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麥克風陣列：噪音源識別及聲場可視化 

 

學生：林家鴻 指導教授：鄭泗東 

 共同指導教授：白明憲 

 

國立交通大學 機械工程學系 博士班 

 

摘      要 

本論文提出遠場及近場麥克風陣列來識別噪音源的位置及聲場可視化。在遠

場麥克風陣列中，稀疏且隨機配置的麥克風陣列已知可以用來傳遞遠場的影像而

不會產生鬼葉瓣的問題。在最佳化麥克風的配置中，全域最佳化技術包括蒙地卡

羅法、模擬退火法和內部方格蒙地卡羅法被用來有效率地尋找最佳的麥克風配

置。模擬結果顯示出要避免鬼葉瓣的出現，隨機配置麥克風是必要的。而結合模

擬退火法和蒙地卡羅法的方法可以有效率的找到一個令人滿意的配置，這個配置

能得到傑出的波束圖和相對較均勻的麥克風分布。在到達方向的估測中，平面波

的聲源被視為球面波。遠場聲學影像的方法包括延遲和相加法、時間反轉法、單

進多出等效聲源反逆濾波法、最小變異無失真響應法和多重信號分類法被用來估

測聲源位置。結果顯示多重信號分類法在定位噪音源位置上可得到最佳的結果。

在近場麥克風陣列中，提出近場等效音源影像(Nearfield Equivalence Source 

Imaging, NESI)來識別噪音源的位置及強度。NESI 是在時間面上設計,它除了可

以應用在穩態噪音源上亦可應用在非穩定噪音源上。利用最小均方最佳化來設計

出多通道反逆濾器。調整化被利用來仰制不足解模型相稱的不好條件值。設計的

參數如:麥克風陣列的孔徑、麥克風的間距、焦點的間距及量測距離都會明顯地
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影嚮到聲場影像解析度的結果。重建距離的選定是依據傳遞矩陣的條件值大小來

決定。並且利用窗口矩陣的設計來成功地解決在邊界上失焦的問題。此外，本論

文使用撤退焦點表面法來避免在重建聲場表面上的奇異問題。並使用黄金比例法

來求得最佳的撤退距離（虛擬聲源面及重建面之間的距離）。在結果中發現，在

平面活塞聲源中最佳的撤退距離為 0.4 到 0.5 倍的麥克風間距及在球面活塞聲源

中最佳的撤退距離為 0.8 到 1.7 倍的麥克風間距。近場等效聲源成像法利用多通

道反算濾波器可重建數個聲學變數，包含聲壓、粒子速度、主動聲強及聲功率。

而當可供使用的麥克風數量不足時，可運用虛擬麥克風技巧裡的內插及外插方法

分別增加解析度及減低邊緣效應。使用高效率之狀態空間最小化獲得技術來實現

多通道反逆濾器。經由最佳化計算，最佳的近場麥克風配置為等間距之麥克風置

配。根據模擬及實際聲源(個人電腦、空氣壓縮機、速克逹及非接觸式模態測式)

測試結果,本論文所提出的 NESI 技術可以有效地去識別出噪音源的位置及強度。 
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ABSTRACT 

Farfield and nearfield microphone arrays are proposed for noise source 

identification (NSI) and sound field visualization (SFV).  In farfield array, arrays 

with sparse and random microphone deployment are known to be capable of 

delivering high quality far-field images without grating lobes.  In the optimal 

deployment of microphone arrays, global optimization techniques including the 

simulated annealing (SA) algorithm and the intra-block Monte Carlo (IBMC) 

algorithm are exploited to find the optimal microphone positions efficiently.  In 

direction of arrival (DOA) estimation, the planar wave sources are assumed to be 

spherical wave sources in this thesis.  Farfield acoustic imaging algorithms including 

the delay and sum (DAS) algorithm, the time reversal (TR) algorithm, the single input 

multiple output equivalent source inverse filtering (SIMO-ESIF) algorithm, the 

Minimum variance distortionless response (MVDR) algorithm and the multiple signal 

classification (MUSIC) algorithm are employed to estimate DOA.  Results show that 

the MUSIC algorithm can attain the highest resolution of localizing sound sources 
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positions.  In narfield array, a nearfield equivalence source imaging (NESI) 

technique is proposed to identify locations and strengths of noise sources.  The NESI 

is based on the time-domain formulation that applies not only to stationary but also a 

transient noise.  Multichannel inverse filters are designed using the least-square 

optimization.  Regularization is employed to mitigate the ill-posedness inherent in 

the model-matching problem.  Window design can also be incorporated into the 

inverse filters to overcome defocusing problems when the distance of reconstruction 

(DOR) is large or when the number of microphones is less than that of the focal points.  

As a basic form of the equivalent source method (ESM) applied to nearfield 

acoustical holography (NAH) problems, discrete monopoles are utilized to represent 

the sound field of interest.  When setting up the virtual source distribution, it is vital 

to maintain a “retreat distance” (RD) between the virtual sources and the actual source 

surface such that reconstruction would not suffer from singularity problems.  

However, one cannot increase the distance without bound because of the ill-posedness 

inherent in the reconstruction process with large distance.  How to reach the best 

compromise between the reconstruction errors induced by the point source singularity 

and the reconstruction ill-posedness is an interesting problem in its own right.  This 

thesis revisits this issue, with the aid of an optimization algorithm based on the golden 

section search (GSS) and parabolic interpolation.  The results revealed that the RD 

appropriate for the ESM ranged from 0.4 to 0.5 times the spacing for the planar piston, 

while from 0.8 to 1.7 times average spacing for the spherical piston.  Acoustical 

variable including sound pressure, particle velocity, active intensity and sound power 

are calculated by using multichannel regularized inverse filters.  In practical 

applications in which only patch array with scarce sensors are available, a virtual 

microphone approach is employed to ameliorate edge effects using extrapolation and 

to improve imaging resolution using interpolation.  The multichannel inverse filters 
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are implemented in light of a highly efficient state-space minimal realization 

technique.  A special kind of beam pattern and cost function definition is used for the 

multiple-input-multiple-output (MIMO) imaging problem.  A striking result was also 

obtained that random deployment presents no particular benefit in nearfield imaging 

and the optimal configuration is the uniform array.  As indicated by the simulation 

and experiment results, the proposed technique proved effective in identifying sources 

of many kinds, including broadband, narrowband, stationary, and transient sources. 
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CHAPTER 1. INTRODUCTION 

A microphone array refers to a collection of microphones operating concurrently 

to achieve certain acoustic signal process purpose.  Microphone array systems have 

received much research interest as a means of acoustic pickup utilized in various 

applications.  Array signal processing [1]-[6] has been widely used in the areas such 

as non-destructive evaluation [7]-[8], underwater imaging [9]-[10], and machine 

diagnosis [11]-[12] and so forth.  The major advantage is the enhancement of the 

signal-to-noise ratio (SNR).  In addition, the directivity of the microphone array can 

be improved to be effective in eliminating background noise by beamforming 

techniques.  Array signal processing of direction of arrival (DOA) estimation and 

nearfield acoustical holography (NAH) techniques are utilized to do the DOA 

estimation, noise source identification (NSI) and sound field visualization (SFV).  

The locations of the sound source can be estimated.  Then, the main beam of the 

microphone array can be steered to the direction of the source of interest. 

 

1.1 Background and motivation: problem statement 

NSI is a vital step prior to a successful noise control program.  Noise sources 

largely fall into two categories: vibration-induced noise and flow-induced noise.  

Examples of the first category include noise from rotating machinery, impact noise, 

noise due to structural resonance, braking squeal, etc., while examples of the second 

category include fan noise, pump noise, jet noise, etc.  NSI techniques have been 

extensively studied by acoustical engineers.  Among the NSI methods, SFV 

techniques are particularly useful in estimating the source position and the source 

strength as shown in Fig. 1.  In addition to NSI, SFV techniques also find 

applications in non-destructive evaluation, underwater imaging, and machine 
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diagnosis and so forth.  Some of simply noise problem can be solved by using the 

ears.  However, it is difficult to characterize the problem without employing a NSI 

tool in many cases.  The NSI tools have many kinds such as intensity probe, 

accelerometer, laser vibrometer, Beamforming, NAH, etc.  Intensity probe measures 

at one point for stationary noise.  The distance of measurement is very close to the 

source surface.  In addition, intensity probe is not congruence when surface vibration 

is of interest.  Several accelerometers are mounted on the vibrational surface to 

measure non-stationary vibrations.  Displacement, velocity and acceleration can be 

measured by using accelerometers.  The shortcoming of this tool is that can not used 

on rotational surface.  Additional tool is the laser vibrometer that is a non-contact 

approach.  Velocity is obtained at a single point on the source surface.  In many 

cases, scanning laser is employed to measure velocity at several points within a short 

time interval.  The shortcoming of laser vibrometer is that it must line of sight to the 

source surface.  Hence, laser vibrometer can not measure synchronous noise source 

signal when noise source is non-stationary.  In addition, that distance of 

measurement must be large to scan a large area.  Hence, this tool is congruence in 

wide spaces.  Two following tools, beamforming and NAH are based on an array of 

microphones.  They measure pressure of the sound field to achieve NSI.  

Beamforming exploits array signal processing to estimate DOA.  In early 

development, beamforming was primarily based on the farfield assumption that the 

source is far away and the waves become spherical or planar at the array position.  It 

is an efficient tool for NSI by one single measurement with the microphone array 

technique.  The limitation of beamforming is that it does not find acoustic variable 

near the source surface.  Finally, NAH serves as powerful tools for the purposes of 

NSI.  It is based on measurements with the microphone array in the nearfield of the 

sound pressure to create a map of the sound field on the source surface with a high 
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spatial resolution.  As early development, Fourier Transform-based NAH techniques 

were suggested for reconstructing regularly shaped sources with planar, spherical, 

cylindrical geometries, etc.  It is different from preceding techniques NAH can 

provide sound pressure, velocity, intensity and sound power on the source.  In 

addition, it is applicable in narrow spaces and non-stationary source.  The limitation 

of NAH is that it is costly because it must employ many channels of microphones to 

measure sound field at the same time. 

In array implementation, transducer deployment has been one of the key issues.  

It is well known that, for uniform linear arrays (ULA) and uniform rectangular arrays 

(URA), array deployment must comply with the λ/2-rule to avoid the spatial aliasing 

and the grating lobe problems.  Consequently, a large number of microphones are 

required to cover the source area, which can render the array configuration 

impractical for sources at high frequencies.  This prompts the development of 

non-uniform arrays that are capable of achieving high resolution and aliasing-free 

imaging with sparse sensors. 

Given the fact that random deployment can be useful to farfield arrays, a 

question arises naturally.  Can this idea of random deployment be carried over to 

nearfield arrays?  This interesting issue is relatively unexplored in the literature of 

the past.  The λ/2-rule --a widely accepted criterion in deploying NAH arrays-- can 

lead to undesirable high channel count.  It is then tempting to “randomize” the 

sensor positions like in the case of farfield arrays and achieve comparable 

performance with sparse deployment.  To explore this conjecture, this thesis is 

employ optimization techniques for microphone deployment.  Optimization of 

microphone deployment was carried out for both farfield and the nearfield arrays. 
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1.2 Review of prior arts: approaches for noise identification problems 

NSI techniques [7], [8], [11] fall into two categories: farfield [13], [14] and 

nearfield [15].  The beamforming in the conventional sense is generally based on the 

assumption that the incoming waves are plane waves from the farfield.  The NAH in 

the conventional sense is generally based on the assumption that the incoming waves 

are spheral waves from the nearfield.  Array technology has been used in many 

diverse areas including radar [16], sonar [17], radio astronomy [18], 

telecommunications [19], and so forth.  Its application encompasses purposes 

including signal enhancement, spatial filtering, DOA estimation, etc.  Beamforming 

algorithms such as the delay-and-sum algorithm [20], the Minimum Variance 

Distortionless Response (MVDR) algorithm [21], and the multiple signal 

classification (MUSIC) algorithm [22] have been suggested in the past.  Recently, 

array technology has found application in NSI with the use of microphones.  

Microphone arrays serve as a powerful tool for acoustic field visualization that 

enables effective estimation of the positions and strengths of noise sources [10], [11], 

[20] [23].  In comparison with the farfield arrays that are particularly useful for 

long-distance and large scale sources such as trains and aircrafts, nearfield arrays 

represent a more recent and independent development of source imaging technology.  

With the advent of the NAH [15], [24], many nearfield acoustic imaging techniques 

including the inverse boundary element method (IBEM) [25]-[32], the Helmholtz 

equation least squares (HELS)[33]-[36], the equivalent source method (ESM) 

[37]-[42], the nearfield equivalence source imaging (NESI) [43]-[45], etc., are 

introduced.  These nearfield techniques are well suited for imaging small-scale 

sources such as cars and computers by virtue of high resolution focusing schemes.  

IBEM makes use of many numerical techniques akin to finite element analysis (FEA).  

Although the dimensionality is reduced by one compared to the FEA for a 
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three-dimensional acoustical radiation problem, its implementation is still rather 

computationally expensive.  The HELS method that was suggested in late 90s is 

formulated using field representation by spherical harmonic expansion, whereas the 

IBEM is derived from a field representation on the basis of the Green’s function 

theory.  The IBEM can be further classified into two categories: the direct 

formulation and the indirect formulation.  The direct formulation is derived from the 

Helmholtz integral equation (HIE) [25]-[29], whereas the indirect formulation stems 

from simple or double layer potential [30]-[32].  The ESM, also known as wave 

superposition method [46]-[48], were suggested for sound field calculation with far 

less complexity and thus higher computational efficiency.  The ESM represents the 

sound field of interest with distribution of discrete simple sources and hence no 

numerical integration is required.  As opposed to the actual source, these simple 

sources are only in virtual sense for representation purpose and are solutions of the 

acoustic wave equation.  Although the ESM was generally used as a benchmark for 

BEM, it has been shown with careful choice of parameters that the ESM is capable of 

achieving comparable accuracy compared to other methods [39], [49].  Like IBEM, 

the use of ESM is not restricted to source with regular geometries.  NESI was 

proposed for NSI and sound filed reconstruction.  The NESI per se can be 

considered as a time-domain ESM.  Multichannel inverse filters are designed offline 

using truncated singular value decomposition (TSVD) or Tikhonov regularization.  

Since all the required processing is carried out in the time-domain, NESI eliminates 

many problems of Fourier based NAH.  It is applies not only to stationary but also a 

transient noise.  Multichannel inverse filters are designed in advance.  An 

Eigensystem Realization Algorithm (ERA) is employed to accelerate the multichannel 

filtering of the NESI [43], [45] and [50]. 

Fourier based NAH, a celebrated technique for NSI was pioneered by Maynard 
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and Williams in early 1980s [15], [24], [51] and [52].  The technique enables 

reconstructing the 3D sound field from the 2D hologram data scanned above the 

source surface.  In comparison with another commonly used NSI technique, the 

sound intensity method [53], the Fourier based NAH provides a more global view of 

noise distribution and the relative strength.  The Fourier based NAH has now been 

commercialized by Bruel and Kjael with a new name, spatial transformation of sound 

field (STSF) [54]-[56].  A comprehensive treatment of Fourier based NAH can be 

found in the monograph by Williams [57].  While the Fourier based NAH 

represented an elegant solution in the SFV techniques, there are a number of 

limitations in the original version of the Fourier-based NAH.  Most of these 

limitations stem from the fact that the Fourier NAH transformation relies on the 

two-dimensional fast Fourier transform (2D FFT) between the physical space and the 

wave number space.  This implies that stationary frequency-domain pressure phasors 

must be available and the scanned grid points must be equally spaced on a planar 

rectangular area [58].  Numerical artifacts such as aliasing problem arising in fast 

Fourier transform (FFT) may adversely affect the accuracy of imaging.  This 

situation is further aggravated in practical application, where the number of sensor 

and data acquisition channel is usually quite limited due to cost consideration.  To 

deal with these limitations, the Fourier based NAH was later extended to problems 

with irregular geometries [25], [59] and non-stationary noise [56].  The inverse 

reconstruction techniques have been extended to deal with irregular shaped sources by 

applying singular value decomposition (SVD) to the IBEM [60].  In spite of all that, 

one to three times of FFT has to be carried out with the microphone spacing kept less 

than half of a wavelength to avoid the spatial aliasing problem.  This requires large 

number of microphones and enormous processing power to cover a reasonable source 

area.  In addition, latency becomes more of a problem when one has to measure a 
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transient noise such as pass-by noise in real time.  Another NAH method, 

statistically optimal NAH (SONAH) [61], was also suggested, based on plane wave 

expansion.  The idea in SONAH is to expand the sound field into elementary waves 

and the estimate sound pressure on source surface in wave number domain.  The 

estimated weight function can then be reused to reconstruct the sound field at another 

position on the source.  Comprehensive coverage of NAH can be found in the 

monograph by Williams [57] and a recent tutorial paper by Wu [62]. 

 

1.3 Organization of the thesis 

The organization of the thesis is summarized as follows.  Chapter 2 gives 

theoretical preliminaries of acoustics.  A fundamental of acoustics includes wave 

equation, Helmholtz equation, time harmonic conventional and acoustical boundary 

value problems.  Secondly, sound field representation using basis function expansion 

is described by separable coordinates in 3D space: Cartesian, cylindrical, and 

spherical.  Next, sound field representation using the HIE is described.  It includes 

the Green’s functions, eigenfunction expansion of the Green functions.  Monopole 

representation, dipole representation and multipole expansion of basic source model 

are described.  Finally, inverse problems and ill-posedness is described and 

discussed.  Chapter 3 describes theoretical preliminaries of signal processing, which 

includes SVD, array signal processing basics and optimization algorithms.  Array 

model, beam pattern, grating lobes, spatial aliasing and performance measures are 

introduced in array signal processing basics.  Optimization algorithms include 

Golden ratio search, Monte Carlo (MC) and Simulated annealing (SA).  Chapter 4 

describes farfield array signal processing algorithms, which includes low-resolution 

algorithms and high-resolution algorithms.  Delay and sum (DAS) beamformer and 

time reversal (TR) beamformer are described in the low-resolution algorithms.  
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Furthermore, cost functions of optimal arrays are defined.  Choice of array 

parameters for farfield can be summarized in this section.  In high-resolution, 

MVDR and MUSIC is described.  Choice of parameters such as Akaike information 

criterion (AIC) is introduced in this chapter.  Finally, optimal array and comparisons 

of FF algorithms are summarized.  Chapter 5 describes nearfield array signal 

processing algorithms such as Fourier based NAH, IBEM and ESM.  In Fourier 

based NAH, three coordinates that is planar, cylindrical and spherical geometries are 

summarized.  In addition, direct and indirect formulation of IBEM is presented.  

Finally nearfield signal processing algorithms is ESM.  In addition, direct and 

indirect formulation of ESM, NESI and Kalman filter-based algorithm are presented.  

Two virtual source configurations are explained in this section.  Furthermore, 

comparisons of nearfield algorithms are summarized.  Chapter 6 is practical 

implementations such as inverse filter design, multi-channel fast filtering, 

post-processing, choice of distance of reconstruction (DOR) and lattice spacing, 

virtual microphone technique, choice of RD, optimization of sensor deployment, 

system integration and experimental arrangement are all described in this section.  In 

inverse filter design, model matching problem such as ill-posedness and 

regularization, window design and parameter choice methods (PCM) are described.  

The multi-channel fast filtering is includes time-domain and frequency-domain 

processing.  As regards post-processing, acoustic variables is described.  Part of 

choice of RD, golden section search (GSS) is employed to determine optimal RD.  

Optimization algorithms are used to calculate optimizing farfield and nearfield sensor 

deployment.  Finally, system integration and experimental arrangement is described 

in this chapter.  Chapter 7 is application examples such as scooter, information 

technology (IT) equipment, compressor and non-contact modal analysis.  Chapter 8 

restates the main conclusions of the thesis.  
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CHAPTER 2. THEORETICAL PRELIMINARIES OF ACOUSTICS 

 

2.1 Fundamentals of acoustics 

Sound wave is a mechanical wave that propagates through a compressible 

medium.  Sound wave is transmitted in the form of a longitudinal wave described by 

wave equation.  Wave equation satisfies consideration of continuity, equilibrium of 

strength and thermodynamics principle.  The Eulerian coordinates and Largrangian 

coordinates is introduced.  Eulerian coordinates fix control volume in space and 

Largrangian coordinates fix control volume as the medium flows, as shown in Fig. 2.  

However, Largrangian coordinates is convenient to use in conservation laws.  

Material derivative in Largrangian coordinates is  

( )DM M M
Dt t

∂
= + ∇

∂
ui , (2. 1)

where M is mass, t is time, u is velocity of fluid and ∇  is gradient.  In addition, 

integration and differentiation cannot only be switched by adding a correction term as 

 [ ( )]
V V

D dV dS
Dt t

αα α∂
= +∇

∂∫ ∫ ui , (2. 2)

where V is control volume, α  is physical quantity and ∇i  is divergence.  This 

equation is calling Reynold’s transport theorem. 

In deriving wave equation, medium is assumed in homogeneous, isotropic, 

inviscid and adiabatic.  In equation of state, instant pressure of ideal gas is  

( )p p K γρ ρ= = , (2. 3)

where ρ  is instant density, K is constant and γ  is specific-heat ratio.  The density 

is non-linear function.  Linearization of Eq. (2. 3) is  

0 0 0( ) ( )pp p ρ ρ
ρ
∂

= + − +
∂

. 

Define sound speed is  
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0( )pc
ρ
∂
∂

. 

Therefore, the linearized equation of state is obtained 

2
0p p p c ρ′ ′= − . (2. 4)

That is similar Hook’s law to describe relation between sound pressure p′  (elasticity) 

and density ρ′  (distortion). 

In equation of continuity, the total mass in a control volume of flowing with the 

medium does not change (base on conservation laws) 

0DM
Dt

=  (2. 5)

or 

 0
V

D dV
Dt

ρ =∫ . 

By Reynold’s transport theorem, above equation can be rewritten 

[ ( )] 0
V

dV
t
ρ ρ∂
+∇ =

∂∫ ui . 

Because V is arbitrary volume, so 

( ) 0
t
ρ ρ∂
+∇ =

∂
ui  (2. 6)

that is equation of continuity.   

Equation of momentum is base on linear momentum principle as  

ext
d
dt

=
L f  

 
V

dVρ= ∫L u , 

where L is linear momentum and fext is force.  Problem to sound field take 

Largrangian coordinates: 

 s
V S

D dV dS
Dt

ρ =∫ ∫u f , (2. 7)

where fs is force on S.  When medium is inviscid, the force is become  
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s p= −f n , (2. 8)

where n is outward normal.  The two equations above can be rewritten into 

  
V S

D dV p dS
Dt

ρ = −∫ ∫u n . (2. 9)

Using divergence theorem to obtain 

  
V V

D dV p dV
Dt

ρ = − ∇∫ ∫u . 

It can describe by Cartesian coordinates 

  , 1, 2,  3j
jV V

D pu dV dV j
Dt x

ρ ∂
= − =

∂∫ ∫ . 

By Reynold’s transport theorem, above equation can be rewritten 

[ ( )+ ( )]  , 1, 2,  3j j
jV V

pu u dV dV j
t x
ρ ρ∂ ∂

∇ = − =
∂ ∂∫ ∫ui . 

Because V is arbitrary volume, so 

( )+ ( ) , 1, 2,  3j j
j

pu u j
t x
ρ ρ∂ ∂

∇ = − =
∂ ∂

ui . 

The equation above can be expanded as  

( ) , 1, 2,  3j
j j j

j

u pu u u j
t t x

ρρ ρ ρ
∂ ∂ ∂

+ + ∇ + ∇ = − =
∂ ∂ ∂

u ui i . (2. 10)

Terms 2 and 3 on the left-hand side can be canceled by equation of continuity (in light 

of Eq. (2. 6), so 

, 1, 2,  3j
j

j

u pu j
t x

ρ ρ
∂ ∂

+ ∇ = − =
∂ ∂

ui . 

Now, we combine these three quantities (j = 1, 2, 3) 

[ ( ) ] p
t

ρ ∂
+ ∇ = −∇

∂
u u ui . 

Term 2 ( ( )∇u ui ) is called convection term that can be neglected when flow speed is 

small.  Therefore, Euler’s equation or momentum equation is obtained 

D p
Dt

ρ = −∇
u . (2. 11)
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Finally, wave equation is combined by equation of state, continuity and momentum.  

Before combination, linearization is necessary.  Assume small perturbation and mean 

flow ( 0 0=u ): 

0 0,  p p p p p′ ′= +  (2. 12)

0 0,  ρ ρ ρ ρ ρ′ ′= +  (2. 13)

0 0,  ′ ′= +u u u u u . (2. 14)

By Eqs. (2. 12) to (2. 14), the continuity equation of Eq. (2. 6) can be rewritten as 

0 0( ) [( ) ] 0
t
ρ ρ ρ ρ∂ ′ ′ ′+ +∇ + =

∂
ui . (2. 15)

The linearized continuity equation is obtained by removed height order term 

0 0
t
ρ ρ
′∂ ′+ ∇ =

∂
ui . (2. 16)

Similarly, equation of momentum in Eq. (2. 11) by linearization can be obtained 

0 p
t

ρ
′∂ ′= −∇

∂
u . (2. 17)

For simplicity, the prime “ ' ” is removed and equation of state, continuity and 

momentum with linearization can be shown as 

2p c ρ=  (2. 18)

0 0
t
ρ ρ∂
+ ∇ =

∂
ui  (2. 19)

0 p
t

ρ ∂
= −∇

∂
u . (2. 20)

Three equations above have five unknown elements ( p , ρ , 1u , 2u  and 3u ).  

Algebra is employed to combine Eq. (2. 18) to (2. 20) as follows: 

t
∂
∂

Eq. (2. 19): 

2

02 ( ) 0
t t
ρ ρ∂ ∂
+ ∇ =

∂ ∂
ui  (2. 21)

∇iEq. (2. 20): 
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2
0 0( ) ( ) p p

t t
ρ ρ∂ ∂

∇ = ∇ = −∇ ∇ = −∇
∂ ∂
u ui i i (2. 22)

Wave equation with linearization is substituting Eqs. (2. 18) and (2. 22) into Eq. (2. 

21)  
2

2
2 2

1 p p
c t

∂
= ∇

∂
. (2. 23)

In acoustical analysis, simple harmonic motion is usually employed to the analyze 

frequency-domain.  Base sine wave is shown in Fig. 3 that can indicated as  

( , ) sin( )p x t A t kxω= − , (2. 24)

where x  and t  are variables of space and time; A  is amplitude, ω  is angular 

frequency and k  is wave number.  In 0x = , the sine wave is 

2(0, ) sin sin 2 sinp t A t A ft A t
T
πω π= = = , (2. 25)

where f  is frequency and T  is period.  In addition, the sine wave in 0t =  is  

2( ,0) sin sinp x A kx A xπ
λ

= − = − . (2. 26)

From two equations above, we can draw the analogy 

2 2k
T
π πω

λ
= ⇔ = , (2. 27)

where λ  is wave length.  In addition,  

2 2 fk
f c

π π ω
λ λ

= = = . (2. 28)

The ( , )p x t  can be written with a complex phasor  

( )sin( ) Im{ } Im{ }j t kx jkx j tA t kx Ae Ae eω ωω − −− = = , (2. 29)

where 1j = −  and Im{ } is the imaginary part.  If remove the time-harmonic 

function j te ω , jkxAe−  is the phasor in ( , )p x t  as ( ) jkxp x Ae−= .  Meaning of the 

phasor is complex Fourier coefficients.  From wave equation with linearization can 

be rewritten in the frequency-domain  
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2
2

2 2

2 2
2

2 2

1

1 ( )

0,

pp
c t

p j p
c

p k p

ω

∂
∇ =

∂

⇒∇ =

⇒∇ + =

 (2. 30)

where /k cω=  is wave number.  This reduced wave equation is also refered to as 

the Helmholtz equation.  That is attention about the phasor, some reference employ 

j te ω−  to express harmonic wave function.  Hence, the sin( )A t kxω −  of Eq. (2. 24) 

can be rewritten as the sin( )A kx tω−  when all analysis is unanimity.  In thesis, the 

jkxe−  is employed to indicate of phasor. 
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Fig. 2  Control volume.  (a) Eulerian coordinates, (b) Largrangian coordinates. 

 

( , )M M t= x  

(a) 

( )M M t=

(b) 
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Fig. 3  A sine wave.  (a) 0x = , (b) 0t = , (c) 1t t= . 
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2.2 Sound field representation using basis function expansion 

Two mathematical principles underlying the solution of Laplace’s equation with 

basis function expansions include orthonormality and completeness.  The 

mathematical basis for completeness relations is given by Sturm-Liouville theory of 

second-order differential equations.  Orthonormality and completeness in 1-D is 

instructed as following.  We assume that boundary conditions are imposed at x a=  

and x b= . We assume that there is a scalar product operation that takes two functions 

and maps them to a single number. In Sturm-Liouville theory, the inner product of two 

functions ( )f x  and ( )g x  is 

( , ) ( ) ( ) ( )
b

a
f g f x g x w x dx= ∫ , (2. 31)

where ( )w x  that depends on the differential operator in the eigenvalue problem is a 

given function.  For simplicity, the eigenvalues σ  are discrete and { }iσ σ∈  with 

1,2,i = .  Any function ( )U x  satisfying the same boundary conditions as iv  

may be written 

1
( ) ( )i i

i
U x U v x

∞

=

=∑ , (2. 32)

where the coefficients iU  are unique constants and the functions ( )iv x  are similar 

basis vectors.  Above equation is the expansion of a vector in basis vectors.  Due to 

the dimensionality of a vector space is equal to the number of linearly independent 

basis vectors, this analogy is possible.  The first condition is orthonormality of the 

basis functions.  Sturm-Liouville theory shows that eigenfunctions with different 

eigenvalues are orthogonal with respect to the inner product as ( , ) 0j iv v =  if j i≠ .  

On the other hand, if j i= , the Sturm-Liouville scalar product is positive-definite.  

Then, the eigenfunctions may be normalized 

( , )j i jiv v δ=  (Orthonormality). (2. 33)
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Scalar production of Eq. (2. 32) with iv  is taken and orthonormality is used to obtain 

( , )i iU v U= . (2. 34)

The second condition expresses the completeness of the eigenfunctions. In 

Sturm-Liouville theory, completeness is established by showing that ( , ) 0f f ≥  for 

any function ( )f x .  Hence, 

( , ) 0U Uδ δ = , (2. 35)

where 
1

( ) ( , ) ( )i i
i

U U x v u v xδ
∞

=

≡ −∑ .  If the expansion coefficients iU  are given by 

Eq. (2. 34), the series given by Eq. (2. 32) converges to ( )U x .  Combining these 

two equations, following condition is required 

1

1

( ) ( ) ( ) ( ) ( )

        ( ) ( ) ( )  ( ).

b

i ia
i

b

i ia
i

U x U x v x w x dx v x

v x v x w x U x

∞

=

∞

=

⎡ ⎤′ ′ ′ ′= ⎢ ⎥⎣ ⎦

⎡ ⎤′ ′ ′= ⎢ ⎥⎣ ⎦

∑ ∫

∑∫
 (2. 36)

It turns out that for Sturm-Liouville problems this holds for any U  in the function 

space, which requires 

1

( ) ( ) ( ) ( )i i
i

v x v x w x x xδ
∞

=

′ ′ ′= −∑  (Completeness). (2. 37)

In addition, orthonormlity and completeness on the sphere is introduced.  The 

dependence on the two variables separates in spherical coordinates and the 

eigenfunctions are  

2 ( )!( , ) ( , ) (cos )
4 ( )!

m m jm
n n

n n mU Y P e
n m

φθ φ θ φ θ
π
+ −

= ≡
+

, (2. 38)

where ( , )m
nY θ φ  is spherical harmonics and (cos )m

nP θ  Legendre functions.  The 

boundary condition that U  is finite on the sphere requires that n  is an integer.  

Finally, the boundary conditions also require n m n− ≤ ≤ .  Therefore, there are 

2 1n +  values of the order m  for each degree n .  The spherical harmonic 

functions satisfies the following orthonormality condition 
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*
( , ) ( , )m m

n n nn mmY Y dθ φ θ φ δ δ′
′ ′ ′Ω =∫ , (2. 39)

where * is complex conjugate, sind d dθ θ φΩ ≡ , 0 θ π≤ ≤  and 0 2φ π≤ ≤ .  The 

completeness relation for spherical harmonics is 

0

* 1( , ) ( , ) ( ) ( )
sin

n
m m

n n
n m n

Y Yθ φ θ φ δ θ θ δ φ φ
θ

∞

= =−

′ ′ ′ ′= − −∑ ∑ . (2. 40)

In the three-dimensional sound field, some coordinates is separable coordinates.  

The eigenfunction is existence.  Eigenfunction satisfied the following Eigenvalure 

problem 
2 2( ) ( ) 0

st. homogeneous BCs
nk ψ∇ + =x

 (2. 41)

Hence, eigenfunction expansion for sound pressure can be expressed as  

1

( ) ( )n n
n

p aψ
∞

=

=∑x x . (2. 42)

Following is eigefunction for three coordinate systems: 

(1) Cartesian coordinates: 

In Fig. 4 (a), the eigenfunction of Cartesian coordinates is  

( )( ) x y zj k x k y k z
n eψ ± ± ±=x , (2. 43)

where 2 2 2 2
x y zk k k k+ + =  

(2) Cylindrical coordinates: 

In Fig. 4 (b), the eigenfunction of cylindrical coordinates is 

(1), (2)( ) ( ) zjn e jk
n n rH k r e θψ ± ±=x , (2. 44)

where 2 2 2
r zk k k+ = , (1), (2)

nH  is Hankel function of the 1st/2nd kind of order n  

with a parameter rk . 

(3) Spherical coordinates: 

In Fig. 4 (c), the eigenfunction of spherical coordinates is  
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(1), (2)( ) ( ) ( , )m
n n nx H kr Yψ θ φ= , (2. 45)

where (1), (2) ( )nH kr  is spherical Hankel function of the 1st/2nd kind of order n  

with a parameter k . The ( , )m
nY θ φ  is called the spherical harmonic defined as 

(2 1)( )!( , ) (cos )
4 ( )!

m m jm
n n

n n mY P e
n m

φθ φ θ
π
+ −

=
+

, (2. 46)

where (cos )m
nP θ  is associated Legendre function of order m  and degree n . 
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Fig. 4  Three basic coordinate systems.  (a) Cartesian coordinates, (b) cylindrical 

coordinates, (c) spherical coordinates. 
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θ

=
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=
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2.3 Sound field representation using Helmholtz integral equation 

In this section, a mathematical tool for solving boundary value problems of 

sound field is introduced – the Green’s function.  The Green’s function and 

eigenfunction expansion can be employed to solve inhomogeneous boundary value 

problem.  The Green’s function is that response is produced by a point source into 

sound.  Assume mass sm  is poured into space V  in tΔ  time at point source 

position 0x .  Mass conservation law is used: 

0( ) ( )  ( ) 0

s
V

s

V

D dV m
Dt

m dV
t t

ρ

ρ ρ δ

=

∂∂⎡ ⎤+∇ − − =⎢ ⎥∂ ∂⎣ ⎦

∫

∫ u x x xi
 

where 0( )δ −x x  is Dirac’s delta function at 0x .  This Dirac’s delta function 

satisfies the following conditions: 

0 0( ) ( ) 1,  
V

dV Vδ − = ∈∫ x x x x  (2. 47)

and the sifting property 

0 0 0( ) ( ) ( ) ( ),  
V

F dV F Vδ − = ∈∫ x x x x x x . (2. 48)

Therefore, equation of continuity with point source is 

0( ) ( )sm
t t
ρ ρ δ∂∂
+∇ = −

∂ ∂
u x xi . (2. 49)

Then, inhomogeneous wave equation is  
2

2
02 2

1 ( )s
pp m

c t
δ∂

∇ − = − −
∂

x x  (2. 50)

where 2 2/s sm m t= ∂ ∂  is mass acceleration.  In harmonic sound field, 

inhomogeneous Helmholtz equation can be written as 

2 2 2
0( )sp k p mω δ∇ + = −x x . (2. 51)

Let 2 4smω π= −  and 0( , )p g= x x , equation above can be written as 
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2 2
0 0 0( , ) ( , ) 4 ( )g k g πδ∇ + = − −x x x x x x , (2. 52)

where function 0( , )g x x  is called the free-space Green’s function.  Following is the 

three free-space Green’s functions: 

(1) The one-dimensional sound field: 

The free-space Green’s function is 

0( , )
2

jkrjg e
k

−=x x , (2. 53)

where 0r x x= − . 

(2) The two-dimensional sound field: 

The free-space Green’s function is  

(1)
0 0( , ) ( )

4
jg H kr=x x , (2. 54)

where (1)
0H  is Hankel function of the 1st kind of order zero. 

(3) The three-dimensional sound field: 

The free-space Green’s function is  

0( , )
jkreg

r

−

=x x , (2. 55)

where 0r x x= − .  This is sound field by spherical wave.  

Then, how to use the Green’s function to determine inhomogeneous boundary 

problem?  We can use infinity point source set and point sources are distributed on 

boundary.  If sound field is linear, the Green’s second identity is employed as  

2 1
1 2 2 1 1 2( )

V S

dV dS
n n
φ φφ φ φ φ φ φ∂ ∂⎛ ⎞− = −⎜ ⎟∂ ∂⎝ ⎠∫ ∫ , (2. 56)

where  is a self-adjoint operator, nφ φ∂ ∂ ∇ ni  is direction derivatives, n  is 

outward normal, and 1φ  and 2φ  are solution of second order differentiation.  As 

shown in Fig. 5, our objective is to determine boundary problem of interior sound 

field 
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2 2

0 0 0

( ) ( ) ( )

st. ( ) or ( ), ,

k p f
pp S
n

∇ + =
∂

∈
∂

x x

x x x
 (2. 57)

where the symbol of phasor “∼ ” is removed.  If the boundary term 0( )p x  is known, 

this is problem is called Dirichlet problem.  This is called Neumann problem, if 

0/ ( )p n∂ ∂ x  is know.  Now, let 1 ( )pφ = x , 2 0( , )gφ = x x  and 2 2k∇ +  from Eq. 

(2. 56) as follows: 

2 2 2 2
0 0

0 0

0 0

0 0

0 0

[ ( )( ) ( , ) ( , )( ) ( )] ( )

( ) ( , ) ( , ) ( ) ( )

[ ( ) (4 ( , )) ( , ) ( )] ( )

= ( ) ( , ) ( , ) ( ) ( )

4 ( ) ( , ) ( ) ( ).

V

S

V

S

V

p k g g k p dV

p g g p dS
n n

p g f dV

p g g p dS
n n

p g f dV

πδ

π

∇ + − ∇ +

∂ ∂⎡ ⎤= −⎢ ⎥∂ ∂⎣ ⎦

− −

∂ ∂⎡ ⎤−⎢ ⎥∂ ∂⎣ ⎦

= − −

∫

∫

∫

∫

∫

x x x x x x x

x x x x x x x

x x x x x x x

x x x x x x x

x x x x x

 

Symmetry of the Green’s function (exchange field point x  and source point 0x ) is 

employed to obtain the Kirchhoff-Helmholtz integral in frequency-domain 

0 0 0

0 0 0 0 0

4 ( ) ( ) ( , ) ( )

               ( ) ( , ) ( , ) ( ) ( ).

V

S

p f g dV

p g g p dS
n n

π = −

∂ ∂⎡ ⎤− −⎢ ⎥∂ ∂⎣ ⎦

∫

∫

x x x x x

x x x x x x x
(2. 58)

From this equation, volume integral is influence of any source in space (source term) 

and surface integral is influence of boundary terms.  The 0( , )g x x  is point source in 

free-field.  The 0( , )g
n
∂
∂

x x  is called dipole that is effect of distributed forces at 

boundary. 

The time-domain free-field Green’s function is obtained by inverse Fourier 

transform as follows: 

0
0 0

( )( , | , ) tg t t
r

δ τ −
=x x  (2. 59)
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where 0r −x x , rt
c

τ −  is retarded time and δ  is Dirac’s delta function.  In 

addition, equation (2. 55) into Eq. (2. 58) to obtain time-domain Kirchhoff-Helmholtz 

integral by inverse Fourier transform as follows: 

0
0

0 0 02

( , )4 ( , ) ( )

1 1 1                  ( , ) ( , ) ( ),

V

R
S

fp t dV
r

pp dS
r cr t r n

τπ

τ τ

= −

⎡ ∂ ∂ ⎤⎛ ⎞− + −⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠⎣ ⎦

∫

∫

xx x

e n x x xi
 (2. 60)

where ( ) /R R− 0e x x .  First term of equation above, distributed source of sound 

field is more point source at 0x  propagate to x  by sound speed c .  New wave 

front is surface of envelope by each point source set after /r c  time.  This condition 

is called Huygen’s principle, as shown in Fig. 6.  For simple boundary geometries 

such as a plane or a sphere, homogeneous part 0( , )H x x  is added in the free-field 

Green’s function 

0 0 0( , ) ( , ) ( , )G g H= +x x x x x x  (2. 61)

where 0( , )H x x  satisfies homogeneous Helmholtz equation 

2 2
0( ) ( , ) 0k H∇ + =x x . 

The 0( , )g x x  is singular when 0=x x .  However, the 0( , )H x x  is non-singular 

when 0=x x .  In this 0( , )G x x , that satisfies Kirchhoff-Helmholtz integral 

0 0 0

0 0 0 0 0

4 ( ) ( ) ( , ) ( )

               ( ) ( , ) ( , ) ( ) ( ).

V

S

p f G dV

p G G p dS
n n

π = −

∂ ∂⎡ ⎤− −⎢ ⎥∂ ∂⎣ ⎦

∫

∫

x x x x x

x x x x x x x
(2. 62)

In the Dirichlet problem, only ( )p x  on the boundary is known.  We can choose 

0 00 0( , ) | ( , ) |S SH g∈ ∈= −x xx x x x . (2. 63)

Hence, 0( , )G x x  satisfies 

2 2
0 0( ) ( , ) 4 ( )k G πδ∇ + = − −x x x x  
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00st. ( , ) | 0SG ∈ =xx x . (2. 64)

Therefore, the Kirchhoff-Helmholtz integral can be rewritten as 

0 0 0

0 0 0

4 ( ) ( ) ( , ) ( )

               ( ) ( , ) ( ).

V

S

p f G dV

p G dS
n

π = −

∂
−

∂

∫

∫

x x x x x

x x x x
 

(2. 65)

In addition, only 0( )p
n
∂
∂

x  on the boundary is known in Neumann problem.  We can 

choose 

0 00 0( , ) | ( , ) |S SH g
n n∈ ∈

∂ ∂
= −

∂ ∂x xx x x x
 

(2. 66)

Hence, 0( , )G x x  satisfies 

2 2
0 0( ) ( , ) 4 ( )k G πδ∇ + = − −x x x x  

00st. ( , ) | 0SG
n ∈
∂

=
∂ xx x

. 
(2. 67)

Therefore, Kirchhoff-Helmholtz integral can be rewritten as 

0 0 0

0 0 0

4 ( ) ( ) ( , ) ( )

               ( , ) ( ) ( ).

V

S

p f G dV

G p dS
n

π = −

∂
+

∂

∫

∫

x x x x x

x x x x
 

(2. 68)

That applies to close space interior sound field.  Another problem is how to 

determine 0( , )H x x .  We can use method of image to determine 0( , )H x x .  In Fig. 

7, a point source is arranged at 0x  on an infinite reflection surface (rigidity).  In 

free-field, the sound field 0( , )g x x  is produced by this point source.  The sound 

field 0( , )H x x  is produced by image source, as shown in Fig. 7.  The free-field 

Green’s function can be shown to be 

0 0 0( , ) ( , ) ( , )

            ,
jkr jkr

G g H

e e
r r

′− −

= +

= +
′

x x x x x x
 

where  
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0 0 0

0 0 0

( ) ( ) ( ) , 

( ) ( ) ( ) , .

x x i y y j z z k r

x x i y y j z z k r

= − + − + − =

′ ′ ′= − + − + + =

r r

r r
(2. 69)

Hence, 0( , )H x x  satisfyies first condition: 2 2( ) 0k H∇ + = .  Then, r  and r′  are 

given in Eq. (2. 69) and into  

0 0

0

0
0

0 0

( , )

                        

jkr jkr

S S

jkr jkr

S

e eG
n z r r

r e r e
z r r z r r

′− −

∈ ∈

′− −

∈

⎛ ⎞∂ ∂
= +⎜ ⎟′∂ ∂ ⎝ ⎠

⎡ ⎤′⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
= +⎢ ⎥⎜ ⎟ ⎜ ⎟′ ′∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

x x

x

x x

 (2. 70)

Equation (2. 70) can be simplified as  

0

0

0

0 0

( , )

0

S

jkr jkr

z S

jkr jkr

G
n

z z z ze e
r r r r r r

z e z e
r r r r

∈

′− −

∈

− −

∂
∂

⎡ ⎤⎛ ⎞ ⎛ ⎞− +∂ ∂
= +⎢ ⎥⎜ ⎟ ⎜ ⎟′ ′ ′∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

−
= +

=

x

x x

 

Therefore, 0( , )H x x  satisfies second condition: 

0( ) , H gG g S
n n n

∂ ∂ ∂
= − = − ∈

∂ ∂ ∂
x  

Thus, the free-field Green’s function can be expressed as 

0
0

2( , )
jkreG

r

−

=
x

x x
 

(2. 71)

For a baffled rigid piston, this free-field Green’s function is substituted into 

Kirchhoff-Helmholtz integral to yield 

0
0 0 0

0 0

( ) ( , ) ( ) ( )
4

       ,
2

S
jkr

S

p j G u dS

cku ej dS
r

ρ ω
π

ρ
π

−

=

=

∫

∫

x x x x x
 (2. 72)

where ckω =  is temporal frequency.  This equation called Rayleigh’s integration.  

In addition, boundary problem of open space exterior sound field, as shown in Fig. 8, 
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can be written as 

0 0 0

0 0 0 0 0
S

4 ( ) ( ) ( , ) ( )

               ( ) ( , ) ( , ) ( ) ( ).

V

S

p f G dV

p G G p dS
n n

π

∞

= −

∂ ∂⎡ ⎤− + −⎢ ⎥∂ ∂⎣ ⎦

∫

∫ ∫

x x x x x

x x x x x x x
 

In natural physics, it is zero to nearby influence in the boundary condition at infinite 

distance.  Hence, mathematical condition is added  

0 0 0 0 0( ) ( , ) ( , ) ( ) ( ) 0
S

G G p dS
n n

∞

∂ ∂⎡ ⎤− =⎢ ⎥∂ ∂⎣ ⎦∫ x x x x x x x . 

Rewrite this equation by sphere integral  

2 sin   
r

G pp G r d d
r r

φ φ θ
→∞

∂ ∂⎛ ⎞−⎜ ⎟∂ ∂⎝ ⎠∫  

or  

22 lim 0
r

G pr p G
r r

π
→∞

∂ ∂⎛ ⎞− =⎜ ⎟∂ ∂⎝ ⎠
. 

Let /jkr rG e−=  into equation above can obtain 

1lim 0
r

rr p jk
r p→∞

⎡ ⎤∂⎛ ⎞+ + =⎜ ⎟⎢ ⎥∂⎝ ⎠⎣ ⎦
 

or  

lim 0
r

rr jkp
p→∞

⎛ ⎞∂
+ =⎜ ⎟∂⎝ ⎠

. (2. 73)

This equation is termed the Sommerfeld radiation condition.  Therefore, problem of 

open space at infinite distance must satisfy not only lim 0
r

p
→∞

=  but also Eq. (2. 73).  

In addition, equation of momentum is employed to rewrite this radiation condition 

0lim ( ) 0rr
r cu pρ

→∞
− = , 

where ru  is partial velocity on normal direction.  Spherical wave at infinite 

distance in part become plane wave ( 0 rp cuρ= ).  Finally, Kirchhoff-Helmholtz 

integration can be rewritten as 
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0 0 0

0 0 0 0

( ) ( ) ( , ) ( )

             ( , ) ( ) ( , ) ( ),

V

S

p f G dV

p pG p G dS
n n

α

∞

= −

∂ ∂⎡ ⎤+ −⎢ ⎥′ ′∂ ∂⎣ ⎦

∫

∫

x x x x x

x x x x x x
(2. 74)

where ′n  is outward normal at S  and  

4  is on  outside
2   
0  is on  inside

S
S

S

π
α π

⎧
⎪= ∈⎨
⎪
⎩

x
x

x
. 

Usually, equation of boundary integral ( 2α π= ) is employed to solve for unknown 

boundary condition and then calculate sound pressure at any field points ( 4α π= ).  

This method is called the boundary element method (BEM).  First, place the field 

point on the boundary ( 2α π= ).  The boundary integral equation can be Discretized 

in the matrix form 

s s s s=D p M v , (2. 75)

where vector sp  and sv  is sound pressure and speed on boundary, and matrix sM  

and sD  is monopole and dipole.  Next, field point is moved to exterior field 

( 4α π= ).  Discretization is used for equation of integral in the matrix form 

f f s f s= +p D p M v , (2. 76)

where vector fp  is sound pressure of exterior field, and matrix fM  and fD  is 

monopole and dipole of exterior field.  Assume speed of boundary is known and the 

Eq. (2. 75) can be written 

1
s s s s s

−= =p D M v Zv , (2. 77)

where Z  is matrix of impedance (if 1
s
−D  is existence).  Matrix Z  is only 

involved in frequency and geometric configuration.  Finally, sound pressure of 

exterior field at any field points is obtained 
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( )f f f s s= + =p M D Z v Hv , (2. 78)

where H  is transfer matrix between speed of boundary and sound pressure of 

exterior field.  The transfer matrix H  is dependent of frequency, geometric 

configuration and field point. 

Numerical method of discrete Kirchhoff-Helmholtz integral is called direct 

boundary element method (DBEM).  There are /p n∂ ∂  and p  in integral of 

DBEM.  Other method is use layer potential that only one term in integral.  

According to theory, sound field can be shown by simple layer potential, as shown in 

Fig. 9 (a) 

0 0 0( ) ( ) ( , ) ( )
S

p G dSσ= ∫x x x x x , (2. 79)

where G  is the free-field Green’s function and 

p p
n n

σ
+ −∂ ∂

= −
∂ ∂

 (2. 80)

is the unknown strength of the monopole.  In this method, sound pressure p  is 

continuous at the boundary, whereas p
n
∂
∂

 is discontinuous at theboundary. 

0 0 0( ) ( ) ( ) ( , ) ( )
S

p G dS
n n

ασ σ∂ ∂
= +

∂ ∂∫x x x x x x  

0
1     
2
1       
2

0    otherwise

i

V

Vα

⎧ ∈⎪
⎪
⎪= − ∈⎨
⎪
⎪
⎪⎩

x

x  (2. 81)

Or, sound field can be represented by double layer potential, as shown in Fig. 9 (b) 

0 0 0( ) ( ) ( , ) ( )
S

Gp dS
n

μ ∂
=

∂∫x x x x x , (2. 82)

where p pμ − += −  is unknown strength of dipole.  In this method, p
n
∂
∂

 is 

continuous at inside and outside boundary, whereas sound pressure p  is 
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discontinuous at the boundary. 

0 0 0( ) ( ) ( ) ( , ) ( )
S

Gp dS
n

ασ μ ∂
= +

∂∫x x x x x x  

0
1     
2
1       
2

0    otherwise

i

V

Vα

⎧ ∈⎪
⎪
⎪= − ∈⎨
⎪
⎪
⎪⎩

x

x

 

(2. 83)

That discrete layer potential of BEM is called indirect BEM.  Finally, equivalent 

source distribution is introduced, as shown in Fig. 9 (c) 

0 0 0

0 0 0
1 1

1 1

( ) ( ) ( , ) ( )

( ) ( , ) ( ) ( ) ( , )

[ ( ) ] ( , ) ( , )

n

S
N N

n n n
n nS

N N

n n n n n
n n

p G dS

G dS G S

S G Q G

σ

σ σ

σ

= =

= =

=

≈ ≈

= =

∫

∑ ∑∫

∑ ∑

x x x x x

x x x x x x x

x x x x x

(2. 84)

where Q  is source strength.  This equation approximates continuous integral as 

n →∞ .  Virtual source representation is simpler than BEM.  Effect of virtual 

source representation has not bad effect in some application.   

Next, monopole, dipole and multipole expansion of basic source model are 

described.  Dipole is combined by two equal amplitude but 0180 out-of-phase point 

sources, as shown in Fig. 10 (a).  Let  

( , )
jkR

s
eg

R

−

=x x , 

where sR = −x x .  Sound pressure of dipole at x  is  

( ) ( , / 2) ( , / 2)
( , )       .

s s

s

p Ag Ag
gA

= + − −
Δ

=

x x x d x x d
x xd
d

 

When 0→d , the sound pressure can be written as 
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( ) ( , ) ( , )
jkR

s
s s s

d ep g g
R dR R

−⎛ ⎞−⎛ ⎞∇ = − ∇ = − ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

x xx D x x D x x Di i i , (2. 85)

where s∇  and ∇  is gradient of sx  and x  respectively and A=D d  is called 

dipole moment.  According to equation above, the d  is aimed at y-axis, as shown 

in Fig. 10 (b).  Sound pressure is given as 

1( ) cos

       cos  (when R d).

jkR

jkR

ep Ad jk
R R

ejkAd
R

θ

θ

−

−

⎛ ⎞= +⎜ ⎟
⎝ ⎠

x
 

Sound field has maximum value on y-axis, as shown in Fig. 10 (c).  The g
n
∂
∂

 

represents a dipole in Kirchhoff-Helmholtz integral as 

1cosg jk g
n R

θ∂ ⎛ ⎞= +⎜ ⎟∂ ⎝ ⎠
. 

Next, a quadrupole is composed of two dipoles.  Sound pressure as shown in 

Fig. 10 (d) is given as 

( ) ( )( )
jkRep

R

−

= ∇ ∇x D di i . (2. 86)

Or, in Cartesian tensor 

2

( )
jkR

v
v

ep Q
x x Rμ
μ

−∂
=

∂
x ,  and 1,2,3vμ = , (2. 87)

where v vQ D dμ μ  is called quadrupole moment.   

In complex sound source, sound pressure at x  in farfield as shown in Fig. 11 is 

given as 

1

( )
njkRN

n
n n

ep A
R

−

=

=∑x  

where n nR −x x  and nx  is the position vector of the thn  point source.  

Multipole expansion is obtained from Eq. (2. 87) by Taylor’s expansion 
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21( ) ( ) ( ) ( ) ( ) ( )
2!n n nf f f f− = − ∇ + ∇ −x x x x x x xi i . 

Therefore, sound pressure can be expanded as 

2
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1( ) 1 ( ) ( )
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       ,

jkrN

n n n
n

jkr

v
v v

ep A
r

eS Q
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−

=

−
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⎛ ⎞∂
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∑
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i
(2. 88)

where 
1

N

n
n

S S
=
∑ , 

1

N

n n
n

S
=
∑D x  and 

1

1
2!

N

v n nv n
n

Q x x Sμ μ
=
∑ . 
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Fig. 5  Boundary problem of interior sound field. 

 

2 2( )k p f∇ + =

V

S

n



 36

 

 

 

 

 

 

 

 

 

Fig. 6  Huygen’s principle. 
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Fig. 7  Schematic diagram to show the idea of the method of image. 
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Fig. 8  Boundary problem of exterior sound field. 
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Fig. 9  Virtual source representation.  (a) Monopole layer, (b) dipole layer, (c) 

equivalent source distribution. 
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Fig. 10  Dipole and quadrupole.  (a) Coordinate figure of dipole, (b) when d  is 

aimed at y-axis (dipole), (c) sound pressure distribution of dipole, (d) 

general structure of quadrupole. 
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Fig. 11  Illustration for multipole expansion. 
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2.4 Inverse problems and ill-posedness 

In general, inverse problems are derived from their associated forward problem.  

The forward problem of NAH is a sound field model that describes the acoustic 

radiation form a source.  The forward problem of NAH can be expressed as 

=p Gq , (2. 89)

where matrix G  contains the model parameter such as propagation matrix, vector q  

is a input such as source strength or particle velocity on the source, and vector p  is 

the resulting sound pressure at field points.  Vector q  is the unknown and p  is the 

measured quantity.  Hence the inverse problem is to be solved.  The modeled sound 

field by G  includes both propagating wave components and wave components that 

decay in the direction away from the source such as evanescent waves.  In fact, there 

are no real evanescent waves in the nearfield of a finite size radiator. The wave mode 

decomposition describes part of the radiation as evanescent waves, but this is more a 

question of representation (cut off modes in a duct, on the other hand, are truly 

evanescent). In other words, it is merely reflection of the convolution/smoothing 

process as waves propagate to the farfield.  The exact quantification is more tied to 

the decomposition (such as Fourier transform, SVD, etc.) one uses.  The evanescent 

waves consist of spatial frequency components higher than the propagating waves.  

The decay rate of the evanescent waves generally increases with the spatial 

frequencies.  Contribution of evanescent wave component is decay when moving 

away from the source.  In this condition, contribution from the evanescent 

components can be very low on the measurement surface.  Noise components in the 

measurement data that contain high spatial frequencies will be treated as evanescent 

waves.  Unwanted amplifications is occurred in the reconstruction when inverting 

the matrix G .  In other words, small perturbations in p  may have a huge effect on 

the solution vector q , that is said ill-posedness.  Regularization is needed when 
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solving the inverse problem.  Regularization is employed to limit the influence of the 

measurement noise. 
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CHAPTER 3. THEORETICAL PRELIMINARIES OF SIGNAL 

PROCESSING 

 

3.1 Linear algebra basics 

In general, inverse problems are based on an associated forward problem that 

describes the unknown effect on the basis of the known cause.  In light of NAH, the 

acoustic radiation problem can always be formulated into the following matrix form: 

=Gq p , (3. 1)

where p  and q  are the hologram data and source data, respectively, which are 

related by the propagation matrix G .  It can be shown for some perturbationsδp  

(measurement noise, numerical error, etc.) that the perturbation δq  satisfies 

cond( )
δ δ

≤
q p

G
q p

, (3. 2)

where max mincond( ) /σ σ=G  is the condition number of the matrix G  provided 

2-norm is assumed.   

The SVD is useful in order to understand the mechanisms behind the inverse 

problem.  The SVD of the matrix G  is given as  

H=G UΣV , (3. 3)

where U  is the left singular vectors, Σ  is a diagonal matrix composed of singular 

values of the matrix G  and V  is the right singular vectors.  As a theory of the 

orthonormality of the matrices, U  and V  are unitary matrices as 

H H
U= =U U UU Ι  and H H

V= =V V VV Ι , where UΙ  and VΙ  are identity matrices.  

Vector q  in Eq. (3. 1) can be found as  

1

Hn
H i

i
i iσ

−

=

= =∑1 u pq VΣ U p v , (3. 4)

where n  is the smallest dimension of G , iu  is the thi  left singular vector, iv  is 
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the thi  right singular vector and iσ  is the thi  singular value.  However, the 

measure data p  is perturbed by noise ( = +p p e ), where p  is the true pressure and 

e  is the noise.  Hence, equation (3. 4) can be rewritten as 

1 1

H Hn n
i i

i i
i ii iσ σ= =

= +∑ ∑u p u eq v v . (3. 5)

Because the singular vectors with high index correspond to evanescent wave 

components and the magnitude of H
iu p  reaches the noise level, the magnitude of the 

H
iu p  will decrease when the index i  increases.  The second term of Eq. (3. 5) will 

dominate the solution for the high indices of i  (corresponding to small singular 

values).  Equation (3. 5) will cause huge errors in the reconstruction result when 

taking the reciprocal of iσ  the noise term.  Regularization is required in order to 

prevent these unwanted amplifications of the noise.  In solving the inverse problem, 

the regularization is employed to avoid the amplification of the noise.  Hence the 

solution vector can be regularized in Eq. (3. 4).  Regularized solution is given as  

reg
1

Hn
i

i i
i i

f
σ=

=∑ u pq v , (3. 6)

where the filter factors if  constitute a low-pass filter.  The filter factors is allowing 

components with spatial frequencies (in low indices) in the solution and damping the 

high frequencies (in high indices).  The filter coefficients is to be 1if =  for i I≤  

and 0if =  for i I> , where I  is the discrete regularization parameter.  This 

regularization parameter I  determines how much the solution is regularized in Eq.(3. 

6).  This method of regularization is called TSVD that can be written as  

1

HI
i

I i
i iσ=

=∑ u pq v . (3. 7)

The solution Iq  will be over-smoothed when I  is chosen too low due to the 

removal of the high frequency components.  If I  is chosen too high, this solution 

Iq  has distortion because of the amplification of the noise.  Hence, how to choose 
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optimal regularization parameter is a problem.  This problem will be described in 

chapter 6. 

In mathematical optimization, the method of Lagrange multipliers (named after 

Joseph Louis Lagrange 1736~1813) provides a strategy for finding the maxima and 

minima of a function subject to constraints.  Assume we want to optimize (find the 

minimum and maximum) of a function, ( , )f x y , subject to the constraint 

( , )g x y K= .  Solve the system of equation as follows 

( , ) ( , )lf x y g x yλ∇ = ∇  (3. 8)

( , )g x y K= , (3. 9)

where 0lλ ≠  is Lagrange multiplier that is constant and K  is constant of constraint.  

The system of equations actually has three equations; the system can be rewritten in a 

simpler form.  The first equation put in the definition of the gradient vector to see 

what we get 

( ) ( ) ( ), , ,x y l x y l x l yf f g g g gλ λ λ= = . (3. 10)

In order for these two vectors to be equal the individual components must be equal.  

Hence, two equations are 

x l xf gλ=  (3. 11)

and 

y l yf gλ= . (3. 12)

These two equations along with the constraint, ( , )g x y K= , give three equations 

with three unknowns x , y  and lλ .  For example, find the maximum and 

minimum of ( , ) 5 3f x y x y= −  subject to the constraint 2 2 136x y+ = .  Hence, we 

need to solve 
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2 2

5 2
3 2

136.

l

l

x
y

x y

λ
λ

=

− =

+ =
 

The variables x  and y  can be expressed in terms of the Lagrange multipliers 

5
2

3 .
2

l

l

x

y

λ

λ

=

−
=

 

Plugging x  and y  into the constraint gives 

2 2 2

25 9 17 136
4 4 2l l lλ λ λ

+ = = . 

The Lagrange multiplier lλ  can be solved 

2 1
16

1 .
4

l

l

λ

λ

=

⇒ = ±
 

If 1/ 4lλ = − , we get 10x = −  and 6y = .  If 1/ 4lλ = , we get 10x =  and 

6y = − .  Thus, here are the minimum and maximum values of the function as 

( 10,6) 68,  Minimum at ( 10,6)f − = − −  

(10, 6) 68,  Maximum at (10, 6)f − = − . 

 

3.2 Digital signal processing basics 

Under-sampling a continuous-time signal can introduce a distortion into the 

signal, which is generally referred to as “aliasing” (a relatively high-frequency 

component in the analog input signal appears at a lower frequency in the 

reconstructed output signal).  Nyquist showed that sampling rate must exceed 

two-times of the cutoff frequency of the bandlimited signal to fully recover the 

continuous signal.  Let ( )cx t  be continuous and bandlimited signal with 
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( ) 0     for c NX jΩ = Ω ≥ Ω , (3. 13)

where NΩ  is the cutoff frequency and also referred to as the Nyquist frequency. 

( )cx t  is uniquely determined by its samples [ ] ( ) , 0, 1, 2,...cx N x nT n= = ± ± , if 

2 2s NT
π

Ω = ≥ Ω , (3. 14)

where sΩ  is the sampling rate and T is the period of signal.  Also oversampling 

may be desirable because interpolation during singnal alignment can degrade 

resolution.  Oversampling is also required if you intend to use deconvolution to 

increase resolution; the final deconvolved signal must also meet the Nyquist Sampling 

Criterion.  

Many of the phenomena studied in engineering and science are periodic in nature 

eg. the sound signal in an alternating current circuit. These periodic functions can be 

analysed into their constituent components (fundamentals and harmonics) by a 

process called Fourier analysis.  We are aiming to find an approximation using 

trigonometric functions for various square, saw tooth, etc waveforms that occur in 

electronics.  We do this by adding more and more trigonometric functions together.  

The sum of these special trigonometric functions is called the Fourier series.  The 

Fourier series was shown as a way of representing the spectrum of a periodic signalas 

a series of discrete line sin the frequency-domain.  In this module, the concept of the 

Fourier transform will be introduced and applied to nonperiodic functions.  The 

Fourier transform defines a relationship between a signal in the time-domain and its 

representation in the frequency-domain.  Summary of Fourier series and transform 

relations is shown in Table 1. 

A transfer function (TF) is a mathematical representation, in terms of spatial or 

temporal frequency, of the relation between the input and output of a linear 

time-invariant system. With optical imaging devices, for example, it is the Fourier 
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transform of the point spread function.  Let ( )x t  is the input and ( )y t  is the output.  

Take the bilateral Laplace transform of ( )x t  and ( )y t   

( ) ( ) stX s x t e dt
∞ −

−∞
= ∫  (3. 15)

( ) ( ) stY s y t e dt
∞ −

−∞
= ∫ . (3. 16)

The output is related to the input by the TF ( )H S  as  

( ) ( ) ( )Y s H s X s=  (3. 17)

and the TF is  

( )( )
( )

Y sH s
X s

= . (3. 18)

If a complex harmonic signal with a sinusoidal component with amplitude X , 

angular frequency ω  and phase arg( )X  

( arg( ))( ) j t j t Xx t Xe X eω ω += = , (3. 19)

where arg( )j XX X e=  is input to a linear time-invariant system.  Frequency 

response function (FRF) is the measure of any system output spectrum in response to 

an input signal.  The frequency response ( )H jω  describes this change for every 

frequency ω  in terms of gain: 

( )
Y

H j
X

ω =  (3. 20)

and phase shift: 

( ) arg( ) arg( ) arg( ( ))Y X H jφ ω ω= − = . (3. 21)

The TF can also be shown using the Fourier transform which is only a special case of 

the bilateral Laplace transform for the case where s jω= . 

The impulse response, or impulse response function (IRF), of a dynamic system 

is its output when presented with a brief input signal, called an impulse.  The 

Laplace transform of the IRF is known as the TF.  It is usually easier to analyze 
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systems using TFs as opposed to IRFs.  The Laplace transform of a system output 

may be determined by the multiplication of the TF with the input function in the 

complex plane, also known as the frequency domain.  An inverse Laplace transform 

of this result will yield the output function in the time domain.  In array applications, 

impulse responses enable the acoustic characteristics of a location.  

Infinite impulse response (IIR) filter is a type of a signal processing filter whose 

impulse response is of infinite length of time.  This is in contrast to finite impulse 

response (FIR) filters, which have fixed-duration impulse responses.  Direct-form 

IIR filters are often described and implemented in terms of the difference equation 

that defines how the output signal is related to the input signal: 

1 0

( ) ( ) ( )i i
i i

y n b x n i a y n i
′Λ Λ

′
′= =

′= − + −∑ ∑ . (3. 22)

where ( )x n  is the input signal, ( )y n is the output signal, Λ is the feedforward filter 

order, ib  are the feedforward filter coefficients, ′Λ  is the feedback filter order and 

ia ′  are the feedback filter coefficients.  The direct-form Ⅰ structure is shown in Fig. 

12 and the direct-form Ⅱ structure is shown in Fig. 13.  The corresponding rational 

system function is 

1

0

( )
( )

1 ( )

i
i

i
i

b x n i
H z

a y n i

Λ

=
′Λ

′
′=

−
=

′− −

∑

∑
. (3. 23)

A FIR filter is a type of a signal processing filter whose impulse response is of 

finite duration, because it settles to zero in finite time.  Direct-form FIR filters are 

described by the following difference equation, which defines the output ( )y n  in 

terms of its input ( )x n : 

( ) ( )i
i

y n b x n i
Λ

= −∑ , (3. 24)
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where ( )x n  is the input signal, ( )y n  is the output signal, ib  are the filter 

coefficients and Λ  is the filter order.  This can be recongnized as the discrete 

convolution of ( )x n  with the impulse response 

  0,  1, ,  ,
( )

0  otherwise.       
ib i

h n
= … Λ⎧

= ⎨
⎩

 (3. 25)

The direct-form structure is shown in Fig. 14.   

Convolution is the mathematical process that relates the output ( )y t  of a linear, 

time-invariant system to its input ( )x t , and impulse response ( )h t .  The output is  

( ) ( )* ( ) ( )* ( )y t x t h t h t x t= = , (3. 26)

where “*” represents the commutative convolution operation.  For two finite discrete 

sequences of length xN  and hN , the linear or aperiodic convolution sum takes on a 

slightly different form 

( ) ( ) ( )
n

n

n n
k

y n h k x n k= −∑ , (3. 27)

where n  is sample index, ( )nh k  and ( )nx n k−  are zero outside their appropriately 

defined intervals. For x hN N> , each summation need only be calculated for the 

0 1n hk N≤ ≤ −  terms. The output ( )y n  will have length 1x hN N+ − .  In 

frequency domain convolution, multiplication in the frequency domain translates to 

circular convolution in the time domain in the discrete case.  The output is  

( ) ( ( )) ( ( ) ( ))f f fy n IFFT Y n IFFT X n H n= = , (3. 28)

where fn  is the discrete frequency variable and IFFT is inverse FFT.  In the Block 

convolution using the overlap-add method (OAD) as shown in Fig. 15, the input 

blocks need not be precisely hN  samples long.  But it is generally a good idea to 

keep xN Λ  on the order of hN  to avoid unnecessarily long block convolutions. The 

overlap between block outputs must remain 1hN − , regardless.  Mathematically, 

( )x n  and ( )y n  can be represented as  
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block block
0

( ) ( ),  where ( ) ( ) for ( 1)

( ) 0  otherwise
i

x n x n x n x n N n N

x n

∞

Λ Λ
=

= = ≤ ≤ Λ +

=

∑  (3. 29)

1 1 0

( ) ( )* ( )

( ) ( ) ( ) ( )* ( ) ( )
k

n

f f
n i i i

y n h n x n

y n h n x n n h n x n y n
∞ ∞ ∞

Λ Λ Λ
= = =

=

= − = =∑ ∑ ∑ ∑ , (3. 30)

where Λ= 1, 2,… Λ̂  is the frame index and Λ̂  is the number of frames.  Unlike 

the OAD, the overlap-save method (OAS) requires that the input blocks overlap as 

shown in Fig. 16.  Then the input blocks are circularly convolved with the impulse 

response.  Because of the overlap redundancy at the input, the circular artifacts in the 

output (the first 1hN −  samples) can simply be discarded.  Mathematically, 

symbolic representations of ( )x n  and ( )y n  are rather cumbersome, but can be 

expressed as  

1
0

( ) ( ) ( )fx n x n x n
∞

Λ Λ−
Λ=

= −∑  (3. 31)

where ( ) ( )x n x nΛ =  for block block ( 1)( 1) ( +1) ( 1)( 1) 1h hN N n N N− Λ + − ≤ ≤ Λ − Λ + − −  

and ( ) 0x nΛ =  otherwise.  Also, 1 1( ) ( )fx n x nΛ− Λ−=  for 

block block ( 1)( 1) ( 1) 1h f hN N n N N− Λ + − ≤ ≤ Λ −Λ − − .   

( ) ( )( ) ( )y n h n x nΛ Δ= ∗ , (3. 32)

where (*) denotes circular convolution.  The output is  

0 1 2( ) ( ) | ( ) | ( ) |f f fy n y n y n y n= , (3. 33)

where " | " denotes concatenation and m indexes the last block ( 1)hN N− −  samples of 

each block.   

In digital signal processing, time delay is common problem.  The delay usually 

is not an integer in digital signal processing.  There are many ways to deal with these 

fractional delay problems.  The simplest approach is Lagrange interpolation method.  

Firstly we divide mτ  by sampling period T  to acquire the fractional delay mΨ .  
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The delay is separated into two parts  

m
m m mD e

T
τ

= Ψ = + , (3. 34)

where mD  and me  are the integer and fractional component of mΨ , respectively.  

FIR filter coefficients to implement the Lagrange interpolation can be calculated by 

0

, 0,1, 2, ,
N

m
mk

l
l k

e lw k N
k l=

≠

−
= =

−∏ … . (3. 35)

The coefficients for the Lagrange filters of order 1,  2N =  are given in the Table 2.  

The case 1=N  corresponds to the linear interpolation using two samples. 

In signal processing, the Wiener filter is a filter.  Its purpose is to reduce the 

amount of noise present in a signal by comparison with an estimation of the desired 

noiseless signal.  A Wiener filter is not an adaptive filter because the theory behind 

this filter assumes that the inputs are stationary. 

The input to the Wiener filter is assumed to be a signal ( )x t  corrupted by 

additive noise ( )v t .  The output ( )y t  is calculated by means of a filter ( )h t  as 

( ) ( )*[ ( ) ( )]y t h t x t v t= + , (3. 36)

where ( )x t  is the original signal, ( )v t  is the noise, ( )y t  is the estimated signal 

and ( )h t  is the Wiener filter's impulse response.  The error is defined as 

( ) ( ) ( )we t x t y tτ= + − , (3. 37)

where wτ  is the delay of the Wiener filter.  Writing ( )y t  as a convolution integral: 

( ) ( )[ ( ) ( )]y t h x t v t dτ τ τ τ
∞

−∞
= − + −∫ , (3. 38)

where τ  is time delay.  Taking the expected value of the squared error results in 

2
ˆ

ˆ

{ } (0) 2 ( ) ( )

             + ( ) ( ) ( ) ,

x xx w

x

E e R h R t d

h h R d d

τ τ τ

τ θ τ θ τ θ

∞

−∞

∞ ∞

−∞ −∞

= − +

−

∫
∫ ∫

(3. 39)

where ˆ( ) ( ) ( )x t x t v t= +  is the observed signal, xR  is the autocorrelation function of 

( )x t , x̂R  is the autocorrelation function of ˆ( )x t  and x̂xR  is the cross-correlation 
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function of ˆ( )x t  and ( )x t .  The goal is to minimize 2{ }E e  by finding the optimal 

( )h t  that is the Wiener filter IRF. 

The Wiener filter problem has solutions for three possible cases.  Firstly, 

non-causal filter is acceptable.  Next, causal filter is desired.  Finally, finite amount 

of past data is used.  The first case is simple to solve but is not suited for real-time 

applications.  The non-causal solution is  

ˆ, ( )
( )

( )
wx x s

x

X s
H s e

X s
τ= . (3. 40)

Provided that ( )h t  is optimal, then the minimum mean-square error equation reduces 

to 

2
ˆ,{ } (0) ( ) ( )x x x wE e R h R dτ τ τ τ

∞

−∞
= − +∫ , (3. 41)

and the solution ( )h t  is the inverse two-sided Laplace transform of ( )H s .  The 

causal solution is  

ˆ

( )( )
( )x

G sH s
X s+= , (3. 42)

where ( )G s  consists of the causal part of ˆ, ( ) ( )ws
x x xe X s X sτ  and ˆ ( )xX s+  is the 

causal component of ˆ ( )xX s .   

The causal FIR Wiener filter, instead of using some given data matrix X  and 

output vector Y , finds optimal tap weights by using the statistics of the input and 

output signals. It populates the input matrix X  with estimates of the auto-correlation 

of the input signal T  and populates the output vector Y with estimates of the 

cross-correlation between the output and input signals V . 

In order to derive the coefficients of the Wiener filter, we consider a signal ( )w n  

being fed to a Wiener filter of order Λ  and with coefficients , 0, ,ia i = Λ… .  The 

output of the filter is denoted ( )x n  which is given by the expression 
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0

( ) ( )i
i

x n a w n i
Λ

=

= −∑ . (3. 43)

The residual error is denoted ( )e n  and is defined as ( ) ( ) ( )e n x n v n= − .  The 

Wiener filter is designed so as to minimize the mean square error (MMSE) which can 

be stated concisely as follows: 

2arg min { ( )}ia E e n= , (3. 44)

where { }e i  denote the expectation operator.  In the general case, the coefficients 

ia  may be complex and may be derived for the case where ( )w n  and ( )v n  are 

complex as well.  For simplicity, we will only consider the case where all these 

quantities are real. The mean square error may be rewritten as: 

2 2

2 2

2 2

0 0

{ ( )} {[ ( ) ( )] }
               = { ( )} 2 { ( ) ( )} { ( )}

              [ ( )] 2 ( ) ( ) { ( )}.i i
i i

E e n E x n v n
E x n E x n v n E v n

E a w n i E a w n i v n E v n
Λ Λ

= =

= −

− +

⎧ ⎫ ⎧ ⎫
= − − − +⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭
∑ ∑

 
(3. 45)

If we suppose that ( )w n  and ( )v n  are each stationary and jointly stationary, we can 

introduce the following sequences  ( )wR n′  and ( )wvR n′  known respectively as the 

autocorrelation of ( )w n  and the cross-correlation between ( )w n  and ( )v n  defined 

as follows: 

( ) { ( ) ( )}
( ) { ( ) ( )}.

w

wv

R n E w n w n n
R n E w n v n n

′ ′= +
′ ′= +

 (3. 46)

The derivative of the MSE may therefore be rewritten as  

2

0

{ ( )} 2 ( ) 2 ( )  0, ,w j vs
ji

E e n R j i a R i i
a

Λ

=

∂
= − − = Λ

∂ ∑ … . (3. 47)

Notice that ( ) ( )wv vwR i R i− = . 

Letting the derivative be equal to zero, we obtain 

0
( ) ( )  0, ,w j vw

j
R j i a R i i

Λ

=

− = = Λ∑ … , (3. 48)

which can be rewritten in matrix form 
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=Ta v  (3. 49)

or  

0

1

(0) (1) ( ) (0)
(1) (0) ( 1) (1)

( ) ( 1) (0) ( )

w w w vw

w w w vw

w w w vw

R R R Ra
R R R Ra

R R R RaΛ

Λ⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥Λ −⎢ ⎥ ⎢ ⎥⎢ ⎥ =
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥Λ Λ − Λ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

. (3. 50)

These equations are known as the Wiener-Hopf equations. The matrix T  appearing 

in the equation is a symmetric Toeplitz matrix. These matrices are known to be 

positive definite and therefore non-singular yielding a unique solution to the 

determination of the Wiener filter coefficient vector 1−=a T v .   

Least mean squares (LMS) algorithms are a class of adaptive filter used to mimic 

a desired filter by finding the filter coefficients that relate to producing the LMS of 

the error signal.  Most linear adaptive filtering problem is shown in Fig. 17.  That is, 

an unknown system ( )H z  is to be identified and the adaptive filter attempts to adapt 

the filter ˆ ( )H z  to make it as close as possible to ( )H z , while using only observable 

signals ( )x n  ( )d n  and ( )e n ; but ( )y n , ( )v n  and ˆ( )y n  are not directly 

observable.  Its solution is closely related to the Wiener filter.  The idea behind 

LMS filters is to use steepest descent to find filter weights ( )H n  which minimize a 

cost function. We start by defining the cost function as 

{ }2( ) ( )n E e nξ = , (3. 51)

where { }E i  denotes the expected value. 

The objective of the adaptive filter is to minimize the instantaneous mean square error 

and according to LMS algorithm updating the coefficient vector in the negative 

direction with step size µ:  

ˆ( 1) ( )
2

h n h n μ ξ′ ′+ = − ∇ , (3. 52)
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where / 2μ  is the step size, ∇  is the gradient operator, ξ̂∇  is an instantaneous estimate of 

the mean square error (MSE) gradient at time n , and hence ξ̂∇  can be expressed as 

{ }*ˆ( ) 2 ( ) ( )n E n e nξ∇ = − x , (3. 53)

where [ ]( ) ( ),  ( 1), ,  ( 1) Tn x n x n x n p= − − +x  and p  is filter order.  The update 

algorithm follows as 

{ }*( 1) ( ) ( ) ( )h n h n E n e nμ′ ′+ = + x . (3. 54)

That means we have found a sequential update algorithm which minimizes the cost 

function.  For most systems the expectation function { }*( ) ( )E n e nx  must be 

approximated. This can be done with the following unbiased estimator 

{ }
1

* *

1

1ˆ ( ) ( ) ( ) ( )
N

i

E n e n n i e n i
N

−

=

= − −∑x x , (3. 55)

where N  indicates the number of samples we use for that estimate.  The simplest 

case is 1N =  

{ }* *ˆ ( ) ( ) ( ) ( )E n e n n e n=x x . (3. 56)

For that simple case the update algorithm follows as 

*ˆ( 1) ( ) ( ) ( )h n h n n e nμ′ + = + x . (3. 57)

Indeed this constitutes the update algorithm for the LMS filter.   

The purposed of Kalman filter is to use measurements that are observed over 

time that contain noise and other inaccuracies, and produce values that tend to be 

closer to the true values of the measurements and their associated calculated values.  

There are two equations in Kalman filtering.  The first equation is called the process 

equation: 

1( 1) ( 1, ) ( ) ( )n n n n n+ = + +x F x v , (3. 58)

where ( 1, )n n+F  is a known M M×  state transition matrix relating the state of the 



 58

system at times 1n +  and n .  The 1M ×  vector 1( )nv  represents process noise.  

The vector 1( )nv  is a zero-mean, white-noise process whose correlation matrix is 

defined by 

1
1 1

,  
[ ( ) ( )]

,    
H n n

E n n
n n

′=⎧′ = ⎨ ′≠⎩

 Q
v v

 0
 (3. 59)

The second equation is called the measurement equation: 

2( ) ( ) ( ) ( )y n n n n= +C x v  (3. 60)

where ( )nC  is a known N M×  measurement matrix.  The 1N ×  vector 2 ( )nv  

is the measurement noise modeled as a zero-mean, white-noise process whose 

correlation matrix is defined by 

2
2 2

,  
[ ( ) ( )]

,    
H n n

E n n
n n

′=⎧′ = ⎨ ′≠⎩

 Q
v v

 0
 (3. 61)

The noise vectors 1( )nv  and 2 ( )nv  are statistically independent so that we have 

1 2[ ( ) ( )]HE n n′ =v v 0 , (3. 62)

for all n  and n′ .   

 



 59

 

Table 1  Summary of Fourier series and transform relations. 

Continuous time Discrete time  

Time-domain Frequency-domain Time-domain Frequency-domain 

Fourier 

series 

0( ) jk t
k

k
x t a e ω

∞

=−∞

= ∑  

Continuous time 

oT  periodic 

0 02 /Tω π=  

0

00

1 ( ) jk t
k

T

a x t e dt
T

ω−= ∫  

Discrete frequency 

Aperiodic 

0 02 /Tω π=  

0[ ] jk n
k

k N
x n a e Ω

=< >

= ∑  

Discrete time 

N  periodic 

0 02 / NπΩ =  

0
1 [ ] jk n

k
n N

a x n e
N

− Ω

=< >

= ∑

Discrete frequency 

N  periodic 

0 02 / NπΩ =  

Fourier 

transform 

1( ) ( )
2

j tx t X j e dωω ω
π

∞

−∞

= ∫

Continuous time 

Aperiodic 

( ) ( ) j tX j x t e dtωω
∞

−

−∞
∫  

Continuous frequency 

Aperiodic 

2

1[ ] ( )
2

j j nx n X e e d
ππ

Ω Ω= Ω∫

Discrete time 

Aperiodic 

( ) [ ]j j n

n

X e x n e
∞

Ω − Ω

=−∞

= ∑

Continuous frequency 

2π  periodic 
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Table 2  FIR filter coefficients to implement Lagrange interpolation for 1N =  and 

2N = . 

 0mw  1mw  2mw  

1N =  1 me−  me   

2N =  ( 1)( 2) / 2m me e− −  ( 2)m me e− −  ( 1) / 2m me e −  
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Fig. 12  Signal flow graph of direct-form Ⅰ IIR structure. 
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Fig. 13  Signal flow graph of direct-form Ⅱ IIR structure. 
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Fig. 14  Direct-form realization of an FIR system. 
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Fig. 15  Block convolution using the OAD. (a) input ( )x n , (b) impulse 

response ( )h n , (c) expected output ( )y n , (d) output 1( )y n  for block 

convolution of 1( )x n  and ( )h n , (e) output 2 ( )y n  for block convolution 

1( )x n  3 ( )x n  
2 ( )x n

n

( )x n  

(a) 

n  

( )h n

(b) 

n

( )y n  

(c) 
n  

1( )y n

(d) 

n  

2 ( )y n

(e) 

n  

3 ( )y n

(f) 

n  

1 2 3( ), ( 2), ( 4)y n y n y n− −

(g) 

n  

1 2 3( ) ( ) ( 2) ( 4)y n y n y n y n= + − + −

(h) 
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of 2 ( )x n  and ( )h n , (f) output 3 ( )y n  for block convolution of 3( )x n  and 

( )h n , (g) shifted block outputs, overlap is 1 2hN − = , and (h) the sum of 

overlapped block outputs equivalent to the direct convolution result. 
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Fig. 16  Block convolution using the OAS. (a) input signal ( )x n  divided into 

overlapping sections, overlap is 1 2hN − = , (b) impulse response ( )h n , (c) 
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output ( )y n  using direct convolution, (d) output 1( )y n  for block circular 

convolution of 1( )x n  and ( )h n , (e) output 2 ( )y n  for block circular 

convolution of 2 ( )x n  and ( )h n , (f) output 3 ( )y n  for block circular 

convolution of 3( )x n  and ( )h n , (g) output 4 ( )y n  for block circular 

convolution of 4 ( )x n  and ( )h n , and (h) sequential concatenation of block 

outputs after discarding the first two samples of each block, which is 

equivalent to the direct convolution result. "|" represents concatenation. 
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Fig. 17  LMS block diagram. 
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3.3 Array signal processing basics 

Array signal processing techniques are utilized for DOA estimation, 

beamforming and NSI.  Definitions of farfield and nearfield array are shown in Table 

3.  There is a one important thing we have to know.  To avoid spatial aliasing, the 

spacing between each microphone must be less than half wavelength of the signals.  

In the following array signal processing, we assume that signals received at the 

reference point are of farfield and narrowband characteristcs.  Farfield assumes that 

the signals are located far enough away from the array that the wavefronts impinging 

on the array can be modeled as plane waves.  On the other hand, the effects of 

distance on field intensity can be neglected.  Narrowband assumes that the incident 

signal that the Beamformer is trying to capture has a narrow bandwidth centered at a 

particular frequency.  The ULA is shown in Fig. 18 and the array model can be 

constructed.  The spacing between adjacent microphones is d .  A typical choice 

/ 2d λ≤ , which corresponds to Nyquist spatial sampling rate.  Assume that the 

signal ( )r t  at a reference point is a narrowband with center frequency cω : 

( ) ( ) cj tr t s t e ω= ,  (3. 63)

where )(ts  is the phasor of )(tr .  The signal received at the m th array element 

located at mx  is denoted as )(txm , and let r  be the unit vector pointing to the 

sound source direction.  If the speed of sound is c , the signal )(txm  can be written 

as  

( ) ( ) ( ) ( ) ( )
m

c
c

x rj j tm m c
m m m

x r x rx t r t n t s t e e n t
c c

ω ω
⋅⋅ ⋅

= + + = + + , (3. 64)

where )(tnm  is the noise signal of the m th component in the array.  In general, 

)()( ts
c

rx
ts m ≈

⋅
+  for far field approximation.  For M  sensor signals 

)(,),(1 txtx M , the data vector can be expressed as 
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1

1 1( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )

c

c

M
c

x rj
c

j t

x rjM Mc

x t e n t
t s t e r r t t

x t n t
e

ω

ω

ω

⋅

⋅

⎡ ⎤
⎡ ⎤ ⎡ ⎤⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥= = + = +⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

⎢ ⎥⎣ ⎦

x a n , (3. 65)

where )(ra  is called the array manifold vector.  The unit vector r  for a sound 

source at the θ  direction is given by 

(sin ,cos )r θ θ= . (3. 66)

The position vector of the m th element can be expressed as 

(( 1) ,0)mx i d= − . (3. 67)

Hence, the inner product of the position vector and the unit vector yields 

θsin)1( dirxm −=⋅  (3. 68)

The array manifold vector )(ra  can be rewritten from Eq. (3. 68)  

sin ( 1) sin

( , ) 1 c c

Td M dj j
c c

c e e
θ θω ω

ω θ
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

a . (3. 69)

Extension from the narrowband to broadband formulation is straightforward.  

The center frequency cω  is replaced by ω , where ω  means a broadband 

frequency variable.  The beamformer output )(ty  is the weighted sum of the 

delayed input signals )(txm , Mm 1= , 

1 0

( ) ( )
M N

mk m
m k

y t w x t kT
= =

= −∑∑ . (3. 70)

This equation can be rewritten in the frequency-domain for a particular direction θ  

as 

( , ) ( ) ( , ) ( )( ( , ) ( ) ( ))j jy e e rω ωω θ ω θ ω θ ω ω= = +h x h a n , (3. 71)

where the manifold vector is given by 

sin ( 1) sin

( , ) 1
Td M dj j

c ce e
θ θω ω

ω θ
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

a  (3. 72)

and )]()()([)( 21
ωωωω j

M
jjj ehehehe =h  consists of Discrete Time Fourier 
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Transforms (DTFT) of each tapped-delay line channel.  The frequency response is 

given by  

0

( )
N

j j kT
m mk

k

h e w eω ω−

=

=∑ , 1m M= , (3. 73)

where N  and T  are the filter order and the sampling period, respectively.  The 

dimensions of )( ωjeh  and ),( θωa  are M×1  and 1×M , respectively. 

In our problem, the delay-sum algorithm is tried to find )( ωjeh  that maximizes 

signal-to-noise ratio gain (SNRG), i.e. 

( )

( ) ( ) ( ) ( )max
( ) ( )

j H H j

j H j

e e
e e

ω ω

ω ωω

θ θ
h

h a a h
h h

 (3. 74)

which is equivalent to  

( )
max ( ) ( ) ( ) ( )     suject to ( ) ( ) 1j H H j j H je e e eω ω ω ω

ω
θ θ =

h
h a a h h h . (3. 75)

This problem can be solved by the Lagrange multiplier method, the solution is 

obtained as fpllows 

( ) ( , )j He ω ω θ=h a . (3. 76)

Equation (3. 75) explains that each channel filter equals to the conjugate of each 

component in the manifold vector. 

( 1) sin

( ) , 1m

m dj jj c
mh e e e m M

θω ωτω
−

− −= = = , (3. 77)

where 
c
dm

m
θτ sin)1( −

=  is the delay of each channel according to the difference 

between m th sensor and the reference point. The delay is implemented using 

Lagrange interpolation.  Once we obtain the filters, the output signals ),( θωy  can 

be calculated from Eq. (3. 71).  The square of ),( θωy  is called the spatial power 

spectrum, which is given by 

2( ) ( , ) ( ) ( , ) ( , ) ( )j H H jS y e eω ωθ ω θ ω θ ω θ= = h x x h . (3. 78)

The maximum magnitude of the spatial power spectrum is the direction of the sound 

source.  A quantity of interest in array signal processing is data correlation matrix: 
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{ ( ) ( )}

     {[ ( ) ( )][ ( ) ( )] }
     { ( ) ( )} { ( )[ ( )] }
        {[ ( )] ( )} { ( ) ( )}.

H
xx

H

H H H H

H H

R E x n x n

E n n n n
E n n E n n
E n n E n n

=

= + +

= +

+ +
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(3. 79)
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Table 3  Distinctions of farfield and nearfield arrays. 

 Farfield array Nearfield array 

Source 
simple source 

(plane or spherical) 
distributed 

Optimizing sensor deployment random uniform 

Input-output domain MISO MIMO 

Focal point single multiple 

Main lobe single multiple 

Distance large small 

Source scale large small 

Algorithm direct filtering inverse filtering 

Resolution low high 

Contemplation none evanescent wave 

Sound image source location velocity distribution 
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Fig. 18  The illustration of the ULA.  A point source is located at the farfield. 
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3.4 Optimization algorithms 

In this section, global optimization methods for microphone deployment and RD 

are presented.  Arrays with sparse and random sensor deployment are known to be 

capable of delivering high quality farfield images without grating lobes.  This raises 

the question of whether or not this idea can be applied to nearfield imaging as well.  

To answer this question that has not yet been widely investigated in previous research, 

numerical simulations of chapter 6.7 are undertaken in this thesis to optimize the 

microphone deployment for both farfield and nearfield arrays with the latter being the 

main focus.  Next, we shall examine the issue of RD from an optimization 

perspective.  The optimization algorithm we adopted is the GSS with Parabolic 

Interpolation [63]. 

The basic MC algorithm is based on straightforward random search.  For M 

microphones to be allocated to ( 1) ( 1)m n+ × +  rectangular grid points, the number of 

possible combinations is ( 1) ( 1)m n
MC + × + , which is known to be an NP-complete problem 

[64].  Due to the blind search nature, the MC algorithm can be very inefficient and 

result in non-uniform distribution of microphones that concentrate at certain areas.  

To address these problems, a modified method intra-block Monte Carlo (IBMC) is 

proposed.  By “Intra-block” (IB), we mean the localized region designated to each 

microphone on the surface,, as shown in Fig. 19.  The MC search is only conducted 

within each block with random positions generated inside this designated region.  

The M microphone elements will be designated to M localized regions.  Hence, each 

region necessarily contains one and only one microphone.  The flowchart of IBMC 

is shown in Fig. 20.  Initially, m n×  divisions of a rectangular grid are set up on the 

microphone surface.  Next, M localized search regions are designated to 

microphones,, as shown in Fig. 19.  Each localized region in Fig. 21 has the 
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dimensions mx myd d d= = , whereas the inter-element spacing of the grid points is 

chosen to be 4 /xd d m=  and 5 /yd d n= , respectively.  The localized regions are 

centered at the microphone positions of the URA that is selected to be the initial 

configuration in the optimization.  The associated data including the microphone 

positions ix , the beam pattern ib , and the cost function iQ  are calculated.  Next, 

each of the M  microphone positions x is randomly assigned to one of the search 

points on the localized region.  The new beam pattern b and the cost function Q  

are calculated for the assigned microphone positions x.  The optimal solutions optx , 

optb  and optQ  are then replaced by the new solutions x , b  and Q  if optQ Q> ; 

otherwise the solutions are discarded.  The simulation is continued until the number 

of iterations I exceed the preset value IIBMC. 

The IBMC algorithm is more efficient than the MC algorithm in that the search 

area for each microphone is far smaller.  In addition, the IBMC algorithm generally 

results in microphone positions that are more uniformly distributed than those of the 

MC algorithm. 

The MC algorithm can be very time-consuming and result in deployment that is 

far from optimal.  Instead of blind search like the MC method, another efficient SA 

algorithm is used in this study.  SA is a generic probabilistic meta-algorithm for the 

global optimization problem, namely locating a good approximation to the global 

optimum of a given function in a large search space [65]-[68].  SA is well suited for 

solving problems with many local optima.  Each point in the search space is 

analogous to the thermal state of the annealing process in metallurgy.  At high 

temperatures, atoms with high internal energy are free to move to the other positions.   

As temperature drops, the internal energy is decreased to a lower state to gradually 
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form a crystalline structure.  The objective function Q  to be maximized is likened 

to the internal energy in that state.  One important feature of the SA approach is that 

it allows the search to move to a new state that is “worse” than the present one in the 

initial high-temperature stage.  It is this mechanism that prevents the search from 

being trapped in a local maximum.  The probability of accepting bad solutions 

decreases as temperature is decreased according to the Boltzmann distribution and the 

algorithm finally converges to the optimum solution. 

The flowchart of SA is illustrated in Fig. 22.  For the problem of maximizing 

the array cost function, the array is initially set to be the URA with microphone 

positions xi.  The corresponding beam pattern bi and cost function iQ  are calculated.  

The microphone surface is partitioned into m n×  divisions in a rectangular grid.  

The localized regions and the associated grid points are defined in the same way as 

the IBMC.  Accordingly, each microphone can be assigned to any position within 

the localized region in the simulation.  The initial temperature iT , the final 

temperature fT , and the annealing factor a  are selected accordingly.  A typical 

value of a  is in the range of 0.8 and 0.99.  Initially, set opt i=x x , opt i=b b  and 

opt iQ Q= .  Next, M microphone positions x are tentatively assigned.  Each 

microphone is randomly assigned to one of the grid points with respect to the 

localized region.  The beam pattern b  and the cost function Q  are evaluated for a 

new microphone positions x.  Calculate the difference between the present and the 

optimal cost function, 

optQ Q QΔ = − . (3. 80)

If fT T>  and 0QΔ > , replace the optimized solutions optx , optb  and optQ  with 

the new solutions x, b and Q.  Otherwise, if 0QΔ ≤ , evaluate the following 
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probability function: 

/( , ) Q TP Q T eΔΔ = . (3. 81)

The above probability will be compared with a random number 0 1γ≤ ≤  generated 

subject to the uniform distribution.  A tentative solution is accepted when the 

probability function P is greater than the random numberγ ; otherwise, the solution is 

rejected.  Namely, 

( , ) ,  accepted
( , ) ,  rejected

P Q T
P Q T

γ
γ

Δ >⎧
⎨ Δ <⎩

. (3. 82)

Note that the larger the cost function difference QΔ  or the higher the temperature T, 

the higher is the probability to accept a worse solution. 

As the search proceeds, the temperature is decreased according to an exponential 

annealing schedule that begins at some initial temperature T0 and decreases the 

temperature in steps 

1k kT a T+ = × , (3. 83)

where 0 1a< <  is the annealing coefficient.  The annealing process will be 

terminated if the temperature is lower than a preset final temperature Tf.  As the 

annealing process proceeds and T decreases, the probability of accepting a bad move 

becomes increasingly small until it finally settles to a stable solution. 

The GSS algorithm is a bracketing method for finding the extremum of a 

one-dimensional function.  One advantage of the method is that it enables efficient 

search for the extremum within a finite number of steps, without the need to evaluate 

numerical gradients.  In a typical step there are seven points, x1, x2, x3, x4, x5, x6 and 

x7, not all distinct.  One possible configuration is shown in Fig. 23.  A local 

minimum is known to lie between x1 and x2.  Note that x7 is the point with the least 

value of Q(x) evaluated at x1, x2 and x3; x5 is the point with the next lowest of Q(x); x4 

is the previous value of x5; x3 is the point at which the function was evaluated last; x6 
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is the midpoint between x1 and x2.  The tolerance is chosen to be a combination of a 

relative and an absolute tolerance: 

1/ 2
7| |

3
xtoltol xε= + . (3. 84)

The parameter ε  is the floating-point relative accuracy, and the parameter tolx is the 

tolerance of design variable. 

The flowchart is shown in Fig. 24.  The scheme to detect optimal minimum 

point has to be robust in the potential interval [x1, x2], the attention must be paid to the 

optimal minimum evaluation.  The following parameters p and q are calculated  

{ }2 2
7 4 7 5 7 5 7 4( ) [ ( ) ( )] ( ) [ ( ) ( )]p x x Q x Q x x x Q x Q x= ± − − − − − , (3. 85)

{ }7 4 7 5 7 5 7 42 ( )[ ( ) ( )] ( )[ ( ) ( )]q x x Q x Q x x x Q x Q x= − − − − −∓ . (3. 86)

Let e be the value of p/q.  If | |e tol≤ , 0q =  or 7 1 2/ ( , )x p q x x+ ∉ , then a “GSS” 

step is performed.  The next value of x3 is 

7 1 7 6
3

7 2 7 6

(1 )   if   
(1 )   if   

x x x x
x

x x x x
α α
α α

+ − ≥⎧ ⎫
= ⎨ ⎬+ − <⎩ ⎭

. (3. 87)

Where ( 5 1) / 2 0.618α = − ≈  being the golden ratio.  On the contrary, the 

parabola interpolation is performed when | |e tol> .  Note that 7 /x p q+  is the 

extremum of the parabola interpolated through [x4, Q (x4)], [x5, Q (x5)], and [x7, Q 

(x7)].  The points x1, x2, x3, x4, x5, and x7 are updated as necessary at next stage, so 

that it conforms to the definition of the seven points.  The procedure above is 

repeated until the desired stop criterion ( 7 6 2 1| | 2 ( ) / 2x x tol x x− ≤ ⋅ − − ) is reached. 
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Fig. 19  The localized regions (dashed lines) on the microphone surface with the 

inter-element spacing d = 0.6m.  The symbol “□” indicates the microphone 

position. 
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Fig. 20  Flowchart of the IBMC optimization algorithm. 
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Fig. 21  The grid on a localized region. 
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Fig. 22  Flowchart of the SA optimization algorithm. 
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Fig. 23  A unimodal function to optimize. 
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Fig. 24  The flowchart of the GSS algorithm. 
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CHAPTER 4. FARFIELD ARRAY SIGNAL PROCESSING 

ALGORITHMS 

This section describes farfield array signal processing algorithms, which includes 

low-resolution algorithms and high-resolution algorithms.  In addition, comparisons 

of farfield algorithms are summarized in finally.   

4.1 Low-resolution algorithms 

4.1.1 Delay and sum beamformer 

Before discussing DOA algorithms, an array model should be established.  A 

URA with inter-element spacing d  can be constructed.  Assume ( )r t  is a 

broadband frequency ω  at a reference point: 

( ) ( ) j tr t s t e ω= , (4. 1)

where ( )s t  is the phasor of ( )r t .  Let r  be the unit vector pointing to the sound 

source direction.  The signal received at the mth microphone located at mx  is 

denoted as ( )mx t : 

( ) ( ) ( ) ( ) ( )
m

m m
m m m

x rjx r x r j tc
c cx t r t n t s t e e n t

ω ω
⋅

⋅ ⋅= + + = + + , (4. 2)

where ( )mn t  is the noise signal of the mth microphone and c is the speed of sound.  

In general, ( ) ( )mx r
cs t s t⋅+ ≈  for farfield approximation.  For M microphone signals 

1( ), , ( )Mx t x t , the data vector can be formed as 

1

1 1( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( )

M
M M

x rj
c

j t

x rj
c

x t v t
t r r t t

x t v t

e
s t e

e

ω

ω

ω

⋅

⋅

⎡ ⎤
⎡ ⎤ ⎡ ⎤⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥= = + = +⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

⎢ ⎥⎣ ⎦

x a n , (4. 3)

where a( r ) is termed the array manifold vector.   

A URA comprising I and J microphones with inter-element spacing dx and dy in 

the x and y axis respectively as shown in Fig. 25.  Let the left and the upper corner 

element is the reference point.  The vector of pointing to each microphone from the 
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reference point in the polar coordinate is given as 

( ) (( 1) , ( 1) ,0)ij x yx t i d j d= − − , (4. 4)

where i = 1,2,…,I and j = 1,2,…,J.  The unit vector r  pointing to a sound source at 

the look directions θ and Φ is given by 

(sin sin ,sin cos ,cos )r θ φ θ φ θ= . (4. 5)

The delay of each microphone will be given by 

( 1) sin sin ( 1) sin cosij x y
ij

x r i d j d
c c

θ φ θ φ
τ

⋅ − + −
= = . (4. 6)

Then the array manifold vector can be written as 

sin sin

( 1) sin sin

sin cos

sin sin sin cos

( 1) sin sin ( 1) sin cos

1

( , , )

x

x

y

x y

x y

dj
c

I dj
c

d
j

c

d d
j

c

I d J d
j

c

e

e
a

e

e

e

θ φω

θ φω

θ φ
ω

θ φ θ φ
ω

θ φ θ φ
ω

ω θ φ

−

+

− + −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. (4. 7)

With reference to the Fig. 26, the output of DAS beamformer can be expressed as 

0
1

( , ) ( )
M

m m
m

y t x tθ τ
=

= −∑ , (4. 8)

where ( )mx t  is the signal received by mth microphone, as shown in Eq.(4. 3).  

In Eq. (4. 8), mτ  are the steering delays appropriate for focusing the array to the look 

direction, 0θ , and compensation for the direct path propagation delay associated with 

the desired signal at each microphone.  The delay of each channel in Eq. (4. 8) can 

be calculated by 

m
m

x
c

τ Δ
= , 
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where mxΔ  is the distance between the reference source positions sθ  and mth 

microphone.  This time delay is implemented using Lagrange interpolation.  
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Fig. 25  A URA.  A point sound source is located at the farfield. 
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Fig. 26  The DAS beamformer. 
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4.1.2 Time reversal beamformer 

The TR algorithm is based on an idea of time-reversing the received signal.  

The block diagram of TR algorithm is shown in Fig. 27.  First, use a microphone 

array to receive and save sound data.  The signal x(t) is reversed to x(-t) by TR block.  

Then the reversed signal x(-t) is played by a loudspeaker array. 

The phase-conjugate field at the field location r  in frequency domain is written 

as 

1

( ) *( ) ( ) ( ) ( )
I

i ps i a ps a
i

p r g r r g r r r r+

=

= =∑ g r g r , (4. 9)

where ( )i psg r r  represents the received acoustic pressure at the i th array element 

location ir  propagated from the probe source position psr .  Likewise, ( )ig r r  

represents the field propagated from the i th array element location ir  to the 

arbitrary receiver location r , where I  is the number of array elements and 

superscripts *( )  and ( )+  denote complex conjugate and Hermitian transpose, 

respectively.  In a vector notation, g  and ar  are ( 1)I ×  column vectors.  Note 

that the position vectors are written in italic letters with arrows and the column 

vectors and matrices are written in boldface letters. 

In the following, we are aiming at finding an optimal filter with the impulse 

response h that processes the measured signal  

= +x s v  (4. 10)

to maximize the SNR, where s and v denote the signal and noise, respectively. 

Hence, 

H H H= = +y h x h s h v . (4. 11)

Note that the vectors are all ‘time-reversed,’ e.g., [ ]( ) ( 1) ( ) Ts n s n s n N= − −s … . 
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{ }
2

2

H H H

HH v

SNR
E

= =
h s h ss h

h R hh v
, (4. 12)

wher vR  is the covariance matrix of noise (diagonal and positive definite).  The 

SNR expression is identified as the Rayleigh’s quotient.  Maximal SNR can be 

obtained by finding the maxλ  of the following eigenvalue problem 

H
vλ=ss h R h . (4. 13)

Since Hss is of unit rank and positive definite, it has only one positive eigenvalue.  

The associated eigenvector must lie in the range space of Hss , or the span of s, which 

satisfies 

1orv opt vα α −= =R h s h R s . (4. 14)

Thus, the optimal filter is closely related to the time-reversed version (phase 

conjugation) of the measured signal.  With the optimal filter, the following maximal 

SNR is attained from Eqs. (4. 12) and (4. 14) 

1
max max

H
vSNR λ −= = s R s . (4. 15)

If the filter coefficient is normalized with the constraint 

1H
v =h R h  (4. 16)

Combining Eqs. (4. 14) and (4. 16) gives 

1

1 1
max

1 1 v
optH H

v v

α
λ

−

− −
= = ⇒ =

R sh
s R s s R s

. (4. 17)
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Fig. 27  The block diagram of the TR algorithm. 
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4.1.3 SIMO-ESIF algorithm 

The SIMO-ESIF algorithm is introduced in this section.  In Fig. 28, M 

microphones are employed to pick up the sound emitting from a source positioned in 

the farfield.  In the frequency-domain, the sound pressure received at the 

microphones and the source signal can be related by a 1M ×  transfer matrix H 

( )q ω=p H , (4. 18)

where ( )q ω  is the Fourier transform of a scalar source strength,  

[ ]1( ) ( ) T
Mp pω ω=p  is the pressure vector with “T” denoting matrix transpose, and 

[ ]1( ) ( ) T
Mh hω ω=H is the 1M ×  propagation matrix.  The aim here is to estimate 

the source signal ( )q ω  based on the pressure measurement p by using a set of 

inverse filters 

[ ]1( ) ( ) T
Mc cω ω=C  (4. 19)

such that T ≈C H I  and therefore 

ˆ T Tq q q= ≈= C p C H . (4. 20)

On the other hand, this problem can also be written in the context of the following 

least-squares optimization problem 

2

2
min

q
qp - H , (4. 21)

where 
2

 denotes vector 2-norm.  This is an overdetermined problem whose 

least-squares solution is given by 

1
2

2

ˆ ( )
H

H Hq −= =
H pH H H p
H

, (4. 22)

where the superscript “H” denotes Hermitian transpose.  Comparison of Eqs. (4. 20) 

and (4. 22) yields the following optimal inverse filter 
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2

2

H
T =

HC
H

, (4. 23)

If the scalar 2

2
H  is omitted, the inverse filters above reduce to the 

“phase-conjugated” filters, or the “time-reversed” filters in the free-field context.  

Specifically, for a point source in the free field, it is straightforward to show that 

2
22

1

1M

m mr=

=∑H , (4. 24)

where mr  is the distance between source and the mth microphone.  Since 2

2
H  is a 

frequency-independent constant, the inverse filters and the time-reversed filters differ 

only by a constant.  In a reverberant environment, these filters are different in 

general.  Being able to incorporate the reverberant characteristics in the measured 

acoustical plant model represents an advantage of the proposed approach over 

conventional methods such as the DAS beamformer. 

In real-time implementation, the inverse filters are converted to the time-domain 

FIR filters with the aid of inverse FFT and circular shift.  Thus, the source signal can 

be recovered by filtering the pressure signals with the inverse filters c(k): 

ˆ( ) ( ) ( )Tq k k k∗= c p , (4. 25)

where k is discrete-time index, c(k) is the impulse response of the inverse filter, and 

“*” denotes convolution. 
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Fig. 28  The block diagram of the SIMO-ESIF algorithm. 
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4.1.4 Optimal array: cost functions, Rayleigh’s quotient 

In this section, the beam patterns and the cost functions are defined to facilitate 

the following array optimization formulation.  In addition, super-directive 

microphone arrays are introduced in last section. 

For a farfield array, the beam pattern can be defined in the wave number domain 

1

1 M
m

m

jb
M

e
=

⋅= ∑ k r , (4. 26)

where /k cω=  is the wave number, ω  is angular frequency, c is the speed of 

sound, and mr  is the position vector of the mth microphone and k= −k κ  is the 

wave number vector of a plane wave incident from the direction represented by the 

unit vector κ , as shown in Fig. 29. 

In optimizing farfield performance, the aim is to minimize the maximum 

side-lobe level (MSL) of the beam pattern.  First, a circle with radius mr  is drawn 

on the kx-ky plane to define the scope of the main-lobe, which is a judicious choice 

based on the beam pattern observations.  The exterior of this circle is considered the 

side-lobe region.  The cost function for farfield arrays is defined as 

mQ
s

= , (4. 27)

where m  and s  denote the maxima of the main-lobe and the side-lobes, 

respectively.  Because m  = 1, maximizing the cost function Q amounts to 

minimizing the MSL. 

Super-directive microphone arrays are introduced in this section.  It begins with 

first-order differential microphone array (DMA), a simple kind of super-directive 

microphone array.  Second, a method of optimization of array beampattern is 

introduced.  There are three objective functions to be maximized, including directive 

index (DI) and front-to-back ratio (FBR).  Due to their directional and close-talking 

properties, they have proven essential for the reduction al feed-back in public address 
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systems.  In telephone applications, such as speakerphone teleconferencing, 

directional microphones are very useful but at present are seldom utilized.  Since 

small differential arrays can offer significant improvement in typical teleconferencing 

configurations, it is expected that they will become more prevalent in years to come.   

The first-order DMAs have been discussed for more than 50 years [69]-[71]. 

Owing to the small size of first-order DMAs, they can be used in hands-free 

telecommunications where the distance between microphones and speakers are quite 

short.  Another benefit is that the directivity of first-order DMAs is independent of 

frequency.  The block diagram of the first-order DMA is shown in Fig. 30.  For a 

plane wave with amplitude A and wave number k incident on a two-element array, the 

magnitude of output can be written as 

cos cos ,d

d
d d cP A A d dc c

c c

θ τω τ ω τ θ
τ τ

⎡ ⎤
⎢ ⎥⎛ ⎞ ⎛ ⎞= + = + +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎢ ⎥+ +
⎣ ⎦

(4. 28)

where τ is the incorporated delay, c is the speed of sound, and θ is the polar angle.  It 

is found from Eq. (4. 28) that the response of first-order DMAs is in direct proportion 

with frequency.  This implies that the frequency response of the first-order DMAs 

need to be equalized to compensate for the low-frequency loss and high-frequency 

noost.  Let  

1 0a d
c

τα
τ

= =
+

 
(4. 29)

and  

1 11-

d
ca d

c

α
τ

= =
+

. (4. 30)

It follows that 
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0 1 1a a+ = . (4. 31)

Thus, the normalized directional response is 

( ) 0 1 cosNdp a aθ θ= + . (4. 32)

Accordingly, the directional response can be designed by adjusting the parameter a0. 

In order to get a better directivity, there should be objective measures for analyzing 

the array performance.  One possible measure is FBR, the microphone gain for 

signals propagating to the front of the microphone relative to the rear, and it is defined 

as 

( )
( )

( )

2 / 2 2

0 0

2 2

0 / 2

1 , , sin
2
1 , , sin

2

H d d
FBR

H d d

π π

π π

π

ω θ φ θ θ φ
πω

ω θ φ θ θ φ
π

=
∫ ∫

∫ ∫
, (4. 33)

where the angles θ and φ  are the spherical coordinate angles and ( ), ,H ω θ φ  is the 

frequency response of the array.  The relativity between the parameter α1 and FBR is 

shown in Fig. 31.  The maximum FBR occurs when α1 is equal to 0.366, and in this 

situation, the array can reject the noise from rear well.  

The other measure is DI, the ratio of intensity of the acoustic beam in the measured 

axis to that of the entire distributed omnidirectional sound energy.  It is defined as 

( ) ( )

( )

2
0 0

0 0 10 2 2

0 0

, ,
, , 10log 1 , , sin

4

H
DI

H d d
π π

ω θ φ
ω θ φ

ω θ φ θ θ φ
π

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠∫ ∫

, (4. 34)

where θ0 and 0φ  are the angles at which DI is being measured.  The DI of 

first-order DMAs varies with the parameter α1, and the maximum DI reaches at 

1 0.25α = , which is shown in Fig. 32.  

The polar plot of the absolute value of the responses is shown in Fig. 33.  The 

first-order DMAs that correspond to the maximum DI is given the name 

hypercardioid, and the maximum FBR value corresponds to the supercardioid design.  
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When 1 0α = , the 1st  order differential system is a dipole.  At 1 1α = , the 

microphone is an omnidirectional microphone with 0 dB DI.  A special case of 

1 0.5α =  is the cardioids pattern.  Although the cardioids microphone is not optimal 

in directional gain or FBR, it is the most commonly manufactured differential 

microphone.  Table 4 is summarizes the results for first-order microphone. 

The directivity pattern of the first-order DMA in different frequency is shown in 

Fig. 34.  When α1 is fixed, the shape of the directivity pattern is almost the same no 

matter what frequency it is, but the gain increases with frequency. 

Assuming the signals are narrowband and incident from the farfield such that the 

wavefronts impinging on the array can be modeled as plane waves.  To avoid spatial 

aliasing, the spacing must be less than half of the wavelength of the signals.  Two 

important applications of array signal processing are DOA estimation and 

beamforming.   

The first algorithm concerns the DOA estimation of the source (the driver).  

This algorithm has to be able to on one hand accurately localize the sound source and 

on the other hand withstand the boundary reflections in the car.  The simplest way 

for the DOA estimation is based on the steered response power (SRP) obtained using 

the delay-sum method.  In the method, the received signals are delayed to 

compensate for the difference in arrival time at each microphone such that all signals 

are time-aligned in phase with respect to a given direction and summed together to 

form a single output. 

1

( , ) ( )
N

n n
n

y t x tθ
=

= + Δ∑ , (4. 35)

where N is the number of array elements, ( )nx t  is the time signal received by the 

n-th microphone, nΔ  is the steering delay appropriate for steering the beam of the 

array to the angle θ .  Ideally, with no additive noise and channel effects, the output 
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of the deal-sum beamformer is optimal and represents a scaled and potentially delayed 

version of the desired signal.  In practice, channel effects and the additive noise can 

be nontrivial.  The delay-sum concept can be extended to the more general 

filter-and-sum approach.  Define the spatial power spectrum 

1

( , ) ( ) ( ) n

N
j

n n
n

Y G X e ωω θ ω ω Δ

=

=∑ , (4. 36)

where ( )nX ω  and ( )nG ω  are the Fourier transforms of the signal received at the 

n-th microphone and its associated array filter, respectively.  The output power of the 

array can be obtained by integrating ( , )Y ω θ  over the frequency band of interest. 

2( ) ( , )S Y dθ ω θ ω
+∞

−∞
= ∫ , (4. 37)

The maximum magnitude of the output power corresponds presumably the DOA. 

The aforementioned algorithms are based on the free field assumption.  In 

practice, the performance of DOA could be degraded in reverberant environments 

such as the car interior considered in the paper.  It is then desirable to develop a 

DOA method that is less susceptible to coherent multipath reflections from the 

boundaries.  To this end, an idea based whitening filters in the steered response 

power-phase transform (SRP-PHAT) beamformer is employed in the DOA estimation.  

The signal received at each microphone is whitened by its own power spectral density 

before the DOA processing.  Similar to the delay-sum algorithm, the array output 

power ( )S θ  is maximized over a region of the potential source location.  Why this 

simple operation will improve the DOA estimation in a reverberant environment will 

be explained as follows. 

Define the cross correlation of signals ( )ix t and ( )jx t received at the i-th and j-th 

microphone: 

( ) ( ) ( )ij i jc x t x t dtτ τ
∞

−∞
= +∫ . (4. 38)
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The peak of the cross-correlation function indicates the time difference of arrival of 

the signals picked up by the two microphones.  If filers are used to process the 

received signals, with the Fourier transforms of these filters denoted by ( )iG ω  

and ( )jG ω , respectively, the generalized cross-correlation (GCC) can be expressed in 

terms of the Fourier transforms of the microphone signals 

*1( ) ( ( ) ( ))( ( ) ( ))
2

j
ij i i i jR G X G X e dωττ ω ω ω ω ω

π
∞

−∞
= ∫ (4. 39)

Suppose we now choose zero-phase filters with FRFs: 

1( )
( )n

n

G
X

ω
ω

= . (4. 40)

This in effect “whitens” the spectra and ends up with only phase differences.  In 

other words, the GCC reduces to a sharp peak (δ ) at the time difference ( ijτ ) between 

the two microphone signals: 

*

*

( ) ( )1 1( ) ( )
2 2( ) ( )

ijji j j j
ij ij

i j

X X
R e d e e d

X X
ωτωτ ωτω ω

τ ω ω δ τ τ
π πω ω

∞ ∞ −

−∞ −∞
= = = −∫ ∫  (4. 41)

As a result, by enriching signals spectrally by the whitening filter, the time difference 

carrying the DOA information is emphasized with improved spatial resolution, even 

in the face of background reverberation. 

It should be noted that, however, the robust DOA algorithm must be 

implemented in the frequency-domain by block processing because of the zero-phase 

whitening filter which is also signal-dependent. 

In this section, the design of the superdirective beamformer is introduced. 

Assume that the signal )(tr  received at the reference microphone is a narrowband 

signal with the center frequency cω  

( ) ( ) cj tr t s t e ω= , (4. 42)

where )(ts  is the phasor of )(tr .  The signal received at the m-th microphone 
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located at mx  is denoted as )(txm , and let r  be the unit vector pointing to the 

source direction.  If the speed of sound is c , the signal )(txm  can be written as 

( ) ( ) ( )
m

c
c

x rj j tc
m mx t s t e e n t

ω ω
⋅

≈ + , (4. 43)

where )(tnm  is the noise signal of the m-th component in the array.  For M  sensor 

signals )(,),(1 txtx M , the vector of received signals can be written as 

1

1 1( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )

c

c

M
c

x rj
c

j t

x rjM Mc

x t e n t
t s t e r t t

x t n t
e

ω

ω

ω

⋅

⋅

⎡ ⎤
⎡ ⎤ ⎡ ⎤⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥= = + = +⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

⎢ ⎥⎣ ⎦

x d s n . (4. 44)

Or, in the frequency-domain, 

( ) ( ) ( )j j j
se e eω ω ω= +x s d n , (4. 45)

where sd  is the vector of the look direction and n  is the noise vector.  Let w be 

the vector of the frequency-domain array coefficients.  The array output y  can be 

written as  

Hy = w x ,  (4. 46)

where the operator H  denotes the Hermitian operator. 

The array-gain is defined as the ratio of the SNR of one sensor element over that of 

the array. 

Array

Sensor

SNR
G

SNR
= . (4. 47)

The SNR of one sensor is given by the ratio of the power spectral densities (PSD) of 

the signal ssφ  and the noise nnφ .  Assuming a spherically isotropic and uncorrelated 

noise field, the array gain can be shown to be 

2H
s

H
nn

G =
w d

w Γ w
, (4. 48)

where nnΓ is the coherence matrix of a diffuse noise field whose entry ab is 
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[ ]sin ( )
( )

( )a b

j
n n Diffuse

k a b d
e

k a b d
ω −

Γ =
−

, k is the wave number, and d is the spacing between 

adjacent microphones.  Expressing the above array gain in dB scale leads to the 

definition of the directivity index (DI) which indicates the ability of a beamformer to 

suppress noise from all but the principal direction. 

2

1010log ( )
H

s
H

nn

DI =
w d

w Γ w
 (4. 49)

The superdirective design is achieved by maximizing the DI of array, which is 

equivalent to the following constrained optimization problem: 

min    

subject to   1

H
nn

H
s =

W
w Γ w

w d
 (4. 50)

The solution to the above problem is the well-know MVDR beamformer: 
1

1
nn s

H
s nn s

−

−=
Γ dw

d Γ d
. (4. 51)

In case of nearly singular coherence matrices, a more robust version of this formula 

with the introduction of a regularization constant ε  is given as 
1

1Regularized

( )
( )

nn s
H

s nn s

ε
ε

−

−

+
=

+
Γ I dw

d Γ I d
 (4. 52)

The constant ε  can vary from zero to infinity, which corresponds to the ideally 

superdirective beamformer and the delay-sum beamformer, respectively.  The Fig. 

35 (a) and Fig. 35 (b) show the effects of ε  varying from 0.001 to 3 on the DI and 

the 2-norm of the optimal weights in a 4-element broadside array, respectively.  By 

“broadside,” we mean that the main beam of the array is perpendicular to the array 

axis.  It can be observed that the regularized superdirective array does have higher 

directivity than the delay-sum array up to the frequency 3 kHz, where the constantε  

can be used as a means to reconcile the DI and the array weights.  Asε  decreases, 

the DI and the array weights increase at low frequencies.  Exceedingly large array 

weights will be difficult to implement in the filter design.  Experience suggests that 
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0.01ε =  is an adequate choice. 

The Fig. 36 shows the contour plots to compare the beam patterns of the 

delay-sum array and the superdirective array with 0.01ε = .  The beam width of the 

superdirective array is distinctively narrower than the delay-sum array.  The Fig. 37 

compares the frequency responses obtained from simulation and measurement of the 

superdirective array filters.  Since the filter coefficients are symmetrical, the 

frequency responses are plotted in pairs.  In addition, a phase flipping phenomenon 

can be seen in the phase responses of the microphones 1 and 2, which is similar to the 

behavior of differential microphones. 

Once the DOA of the source (the driver) is found, the orientation of the main 

beam of array can be electronically steered to the desired look direction.  This is 

accomplished by introducing appropriate phase delays to the array channels.  In the 

frequency-domain, the beamsteering filter can be written as 

c
dfnj

n

Ms

ew
θω sin

−
= , (4. 53)

where n  is array index, ω  is the digital frequency, d  is the spacing between 

adjacent elements, Mθ  is the steering angle, and sf  is the sampling frequency.  

However, cdf Ms /sinθ  generally is tantamount to fractional samples, which 

requires interpolation of some sort.  In the present work, the second-order Lagrange 

interpolation is used to implement the fractional delays for beamsteering. 

The Fig. 38 shows the directional response of the superdirective array steered to -20 

degrees for 1, 2, 4 kHz.  We see a main lobe appear at -20 degree, as desired.  The 

mirror image also appears at 200 degrees due to the axial symmetry of the array. 



 106

 

Table 4  The first-order differential microphone designs. 

Microphone type DI (dB) FBR (dB) 3dB Beamwidth Nulls (degrees) 

Dipole 4.77 0.00 90.00° 90.00 

Cardioid 4.77 8.45 131.06° 180.00 

Hypercardioid 6.02 8.45 104.90° 109.47 

Supercardioid 5.72 11.44 114.90° 125.26 
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Fig. 29  A plane wave incident from the direction κ  to a farfield array. 
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Fig. 30  Diagram of first-order microphone composed of two microphones. 
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Fig. 31  FBR of first-order microphone versus the first-order differential parameter 

α1.. 
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Fig. 32  Directivity index of first-order microphone versus the first-order differential 

parameter α1. 
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(a) 

 

 

(b) 
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(c) 

 

 

(d) 

Fig. 33  Various first-order directional responses (a) dipole, (b) cardioids, (c) 

hypercardioid, (d) supercardioid.  
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(a) 

 

 

(b) 

Fig. 34  The directivity pattern of first-order DMAs. (a) α1=0.25, (b) α1=0.5. 
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(b) 

Fig. 35  The effects of the regularization constantε  varying from 0.001 to 3 of a 

broadside array.  (a) DI,  (b) the 2-norm of the optimal array weights.
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(a) 
 

 
(b) 

Fig. 36  The contour plots of beam patterns of a broadside array.  The x-axis 

represents the angle in degrees and the y-axis represents the frequency in 
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kHz.  (a) Superdirective array, (b) DAS array. 
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(a) 
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(c) 

Fig. 37  Comparison of the frequency responses of the superdirective array filters.  

(a) Microphones 1 and 4, (b) microphones 2 and 3, (c) phase responses. 
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(c) 

Fig. 38  The directional response of the superdirective array steered to -20 degrees. 

(a) 1 kHz, (b) 2 kHz, (c) 4 kHz. 
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4.1.5 Choice of farfield array parameters 

In this section, the farfield array parameters (as shown in Fig. 39) can be 

summarized as follows: 

1. Array: 

a. Choose the microphone spacing d  according to the maximum 

frequency (fmax ).  A conservative rule is / 2d λ= , where λ  is wave 

length. 

2. Frequency range: 

a. Maximum frequency max 2
cf
d

= , where c  is speed of sound and d  is 

microphone spacing 

b. Minimum frequency min
cf
D

= , where D  is array aperture. 

3. Resolution of distance L : 

a. 1.22L
LR
D
λ= , where λ  is wave length. 

4. Area covered at distance L : 

a. 1.15z L= . 
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Fig. 39  Farfield array parameters. 
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4.2 High-resolution algorithms 

4.2.1 Minimum variance distortionless response (MVDR) 

Another approach has been proposed using the data covariance matrix.  This 

method has been shown to provide higher resolution in DOA estimations than the 

DAS algorithm.  In order to facilitate digital processing, we simultaneously sample 

all array inputs to form digital data ( ) ( ),  1, 2, .m mx t x kT k= =   For D sources, we 

may invoke the principle of superposition to write 

1

1
1

( )
( ) ( , ) ( ) ( ) [ ( , )  ( , )] ( )

( )

( ) ( )

D

i j i
i

j

r k
k r k k k

r k

k k

ω θ ω θ ω θ
=

⎡ ⎤
⎢ ⎥= + = +⎢ ⎥
⎢ ⎥⎣ ⎦

= +

∑x a n a a n

Ar n , 

(4. 54)

where iθ  is the direction of the ith source, r(k) is the source signal vector and A is 

DOA matrix.  A beamformer output is a linear combiner that produces an output 

signal by weighting and summing all components. 

1
( ) ( ) ( )

M
H

m m
m

y k w x k k∗

=

= =∑ w x
, 

(4. 55)

where w is the weight vector given by 1[   ]T
Mw w=w .  Because the MVDR 

method exploits the correlation between array input signals, it is necessary to 

calculate the array signal correlation matrix. 

{ }( ) ( )H
xx E k k=R x x

. (4. 56)

Suppose that the noise is uncorrelated with signals { }( ) ( ) 0HE k k =r n  and the noise 

is spatially white { } 2( ) ( )H
nE k k σ=n n I .  By the preceding assumption, the Eq. (4. 

56) can be rewritten as 



 124

{ } { }

2

( ) ( ) ( ) ( )H H
xx

H
rr nn

H
rr n

E k k E k k

σ

= +

= +

= +

R A r r n n

AR A R

AR A I , 

(4. 57)

where Rrr and Rnn are the source and noise correlation matrices, respectively.  In 

practice, the data correlation matrix Rxx is usually approximated by the data 

covariance covariance 

( ) (1 ) ( 1),  1, 2 ,  (0)H
xx p p xx xxp p p Pα α= + − − = =R x x R R 0 . (4. 58)

At this recursive equation, α  is a constant which satisfied 0 1α≤ ≤ .  The received 

signal is divided to p frames and rearranged to the data vector 1 2[   ]p=x x x x . 

In the following, the aim is to find the MVDR weight vector MVw .  An 

optimization problem is given for solving the unknown vector MVw .  The MVDR 

beamformer attempts to minimize the output power 

{ } { }22( ) ( )H H
MV MV xx MVE y k E k= =w x w R w

.
(4. 59)

Another constraint is to maintain unity gain in the look direction 0( ) 1H
MV θ =w a .  The 

MVDR beamforming suppresses the undesired interference from 0θ θ≠  and the 

noise.  The problem can be expressed as follows 

0

min

subject to  ( , ) 1
MV

H
MV xx MV

MV ω θ =
w

w R w

w a . 
(4. 60)

This problem can be solved by Lagrange multiplier method 

0

0

[ ( , ) 1] 0

( , ) 1
MV MV

H
MV xx MV MV

MV

λ ω θ

ω θ

⎧∇ − ∇ − =⎪
⎨

=⎪⎩

w ww R w w a

w a .
(4. 61)

If Rxx is nonsingular, Rxx can be inversed to solve the unknown vector by  

1
0( , )MV xxλ ω θ−=w R a , (4. 62)

where 1
0 0

1
( , ) ( , )

H
MV xx MV H

xx

λ
ω θ ω θ−= =w R w

a R a
 is the beamformer output power.  
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Next, λ  is substituted in Eq. (4. 62) to obtain the MVDR weight  

1
0

1
0 0

( , )
( , ) ( , )

xx
MV H

xx

ω θ
ω θ ω θ

−

−=
R aw

a R a . 
(4. 63)

In the preceding results, it is convenient to obtain the spatial power spectrum ( )MVS θ  

by continuing altering θ  

1

1( )
( , ) ( , )

H
MV MV xx MV H

xx

S θ
ω θ ω θ−= =w R w

a R a .
(4. 64)

The spatial power spectrum ( )MVS θ  exhibits J peaks approximately at 1   Dθ θ . 

 

4.2.2 Multiple signal classification (MUSIC) 

The MUSIC approach of DOA estimation has been proposed by exploiting the 

eigenvalue decomposition (EVD) of the covariance matrix.  Firstly, the array 

covariance matrix Rxx in Eq. (4. 58) is represented by EVD 

2 1H
xx rr nσ

−= + =R AR A I UΛU , (4. 65)

where U is a unitary matrix and comprise M linearly independent eigenvectors 

1 Mu u… .  The eigenvector associate with M eigenvalues 1 Mα α .  The array 

correlation matrix can be represented as 

1

1 1

2 2
1 2

1

0 0
0 0

[  ]

0 0

H
xx

H

H M
H

M m m m
m

H
M M

α
α

α

α

−

=

= =

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= =
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

∑

R UΛU UΛU

u
u

u u u u u

u .

(4. 66)

The diagonal terms of Λ have been arranged with 1 2 Mα α α≥ ≥ ≥ .  The noise 

term 2
nσ I  can be written as 

2 2 1 2 2

1

M
H H

n n n n m m
m

σ σ σ σ−

=

= = = ∑I UU UU u u
. 

(4. 67)
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Because A is derived from D sources, we assume that A and Rrr are of full rank D. 

Subsequently the signal-only correlation matrix Cxx is generated by subtracting the 

noise component from Rxx 

2

1
( )

M
H H

x x rr m n m m
m

α σ
=

= = −∑C AR A u u
. 

(4. 68)

If Rrr is rank D and small than the array size M, the smallest M D−  eigenvalues 

1D Mα α+  are equivalent to the noise power.  Therefore the range of Cxx are 

spanned by 1u  to Du .  If the array has no coherent source between any of two 

received signals, Rrr only has nonzero values on the diagonal terms which reprensent 

the power of the D sources.  Note that the range of Cxx is identical to the range of A 

which is spanned by the manifold vectors 1( , ) ( , )Dω θ ω θa a .  The relation between 

Cxx and A is 

{ } { } { }1 1span ( , ), , ( , ) span , ,D DR ω θ ω θ= =A a a u u (4. 69)

and 

{ } { }1span , ,D MR ⊥
+=A u u , (4. 70)

where { }1span , , Du u  and { }1span , ,D M+u u  are called the signal subspace and 

noise subspace, respectively.  Because the subspace is orthogonal to the noise 

subspace such that 

( , ) 0,  1, 2, , ;  1, 2, ,
s

H
m d sd D m D D Mω θ = = = + +u a . (4. 71)

The MUSIC technique is to exploit Eq. (4. 71) to improve the DOA estimations.  

The eigenvectors 1, ,D M+u u  is used to construct the projection matrix as follows 

1

M
H

m m N
m J= +

=∑ u u P
. 

(4. 72)

From Eq. (4. 70), the direction of the source ( 1, , )i i Dθ =  can be found by solving 
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1
( , ) ( , ) ,  

s

M
H

N m m d
m J

ω θ ω θ θ θ
= +

= = =∑P a u u a 0
.

(4. 73)

The projection matrix has the properties of 2   H
N N N Nand= =P P P P .  The problem of 

Eq. (4. 73) can be extended to solve  

2

2
( , ) ( , ) ( , ) 0,  H H

N N N iω θ ω θ ω θ θ θ= = =P a a P P a . (4. 74)

Equivalently, the inverse of Eq. (4. 74) has the infinitely value when 

, 1, ,i i Dθ θ= = .  The inverse of Eq. (4. 74) is referred to as the MUSIC spectrum. 

1( )
( , ) ( , )MU H

N

S θ
ω θ ω θ

=
a P a . 

(4. 75)

The peaks of the MUSIC spectrum indicte the directions of sources.  Not that the 

MUSIC spectrum does not exhibit infinitely high peaks due to noises in practice.   

 

4.2.3 Choice of parameters: Akaike information criterion (AIC) 

How to determine D of Eq. (4. 71) is an important issue.  It would rather be 

overestimated than underestimated.  The AIC [72] can be employed to choose D.  

The notion of the AIC is to calculate matching error and weight the truncated order, 

the equation can be defined as 

1
( ) ( ) ,   ( )

m
H

xx xx A xx i i iF
i

AIC m m w m m α∗ ∗

=

= − + =∑R R R u u
.

(4. 76)

The EVD of data covariance matrix is used to calculate the matching error, which is 

( )xx xx F
m∗−R R .  The weight part is to weight order by Aw  in order to make the 

order with lowest AIC value would be the same order in the error line which has an 

apparent turning point.  For a preset two point sources simulation, the error, weight 

and AIC lines are shown in Fig. 40 (a).  From the figure, the turning point of error 

line is at the 4th order.  Thus the weight Aw  should be chosen to make the AIC line 
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will have a lowest point at that order.  In our simulation, the value is chosen to be 

0.5x1012.  The AIC line with different weight is shown in Fig. 40 (b).   
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(a) 

 
(b) 

Fig. 40  Decide source numbers by AIC algorithm.  The truncated order is 

corresponded to the lowest point.  (a) Error, weight and AIC lines, (b) AIC 

lines with different weights.   
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4.3 Comparison of the farfield algorithms 

In order to validate and compare the DOA estimation methods, numerical 

simulations are conducted for a 30-channel URA and a random array optimized by the 

SA-IBMC optimization method.  The aperture of array is 0.4m×0.5m (d = 0.1m) for 

URA and 0.5m×0.6m for random array, as shown in Fig. 41 (a) and Fig. 41 (b).  In 

the simulation, we assume two white-noise sources located at the positions (-0.5m, 

0.5m) and (0.5m, -0.5m).  The sources are 1m from array surface.  Assume the 

sound velocity cs is 343 m/s.  Consider the / 2λ  rule, the maximum measurement 

frequency with inter-element spacing 0.1m is max / 2 1.7 kHzf c d= = .  Therefore, 

we choose point sources with the frequencies 1 kHz ( / 4d λ= ) and 7 kHz ( 2d λ= ) 

to be the observed frequencies in simulations.  The magnitude of beam pattern or 

spectrum of each approach is normalized to a range from 0 to 1.  This makes the 

results of five methods can easily be compared in main-lobe width and side-lobes 

levels. 

The noise maps of two simulated point sources obtained using different acoustic 

imaging algorithms with a URA or an optimized random array in the frequency 1 kHz, 

as shown in Fig. 42 (a)-Fig. 42 (j).  At this frequency, the spacing is less than a half 

of wave length.  Therefore, grating lobes are not occurring in the simulated results of 

URA and random configurations.  The noise maps obtained using the DAS and TR 

algorithms are shown in Fig. 42 (a)-Fig. 42 (d).  Both of these figures are with poor 

resolution.  In addition, the source positions are not focus at the preset source 

positions.  The noise maps of another lower resolution algorithm SIMO-ESIF is 

shown in Fig. 42 (e) and Fig. 42 (f).  Compared with results of DAS and TR, 

SIMO-ESIF also has large main lobes but can correctly point the source positions.   

The Fig. 42 (g)-Fig. 42 (j) show the noise maps obtained using MVDR and MUSIC 

algorithms with two array configurations.  As predicted, the results validated that the 
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MVDR and MUSIC are the methods which can achieve higher resolutions, especially 

MUSIC.  They can correctly localize the preset source points with narrow main 

lobes.  The side-lobes of MVDR are higher than MUSIC. 

Apart from simulations at frequency 1 kHz, we also run some simulations in a 

higher frequency to make the spacing exceeds a half of a wave length.  Clearly, the 

frequency is chosen to be 7 kHz.  At this frequency, the spacing is approximate two 

times of a length.  The noise maps of two simulated point sources of DOA estimation 

using different approaches with a URA and an optimized random array in the 

frequency 7 kHz is shown in Fig. 43 (a)-Fig. 43 (j).  The simulated results are largely 

identical but minor differences with the results in the frequency 1 kHz except the 

grating lobes appeared at those power spectrums with URA configuration.  In 

SIMO-ESIF and MUSIC cases, the noise maps have no clearly visible grating lobes 

with URA configuration.  Nevertheless, the noise maps obtained using SIMO-ESIF 

still have large main lobes and much higher side lobes than MUSIC.  Summary, the 

MUSIC is the algorithm which can obtain highest resolution in the frequency from 

low to high.  The MVDR is worse than MUSIC but still can get relatively higher 

resolution than other algorithms.  The proposed SIMO-ESIF is the only in low 

resolution algorithms which can use URA to localize high frequency noise sources.  

Farfield acoustic imaging algorithms are compared in Table 5. 
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Table 5  Comparisons of farfield acoustic imaging algorithms. 

 DAS TR SIMO-ESIF MVDR MUSIC 

Algorithm delay-sum time-reversed
inverse 

filtering 
MVDR MUSIC 

Resolution low low low High Very high 

Complexity low low low High High 

Area covered large large small/large large large 

Processing 

Domain 
time time frequency frequency frequency 

Frequency 

range 
high high low/high low/high low/high 

Sample/Batch sample batch batch batch batch 

Robustness to 

reverberation 
poor high high low low 

Acoustic 

variables 
no no yes no no 
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(a) 

 

(b) 

Fig. 41  The array configurations for DOA estimation simulations and experiments.  

(a) URA and (b) optimized random array.   
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(a) 

 

 

(b) 



 135

 

(c) 

 

 
(d) 
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(e) 

 

 

(f) 
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(g) 

 

 

(h) 
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(i) 

 

 

(j) 

Fig. 42  The noise maps of two simulated point sources obtained using five acoustic 
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imaging algorithms with 30-channel URA and random array.  The squares 

are the preset sound source positions.  The simulated whitenoise sources 

located at the positions (-0.5m, 0.5m) and (0.5m, -0.5m).  The observed 

frequency is 1 kHz ( / 4d λ= ).  The power spectrums obtained using (a) 

DAS with URA configuration, (b) DAS with random array configuration, (c) 

TR with URA configuration, (d) TR with random array configuration, (e) 

SIMO-ESIF with URA configuration, (f) SIMO-ESIF with random array 

configuration, (g) MVDR with URA configuration, (h) MVDR with random 

array configuration, (i) MUSIC with URA configuration and (j) MUSIC 

with random array configuration. 
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(a) 

 

 

(b) 
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(c) 

 

 

(d) 
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(e) 

 

 

(f) 
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(g) 

 

 

(h) 
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(i) 

 

 

(j) 

Fig. 43  The noise maps of two simulated point sources obtained using five acoustic 
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imaging algorithms with 30-channel URA and random array.  The squares 

are the preset sound source positions.  The simulated white noise sources 

located at the positions (-0.5m, 0.5m) and (0.5m, -0.5m).  The observed 

frequency is 7 kHz ( 2d λ= ).  The power spectrums obtained using (a) 

DAS with URA configuration, (b) DAS with random array configuration, (c) 

TR with URA configuration, (d) TR with random array configuration, (e) 

SIMO-ESIF with URA configuration, (f) SIMO-ESIF with random array 

configuration, (g) MVDR with URA configuration, (h) MVDR with random 

array configuration, (i) MUSIC with URA configuration and (j) MUSIC 

with random array configuration. 
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CHAPTER 5. NEARFIELD ARRAY SIGNAL PROCESSING 

ALGORITHMS 

This section describes nearfield array signal processing algorithms such as the 

Fourier based NAH, IBEM (direct and indirect formulations) and ESM (direct and 

indirect formulations), NESI and Kalman filter-based algorithm.  Comparison of the 

nearfield algorithms is shown in finally. 

5.1 Fourier NAH 

In this section, the traditional Fourier based NAH is reviewed.  The Fourier 

NAH serves to reconstruct a three-dimensional sound field from the two-dimensional 

hologram data scanned above the source surface, as shown in Fig. 44.   

The 2D spatial Fourier transformation is employed to transform the space 

domain to the wave number domain, and vice versa. 

( )( , , ) ( , , ) x yj k x k y
x yp k k z p x y z e dxdy

∞ ∞ +

−∞ −∞∫ ∫  (5. 1)

( )
2

1( , , ) ( , , )
4

x yj k x k y
x y x yp x y z p k k z e dk dk

π
∞ ∞ − +

−∞ −∞∫ ∫ , (5. 2)

where x, y and z are the Cartesian coordinates, dx and dy are the spacing of 

microphones in the x and y directions, and kx and ky are the wave number components 

in the x and y directions.  In the k-domain, the sound pressure data of the 

reconstruction plane and the hologram plane can be related by 

( )( , , ) ( , , ) z Hjk z z
x y x y Hp k k z p k k z e− −= , (5. 3)

where kz is the wave number in the z direction.  Let ( )( , ) z Hjk z z
x yH k k e− −= .  The 

sound field is expressed as propagating and evanescent wave components in the 

k-domain, i.e., a plane wave expansion.  The Wiener inverse filter is employed to 

mitigate the ill-posedness during inverse reconstruction on boundary using Fourier 

NAH: 
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2
1 1( , )

( , ) 1 ( / ( , ) )
x y

x y x y

W k k
H k k H k kα

=
+

, (5. 4)

where α is a regularization parameter.  With the Wiener inverse filter, the Eq. (5. 3) 

can be rewritten as 

( , , ) ( , , ) ( , )x y x y H x yp k k z p k k z W k k= . (5. 5)

After multiplying with inverse propagator and k-domain filter, sound pressure can be 

reconstructed in the spatial domain by the inverse Fourier transform in Eq. (5. 2).  

The particle velocity can be calculated by using 

( , , ) ( , , )x y x yk k z p k k z
ρω

=
ku , (5. 6)

where 2 fω π=  is the angular frequency and ( , , )x y zk k k=k  is the wave vector in 

Cartesian coordinates.  The active intensity can be calculated with 

1 Re{ }
2

p=Ι u . (5. 7)

Although the Cartesian coordinates are most often employed in connection with the 

Fourier based NAH, the method can just as well be applied in spherical or cylindrical, 

as shown in Table 6.  In the table, (1)
nH  is the Hankel function of the first kind.  

The Fourier based NAH approach is more efficient, but it have some drawback in 

practical application.  First drawback is the microphone array must be larger than the 

source to avoid windowing effect from the spatial Fourier transform because the 

sound pressure must be sufficiently low at the boundary of the array.  Other 

drawback is the grid spacing must be less than half a wavelength at the highest 

frequency of interest and the scanned grid points must be equally spaced on a planar 

rectangular area.  Hence, it requires large number of microphones to cover a 

reasonable source area.  In addition, the measurement distance should be less than 
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( ) /(20 log )x
SR e
N

π , where xR  is spatial resolution in the x-axis direction and /S N  

is signal to noise ratio. 
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Table 6  Fourier based NAH for planar, cylindrical and spherical geometries [62]. 

Plane ( )1 1

( )1 1

0

1 1 2
2

( , , ; ) { [ ( , , ; )] },

( , , ; ) { [ ( , , ; )] },

where 

[ ] ,

1[ ] ,  and 
(2 )

z H

z H

yx

yx

jk z z
x y x y H

jk z zz
n x y x y H

jk yjk x
x y

jk yjk x
x y x y z

p x y z F F F F p x y z e

ku x y z F F F F p x y z e
ck

F F e e dxdy

F F e e dk dk k k

ω ω

ω ω
ρ

ϕ ϕ

π

−− −

−− −

∞ ∞ −−

−∞ −∞

∞ ∞− −

−∞ −∞

=

=

=

Φ = Φ = −

∫ ∫

∫ ∫ 2 2 .x yk k−

Cylinder (1)
1 1

(1)

(1)
1 1

(1)
0

2

0

1 1

( )( , , ; ) { [ ( , , ; )] },
( )

( )( , , ; ) { [ ( , , ; )] },
( )

where 
1[ ] ,

2
1[ ]

2

z

z

n r
z z H

n r H

n rr
n z z H

n r H

jk zjn
z

jk zjn
z z

H k rp r z F F F F p r z
H k r

H k rku r z F F F F p r z
j ck H k r

F F e e d dz

F F e e dk

φ φ

φ φ

π φ
φ

φ
φ

φ ω φ ω

φ ω φ ω
ρ

ϕ ϕ φ
π

π

− −

− −

∞ −−

−∞

− −

−

=

′
=

=

Φ = Φ

∫ ∫
2 2,  and .r zn

k k k
∞∞

=−∞ ∞
= −∑ ∫

 

Sphere 
(1)

1 1
(1)

(1)
1 1

(1)
0

2 *

0 0

1 1
0

( )( , , ; ) { [ ( , , ; )] },
( )

( )1( , , ; ) { [ ( , , ; )] },
( )

where 

[ ] ( , ) sin ,

[ ] ( , ).

n
H

n H

n
n H

n H

m
n

n m
nn m n

H krp r F F F F p r
H kr

H kru r F F F F p r
j c H kr

F F Y d d

F F Y

θ φ θ φ

θ φ θ φ

π π

θ φ

θ φ

θ φ ω θ φ ω

θ φ ω θ φ ω
ρ

ϕ ϕ θ φ θ θ φ

θ φ

− −

− −

∞− −
= =−

=

′
=

=

Φ = Φ

∫ ∫
∑ ∑
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Fig. 44  Schematic diagram of a microphone array in the near field of the radiated 

sound from an acoustic source. 

 

Source 

Array 
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5.2 BEM-based NAH (IBEM): direct and indirect formulations 

The BEM is a numerical method based on integral equations.  The surface of an 

arbitrary object is discretized small elements and an interpolation scheme which uses 

an integral representation to produce the Green’s function.  The TF shows a relation 

between the source point and the field point in matrix form.  In order to reduce 

implement formulation process to generate the measurement errors, it has to inverse 

the TF by regularization.  This methodology of NAH is termed the IBEM.  The 

IBEM is divided into two methods: The direct formulation can be derived from the 

HIE using the Green’s function.  In the indirect formulations, we survey two indirect 

formulations which include the single-layer potential and the double-layer potential.  

The disadvantage of the direct formulation is that it is not suited for thin structures.   

 

5.2.1 Direct IBEM Formulation 

The direct formulation can be derived from the HIE using the Green’s function.  

Therefore, from the Green’s theory, it can be recast into the Helmholtz integral for an 

exterior boundary value problem: 

0
0 0 0

( , )( ) [ ( ) ( , ) ( )] ( )
S

G pp p G dS
n n

α ∂ ∂
= −∫

∂ ∂
x xx x x x x x , (5. 8)

where x  and 0x  are the field and source points on ( )S x and 0( )S x  

respectively; 0( )S x  denotes the source surface, ( )S x  denotes the field points 

surface, / n∂ ∂ the derivative operator in a normal direction to the surfaces, 

0( , )
0 0( , ) / 4 ( , )jkrG e rπ−= x xx x x x  is the free-space Green’s function corresponding to 

the Helmholtz equation and  

1, if is outside
1 , if is on
2
0, if is inside

S

S

S

α

⎧
⎪⎪= ⎨
⎪
⎪⎩

x

x

x

. (5. 9)

Equation (5. 8) is used to express the sound field at a set of microphone positions 
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close to the source (see Fig. 45).  The numerical is required due to integration cannot 

be solved analytically.  This thesis chooses the simple discretization scheme in 

which the surface S is broken up into N small elements of area ,  1, ,lS l NΔ =  as 

follows: 

1
[ ] [ ]

n

N
nS S

n
dS dS

=
≈ ∑∫ ∫ , (5. 10)

where Sn denotes the surface of nth element, and N denotes number of element.  The 

boundary elements used for approximating the surface integral are schematically 

shown in Fig. 46 (a) and Fig. 46 (b).  Triangular elements and quadrilateral elements 

are introduced in this thesis for construction of meshes.  The global and local 

coordinate system and are related by isoparametric transformation.  Quadratic shape 

functions are used for interpolation the global coordinates as 

1
( ) ( ) , 1, 2,3; 6 or 8

L
i l il

l
X N x i Lξ ξ

=
≈ = =∑ , (5. 11)

1
( ) ( ) , 1, 2, ; 6 or 8

L
m l ml

l
P N P m M Lξ ξ

=
≈ = =∑ , (5. 12)

1
( ) ( ) , 1, 2, ; 6 or 8

L
m ml

l
lq q

P PN m M L
n n

ξ ξ
=

∂ ∂
≈ = =∑

∂ ∂
, (5. 13)

where xil is the ith coordinate component of the lth node.  ( )lN ξ  are the quadratic 

functions and 1 2( , )ξ ξ ξ≡  are the local coordinate.  mlP  and /ml qP n∂ ∂ are sound 

pressure and pressure gradient of the lth node on the mth element, and M is the 

number of the element.  The integration over each element can be computed using 

numerical integration.  Each element will be found the pressure and the pressure 

gradient by node values, respectively.   

Assume that the sound pressure data p(xh) are measured on N locations of the 

hologram Sh.  The integral equation relating the source surface and the hologram is 

discretized and assembled into the matrix from as in Eq. (5. 8) with 1α = : 
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h hs s hs s
n= −P D P S P , (5. 14)

where hP , sP  and s
nP  are 1N × column vectors corresponding to the given sound 

pressure p(xh) and the unknown sound pressure p(xs) and its gradient ( ) /sp n∂ ∂x ; the 

superscript h and s denote, respectively, the hologram Sh and the source surface Ss, the 

subscript n denotes the directional derivative, Dhs and Shs are both N N×  square 

matrices corresponding to the integrals in Eq. (5. 8) that relate the N measuring points 

xh and the N surface nodes xs, the superscript hs denotes a spatial transformation 

between the hologram and the source surface. 

Boundary integral equation (5. 8) with 1/ 2α =  takes the following matrix from 

if the field point is taken to the source surface Ss: 

s ss s ss s
nα = −P D P S P  (5. 15)

or 

ss s ss s
n=D P S P , (5. 16)

where Dss and Sss are both N N×  square matrices corresponding to the integrals in 

Eq. (5. 14) that relate the N field points and the N nodes xs on source surface Ss, the 

superscript ss denotes both the field and source points which are located on the source 

surface, ( )ss ss α≡ −D D I , with I being an identity matrix.   

Equations (5. 14) and (5. 16), respectively, constitute the main equation and the 

constraint equation with which one performs backward reconstruction of the sound 

field for irregularly shaped sources.  This technique is termed pressure-based 

conformal holography with a hologram and a source surface coupling (PCHHS), since 

its formulation is based on the sound pressure measured on the hologram. 

There are two different ways of solving the unknowns sP  and s
nP  in Eqs. (5. 
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14) and (5. 16).  First, one may combine these two sets of equations into a single 

linear system with 2N equations and 2N unknowns.  Second, one may substitute the 

constraint Eq. (5. 16) into the main Eq. (5. 14) to yield a single linear system with N 

equations and N unknowns.  The second approach is adopted here because it requires 

less memory space and produces better-conditioned matrices than the first approach.  

That is, 

1[ ( ) ]hs ss ss hs s h
n

− − =D D S S P P , (5. 17)

with sP  eliminated.  sP  can then be recovered from Eq. (5. 16) after s
nP  is solved 

in Eq. (5. 17).  One may alternative eliminate alternate s
nP  from Eqs. (5. 14) and (5. 

16) to obtain  

1[ ( ) ]hs hs ss ss s h−− =D S S D P P . (5. 18)

s
nP  can then be recovered from Eq. (5. 16) after sP  is solved in Eq. (5. 18).   

In some cases, it is more desirable to measure the sound pressure gradient, or 

equivalently, the particle velocity, by using an intensity probe. This situation arises 

when, for example, one seeks to avoid the influences from disturbing sources from the 

background in carrying out an acoustic measurement.  This application motivates the 

development of the following velocity-based conformal holography with a hologram 

and a source surface coupling (VCHHS).   

Suppose that the sound pressure gradient ( ) /hp n∂ ∂x , or the particle velocity ( )h
nu x , 

is measured at N  locations on the hologram. The integral equation relating the 

source surface and the hologram then takes the matrix form with 1α = : 

h hs s hs s
n n n= −p D p K p , (5. 19)

where h
np  is an 1N ×  column vector corresponding to the known quantity 
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( ) /hp n∂ ∂x ; hs
nD  and hsK  are both N N×  square matrices corresponding to the 

integrals that relate the N  measuring points hx  and the N  surface nodes sx .  

As with the pressure-based conformal holography, the Eq. (5. 16) can be used again 

as a constraint equation for eliminating the unknown sP  from the main Eq. (5. 19) to 

arrive at a linear system with N  equations and N  unknowns: 

1( )hs ss ss hs s h
n n n

−⎡ ⎤− =⎣ ⎦D D S K p p . (5. 20)

Here, sP  can then be  recovered from Eq. (5. 16) after s
nP  is solved in Eq. (5. 20). 

One may alternatively eliminate s
nP  from Eq. (5. 19) to obtain 

1( )hs hs ss ss s h
n

−⎡ ⎤− =⎣ ⎦D K S D p p . (5. 21)

Then s
nP  can then be recovered from Eq. (5. 16) after sP  is solved in Eq. (5. 21).   

In addition to the previously mentioned algorithms that utilize the source surface 

integral as a constraint, an arbitrarily chosen surface located in the interior of the 

source may be used for setting up a constraint equation (see Fig. 45).  This interior 

surface is only a fictitious one which is not required to be physically accessible in 

field measurement. One advantage of choosing an interior surface instead of a source 

surface as a constraint is: the integration kernels can never become singular when 

using the interior surface since the distances between the source points and field 

points are always greater than zero.  Slow convergence in carrying out Gaussian 

quadrature integration for singular elements is then avoided to some degree.  The 

choice of interior points is arbitrary, except for those points coinciding with the nodal 

points of the eigenmodes of the corresponding interior problems.  Interior points 

with N  pressure data measured on the hologram are chosen here to be located at 

equal distances along the inward normal directions to the source surface points. N  

interior points are thus located on a surface that almost conforms to the source surface.  
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The following pressure-based matrix equation is obtained here in accordance with the 

HIE with 0α = : 

is s is s
n=D P S P , (5. 22)

where isD  and isS  are both N N×  square matrices corresponding to the integrals 

that relate the N  field points and the N  nodes sx  on the source surface sS ; the 

superscript is denotes the spatial transformation between the interior surface iS  and 

the source surface sS .   

Parallel to the development of the aforementioned two algorithms, the matrix Eq. 

(5. 22) can be used as a constraint equation for eliminating either the unknown surface 

pressure sP , or the surface pressure gradient s
nP , from the main Eq. (5. 14) to solve 

for the remaining unknown quantity.  This approach is then termed pressure-based 

conformal holography with a hologram and a source interior coupling (PCHHI).   

Similar reasoning can finally be applied to obtain a holography transformation 

algorithm based on the sound particle velocity h
nP  measured on the hologram, by 

using the source interior equation (Eq. (5. 22)) as a constraint.  One may choose to 

eliminate either the surface pressure sP  or the surface pressure gradient s
nP  to 

recover the other variable.  This approach leads to velocity-based conformal 

holography with a hologram and a source interior coupling (VCHHI).   

The resulting matrix equations of these four acoustic holography algorithms 

(with the different types of constraints presented in this section) are summa in  

Table 7. Backward reconstruction and forward propagation of the sound pressure, 

the particle velocity, and the sound intensity at any field point of interest can be 

performed by applying either the pressure-based approach or the velocity-based 

approach. 
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Some noteworthy numerical aspects arise in the implementation phase of the 

acoustic holography algorithms.  The first aspect is associated with evaluation of the 

singular integrals.  The assembled coefficient matrices in the aforementioned 

integral formulation, i.e., ssD  and ssS , involve evaluation of singular integrals. 

Element integrals can be conveniently evaluated by using the Gaussian quadrature 

algorithm when the field point px  and the source point qx  are apart from each 

other.  Integrands become singular when the field point px  coincides with the 

source point qx .  Singularity of the integrand can be reduced by means of polar 

transformation in order to improve convergence in carrying out the Gaussian 

quadrature integration.  This is a typical procedure detailed in BEM literature.   

In applying the IBEM to reconstructing sound fields of a vibrating object, more 

than the number of discrete nodes considering a wavelength of interest is required to 

avoid distortions and take a considerable amount of measurements, since the surface 

quantities are described by spatial discretization.  Such a procedure may be 

impractical, especially for a complex-shaped structure due to the fact that the discrete 

nodes and corresponding measurements may be excessive and the reconstruction 

process can be extremely complex and time consuming. 
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Table 7  Summary of the BEM-based acoustic holography algorithms. 

Model Known Unknown 
Fundamental matrix 

equations 

Variable 

eliminated 
Resultant system equations 

Main equation: 

h hs s hs s
n= −P D p S p  

sp  1[ ( ) ]hs ss ss hs s h
n

− − =D D S S P P  

PCHHS hp  
Constraint equation: 

ss s ss s
n=D p S p  

s
np  1[ ( ) ]hs hs ss ss s h−− =D S S D P P  

Main equation: 

h hs s hs s
n n n= −P D p K p  

sp  1( )hs ss ss hs s h
n n n

−⎡ ⎤− =⎣ ⎦D D S K p p  

VCHHS h
np  

Constraint equation: 

ss s ss s
n=D p S p  

s
np  1( )hs hs ss ss s h

n n
−⎡ ⎤− =⎣ ⎦D K S D p p  

Main equation: 

h hs s hs s
n= −P D p S p  

sp  1( )hs is is hs s h
n

−⎡ ⎤− =⎣ ⎦D D S S p p  

PCHHI hp  
Constraint equation: 

is s is s
n=D p S p  

s
np  1( )hs hs is is s h−⎡ ⎤− =⎣ ⎦D S S D p p  

Main equation: 

h hs s hs s
n n n= −P D p K p  

sp  1( )hs is is hs s h
n n n

−⎡ ⎤− =⎣ ⎦D D S S p p  

VCHHI h
np  

sp  

and 

s
np  

Constraint equation: 

is s is s
n=D p S p  

s
np  1( )hs hs is is s h

n n
−⎡ ⎤− =⎣ ⎦D K S D p p  
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Fig. 45  A set of microphones positioned close to the integration surface S. 
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(a) 

 

(b) 

Fig. 46  Boundary elements used in isoparametric transformation.  (a) Quadratic 

quadrilateral element, (b) quadratic triangular element. 
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5.2.2 Indirect IBEM Formulation 

In this section, we survey two indirect formulations which include the 

single-layer potential and the double-layer potential.  The acoustic filed is expressed 

in terms of above layer potential theory on the source boundary S.  First boundary 

integral method based on a distribution of single-layer on the surface is shown in Fig. 

47.  The pressure p can be expressed in terms of the simple-layer potential: 

0 0 0( ) ( ) ( , ) ( )Sp G dSσ= ∫x x x x x , (5. 23)

where x and x0 are field point and source point, respectively. 0( , )G x x  is the 

free-space Green’s function, and the unknown source strength 0( )σ x  is written as  

p p
n n

σ
+ −∂ ∂

= −
∂ ∂

. (5. 24)

We recognize the Green’s function in the integrand, and we can view this formulation 

as a distribution of simple sources (monopoles) on the surface S.  Once the source 

strengths 0( )σ x  are known, we are able to find the pressure on the surface or in the 

exterior by means of surface integration. 

Another is to express the field pressure by a double-layer formulation  

0
0 0

( , )( ) ( ) ( )S
Gp dS

n
μ

∂
= ∫

∂
x xx x x , (5. 25)

where 0( )μ x  is the unknown source density.  Such a representation of the exterior 

field can be shown to be distribution of double sources (dipoles) over S.  The 

unknown source density 0( )μ x  is written for x0 on S as 

p pμ − += − , (5. 26)

where p- and p+ are the pressures on the two sides of the surface at source point x0. 
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Fig. 47  The representation of single-layer and double-layer potential. 
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5.3 Equivalent source method (ESM) 

ESM has gained much attention in the recent years.  This method employed a 

set of virtual simple sources that is monopoles or dipoles placed inside the vibrating 

structure to represent the radiation from the source.  ESM has been used for solving 

the inverse problem.  The idea of ESM is modeling sound field generated by a set of 

the distributed simple sources placed on a vibrating structure in the interior of the 

structure, as shown in Fig. 48.  Then use these source strengths to estimate the sound 

field on the source.  The advantages of ESM are its ease to implement and low 

computation complexity, as compared to the direct IBEM approach.  The 

disadvantage is the quandary of how to decide the distribution density and the RD 

between the source surface and virtual source surface (monopoles). 
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Fig. 48  The definitions of important surfaces used in the ESM-based NAH.  The 

symbol mx  is the mth microphone position on the hologram surface hS .  

The symbol iz  is the ith source point on the actual source surface sS .  

The symbol ny  is the nth virtual source point on the virtual source surface 

vS . 
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5.3.1 Direct ESM 

The direct ESM uses the multipole expansion by the discretization with simple 

sources placed in the interior of the structure (see Fig. 48).  The ESM algorithm is 

shown to be equivalent to Helmholtz-integral formulation that can be represented in 

matrix form.  In acoustic problems, the Kirchhoff–Helmholtz integral equation can 

be derived by applying the Green’s theorem to the volume integral equations: 

0
0 0 0

( , )( ) [ ( ) ( , ) ( )] ( )
s

G pp p G dS
n n

α ∂ ∂
= −∫

∂ ∂
x xx x x x x x , (5. 27)

where x  and 0x  are the field and source points on ( )S x and 0( )S x  

respectively; 0( )S x  denotes the source surface, ( )S x  denotes the field points 

surface, / n∂ ∂ the derivative operator in a normal direction to the surfaces, 

0( , )
0 0( , ) / 4 ( , )jkrG e rπ−= x xx x x x  is the free-space Green’s function corresponding to 

the Helmholtz equation and  

1, if is outside
1 , if is on
2
0, if is inside

S

S

S

α

⎧
⎪⎪= ⎨
⎪
⎪⎩

x

x

x

. (5. 28)

This study chooses the simple discretization scheme in which the surface S is broken 

up into N small elements of area ,  1, ,lS l NΔ =  as follows: 

1
( )

N
ml l

m l ml l
l

G pp p G S
n n

α
=

∂ ∂
= − Δ∑

∂ ∂
. (5. 29)

The matrix representation of Eq. (5. 29) can be obtained after utilizing the numerical 

integration as follows: 

1

2

0

 with

0

s
h hs s hs

N

S
S

n
S

α

Δ⎡ ⎤
⎢ ⎥Δ∂ ⎢ ⎥= − =
⎢ ⎥∂
⎢ ⎥Δ⎢ ⎥⎣ ⎦

pp D S p M S S , (5. 30)

where hsM  and hsD  denote the source model of monopole and dipole respectively, 

the form of propagation matrix as follow: 
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( , , )
4

jkr
hs

i m
eM

r
ω

π

−

=z x , (5. 31)

1( , , )
4 4i i

jkr jkr
hs

i m h r
e jkr eD

r r r
ω

π π

− −+
= ∇ =z zz x n n ei i , (5. 32)

where | |m ir = −x z  denotes the distance between the source point iz  on the source 

surface sS  and the microphone point xm on the surface hS , 
izn is outward unit 

normal vector of iz ; h∇ is gradient vector of mx , re  denotes the unit vector 

between mx  and iz , k is the wave number, ω  is angular frequency and 0ρ  is the 

density of the air.  Assume /s n= − ∂ ∂σ S p  and s=μ Sp where sp  is pressure on 

source surface sS .  Therefore, the holography equation can be rewritten as 

h hs hsα = +p M σ D μ . (5. 33)

The hp  denotes measured sound pressure on microphone surface when 1α =  in Eq. 

(5. 33).  In addition, constraint equation (on source surface) can be obtained when 

1/ 2α =  as follows: 

1
2

s ss ss= +p M σ D μ . (5. 34)

Assume 1 2 NS S S SΔ = Δ = = Δ = Δ  and thus /s S= Δp μ .  By doing so, the Eq. (5. 

34) can be rewritten as  

1 10 ( )
2 2

ss ss ss ss

S S
= + ⇒ = + −

Δ Δ
μ M σ D μ M σ D I μ , (5. 35)

where I  being an identity matrix. 

In the measurement of radiated sound field by microphones, singularity of the 

diagonal elements are generated due to the field points are located on the source 

surface sS .  In order to solve the singularity of the diagonal elements ssM  and 

ssD , it must be properly dealt with the following two integrals on a “singular 

element”.  First, the ssM is weak singularity matrix form as  
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2
/ 2

0 0

sin( / 2) e
4 4 2 / 2

Rjkr jkr
jkR

S

e e R kRdS rdrd
r r kR

π

θ
π π

− −
−

Δ

= =∫ ∫ ∫ , (5. 36)

where | |i ir = −z z  denotes the distance on the same source point iz  on the source 

surface sS , and SΔ  is a small disk element with radius /R S π= Δ .  Finally, the 

ssD  is strong singularity matrix form as follow: 

0 0
lim ( ) lim ( ) 0

4 4

ikr ikr

r r
S S

e e rdS dS
n r r r nπ π

− −

→ →
Δ Δ

∂ ∂ ∂
= =

∂ ∂ ∂∫ ∫ , (5. 37)

where 0r n r∂ ∂ = ∇ ≡in  on SΔ . 

The following equation combines Eqs. (5. 33) and (5. 34) to solve for the unknown σ  

and μ  

hs hs h h

ss ss s s

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⇒⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

M D σ p σ p
= A =

μ μM D p p
. (5. 38)

Apparently, equation (5. 38) is the inverse problem and the matrix A is usually 

ill-posed and even non-square.  Therefore, the unknown pressure gradient σ  and 

pressure μ  on the virtual surface can be calculated by 

h

s
+ ⎡ ⎤⎡ ⎤

= ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎢ ⎥⎣ ⎦

σ p
A

μ p
. (5. 39)

where +A  is pseudo-inverse matrix from A  by TSVD or Tikhonov regularization.  

The sound pressure rp  and particle velocity ru  on the reconstruction surface rS  

can be calculated by 

'

r rv rv

r rv rv

⎧ = +⎪
⎨

= +⎪⎩

p M σ D μ

u D σ Q μ
, (5. 40)

where rvM denotes the monopole source model, rvD  and 'rvD denote the dipole 

source model, rvQ  denotes the quadrupole source model.  The unknown 'rvD and 

rvQ  can be calculated by 
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'

0 0

1( , , )
4 4n

jkr jkr
rv

n i r
j e j jkr eD

r r r
ω

ρ ω π ρ ω π

− −− −
= ∇ =yy z n i , (5. 41)

0
( , , ) ( )( )

4n i

jkr
rv

n i s v
j eQ

r
ω

ρ ω π

−

= ∇ ∇y zy z n ni i , (5. 42)

where | |i nr = −z y denotes the distance between the source point ny on the virtual 

source surface Sv and the reconstructed point iz  on the reconstruction surface sS , 

nyn and 
izn  are outward unit normal vector of ny  and iz  respectively; and s∇  

and v∇  are the gradient vectors of iz  and ny , respectively. 

 

5.3.2 Indirect ESM 

The basic idea of the ESM is to model sound field by using distribution of virtual 

simple sources, as shown in Fig. 48.  In the figure, mx  is the mth microphone 

position on the hologram surface hS , iz  is the ith source point on the actual source 

surface sS , and ny  is the nth virtual source point on the virtual surface vS .  We 

shall formulate the ESM-based NAH in two source configurations illustrated in Fig. 

49, which is more practical in modeling actual continuous sources.   In source 

configuration 1, the virtual source surface ( vS ) stays away from the actual source 

surface sS  with a non-zero RD.  Source configuration 2 is applied to only planar 

sources for which we distribute virtual sources right on the actual source surface sS  

(RD = 0 in this case). 

A. Virtual source configuration 1: 

The ESM can be formulated by discretizing the integral of simple layer potential. 

( ) ( ) ( , ) ( )
v

h hv v

S
p G dSσ= ∫x y x y y , (5. 43)

where ( )σ y  is an unknown source strength of the point source distribution, hp  is 
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the hologram pressure measured on the surface hS , x and y are the position vectors 

of source point and field point, respectively.  The propagation matrix consists of 

elements expressed as the free-space Green’s function for the baffled piston 

( , )
4

jkr
hv eG

rπ

−

=x y , (5. 44)

where j denotes 1− , /k cω=  is wave number, c is speed of sound, ω  is angular 

frequency, and | |r = −x y .  Straightforward discretization of Eq. (5. 43) leads to 

1

1 1

( ) ( ) ( , ) ( ) ( ) ( , ) ( )

ˆ[ ( ) ] ( , ) ( , ),

v
i

N
h hv v hv v

nS S

N N
v hv v hv

n n n n n
n n

p G dS G dS

S G q G

σ σ

σ

=

= =

= ≈

≈ =

∑∫ ∫

∑ ∑

x y x y y y x y y

y x y x y
(5. 45)

where ˆ v
nS  is the area of the thn  element, ˆ v

n nS∈y , ˆ( )v v
n n nq Sσ= y  represents the 

strength of the thn  point source, and N  is the number of point source.  It should 

be borne in mind that these virtual point sources only constitute an equivalent discrete 

representation in that they would produce the same field, ( )hp x .  The amplitudes of 

these point sources represent relative source strength associated with each source 

location, which could be due in part to physical sources and/or the effects nearby 

boundary reflection.  These N  virtual sources are assumed to be located at the 

desired focal points.  Equation (5. 43) can be discretized into the matrix form 

0
h hv vjρ ω=p G q , (5. 46)

where 0ρ  is the air density, hp  represents the hologram pressure vector, vq  

represents the virtual source strength vector, and hvG  is the propagation matrix 

relating the source volume velocity and the hologram pressure.  The unknown virtual 

source strengths can be calculated by inverting Eq. (5. 46) as 

0

1ˆ v hv

jρ ω
+

=q G p , (5. 47)

where ˆ vq  is the estimated source strength vector and hv+G  is the pseudo-inverse 
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matrix of hvG .  The TSVD or Tikhonov regularization can be used to deal with the 

ill-conditioned inversion process. 

Once the source strength ˆ vq  is obtained, acoustical variables can be 

reconstructed on the actual source surface.  Due to singularity of virtual point 

sources, we need a non-zero RD between the virtual source surface ( vS ) and the 

actual source surface sS  to assure smooth reconstruction results, which is referred to 

as source configuration 1.  Thus, the sound pressure on sS  can be reconstructed as 

0 ˆs sv vjρ ω=p G q , (5. 48)

where svG  denotes the propagation matrix relating the virtual source strength and 

the actual source surface pressure.  In addition, the actual source surface normal 

velocity can be reconstructed as 

1

1 ˆ( ) ( ) ( , )
N

s v svin
i r n i n

n in

jkru q G
r=

+
= •∑z n e z y , (5. 49)

where ,  ( )na i n r i n inr r= − = −z y e z y  is the unit vector pointing from the thn  

virtual source to the thi  reconstruction point, and n  is the outward unit vector 

normal to the actual source surface. 

B. Virtual source configuration 2: 

For planar sources, one can use source configuration 2 in which virtual sources 

are distributed right on the actual source surface sS , so the RD is zero in this case.  

The pressure field produced by a planar source can be expressed as the Rayleigh’s 

integral [73] 

0 0( ) 2 ( , ) ( ) ( )
v

h hv v

S
p j G u dSρ ω= ∫x x y y y , (5. 50)

where 0u  is the source surface velocity of virtual sources on the surface vS  and 

( , )hvG x y  is as defined previously.  Equation (5. 50) can be expressed in a matrix 

form of Eq. (5. 51) by using zeroth-order discretization with constant elements.  The 
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measured pressures on the hologram surface and the velocities on the resulting can be 

represented in the matrix form 

02h hv vjρ ω=p G q . (5. 51)

The velocity on the actual source surface can be calculated by 

0

1 1v v hv h

S j Sρ ω
+

= =
Δ Δ

u q G p , (5. 52)

where SΔ  denotes the average area per “element” on the actual source surface. 
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Fig. 49  Schematic diagram for planar sources in configurations 1 and 2. 
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5.3.3 Nearfield Equivalent Source Imaging (NESI) 

In the NESI formulation, the target source is simulated by a collection of point 

sources distributed on a surface.  For that source configuration, one can simply 

choose virtual sources to be the target sources.  The free-space Green’s function 

between the source point y and the field point x as 

( , )
jkreG

r

−

=x y . (5. 53)

Consider a NSI problem depicted in Fig. 50, where sound pressures radiated by a 

source are received at the M microphones.  The measured sound pressures and the 

source amplitudes are related by 

1 1 1 2 1 11

2 1 2 2 2 22

1 2

( , ) ( , ) ( , ) ( )( )
( , ) ( , ) ( , ) ( )( )

( , ) ( , ) ( , ) ( )( )

vh
N

vh
N

vh
M M M N NM

G G G qp
G G G qp

G G G qp

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥=
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

x y x y x y yx
x y x y x y yx

x y x y x y yx

. (5. 54)

Or, in the matrix form 

h hv v=p G q . (5. 55)

Since the number of microphones is usually no greater than that of the focused points 

( M N≤ ), the propagation matrix 
M N
C
×

∈G  could be non-square and the problem 

could be underdetermined.  The purpose here is to estimate vq  based on the 

measurement hp .  This can be regarded as a model matching problem depicted in 

Fig. 51, where the propagation matrix G has the source amplitude 
1

v

N
C
×

∈q and the 

pressure measurement 
1

h

M
C
×

∈p  as its input and output, 
1J

C
×

∈e  is the matching error 

where the J  is number of focal points, 
J M
C
×

∈C  is the inverse filter matrix, and 

J N
C
×

∈W  is the matching model.  With the most basic choice of W being the identity 

matrix I, the problem reduces to, given p andG , finding an inverse filter C  such 

that ≈ =CG W I  and hence 
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ˆ = = ≈q Cp CGq q . 

Inverse matrix C  can be obtained by TSVD of the propagation matrix as 

1

HI
i

i
i iσ=

=∑ uC v , (5. 56)

where I  is the discrete regularization parameter., iu  is the thi  left singular vector, 

iv  is the thi  right singular vector and iσ  is the thi  singular value.  

Alternatively, inverse matrix C  can be obtained by Tikhonov regularization as  

1( )H H β −= +C WG GG I , (5. 57)

where 0β ≥  is a regularization parameter that can either be a constant or 

frequency-dependent. 

An NAH method termed the NESI was proposed for NSI and sound filed 

visualization.  The NESI per se can be considered as a time-domain ESM.  It is 

noted that the inverse filters C obtained are still in the frequency-domain.  Inverse 

FFT is called for to convert and truncate these FRFs into FIR filters in the 

time-domain.  In this step, circular shift is needed to ensure that the resulting filters 

are causal filters.  Now that the inverse filters are available, the amplitude of the 

virtual sources at the virtual source points can be calculated by using multichannel 

convolution: 

1

ˆ ( ) ( ) ( ),  1
M

n m nm
m

q n p n C n n N
=

′ ′ ′= ∗ ≤ ≤∑ , (5. 58)

where n′  denotes the discrete-time index, ( )nmC n′  denotes the impulse response of 

the thnm  inverse filter and “ ∗ ” denotes the convolution operator.  The thus 

obtained virtual source strength at the virtual source point will serve as the basis for 

subsequent sound field reconstruction. 
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Fig. 50  The block diagram of inverse filtering process. 
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Fig. 51  The inverse filtering process viewed as a model matching problem. 
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5.3.4 Kalman filter-based algorithm 

Kalman filter is a model-based adaptive filtering approach relying on a known 

propagation model.  In terms of state space formulation, a generic structure of a 

Kalman filter involves two equations.  The first equation is the process equation: 

1( 1)  ( 1, ) ( )  ( )n n n n n+ = + +x F x v , (5. 59)

where F(n+1,n) is a known M M×  state transition matrix relating the state of the 

system at times n+1 and n.  The 1M ×  vector v1(n) is process noise.   

The vector v1(n) is a zero-mean, white-noise process whose correlation matrix is 

defined as 

1
1 1

,  
[ ( ) ( )]

,    
H n n

E n n
n n

′=⎧′ = ⎨ ′≠⎩

 Q
v v

 0
 (5. 60)

The second equation is the measurement equation: 

2( )  ( ) ( )  ( )y n n n n= +C x v , (5. 61)

where C(n) is a known N×M measurement matrix.  The N×1 vector v2(n) is a 

zero-mean, white-noise measurement noise whose correlation matrix is defined as 

2
2 2

,  
[ ( ) ( )]

,    
H n n

E n n
n n

′=⎧′ = ⎨ ′≠⎩

 Q
v v

 0
. (5. 62)

The noise vectors v1(n) and v2(n) are assumed statistically independent 

1 2[ ( ) ( )]HE n n′ =v v 0 . (5. 63)

From the perspective of the linear system theory, the process equation and the 

measurement equation of the acoustic testing in the time-domain can be written as 

follows: 
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111

11 11 1

1

1

( ) ( )

( , ) ( )
*

( , ) ( )( ) ( )

S

S

h hv v

M MS SM

M MS

rrt t
c c

r rp t a t

p t r a trt t
c c

r r

δ δ

δ δ

⎡ ⎤− −⎢ ⎥
⎢ ⎥

⎡ ⎤ ⎡ ⎤⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥= ∗ ⇒ =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦− −⎢ ⎥

⎢ ⎥⎢ ⎥⎣ ⎦

x
p δ a

x
, (5. 64)

where 0ρ  is the air density, ph represents the hologram pressure vector, av represents 

the virtual source amplitude vector, and hvδ is the Dirac Delta function matrix relating 

the source amplitude and the hologram pressure.  The virtual sources are distributed 

right on the actual source surface Ss, so RD is zero in this case. 

The ERA establishes the following minimal state space realization for linear 

systems: 

( 1)  ( )  ( )s e s ex n n n+ = +A x B a , (5. 65)

( )  ( )  ( )e s en n n= +p C x D a , (5. 66)

where n is the discrete-time index, xs(n) is the state vector, a(n) is theS×1 input vector, 

p(n) is the M×1 output vector, and Ae, Be, Ce and De are constant matrices. The ERA 

starts with the impulse response matrices of the Dirac Delta function ( hvδ ).  Assume 

the source amplitude functions satisfy the smoothness condition described by the 

following state equation: 

( 1) ( )n n+ =a Aa , (5. 67)

where A being an identity matrix.  Define compound state variables: 

( )
( )

( )
s n

n
n

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

x
x

a
, (5. 68)

then it can be written as follows 
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[ ]

( 1) ( )
( 1) ( )

( )
( )

( )

s e e s

s
e e

n n
n n

n
n

n

+⎡ ⎤ ⎡ ⎤ ⎡ ⎤
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or more concisely formulation 

1

2

( 1) ( 1, ) ( ) ( )
( ) ( ) ( ) ( )
n n n n n
n n n n
+ = + +
= +

x F x v
p C x v

. (5. 70)

However, this Kalman filtering problem can not be solved by the steady-state Riccati 

equation because C(n) is a time-varying matrix, but rather the following recursive 

algorithm: 

1
2( ) ( 1, ) ( , 1) ( )[ ( ) ( , 1) ( ) ( )]H Hn n n n n n n n n n n −= + − − +G F K C C K C Q , (5. 71)

1ˆ( ) ( ) ( ) ( | )nn n n n p −= −α p C x , (5. 72)

1?( 1| ) ( 1, ) ( | ) ( ) ( )n nn p n n n p n n−+ = + +x F x G α , (5. 73)

( ) ( , 1) ( , 1) ( ) ( ) ( , 1)n n n n n n n n n= − − + −K K F G C K , (5. 74)

1( 1, ) ( 1, ) ( ) ( 1, ) ( )Hn n n n n n n n+ = + + +K F K F Q , (5. 75)

To initialize the algorithm, the initial conditions are taken to be: 0ˆ (1| )p =x 0 , 

IK =)0,1( , with I being an identity matrix.  The block diagram of the recursive 

Kalman filter is shown in Fig. 52.   

Numerical simulations are conducted to demonstrate the performance of 

ESM-based NAH by using the Kalman filter algorithm.  In this formulation, the 

target source is simulated by a collection of point sources distributed on a planner 

surface.  Source configuration 2 is applied to only planar sources for which we 

distribute virtual sources right on the actual source surface Ss (RD = 0 in this case).  

Suppose that the array comprises 5×5 microphones uniformly spaced with distance d 

= 0.1m (d = λ/2 at f = 1.7 kHz), as shown in Fig. 53.  The number and spacing of 

microphones and virtual sources are of identical settings.  The point sources 
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embedded at the plane z = 0m is arranged in four scenarios as denoted by ,s iS , i = 1-2 

respectively, as shown in Fig. 53.  In the simulations, the desired amplitude vector 

was chosen according to the source type.  The random sources with equal strength 

and band-limited to 2.5 kHz are assumed to be on the actual source surface.  The 

parameters assumed for the Kalman filter based simulation are as follows: Q1(n)=0.1I, 

Q2(n)=0.01I , with I being an identity matrix and the sampling rate is fs=1 kHz.  The 

time-domain magnitudes of the surface amplitude reconstructed using inversion and 

Kalman filter method in ,1sS and ,2sS  are shown in Fig. 54.  In the scenario ,1sS , the 

relative errors of the reconstructed amplitude thus calculated are 14.5% for inversion 

method and 10.8% for Kalman filter method, respectively.  Furthermore, the relative 

errors are calculated for previous methods in the scenario ,2sS . The error percentage 

calculated is 16.8% for inversion and 30.2% for Kalman filter.  The method of 

Kalman filter, which can be regarded as an extended observer with the constraint of 

Gaussian noise, can be used to include practical imperfections such as multi-path, 

reflection, and sensor noise in the state model. In summary the present observer-based 

algorithm is able to be performed recursively over each sampling block. The outcome 

is still comparable to the corresponding inversion result. 
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Fig. 52  Block diagram of the Kalman filter. 
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(a) 

 
(b) 

Fig. 53  Scenarios of array element and actual source point distribution for 

simulating the point sources.  (a) Ss,1 and (b) Ss,2. 
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(a) 

 
(b) 

Fig. 54  The reconstructed and the desired amplitude profiles of point sources 

scenario.  (a) Ss,1 and (b) Ss,2. 
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5.3.5 Choice of nearfield array parameters 

In configuring the array, there are many design factors to be taken into account.  

An in-depth investigation conducted in Refs. [39] and [68] has arrived at the 

following conclusions.  The reconstruction performance achievable by the array is 

dependent on the condition number of the propagation matrix.  The inverse problem 

is well conditioned when the number of sources and sensors is small, when the 

geometrical arrangement of sensors is conformal to the source geometry in terms of 

location, orientation and spacing, when the sensor array is positioned symmetrically 

with respect to the source array, and when the DOR is small. 

The last point regarding the DOR is crucial to the performance of the NESI.  It 

is well known in acoustics that the evanescent waves carrying the details in the 

nearfield will rapidly decay with distance to the farfield.  The propagation matrix 

then becomes ill-conditioned as one attempts to reconstruct the sound image based on 

an already smoothed farfield measurement.  A numerical simulation conducted for a 

1D array shows in more detail what the effects of some array parameters have on the 

matrix conditioning.  In Fig. 55 (a), the condition number drops with increasing kd.  

The condition number of reconstruction with large L is higher than that of 

reconstruction with small L.  Because condition number is defined as the ratio of the 

maximum singular value and the minimum singular value, the singular value plot in 

Fig. 55 (b) further exhibits the same trend of matrix conditioning versus the DOR.  

In this work, the condition number during sound field reconstruction is generally kept 

under 310 . 

The procedures in choosing array parameters can be summarized as follows: 

1. Choose the microphone spacing according to the maximum frequency (fmax ).  

A conservative rule is / 2d λ= . 

2. Choose the array aperture (D) that covers the source surface size. 
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3. The last two steps determine the number of microphone needed, Nm = D/d for 

a ULA. 

4. Choose the DOR according to the condition number of propagation matrix and 

the array parameters determined above.  As a rule of thumb, we choose the 

condition number under 310 . 
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(a) 

 

 

(b) 

Fig. 55  Variation of condition number of propagation matrix for a 1D array.  (a) 
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Condition number vs. kd, (b) singular value distribution of propagation 

matrix (frequency = 200 Hz, the spacing between microphones and between 

focal points d = fd = 0.0858 m, kd = 0.3142).  The parameter k is the 

wave number, d is the spacing of array, G is the propagation matrix, and L 

is the DOR.  There are 30 microphones and 30 focal points.  The number 

of null points is one at each end.  
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5.4 Comparison of the nearfield algorithms 

Fourier NAH enables reconstructing the 3D sound field from the 2D hologram 

data scanned above the source surface.  Although Fourier NAH provides a clear 

picture of noise distribution, it suffers from a number of limitations which stem from 

the fact that NAH relies on the FFT of uniformly sampled pressure data on the 

hologram.  To avoid spatial aliasing, the spacing of microphones is required to be 

less than one-half the wavelength.  To avoid spatial wrap-around, the surrounding of 

the aperture would generally need to be padded with zeros.  However, these two 

considerations often result in a large channel count. 

NAH methods appropriate for arbitrarily shaped source were suggested, e.g., the 

NAH based on IBEM and the HELS method.  The IBEM can be derived from a field 

representation on the basis of the Green’s function theory, whereas the HELS method 

can be formulated using the field representation based on spherical harmonics.  The 

IBEM can be further classified into two categories: the direct formulation and the 

indirect formulation.  The former is derived from the HIE, whereas the latter stems 

from the simple layer or double layer potential.  The advantages of IBEM are it 

allows for reconstruction of the acoustic quantities on an arbitrarily shaped structure, 

and it is suitable for exterior and interior regions.  However, spatial discretization is 

employed to obtain acoustic quantities.  Hence, IBEM must require a minimum 

number of nodes per wavelength to assure a satisfactory spatial resolution in 

reconstruction.  For a complex structure, the number of discrete nodes required to 

accurately reconstruct the surface acoustic quantities can be very large. Therefore, the 

total number of measurement points may be large. In this condition, IBEM making 

the reconstruction process extremely time consuming.  The major disadvantage of 

HELS is that can yield a good approximation for all surface geometries.  HELS 

proved effective in imaging blunt and convex sources, but not for a highly elongated 
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one.  The cylindrical coordinate system is ideal for a slender body, but not for a flat 

surface. 

Another method, the ESM, also known as wave superposition method, was 

suggested for sound field calculation with far less complexity.  The idea underlying 

the ESM is to represents sound field with discrete simple sources with no need to 

perform numerical integration.  As opposed to the actual source, these solutions of 

simple sources deduced from the acoustic wave equation serve as the basis for sound 

field representation.  While the ESM was often used as a benchmark for BEM, it has 

been shown with careful choice of parameters that the ESM is capable of achieving 

accuracy comparable to other methods.  Like IBEM, the use of ESM is not restricted 

to source with regular geometries.  The simplicity of the ESM lends itself very well 

to the implementation with digital signal processing and control paradigms.  From 

such perspectives, the NESI previously proposed by the authors performs 

multichannel inverse filtering in the time-domain in light of minimal state-space 

realization of digital filters.  Since all the required processing is carried out in the 

time-domain, NESI eliminates many problems of Fourier NAH.  Not only sound 

field processing is entirely carried out in the time-domain but also nearfield details 

can be reconstructed.  This technique is applicable to noise sources of all kinds, 

including narrowband, broadband, stationary, and transient types.  Table 8 compares 

the aforementioned nearfield imaging methods. 
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Table 8  Comparison of nearfield imaging methods. 

 Fourier NAH IBEM HELS NESI 

Algorithm k-space FFT2D matrix inverse least-square inverse filtering

Geometry planar/regular planar/regular irregular arbitrary/irregular

Mic spacing λ/2 λ/2 ≒λ/2 3~4λ 

Spatial window 

effect 
yes no no no 

DOR nearfield nearfield nearfield nearfield/farfield

Area covered small small small small/large 

Domain frequency frequency frequency time 

Real time no no no yes 

Stationarity yes yes yes no 

Reference yes yes yes no 

Acoustic 

variables 
yes yes yes yes 

Need scaling no no no no 

Sensor many many many few 
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CHAPTER 6. PRACTICAL IMPLEMENTATIONS 

 

This chapter outlines practical implementations such as inverse filter design, 

multi-channel fast filtering, post-processing, choice of DOR and lattice spacing, 

virtual microphone technique, choice of RD, optimization of sensor deployment, and 

system integration and experimental arrangement. 

 

6.1 Inverse filter design 

In general, inverse problems are based on an associated forward problem.  This 

forward problem behind NAH is sound field model that presents the sound radiation 

from a source.  Acoustic excitation is employed as input to predict the field pressure.  

This part gives an introduction to important issues regarding inverse problems 

explained from NAH. 

 

6.1.1 Model matching: ill-posedness and regularization 

In problem of ESM in chapter 5, it can be regarded as a model matching problem 

depicted in Fig. 51.  Similar to the deconvolution process in NAH, the system matrix 

G is usually ill-conditioned and even non-square.  This calls for the need of 

optimization with proper regularization.  The problem considered herein can be put 

into the following optimization formalism: 

2min
F

−
C

W CG , (6. 1)

where 2

F
i  symbolizes the Frobenius norm [75] defined as, for an J N×  matrix 

A , 
ˆ

2 2 2
ˆ 2

ˆ1 1 1

N N N

nn nF
n n n

a
= = =

= =∑∑ ∑A a . (6. 2)

Hence, the minimization problem of Frobenius-norm can be converted to the 
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minimization problem of the 2-norm by partitioning the matrices into columns.  

Since there is no coupling between the columns of the matrixC , the minimization of 

the square of the Frobenius norm of the entire matrix G  is tantamount to minimizing 

each column independently. 

22

2
1

min min ,  1, 2 ,
n

N
H H H

n nF
n

n N
=

− = − =∑C c
W CG w G c . (6. 3)

where  and n nw c denote the n th columns of the matrices W and C, respectively, the 

superscript “H” denotes the Hermitian transpose.  The least-squares solution to the 

problem above is given as 

( ) , 1, 2, ,H H H
n n n N+= =c G w , (6. 4)

where the superscript “+” denotes the pseudo-inverse .  This optimal solution in 

least-square sense can be assembled into a more compact matrix form: 

[ ] [ ]1 2 1 2( )H HH
N N

+=c c c G w w w… … (6. 5)

or 

+=C WG  (6. 6)

If the system matrixG is of full-row rank, the pseudo-inverse is given as 

1( )H H+ −=G G GG  (6. 7)

Note that +G  is also the right inverse in that + =GG I .  Nevertheless, if G  is not 

of full-row rank, TSVD and Tikhonov regularization [32], [76]can be used to avoid 

singularity of HGG .  Inverse matrix C  can be obtained by TSVD of the 

propagation matrix as 

1

HI
i

i
i iσ=

=∑ uC v , (6. 8)

where I  is the discrete regularization parameter., iu  is the thi  left singular vector, 

iv  is the thi  right singular vector and iσ  is the thi  singular value.  

Alternatively, inverse matrix C  can be obtained by Tikhonov regularization as  
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1( )H H β −= +C WG GG I , (6. 9)

where 0β ≥  is a regularization parameter that can either be a constant or 

frequency-dependent [77]. 

The right inverse is used for the inverse problem.  If, instead, left inverse is 

used in the present formulation, the matrix product HG G  can become extremely 

rank-deficient.  Heavy regularization would be required to maintain numerical 

stability.  The solution will be over-smoothed when over-regularization is chosen too 

low due to the removal of the high frequency components.  If under-regularization is 

chosen, the solution has distortion because of the amplification of the noise.  Hence, 

how to choose optimal regularization parameter is described in chapter 6.1.3. 

 

6.1.2 Window design 

One problem with the simple choice of the matching model W = I is that 

defocusing problem may arise.  This is a frequently encountered problem 

particularly in the neighborhood of the boundary of the virtual surface.  To resolve 

the problem, a modified matching model is suggested as follows.  In addition to the 

virtual source points, the outer ring of the virtual surface is padded with “null points” 

to restrain the level of reconstructed data outside the boundary, as shown in Fig. 56.  

This is analogous to the windowing technique in digital filter design.  Thus, the 

matching model is modified into 

1 0

0 1
    

0 0

0 0 J N×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

W

…

…
…

…

, (6. 10)

where N  diagonal entries “1” correspond to the virtual source points and “0” entries 
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at the bottom half correspond to the null points.  With this choice of W, it can be 

shown that 

[ ]1 2ˆ 0 0 T
Nq q q= =q Wq … … . (6. 11)
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Fig. 56  Structure of 2D URA. 
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6.1.3 Parameter choice methods (PCM) 

In this section, the generalized cross-validation (GCV) and L-curve criterion 

(L-C) are described to choose optimal regularization parameter.  The idea of GCV is 

to remove an element from the vector of measurement data and then predict the 

missing data based on the remaining measurements [78], [79].  The optimal 

regularization parameter is to minimizing the GCV function that is  

( )

2

reg 2
#

GCV
trace( )

−
=

Ι −

p Gq

GG
, (6. 12)

where regq  is the regularized solution vector and #G  is 

#

1

n
H

i i i i
i

f σ
=

=∑G v u , (6. 13)

where n  is the dimension of G , iu  is the thi  left singular vector, iv  is the thi  

right singular vector, iσ  is the thi  singular value and if  is a low-pass filter.  The 

residual vector can be calculate as 

reg
1 1

1

1 1

1

(1 ) .

Hn n
H i

i i i i i
i i i

n
H

i i i
i

n n
H H

i i i i i
i i

n
H

i i i
i

f

f

f

f

σ
σ= =

=

= =

=

⎛ ⎞⎛ ⎞− = − ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

= −

= −

= −

∑ ∑

∑

∑ ∑

∑

u pp Gq p u v v

p u u p

u u p u u p

u u p

(6. 14)

Therefore, the residual norm in the numerator of Eq. (6. 12) is  

22 2
reg 2

1

(1 )
n

H
i i

i

f
=

− = −∑p Gq u p , (6. 15)

where iu  from Eq. (6. 14) is removed because of the orthonormality of the singular 

vectors.  The denominator of Eq. (6. 12) can be evaluated as 

( )2#

1 1

trace( ) trace( )
n n

H
i i i i

i i

f M f
= =

⎛ ⎞Ι − = Ι − = −⎜ ⎟
⎝ ⎠

∑ ∑GG u u , 
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where M  is equals the length of p .  The optimal regularization parameter is to 

minimizing the GCV function, as shown in Fig. 57.   

Another PCM in this thesis is L-curve [78], [80].  The two norms are plotted 

against each other in a log-log scale, as shown in Fig. 58.  The optimal solution is 

assumed to be at the corner of the L-curve.  This corner is found at the point with 

maximum curvature.  The solution norm can be found as 

2
2 2

reg 22
1 2

Hn
i

i
i

f
σ=

=∑
u p

q  

where iv  from Eq. (3. 6) is removed because of the orthonormality of the singular 

vectors.  The solution will be over-smoothed when regularization parameter is 

chosen too large, which gives a large residual.  If regularization parameter is chosen 

too small, the filter factors allow the noise to be amplified to yield a large solution 

norm.  The drawback of the L-curve is that it may not have a clear L-shape, which 

means that an inappropriate parameter choice could be made.  In other instances 

there can be two or no corners, which can also make the method fail.   
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Fig. 57  Illustration of the GCV.  The minimum is circled in the figure. 
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Fig. 58  Illustration of the L-curve.  The Circle in the figure is corner of the curve. 
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6.2 Multi-channel fast filtering 

The aforementioned multichannel inverse filtering is carried out entirely in the 

time-domain and is thus computationally intensive.  To ease this problem, a 

technique based on the ERA is exploited to simplify the NESI processing.  This 

method establishes the following minimal state-space realization for linear systems: 

( 1) ( ) ( )e en n n+ = +x A x B u  (6. 16)

( ) ( ) ( )e en n n= +y C x D u , (6. 17)

where n is the discrete-time index, x(n) is the state vector, u(n) is the 1M ×  input 

vector, y(n) is the 1J ×  output vector, and Ae, Be, Ce and De are constant matrices.  

The ERA starts with the impulse response matrices of the inverse filters: 

11 12 1

21 22 2

1 2

( ) ( ) ( )
( ) ( ) ( )

( ) ,  0,1,

( ) ( ) ( )

M

M

J J JM

c n c n c n
c n c n c n

n n N

c n c n c n

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

C , (6. 18)

where n is the time index and N is the length of impulse response.  Assemble these 

impulse response matrices into a Js Ms×  Hankel matrix: 

( ) ( 1) ( 1)
( 1) ( 2) ( )

( 1)

( 1) ( ) ( 2 1)

n n n s
n n n s

n

n s n s n s

+ + −⎡ ⎤
⎢ ⎥+ + +⎢ ⎥− =
⎢ ⎥
⎢ ⎥+ − + + −⎣ ⎦

C C C
C C C

H

C C C

, (6. 19)

where the s is an integer that determines the size of the matrix.  Usually, s is taken to 

be N/2.  Factor the Hankel matrix (0)H  using SVD 

(0) H=H UΣV , (6. 20)

where U and V are unitary matrices and Σ  is a diagonal matrix with singular values 

in its main diagonal.  Great reduction is possible by observing the singular value plot.  

A typical example of singular value plot is shown in Fig. 59.  The singular valves 

after v = 100 is very small and can be replaced by zeros.  Hence, the matrices U, V 

and Σ  are in effect truncated.  Based on the above SVD result, the minimal 
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realization of Ae, Be, Ce and De then follows:  

1/ 2 1/ 2(1)H
e

− −=A Σ U H VΣ , 
1/ 2 H

e M=B Σ V E , 

1/ 2H
e J=C E UΣ  and (0)e =D C , 

(6. 21)

where [ ]H
M M M M=E Ι 0 0  and [ ]H

J J J J=E Ι 0 0 , and the Ι  is an 

identity matrix and the 0  is a null matrix. 

Instead of direct convolution (DC) in the time-domain, the multichannel filtering 

is efficiently carried out using the minimally realized state-space equation.  This can 

give rise to considerable computational saving for the NESI processing owing to the 

fact that Msν in general.  For example, if 30M J= =  and 227N = , 

227 204300M J× × =  multiplications are required using DC, whereas only 

2 22500v vM Jv JM+ + + =  multiplications are required using the ERA with v =120.  

Almost one order of reduction has been attained. 
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Fig. 59  Singular values of the Hankel matrix (0)H .  The singular values above the 

order ν are negligibly small. 
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6.2.1 The time-domain processing 

Apparently, execution of the vast number of inverse filters in NESI is very 

computationally demanding if all processing is carried out in the time-domain.  This 

is becoming even more problematic in practical applications.  To overcome this 

problem, the ERA is employed in this thesis.  The ERA was described in the chapter 

6.2.  The Operations Per Sample (OPS) for ERA is  

2OPS(ERA) v vM Jv JM= + + + . (6. 22)

In this thesis, the ERA is compared to widely used methods, the DC.  Direct 

linear convolution denoted as DC is also used as a benchmark method.  The OPS of 

the DC method is given by 

OPS(DC)= fM J N× × , (6. 23)

where 
fN  is the length of FIR filter. 

 

6.2.2 The frequency-domain processing 

The NESI algorithm can also be efficiently implemented in the 

frequency-domain.  First, partition the time-domain microphone pressure data 

( )h np  into non-overlapping frames and zero-pad the frames into p ( )h nΛ , where 

Λ= 1, 2,… Λ̂  is the frame index and Λ̂  is the number of frames, as shown in Fig. 

60 (a) and Fig. 60 (b).  Transform each frame to the frequency-domain by using the 

FFT.  Next, multiply the transformed pressure data with the frequency-domain 

inverse matrix ( )ωC  that can be computed offline.  Finally, calculate the 

time-domain source amplitudes ˆ ( )v nΛq  for each frame by using the inverse FFT and 

overlap and add the consecutive frames, as shown in Fig. 60 (c). 

Overlap-and-add technique can be used if continuous processing is desired.  
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To illustrate how to choose parameters in the overlap-and-add block processing, 

consider the impulse response of the inverse filter matrix ( )ωC  of length P.  

Assume that there are L samples in each frame ( )h nΛp .  Thus, the output of linear 

convolution ˆ ( )v nΛq = ( )nC * ( )h nΛp  has the length (L+P-1).  The linear convolution 

can be efficiently implemented, with the aid of FFT, by calculating the product 

( ) ( )hω ωΛC p  in the frequency-domain, where -1N L P≥ +  point FFT must be used 

to avoid wraparound errors.  To meet this length requirement, each frame must be 

padded with (P-1) zeros.  After inverse filtering, each frame of the source amplitude 

ˆ ( )v nΛq  is added with (P-1) overlapped points.  This is referred to as the 

Frequency-Domain-Overlap-Add (FDOA) algorithm in the following presentation.  

Tremendous computation efficiency can be gained because the frequency-domain 

inverse matrix needs be computed offline for only once.  The OPS of FDOA is 

estimated to be 

OPS(OA) ( ) logM J N J M= + + × . (6. 24)

 



 205

 

 

 

 

 
(a) 

 

 

(b) 

P-1

1( )p n

0 ( )p n

0

0 

0 

P-1

P-1 

n

n

n

2 ( )p n

1L −

1L −

1L −

( )p n  

0 
n 

L

2L
3L



 206

 

 

(c) 

Fig. 60  Illustration of the Overlap and add method. (a) The pressure data ( )p n , (b) 

Decomposition of ( )p n  into non-overlapping sections of length L, (c) 

Result of convolving each section with the inverse filter. 
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6.2.3 Comparison of filtering approaches 

Numerical simulation is conducted to validate the virtual microphone technique 

and multichannel filtering algorithms. A URA with 4 4M J= = ×  is employed in 

this simulation, as depicted in Fig. 61.  The spacing of the microphones ( d ) and the 

focus points ( fd ) were both selected to be 0.1m = λ / 2 for 1.7 kHz. 

In the inverse filter design, Tikhonov regularization parameter was selected 

according to the L-Curve method.  The OPS required by three different filtering 

methods (DC, ERA and FDOA) is compared for three different array configurations 

(16, 30 and 64 channels) in Table 9.  The number of FFT frequency points Ni = 512.  

The numbers of microphones and focal points are assumed to be equal, i.e., M J= . 

The most computationally expensive DC method is used for benchmarking as 100% 

(in parenthesis) OPS requirement.  It is obvious from the comparison that the ERA 

filtering displayed remarkable computation efficiency, e.g., 6.65% for a 64-channel 

array, as compared with the DC processing.  The computation efficiency is 

considerably improved using the FDOA approach, especially for large number of 

microphone channels (only 5% of the benchmark DC method for a 64-channel array). 
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Table 9  Comparison of computational complexity in terms of OPS of three 

multichannels filtering methods for three array configurations.  The block 

size of FFT 512iN = .  The numbers of microphones and focal points are 

assumed to be equal, i.e., m = j.  The DC method is used for benchmarking 

(100% in parenthesis). 

Domain Method 4×4 URA 5×6 URA 8×8 URA 

DC 65,536 (100%) 230,400 (100%) 1,048,576 (100%)
Time 

ERA 1,936 (2.95%) 16,900 (7.34%) 69,696 (6.65%) 

Frequency FDOA 544 (0.83%) 1440 (0.63%) 5248 (0.5%) 
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Fig. 61  The array settings for NESI using a 4×4 URA. 
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6.3 Post-processing 

6.3.1 Acoustic variables: p, u, I, W 

As the NESI algorithm, once the source amplitude ˆ vq  is obtained, acoustical 

variables such as pressure and particle velocity can be reconstructed on the actual 

source surface.  Due to singularity of virtual point sources, we need a non-zero RD 

to assure smooth reconstruction results.  Therefore, the vS  is kept away from the 

sS  with a non-zero RD.  It follows that the sound pressure on the reconstruction 

surface can be calculated in the time-domain using 

1

ˆ ( )( , )
vN

r n n

n n

q np i
r=

− Δ
=∑z , (6. 25)

where z  is the position vector of the Field point on the reconstruction surface, nr  is 

the distance between the thn  virtual source and the Field point z, and 

int( / )n nr cΔ =  is the propagation time delay implemented using Lagrange 

interpolation.  In addition to sound pressure, particle velocity, and sound intensity 

can be calculated by using the NESI technique.  The last two acoustical variables are 

deemed more effective in the context of the NSI application.  For simplicity, 

consider only one virtual point source on the focal point surface.  Let 0z  and z  be 

the position vectors of the virtual source and the field point on the reconstruction 

surface, respectively.  The sound pressure at the field point produced by the point 

source of amplitude ˆ( )q ω can be written as the following frequency-domain 

expression: 

ˆ( , ) ( )
jkr

r v ep q
r

ω ω
−

=z , (6. 26)

where 0r = −z z .  From the Euler equation, the particle velocity at the normal 

direction to the reconstruction surface can be expressed as 
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 (6. 27)

where 0( )r r= −e x x .  Rewrite this equation in the Laplace domain 

0

1 (1/ )( , ) ( ) ( , )r r
r

su t p t
c s

τ
ρ

+
=z n e zi , (6. 28)

where r cτ =  being the time delay.  Here the DC pole ( 0)s =  behaves like an 

integrator, which could cause problems.  To fix this, a highpass filter is introduced 

by modifying Eq. (6. 28) into 

0
0

0

0

1
1( , ) ( ) ( , ),  01

1   = ( ) ( ) ( , ),

r r
r

r
r

s su t p t
c s s

F s p t
c

τ τ
ρ

τ

ρ

+
= >>

+
z n e z

n e z

i

i

(6. 29)

where 

0
0

(1/ )( ) ,    0
(1/ )

sF s
s

τ τ
τ

+
= >>

+
. (6. 30)

It follows that the normal velocity ru  can be obtained by properly filtering the sound 

pressure with F(s).  To facilitate digital implementation, a discrete-time filter can be 

obtained by the Prewarped Bilinear Transform [17]: 

0
1
1 0 0

(1 ) (1 )( ) ( )
(1 ) (1 )

zs g
z

g z gF z F s
g z g

τ τ τ
τ τ τ

−
=

+

+ + −
= =

+ + −
, (6. 31)

where 

2
tan( / )

p

p s

f
g

f f
π
π

=  (6. 32)

with pf  being the bandwidth of interest and sf  being the sampling rate.  It turns 

out that ( )F z  is always stable since its pole is inside the unit circle. 



 212

In summary, the normal velocity can be calculated for a point source using the 

following formula: 

0

1( ) ( ) ( ) ( )r r
ru z F z p z

cρ
= ⋅n e . (6. 33)

The instantaneous normal intensity is simply 

( , ) ( , ) ( , )r r r
nI n p n u n=x x x . (6. 34)

Sound power can be calculated by integrating the normal active intensity over an area 

of interest rS   

( ) ( , ) ( )
r

r r r
n

S

W n I n dS= ∫ x x  (6. 35)

Similar procedure applies to a collection of point sources, where the sound field 

can be calculated using the principle of superposition. 

 

6.3.2 Miscellaneous processing items 

During the future trend, we hope to use the NESI for pass-by tests of vehicles.  

That is using source strength in nearfield by NESI to estimate farfield sound pressure 

of scooter or car from go-in line to go-out line at microphone R and L, as shown in 

Fig. 62.  Side view of the pass-by test is shown in Fig. 63.  The farfield sound 

pressure is calculated by  

1

ˆ ( )( , )
I

i i
f

i i

q tp t
r=

− Δ
=∑x , (6. 36)

where x  is the position vector of the field point on the microphone R or L, ˆiq  is the 

source strength of ith focal point, ir  is the distance between the ith virtual point 

source and the field point at x, and /i ir cΔ =  is the time delay.  In Doppler effect, 

the frequency shift is calculated by  

vf f
c

Δ = , (6. 37)

where f  is frequency of source and v  is speed of source.  For example, 
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frequency of moving source is 1 kHz to estimate sound pressure of microphone, as 

shown in Fig. 64.  Time-frequency diagram of microphone is shown in Fig. 65.  

The frequency shift is / 1000 28.5 / 343 83f f v cΔ = ⋅ = × =  Hz.  In addition, 

frequency shift has two conditions due to Doppler effect are following: 

1. Fixed source, moving sensor 

 c vf f
c
±⎛ ⎞′ = ⎜ ⎟

⎝ ⎠
 (6. 38)

2. Fixed sensor, moving source (pass-by test) 

 cf f
c v

⎛ ⎞′ = ⎜ ⎟
⎝ ⎠∓

 (6. 39)

Finally, sound pressure around scooter or car can be shown at appointed position by 

farfield polar radiation pattern, as shown in Fig. 66.   
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Fig. 62  Structure of pass-by test. 
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Fig. 63  Side-view of pass-by test. 
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Fig. 64  Arrangement of the moving source in the pass-by test. 
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Fig. 65  Time-frequency diagram. 
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Fig. 66  Farfield polar radiation pattern. 
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6.4 Choice of distance of reconstruction and lattice spacing 

Another criterion is needed to choose the DOR.  Assume that the acoustic 

radiation problem can be formulated via ESM into the following matrix equation 

=Gq p , where p  and q  are the hologram data and source data, respectively, which 

are related by the propagation matrix G .  By assuming there is no uncertainty in the 

matrix G, it can be shown that the perturbation term δp  of the data vector such as 

measurement noise, numerical error, etc., and the perturbation term δq  of the 

reconstructed data satisfy the following inequality [75] 

cond( )
δ δ

≤
q p

G
q p

, (6. 40)

where max mincond( ) /σ σ=G  is the condition number of the matrix G  and i  

symbolizes vector 2-norm.  Therefore, as an indicator of the ill-posedness inherent in 

the inverse filtering process, the condition number can also be regarded as a 

magnification factor of perturbations as well as loss of SNR after inverse filtering.  

For example, the SNR of data will be reduced by 60 dB of dynamic range after 

inverse filtering if 3cond( ) 10=G .  It is well known that condition number of the 

propagation matrix increases with the DOR since the evanescent wave decays rapidly 

with the distance.  It follows that the condition number can be used as a useful 

criterion for choosing the DOR.  Thus, given a 60 dB tolerance of loss of SNR, a 

DOR that gives a condition number less than 1000 is generally deemed appropriate. 

Another parameter is lattice spacing.  The lattice spacing of microphones used 

is usually one-half the wavelength.  This criterion is based on the Nyquist sampling 

theorem in the spatial domain.  Violation of this criterion will likely cause spatial 

aliasing problem to the resulting image.  Although this theoretical bound seems to be 

a somewhat aggressive rule, it has been widely accepted in the NAH community.   
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6.5 Virtual microphone technique: field interpolation and extrapolation 

In practical implementation of the NESI technique, edge effects may occur when 

the physical extent of source is larger than the patch array aperture.  In addition, the 

number of sensors may be too scarce to yield acceptable imaging resolution.  To 

address these problems, a virtual microphone technique is employed with field 

interpolation (for improving resolution) and extrapolation (for reducing edge effect).  

This following example demonstrates this technique using 4 4×  URA with 

microphone spacing d.  This rather coarse array configuration is to be interpolated 

and extrapolated into 11 11×  grid.  The DOR is chosen to be / 2d  so that the 

condition number of the propagation matrix vG  was well below 1000, where vG  is 

between the virtual microphone surface and reconstruction surface.  In step □C  of 

Fig. 67, the source amplitudes on the focal surface 
1

ˆ
J×
q  estimated by NESI are used to 

calculate sound pressure vp  for a finer grid on the microphone surface: 

1

ˆ ( )
( , )

J
j vj

v v
j vj

q n
p n

r=

− Δ
=

′∑x  (6. 41)

where xv is the position vector of the field point on the microphone surface, 

vj v jr′ = −x y , jy  is the position vector of the jth point source on the focal surface, 

and /vj vjr c′Δ =  is the time delay.  The sound pressures regenerated using Eq. (6. 41) 

for the interpolated and extrapolated actual/virtual sensor locations with a finer 

spacing can be assembled into the matrix form 

11
ˆ( ) ( ) ( )v v

JM M Jv v
n n n

×× ×
=p G q  (6. 42)

where 
vG  is the propagation matrix between the focal surface and the microphone 

surface, 11 11 121vM = × =  is the number of microphone and 4 4 16J = × =  is the 
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number of point sources on the focal surface.  In the frequency-domain, the sound 

pressure is calculated by  

1 11
ˆ( ) ( ) ( ) ( ) ( ) ( )v v v J MJ MM M J M Jv v v

ω ω ω ω ω ω
×× ×× × ×

= =p G q G C p . (6. 43)

In Fig. 67, the interpolated and extrapolated microphones are indicated with the 

symbols “ ” and “ ”, respectively.  Next, choose a new point source distribution 

with finer spacing.  The source amplitudes ˆ vq  are estimated with the augmented 

inverse filters vC  in the time-domain and the frequency-domain, as shown in step 

□D  of Fig. 67: 

1 1
ˆ ( ) ( ) ( )v v v

J J M Mv v v v
n n n

× × ×
= ∗q C p  (6. 44)

and  

11 1
ˆ ( ) ( ) ( ) ( ) ( ) ( ) ( )v v v v v J M MJ J M M J M M Jv v v v v v v

ω ω ω ω ω ω ω
× ×× × × × ×

= =q C p C G C p , (6. 45)

where 11 11 121vM = × =  is the number of virtual microphones and 

11 11 121vJ = × =  is the number of virtual point sources. 
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Fig. 67  The idea of the NESI with virtual microphone technique.  The symbol“ ” 

indicates an interpolated microphone position.  The symbol“ ” indicates 

an extrapolated microphone position.  □A  The pressure data picked up by 
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the microphones, □B  Reconstructed source strength at the focal points, □C  

The pressure data interpolated at the virtual microphones, □D  

Reconstructed source strength at the virtual focal points. 
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6.6 Choice of retreat distance (RD) 

As a basic form of the ESM applied to NAH problems, discrete monopoles are 

utilized to represent the sound field of interest.  When setting up the virtual source 

distribution, it is vital to maintain a RD between the virtual sources and the actual 

source surface such that reconstruction would not suffer from singularity problems.  

However, one cannot increase the distance without bound because of the ill-posedness 

inherent in the reconstruction process with large distance.  In prior research, 1-2 

times the lattice spacing, or the inter-element distance of microphones, is generally 

recommended as RD in the use of the ESM-based NAH.  While this rule has shown 

to yield good results in many cases, the optimal choice is a complicated issue that 

depends on frequency, geometry of the physical source, content of evanescent waves, 

distribution of sensors and virtual sources, etc.  How to reach the best compromise 

between the reconstruction errors induced by the point source singularity and the 

reconstruction ill-posedness is an interesting problem in its own right.  This section 

revisits this issue, with the aid of an optimization algorithm based on the GSS. 

 

6.6.1 Integral approximation error vs. reconstruction ill-posedness 

Despite the versatility of the ESM, how to choose RD (also called retract 

distance or standoff distance) between the virtual sources and the reconstruction 

surface remains an issue that deserves attention in the formulation stage of the ESM.  

In the NESI formulation, the target source is simulated by a collection of point 

sources distributed on a surface.  For that source configuration, one can simply 

choose virtual sources to be the target sources and the source field can be 

reconstructed.  Assume RD is chosen very small.  For continuous sources, however, 

it is impractical to distribute the discrete virtual sources on the source surface if the 

objective is to reconstruct the acoustic field such as velocity on the actual source 
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surface.  Singularity problem will arise if the virtual sources are deployed on the 

actual source surface, which entails a RD between the virtual sources and the target 

source surface.  This issue was investigated by Vadivia and Williams from a 

perspective of numerical integral approximation error [49].  They concluded that RD 

greater than one lattice is appropriate for acceptable integral approximation error.  

While increase of the distance has a spatial smoothing effect as a regularization 

mechanism, an overly large RD makes inverse reconstruction very ill-conditioned due 

to the loss of evanescent waves with the distance.  There exists an optimal RD to 

best reconcile singularity and ill-posedness inherent in the inverse reconstruction 

process.  In literature [41], [49] and [81], 1-2 times lattice spacing of RD is often 

recommended.  For example, Sarkissian suggested one lattice spacing in his ESM 

simulation [41].  Also in a comparative study of the ESM and IBEM by Valdivia and 

Williams [49], RD greater than one lattice spacing is recommended, based on an 

integral approximation argument.  In the same paper, it was also cautioned by the 

authors that the distance cannot be increased indefinitely because the inverse process 

will become ill-conditioned for large standoff distance.  

While the 1-2 spacing criterion is a rule of thumb widely accepted in the NAH 

community that has shown to yield good results in many cases, the optimal choice is a 

complicated issue that may depend on frequency, nature of the physical source, 

content of evanescent waves, distribution of sensors and virtual sources, etc.  How to 

best compromise between the reconstruction errors incurred by point source 

singularity and inversion ill-posedness is an interesting problem in its own right.  

The relative error of the velocity reconstructed on the actual source surface is used as 

the cost function in optimization. 

 

6.6.2 Determination of RD: Golden Section Search (GSS) 
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The aim of the study is to find the optimal distance for the ESM-based NAH 

problem, with the aid of the GSS algorithm.  We focus on only reconstruction of the 

surface velocity of the actual source, which proves the most effective for source 

identification.  Define the relative velocity reconstruction error 

2

2
2

2

( ) ( , )
( , ) 100%

( )
r x

E x
ω ω

ω
ω

−
= ×

u u

u
, (6. 46)

where u and ur are the desired and the reconstructed velocity vectors, respectively.  

The cost function is defined as follows: 

1

1( ) ( , )
I

i
i

Q x E x
I

ω
=

= ∑ , (6. 47)

where iω  is the ith frequency and x is the design variable (RD in this case), is a 

measure of “average relative error of reconstructed velocity” summed in the 

frequency range 50 Hz~1.7 kHz.  We aim at finding the RD that minimizes the cost 

function above.  In the simulation, the microphone spacing d is selected to be 0.1m, 

complying with the λ/2–rule for maxf = 1.7 kHz.  The frequency step is 100 Hz in the 

frequency range 50 Hz~1.7 kHz, hence I = 17.  The variable tolx is selected 

according to number of significant digits of the design variable.  In this case, we 

require three significant digits for the RD, i.e., tolx = 10-3.  The parameter 

152.2 10ε −= ×  is chosen according to the floating-point precision setting of the 

computer.  The preceding parameter settings of the cost function, design variable and 

termination tolerance will be used in finding the optimal RD with the GSS algorithm. 

Numerical simulations are conducted to demonstrate how to optimize RD by 

using the GSS algorithm.  A baffled planer piston and a baffled spherical piston are 

employed as source examples.  The first simulation is concerned with how to choose 

RD for virtual source configuration 1, while configuration 2 has no RD issue.  The 

search proceeds in two steps.  Step 1 evaluates the cost function in coarse but 
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uniform steps of the RD (0.1 times spacing).  Inspection of the curve reveals that the 

minimum may exist in the interval [1/20d, 2d].  Step 2 searches for the optimal RD 

using the GSS in the potential interval found in Step 1.  The second simulation 

utilizes the ESM-based NAH to calculate source surface velocity by using the optimal 

RD obtained in the first simulation.  Source configuration 1 is employed in both 

simulations for the planar and spherical pistons, whereas source configuration 2 is 

applied to only the planar piston. 

The first numerical simulation is concerned with the optimal RD for a planar 

baffled piston source.  Suppose that the array comprises 8×8 microphones with 

spacing d = 0.1m (d = λ/2 at f = 1.7 kHz), as shown in Fig. 49.  The microphone 

surface is located at z = 0.1m.  The number and spacing of microphones and virtual 

sources are of identical settings.  A piston embedded at the plane z = 0m is arranged 

in four scenarios as denoted by ,s iS , i = 1-4, shown in Fig. 68 (a)-Fig. 68 (d), 

respectively.  The planar piston is simulated by discrete point sources distributed on 

the plane z = 0m.  In the simulations, the desired velocity vector was specified to be 

5 m/s.  In scenario Ss,1, the actual sources are distributed in the same way as the 

microphone array element points.  In scenario Ss,2, the actual sources are uniformly 

distributed at the array element points and their center midpoints.  In scenario Ss,3, 

actual source distribution is similar to that in Ss,1, but the sources cover only part of 

the array aperture.  Finally, in scenario Ss,4, the actual source distribution is similar to 

Ss,2, but the sources cover only part of the array aperture.  With virtual source 

configuration 1, we conducted a coarse search in uniform steps for the 4 scenarios to 

find the potential interval in which the optimal RD may exist.  Next, the GSS 

algorithm is employed to fine-search for the optimal RD in the potential interval.  

The result was shown in Fig. 69.  The minimum points corresponding to the optimal 
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RDs are indicated in Fig. 69 with solid symbols.  The optimal RDs calculated are 

0.047m (≒0.5d or 0.25λ), 0.054m (≒0.5d or 0.25λ), 0.038m (≒0.4d or 0.20λ) and 

0.049m (≒0.5d or 0.25λ) for scenarios Ss,i , i = 1~4, respectively.  Overall, the 

optimal distance ranges from 0.38 to 0.54 times spacing.  It is interesting to note that 

the results are far less than the 1-2 times spacing recommended by the previous 

research.  In addition, the optimal RDs for Ss,3 and Ss,4 are smaller than those of Ss,1 

and Ss,2, respectively.  The explanation of this phenomenon is as follows.  The 

piston covers only part of the array aperture in scenarios Ss,3 and Ss,4.  The velocity 

discontinuity at the edge of the piston will result in more evanescent waves, which 

entails smaller inversion distance (and hence smaller RD) for reconstructing surface 

velocity than the other two fully covered layouts.  On the other hand, the RDs of Ss,2 

and Ss,4 are greater than those of Ss,1 and Ss,3, respectively.  A qualitative explanation 

is as follows.  Ss,2 and Ss,4 represent more “uniform” approximation than the other 

two when simulating the continuous piston source.  This requires larger propagation 

distance (and hence larger RD) to the piston surface than the other two scenarios to 

smooth out the reconstructed velocity field.  The Fig. 70 compares the reconstructed 

and the desired velocity profiles for source configuration Ss,3 at f = 850 Hz.  The 

relative error of the reconstructed velocity at f = 850Hz in scenario Ss,3 is 21.13%.  

We see reasonable agreement of the profiles except near the edge of the piston where 

marked discrepancy occurs due to the velocity discontinuity. 

While virtual source configuration 1 is applicable to arbitrary source geometries, 

virtual source configuration 2 is restricted only to planar sources.  In configuration 2, 

RD is no longer an issue because the virtual sources are distributed on the actual 

continuous source surface when reconstructing the surface velocity.  To better 

quantify the reconstructed results, the relative velocity reconstruction errors are 

calculated for four scenarios in Fig. 71.  The error percentage calculated is 0% for 
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Ss,1, 20% for Ss,2, 26% for Ss,3, and 30% for Ss,4, in the frequency range 50 Hz~1.7 kHz.  

Although the reconstruction is nearly perfect in scenario Ss,1, 20-30% errors arise for 

scenarios Ss,2 and Ss,4 because of the limited number of microphones with respect to 

sources.  Errors in the reconstructed velocity of scenario Ss,3 is due to the velocity 

discontinuity at the edge, which results in more evanescent wave components. 

In the next numerical simulation, a spherical baffled piston source is adopted for 

further validation.  For this non-planar source, only virtual source configuration 1 is 

applicable.  Consider a vibrating piston set in a rigid sphere with axisymmetric 

velocity distribution (independent of azimuth angle φ ) on its surface, as shown in Fig. 

72.  Assume j te ω time dependence.  The piston is placed on the top of the rigid 

sphere of radius a, spanning an angle 0θ  with respect to the z axis.  The surface 

velocity of the source is of the form 

0 0

0

,0
( , )

0 ,
u

U a
θ θ

θ
θ θ π
≤ ≤⎧

= ⎨ ≤ ≤⎩
. (6. 48)

The pressure field at a point ( , )r θ  of the piston can be calculated by [73] 

*0
'*

0
( , ) (cos ) ( )
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m
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j cUp r P h kr
h ka
ρ

θ θ
∞

=
= − ∑ , (6. 49)

where 

[ ]1 1
1( ) ( ) ( 1) ( )

2 1m m mh mh m h
m

ζ ζ ζ− +′ = − +
+

, (6. 50)

[ ]0
1 0 1 0(cos ) (cos )

2m m m
uU P Pθ θ− += − , (6. 51)

and “*” denotes complex conjugation.  In Eq. (6. 49), mP  is the Legendre 

polynomial of the first kind of order m, mh  is the spherical Hankel function of the 

first kind of order m, and mh′  is the derivative of the spherical Hankel function. 

In the simulation, the source parameters are chosen as: a = 0.2 m, r = 0.3 m, u0 = 

5 m/s, 0ρ = 1.21 Kg/m3 and c = 343 m/s.  Three different spanning angles 
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0   30 , 60  and 180θ =  are tested.  Numbers of virtual sources and the sampling 

points for velocity reconstruction are both 58, as shown in Fig. 73.  The average 

spacing of microphone is approximately 0.1 m (spacing d = λ/2 at f = 1.7 kHz).  A 

preliminary search using coarse and uniform steps was first performed to find the 

potential interval in which the optimal RD may exist.  The relative velocity errors for 

three spanning angles are shown in Fig. 74.  Next, the GSS is employed to locate the 

optimal RD, as indicated by solid symbols in Fig. 74.  The optimal RDs are 0.076m 

(≒0.8d or 0.40λ), 0.084m (≒0.8d or 0.40λ), and 0.165m (≒1.7d or 0.85λ) for 

0   30 , 60  and 180θ = , respectively.  Overall, the optimal distance can vary from 

0.8 to 1.7 times spacing.  As indicated by its not-so-smooth curve, the 0   180θ =  

example seemed to be an “outlier” case that allows for RD much larger than other 

examples.  Inspection of the relative error curves reveals that the error of the source 

with 0   180θ =  is significantly lower than those with 0  30 and 60  θ = .  This 

can be explained by noting that the evanescent waves generated around the edge of 

the active part of the piston would result in lager reconstruction errors for small 

spanning angles.  Matrix polar plots have been presented in Fig. 75 for the cases of 

0   30 ,  60  and 180θ = at f = 1250 Hz.  Numbers of virtual sources and 

reconstruction points for velocity are 58 and 994, respectively.  The relative error (%) 

of the reconstructed velocity versus frequency for the spanning angle 

0   30 , 60  and 180θ =  is shown in Fig. 76.  The reconstructed results seemed to 

have captured the general trend of the surface velocity with this optimal RD. 
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(a) 

 

 

(b) 
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(c) 

 

(d) 

Fig. 68  Scenarios of array element and actual source point distribution for 

simulating the planar baffled piston.  (a) Ss,1, (b) Ss,2, (c) Ss,3, and (d) Ss,4. 
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Fig. 69  Search for the optimal RD in a plane by virtual source configurations 2.  

The symbol“ ” indicates the coarse search of Ss,1.  The symbol“ ” 

indicates the optimal point of Ss,1.  The symbol “ ” indicates the 

coarse search of Ss,2.  The symbol“ ” indicates the optimal point of Ss,2.  

The symbol “ ” indicates the coarse search of Ss,3.  The symbol“ ” 

indicates the optimal point of Ss,3.  The symbol “ ” indicates the 

coarse search of Ss,4.  The symbol“ ” indicates the optimal point of Ss,4. 
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Fig. 70  The reconstructed and the target velocity profiles of planar source scenario 

Ss,3 at f = 850 Hz. 
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Fig. 71  Relative error (%) of velocity reconstructed for planar sources using virtual 

source configuration 2. 
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Fig. 72  Configuration of a vibrating rigid piston spanned with an angle 0θ , set at the 

top of a rigid sphere of radius a. 
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Fig. 73  Mesh configuration of the spherical baffled piston.  The symbol“ ” 

indicates the microphones.  The red mesh indicates the actual source 

surface.  The yellow mesh indicates the virtual source surface.  These 

three meshes are concentric. 
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Fig. 74  Search for the optimal RD of the spherical baffled piston by virtual source 

configuration 1.  The symbol“ ” indicates the coarse search of the 

case 0  30θ = .  The symbol“ ” indicates the optimal point.  The 

symbol “ ” indicates the coarse search of the case 0   60θ = .  The 

symbol“ ” indicates the optimal point.  The symbol “ ” indicates the 

coarse search of the case 0  180θ = .  The symbol“ ” indicates the 

optimal point. 
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(a) 

 

 

(b) 
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(c) 

Fig. 75  Polar plot of the desired and the reconstructed velocity of the spherical 

baffled piston with various subtending angles.  The virtual source 

configuration 1 is used.  (a) 0  30θ = ,(b) 0  60θ = ,(c) 0   180θ = at f = 

1250 Hz. 
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Fig. 76  Relative error (%) of surface velocity reconstructed for the spherical sources 

using virtual source configuration 1. Three spanning angle 

0   30 , 60  and 180θ =  are examined. 
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6.7 Optimization of sensor deployment: uniform vs. random array 

In this section, the beam patterns and the cost functions are defined to facilitate 

the following array optimization formulation.  Since our focus is the nearfield array, 

we only briefly review the farfield array next. 

 

6.7.1 Optimal nearfield array: cost functions 

For a nearfield array, due to the fact that the source is in the nearfield and the 

focal points are multiple in numbers, the definition of nearfield beam pattern is not as 

straightforward as in the farfield case.  This thesis suggests a procedure to calculate 

the nearfield pressure field beam pattern by scanning on the focal surface using a test 

point source.  The procedure is depicted in Fig. 77 and described as follows: 

(1) Design the inverse matrix C  for the given array configuration. 

(2) Position the test source at a grid point on the focal surface.  Calculate the sound 

pressure vector p received at the microphones. 

(3) Calculate the source strength vector at the focal points using the inverse matrix 

C: 

q = Cp  (6. 52)

(4) Calculate the pressure field z
rp by propagating the spherical waves emitting from 

the point source at the zth grid point on the focal surface to the reconstruction 

surface by 

r r=p G q , (6. 53)

where rG  denotes the propagation matrix between the focal surface and the 

reconstruction surface. 

(5) Move the test source to next grid point on the focal surface and repeat steps 

(2)-(4).  Superimpose the magnitude of the calculated pressure field for all Z 
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test source positions to get the following nearfield beam pattern vector 

1 1 1
(1,1) (2,1) ( ,1)

TZ Z Z
z z z
r r r

z z z
p p p

= = =

⎡ ⎤
= Γ⎢ ⎥
⎣ ⎦
∑ ∑ ∑b , (6. 54)

where Γ  is the number of pixels on the reconstruction surface.  Often, Z > Γ  

is selected. 

With the beam pattern obtained above, a cost function is defined for the nearfield array.  

Instead of the maximum main-lobe and side-lobe ratio as in the farfield array, the 

nearfield cost function focuses on the number and positions of the main-lobe peaks. 

In the following, a nearfield cost function is devised to ensure that the resulting 

beam pattern has well defined main-lobe at all focal points.  First, the magnitude of 

the beam pattern is normalized to unity.  Second, define the interior of the circle 

centered at each focal point with the radius mr  as the scope of the main-lobe.  The 

circle is used not only to define the main-lobe but also to check if a main-lobe is 

defocused.  For the jth focal point, find the maximum of a main-lobe mj that is 

greater than 0.707 (-3 dB).  The cost function of the nearfield array is defined as 

1

J

j
j

Q m
=

= ∑ . (6. 55)

The objective of the present array optimization is to find the deployment that 

maximizes the preceding cost function. 

In addition, the cost function of the nearfield array is defined too from matrix 

conditioning.  From the Fig. 78, let p , v  and G  be the pressure vector, the 

source velocity vector and the propagation matrix, respectively.  The measured 

sound pressures and the source velocities are related by  

= +p Gv n , (6. 56)

where n  is sensor noise.  The unknown reconstructed velocity can be calculated 

ˆ +=v G p , (6. 57)
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where +G  is the pseudo-inverse matrix of G .  The reconstruction error of velocity 

is  

ˆ ( ) ( )+ + + += − = − = + − = − −e v v G p v G Gv n v G n I G G v . (6. 58)

Note that ( )+−I G G  is the projection matrix onto the null space of G .  That is the 

reconstruction error due to ( )+−I G G v  would not contribute to the error in p  and 

+G n  is the term to be minimized.  This can be done by using the matrix induced 

2-norm of +G : 
2

2 2
22
2

( )max max
H H

H

+ + +
+

≠ ≠

⎧ ⎫ ⎧ ⎫⎪ ⎪= =⎨ ⎬ ⎨ ⎬
⎩ ⎭⎪ ⎪⎩ ⎭

n 0 n 0

G n n G G nG
n nn

(6. 59)

That is Rayleigh’s quotient.  Thus, the maximum occurs at the minimum eigenvalue 

of ( )H+ +G G , or equivalently, the maximum singular value of +G .  If the TSVD is 

used to obtain +G , the maximum singular value of +G  will be the reciprocal of the 

minimum singular value of the ‘truncated’ G. 

2

max min2
min

1min min ( ) min max ( )
( )

σ σ
σ

+ += = =
G G G G

G G G
G (6. 60)

It follows that the optimal sensor deployment problem can be posed as a ‘max-min’ 

problem aimed at finding the deployment that maximizes the minimum singular value 

of the ‘truncated’ G.  Alternatively, 

min ( )cond
G

G , (6. 61)

where max min( ) ( ) / ( )cond σ σ=G G G  is the condition number of G .  Therefore, 

another method to define the cost function is shown in Eqs. (6. 60) or (6. 61).   
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Fig. 77  Flowchart demonstrating the procedure of nearfield beam pattern 

calculation. 
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Fig. 78  The block diagram of ESM. 
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6.7.2 Optimizing farfield sensor deployment 

In this section, array optimization is conducted in the context of farfield imaging.  

Simulations with and without the IB constraint are carried out.  The MC and SA 

algorithms are exploited to optimize microphone deployment with no IB constraint.  

On the other hand, the SA, IBMC and a combined SA-IBMC algorithm with 5×6 

URA and random arrays with 30 microphones as the initial settings are employed to 

optimize microphone deployment with the IB constraint.  Numerical simulations are 

all based on ten randomly generated starting points. 

In the first simulation, we try to optimize the farfield array deployment by the 

MC and SA.  Initially, m n×  divisions (m = 24 and n = 30) of a square grid are set 

up on the microphone surface, as shown in Fig. 79 (a).  Each side of the square grid 

measures 0.1m.  The source frequency was considered as f = 1.7 kHz and the speed 

of sound as c = 340 m/s, yielding the wave number 2 / 31.4k f cπ= =  m-1.  In 

addition, a URA of 5 6×  (M = 30) deployment with inter-element spacing d = 0.6m 

is used as a benchmark in the following simulations, as shown in Fig. 79 (a).  Its 

beam pattern calculated by Eq. (4. 26) is shown in Fig. 79 (b).  As expected, the 

grating lobes are clearly visible because the microphone spacing violates the λ/2-rule 

(d = 3λ at f = 1.7 kHz).  The cost function calculated by Eq. (4. 27) is only 1.0261 

because of the grating lobes.  This prompts the use of random deployment of 

microphones as follows. 

In the MC simulation, the 30 microphones can freely occupy any 30 positions of 

the 25 31×  grid points on array surface.  Exhaustive search would require 

4 14 1216 28 49× ×  combinations for a 30-element array, while only 105 iterations are 

carried out using this MC search.  The MC search attains the optimal cost function 

2.6532 at the 27596th iteration.  The learning curve of the MC search is shown in Fig. 

80 (a).  The corresponding microphone positions and beam pattern are shown in Fig. 



 248

80 (b) and Fig. 80 (c), respectively.  Apart from the extremely time-consuming MC 

search, the SA approach is employed next.  The annealing parameters of the SA for 

array deployment are chosen to be Ti = 10 deg K, Tf = 10-8 deg K and 0.95a =  [65], 

[66].  The learning curve of the SA search (405 iterations) is shown in the left 

portion (denoted as 1stSA) of Fig. 80 (d).  The curve fluctuates initially and then 

converges to a constant value 2.5767 between the 351st and the 405th iteration.  The 

optimal microphone deployment and beam pattern are shown in Fig. 80 (e) and Fig. 

80 (f).  In addition to optimizing the microphone positions, optimizing the 

microphone weights can further improve the value of the cost function.   

On the basis of the configuration found previously by the SA, we continue to 

optimize the weights of microphones again using the SA algorithm.  The number of 

iterations is increased to 1000.  Starting from unity weights, the microphone weights 

are adjusted in each iteration with a random perturbation within the range of -0.1 to 

0.1.  The learning curve is shown in the right portion (denoted as 2nd SA) of Fig. 80 

(d).  The cost function is further increased to 2.7561 at the 1283rd iteration.  The 

resulting beam pattern is shown in Fig. 80 (g), where a unique main-lobe is clearly 

visible. 

In this section, the SA, IBMC and a combined SA-IBMC algorithm are exploited 

to optimize microphone deployment with the IB constraint.  Both microphone 

positions and weights are to be optimized using the SA algorithm.  Specifically, the 

combined SA-IBMC method proceeds with three stages—the 1stSA stage, the IBMC 

stage, and the 2ndSA stage.  The parameters of the two SA stages are identical to 

those in above simulation.  The learning curve of the 1stSA stage (405 iterations) is 

shown in the left portion of Fig. 81 (a).  The curve fluctuates initially and then 

converges to a constant value 2.5328 between the 208th and the 405th iteration.  The 

resulting microphone deployment and beam pattern are shown in Fig. 81 (b) and Fig. 
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81 (c).  Being able to avoid local minima by accepting “bad” solutions in the initial 

SA search can be a benefit and a shortcoming as well.  A shortcoming of the SA 

algorithm is that it can miss the optimal solution in the initial stage and converges 

prematurely to a suboptimal one.  A hybrid SA-IBMC approach is used in an attempt 

to address this problem. 

The previous deployment obtained by the SA search is used as the input to the 

IBMC simulation.  The microphone position can be randomly chosen from the nine 

grid points in the localized region.  Each region necessarily contains one and only 

one microphone.  Exhaustive search would require prohibitively 930 combinations 

for a 30-element array, while only 100 iterations are required in the IBMC search.  

The learning curve of the IBMC (iteration 406-505) is shown in Fig. 81 (a).  By the 

IBMC search, the cost function is further increased to 2.5465 at the 482nd iteration.  

Fig. 81 (d) and Fig. 81 (e) show the optimal microphone positions and beam pattern 

obtained at the 482nd iteration.  Next, in the 2nd SA stage, the microphone weights are 

optimized based on the configuration found previously by the SA-IBMC approach.  

The microphone weights initially set to unity are adjusted in each iteration with a 

random perturbation within the range of -0.1 to 0.1.  The learning curve in 506 

iterations is shown in Fig. 81 (a).  The cost function is further increased to 2.6602 at 

the 1429th iteration.  The resulting beam pattern is shown in Fig. 81 (f), where a 

unique main-lobe is clearly visible. 

Apart from the URA, the random array deployment is also used as the initial 

setting in the simulation.  For brevity, the results of the MC, IBMC, SA and 

SA-IBMC simulations are summarized in Table 10.  The highest value of the cost 

function obtained with these ten randomly generated starting points is regarded as the 

optimal Q in Table 10.  The simulation results obtained with and without the IB 

constraint are compared in terms of number of iterations and the maximum cost 
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function values.  Although the MC approach has reached the highest cost function 

(Q = 2.6532), it takes 27596 iterations to achieve this value.  By comparing the 

results of the MC and IBMC (with the URA as the initial setting), we found that the 

IBMC approach can attain comparable cost function value to the MC approach with 

far less amount of computation (Q = 2.5638 at the 7662nd iteration of IBMC vs. Q = 

2.6532 at the 27596th iteration of MC).  In comparison with the results obtained 

using the SA algorithm with the IB constraint (Q = 2.6602 for the URA as the initial 

setting and Q = 2.6573 for a random array as the initial setting), the SA approach with 

no IB constraint has attained a slightly higher cost function (Q = 2.7561) with 

comparable computational complexity.  It all boils down to the tradeoff between 

search time and optimality.   

Incorporating the IB constraint could potentially have the following benefits.  

First, the IBMC algorithm is computationally more efficient than the plain MC 

algorithm because of smaller search areas.  Second, in the hybrid SA-IBMC 

approach, the IB constraint could possibly improve the SA results when the SA 

algorithm converges prematurely to a suboptimal result.  Third, the IB constraint 

normally results in uniform distributions of microphones.  By “uniform”, we simply 

mean that microphones would not concentrate at only a few areas, which should not 

be confused with the deployment of the constant-spacing uniform arrays.  In 

summary, it is fair to say that the IB constraint significantly reduces the computation 

complexity at the risk of converging to a suboptimal solution which may not be far 

from the global optimum.  This is generally sufficient in practical applications. 

Apart from the source frequency of 1.7 kHz, we also run the simulation for the 

frequencies of 500 Hz and 1 kHz.  For brevity, we only summarize the results in 

Table 11.  Random arrays yield unique main-lobe and higher cost function than the 

URA at 1 kHz.  For the lower frequency of 500 Hz, no grating lobes are seen in the 
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beam pattern of URA, while a higher side-lobe level is found in the beam pattern of 

the random array.  This leads to a higher value of cost function for the URA than the 

random array at low frequencies.  In the next section, we will examine whether the 

same idea of random array applies to nearfield imaging as well. 
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Table 10  The search performance of different optimization methods for farfield 

array deployment with the inter-element spacing d = 0.6 m.  The letter “w” 

indicates that weight optimization is performed. 

Constraint Method 
Find best Q  

Iterations 

Best Q  

(Linear) 

MC 27596 2.6532 

SA 351 2.5767 

without IB 

(initially random 

array) SA + w 1283 2.7561 

IBMC 7662 2.5638 

SA 208 2.5328 

SA + IBMC 482 2.5465 

with IB 

(initially URA) 

SA + IBMC + w 1429 2.6602 

IBMC 23285 2.5617 

SA 222 2.5224 

SA + IBMC 406 2.5224 

with IB 

(initially random 

array) 

SA + IBMC + w 1352 2.6573 
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Table 11  The comparison of converged cost function Q of the URA and the 

optimized farfield random arrays at three different frequencies. 

Array f = 500 Hz f = 1 kHz f = 1.7 kHz 

URA 4.0216 1.0192 1.0261 

Random array 

(without IB, initially random array)
1.5961 2.5451 2.7561 

Random array 

(with IB, initially URA) 
2.5048 2.3324 2.6602 

Random array 

(with IB, initially random array) 
2.6573 2.4305 2.6573 
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(a) 

 

(b) 

Fig. 79  The URA with inter-element spacing 0.6m (3λ at the frequency 1.7 kHz) for 

farfield imaging.  (a) Array deployment, (b) beam pattern. 
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(a) 

 

 

(b) 
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(c) 

 

 

(d) 



 257

 

(e) 

 

 

(f) 
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(g) 

Fig. 80  The farfield array optimized using the MC and the SA algorithms without 

the IB constraint at the frequency 1.7 kHz.  For the MC simulation, 

maximum cost function Q = 2.6532 is attained at the 27596th iteration.  For 

the SA simulation, maximum cost function Q = 2.7561 is attained at the 

1283rd iteration.  The circle indicates the main-lobe.  (a) Learning curve 

of the MC search, (b) optimal array deployment obtained using the MC 

search, (c) beam pattern obtained using the MC search, (d) learning curve of 

the SA search, (e) optimal array deployment obtained using the SA search, 

(f) beam pattern obtained using the SA search, (g) beam pattern with 

weights optimized. 
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(a) 

 

 

(b) 
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(c) 

 

 

(d) 
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(e) 

 

 

(f) 

Fig. 81  The farfield array optimized using the MC algorithm and the combined 
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SA-IBMC algorithm with the IB constraint at the frequency 1.7 kHz.  

Maximum cost function Q = 2.6602 is attained at the 1429th iteration.  The 

circle indicates the main-lobe.  (a) Learning curve, (b) optimal array 

deployment obtained using the SA search, (c) beam pattern obtained using 

the SA search, (d) optimal array deployment obtained using the SA-IBMC 

search, (e) beam pattern obtained using the SA-IBMC search, (f) beam 

pattern with weights optimized. 
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6.7.3 Optimizing nearfield sensor deployment 

In this simulation, the MC, SA, IBMC algorithms and a combined SA-IBMC 

algorithm are exploited to optimize microphone deployment for nearfield imaging.  

The 5×6 URA and random array with 30 microphones are used as the initial setting 

for the simulation of nearfield imaging.  With reference to Fig. 61, the array 

parameters are chosen as: microphone spacing d = 0.6m, focal point spacing df = 0.6m 

(3λ at the source frequency of 1.7 kHz), and DOR L = 0.1m.  The focal points are 

collocated underneath with the microphones on a conformal plane (the number of 

focal points is equal to the number of microphones).  Thus, finer 25 31×  grid points 

are set up on the microphone surface.  The microphone is free to move to any grid 

point inside the assigned localized regions.  The dimensions of the localized regions 

(see Fig. 21) are dmx = dmy = 0.6m and the spacing of the grid points is dx = dy = 0.1m.  

The main-lobes are defined as the interior of the circles centered at each focal point 

with the radius mr = 0.02m (the minimal distance between two adjacent grid points).  

The iteration limit MCI  and IBMCI  are chosen to be 5000 and 1000, respectively.  

The Fig. 82 (a) and Fig. 82 (b) show the cost function history of the MC search and 

the IBMC search with the URA as the initial setting, respectively.  The maximum 

value of the cost function Q = 27.3 corresponds to the initial URA deployment cost 

function at the frequency of 1.7 kHz.  Apart from the time-consuming MC algorithm 

and the IBMC algorithm, another attempt was made to find the optimal deployment 

using the more efficient SA algorithm.  The annealing parameters are chosen to be: 

Ti = 10 deg K, Tf = 10-8 deg K and 0.95a = .  After 405 iterations, we obtained the 

learning curve with the URA as the initial setting, as shown in Fig. 82 (c).  This 

learning curve converges to a stable value 3.8502 at the low-temperature stage, as a 

typical SA behavior.  This Q value is apparently suboptimal since it is smaller than 

the initial Q = 27.3 of the URA.  The maximum cost function remains the initial cost 
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function (Q = 27.3 at the frequency 1.7 kHz) corresponding to the URA deployment.  

Finally, the hybrid approach SA-IBMC is employed to optimize the nearfield array 

with the URA as the initial setting.  The learning curve (405 SA iterations + 100 

IBMC iterations) is shown in Fig. 82 (d).  The maximal cost function remains to be 

that of the initial URA deployment.  Table 12 summarizes the search performance of 

nearfield optimization methods for three different frequencies 500 Hz, 1 kHz and 1.7 

kHz with the URA and the random array as the initial settings.  As concluded from 

the table, even though the other initial setting is used for optimizing the random array, 

the optimal deployment with the maximal cost function remains to be the URA.  

These results suggest that the optimal nearfield array is the URA when the number of 

focal points is equal to the number of microphones.  The nearfield beam patterns 

defined in chapter 6.7.1 calculated for the URA in Fig. 77 at the frequencies 500 Hz, 1 

kHz and 1.7 kHz are shown in Fig. 83 (a)-Fig. 83 (c).  Thirty main-lobes with equal 

height centered at the focal points are clearly visible.  The beam pattern of a 

non-optimized nearfield array at the frequency 1.7 kHz by the SA and SA-IBMC 

algorithms is shown in Fig. 83 (d).  Clearly, the converged pattern is a dramatic 

departure from the URA and the associated beam pattern is quite ugly with quite a 

few “defocused” points.  To see the contrast, we also show an example of random 

deployment that corresponds to the optimized farfield deployment obtained previous 

using the SA-IBMC method (the nearfield cost function).  The beam pattern of the 

deployments at the frequencies 500 Hz, 1 kHz and 1.7 kHz are shown in Fig. 84 

(a)-Fig. 84 (c).  It can be seen from the quite smeared beam patter that many 

main-lobes are defocused or even missed.  These observations lead to a conclusion 

that contradicts the farfield experience -- random deployment degrades the 

multi-focusing performance and the URA is the optimal array.  In addition, Table 13 

summarizes the performance of different numbers of focal points using the same 5×6 
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URA with the inter-element spacing d = 0.6m (corresponding to 3λ for the frequency 

1.7 kHz) at the frequencies 500 Hz, 1 kHz and 1.7 kHz.  The cost function for 5×6 

focal points (the number of microphones) is 27.3 at the frequency 1.7 kHz. It 

increases to 28.3 when the number of focal points is increased to 9×11. However, for 

13×16 focal points the cost function decreases to 16.6, showing that it does not 

increase indefinitely with the number of microphones. 
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Table 12  The search performance of different optimization methods for nearfield 

array deployment with the inter-element spacing d = 0.6 m at three different 

frequencies. 

Best Q  

(Linear) Method 
Frequency 

(Hz) 
initially URA initially random array 

500 28.2 8.5 

1000 26.9 8.3 MC 

1700 27.3 8.2 

500 28.2 9.1 

1000 26.9 9.5 IBMC 

1700 27.3 10 

500 28.2 4.2 

1000 26.9 5.6 SA 

1700 27.3 4.7 

500 28.2 4.2 

1000 26.9 5.6 SA+IBMC 

1700 27.3 4.7 
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Table 13  The performance obtained using different numbers of focal points in a 5×6 

URA with the inter-element spacing d = 0.6m at three different frequencies.   

Q  

(Linear) 
Frequency 

(Hz) 
5×6 focal points 9×11 focal points 13×16 focal points 

500 28.2 28.8 26.7 

1000 26.9 27.2 21.8 

1700 27.3 28.3 16.6 
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(a) 

 

 

(b) 
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(d) 

SA IBMC 
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Fig. 82  The cost function history of nearfield array optimization with inter-element 

spacing 0.6m (3λ at the frequency 1.7 kHz).  Maximum cost function value 

is Q = 27.3 for the initial URA deployment.  (a) All Q values, including 

those rejected during the random search by the MC algorithm, (b) all Q 

values, including those rejected during the random search by the IBMC 

algorithm, (c) only the legitimate values accepted by the SA algorithm, (d) 

only the legitimate values accepted by the SA-IBMC algorithm. 
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(a) 

 

 

(b) 
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(c) 

 

 

(d) 

Fig. 83  The beam pattern of the optimized nearfield array (URA). The inter-element 
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spacing is 0.6m (3λ at the frequency 1.7 kHz).  (a) At the frequency 500 

Hz, Q = 28.2, (b) at the frequency 1 kHz, Q = 26.9, (c) at the frequency 1.7 

kHz, Q = 27.3, (d) the beam pattern of a non-optimized nearfield array at 

the frequency 1.7 kHz by the SA and SA-IBMC algorithms, Q = 3.8502.  

The circles indicate the main-lobe.  The symbol“‧” indicates the focal 

points. 
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(a) 

 

 

(b) 
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(c) 

Fig. 84  The beam pattern of a non-optimized nearfield array.  The microphone 

deployment is identical to the optimized farfield array obtained using the 

SA-IBMC algorithm.  (a) At the frequency 500 Hz, Q = 3.5, (b) at the 

frequency 1 kHz, Q = 3.4, (c) at the frequency 1.7 kHz, Q = 3.9.  The 

circles indicate the main-lobe.  The symbol“‧” indicates the focal points. 
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6.8 System integration and experimental arrangement 

To validate the NAH technique, experiments were undertaken in the laboratory. 

The block diagram of the experimental arrangement is shown in Fig. 85.  Two PXI 

4496 systems [82] in conjunction with LabVIEW [82] were used for data acquisition 

and processing.  A bandpass filter is used to prevent aliasing and errors occurring in 

the out-of-band frequencies.  The source amplitude, source strength, sound pressure, 

particle velocity and sound intensity reconstructed using NESI can be displayed on 

the monitor.   

In the experimental arrangement, sensor calibration is requisite before 

microphone measurement.  First, set a real source (random sources with 

band-limited to appointed frequency that usually / 2sf f= ) at the center of array at 

far distant place, as shown in Fig. 86.  The frequency response H  is measured by 

this calibration structure.  Secondly, calibration filter is calculated for the calibration 

processor with 1H  being the benchmark filter 

1 , 1, 2, ,a
m

m

HH m M
H

= = , (6. 62)

where M  is number of microphone.  Finally, it is noted that the calibration filter 

aH  obtained are still in the frequency-domain.  Inverse FFT is called for to convert 

and truncate these FRFs into FIR filters in the time-domain.  In this step, circular 

shift is needed to ensure that the resulting filters are causal filters.  Now that the 

calibration filters are available, the response of microphones is calibrated by using 

calibration filter: 

( ) ( ) , 1, 2, ,a
m m mp n p n H m M′ = ∗ = , (6. 63)

where n denotes the discrete-time index and mp  is pressure measurement by mth 

microphone.   

 



 277

 

 

Fig. 85  The experimental arrangement for a wooden box with a loudspeaker fitted 

inside ,the URA, and a 30-channel random array optimized for farfield 

imaging are also shown in the picture. 
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Fig. 86  Sensor calibration. 
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CHAPTER 7. APPLICATION EXAMPLES 

 

Practical sources such as scooter, vehicle, IT equipment, compressor and a 

vibrating plate were chosen as the application examples of the NESI technique.  The 

close-up view of the microphone array used in the experiments is shown in Fig. 87. 
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Fig. 87  Close-up view of the 5×6 rectangular array. 
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7.1 Scooter: transient sources 

In the following, a 125cc SYM scooter served as a more practical source to 

justify performance of the NESI technique.  The scooter is mounted on a 

dynamometer inside a semi-anechoic room.  The 4 4×  rectangular array was placed 

in front of the scooter engine case.  The array parameters are selected to be M = J = 

4×4, d = df  = 0.1m = λ/2 for 1.7 kHz and L = d/2.  The inverse filtering was carried 

out by using 16×16 = 256 channels of FIR filters, each filter of order 252.  In a total, 

256×252 = 64512 multiplications are required for DC, which is computationally 

demanding.  To reduce the complexity, the minimal realization obtained using the 

ERA is used.  The singular values of H(0) are plotted in Fig. 88 (a), indicating the 

lowest 80 orders in SVD suffice to realize the multichannel inverse filter.  The close 

agreement of the frequency responses and the impulse responses of the inverse filter 

C13 between the original filter and the filter regenerated using the ERA with v = 80 are 

shown in Fig. 88 (b)-Fig. 88 (c).  In this case, only v2 + vM + Jv + JM = 9216 

multiplications are required using the ERA state-space model.  The computational 

efficiency has been improved by a factor of seven. 

In the first experiment, the NESI was applied to reconstruct the sound field on 

the right side of the scooter running at the idle speed.  In order to enhance 

computational efficiency, the aforementioned ERA technique with v =28 is used for 

multichannel filtering.  The unprocessed rms sound pressure picked up at the 

microphones is shown in Fig. 89 (a).  This figure would lead to the incorrect 

conclusion that the major noise source was located at the left boundary unless the 

NESI was applied.  The rms source strength, sound pressure, particle velocity, and 

sound intensity reconstructed by using the NESI is shown in Fig. 89 (b)-Fig. 89 (e).  

With NESI, the dark red area in the reconstructed pressure field reveals that the 

cooling fan at the center was the main culprit.  In addition to the cooling fan, the 
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reconstructed sound fields (Fig. 89 (b)-Fig. 89 (e)) indicate that there were secondary 

sources at (0m, 0m) and (0m, 0.2m) on the tire.   

In final experiment, a 125cc scooter served as a practical source to examine the 

capability of NESI in dealing with non-stationary sources.  The scooter is mounted 

on a dynamometer inside a semi-anechoic room.  The NESI was used to reconstruct 

the sound field on the right side of the scooter in a run-up test.  The engine speed 

increased from 1500 rpm to 7500 rpm within ten seconds.  The unprocessed sound 

pressure received at the microphones is shown in Fig. 90 (a), while the rms velocity 

reconstructed using the NESI is shown in Fig. 90 (b).  These results revealed that the 

cooling fan behind the vented engine cover was the major noise source.  Next, the 

virtual microphone technique is employed to see if it is possible to further enhance the 

image quality by increasing the number of channels from 4 4 16× =  to 11 11 121× = .  

The inverse filters have been designed in the previous numerical investigation.  The 

particle velocity was then reconstructed on the basis of the estimated source amplitude, 

as shown in Fig. 90 (c).  Total sound power level is 95 dB re. 121 10−× W.  Clearly 

visible is a larger area of image with improved resolution than that of Fig. 90 (b), 

where again the cooling fan is the major noise source.  Therefore, this experiment 

proved that the proposed NESI technique applies to not only broadband random but 

also transient noise sources. 
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Fig. 88  The ERA technique.  (a) The singular value plot of (0)H , (b) the 

frequency responses of the inverse filter 13C  of the original filter and the 

filter regenerated using ERA with 80v = , (c) the impulse responses of the 

inverse filter 13C  of the original filter and the filter regenerated using ERA 

with 80v = . 
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(e) 

Fig. 89  The scooter experiment.  The NESI was applied to reconstruct the sound 

field on the right side of the scooter running at the idle speed.  (a) The 

unprocessed rms sound pressure image received at the microphones, (b) the 

rms source strength image, (c) the reconstructed rms sound pressure image, 

(d) the reconstructed rms particle velocity image, (e) the reconstructed rms 

sound intensity image 
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(a) 

 

 

(b) 
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(c) 

Fig. 90  The results of run-up experiment obtained using NESI with the 4 4×  URA.  

The scooter engine was accelerated from 1500 rpm to 7500 rpm within ten 

seconds.  (a) The unprocessed sound pressure image received at the 

microphones, (b) the reconstructed active intensity image, (c) the 

reconstructed active intensity image using the virtual microphone technique.  

The symbol“ ” indicates the microphones.  The symbol“• ” indicates the 

focal points. 
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7.2 Compressor 

In the experiment, a compressor served as a practical source to examine the 

capability of the six algorithms.  The compressor is mounted on a table inside a 

semi-anechoic room that the major noise is at the air intake position on the top of the 

compressor and the minor noise is low intensity vibration at the entire body.  

Different with loudspeaker experiment, the source of this experiment is not on the 

planar surface.  The observed frequencies in the algorithms are chosen to be 1.2 kHz.  

The noise images obtained by processing of the six algorithms with URA are shown 

in Fig. 91 (a)-Fig. 91 (f).  From Fig. 91 (a), Fourier NAH has a terrible noise source 

distribution, consistent with the theory that the source should be planar in Fourier 

NAH to identify successfully.  From the reconstructed sound pressure of NESI 

shown in Fig. 91 (b), NESI can identify the major source at the air intake and the 

vibration at overall body.  The result of DAS is bad by wrong location and very big 

main lobe but TR provide an acceptable result as shown in Fig. 91 (c)-Fig. 91 (d).  In 

the noise images of MVDR and MUSIC, they identified the noise source at the air 

intake accurately and the result of MUSIC is aim at the major source. 
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(a) 

 

 

(b) 
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(c) 

 

 

(d) 
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(e) 

 

(f) 

Fig. 91  The results of compressor experiment obtained using the 5×6 URA.  The 

major noise is at the air intake position situated at (0.2m, 0.3m).  The 
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observed frequencies in the algorithms are chosen to be 1.2 kHz.  (a) The 

reconstructed sound pressure image by Fourier NAH, (b) the reconstructed 

sound pressure image by NESI, (c) the source image obtained by using 

DAS, (d) the source image obtained by using TR, (e) the source image 

obtained by using MVDR, (f) the source image obtained by using MUSIC. 

 



 295

7.3 IT equipment 

In this experiment, a desktop computer is used to validate the NESI technique by 

using a 5 6×  URA.  The microphone spacing d is selected to be 0.1 m (λ/2 

corresponding to maxf = 1.7 kHz)..  The multichannel filtering is performed using 

ERA with v =100.  The unprocessed sound pressure picked up at the microphones 

within the band 1200 ~ 1300 Hz is shown in Fig. 92 (a).  This figure would lead to 

the incorrect conclusion that the noise source was located at the middle bottom.  The 

active intensity was then reconstructed using the NESI, as shown in Fig. 92 (b) within 

the band 1200 ~ 1300 Hz.  The bright areas on the intensity plot revealed that the 

power fan located at (0m, 0.3m), the metal plate located at (0m ,0.1m), the electric 

wire located at (0.3m, 0.1m), the floppy disk drive located at (0.4m, 0.2m) and the 

cabin mount located at (0.4m, 0m) are the major sources.  Total sound power level is 

90 dB re. 121 10−× W.  The NESI images apparently yielded more reliable 

information about noise sources than the unprocessed sound pressure. 

To conclude this section, an experiment was undertaken to verify the conclusion 

obtained in the previous numerical simulation by the authors.  The active intensity 

reconstructed using a random array optimized for farfield imaging within the band 

1200 ~ 1300 Hz is shown in Fig. 93.  Except that the power fan (0m, 0.3m) and the 

cabin mount (0.4m, 0m) in the desktop computer were correctly identified as the 

major noise sources in Fig. 93, the other sources previously identified by the URA in 

Fig. 92 were largely missed.  This attests the conclusion drawn from the numerical 

simulation that random deployment offers little advantages for nearfield imaging and 

the URA is the optimal array configuration. 
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(a) 

 

 

(b) 

Fig. 92  The noise map within the band 1200 ~ 1300 Hz obtained using the 5 6×  
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URA for the desktop computer.  (a) The unprocessed sound pressure image 

received at the microphones, (b) the active intensity image reconstructed 

using NESI.    The symbol“• ” indicates the focal points. 
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Fig. 93  The active intensity map within the band 1200 ~ 1300 Hz obtained using the 

random array for the desktop computer.  The reconstructed active intensity 

image.  The symbol“• ” indicates the focal points. 
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7.4 Wooden box 

In this experiment, a wooden box model with loudspeaker fitted inside is used to 

validate the NESI technique by using a 5 6×  URA.  As shown in Fig. 94, several 

holes with different shapes are cut in the front face of the box like a Jack_O_Lantern.  

A circle, two squares, and a slit are located at (0.5m, 0.4m), (0m, 0.4m), (0.25m, 

0.25m) and (0.25m, 0m), respectively.  The loudspeaker produces random noise 

band-limited to 1.7 kHz.  The microphone spacing d is selected to be 0.1m (λ/2 

corresponding to maxf = 1.7 kHz). 

The unprocessed sound pressure picked up at the microphones within the band 

200~1600 Hz is shown in Fig. 95 (a).  From the image, the noise sources were barely 

resolvable, particularly for the noise source at the edge - the circle, the slot and the 

square at upper left corner. Also, the square at the center was difficult to distinguish. 

Virtual microphone technique was again applied to overcome this problem by 

interpolate and extrapolate the pressure field on the microphone surface and increase 

the number of microphones and focal points from 5 6×  to 13 15× . With the new 

setting, the particle velocity (rms) reconstructed using the NESI is shown in Fig. 95 

(b).  It can be clearly observed from the result that the quality of the reconstructed 

image was significantly improved.  Problems due to edge effect and insufficient 

resolution were basically eliminated.  

The NESI images apparently yielded more reliable information about noise 

sources than the unprocessed sound pressure. 
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Fig. 94  The experimental arrangement for a wooden box model with a loudspeaker 

fitted inside and holes cut on the frontal surface. 
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(a) 

 

 

(b) 

Fig. 95  The results of a wooden box with a loudspeaker fitted inside. The noise map 
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is within the band 200 Hz ~ 1.6k Hz.  (a) The unprocessed sound pressure 

image received at the microphones by 5 6×  URA, (b) the particle velocity 

image reconstructed using NESI by the 5 6×  URA. 
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7.5 Non-contact modal analysis 

An interesting application of the NESI is non-contract modal analysis of 

vibrating structures.  The mode shapes of the structure can be calculated by 

reconstructing the surface velocity without having to mount accelerometers on the 

surface as usually so in the traditional modal analysis.  An experiment is undertaken 

in an anechoic room to validate the ESM NAH in reconstructing the surface velocity 

of a free-edged aluminum (0.2m × 0.2m × 0.002m).  The experimental arrangement 

is shown in Fig. 96.  The plate was driven at the resonant frequency 594 Hz.  The 

apertures of the 9 × 11 URA and the plate are identical, with the microphone spacing 

dx = 0.02m and dy = 0.025m in x and y directions, respectively.  The array is 

positioned 0.02m above the plate.  The velocity reconstructed by the ESM NAH was 

compared to the surface velocity measured using a scanning laser vibrometer 

(PSV-400, Polytec).  In addition, the Chladni pattern (mode shape) at the same 

frequency was obtained by a salt sprinkle test, as shown in Fig. 97.  The velocity 

distribution of the plate measured by the scanning laser is shown in Fig. 98 (a).  The 

frequency-domain magnitudes of the surface velocity reconstructed using various 

RDs, 1/20d, 1/2d, 1d and 2d are shown in Fig. 98 (b)-Fig. 98 (e).  By inspecting the 

velocity patterns in Fig. 98, the best match is evidenced between the patterns in Fig. 

98 (a) and Fig. 98 (c) which is obtained using d/2 RD, whereas the reconstructed 

patterns in Fig. 98 (b), Fig. 98 (d) and Fig. 98 (e) differ drastically from the laser 

scanned result.  This result is also consistent with the Chladni pattern shown in Fig. 

97.  The experimental results above suggest that the choice of RD is vital to 

reconstruction quality in the ESM NAH.  To more precisely quantify the comparison 

of reconstruction performance, the velocity data reconstructed by the ESM using d/2 

RD and the surface velocity data measured by the scanning laser are compared in Fig. 

99 for all lattice points.  The error metric is the relative velocity reconstruction error 
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defined in Eq. (6. 46).  Vectors u and ur represent the laser-measured and the 

ESM-reconstructed velocity vectors, respectively.  The relative errors of the 

reconstructed velocity thus calculated are 100% for RD = 1/20d, 28.11% for RD = 

1/2d, 71.47% for RD = 1d, and 72.97% for RD = 2d.  The ESM using RD = 1/2d has 

achieved far better (28.11%) surface velocity reconstruction than the other three RD 

settings.  This substantiates our preceding conclusion that the optimal RD for 

reconstructing surface velocity of planar sources using the ESM is d/2, which is 

smaller than the conventional choice of 1-2 times spacing. 
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Fig. 96  Experimental arrangement for an aluminum plate. 
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Fig. 97  Mode shape at the resonant frequency 594 Hz obtained using a salt sprinkle 

test. 
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(a) 

 

(b) 
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(e) 

Fig. 98  The surface velocity of the plate.  (a) The velocity distribution of the plate 

measured by the scanning laser.  The surface velocity reconstructed using 

various RDs (b) 1/20d, (c) 1/2d, (d) 1d and (e) 2d.  The microphones are 

indicated in the figure using black dots.  
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Fig. 99  The velocity data reconstructed by the ESM using d/2 RD and the surface 

velocity data measured by the scanning laser are compared for all lattice 

points. 
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7.6 Other applications of the ESM 

The ESM applies not only to NSI but also other applications.  In automotive 

hands-free system, the Single input multiple output equivalent source inverse filtering 

(SIMO-ESIF) algorithms are implemented to reconstruct the speech signal in a 

reverberant environment [83].  Specifically, the system serves two purposed: 

dereverberation and noise reduction.  In order to further improve the noise reduction 

performance in spatial filtering and robustness against system uncertainties, the 

SIMO-ESIF algorithm is combined with an adaptive Generalized Side-lobe Canceller 

(GSC).  As indicated by several performance measures in noise reduction and speech 

distortion, the proposed microphone array algorithm proved effective in reducing 

noise in human speech without significantly compromising the speech quality.   

In application of reverberation [84], a synthesis technique is developed using 

discrete boundary source representation in an attempt to overcome these difficulties.  

In comparison with FEM and BEM that rely upon complex numerical operations, the 

ESM method is based on simple representation of the sound field with a distribution 

of discrete simple sources on the boundary.  The filtering property of human hearing 

is also exploited in a non-uniform sampling procedure to further simplify the 

computation.  Subjective listening experiments also demonstrate that the ESM 

technique is capable of conferring remarkable realism of reverberation. 

In application of modeling head related transfer functions (HRTF) [85], the 

HRTFs for a given head with pinnae are calculated with minimal amount of 

computation using ESM.  In the process, a special regularization scheme is required 

to calculate the equivalent strengths of virtual sources.  The HRTFs obtained using 

ESM agrees reasonably well in terms of frequency response, directional response and 

impulse response with the other methods. The ESM obviates the singularity problem 

as commonly encountered in the BEM, and is less computationally demanding than 
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the BEM in terms of time and memory usage. 

In dodecahedral loudspeaker, the ESM is employed to calculate the pressure 

radiation pattern of the source.  The aim is design a dodecahedral loudspeaker source 

to approximate an omni-directional source.  The ESM also find applications in 

Ambisonics, supersensitive array, p-v-based array and superdirective optimized array, 

and so forth. 
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CHAPTER 8. CONCLUSIONS 

This thesis presents a comprehensive overview of microphone array technology 

encompassing all aspects from the underlying theory to implementation.  Farfield 

and nearfield sound image have been addressed in this thesis.  In the farfield sound 

image, there have two major researches in this thesis.  First, optimized planar array 

deployment for source imaging is investigated in this thesis.  Global optimization 

algorithms have been developed to facilitate the search of the optimized microphone 

deployment.  The SA algorithm and the combined SA-IBMC algorithm prove 

effective in finding the optimal deployment.  For far-field array with sparse 

deployment in which inter-element spacing is large, random deployment with optimal 

weights is crucial to avoid grating lobes.  As predicted by the conventional wisdom, 

the optimized random sparse array has excellent beam pattern with a unique 

main-lobe.  Second, several acoustic imaging algorithms including DAS, TR, 

MVDR, MUSIC and an inverse filter-based method SIMO-ESIF have been developed 

to estimate DOA.   The resolutions of noise maps in low frequency are much worse 

than in high frequency with random array configuration.  The proposed SIMO-ESIF 

approach can use URA to estimate DOA in high frequency without grating lobes 

problem.  As expected, the high resolution methods such as MVDR and MUSIC can 

obtain much greater results than DAS, TR and SIMO-ESIF in localizing sound source 

positions. 

In the nearfield sound image, optimized nearfield array deployment for source 

imaging is investigated.  The outcome of the work is twofold.  First, global 

optimization algorithms have been developed to facilitate the search of the optimized 

microphone deployment.  Second, whether or not randomization is necessary in 

nearfield imaging is explored, with the aid of the above optimization techniques.  

The hybrid SA-IBMC algorithm proves effective in finding the optimal deployment.  
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To answer the question whether the idea of random deployment acquired in farfield 

imaging applies to nearfield imaging as well, simulation employing the MC, IBMC, 

SA and SA-IBMC optimization techniques were conducted.  Due to its complicated 

nearfield and multi-focusing nature, a special kind of beam-pattern alongside the cost 

function is defined.  It was observed with all the adopted optimization approaches 

that the cost function keeps fluctuating and shows no sign of convergence.  The 

maximum cost function is always the initial cost function corresponding to the URA 

deployment.  Random deployment seems to present no particular benefit for 

nearfield imaging and the optimal array is the URA.  The NESI enables effective 

identification of noise sources based on sound pressure, particle velocity, and intensity 

images.  Inverse filters are design using the least-squares optimization with the aid of 

Tikhonov regularization.  Criteria for choosing array parameters are summarized.  

In particular, the DOR is always selected to render the condition number of 

propagation matrix below 103.  The window design is employed to alleviate 

boundary defocusing problem.  Singularity problem is circumvented by using a 

retreat  focal point technique.  The state-space form obtained using the ERA is 

exploited to enhance computation efficiency for real-time implementation.  The 

NESI proves effective in the identification of broadband random and transient noise 

sources.  In addition, the NESI does not need as large channel count as the NAH 

approach.  Experimental investigations have been undertaken to verify the proposed 

implementation technique.  It is observed from the results that the practicality of 

NESI has been considerably enhanced by the use of the proposed techniques. 

Various implementation issues of the NESI technique which is a time-domain 

ESM have been investigated in chapter 6 and 7.   A virtual microphone technique is 

employed to minimize edge effects using extrapolation and to improve imaging 

resolution using interpolation when only patch array with scarce sensors are available.  
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Numerical simulations suggest that the optimal distance ranges from 0.4 to 0.5 times 

spacing for planar sources, whereas the optimal distance can vary from 0.8 to 1.7 

times average spacing for the spherical source.  Although the optimal distance is not 

a unique value and may well depend on many factors, the contribution of this work is 

to provide an effective methodology for finding the optimal distance for ESM 

applications.  Experiments were also carried out for a vibrating aluminum plate to 

validate the optimization results.  It appears that the optimal RD is less than that 

predicted by the 1-2 spacing rule except some “outlier” cases (such as 1.7 spacing in 

the 0   180θ =  case of the spherical piston example).  From the compressor 

experiment, the six algorithms are compared on the point of resolution and 

performance.  Both Fourier NAH and NESI have good performance while NESI is 

more robust than Fourier NAH for it can reconstruct the sound field from the source 

of arbitrary shape.  As expected, the high resolution methods such as MVDR and 

MUSIC can obtain greater results than DAS and TR in localizing the source position.  

Although the resolution of MVDR and MUSIC are better than Fourier NAH and 

NESI but the performance of Fourier NAH and FDNESI are better.  Most important 

of all, Fourier NAH and NESI can reconstruct the acoustic variables such as sound 

pressure, particle velocity and active intensity. 
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