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機器人情感模型及情感辨識設計 

 

學生:韓孟儒                          指導教授:宋開泰 博士 

 

國立交通大學電控工程研究所 

 

摘要 

本論文之主旨在研究機器人情感模型(emotion model)及其互動設計，文中提出一種

擬人化之心情變遷(mood transition)設計方法，提高機器人與人類作自主情感互動之能

力。為使機器人能產生富有類人情感表達之互動行為，本論文提出一個二維的情感模

型，同時考慮機器人之情感(emotion)、心情(mood)與人格特性(personality)等狀態，使產

生擬人化情感反應。在本設計中，機器人之人格特性模型建立係參考心理學家所提出之

五大性格特質(Big Five factor)來達成，而機器人之心情變遷所造成之影響，則可藉由此

五大人格特質參數來決定。 

為能經由連續的互動行為來呈現機器人自主情感狀態，本論文亦提出一種可融合基

本情緒行為之方法，來建立不同心情狀態下之行為表達方式。根據上述之心理學研究成

果，本研究以模糊 Kohonen 群集網路(fuzzy Kohonen clustering networks)之方法，將人格

特性、心情與情緒行為三者整合成一情感模型，使之能具體實現於機器人上。與其他研

究相比，具有客觀之學理依據，而非憑藉研究人員本身主觀經驗來做假設。 

在情感辨識方面，本論文提出結合影像與聲音之雙模情緒辨識以及語音情緒辨識等

二種方法，使機器人可辨識使用者之情緒狀態。在雙模情緒辨識之設計中，論文中提出

基於支持向量機(support vector machine)之分類特性與機率策略，用以決定二種特徵資料
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之融合權重(fusing weights)。融合權重係根據待測資料與切割平面之距離，以及學習樣

本之標準差所決定。而在分類階段，融合權重較高之特徵所辨識之結果，將成為最後系

統辨識之結果。此外，在語音情緒辨識之設計中，本論文提出採用聲音訊號進行處理與

分類。首先，在預處理時先將語音訊號進行端點偵測(end-point detection)以取得音框所

在位置，而後再以統計方式將能量計算成特徵之型態，並以費雪線性辨別分析法(Fisher's 

linear discriminant analysis)來增強辨識率。 

本論文寫作基於 DSP 之影像、語音處理系統驗證所發展的辨識方法，並整合至機

器人上展示與人情感互動的功能。為了評估所開發之情感模型，文中並建立一人臉模擬

器展示情緒表情之變化。為了解所提方法對於使用者之感受，本研究透過觀察人臉模擬

器對使用者之情感表達狀況，以問卷調查方式來作評估。評估結果顯示，受訪者之感受

與原設計目標相符。 
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Student: Meng-Ju Han Advisor: Dr. Kai-Tai Song 

 

Institute of Electrical Control Engineering 

National Chiao Tung University 

 

ABSTRACT 

This thesis aims to develop a robotic emotion model and mood transition method for 

autonomous emotional interaction with human. A two-dimensional (2-D) emotional model is 

proposed to combine robotic emotion, mood and personality in order to generate emotional 

behaviors. In this design, the robot personality is programmed by adjusting the big five factors 

referred from psychology. Using Big Five personality traits, the influence factors of robot 

mood transition are analyzed.  

A method to fuse basic robotic emotional behaviors is proposed in this work in order to 

manifest robotic emotional states via continuous facial expressions. Through reference 

psychological results, we developed the relationships of personality vs. mood transition for 

robotic emotion generation. Based on these relationships, personality, mood transition and 

emotional behaviors have been integrated into the robotic emotion model. Comparing with 

existing models, the proposed method has the merit of having a theoretical basis to support 

the human-robot interaction design. 

In order to recognize the user’s emotional state, both bimodal emotion recognition and 

speech-signal-based emotion recognition methods are studied. In the design of the bimodal 
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emotion recognition system, a novel probabilistic strategy has been proposed for a 

classification design to determine statistically suitable fusing weights for two feature 

modalities. The fusion weights are selected by the distance between test data and the 

classification hyperplane and the standard deviation of training samples. In the latter bimodal 

SVM classification, the recognition result with higher weight is selected.  

In the design of the proposed speech-signal-based emotion recognition method, the 

proposed method uses voice signal processing and classification. Firstly, end-point detection 

and frame setting are accomplished in the pre-processing stage. Then, the statistical features 

of the energy contour are computed. Fisher's linear discriminant analysis (FLDA) is used to 

enhance the recognition rate.  

In this thesis, the proposed emotion recognition methods have been implemented on a 

DSP-based system in order to demonstrate the functionality of human-robot interaction. We 

have realized an artificial face simulator to show the effectiveness of the proposed methods. 

Questionnaire surveys have been carried out to evaluate the effectiveness of the proposed 

emotional model by observing robotic responses to user’s emotional expressions. Evaluation 

results show that the feelings of the testers coincide with the original design.  
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Chapter 1 

 

Introduction 

 

1.1  Motivation 

In recent years, many useful domestic and service robots, including museum guide 

robots, personal companion robots and entertainment robots have been developed for various 

applications [1]. It has been forecasted that edutainment and personal robots will be very 

attractive products in the near future [2-3]. One of the most interesting features of intelligent 

service robots is their human-centered functions. Actually, intelligent interaction with a user is 

a key feature for service robots in healthcare, companion and entertainment applications. For 

a robot to engage in friendly interaction with human, the function of emotional expression 

will play an important role in many real-life application scenarios. However, it is known that 

to make a robot behave human-like emotional expressions is still a challenge in robot design. 

On the other hand, the ability to recognize a user’s emotion is also important in 

human-robot interaction applications. The emotion communicator, Kotohana, developed by 

NEC [4] is a successful example of vocal emotion recognition. Kotohana is a flower-shaped 

terminal equipped with Light Emitting Diodes (LEDs). It can recognize a visitor’s emotional 

speech and respond with a color display to convey the interaction. The terminal responds in a 

lively manner to the detected emotional state, via color variation in the flower. For human 

beings, facial expression and voice reveal a person’s emotion most. They also provide 

important communicative cues during social interaction. A robotic emotion recognition 

system will enhance the interaction between human and robot in a natural manner. Base on 

the above discussion, it is observed that a proper emotion model is desirable in robotic 
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emotional behavior generation. This also motivates us to investigate mood transition 

algorithms based on physiological findings for humans.  

 

1.2  Literature Survey 

Methodologies for developing emotional robotic behaviors have drawn much attention in 

robotic research community [5]. Breazeal et al. [6] presented the sociable robot Leonardo, 

which has an expressive face capable of near human-level expression and possesses a 

binocular vision system to recognize human facial features. The humanoid robot Nexi [7] 

demonstrated a wide range of facial expressions to communicate with people. Wu et al. [8] 

explored the process of self-guided learning of realistic facial expression by a robotic head. 

Mavridis et al. [9-10] developed the Arabic-language conversational android robot; it can 

become an exciting educational or persuasive robot in practical use. Hashimoto et al. [11-12] 

developed a reception robot SAYA to realize realistic speaking and natural interactive 

behaviors with six typical facial expressions. In [13], a singer robot EveR-2 is able to acquire 

visual and speech information, while expressing facial emotion during performing robotic 

singing. For some application scenarios such as persuasive robotics [14] or longer-term 

human-robot interaction [15], interactive facial expression has been demonstrated to be very 

useful. 

There have been increasing interests in the study of robotic emotion generation schemes 

in order to give a robot more human-like behaviors. Reported approaches to emotional robot 

design often adopted results from psychology in order to design robot behaviors to mimic 

human beings. Miwa et al. proposed a mental model to build the robotic emotional state from 

external sensory inputs [16-17]. Duhaut [18] presented a computational model which includes 

emotion and personality in the robotic behaviors. The TAME (Traits, Attributes, Moods, and 

Emotions) framework proposed by Moshkina et al. gives a model of time-varying affective 

response for humanoid robots [19]. Itoh et al. [20] proposed an emotion generation model 



 

 

3

which can assess the robot’s individuality and internal state through mood transitions. Their 

experiments showed that the robot could provide more human-like communications to users 

based on the emotional model. Banik et al. [21] demonstrated an emotion-based task sharing 

approach to a cooperative multi-agent robotic system. Their approach can give a robot a kind 

of personality through accumulation of past emotional experience. Park et al. [22] developed 

a hybrid emotion generation architecture. They proposed a robot personality model based on 

human personality factors to generate robotic interactions. Kim et al. [23] utilized the 

probability-based computational algorithm to develop the cognitive appraisal theory for 

designing artificial emotion generation systems. Their method was applied to a sample of 

interactive tasks and led to a more positive human–robot interaction experience. In order to 

allow a robot to express complex emotion, Lee et al. [24] proposed a general behavior 

generation procedure for emotional robots. It features behavior combination functions to 

express complex and gradational emotions. In [25], a design of autonomous robotic facial 

expression generation is presented. 

Previous related works show abundant tools for designing emotional robots. It is 

observed, however, that a proper mood state transition plays a key role in robotic emotional 

behavior generation. Robotic mood transition from current to next mood state directly 

influences the interaction behavior of robot and also a user’s feeling to the robot. Most 

existing models treat mood transition by simple and intuitive representations. These 

representations lack a theoretical basis to support the assumptions for their mood state 

transition design. This motivated us to investigate a human-like mood transition model for a 

robot by adopting well-studied mood state conversion criteria from psychological findings. 

The transition among mood states would become smoother and thus might enable a robot to 

respond with more natural emotional expressions. We further combine personality into the 

robotic mood model to represent the trait of individual robot. 

In order to manifest emotional intelligence of a robot, responsive interaction behaviors 



 

 

4

need to be designed. The relationship between mood states and responding behavior of a robot 

should not be a fixed, one-to-one relation. A continuous robotic facial expression would be 

more interesting and natural to manifest the mood state transition. Instead of being arbitrary 

defined, the relationships between robot emotional behaviors (e.g. in a form of facial 

expression) and mood state can be modeled from psychological analysis and utilized to build 

the interaction patterns in the design of expressive behaviors.  

To respond to a user sensationally, a robot needs first to understand the user’s emotion 

state. There are many approaches to building-up a robotic emotion recognition system. The 

majority of studies focus on image-based facial expression recognition [26-27]. Approaches 

using speech signal processing have also been investigated for sociable robotics [28-29]. 

Recently, there has been an increasing interest in audio-visual biometrics [30]. The 

combination of audio and visual information provides more reliable estimate of emotional 

states. The complementary relationship of these two modalities makes a recognition decision 

more accurate than using only a single modality. De Silva et al. [31] proposed to process 

audio and visual data separately. They have shown that some emotional states are visual 

dominant and some are audio dominant. They exploited this observation to recognize emotion 

efficiently by assigning a weight matrix to each emotion state. In [32], De Silva combined the 

audio and visual features using a rule-based technique to obtain improved recognition results. 

Rather simple rules were used in his design. For example, a rule is such that if a sample has 

been classified as certain emotion by both audio and visual processing methods, then the final 

result is that emotion. If samples have been classified differently by audio and visual analyses, 

the dominant mode is used as the emotion decision. Negative emotional expressions, such as 

anger and sadness, were assigned to be audio dominant, while joy and surprise were assigned 

to be visual dominant. Go et al. [33] combined audio and visual features directly to recognize 

different emotions using a neural network classifier. However, they did not give comparative 

experimental results between using bimodal and single modality. Wang et al. [34] proposed to 
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use cascade audio and visual feature data to classify variant emotions. They built 

one-against-all (OAA) linear discriminant analysis (LDA) classifiers for each emotion state 

and computed the probability of each emotion type. They set two rules in the decision module 

with several multi-class classifiers to determine the most possible emotion. 

It is clear that audio and visual information are related to each other. In many situations, 

they offer complementary effect for recognizing emotion states. However, current related 

works do not deal with the robustness of emotion classification of such bimodal systems. 

Existing approaches to combining audio-visual information employ some straightforward and 

simple rules. The reliability of individual modality is not taken into consideration in the 

decision stage. One solution to this problem is that the classifier output is a calibrated 

posterior probability P(class|input) to perform post-processing. Platt [35] proposed a 

probabilistic support vector machine (SVM) to produce a calibrated posterior probability. The 

method trained parameters of a sigmoid function to map SVM outputs into probabilities. 

Although this method is valid to estimate the posterior probability, a sigmoid function cannot 

represent all the modals of SVM outputs. In this study, we develop a new method for reliable 

emotion recognition utilizing audio-visual information. We emphasize the decision 

mechanism of the recognition procedure when fusing visual and audio information. By setting 

proper weights to each modality based on their recognition reliability, a more accurate 

recognition decision can be obtained.  

In the design of emotion recognition systems that use speech signals, most methods 

employ vocal features, including the statistics of fundamental frequency, energy contour, 

duration of silence and voice quality [36]. In order to improve the recognition rate when more 

than two emotional categories are to be classified, Nwe et al. [37] used short time log 

frequency power coefficients (LFPC) to represent speech signals and a discrete hidden 

Markov model (HMM) as the classifier. Based on the assumption that the pitch contour has a 

Gaussian distribution, Hyun et al. [38] proposed a Bayesian classifier for emotion recognition 
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in speech information. They reported that the zero value of a pitch contour causes errors in the 

Gaussian distribution and proposed a non-zero-pitch method for speech feature extraction. 

Pao and Chen [39] used 16-bit linear predictive coding (LPC) and twenty Mel-frequency 

cepstral coefficients (MFCC) to identify the emotional state of a speaker. Five emotional 

categories were classified using the minimum-distance method and the nearest mean classifier. 

Neiberg et al. [40] modeled the pitch feature by using standard MFCC and MFCC-low, which 

is calculated between 20 and 300 Hz. Their experiments showed that MFCC-low 

outperformed the pitch features. 

You et al. [41] indicated that the effectiveness of principal component analysis (PCA) 

and linear discriminant analysis (LDA) is limited by their underlying assumption that the data 

is in a linear subspace. For nonlinear structures, these methods fail to detect the real number 

of degrees of freedom of the data, so they proposed the method of Lipschitz embedding [42]. 

The method is not limited by an underlying assumption that the data belong to a linear 

subspace, so it can analyze the speech signal in more practical situations. Schuller et al. [29] 

considered an initially large set of more than 200 features; they ranked the statistical features 

according to LDA results and selected important features by ranking statistical features. 

Chuang and Wu [43] showed that the contours of the fundamental frequency and energy are 

not smooth. In order to remove discontinuities in the contour, they used the Legendre 

polynomial technique to smooth the contours of these features. Their feature extraction 

procedures firstly estimated the fundamental frequency, energy, formant 1 (F1) and 

zero-crossing rate. From these four features, the feature values are transformed to 33 

statistical features. PCA was then used to select 14 principal components from these 33 

statistical features, for the analysis of emotional speech. Busso et al. [44] indicated that gross 

fundamental frequency contour statistics, such as mean, maximum, minimum and range, are 

more emotionally prominent than features that describe the shape of the fundamental 

frequency. Using psychoacoustic harmony perception from music theory, Yang et al. [45] 
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proposed a new set of harmony features for speech emotion recognition. They reported 

improved recognition by the use of harmony parameters and state of the art features. 

For robotics applications, Li et al. [46] developed a prototype chatting robot, which can 

communicate with a user in a speech dialogue. The recognition of the speech emotion of a 

specific person was successful for two emotional categories. Kim et al. [47] focused on 

speech emotion recognition for a thinking robot. They proposed a speaker-independent feature, 

namely the ratio of a spectral flatness measure to a spectral center, to solve the problem of 

diverse interactive users. Similarly, Park et al. [48] also studied the issue of service robots 

interacting with diverse users who are in various emotional states. Acoustically similar 

characteristics between emotions and variable speaker characteristics, caused by different 

users’ style of speech, may degrade the accuracy of speech emotion recognition. They 

proposed feature vector classification for speech emotion recognition, to improve 

performance in service robots. 

For practical application, several important problems exist. Firstly, a robust speech signal 

acquisition system must be built on the front end of the design. It is also required that the 

robot is equipped with a stand-alone system for realistic human-robot interaction. One of the 

greatest challenges in emotion recognition for robotic applications is the performance required 

for nature and daily life environments.  

 

1.3  Research Objectives and Contributions 

The objective of this thesis is to develop a robot emotion model in order to interact with 

people emotionally. A two-dimensional (2-D) emotional model is proposed to represent robot 

emotion, mood transition and personality in order to generate human-like emotional 

expressions. In this design, the robot personality is programmed by adjusting the factors of the 

Five Factors model proposed by psychologists. From Big Five personality traits, the influence 

factors of robot mood transition are determined.  
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A method to fuse on basic robotic emotional behaviors is proposed in order to manifest 

robotic emotional states via continuous facial expressions. An artificial face on a screen is an 

effective way to evaluate a robot with a human-like appearance. An artificial face simulator 

has been implemented to show the effectiveness of the proposed methods. Questionnaire 

surveys have been carried out to evaluate the effectiveness of the proposed method by 

observing robotic responses to user’s emotional expressions. Preliminary experimental results 

on a robotic head show that the proposed mood state transition scheme appropriately responds 

to a user’s emotional changes in a continuous manner. 

The second part of this thesis aims to develop suitable emotion recognition methods for 

human-robot interaction. A bimodal emotion recognition method was proposed in this thesis. 

In the design of the bimodal emotion recognition system, a probabilistic strategy has been 

studied for a support vector machine (SVM)-based classification design to assign statistically 

selected fusing weights to two feature modalities. The fusion weights are determined by the 

distance between test data and the classification hyperplane and the standard deviation of 

training samples. In the latter bimodal SVM classification, the recognition result with higher 

weight is selected.  

In the design of the speech-signal-based emotion recognition method, speech signals are 

used to recognize several basic human emotional states. The proposed method uses voice 

signal processing and classification. In order to determine the effectiveness of emotional 

human-robot interaction, an embedded system was constructed and integrated with a self-built 

entertainment robot.  

 

1.4  Organization of the Thesis 

Figure 1-1 shows the organization of this thesis. In Chapter 2, a novel robotic emotion 

generation system is developed based-on mood transition model. A robotic mood state 
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generation algorithm is proposed using a two-dimensional emotional model. An interactive 

emotional behaviors generation is then proposed to generate an unlimited number of 

emotional expressions by fusing seven basic facial expressions. In Chapter 3, several human 

emotion recognition methods are developed to provide user’s emotional state. Here bimodal 

information fusion algorithm and speech-signal-based emotion recognition method are 

proposed for human-robot interaction. Simulation and experimental results of the proposed 

robotic emotion generation system and the proposed human emotion recognition methods are 

reported and discussed in Chapter 4. Chapter 5 concludes the contributions of this work and 

provides the recommendations for future research. 

 

Human Emotion Recognition

Chapter 3

Bimodal 

Information 

Fusion Algorithm

Speech-signal-

based Emotion 

Recognition

Robotic Emotional State 

Modeling

Chapter 2

Robotic Mood 

Transition Model

Emotional Behaviors 

Generation

Artificial Face and 

Robotic Head

Chapter 4

User’s Emotional 

State

 

Fig. 1-1: Structure of the thesis. 
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Chapter 2 

 

Robotic Emotion Model and Emotional State 

Generation 

 

Figure 2-1 shows the block diagram of the proposed autonomous emotional interaction 

system (AEIS). Taking a robotic facial expression as the emotion behavior, the robotic 

interaction is expected not only to react to user’s emotional state, but also to reflect the mood 

state of the robot itself. We attempt to integrate three modules to construct the AEIS, namely, 

user emotional state recognizer, robotic mood state generator and emotional behavior decision 

maker. An artificial face is employed to demonstrate the effectiveness of the design. A camera 

is provided to capture the user’s face in front of the robot. The acquired images are sent to the 

image processing stage for emotional state recognition [49]. The user emotional state 

recognizer is responsible for obtaining user’s emotional state and its intensity. In this design, 

user’s emotional state at instant k ( n

k
UE ) is recognized and represented as a vector of four  

 

βα PP ,

),(
kkk

RM βα=

kk
βα ΔΔ ,

n

k
UE

1−kRM

 

Fig. 2-1: Block diagram of the autonomous emotional interaction system (AEIS). 
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emotional intensities: neutral ( n

kN
ue

,

), happy ( n

kH
ue

,

), angry ( n

kA
ue

,

) and sad ( n

kS
ue

,

). Several 

existent emotional intensity estimation methods [50-53] provide effective tools to recognize 

the intensity of human’s emotional state. Their results can be applied and combined into the 

AEIS.  

In this work, an image-based emotional intensity recognition module (see 4.5) has been 

designed and implemented for current design of AEIS. The recognized emotional intensity 

consists of basic emotional categories at each sampling instant and is represented by a value 

between 0 and 1. These intensities are sent to the robotic mood state generator. Moreover, 

other emotion recognition modalities and methods (e.g. emotional speech recognition) can 

also be input to AEIS, only the recognized emotional states contain intensity values between 0 

and 1. 

In the robotic mood state generator, the recognized user’s emotional intensities are 

transformed into interactive robotic mood variables represented by (Δαk, Δβk) (see 2.1.1 for 

detailed description). These two variables represent the way that user’s emotional state 

influences the robotic mood state transition. Furthermore, the robotic emotional behavior 

depends not only on user’s emotional state, but also on robot personality and previous mood 

state. Therefore the proposed method takes into account the interactive robotic mood variables 

(Δαk, Δβk), previous robotic mood state (RMk-1) and robot personality parameters (Pα , Pβ) to 

compute current robotic mood state (RMk) (see 2.1.4). Note that the previous robotic mood 

state (RMk-1) is temporary stored in a buffer. In this work, the current robotic mood state is 

represented as a point in the two-dimensional (2D) emotional plane. Furthermore, robotic 

personality parameters are created to describe the distinct human-like personality of a robot. 

Based on the current robotic mood state, the emotional behavior decision unit autonomously 

generates suitable robot behavior in response to the user’s emotion state. 

For robotic emotional behavior generation, in response to recognized user’s emotional 



 

 

12

intensities, a set of fusion weights (FWi, i=0~6) corresponding to each basic emotional 

behavior are generated by using a fuzzy Kohonen clustering network (FKCN) [54] (see 2.2). 

Similar to human beings, the facial expression of a robotic face is very complex and is 

difficult to be classified by limited number of categoryes. In order to demonstrate interaction 

behaviors similar to that of humans, FKCN is adopted to generate an unlimited number of 

emotional expressions by fusing seven basic facial expressions. Outputs of FKCN are sent to 

the artificial face simulator to generate the interactive behaviors (facial expressions in this 

work). An artificial face has been designed exploiting the method in [55] to demonstrate the 

facial expressions generated in human-robot interaction. Seven basic facial expressions are 

simulated, including neutral, happiness, surprise, fear, sadness, disgust and anger. The facial 

expressions are depicted by moving control points determined from Ekman’s model [56]. In 

the practical interaction scenario, each expression can be generated with different proportions 

of seven basic facial expressions. The actual facial expression of the robot is generated by 

summation of each behavior output multiplied by its corresponding fusion weight. Therefore, 

more subtle emotional expressions can be generated as desired. Detailed design of the 

proposed robotic mood transition model, emotional behavior generation and image-based 

emotional state recognition will be described in the following sections. 

 

2.1  Robotic Mood Model and Mood Transition 

Emotion is a complex psychological experience of an individual’s state of mind as 

interacting with people or environmental influences. For humans, emotion involves 

“physiological arousal, expressive behaviors, and conscious experience” [57]. Emotional 

interaction behavior is associated with mood, temperament, personality, disposition, and 

motivation. In this study, the emotion for robotic behavior is simplified to association with 

mood and personality. We apply the concept that emotional behavior is controlled by current 

emotional state and mood, while the mood is influenced by personality. In this thesis, a novel 
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robotic mood state transition method is proposed for a given human-like personality. 

Furthermore, the corresponding interaction behavior will be generated autonomously for a 

determined mood state. 

 

2.1.1  Robotic Mood Model 

A simple way to develop robotic emotional behaviors that can interact with people is to 

allow a robot to respond emotional behaviors by mimicking humans. In human-robot 

emotional interaction, users’ emotional expressions can be treated as trigger inputs to drive 

the robotic mood transition. Furthermore, transition of robotic mood depends not only on 

user’s emotional states, but also on the robot mood and personality of itself. For a robot to 

interact with several individuals or a group of people, users’ current (at instant k) emotional 

intensities ( n

k
UE ) are sampled and transformed into interactive mood variables Δαk and Δβk to 

represent how user’s emotional state influences the variation of robotic mood state transition. 

From the experience of emotional interaction of human beings, a user’s neutral intensity, 

for instance, usually affects the arousal and sleepiness mood variation directly. Thus, the 

robotic mood state tends to arousal while the user’s neutral intensity is low. Similarly, the 

user’s happiness, anger and sadness intensities affect the pleasure-displeasure axes. Thus, 

user’s happy intensity will lead robotic mood into pleasure. On the other hand, the robotic 

mood state behaves more displeasure while user’s angry and sad intensities are high. Based on 

the above observations, a straightforward case is designed for the interactive robotic mood 

variables (Δαk, Δβk), which represent the reaction from current users’ emotional intensities on 

the pleasure-arousal plane, such that: 
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where Ns denotes the number of users and n

k
UE  represents four kinds of the n

th
 user’s 

emotional intensities. By using (2.1)-(2.3), the effect on robotic mood from multiple users’ 

emotional inputs is represented. However, in this work, only one user is considered for better 

concentrating on the illustration of the proposed model, i.e. Ns=1 in the following discussion. 

It is worth to extend the number of users in the next stage of this study, such that a scenario 

like the Massachusetts Institute of Technology mood meter [58] can be investigated. 

Furthermore, the mapping between facial expressions of interacting human and robotic 

internal state may be modeled in a more sophisticated way. For example, Δαk can be designed 

as i

kH

i

kS

i

kA
ueueue

,,,

2/)( −+  such that alternative (opposite) responses to a user can be obtained. 

 

2.1.2  Robot Personality 

McCrae et al. [59] proposed Big Five factors (Five Factor model) to describe the traits of 

human personality. Big Five model is an empirically based result, not a theory of personality. 

The Big Five factors were created through a statistical procedure, which was used to analyze 

how ratings of various personality traits are correlated for general humans. Table 2-1 lists the 

Big Five factors and their descriptions [60]. Besides, Mehrabian [61] utilized the Big Five 

factors to represent the pleasure-arousability-dominance (PAD) temperament model. Through 

linear regression analysis, the scale of each PAD value is estimated by using the Big Five 

factors [62]. These results are summarized as three equations of temperament, which includes 

pleasure, arousability and dominance. 

In this work, we adopted Big Five model to represent the robot personality and 

determine the mood state transition on a two-dimensional pleasure-arousal plane. Hence only 

two equations are utilized to represent the relationship between robot personality and  
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Table 2-1: Big five model of personality. 

Factor Description 

Openness Open mindedness, interest in culture. 

Conscientiousness Organized, persistent in achieving goals. 

Extraversion Preference for and behavior in social situations. 

Agreeableness Interactions with others. 

Neuroticism Tendency to experience negative thoughts. 

 

 

pleasure-arousal plane. The reason that we utilize this two-dimensional pleasure-arousal plane 

rather than the three-dimensional PAD model is based on the Russell’s study. Russell and 

Pratt [63] indicated that pleasure and arousal each account for large proportions of variance in 

the meaning of affect terms, each dimension beyond these two accounted for only a tiny 

proportion. More importantly, these secondary dimensions became more and more clearly 

interpretable as cognitive rather than emotional in nature. The secondary dimensions thus 

appear to be aspects of the cognitive appraisal system that has been suggested for emotions. 

Here elements of the Big Five factors are assigned based on a reasonable realization of Table 

2-1. Referring to [61], the robot personality parameters (Pα, Pβ) are adopted such that: 

NAEP 19.059.021.0 ++=α        (2.4) 

NAOP 57.03.015.0 −+=β ,        (2.5) 

where O, E, A and N represent the Big Five factors of openness, extraversion, agreeableness 

and neuroticism respectively. Therefore the robot personality parameters (Pα, Pβ) are given as 

the robot personality is known, i.e. O, E, A and N are determined constants. Later we will 

show that (Pα, Pβ) works as the mood transition weightings on pleasure (α axis) and arousal 

(β axis) plane. 

Note that the conscientiousness of Big Five factors was not used in this design, because 

this factor only influences the dominance axis of three-dimensional PAD model. In this study, 

the pleasure-arousal plane of two-dimensional emotional model was applied, so only four out 
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of five parameters are used to translate the mood transition weighting from the Big Five 

factors. 

 

2.1.3  Facial Expressions in Two-Dimensional Mood Space 

The relationship between mood states and emotional behaviors has been studied by 

psychologists. Russell and Bullock [64] proposed a two-dimensional scaling on the 

pleasure-displeasure and arousal-sleepiness axes to model the relationships between the facial 

expressions and mood state. In this work, the results from [64] are employed to model the 

relationship between mood state and output emotional behavior. Figure 2-2 illustrates a 

two-dimensional scaling result for general adult's facial expressions based on 

pleasure-displeasure and arousal-sleepiness ratings. The scaling result was analyzed by the 

Guttman-Lingoes smallest space analysis procedure [65]. This two-dimensional scaling 

procedure provides a geometric representation (stress and orientation) of the relations among 

the facial expressions by placing them in a space (Euclidean space is used here) of specified 

dimensionality. Greater similarity between two facial expressions is represented by their 

closeness in the space. Hence the coordinate in this space can be used to represent the 

characteristic of each facial expression. As shown in Fig. 2-2, axis α and β represent the 

amount of pleasure and arousal respectively. Eleven facial expressions are analyzed and 

located on the plane. The location of each facial expression is represented by a square along 

with its coordinates. The coordinates of each facial expression is obtained by measuring the 

location in the figure (interested readers are referred to [64]). The relationship between 

robotic mood and output behavior, facial expression in this case, is determined. 

 

2.1.4  Robotic Mood State Generation 

As mentioned in 2.1.1, both user’s current emotional intensity and robot personality 

affect the robotic mood transition. The way that robot personality affects the mood transition 
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Fig. 2-2: Two-dimensional scaling for facial expressions based on pleasure-displeasure and 

arousal-sleepiness ratings. 

 

is described by robot personality parameters (Pα, Pβ). As given in 2.1.2, these two parameters 

act as weighting factors on α and β axis respectively. When Pα and Pβ vary, the speed of 

mood transition in the direction of α and β axes is affected. On the other hand, the interactive 

mood variables (Δαk, Δβk) give the influence of user’s emotional intensity on the variation of 

robotic mood state transition. To reveal the relationship between robot personality and mood 

transition, we suggest to multiply robot personality parameters (Pα, Pβ) with interactive mood 

variables (Δαk, Δβk). This indicates the influence of robotic mood transition from current 

user’s emotional intensity as well as robot personality. 

Furthermore, the manifested emotional state is determined not only by current robotic 

emotional variable but also by previous robotic emotional states. The manifested robotic 

mood state at sample instant k (RMk) is calculated such that: 

),(),(
1 kkkkkk

PPRMRM βαβα βα Δ⋅Δ⋅+=≡ − ,     (2.6) 

where ]1,1[),( −∈
kk

βα  represents the coordinates of robotic mood state at sample instant k on 

pleasure-arousal plane. By using (2.6), the current robotic mood state is determined and 
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located on emotional plane. Moreover, the mood transition is influenced by personality, which 

is reflected by the Big Five factors. After obtaining the manifested robotic mood state (RMk), 

the coordinate of (αk, βk) will be mapped onto pleasure-arousal plane, and a suitable 

corresponding facial expression can be determined, as shown in Fig. 2-2. 

 

2.2  Emotional Behavior Generation 

After the robotic mood state is determined by using (2.6), a suitable emotional behavior 

is expected to respond to the user. In this work, we propose a design based on fuzzy Kohonen 

clustering network (FKCN) to generate smooth variation of interaction behaviors (facial 

expressions) as mood state transits gradually. 

In this approach, pattern recognition techniques were adopted to generate interactive 

robotic behaviors [25, 54]. By adopting FKCN, robotic mood state, obtained from (2.6), is 

mapped to fusion weights of basic robotic emotional behaviors. The output will be a linear 

combination of weighted basic behaviors. In the current design, the basic facial expression 

behaviors are neutral, happiness, surprise, fear, sadness, disgust and anger, as shown in Fig. 

2-1. FKCN is employed to determine the fusion weight of each basic emotional behavior 

based on the current robotic mood. Figure 2-3 illustrates the structure of the fuzzy-neuro 

network for fusion weight generation. In the input layer of the network, the robotic mood state 

(αk, βk) is regarded as inputs of FKCN. In the distance layer, the distance between input 

pattern and each prototype pattern is calculated such that: 

( ) ( )
ji

T

jijiij PXPXPXd −−=−=
2

,      (2.7) 

where Xi denotes the input pattern and Pj denotes the j
th

 prototype pattern (see 2.3.2). In this 

layer, the degree of difference between the current robotic mood state and the prototype 

pattern is calculated. If the robotic mood state is not similar to the built-in prototype patterns, 

then the distance will reflect the dissimilarity. The membership layer is provided to map the 

distance dij to membership values uij, and it calculates the similarity degree between the input  
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Fig. 2-3: The fuzzy-neuro network for fusion weight generation. 

 

pattern and the prototype patterns. If an input pattern does not match any prototype pattern, 

then the similarity between the input pattern and each individual prototype pattern is 

represented by a membership value from 0 to 1. The determination of the membership value 

is given such that: 

( )⎩
⎨
⎧

−≤>=
=

=
1,000

01

cjkdif

dif
u

ik

ij

ij
,    (2.8) 

where c denotes the number of prototype patterns, otherwise, 

1
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u .        (2.9) 

Note that the sum of the outputs of the membership layer equals 1. Using the rule table 

(see later) and the obtained membership values, the current fusion weights (FWi, i=0~6) are 

determined such that: 

∑
−

=

=
1

0

c

j

ijjii
uwFW ,         (2.10) 

where wji represents the prototype-pattern weight of i
th

 output behavior. The prototype-pattern 

weights are designed in a rule table to define basic primitive emotional behaviors 

corresponding to carefully chosen input states. 
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2.2.1  Rule Table for Behavior Fusion 

In the current design, several representative input emotional states were selected from the 

two-dimensional model in Fig. 2-2, which gives the relationship between facial expressions 

and mood states. Each location of facial expression on the mood plane in Fig. 2-2 is used as a 

prototype pattern for FKCN. Thus, a rule table is constructed accordingly following the 

structure of FKCN. As shown in Table 2-2, seven basic facial expressions were selected to 

build the rule table. The IF-part of the rule table is the emotional state of αk and βk of the 

pleasure-arousal space and the THEN-part is the prototype-pattern weight (wji) of seven basic 

expressions. For example, the neutral expression in Fig. 2-2 occurs at (0.61, -0.47), which 

forms the IF-part of the first rule and the prototype pattern for neutral behavior. The THEN 

part of this rule is the neutral behavior expressed by a vector of prototype-pattern weights (1, 

0, 0, 0, 0, 0, 0). The other rules and prototype patterns are set up similarly following the 

values in Fig. 2-2. Some facial expressions are located at two distinct points on the mood 

space, both locations are employed, and two rules are set up following the analysis results 

from psychologist. There are all together 13 rules as shown in Table 2-2. Note that Table 2-2 

gives us suitable rules to mimic the behavior of human, since the content of Fig. 2-2 is 

referenced from psychology results. However, other alternatives and more general rules can 

 

Table 2-2: Rule table for interactive emotional behavior generation. 

IF-part

prototype patterns
THEN-part weighting

# j α
k

β
k

Neutral Happiness Surprise Fear Sadness Disgust Anger

1 0.61 -0.47 1

2 0.81 0.66 1

3 0.88 0.59 1

4 -0.75 0.61 1

5 -0.71 0.58 1

6 -0.83 0.54 1

7 -0.91 0.52 1

8 -0.47 -0.56 1

9 -0.54 -0.59 1

10 -0.95 -0.06 1

11 -0.84 -0.19 1

12 -0.95 0.17 1

13 -0.98 0.1 1
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also be employed. FKCN works to generalize from these prototype patterns all possible 

situations (robotic mood state in this case) that may happen to the robot. In the FKCN 

generalization process, proper fusion weights for the corresponding pattern are calculated. 

After obtaining the fusion weights of output behaviors from FKCN, the robot’s behavior is 

determined from seven basic facial expressions weighted by their corresponding fusion 

weights such that: 

6A5D4Sad

3F2Sur1H0N

RBRBRB

RBRBRBRBExpression Facial

FWFWFW

FWFWFWFW

×+×+×+
×+×+×+×=

,  (2.11) 

where RBN, RBH, RBSur, RBF, RBSad, RBD, RBA, represent the seven basic facial expressions 

of neutral, happiness, surprise, fear, sadness, disgust and anger respectively. It is seen that 

(2.11) gives us a method to generate facial expressions by combining and weighting the seven 

basic expressions. 

The linear combination of basic facial expressions gives a straightforward yet effective 

way to express various emotional behaviors. In order to make the combined facial expression 

to be more consistent with human experience, an evaluation and adjusting procedure was 

carried out by a panel of students in the lab. The features of seven basic facial expressions 

were adjusted as distinguished as possible to approach human perception experience. Some 

results of linear combination are demonstrated using a face expression simulator, please refer 

to 2.2.3. 

In fact, human emotional expressions are difficult to be represented by a mathematical 

model or several typical rules. On the other hand, FKCN is very suitable for building up the 

emotional expressions. The merit of FKCN is its capacity to generalize the results using 

limited assigned rules (prototypes). Furthermore, dissimilar emotional types can be designed 

by adjusting the rules. For the artificial face, facial expressions are defined as the variation of 

control points, which are positions of eyebrow, eye, lips and wrinkles of the artificial face. 
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2.2.2  Evaluation of Fusion Weight Generation Scheme 

In order to verify the result of fusion-weight generation using FKCN, we applied the 

rules in Table 2-2 and simulated the weight distribution for various emotional states. The 

purpose is to evaluate how the proposed FKCN does work to generalize any input emotional 

state (αk, βk) and give a set of output fusion weights corresponding to the input. Figure 2-4 

shows the simulation results of weight distribution vs. robotic mood variation on 

pleasure-arousal plane. In order to check seven fusion weights corresponding to seven basic 

emotional expressions for a given mood transition from (αk-1, βk-1) to (αk, βk), the simulation 

outputs for seven basic emotional expressions are illustrated respectively. The blue squares in 

Fig. 2-4 indicate the robotic mood transition from (αk-1, βk-1) to (αk, βk). Every position or 

point in this two-dimensional mood space has corresponding fusion weights. Figure 2-4(a) 

shows the weight distribution of neutral expression for the whole robotic mood space. The 
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(a) Neutral 
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(b) Happiness 
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(c) Surprise 

 



 

 

24

 

0
.1

0
. 1

0.10.1

0.1

0.1

0.1 0
. 2

0.2
0.2

0.2

0.2

0.2
0.
3

0
.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8
0.8 0

. 9

Displeasure - Pleasure

S
le

ep
in

es
s 

- 
A

ro
u
sa

l

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

 
(d) Fear 
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(e) Sadness 
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(f) Disgust 
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(g) Anger 

Fig. 2-4: Fusion weights distribution for seven facial expressions.  
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same contour curve in the figure has the identical neutral weight. The maximum weight (1) 

occurs at (0.61, -0.47) in the pleasure-arousal plane. It is seen that the neutral weigh decreases 

while the robotic mood state moves away from (0.61, -0.47). Figure 2-4(b) shows the weight 

distribution of happiness expression for the whole robotic mood space. The maximum weight 

(1) occurs at (0.81, 0.66) and (0.88, 0.59) in the pleasure-arousal plane. It is seen that the 

happiness weigh increases while the robotic mood state moves to the upper right quadrant. 

Figures 2-4(c)-(g) show similar results that the maximum weight positions are located in 

corresponding coordinates in Fig. 2-2. These results coincide with the two-dimensional 

emotional state of facial expressions in Fig. 2-2. Furthermore, the correlation among seven 

basic emotional behaviors is also checked in the simulation. It is seen that a point on the mood 

plane will map to a corresponding fusion weight for each of seven basic emotional 

expressions. 

 

2.2.3  Animation of Artificial Face Simulator 

To evaluate the effectiveness of the FKCN-based behavior fusion on actual emotional 

expressions, we developed an artificial face simulator exploiting the method in [55] to 

examine robotic facial expressions. The method follows a muscle-based approach and thus 

mimics the way biological faces operate. The artificial face illustrates the expression based on 

the contraction of facial muscles. It can also dynamically generate features such as wrinkles 

[55]. Emotions are the high-level concept which is aimed to display via facial expressions. 

Each emotion influences a different set of muscles. For each emotion and each intensity level, 

muscles were adjusted to match the reference drawing.  

In this simulation, seven basic facial expressions: neutral, happiness, surprise, fear, 

sadness, disgust and anger are first designed by specifying muscles tensions of each 

expression composed of 7 different fusion weights. Table 2-3 shows some examples of the 7 

basic facial expressions generated by the simulator with different weights. One observes that  
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Table 2-3: Basic facial expressions with various weights executed in the simulator. 

 30% 60% 80% 100% 

Happiness 

(RBH) 

 

Surprise 

(RBSur) 

 

Fear 

(RBF) 

 

Sadness 

(RBSad) 

 

Disgust 

(RBD) 

 

Anger 

(RBA) 

 

Neutral 

(RBN) 
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the facial expression changes from smiling to laughing as the weight of happiness increases 

and from staring to screaming as the weight of surprise increases. Similarly, the facial 

expression changes from dreading to panic as the weight of fear increases and from gloomy to 

crying as the weight of sadness increases. Note that the facial expression of neutral is 

invariable because it is set as a normal facial expression.  

Finally, fused emotional expressions are depicted by linear combination of weighted 

basic facial expressions. Table 2-4 shows some examples of facial expressions generated by 

linear combination. The facial expressions with different fusion weights of sadness, anger, 

surprise and fear are fused to show the complex variation of emotion transition. It provides a 

quantitative and vivid way to express the feeling of human emotion. 

 

Table 2-4: Linear combined facial expressions with various weights on the simulator. 

Sadness:70%

Anger:30%

Sadness:50%

Anger:50%

Sadness:30%

Anger:70%

Suprise:70%

Anger:30%
Suprise:50%

Anger:50%

Suprise:30%

Anger:70%

Fear:70%

Sadness:30%

Fear:50%

Sadness:50%

Fear:30%

Sadness:70%
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2.3  Summary 

A method of robotic mood transition for autonomous emotional interaction has been 

developed. An emotional model is proposed for mood state transition exploiting a robotic 

personality approach. We apply the concept that emotional behavior is controlled by current 

emotional state and mood, while the mood is influenced by personality. Here the 

psychological Big Five factors are utilized to represent the personality. By referring Eq. (2.4) 

and (2.5), the relationship between personality and mood is described. Furthermore, a 

two-dimensional scaling result (see Fig. 2-2) is adopted to represent general adult's facial 

expressions based on pleasure-displeasure and arousal-sleepiness ratings. Based on above 

mention, an illustration of the proposed robotic emotion model is illustrated in Figure 2-5. 

Finally, via adopting psychological Big Five factors in the 2-D emotional model, the proposed 

method generates facial expressions in a more natural manner. The FKCN architecture 

together with rule tables from psychological findings sufficiently provides behavior fusion 

capability for a robot to generate emotional interactions.  

 

 

Fig. 2-5: Illustration of the proposed robotic emotion model. 
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Chapter 3 

 

Human Emotion Recognition 

 

The capability of recognizing human emotion is an important factor in human-robot 

interaction. For human beings, facial expression and voice reveal a person’s emotion most. 

They also provide important communicative cues during social interaction. A robotic emotion 

recognition system will enhance the interaction between human and robot in a natural manner. 

In this chapter, several emotion recognition methods are proposed in the following sections. 

In 3.1, a bimodal information fusion algorithm is proposed to recognize human emotion by 

using both facial image and speech signal. In 3.2, a speech-signal-based emotion recognition 

method is presented.  

 

3.1  Bimodal Information Fusion Algorithm 

An embedded speech and image processing system has been designed and realized for 

real-time audio-video data acquisition and processing. Figure 3-1 illustrates the experimental 

setup of the emotion recognition system. The stand-alone vision system uses a CMOS image 

sensor to acquire facial images. The image data from the CMOS sensor are first stored in a 

frame buffer. Then the image data are passed to a DSP board for further processing. The audio 

signals are acquired through the analogue I/O port of the DSP board. The recognition results 

are transmitted via RS-232 serial link to a host computer (PC) to generate the interaction 

responses of a pet robot. 
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Fig. 3-1: The experimental setup. 

 

Figure 3-2 shows the block diagram of robotic audio-visual emotion recognition 

(RAVER) system. After a face is detected in the image frame, facial feature points are 

extracted. Twelve feature values are then computed for facial expression recognition. 

Meanwhile, the speech signal is acquired from a microphone. Through a pre-processing 

procedure, the statistical feature values are calculated for each voice frame [66]. After the 

feature extraction procedures of both sensors are completed, the two feature modalities are 

sent to an SVM-based classifier [67] with the proposed bimodal decision scheme. Detailed 

design of facial image processing, speech signal processing and bimodal information fusion 

will be described in the following sections.  

 

F
Z

A
Z

 

Fig. 3-2: Block diagram of the robotic audio-visual emotion recognition system. 



 

 
32

We propose in this section a probabilistic bimodal SVM algorithm. As shown in Fig. 3-2, 

the extracted features using visual and audio sensors are sent to a facial expression classifier 

and an audio emotion classifier respectively. In the current design, five emotional categories 

are determined, namely, anger, happiness, sadness, surprise and neutral. Cascade SVM 

classifiers are developed for each modality to determine the current emotion state. 

 

3.1.1  Facial Image Processing 

The facial image processing part consists of face detection module and feature extraction 

module. The functional block diagram of the proposed facial image processing is illustrated in 

Fig. 3-3. After an image frame is captured from the CMOS image sensor, color segmentation 

and attentional cascade procedure [68] are performed to detect human faces. As a face is 

detected and segmented, the feature extraction stage is performed to locate the eyes, eyebrows 

and lips region in the human face area. The system employs edge detection and adaptive 

threshold to find these feature points. According to the distance between the two selected 

feature points, several feature vectors are obtained for later emotion recognition. The 

processing steps will be described in more detail in the following paragraphs. 

 

A.  Face Detection 

The first step of the proposed emotion recognition system is to detect the human face in 

the image frame. As shown in Fig. 3-4(a), the skin color is utilized to segment possible human 

face area in a test image. The morphology closing procedure is then performed to reduce the 

noise in the image frame, as shown in Fig. 3-4(b). The color region mapping is applied to 

obtain the human face candidates, as depicted by two white squares in Fig. 3-4(c). Finally, the 

attentional cascade method is used to determine which candidate is indeed a human face. In 

Fig. 3-4(d) the black square region indicates a detected human face region. 
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Fig. 3-3: The functional block diagram of facial image processing. 

 

  

(a)                     (b) 

  

(c)                     (d) 

Fig. 3-4: Face detection procedure. (a) Original image, (b) Color segmentation and closing operation, 

(c) Candidate face areas, (d) Final result obtained by attentional cascade. 

 

B.  Facial Feature Extraction 

The feature extraction module finds feature points from a frontal face image. The feature 

points are represented by a vector of numerical data, which represent the position of the facial 
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features such as eyes, eyebrows, and lips. To search positions of eyes and eyebrows on the 

upper part of the face image, the characteristics that eyeballs are the darkest areas on the 

upper face is utilized. Further, the system employs integral optical density (IOD) [69] to find 

the area of eyes and eyebrows. IOD works on binary images and gives reliable position 

information of both eyes. 

In order to increase the robustness of feature point extraction, our method combines IOD 

and edge detection. Passing through an AND operation of two successive binary images, the 

outlines of eyes and eyebrows can be extracted. Figure 3-5 illustrates the definition of all 

facial feature values and Table 3-1 lists the corresponding detailed descriptions. We defined 

three feature points for each eye and two feature points for each eyebrow. We locate the upper, 

lower and inner points of eyes as feature points, and set the central, inner points of eyebrows 

as feature points. Further, there are four feature points for lips, as shown in Fig. 3-5. Figure 

3-6 shows the image processing results of extracting eyes and eyebrows feature points. In Fig. 

3-6(a), the detected facial image is processed using IOD while edge detection is performed in 

 

 

 

 

E
1 E

2 E
3

E
4

E
5

E
6

E
7

E
8

E
9

E
10

E
11

E
12

 

Fig. 3-5: Definition of the facial feature points and feature values. 
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Table 3-1: The description of facial feature values. 

Features Description 

1E  Distance between the central of right eyebrow and eye 

2E  Distance between the right eyebrow and eye 

3E  Distance between the left eyebrow and eye 

4E  Distance between the central of left eyebrow and eye 

5E  Distance between upper and lower right eye contour 

6E  Distance between upper and lower left eye contour 

7E  Distance between right and left eyebrows 

8E  Distance between right side lip and right eye 

9E  Distance between upper lip and eyes 

 10E  Distance between left side lip and left eye 

11E  Distance between upper and lower lip 

12E  Distance between right and left side lip 

 

  

(a)              (b) 

  

(c)              (d) 

Fig. 3-6: Test results of feature extraction of eyes and eyebrows. (a) Binary operation using IOD, (b) 

Edge detection, (c) AND operation. (d) Extracted feature points. 

 

Fig. 3-6(b). In Fig. 3-6(c), the AND operation of IOD and edge detection are performed. The 

feature extraction result is shown in Fig. 3-6(d). Similarly, Fig. 3-7 depicts the result of  
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(a)                (b)               (c) 

Fig. 3-7: Feature extraction of lips. 

 

feature points extraction of lips. The candidate area in Fig. 3-7(a) is processed by using IOD. 

The binary detection result is shown in Fig. 3-7(b). Finally, the feature extraction result is 

obtained as shown in Fig. 3-7(c). 

After obtaining the position of facial feature points, we calculate twelve significant 

feature values, which are distances between two selected feature points as shown in Table 3-1. 

In order to reduce the influence of distance between a user and the CMOS image sensor, these 

feature values are normalized for emotion recognition. 

 

3.1.2  Speech Signal Processing 

The functional block diagram of the proposed speech signal processing method is shown 

in Fig. 3-8. The procedure of speech signal processing is divided into two parts. The first part 

is the pre-processing of speech signal, including endpoint detection and frame setting. The 

second part is responsible for extracting speech features. The processing steps will be 

described in more detail in the following paragraphs. 

 

A.  Frame Detection 

The endpoint detection determines the location of real speech signals by short time 

energy detection and zero- crossing rate detection. We use the first 128 samples to determine 

the threshold value in energy detection and then divide a frame into 32ms periods for further  
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Fig. 3-8: The functional block diagram of facial image processing. 

 

feature extraction processing. The basic idea for estimating emotion by the speech signal is to 

select features that imply emotion information. 

 

B.  Speech Feature Extraction 

In this work, contours of pitch and energy are analyzed [29] for human emotion 

recognition. The pitch contour is obtained by autocorrelation. The maximum point is selected 

to calculate the pitch values. The energy contour is obtained by calculating the short time 

energy of each frame. Then the speech feature values can be obtained by computing the 

statistical quantity of pitch and energy contour. Altogether, twelve speech feature values are 

obtained for emotion recognition. The elements of speech features are listed in Table 3-2. 

 

3.1.3  Bimodal Information Fusion Algorithm 

In order to determine the final result by taking into account both the audio and visual 

classification results, we developed a bimodal information fusion algorithm to provide a 

fusion weight for the classifier. According to the principle of SVM, the larger the distance  
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Table 3-2: The description of speech feature values. 

Features Description 

aveP
 Average pitch 

stdP
 Standard deviation of pitch 

max
P

 Maximum pitch 

minP  Minimum pitch 

avePD
 Average of pitch derivation 

stdPD
 Standard deviation of pitch derivation 

max
PD

 Maximum of pitch derivation 

ave
E

 Average energy 

stdE
 Standard deviation of energy 

max
E

 Maximum energy 

aveED
 Average of energy derivation 

stdED
 Standard deviation of energy derivation 

 

between a test sample and the hyperplane, the greater the recognition reliability. Figure 3-9 

shows a trained SVM hyperplane and the distance of a test sample to the hyperplane. It can be 

seen from the figure that the test samples x1 and x2 belong to the same class. However, the 

distance d1 is smaller than d2. Thus, the recognition reliability of test sample x2 is greater 

than that of x1, because the position of x2 can resist a larger shift of the hyperplane. 

Furthermore, if the training samples are distributed widely, the trained hyperplane will 

lead to smaller recognition reliability. It may result in a false recognition even the average 

distance between a test sample and the hyperplane is still large. Figure 3-10 shows two cases  

 

 Test samples

d1

d2

Hyperplane

x2
x1

 

Fig. 3-9: Representing recognition reliability using the distance between test sample and hyperplane. 
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(a)                             (b) 

Fig. 3-10: Representing recognition reliability using the standard deviation of training samples. (a) 

Smaller standard deviation, (b) Larger standard deviation. 

 

of training sample distributions. In Fig. 3-10(a) and (b), the mean values for both distribution 

are the same, but the standard deviation of hyperplane 1 (σ1) is smaller than that of hyperplane 

2 (σ2).  The recognition reliability of hyperplane 1 is thus greater than that of hyperplane 2, 

because the training samples are more congregated in the former case. We can conclude that 

the recognition result is more reliable if the distance between the test sample and hyperplane 

is larger and the standard deviation of training data set is smaller. 

Based on the above observation, we propose the following algorithm of bimodal 

information fusion: 

1) Assume the number of training samples is N for both visual and audio SVM 

classifiers. Compute the average distance 
Fave

D  and 
Aave

D  between samples and the 

hyperplane of facial and speech training data respectively such that: 

∑
=

=
N

i

FFave
i

d
N

D

1

1        (3.1) 

∑
=

=
N

i

AAave
i

d
N

D

1

1 ,          (3.2) 

 

where 
i

F
d  and 

i
A

d  represent the distance between the 
th
i  facial and speech training samples 

and their corresponding respectively. 
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=          (3.3) 

 

A

AA

A

H

Ht
d

i

i

r

r
r

⋅
= ,         (3.4) 

where 
i

F
t

r

 and 
i

A
t

r

 represent the 
i

th
i  training sample of facial and speech training data 

respectively.  
F

H

r

 and 
A

H

r

 represent the SVM hyperplane of facial and speech data 

respectively. 

2) Compute the standard deviation 
F

σ  and 
A

σ  of facial and speech training data 

respectively. 

( ) 2
1

1

21

⎥
⎦

⎤
⎢
⎣

⎡ −= ∑
=

N

i

FaveFF
Dd

N
i

σ          (3.5) 

 
( ) 2
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⎥
⎦

⎤
⎢
⎣

⎡ −= ∑
=

N

i

AaveAA
Dd

N
i

σ
.         (3.6) 

3) Calculate the distance 
F

D  and 
A

D  between the facial and speech test samples and 

the corresponding hyperplanes respectively. 

F

FF

F

H

Hx
D r

r

r ⋅=         (3.7) 

 

F

FA

A

H

Hx
D r

r

r ⋅= ,        (3.8) 

where 
F
x

r

 and 
A
x

r

 represent the facial and speech test sample respectively. 

4) Calculate and normalize the weights of facial classification and speech classification 

respectively such that: 

FFave

FF

F

D

D
Z

σ
σ

−
−=           (3.9) 

 
AAave

AA

A

D

D
Z

σ
σ

−
−= .            (3.10) 

5) If the classified results of two modalities are not the same, the decision machine 

compares the magnitude of facial and speech classification weights to obtain a classified 
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result. If 
AF

ZZ ≥ , adopt the recognition result of facial feature. If 
AF

ZZ < , then adopt the 

recognition result of speech feature. 

 

3.1.4  Hierarchical SVM Classifiers 

In this work, five facial expressions are categorized according to both the facial and 

speech information. An SVM hyperplane distinguishes two categories. Therefore two 

four-stage classifiers need to be constructed as shown in Fig. 3-11. Each stage determines one 

expression using two emotion categories. The selected emotion category will proceed to the 

next stage until a final expression is determined. For instance, when an unknown sample 

appears, the SVM first classifies happiness vs. sadness followed by surprise vs. neutral. After 

this stage, the corresponding results are further classified at the next stage. For example, the 

results of the first stage classifiers are assumed to be happiness and surprise (shown as ① 

and ② in Fig. 3-11). At the second stage, the classifier determines the unknown data as 

surprise or anger. If the facial image recognition result is surprise but the speech recognition 

result is anger (shown as ③ and ④), a fusion result is obtained from comparing the weights 

of both modalities. Here suppose that the weight ZF of facial image data is larger than the 

weight ZA of speech data. So the result of anger (from speech features) vs. surprise (from  

 

 

Fig. 3-11: SVM bimodal recognition procedure. 
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facial features) is classified as surprise. At the last stage, the classifiers determine the 

unknown data as happiness or surprise as shown in Fig. 3-11. The system will eventually 

come to a final recognition result. 

 

3.2  Speech-signal-based Emotion Recognition 

An embedded speech processing system was designed and produced for real-time speech 

signal acquisition and processing. Figure 3-12 shows the block diagram of the proposed 

speech-signal-based emotion recognition system. Speech signals are acquired from a 

microphone. Using a speech signal pre-processing procedure, the speech voice frames are 

determined by end-point detection [70]. In the speech feature extraction stage, the 

fundamental frequency and energy features of a speech frame are extracted to represent the 

speech signal of interest. After obtaining the features of speech frame, Fisher's linear 

discriminant analysis (FLDA) is utilized to transfer feature values to a suitable space [71]. 

The feature values in the transferred space represent significant emotional traits and improve 

the recognition rate. Finally, a hierarchical support vector machine (SVM) classifies the 

emotional categories. In order to simplify the design of the emotion recognition system for an 

 

 

Fig. 3-12: Block diagram of the proposed speech-signal-based emotion recognition system. 
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entertainment robot, it is assumed that each sentence corresponds to only one emotional 

category. The detailed design of the emotion recognition system is presented in the following 

section. 

 

3.2.1 Speech Signal Pre-processing 

Before extracting the features of the speech signal for recognition, a voice signal 

pre-processing stage separates speech frames from the acquired signal. In this design, 

pre-processing consists of analog to digital conversion, end-point detection and frame signal 

separation. 

Speech signals acquired from the microphone are analog voltage signals. Through 

amplification and sampling, the analog voltage signal is converted to digital, in a discrete 

form. Based on the sampling theorem, a sampling frequency is set to be more than twice the 

bandwidth of the input signals, in order to avoid signal distortion. In general, the spectrum of 

human speech is less than 4K Hz. The sampling frequency is set to 8K Hz, in this study. 

Furthermore, a normalization scheme is used to reduce the influence of constantly changing 

input signals. The normalized speech signal is obtained such that: 

Nn
x

nx
nx

ori ,...,2,1
)(

)(
max

==                 (3.11) 

Nnnxx
ori

,...,2,1))(max(
max

== ,         (3.12) 

where )(nx  represents the normalized speech signal, )(nx
ori  represents the original speech 

signal and max
x  is the maximum value in the sequence, )(nx

ori . By dividing with max
x , as 

shown in Equation (3.11), the amplitudes of whole speech signal are normalized between -1 

and 1. 

In order to extract the emotional features in a voice, a frame size must first be determined 

for the digitized speech signal. Short-time energy, which is an acoustic feature that correlates 

the sampled amplitude in each voice frame, is calculated such that: 
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where )(kE  is the short-time energy in the k
th

 frame, )(nx  represents the normalized 

speech signal and N is the frame size. The starting and terminal thresholds are then 

determined for the voice frame, to determine the starting and terminal points respectively by 

using empirical rules. Once the value of )(kE  is greater than the starting threshold, the 

starting point is determined. However, the terminal point is determined when the value of 

)(kE  is smaller than the terminal threshold. Hence a frame size, N, is determined as the real 

speech signal. As shown in Figure 3-13, the starting and terminal points of a speech frame are 

determined by the starting threshold and the terminal threshold, respectively. 

The zero-crossing rate (ZCR) is then used for audio frame setting. Zero-crossing rate is a 

basic acoustic feature. It is equal to the number of zero-crossings of the waveform within a 

given frame. Here the zero-crossing rate is defined as the number of times which the speech 

signals cross the zero value origin of the y-coordinates. In general, the zero-crossing rate of 

non-speech and environmental noise is lower than that of human speech [72]. The 

zero-crossing rate is calculated such that: 
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Fig. 3-13: Energy of a speech signal. 
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where )(kZ  is the zero-crossing rate of the k
th

 frame. In practice, the short-time energy is 

used to estimate the starting and terminal points of the whole speech segment, wherein the 

speech voice occurs. Then, the zero-crossing rate is used to find the real speech signal more 

precisely. As shown in Figure 3-14, the real speech signal is determined by the ZCR 

threshold. 

In this design, zero-crossing rate and short-time energy are both used to detect the 

starting and terminal points of non-speech. Figure 3-15 shows the four rules to find the real 

human speech signal: 

(1) If )(kE is lower than the terminal threshold, it belongs to non-speech.  

(2) If )(kE is higher than the starting threshold, the starting point of the human speech 

signal is determined. 

(3) If )(kE is lower than the starting threshold and )(kZ  is higher than the ZCR 

threshold of the zero-crossing rates, this is determined as the starting point of the 

human speech signal. 

 

 

Fig. 3-14: Zero-crossing rate of a speech signal. 
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Fig. 3-15: Example of real human speech detection. 

 

(4) If )(kE  is lower than the terminal threshold, after the starting point, it is 

determined that this is the terminal point of the human speech signal. 

Using the above rules, the starting and terminal points of speech signals are determined. The 

boundary of real human speech is also determined. Figure 3-16 shows an example of 

end-point detection. 

 

 
Fig. 3-16: An example of end-point detection. 
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After obtaining the end-points of the actual human speech signal, suitable presentation of 

the speech signal is required, before the feature extraction step. In order to reduce the 

variation between adjacent frames, the overlapping part of the signal is used to avoid 

discontinuity. This study uses a Hamming window to emphasize the medium signal and to 

restrain both side signals [73]. Figure 3-17 shows the frame-signal separation using a 

Hamming window. It can be seen that there are overlaps between frames. The Hamming 

window is represented such that: 

   

⎪⎩

⎪
⎨
⎧ −=

−
−=

otherwise

Nn
N

n

nWindow

0

1,...,1,0)
1

2
cos(46.054.0

)(

π
 ,          (3.16) 

where N is the length of the frame and n is the sample point in a frame. Figure 3-18 shows the 

procedure for speech signal extraction in each frame. Figure 3-18(a) shows an example of an 

original speech signal in a frame. Figure 3-18(b) depicts the Hamming window. Figure 3-18(c) 

is the extracted result for the original speech signal multiplied by the Hamming window. This 

study uses the first 128 samples to determine the energy threshold values and then divides a 

frame into several 32 ms periods, for further feature extraction. 

 

 

Fig. 3-17: Frame-signal separation using a Hamming window. 
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Fig. 3-18: Procedure for speech signal extraction in each frame. (a) A frame of original speech signal. 

(b) Hamming window. (c) Result of original speech signal multiplied by Hamming window. 

 

3.2.2 Feature Extraction 

After the speech signal is obtained for each frame, useful features are extracted from the 

speech signal. In this work, the contours of the fundamental frequency and energy [29] are 

used for human emotion recognition. Several methods can be used to extract the fundamental 

frequency from a speech signal [66]. In this design, the contour of the fundamental frequency 

is obtained using an autocorrelation function. The fundamental frequency is determined by the 

maximum autocorrelation value. The autocorrelation function is defined such that: 

∑
−−

=

+⋅=
dN

d

dnxnxdR

1

0

)()()( ,                    (3.17) 

where d is the shifting parameter. The value of d that maximizes R(d) over a specified range is 

selected as the period of the fundamental frequency of the sample points. Figure 3-19 shows 

the original time response of the speech signal and results for feature extraction of the 

fundamental frequency. The energy contour is obtained by calculating the short-time energy 
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Fig. 3-19: The original time response of the speech signal and the results for feature extraction of the 

fundamental frequency. 

 

of each frame in Equation (3.13). 

After obtaining the short-time energy and fundamental frequency values, the statistical 

values of fundamental frequency and energy features are calculated, including average, 

standard deviation, maximum, minimum and median. These statistical values are listed in 

Table 3-3. Fourteen statistical values are defined in this study. Based on observation, the 

selected statistical features are sufficient to express variations in emotion and produce 

satisfactory results. 

 

Table 3-3: The description of speech feature values. 

Fundamental frequency (F0) Energy 

1. Average of F0 9. Average energy 

2. Standard deviation of F0 10. Standard deviation of energy 

3. Maximum of F0 11. Maximum energy 

4. Minimum of F0 12. Median energy 

5. Median of F0 13. Average of energy derivation 

6. Average of F0 derivation 14. Standard deviation of energy derivation

7. Standard deviation of F0 deviation  

8. Maximum of F0 derivation  
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3.2.3 Emotional State Classification 

After obtaining the statistical features from the speech signal, a suitable classification 

procedure is required to recognize the emotion categories. In order to increase the 

discriminability of the feature values, Fisher's linear discriminant analysis (FLDA) [74] is 

used to find a suitable subspace in which to discriminate emotional categories. An SVM [67, 

75] has been an effective method for designing recognition systems. This study uses both 

FLDA and SVM to classify the emotional categories. 

FLDA is a popular method for pattern recognition, to find a linear combination of 

features which separate two or more classes of objects. It projects the original 

high-dimensional data onto a low-dimensional space. All of the classes are well separated by 

maximizing the Raleigh quotient [76]. In FLDA, one assumes there are r training sample 

vectors, given by 
r

ii
ts

1
}{ = , for p classes: ,,...,,

21 p
CCC  and that there are j

r  samples for 

the j
th

 class, such that: 

∑ =
= p

j j
rr

1
.             (3.18) 

Let μ  be the mean of all of the training samples, such that: 

∑ =
= r

i i
ts

r
1

1μ ,          (3.19) 

and j
μ  be the mean of the j

th
 class, such that: 

∑ ∈
=

ji Cr i

j

j ts

r

1μ ,       (3.20) 

where the within-class scatter matrix 
W

S  and the between-class scatter matrix 
B

S  are 

defined as follows: 
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The goal is to find a transform vector w such that the Raleigh quotient is maximized. The 

Raleigh quotient is defined such that 

   
wSw

wSw

W

T

B

T

=q ,              (3.23) 

w  can be defined by solving a generalized eigen problem, as specified by wSwS
WB

λ= , 

where λ  is a generalized eigenvalue. An L×M matrix,W , can be found to transform the 

original L-dimensional data into a M-dimensional space. It is expected that the p classes can be 

well separated in this M-dimensional space. In this work, M is selected as 12 from practical 

test. Since voice signals are noisy and direction sensitive, the FLDA is used to efficiently 

discriminate the speech features. In this study, each emotional sentence is represented as 

fourteen statistical features which are listed in Table 3-3. Then these fourteen statistical 

features are projected into a subspace by using the transformation matrix W obtain the new 

twelve feature values. Afterward each emotional sentence is transformed into twelve feature 

values for recognition. 

SVM is a two-class classifier for a set of related supervised learning methods that 

analyze data and recognize patterns. The SVM model represents examples as points in space. 

It determines a hyperplane, so that the examples of the separate categories are divided by a 

clear gap that is as wide as possible. New examples are then mapped into that same space and 

predicted to belong to a category, based on the side of the gap on which they fall. In this study, 

five classes of emotional categories are classified by using SVM. In order to utilize this 
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two-class classifier to classify five categories, a hierarchical SVM is adopted [70]. The 

hierarchical SVM classifier is illustrated in Fig. 3-20. In this design, five emotional states are 

categorized. An SVM hyperplane can distinguish two categories. Therefore a four-stage 

classifier is developed, as shown in Fig. 3-20. Each stage determines one emotional state from 

the two and the selected one proceeds to the next stage, until a final emotional state is 

determined. When unknown emotional speech is imported into the SVM, as shown in Fig. 

3-20, the SVM first classifies neutral vs. happiness, then classifies anger vs. surprise. After 

these stages, the corresponding results are further classified at the next stage. For example, the 

results of the first and second stage classifiers are assumed to be happiness and surprise 

(shown as � and � in Fig. 3-20). At the third stage, the classifier determines the unknown 

data as surprise or sadness. If the classification result is surprise (shown as �), then the 

classifier determines that the unknown data is happiness or surprise, in the final stage (shown 

as �). The system eventually produces a recognition result. 

 

 

 

Fig. 3-20: Structure of the hierarchical SVM classifier. 
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3.2.4 Implementation of the Emotion Recognition Embedded System 

The developed algorithms were implemented on a DSP-based embedded system [77], to 

facilitate the experimental study of an entertainment robot. The embedded system consists of 

a microphone and a DSK6416 DSP board from Texas Instruments. The selection of the 

DSK6416 as the main processing unit is because of its high performance in fixed-point 

calculation, with a 1 GHz clock rate. Figure 3-21 shows the TMS320C6416 DSK codec 

interface [78-79]. The DSK uses a Texas Instruments AIC23 stereo codec for input and output 

of audio signals. The codec samples an analog signal from a microphone and converts the 

signal into digital data, so that it can be processed by the DSP. The DSP chip and codec 

communicate via two serial channels; one controls the codec’s internal configuration registers 

and the other is responsible for digital audio samples. As shown in Fig. 3-21, the McBSP1 is 

used as the unidirectional control channel; the McBSP2 is used as the bi-directional 

audio-data channel. The codec has a 12 MHz system clock. The internal sample rate 

subdivides the 12 MHz clock to generate common frequencies, including 48 KHz, 44.1 KHz 

and 8 KHz; a frequency of 8 KHz is selected to sample the user’s speech signal, in this study. 

As a user speaks into the microphone, the embedded system acquires speech signals and 

begins to recognize the user’s emotional state. The recognition results are transmitted via 

 

 

Fig. 3-21: The TMS320C6416 DSK codec interface. 
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RS-232 serial link to a host computer (PC), where intelligent responses are generated to react 

to the received speech signal. 

In order to test the emotion recognition system in practical scenarios of human-robot 

interaction, the embedded speech processing system is integrated within the self-built 

entertainment robot. Figure 3-22 shows an interaction scenario for a user and the 

entertainment robot. The control architecture of this robot is depicted in Fig. 3-23. The 

DSP-based system is installed at the back of the entertainment robot. Seven Radio Controlled 

(RC) servos are used to control the movement of the ears, head, hands and legs of the 

entertainment robot. A motor servo controller, from Pololu Robotics and Electronics Inc. [80], 

controls the RC servos in the robot. The DSP-based emotion recognition system estimates 

emotion categories and determines, in real time, a suitable response for the entertainment 

robot. Some interesting studies [81-82] have utilized microphone arrays to avoid using a 

headset. Their methods improve the speech recognition system to cope with noise and 

direction sensitivity problems. In this study, we focus on the integration of emotional speech 

recognition algorithm and entertainment robot. In order to reduce the influence of the sound 

of robot motion or surrounding interference, a headset is used in the experiments, as shown in 

Fig. 3-22.  

 

 

Fig. 3-22: Interaction scenario for a user and the entertainment robot. 
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Fig. 3-23: Control architecture of the entertainment robot. 

 

3.3  Summary 

In this chapter, two human emotion recognition methods, including bimodal information 

fusion algorithm, speech-signal-based emotion recognition are proposed and presented. All of 

these emotion recognition methods will enhance the interaction between human and robot in a 

natural manner.
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Chapter 4 

 

Experimental Results 

 

In this chapter, the experimental results of robotic emotion generation and human 

emotion recognition are presented and discussed. For the robotic emotion generation, both 

anthropomorphic robotic head and artificial face simulator were employed to evaluate the 

results of human-robot interaction. In the part of human emotion recognition, the 

experimental results of three kinds of emotion recognition methods, which are descripted in 

Chapter 4, are presented.  

 

4.1  Experimental Results of Robotic Emotion Generation 

The developed robotic emotion generation system has been tested and evaluated for 

autonomous emotional interaction. We first implemented the proposed AEIS on a 

self-constructed anthropomorphic robotic head for experimental validation. The robotic head, 

however, has some hardware limitations in completing the evaluation experiments of mood 

transition system. A face simulator was adopted for testing the effectiveness of proposed 

human-robot interaction design.  

 

4.1.1 Experiments on an Anthropomorphic Robotic Head 

In order to verify the developed algorithms for emotional human-robot interaction, an 

embedded robotic vision system [77] has been integrated with an anthropomorphic robotic 

head with 16 degree-of-freedom. The DSP-based vision system was installed at back of the 

robotic head and the CMOS image sensor was put on the right eye to capture facial images. 

The system architecture of the robotic head is depicted in Fig. 4-1. A Qwerk platform [83] 
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works as an embedded controller. It receives estimated emotional intensity of a user from the 

vision system and output corresponding pulse width modulation signals to 16 RC servos to 

generate corresponding robotic facial expression. Figure 4-2 shows several basic facial 

expressions of the robotic head. 

 

 

Fig. 4-1: Architecture of the self-built anthropomorphic robotic head. 

 

(a) Happiness (b) Disgust                   (c) Sadness

(d) Surprise                         (e) Fear (f) Anger
 

Fig. 4-2: Examples of facial expressions of the robotic head. 
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In the experiment, a user presented his facial expressions in front of the robotic head as 

shown in Fig. 4-3. The robot responded to the user with different degrees of wondering as the 

user presented various intensities of surprise. A video clip of this experiment can be found in 

[84]. 

 

4.1.2 Experimental Setup for the Artificial Face Simulator 

A virtual-conversation scenario was set up for testing the effectiveness of proposed 

human-robot interaction design. As shown in Fig. 4-4(a), in the virtual-conversation test, a 

subject spoke to the artificial face (on the screen) while the talker’s facial expression was 

detected by a web camera. The subject in the experiment is a student of the authors’ Institute. 

Table 4-1 lists the conversation dialogue and corresponding subject’s facial expressions 

during the test. In the dialogue, the subject complained about her job with sad and angry facial 

expressions in the beginning. Then the subject talked about the coming Christmas vacation. 

Her mood varied from angry to happy state. After acquiring facial images, the user emotional 

state recognizer transferred the user’s facial expressions into sets of emotional intensity every 

0.5 seconds. The duration of this conversation is around 36 seconds. There are 73 sets of 

emotional intensity values detected from the user in this conversation scenario. In order to 

 

 

Fig. 4-3: Interaction scenario of a user and robotic head. 
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(a) 
      

(b)
 

Fig. 4-4: Experiment setup: interaction scenario with an artificial face. 

 

Table 4-1: List of the conversation dialogue and corresponding subject’s facial expressions. 

Sentence 

# 
Dialogue 

User’s 

emotional 

state 

1 Hi, Robot. How are you feeling today? Neutral 

2 I feel so bad today. I screwed up my job. Sad 

3 
Do you know I feel very sad now? I really 

hope it was not happened. 
Sad 

4 
I am really angry at myself for my 

mindless mistake. 
Angry 

5 

However, in a few days it will be 

Christmas. I think that I can get relaxed 

during the vacation. 

Neutral 

6 

I am planning to go to Tokyo with my 

boyfriend. We hear of a carnival will take 

place this year. 

Happy 

7 Ha! I can’t wait to go to the trip. Happy 

 

 

observe the robotic emotional behavior purely due to individual personality and mood 

transition and avoid undesirable effect caused by error from user emotional state recognition, 

the detected user emotional intensities are regulated to more reasonable ones manually. Table 

4-2 shows part of the regulated user emotional intensities when the subject uttered sentence 1 

and 2. These sets of emotional intensity are utilized again as input to test the response of the 

artificial face with different robot personalities and moods. 
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Table 4-2: Regulated user emotion intensity of conversion sentence 1 and 2. 

Sentence # UE
k
 (k=1,2, …, 15)

1 
(0.5,0.2,0,0.3), (0.5,0.3,0,0.2), (0.5,0.4,0,0.1), 

(0.6, 0.4,0,0), (0.8,0.2,0,0), (1,0,0,0), (1,0,0,0). 

2 
(0.9,0,0,0.1), (0.8,0,0,0.2), (0.7,0,0,0.3), (0.6,0,0,0.4),  

(0.5,0,0,0.5), (0.4,0,0,0.6) , (0.4,0,0,0.6), (0.3,0,0,0.7). 

 

 

4.1.3 Evaluation of Robotic Mood Transition Due to Individual Personality 

It is desirable that a robot behaves differently in different interaction scenarios. For 

example, to keep attention from students in education applications, the robot needs to behave 

more friendly and funny. Hence the openness and agreeableness scales are designed higher. 

One can design the desired personality by adjusting the corresponding Big Five factors. In this 

experiment, two opposite robotic individual personalities were designed respectively for 

RobotA (with more active trait) and RobotB (with more passive trait). The Big Five factors 

were applied to model these two personalities. Table 4-3 lists the assigned scales 

corresponding to both opposite personalities. As we know, people belonging to active trait are 

usually open minded and interact with others more frequently. Hence the openness and 

agreeableness scales of RobotA are higher than those of RobotB and these two higher scales 

 

Table 4-3: Definition of personality scales using Big Five factors. 

 
RobotA 

(Active trait) 

RobotB 

(Passive pessimist) 

Openness 1 0.3 

Conscientiousness 0.5 0.5 

Extraversion 0.1 0.1 

Agreeableness 0.5 0.2 

Neuroticism 0.1 0.3 

(Pα, Pβ) (0.34, 0.24) (0.20, -0.07) 
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lead the personality parameters (Pα, Pβ) to more positive tendency. Furthermore, a more 

passive pessimist has the tendency to experience negative thinking in general. Therefore the 

neuroticism factor of RobotB is higher than that of RobotA. The higher neuroticism factor of 

RobotB leads its personality more negative tendency on arousal (β axis). After trait values 

have been identified, the robot personality parameters (Pα, Pβ) are determined by using (2.4) 

and (2.5). And the proposed robotic mood transition model is built accordingly. 

To evaluate the effectiveness of the proposed emotional expression generation scheme 

based on individual personality, we conducted two sessions of experiments by using the 

artificial face as shown in Fig. 4-4(b). In the experiments, the same input sets were presented 

to RobotA and RobotB with the regulated user emotional intensities, respectively with 

above-mentioned conversation. The robotic mood states were observed as the same user 

spoke to RobotA and RobotB. Accordingly, the artificial face reacted with different facial 

expressions resulting from mood state transition. Table 4-4 and Table 4-5 list the calculated 

robotic mood states (RMk) and simulated facial expressions corresponding to RobotA and 

RobotB respectively. Video clips of this experimental can be found in [85]. 

Figure 4-5 depicts the mood transition of RobotA as the above conversation was 

performed. The initial mood state of RobotA was set at neutral state (0.61,-0.47), referring to 

Fig. 2-2. The mood transition trajectories moved from the fourth quadrant to third, second and 

first quadrant in the end. The corresponding facial expressions varied from neutral (#1) to 

boredom (#2), sadness (#3), anger (#4), surprise (#5), happiness (#6) and excitement (#7) in 

the end. The sharp turning point (#5) in Fig. 4-5 indicates that RobotA recognized the 

subject’s emotional state varied rapidly from anger to happiness. Figure 4-6 shows the mood 

transition of RobotB as the same emotional conversation was performed. The initial mood 

state of RobotB was also set on neutral state. The corresponding facial expressions varied 

from neutral (#1) to sleepiness (#2, #3), boredom (#4), sadness (#5), boredom (#6) and then 

near neutral in the end. Compared with Fig. 4-5, the robotic mood transition of passive trait is  
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Table 4-4: Facial expressions for the RobotA. 

 

 

Table 4-5: Facial expressions for the RobotB. 
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basically in the regions of boredom, sad and neutral emotion. It stayed almost destructive no 

matter what kind of the subject’s emotional states came into play. On the contrary, the robotic 

mood transition of active trait scattered in whole emotional space. These features manifest the 

difference in characters between active and passive traits. This experiment reveals that the 

proposed mood transition scheme is able to realize robotic emotional behavior with different 

personality trait. Video clips of the mood transition for RobotA and RobotB can be found in 

[86]. 
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Fig. 4-5: Robotic mood transition of RobotA. 
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Fig. 4-6: Robotic mood transition of RobotB. 
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Figure 4-7 shows the variation of seven fusion weights while the subject uttered to 

RobotA. In the emotional conversation, the subject spoke seven dialogues as shown in Table 

4-1. The corresponding fusion weights variations of these seven dialogues are shown by seven 

sectors in Fig. 4-7. In dialogue #1, the neutral facial expressions dominate the output behavior; 

this is reasonable since the subject’s emotional state is neutral. In dialogue #2 and #3, the 

weights of sadness gradually increase while the transitions of subject’s emotional states are 

from neutral to sad. Next, the sad weight decreases and the surprise weight increases as the 

subject feels angry progressively (dialogue #4). In the meantime, the fear weight also 

increases to respond to the subject’s angry expression. After the subject turned to be happy, 

the surprise and fear weights decrease (dialogue #5) and happy weight increases to dominate 

the output behavior. 

Figure 4-8 shows the variation of seven fusion weights as the subject uttered to RobotB 

with the same emotional conversation. In dialogue #3 and #4, the weights of sadness 

gradually increase while the transitions of subject’s emotional states are from neutral to sad 

and angry. After the subject’s emotional states become happiness, the sad weight decreases 
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Fig. 4-7: Weights variation for RobotA (active trait). 
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Fig. 4-8: Weights variation for RobotB (passive trait). 

 

(dialogue #5) and neutral weight increases to dominate the output behavior. Compared with 

RobotA in Fig. 4-7, the personality of passive trait leads to less behavior variations and gets 

into sadness emotion easily although the subject’s emotional states become happiness. These 

features match the emotional tendency for both active and passive traits. 

 

4.1.4 Evaluation of Emotional Interaction Scheme 

In this experiment, questionnaire evaluation for the robot mood transition design was 

conducted for the emotional conversation performed by the same subject with RobotA, 

RobotB and RobotC respectively. Here the emotional response of RobotC was designed such 

that it is irrelevant to the proposed emotional interaction method. RobotC just follows facial 

expressions as recognized from the subject. The emotional conversation with RobotA, 

RobotB and RobotC were recorded on three video clips [85] for questionnaire evaluation. We 

used the Big Five factors to evaluate the effectiveness of the proposed robotic emotional 

expression generation system. 

Twenty subjects of age 20~40 were invited to watch the videos of virtual conversation 



 

 

66

with RobotA, RobotB and RobotC. The invited subjects were asked to answer questionnaires 

(see Appendix A) after watching the above videos. In the questionnaire, a subject is asked to 

give scores from agreeing to disagreeing about the emotional interactions in the videos. We 

then average the scores using scales (0-1) for the RobotA, RobotB and RobotC respectively. 

The summary of the experimental results is shown in Fig. 4-9. In the current design, facial 

expressions of the animation simulator are presented by direct control of pure mood transition. 

Unlike wording wisdom of human, the readability of facial expressions is related to very 

different underlying semantics [87-89]. Although the difference between the designed facial 

animation and human facial expression is obvious, the current design allows an observer to 

answer the questionnaires more straightforwardly. The major characteristics of designed 

robotic trait (active and passive) are openness, agreeableness and neuroticism. By observing 

the openness and agreeableness factors in Fig. 4-9, both factors are evaluated higher for 

RobotA than those of RobotB. It reveals that RobotA is recognized to have more tendencies to 
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Fig. 4-9: Questionary result of psychological impact. 
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react and interact with human than RobotB. Moreover, the neuroticism factor of RobotB is 

evaluated to be higher than that of RobotA. It indicates that the passive pessimist is indeed 

more inclined to experience negative thoughts than active trait. These results conform to the 

designed personality in Table 4-3. 

As mentioned, RobotC only copies the subject’s facial expressions without any mood 

transition discussed in this work. In other words, the detected Big Five factors of RobotC only 

show the subject’s personality. In order to verify the difference between robots with the 

proposed mood transition scheme (RobotA and RobotB) and without it (RobotC), the same 20 

subjects answered the questionnaire after watching the videos in [85]. In the questionnaire, a 

subject is asked to give scores from agreeing to disagree about the degree of natural or 

artificial interactions in the videos. The summary of the experimental results is shown in Fig. 

4-10. Based on the item of natural vs. artificial in Fig. 4-10, RobotA and RobotB both behave 

more naturally than RobotC. It shows that the proposed mood transition method enables the 

robot to behave in a human-like manner. 

Table 4-6 shows the average values of 20 questionnaire surveys and Table 4-7 shows the 

corresponding standard deviation of questionnaire result. In Table 4-6, the personality 

parameters of RobotA and RobotB are estimated as (0.68, 0.19) and (0.43, -0.22), respectively. 

By comparing with the designed personality in Table 4-3, we see that the personality 

parameters of RobotA and RobotB are (0.34, 0.24) and (0.20, -0.07), respectively. It is seen 
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Fig. 4-10: Questionary result of Natural vs. Artificial. 
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Table 4-6: Estimation of personality parameters by questionnaire survey. 

 RobotA RobotB 

Openness 0.74 0.31 

Conscientiousness 0.73 0.48 

Extraversion 0.78 0.23 

Agreeableness 0.79 0.42 

Neuroticism 0.27 0.69 

(Pα, Pβ) (0.68, 0.19) (0.43, -0.22) 
 

Table 4-7: Standard deviation of questionnaire results. 

 RobotA RobotB RobotC 

Openness 0.16 0.20 0.24 

Conscientiousness 0.14 0.21 0.23 

Extraversion 0.11 0.13 0.20 

Agreeableness 0.15 0.21 0.26 

Neuroticism 0.16 0.30 0.29 

 

that both Pα  values (0.34 and 0.20) of designed RobotA and RobotB are proportional to the 

estimated Pα values (0.68 and 0.43) in Table 4-6, respectively. These results are represented as 

shown in Fig. 4-11. It reveals that both the designed and estimated mood transition velocities 

of RobotA are about 1.6 times (0.68/0.43 and 0.34/0.20) those of RobotB on the Pα - Pβ axes. 

In another word, both designed and estimated RobotA are happier easily than RobotB with a 

similar ratio. Furthermore, both of the designed and estimated Pβ  values of RobotB are 

negative. It indicates that both the designed and estimated RobotA will tend to arousal and 

RobotB will tend to sleepiness while the same user’s emotional intensity is imported. Hence 

the estimated results of robot personality parameters are consistent with the designed 

personality scales in Table 4-3. Based on the experimental results, it can be concluded that a 

robot can be designed with a desired personality and differently designed robotic personalities 

give distinct interactive behaviors. Moreover, the emotional robots behave more human-like 

interaction. 
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(a) Original design.                       (b) Estimated result. 

Fig. 4-11: Representation of robot personality parameters. 

 

4.2  Experiments on Bimodal Information Fusion Algorithm 

In contrast to many existing visual-only or audio-only databases for benchmark testing 

[90], there is hardly a database that combines both visual and audio information. Martin et al. 

[91] built an audio-visual emotion database by using a digital video camera. However, the 

resolution of the camera is too high to be applied for practical pet-robot scenarios, where very 

often low-cost vision sensors are adopted. Therefore, we built our own database from lab 

members using off-the-shelf COMS image sensor and PC microphone. 

A DSP-based system has been designed and constructed for the experiments, for both 

building the database and experimental evaluation. As shown in Fig. 3-2, a user presents his 

facial expressions in front of the CMOS image sensor and speaks to the microphone. After 

acquiring both facial and speech signals, the DSP system begins to process the visual and 

audio information. There are five emotional expressions in the built-up database as described. 

Figure 4-12 shows part of the database. Currently, the database includes fourteen persons and 

every one of them expresses their emotions ten times in each emotion category. So there are 

140 data samples. In the off-line experiments, we randomly selected 70 data samples as 

training samples and the other 70 data samples were used as test samples. 
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Fig. 4-12: Examples of database. 

 

4.2.1 Off-line Experimental Results 

Table 4-8 shows the experimental results of five emotional categories using only the 

speech features. The average recognition rate is 73.7%. Table 4-9 shows the experimental 

results of five emotional categories using image features. The average recognition rate is 

81.7%.  The recognition rates of using the proposed bimodal information fusion algorithm to 

combine both visual and speech features are shown in Table 4-10. The recognition rate of the 

 

Table 4-8: Experimental results using speech features. 

Output 

 

Input 

Anger Happiness Neutral Sadness Surprise 
Recognition 

Rate 

Anger 48 12 5 3 2 68.6% 

Happiness 8 43 6 10 3 61.4% 

Neutral 5 9 48 5 3 68.6% 

Sadness 2 6 3 59 0 82.9% 

Surprise 0 1 7 1 61 87.1% 

     Average 73.7% 
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Table 4-9: Experimental results using image features. 

Output 

 

Input 

Anger Happiness Neutral Sadness Surprise 
Recognition 

Rate 

Anger 53 3 7 6 1 75.7% 

Happiness 2 57 11 0 0 81.4% 

Neutral 9 7 48 6 0 68.6% 

Sadness 1 1 6 62 0 88.6% 

Surprise 1 1 2 0 66 94.3% 

     Average 81.7% 

 

Table 4-10 Experimental results using information fusion. 

Output 

 

Input 

Anger Happiness Neutral Sadness Surprise 
Recognition 

Rate 

Anger 60 3 4 2 1 85.7% 

Happiness 3 59 6 2 0 84.3% 

Neutral 6 9 52 2 1 74.3% 

Sadness 1 1 3 65 0 92.9% 

Surprise 0 2 0 0 68 97.1% 

     Average 86.9% 

 

combined bimodal information is 86.9%. A 5% improvement of the recognition rate is 

achieved relative to the facial feature and 13% improvement relative to the speech features. It 

can be seen that the recognition rate of the combined bimodal approach is higher than any 

single mode approach. 

 

4.2.2 On-line Experimental Results 

Further, on-line experiments were carried out using the developed DSP-based emotion 

recognition system. The training of SVM hyperplane was performed off-line on a PC using 

the constructed database. The trained parameters of the hyperplane were then transferred and 

stored in the DSP system for on-line test. In the test, a person presents his/her face in front of 
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the CMOS image sensor and speaks to the microphone, and DSP system will return the 

emotion category in two seconds. We invited five new persons to join the on-line experiments. 

Every person expressed ten times the emotion category with facial expression and voice. The 

recognition result of using only image information is shown in Table 4-11. The average 

recognition rate is 74.4%. Table 4-12 shows the bimodal emotion recognition rate of the 

on-line test. The average recognition rate is 77.6%. The experimental results verify that the 

proposed method can work effectively in on-line applications. The recognition rate of on-line 

test is lower than the off-line result. This is mainly due to the image noise in the on-line test. 

Also, the test samples are new faces and voices, the recognition rate is thus lower than the 

off-line results. 

 

Table 4-11: On-line experimental results using only image features. 

Output 

 

Input 

Anger Happiness Neutral Sadness Surprise 
Recognition 

Rate 

Anger 40 1 8 0 1 80% 

Happiness 3 38 9 0 0 76% 

Neutral 1 10 34 4 1 68% 

Sadness 1 4 14 30 1 60% 

Surprise 0 2 3 1 44 88% 

     Average 74.4% 

 

Table 4-12: On-line experimental results using information fusion. 

Output 

 

Input 

Anger Happiness Neutral Sadness Surprise 
Recognition 

Rate 

Anger 41 1 7 0 1 82% 

Happiness 1 38 9 0 2 76% 

Neutral 2 10 35 2 1 70% 

Sadness 1 1 14 34 0 68% 

Surprise 0 2 2 0 46 92% 

     Average 77.6% 
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4.3  Experiments on Speech-signal-based Emotion Recognition 

The performance of the proposed emotional voice recognition system was evaluated 

using a self-built database. Furthermore, experimental study of the proposed system was 

performed by integrating the DSP-based system into an entertainment robot. 

 

4.3.1 Experiments Using the Self-built Database 

The proposed emotion recognition system was tested using a speech database built in the 

ISCI lab of National Chiao Tung University. There are five categories of emotional speech in 

the database: happiness, sadness, surprise, anger and neutral. For each category, there are 

three kinds of different sentences. In order to express the emotion in a natural way, each 

subject was asked to narrate expressive sentences, in Chinese, to imitate an actual interactive 

scenario. Table 4-13 lists the meaning of each sentence, in English. Currently, the database 

includes various emotional utterances from five persons. Each person recorded each sentence 

six times, so there are 90 utterances per emotion category and 450 utterances in total, in this 

database. In the following experiments, 45 data samples were randomly selected as training 

data for each emotional category and the other 45 data samples were used as test data. Part of 

 

Table 4-13: Meaning of sentence content for five emotional categories. 

Emotional category Content of sentence 

Anger 

1. How can you do that without my agreement? 

2. It’s none of your business. 

3. What you are doing is wrong! 

Happiness 

1. It’s almost new year! 

2. I will go abroad on vacation tomorrow. 

3. I won the lottery! 

Neutral 

1. It’s a sunny day. 

2. I have something to do later. 

3. Are you hungry? 

Sadness 

1. My cat is lost. 

2. I got a cold. 

3. Everything went without a hitch today. 

Surprise 

1. Are you serious? 

2. I can’t believe that it really happened. 

3. Ah! My notebook is lost. 
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the voice clips of the database can be found in [92]. 

In order to compare the effect of speech features, fundamental frequency and short-time 

energy features, the emotion is first evaluated between any two emotional categories. Figure 

4-13 shows the experimental results of the SVM classification of any two emotional 

categories. There are ten combinations of any two emotional expressions. It is seen that the 

recognition rates for these nine combinations are higher than 85%. The recognition rate of 

neutral vs. sadness (A vs. E) is the lowest, mainly due to the small prosodic variation between 

neutral and sad speech utterances. The other recognition rates lie between 85% and 96%. The 

average recognition rate is 89.2%. This indicates that the proposed statistical features can 

represent emotional characteristics properly. 

The hierarchical SVM classifier (shown as Fig. 3-21) was then employed to recognize 

five emotional categories. In the experiments, the SVM classifier was trained using a set of 45 

data samples for each emotional category. These 45 data samples came from five persons, 

with each person contributing three samples of each emotional sentence. The other 45 data 

samples were tested for recognition of the emotion category. The test results are presented in 

Table 4-14. The average recognition rate for the five emotional expressions is 73.78%. It is 

 

 

Fig. 4-13: Experimental results of recognition rate for any two emotional categories. 
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noted that anger can be classified as surprise. It is due to the similar speech rates and tones of 

these two kinds of sentences in the self-built database. Moreover, the accent and noise of the 

voice influence the classification results a lot. We will take these factors into consideration in 

future work. 

 

4.3.2 Experiments with the Entertainment Robot 

In this study, we aim to develop an entertainment robot suitable as a children’s toy. In 

such a robotic application, fast response to natural speech signal is required. Therefore, a 

simple entertainment robot is built to verify the proposed natural speech signal emotion 

recognition algorithm. The complete emotion recognition system was integrated into the 

self-constructed entertainment robot. Figure 4-14 shows a block diagram of the implemented 

interaction control system on the robot. 

In the experiment, a user speaks in front of the robot, as shown in Fig. 3-22. After 

acquiring the speech signals, the emotion recognition system begins to process the audio 

information. When no human speech is detected, the robot manifests a bored behavior by 

turning its head to look around. When a user says “hello” to the robot, with neutral emotion, 

the robot raises its hands to respond to the user. If a happy emotion from the user is detected, 

the robot rotates its ears and raises its hands to show a happy gesture. When the user 

expresses anger to the robot, the robot puts its hands down to portray fear. However, the robot 

 

Table 4-14: Experimental results of recognizing five emotional categories. 

Output 

Input 
Anger Happiness Neutral Sadness Surprise 

Recognition 

rate 

Anger 30 0 3 4 8 66.67% 

Happiness 1 37 3 4 0 82.22% 

Neutral 1 6 35 3 0 77.78% 

Sadness 0 4 6 30 5 66.67% 

Surprise 5 2 1 3 34 75.56% 

     Average 73.78% 
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Fig. 4-14: Block diagram of the emotional interaction system. 

 

shakes its head if surprise is detected from the user. Figure 4-15 shows the interaction 

responses of the robot when the user said, “I am angry!”, with an angry tone. After that, the 

user used a surprise tone to the robot. As shown in Fig. 4-16, the robot shook its head in 

response to the recognized emotional state. The experimental results verify that the proposed 

emotion recognition system allows the robot to interact with a user in a natural and friendly 

manner. A video clip of the experimental results can be found in [93]. In the future, a fast 

system will be further studied to recognize human’s emotional speech and interact in a more 

 

 

 

Fig. 4-15: Interactive response of the robot as the user says, “I am angry!” (a) The robot puts down its 

hands to portray fear. (b) The robot continues to put down its hands to the lowest position. (c) The 

robot raises its hands back to the original position. 
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Fig. 4-16: Interactive response of the robot, when the user speaks in a surprised tone. (a) The robot 

shakes its head to the right. (b) The robot shakes its head to the left. (c) The robot puts its head back to 

the original position. 

 

humanlike manner. Some suitable psychological findings will also be considered to apply to 

the emotional robotic system. 

 

4.4  Experiments on Image-based Emotional State Recognition 

In this design, the user’s emotional state ( n

k
UE ) is used as input to the system. In order to 

obtain n

k
UE , an image-based facial expression recognition module has been designed and 

implemented. The facial expression recognition module consists of face detection stage, 

feature extraction stage and emotional intensity analyzer. The method of facial feature 

extraction is descripted in 3.1.1. After obtaining the facial feature points, twelve significant 

feature values, which are distances between two selected feature points. In order to reduce the 

influence of distance between a user and the camera, these feature values are normalized for 

emotion recognition. Thus, every facial expression is presented as a feature set.  

To recognize user’s emotional states, we further developed an image-based method to 

extract facial expression intensity. Four feature vectors, namely,
Neu

F
v

, 
Ha

F
v

, 
AngF
v

 and 
Sad

F
v

 are 

defined to represent the standard neutral, happy, angry and sad expressions. Dissimilarities 

between current feature set of a user (
kUser

F
,

v

) and the standard facial expressions are calculated 

such that: 

NeukUserkN
FFd
vv

−=
,,

       (4.1) 
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HakUserkH FFd
vv

−=
,,

       (4.2) 

AngkUserkA FFd
vv

−=
,,

       (4.3) 

SadkUserkS
FFd
vv

−=
,,

 ,      (4.4) 

where dN,K, dH,K, dA,K and dS,K represent respectively, the dissimilarities between the feature set 

of user and the defined standard neutral, happy, angry and sad expression at sampling instant k. 

ǁ ǁ represents the Euclidean distance. In our design, the intensity of user’s emotion is 

recognized as the standard facial expression while the dissimilarities between the current 

feature set and standard facial expression is small. Therefore, the user’s emotional intensities 

n

k
UE  are calculated such that: 
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where n

kN
ue

,

, n

kH
ue

,

, n

kA
ue

,

 and n

kS
ue

,

 represent respectively, the n
th

 user’s emotional 

intensities at sampling instant k for neutral, happy, angry and sad expressions. By using this 

procedure, the user’s emotional state is represented as a set of four emotional intensities. 

In this section, Cohn-Kanade AU-Coded Facial Expression Database [94] is used to 

verify the proposed method of emotional state recognition. Twenty-four sets of facial images 

of different basic facial expressions were selected as training data. Each set contains 7 facial 

images of a particular emotion with various facial expressions. 60 face images of different 

basic facial expressions were selected as test data. To compare the system with ground truth, 

we choose the strongest emotion as recognition results. The result of this experiment is shown 

in Table 4-15. The average recognition rate is 90%.  
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Table 4-15: Test result of emotion state recognition. 

Output 

 

Input 

N
eu
tral 

A
n
g
er 

H
ap
p
in
ess 

S
ad
n
ess 

R
eco

g
n
itio

n
 

R
ate 

Neutral 13 1 0 1 87% 

Anger 0 15 0 0 100% 

Happiness 2 0 13 0 87% 

Sadness 1 1 0 13 87% 

 

 

Figure 4-17 shows an example of emotional state recognition. In this example, neutral, 

happy, angry and sad facial expressions are used as testing samples. In Fig. 4-17(a), fourteen 

dot marks represent the extracted feature points for facial expression recognition. The 

emotional intensities are obtained using (4.5)-(4.8). As shown in Fig. 4-17(a), the ratio of the 

neutral component amounts to 54%, which dominates the facial expression, although the other 

emotion components also contribute to the facial expression. Similar results are obtained as 

shown in Figs. 4-17(b)-(d). 

 

 

54%Neutral 

11%Happiness

17%Anger 

18%Sadness 

15%Neutral 

65%Happiness 

11%Anger 

9%Sadness 

(a) (b) 

 

15%Neutral 

10%Happiness

57%Anger 

18%Sadness 

8%Neutral 

9%Happiness 

14%Anger 

69%Sadness 

(c) (d) 
 

Fig. 4-17 Examples of user emotional state recognition. 
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4.5  Summary 

In the part of robotic emotion generation, experimental results reveal that the simulated 

artificial face interacts with people in a manner of mood transition and with robotic 

personality. The questionnaire investigation confirms positive results on the evaluation of 

responsive robotic facial expressions generated by the proposed design. In the part of human 

emotion recognition, the experimental results of proposed bimodal emotion recognition 

system show that an average recognition rate of 86.9% is achieved, a 5% improvement 

compared to using only image information. On the other side, the experimental results of 

speech-signal-based emotion recognition for the entertainment robot show that the robot 

interacts with a person in a responsive manner. The average recognition rate for five 

emotional states is 73.8% using the database constructed in the authors’ lab.  
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Chapter 5 

 

Conclusions and Future Work 

 

5.1  Dissertation Summary 

In this work, a robotic mood transition model for autonomous emotional interaction has 

been developed. An emotional model is proposed for mood state transition exploiting a 

robotic personality approach. By adopting Big Five factors to represent robot personality in 

the 2-D emotional model, one is able to generate facial expressions in a more natural manner. 

The behavior fusion architecture with a designed rule table provides a robot the capability to 

generate emotional interactions. Experimental results on the artificial face show that the robot 

interacts with people with suitable mood transition and a kind of robotic personality. The 

questionnaire investigation confirms positive results on the evaluation of responsive robotic 

facial expressions generated by the proposed design.  

For the bimodal information fusion algorithm, the proposed bimodal fusion scheme and 

statistically-determined fusion weights computed from individual modality effectively 

increase the recognition accuracy. Practical experiments have been carried out using a 

stand-alone robotic vision system. With a self-built database of fourteen persons, the proposed 

system achieves a recognition rate of 86.9%. For the proposed speech-signal-based emotion 

recognition, the emotion recognition system developed classifies five emotional categories, in 

real time. Experimental results using an entertainment robot show that the robot can interact 

with a user in a responsive manner, using the developed speech signal recognition system. 

Using a database built in the lab, the proposed system achieves an average recognition rate of 

73.8% for five emotional states.  

 



 

 

82

5.2  Future Directions 

Some directions deserve further study in the future: 

1) More comparisons with other emotional models will be further studied. It will be 

interesting to investigate different models for robotic emotion generation and evaluate 

their emotional intelligence with practical experiments. 

2) For human emotion recognition, it is suggested to focus on the development of robust 

algorithms to deal with more natural visual and audio signals. Methods to extract more 

reliable features of both visual and audio modalities will also be investigated to improve 

the performance. The direct fusion of both visual and audio features is considered for the 

future to overcome the incomplete problem. 

3) Because the voice signal must be acquired using the embedded system, it is difficult to 

establish a benchmark to evaluate the developed recognition algorithm. In the future, a 

method to extract key phrases in an utterance will be investigated, to increase the 

recognition rate. The emotional state can be estimated more directly from the speech 

signal, than from the extracted statistical features of the whole voice frame. 

4) In this study, all participants in our experiment are aware of the test. It belongs to intrusive 

testing. Other types of testing can be studied in the future. 
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Appendix A 

 

Evaluation Questionary of Emotional Interaction 
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