
 

國 立 交 通 大 學 
 

電控工程研究所 
 

博 士 論 文 
 

 

 

 

最佳化功率分配於無線感測網路之線性一致離

散估測 

 
Linear Coherent Distributed Estimation in Wireless 

Sensor Networks with Optimal Power Allocation 

 
 

 

 

 

研 究 生：吳 建 賢 

指導教授：林 清 安 教授  

 

 

 

中 華 民 國 一 百 年 七 月 

 



 
最佳化功率分配於無線感測網路之線性一致離散估測 

 
Linear Coherent Distributed Estimation in Wireless Sensor 

Networks with Optimal Power Allocation 
 

研 究 生：吳建賢             Student: Chien-Hsien Wu 
 

指導教授：林清安 教授         Advisor: Ching-An Lin 
 
 
 

國 立 交 通 大 學 
電控工程研究所 
博 士 論 文 

 
 

A Dissertation 

Submitted to Institute of Electrical Control Engineering 

College of Electrical Engineering 

National Chiao Tung University 

in Partial Fulfillment of the Requirements 

for the Degree of  

Doctor of Philosophy 

in 

Department of Electrical Engineering 

 

July 2011 

Hsinchu, Taiwan, Republic of China 

 
 
 

中華民國一百年七月 
 



 i

 

 

最佳化功率分配於無線感測網路之線性一致離散估測 

 

研究生：吳建賢             指導教授：林清安 

 
國立交通大學電控工程研究所 

 

 

中文摘要 

 

本論文以一致性多路存取通道與線性最小均方差融合規則為基礎，探討無線感測網路的

離散估測，我們討論三種不同感測網路的離散估測：(i) 以群聚單輸入單輸出感測網路

為基礎的估測、(ii) 單輸入單輸出感測網路在未知通道下的估測、以及 (iii) 多輸入

多輸出感測網路下的估測；於每一種感測網路下，我們皆討論系統總功率有限的情況下，

利用最佳化功率分配來得到最小估測失真。首先，我們討論一純量訊號於群聚感測網路

中的離散估測，我們證明最佳的放大矩陣為一個利用兩已知向量做外積所得到的秩一矩

陣，由此最佳的放大矩陣，我們證明利用感測器合作能夠改善系統的效能。第二，我們

探討一純量訊號在未知通道的無線網路中的離散估測，我們利用二階段法來估測訊號：

先分配訓練功率於各感測器來估測通道，再用最佳功率分配策略或平均功率分配策略結

合前一步驟所得到的估測通道來估測信號，我們證明不論是最佳功率分配策略或是平均

功率分配策略，最佳的訓練功率是相同的；當感測器的數量增加時，在通道未知的情況

下所造成的的效能損失也會增加。最後，我們討論一向量訊號於多輸入多輸出感測網路

的離散估測，我們利用奇異值分解法將求編碼矩陣的問題表示為凸面最佳化問題，藉此，

我們推導出最佳編碼矩陣的封閉解，我們利用數值模擬來證明於三種感測網路下的分析

結果。 
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Abstract

We study distributed estimation in wireless sensor networks with coherent multiple

access channel model and LMMSE fusion rule. In this thesis, three different sensor net-

work systems for distributed estimation are discussed: (i) estimation using single-input

single-output (SISO) cluster-based sensor network, (ii) estimation using SISO sensor net-

work over unknown channels, and (iii) estimation using multiple-input multiple-output

(MIMO) sensor network. In each network system, we study the problem of minimizing

estimation distortion by optimally allocating power under a total power constraint. We

first discuss distributed estimation of a scalar signal with cluster-based sensor network.

We show that the optimal amplification matrix for each cluster is a rank one matrix,

which is a scaled outer product of two known vectors. With the optimal amplification

matrices, we also show that collaboration can improve performance. Secondly, we consider

distributed estimation of a scalar signal using sensor network with unknown channels. We

adopt a two-phase approach, which first optimally allocates the training power for channel

estimation, and then uses the equal power scheme or optimal power scheme for source

signal estimation. We reveal that the optimal training powers for the optimal and equal

power schemes are the same. Moreover, as the number of sensors increases, the penalty

caused by channel estimation becomes worse. Finally, we discuss distributed estimation

of a vector signal using MIMO sensor network. Based on singular value decomposition

technique, the problem of choosing coding matrices can be formulated as a convex op-

timization problem, based on which we derive closed form expression of optimal coding

matrices. We use simulations to verify the analytical results in the three network systems.
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Chapter 1

Introduction

1.1 Overview of Wireless Sensor Networks

Wireless sensor networks (WSNs), made up of a large number of low cost devices, have

attracted much attention due to the advancements in micro-electro-mechanical systems

(MEMS) technology. The technological advancements enable multi-function sensors to

be small in size and communicate in short distances. In WSNs, the sensors, which con-

sist of sensing, data processing, and communication components, are densely deployed in

different regions of a field to aggregate data. For example, sensor networks are used to

monitor temperature in environmental applications, to track enemy movement in military

applications, and to report life-signs in health applications [1, 2].

Due to simple structure of sensors and dense deployment across a spatial domain, two

key resources− communication bandwidth and energy− are an important challenge in the

design of WSNs. Many previous research works, e.g. [3–7], addressed network-structure-

based protocols which save communication resources by self-organization of large number

of sensors so that the transmitted redundancy is reduced. Recently, WSNs based on

distributed signal processing perspectives are used for parameters detection and estima-

tion [8, 9], and object tracking [10] by developing energy and bandwidth efficient algo-

rithms. The WSN topology used to design distributed signal processing algorithms can

be classified into (i) the presence of a fusion center (FC), (ii) the absence of a FC named
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ad hoc WSNs, and (iii) hybrids of (i) and (ii) named cluster-based WSNs.

1.2 Literature Review on Distributed Estimation

In WSNs, signal processing sensors are capable of simple local computation, short range

low data-rate communication, and the fusion center (FC) has more powerful communi-

cation and processing capability. The fusion center receives data transmitted from the

sensors over wireless channels and combines it for a specific processing purpose. One

example of such distributed signal processing scheme is distributed estimation. A certain

parameter or variable is measured by the sensors and the measurements are sent to the

FC, and the objective is to estimate the parameter based on distributed sensor measure-

ments. Due to bandwidth and power limitations, many algorithms have been proposed

to make efficient use of these two resources.

In the distributed estimation scenario, existing algorithms for modelling the bandwidth

constraint can be classified into the quantized strategy and the unquantized strategy. The

quantized strategy is to limit the number of bits that each sensor can send to the fusion

center per observation period, i.e., the measurements sent from the sensors are quantized,

encoded, and transmitted via digital modulation. Some papers discuss minimization of

mean squared error (MSE) via bit length assignment [11–14], while others focus on the

search of optimal quantization threshold for one bit quantization schemes [15–17]. The

unquantized strategy is to limit the number of messages that each sensor can send to the

fusion center per observation period. In this strategy, the sensors send raw measurements

directly through channels without quantization, and thus analog transmission schemes,

such as amplify-and-forward approach, are used. It is asserted in [18] that the amplified-

and-forward approach is optimal over additive white Gaussian noise channels. Along this

line of approach, many papers study the minimization of MSE under a total network

power constraint by optimally allocating the transmitted power for each sensor [19–28]

and others analyze asymptotic behavior as the network power or the number of sensors

increases [29–31].

2



In the amplify-and-forward approach, two types of channel models are used. The first

one is the orthogonal multiple access channel (MAC), in which each sensor has an inde-

pendent noninterfering channel to the FC. This MAC model was widely used in previous

studies on optimal power allocation problems [19,20,24,25]. In [19,20], the source signal

is assumed deterministic and the best linear unbiased estimator (BLUE) is used at the

FC. For random source signal, distributed linear minimum mean squared error (LMMSE)

estimation based on sensor clustering is considered in [24] and in [25] the results are ex-

tended to the case where channels are assumed unknown. The second type of channel

model is the coherent MAC, in which all sensors transmit simultaneously to the FC via

the same frequency. In this MAC model, previous works study optimal power allocation

problems under LMMSE fusion rule both scalar signal [27] as well as vector signal [28]

are considered.

All proposed schemes for solving the power allocation problems in [19,20,24,25,27,28]

used the single-input single-output (SISO) systems in which the sensor with a scalar

measurement/transmitter is regarded as a unit. Recently, multiple-input multiple-output

(MIMO) systems have attracted much attention due to advantages of increase in data rate

and improvement of performance [33]. In MIMO wireless sensor networks, each sensor has

a vector measurement and multiple transmitters. Recent works on MIMO sensor networks

addressed dimensionality reduction problems based on ideal channel assumption [21–23]

and the optimal design of coding matrices [26].

1.3 Problem Studied in This Thesis

In this thesis, we study linear distributed estimation in WSNs based on the LMMSE fusion

rule. The coherent MAC model, in which the transmitted signals from all sensors are

received by the FC as a coherent sum, is taken into account. The problem we investigate is

to design optimal power allocation schemes so that the estimation distortion is minimized

under a total power constraint. We consider distributed estimation with three different

3



sensor network systems:

(i) Estimation of a scalar signal with SISO cluster-based sensor network. In cluster-

based sensor network, the sensors are divided into a number of small groups called

clusters. The sensors in the same cluster are allowed to collaborate, while collabora-

tion is prohibited for sensors in different clusters. For each cluster, the collaboration

is through an amplification matrix that forms a message from the measurements for

transmission to the FC, where a final estimate is formed. We study the problem of

choosing the amplification matrices so that the MSE of the estimated source signal

is minimized under a total power constraint. We show that the optimal amplifi-

cation matrix is a rank one matrix and that, with optimal amplification matrices,

collaboration improves performance in terms of MSE.

(ii) Estimation of a scalar signal using SISO sensor network with unknown flat fading

channels. Since channels are unknown at the FC and need to be estimated, we

derive training-based LMMSE channel estimator. The channel estimates are then

used to obtain LMMSE estimation of the source signal. We study the allocation

of power for training and for data transmission to each sensor, under a total power

constraint, so as to minimize the MSE of the estimated source signal. We consider

the optimal power allocation scheme in which training power and data power for

each sensor are optimized, and the equal power allocation scheme in which training

power is optimized while data power for each sensor is set equal. We show that the

optimal training powers are the same for both two schemes. Also, compared with

the case when channels are known, the penalty caused by the channel estimation

error is roughly proportional to the number of sensor when the total power is large.

(iii) Estimation of a vector signal using MIMO sensor network. In MIMO sensor net-

works, each sensor has multiple measurements which are multiplied by a linear cod-

ing matrix to form messages for transmission to the FC through a channel matrix;

at the FC, messages from all sensors are aggregated by multiple received antennas

to form an estimated vector signal. In the sensor network, we study the problem of

design of linear coding matrices so that the MSE of the estimated vector signal is

4



minimized under a total power constraint. We show that the problem can be written

as a convex optimization problem which follows a water-filling type solution. Hence,

closed form expressions for the optimal coding matrices are obtained.

1.4 Organization of the Thesis

The thesis is organized as follows. In Chapter 2, we consider distributed estimation using

cluster-based sensor network. We derive the optimal design of amplification matrix and

give the performance comparison between the collaboration case and the non-collaboration

case. In Chapter 3, we consider distributed estimation using sensor network with un-

known channels. We use a two-phase approach, which first estimates channels and then

estimates the source signal. We study optimal allocation of power for training and for

data transmission based on the optimal and equal power allocation schemes. The per-

formance comparison between the case when channels are known and when channels are

unknown are also discussed. In Chapter 4, we consider distributed estimation of a vector

signal using MIMO sensor network. Based on singular value decomposition technique, we

propose a method that can solve the estimation problem efficiently, which then leads to

closed form expressions of the optimal coding matrices. Chapter 5 concludes this thesis

and discusses the future research.
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Chapter 2

Distributed Estimation Using

Cluster-Based Sensor Network

It is shown in [5,7] that sensor clustering can make efficient use of energy and thus prolong

network lifetime. In this chapter, we study distributed estimation of a scalar parameter

based on cluster-based sensor networks. The problem is formulated as the choice of the

amplification matrices so that the MSE of the estimated source signal is minimized under

a total power constraint. We also discuss two special cases: the full collaboration case,

in which all sensors are in the same cluster, and the non-collaboration case, in which

each cluster has only one sensor. Numerical examples are used to illustrate performance

improvement based on sensor collaboration.

2.1 System Model and Problem Formulation

We consider a wireless sensor network consisting of K spatially deployed sensors for esti-

mating a random source signal θ. The sensors in the network are divided into L clusters,

as shown in Figure 2.1. The lth cluster has Kl sensors and the measurement at the kth

sensor is given by

xl,k = fl,kθ + nl,k, 1 ≤ l ≤ L, 1 ≤ k ≤ Kl, (2.1)

6
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Cluster 1

f1

Cluster 2

f2
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▽

g1

g2
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⊕

ν

FC
y

θ̂

Figure 2.1: Cluster-based sensor network with coherent MAC

where fl,k is the observation gain and nl,k is the measurement noise. In vector form, (2.1)

becomes

xl = flθ + nl, 1 ≤ l ≤ L, (2.2)

where xl = [xl,1 · · · xl,Kl
]T , fl = [fl,1 · · · fl,Kl

]T , and nl = [nl,1 · · · nl,Kl
]T . The

collaboration between sensors in the lth cluster is through an amplification matrix Al ∈
R

Nl×Kl , which takes xl ∈ R
Kl to form the message vector Alxl ∈ R

Nl . The messages are

then sent to the FC and the signal y received at the FC can be expressed as

y =
L∑

l=1

gT
l Al(flθ + nl) + ν (2.3)

where gl = [gl,1 · · · gl,Nl
]T is the channel gain vector and ν is the additive noise at the

receiver. In practice, the sensors which are geographically closely located can compose a

cluster. The collaboration between sensors in the same cluster can be implemented by

choosing one sensor as the cluster head whose task is to collect and process information

sent from other sensors to form a message vector and transmit it to the FC.

The following assumptions are made in this chapter:

i) E[θ] = 0 and E[θ2] = σ2
θ .

ii) The measurement noises are zero-mean and mutually uncorrelated, specifically E[nl] =

0, E[nln
T
l ] = σ2

nIKl
and E[nln

T
m] = 0Kl×Km

for l 6= m.

7



iii) E[ν] = 0 and E[ν2] = σ2
ν .

iv) The source signal, the measurement noises, and the receiver noise are uncorrelated,

that is, E[θnl] = 0, E[θν] = 0, and E[νnl] = 0.

v) The observation gain vectors fl and the channel gain vectors gl are known to the FC.

Remarks: Assumption v) is reasonable in cases where the network condition and the

signal observation model change slowly in a quasi-static manner. Hence, as fl and gl are

obtained by the FC, they can be used for a long period of time.

For a given set of amplification matrices Al, the LMMSE estimate of θ using the

received signal y in (2.3) is [35, p.382]

θ̂ =
E[θy]

E[y2]
y

=
σ2
θ

∑L
l=1 g

T
l Alfl

σ2
θ

(
∑L

l=1 g
T
l Alfl

)2

+ σ2
n

∑L
l=1 g

T
l AlA

T
l gl + σ2

ν

y (2.4)

and the corresponding MSE is

J = E[(θ − θ̂)2] = σ2
θ −

(E[θy])2

E[y2]

=






1

σ2
θ

+

(
∑L

l=1 g
T
l Alfl

)2

σ2
n

∑L
l=1 g

T
l AlA

T
l gl + σ2

ν






−1

(2.5)

The problem is to minimize the MSE in (2.5) by choosing optimal amplification matrices

Al under a total power constraint. The total transmitted power of the L clusters is
∑L

l=1E[xT
l A

T
l Alxl]. Hence if P is the amount of power that the clusters together can

used, then we have the following constraint

L∑

l=1

tr
(
E[Alxlx

T
l A

T
l ]
)
=

L∑

l=1

tr
(
σ2
θAlflf

T
l A

T
l + σ2

nAlA
T
l

)
≤ P (2.6)

where we use E[xlx
T
l ] = σ2

θff
T + σ2

nIKl
. From (2.5) and (2.6), the optimization problem

under consideration can be written as

min
Al,1≤l≤L

J

subject to
∑L

l=1 tr
(
σ2
θAlflf

T
l A

T
l + σ2

nAlA
T
l

)
≤ P,

(2.7)
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where J is given in (2.5).

Remarks: We had assumed that the measurement noises are mutually uncorrelated

across all sensors. If the measurement noises are correlated within the same cluster but

uncorrelated across different clusters, the problem can still be formulated in the same

form as (2.7). To see this, suppose E[nln
T
l ] = Rnl

, where Rnl
= RT

nl
∈ R

Kl×Kl is positive

definite and E[nln
T
m] = 0Kl×Km

for l 6= m. Let Rnl
= Unl

Λnl
UT

nl
be the eigenvalue

decomposition with Λnl
= diag(σ2

nl,1
, · · · , σ2

nl,Kl
) > 0. By setting Ãl = AlUnl

Λ
1/2
nl and

f̃l = Λ
−1/2
nl UT

nl
fl, the corresponding optimization problem has the same form as (2.7) with

Al, fl, and σ2
n replaced by Ãl, f̃l, and 1, respectively.

2.2 Optimal Amplification Matrices

In this section, we consider the solution of the optimization problem (2.7) with the goal

of obtaining a closed form expression for the optimal amplification matrices Al. We first

make the following observations:

(i) If the inequality sign of problem (2.7) in the constraint is replaced by the equal-

ity sign, the solution does not change. Hence we could consider the optimization

problem with equality constraint. The argument is as follows. Since the constraint

function is quadratic in the elements of Al, if a set of Al is such that strict inequality

holds, we can equally scale up each Al so that equality holds. And if we equally

scale up each Al, we get a lower function value of J because in (2.5) the second

term inside the parentheses becomes larger. Consequently, with optimal Al, the

inequality constraint must be active.

(ii) Consider the optimal MSE in (2.7), say, J∗ as a function of the power P , then J∗

is a strictly decreasing function of P , that is, if P2 > P1, then J∗(P2) < J∗(P1).

The argument is similar: if the power level increases, we can equally scale up Al to

obtain a lower value of J and thus a lower value of optimal MSE J∗ can be obtained.

(iii) Since the function J∗(P ) is 1-1 and decreasing, the inverse function P (J∗) is also

1-1 and decreasing. Hence instead of finding the matrices Al that minimize J in

9



(2.5) under an equality constraint on power level, we can find the matrices Al that

minimize the power level subject to an equality constraint on MSE. And if the

constraint value on MSE is such that the resulting minimum power level matches

the given value P in (2.7), the corresponding matrices Al are the optimal ones we

set out to find. We thus consider the following optimization problem







min
Al,1≤l≤L

∑L
l=1 tr

(
σ2
θAlflf

T
l A

T
l + σ2

nAlA
T
l

)

subject to






1

σ2
θ

+

(
∑L

l=1 g
T
l Alfl

)2

σ2
n

∑L
l=1 g

T
l AlA

T
l gl + σ2

ν






−1

= J∗
(2.8)

where 0 < J∗ ≤ σ2
θ . We note that both the objective function and the constraint

function in (2.8) are quadratic in the elements of Al. This problem is considerably

easier to solve than the original one (2.7). The main result based on solving (2.8)

is in the following proposition whose proof is given in Appendix A.

Proposition 2.1. Consider the sensor network model described by (2.2) and (2.3). Sup-

pose the total transmitted power from all sensors is no greater than P , then using the

LMMSE estimator, the optimal amplification matrix of the lth cluster is given by

A
opt
l =

√
√
√
√

(
L∑

i=1

‖fi‖2‖gi‖2(σ2
θ‖fi‖2 + σ2

n)

φ2
i

)−1

P

φ2
l

glf
T
l , l = 1, · · · , L (2.9)

where φi = σ2
ν(σ

2
θ‖fi‖2 + σ2

n) + σ2
n‖gi‖2P , and the corresponding minimum MSE is

JM =

(

1

σ2
θ

+
L∑

l=1

‖fl‖2‖gl‖2P
σ2
ν(σ

2
θ‖fl‖2 + σ2

n) + σ2
n‖gl‖2P

)−1

(2.10)

The optimal amplification matrix A
opt
l is a rank one matrix, which is a scaled outer

product of gl and fl. As expected the optimal MSE JM decreases as P increases. Moreover,

as P → ∞, we have

lim
P→∞

JM =
σ2
θ

1 + (σ2
θ/σ

2
n)
∑L

l=1 ‖fl‖2
(2.11)

The limit does not go to zero but approaches a finite value which depends on the signal

to noise ratio σ2
θ

∑L
l=1 ‖fl‖2/σ2

n, since the measured signal flθ + nl is amplified by Al,

1 ≤ l ≤ L.
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For comparison, we consider two special cases: L = 1 and L = K. When L = 1,

there is full collaboration among the K sensors. The observation gain is f ∈ R
K and the

channel gain is g ∈ R
N , N ≤ K. It is easy to see from (2.9) that the optimal amplification

matrix is

Aopt =

√
(‖f‖2‖g‖2(σ2

θ‖f‖2 + σ2
n)

φ̄2

)−1
P

φ̄2
gfT (2.12)

where φ̄ = σ2
ν(σ

2
θ‖f‖2 + σ2

n) + σ2
n‖g‖2P , and the corresponding MSE is

JC =

(
1

σ2
θ

+
‖f‖2‖g‖2P

σ2
ν(σ

2
θ‖f‖2 + σ2

n) + σ2
n‖g‖2P

)−1

(2.13)

When L = K, each sensor is a cluster and no collaboration between sensor exists. The

scalar observation gains and channel gains are respectively fk and gk, 1 ≤ k ≤ K. Again

from (2.9), the optimal amplification gain is

aoptk =

√
√
√
√

(
K∑

i=1

f 2
i g

2
i (σ

2
θf

2
i + σ2

n)

φ̃2
i

)−1

P

φ̃2
k

gkf
T
k , k = 1, · · · , K (2.14)

where φ̃i = σ2
ν(σ

2
θf

2
i + σ2

n) + σ2
ng

2
i P , and the corresponding MSE is

JN =

(

1

σ2
θ

+
K∑

k=1

f 2
kg

2
kP

σ2
ν(σ

2
θf

2
k + σ2

n) + σ2
ng

2
kP

)−1

(2.15)

To compare the performance of the general case and the two special cases, we assume

Nl = Kl, 1 ≤ l ≤ L, in (2.10) and N = K in (2.13), that is, the number of measurements

is equal to the number of transmitters in each cluster. Hence the observation gain and

the channel gain vectors can be written as f = [fT1 fT2 · · · fTL ]T = [f1 f2 · · · fK ]T and g =

[gT
1 gT

2 · · · gT
L ]

T = [g1 g2 · · · gK ]T , respectively, where fl,gl ∈ R
Kl and K1+ · · ·+KL = K.

In terms of the MSE, it is not unexpected that collaboration improves performance.

Indeed, we have the following proposition.

Proposition 2.2. The minimum MSEs JM in (2.10), JC in (2.13), and JN in (2.15)

satisfy

JC ≤ JM ≤ JN . (2.16)

The proof of Proposition 2.2 is based on the following lemma.
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Lemma 2.3. For x = [xT
1 xT

2 · · · xT
L]

T ∈ R
n and y = [yT

1 yT
2 · · · yT

L ]
T ∈ R

n, where xi and

yi are nonzero vectors of dimension ≥ 1, we have

‖x‖2‖y‖2
‖x‖2 + ‖y‖2 ≥

L∑

i=1

‖xi‖2‖yi‖2
‖xi‖2 + ‖yi‖2

. (2.17)

Proof. Please see Appendix B.

We now establish Proposition 2.2. Let x =
√

σ2
θf , y =

√

(σ2
n/σ

2
ν)Pg, xi =

√

σ2
θfi, and

yi =
√

(σ2
n/σ

2
ν)Pgi. Then by Lemma 2.3, we get

‖f‖2‖g‖2
σ2
θ‖f‖2 + (σ2

n/σ
2
ν)P‖g‖2 + σ2

n

≥
L∑

i=1

‖fi‖2‖gi‖2
σ2
θ‖fi‖2 + (σ2

n/σ
2
ν)P‖gi‖2 + σ2

n

and thus J−1
C ≥ J−1

M , or equivalently, JC ≤ JM . The second inequality in (2.16) follows

similarly: apply Lemma 2.3 to each xi, yi, and their respective scalar components, and

their sums give the desired inequality.

2.3 Numerical Results and Discussion

In this section, we use numerical simulations to verify the analytical result established

in Section 2.2. In all simulations, the random parameters, θ, nl,k, and ν, are zero-mean

Gaussian. And we assume that σ2
θ = σ2

ν = 1. The observation gains fl,k are assumed to

be uniformly distributed in the interval [0.5, 1]. The channel gains are taken as cgd
−3.5,

where d is uniformly drawn from the interval [1, 10] and cg = 22.6 is a normalization

constant to make E[gl,n] = 1 as in [26].

Simulation 2.1 - Effects of N : In this simulation, we demonstrate the effect of the number

of transmitters. In particular, we consider the effect of different numbers of transmitters

N , where N ≤ K, in the full collaboration case. We set K = 10 and σ2
n = 0.4. In

Figure 2.2, we plot the average MSE versus N with power levels P = 0 dB, 5 dB, and

10 dB. We note that as N increases, the MSEs decrease; also, we see that large power

levels result in smaller MSEs.
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Figure 2.2: MSE of full collaboration case with different numbers of transmitters

Since the MSE decreases as N increases, in all the simulations to follow, the number

of sensors and the number of transmitters are set equal.

Simulation 2.2 - Effects of Observation Noise Powers: In this simulation, we compare

the MSE of the full collaboration case to that of the non-collaboration case for different

observation noise powers. Figure 2.3 shows the average MSE versus P for the full col-

laboration and non-collaboration cases with different observation noises, σ2
n = 0.4 and

σ2
n = 0.8. We set K = 20. For σ2

n = 0.4, the case with full collaboration performs better

than the non-collaboration case. Moreover, as the transmitted power increases, the MSEs

for both two cases decrease. In fact, from (2.11), these two cases approach identical MSE

as P → ∞. We also see that the MSE of the case with σ2
n = 0.4 is smaller than that

of the case with σ2
n = 0.8, that is, a large signal to noise ratio results in a good performance.

Simulation 2.3 - Comparison between Full Collaboration and Non-collaboration: In this

simulation, we compare the full collaboration case with two non-collaboration cases,
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Figure 2.3: MSE of full collaboration and non-collaboration cases with different noise

power levels

which, respectively, use the optimal power allocation scheme and the equal power al-

location scheme. Note that the equal power allocation scheme is to set the amplification

gains as ak =
√

P/K, 1 ≤ k ≤ K. We set K = 50 and σ2
n = 0.4. Figure 2.4 shows that

optimal power allocation improves performance over equal power allocation for the non-

collaboration case. In addition, the reduction in MSE by full collaboration with optimal

power allocation is about 10 dB compared with the equal power allocation scheme.

Simulation 2.4 - Effects of Number of Sensors in Each Cluster: In this simulation, we

demonstrate the effect of the number of sensors in each cluster. Specifically, we fix the

number of sensors in the network and consider two multiple cluster cases: in case 1, each

cluster consists of 4 sensors, and in case 2, each cluster consists of 8 sensors. Hence for

a fixed number of sensors K, case 1 has K/4 clusters and case 2 has K/8 clusters. We

compare their performance with the full collaboration and non-collaboration cases. We

set P = 0 dB and σ2
n = 0.4. Figure 2.5 shows that MSE of case 2 is less than that of case 1
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since for a fixed K, case 2 has a smaller number of clusters and thus more collaboration

among sensors. That the full collaboration has the lowest MSE and the non-collaboration

case has the highest MSE is as predicted by (2.16).
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Figure 2.6: MSEs with different number of clusters

Simulation 2.5 - Effects of Cluster Number: In this simulation, we fix the number of

sensors Kl = 10 in each cluster and investigate the relationship between the MSE and

the number of cluster. Hence, as the number of clusters is L, the sensors in the network

are 10 × L. Figure 2.6 shows the MSE as a function of L with, respectively, P = 0 dB,

P = 10 dB, and P = ∞, which is equivalent to the performance lower bound as shown in

(2.11). From this figure, we see that when the number of sensors in each cluster is fixed,

the MSE decreases as L increases. In addition, compared the MSEs of P = 0 dB to that

of P = 10 dB, we see that the performance gain for the increase of power approaches a

constant as L > 10.

Simulation 2.6 - Comparison with Orthogonal MAC Model [24]: In this simulation, we
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Figure 2.8: Comparison of the coherent MAC model to that of the orthogonal MAC model
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compare the proposed scheme to that in [24], in which the orthogonal MAC model is taken

into account. Figure 2.7 shows the model in [24]: the measurement vector for the lth clus-

ter is xl = flθ + nl which then transmits to the lth receiver through a diagonal channel

gain matrix Gl after multiplying by an amplification matrix Al; at the FC, the received

signal vector from the lth cluster is yl = GlAlxl+νl, 1 ≤ l ≤ L, where the additive noise

νl is assumed to be E[νl] = 0, E[νlν
T
l ] = σ2

νIKl
, and E[νlν

T
j ] = 0Kl×Kl

for j 6= l. After

collecting L signal vectors at the FC, the LMMSE fusion rule is used for estimating the

source signal. The performance comparison for the orthogonal and coherent MAC models

is plotted in Figure 2.8, in which we take P = 10 dB, Kl = 3 for all clusters, and σ2
n = 1.

We see that the MSE of the coherent MAC model performs better than that of the or-

thogonal MAC model. This is because by using the orthogonal MAC model, the number

of receiver noises increases as the number of clusters increases. However, by using the

coherent MAC model, there is only one receiver noise regardless of the number of clusters.

Table 2.1: Different number of sensors in clusters

K = 30 P = 0 dB

Clusters (L) 4 5 5 6 6 6 7 7 8 9

Sensors in

each cluster
(Kl)

9, 9, 9,

3

10, 8, 7,

3, 2

9, 9, 6,

4, 2

10, 8, 6,

4, 1, 1

10, 7, 5,

4, 3, 1

8, 7, 6,

5, 3, 1

9, 7, 6,

3, 2, 2,

1

9, 6, 4,

4, 3, 2,

2

8, 7, 5,

3, 3, 2,

1, 1

6, 6, 4,

3, 3, 3,

2, 2, 1

Number of entries 252 226 218 218 200 184 184 166 162 124

MSE (JM ) 0.0566 0.0603 0.0617 0.0635 0.0642 0.0659 0.0687 0.0690 0.0704 0.0790

Simulation 2.7 - Relation between Collboration: In this simulation, we see quantitatively

the relation between collaboration and MSE for the coherent MAC model, we consider a

network with 30 sensors and P = 0 dB. We perform 10 simulations with the number of

cluster ranging from 4 to 9. The number of sensors in each cluster is randomly chosen

from 1 to 10. In each case, we count the total number of entries in the amplification ma-

trices Al. For example, in the first case there are 4 clusters, the numbers of sensors in the

clusters are respectively 9, 9, 9, and 3, and the number of entries is 92+92+92+32 = 252.

Table 1 shows the number of cluster, the number of entries, and the corresponding MSE
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for each case. From the table, we see that the MSE decreases as the number of entries

increases. For comparison, the MSE for the two special cases are respectively JN = 0.1689

and JC = 0.0392.

A Brief Summary and Discussion: We study optimal collaboration for distributed esti-

mation in cluster-based wireless sensor network. We show that the optimal amplification

matrix of each cluster is a rank one matrix obtained as a scaled outer product of the

observation gain and the channel gain vectors. We also show that with optimal collab-

oration matrices, the performance of the collaboration case is better than that of the

non-collaboration case. For a fixed number of sensors in the network, we demonstrate,

through simulation results, that the amount of improvement is closely related to the

amount of collaboration.
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Chapter 3

Distributed Estimation Using Sensor

Network with Unknown Channels

In wireless communication systems, channels are often unknown to the receiver and have

to be estimated in practice [32, 34]. In this chapter, we extend the non-collaboration

case when channels are known to the case when channels are unknown. In the sensor

network with unknown channels, we use training-based LMMSE channel estimator. The

channel estimates are then used to obtain LMMSE estimation of the source signal. The

problem is formulated as the allocation of power to each sensor for training and for data

transmission under a total network power constraint. We first consider the optimal power

allocation scheme, in which the sensors get full channel or estimated channel information

and consider optimizing the training power and data power for each sensor. Then we

discuss the equal power allocation scheme, in which the sensors do not have channel

information, except for the phases. We set equal data power to each sensor and consider

the optimization of training power to minimize the MSE. In each scheme, we compare the

performance of the distributed estimation with estimated channels to that with actual

known channels.
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Figure 3.1: Coherent MAC wireless sensor network

3.1 System Model

We consider a wireless sensor network with K sensors for estimating a random source

signal θ, as depicted in Figure 3.1. The measurement at the kth sensor is corrupted by an

additive noise nk and amplified by a factor αk before it is transmitted to the FC through

a flat fading channel, hk. The signal y received at the FC can be expressed as

y =
K∑

k=1

hkαk(θ + nk) + ν (3.1)

where ν is the additive noise at the receiver.

The following assumptions are made throughout this chapter.

i) E[θ] = 0 and E[|θ|2] = σ2
θ .

ii) The measurement noises are independent and nk ∼ CN (0, σ2
n) for k = 1, 2, · · · , K,

that is, nk’s are independent and circular Gaussian with zero mean and variance σ2
n.

iii) The channels are independent and hk ∼ CN (0, σ2
h).

iv) ν ∼ CN (0, σ2
ν).

v) The source signal, the channels, the measurement noises, and the receiver noise are

uncorrelated. Specifically, for 1 ≤ k, j ≤ K, E[θ∗nk] = 0, E[n∗
khl] = 0, E[θ∗ν] = 0,

E[θ∗hk] = 0, and E[h∗
kν] = 0.
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The problem is to estimate the parameter θ based on the received signal y at the FC.

The fading channels are assumed unknown. We consider a two-phase approach similar to

that proposed in [25]: to estimate the channels first using training symbols sent from the

sensors and then to estimate θ based on the estimated channels and y. In both phases,

we seek the LMMSE estimator.

3.2 LMMSE Estimation

3.2.1 Channel Estimation

During the training phase, the sensors send training symbols in sequence: the training

period is divided into K time intervals and only the kth sensor sends a training symbol

tk over the kth time interval. Thus, the received signal at the kth time interval can be

expressed as yk = hktk + νk, k = 1, 2, · · · , K, where νk ∼ CN (0, σ2
ν) and E[ν∗

i νj] = 0 for

i 6= j. For a given training sequence tk, the LMMSE estimator of hk is given by

ĥk =
σ2
h

|tk|2σ2
h + σ2

ν

t∗kyk (3.2)

and the corresponding MSE is

δ2k = E
[

|hk − ĥk|2
]

=
σ2
hσ

2
ν

|tk|2σ2
h + σ2

ν

, k = 1, · · · , K. (3.3)

The MSE of ĥk decreases as the power of the training symbol |tk|2 increases. The LMMSE

problem under the training power constraint
∑K

k=1 |tk|2 ≤ Pt can be formulated as

min
pk:1≤k≤K

1

K

K∑

k=1

δ2k, subject to
K∑

k=1

pk ≤ Pt and pk ≥ 0, k = 1, · · · , K

where pk = |tk|2 is the training power of sensor k. The problem can be solved using

standard Karush-Kuhn-Tucker (KKT) condition [25] and the solution is |tk|2 = Pt/K, ∀k,
as expected since the channels are independent and identically distributed. In particular,

we choose the training symbol to be real and positive, that is, tk =
√

Pt/K, and the

resulting channel estimate is

ĥk =
σ2
h

√
KPt

σ2
hPt +Kσ2

ν

yk, k = 1, 2, · · · , K (3.4)
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with the corresponding MSE

δ2k =
Kσ2

hσ
2
ν

σ2
hPt +Kσ2

ν

, k = 1, · · · , K. (3.5)

We note that with such choice of training symbols, both the received signal yk and the

channel estimate ĥk are circular Gaussian.

3.2.2 Source Estimation

During the second phase, channel estimates ĥk are available at the FC, although the

actual channels are unknown. We express the received signal y in (3.1) in terms of ĥk as

y =
K∑

k=1

ĥkαkθ +
K∑

k=1

ĥkαknk + ε+ ν (3.6)

where ε =
∑K

k=1(hk − ĥk)αk(θ + nk) is contributed by channel estimation error. Let

ĥ = [ĥ1 ĥ2 · · · ĥK ]
T be the vector of channel estimates. The LMMSE estimate of θ given

ĥ is

θ̂ = ay, where a =
E[θy∗ | ĥ]
E[|y|2 | ĥ]

. (3.7)

From (3.6) it follows that

E
[

θy∗ | ĥ
]

=E

[

θ

(
K∑

k=1

ĥ∗
kα

∗
kθ

∗ +
K∑

k=1

ĥ∗
kα

∗
kn

∗
k + ε∗ + ν∗

)
∣
∣
∣ ĥ

]

=
K∑

k=1

ĥ∗
kα

∗
kσ

2
θ (3.8)

where the last equality is from the assumptions that the source signal is uncorrelated with

the measurement noise and the receiver noise, and that ĥk = E[hk|yk] = E[hk|ĥk] since

ĥk is a linear function of yk. It is derived in Appendix C that

E
[

|y|2 | ĥ
]

=

∣
∣
∣
∣
∣

K∑

k=1

ĥkαk

∣
∣
∣
∣
∣

2

σ2
θ +

K∑

k=1

|ĥk|2|αk|2σ2
n + σ2

ν + (σ2
θ + σ2

n)δ
2
1

K∑

k=1

|αk|2. (3.9)

The MSE incurred by (3.7) is

J =E
[

|θ − θ̂|2|ĥ
]

=σ2
θ − aE

[

θ∗y|ĥ
]

− a∗E
[

y∗θ|ĥ
]

+ |a|2E
[

|y|2|ĥ
]

=






1

σ2
θ

+

∣
∣
∣
∑K

k=1 ĥkαk

∣
∣
∣

2

∑K
k=1 |ĥk|2|αk|2σ2

n + σ2
ν + (σ2

θ + σ2
n)δ

2
1

∑K
k=1 |αk|2






−1

(3.10)
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When the channel hk is available at the FC, we can set ĥk = hk and δ2k = 0 in (3.10), and

the corresponding MSE becomes

Jo =






1

σ2
θ

+

∣
∣
∣
∑K

k=1 hkαk

∣
∣
∣

2

∑K
k=1 |hk|2|αk|2σ2

n + σ2
ν






−1

(3.11)

The MSE Jo is a lower bound of J in (3.10) and can serve as a benchmark against which

the performance of the estimator (3.7) can be compared.

3.3 Optimal Power Allocation

During the training phase, each sensor uses the same training symbol and thus consumes

the same amount of training power Pt/K, where Pt is the total allocated training power.

From (3.5), it is clear that as Pt increases, the MSE in channel estimation decreases. In a

sensor network, there is likely a total power constraint, that is, there is an upper bound

imposed on the sum of training power and the power used to transmit data. Hence,

when more power is allocated for training, less power is available for data transmission

and vice versa. Under the total power constraint, the minimum MSE of θ̂, that is, J

in (3.10), depends on the training power Pt and how the remaining network power is

allocated to each sensor for data transmission. In the following, we consider the optimal

power allocation problem, that is, to choose Pt and data power for each sensor to minimize

J under a total power constraint. For comparison, we will also consider the case when

channel information is available, no training, no channel error, and all power is used for

data transmission. The comparison of the two cases will show the penalty incurred due

to the fact that the channel is unknown.

3.3.1 When channels are known

If the channel hk is available at the sensor k, the phase of αk can be chosen to match that

of the channel, that is, ∠αk = −∠hk, so that hkαk = |hk||αk|. The MSE Jo in (3.11) can
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then be rewritten as

Jo =






1

σ2
θ

+
ζ
(
∑K

k=1 gk|αk|
)2

ζσ2
n(
∑K

k=1 g
2
k|αk|2) + 1






−1

(3.12)

where ζ = σ2
h/σ

2
ν is the channel SNR, and gk = |hk|/σh is the normalized channel gain

for the kth sensor. Such choices of phases make Jo smallest among αk’s of the same

magnitude. Note that gk has a Rayleigh distribution with density function fg(x) =

2x exp (−x2), x ≥ 0, and E[gk] =
√

π/4; g2k has an exponential distribution with density

function fg2(x) = exp (−x), x ≥ 0, and E[g2k] = 1 [37, p.51]. The signal transmitted from

the kth sensor is αk(θ + nk) with power Pk = E[|αk(θ + nk)|2] = |αk|2(σ2
θ + σ2

n). From

(3.12), the optimal power allocation problem with the total network power constrained

to P > 0 can be formulated as the following optimization problem







min
|αk|:1≤k≤K

(

1
σ2
θ

+
ζ(

∑K
k=1

gk|αk|)
2

ζσ2
n(

∑K
k=1

g2
k
|αk|2)+1

)−1

subject to
∑K

k=1 |αk|2(σ2
θ + σ2

n) ≤ P.

(3.13)

By the same reasons shown in the observations (i) to (iii) in Section 2.2 in Chapter 2,

instead of solving (3.13), we consider an alternative problem in which the power is mini-

mized subject to an MSE constraint:







min
|αk|:1≤k≤K

∑K
k=1 |αk|2(σ2

θ + σ2
n)

subject to

(

1
σ2
θ

+
ζ(

∑K
k=1

gk|αk|)
2

ζσ2
n(

∑K
k=1

g2
k
|αk|2)+1

)−1

= Jo

(3.14)

where 0 < Jo ≤ σ2
θ . It is noted that the problem (3.14) can be regarded as the non-

collaboration case of the problem (2.8) with Al, gl, and fl replaced by |αk|, gk, and 1.

The solution, from Proposition 2.1, can then be written as

|αk|2 =
(

K∑

k=1

g2k(σ
2
θ + σ2

n)

[(σ2
θ + σ2

n) + σ2
nζg

2
kP ]

2

)−1

g2kP

[(σ2
θ + σ2

n) + σ2
nζg

2
kP ]

2 (3.15)

and thus the optimal power is Pk = |αk|2(σ2
θ +σ2

n), 1 ≤ k ≤ K; the corresponding MSE is

Jo =

(

1

σ2
θ

+
K∑

k=1

g2k
σ2
ng

2
k + (σ2

θ + σ2
n)

1
ζP

)−1

(3.16)
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which is also the minimum MSE of (3.13). Since the minimum MSE depends on the total

network power P and the number of sensors K, we hereafter write the MSE Jo in (3.16)

as Jo(P,K).

As the power P increases, we expect Jo to decrease, which is easy to see from (3.16).

For a fixed K, as P → ∞, we have

lim
P→∞

Jo(P,K) =
σ2
θ

1 +Kβ
(3.17)

where β = σ2
θ/σ

2
n is the observation SNR. The limit dose not go to zero but is roughly

proportional to 1/K as we would expect. On the other hand, for a fixed P > 0, as K

increases, we have

lim
K→∞

Jo(P,K) =

(

1

σ2
θ

+ lim
K→∞

KE

[

g2k
σ2
ng

2
k + (σ2

θ + σ2
n)

1
ζP

])−1

= lim
K→∞

1

K

{

E

[
ζg2kP

(σ2
θ + σ2

n) + σ2
nζg

2
kP

]}−1

= 0 (3.18)

where in the first equality we used the law of large numbers [39]. From (3.18), we conclude

that in the coherent MAC model, the MSE decreases in the order of 1/K as K goes to

infinity even though the total network power P is finite. Similar conclusion for the unit

variance case, σ2
θ = σ2

n = σ2
ν = 1, appeared in [26].

3.3.2 When channels are estimated

Suppose training for channel estimation consumes power Pt, then the remaining power

for data transmission is P −Pt. The power allocation problem now is to optimally choose

training power Pt and data power for each sensor. The phase of αk is chosen to match

that of ĥk, i.e., ∠αk = −∠ĥk. Write hk = ĥk + (hk − ĥk), since ĥk and hk − ĥk are

uncorrelated we have σ2
h = σ2

ĥ
+ δ2k, where δ

2
k = E[|hk − ĥk|2]. Use (3.5) and σ2

ĥ
= σ2

h − δ2k,

we can express the MSE in (3.10) as

J =






1

σ2
θ

+
ζ2
(
∑K

k=1 ĝk|αk|
)2

Pt

ζ2σ2
n

(
∑K

k=1 ĝ
2
k|αk|2

)

Pt + ζPt +Kζ(σ2
θ + σ2

n)(
∑K

k=1 |αk|2) +K






−1

(3.19)

where ĝk = |ĥk|/σĥ is the normalized estimated channel gain for the kth sensor. Since

ĥk is circular Gaussian, ĝk and gk have identical distribution. From (3.19), the MMSE
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optimization problem under a total network power constraint can be formulated as







min
Pt;|αk|:1≤k≤K

(

1
σ2
θ

+
ζ2(

∑K
k=1

ĝk|αk|)
2
Pt

ζ2σ2
n(

∑K
k=1

ĝ2
k
|αk|2)Pt+ζPt+Kζ(σ2

θ
+σ2

n)(
∑K

k=1
|αk|2)+K

)−1

subject to
∑K

k=1 |αk|2(σ2
θ + σ2

n) + Pt ≤ P.

(3.20)

Again instead of solving problem (3.20) directly, we consider a problem in which the roles

of objective function and constraint are interchanged. The solution to problem (3.20) is

given in the following proposition, the proof of which is given in Appendix D.

Proposition 3.1. For K > 1, the solution to (3.20) gives the optimal training power

P opt
t =

K(ζP + 1)−
√

K(ζP + 1)(ζP +K)

ζ(K − 1)
(3.21)

where ζ = σ2
h/σ

2
ν is the channel SNR, and the associated optimal data power for the kth

sensor is

P opt
k =

(
K∑

k=1

ĝ2k/φ̂
2
k

)−1

ĝ2k

φ̂2
k

(P − P opt
t ) (3.22)

where φ̂k = [(σ2
θ+σ2

n)+λ0ζ
2σ2

nĝ
2
kP

opt
t +λ0Kζ(σ2

θ+σ2
n)] and λ0 = P opt

t /(K+Kζ(P−P opt
t )).

The incurred MSE is

J(P,K) =








1

σ2
θ

+
K∑

k=1

ĝ2k

σ2
nĝ

2
k + (σ2

θ + σ2
n)

(

K−1√
K(ζP+1)−

√
ζP+K

)2








−1

(3.23)

Note that the optimal training power in (3.21) depends on the number of sensors K,

the channel SNR ζ, and the total network power P . Moreover, we have

P opt
t − P

2
=

(√

K(ζP + 1)−√
ζP +K

)2

2ζ(K − 1)
> 0,

that is, for a total power constraint P , the power used for training is greater than that

used for data transmission.

From (3.23), we see that the MSE decreases as the power P increases. For a fixed K,

as P → ∞, we obtain

lim
P→∞

J(P,K) =
σ2
θ

1 +Kβ
(3.24)
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which is the same as (3.17). This makes sense since P → ∞ implies P opt
t → ∞ and thus

the MSE of channel estimation in (3.5) approaches to zero, that is, ĥk → hk as P → ∞
in the mean square sense. It is shown in Appendix E that, for a fixed P ,

lim
K→∞

J(P,K) = σ2
θ

(

1 +
β

1 + β

(√

ζP + 1− 1
)2
)−1

. (3.25)

The MSE does not approach to zero. The reason is that the order of 1/K decrease in

MSE in (3.18) is offset by the order of K increase in the power of the error term E[|ε|2|ĥ]
in (C.3) in Appendix C. Therefore, in the presence of the channel estimation error, the

MSE reaches a finite nonzero value as K goes to infinity.

3.3.3 Comparison of two cases

If the total network power and number of sensors are fixed, with estimated channel, the

estimation performance is worse than when channel information is available due to the

presence of channel estimation error. To quantitative compare the two cases, we set the

same MSE objective, use optimal power allocation for both cases, and determine the

respective total network power that would be required. Suppose to achieve the selected

MSE, total network power P a is required when channel information is available and the

required total network power is P e when channels are estimated. The ratio P a/P e gives an

indication of the penalty incurred by the consumption of training power and the presence

of channel estimation error. A small ratio would imply a heavy penalty. But the MSE

expressions in (3.16) and (3.23) are random variables, we instead derive the condition on

P a and P e under which the distributions of MSEs are identical. This is possible due to

the fact that the random variables gk and ĝk have identical Rayleigh distribution. From

(3.16) and (3.23), the distributions of MSE expressions are identical if the deterministic

terms in the denominator are equal, that is,

(

K − 1
√

K(ζP e + 1)−√
ζP e +K

)2

=
1

ζP a
(3.26)

Rearranging (3.26), we get

P a

P e
=

(√

K(1 + 1/(ζP e))−
√

1 +K/(ζP e)

K − 1

)2

(3.27)
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Note that the ratio in (3.27) is less than one, and for P e large

P a

P e
≈ 1

(
√
K + 1)2

. (3.28)

The ratio decreases as the number of sensors K increases. This means that the penalty

caused by channel estimation becomes worse as the number of sensor increases.

3.4 Equal Power Allocation

The optimal power allocation scheme discussed in the previous section requires that the

actual channel or estimated channel information is available at the sensors. If the sensors

do not get full channel information fedback from the FC, a reasonable strategy is to

allocate equal power for each sensor for data transmission. In the following, we study

the performance of the equal power allocation scheme. We again consider two cases:

i) channels are known at the FC and ii) channels are estimated. In the latter case, we

consider the optimal choice of training power Pt to achieve the smallest MSE. We compare

performance of the two cases in terms of the power ratio P a/P e as in the previous section.

3.4.1 When channels are known

We will assume that the channel phase ∠hk is available at the sensor k and choose the

phase of αk as ∠αk = −∠hk. With equal power allocation, we have |αk|2 = P/(K(σ2
θ +

σ2
n)), for k = 1, · · · , K and the MSE in (3.12) can be rewritten as

Jo(P,K) = σ2
θ




1 +

β
1+β

(
1
K

∑K
k=1 gk

)2

1
K

1
1+β

(
1
K

∑K
k=1 g

2
k

)

+ 1
KζP






−1

(3.29)

It is easy to see from (3.29) that Jo decreases as P increases. For a fixed K, as P → ∞,

we have

lim
P→∞

1

Jo(P,K)
= σ−2

θ

(

1 + β
(
∑K

k=1 gk)
2

∑K
k=1 g

2
k

)

≤ σ−2
θ (1 +Kβ)

where the last inequality uses the Cauchy-Schwartz inequality and the equal sign holds if

and only if g1 = · · · = gK . Therefore, as P → ∞, we have a MSE lower bound as follows

lim
P→∞

Jo(P,K) ≥ σ2
θ

1 +Kβ
. (3.30)
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Since equality holds in (3.17), we see that the performance of the equal power scheme is

usually worse than that of the optimal power scheme as P → ∞. On the other hand, for

a fixed P , as K → ∞, we have (1/K)
∑K

k=1 gk → E[gk] =
√

π/4 and (1/K)
∑K

k=1 g
2
k →

E[g2k] = 1, thus (3.29) becomes

lim
K→∞

Jo(P,K) = lim
K→∞

σ2
θ

K

(
β

1+β
π
4

1
1+β

+ 1
ζP

)−1

= 0. (3.31)

Hence, the MSE decreases in the order of 1/K and approaches to zero as K → ∞ even

though the total power P is finite. Similar conclusion appeared in [26] for the unit variance

case.

3.4.2 When channels are estimated

If the power Pt is used for channel estimation, the transmitted data power for the kth

sensor is Pk = (P − Pt)/K, or equivalently, |αk|2 = (P − Pt)/(K(σ2
θ + σ2

n)). Again the

phase of αk is chosen as ∠αk = −∠ĥk and the MSE derived from (3.19) is

J(P,K) = σ2
θ




1 +

ζ2K β
1+β

(
1
K

∑K
k=1 ĝk

)2

(P − Pt)Pt

ζ2 1
1+β

(
1
K

∑K
k=1 ĝ

2
k

)

(P − Pt)Pt + ζPt + ζK(P − Pt) +K






−1

(3.32)

From (3.32), the optimization problem becomes to choose Pt so that the MSE J is min-

imum under the total network power constraint. From (3.32) the MMSE optimization

problem can be formulated equivalently as






min
Pt

− ζ2K β

1+β (
1

K

∑K
k=1

ĝk)
2
(P−Pt)Pt

ζ2 1

1+β (
1

K

∑K
k=1

ĝ2
k)(P−Pt)Pt+ζPt+ζK(P−Pt)+K

subject to 0 ≤ Pt ≤ P.

(3.33)

It is shown in Appendix F that the objective function in (3.33) with respect to Pt is

positive. Hence, the optimization problem (3.33) is convex since the objective function is

convex and the constraint is linear. The following proposition gives the optimal training

power and the corresponding MSE.

Proposition 3.2. For K > 1, the solution to (3.33) gives the optimal training power

P opt
t =

K(ζP + 1)−
√

K(ζP + 1)(ζP +K)

ζ(K − 1)
(3.34)
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where ζ = σ2
h/σ

2
ν, and the incurred MSE

J(P,K) = σ2
θ






1 +

β
1+β

(
1
K

∑K
k=1 ĝk

)2

1
K

1
1+β

(
1
K

∑K
k=1 ĝ

2
k

)

+ (K−1)2

K2

(√
ζP+1−

√
1+(ζP/K)

)2







−1

(3.35)

Proof. Please see Appendix G.

Note that the optimal training powers for both the equal and optimal power allocation

schemes are the same. This is because for the optimal power allocation scheme, if we set

Pk = (P − P opt
t )/K for all k, the MSE and the optimal training power must be the same

as the equal power allocation scheme.

From (3.35) with fixed K, as P → ∞, we obtain limP→∞(1/J(P,K)) ≤ σ−2
θ (1 +Kβ)

and thus

lim
P→∞

J(P,K) ≥ σ2
θ

1 +Kβ
(3.36)

which is the same as (3.30). On the other hand, for a fixed P , when K → ∞, we obtain

lim
K→∞

J(P,K) = σ2
θ

(

1 +
π

4

β

1 + β

(√

ζP + 1− 1
)2
)−1

(3.37)

which is worse than (3.25). Note that the MSE in (3.37) also approaches a finite nonzero

value as the number of sensors goes to infinity due to the same reason as stated in

Section 3.3.2.

3.4.3 Comparison of two cases

To compare performance of the two cases, we set P a and P e respectively so that the MSE

expressions in (3.29) and (3.35) have the same distribution as in Section 3.3.3. From

(3.29) and (3.35), the distributions of the MSE are identical if the deterministic terms in

the denominator are equal, that is,

(

K − 1
√

K(ζP e + 1)−√
ζP e +K

)2

=
1

ζP a
. (3.38)

This equation is the same as (3.26) and thus we have the same ratio of penalty incurred

by the training power consumption and the channel estimation error as shown in (3.27)

and (3.28).
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3.5 Numerical Results and Discussion

In this section, we use a number of numerical simulations to verify the analytical results

obtained in previous sections. All random parameters, θ, nk, hk, and ν, are set as zero-

mean circular Gaussian. The parameter θ and the channel hk are assumed to have unit

variance, that is, we set σ2
θ = σ2

h = 1 (0 dB). The observation noise variance σ2
n = −10

dB and the receiver noise variance σ2
ν = −1 dB so that the observation SNR β = σ2

θ/σ
2
n

and the channel SNR ζ = σ2
h/σ

2
ν are 10 dB and 1 dB, respectively.
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Figure 3.2: Mean square error (MSE) with optimal power allocation

Simulation 3.1 - Comparison of Theoretical and Simulation MSEs Based on Optimal

Power Scheme: In this simulation, we compute the average MSEs of theoretical and sim-

ulation results based on the optimal power allocation scheme. The average MSE is the

average of 105 independent runs. The theoretical MSE is given in (3.23), where only

the normalized channel gains ĝk are random. To obtain the simulation MSE, we use the

LMMSE estimators in (3.2) and (3.7) with all random variables independently generated,

and take the average MSE of θ̂. It is clear from Figure 3.2 that the theoretical and simu-
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lation values of MSE are very close. For a fixed P , we see that the MSE decreases as the

number of sensors K increases and approaches to the lower bound (3.25). The results for

P = 14 dB and P = 17 dB show that the 3 dB difference in total power leads to about 3

dB difference in MSE for K ≥ 20.
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Figure 3.3: Mean square error (MSE) with equal power allocation

Simulation 3.2 - Comparison of Theoretical and Simulation MSEs based on Equal Power

Scheme: In this simulation, we compute the average MSEs of theoretical and simulation

results based on the equal power allocation scheme. The comparison is shown in Fig-

ure 3.3, where the theoretical result averages the MSE in (3.35). Again the figure shows

that the theoretical and simulation values are very close. As K increases, the average

MSE decreases and approaches to the lower bound in (3.37). The results for P = 14 dB

and P = 17 dB also show roughly 3 dB difference in MSE for K ≥ 20.

Simulation 3.3 - Comparison of Optimal and Equal Power Schemes: In this simulation,

we compare the MSE of the optimal power scheme to that of the equal power scheme.
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Figure 3.4: Comparison between equal and optimal power allocation schemes

Figure 3.4 shows the comparison result for a fixed P = 16 dB. It shows that the optimal

power scheme performs better than the equal power scheme. For K ≥ 20, the difference

in MSE between the two schemes approaches to a constant value 0.007 (approximately

20% difference), which is about the difference between the respective low bounds.

Simulation 3.4 - Comparison with Orthogonal MAC model [25]: In this simulation, we

compare the proposed scheme to that in [25]. The two-phase approach proposed in [25]

is based on the orthogonal model, where the kth sensor transmits the measured signal

αk(θ + nk) to the kth receiver through an unknown fading channel hk, k = 1, · · · , K, as

shown in Figure 3.5. The kth receiver is corrupted by an additive noise νk ∼ CN (0, σ2
ν),

where σ2
ν = −1 dB, and E[νiνj] = 0 for i 6= j; then K received data is collected by the

FC with the LMMSE fusion rule for estimating the signal. Figure 3.6 shows that with a

fixed P = 17 dB, the MSE of the orthogonal model exhibits a conspicuous degradation

as K > 40, while the MSE of the coherent model approaches to a constant value. Also

compared with the orthogonal model, the coherent model has a lower average MSE re-
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Figure 3.5: Orthogonal MAC wireless sensor network
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Figure 3.6: Performance of optimal power allocation scheme: coherent model and orthog-

onal model
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gardless of the number of sensors used. This is a consequence of using orthogonal model,

which results in K different receiver noise νk at the FC so that the increase of K does not

reduce the effect of receiver noise; while in the coherent model, only one receiver noise is

generated at the FC, which leads to increased signal to noise ratio as K increases. In the

figure, we see that as K increases, the MSE of the coherent model is less sensitive to the

channel estimation error than that of the orthogonal model.
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Figure 3.7: MSE ratio versus total power ratio: optimal power scheme with different P e

Simulation 3.5 - Comparison with the Case When Channels are Known: In this sim-

ulation, we use simulations to show the analytical results given in Section 3.3.3 and

Section 3.4.3. Figure 3.7 shows the ratio of average MSE E[Jo]/E[J ] versus the ratio

P a/P e for the optimal power allocation scheme with a fixed K = 16 sensors. In the

figure, the curves corresponding to total network power P e = 20 dB, 23 dB, 27 dB, and

30 dB, respectively. The curves all cross the horizontal lines E[Jo]/E[J ] = 1 at about

0.04 very close to the predicted 1/(
√
K + 1)2 in (3.28). Figure 3.8 shows the ratio of

average MSE E[Jo]/E[J ] versus the ratio P a/P e for the equal power scheme. The total
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Figure 3.8: MSE ratio versus total power ratio: equal power scheme with different K

network power is fixed at P e = 30 dB and the number of sensors K = 9, 25, and 36.

We see that the curve for K = 9 crosses E[Jo]/E[J ] = 1 at about 0.06, the curve for

K = 25 at about 0.03, and the curve for K = 36 at about 0.02. The curves show that the

penalty caused by channel estimation becomes worse as the number of sensorsK increases.

A Brief Summary and Discussion: We use a two-phase approach for channel and source

signal estimations; in both phases, the LMMSE criterion is used. We consider two power

allocation schemes. For the optimal power allocation scheme, we obtain expressions of

optimal training power and optimal data power for each sensor and the resulting MSE

as a function of total network power P and the number of sensor K. For the equal

power allocation scheme, we obtain an expression for the optimal training power and

the resulting MSE. In both schemes, the optimal training powers are equal. Our results

show that with estimated channels, the MSEs approach to finite nonzero values as the

number of sensors increases. We note that this is in contrast with the result obtained for

orthogonal MAC model [25] which shows the MSE performance eventually deteriorates
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as the number of sensor increases. The MSE performance compared with the case when

channels are known shows the penalty caused by channel estimation becomes worse as

the number of sensors increases.
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Chapter 4

Distributed Estimation Using MIMO

Sensor Network

Multiple-input multiple-output (MIMO) techniques can potentially improve data rate and

link reliability and thus increase the capacity of wireless systems [33,34]. In this chapter,

we consider distributed estimation of a vector signal using MIMO wireless sensor network,

in which each sensor is composed of multiple measurements and multiple transmitters, and

the FC consists of multiple received antennas. We study the problem of the design of linear

coding matrices so that the estimated error is minimized under a total power constraint.

We show that the problem can be formulated as a convex optimization problem, based

on which we derive closed form expressions of the optimal coding matrices.

4.1 System Model and Problem Formulation

We consider a wireless sensor network consisting of L sensors for estimating p random

source signals, written in vector form θ = [θ1, θ2, · · · , θp]T ∈ C
p, as shown in Figure 4.1.

The lth sensor has kl measurements, which can be expressed in vector form as

xl = Flθ + nl, 1 ≤ l ≤ L (4.1)
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Figure 4.1: Linear distributed estimation with coherent MAC

where Fl ∈ C
kl×p is the observation matrix and nl ∈ C

kl is the additive noise. Let

K =
∑L

l=1 kl. In vector form, (4.1) can be written as

x = Fθ + n, (4.2)

where x = [xT
1 xT

2 · · · xT
L]

T ∈ C
K , F = [FT

1 FT
2 · · · FT

L]
T ∈ C

K×p, and n = [nT
1 nT

2 · · · nT
L]

T ∈
C

K . The measurement of the lth sensor is encoded by a linear coding matrix Al ∈ C
N×kl

to form the message vector Alxl ∈ C
N , which is then sent to the FC through a channel

matrix Hl ∈ C
N×N . From (4.1), the received signal y at the FC can be expressed as

y =
L∑

l=1

HlAl(Flθ + nl) + ν, (4.3)

where ν ∈ C
N is additive noise at the receiver. Let Bl = HlAl ∈ C

N×kl and B =

[B1 B2 · · · BL] ∈ C
N×K , and the received signal in (4.3) can be rewritten as

y = [B1 B2 · · · BL]























F1

F2

...

FL












θ +












n1

n2

...

nL























+ ν

=B(Fθ + n) + ν. (4.4)

The following assumption are made in the sequel.
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i) The source signal vector is E[θ] = 0 and E[θθH ] = σ2
θIp.

ii) The measurement noise vectors are zero-mean and mutually uncorrelated, that is,

E[nl] = 0, E[nln
H
l ] = σ2

nIkl , and E[nln
H
j ] = 0 for j 6= l.

iii) The received noise vector is E[ν] = 0 and E[ννH ] = σ2
νIN .

iv) The signal vector, the measurement noise vectors, and the received noise vector are

uncorrelated, that is, E[θnH ] = 0, E[θνH ] = 0, and E[nνH ] = 0.

v) The observation matrices Fl and the channel matrices Hl are known at the FC.

vi) The number of source signals p, measurements K, and transmitters N should satisfy

K ≥ N , K ≥ p, and rank(F) = p.

vii) The channel matrices are diagonal, that is, Hl = diag(hl
1, · · · , hl

N) with hl
i 6= 0, ∀i, l.

Remarks: Assumption vii) simplifies the derivations to follow. In practice, if the N

signals are transmitted using N different frequencies, the assumption is reasonable.

According to the received signal y in (4.4), the LMMSE estimate of θ is

θ̂ =E[θyH ]
(
E[yyH ]

)−1
y

=σ2
θF

HBH
[
BRxB

H + σ2
νIN
]−1

y,

where Rx = E[xxH ] = σ2
θFF

H + σ2
nIK , and the corresponding MSE is

J =tr(E[(θ − θ̂)(θ − θ̂)H ])

=tr
(

σ2
θIp − σ4

θF
HBH

[
BRxB

H + σ2
νIN
]−1

BF
)

. (4.5)

The problem is to minimize J in (4.5) by the design of the coding matricesAl under a total

power constraint. The transmitted power for the lth sensor is defined as E[xH
l A

H
l Alxl] =

tr(AlRxl
AH

l ), where Rxl
= E[xlx

H
l ] = σ2

θFlF
H
l + σ2

nIkl . If P is the total power that the

L sensors can use, then the constraint can be expressed as

L∑

l=1

tr
(
H−1

l BlRxl
BH

l H
−H
l

)
≤ P, (4.6)
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where we use Al = H−1
l Bl. Let D = tr

(

FHBH
[
BRxB

H + σ2
νIN
]−1

BF
)

. Thus J =

p σ2
θ − σ4

θD. Since σθ and p are fixed, minimization of J subject to (4.6) can be expressed

equivalently as

max
Bl, 1≤l≤L

D

subject to
∑L

l=1 tr
(
H−1

l BlRxl
BH

l H
−H
l

)
≤ P.

(4.7)

Remarks: In general, if E[θθH ] = Rθ and E[nln
H
l ] = Rnl

are Hermitian and positive

definite, we can write Rθ = R
1/2
θ R

1/2
θ and Rnl

= R
1/2
nl R

1/2
nl , and introduce θ̃ = R

−1/2
θ θ,

ñl = R
−1/2
nl nl, Ãl = AlR

1/2
nl , and F̃l = R

−1/2
nl FlR

1/2
θ . Then Al, Fl, θ, and nl in (4.4)

can be replaced by Ãl, F̃l, θ̃, and ñl, respectively, and the equivalent model satisfies

assumption i) and ii). Hence, the optimization problem can still be formulated in the

same form as (4.7).

4.2 Proposed Approach

In this section, we first consider the objective function of (4.7) and determine its maximum

through singular value decomposition technique. After obtaining the maximum objective

function, we consider the power constraint and formulate the problem (4.7) as a convex

optimization problem, which then yields a solution in closed form.

Since Rx = σ2
θFF

H + σ2
nIK is positive definite, it can be expressed as Rx = R

1/2
x R

1/2
x ,

where R
1/2
x is Hermitian and positive definite. Since rank(F) = p by assumption vi),

rank(R
−1/2
x FFHR

−1/2
x ) = p and we have

R−1/2
x FFHR−1/2

x = UCΛCU
H
C , (4.8)

where ΛC = diag(c1, · · · , cp, 0, · · · , 0) with c1 ≥ · · · ≥ cp > 0 and UC ∈ C
K×K is

unitary. Multiplying (4.8) by R
−1/2
x on the right and R

1/2
x on the left shows that the

nonzero eigenvalues ci, 1 ≤ i ≤ p, are also the nonzero eigenvalues of FFH(σ2
θFF

H +

σ2
nIK)

−1 and it follows that ci ≤ 1/σ2
θ , 1 ≤ i ≤ p. Let B̄ = BR

1/2
x and use (4.8), the

objective function D in (4.7) can be expressed as

D =tr
(

B̄H
[
B̄B̄H + σ2

νIN
]−1

B̄R−1/2
x FFHR−1/2

x

)

=tr
(

B̄H
[
B̄B̄H + σ2

νIN
]−1

B̄UCΛCU
H
C

)

. (4.9)
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Express B̄ as a singular value decomposition

B̄ = UB̄ΛB̄V
H
B̄ , (4.10)

where UB̄ ∈ C
N×N is unitary, ΛB̄ = diag(

√
b1, · · · ,

√
bN), b1 ≥ · · · ≥ bN ≥ 0, and

VB̄ ∈ C
K×N has orthonormal columns. With (4.10), D in (4.9) can be further simplified

as

D = tr
(

ΛB̄

[
Λ2

B̄ + σ2
νIN
]−1

ΛB̄V
H
B̄UCΛCU

H
CVB̄

)

. (4.11)

To find an upper bound on (4.11), we need the follow fact.

Fact 4.1. [36, p.326] Let X, Y ∈ C
n×n be positive semidefinite matrices with eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 and δ1 ≥ δ2 ≥ · · · ≥ δn ≥ 0 respectively. Then

tr(XY) ≤
n∑

i=1

λiδi.

Applying the fact to (4.11) withX = ΛB̄ [ΛB̄ΛB̄ + σ2
νIN ]

−1
ΛB̄ andY = VH

B̄
UCΛCU

H
CVB̄,

we have

D ≤
p
∑

i=1

cibi
σ2
ν + bi

. (4.12)

We note that since X is diagonal, if we choose VB̄ so that VH
B̄
UC = [IN 0] ∈ C

N×K ,

where N ≥ p, then equality in (4.12) holds. Hence the upper bound in (4.12) is achieved

if we choose

VB̄ = UC(:, 1 : N), (4.13)

where UC(:, 1 : N) denotes the first N columns of UC . Since the upper bound is the same

for all N > p, we choose N = p. This keeps the number of transmitters for each sensor

at a minimum.

With the choice VB̄ = UC(:, 1 : p), we have

D =

p
∑

i=1

cibi
σ2
ν + bi

(4.14)

where ci > 0 and σ2
ν are fixed. Hence the problem of choosing Bl in B to maximize

D amounts to choosing the singular values
√
bi of B̄ in (4.10) since the choice of UB̄ is
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irrelevant and B = B̄R
−1/2
x . It is clear from (4.14) that to maximize D, we should choose

each bi > 0 as large as possible; however, it can not be chosen arbitrarily large due to the

total power constraint.

By taking into account the power constraint in (4.7), we set UB̄ = IN to simplify our

analysis and thus we have B = ΛB̄V
H
B̄
R

−1/2
x , or equivalently,

Bl = ΛB̄ÛC, l, 1 ≤ l ≤ L, (4.15)

where ÛC, l ∈ C
p×kl is the lth block matrix in VH

B̄
R

−1/2
x = [ÛC,1, · · · , ÛC,L] with VB̄ =

UC(:, 1 : p). Substituting (4.15) into (4.7), sinceHl are diagonal matrices from assumption

vii), the power constraint can be further simplified as

tr
(
R̄Λ2

B̄

)
=

p
∑

i=1

ribi ≤ P, (4.16)

where R̄ =
∑L

l=1H
−1
l ÛC, lRxl

ÛH
C, lH

−H
l with diagonal entries ri, 1 ≤ i ≤ p. Note that

since Rxl
= σ2

θFlF
H
l +σ2

nIkl , we see that the diagonal entries of H
−1
l ÛC, lRxl

ÛH
C, lH

−H
l are

positive and thus ri > 0. From (4.14) and (4.16), the problem in (4.7) with VB̄ = UC(:

, 1 : p) and UB̄ = IN can be written as

min
bi, 1≤i≤p

−
p
∑

i=1

cibi
σ2
ν + bi

subject to
∑p

i=1 ribi ≤ P,

bi ≥ 0, i = 1, · · · , p.

(4.17)

This is a convex optimization problem since the cost function is convex and the constraints

are linear.

To solve the problem (4.17), we form the Lagrangian as

L(bi, µ0, µi) = −
p
∑

i=1

cibi
σ2
ν + bi

+ µ0

(
p
∑

i=1

ribi − P

)

−
p
∑

i=1

µibi,

where µ0 ≥ 0 and µi ≥ 0, and the associated KKT conditions [38] are

− ciσ
2
ν

(σ2
ν + bi)2

+ µ0ri − µi = 0 (4.18)

µ0

(
p
∑

i=1

ribi − P

)

= 0 (4.19)

µibi = 0 (4.20)

44



From (4.18), we obtain

bi = σ2
ν

(√
ci

σ2
ν(µ0ri + µi)

− 1

)

. (4.21)

From (4.20), if bi > 0, we have µi = 0 and thus (4.21) can be written as

bi = σ2
ν

(√
ci

σ2
νµ0ri

− 1

)+

(4.22)

where (x)+ = max(0, x). From (4.18) with bi > 0 and µi = 0, we have µ0 > 0 otherwise

we have a contradiction µ0 < 0. Hence, from (4.19), we get

p
∑

i=1

ribi = P. (4.23)

Let wmi
=
√

cmi
/rmi

and assumed wm1
≥ · · · ≥ wmp

, where mi ∈ {1, · · · , p}. We define

a function

f(mn) = wmn
×

P
σ2
ν
+
∑mn

i=m1
ri

∑mn

i=m1

√

rici/σ2
ν

.

Let 1 ≤ p1 ≤ p be such that f(mp1) > 1 and f(mp1+1) ≤ 1. Then we have

bmi
=







√
σ2
ν

µ0
wmi

− σ2
ν , i ≤ p1

0, i > p1

(4.24)

where

µ0 =

(∑mp1

i=m1

√

rici/σ2
ν

P
σ2
ν
+
∑mp1

i=m1
ri

)2

is obtained by substituting (4.24) into (4.23).

With the choice ΛB̄ = diag(
√
b1, · · · ,

√
bp) according to (4.24), the coding matrix can

be written from (4.15) and Al = H−1
l Bl, and is given by

Al = H−1
l ΛB̄ÛC, l, 1 ≤ l ≤ L; (4.25)

moreover, from (4.5) and (4.14), the corresponding MSE can be written as

J = pσ2
θ − σ4

θ

p
∑

i=1

cibi
σ2
ν + bi

. (4.26)

As P → ∞, from (4.16), we have bi → ∞ and thus the lower bound of the MSE is

Jlow = p σ2
θ − σ4

θ

p
∑

i=1

ci, (4.27)

45



Note that since ci ≤ 1/σ2
θ , we have Jlow ≥ 0.

So far we have developed an analytical method for the design of optimal coding ma-

trices. For clarity, we summarize the steps of our proposed method as follows:

Step 1: Give the prior knowledge of σ2
θIp, σ

2
nIkl , σ

2
νIp, the observation matrices Fl, and

the channel matrices Hl.

Step 2: Stake Fl into matrix F, and compute Rxl
= σ2

θFlF
H
l + σ2

nI and Rx = σ2
θFF

H +

σ2
nI.

Step 3: DecomposeR
−1/2
x FFHR

−1/2
x intoUCΛCU

H
C , whereΛC = diag(c1, · · · , cp, · · · , 0),

and set VB̄ = UC(:, 1 : p).

Step 4: Write VH
B̄
R

−1/2
x = [ÛC,1, · · · , ÛC,L] with ÛC, l ∈ R

p×kl and compute

R̄ =
∑L

l=1 ÛC,lRxl
ÛH

C,l × (HlH
H
l )

−1 to get its diagonal entries ri, 1 ≤ i ≤ p.

Step 5: With ΛC and R̄ obtained in Step 3 and Step 4, solve the optimization problem

(4.17) to get bi in (4.24), 1 ≤ i ≤ p. Hence, the optimal coding matrices Al are

obtained from (4.25).

4.3 Numerical Results and Discussion

In this section, we use numerical simulations to illustrate the analytical results established

in Section 4.2. In all simulations, the random vectors θ, nl, and ν, are complex Gaus-

sian. Specifically, each entry in the vectors is set as a complex Gaussian random variable

with zero mean and unit variance. We also take the entries of Fl and the channels hl
i as

complex Gaussian random variables with zero mean and unit variance. The number of

source signals is set as p = 5.

Simulation 4.1 - Effects of N : In this simulation, we demonstrate the effect of the number

of transmitters. The average MSE versus N with different power levels P = 5 dB, 10 dB,

and 20 dB is shown in Figure 4.2, in which we take L = 10 and kl = 8, ∀l. The dash-

line denotes the MSE lower bound in (4.27). We can see that the MSE decreases as N
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Figure 4.2: MSE versus N with different power levels

increases and remains a constant as N ≥ p. That is, there is no improvement in network

performance as the number of transmitters for each sensor is greater than the number of

source signals. The result is consistent with our analysis in Section 4.2 that under a total

power constraint, the minimum achieved MSE is (4.26) for all N > p. From the figure we

can also see that the MSE decreases as the power level increases as is expected.

Since the performance is the same for all N > p, we set N = p in all the simulations

to follow.

Simulation 4.2 - Effects of kl: In this simulation, we demonstrate the effect of the number

of measurements. We consider L = 10 and assume that kl are equal for all sensors. Fig-

ure 4.3 shows the average MSE versus kl with different power levels P = 5 dB, 10 dB, and

20 dB. We note that as kl increases, the MSEs decreases; moreover, the gap between the

lower bound and the power constraint case becomes large as kl increases. This is because

although the increase of kl leads to the increase of measurement power, the transmitted
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Figure 4.3: MSE versus kl with different power levels

power for each sensor is restricted if there is a power constraint. Hence, the performance

of the power constraint case has no significant improvement as kl increases compared with

that of the unconstraint power case (the lower bound).

Simulation 4.3 - Comparison with Equal Allocation Scheme: In this simulation, we com-

pare the MSE of the optimal allocation scheme to that of the equal allocation scheme.

We take L = 10 and kl = 8, ∀l. The equal allocation scheme is to set the transmitted

powers for all sensors to be equal, that is, we choose the coding matrix Al = αl · [I5 0],

where αl =
√

P/[Ltr(Rxl
(1 : 5, 1 : 5))], so that tr(AlRxl

AH
l ) = P/L, 1 ≤ l ≤ L, here

Rxl
(1 : 5, 1 : 5) denotes the first 5 rows and columns of Rxl

and [I5 0] is a 5 × 8 matrix

with its diagonal entries equal to 1 and other entries equal to 0. Figure 4.4 shows that

the proposed scheme performs better than the equal allocation scheme. Moreover, the

MSE of the proposed scheme goes to the lower bound as P increases while the MSE of

the equal allocation scheme approaches a constant MSE for P > 25 dB. This is because

the proposed scheme takes into account the effects of the observation and channel ma-
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Figure 4.4: MSE comparison between the proposed method and the equal power method

trices in the design of coding matrices, while the equal allocation scheme does not use

the information of observation matrices and channel matrices and thus the performance

improvement is limited as P increases.

Simulation 4.4 - Comparison with Previous Work [28]: In this simulation, we compare

the scheme of our MIMO model to the scheme of the SISO model in [28]. The model used

in [28] is shown in Figure 4.5, where a scalar measurement xl = flθ+ nl at the lth sensor

is multiplied by an amplified factor al(n) at the nth time instant before it is transmitted

to the receiver through a fading channel hl, 1 ≤ l ≤ Q. At time n, the received signal is

y(n) =
∑Q

l=1 hlal(n)xl+νl(n), where νl(n) is an additive noise. After collecting p received

signals {y(1), · · · , y(p)} at the FC, the source vector θ is then estimated based on the

LMMSE fusion rule. The proposed MIMO scheme is modelled in (4.4) with L = 1, a

single vector sensor. Figure. 4.6 shows that the average MSE of the proposed scheme

with kl = 10 is slightly lower than that of the scheme in [28] with Q = 10 when power P

is small; as the power increases, the performance of two schemes are very close. Moreover,
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for the proposed scheme with kl = 15 and the scheme in [28] with Q = 15, we see that

the MSEs are roughly the same for over all P .
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Figure 4.7: MSE versus P with different number of sensors

Simulation 4.5 - Different Number of Sensors: In this simulation, we illustrate the per-

formance of the proposed method for different number of sensors L. The optimal coding

matrices in (4.25) are used with kl = 8 for L = 1, 5, and 10. Figure 4.7 shows that for

a fixed total power, the MSE performs better as L increases. In addition, the MSE of

L = 1, whose performance is roughly the same as that in [28], reaches the lower bound

(4.27) for P ≥ 32 dB.

A Brief Summary and Discussion: We study distributed estimation of a random vector

signal in MIMO wireless sensor networks. Based on the singular value decomposition, we

first derive an upper bound of the objective function, which is an inverse proportion of the

MSE. We then show that the minimum number of transmitters to reach the upper bound

is equal to the number of the source signals. The extra number of transmitters beyond
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the number of the sources does not improve the performance. As taking into account the

total power constraint, we propose a method based on specific choices of singular vectors

to formulate the problem as a convex optimization problem. As a result, we obtain closed

form expressions of the coding matrices for the MIMO sensor network.
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Chapter 5

Conclusions

In this thesis, we give investigations on the distributed estimation problem in wireless sen-

sor networks with the coherent multiple access channel model and LMMSE fusion rule.

With a total power constraint, we propose optimal power allocation schemes so that the

estimated distortion is minimized.

We consider distributed estimation with three different sensor networks. In Chapter

2 and Chapter 3, the SISO sensor networks are discussed. To enhance power efficiency,

we study the estimation problem based on cluster-based sensor networks in Chapter 2.

The result reveals that for the achievement of the same performance, the collaboration

case uses less power than the non-collaboration case. In practice, since channels are often

unknown to the receiver in wireless communication systems, we study the estimation prob-

lem of non-collaboration sensor network with unknown channels in Chapter 3. In Chapter

4, we extend SISO sensor networks to MIMO sensor networks. Our main contributions

are as follows:

(i) In Chapter 2, we study distributed estimation of a scalar signal using cluster-based

sensor network. We show that the optimal amplification matrices are scaled outer

products of the observation gain and the channel gain vectors. Based on the result,

we give the optimal power schemes for two special cases: the full collaboration

case and the non-collaboration case. We show that the collaboration can improve

performance; moreover, for a fixed number of sensors, the amount of improvement
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is closely related to the amount of collaboration.

(ii) In Chapter 3, we study distributed estimation of a scalar signal using sensor network

with unknown channels. Based on a two-phase approach, we study the optimal and

equal power allocation schemes. In each schemes, we compare the performance

of the distributed estimation with estimated channels to that with actual known

channels. The results reveal that: i) the MSE with estimated channels at the FC

approaches a finite nonzero value as the number of sensors increases; ii) the optimal

training powers are the same for both schemes; iii) compared with the case when

channels are known, the penalty caused by the channel estimation error becomes

worse as the number of sensor increases.

(iii) In Chapter 4, we consider distributed estimation of a vector signal using MIMO

sensor network. Based on the singular value decomposition, the problem can be

formulated as a convex optimization problem, which follows a water-filling type

solution. By the solution and the singular vectors of the observation matrices,

closed form expressions for the coding matrices are easy to obtained.

Future investigation can focus on taking into account the communication noise between

sensors and the cluster head and the energy consumption caused by sensor collaboration

in cluster-based sensor networks. Another interesting direction is vector signal estimation

in MIMO wireless sensor networks for i) non-diagonal channel matrices and ii) unknown

channel matrices at the fusion center.
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Appendix A

Proof of Proposition 2.1

Write AT
l = [al,1 al,2 · · · al,Nl

], where al,j ∈ R
Kl . Define slack variables tl = gT

l Alfl =
∑Nl

n=1 gl,na
T
l,nfl, 1 ≤ l ≤ L. The problem (2.8) is rewritten as







min
al,n,tl

∑L
l=1

(

σ2
θ

∑Nl

n=1(a
T
l,nfl)

2 + σ2
n

∑Nl

n=1(a
T
l,nal,n)

)

subject to
∑Nl

n=1 gl,na
T
l,nfl = tl, 1 ≤ l ≤ L

σ2
n

∑L
l=1

(
∑Nl

n=1 gl,na
T
l,n

)(
∑Nl

m=1 gl,mal,m

)

+ σ2
ν =

(
1
J∗

− 1
σ2
θ

)−1 (∑L
l=1 tl

)2

(A.1)

The Lagrangian function for (A.1) is

L(al,n, tl, λl, λ0) =
L∑

l=1

(

σ2
θ

Nl∑

n=1

(aTl,nfl)
2 + σ2

n

Nl∑

n=1

(aTl,nal,n)

)

+
L∑

l=1

λl

(

tl −
Nl∑

n=1

gl,na
T
l,nfl

)

+

λ0



σ2
n

L∑

l=1

(
Nl∑

n=1

gl,na
T
l,n

)(
Nl∑

m=1

gl,mal,m

)

+ σ2
ν −

(
1

J∗ − 1

σ2
θ

)−1
(

L∑

l=1

tl

)2
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where λl, λ0 ∈ R, and the associated necessary conditions for optimality are

∂L

∂al,n
=2aTl,n

(
σ2
θ flf

T
l + σ2

nIKl

)
− λlgl,nf

T
l + 2λ0σ

2
ngl,ng

T
l Al = 0T1×Kl

, 1 ≤ n ≤ Nl, 1 ≤ l ≤ L

⇒2Al

(
σ2
θ flf

T
l + σ2

nIKl

)
− λlglf

T
l + 2λ0σ

2
nglg

T
l Al = 0Nl×Kl

, 1 ≤ l ≤ L (A.2)

∂L

∂tl
=λl − 2λ0

(
1

J∗ − 1

σ2
θ

)−1
(

L∑

i=1

ti

)

= 0, 1 ≤ l ≤ L (A.3)

∂L

∂λl
=tl − gT

l Alfl = 0, 1 ≤ l ≤ L (A.4)

∂L

∂λ0
=σ2

n

L∑

l=1

gT
l AlA

T
l gl + σ2

ν −
(

1

J∗ − 1

σ2
θ

)−1
(

L∑

l=1

tl

)2

= 0

⇒σ2
n

L∑

l=1

gT
l AlA

T
l gl + σ2

ν =

(
1

J∗ − 1

σ2
θ

)−1
(

L∑

l=1

tl

)2

(A.5)

It follows from (A.3) that λ1 = · · · = λL. Let λl = λ, ∀l. It follows from (A.2) that

Al + λ0σ
2
nglg

T
l Al

(
σ2
θ flf

T
l + σ2

nIKl

)−1
=

λ

2
glf

T
l

(
σ2
θ flf

T
l + σ2

nIKl

)−1

⇒Al + λ0glg
T
l Al −

σ2
θλ0tl

σ2
n + σ2

θ‖fl‖2
glf

T
l =

λ

2(σ2
n + σ2

θ‖fl‖2)
glf

T
l

⇒Al =
σ2
θλ0tl

σ2
n + σ2

θ‖fl‖2
(
INl

+ λ0glg
T
l

)−1
glf

T
l +

λ

2(σ2
n + σ2

θ‖fl‖2)
(
INl

+ λ0glg
T
l

)−1
glf

T
l

⇒Al =
σ2
θλ0tl

(σ2
n + σ2

θ‖fl‖2)(1 + λ0‖gl‖2)
glf

T
l +

λ

2(σ2
n + σ2

θ‖fl‖2)(1 + λ0‖gl‖2)
glf

T
l (A.6)

where in the second equation we use the matrix inversion lemma [36, p.45] and tl =

gT
l Alfl. Substituting (A.6) into (A.4), we obtain tl = λ‖gl‖2‖fl‖2/(2ϕl), where ϕl =

σ2
θ‖fl‖2+σ2

n+λ0σ
2
n‖gl‖2, and thus from (A.6), we get Al = λ/(2ϕl)glf

T
l . From (A.3) and

tl = λ‖gl‖2‖fl‖2/2ϕl, we have

1

J∗ − 1

σ2
θ

=
L∑

i=1

λ0‖gi‖2‖fi‖2
ϕi

(A.7)

Substituting tl = λ‖gl‖2‖fl‖2/(2ϕl), Al = λ/(2ϕl)glf
T
l , and (A.7) into (A.5), we have

λ

2
=

√
√
√
√

(
L∑

i=1

‖gi‖2‖fi‖2(σ2
θ‖fi‖2 + σ2

n)

ϕi

)−1

σνλ0 (A.8)

From (A.8) and Al = λ/(2ϕl)glf
T
l , the minimum total power can be written as

Pmin =
L∑

l=1

tr
(
σ2
θAlflf

T
l A

T
l + σ2

nAlA
T
l

)
= λ0σ

2
ν .
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It follows that

λ0 = Pmin/σ
2
ν (A.9)

and thus from (A.7), we get

1

J∗ − 1

σ2
θ

=
L∑

i=1

Pmin‖gi‖2‖fi‖2
σ2
ν(σ

2
θ‖fl‖2 + σ2

n) + Pminσ2
n‖gl‖2

(A.10)

Equation (A.10) gives the relation between the achieved minimum power and the con-

straint J∗ on MSE. The optimal amplification matrices are Al = λ/(2ϕl)glf
T
l , where λ

and ϕl depends on Pmin through (A.9). In view of observation (iii) in Section III, if we set

Pmin = P , the corresponding MSE is given in (2.10) and the corresponding amplification

matrices is in (2.9).
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Appendix B

Proof of Lemma 2.3

We first show that for x = [x1 · · · xn]
T ∈ R

n and y = [y1 · · · yn]T ∈ R
n, the following

inequality holds

‖x‖2‖y‖2
‖x‖2 + ‖y‖2 ≥

n∑

i=1

x2
i y

2
i

x2
i + y2i

, (B.1)

or equivalently,

∑n
i=1 x

2
i

∑n
j=1 y

2
j

∑n
j=1(x

2
j + y2j )

≥
∑n

i=1

(

x2
i y

2
i

∏n
k 6=i(x

2
k + y2k)

)

∏n
k=1(x

2
k + y2k)

⇔
(

n∑

i=1

x2
i

)(
n∑

j=1

y2j

)
n∏

k=1

(x2
k + y2k)−

[
n∑

j=1

(x2
j + y2j )

][
n∑

i=1

(

x2
i y

2
i

n∏

k 6=i

(x2
k + y2k)

)]

≥ 0

The left hand side of the above inequality can be written as
[

n∑

i=1

n∑

j=1

x2
i y

2
j

]
n∏

k=1

(x2
k + y2k)−
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n∑
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x2
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2
i (x

2
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]
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=

[
n∑
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n∑

j=i

x2
i y

2
j

]
n∏
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(x2
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[
n∑

i=1

x2
i y

2
i

]
n∏
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(x2
k + y2k)−

[
n∑

i=1

n∑

j 6=i

x2
i y

2
i (x

2
j + y2j )

]
n∏

k 6=i

(x2
k + y2k)

=

[
n∑

i=1

n∑

j 6=i

x2
i y

2
j

]
n∏
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(x2
k + y2k)−

[
n∑

i=1

n∑

j 6=i

x2
i y

2
i (x

2
j + y2j )

]
n∏

k 6=i

(x2
k + y2k)

=

[
n∑

i=1

n∑

j 6=i

x2
i y

2
j (x

2
i + y2i )−

n∑

i=1

n∑

j 6=i

x2
i y

2
i (x

2
j + y2j )

]
n∏

k 6=i

(x2
k + y2k)

=

[
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i=1

n∑

j 6=i

x2
i (x

2
i y

2
j − x2

jy
2
i )

]
n∏

k 6=i

(x2
k + y2k)

=

[
n∑

i=1

x2
i

n∑

j>i

(x2
i y

2
j − x2

jy
2
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]
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k 6=i

(x2
k + y2k) +

[
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i=1

x2
i
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j<i

(x2
i y

2
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2
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]
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k 6=i

(x2
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=

[
n∑

i=1

n∑

j>i

x2
i (x

2
i y

2
j − x2

jy
2
i )

]
n∏

k 6=i

(x2
k + y2k) +

[
n∑

i=1

n∑

j>i

x2
j(x

2
jy

2
i − x2

i y
2
j )

]
n∏

k 6=j

(x2
k + y2k)

=

[
n∑

i=1

n∑

j>i

x2
i (x

2
j + y2j )(x

2
i y

2
j − x2

jy
2
i )− x2

j(x
2
i + y2i )(x

2
i y

2
j − x2

jy
2
i )

]

·
n∏

k 6=i,j

(x2
k + y2k)

=
n∑

i=1

n∑

j>i

(x2
i y

2
j − x2

jy
2
i )

2

n∏

k 6=i,j

(x2
k + y2k) ≥ 0

Thus, we obtain (B.1). Now, let x = [xT
1 · · · xT

L]
T = [x1 · · · xn]

T and ‖xl‖2 = x̃2
l , then we

have

‖x‖2 =
n∑

i=1

x2
i =

L∑

l=1

‖xl‖2 =
L∑

l=1

x̃2
l = ‖x̃‖2 (B.2)

where x̃ = [x̃1 · · · x̃L]
T . By the same way, we have

‖y‖2 =
n∑

i=1

y2i =
L∑

l=1

‖yl‖2 =
L∑

l=1

ỹ2l = ‖ỹ‖2 (B.3)

From (B.1), (B.2), and (B.3), we have

‖x‖2‖y‖2
‖x‖2 + ‖y‖2 =

‖x̃‖2‖ỹ‖2
‖x̃‖2 + ‖ỹ‖2 ≥

L∑

l=1

x̃2
l ỹ

2
l

x̃2
l + ỹ2l

=
L∑

l=1

‖xl‖2‖yl‖2
‖xl‖2 + ‖yl‖2

and the result follows.
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Appendix C

Derivation of (3.9)

We first show that given ĥ, ε is uncorrelated with ν,
∑K

k=1 ĥkαknk, and
∑K

k=1 ĥkαkθ.

Since E[ν∗θ] = 0, E[h∗
kν] = 0, and E[ν∗nl] = 0, E[ν∗ε | ĥ] = 0. We show that ε and

∑K
k=1 ĥkαknk are uncorrelated as follows:

E

[(
K∑

k=1

ĥkαknk

)∗

ε
∣
∣
∣ ĥ

]

= E

[(
K∑

k=1

ĥ∗
k(hk − ĥk)|αk|2|nk|2

)
∣
∣
∣ ĥ

]

=
K∑

k=1

ĥ∗
k

(

E
[

hk

∣
∣
∣ ĥ
]

− ĥk

)

|αk|2σ2
n = 0 (C.1)

where the first equality uses that E[n∗
kθ] = 0 and E[n∗

knl] = 0 for k 6= l. The last equality

follows because ĥk = E[hk | yk] = E[hk | ĥk]. Similarly,

E

[(
K∑

k=1

ĥkαkθ

)∗

ε
∣
∣
∣ ĥ

]

= E

[(
K∑

k=1

K∑

l=1

ĥ∗
k(hl − ĥl)α

∗
kαl|θ|2

)
∣
∣
∣ ĥ

]

=
K∑

k=1

K∑

l=1

ĥ∗
k

(

E
[

hl

∣
∣
∣ ĥ
]

− ĥl

)

α∗
kαlσ

2
θ = 0 (C.2)

Finally the conditional variance

E
[

|ε|2 | ĥ
]

= E

[
K∑

k=1

(hk − ĥk)
∗(hk − ĥk)|αk|2(σ2

θ + σ2
n)
∣
∣
∣ ĥ

]

= (σ2
θ + σ2

n)
K∑

k=1

E
[

(hk − ĥk)
∗(hk − ĥk)

∣
∣
∣ ĥ
]

|αk|2

= (σ2
θ + σ2

n)
K∑

k=1

δ2k|αk|2 = (σ2
θ + σ2

n)δ
2
1

K∑

k=1

|αk|2 (C.3)

where the last equality uses δ1 = · · · = δk in (3.5). By (C.1) to (C.3) and (3.6), equality

(3.9) follows.
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Appendix D

Proof of Proposition 3.1

According to the observations (i) to (iii) in Section 2.2, instead of solving (3.20) directly,

we consider the following problem







minPt,|αk| (σ2
θ + σ2

n)
∑K

k=1 |αk|2 + Pt

subject to

(

1
σ2
θ

+
ζ2(

∑K
k=1

ĝk|αk|)
2
Pt

ζ2σ2
n(

∑K
k=1

ĝ2
k
|αk|2)Pt+ζPt+Kζ(σ2

θ
+σ2

n)(
∑K

k=1
|αk|2)+K

)−1

= J

where 0 < J ≤ σ2
θ . Let t =

∑K
k=1 ĝk|αk|, the optimization problem becomes







minPt,|αk|,t (σ2
θ + σ2

n)
∑K

k=1 |αk|2 + Pt

subject to
∑K

k=1 ĝk|αk| − t = 0

ζ2σ2
n

(
∑K

k=1 ĝ
2
k|αk|2

)

Pt + ζPt +Kζ(σ2
θ + σ2

n)(
∑K

k=1 |αk|2) +K =
(

1
J − 1

σ2
θ

)−1
ζ2t2Pt

The Lagrangian is

L(|αk|, Pt, t, λ, λ0) =(σ2
θ + σ2

n)

K∑

k=1

|αk|2 + Pt + λ

(
K∑

k=1

ĝk|αk| − t

)

+ λ0

[

ζ2σ2
n

(
K∑

k=1

ĝ2k|αk|2
)

Pt+

ζPt +Kζ(σ2
θ + σ2

n)(
K∑

k=1

|αk|2) +K −
(
1

J
− 1

σ2
θ

)−1

ζ2t2Pt

]
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where λ, λ0 ∈ R, and the associated necessary conditions for optimality are

∂L

∂|αk|
= 2(σ2

θ + σ2
n)|αk|+ λĝk + λ0

[
2ζ2σ2

nĝ
2
kPt|αk|+ 2Kζ(σ2

θ + σ2
n)|αk|

]
= 0 (D.1)

∂L

∂Pt

= 1 + λ0

[

ζ2σ2
n

(
K∑

k=1

ĝ2k|αk|2
)

+ ζ −
(
1

J
− 1

σ2
θ

)−1

ζ2t2

]

= 0 (D.2)

∂L

∂t
= −λ− 2λ0

(
1

J
− 1

σ2
θ

)−1

ζ2Ptt = 0 (D.3)

∂L

∂λ
=

K∑

k=1

ĝk|αk| − t = 0 (D.4)

∂L

∂λ0

= ζ2σ2
n

(
K∑

k=1

ĝ2k|αk|2
)

Pt + ζPt +Kζ(σ2
θ + σ2

n)(
K∑

k=1

|αk|2) +K −
(
1

J
− 1

σ2
θ

)−1

ζ2t2Pt = 0

(D.5)

From (D.1), |αk| = −λĝk/(2φ̂k), where φ̂k = (σ2
θ + σ2

n) + λ0ζ
2σ2

nĝ
2
kPt + λ0Kζ(σ2

θ + σ2
n),

thus it follows from (D.4) that t = −(λ/2)
∑K

k=1(ĝ
2
k/φ̂k) and then from (D.3), we have

1

J
− 1

σ2
θ

= λ0ζ
2Pt

K∑

k=1

ĝ2k

φ̂k

= ζ2Pt

K∑

k=1

ĝ2k
(σ2

θ + σ2
n)/λ0 + ζ2σ2

nĝ
2
kPt +Kζ(σ2

θ + σ2
n)

(D.6)

Use t = −λ(1/J − 1/σ2
θ)/(2µζ

2Pt) from (D.3) and |αk| = −λĝk/(2φ̂k) in (D.2) to get

λ2

4
=

1
λ0

+ ζ
1

J
− 1

σ2
θ

λ2
0
ζ2P 2

t
− ζ2σ2

n

(
∑K

k=1 ĝ
4
k/φ̂

2
k

) =
(1 + λ0ζ)/(1 +Kλ0ζ)
∑K

k=1 ĝ
2
k(σ

2
θ + σ2

n)/φ̂
2
k

Pt. (D.7)

where the last equality follows from (D.6). Since the data power for the kth sensor is

Pk = |αk|2(σ2
θ + σ2

n) = (λ2/4)(ĝ2k(σ
2
θ + σ2

n)/φ̂
2
k), the total power for data transmission

is
∑K

k=1 Pk = (λ2/4)
∑K

k=1(ĝ
2
k(σ

2
θ + σ2

n)/φ̂
2
k) = (1 + λ0ζ)Pt/(1 + Kλ0ζ). With the total

network power constraint P , it follows from (D.2) and (D.5) that

λ0 =
Pt

K +Kζ(P − Pt)
. (D.8)

where we use
∑K

k=1 Pk = P − Pt. Moreover, since
∑K

k=1 Pk + Pt = P , we have

2 + (K + 1)ζλ0

1 +Kζλ0

Pt = P (D.9)

Substituting (D.8) into (D.9), we get the optimal training power in (3.21). With P opt
t and

λ0, we get P opt
k in (3.22) and the MSE in (3.23) follows from (D.6).
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Appendix E

Derivation of (3.25)

Rewrite (3.23) as

J(P,K) =

(

1

σ2
θ

+
1

σ2
θ + σ2

n

b(K)
K∑

k=1

ĝ2k
γb(K)ĝ2k +K

)−1

where b(K) = [K
(√

ζP + 1−
√

1 + ζP/K
)

/(K − 1)]2 and γ = σ2
n/(σ

2
θ + σ2

n). Note

that limK→∞ b(K) = (
√
ζP + 1− 1)2. We will show that the sum inside the parentheses

converges to E[ĝ2k] = 1 as K → ∞. Since

ĝ2k
K

− ĝ2k
γb(K)ĝ2k +K

=
γb(K)ĝ4k

K [γb(K)ĝ2k +K]
≤ γb(K)ĝ4k

K2
,

we have ĝ2k/K − γb(K)ĝ4k/K
2 ≤ ĝ2k/[γb(K)ĝ2k +K] ≤ ĝ2k/K and thus

K∑

k=1

ĝ2k
K

−
K∑

k=1

γb(K)ĝ4k
K2

≤
K∑

k=1

ĝ2k
γb(K)ĝ2k +K

≤
K∑

k=1

ĝ2k
K

It follows from the law of large numbers that asK → ∞, we have
∑K

k=1 ĝ
2
k/K = E [ĝ2k] = 1,

K∑

k=1

γb(K)ĝ4k
K

= γ(
√

ζP + 1− 1)2E
[
ĝ4k
]
, and

K∑

k=1

γb(K)ĝ4k
K2

= 0

because E[ĝ4k] is finite. Therefore,

K∑

k=1

ĝ2k
γb(K)ĝ2k +K

= 1, asK → ∞

and (3.25) follows.
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Appendix F

Convexity of Objective Function in

(3.33)

To show that the second derivative of the objective function in (3.33) is positive, we let

c1 = K β
1+β

( 1
K

∑K
k=1 ĝk)

2 and c2 = 1
1+β

( 1
K

∑K
k=1 ĝ

2
k). Then the objective function in (35)

can be written as

f(Pt) = − ζ2c1(P − Pt)Pt

ζ2c2(P − Pt)Pt + ζPt + ζK(P − Pt) +K

df(Pt)

dPt

= −ζ2c1 [ζ(K − 1)P 2
t − 2K(ζP + 1)Pt +KP (ζP + 1)]

[ζ2c2(P − Pt)Pt + ζPt + ζK(P − Pt) +K]2

d2f(Pt)

dP 2
t

= − 2ζ2c1X

[ζ2c2(P − Pt)Pt + ζPt + ζK(P − Pt) +K]3

where

X =[ζ(K − 1)Pt −K(ζP + 1)][ζ2c2(P − Pt)Pt + ζPt + ζK(P − Pt) +K]

− [ζ(K − 1)P 2

t
− 2K(ζP + 1)Pt +KP (ζP + 1)][ζ2c2(P − 2Pt) + ζ − ζK]

=ζ2c2{(P − Pt)Pt[ζ(K − 1)Pt −K(ζP + 1)]− (P − 2Pt)[ζ(K − 1)P 2

t
+K(ζP + 1)(P − 2Pt)]}

+ [ζPt + ζK(P − Pt) +K][ζ(K − 1)Pt −K(ζP + 1)] + ζ(K − 1)[ζ(K − 1)P 2

t
+K(ζP + 1)(P − 2Pt)]

=− ζ2c2c3 −K(ζP + 1)(ζP +K)

with c3 = Kζ(P − Pt)
3 +K(P − 2Pt)

2 +KPt(P − Pt) + ζP 3
t . Since P − Pt > 0, we have

c3 > 0 and X < 0, and thus (d2f(Pt)/dP
2
t ) > 0. Hence the result follows.
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Appendix G

Proof of Proposition 3.2

Let c1 = K β
1+β

(
1
K

∑K
k=1 ĝk

)2

and c2 = 1
1+β

(
1
K

∑K
k=1 ĝ

2
k

)

, then the Lagrangian of the

problem (3.33) is

L(Pt, µ1, µ2) = − ζ2c1(P − Pt)Pt

ζ2c2(P − Pt)Pt + ζPt + ζK(P − Pt) +K
+ µ1(Pt − P )− µ2Pt

and the associated KKT conditions are

− ζ2c1 [ζ(K − 1)P 2
t − 2K(ζP + 1)Pt +KP (ζP + 1)]

(ζ2c2(P − Pt)Pt + ζPt + ζK(P − Pt) +K)2
+ µ1 − µ2 = 0 (G.1)

µ1(Pt − P ) = 0, µ1 ≥ 0 (G.2)

µ2Pt = 0, µ2 ≥ 0 (G.3)

Since the training power have to be greater than 0, we have µ2 = 0. If µ1 > 0, then

Pt = P , but then (G.1) leads to µ1 < 0 a contradiction. Therefore, we have µ1 = µ2 = 0

and P > Pt > 0. From (G.1), we have

ζ(K − 1)P 2
t − 2K(ζP + 1)Pt +KP (ζP + 1) = 0

⇒ Pt =
K(ζP + 1)±

√

K(ζP + 1)(ζP +K)

ζ(K − 1)

where we take negative term since positive term can not satisfy the constraint P ≥ P t.

Let a = K(ζP + 1) and b = ζP + K, then we have P opt
t = (a −

√
ab)/[ζ(K − 1)] and
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P − P opt
t = (b−

√
ab)/[ζ(K − 1)], and from (3.32), (3.35) follows:

J(P,K) = σ2
θ

(

1 +
c1[(a+ b)

√
ab− 2ab]

c2[(a+ b)
√
ab− 2ab] + (K − 1)2

√
ab

)−1

= σ2
θ



1 +
c1

c2 +
(K−1)2

(
√
a−

√
b)2





−1

where the first equality uses that

(K − 1)(a−
√
ab) +K(K − 1)(

√
ab− b) +K(K − 1)2

=(K − 1)[(K − 1)
√
ab+ a−Kb+K2 −K

︸ ︷︷ ︸

=0

] = (K − 1)2
√
ab.
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[25] H. Şenol and C. Tepedelenlioğlu, “Performance of distributed estimation over un-

known parallel fading channels,” IEEE Trans. Signal Processing, vol. 56, no. 12, pp.

6057-6068, Dec. 2008.

69



[26] J.-J. Xiao, S. Cui, Z.-Q. Luo, and A. J. Goldsmith, “Linear coherent decentralized

estimation,” IEEE Trans. Signal Processing, vol. 56, no. 2, pp. 757-770, Feb. 2008.

[27] N. Khajehnouri and A. H. Sayed, “Distributed MMSE relay strategies for wireless

sensor networks,” IEEE Trans. Signal Processing, vol. 55, no. 7, pp. 3336-3348, Jul.

2007.

[28] W. Guo, J-J Xiao, and S. Cui, “An efficient water-filling solution for linear coherent

joint estimation,” IEEE Trans. Signal Processing, vol. 56, no. 10, pp. 5301-5305, Oct.

2008.

[29] H. Behroozi, F. Alajaji, and T. Linder, “On the optimal performance in asymmetric

Gaussian wireless sensor networks with fading,” IEEE Trans. Signal Process., vol.

58, no. 4, pp. 2436-2441, Apr. 2010.
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