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Student: Meng-Ju Han Advisor: Dr. Kai-Tai Song
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ABSTRACT

This thesis aims to develop a robotic emotion model and mood transition method for
autonomous emotional interaction-with human: A two-dimensional (2-D) emotional model is
proposed to combine robotic emotion, mood and personality in order to generate emotional
behaviors. In this design, the robot personality is programmed by adjusting the big five factors
referred from psychology. Using Big Five personality traits, the influence factors of robot

mood transition are analyzed.

A method to fuse basic robotic emotional behaviors is proposed in this work in order to
manifest robotic emotional states via continuous facial expressions. Through reference
psychological results, we developed the relationships of personality vs. mood transition for
robotic emotion generation. Based on these relationships, personality, mood transition and
emotional behaviors have been integrated into the robotic emotion model. Comparing with
existing models, the proposed method has the merit of having a theoretical basis to support

the human-robot interaction design.

In order to recognize the user’s emotional state, both bimodal emotion recognition and

speech-signal-based emotion recognition methods are studied. In the design of the bimodal
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emotion recognition system, a novel probabilistic strategy has been proposed for a
classification design to determine statistically suitable fusing weights for two feature
modalities. The fusion weights are selected by the distance between test data and the
classification hyperplane and the standard deviation of training samples. In the latter bimodal

SVM classification, the recognition result with higher weight is selected.

In the design of the proposed speech-signal-based emotion recognition method, the
proposed method uses voice signal processing and classification. Firstly, end-point detection
and frame setting are accomplished in the pre-processing stage. Then, the statistical features
of the energy contour are computed. Fisher's linear discriminant analysis (FLDA) is used to

enhance the recognition rate.

In this thesis, the proposed emotion recognition methods have been implemented on a
DSP-based system in order to demonstrate the functionality-of human-robot interaction. We
have realized an artificial face simulator to show the effectiveness of the proposed methods.
Questionnaire surveys have been carried out to-evaluate the effectiveness of the proposed
emotional model by observing robotic responses to user’s'emotional expressions. Evaluation

results show that the feelings of the testers coincide with the original design.
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Chapter 1

Introduction

1.1 Motivation

In recent years, many useful domestic and service robots, including museum guide
robots, personal companion robots and entertainment robots have been developed for various
applications [1]. It has been forecasted that edutainment and personal robots will be very
attractive products in the near future [2-3]. One of the most interesting features of intelligent
service robots is their‘human-centered functions. Actually, intelligent interaction with a user is
a key feature for service robots in healthcare, companion and-entertainment applications. For
a robot to engage in-friendly interaction with human, the ‘function of emotional expression
will play an important role in many real-life application scenarios. However, it is known that
to make a robot behave human-like emotional expressions.is still a challenge in robot design.

On the other hand, the ability.to recognize a user’s emotion is also important in
human-robot interaction applications." The ‘emotion communicator, Kotohana, developed by
NEC [4] is a successful example of vocal emotion recognition. Kotohana is a flower-shaped
terminal equipped with Light Emitting Diodes (LEDs). It can recognize a visitor’s emotional
speech and respond with a color display to convey the interaction. The terminal responds in a
lively manner to the detected emotional state, via color variation in the flower. For human
beings, facial expression and voice reveal a person’s emotion most. They also provide
important communicative cues during social interaction. A robotic emotion recognition
system will enhance the interaction between human and robot in a natural manner. Base on

the above discussion, it is observed that a proper emotion model is desirable in robotic



emotional behavior generation. This also motivates us to investigate mood transition

algorithms based on physiological findings for humans.

1.2 Literature Survey

Methodologies for developing emotional robotic behaviors have drawn much attention in
robotic research community [5]. Breazeal ef al. [6] presented the sociable robot Leonardo,
which has an expressive face capable of near human-level expression and possesses a
binocular vision system to recognize human facial features. The humanoid robot Nexi [7]
demonstrated a wide range of facial expressions to communicate with people. Wu et al. [8]
explored the process of self-guided learning of realistic facial expression by a robotic head.
Mavridis et al. [9-10] developed the Arabic-language conversational android robot; it can
become an exciting educational or persuasive robot in practical use. Hashimoto et al. [11-12]
developed a reception robot SAYA to realize realistic speaking and natural interactive
behaviors with six typical facial expressions. In [13], a singer robot EveR-2 is able to acquire
visual and speech information, while expressing facial emotion during performing robotic
singing. For some application scenarios such as persuasive robotics [14] or longer-term
human-robot interaction [15]; interactive facial expression has been demonstrated to be very
useful.

There have been increasing interests in the study of robotic emotion generation schemes
in order to give a robot more human-like behaviors. Reported approaches to emotional robot
design often adopted results from psychology in order to design robot behaviors to mimic
human beings. Miwa et al. proposed a mental model to build the robotic emotional state from
external sensory inputs [16-17]. Duhaut [18] presented a computational model which includes
emotion and personality in the robotic behaviors. The TAME (Traits, Attributes, Moods, and
Emotions) framework proposed by Moshkina ef al. gives a model of time-varying affective

response for humanoid robots [19]. Itoh er al. [20] proposed an emotion generation model



which can assess the robot’s individuality and internal state through mood transitions. Their
experiments showed that the robot could provide more human-like communications to users
based on the emotional model. Banik ef al. [21] demonstrated an emotion-based task sharing
approach to a cooperative multi-agent robotic system. Their approach can give a robot a kind
of personality through accumulation of past emotional experience. Park et al. [22] developed
a hybrid emotion generation architecture. They proposed a robot personality model based on
human personality factors to generate robotic interactions. Kim ef al. [23] utilized the
probability-based computational algorithm to develop the cognitive appraisal theory for
designing artificial emotion generation systems. Their method was applied to a sample of
interactive tasks and led to.a more positive human-robot interaction experience. In order to
allow a robot to express complex emotion, Lee et al. [24] proposed a general behavior
generation procedure.for emotional-robots. It features behavior combination functions to
express complex and gradational emotions. In [25], a design of autonomous robotic facial
expression generation.is presented.

Previous relatedworks show< abundant “tools -for designing emotional robots. It is
observed, however, that a proper mood state transition plays a key role in robotic emotional
behavior generation. Robotic imood-transition from current to next mood state directly
influences the interaction behavior of robot and also a user’s feeling to the robot. Most
existing models treat mood transition by simple and intuitive representations. These
representations lack a theoretical basis to support the assumptions for their mood state
transition design. This motivated us to investigate a human-like mood transition model for a
robot by adopting well-studied mood state conversion criteria from psychological findings.
The transition among mood states would become smoother and thus might enable a robot to
respond with more natural emotional expressions. We further combine personality into the
robotic mood model to represent the trait of individual robot.

In order to manifest emotional intelligence of a robot, responsive interaction behaviors



need to be designed. The relationship between mood states and responding behavior of a robot
should not be a fixed, one-to-one relation. A continuous robotic facial expression would be
more interesting and natural to manifest the mood state transition. Instead of being arbitrary
defined, the relationships between robot emotional behaviors (e.g. in a form of facial
expression) and mood state can be modeled from psychological analysis and utilized to build
the interaction patterns in the design of expressive behaviors.

To respond to a user sensationally, a robot needs first to understand the user’s emotion
state. There are many approaches to building-up a robotic emotion recognition system. The
majority of studies focus on image-based facial expression recognition [26-27]. Approaches
using speech signal processing have also been investigated for sociable robotics [28-29].
Recently, there has been an increasing interest in audio-visual biometrics [30]. The
combination of audie.and visual-information provides more reliable estimate of emotional
states. The complementary relationship of these two modalities makes a recognition decision
more accurate than using only a single modality. De Silva ef al. [31] proposed to process
audio and visual data separately. They have shown that some emotional states are visual
dominant and some are audio dominant. They exploited this observation to recognize emotion
efficiently by assigning a weight matrix to each emotion state. In [32], De Silva combined the
audio and visual features using a rule-based technique to obtain improved recognition results.
Rather simple rules were used in his design. For example, a rule is such that if a sample has
been classified as certain emotion by both audio and visual processing methods, then the final
result is that emotion. If samples have been classified differently by audio and visual analyses,
the dominant mode is used as the emotion decision. Negative emotional expressions, such as
anger and sadness, were assigned to be audio dominant, while joy and surprise were assigned
to be visual dominant. Go et al. [33] combined audio and visual features directly to recognize
different emotions using a neural network classifier. However, they did not give comparative

experimental results between using bimodal and single modality. Wang et al. [34] proposed to



use cascade audio and visual feature data to classify variant emotions. They built
one-against-all (OAA) linear discriminant analysis (LDA) classifiers for each emotion state
and computed the probability of each emotion type. They set two rules in the decision module
with several multi-class classifiers to determine the most possible emotion.

It is clear that audio and visual information are related to each other. In many situations,
they offer complementary effect for recognizing emotion states. However, current related
works do not deal with the robustness of emotion classification of such bimodal systems.
Existing approaches to combining audio-visual information employ some straightforward and
simple rules. The reliability of individual modality is not taken into consideration in the
decision stage. One solution to ‘this problem is-that the classifier output is a calibrated
posterior probability P(elass|input) to perform  post-processing. Platt [35] proposed a
probabilistic supportvector machine(SVM) toproduce a calibrated posterior probability. The
method trained parameters of a sigmoid function to map SVM outputs into probabilities.
Although this method. is valid to estimate the posterior probability, a sigmoid function cannot
represent all the modals of SVM outputs. In this study, we develop a new method for reliable
emotion recognition utilizing audio-visual information. We emphasize the decision
mechanism of the recognition procedure when fusing visual and audio information. By setting
proper weights to each modality based on their recognition reliability, a more accurate
recognition decision can be obtained.

In the design of emotion recognition systems that use speech signals, most methods
employ vocal features, including the statistics of fundamental frequency, energy contour,
duration of silence and voice quality [36]. In order to improve the recognition rate when more
than two emotional categories are to be classified, Nwe et al. [37] used short time log
frequency power coefficients (LFPC) to represent speech signals and a discrete hidden
Markov model (HMM) as the classifier. Based on the assumption that the pitch contour has a

Gaussian distribution, Hyun et al. [38] proposed a Bayesian classifier for emotion recognition



in speech information. They reported that the zero value of a pitch contour causes errors in the
Gaussian distribution and proposed a non-zero-pitch method for speech feature extraction.
Pao and Chen [39] used 16-bit linear predictive coding (LPC) and twenty Mel-frequency
cepstral coefficients (MFCC) to identify the emotional state of a speaker. Five emotional
categories were classified using the minimum-distance method and the nearest mean classifier.
Neiberg et al. [40] modeled the pitch feature by using standard MFCC and MFCC-low, which
is calculated between 20 and 300 Hz. Their experiments showed that MFCC-low
outperformed the pitch features.

You et al. [41] indicated that the effectiveness of principal component analysis (PCA)
and linear discriminant analysis (LDA) is limited by their underlying assumption that the data
is in a linear subspace. For nonlinear structures, these methods fail to detect the real number
of degrees of freedom.of the data;so-they proposed the method of Lipschitz embedding [42].
The method is not"limited by an underlying assumption that the data belong to a linear
subspace, so it can analyze the speech signal in more practical situations. Schuller et al. [29]
considered an initially large set of more than 200 features; they ranked the statistical features
according to LDA results and selected important featureés by ranking statistical features.
Chuang and Wu [43] showed that the contours of the fundamental frequency and energy are
not smooth. In order to remove discontinuities in the contour, they used the Legendre
polynomial technique to smooth the contours of these features. Their feature extraction
procedures firstly estimated the fundamental frequency, energy, formant 1 (F1) and
zero-crossing rate. From these four features, the feature values are transformed to 33
statistical features. PCA was then used to select 14 principal components from these 33
statistical features, for the analysis of emotional speech. Busso ef al. [44] indicated that gross
fundamental frequency contour statistics, such as mean, maximum, minimum and range, are
more emotionally prominent than features that describe the shape of the fundamental

frequency. Using psychoacoustic harmony perception from music theory, Yang et al. [45]



proposed a new set of harmony features for speech emotion recognition. They reported
improved recognition by the use of harmony parameters and state of the art features.

For robotics applications, Li et al. [46] developed a prototype chatting robot, which can
communicate with a user in a speech dialogue. The recognition of the speech emotion of a
specific person was successful for two emotional categories. Kim et al. [47] focused on
speech emotion recognition for a thinking robot. They proposed a speaker-independent feature,
namely the ratio of a spectral flatness measure to a spectral center, to solve the problem of
diverse interactive users. Similarly, Park er al. [48] also studied the issue of service robots
interacting with diverse users who are.in various emotional states. Acoustically similar
characteristics between emotions and variable speaker characteristics, caused by different
users’ style of speech, may degrade the accuracy of speech emotion recognition. They
proposed feature vector -classification ~for. speech . emotion «recognition, to improve
performance in service robots.

For practical application, several important problems exist. Firstly, a robust speech signal
acquisition system must be built on the front end of the design. It is also required that the
robot is equipped with a stand-alone system for realisticchuman-robot interaction. One of the
greatest challenges in emotion recognition for robetic applications is the performance required

for nature and daily life environments.

1.3 Research Objectives and Contributions

The objective of this thesis is to develop a robot emotion model in order to interact with
people emotionally. A two-dimensional (2-D) emotional model is proposed to represent robot
emotion, mood transition and personality in order to generate human-like emotional
expressions. In this design, the robot personality is programmed by adjusting the factors of the
Five Factors model proposed by psychologists. From Big Five personality traits, the influence

factors of robot mood transition are determined.



A method to fuse on basic robotic emotional behaviors is proposed in order to manifest
robotic emotional states via continuous facial expressions. An artificial face on a screen is an
effective way to evaluate a robot with a human-like appearance. An artificial face simulator
has been implemented to show the effectiveness of the proposed methods. Questionnaire
surveys have been carried out to evaluate the effectiveness of the proposed method by
observing robotic responses to user’s emotional expressions. Preliminary experimental results
on a robotic head show that the proposed mood state transition scheme appropriately responds

to a user’s emotional changes in a continuous manner.

The second part of this thesis aims to develop suitable emotion recognition methods for
human-robot interaction. A"bimodal emotion recognition method was proposed in this thesis.
In the design of the bimodal emotion recognition system, a probabilistic strategy has been
studied for a support vector machine (S VM)-based classification design to assign statistically
selected fusing weights to two feature modalities. The fusion weights are determined by the
distance between test data and the ¢lassification hyperplane and the standard deviation of
training samples. In the latter bimodal SVM classification, the recognition result with higher

weight is selected.

In the design of the speech-signal-based emotion recognition method, speech signals are
used to recognize several basic human emotional states. The proposed method uses voice
signal processing and classification. In order to determine the effectiveness of emotional
human-robot interaction, an embedded system was constructed and integrated with a self-built

entertainment robot.

1.4 Organization of the Thesis

Figure 1-1 shows the organization of this thesis. In Chapter 2, a novel robotic emotion

generation system is developed based-on mood transition model. A robotic mood state



generation algorithm is proposed using a two-dimensional emotional model. An interactive
emotional behaviors generation is then proposed to generate an unlimited number of
emotional expressions by fusing seven basic facial expressions. In Chapter 3, several human
emotion recognition methods are developed to provide user’s emotional state. Here bimodal
information fusion algorithm and speech-signal-based emotion recognition method are
proposed for human-robot interaction. Simulation and experimental results of the proposed
robotic emotion generation system and the proposed human emotion recognition methods are
reported and discussed in Chapter 4. Chapter 5 concludes the contributions of this work and

provides the recommendations for future research.

Robotic Emotional:State

Modeling Human Emotion Recognition
Chapter 2 Chapter 3
) Bimodal Speech-signal-
Robg‘qc Mood Information based Emotion
Transition Model Fusion Algorithm Recognition

T

User’s Emotional
State

Artificial Face and
Robotic Head

Chapter 4

Emotional Behaviors
Generation

Fig. 1-1: Structure of the thesis.



Chapter 2

Robotic Emotion Model and Emotional State

Generation

Figure 2-1 shows the block diagram of the proposed autonomous emotional interaction
system (AEIS). Taking a robotic facial expression as the emotion behavior, the robotic
interaction is expected not only to-react to user’s emetional state, but also to reflect the mood
state of the robot itself. We attempt to integrate three modules to construct the AEIS, namely,
user emotional state recognizer, robotic mood state generator and emotional behavior decision
maker. An artificial face is employed to demonstrate the effectiveness of the design. A camera
is provided to capture the user’s face in front of the robot. The acquired images are sent to the
image processing stage for emotional-state recognition [49]. The user emotional state

recognizer is responsible for obtaining user’s emotional state and its intensity. In this design,

user’s emotional state at™instant.k (ug;) is recognized and represented as a vector of four

| T Emotional behavior decision maker |

state recognizer Emotional behavior decision maker

I
| Neutral || Happy |
intensity||intensity Robot

| Fuzzy Kohonen clustering network

I
. | based fusion weight generation |
| Angry Sad | personality |
| | parameter | I
_——— | Control
—_———— = — — == . .
| Robotic UE; | I I \Ij(e):t]ésr Artificial Robotic
| mood state (" User emotion to I @ face facial
| generator | jnteractive robotic I | | simulator expressions
mood transform I |
: Aa,,AB, N |
PP
| Robotic mood ~ [e——£ L |
| state update RM,, [ |
. ) || |
| ! |
____________ J [ Facial expression |
RMk = (ak uBk) — b_eha_\“oﬁ _______ —

Fig. 2-1: Block diagram of the autonomous emotional interaction system (AEIS).
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emotional intensities: neutral (ue;,,), happy (ue),,), angry (uet,) and sad (ye;,). Several

existent emotional intensity estimation methods [50-53] provide effective tools to recognize
the intensity of human’s emotional state. Their results can be applied and combined into the
AEIS.

In this work, an image-based emotional intensity recognition module (see 4.5) has been
designed and implemented for current design of AEIS. The recognized emotional intensity
consists of basic emotional categories at each sampling instant and is represented by a value
between 0 and 1. These intensities are sent to the robotic mood state generator. Moreover,
other emotion recognition modalities and methods (e.g. emotional speech recognition) can
also be input to AEIS, only the recognized emotional states contain intensity values between 0
and 1.

In the robotic .mood state-generator; the recognized user’s- emotional intensities are
transformed into interactive robotic mood variables represented by (Aox, AB) (see 2.1.1 for
detailed description). These two' variables represent the way that user’s emotional state
influences the robotic-mood state -transition. Furthermore; the robotic emotional behavior
depends not only on user’s emotional state, but also on robet personality and previous mood
state. Therefore the proposed method takes into account the interactive robotic mood variables
(Aaw, ABy), previous robotic mood state (RMj.;) and robot personality parameters (P, Pp) to
compute current robotic mood state (RM;) (see 2.1.4). Note that the previous robotic mood
state (RMy.1) is temporary stored in a buffer. In this work, the current robotic mood state is
represented as a point in the two-dimensional (2D) emotional plane. Furthermore, robotic
personality parameters are created to describe the distinct human-like personality of a robot.
Based on the current robotic mood state, the emotional behavior decision unit autonomously
generates suitable robot behavior in response to the user’s emotion state.

For robotic emotional behavior generation, in response to recognized user’s emotional

11



intensities, a set of fusion weights (FW;, i=0~6) corresponding to each basic emotional
behavior are generated by using a fuzzy Kohonen clustering network (FKCN) [54] (see 2.2).
Similar to human beings, the facial expression of a robotic face is very complex and is
difficult to be classified by limited number of categoryes. In order to demonstrate interaction
behaviors similar to that of humans, FKCN is adopted to generate an unlimited number of
emotional expressions by fusing seven basic facial expressions. Outputs of FKCN are sent to
the artificial face simulator to generate the interactive behaviors (facial expressions in this
work). An artificial face has been designed exploiting the method in [55] to demonstrate the
facial expressions generated in human-robet .interaction. Seven basic facial expressions are
simulated, including neutral, happiness, surprise, fear, sadness, disgust and anger. The facial
expressions are depicted by moving control points determined from Ekman’s model [56]. In
the practical interaction scenario;-each expression can be generated with different proportions
of seven basic facial ‘expressions. The actual facial expression of the robot is generated by
summation of each behavior output multiplied by its corresponding fusion weight. Therefore,
more subtle emotional expressions can be generated as desired. Detailed design of the
proposed robotic mood transition model, emotional behavier generation and image-based

emotional state recognition will'be described in the following sections.

2.1 Robotic Mood Model and Mood Transition

Emotion is a complex psychological experience of an individual’s state of mind as
interacting with people or environmental influences. For humans, emotion involves
“physiological arousal, expressive behaviors, and conscious experience” [57]. Emotional
interaction behavior is associated with mood, temperament, personality, disposition, and
motivation. In this study, the emotion for robotic behavior is simplified to association with
mood and personality. We apply the concept that emotional behavior is controlled by current

emotional state and mood, while the mood is influenced by personality. In this thesis, a novel
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robotic mood state transition method is proposed for a given human-like personality.
Furthermore, the corresponding interaction behavior will be generated autonomously for a

determined mood state.

2.1.1 Robotic Mood Model

A simple way to develop robotic emotional behaviors that can interact with people is to
allow a robot to respond emotional behaviors by mimicking humans. In human-robot
emotional interaction, users’ emotional expressions can be treated as trigger inputs to drive
the robotic mood transition. Furthermore, -transition of robotic mood depends not only on
user’s emotional states, but also on the robot mood and personality of itself. For a robot to

interact with several individuals or a group of people, users’ current (at instant k) emotional

intensities (V£ ) are sampled and-transformed into interactive mood variables Aoy and APk to

represent how user’s.emotional state influences the variation of robotic mood state transition.
From the experience of emotional interaction of human beings, a user’s neutral intensity,
for instance, usually affects the arousal and sleepiness mood variation directly. Thus, the
robotic mood state tends to arousal while the user’s-neutral intensity is low. Similarly, the
user’s happiness, anger and sadness intensities affect the pleasure-displeasure axes. Thus,
user’s happy intensity will lead robotic mood into pleasure. On the other hand, the robotic
mood state behaves more displeasure while user’s angry and sad intensities are high. Based on
the above observations, a straightforward case is designed for the interactive robotic mood
variables (Aog, AB), which represent the reaction from current users’ emotional intensities on

the pleasure-arousal plane, such that:

N,

A, = NL Z[ue;{.k —(uey, +ueg,)/2] @D
s n=l
N,

AB, :NLZZ(O.S—MQZ.;() 22

s n=1
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h . .
uey k" neutral intensity for user n

UE" — ue,, | | k" happiness intensity for user n |, (2.3)
k = - . .
ue, k™ anger intensity for user n
h . .
ueg , k™ sadness intensity for user n

where N; denotes the number of users and yEg; represents four kinds of the n" user’s
emotional intensities. By using (2.1)-(2.3), the effect on robotic mood from multiple users’
emotional inputs is represented. However, in this work, only one user is considered for better
concentrating on the illustration of the proposed model, i.e. Ns=1 in the following discussion.
It is worth to extend the number of users in the next stage of this study, such that a scenario
like the Massachusetts Institute of Technology mood meter [58] can be investigated.
Furthermore, the mapping between facial expressions of interacting human and robotic

internal state may be modeled in a more sophisticated way. For.example, Aoy can be designed

as (ue', +uel,)/2—ue), such thatalternative (opposite) responses to a user can be obtained.

2.1.2 Robot Personality

McCrae et al. [59] proposed Big Five factors (Five Factor model) to describe the traits of
human personality. Big Five model is an empirically based result, not a theory of personality.
The Big Five factors were created through a statistical procedure, which was used to analyze
how ratings of various personality traits are correlated for general humans. Table 2-1 lists the
Big Five factors and their descriptions [60]. Besides, Mehrabian [61] utilized the Big Five
factors to represent the pleasure-arousability-dominance (PAD) temperament model. Through
linear regression analysis, the scale of each PAD value is estimated by using the Big Five
factors [62]. These results are summarized as three equations of temperament, which includes
pleasure, arousability and dominance.

In this work, we adopted Big Five model to represent the robot personality and
determine the mood state transition on a two-dimensional pleasure-arousal plane. Hence only

two equations are utilized to represent the relationship between robot personality and
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Table 2-1: Big five model of personality.

Factor Description

Openness Open mindedness, interest in culture.
Conscientiousness  Organized, persistent in achieving goals.
Extraversion Preference for and behavior in social situations.
Agreeableness Interactions with others.

Neuroticism Tendency to experience negative thoughts.

pleasure-arousal plane. The reason that we utilize this two-dimensional pleasure-arousal plane
rather than the three-dimensional PAD model is based on the Russell’s study. Russell and
Pratt [63] indicated that pleasure and arousal each account for large proportions of variance in
the meaning of affect terms, each dimension beyond these two accounted for only a tiny
proportion. More impottantly, these secondary dimensions became more and more clearly
interpretable as cognitive rather-than emotional in nature. The secondary dimensions thus
appear to be aspects of the cognitive appraisal system that has been suggested for emotions.
Here elements of the Big Five factors are assigned based on a reasonable realization of Table

2-1. Referring to [61];the robot personality parameters (P, Pp) are adopted such that:

P, =0.21E+0.594+0.19N (2.4)
P;=0.150+0.34=057N , (2.5)

where O, E, 4 and N represent the Big Five factors of openness, extraversion, agreeableness
and neuroticism respectively. Therefore the robot personality parameters (P, Pp) are given as
the robot personality is known, i.e. O, E, 4 and N are determined constants. Later we will
show that (P,, Pg) works as the mood transition weightings on pleasure (¢ axis) and arousal
(f axis) plane.

Note that the conscientiousness of Big Five factors was not used in this design, because
this factor only influences the dominance axis of three-dimensional PAD model. In this study,

the pleasure-arousal plane of two-dimensional emotional model was applied, so only four out
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of five parameters are used to translate the mood transition weighting from the Big Five

factors.

2.1.3 Facial Expressions in Two-Dimensional Mood Space

The relationship between mood states and emotional behaviors has been studied by
psychologists. Russell and Bullock [64] proposed a two-dimensional scaling on the
pleasure-displeasure and arousal-sleepiness axes to model the relationships between the facial
expressions and mood state. In this work, the results from [64] are employed to model the
relationship between mood state and. output. emotional behavior. Figure 2-2 illustrates a
two-dimensional scaling _result for general adult's . facial expressions based on
pleasure-displeasure and arousal-sleepiness ratings. The scaling result was analyzed by the
Guttman-Lingoes smallest space—analysis procedure’ [65]. This two-dimensional scaling
procedure provides ‘a geometric representation (stress and orientation) of the relations among
the facial expressions.by placing them-in a Space (Euclidean space is used here) of specified
dimensionality. Greater similarity between two facial expressions is represented by their
closeness in the space. Hence the coordinate in this space can be used to represent the
characteristic of each facial expression. As shown in Fig. 2-2, axis o and [ represent the
amount of pleasure and arousal respectively. Eleven facial expressions are analyzed and
located on the plane. The location of each facial expression is represented by a square along
with its coordinates. The coordinates of each facial expression is obtained by measuring the
location in the figure (interested readers are referred to [64]). The relationship between

robotic mood and output behavior, facial expression in this case, is determined.

2.1.4 Robotic Mood State Generation
As mentioned in 2.1.1, both user’s current emotional intensity and robot personality

affect the robotic mood transition. The way that robot personality affects the mood transition
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Fig. 2-2: Two-dimensional scaling for facial expressions based on pleasure-displeasure and

arousal-sleepiness ratings.

is described by robotpersonality parameters (P Pp). As given in2.1.2, these two parameters
act as weighting factors on & and /£ axis respectively. When P, and Pj vary, the speed of
mood transition in the direction of ez and Saxes is affected. On the other hand, the interactive
mood variables (Ao, AfB) give the influence of user’s-emotional intensity on the variation of
robotic mood state transition. To reveal the relationship -between robot personality and mood
transition, we suggest to multiply robot personality parameters (P, Pp) with interactive mood
variables (Aoy, AfS). This indicates the influence of robotic mood transition from current
user’s emotional intensity as well as robot personality.

Furthermore, the manifested emotional state is determined not only by current robotic
emotional variable but also by previous robotic emotional states. The manifested robotic

mood state at sample instant k (RM,) is calculated such that:

RMkE(akaﬁk)=RMk—]+(Pa'Aak’Pﬂ'Aﬁk) (26)

where (¢,,f,)e[-1, 1] represents the coordinates of robotic mood state at sample instant k on

pleasure-arousal plane. By using (2.6), the current robotic mood state is determined and
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located on emotional plane. Moreover, the mood transition is influenced by personality, which
is reflected by the Big Five factors. After obtaining the manifested robotic mood state (RM),
the coordinate of (o4, f) will be mapped onto pleasure-arousal plane, and a suitable

corresponding facial expression can be determined, as shown in Fig. 2-2.

2.2 Emotional Behavior Generation

After the robotic mood state is determined by using (2.6), a suitable emotional behavior
is expected to respond to the user. In this work, we propose a design based on fuzzy Kohonen
clustering network (FKCN) to generate smooth variation of interaction behaviors (facial
expressions) as mood state transits gradually.

In this approach, pattern recognition techniques were adopted to generate interactive
robotic behaviors [25;:54]. By adopting FKCN, robotic. mood state, obtained from (2.6), is
mapped to fusion weights' of basic robotic emotional behaviors. The output will be a linear
combination of weighted basic behaviors: In-the current design, the basic facial expression
behaviors are neutral, happiness, surprise, fear; sadness, disgust and anger, as shown in Fig.
2-1. FKCN is employed to determine the fusion weight of each basic emotional behavior
based on the current robotic' mood.-Figure 2-3.illustrates the structure of the fuzzy-neuro
network for fusion weight generation. In the input layer of the network, the robotic mood state
(o, Be) is regarded as inputs of FKCN. In the distance layer, the distance between input

pattern and each prototype pattern is calculated such that:

d,=|x,-P[ =(x,-P) (x,-P), (2.7)

where X; denotes the input pattern and P; denotes the ™ prototype pattern (see 2.3.2). In this
layer, the degree of difference between the current robotic mood state and the prototype
pattern is calculated. If the robotic mood state is not similar to the built-in prototype patterns,
then the distance will reflect the dissimilarity. The membership layer is provided to map the

distance dj to membership values u;;, and it calculates the similarity degree between the input
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Fig. 2-3: The fuzzy-neuro network for fusion weight generation.

pattern and the prototype patterns. If ‘an input pattern does not match any prototype pattern,
then the similarity between the input pattern and each individual prototype pattern is
represented by a membership value-from 0 to 1. The determination of the membership value

is given such that:

0 if d, =0 (k>0,j<c~1)

U

_{1 if d;=0 , 2.8)

where ¢ denotes the number of prototype patterns, otherwise,
c—1 d - -1
— J
Uy = zd— . (2.9)
=0 &
Note that the sum of the outputs of the membership layer equals 1. Using the rule table
(see later) and the obtained membership values, the current fusion weights (FW,;, i=0~6) are

determined such that:

c—1

FW, = Zwﬂ% . (2.10)
=0

where wj; represents the prototype-pattern weight of i"™ output behavior. The prototype-pattern

weights are designed in a rule table to define basic primitive emotional behaviors

corresponding to carefully chosen input states.

19



2.2.1 Rule Table for Behavior Fusion

In the current design, several representative input emotional states were selected from the
two-dimensional model in Fig. 2-2, which gives the relationship between facial expressions
and mood states. Each location of facial expression on the mood plane in Fig. 2-2 is used as a
prototype pattern for FKCN. Thus, a rule table is constructed accordingly following the
structure of FKCN. As shown in Table 2-2, seven basic facial expressions were selected to
build the rule table. The IF-part of the rule table is the emotional state of ¢ and f; of the
pleasure-arousal space and the THEN-part is the prototype-pattern weight (w;;) of seven basic
expressions. For example, the neutral expression in Fig. 2-2 occurs at (0.61, -0.47), which
forms the IF-part of the first'rule and the prototype pattern for neutral behavior. The THEN
part of this rule is the neutral behavior expressed by a vector of prototype-pattern weights (1,
0, 0, 0, 0, 0, 0). The other rules-and prototype patterns are set-up similarly following the
values in Fig. 2-2. 'Some facial expressions are located at two distinct points on the mood
space, both locations.are employed, and two rules are set up following the analysis results
from psychologist. There are all together 13 rules-as shown in Table 2-2. Note that Table 2-2
gives us suitable rules to-mimic the behavior of human; since the content of Fig. 2-2 is

referenced from psychology results. However, other alternatives and more general rules can

Table 2-2: Rule table for interactive emotional behavior generation.

prototl){:pg ?or;ttems THEN-part weighting
#i o, ﬂk Neutral Happiness Surprise Fear Sadness Disgust Anger
1 0.61 -0.47 1
2 0.81 0.66 1
3 0.88 0.59 1
4 -0.75 0.61 1
5 -0.71 0.58 1
6 -0.83 0.54 1
7 -0.91 0.52 1
8 -0.47 -0.56 1
9 -0.54 -0.59 1
10 -0.95 -0.06 1
11 -0.84 -0.19 1
12 -0.95 0.17 1
13 -0.98 0.1 1
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also be employed. FKCN works to generalize from these prototype patterns all possible
situations (robotic mood state in this case) that may happen to the robot. In the FKCN
generalization process, proper fusion weights for the corresponding pattern are calculated.
After obtaining the fusion weights of output behaviors from FKCN, the robot’s behavior is
determined from seven basic facial expressions weighted by their corresponding fusion

weights such that:

Facial Expression = RB (X FW +RB ;X FW, +RBg, X FW, +RB X FW, @.11)
+RB, X FW, +RB,, x FW, + RB , x FW, ’

where RBy, RBy, RBgyr, RBr, RBsad, RBp, RB4, represent the seven basic facial expressions
of neutral, happiness, surprise, fear, sadness, disgust and anger respectively. It is seen that
(2.11) gives us a method to generate facial expressions.by combining and weighting the seven
basic expressions.

The linear combination of basic facial expressions gives a straightforward yet effective
way to express various emotional behaviors. In order to make the combined facial expression
to be more consistent with human expetrience, an evaluation and adjusting procedure was
carried out by a panel-of students in the lab. The features of seven basic facial expressions
were adjusted as distinguished as. possible to approach human perception experience. Some
results of linear combination are demonstrated using a face expression simulator, please refer
to 2.2.3.

In fact, human emotional expressions are difficult to be represented by a mathematical
model or several typical rules. On the other hand, FKCN is very suitable for building up the
emotional expressions. The merit of FKCN is its capacity to generalize the results using
limited assigned rules (prototypes). Furthermore, dissimilar emotional types can be designed
by adjusting the rules. For the artificial face, facial expressions are defined as the variation of

control points, which are positions of eyebrow, eye, lips and wrinkles of the artificial face.
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2.2.2 [Evaluation of Fusion Weight Generation Scheme

In order to verify the result of fusion-weight generation using FKCN, we applied the
rules in Table 2-2 and simulated the weight distribution for various emotional states. The
purpose is to evaluate how the proposed FKCN does work to generalize any input emotional
state (a4, ;) and give a set of output fusion weights corresponding to the input. Figure 2-4
shows the simulation results of weight distribution vs. robotic mood variation on
pleasure-arousal plane. In order to check seven fusion weights corresponding to seven basic
emotional expressions for a given mood transition from (¢.;, B.1) to (a4, Bx), the simulation
outputs for seven basic emotional expressions.are illustrated respectively. The blue squares in
Fig. 2-4 indicate the robotic ‘mood transition from (s, B.;) to (a4, ). Every position or
point in this two-dimensional mood space has corresponding fusion weights. Figure 2-4(a)

shows the weight distribution of neutral expression for the whole robotic mood space. The
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same contour curve in the figure has the identical neutral weight. The maximum weight (1)
occurs at (0.61, -0.47) in the pleasure-arousal plane. It is seen that the neutral weigh decreases
while the robotic mood state moves away from (0.61, -0.47). Figure 2-4(b) shows the weight
distribution of happiness expression for the whole robotic mood space. The maximum weight
(1) occurs at (0.81, 0.66) and (0.88, 0.59) in the pleasure-arousal plane. It is seen that the
happiness weigh increases while the robotic mood state moves to the upper right quadrant.
Figures 2-4(c)-(g) show similar results that the maximum weight positions are located in
corresponding coordinates in Fig. 2-2. These results coincide with the two-dimensional
emotional state of facial expressions in Fig. 2-2. Furthermore, the correlation among seven
basic emotional behaviors is also checked in the simulation. It is seen that a point on the mood
plane will map to a_‘corresponding fusion weight for. each of seven basic emotional

expressions.

2.2.3 Animation of Artificial Face Simulator

To evaluate the effectiveness of the FKCN-based behavior fusion on actual emotional
expressions, we developed an artificial face simulator exploiting the method in [55] to
examine robotic facial expressions. The method follows a muscle-based approach and thus
mimics the way biological faces operate. The artificial face illustrates the expression based on
the contraction of facial muscles. It can also dynamically generate features such as wrinkles
[55]. Emotions are the high-level concept which is aimed to display via facial expressions.
Each emotion influences a different set of muscles. For each emotion and each intensity level,
muscles were adjusted to match the reference drawing.

In this simulation, seven basic facial expressions: neutral, happiness, surprise, fear,
sadness, disgust and anger are first designed by specifying muscles tensions of each
expression composed of 7 different fusion weights. Table 2-3 shows some examples of the 7

basic facial expressions generated by the simulator with different weights. One observes that
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Table 2-3: Basic facial expressions with various weights executed in the simulator.

30% 60% 80% 100%

Happiness =
(RBy) -
! OWO ’

Surprise
(RB Sur)

Fear
(RBr)

Sadness
(RB Sad)

Disgust S
(RBp)

Anger
(RB4)

Neutral
(RBy)
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the facial expression changes from smiling to laughing as the weight of happiness increases
and from staring to screaming as the weight of surprise increases. Similarly, the facial
expression changes from dreading to panic as the weight of fear increases and from gloomy to
crying as the weight of sadness increases. Note that the facial expression of neutral is
invariable because it is set as a normal facial expression.

Finally, fused emotional expressions are depicted by linear combination of weighted
basic facial expressions. Table 2-4 shows some examples of facial expressions generated by
linear combination. The facial expressions with different fusion weights of sadness, anger,
surprise and fear are fused to show the complex. variation of emotion transition. It provides a

quantitative and vivid way to ‘express the feeling of human emotion.

Table 2-4: Linear combined facial expressions with,various weights on the simulator.

Sadness:70%  Sadness:50% Sadness:30%
Anger:30% Anger:50% Anger:70%

Suprise:70% Suprise:50% Suprise:30%
Anger:30% Anger:50% Anger:70%

—

Fear:70% Fear:50% Fear:30%
Sadness:30% Sadness:50% Sadness:70%
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2.3 Summary

A method of robotic mood transition for autonomous emotional interaction has been
developed. An emotional model is proposed for mood state transition exploiting a robotic
personality approach. We apply the concept that emotional behavior is controlled by current
emotional state and mood, while the mood is influenced by personality. Here the
psychological Big Five factors are utilized to represent the personality. By referring Eq. (2.4)
and (2.5), the relationship between personality and mood is described. Furthermore, a
two-dimensional scaling result (see Fig. 2-2) is adopted to represent general adult's facial
expressions based on pleasure-displeasure and arousal-sleepiness ratings. Based on above
mention, an illustration of the proposed robotic emotion model is illustrated in Figure 2-5.
Finally, via adopting psychological Big Five factors.in the 2-D emotional model, the proposed
method generates facial expressions in a more natural manner. The FKCN architecture
together with rule tables from psychological findings sufficiently provides behavior fusion

capability for a robot to generate emotional interactions.

o 'ég\..‘. X
P, =021E+0594% 009N, |+ b
P;=0.150+0.34-0.57TN |

— L

Personality Mood Emotion
Static T i » Dynamic
BIG FIVE MODEL OF PERSONALITY
Factor Description
Openness Open mindedness, interest in culture.
Conscientiousness  Organized, persistent in achieving goals.
Extraversion Preference for and behavior in social situations.
Agreeableness  Interactions with others.
Neuroticism lendency to experience negative thoughts.

Fig. 2-5: Ilustration of the proposed robotic emotion model.
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Chapter 3

Human Emotion Recognition

The capability of recognizing human emotion is an important factor in human-robot
interaction. For human beings, facial expression and voice reveal a person’s emotion most.
They also provide important communicative cues during social interaction. A robotic emotion
recognition system will enhance the interaction between human and robot in a natural manner.
In this chapter, several emation recognition methods. are proposed in the following sections.
In 3.1, a bimodal information fusion-algorithm is proposed to recognize human emotion by
using both facial image and speech-signal. In 3.2, a speech-signal-based emotion recognition

method is presented.

3.1 Bimodal Information Fusion Algorithm

An embedded speech and image processing system-has been designed and realized for
real-time audio-video data acquisition and. processing. Figure 3-1 illustrates the experimental
setup of the emotion recognition system. The stand-alone vision system uses a CMOS image
sensor to acquire facial images. The image data from the CMOS sensor are first stored in a
frame buffer. Then the image data are passed to a DSP board for further processing. The audio
signals are acquired through the analogue 1/O port of the DSP board. The recognition results
are transmitted via RS-232 serial link to a host computer (PC) to generate the interaction

responses of a pet robot.
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Fig. 3-1: The experimental setup.

Figure 3-2 shows the block diagram of robotic audio-visual emotion recognition
(RAVER) system. After a face is detected in the image frame, facial feature points are
extracted. Twelve feature wvalues are then computed: for facial expression recognition.
Meanwhile, the speech signal is-acquired from a microphone: Through a pre-processing
procedure, the statistical feature values are calculated for-each voice frame [66]. After the
feature extraction procedures of both sensors are completed, the two feature modalities are
sent to an SVM-based classifier [67] with the proposed bimodal decision scheme. Detailed
design of facial image processing, speech signal processing and bimodal information fusion

will be described in the following sections.

| Bimodal information fusion

SVM hyperplane, mean | 2R THPRAVOR TESOR
and standard deviation of | T _ 0
training data set || [ Facial ] [ Speech ]

I
Facial & audio > weight weight |
database | | {_calculation calculation ) | 1. Anger
L J | b fp————_— I 2. Happiness
_____________ - | 3. Neutral
| Facial image processing | [ a 4. Sadness

5. Surprise

- I
Facial
Face .
. CMOS . feature expression l
image sensor | detection extraction | classification !
L ——— _ _————— - feaiure| I : Emotion Emotion
e Bl B classification |
: Speech signal processing | I : fusion | output
I I
Microphone feature emotion |
extraction classification | \ ) |
I

Fig. 3-2: Block diagram of the robotic audio-visual emotion recognition system.
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We propose in this section a probabilistic bimodal SVM algorithm. As shown in Fig. 3-2,
the extracted features using visual and audio sensors are sent to a facial expression classifier
and an audio emotion classifier respectively. In the current design, five emotional categories
are determined, namely, anger, happiness, sadness, surprise and neutral. Cascade SVM

classifiers are developed for each modality to determine the current emotion state.

3.1.1 Facial Image Processing

The facial image processing part consists of face detection module and feature extraction
module. The functional block diagram of the proposed facial image processing is illustrated in
Fig. 3-3. After an image frame is captured from the CMOS image sensor, color segmentation
and attentional cascade procedure [68] are performed to detect human faces. As a face is
detected and segmented, the feature-extraction stage is performed to locate the eyes, eyebrows
and lips region in the human face area. The system employs edge detection and adaptive
threshold to find these feature points.-According to the distance between the two selected
feature points, several feature vectors are obtained for later emotion recognition. The

processing steps will be described in more detail in the following paragraphs.

A.  Face Detection

The first step of the proposed emotion recognition system is to detect the human face in
the image frame. As shown in Fig. 3-4(a), the skin color is utilized to segment possible human
face area in a test image. The morphology closing procedure is then performed to reduce the
noise in the image frame, as shown in Fig. 3-4(b). The color region mapping is applied to
obtain the human face candidates, as depicted by two white squares in Fig. 3-4(c). Finally, the
attentional cascade method is used to determine which candidate is indeed a human face. In

Fig. 3-4(d) the black square region indicates a detected human face region.
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Fig. 3-3:The functional block diagram of facial image processing.

(©) (d)

Fig. 3-4: Face detection procedure. (a) Original image, (b) Color segmentation and closing operation,

(c) Candidate face areas, (d) Final result obtained by attentional cascade.

B.  Facial Feature Extraction
The feature extraction module finds feature points from a frontal face image. The feature

points are represented by a vector of numerical data, which represent the position of the facial
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features such as eyes, eyebrows, and lips. To search positions of eyes and eyebrows on the
upper part of the face image, the characteristics that eyeballs are the darkest areas on the
upper face is utilized. Further, the system employs integral optical density (I0D) [69] to find
the area of eyes and eyebrows. IOD works on binary images and gives reliable position
information of both eyes.

In order to increase the robustness of feature point extraction, our method combines IOD
and edge detection. Passing through an AND operation of two successive binary images, the
outlines of eyes and eyebrows can be extracted. Figure 3-5 illustrates the definition of all
facial feature values and Table 3-1 lists the corresponding detailed descriptions. We defined
three feature points for each eye and two feature points for each eyebrow. We locate the upper,
lower and inner points of eyes as feature points, and set the eentral, inner points of eyebrows
as feature points. Further, there are-four feature points for lips, as shown in Fig. 3-5. Figure
3-6 shows the image processing results of extracting eyes and eyebrows feature points. In Fig.

3-6(a), the detected facial image is processed using IOD while edge detection is performed in

Fig. 3-5: Definition of the facial feature points and feature values.
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Table 3-1: The description of facial feature values.

Features Description

E Distance between the central of right eyebrow and eye
E, Distance between the right eyebrow and eye

E; Distance between the left eyebrow and eye

E, Distance between the central of left eyebrow and eye
Es Distance between upper and lower right eye contour
Eg Distance between upper and lower left eye contour
Ey Distance between right and left eyebrows

Eg Distance between right side lip and right eye

Eq Distance between upper lip and eyes

Eyo Distance between left side lip and left eye

£y Distance between upper and lower lip
Ey Distance between right and left side lip

(©) (d)

Fig. 3-6: Test results of feature extraction of eyes and eyebrows. (a) Binary operation using 10D, (b)

Edge detection, (c) AND operation. (d) Extracted feature points.

Fig. 3-6(b). In Fig. 3-6(c), the AND operation of IOD and edge detection are performed. The

feature extraction result is shown in Fig. 3-6(d). Similarly, Fig. 3-7 depicts the result of
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Flg. 3-7: Feature extraction of 11ps.

feature points extraction of lips. The candidate area in Fig. 3-7(a) is processed by using 10D.
The binary detection result is shown in Fig. 3-7(b). Finally, the feature extraction result is
obtained as shown in Fig. 3-7(c).

After obtaining the position of facial feature points, we calculate twelve significant
feature values, which are distances between two selected feature points as shown in Table 3-1.
In order to reduce the influence of distance between a user and the CMOS image sensor, these

feature values are normalized for emotion recognition.

3.1.2 Speech Signal Processing

The functional block diagram. of the proposed speech signal processing method is shown
in Fig. 3-8. The procedure of speech signal processing is divided into two parts. The first part
is the pre-processing of speech signal, including endpoint detection and frame setting. The
second part is responsible for extracting speech features. The processing steps will be

described in more detail in the following paragraphs.

A.  Frame Detection
The endpoint detection determines the location of real speech signals by short time
energy detection and zero- crossing rate detection. We use the first 128 samples to determine

the threshold value in energy detection and then divide a frame into 32ms periods for further
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Fig. 3-8: The functional block diagram of facial image processing.

feature extraction processing. The-basic idea for estimating emotion by the speech signal is to

select features that imply emotion information.

B.  Speech Feature Extraction

In this work, contours of pitch and energy are<analyzed [29] for human emotion
recognition. The pitch contour is obtained by autocorrelation. The maximum point is selected
to calculate the pitch values. The energy contour is obtained by calculating the short time
energy of each frame. Then the speech feature values can be obtained by computing the
statistical quantity of pitch and energy contour. Altogether, twelve speech feature values are

obtained for emotion recognition. The elements of speech features are listed in Table 3-2.

3.1.3 Bimodal Information Fusion Algorithm
In order to determine the final result by taking into account both the audio and visual
classification results, we developed a bimodal information fusion algorithm to provide a

fusion weight for the classifier. According to the principle of SVM, the larger the distance
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Table 3-2

: The description of speech feature values.

Features Description

Fave Average pitch

Fa Standard deviation of pitch

Priax Maximum pitch

Fiin Minimum pitch

PD Average of pitch derivation

PDyy Standard deviation of pitch derivation
PDyyax Maximum of pitch derivation

Eave Average energy

Ega Standard deviation of energy

Ernax Maximum energy

ED,y, Average of energy derivation

EDyq Standard deviation of energy derivation

between a test sampléand the hyperplane; the greater the recognition reliability. Figure 3-9
shows a trained SVM hyperplane and the distance of a test: sample to the hyperplane. It can be
seen from the figure that the test samples x;and x; belong to the.same class. However, the
distance d1 is smaller than d2. Thus, the recognition-reliability of test sample x2 is greater
than that of x1, because the position of x2 can resist a larger shift of the hyperplane.
Furthermore, if the training samples are distributed widely, the trained hyperplane will
lead to smaller recognition reliability. It may result in a false recognition even the average

distance between a test sample and the hyperplane is still large. Figure 3-10 shows two cases

Fig. 3-9: Representing recognition reliability using the distance between test sample and hyperplane.

Test samples

@ x2
di @ xI

e

Hyperplane
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Fig. 3-10: Representing recognition reliability using the standard deviation of training samples. (a)

Smaller standard deviation, (b) Larger standard deviation.

of training sample distributions. In Fig. 3-10(a) and (b), the mean values for both distribution
are the same, but the standard deviation of hyperplane 1'(c;) is smaller than that of hyperplane
2 (02). The recognition reliability of hyperplane 1 is thus greater than that of hyperplane 2,
because the training samples are-more congregated in the former case. We can conclude that
the recognition result is more reliable if the distance between the test sample and hyperplane
is larger and the standard deviation of training data set is smaller.

Based on the above observation, we propose-the following algorithm of bimodal
information fusion:

1) Assume the number of training samples is' N for both visual and audio SVM

classifiers. Compute the average distance = D and D between samples and the

Fave Aave

hyperplane of facial and speech training data respectively such that:

1 N
DFave:ﬁiZﬂ:dF, (31)
DAave :iﬁ:dxi 2 (32)
N i

where 4, and g4, represent the distance between the ;, facial and speech training samples

and their corresponding respectively.
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_fHy 33
d, A (3-3)
g = (3.4
A

where 7. and 7, represent the ;, training sample of facial and speech training data

respectively. A, and H, represent the SVM hyperplane of facial and speech data

respectively.

2) Compute the standard deviation o, and o, of facial and speech training data

respectively.

Q
I

N b
b G5

1

o

N %
1 o
[ﬁ;(d/u _DAave) :| .

(3.6)
3) Calculate the distance D, and D, between the facial and speech test samples and

the corresponding hyperplanes respectively:

D, = H’“\' - (3.7)
F

' ’?THHF \ (3.8)
F

where %, and x, represent the facial and speech test sample respectively.
4) Calculate and normalize the weights of facial classification and speech classification

respectively such that:

D.-o
7 = Yr7C% 39
) DFave_O-F ( )
7,=L24=0 (3.10)
DAave_GA

5) If the classified results of two modalities are not the same, the decision machine

compares the magnitude of facial and speech classification weights to obtain a classified
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result. If z >z , adopt the recognition result of facial feature. If z, <z, , then adopt the

recognition result of speech feature.

3.1.4  Hierarchical SVM Classifiers

In this work, five facial expressions are categorized according to both the facial and
speech information. An SVM hyperplane distinguishes two categories. Therefore two
four-stage classifiers need to be constructed as shown in Fig. 3-11. Each stage determines one
expression using two emotion categories. The selected emotion category will proceed to the
next stage until a final expression is_determined. For instance, when an unknown sample
appears, the SVM first classifies happiness vs. sadness followed by surprise vs. neutral. After
this stage, the corresponding results are further classified at the next stage. For example, the
results of the first stage ¢lassifiers-are assumed to be happiness-and surprise (shown as (1)
and (@ in Fig. 3-11). At the second stage, the classifier determines the unknown data as
surprise or anger. If the facial image recognition result is surprise but the speech recognition
result is anger (shownas (3 and (4)), a fusion-result-is obtained from comparing the weights
of both modalities. Here suppose that the weight Zr of facial image data is larger than the

weight Z, of speech data. So the result of anger (from speech features) vs. surprise (from

Facial Image Feature Speech Feature
Happiness _l @ Happiness —l @
Sadness  |eee? Sadness foee?
Surprise $++% Output Surprise $+# Output
_@10 :  Emotion _|_®>. :  Emotion
. : &)= _ T
Neutral  [=ss® £ Neutral = |e==? -
: l@
A]lge].' -------- > ZF A.llgﬂ.‘ I—) Z

represents determinant category

== eeee== rgpresents dismissive category

Fig. 3-11: SVM bimodal recognition procedure.
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facial features) is classified as surprise. At the last stage, the classifiers determine the
unknown data as happiness or surprise as shown in Fig. 3-11. The system will eventually

come to a final recognition result.

3.2 Speech-signal-based Emotion Recognition

An embedded speech processing system was designed and produced for real-time speech
signal acquisition and processing. Figure 3-12 shows the block diagram of the proposed
speech-signal-based emotion recognition system. Speech signals are acquired from a
microphone. Using a speech signal pre-processing procedure, the speech voice frames are
determined by end-point detection [70]. In the speech feature extraction stage, the
fundamental frequency and energy features of a speech frame are extracted to represent the
speech signal of interest. After obtaining the features of speech frame, Fisher's linear
discriminant analysis (FLDA) is utilized to transfer feature values to a suitable space [71].
The feature values in.the transferred space represent significant emotional traits and improve
the recognition rate: Finally, a hierarchical support-vector machine (SVM) classifies the

emotional categories. In.order to simplify the design of the emotion recognition system for an
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Fig. 3-12: Block diagram of the proposed speech-signal-based emotion recognition system.
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entertainment robot, it is assumed that each sentence corresponds to only one emotional
category. The detailed design of the emotion recognition system is presented in the following

section.

3.2.1 Speech Signal Pre-processing

Before extracting the features of the speech signal for recognition, a voice signal
pre-processing stage separates speech frames from the acquired signal. In this design,
pre-processing consists of analog to digital conversion, end-point detection and frame signal
separation.

Speech signals acquired  from the microphone are analog voltage signals. Through
amplification and sampling, the analog voltage signal is converted to digital, in a discrete
form. Based on the sampling theorem, a sampling frequency is set to be more than twice the
bandwidth of the input signals, in order to avoid signal distortion. In general, the spectrum of
human speech is less than 4K Hz. The sampling frequency is set to 8K Hz, in this study.
Furthermore, a normalization scheme is used to reduce the influence of constantly changing

input signals. The normalized speech signal is obtained such that:

x(n):M n=12...N (3.11)

max

'xmax = max('xori(n)) n= 1’25"'9 N ) (312)

where x(7) represents the normalized speech signal, x,,;(7) represents the original speech
signal and X, is the maximum value in the sequence, x,.,(#). By dividing with X, , as
shown in Equation (3.11), the amplitudes of whole speech signal are normalized between -1
and 1.

In order to extract the emotional features in a voice, a frame size must first be determined
for the digitized speech signal. Short-time energy, which is an acoustic feature that correlates

the sampled amplitude in each voice frame, is calculated such that:
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E(k)= §|x(n+m) , (3.13)
m=0

where E (k) 1is the short-time energy in the K frame, x(n) represents the normalized
speech signal and N is the frame size. The starting and terminal thresholds are then
determined for the voice frame, to determine the starting and terminal points respectively by
using empirical rules. Once the value of E (k) is greater than the starting threshold, the
starting point is determined. However, the terminal point is determined when the value of
E (k) 1s smaller than the terminal threshold. Hence a frame size, N, is determined as the real
speech signal. As shown in Figure 3-13, the starting and terminal points of a speech frame are
determined by the starting thresholdand the terminal threshold, respectively.

The zero-crossing rate (ZCR) is'then used for audio.frame. setting. Zero-crossing rate is a
basic acoustic feature. It is equal-to-the number of zero-crossings of the waveform within a
given frame. Here the zero-crossing rate is defined as the number of times which the speech
signals cross the zero value origin of the y-coordinates. In general; the zero-crossing rate of

non-speech and environmental noise -is lower than that 'of human speech [72]. The

zero-crossing rate is calculated such that:

Z(k) =%Z|sgn(x(n+m))—sgn(x(n+m—1))| (3.14)

Short-time energy

15000
£ 10000} ]
H Starting
k| point
(=} %
2 5000 " Starting Termmal-
'[_hIEShOl_d B pomt
U Terminal_ NS
0 . ] threshold,
0 1 2 3 4

Time (seconds)

Fig. 3-13: Energy of a speech signal.
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sgn[x(n)] = {_11 Z: iEZ; i 8} , (3.15)

where Z(k) is the zero-crossing rate of the & frame. In practice, the short-time energy is
used to estimate the starting and terminal points of the whole speech segment, wherein the
speech voice occurs. Then, the zero-crossing rate is used to find the real speech signal more
precisely. As shown in Figure 3-14, the real speech signal is determined by the ZCR
threshold.

In this design, zero-crossing rate and short-time energy are both used to detect the
starting and terminal points of non-speech. Figure 3-15 shows the four rules to find the real

human speech signal:

(1) If E(k) is lower thanthe terminal threshold, it belongs to non-speech.
(2) If E (k) is higher than the starting threshold, the starting point of the human speech

signal is determined.

(3) If E(k) islower than the starting threshold and Z (k) is higher than the ZCR

threshold of the zero-crossing rates, this is determined as the starting point of the

human speech signal.

Zero-crossing rate

100 T . .
Real speech signal

80 .
» 60} 1
=
=
=
O 40} i

ZCR
20 '_thges_hcidj_ ‘ ]
0 IA 'l
3.5

1.5
Time (seconds)

0 0.5

Fig. 3-14: Zero-crossing rate of a speech signal.
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Fig. 3-15: Exampleof real human speech detection.

(4) If E(k) 1slower than the terminal threshold, after the starting point, it is

determined that this is the terminal point of the human speech signal.

Using the above rules, the starting and terminal points of speech signals are determined. The

boundary of real human speech is also determined: Figure 3-16 shows an example of

end-point detection.
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Fig. 3-16: An example of end-point detection.
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After obtaining the end-points of the actual human speech signal, suitable presentation of
the speech signal is required, before the feature extraction step. In order to reduce the
variation between adjacent frames, the overlapping part of the signal is used to avoid
discontinuity. This study uses a Hamming window to emphasize the medium signal and to
restrain both side signals [73]. Figure 3-17 shows the frame-signal separation using a
Hamming window. It can be seen that there are overlaps between frames. The Hamming

window is represented such that:

27
Window (n) = 0.54—0.46cos(N_1) n=0,1,..,N-1 , (3.16)

0 otherwise

where N is the length of the frame and n is the sample point.in a frame. Figure 3-18 shows the
procedure for speech signal extraction in each frame. Figure 3-18(a) shows an example of an
original speech signal.in a frame: Figure 3=18(b) depicts. the Hamming window. Figure 3-18(c)
is the extracted result for the original speech signal multiplied by the Hamming window. This
study uses the first 128 samples to determine the energy threshold values and then divides a

frame into several 32 ms periods, for further feature extraction.
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Fig. 3-17: Frame-signal separation using a Hamming window.
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Fig. 3-18: Procedure for speech signal extraction in each frame. (a) A frame of original speech signal.

(b) Hamming window. (¢) Result of-eriginal speech signal multiplied by Hamming window.

3.2.2  Feature Extraction

After the speech:signal is obtained for each frame, useful features are extracted from the
speech signal. In this work, the contours of the fundamental frequency and energy [29] are
used for human emotion recognition. Several methods can be used to extract the fundamental
frequency from a speech signal [66]. In this design, the contour of the fundamental frequency
is obtained using an autocorrelation function. The fundamental frequency is determined by the

maximum autocorrelation value. The autocorrelation function is defined such that:

N-l-d

R(d)= D x(n)-x(n+d), (3.17)

where d is the shifting parameter. The value of d that maximizes R(d) over a specified range is
selected as the period of the fundamental frequency of the sample points. Figure 3-19 shows
the original time response of the speech signal and results for feature extraction of the

fundamental frequency. The energy contour is obtained by calculating the short-time energy
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Fig. 3-19: The original time response of the speech signal and the results for feature extraction of the

fundamental frequency.

of each frame in Equation (3.13):

After obtaining the short-time energy and fundamental frequency values, the statistical
values of fundamental frequency and energy features are calculated, including average,
standard deviation, maximum, minimum and ‘median. These statistical values are listed in
Table 3-3. Fourteen statistical.values are defined in this study. Based on observation, the
selected statistical features are sufficient to express wvariations in emotion and produce

satisfactory results.

Table 3-3: The description of speech feature values.

Fundamental frequency (£0) Energy
1. Average of FO 9. Average energy
2. Standard deviation of F0 10. Standard deviation of energy
3. Maximum of F0 11. Maximum energy
4. Minimum of F0 12. Median energy
5. Median of FO 13. Average of energy derivation
6. Average of F0 derivation 14. Standard deviation of energy derivation

7. Standard deviation of /0 deviation

8. Maximum of F0 derivation

49



3.2.3 Emotional State Classification

After obtaining the statistical features from the speech signal, a suitable classification
procedure is required to recognize the emotion categories. In order to increase the
discriminability of the feature values, Fisher's linear discriminant analysis (FLDA) [74] is
used to find a suitable subspace in which to discriminate emotional categories. An SVM [67,
75] has been an effective method for designing recognition systems. This study uses both
FLDA and SVM to classify the emotional categories.

FLDA is a popular method for pattern recognition, to find a linear combination of
features which separate two or more. classes of objects. It projects the original
high-dimensional data onto a‘low-dimensional space. All of the classes are well separated by

maximizing the Raleigh quotient [76]. In FLDA; one assumes there are r training sample

vectors, given by {fs;},, for p-<classes: C,,C,,...,.C

;5 and that there are r; samples for

the /™ class, such that:

r=>"r. (3.18)

j=1"J

Let 4 be the mean of all of the training samples, such that:

I ¢
==Y 15, (3.19)
[ER

and 4; be the mean of the /™ class, such that:
U = _Zr,.ec,. Is;, (3.20)

where the within-class scatter matrix S,, and the between-class scatter matrix S, are

defined as follows:

-

P

Sw =22 (s, —u;)ts; — 1) (3.21)

i=l j=1
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Sy =27, — ), — )" (3.22)

The goal is to find a transform vector w such that the Raleigh quotient is maximized. The
Raleigh quotient is defined such that

WSw (3.23)

1= w'S,w’
W can be defined by solving a generalized eigen problem, as specified by Syw =AS,,w,
where A is a generalized eigenvalue: An LxM matrix, W, can be found to transform the
original Z-dimensional data into'a M-dimensional space. It is‘expected that the p classes can be
well separated in this M-dimensional space. In this work, M is selected as 12 from practical
test. Since voice signals are noisy and direction sensitive, the FLDA is used to efficiently
discriminate the speech features. In this study, each emotional sentence is represented as
fourteen statistical features. which are listed in Table 3-3. Then these fourteen statistical
features are projected into a subspace by using the transformation matrix W obtain the new

twelve feature values. Afterward each emotional sentence is transformed into twelve feature

values for recognition.

SVM is a two-class classifier for a set of related supervised learning methods that
analyze data and recognize patterns. The SVM model represents examples as points in space.
It determines a hyperplane, so that the examples of the separate categories are divided by a
clear gap that is as wide as possible. New examples are then mapped into that same space and
predicted to belong to a category, based on the side of the gap on which they fall. In this study,

five classes of emotional categories are classified by using SVM. In order to utilize this
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two-class classifier to classify five categories, a hierarchical SVM is adopted [70]. The
hierarchical SVM classifier is illustrated in Fig. 3-20. In this design, five emotional states are
categorized. An SVM hyperplane can distinguish two categories. Therefore a four-stage
classifier is developed, as shown in Fig. 3-20. Each stage determines one emotional state from
the two and the selected one proceeds to the next stage, until a final emotional state is
determined. When unknown emotional speech is imported into the SVM, as shown in Fig.
3-20, the SVM first classifies neutral vs. happiness, then classifies anger vs. surprise. After
these stages, the corresponding results are further classified at the next stage. For example, the
results of the first and second stage classifiers are assumed to be happiness and surprise
(shown as @ and @ in Fig. 3-20). At the third stage, the classifier determines the unknown
data as surprise or sadness. If the classification result is surprise (shown as ®), then the
classifier determines:that the unknown data is happiness or surprise, in the final stage (shown

as @). The system eventually produces a recognition result.

Neutral = f------

@

Happiness

@ Recognized

emotional state

Extracted speech
feature values

Anger  f------ : @
Surprise @

t ¥ v vy

Sadness p------enen-e-

Represents determinant category
---------------- Represents dismissive category

Fig. 3-20: Structure of the hierarchical SVM classifier.
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3.2.4 Implementation of the Emotion Recognition Embedded System

The developed algorithms were implemented on a DSP-based embedded system [77], to
facilitate the experimental study of an entertainment robot. The embedded system consists of
a microphone and a DSK6416 DSP board from Texas Instruments. The selection of the
DSK6416 as the main processing unit is because of its high performance in fixed-point
calculation, with a 1 GHz clock rate. Figure 3-21 shows the TMS320C6416 DSK codec
interface [78-79]. The DSK uses a Texas Instruments AIC23 stereo codec for input and output
of audio signals. The codec samples an analog signal from a microphone and converts the
signal into digital data, so that it can be processed by the DSP. The DSP chip and codec
communicate via two serial channels;one controls.the codec’s internal configuration registers
and the other is responsible for digital audio samples. As shown in Fig. 3-21, the McBSP1 is
used as the unidirectional control-channel;»the McBSP2 is used as the bi-directional
audio-data channel. The codec has a 12 MHz system clock. The internal sample rate
subdivides the 12 MHz clock to generate common frequencies, including 48 KHz, 44.1 KHz
and 8 KHz; a frequency of 8 KHz is'selected to sample the user’s:speech signal, in this study.
As a user speaks into the mierophone, the embedded system acquires speech signals and

begins to recognize the user’semotional state. The recognition results are transmitted via

AIC23 codec

) CS I |
McBSP1 SOLEe : Control registers |
—_— |
SDIN | |
I
Digital I :
pril Cg;]saslOr DOUT IN— Sonmersion —T Microphone in
LRCOUT |
<—— BCIK | l
McBSP2 LRCIN |
ﬁ
DIN H[conversmnH mpllfiel]—‘—> Headphone out
e |

Fig. 3-21: The TMS320C6416 DSK codec interface.
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RS-232 serial link to a host computer (PC), where intelligent responses are generated to react
to the received speech signal.

In order to test the emotion recognition system in practical scenarios of human-robot
interaction, the embedded speech processing system is integrated within the self-built
entertainment robot. Figure 3-22 shows an interaction scenario for a user and the
entertainment robot. The control architecture of this robot is depicted in Fig. 3-23. The
DSP-based system is installed at the back of the entertainment robot. Seven Radio Controlled
(RC) servos are used to control the movement of the ears, head, hands and legs of the
entertainment robot. A motor servo controller, from Pololu Robotics and Electronics Inc. [80],
controls the RC servos in the robot:"The DSP-based emotion recognition system estimates
emotion categories and determines, in real time, a suitable response for the entertainment
robot. Some interesting studies-{81-82] have utilized microphone arrays to avoid using a
headset. Their methods improve the speech recognition system to cope with noise and
direction sensitivity problems. In this study, we focus on the integration of emotional speech
recognition algorithm-and entertainment robot: In-order to reduce the influence of the sound
of robot motion or surrounding interference, a headset isised in the experiments, as shown in

Fig. 3-22.

3 )
Ear servo
.
Head servo ‘_d_&'
/. '
Hand servo A

Leg servoss

Fig. 3-22: Interaction scenario for a user and the entertainment robot.
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Fig.3-23:Control architecture of the entertainment robot.

3.3 Summary

In this chapter;two human emotion recognition methods, including bimodal information
fusion algorithm, speech-signal-based emotion recognition are proposed and presented. All of
these emotion recognition methods will enhance the interaction between human and robot in a

natural manner.

55



Chapter 4

Experimental Results

In this chapter, the experimental results of robotic emotion generation and human
emotion recognition are presented and discussed. For the robotic emotion generation, both
anthropomorphic robotic head and artificial face simulator were employed to evaluate the
results of human-robot interaction. In .the part of human emotion recognition, the
experimental results of three kinds of emotion recognition. methods, which are descripted in

Chapter 4, are presented.

4.1 Experimental Results of Robotic Emotion Generation

The developed robotic emotion generation system has been tested and evaluated for
autonomous emotional 'interaction. - We  first implemented ' the proposed AEIS on a
self-constructed anthropemorphictobotic head for experimental validation. The robotic head,
however, has some hardware’ limitations in completing the evaluation experiments of mood
transition system. A face simulator was adopted for testing the effectiveness of proposed

human-robot interaction design.

4.1.1 Experiments on an Anthropomorphic Robotic Head

In order to verify the developed algorithms for emotional human-robot interaction, an
embedded robotic vision system [77] has been integrated with an anthropomorphic robotic
head with 16 degree-of-freedom. The DSP-based vision system was installed at back of the
robotic head and the CMOS image sensor was put on the right eye to capture facial images.

The system architecture of the robotic head is depicted in Fig. 4-1. A Qwerk platform [83]
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works as an embedded controller. It receives estimated emotional intensity of a user from the
vision system and output corresponding pulse width modulation signals to 16 RC servos to
generate corresponding robotic facial expression. Figure 4-2 shows several basic facial

expressions of the robotic head.

CMOS
image sensor @000 ~F————————— — — — — — — — — — — — —
i Facial Feature

I
frame [ : Emotional
Face are Feature | pomnts | = .
. . intensity
| detection extraction
| calculator

\Embedded vision system

Users

emotional
intensity
ST = [t/ s £
PWM Behavior Digital | |
| | generation decision 1/0 I
|
I

| Qwerk platform

—_

(d) Surprise " (e) Fear (f) Anger

Fig. 4-2: Examples of facial expressions of the robotic head.
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In the experiment, a user presented his facial expressions in front of the robotic head as
shown in Fig. 4-3. The robot responded to the user with different degrees of wondering as the

user presented various intensities of surprise. A video clip of this experiment can be found in

[84].

4.1.2  Experimental Setup for the Artificial Face Simulator

A virtual-conversation scenario was set up for testing the effectiveness of proposed
human-robot interaction design. As shown in Fig. 4-4(a), in the virtual-conversation test, a
subject spoke to the artificial face (on the screen) while the talker’s facial expression was
detected by a web camera. The subject in the experiment is.a student of the authors’ Institute.
Table 4-1 lists the conversation dialogue and corresponding subject’s facial expressions
during the test. In the dialogue, the-subject.complained about her job with sad and angry facial
expressions in the beginning. Then the subject talked about the coming Christmas vacation.
Her mood varied from angry to happy state: After acquiring facial images, the user emotional
state recognizer transferred the user’s facial expressions into sets of emotional intensity every
0.5 seconds. The duration of this conversation is around 36.seconds. There are 73 sets of

emotional intensity values detected from the user in this conversation scenario. In order to

Fig. 4-3: Interaction scenario of a user and robotic head.
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| am planning to go
to Tokyo with my boy

Fig. 4-4: Experiment setup: interaction scenario with an artificial face.

Table 4-1: List of the conversation dialogue and corresponding subject’s facial expressions.

User’s
Sentence . .
Dialogue emotional
#
state
1 Hi; Robot. How are you feeling today? Neutral
2 1 feel'so bad today: I screwed up my job. Sad
Do you know I feel very sad now? I really
3 X Sad
hope it was-not happened.
4 I am really angry at myself for my Angry

mindless mistake.

However, in a few days it will. be
5 Christmas. I think that I can get relaxed Neutral
during the vacation.

I am planning to go to Tokyo with/my
6 boyfriend: We hear of a carnival will take Happy
place this year.

7 Ha! 1 can’t waitto.go to-the trip: Happy

observe the robotic emotional behavior purely due to individual personality and mood
transition and avoid undesirable effect caused by error from user emotional state recognition,
the detected user emotional intensities are regulated to more reasonable ones manually. Table
4-2 shows part of the regulated user emotional intensities when the subject uttered sentence 1
and 2. These sets of emotional intensity are utilized again as input to test the response of the

artificial face with different robot personalities and moods.
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Table 4-2: Regulated user emotion intensity of conversion sentence 1 and 2.

Sentence # UEk (k=1,2, ..., 15)

(0.5,0.2,0,0.3), (0.5,0.3,0,0.2), (0.5,0.4,0,0.1),
(0.6, 0.4,0,0), (0.8,0.2,0,0), (1,0,0,0), (1,0,0,0).

(0.9,0,0,0.1), (0.8,0,0,0.2), (0.7,0,0,0.3), (0.6,0,0,0.4),
(0.5,0,0,0.5), (0.4,0,0,0.6) , (0.4,0,0,0.6), (0.3,0,0,0.7).

4.1.3 Evaluation of Robotic Mood Transition Due to Individual Personality

It is desirable that a robot behaves differently in different interaction scenarios. For
example, to keep attention from students in education applications, the robot needs to behave
more friendly and funny. Hence the openness and agreeableness scales are designed higher.
One can design the desired personality by adjusting the'corresponding Big Five factors. In this
experiment, two opposite robotic individual personalities were designed respectively for
RobotA (with more active trait) and RobotB (with more passive trait). The Big Five factors
were applied to medel these two personalities. Table ‘4-3:lists the assigned scales
corresponding to both opposite personalities. As we know, people belonging to active trait are
usually open minded and interact with others more frequently. Hence the openness and

agreeableness scales of RobotA are higher than those of RobotB and these two higher scales

Table 4-3: Definition of personality scales using Big Five factors.

RobotA RobotB
(Active trait) (Passive pessimist)
Openness 1 0.3
Conscientiousness 0.5 0.5
Extraversion 0.1 0.1
Agreeableness 0.5 0.2
Neuroticism 0.1 0.3
(Po» Pp) (0.34, 0.24) (0.20, -0.07)
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lead the personality parameters (P, Pp) to more positive tendency. Furthermore, a more
passive pessimist has the tendency to experience negative thinking in general. Therefore the
neuroticism factor of RobotB is higher than that of RobotA. The higher neuroticism factor of
RobotB leads its personality more negative tendency on arousal (/4 axis). After trait values
have been identified, the robot personality parameters (P4, Pp) are determined by using (2.4)
and (2.5). And the proposed robotic mood transition model is built accordingly.

To evaluate the effectiveness of the proposed emotional expression generation scheme
based on individual personality, we conducted two sessions of experiments by using the
artificial face as shown in Fig. 4-4(b). In,the experiments, the same input sets were presented
to RobotA and RobotB with the regulated user. emotional intensities, respectively with
above-mentioned conversation. The robotic mood states were observed as the same user
spoke to RobotA and. RobotB. Accordingly, the artificial face reacted with different facial
expressions resulting from mood state transition. Table 4-4 and Table 4-5 list the calculated
robotic mood states (RMy) and simulated facial expressions corresponding to RobotA and
RobotB respectively. Video clips of this experimental can be found in [85].

Figure 4-5 depicts the mood transition of RobotA' as the above conversation was
performed. The initial mood state of RobotA was set at neutral state (0.61,-0.47), referring to
Fig. 2-2. The mood transition trajectories moved from the fourth quadrant to third, second and
first quadrant in the end. The corresponding facial expressions varied from neutral (#1) to
boredom (#2), sadness (#3), anger (#4), surprise (#5), happiness (#6) and excitement (#7) in
the end. The sharp turning point (#5) in Fig. 4-5 indicates that RobotA recognized the
subject’s emotional state varied rapidly from anger to happiness. Figure 4-6 shows the mood
transition of RobotB as the same emotional conversation was performed. The initial mood
state of RobotB was also set on neutral state. The corresponding facial expressions varied
from neutral (#1) to sleepiness (#2, #3), boredom (#4), sadness (#5), boredom (#6) and then

near neutral in the end. Compared with Fig. 4-5, the robotic mood transition of passive trait is
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Table 4-4: Facial expressions for the RobotA.

k 1 5 9 13 17 21
RMy (0.61, -0.47) (0.81, -0.57) (0.79, -0.98) (0.64, -0.98) (0.41, -0.81) (0.15,-0.54)
Facial
expression
k 25 29 33 37 41 45
RM; (-0.14, -0.17) (-0.47, 0.29) (-0.70, 0.46) (-0.99, 0.82) (-0.92, 0.90) (-0.58, 0.90)
Facial
expression
k 49 53 57 61 65 69
RM, (-0.25, 0.90) (0.09, 0.90) (0.76, 0.90) (1, 0.99)
Facial
expression
Table 4-5: Facial expressions for the RobotB:
k 1 5 9 13 17 21
RM, (0.61,-0.47) (0.73,-0.44) (0.71,-0.33) (0.62, -0.32) (0.49, -0.36) (0.34, -0.44)
Facial —~
i Y o
expression
k 25 29 33 37 41 45
RM; (0.17, -0.54) (-0.02, -0.66) (-0.15,-0.71) (-0.33,-0.81) (-0.31, -0.83) (-0.11, -0.83)
Facial
expression
k 49 53 57 61 65 69
RM; (0.09, -0.83) (0.28, -0.83) (0.48, -0.83) (0.67, -0.83) (0.91, -0.85) (1, -0.93)
Facial
expression
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basically in the regions of boredom, sad and neutral emotion. It stayed almost destructive no
matter what kind of the subject’s emotional states came into play. On the contrary, the robotic
mood transition of active trait scattered in whole emotional space. These features manifest the
difference in characters between active and passive traits. This experiment reveals that the
proposed mood transition scheme is able to realize robotic emotional behavior with different
personality trait. Video clips of the mood transition for RobotA and RobotB can be found in

[86].
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Fig. 4-5: Robotic:moeod-transition of RobotA.
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Figure 4-7 shows the variation of seven fusion weights while the subject uttered to
RobotA. In the emotional conversation, the subject spoke seven dialogues as shown in Table
4-1. The corresponding fusion weights variations of these seven dialogues are shown by seven
sectors in Fig. 4-7. In dialogue #1, the neutral facial expressions dominate the output behavior;
this is reasonable since the subject’s emotional state is neutral. In dialogue #2 and #3, the
weights of sadness gradually increase while the transitions of subject’s emotional states are
from neutral to sad. Next, the sad weight decreases and the surprise weight increases as the
subject feels angry progressively (dialogue #4). In the meantime, the fear weight also
increases to respond to the subject’s angry-expression. After the subject turned to be happy,
the surprise and fear weights‘decrease (dialogue #5) and happy weight increases to dominate
the output behavior.

Figure 4-8 shows. the variation-of seven fusion weights as the subject uttered to RobotB
with the same emotional conversation. In dialogue #3 and #4, the weights of sadness
gradually increase while the transitions of subject’s emotional states are from neutral to sad

and angry. After the subject’s emotional states become happiness, the sad weight decreases

Weig{lt #1  #2 #3 #4 #5 #6 #7
0.81 1
06" —Neutr.al i
Happiness
L/ -y Surprise
IS, =-= Fear
0.41 1N
i \ —&— Sadness
/’ s, =+ Disgust

Angry

0.2r

0 5 10 15 20 25 30 35 40
Time (sec)

Fig. 4-7: Weights variation for RobotA (active trait).
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Fig. 4-8: Weights variation for RobotB (passive trait).

(dialogue #5) and neutral weight-increases to dominate the output behavior. Compared with
RobotA in Fig. 4-7, the personality-of passive trait leads to less behavior variations and gets
into sadness emotion easily although the subject’s emotional states'become happiness. These

features match the emotional tendency for both active and passive traits.

4.1.4 Evaluation of Emetional Interaction Scheme

In this experiment, questionnaire evaluation for the robot mood transition design was
conducted for the emotional conversation performed by the same subject with RobotA,
RobotB and RobotC respectively. Here the emotional response of RobotC was designed such
that it is irrelevant to the proposed emotional interaction method. RobotC just follows facial
expressions as recognized from the subject. The emotional conversation with RobotA,
RobotB and RobotC were recorded on three video clips [85] for questionnaire evaluation. We
used the Big Five factors to evaluate the effectiveness of the proposed robotic emotional
expression generation system.

Twenty subjects of age 20~40 were invited to watch the videos of virtual conversation
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with RobotA, RobotB and RobotC. The invited subjects were asked to answer questionnaires
(see Appendix A) after watching the above videos. In the questionnaire, a subject is asked to
give scores from agreeing to disagreeing about the emotional interactions in the videos. We
then average the scores using scales (0-1) for the RobotA, RobotB and RobotC respectively.
The summary of the experimental results is shown in Fig. 4-9. In the current design, facial
expressions of the animation simulator are presented by direct control of pure mood transition.
Unlike wording wisdom of human, the readability of facial expressions is related to very
different underlying semantics [87-89]. Although the difference between the designed facial
animation and human facial expression is ebvious, the current design allows an observer to
answer the questionnaires more straightforwardly. The major characteristics of designed
robotic trait (active and passive) are openness, agreeableness and neuroticism. By observing
the openness and agreeableness-factors in Fig. 4-9, both factors are evaluated higher for

RobotA than those of RobotB. It reveals that RobotA is recognized to have more tendencies to
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Fig. 4-9: Questionary result of psychological impact.
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react and interact with human than RobotB. Moreover, the neuroticism factor of RobotB is
evaluated to be higher than that of RobotA. It indicates that the passive pessimist is indeed
more inclined to experience negative thoughts than active trait. These results conform to the
designed personality in Table 4-3.

As mentioned, RobotC only copies the subject’s facial expressions without any mood
transition discussed in this work. In other words, the detected Big Five factors of RobotC only
show the subject’s personality. In order to verify the difference between robots with the
proposed mood transition scheme (RobotA and RobotB) and without it (RobotC), the same 20
subjects answered the questionnaire after watching the videos in [85]. In the questionnaire, a
subject is asked to give scores from agreeing to.disagree about the degree of natural or
artificial interactions in the videos. The summary of the experimental results is shown in Fig.
4-10. Based on the item of natural-vs: artificialuin Fig. 4-10, RobotA and RobotB both behave
more naturally than'RobotC. It shows that the proposed mood transition method enables the
robot to behave in a human-like manner.

Table 4-6 shows:the average values of 20 questionnaire surveys and Table 4-7 shows the
corresponding standard deviation of questionnaire result. In Table 4-6, the personality
parameters of RobotA and RobotB are estimated as (0.68, 0.19) and (0.43, -0.22), respectively.
By comparing with the designed personality in Table 4-3, we see that the personality

parameters of RobotA and RobotB are (0.34, 0.24) and (0.20, -0.07), respectively. It is seen

Natural vs. Artificial
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Fig. 4-10: Questionary result of Natural vs. Artificial.
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Table 4-6: Estimation of personality parameters by questionnaire survey.

RobotA RobotB
Openness 0.74 0.31
Conscientiousness 0.73 0.48
Extraversion 0.78 0.23
Agreeableness 0.79 0.42
Neuroticism 0.27 0.69
(P Pp) (0.68, 0.19) (0.43,-0.22)

Table 4-7: Standard deviation of questionnaire results.

RobotA RobotB RobotC
Openness 0.16 0.20 0.24
Conscientiousness 0.14 0.21 0.23
Extraversion 0:11 0.13 0.20
Agreeableness 0.15 0.21 0.26
Neuroticism 0.16 0.30 0.29

that both P, values (0.34 and 0.20) of designed RobotA and RobotB are proportional to the
estimated P, values (0.68 and 0.43) in Table 4-6, respectively. These results are represented as
shown in Fig. 4-11. It reveals that both the designed and estimated mood transition velocities
of RobotA are about 1.6 times (0.68/0.43 and 0.34/0.20) those of RobotB on the P,- Pgaxes.
In another word, both designed and estimated RobotA are happier easily than RobotB with a
similar ratio. Furthermore, both of the designed and estimated Ps values of RobotB are
negative. It indicates that both the designed and estimated RobotA will tend to arousal and
RobotB will tend to sleepiness while the same user’s emotional intensity is imported. Hence
the estimated results of robot personality parameters are consistent with the designed
personality scales in Table 4-3. Based on the experimental results, it can be concluded that a
robot can be designed with a desired personality and differently designed robotic personalities
give distinct interactive behaviors. Moreover, the emotional robots behave more human-like

interaction.
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Fig. 4-11: Representation of robot.personality parameters.

4.2 Experiments.on Bimoedal Information Fusion Algorithm

In contrast to many existing-visual-only or audio-only databases for benchmark testing
[90], there is hardly"a'database that combines both visual and audio information. Martin et al.
[91] built an audio-visual emotion database by using a digital video camera. However, the
resolution of the camera is too high to be applied for practical pet=robot scenarios, where very
often low-cost vision sensors are adopted. Therefore, we built our own database from lab
members using off-the-shelf COMS image sensor-and PC microphone.

A DSP-based system has been designed and constructed for the experiments, for both
building the database and experimental evaluation. As shown in Fig. 3-2, a user presents his
facial expressions in front of the CMOS image sensor and speaks to the microphone. After
acquiring both facial and speech signals, the DSP system begins to process the visual and
audio information. There are five emotional expressions in the built-up database as described.
Figure 4-12 shows part of the database. Currently, the database includes fourteen persons and
every one of them expresses their emotions ten times in each emotion category. So there are
140 data samples. In the off-line experiments, we randomly selected 70 data samples as

training samples and the other 70 data samples were used as test samples.
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Fig. 4-12: Examples of database.

4.2.1 Off-line Experimental Results

Table 4-8 shows the experimental results of five emotional categories using only the
speech features. The average recognition rate is 73.7%. Table 49 shows the experimental
results of five emotional categories using image features. The average recognition rate is
81.7%. The recognition rates of using the proposed bimodal information fusion algorithm to

combine both visual and speech features are shown in‘Table 4-10. The recognition rate of the

Table 4-8: Experimental results using speech features.

Output ...
Anger Happiness Neutral  Sadness Surprise Recognition
Input Rate
Anger 48 12 5 3 2 68.6%
Happiness 8 43 6 10 3 61.4%
Neutral 5 9 48 5 3 68.6%
Sadness 2 6 3 59 0 82.9%
Surprise 0 1 7 1 61 87.1%
Average 73.7%
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Table 4-9: Experimental results using image features.

Output o
) ) Recognition
Anger Happiness Neutral  Sadness Surprise R
ate
Input
Anger 53 3 7 6 1 75.7%
Happiness 2 57 11 0 0 81.4%
Neutral 9 7 48 0 68.6%
Sadness 1 1 62 0 88.6%
Surprise 1 1 0 66 94.3%
Average 81.7%
Table 4-10 Experimental results using information fusion.
Output .
. . Recognition
Anger Happiness Neutral “Sadness Surprise Rat
ate
Input
Anger 60 3 4 2 1 85.7%
Happiness 3 59 0 84.3%
Neutral 6 9 52 1 74.3%
Sadness 1 1 3 65 0 92.9%
Surprise 0 2 0 0 68 97.1%
Average 86.9%

Further, on-line experiments were carried out using the developed DSP-based emotion

single mode approach.

4.2.2 On-line Experimental Results

71

combined bimodal information is.86.9%. A~5% improvement of the recognition rate is
achieved relative to the facial feature and 13% improvement relative to the speech features. It

can be seen that the recognition rate of the combined bimodal approach is higher than any

recognition system. The training of SVM hyperplane was performed off-line on a PC using
the constructed database. The trained parameters of the hyperplane were then transferred and

stored in the DSP system for on-line test. In the test, a person presents his/her face in front of



the CMOS image sensor and speaks to the microphone, and DSP system will return the
emotion category in two seconds. We invited five new persons to join the on-line experiments.
Every person expressed ten times the emotion category with facial expression and voice. The
recognition result of using only image information is shown in Table 4-11. The average
recognition rate is 74.4%. Table 4-12 shows the bimodal emotion recognition rate of the
on-line test. The average recognition rate is 77.6%. The experimental results verify that the
proposed method can work effectively in on-line applications. The recognition rate of on-line
test is lower than the off-line result. This is mainly due to the image noise in the on-line test.

Also, the test samples are new faces and voices, the recognition rate is thus lower than the

off-line results.

Table 4-11: On-line experimental results using only image features.

Output o
Anger  Happiness Neutral® Sadness Surprise Recognition
Input Rate
Anger 40 1 8 0 1 80%
Happiness 3 38 9 0 76%
Neutral 1 10 34 1 68%
Sadness 1 4 14 30 1 60%
Surprise 0 3 1 44 88%
Average 74.4%
Table 4-12: On-line experimental results using information fusion.
Output o
) ) Recognition
Anger Happiness Neutral  Sadness Surprise Rate
Input

Anger 41 1 7 0 1 82%
Happiness 1 38 2 76%
Neutral 2 10 35 2 1 70%
Sadness 1 1 14 34 0 68%
Surprise 0 2 2 0 46 92%
Average 77.6%
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4.3 Experiments on Speech-signal-based Emotion Recognition

The performance of the proposed emotional voice recognition system was evaluated
using a self-built database. Furthermore, experimental study of the proposed system was

performed by integrating the DSP-based system into an entertainment robot.

4.3.1 Experiments Using the Self-built Database

The proposed emotion recognition system was tested using a speech database built in the
ISCI lab of National Chiao Tung University. There are five categories of emotional speech in
the database: happiness, sadness, surprise, anger and neutral. For each category, there are
three kinds of different sentences. In order to express the emotion in a natural way, each
subject was asked to narrate expressive sentences, in Chinese, to imitate an actual interactive
scenario. Table 4-13 lists the meaning of -each.sentence, in English. Currently, the database
includes various emotional utterances from five persons. Each person recorded each sentence
six times, so there are 90 utterances per emotion category and 450 utterances in total, in this
database. In the following experiments, 45 data samples were randomly selected as training

data for each emotional category and the other 45 data samples were used as test data. Part of

Table 4-13: Meaning of sentence content for five emotional categories.
Emotional category Content of sentence

1. How can you do that without my agreement?
2. It’s none of your business.

Anger L
3. What you are doing is wrong!
1. It’s almost new year!
Happiness 2. I will go abroad on vacation tomorrow.

3. I won the lottery!

. It’s a sunny day.
Neutral . I have something to do later.
3. Are you hungry?

[N

1. My cat is lost.
2.1 got a cold.
3. Everything went without a hitch today.

Sadness

—

. Are you serious?
Surprise 2.1 can’t believe that it really happened.
. Ah! My notebook is lost.

98]
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the voice clips of the database can be found in [92].

In order to compare the effect of speech features, fundamental frequency and short-time
energy features, the emotion is first evaluated between any two emotional categories. Figure
4-13 shows the experimental results of the SVM classification of any two emotional
categories. There are ten combinations of any two emotional expressions. It is seen that the
recognition rates for these nine combinations are higher than 85%. The recognition rate of
neutral vs. sadness (A vs. E) is the lowest, mainly due to the small prosodic variation between
neutral and sad speech utterances. The other recognition rates lie between 85% and 96%. The
average recognition rate is 89.2%. This indicates that the proposed statistical features can
represent emotional characteristics properly.

The hierarchical SVM c¢lassifier (shown as Fig. 3-21) was then employed to recognize
five emotional categories. In the experiments, the SVM classifier was trained using a set of 45
data samples for each emotional category. These 45 data samples came from five persons,
with each person contributing three samples of each emotional sentence. The other 45 data
samples were tested for recognition of the emotion category. The test results are presented in

Table 4-14. The average recognition rate for the five emotional expressions is 73.78%. It is

%

100
96% 96% 96%
95
s
=
2 85} ]
3 85% 85%
g
3 80t A: Neutral
A B: Happiness
75 78% C: Anger
] D: Surprise
E: Sadness
70 . L

A A A A B B B C Cc D
VS. VS. VS. VS. VS. VS. VS. VS. VS. Vs.
B C D E C D E D E E

Fig. 4-13: Experimental results of recognition rate for any two emotional categories.
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noted that anger can be classified as surprise. It is due to the similar speech rates and tones of
these two kinds of sentences in the self-built database. Moreover, the accent and noise of the
voice influence the classification results a lot. We will take these factors into consideration in

future work.

4.3.2 Experiments with the Entertainment Robot

In this study, we aim to develop an entertainment robot suitable as a children’s toy. In
such a robotic application, fast response to natural speech signal is required. Therefore, a
simple entertainment robot is built to verify the proposed natural speech signal emotion
recognition algorithm. The. complete” emotion recognition system was integrated into the
self-constructed entertainment robot. Figure 4-14 shows a block diagram of the implemented
interaction control system on therobot.

In the experiment, a user speaks in front of the robot, as shown in Fig. 3-22. After
acquiring the speech signals, the emotion recognition system begins to process the audio
information. When no human, speech is detected; the robot manifests a bored behavior by
turning its head to look around. When a user says “hello” to the robot, with neutral emotion,
the robot raises its hands to respond to the user. If a happy emotion from the user is detected,
the robot rotates its ears and raises its hands to show a happy gesture. When the user

expresses anger to the robot, the robot puts its hands down to portray fear. However, the robot

Table 4-14: Experimental results of recognizing five emotional categories.

Output ] ) Recognition
Anger  Happiness Neutral Sadness  Surprise
Input rate

Anger 30 0 3 4 8 66.67%
Happiness 1 37 3 4 0 82.22%
Neutral 1 6 35 3 0 77.78%
Sadness 0 4 6 30 5 66.67%
Surprise 5 2 1 3 34 75.56%

Average 73.78%
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. Neutral
—(Robot raises its hands.)<

(
§ down.

] Surprise
Robot shakes its head. ‘

Surprise

Robot puts down its
hands slowly.

Fig. 4+14: Block diagram of the emotional interaction system.

shakes its head if surprise is detected from the user. Figure 4-15 shows the interaction
responses of the robot when the user said; “l.am angry!”, with an.angry tone. After that, the
user used a surprisertone to the robot. As shown-in Fig. 4-16, the robot shook its head in
response to the recognized emotional state. The experimental results verify that the proposed
emotion recognition system allows the robot to interact with a user in a natural and friendly
manner. A video clip of the experimental results can be found in [93]. In the future, a fast

system will be further studied to recognize human’s emotional speech and interact in a more

(b)

Fig. 4-15: Interactive response of the robot as the user says, “I am angry!” (a) The robot puts down its

hands to portray fear. (b) The robot continues to put down its hands to the lowest position. (c) The

robot raises its hands back to the original position.
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Fig. 4-16: Interactive response of the robot, when the user speaks in a surprised tone. (a) The robot
shakes its head to the right. (b) The robot shakes its head to the left. (¢c) The robot puts its head back to

the original position.

humanlike manner. Some suitable psychological findings will also be considered to apply to

the emotional robotic system.

4.4 Experiments on Image-based Emotional State Recognition

In this design, the user’s emotional state (¢£; ) 1s used as input to the system. In order to
obtain yE”, an image-based facial expression recognition.module has been designed and
implemented. The facial expression recognition module consists. of face detection stage,
feature extraction stage and emotional intensity analyzer. ‘The method of facial feature
extraction is descripted.in 3.1.1. After obtaining the facial feature points, twelve significant
feature values, which are distances between two selected feature points. In order to reduce the
influence of distance between a user and the camera, these feature values are normalized for
emotion recognition. Thus, every facial expression is presented as a feature set.

To recognize user’s emotional states, we further developed an image-based method to

extract facial expression intensity. Four feature vectors, namely, F, , Fj,, F e and F,,6 are

defined to represent the standard neutral, happy, angry and sad expressions. Dissimilarities

between current feature set of a user (7, ,) and the standard facial expressions are calculated

such that:

dyi= ||FU FNeu 4.1

ser .k
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dyy = HFUser,k = Fi, (4.2)
d= HFbtvey.k _FAng (4.3)
dg, = HFLker_k - F?ad > (4.4)

where dy k, dik, dix and ds xrepresent respectively, the dissimilarities between the feature set
of user and the defined standard neutral, happy, angry and sad expression at sampling instant k.
I'I represents the Euclidean distance. In our design, the intensity of user’s emotion is
recognized as the standard facial expression while the dissimilarities between the current
feature set and standard facial expression-is-small. Therefore, the user’s emotional intensities

UE! are calculated such that:

-1
wel, = Dy (4.5)

d -1
ue = - 4H d - — (4.6)
’ dN,k + dH,k + dA,k + dS,k

o
uely, =—— _IA’k = - 4.7)
dN,k + dH,k + dA,k + dS,k

d -1
l/le;’k = 3 71S‘k 3 4 B (48)
dN,k + dH.k + dA,k + dS,k

. h .
where uey, , wue, , uej, andwue;, represent respectively, the n" user’s emotional

intensities at sampling instant k& for neutral, happy, angry and sad expressions. By using this
procedure, the user’s emotional state is represented as a set of four emotional intensities.

In this section, Cohn-Kanade AU-Coded Facial Expression Database [94] is used to
verify the proposed method of emotional state recognition. Twenty-four sets of facial images
of different basic facial expressions were selected as training data. Each set contains 7 facial
images of a particular emotion with various facial expressions. 60 face images of different
basic facial expressions were selected as test data. To compare the system with ground truth,
we choose the strongest emotion as recognition results. The result of this experiment is shown

in Table 4-15. The average recognition rate is 90%.
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Table 4-15: Test result of emotion state recognition.

=

Output e o

S S T

Input - & e g
Neutral 13 1 0 1 87%
Anger 0 15 0 0 100%
Happiness 2 0 13 0 87%
Sadness 1 1 0 13 87%

Figure 4-17 shows an example of emotional state recognition. In this example, neutral,
happy, angry and sad facial expressions are used as testing samples. In Fig. 4-17(a), fourteen
dot marks represent the extracted feature points for facial expression recognition. The
emotional intensities are obtained using (4.5)-(4.8). As shown in Fig. 4-17(a), the ratio of the
neutral component amounts to 54%; which-dominates the facial expression, although the other
emotion components also contribute to the facial expression. Similar results are obtained as

shown in Figs. 4-17(b)-(d).

54%Neutral 15%Neutral
11%Happiness 65%Happiness
17%Anger 11%Anger
18%Sadness 9%Sadness
15%Neutral 8%Neutral
10%Happiness 9%Happiness
57% Anger 14% Anger
18%Sadness 69%Sadness

(©) (d)

Fig. 4-17 Examples of user emotional state recognition.

79



4.5 Summary

In the part of robotic emotion generation, experimental results reveal that the simulated
artificial face interacts with people in a manner of mood transition and with robotic
personality. The questionnaire investigation confirms positive results on the evaluation of
responsive robotic facial expressions generated by the proposed design. In the part of human
emotion recognition, the experimental results of proposed bimodal emotion recognition
system show that an average recognition rate of 86.9% is achieved, a 5% improvement
compared to using only image information. On the other side, the experimental results of
speech-signal-based emotion recognition for the entertainment robot show that the robot
interacts with a person in a <tesponsive manner. The average recognition rate for five

emotional states is 73.8% using the database construeted in the authors’ lab.
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Chapter 5

Conclusions and Future Work

5.1 Dissertation Summary

In this work, a robotic mood transition model for autonomous emotional interaction has
been developed. An emotional model is proposed for mood state transition exploiting a
robotic personality approach. By adopting Big Five factors to represent robot personality in
the 2-D emotional model, one is able to generate facial expressions in a more natural manner.
The behavior fusion architecture with a designed rule table provides a robot the capability to
generate emotional interactions. Experimental results on the artificial face show that the robot
interacts with people with suitable mood transition and a kind of robotic personality. The
questionnaire investigation confirms positive results on the evaluation of responsive robotic
facial expressions generated by the proposed design:

For the bimodal informationfusion algorithm, the proposed bimodal fusion scheme and
statistically-determined fusion weights computed from individual modality effectively
increase the recognition accuracy. Practical experiments have been carried out using a
stand-alone robotic vision system. With a self-built database of fourteen persons, the proposed
system achieves a recognition rate of 86.9%. For the proposed speech-signal-based emotion
recognition, the emotion recognition system developed classifies five emotional categories, in
real time. Experimental results using an entertainment robot show that the robot can interact
with a user in a responsive manner, using the developed speech signal recognition system.
Using a database built in the lab, the proposed system achieves an average recognition rate of

73.8% for five emotional states.
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5.2 Future Directions

1)

2)

3)

4)

Some directions deserve further study in the future:

More comparisons with other emotional models will be further studied. It will be
interesting to investigate different models for robotic emotion generation and evaluate

their emotional intelligence with practical experiments.

For human emotion recognition, it is suggested to focus on the development of robust
algorithms to deal with more natural visual and audio signals. Methods to extract more
reliable features of both visual and audio modalities will also be investigated to improve
the performance. The direct fusion of both visual and audio features is considered for the

future to overcome the incomplete problem.

Because the voice signal must-be acquired.using the embedded system, it is difficult to
establish a benchmark to evaluate the developed recognition algorithm. In the future, a
method to extract key phrases in an utterance will ‘be investigated, to increase the
recognition rate.rThe emotional state can be estimated more directly from the speech

signal, than from the extracted statistical features of the ' whole voice frame.

In this study, all participants in our.experiment are aware of the test. It belongs to intrusive

testing. Other types of testing can be studied in the future.
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Appendix A

Evaluation Questionary of Emotional Interaction

Part I. Evaluation of Big Five Personality Traits

1. Openness:

Open mindedness, interest in culture.

L.ow openness

Conservative, lack of

interests, non-artistic,

non-analytic

-3 -2 -1
Robot A ] [ ]
Robot B ~ [ ] T
Robot C Y | 4 =

2. Conscientiousness:

Organized, persistent in achieving goals.

Low Conscientiousness

Lack of goals, unreliable,
lazy, careless, lax, hedonism,

casual, lack of motivation at

work
3 B B
Robot A [] (] []
Robot B ] [ ] []
Robot C ] L] [ ]
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High openness
Curious, broad range of

interests, creative,

imaginative, nontraditional

[l [ | <
R il §
IR
oo

High Conscientiousness
Organizational power, reliable,

enthusiastic, self-regulation,
punctuality, moral principles,

orderly, enthusiasm, perseverance

oooge
ooo-=
oo
oo



3. Extraversion:

Preference for and behavior in social situations.

Low Extraversion High Extraversion

Reserved, indifference, Highly social, active,

not enthusiastic, serious, talkative, people-oriented,

task-oriented, shy, quiet optimistic, love-enjoyable,

s
-3 -2 -1 0 1 2 3

Robot A L] L] L] L] L] L] L]
Robot B [l [] [] L] L] L] L]
Robot C [l [ [ ] L] L] L] L]

4. Agreeableness:

Tend to be compassionatejand-cooperative rather than suspicious and antagonistic

towards others

Low Agreeableness High Agreeableness

Serious, rough, suspicious, Warm, good-natured, reliable, willing

uncooperative, vengeful, ruthless; tochelp, forgivable, willing to believe,

irritable, hypoeritical straight

-3 -2 -1 0 1 2 3

Robot A [] [] ] [] [] [] []
Robot B [ ] [] [] ] ] [] []
Robot C [ [] [] [] [] [] []

5. Neuroticism:

Tend to experience negative thoughts.

Low Neuroticism High Neuroticism
Calm, relaxing, non-emotional, Anxious, nervous, emotional,
courageous, safe, self-satisfied msecure, non-adaptive,
depressed
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-3 -2 -1 0 | 2
Robot A L] [] [] L] [] L]
Robot B [] [] [] [] [] ]
Robot C L] [] [] L] [] []

Part II. Evaluation of Feasibility for Social Robot

1. Artificial vs. Natual

oo ®

Artificial Neutral
Deliberated, contrive, Graceful, genuine,
exaggerated, unsmoothed comfortable, smooth

-3 -2 -1 0 1 2 3
Robot A [] L] - [] [] [] [
Robot B = L | [] [ ] - [] [
Robot C = [] [] [] | [] L]
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