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Abstract

We study distributed estimation in wireless sensor networks with coherent multiple
access channel model and LMMSE fusion rule. In this thesis, three different sensor net-
work systems for distributed estimation are discussed: (i) estimation using single-input
single-output (SISO) cluster-based sensor network, (ii) estimation using SISO sensor net-
work over unknown channels, and (iii) estimation using multiple-input multiple-output
(MIMO) sensor network. In each.aetwork system, we study the problem of minimizing
estimation distortion by optimally allocating power under a total power constraint. We
first discuss distributed estimationof.a scalar signal with cluster-based sensor network.
We show that the optimal amplification matrix for each cluster is a rank one matrix,
which is a scaled outer product of two known vectors. With the optimal amplification
matrices, we also show that collaboration can improve performance. Secondly, we consider
distributed estimation of a scalar signal using sensor network with unknown channels. We
adopt a two-phase approach, which first optimally allocates the training power for channel
estimation, and then uses the equal power scheme or optimal power scheme for source
signal estimation. We reveal that the optimal training powers for the optimal and equal
power schemes are the same. Moreover, as the number of sensors increases, the penalty
caused by channel estimation becomes worse. Finally, we discuss distributed estimation
of a vector signal using MIMO sensor network. Based on singular value decomposition
technique, the problem of choosing coding matrices can be formulated as a convex op-
timization problem, based on which we derive closed form expression of optimal coding

matrices. We use simulations to verify the analytical results in the three network systems.
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Chapter 1

Introduction

1.1 Overview of Wireless Sensor Networks

Wireless sensor networks (WSNs), made up of a large number of low cost devices, have
attracted much attention due to the advancements in micro-electro-mechanical systems
(MEMS) technology. The technological advancements enable multi-function sensors to
be small in size and communicate in short distances. In WSNs, the sensors, which con-
sist of sensing, data processing, and communication components, are densely deployed in
different regions of a field to aggregate data. For example, sensor networks are used to
monitor temperature in environmental applications, to track enemy movement in military

applications, and to report life-signs in health applications [1,2].

Due to simple structure of sensors and dense deployment across a spatial domain, two
key resources — communication bandwidth and energy — are an important challenge in the
design of WSNs. Many previous research works, e.g. [3—7], addressed network-structure-
based protocols which save communication resources by self-organization of large number
of sensors so that the transmitted redundancy is reduced. Recently, WSNs based on
distributed signal processing perspectives are used for parameters detection and estima-
tion [8,9], and object tracking [10] by developing energy and bandwidth efficient algo-
rithms. The WSN topology used to design distributed signal processing algorithms can

be classified into (i) the presence of a fusion center (FC), (ii) the absence of a FC named



ad hoc WSNs; and (iii) hybrids of (i) and (ii) named cluster-based WSNs.

1.2 Literature Review on Distributed Estimation

In WSNs, signal processing sensors are capable of simple local computation, short range
low data-rate communication, and the fusion center (FC) has more powerful communi-
cation and processing capability. The fusion center receives data transmitted from the
sensors over wireless channels and combines it for a specific processing purpose. One
example of such distributed signal processing scheme is distributed estimation. A certain
parameter or variable is measured by the sensors and the measurements are sent to the
FC, and the objective is to estimate the parameter based on distributed sensor measure-
ments. Due to bandwidth and power limitations, many algorithms have been proposed

to make efficient use of these two resources.

In the distributed estimation scenario, existing algorithms for modelling the bandwidth
constraint can be classified into the quantized strategy and the unquantized strategy. The
quantized strategy is to limit the number of bhits that each sensor can send to the fusion
center per observation period, i.e., the measurements sent from the sensors are quantized,
encoded, and transmitted via digital modulation. Some papers discuss minimization of
mean squared error (MSE) via bit length assignment [11-14], while others focus on the
search of optimal quantization threshold for one bit quantization schemes [15-17]. The
unquantized strategy is to limit the number of messages that each sensor can send to the
fusion center per observation period. In this strategy, the sensors send raw measurements
directly through channels without quantization, and thus analog transmission schemes,
such as amplify-and-forward approach, are used. It is asserted in [18] that the amplified-
and-forward approach is optimal over additive white Gaussian noise channels. Along this
line of approach, many papers study the minimization of MSE under a total network
power constraint by optimally allocating the transmitted power for each sensor [19-28]
and others analyze asymptotic behavior as the network power or the number of sensors

increases [29-31].



In the amplify-and-forward approach, two types of channel models are used. The first
one is the orthogonal multiple access channel (MAC), in which each sensor has an inde-
pendent noninterfering channel to the FC. This MAC model was widely used in previous
studies on optimal power allocation problems [19,20,24,25]. In [19,20], the source signal
is assumed deterministic and the best linear unbiased estimator (BLUE) is used at the
FC. For random source signal, distributed linear minimum mean squared error (LMMSE)
estimation based on sensor clustering is considered in [24] and in [25] the results are ex-
tended to the case where channels are assumed unknown. The second type of channel
model is the coherent MAC, in which all sensors transmit simultaneously to the FC via
the same frequency. In this MAC model, previous works study optimal power allocation
problems under LMMSE fusion rule both scalar signal [27] as well as vector signal [28]

are considered.

All proposed schemes for solving the power allocation problems in [19,20,24,25,27, 28]
used the single-input single-output«(SISO) systems in which the sensor with a scalar
measurement /transmitter is regarded as a unit. Recently, multiple-input multiple-output
(MIMO) systems have attracted much attention due to advantages of increase in data rate
and improvement of performance [33]. In MIMO wireless sensor networks, each sensor has
a vector measurement and multiple transmitters. Recent works on MIMO sensor networks
addressed dimensionality reduction problems based on ideal channel assumption [21-23]

and the optimal design of coding matrices [26].

1.3 Problem Studied in This Thesis

In this thesis, we study linear distributed estimation in WSNs based on the LMMSE fusion
rule. The coherent MAC model, in which the transmitted signals from all sensors are
received by the FC as a coherent sum, is taken into account. The problem we investigate is
to design optimal power allocation schemes so that the estimation distortion is minimized

under a total power constraint. We consider distributed estimation with three different



sensor network systems:

(i)

(i)

(iii)

Estimation of a scalar signal with SISO cluster-based sensor network. In cluster-
based sensor network, the sensors are divided into a number of small groups called
clusters. The sensors in the same cluster are allowed to collaborate, while collabora-
tion is prohibited for sensors in different clusters. For each cluster, the collaboration
is through an amplification matrix that forms a message from the measurements for
transmission to the FC, where a final estimate is formed. We study the problem of
choosing the amplification matrices so that the MSE of the estimated source signal
is minimized under a total power constraint. We show that the optimal amplifi-
cation matrix is a rank one matrix and that, with optimal amplification matrices,

collaboration improves performance in terms of MSE.

Estimation of a scalar signal using SISO sensor network with unknown flat fading
channels. Since channels are unknown at the FC and need to be estimated, we
derive training-based LMMSE. channel estimator. The channel estimates are then
used to obtain LMMSE estimation of the source signal. We study the allocation
of power for training and for data transmission to each sensor, under a total power
constraint, so as to minimize the MSE of the estimated source signal. We consider
the optimal power allocation scheme in which training power and data power for
each sensor are optimized, and the equal power allocation scheme in which training
power is optimized while data power for each sensor is set equal. We show that the
optimal training powers are the same for both two schemes. Also, compared with
the case when channels are known, the penalty caused by the channel estimation

error is roughly proportional to the number of sensor when the total power is large.

Estimation of a vector signal using MIMO sensor network. In MIMO sensor net-
works, each sensor has multiple measurements which are multiplied by a linear cod-
ing matrix to form messages for transmission to the FC through a channel matrix;
at the FC, messages from all sensors are aggregated by multiple received antennas
to form an estimated vector signal. In the sensor network, we study the problem of

design of linear coding matrices so that the MSE of the estimated vector signal is



minimized under a total power constraint. We show that the problem can be written
as a convex optimization problem which follows a water-filling type solution. Hence,

closed form expressions for the optimal coding matrices are obtained.

1.4 Organization of the Thesis

The thesis is organized as follows. In Chapter 2, we consider distributed estimation using
cluster-based sensor network. We derive the optimal design of amplification matrix and
give the performance comparison between the collaboration case and the non-collaboration
case. In Chapter 3, we consider distributed estimation using sensor network with un-
known channels. We use a two-phase approach, which first estimates channels and then
estimates the source signal. We study optimal allocation of power for training and for
data transmission based on the optimal and equal power allocation schemes. The per-
formance comparison between the case when channels are known and when channels are
unknown are also discussed. In Chapter 4, we consider distributed estimation of a vector
signal using MIMO sensor network. Based on singular value decomposition technique, we
propose a method that can solve the estimation problem efficiently, which then leads to
closed form expressions of the optimal coding matrices. Chapter 5 concludes this thesis

and discusses the future research.



Chapter 2

Distributed Estimation Using

Cluster-Based Sensor Network

It is shown in [5,7] that sensor clustering can make efficient use of energy and thus prolong
network lifetime. In this chapter, we study distributed estimation of a scalar parameter
based on cluster-based sensor networks. The problem is formulated as the choice of the
amplification matrices so that the- MSE of the estimated source signal is minimized under
a total power constraint. We also discuss two special cases: the full collaboration case,
in which all sensors are in the same ‘cluster, and the non-collaboration case, in which
each cluster has only one sensor. Numerical examples are used to illustrate performance

improvement based on sensor collaboration.

2.1 System Model and Problem Formulation

We consider a wireless sensor network consisting of K spatially deployed sensors for esti-
mating a random source signal §. The sensors in the network are divided into L clusters,
as shown in Figure 2.1. The [th cluster has K; sensors and the measurement at the kth

sensor is given by

T = figd +rgp, 1<I< L 1<k <K, (2.1)
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Figure 2.1: Cluster-based sensor network with coherent MAC

where f, is the observation gain and n;j is the measurement noise. In vector form, (2.1)

becomes
X = flé’ + ny, 1 < l < L, (22)

where x; = [z11 - m]’, § = frame fir", and n; = [ -+ nyg)’. The
collaboration between sensors in the Ith cluster is through an amplification matrix A; €
RN <K which takes x; € R¥ to form the message vector A;x; € R™M. The messages are

then sent to the FC and the signal y received at the FC can be expressed as

L
y=> gl Afif+n)+v (2.3)

=1
where g = [g11 -+ q., Nl]T is the channel gain vector and v is the additive noise at the

receiver. In practice, the sensors which are geographically closely located can compose a
cluster. The collaboration between sensors in the same cluster can be implemented by
choosing one sensor as the cluster head whose task is to collect and process information
sent from other sensors to form a message vector and transmit it to the FC.

The following assumptions are made in this chapter:
i) E[f] =0 and E[0?] = o3.

ii) The measurement noises are zero-mean and mutually uncorrelated, specifically Fn;] =

0, Elnn]] = 021k, and Enynl] = Og,«x,, for [ #m.



iii) E[v] =0 and E[v?] = o2

iv) The source signal, the measurement noises, and the receiver noise are uncorrelated,

that is, E[fn)] =0, E[fv] =0, and E[vn] = 0.
v) The observation gain vectors f; and the channel gain vectors g; are known to the FC.

Remarks: Assumption v) is reasonable in cases where the network condition and the
signal observation model change slowly in a quasi-static manner. Hence, as f; and g; are
obtained by the FC, they can be used for a long period of time.

For a given set of amplification matrices A;, the LMMSE estimate of 6 using the

received signal y in (2.3) is [35, p.382]

o ZlL=1 gl Ay
- 2
o} (LhiglA) +o2 0 el AAT g + o

y (2.4)

and the corresponding MSE is

J=E[0=0)=05— —(]?E[[eyyj]y
lL:1 lTAlfl 2 B
N (Z 5 ) (2.5)

2 2Nl LT T 2
oy 02y 8 AAlg + ol

The problem is to minimize the MSE in (2.5) by choosing optimal amplification matrices
A, under a total power constraint. The total transmitted power of the L clusters is
Zle E[x] Al A;x;]. Hence if P is the amount of power that the clusters together can
used, then we have the following constraint
L L
> tr (B[Axx[A]]) =Y tr (oA Al + 02 AA) < P (2.6)
=1 =1
where we use E[x;x]] = o5ff" + 021,. From (2.5) and (2.6), the optimization problem

under consideration can be written as

min J
A 1<I<L (2.7)

subject to Y1, tr (0ZAGETAT + 02 AAT) < P,



where J is given in (2.5).

Remarks: We had assumed that the measurement noises are mutually uncorrelated
across all sensors. If the measurement noises are correlated within the same cluster but
uncorrelated across different clusters, the problem can still be formulated in the same
form as (2.7). To see this, suppose E[nn/] = R,,, where R,,, = R} € R¥"/ is positive
definite and E[myn]] = Ox,xk,, for I # m. Let R,, = U,A, Ul be the eigenvalue
decomposition with A,, = diag(afbl’l? . ,Jil,Kl) > 0. By setting A; = AIUHZA%{Z and

f; = Ay 2Ufl f;, the corresponding optimization problem has the same form as (2.7) with

Ay, f;, and o2 replaced by A, f‘l, and 1, respectively.

2.2 Optimal Amplification Matrices

In this section, we consider the solution of the optimization problem (2.7) with the goal
of obtaining a closed form expression for the optimal amplification matrices A;. We first

make the following observations:

(i) If the inequality sign of problem (2.7) in the constraint is replaced by the equal-
ity sign, the solution does not.change.” Hence we could consider the optimization
problem with equality constraint. The argument is as follows. Since the constraint
function is quadratic in the elements of Ay, if a set of A; is such that strict inequality
holds, we can equally scale up each A; so that equality holds. And if we equally
scale up each A;, we get a lower function value of J because in (2.5) the second
term inside the parentheses becomes larger. Consequently, with optimal A;, the

inequality constraint must be active.

(ii) Consider the optimal MSE in (2.7), say, J* as a function of the power P, then J*
is a strictly decreasing function of P, that is, if P, > P;, then J*(P) < J*(P).
The argument is similar: if the power level increases, we can equally scale up A; to

obtain a lower value of J and thus a lower value of optimal MSE J* can be obtained.

(iii) Since the function J*(P) is 1-1 and decreasing, the inverse function P(J*) is also

1-1 and decreasing. Hence instead of finding the matrices A; that minimize J in



(2.5) under an equality constraint on power level, we can find the matrices A; that
minimize the power level subject to an equality constraint on MSE. And if the
constraint value on MSE is such that the resulting minimum power level matches
the given value P in (2.7), the corresponding matrices A; are the optimal ones we
set out to find. We thus consider the following optimization problem

[ min YF 6 (2AEETAT 1 02A,AT)

A, 1<I<L
-1

(i nglfl)Q i (2.8)

1
subject to St o<l 7 e 5
Ty on D18 AAg + 0}

\
where 0 < J* < o3. We note that both the objective function and the constraint
function in (2.8) are quadratic in the elements of A;. This problem is considerably
easier to solve than the original one (2.7). The main result based on solving (2.8)

is in the following proposition whose proof is given in Appendix A.

Proposition 2.1. Consider the sensormetwork model described by (2.2) and (2.3). Sup-
pose the total transmitted power from all sensors is no greater than P, then using the

LMMSE estimator, the optimal amplification matrixz of the lth cluster is given by

I3 -1

o fZ 2 i202 fz 2+0-’r21 P

A~ (Z 12 les <¢g|| || >> et I—1 L (29)
i=1 i !

where ¢; = o2(a2||E||> + 02) + o2 ||g:||* P, and the corresponding minimum MSE is

-1

i 2P
Jo— L 2.10
! <a§*Za2<azufzuZ+az>+ozngzn2p 210)

=1 "V
The optimal amplification matrix A" is a rank one matrix, which is a scaled outer
product of g; and f;. As expected the optimal MSE J,, decreases as P increases. Moreover,

as P — oo, we have

2
Oy

lim Jy = (2.11)

L

P 1+ (05/07) 2212 1617

The limit does not go to zero but approaches a finite value which depends on the signal
to noise ratio o7 3.1, ||fi]|?/02, since the measured signal f,§ + n; is amplified by A;,

1<I<L L

10



For comparison, we consider two special cases: L = 1 and L = K. When L = 1,
there is full collaboration among the K sensors. The observation gain is f € R¥ and the

channel gain is g € RV, N < K. It is easy to see from (2.9) that the optimal amplification

matrix is
flI2llell2(o2|I£]]12 2\ ! p
A \/ (AU £ 0)) " 2 o 2.12)
where ¢ = o2(a2||f||> + 02) + 02||g||>P, and the corresponding MSE is
1 I£1* 1> )1
Jo=|—+ 2.13
o= (o3 e + o+ TP 21

When L = K, each sensor is a cluster and no collaboration between sensor exists. The
scalar observation gains and channel gains are respectively fr and g, 1 < k < K. Again

from (2.9), the optimal amplification gain is

1
2 2 2
azpt: <ngz Uef +U)> fgkf’“ k=1,--- K (2.14)
i=1 k

where ¢z = 02(03 f? + 02) + 02¢? P, and the corresponding MSE is

K 202 -1
9k
( ZO’ as f? +02)+0 ,%P) (2.15)

=1

To compare the performance of the general case and the two special cases, we assume
N, =K;,1<1<L,in (2.10) and N = K in (2.13), that is, the number of measurements
is equal to the number of transmitters in each cluster. Hence the observation gain and
the channel gain vectors can be written as £ = [f{ £ - f1]7 = [f1 fo -+ fx]! and g =
gl gl - gl" =[g192 -+ gk|T, respectively, where f;, g € RE and Ky +---+ K = K.
In terms of the MSE, it is not unexpected that collaboration improves performance.

Indeed, we have the following proposition.

Proposition 2.2. The minimum MSEs Jy in (2.10), Jo in (2.18), and Jy in (2.15)

satisfy
Jo < Ju < Jn. (2.16)

The proof of Proposition 2.2 is based on the following lemma.

11



Lemma 2.3. Forx=[xI x} -+ x{ T e R" andy = [yT y? --- yI|T € R", where x; and

y: are nonzero vectors of dimension > 1, we have
L
<Pyl o < 12l 1

>y ol (2.17)
1xl> + Ny 1>~ = Il + [yl

Proof. Please see Appendix B. ]

We now establish Proposition 2.2. Let x = \/oaf, y = \/(02/02)Pg, x; = \/0af;, and
y: = \/(02/02)Pg;. Then by Lemma 2.3, we get
L

2 2 21 e 112
I£1° ] .S R

aglIfl1* + (o7 /o) Pligl* + o — = ogllfill* + (07 /07) Pllgill* + o

i=1
and thus J;' > J;,!, or equivalently, Jo < Jys. The second inequality in (2.16) follows
similarly: apply Lemma 2.3 to each x;, y;, and their respective scalar components, and

their sums give the desired inequality.

2.3 Numerical Results and Discussion

In this section, we use numerical simulations to verify the analytical result established
in Section 2.2. In all simulations, the randem parameters, 0, n;;, and v, are zero-mean
Gaussian. And we assume that o = 02 = 1. The observation gains f;;, are assumed to
be uniformly distributed in the interval [0.5,1]. The channel gains are taken as c¢,d~*?
where d is uniformly drawn from the interval [1,10] and ¢, = 22.6 is a normalization

constant to make E[g;,] = 1 as in [26].

Sitmulation 2.1 - Effects of N: In this simulation, we demonstrate the effect of the number
of transmitters. In particular, we consider the effect of different numbers of transmitters
N, where N < K, in the full collaboration case. We set K = 10 and 0’2 = 04. In
Figure 2.2, we plot the average MSE versus N with power levels P = 0 dB, 5 dB, and
10 dB. We note that as N increases, the MSEs decrease; also, we see that large power

levels result in smaller MSEs.
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Figure 2.2: MSE of full collaboration case with different numbers of transmitters

Since the MSE decreases as N-increases, in all the simulations to follow, the number

of sensors and the number of transmitters are set equal.

Sitmulation 2.2 - Effects of Observation Noise Powers: In this simulation, we compare
the MSE of the full collaboration case to that of the non-collaboration case for different
observation noise powers. Figure 2.3 shows the average MSE versus P for the full col-
laboration and non-collaboration cases with different observation noises, 02 = 0.4 and
02 =0.8. We set K = 20. For 02 = 0.4, the case with full collaboration performs better
than the non-collaboration case. Moreover, as the transmitted power increases, the MSEs
for both two cases decrease. In fact, from (2.11), these two cases approach identical MSE
as P — oo. We also see that the MSE of the case with 02 = 0.4 is smaller than that

of the case with o2 = 0.8, that is, a large signal to noise ratio results in a good performance.

Simulation 2.3 - Comparison between Full Collaboration and Non-collaboration: In this

simulation, we compare the full collaboration case with two non-collaboration cases,
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Figure 2.3: MSE of full collaboration and non-collaboration cases with different noise

power levels

which, respectively, use the optimal power- allocation scheme and the equal power al-
location scheme. Note that the equal power allocation scheme is to set the amplification
gains as a = \/P/—K, 1<k < K. Weset K=50and 02 = (0.4. Figure 2.4 shows that
optimal power allocation improves performance over equal power allocation for the non-
collaboration case. In addition, the reduction in MSE by full collaboration with optimal

power allocation is about 10 dB compared with the equal power allocation scheme.

Stmulation 2.4 - Effects of Number of Sensors in Each Cluster: In this simulation, we
demonstrate the effect of the number of sensors in each cluster. Specifically, we fix the
number of sensors in the network and consider two multiple cluster cases: in case 1, each
cluster consists of 4 sensors, and in case 2, each cluster consists of 8 sensors. Hence for
a fixed number of sensors K, case 1 has K/4 clusters and case 2 has K/8 clusters. We
compare their performance with the full collaboration and non-collaboration cases. We

set P =0dB and 02 = 0.4. Figure 2.5 shows that MSE of case 2 is less than that of case 1
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Figure 2.4: MSE of full collaboration and non-collaboration cases with different power

levels
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Figure 2.5: MSEs for K; =1, 4, 8, and K with different number of sensors
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since for a fixed K, case 2 has a smaller number of clusters and thus more collaboration
among sensors. That the full collaboration has the lowest MSE and the non-collaboration

case has the highest MSE is as predicted by (2.16).

0°=1,0%=0.4,0%=1,K =10
0 n \Y |
10 T T T T
. i P=0dB

= m i P=10dB
= | ower bound

Average MSE

107 i i I i

Figure 2.6: MSEs with different number of clusters

Stmulation 2.5 - Effects of Cluster Number: In this simulation, we fix the number of
sensors K; = 10 in each cluster and investigate the relationship between the MSE and
the number of cluster. Hence, as the number of clusters is L, the sensors in the network
are 10 x L. Figure 2.6 shows the MSE as a function of L with, respectively, P = 0 dB,
P =10 dB, and P = oo, which is equivalent to the performance lower bound as shown in
(2.11). From this figure, we see that when the number of sensors in each cluster is fixed,
the MSE decreases as L increases. In addition, compared the MSEs of P = 0 dB to that

of P = 10 dB, we see that the performance gain for the increase of power approaches a

constant as L > 10.

Simulation 2.6 - Comparison with Orthogonal MAC Model [24]: In this simulation, we
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Figure 2.7: Cluster-based sensor network with orthogonal MAC
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Figure 2.8: Comparison of the coherent MAC model to that of the orthogonal MAC model
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compare the proposed scheme to that in [24], in which the orthogonal MAC model is taken
into account. Figure 2.7 shows the model in [24]: the measurement vector for the [th clus-
ter is x; = ;0 + n; which then transmits to the [th receiver through a diagonal channel
gain matrix G; after multiplying by an amplification matrix A;; at the FC, the received
signal vector from the lth cluster is y; = GjA;x; + v, 1 <[ < L, where the additive noise
v is assumed to be Ely] = 0, Elu]] = 071k, and Eluw]] = Ok, «k, for j # 1. After
collecting L signal vectors at the FC, the LMMSE fusion rule is used for estimating the
source signal. The performance comparison for the orthogonal and coherent MAC models
is plotted in Figure 2.8, in which we take P = 10 dB, K; = 3 for all clusters, and o2 = 1.
We see that the MSE of the coherent MAC model performs better than that of the or-
thogonal MAC model. This is because by using the orthogonal MAC model, the number
of receiver noises increases as the number of clusters increases. However, by using the

coherent MAC model, there is only one receiver noise regardless of the number of clusters.

Table 2.1: Different number of sensors in clusters

K'=30 P=0dB

Clusters (L) 4 5 5 6 6 6 7 7 8 9
9,7,6, 9,6,4, 87,5 6,64,
Sensors in 9,9,9, 10,8,7, 9,9,6, 10,8,6, 10,7,5, 8,7,6,
(Ky) 3,2,2, 4,3,2, 3,3,2, 3,3,3,
each cluster 3 3,2 4,2 4,1,1 4,3,1 5,3,1
1 2 1,1 2,2,1
Number of entries 252 226 218 218 200 184 184 166 162 124
MSE (Jar) 0.0566 0.0603 0.0617 0.0635 0.0642 0.0659 0.0687 0.0690 0.0704 0.0790

Stmulation 2.7 - Relation between Collboration: In this simulation, we see quantitatively
the relation between collaboration and MSE for the coherent MAC model, we consider a
network with 30 sensors and P = 0 dB. We perform 10 simulations with the number of
cluster ranging from 4 to 9. The number of sensors in each cluster is randomly chosen
from 1 to 10. In each case, we count the total number of entries in the amplification ma-
trices A;. For example, in the first case there are 4 clusters, the numbers of sensors in the
clusters are respectively 9, 9, 9, and 3, and the number of entries is 92 +9% 492432 = 252.

Table 1 shows the number of cluster, the number of entries, and the corresponding MSE
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for each case. From the table, we see that the MSE decreases as the number of entries
increases. For comparison, the MSE for the two special cases are respectively Jy = 0.1689

and Jo = 0.0392.

A Brief Summary and Discussion: We study optimal collaboration for distributed esti-
mation in cluster-based wireless sensor network. We show that the optimal amplification
matrix of each cluster is a rank one matrix obtained as a scaled outer product of the
observation gain and the channel gain vectors. We also show that with optimal collab-
oration matrices, the performance of the collaboration case is better than that of the
non-collaboration case. For a fixed number of sensors in the network, we demonstrate,
through simulation results, that the amount of improvement is closely related to the

amount of collaboration.
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Chapter 3

Distributed Estimation Using Sensor

Network with Unknown Channels

In wireless communication systems, channels are often unknown to the receiver and have
to be estimated in practice [32,34]. In this chapter, we extend the non-collaboration
case when channels are known to the case when channels are unknown. In the sensor
network with unknown channels, we use training-based LMMSE channel estimator. The
channel estimates are then used te obtain LMMSE estimation of the source signal. The
problem is formulated as the allocation of power to each sensor for training and for data
transmission under a total network power constraint. We first consider the optimal power
allocation scheme, in which the sensors get full channel or estimated channel information
and consider optimizing the training power and data power for each sensor. Then we
discuss the equal power allocation scheme, in which the sensors do not have channel
information, except for the phases. We set equal data power to each sensor and consider
the optimization of training power to minimize the MSE. In each scheme, we compare the
performance of the distributed estimation with estimated channels to that with actual

known channels.
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Figure 3.1: Coherent MAC wireless sensor network

3.1 System Model

We consider a wireless sensor network with K sensors for estimating a random source
signal @, as depicted in Figure 3.1. The;measurement at the kth sensor is corrupted by an
additive noise ny and amplified by a factor oy before it is transmitted to the FC through
a flat fading channel, hy. The signal y received at the FC can be expressed as

K

y = hio(0+m) + v (3.1)

k=1

where v is the additive noise at the receiver.

The following assumptions are made throughout this chapter.
i) F[0] =0 and E[|0|?] = 02.

ii) The measurement noises are independent and nj, ~ CN(0,02) for k = 1,2,--- | K,

that is, ny’s are independent and circular Gaussian with zero mean and variance o?2.
iii) The channels are independent and hy ~ CN (0, 03).
iv) v~ CN(0,02).

v) The source signal, the channels, the measurement noises, and the receiver noise are
uncorrelated. Specifically, for 1 < k,j < K, E[0*ng] = 0, E[n;h] = 0, E[¢*v] = 0,
E[0*hg] = 0, and E[hjv] = 0.
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The problem is to estimate the parameter # based on the received signal y at the FC.
The fading channels are assumed unknown. We consider a two-phase approach similar to
that proposed in [25]: to estimate the channels first using training symbols sent from the
sensors and then to estimate # based on the estimated channels and y. In both phases,

we seek the LMMSE estimator.

3.2 LMMSE Estimation

3.2.1 Channel Estimation

During the training phase, the sensors send training symbols in sequence: the training
period is divided into K time intervals and only the kth sensor sends a training symbol
tr over the kth time interval. Thus, the received signal at the kth time interval can be
expressed as yy = hity + vg, k= 1,2, , K, where v, ~ CN(0,02) and E[v}v;] = 0 for

i # 7. For a given training sequence t;, the LMMSE estimator of Ay, is given by

3 T o
= Wtk% (32)

and the corresponding MSE is

. 2 2
5,§:E[|hk—hkﬂ—L k=1, K. (3.3)

- |tklPon + o2
The MSE of hy, decreases as the power of the training symbol |t|? increases. The LMMSE

problem under the training power constraint Z,ﬁil |tx|* < P, can be formulated as

K K
1 2
N — ; <P > —1,- K
pk:{%ll?gl( I Zék, subject to Zpk <P, andp, >0, k , ,
k=1 k=1
where pp = |t]? is the training power of sensor k. The problem can be solved using

standard Karush-Kuhn-Tucker (KKT) condition [25] and the solution is |tx]* = P,/ K, Vk,
as expected since the channels are independent and identically distributed. In particular,
we choose the training symbol to be real and positive, that is, ¢, = /F;/K, and the

resulting channel estimate is

iL O']%\/KH

== k=1,2,--- K 3.4
k O_ipt_i_KO_l%yka ) &y ; ( )
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with the corresponding MSE

Ko?o?
BP=——hr - p=1... K. 3.5
K o2P, + Ko?2’ ’ ’ (3.5)

We note that with such choice of training symbols, both the received signal y; and the

channel estimate h, are circular Gaussian.

3.2.2 Source Estimation

During the second phase, channel estimates hi, are available at the FC, although the
actual channels are unknown. We express the received signal y in (3.1) in terms of hy, as
K K
Yy = Z hiot + Z hrogpng + € +v (3.6)
k=1 k=1

where ¢ = S5 (hy — hy)ar(f + ny) is contributed by channel estimation error. Let

h = [ﬁl hy - - - EK]T be the vector of channel estimates. The LMMSE estimate of 6 given

~

his
0 = ay, where'd = E[Qy—|1}] (3.7)
Efly* | h]
From (3.6) it follows that
K K
EPﬁHﬂzE0(::%%W+§:%%@+ﬁ+vﬁ 4
k=1 k=1
K
_ 3 hiato? 39
k=1

where the last equality is from the assumptions that the source signal is uncorrelated with
the measurement noise and the receiver noise, and that hy, = E[hg|ys] = E[hg|hs] since

hy, is a linear function of yi. It is derived in Appendix C that

K 2
E hy oy
k=1

The MSE incurred by (3.7) is

K

K
B ||y |h] = o3+ 3 haPlanol + o2+ (0F + 02D el (3.9)
k=1 k=1

J:Eﬁe—mﬂq

=0 —aF [9*y|fl} —a'E [y*9|f1} + |a|’E [[yﬂﬁ]

2 —1

1 ‘§:£;1hkak

+ =
2 K K
T Ppr hwPlawlPor + o + (0F + 07)0F 3 0py lawl®

(3.10)
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When the channel h;, is available at the FC, we can set ﬁk = hy, and 5,3 = 01in (3.10), and

the corresponding MSE becomes

K 2 !
1 ‘Zk:l hkak‘
Jo= |5+ — (3.11)
To D pey |l |ow]?02 + o2

The MSE J, is a lower bound of J in (3.10) and can serve as a benchmark against which

the performance of the estimator (3.7) can be compared.

3.3 Optimal Power Allocation

During the training phase, each sensor uses the same training symbol and thus consumes
the same amount of training power P,/K, where P, is the total allocated training power.
From (3.5), it is clear that as P, increases, the MSE in channel estimation decreases. In a
sensor network, there is likely a total power constraint, that is, there is an upper bound
imposed on the sum of training power and: the power used to transmit data. Hence,
when more power is allocated for-training, less power is available for data transmission
and vice versa. Under the total power constraint, the minimum MSE of é, that is, J
in (3.10), depends on the training power-£; and how the remaining network power is
allocated to each sensor for data transmission. In the following, we consider the optimal
power allocation problem, that is, to choose P, and data power for each sensor to minimize
J under a total power constraint. For comparison, we will also consider the case when
channel information is available, no training, no channel error, and all power is used for
data transmission. The comparison of the two cases will show the penalty incurred due

to the fact that the channel is unknown.

3.3.1  When channels are known

If the channel h; is available at the sensor k, the phase of «, can be chosen to match that

of the channel, that is, Zay = —Zhy, so that hyay = |hg||ag|. The MSE J, in (3.11) can
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then be rewritten as

-1

¢ (S aelend)

1
— +
% CoR(i ghlowl?) +1

J, = (3.12)
where ( = 07 /02 is the channel SNR, and g; = |hg|/on is the normalized channel gain
for the kth sensor. Such choices of phases make J, smallest among «ay’s of the same
magnitude. Note that g, has a Rayleigh distribution with density function f,(z) =
2z exp (—x?), x > 0, and E|g;] = \/7T_/4; g2 has an exponential distribution with density
function fy2(z) = exp (—z), x > 0, and E[g7] = 1 [37, p.51]. The signal transmitted from
the kth sensor is ag(0 + ny) with power P, = E[|ag(0 + ng)|?] = |aw|?(6i + 02). From
(3.12), the optimal power allocation problem with the total network power constrained

to P > 0 can be formulated as the following optimization problem

K 2 1
min 1, C(Zh, gklowl) )
o | 1<k<K (03 (o (Zin gRlonl?) +1 (3.13)

subject to  SiEdag/?(0F + 02) < P.

By the same reasons shown in the observations (i) to (iii) in Section 2.2 in Chapter 2,
instead of solving (3.13), we consider an alternative problem in which the power is mini-
mized subject to an MSE constraint:

min - 350, Jawl*(0f + 07)

| |- 1<k<K ) (3.14)
K 2 - ’
subject to (i + (i ovloel) ) =J,

o5 o2 (T g2lanl?)+1
where 0 < J, < o3. It is noted that the problem (3.14) can be regarded as the non-

collaboration case of the problem (2.8) with A;, g;, and f; replaced by |ak|, gx, and 1.

The solution, from Proposition 2.1, can then be written as

—1
|ak|2 _ EK: gl%(gg + 02) gip (3.15)
(03 +02) + 02(g2P]" ) [(03 + 02) + 02(g2P)’

and thus the optimal power is P, = |ag|*(02 +02), 1 < k < K; the corresponding MSE is

1 K g? -
J,=| =+ k (3.16)
(aé ; orgi + (of + a%)é)

25



which is also the minimum MSE of (3.13). Since the minimum MSE depends on the total
network power P and the number of sensors K, we hereafter write the MSE J, in (3.16)
as Jo(P, K).

As the power P increases, we expect J, to decrease, which is easy to see from (3.16).

For a fixed K, as P — 0o, we have

2
. . 0'9
pim Jo(P, K) = 1+ Kf

(3.17)
where 8 = 07 /0?2 is the observation SNR. The limit dose not go to zero but is roughly
proportional to 1/K as we would expect. On the other hand, for a fixed P > 0, as K

increases, we have

1
lim J,(P,K) = (—2+ lim KE

—1
9i
K—oc0 o5 K—oo 072191% + (ag + J%)CLP

~ fim {E [( Coel } }1 =0 (3.18)

o5 +02) + 02(g; P

where in the first equality we used the law;of large numbers [39]. From (3.18), we conclude

that in the coherent MAC model,:the-MSE decreases in the order of 1/K as K goes to

infinity even though the total network power P is finite. Similar conclusion for the unit
2 2

variance case, 03 = 02 = 02 = 1, appeared in{26].

n —

3.3.2 When channels are estimated

Suppose training for channel estimation consumes power P;, then the remaining power
for data transmission is P — P;. The power allocation problem now is to optimally choose
training power P; and data power for each sensor. The phase of ay is chosen to match
that of fzk, ie., Zag = —/hy,. Write hy = hy, + (hy — fzk), since hy, and hj, — hy, are
uncorrelated we have o = o2 + 97, where 07 = E|hy — hi|?]. Use (3.5) and ol = o, — o,

we can express the MSE in (3.10) as

K 2 -
i ¢ (S anlonl) P
J - ; + K o 5 K (319)
0 o2 (LI GFlanl?) P CP o+ KC(0F + 02) (A lan?) + K
where g5, = |iLk| /o; is the normalized estimated channel gain for the kth sensor. Since

hy, is circular Gaussian, §; and gz have identical distribution. From (3.19), the MMSE
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optimization problem under a total network power constraint can be formulated as

-1
min (L + C2(Z§:1 gkb‘k‘)zpt )
2 ~
Py|ap|:1<k<K %o <2U%<ZkK:1 9/%‘ak|2)Pt+CPz+KC(U§+o%)(Z£(:1 |ag|2)+K (320)

subject to Y& | |ax|*(0F +02) + P, < P.

Again instead of solving problem (3.20) directly, we consider a problem in which the roles
of objective function and constraint are interchanged. The solution to problem (3.20) is

given in the following proposition, the proof of which is given in Appendix D.

Proposition 3.1. For K > 1, the solution to (3.20) gives the optimal training power

K(P+1)—/K(P+1)(CP+K)
(K —1)

PP = (3.21)

where ( = o2 /02 is the channel SNR, and the associated optimal data power for the kth

Sensor s

K -1,

o ~ n g o

P = (Z gk/qﬁi) é—’;(P — P (3.22)
k=1 k

where ¢y, = [(07+07) +M(Pon G2 P+ MoK (of +07)] and Ao = P /(K +K((P—F™)).

The incurred MSE is

-1

RS i
J(P, K) e > (3.23)
=L aRgi + (o +o7) ( =

2
\/K(CP-&-I)—\/CP-&-K)
Note that the optimal training power in (3.21) depends on the number of sensors K,
the channel SNR (, and the total network power P. Moreover, we have

p (VEQP+1 - iP+E)

Popt o —
! 2 20(K — 1)

> 0,

that is, for a total power constraint P, the power used for training is greater than that
used for data transmission.

From (3.23), we see that the MSE decreases as the power P increases. For a fixed K,
as P — 0o, we obtain

2

99
Jm TP K) =155

(3.24)
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which is the same as (3.17). This makes sense since P — oo implies P** — oo and thus
the MSE of channel estimation in (3.5) approaches to zero, that is, h, — hi, as P — 00

in the mean square sense. It is shown in Appendix E that, for a fixed P,

lim J(P,K)=o) (1 + 1i (\/@ - 1)2)_1 : (3.25)

K—00 +p
The MSE does not approach to zero. The reason is that the order of 1/K decrease in
MSE in (3.18) is offset by the order of K increase in the power of the error term E[|e|?|h]
in (C.3) in Appendix C. Therefore, in the presence of the channel estimation error, the

MSE reaches a finite nonzero value as K goes to infinity.

3.3.3 Comparison of two cases

If the total network power and number of sensors are fixed, with estimated channel, the
estimation performance is worse than when channel information is available due to the
presence of channel estimation error. To quantitative compare the two cases, we set the
same MSE objective, use optimal-power allocation for both cases, and determine the
respective total network power that would be required. Suppose to achieve the selected
MSE, total network power P“ is required when channel information is available and the
required total network power is P¢ when channels are estimated. The ratio P*/P€ gives an
indication of the penalty incurred by the consumption of training power and the presence
of channel estimation error. A small ratio would imply a heavy penalty. But the MSE
expressions in (3.16) and (3.23) are random variables, we instead derive the condition on
P?% and P¢ under which the distributions of MSEs are identical. This is possible due to
the fact that the random variables g, and g, have identical Rayleigh distribution. From
(3.16) and (3.23), the distributions of MSE expressions are identical if the deterministic

terms in the denominator are equal, that is,

2
K1 1
<\/K(§Pe+ 1) — /CP? +K> (P

Rearranging (3.26), we get

P (wml TP - JTT K/<<P€>)2 (3.27)

(3.26)

pe K—1
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Note that the ratio in (3.27) is less than one, and for P¢ large

P 1

—_— . 3.28
Pe (VK +1)? (3.28)

The ratio decreases as the number of sensors K increases. This means that the penalty

caused by channel estimation becomes worse as the number of sensor increases.

3.4 Equal Power Allocation

The optimal power allocation scheme discussed in the previous section requires that the
actual channel or estimated channel information is available at the sensors. If the sensors
do not get full channel information fedback from the FC, a reasonable strategy is to
allocate equal power for each sensor for data transmission. In the following, we study
the performance of the equal power allocation scheme. We again consider two cases:
i) channels are known at the FC and ii) channels are estimated. In the latter case, we
consider the optimal choice of training power P; to achieve the smallest MSE. We compare

performance of the two cases in terms:of the power ratio P*/P¢ as in the previous section.

3.4.1 When channels are known

We will assume that the channel phase Zhy is available at the sensor k£ and choose the
phase of oy, as Zay, = —Zhy,.. With equal power allocation, we have |ax|? = P/(K (03 +
02)), for k=1,--- | K and the MSE in (3.12) can be rewritten as

2
8 (1K
T8 <? D ket 9k:>
1 1 1 K 2 1
KTi8 (E 2 k=1 !Jk) + &P

It is easy to see from (3.29) that J, decreases as P increases. For a fixed K, as P — o0,

-1

J,(P,K)=0; | 1+ (3.29)

we have

. 1 _ (i 1) _
| — =521 Aek=1 IV N o 52 (1 K
P J(PK) ¢ ( o7 SKog ) 8D

where the last inequality uses the Cauchy-Schwartz inequality and the equal sign holds if

and only if g; = --- = gi. Therefore, as P — oo, we have a MSE lower bound as follows
o
i > . .
Jm Jo(PK) 2 157175 (3:30)
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Since equality holds in (3.17), we see that the performance of the equal power scheme is
usually worse than that of the optimal power scheme as P — oo. On the other hand, for
a fixed P, as K — oo, we have (1/K) > 0 g — Elgx] = /7/4 and (1/K) Y1, g7 —
E[g?] = 1, thus (3.29) becomes

lim J,(P,K) = lim 0—2(—%% >_1:0 (3.31)

0= my\meg) |
Hence, the MSE decreases in the order of 1/K and approaches to zero as K — oo even
though the total power P is finite. Similar conclusion appeared in [26] for the unit variance

case.

3.4.2 When channels are estimated

If the power P, is used for channel estimation, the transmitted data power for the kth
sensor is P, = (P — P,)/K, or equivalently, |ax|*> = (P — B,)/(K (0 + 02)). Again the
phase of «y is chosen as Zay, = —Zﬁk and the MSE derived from (3.19) is

-1

2
CQ 1+ﬂ (%25:1@6) (P_Pt)Pt
iy (R GE) P PP+ (P (K (P = P) + K

J(P,K)=o0; | 1+

(3.32)
From (3.32), the optimization problem becomes to choose P, so that the MSE J is min-
imum under the total network power constraint. From (3.32) the MMSE optimization

problem can be formulated equivalently as

. GRS (LS o)’ (P-P)P,
min — -
P s (% i 82)(P—P) Pt PACK (P—P)+K (3.33)

subject to 0 < P, < P.

It is shown in Appendix F that the objective function in (3.33) with respect to P; is
positive. Hence, the optimization problem (3.33) is convex since the objective function is
convex and the constraint is linear. The following proposition gives the optimal training

power and the corresponding MSE.

Proposition 3.2. For K > 1, the solution to (3.33) gives the optimal training power

K(P+1)—/K(P+1)(CP+K)
(K —1)

P = (3.34)
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where ¢ = o} /o2, and the incurred MSE

v’

-1

iﬁ( Zk 1gk>
i <L K g2>+ (K -1)? ]
N A N )

Proof. Please see Appendix G. O

JPK)=0; |1+

(3.35)

Note that the optimal training powers for both the equal and optimal power allocation
schemes are the same. This is because for the optimal power allocation scheme, if we set
P, = (P — P™)/K for all k, the MSE and the optimal training power must be the same
as the equal power allocation scheme.

From (3.35) with fixed K, as P — oo, we obtain limp_,(1/J(P, K)) < 0, %(1 + Kj)

and thus

2

>
pjim J(PK) 2 1+K/3

(3.36)

which is the same as (3.30). On the other hand, for a fixed P, when K — 0o, we obtain

-1

lim J(P,K) = (1 lefsh Na'S (vVeP+1- 1>2> (3.37)

which is worse than (3.25). Note that the MSE/in (3.37) also approaches a finite nonzero
value as the number of sensors goes to infinity due to the same reason as stated in

Section 3.3.2.

3.4.3 Comparison of two cases

To compare performance of the two cases, we set P* and P€ respectively so that the MSE
expressions in (3.29) and (3.35) have the same distribution as in Section 3.3.3. From
(3.29) and (3.35), the distributions of the MSE are identical if the deterministic terms in

the denominator are equal, that is,

K-1 B
(«/K(CPe—i— 1) — \/_CPeJrK) P

This equation is the same as (3.26) and thus we have the same ratio of penalty incurred

(3.38)

by the training power consumption and the channel estimation error as shown in (3.27)

and (3.28).
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3.5 Numerical Results and Discussion

In this section, we use a number of numerical simulations to verify the analytical results
obtained in previous sections. All random parameters, 6, ny, hi, and v, are set as zero-
mean circular Gaussian. The parameter 6 and the channel h, are assumed to have unit
variance, that is, we set 0 = o7 = 1 (0 dB). The observation noise variance o2 = —10
dB and the receiver noise variance 02 = —1 dB so that the observation SNR 3 = o2 /02

and the channel SNR ¢ = 07 /02 are 10 dB and 1 dB, respectively.

Optimal Power Allocation Scheme
02 T T T T

(? O Simulation: P=14dB
1

1
I

1
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¥ Simulation: P=17dB
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Figure 3.2: Mean square error (MSE) with optimal power allocation

Stmulation 3.1 - Comparison of Theoretical and Simulation MSFEs Based on Optimal
Power Scheme: In this simulation, we compute the average MSEs of theoretical and sim-
ulation results based on the optimal power allocation scheme. The average MSE is the
average of 10° independent runs. The theoretical MSE is given in (3.23), where only
the normalized channel gains g5 are random. To obtain the simulation MSE, we use the
LMMSE estimators in (3.2) and (3.7) with all random variables independently generated,

and take the average MSE of 6. 1t is clear from F igure 3.2 that the theoretical and simu-
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lation values of MSE are very close. For a fixed P, we see that the MSE decreases as the
number of sensors K increases and approaches to the lower bound (3.25). The results for
P =14 dB and P = 17 dB show that the 3 dB difference in total power leads to about 3
dB difference in MSE for K > 20.

Equal Power Allocation Scheme
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Figure 3.3: Mean square error (MSE) with equal power allocation

Stmulation 3.2 - Comparison of Theoretical and Simulation MSFEs based on Equal Power
Scheme: In this simulation, we compute the average MSEs of theoretical and simulation
results based on the equal power allocation scheme. The comparison is shown in Fig-
ure 3.3, where the theoretical result averages the MSE in (3.35). Again the figure shows
that the theoretical and simulation values are very close. As K increases, the average
MSE decreases and approaches to the lower bound in (3.37). The results for P = 14 dB
and P = 17 dB also show roughly 3 dB difference in MSE for K > 20.

Sitmulation 3.3 - Comparison of Optimal and Equal Power Schemes: In this simulation,

we compare the MSE of the optimal power scheme to that of the equal power scheme.
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Figure 3.4: Comparison between equal and optimal power allocation schemes

Figure 3.4 shows the comparison result for a fixed P = 16 dB. It shows that the optimal
power scheme performs better than the equal power scheme. For K > 20, the difference
in MSE between the two schemes approaches to a constant value 0.007 (approximately

20% difference), which is about the difference between the respective low bounds.

Simulation 3.4 - Comparison with Orthogonal MAC model [25]: In this simulation, we
compare the proposed scheme to that in [25]. The two-phase approach proposed in [25]
is based on the orthogonal model, where the kth sensor transmits the measured signal
ag(0 + ng) to the kth receiver through an unknown fading channel hy, k = 1,--- | K, as
shown in Figure 3.5. The kth receiver is corrupted by an additive noise v, ~ CN (0, 02),
where 02 = —1 dB, and E[yv;] = 0 for i # j; then K received data is collected by the
FC with the LMMSE fusion rule for estimating the signal. Figure 3.6 shows that with a
fixed P = 17 dB, the MSE of the orthogonal model exhibits a conspicuous degradation
as K > 40, while the MSE of the coherent model approaches to a constant value. Also

compared with the orthogonal model, the coherent model has a lower average MSE re-
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Figure 3.5: Orthogonal MAC wireless sensor network
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Figure 3.6: Performance of optimal power allocation scheme: coherent model and orthog-
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gardless of the number of sensors used. This is a consequence of using orthogonal model,
which results in K different receiver noise v, at the FC so that the increase of K does not
reduce the effect of receiver noise; while in the coherent model, only one receiver noise is
generated at the FC, which leads to increased signal to noise ratio as K increases. In the
figure, we see that as K increases, the MSE of the coherent model is less sensitive to the

channel estimation error than that of the orthogonal model.

Optimal Power Allocation Scheme: K=16

3 T T T T T T T T
P®=20dB
----- P®=23dB
....... e_
25 P®=27dB | |
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Figure 3.7: MSE ratio versus total power ratio: optimal power scheme with different P°¢

Simulation 3.5 - Comparison with the Case When Channels are Known: In this sim-
ulation, we use simulations to show the analytical results given in Section 3.3.3 and
Section 3.4.3. Figure 3.7 shows the ratio of average MSE E[J,]/E|[J] versus the ratio
P/ P¢ for the optimal power allocation scheme with a fixed K = 16 sensors. In the
figure, the curves corresponding to total network power P¢ = 20 dB, 23 dB, 27 dB, and
30 dB, respectively. The curves all cross the horizontal lines E[J,]/E[J] = 1 at about
0.04 very close to the predicted 1/(v/K + 1)? in (3.28). Figure 3.8 shows the ratio of
average MSE FE|[J,]/E[J] versus the ratio P*/P* for the equal power scheme. The total
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Equal Power Allocation Scheme: P°=30dB
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Figure 3.8: MSE ratio versus total power ratio: equal power scheme with different K

network power is fixed at P¢ = 30_dB and the number of sensors K = 9, 25, and 36.
We see that the curve for K = 9 crosses ElJ,|/F[J] = 1 at about 0.06, the curve for
K = 25 at about 0.03, and the curve for: /=136 at about 0.02. The curves show that the

penalty caused by channel estimation becomes worse as the number of sensors K increases.

A Brief Summary and Discussion: We use a two-phase approach for channel and source
signal estimations; in both phases, the LMMSE criterion is used. We consider two power
allocation schemes. For the optimal power allocation scheme, we obtain expressions of
optimal training power and optimal data power for each sensor and the resulting MSE
as a function of total network power P and the number of sensor K. For the equal
power allocation scheme, we obtain an expression for the optimal training power and
the resulting MSE. In both schemes, the optimal training powers are equal. Our results
show that with estimated channels, the MSEs approach to finite nonzero values as the
number of sensors increases. We note that this is in contrast with the result obtained for

orthogonal MAC model [25] which shows the MSE performance eventually deteriorates
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as the number of sensor increases. The MSE performance compared with the case when
channels are known shows the penalty caused by channel estimation becomes worse as

the number of sensors increases.
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Chapter 4

Distributed Estimation Using MIMO

Sensor Network

Multiple-input multiple-output (MIMO) techniques can potentially improve data rate and
link reliability and thus increase the capacity of wireless systems [33,34]. In this chapter,
we consider distributed estimation of avectorsignal using MIMO wireless sensor network,
in which each sensor is composed of multiple measurements and multiple transmitters, and
the FC consists of multiple received antennas.- We study the problem of the design of linear
coding matrices so that the estimated érroris minimized under a total power constraint.
We show that the problem can be formulated as a convex optimization problem, based

on which we derive closed form expressions of the optimal coding matrices.

4.1 System Model and Problem Formulation

We consider a wireless sensor network consisting of L sensors for estimating p random
source signals, written in vector form 6 = [0y, 0y, -- -, 6,]7 € CP, as shown in Figure 4.1.

The [th sensor has k; measurements, which can be expressed in vector form as

xl:F10+nl, 1§l§L (41)
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Figure 4.1: Linear distributed estimation with coherent MAC

where F; € CF*P is the observation matrix and n; € CF is the additive noise. Let

K =Y} k. In vector form, (4.1) can be written as
x.=.F0 + n, (4.2)

wherex = [xI'xI .- x| e CK, B = [FFEL .. FI]T ¢ CE*P andn = [nTnl ... nI]T €
CX. The measurement of the [th sensor is encoded by a linear coding matrix A; € CV*H
to form the message vector A;x; € CV, which is then sent to the FC through a channel
matrix H; € CV*V. From (4.1), the received signal y at the FC can be expressed as

L
y=> HA(FO+n)+v, (4.3)

=1

where v € CV is additive noise at the receiver. Let B, = H;A; € CV** and B =

BBy --- Br] € CV*K " and the received signal in (4.3) can be rewritten as
Fl n;
F, 11D
y =[B1 By - By] e+ +v
Fr ny,
=B(F6 +n) + v. (4.4)

The following assumption are made in the sequel.
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i) The source signal vector is E[f] = 0 and E[00"] = 021,.

ii) The measurement noise vectors are zero-mean and mutually uncorrelated, that is,

Eln] =0, Elnnj’] = 021, and Elnnf’] = 0 for j # 1.
iii) The received noise vector is E[v] = 0 and E[pv] = 021y,

iv) The signal vector, the measurement noise vectors, and the received noise vector are

uncorrelated, that is, E[@nl] = 0, E[@vT] = 0, and E[nvf] = 0.
v) The observation matrices F; and the channel matrices H; are known at the FC.

vi) The number of source signals p, measurements K, and transmitters N should satisfy

K > N, K > p, and rank(F) = p.
vii) The channel matrices are diagonal, that is, H; = diag(h}, - - , hly) with hl # 0, Vi, [.

Remarks: Assumption vii) simplifies the derivations to follow. In practice, if the N
signals are transmitted using N different frequencies, the assumption is reasonable.

According to the received signalwy in (4.4), the LMMSE estimate of 6 is

6 =E[0y"|(Elyy™) 'y

—02F"B" [BR,B" + o?Ix] 'y,
where R, = E[xx"] = 02FF + 621, and the corresponding MSE is
0 n

J =tr(E[(6 - 6)(6 — 6)"])

—tr <031p — oiFYBY [BR,B + 021,] "' BF) . (4.5)

The problem is to minimize J in (4.5) by the design of the coding matrices A; under a total
power constraint. The transmitted power for the Ith sensor is defined as E[x} A A;x;| =
tr(A;R,, AF), where R,, = E[x;x}] = 0}F,FH + 021,,. If P is the total power that the
L sensors can use, then the constraint can be expressed as

L
> o (H'BR,B'H ") <P, (4.6)

=1
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where we use A; = H;'By. Let D = tr (FB [BR,B" + 02Iy] ' BF). Thus J =
pos —oyD. Since 0y and p are fixed, minimization of J subject to (4.6) can be expressed

equivalently as

max D
B, 1<I<L (4.7)

subject to Zlel tr (HleleleIHfH) < P.

Remarks: In general, if E[0] = Ry and Ennf’] = R, are Hermitian and positive
definite, we can write Ry = R)’Rj/* and R,, = RY/’Rx” , and introduce 6 = R, /0,
o, = R,'’n;, A, = AR/, and F, = R,,)’FR,>. Then A, F;, 6, and n; in (4.4)
can be replaced by A, F, é, and n;, respectively, and the equivalent model satisfies
assumption i) and ii). Hence, the optimization problem can still be formulated in the

same form as (4.7).

4.2 Proposed Approach

In this section, we first consider the-objective function of (4.7) and determine its maximum
through singular value decomposition technique. After obtaining the maximum objective
function, we consider the power constraint and formulate the problem (4.7) as a convex
optimization problem, which then yields a solution in closed form.

Since R, = 07FF + 021 is positive definite, it can be expressed as R, = RYPRY?,

where Ry/? is Hermitian and positive definite. Since rank(F) = p by assumption vi),

rank(RQl/QFFHR;UQ) = p and we have
R, ?FFIR;Y? = UcA UL, (4.8)

where Ac = diag(ci, -+, ¢p, 0, --+,0) with ¢; > -+ > ¢, > 0 and Up € CK*E s
unitary. Multiplying (4.8) by Ra /2 6n the right and RY? on the left shows that the
nonzero eigenvalues ¢;, 1 < i < p, are also the nonzero eigenvalues of FF (c2FF# +
021x)~! and it follows that ¢; < 1/02, 1 < i < p. Let B = BR./* and use (4.8), the
objective function D in (4.7) can be expressed as

D —tr (B [BB + o1y] ' BR;?FF"R; ")

—tr (B [BB” + 021y] ' BUCACUZ ) . (4.9)
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Express B as a singular value decomposition

B=UzA;VE, (4.10)
where Up € CV*V is unitary, Ag = diag(v/by, ---, Vbxn), b1 > -+ > by > 0, and

V5 € CEXY has orthonormal columns. With (4.10), D in (4.9) can be further simplified

as
D=t <AB (A% +02Ty] " ARV UCACUgVB) . (4.11)
To find an upper bound on (4.11), we need the follow fact.

Fact 4.1. /30, p.326] Let X, Y € C™™™ be positive semidefinite matrices with eigenvalues
A >N > 2> X, >0and d; > 09 > -+ >0, > 0 respectively. Then
i=1
Applying the fact to (4.11) with X = Ag[AgAz + UZIN]fl ApandY = VEUCACUEV,

we have

D< Z 2 + b (4.12)

We note that since X is diagonal, if we choose V so that VEUq = [Iy 0] € CV*X,
where N > p, then equality in (4.12) holds. Hence the upper bound in (4.12) is achieved

if we choose
Vi =Uc(;,1:N), (4.13)

where Ug(:, 1 : N) denotes the first N columns of Ue. Since the upper bound is the same
for all N > p, we choose N = p. This keeps the number of transmitters for each sensor
at a minimum.

With the choice V3 = Uq(:, 1 : p), we have

= Z e b (4.14)

where ¢; > 0 and 02 are fixed. Hence the problem of choosing B; in B to maximize

D amounts to choosing the singular values v/b; of B in (4.10) since the choice of Uy is
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irrelevant and B = BR; /%, Tt is clear from (4.14) that to maximize D, we should choose
each b; > 0 as large as possible; however, it can not be chosen arbitrarily large due to the
total power constraint.

By taking into account the power constraint in (4.7), we set Ug = Iy to simplify our

analysis and thus we have B = A BVg R, 2, or equivalently,
B, =AzUq,;, 1<I<L, (4.15)

where Ijq; € CP*ki ig the [th block matrix in VgR;l/z = [ch,l, cee Iqu] with V5 =
Uc(:,1: p). Substituting (4.15) into (4.7), since H; are diagonal matrices from assumption

vii), the power constraint can be further simplified as
p
tr (RA%) =) ribi <P, (4.16)
i=1

where R = Zle HflﬂC,ZRxlﬂgJHl—H with diagonal entries r;, 1 < ¢ < p. Note that
since R,, = 03 F/FH 4+ 021}, we see that the diagonal entries of Hflfjalel ﬂg JH T are
positive and thus r; > 0. From (4.14) and (4:16), the problem in (4.7) with V53 = Ug(:
,1:p) and Ug = Iy can be written as

P
. Z cib;
min —
! 0'3 + bl

b, 1<i<p

subject to > % r;ib; < P,

(4.17)

bi >0, i=1,---,p.
This is a convex optimization problem since the cost function is convex and the constraints
are linear.
To solve the problem (4.17), we form the Lagrangian as
P b P P
L(bi, p1o, p1i) = —izl ﬁ + Ho (izlﬁbi — P) - izlﬂibia
where g > 0 and p; > 0, and the associated KKT conditions [38] are

2

Ci0,

CE R 418)
p

2203
=1
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From (4.18), we obtain

bi=o?( J—F 1), 421
UV( o2(pori + i) ) ( )

From (4.20), if b; > 0, we have p; = 0 and thus (4.21) can be written as

- +
bi:aﬁ( X —1) (4.22)

O, 0T

where (2)T = max(0,z). From (4.18) with b; > 0 and u; = 0, we have po > 0 otherwise

we have a contradiction ug < 0. Hence, from (4.19), we get

P

> ribi=P. (4.23)

i=1
Let Wy, = \/Cm,/Tm, and assumed wy,, > -+ > wy,,, where m; € {1,--- ,p}. We define
a function

02+zz mq T

T'iCi/O'V

f(my) = wy,,, X

Let 1 < p; < p be such that f(m,,) > 1and f(mp1+1) < 1. Then we have

ay

gy —a?, i <
By, =S¢ VO & (4.24)
0, 1> p1
where
S 2
Y i, A/ TiCi] 02
Ho = mp
0'2 + Z’L ’r}ll i
is obtained by substituting (4.24) into (4.23).
With the choice Az = diag(v/b1, -+, 1/b,) according to (4.24), the coding matrix can
be written from (4.15) and A; = H; 'B,, and is given by
A =H'AzUq,;, 1<I<I; (4.25)
moreover, from (4.5) and (4.14), the corresponding MSE can be written as
J = 4.26
pa(, T Z o2 + b ( )

As P — oo, from (4.16), we have b; — oo and thus the lower bound of the MSE is

p
Jiow =p0G — 04 Y _ci, (4.27)

45



Note that since ¢; < 1/07, we have Ji,, > 0.
So far we have developed an analytical method for the design of optimal coding ma-

trices. For clarity, we summarize the steps of our proposed method as follows:

Step 1: Give the prior knowledge of 031,, 021, 021, the observation matrices F;, and

the channel matrices H;.

Step 2: Stake F, into matrix F, and compute R,, = 02F,F} + 021 and R, = 0FF¥ +

2
oL

Step 3: Decompose R, *FFER;"? into UcAcUE, where Ac = diag(cy, -+ ,¢p, -+, 0),
and set Vg = Ug(:,1:p).

Step 4: Write VgR;l/2 = [ﬂql, cee fIqL] with -[AJ-CJ € RP*# and compute

R =3, ,UcR, Ul x (HH/)"! to get its diagonal entries r;, 1 < i < p.

Step 5: With Ax and R obtained in Step 3 and Step 4, solve the optimization problem
(4.17) to get b; in (4.24), 1 <1 <.p.-Hence, the optimal coding matrices A, are
obtained from (4.25).

4.3 Numerical Results and Discussion

In this section, we use numerical simulations to illustrate the analytical results established
in Section 4.2. In all simulations, the random vectors 8, n;, and v, are complex Gaus-
sian. Specifically, each entry in the vectors is set as a complex Gaussian random variable
with zero mean and unit variance. We also take the entries of F; and the channels h! as
complex Gaussian random variables with zero mean and unit variance. The number of

source signals is set as p = 5.

Stmulation 4.1 - Effects of N: In this simulation, we demonstrate the effect of the number
of transmitters. The average MSE versus N with different power levels P =5 dB, 10 dB,
and 20 dB is shown in Figure 4.2, in which we take L = 10 and k; = 8, VI. The dash-
line denotes the MSE lower bound in (4.27). We can see that the MSE decreases as N
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Figure 4.2: MSE versus N with different power levels

increases and remains a constant as /N > p. That is, there is no improvement in network
performance as the number of transmitters for each sensor is greater than the number of
source signals. The result is consistent with-our analysis in Section 4.2 that under a total
power constraint, the minimum achieved MSE is (4.26) for all N > p. From the figure we

can also see that the MSE decreases as the power level increases as is expected.

Since the performance is the same for all N > p, we set N = p in all the simulations

to follow.

Simulation 4.2 - Effects of k;: In this simulation, we demonstrate the effect of the number
of measurements. We consider L = 10 and assume that k; are equal for all sensors. Fig-
ure 4.3 shows the average MSE versus k; with different power levels P = 5 dB, 10 dB, and
20 dB. We note that as k; increases, the MSEs decreases; moreover, the gap between the
lower bound and the power constraint case becomes large as k; increases. This is because

although the increase of k; leads to the increase of measurement power, the transmitted
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Figure 4.3: MSE versus k; with different power levels

power for each sensor is restricted:if there is a power constraint. Hence, the performance
of the power constraint case has no significant.improvement as k; increases compared with

that of the unconstraint power case (the-lower bound).

Sitmulation 4.3 - Comparison with Equal Allocation Scheme: In this simulation, we com-
pare the MSE of the optimal allocation scheme to that of the equal allocation scheme.
We take L = 10 and k; = 8, VI. The equal allocation scheme is to set the transmitted

powers for all sensors to be equal, that is, we choose the coding matrix A; = «; - [I5 0],

where oy = /P/[Ltr(R,,(1:5,1:5))], so that tr(AR,,Af") = P/L, 1 <[ < L, here
R,,(1:5,1:5) denotes the first 5 rows and columns of R,, and [I5 0] is a 5 x 8 matrix
with its diagonal entries equal to 1 and other entries equal to 0. Figure 4.4 shows that
the proposed scheme performs better than the equal allocation scheme. Moreover, the
MSE of the proposed scheme goes to the lower bound as P increases while the MSE of
the equal allocation scheme approaches a constant MSE for P > 25 dB. This is because

the proposed scheme takes into account the effects of the observation and channel ma-
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Figure 4.4: MSE comparison between the proposed method and the equal power method

trices in the design of coding matrices, while the equal allocation scheme does not use
the information of observation matrices and c¢hannel matrices and thus the performance

improvement is limited as P increases.

Simulation 4.4 - Comparison with Previous Work [28]: In this simulation, we compare
the scheme of our MIMO model to the scheme of the SISO model in [28]. The model used
in [28] is shown in Figure 4.5, where a scalar measurement x; = f;0 + n; at the [th sensor
is multiplied by an amplified factor a;(n) at the nth time instant before it is transmitted
to the receiver through a fading channel h;, 1 <[ < (). At time n, the received signal is
y(n) = 2562:1 hia;(n)x; +v(n), where vj(n) is an additive noise. After collecting p received
signals {y(1),--- ,y(p)} at the FC, the source vector 6 is then estimated based on the
LMMSE fusion rule. The proposed MIMO scheme is modelled in (4.4) with L = 1, a
single vector sensor. Figure. 4.6 shows that the average MSE of the proposed scheme
with k; = 10 is slightly lower than that of the scheme in [28] with ) = 10 when power P

is small; as the power increases, the performance of two schemes are very close. Moreover,
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Figure 4.6: MSE comparison between the proposed scheme and that in [28]
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for the proposed scheme with k; = 15 and the scheme in [28] with @ = 15, we see that

the MSEs are roughly the same for over all P.

Average MSE

PindB

Figure 4.7: MSE versus P with different number of sensors

Stmulation 4.5 - Different Number of Sensors: In this simulation, we illustrate the per-
formance of the proposed method for different number of sensors L. The optimal coding
matrices in (4.25) are used with k; = 8 for L = 1, 5, and 10. Figure 4.7 shows that for
a fixed total power, the MSE performs better as L increases. In addition, the MSE of
L = 1, whose performance is roughly the same as that in [28], reaches the lower bound

(4.27) for P > 32 dB.

A Brief Summary and Discussion: We study distributed estimation of a random vector
signal in MIMO wireless sensor networks. Based on the singular value decomposition, we
first derive an upper bound of the objective function, which is an inverse proportion of the
MSE. We then show that the minimum number of transmitters to reach the upper bound

is equal to the number of the source signals. The extra number of transmitters beyond
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the number of the sources does not improve the performance. As taking into account the
total power constraint, we propose a method based on specific choices of singular vectors
to formulate the problem as a convex optimization problem. As a result, we obtain closed

form expressions of the coding matrices for the MIMO sensor network.
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Chapter 5

Conclusions

In this thesis, we give investigations on the distributed estimation problem in wireless sen-
sor networks with the coherent multiple access channel model and LMMSE fusion rule.
With a total power constraint, we propose optimal power allocation schemes so that the

estimated distortion is minimized.

We consider distributed estimation with-three different sensor networks. In Chapter
2 and Chapter 3, the SISO sensor networks are discussed. To enhance power efficiency,
we study the estimation problem based on cluster-based sensor networks in Chapter 2.
The result reveals that for the achievement of the same performance, the collaboration
case uses less power than the non-collaboration case. In practice, since channels are often
unknown to the receiver in wireless communication systems, we study the estimation prob-
lem of non-collaboration sensor network with unknown channels in Chapter 3. In Chapter
4, we extend SISO sensor networks to MIMO sensor networks. Our main contributions

are as follows:

(i) In Chapter 2, we study distributed estimation of a scalar signal using cluster-based
sensor network. We show that the optimal amplification matrices are scaled outer
products of the observation gain and the channel gain vectors. Based on the result,
we give the optimal power schemes for two special cases: the full collaboration
case and the non-collaboration case. We show that the collaboration can improve

performance; moreover, for a fixed number of sensors, the amount of improvement
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is closely related to the amount of collaboration.

(ii) In Chapter 3, we study distributed estimation of a scalar signal using sensor network
with unknown channels. Based on a two-phase approach, we study the optimal and
equal power allocation schemes. In each schemes, we compare the performance
of the distributed estimation with estimated channels to that with actual known
channels. The results reveal that: i) the MSE with estimated channels at the FC
approaches a finite nonzero value as the number of sensors increases; ii) the optimal
training powers are the same for both schemes; iii) compared with the case when
channels are known, the penalty caused by the channel estimation error becomes

worse as the number of sensor increases.

(iii) In Chapter 4, we consider distributed estimation of a vector signal using MIMO
sensor network. Based on the singular value decomposition, the problem can be
formulated as a convex optimization problem, which follows a water-filling type
solution. By the solution and the singular vectors of the observation matrices,

closed form expressions for the coding matrices are easy to obtained.

Future investigation can focus on taking inte account the communication noise between
sensors and the cluster head and the energy consumption caused by sensor collaboration
in cluster-based sensor networks. Another interesting direction is vector signal estimation
in MIMO wireless sensor networks for i) non-diagonal channel matrices and ii) unknown

channel matrices at the fusion center.
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Appendix A

Proof of Proposition 2.1

Write Al = [a;1 a2 -+ ain,|, where a;; € REt. Define slack variables t; = g A)f; =
S giwal £, 1 <1< L. The problem (2.8) is rewritten as
(

. L N N,
min o (03 D0 (@, 0)% + 02 2L (o au))

ay n,ti

subject to Zan:1 gl,nalanfl =t;, 1LY

-1 2
o2 S0 (S0 gl ) (S0 giman ) + 02 = (F- %) (Shit)

The Lagrangian function for (A.1) is

L Nl Nl L N[
L(al,n, t, \iy Ao) = Z (Ug Z(alj:nfl)Q + 0721 (a{nalm)) + Z Al (tl — Z glmalj:nfl) +

=1 n=1 n=1 =1 n=1
Nl Nl 1 1 —1 L 2
2 2
)‘0 On Z ( Jin?dy n) (Z gl,malﬂ”) + 0y — <J* - O.2> (Z tl)

%)



where A\;, Ao € R, and the associated necessary conditions for optimality are

L
8?1 :2aln ( flfl + o IKZ) )\l.glmflT + 2)\00‘2g57ng’fAl = O{XKN 1<n<N,1<I<L

l,n

:>2Al (O'gflflT =+ U?zIKl) — )\ZglflT 4+ 2)\00721g1ngAl = ONlXKl’ 1< l <L (AQ)
oL 1 1\ (&

=\ — 2\ - t:] =0, 1<i<L A3
(3o g) (B - s o

L
oL =t;—gl Affi =0, 1<I<L (A.4)

O\

L 1/ L 2
oL 2 T T 2 1 1
=02y gfAA S (. Y| =0
Do " & AR BL O, | T l

9
L o (&Y
2 T T 2 _
=0n lz;gl AlAl g to,= <J* B 0.3) <Z tl) (A5)

It follows from (A.3) that \y = --- = Ar. Let A\, = A, Vi. It follows from (A.2) that

-1 A —1
A+ )\oagglngAl (UgflflT + O‘iIKl) = EglflT (O'gflflT + 0'7211[(1)

angtz o lT _ A glflT
o2 + og|Ifi|? 2(02 + o3 ||f1?)
2
06)\0tl 7\ —1 T A
——=5 N, + Aogig; giff +
7+ G ) 507 7 o2IET)

=A; + \ogigl A, —

1
=A; = (In, + Nogigl)  &fi

O'2>\0tl A
=A; = 0 gfl + gif] A6
O 2RI + ol 2P S 5 + o2 TE )+ Aol o (4.6)

where in the second equation we use the matrix inversion lemma [36, p.45] and ¢, =
gl A,f;. Substituting (A.6) into (A.4), we obtain t; = \|gl|?||fi]|>/(2¢1), where ¢ =
sl ||> + o2 + Noo?||g||?, and thus from (A.6), we get A; = \/(2¢;)gif]. From (A.3) and

tr = M|gil|?[Ifil|?/2¢:, we have

L
11 Aollgill[I£:1*
S AT
J* ‘73 Z Pi (A7)
Substituting ¢, = A||gi||?|f|1?/(2¢1), A = N/ (2¢)gif], and (A.7) into (A.5), we have
A L g P62 G367 + 02)
=412 . 7,0 (A.8)
i=1 ¢

From (A.8) and A; = \/(2¢;)g f], the minimum total power can be written as

Poin Ztr INEETAT + 2 A AT = o,
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It follows that

)\0 = Pmin/o'g (Ag)
and thus from (A.7), we get
11 i Ponin|gi 11631 (A.10)
Jr o = ool + 07) + Pano gl '

Equation (A.10) gives the relation between the achieved minimum power and the con-
straint J* on MSE. The optimal amplification matrices are A; = \/(2¢;)gf!, where A
and ¢; depends on Py, through (A.9). In view of observation (iii) in Section III, if we set
Ppuin = P, the corresponding MSE is given in (2.10) and the corresponding amplification

matrices is in (2.9).
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Appendix B

Proof of Lemma 2.3

We first show that for x = [z; -+ z,]T € R" and y = [y; - yn|T € R", the following

inequality holds

n

IXPIy> o .
ENE 2 = 2 27 (B.1)
|2+ [yl T Y

or equivalently,

PR DT . > <m Yi Hk;sz(l'k"‘yk))

=11
Z?:l(xj +y3) [T5sy (% +p)
& <Z x?) (Z y?) [3+v) = {Z(x? +y7) [Z (ﬁyfﬂ(mi +yi)> >0
i=1 = k=1 j=1 i=1 ki
The left hand side of the above inequality can be written as
sz H(xiwi)— sz vi@d+ )| []2+ )
| i=1 j=1 k=1 Li=1 j=1 k#i
SR SE N CRUR o CRICE ) SR EERe
| i=1 j=t 1 k=1 k=1 =1 j#i k#i
=) 2| [+ ) - sz vi@d+ )| T[]0+ )
| i=1 j#i 1 k=1 Li=1 j#i k#1
= Zzwy]x +y?2) Zzwyﬂf +u)| [] = +vp)
_z 1 5740 _’L 1 5740 k#i
=) aay; — 3y | [+ v
Li=1 j#i 1 i
SPEDSEIERTIN) (ERRERORD wEAERTI ) (RN
7>t 1 k#i i=1 J<t k#1

[+



DN ai(ady? - xﬁy?)] [T+ v

[ i=1 j>i ki

Ly xyz—xny] @)
=1 7>t k#j

n

SN @ + )yl — a%y?) — 2 (@] + ud) (2] — xﬁyf)] T @+

[i=1 j>i ki, j
3> - [ ) 20
i=1 j>i k#i,j
Thus, we obtain (B.1). Now, let x =[x -+ xF|T = [z, --- z,]T and ||x;||* = 77, then we
have
n L L
x> =Y af=) Ixl* =) & = |xI? (B-2)
i=1 I=1 I=1
where x = [7; -+ #7]7. By the same way, we have
L
Ilyll* = Zy > llyill® = Zyz = Iy (B.3)
I=1
From (B.1), (B.2), and (B.3), we have
(.31 1 ¢ 4 = T <1l *
= 5% Z
[+ yll® xSl =27 + 7 [1%tl[* + [l

=1

and the result follows.
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Appendix C

Derivation of (3.9)

We first show that given h, ¢ is uncorrelated with v, 22{:1 hyognyg, and Zszl 0.
Since E[v*0] = 0, E[hiv] = 0, and E[v*n)] = 0, E[v*e|h] = 0. We show that ¢ and

K -
> w—q hragny are uncorrelated as follows:

K * K
(Zﬁkaknk> 9 fl =F (Z hk—hk |Oé,1€’ |7’Lk|2> )h]
k=1 k=1
K
=Sk (E [hk ‘ fl] - ﬁk) o202 = 0 (C.1)
k=1

where the first equality uses that E[n{0] = 0.and E[njn;] = 0 for k # [. The last equality

d

follows because hy, = E[hg | yr] = E|[hy, | hy,]. Similarly,

K K . .
< ]’LZ(’Z; — hl)OzZOéle)

k=1 I=

—_

Finally the conditional variance

K
E e || = £ ;(hk — ) (b — )| 2(0F + 02) (h]

K ~ ~ A

= (03 +02) DB (e~ he)* (i — ) | ] o
k=1
K

= (05 + 02) Z Zopl* = (05 +02)d? Z | |2 (C.3)
k=

where the last equality uses 0; = --- = J;, in (3.5). By (C.1) to (C.3) and (3.6), equality
(3.9) follows.
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Appendix D

Proof of Proposition 3.1

According to the observations (i) to (iii) in Section 2.2, instead of solving (3.20) directly,
we consider the following problem

. K
ming, o, (05 +02) Yy low|* + B

1
. 1 (X, Qk\akDQPt _
subject to (os T A (K e PP Ko iR )

where 0 < J < 03. Let t = Zszl g1 | 0], the optimization problem becomes

. K
minp, o, (0 +07) Xy x>+ By
subject to Ziil Jklax| —t=0
—1
G202 (A1 GFlonl?) Pr+ CP+ KC(0F + 02) (DA Joul) + K = (§ - &) ¢8R,

The Lagrangian is

=

K

K
L(lak], Prst, A, Xo) =(05 +07) Y lawl* + P+ A (Z il o] — 75) + o
P k=1

2o (z gzw) -
k=1

K -1
1 1
P+ Ke(op+ oD o) + K - (5 - ) ¢
k=1 0
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where A\, \g € R, and the associated necessary conditions for optimality are

oL

Blon] = 202 + 02) x| + Ak + Mo 20022 Py o] + 2K (02 + 0)|a|] = 0 (D.1)

oL 2 1\ 2,2

ap, 1t (ZQH%V ) 0 ( J—g) ¢t? =0 (D.2)

oL 1\,

E——)\—Q)\o <<7_U_§) ¢“ht=20 (D.3)
K

5= dlos] —t=0 (D.4)
k=1

oL K K X [\
a_/\o = (%02 (Zﬁi!am) P+ (P + K((o +gi)(z la|?) + K — <3 _ U_g) 2P, = 0

k=1 k=1
(D.5)

From (D.1), |ax| = —Age/(201), where ¢, = (02 + 02) + MC20252 P + MK ((02 + 02),
thus it follows from (D.4) that t = —(\/2) Zkzl(gk/gbk) and then from (D.3), we have

1 g g
—— = =XN(R )Y =R L D.6
T N t;m CR e e O K o) Y

k=1

Use t = —A(1/J — 1/02)/(2u¢2 P} from (D.3) and |ax| = —Age/(2¢5) in (D.2) to get

¥ L N0/ 4+ KNG

4 1 2 ZK 2(02 + 2)/A2 (D.7)
A24“2P2 — (Poyy <Zk 19 /Cbi) k=19i:(05 +03)/ b,

where the last equality follows from (D.6). Since the data power for the kth sensor is
Py = |l (02 + 02) = (X2/4)(§2(02 + 02)/¢2), the total power for data transmission
is Yoy P = (N2/4) 300 (62(02 + 02)/d2) = (L + X{)P/(1 + KXoC). With the total

network power constraint P, it follows from (D.2) and (D.5) that

P,
Ao = . D.8
" K+ K((P-P) (D)
where we use Zk | P, = P — P,. Moreover, since Zk \ Pr + P, = P, we have
2 K+ 1A
+ (K +1)¢ Op — p (D.9)

1+ KCho

Substituting (D.8) into (D.9), we get the optimal training power in (3.21). With P and
Ao, we get PP in (3.22) and the MSE in (3.23) follows from (D.6).
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Appendix E
Derivation of (3.25)

Rewrite (3.23) as

P KE) =L+ Lb(mig—'z )
0\ og — b(K)g; + K

2 2
0y oy + 05

where b(K) = [K <\/CP+ — /1 +CP/K> /(K —1)]* and v = ¢2/(03 + 02). Note
that limg o b(K) = (v/(P + 1 — 1)*-We|will show that the sum inside the parentheses

converges to E[g?] = 1 as K — 00, Since

BB AbUOR b
K~ )3+ K~ KLb(K)3

IN
N}y
TN
=
@
=
(oW
-+
=
c
n

we have gi/K — v0(K)gy/K* < g3/ [v0(K)gi + K]

It follows from the law of large numbers that as K — oo, we have S0 §2/K = E[§2] = 1

K K
Vb(E) g . Vb(EK)Gi
3 = E=y(V(P+1-1)E[g;], and ) e E_
k=1 k=1
because E|[g}] is finite. Therefore,
~2
Ik
=1 K —
EVb(K)éiﬂLK SR

and (3.25) follows.
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Appendix F

Convexity of Objective Function in

(3.33)

To show that the second derivative of the objective function in (3.33) is positive, we let

= K%(% S L ge)? and ¢ = Eeibre S §?). Then the objective function in (35)

can be written as
C201(P— Pt)Pt

f(h) = C Ccy(P=P)P,+CP, +CK(P—P)+ K
df(P)  Cal((K=1)P? =2K((P+1)P + KP(CP +1)]

dp, [C2es(P — PP, + (P + CK (P — Py) + K]
dzf(Pt> _ 2C2C1X
dP? [C2¢y(P — P)P, + (P, + CK(P — P)+ K)°

where

X =[¢(K —1)P, — K(CP + 1)][¢*ca(P — P,)P; + (P, + (K(P — P,) + K]
—[¢(K —1)P? —=2K(CP +1)P, + KP(CP + 1)][¢?ca(P — 2P,) + ¢ — (K]
=Ce{(P — P)R[((K — )P, = K(CP +1)] = (P = 2P,)[((K — )P} + K(CP +1)(P - 2R,)]}
+[CP + (K (P — P) + K][((K — 1)P, — K(CP + 1)] + (K — D[((K — 1)P? + K(CP + 1)(P — 2P,)]

=—(%cocs — K(CP +1)(CP + K)

with ¢z = K((P — P)?+ K(P —2P,)? + KP(P — P,) + (P?. Since P — P, > 0, we have
c3 > 0and X <0, and thus (d*f(P,)/d P?) > 0. Hence the result follows.
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Appendix G

Proof of Proposition 3.2

2
Let ¢ = K% (% Zszl gk> and ¢, = ﬁ <% Zleg@, then the Lagrangian of the
problem (3.33) is

- /(P — PP,
C2co(P—P)P+CP,+(K(P-F)+ K

L(Ptnul)l’LQ) = +[1/1(P7§—P)—,U/2.F)t

and the associated KKT conditions are

 CaC(K —1)P? — 2K(CP + NP+ KP(CP + 1)]

+ — =0 G.1

(Cer(P— PP + B4 CRP—B) + Ky 17 (G
m(P—P)=0, >0 (G.2)
pePy =0, 2 >0 (G.3)

Since the training power have to be greater than 0, we have puy = 0. If u; > 0, then
P, = P, but then (G.1) leads to p; < 0 a contradiction. Therefore, we have p; = s =0
and P > P, > 0. From (G.1), we have

((K—1)P? —2K(CP+1)P,+ KP((P+1)=0
K(P+1)+/K(P+1)(CP+K)
(K —1)

= Pt:

where we take negative term since positive term can not satisfy the constraint P > P*.

Let a = K(CP 4 1) and b = (P + K, then we have P”* = (a — v/ab)/[¢(K — 1)] and
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P — P = (b—v/ab)/[¢(K — 1)], and from (3.32), (3.35) follows:

e1[(a + b)Vab — 2ab) -
cso[(a + b)vab — 2ab] + (K — 1)2/ab

—1
2 €1
= 0y 1+ (K—1)2
2t a Ve

where the first equality uses that

J(P,K) =0, (1 +

(K —1)(a — Vab) + K(K —1)(Vab—b) + K(K — 1)

—(K —D)[(K = )Vab+a— Kb+ K? - K] = (K —1)>Vab.

=0
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