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Doubly Coprime Factorization

Disturbance Observer
Student: Yi-Ren Pan Advisor: An-Chen Lee

Department of Mechanical Engineering

National Chiao-Tung University

Abstract

In this thesis, one provides a disturbance observer which is based on “Bezout
Identity” and doubly coprime factorization.. Previous studies about disturbance
observer were extended from the concept that provided by Ohnishi in 1987.
Unfortunately, that structure cannot be applied to the non-minimum phase systems.
The disturbance observer we proposed is quite in general, which can be applied to
stable, unstable, minimum-phase and non-minimum-phase linear systems. Besides,
this thesis also discusses the internal stability and robust stability for different plant
cases, and studies about the influences and limitations caused by non-minimum-phase
zeros. For unstable systems, in this thesis, we combine the proposed disturbance

observer and Vidyasagar’s structure to develop a novel two degrees of freedom



structure containing two independent parameters which can not only stabilize the

system but eliminate the disturbances and improve the tracking performance. When

multi-input-multi-output systems are applied, the rejection capability is restricted by

the relative numbers of input / output channels. Roughly speaking, the capability of

the input and output disturbances rejections is good when the plant is square and is

deteriorated when the plant is non-square.

A robust disturbance observer is developed to treat plant uncertainty. We

applied the small gain theorem to design the disturbance observer that satisfies the

robust stability criteria.  Also, to guarantee the robust stability and robust

performance, we used H_- loop shaping method developed by McFarlane and

Glover to design the observer parameter. _In the final chapter, we provided some

numerical examples and an experimental result of positioning control and cogging

force rejection of an AC servomotor to verify the correctness of the theoretical

developments.
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CHAPTER 1

INTRODUCTION

1.1 Classical Disturbance Observer

When a mechanical plant is controlled, the performance is primarily affected by

friction, disturbance, sensor noises and unknown uncertainties. The control structure

and design methodologies which consider the effect of disturbance is called

“disturbance observer (DOB)”. The DOB shown below was first proposed by Ohnishi

[1] and using the inverse dynamic control methods.

d

Oe——¢

Fig. 1.1 Classical disturbance observer

The symbols are defined as follows.

P(s): the actual plant

P.(s) : the nominal plant



Q(s) : the design parameter and usually designed as a low-pass filter

r(s) : the control input

d(s) : the input disturbance

d (s) : the value of estimated disturbance with a low-pass filter

£(s) : the measurement noise

y(s) : system output

Moreover, the nine transfer function from external inputs [r d &]" to internal states

[e, e, e,]" ofFig.1.1can be shown as

e, ; 1 -PPQ —PQJr
e, |- " 14-Q -P*Q|d]|. (L.1)
e, | POTPUT 00 _q) 1-0 |&

Since the nine transfer functions of Eg. (1.1) should be stable to achieve the internally

stable, therefore, the internally stabilizing conditions can be represented as

1. P(s), P,(s) and Q(s) must be stable and

2. (PQ+P,(1-Q))™" should be stable.

If the real plant P(s) is unstable, the system with disturbance observer can not be

internally stable. The second condition says that the real plant should be of minimum

phase.



In recent years, the DOB has been introduced into motion control systems to
eliminate as much of the “equivalent disturbance” as possible, and to force the actual
system to become a nominal model. The equivalent disturbance consists of external
disturbance signals which include friction and signals associated with model
uncertainties and nonlinearity. If these uncertainties are eliminated by disturbance
observer, the linear feedback controller can be applied to construct an asymptotically
stable system. Lee and Tomizuka [2] and other researchers [3]—[10] demonstrated
the effectiveness of the disturbance observer by performing experiments with various
uncertainties and external disturbances, to improve performance in tracking or
point-to-point control. Umeno et al. [11] studied the disturbance observer using the
concept of two degrees of freedom control [12]—[13] in theoretical respect. Yamada
et al. [14] used this inverse dynamic concept and realized a nominal system which can
control acceleration for fast and precise servo system using high order DOB. In 1996,
Choi et al. [15] proposed a novel DOB sstructure which was derived from the concept of

partial plant inversion to estimate the input disturbance and performed in H_

frameworks but did not deeply discuss the DOB properties of non-minimum phase
system and approximated minimum phase to non-minimum phase system using model
reduction. In 1998, Yamada et al. [16] used the same concept of inverse dynamic and
extended to a MIMO DOB for robust control of robot manipulator. In 2000, Komada
et al. [17] discussed the relationship between robust stability and selection of
coefficients of DOB for redundant manipulator control. Also, White et al. [18] used
the DOB structure shown in Fig. 1.1 to improve track following in Magnetic Disk
Drives. K. Ohishi et al. [19] proposed a new high speed robust tacking control system
based on both “zero phase error tracking” (ZPET) and disturbance observer for an

optical disk recording system in 2000. Yang et al. [20] continued researching the



DOB structure that proposed by [15] and used only position error to construct a DOB
(error-based disturbance observer, EDOB) for robust tracking control of optical disk
drive in 2005. In 2003, Choi et al. [21] proposed a criterion to design a robust DOB

system and suggested its design guidelines especially for second-order systems.

However, the disturbance observer which proposed by [1] cannot be applied to
general plants, in other words, especially the non-minimum phase plants are impossible
to use it because the internal stability cannot be attained. Although [15] proposed a
novel DOB scheme and claimed that the proposed scheme can be applied to
non-minimum phase systems, but that study used model reduction only, and as we know,
there may exist a large reduction error. Although there exist some research works on
DOB for non-minimum phase systems [22]—][26], they seem to have difficulties in
handling general cases. Chen et al. [22] proposed a complex methodology to
approximate inverse systems for non-minimum phase and provided its application to
disturbance observer based on the least-square approximation without considering the
stability of the closed-loop system. The application of [23] is limited to those
disturbances that come from a known external system, and the approach of [24] is
limited to the case where the plant model does not have uncertainty. Yang and Shiu
[25] dealt with non-minimum phase systems simply by inverting only the invertible
(stable minimum phase) part and [26] is limited to the case where the plant is single
input / single output (SISO) strictly proper rational transfer functions. In this thesis, an
internally stabilizing disturbance observer based on doubly coprime factorization and

suitable for general linear systems is provided to make up these deficiencies.



1.2 Coprime Factorization

This section studies the properties of the coprime factorization which is a useful
mathematical tool and will be applied in the later chapters. Coprime factorization can
be characterized as a series connection of a stable system and the inverse of a stable
system with no unstable pole-zero cancellations between factors. As an example

consider the system with transfer function G(s) where

G(s) = (s+1(s-2) (1.2)
(s+3)(s—4)(s+5)
Then a coprime factorization of this system is indicated as follows:
G(s) = Ny(s)M, " (s) (1.3)
where
N, (s) = (s—2)(s+1) ML () = (s—4)(s+5)
(s+3)x(s) a(s)

with «(s) being any polynomial of degree 2 having no zeros in the closed right half
plane.
Notice that this choice of degree for «(s) ensures that M, (s) is invertible

whereas the restriction on the location of the zeros of «(s) ensures that «(s) is not
involved in any unstable pole-zero cancellations between N,(s) and M,*(s). Thus
even if «(s) has zeros at s=-1 and/or —5 the resulting pole-zero cancellations in
N,(s) and M,*(s) are allowed. Stable systems which do not share any system

zeros in the closed right-half plane are said to be “coprime”.



1.2.1 Why coprime [28]

In the foregoing example the numerator N,(s) and denominator M, (s) are
coprime. In order to better appreciate this fact we give a second factorization of G(s)
in which the factors are not coprime.

Suppose we re-express G(s) of Eq. (1.2) as

G(s) =N, ()M, (s) (1.4)

where

N, (s) = (s=6)(s=2)(s+1) M. (s) = (s—6)(s—4)(s+5)
(s +3)5(s) B(s)

with S(s) restricted to be any degree .3 polynomial with no zeros in the closed
right-half plane. Although this factorization has-the desired property that N,(s),
M,(s)eRH_ with M,(s) being invertible, it does not satisfy the requirement that
N,(s) and M,(s) be coprime since they share a right-half plane zero at s=6.
Thus Eg. (1.4) is not a coprime factorization of G(s). We can demonstrate the
importance of not having unstable pole-zero cancellations between factors as follows.
Suppose that we have a strictly proper scalar transfer function G(s) having one of
its n poles, n>2,at s=s, on the positive real axis with the remaining n—1 poles
being in the open left-half plane. These specifications imply that G(s) can be written

as

q(s)s = (s + )]

G(s) =
&)= ) ps)

0<e<m, S, >0 (1.5)



where the degree of q(s) is less than p(s) with q(s,)=0 and p(s) having no
zeros in the closed right half plane, Now the system having this transfer function is
stable only if £=0 so that there is an unstable pole-zero cancellation. However,
closer inspection of the consequences of such a pole-zero cancellation reveals that we
cannot rely, in practice, on unstable pole-zero cancellations to make an unstable system
stable. This becomes immediately evident when we consider the system’s impulse

response, L™[G(s)]=g(t)

g(t) = —gwesot +r(t) (1.6)

P(so)

with r(t) bounded for 0<é& <.

q@dew

Notice that if ¢=0, —¢
P(Sy)

IS missing from g(t). Then the system’s

impulse response is bounded and the.systemis stable. However, if ¢ =0, then

_,960) ey

0(5.) is present in g(t) and the system’s impulse response tends to infinity
0

with time and the system is unstable. Thus the system’s stability is sensitiveto ¢. If

. S .
S, Is in the open-left plane then — gMeSO‘ tends to zero with time and the system

P(so)
is stable for all .
Comparing the two types of pole-zero cancellation, stable and unstable, we
understand that unstable pole-zero cancellation is not a reliable way in designing control

system. We will see that the coprime factorization can not only make a feedback

control system input-output stable but prevent unstable pole-zero cancellations between



the controller and the plant so that the closed loop system is internally stable.

1.2.2 State-space model for general coprime factorization
In this paragraph, a method is presented for obtaining left and right coprime
factorizations of a system transfer matrix from its state-space description.

Consider a system described by the equations

{)‘((t) = Ax(t) + Bu(t)

(1.7)
y(t) = Cx(t) + Du(t)

where Ae R™, BeR™,CeRP™ and D e R P are real constant matrices. R™"

represents the set of mxn real constant matrices. The transfer matrix of this system

G(s)=C(sl —A)'B+D. (1.8)
The objective is to derive a doubly coprime factorization of G(s). One such
factorization is given in theorem 1.1 below.
Theorem 1.1 [36]: Given the system Eq. (1.7), suppose the pair (A,B), (A,C) are
stabilizable and detectable, respectively. Select constant matrices FeR™" and
L e R™P such that all eigenvalues of matricesA+BF and A+ LC have negative
real parts, i.e. Hurwitz, then G(s)=N(s)M *(s)=M *(s)N(s). In addition both
factorization pairs {N(s),M(s)}, and {N(s),M(s)} are called as right and left

coprime factorizations since the denominator is on the right in G(s) = N(s)M (s)



and on the leftin G(s) = M *(s)N(s).
In addition, if N(s),M(s), (N(s),M(s)) is right (left) coprime factor, we also

have theorem 1.2 and Eq. (1.9) below [27].

X, Y. [M =Y, M =Y || X, Y,
-~ = = ~ ~|=1 (1.9
-N M| N X N X |[-N M
where
A+ BF | B|-L
M |-Y, -
= F I 0 (1.10)
N | X, | |0~z -
C+DF |D! 1
A+LC |—(B+LD) L
X, 1Y, =
—t— | = F I 10 (1.12)
_N M —————————————————
C -D Ll

Theorem 1.2 [28]: The factors M(s), N(s)e RH_ (M(s), N(s)eRHw)are right
(left) coprime factors if and only if there exist X,(s), Y,(s)eRH, ( X,(s),

Y,(s) € RH_ ) which satisfy the following Bezout identity:

X,M+Y,N=I (1.12)
MX, + NY, =1 (1.13)
Proof: Please refer to Chapter 8 of Ref. [28] for more details in the proof, L]

1.2.3 Normalized coprime factorization
According to foregoing paragraph, we can obtain the right/left coprime factors of a

given plant and its corresponding factors which satisfy Bezout identity by selecting any
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compatible dimensions F and L matrices such that all eigenvalues of
matrices A+ BF and A+ LC have negative real parts. This also implies that the
coprime factorizations of Eqgs. (1.10) and (1.11) are not unique ones. In the following
paragraph, a unique coprime factorizations obtained in terms of solution to the

generalized control (respectively, filter) algebraic Riccati equation are introduced.

Theorem 1.3 [42]: A right coprime factorization of G(s)=N(s)M *(s) with
N(s),M(s)eRH_ is called normalized right coprime factorization if
- - R " . . i
M™™M +N"N=1; that is, if [N} is.an. inner function. The superscript (e)
denotes the shorthand of ()" (~s) .  Similarly, a left coprime factorization
G(s):M’l(s)N(s) is called a normalized left coprime factorization if [M N] IS a
. . AlB i
co-inner. Let a realization of G(s) be given by G(s):{g*—D} and define
R,=1+D'D>0 and R, =1+DD" >0.
(@) Suppose (A,B) is stabilizable and (C, A) has no unobservable modes on the

imaginary axis, there is a normalized right coprime factorization G =NM ™, where

v | A+BF | BR.?
{N } =| F RY |eRH, (1.14)
C+DF | DRY?
and
F=-R*B'X,+DC), (1.15)

10



and the unique parameter X_ is the solution of the following generalized control
algebraic Riccati equation (GCARE):

(A-BR!D'C) X_ + X_(A-BR!D'C)- X_BR*B"X_ +C'R’C =0 (1.16)

(b) Suppose (C, A) is detectable and (A, B) has no uncontrollable modes on the

imaginary axis, there is a normalized left coprime factorization G = M N

~ -1 [A+LC| L B+LD
[V N]:{E{;M2C R FE;MD}ERHOC (1.17)
where

L=—(BD"+Y,C")R! (1.18)
and the unique parameter Y_ is solved from the generalized filter algebraic Riccati

equation (GFARE) as below:
(A-BR'D'C)Y, +Y,(A-BR!D'C) -Y,C'R]'CY, +BR;'B"=0. (1.19)
[]
Remark 1.4 [36]: A transfer function N(s) is called inner if N(s)eRH_ and
N™ N =1 and co-inner if N(s)eRH_ and NN~ =1. Note that N(s) need not be

square. Inner and co-inner are dual notions (i.e. N(s) is an inner iff N'(s) is a

co-inner).

Theorem 1.5 [36]: Let N(s), M(s) (N(s), M(s)) be a normalized right/left coprime

factorization of G(s), then we have

11



M N = -1 (1.20)]

o0

u

Equation (1.20) is an important property of normalized right/left coprime factorization

and will be frequently used in the later chapters.

1.3 Organization
This thesis is divided into five chapters, and a summary of these will now be given.
Chapter 2: DEVELOPMENT OF DOUBLY COPRIME FACTORIZATION

DISTURBANCE OBSERVER

In this chapter, we introduce how the Bezout identity motivated us to develop
this novel doubly coprime factorization disturbance observer (DCFDOB) and its
properties and stability. ~ For minimum phase plants, the parameter Q(s) is designed
as J -(Ylﬁn)‘l. In non-minimum phase plant case, the Q(s) parameter is solved
from the Nehari problem formed from model matching method. Furthermore, we also
discuss the properties, parameter design method and stability of DCFDOB for unstable
plants. Two control schemes, outer-loop controller and Vidyasagar’s structure (VS)
are provided when a plant is unstable. Furthermore, we co-structure the DCFDOB
with VS to form a new 2 degree of freedom (2DOF) scheme (DCFDOB-VS). This
novel control scheme provides two independent parameters, Q, (s) and H(s), to not

only stabilize the system but reject the disturbance.
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Chapter 3: Extension to General Plant Cases and Input/Output
Disturbance

In classic control point of view, in general, good input disturbance rejection does
not necessarily imply good output disturbance rejection unless feedback controller and
plant are square and diagonal. In this chapter, we apply the proposed DCFDOB to
general plant cases and consider both input and output disturbances and prove that the
DCFDOB can eliminate both disturbances simultaneously. Also, four plant cases,
minimum phase, non-minimum phase, stable and unstable plants are all discussed. In
the previous chapter, we only consider the input sensitivity function, but in this chapter,
the performances of both input and-output sensitivity function are considered. When a
plant is non-square, the rejection capability will'be restricted, and we will discuss the
design properties of non-square plant in this chapter. Moreover, the model matching
method for MIMO systems is represented as well as for SISO systems in chapter 2.
Chapter 4: Plant Uncertainty and System Robustness

In this chapter, we investigate the robust stability of DCFDOB and DCFDOB-VS
under left coprime factorization plant uncertainties, P=(N,+A,)- (M, +A,)".

The small gain theorem is used here to derive robust stability tests and the modeling

A . .
error A{AN} will be assumed to be stable. In order to incorporate performance
M

objectives into the robust DCFDOB design, we propose a four-stage design procedure

13



which uses a loop shaping approach to deal performance / robustness trade-offs, and
uses the normalized coprime factor robust stabilization method to guarantee closed-loop
stability and a certain level of robust stability. The procedure is then as follows:
(1) Reduce the original DCFDOB structure to an output feedback type structure.
(2) Using pre- and / or post- weighting matrix to shape the singular values of the
nominal plant as a desired open-loop shape, and then calculate &g, the maximum
stability margin.
(3) An output feedback type of the DCFDOB which satisfies the robust condition is
synthesized, then the output feedback type .of the DCFDOB and shaping weighting
matrix are combined to form the final output feedback type of the DCFDOB.
(4) The Q(s) parameter of original DCFDOB can be obtained according to the
relations between the original DCFDOB and the reduced one.

We give theoretical justification of this technique, and show that it is a simple and
systematic approach to design.
Chapter 5: Numerical Examples and Experimental Results

This chapter demonstrates those design methods introduced in each chapter. In
part 1, minimum phase plant cases are shown. In the first example of part 2, an
unstable and non-minimum phase SISO plant is used and in the second example of part

2, a stable and non-minimum phase MIMO plant is considered. These results show

14



that the DCFDOB structure is flexible in designing. In part 3, one shows the design

properties of DCFDOB for both thin and wide plant cases. In part 4, one demonstrates

the steps of H_- loop shaping design method of Robust DCFDOB developed in

chapter 4. Finally, an experimental result of a positioning control for an AC brushless

servomotor system and cogging force suppressing will be illustrated. Final chapter

will draw the conclusions.
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CHAPTER 2
DEVELOPMENT OF DOUBLY COPRIME FACTORIZATION
DISTURBANCE OBSERVER
2.1 Doubly coprime disturbance observer and Bezout identity
This section introduces how the Bezout Identity motivated us to develop this novel
DCFDOB. According to Egs. (1.10) and (1.11), one can obtain the right (left) coprime
factorizations of plant P(s), P(s)=NM *(P(s) = M’lﬁ) and its corresponding left
(right) coprime factorization X, (s),Y,(s) e RH_, (X,(s),Y,(s) € RH_) such that satisfy
“Bezout Identity” and doubly coprime factorization shown in Eq. (1.9).
If one construct the block diagram as Fig.2.1, according to Eqg. (1.12), the
following equation can be obtained.
Z=X,-u+Y,-N-M*.u
=(X,;M+Y,N)M*.u

:|.(|\/|’1.u)
=Z

(2.1)

From Eq. (2.1), the internal states Z of the system can be estimated and this basic

structure can be extended to develop a disturbance observer.
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N>

Fig. 2.1 Basic Structure based on Bezout identity
Assume that the plant ( P(s)=NM™ ) contains no uncertainty i.e.

M =M_,,N=N_ andnoise free (£ =0). If the system suffers only input disturbance,

one can plot the block diagram as follows.

d

J [
u > M > N y

A 4

Fig. 2.2 Internal states estimation with input disturbance
and the estimated disturbance can be derived from the block diagram as follow:

Z=X_ (u+d)+Y,NM*(u+d)
= MZ =(X,M +Y,N)-(u+d) (2.2)
—d=MZ-u

One can extend the basic structure as following figures to eliminate the input

disturbance (& =d ) from such a derivation.
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d

. Z
u Point 1
r '( ) » M -1 ». N y

o
v
>

=<

Wy

T

Fig. 2.3 Extended structure with virtual disturbance entry point

Actually, it is impossible (very difficult) to acquire the signals of point 1, that is, the real

disturbance can not be reconstructed precisely, only input signal u(t) can be obtained,

and the structure should be modified as follows.

d

Z
r—_O) u =£—> ML > N y

Fig. 2.4 Extended structure with actual disturbance entry point

And then one can obtain the estimated disturbance from the following derivation shown

in Eq. (2.3).
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=7 =X, -U+Y,NM*(u+d)

= MZ =M(X,M+Y,N)M*.u+MY,NM*.d
=MZ-u=M(l-X MM .d

= MZ-u=(l-MX,)-d

—MZ-u=Y,N-d

= N, " (MZ-u)=d=d

(2.3)

and modify the block diagram as Fig.2.5 to eliminate the input disturbance completely.

h 4
>

N7y

Fig. 2.5 Virtual structure for ideal DOB
After the modification, here arises a general problem that N‘lY,‘l are not
guarantee to be stable or proper transfer functions. So, above structure must be
modified again. In this thesis, one replaces |\~l‘1Y|‘l with a stable and proper
parameter Q(s) such that Q(Mi—u)=(§ ~d to estimate the real disturbance and
suppress the influence of input disturbance. The novel structure is shown in Fig. 2.6

and called the “Doubly coprime factorization disturbance observer (DCFDOB)”.
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L

Q

Fig. 2.6 Block diagram of the DCFDOB
After introducing the DCFDOB scheme, the following sections will investigate and
discuss the properties about this scheme and apply it to general plant cases, such as
stable, unstable, minimum-phase, non-minimum-phase systems, square and non-square

plants.

2.2 Applications to Stable systems

In this paragraph, we look into the properties of DCFDOB and design methods of
parameter Q(s) when the DCFDOB be used in stable system. Suppose that the plant
is stable and without plant uncertainties, ie. NM*=P =PeRH_ and M, ,

N, ,X,, Y., QeRH,.

n
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Oy

Fig. 2.7 The DCFDOB for stable system

The nine transfer functions from external input signals [r d &]" to internal signals

e, e, e,]" isshown below.
e, | -QU —M,X,) -QM.Y, r
€ | = | I -Q(l -M_X,) -QM.Y, d (2.4)
€, an\/lr:l NnMr;l(I_Q(I_Mnxr)) I_NnMr:lQMnYr éj

From the 3x3 transfer function matrix, one can obtain all elements are stable and
then the system will be internally stable. One of the main objects of this study is
designing Q(s)e RH_ suchthat 1 -Q(I -M_X,) =0 to suppress the influence from

input disturbance d to compensated input signals e,. That is, the transfer function

A

from real disturbance d to estimated disturbance d is one. It seems that one can
design Q=(1-M_X,) =Ny, directly to achieve this aim, but at least two basic
criteria must be satisfied.

1). (I1-M_X,)=(Y, I\~ln) must be proper but not strictly proper, that is, (I1-M_ X )™

is realizable.
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2). The zeros of (I =M, X,) must lie in left half plane, i.e. (I-M_X )" =(Y,N, )™
is stable.
For the first criterion, according to [27] one can obtain the doubly coprime

factorization of a system transfer matrix from its state-space description as follows.

A+BF |B|-L
M| Y,
=| F 110 (2.5)
N | X, | |z-—=c==- F-=-
C+DF |D! I
A+LC|-(B+LD)|L
X, |-Y, .
== F | 0 (2.6)
“N| M| |- -
C -D I

where AeR™" BeR™ CeR”" and.DeR”™are real constant matrices. R™"

represents the set of mxn real constant matrices. - F € R™" is a control gain matrix

and LeR™" is an observer gain matrix_such that the real parts of eigenvalues of

A+BF and A+LC arenegative. One obtains

[A+BF | B][A+LC |-(B+LD)
M, X, = -

CF F | |
[A+BF  BF

=| 0 A+LC B+LD) (2.7)
| F F |

[A]B
Cl1

I—Man:I—(I+é(sI—A)‘1E§)={Aé ﬂ,sincef):o,i.e. | -M_ X, isstrictly

proper, (I-M_X.)™ must be improper and unrealizable.

For the second criterion and Eq. (1.9), the Eq. (2.8) is obtained,
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I-M_X, =Y,N.. (2.8)

The transfer function Y, (s)N~n(s) contains non-minimum phase zeros while the plant

contains non-minimum phase zeros (non-minimum phase zeros exist in Nn(s)), that is,
the unstable poles existin (I -M_ X, )™ .

The following paragraphs will show how to design Q(s) e RH_ to reject input

disturbance for minimum phase and non-minimum phase systems in stable systems.

2.2.1 Design method for minimum-phase systems
As one stated above, for a stable plant;.the DCFDOB will be internally stable.
Suppose  that the plant =“is: single-input, single-output and  then
1-Q@- Mnxr)zl—QY,N~n. For a minimum phase plant, Nn(s) does not contain
right half plane-zeros (RHP-zeros), i.e. Nn‘l(s) is stable; In addition, Eq. (2.5)
indicates that Y,(s) of a minimum phase plant can be obtained by the control gain
matrix F and the observer gain matrix L for the plant, that is, Y,™(s) is stable, too.
So that the simplest way in designing Q(s) can be done as follows.
Q(s)=J-(Y,N,)* eRH,, (2.9)
where J(s) is a low-pass filter and the transfer function from d to e, will become
1-J(s). Clearly, the capacity of disturbance rejection increases with the bandwidth of

J(s) ; Furthermore, the transfer function from measurement noise & to system output

23



y is —J(s). Although one can enlarge the bandwidth of J(s) to increase the
rejecting capacity, the measurement noise will affects system performance more
seriously and the tradeoff must be considered. Besides, substituting the particular

solution Q(s)=J-(Y, ﬁn)‘l into Eq. (2.4) yields Eq. (2.10).

el [1 -3  -PUTr
e, =1 @-3) -PU|d (2.10)
en I:)n Pn(l_‘]) (1_‘J) é:

Recalling Eq. (1.1) and a low-pass filter J(s) is substituted for Q(s), one also
can obtain the same result as Eq. (2.10) when assumption P(s)=P,(s) ismade. That
is, the DCFDOB can be reduced to the one which proposed by [1], hence the designing
guideline of low pass filter and stability analysis that provided by previous literatures
can be used. With these points in mind;.one may look into MIMO plant for generality.

Suppose a MIMO, stable, and minimum phase plant, P

o With nxm (n>m)
dimension i.e. the input channel number is greater than the output channel number, and

(I =M e X ) is also minimum phase, the elements of Q(s) can be solved

r,mxm

from

mem = ‘]mxm : (I mxm M n,mxmxr,mxm)_1 = ‘]mxm ' (Yl,mxn : N‘nxm)_l (211)
and J_., is a diagonal matrix which is composed of low-pass filters,

o =di1a0{J; -+ Juntmam- EQuation (2.11) implies that the DCFDOB can be

applied to not only square plant but also non-square thin plant and this advantaged
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property cannot be done in the scheme of [1] because the non-square plant cannot be

inversed.

2.2.2 Design method for non-minimum-phase systems

For non-minimum-phase systems, one can NOT design Q(s) as J-(Y, N~n)‘l,
since (Ylﬂn) term contains RHP-zeros, i.e. (Y,I\~ln)‘l is unstable. For internally
stability purpose, this thesis applies model matching method to design parameter

Q(s) eRH._ .

2.2.2.1 Model matching method in non-minimum-plants

The main object of the DCFDOB:is to suppress the influence from d to e, as

small as possible and can be described as

min|l -Q(I -M,X,)|, <»<1 (2.12)

QeRH_,
According to Eq. (1.9), one can rewrite Eq. (2.12) in following equations.
min |l —-Q(I - M, X,)|.

QeRH,,

= min|M, X, +QY,N_

QeRH,,

(2.13)

o0

= min|T, + T,QT,

QeRH,,

o

where T, =M X, eRH_,T,=1,T, :Yll\~ln €RH,_,Q=(1-Q)eRH,_. The main
design object of model matching problem is to find the whole sets of Q(s)e RH, that

satisfy

<y<l. Thatis, |I-Q(I-M X )| <y<1.

0

T, +T,QT;
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Model matching problem:
Finding the whole satisfied sets of Q(s) such that the distance between model

T2(§T3 and reference model T, shorter than a constant » can be described as:

T, +T,QT;

<y, a=2,0,u, (2.14)
and Fig. 2.8 illustrates the meaning of model matching problem. The distance between
two models can be measured by H,-norm, H_-normor g-norm. Equation (2.14)

is called “Nevanlinna-Pick Problem” and its main objective is described as Eq. (2.15)

[29]:
¢, ={®=T,+T,QT,|QeRH_, [?], <7} (2.15)
> T,
—>
> T3 > é > T2

Fig. 2.8 Model matching problem

T, +T,0T, and

o0

Since T, of Eq. (2.13) is a unit matrix then

T, +QT,

0

’Tl + QATsuw =T, + éTsoTsi Hw
- (2.16)
T, Ty +QTy,

0

where T, isan inner function, and T,, is an outer function that satisfy the following

properties:
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T eRH,
Here T, isan inner function, from lemma 2.1 we know that a function multiplied by
an inner function will not influence the H_ - norm of a function.

Lemma 2.1 [29]: If U is an inner function, then |AU| =|UA| =|A]. . ]

According to lemma 2.1 and then Eq. (2.16) can be rewritten as follows.

m+QQL=1+QBJJW

=TTy + éTso (2.18)

=R—6H (ReRL,, QeRH.)
where R=TT, eRL_, Q= —éTgo, Q0=-Q -T..eRH_ and RL, denotes the space
of all real rational transfer function matrices which have no poles on the imaginary axis.

Through these operations, the model.matching problem becomes a well-known

Nehari Problem [30].

2.2.2.2 Nehari problem
Nehari problem:
For a function R(s) € RL_, finding a set 6(3) e RH_ such that the distance
between R(s) and 6(3)(Hw- norm) smaller than a constant y is expressed as
HR—5L<y (2.19)

According to [31], the minimum value of » is equal to the Hankel operator norm., i.e.

27



the shortest distance from R(s) tothe RH_ set.

m|n HR QOpt

ERH

=|Hq| (2.20)
Recall [29]: (1) RL? denotes an nx1 vector with strictly proper rational functions
contains no poles on the imaginary axis, that is, it belongs to Hilbert space and the inner
product for the Hilbert space is defined as
1 = _ . .
<u.v>=—j U (jo)-v(jo)de (2.21)
21 I
where U™ (jo)=u" (-jo)
(2) RH?:The subspace of RL? and analytic in RHP
(3) RH?Z": The orthogonal complement space of RH?
RHZ ={0e RLZ |< Uy >=0 Vv e RH?| (2.22)

Definition 2.2 [29]: If ReRL”

mxn !

we define the relation between RH’ and RH 2"

as Hankel operator H ,

H.:RH? > RH?2", [1(2.23)
and its norm is Hankel norm of R.
[Hel =R, (224)
[29] showed that
Smin- [R=Quu| =[Hel= (L L) (2.25)

where L., L, denotes controllability matrix and observability matrix respectively and

satisfy the Lyapunov equation.
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AR, Lc + Lc A;, = BR, B;,
AL, + LA, =Cg Cq

(2.26)
where A; ,B; , and C; denote the state space minimum realization of R_(s), the
unstable parts of R(s) , and R(s)=R,.(s)+R (s) . If one define
p(L,L.)=max|Z (L,L,.)|, i.e. the spectral radius of (L,L.), then the Hankel operator
norm is

[Hel=[R], = p(LL)" (2.27)

As one mentioned earlier, the minimum value of HR—Q

is equal to the Hankel

0

opt

operator norm. According to [29], one can find the optimum solution of (Sopt (s) as
follows.
3a(s) = R(8) =0 M) (2.28)
v(s)
where
LB
w(s) =[AR 7 = } (2.29)
Ce 0
- A-R[ Bv
v(s) = - , 2.30
(s) [ 1o (2:30)
and
L,L B, =o?B, (2.31)

The notations o and B, of Eq. (2.31) denotes the maximum eigenvalue of L L,

and its corresponding eigenvector, respectively. The above steps to find the optimum

solution are only suitable for SISO plant. For MIMO plant, one shows the solving
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steps in Chapter 3.

2.2.2.3 Weighting function design

From previous statements, the optimum Qopt(s) can be obtained via solving
Nehari problem such that er]RiFrL”I -Q(I-M,X,)|, =|IR||,, - But for rejecting the
specific frequency range disturbance purpose, particularly in the low-frequency in most

cases, adding a weighting function W(s) is needed. Then the main objective
becomes
min jw —Q(I-M X W[ <y<1 (2.32)

If one define input sensitivity function.as S, = (1--=Q(l —M_X,)) then Eqg. (2.32) can

be rewritten as

W —Q(I =M X W[ =[S, -W|, <r<1
o5, (jo) < W *(jo) (2.33)

Equation (2.33) indicates that the frequency response of input sensitivity function will
less than the inversion of a specific weighting function one, i.e. the design specification
can be given clearly via giving a specific weighting function. However, the sensitivity

function must satisfy the integral function as follows.
_[In|Si(ja))| dm=j|n|| ~Q(jo)(I =M X, (jo))| do~0 (for [S|~1 at w>2z)
0 0
(2.34)
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From Eq. (2.34), it is easy to understand that a tradeoff between S,(jw) less than 1
and S;(jw) larger than 1, is done over a limited frequency range. Thus, a large peak
S;(jo)| is unavoidable if one tries to reduce |S;(jw)| at low frequencies and the lower
level of sensitivity function one pushes down in low frequency region the large peak
greater than 1 of sensitivity one obtain somewhere. This phenomenon is called
“waterbed effect” and unavoidable, particularly when plant contains RHP-zeros. This
benefit and harmful influence must be tradeoff; furthermore, the crossover frequency of
sensitivity function is also limited by RHP-zeros. For example, when plant contains a
dominant real RHP-zero z the approximate crossover frequency o, of sensitivity
function encounters the limitation = oy <§. In-other words, the disturbance rejecting
frequency region is smaller than % and_the location of system zeros will affect the
capacity of disturbance rejection significantly. About this topic, please refer [32] for
more detail derivation. Basing on above previous discussion, it is known that
RHP-zeros will not only limit the disturbance rejecting performance but also rejecting
bandwidth. Moreover, the crossover frequency of weighting function W(s) must be
constrained to satisfy the bandwidth limitation and Eq. (2.33). To specify the capacity
of disturbance rejection, here, one provides a design method which can specify not only
the DC-gain but also the crossover frequency @, for weighting function. The

weighting function is exhibited as below.
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MW
Css+a

W (s) = (2.35)

And one gives a >0 arbitrarily, and the DC-gain of the weighting function is %.
Since the weighting function must cross 0dB at specific frequency, o, and the satisfies

o z . :
the limitation @, < > one can write a equation as Eq. (2.36).

My (2.36)
Cl(Ja)c) + a)n

z
o <E

For giving a specific DC-gain MTI"V and crossover frequency, a, <§, then the
parameter C, can be solved. Suppose a non-minimum phase nominal plant
02s-20 .. . . o
P (s):—20 with single real zero at 100rad/sec, one designs a weighting
S+
function with different DC-gains as 20dB, 60dB and 100dB, and gives @, =40rad/sec,
a=10 and M,, =10°,10%,10°, then the corresponding parameters can be solved as
1985 I :
Clzﬁ,ZSO, 25000 . The frequency responses of weighting functions and
corresponding input sensitivity functions are plotted in Fig. 2.9(a)-(b). Clearly, the
frequency responses of input sensitivity function below the one of inversion weighting
function indeed. Moreover, the crossover frequency of input sensitivity function and

its limitation is 41.7rad/sec and 50rad/sec respectively. The maximum peak value

of input sensitivity function is 1.7873, 1.8293, and 1.8297 respectively.
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Fig. 2.9 (a)Different weighting functions and

(b) corresponding input sensitivity functions

2.3 The Application to Unstable Systems
One applies DCFDOB structure to unstable plant in the following section. If a
plant is unstable, from the transfer functions matrix in Eq. (2.4), the transfer function

from reference command r to system output y is N M, i.e. the DCFDOB could

not change the tracking property and the system is unstable without controller. To

solve this problem, one can add an outer-loop controller K(s) to stabilize the system.

The block diagram and nine transfer functions from [r d &]" to [e, e, e,]

are shown in Fig. 2.10 and Eq. (2.37).
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Fig. 2.10 The DCFDOB with outer-loop controller

er A_l _A_l[(K +QM nYr)NnNI n_l] _A_l(K +QMnYr) r
e, |=| Al A1 Qe = M- X )] ~AMK +QM.Y,) d
e, | [NMIAT NMIATI=QU =M X)] 1-NM*AYK+QM,Y,)|¢&

(2.37)
where A=(1+KN M ). From Eq. (2.37), because the unstable poles exist in
M *(s), one designs a controller K(s) e RH_ to stabilize the system such that

(1+KN,M ) eRH, (2.38)

and

(2.39)

(I+KN.M )N M eRH,
N.M (1 +KN,M )" eRH,

Furthermore, the coprime factors, M (s) , N.(s) , X,(s), Y,(s) eRH, and

Q(s) e RH_, one can derive that each element of the transfer function matrix is stable
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and the DCFDOB structure with an outer-loop controller is internally stable. That is,

the outer loop controller can not only stabilizes the system but also changes the system

dynamics from input command to system output. These stable criteria (2.38) and (2.39)

can be modified as a simple classic control negative feedback loop shown below.

Fig. 2.11 Classic control feedback loop
Various kinds of control theorems such-as Proportional-Integral-Derivative (PID),
pole placement and H_ controllers can achieve stable conditions. In this thesis, the
Youla-Kucera parameterization, all stabilizing compensators, is introduced.
Theorem 2.1[36]: Let P, =N M. ' = M;lﬁn be the right coprime factorization (rcf)

and left coprime factorization (Icf) of nominal plant P, over RH_, respectively.

oo !

Then the set of all proper controller achieving internal stability is parameterized either

by

K, =(X, +Q N, )Y, —Q,M,), det(l +Q,N X )(0)=0  (2.40)
or by

K, =Y, =M, Qu )(X, + N, Q)" det(l + X;*N Q. )(0) 0 (2.41)
for Q, €RH_, where X,, Y,, X,, Y, eRH_ satisfy the Bezout identities. [ ]

35



Fig. 2.12 Control scheme for the Youla-Kucera parameterization

Substituting K, (s)of Eq.(2.42), for K in EQ.(2.37) , one can build the following

block diagram and yields Eq. (2.42).

z
~— e ‘% € . N -
r S (X, +QwN,) » M, n > Yy

A 4

7\

A 4

>
<
s

Wr _QYKMH) <

Fig. 2.13 The DCFDOB with Youla-Kucera parameterization controller

e ] M, (I-QY,N)M, (X, +Q,N,)—I

& |=|M, M, (X, +QuN,)(I1-QY,N,)

e | [N, N (X, +QN)(I-QYN,)
~ M, (Y, =QuM,) =M, (X, +QyN)QM,Y, [
~ M, (Y, =QuM,) =M, (X, +Q,N,)QM,Y, | d
=N, (Y, ~QuM,) = N, (X, + QN )QM,Y, | &

(2.42)

Again, one can derive each element of the transfer function matrix of Eq. (2.42) is stable,
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i.e. the system is internally stable. Moreover, if Q,, (s)=0, i.e. the central controller,

XY, Eq. (2.42) can be rewritten as below:

el M, (I-QY,N)OM X, -1 —(I+MXQM.Y. [r
& [=|M,  MX(I-QYN,) —(I+MXQMyY, |d| (243)
el [N, NX(I-QYN,)  I=NY,(1+QM,Y,) | ¢

After discussing the properties and design methods, one showed that the DCFDOB

can be applied to stable, minimum-phase and non-minimum phase systems and

eliminates the input disturbance. If the plant is unstable, an output feedback controller

can not only stabilize the system but change the tracking properties. Moreover, the

Youla-Kucera parameterization is used for.obtaining all stabilizing controller and the

stability of the overall system is- guaranteed. - In the following section, one will

combine DCFDOB structure with “Midyasagar’s structure, the observer-controller

compensator, and discuss the internally stable condition.
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2.4 Combination of the DCFDOB and Vidyasagar’s structure

As mentioned in section 2.3, an outer-loop controller K(s) was applied to
stabilize the system and various kinds of control theorems can be applied to design the
controller K(s). In this section, one will study Vidyasagar’s structure and combine it
with our DCFDOB. [33] showed that Vidyasagar’s structure has the subset stabilizing
solutions of the Youla-Kucera parameterization, but Vidyasagar’s structure has fewer
dimensions than Vidyasagar’s structure in the form of the Youla-Kucera
parameterization. Hence, the feedback system made by Vidyasagar’s structure, which
simplifies the controller structure, is more.flexible than the one by the central controller

of Youla-Kucera parameterization.

2.4.1 Vidyasagar’s structure

[34] and [35] proposed Vidyasagar’s structure, the observer-controller compensator
of Fig. 2.14(a), where the nominal plant P, has a right coprime factorization, i.e.
P =N M *, the observer composed of X, and Y, observes the “internal state” z
to be Z, and the controller K, feeds Z back. Moreover, r is the command
reference, d, is the input disturbance and ¢& is the measurement noise; e, e, and

e, arethe internal signals, and y is the system output.
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[S] €
r ! (I+K,X)* 4>£—"> P, y

~

<

A
i

(b)
Fig. 2.14 Vidyasagar’s structure: (a) observer-controller compensator and
(b) equivalent compensator

The system of Fig. 2.14(a) is internally stable [34, 35] if and only if

M,(s)+K,(s)=H(s)e URH,)

(2.44)
< K, (s)=H(s)-M,(s)

The system of Fig. 2.14(a) also can be transformed to the system of Fig. 2.14(b) in
terms of input-output equivalence. The notation U(RH_) denotes a unit over RH_ .

When a square matrix and its inverse are stable, the matrix belongsto U(RH_). [33]

pointed out that Vidyasagar’s structure equals the Youla-Kucera parameterization by
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replacing Q, with H™Y, where H'Y, cQ, . Replacing K, of Fig. 2.14(a)

with H — M, the nine transfer functions from [r d, ¢]" to [e, e, e, is

e ] [MHY M (X, +HYN)=1 —M(Y.-H¥M,)[r
e, |=|MH* M (X, +HY,N) —M(Y,-H?M,) [d | (2.45)
] [NJH™  NJX +HYN)  T=N (Y, —HYM,) | &

Replacing Vidyasagar’s structure in Fig. 2.14(b) with the Youla-Kucera
parameterization (2.40) and the nine transfer functions from [r d, §]T to

le, e, e, ofFig2.12(b)is obtained as follows.

er I\/ln Mn(xr+QYKNn)_I _Mn(Yr_QYKMn) r
& |=|Ma M(X +QuN,) =M, (Y, —QuM,) [d |  (246)
en Nn Nn(xr +QYKNn) I - Nn(Yr _QYKMn) é

Evenif Q. of (2.46) is replaced with H 7Y, Eq. (2.46) is still not equivalent to (2.45)

with respect to r. This shows that' H(s) has the unique tracking property and the

feedback one [33].

2.4.2 The DCFDOB co-structure with Vidyasagar’s structure

According to the previous citation, one knows that the proposed DCFDOB and

Vidyasagar’s structure, the observer-controller compensator, are all extended from the

basic structure shown in Fig. 2.15(a). We know the DCFDOB shown in Fig. 2.15 (b)

provides good disturbance attenuation but lacks the tracking and stabilizing properties

without the outer-loop controller. Moreover, Vidyasagar’s structure shown in Fig

40



2.15(c) can be equivalent to the well-knows Youla-Kucera parameterization, the set of
all proper controllers, and provides the tracking property when K,=H -M_ is
applied. However, Vidyasagar’s structure shown in Fig. 2.14(a) provides only one
parameter H to trade-off tracking performance or feedback performance. In this
paragraph, these two structures will be merged into a new two degree of freedom
(2DOF) structure (DCFDOB-VS) that provides design parameters H(s)e U(RH,)

and Q(s)eRH_ for the tracking performance and disturbance attenuation, respectively,

and achieve the internal stability.

d;

z
u - M';l N N“ > Y

,,,,,,,,,,,,,,,,,,,,,,,

e =R
Mn

Q (c)
(b)

Fig. 2.15 (a) Internal states estimation with input disturbance

(b) The DCFDOB structure
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(c) Vidyasagar’s structure: observer-controller compensator

Fig. 2.16 The DCFDOB co-structure with Vidyasagar’s structure

Furthermore, Fig. 2.16 can be transformed into Fig. 2.17 by replacing K, with

H-M

n?

r—0

1

<
A

Fig. 2.17 The DCFDOB-VS

and the transfer functions matrix from [r d, &]" to [e, e, e,] of Fig.2.17 s

42



e, ] [MH™ M X, +H(1-QY,N,]-1 —M,[Y,-H(1-Q)Y,M,]

e |=|M,H" M X, +H(1-QY,N,] -M,[Y,-H™(1-QY,M,]|d,

e, | [NH®  NJIX, +HP(1-QY,N,T 1-NJY,-H(1-QY,M,]| &
(2.47)

If H(I-Q)Y, of the 2" and the 3" columns in Eq. (2.47) is replaced by Q,, i.e.

Q(s) =1 —HQ,Y,™, one can obtain Eq. (2.48) as follows.

e,] [M,H* M (X, +Q,N)=1 —M_(Y,-Q,M) [r
e |=|MH M (X, +QN,) =M, (Y, -QM,) |d | (248)
e, | [NJH®  N.(X, +QN,) =N, (Y,-QM,)| &

Obviously, according to Eqg. (2.48), one knows that DCFDOB-VS is internally stable
with these two independent Q, e RH_ and, H e U(RH,).

Theorem 2.2: If Q, e RH, and-HweU(RH,), and let P, =N M '=M N  be
the right coprime factorization (rcf) and left coprime factorization (Icf) of nominal plant
P, over RH_, respectively. DCFDOB-VS is internally stable.

Proof: For any H(s)e U(RH_), i.e. H'(s)eRH_ and Q,(s)eRH_. The nine
elements of Eq. (2.38) are all stable. The proofs of stable properties follow from

simple manipulations of rational transfer functions.

[

Theorem 2.3: Q,(s) in Eqg. (2.48) must be strictly proper such that a realizable
parameter Q(s) in DCFDOB-VS can be guaranteed.

Proof: Suppose H(s) e U(RH_) with state-space representation:

43



A, | B,
H(s) = (2.49)
C, | D,
where D, =0 and D;' exists, one also has
Hfl(S)= Ay — By D:CH |_BH Dljll
DSCy, | D
- . (2.50)
_[A BHI}
C: | Dy
Moreover, suppose
Ay | Bg
[1 -Q(s)] { (2.51)
Co | Do
and
A+BF{ -L
Y, (s)= , 2.52
(5) { * 0} (2:52)
one can obtained the state-space realization of - Q, (S) in Eq. (2.53), where
QY = Hil(' —Q)Y| :
Ay | B
Q6= =15
! _CQv DQ‘(
(A BWHAQ | BQHA+ BF —L} (253)
Cs | Dy | [Co | Do F 0
A, B,.Cy B,.DyF | 0O
0 A, BoF 0
|0 0 A+BF |-L
C,: D,:Cq D,.DF | 0
Qy (s) must be a strictly proper rational function, since D, is azero matrix. In dual,

if Q,(s) is not strictly proper, i.e. D, #0, D, does not exist and Q(s) must be

improper and unrealizable.
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In the future, we will continue on studying this novel structure and obtain more inherent

properties. The follows shows a simple design methods of H(s) on tracking control

and Q, (s) parameter for disturbance attenuation, respectively.

2.4.2.1 H(s) on tracking control using the inverse dynamic
In Fig. 2.17, the transfer function from r to y is

y(s) =N (s)H *(s)r. (2.54)
Equation (2.54) represents that the tracking response can be improved by H(s). For
minimum-phase square plants, an inverse .idea can be used to select the H(s)
parameter as follows. If N, (s) «is a nxn matrix, H(s) is selected to be
a(s)N,(s) , where «(s)=diag{e;,--a,} ~in which ¢«;(s) for i=1~n are
polynomials:

a,(s) = ai,nsn + ai,n—lsn_l

+o S+l (2.55)
and the roots are all in the left-half plane such that a(s)N,(s) € U(RH_). In the case,
y ~a(s)r, obviously, the system response is determined by the pole locations of

a™*(s). The degree of polynomial «(s) depends on the relative degree of N, (s).

For example, if N_(s) isgiven by

s?+7s+2 S+2
_|s*+4s?+55+1 s*+4s?+55+1
N, () s+3 2541 | (2.56)

s® +4s? +55+1 s®+4s?+55+1
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a(s) can be selected as

a(s) = a,;;S+1 0 (2.57)
0 a,,5" +a,,s" +1 '
and
S24+7s+2 S+2
allS +1 0 3 2 3 2
SN (s)=| |87 +4s” +5s+1 s°+4s” +5s+1
(SN, () [ 0  a,,8"+a,,5+1 s+3 2s +1
s*+4s? +55+1 s®+4s®+55+1
a,,8° + (L+7a,,)s” + (7T +2a,,)s +2 a,,5° +(L+2a,,)s+2
_ s® +4s%? +55+1 s® +4s% +55+1
a,,5° +(Ba,, +@,,)s" +(L+@,,)5+3  2a,,5° +(@,, +2a,,)s° + 2+ a,;)s+1
s +4s% +55+1 s® +4s% +55+1
(2.58)

so that a(s)N,(s) = H(s) € U(RH ) and.the tracking performance for each channel
output can be determined by the-roots of «;(s); respectively. For non-minimum

phase systems, the unstable zeros are retained in H(s).

2.4.2.2 Q,(s) on disturbance elimination design
a. Minimum phase and square plant
In Fig. 2.17, the transfer function from d, to e, is
e,(s)=M, (X, +Q,N,)-d, (2.59)
Suppose P,(s) isa nxn matrix, i.e. the corresponding coprime factors are all nxn

matrices. To reject the input disturbance d,, the simplest way in designing Q, (s)

can be done as follows.
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Qy(s)=-X,IN,* (2.60)
Qy(s)=-IX,N,* (2.61)
where J_.(s) is a diagonal matrix which is composed of low-pass filters,
Jon(S)=diag{j,; - Jontun- 1F Q,(s)is defined as Eqg. (2.60) or Eq. (2.61), then Eq.

(2.59) can be rewritten as Eqgs. (2.62) or (2.63) as follows.

ed(s):Mn(Xr _Xr‘J)'di

M, X, (1 - )4, (262

€4 (S):Mn(xr _‘]Xr)'di

ML - )X, ]-d, (269

The transfer function from d, to e, M. [X, (I -3)](jo) (M, [(1 -I)X, 1(jw)) is
near zero when J(jw) =1 and parameter Q(s) -of DCFDOB can be obtained as,

Q(s) =1+ HXIN v, * (2.64)
or

Q(s) = I + HIX N v, (2.65)
and the parameter H(s) e U(RH_) is given in foregoing tracking control design.
Note that the relative degree of each element of the low-pass filter J(s) depends on
the relative degree of X, (s), Nn(s), and Y,(s) so that JXrI\~lnYl‘l is proper or

strictly proper, i.e. Q(s) is realizable.

b. Non-minimum phase and square plants
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For rejecting the input disturbance d, in non-minimum phase plant, the objective

function can be described as follows.

min
QyeRH,,

X, +QN,

(2.66)

0

Also, the model matching methods represented in paragraph 2.2.2.1 for SISO system or

in section 3.2 for MIMO system can be applied to solve the parameter Q,(S)

according to following steps.

Step 1: Compute inner-outer factorizations of T,, T, and T, =T,T,,, T, =T,T; ,
respectively, where T, =1, T, = N~n and T, = X,.

Step 2: Form the Nehari problem HR—@H@ <y, where R=T,TT, €RL, and

Q=T,0Q,T; €RH,_.

Step 3: Compute the optimum solution CS (s) of é(s) in SISO system or take the

opt
central solution QO (s) in MIMO system.

Step 4: Obtain the parameter Q, :Tz‘oléomT?;)l eRH,_ in SISO system or
Q, =T,2Q, T, €RH,_ in MIMO system.

Step 5: Obtain the parameter of DCFDOB, Q =1+ HQ,Y,™.

Note that HQ,Y,™ must be a proper rational function so that Q(s) is realizable. If

HQ,Y,™ is improper, the simplest way is pre- / post-multiplying a low-pass filter

matrix £(s) with wide bandwidth so that AHQ,Y,™ (HQ,Y,*f) is proper and

HQ, Y, (j@) = AHQ,Y, " (j@) ( HQ,Y,"(j@) = HQ,Y,"A(jw) ) in low frequency
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range.

c. A numerical example of DCFDOB-VS:

In the following section, we show a numerical example to demonstrate the design

steps of DCFDOB-VS. Suppose a MIMO unstable plant is given as follows:

10 2
P=[%5° S%1° (2.67)
s+7 s-8

and its corresponding normalized coprime factors can be obtained via Egs. (1.14) and
(1.17). The Smith-McMillan poles locate:at.-7, -6, 5 and 8 and zeros locate at -24.225
and -1.775.  Since this plant is of ‘minimum phase; we can apply the inverse dynamic
method to obtain the parameter H(s) .U asfollows in order to change the tracking

property from r(t) to y(t).

H(s)=a-N,
0.1s* +12.17s% +232.35® +1610s + 3494  0.02s* + 2.184s> +18.04s% — 35.83s — 362.4
_|  s*+33.75s° +413.7s% + 2200s + 4123 s* +33.75s% + 413.75° + 2200s + 4123
0.05s* +5.475s° + 46.63s% —99.235 —1137  0.03s* +3.732s°% + 79.89s° + 675.7s + 1133
s* +33.75s5°% + 413.7s% + 2200s + 4123 s* +33.75s5° + 413.7s% + 2200s + 4123
(2.68)
where
0.01s +1 0
a= (2.69)
0 0.01s +1
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10s® + 216.5s° +1575s + 3494 253 +18.365% —32.25 —362.4
N = s* +33.765° +413.7s% + 2200s + 4123  s* +33.76s> + 413.7s% + 2200s + 4123

" 5s® +47.51s% —87.855 —1137 3s® +73.24s2 +664.35 +1133
s* +33.76s° +413.7s% + 2200s + 4123  s* +33.76s° + 413.75% + 2200s + 4123

(2.70)

According to Eq. (2.64), the Q(s) parameter which contains four elements with eight

orders transfer function is obtained and the reduced one is given as follows.

4.623(s* +131.2s + 4396) 0.147(s +100)(s + 63.14)(s —15.09)
Q(s) = (s® +141s +1x10%) (s+5.974)(s® +141s +1x10*)
0.434(s +100)(s + 54.17)(s —12.63)  2.068(s + 7.615)(s + 5.324)(s? +133.5s + 6203)
(s+6.939)(s? +141s +1x10%) (s+6.939)(s +5.974)(s* +141s +1x10%)
(2.71)

The time domain simulation result is given:.in. Fig. 2.18, where the reference command

r 1,t>1sec Y : . d; 3, t>3sec
is r=|'|= and the-input disturbance is d, =| "' |= .
r, 2,t>2sec d, 6, t>6sec

25 T T T T T T T T T
I I I I I L I I I
I I | I I £ I I I
| | 3 | | i | | |
ol o L . ‘ Do ek !
l : ;N l l l N l
| | | | | | y2 |
B bl ]
I ’\ I I I I I I
I I I I I I I
I I I A I I I
- L ; I \\7-\ I I
I I I I I \ I I
% R S S NN SN NS L S B
. [ I | [ I I |
I I I I I I I
I I I I I I I
I I I I I I I
O e — = = = — - [ty === T [ [ T
I I I I I I I I I
I I I I I I I I I
I I I I I I I I I
05 | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10

Fig. 2.18 Simulation result of an unstable system with DCFDOB-VS for case 1 where

10000
yo|00s+1 0 3 | 5% +1415 +10000
0 0.01s+1| 0 10000

s? +141s +10000
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Fig. 2.19 Frequency responses from (a)d;, - ¢, (b)d;, >e,,

(c)d;, >e,,(d) d;,=>e,, 0f DCFDOB-VS for case 1

d
Figures 2.19(a)-(d) show the frequency ‘responses from [ q ’ } to {
i,2

I.e. input sensitivity functions.

responses from {

n} o {yl]
r, Y,

il ed,l

}of Fig. 2.17,

d,2

Moreover, Figures 2.20(a)-(d) show the frequency
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Fig. 2.20 Frequency response from(a)r, - y, (b)r, >y,
©r, -y, (dr, >y, of DCFDOB-VS for case 1

In case 2, we enlarge the coefficient of «,(s) and remain the bandwidth of the

low-pass filter J(s). The simulation result is shown in Fig. 2.21 and Figs. 2.22(a)-(d)

Y1

Y2

r
plot the frequency responses from [ 1} to {

) } of case 2. From these results, we
2

know that the roots of «;(s) will influence the system response.
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r
Comparing the bandwidth from [rl} to B’l} of case 1 with the one of case 2, the
2 2

tracking bandwidth can be enlarged arbitrarily since the tracking and disturbance
attenuation are independent. However, actuator saturation and control power must be
considered in real realization.

In this chapter, we introduced the DCFDOB and its properties, stability conditions
and design methods for tracking objective and input disturbance attenuation. For
minimum phase plants, the parameter Q(s) can be designas J - (Y, Nn)‘l to reject the
input disturbance. For non-minimum phase plants, the model matching method and
Nehari problem were applied to solve the-optimum solution of Q(s) parameter.
Moreover, the limitation of sensitivity function-and waterbed phenomenon cased by the
non-minimum phase zeros were also discussed. When a plant is unstable, an
outer-loop controller K(s) is added not only to stabilize the system but change the
tracking performance. After that, we co-structured DCFDOB with Vidyasagar’s
structure, the subset of stabilizing solutions of the Youla-Kucera parameterization, by
sharing the common observer configuration to form the DCFDOB-VS which contains

H(s) and Q(s) parameters to deal with tracking objective and feedback objective,

respectively.
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CHAPTER 3
EXTENSION TO GENERAL PLANT CASES AND INPUT/OUTPUT

DISTURBANCES

This thesis only considered the influence of input disturbance, denoted as d; in
the above chapters. But in general, the system may also influenced by output
disturbance, denoted as d,, meantime. In classic control point of view, in general,
good input disturbance rejection does not necessarily imply good output disturbance
rejection unless feedback controller and.plant are square and diagonal [36, page 83].
In this Chapter, one will consider-both input disturbance and output disturbance for
system generality and prove that the. DCEDOB can eliminate both disturbances

simultaneously in square plant cases. Considering the whole exogenous input signals

and Fig. 3.1,

M—l

q
‘$
) 4
B
A
=z
s
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Fig. 3.1 DCFDOB with input and output disturbance

the transfer functions from [r d, d, &1 to [e, e, e, e,]" are shown as

below.
e, | ~Q(I =M, X,) —QM.Y, —QM. Y, r
€. _ I I_Q(I_Mnxr) _QMnYr _QMnYr di
€40 - an\/ln_l NnMn_l(I_Q(I_Man)) I_an\/ln_l(\)'\/lnYr _NnMn_lQMnYr do
€n I\In'\/ln_l NnMn_l(I_Q(I_Man)) I_an\/ln_lQI\/lnYr I_an\/ln_lQI\/lnYr é:

(3.1)

3.1 Input/Output sensitivity functions of the DCFDOB

In a SISO plant, the input sensitivity function, denotes S, is the same as the

output sensitivity function, denotes S, and given as follows.

si=zi=1—Q(1—Mnxr)

=1—Q(1— XrMn)
=1-QY,N, (3.2)

S, =% _1_ N MIQM.Y,
d, (3.3)

=1-QV,N,

Obviously, for SISO plant cases minimization of |Si| will also reduce the influence of

output disturbance to system output.

For MIMO plant, P,

n,nxm !

with dimension n by m, the transfer functions of

input/output sensitivity functions are represented as follows:
S10,e, (8) = (1 =QY/N,) (34)

Sod,-y(8)= (1 =N,M'QM,Y,) (3.5)
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Equation (3.4) can be rewritten as follows when n>m

Si,di—>ed (S) = N;l(l - N«nchl)'qn (36)
and Eq. (3.5) also can be rewritten as
So,d0—>y(s) = '\-/Iyn_l(l - |il«nQYI)I\-)I'n (37)

If one can design Q(s)e RH_ such that & (I —N~nQY,(ja))) as small as possible,
particularly in low frequency, that is, one can eliminate both input disturbance and
output disturbance in low frequency ranges. For square, minimum phase plant cases,
one can design Q = I\~ln‘1-J -Y,™ to achieve this aim and J(s) is a diagonal matrix
which composes of low-pass filters. In comparison with Eq. (2.9), one suggests that
the designer can apply solution (2.9) when considering input disturbance only, and
applied solution Q:l\~ln‘l-J -Y,™ when._considering both input/output disturbances.

These two solutions and corresponding sensitivity functions are shown in Table 3.1.

Table 3.1 Solutions of parameter Q(s) and corresponding sensitivity functions

Q=N1.J.v*} Q=J-N1'.y*
Input sensitivity, S, N1 -J)N, (1-J)
Output sensitivity, S, M1 —J)M, M2(1=N,_-J-NHM,

For square, non-minimum phase plant cases, the model matching method also can
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be applied to obtain the parameter Q(s) € RH_ such that
HI ~N,QY, Hm <y<1 (3.8)

The following section will show the model matching method of MIMO system.

3.2 Model matching method of MIMO square system
For square MIMO, non-minimum phase plant cases, the main goal is finding

Q(s) e RH_ to satisfy Eq. (3.8) and

[r-N.Qv| <1
o (3.9)
S[I-NiN,-Q-Y, v, <1

where N. and N

1 0

is an inner function ;and an-outer function of N _, respectively.

n?

Y,; and Y, is an inner function .and an. outer function of Y, , respectively.

Li
According to the norm preserving properties of inner function, Eq. (3.10) can be
obtained.

[1-NiNg-Q-Y, v, | <1 (3.10)

QHNFYIE - Nyo QY

<1 (3.11)

then Eqg. (3.11) can be described as Nehari problem.

[N =N Q- <1

g

(3.12)

<1
where N~[Y|fi =ReRL, and N~OQY|’0 :Q eRH_ . Finally, the parameter Q(s)

which satisfies Eq. (3.12) can be found by solving Eq. (3.13) [29].
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é: R_(De(u)
=R-(6,U +6,)-(6,U +6,,)", YU eRH_, JU]| <1 (3.13)

where @, denotes the “Right Chain Scattering” Linear Fractional Transformation
(LFT) of 6 which denotes the J-lossless function.
Definition 3.1 [29]:

1) If 6eRL

(p+m)x(p+m)

satisfied 0" (jw)J 0(jw)=J,, VweR, 0 is called

. I, O
J-unitary, where J, = 0 .

_|m
(2) If a J-unitary 6 satisfied 0°(s)J,0(s)<J,, Vs, Re(s)>0, 0 is called

J-lossless. L]

Then the J-lossless function can be obtained as follows.

6,0
0= { 11 12} (3.14)
0, 0y
11 Y1 C. | | 0 .
_All— | _NHC; NHLOBR
[‘921 922]: T (3.16)
B | O |

where N, =(1-L,L.)" and [A;,B,,Cr,D.] denote the minimum state-space
realization of R and L., L, satisfy Lyapunov equation of Eq. (2.26). If one takes

U =0 then the central solution (50 can be obtained.

A

Qo = R_elzegzl
TA B [A | NZB - AL [ NGB T
SR I (o B A (347
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then the parameter Q(s) which satisfies Eq. (3.8) can be obtained.
Qs) = N;*-Q, Y, (3.18)
As one mentioned in section 3.1, our main goal is holding S, and S, assmall as
possible in low frequency ranges, that is, a good input/output disturbance rejecting
capability. For this reason, a diagonal weighting function  matrix

W =diag{w, --- w,} _can be added to form the following objective.

[-NQvw| <1
<& (1-N,QY, (jo) <W *(jo)| (3.19)

and the model matching method for square MIMO system also can be applied to obtain

the parameter Q(s) which satisfies Eq. (3:19)-and suppresses both S, and S, .

3.3 Input/Output Sensitivity Functions with Feedback Controller
If the outer-loop controller scheme that discussed in section 2.3 is applied, twelve

transfer functions from [r d, d, &]" to [e, e, e, ¢€,]" areshown below:

e A ~A'[(K+QM. Y, )N M ]
€ A AP -Q(I =M, X,)]

€40 NM*AT NMIAI-Q( —QM X,)]
e, N.M A" N MIAI-Q(I -QM X)]

_A_l(K+QMnYr) _A_I(K+QMnYr) r

_A_l(K+QMnYr) _A_I(K+QMnYr) x di

=N MIAYK+OMY.) —NMIAYK+OMY.) | |d,

=N MIAYK+OMY.) | =N MIAYK+QM.Y,)| | &
(3.20)
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where A=(1 +KN_ M) and the stable conditions are the same as Egs. (2.38) and

(2.39). For DCFDOB-VS that discussed in section 2.4, the 4x4 transfer functions

matrix from [r d, d, &]" to [e, e, e, e€,]" isobtained as follows.

e, M. H™® M [X, +H(1-Q)Y,N,]-1
edi I\/InH_l Mn[xr+H_l(|_Q)YINn]

€o| | NH™ N IX +HT(1-QYN,]
e, [NH® NI[X, +H(I-Q)Y,N,]

~M,[Y, ~H (1 -Q)¥,M,] —M,[Y,-H(1-Q¥M,1]| [r
~M,[Y, ~H (1 -Q)Y,M,] ~M,[Y,-H (I-QY,M,]| |d,
| =N, IY, —H (1 —QY,M,] =N, IY, ~H*(1 —QY,M,] | | d,
| =N,IY, ~H (1 =QY,M,] 1-N,[Y,-H*(1-QY,M,]| [ ¢

(3.21)
Also, we replace H (1 —Q)Y, of the 2"%, 3™ and 4™ columns in Eq. (3.21) with Q,

and yield Eq. (3.22) and also form the:2DOF control scheme contains two independent

parameters.
e ] [MH* M (X, +QN)-1 -M(Y,-QM,) -M(Y,-QM)[r
€ai _ NlnH_1 Mn(xr+QYNn) _Mn(Yr_QYMn) _MnWr_QYMn) di
€0 NnH_1 Nn(xr+QYNn) I_NnWr_QYMn) _Nn(Yr_QYMn) dO
e ] |NHT N (X, +QN.) I=N(Y.-QM,) I-N(Y,-QM)| &

(3.22)
The transfer functions of input/output sensitivity functions are represented as follows:
S, =M, (X, +Q,N,) (3.23)

S,=1-N,[Y,-QM

° oL Qj L‘] - (3.24)
=N, (X, +Q,N_IN'M_

If one can design Q,(s) satisfying theorem 2.3 and make the common term

a(X,+Q, Nn(ja))) as small as possible, particularly in low frequency, that is, one can
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eliminate both input disturbance and output disturbance in low frequency ranges,
simultaneously. The solving steps are provided in paragraphs 2.4.2.2 part a and part b

for minimum phase and non-minimum phase systems, respectively.

3.4 The DCFDOB for non-square plant
3.4.1 The thin plant case
For non-square plant, however, the non-square types of plant will restrict rejection

capability. For a thin plant P with n>m dimension, the output channel numbers

are greater than input channel numbers. _.Insection 3.1, we rewrote the input sensitivity

~

function as N* (I —N

n,mxn

Y,

,,mxn)lcl and output sensitivity function as

n,nxm 'mem n,nxm

~ ~

M (IM—NWm-mem-Ylymxn)l\h’n’nxn and-‘then design Q(s) to satisfy

n,nxn
an'nxm “Quum Vimen = diag{d; ... ( Jy,i=1~n are low-pass filters) to reject
input/output disturbances in minimum-phase system. However, in thin plant cases

(n>m), we can not obtain the solutions of parameter matrix, Q__.(s), which contains

mxm
only m® parameters to satisfy n® desire functions (m*<n?). One must design

Q(s) which satisfies the following equation.

~

(3.25)

Imxm _mem 'Yl,mxn : Nn,nxm = Sivmxm

where S, is an input sensitivity function matrix with mxm dimension and

contains m? sensitivity functions. Equation (3.25) indicates that one can design m?
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elements of Q matrix to satisfy m? linear independent sensitivity functions of

mxm

S that is, for thin plant cases, a suitable Q matrix can suppress input

i,mxm ? mxm

disturbances of all input channels.  On the other hand, for rejecting output disturbances,

the following equation must be satisfied.

| P

nxn ' n,nxm 'mem ‘M n,mxm 'Yr,mxn = So,nxn

(3.26)

where S is output sensitivity function matrix composed of n” linear independent

0,mn
sensitivity functions.  Obviously, Eqg. (3.26) is also an overdetermined system
(m? <n?), there exist no exact solutions which satisfy Eq. (3.26). Although the
designer can select m? significant output. sensitivity functions and solve these

functions by m? elements of Q matrix, -however, the influences of others

mxm

(n* —m?) sensitivity functions will not be guaranteed.

3.4.2 The wide plant case

For a wide plant, we can not modify input sensitivity function as

~ ~ ~ ~

N e (T = Noen * Qe * Yimen) N s SiNCE N is @ right invertible matrix, i.e.
Nt N, .. #]I
n,mxn n,nxm mxm

Lemma 3.2 [47]:

Suppose A be an mxn matrix, if there exists an nxm matrix B such that
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BA =1 where I, is an nxn identity matrix, the matrix B is called the left

— *nxn?
inverse of the left invertible matrix A . If there exists another nxm matrix B such

isan mxm identity matrix, the matrix B is called the

that AB=1 where I,

mxm ? m

right inverse of the right invertible matrix A . If there exist an operator B, such that

AB=BA =1, A iscalledinvertible. []

Recalling Eq. (3.25), it seems that one can obtain m* elements of parameter

matrix to satisfy m?® desire sensitivity functions, however, in wide plant cases, if we

~

modify 1 —Qun *Yimn - Nomn = Simanr28 @ linear equation, AX =B, where

[Ng,mxn ’ YITnxm ]m><m [O]mxm e [O] mxm
0 NT YT :
A _ [ ]inxm [ n,mxn ) I,nxm]mxm . (327)
. . . - [O]mxm
[O] mxm [O]mxm e [Nrr,mxn .YI,Tnxm]mxm m2xm?
i Q, ] [1- Sy | | _‘]11_ |
o} 5w 0
le :_ Slm dmx1 L 0 dmx1
Qu G °
Q 1- S22 ‘]22
x=| %= |  B=|| ~|| (3.28)
QZm Sz.m —mx1 - 0 S mx1
: o Sn.wl 0 .
le — sz 0
_Qmm_m2><1 L 1 Smm md_|mzsa L ‘]mm Ml 2y
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Lemma 3.3 [47]:

A linear system of equations AX =B is consistent if and only if the rank of the matrix

A is the same as the rank of the augmented matrix of the system (A |B). L]
In Egs. (3.27) and (3.28), for wide plant cases, rank(A)=nxm |,

rank(A |B)=nxm+1 and rank(A)<rank(A|B). That is, the wide plant cases are

inconsistent and we can not obtain analytical solution that satisfies Eq. (3.25).

To reject output disturbances in wide plant, one modified the output sensitivity

function 1. =P, Qum M Ve @S

~ ~

M o (oo = No v * Qo -Y,men)l\7l’n'nxn and then design

N Qi Vi = diag{j, 3, (i =1~ n) (3.29)
for minimum phase systems.  From Eq}.(3.29); we knew that there exist m? unknown
parameters and n’ linear independent sensitivity functions, namely, we have m? —n?
arbitrary parameters because of m>n in wide plant cases. Also, the DCFDOB can
perform well for eliminating output disturbances in wide plant cases. Based on these
discussions, one summarizes the design properties of the DCFDOB for non-square,

minimum phase plant cases in table 3.2. For non-square plant topic, how to find the

optimum solutions will be an interesting topic in the future.
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Table 3.2 Design properties of the DCFDOB for non-square, minimum phase plant cases

Plant type Input Sensitivity Output Sensitivity
Si,mxm = Imxm _mem 'Y|,m><n ’ Nn,nxm So,nxn = Inxn - I:>n,nxm 'mem ‘M n,mxm 'Yr,mxn
One can modify as: One can modify as:
Si,mxm = Nn_,%nxn(lnxn - Nn,nmemxm 'Yl,mxn)Nn,nxm So,n><n = M n_;xn(lnxn - Nn,nmemxm 'Yl,mxn)Mn,nxn
One can not obtain analytic solutions that satisfies One can not obtain analytic solutions that satisfies
J, - 0 J, - 0
N Y =l - T : ) |’\I.-nnxm m><m'Y mxn )
Th|n plant n,nmemxm I,mxn , Q I,
anm (n > m) 0 N _Inxn 0 N _nxn
since the unknown parameters are less than equations. since the unknown parameters are less than equations.
The exact solutions for output disturbance elimination:
The solutions can be solved from the following equation: | Can not obtained because the unknown parameters are less
than the equations.
J, - 0O 9
mem 'Yl,mxn : Nn,nxm =| : - : ‘Jll 0
0 mm | mxm F)n,nxm 'mem ‘M n,mxm 'Yr,mxn =| . :
0 N _Inxn
Elimination . ) i Only eliminate the same channel numbers as input channel ones
N Completely eliminate the input disturbances of all channels i o
Capability (The designer can select the significant channels)
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Plant type Input Sensitivity Output Sensitivity
Si,mxm = Imxm _mem 'Yl,mxn : Nn,nxm So,nxn = Inxn - I:>n,nxm 'mem ‘M n,mxm 'Yr,mxn
One can modify as:
One can not modify because N ... isrightinvertible ~ ~ ~
H SO,ﬂXﬂ = M n,nxn(lnxn - Nn,nmemxm .Y|,m><ﬂ)Mﬂ,ﬂ><ﬂ
Wide plant
Prn (N < M) The solutions can be solved from the following equation:
The exact solutions for input disturbance elimination: Jy, - 0
Can not be obtained because the system is inconsistent, N Qmen  Yime =| :
since rank(A) < rank(A|B) 0 -
Furthermore, we have m? —n? arbitrary solutions.
L Only eliminate the channel numbers as many as
Elimination . _
Capabilit output channel ones Completely eliminate the output disturbances of all channels
apabili
P y (The designer can select the significant channels)

In summary, to eliminate input disturbances completely, the numbers of output channel must equal/greater than the one of input channel.

In dual, to eliminate output disturbances completely, the numbers of input channel must equal/greater than the one of output channel.
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We will give two numerical examples to show these properties of DCFDOB for
non-square plant cases in section 5.3.

For non-minimum phase plant, recalling Egs. (2.15), (3.6), (3.7) and Fig 2.8, the
main goal of model matching method is finding the whole solution set that satisfies
HI — NynQYI Hw <1 . According to the plant types, the model matching problem can be
discussed in two ways [29]:

(1) 1-block problem: ( Nn .Y, are both square and invertible)
If |\~ln(s) and Y, (s) are both invertible, i.e. square plant cases, and they can be

decomposed as:

~

Nn = lqin,i . lQI‘n,o' YI =Yl,o 'Yl,i (330)
where Nynyi/ﬁny0 and Y,;/Y,, are inner/outerfunctions and NgnfiNynvi =Y, .Y, =1, then
the objective HI - NynQYI Hm <1 can be rewritten as:

=N,
=1 =N, N, .QY, .Y,

H~ n,i rLOQ 1,0 I,|HOO (331)
:‘ Nn~|YI~| - Nn,oQYI,o
=[Ru-Q]. <1

where R, = ani Y-

(2) 4-block problem:(N~n is left invertible and Y, isright invertible)

If Nn is left invertible and Y, is right invertible, i.e. non-square plant cases and
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under such circumstance, one can select F and L such that
NN, =YY, =1 (3.32)

That is, N, is an inner function and Y, is a co-inner function. One also can obtain

n

complementary inner matrices, NM, Y, ., such that they satisfy

;| - = Y, - -
I:N- :|[Nn Nn,L]:{YI’l:|[YI Y|,¢]:| (3-33)

0L
Lemma 3.3 [29]:
AlB . . .
Let T= clo be an inner function and X ™ be the pseudo-inverse of X, the
solution of Eq. (1.16), then a complementary inner factor T, is given by

{A+ BF | =X'C'D,
=3
+«DF | ~ D,

(3.34)

where D, isan orthogonal complement.of D-suchthat [D D,] issquareand

orthogonal. []

Note:
The singular value decomposition of X is X =USV', where U and V are
both nxn orthogonal matrices and S is an mxn diagonal matrix with singular

values o; for i=1---,n. Then
X*=V(s'S)*sTUT’ (3.35)

If the rank of X islessthan n,the inverse of STS does not exist.
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Furthermore, the main objective of non-square, non-minimum phase plants can be

rewritten as

[ -NQvl,

-~ -~ 0 Y,
= I_[Nn Nn L] Q !
10 0Y, .
D A A A il INI VRS (RS
- N‘nl__ | I, L _N‘nl_ n n,L 0 0 Y|,L I, L '
1. oo
=l <" N2
{N;L_[Y' g O}
- R
:H[Rﬂ Q } 1
R21 Rzz »
where
Bl TN @31)
R21 R22 N n,LYI N n ,LYI L
Please refer to [29, chapters 2, 4 and 5] and [37]—[38] for detail discussions of
1-block problem and [39]—[40] for 4-block problems. The non-square plant with
In the future, we

non-minimum phase zeros cases are much more complex than others.

will look into these complicated cases and find the optimum Q(s) parameter matrix

for non-square, non-minimum phase plant.
In conclusion, when the proposed structure is applied to MIMO systems, the

capability of disturbance rejection is good when plants are square and is restricted by
the non-square types of plants. How to obtain the optimum Q(s) parameter matrix

for non-square, non-minimum phase plants will be an interesting issue in the future.
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CHAPTER 4

UNCERTAINTY AND ROBUSTNESS

In this chapter, one will investigate the robust stability of the DCFDOB under plant
uncertainties. The small gain theorem is used here to derive robust stability tests and
the modeling error A(s) will be assumed to be stable. Furthermore, one will discuss
the robust DCFDOB which satisfies small gain theorem and its design method and

procedures in H_ frameworks.

4.1 Coprime Factor Uncertainty
There are numerous ways of representing classes of systems that are close to a
nominal model, and in this monograph, one adopt the coprime factor framework to
represent both the nominal model transfer function, and a class of close systems. The
right coprime factorization of perturbed plant is described as
P=(N,+A) (M, +A,)",(N,M_,A,,A, €RH) (4.2)

and the block diagram of DCFDOB with system uncertainties is constructed as follows.
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Fig. 4.1 Block diagram of DCFDOB with system uncertainties
Before going into detail, one first introduces an important theorem about robust stability

test of system with uncertainty.

4.1.1 Small gain theorem [36]

This chapter considers the stability test of the DCFDOB under model perturbations.
The basis for the robust stability criteria derived in the sequel is the so-called small gain
theorem. Consider the interconnected system shown in Fig 4.2 with M, (s) a stable

pxq transfer matrix and the maximum allowable bound of plant uncertainties &
where £>0. Then the interconnected system shown below is well-posed and
guarantee internally stable for all A(s) € RH_ with

(@) [A], <& ifandonlyif [M,| <& (4.2a)

(b) A <e ifandonlyif [M,| <& (4.2b)
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M, W,

Fig. 4.2 M, —A loop stability analysis

4.2 Robust Stability Analysis
4.2.1 Robust stability analysis of DCFDOB
According to small gain theorem.and Fig. 4.2, one modified Fig. 41 as M, —A

loop type and shown in Fig. 4.3.

A

= M =[-MJQM.Y, -M(1-Q(I-M X/))]

Fig. 4.3 M, —A loop stability analysis of Fig. 4.1

The interconnected system is internally stable if the following inequalities are satisfied :

o

<g ifandonlyif [[-M.'QM,Y, -M(1-Q(I-MX))] <&

o0
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(4.39)

<e ifandonlyif [[-M'QM,Y, -M(1-Q(I-MX )] <&

]

0

(4.3b)

N
If Eq. (4.3b) is pre-multiplied by normalized coprime factorization {M”] since

]

form:

=1, the robustness bound of DCFDOB can be obtained from the following

0

<e™ (4.4)

o0

_PnQMnYr _Pn(I_Q(I_Man))
{ _QMnYr _(I_Q(I_Mnxr)) }

In other words, if a small ¢ can be achieved by designing an adequate
Q(s) e RH_ for a given nominal plant. P, (s), the DCFDOB can be stabilized under
large uncertainties, however,

_PnQMnYr _PH(I_Q((I_M”Xr)) . Nn <6‘_1'1 (45)
M, T '

-QM,Y, -(1-Q(-M_X,))

o | -PQYMN, ~PM, +PQYNM, || _ (46)
~QY,M_,N,-M_ +QY,N.M )
Nl 4.7)
= <& .
_Mn .
ol<et (4.8)

-1

From Eq. (4.8), one knows that the minimum value of ¢~ will greater than one, that is,

74



the maximum allowable bound of must less than one. Besides, Eq. (4.4) can

o0

o]

be rewritten as follows.

<g™ (4.9

0

_Mn_l(N’vnQYl)Mvn _I\Zn_l(I_N’vnQYI)Nn
_Nn_l(ﬁnQYl)l\?in _Nn_l(l _NnQYI)Nn

According to Egs. (3.6) and (3.7), although one can enlarge the bandwidth of l\~anYI
to increase disturbance rejection capability, however, according to Eq. (4.9), &
increases with increasing the bandwidth of N~nQY,. For simply explanation, one
assumes that the system is SISO, minimum phase and then substitute Eq. (2.9) into Eq.

(4.9) to yield Eq. (4.10).

~J5 =P (1=3)
|:_‘].Pn_l _(I_‘]) :|

Obviously, the stability margin ™ can be obtained by designing the low-pass filter

‘ <g™ (4.10)
J(s). |Ifthe bandwidth of J(s) is wider than the one of the nominal plant P,(s), the
dominant term ‘— J -Pn’l(ja))‘ of Eq. (4.10) will roll up after the cutoff frequency of
P, and then roll off after the cutoff frequency of J(s). The wider bandwidth of the
low-pass filter, the larger value of ‘— J -Pn’l(ja))‘ , consequently, larger ¢ we
obtained. A tradeoff must be done between rejection capability and robust stability.
In addition, the output y(t) of plant with uncertainties is represented as follows.
y=P -r+P(I1-Q(1 -M_ X,))-(d,-z)+(-PQM.,Y,)-(d, +2,)-P,QM.Y, - &

(4.11)
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Since one design P,(1-Q(1-M_X,))=0 and 1-P,QM,Y, =0 in low frequency

ranges to reject input and output disturbances, Eq. (4.11) can be approximated as

follows.

y=P - r-POM.Y, & (4.12)

That is, the perturbation will be suppressed as well. Thus, the system will behave like

nominal plant in low frequency ranges, and an outer loop controller for stabilizing and

better performance can be designed easily. The complete feasible form of DCFDOB is

shown in Fig. 4.4.

Actual Plant

Ay | A,

Disturbance Observer

Outer — Loop Controller

Fig. 4.4 The complete feasible form of DCFDOB with an outer-loop controller

4.2.2 Robust stability analysis of DCFDOB-VS

Recalling the DCFDOB-VS structure shown in Fig. 2.17, we modified it as
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M, —A loop as shown in the following figure.

A

b M, =[-Y, + H?(1-Q)Y,M, —X,—H™1-QY,N,]

Fig.45 M, —A loop of DCFDOB-VS

According to small gain theorem, the DCFDOB-VS is guaranteed internally stable for

all ||A| <1 ifand only if :

™

If the relation Q(s)=1-HQ,Y,™ is substituted into M ,(s) of Eq. (4.13), we can

.H[_Yr +HA(I=QY,M, —X, —H™( —Q)Y.Nn]

<1 (4.13)

obtain the following equation.

M., =]l +HE O -QVM, X, ~H 1 -QVN, ]

=[-v. v M, -x,-QN,]

T (414)

0

We found that the parameter H(s) does not appear in Eqg. (4.14) and the value of

IM,(s)|. is only influenced by the independent parameter Q,(s). That is, the

advantage is that it will simplify the robustness tuning procedure and disturbances

rejection by using only one independent instead of two parameters H(s) and Q(s).

Furthermore, we can modify Fig. 2.17 as Fig. 4.6, which is further equaled to Figs. 4.7(a)
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and 4.7(b) through 1/0O equivalence.

e

r

A

\ 4

rHT—v [(1 -Q)Y,N, + HX,T* . » N, y
-~ en
(_HYr +(I _Q)YIMn) < 5

Fig. 4.6 The modification of DCFDOB-VS

4

dO
< > Ay
e _

r H* P [X +HP (1 -QYN,I™ » N, y

~ €,
H [ (Y, +H(1-QYM,) [« 4

(a)
dU
<& » AN
e, _

r-» H (X, +QN,)™ » N, y

~ €,
(Yr _QYMn) < 5

(b)
Fig. 4.7 (a) The modification of DCFDOB-VS
(b) the equivalent block diagram of Fig. 4.7 (a) with two independent parameters,
H(s) and Q,(s)
According to Fig. 4.7(b), we knew that the DCFDOB-VS can be modified as the

well-known Youla-Kucera controller structure with a pre-filter H™(s) when
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Q, (s)=H™(1 -Q)Y,. Moreover, Fig. 4.7(b) can explain more clearly why the loop

properties, e.g. |[M,(s)|_, is only influenced by the independent parameter Q,(s).

These modifications from DCFDOB-VS to Fig. 4.7(b) can further validate the following

properties that we stated and provided in the forgoing sections.

1. Vidyasagar’s structure has the subset stabilizing solutions of the Youla-Kucera
parameterization and provides the tracking properties [33].

2. The last two columns of Eq. (2.46), i.e. the loop properties of Youla-Kucera

parameterization structure are the same as those of Eq. (2.48) when

QYK (S) = QY (S) .

Recalling the numerical example in part ¢ of paragraph 2.4.2.2, we gave three
different bandwidth low-pass filters and three different «(s)s, i.e. three different H(s)
parameters to observer |M,| behaviors. Table 4.1 shows the results for nine cases,
which indicate the robust stability is only influenced by the low-pass filter J(s), i.e.

the independent parameter Q, (S) .
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Table 4.1 Plots of |M, (je)| with different bandwidth of J(s),

a(s) and corresponding M|

1 100 10000
J(s) 2 0 2 0 > 0
s +1.414s+1 s° +14.145+100 s$“ +141.45 +10000
1 100 10000
a(s) 0 T 0 > 0 :
s +1.414s+1 s“ +14.14s+100 s° +141.4s +10000
3 — |3|M Il =12.0608 |
s+1 O o ——----- ref o ARRRREES
0 s+1 s A :# 77777777
-— |3|MA||1=12.0608
0.1s+1 0
0 0.1s+1
0.01s+1 0
0 0.01s+1

Table 4.1 shows that «(s), i.e.

H(s) will not influence the robust stability.
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4.3 Robust DCFDOB
One discussed the robust stability of DCFDOB and DCFDOB-VS in sections 4.1
and 4.2. The maximum allowable bound of plant uncertainties & can be obtained by

designing an adequate Q(s) and system robustness can be guaranteed when the small

gain theorem is satisfied. In this section, one will discuss the design method of robust

DCFDOB in H_ frameworks. Consider again Eg. (4.3a), one rearranges the
inequality as follows.
M2 -QU - M X DI QU ~M X, )*QM,Y, 1] <& (4.15)
& M 8K i 1] <& (4.16)
where S, =(1-Q(I -M_X,)) = (E=QY,N.) and

Koo = (I=Q(I - Mnxr))il -QM.Y,
=(1-QY,N,)?QM,Y, (4.17)
=S1-QM,Y,

Moreover

(1 +Kpos - P
=(1+S™'QM YN M *)*
=(1+S'QM, (1 - X M M H*
=(1+S™'Q(I-M X )N

- (4.18)
=(l+ Si_lQYI Nn)_l
= (I + Si_l(l - Si))_l
= (Si_l)_l
= Si

According Egs. (4.17) and (4.18), one rewrote Eq. (4.16) as Eq. (4.19) and rearranged

DCFDOB in form of an output feedback type in Fig. 4.8.

81



M0+ KoosP) [Kpes 1], <& (4.19)

———— ———

A

\ 4

>
z

» N

r (1-QY,N,)™

Fig. 4.8 Right coprime factor perturbed system with reduced DCFDOB

Theorem 4.1[36, chapter 8]:  Consider a right coprime factor perturbed plant described

in Fig. 48 and P=(N, +A,)-(M, +A, )" with N, M_, A, and A, eRH_.

Assume the output feedback controller K. ; internally stabilizes the nominal system

P, then the closed-loop system is well-posed and internally stable for all |A| <& if
and only if

M1+ KoogP) 'TKpos 1] < &7 (4.20)]

A design objective is to find a reduced DCFDOB K, ,;(S) which satisfied Eq.

(4.20) for a given &. Suppose the stable nominal plant P, has the minimal

realization (A,B,C,D). A state-space construction for the normalized right coprime

factorization can be obtained in terms of solution to the generalized control (respectively,
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filter) algebraic Riccati equation as follows, i.e. Generalized Control Algebraic Riccati
Equation (GCARE):

(A—BR!D'C)'X_ + X_(A-BR'D'C)- X_BR'‘B"'X_+C'R:'IC=0 (4.21)
and Generalized Filter Algebraic Riccati Equation (GFARE):

(A—BR!DC)Y, +Y,(A—BR'D'C) -Y.C'R'CY, +BR'B"=0  (4.22)

where R, =1+DD" and R, =1+D'D. Then, the normalized RCF is given as

A+BF | BR

Mn -1/2
{ }:z F R* |eRH, (4.23)

Ny C +DF | DR*2

where F=-R*(B'X_+D'C). The normalized RCF of P, means
M (- jo)M, (jo) =N (=jo)N. (jo) = | forall w. (4.24)

Moreover, [41] showed that the solution satisfying Eq. (4.20) is obtained as follows:

(4.25)

A+BF +»°(W,)"Y,C"(C+DF) | —°W,)™Y,C’
Koos = B'X | D’

where W, =1+(X, Y, —7’1), F=-R}(DC+B'X,) and y=¢'. Also, a

maximum value of & can be obtained by a non-iterative method, and is given by

M

where |jo]|, denotes the Hankel norm, and &, is called the maximum stability margin.

2

Emax = (1_ )1/2 = 7/r;11|n (426)

H

That is, the stability of the closed-loop can be guaranteed for all

(4.27)




The parameter Q(s) of robust DCFDOB can be obtained.
Kpos (s) = (1 —QY,N,)™-QM. Y, (4.28)
Q(8) = Koo (¥ (M, + N, Kpeg)) (4.29)
In the above section, one discussed the design method of robust DCFDOB that
satisfied (4.15) in H_ frameworks. In the following section, one will introduce the

loop - shaping methods to obtain performance / robust stability tradeoffs, and a

particular H_ optimization problem to guarantee closed - loop stability and a level of

robust stability at all frequencies.

4.4 Robust DCFDOB using H. =loop shaping design

This section considers the H_~:loop shaping design which is developed by
McFarlane and Glover [42] to obtain the robust DCFDOB. The objective of the H
- loop shaping is to incorporate simple performance / robustness tradeoff obtained in the
loop - shaping with the guaranteed stability properties of H_ design methods. The
H_ - loop shaping is an open - loop shaping approach, which follows the elementary
open - loop shaping principles specifying the closed - loop objectives in terms of
requirements on the open - loop singular values, denoted o(e). &(e) and o(e)
denote the maximum and minimum singular values, respectively. To complete a

robust DCFDOB, we have to consider the following objectives:
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1) Input sensitivity: Recall from Eg. (4.18) that minimizing &((1 + Kyps - P,)™)

minimizes the effect of input disturbance on the plant input. The following inequality

relates this objective to an open - loop singular value condition:

1
o(l + Koos * Pn)
o
Q(KDOBPn)_l

E((I + KDOB ’ Pn)_l) =

IA

for frequencies: o(KysP,) >>1

Q

o(KposPy)
(4.30)

2) Similar, the inequality of output sensitivity:

1
o(P+ P Kggg)
y/ EIENN)
o(PKpes) -1
K\
o(PKeos)

a((1 +PR,- KDOB)_I) =

IA

for frequencies: o(P,Kyps) >>1

Q

(4.31)

3) Robustness of coprime uncertainty on the nominal plant can be obtained by

minimizing both &(Kyos(I +P.Kyos) P) and & (P, (1 + KpgsP,) *Kpes) - One

also has that:

& (Kpos (I + P,Kpog) "Py) = 5 ((KpogP) ™ + 1))
< 1
((KposPy) ™) +1

for frequencies: & (KygsP,) <<1

" o(KoosP) )
(4.32)

Similar, one has & (P,Kqs) <<1.
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In each of cases 1) - 3), one has approximated a closed - loop objective by a
condition on the singular values of P, and K ,; over a particular frequency range.
1) and 2) are rejection performance objectives, while 3) is robust stability objective.
Good rejection performance requires that

(P, Kpes) >>1 a(KyosP,) >>1, a(Kpps) >>1 (4.33)
in a low frequency range [0, ®,].
Good robustness requires that

(P Kpos) <<1, (KysP,) <<1, (Kpog) <9 (4.34)
in a high frequency range [w,,»] where,. o is not too large. Figure 4.9 indicates
graphically how the requirements on these closed - loop objective constrain the shape of

the open - loop singular values in design.

dB ()

/

Performance Bound

u log &

Robustness Bound

/

a(e)

Fig. 4.9 Open - loop singular value shaping
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4.4.1The H_ - loop shaping design procedure of the robust DCFDOB

The H_- loop shaping design procedure which we utilize to develop the robust
DCFDOB is developed by McFarlane and Glover [41] and is stated next.

(1) The H_ - loop shaping uses a pre-weighting matrix W, and/or a post -
weighting matrix W, to shape the singular values of the nominal plant P, as a desired
open - loop shape P, =W,PW, and its normalized right coprime factor P, = N;M_".
W, and W, are selected such that P, contains no hidden modes.

(2) Robust Stability:

a) Calculate & .., Where

Eg max = (KEDFIHw“Mgl(l + KwPS)‘l[Kw I]Lj_l

2 (4.35)
N 1
=(1- )72l
Ms .,
If & . <<1 return to step (1) and adjust W, and W,.
b) Select ¢4 < & ..; then synthesize the solution K that satisfies
Mt + K P)IK, 1| et =7 (4.36)

(3) The final reduced DCFDOB K, ,; is the constructed by combining the
solution K_ with the shaping functions W, and W,.

K pos = W, K W, (4.37)

(4) The final parameter Q(s) can be obtained according to Eqgs. (4.28), (4.29) and

(4.37).
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KDOB =W1KooW2
< (1-QY,N))™-QM,Y, =W,K_W, (4.38)
& Q(s) =W, K, W, (M, Y, +Y,N W,K W,)"

After introducing the solving steps of Koz (s), i.e. Q(s) that satisfies Eq. (4.36)
and forms the robust DCFDOB, we will explain how all the closed-loop objectives of
Egs. (4.33) and (4.34) are incorporated. Note that Eq. (4.36) is not only the criterion
for robustness but implicitly considers minimizing the H_ norm of the transfer
functions from [d, d.]" to [J, ¥,]" in Figure 4.10(a) as follows.

M3+ K PYTK, 1] =‘ F:S

[ }(I+KmPS)‘1[KOO |

WP * (4.39)
= H|:V\;_ln:|(l +Kpos Pn)_l [K DOBWZ_l V\q
1

o0

Ns

where the inner function [ } ispre - multiplied to go to the four - block problem.

S
The corollary 16.7 of [36] shows the Eq. (4.39) also equals Eq. (4.40) by interchanging

K, and P.

Hﬂ(l + K, P)[K, q

=H{KI°°}(| +P,K,)*[P q

1 (4.40)
WK

=H{ 1 DOB}(HPHKDOBV[PnWl vv;i
WZ

o0

Equation (4.40) presents the transfer functions from [ai JO]T to [y, V,]' inFigure

4.10(h)
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(I _QYI Iqn)_1 - I:)n

N ¥y %di
(1-QY,N,)* > P,

(b)
Fig. 4.10 Two cases of the transfer functions from (Ji 50) to
(Y, ¥.) and (¥, V)
Equations (4.39) and (4.40) show how all the closed-loop objectives of Egs. (4.33)
and (4.34) are incorporated.

4.4.2 On the achieved loop shape

As described above, the desired loop shaped was specified as W,PW,, but the
finally achieving loop shape is in fact given by WK W,P, at plant input and

PW,K_W, at plant output. Figure 4.11 illustrates the discrepancies that may occur
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between specified and achieved loop shapes. It can be seen in Figure 4.11 that, at low
frequency (in particular @ € (0,,) ), the deterioration in loop shape at plant output can
be obtained by comparing o(PW,K W,) with o(W,PW,).

G(RW.KW))

dB [~---

NN u log @

Fig. 4.11 Specified and achieved loop shapes
Note that:

{Q( P.Kpog) = a(RW,K.W,) = a(W,RW,)a (K, )/ x(W,) (4.42)

o (R Kpes) = (RW,K W,) <a(W,RW,)5 (K, )/ x(W,)
where x(e) =G (e)/c(e) denotes the condition number. Similarly, for loop shape
deterioration at plant input, one compares o(W,K ,W,P)) with oc(W,PW,) and we

have

{Q( KoosP) = (W, K W,P,) > c(W,PW,)a (K, )/ x(W,) (4.42)

o (KpoPRy) = WK, W,P,) < (W,PW,)o (K,,)/ x(W,)
Equations (4.41) and (4.42) present that o(K_) / &(K_) require a bound on the

deterioration of the loop shapes at low / high frequencies. Note that the condition
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numbers x(W,) and x(W,) are selected by the designer. Moreover, theorems 4.2
and 4.3 show that o(K,) / &(K,) is bounded by function of y, and o(F) /

o(P;). Hence by Egs. (4.41) and (4.42), K, will only have a limited effect on the

specified loop shape at low-frequency.

Theorem 4.2 [36]:

Any K_ satisfying Eq. (4.36), where P is assumed square, also satisfies

(K. (joy > 2O 72 L @43

Jri—1o(P,(jw)) +1

for all @ such that o(P,(jw)) > 7z =1 Furthermore, if o(P,)>>+/yZ-1, then

(K, (jo)) =>

, Where ~>"denotes asymptotically greater than or equal to as
7s—1

a(P,) > . L]
Theorem 4.3 [36]:

Any K_ satisfying Eq. (4.36), where P is assumed square, also satisfies

(K. (jo)) <Y 75 ~11 (P (jo)) (4.44)
1-/7s —1o(Ps(jw))

Furthermore, if E(PQ«%, then
7s —1 7s—1

for all @ such that o (P (jw)) <

(K, (jw)) <=+yi -1, where <~ denotes asymptotically less than or equal to as

o(P)—0. []
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4.4.3 Bounds of the robust DCFDOB
In this paragraph, we discuss each bounded magnitudes of the robust DCFDOB via

H_ - loop shaping design procedure. Let P, be the nominal plant and let

Koos =W, K_W, be the associated reduced DCFDOB obtained from the loop shaping
design procedure. Then if HMQI(I +K_P)K, I]H <y, one has

a(S;) < min{7sK(VV1)! 7so0(M S)K(Vvl)} (4.45)

where & (S;) notes the gain from input disturbance d, to plant input y, of Figure

4.10(a), K(®) =G (e)/c(e) denotes the condition number and
_ LV
E(MS):E(MS):( 5 J .~ Onealso has
1+o0°(W,PW,)
E(PnSi)Smin{ Vs o _7s0(Ns) } (4.46)
aW,)oW,) oW,)acW,)

where & (P,S;) denotes the gain from input disturbance d; to plant output y, of

& (W,PW,)
1+5°(W,PW,)

- %
Figure 4.10(a) and o (Ng)=0(Ny) :( j . Furthermore, one has

(S Kpos) <Minly g (W,)aW,), 7s6(M)aW)oW,)}  (4.47)
where & (S;Ky0s) denotes the gain from output disturbance d, to plant input y, of
Figure 4.10(a).

& (P,S;Kpos) < min{ysx(W,), 755 (Ng)x(W,)} (4.48)
where & (P,S;Kyoz) denotes the gain from output disturbance d, to plant output

y, of Figure 4.10(a).
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Moreover, we also can obtain Egs. (4.49)-(4.52).
5(KoosS,Py) < minyexW,),  7s5(Ng)x(W,)| (4.49)

5 (K posS,) < Minys GW)FW,), 7,5(Ms)EW,)5W,)| (4.50)

&(S.P.) < min Vs 7s5(Ns) (4.51)
e ocW)oW,)" oW,)oW,) '
&(S,) < minfyex(W,), 755 (Mg )x(W,)| (4.52)

where (KysS,P,), d(KyeeS,) , a(S,P,) and &(S,) denotes the gain from
input disturbance d, to DCFDOB output Yy, , output disturbance d, to DCFDOB
output y,, input disturbance d, to system output y, and output disturbance d, to
system output Y, of Figure 4.10(b), respectively.

These following derivations present how these boundaries in Eqgs. (4.45)-(4.52) be

obtained. Firstly, note that

Mt + K P)IK, 1] <s (4.53)
: . . . N N .
If Eq. (4.53) is pre-multiplied by normalized coprime factorization ML Since

M

=1, one can obtained Eq. (4.54).

0

93



Mt + K P)IK, 1] <4

NS -1 -1
Sl M KP)IK, 1] <7
S

o0

<:>Hﬁs}(l+KmPs)l[Kw 1 <7 (4.54)

o0

WZPn_ —1[ -1
= (I +KposP) 7 [KpoeW, ™ Wi | <75

o0

<7s

o0

Wz IDn -1
= ’ Si ’ [K DOBWZ W1

Noting that & (e) <[e| for all frequencies, one can obtain Eqs (4.45)-(4.48) because
by Eq. (4.54), one has

o (W,P,S; KDOBW{l) <7s

T (4.55)
= 6 (P,S;Kpee) S s x(W,)
and
E(Wfls_iwl) < Vs (4.56)
=0 (S;) < ysx(W,)
Next recall that
Hﬁs}(l + KQOPS)’l[KOO Ii :H{KI“’}(I + PSKOO)’l[PS Ii <7y
” ” (4.57)

<7s

0

1
o | M Koom | s fpw, w;?
WZ

Then by Eqg. (4.57), one can obtain Egs. (4.49)-(4.52). Furthermore, recalling Eq.

(4.57), we have

Mt + K P)IK, 1] <4
(4.58)
= HM s Wi (1 + Kpog Po) 7 [K pogW, " Wl]Hw <7s
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and we can immediately show (4.59) and (4.60).

oM §1W171(| + Koo Pn)ilwl)) <7s
=5(S5)<ysa(Mg)x(W,)

and

o(M §1W171(| + Kpos Pn)ilKDoswzil)) <7s
= E(SiKDOB) < 7SE(MS)E(\N1)E(\N2)

Next, recall that P, =W,P.W, = N;M;*. Then by Eq. (4.53) we have

Mt + K P)IK, 1] <s

S [NSW,PL (1 + Koos P) K posW, ™ W, <74

and

& (NgW, P (T +Kgog P) W,)) < 7
755(Ns)

=ocPRS)s———"—
a(W,)aW,)

E(NQIWZ P, (I + Kpog Pn)71 KDOBW;)) <7s
= 6 (P,S;Kpos) <750 (Ng)x(W,)

Similarly, one can obtain
5(S,) <755 (M )k(W,)
5 (KposS) < 755 (M )T (W, )5 (W,)

VSE(NS)

&(S,P) <
aW,)a(W,)

& (KposSoPy) < 755 (N )x(W,)

By (3.4), (3.5) and (4.17) one also has
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(4.60)

(4.61)

(4.62)

(4.63)

(4.64)

(4.65)

(4.66)

(4.67)



I_Pn'Si 'KDOB
=1-N,M,"-(1-QY,N,)-[(1 -QY,N,)"QM,Y, ]

(4.68)
=1-N,M'QM.Y,
=S,
and
5(S,) =5 (1 =P,S,Kpeg) (4.69)
<1+yc(W,)
Similar, one has
| _KDOB 'So 'Pn
=1-S'QM.Y, - (I =N, M*QM.Y.)-N M *
=1-S'"QM_Y.N M *-(I-QM Y,N M%)
=1-57Q(1-M,X,)-[1-Q(I =M X,)]
=1 -SQ(Y,N,)- (1 -QY,N,) (4.70)
= _[(I _QYlﬁn)_lQY|Nn]'(l _QYINH)
=1 —QY,N,#(I=Q¥;N,)-(1 -QY,N,)
=1-QY,N,
=S,

and

E(Si) = 5(' - KDOBSOPn)

(4.71)
<I+ysx(W,)

The shaping functions W, and W, are selected by the designer, then it can be

seen that, by (4.45)-(4.52), all of the closed — loop objectives are guaranteed to have

bounded magnitude and the bounds depend only on y,, W,;, W, and P,.

In this paragraph, one has incorporated the normalized DCFDOB into a loop

shaping based systematic design technique. This enables both performance and robust

stability objective to be traded off, and preserves the exact solution associated with this
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particular H_ problem. The following chapter, we will give some numerical

examples and one experimental result to demonstrate the design steps and verify the

correctness of our derivations of the DCFDOB structure.

97



CHAPTER 5

NUMERICAL EXAMPLES AND EXPERIMENTAL RESULTS

In this chapter, we demonstrate four parts numerical examples and an
experimental result to illustrate the design steps for each plant case. In part 1, two
examples, SISO and MIMO, of minimum phase systems are given. In part 2, we show
the design steps for a SISO, non-minimum phase plant in part 2-example 1, and for
MIMO, non-minimum phase plant in part 2-example 2. In part 3, two types of
non-square plant, thin and wide systems, are given to express the inherent restriction on
input / output disturbances rejections. _.Inpart 4, a robust DCFDOB developed by
H _ -loop shaping design procedures are presented. - Finally, an experimental result of a
positioning control for an AC brushless servomotor system and cogging force

suppressing is illustrated.

5.1 Numerical example part 1: minimum phase plants

In the first example of part 1, a stable, minimum phase, SISO plant with
uncertainty is used and the second example of part 1, a stable, minimum phase, MIMO
plant is considered.

Example 1: Assume the actual plant P(s) and the nominal plant P, (s) are given as

follows.
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P(s)=—20 _ Pp(s)=— 2
15s + 60 30s + 65

(5.1)
The control gain matrix and observer gain matrix are given as F:[—55.75],

L= [— 475.91] , the corresponding coprime factors are obtained as:

_ s+4 N 2,667
" 5460 " s+60°
_s+176 2436

" s+120° " s+120

(5.2)

Two low-pass filters, J;(s) with 400rad/sec bandwidth and J,(s) with
40rad /sec bandwidth, are given and the corresponding parameters Q,(s) and

Q,(s) are obtained in Eq. (5.4) and Eq. (5.6), respectively.

1.6x10°
J.(s) = 5.3
(%) s? +565.65 +1.6x10° (63)
24.6305(s +120)(s + 60
Q,(s) = 248305 H120)(S €0) (5.4)
(s%+565.65+1.6x10°)
1600
J,(s) = 5.5
2 (%) s? +56.565 %1600 (5)
0.24627(s +120)(s + 60
Q,(5) = (5+120)(s +60) (5.6)

(s® +56.56s +1600)

Figure 5.1 illustrates frequency response of input sensitivity. From Fig. 5.1, obviously,
the rejection capability and rejection bandwidth are directly related to the bandwidth of
low-pass filter. However, Fig. 5.2 displays that the bandwidth from measurement
noise & to system output y also increase with an increase in bandwidth of J(s).
That is, bandwidth of the low-pass filter is a basic criterion to be considered and

tradeoff when designs a DOB.
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In time domain simulation, a unit-step input disturbance d,(t)=u(t—5) is given,

where u(t—7) denotes a unit-stepand u(t)=1t>rsec and u(t)=0,t < rsec.
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007 g
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| | | | il | | | |
| | | | \'} | | | |
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Time(sec)

Fig. 5.3 Simulation results of part 1 — example 1

In Fig. 5.3, y, and y, denote system outputs of DCFDOB with parameters Q,
and Q,, respectively and this figure demonstrates that when a wide bandwidth
low-pass filter is adopted, the disturbance eliminate rate is faster than a narrow one. In
the following, we consider both input and output disturbances and a unit-step u(t—7)
Is given as an output disturbance, where u(t)=1,t>7sec and u(t)=0,t<7sec.

The simulation results are shown in Fig. 5.4(a)-(c).
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Fig. 5.4 (a) Simulation results when-considered-both input and output disturbances of

part 1 —example 1

(b) Detailed response from 4 sec to 6 sec of Fig. 5.4(a)

(c) Detailed response from 6 sec to 8 sec of Fig. 5.4(a)

In Fig. 5.4(a)-(c), we observe that suppressing the input disturbance will also reduce the

influence of the output disturbance. That is because the output sensitivity function is

the same as the input sensitivity function in SISO system. Consequently, large

bandwidth low-pass filter, i.e. Q,(s) indicates better disturbance rejection. In Fig.

5.5(a)-(b), we plot the frequency responses and phases of the nominal plant and the ones

from 1/O points of DCFDOB with Q,(s) and Q,(s).

102



(6op) eseyd

10*

10°

10™

Frequency (rad/sec)

Fig. 5.5 (a) Frequency responses (b) phase plots of nominal plant and the ones from

I/0 points of DCFDOB with Q,(s) and Q,(s)

Fig. 5.5(a)-(b) show that the DCFDOB can push the actual plant to nominal plant within

In Fig. 5.5(a), the frequency response from 1/O points of

the rejection bandwidth.

DCFDOB with Q,(s) and overlaps the one of nominal plant before 100 rad /sec, but

In Fig. 5.5(b), the phase of

the one with Q,(s) overlaps only before 50 rad /sec.

DCFDOB with Q,(s) overlaps the one of nominal plant before 10 rad /sec while the

In general, the wider bandwidth

one with Q,(s) overlaps only before 2rad/sec.

the filter has, the closer the approximation will be.

Next, we will apply the DCFDOB to a MIMO, stable, minimum phase system in
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numerical part 1-example 2.

Example 2: Suppose a simple MIMO system with 2x2 dimension is given as

follows.
1 2
o _ S+5 s+46 {A B}
n 5 3 CID
S+7 s+8
-5 0 0 0 1 0
0 -7 0 0 |22361 0 (5.7)
0 0 6 0 0 1.4142
1o o0 0 _8 0 17321
1 0 14142 0 0 0
0 22361 0 17321| 0 0 |

The transmission zeros of the system lie.in.-8.2527 and -4.7373 and the control gain

matrix F and the observer gain matrix L are given as follows.

[-0.0176 -0.4815 02848 0.1536 8)
"] 01660 02416 -2.1122 -1.1077 '
~30 0
0  -0.8944
L= (5.9)
141421 0
0 3.4641

The corresponding coprime factorization factors can be obtained by Egs. (1.10)-(1.11).
To eliminate both input and output disturbances, we adopt the solution, Q = Nn‘l 2JWY

which stated in section 3.1 to achieve this aim and is shown in Eq. (5.10).
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Q= Nr;l'*] 'YI71

— |:Qll Q12 :|
QZl Q22

24200 (s +12) (s +11) (s +10) (s +5.672) (s* +10s + 24.5) (s> +11.75s + 36.86)

Q11 (S) = 2 2 2
(s +200)% (s +8.547) (s + 3.742) (s +11s +30.61) (s> + 21.295s +126.4)

_ 3562(s+12) (s +11) (s +10) (s* +10s + 24.81) (s* +13.58s + 46.1) (s* +12.27s + 46.48)
Qu(9)= (s +200)2(s +8.21) (s +8.006) (s + 3.742) (s> +115 +30.61) (s> +21.29s +126.4)

_ -15592 (s +12) (s +11) (s +10) (s +5.662) (s* +9.985s + 24.93) (s° +14.78s + 60)
Qu ()= (s +200)% (s +8.547) (s +3.742) (s® +11s + 30.61) (s> +21.29s +126.4)

_ -2786(s+10) (s +11) (s+12) (s+7) (s +5)?(s* +15.78s + 74.7)
Quz() = (s +200)2 (s +8.547) (s +3.742) (s +11s +30.61) (s> +21.29s +126.4)

(200)?
3 _| (s+200)°

(200)?
(s + 200)2

(5.10)

d. d
The frequency responses from [d"l} and [d“} to B’l} of Fig 3.1 are shown in
i,2 0,2 2

Fig. 5.6(a)-(d) and the simulation results are shown in Fig. 5.6(e) where the input

u(t->5)

d
disturbances are D. ={ "l}={ )
sin5-t

T, } , output disturbances are given as
I

d,, t r
D,=|," " |=|_. and the reference command =0.
d,, 5sint r

2
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© | ">y, d|."|—>y, and(e) simulation results of part 1 - example 2
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From Figs. 5.6(a)-(d) it is clear that in low frequency ranges, the DCFOB attenuates
both input and output disturbances to system outputs very well. In Figs. 5.6 (a) and (d),
we observer that the magnitudes of frequency responses from d,, to y, and d,, to
y, close to 0dB in high frequency ranges, i.e. high frequency output disturbances will
directly influence the outputs beyond rejection bandwidth. From Fig. 5.6(e), the

uncompensated outputs i.e. the open loop, are much larger than the ones compensated
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by DCFDOB, it reveals that the DCFDOB structure can not only apply to MIMO
system but also eliminate various kinds of input and output disturbances at the same

time.

5.2 Numerical example part 2: non-minimum phase plants

In the first example of part 2, an unstable, non-minimum phase, SISO plant
with output feedback controller is used and the second example of part 2, a stable,
non-minimum phase, MIMO plant is considered.

Example 1: An unstable and non-minimum phase SISO plant is given as

0.2s—- 20
P()=—— 5.11
&)= (5.11)

Its unstable pole locates at 20 ‘and a single real RHP-zero locates at 100 . The
control gain matrix and observer gain matrix are given as F =[-80], L =[38.75] and

then the corresponding coprime factorization factors are obtained as:

M. :S_ZOGRHOO,N” :O.ZS—ZOGRHDO
s+60 S+ 60

y _S+1300 ~ —3100

r € [
s+600

(5.12)

P = eRH_
s+600

In this example, one gives two different weighting functions as in Egs. (5.13) and (5.14)

to show the flexibility in designing Q(s).

1x10°8
-_— 5.13
' 5x10°s+10 (13)
2
16.78(s® +1.6s +120) (5.14)

2" (s+2x10°)(s? + 0.1+ 100)
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W, is a low-pass filter with high DC-gain and W, contains large magnitude peak at
10rad/sec. According to paragraph 2.2.2, one obtains the corresponding optimum

parameters Q,, (s) and Q, (s) in Egs (5.15) and (5.16), respectively.

4 2
Q, = (s+;1><10 )(s +6) : (5.15)
© (s+301)(s® +289s+2.17 x10%)
s+3.52x10*)(s +6)%(s? +1.9725 +113.8
Qu ( )(s+6)7( ) (5.16)

" (s+278.3)(s? +1.65 +120)(s? + 267.85 +1.97 x10°)

Moreover, model reduction method proposed by [15] is also applied to this example and

the approximated minimum phase plant G, is
38.3913
= T 5.17
PPY 54+1.6356 (.17)
and its corresponding parameter is Q =Gt -J(s), J(s)= 1000
reduction approx ' S2 +44713+1000 '
To stabilize this unstable system; an output feedback controller K(s) :0'—7155 is
+

given. Figure 5.7 shows these three corresponding input sensitivity functions. From
Fig. 5.7, it reveals that the sensitivity functions which added W,(s), W, (s) are almost
the same in the whole frequency ranges except a notch response located at 10rad/sec,
and the rejection capability of our method is better than the one proposed by [15]. The
waterbed effect caused by the RHP-zero is obviously and the limitation of crossover
frequency @, is 47 rad/sec. In time domain simulation, the reference r=0 and a
complex input disturbance d, =0.2xsin(10-t) +u(t—5) is given and output responses

are shown in Fig. 5.8(a)-(c).
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Fig. 5.8 (a) System outputs of simulation results of part 2 — example 1

(b)System output y,, of DCFDOB with parameter Q,, (s)
(c) System output y,, of DCFDOB with parameter Q,, ()
In Fig. 5.8(a), a large disturbance influence also remains in the output by using

reduction method [15] but almost be reduced in the ones by our structure. In Figs. 5.8

(b) and (c), the output y,, compensated by DCFDOB with parameter Q,, (s) remains
slight oscillation cased by the specific sinusoid disturbance and 'y, decays toward
zero when Q, (s) is adopted in DCFDOB. This is beneficial and flexible in
designing when a system encounters a.:specific frequency of sinusoid wave type
disturbance with unknown magnitude-such like cogging force of constant speed motor,

unbalance force of magnetic levitationrotor system and cutting force of milling system.
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Example 2: In the second example of part 2, one gives a simple 2x2 MIMO, stable

and non-minimum phase plant as a numerical example and the nominal plant and its

state-space realization are given as follows.

s-10 1
p _|s*+55+6 s+4 _
n 1 s—20
s+3 s® +5s+12
[-0.5384 -1.8968 0 0 0 0 -1.076 0 |
18968 —-4.4616 0 O 0 0 1.469 0
0 0 -3 0 0 0 1 0
Al B 0 0 0 -4 0 0 0 1
{C D} 0 0 0 0 -08329 -29205| 0  1.4088
0 0 0 0 29205 -4.1671 0 -1.7276
1.076 1.469 0 1 0 0 0 0
0 0 1 0111~1.4088 -—1.7276 0 0 |
(5.18)

The system poles locate at -3, -2, -4, —2.542.3979 and it contains a LHP-zero
locates at -4.0494 and a RHP-zero locates at 5.8070. The corresponding coprime

factors are obtained and given in appendix A and then the parameter Q(s) can be

obtained according to section 3.2. Furthermore, assume the input disturbances is

d, inl L
Diz{ Ill}: 2XS'”(5) , Where u(t)=1t>25sec and u(t)=0,t<25sec .
' 5-u(t-25)

t

q h
Output disturbances are given asD, =| *'|= 5 . For eliminating low
Tl 5xsin(£)

frequency disturbances and keeping small DC-gain of S, and S,, a weighting

0!
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3 3
s+0.05 s+0.05

function matrix WM:diag[ } with  3rad/sec  crossover
2x2

frequency and 35.6dB DC-gain is given. The frequency responses of sensitivity

functions from D, and D, to system outputs [yl} of Fig. 3.1 and the regulation

2

results are shown in Figures 5.9(a)-(e).
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Fig. 5.9 Frequency responses from (a) [d"l} -y, (b){d“z} >y, (C){dli} Y,
0,1 0,2 0,1

d.
(d){OI "2} — Yy, and (e) simulation results of part 2 - example 2
0,2

Obviously, compared Figs. 5.9(a)-(d) with Figs. 5.6(a)-(d) of example 2 of part 1, the

sensitivity functions with large peaks caused by RHP-zeros and greater than 0dB are
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present. Consequently, the outputs compensated by DCFDOB are better than the ones

without compensating.

5.3 Numerical example part 3:non-square, minimum phase plants
Example 1: a2 3x2 thin plant case

In this paragraph, a non-square 3x2 MIMO, stable, minimum phase plant with 2
inputs and 3 outputs is given as a numerical example and we discuss input disturbance
rejection and output disturbance rejection, respectively. In output disturbance rejection
issue, we demonstrate three solving methods, in the first design, we use the same
solution obtained from input disturbance rejection. - In the second design, we focus on
eliminating some selected channels “disturbances. In the third design, we focus on
eliminating the diagonal terms of output sensitivity functions. The nominal plant and

its state-space realization are given as follows.
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g » 7
Pn,3><2 = E m =
2 5
s+5 s+4
-5 0 0 0 0 0 1 0
0o -7 0 0 0 0 2 0 (5.19)
0 O -5 0 0 0 1.4142 0
AlB 0 O 0 -6 0 0 0 1.4142
{C D} =10 O 0 0 -8 0 0 1.7321
0 O 0 0 0 -4 0 2.2361
1 0 0 1.4142 0 0 0 0
0 2 0 0 1.7321 0 0 0
| 0 0 14142 0 0 2.2361 0 0 |
and the control gain matrix, F , and observer gain matrix, L, are
-0.71741 -1.0721 -1.0146 0 0 0
:{ 0 0 0 —0.75888 —0.73805 —1.6646}
—0.82658 0 0 —0.98894 0 0 (5.20)
L= 0 -1.1319 0 0 —0.86947 0
0 0 —-0.90878 0 0 -1.7212

The corresponding coprime factors are obtained and given in appendix B. According

to Table 3.2, the design objective of input disturbances elimination is

~ J 0
Qoo Yo Niso :[ 81 ] } where J, (i=1~2) are low pass filters with desired
22

bandwidth and the parameter Q,,(S) is shown in appendix B. Assume the input

,(t-2)

., where u,(t)=1t>2sec and
UZM} @

d
disturbances are D, = {d"} ={
i,2

u,(t) =1t >7sec and the simulation block is shown in Fig 5.10.
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Fig. 5.10 Simulation block of humerical example part 3 — example 1

Figure 5.11(a) show the input disturbances rejection: results with/without DCFDOB and

Figs. 5.11 (b) and (c) display the detailed output response from 1.5 sec to 3.5 sec and

from 6.5 sec to 8.5 sec, respectively. Fig. 5.11(d) shows the system outputs without

DCFDOB. From these figures, we knew that even in non-square plant, the DCFDOB

performed very well in eliminating input disturbances.

115



—— Output Channel # 1

T
|
| —— Output Channel # 2
|

10
(d) Time(sec)

Fig5:11
(a) Simulation results of non-square-thin plant with DCFDOB and input disturbance
(b) Detailed responses from 1.5 sec to 3.5 sec of Fig. 5.1(a)
(c) Detailed responses from 6.5 sec to 8.5 sec of Fig. 5.1(a)
(d) Simulation results of non-square thin plant without DCFDOB

Figures 5.12(a)-(d) show the frequency responses of input sensitivity functions.
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Fig. 5.12 Frequency responses of input sensitivity functions of part 3 — example 1
(@S, :di; >y (b) Sipidi, >y
(©)S;,:diz =y (M) S5d, >y,
In Figs 5.12(a) and (d), i.e. the diagonal terms, hold low magnitudes (-50dB) in low
frequency ranges and the magnitude of the couple terms shown in Figs. 5.12 (b) and (c)
are almost zeros (-300dB).
After that, we will discuss the influence of output disturbance on non-square thin
plant. In the first design of output disturbance elimination on non-square thin plant,

we use the same solutions that obtained in example 1 of part 3 and shown in Eq. (B.7)

in appendix B.
do,l Ul(t—2)

Output disturbances are given as D, =|d,, |=|u,(t-5) |, where u,(t)=1t>2sec,
do,S Us(t—7)
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u,(t)=1t>5sec and u,(t)=1,t>7sec. The simulation results are shown in Figs.
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Fig. 5.13 Simulation results of output disturbances on non-square thin plant — design 1
Figure 5.13 illustrates that the capability is not good in rejecting output disturbance in
non-square thin plant case and performance limitation was discussed in paragraph 3.4.1.

Moreover, the frequency responses are shown in.Figs. 5.14(a)-(i).
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Fig. 5.14 Frequency responses of output sensitivity functions (design 1)
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of part 3 —example 1

(@S, :dgy =Y, (0)S,,:d,, =Y, (€)S,15:d05 =Y,

(d)Sy,:dey =Y, (€)Sep:dy, =Y, (S,,5:d05 =Y,

(@) Soa idos = Y5 (M)S,5:de, > Y3 (1)S,5:d05 > Vs
From Figs. 5.14(a)-(i), although these sensitivity functions are all below 0dB in low
frequency ranges, the magnitudes of some sensitivity functions in low frequency ranges
are still too large, e.g., S,,;, and S, , . Moreover, the coupling terms of input
sensitivity functions shown in Figs. 5.12(a) and (d) are almost zero (-300dB) but the
ones of output sensitivity functions are not small enough. That is, coupling effects will
worsen the eliminating performance. «According to Table 3.2, in the second design, we
focus on eliminating the output disturbances of the first and the second channels. The

solutions can be obtained by reducing the influence from [do,l dO’Z]T to [y, v,[.

that is,
(Nlell + l}l_lezl)Yl nTt (N}lQll + |Y_lezz )YI,21 =J
(l:lllQll + l}l_lezl)Yl 12T (Nllle + lesz)Yl,zz =0 (5 21)
(l:llen + NZZQZl)YI,ll + (Nlelz + szsz)Yl,ﬂ =0
(N21Q11 + N22Q21)YI 12Tt (N21Q12 + N22Q22 )Yl,zz =J
10° .
where J = —( 10)? and Q,,,(s) are obtained as follows.
S+
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|:Qll Q12:| —
Q21 QZZ
0. - 129.2(s +10.52)(s + 7.86)(s + 5.78)(s + 5.04)(s? +15.765 + 62.48)
H (s+10)%(s +8.42)(s +8.36)(s + 4.64)(s + 4.58)

Q, = _182.1(s +11.29)(s +8.16)(s + 7.01)(s + 7)(s + 5.43)(s +5.27)(s + 9)

= (s +10)% (s +8.42)(s +8.36) (s + 4.64)(s + 4.58)(s + 4)
0, - _125.1(s +10.52)(s +8.14)(s + 8)(s + 6.35)(s + 6)(s + 5.78)

2 (s +10)%(s +8.42)(s +8.36)(s + 4.64)(s + 4.58)
_ 205.48(s +11.79)(s +8.25)(s + 7.81)(s + 7.01)(s + 5.27)(s® +10.77s + 29.21)
- (s +10)>(s +8.42)(s +8.36)(s + 4.64)(s + 4.58)(s + 4)

Qz

(5.22)

The time domain simulations are given in Fig.5.15, where the output disturbances are

u,(t—2)
givenas D, =|u,(t—-5)| and reference commands are zeros.
us(t—7)

Time(sec)

Fig. 5.15 Simulation results of output disturbances on non-square thin plant — design 2
The simulation plots show that the influences from [dO’1 doyz]r to [y, vy, are

reduced when t<7sec. However, the third output channel, y,, is coupled by the

compensated signals of the first and the second input channels. All channels are
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influenced after the disturbance of third channel raised after 7 seconds. The frequency

responses of the nine channels are shown in Fig 5.16(a)-(i). In Figs. 5.16(a), (b), (d)

d
and (e), the magnitudes of output sensitivity functions from [ d“} to Bl} are all
0,2 2

below -40dB in low frequency ranges but the others output sensitivity functions are all

greater than 0OdB.  As we mentioned in section 3.4, the sensitivity functions from d,

to [y, y, y,] andtheonesfrom [d,, d,,]' to y, arenotguaranteed.

Magnitude(dB)

Magnitude (dB)

Magnitude(dB)

I
I
- -60 ! 0
10 10° 10° 10 10° 10° 10? 10° 10°
(9) Frequency(rad/sec) (h) Frequency(rad/sec) ()  Frequency(rad/sec)

Fig. 5.16 Frequency responses of output sensitivity functions (design 2)
of part 3 - example 1
(@) S, 1doy =Y, (0)S,,:d,, >y (€)S,13:de5 > Y,

(d) Soon do,l Y, (&) So.2 :do,z Y, (f)so,zs :do,3 —Y,
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(@)Soa:dos = Y5 (MSgz:de, > Y5 (1)S,5:des > Y3
In the third design for output disturbance rejection, we focus on reducing the
diagonal terms of output sensitivity function matrix to eliminate the direct disturbance
effect on each channel. The solutions can be obtained by solving the following
equations.
(N Qi + NpQ )Yy 11 + (N1 Qyy + N, Q)Y 51 = J

(|\~|’21Q11 + N’ZZQZl)YI 2t (N21Q12 + l}!zzsz)Yl,zz =J
(N31Q11 + N32Q21)Y| 13T (N31Q12 + Nazsz)Yl,za =J (5-23)

;- 10
(s +10)?

The time domain simulations are given in.Fig.5.17, where the output disturbances are

ul(t_z)
alsogivenas D, =|u,(t—5) | andreference commands are zeros.
us(t—7)
10 T T T T T T T T T
| | | | | | | | |
| | | | | | L
l l l l l l l'.' l l
YIS N 7 S S
| | | | | \.l | |
| | | | | | \’ | |
| | | | | | I | |
| | | | 5\ | \I' | |
0 f il oo il it AR
Coh L N AT
| Iy | | | | | | |
| \‘\‘ | | | | | | |
| | S, | | | | | | |
L S S S S R R P
| | | | [ | | | |
| | | / [l | | | |
| | | | \I. | | | |
| | | | Iy | | | |
| | | | 11 | | | |
'10**”!’”’!’”’1’”’ ”T.!”’T”’T”’T”’T””
D A U
| | | | | \' | | | |
| | | | N (3 | |
| | | | | Srmim— S ——— q———
_15 | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10

Time(sec)
Fig. 5.17 Simulation results of example 5.3 part 1 — design 3

From Fig. 5.17, we obtain that the influence from d,, to y, of is eliminated when
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2<t<5, however the others channels outputs will be coupled. Also, the same

phenomenon in the second and the third channels can be obtained when 5<t<7 and

7<t<10, respectively. The frequency responses of design 3 are shown in Figs

5.18(a)-(i).

Magnitude (dB)
Magnitude (dB)
Magnitude (dB)

Magnitude (dB)
Magnitude (dB)
Magnitude (dB)

Magnitude (dB)
Magnitude (dB)
Magnitude (dB)

(9) (h) )
Frequency (rad/sec) Frequency (rad/sec) Frequency (rad/sec)

Fig. 5.18 Frequency responses of output sensitivity functions (design 3)
of part 3 —example 1
(@S, :dgy =Y, (0)S,,:d,, =Y, (€)S,15:d,5 =Y,
(d)Syp:des =Y, (€)Se0:dy, =Y, (S,,5:d0, =Y,

(9) Soa do,l —>Yy; (h) Som :do,z —>y; (i) S :do,a —Y;
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After these three demonstrations of output disturbance rejection for non-square, thin
plant case which contains n input channels and m output channels (n<m), we
knew that only n® output sensitivity functions can be considered and the others

m®—n? ones are not guaranteed.

Moreover, the transfer function matrix from input disturbances d, to estimated
input disturbances &i IS Qup Yo NHYM and its matrix rank is 2, that is, it is full
rank and there exist exact solutions of Q,_,. In contrast, one can not obtain the exact
solutions since the number of unknown parameters of transfer functions matrix from
output disturbances d, to plant outputs (Point 1in Fig. 3.1), P, ., Q. M 100V, 2eas
are less than the one of desired equations.

Example 2: 2 2x3 wide plant case

For wide plant case, a 2x3 non-square, stable, minimum phase plant with 3

inputs and 2 outputs is given as the second numerical example. The nominal plant and

its state-space realization are given as follows.
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1 7 2
P. —|S+t2 s+7 s+3
n,2x3 2 3 5

S+6 s+8 s+4

-5 0 0 0 0 0 1 0 0
0 -6 0 O 0 0 [14142 0 0
0o 0 -7 0 0 0 0 2 0
A|B] |0 0 0 -8 0 0 0 1732 0
{c D}_ o 0 0 0 -5 0 0 0 14142
o 0 0 O 0 —4 0 0 22361
1 0 2 0 14142 0 0 0 0
|0 14142 0 1732 0 22361| 0 0 0
(5.24)

and the control gain matrix, F , and observer gain matrix, L, are given as follows.

[-0.82658 —0.98894 0 0 0 0
F= 0 0 ~1:1319. - 0.86947 0 0
0 0 0 0 -0.90878 -1.7212
[—0.71741 0
0 —0.75888 (5.25)
L -1.0721 0
0 —0.73805
~1.0146 0
.0 —1.6646 |

And the corresponding coprime factorization factors can be obtained by Egs. (1.10) and

(1.11). According to Table 3.2, the design objective of output disturbances elimination

.o~ J, O
IS Nn,2x3 'sts 'Yl,sxz = 0 J
2

} , Where J,(i=1~2) are low pass filters with
2x2

desired bandwidth. Obviously, there are 9 unknowns parameters, Q,, ~ Q,;, and only
4 equations, namely, only four parameters are needed . In this case, we choose Q,,,

Q. Q. and Q,, which are solved as follows.

125



Q. O
sts (S) =1 0 sz
Q31 Qsz 0

0
0

Qu(s)=—=—= JZZN[‘BY"E} + 911N 2sY120
(NoisNo = NN )Y = YiaYiz2)

Q,(8)=—=—= J22 NglEYlg + Ny 23V, (5.26)
(Nps Ny 2 — _'EIn,lZ Nn,23)(YI,1_}_Y|,22 _Y|112Y|,21)

Qu(8) =—= — Iz N~”’11Y121 —JuNi2Yi
(Nn,lan,zl _~Nnylan,23)(Yl,12Y|,21 _YI,11Y|,22)

Qu(S) = —~—— J2 N112Y|i1 +JuN, %Y1,
(N, 15N = No N )Y oYs0n = YiarY o)

where J;,(s) = J,,(s) = % . The output disturbances are given as

dol Ul(t—Z)
D, =, |= , Where u(t)=1Lt>2sec and u,(t)=1t>5sec . The
d0,2 Uz(t—5)

simulation result is shown in Fig. 5.19 and- frequency responses of output sensitivity

functions are shown in Fig. 5.20.

Simulation results of non-square wide plant with DCFDOB and output distrubances
T T

of——fF -4+ ——d—— 4 — 4 ——

Time(sec)

Fig. 5.19 Simulation results of output disturbances for non-square wide plant

126



Frequency responses of output sensitivity functions
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Fig. 5.20 Frequency responses of output sensitivity functions of part 3 — example 2
(a)so,ll : do,l = Y (b) So,12 :do,z —>Y

(C)So,zl : do,z —>y, (d) S0/ :do,z Y,

To eliminate the input disturbance, the design objective becomes

Qs Vg NnM = 0 J,, 0 |. Itseems that we can design nine parameters,

~

Q. ~ Q,;, to satisfy nine equations, however, if we rewrite Q,,-Y,,, N, ,; as a

linear equation, AX =B, where
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_ i -
0
0
ALe ke (O N :
[0]3><3 [Al]sxs [O]sxs , X= 312 , B=1Jy (5.27)
b, [, (L, | 0
Qs Jo 0
0
_J33_9><l
N: Y ¥ Nn 211 N: Yio+ Nn 217122 @n,llYl,Sl + N:n,ZlYI,SZ
and A'= N it Nn 2Y112 'E{ Vit Nn 2122 Nn,lZYI,Sl + Nn,ZZYI,SZ
NoisYia + Nn,23YI,12 NossYia + Nn,stl,zz NoisYia + No2sYiz

Furthermore, matrix A' can be reduced as follows by row reduction.

_l 0 Y|,22Y|,31 _Y|,21Y|,32 ]
N Y| ,12Y| 21 + Y| ,11Y| 22
A'reduced “lo Y|,12Y|,31 _Y| ,11Y|,32 (5.28)
YI ,12Y|,21 _Y| ,11Y|,22
00 0

and rank(A' . .q) =2, i.e. rank(A)=6. Also, matrix [A|B] can be reduced by
row reduction and we obtain that rank([A |B]) =7, that is, the system is inconsistent
and has no analytic solutions. Consequently, the performances of input disturbance
rejection in wide plant system will not be good enough and a similar phenomenon as the
output disturbance rejection in thin plant system will be obtained. We ignore the

numerical simulations for input disturbances rejection in this thesis.
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5.4 Numerical example part 4: the loop-shaping design method

In part 4, one demonstrates the steps of H_- loop shaping design method of robust

DCFDOB that developed in sections 4.3 and 4.4. A simple MIMO nominal plant is

given as
12
_|s+5 s+6
Pn_i i =
s+7 S+8
-5 0 0 0 1 0
-7 0 0 223 0 (5.29)
0 1.414

0
AlB] |0 0 -6 0
{c D} 0 0 0 -8/ 0 1732
1 0 1414 0 | 0 0
0 0

2.236.100,, 1732 0

The corresponding normalized coprime factorization factors are given in appendix C.

Figure 5.21(a) shows the singular: values-of the nominal plant. A dynamic

5(s+0.45) 5(s+0.45)
S S

pre-weighting matrix W, =diag{ } contains an integral pole
22

and a zero at -0.45 is in use to improve low frequency performance and increase the

crossover frequency. The singular values of the shaped plant P, =W,PW, are shown

in Fig. 5.21(b).

Moreover, W, is an identity matrix. Figure 5.21(b) displays

o(W,PW,) >>1 in low frequency ranges and & (W,PW,) <1 in high frequency ranges,

l.e. it satisfies the shaping criteria for good performance and robustness. The

crossover frequency of o(W,PW,) and &(W,PW,) is 1rad/sec and 30rad/sec,

respectively.
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Fig. 5.21 Singular values: (a) the nominal plant (b) the shaped plant W,PW,

A solution K_ that satisfies Eq. (4.36) (s =1.2894) is obtained by Eq. (4.21) to Eq.

(4.25) and the final reduced DCFDOB K ., -and parameter Q are derived from Eq.

(4.37) and Eq. (4.38), respectively. Figure 5.22(a) and 5.22(b) show the upper / lower

singular values of K P, and P K., respectively and the crossover frequencies of

Figure 5.23(a) and 5.23(b)

oos) are about 20rad/sec .

c(KyeP,) and & (P,K

show the input and output sensitivity functions with the largest peak of 1.0355 and

1.0356, respectively. However, the controller reduction problem is considered to

overcome a numerical problem: the extremely high order of parameter Q that derived

In this example, a reduced parameter Q,_, matrix containing six

from Eq. (4.38).

orders elements is obtained using frequency matching and shown in appendix C.
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Figures 5.24(a) and 5.24(b) plot the frequency responses of the origin parameter matrix

Q,., and the reduced parameter matrix, respectively.

Singular value of Input loop transfer matrix

Singular value of Output loop transfer matrix

10°

Singular value of Input sensitivity function

rad/sec

rad/sec

Fig. 5.23 Singular values of (a) input sensitivity function and
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(b) output sensitivity function

From: In(

To: Out(1)

Magnitude(dB)

To: Out(2)

To: Out(1)

Magnitude(dB)

To: Out(2)

rad/sec (b) rad/sec

Fig. 5.24 Frequency responses of (a) the origin parameter matrix Q,, and

(b) the reduced order parameter matrix

Figures 5.25(a) and 5.25(b) show the singular values of the original parameter matrix

and the reduced parameter matrix, respectively. Moreover, the largest peaks of the

input and output sensitivity functions with reduced Q filters are 1.0355 and 1.0356,
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In Fig. 5.25(a), the singular values with original parameter matrix almost

respectively.

overlap with the ones of the reduced parameter matrix except a slight deterioration in

low frequency. And a similar phenomenon is observed in Fig. 5.25(b), i.e. the

Figures 5.26(a)-(d) present the unit step input /

parameter reduction is acceptable.
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output disturbances rejection performance with plant uncertainty
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Input disturbances D, :{
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Fig. 5.26 Simulation results with various uncertainty norms of part 4
AN
Ay .
AN
AM

Figures 5.27 - 5.34 show the singular values of achieved loops and corresponding upper

@) = 0.2254

Ay
ool

©) =0.4111

AN
=03044 @) |
M

0

boundaries of Egs. (4.45)-(4.52). According to Egs. (4.45)-(4.52) and corresponding
Figs (5.27)-(5.34), we know that these upper boundaries only depend on yg, W,, W,

and P,, that is the designer can select the weighting functions much more visually and
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quickly. Take Fig. 5.27 for example, if a stability margin y., a nominal plant P, i.e.

M, and weighting function W, are given, the upper boundaries of & (S;) can be

obtained immediately without solving the controller K_ in Eq. (4.36).

Gain from di to Y4 of Figure 4.10(a)

——

Pttt

|

|

1
10’

10"

10°

107

Frequency(rad/sec)

Fig. 5.27 The & (S;(jw)) and its corresponding upper boundaries plots of Eq. (4.45)
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Fig.5.29 The &(5;Kyps(jw)) and
its corresponding upper boundaries plots of Eq. (4.47)



Gain from d,toy, of Figure 4.10(a)
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Fig.5.31 The & (KyesS,P,(j®)) and
its corresponding upper boundaries plots of Eq. (4.49)
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Gain from do toy, of Figure 4.10(b)
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Fig.5.32 The & (KyesS,(j®)) and

its corresponding upper boundaries plots of Eq. (4.50)
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its corresponding upper boundaries plots of Eq. (4.51)

Gain from d to y,, of Figure 4.10(b)
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1
Frequency(rad/sec)
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Fig.5.34 The & (S,(jw)) and its corresponding upper boundaries plots of Eq. (4.52)
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5.5 Part 5: experimental results of an AC servo motor

After showing these numerical examples, one demonstrates that this DCFDOB structure
can be applied to general system cases and deal with input and output disturbances.
An experiment result of a rotate positioning control for an AC servomotor system and
cogging force suppressing will be shown in the following.

In general, the electronic dynamic is so fast that the transfer function of AC servo
driver can be treated as a constant gain. For simplicity, the high frequency modes
coming from both the support mechanical structure of the motor and electronic system
are ignored. The transfer function from input voltage to output rotating position can be
simplified as Eq. (5.30) and the physical parameters of experiment are given in table

5.1.

o KoK 40
" s(J,5+B,) 5(15.9183-s+65.5164)

(5.30)

where K, is torque constant and K, is the driver’s constant. Furthermore, the

corresponding coprime factors are given as below

_ sP+4.241s N = 2.513
" 5% +4130s + 4200 " 5% 4+130s + 4200
X = s? +2626s+1.878x10° v - 8.172x10"s +2.608x10°
" 5% +2500s +1.560x10° " 5% +2500s +1.560x10°

(5.31)
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Table 5.1 Physical parameters of AC servomotor of experiment

Parameter Value Unit
Inertial, J_ 15.9183 Kg -m?
Viscous, B, 67.5164 | N -m-sec/rad
Electronic system gain constant, K, -K, 40 Nt/Volt
Encoder Resolution 8000 counter/rev

Since the servomotor system is a minimum phase system, the parameter Q(s) is
designed as Q(s)=J-N_'-Y,*(s)- to suppress input disturbances, i.e. cogging force
and Coulomb friction force, and a low-pass.filter with bandwidth of 508rad/s and an

output feedback controller K(s) are given as

10°
IS)=—"—= (5.32)
(s+1000)
8.172x10" (s +31.91
K(s)=— ( )6 (5.33)
(s? + 2626s +1.878x10°)

The position command is given as an S curve and motor position arrives at 4000 counts

(half revolution) at 5sec.  The tracking responses and tracking errors are plotted in Figs.

5.35(a)-(b). From these figures, the tracking error without DFCDOB compensation is

influenced by not only cogging force but also measurement noise and the error of

compensated one only influenced by measurement noise and constant tracking error.
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Tracking errors from 1sec to 4sec (constant rotating speed) and each frequency analysis
are shown in Fig. 5.36(a)-(d). The uncompensated tracking error is about 40-60 counts
and the cogging force makes the tracking error approximate sinusoid wave and the
compensated one is about 10 counts. From the frequency analysis plot in Fig. 5.36(c),
there exists a peak around 1.2Hz. Comparing the one using DCFDOB at the same

scale of Y-axis in Fig. 5.36(d), one finds that the influence of compensated one almost

invisible.

Tracking Responses

Position(count)

Tracking error(count)

| | |
| | |
l l l
0.5 1 1.5 2 25 3 3.5 4 4.5 5
(b) Time(Sec)

-50
0

Fig. 5.35 (a)Tracking responses of 4000 counts position command

(b) Tracking errors of 4000 counts position command
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Fig. 5.36 (a) Tracking errors without DCFDOB from 1 sec to 4 sec
(b) Tracking errors with DCFDOB from 1 sec to 4 sec
(c) Frequency analysis of Fig. 5.36(a)
(d) Frequency analysisof Fig. 5.36(b)

Figures 5.37(a)-(b) and 5.38(a)-(b) show the extra-low rotating speed experiment
results which rotating at 0.01rev/sec and 0.005rev/sec and the position arrives 400
(18°) and 200 (9°) counts at 5sec, respectively. The tracking response which without
disturbance compensator has large tracking error and the friction also influences the
positioning accuracy seriously. The root-mean-square values of compensated tracking

error is about 1.8691 counts (0.0837°) and 1.2709 counts (0.0572°), respectively.
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Fig. 5.37 (a)Tracking responses of 400 counts (18°) position command

(b)Tracking error of 400 counts(18°) position command with DCFDOB

Tracking responses of 200 counts position command
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Fig. 5.38 (a)Tracking responses of 200 counts (9°) position command

(b)Tracking error of 200 counts (9°) position command with DCFDOB
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CONCLUSION AND FUTURE WORK

This dissertation provided a new Doubly Coprime Factorization Disturbance

Observer structure that motivated from Bezout Identity and doubly coprime factorization.

After introducing the DCFDOB structure, one analyzed the properties of this structure

and presented how the parameter Q(s) be designed. Moreover, this dissertation also

discussed the waterbed effect, model matching method and system robust stability as

well as input and output disturbances for generality. When the plant is non-square, the

non-square type will restrict the capability of disturbance elimination and we knew that

to eliminate the input disturbance completely, the output channel numbers must greater /

equal than input channel numbers -‘and duality. Finally, four numerical examples are

presented to demonstrate the design methods..~One also studied Vidyasagar’s structure

and combined it with our DCFDOB to form a 2DOF system. The feedback system

which made by Vidyasagar’s structure provides the tracking property while the

DCFDOB provides the disturbance attenuation; furthermore, this novel structure attains

to internal stability. After that, one looked into the plant uncertainty and system

robustness. One of the advantages of the DCFDOB is that the actual plant will be

forced to the nominal plant while the disturbance is rejected. After discussing the

robust properties of the DCFDOB, one discussed how the robust DCFDOB to be

designed to have robust stability under a given plant uncertainty bound. Besides, to
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have the robust performance, the robust DCFDOB is obtained by H_- loop shaping

design method and all closed — loop objectives bounds are guaranteed. In the final

chapter, from the numerical examples, one knew that the design of DCFDOB is more

flexible than the traditional one, and the DCFDOB eliminates both input and output

disturbances simultaneously in SISO and square MIMO system. This is one of the

main contributions of the DCFDOB structure; furthermore, one can also keep down the

influence of plant uncertainties to push the actual plant to nominal plant and design an

outer loop controller for more accurate and simple tracking control. There are still

remaining many interesting topics that can be researched in the future, such as

1. The optimum Q parameter-for non-square plants. For a specific non-square

type, a corresponding index, for.example; the cost function of tracking error can

be found to design the optimum Q parameter.

2. Disturbance rejection in non-square, non-minimum phase plant cases. As

mentioned in chapter 3, the non-square, non-minimum phase plant was formed

as a 4-block Nehari problem. It is a complex problem and can be looked into

in the future.

3. The advanced research such as system robustness for DCFDOB-VS and the

design method for H(s) parameter. In this dissertation, we only used a

simple method to obtain the H(s) parameter in minimum phase plants.
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However, it cannot be utilized in non-minimum phase and non-square system.
The way for designing a better H(s) parameter is an interesting topic.

4. Extend the DCFDOB to the system with time delay. [43] researched the
predictive disturbance observer based control for a time delay system. In
that dissertation, the author decomposed the non-minimum phase into two
parts, the minimum phase part and the non-minimum phase one, to attain to
system stability and realization. This concept is similar to the one of
coprime factorization and some references, [44]-[46], can be referred for this

topic.
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APPENDIX A

The corresponding coprime factorizations of example 2 of part 2 are given as follows.

A+BF | B |-L A+LC |-(B+LD)|L
M, | -Y, : X, |V, :
-l F 110 ||—=+=1|=| F | 0l (A
N, | X, | |z-—===1-=- F-= =N, | M, | |-—=——f-——-- =
C+DF |D! | C -D 1
where
[~0.5384 -1.8968 0 O 0 o 1 [-1076 0 ]
1.8968 -4.4616 0 O 0 0 1.469 0
0 0 -3 0 0 0 1 0
A= . B=
0 0 0 -4 0 0 0 1
0 0 0 0 -08329 —29205 0 1.4088
0 0 0 0 29205 -41671] | 0  -1.7276]
C_'1.o76 1469 0 1 O 0 oo
1o 0 1 0 -140885-1.7276/"" |0 0
(A.2)
and
[13340 -02195 -0.1958 0.2445 0.4269 0.2392] A3
~1-0.1101 -0.2170 0.6329 -0.1290 -2.0199 0.2657 | '
[-0.7599 -0.1862 01738 -0.0913 -0.1821 0.1580] (Ad)
101208 -0.1394 -0.1012 02323 1.0727 0.2446 '

and the central solution Qo of Nehari problem can be obtained.
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6 -| B@l
Cs | Ds,
(284535 16.0849

Then the parameter Q(s) can be obtained according to Eq. (3.18).
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17.6764 —6.0052 0.1167 —0.3226 | —4.2114 | —0.8456 |
02074 —214223 34811 -24010 -57570 —-2.1393| —0.0501 | —0.5216
81318 301309 -21641 -84116 -8.6214 62997 | —6.5877 | —4.4685
218680 56.3393 481235 -31.1878 -30.0341 114383 | -17.3901 | —10.6469
24.8242  46.9474 36.3134 -26.8365 -27.4543 10.4417 | -12.8833 | —9.6086
0 0 0 0 0 ~0.05 | 00382 | -1.7015
~0.0580 -0.2156 00069 -1.5131  0.6904  0.5816 o | 0
| 01898 03597 -03138 -07476 -01882 -15051] 0 | O |
(A5)



APPENDIX B

The corresponding coprime factorizations of nominal plant of example 1 of part 3 are

given as follows.

1 2
Pn: S-|——7 m :Nn,sxz'Mn,lzxz
2 5
[-5.7174 -1.0721 -1.0146 0 0 0 1 0
-1.4348 -9.1442 -2.0291 0 0 0 2 0
-1.0146 -1.5162 -6.4348 0 0 0 14142 0
v | 0 0 0 -7.0732 -1.0438 -2.3541| 0  1.4142
n&2 0 0 0 -1.3144 -9.2783 -2.8832| 0 1.7321
0 0 0 -1.6969 -1.6503 -7.7222| 0  2.2361
0.71741 1.0721 1.0146 0 0 0 -1 0
0 0 0 0.75888-0.73805 1.6646 0 -1
[-5.7174 -1.0721 -1.0146 0 0 0 1 0
-1.4348 -9.1442 -2.0291 0 0 0 2 0
-1.0146 -1.5162 -6.4348 0 0 0 14142 0
0 0 0 -7.0732 -1.0438 -2.3541| 0  1.4142
Noso=| O 0 0 -1.3144 -9.2783 -2.8832| 0 1.7321
0 0 0 -1.6969 -1.6503 -7.7222| 0  2.2361
1 0 0 1.4142 0 0 0 0
0 2 0 0 1.7321 0 0 0
0 0 1.4142 0 0 2.2361 0 0 |
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Xr,2><2 =

[ -5.8266 0 0 -1.169 0 0 1 0
0 -9.2638 0 -1.9605 0 2 0
0 0 -6.2852 0 -2.0321 | 1.4142 0
-0.98894 0 0 -7.3986 0 0 0 1.4142
0 -1.7389 0 -9.506 0 0 1.7321
0 0 -2.4342 0 -7.8488 0 2.2361
0.71741 1.0721 1.0146 0 0 0 0
0 0 0 0.75888 0.73805 1.6646 0 0 |
(B.2)
Yr,2><3 =
[ -5.8266 0 0 -1.169 0 0 0.82658 0 0
0 -9.2638 0 -1.9605 0 0 1.1319 0
0 0 -6.2852 0 -2.0321 0 0 0.90878
-0.98894 0 0 -7.3986 0 0 0.98894 0 0
0 -1.7389 0 -9.506 0 0 0.86947 0
0 0 -2.4342 0 -7.8488 0 0 1.7212
0.71741 1.0721 1.0146 0 0 0 0 0
0 0 0 0.75888._ 0.73805 1.6646 0 0 0
(B.3)
Nn,3x2 =
[ —5.8266 0 0 -1.169 0 0 1 0
0 —-9.2638 0 0 —-1.9605 0 2 0
0 0 —6.2852 0 0 —2.0321 | 1.4142 0
—0.98894 0 0 —7.3986 0 0 0 1.4142
0 —-1.7389 0 0 —9.506 0 0 1.7321
0 0 —2.4342 0 0 —7.8488 0 2.2361
1 0 0 14142 0 0 0 0
0 2 0 0 1.7321 0 0 0
L 0 0 1.4142 0 0 2.2361 0 0 |
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YI,2><3 =

[ -5.7174 -1.0721 -1.0146 0 0 0 —0.8266 0 0
-1.4348 —-9.1442 -2.0291 0 0 0 0 -1.1319 0
-1.0146 -1.5162 -6.4348 0 0 0 0 0 —0.0988

0 0 0 —7.0732 -1.0438 -2.3541 | —0.9889 0 0

0 0 0 -1.3144 -9.2783 -2.8832 0 —0.86947 0

0 0 0 -1.6969 -1.6503 -7.7222 0 0 -1.7212

-0.71741 -1.0721 -1.0146 0 0 0 0 0 0
| 0 0 0 —0.7588 -0.7381 -1.6646 0 0 0 |
(B.5)
~ J, O .
Qoo Yo Niso = , Where J,,(s) isgiven as:
’ ' 0 J,
100
. g 100
s?+4 20s+100
and the reduced order parameter is solved as follows.
QZXZ (S) _ |:Q11 Q12:|
Q21 QZZ
40.2987(s +12.33)(s + 4.546)
Q11 (5) =
(s +11.9)(s +5.155)
21.4218(s +13)(s +4.768)
Q12 (S) ==
(s+12.18)(s +5.864)

Q,.(s) = - 20.5391(s +15.24)(s + 3.935)

2 (s +15.14)(s + 5.644) (B.7)
16.5512(s +12.99)(s + 4.345 '
Q. (s) = ( X )

(s+12.24)(s +6.213)
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APPENDIX C
The corresponding normalized coprime factors of nominal plant of part 4 example are

given as follows.

12
_|s+5 s+6|_ =
Pn_ 5 3 _NnMn
|S+7 S+8
[ —5.0754 -0.69009 -0.09888 -0.50343 1 0

-0.16852  -8.5431 -0.2211 -1.1257 | 2.2361 0
-0.23351 -0.53549 -6.3048 -0.39299 0 1.4142
" -0.28599 -0.65584 -0.37327 -8.4813 0 1.732
-0.075364 -0.69009 -0.09888 -0.50343 1 0
| -0.16512 -0.37865 -0.21551 -0.27789 0 1

[ -5.0754 -0.69009 -0.09888 -0.50343 0 4
-0.16852 -8.5431 .=0.2241 -1.1257 0 0
N = -0.23351 -0.53549 -6.3048 " -0.39299 | 1.4142 0
" |-0.28599 -0.65584 -0.37327 -8.4813 |1.7321 O C.1)
1 0 1.4142 0 0 0
0 2.2361 0 1.7321 0 0]
and the solutions of GCARE and GFARE are
[ 0.096706 -0.0095441  0.12465 -0.006448
X - -0.0095441  0.31289 -0.011526 0.22802
* 0.12465 -0.011526 0.16198  -0.0078333|
| -0.006448 0.22802  -0.0078333  0.16683 €2

[ 0.086946 0.16504  -0.0095599 -0.0088287
0.16504 0.32141  -0.015823 -0.014967
“ 1-0.0095599 -0.015823  0.15754 0.1665
|-0.0088287 -0.014967 0.1665 0.17948

The control gain matrix, F, and observer gain matrix, L, are shown as follows.
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- _[-0075364 -0.60009 -009888 - 0.50343}
| ~0.16512 -0.37865 -0.21551 —0.27789
~0.073427 —0.35376 ©3)
| _| -014267 060277
~0.21324  -0.253
| —0.22664 —0.2774

and the Q(s) filteris

_ Q11 Q12
Q{Qu sz

6247.55° +1.115x10°%s° +4.342x10"s* +4.882x10%s% + 2.1536 x10°s% +3.393x10°s +1.132 x10°

Quls) = s°+1032.7s° +5.659 x10%s* +9.494 x10°s° +5.209 x10°s2 +5.063x10°s +1.087 x 10°
_ —2486.55° —1.340x10°s° —5.849x10"s* —6.659 x10°s® — 2.931x10°s® —4.634 x10°s +1.551x10°
Qu(8) = s® +1032.8s° +5.62x10*s* +9.547 x10°s® +5.264 x10°s% +5.117 x10°s +1.097 x10°
_2483.1s® -1.133x10°s® ~5.573x10"s* —6.678 x10°s® —3.062x10°s* —5.018 x10% s —1.694 x 10°
Qu(8) = s® +1032.15° +5.605 x10*s* +9.244 x10°s> + 4.929x10°s? + 4.808 x10°s +1.037 x10°
0,.(5) = 1010s® +1.868x10°%s° +8.468x10"s* 4+9.865x10%s> + 4.420 x10°s? + 7.094 x10°s + 2.373x10°

s® +1032.25° +5.615x10%s”* + 9:295x10%s> + 4.990 x10°%s? + 4.860 x10°s +1.047 x10°
(C.4)
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