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Microphone Arrays: Noise Source Identification

and Sound Field Visualization

Student : Jia-Hong Lin Advisor - Stone Cheng

Co-Advisor : Mingsian R. Bai

Department of Mechanical Engineering

National Chiao Tung University

ABSTRACT

Farfield and nearfield microphorie arrays .are. proposed for noise source
identification (NSI) and sound field visualization (SFV). In farfield array, arrays
with sparse and random®microphone—depleyment are known to be capable of
delivering high quality far-field. images without™ grating lobes. In the optimal
deployment of microphone arrays, global ‘optimization techniques including the
simulated annealing (SA) algorithm and the intra-block Monte Carlo (IBMC)
algorithm are exploited to find the optimal microphone positions efficiently. In
direction of arrival (DOA) estimation, the planar wave sources are assumed to be
spherical wave sources in this thesis. Farfield acoustic imaging algorithms including
the delay and sum (DAS) algorithm, the time reversal (TR) algorithm, the single input
multiple output equivalent source inverse filtering (SIMO-ESIF) algorithm, the
Minimum variance distortionless response (MVDR) algorithm and the multiple signal
classification (MUSIC) algorithm are employed to estimate DOA. Results show that

the MUSIC algorithm can attain the highest resolution of localizing sound sources
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positions. In narfield array, a nearfield equivalence source imaging (NESI)
technique is proposed to identify locations and strengths of noise sources. The NESI
is based on the time-domain formulation that applies not only to stationary but also a
transient noise. Multichannel inverse filters are designed using the least-square
optimization. Regularization is employed to mitigate the ill-posedness inherent in
the model-matching problem. Window design can also be incorporated into the
inverse filters to overcome defocusing problems when the distance of reconstruction
(DOR) is large or when the number of microphones is less than that of the focal points.
As a basic form of the equivalent source method (ESM) applied to nearfield
acoustical holography (NAH) problems, discrete monopoles are utilized to represent
the sound field of interest. When setting up the virtual source distribution, it is vital
to maintain a “retreat distanée’” (RD) between the virtual’sources and the actual source
surface such that reconstruction would not- suffer from singularity problems.
However, one cannot increase the distance without bound*because of the ill-posedness
inherent in the reconstruction process with large distance. How to reach the best
compromise between the reconstruction etrors induced by the point source singularity
and the reconstruction ill-posedness is an interesting problem in its own right. This
thesis revisits this issue, with the aid of an optimization algorithm based on the golden
section search (GSS) and parabolic interpolation. The results revealed that the RD
appropriate for the ESM ranged from 0.4 to 0.5 times the spacing for the planar piston,
while from 0.8 to 1.7 times average spacing for the spherical piston. Acoustical
variable including sound pressure, particle velocity, active intensity and sound power
are calculated by using multichannel regularized inverse filters. In practical
applications in which only patch array with scarce sensors are available, a virtual
microphone approach is employed to ameliorate edge effects using extrapolation and

to improve imaging resolution using interpolation. The multichannel inverse filters
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are implemented in light of a highly efficient state-space minimal realization
technique. A special kind of beam pattern and cost function definition is used for the
multiple-input-multiple-output (MIMO) imaging problem. A striking result was also
obtained that random deployment presents no particular benefit in nearfield imaging
and the optimal configuration is the uniform array. As indicated by the simulation
and experiment results, the proposed technique proved effective in identifying sources

of many kinds, including broadband, narrowband, stationary, and transient sources.
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CHAPTER 1. INTRODUCTION

A microphone array refers to a collection of microphones operating concurrently
to achieve certain acoustic signal process purpose. Microphone array systems have
received much research interest as a means of acoustic pickup utilized in various
applications. Array signal processing [1]-[6] has been widely used in the areas such
as non-destructive evaluation [7]-[8], underwater imaging [9]-[10], and machine
diagnosis [11]-[12] and so forth. The major advantage is the enhancement of the
signal-to-noise ratio (SNR). In addition, the directivity of the microphone array can
be improved to be effective in eliminating background noise by beamforming
techniques. Array signal processing of direction of arrival (DOA) estimation and
nearfield acoustical holography: (NAH) techniques are utilized to do the DOA
estimation, noise source identification (NSI) and sourd field visualization (SFV).
The locations of the sound source can be estimated: Then, the main beam of the

microphone array can be steered to the-direction of the source of interest.

1.1 Background and motivation: problem statement

NSI is a vital step prior to a successful noise control program. Noise sources
largely fall into two categories: vibration-induced noise and flow-induced noise.
Examples of the first category include noise from rotating machinery, impact noise,
noise due to structural resonance, braking squeal, etc., while examples of the second
category include fan noise, pump noise, jet noise, etc. NSI techniques have been
extensively studied by acoustical engineers. Among the NSI methods, SFV
techniques are particularly useful in estimating the source position and the source
strength as shown in Fig. 1. In addition to NSI, SFV techniques also find

applications in non-destructive evaluation, underwater imaging, and machine
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diagnosis and so forth. Some of simply noise problem can be solved by using the
ears. However, it is difficult to characterize the problem without employing a NSI
tool in many cases. The NSI tools have many kinds such as intensity probe,
accelerometer, laser vibrometer, Beamforming, NAH, etc. Intensity probe measures
at one point for stationary noise. The distance of measurement is very close to the
source surface. In addition, intensity probe is not congruence when surface vibration
is of interest. Several accelerometers are mounted on the vibrational surface to
measure non-stationary vibrations. Displacement, velocity and acceleration can be
measured by using accelerometers. The shortcoming of this tool is that can not used
on rotational surface. Additional tool is the laser vibrometer that is a non-contact
approach. Velocity is obtained:at a single point on the source surface. In many
cases, scanning laser is employed to-measure velocity at several points within a short
time interval. The shortcoming of laser vibtometer is that it must line of sight to the
source surface. Hence, laser vibrometer can not measure synchronous noise source
signal when noise source: is. non-stationary. -Jns addition, that distance of
measurement must be large to scan a large area.. Hence, this tool is congruence in
wide spaces. Two following tools, beamforming and NAH are based on an array of
microphones.  They measure pressure of the sound field to achieve NSI.
Beamforming exploits array signal processing to estimate DOA. In early
development, beamforming was primarily based on the farfield assumption that the
source is far away and the waves become spherical or planar at the array position. It
is an efficient tool for NSI by one single measurement with the microphone array
technique. The limitation of beamforming is that it does not find acoustic variable
near the source surface. Finally, NAH serves as powerful tools for the purposes of
NSI. It is based on measurements with the microphone array in the nearfield of the

sound pressure to create a map of the sound field on the source surface with a high
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spatial resolution. As early development, Fourier Transform-based NAH techniques
were suggested for reconstructing regularly shaped sources with planar, spherical,
cylindrical geometries, etc. It is different from preceding techniques NAH can
provide sound pressure, velocity, intensity and sound power on the source. In
addition, it is applicable in narrow spaces and non-stationary source. The limitation
of NAH is that it is costly because it must employ many channels of microphones to
measure sound field at the same time.

In array implementation, transducer deployment has been one of the key issues.
It is well known that, for uniform linear arrays (ULA) and uniform rectangular arrays
(URA), array deployment must comply with the A/2-rule to avoid the spatial aliasing
and the grating lobe problems. #'Consequently, a large number of microphones are
required to cover the source area; which can render the array configuration
impractical for sources at high frequencies. « This prempts the development of
non-uniform arrays that are. capable .of-achieving high resolution and aliasing-free
imaging with sparse sensors.

Given the fact that random .deployment can be useful to farfield arrays, a
question arises naturally. Can this idea of random deployment be carried over to
nearfield arrays? This interesting issue is relatively unexplored in the literature of
the past. The A/2-rule --a widely accepted criterion in deploying NAH arrays-- can
lead to undesirable high channel count. It is then tempting to “randomize” the
sensor positions like in the case of farfield arrays and achieve comparable
performance with sparse deployment. To explore this conjecture, this thesis is
employ optimization techniques for microphone deployment. Optimization of

microphone deployment was carried out for both farfield and the nearfield arrays.



1.2 Review of prior arts: approaches for noise identification problems

NSI techniques [7], [8], [11] fall into two categories: farfield [13], [14] and
nearfield [15]. The beamforming in the conventional sense is generally based on the
assumption that the incoming waves are plane waves from the farfield. The NAH in
the conventional sense is generally based on the assumption that the incoming waves
are spheral waves from the nearfield. Array technology has been used in many
diverse areas including radar [16], sonar [17], radio astronomy [18],
telecommunications [19], and so forth. Its application encompasses purposes
including signal enhancement, spatial filtering, DOA estimation, etc. Beamforming
algorithms such as the delay-and-sum algorithm [20], the Minimum Variance
Distortionless Response (MVDR) algorithm ' [21], and the multiple signal
classification (MUSIC) algérithm -[22] have been suggested in the past. Recently,
array technology has found' application in" NSI withsthe use of microphones.
Microphone arrays serve=as a powerful tool for acoustic field visualization that
enables effective estimation of the positions and strengths of noise sources [10], [11],
[20] [23]. In comparison with ‘the farfield arrays that are particularly useful for
long-distance and large scale sources such as trains and aircrafts, nearfield arrays
represent a more recent and independent development of source imaging technology.
With the advent of the NAH [15], [24], many nearfield acoustic imaging techniques
including the inverse boundary element method (IBEM) [25]-[32], the Helmholtz
equation least squares (HELS)[33]-[36], the equivalent source method (ESM)
[37]-[42], the nearfield equivalence source imaging (NESI) [43]-[45], etc., are
introduced. These nearfield techniques are well suited for imaging small-scale
sources such as cars and computers by virtue of high resolution focusing schemes.
IBEM makes use of many numerical techniques akin to finite element analysis (FEA).

Although the dimensionality is reduced by one compared to the FEA for a
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three-dimensional acoustical radiation problem, its implementation is still rather
computationally expensive. The HELS method that was suggested in late 90s is
formulated using field representation by spherical harmonic expansion, whereas the
IBEM is derived from a field representation on the basis of the Green’s function
theory. The IBEM can be further classified into two categories: the direct
formulation and the indirect formulation. The direct formulation is derived from the
Helmbholtz integral equation (HIE) [25]-[29], whereas the indirect formulation stems
from simple or double layer potential [30]-[32]. The ESM, also known as wave
superposition method [46]-[48], were suggested for sound field calculation with far
less complexity and thus higher computational efficiency. The ESM represents the
sound field of interest with distribution of discrete simple sources and hence no
numerical integration is required.-——As opposed ‘to the' actual source, these simple
sources are only in virtual sense for representation purpese and are solutions of the
acoustic wave equation. “Although the.ESM was generally used as a benchmark for
BEM, it has been shown with careful choice of parameters that the ESM is capable of
achieving comparable accuracy compared to other methods [39], [49]. Like IBEM,
the use of ESM is not restricted to source with regular geometries. NESI was
proposed for NSI and sound filed reconstruction. The NESI per se can be
considered as a time-domain ESM. Multichannel inverse filters are designed offline
using truncated singular value decomposition (TSVD) or Tikhonov regularization.
Since all the required processing is carried out in the time-domain, NESI eliminates
many problems of Fourier based NAH. It is applies not only to stationary but also a
transient noise.  Multichannel inverse filters are designed in advance. An
Eigensystem Realization Algorithm (ERA) is employed to accelerate the multichannel
filtering of the NESI [43], [45] and [50].

Fourier based NAH, a celebrated technique for NSI was pioneered by Maynard
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and Williams in early 1980s [15], [24], [51] and [52]. The technique enables
reconstructing the 3D sound field from the 2D hologram data scanned above the
source surface. In comparison with another commonly used NSI technique, the
sound intensity method [53], the Fourier based NAH provides a more global view of
noise distribution and the relative strength. The Fourier based NAH has now been
commercialized by Briiel and Kjael with a new name, spatial transformation of sound
field (STSF) [54]-[56]. A comprehensive treatment of Fourier based NAH can be
found in the monograph by Williams [57]. While the Fourier based NAH
represented an elegant solution in the SFV techniques, there are a number of
limitations in the original version of the Fourier-based NAH. Most of these
limitations stem from the fact that the Fourier NAH transformation relies on the
two-dimensional fast Fourier trangform (2D FET) between the physical space and the
wave number space. This implies that stationary frequency-domain pressure phasors
must be available and the“scanned!grid‘points must be ‘equally spaced on a planar
rectangular area [58]. Numerical artifacts such as<aliasing problem arising in fast
Fourier transform (FFT) may adversely affect the accuracy of imaging. This
situation is further aggravated in practical application, where the number of sensor
and data acquisition channel is usually quite limited due to cost consideration. To
deal with these limitations, the Fourier based NAH was later extended to problems
with irregular geometries [25], [59] and non-stationary noise [56]. The inverse
reconstruction techniques have been extended to deal with irregular shaped sources by
applying singular value decomposition (SVD) to the IBEM [60]. In spite of all that,
one to three times of FFT has to be carried out with the microphone spacing kept less
than half of a wavelength to avoid the spatial aliasing problem. This requires large
number of microphones and enormous processing power to cover a reasonable source

area. In addition, latency becomes more of a problem when one has to measure a
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transient noise such as pass-by noise in real time. Another NAH method,
statistically optimal NAH (SONAH) [61], was also suggested, based on plane wave
expansion. The idea in SONAH is to expand the sound field into elementary waves
and the estimate sound pressure on source surface in wave number domain. The
estimated weight function can then be reused to reconstruct the sound field at another
position on the source. Comprehensive coverage of NAH can be found in the

monograph by Williams [57] and a recent tutorial paper by Wu [62].

1.3 Organization of the thesis

The organization of the thesis is summarized as follows. Chapter 2 gives
theoretical preliminaries of acoustics. A fundamental of acoustics includes wave
equation, Helmholtz equatién, time -harmonic conventiénal and acoustical boundary
value problems. Secondly, sound field representation using basis function expansion
is described by separablé coordinatesin 3D. space: ‘Cartesian, cylindrical, and
spherical. Next, sound field representation using the HIE is described. It includes
the Green’s functions, eigenfunction expansion of the Green functions. Monopole
representation, dipole representation and multipole expansion of basic source model
are described. Finally, inverse problems and ill-posedness is described and
discussed. Chapter 3 describes theoretical preliminaries of signal processing, which
includes SVD, array signal processing basics and optimization algorithms. Array
model, beam pattern, grating lobes, spatial aliasing and performance measures are
introduced in array signal processing basics. Optimization algorithms include
Golden ratio search, Monte Carlo (MC) and Simulated annealing (SA). Chapter 4
describes farfield array signal processing algorithms, which includes low-resolution
algorithms and high-resolution algorithms. Delay and sum (DAS) beamformer and

time reversal (TR) beamformer are described in the low-resolution algorithms.
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Furthermore, cost functions of optimal arrays are defined. Choice of array
parameters for farfield can be summarized in this section. In high-resolution,
MVDR and MUSIC is described. Choice of parameters such as Akaike information
criterion (AIC) is introduced in this chapter. Finally, optimal array and comparisons
of FF algorithms are summarized. Chapter 5 describes nearfield array signal
processing algorithms such as Fourier based NAH, IBEM and ESM. In Fourier
based NAH, three coordinates that is planar, cylindrical and spherical geometries are
summarized. In addition, direct and indirect formulation of IBEM is presented.
Finally nearfield signal processing algorithms is ESM. In addition, direct and
indirect formulation of ESM, NESI and Kalman filter-based algorithm are presented.
Two virtual source configurations are explained in this section. Furthermore,
comparisons of nearfield ‘algorithms= are summarized. Chapter 6 is practical
implementations such as .inverse filter .design,” multi-channel fast filtering,
post-processing, choice of distance .of-reconstruction (DOR) and lattice spacing,
virtual microphone technique, choice of RD, optimization of sensor deployment,
system integration and experimental arrangeément are all described in this section. In
inverse filter design, model matching problem such as ill-posedness and
regularization, window design and parameter choice methods (PCM) are described.
The multi-channel fast filtering is includes time-domain and frequency-domain
processing. As regards post-processing, acoustic variables is described. Part of
choice of RD, golden section search (GSS) is employed to determine optimal RD.
Optimization algorithms are used to calculate optimizing farfield and nearfield sensor
deployment. Finally, system integration and experimental arrangement is described
in this chapter. Chapter 7 is application examples such as scooter, information
technology (IT) equipment, compressor and non-contact modal analysis. Chapter 8

restates the main conclusions of the thesis.
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CHAPTER 2. THEORETICAL PRELIMINARIES OF ACOUSTICS

2.1 Fundamentals of acoustics

Sound wave is a mechanical wave that propagates through a compressible
medium. Sound wave is transmitted in the form of a longitudinal wave described by
wave equation. Wave equation satisfies consideration of continuity, equilibrium of
strength and thermodynamics principle. The Eulerian coordinates and Largrangian
coordinates is introduced. Eulerian coordinates fix control volume in space and
Largrangian coordinates fix control volume as the medium flows, as shown in Fig. 2.
However, Largrangian coordinates is convenient to use in conservation laws.

Material derivative in Largrangian eoordinates is

DM oM
—=—+(uV)M, 2.1
Dt Ot (u-v) 2.1

where M is mass, ¢ is time, u“is velocity of fluid and V. is gradient. In addition,

integration and differentiation cannot only-be-switehed by adding a correction term as
D oa
— | a dV =|[—+ Ve(em)]dS ,
Dt;[ JV.[ o TV (2.2)

where V' is control volume, o is physical quantity and Ve is divergence. This
equation is calling Reynold’s transport theorem.
In deriving wave equation, medium is assumed in homogeneous, isotropic,

inviscid and adiabatic. In equation of state, instant pressure of ideal gas is

p=p(p)=Kp’, (2.3)

where p is instant density, K is constant and y is specific-heat ratio. The density

is non-linear function. Linearization of Eq. (2. 3) is
9
P=p (0 (P= )+,
op

Define sound speed is

10



2 (6_17)

¢ .
op"

Therefore, the linearized equation of state is obtained

p'=p-py=cp. (2.4
That is similar Hook’s law to describe relation between sound pressure p’ (elasticity)
and density o' (distortion).

In equation of continuity, the total mass in a control volume of flowing with the

medium does not change (base on conservation laws)

%:0 2.5)
or

D

Lipar=0

Dtlp .

By Reynold’s transport theorem, above equation-can be rewritten

P, . _
l[ o V(owldV =0,

Because V' is arbitrary volumej so

P el pu) =
V(o) =0 (2. 6)

that is equation of continuity.

Equation of momentum is base on linear momentum principle as

dL

o
dt ext

L=IpudV,
14

where L is linear momentum and f. is force. Problem to sound field take

Largrangian coordinates:

D

— | pudV =|fdsS,

- l p ! 5 2.7
where f; is force on S. When medium is inviscid, the force is become
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f,=—pn, (2. 8)

where n is outward normal. The two equations above can be rewritten into

D

—|pudV =—|pndS.

- l p lp 2.9)
Using divergence theorem to obtain

D

Elpu dV:—lvp dv
It can describe by Cartesian coordinates

D op )
—\pu. dV=-—|—4dV,j=1,2,3
Dtlpl ;[8x. / ’

J
By Reynold’s transport theorem, above equation can be rewritten
[ (puye(puunar ==[ L av,j=1,2, 3.
ot - ) OX;

Because V' is arbitrary volume, so

0 op |.
—(pu ) +Ve(pu.u)== =1,2,3
Py (pu,)+Ve(pu u) ol h

b
i

The equation above can be-expanded as

p—"+u,—+u Ve(pd)+puVu, =

op——
: e 3 .
or i 5 J (2.10)

__7
8xj

Terms 2 and 3 on the left-hand side can be canceled by equation of continuity (in light

of Eq. (2. 6), so

—L+puVu, =——,j=1,2, 3.
r ot r / Ox. /

J

Now, we combine these three quantities (j =1, 2, 3)
ou
PIS+@eV)u]=—Vp.

Term 2 ((usV)u) is called convection term that can be neglected when flow speed is

small. Therefore, Euler’s equation or momentum equation is obtained

Du
—=-Vp. 2. 11
oy p (2. 11)
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Finally, wave equation is combined by equation of state, continuity and momentum.

Before combination, linearization is necessary. Assume small perturbation and mean

flow (u, = 0):
p=p,+0. |P|<|p| (2. 12)
p=p+p0, |p|<|p (2.13)
u=u,+u, [u|<fu. (2. 14)

By Egs. (2. 12) to (2. 14), the continuity equation of Eq. (2. 6) can be rewritten as
a ’ ! !
5(po+p)+v-[(po+p)u]=0- (2. 15)

The linearized continuity equation is obtained by removed height order term

!

op
ot

+p,Veu' =0. (2. 16)

Similarly, equation of momentum in Eq. (2::11).by linearization can be obtained

ou’
—=-Vp'. 2.17
Lo o p ( )

AL

For simplicity, the prime is removed and equation of state, continuity and

momentum with linearization can’be shown as

p=c'p (2. 18)
op
—+ p,Veu=0 (2.19)
or 2o

ou

N _ v, (2. 20)
Py ="V

Three equations above have five unknown elements (7, P, u, u, and u;).

Algebra is employed to combine Eq. (2. 18) to (2. 20) as follows:
0
—Eq. (2. 19):
5 24 (2.19)
o’p
or’
V+Eq. (2. 20):

0
+—(p,Vou) =0 (2.21)

13



ou 0
Ve(py D) = (V) = VeVp =V 2.22)

Wave equation with linearization is substituting Egs. (2. 18) and (2. 22) into Eq. (2.

21)

1 o’p _V?
¢’ o

(2.23)

In acoustical analysis, simple harmonic motion is usually employed to the analyze
frequency-domain. Base sine wave is shown in Fig. 3 that can indicated as

p(x,t) = Asin(wt — kx), (2.24)
where X and ¢ are variables of space and time; A4 is amplitude, @ is angular

frequency and & is wave number. In x =0, the sine wave is
. . ARE
p(O,t):Asma)t:Asm27zﬁ:Asm7t, (2.25)
where [ is frequency and 7 -is;peried.  In addition, the sine wave in =0 is
. =2 7%
p(x,0) =—Asmkx=—Asm7x. (2.26)

From two equations above;'we can draw-the-analogy

2 2
w=—k=—o, 2.27
T P (2.27)
where A is wave length. In addition,
2 2nf o
AT A e (2.28)
The p(x,f) can be written with a complex phasor
Asin(wt — kx) = Im{A4e’ ™} = Im{4e e}, (2.29)

where —J—1 and Im{} is the imaginary part. If remove the time-harmonic

function ¢/, Ae ™ is the phasor in p(x,f) as p(x)=Ae ™. Meaning of the
phasor is complex Fourier coefficients. From wave equation with linearization can

be rewritten in the frequency-domain

14



V2 _ i azp
¢’ or

= Vip = (o) p (2.30)
=>Vp+k’p=0,

where k=w/c is wave number. This reduced wave equation is also refered to as

the Helmholtz equation. That is attention about the phasor, some reference employ

e’ to express harmonic wave function. Hence, the Asin(@f—kx) of Eq. (2. 24)

can be rewritten as the Asin(kx—f) when all analysis is unanimity. In thesis, the

ik

e is employed to indicate of phasor.
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M =M(x,1) M =M@
(a) (b)

(a)

Fig. 2 Control volume. linates, (b) Largrangian coordinates.
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2.2 Sound field representation using basis function expansion

Two mathematical principles underlying the solution of Laplace’s equation with
basis function expansions include orthonormality and completeness. The
mathematical basis for completeness relations is given by Sturm-Liouville theory of
second-order differential equations. Orthonormality and completeness in 1-D is
instructed as following. We assume that boundary conditions are imposed at x =a
and x =5 . We assume that there is a scalar product operation that takes two functions
and maps them to a single number. In Sturm-Liouville theory, the inner product of two
functions f(x) and g(x) is

(f.9)=[ F)gEm(x)dx. 2.31)
where w(x) that depends on,the differential operator in the eigenvalue problem is a
given function. For simplicity, the eigenvalues- ‘¢ are‘discrete and o €{o,} with
i=1,2,---. Any function U(x) satisfying the same boundary conditions as v,

may be written
U =3 U, 2.32)

i=1
where the coefficients U, are unique constants and the functions v,(x) are similar
basis vectors. Above equation is the expansion of a vector in basis vectors. Due to
the dimensionality of a vector space is equal to the number of linearly independent
basis vectors, this analogy is possible. The first condition is orthonormality of the

basis functions. Sturm-Liouville theory shows that eigenfunctions with different

eigenvalues are orthogonal with respect to the inner product as (v,,v,)=0 if j#i.

On the other hand, if j=i, the Sturm-Liouville scalar product is positive-definite.

Then, the eigenfunctions may be normalized

(v;»v,) =0, (Orthonormality). (2.33)

18



Scalar production of Eq. (2. 32) with v, is taken and orthonormality is used to obtain
U=u,U0). (2.34)
The second condition expresses the completeness of the eigenfunctions. In
Sturm-Liouville theory, completeness is established by showing that (f, f)>0 for
any function f(x). Hence,

(8U,8U) =0, (2. 35)

where oU =U (x)—Z(vl.,u)vi(x). If the expansion coefficients U, are given by

i=1

Eq. (2. 34), the series given by Eq. (2. 32) converges to U(x). Combining these

two equations, following condition is required

U(x) = 2[ [v@y, (x')w(x')dx':|vl. @)
o[z (2. 36)
- j {zv,. (x)vi(x')w(x')} U (%)

It turns out that for Sturm-Liouville problems this holds for any U in the function

space, which requires

i v, (), (xIw(x") = 0(¥=x") (Completeness). (2.37)

i=l1

In addition, orthonormlity and completeness on the sphere is introduced. The
dependence on the two variables separates in spherical coordinates and the

eigenfunctions are

Ub,4)=Y"(8,4) = /%W (cos @)e™ (2.38)

where Y"(6,¢) is spherical harmonics and P"(cos@) Legendre functions. The

boundary condition that U is finite on the sphere requires that »n is an integer.
Finally, the boundary conditions also require —n<m<n. Therefore, there are
2n+1 values of the order m for each degree n. The spherical harmonic

functions satisfies the following orthonormality condition

19



[rr@.py ©.pa0=35,5,,. 2. 39)
where * is complex conjugate, dQ=sinfdfd¢p, 0<O<rzm and 0<p<27x. The

completeness relation for spherical harmonics is

> Y OHY 0.8)=——50-0)5¢-4). (2. 40)

n=0 m=—n

In the three-dimensional sound field, some coordinates is separable coordinates.
The eigenfunction is existence. Eigenfunction satisfied the following Eigenvalure

problem

(V2 + K, (0) =0

(2.41)
st. homogeneous BCs

Hence, eigenfunction expansion for sound pressure can be expressed as
pX) = ay,(x). (2. 42)
n=1
Following is eigefunction for three coordinate systems:

(1) Cartesian coordinates:

In Fig. 4 (a), the eigenfunction.of Cartesian-coordinates is
p,(x) =’ (2.43)
where k; +k; +k! =k’

(2) Cylindrical coordinates:

In Fig. 4 (b), the eigenfunction of cylindrical coordinates is
Wn (X) — H’(ll), 2) (krr)eijngeijkz , (2. 44)
where &k’ +kZ =k, H"® is Hankel function of the 1st/2nd kind of order 7

with a parameter &, .
(3) Spherical coordinates:

In Fig. 4 (c), the eigenfunction of spherical coordinates is

20



v, (x)=H" " (kn)Y,"(6,4), (2. 45)
where H"®(kr) is spherical Hankel function of the Ist/2nd kind of order 7

with a parameter k. The Y,"(6,¢) is called the spherical harmonic defined as

Y"(0,4) = \/ QZ;BT;)”:)!R’M (cos @)™ | (2. 46)

where P"(cos@) is associated Legendre function of order m and degree n.

21



p(x,,2)

p(x,0,0)

Fig. 4 Three basic coordinate systems. (a) Cartesian coordinates, (b) cylindrical

coordinates, (c) spherical coordinates.
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2.3 Sound field representation using Helmholtz integral equation

In this section, a mathematical tool for solving boundary value problems of
sound field is introduced — the Green’s function. The Green’s function and
eigenfunction expansion can be employed to solve inhomogeneous boundary value

problem. The Green’s function is that response is produced by a point source into
sound. Assume mass m, is poured into space V' in Ar time at point source

position X,. Mass conservation law is used:

D .
ElpdV:ms

P vt pu)— M 50x — _
ﬂatW(pu) > 5(x xo)}dV(x) 0

where o(x—Xx,) is Dirac’s delta,function” at. x,. This Dirac’s delta function

satisfies the following conditions:

[s(x=x,) dV(x)=1,%, eV (2. 47)
v

and the sifting property
[FOS(x=x,) dV () SE(X,)i%, €V (2. 48)
%

Therefore, equation of continuity with point'source is
68—'?+V-(pu):%5(x—xo). (2.49)

Then, inhomogeneous wave equation is

10°p
Vp——
P ¢ ot

=-mo(X—X,) (2.50)
where 7, =0’m /0" is mass acceleration. In harmonic sound field,

inhomogeneous Helmholtz equation can be written as

Vp+Ep=w'md(x-x,). (2.51)

Let @’m,=—4z and p=g(x,X,), equation above can be written as
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Vig(x,x,)+k’g(x,x,) = —475(x—X,), (2.52)
where function g(x,x,) is called the free-space Green’s function. Following is the
three free-space Green’s functions:

(1) The one-dimensional sound field:

The free-space Green’s function is

j — jkr
)=t 2.53
g(x,x,) Zke ( )

where r=|x—x,|.
(2) The two-dimensional sound field:

The free-space Green’s function is

g(x,xo)=§Hé‘>(kr), (2. 54)

where H(" is Hankel functionof the Ist kind'of order zero.

(3) The three-dimensional sound field:

The free-space Green’s function:is

— jkr

g(x,x,) = , (2.55)
r

where r=|x—x,|. This is sound field by spherical wave.

Then, how to use the Green’s function to determine inhomogeneous boundary
problem? We can use infinity point source set and point sources are distributed on

boundary. If sound field is linear, the Green’s second identity is employed as

o9,

;[(¢1h¢2 _¢2h¢1)dV = :[(¢1 an

8¢1j

-¢,— |dS,

9, B (2. 56)
where 7 is a self-adjoint operator, d@/0n=Vgen is direction derivatives, n is
outward normal, and ¢ and ¢, are solution of second order differentiation. As

shown in Fig. 5, our objective is to determine boundary problem of interior sound

field
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(V> +k")p(x) = f(x)

2.57
st. p(x,) or Z—I)(XO), X, €8, ( )
n

where the symbol of phasor “~” is removed. If the boundary term p(x,) is known,

this is problem is called Dirichlet problem. This is called Neumann problem, if
dp/on(x,) is know. Now, let ¢ = p(x), ¢ =g(x,x,) and 7=V’ +k*> from Eq.
(2. 56) as follows:

J.[p(X)(V2 +h1)g(x,%,) — (%, %) (V* +£*) p(X) KV (x)

-] [mx)aig(x,xa—g(x,xoip(x) S
% n on

[[p(0) = (475(x,%,))~ g(x,%,)/ ()] (x)

=I[p(X)aig(x, X,) — g (X, Xo)ip(x)}dS (x)
S n on

=47 p(x,) ~ [ g(x, x)f (A (X).

Symmetry of the Green’s function (exchange field point«x and source point x,) is

employed to obtain the Kirchhoff-Helmholtz integralinfrequency-domain

47 p(x) == £ (%) (%, X, )V (Xy)

5 P (2.58)
- [za(xo)a—g(x, x)-g(x, xo)—p(xo)}dS(xo)
< n on

From this equation, volume integral is influence of any source in space (source term)

and surface integral is influence of boundary terms. The g(x,x,) is point source in
free-field. The 82 g(x,x,) is called dipole that is effect of distributed forces at
n

boundary.
The time-domain free-field Green’s function is obtained by inverse Fourier

transform as follows:

S(r—t,)

g(X,t]Xy,8) = (2.39)
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ro. ) ) ) )
r2¢—= is retarded time and & is Dirac’s delta function. In
c

A
where r =

addition, equation (2. 55) into Eq. (2. 58) to obtain time-domain Kirchhoff-Helmholtz
integral by inverse Fourier transform as follows:

A p(x,t)=— j G0 gy,
r

—I|:e n( —J (o’ ) Z_i(xoar)}ds(xo)’

where e, =(x—x,)/R. First term of equation above, distributed source of sound

(2. 60)

field is more point source at x, propagate to x by sound speed c. New wave
front is surface of envelope by each point source set after »/c¢ time. This condition

is called Huygen’s principle, as shown in Fig. 6. For simple boundary geometries

such as a plane or a sphere, homogeneous part "H(X,X,) is added in the free-field
Green’s function

G(x,x,) = g(x,x,) +H(x,X,) (2. 61)
where H(X,X,) satisfies homogeneous-Helmholtz equation

(V+k*)H(x,x,)=0.
The g(x,x,) is singular when x=x,. However, the H(X,X,) is non-singular
when x=x,. Inthis G(x,X,), that satisfies Kirchhoff-Helmholtz integral

47 p(x) = [ £ (x)G(x,x)dV (x,)

o P (2.62)
_I[p(xo)a_G(Xa X,)—G(x, Xo)_p(xo):|dS(Xo)-
< n on

In the Dirichlet problem, only p(x) on the boundary is known. We can choose
H(x,X)) |y cs=—8(X%,Xp) |y s (2. 63)
Hence, G(x,x,) satisfies

(V? +kH)G(x,x,) = —475(x—X,)
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st. G(%, %) ;,es= 0 (2. 64)

Therefore, the Kirchhoff-Helmholtz integral can be rewritten as

4 p(x) == £ (x)G(x %)V (x,)

5 (2. 65)
~ [ P(x)—G(x,%,)dS (x,).
% on

In addition, only z—p(xo) on the boundary is known in Neumann problem. We can
n

choose

0 0
—H(X,X) |y, cs= — 7 8(%,X,) |y, 5 (2. 66)
on on

Hence, G(x,x,) satisfies

(V2 +k%)G(x,%,) = —475(x = Xy)

o
St == G0 X) | o5 =0 . (2. 67)

Therefore, Kirchhoff-Helmholtz integral can'beé rewritten as

47 p(x) == f(x,)GX,)dW(Xy)

3 (2. 68)
+ j G(X,X,)— P(X)dS(x,).
< on

That applies to close space interior sound field. Another problem is how to
determine H(X,X,). We can use method of image to determine H(x,X,). In Fig.
7, a point source is arranged at X, on an infinite reflection surface (rigidity). In
free-field, the sound field g(x,x,) is produced by this point source. The sound

field H(x,x,) is produced by image source, as shown in Fig. 7. The free-field

Green’s function can be shown to be

G(Xaxo) = g(X’X0)+H(X9 Xo)

e—jkr e—jkr'
+

= ; .

r r

where
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r:(x_xo)lT"F(y_yo)J_“"(Z_Zo)];a I”=|l'|

| A g M (2. 69)
' = (x—x)7 +(y=2,)] +(z+z)k, ' =|r].

Hence, H(x,x,) satisfyies first condition: (V?+k*)H =0. Then, r and 7' are

given in Eq. (2. 69) and into

— jkr — jkr'
2 Gxxy)| =
on wes 0z T A
' - (2.70)
Or 0 e N or' 0 e
820 EAE Oz, or'\ 1 i

Equation (2. 70) can be simplified as

0

—G(x,x

8” ( 0) b =N

_|z2—z 0 e e L e

roor\ r For' S
zem ze

o or o

=0
Therefore, H(x,Xx,) satisfies second condition:

OH 0 og

—=—(G-g)=—7>,%,€8

on 8n( g) on’ "
Thus, the free-field Green’s function can be expressed as

— jkr
_2e Q2. 71)

For a baffled rigid piston, this free-field Green’s function is substituted into

Kirchhoff-Helmholtz integral to yield

p(x)= 2 j G(%, X )u(X, AS(X,)
(2.72)
pOCkuo I iS

where o =ck is temporal frequency. This equation called Rayleigh’s integration.

In addition, boundary problem of open space exterior sound field, as shown in Fig. 8,
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can be written as

47 p(x) = [ £ (x,)G(x, %)V (x,)
- +j{p(x )2 G(x,%) ~ GX,X,)— p(x )}dS(x )
) H 0 an >0 >0 6}’1 0 0/*

In natural physics, it is zero to nearby influence in the boundary condition at infinite

distance. Hence, mathematical condition is added
j [(x()) G(x,%,) = G(X,X,) — p(x())}dS(xo) 0.
Rewrite this equation by sphere integral

L( aa—f—c;g jrzsingzﬁ de¢ do

or

27 limr’ [pa—G—GapJ 0.
r—o or or

Let G=¢ " into equation above can obtain

lim{ []k+1J 61”} 0
r—>®0 ap

1imr(jkp+@J =0. (2.73)
op

r—>0

or

This equation is termed the Sommerfeld radiation condition. Therefore, problem of

open space at infinite distance must satisfy not only limp=0 but also Eq. (2. 73).

In addition, equation of momentum is employed to rewrite this radiation condition

limr(pycu, —p)=0

where u, is partial velocity on normal direction. Spherical wave at infinite
distance in part become plane wave (p=p,cu, ). Finally, Kirchhoff-Helmholtz

integration can be rewritten as
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ap(x) == [ (x)G(x,%,)dV (x,)

(2.74)
+ I G(x, XO)—Gp, —p(xo)—ap, G(x,X,) [dS(X,),
S, an a]’l

where n’ is outward normal at S and
47 x is on S outside
a=<2r xe§

0 xisonS inside

Usually, equation of boundary integral (a =27 ) is employed to solve for unknown
boundary condition and then calculate sound pressure at any field points (a =4x).
This method is called the boundary element method (BEM). First, place the field
point on the boundary («¢ =27 ). The boundary integral equation can be Discretized

in the matrix form
Dp, =My, (2.75)

9

where vector p, and v .18 sound pressure and speed on boundary, and matrix M,

and D, is monopole and dipole. . Next; field point is moved to exterior field

(a=4r). Discretization is used for equation of integral in the matrix form
p,=Dp,+M v, (2. 76)
where vector p, is sound pressure of exterior field, and matrix M, and D, is

monopole and dipole of exterior field. Assume speed of boundary is known and the

Eq. (2. 75) can be written

ps = D;IMSVS = sz s (2 77)
where Z is matrix of impedance (if D' is existence). Matrix Z is only

involved in frequency and geometric configuration. Finally, sound pressure of

exterior field at any field points is obtained
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p,=(M,+D,Z)v =Hv, (2.78)

where H is transfer matrix between speed of boundary and sound pressure of
exterior field. The transfer matrix H is dependent of frequency, geometric
configuration and field point.

Numerical method of discrete Kirchhoff-Helmholtz integral is called direct

boundary element method (DBEM). There are dp/on and p in integral of
DBEM. Other method is use layer potential that only one term in integral.
According to theory, sound field can be shown by simple layer potential, as shown in
Fig. 9 (a)

P(x) = [(%,)G(x, X )dS(x,), (2.79)

where G 1s the free-field Green’s functien-and

o= P P 2. 80)
on On

is the unknown strength -of the monopole. In. this method, sound pressure p is

. (Pt .
continuous at the boundary, whereas P is discontifuous at theboundary.

n

2_]; x)=ao(x)+ ! O'(Xo)aa—j(xa Xo)dS(Xo)

1
5 xel,
1

o= _E xeK (2.81)

0 otherwise

Or, sound field can be represented by double layer potential, as shown in Fig. 9 (b)

oG
PO = [ 40x) =2 (6 %,)dS (x,) 2. 82)
N
where ux=p —p° is unknown strength of dipole. In this method, Z—p is
n

continuous at inside and outside boundary, whereas sound pressure p is
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discontinuous at the boundary.

p(x) = ac(x)+ j u(xo) (x X,)dS(x,)

% xel,
1

a=1 75 xev, (2. 83)

0 otherwise

That discrete layer potential of BEM is called indirect BEM. Finally, equivalent
source distribution is introduced, as shown in Fig. 9 (c)

p(X)= j & (X)) G(X,%,)dS(x,)

Q

n=1

2 j o (x,)G(X,X,)dS (x,) = Zcr(x )G(x,x,)S, (2. 84)
Z o(x,)S 1G(x,x )= ZQ G(x,X,)

where @ is source strength.” This equation approximates continuous integral as
n— . Virtual source Tepresentation=is=simpler than BEM. Effect of virtual
source representation has not bad effect in some application.

Next, monopole, dipole and multipole“expansion of basic source model are

described. Dipole is combined by two equal amplitude but 180° out-of-phase point

sources, as shown in Fig. 10 (a). Let

— kR

g(x,x,) =

where R=

Sound pressure of dipole at x is

p(x)=Ag(x,x, +d/2)—- Ag(x,x, —d/2)

_ A|d| Ag(x, xs).

When |d| — 0, the sound pressure can be written as
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p(X) =DV _g(x,x,) = —DeVg(x,X,) = —D-( X ;XS ]JLR(‘?; J , (2. 85)

where V_  and V is gradient of x, and x respectively and D= A4d is called

dipole moment. According to equation above, the d is aimed at y-axis, as shown

in Fig. 10 (b). Sound pressure is given as

—jkR

1
X)=Ad cos@| jk+—
p(x) [/ Rj 7

— jkR

= jkAd cos <— (when R > d).

R

Sound field has maximum value on y-axis, as shown in Fig. 10 (c). The Z—g
n

represents a dipole in Kirchhoff-Helmholtz integral as

og S o1
—==cosf| jk+— |g.
P (’ Rjg

n

Next, a quadrupole is"composed of two dipoles.” "Sound pressure as shown in

Fig. 10 (d) is given as

e wl
p(x)=(DV)(dsV) e (2. 86)
Or, in Cartesian tensor
2 — jkR
p(x)=0, o , pandv=1273, (2.87)

uty

where Q

v

A .
=D,d, is called quadrupole moment.

In complex sound source, sound pressure at x in farfield as shown in Fig. 11 is

given as

—JkR,

Nooe
p(x)=) 4,
n=l1 Rn

where R, é|x—xn and x, is the position vector of the nth point source.

Multipole expansion is obtained from Eq. (2. 87) by Taylor’s expansion
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F(x-x,)= £(X)~ (x,°V) [ (x) +%(X,,-V)2f(X) .

Therefore, sound pressure can be expanded as

— jkr
e]

p(x)= Z_:A” {1—(3(,1.V)+2i!(xn.v)2 _}

82 e—jkr
= S_D'V+2qu pop ,
Hv

P r

N N N
where S = ZSn , D= anSn and O, é%Z‘xnﬂxnvSn .
* n=1

n=1 n=1

34
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Fig. 5 Boundaty problem of interior sound field.
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Fig. 8
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Fig. 9 Virtual source repres

equivalent source distribu
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+d/2 (&

-d/20)

(a) (b)

(©) (d)
Fig. 10 Dipole and quadrupole. (a) Coordinate figure of dipole, (b) when d is
aimed at y-axis (dipole), (c) sound pressure distribution of dipole, (d)

general structure of quadrupole.
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2.4 Inverse problems and ill-posedness

In general, inverse problems are derived from their associated forward problem.
The forward problem of NAH is a sound field model that describes the acoustic
radiation form a source. The forward problem of NAH can be expressed as

p=Gq, (2. 89)
where matrix G contains the model parameter such as propagation matrix, vector q
is a input such as source strength or particle velocity on the source, and vector p is
the resulting sound pressure at field points. Vector q is the unknown and p is the
measured quantity. Hence the inverse problem is to be solved. The modeled sound
field by G includes both propagating wave components and wave components that
decay in the direction away from:the source such asievanescent waves. In fact, there
are no real evanescent waves in the nearfield of a finite ize radiator. The wave mode
decomposition describes part: of the radiation-as-evanescent waves, but this is more a
question of representation” (cut off modes in a.duct, on the other hand, are truly
evanescent). In other words; it is merely reflection of the convolution/smoothing
process as waves propagate to the farfield:’ The exact quantification is more tied to
the decomposition (such as Fourier transform, SVD, etc.) one uses. The evanescent
waves consist of spatial frequency components higher than the propagating waves.
The decay rate of the evanescent waves generally increases with the spatial
frequencies. Contribution of evanescent wave component is decay when moving
away from the source. In this condition, contribution from the evanescent
components can be very low on the measurement surface. Noise components in the
measurement data that contain high spatial frequencies will be treated as evanescent
waves. Unwanted amplifications is occurred in the reconstruction when inverting
the matrix G. In other words, small perturbations in p may have a huge effect on
the solution vector q, that is said ill-posedness. Regularization is needed when
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solving the inverse problem. Regularization is employed to limit the influence of the

measurement noise.
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CHAPTER 3. THEORETICAL PRELIMINARIES OF SIGNAL
PROCESSING

3.1 Linear algebra basics
In general, inverse problems are based on an associated forward problem that
describes the unknown effect on the basis of the known cause. In light of NAH, the
acoustic radiation problem can always be formulated into the following matrix form:
Gq=p, G. D
where p and q are the hologram data and source data, respectively, which are
related by the propagation matrix G. It can be shown for some perturbations op

(measurement noise, numerical etfor, etc.) that the perturbation oq satisfies

loal cond(G)M, (3.2)

ol o

where cond(G)=o,, /oy, is the condition number of the matrix G provided

2-norm is assumed.

The SVD is useful in order"to understand the mechanisms behind the inverse
problem. The SVD of the matrix G is given as

G=UxV", (3.3)
where U is the left singular vectors, X is a diagonal matrix composed of singular

values of the matrix G and V is the right singular vectors. As a theory of the

orthonormality of the matrices, U and V are wunitary matrices as
U"U=U0U" =1, and V*V=VV" =1,, where I, and I, are identity matrices.

Vector q in Eq. (3. 1) can be found as

n H
_ u.
q=vz'uip=Y 2By 3. 4)

i=1 i

where 7 is the smallest dimension of G, wu, isthe ith left singular vector, v, is
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the ith right singular vector and o, is the ith singular value. However, the
measure data p is perturbed by noise (p=p-+e), where p is the true pressure and

e isthe noise. Hence, equation (3. 4) can be rewritten as

n H~ n H
q=2%§w+25£W- (3.5)
i=1 i

=l O;

1

Because the singular vectors with high index correspond to evanescent wave

components and the magnitude of u/’p reaches the noise level, the magnitude of the

u/p will decrease when the index i increases. The second term of Eq. (3. 5) will

dominate the solution for the high indices of i (corresponding to small singular
values). Equation (3. 5) will cause huge errors in the reconstruction result when
taking the reciprocal of o, the;fioise term.  Regularization is required in order to
prevent these unwanted amplificationsof the noise. "In*solving the inverse problem,
the regularization is employed to avoid the amplification of the noise. Hence the

solution vector can be regularized in Eq.(3.4).  ‘Regularized solution is given as
n qu
A, = fi——V,, (3. 6)
i=1 O-i
where the filter factors f, constitut¢ a low=pass filter. The filter factors is allowing
components with spatial frequencies (in low indices) in the solution and damping the
high frequencies (in high indices). The filter coefficients is to be f, =1 for i</
and f,=0 for i>/7, where [ is the discrete regularization parameter. This

regularization parameter / determines how much the solution is regularized in Eq.(3.

6). This method of regularization is called TSVD that can be written as

Lou”
q,=>"Ly. (3.7)

i=z1 O;

l

The solution q, will be over-smoothed when / 1is chosen too low due to the

removal of the high frequency components. If / is chosen too high, this solution

q, has distortion because of the amplification of the noise. Hence, how to choose
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optimal regularization parameter is a problem. This problem will be described in
chapter 6.

In mathematical optimization, the method of Lagrange multipliers (named after
Joseph Louis Lagrange 1736~1813) provides a strategy for finding the maxima and

minima of a function subject to constraints. Assume we want to optimize (find the

minimum and maximum) of a function, f(x,y) , subject to the constraint
g(x,y)=K . Solve the system of equation as follows
Vi(x,y)=4Vg(x,y) (3. 8)
gx,y)=K, (3.9)

where A, #0 is Lagrange multiplier that is constant and K is constant of constraint.

The system of equations actually has three equations;'the system can be rewritten in a
simpler form. The first equation put il the definition of the gradient vector to see

what we get
(£ f,) =4 (208, ) AlAg. - A& (3. 10)

In order for these two vectors to be-equal the individual components must be equal.

Hence, two equations are

fi=48, (3.11)
and

f,=4g,. (3. 12)
These two equations along with the constraint, g(x,y)= K, give three equations
with three unknowns x, » and A4, . For example, find the maximum and
minimum of f(x,y)=5x-3y subject to the constraint x”+)° =136. Hence, we

need to solve
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5=24x
-3=24y
x> +y° =136.

The variables x and y can be expressed in terms of the Lagrange multipliers

5
x=—
22
_3
YR

Plugging x and y into the constraint gives

25,9 11 3
472 4% 2

The Lagrange multiplier 4, can be solved

If 4, =-1/4,weget x==10"and y=6."If 4, =1/4, weget x=10 and
y=-6. Thus, here are the minimum.and-maximum values of the function as
f(-10,6) =—-68, Minimumat (—10,6)

f(10,-6) = 68, Maximum at (10,=6),

3.2 Digital signal processing basics

Under-sampling a continuous-time signal can introduce a distortion into the
signal, which is generally referred to as “aliasing” (a relatively high-frequency
component in the analog input signal appears at a lower frequency in the
reconstructed output signal). Nyquist showed that sampling rate must exceed

two-times of the cutoff frequency of the bandlimited signal to fully recover the

continuous signal. Let x, (t) be continuous and bandlimited signal with
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X.(jQ)=0 for |Q>Q,, (3.13)
where Q, is the cutoff frequency and also referred to as the Nyquist frequency.

x,(t) is uniquely determined by its samples x[N]=x, (nT),n=0,%1,%2,..., if

2
0 :%zzg,v, (3.14)

where Q_ is the sampling rate and T is the period of signal. Also oversampling
may be desirable because interpolation during singnal alignment can degrade
resolution. Oversampling is also required if you intend to use deconvolution to
increase resolution; the final deconvolved signal must also meet the Nyquist Sampling
Criterion.

Many of the phenomena studied in engineering:-and science are periodic in nature
eg. the sound signal in an alternating eurrent circuit. These periodic functions can be
analysed into their constituent components: (fundamentals and harmonics) by a
process called Fourier analysis. . We“ate aiming to find an approximation using
trigonometric functions for yarious‘square, saw tooth; etc waveforms that occur in
electronics. We do this by adding more and more trigonometric functions together.
The sum of these special trigonometric functions is called the Fourier series. The
Fourier series was shown as a way of representing the spectrum of a periodic signalas
a series of discrete line sin the frequency-domain. In this module, the concept of the
Fourier transform will be introduced and applied to nonperiodic functions. The
Fourier transform defines a relationship between a signal in the time-domain and its
representation in the frequency-domain. Summary of Fourier series and transform
relations is shown in Table 1.

A transfer function (TF) is a mathematical representation, in terms of spatial or
temporal frequency, of the relation between the input and output of a linear

time-invariant system. With optical imaging devices, for example, it is the Fourier
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transform of the point spread function. Let x(¢z) is the inputand y(¢) is the output.

Take the bilateral Laplace transform of x(z) and y(z)

X(s)= ji x(t)e " dt (3.15)

Y(s)= ji y(t)e dt . (3. 16)

The output is related to the input by the TF H(S) as

Y(s)=H(s)X(s) (3.17)
and the TF is
_Y©)
H(s)= X(s) (3. 18)

b

If a complex harmonic signal with a sinusoidal component with amplitude |X
angular frequency @ and phase arg(X)

x(t) = Xe'™ = | X|e/ £ (3. 19)
where X :|X |e«" w0 j¢"input to a.linear time-invafiant system. Frequency

response function (FRF) is the measure of any system output spectrum in response to

an input signal. The frequency‘response” H(jw) describes this change for every

frequency @ in terms of gain:

Y]

|H(jw)|= ] (3. 20)

and phase shift:

(@) = arg(Y) —arg(X) = arg(H (jo)) - (3.21)
The TF can also be shown using the Fourier transform which is only a special case of
the bilateral Laplace transform for the case where s= jo.

The impulse response, or impulse response function (IRF), of a dynamic system
is its output when presented with a brief input signal, called an impulse. The

Laplace transform of the IRF is known as the TF. It is usually easier to analyze
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systems using TFs as opposed to IRFs. The Laplace transform of a system output
may be determined by the multiplication of the TF with the input function in the
complex plane, also known as the frequency domain. An inverse Laplace transform
of this result will yield the output function in the time domain. In array applications,
impulse responses enable the acoustic characteristics of a location.

Infinite impulse response (IIR) filter is a type of a signal processing filter whose
impulse response is of infinite length of time. This is in contrast to finite impulse
response (FIR) filters, which have fixed-duration impulse responses. Direct-form
IIR filters are often described and implemented in terms of the difference equation

that defines how the output signal is related to the input signal:
A A
y(n)= Zbl.x(n—i)—i-Zai,y(n—i’). (3.22)
i=1 i'=0
where x(n) is the input signal, y(n)is the output.signal, A is the feedforward filter
order, b, are the feedforward filter coefficients, A’ is the feedback filter order and
a, are the feedback filter coefficients.-—The.direct-form I structure is shown in Fig.
12 and the direct-form II structure.is shown in Fig: 13. The corresponding rational

system function is

ibix(n —1i)
H(z)=—" . (3.23)
l_zai’y(n —i')

A FIR filter is a type of a signal processing filter whose impulse response is of
finite duration, because it settles to zero in finite time. Direct-form FIR filters are
described by the following difference equation, which defines the output y(n) in

terms of its input x(n) :

Y= hx(n—i), 6. 24)
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where x(n) 1is the input signal, y(n) is the output signal, b, are the filter

coefficients and A is the filter order. This can be recongnized as the discrete

convolution of x(n) with the impulse response

( ) bi i—(), 1,..., A
h(n) = 3.25
0 otherwise. ( ’ )

The direct-form structure is shown in Fig. 14.
Convolution is the mathematical process that relates the output y(z) of a linear,
time-invariant system to its input x(¢), and impulse response (). The output is
y(#) = x(1)* h(t) = h(t) * x() , (3. 26)
where “*” represents the commutative convolution operation. For two finite discrete

sequences of length N_ and N,, the linear or aperiodic convolution sum takes on a

slightly different form
y(n) = h(k,)x(n—k). (3.27)
kn

where n is sample indexy /h(k,) and x(n—Fk, ) are zero outside their appropriately
defined intervals. For N >N, , each summation need only be calculated for the
0<k,<N,-1 terms. The output y(n) will have length N +N,-1. In
frequency domain convolution, multiplication in the frequency domain translates to

circular convolution in the time domain in the discrete case. The output is

y(n)=IFFT(Y(n.)) = IFFT(X(n,)H(n,)), (3.28)
where n, is the discrete frequency variable and IFFT is inverse FFT. In the Block

convolution using the overlap-add method (OAD) as shown in Fig. 15, the input
blocks need not be precisely N, samples long. But it is generally a good idea to
keep N_, on the order of N, to avoid unnecessarily long block convolutions. The
overlap between block outputs must remain N, , regardless. Mathematically,

x(n) and y(n) can be represented as

51



x(n) =Y x,(n), where x, (n) = x(n) for N,y <n<(A+1D)Ny (.29
i=0 .

x(n) =0 otherwise
y(n) = h(n)*x(n)

DR W) ENCEIRED WIOMNOED WAL

ny

(3. 30)

where A=1, 2,... A is the frame index and A is the number of frames. Unlike
the OAD, the overlap-save method (OAS) requires that the input blocks overlap as
shown in Fig. 16. Then the input blocks are circularly convolved with the impulse
response. Because of the overlap redundancy at the input, the circular artifacts in the

output (the first N, —1 samples) can simply be discarded. = Mathematically,
symbolic representations of x(n) and y(n) are rather cumbersome, but can be

expressed as
x(”)zzxA(”l)_qu(nf) (3.31)
A=0
where x, (n)=x(n) for “Nyq =(A+DN=1) Sn< (AN, —(A+1D(N, -1) -1
and x,(n)=0 otherwise. Also, Xy, (n,)=x,,(n) for
Nooee —(A+D(N, —1) < n,< AN SPanACN adgF

ya () =h(n)(*)x,(n), (3.32)

where (*) denotes circular convolution. The output is

y(n) =y, (n )| y(n;) [ y,(ng)|--, (3. 33)
where " | " denotes concatenation and m indexes the last N, , —(N, —1) samples of
each block.

In digital signal processing, time delay is common problem. The delay usually
is not an integer in digital signal processing. There are many ways to deal with these
fractional delay problems. The simplest approach is Lagrange interpolation method.

Firstly we divide 7z, by sampling period 7 to acquire the fractional delay ¥, .
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The delay is separated into two parts
T
i:LPm:Dm-i_em’ (334)
T

where D, and e, are the integer and fractional component of ¥, , respectively.

FIR filter coefficients to implement the Lagrange interpolation can be calculated by

Noe —I
w o =[]=—, k=0,1,2,...,N.
‘ gk—l (3.35)

The coefficients for the Lagrange filters of order N =1, 2 are given in the Table 2.
The case N =1 corresponds to the linear interpolation using two samples.

In signal processing, the Wiener filter is a filter. Its purpose is to reduce the
amount of noise present in a signal by comparison with an estimation of the desired
noiseless signal. A Wiener filter is not an adaptive filter because the theory behind
this filter assumes that the inputs are stationary.

The input to the Wiener filter is assumed to be a signal x(¢) corrupted by
additive noise v(t). Thewoutput y(?)—is-caleulated by means of a filter A(z) as

y(t) = h(t) *[x(2) +v(1)], (3.36)
where x(¢) is the original signal, v(¢) is the noise, y(¢) is the estimated signal
and A(¢z) is the Wiener filter's impulse response. The error is defined as

e(t)=x(t+7,)— (), (3.37)

where 7, isthe delay of the Wiener filter. Writing y(#) as a convolution integral:

y(t)= I: hD)[x(t—7)+v(t—7)ldr, (3.38)
where 7 istime delay. Taking the expected value of the squared error results in

E{e’} =R (0)-2[ h(r)R,(z+1,)d7
o (3. 39)
+ j j h(T)h(O)R. (r - O)dzd0,
where X(¢) =x(¢)+v(t) isthe observed signal, R_ is the autocorrelation function of

x(¢), R, is the autocorrelation function of X(#) and R, is the cross-correlation
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function of %(f) and x(¢). The goal is to minimize E{e’! by finding the optimal
h(t) that is the Wiener filter IRF.

The Wiener filter problem has solutions for three possible cases. Firstly,
non-causal filter is acceptable. Next, causal filter is desired. Finally, finite amount
of past data is used. The first case is simple to solve but is not suited for real-time

applications. The non-causal solution is
Xfc,x (‘S)

HO=5 6

e, (3. 40)

Provided that A(¢) is optimal, then the minimum mean-square error equation reduces

to
E{e’) = Rx(O)—f h(T)R, (7 + 7, )y (3. 41)
and the solution /4(¢) is the inverse tweo-sided. Laplace transform of H(s). The

causal solution is

_ G

B =45

(3. 42)

where G(s) consists of the causal part of e™’ Xi’x(s)/Xx(s) and X{(s) is the

causal component of X (s).

The causal FIR Wiener filter, instead of using some given data matrix X and
output vector Y, finds optimal tap weights by using the statistics of the input and
output signals. It populates the input matrix X with estimates of the auto-correlation
of the input signal T and populates the output vector Y with estimates of the
cross-correlation between the output and input signals V .

In order to derive the coefficients of the Wiener filter, we consider a signal w(n)
being fed to a Wiener filter of order A and with coefficients a,,i=0,...,A. The

output of the filter is denoted x(n) which is given by the expression
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A
x(n) = aw(n—i). (3.43)
i=0
The residual error is denoted e(n) and is defined as e(n)=x(n)—v(n). The

Wiener filter is designed so as to minimize the mean square error (MMSE) which can

be stated concisely as follows:

a, = argmin E{e’ (n)}, (3. 44)
where e{s} denote the expectation operator. In the general case, the coefficients
a, may be complex and may be derived for the case where w(n) and v(n) are

complex as well. For simplicity, we will only consider the case where all these

quantities are real. The mean square error may be rewritten as:

E{e*(n)} = E{[x(m)—v(n)]’}
=E{x*(n)} - 2Bf(n)v(n)} + E{y’ (1)}

X x (3. 45)
= E{[Z aiw(n—i)]z}—ZE{Zaiw(n —i)v(n)}+E{v2(n)}.

If we suppose that w(n) and v(n) | aré.each stationary and jointly stationary, we can
introduce the following sequences’ R (n") and Ry (n’) known respectively as the
autocorrelation of w(n) and the cross-correlation between w(n) and v(n) defined

as follows:

R,(n") = E{w(n)w(n +n")}

3.46
R, (n')=E{w(n)v(n+n")}. ( )
The derivative of the MSE may therefore be rewritten as
0 ) $ . N
gE{e (m)}=2D.R,(j—i)a,—2R (i) i=0,...,A. (3. 47)
i j=0
Notice that R (-i)=R (i).
Letting the derivative be equal to zero, we obtain
A
D R,(j—ia; =R, (i) i=0,...,A, (3. 48)
=0

which can be rewritten in matrix form
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Ta=v (3. 49)
or
R(O)  RM - R Ta] [R.O
sz(l) RW:(O) RW(/;\_D 6? _ th(l) 3. 50)
Rw&/\) Rw(/.\—l) Rw.(O) a.A RVW.(A)

These equations are known as the Wiener-Hopf equations. The matrix T appearing
in the equation is a symmetric Toeplitz matrix. These matrices are known to be
positive definite and therefore non-singular yielding a unique solution to the
determination of the Wiener filter coefficient vector a=T"'v.

Least mean squares (LMS) algorithms are a class of adaptive filter used to mimic
a desired filter by finding the filter coefficients that telate to producing the LMS of
the error signal. Most lin¢ar adaptive filtering problemis shown in Fig. 17. That is,

an unknown system H(z). is to be identified and the adaptive filter attempts to adapt

the filter H(z) to make it:ascloseias possible to H (Z) ;while using only observable
signals x(n) d(n) and e(n);-but y(n),-v(n) and P(n) are not directly
observable. Its solution is closely related to the Wiener filter. The idea behind

LMS filters is to use steepest descent to find filter weights H(n) which minimize a

cost function. We start by defining the cost function as
En)=E {Ie(n)lz}, (3.51)
where E{e} denotes the expected value.

The objective of the adaptive filter is to minimize the instantaneous mean square error
and according to LMS algorithm updating the coefficient vector in the negative

direction with step size u.

h'(n+1)=h’(n)—§ Ve, (3. 52)
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where /2 is the step size, V is the gradient operator, V& is an instantaneous estimate of

the mean square error (MSE) gradient at time 71, and hence V& can be expressed as
VE(n) = 2E{x(n)e'(n)} , (3. 53)
where x(n) =[x(n), x(n—=1),---, x(n—p+1)]T and p is filter order. The update
algorithm follows as
H(n+1)= K (n) + uE {x(n)e ()} . (3.54)
That means we have found a sequential update algorithm which minimizes the cost

function. For most systems the expectation function E {x(n)e*(n)} must be

approximated. This can be done with the following unbiased estimator
R . 1 N-1 .
E{X(n)e (n)} =W2x(n—i)e (n—=10), (3.55)
i=l1

where N indicates the number of samples we use-for that estimate. The simplest

caseis N =1

E{x(n)e’(n)| =x(n)e’ (n) (3. 56)
For that simple case the update algorithm follows as

B (n+1) = h(n)+ ux(n)e’ (n) . (3.57)

Indeed this constitutes the update algorithm for the LMS filter.

The purposed of Kalman filter is to use measurements that are observed over
time that contain noise and other inaccuracies, and produce values that tend to be
closer to the true values of the measurements and their associated calculated values.
There are two equations in Kalman filtering. The first equation is called the process
equation:

x(n+1)=F(n+1,n)x(n)+v,(n), (3.58)
where F(n+1,n) isaknown M xM state transition matrix relating the state of the
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system attimes n+1 and n. The M x1 vector v,(n) represents process noise.

The vector v,(n) is azero-mean, white-noise process whose correlation matrix is

defined by
Q. n=n
E[v,(n)v] (n")] =
[v,(m)v; (n')] {0, st (3. 59)
The second equation is called the measurement equation:
y(n) =C(n)x(n) +v,(n) (3. 60)

where C(n) isaknown NxM measurement matrix. The Nx1 vector v,(n)
is the measurement noise modeled as a zero-mean, white-noise process whose

correlation matrix is defined by

Q,, n=n

0, n=n

E[v,(n)vy (n")] ={ 3. 61)

The noise vectors v,(n) and. v,(n) atestatistically independent so that we have
E[v,(n)v; (n)]=0, (3. 62)

forall » and #»'.
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Table 1

Summary of Fourier series and transform relations.

Continuous time

Discrete time

Time-domain

Frequency-domain

Time-domain

Frequency-domain

: = ke, _ 1 — jkayt — JkQon 1 —jkQyn
Fourier x(7) = ,Z:jo a.e’ a, = Foy'[ x(t)e ' dt x[n]= k;:b a.e a, = F,,;:\b x[n]e
series . . . . . .
Continuous time Discrete frequency Discrete time Discrete frequency
T, periodic Aperiodic N periodic N periodic
w, =27 /T, w, =2r/T, Q,=27/N, Q,=27/N,
) % . 2 : 1 o _ © _
Fourter  y()= i j X(joye'"do  X(jw) L x(e " dt - An]=o— 2[ X()e'MdQ X (') = 20 x[n]e ™™
transform

Continuous time

Aperiodic

Continuous frequency

Aperiodic

Discrete time

Aperiodic

Continuous frequency

27 periodic
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Table 2 FIR filter coefficients to implement Lagrange interpolation for N =1 and

N=2.
WmO wml wm2
=1 l-e, e,

I
\S)

(e, —D(e,—2)/2 —e (e, —2) e (e —1)/2
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Fig. 12 Signal flow graph of direct-form I IIR structure.
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Fig. 13 Signal flow graph of direct-form II IIR structure.
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x(n) h(n)

;l(_n)’xz(”sm ...... (b)
(@)
y(n) »(n)
n n
() (d)
J’2(n)“
de 01T,
(e)
%(”)“
as Il

n(n), y,(n=2) p;(n—+4)

(8)
y(n) =y (n)+y,(n=2)+ y;(n—-4)

Tl

(h)

Fig. 15 Block convolution using the OAD. (a) input x(n) , (b) impulse
response A(n) , (c) expected output y(n), (d) output y(n) for block

convolution of x,(n) and h(n), (e) output y,(n) for block convolution
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of x,(n) and h(n), (f) output y,(n) for block convolution of x,(n) and

h(n), (g) shifted block outputs, overlap is N, —1=2, and (h) the sum of

overlapped block outputs equivalent to the direct convolution result.
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h(n)

S T (b)
Cxnm) xm)
(@)
y(n)
n (d)
©)

(2

y(m) =y ()| y,(n=2)| y3(n=2)| y,(n=2)

(h)
Fig. 16 Block convolution using the OAS. (a) input signal x(n) divided into

overlapping sections, overlap is N, —1=2, (b) impulse response #A(n), (c)
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output y(n) using direct convolution, (d) output y,(n) for block circular
convolution of x,(n) and h(n), (e) output y,(n) for block circular
convolution of x,(n) and A(n), (f) output y,(n) for block circular
convolution of x,(n) and Ah(n), (g) output y,(n) for block circular
convolution of x,(n) and h(n), and (h) sequential concatenation of block
outputs after discarding the first two samples of each block, which is
|

equivalent to the direct convolution result. "|" represents concatenation.
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3.3 Array signal processing basics

Array signal processing techniques are utilized for DOA estimation,
beamforming and NSI.  Definitions of farfield and nearfield array are shown in Table
3. There is a one important thing we have to know. To avoid spatial aliasing, the
spacing between each microphone must be less than half wavelength of the signals.
In the following array signal processing, we assume that signals received at the
reference point are of farfield and narrowband characteristcs. Farfield assumes that
the signals are located far enough away from the array that the wavefronts impinging
on the array can be modeled as plane waves. On the other hand, the effects of
distance on field intensity can be neglected. Narrowband assumes that the incident
signal that the Beamformer is trying to capture hassa narrow bandwidth centered at a
particular frequency. The ‘ULAris shown in Fig. 187and the array model can be
constructed. The spacing between adjacent-microphones is d. A typical choice
d <A/2, which corresponds to Nyquist spatial sampling rate. Assume that the
signal r(f) at areference pomtis a narrowband with'center frequency o, :

r(t) = s(t)e’™, (3. 63)
where s(¢) is the phasor of »(¢). The signal received at the m th array element
located at X, is denoted as x,(¢), and let 7 be the unit vector pointing to the
sound source direction. If the speed of sound is ¢, the signal x,(¢#) can be written

as

X, F X, F\ et
X, (1) =r(t+=2 n’ e e el o (1), (3. 64)

)+n, (t)=s(t+

where n, (t) is the noise signal of the mth component in the array. In general,

X, r
s(t+—+

)~s(t) for far field approximation. For M sensor signals

x,(?), -, x,,(t), the data vector can be expressed as
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x, (1) e < n, (1)
x(t)=| : |= : s’ +| 1 |=a(F)r()+n(r), (3.65)
Xy () jo Bt ny (1)
e c

where a(7) is called the array manifold vector. The unit vector 7 for a sound
source at the & direction is given by

7 =(sinf,cosf). (3. 66)
The position vector of the m th element can be expressed as

X, =((-1)d,0). (3.67)
Hence, the inner product of the position vector and the unit vector yields

X, ¥ =(@{-1)dsind (3. 68)

The array manifold vector a(z). can be rewritten from Eq. (3. 68)

Jjo,

a(w,,0)=|1e © mie £ (3.69)

 dsing 4 (M—l)dsinaT
J&—

Extension from the marrowband-te-breadband formulation is straightforward.
The center frequency @, 18 teplaced by @ , where ® means a broadband
frequency variable. The beamformer output y(¢) is the weighted sum of the

delayed input signals x, (¢),m=1---M,

y(t) = iﬁ:wmkxm (t—kT). (3. 70)

m=1 k=0

This equation can be rewritten in the frequency-domain for a particular direction &
as

y(@,0) =h(e’*)x(w,0) =h(e’)(a(w, O)r(w) +n(w)), (3.71)
where the manifold vector is given by

_ dsing _ (M-1dsine T
jor jo————

a(@,0)=|1¢" © " < (3. 72)

and h(e’”)=[h,(e’*) h,(e’”)--- h,, (e’”)] consists of Discrete Time Fourier
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Transforms (DTFT) of each tapped-delay line channel. The frequency response is

given by
hm(ej(U):Zkae*]wkT , m=1 --- M’ (3 73)
k=0

where N and T are the filter order and the sampling period, respectively. The
dimensions of h(e’”) and a(w,0) are 1xM and M x1,respectively.
In our problem, the delay-sum algorithm is tried to find h(e’?) that maximizes

signal-to-noise ratio gain (SNRG), i.e.

(a0 On" ()

a . ‘ 3.74

h@  h(e’)h" () ©.79)
which is equivalent to

rll.l(aii h(e’”)a(@)a” (9)h" (e’”)s " suject 't6 th(e’”)h"” (/) =1. (3. 75)

This problem can be solyéd by thepLagrange multiplier method, the solution is
obtained as fpllows

h(e’)=2a" (0,0). (3.76)
Equation (3. 75) explains that each channel filter equals to the conjugate of each

component in the manifold vector:

) _iw(m—l)dsinﬂ )
h,(e’)=e c =" m=1.--M, (3.77)
where 7, = (m-Ddsing is the delay of each channel according to the difference
c

between m th sensor and the reference point. The delay is implemented using
Lagrange interpolation. Once we obtain the filters, the output signals y(w,8) can
be calculated from Eq. (3. 71). The square of y(w,8) is called the spatial power
spectrum, which is given by

S(O)=| y(@.0) | =| h(e)x(w,0)x" (@,0)h" (™) |. (3.78)

The maximum magnitude of the spatial power spectrum is the direction of the sound

source. A quantity of interest in array signal processing is data correlation matrix:
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R, =E{x(n)x" (n)}
= E{[As(n) +n(n)][As(n) +n(n)]"}
= AE{s(n)s” ()} A" + E{n(m)[As" (n)]"}
+E{[As(n)In" ()} + E{m(n)n" (n)}.

(3. 79)
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Table 3 Distinctions of farfield and nearfield arrays.

Farfield array Nearfield array

simple source
Source distributed
(plane or spherical)

Optimizing sensor deployment random uniform
Input-output domain MISO MIMO

Focal point single multiple
Main lobe single multiple
Distance large small
Source scale large small
Algorithm direct filtering inverse filtering
Resolution low high
Contemplation none evanescent wave
Sound image source location velocity distribution
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Fig. 18 The illustration of the ULA. A point source is located at the farfield.
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3.4 Optimization algorithms

In this section, global optimization methods for microphone deployment and RD
are presented. Arrays with sparse and random sensor deployment are known to be
capable of delivering high quality farfield images without grating lobes. This raises
the question of whether or not this idea can be applied to nearfield imaging as well.
To answer this question that has not yet been widely investigated in previous research,
numerical simulations of chapter 6.7 are undertaken in this thesis to optimize the
microphone deployment for both farfield and nearfield arrays with the latter being the
main focus. Next, we shall examine the issue of RD from an optimization
perspective. The optimization algorithm we adopted is the GSS with Parabolic
Interpolation [63].

The basic MC algorithm isgbased on straightforward random search. For M

microphones to be allocated to (m+1)x (n +1)“ rectangular grid points, the number of
possible combinations is ‘€2 .which is known to be an NP-complete problem

[64]. Due to the blind search nature, the MC algorithm can be very inefficient and
result in non-uniform distribution of microphones that concentrate at certain areas.
To address these problems, a modified method intra-block Monte Carlo (IBMC) is
proposed. By “Intra-block” (IB), we mean the localized region designated to each
microphone on the surface,, as shown in Fig. 19. The MC search is only conducted
within each block with random positions generated inside this designated region.
The M microphone elements will be designated to M localized regions. Hence, each
region necessarily contains one and only one microphone. The flowchart of IBMC
is shown in Fig. 20. Initially, mxn divisions of a rectangular grid are set up on the
microphone surface.  Next, M localized search regions are designated to

microphones,, as shown in Fig. 19. Each localized region in Fig. 21 has the
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dimensions d, =d, =d, whereas the inter-element spacing of the grid points is

chosen to be d . =4d/m and d, =5d/n, respectively. The localized regions are

centered at the microphone positions of the URA that is selected to be the initial
configuration in the optimization. The associated data including the microphone
positions X, the beam pattern b,, and the cost function Q, are calculated. Next,
each of the M microphone positions x is randomly assigned to one of the search

points on the localized region. The new beam pattern b and the cost function Q

are calculated for the assigned microphone positions x. The optimal solutions x

opt ?

b, and O, are then replaced by the new solutions x, b and QO if 0>0, ;

otherwise the solutions are discarded. The simulation is continued until the number
of iterations / exceed the preset value Iignic.

The IBMC algorithm.is more efficient than the- MC algorithm in that the search
area for each microphone is far smaller—In-addition, the IBMC algorithm generally
results in microphone positions that are more uniformly distributed than those of the
MC algorithm.

The MC algorithm can be very time-consuming and result in deployment that is
far from optimal. Instead of blind search like the MC method, another efficient SA
algorithm is used in this study. SAis a generic probabilistic meta-algorithm for the
global optimization problem, namely locating a good approximation to the global
optimum of a given function in a large search space [65]-[68]. SA is well suited for
solving problems with many local optima. Each point in the search space is
analogous to the thermal state of the annealing process in metallurgy. At high
temperatures, atoms with high internal energy are free to move to the other positions.

As temperature drops, the internal energy is decreased to a lower state to gradually
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form a crystalline structure. The objective function Q to be maximized is likened
to the internal energy in that state. One important feature of the SA approach is that
it allows the search to move to a new state that is “worse” than the present one in the
initial high-temperature stage. It is this mechanism that prevents the search from
being trapped in a local maximum. The probability of accepting bad solutions
decreases as temperature is decreased according to the Boltzmann distribution and the
algorithm finally converges to the optimum solution.

The flowchart of SA is illustrated in Fig. 22. For the problem of maximizing
the array cost function, the array is initially set to be the URA with microphone
positions x;.  The corresponding beam pattern b; and cost function Q, are calculated.
The microphone surface is partitioned into mxm divisions in a rectangular grid.
The localized regions and the associated grid points aré defined in the same way as

the IBMC. Accordingly,.each microphone can be assigned to any position within

the localized region in sthe simulation.  The. initial stemperature 7;, the final

temperature 7., and the annealing factor a are seleécted accordingly. A typical

value of a is in the range of 0.8 and 0.99. Initially, set x, =x;, b, =b, and

opt
O, =0, . Next, M microphone positions x are tentatively assigned. Each

microphone is randomly assigned to one of the grid points with respect to the

localized region. The beam pattern b and the cost function Q are evaluated for a

new microphone positions x. Calculate the difference between the present and the

optimal cost function,
AQ=0-0,,- (3. 80)
If 7>T, and AQ>0, replace the optimized solutions x b, and O, with

opt ? opt

the new solutions x, b and Q. Otherwise, if AQ <0, evaluate the following
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probability function:

P(AQ,T)=¢"'". (3. 81)
The above probability will be compared with a random number 0<y <1 generated
subject to the uniform distribution. A tentative solution is accepted when the
probability function P is greater than the random number y ; otherwise, the solution is

rejected. Namely,

P(AQ,T) >y, accepted
! . P . (3.82)
P(AQ,T) <y, rejected
Note that the larger the cost function difference AQ or the higher the temperature 7,
the higher is the probability to accept a worse solution.
As the search proceeds, the temperature is decreased according to an exponential

annealing schedule that begins: at some initial temperature 7, and decreases the

temperature in steps
T =axTy, (3. 83)

where 0<a<1 is the annealing-coefficient. The. annealing process will be
terminated if the temperature is lower than a-preset final temperature 7. As the
annealing process proceeds and 7 decreases, the probability of accepting a bad move
becomes increasingly small until it finally settles to a stable solution.

The GSS algorithm is a bracketing method for finding the extremum of a
one-dimensional function. One advantage of the method is that it enables efficient
search for the extremum within a finite number of steps, without the need to evaluate
numerical gradients. In a typical step there are seven points, xi, X2, X3, X4, X5, X¢ and
x7, not all distinct. One possible configuration is shown in Fig. 23. A local
minimum is known to lie between x; and x,. Note that x7 is the point with the least
value of Q(x) evaluated at x, x» and x3; xs is the point with the next lowest of O(x); x4

is the previous value of xs; x3 is the point at which the function was evaluated last; x¢
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is the midpoint between x; and x,. The tolerance is chosen to be a combination of a

relative and an absolute tolerance:

tol
|x7\+03x. (3. 84)

1/2

tol=¢

The parameter ¢ is the floating-point relative accuracy, and the parameter tol, is the
tolerance of design variable.

The flowchart is shown in Fig. 24. The scheme to detect optimal minimum
point has to be robust in the potential interval [x;, x,], the attention must be paid to the

optimal minimum evaluation. The following parameters p and ¢ are calculated
p== {(x7 - x4)2[Q(x7) — 0(x35)] = (x7 — x5 )2[Q(x7) —0(x4 )]} s (3. 85)

q =F2{(x; = x,)[0(x7) — Q0I5 = x5)[ O, ) — O(x,)]} - (3. 86)
Let e be the value of p/g. #f |el<tol, ¢=0 or x;+p/q¢(x,x,), then a “GSS”

step is performed. The next value of x3 is

X3—

{ax7 +(1-a)x, 5t x, 2 x6} G.87)

ax, +(1-a)x, f x, <xg

Where a:(\/g -1)/2~0.618 being the golden ratio. On the contrary, the
parabola interpolation is performed when |e|>to/. Note that x,+p/q 1is the

extremum of the parabola interpolated through [xs, O (x4)], [xs5, O (x5)], and [x7, O
(x7)].  The points x1, x2, X3, x4, Xs, and x7 are updated as necessary at next stage, so
that it conforms to the definition of the seven points. The procedure above is

repeated until the desired stop criterion (| x; —x, [<2-fol —(x, —x;)/2) is reached.
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Fig. 19 The localized regions (dashed lines) on the microphone surface with the
inter-element spacing d = 0.6m. The symbol “0” indicates the microphone

position.
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Set mxn grid on the microphone surface. Initial array = URA,
microphone positions x; , beam patternb, , cost functionQ, .

M localized regions are divided on the microphone surface.

A 4

Xopt = Xi > bopt = bi ’ Qopt = Qi

A 4

Randomly allocate M microphones to the grid

points in the localized regions.

A 4

[ Compute beam pattern b and the cost function Q ]

Fig. 20 Flowchart of the IBMC optimization algorithm.
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Set mxn grid on the microphone surface and initial array = URA,
microphone positions x; , beam patternb, , cost function Q.

M localized regions are divided on the microphone surface.

Choose initial temperature 7;, final temperature 7, and

annealing coefficient a

v
[ T:CZXT;, Xoptzxi’ bopt:bi’ Qopt:Qi }
v

Randomly allocate M microphones to nine grid points for

farfield arrays or to any grid points in the localized

regions for nearfield arrays

v

Compute beam pattern b and

the cost function Q

Fig. 22 Flowchart of the SA optimization algorithm.
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Fig. 23 A unimodal function to optimize.
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[ Parabolic interpolation ]
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t Function evaluation j
and Update parameter

Fig. 24 The flowchart of the GSS algorithm.
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CHAPTER 4. FARFIELD ARRAY SIGNAL PROCESSING
ALGORITHMS

This section describes farfield array signal processing algorithms, which includes
low-resolution algorithms and high-resolution algorithms. In addition, comparisons
of farfield algorithms are summarized in finally.
4.1 Low-resolution algorithms
4.1.1 Delay and sum beamformer

Before discussing DOA algorithms, an array model should be established. A
URA with inter-element spacing d can be constructed. Assume r(¢) is a
broadband frequency @ at a reference point:

r(t) = s(t)e’”, 4. 1)
where s(¢) is the phasor of r(¢). Let 7 be the unit*vector pointing to the sound
source direction. The signal received at the mth® microphone located at X, is

denoted as x, (¢):

. XyT
% 7 Sy SO
Wy L (=8t +2D)e < e (1), (4.2)

c

x,()=r(+

where n,(¢) is the noise signal of the mth microphone and c is the speed of sound.

In general, s(¢+ ;"’; ")~ s(t) for farfield approximation. For M microphone signals

x,(t), -+, x,,(t), the data vector can be formed as

jo™t”
x (1) e ¢ v, (1)
x()=|  |=| ¢ |s@®e+| i |=a@Fr@)+n(r), (4.3)

x,, (1) eja)x"/é'F Vi (0)

where a(7 ) is termed the array manifold vector.
A URA comprising / and J microphones with inter-element spacing d, and d, in
the x and y axis respectively as shown in Fig. 25. Let the left and the upper corner

element is the reference point. The vector of pointing to each microphone from the
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reference point in the polar coordinate is given as

x;(0)=((-Dd,,(j-1d,,0), (4. 4)
where i =1,2,..../andj = 1,2,...,J. The unit vector 7 pointing to a sound source at
the look directions € and @ is given by

7 =(sin@sin@,sin & cos @,cos ). 4.5)

The delay of each microphone will be given by
X; -7 (i—1d, sin@sing+(j—1)d,sinfcos¢

T, = (4.6)
c c
Then the array manifold vector can be written as
- . :
jwdxsinesinqﬁ
e C
jw(l—l)dxsinasin¢
e c
a(a)’ 6’ ¢) = jwdysinﬂcosqﬁ i (4 7)
e c

_ dysin@sing+d, sincosp
jo

e ¢

_ (I-1)dysinOsing+(J=1)d,,sin@cos g
jo
e ¢

With reference to the Fig. 26, the output of DAS beamformer can be expressed as

»(t,0)= ixm (t-rz,), (4.8)
where x,(¢) is the signal received by mth microphone, as shown in Eq.(4. 3).
In Eq. (4. 8), 7, are the steering delays appropriate for focusing the array to the look
direction, ,, and compensation for the direct path propagation delay associated with

the desired signal at each microphone. The delay of each channel in Eq. (4. 8) can

be calculated by
m
T = ’
m c
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where Ax, is the distance between the reference source positions & and mth

microphone. This time delay is implemented using Lagrange interpolation.
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Fig.25 AURA. A pointsound source is located at the farfield.
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4.1.2 Time reversal beamformer

The TR algorithm is based on an idea of time-reversing the received signal.
The block diagram of TR algorithm is shown in Fig. 27. First, use a microphone
array to receive and save sound data. The signal x(¢) is reversed to x(-f) by TR block.
Then the reversed signal x(-7) is played by a loudspeaker array.

The phase-conjugate field at the field location 7 in frequency domain is written

as

p(F) =Y g* (|7, )8 =g (x, |7, e |r,) . (4.9)

where g(7;|r,)) represents the received acoustic pressure at the ith array element

location 7, propagated from the ‘probe source,position 7, . Likewise, g(r |’7,~)

represents the field propagated from the ith .arrayselement location 7, to the

arbitrary receiver location 7, where [ is the number of array elements and
superscripts ()° and ()* .denote cémplex conjugaterand Hermitian transpose,
respectively. In a vector notationy"g and r, are (£x1) column vectors. Note
that the position vectors are written invifalic_letters with arrows and the column
vectors and matrices are written in boldface letters.

In the following, we are aiming at finding an optimal filter with the impulse
response h that processes the measured signal

X=8+V (4.10)

to maximize the SNR, where s and v denote the signal and noise, respectively.

Hence,
y=h"x=h"s+h"v. (4. 11)
Note that the vectors are all ‘time-reversed,” e.g.,s =[s(n) s(n—1) ... s(n—N )]T .
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‘hHS‘Z _ h”ss"h

SNR = E{‘hHV‘Z} " h'Rb’

(4.12)

wher R is the covariance matrix of noise (diagonal and positive definite). The
SNR expression is identified as the Rayleigh’s quotient. Maximal SNR can be

obtained by finding the A__ of the following eigenvalue problem

max

ss"h=/R h. (4.13)

Sincess” is of unit rank and positive definite, it has only one positive eigenvalue.
The associated eigenvector must lie in the range space ofss” , or the span of s, which

satisfies
Rh=as or h,, =aR)'s. (4. 14)
Thus, the optimal filter iss.closely related: to. the time-reversed version (phase

conjugation) of the measured signal. ' With-the optimal filter, the following maximal

SNR is attained from Eqs.«(4. 12) and (4.:14)

SNR =4 =s"R's. (4. 15)

ax v

If the filter coefficient is normalized with the constraint
h"R h=1 (4. 16)
Combining Egs. (4. 14) and (4. 16) gives

1 R's

1
- —h,, =
\/Amax \/sHRgls > Js'R's @.17)

o =
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4.1.3 SIMO-ESIF algorithm

The SIMO-ESIF algorithm is introduced in this section. In Fig. 28, M
microphones are employed to pick up the sound emitting from a source positioned in
the farfield. In the frequency-domain, the sound pressure received at the

microphones and the source signal can be related by a M x1 transfer matrix H
p=Hyg(o), (4. 18)

where ¢(w) 1is the Fourier transform of a scalar source strength,

p= [ p(@)---p, (a))]T is the pressure vector with “7”” denoting matrix transpose, and

H= [hl(a))-'-hM (a))]Tis the M x1 propagation matrix. The aim here is to estimate

the source signal g(w) based ongthé€ ipressure, measurement p by using a set of
inverse filters

C=[c (@) ¢\ (o))" (4. 19)
such that C"H~1 and therefore

Gg=C'p=C'Hg=~q. (4. 20)
On the other hand, this problem can also be written in the context of the following

least-squares optimization problem

min[p - Hg[;. (4.21)

where || ||2 denotes vector 2-norm. This is an overdetermined problem whose

least-squares solution is given by

. ] H"
g=(H"H)'H'p=——1F (4.22)

[

where the superscript “H” denotes Hermitian transpose. Comparison of Egs. (4. 20)

2

and (4. 22) yields the following optimal inverse filter
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r_ H”
= w ) (4.23)
2

If the scalar ||H||z 1s omitted, the inverse filters above reduce to the

“phase-conjugated” filters, or the “time-reversed” filters in the free-field context.

Specifically, for a point source in the free field, it is straightforward to show that

Gl

mfL =2~ (4.24)

m=1 Ty

where r, is the distance between source and the mth microphone.  Since ||H||§ isa

frequency-independent constant, the inverse filters and the time-reversed filters differ
only by a constant. In a reverberant environment, these filters are different in
general. Being able to incorporate the reverberant characteristics in the measured
acoustical plant model represents an advantage of the proposed approach over
conventional methods such as the DAS beamformer.

In real-time implementation, the inverse filters are converted to the time-domain
FIR filters with the aid of inverse FFT and circular shift: Thus, the source signal can
be recovered by filtering the pressure signals with the inverse filters c(k):

q(k) =" (k)*p(k), (4.25)
where k is discrete-time index, ¢(k) is the impulse response of the inverse filter, and

“*» denotes convolution.
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4.1.4 Optimal array: cost functions, Rayleigh’s quotient

In this section, the beam patterns and the cost functions are defined to facilitate
the following array optimization formulation.  In addition, super-directive
microphone arrays are introduced in last section.

For a farfield array, the beam pattern can be defined in the wave number domain

1 &,

b:ﬁmz;ej T (4.26)
where k=w/c is the wave number, @ is angular frequency, ¢ is the speed of
sound, and r, is the position vector of the mth microphone and k =—-kx is the
wave number vector of a plane wave incident from the direction represented by the
unit vector k, as shown in Fig. 29.

In optimizing farfield performance, the aim”is to minimize the maximum
side-lobe level (MSL) of the beam pattern. First; a-cirele with radius », 1s drawn
on the k.-k, plane to define the scope of the-main-lobe, which is a judicious choice
based on the beam pattern‘observations:=—Fhe-exterior of this circle is considered the

side-lobe region. The cost function for farfield arraysis defined as

0=—, (4.27)

0:1|§1

where m and § denote the maxima of the main-lobe and the side-lobes,
respectively. Because m = 1, maximizing the cost function Q0 amounts to
minimizing the MSL.

Super-directive microphone arrays are introduced in this section. It begins with
first-order differential microphone array (DMA), a simple kind of super-directive
microphone array. Second, a method of optimization of array beampattern is
introduced. There are three objective functions to be maximized, including directive
index (DI) and front-to-back ratio (FBR). Due to their directional and close-talking

properties, they have proven essential for the reduction al feed-back in public address
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systems.  In telephone applications, such as speakerphone teleconferencing,
directional microphones are very useful but at present are seldom utilized. Since
small differential arrays can offer significant improvement in typical teleconferencing
configurations, it is expected that they will become more prevalent in years to come.
The first-order DMAs have been discussed for more than 50 years [69]-[71].
Owing to the small size of first-order DMAs, they can be used in hands-free
telecommunications where the distance between microphones and speakers are quite
short. Another benefit is that the directivity of first-order DMAs is independent of
frequency. The block diagram of the first-order DMA is shown in Fig. 30. For a
plane wave with amplitude A and wave number k& incident on a two-element array, the

magnitude of output can be written as

c

dcost d a
|Pd|=,4a)(1+ ):Aa)(r+—J —d+ dcos@ , (4. 28)

where 7 is the incorporated’delay, ¢ 1s. the speed.of sound, and 6 is the polar angle. It
is found from Eq. (4. 28) that the résponse of first-order DMAs is in direct proportion
with frequency. This implies that the frequency response of the first-order DMAs

need to be equalized to compensate for the low-frequency loss and high-frequency

noost. Let
T
a,=a,=
9 (4.29)
c
and
d
__cC
l'al al —d . (4 30)
T4+ —
c
It follows that
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a,+a, =1. (4.31)
Thus, the normalized directional response is
DPra (19)2(104-611 cosd . (4.32)

Accordingly, the directional response can be designed by adjusting the parameter ay.
In order to get a better directivity, there should be objective measures for analyzing
the array performance. One possible measure is FBR, the microphone gain for
signals propagating to the front of the microphone relative to the rear, and it is defined

as

H(w,0,4)[ sin0dbdy

1 27 pn
=

FBR(w) =2

;IOZHI:/Z\H (,0:9)f §i0a0dg,

(4.33)

where the angles # and ¢ ,are the spherical coordinate angles and H (co, 6’,¢) is the

frequency response of the.array. The relativity between the parameter a; and FBR is
shown in Fig. 31. The maximum FBR-oeceurs-when q; is equal to 0.366, and in this
situation, the array can reject the noise from rear well.

The other measure is DI, the ratio of itensity of the acoustic beam in the measured

axis to that of the entire distributed omnidirectional sound energy. It is defined as

| (,6,4,)
1 Izﬁjoﬂ‘H(w’ 0’¢)‘2 sin 0d9d¢

2o

DI (®,6,,¢,)=10log,, (4. 34)

where 0y and ¢, are the angles at which DI is being measured. The DI of
first-order DMAs varies with the parameter ), and the maximum DI reaches at
a, =0.25, which is shown in Fig. 32.

The polar plot of the absolute value of the responses is shown in Fig. 33. The
first-order DMAs that correspond to the maximum DI is given the name

hypercardioid, and the maximum FBR value corresponds to the supercardioid design.
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When «a, =0, the Ist order differential system is a dipole. At o, =1, the
microphone is an omnidirectional microphone with 0 dB DI. A special case of
o, =0.5 1is the cardioids pattern. Although the cardioids microphone is not optimal
in directional gain or FBR, it is the most commonly manufactured differential
microphone. Table 4 is summarizes the results for first-order microphone.

The directivity pattern of the first-order DMA in different frequency is shown in
Fig. 34.  When q, is fixed, the shape of the directivity pattern is almost the same no
matter what frequency it is, but the gain increases with frequency.

Assuming the signals are narrowband and incident from the farfield such that the
wavefronts impinging on the array can be modeled as plane waves. To avoid spatial
aliasing, the spacing must be less than half of theswavelength of the signals. Two
important applications of% array - signal processing” are DOA estimation and
beamforming.

The first algorithm eoncerns the DOA estimation*of the source (the driver).
This algorithm has to be able:to on one hand accurately:localize the sound source and
on the other hand withstand the boundary teflections in the car. The simplest way
for the DOA estimation is based on the steered response power (SRP) obtained using
the delay-sum method. In the method, the received signals are delayed to
compensate for the difference in arrival time at each microphone such that all signals
are time-aligned in phase with respect to a given direction and summed together to

form a single output.

W0.0)=3 %1 +A,), 4. 35)

n=1

where N is the number of array elements, x, (¢) is the time signal received by the
n-th microphone, A, is the steering delay appropriate for steering the beam of the

array to the angle &. Ideally, with no additive noise and channel effects, the output
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of the deal-sum beamformer is optimal and represents a scaled and potentially delayed
version of the desired signal. In practice, channel effects and the additive noise can
be nontrivial. The delay-sum concept can be extended to the more general

filter-and-sum approach. Define the spatial power spectrum

Y(@,0) = ﬁ: G.(0) X, (w)e™ (4. 36)

n=1

where X, (w) and G,(w) are the Fourier transforms of the signal received at the

n-th microphone and its associated array filter, respectively. The output power of the

array can be obtained by integrating Y(w,d) over the frequency band of interest.
$O) =" |V (@.0)do. (4.37)

The maximum magnitude of the outptit power cosresponds presumably the DOA.

The aforementioned algorithms areybased. on the free field assumption. In
practice, the performance. of DOA could be degraded in reverberant environments
such as the car interior considered in the-paper. 1Tt is then desirable to develop a
DOA method that is less” susceptible to.-coherent multipath reflections from the
boundaries. To this end, an ‘idea-based whitening filters in the steered response
power-phase transform (SRP-PHAT) beamformer is employed in the DOA estimation.
The signal received at each microphone is whitened by its own power spectral density
before the DOA processing. Similar to the delay-sum algorithm, the array output
power S(€) is maximized over a region of the potential source location. Why this
simple operation will improve the DOA estimation in a reverberant environment will

be explained as follows.

Define the cross correlation of signals x, (#) and x () received at the i-th and j-th

microphone:

¢, (r) = ji x,(0x,(t+7)dt . (4. 38)
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The peak of the cross-correlation function indicates the time difference of arrival of
the signals picked up by the two microphones. If filers are used to process the

received signals, with the Fourier transforms of these filters denoted by G, (@)

and G, (®), respectively, the generalized cross-correlation (GCC) can be expressed in

terms of the Fourier transforms of the microphone signals
1 © *
Ry(m)=-— L (G(0)X,(0)(G(0)X /(@) e dw (4. 39)

Suppose we now choose zero-phase filters with FRFs:

1

O @)

(4. 40)

This in effect “whitens” the spectra and ends up with only phase differences. In

other words, the GCC reduces to'a sharp peak (') atthe time difference (7, ) between

the two microphone signals:

o e_ja”l,'f ej"”da) = 5('[ - T,j) (4 41)

=0

Ry(0) = [ AR gy e L |

As a result, by enriching signals spectrally by the whitening filter, the time difference
carrying the DOA information is emphasized with improved spatial resolution, even
in the face of background reverberation.

It should be noted that, however, the robust DOA algorithm must be
implemented in the frequency-domain by block processing because of the zero-phase
whitening filter which is also signal-dependent.

In this section, the design of the superdirective beamformer is introduced.
Assume that the signal r(¢) received at the reference microphone is a narrowband
signal with the center frequency .

r(t) =s(t)e’™, (4. 42)

where s(¢) is the phasor ofr(¢). The signal received at the m-th microphone
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located at x, is denoted asx,(f), and let 7 be the unit vector pointing to the

source direction. If the speed of sound isc, the signal x,(¢#) can be written as

Xm T

x () ~s@)e” < ™ 1n (1), (4.43)
where n,, () is the noise signal of the m-th component in the array. ForM sensor

signals x,(?),---,x,,(?), the vector of received signals can be written as

w07 | ")
x()=|  |=| i |s@®e’+| i |=d#F)s@)+n(r). (4. 44)

X, () jo, 2T 1y (1)
e c

Or, in the frequency-domain,
x(e’”) =s(e’)d, +n(e’), (4.45)
where d; is the vector of the look direction and n' is the noise vector. Let w be

the vector of the frequency-domain array coefficients. The array outputy can be
written as
_ H
y=w'x, (4. 46)
where the operator A denotes the Hermitian operator.
The array-gain is defined as the ratio of the SNR of one sensor element over that of

the array.

G_ SNRArray 4 47
~ SNR,,, (4-47)

Sensor

The SNR of one sensor is given by the ratio of the power spectral densities (PSD) of

the signal ¢ and the noise@,,. Assuming a spherically isotropic and uncorrelated

noise field, the array gain can be shown to be

2
‘deS

—’
w'T w

nn

G (4. 48)

where I’ is the coherence matrix of a diffuse noise field whose entry ab is

103



| in[k(a—b)d
r (e-’”)‘ = M, k is the wave number, and d is the spacing between
n,m, Diffuse k(a — b)d

adjacent microphones. Expressing the above array gain in dB scale leads to the
definition of the directivity index (DI) which indicates the ability of a beamformer to
suppress noise from all but the principal direction.

2
‘des‘

wiT

nn

The superdirective design is achieved by maximizing the DI of array, which is

equivalent to the following constrained optimization problem:

minw T, w
W (4. 50)
subjectto w'd, =1
The solution to the above problem is the well-know MVDR beamformer:
W = r17n71ds 4 51
dSHrrl}'l_ldS . ( . )

In case of nearly singularscoherence matrices, a more robust version of this formula

with the introduction of a régularization constant. & is given as

(T, +eDd,
Regularized dSH(r + 51)_] ds

(4. 52)

nn

The constant & can vary from zero to infinity, which corresponds to the ideally
superdirective beamformer and the delay-sum beamformer, respectively. The Fig.
35 (a) and Fig. 35 (b) show the effects of ¢ varying from 0.001 to 3 on the DI and
the 2-norm of the optimal weights in a 4-element broadside array, respectively. By
“broadside,” we mean that the main beam of the array is perpendicular to the array
axis. It can be observed that the regularized superdirective array does have higher
directivity than the delay-sum array up to the frequency 3 kHz, where the constante
can be used as a means to reconcile the DI and the array weights. Aseg decreases,
the DI and the array weights increase at low frequencies. Exceedingly large array

weights will be difficult to implement in the filter design. Experience suggests that
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£=0.01 1is an adequate choice.

The Fig. 36 shows the contour plots to compare the beam patterns of the
delay-sum array and the superdirective array withe =0.01. The beam width of the
superdirective array is distinctively narrower than the delay-sum array. The Fig. 37
compares the frequency responses obtained from simulation and measurement of the
superdirective array filters. Since the filter coefficients are symmetrical, the
frequency responses are plotted in pairs. In addition, a phase flipping phenomenon
can be seen in the phase responses of the microphones 1 and 2, which is similar to the
behavior of differential microphones.

Once the DOA of the source (the driver) is found, the orientation of the main
beam of array can be electronieally steered to the desired look direction. This is
accomplished by introducing appropriate phase delays to the array channels. In the

frequency-domain, the beamsteering filter can-be written as

_jna)fsdsin Oy

wo—e o (4.53)
where n is array index, o+is the digital frequéncy, d is the spacing between
adjacent elements, 6,, is the steering angle, and f, is the sampling frequency.
However, f.dsinf,, /c generally is tantamount to fractional samples, which
requires interpolation of some sort. In the present work, the second-order Lagrange
interpolation is used to implement the fractional delays for beamsteering.

The Fig. 38 shows the directional response of the superdirective array steered to -20

degrees for 1, 2, 4 kHz. We see a main lobe appear at -20 degree, as desired. The

mirror image also appears at 200 degrees due to the axial symmetry of the array.
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Table 4 The first-order differential microphone designs.

Microphone type DI(dB) FBR(dB) 3dB Beamwidth

Nulls (degrees)

Dipole 4.77 0.00 90.00°
Cardioid 4.77 8.45 131.06°
Hypercardioid 6.02 8.45 104.90°

Supercardioid 5.72 11.44 114.90°

90.00

180.00

109.47

125.26
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Plane wave

Fig. 29 A plane wave incident from the direction k to a farfield array.
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Fig. 31 FBR of first-order microphone versus the first-order differential parameter
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Fig. 33  Various first-order directional responses (a) dipole, (b) cardioids, (c)

hypercardioid, (d) supercardioid.
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Fig. 34 The directivity pattern of first-order DMAs. (a) a,;,=0.25, (b) a;=0.5.
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broadside array. (a) DI, (b) the 2-norm of the optimal array weights.
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Fig. 36 The contour plots of beam patterns of a broadside array. The x-axis

represents the angle in degrees and the y-axis represents the frequency in
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kHz. (a) Superdirective array, (b) DAS array.
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Fig. 37 Comparison of the: frequency responses of the superdirective array filters.

(a) Microphonesl and 4, (b)microphones 2 and3, (c) phase responses.
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Fig. 38 The directional response of the superdirective airay steered to -20 degrees.

(a) 1 kHz, (b) 2 kHz, (c).4'kHz:
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4.1.5 Choice of farfield array parameters
In this section, the farfield array parameters (as shown in Fig. 39) can be
summarized as follows:
1. Array:
a. Choose the microphone spacing d according to the maximum
frequency (fmax ). A conservative ruleis d =A4/2, where A is wave
length.

2. Frequency range:

c . .
=—/, where c¢ is speed of sound and d is

a. Maximum frequenc
q Y Jimax 2d

microphone spacing

b. Minimum frequency

min

= %, where D is array aperture.
3. Resolution of distance L:
L :
a. R, = 1.225/1 , where |4 is wave length.

4.  Area covered at distance - L :

a. z=1.15L.
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4.2 High-resolution algorithms
4.2.1 Minimum variance distortionless response (MVDR)

Another approach has been proposed using the data covariance matrix. This
method has been shown to provide higher resolution in DOA estimations than the
DAS algorithm. In order to facilitate digital processing, we simultaneously sample

all array inputs to form digital data x,(¢#)=x, (kT), k=1,2,---. For D sources, we

may invoke the principle of superposition to write

b (k)
x(k) =) a(a,0)r,(k)+n(k) =[a(w,6) - a(@,0)]| : |+n(k)

() (4. 54)

= Ar(k)+n(k)
where @, is the direction of the ith source, r(k)is the source signal vector and A is

DOA matrix. A beamformer output is-a linear combiner that produces an output

signal by weighting and summing all compenents.

y(k) =D w,x,, (k) = Wi (k) (4. 55)

m=1
]

where w is the weight vector given by w=[w, --- w,]". Because the MVDR

method exploits the correlation between array input signals, it is necessary to

calculate the array signal correlation matrix.

R, = E{x(k)x" (k)| (4. 56)

Suppose that the noise is uncorrelated with signals FE {r(k)nH (k)} =0 and the noise
is spatially white E{n(k)nH (k)} =o’l. By the preceding assumption, the Eq. (4.

56) can be rewritten as
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R, = AE{r(k)r" (k)| + E{n(kn" (k)|
—AR A" +R (4.57)
=AR A" +5’1

>

where R;; and R,, are the source and noise correlation matrices, respectively. In
practice, the data correlation matrix Ry is usually approximated by the data

covariance covariance

R (p)=ax;x,+(1-a)R, (p-1), p=12--P, R (0)=0 (4. 58)
At this recursive equation, « is a constant which satisfied 0 <o <1. The received
signal is divided to p frames and rearranged to the data vector x =[x, x,--* X ].

In the following, the aim is to_find the MVDR weight vector w,, . An

optimization problem is given‘for solving the unknown vector w,, . The MVDR

beamformer attempts to minimize the output power
2 2.
E{lyof | = £ {wi x| = wiy R oy (4. 59)
Another constraint is to maintain unity gain-in-the look direction w/, a(6,)=1. The

MVDR beamforming suppresses the undesired interference from &=+ 6, and the

noise. The problem can be expressed as follows
minw!, R_w,,
e (4. 60)
subject to w,, a(w,6,) =1

This problem can be solved by Lagrange multiplier method

{vwm, WAf/IIVRxxWMV - ﬂ’vwm, [WMVa(a)a 9()) - 1] = 0

4. 61
w,,a(w,0,)=1 ( )
If Ry is nonsingular, Ry can be inversed to solve the unknown vector by
w,, = AR a(w,0,) (4. 62)

1
a” (w,6,)R a(w,6,)

where A=wi R w,, = is the beamformer output power.
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Next, A is substituted in Eq. (4. 62) to obtain the MVDR weight

R a(w,6,)
Wy = & 3
a’ (w,0,)R_a(w,6,)

(4. 63)

In the preceding results, it is convenient to obtain the spatial power spectrum S, (6)
by continuing altering &

1
a” (w,0)R a(w,0)

Sur (@) =wy, R W, = (4. 64)

The spatial power spectrum S,,,(8) exhibits J peaks approximately at 6, --- 6,,.

4.2.2 Multiple signal classification (MUSIC)
The MUSIC approach of DOA estimation has:been proposed by exploiting the
eigenvalue decomposition (EVD) ofithe covariance*matrix. Firstly, the array

covariance matrix Ry in Eq. (4. 58) is represented by EVD

R_=AR A" +c 1= UAU;! (4. 65)

b
where U is a unitary matrix and comprise M lincarly independent eigenvectors
u,...u, . The eigenvector associate ‘with"M eigenvalues «,---c,,. The array
correlation matrix can be represented as

R_=UAU"'=UAU"

o 0 - 0| uf
0 « 0 o
= [ul u,-- .uM] ] 2 ' . u, _ Zamumul];( (4 66)
: m=1
0 0 ay, || ul

The diagonal terms of A have been arranged with o, >a, >--->¢«,,. The noise

term o.1 can be written as

H

u,u, (4. 67)

M=

2 2 -1 2 H 2
o l=0,UU =0,UU" =0,

3
i
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Because A is derived from D sources, we assume that A and R,; are of full rank D.
Subsequently the signal-only correlation matrix C,y is generated by subtracting the

noise component from Ry

M
C,,=AR A" =>(a,-c))u,u/ (4. 68)

m=1

If Ry, is rank D and small than the array size M, the smallest M —D eigenvalues

ap,, --a, are equivalent to the noise power. Therefore the range of Cy are
spanned by u, to u,. If the array has no coherent source between any of two
received signals, R;; only has nonzero values on the diagonal terms which reprensent

the power of the D sources. Note that the range of Cy is identical to the range of A

which is spanned by the manifoldvectors a(@,6,)-:-a(®,6,)). The relation between

Cxxand A is

R{A} =span{a(w,0); " a(@,6,)| =span{u,,::, u,} (4. 69)
and

R{A}l:span{uDH,---,uM}, (4. 70)
where span{u,,---u,} and span{u,,.-u,} are called the signal subspace and

noise subspace, respectively. Because the subspace is orthogonal to the noise

subspace such that

u,a(w,6,)=0,d =1,2,--,D; m=D+1,D+2,---,M 4.71)

The MUSIC technique is to exploit Eq. (4. 71) to improve the DOA estimations.

The eigenvectors wu,, ,---,u,, isused to construct the projection matrix as follows
< H
> uwul =P, (4.72)
m=J+1

From Eq. (4. 70), the direction of the source &, (i=1,---,D) can be found by solving
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m-—m

M
Pa(w,0)= D u,u a(w0)=0, 0=6, (4.73)

m=J+1

The projection matrix has the properties of Py =P, and P, =P,. The problem of

Eq. (4. 73) can be extended to solve

|P.a(@,0)[; =a(w,0)" PP a(w,0)=0, =6 (4. 74)
Equivalently, the inverse of Eq. (4. 74) has the infinitely value when
0=0,i=1---,D. Theinverse of Eq. (4. 74) is referred to as the MUSIC spectrum.

1
a” (0,0)P,a(w,0) (4.75)

SMU(‘Q) =

The peaks of the MUSIC spectrum indicte the .directions of sources. Not that the

MUSIC spectrum does not exhibit infinitely-high:peaks:due to noises in practice.

4.2.3 Choice of parameters: Akaike information criterion (AIC)

How to determine D of Eq.:(4:.71).1s an important issue. It would rather be
overestimated than underestimated.~=. The AIC{72} can be employed to choose D.
The notion of the AIC is to calculate matching error and weight the truncated order,

the equation can be defined as

m

AIC(m) =R, =R (m)| +w,m, R (m)=) auu/ 4. 76)
i=1 .

The EVD of data covariance matrix is used to calculate the matching error, which is

HRM -R, (m)HF. The weight part is to weight order by w, in order to make the

order with lowest AIC value would be the same order in the error line which has an
apparent turning point. For a preset two point sources simulation, the error, weight
and AIC lines are shown in Fig. 40 (a). From the figure, the turning point of error
line is at the 4th order. Thus the weight w, should be chosen to make the AIC line
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will have a lowest point at that order. In our simulation, the value is chosen to be

0.5x10"2.  The AIC line with different weight is shown in Fig. 40 (b).
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Fig. 40 Decide source numbers by AIC algorithm. The truncated order is
corresponded to the lowest point. (a) Error, weight and AIC lines, (b) AIC

lines with different weights.
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4.3 Comparison of the farfield algorithms

In order to validate and compare the DOA estimation methods, numerical
simulations are conducted for a 30-channel URA and a random array optimized by the
SA-IBMC optimization method. The aperture of array is 0.4mx0.5m (d = 0.1m) for
URA and 0.5mx0.6m for random array, as shown in Fig. 41 (a) and Fig. 41 (b). In
the simulation, we assume two white-noise sources located at the positions (-0.5m,
0.5m) and (0.5m, -0.5m). The sources are Im from array surface. Assume the
sound velocity ¢s is 343 m/s. Consider the A/2 rule, the maximum measurement
frequency with inter-element spacing 0.1m is f _=c/2d =1.7kHz. Therefore,
we choose point sources with the frequencies 1 kHz (d =4/4) and 7 kHz (d =21)
to be the observed frequencies 4n simulations.  The magnitude of beam pattern or
spectrum of each approach®is normalized to a range from O to 1. This makes the
results of five methods can easily be compared in main-lobe width and side-lobes
levels.

The noise maps of two simulated point sources.obtained using different acoustic
imaging algorithms with a URA or an optimized random array in the frequency 1 kHz,
as shown in Fig. 42 (a)-Fig. 42 (j). At this frequency, the spacing is less than a half
of wave length. Therefore, grating lobes are not occurring in the simulated results of
URA and random configurations. The noise maps obtained using the DAS and TR
algorithms are shown in Fig. 42 (a)-Fig. 42 (d). Both of these figures are with poor
resolution. In addition, the source positions are not focus at the preset source
positions. The noise maps of another lower resolution algorithm SIMO-ESIF is
shown in Fig. 42 (e) and Fig. 42 (f). Compared with results of DAS and TR,
SIMO-ESIF also has large main lobes but can correctly point the source positions.
The Fig. 42 (g)-Fig. 42 (j) show the noise maps obtained using MVDR and MUSIC

algorithms with two array configurations. As predicted, the results validated that the
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MVDR and MUSIC are the methods which can achieve higher resolutions, especially
MUSIC. They can correctly localize the preset source points with narrow main
lobes. The side-lobes of MVDR are higher than MUSIC.

Apart from simulations at frequency 1 kHz, we also run some simulations in a
higher frequency to make the spacing exceeds a half of a wave length. Clearly, the
frequency is chosen to be 7 kHz. At this frequency, the spacing is approximate two
times of a length. The noise maps of two simulated point sources of DOA estimation
using different approaches with a URA and an optimized random array in the
frequency 7 kHz is shown in Fig. 43 (a)-Fig. 43 (j). The simulated results are largely
identical but minor differences with the results in the frequency 1 kHz except the
grating lobes appeared at those' power spectrims with URA configuration. In
SIMO-ESIF and MUSIC cases, the noise maps have no clearly visible grating lobes
with URA configuration. .. Nevertheless, the noise maps obtained using SIMO-ESIF
still have large main lobes“and much higher side.lobes than MUSIC. Summary, the
MUSIC is the algorithm which can®obtain highest reselution in the frequency from
low to high. The MVDR is worse than MUSIC but still can get relatively higher
resolution than other algorithms. The proposed SIMO-ESIF is the only in low
resolution algorithms which can use URA to localize high frequency noise sources.

Farfield acoustic imaging algorithms are compared in Table 5.
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Table 5 Comparisons of farfield acoustic imaging algorithms.

DAS TR SIMO-ESIF  MVDR MUSIC
inverse
Algorithm delay-sum time-reversed MVDR MUSIC
filtering
Resolution low low low High Very high
Complexity low low low High High
Area covered large large small/large large large
Processing
time time frequency  frequency frequency
Domain
Frequency
high high low/high low/high  low/high
range
Sample/Batch sample batch batch batch batch
Robustness to
poor high high low low
reverberation
Acoustic
no no yes no no
variables
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imaging algorithms with 30-channel URA and random array. The squares
are the preset sound source positions. The simulated whitenoise sources
located at the positions (-0.5m, 0.5m) and (0.5m, -0.5m). The observed
frequency is 1 kHz (d =A1/4). The power spectrums obtained using (a)
DAS with URA configuration, (b) DAS with random array configuration, (c)
TR with URA configuration, (d) TR with random array configuration, (e)
SIMO-ESIF with URA configuration, (f) SIMO-ESIF with random array
configuration, (g) MVDR with URA configuration, (h) MVDR with random
array configuration, (i) MUSIC with URA configuration and (j) MUSIC

with random array configuration.
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imaging algorithms with 30-channel URA and random array. The squares
are the preset sound source positions. The simulated white noise sources
located at the positions (-0.5m, 0.5m) and (0.5m, -0.5m). The observed
frequency is 7 kHz (d =2A4). The power spectrums obtained using (a)
DAS with URA configuration, (b) DAS with random array configuration, (c¢)
TR with URA configuration, (d) TR with random array configuration, (e)
SIMO-ESIF with URA configuration, (f) SIMO-ESIF with random array
configuration, (g) MVDR with URA configuration, (h) MVDR with random
array configuration, (i) MUSIC with URA configuration and (j) MUSIC

with random array configuration.
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CHAPTER 5. NEARFIELD ARRAY SIGNAL PROCESSING
ALGORITHMS

This section describes nearfield array signal processing algorithms such as the
Fourier based NAH, IBEM (direct and indirect formulations) and ESM (direct and
indirect formulations), NESI and Kalman filter-based algorithm. Comparison of the
nearfield algorithms is shown in finally.
5.1 Fourier NAH

In this section, the traditional Fourier based NAH is reviewed. The Fourier
NAH serves to reconstruct a three-dimensional sound field from the two-dimensional
hologram data scanned above the source surface, as shown in Fig. 44.

The 2D spatial Fourier transformation is ‘employed to transform the space

domain to the wave number‘domain, and vice versa.

plkok,. 22 [ [ pladia)e 0 dudy (5. 1)
s 1 o ool LT
P2 & [ [ bk, kgzye! S e, (5.2)
T —00 o —00

where x, y and z are the Cartesian coordinates, d. and d, are the spacing of
microphones in the x and y directions, and £, and £, are the wave number components
in the x and y directions. In the k-domain, the sound pressure data of the

reconstruction plane and the hologram plane can be related by
i)(kx’ky’z):ﬁ(kx’ky’ZH)eiij(FZ”)ﬁ (5 3)
where k. is the wave number in the z direction. Let H(k,,k,)=e"“7"  The

sound field is expressed as propagating and evanescent wave components in the
k-domain, i.e., a plane wave expansion. The Wiener inverse filter is employed to
mitigate the ill-posedness during inverse reconstruction on boundary using Fourier

NAH:
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1 1
H(k,,k,) 1+(a/‘H(kx,ky)‘2) ,

W(kx’ky) (54)

where a is a regularization parameter. With the Wiener inverse filter, the Eq. (5. 3)

can be rewritten as
Pk k,,z)=pk.k, .z, )W(k,k,). (5.5)

After multiplying with inverse propagator and k-domain filter, sound pressure can be
reconstructed in the spatial domain by the inverse Fourier transform in Eq. (5. 2).

The particle velocity can be calculated by using

u(k k ,z)= k 3 k. k

u( X2 yaz)_%p( %) yaZ)a (5 6)
where @ =2z f is the angular frequency and k.= (k,.k .k ) is the wave vector in

Cartesian coordinates. Thgractive intensity can be caleulated with
1 e
I:ERe{pu}. (5.7

Although the Cartesian coordinates-are-most-often employed in connection with the

Fourier based NAH, the methed can just as well be-applied in spherical or cylindrical,
as shown in Table 6. In the table, H'” is the Hankel function of the first kind.

The Fourier based NAH approach is more efficient, but it have some drawback in
practical application. First drawback is the microphone array must be larger than the
source to avoid windowing effect from the spatial Fourier transform because the
sound pressure must be sufficiently low at the boundary of the array. Other
drawback is the grid spacing must be less than half a wavelength at the highest
frequency of interest and the scanned grid points must be equally spaced on a planar
rectangular area. Hence, it requires large number of microphones to cover a

reasonable source area. In addition, the measurement distance should be less than
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(R, %) /(207 loge), where R_ 1is spatial resolution in the x-axis direction and S/ N

is signal to noise ratio.
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Table 6 Fourier based NAH for planar, cylindrical and spherical geometries [62].

Plane p(x,y,z;0) = FFHEF [ p(x, y, 2,5 0)] 57,

u, (x’ Yz, 60) = Ec_le_l {FxFy[p('xa s ZH; a))]ie'/—k:(ZHiz)}a
Pock

where

EFlo]= f_z fw pe e dxdy,

F'F'[®]= G j [ wete™ dk,dk,, and k, = |k k! ~ k.
T —o0 o —00
Cylinder R H," (k,r)
V,,;CU:FF'ZFF; raa;a)#a
p(r,p,z;0) = F, F {FF [ p(ry, ¢,z )]Hﬁl)(krm)}

. el k, H’(l)(k r)
un(r,¢,z,a))=F¢ F; {F;ﬁ]:z[p( ¢ Z, 0))] kH(])(k )}7
where

1 27 poo A e
FyFlp) 22~ j [ pe MeTedgde,
FF 1= }:n_wj Del"e dk; and k, = \[k* k.
M
Sphere 0. dve) = PR 048 H,"(kr)
p(r,0,950) = Fy Fy B El plry . 0,9; )]H,(,I)(kry)}’
(1)
0,(1-0.:0) < FS BEEIR,.0.9:00) s D,

¢ HY (kr,)

where

F,F,lp]= I I Y (0,9) sin0dOdg,

FC1=2, 2, P (0.9)
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5.2 BEM-based NAH (IBEM): direct and indirect formulations

The BEM is a numerical method based on integral equations. The surface of an
arbitrary object is discretized small elements and an interpolation scheme which uses
an integral representation to produce the Green’s function. The TF shows a relation
between the source point and the field point in matrix form. In order to reduce
implement formulation process to generate the measurement errors, it has to inverse
the TF by regularization. This methodology of NAH is termed the IBEM. The
IBEM is divided into two methods: The direct formulation can be derived from the
HIE using the Green’s function. In the indirect formulations, we survey two indirect
formulations which include the single-layer potential and the double-layer potential.

The disadvantage of the direct formulation is that it is not suited for thin structures.

5.2.1 Direct IBEM Formulation
The direct formulation can be derived from.the HIEusing the Green’s function.
Therefore, from the Green’s theory, it can be recast into the Helmholtz integral for an

exterior boundary value problem:

@p(0 = [0 20— G(xx) 3y dS 3, 5.9
where x and x, are the field and source points on S(x) and S(x,)
respectively; S(x,) denotes the source surface, S(x) denotes the field points
surface, 0/0n the derivative operator in a normal direction to the surfaces,
G(x,x)) = e MMrOX0) [ 47y (x, X,) I1s the free-space Green’s function corresponding to
the Helmholtz equation and

1, if x is outside S

a=9—, 1if x is on § . (5.9)

1
2
0, if x is inside S

Equation (5. 8) is used to express the sound field at a set of microphone positions
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close to the source (see Fig. 45). The numerical is required due to integration cannot
be solved analytically. This thesis chooses the simple discretization scheme in

which the surface § is broken up into N small elements of area AS,, /=1,---,N as

follows:
fiLJdS = 3 g [, (5. 10)

where S, denotes the surface of n™ element, and N denotes number of element. The
boundary elements used for approximating the surface integral are schematically
shown in Fig. 46 (a) and Fig. 46 (b). Triangular elements and quadrilateral elements
are introduced in this thesis for construction of meshes. The global and local
coordinate system and are related by isoparametric transformation. Quadratic shape

functions are used for interpolation the global coordinates as

L
X&) =X N(Exy, i=12,3 L=60or 8, (5. 11)
=1
L
P.(&)= 2 NP, m=12, - \M;L=60r3, (5.12)
=1
oP L oP
(&)=Y N(&)—5m=1,2,---M;L=6or8, (5. 13)
8nq I=1 8nq

where x; is the ith coordinate compdnent of the /th node. N,(&) are the quadratic
functions and ¢ =(&,&,) are the local coordinate. F,, and OF, /0n, are sound

pressure and pressure gradient of the /th node on the mth element, and M is the
number of the element. The integration over each element can be computed using
numerical integration. Each element will be found the pressure and the pressure
gradient by node values, respectively.

Assume that the sound pressure data p(xh) are measured on N locations of the
hologram S;. The integral equation relating the source surface and the hologram is

discretized and assembled into the matrix from as in Eq. (5. 8) with a =1:
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Ph — DhSPS _ ShsPs

n>

(5. 14)

where p”, p* and P, are N x1column vectors corresponding to the given sound

pressure p(x”") and the unknown sound pressure p(x’) and its gradient op(x*)/on; the

superscript h and s denote, respectively, the hologram S, and the source surface S;, the
subscript n denotes the directional derivative, D" and S™ are both NxN square
matrices corresponding to the integrals in Eq. (5. 8) that relate the N measuring points
x" and the N surface nodes x’, the superscript 4s denotes a spatial transformation
between the hologram and the source surface.

Boundary integral equation (5. 8) with a =1/2 takes the following matrix from

if the field point is taken to the seurce surface Ss:

aP’ =D¥P* -S*P; (5. 15)
or

D¥P’ =S¥P, (5. 16)

where D* and S* are both N XN square matrices corresponding to the integrals in
Eq. (5. 14) that relate the N field points and the N nodes x* on source surface S;, the

superscript ss denotes both the field and source points which are located on the source
surface, D* =(D* —al), with I being an identity matrix.

Equations (5. 14) and (5. 16), respectively, constitute the main equation and the
constraint equation with which one performs backward reconstruction of the sound
field for irregularly shaped sources. This technique is termed pressure-based
conformal holography with a hologram and a source surface coupling (PCHHS), since

its formulation is based on the sound pressure measured on the hologram.

There are two different ways of solving the unknowns P° and P,

n

in Egs. (5.
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14) and (5. 16). First, one may combine these two sets of equations into a single
linear system with 2N equations and 2N unknowns. Second, one may substitute the
constraint Eq. (5. 16) into the main Eq. (5. 14) to yield a single linear system with N
equations and N unknowns. The second approach is adopted here because it requires
less memory space and produces better-conditioned matrices than the first approach.

That is,

[D"(D*)'S* 8" 1Pf =P", (5.17)
with P° eliminated. P° can then be recovered from Eq. (5. 16) after P, is solved

in Eq. (5. 17). One may alternative eliminate alternate P, from Egs. (5. 14) and (5.
16) to obtain

[DhS _ Shs (SSS )—lﬁSS ]PS i Ph | (5 18)

P’ can then be recovered from Eq. (5. 16)after P is solved in Eq. (5. 18).

In some cases, it is more desirable to-measure the sound pressure gradient, or
equivalently, the particle velocity, by using an-intensity probe. This situation arises
when, for example, one seeks to avoid the influences from disturbing sources from the
background in carrying out an acoustic measurement. This application motivates the
development of the following velocity-based conformal holography with a hologram

and a source surface coupling (VCHHS).
Suppose that the sound pressure gradient dp(x")/on , or the particle velocity u, (x"),

is measured at N locations on the hologram. The integral equation relating the

source surface and the hologram then takes the matrix form with a =1:
h hs__s hs__s
p,=D,p -K"p,, (5. 19)

where p’ is an Nx1 column vector corresponding to the known quantity
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op(x")/on; D¥ and K" are both NxN square matrices corresponding to the

integrals that relate the N measuring points x" and the N surface nodes x’.
As with the pressure-based conformal holography, the Eq. (5. 16) can be used again

as a constraint equation for eliminating the unknown P from the main Eq. (5. 19) to

arrive at a linear system with N equations and N unknowns:

[Dy(D*)"'s" K" |p; =p). (5. 20)
Here, P* canthenbe recovered from Eq. (5. 16) after P’ is solved in Eq. (5. 20).
One may alternatively eliminate P; from Eq. (5. 19) to obtain

[ Dy -K"(8*)'D" |p’ =p". (5.21)
Then P’ can then be recovered from Eq. (5. 16)after P’ is solved in Eq. (5. 21).

In addition to the previously mentioned algorithms'that utilize the source surface
integral as a constraint, an arbitrarily‘chosen surface located in the interior of the
source may be used for setting up a‘constraint equation (see Fig. 45). This interior
surface is only a fictitious one which is'not required to be physically accessible in
field measurement. One advantage of choosing an interior surface instead of a source
surface as a constraint is: the integration kernels can never become singular when
using the interior surface since the distances between the source points and field
points are always greater than zero. Slow convergence in carrying out Gaussian
quadrature integration for singular elements is then avoided to some degree. The
choice of interior points is arbitrary, except for those points coinciding with the nodal
points of the eigenmodes of the corresponding interior problems. Interior points
with N pressure data measured on the hologram are chosen here to be located at
equal distances along the inward normal directions to the source surface points. N

interior points are thus located on a surface that almost conforms to the source surface.
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The following pressure-based matrix equation is obtained here in accordance with the
HIE with a=0:

D"P' =S"P!, (5.22)
where D® and S” are both NxN square matrices corresponding to the integrals
that relate the N field points and the N nodes x’ on the source surface S ; the
superscript is denotes the spatial transformation between the interior surface S, and
the source surface S, .

Parallel to the development of the aforementioned two algorithms, the matrix Eq.

(5. 22) can be used as a constraint equation for eliminating either the unknown surface

pressure P°, or the surface pressure gradient 'P; s from the main Eq. (5. 14) to solve

for the remaining unknown*quantity. - This approach 1§ then termed pressure-based
conformal holography with a hologram and a source interier coupling (PCHHI).

Similar reasoning can' finally be.applied to.obtain a holography transformation

algorithm based on the sound particle velocity P/ mieasured on the hologram, by
using the source interior equation (Eq. (5. 22)) as a constraint. One may choose to

eliminate either the surface pressure P° or the surface pressure gradient P, to

recover the other variable. This approach leads to velocity-based conformal
holography with a hologram and a source interior coupling (VCHHI).

The resulting matrix equations of these four acoustic holography algorithms
(with the different types of constraints presented in this section) are summa in

Table 7. Backward reconstruction and forward propagation of the sound pressure,
the particle velocity, and the sound intensity at any field point of interest can be
performed by applying either the pressure-based approach or the velocity-based

approach.
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Some noteworthy numerical aspects arise in the implementation phase of the
acoustic holography algorithms. The first aspect is associated with evaluation of the

singular integrals. The assembled coefficient matrices in the aforementioned

integral formulation, i.e., p+ and g, involve evaluation of singular integrals.

Element integrals can be conveniently evaluated by using the Gaussian quadrature

algorithm when the field point X, and the source point X, are apart from each
other. Integrands become singular when the field point X, coincides with the

source pointX,. Singularity of the integrand can be reduced by means of polar

transformation in order to improve _convergence in carrying out the Gaussian
quadrature integration. This i8 a typical procedure detailed in BEM literature.

In applying the IBEM to reconstructing sound fields of a vibrating object, more
than the number of discrete nodes considering a wavelength of interest is required to
avoid distortions and takea considerable-amoeunt-of measurements, since the surface
quantities are described by+# spatial discretization..* Such a procedure may be
impractical, especially for a complex-shaped structure due to the fact that the discrete
nodes and corresponding measurements may be excessive and the reconstruction

process can be extremely complex and time consuming.
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Table 7 Summary of the BEM-based acoustic holography algorithms.

Fundamental matrix Variable
Model Known Unknown Resultant system equations
equations eliminated
Main equation:
] ) S] ps [Dhs (l_)ss )—1 Sss _ Shs ]P; — Ph
P‘I — D SpS _ 1Sp2
PCHHS p’
Constraint equation:
B p; [Dhs _ Shs (Sss )—l l_)ss ]Ps — Ph
DSSpS — SSSp:I
Main equation:
] ) 3 ps [Dﬁs (DSS)—lsss _Khsjlpj, :pﬁ
P, =Dip =K'p,
VCHHS p!
Constraint equation:
ps & p; [Dzv _ Khs (Sss )7lﬁss :Ipv — p:
DSSpS = SSSp;
and
Main equation:
pn ) ) ) ps |:Dhs (Dis )—lsis _ Shv}p; — ph
P" =D¥p*=S"p,
PCHHI p’
Constraint equation:
' ' p:’ I:Dhs _Shs (Sis )—lDis]ps — ph
DlSpS — SlSp.:;
Main equation:
1 ) ] ps |:DZS (Dis )—1 Sis _ Shs } p; — pZ
P, =D,p’-K"p,
VCHHI  p!
Constraint equation:
p; I:Dfl,v _Khs (SiS)—l Dis:|ps — pf;

Disps — Sz\p;
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Fig. 46 Boundary elements used in isoparametric transformation. (a) Quadratic

quadrilateral element, (b) quadratic triangular element.
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5.2.2 Indirect IBEM Formulation

In this section, we survey two indirect formulations which include the
single-layer potential and the double-layer potential. The acoustic filed is expressed
in terms of above layer potential theory on the source boundary S. First boundary
integral method based on a distribution of single-layer on the surface is shown in Fig.
47. The pressure p can be expressed in terms of the simple-layer potential:

p(x) = [{0(x,)G(X,X)dS(X,), (5.23)
where x and xo are field point and source point, respectively. G(x,x,) is the

free-space Green’s function, and the unknown source strength o(x,) 1is written as

o=P_ P (5. 24)
on oOn

We recognize the Green’s function in the integrand, and we can view this formulation
as a distribution of simple’sources (moropoles)-on the Surface S. Once the source

strengths o(x,) are known, we are able to'find the pressure on the surface or in the
exterior by means of surface integration:

Another is to express thefield pressure by a double-layer formulation

0G(X,X,)
on

p(x) =[5 u(x,) ds(x,), (5.25)

where x(x,) is the unknown source density. Such a representation of the exterior

field can be shown to be distribution of double sources (dipoles) over S. The

unknown source density (X,) is written for xo on § as

p=p -p°, (5.26)

where p~and p" are the pressures on the two sides of the surface at source point Xo.
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5.3 Equivalent source method (ESM)

ESM has gained much attention in the recent years. This method employed a
set of virtual simple sources that is monopoles or dipoles placed inside the vibrating
structure to represent the radiation from the source. ESM has been used for solving
the inverse problem. The idea of ESM is modeling sound field generated by a set of
the distributed simple sources placed on a vibrating structure in the interior of the
structure, as shown in Fig. 48. Then use these source strengths to estimate the sound
field on the source. The advantages of ESM are its ease to implement and low
computation complexity, as compared to the direct IBEM approach. The
disadvantage is the quandary of how to decide the distribution density and the RD

between the source surface and virtual source surface (monopoles).
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Fig. 48 The definitions of important surfaces used in the ESM-based NAH. The

symbol x, is the mth microphone position on the hologram surface S”.

The symbol z, is the ith source point on the actual source surface S°.

The symbol vy, is the nth virtual source point on the virtual source surface

S”.
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5.3.1 Direct ESM

The direct ESM uses the multipole expansion by the discretization with simple
sources placed in the interior of the structure (see Fig. 48). The ESM algorithm is
shown to be equivalent to Helmholtz-integral formulation that can be represented in
matrix form. In acoustic problems, the Kirchhoff-Helmholtz integral equation can

be derived by applying the Green’s theorem to the volume integral equations:
@p(0 =170 -Gl x) L xS ). (5.27)
where x and x, are the field and source points on S(x) and S(x,)

respectively; S(x,) denotes the source surface, S(x) denotes the field points

surface, 0/0n the derivative operator in. a normal direction to the surfaces,
G(x,x,) = e %) /4 7p(x, x§) s the free-space Green’s function corresponding to

the Helmholtz equation and

I, if x is 'outside §

a=¢—, 1if x is on .S " . (5.28)

1
2
0, if x is inside S

This study chooses the simple discretization scheme in which the surface S is broken

up into N small elements of area AS,, /=1,---, N as follows:

N

oG
ap,, = E(p;

8
G p : = AS. (5. 29)

The matrix representation of Eq. (5. 29) can be obtained after utilizing the numerical
integration as follows:

AS, 0

s AS
ap” =D"S p* —M"S % with S = . , (5.30)

0 AS,,

where M” and D" denote the source model of monopole and dipole respectively,

the form of propagation matrix as follow:
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— jkr

M"(z,,x,,0)=—, (5.31)
drr
—jkr 1 . — jkr
D(z,x o)=n, +V, S ——n . I (5. 32)
! r ! r A4rr

where » =|x, —z,| denotes the distance between the source point z;, on the source

surface S° and the microphone point x,, on the surface S, n i is outward unit

z

normal vector of z,; V,is gradient vector of x , e, denotes the unit vector

between x, and z,, k is the wave number, @ is angular frequency and p, is the
density of the air. Assume 6 =-S0p°/on and p=Sp®where p° is pressure on
source surface S°. Therefore, the holography equation can be rewritten as

ap" =M"6+D"p. (5. 33)

The p” denotes measured sound pressure onmicrophene surface when « =1 in Eq.
(5. 33). In addition, constraint equation (on source surface) can be obtained when

a=1/2 as follows:

1
Eps :MSSG+DSSH . (5. 34)
Assume AS), =AS, =---=AS,, =AS"and thus '‘p’ =p/AS. By doing so, the Eq. (5.

34) can be rewritten as

1 y 1
— =M% +D*u=0=M%"6+(D* ———1)p, 5.35
oAt 1] ( AS )jn ( )

where I being an identity matrix.

In the measurement of radiated sound field by microphones, singularity of the
diagonal elements are generated due to the field points are located on the source
surface S*. In order to solve the singularity of the diagonal elements M* and
D", it must be properly dealt with the following two integrals on a “singular

element”. First, the M* is weak singularity matrix form as
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— jkr 27 R~ jkr .
[ 5= T o RS2 -
Ay 0 drr 2 kR/2

AS
where r=|z,—z,| denotes the distance on the same source point z;, on the source

surface S°, and AS is a small disk element with radius R =~/AS/x . Finally, the

D™ is strong singularity matrix form as follow:

—ikr —ikr
tim [ -2 (€)as = lim | 9 s =, (5.37)
r0 3 0n 4rxr =03 Or 4mr” on

where Or/on=n+Vr=0 on AS.

The following equation combines Eqgs. (5. 33) and (5. 34) to solve for the unknown o

and p

[Mhs Dhs:||:6:| [ph:l [o} I:ph:I
= SAl |= . (5.38)
MSS DSS u pS u pS

Apparently, equation (5..38)/is the inverse.problem and the matrix A is usually
ill-posed and even non-square.  Therefore, the.unknown pressure gradient ¢ and

pressure p on the virtual strface can'be calculated by

h

c P
=A . .39
[H} L“} -3

where A" is pseudo-inverse matrix from A by TSVD or Tikhonov regularization.
The sound pressure p” and particle velocity u” on the reconstruction surface S”
can be calculated by

r — MVV6+DFV
{p : (5. 40)

u’ :D'rvG+Qrvu’
where M" denotes the monopole source model, D™ and D" denote the dipole

source model, Q™ denotes the quadrupole source model. The unknown D" and

Q" can be calculated by
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. — jkr T D — jkr
D”(yn,zi,a)):Ln oVre =) 1-jkr e , (5. 41)
p@ " T Arr pw  r drr
v J eijkr
0" (V,,2;,0) =ﬁ(nyn V), V) o (5.42)
0

where r =z, —y, |denotes the distance between the source point y, on the virtual

source surface S, and the reconstructed point z, on the reconstruction surface S°,

n, and n, are outward unit normal vector of y, and z, respectively; and V|
0 :

Zi

and V, are the gradient vectors of z, and Yy, , respectively.

5.3.2 Indirect ESM

The basic idea of the ESM is to modelsound field:by using distribution of virtual

simple sources, as shown in Fig. 48 In the figure, X is the mth microphone

position on the hologram Surface ", . is the ith sourcé point on the actual source

surface §°, and y, is the ath virtual source point'on’the virtual surface S". We

shall formulate the ESM-based NAH in two 'source configurations illustrated in Fig.
49, which is more practical in modeling actual continuous sources. In source
configuration 1, the virtual source surface (S”) stays away from the actual source
surface S’ with a non-zero RD. Source configuration 2 is applied to only planar
sources for which we distribute virtual sources right on the actual source surface S°
(RD = 0 in this case).

A. Virtual source configuration 1:

The ESM can be formulated by discretizing the integral of simple layer potential.
P'=[_ omG"(xy)dS"(y). (5.43)

where o(y) is an unknown source strength of the point source distribution, p" is
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the hologram pressure measured on the surface S”, x and y are the position vectors
of source point and field point, respectively. The propagation matrix consists of

elements expressed as the free-space Green’s function for the baffled piston

e—jkr

Ghvx, =
(x,y) 2

(5.44)

where j denotes /-1, k=w/c is wave number, c is speed of sound, @ is angular

frequency, and 7 =[x—y|. Straightforward discretization of Eq. (5. 43) leads to

p@)jdw@mwmww Zjdw@meuw

(5. 45)

N

[o(y,)S:1G" (x,y,) = quG’”(x,y ),
=1

n=l

where S’: is the area of the nth' element, y, eSnV, q, =a(yn)§,f represents the

strength of the nth point source;-and: M | is the numbeér of point source. It should
be borne in mind that these virtual point sources-only constitute an equivalent discrete
representation in that they»would produice the same field;p" (x). The amplitudes of
these point sources represent relative source strengths associated with each source
location, which could be due in‘part to"physical sources and/or the effects nearby
boundary reflection. These N virtual sources are assumed to be located at the
desired focal points. Equation (5. 43) can be discretized into the matrix form

p' =jn0G"q, (5. 46)

h

v

where p, is the air density, p" represents the hologram pressure vector, q
represents the virtual source strength vector, and G™ is the propagation matrix

relating the source volume velocity and the hologram pressure. The unknown virtual

source strengths can be calculated by inverting Eq. (5. 46) as

1
]po

AV

G"'p, (5.47)
where " is the estimated source strength vector and G is the pseudo-inverse
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matrix of G". The TSVD or Tikhonov regularization can be used to deal with the
ill-conditioned inversion process.

Once the source strength " is obtained, acoustical variables can be
reconstructed on the actual source surface. Due to singularity of virtual point
sources, we need a non-zero RD between the virtual source surface (S") and the
actual source surface §* to assure smooth reconstruction results, which is referred to

as source configuration 1. Thus, the sound pressure on §° can be reconstructed as
P’ =jpeG"q, (5. 48)

where G* denotes the propagation matrix relating the virtual source strength and
the actual source surface pressure. In addition, the actual source surface normal

velocity can be reconstructed as

S N 1+ 'kr'n AV SV
u‘(zi)=Z(n°e,4)—qr] =g, J6—CE ¥l s, (5. 49)
n=1 in

where v, = |Zi -y,

, e =(z,-y, )/, 18" the unit vector pointing from the nth

virtual source to the ith recomstruction point, and B is the outward unit vector
normal to the actual source surface.
B. Virtual source configuration 2:

For planar sources, one can use source configuration 2 in which virtual sources
are distributed right on the actual source surface §°, so the RD is zero in this case.
The pressure field produced by a planar source can be expressed as the Rayleigh’s
integral [73]

P')=2jp0f G (xy)uy)ds"(y). (5. 50)
where u, is the source surface velocity of virtual sources on the surface §* and

G"(x,y) is as defined previously. Equation (5. 50) can be expressed in a matrix

form of Eq. (5. 51) by using zeroth-order discretization with constant elements. The
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measured pressures on the hologram surface and the velocities on the resulting can be

represented in the matrix form

p' =2jp,0G"q" (5.51)
The velocity on the actual source surface can be calculated by
v 1 v 1 w__h
uW=—q=—"—-0G ,
AS q IS P (5.52)

where AS denotes the average area per “element” on the actual source surface.
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Fig. 49 Schematic diagram for planar sources in configurations 1 and 2.
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5.3.3 Nearfield Equivalent Source Imaging (NESI)

In the NESI formulation, the target source is simulated by a collection of point
sources distributed on a surface. For that source configuration, one can simply
choose virtual sources to be the target sources. The free-space Green’s function
between the source point y and the field point x as

- jhr

e

G(x,y) = p (5.53)

Consider a NSI problem depicted in Fig. 50, where sound pressures radiated by a
source are received at the M microphones. The measured sound pressures and the

source amplitudes are related by

prx) || GLy) GOy e GLYY) || ()
Ph(:xz) _ G(Xf’yl) G(xz:,yz) G(Xz:gYN) qv(:}'z) _ (5. 54)
Pl [Ox,.y) G 8 60,.¥)) [46,)
Or, in the matrix form
b =G (5. 55)

Since the number of microphones isisually no greater than that of the focused points

(M < N), the propagation matrix: G EMCN could be non-square and the problem

could be underdetermined. The purpose here is to estimate q" based on the

measurement p”. This can be regarded as a model matching problem depicted in

Fig. 51, where the propagation matrix G has the source amplitude q’ € NC1 and the

pressure measurement p” € C as its input and output, ee C is the matching error
Mx1 Jx1

where the J is number of focal points, Ce C is the inverse filter matrix, and
JIxM

We JCN is the matching model. With the most basic choice of W being the identity

matrix I, the problem reduces to, given p andG, finding an inverse filter C such

that CG ~ W =1 and hence
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q=Cp=CGq=q.

Inverse matrix ¢ can be obtained by TSVD of the propagation matrix as

Lou”
C=>—"v, (5. 56)

i=1 O

1

where [ is the discrete regularization parameter., u, is the ith left singular vector,
v, is the ith right singular vector and o, is the ith singular value.
Alternatively, inverse matrix C can be obtained by Tikhonov regularization as

C=WG"(GG" + p1)", (5.57)
where >0 is a regularization parameter that can either be a constant or
frequency-dependent.

An NAH method termed the NESI was proposed for NSI and sound filed
visualization. The NESI per'se can be considered.as a time-domain ESM. It is
noted that the inverse filters C obtained ar¢ still in the“frequency-domain. Inverse
FFT is called for to cemvert and truncate these FREs into FIR filters in the
time-domain. In this step, circularshift-is-needed to. ensure that the resulting filters
are causal filters. Now thatithe inverse filters are.available, the amplitude of the
virtual sources at the virtual source points 'can be calculated by using multichannel

convolution:
M
g,(n)=> p,(n)*C, (n), I<n<N, (5. 58)
m=1

where n' denotes the discrete-time index, C,,(n") denotes the impulse response of

GG*,,

the mmth inverse filter and denotes the convolution operator. The thus
obtained virtual source strength at the virtual source point will serve as the basis for

subsequent sound field reconstruction.
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5.3.4 Kalman filter-based algorithm
Kalman filter is a model-based adaptive filtering approach relying on a known
propagation model. In terms of state space formulation, a generic structure of a
Kalman filter involves two equations. The first equation is the process equation:
x(n+1) = F(n+Ln)x(n) + v,(n), (5.59)
where F(n+1,n) is a known M xM state transition matrix relating the state of the
system at times n+1 and n. The M x1 vector vi(n) is process noise.

The vector vi(n) is a zero-mean, white-noise process whose correlation matrix is

defined as
Q. n=n
E[v,(n)v] (n")] =
[v,(n)v," (n')] {0’ . (5. 60)
The second equation is the medsurement equation:
y(n) = C(n) x(n) + ¥y(n), (5.61)

where C(n) is a known .Nx M measurement matrix. The Nx1 vector vy(n) is a

zero-mean, white-noise measurement neise-whese-corr¢lation matrix is defined as

Q,,'n=n'
E[v,(n)vY(n")]= :
[v,(n)v; (n')] {0, s (5. 62)
The noise vectors vi(n) and vy(n) are assumed statistically independent
E[v,(n)vi (n)]=0. (5.63)

From the perspective of the linear system theory, the process equation and the
measurement equation of the acoustic testing in the time-domain can be written as

follows:
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5(z—’"1cl) 5(z—"15)

p(x,0) h hs a, (1)
: = E : 1 |=p,=9, *a, (5. 64)

p(XMﬁt) 5([_M) é‘(t_rﬂ) aS(t)
C C

er rMS

where p, is the air density, p, represents the hologram pressure vector, a, represents
the virtual source amplitude vector, and 8, is the Dirac Delta function matrix relating
the source amplitude and the hologram pressure. The virtual sources are distributed

right on the actual source surface S;, so RD is zero in this case.

The ERA establishes the following minimal state space realization for linear

systems:
x,(n+1) = Ax (n) £Ba(n), (5. 65)
p(n) = Cx.(n) + Da(n), (5. 66)

where 7 is the discrete-time index, xs(n)-is-the-state vector, a(n) is theSx1 input vector,
p(n) is the M*1 output vectorjand A., B., C, and D, are constant matrices. The ERA
starts with the impulse response matrices of'the Dirac Delta function (9,,). Assume
the source amplitude functions satisfy the smoothness condition described by the
following state equation:

a(n+1)=Aa(n), (5.67)

where A being an identity matrix. Define compound state variables:

X, (n)
x(n) = a(n) |’ (5. 68)

then it can be written as follows
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x,(n+D)| A, B, | x(n)
an+) | | 0 A | a(n)

(5. 69)
p(n)=[C, D@]h‘((;;)}

or more concisely formulation
x(n+1) = F(n+1,m)x(n) + v, () 5.70)

p(n) = C(n)x(n) +v,(n)

However, this Kalman filtering problem can not be solved by the steady-state Riccati

equation because C(n) is a time-varying matrix, but rather the following recursive

algorithm:
G(n)=F(n+1,n)K(n,n-1)C" (n)[C(n)K(n,n—1)C" (n) +Q,(n)]", (5.71)
a(n) =p(n) - C(m)X(n| p,_1)} (5.72)
R(n+1| p,)=Fn+1,mx(n | p, )+ Gn)a(n), (5.73)
K(n) = K(n,n —1) - Bn, n)G(n)C(n) ki, n 1) , (5.74)
K(n+1,n) =F(n+1, DK (n)F (a+ 1 n)+Q (n), (5.75)

To initialize the algorithm, the initial conditions are taken to be: X(1|p,)=0,
K(1,0) =1, with I being an identity ‘matrix " The block diagram of the recursive
Kalman filter is shown in Fig. 52.

Numerical simulations are conducted to demonstrate the performance of
ESM-based NAH by using the Kalman filter algorithm. In this formulation, the
target source is simulated by a collection of point sources distributed on a planner
surface. Source configuration 2 is applied to only planar sources for which we
distribute virtual sources right on the actual source surface Sy (RD = 0 in this case).
Suppose that the array comprises 5x5 microphones uniformly spaced with distance d

=0.lm (d =M2 at f= 1.7 kHz), as shown in Fig. 53. The number and spacing of

microphones and virtual sources are of identical settings. The point sources
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embedded at the plane z = Om is arranged in four scenarios as denoted by S _.,i=1-2

respectively, as shown in Fig. 53. In the simulations, the desired amplitude vector
was chosen according to the source type. The random sources with equal strength
and band-limited to 2.5 kHz are assumed to be on the actual source surface. The
parameters assumed for the Kalman filter based simulation are as follows: Q;(n)=0.11,
Q2(n)=0.011 , with I being an identity matrix and the sampling rate is /=1 kHz. The

time-domain magnitudes of the surface amplitude reconstructed using inversion and

Kalman filter method in S ,and S, are shown in Fig. 54. In the scenario S ,, the

relative errors of the reconstructed amplitude thus calculated are 14.5% for inversion

method and 10.8% for Kalman filter method, respectively. Furthermore, the relative

errors are calculated for previous methods in'thé scendrio S, ,. The error percentage

calculated is 16.8% for invetsion and 30.2%for Kalman filter. The method of
Kalman filter, which can be regarded.as‘an extended observer with the constraint of
Gaussian noise, can be used to include practical imperfections such as multi-path,
reflection, and sensor noise in the'state, model. In'summary the present observer-based
algorithm is able to be performed recursively over each sampling block. The outcome

is still comparable to the corresponding inversion result.
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Fig. 52 Block diagram of the Kalman filter.
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Fig. 53 Scenarios of array element and actual source point distribution for

simulating the point sources. (a) S;,; and (b) S;.
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Fig. 54 The reconstructed and the desired amplitude profiles of point sources

scenario. (a) Sy, and (b) S; .
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5.3.5 Choice of nearfield array parameters

In configuring the array, there are many design factors to be taken into account.
An in-depth investigation conducted in Refs. [39] and [68] has arrived at the
following conclusions. The reconstruction performance achievable by the array is
dependent on the condition number of the propagation matrix. The inverse problem
is well conditioned when the number of sources and sensors is small, when the
geometrical arrangement of sensors is conformal to the source geometry in terms of
location, orientation and spacing, when the sensor array is positioned symmetrically
with respect to the source array, and when the DOR is small.

The last point regarding the DOR is crucial to the performance of the NESI. It
is well known in acoustics that'the evanescent waves carrying the details in the
nearfield will rapidly decay:with distance to the farfield. The propagation matrix
then becomes ill-conditioned as one attempts to reconstruet the sound image based on
an already smoothed farfield measurement. A numerical' simulation conducted for a
1D array shows in more detail what'the effects of some array parameters have on the
matrix conditioning. In Fig. 55 (a), the'condition number drops with increasing kd.
The condition number of reconstruction with large L is higher than that of
reconstruction with small L. Because condition number is defined as the ratio of the
maximum singular value and the minimum singular value, the singular value plot in
Fig. 55 (b) further exhibits the same trend of matrix conditioning versus the DOR.
In this work, the condition number during sound field reconstruction is generally kept
under 10°.

The procedures in choosing array parameters can be summarized as follows:

1. Choose the microphone spacing according to the maximum frequency (fmax ).
A conservativeruleis d =4/2.

2. Choose the array aperture (D) that covers the source surface size.
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The last two steps determine the number of microphone needed, N,, = D/d for
a ULA.

Choose the DOR according to the condition number of propagation matrix and
the array parameters determined above. As a rule of thumb, we choose the

condition number under 10°.
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Fig. 55 Variation of condition number of propagation matrix for a 1D array.
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Condition number vs. kd, (b) singular value distribution of propagation

matrix (frequency = 200 Hz, the spacing between microphones and between
focal pointsd = d,= 0.0858 m, kd = 0.3142). The parameter k is the
wave number, d is the spacing of array, G is the propagation matrix, and L

is the DOR. There are 30 microphones and 30 focal points. The number

of null points is one at each end.
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5.4 Comparison of the nearfield algorithms

Fourier NAH enables reconstructing the 3D sound field from the 2D hologram
data scanned above the source surface. Although Fourier NAH provides a clear
picture of noise distribution, it suffers from a number of limitations which stem from
the fact that NAH relies on the FFT of uniformly sampled pressure data on the
hologram. To avoid spatial aliasing, the spacing of microphones is required to be
less than one-half the wavelength. To avoid spatial wrap-around, the surrounding of
the aperture would generally need to be padded with zeros. However, these two
considerations often result in a large channel count.

NAH methods appropriate for arbitrarily shaped source were suggested, e.g., the
NAH based on IBEM and the HELS method. The:BEM can be derived from a field
representation on the basis of the Green’s function theory, whereas the HELS method
can be formulated using the field representation based on-spherical harmonics. The
IBEM can be further classified into two categories: the“direct formulation and the
indirect formulation. The former 18 derived from the:HIE, whereas the latter stems
from the simple layer or double"layer potential.” The advantages of IBEM are it
allows for reconstruction of the acoustic quantities on an arbitrarily shaped structure,
and it is suitable for exterior and interior regions. However, spatial discretization is
employed to obtain acoustic quantities. Hence, IBEM must require a minimum
number of nodes per wavelength to assure a satisfactory spatial resolution in
reconstruction. For a complex structure, the number of discrete nodes required to
accurately reconstruct the surface acoustic quantities can be very large. Therefore, the
total number of measurement points may be large. In this condition, IBEM making
the reconstruction process extremely time consuming. The major disadvantage of
HELS is that can yield a good approximation for all surface geometries. HELS

proved effective in imaging blunt and convex sources, but not for a highly elongated
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one. The cylindrical coordinate system is ideal for a slender body, but not for a flat
surface.

Another method, the ESM, also known as wave superposition method, was
suggested for sound field calculation with far less complexity. The idea underlying
the ESM is to represents sound field with discrete simple sources with no need to
perform numerical integration. As opposed to the actual source, these solutions of
simple sources deduced from the acoustic wave equation serve as the basis for sound
field representation. While the ESM was often used as a benchmark for BEM, it has
been shown with careful choice of parameters that the ESM is capable of achieving
accuracy comparable to other methods. Like IBEM, the use of ESM is not restricted
to source with regular geometries. = The simplicitysof the ESM lends itself very well
to the implementation with*digital signal processing and control paradigms. From
such perspectives, the NESI previously -proposed’ by the authors performs
multichannel inverse filtefing in, the. time-domain in light of minimal state-space
realization of digital filters. + Sinceall the required:processing is carried out in the
time-domain, NESI eliminates many problems of Fourier NAH. Not only sound
field processing is entirely carried out in the time-domain but also nearfield details
can be reconstructed. This technique is applicable to noise sources of all kinds,
including narrowband, broadband, stationary, and transient types. Table 8 compares

the aforementioned nearfield imaging methods.
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Table 8 Comparison of nearfield imaging methods.

Fourier NAH IBEM HELS NESI
Algorithm  k-space FFT2D matrix inverse  least-square  inverse filtering
Geometry planar/regular  planar/regular irregular  arbitrary/irregular

Mic spacing M2 M2 =\2 3~4n
Spatial window
yes no no no
effect
DOR nearfield nearfield nearfield  nearfield/farfield
Area covered small small small small/large
Domain frequency frequency frequency time
Real time no no no yes
Stationarity yes yes yes no
Reference yes yes yes no
Acoustic
yes yes yes yes
variables
Need scaling no no no no
Sensor many many many few
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CHAPTER 6. PRACTICAL IMPLEMENTATIONS

This chapter outlines practical implementations such as inverse filter design,
multi-channel fast filtering, post-processing, choice of DOR and lattice spacing,
virtual microphone technique, choice of RD, optimization of sensor deployment, and

system integration and experimental arrangement.

6.1 Inverse filter design

In general, inverse problems are based on an associated forward problem. This
forward problem behind NAH is sound field model that presents the sound radiation
from a source. Acoustic excitation is employed ass:input to predict the field pressure.
This part gives an introddction to-important issues’regarding inverse problems

explained from NAH.

6.1.1 Model matching: ill-pesedness and regularization

In problem of ESM in chapter §, it cafrbe regarded as a model matching problem
depicted in Fig. 51. Similar to the deconvolution process in NAH, the system matrix
G is usually ill-conditioned and even non-square. This calls for the need of
optimization with proper regularization. The problem considered herein can be put

into the following optimization formalism:

min [W-CG, 6. 1)
where -2F symbolizes the Frobenius norm [75] defined as, for an Jx N matrix
A,

2 N & 2 ul 2
Al =222 s = 2 [l - (6.2)

n=1 7n=1 n=1

Hence, the minimization problem of Frobenius-norm can be converted to the
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minimization problem of the 2-norm by partitioning the matrices into columns.
Since there is no coupling between the columns of the matrix C, the minimization of
the square of the Frobenius norm of the entire matrix G is tantamount to minimizing

each column independently.

S n=12-,N. (6.3)

2

. 2 . Y
min |W-CG| = min ;Hwnﬁ ~G"e!

where w, and ¢, denote the 7 th columns of the matrices W and C, respectively, the
superscript “A” denotes the Hermitian transpose. The least-squares solution to the
problem above is given as

' =G"yYwS", n=12,-,N, (6. 4)

where the superscript “+” denotesy the pseudo-inverse . This optimal solution in

least-square sense can be assembled into.aymore-compaet matrix form:

[e, ¢, .. c,\,]H:(GHY[W1 | WN]H (6.5)
or

C=WG" (6.6)
If the system matrix G is of full-row rank; the pseudo-inverse is given as

G'=G"(GG")"! (6.7)
Note that G+ is also the right inverse in thatgGg+ — . Nevertheless, if G 1is not

of full-row rank, TSVD and Tikhonov regularization [32], [76]can be used to avoid

singularity of GG# . Inverse matrix ¢ can be obtained by TSVD of the

propagation matrix as

1 llH
C=>-"v, (6. 8)

i=1 O

1

where [ is the discrete regularization parameter., u, is the ith left singular vector,
v, 1s the ith right singular vector and o, is the ith singular value.

Alternatively, inverse matrix C can be obtained by Tikhonov regularization as
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C=WG"(GG" + g1, (6.9)
where A >0 is a regularization parameter that can either be a constant or
frequency-dependent [77].

The right inverse is used for the inverse problem. If, instead, left inverse is
used in the present formulation, the matrix product G”G can become extremely
rank-deficient. Heavy regularization would be required to maintain numerical
stability. The solution will be over-smoothed when over-regularization is chosen too
low due to the removal of the high frequency components. If under-regularization is
chosen, the solution has distortion because of the amplification of the noise. Hence,

how to choose optimal regularization parameter is described in chapter 6.1.3.

6.1.2 Window design

One problem with the simple choice of the matching model W = 1 is that
defocusing problem may arise. | .This is a. frequently encountered problem
particularly in the neighborheod of the boundary of the virtual surface. To resolve
the problem, a modified matching model'is suggested as follows. In addition to the
virtual source points, the outer ring of the virtual surface is padded with “null points”
to restrain the level of reconstructed data outside the boundary, as shown in Fig. 56.
This is analogous to the windowing technique in digital filter design. Thus, the

matching model is modified into

I .. 0
wol0 1
=l - (6. 10)
0 ... 0],

where N diagonal entries “1” correspond to the virtual source points and “0” entries
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at the bottom half correspond to the null points. With this choice of W, it can be

shown that

i=Wq=[¢, ¢ . qy 0 .. 0]. (6. 11)
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6.1.3 Parameter choice methods (PCM)

In this section, the generalized cross-validation (GCV) and L-curve criterion
(L-C) are described to choose optimal regularization parameter. The idea of GCV is
to remove an element from the vector of measurement data and then predict the
missing data based on the remaining measurements [78], [79]. The optimal

regularization parameter is to minimizing the GCV function that is

2

p-Gq,
GCV = H =2 (6. 12)
(trace(I -GG ))
where ¢, 1is the regularized solution vector and G" is
G'=> fvou, (6.13)
i=1

where 7 is the dimension,0f G, u, fis]the 4" left'Singular vector, v, is the i"

right singular vector, o, 4s the i" singularvalue and £ is a low-pass filter. The

residual vector can be calculate as

n n H
p-Gq,, :p—[Zuiaivfj(Zfi le}
i=1 i<l oF

=p-2 u,fup
i=1

(6. 14)
) )
- ﬁluia—f[)uf’p.
Therefore, the residual norm in the numerator of Eq. (6. 12) is
|p-Ga., z=_:21(1—ﬁ)2\ufp2, (6. 15)

where u, from Eq. (6. 14) is removed because of the orthonormality of the singular

vectors. The denominator of Eq. (6. 12) can be evaluated as

(trace(I —GG#))2 = (trace(l - iuifiuf’)j =M - ifl ,

196



where M 1is equals the length of p. The optimal regularization parameter is to
minimizing the GCV function, as shown in Fig. 57.

Another PCM in this thesis is L-curve [78], [80]. The two norms are plotted
against each other in a log-log scale, as shown in Fig. 58. The optimal solution is
assumed to be at the corner of the L-curve. This corner is found at the point with

maximum curvature. The solution norm can be found as

where v, from Eq. (3. 6) is removed because of the orthonormality of the singular

‘2

q
reg o

2 B n ) ‘ual
=S

i=1 2
vectors. The solution will be over-smoothed when regularization parameter is
chosen too large, which gives a ldrge residual.  If regularization parameter is chosen
too small, the filter factors ‘allow; the moise to be amplified to yield a large solution
norm. The drawback of the L-curve is that.it may not have a clear L-shape, which
means that an inappropriaté parameter.choice could be*made. In other instances

there can be two or no cornets, which can also make the:method fail.
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Fig. 58 Illustration of the L-curve. - n the figure is corner of the curve.
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6.2 Multi-channel fast filtering

The aforementioned multichannel inverse filtering is carried out entirely in the
time-domain and is thus computationally intensive. To ease this problem, a
technique based on the ERA is exploited to simplify the NESI processing. This
method establishes the following minimal state-space realization for linear systems:

x(n+1)=A _x(n)+B_u(n) (6. 16)

y(n) =C x(n)+D,u(n), (6. 17)
where 7 is the discrete-time index, x(n) is the state vector, u(n) is the M x1 input
vector, y(n) is the Jx1 output vector, and A,, B,, C, and D, are constant matrices.

The ERA starts with the impulse response matrices of the inverse filters:

¢ (n) c,(n) -u7ve, (n)
C(n) = 021:(’7) sz.(n) CZM.(n) ST, | 6.18)
c,(n) c,(m) e e, (n)

where 7 is the time index and N is-the-length-ef-impulse response. Assemble these

impulse response matrices intoa " jg x }/¢ Hankel matrix:

C(n) Cn+1) - Cn+s-1)
H(n—1) = C(n:+1) C(n:+ 2) C(n:+ s) ’ 6.19)
Cn+s-1) Cn+s) -+ C(n+2s-1)

where the s is an integer that determines the size of the matrix. Usually, s is taken to
be N/2. Factor the Hankel matrix H(0) using SVD

H(0)=UZV", (6. 20)
where U and V are unitary matrices and X is a diagonal matrix with singular values
in its main diagonal. Great reduction is possible by observing the singular value plot.
A typical example of singular value plot is shown in Fig. 59. The singular valves
after v =100 is very small and can be replaced by zeros. Hence, the matrices U, V

and X are in effect truncated. Based on the above SVD result, the minimal

200



realization of A., B., C. and D, then follows:

Ae — Zfl/zUHH(l)szl/z Be — Zl/szEM

2

(6.21)

C,=E"ux"” D, =C(0)

and
where Ej, =[I,, 0, - 0,] and Ef =[I, 0, --- 0,], and the I is an

identity matrix and the 0 is a null matrix.

Instead of direct convolution (DC) in the time-domain, the multichannel filtering
is efficiently carried out using the minimally realized state-space equation. This can
give rise to considerable computational saving for the NESI processing owing to the
fact that v < Ms in general. For example, if M =J=30 and N =227,
M xJx227=204300 multiplications are required using DC, whereas only
v+ VM +Jv+JM = 22500 “multiplications are required using the ERA with v =120.

Almost one order of reduction’has been attained:
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Fig. 59 Singular values of the Hankel matrix H(0). The singular values above the

order v are negligibly small.
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6.2.1 The time-domain processing

Apparently, execution of the vast number of inverse filters in NESI is very
computationally demanding if all processing is carried out in the time-domain. This
is becoming even more problematic in practical applications. To overcome this
problem, the ERA is employed in this thesis. The ERA was described in the chapter
6.2. The Operations Per Sample (OPS) for ERA is

OPS(ERA) =v* +vM +Jv+JM . (6.22)

In this thesis, the ERA is compared to widely used methods, the DC. Direct
linear convolution denoted as DC is also used as a benchmark method. The OPS of

the DC method is given by
OPS(DC)y=M xJ x N, (6. 23)

where ; is the length of FIR filter,
;

6.2.2 The frequency-domain processing
The NESI algorithm *.can- also be " efficiently implemented in the

frequency-domain.  First, partition the time-domain microphone pressure data
ph (n) into non-overlapping frames and zero-pad the frames into p}/’\ (n), where

A=1, 2, A is the frame index and A is the number of frames, as shown in Fig.
60 (a) and Fig. 60 (b). Transform each frame to the frequency-domain by using the
FFT. Next, multiply the transformed pressure data with the frequency-domain

inverse matrix C(®) that can be computed offline.  Finally, calculate the
time-domain source amplitudes q', (n) for each frame by using the inverse FFT and

overlap and add the consecutive frames, as shown in Fig. 60 (c).

Overlap-and-add technique can be used if continuous processing is desired.
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To illustrate how to choose parameters in the overlap-and-add block processing,

consider the impulse response of the inverse filter matrix C(@) of length P.

Assume that there are L samples in each frame pf'\(n) . Thus, the output of linear

convolution q', (1) =C(n) *p’ (n) has the length (L+P-1). The linear convolution
can be efficiently implemented, with the aid of FFT, by calculating the product
C(w)p (@) in the frequency-domain, where N > L+ P-1 point FFT must be used

to avoid wraparound errors. To meet this length requirement, each frame must be

padded with (P-1) zeros. After inverse filtering, each frame of the source amplitude
q,(n) is added with (P-1) overlapped points. This is referred to as the

Frequency-Domain-Overlap-Add (FDOA) algorithmi.in the following presentation.
Tremendous computation €fficiency cafi be gained because the frequency-domain
inverse matrix needs be .computed offline“for only once. The OPS of FDOA is

estimated to be

OPS(OA) =(M +J)log N #J x M . (6. 24)
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p,(n)
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(©)
Fig. 60 Illustration of the*Overlap.and-add-methed. (a) The pressure data p(n), (b)
Decomposition of (#). into non-overlapping sections of length L, (¢)

Result of convolving each seetion with the inverse filter.
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6.2.3 Comparison of filtering approaches
Numerical simulation is conducted to validate the virtual microphone technique
and multichannel filtering algorithms. A URA with M =J =4x4 is employed in

this simulation, as depicted in Fig. 61. The spacing of the microphones (d ) and the

focus points (d ) were both selected to be 0.Im =4/ 2 for 1.7 kHz.

In the inverse filter design, Tikhonov regularization parameter was selected
according to the L-Curve method. The OPS required by three different filtering
methods (DC, ERA and FDOA) is compared for three different array configurations
(16, 30 and 64 channels) in Table 9. The number of FFT frequency points N; = 512.
The numbers of microphones and focal points are assumed to be equal, i.e., M =J.
The most computationally expensive DC method is tised for benchmarking as 100%
(in parenthesis) OPS requitement. It is obyious from the comparison that the ERA
filtering displayed remarkable“computation-efficiency, e.g., 6.65% for a 64-channel
array, as compared with” the DC proeessing:= The computation efficiency is
considerably improved usingithe. FDOA approach, .especially for large number of

microphone channels (only 5% of the benchmark DC method for a 64-channel array).
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Table 9 Comparison of computational complexity in terms of OPS of three
multichannels filtering methods for three array configurations. The block
size of FFT N, =512. The numbers of microphones and focal points are
assumed to be equal, i.e., m =j. The DC method is used for benchmarking

(100% in parenthesis).

Domain Method 4x4 URA 5x6 URA 8x8 URA
. DC 65,536 (100%) 230,400 (100%) 1,048,576 (100%)
e ERA 1,936 (2.95%) 16,900 (7.34%) 69,696 (6.65%)
Frequency FDOA 544 (0.83%) 1440 (0.63%) 5248 (0.5%)
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Fig. 61 The array settings for NESI using a 4x4 URA.
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6.3 Post-processing
6.3.1 Acoustic variables: p, u, [, W

As the NESI algorithm, once the source amplitude q" is obtained, acoustical
variables such as pressure and particle velocity can be reconstructed on the actual
source surface. Due to singularity of virtual point sources, we need a non-zero RD
to assure smooth reconstruction results. Therefore, the S” is kept away from the
S* with a non-zero RD. It follows that the sound pressure on the reconstruction

surface can be calculated in the time-domain using

p'(z,i)= ZM, (6. 25)

n

where z is the position vector of the Field point on the reconstruction surface, r, is
the distance between the  mth -~ virtual source “and the Field point z, and
A, =int(r,/c) 1is the propagation ' time- delay 1mplemented using Lagrange
interpolation. In addition to sound pressure, particle velocity, and sound intensity
can be calculated by usingthe NESI'technique=—The last two acoustical variables are
deemed more effective in the context of the NSI* application. For simplicity,
consider only one virtual point source on the focal point surface. Let z, and z be
the position vectors of the virtual source and the field point on the reconstruction
surface, respectively. The sound pressure at the field point produced by the point
source of amplitude ¢(@) can be written as the following frequency-domain

expression:

— jhkr

p'(z,0)=q"(v) (6. 26)

s
r

where r=|z—zo|. From the Euler equation, the particle velocity at the normal

direction to the reconstruction surface can be expressed as
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L, (Mj (6.27)

. (n-e,)(jk%)pr(z,w),

JPy@

where e, =(x—x,)/r. Rewrite this equation in the Laplace domain

s+(1/7)
s

r 1 r

u'(z,t)= c(n-e,) p'(z,1), (6. 28)
0

where 7=r/c being the time delay. Here the DC pole(s=0) behaves like an

integrator, which could cause problems. To fix this, a highpass filter is introduced

by modifying Eq. (6. 28) into

1 S+l S:
u(z,t)= (nee )—* p'(z,1), 7,>>0
C s S+i
7, (6.29)
1 1
=——(n-e,)F(s) pAZ1);
Po€
where
s+(1/7)
F(s)=———, 7,>350.
(s) s+(in) (6. 30)

It follows that the normal velocity #” can be obtained by properly filtering the sound
pressure with F(s). To facilitate digital implementation, a discrete-time filter can be

obtained by the Prewarped Bilinear Transform [17]:

7, (I+gr)z+(1-gr)
z-1 = —

F&)=F(s) g v (I+gry)z+(-gr,) ’

(6.31)
where

2rf,

i TR (6. 32)

with f  being the bandwidth of interest and f  being the sampling rate. It turns

out that /'(z) is always stable since its pole is inside the unit circle.
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In summary, the normal velocity can be calculated for a point source using the

following formula:

u’(z)zic(n-e,w(z)p’(z). (6.33)

£

The instantaneous normal intensity is simply
I, (x,n)=p" (x,n)u’(x,n). (6. 34)

Sound power can be calculated by integrating the normal active intensity over an area

of interest S~

W' (n)= j I7(x,n)dS" (x) 6. 35)

Similar procedure applies to a collection of point sources, where the sound field

can be calculated using the principle of superposition.

6.3.2 Miscellaneous processing items

During the future trend; we hope‘to'use the NESI for pass-by tests of vehicles.
That is using source strengthsn:nearficld by NESI to estimate farfield sound pressure
of scooter or car from go-in line to go-out'line at microphone R and L, as shown in
Fig. 62. Side view of the pass-by test is shown in Fig. 63. The farfield sound

pressure is calculated by

py(x,0)= Z@ (6. 36)

l

where x is the position vector of the field point on the microphone R or L, ¢, is the
source strength of ith focal point, r is the distance between the ith virtual point
source and the field point at x, and A, =7,/c is the time delay. In Doppler effect,

the frequency shift is calculated by

Af=f§, (6. 37)

where f is frequency of source and v 1is speed of source. For example,
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frequency of moving source is 1 kHz to estimate sound pressure of microphone, as
shown in Fig. 64. Time-frequency diagram of microphone is shown in Fig. 65.
The frequency shift is Af =f-v/c=1000x28.5/343=83 Hz. In addition,
frequency shift has two conditions due to Doppler effect are following:

1. Fixed source, moving sensor

, ctv
e f( : j (6. 38)
2. Fixed sensor, moving source (pass-by test)
, c
fl=r ( — j (6. 39)
cCFv

Finally, sound pressure around scooter or car can be shown at appointed position by

farfield polar radiation pattern, as shown in Fig66.
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6.4 Choice of distance of reconstruction and lattice spacing

Another criterion is needed to choose the DOR. Assume that the acoustic
radiation problem can be formulated via ESM into the following matrix equation
Gq=p,where p and q are the hologram data and source data, respectively, which
are related by the propagation matrix G. By assuming there is no uncertainty in the
matrix G, it can be shown that the perturbation term Jp of the data vector such as
measurement noise, numerical error, etc., and the perturbation term o6q of the

reconstructed data satisfy the following inequality [75]

o )
] p—— i (6. 40)

Jal I

where cond(G)=o0,, /0,, 1s'the condition number of the matrix G and

min

symbolizes vector 2-norm. " Therefore, ds afr indicator of the ill-posedness inherent in
the inverse filtering process, the condition’ number can also be regarded as a
magnification factor of perturbations as-wel-as-loss. of SNR after inverse filtering.
For example, the SNR of data will be reduced by.60 dB of dynamic range after
inverse filtering if cond(G)=10". "It is‘well known that condition number of the
propagation matrix increases with the DOR since the evanescent wave decays rapidly
with the distance. It follows that the condition number can be used as a useful
criterion for choosing the DOR. Thus, given a 60 dB tolerance of loss of SNR, a
DOR that gives a condition number less than 1000 is generally deemed appropriate.
Another parameter is lattice spacing. The lattice spacing of microphones used
is usually one-half the wavelength. This criterion is based on the Nyquist sampling
theorem in the spatial domain. Violation of this criterion will likely cause spatial
aliasing problem to the resulting image. Although this theoretical bound seems to be

a somewhat aggressive rule, it has been widely accepted in the NAH community.
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6.5 Virtual microphone technique: field interpolation and extrapolation

In practical implementation of the NESI technique, edge effects may occur when
the physical extent of source is larger than the patch array aperture. In addition, the
number of sensors may be too scarce to yield acceptable imaging resolution. To
address these problems, a virtual microphone technique is employed with field
interpolation (for improving resolution) and extrapolation (for reducing edge effect).
This following example demonstrates this technique using 4x4 URA with
microphone spacing d. This rather coarse array configuration is to be interpolated
and extrapolated into 11x11 grid. The DOR is chosen to be d/2 so that the
condition number of the propagation matrix G, was well below 1000, where G, is
between the virtual microphone surface and reconstruction surface. In step [C] of

Fig. 67, the source amplitudes'on the focal surface ¢ estimated by NESI are used to
Jx1

calculate sound pressure p. for a finer grid-on-the microphone surface:

qu (l’l B A‘{f)

JXCSOEDY (6. 41)

v

where x, is the position vector of the field point on the microphone surface,

r; =[X,—Y,|, ¥y, is the position vector of the jth point source on the focal surface,

and A =r;/c isthe time delay. The sound pressures regenerated using Eq. (6. 41)

for the interpolated and extrapolated actual/virtual sensor locations with a finer
spacing can be assembled into the matrix form

n)=G, (n)q(n
AE,‘;I( ) vavj( )J(}l( ) (6' 42)
where  is the propagation matrix between the focal surface and the microphone

surface, M, =11x11=121 is the number of microphone and J=4x4=16 is the
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number of point sources on the focal surface. In the frequency-domain, the sound
pressure is calculated by

p, (@)= G, () (@)= G, (@) C(a)p (®). 6.43)

Myx1 MyxJ Jx1 MyxJ Mx1
In Fig. 67, the interpolated and extrapolated microphones are indicated with the
symbols “@” and “@”, respectively. Next, choose a new point source distribution
with finer spacing. The source amplitudes {, are estimated with the augmented

inverse filters C, in the time-domain and the frequency-domain, as shown in step

[D] of Fig. 67:

q. (n)= C, (n)* n

L= G b, @) (6. 44)
and

q (w)= C (@ w)= C. (0)G,(0)C (@ ),

EL( ) vaAv/fv( )Ag,vxl( ) va]l‘}v( )MVXVJ( )JXM( )A/Rl( ) (6.45)

where M, =11x11=12L is® the number of wvirtual microphones and

J,=11x11=121 is the number of virtual point sources.
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Fig. 67 The idea of the NESI with virtual microphone technique. The symbol“®l”
indicates an interpolated microphone position. The syrnbol“a” indicates

an extrapolated microphone position. [A] The pressure data picked up by
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the microphones, [B] Reconstructed source strength at the focal points, [C]
The pressure data interpolated at the virtual microphones, [D]

Reconstructed source strength at the virtual focal points.
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6.6 Choice of retreat distance (RD)

As a basic form of the ESM applied to NAH problems, discrete monopoles are
utilized to represent the sound field of interest. When setting up the virtual source
distribution, it is vital to maintain a RD between the virtual sources and the actual
source surface such that reconstruction would not suffer from singularity problems.
However, one cannot increase the distance without bound because of the ill-posedness
inherent in the reconstruction process with large distance. In prior research, 1-2
times the lattice spacing, or the inter-element distance of microphones, is generally
recommended as RD in the use of the ESM-based NAH. While this rule has shown
to yield good results in many cases, the optimal choice is a complicated issue that
depends on frequency, geometryzof the physical source, content of evanescent waves,
distribution of sensors and ¥irtual -sources, etc. ‘How to reach the best compromise
between the reconstruction errors induced by the point-source singularity and the
reconstruction ill-posedness is an interésting problem in its own right. This section

revisits this issue, with the aid of an optimization algoerithm based on the GSS.

6.6.1 Integral approximation error vs. reconstruction ill-posedness

Despite the versatility of the ESM, how to choose RD (also called retract
distance or standoff distance) between the virtual sources and the reconstruction
surface remains an issue that deserves attention in the formulation stage of the ESM.
In the NESI formulation, the target source is simulated by a collection of point
sources distributed on a surface. For that source configuration, one can simply
choose virtual sources to be the target sources and the source field can be
reconstructed. Assume RD is chosen very small. For continuous sources, however,
it 1s impractical to distribute the discrete virtual sources on the source surface if the

objective is to reconstruct the acoustic field such as velocity on the actual source
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surface. Singularity problem will arise if the virtual sources are deployed on the
actual source surface, which entails a RD between the virtual sources and the target
source surface. This issue was investigated by Vadivia and Williams from a
perspective of numerical integral approximation error [49]. They concluded that RD
greater than one lattice is appropriate for acceptable integral approximation error.
While increase of the distance has a spatial smoothing effect as a regularization
mechanism, an overly large RD makes inverse reconstruction very ill-conditioned due
to the loss of evanescent waves with the distance. There exists an optimal RD to
best reconcile singularity and ill-posedness inherent in the inverse reconstruction
process. In literature [41], [49] and [81], 1-2 times lattice spacing of RD is often
recommended. For example, Sarkissian suggested one lattice spacing in his ESM
simulation [41]. Also in a eomparative study of the ESM and IBEM by Valdivia and
Williams [49], RD greater than one lattice spacing is recommended, based on an
integral approximation argument., [In‘the same.paper, it*was also cautioned by the
authors that the distance cannot be mcreased indefinitely because the inverse process
will become ill-conditioned for large standoff distance.

While the 1-2 spacing criterion is a rule of thumb widely accepted in the NAH
community that has shown to yield good results in many cases, the optimal choice is a
complicated issue that may depend on frequency, nature of the physical source,
content of evanescent waves, distribution of sensors and virtual sources, etc. How to
best compromise between the reconstruction errors incurred by point source
singularity and inversion ill-posedness is an interesting problem in its own right.
The relative error of the velocity reconstructed on the actual source surface is used as

the cost function in optimization.

6.6.2 Determination of RD: Golden Section Search (GSS)
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The aim of the study is to find the optimal distance for the ESM-based NAH
problem, with the aid of the GSS algorithm. We focus on only reconstruction of the
surface velocity of the actual source, which proves the most effective for source

identification. Define the relative velocity reconstruction error

_[w@)—u,@.0);

E(w, 2
e T

x100%, (6. 46)

where u and u, are the desired and the reconstructed velocity vectors, respectively.

The cost function is defined as follows:
1 1
O(x) = YZE(@,x), (6. 47)
i=1
where @, is the ith frequency and x is the design variable (RD in this case), is a
measure of “average relative -error of reconstructed velocity” summed in the
frequency range 50 Hz~1.7'kHz. | We aim at finding the RD that minimizes the cost

function above. In the simulation, the mietophone spacing d is selected to be 0.1m,
complying with the A/2—rule for f..= 1.7 kHz.The frequency step is 100 Hz in the
frequency range 50 Hz~1.74kHz, hence I = 17.."The variable fol, is selected
according to number of significant digits of'the design variable. In this case, we
require three significant digits for the RD, ie., fol, = 10°. The parameter
£=2.2x10"" is chosen according to the floating-point precision setting of the
computer. The preceding parameter settings of the cost function, design variable and
termination tolerance will be used in finding the optimal RD with the GSS algorithm.
Numerical simulations are conducted to demonstrate how to optimize RD by
using the GSS algorithm. A baffled planer piston and a baffled spherical piston are
employed as source examples. The first simulation is concerned with how to choose

RD for virtual source configuration 1, while configuration 2 has no RD issue. The

search proceeds in two steps. Step 1 evaluates the cost function in coarse but

226



uniform steps of the RD (0.1 times spacing). Inspection of the curve reveals that the
minimum may exist in the interval [1/20d, 2d]. Step 2 searches for the optimal RD
using the GSS in the potential interval found in Step 1. The second simulation
utilizes the ESM-based NAH to calculate source surface velocity by using the optimal
RD obtained in the first simulation. Source configuration 1 is employed in both
simulations for the planar and spherical pistons, whereas source configuration 2 is
applied to only the planar piston.

The first numerical simulation is concerned with the optimal RD for a planar
baffled piston source. Suppose that the array comprises 8x8 microphones with
spacing d = 0.1m (d = M2 at = 1.7 kHz), as shown in Fig. 49. The microphone
surface is located at z = 0.1m. _+The number and spacing of microphones and virtual

sources are of identical settings. | A piston embedded at'the plane z = Om is arranged

in four scenarios as deneted by S,.., i =.1-4, shown in Fig. 68 (a)-Fig. 68 (d),

S,0 2

respectively. The planar piston is:simulated-by-discrete point sources distributed on
the plane z = Om. In the simulations, the desired.velocity vector was specified to be
5 m/s. In scenario Sy, the actual sources are distributed in the same way as the
microphone array element points. In scenario Ss», the actual sources are uniformly
distributed at the array element points and their center midpoints. In scenario S 3,
actual source distribution is similar to that in S;;, but the sources cover only part of
the array aperture. Finally, in scenario S; 4, the actual source distribution is similar to
Ss2, but the sources cover only part of the array aperture. With virtual source
configuration 1, we conducted a coarse search in uniform steps for the 4 scenarios to
find the potential interval in which the optimal RD may exist. Next, the GSS
algorithm is employed to fine-search for the optimal RD in the potential interval.

The result was shown in Fig. 69. The minimum points corresponding to the optimal
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RDs are indicated in Fig. 69 with solid symbols. The optimal RDs calculated are
0.047m (=0.5d or 0.251), 0.054m (=0.5d or 0.25)), 0.038m (=0.4d or 0.201) and
0.049m (=0.5d or 0.25\) for scenarios Ss;, i = 1~4, respectively. Overall, the
optimal distance ranges from 0.38 to 0.54 times spacing. It is interesting to note that
the results are far less than the 1-2 times spacing recommended by the previous
research. In addition, the optimal RDs for S;3 and S;4 are smaller than those of S
and S;,, respectively. The explanation of this phenomenon is as follows. The
piston covers only part of the array aperture in scenarios S;3 and S;4. The velocity
discontinuity at the edge of the piston will result in more evanescent waves, which
entails smaller inversion distance (and hence smaller RD) for reconstructing surface
velocity than the other two fully«covered layouts. ' /On the other hand, the RDs of S;»
and S, 4 are greater than those of §s; and S;3 respectively. A qualitative explanation
is as follows. S, and Sga4 reépresent more “uniform” approximation than the other
two when simulating the eontinuous piston source. This'requires larger propagation
distance (and hence larger RD) to the piston surface than the other two scenarios to
smooth out the reconstructed velocity field:: The Fig. 70 compares the reconstructed
and the desired velocity profiles for source configuration Ss3 at f= 850 Hz. The
relative error of the reconstructed velocity at /= 850Hz in scenario Sy3 is 21.13%.
We see reasonable agreement of the profiles except near the edge of the piston where
marked discrepancy occurs due to the velocity discontinuity.

While virtual source configuration 1 is applicable to arbitrary source geometries,
virtual source configuration 2 is restricted only to planar sources. In configuration 2,
RD is no longer an issue because the virtual sources are distributed on the actual
continuous source surface when reconstructing the surface velocity. To better
quantify the reconstructed results, the relative velocity reconstruction errors are

calculated for four scenarios in Fig. 71. The error percentage calculated is 0% for
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Ss.1, 20% for Ss2, 26% for S; 3, and 30% for S; 4, in the frequency range 50 Hz~1.7 kHz.
Although the reconstruction is nearly perfect in scenario S, 20-30% errors arise for
scenarios Ss» and S;4 because of the limited number of microphones with respect to
sources. Errors in the reconstructed velocity of scenario S;3 is due to the velocity
discontinuity at the edge, which results in more evanescent wave components.

In the next numerical simulation, a spherical baffled piston source is adopted for
further validation. For this non-planar source, only virtual source configuration 1 is
applicable. Consider a vibrating piston set in a rigid sphere with axisymmetric
velocity distribution (independent of azimuth angle ¢ ) on its surface, as shown in Fig.
72. Assume e’ time dependence. The piston is placed on the top of the rigid

sphere of radius a, spanning ansangle 6, with fespect to the z axis. The surface

velocity of the source is of the form

Ula.d) = u, ,0<6<06,
(a,0)= 0 .0, <0<r (6. 48)

The pressure field at a point” (#;0) ' of the piston can.be.calculated by [73]

© jpcl, *
p(r.0) = ‘Eo]hf—ka)’)m (cos OV, (), (6. 49)
where
, 1
h, (&)= m[mhm—l (&)= (m+Dh, ()], (6. 50)
U, = ”70[}3,,_1 (cos6y)— P, (cos6,)], (6. 51)

AT 33

and denotes complex conjugation. In Eq. (6. 49), F, is the Legendre
polynomial of the first kind of order m, 4, is the spherical Hankel function of the

first kind of order m, and /4, is the derivative of the spherical Hankel function.

In the simulation, the source parameters are chosen as: a =0.2 m, » = 0.3 m, uy =

5 m/s, p,= 1.21 Kg/m® and ¢ = 343 m/s. Three different spanning angles
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6, = 30°,60" and 180" are tested. Numbers of virtual sources and the sampling

points for velocity reconstruction are both 58, as shown in Fig. 73. The average
spacing of microphone is approximately 0.1 m (spacingd =A2 at f=1.7 kHz). A
preliminary search using coarse and uniform steps was first performed to find the
potential interval in which the optimal RD may exist. The relative velocity errors for
three spanning angles are shown in Fig. 74. Next, the GSS is employed to locate the
optimal RD, as indicated by solid symbols in Fig. 74. The optimal RDs are 0.076m

(=0.84 or 0.401), 0.084m (=0.84 or 0.40A), and 0.165m (=1.7d or 0.85)) for

6, = 30°,60" and 180", respectively. Overall, the optimal distance can vary from

0.8 to 1.7 times spacing. As indicated by its not-so-smooth curve, the §, = 180°

example seemed to be an “outlier” case that allows fof RD much larger than other

examples. Inspection of the relative error curves revealssthat the error of the source

with 6, = 180" is significantlyslower than those with 6, = 30°and 60° . This

can be explained by noting that the evanescent waves generated around the edge of
the active part of the piston would result”in lager reconstruction errors for small

spanning angles. Matrix polar plots have been presented in Fig. 75 for the cases of

g, = 30°, 60° and 180" at f = 1250 Hz. Numbers of virtual sources and

reconstruction points for velocity are 58 and 994, respectively. The relative error (%)

of the reconstructed velocity versus frequency for the spanning angle

6, = 30°,60° and 180" is shown in Fig. 76. The reconstructed results seemed to

have captured the general trend of the surface velocity with this optimal RD.
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Fig. 69 Search for the optimal RD in a plane by virtual source configurations 2.
The symbol“——" indicates the coarse search of Ss1. The symbol“4”
indicates the optimal point of S,;. The symbol “—V~—” indicates the
coarse search of S;». The symbol“v” indicates the optimal point of S;_.
The symbol “—A—" indicates the coarse search of Ss3. The symbol“A”
indicates the optimal point of S,3. The symbol “—5—" indicates the

coarse search of S;4. The symbol“@” indicates the optimal point of S 4.
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Fig. 70 The reconstructed and the target velocity profiles of planar source scenario

S, at =850 Hz.
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\

Fig. 72 Configuration of a vibrating rigid piston spanned with an angle 8,, set at the

top of a rigid sphere of radius a.
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6.7 Optimization of sensor deployment: uniform vs. random array
In this section, the beam patterns and the cost functions are defined to facilitate
the following array optimization formulation. Since our focus is the nearfield array,

we only briefly review the farfield array next.

6.7.1 Optimal nearfield array: cost functions
For a nearfield array, due to the fact that the source is in the nearfield and the
focal points are multiple in numbers, the definition of nearfield beam pattern is not as
straightforward as in the farfield case. This thesis suggests a procedure to calculate
the nearfield pressure field beam pattern by scanning on the focal surface using a test
point source. The procedure is-depicted in Fig. 77.and described as follows:
(1) Design the inverse matfix -C: -forjthe given array configuration.
(2) Position the test source at a grid point onsthe focal susface. Calculate the sound
pressure vector p received at the mictophones.
(3) Calculate the source strength vector at the focal points using the inverse matrix
C:
q=Cp (6.52)

(4) Calculate the pressure field p; by propagating the spherical waves emitting from

the point source at the zth grid point on the focal surface to the reconstruction
surface by
p,=G,q, (6.53)
where G, denotes the propagation matrix between the focal surface and the
reconstruction surface.

(5) Move the test source to next grid point on the focal surface and repeat steps

(2)-(4). Superimpose the magnitude of the calculated pressure field for all Z
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test source positions to get the following nearfield beam pattern vector

Z

b{ip:(l,l)\ Y - >

=1 z=1 z=1

ﬁ@ﬁﬂ, (6. 54)

where I' is the number of pixels on the reconstruction surface. Often, Z >T

is selected.

With the beam pattern obtained above, a cost function is defined for the nearfield array.
Instead of the maximum main-lobe and side-lobe ratio as in the farfield array, the
nearfield cost function focuses on the number and positions of the main-lobe peaks.

In the following, a nearfield cost function is devised to ensure that the resulting
beam pattern has well defined main-lobe at all focal points. First, the magnitude of
the beam pattern is normalized+to- unity. Second; define the interior of the circle
centered at each focal pointiwith the-radius 7, as the scope of the main-lobe. The
circle is used not only to.define the main-lobe but also-to check if a main-lobe is
defocused. For the jth focal point, find the maximum of a main-lobe m; that is
greater than 0.707 (-3 dB). "Fhe cost function of thenearfield array is defined as

J
Q:me (6. 55)
=
The objective of the present array optimization is to find the deployment that
maximizes the preceding cost function.

In addition, the cost function of the nearfield array is defined too from matrix
conditioning. From the Fig. 78, let p, v and G be the pressure vector, the
source velocity vector and the propagation matrix, respectively. The measured
sound pressures and the source velocities are related by

p=Gv+n, (6. 56)
where n is sensor noise. The unknown reconstructed velocity can be calculated

QI :G+p, (6. 57)

243



where G* is the pseudo-inverse matrix of G. The reconstruction error of velocity
is

e=v-v=Gp-v=G'(Gv+n)-v=G'n—(I-G'G)v. (6. 58)
Note that (I-G'G) is the projection matrix onto the null space of G. That is the
reconstruction error due to (I-G"G)v would not contribute to the error in p and
G'n is the term to be minimized. This can be done by using the matrix induced

2-norm of G*:

|&*

2
= ) = max
2 n=0 ||n|| n=0

{&} 6.59)

nn
That is Rayleigh’s quotient. Thus, the maximum occurs at the minimum eigenvalue

of (G")"G", or equivalently, the'maximum singtilar value of G*. If the TSVD is

used to obtain G, the maximum singular value of G will be the reciprocal of the

minimum singular value of the “truncated’ G.

rnGinHG+ Hj =mino,, (G") = min : G T (G) (6. 60)

It follows that the optimal sensor deployment problem can be posed as a ‘max-min’
problem aimed at finding the deployment that‘ maximizes the minimum singular value

of the ‘truncated’ G.  Alternatively,

min cond(G), (6. 61)

where cond(G)=o0_ (G)/o

max min

(G) is the condition number of G. Therefore,

another method to define the cost function is shown in Egs. (6. 60) or (6. 61).
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6.7.2 Optimizing farfield sensor deployment

In this section, array optimization is conducted in the context of farfield imaging.
Simulations with and without the IB constraint are carried out. The MC and SA
algorithms are exploited to optimize microphone deployment with no IB constraint.
On the other hand, the SA, IBMC and a combined SA-IBMC algorithm with 5x6
URA and random arrays with 30 microphones as the initial settings are employed to
optimize microphone deployment with the IB constraint. Numerical simulations are
all based on ten randomly generated starting points.

In the first simulation, we try to optimize the farfield array deployment by the
MC and SA. Initially, mxn divisions (m = 24 and n = 30) of a square grid are set
up on the microphone surface, as'shown in Fig. 79«a). Each side of the square grid
measures 0.1m. The source frequency was considered’as /= 1.7 kHz and the speed
of sound as ¢ = 340 m/§, yielding the wavé number %k =27f/c=314 m’'. In
addition, a URA of 5x6 «M = 30) deployment with inter-element spacing d = 0.6m
is used as a benchmark in the following simulations, as shown in Fig. 79 (a). Its
beam pattern calculated by Eq. (4. 26) is'shown in Fig. 79 (b). As expected, the
grating lobes are clearly visible because the microphone spacing violates the A/2-rule
(d=3rat f=1.7kHz). The cost function calculated by Eq. (4. 27) is only 1.0261
because of the grating lobes. This prompts the use of random deployment of
microphones as follows.

In the MC simulation, the 30 microphones can freely occupy any 30 positions of
the 25x31 grid points on array surface. Exhaustive search would require
16* x 28" x49'% combinations for a 30-element array, while only 10° iterations are
carried out using this MC search. The MC search attains the optimal cost function
2.6532 at the 27596 iteration. The learning curve of the MC search is shown in Fig.

80 (a). The corresponding microphone positions and beam pattern are shown in Fig.
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80 (b) and Fig. 80 (c), respectively. Apart from the extremely time-consuming MC
search, the SA approach is employed next. The annealing parameters of the SA for
array deployment are chosen to be 7; = 10 deg K, Ty = 10® deg K and @ =0.95 [65],
[66]. The learning curve of the SA search (405 iterations) is shown in the left
portion (denoted as 1¥SA) of Fig. 80 (d). The curve fluctuates initially and then
converges to a constant value 2.5767 between the 351% and the 405" iteration. The
optimal microphone deployment and beam pattern are shown in Fig. 80 (¢) and Fig.
80 (f). In addition to optimizing the microphone positions, optimizing the
microphone weights can further improve the value of the cost function.

On the basis of the configuration found previously by the SA, we continue to
optimize the weights of microphenes again using'the SA algorithm. The number of
iterations is increased to 1000, - Starting from unity weights, the microphone weights
are adjusted in each iteration with a random perturbation-within the range of -0.1 to
0.1. The learning curve is shown in the'right portion (denoted as 2" SA) of Fig. 80
(d). The cost function is further néreased to 2.7561-at the 1283™ iteration. The
resulting beam pattern is shown in Fig. 80 (g), where a unique main-lobe is clearly
visible.

In this section, the SA, IBMC and a combined SA-IBMC algorithm are exploited
to optimize microphone deployment with the IB constraint. Both microphone
positions and weights are to be optimized using the SA algorithm. Specifically, the
combined SA-IBMC method proceeds with three stages—the 1*'SA stage, the IBMC
stage, and the 2"'SA stage. The parameters of the two SA stages are identical to
those in above simulation. The learning curve of the 1¥SA stage (405 iterations) is
shown in the left portion of Fig. 81 (a). The curve fluctuates initially and then
converges to a constant value 2.5328 between the 208" and the 405" iteration. The

resulting microphone deployment and beam pattern are shown in Fig. 81 (b) and Fig.
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81 (c). Being able to avoid local minima by accepting “bad” solutions in the initial
SA search can be a benefit and a shortcoming as well. A shortcoming of the SA
algorithm is that it can miss the optimal solution in the initial stage and converges
prematurely to a suboptimal one. A hybrid SA-IBMC approach is used in an attempt
to address this problem.

The previous deployment obtained by the SA search is used as the input to the
IBMC simulation. The microphone position can be randomly chosen from the nine
grid points in the localized region. Each region necessarily contains one and only
one microphone. Exhaustive search would require prohibitively 9°° combinations
for a 30-element array, while only 100 iterations are required in the IBMC search.
The learning curve of the IBMCx(iteration 406-505) is shown in Fig. 81 (a). By the
IBMC search, the cost function is-further increased to2.5465 at the 482™ jteration.
Fig. 81 (d) and Fig. 81 (e). show the optimal microphone-positions and beam pattern
obtained at the 482" iteration. Next,in the 2"¢SA stage,"the microphone weights are
optimized based on the configuration found previously by the SA-IBMC approach.
The microphone weights initially set torunity ar¢ adjusted in each iteration with a
random perturbation within the range of -0.1 to 0.1. The learning curve in 506
iterations is shown in Fig. 81 (a). The cost function is further increased to 2.6602 at
the 1429"™ iteration. The resulting beam pattern is shown in Fig. 81 (f), where a
unique main-lobe is clearly visible.

Apart from the URA, the random array deployment is also used as the initial
setting in the simulation. For brevity, the results of the MC, IBMC, SA and
SA-IBMC simulations are summarized in Table 10. The highest value of the cost
function obtained with these ten randomly generated starting points is regarded as the
optimal Q in Table 10. The simulation results obtained with and without the 1B

constraint are compared in terms of number of iterations and the maximum cost
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function values. Although the MC approach has reached the highest cost function
(O = 2.6532), it takes 27596 iterations to achieve this value. By comparing the
results of the MC and IBMC (with the URA as the initial setting), we found that the
IBMC approach can attain comparable cost function value to the MC approach with
far less amount of computation (Q = 2.5638 at the 7662™ iteration of IBMC vs. 0=
2.6532 at the 27596™ iteration of MC). In comparison with the results obtained
using the SA algorithm with the IB constraint (Q = 2.6602 for the URA as the initial
setting and Q = 2.6573 for a random array as the initial setting), the SA approach with
no IB constraint has attained a slightly higher cost function (Q = 2.7561) with
comparable computational complexity. It all boils down to the tradeoff between
search time and optimality.

Incorporating the IB constraint-could potentially have the following benefits.
First, the IBMC algorithm 1§ computationally more ‘efficient than the plain MC
algorithm because of smaller search-areas. .Second,” in the hybrid SA-IBMC
approach, the IB constraintscould possibly improve the SA results when the SA
algorithm converges prematurely” to a suboptimal result. Third, the IB constraint
normally results in uniform distributions of microphones. By “uniform”, we simply
mean that microphones would not concentrate at only a few areas, which should not
be confused with the deployment of the constant-spacing uniform arrays. In
summary, it is fair to say that the IB constraint significantly reduces the computation
complexity at the risk of converging to a suboptimal solution which may not be far
from the global optimum. This is generally sufficient in practical applications.

Apart from the source frequency of 1.7 kHz, we also run the simulation for the
frequencies of 500 Hz and 1 kHz. For brevity, we only summarize the results in
Table 11. Random arrays yield unique main-lobe and higher cost function than the

URA at 1 kHz. For the lower frequency of 500 Hz, no grating lobes are seen in the
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beam pattern of URA, while a higher side-lobe level is found in the beam pattern of
the random array. This leads to a higher value of cost function for the URA than the
random array at low frequencies. In the next section, we will examine whether the

same idea of random array applies to nearfield imaging as well.
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Table 10 The search performance of different optimization methods for farfield
array deployment with the inter-element spacing d = 0.6 m. The letter “w”

indicates that weight optimization is performed.

Find best Q Best Q
Constraint Method
Iterations (Linear)
without IB MC 27596 2.6532
(initially random SA 351 2.5767
array) SA+w 1283 2.7561
IBME 7662 2.5638
with IB SA 208 2.5328
(initially URA) SA +IBMC 482 2.5465
SA= IBMC +w 1429 2.6602
IBMC 23285 2.5617
with IB
SA 222 2.5224
(initially random
SA +IBMC 406 2.5224
array)
SA+IBMC +w 1352 2.6573
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Table 11 The comparison of converged cost function Q of the URA and the

optimized farfield random arrays at three different frequencies.

Array f=500Hz f=1kHz f=1.7kHz

URA 4.0216 1.0192 1.0261

Random array

1.5961 2.5451 2.7561
(without IB, initially random array)
Random array
2.5048 2.3324 2.6602
(with IB, initially URA)
Random array
2.6573 2.4305 2.6573

(with IB, initially random array)
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Fig. 79 The URA with inter-element spacing 0.6m (34 at the frequency 1.7 kHz) for

farfield imaging. (a) Array deployment, (b) beam pattern.
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Fig. 80 The farfield array optimized using the MC and. the SA algorithms without
the IB constraint at the frequency 1.7 kHz.s For the MC simulation,
maximum cost function Q= 2.6532 is attained at the 27596" iteration. For
the SA simulation, maximum cost function Q = 2.7561 is attained at the
1283" iteration. The circle indicates the main-lobe. (a) Learning curve
of the MC search, (b) optimal array deployment obtained using the MC
search, (c) beam pattern obtained using the MC search, (d) learning curve of
the SA search, (e) optimal array deployment obtained using the SA search,
(f) beam pattern obtained using the SA search, (g) beam pattern with

weights optimized.
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SA-IBMC algorithm with the IB constraint at the frequency 1.7 kHz.
Maximum cost function Q = 2.6602 is attained at the 1429th iteration. The
circle indicates the main-lobe. (a) Learning curve, (b) optimal array
deployment obtained using the SA search, (c) beam pattern obtained using
the SA search, (d) optimal array deployment obtained using the SA-IBMC
search, (e) beam pattern obtained using the SA-IBMC search, (f) beam

pattern with weights optimized.
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6.7.3 Optimizing nearfield sensor deployment

In this simulation, the MC, SA, IBMC algorithms and a combined SA-IBMC
algorithm are exploited to optimize microphone deployment for nearfield imaging.
The 5%6 URA and random array with 30 microphones are used as the initial setting
for the simulation of nearfield imaging. With reference to Fig. 61, the array
parameters are chosen as: microphone spacing d = 0.6m, focal point spacing dy= 0.6m
(34 at the source frequency of 1.7 kHz), and DOR L = 0.1m. The focal points are
collocated underneath with the microphones on a conformal plane (the number of
focal points is equal to the number of microphones). Thus, finer 25x31 grid points
are set up on the microphone surface. The microphone is free to move to any grid
point inside the assigned localized regions. ~ The ‘dimensions of the localized regions
(see Fig. 21) are du. = d,y =0.6myand the spacing of the'grid points is dy = d, = 0.1m.
The main-lobes are defined as the interior of-the circles eentered at each focal point
with the radius 7, = 0.02m (the minimal-distance between two adjacent grid points).
The iteration limit /,,. and: [, “are chosen to -be5000 and 1000, respectively.
The Fig. 82 (a) and Fig. 82 (b) show the cost function history of the MC search and
the IBMC search with the URA as the initial setting, respectively. The maximum
value of the cost function Q = 27.3 corresponds to the initial URA deployment cost
function at the frequency of 1.7 kHz. Apart from the time-consuming MC algorithm
and the IBMC algorithm, another attempt was made to find the optimal deployment
using the more efficient SA algorithm. The annealing parameters are chosen to be:
T;=10deg K, T;= 10" deg K and a=0.95. After 405 iterations, we obtained the
learning curve with the URA as the initial setting, as shown in Fig. 82 (c). This
learning curve converges to a stable value 3.8502 at the low-temperature stage, as a
typical SA behavior. This Q value is apparently suboptimal since it is smaller than

the initial Q = 27.3 of the URA. The maximum cost function remains the initial cost
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function (Q = 27.3 at the frequency 1.7 kHz) corresponding to the URA deployment.
Finally, the hybrid approach SA-IBMC is employed to optimize the nearfield array
with the URA as the initial setting. The learning curve (405 SA iterations + 100
IBMC iterations) is shown in Fig. 82 (d). The maximal cost function remains to be
that of the initial URA deployment. Table 12 summarizes the search performance of
nearfield optimization methods for three different frequencies 500 Hz, 1 kHz and 1.7
kHz with the URA and the random array as the initial settings. As concluded from
the table, even though the other initial setting is used for optimizing the random array,
the optimal deployment with the maximal cost function remains to be the URA.
These results suggest that the optimal nearfield array is the URA when the number of
focal points is equal to the number of microphones. The nearfield beam patterns
defined in chapter 6.7.1 calculated for the URA in Fig: 77 at the frequencies 500 Hz, 1
kHz and 1.7 kHz are shown in Fig. 83 (a)-Fig. 83 (¢). 'Thirty main-lobes with equal
height centered at the focal points .are clearly visible: The beam pattern of a
non-optimized nearfield array at the frequency 1.7-kHz by the SA and SA-IBMC
algorithms is shown in Fig. 83 (d), = Clearly, the converged pattern is a dramatic
departure from the URA and the associated beam pattern is quite ugly with quite a
few “defocused” points. To see the contrast, we also show an example of random
deployment that corresponds to the optimized farfield deployment obtained previous
using the SA-IBMC method (the nearfield cost function). The beam pattern of the
deployments at the frequencies 500 Hz, 1 kHz and 1.7 kHz are shown in Fig. 84
(a)-Fig. 84 (c). It can be seen from the quite smeared beam patter that many
main-lobes are defocused or even missed. These observations lead to a conclusion
that contradicts the farfield experience -- random deployment degrades the
multi-focusing performance and the URA is the optimal array. In addition, Table 13

summarizes the performance of different numbers of focal points using the same 5x6
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URA with the inter-element spacing d = 0.6m (corresponding to 34 for the frequency
1.7 kHz) at the frequencies 500 Hz, 1 kHz and 1.7 kHz. The cost function for 5x6
focal points (the number of microphones) is 27.3 at the frequency 1.7 kHz. It
increases to 28.3 when the number of focal points is increased to 9x11. However, for
13x16 focal points the cost function decreases to 16.6, showing that it does not

increase indefinitely with the number of microphones.
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Table 12 The search performance of different optimization methods for nearfield

array deployment with the inter-element spacing d = 0.6 m at three different

frequencies.
Best QO
Frequency
Method (Linear)
(Hz)
initially URA initially random array

500 28.2 8.5
MC 1000 26.9 8.3
1700 27.3 8.2
500 28.2 9.1
IBMC 1000 26.9 9.5
1700 273 10
500 282 4.2
SA 1000 26.9 5.6
1700 27.3 4.7
500 28.2 4.2
SA+IBMC 1000 26.9 5.6
1700 27.3 4.7
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Table 13  The performance obtained using different numbers of focal points in a 5%6

URA with the inter-element spacing d = 0.6m at three different frequencies.

Q
Frequency
(Linear)
(Hz)
5%6 focal points 9x11 focal points 13x16 focal points

500 28.2 28.8 26.7
1000 26.9 27.2 21.8
1700 27.3 28.3 16.6
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Fig. 82

The cost function history of nearfield array optimization with inter-element
spacing 0.6m (34 at the frequency 1.7 kHz). Maximum cost function value
is Q = 27.3 for the initial URA deployment. (a) All Q values, including
those rejected during the random search by the MC algorithm, (b) all Q
values, including those rejected during the random search by the IBMC
algorithm, (c) only the legitimate values accepted by the SA algorithm, (d)

only the legitimate values accepted by the SA-IBMC algorithm.
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spacing is 0.6m (34 at the frequency 1.7 kHz). (a) At the frequency 500
Hz, O = 28.2, (b) at the frequency 1 kHz, O = 26.9, (c) at the frequency 1.7
kHz, O = 27.3, (d) the beam pattern of a non-optimized nearfield array at
the frequency 1.7 kHz by the SA and SA-IBMC algorithms, Q = 3.8502.
The circles indicate the main-lobe. The symbol“ ¢ ” indicates the focal

points.
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6.8 System integration and experimental arrangement

To validate the NAH technique, experiments were undertaken in the laboratory.
The block diagram of the experimental arrangement is shown in Fig. 85. Two PXI
4496 systems [82] in conjunction with LabVIEW [82] were used for data acquisition
and processing. A bandpass filter is used to prevent aliasing and errors occurring in
the out-of-band frequencies. The source amplitude, source strength, sound pressure,
particle velocity and sound intensity reconstructed using NESI can be displayed on
the monitor.

In the experimental arrangement, sensor calibration is requisite before
microphone measurement.  First, set a real source (random sources with
band-limited to appointed frequericy that usually ©f = /. /2) at the center of array at
far distant place, as shown in Fig:-863 The frequencytesponse H is measured by
this calibration structure. .. Se¢ondly, calibration filter is calculated for the calibration

processor with H, beingithe benchmark filter

. H
H :H—‘,m:I,Z,---,M, (6. 62)

m
m

where M is number of microphone.” "Finally, it is noted that the calibration filter
H?® obtained are still in the frequency-domain. Inverse FFT is called for to convert
and truncate these FRFs into FIR filters in the time-domain. In this step, circular
shift is needed to ensure that the resulting filters are causal filters. Now that the
calibration filters are available, the response of microphones is calibrated by using

calibration filter:
p,(m)=p,m)xH, ,m=12,- M, (6. 63)

where n denotes the discrete-time index and p,, is pressure measurement by mth

microphone.
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Fig. 85 The experimental arrangement for a wooden box with a loudspeaker fitted
inside ,the URA, and a 30-channel random array optimized for farfield

imaging are also shown in the picture.
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CHAPTER 7. APPLICATION EXAMPLES

Practical sources such as scooter, vehicle, IT equipment, compressor and a
vibrating plate were chosen as the application examples of the NESI technique. The

close-up view of the microphone array used in the experiments is shown in Fig. 87.
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Fig. 87 Close-up view of the 5x6 rectangular array.
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7.1 Scooter: transient sources

In the following, a 125cc SYM scooter served as a more practical source to
justify performance of the NESI technique. The scooter is mounted on a
dynamometer inside a semi-anechoic room. The 4x4 rectangular array was placed
in front of the scooter engine case. The array parameters are selected to be M =J =
4x4,d=d; =0.1m = 1/2 for 1.7 kHz and L = d/2. The inverse filtering was carried
out by using 16x16 = 256 channels of FIR filters, each filter of order 252. In a total,
256x252 = 64512 multiplications are required for DC, which is computationally
demanding. To reduce the complexity, the minimal realization obtained using the
ERA is used. The singular values of H(0) are plotted in Fig. 88 (a), indicating the
lowest 80 orders in SVD sufficesto-realize the multichannel inverse filter. The close
agreement of the frequency‘responsesjand the impulse fesponses of the inverse filter
(13 between the original filter and the filter regenerated using the ERA with v = 80 are
shown in Fig. 88 (b)-Figi88 (c). | In"this case, only Vit vM + Jv + M = 9216
multiplications are required using the ERA statc-space model. The computational
efficiency has been improved by a factor of seven.

In the first experiment, the NESI was applied to reconstruct the sound field on
the right side of the scooter running at the idle speed. In order to enhance
computational efficiency, the aforementioned ERA technique with v=28 is used for
multichannel filtering. The unprocessed rms sound pressure picked up at the
microphones is shown in Fig. 89 (a). This figure would lead to the incorrect
conclusion that the major noise source was located at the left boundary unless the
NESI was applied. The rms source strength, sound pressure, particle velocity, and
sound intensity reconstructed by using the NESI is shown in Fig. 89 (b)-Fig. 89 (e).
With NESI, the dark red area in the reconstructed pressure field reveals that the

cooling fan at the center was the main culprit. In addition to the cooling fan, the
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reconstructed sound fields (Fig. 89 (b)-Fig. 89 (e)) indicate that there were secondary
sources at (Om, Om) and (Om, 0.2m) on the tire.

In final experiment, a 125cc scooter served as a practical source to examine the
capability of NESI in dealing with non-stationary sources. The scooter is mounted
on a dynamometer inside a semi-anechoic room. The NESI was used to reconstruct
the sound field on the right side of the scooter in a run-up test. The engine speed
increased from 1500 rpm to 7500 rpm within ten seconds. The unprocessed sound
pressure received at the microphones is shown in Fig. 90 (a), while the rms velocity
reconstructed using the NESI is shown in Fig. 90 (b). These results revealed that the
cooling fan behind the vented engine cover was the major noise source. Next, the
virtual microphone technique is employed to see if it is possible to further enhance the
image quality by increasing‘the number of channels from 4x4=16 to 11x11=121.
The inverse filters have been: designed in the previous numerical investigation. The
particle velocity was then réconstructed on the basis of thé'estimated source amplitude,
as shown in Fig. 90 (c). Total sound power level is 95 dB re. 1x107°W. Clearly
visible is a larger area of image ‘with, improved resolution than that of Fig. 90 (b),
where again the cooling fan is the major noise source. Therefore, this experiment
proved that the proposed NESI technique applies to not only broadband random but

also transient noise sources.
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7.2 Compressor

In the experiment, a compressor served as a practical source to examine the
capability of the six algorithms. The compressor is mounted on a table inside a
semi-anechoic room that the major noise is at the air intake position on the top of the
compressor and the minor noise is low intensity vibration at the entire body.
Different with loudspeaker experiment, the source of this experiment is not on the
planar surface. The observed frequencies in the algorithms are chosen to be 1.2 kHz.
The noise images obtained by processing of the six algorithms with URA are shown
in Fig. 91 (a)-Fig. 91 (f). From Fig. 91 (a), Fourier NAH has a terrible noise source
distribution, consistent with the theory that the source should be planar in Fourier
NAH to identify successfully. « From the reconstructed sound pressure of NESI
shown in Fig. 91 (b), NESI can jidentify the major source at the air intake and the
vibration at overall body. .. The result of DAS is bad by wrong location and very big
main lobe but TR providean acceptable result asishown in'Fig. 91 (c)-Fig. 91 (d). In
the noise images of MVDR and MUSIC, they identified the noise source at the air

intake accurately and the result of MUSIC is aim at the major source.
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observed frequencies in the algorithms are chosen to be 1.2 kHz. (a) The
reconstructed sound pressure image by Fourier NAH, (b) the reconstructed
sound pressure image by NESI, (c) the source image obtained by using
DAS, (d) the source image obtained by using TR, (e) the source image

obtained by using MVDR, (f) the source image obtained by using MUSIC.
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7.3 IT equipment
In this experiment, a desktop computer is used to validate the NESI technique by
using a 5x6 URA. The microphone spacing d is selected to be 0.1 m (4/2

corresponding to f. = 1.7 kHz).. The multichannel filtering is performed using

ERA with v=100. The unprocessed sound pressure picked up at the microphones
within the band 1200 ~ 1300 Hz is shown in Fig. 92 (a). This figure would lead to
the incorrect conclusion that the noise source was located at the middle bottom. The
active intensity was then reconstructed using the NESI, as shown in Fig. 92 (b) within
the band 1200 ~ 1300 Hz. The bright areas on the intensity plot revealed that the
power fan located at (Om, 0.3m), the metal plate located at (Om ,0.1m), the electric
wire located at (0.3m, 0.1m), the floppy disk drive located at (0.4m, 0.2m) and the
cabin mount located at (0.4, Om)-arejthe major sources: Total sound power level is
90 dB re. 1x10™* W. . The" NESI images apparently yielded more reliable
information about noise sources than the-unprocessed sound pressure.

To conclude this section, an experiment was undertaken to verify the conclusion
obtained in the previous numerical simulation by the authors. The active intensity
reconstructed using a random array optimized for farfield imaging within the band
1200 ~ 1300 Hz is shown in Fig. 93. Except that the power fan (Om, 0.3m) and the
cabin mount (0.4m, Om) in the desktop computer were correctly identified as the
major noise sources in Fig. 93, the other sources previously identified by the URA in
Fig. 92 were largely missed. This attests the conclusion drawn from the numerical
simulation that random deployment offers little advantages for nearfield imaging and

the URA is the optimal array configuration.
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Fig. 92 The noise map within the band 1200 ~ 1300 Hz obtained using the %0
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URA for the desktop computer. (a) The unprocessed sound pressure image
received at the microphones, (b) the active intensity image reconstructed

using NESI. The symbol“®” indicates the focal points.
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7.4 Wooden box

In this experiment, a wooden box model with loudspeaker fitted inside is used to
validate the NESI technique by using a 5x6 URA. As shown in Fig. 94, several
holes with different shapes are cut in the front face of the box like a Jack O_Lantern.
A circle, two squares, and a slit are located at (0.5m, 0.4m), (Om, 0.4m), (0.25m,
0.25m) and (0.25m, Om), respectively. The loudspeaker produces random noise

band-limited to 1.7 kHz. The microphone spacing d is selected to be 0.1m (4/2

corresponding to  f

max

= 1.7 kHz).

The unprocessed sound pressure picked up at the microphones within the band
200~1600 Hz is shown in Fig. 95 (a). From the image, the noise sources were barely
resolvable, particularly for the noise source at the edge - the circle, the slot and the
square at upper left corner. Also, the-square at the center was difficult to distinguish.
Virtual microphone technique was again applied to evercome this problem by
interpolate and extrapolate‘the pressure field on the microphone surface and increase
the number of microphonesysand foeal points from«5x6 to 13x15. With the new
setting, the particle velocity (rms) reconstructed using the NESI is shown in Fig. 95
(b). It can be clearly observed from the result that the quality of the reconstructed
image was significantly improved. Problems due to edge effect and insufficient
resolution were basically eliminated.

The NESI images apparently yielded more reliable information about noise

sources than the unprocessed sound pressure.
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0.6 m

Fig. 94 The experimental arrangement for a wooden box model with a loudspeaker

fitted inside and holes cut on the frontal surface.
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Fig. 95 The results of a wooden box with a loudspeaker fitted inside. The noise map
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is within the band 200 Hz ~ 1.6k Hz. (a) The unprocessed sound pressure
image received at the microphones by 5x6 URA, (b) the particle velocity

image reconstructed using NESI by the 5x6 URA.
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7.5 Non-contact modal analysis

An interesting application of the NESI is non-contract modal analysis of
vibrating structures. The mode shapes of the structure can be calculated by
reconstructing the surface velocity without having to mount accelerometers on the
surface as usually so in the traditional modal analysis. An experiment is undertaken
in an anechoic room to validate the ESM NAH in reconstructing the surface velocity
of a free-edged aluminum (0.2m x 0.2m x 0.002m). The experimental arrangement
is shown in Fig. 96. The plate was driven at the resonant frequency 594 Hz. The
apertures of the 9 x 11 URA and the plate are identical, with the microphone spacing
dx = 0.02m and dy = 0.025m in x and y directions, respectively. The array is
positioned 0.02m above the plate:” - The velocity reconstructed by the ESM NAH was
compared to the surface welocity measured using a scanning laser vibrometer
(PSV-400, Polytec). In .addition, the Chladni pattern {mode shape) at the same
frequency was obtained by a salt sprinkle test,.as shown in Fig. 97. The velocity
distribution of the plate measured by the scanning lasersis shown in Fig. 98 (a). The
frequency-domain magnitudes of the surface velocity reconstructed using various
RDs, 1/20d, 1/2d, 1d and 2d are shown in Fig. 98 (b)-Fig. 98 (¢). By inspecting the
velocity patterns in Fig. 98, the best match is evidenced between the patterns in Fig.
98 (a) and Fig. 98 (c) which is obtained using d/2 RD, whereas the reconstructed
patterns in Fig. 98 (b), Fig. 98 (d) and Fig. 98 (e) differ drastically from the laser
scanned result. This result is also consistent with the Chladni pattern shown in Fig.
97. The experimental results above suggest that the choice of RD is vital to
reconstruction quality in the ESM NAH. To more precisely quantify the comparison
of reconstruction performance, the velocity data reconstructed by the ESM using d/2
RD and the surface velocity data measured by the scanning laser are compared in Fig.

99 for all lattice points. The error metric is the relative velocity reconstruction error
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defined in Eq. (6. 46). Vectors u and u, represent the laser-measured and the
ESM-reconstructed velocity vectors, respectively. The relative errors of the
reconstructed velocity thus calculated are 100% for RD = 1/20d, 28.11% for RD =
1/2d, 71.47% for RD = 1d, and 72.97% for RD =2d. The ESM using RD = 1/2d has
achieved far better (28.11%) surface velocity reconstruction than the other three RD
settings. This substantiates our preceding conclusion that the optimal RD for
reconstructing surface velocity of planar sources using the ESM is d/2, which is

smaller than the conventional choice of 1-2 times spacing.
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Fig. 96 Experimental arrangement for an aluminum plate.

305



Fig. 97 Mode shape at the resonant frequency 594 Hz obtained using a salt sprinkle

test.
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Fig. 98 The surface velocity of the platel - (a) The velocity distribution of the plate
measured by the‘scanning laser. « The surface velocity reconstructed using

various RDs (b) 1/20d, (c).1/2d, {d).1d and'(€) 2d. The microphones are

indicated in the figur¢ using black dots:
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7.6 Other applications of the ESM

The ESM applies not only to NSI but also other applications. In automotive
hands-free system, the Single input multiple output equivalent source inverse filtering
(SIMO-ESIF) algorithms are implemented to reconstruct the speech signal in a
reverberant environment [83].  Specifically, the system serves two purposed:
dereverberation and noise reduction. In order to further improve the noise reduction
performance in spatial filtering and robustness against system uncertainties, the
SIMO-ESIF algorithm is combined with an adaptive Generalized Side-lobe Canceller
(GSC). As indicated by several performance measures in noise reduction and speech
distortion, the proposed microphone array algorithm proved effective in reducing
noise in human speech without significantly compromising the speech quality.

In application of revetberation-[84], a synthesis technique is developed using
discrete boundary source representation in an attempt to evercome these difficulties.
In comparison with FEM and BEM that.rely upon complex numerical operations, the
ESM method is based on simple representation of the sound field with a distribution
of discrete simple sources on the boundary:. The filtering property of human hearing
is also exploited in a non-uniform sampling procedure to further simplify the
computation.  Subjective listening experiments also demonstrate that the ESM
technique is capable of conferring remarkable realism of reverberation.

In application of modeling head related transfer functions (HRTF) [85], the
HRTFs for a given head with pinnae are calculated with minimal amount of
computation using ESM. In the process, a special regularization scheme is required
to calculate the equivalent strengths of virtual sources. The HRTFs obtained using
ESM agrees reasonably well in terms of frequency response, directional response and
impulse response with the other methods. The ESM obviates the singularity problem

as commonly encountered in the BEM, and is less computationally demanding than

311



the BEM in terms of time and memory usage.

In dodecahedral loudspeaker, the ESM is employed to calculate the pressure
radiation pattern of the source. The aim is design a dodecahedral loudspeaker source
to approximate an omni-directional source. The ESM also find applications in
Ambisonics, supersensitive array, p-v-based array and superdirective optimized array,

and so forth.
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CHAPTER 8. CONCLUSIONS

This thesis presents a comprehensive overview of microphone array technology
encompassing all aspects from the underlying theory to implementation. Farfield
and nearfield sound image have been addressed in this thesis. In the farfield sound
image, there have two major researches in this thesis. First, optimized planar array
deployment for source imaging is investigated in this thesis. Global optimization
algorithms have been developed to facilitate the search of the optimized microphone
deployment. The SA algorithm and the combined SA-IBMC algorithm prove
effective in finding the optimal deployment. For far-field array with sparse
deployment in which inter-element spacing is large, random deployment with optimal
weights is crucial to avoid grating lobes.  As predicted by the conventional wisdom,
the optimized random sparse arrayyphas excellent' beam pattern with a unique
main-lobe. Second, several acoustic imaging algorithms including DAS, TR,
MVDR, MUSIC and an inverse filter-based method SIMO-ESIF have been developed
to estimate DOA.  The reselutions of noise maps in low frequency are much worse
than in high frequency with random array configuration. The proposed SIMO-ESIF
approach can use URA to estimate DOA in high frequency without grating lobes
problem. As expected, the high resolution methods such as MVDR and MUSIC can
obtain much greater results than DAS, TR and SIMO-ESIF in localizing sound source
positions.

In the nearfield sound image, optimized nearfield array deployment for source
imaging is investigated. The outcome of the work is twofold. First, global
optimization algorithms have been developed to facilitate the search of the optimized
microphone deployment. Second, whether or not randomization is necessary in
nearfield imaging is explored, with the aid of the above optimization techniques.

The hybrid SA-IBMC algorithm proves effective in finding the optimal deployment.
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To answer the question whether the idea of random deployment acquired in farfield
imaging applies to nearfield imaging as well, simulation employing the MC, IBMC,
SA and SA-IBMC optimization techniques were conducted. Due to its complicated
nearfield and multi-focusing nature, a special kind of beam-pattern alongside the cost
function is defined. It was observed with all the adopted optimization approaches
that the cost function keeps fluctuating and shows no sign of convergence. The
maximum cost function is always the initial cost function corresponding to the URA
deployment. Random deployment seems to present no particular benefit for
nearfield imaging and the optimal array is the URA. The NESI enables effective
identification of noise sources based on sound pressure, particle velocity, and intensity
images. Inverse filters are design using the least-squares optimization with the aid of
Tikhonov regularization. Criteria for choosing array“parameters are summarized.
In particular, the DOR .is always selected to rendersthe condition number of
propagation matrix below \10°. . Thé-window. designis employed to alleviate
boundary defocusing problem: = Smgularity problemwis circumvented by using a
retreat focal point technique. ‘The state-space form obtained using the ERA is
exploited to enhance computation efficiency for real-time implementation. The
NESI proves effective in the identification of broadband random and transient noise
sources. In addition, the NESI does not need as large channel count as the NAH
approach. Experimental investigations have been undertaken to verify the proposed
implementation technique. It is observed from the results that the practicality of
NESI has been considerably enhanced by the use of the proposed techniques.

Various implementation issues of the NESI technique which is a time-domain
ESM have been investigated in chapter 6 and 7. A virtual microphone technique is
employed to minimize edge effects using extrapolation and to improve imaging

resolution using interpolation when only patch array with scarce sensors are available.
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Numerical simulations suggest that the optimal distance ranges from 0.4 to 0.5 times
spacing for planar sources, whereas the optimal distance can vary from 0.8 to 1.7
times average spacing for the spherical source. Although the optimal distance is not
a unique value and may well depend on many factors, the contribution of this work is
to provide an effective methodology for finding the optimal distance for ESM
applications. Experiments were also carried out for a vibrating aluminum plate to
validate the optimization results. It appears that the optimal RD is less than that

predicted by the 1-2 spacing rule except some “outlier” cases (such as 1.7 spacing in

the 6, = 180° case of the spherical piston example). From the compressor

experiment, the six algorithms are compared on the point of resolution and
performance. Both Fourier NAH and NESI have good performance while NESI is
more robust than Fourier NAH for it cail reconstruct the sound field from the source
of arbitrary shape. As expected, the high“resolution methods such as MVDR and
MUSIC can obtain greaterresults than-DAS-and-TR in'localizing the source position.
Although the resolution of MVDR and MUSIC .are "better than Fourier NAH and
NESI but the performance of Fourier NAH ‘and FDNESI are better. Most important
of all, Fourier NAH and NESI can reconstruct the acoustic variables such as sound

pressure, particle velocity and active intensity.
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