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雙互質分解干擾觀測器 

 

研究生：潘怡仁                      指導教授：李安謙 

 

國立交通大學機械工程學系 

 

摘要 

 

本論文旨在提出一個採用雙互質分解之干擾觀測器，此干擾觀測器乃基於雙

互質分解 (Doubly coprime) 及 Bezout Identity 加以延伸演變而來。以往干擾觀

測器方面之研究多數採用 Ohnishi 於 1987 年所提出之概念加以延伸，不過該種

干擾觀測器架構無法應用於非極小相位系統。本論文所提出之雙互質分解干擾觀

測器則可應用於穩定、非穩定、極小相位及非極小相位等線性系統，文中對於不

同系統狀況之內部穩定及穩健性皆加有詳細分析，並對於非極小相位系統不穩定

零點之影響有較深入之探討。當應用於非穩定系統，除了採用外迴路控制器穩定

外，本文亦結合此干擾觀測器與 Vidyasagar’s structure 發展一新穎獨立雙參數架

構，除保證系統穩定外，亦可獨立設計干擾抑制參數與追跡響應參數。當系統為

多輸入多輸出時，方陣系統可同時抑制輸入與輸出干擾，倘若系統為非方陣型態

時，干擾抑制能力則受限於輸入與輸出頻道相對個數。 
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對於探討系統非確定性與穩健干擾觀測器的發展上，本文則採用 Small gain 

theorem 設計觀測器參數以滿足系統穩健性。對於穩健雙互質分解干擾觀測器，

吾人亦利用 McFarlane 及 Glover 發展之迴路整形法設計觀測器參數，藉此滿足

系統穩健性與響應規格。在最後一章節中，本文提供數個數值模擬來驗證各章節

之論點與推導正確性並以交流馬達定位控制實驗來抑制鈍齒力干擾用以驗證穩

定性與系統響應。
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Doubly Coprime Factorization 
Disturbance Observer 

Student：Yi-Ren Pan                 Advisor：An-Chen Lee 

 

Department of Mechanical Engineering 

National Chiao-Tung University 

 

 

Abstract 
 In this thesis, one provides a disturbance observer which is based on “Bezout 

Identity” and doubly coprime factorization.  Previous studies about disturbance 

observer were extended from the concept that provided by Ohnishi in 1987.  

Unfortunately, that structure cannot be applied to the non-minimum phase systems.  

The disturbance observer we proposed is quite in general, which can be applied to 

stable, unstable, minimum-phase and non-minimum-phase linear systems.  Besides, 

this thesis also discusses the internal stability and robust stability for different plant 

cases, and studies about the influences and limitations caused by non-minimum-phase 

zeros.  For unstable systems, in this thesis, we combine the proposed disturbance 

observer and Vidyasagar’s structure to develop a novel two degrees of freedom 
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structure containing two independent parameters which can not only stabilize the 

system but eliminate the disturbances and improve the tracking performance.  When 

multi-input-multi-output systems are applied, the rejection capability is restricted by 

the relative numbers of input / output channels.  Roughly speaking, the capability of 

the input and output disturbances rejections is good when the plant is square and is 

deteriorated when the plant is non-square. 

A robust disturbance observer is developed to treat plant uncertainty.  We 

applied the small gain theorem to design the disturbance observer that satisfies the 

robust stability criteria.  Also, to guarantee the robust stability and robust 

performance, we used ∞H - loop shaping method developed by McFarlane and 

Glover to design the observer parameter.  In the final chapter, we provided some 

numerical examples and an experimental result of positioning control and cogging 

force rejection of an AC servomotor to verify the correctness of the theoretical 

developments. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Classical Disturbance Observer 

When a mechanical plant is controlled, the performance is primarily affected by 

friction, disturbance, sensor noises and unknown uncertainties.  The control structure 

and design methodologies which consider the effect of disturbance is called 

“disturbance observer (DOB)”.  The DOB shown below was first proposed by Ohnishi 

[1] and using the inverse dynamic control methods. 

Q
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1−
nP
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d
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re de
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Fig. 1.1 Classical disturbance observer 

The symbols are defined as follows. 

)(sP : the actual plant 

)(sPn : the nominal plant 
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)(sQ : the design parameter and usually designed as a low-pass filter 

)(sr : the control input 

)(sd : the input disturbance 

)(ˆ sd : the value of estimated disturbance with a low-pass filter 

)(sξ : the measurement noise 

)(sy : system output 

Moreover, the nine transfer function from external inputs Tdr ][ ξ  to internal states 

T
ndr eee ][  of Fig. 1.1 can be shown as 
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Since the nine transfer functions of Eq. (1.1) should be stable to achieve the internally 

stable, therefore, the internally stabilizing conditions can be represented as 

1. )(sP , )(sPn  and )(sQ  must be stable and 

2. 1))1(( −−+ QPPQ n  should be stable. 

If the real plant )(sP  is unstable, the system with disturbance observer can not be 

internally stable.  The second condition says that the real plant should be of minimum 

phase. 
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In recent years, the DOB has been introduced into motion control systems to 

eliminate as much of the “equivalent disturbance” as possible, and to force the actual 

system to become a nominal model.  The equivalent disturbance consists of external 

disturbance signals which include friction and signals associated with model 

uncertainties and nonlinearity.  If these uncertainties are eliminated by disturbance 

observer, the linear feedback controller can be applied to construct an asymptotically 

stable system.  Lee and Tomizuka [2] and other researchers [3]—[10] demonstrated 

the effectiveness of the disturbance observer by performing experiments with various 

uncertainties and external disturbances, to improve performance in tracking or 

point-to-point control.  Umeno et al. [11] studied the disturbance observer using the 

concept of two degrees of freedom control [12]—[13] in theoretical respect.  Yamada 

et al. [14] used this inverse dynamic concept and realized a nominal system which can 

control acceleration for fast and precise servo system using high order DOB.  In 1996, 

Choi et al. [15] proposed a novel DOB structure which was derived from the concept of 

partial plant inversion to estimate the input disturbance and performed in ∞H  

frameworks but did not deeply discuss the DOB properties of non-minimum phase 

system and approximated minimum phase to non-minimum phase system using model 

reduction.  In 1998, Yamada et al. [16] used the same concept of inverse dynamic and 

extended to a MIMO DOB for robust control of robot manipulator.  In 2000, Komada 

et al. [17] discussed the relationship between robust stability and selection of 

coefficients of DOB for redundant manipulator control.  Also, White et al. [18] used 

the DOB structure shown in Fig. 1.1 to improve track following in Magnetic Disk 

Drives.  K. Ohishi et al. [19] proposed a new high speed robust tacking control system 

based on both “zero phase error tracking” (ZPET) and disturbance observer for an 

optical disk recording system in 2000.  Yang et al. [20] continued researching the 
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DOB structure that proposed by [15] and used only position error to construct a DOB 

(error-based disturbance observer, EDOB) for robust tracking control of optical disk 

drive in 2005.  In 2003, Choi et al. [21] proposed a criterion to design a robust DOB 

system and suggested its design guidelines especially for second-order systems. 

However, the disturbance observer which proposed by [1] cannot be applied to 

general plants, in other words, especially the non-minimum phase plants are impossible 

to use it because the internal stability cannot be attained.  Although [15] proposed a 

novel DOB scheme and claimed that the proposed scheme can be applied to 

non-minimum phase systems, but that study used model reduction only, and as we know, 

there may exist a large reduction error.  Although there exist some research works on 

DOB for non-minimum phase systems [22]—[26], they seem to have difficulties in 

handling general cases.  Chen et al. [22] proposed a complex methodology to 

approximate inverse systems for non-minimum phase and provided its application to 

disturbance observer based on the least-square approximation without considering the 

stability of the closed-loop system.  The application of [23] is limited to those 

disturbances that come from a known external system, and the approach of [24] is 

limited to the case where the plant model does not have uncertainty.  Yang and Shiu 

[25] dealt with non-minimum phase systems simply by inverting only the invertible 

(stable minimum phase) part and [26] is limited to the case where the plant is single 

input / single output (SISO) strictly proper rational transfer functions.  In this thesis, an 

internally stabilizing disturbance observer based on doubly coprime factorization and 

suitable for general linear systems is provided to make up these deficiencies. 
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1.2 Coprime Factorization 

 This section studies the properties of the coprime factorization which is a useful 

mathematical tool and will be applied in the later chapters.  Coprime factorization can 

be characterized as a series connection of a stable system and the inverse of a stable 

system with no unstable pole-zero cancellations between factors.  As an example 

consider the system with transfer function )(sG  where 

)5)(4)(3(
)2)(1()(
+−+

−+
=

sss
sssG                       (1.2) 

Then a coprime factorization of this system is indicated as follows: 

)()()( 1
11 sMsNsG −=                        (1.3) 

where 

)()3(
)1)(2()(1 ss

sssN
α+
+−

= , 
)(

)5)(4()(1 s
sssM

α
+−

=  

with )(sα  being any polynomial of degree 2 having no zeros in the closed right half 

plane. 

Notice that this choice of degree for )(sα  ensures that )(1 sM  is invertible 

whereas the restriction on the location of the zeros of )(sα  ensures that )(sα  is not 

involved in any unstable pole-zero cancellations between )(1 sN  and )(1
1 sM − .  Thus 

even if )(sα  has zeros at 1−=s  and/or 5−  the resulting pole-zero cancellations in 

)(1 sN  and )(1
1 sM −  are allowed.  Stable systems which do not share any system 

zeros in the closed right-half plane are said to be “coprime”. 



 6

1.2.1 Why coprime [28] 

 In the foregoing example the numerator )(1 sN  and denominator )(1 sM  are 

coprime.  In order to better appreciate this fact we give a second factorization of )(sG  

in which the factors are not coprime. 

 Suppose we re-express )(sG  of Eq. (1.2) as 

)()()( 1
22 sMsNsG −=                     (1.4) 

where 

)()3(
)1)(2)(6()(2 ss

ssssN
β+

+−−
= , 

)(
)5)(4)(6()(2 s

ssssM
β

+−−
=  

with )(sβ  restricted to be any degree 3 polynomial with no zeros in the closed 

right-half plane.  Although this factorization has the desired property that )(2 sN , 

∞∈RHsM )(2  with )(2 sM  being invertible, it does not satisfy the requirement that 

)(2 sN  and )(2 sM  be coprime since they share a right-half plane zero at 6=s .  

Thus Eq. (1.4) is not a coprime factorization of )(sG .  We can demonstrate the 

importance of not having unstable pole-zero cancellations between factors as follows. 

Suppose that we have a strictly proper scalar transfer function )(sG  having one of 

its n  poles, 2>n , at 0ss =  on the positive real axis with the remaining 1−n  poles 

being in the open left-half plane.  These specifications imply that )(sG  can be written 

as 

0,0
)()(

)]()[(
)( 0

0

0 >∞<≤
−

+−
= s

spss
sssq

sG ε
ε

      (1.5) 
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where the degree of )(sq  is less than )(sp  with 0)( 0 ≠sq  and )(sp  having no 

zeros in the closed right half plane,  Now the system having this transfer function is 

stable only if 0=ε  so that there is an unstable pole-zero cancellation.  However, 

closer inspection of the consequences of such a pole-zero cancellation reveals that we 

cannot rely, in practice, on unstable pole-zero cancellations to make an unstable system 

stable.  This becomes immediately evident when we consider the system’s impulse 

response, )()]([1 tgsGL =−  

)(
)(
)(

)( 0

0

0 tre
sp
sq

tg ts +−= ε                    (1.6) 

with )(tr  bounded for ∞<≤ ε0 . 

Notice that if 0=ε , tse
sp
sq

0

)(
)(

0

0ε−  is missing from )(tg .  Then the system’s 

impulse response is bounded and the system is stable.  However, if 0≠ε , then 

tse
sp
sq

0

)(
)(

0

0ε−  is present in )(tg  and the system’s impulse response tends to infinity 

with time and the system is unstable.  Thus the system’s stability is sensitive to ε .  If 

0s  is in the open-left plane then tse
sp
sq

0

)(
)(

0

0ε−  tends to zero with time and the system 

is stable for all ε . 

Comparing the two types of pole-zero cancellation, stable and unstable, we 

understand that unstable pole-zero cancellation is not a reliable way in designing control 

system.  We will see that the coprime factorization can not only make a feedback 

control system input-output stable but prevent unstable pole-zero cancellations between 



 8

the controller and the plant so that the closed loop system is internally stable. 

 

1.2.2 State-space model for general coprime factorization 

 In this paragraph, a method is presented for obtaining left and right coprime 

factorizations of a system transfer matrix from its state-space description. 

 Consider a system described by the equations 

⎩
⎨
⎧

+=
+=

)()()(
)()()(

tDutCxty
tButAxtx&

                     (1.7) 

where npmnnn CBA ××× ∈∈∈ RRR ,,  and mpD ×∈R are real constant matrices.  nm×R  

represents the set of nm×  real constant matrices.  The transfer matrix of this system 

is 

DBAsICsG +−= −1)()( .                    (1.8) 

The objective is to derive a doubly coprime factorization of )(sG .  One such 

factorization is given in theorem 1.1 below. 

Theorem 1.1 [36]:  Given the system Eq. (1.7), suppose the pair ),( BA , ),( CA  are 

stabilizable and detectable, respectively.  Select constant matrices nmF ×∈R  and 

pnL ×∈R  such that all eigenvalues of matrices BFA +  and LCA +  have negative 

real parts, i.e. Hurwitz, then )(~)(~)()()( 11 sNsMsMsNsG −− == .  In addition both 

factorization pairs )}(),({ sMsN , and )}(~),(~{ sMsN  are called as right and left 

coprime factorizations since the denominator is on the right in )()()( 1 sMsNsG −=  



 9

and on the left in )(~)(~)( 1 sNsMsG −= .   

In addition, if )(),( sMsN , ( )(~),(~ sMsN ) is right (left) coprime factor, we also 

have theorem 1.2 and Eq. (1.9) below [27]. 

I
MN
YX

XN
YM

XN
YM

MN
YX rr

l

l

l

lrr =⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡ −
⎥
⎦

⎤
⎢
⎣

⎡
− ~~~~             (1.9) 

where 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+

−+
=⎥

⎦

⎤
⎢
⎣

⎡ −

IDDFC
IF

LBBFA

XN
YM

l

l 0                 (1.10) 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

+−+
=⎥

⎦

⎤
⎢
⎣

⎡
−

IDC
IF

LLDBLCA

MN
YX rr 0

)(

~~            (1.11) 

Theorem 1.2 [28]:  The factors )(sM , ∞∈RHsN )(  ( )(~ sM , ∞∈RHsN )(~ ) are right 

(left) coprime factors if and only if there exist )(sX r , ∞∈RHsYr )(  ( )(sX l , 

∞∈RHsYl )( ) which satisfy the following Bezout identity: 

INYMX rr =+                        (1.12) 

IYNXM ll =+ ~~                        (1.13) 

Proof:  Please refer to Chapter 8 of Ref. [28] for more details in the proof.        □ 

 

1.2.3 Normalized coprime factorization 

 According to foregoing paragraph, we can obtain the right/left coprime factors of a 

given plant and its corresponding factors which satisfy Bezout identity by selecting any 
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compatible dimensions F  and L  matrices such that all eigenvalues of 

matrices BFA +  and LCA +  have negative real parts.  This also implies that the 

coprime factorizations of Eqs. (1.10) and (1.11) are not unique ones.  In the following 

paragraph, a unique coprime factorizations obtained in terms of solution to the 

generalized control (respectively, filter) algebraic Riccati equation are introduced. 

 

Theorem 1.3 [42]: A right coprime factorization of )()()( 1 sMsNsG −=  with 

∞∈RHsMsN )(),(  is called normalized right coprime factorization if 

INNMM =+ ~~ ; that is, if ⎥
⎦

⎤
⎢
⎣

⎡
N
M

 is an inner function.  The superscript ~)(•  

denotes the shorthand of )()( sT −• .  Similarly, a left coprime factorization 

)(~)(~)( 1 sNsMsG −=  is called a normalized left coprime factorization if ]~~[ NM  is a 

co-inner.  Let a realization of )(sG  be given by ⎥
⎦

⎤
⎢
⎣

⎡
=

DC
BA

sG )(  and define 

0>+= ∗
∞ DDIR  and 0~ >+= ∗

∞ DDIR . 

 (a) Suppose ),( BA  is stabilizable and ),( AC  has no unobservable modes on the 

imaginary axis, there is a normalized right coprime factorization 1−= NMG , where 

∞
−
∞

−
∞

−
∞

∈
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+

+
=⎥

⎦

⎤
⎢
⎣

⎡
RH

DRDFC
RF

BRBFA

N
M

21

21

21

:              (1.14) 

and 

)( **1 CDXBRF +−= ∞
−
∞ ,                 (1.15) 
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and the unique parameter ∞X  is the solution of the following generalized control 

algebraic Riccati equation (GCARE): 

0~)()( 1**1*1**1 =+−−+− −
∞∞

−
∞∞

−
∞∞∞

−
∞ CRCXBBRXCDBRAXXCDBRA    (1.16) 

(b) Suppose ),( AC  is detectable and ),( BA  has no uncontrollable modes on the 

imaginary axis, there is a normalized left coprime factorization NMG ~~ 1−=  

[ ] ∞−
∞

−
∞

−
∞

∈⎥
⎦

⎤
⎢
⎣

⎡ ++
= RH

DRRCR
LDBLLCA

NM 212121 ~~~:~~               (1.17) 

where 

1~)( −
∞

∗
∞

∗ +−= RCYBDL                      (1.18) 

and the unique parameter ∞Y  is solved from the generalized filter algebraic Riccati 

equation (GFARE) as below: 

0~)()( *11***1*1 =+−−+− −
∞∞

−
∞∞

−
∞∞∞

−
∞ BBRCYRCYCDBRAYYCDBRA .  (1.19) 

□ 

Remark 1.4 [36]: A transfer function )(sN  is called inner if ∞∈RHsN )(  and 

INN =~  and co-inner if ∞∈RHsN )(  and INN =~ .  Note that )(sN  need not be 

square.  Inner and co-inner are dual notions (i.e. )(sN  is an inner iff )(sN T  is a 

co-inner). 

 

Theorem 1.5 [36]: Let )(),( sMsN ))(~),(~( sMsN  be a normalized right/left coprime 

factorization of )(sG , then we have 



 12

1]~~[ =⎥
⎦

⎤
⎢
⎣

⎡
=

∞
∞ N

M
NM                   (1.20)□ 

Equation (1.20) is an important property of normalized right/left coprime factorization 

and will be frequently used in the later chapters. 

 

1.3 Organization 

This thesis is divided into five chapters, and a summary of these will now be given. 

Chapter 2: DEVELOPMENT OF DOUBLY COPRIME FACTORIZATION 

DISTURBANCE OBSERVER 

  In this chapter, we introduce how the Bezout identity motivated us to develop 

this novel doubly coprime factorization disturbance observer (DCFDOB) and its 

properties and stability.   For minimum phase plants, the parameter )(sQ  is designed 

as 1)~( −⋅ nl NYJ .  In non-minimum phase plant case, the )(sQ  parameter is solved 

from the Nehari problem formed from model matching method.  Furthermore, we also 

discuss the properties, parameter design method and stability of DCFDOB for unstable 

plants.  Two control schemes, outer-loop controller and Vidyasagar’s structure (VS) 

are provided when a plant is unstable.  Furthermore, we co-structure the DCFDOB 

with VS to form a new 2 degree of freedom (2DOF) scheme (DCFDOB-VS).  This 

novel control scheme provides two independent parameters, )(sQY  and )(sH , to not 

only stabilize the system but reject the disturbance.  
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Chapter 3: Extension to General Plant Cases and Input/Output 

Disturbance 

In classic control point of view, in general, good input disturbance rejection does 

not necessarily imply good output disturbance rejection unless feedback controller and 

plant are square and diagonal.  In this chapter, we apply the proposed DCFDOB to 

general plant cases and consider both input and output disturbances and prove that the 

DCFDOB can eliminate both disturbances simultaneously.  Also, four plant cases, 

minimum phase, non-minimum phase, stable and unstable plants are all discussed.  In 

the previous chapter, we only consider the input sensitivity function, but in this chapter, 

the performances of both input and output sensitivity function are considered.  When a 

plant is non-square, the rejection capability will be restricted, and we will discuss the 

design properties of non-square plant in this chapter.  Moreover, the model matching 

method for MIMO systems is represented as well as for SISO systems in chapter 2. 

Chapter 4: Plant Uncertainty and System Robustness 

In this chapter, we investigate the robust stability of DCFDOB and DCFDOB-VS 

under left coprime factorization plant uncertainties, 1)()( −Δ+⋅Δ+= MnNn MNP .  

The small gain theorem is used here to derive robust stability tests and the modeling 

error ⎥
⎦

⎤
⎢
⎣

⎡
Δ
Δ

=Δ
M

N  will be assumed to be stable.  In order to incorporate performance 

objectives into the robust DCFDOB design, we propose a four-stage design procedure 
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which uses a loop shaping approach to deal performance / robustness trade-offs, and 

uses the normalized coprime factor robust stabilization method to guarantee closed-loop 

stability and a certain level of robust stability.  The procedure is then as follows: 

(1) Reduce the original DCFDOB structure to an output feedback type structure. 

(2) Using pre- and / or post- weighting matrix to shape the singular values of the 

nominal plant as a desired open-loop shape, and then calculate max,Sε , the maximum 

stability margin. 

(3) An output feedback type of the DCFDOB which satisfies the robust condition is 

synthesized, then the output feedback type of the DCFDOB and shaping weighting 

matrix are combined to form the final output feedback type of the DCFDOB. 

(4) The )(sQ  parameter of original DCFDOB can be obtained according to the 

relations between the original DCFDOB and the reduced one. 

We give theoretical justification of this technique, and show that it is a simple and 

systematic approach to design. 

Chapter 5: Numerical Examples and Experimental Results 

This chapter demonstrates those design methods introduced in each chapter.  In 

part 1, minimum phase plant cases are shown.  In the first example of part 2, an 

unstable and non-minimum phase SISO plant is used and in the second example of part 

2, a stable and non-minimum phase MIMO plant is considered.  These results show 
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that the DCFDOB structure is flexible in designing.  In part 3, one shows the design 

properties of DCFDOB for both thin and wide plant cases.  In part 4, one demonstrates 

the steps of ∞H - loop shaping design method of Robust DCFDOB developed in 

chapter 4.  Finally, an experimental result of a positioning control for an AC brushless 

servomotor system and cogging force suppressing will be illustrated.  Final chapter 

will draw the conclusions. 
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CHAPTER 2  

DEVELOPMENT OF DOUBLY COPRIME FACTORIZATION 

DISTURBANCE OBSERVER 

2.1 Doubly coprime disturbance observer and Bezout identity 

This section introduces how the Bezout Identity motivated us to develop this novel 

DCFDOB.  According to Eqs. (1.10) and (1.11), one can obtain the right (left) coprime 

factorizations of plant )(sP , 1)( −= NMsP ( NMsP ~~)( 1−= ) and its corresponding left 

(right) coprime factorization ∞∈ RHsYsX rr )(),(  ( ∞∈ RHsYsX ll )(),( ) such that satisfy 

“Bezout Identity” and doubly coprime factorization shown in Eq. (1.9). 

If one construct the block diagram as Fig.2.1, according to Eq. (1.12), the 

following equation can be obtained. 

Z
uMI

uMNYMX

uMNYuXZ

rr

rr

=
⋅⋅=

⋅+=

⋅⋅⋅+⋅=

−

−

−

)(

)(

ˆ

1

1

1

                     (2.1) 

From Eq. (2.1), the internal states Z  of the system can be estimated and this basic 

structure can be extended to develop a disturbance observer. 
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1−M N

rX rY

Z

Ẑ

yu

 

Fig. 2.1 Basic Structure based on Bezout identity 

Assume that the plant ( 1)( −= NMsP ) contains no uncertainty i.e. 

nn NNMM == ,  and noise free ( 0=ξ ).  If the system suffers only input disturbance, 

one can plot the block diagram as follows. 

1−M N

rX rY

Z

Ẑ

yu

d

 

Fig. 2.2 Internal states estimation with input disturbance 

and the estimated disturbance can be derived from the block diagram as follow:  

uZMd

duNYMXZM

duNMYduXZ

rr

rr

−=⇒

+⋅+=⇒

+++= −

ˆ
)()(ˆ

)()(ˆ 1

                (2.2) 

One can extend the basic structure as following figures to eliminate the input 

disturbance ( dd =ˆ ) from such a derivation. 
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1−M N

rX rY

M

Z

Ẑ

y

ξ

r u

−

d

−

d̂

 

Fig. 2.3 Extended structure with virtual disturbance entry point 

Actually, it is impossible (very difficult) to acquire the signals of point 1, that is, the real 

disturbance can not be reconstructed precisely, only input signal )(tu  can be obtained, 

and the structure should be modified as follows. 

1−M N

rX rY

M

Z

Ẑ

y

ξ

r u

−

d

−

d̂

 

Fig. 2.4 Extended structure with actual disturbance entry point 

And then one can obtain the estimated disturbance from the following derivation shown 

in Eq. (2.3). 
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dduZMYN

dNYuZM

dMXIuZM

dMMXIMuZM

dNMMYuMNYMXMZM

duNMYuXZ

l

l

r

r

rrr

rr

ˆ)ˆ(~

~ˆ
)(ˆ

)(ˆ
)(ˆ

)(ˆ

11

1

11

1

==−⇒

⋅=−⇒

⋅−=−⇒

⋅−=−⇒

⋅+⋅+=⇒

++⋅=⇒

−−

−

−−

−

               (2.3) 

and modify the block diagram as Fig.2.5 to eliminate the input disturbance completely.  

1−M N

rX rY

M

Z

Ẑ

y

ξ

r u

−

d

−

d̂

11~ −−
lYN

 

Fig. 2.5 Virtual structure for ideal DOB  

After the modification, here arises a general problem that 11~ −−
lYN  are not 

guarantee to be stable or proper transfer functions.  So, above structure must be 

modified again.  In this thesis, one replaces 11~ −−
lYN  with a stable and proper 

parameter )(sQ  such that dduZMQ ≈=− ˆ)ˆ(  to estimate the real disturbance and 

suppress the influence of input disturbance.  The novel structure is shown in Fig. 2.6 

and called the “Doubly coprime factorization disturbance observer (DCFDOB)”.  
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1−M N

rX rY

M

Z

Ẑ

y

ξ

r u

−

d

−

d̂

Q
 

Fig. 2.6 Block diagram of the DCFDOB 

After introducing the DCFDOB scheme, the following sections will investigate and 

discuss the properties about this scheme and apply it to general plant cases, such as 

stable, unstable, minimum-phase, non-minimum-phase systems, square and non-square 

plants. 

 

2.2 Applications to Stable systems 

In this paragraph, we look into the properties of DCFDOB and design methods of 

parameter )(sQ  when the DCFDOB be used in stable system.  Suppose that the plant 

is stable and without plant uncertainties, i.e. ∞
− ∈== RHPPMN nnn

1  and nM , 

nN  , rX , rY , Q ∞∈RH . 
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1−
nM nN

rX rY

nM

Z

Ẑ

y

ξ

r re

−

d

−

d̂

Q

ne

de

 

Fig. 2.7 The DCFDOB for stable system 

The nine transfer functions from external input signals Tdr ][ ξ  to internal signals 

T
ndr eee ][  is shown below. 

⎥
⎥
⎥
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⎥
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⎡

−−−
−−−
−−−

=
⎥
⎥
⎥

⎦

⎤

⎢
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⎡

−−− ξ
d
r

YQMMNIXMIQIMNMN
YQMXMIQII
YQMXMIQI

e
e
e

rnnnrnnnnn

rnrn

rnrn

n

d

r

111 ))((
)(

)(
  (2.4) 

From the 33×  transfer function matrix, one can obtain all elements are stable and 

then the system will be internally stable.  One of the main objects of this study is 

designing ∞∈RHsQ )(  such that 0)( ≈−− rn XMIQI  to suppress the influence from 

input disturbance d  to compensated input signals de .  That is, the transfer function 

from real disturbance d  to estimated disturbance d̂  is one.  It seems that one can 

design 111 ~)( −−− ⋅=−= lnrn YNXMIQ  directly to achieve this aim, but at least two basic 

criteria must be satisfied. 

1). )~()( nlrn NYXMI =−  must be proper but not strictly proper, that is, 1)( −− rn XMI  

is realizable. 
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2). The zeros of )( rn XMI −  must lie in left half plane, i.e. 11 )~()( −− =− nlrn NYXMI  

is stable. 

For the first criterion, according to [27] one can obtain the doubly coprime 

factorization of a system transfer matrix from its state-space description as follows. 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+

−+
=⎥

⎦

⎤
⎢
⎣

⎡

IDDFC
IF

LBBFA

XN
YM

l

l 0                   (2.5) 

( )

⎥
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⎥
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⎡
−

−

IDC
IF

LLDBLCA
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YX rr 0~~             (2.6) 

where npmnnn CBA ××× ∈∈∈ RRR ,,  and mpD ×∈R are real constant matrices.  nm×R  

represents the set of nm×  real constant matrices.  nmF ×∈R  is a control gain matrix 

and pnL ×∈R  is an observer gain matrix such that the real parts of eigenvalues of 

BFA +  and LCA +  are negative.  One obtains 

( )

( )

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+−+
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=

⎥
⎦
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⎦
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LDBLCA

BBFBFA

IF
LDBLCA

IF
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XM rn

ˆ
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0               (2.7) 

⎥
⎦

⎤
⎢
⎣

⎡

−
=−+−=− −

0ˆ
ˆˆ

)ˆ)ˆ(ˆ( 1

C
BABAsICIIXMI rn , since 0ˆ =D , i.e. rn XMI −  is strictly 

proper, 1)( −− rn XMI  must be improper and unrealizable. 

For the second criterion and Eq. (1.9), the Eq. (2.8) is obtained, 
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nlrn NYXMI ~=− .                         (2.8) 

The transfer function )(~)( sNsY nl  contains non-minimum phase zeros while the plant 

contains non-minimum phase zeros (non-minimum phase zeros exist in )(~ sNn ), that is, 

the unstable poles exist in 1)( −− rn XMI . 

The following paragraphs will show how to design ∞∈ RHsQ )(  to reject input 

disturbance for minimum phase and non-minimum phase systems in stable systems. 

 

2.2.1 Design method for minimum-phase systems 

As one stated above, for a stable plant, the DCFDOB will be internally stable.  

Suppose that the plant is single-input, single-output and then 

nlrn NQYXMQ ~1)1(1 −=−− .  For a minimum phase plant, )(~ sNn  does not contain 

right half plane-zeros (RHP-zeros), i.e. )(~ 1 sNn
−  is stable;  In addition, Eq. (2.5) 

indicates that )(sYl  of a minimum phase plant can be obtained by the control gain 

matrix F  and the observer gain matrix L  for the plant, that is, )(1 sYl
−  is stable, too.  

So that the simplest way in designing )(sQ  can be done as follows. 

∞
− ∈⋅= RHNYJsQ nl

1)~()(                        (2.9) 

where )(sJ  is a low-pass filter and the transfer function from d  to de  will become 

)(1 sJ− .  Clearly, the capacity of disturbance rejection increases with the bandwidth of 

)(sJ ; Furthermore, the transfer function from measurement noise ξ  to system output 
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y  is )(sJ− .  Although one can enlarge the bandwidth of )(sJ  to increase the 

rejecting capacity, the measurement noise will affects system performance more 

seriously and the tradeoff must be considered.  Besides, substituting the particular 

solution 1)~()( −⋅= nl NYJsQ  into Eq. (2.4) yields Eq. (2.10). 
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                (2.10) 

Recalling Eq. (1.1) and a low-pass filter )(sJ  is substituted for )(sQ , one also 

can obtain the same result as Eq. (2.10) when assumption )()( sPsP n=  is made.  That 

is, the DCFDOB can be reduced to the one which proposed by [1], hence the designing 

guideline of low pass filter and stability analysis that provided by previous literatures 

can be used.  With these points in mind, one may look into MIMO plant for generality.  

Suppose a MIMO, stable, and minimum phase plant, mnP ×  with mn×  ( mn ≥ ) 

dimension i.e. the input channel number is greater than the output channel number, and 

)( ,, mmrmmnmm XMI ××× −  is also minimum phase, the elements of )(sQ  can be solved 

from 

1
,

1
,, )~()( −

×××
−

××××× ⋅⋅=−⋅= mnnmlmmmmrmmnmmmmmm NYJXMIJQ         (2.11) 

and mmJ ×  is a diagonal matrix which is composed of low-pass filters, 

mmmmmm jjdiagJ ×× = }{ 11 L .  Equation (2.11) implies that the DCFDOB can be 

applied to not only square plant but also non-square thin plant and this advantaged 
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property cannot be done in the scheme of [1] because the non-square plant cannot be 

inversed. 

 

2.2.2 Design method for non-minimum-phase systems 

For non-minimum-phase systems, one can NOT design )(sQ  as 1)~( −⋅ nl NYJ , 

since )~( nl NY  term contains RHP-zeros, i.e. 1)~( −
nl NY  is unstable.  For internally 

stability purpose, this thesis applies model matching method to design parameter 

∞∈RHsQ )( . 

 

2.2.2.1 Model matching method in non-minimum plants 

The main object of the DCFDOB is to suppress the influence from d  to de  as 

small as possible and can be described as  

1)(min ≤<−−
∞∈ ∞

γrnRHQ
XMIQI                   (2.12) 

According to Eq. (1.9), one can rewrite Eq. (2.12) in following equations.
 

∞∈

∞∈

∞∈

+=

+=

−−

∞

∞

∞

321
ˆmin

~ˆmin

)(min

TQTT

NYQXM

XMIQI

RHQ

nlrnRHQ

rnRHQ

                      
(2.13) 

where ∞∞∞ ∈−=∈==∈= RHQIQRHNYTITRHXMT nlrn )(ˆ,~,, 321 .  The main 

design object of model matching problem is to find the whole sets of ( ) ∞∈RHsQ̂  that 

satisfy 1ˆ
321 ≤<+

∞
γTQTT .  That is, 1)( ≤<−−

∞
γrn XMIQI . 
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Model matching problem: 

Finding the whole satisfied sets of )(ˆ sQ  such that the distance between model 

32
ˆTQT  and reference model 1T  shorter than a constant γ  can be described as: 

μαγ
α

,,2,ˆ
321 ∞=<+ TQTT ,           (2.14) 

and Fig. 2.8 illustrates the meaning of model matching problem.  The distance between 

two models can be measured by 2H - norm, ∞H - norm or μ - norm.  Equation (2.14) 

is called “Nevanlinna-Pick Problem” and its main objective is described as Eq. (2.15) 

[29]: 

   },ˆ|ˆ{ 321 γεγ <Φ∈+=Φ=
∞∞RHQTQTT             (2.15) 

 

1T

3T 2TQ̂
 

Fig. 2.8 Model matching problem 

Since 2T  of Eq. (2.13) is a unit matrix then 
∞∞

+=+ 31321
ˆˆ TQTTQTT  and  

∞

∞∞

+=

+=+

oi

io

TQTT

TTQTTQT

3
~

31

33131

ˆ

ˆˆ
                        (2.16) 

where iT3  is an inner function, and oT3  is an outer function that satisfy the following 

properties:  
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⎩
⎨
⎧

∈
−==⋅

∞
− RHT

sTTITT

o

T
iiii

1
3

3
~

33
~

3 )(,
                   (2.17) 

Here iT3  is an inner function, from lemma 2.1 we know that a function multiplied by 

an inner function will not influence the ∞H - norm of a function. 

Lemma 2.1 [29]:  If U  is an inner function, then 
∞∞∞

== AUAAU .     □ 

According to lemma 2.1 and then Eq. (2.16) can be rewritten as follows. 

)~,(~

ˆ

ˆˆ

3
~

31

33131

∞∞∞

∞

∞∞

∈∈−=

+=

+=+

RHQRLRQR

TQTT

TTQTTQT

oi

io

       (2.18) 

where ∞
−

∞ ∈⋅−=−=∈= RHTQQTQQRLTTR ooi
1

33
~

31
~ˆ,ˆ~,  and ∞RL  denotes the space 

of all real rational transfer function matrices which have no poles on the imaginary axis.         

Through these operations, the model matching problem becomes a well-known 

Nehari Problem [30]. 

 

2.2.2.2 Nehari problem 

Nehari problem:  

For a function ∞∈RLsR )( , finding a set ∞∈RHsQ )(~  such that the distance 

between )(sR  and )(~ sQ ( ∞H - norm) smaller than a constant γ  is expressed as 

γ<−
∞

QR ~                        (2.19) 

According to [31], the minimum value of γ  is equal to the Hankel operator norm., i.e. 
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the shortest distance from )(sR  to the ∞RH  set. 

RoptRHQ
HQR

opt

=−
∞∈ ∞

~min~                      (2.20) 

Recall [29]: (1) 2
nRL  denotes an 1×n  vector with strictly proper rational functions 

contains no poles on the imaginary axis, that is, it belongs to Hilbert space and the inner 

product for the Hilbert space is defined as 

ωωω
π

djvjuvu ∫
∞

∞−
⋅>=< )()(

2
1. ~                 (2.21) 

where )()(~ ωω juju T −=  

(2) 2
nRH : The subspace of 2

nRL  and analytic in RHP 

(3) ⊥2
nRH : The orthogonal complement space of 2

nRH  

{ }222 0.| nnn RHvvuRLuRH ∈∀>=<∈=⊥            (2.22) 

Definition 2.2 [29]:  If ∞
×∈ nmRLR , we define the relation between 2

nRH  and ⊥2
mRH  

as Hankel operator RH  

⊥→ 22: mnR RHRHH ,                   □(2.23) 

and its norm is Hankel norm of R . 

HR RH =                          (2.24) 

[29] showed that 

( ) 21
~

~min coRoptRHQ
LLHQR

opt

ρ==−
∞∈ ∞

               (2.25) 

where oc LL ,  denotes controllability matrix and observability matrix respectively and 

satisfy the Lyapunov equation. 
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RccR

CCALLA

BBALLA
                    (2.26) 

where ,,
−− RR BA and 

−RC denote the state space minimum realization of )(sR− , the 

unstable parts of )(sR , and )()()( sRsRsR −+ += .  If one define 

)(max)( coico LLLL λρ = , i.e. the spectral radius of )( coLL , then the Hankel operator 

norm is  

21)( coHR LLRH ρ==                    (2.27) 

As one mentioned earlier, the minimum value of 
∞

− optQR ~  is equal to the Hankel 

operator norm.  According to [29], one can find the optimum solution of )(~ sQopt  as 

follows. 

)(
)()()(~

sv
swsRsQopt σ−=                      (2.28) 

where 

,
0

)(
1

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

−

−

−

R

vcR

C
BLA

sw
σ

                  (2.29) 

,
0

)(
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡−
=

−

−

T
R

v
T
R

B
BA

sv                       (2.30) 

and 

vvco BBLL 2σ=                          (2.31) 

The notations σ  and vB  of Eq. (2.31) denotes the maximum eigenvalue of oc LL  

and its corresponding eigenvector, respectively.  The above steps to find the optimum 

solution are only suitable for SISO plant.  For MIMO plant, one shows the solving 
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steps in Chapter 3. 

 

2.2.2.3 Weighting function design 

From previous statements, the optimum )(~ sQopt  can be obtained via solving 

Nehari problem such that 
HrnRHQ

RXMIQI =−−
∞∈ ∞

)(min .  But for rejecting the 

specific frequency range disturbance purpose, particularly in the low-frequency in most 

cases, adding a weighting function )(sW  is needed.  Then the main objective 

becomes 

( ) 1min ≤<−−
∞∈ ∞

γWXMIQW rnRHQ
                   (2.32) 

If one define input sensitivity function as ))(( rni XMIQIS −−=  then Eq. (2.32) can 

be rewritten as 

)()(

1)(
1 ωω

γ

jWjS

WSWXMIQW

i

irn

−

∞∞

≤⇔

≤<⋅=−−
            

(2.33)
 

Equation (2.33) indicates that the frequency response of input sensitivity function will 

less than the inversion of a specific weighting function one, i.e. the design specification 

can be given clearly via giving a specific weighting function.  However, the sensitivity 

function must satisfy the integral function as follows. 

∫ ∫ ≈−−=
z z

rni djXMIjQIdjS
0 0

0))()((ln)(ln ωωωωω  (for 1≈iS  at z>ω )   

(2.34) 
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From Eq. (2.34), it is easy to understand that a tradeoff between )( ωjSi  less than 1 

and )( ωjSi  larger than 1, is done over a limited frequency range.  Thus, a large peak 

)( ωjSi  is unavoidable if one tries to reduce )( ωjSi  at low frequencies and the lower 

level of sensitivity function one pushes down in low frequency region the large peak 

greater than 1 of sensitivity one obtain somewhere.  This phenomenon is called 

“waterbed effect” and unavoidable, particularly when plant contains RHP-zeros.  This 

benefit and harmful influence must be tradeoff; furthermore, the crossover frequency of 

sensitivity function is also limited by RHP-zeros.  For example, when plant contains a 

dominant real RHP-zero z  the approximate crossover frequency cω  of sensitivity 

function encounters the limitation：
2
z

c <ω .  In other words, the disturbance rejecting 

frequency region is smaller than 
2
z  and the location of system zeros will affect the 

capacity of disturbance rejection significantly.  About this topic, please refer [32] for 

more detail derivation.  Basing on above previous discussion, it is known that 

RHP-zeros will not only limit the disturbance rejecting performance but also rejecting 

bandwidth.  Moreover, the crossover frequency of weighting function )(sW  must be 

constrained to satisfy the bandwidth limitation and Eq. (2.33).  To specify the capacity 

of disturbance rejection, here, one provides a design method which can specify not only 

the DC-gain but also the crossover frequency cω  for weighting function.  The 

weighting function is exhibited as below. 
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asC
M

sW W

+
=

1

)(                          (2.35) 

And one gives 0>a  arbitrarily, and the DC-gain of the weighting function is 
a

MW . 

Since the weighting function must cross 0dB at specific frequency, cω  and the satisfies 

the limitation 
2
z

c <ω , one can write a equation as Eq. (2.36).  

1
)(

2
1

=
+

<
znc

W

c
jC
M

ω
ωω

                    (2.36) 

For giving a specific DC-gain 
a

MW  and crossover frequency, 
2
z

c <ω , then the 

parameter 1C  can be solved.  Suppose a non-minimum phase nominal plant 

20
202.0)(

+
−

=
s

ssPn  with single real zero at sec/rad100 , one designs a weighting 

function with different DC-gains as 20dB, 60dB and 100dB, and gives sec/rad40=cω , 

10=a  and 642 10,10,10=WM , then the corresponding parameters  can be solved as 

25000,250,
798

1985
1 =C .  The frequency responses of weighting functions and 

corresponding input sensitivity functions are plotted in Fig. 2.9(a)-(b).  Clearly, the 

frequency responses of input sensitivity function below the one of inversion weighting 

function indeed.  Moreover, the crossover frequency of input sensitivity function and 

its limitation is sec/rad7.41  and rad/sec50  respectively.  The maximum peak value 

of input sensitivity function is 1.7873, 1.8293, and 1.8297 respectively. 
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Fig. 2.9 (a)Different weighting functions and  

(b) corresponding input sensitivity functions 

 

2.3 The Application to Unstable Systems 

One applies DCFDOB structure to unstable plant in the following section.  If a 

plant is unstable, from the transfer functions matrix in Eq. (2.4), the transfer function 

from reference command r  to system output y  is 1−
nn MN , i.e. the DCFDOB could 

not change the tracking property and the system is unstable without controller.  To 

solve this problem, one can add an outer-loop controller )(sK  to stabilize the system.  

The block diagram and nine transfer functions from Tdr ][ ξ  to T
ndr eee ][  

are shown in Fig. 2.10 and Eq. (2.37). 

(a)

(b)
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Fig. 2.10 The DCFDOB with outer-loop controller 
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where )( 1−+=Λ nn MKNI .  From Eq. (2.37), because the unstable poles exist in 

)(1 sM n
− , one designs a controller ∞∈ RHsK )(  to stabilize the system such that  

∞
−− ∈+ RHMKNI nn

11 )(                    (2.38) 

and  

⎩
⎨
⎧

∈+
∈+

∞
−−−

∞
−−−

RHMKNIMN
RHMNMKNI

nnnn

nnnn
111

111

)(
)(

                   (2.39) 

Furthermore, the coprime factors, )(sM n , )(sNn , )(sX r , )(sYr ∞∈RH  and 

∞∈RHsQ )( , one can derive that each element of the transfer function matrix is stable 
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and the DCFDOB structure with an outer-loop controller is internally stable.  That is, 

the outer loop controller can not only stabilizes the system but also changes the system 

dynamics from input command to system output.  These stable criteria (2.38) and (2.39) 

can be modified as a simple classic control negative feedback loop shown below. 

1−
nM nN yr

−

K

nP

 

Fig. 2.11 Classic control feedback loop 

Various kinds of control theorems such as Proportional-Integral-Derivative (PID), 

pole placement and ∞H  controllers can achieve stable conditions. In this thesis, the 

Youla-Kucera parameterization, all stabilizing compensators, is introduced. 

Theorem 2.1 [36]:  Let nnnnn NMMNP ~~ 11 −− ==  be the right coprime factorization (rcf) 

and left coprime factorization (lcf) of nominal plant nP  over ∞RH , respectively.  

Then the set of all proper controller achieving internal stability is parameterized either 

by 

0))(~det(),~()~( 11 ≠∞+−+= −−
rnYKnYKrnYKrY XNQIMQYNQXK    (2.40) 

or by 

0))(det(,))(( 11 ≠∞++−= −−
YKnlYKnlYKnlY QNXIQNXQMYK     (2.41) 

for ∞∈RHQYK , where rX , rY , lX , ∞∈RHYl  satisfy the Bezout identities.   □ 
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Fig. 2.12 Control scheme for the Youla-Kucera parameterization 

Substituting )(sKY of Eq.(2.42), for K  in Eq.(2.37) , one can build the following 

block diagram and yields Eq. (2.42). 
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Fig. 2.13 The DCFDOB with Youla-Kucera parameterization controller 
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(2.42) 

Again, one can derive each element of the transfer function matrix of Eq. (2.42) is stable, 
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i.e. the system is internally stable.  Moreover, if 0)( =sQYK , i.e. the central controller, 

rr YX 1− , Eq. (2.42) can be rewritten as below: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+−−
+−−
+−−−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ξ
d
r

YQMIYNINQYIXNN
YMQXMINQYIXMM
YMQXMIIXMNQYIM

e
e
e

rnrnnlrnn

rnrnnlrnn

rnrnrnnln

n

d

r

)()~(
)()~(
)()~(

   (2.43) 

After discussing the properties and design methods, one showed that the DCFDOB 

can be applied to stable, minimum-phase and non-minimum phase systems and 

eliminates the input disturbance.  If the plant is unstable, an output feedback controller 

can not only stabilize the system but change the tracking properties.  Moreover, the 

Youla-Kucera parameterization is used for obtaining all stabilizing controller and the 

stability of the overall system is guaranteed.  In the following section, one will 

combine DCFDOB structure with Vidyasagar’s structure, the observer-controller 

compensator, and discuss the internally stable condition.  
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2.4 Combination of the DCFDOB and Vidyasagar’s structure 

 As mentioned in section 2.3, an outer-loop controller )(sK  was applied to 

stabilize the system and various kinds of control theorems can be applied to design the 

controller )(sK .  In this section, one will study Vidyasagar’s structure and combine it 

with our DCFDOB.  [33] showed that Vidyasagar’s structure has the subset stabilizing 

solutions of the Youla-Kucera parameterization, but Vidyasagar’s structure has fewer 

dimensions than Vidyasagar’s structure in the form of the Youla-Kucera 

parameterization.  Hence, the feedback system made by Vidyasagar’s structure, which 

simplifies the controller structure, is more flexible than the one by the central controller 

of Youla-Kucera parameterization. 

 

2.4.1 Vidyasagar’s structure 

 [34] and [35] proposed Vidyasagar’s structure, the observer-controller compensator 

of  Fig. 2.14(a), where the nominal plant nP  has a right coprime factorization, i.e. 

1−= nnn MNP , the observer composed of rX  and rY  observes the “internal state” z  

to be ẑ , and the controller vK  feeds ẑ  back.  Moreover, r  is the command 

reference, id  is the input disturbance and ξ  is the measurement noise; re , de  and 

ne  are the internal signals, and y  is the system output.  
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(b) 

Fig. 2.14 Vidyasagar’s structure: (a) observer-controller compensator and 

(b) equivalent compensator 

The system of Fig. 2.14(a) is internally stable [34, 35] if and only if  

)()()(
)()()()(

sMsHsK
RHsHsKsM

nv

vn

−=⇔
∈=+ ∞U

                (2.44) 

The system of Fig. 2.14(a) also can be transformed to the system of Fig. 2.14(b) in 

terms of input-output equivalence.  The notation )( ∞RHU  denotes a unit over ∞RH .  

When a square matrix and its inverse are stable, the matrix belongs to )( ∞RHU .  [33] 

pointed out that Vidyasagar’s structure equals the Youla-Kucera parameterization by 
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replacing YKQ  with lYH 1−  where YKl QYH ⊂−1 .  Replacing vK  of Fig. 2.14(a) 

with nMH − , the nine transfer functions from T
idr ][ ξ  to T

ndr eee ][  is 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−+
−−+
−−−+

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−

−−−

−−−

ξ
i

nlrnnlrnn

nlrnnlrnn

nlrnnlrnn

n

d

r

d
r

MYHYNINYHXNHN
MYHYMNYHXMHM
MYHYMINYHXMHM

e
e
e

)~()~(
)~()~(
)~()~(

111

111

111

. (2.45) 

Replacing Vidyasagar’s structure in Fig. 2.14(b) with the Youla-Kucera 

parameterization (2.40) and the nine transfer functions from [ ]Tidr ξ  to 

[ ]Tndr eee  of Fig 2.12(b) is obtained as follows. 
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    (2.46) 

Even if YKQ  of (2.46) is replaced with lYH 1− , Eq. (2.46) is still not equivalent to (2.45) 

with respect to r .  This shows that )(sH  has the unique tracking property and the 

feedback one [33]. 

 

2.4.2  The DCFDOB co-structure with Vidyasagar’s structure 

 According to the previous citation, one knows that the proposed DCFDOB and 

Vidyasagar’s structure, the observer-controller compensator, are all extended from the 

basic structure shown in Fig. 2.15(a).  We know the DCFDOB shown in Fig. 2.15 (b) 

provides good disturbance attenuation but lacks the tracking and stabilizing properties 

without the outer-loop controller.  Moreover, Vidyasagar’s structure shown in Fig 
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2.15(c) can be equivalent to the well-knows Youla-Kucera parameterization, the set of 

all proper controllers, and provides the tracking property when nv MHK −=  is 

applied.  However, Vidyasagar’s structure shown in Fig. 2.14(a) provides only one 

parameter H  to trade-off tracking performance or feedback performance.  In this 

paragraph, these two structures will be merged into a new two degree of freedom 

(2DOF) structure (DCFDOB-VS) that provides design parameters )()( ∞∈ RHsH U  

and ∞∈RHsQ )(  for the tracking performance and disturbance attenuation, respectively, 

and achieve the internal stability. 
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Fig. 2.15 (a) Internal states estimation with input disturbance  

(b) The DCFDOB structure 
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         (c) Vidyasagar’s structure: observer-controller compensator 
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Fig. 2.16 The DCFDOB co-structure with Vidyasagar’s structure 

Furthermore, Fig. 2.16 can be transformed into Fig. 2.17 by replacing vK  with 

nMH − , 
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Fig. 2.17 The DCFDOB-VS 

and the transfer functions matrix from T
idr ][ ξ  to T

ndr eee ][ of Fig. 2.17 is  
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If lYQIH )(1 −−  of the 2nd and the 3rd columns in Eq. (2.47) is replaced by YQ , i.e. 

1)( −−= lYYHQIsQ , one can obtain Eq. (2.48) as follows. 
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Obviously, according to Eq. (2.48), one knows that DCFDOB-VS is internally stable 

with these two independent ∞∈ RHQY  and )( ∞∈ RHH U . 

Theorem 2.2: If ∞∈ RHQY  and )( ∞∈ RHH U , and let nnnnn NMMNP ~~ 11 −− ==  be 

the right coprime factorization (rcf) and left coprime factorization (lcf) of nominal plant 

nP  over ∞RH , respectively.  DCFDOB-VS is internally stable. 

Proof: For any )()( ∞∈ RHsH U , i.e. ∞
− ∈ RHsH )(1  and ∞∈ RHsQY )( .  The nine 

elements of Eq. (2.38) are all stable.  The proofs of stable properties follow from 

simple manipulations of rational transfer functions.   

□ 

Theorem 2.3:  )(sQY  in Eq. (2.48) must be strictly proper such that a realizable 

parameter )(sQ  in DCFDOB-VS can be guaranteed. 

Proof:  Suppose )()( ∞∈ RHsH U  with state-space representation: 
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where 0≠HD  and 1−
HD  exists, one also has 
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Moreover, suppose  
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one can obtained the state-space realization of )(sQY  in Eq. (2.53), where 

lY YQIHQ )(1 −= − . 
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)(sQY  must be a strictly proper rational function, since 
YQD  is a zero matrix.  In dual, 

if )(sQY  is not strictly proper, i.e. 0≠
YQD , QD  does not exist and )(sQ  must be 

improper and unrealizable.                                               □               
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In the future, we will continue on studying this novel structure and obtain more inherent 

properties.  The follows shows a simple design methods of )(sH  on tracking control 

and )(sQY  parameter for disturbance attenuation, respectively. 

 

2.4.2.1 )(sH  on tracking control using the inverse dynamic 

In Fig. 2.17, the transfer function from r  to y  is 

rsHsNsy n )()()( 1−= .                    (2.54) 

Equation (2.54) represents that the tracking response can be improved by )(sH .  For 

minimum-phase square plants, an inverse idea can be used to select the )(sH  

parameter as follows.  If )(sNn  is a nn×  matrix, )(sH  is selected to be 

)()( sNs nα , where },{)( 1 ndiags ααα L=  in which )(siα  for ni ~1=  are 

polynomials: 

1)( 1,
1

1,, ++++= −
− ssss i

n
ni

n
nii αααα L               (2.55) 

and the roots are all in the left-half plane such that )()()( ∞∈ RHsNs n Uα .  In the case, 

rsy )(1−≈ α , obviously, the system response is determined by the pole locations of 

)(1 s−α .  The degree of polynomial )(sα  depends on the relative degree of )(sNn .  

For example, if )(sNn  is given by 
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)(sα  can be selected as 
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so that )()()()( ∞∈= RHsHsNs n Uα  and the tracking performance for each channel 

output can be determined by the roots of )(siα , respectively.  For non-minimum 

phase systems, the unstable zeros are retained in )(sH . 

 

2.4.2.2 )(sQY  on disturbance elimination design 

a. Minimum phase and square plant 

In Fig. 2.17, the transfer function from id  to de  is 

inYrnd dNQXMse ⋅+= )~()(                  (2.59) 

Suppose )(sPn  is a nn×  matrix, i.e. the corresponding coprime factors are all nn×  

matrices.  To reject the input disturbance id , the simplest way in designing )(sQY  

can be done as follows. 



 47

1~)( −−= nrY NJXsQ                       (2.60) 

1~)( −−= nrY NJXsQ                       (2.61) 

where )(sJ nn×  is a diagonal matrix which is composed of low-pass filters, 

nnnnnn jjdiagsJ ×× = }{)( 11L .  If )(sQY is defined as Eq. (2.60) or Eq. (2.61), then Eq. 

(2.59) can be rewritten as Eqs. (2.62) or (2.63) as follows. 

irn

irrnd

dJIXM
dJXXMse

⋅−=
⋅−=

)]([
)()(

                   (2.62) 

 

irn

irrnd

dXJIM
dJXXMse
⋅−=
⋅−=

])[(
)()(

                   (2.63) 

The transfer function from id  to de  ))](([ ωjJIXM rn −  ( )]()[( ωjXJIM rn − ) is 

near zero when IjJ ≈)( ω  and parameter )(sQ  of DCFDOB can be obtained as, 

11~)( −−+= lnr YNJHXIsQ                     (2.64) 

or 

11~)( −−+= lnr YNHJXIsQ ,                    (2.65) 

and the parameter )()( ∞∈ RHsH U  is given in foregoing tracking control design.  

Note that the relative degree of each element of the low-pass filter )(sJ  depends on 

the relative degree of )(sX r , )(~ sN n , and )(sYl  so that 1~ −
lnr YNJX  is proper or 

strictly proper, i.e. )(sQ  is realizable. 

 

b. Non-minimum phase and square plants 
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 For rejecting the input disturbance id  in non-minimum phase plant, the objective 

function can be described as follows. 

∞∈
+

∞
nYrRHQ

NQX
Y

~min                       (2.66) 

Also, the model matching methods represented in paragraph 2.2.2.1 for SISO system or 

in section 3.2 for MIMO system can be applied to solve the parameter )(sQY  

according to following steps. 

Step 1: Compute inner-outer factorizations of 2T , 3T  and oiTTT 222 = , ioTTT 333 =  , 

respectively, where IT =2 , nNT ~
3 =  and rXT =1 . 

Step 2: Form the Nehari problem γ<−
∞

QR ~ , where ∞∈= RLTTTR ii
~

31
~

2  and 

∞∈= RHTQTQ oYo 32
~ . 

Step 3: Compute the optimum solution )(~ sQopt  of )(~ sQ  in SISO system or take the 

central solution )(ˆ sQo  in MIMO system. 

Step 4: Obtain the parameter ∞
−− ∈= RHTQTQ ooptoY

1
3

1
2

~  in SISO system or 

∞
−− ∈= RHTQTQ oooY

1
3

1
2

ˆ  in MIMO system.  

Step 5: Obtain the parameter of DCFDOB, 1−+= lYYHQIQ . 

Note that 1−
lYYHQ  must be a proper rational function so that )(sQ  is realizable.  If 

1−
lYYHQ  is improper, the simplest way is pre- / post-multiplying a low-pass filter 

matrix )(sβ  with wide bandwidth so that 1−
lY YHQβ  ( β1−

lY YHQ ) is proper and 

)()( 11 ωβω jYHQjYHQ lYlY
−− ≈  ( )()( 11 ωβω jYHQjYHQ lYlY

−− ≈ ) in low frequency 
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range. 

 

c. A numerical example of DCFDOB-VS: 

 In the following section, we show a numerical example to demonstrate the design 

steps of DCFDOB-VS.  Suppose a MIMO unstable plant is given as follows: 
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and its corresponding normalized coprime factors can be obtained via Eqs. (1.14) and 

(1.17).  The Smith-McMillan poles locate at -7, -6, 5 and 8 and zeros locate at -24.225 

and -1.775.  Since this plant is of minimum phase, we can apply the inverse dynamic 

method to obtain the parameter U∈)(sH  as follows in order to change the tracking 

property from )(tr  to )(ty . 
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According to Eq. (2.64), the )(sQ  parameter which contains four elements with eight 

orders transfer function is obtained and the reduced one is given as follows. 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

×++++
++++

×+++
−++

×+++
−++

×++
++

=

)101141)(974.5)(939.6(
)62035.133)(324.5)(615.7(068.2

)101141)(939.6(
)63.12)(17.54)(100(434.0

)101141)(974.5(
)09.15)(14.63)(100(147.0

)101141(
)43962.131(623.4

)(

42

2

42

4242

2

ssss
ssss

sss
sss

sss
sss

ss
ss

sQ

(2.71) 

The time domain simulation result is given in Fig. 2.18, where the reference command 
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Fig. 2.18  Simulation result of an unstable system with DCFDOB-VS for case 1 where 
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Fig. 2.19 Frequency responses from (a) 1,1, di ed →  (b) 1,2, di ed →   

(c) 2,1, di ed → (d) 2,2, di ed →  of DCFDOB-VS for case 1 

Figures 2.19(a)-(d) show the frequency responses from ⎥
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of Fig. 2.17, 

i.e. input sensitivity functions.  Moreover, Figures 2.20(a)-(d) show the frequency 
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Fig. 2.20 Frequency response from (a) 11 yr →  (b) 12 yr →   

(c) 21 yr →  (d) 22 yr →  of DCFDOB-VS for case 1 

In case 2, we enlarge the coefficient of )(siiα  and remain the bandwidth of the 

low-pass filter )(sJ .  The simulation result is shown in Fig. 2.21 and Figs. 2.22(a)-(d) 
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 of case 2.  From these results, we 

know that the roots of )(siiα  will influence the system response. 
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Fig. 2.21  Simulation result of an unstable system with DCFDOB-VS for case 2 where 
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Fig. 2.22  Frequency response from (a) 11 yr →  (b) 12 yr →   

(c) 21 yr →  (d) 22 yr →  of DCFDOB-VS case 2 
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Comparing the bandwidth from ⎥
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 of case 1 with the one of case 2, the 

tracking bandwidth can be enlarged arbitrarily since the tracking and disturbance 

attenuation are independent.  However, actuator saturation and control power must be 

considered in real realization.  

In this chapter, we introduced the DCFDOB and its properties, stability conditions 

and design methods for tracking objective and input disturbance attenuation.  For 

minimum phase plants, the parameter )(sQ  can be design as 1)~( −⋅ nl NYJ  to reject the 

input disturbance.  For non-minimum phase plants, the model matching method and 

Nehari problem were applied to solve the optimum solution of )(sQ  parameter.  

Moreover, the limitation of sensitivity function and waterbed phenomenon cased by the 

non-minimum phase zeros were also discussed.  When a plant is unstable, an 

outer-loop controller )(sK  is added not only to stabilize the system but change the 

tracking performance.  After that, we co-structured DCFDOB with Vidyasagar’s 

structure, the subset of stabilizing solutions of the Youla-Kucera parameterization, by 

sharing the common observer configuration to form the DCFDOB-VS which contains 

)(sH  and )(sQ  parameters to deal with tracking objective and feedback objective, 

respectively.
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CHAPTER 3  

EXTENSION TO GENERAL PLANT CASES AND INPUT/OUTPUT 

DISTURBANCES 

 

This thesis only considered the influence of input disturbance, denoted as id  in 

the above chapters.  But in general, the system may also influenced by output 

disturbance, denoted as od , meantime.  In classic control point of view, in general, 

good input disturbance rejection does not necessarily imply good output disturbance 

rejection unless feedback controller and plant are square and diagonal [36, page 83].  

In this Chapter, one will consider both input disturbance and output disturbance for 

system generality and prove that the DCFDOB can eliminate both disturbances 

simultaneously in square plant cases.  Considering the whole exogenous input signals 

and Fig. 3.1, 
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Fig. 3.1 DCFDOB with input and output disturbance 

the transfer functions from T
oi ddr ][ ξ  to T

ndodir eeee ][ are shown as 

below. 
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(3.1) 

3.1 Input/Output sensitivity functions of the DCFDOB 

In a SISO plant, the input sensitivity function, denotes iS  is the same as the 

output sensitivity function, denotes oS  and given as follows. 

nr

nr
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i
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i
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MXQ

XMQ
d
e
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1
)1(1

)1(1

                       
 (3.2)
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o
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o

NQY

YQMMN
d
e

S
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−== −

1

1 1

                       (3.3) 

Obviously, for SISO plant cases minimization of iS  will also reduce the influence of 

output disturbance to system output.  

For MIMO plant, mnnP ×, , with dimension n  by m , the transfer functions of 

input/output sensitivity functions are represented as follows: 

)~()(, nledi NQYIsS
di

−=→                              (3.4) 

)()( 1
, rnnnydo YQMMNIsS

o

−
→ −=                        (3.5) 



 57

Equation (3.4) can be rewritten as follows when mn ≥  

nlnnedi NQYNINsS
di

~)~(~)( 1
, −= −

→                  (3.6) 

and Eq. (3.5) also can be rewritten as 

nlnnydo MQYNIMsS
o

~)~(~)( 1
, −= −

→                 (3.7) 

If one can design ∞∈RHsQ )(  such that ))(~( ωσ jQYNI ln−  as small as possible, 

particularly in low frequency, that is, one can eliminate both input disturbance and 

output disturbance in low frequency ranges.  For square, minimum phase plant cases, 

one can design 11~ −− ⋅⋅= ln YJNQ  to achieve this aim and )(sJ  is a diagonal matrix 

which composes of low-pass filters.  In comparison with Eq. (2.9), one suggests that 

the designer can apply solution (2.9) when considering input disturbance only, and 

applied solution 11~ −− ⋅⋅= ln YJNQ  when considering both input/output disturbances.  

These two solutions and corresponding sensitivity functions are shown in Table 3.1.  

 

Table 3.1 Solutions of parameter )(sQ  and corresponding sensitivity functions 

 11~ −− ⋅⋅= ln YJNQ  11~ −− ⋅⋅= ln YNJQ  

Input sensitivity, iS  nn NJIN ~)(~ 1 −−  )( JI −  

Output sensitivity, oS  nn MJIM ~)(~ 1 −−  nnnn MNJNIM ~)~~(~ 11 −− ⋅⋅−  

 

For square, non-minimum phase plant cases, the model matching method also can 
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be applied to obtain the parameter ∞∈RHsQ )(  such that  

1~ ≤<−
∞

γlnQYNI                        (3.8) 

The following section will show the model matching method of MIMO system. 

 

3.2 Model matching method of MIMO square system 

For square MIMO, non-minimum phase plant cases, the main goal is finding 

∞∈RHsQ )(  to satisfy Eq. (3.8) and  

1~~
1~

,, <⋅⋅−⇔

<−

∞

∞

iloloi

ln

YYQNNI

QYNI
                    (3.9) 

where iN~  and oN~  is an inner function and an outer function of nN~ , respectively.  

ilY ,  and olY ,  is an inner function and an outer function of lY , respectively.  

According to the norm preserving properties of inner function, Eq. (3.10) can be 

obtained. 

1~~
,, <⋅⋅−

∞iloloi YYQNNI                  (3.10) 

1~~
,

~
,

~ <⋅⋅−⇔
∞oloili YQNYN                  (3.11) 

then Eq. (3.11) can be described as Nehari problem. 

1ˆ

1~~
,

~
,

~

<−=

<⋅⋅−

∞

∞

QR

YQNYN oloili
                 (3.12) 

where ∞∈= RLRYN ili
~
,

~~  and ∞∈= RHQQYN olo
ˆ~

, .  Finally, the parameter )(ˆ sQ  

which satisfies Eq. (3.12) can be found by solving Eq. (3.13) [29]. 
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1,,)()(

)(ˆ
1

22211211 <∈∀+⋅+−=

Φ−=

∞∞
− URHUUUR

URQ

θθθθ
θ            

(3.13)
 

where θΦ  denotes the “Right Chain Scattering” Linear Fractional Transformation 

(LFT) of θ  which denotes the J-lossless function. 

Definition 3.1 [29]: 

(1) If ∞
+×+∈ )()( mpmpRLθ  satisfied ,)()( UU jj JθJθ =∗ ωω  R∈∀ω , θ  is called 

J-unitary, where ⎥
⎦

⎤
⎢
⎣

⎡
−

=
m

p
U I

I
0

0
J . 

(2) If a J-unitary θ  satisfied UU ss JθJθ ≤∗ )()( , ∀ s, 0)Re( >s , θ  is called 

J-lossless.                                                            □ 

Then the J-lossless function can be obtained as follows. 
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where 1)( −−= coLLINθ  and ],,,[ RRRR DCBA  denote the minimum state-space 

realization of R  and oc LL ,  satisfy Lyapunov equation of Eq. (2.26).  If one takes 

0=U  then the central solution oQ̂  can be obtained. 
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then the parameter )(sQ  which satisfies Eq. (3.8) can be obtained. 

1
,

1 ˆ~)( −− ⋅⋅= oloo YQNsQ                      (3.18) 

As one mentioned in section 3.1, our main goal is holding iS  and oS  as small as 

possible in low frequency ranges, that is, a good input/output disturbance rejecting 

capability. For this reason, a diagonal weighting function matrix 

{ } nnnwwdiagW ×= L1 can be added to form the following objective. 

)())(~(

1)~(
1 ωωσ jWjQYNI

WQYNI

ln

ln

−

∞

<−⇔

<−
               

(3.19)
 

and the model matching method for square MIMO system also can be applied to obtain 

the parameter )(sQ  which satisfies Eq. (3.19) and suppresses both iS  and oS . 

 

3.3 Input/Output Sensitivity Functions with Feedback Controller 

If the outer-loop controller scheme that discussed in section 2.3 is applied, twelve 

transfer functions from T
oi ddr ][ ξ  to T

ndodir eeee ][  are shown below: 
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where )( 1−+=Λ nn MKNI  and the stable conditions are the same as Eqs. (2.38) and 

(2.39).  For DCFDOB-VS that discussed in section 2.4, the 44×  transfer functions 

matrix from T
oi ddr ][ ξ  to T

ndodir eeee ][  is obtained as follows. 
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Also, we replace lYQIH )(1 −−  of the 2nd, 3rd and 4th columns in Eq. (3.21) with YQ  

and yield Eq. (3.22) and also form the 2DOF control scheme contains two independent 

parameters. 
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(3.22) 

The transfer functions of input/output sensitivity functions are represented as follows: 

)~( nYrni NQXMS +=                          (3.23) 

nnnYrn

nYrno

MNNQXN

MQYNIS
~~)~(

]~[
1−+=

−−=
                    (3.24) 

If one can design )(sQY  satisfying theorem 2.3 and make the common term 

))(~( ωσ jNQX nYr +  as small as possible, particularly in low frequency, that is, one can 
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eliminate both input disturbance and output disturbance in low frequency ranges, 

simultaneously.  The solving steps are provided in paragraphs 2.4.2.2 part a and part b 

for minimum phase and non-minimum phase systems, respectively. 

 

3.4 The DCFDOB for non-square plant 

3.4.1 The thin plant case 

For non-square plant, however, the non-square types of plant will restrict rejection 

capability.  For a thin plant mnP ×  with mn >  dimension, the output channel numbers 

are greater than input channel numbers.  In section 3.1, we rewrote the input sensitivity 

function as mnnnmlmmmnnnnnmn NYQNIN ×××××
−

× ⋅⋅− ,,,
1
,

~)~(~  and output sensitivity function as 

nnnnmlmmmnnnnnnn MYQNIM ×××××
−

× ⋅⋅− ,,,
1
,

~)~(~  and then design )(sQ  to satisfy 

nniinmlmmmnn JdiagYQN ×××× =⋅⋅ }{~
,,  ( niJii ~1, =  are low-pass filters) to reject 

input/output disturbances in minimum-phase system.  However, in thin plant cases 

( mn > ), we can not obtain the solutions of parameter matrix, )(sQ mm× , which contains 

only 2m  parameters to satisfy 2n  desire functions ( 22 nm < ).  One must design 

)(sQ  which satisfies the following equation. 

mmimnnnmlmmmm SNYQI
××××× =⋅⋅− ,,,

~                   (3.25) 

where 
mmiS

×,  is an input sensitivity function matrix with mm×  dimension and 

contains 2m  sensitivity functions.  Equation (3.25) indicates that one can design 2m  
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elements of mmQ ×  matrix to satisfy 2m  linear independent sensitivity functions of 

mmiS ×, , that is, for thin plant cases, a suitable mmQ ×  matrix can suppress input 

disturbances of all input channels.  On the other hand, for rejecting output disturbances, 

the following equation must be satisfied. 

nnonmrmmnmmmnnnn SYMQPI ×××××× =⋅⋅⋅− ,,,,                 (3.26) 

where nnoS ×,  is output sensitivity function matrix composed of 2n  linear independent 

sensitivity functions.  Obviously, Eq. (3.26) is also an overdetermined system 

( 22 nm < ), there exist no exact solutions which satisfy Eq. (3.26).  Although the 

designer can select 2m  significant output sensitivity functions and solve these 

functions by 2m  elements of mmQ ×  matrix, however, the influences of others 

)( 22 mn −  sensitivity functions will not be guaranteed. 

 

3.4.2 The wide plant case 

 For a wide plant, we can not modify input sensitivity function as 

mnnnmlmmmnnnnnmn NYQNIN ×××××
−

× ⋅⋅− ,,,
1
,

~)~(~ , since nN~  is a right invertible matrix, i.e. 

mmmnnnmn INN ××
−

× ≠⋅ ,
1
,

~~ .  

 

Lemma 3.2 [47]: 

Suppose A  be an nm×  matrix, if there exists an mn×  matrix B  such that 
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nn×= IBA , where nn×I  is an nn ×  identity matrix, the matrix B  is called the left 

inverse of the left invertible matrix A .  If there exists another mn×  matrix B  such 

that mm×= IAB , where mm×I  is an mm×  identity matrix, the matrix B  is called the 

right inverse of the right invertible matrix A .  If there exist an operator B , such that 

IBAAB == , A  is called invertible.                                     □ 

 

Recalling Eq. (3.25), it seems that one can obtain 2m  elements of parameter 

matrix to satisfy 2m  desire sensitivity functions, however, in wide plant cases, if we 

modify mmimnnnmlmmmm SNYQI ××××× =⋅⋅− ,,,
~  as a linear equation, BAX = , where 
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Lemma 3.3 [47]:  

A linear system of equations BAX =  is consistent if and only if the rank of the matrix 

A  is the same as the rank of the augmented matrix of the system )|( BA .        □ 

In Eqs. (3.27) and (3.28), for wide plant cases, mnrank ×=)(A , 

1)|( +×= mnrank BA  and )|()( BAA rankrank < .  That is, the wide plant cases are 

inconsistent and we can not obtain analytical solution that satisfies Eq. (3.25). 

To reject output disturbances in wide plant, one modified the output sensitivity 

function nmrmmnmmmnnnn YMQPI ××××× ⋅⋅⋅− ,,,  as 

nnnnmlmmmnnnnnnn MYQNIM ×××××
−

× ⋅⋅− ,,,
1
,

~)~(~  and then design 

)~1(},{~
,, nijdiagYQN iinmlmmmnn ==⋅⋅ ×××           (3.29) 

for minimum phase systems.  From Eq. (3.29), we knew that there exist 2m  unknown 

parameters and 2n  linear independent sensitivity functions, namely, we have 22 nm −  

arbitrary parameters because of nm >  in wide plant cases.  Also, the DCFDOB can 

perform well for eliminating output disturbances in wide plant cases.  Based on these 

discussions, one summarizes the design properties of the DCFDOB for non-square, 

minimum phase plant cases in table 3.2.  For non-square plant topic, how to find the 

optimum solutions will be an interesting topic in the future.
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Table 3.2 Design properties of the DCFDOB for non-square, minimum phase plant cases 
Plant type Input Sensitivity Output Sensitivity 

mnnnmlmmmmmmi NYQIS ××××× ⋅⋅−= ,,,
~  nmrmmnmmmnnnnnno YMQPIS ×××××× ⋅⋅⋅−= ,,,,  

One can modify as: 

mnnnmlmmmnnnnnmnmmi NYQNINS ×××××
−

×× ⋅−= ,,,
1
,,

~)~(~  

One can modify as: 

nnnnmlmmmnnnnnnnnno MYQNIMS ×××××
−

×× ⋅−= ,,,
1
,,

~)~(~  

One can not obtain analytic solutions that satisfies 
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since the unknown parameters are less than equations. 

One can not obtain analytic solutions that satisfies 

nnnn

nmlmmmnn

J

J
YQN

×

×××

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=⋅

L

MOM

L

0

0
~ 11

,, , 

since the unknown parameters are less than equations. 

Thin plant 
)( mnP mn >×

The solutions can be solved from the following equation: 
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The exact solutions for output disturbance elimination: 
Can not obtained because the unknown parameters are less  
than the equations. 
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Elimination 
Capability 

Completely eliminate the input disturbances of all channels
Only eliminate the same channel numbers as input channel ones 

(The designer can select the significant channels) 



 67

Plant type Input Sensitivity Output Sensitivity 

mnnnmlmmmmmmi NYQIS ××××× ⋅⋅−= ,,,
~  nmrmmnmmmnnnnnno YMQPIS ×××××× ⋅⋅⋅−= ,,,,  

One can not modify because mnnN ×,
~  is right invertible 

One can modify as: 

nnnnmlmmmnnnnnnnnno MYQNIMS ×××××
−

×× ⋅−= ,,,
1
,,

~)~(~  
Wide plant

)( mnP mn <×

The exact solutions for input disturbance elimination: 
Can not be obtained because the system is inconsistent,  
since )|()( BAA rankrank <   

The solutions can be solved from the following equation: 
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MOM

L

0

0
~ 11

,, . 

Furthermore, we have 22 nm −  arbitrary solutions. 

Elimination 
Capability 

Only eliminate the channel numbers as many as 
output channel ones 

(The designer can select the significant channels) 
Completely eliminate the output disturbances of all channels 

 

In summary, to eliminate input disturbances completely, the numbers of output channel must equal/greater than the one of input channel.  

In dual, to eliminate output disturbances completely, the numbers of input channel must equal/greater than the one of output channel.



 68

We will give two numerical examples to show these properties of DCFDOB for 

non-square plant cases in section 5.3. 

For non-minimum phase plant, recalling Eqs. (2.15), (3.6), (3.7) and Fig 2.8, the 

main goal of model matching method is finding the whole solution set that satisfies 

1~ <−
∞lnQYNI  .  According to the plant types, the model matching problem can be 

discussed in two ways [29]: 

(1) 1-block problem: ( ln YN ,~  are both square and invertible) 

 If )(~ sNn  and )(sYl  are both invertible, i.e. square plant cases, and they can be 

decomposed as: 

oninn NNN ,,
~~~ ⋅= , iloll YYY ,, ⋅=                   (3.30) 

where inN ,
~ / onN ,

~  and ilY , / olY ,  are inner/outer functions and IYYNN ililinin == ~
,,,

~
,

~~ , then 

the objective 1~ <−
∞lnQYNI  can be rewritten as: 

1

~~

~~

~

11

,,
~
,

~
,

,,,,

<−=
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−=

−

∞

∞

∞

∞

QR

QYNYN

YQYNNI

QYNI

olonilin

ilolonin

ln

                 (3.31) 

where ~
,

~
,11

~
ilin YNR ⋅= . 

 

(2) 4-block problem: ( nN~  is left invertible and lY  is right invertible) 

 If nN~  is left invertible and lY  is right invertible, i.e. non-square plant cases and 
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under such circumstance, one can select F  and L  such that  

IYYNN llnn == ~~ ~~                        (3.32) 

That is, nN~  is an inner function and lY  is a co-inner function.  One also can obtain 

complementary inner matrices, ⊥,
~

nN , ⊥,lY , such that they satisfy 
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             (3.33) 

Lemma 3.3 [29]: 

Let ⎥
⎦

⎤
⎢
⎣

⎡
=

DC
BA

T  be an inner function and +X  be the pseudo-inverse of X , the 

solution of Eq. (1.16), then a complementary inner factor ⊥T  is given by 

⎥
⎦

⎤
⎢
⎣

⎡

+
−+

=
⊥

⊥
+

⊥ DDFC
DCXBFA

T
T

                   (3.34) 

where ⊥D  is an orthogonal complement of D  such that ][ ⊥DD  is square and 

orthogonal.                                                           □ 

 

Note: 

The singular value decomposition of X  is TUSVX = , where U  and V  are 

both nn ×  orthogonal matrices and S  is an nm×  diagonal matrix with singular 

values iσ  for ni ,,1L= .  Then  

TTT USSSVX 1)( −+ =                       (3.35) 

If the rank of X  is less than n , the inverse of SS T  does not exist. 
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Furthermore, the main objective of non-square, non-minimum phase plants can be 

rewritten as 

1
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where  
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Please refer to [29, chapters 2, 4 and 5] and [37]—[38] for detail discussions of 

1-block problem and [39]—[40] for 4-block problems.  The non-square plant with 

non-minimum phase zeros cases are much more complex than others.  In the future, we 

will look into these complicated cases and find the optimum )(sQ  parameter matrix 

for non-square, non-minimum phase plant. 

In conclusion, when the proposed structure is applied to MIMO systems, the 

capability of disturbance rejection is good when plants are square and is restricted by 

the non-square types of plants.  How to obtain the optimum )(sQ  parameter matrix 

for non-square, non-minimum phase plants will be an interesting issue in the future.    



 71

CHAPTER 4 

UNCERTAINTY AND ROBUSTNESS 

 

In this chapter, one will investigate the robust stability of the DCFDOB under plant 

uncertainties.  The small gain theorem is used here to derive robust stability tests and 

the modeling error )(sΔ  will be assumed to be stable.  Furthermore, one will discuss 

the robust DCFDOB which satisfies small gain theorem and its design method and 

procedures in ∞H  frameworks. 

 

4.1 Coprime Factor Uncertainty 

There are numerous ways of representing classes of systems that are close to a 

nominal model, and in this monograph, one adopt the coprime factor framework to 

represent both the nominal model transfer function, and a class of close systems.  The 

right coprime factorization of perturbed plant is described as 

 1)()( −Δ+⋅Δ+= MnNn MNP , ( ∞∈ΔΔ RHMN MNnn ,,, )          (4.1) 

and the block diagram of DCFDOB with system uncertainties is constructed as follows. 
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Fig. 4.1 Block diagram of DCFDOB with system uncertainties 

Before going into detail, one first introduces an important theorem about robust stability 

test of system with uncertainty. 

 

4.1.1 Small gain theorem [36] 

 This chapter considers the stability test of the DCFDOB under model perturbations.  

The basis for the robust stability criteria derived in the sequel is the so-called small gain 

theorem.  Consider the interconnected system shown in Fig 4.2 with )(sM Δ  a stable 

qp ×  transfer matrix and the maximum allowable bound of plant uncertainties ε  

where 0>ε .  Then the interconnected system shown below is well-posed and 

guarantee internally stable for all ∞∈Δ RHs)(  with 

(a) ε≤Δ
∞

 if and only if 1−
∞Δ < εM               (4.2a) 

(b) ε<Δ
∞

 if and only if 1−
∞Δ ≤ εM               (4.2b) 
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Δ

ΔM

1w

2w
 

Fig. 4.2 Δ−ΔM  loop stability analysis 

 

4.2 Robust Stability Analysis 

4.2.1 Robust stability analysis of DCFDOB 

According to small gain theorem and Fig. 4.2, one modified Fig. 4.1 as Δ−ΔM  

loop type and shown in Fig. 4.3. 

⎥
⎦

⎤
⎢
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⎡
Δ
Δ

=Δ
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N

]))(([ 11
rnnrnn XMIQIMYQMMM −−−−= −−

Δ

⎥
⎦

⎤
⎢
⎣

⎡

1

2

Z
Z

Z

 

Fig. 4.3 Δ−ΔM  loop stability analysis of Fig. 4.1 

The interconnected system is internally stable if the following inequalities are satisfied： 

ε≤⎥
⎦

⎤
⎢
⎣

⎡
Δ
Δ

∞M

N  if and only if  111 ]))(([ −

∞

−− <−−−− εrnnrnn XMIQIMYQMM  
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(4.3a) 

ε<⎥
⎦

⎤
⎢
⎣

⎡
Δ
Δ

∞M

N  if and only if  111 ]))(([ −

∞

−− ≤−−−− εrnnrnn XMIQIMYQMM  

(4.3b) 

If Eq. (4.3b) is pre-multiplied by normalized coprime factorization ⎥
⎦

⎤
⎢
⎣

⎡

n

n

M
N

, since 

1=⎥
⎦

⎤
⎢
⎣

⎡

∞n

n

M
N

, the robustness bound of DCFDOB can be obtained from the following 

form: 

1

))((
))(( −

∞

≤⎥
⎦

⎤
⎢
⎣

⎡
−−−−
−−−−

ε
rnrn

rnnrnn

XMIQIYQM
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         (4.4) 

 In other words, if a small 1−ε  can be achieved by designing an adequate 

∞∈ RHsQ )(  for a given nominal plant )(sPn , the DCFDOB can be stabilized under 

large uncertainties, however,  

1
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))((( 1 ⋅≤⎥
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     (4.5) 
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⇔ ε
nnlnnnl

nnlnnnnnln

MNQYMNMQY
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             (4.6) 

1−

∞

≤⎥
⎦

⎤
⎢
⎣

⎡
−
−

⇔ ε
n

n

M
N

                                       (4.7) 

11 −≤⇔ ε                                                (4.8) 

From Eq. (4.8), one knows that the minimum value of 1−ε  will greater than one, that is, 
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the maximum allowable bound of 
∞

⎥
⎦

⎤
⎢
⎣

⎡
Δ
Δ

M

N must less than one.  Besides, Eq. (4.4) can 

be rewritten as follows. 

1
11
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NQYNINMQYNN
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       (4.9) 

According to Eqs. (3.6) and (3.7), although one can enlarge the bandwidth of lnQYN~  

to increase disturbance rejection capability, however, according to Eq. (4.9), 1−ε  

increases with increasing the bandwidth of lnQYN~ .  For simply explanation, one 

assumes that the system is SISO, minimum phase and then substitute Eq. (2.9) into Eq. 

(4.9) to yield Eq. (4.10). 

1
1 )(

)( −

∞

− ≤⎥
⎦

⎤
⎢
⎣

⎡
−−⋅−
−−−

ε
JIPJ
JIPJ

n

n                   (4.10) 

Obviously, the stability margin 1−ε  can be obtained by designing the low-pass filter 

)(sJ .  If the bandwidth of )(sJ  is wider than the one of the nominal plant )(sPn , the 

dominant term )(1 ωjPJ n
−⋅−  of Eq. (4.10) will roll up after the cutoff frequency of 

nP  and then roll off after the cutoff frequency of )(sJ .  The wider bandwidth of the 

low-pass filter, the larger value of )(1 ωjPJ n
−⋅− ,  consequently, larger 1−ε  we 

obtained.  A tradeoff must be done between rejection capability and robust stability.  

In addition, the output )(ty  of plant with uncertainties is represented as follows. 

ξ⋅−+⋅−+−⋅−−+⋅= rnnornnirnnn YQMPzdYQMPIzdXMIQIPrPy )()()())(( 21    

(4.11) 
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Since one design 0))(( ≈−− rnn XMIQIP  and 0≈− rnn YQMPI  in low frequency 

ranges to reject input and output disturbances, Eq. (4.11) can be approximated as 

follows. 

ξ⋅−⋅≈ rnnn YQMPrPy                    (4.12) 

That is, the perturbation will be suppressed as well.  Thus, the system will behave like 

nominal plant in low frequency ranges, and an outer loop controller for stabilizing and 

better performance can be designed easily.  The complete feasible form of DCFDOB is 

shown in Fig. 4.4. 
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Fig. 4.4 The complete feasible form of DCFDOB with an outer-loop controller 

 

4.2.2 Robust stability analysis of DCFDOB-VS 

 Recalling the DCFDOB-VS structure shown in Fig. 2.17, we modified it as 
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Δ−ΔM  loop as shown in the following figure. 
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Fig. 4.5 Δ−ΔM  loop of DCFDOB-VS 

According to small gain theorem, the DCFDOB-VS is guaranteed internally stable for 

all 1<Δ
∞

 if and only if： 

[ ] 1~)(~)( 11 ≤−−−−+−⋅⎥
⎦

⎤
⎢
⎣

⎡
Δ
Δ

∞

−−

∞

nlrnlr
M

N NYQIHXMYQIHY    (4.13) 

If the relation 1)( −−= lYYHQIsQ  is substituted into )(sM Δ  of Eq. (4.13), we can 

obtain the following equation. 

[ ]
[ ]
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nYrnYr

nlrnlr

NQXMQY

NYQIHXMYQIHYM
~~

~)(~)( 11

     (4.14) 

We found that the parameter )(sH  does not appear in Eq. (4.14) and the value of 

∞Δ )(sM  is only influenced by the independent parameter )(sQY .  That is, the 

advantage is that it will simplify the robustness tuning procedure and disturbances 

rejection by using only one independent instead of two parameters )(sH  and )(sQ .  

Furthermore, we can modify Fig. 2.17 as Fig. 4.6, which is further equaled to Figs. 4.7(a) 
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and 4.7(b) through I/O equivalence. 
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Fig. 4.6 The modification of DCFDOB-VS 
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(b) 

Fig. 4.7 (a) The modification of DCFDOB-VS  

 (b) the equivalent block diagram of Fig. 4.7 (a) with two independent parameters, 

)(sH  and )(sQY  

According to Fig. 4.7(b), we knew that the DCFDOB-VS can be modified as the 

well-known Youla-Kucera controller structure with a pre-filter )(1 sH −  when 
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lY YQIHsQ )()( 1 −= − .  Moreover, Fig. 4.7(b) can explain more clearly why the loop 

properties, e.g. 
∞Δ )(sM , is only influenced by the independent parameter )(sQY .  

These modifications from DCFDOB-VS to Fig. 4.7(b) can further validate the following 

properties that we stated and provided in the forgoing sections. 

1. Vidyasagar’s structure has the subset stabilizing solutions of the Youla-Kucera 

parameterization and provides the tracking properties [33]. 

2. The last two columns of Eq. (2.46), i.e. the loop properties of Youla-Kucera 

parameterization structure are the same as those of Eq. (2.48) when 

)()( sQsQ YYK = . 

 

 Recalling the numerical example in part c of paragraph 2.4.2.2, we gave three 

different bandwidth low-pass filters and three different )(sα s, i.e. three different )(sH  

parameters to observer 
∞ΔM  behaviors.  Table 4.1 shows the results for nine cases, 

which indicate the robust stability is only influenced by the low-pass filter )(sJ , i.e. 

the independent parameter )(sQY .
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Table 4.1 Plots of )( ωjM Δ  with different bandwidth of )(sJ , )(sα  and corresponding 
∞ΔM  
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Table 4.1 shows that )(sα , i.e. )(sH  will not influence the robust stability.

)(sJ

)(sα
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4.3 Robust DCFDOB 

 One discussed the robust stability of DCFDOB and DCFDOB-VS in sections 4.1 

and 4.2.  The maximum allowable bound of plant uncertainties ε  can be obtained by 

designing an adequate )(sQ  and system robustness can be guaranteed when the small 

gain theorem is satisfied.  In this section, one will discuss the design method of robust 

DCFDOB in ∞H  frameworks.  Consider again Eq. (4.3a), one rearranges the 

inequality as follows. 
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11 ][ −

∞

− <⇔ εIKSM DOBin                                    (4.16) 

where )~())(( nlrni NQYIXMIQIS −=−−=  and 

rni

rnnl

rnrnDOB

YQMS

YQMNQYI

YQMXMIQIK

⋅=

−=

⋅−−=

−

−

−

1

1

1

)~(

))((

              (4.17) 

 Moreover 

i

i

ii

nli

rni

nnrni

nnrni

nDOB

S
S

SISI

NQYSI

XMIQSI

MMXIQMSI

MNYQMSI

PKI

=
=

−+=

+=

−+=

−+=

+=

⋅+

−−

−−

−−

−−

−−−

−−−

−

11

11

11

11

111

111

1

)(

))((

)~(

))((

))((

)(

)(

            (4.18) 

According Eqs. (4.17) and (4.18), one rewrote Eq. (4.16) as Eq. (4.19) and rearranged 

DCFDOB in form of an output feedback type in Fig. 4.8. 
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111 ][)( −

∞

−− <+ εIKPKIM DOBnDOBn               (4.19) 
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Fig. 4.8 Right coprime factor perturbed system with reduced DCFDOB 

 

Theorem 4.1[36, chapter 8]:  Consider a right coprime factor perturbed plant described 

in Fig. 4.8 and 1)()( −Δ+⋅Δ+= MnNn MNP  with nN , nM , NΔ  and ∞∈Δ RHM .  

Assume the output feedback controller DOBK  internally stabilizes the nominal system 

nP , then the closed-loop system is well-posed and internally stable for all ε≤Δ
∞

 if 

and only if 

111 ][)( −

∞

−− <+ εIKPKIM DOBnDOBn             (4.20)□ 

A design objective is to find a reduced DCFDOB )(sKDOB  which satisfied Eq. 

(4.20) for a given ε .  Suppose the stable nominal plant nP  has the minimal 

realization ),,,( DCBA .  A state-space construction for the normalized right coprime 

factorization can be obtained in terms of solution to the generalized control (respectively, 
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filter) algebraic Riccati equation as follows, i.e. Generalized Control Algebraic Riccati 

Equation (GCARE): 

     0~)()( 1**1*1**1 =+−−+− −
∞∞

−
∞∞

−
∞∞∞

−
∞ CRCXBBRXCDBRAXXCDBRA  (4.21) 

and Generalized Filter Algebraic Riccati Equation (GFARE): 

0~)()( *11***1*1 =+−−+− −
∞∞

−
∞∞

−
∞∞∞

−
∞ BBRCYRCYCDBRAYYCDBRA     (4.22) 

where *~ DDIR +=∞  and DDIR *+=∞ .  Then, the normalized RCF is given as 

 ∞
−
∞

−
∞

−
∞

∈
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+

+
=⎥

⎦

⎤
⎢
⎣

⎡
RH

DRDFC
RF

BRBFA

N
M

n

n

21

21

21

:                (4.23) 

where )( **1 CDXBRF +−= ∞
−
∞ .  The normalized RCF of nP  means 

        IjNjNjMjM n
T
nn

T
n =−+− )()()()( ωωωω     for all ω .     (4.24) 

Moreover, [41] showed that the solution satisfying Eq. (4.20) is obtained as follows: 

⎥
⎦

⎤
⎢
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⎡ −+++
=

∞

∞
−
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−

∞
**

*1*2*1*2 )()()(
DXB

CYWDFCCYWBFA
KDOB

γγ
       (4.25) 

where )( 2IYXIW γ−+= ∞∞∞ , )( **1
∞

−
∞ +−= XBCDRF  and 1−= εγ .  Also, a 

maximum value of ε  can be obtained by a non-iterative method, and is given by 

  1
min

21

2

max )1( −=⎥
⎦

⎤
⎢
⎣

⎡
−= γε

Hn

n

M
N

                     (4.26) 

where 
H

• denotes the Hankel norm, and maxε  is called the maximum stability margin.  

That is, the stability of the closed-loop can be guaranteed for all  

maxε<⎥
⎦

⎤
⎢
⎣

⎡
Δ
Δ

∞M

N                         (4.27) 
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The parameter )(sQ  of robust DCFDOB can be obtained. 

rnnlDOB YQMNQYIsK ⋅−= −1)~()(                      (4.28) 

1))~~(()( −+⋅= DOBnnlDOB KNMYKsQ                 (4.29) 

 In the above section, one discussed the design method of robust DCFDOB that 

satisfied (4.15) in ∞H  frameworks.  In the following section, one will introduce the 

loop - shaping methods to obtain performance / robust stability tradeoffs, and a 

particular ∞H  optimization problem to guarantee closed - loop stability and a level of 

robust stability at all frequencies. 

 

4.4 Robust DCFDOB using ∞H - loop shaping design 

 This section considers the ∞H - loop shaping design which is developed by 

McFarlane and Glover [42] to obtain the robust DCFDOB.  The objective of the ∞H  

- loop shaping is to incorporate simple performance / robustness tradeoff obtained in the 

loop - shaping with the guaranteed stability properties of ∞H  design methods.  The 

∞H  - loop shaping is an open - loop shaping approach, which follows the elementary 

open - loop shaping principles specifying the closed - loop objectives in terms of 

requirements on the open - loop singular values, denoted )(•σ .  )(•σ  and )(•σ  

denote the maximum and minimum singular values, respectively.  To complete a 

robust DCFDOB, we have to consider the following objectives: 
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1) Input sensitivity:  Recall from Eq. (4.18) that minimizing ))(( 1−⋅+ nDOB PKIσ  

minimizes the effect of input disturbance on the plant input.  The following inequality 

relates this objective to an open - loop singular value condition:  

1)(
1

)(
1))(( 1

−
≤

⋅+
=⋅+ −

nDOB

nDOB
nDOB

PK

PKI
PKI

σ

σ
σ

 

)(
1

nDOB PKσ
≈  for frequencies: 1)( >>nDOB PKσ  

(4.30) 

2) Similar, the inequality of output sensitivity:  

1)(
1

)(
1))(( 1

−
≤

⋅+
=⋅+ −
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DOBn
DOBn
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KPI
KPI

σ

σ
σ

 

)(
1

DOBnKPσ
≈  for frequencies: 1)( >>DOBn KPσ  

(4.31) 

3) Robustness of coprime uncertainty on the nominal plant can be obtained by 

minimizing both ))(( 1
nDOBnDOB PKPIK −+σ  and ))(( 1

DOBnDOBn KPKIP −+σ .  One 

also has that: 

1))((
1

)))((())((

1

111

+
≤

+=+

−

−−−

nDOB

nDOBnDOBnDOB

PK

IPKPKPIK

σ

σσ
 

))((
1

1−≈
nDOBPKσ

 for frequencies: 1)( <<nDOBPKσ  

(4.32) 

Similar, one has 1)( <<DOBnKPσ . 
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 In each of cases 1) - 3), one has approximated a closed - loop objective by a 

condition on the singular values of nP  and DOBK  over a particular frequency range.  

1) and 2) are rejection performance objectives, while 3) is robust stability objective.  

Good rejection performance requires that  

1)(,1)(,1)( >>>>>> DOBnDOBDOBn KPKKP σσσ          (4.33) 

in a low frequency range ],0[ lω . 

Good robustness requires that  

δσσσ ≤<<<< )(,1)(,1)( DOBnDOBDOBn KPKKP           (4.34) 

in a high frequency range ],[ ∞uω  where δ  is not too large.  Figure 4.9 indicates 

graphically how the requirements on these closed - loop objective constrain the shape of 

the open - loop singular values in design. 

 

Fig. 4.9 Open - loop singular value shaping 
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4.4.1 The ∞H  - loop shaping design procedure of the robust DCFDOB 

 The ∞H - loop shaping design procedure which we utilize to develop the robust 

DCFDOB is developed by McFarlane and Glover [41] and is stated next. 

(1) The ∞H  - loop shaping uses a pre-weighting matrix 1W  and/or a post - 

weighting matrix 2W  to shape the singular values of the nominal plant nP  as a desired 

open - loop shape 12 WPWP nS =  and its normalized right coprime factor 1−= SSS MNP .  

1W  and 2W  are selected such that SP  contains no hidden modes. 

(2) Robust Stability:  

a) Calculate max,Sε , where 

[ ]
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2
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1
11
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S

SSRHKS

M
N

IKPKIMε

              (4.35) 

If 1max, <<Sε  return to step (1) and adjust 1W  and 2W . 

b) Select max,SS εε ≤ ; then synthesize the solution ∞K  that satisfies 

SSSS IKPKIM γε =≤+ −

∞∞
−

∞
− 111 ][)(              (4.36) 

(3) The final reduced DCFDOB DOBK  is the constructed by combining the 

solution ∞K  with the shaping functions 1W  and 2W . 

21 WKWKDOB ∞=                       (4.37) 

(4) The final parameter )(sQ  can be obtained according to Eqs. (4.28), (4.29) and 

(4.37). 
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After introducing the solving steps of )(sK DOB , i.e. )(sQ  that satisfies Eq. (4.36) 

and forms the robust DCFDOB, we will explain how all the closed-loop objectives of 

Eqs. (4.33) and (4.34) are incorporated.  Note that Eq. (4.36) is not only the criterion 

for robustness but implicitly considers minimizing the ∞H  norm of the transfer 

functions from T
io dd ]~~[  to Tyy ]~~[ 12  in Figure 4.10(a) as follows. 
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where the inner function ⎥
⎦

⎤
⎢
⎣

⎡

S

S

M
N

 is pre - multiplied to go to the four - block problem. 

The corollary 16.7 of [36] shows the Eq. (4.39) also equals Eq. (4.40) by interchanging 

∞K  and SP .  
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Equation (4.40) presents the transfer functions from T
oi dd ]~~[  to Tyy ][ 21  in Figure 

4.10(b) 
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(b) 

Fig. 4.10 Two cases of the transfer functions from )~~( oi dd  to 

 )~~( 21 yy  and )( 21 yy  

 Equations (4.39) and (4.40) show how all the closed-loop objectives of Eqs. (4.33) 

and (4.34) are incorporated. 

4.4.2 On the achieved loop shape 

 As described above, the desired loop shaped was specified as 12 WPW n , but the 

finally achieving loop shape is in fact given by nPWKW 21 ∞  at plant input and 

21 WKWPn ∞  at plant output.  Figure 4.11 illustrates the discrepancies that may occur 
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between specified and achieved loop shapes.  It can be seen in Figure 4.11 that, at low 

frequency (in particular ),0( lωω∈ ), the deterioration in loop shape at plant output can 

be obtained by comparing )( 21 WKWPn ∞σ  with )( 12 WPW nσ . 

 

Fig. 4.11 Specified and achieved loop shapes 

Note that: 
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        (4.41) 

where )()()( ••=• σσκ  denotes the condition number.  Similarly, for loop shape 

deterioration at plant input, one compares )( 21 nPWKW ∞σ  with )( 12 WPW nσ  and we 

have 

⎩
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≤=
≥=

∞∞
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)(/)()()()(

11221
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WKWPWPWKWPK
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        (4.42) 

Equations (4.41) and (4.42) present that )( ∞Kσ  / )( ∞Kσ  require a bound on the 

deterioration of the loop shapes at low / high frequencies.  Note that the condition 
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numbers )( 1Wκ  and )( 2Wκ  are selected by the designer.  Moreover, theorems 4.2 

and 4.3 show that )( ∞Kσ  / )( ∞Kσ  is bounded by function of Sγ  and )( SPσ  / 

)( SPσ .  Hence by Eqs. (4.41) and (4.42), ∞K  will only have a limited effect on the 

specified loop shape at low-frequency. 

 

Theorem 4.2 [36]: 

Any ∞K  satisfying Eq. (4.36), where SP  is assumed square, also satisfies 

1))((1

1))((
))((

2

2

+−

−−
≥∞

ωσγ

γωσ
ωσ

jP

jP
jK

SS

SS                  (4.43) 

for all ω  such that 1))(( 2 −> SS jP γωσ .  Furthermore, if 1)( 2 −>> SSP γσ , then 

1
1))((
2 −

≈>∞

S

jK
γ

ωσ , where ≈>  denotes asymptotically greater than or equal to as 

∞→)( SPσ .                                                          □ 

Theorem 4.3 [36]: 

Any ∞K  satisfying Eq. (4.36), where SP  is assumed square, also satisfies 
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for all ω  such that 
1

1))((
2 −

<
S

S jP
γ

ωσ .  Furthermore, if 
1

1)(
2 −

<<
S

SP
γ

σ , then 

1))(( 2 −<≈∞ SjK γωσ , where <≈  denotes asymptotically less than or equal to as 

0)( →SPσ .                                                           □ 



 92

4.4.3 Bounds of the robust DCFDOB 

 In this paragraph, we discuss each bounded magnitudes of the robust DCFDOB via 

∞H - loop shaping design procedure.  Let nP  be the nominal plant and let 

21 WKWK DOB ∞=  be the associated reduced DCFDOB obtained from the loop shaping 

design procedure.  Then if SSS IKPKIM γ≤+
∞∞

−
∞

− ][)( 11  one has 

{ })()(),(min)( 11 WMWS SSSi κσγκγσ ≤             (4.45) 

where )( iSσ  notes the gain from input disturbance id  to plant input 1y  of Figure 

4.10(a), )()()( ••=• σσκ  denotes the condition number and 
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where )( in SPσ  denotes the gain from input disturbance id  to plant output 2y  of 

Figure 4.10(a) and 
2
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SS σ

σ
σσ .  Furthermore, one has 

{ })()()(),()(min)( 2121 WWMWWKS SSSDOBi σσσγσσγσ ≤      (4.47) 

where )( DOBi KSσ  denotes the gain from output disturbance od  to plant input 1y  of 

Figure 4.10(a). 

   { })()(),(min)( 22 WNWKSP SSSDOBin κσγκγσ ≤            (4.48) 

where )( DOBin KSPσ  denotes the gain from output disturbance od  to plant output 

2y  of Figure 4.10(a). 
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Moreover, we also can obtain Eqs. (4.49)-(4.52). 

{ })()~(),(min)( 11 WNWPSK SSSnoDOB κσγκγσ ≤              (4.49) 

{ })()()~(),()(min)( 2121 WWMWWSK SSSoDOB σσσγσσγσ ≤   (4.50) 
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{ })()~(),(min)( 22 WMWS SSSo κσγκγσ ≤             (4.52) 

where )( noDOB PSKσ , )( oDOB SKσ , )( no PSσ  and )( oSσ  denotes the gain from 

input disturbance id  to DCFDOB output 1ŷ  , output disturbance od  to DCFDOB 

output 1ŷ , input disturbance id  to system output 2ŷ  and output disturbance od  to 

system output 2ŷ of Figure 4.10(b), respectively. 

 These following derivations present how these boundaries in Eqs. (4.45)-(4.52) be 

obtained.  Firstly, note that  

SSS IKPKIM γ≤+
∞∞

−
∞

− ][)( 11               (4.53) 

If Eq. (4.53) is pre-multiplied by normalized coprime factorization ⎥
⎦

⎤
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.  Since 
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, one can obtained Eq. (4.54).  
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Noting that 
∞

•≤•)(σ  for all frequencies, one can obtain Eqs (4.45)-(4.48) because 

by Eq. (4.54), one has 
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Then by Eq. (4.57), one can obtain Eqs. (4.49)-(4.52).  Furthermore, recalling Eq. 

(4.57), we have 
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and we can immediately show (4.59) and (4.60). 
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Next, recall that 1
12

−== SSnS MNWPWP .  Then by Eq. (4.53) we have 
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and 

)()(
)(

)(

)))((

21

1
1

2
1

WW
N

SP

WPKIPWN

SS
in

SnDOBnS

σσ
σγ

σ

γσ

≤⇒

≤+ −−

             (4.62) 

 

)()()(
)))((

2

1
2

1
2

1

WNKSP
WKPKIPWN

SSDOBin

SDOBnDOBnS

κσγσ
γσ

≤⇒
≤+ −−−

        (4.63) 

Similarly, one can obtain  

)()~()( 2WMS SSo κσγσ ≤                        (4.64) 

)()()~()( 21 WWMSK SSoDOB σσσγσ ≤               (4.65) 

)()(
)~(

)(
21 WW

N
PS SS

no σσ
σγ

σ ≤                         (4.66) 

)()~()( 1WNPSK SSnoDOB κσγσ ≤                   (4.67) 

By (3.4), (3.5) and (4.17) one also has 
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Similar, one has 
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and 
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 The shaping functions 1W  and 2W  are selected by the designer, then it can be 

seen that, by (4.45)-(4.52), all of the closed – loop objectives are guaranteed to have 

bounded magnitude and the bounds depend only on Sγ , 1W , 2W  and nP . 

 In this paragraph, one has incorporated the normalized DCFDOB into a loop 

shaping based systematic design technique.  This enables both performance and robust 

stability objective to be traded off, and preserves the exact solution associated with this 
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particular ∞H  problem.  The following chapter, we will give some numerical 

examples and one experimental result to demonstrate the design steps and verify the 

correctness of our derivations of the DCFDOB structure.  
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CHAPTER 5 

NUMERICAL EXAMPLES AND EXPERIMENTAL RESULTS  

     In this chapter, we demonstrate four parts numerical examples and an 

experimental result to illustrate the design steps for each plant case.  In part 1, two 

examples, SISO and MIMO, of minimum phase systems are given.  In part 2, we show 

the design steps for a SISO, non-minimum phase plant in part 2-example 1, and for 

MIMO, non-minimum phase plant in part 2-example 2.  In part 3, two types of 

non-square plant, thin and wide systems, are given to express the inherent restriction on 

input / output disturbances rejections.  In part 4, a robust DCFDOB developed by 

∞H -loop shaping design procedures are presented.  Finally, an experimental result of a 

positioning control for an AC brushless servomotor system and cogging force 

suppressing is illustrated.  

 

5.1 Numerical example part 1: minimum phase plants 

In the first example of part 1, a stable, minimum phase, SISO plant with 

uncertainty is used and the second example of part 1, a stable, minimum phase, MIMO 

plant is considered. 

Example 1: Assume the actual plant )(sP  and the nominal plant )(sPn  are given as 

follows. 
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sPn                       (5.1) 

The control gain matrix and observer gain matrix are given as [ ]75.55−=F , 

[ ]91.475−=L  , the corresponding coprime factors are obtained as: 
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                     (5.2) 

Two low-pass filters, )(1 sJ  with sec400 rad bandwidth and )(2 sJ  with 

sec/40rad  bandwidth, are given and the corresponding parameters )(1 sQ  and 

)(2 sQ  are obtained in Eq. (5.4) and Eq. (5.6), respectively. 

52

5

1 106.16.565
106.1)(

×++
×

=
ss

sJ                        (5.3) 

)106.16.565(
)60)(120(6305.24)( 521 ×++

++
=

ss
sssQ                      (5.4) 

160056.56
1600)( 22 ++

=
ss

sJ                           (5.5) 

)160056.56(
)60)(120(24627.0)( 22 ++

++
=

ss
sssQ                      (5.6) 

Figure 5.1 illustrates frequency response of input sensitivity.  From Fig. 5.1, obviously, 

the rejection capability and rejection bandwidth are directly related to the bandwidth of 

low-pass filter.  However, Fig. 5.2 displays that the bandwidth from measurement 

noise ξ  to system output y  also increase with an increase in bandwidth of )(sJ .  

That is, bandwidth of the low-pass filter is a basic criterion to be considered and 

tradeoff when designs a DOB. 
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Fig. 5.1  Frequency responses of input sensitivity of part 1 - example 1 
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Fig. 5.2  Frequency responses from noise to system output of part 1 – example 1 
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In time domain simulation, a unit-step input disturbance )5()( −= tutdi  is given, 

where )( τ−tu  denotes a unit-step and sec,1)( τ≥= ttu  and sec,0)( τ<= ttu . 
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Fig. 5.3 Simulation results of part 1 – example 1 

In Fig. 5.3, 
1Qy  and 

2Qy  denote system outputs of DCFDOB with parameters 1Q  

and 2Q , respectively and this figure demonstrates that when a wide bandwidth 

low-pass filter is adopted, the disturbance eliminate rate is faster than a narrow one.  In 

the following, we consider both input and output disturbances and a unit-step )7( −tu  

is given as an output disturbance, where sec7,1)( ≥= ttu  and sec7,0)( <= ttu .  

The simulation results are shown in Fig. 5.4(a)-(c). 
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Fig. 5.4  (a) Simulation results when considered both input and output disturbances of  

part 1 – example 1 

(b) Detailed response from 4 sec to 6 sec of Fig. 5.4(a) 

(c) Detailed response from 6 sec to 8 sec of Fig. 5.4(a) 

In Fig. 5.4(a)-(c), we observe that suppressing the input disturbance will also reduce the 

influence of the output disturbance.  That is because the output sensitivity function is 

the same as the input sensitivity function in SISO system.  Consequently, large 

bandwidth low-pass filter, i.e. )(1 sQ  indicates better disturbance rejection.  In Fig. 

5.5(a)-(b), we plot the frequency responses and phases of the nominal plant and the ones 

from I/O points of DCFDOB with )(1 sQ  and )(2 sQ . 
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Fig. 5.5  (a) Frequency responses (b) phase plots of nominal plant and the ones from 

I/O points of DCFDOB with )(1 sQ  and )(2 sQ  

Fig. 5.5(a)-(b) show that the DCFDOB can push the actual plant to nominal plant within 

the rejection bandwidth.  In Fig. 5.5(a), the frequency response from I/O points of 

DCFDOB with )(1 sQ  and overlaps the one of nominal plant before sec/100 rad , but 

the one with )(2 sQ  overlaps only before sec/50 rad .  In Fig. 5.5(b), the phase of 

DCFDOB with )(1 sQ  overlaps the one of nominal plant before sec/10 rad  while the 

one with )(2 sQ  overlaps only before sec/2 rad .  In general, the wider bandwidth 

the filter has, the closer the approximation will be. 

 Next, we will apply the DCFDOB to a MIMO, stable, minimum phase system in 
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numerical part 1-example 2. 

Example 2:  Suppose a simple MIMO system with 22×  dimension is given as 

follows. 
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⎥
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         (5.7) 

The transmission zeros of the system lie in -8.2527 and -4.7373 and the control gain 

matrix F  and the observer gain matrix L  are given as follows. 

 

  ⎥
⎦

⎤
⎢
⎣

⎡
−−

−−
=

1077.11122.22416.01660.0
1536.02848.04815.00176.0

F           (5.8) 
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⎣

⎡
−

−

=

4641.30
01421.14
8944.00
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L                      (5.9) 

The corresponding coprime factorization factors can be obtained by Eqs. (1.10)-(1.11). 

To eliminate both input and output disturbances, we adopt the solution, 11~ −− ⋅⋅= ln YJNQ , 

which stated in section 3.1 to achieve this aim and is shown in Eq. (5.10). 

 



 105

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

+=

+
=

=

+++
=

=

⎥
⎦

⎤
⎢
⎣

⎡
=

⋅⋅= −−

2

2

2

2

222

22

22

222

22

21

222

222

12

222

22

11

2221

1211

11

)200(
)200(0

0
)200(

)200(

126.4) + 21.29s +  (s 30.61)+ 11s (s 3.742)+(s 8.547)+(s200)+(s
74.7) + 15.78s +(s5)+(s 7)+(s 12)+(s 11)+(s 10)+(s 2786-)(

126.4) + 21.29s +  (s 30.61) + 11s + (s 3.742)+(s 8.547)+(s200)+(s
60) + 14.78s+(s 24.93) + 9.985s + (s 5.662)+(s 10)+(s 11)+(s 12)+(s 15592-)(

126.4) + 21.29s +  (s 30.61) + 11s + (s 3.742)+(s 8.006)+(s 8.21)+(s200)+(s
46.48) + 12.27s(s 46.1) + 13.58s(s 24.81) + 10s(s 10)+(s 11)+(s 12)+(s 3562)(

126.4)+21.29s+(s 30.61)+ 11s+(s 3.742)+(s 8.547)+(s200)+(s
36.86) + 11.75s +  (s 24.5) + 10s +  (s 5.672)+(s 10)+(s 11)+(s 12)+(s 24200)(

~

s

sJ

sQ

sQ

sQ

sQ

QQ
QQ

YJNQ ln

(5.10) 

The frequency responses from ⎥
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 of Fig 3.1 are shown in 

Fig. 5.6(a)-(d) and the simulation results are shown in Fig. 5.6(e) where the input 

disturbances are ⎥
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Fig. 5.6  Frequency responses from (a) 1
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 and (e) simulation results of part 1 - example 2 

From Figs. 5.6(a)-(d) it is clear that in low frequency ranges, the DCFOB attenuates 

both input and output disturbances to system outputs very well.  In Figs. 5.6 (a) and (d), 

we observer that the magnitudes of frequency responses from 1,od  to 1y  and 2,od  to 

2y  close to 0dB in high frequency ranges, i.e. high frequency output disturbances will 

directly influence the outputs beyond rejection bandwidth.  From Fig. 5.6(e), the 

uncompensated outputs i.e. the open loop, are much larger than the ones compensated 
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by DCFDOB, it reveals that the DCFDOB structure can not only apply to MIMO 

system but also eliminate various kinds of input and output disturbances at the same 

time. 

 

5.2 Numerical example part 2: non-minimum phase plants 

 In the first example of part 2, an unstable, non-minimum phase, SISO plant 

with output feedback controller is used and the second example of part 2, a stable, 

non-minimum phase, MIMO plant is considered. 

Example 1: An unstable and non-minimum phase SISO plant is given as 
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202.0)(
−
−

=
s

ssPn                           (5.11) 

Its unstable pole locates at 20  and a single real RHP-zero locates at 100 .  The 

control gain matrix and observer gain matrix are given as ]80[−=F , ]75.38[=L  and 

then the corresponding coprime factorization factors are obtained as: 
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In this example, one gives two different weighting functions as in Eqs. (5.13) and (5.14) 

to show the flexibility in designing )(sQ . 
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1W  is a low-pass filter with high DC-gain and 2W  contains large magnitude peak at 

sec10 rad .  According to paragraph 2.2.2, one obtains the corresponding optimum 

parameters )(
1

sQW  and )(
2

sQW  in Eqs (5.15) and (5.16), respectively. 

)1017.2289)(301(
)6)(104(

42

24

1 ×+++
+×+

=
sss
ssQW                    (5.15) 

)1097.18.267)(1206.1)(3.278(
)8.113972.1()6)(1052.3(

422

224

2 ×+++++
+++×+

=
sssss
ssssQW       (5.16) 

Moreover, model reduction method proposed by [15] is also applied to this example and 

the approximated minimum phase plant approxG  is  

6356.1
3913.38

+
=

s
Gapprox                       (5.17) 

and its corresponding parameter is )(1 sJGQ approxreduction ⋅= − , 
100071.44

1000)( 2 ++
=

ss
sJ . 

To stabilize this unstable system, an output feedback controller 
15

75.0)(
+

=
s

sK  is 

given.  Figure 5.7 shows these three corresponding input sensitivity functions.  From 

Fig. 5.7, it reveals that the sensitivity functions which added )(),( 21 sWsW  are almost 

the same in the whole frequency ranges except a notch response located at sec10 rad , 

and the rejection capability of our method is better than the one proposed by [15].  The 

waterbed effect caused by the RHP-zero is obviously and the limitation of crossover 

frequency cω  is sec47 rad .  In time domain simulation, the reference 0=r  and a 

complex input disturbance )5()10sin(2.0 −+⋅×= tutdi  is given and output responses 

are shown in Fig. 5.8(a)-(c). 



 109

10
-2

10
0

10
2

10
4

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20
M

ag
ni

tu
de

 (d
B

)

Frequency  (rad/sec)

47 rad/sec 

Solid Line : W2

Dash-dot Line : Reduction Method [15]

Dash Line : W1 

 

Fig. 5.7  Frequency responses of part 2 – example 1 
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Fig. 5.8 (a) System outputs of simulation results of part 2 – example 1 

(b)System output 
1Wy  of DCFDOB with parameter )(

1
sQW  

(c) System output 
2Wy  of DCFDOB with parameter )(

2
sQW  

In Fig. 5.8(a), a large disturbance influence also remains in the output by using 

reduction method [15] but almost be reduced in the ones by our structure.  In Figs. 5.8 

(b) and (c), the output 
1Wy compensated by DCFDOB with parameter )(

1
sQW  remains 

slight oscillation cased by the specific sinusoid disturbance and 
2Wy  decays toward 

zero when )(
2

sQW  is adopted in DCFDOB.  This is beneficial and flexible in 

designing when a system encounters a specific frequency of sinusoid wave type 

disturbance with unknown magnitude such like cogging force of constant speed motor, 

unbalance force of magnetic levitation rotor system and cutting force of milling system.  
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Example 2: In the second example of part 2, one gives a simple 22×  MIMO, stable 

and non-minimum phase plant as a numerical example and the nominal plant and its 

state-space realization are given as follows. 
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The system poles locate at -3, -2, -4, i3979.25.2 ±−  and it contains a LHP-zero 

locates at -4.0494 and a RHP-zero locates at 5.8070.  The corresponding coprime 

factors are obtained and given in appendix A and then the parameter )(sQ  can be 

obtained according to section 3.2.  Furthermore, assume the input disturbances is 
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frequency disturbances and keeping small DC-gain of iS  and oS , a weighting 
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function matrix 
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diagW  with sec3rad  crossover 

frequency and dB6.35  DC-gain is given.  The frequency responses of sensitivity 

functions from iD  and oD  to system outputs ⎥
⎦

⎤
⎢
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2
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y
y

 of Fig. 3.1 and the regulation 

results are shown in Figures 5.9(a)-(e). 
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Fig. 5.9 Frequency responses from (a) 1
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  Obviously, compared Figs. 5.9(a)-(d) with Figs. 5.6(a)-(d) of example 2 of part 1, the 

sensitivity functions with large peaks caused by RHP-zeros and greater than 0dB are 
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present.  Consequently, the outputs compensated by DCFDOB are better than the ones 

without compensating. 

 

5.3 Numerical example part 3:non-square, minimum phase plants 

Example 1: a 23×  thin plant case 

In this paragraph, a non-square 23×  MIMO, stable, minimum phase plant with 2 

inputs and 3 outputs is given as a numerical example and we discuss input disturbance 

rejection and output disturbance rejection, respectively.  In output disturbance rejection 

issue, we demonstrate three solving methods, in the first design, we use the same 

solution obtained from input disturbance rejection.  In the second design, we focus on 

eliminating some selected channels disturbances.  In the third design, we focus on 

eliminating the diagonal terms of output sensitivity functions.  The nominal plant and 

its state-space realization are given as follows. 
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and the control gain matrix, F , and observer gain matrix, L , are 
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 (5.20) 

The corresponding coprime factors are obtained and given in appendix B.  According 

to Table 3.2, the design objective of input disturbances elimination is 

⎥
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⎤
⎢
⎣

⎡
=⋅⋅ ×××

22

11
23,32,22 0

0~
J

J
NYQ nl , where )2~1( =iJ ii  are low pass filters with desired 

bandwidth and the parameter )(22 sQ ×  is shown in appendix B.  Assume the input 

disturbances are ⎥
⎦

⎤
⎢
⎣

⎡
−
−
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1,

tu
tu

d
d

D
i

i
i , where sec2,1)(1 ≥= ttu  and 

sec7,1)(2 ≥= ttu  and the simulation block is shown in Fig 5.10. 
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Fig. 5.10  Simulation block of numerical example part 3 – example 1 

Figure 5.11(a) show the input disturbances rejection results with/without DCFDOB and 

Figs. 5.11 (b) and (c) display the detailed output response from 1.5 sec to 3.5 sec and 

from 6.5 sec to 8.5 sec, respectively.  Fig. 5.11(d) shows the system outputs without 

DCFDOB.  From these figures, we knew that even in non-square plant, the DCFDOB 

performed very well in eliminating input disturbances. 
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Fig. 5.11 

(a) Simulation results of non-square thin plant with DCFDOB and input disturbance 

(b) Detailed responses from 1.5 sec to 3.5 sec of Fig. 5.1(a) 

(c) Detailed responses from 6.5 sec to 8.5 sec of Fig. 5.1(a) 

(d) Simulation results of non-square thin plant without DCFDOB 

Figures 5.12(a)-(d) show the frequency responses of input sensitivity functions. 
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Fig. 5.12 Frequency responses of input sensitivity functions of part 3 – example 1 

(a) 11,11, : ydS ii →  (b) 12,12, : ydS ii →   

(c) 12,21, : ydS ii →  (d) 22,22, : ydS ii →  

In Figs 5.12(a) and (d), i.e. the diagonal terms, hold low magnitudes (-50dB) in low 

frequency ranges and the magnitude of the couple terms shown in Figs. 5.12 (b) and (c) 

are almost zeros (-300dB). 

After that, we will discuss the influence of output disturbance on non-square thin 

plant.  In the first design of output disturbance elimination on non-square thin plant, 

we use the same solutions that obtained in example 1 of part 3 and shown in Eq. (B.7) 

in appendix B. 

Output disturbances are given as 
⎥
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sec5,1)(2 ≥= ttu  and sec7,1)(3 ≥= ttu .  The simulation results are shown in Figs. 

5.13. 
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Fig. 5.13 Simulation results of output disturbances on non-square thin plant – design 1 

Figure 5.13 illustrates that the capability is not good in rejecting output disturbance in 

non-square thin plant case and performance limitation was discussed in paragraph 3.4.1.  

Moreover, the frequency responses are shown in Figs. 5.14(a)-(i). 
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Fig. 5.14  Frequency responses of output sensitivity functions (design 1) 



 119

of part 3 – example 1 

(a) 11,11, : ydS oo →  (b) 12,12, : ydS oo →  (c) 13,13, : ydS oo →  

(d) 21,21, : ydS oo →  (e) 22,22, : ydS oo →  (f) 23,23, : ydS oo →  

(g) 31,31, : ydS oo →  (h) 32,32, : ydS oo →  (i) 33,33, : ydS oo →  

From Figs. 5.14(a)-(i), although these sensitivity functions are all below 0dB in low 

frequency ranges, the magnitudes of some sensitivity functions in low frequency ranges 

are still too large, e.g., 11,oS  and 21,oS .  Moreover, the coupling terms of input 

sensitivity functions shown in Figs. 5.12(a) and (d) are almost zero (-300dB) but the 

ones of output sensitivity functions are not small enough.  That is, coupling effects will 

worsen the eliminating performance.  According to Table 3.2, in the second design, we 

focus on eliminating the output disturbances of the first and the second channels.  The 

solutions can be obtained by reducing the influence from [ ]Too dd 2,1,  to [ ]Tyy 21 , 

that is, 

⎪
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         (5.21) 

where 2

2

)10(
10
+

=
s

J  and )(22 sQ ×  are obtained as follows. 
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The time domain simulations are given in Fig.5.15, where the output disturbances are 

given as 
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Fig. 5.15 Simulation results of output disturbances on non-square thin plant – design 2 

The simulation plots show that the influences from [ ]Too dd 2,1,  to [ ]Tyy 21  are 

reduced when sec7<t .  However, the third output channel, 3y , is coupled by the 

compensated signals of the first and the second input channels.  All channels are 
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influenced after the disturbance of third channel raised after 7 seconds.  The frequency 

responses of the nine channels are shown in Fig 5.16(a)-(i).  In Figs. 5.16(a), (b), (d) 

and (e), the magnitudes of output sensitivity functions from ⎥
⎦

⎤
⎢
⎣

⎡

2,

1,

o

o

d
d

 to ⎥
⎦

⎤
⎢
⎣

⎡

2

1

y
y

 are all 

below -40dB in low frequency ranges but the others output sensitivity functions are all 

greater than 0dB.  As we mentioned in section 3.4, the sensitivity functions from 3,od  

to [ ]Tyyy 321  and the ones from [ ]Too dd 2,1,  to 3y  are not guaranteed. 
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Fig. 5.16  Frequency responses of output sensitivity functions (design 2) 

of part 3 - example 1 

(a) 11,11, : ydS oo →  (b) 12,12, : ydS oo →  (c) 13,13, : ydS oo →  

(d) 21,21, : ydS oo →  (e) 22,22, : ydS oo →  (f) 23,23, : ydS oo →  
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(g) 31,31, : ydS oo →  (h) 32,32, : ydS oo →  (i) 33,33, : ydS oo →  

In the third design for output disturbance rejection, we focus on reducing the 

diagonal terms of output sensitivity function matrix to eliminate the direct disturbance 

effect on each channel.  The solutions can be obtained by solving the following 

equations. 
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The time domain simulations are given in Fig 5.17, where the output disturbances are 

also given as 
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Fig. 5.17 Simulation results of example 5.3 part 1 – design 3 

From Fig. 5.17, we obtain that the influence from 1,od  to 1y  of is eliminated when 
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52 <≤ t , however the others channels outputs will be coupled.  Also, the same 

phenomenon in the second and the third channels can be obtained when 75 <≤ t  and 

107 ≤≤ t , respectively.  The frequency responses of design 3 are shown in Figs 

5.18(a)-(i). 
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Fig. 5.18 Frequency responses of output sensitivity functions (design 3) 

of part 3 – example 1 

(a) 11,11, : ydS oo →  (b) 12,12, : ydS oo →  (c) 13,13, : ydS oo →  

(d) 21,21, : ydS oo →  (e) 22,22, : ydS oo →  (f) 23,23, : ydS oo →  

(g) 31,31, : ydS oo →  (h) 32,32, : ydS oo →  (i) 33,33, : ydS oo →  
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After these three demonstrations of output disturbance rejection for non-square, thin 

plant case which contains n  input channels and m  output channels ( mn < ), we 

knew that only 2n  output sensitivity functions can be considered and the others 

22 nm −  ones are not guaranteed.  

Moreover, the transfer function matrix from input disturbances id  to estimated 

input disturbances id̂  is 23,32,22
~

××× ⋅⋅ nl NYQ  and its matrix rank is 2, that is, it is full 

rank and there exist exact solutions of 22×Q .  In contrast, one can not obtain the exact 

solutions since the number of unknown parameters of transfer functions matrix from 

output disturbances od  to plant outputs (Point 1 in Fig. 3.1), 32,22,2223, ×××× ⋅⋅⋅ rnn YMQP , 

are less than the one of desired equations. 

Example 2: a 32×  wide plant case 

For wide plant case, a 32×  non-square, stable, minimum phase plant with 3 

inputs and 2 outputs is given as the second numerical example.  The nominal plant and 

its state-space realization are given as follows. 
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(5.24) 

and the control gain matrix, F , and observer gain matrix, L , are given as follows. 
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  (5.25) 

And the corresponding coprime factorization factors can be obtained by Eqs. (1.10) and 

(1.11).  According to Table 3.2, the design objective of output disturbances elimination 

is
2222

11
23,3332, 0

0~

×
××× ⎥

⎦

⎤
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⎣

⎡
=⋅⋅

J
J

YQN ln , where )2~1( =iJii  are low pass filters with 

desired bandwidth.  Obviously, there are 9 unknowns parameters, 3311 ~ QQ , and only 

4 equations, namely, only four parameters are needed .  In this case, we choose 11Q , 

22Q , 31Q  and 32Q  which are solved as follows. 
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where 22211 )10(
100)()(
+

==
s

sJsJ .  The output disturbances are given as 

⎥
⎦

⎤
⎢
⎣

⎡
−
−

=⎥
⎦

⎤
⎢
⎣

⎡
=

)5(
)2(

2

1

2,

1,

tu
tu

d
d

D
o

o
o , where sec2,1)(1 ≥= ttu and sec5,1)(2 ≥= ttu .  The 

simulation result is shown in Fig. 5.19 and frequency responses of output sensitivity 

functions are shown in Fig. 5.20.  
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Fig. 5.19  Simulation results of output disturbances for non-square wide plant 
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Fig. 5.20  Frequency responses of output sensitivity functions of part 3 – example 2 

(a) 11,11, : ydS oo →  (b) 12,12, : ydS oo →   

(c) 12,21, : ydS oo →  (d) 22,22, : ydS oo →  

  

To eliminate the input disturbance, the design objective becomes 
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NYQ nl .  It seems that we can design nine parameters, 

3311 ~ QQ , to satisfy nine equations, however, if we rewrite 32,23,33
~

××× ⋅⋅ nl NYQ  as a 

linear equation, BAX = , where 

(a) (b)

(c) (d)
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and 
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Furthermore, matrix 'A  can be reduced as follows by row reduction. 
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and 2)'( =recudedrank A , i.e. 6)( =Arank .  Also, matrix ]|[ BA  can be reduced by 

row reduction and we obtain that 7])|([ =BArank , that is, the system is inconsistent 

and has no analytic solutions.  Consequently, the performances of input disturbance 

rejection in wide plant system will not be good enough and a similar phenomenon as the 

output disturbance rejection in thin plant system will be obtained.  We ignore the 

numerical simulations for input disturbances rejection in this thesis.     
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5.4 Numerical example part 4: the loop-shaping design method 

In part 4, one demonstrates the steps of ∞H - loop shaping design method of robust 

DCFDOB that developed in sections 4.3 and 4.4.   A simple MIMO nominal plant is 

given as  
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        (5.29) 

The corresponding normalized coprime factorization factors are given in appendix C.  

Figure 5.21(a) shows the singular values of the nominal plant.  A dynamic 

pre-weighting matrix 
22

1
)45.0(5)45.0(5

×
⎥⎦
⎤

⎢⎣
⎡ ++

=
s

s
s

sdiagW  contains an integral pole 

and a zero at -0.45 is in use to improve low frequency performance and increase the 

crossover frequency.  The singular values of the shaped plant 12 WPWP nS =  are shown 

in Fig. 5.21(b).  Moreover, 2W  is an identity matrix.  Figure 5.21(b) displays 

1)( 12 >>WPW nσ  in low frequency ranges and 1)( 12 <WPW nσ  in high frequency ranges, 

i.e. it satisfies the shaping criteria for good performance and robustness.  The 

crossover frequency of )( 12 WPW nσ  and )( 12 WPW nσ  is sec/1 rad  and sec/30 rad , 

respectively. 
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Fig. 5.21 Singular values: (a) the nominal plant (b) the shaped plant 12 WPW n  

A solution ∞K  that satisfies Eq. (4.36) ( 2894.1=Sγ ) is obtained by Eq. (4.21) to Eq. 

(4.25) and the final reduced DCFDOB DOBK  and parameter Q  are derived from Eq. 

(4.37) and Eq. (4.38), respectively.  Figure 5.22(a) and 5.22(b) show the upper / lower 

singular values of nDOBPK  and DOBn KP , respectively and the crossover frequencies of 

)( nDOBPKσ  and )( DOBnKPσ  are about sec/20 rad .  Figure 5.23(a) and 5.23(b) 

show the input and output sensitivity functions with the largest peak of 1.0355 and 

1.0356, respectively.  However, the controller reduction problem is considered to 

overcome a numerical problem: the extremely high order of parameter Q  that derived 

from Eq. (4.38).  In this example, a reduced parameter 22×Q  matrix containing six 

orders elements is obtained using frequency matching and shown in appendix C.  
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Figures 5.24(a) and 5.24(b) plot the frequency responses of the origin parameter matrix 

22×Q  and the reduced parameter matrix, respectively. 
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Fig 5.22 Singular values of (a) nDOB PK  (b) DOBn KP  
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Fig. 5.23 Singular values of (a) input sensitivity function and  
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(b) output sensitivity function 
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Fig. 5.24 Frequency responses of (a) the origin parameter matrix 22×Q  and  

(b) the reduced order parameter matrix 

Figures 5.25(a) and 5.25(b) show the singular values of the original parameter matrix 

and the reduced parameter matrix, respectively.  Moreover, the largest peaks of the 

input and output sensitivity functions with reduced Q  filters are 1.0355 and 1.0356, 
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respectively.  In Fig. 5.25(a), the singular values with original parameter matrix almost 

overlap with the ones of the reduced parameter matrix except a slight deterioration in 

low frequency.  And a similar phenomenon is observed in Fig. 5.25(b), i.e. the 

parameter reduction is acceptable.  Figures 5.26(a)-(d) present the unit step input / 

output disturbances rejection performance with plant uncertainty 0=⎥
⎦

⎤
⎢
⎣

⎡
Δ
Δ

∞M

N , 0.2254, 

0.3944 and 0.4111, respectively.  Input disturbances ⎥
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Fig 5.25 The Singular values of (a) the original parameter matrix (solid line) and  

(b) the reduced parameter matrix (dashed line) 
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Fig. 5.26  Simulation results with various uncertainty norms of part 4  
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Figures 5.27 - 5.34 show the singular values of achieved loops and corresponding upper 

boundaries of Eqs. (4.45)-(4.52).  According to Eqs. (4.45)-(4.52) and corresponding 

Figs (5.27)-(5.34), we know that these upper boundaries only depend on Sγ , 1W , 2W  

and nP , that is the designer can select the weighting functions much more visually and 
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quickly.  Take Fig. 5.27 for example, if a stability margin Sγ , a nominal plant nP , i.e. 

SM  and weighting function 1W  are given, the upper boundaries of )( iSσ  can be 

obtained immediately without solving the controller ∞K  in Eq. (4.36).  
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Fig. 5.27  The ))(( ωσ jSi  and its corresponding upper boundaries plots of Eq. (4.45) 
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Fig. 5.28  The ))(( ωσ jSP in  and  

its corresponding upper boundaries plots of Eq. (4.46) 
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Fig. 5.29  The ))(( ωσ jKS DOBi  and  

its corresponding upper boundaries plots of Eq. (4.47) 
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Fig. 5.30 The ))(( ωσ jKSP DOBin  and  

its corresponding upper boundaries plots of Eq. (4.48) 
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Fig. 5.31  The ))(( ωσ jPSK noDOB  and  

its corresponding upper boundaries plots of Eq. (4.49) 
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Fig. 5.32  The ))(( ωσ jSK oDOB  and  

its corresponding upper boundaries plots of Eq. (4.50) 
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Fig. 5.33  The ))(( ωσ jPS no  and  
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 its corresponding upper boundaries plots of Eq. (4.51) 
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Fig. 5.34  The ))(( ωσ jSo  and its corresponding upper boundaries plots of Eq. (4.52) 
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5.5 Part 5: experimental results of an AC servo motor 

After showing these numerical examples, one demonstrates that this DCFDOB structure 

can be applied to general system cases and deal with input and output disturbances.  

An experiment result of a rotate positioning control for an AC servomotor system and 

cogging force suppressing will be shown in the following. 

In general, the electronic dynamic is so fast that the transfer function of AC servo 

driver can be treated as a constant gain.  For simplicity, the high frequency modes 

coming from both the support mechanical structure of the motor and electronic system 

are ignored.  The transfer function from input voltage to output rotating position can be 

simplified as Eq. (5.30) and the physical parameters of experiment are given in table 

5.1. 
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where tK  is torque constant and aK  is the driver’s constant. Furthermore, the 

corresponding coprime factors are given as below 
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Table 5.1 Physical parameters of AC servomotor of experiment 

Parameter Value Unit 

Inertial, mJ  15.9183 2mKg ⋅  

Viscous, mB  67.5164 radmN sec⋅⋅  

Electronic system gain constant, ta KK ⋅ 40 VoltNt  

Encoder Resolution 8000 revcounter  

 

Since the servomotor system is a minimum phase system, the parameter )(sQ  is 

designed as )()( 11 sYNJsQ rn
−− ⋅⋅=  to suppress input disturbances, i.e. cogging force 

and Coulomb friction force, and a low-pass filter with bandwidth of srad508  and an 

output feedback controller )(sK  are given as 

3

9

)1000(
10)(
+

=
s

sJ                             (5.32) 

)10878.12626(
)91.31(10172.8)( 62

7

×++
+×

=
ss

ssK                       (5.33) 

The position command is given as an S curve and motor position arrives at 4000 counts 

(half revolution) at 5sec.  The tracking responses and tracking errors are plotted in Figs. 

5.35(a)-(b).  From these figures, the tracking error without DFCDOB compensation is 

influenced by not only cogging force but also measurement noise and the error of 

compensated one only influenced by measurement noise and constant tracking error. 
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Tracking errors from 1sec to 4sec (constant rotating speed) and each frequency analysis 

are shown in Fig. 5.36(a)-(d).  The uncompensated tracking error is about 40-60 counts 

and the cogging force makes the tracking error approximate sinusoid wave and the 

compensated one is about 10 counts.  From the frequency analysis plot in Fig. 5.36(c), 

there exists a peak around 1.2Hz.  Comparing the one using DCFDOB at the same 

scale of Y-axis in Fig. 5.36(d), one finds that the influence of compensated one almost 

invisible. 
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Fig. 5.35  (a)Tracking responses of 4000 counts position command 

(b) Tracking errors of 4000 counts position command 

(a)

(b)
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Fig. 5.36  (a) Tracking errors without DCFDOB from 1 sec to 4 sec 

(b) Tracking errors with DCFDOB from 1 sec to 4 sec 

(c) Frequency analysis of Fig. 5.36(a) 

(d) Frequency analysis of Fig. 5.36(b) 

Figures 5.37(a)-(b) and 5.38(a)-(b) show the extra-low rotating speed experiment 

results which rotating at sec01.0 rev  and sec005.0 rev  and the position arrives 400 

( o18 ) and 200 ( o9 ) counts at 5sec, respectively.  The tracking response which without 

disturbance compensator has large tracking error and the friction also influences the 

positioning accuracy seriously.  The root-mean-square values of compensated tracking 

error is about 1.8691 counts ( o0837.0 ) and 1.2709 counts ( o0572.0 ), respectively. 

(a) (b)

(c) (d)
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Fig. 5.37  (a)Tracking responses of 400 counts ( o18 ) position command 

(b)Tracking error of 400 counts ( o18 ) position command with DCFDOB 
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Fig. 5.38  (a)Tracking responses of 200 counts ( o9 ) position command 

(b)Tracking error of 200 counts ( o9 ) position command with DCFDOB 
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CONCLUSION AND FUTURE WORK 

This dissertation provided a new Doubly Coprime Factorization Disturbance 

Observer structure that motivated from Bezout Identity and doubly coprime factorization.  

After introducing the DCFDOB structure, one analyzed the properties of this structure 

and presented how the parameter )(sQ  be designed.  Moreover, this dissertation also 

discussed the waterbed effect, model matching method and system robust stability as 

well as input and output disturbances for generality.  When the plant is non-square, the 

non-square type will restrict the capability of disturbance elimination and we knew that 

to eliminate the input disturbance completely, the output channel numbers must greater / 

equal than input channel numbers and duality.  Finally, four numerical examples are 

presented to demonstrate the design methods.  One also studied Vidyasagar’s structure 

and combined it with our DCFDOB to form a 2DOF system.  The feedback system 

which made by Vidyasagar’s structure provides the tracking property while the 

DCFDOB provides the disturbance attenuation; furthermore, this novel structure attains 

to internal stability.  After that, one looked into the plant uncertainty and system 

robustness.  One of the advantages of the DCFDOB is that the actual plant will be 

forced to the nominal plant while the disturbance is rejected.  After discussing the 

robust properties of the DCFDOB, one discussed how the robust DCFDOB to be 

designed to have robust stability under a given plant uncertainty bound.  Besides, to 
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have the robust performance, the robust DCFDOB is obtained by ∞H - loop shaping 

design method and all closed – loop objectives bounds are guaranteed.  In the final 

chapter, from the numerical examples, one knew that the design of DCFDOB is more 

flexible than the traditional one, and the DCFDOB eliminates both input and output 

disturbances simultaneously in SISO and square MIMO system.  This is one of the 

main contributions of the DCFDOB structure; furthermore, one can also keep down the 

influence of plant uncertainties to push the actual plant to nominal plant and design an 

outer loop controller for more accurate and simple tracking control.  There are still 

remaining many interesting topics that can be researched in the future, such as 

1. The optimum Q parameter for non-square plants.  For a specific non-square 

type, a corresponding index, for example, the cost function of tracking error can 

be found to design the optimum Q parameter.    

2. Disturbance rejection in non-square, non-minimum phase plant cases.  As 

mentioned in chapter 3, the non-square, non-minimum phase plant was formed 

as a 4-block Nehari problem.  It is a complex problem and can be looked into 

in the future. 

3. The advanced research such as system robustness for DCFDOB-VS and the 

design method for )(sH  parameter.  In this dissertation, we only used a 

simple method to obtain the )(sH  parameter in minimum phase plants.  
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However, it cannot be utilized in non-minimum phase and non-square system.  

The way for designing a better )(sH  parameter is an interesting topic. 

4.  Extend the DCFDOB to the system with time delay.  [43] researched the 

predictive disturbance observer based control for a time delay system.  In 

that dissertation, the author decomposed the non-minimum phase into two 

parts, the minimum phase part and the non-minimum phase one, to attain to 

system stability and realization.  This concept is similar to the one of 

coprime factorization and some references, [44]-[46], can be referred for this 

topic.  
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APPENDIX A 

The corresponding coprime factorizations of example 2 of part 2 are given as follows. 
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and the central solution oQ̂  of Nehari problem can be obtained. 
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Then the parameter )(sQ  can be obtained according to Eq. (3.18). 
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APPENDIX B 

The corresponding coprime factorizations of nominal plant of example 1 of part 3 are 

given as follows. 
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and the reduced order parameter is solved as follows. 
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APPENDIX C 

The corresponding normalized coprime factors of nominal plant of part 4 example are 

given as follows. 
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and the solutions of GCARE and GFARE are  

.

0.179480.16650.014967-0.0088287-
0.16650.157540.015823-0.0095599-

0.014967-0.015823-0.321410.16504
0.0088287-0.0095599-0.165040.086946

,

0.166830.0078333-0.228020.006448-
0.0078333-0.161980.011526-0.12465
0.228020.011526-0.312890.0095441-
0.006448-0.124650.0095441-0.096706
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        (C.2) 

The control gain matrix, F , and observer gain matrix, L , are shown as follows. 
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2774.022664.0
253.021324.0

69277.014267.0
35376.0073427.0

27789.021551.037865.016512.0
50343.009888.069009.0075364.0
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          (C.3) 

and the )(sQ  filter is 
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10047.110860.410990.410295.910615.52.1032
10373.210094.710420.410865.910468.810868.11010)(

10037.110808.410929.410244.910605.51.1032
10694.110018.510062.310678.610573.510133.11.2483)(
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10551.110634.410931.210659.610849.510340.15.2486)(
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