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以福衛三號及 GRACE 低軌衛星 GPS 追蹤資料推算時

變地球重力場 

研究生：林廷融                 指導教授：黃金維 博士   

 

國立交通大學土木工程學系 

 

摘  要 

本論文內容是結合福衛三號及 GRACE 衛星高-低衛星追蹤資料反衍時變地

球重力場。為了估算時變重力地位係數，吾人已成功發展兩種重力反衍方法:軌

道擾動解析法及殘餘加速度法，此兩種方法分別應用殘餘軌道擾動量(動態軌道

及動力軌道之差值)及殘餘加速度(觀測加速度及參考加速度之差值)兩種不同觀

測量，分別建立與時變重力地位係數之線性關係後進行估算時變重力地位係數。 

吾人首先使用 Bernese 5.0 軟體計算福衛三號及 GRACE 衛星公分級動態軌

道。此後，以標準力模式進行計算作用於福衛三號及 GRACE 衛星上之各種擾動

力，此部分使用之主要計算軟體為 NASA Goddard 研發之 GEODYN II 軟體。福

衛三號表面擾動力如大氣阻力、輻射壓及其他微小表面擾動力須以力模式進行求

解，並於每飛行一圈即解算一組適當表面力參數。所解算之原始 5 秒一筆之六顆

福衛三號衛星及 10 秒一筆之兩顆 GRACE 衛星動態及動力軌道重新取樣為一分

鐘一筆之軌道位置資料，及後以數值微分得到加速度資料分別以為重力場反衍之

用。 

吾人以 2006 年 8 月一個月福衛三號及 GRACE 動態及動力軌道資料求解時

變重力地位係數，分別使用軌道擾動解析法及殘餘加速度法處理福衛三號單一解

及合併 GRACE 成果解，福衛三號及 GRACE 平均動態及動力軌道差異量分別約
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為 7.5 公分及 6.5 公分。福衛三號單一解可解出某些已知的時變重力訊號，但仍

含有雜訊，合併解則可看出某些程度提升了 GRACE 單一解某些區域時變重力訊

號。 

此外，吾人處理自2006年9月至2007年12月共16個月的福衛三號及GRACE

精密定軌資料進行每月低階時變重力係數求解至 5 階，使用軌道擾動解析法及殘

餘加速度法所得到之大地起伏變化將與 CSR RL04 解進行比較分析，15 階之合

併 GRACE 解也將進行求解。吾人使用軌道擾動解析法及殘餘加速度法所得到之

低階帶諧係數 20CΔ , 30CΔ 及 40CΔ 之變化與 SLR 及 CSR RL04 解同期觀測比較，

發現四者變化趨勢極為相似，由 SLR、軌道擾動解析法殘餘加速度法、及 CSR 

RL04 解 算 之 20CΔ 年 變 率 分 別 為 ( ) 101004594.0 −×±− 、 ( ) 101086.006.1 −×±− 、

( ) 111078.015.0 −×± 及 ( ) 101086.098.1 −×±− ，CSR RL04、軌道擾動解析法及殘餘加速度

法解算之 30CΔ 年變率為 ( ) 111007.658.1 −×±− 、( ) 111009.713.5 −×±− 及 ( ) 111014.807.7 −×±− ，

40CΔ 年變率為 ( ) 111006.346.3 −×± 、 ( ) 111091.220.0 −×±− 及 ( ) 111001.333.2 −×± 。 
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Abstract 

This dissertation is aimed at temporal gravity field recovery from the analyses of 

the high-low satellite-to-satellite tracking (hl-SST) data from the COSMIC and 

GRACE satellite missions. In order to estimate the time-varying geopotential 

coefficients, two efficient methodologies, the analytical orbital perturbation (AOP) 

approach and the residual acceleration (ACC) approach, are developed in the research. 

With the reference orbits removed, orbital perturbations (difference between 

kinematic and reference orbits) and residual accelerations (difference between 

observed and reference accelerations) from the residual orbits are linear functions of 

the time-varying geopotential coefficients. Such linear functions enable convenient 

establishments of observation equations to estimate geopotential coefficients. 

The Bernese 5.0 software is used to compute the cm-level kinematic orbits of 

COSMIC and GRACE. The NASA Goddard’s GEODYN II software is used to 

compute the perturbing forces acting on COSMIC and GRACE satellites based on the 

standard models of orbit dynamics. The accelerations due to the atmospheric drag, 

solar radiation pressure and other minor surface forces are estimated by some relevant 

model parameters over one orbital period from COSMIC’s kinematic and reduced 

dynamic orbits. The 5s kinematic and dynamic orbits from six COSMIC and the 10s 

orbits from two GRACE satellites are re-sampled into 1 minute normal point 
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positional data and then converted to acceleration data by numerical differential for 

gravity recovery.  

To validate the theories and computer programs associated with the AOP and 

ACC approaches, some experimental solutions of time-varying geopotential 

coefficients are carried out using one-month (August 2006) of COSMIC and GRACE 

kinematic and dynamic orbits. The average RMS in RTN directions of reduced 

COSMIC and GRACE (1 minute) between kinematic orbits and dynamic orbits are 

about 7.5 and 6.5 cm. The COSMIC solutions reveal several well-known temporal 

gravity signatures, but contain artifacts. The combined COSMIC-GRACE solutions 

enhance some local features in the GRACE solutions. 

 The monthly COSMIC and GRACE precise orbit data from September 2006 to 

December 2007 (16 months) are processed to recover monthly low-degree (up to 

degree 5) geopotential coefficients by the AOP and ACC approaches. The geoid 

variations from such low-degree geopotential coefficients are compared with the CSR 

RL04 solutions. Two combined solutions by the AOP and ACC approaches (up to 

degree 15) are also carried out. The monthly variations of the zonal geopotential 

coefficients 20CΔ , 30CΔ  and 40CΔ  from the AOP and ACC solutions (degree 5) 

closely resemble the SLR-derived and CSR RL04 solutions. The rates of 20CΔ  from 

SLR, AOP, ACC, and CSR RL04 are ( ) 101004594.0 −×±− , ( ) 101086.006.1 −×±− , 

( ) 111078.015.0 −×±  and ( ) 101086.098.1 −×±−  , respectively. The rates of 30CΔ  from CSR 

RL04, AOP and ACC solutions are ( ) 111007.658.1 −×±− , ( ) 111009.713.5 −×±− , and 

( ) 111014.807.7 −×±− , and the rates of 40CΔ  are ( ) 111006.346.3 −×± , 

( ) 111091.220.0 −×±− , and ( ) 111001.333.2 −×± , respectively. 
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degree-20 solution) using one week of six COSMIC satellite data with 3-cm white noise75 

Fig. 5-7 Recovered gravity variation combining one week of six COSMIC satellite data 

by adding 1-cm white noise (top), 3-cm white noise (center) and 5-cm white noise 

(bottom). Unit is mgal ....................................................................................................... 76 

Fig. 5-8 Relative errors of the recovered harmonic coefficients up to degree 5 of gravity 
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Chapter 1 
Introduction 

 

1.1 Background 

The Earth’s gravity field is the sum of gravitational attraction and centrifugal 

force and it would vary in space and time due to the mass redistributions caused by 

atmospheric circulation, oceanic circulation, ground water-level variation, melting ice 

and other factors (Torge 1989). Gravity variations will result in satellite orbital 

perturbations, and variations in Earth rotational velocity and vertical datum of the 

Earth etc..  

The precise Earth’s gravity field model can be applied to several disciplines of 

Earth sciences including geodesy, atmosphere, oceanography, aerospace engineering 

and geophysics. It can be determined with a variety of techniques and observation 

data types including surface gravity measurements, satellite tracking measurements 

and satellite radar altimetry measurements (Nerem 1995). Surface gravity 

measurements by terrestrial absolute/relative gravimetry, superconducting gravimetry, 

and airborne/ship-borne gravimetry can obtain the highest point-wise accuracy or 

regional information about the Earth’s gravity field. Satellite radar altimetry data can 

monitor the global sea surface height to derive gravity anomalies and geoid over the 

oceans or lake areas. Satellite tracking measurements are popular for global gravity 

field modeling and mainly acquired by Satellite Laser Ranging (SLR), Doppler 

Orbitography and Radio positioning Integrated by satellite (DORIS), Precise Range 

and Range Rate Experiment (PRARE), high-low satellite-to-satellite tracking 

(hl-SST), low-low satellite-to-satellite tracking (ll-SST) and Satellite Gravity 

Gradiometry (SGG). 



2 
 

Low Earth orbiters (LEOs) have become one of the basic and efficient tools for 

determining global time-varying gravity field in 21th century. A number of satellite 

missions have been launched in order to accomplish time-varying gravity field 

determination such as CHAMP (CHAllenging Minisatellite Payload) (Reigber et al. 

1996), GRACE (The Gravity Recovery and Climate Experiment) (Tapley 1997), 

FORMOSAT-3/COSMIC (Constellation Observing System for Meteorology, 

Ionosphere and Climate) (Chao et al. 2000) and GOCE (Gravity Field and 

Steady-State Ocean Circulation Explorer) (ESA 1999). Although these missions 

employ different measurement techniques, the common feature of all missions is the 

use of GPS (Global Positioning System) observations for the precise orbit 

determination. The GPS-determined precise orbit data contains all information of 

orbital perturbation forces due to the Earth’s non-sphericity, air drag, solar radiation, 

N-body, solid Earth tide, ocean tide, Earth’s radiation (albedo), and relativistic effects 

(Seeber 2003). With appropriate methods removing the non-gravitational forces and 

constraints, the time-varying gravity can be derived from precise orbit data.  

The FORMOSAT-3/COSMIC mission is a joint Taiwan-USA satellite mission 

launched in April 2006 for meteorological and ionospheric research and geodetic 

applications. Each of the six COSMIC satellites is equipped with two POD (Precise 

Orbit Determination) GPS antennas with a code-less, dual-frequency BlackJack GPS 

receiver (Dunn et al. 2003; Wu et al. 2005; Schreiner 2005; Montenbruck et al. 2006) 

developed by the Jet Propulsion Laboratory (JPL), which yield data for precise orbit 

and gravity determinations (Fig. 1-1). For abbreviation, the six COSMIC satellites 

will be named FM1- FM6, following the convention of NSPO (National Space 

Organization). With 6 satellites in the constellation, COSMIC configuration will 

provide a strong geometry in determining Earth’s gravity fields. COSMIC GPS data 
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can be used to compute orbit perturbations and/or accelerations so that they may 

recover the Earth’s temporal gravity fields and derive the spatial and time variations 

of the Earth’s mass. The origin of the spacecraft coordinate frame is at the geometric 

center of the ring. The angle between the line of coordinate origin- physical center of 

POD antenna and either the +X or -X axis is 30°. The angle between the normal to the 

antenna patch and the +X or –X axis is 15°. The COMs (center of mass) of the six 

satellites have been determined in a NSPO laboratory, in the configurations of full 

load and empty propellant fuel with stowed solar panels. The Attitude and Orbit 

Control System (AOCS) of a COSMIC satellite is a combination of outputs from a 

three-axis magnetometer, an one-axis Earth sensor and a three-axis Coarse Sun sensor 

but without the star-camera. The phase center offset and phase center variation (PCV) 

of the two POD antennas were both determined in an anechoic chamber using a 

mockup of COSMIC satellite, built by UCAR (the University Corporation for 

Atmospheric Research). The L1 and L2 phase centers were estimated for L1 and L2 

frequencies and for 8 different solar arrays drive (SAD) orientations. 

The geopotential parameters can be estimated from the LEO’s 

centimeter-precise POD data. The GPS data processing is performed at two stages for 

gravity recovery. In the first step, a reference orbit is computed from hl-SST data; the 

hl-SST data are applied to linearize the observational equations for the gravity 

coefficients estimation. In the second step, gravity recovery is carried out. Combining 

with different types of space measurements, the second step may use one of the three 

methods: (i) Kaula’s linear perturbation theory (Kaula 1966); (ii) direct numerical 

integration (Hwang 2001; Visser et al. 2001; Rowlands et al. 2002); (iii) energy 

balance approach (Wolff 1969; Wagner 1983; Jekeli 1999; Visser et al. 2003; Visser 

2005). 
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 The GRACE mission, a joint effort of NASA (USA) and DLR (German), was 

launched on March 17, 2002. This mission consists of two satellites, GRACE-A and 

GRACE-B, operating at an altitude of about 500 km as a formation at a distance of 

about 200 km apart. The orbit inclination is 89˚ as a near polar orbit and the period of 

1 revolution is 94 minutes. The purpose of choosing such an orbit is mainly to obtain 

a homogeneous and complete global coverage for gravity field recovery. The primary 

objective of GRACE mission is to determine the high precision and high spatial 

resolution Earth’s gravity field, with an emphasis on its temporal changes (Tapley et 

al. 2004). The secondary objective is to determine total electron content and/or 

refractivity from the excess delay or bending angle of GPS measurements caused by 

the atmosphere and ionosphere. Both GRACE satellites are equipped with the 

following instruments: K-Band Ranging System (KBR), Accelerometer, GPS Space 

Receiver, Laser Retro-Reflector (LRR), Star Camera Assembly (SCA), Coarse Earth 

and Sun Sensor (CES), Ultra Stable Oscillator (USO) and Center of Mass Trim 

Assembly (CMT) (Fig.1-2) (GFZ homepage). The KBR system is to measure the 

inter-satellite distance forming the ll-SST observation, derived range-rates, and 

range-accelerations between two satellites. The accuracies of the inter-satellite 

distance and the range rate are 10μm and 1μm/s, respectively. On-board GPS 

TurboRogue Space Receivers receive GPS data to determine precise satellite orbits 

and to synchronize time tags of KBR measurements. The SuperSTAR accelerometer 

measures non-gravitational satellite accelerations. The satellite attitudes are controlled 

and determined by the SCA and CES systems. The LRR system is to measure 

distances between dedicated laser ground stations and the satellites with an accuracy 

of 1-2 cm. The USO system is built for the frequency generation of the KBR system. 

The CMT system is developed to adjust the offset between the satellite's COM and the 
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center of the accelerometer proof-mass. 

    Three alternative monthly GRACE gravity models published by different 

institutions CSR, GFZ and JPL are available at the web site of Center for Space 

Research (CSR), The University of Texas at Austin (http://www.csr.utexas.edu/grace). 

The static gravity solutions, GGM02S (Tapley et al. 2005) and GGM03S (Tapley et al. 

2007) derived from GRACE KBR and GPS measurements, is also available at the 

website. The monthly solutions issued by CSR have three versions: Release 01 

(RL01), Release 02 (RL02) and Release 04 (RL04). The CSR RL04 monthly 

solutions based on one-step variational equations approach contain fully normalized 

spherical harmonic coefficients up to degree and order 60. The solution is obtained 

through an optimally weighted combination of GPS and KBR data with one-day 

dynamic arcs for a designated month. More details of the RL04 model development 

can be found in the documents released with the GRACE products (Bettadpur 2007).
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Fig. 1-1: A COSMIC spacecraft, payloads and spacecraft-fixed coordinate system, the 

origin is at the center of the main body (cylinder) (Hwang et al. 2008) 

 

 

Fig. 1-2: GRACE science instrumentation 

(http://www-app2.gfz-potsdam.de/pb1/op/grace/index_GRACE.html) 
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1.2 Research objectives 

The primary objective of this research is to develop efficient techniques and 

data processing procedures to process the hl-SST observations from COSMIC and 

GRACE to recover the temporal Earth’s gravity field models represented in the form 

of spherical harmonic series. Based on this objective, the first research regarding with 

the hl-SST data processing starts from a so-called analytical orbital perturbation (AOP) 

approach developed by Kaula (1966). For gravity recovery, the geometrically 

determined kinematic orbits are functions of orbit dynamic parameters, including 

geopotential coefficients, can be regarded as observations, and would be used in the 

least-squares estimation of these parameters.  

The residual acceleration (ACC) approach is the second technique related to 

hl-SST data processing using satellites accelerations derived from precise kinematic 

and reference dynamic orbits by numerical differentiations. After removing 

accelerations other than the Earth’s gravity-induced accelerations, linear relations 

between LEO accelerations and gravity coefficients can be established. The residual 

acceleration differences between kinematic and reference orbits are assumed to be 

linear functions of time-varying geopotential coefficients and further used as 

observations for the geopotential coefficients estimation. 

The second objective of this thesis is to derive time series of low-degree, zonal 

term gravity changes using COSMIC and GRACE GPS data. The combined COSMIC 

and GRACE solutions are also computed which are expected to enhance local 

temporal gravity signatures contained in the GRACE only solutions. The time series 

of zonal geopotential coefficients derived by AOP and ACC methods will also be 

assessed by those derived by tracking data.  
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1.3 Outline of Thesis 

This dissertation comprises seven chapters. The detailed introductions of two 

gravity field recovery methods, analytical orbital perturbation approach and residual 

acceleration approach, are described in Chapter 2. This chapter starts from the 

analytical orbital perturbation approach which makes use of the relationship between 

the positional variations of orbits and variations in the six Keplerian elements from 

hl-SST observations. After that, the residual acceleration approach is proposed for 

gravity solutions.  

In Chapter 3, since the precise orbits play an important role in gravity field 

recovery, the main principle of precise orbit determination is presented. The 

descriptions of orbit dynamics are discussed especially about the surface forces 

including atmospheric drag, solar radiation pressure and the Earth’s radiation pressure 

acting on COSMIC satellites. The procedures of precise dynamic orbit determination 

using GEODYN II software (Pavlis et al. 1996) and precise kinematic orbit 

determination using Bernese 5.0 software (Dach et al. 2007) are also provided. To 

reduce noises and data volume, the normal-point reduction is therefore introduced. 

Chapter 4 is devoted to gravity field modeling using analytical orbital perturbation 

approach. The procedure of processing kinematic orbit and the orbit accuracy 

assessment is presented in this chapter. Both COSMIC and combined COSMIC and 

GRACE gravity solutions are computed using the post-processed orbit data.  

Chapter 5 focuses on gravity field modeling derived from combined COSMIC and 

GRACE POD data and residual acceleration approach was applied. Position data 

screening and computation of residual accelerations are discussed in this chapter. The 

results from simulations and real data processing are carried out and compared with 

the results from AOP solution and CSR RL04 solution. 
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A time-series analysis of the estimated COSMIC and GRACE monthly 

low-degree temporal gravity solution is the subject of Chapter 6. The time span is 

from September 2006 to December 2007. The COSMIC and GRACE monthly 

low-degree temporal gravity solutions and combined solutions are presented in this 

chapter. Moreover, a comparison of some zonal geopotential coefficients with SLR 

and CSR RL04 solutions is also covered in this chapter. 

Chapter 7 contains summaries, conclusions, future researches and suggestions. 
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Chapter 2 

Methods for gravity field modeling using GPS observations 

2.1 Introduction 

A conventional one-step approach to model the gravity field is to use the raw 

GPS measurements directly in the equations of motion for estimation of geopotential 

coefficients. In this case, the relationship between geopotential coefficients and SST 

measurements is not linear, so the linearlization of observation equations is required. 

After linearization and with some iterations, the orbits of LEOs and GPS satellites and 

gravity field parameters can be determined by the method of least-squares adjustment 

with inputs from GPS ground and space-borne data, SLR data, accelerometer data, 

K-band observation data, etc. (Zhu et al 2004). The GGM and EIGEN series of static 

gravity field models based on GRACE KBR and GPS measurements are computed in 

this way (Tapley et al. 2004; Reigber et al. 2005; Förste et al. 2006).  

At present, the two-step approach, i.e. computing orbit first and estimating 

gravity fields using such orbits, is widely adopted for gravity field modeling. 

Compared to the one-step approach, this two-step procedure avoids the 

time-consuming computations of associated partials with respect to parameters. Two 

basic important physical laws are applied: the energy conservation law and Newton’s 

second law of motion. In this thesis, we focus on the two-step approach using GPS 

observations based on Newton’s second law of motion. See Section 2-2 for the 

description of the two-step approach where the analytical orbital perturbation 

approach is involved (Kaula 1966). The residual acceleration approach linking the 

acceleration vector to the gradient of the gravitational potential is discussed in Section 

2.3.  

 



11 
 

2.2 Theory of analytical orbital perturbation approach 

To establish the linear relationship between the satellite positions and 

geopotential coefficients, Kaula (1966) demonstrated the analytical orbital 

perturbation method for gravity field recovery in terms of the six Keplerian elements. 

The six Keplerian elements ( Miea ,,,,, Ωω ) are semi-major axis, eccentricity, 

inclination, argument of perigee, right ascension of the ascending node, and mean 

anomaly. To use the three-dimensional positional data for gravity field recovery, 

orbital perturbations in radial, along-track and cross-track (RTN) directions should be 

transformed to perturbations in the Keplerian elements.  

The radial distance r of a LEO from the geocenter is 

 
)cos1( Eear −=                                                    (2-1) 

 

where E is eccentricity anomaly, which is related to the mean anomaly by 

EeEM sin⋅−= . The perturbations in the RTN directions, shown in Fig. 2-1, can be 

expressed as  
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where f is true anomaly and fu +=ω  is argument of latitude.  
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Fig. 2-1: Geometry showing the effects of perturbations in argument of perigee (top), 

right ascension of the ascending node and inclination (bottom) on the radial, 

along-track, and cross-track perturbations at a satellite position (Hwang 2001) 
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The potential due to the Earth (called geopotential) at the satellite position, V, is 

expanded into a spherical harmonic series as (Heiskanen and Moritz 1985) 
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where ),,( λφr  are the spherical coordinates (radial distance, geocentric latitude and 

longitude), ae is the semi-major axis of the Earth’s reference ellipsoid, K is the 

maximum degree of expansion depending on the satellite altitude, ),( nmnm SC  are 

geopotential coefficients, nmP is the fully normalized associated Legendre function of 

degree n and order m, and nsV  is the potential due to the Earth’s non-sphericity 

(perturbing potential). From eq. (2-5), the perturbing potential nsV  can be expressed 

in terms of the six Keplerian elements as (Kaula 1996; Balmino 1994; Hwang 2001):  
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where Q is the number depending on the orbital eccentricity, and θ is Greenwich 

sidereal time (GST). nmpF  is the fully normalized inclination function, and is defined 

by (Balmino 1994; Hwang and Hwang 2002) 
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function, which is a polynomial of e about the order qe  (Kaula 1966). nmpqS  is 
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where +
nmC  is nmC  when (n-m) is even and −

nmC  is nmC  when (n-m) is odd (the 

same is true for nmS ). 

The Lagrange’s equation of motion (LEOM) is (Kaula 1966) 
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where 3/ aGMn =  is the mean angular velocity. An approximate solution of eq. 

(2-13) with a closed form can be derived for a near-circular orbit ( 0≈e ).In such a 

solution, it is assumed that ea , and i are invariant with time (denoted as ea , and 

i ) and Ω,ω and M vary linearly with time, so that (Hwang and Hwang 2002) 
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where 00 ,Ωω  and 0M  are the mean elements and Ω&& ,ω  and M&  are the 
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linear rates. Because the 20C  term (or 2J− ) is the order of 
310−  and it is at least 

1000 times larger than any other geopotential coefficients, the major contribution to 

the perturbing potential is due to this term and can be expressed as  

 

( )∑ ∑
=

∞

−∞=

+−+−⎟
⎠
⎞

⎜
⎝
⎛=

2

0
220

2
20

20 )22()22(cos)()(
p q

pqp
e MqppeGiF

a
a

a
GMCR ω       (2-15) 

 

The term with M in eq. (2-15) has a period much smaller than other terms, and hence 

can be neglected provided that long-period perturbations are sought, that is, 
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The (p, q) terms with (0, -2) and (2, 2) do not exist (Kaula 1966), thus the only term 

left is  
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Based on Kaula (1966), the values of )(201 iF  and )(210 eG  are   
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Thus, the secular perturbation due to 20C  is  
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A reference orbit at the reference epoch 0t based on nine orbital parameters 

( MMiea &&& ,,,,,,,, 000 ΩΩ ωω ) is used. Integrating eq. (2-13) with respect to time 

yields  
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where α  denotes any of the six Keplerian elements. Integrating eq. (2-11), we get  
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The perturbations in iea ,, are 
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And the perturbations in Ω,ω and M are 
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The coefficients i
nmpqα  in the order of six Keplerian elements Miea ,,,, , Ωω are 
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where ψ&  is the frequency of the perturbations, and θ&  is the velocity of the GST 

( about 1510292115.7 −−× rads ). 

Let ixΔ  and ksΔ  represents the perturbations in the RTN directions and of the 

six Keplerian elements. We have 
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where i
kc  are the coefficients used to transform the Keplerian perturbations to the 

RTN perturbations (Hwang 2001). The coefficients are 
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The above relationships between orbit perturbations and geopotential coefficients can 

be used for least-squares estimation of the later given GPS-determined satellite orbits.  

 

2.3 Theory of residual acceleration approach  

A residual acceleration method is employed to determine the time variation of 

the Earth’s gravity field. In this method, the accelerations of LEOs are determined by 

numerical differentiations of the positions of LEOs. All perturbing forces caused by 

the static gravity field, Earth's non-sphericity, N-body, solid Earth tide, ocean tide, air 

drag, solar radiation pressure, Earth radiation and relativity are modeled first. After 

removing accelerations other than the Earth’s gravity-induced accelerations, linear 

relations between LEO accelerations and gravity coefficients can be established. 

Empirical parameters can be used to model the residual non-gravitational 

accelerations. 

The total gravitational force is the gradient of V. The acceleration vector 

expressed in the Earth-fixed coordinate system is (GSFC 1989) 
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where xb , yb and zb are the Earth-fixed coordinates and r,φ , and λ are the spherical 

coordinates. The partial derivatives of the non-spherical portion of the Earth’s 

potential with respect to r,φ , and λ are given by
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where 1)( =mδ  when m is zero and 0)( =mδ  when m is not zero. Substituting eq. 

(2-32) through eq. (2-34) into eq. (2-31) and transforming the Earth-fixed coordinates 

(xb , yb , zb) into the spherical coordinates (r , φ , λ), eq. (2-31) can be rewritten as 
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where a is the acceleration vector ]A,A,[A λφr expressed in a local rotating frame 

which are the radial, latitudinal, and longitudinal accelerations, respectively. M is an 

orthogonal matrix. The transformation of eq. (2-35) can be simplified by neglecting 

precession, nutation, and polar motion to obtain the acceleration vector Ia  in the 

inertial coordinate system (Hwang and Lin 1998): 
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where x, y and z are the inertial coordinates, 222 zyxr ++= . The longitude and 

latitude are calculated as follows: 
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where GAST is Greenwich apparent sidereal time. 
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Chapter 3 

Force modeling and precise orbit determination for COSMIC 

3.1 Introduction 

Precise orbits of a satellite position are important for positioning the satellite and 

for estimation of the Earth’s gravitation. Owing to the development of GPS, the 

spacecraft equipped with hl-SST receiver can collect position data continuously. The 

dynamic method (using force models) and the kinematic method (not using force 

models) (Švehla and Rothacher 2003; Jäggi et al. 2006 and 2007; Hwang et al. 2009) 

are two popular methods using GPS data applied for POD of LEOs. In addition, the 

so-called reduced-dynamic orbit determination, which is a compromising method 

between the dynamic method and the kinematic method, requires simplified force 

models. All above procedures for POD require GPS satellite ephemeris, Earth 

rotation information, and LEO GPS observation data as input for processing. 

In Section 3.2, we focus on the perturbation force models acting on a COSMIC 

spacecraft. Without an accelerometer on the COSMIC spacecraft, the non- 

gravitational accelerations due to atmospheric drag and solar radiation need to be 

modeled. Section 3.3 and 3.4 describe the kinematic and dynamic orbit determination 

methods, complete with the principles, computation procedures and some analysis of 

results. The procedure of observed orbit data compression applied in gravity recovery 

is presented in the last part of this chapter. 

  

3.2 Orbit dynamics of COSMIC satellite  

The perturbing forces (accelerations) can be classified into gravitational forces 

and surface forces (or non-gravitational forces). The gravitational forces include the 
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Earth’s non-sphericity, N-body, solid Earth tide, ocean tide, and relativistic effect, 

and the surface forces include atmospheric drag, solar radiation pressure and the 

Earth’s radiation pressure. General accelerations, or empirical accelerations, are used 

to absorb the mis-modeled and un-modeled gravitational and surface forces. The 

algorithms of N-body, solid Earth tide, ocean tide, and relativistic effects can be 

found in a standard textbook of orbit dynamics such as Seeber (2003), and they will 

not be elaborated here. In this section, we focus on the parameters related to Earth’s 

non-sphericity, atmospheric drag and solar radiation pressure.  

 

3.2.1 Equations of motion and perturbing potential force 

 In a geocentric inertial rectangular coordinate system, the equations of motion 

of an artificial Earth satellite such a COSMIC spacecraft can be expressed as (Long 

et al. 1989; Montenbruck and Gill 2001; Seeber 2003) 

                    

Pertns aarr ++−= 3r
GM

&&                                     (3-1) 

 

where 

r: vector of satellite coordinates in the inertial frame 

r&& : acceleration vector 

GM: Earth’s gravitational constant 

nsa : acceleration due to Earth’s non-sphericity 

Perta : accelerations due to other perturbing forces 
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The first term in eq. (3-1) is called the point mass effect of the Earth given by 

Newton’s law of gravity and is 1000 times larger than any other acceleration. Eq. 

(3-1) contains a system of second order differential equations which can be 

integrated to obtain the satellite positions and velocity at any epoch giving the initial 

state vector.  The direct integration known as Cowell’s method (Balmino 1989) is 

selected for the simplicity and capacity for incorporating additional perturbations 

easily (Pavlis et al. 1996). The accelerations in eq. (3-1) are associated with certain 

parameters and can be adopted from existing values or estimated by satellite tracking 

data.  

The acceleration eartha  due to the geopotential is the gradient vector of the 

geopotential: 

 

nsearth ar
r

a +−=
∂
∂

= 3r
GMV

                 (3-2) 

 

The first term in eq. (3-2) corresponds to the potential of a spherically symmetric 

Earth and the potential can be considered static. In fact, due to mass re-distribution in 

the Earth system, the geopotential is time-dependent so that the time-varying part 

should be considered. This is equivalent to dividing the coefficients in eq. (2-5) into 

a static part and a time-varying part as 

 

)()(,)()( 00 tSStStCCtC nmnmnmnmnmnm Δ+=Δ+=            (3-3) 

 

where t is time. Thus, by recovering temporal gravity we mean estimating the 
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time-varying coefficients ))(),(( tStC nmnm ΔΔ  with respect to a mean gravity field. 

 

3.2.2 Atmospheric drag and solar radiation effects on COSMIC satellites 

The acceleration vector of a LEO due to atmospheric drag is given by 

 

)rr(rra dddrag &&&& −−−=
m
AC d

Dρ2
1                                       (3-4) 

 

where CD is drag coefficient depending on the LEO shape and atmospheric 

composition, ρ is atmospheric density at the LEO position, Ad is effective 

(cross-sectional) area and m is the mass of the LEO, dr r& &,  are the velocity vectors of 

the LEO and atmosphere in the inertial frame, and )rr( d&& −  is the velocity vector of 

the LEO relative to atmosphere. For each of the six COSMIC spacecrafts, the mass 

(with full thrust fuel) has been determined in the chamber test before the launch 

(April 2006). The remaining thrust fuel during the flight is observed and is used to 

adjust the time-dependent mass after the launch (Hwang et al. 2006 and 2009). The 

effective area Ad is the projected area of the area of the satellite in the flight direction 

onto a plane perpendicular to the direction )( drr && − . A COSMIC spacecraft travels in a 

manner that the POD+X antenna points to the flight direction (Fig. 3-1). Therefore, 

the total area in the flight direction is 

 

panelmainT AAA +=                                                  (3-5) 
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where mainA  is the area of the main body and panelA  is the area of two solar panels, 

which are computed as 

 

)(m  sin)
2
974.0(2

)(m  132.0034.1

22

2

θπ×=

×=

panel

main

A

A
    (3-6) 

 

where θ  is the rotational angle of the solar panel (Fig. 3-1). Here we assume the 

thickness of the solar panels is negligible. The effective area was then computed by  

 

)(cos 1
dd rrr)/rr(r &&&&&& −−⋅= −

Td AA
                                     

(3-7) 

The velocity vector of atmosphere was computed as 
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where x and y are geocentric coordinate components of the LEO in the inertial frame, 

and hω  is the rotational velocity of atmosphere at an altitude of h computed as 

(King-Hele and Walker 1983) 
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where eω  is the mean rotational velocity of the Earth ( rad/sec 10292115.7 5−× ), and 

h is in km.  

The acceleration vector due to solar radiation pressure is 

 

3
2)(

s

s
srp

rr
rra

−

−
= au

m
ACP s

rsν                                         (3-10)  

 

where ν is the eclipse factor, Ps is solar flux at one astronomical unit (au) 

( 64.560 10−× N/m2), Cr is reflectivity coefficient depending on the characteristics of 

the LEO, As is the effective area (different from the effective area for atmospheric 

drag) and sr  is the position vector of the Sun. The method to compute the effective 

area for the solar radiation pressure is the same as that used in the atmospheric drag. 

In this case, the effective area lies in a plane perpendicular to the vector ( srr − ). Cr 

can be expressed as (1+ε), where ε is reflectivity (from 0 to 1), which depends on the 

material of satellite parts. The eclipse factor depends on the position of LEO; ν=0 

when the LEO is in the Earth’s shadow, and ν=1 when the LEO is illuminated by the 

Sun. The orbit dynamic modeling software we used is able to determine the eclipse 

factor in the cases of umbra and penumbra based on the ratio of the sunlight received 

at the LEO location, so that in practice the eclipse factor for a COSMIC satellite 

varies from zero to one.



29 
 

 

 

Fig. 3-1: The dimensions of the main part and solar panels of a COSMIC LEO (top), 

velocity vector r&  and LEO-to-atmosphere vector )rr( d&& −  (Hwang et al. 2008) 
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3.3 Kinematic orbit determination using Bernese 5.0 

The precise kinematic orbits of LEOs in this research were determined by the 

Bernese Version 5.0 GPS software (Dach et al. 2007). The reduced dynamic and 

kinematic approaches are available in Bernese 5.0 for POD with GPS observations. 

The reduced dynamic approach estimates orbit arc-dependent parameters including 

the initial state vector (6 Keplerian elements), 9 solar radiation coefficients and three 

stochastic pulses in the radial, along-track and cross-track directions. The kinematic 

approach estimates the kinematic parameters of an orbit arc, including epoch 

coordinate components, receiver clock errors and phase ambiguities. Both the reduced 

dynamic and kinematic orbit determinations require high precision GPS satellite 

orbits and clocks. The GPS satellite precise orbits and high-rate clocks can be 

downloaded on the website provided by the Center for Orbit Determination in Europe 

(CODE, http://www.aiub.unibe.ch/igs.html). In the kinematic orbit determination with 

Bernese 5.0, the reduced dynamic orbit serves as a priori orbit for the kinematic orbit. 

Fig. 3-2 shows the steps of precise kinematic orbit determination using real GPS data. 

The zero-differenced ionosphere-free GPS measurements are usually used for 

point-wise calculation of the satellite positions in the kinematic approach. The 

limitations of orbit accuracy associated with kinematic orbits are based on the GPS 

satellite observation numbers and relative GPS-LEO geometry (Byun and Schutz 

2001). Satellite coordinates are estimated together with one GPS receiver clock 

parameter every epoch. Comparing with SLR observations, the kinematic POD with 

accuracy of 1–3 cm was demonstrated for the GRACE mission (Švehla and Rothacher 

2004). Using an overlapping analysis, the orbit accuracy of COSMIC is about 3 cm, 

compared to 1 cm in the case of GRACE satellites (Hwang et al. 2009). We find that 

the quality of GPS data depends on the quality of satellite attitude data. For the case 

of COSMIC satellite at an altitude of 800 km, typical standard errors of attitude 
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measurements over the equator and the polar regions are o0.5  and o3  , respectively, 

and are larger at a lower altitude. When the attitude of a satellite is poorly determined, 

the uncertainties in the estimated GPS phase ambiguities are relatively large, leading 

to degraded orbital accuracy. The detail of GPS-determined orbits of GRACE and 

COSMIC satellites using the kinematic approaches by Bernese have been documented 

by Švehla and Rothacher (2005), Jäggi et al. (2007) and Hwang et al. (2009). 

 

 

 
 

Fig. 3-2: Steps of precise kinematic orbit determination using GPS data 
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3.4 Dynamic orbit determination using GEODYN II software 

The dynamic orbit determination strategy for LEO based on GPS double- 

difference tracking data is demonstrated for the first time for TOPEX/Poseidon 

mission (Bertiger et al. 1994; Schutz et al. 1994). The equations of motion are solved 

by numerical integration. The dynamic model errors will lead to systematic errors 

growing with the arc length (Bock 2003).  

In this research, we use NASA Goddard GEODYN II software to model the 

perturbing forces described in Section 3.2.1. GEODYN II is used extensively for 

satellite orbit determination, geodetic parameter estimation, tracking instrument 

calibration, satellite orbit prediction, as well as for other applied research in satellite 

geodesy using virtually all types of satellite tracking data (Pavlis et al. 1996). For 

direct numerical integration, GEODYN II uses Cowell’s summation method to obtain 

the position and velocity at epoch and uses the Bayesian’s least-squares method for 

parameter estimation. The mathematical models of the perturbing forces used in 

GEODYN II can be found in Long et al. (1989), Pavlis et al. (1996) and McCarthy 

(1996). GEODYN II has been used for precise orbit determination/prediction and 

force modeling in various Earth resource satellites such as TOPEX/Poseidon and 

GRACE. Temporal gravity fields from such satellite tracking data as SLR and 

GRACE KBR have been derived with GEODYN II (Cox and Chao 2002; Luthcke et 

al. 2006).  

GEODYN II is divided into three major components: the Tracking Data 

Formatter (TDF), GEODYN IIS and GEODYN IIE. The flow of running GEODYN II 

can be found in Hwang (2002). The TDF program takes in the one of several tracking 

data forms. In this research, the tracking data format is PCE data format containing 

the information of satellite position and velocity as a priori orbit.  
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In preparation for the execution of GEODYN II, a file containing the ephemeris 

of the planets and a file containing A1UTC, polar motion, solar flux and magnetic 

flux must be made ready. A1UTC is the difference between the atomic time (A1) used 

in GEODYN II and the universal time (UTC), which is available from 

http://hpiers.obspm.fr/eop-pc/. Solar flux and magnetic flux are obtained from 

NOAA’s web site ftp://ftp.ngdc.noaa.gov under the directory STP/ 

GEOMAGNETIC_DATA/INDICE. These raw data are processed to produce binary 

files suitable for input to GEODYN IIS program.  

The GEODYN IIS program is mainly used to read and process the option cards, 

the input observation data, optional gravity model, station geodetics, area/mass files, 

ephemeris and table data. The default gravity model is stored in the file ftn12. In this 

research, we choose GGM03S gravity models up to degree/order 70 derived from 

GRACE GPS and KBR observations. 

The JPL export ephemeris as input file ftn01 is used in GEODYN IIS for 

nutations, positions, and velocities of the Moon, Sun, and planets. In this research, we 

use the JPL binary DE-403 ephemeris. GEODYN II interpolates for the ephemeris in 

the mean of 1950.0 reference system by Chebyshev interpolation. This step gives 

greater accuracy than interpolating in the reference system (the true of date coordinate 

system) because the high-frequency perturbations due to nutations are absent. After 

interpolation, the coordinates are then rotated to the true of date system using the 

precession and nutation matrices (Seeber 2003). More details on the transformations 

between different coordinate systems can be found in the textbooks or manuals like 

Long et al. (1989), Pavlis et al. (1996) and Seeber (2003). 

The file ftn05 contains all option cards determining the force and non-force 

model parameters to be used in the program execution. These option cards are divided 

into two major categories: the Global Set and the Arc Set (Pavlis et al. 1996; Hwang 
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2002). The Global Set consisting of four groups provides all of the common arcs 

processing information. The first group, Global Set Mandatory Cards, is the 

mandatory run description on other three cards. The second set of Global Set Option 

cards is used to define and/or estimate conditions which are common to all the arcs 

being processed. This group contains the information and estimations of the Earth's 

gravitational potential and/or new Earth constants, application and/or adjustment of 

time dependent gravity coefficients, dynamic polar motion, the third body 

gravitational potential and/or new constants, solid Earth tide model, ocean tide model, 

atmosphere drag model, solar flux, and tectonic plate motion. The third group is the 

Position Card Group containing the information of tracking stations. The last group is 

the Global Set Terminator to end the Global Set.  

One or more Arc Set contains information defining its arc in ftn05 file. The Arc 

Set also has four groups in this order. The first group, Arc Set Mandatory Cards, is to 

decide the reference coordinate system and time and spacecraft parameters in this arc. 

The second group, Arc Option Set cards, is specified to make use of GEODYN II's 

individual arc capabilities. The third group is the Data Selection/Deletion Subgroup 

used to edit input observations. The last group is the Arc Set Terminator to end the 

Arc Set. 

The parameters in the Global Set for the force models of COSMIC given in 

Table 3-1 are defined by input option cards in the file ftn05. For surface forces in the 

Arc set, we solve for atmospheric drag coefficient, radiation coefficient and 9 

empirical coefficients of general acceleration along the radial, along-track and 

cross-track directions every 1.5 hours (one orbital period) using COSMIC kinematic 

orbits. As an example, Fig. 3-3 shows the estimated atmospheric drag coefficients and 

reflectivity coefficients for FM5. These estimated coefficients vary over time, and the 

mean values/standard deviations of the drag and reflectivity coefficients are 2.12/0.29 
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and 1.23/0.30, respectively. The general accelerations for COSMIC (Table 3-1) at an 

altitude of 520 km are on the order of 10-11ms-2 . GEODYN IIE performs the 

computation of satellite orbit and geodetic parameter estimations. The output from IIE 

contains all necessary information for data analysis. 

The main purpose of precise dynamic orbit determination is to generate a 

reference orbit to compute the residual orbit perturbations for gravity field recovery. 

The residual orbit perturbation is a function of the perturbing force due to the 

perturbing geopotential. Like satellite position, satellite acceleration contains the 

effect due to the geopotential, plus other perturbing forces which must be modeled for 

gravity field recovery.  
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Table 3-1: Standards for the orbit dynamics of COSMIC satellites 

Model/parameter Standard 

Conventional inertial 

reference frame 
J2000 

N-body JPL DE-403 

Earth gravity model GGM03S  

Polar motion IERS standard 2000 

Reference ellipsoid ae = 6378136.3 m,  f =1/298.257 

GM 396800.4415 km3s-2 

Ocean tides GOT00.2 (Ray 1999) 

Solid Earth tides IERS standard 2000 

Atmosphere density 
Mass Spectrometer Incoherent Scatter (MSIS) 

Empirical Drag Model (Hedin, 1991) 

Earth radiation pressure 
Second-degree zonal spherical harmonic model  

(Knocke et al. 1988) 

Solar radiation pressure one coefficient every 1.5 hours 

Atmosphere drag  one coefficient every 1.5 hours  

General accelerations  9 parameters every 1.5 hours 
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Fig. 3-3: Estimated atmospheric drag coefficients (top) and solar reflectivity 

coefficients of FM 5 from Day 225 to 232, 2006
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3.5 Normal-point reduction 

The original sampling interval of COSMIC and GRACE GPS POD 

carrier-phase and code observables is 1 second. In practice, a 5-s (0.2 Hz) is used in 

the reduced-dynamic and kinematic orbit computations. To reduce noises and data 

volume, the 5-s kinematic orbits can be compressed and filtered at a greater item 

interval by an algorithm similar to that used in the normal-point reduction of satellite 

laser ranging. In this research, we adopt the Herstmonceux algorithm (Sinclaire 1997) 

to compress the COSMIC and GRACE precise orbits. Specifically, we use the 

following steps to generate normal-point kinematic orbits: 

(1) Use the reduced-dynamic orbit as the reference orbit to generate differenced 

orbit. A differenced orbit component is 

 

3,2,1,      =−= ixxp r
i

k
ii               (3-11) 

 

where k
ix and r

ix are components of kinematic and reduced-dynamic orbits, 

respectively. 

(2) Remove large outliers in the kinematic orbit, which will not be used in the 

subsequent computations. An outlier is defined as cm 20≥ip . 

(3) Within a bin (a window containing many differenced orbits), the differenced orbits 

are fitted by a polynomial in time using least-squares. The polynomial is called the 

trend function )(tf   
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(4) For each orbit component, compute the residuals at the times of observations as 

 

)( iii tfpv −=                   (3-12) 

 

(5) Compute the root-mean-square value RMS of the residuals. Identify outliers using 

a rejection level of 2.5 times of RMS, and neglect these outliers in step (3) of the next 

iteration 

(6) Repeat steps (3)-(5) until no outlier is found   

(7) Divide the accepted residuals into bins starting from 0h UTC.  

(8) Compute the mean value mv  and the mean time of the accepted residuals within 

each bin. The number of accepted residuals within bin m is denoted as mn . 

(9) For each orbit component, locate the kinematic orbit k
mx  and its residual mv , 

whose observation time mt  is nearest to the mean time of the accepted residuals in 

bin m. 

(10) Compute the normal-point kinematic orbit as 

 

mm
k
mm vvxNP +−=              (3-13) 
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(11) Compute the standard error of normal points as (if 1=mn , this bin is neglected) 

 

 
)1(

1
2

−
= ∑

mm

n
j

m nn
vm

σ                 (3-14) 

 

The bin size can be adjusted according to the desired spatial resolution of gravity 

solution and data compression ratio. The degree of the fitted polynomial increases 

with the bin size. For a one-minute bin, a second-degree polynomial is found to be 

optimal. Statistically, the standard errors of normal points will be smaller than those 

of raw orbits. For example, Fig. 3-4 shows the normal-point residuals (differences 

between reduced-dynamic and kinematic orbits) are smaller than raw residuals in 

Y-direction of FM5 satellite in DOY 216, 2006.  
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Fig. 3-4: Raw and normal-point residuals in Y-direction (FM5, DOY216) 
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Chapter 4 

Recovery of temporal gravity field using analytical orbital 

perturbation approach 

4.1 Introduction 

In the previous chapter, two different approaches for gravity field modeling 

are developed. In this chapter, we employ the analytical orbital perturbation 

approach to compute temporal gravity field using COSMIC and GRACE GPS data. 

The experimental solutions of time-varying geopotential coefficients are computed 

using one month (August 2006) of COSMIC and GRACE kinematic orbits. 

According to Hwang et al. (2009), the current orbital accuracies of COSMIC and 

GRACE kinematic orbit are 3 and 1 cm respectively and the accuracies of the 60-s 

normal points are further improved. The perturbing forces other than the Earth 

gravity that act on COSMIC spacecrafts are modeled by GEODYN II using the 

standard models of orbit dynamics (Table 3-1), yielding pure dynamic orbits that 

serve as reference orbits. With the reference orbits and GPS-derived kinematic 

orbits, three-dimensional residual orbital perturbations (difference between 

kinematic and reference orbits) are assumed to be linear functions of time-varying 

geopotential coefficients (Chapter 2) and are used as observations to estimate the 

latter. Both COSMIC and combined COSMIC and GRACE gravity solutions were 

computed.  

 

4.2 Kinematic orbits of COSMIC and accuracy assessment 

In this study, the kinematic orbits of the six COSMIC satellites used for gravity 

recovery are over the time span from August 2 to August 31, 2006. In this time span, 
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the altitudes of the six COSMIC satellites are 512, 543, 521, 515, 800 and 505 km 

for FM1, FM2, … and FM6, respectively. The inclinations of all COSMIC orbits are

o72 and the eccentricities are nearly zero. Fig 4-1 shows the trajectory of FM5 

satellite in August 2006. The coverage of satellite ground tracks of FM5 is uniform, 

but the o72 -inclination angle a naturally lead to polar gaps. 

According to the sampling theorem (Meskó 1994), the along-track sampling 

interval Δt can be computed as 

 

GMK
a

K
Tt

2/3

2
π

≈=Δ                                                (4-1) 

 

where T is the period time of one revolution, K is the maximum degree of the 

geopotential field, and a is the semi-major axis. At the altitude of 800 km, use of a 

maximum harmonic degree 50 of the geopotential is sufficient for COSMIC 

(Hwang 2001), so the sampling interval is about 60 seconds. The raw GPS 

kinematic orbits of COSMIC spacecrafts are computed at a 5-s interval. Due to 

presence of outliers in the GPS data and the need to compress the high-rate orbit 

data for gravity recovery, the raw GPS kinematic orbits were pre-processed as 

follows: 

 

Step 1: Removing outliers. An outlier is a kinematic orbit component whose 

difference with the reduced dynamic orbit (prior orbit) exceeds 20 cm.  

Step 2: Compressing 5-second orbits to one-minute normal-point orbits. 

 

The detail of normal-point compression (Step 2) is given in Section 3-5. The 

normal-point kinematic orbits in Step 2 are actually used for gravity recovery. Fig. 



44 
 

4-2 shows the percentages of accepted 5-second kinematic orbits in August 2006 

after removing outliers (Step 1). The average percentages of acceptance are 74.3, 

76.5, 73.4, 66.0, 82.5 and 69.5% for FM1, FM2, …, and FM6, respectively. In most 

cases, data are rejected due to bad attitude control and/or poor clock resolution. 

FM5 has the largest percentage of acceptance, due to its 800-km altitude where the 

attitude control is better than other five spacecrafts. Fig. 4-3 shows daily standard 

errors of the one-minute normal orbits, which will be used as data weights in the 

gravity recovery. On average, the accuracy of the normal-point orbits is 7 mm, 

compared to the 3 cm orbit error for the raw 5-s orbits. Table 4-1 shows the statistics 

of the standard errors for the six COSMIC satellites in August 2006. FM5 has the 

least standard error of all satellites in the normal-point data.  

 

 

Fig. 4-1: Trajectory of FM5 satellite (August 2006) 
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Fig. 4-2: Percentages of acceptance of kinematic orbits for normal-point 

computations 

 

 

Fig. 4-3: Standard errors of normal-point kinematic orbits in August 2006 
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Table 4-1: Statistics of standard errors of normal-point kinematic orbits 

 MAX. (mm) MEAN (mm) MIN. (mm) 

FM1 7.38 7.13 6.77 

FM2 7.38 7.06 6.68 

FM3 7.30 6.98 6.68 

FM4 7.23 6.93 6.57 

FM5 6.87 6.49 6.20 

FM6 7.72 7.24 6.75 

 

4.3 Reference dynamic orbits for COSMIC and GRACE 

The geometry of COSMIC spacecraft is simple compared to that of GRACE, 

and its surface forces can be with a sufficient degree of confidence. The NASA 

Goddard GEODYN II is used to determine the COSMIC dynamic orbits and the 

parameters for the force models of COSMIC are given in Section 3.4 and Hwang et 

al. (2008).  

The reference dynamic orbit data of GRACE in August 2006 is provided by 

CSR. The software used for GRACE dynamic POD is the CSR MSODP software 

(Rim 1992) and the double-differenced GRACE GPS carrier-phase observations are 

processed to convert range measurements using a network of 51 International 

Global Navigation Satellite System (GNSS) Service (IGS) ground stations (Beutler 

et al., 1999). An aggressive force model parameterization is used to estimate many 

empirical parameters including the GRACE satellite initial positions and velocities, 

ambiguity parameters, troposphere zenith delays, center of mass offset in the nadir 

direction, atmosphere drag parameters, 1 cycle-per-revolution (1-cpr) (along-track) 

and normal (cross-track) empirical accelerations, and the previously mentioned GPS 
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orbit element correction to improve the orbit accuracy (Kang et al. 2003). The orbit 

dynamic standard of GRACE is listed in the paper of Kang et al. (2006). The 

GPS-based dynamic orbits have about 1-cm radial orbit accuracy and better than 

2.5-cm accuracy in the along-track and cross-track directions (Kang et al. 2006). 

Due to different satellite sizes and altitudes, we choose different orbit dynamic 

standards for each mission to produce a precise orbit. Table 4-2 shows the different 

standards for the orbit dynamics between COSMIC and GRACE satellites. The 

gravity content that is sensible at the altitude of 800 km will be about harmonic 

degree 50 (Hwang and Lin 1998). The ocean tide effect on satellite contains the 

leading diurnal and semi-diurnal constituents including Q1, O1, M1, S1, P1, K1, J1, 

N2, M2, S2, K2 and other long-period constituents using different ocean tide 

models. The selection of other force standards is based on past experience and tests. 

 

Table 4-2: Different standards for the orbit dynamics of COSMIC and GRACE 

satellites  

Model/parameter COSMIC GRACE 

Earth gravity model GGM03S (70 70) GGM02C (120 120) 

N-body JPL DE-403 JPL DE-405 

Ocean tides GOT00.2 FES2004 

Atmosphere density 

Mass Spectrometer Incoherent 

Scatter (MSIS) Empirical Drag 

Model 

Density temperature model 

(DTM) 

Earth radiation pressure 
Second-degree zonal spherical 

harmonic model 

Albedo and infrared 

Solar radiation pressure one coefficient every 1.5 hours Box-wing model 
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4.4 Formulae used in gravity recovery 

Following Section 4.2, the observables are now normal point kinematic orbits 

of COSMIC at a one-minute interval for gravity recovery. For determining temporal 

gravity variation, the unknown parameters are time-varying geopotential coefficients

))(),(( tStC nmnm ΔΔ . An empirical model is used to compensate partially the 

deficiency of the linear orbital perturbation and absorb the error in the initial state 

vector and errors in the force models in the parameter estimation. Specifically, for 

each of the radial, along-track and cross-track residual orbit components, we use the 

following empirical model: 

 

2
1098

76543210

2cos
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+++

+++++++=Δ
   (4-2) 

 

where i = 1, 2 and 3 (three orbit components), u is argument of latitude, ak is the 

coefficient for the perturbation component, and t is the time elapsed with respect to a 

reference epoch. Eq. (4-2) is based on the results in Colombo (1984), Engelis (1987) 

and Hwang (1995). 

With GEODYN II, the reference orbits of COSMIC and GRACE are 

determined by numerically integrating the equations of motion that take into account 

all perturbing forces acting on COSMIC and GRACE satellites. The GRACE-derived 

gravity model GGM03S is used as the Earth’s static gravity model containing 

geopotential coefficients ),( 00
nmnm SC . The CSR RL04 products are used in this 

chapter for comparison and analysis. If the reference orbits are generated using an 

optimal static gravity model such as GGM03S and all other perturbing forces are 

properly modeled, we can assume that the residual orbits are linear functions of 
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time-varying geopotential coefficients.  

For parameter estimation, the matrix representation is 

 

VAXL −=                (4-3) 

 

where A is the design matrix containing the partials of residual orbit components with 

respect to time-varying geopotential coefficients and empirical parameters, vectors V, 

X and L contain random errors, unknowns (geopotential coefficients and empirical 

parameters) and observations (residual orbits), respectively. Given a priori values of 

the unknowns and the associated weight matrix, XP  , the least-squares solution of X 

is    

 

PLA)PPA(AX T1
X

T −+−=                                         (4-4) 

 

where P is the weight matrix containing inverses the squared standard errors (Fig. 4-2 

and Table 4-1). Because COSMIC is not in a polar orbit, it is necessary to use xP  to 

stabilize the estimation of X. For the geopotential coefficient part of xP , it is a 

diagonal matrix containing the variances of time-varying geopotential coefficients. 

The variances were computed as follows. The geopotential coefficients of GGM03S 

were subtracted from the monthly coefficients of GRACE gravity models in August 

2006 to obtain monthly time-varying coefficients. The degree variances of the 

monthly time-varying coefficients were computed and the average degree variances 

determined. The average degree variances were then least-squares fit to a model 

whose expression is similar to that of the Kaula rule (Kaula 1966), i.e., βα −n , where 

n is the spherical harmonic degree. The result shows that the average degree variance 

follows (Fig. 4-4) 
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where nmnm SC ΔΔ , are coefficients. A diagonal element of xP  corresponding to any 

geopotential coefficient of the same degree is computed by 

 

2
1

n
sc nmnm

PP
σ

==                   (4-6)  

 

Because the orbital inclination of COSMIC is °72 , it is expected COSMIC GPS data 

will enhance the current gravity models of GRACE and CHAMP. The GRACE and 

CHAMP missions are in polar orbits. We also carried out a combined 

COSMIC-GRACE solution. In this case, the least-squares solution of X is  

 

g)ΣPL)(AΣPA(AX 1
g

T1
g

T −− ++−=            (4-7) 

 

where g is a vector of time-varying geopotential coefficients from GRACE and gΣ  

is the error covariance of g. Since the full error covariance matrices of GRACE 

gravity models are not released, only error variances of the time-varying geopotential 

coefficients are used for the diagonal elements, so gΣ is in fact a diagonal matrix. 
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Fig. 4-4: Observed and modeled degree variances of CSR RL04 solution in August 

2006   

 

4.5 Results of gravity recovery  

Several experimental gravity solutions were carried out using one month of 

normal-point kinematic orbits of COSMIC and GRACE. Fig. 4-5 shows the steps of 

gravity recovery from real GPS data using the analytical orbital perturbation 

approach. Based on numerous tests and the result of Hwang et al. (2008), we decide 

to adopt 15 as the maximum degree of expansion for the COSMIC-only and 

COSMIC-GRACE solutions. Fig. 4-6 shows degree variances and error degree 

variances from the COSMIC and COSMIC-GRACE solutions. The error degree 

variances of COSMIC and COSMIC-GRACE solutions increase with degree and are 

all less than the degree variances below degree 10 and 11, respectively. The 

COSMIC-GRACE solution yields error degree variances that are smaller than those 
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from the COSMIC-only solution due to the use of more observations and better data 

coverage. For spherical harmonic components with degrees lower than 10, the 

signal-to-noise ratio is larger than 1.  

Fig. 4-7 shows the geoid variation to spherical harmonic degree 15 from the 

CSR RL04 solution, and the high and low signatures of geoid variations are clearly 

seen. In Fig. 4-8, we compare geoid changes from the COSMIC-only and 

COSMIC-GRACE solutions to degree 15. The COSMIC-only solution shows more 

artifacts than the COSMIC-GRACE solution, but these two solutions reveal clear 

geoid highs and lows over Europe, Greenland, Amazon Basin, India continent and 

southern Africa, which resemble those given by the CSR RL04 solution in Fig. 4-7. 

The geoid variations at latitudes higher than 72º are probably not reliable due to the 

low inclination of COSMIC. Also, the GPS data used in the current solutions are 

from five of the six COSMIC satellites that are at altitudes of about 520 km, where 

the non-gravity forces are difficult to model and the attitude control is not optimal.   

In order to compare the geopotential coefficients from COSMIC and from 

GRACE, we compute the relative differences of coefficients as follows (regarding 

GRACE-derived geopotential coefficients as the reference values): 

 

G
nm

G
nm

C
nmC

nm C
CC

Δ
Δ−Δ

=ε  ,
 

G
nm

G
nm

C
nmS

nm S
SS

Δ
Δ−Δ

=ε         (4-8) 

 

where ( C
nm

C
nm SC ΔΔ , ) and ( G

nm
G

nm SC ΔΔ ,  ) are the estimated geopotential coefficients 

from COSMIC and GRACE, respectively, and ( S
nm

C
nm εε , ) are the relative differences. 

The relative differences of all coefficients and those of the zonal coefficients from 

COSMIC-only and COSMIC-GRACE solutions are given in Figs. 4-9 and 4-10. The 

COSMIC-GRACE solution yields the relative errors that are smaller than those from 
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the COSMIC-only solution. The recovered coefficients with relative differences 

smaller than one are considered as significantly close to the CSR RL04 coefficients. 

From Figs. 4-9 and 4-10, a large portion of the recovered geopotential coefficients 

from COSMIC-only and COSMIC-GRACE solutions are consistent with those of 

CSR RL04 solution. However, a significant portion of the COSMIC-derived 

coefficients disagree with the GRACE-derived coefficients, which is expected given 

the different data qualities from the two missions. 

Fig. 4-11 shows the error degree variances (formal errors) of time-varying 

geopotential coefficients from the combined and the CSR RL04 solutions. The 

combined solution yields error degree variances that are smaller than those from the 

CSR RL04 solution. We also compute calibrated standard errors of 

COSMIC-GRACE geopotential coefficients using the method given in Schmidt et al. 

(2007), which was used to calibrate the error estimates of GRACE-derived 

geopotential coefficients. A scaling factor at degree n and order m is computed as 

 

C
nm

G
nm

C
nm

nm E
CC

f
−

=                     (4-9) 

  

where C
nmC  and G

nmC  are the estimated geopotential coefficients from 

COSMIC-GRACE and GRACE, respectively, and C
nmE is the un-calibrated error 

degree variance from COSMIC-GRACE. A calibrated standard error is obtained by 

multiplying the un-calibrated standard error by the factor in eq. (4-9). Fig. 4-12 

compares the calibrated error degree variances from GRACE (available at the website, 

http://www.csr.utexas.edu/grace), COSMIC and combined solutions. Again, the 

combined solution yields smaller error degree variances than those from GRACE 

solutions. 
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Fig. 4-13 shows the geoid variations from the combined COSMIC and GRACE 

solution. The combined solution closely resembles the GRACE solution and this is 

due to the large weights of GRACE coefficients in the combination. Comparing Fig. 

4-13 and 4-7, we note that the combined solution enhances the geoid signatures of the 

GRACE solution over central Africa, Russia and Greenland, and the geoid highs in 

North America, India and northern Amazon. Fig 4-14 shows the geoid signature 

enhanced in Amazon derived from combined solutions.  

More quantitative assessments of accuracy and spatial resolution of COSMIC 

gravity solutions are yet to be carried out, for example, using terrestrial based gravity 

measurements at locations with large gravity changes. However, from the gravity 

solutions, the COSMIC mission shows a potential for gravity recovery. The COSMIC 

mission coincides with the GRACE mission since April 2006, and its lifetime is 

expected to be 5 years. Following the procedure of gravity recovery, we will produce 

monthly gravity fields from the combined COSMIC and GRACE data for a longer 

term in Chapter 6.  
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Fig. 4-5: Steps of gravity recovery from COSMIC GPS data using analytical orbital 

perturbation approach 
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Fig. 4-6: Degree variance and formal error degree variances of time-varying 

geopotential coefficients from the COSMIC-only and COSMIC-GRACE solutions 

 

Fig. 4-7: Geoid variation to spherical harmonic degree 15 from the CSR RL04 

solution   
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Fig. 4-8: Geoid variations to spherical harmonic degree 15 from COSMIC-only (top) and 

COSMIC-GRACE solutions 
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Fig. 4-9: Relative differences of the COSMIC-only (top) and COSMIC-GRACE 

coefficients with respect to the GRACE-derived coefficients of gravity variation for 

nmCΔ  (left) and nmSΔ  up to degree 15 
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Fig. 4-10: Same as Fig. 4-9, but for the zonal coefficients 

 
Fig. 4-11: Formal error degree variances of time-varying geopotential coefficients from 

the CSR RL04 and the combined solutions 
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Fig. 4-12: Degree variances from COSMIC-GRACE, and calibrated error degree 

variances from COSMIC-GRACE, GRACE and combined solutions  
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Fig. 4-13: Geoid variation to spherical harmonic degree 15 from the combined 

solution  

 

 
Fig. 4-14: Geoid changes in Amazon area derived from combined (left) and 

GRACE solutions 
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Chapter 5 

Temporal gravity recovery based on satellite accelerations 

5.1 Introduction 

A residual acceleration approach is employed to determine the time variation 

of the Earth’s gravity field by using the precise GPS high-low tracking data from 

two different inclination satellite missions –COSMIC and GRACE. It makes use of 

satellites accelerations derived from precise kinematic and reference dynamic orbits 

by numerical differentiations. We carried out experimental solutions of time-varying 

geopotential coefficients using one month of COSMIC and GRACE kinematic 

orbits (August 2006). The residual accelerations are derived from differencing 

kinematic and reference orbits. We also carried out a combined solution with CSR 

RL04 solution. The comparison between the results from this method and from the 

analytical orbital perturbation approach will be presented. 

 

5.2 Processing of COSMIC and GRACE residual accelerations 

5.2.1 Position data screening 

Because kinematic orbits results in a series of satellite positions without force 

model assumptions, it is preferable for gravity field modeling. For the comparison 

of the gravity recovery result presented in Chapter 4, the kinematic orbits of the six 

COSMIC satellites and two GRACE satellites used for gravity recovery are over the 

time span from August 2 to August 31, 2006. The original sampling intervals of 

COSMIC and GRACE kinematic orbit is 5-s and 10-s, respectively. The 5-s 

COSMIC and 10-s GRACE kinematic data can be decimated and filtered to a 

coarser sampling interval to improve orbit quality (Hwang et al. 2008). 
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Again, to reduce noises and data volume, the original COSMIC and GRACE 

kinematic orbits were re-sampled at a 1-minute interval using the normal-point 

reduction procedure in Section 3.5. A typical way of removing outliers is to screen 

the orbit position differences between two successive epochs, and the kinematic 

orbits are not used if the differences exceed a certain threshold value (Ditmar et al. 

2006). In this study, the threshold value is that 2.5 times of the RMS of orbit 

differences, with a tolerable maximum difference of 20 cm, which is an empirical 

value (Hwang et al. 2008). 

Fig. 5-1 shows the RMS differences of GRACE-A and GRACE-B between 

NCTU kinematic orbits and CSR dynamic orbits. The average RMS values in RTN 

directions of reduced GRACE and COSMIC (1 minute) between kinematic orbits 

and dynamic orbits are listed in Table 5-1. The RMS differences of COSMIC are 

about 7 cm and uniform in all components. These differences are larger than those 

of GRACE. FM5 has the least RMS difference of all COSMIC satellites in the 

normal-point data. The larger RMS difference of COSMIC may come from the poor 

antenna position and bad attitude control compared to the GRACE satellite (Hwang 

et al. 2010). Fig. 5-2 shows the percentages of accepted COSMIC and GRACE 

kinematic orbits in August 2006 after removing outliers. The statistics of average 

percentages of acceptance are shown in Table 5-2. FM5 has the largest percentage 

of acceptance in COSMIC mission due to its 800-km altitude where the surface 

perturbation force is smaller and the attitude control is better than other those for 

other five spacecrafts. These normal-point kinematic orbits were used for gravity 

recovery. 
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Fig. 5-1: RMS differences of GRACE-A (Top) and GRACE-B between NCTU 

kinematic orbits and CSR dynamic orbits 
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Table 5-1: Average RMS differences between kinematic orbits and dynamic orbits 

in RTN directions for six COSMIC and two GRACE satellites (unit: cm) 

 

 radial along-track  cross-track  
FM1 7.74 7.52 7.30 
FM2 7.55 7.44 7.19 
FM3 7.54 7.62 7.24 
FM4 7.87 7.65 7.53 
FM5 7.27 7.11 6.85 
FM6 7.77 7.73 7.58 
GRA 6.50 6.30 3.81 
GRB 6.71 6.53 4.52 

 

 

Fig. 5-2: Percentages of acceptance of kinematic orbits for normal point 

computations 
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Table 5-2: Statistics of percentages of accepted normal-point kinematic orbits 

(August, 2006) 

 
 Min. Max.  Ave.  

FM1 64.31 85.42 82.62 
FM2 68.65 87.30 83.77 
FM3 68.37 87.22 83.85 
FM4 77.08 87.15 83.22 
FM5 89.41 95.24 92.10 
FM6 78.09 86.18 82.84 
GRA 97.15 100 99.68 
GRB 98.43 100 99.66 

 

5.2.2 Computation of residual accelerations 

The key concept under consideration is the determination of the LEO 

acceleration derived from a kinematic orbit. Acceleration derived from GPS phase 

observations were first used in airborne gravimetry (Jekeli and Garcia 1997). 

Reubelt et al. (2004) have used the means of high-resolution nine-point scheme 

Newton interpolation and Ditmar et al. (2006) have used a three-point difference 

scheme to derive the accelerations from CHAMP satellite orbits for computing 

gravity field.  

In this study, we employ a numerical differentiation technique to compute 

accelerations from COSMIC and GRACE normal-point kinematic and dynamic 

orbits. This technique is based on the divided-difference method (Gerald and 

Wheatley 2003) that requires less arithmetic operations than Lagrangian and 

Neville’s methods.  

Assuming the function values of f(x) are given at several values for x, an 

nth-degree polynomial representing this function is (Gerald and Wheatley 2003): 
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If ia  is chosen so that )()( xfxPn = at the n+1 known points, nifx ii ,,0),,( K= , 

then )(xPn  is an interpolating polynomial. The first divided difference between sx

and tx  is  
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The higher-order difference is defined as  
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So we can establish that the ia  of eq. (5-1) are given by these divided differences 

and each )( in xP  will equal )( ixf  if [ ]ii xxxfa ,,, 10 L= . Eq. (5-1) can be 

written as 
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If the x-values are evenly spaced, ordinary differences are used instead of divided 

differences (Gerald and Wheatley 2003). It’s called Newton-Gregory interpolation 

method and an interpolating polynomial of degree n with x evaluated at )( sx  can 
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be represented as:  
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where i
n fΔ  is n-order difference, hxxs /)( 0−=  and h is the uniform spacing in 

x-values. We can write eq. (5-5) in terms of hxxs i /)( −= : 
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The derivation of f(x), denoted as )(xf ′ , can be approximated as  
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The second-order derivation of f(x) is 

 

⎥⎦
⎤

⎢⎣
⎡ +Δ−Δ+Δ−Δ=′′ Lffff

h
xf iii

5432
2 6

5
12
111)(                          (5-9) 

 



 

69 
 

In this study, the default polynomial degree n is 14. The residual satellite 

accelerations vector a
 
can be computed as follow: 

 

(dyn)
i

(kin)
i aaa −=

                                                 
(5-10) 

 

where (kin)
ia  is the observed kinematic acceleration and (dyn)

ia  is the reference 

dynamic acceleration and the index i indicates a given component at a given epoch. 

 

5.3 Validation of the acceleration method 

In the following simulation, the true orbit perturbing noises are known and so 

are the true values of temporal gravity field. The purpose of this simulation is to 

validate the computer program for the acceleration method and assess the accuracy 

of the recovered gravity field. 

We simulate the six FORMOSAT-3 satellite orbits using a computer program 

package, called CTODS (Chang 2003), developed for precise orbit and gravity 

determination. The perturbing forces caused by the Earth's non-sphericity, N-body, 

solid Earth tide, ocean tide, air drag, solar radiation pressure, Earth radiation and 

relativity are modeled. The data span is from June 1, 2002 to June 7, 2002 and the 

data sampling is 1 minute. The initial state vectors (six Keplerians) are =a

7160.137km, 0=e , °= 72i , °= 0ω , °−°−°−°−°−°=Ω 120 ,96 ,72 ,48 ,24 ,0  and 

°°°°°°= 5.262 ,210 ,5.157 ,105 ,5.52 ,0M . We assume the geopotential coefficients 

E
nmC  and E

nmS  of the reference gravity field GGM02C model and the temporal 

geopotential coefficients nmCΔ  and nmSΔ  derived from the ocean mass variation 

are true. The following data sets are used (See Fig.5-3)： 
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(1) Compute T
nmC  = nm

E
nm CC Δ+  and nm

E
nm

T
nm SSS Δ+= .   

(2) Integrate 7-day orbits at a 1-minute interval using T
nmC  and T

nmS  up to 

degree 70 for each of the 6 COSMIC satellites. Random errors are added to 

the orbit based on a 1, 3, 5-cm standard deviation. 

(3) Repeat (2), but using E
nmC  and E

nmS . 

(4) Calculate the accelerations by quadratic differential of (2) and (3) positions. 

(5) Subtract the accelerations in (4) to get the radial, along-track and cross-track 

perturbations due to mass variation. 

(6) Sample the acceleration data at a 2-minute interval by using normal-point 

method. 

(7) Compute nmĈΔ  and nmŜΔ , which are the estimates of nmCΔ and nmSΔ , by 

using the residual acceleration approach. 

One set of normal equation, geopotential coefficients and empirical coefficients is 

computed from a 7-day orbit arc for each satellite. These normal equations are 

considered uncorrelated and are combined to determine an averaged gravity field.  

Fig.5-4(a) shows the gravity variation to spherical harmonic degree/order 5 

from the ocean mass variation, and (b), (c) and (d) show the recovered gravity 

variation with 1, 3 and 5 cm random white noise, respectively. Fig. 5-4 suggests that 

the temporal gravity can be recovered well using a 7-day arc data of one satellite 

with 1 cm random white noise. With 3 cm random white noise, the recovered 

gravity signatures are less obvious compared to the case of 1-cm noise. Fig. 5-5 

shows the relative differences for zonal terms of the simulation-derived coefficients 

with respect to the ocean mass variation derived coefficients of gravity variation 

with different random noises. 
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We can also combine normal equations from all satellites to recover the 

gravity field. The observation equation in such combination solution is 

 

)()( 1
iiii cc UNX ∑∑ −=                                          (5-11) 

 

where Ni is the individual normal equation, i is the number of satellites, ic  is the 

regularization factor of weighting matrix since the weighting of different kinds of 

observations is generally unknown. If the prior weighting matrix is unknown, we 

need to estimate the variance-covariance to estimate ic (Koch 1987). 

Fig. 5-6 shows the relative differences of the recovered harmonic coefficients 

of gravity variation up to degree/order 5, 10, 15, and 20 using one week of 6 

satellites data with 3 cm white noise. The relative differences in the case of 

degree/order 5 are smaller than those in the cases of degree/order 10, 15, and 20. Fig. 

5-7 presents the recovered gravity variation combining one week of six satellites 

data by adding 1, 3 and 5 cm white noise. The relative differences in these solutions 

are shown in Fig. 5-8. The gravity signatures can be recovered well if the orbit data 

contains 5-cm noise or smaller. Fig. 5-9 shows smaller relative differences for zonal 

terms when adding different random noises, in comparison to the results given in 

Fig. 5-5.  
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Fig. 5-3: The simulation procedure of residual acceleration approach 
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                (a)                                (b) 

 

                (c)                                (d)           

Fig. 5-4: Recovered gravity variation using one week of one COSMIC satellite data 

and degree-5 solutions by (a) oceanic mass variation (b) 1-cm white noise (c) 3-cm 

white noise (d) 5-cm white noise. Unit is mgal  
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Fig. 5-5: Relative differences of recovered zonal coefficients from the degree-5 

solutions (one COSMIC satellite) 
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Fig. 5-6: Relative differences of the recovered harmonic coefficients of gravity 

variation for (A) nmĈΔ  (degree-5 solution), (B) nmŜΔ  ( degree-5 solution), (C) 

nmĈΔ  (degree-10 solution), (D) nmŜΔ  ( degree-10 solution), (E) nmĈΔ  

(degree-15 solution), (F) nmŜΔ  ( degree-15 solution), (G) nmĈΔ  (degree-20 

solution) and (H) nmŜΔ  ( degree-20 solution) using one week of six COSMIC 

satellite data with 3-cm white noise 
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Fig. 5-7: Recovered gravity variation combining one week of six COSMIC satellite 

data by adding 1-cm white noise (top), 3-cm white noise (center) and 5-cm white 

noise (bottom). Unit is mgal  
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Fig. 5-8: Relative errors of the recovered harmonic coefficients up to degree 5 of 

gravity variation for (A) nmĈΔ  (1 cm white noise), (B) nmŜΔ  (1 cm white noise), 

(C) nmĈΔ  (3 cm white noise), (D) nmŜΔ  (3 cm white noise), (E) nmĈΔ  (5 cm 

white noise) and (F) nmŜΔ  (5 cm white noise) using one week of six COSMIC 

satellites data  
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Fig. 5-9: Relative errors of recovered zonal coefficients from the degree-5 solutions 

(six COSMIC satellites) 

 

5.4 Gravity recovery using COSMIC and GRACE GPS data 

The CSR RL04 products are presented in this chapter for comparison and 

analysis. Following Hwang et al. (2008) and Xu et.al (2006) studies, the 

signal-to-noise ratio of COSMIC-derived spherical harmonic components is shown 

larger than 1 with degrees lower than 10. For efficient computation, we decide to 

adopt 15 as the maximum degree of expansion and carried out several experimental 

gravity solutions using one month of COSMIC and GRACE normal-point kinematic 

orbits with different combinations. Fig. 5-10 shows degree variances and error 

degree variances from the COSMIC, COSMIC-GRACE and CSR RL04 solutions. 
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We can clearly observe three features from Fig. 5-10: (i) The COSMIC and 

COSMIC-GRACE degree variances decrease and the error degree variances 

increase unapparently with degree; (ii) all error degree variances are less than the 

degree variances below degree 10; (iii) The degree variance of COSMIC-only 

solution is closer to the CSR RL04 solution but degree 2 may be affected by the 

constraint of Kaula’s rule.  

The geoid changes from the COSMIC-only and COSMIC-GRACE solutions 

to degree 15 are shown in Fig. 5-11; Fig. 5-12 shows the geoid variations from the 

combined COSMIC and GRACE solution and from CSR RL04 solution to degree 

15. Comparing Fig. 5-11 and Fig. 5-12, the COSMIC-only solution shows clear 

geoid highs and lows over European, eastern Pacific, India continent and southern 

Africa, which resembles those given by the CSR RL04 solution but still contains the 

aliasing artifacts over southern Pacific and Bering Sea. We note that the 

COSMIC-GRACE solution can reduce the geoid signature artifacts of the 

COSMIC-only solution due to better observation data coverage. The combined 

solution closely resembles the CSR RL04 solution and this is due to the large 

weights of CSR RL04 coefficients in the combination. We still need to carry out 

more quantitative assessments of accuracy and spatial resolution of COSMIC 

gravity solutions using the terrestrial-based data.  

The relative differences of the COSMIC-only and COSMIC-GRACE 

geopotential coefficients with respect to the CSR RL04 coefficients are given in Fig. 

5-13. A large portion of the recovered geopotential coefficients are smaller than 1 

which is considered as significantly close to the CSR RL04 solution. The 

COSMIC-GRACE greatly enhances the COSMIC-only solution especially in some 

terms of geopotential coefficients listed in Table 5-3. This would be explained by 

the combination of two different inclination satellite observation data. Fig. 5-14 
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shows the relative differences of the combined solution coefficients with respect to 

the CSR RL04 coefficients and most of them are less than 1. From Fig. 5-15, we can 

note that the relative differences of zonal coefficients derived from 

COSMIC-GRACE solution are larger than COSMIC-GRACE solution using 

analytical orbit perturbation approach after degree 6. The cause could be taced back 

to the lower degree geopotential coefficients which are more sensitive to the 

accuracy of accelerations.  

We also compute calibrated standard errors of COSMIC-derived geopotential 

coefficients using the method given in Hwang et al. (2008). A calibrated standard 

error is obtained by multiplying the un-calibrated standard error by the scaling 

factor. Fig. 5-16 compares the calibrated error degree variances from CSR RL04, 

COSMIC-only using AOP approach, COSMIC-only and COSMIC-GRACE using 

acceleration approach, and combined solutions. From the comparison, one can see 

that the combined solution yields smaller error degree variances than those from 

CSR RL04 solution. The calibrated error degree variances of COSMIC-only and 

COSMIC-GRACE derived by acceleration approach turn out to be smaller than 

them of COSMIC-only solution derived by analytical orbit perturbation approach. 

However, it may not be necessary to say that the time-varying gravity field 

recovered from acceleration approach would be better than that recovered from 

analytical orbit perturbation approach. In this study, the COMSIC observation data 

combined with GRACE shows a good potential to recover the low degree 

time-varying gravity field.  
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Fig. 5-10: Degree variances and formal error degree variances of time-varying 

geopotential coefficients from the COSMIC-only, COSMIC-GRACE and CSR 

RL04 solutions 
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Fig. 5-11: Geoid variations to spherical harmonic degree 15 from COSMIC-only solution 

(top) and from COSMIC-GRACE solution using residual acceleration approach 
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Fig. 5-12: Geoid variation to spherical harmonic degree 15 from the combined solution  
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Fig. 5-13: Relative differences of the COSMIC-only (top) and COSMIC-GRACE 

geopotential coefficients with respect to the CSR RL04 coefficients of gravity variation for 

nmCΔ  (left) and nmSΔ  up to degree 15  
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Fig. 5-14: Relative differences of the combined solution coefficients with respect to the CSR 

RL04 coefficients for nmCΔ  (left) and nmSΔ  up to degree 15 

 

Table 5-3: Relative errors of geopotential coefficients from COSMIC-only and 

COSMIC-GRACE solutions  

coefficient 
COSMIC-only 

solution 
COSMIC-GRACE 

solution 

3,3CΔ  55.287 1.987 

1,9CΔ  1088.755 4.61 

6,9SΔ  20.110 2.854 

2,12CΔ  29.133 1.953 

1,13CΔ  499.183 3.902 

12,13CΔ  16.223 2.491 

1,15CΔ  30.375 2.074 

7,15CΔ  22.240 1.278 
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Fig. 5-15: Relative differences for the zonal coefficients from ACC, AOP, CSR RL04 and 

combined solutions  
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Fig. 5-16: Calibrated error degree variances from ACC, AOP, CSR RL04 and combined 

solutions  
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Chapter 6 

Low-degree gravity change 
 

6.1 Introduction 

In Chapters 4 and 5, we have presented two methods to process the COSMIC 

and GRACE hl-SST data to recover the temporal gravity field using one month of 

observations. Therefore, we use these two methods to compute the monthly solutions:  

the NCTU AOP solution by the analytical orbital perturbation method, and the     

NCTU ACC solution by the residual acceleration method. The six COSMIC and two 

GRACE POD data from September 2006 to December 2007 were processed to obtain 

16 monthly solutions. Section 6.2 will describe COSMIC and GRACE POD data 

processing. The time series of low degree (up to degree/order 5) NCTU AOP, ACC 

solutions and the combined solutions (up to degree/order 15) with GRACE KBR 

solutions will be discussed in Section 6.3. Finally, Section 6.4 focuses on variations of 

low-degree zonal harmonic coefficients, including 20CΔ , 30CΔ  and 40CΔ . These 

results will be compared with the SLR and CSR RL04 solutions. 

 

6.2 Data of COSMIC and GRACE  

Following the procedure mentioned in Chapter 3, the reduced-dynamic and 

kinematic orbits of both COSMIC and GRACE satellites were determined using 16 

months of zero-differenced measurements by Bernese 5.0 from September 2006 to 

December 2007. The original sampling intervals of COSMIC, GRACE kinematic and 

reduced-dynamic orbits are 30-s. The force models for both COSMIC and GRACE 

are listed in Table 3-1 and the prior static gravity field is from the GGM03S model.  

Because of unknown reasons, COSMIC GPS observations in certain days were 

missing or not completed. Table 6-1 presents the numbers of files received from each 
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COSMIC satellite and the numbers of kinematic orbit computed from the original data 

from September 2006 to December 2007. The unusable kinematic orbit data take the 

blame for the bad attitude control, bad GPS observation quality or simply missing 

observations. Fig. 6-1 shows the monthly RMS differences between dynamic and 

kinematic orbits of COSMIC and GRACE satellites in the radial, along-track and 

cross-track directions. The averaged RMS differences in these three directions for 

each COSMIC and GRACE satellite are listed in Table 6-2. Comparison of the RMS 

differences between COSMIC and GRACE in August 2006 shown in Table 5-1 

suggests that the RMS differences of each COSMIC satellite are at the same level but 

smaller due to the better attitude control and the higher satellite operating altitudes. 

We will use these dynamic and kinematic orbits to recover monthly temporal gravity 

field solutions following the procedures for the analytical orbital perturbation and 

residual acceleration approaches. 
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Table 6-1: Numbers of observation files and usable kinematic orbit files from 

September 2006 to December 2007 

 

Month FM1 FM2 FM3 FM4 FM5 FM6 

2006.9 26a/26b 15/14 26/26 27/27 29/29 23/23 

2006.10 27/24 30/27 27/27 28/25 28/28 25/24 

2006.11 28/28 16/16 30/29 29/29 28/27 29/25 

2006.12 27/27 26/26 26/26 29/29 29/29 22/21 

2007.1 29/29 30/29 27/27 29/29 29/28 20/20 

2007.2 26/26 27/27 28/27 28/28 28/28 16/14 

2007.3 29/29 6/6 31/31 28/23 30/30 30/30 

2007.4 30/29 13/13 30/29 23/18 29/29 20/20 

2007.5 31/30 12/10 30/28 23/21 30/29 31/31 

2007.6 30/30 22/21 25/25 30/30 30/30 26/26 

2007.7 30/30 29/29 16/14 30/30 31/27 31/31 

2007.8 31/31 18/18 17/17 30/29 31/30 29/28 

2007.9 28/27 8/8 7/7 30/30 29/28 7/7 

2007.10 28/15 27/27 21/21 31/31 31/31 0/0 

2007.11 29/28 13/13 7/4 30/30 28/26 12/12 

2007.12 27/27 27/27 23/23 31/29 29/27 28/27 

a: Number of observation files 
b: Number of usable kinematic orbit files 
 



 

91 
 

 

 

 

 

Fig. 6-1: The monthly RMS differences between dynamic and kinematic orbits of 

COSMIC and GRACE satellites in radial (top), along-track and cross-track (bottom) 

directions from September 2006 to December 2007 
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Table 6-2: Averaged RMS differences between kinematic and dynamic orbits from 

September 2006 to December 2007 (unit: cm) 

 

Satellite radial alone-track  cross-track  
FM1 7.24 6.96 6.66 
FM2 7.02 6.76 6.46 
FM3 7.30 7.00 6.78 
FM4 7.25 6.95 6.68 
FM5 7.00 6.73 6.31 
FM6 6.88 6.59 6.33 
GRA 6.28 6.26 5.01 
GRB 6.38 6.38 5.42 
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6.3 Time series of monthly gravity solutions 

In order to investigate the temporal variation of gravity field, we process the 

COSMIC and GRACE data from September 2006 to December 2007 at almost one 

month interval. The NCTU solutions contain a series of monthly estimates of the 

temporal gravity field variation with respect to the GGM03S model based on four 

years (January 2003 through December 2006) of GRACE KBR and GPS data from 

the RL04 processing. To focus on changes of low-degree geopotential coefficients, we 

adopted degrees 5 as the maximum degree in harmonic expansion for gravity recovery 

using COSMIC and GRACE hl-SST data. Figs. 6-2 and 6-3 show the time series of 

geoid variations to spherical harmonic degree 5 and 15 of CSR RL04 solutions from 

September 2006 to December 2007. Some hydrological signals are clearly visualized 

over the Amazon, India, central Africa, Russia, North America and Greenland. The 

maximum variations can be observed in spring (April) and autumn (September to 

October) and this pattern is consistent from one year to another. 

Figs. 6-4 and 6-5 present the time series of the geoid variations to spherical 

harmonic degree 5 from the NCTU AOP and ACC solutions from September 2006 to 

December 2007. In general, the NCTU AOP and ACC solutions show similar 

magnitudes of geoid variations and show clear geoid highs and lows compared with 

CSR RL04 solutions with small phase differences. Compared with the CSR RL04 

results shown in Fig. 6-2, not all monthly NCTU AOP and ACC solutions are of the 

same quality. For example, the AOP solutions for December of 2006; January, 

February and April of 2007 still show some artifacts at latitudes higher than 72º, 

which may be caused by lack of the measurements and ACC solutions as well for 

November and December of 2006, and February, April, June, August, September, 

October and December of 2007. The geoid signatures of the same month shown in the 

NCTU ACC solution are usually smaller than in the NCTU AOP solution. The reason 
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may be that the numerical differentiation for acceleration derivation will increase the 

noise and we should use more terms of empirical model to absorb the noise.   

The combined COSMIC-GRACE solutions are also carried out. The time series 

of the geoid variations to spherical harmonic degree 15 of combined NCTU AOP and 

ACC solutions from September 2006 to December 2007 are shown in Figs 6-6 and 

6-7. We can indicate that the combined NCTU AOP and ACC solutions closely 

resemble the CSR RL04 solutions. Some geoid signatures are enhanced in some large 

mass redistribution areas like Amazon, India, and North America etc.. This is due to 

the large weights of GRACE coefficients in the combination. Comparing with Figs. 

6-3, 6-6 and 6-7, we note that the combined NCTU AOP solutions show greater 

enhancements of geoid signatures than NCTU ACC solutions. 
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Fig 6-2: Maps of geoid variations up to degree 5 of CSR RL04 solutions from 

September 2006 to December 2007  
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Fig 6-3: Maps of geoid variations up to degree 15 of CSR RL04 solutions from 

September 2006 to December 2007 
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Fig 6-4: Maps of geoid variations up to degree 5 of NCTU AOP solutions from 

September 2006 to December 2007 
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Fig 6-5: Maps of geoid variations up to degree 5 of NCTU ACC solutions from 

September 2006 to December 2007  



 

103 
 

 
 

 
 

 
 

 
 



 

104 
 

 
 

 
 

 
 

 
Fig 6-6: Maps of geoid variations up to degree 15 of combined NCTU AOP solutions 

from September 2006 to December 2007 
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Fig 6-7: Maps of geoid variations up to degree 15 of combined NCTU ACC solutions 

from September 2006 to December 2007 
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6.4 Low-degree zonal coefficients 

The studies for long term time series of low degree geopotential coefficients 

become an important issue for application of satellite geodesy. The conventional Jn 

and the fully normalized zonal coefficient 0nC  are related by  

 

00 12 nnn CnCJ +−=−=                                        (6-1) 

 

The second coefficient J2 is called Earth’s mean tide-free dynamic oblateness (Cox 

and Chao 2002): 

 

[ ] 2020
2

2 5/2/)( CCMRBACJ −=−=+−≡                        (6-2) 

 

where A, B, C present the Earth’s mean principle moments of inertia, M is the mean 

mass of Earth and R is the mean radius of Earth.  

From the variation of the coefficient J2 one can study atmospheric mass 

variation, oceanic mass redistribution and ground water-level change, which are vital 

to the understanding of global change. By observing the LEO orbital node 

acceleration using SLR, one can determine precise variation of the coefficient J2 

(Cheng and Tapley 1999; Cox and Chao 2002). The rate estimate of J2 from SLR data 

is decreasing from 1979 to 1998, and then increasing since 1998 until around 2005 

and decreasing after 2005 due to the significant inter-annual variation (Cheng and 

Tapley 2008). The long term variations of zonal terms J2 and J3 can be used to explain 

mantle compositions and post-glacial rebound. The long and short period variations of 

J2 and J3 are related to solid Earth, oceanic and atmospheric tidal or non-tidal change, 

and seasonal mass change of hydrology. The time variations of even zonal coefficients 
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( ),...6,4,2=nJn
&  are sensitive to the mantle composition and the variations of odd 

terms ( ),...7,5,3=nJ n
&  are sensitive to the glacial mass balance (Ivins et al. 1993). 

Cheng et al. (1997) have used 8 SLR satellite observations, including those from 

Starlette, Lageos 1 and 2, Ajisai, Etalon 1 and 2, Stella and BE-C, to analyze 

low-degree zonal coefficients to obtain ( ) yr/104.07.2 11
2

−×±−=J& ,

( ) yr/105.03.1 11
3

−×±−=J& , ( ) yr/100.14.1 11
4

−×±−=J& , ( ) yr/106.01.2 11
5

−×±=J& , 

and ( ) yr/107.03.0 11
6

−×±=J& . 

The second zonal coefficient C20 is rather difficult to estimate from GRACE data, 

particularly due to the polar orbit design and the presence of several long-tidal aliases 

(Ries et al. 2008). The combination of satellite data of different inclinations such as 

COSMIC-GRACE will not only effectively improve the accuracy of zonal 

geopotential coefficients but also the tesseral terms (Zheng et al. 2008). In Section 6.2, 

we choose the GGM03S model as a reference Earth’s gravity field model so the 

reference C20 is also chosen from the same model. Fig. 6-8 shows the time series of 

C20 change from CSR RL04 and SLR solutions from September 2006 to December 

2007. The file containing monthly estimates of C20, reference C20 (the value is 

-0.48416948 310−× ) and the error estimates of C20 by 5 SLR satellites (LAGEOS-1 

and 2, Starlette, Stella and Ajisai) can be available at the JPL ftp site 

(ftp://podaac.jpl.nasa.gov/grace/doc/ TN-05_C20_SLR.txt) (Cheng et al. 2004). The 

background gravity model used in the SLR analysis is consistent with the CSR RL04 

processing. Large differences of 20CΔ  occurred in April, September and October of 

2007. Time series of 20CΔ  change from the ACC, AOP, CSR RL04 and SLR 

solutions from September 2006 to December 2007 are given in Fig 6-9. The rates of 
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20CΔ  from SLR, AOP, ACC, and CSR RL04 are ( ) 101004594.0 −×±− , 

( ) 101086.006.1 −×±− , ( ) 111078.015.0 −×±  and ( ) 101086.098.1 −×±−  , respectively. These 

results suggest that the AOP solution and the SLR solution provide a more similar 

magnitude of variation with a smaller phase difference than CSR RL04 and ACC 

solutions. For the 30CΔ  and 40CΔ  changes, the three solutions (CSR RL04, AOP 

and ACC) have almost the same phase and similar magnitude of variation (see Fig. 

6-10 and 6-11). The rates of 30CΔ  from CSR RL04, AOP and ACC solutions are 

( ) 111007.658.1 −×±− , ( ) 111009.713.5 −×±− , and ( ) 111014.807.7 −×±− , and the rates of 40CΔ  

are ( ) 111006.346.3 −×± , ( ) 111091.220.0 −×±− , and ( ) 111001.333.2 −×± , respectively. 

 In conclusion, the NCTU AOP and ACC solutions produce improved 

low-degree zonal coefficients because they use satellite data of different inclinations. 

 

Fig 6-8: Time series of 20CΔ  from CSR RL04 and SLR solutions from September 

2006 to December 2007 
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Fig 6-9: Time series of 20CΔ  from SLR, CSR RL04, NCTU AOP and NCTU ACC 

solutions from September 2006 to December 2007 

 

Fig 6-10: Time series of delta 30CΔ  from CSR RL04, NCTU AOP, and NCTU ACC 

solutions from September 2006 to December 2007 



 

111 
 

 

Fig 6-11: Time series of delta 40CΔ  from CSR RL04, NCTU AOP, and NCTU ACC 

solutions from September 2006 to December 2007 
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Chapter 7 

Summary, Conclusions, and Recommendations 

7.1 Summary and Conclusions 

The primary contribution of this research is to use the combination of satellite 

hl-SST data of different inclinations to recover the temporal gravity fields, 

particularly the low-degree ones. This research is divided into four major parts. In the 

first part, we refined the COSMIC and the GRACE hl-SST data processing 

methodology for kinematic and dynamic POD (chapter 2). Secondly, we further 

developed the analytical orbital perturbation approach to process the COSMIC and 

the GRACE positional data to recover the temporal gravity field (chapter 4). Thirdly, 

the acceleration data derived from the COSMIC and the GRACE positional data are 

applied to the temporal gravity recovery procedure using the residual acceleration 

approach (chapter 5). Finally, we conducted an analysis of the time series of low- 

degree geopotential coefficients using the COSMIC and the GRACE hl-SST data, and 

validated such results by the CSR RL04 and SLR solutions. 

The main results are summarized as follows.  

(1) Precise kinematic and dynamic orbits of the COSMIC and the GRACE satellites 

are computed, with accuracies at the cm level.   

(2) Detailed and precise force modeling for COSMIC LEOs is achieved.  

(3) Time-varying gravity changes are estimated with a sufficient confidence from 

COSMIC only and combined COSMIC and GRACE GPS tracking data, based on 

the analytical orbit perturbation theory. 

(4) An alternative method of gravity recovery based on satellite accelerations is 

developed. The result is as good as the result from the analytical orbit perturbation 

theory. In the case of combined COSMIC and GRACE GPS data, both methods 
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produce changes in geopotential coefficients with smaller error degree variances 

and more evident gravity change signatures than the ones given by the 

GRACE-only solutions.   

(5) Time series of second, third and fourth zonal geopotential coefficients are 

determined from COSMIC and GRACE GPS data and they are consistent with the 

SLR results. The rates of 20CΔ  from SLR, AOP, ACC, and CSR RL04 are

( ) 101004594.0 −×±− , ( ) 101086.006.1 −×±− , ( ) 111078.015.0 −×±  and ( ) 101086.098.1 −×±−  , 

respectively. The rates of 30CΔ  from CSR RL04, AOP and ACC solutions are 

( ) 111007.658.1 −×±− , ( ) 111009.713.5 −×±− , and ( ) 111014.807.7 −×±− , and the rates of 

40CΔ  are ( ) 111006.346.3 −×± , ( ) 111091.220.0 −×±− , and ( ) 111001.333.2 −×± , 

respectively. 

 

7.2 Recommendations for future work 

To further improve accuracies in orbit determination and gravity recovery, there 

are several topics that need to be investigated in future works. 

 

(1) Improving COSMIC kinematic orbits  

This can be achieved by (1) using ambiguity fixing, (2) combing GPS data from 

the two POD antennas (3) using improved attitude data (collaborating with NSPO) 

and (4) using improved PCV estimates (Hwang et al. 2009). 

 

(2) Improving the COSMIC and the GRACE dynamic orbits 

Compared to the method used in this study, an improved method is to use the 

double-differenced GPS carrier-phase observations with sufficient numbers of ground 
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stations. But this will require a higher computational capacity. 

 

(3) Improving the accuracy of acceleration derivation 

In this study, we use the numerical differential method to derive the acceleration 

from positional data. There are at least two different variants of acceleration 

approaches such as the point-wise acceleration method and average acceleration 

method. These methods to derive observed acceleration should be investigated. 

 

(4) Accuracy assessment of the COSMIC and combined solutions 

More quantitative assessments of accuracy and spatial resolution of the 

COSMIC and combined gravity solutions are yet to carry out, for example, using 

terrestrial based gravity measurements at locations with major gravity changes.   



 

115 
 

Reference 

Balmino G, Barriot JB (1989) Numerical integration techniques revised, Manuscripta 

geodaetica, 15, 1-10. 

Balmino G, Schrama E, Sneeuw N (1994) Compatibility of first-order circular orbit 

perturbations theories; consequences for cross-track inclination functions, J Geod, 

70, 554-561. 

Bertiger W, Bar-Sever Y, Christensen E, Davis E, Guinn J, Haines B, Ibanez-Meier R, 

Lee J, Lichten S, Melbourne W, Muellerschoen R, Munson T, Vigue Y, Wu 

S,Yunck T, Schutz B, Abusali P, Rim H, Watkins M, Willis P (1994) GPS precise 

tracking of TOPEX/Poseidon: Results and implications, J Geophys Res, 99(C12), 

24449-24464.  

Bettadpur S (2007) UTCSR level-2 processing standards document for Level-2 

product release 0004, Center for Space Research, Univ of Texas, Austin, USA. 

Beutler G, Rothacher M, Schaer S, Springer TA, Kouba J, Neilan RE (1999) The 

international GPS service (IGS): an interdisciplinary service in support of Earth 

sciences. Adv Space Res, 23, 631–635. 

Bock H (2003) Efficient methods for determining precise orbits of low Earth orbiter 

using the global positioning system, Ph. D dissertation, Astronomical Institute, 

Univ of Berne, Berne, Switzerland.  

Byun S, Schutz BE (2001) Improving satellite orbit solution using  

double-differenced GPS carrier phase in kinematic mode, J Geod, 75, 533-543.  

Case K, Kruizinga GLH, Wu SC (2004) GRACE level 1B data product user handbook, 

JPLD-22027, http://podaac.jpl.nasa.gov/grace/documentation.html. 

Chang LH (2003) Force modeling for ROCSAT-3 satellite orbits, master thesis, Dept. 

of Civil Engineering, National Chao Tung Univ , Hsinchu, Taiwan, ROC.  



 

116 
 

Chao BF, Pavlis E, Hwang C, Liu CC, Shum CK, Tseng CL, Yang M (2000) 

COSMIC: geodetic applications in improving Earth's gravity model, Terr Atm 

Ocean Sci (TAO), 11, 365-378.  

Cheng M, Tapley B (1999) Seasonal variations in low-degree zonal harmonics of the 

Earth’s gravity field from satellite laser ranging observations, J Geophys Res, 

104, 2667-2681. 

Cheng M, Tapley BD (2004) Variations in the Earth's oblateness during the past 28 

years, J Geophys Res, 109, B09402. 

Cheng M, Tapley BD (2008) Recent variations in J2 from SLR and GRACE, GRACE 

science team meeting, San Francisco, CA, USA. 

Colombo O (1984) Altimetry, orbits and tides, NASA TM 86180, Greenbelt, 

Maryland, USA. 

Cox C, Chao BF (2002) Detection of a large-scale mass redistribution in the terrestrial 

system since 1998, Science, 297 (5582), 831-833.  

Dach R, Hugentobler U, Fridez P, Meindl M (2007) Bernese GPS Software - Version 

5.0. Astronomical Institute, Univ of Bern, Switzerland. 

Ditmar P, Kuznetsov V, van der Sluijs AAV, Schrama E, Klees R (2006) 

DEOS_CHAMP-01C_70: a model of the Earth's gravity field computed from 

accelerations of the CHAMP satellite. J Geod, 79, 586-601.  

Dunn C, Bertiger W, Bar-Sever Y, Desai S, Haines B, Kuang D, Franklin G, Harris I, 

Kruizinga G, Meehan T, Nandi S, Nguyen D, Rogstad T, Thomas JB, Tien J, 

Romans L, Watkins M, Wu SC, Bettadpur S, Kim JR (2003) Instrument of 

GRACE: GPS augments gravity measurements, GPS World, 14, 16–28. 

Engelis T (1987) Radial orbit error reduction and sea surface topography 

determination using satellite altimetry, Dept. of Geodetic Science and Surveying, 

Rep. No. 377, Ohio State Univ, Columbus, Ohio, USA. 



 

117 
 

European Space Agency (1999) Gravity field and steady-state ocean circulation 

missions, Reports for mission selection, the four candidate Earth explorer core 

missions, SP-1233(1), European Space Agency, Noordwijk, Netherland. 

Förste C, Flechtner F, Schmidt R, König R, Meyer U, Stubenvoll R, Rothacher M, 

Barthelmes F, Neumayer H, Biancale R, Bruinsma S, Lemoine J, Loyer S (2006) 

A mean global gravity field model from the combination of satellite mission and 

altimetry/gravimetry surface data – EIGEN-GL04C. Poster presented at EGU, 

General Assembly 2006, Vienna, Austria. 

Gerald C, Wheatley P (2003) Applied numerical analysis 7th ed., Addison Wesley 

Longman Inc. 

GFZ homepage. http://www-app2.gfz-potsdam.de/pb1/op/grace/index_GRACE.html. 

GSFC (1989) Mathematical Theory of the Goddard Trajectory Determination System, 

Goddard Space Flight Center, Greenbelt, Maryland, USA.  

Hedin A (1991) Extension of the MSIS thermosphere model into the middle and lower 

atmosphere, J Geophys Res, 96, 4649-4662. 

Heiskanen W A, Moritz H (1985) Physical Geodesy, reprint, Inst. of Physical Geodesy, 

TU Graz, Austria. 

Hwang C (1995) Orthonormal function approach for Geosat determination of sea 

surface topography, Mar Geod, 18, 245-271.  

Hwang C, Lin MJ (1998) Fast integration of low orbiter's trajectory perturbed by 

Earth's nonsphericity, J Geod, 72, 578-585. 

Hwang C (2001) Gravity recovery using COSMIC GPS data: application of orbital 

perturbation theory, J Geod, 75, 117-136. 

Hwang C, Hwang LS (2002) Satellite orbit error due to geopotential model error 

using perturbation theory: applications to ROCSAT-2 and COSMIC mission, 

Comput Geosci, 28, 357-367. 



 

118 
 

Hwang C, Lin TJ, Tseng TP, Chao BF (2008) Modeling orbit dynamics of 

FORMOSAT-3/COSMIC satellites for recovery of temporal gravity, IEEE 

Transactions on Geoscience and Remote Sensing (TGRS), 46(11), 3412-3423.  

Hwang C, Tseng TP, Lin TJ, Švehla D, Schreiner B (2009) Precise orbit determination 

for FORMOSAT-3/COSMIC, J Geod, 83, 477-489. 

Hwang LS (2002) Precision orbit determination and gravity models from tracking 

data of Low-Earth-Orbiting (LEO) satellites, Ph. D dissertation, Dept of Civil 

Engineering, National Chao Tung Univ, Hsinchu, ROC. 

Ivins R, Sammis C, Yoder C (1993) Deep mantle viscous structure with prior estimate 

and satellite constraint, J Geophys Res, 98, 4579-4609. 

Jäggi A, Hugentobler U, Beutler G (2006) Pseudo-stochastic orbit modeling 

techniques for low-Earth orbiters. J Geod, 80, 47-60. 

Jäggi A, Hugentobler U, Bock H, Beutler G (2007) Precise orbit determination for 

GRACE using un-differenced and doubly differenced GPS data, Adv Space Res, 

39, 1612-1619. 

Jekeli C (1999) The determination of gravitational potential differences from 

satellite-to-satellite tracking. Celes Mech Dynam Astron, 75, 85–101. 

Jekeli C, Garcia R (1997) GPS phase accelerations for moving-base gravimetry. J 

Geod, 71, 630-639. 

Kang Z, Tapley B, Bettadpur S, Ries J, Nagel P, Pastor R (2006) Precise orbit 

determination for the GRACE mission using only GPS data, J Geod, 80, 

322–331. 

Kang Z, Nagel P, Pastor R (2003) Precise orbit determination for GRACE, Adv Space 

Res, 31, 1875–1881. 

Kaula WM (1966) Theory of satellite geodesy. Blaisdell Publishing Co, Walthamn, 

Massachusetts, USA.  



 

119 
 

Koch K (1987) Parameter estimation and hypothesis testing in linear model, Springer, 

Berlin, Germany. 

Long A, Cappellari Jr. J, Velez C, Fuchs A (1989) Goddard trajectory determination 

system, Mathematical Theory, Revision 1, Flight Dynamics Division, National 

Aeronautics and Space Administration, USA. 

Luthcke S, Rowlands D, Lemoine FG, Klosko SM, Chinn D, McCarthy JJ 

(2006) Monthly spherical harmonic gravity field solutions determined from 

GRACE inter-satellite range-rate data alone, Geophys Res Lett, 33, L02402. 

McCarthy D (1996) IERS Standards, IERS Technical Note 21, 

http://www.iers.org/MainDisp.csi?pid=47-25786. 

Meskó A (1984). Digital filtering: Applications in geophysical exploration for oil. 

Pitman Pub. Ltd., London, UK. 

Montenbruck O, Gill E (2001) Satellite orbit - models, methods, and application, 

Springer, Berlin, Germany. 

Montenbruck O, Garcia-Fernandez M, Williams J (2006) Performance comparison of 

semicodeless GPS receivers for LEO satellites, GPS Solut, 10, 249–261. 

Nerem RS, Klosko SM (1995) Secular variations of zonal harmonics and polar 

motion as geophysical constraints. In Rapp RH, Cazenave AA, Nerem RS (eds) 

Global Gravity and Its Temporal Variations. IAG Symp 116, Boulder. 

Pavlis D et al. (1996) GEODYN operational manual, 5 volumes, Hughes/STX Corp., 

Greenbelt, Maryland, USA.  

Ray R D (1999) A global ocean tide model from TOPEX/POSEIDON altimetry: 

GOT99.2, Goddard Space Flight Center, Greenbelt, Maryland, USA. 

Reigber C, Bock R, Forste C, Grunwaldt L, Jakowski N, Luhr H, Schwintzer P, 

Tilgner C (1996) CHAMP phase B executive summary. GeoForschungs 

-Zentrum (GFZ), Potsdam, Germany. 



 

120 
 

Reigber C, Schmidt R, Flechtner F, König R, Meyer U, Neumayer K, Schwintzer P, 

Zhu SY (2005) An Earth gravity field model complete to degree and order 150 

from GRACE: EIGEN-GRACE02S, J Geodyn, 39, 1-10. 

Reubelt T, Austen G, Grafarend EW (2004) Harmonic analysis of the Earth's 

gravitational field by means of semi-continuous ephemerides of a low Earth 

orbiting GPS-tracked satellite, Case study: CHAMP. J Geod, 77, 257-278. 

Ries J, Cheng M, Bettadpur S, Chambers D (2008) Low-degree geopotential 

harmonics from SLR and GRACE. GRACE science team meeting, San 

Francisco, CA, USA. 

Rim H (1992) TOPEX Orbit Determination using GPS tracking system. Ph. D 

dissertation, Dept of Aerospace Engineering and Engineering Mechanics, The 

Univ of Texas at Austin, USA. 

Schreiner B (2005) COSMIC GPS POD and limb antenna test report. Internal report 

of UCAR, USA. 

Schmidt R, Flechtner F, König R, Meyer Ul., Neumayer K-H., Reigber C, Rothacher 

M,  Petrovic S, Zhu SY, Güntner A (2007) GRACE time-variable gravity 

accuracy assessment, IAG Symp, 130, 230-243.  

Schutz L, Tapley B, Abusali P, Rim H (1994) Dynamic orbit determination using 

GPS measurements from TOPEX/Poseidon, Geophys Res Lett, 21(19), 

2179-2182. 

Seeber G (2003) Satellite Geodesy, 2nd Ed., Walter de Gruyter, Berlin, Germany. 

Sinclair A (1997) Data Screening and Normal Point Formation: A Restatement of the 

Herstmonceaux Normal Point Recommendation, http://cddisa.gsfc.nasa.gov/cstg/ 

npt_algo.html. 

Švehla D, Rothacher M (2003) Kinematic and reduced–dynamic precise orbit 

determination of low Earth orbiters, Adv in Geos, 1(1), 47-56. 



 

121 
 

Švehla D, Rothacher M (2004) CHAMP and GRACE in Tandem: POD with GPS and 

K-Band Measurements. Joint CHAMP/GRACE Science Meeting, 6–8 July 2004, 

GeoForschungsCentrum Potsdam (GFZ), Germany. 

Tapley B (1997) The gravity recovery and climate experiment (GRACE). EOS, Trans. 

AGU 78, 46, Suppl-163.  

Tapley B, Bettadpur S, Ries J, Thompson P, Watkins M (2004) GRACE 

measurements of mass variability in the Earth system, Science, 305, 503-505. 

Tapley B, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, Gunter B, Kang Z, 

Nagel P, Pastor R, Pekker T, Poole S, Wang FG (2005) GGM02 - An improved 

Earth gravity field model from GRACE, J Geod, 79, 467-478.  

Tapley B, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, Poole S (2007) The 

GGM03 Mean Earth Gravity Model from GRACE, Proc of AGU fall meeting 

2007. 

Torge W (1989) Gravimetry, Walter de Gruyter & Co., Berlin, Germany. 

Visser PNAM (2005) Low-low satellite-to-satellite tracking: a comparison between 

analytical linear orbit perturbation theory and numerical integration, J Geod, 79, 

160–166. 

Visser PNAM, Sneeuw N, Gerlach C (2003) Energy integral method for gravity field 

determination from satellite orbit coordinates, J Geod, 77, 207–216. 

Visser PNAM, van den Ijssel J, Koop R, Klees R (2001) Exploring gravity field 

determination from orbit perturbations of the European Gravity Mission GOCE, 

J Geod, 75, 89–98. 

Wagner CA (1983) Direct determination of gravitational harmonics from low-low 

GRAVSAT data. J Geophys Res, 88(B12), 10309–10321. 

Wolff M (1969) Direct measurements of the Earth’s gravitational potential using a 

satellite pair. J Geophys Res, 74, 5295–5300. 



 

122 
 

Wu BH, Fu CL, Liou YA, Chen WJ, Pan HP (2005) Quantitative analysis of the 

errors associated with orbit uncertainty for FORMOSAT-3. In: Proceedings of 

the international symposium on remote sensing (ISRS), Korea, 87–90. 

Xu PL, Fukuda Y, Liu Y (2006) Multiple parameter regularization: numerical 

solutions and applications to the determination of geopotential from precise 

satellite orbits. J Geod, 80, 17–27. 

Zheng W, Shao C, Luo J, Xu H (2008) Improving the accuracy of GRACE Earth’s 

gravitational field using the combination of different inclinations, Prog Nat Sci, 

18, 555-561. 

Zhu S, Reigber C, König R (2004) Integrated adjustment of CHAMP, GRACE, and 

GPS data, J Geod, 78, 103-108. 



 

123 
 

Appendix A: Acronyms 
ACC     Residual acceleration approach  

AOCS    Attitude and Orbit Control System 

AOP     Analytical orbital perturbation approach 

CES     Coarse Earth and Sun Sensor 

CHAMP  CHAllenging Minisatellite Payload 

CMT     Center of Mass Trim Assembly 

CODE    Center for Orbit Determination in Europe 

COSMIC  Constellation Observing System for Meteorology, Ionosphere and Climate 

CSR     Center for Space Research  

DORIS   Doppler Orbitography and Radio positioning Integrated by satellite 

GOCE    Gravity Field and Steady-State Ocean Circulation Explorer 

GPS     Global Positioning System 

GRACE   The Gravity Recovery and Climate Experiment 

GST     Greenwich sidereal time  

hl-SST   high-low satellite-to-satellite tracking 

ILRS    International Laser Ranging Service 

JPL     Jet Propulsion Laboratory 

KBR     K-Band Ranging System 

LEO     Low Earth orbiter  

LEOM    Lagrange’s equation of motion 

ll-SST    low-low satellite-to-satellite tracking  

LRR     Laser Retro-Reflector  

NSPO    National Space Organization  

POD     Precise Orbit Determination 

PRARE   Precise Range and Range Rate Experiment 

PCV     phase center variation 

RTN     radial, along-track and cross-track 

SAD     solar arrays drive 

SCA     Star Camera Assembly  

SGG     Satellite Gravity Gradiometry  

SLR     Satellite Laser Ranging 

TDF     Tracking Data Formatter 
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UCAR    the University Corporation for Atmospheric Research 

USO      Ultra Stable Oscillator   
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