user can achieve that high performance (r >
95%). Therefore, a generalized cross-subject drowsiness prediction system shall

be constructed, and the proposed infrastructure will be detailed investigated in
next section.

4.2. Generalized Cross-subject Drowsiness Prediction
The procedure of generalized cross-subject drowsiness predictor analysis is
depicted in Figure 24. The EEG data from five subjects were used as the training

data, and the remaining subject was reserved as the testing-pattern.

Testing-fold dataset

E O - S 1
5 5[ .82 /
22 SVR
8 a A . Y _ h L
8< E Tl‘ainjng-fold' Correlated
b= N U I — N e > fe
§ ) MLPNN | o{EsumaredrT|  Coctficient
% S6 == — = — = comparison and
o dati RMSE estimati
cross validation RBFNN estimation
_ — = — - Training path
SONFIN Ling
***** Testing path

Drowsiness
predictors model

Figure 24. Generalized cross-subject drowsiness predictor analysis structure,
where S; means the i-th subject.

4.2.1. Boxplots of PPMCC and RMSE
Table 11-12 summarize the averages of PPMCC and RMSE performance in

comparison with the actual and estimated RTs. The PPMCC on the training and
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testing sets using obtained by SVR, MLPNN, RBFNN, and SONFIN are 98.0%,
96.8%, 99.3%, 98.4% and 61.6%, 61.3%, 47.9%, 78.3%, respectively. The
RMSE values for training and testing evaluation with SVR, MLPNN, RBFNN,
and SONFIN are 0.06 s, 0.04 s,0.01 s, 0.06 sand 0.37 s,0.42s,1.01 s, 0.36 s,

respectively.

Table 11.  Correlation coefficients Comparisons for

Generalized Cross-Subject Drowsiness Prediction

Subject 1 2 3 4 5 6 Average (%)

SVR Training 96.5% 99.1% 955% 98.8% 98.9% 99.0% 98.0+14
Testing 58.0% 65.3% ; 66:4%,. 51.4% 62.2% 66.5% 61.6+8.6

Training 95.4%: 99.4% 98.9%. 91.6% 98.5% 97.0% 96.8+9.7
Testing  56.5%  66.5%..58.2% 61.2% 63.8% 61.6% 61.3+12.2

MLPNN

Training 96.4% 99.6% 98.7% 98.7% 95.4% 96.7% 97.3t1.8
Testing . 68.3% 48.5% 62.6% 742% 17.1% 16.5% 47.9+23.6

RBFNN

SONEIN Training_ 98.5% 99.1% 97.9% 97.6% 98.2% 99.0% 98.4+1.3

Testing _78.1% 81.7% 746% 82.7% 76.0% 76.4% 78.3t5.7

Table12. RMSE Comparisons for

Generalized Cross-Subject Drowsiness Prediction

Subject 1 2 3 4 5 6 Average (s)

Training 0.092 0.046 0.089 0.049 0.048 0.047 0.060+0.030

SVR Testing  0.222 0.309 0.454 0.267 0.540 0.337 0.370£0.110
MLPNN Training 0.069 0.025 0.024 0.060 0.033 0.041 0.040+0.070
Testing  0.229 0.448 0.578 0.366 0.443 0.430 0.420£0.150
RBENN Training 0.006 0.006 0.006 0.003 0.005 0.004 0.010£0.002
Testing  0.417 0.467 0.798 3.361 0.496 0.507 1.010+1.070
Training 0.058 0.048 0.060 0.063 0.060 0.046 0.060+0.020
SONFIN

Testing 0.153 0.318 0.537 0.371 0.321 0.488 0.360+0.140
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Figure 25 shows the boxplot of the PPMCC for cross-subject drowsiness
prediction using SVR, MLPNN, RBFNN, and SONFIN. Take Subject 1 for
example, the median, upper and lower quartile, maximum and minimum
PPMCC for cross-subject drowsy state predictor with SONFIN are 77.0%,
82.9% and 74.6%, 84.0% and 74.5%, respectively.
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Figure 25. Correlation coefficient boxplot comparison of subject’s drowsy
state testing evaluation for generalized cross-subject drowsiness prediction
experiment with SVR, MLPNN, RBFNN and"SONFIN. The boxes have three
lines to present the values for lower quartile (+), median (red line), and upper
quartile (++) for column data. Two addition lines at both ends of the whisker

indicate the maximum (*) and minimum (**) value of a column data.

4.2.2. Experimental Result Examples

Some experimental results of testing data evaluation with cross-subject
drowsiness prediction experiment for Subject 1 to Subject 6 that use SVR,
MLPNN, RBFNN and SONFIN were depicted from Figure 26 to Figure 31

respectively.

Figure 26 shows some estimated RT evaluation result samples of testing
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data for Subject 1 with cross-subject drowsiness prediction infrastructure using
(a) SVR (r = 0. 5615), (b) MLPNN (r = 0. 5178), (c) RBFNN (r = 0. 6625) and
(d) SONFIN (r = 0. 8352). The red dashed line and blue dash-dot line present
the golden testing data and estimated evaluation result respectively. The
correlation coefficients of training data validation for SVR, MLPNN, RBFNN
and SONFIN in the sample results of Subject 1 are 96.5%, 95.4%, 96.4% and
96.5% respectively.

Figure 27 shows some estimated RT evaluation result samples of testing
data for Subject 2 with cross-subject drowsiness prediction infrastructure using
(@) SVR (r =0.7232), (b) MLPNN (r = 0.6989), (c) RBFNN (r = 0.5230) and (d)
SONFIN (r = 0.8650)The red dashed line-and blue dash-dot line present the
golden testing data and estimated evaluation.resultrespectively. The correlation
coefficients of training data validation for SVR, MLPNN, RBFNN and SONFIN
in the sample results_of Subject 2 ‘are 98.1%, 97.9%, 98.6% and 97.8%
respectively.

Figure 28 shows some estimated RT evaluation result samples of testing
data for Subject 3*with cross-subject drowsiness prediction infrastructure using
(@) SVR (r =0.6882), (b) MLPNN (r = 0.6841), (c) RBFNN (r = 0.6553) and (d)
SONFIN (r = 0.7934). The red dashed-line-and blue dash-dot line present the
golden testing data and estimated evaluation result respectively. The correlation
coefficients of training data validation for SVR, MLPNN, RBFNN and SONFIN
in the sample results of Subject 3 are 95.5%, 98.9%, 98.7% and 97.9%
respectively.

Figure 29 shows some estimated RT evaluation result samples of testing
data for Subject 4 with cross-subject drowsiness prediction infrastructure using
(a) SVR (r = 0.5998), (b) MLPNN (r = 0.6790), (c) RBFNN (r = 0.7737) and (d)
SONFIN (r = 0.8510). The red dashed line and blue dash-dot line present the

golden testing data and estimated evaluation result respectively. The correlation
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coefficients of training data validation for SVR, MLPNN, RBFNN and SONFIN
in the sample results of Subject 4 are 98.8%, 92.5%, 98.7% and 97.6%
respectively.

Figure 30 shows some estimated RT evaluation result samples of testing
data for Subject 5 with cross-subject drowsiness prediction infrastructure using
(@) SVR (r =0.6345), (b) MLPNN (r = 0.7370), (c) RBFNN (r = 0.2033) and (d)
SONFIN (r = 0.8843). The red dashed line and blue dash-dot line present the
golden testing data and estimated evaluation result respectively. The correlation
coefficients of training data validation for SVR, MLPNN, RBFNN and SONFIN
in the sample results of Subject 5 are 97.9%, 98.5%, 96.4% and 98.2%
respectively.

Figure 31 shows some estimated RT evaluation result samples of testing
data for Subject 6 with crass-subject drowsiness prediction infrastructure using
(@) SVR (r = 0.6573), (b) MLPNN (r =0.7219), (c) RBENN (r = 0.2573) and (d)
SONFIN (r = 0.8789). The red dashed line and blue dash-dot line present the
golden testing data and estimated evaluation result respectively. The correlation
coefficients of training data validation for SVR, MLPNN, RBFNN and SONFIN
in the sample results of. Subject 6 are 96.9%, 97.0%, 96.7% and 97.9%

respectively.
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Figure 26. Evaluation result examples of testing data for subjectl with
cross-subject drowsiness prediction infrastructure using (a) SVR (r = 0.5615), (b)
MLPNN (r = 0.5178), (c) RBFNN (r = 0.6625) and (d) SONFIN (r = 0.8352).
The red dashed line and blue dash-dot line present the golden testing data and

estimated evaluation result respectively.
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Figure 27. Evaluation result examples of testing data for subject 2 with
cross-subject drowsiness prediction infrastructure using (a) SVR (r = 0.7232), (b)
MLPNN (r = 0.6989), (c) RBFNN (r = 0.5230) and (d) SONFIN (r = 0.8650).
The red dashed line and blue dash-dot line present the golden testing data and

estimated evaluation result respectively.
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Figure 28. Evaluation result examples of testing data for subject 3 with
cross-subject drowsiness prediction infrastructure using (a) SVR (r = 0.6882), (b)
MLPNN (r = 0.6841), (c) RBFNN (r = 0.6553) and (d) SONFIN (r = 0.7934).
The red dashed line and blue dash-dot line present the golden testing data and

estimated evaluation result respectively.
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Figure 29. Evaluation result examples of testing data for subject 4 with
cross-subject drowsiness prediction infrastructure using (a) SVR (r = 0.5998), (b)
MLPNN (r = 0.6790), (c) RBFNN (r = 0.7737) and (d) SONFIN (r = 0.8510).
The red dashed line and blue dash-dot line present the golden testing data and

estimated evaluation result respectively.
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Figure 30. Evaluation result examples of testing data for subject 5 with
cross-subject drowsiness prediction infrastructure using (a) SVR (r = 0.6345), (b)
MLPNN (r = 0.7370), (c) RBFNN (r = 0.2033) and (d) SONFIN (r = 0.8843).
The red dashed line and blue dash-dot line present the golden testing data and
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Evaluation result examples of testing data for subject 6 with

cross-subject drowsiness prediction infrastructure using (a) SVR (r = 0.6573), (b)

MLPNN (r = 0.7219), (c) RBFNN (r = 0.2573) and (d) SONFIN (r =

0.8789).

The red dashed line and blue dash-dot line present the golden testing data and

estimated evaluation result respectively.
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4.2.3. Derived Parameters for SONFIN

The constructed parameters, such as rules numbers, mean values and
variances of membership functions (MF) and weights for the testing data
evaluation examples taken in the previous section with the generalized
cross-subject drowsiness prediction using SONFIN will be comprehensively
described in this section.

The RT estimation rule numbers generated by SONFIN for the generalized
cross-subject experimental testing evaluation samples of Subject 1-6 are 11, 11,
12, 10, 12 and 8, as listed in Table 13, respectively. The MFs for Subjectl-6
were depicted in Figure 32-37, while the corresponded mean values (m;),

variance (azij) and weights (w;) were summarized in Table 14-19 accordingly.

Table 13.  Rules Numbers-For Sampled Testing Data Evaluation Subjects
Derived by Cross-Subject Drowsiness Prediction-with SONFIN
Subject 1 2 3 4 5 6

Rules 8 9 8 10 10 14
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Figure 32. Constructed Membership Functions for Sampled Subject 1 with

Subject-Dependent Drowsiness Prediction using SONFIN

Table 14.  Constructed Mean Values, Variances and Weights for Sampled

Subject 1 with Cross-Subject Drowsiness Prediction using SONFIN

Rules Mean and Variance(m;, o%;) Weight

4Hz 5Hz 6Hz THz 8Hz 9Hz 10Hz 11Hz 12Hz (w;)
1 (17.47,1.94) (15.90,2.00) (15.83,1.96) (16.63,1.34) (18.11,0.82) (19.07,2.37) (19.59,2.47) (18.92,2.17) (17.08,0.93) 114
2 (19.20,0.08) (18.19,1.58) (17.88,2.19) (18.87,1.97) (20.54,1.94) (21.96,2.03) (22.54,2.20) (21.77,2.24) (19.60,2.17)  2.89
3 (17.902.42) (17.13,2.41) (17.26,2.12) (18.19,2.16) (19.97,1.79) (22.14,0.14) (22.24,1.42) (21.252.00) (19.41,2.41) 198
4 (18.42,1.21) (17.152.06) (16.49,2.46) (16.99,2.66) (18.55,2.24) (19.74,1.15) (20.49,2.08) (19.42,2.37) (17.341.20) 178
5  (1553,0.55) (14.70,1.68) (14.90,1.86) (15.59,2.07) (17.28,2.12) (19.16,1.69) (19.65,2.06) (19.252.23) (18.70,1.86) 0.85
6  (18.60,2.02) (18.04,0.10) (17.94,1.52) (18.78,1.98) (20.28,2.42) (21.68,2.54) (22.32,2.55) (21.62,2.41) (19.51,218)  2.19
7 (17.23,2.01) (15.66,2.04) (15.32,2.00) (16.05,2.00) (17.79,1.80) (19.71,0.74) (19.98,1.73) (19.46,1.88) (18.32,1.97)  0.87
8 (17.26.2.01) (15.82,2.02) (15.47,2.01) (15.89,1.95) (17.14,1.88) (18.54,1.79) (19.43,1.80) (19.29,1.84) (18.51,1.93) 0.66
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Figure 33. Constructed Membership Functions for Sampled Subject 2 with
Subject-Dependent Drowsiness Prediction using SONFIN

Table 15.  Constructed Mean Values, Variances and Weights for Sampled
Subject 2 with Cross-Subject Drowsiness Prediction using SONFIN

Rules Mean and Variance(mj;, azi,-) Weight

4Hz 5Hz 6Hz 7Hz 8Hz 9Hz 10Hz 11Hz 12Hz (w;)
1 (18.10,0.92) (16.84,1.78) (16.75,1.81) (18.81,0.48) (18.90,2.33) (19.63,3.03) (20.02,3.12) (19.17,3.09) (17.09,2.51) 1.82
2 (18.61,1.95) (17.92,0.69) (17.86,1.22) (18.84,1.81) (20.72,1.80) (22.22,1.96) (22.70,2.09) (21.81,2.18) (19.61,2.15) 2.72
3 (16.78,1.99) (15.21,2.02) (15.07,2.04) (15.85,2.09) (17.26,2.12) (18.49,2.16) (18.92,2.22) (18.08,1.82) (16.38,0.60) 1.22
4 (17.40,2.32) (17.12,2.08) (17.37,1.74) (18.41,1.75) (20.04,1.20) (20.85,1.21) (21.60,0.12) (20.41,1.80) (18.84,2.30) 1.46
5 (17.75,1.35) (16.02,1.86) (15.68,1.82) (16.38,1.49) (18.15,1.97) (19.33,2.32) (20.12,1.78) (19.06,2.25) (16.57,1.32) 141
6 (16.61,2.20) (15.45,2.02) (15.47,1.99) (16.52,2.04) (18.21,1.85) (20.90,0.09) (20.71,1.31) (19.80,1.81) (18.15,2.09) 1.05
7 (15.43,0.93) (14.64,1.60) (15.00,1.96) (15.98,2.18) (17.30,2.14) (18.36,2.15) (18.61,2.23) (18.16,2.19) (17.36,2.15) 0.86
8 (18.48,1.96) (17.99,1.43) (18.00,1.40) (18.95,1.64) (20.68,1.76) (21.92,1.98) (22.36,2.03) (21.44,2.08) (19.20,2.07) 1.45
9 (17.06,2.06) (15.79,1.99) (15.73,1.92) (16.16,2.01) (16.74,2.27) (17.65,2.33) (18.43,2.14) (18.27,1.96) (17.22,2.05) 0.58
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Figure 34. Constructed Membership Functions for Sampled Subject 3 with
Subject-Dependent Drowsiness Prediction using SONFIN

Table 16.  Constructed Mean Values, Variances and Weights for Sampled
Subject 3 with Cross-Subject Drowsiness Prediction using SONFIN

Rules Mean and Variance(mj;, azi,-) Weight
4Hz 5Hz 6Hz 7Hz 8Hz 9Hz 10Hz 11Hz 12Hz (w;)

1 (17.38,2.74) (16.76,3.03) (17.38,2.48) (19.09,0.17) (19.28,2.78) (19.95,3.31) (20.48,3.09) (20.22,2.53) (18.72,1.86) 2.07

2 (18.90,1.73) (18.39,0.26) (18.50,1.15) (19.21,1.77) (20.54,1.86) (21.82,1.87) (22.52,1.92) (22.14,1.94) (20.24,2.00) 2.04

3 (18.46,1.09) (16.14,2.82) (16.45,2.82) (17.93,2.60) (19.68,2.34) (22.09,0.49) (20.88,2.80) (19.64,2.93) (17.67,2.32) 1.45

4 (16.48,2.09) (15.29,2.02) (15.96,2.02) (17.54,1.81) (18.92,1.83) (20.62,1.29) (21.60,0.32) (19.62,1.72) (18.00,1.56) 1.21

5 (17.01,2.52) (16.06,2.72) (16.50,2.57) (17.64,2.50) (19.48,2.24) (21.23,1.89) (22.97,0.11) (21.64,1.26) (19.63,1.79) 1.57

6 (15.72,0.91) (14.65,1.64) (14.96,1.99) (15.86,2.38) (17.09,2.57) (18.10,2.58) (18.31,2.39) (17.72,1.94) (16.77,1.55) 0.95

7 (16.27,2.17) (15.11,2.05) (15.62,2.07) (16.95,2.07) (18.54,1.91) (20.32,1.45) (21.62,0.38) (20.53,1.49) (18.90,1.89) 0.99

8 (15.43,1.42) (14.51,1.66) (14.61,1.78) (15.38,2.01) (16.61,2.19) (17.66,2.22) (17.96,2.12) (17.50,1.90) (16.83,1.88) 0.46
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Figure 35. Constructed Membership Functions for Sampled Subject 4 with
Subject-Dependent Drowsiness Prediction using SONFIN

Table 17.  Constructed Mean Values, Variances and Weights for Sampled
Subject 4 with Cross-Subject Drowsiness Prediction using SONFIN

Rules Mean and Variance(mj;, azi,-) Weight

4Hz 5Hz 6Hz 7Hz 8Hz 9Hz 10Hz 11Hz 12Hz (w;)
1 (18.42,0.30) (17.52,1.07) (17.53,1.87) (18.55,2.06) (19.46,3.18) (20.20,3.65) (20.71,3.51) (20.39,3.06) (18.67,2.65) 2.72
2 (17.79,1.77) (16.98,0.46) (16.81,1.91) (17.76,1.93) (19.33,1.36) (20.69,0.64) (20.24,2.12) (19.20,2.35) (17.48,1.95) 1.95
3 (17.96,1.19) (16.20,1.79) (15.88,1.81) (16.85,1.50) (18.58,1.45) (19.72,1.78) (20.43,1.30) (18.93,2.04) (16.68,0.55) 1.13
4 (17.13,2.36) (16.14,2.21) (16.27,2.16) (17.35,2.17) (19.33,1.81) (21.44,0.22) (19.44,1.61) (20.79,1.48) (19.03,2.04) 1.33
5 (16.35,1.08) (14.64,1.65) (14.99,1.84) (15.97,2.14) (17.36,2.22) (18.29,2.20) (18.27,2.07) (17.35,1.68) (15.93,1.39) 1.09
6 (17.40,0.73) (16.48,1.86) (16.33,2.05) (17.28,2.03) (18.75,1.85) (20.33,1.16) (21.16,0.56) (19.61,1.76) (17.81,2.01) 1.58
7 (15.06,0.54) (14.41,1.55) (14.63,1.80) (15.50,2.12) (16.77,2.28) (17.73,2.26) (17.90,2.10) (17.28,1.75) (16.40,1.74) 0.64
8 (18.11,1.71) (16.94,1.90) (16.99,1.99) (18.22,1.86) (20.04,1.46) (21.33,1.26) (21.61,1.71) (20.83,1.92) (18.79,2.02) 1.39
9 (16.44,2.39) (15.23,2.17) (15.56,2.01) (16.80,1.90) (18.40,1.85) (19.79,1.80) (21.05,0.72) (20.65,0.99) (18.76,1.96) 0.79
10 (16.10,1.98) (14.94,1.97) (14.88,1.97) (15.47,2.02) (16.60,2.06) (17.57,2.06) (17.95,2.04) (17.60,2.02) (16.84,2.03) 0.64
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Figure 36. Constructed Membership Functions for Sampled Subject 5 with
Subject-Dependent Drowsiness Prediction using SONFIN

Table 18.  Constructed Mean Values, Variances and Weights for Sampled
Subject 5 with Cross-Subject Drowsiness Prediction using SONFIN

Rules Mean and Variance(mj;, azi,-) Weight

4Hz 5Hz 6Hz 7Hz 8Hz 9Hz 10Hz 11Hz 12Hz (w;)
1 (17.36,0.05) (16.93,1.12) (16.82,1.13) (18.00,1.04) (19.76,0.71) (20.28,1.89) (20.84,2.03) (20.11,2.25) (18.33,2.21) 1.90
2 (18.24,1.35) (17.00,1.21) (17.20,1.36) (18.47,1.32) (20.37,1.53) (22.00,1.51) (22.71,1.48) (22.13,1.42) (20.08,1.42) 2.70
3 (16.98,1.00) (15.47,1.30) (15.36,1.48) (16.41,1.47) (17.86,1.19) (19.29,0.56) (19.71,1.09) (18.61,1.16) (16.85,0.81) 1.06
4 (17.69,0.53) (16.86,0.34) (16.68,1.23) (17.65,1.33) (19.03,1.26) (20.46,1.18) (21.14,1.23) (20.64,1.35) (18.83,1.44) 1.60
5 (15.36,0.90) (13.99,0.14) (14.66,0.97) (16.09,1.27) (17.68,1.32) (18.80,1.37) (18.99,1.46) (18.38,1.43) (17.32,1.28) 0.74
6 (17.15,1.14) (15.75,0.86) (15.77,0.60) (16.82,1.12) (18.27,0.98) (19.60,0.87) (20.12,0.98) (19.36,1.34) (17.60,1.37) 1.41
7 (16.04,1.38) (15.28,1.23) (15.92,1.20) (17.28,1.29) (19.11,0.56) (20.24,0.57) (20.39,1.27) (19.89,1.66) (18.44,1.82) 0.89
8 (15.79,1.13) (14.68,1.04) (14.63,0.62) (15.63,0.88) (16.88,1.18) (18.06,1.27) (18.39,1.26) (17.94,1.21) (17.03,1.16) 0.71
9 (16.45,1.57) (15.59,1.56) (16.04,1.47) (17.02,1.33) (18.10,1.32) (18.97,1.50) (19.59,1.37) (19.41,1.24) (18.04,1.35) 0.72

10 (18.12,1.18) (16.61,1.14) (16.77,1.15) (18.17,1.16) (19.93,1.16) (21.74,1.13) (22.58,1.08) (22.14,1.03) (20.08,1.06) 0.40
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Subject-Dependent Drowsiness Prediction using SONFIN

Table 19.

Subject 6 with Cross-Subject Drowsiness Prediction using SONFIN

Constructed Membership Functions for Sampled Subject 6 with

Constructed Mean Values, Variances andWeights for Sampled

Rules Mean and Variance(m;;, 6%;) Weight

4Hz 5Hz 6Hz THz 8Hz 9Hz 10Hz 11Hz 12Hz (w;)
1 (17.750.22) (16.74,1.16) (16.38,1.28) (17.23,1.29) (18.29,0.80) (19.78,0.47) (20.28,1.38) (19.59,1.68) (17.86,1.74) 1.72
2 (17.36,0.74) (16.93,1.22) (17.00,1.49) (17.51,1.22) (19.92,1.56) (21.56,1.55) (22.03,1.47) (21.22,1.30) (18.99,1.15)  2.54
3 (16.48,1.00) (15.15,1.38) (15.52,1.49) (16.52,1.53) (17.79,1.55) (19.11,1.25) (20.06,0.10) (18.35,1.25) (16.30,0.91) 1.10
4 (16.86,1.31) (15.64,0.30) (15.89,0.94) (16.85,1.14) (18.22,0.97) (19.37,0.33) (19.79,1.21) (19.31,1.72) (17.651.84) 137
5 (18.00,1.28) (17.03,0.12) (17.00,1.00) (18.05,1.19) (19.70,1.40) (21.16,1.48) (21.75,1.49) (21.17,1.46) (19.21,1.36)  1.76
6  (16.79,0.80) (15.69,0.97) (15.96,1.09) (16.74,1.29) (17.82,1.39) (18.75,1.47) (18.83,1.47) (18.01,1.20) (16.14,0.32) 1.01
7 (1550,0.44) (14.73,1.05) (15.37,1.15) (16.62,1.16) (17.84,1.27) (18.75,1.31) (18.90,1.28) (18.02,1.13) (16.57,1.14) 092
8  (17.84,1.33)(17.33,0.33) (16.97,1.18) (17.86,1.32) (19.44,1.59) (20.82,1.61) (21.33,1.51) (20.70,1.27) (18.91,091) 165
9 (17.37,0.60) (15.87,1.00) (15.78,1.08) (16.70,1.09) (18.09,1.20) (19.42,1.24) (20.31,0.52) (19.76,0.43) (17.70,1.24) 117
10 (15.71,0.99) (14.53,0.88) (14.50,0.76) (15.22,0.70) (16.60,1.15) (17.68,1.24) (18.19,1.20) (17.80,1.07) (16.69,0.93)  0.68
11 (15.65,1.17) (14.91,1.16) (15.44,1.23) (16.56,1.35) (18.28,1.25) (20.07,0.78) (21.03,0.15) (20.37,1.34) (18.86,152)  0.76
12 (17.73,1.20) (16.09,1.22) (16.01,1.17) (17.34,1.16) (19.35,1.32) (21.11,1.39) (21.76,1.36) (21.26,1.31) (19.521.29) 0.1
13 (16.66,1.61) (15.51,1.37) (15.84,1.12) (17.27,0.73) (18.54,0.75) (19.73,0.40) (19.66,0.93) (18.69,1.00) (17.241.23) 085
14 (17.17,1.20) (15.84,1.20) (15.69,1.20) (16.51,1.20) (17.47,1.21) (18.48,1.21) (18.98,1.20) (18.71,1.21) (17.67,1.23)  0.67
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4.2.4. Section Discussion

Compared to the subject-dependent drowsiness results, the averaged
PPMCC between the actual and estimated RTs on testing data with these four
predictors maintained sound results.

However, the PPMCC obtained by the generalized cross-subject drowsiness
prediction showed a significant performance decline on the test data (p-value <
0.038). Only SONFIN still maintained a better PPMCC between actual and
estimated RTs at 78.3% than other predictors. Furthermore, the SONFIN
produced the lowest RMSE (0.36 s) on the testing data in this experiment.
According to safety distance between vehicles reported by CEDR [61] and RSA
[62], a rule thumb of 2-s<braking distance ‘under dry ground conditions with
additional reaction distance of 18.3 m at a 100 km/hr car speed is recommended.
The RMSE of proposed cross-subject drowsiness predictor with SONFIN is 0.36
s or 10 m at a 100 km/hr-car speed in average, which does not violate the
recommended reaction distance requirement of 18.3 m. Therefore, the proposed
cross-subject drowsy: state predictor with SONFIN showed a promising model

for real-life applications.
4.3. Discussion

4.3.1. Power Distribution Analysis

The relationship between EEG patterns and EEG drowsiness usually varies
rapidly and is quite different between individuals. Most machine learning
algorithms are designed for doing pattern recognition in identical distributed
data, and have less capability for EEG drowsiness level, i.e., RTs, estimation
with EEG signals from other individuals. The major concern here is if these six
subjects have similar power distribution to make SONFIN can work better than
other cross-subject predictors. Firstly, investigations on subject-dependent

perdition shows that the performance for all predictors in this study are almost
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same high (r > 95%), and the reason is the EEG power distribution is similar
within same subject. Hence, if these six subjects have similar EEG power
distributions, the performances shall be also high for cross-subject predictors
when using MLPNN, RBFNN and SVR. Unfortunately, the results shows only
SONFIN can still present a higher performance (r > 78%). Secondary, the power
distribution analysis of these six subjects were analyzed and it error bar plot,
mean value and standard variance has been depicted and summarized in Figure
38 and Table 20, respectively. Results show that these six subjects have different
power distributions and the concern of similar power distributions among these
subjects here can be omitted in this study.

Power Distribution for Subject 1 Power Distribution for Subject 2
241 241
8 221 — Mean a 2t — Mean
S 20} I Std. S 20k I Std.
o 18} o 18}
S 16} 216}
o141 o141
12t 124
0 a Hz 0 o Hz
Power Distribution for Subject 3 Power Distribution for Subject 4
20 Mean 20 Mean
w22 _ 221 N
o) )
8 %l 1 Std. ool 1 Std:
o 181 5 18}
3 161 g 16}
o 14t o 14)
12t 12
0 o Hz 0 a Hz
Power Distribution for Subject 5 Power Distribution for Subject 6
27 Mean 21 Mean
w22 _ w22 _
o) o)
S %l I Std. S %l I Std.
o 18f o 18+
S 16} 2 16
o 14t o 14f
12+ 12+
0 o Hz 0 v} Hz

Figure 38. Power Distribution Analysis for Six Subjects Used in this Study.
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Table 20.  Power Mean Value and Variance of Subjects Used in This Study

Mean and Variance(m;;, %)
4Hz 5Hz 6Hz THz 8Hz 9Hz 10Hz 11Hz 12Hz
(15.45,0.89) (14.78,0.74) (15.64,0.76) (17.27,0.55) (18.71,0.47) (19.68,0.79) (19.65,1.19) (18.68,1.56) (16.91,1.64)
(15.83,1.04) (15.00,1.20) (15.68,0.94) (17.27,1.03) (19.09,1.24) (20.45,1.72) (20.72,2.24) (19.98,2.68) (18.23,2.13)
(17.34,0.62) (15.85,0.56) (15.34,0.66) (15.87,1.04) (17.14,2.75) (18.12,5.12) (18.42,6.95) (17.52,7.84) (15.83,6.51)
(17.22,0.96) (15.94,1.04) (16.17,0.64) (17.25,0.95) (18.76,1.60) (20.55,2.46) (21.59,3.23) (21.29,3.44) (19.90,1.95)
(17.43,0.73) (16.02,1.42) (15.50,1.93) (15.90,2.09) (16.84,2.94) (18.01,2.87) (18.81,2.47) (18.88,1.98) (18.09,1.52)
(17.61,1.13) (16.41,1.42) (16.53,1.74) (17.05,2.39) (17.97,3.15) (19.08,3.89) (19.91,3.58) (19.98,2.85) (19.21,2.51)

Subject

o g1~ W NP

4.3.2. Strength Analysis for Generalized Cross-Subject Drowsiness
Prediction with SONFIN

The reason for this drastic performance drop in generalized cross-subject
drowsiness prediction using. SVR; MLPNN, ‘and RBFNN is that EEG data
characteristics between -distinct _subjects ~usually .vary widely. A model
constructed by training data-from individuals might not be generalized to others.
Therefore, it is difficult.to predict subject’s-behavior with others subjects’ EEG
without more adaptive features like SONFIN can provide. The SVR, MLPNN,
and RBFNN provide a .good system performance for subject-dependent
drowsiness prediction due to the small power variation within the same subject.
However, MLPNN, RBENN and SVR have fixed structure and they have less
capability to provide a good system performance for generalized cross-subject
drowsiness prediction because EEG power deviation among different subjects
are not as similar as same subject may have.

Figure 39-44 demonstrate the RT estimation rules for Subject 1-6 that were
automatically generated by generalized cross-subject drowsiness prediction with
SONFIN, respectively. The RT estimation rules generated here for Subject 1-6
are 8, 9, 8, 10, 10 and 14 respectively. The red dash line in each RT estimation
rules plot is the mean of these rules. Denote the rules triggered over this mean
line are Low Performance (LP) rules, while the rules triggered below LP are

denoted as High Performance (HP) rules. Two test samples with ‘[7” (LP state)
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and ‘¢’ (HP state) sign were fed into this model, and the rules triggered here are
mostly by LP rules and HP rules, respectively.

This is the evidence engaging with the previous studies to use 6-band and
a-band for indexing the arousal state, and furthermore the derived fuzzy rules
perform in the same manner with the trend of spectral powers. Experimental
results show that adopting a fuzzy algorithm in a neural network can produce a
more robust model for estimating task performance of subjects not seen in the

training data because of adoptive features that SONFIN can have.
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Figure 39. Testing Data Evaluation Example for Subject 1 with Generalized
Cross-Subject Drowsiness Prediction Using RT Estimation Rules Generated by
SONFIN.
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Figure 40. Testing Data Evaluation Example for Subject 2 with Generalized
Cross-Subject Drowsiness Prediction Using RT Estimation Rules Generated by
SONFIN.
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Figure 41. Testing Data Evaluation Example for Subject 3 with Generalized
Cross-Subject Drowsiness Prediction Using RT Estimation Rules Generated by
SONFIN.
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Figure 42. Testing Data Evaluation Example for Subject 4 with Generalized
Cross-Subject Drowsiness Prediction Using RT Estimation Rules Generated by
SONFIN.
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Figure 43. Testing Data Evaluation Example for Subject 5 with Generalized
Cross-Subject Drowsiness Prediction Using RT Estimation Rules Generated by
SONFIN.

23 T T L T T L T T T
2213 < High Performance y
o Low Performance
— Rules Generated
211 -=-Mean of Rules §
20|~ -
T o ,
g
o 18 -
o
17+ -
16 i i
15~ -
14 r r r r r r r r r
3 4 5 6 7 8 9 10 11 12 13

Figure 44. Testing Data Evaluation Example for Subject 6 with Generalized
Cross-Subject Drowsiness Prediction Using RT Estimation Rules Generated by

SONFIN.
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V' Conclusions

The amplitude of an EEG signal fluctuates on the microvolt level, making
the EEG signal extremely noise-sensitive and easily influenced by artifacts. In
addition, the EEG features between different subjects usually vary widely,
making it difficult to apply and generalize results from one individual to another.
The proposed EEG signal-processing procedures and SONFIN method in this
study overcome these two limitations. Signal-processing methods based on ICA
and time-frequency analysis successfully excludes the EEG contaminations and
extracts the EEG features related to task performance. For each experiment, 1-s
EEG before deviation onset whose 6- and a-band power spectra of the
activations of the occipital component, along with RTs of trials, were used to
build an RT prediction model. This study tests four predictors, SVR, MLPNN,
RBFNN, and SONFIN, for-drowsiness prediction. Experimental results of this
study showed that.it is feasible to estimate subject’s reaction times based on 1-S
EEG power spectra hbefore the onsets of lane-departure events.

In addition,='the main  contributionof - this /study is to propose an
implementable cross-subject predictor practically to build a common model that
can be also applied on another user who _does not need to acquire the EEG
signals first and can keep maintaining his/her driving performance. Hence, we
applied two kinds of validation ways to verify the system performance. One is
subject-dependent validation and the other is cross-subject evaluation. In
subject-dependant validation, we majorly test the performance of the proposed
framework that acquired EEG signals fed into the applied four predictors are
feasible to work. Experimental results showed that the prediction performance
of each applied predictor is high and stable in each subject-dependent session.
Then we would like to propose a generalized system that can predict the
moment driver based on other subjects’ EEG signals. Hence, we applied leave

one subject out cross validation way to evaluate the prediction performance in
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the cross-subject session. Experimental results showed that the proposed neural
fuzzy system can get the better prediction performance than others. It means that
the proposed system of this study not only can overcome the individual
difference problem occurred by collecting EEG signals from different subjects,
but also we can apply the system in the real-world applications.

A comparison between subject-dependent and cross-subject prediction
models showed that the subject’s RTs could be better estimated by an
individualized RT prediction model. Furthermore, SONFIN outperformed SVR,
MLPNN, and RBFNN in terms of PPMCC and RMSE especially for the
cross-subject case. This demonstration might lead to a practical system for
noninvasive predicting and monitoring. subject responses to critical events in
real-world applications. However, some natifications and limitations shall be
highlighted here before applying proposed system to a practical environment.
The proposed SONFIN system shall be applied only to the environments that are
not dangerous even if an operation error occurs. It can besimplemented just as a
passive and assistive alert system- to warn the driverif he/she is becoming

excessively drowsy and could fall asleep-while driving.
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