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Abstract

This dissertation is aimed at temporal gravity field recovery from the analyses of
the high-low satellite-to-satellite tracking (hl-SST) data from the COSMIC and
GRACE satellite missions. In order to estimate the time-varying geopotential
coefficients, two efficient methodologies, the analytical orbital perturbation (AOP)
approach and the residual acceleration (ACC) approach, are developed in the research.
With the reference orbits removed, orbital perturbations (difference between
kinematic and reference orbits) and residual accelerations (difference between
observed and reference accelerations) from the residual orbits are linear functions of
the time-varying geopotential coefficients. Such linear functions enable convenient
establishments of observation equations to estimate geopotential coefficients.

The Bernese 5.0 software is used to compute the cm-level kinematic orbits of
COSMIC and GRACE. The NASA Goddard’s GEODYN Il software is used to
compute the perturbing forces acting on COSMIC and GRACE satellites based on the
standard models of orbit dynamics. The accelerations due to the atmospheric drag,
solar radiation pressure and other minor surface forces are estimated by some relevant
model parameters over one orbital period from COSMIC’s kinematic and reduced
dynamic orbits. The 5s kinematic and dynamic orbits from six COSMIC and the 10s

orbits from two GRACE satellites are re-sampled into 1 minute normal point



positional data and then converted to acceleration data by numerical differential for
gravity recovery.

To validate the theories and computer programs associated with the AOP and
ACC approaches, some experimental solutions of time-varying geopotential
coefficients are carried out using one-month (August 2006) of COSMIC and GRACE
kinematic and dynamic orbits. The average RMS in RTN directions of reduced
COSMIC and GRACE (1 minute) between kinematic orbits and dynamic orbits are
about 7.5 and 6.5 cm. The COSMIC solutions reveal several well-known temporal
gravity signatures, but contain artifacts. The combined COSMIC-GRACE solutions
enhance some local features in the GRACE solutions.

The monthly COSMIC and GRACE precise orbit data from September 2006 to
December 2007 (16 months) are processed to recover monthly low-degree (up to
degree 5) geopotential coefficients by the AOP and ACC approaches. The geoid
variations from such low-degree geopotential coefficients are compared with the CSR
RLO4 solutions. Two combined solutions by the AOP and ACC approaches (up to

degree 15) are also carried out. The monthly variations of the zonal geopotential

coefficients AC,,, AC,, and AC,, from the AOP and ACC solutions (degree 5)
closely resemble the SLR-derived and CSR RL04 solutions. The rates of AC,, from
SLR, AOP, ACC, and CSR RLO4 are (—094+049x10™, (~106+086x10™,
(015+0.78x10™ and (~1.98+0.86)x107° , respectively. The rates of AC,, from CSR
RLO4, AOP and ACC solutions are (—158+607)x10™, (-513+7.09x10™, and
(-707+814x10™ , and the rates of AC, are (3.46+3.06)x10™" |,

(-020+291x10™, and (233+£3.01)x10™, respectively.



Table of Contents

ADSIFACE (IN CHINESE) ...vvieie ettt s e e sbe e sreeneeenee e i
ADSTTACT. ...t bbb ii
TaDIE OF CONLENTS ... \%
LISt OF TADIES ... vii
LISES OF FIQUIES ...ttt ettt e e st e nreeaeeneenneenee e viii
Chapter 1 INTrOQUCTION.........iiuiiieieie et 1
1.1 BaCKGIrOUNG.....coiuiiiiiiiesii ettt stttk sttt reenne e 1

1.2 ReSearch ODJECLIVES .......coveiieiicce et 7

1.3 OULHNES OF TNESIS ....uiiviiiiiiiiieiis ettt 8
Chapter 2 Methods for gravity field modeling using GPS observations..................... 10
2.1 INTrOAUCTION ...ttt bbb 10

2.2 Theory of analytical orbital perturbation approach..........c.ccccccceevvivvevinnnnen. 11

2.3 Theory of residual acceleration approach.............ccceeeviierenienieesesie e 20
Chapter 3 Force modeling and precise orbit determination for COSMIC .................. 23
3.1 INErOAUCTION ...t 23

3.2 Orbit dynamics of COSMIC satellite .........cccceiveeiieieiieiece e 23

3.2.1 Equations of motion and perturbing potential force.............ccccveuvnne.n. 24

3.2.2 Atmospheric drag and solar radiation effects on COSMIC satellites... 26

3.3 Kinematic orbit determination using Bernese 5.0 ........cccooevvvieninnicinnenn 30
3.4 Dynamic orbit determination using GEODYN Il software.............c..c......... 32
3.5 Normal point redUCTION..........cccueiieie e 38

Chapter 4 Recovery of temporal gravity field using analytical orbital perturbation
18] 0] (0= T o OSSPSR 42



A1 INEFOAUCTION oottt e e et e e e et e e e e e e e e e eeaeeeaans 42

4.2 Kinematic orbits of COSMIC and accuracy assesSment..........ccocceervreennnee 42

4.3 Reference dynamic orbits for COSMIC and GRACE............ccceevvvieiiieennn. 46

4.4  Formulae used in gravity rECOVENY ......c.covveiveiieiieiieeiesee et 48

4.5 Results Of gravity FECOVEIY ......cccviiiiiee e 51
Chapter 5 Temporal gravity recovery based on satellite accelerations ....................... 62
5.1 INrOAUCTION ..o 62

5.2 Processing of COSMIC and GRACE residual accelerations....................... 62
5.2.1 POSItion data SCrEENING .......ccvevvreiiiieeieeieaiesreeseeeeseesteeseeseesreeseesneens 63

5.2.2 Computation of residual accelerations ............cccoevcvvveriverienieiieenennens 66

5.3 Validation of the acceleration method .............c.ccoovvviiiiiciinenene 69

5.4 Gravity recovery using COSMIC and GRACE GPS data..........c...cccueneee. 78
Chapter 6 Low-degree gravity CNange.........ccoovueiieriiieiieie e sie s se e see e 88
6.1 INTrOAUCTION ...ttt e bbbt 88

6.2 Data of COSMIC and GRACE...........ccoiiieieiiiiis e 88

6.3 Time series of monthly gravity solutions .............c.ccccovvveie i 93

6.4 Low-degree zonal COEfICIENTS.......cccvevveiiiii e 107
Chapter 7 Summary, Conclusions, and Recommendations............c.cccoeverviieiveneene 112
7.1 Summary and CONCIUSIONS .......c.coueiiiiiiie e 112

7.2 Recommendations for future WOrk ..o 113
RETEIENCE ... 115
APPENAIX AL ACTONYIMIS ...ttt bbbttt e e bbbt sb e e e 123
CUITICUIUM VITAE ... 125

Vi



List of Tables

Table 3-1 Standards for the orbit dynamics of COSMIC satellites..........cccccevveeervenenne 36

Table 4-1 Statistics of standard errors of normal-point kinematic orbits........................ 46

Table 4-2 Different standards for the orbit dynamics of COSMIC and GRACE satellites47

Table 5-1 Average RMS differences between kinematic orbits and dynamic orbits in RTN

directions for six COSMIC and two GRACE satellites (unit: cm) .........cccooerieniiicnnene. 65

Table 5-2 Statistics of percentages of accepted normal-point kinematic orbits (August,

Table 5-3 Relative errors of geopotential coefficients from COSMIC-only and

O{O ]|V 1 (O €] 2 ¥ AN O Yo ] (U] 0] K T R 85

Table 6-1 Numbers of observation files and usable kinematic orbit files from September

2006 t0 DECEMDET 2007 ... oo et et e e e e e e e e e e et e e e e e e e s e et e eeeeeeeeaeenreeeeeeeeaaans 90

Table 6-2 Averaged RMS differences between kinematic and dynamic orbits from

September 2006 to December 2007 (UNIE: CM).uveivieieieriieie i 92

vii



List of Figures

Fig. 1-1 A COSMIC spacecraft, payloads and spacecraft-fixed coordinate system, the

origin is at the center of the main body (cylinder) (Hwang et al. 2008) .............ccccoveeveennne 6

Fig. 1-2 GRACE science instrumentation (http://www-app2.gfz-potsdam.de/pbl

/op/ grace / indeX_GRACE.NtMI).......cooviiiiiiiieeceeee s 6

Fig. 2-1 Geometry showing the effects of perturbations in argument of perigee (top), right
ascension of the ascending node and inclination (bottom) on the radial, along-track, and

cross-track perturbations at a satellite position (Hwang 2001) ........cccccevvveiineninennnnnn. 12
Fig. 3-1 The dimensions of the main part and solar panels of a COSMIC LEO (top),
velocity vector r and LEO-to-atmosphere vector (f—f,) (Hwang etal. 2008) ........ 29
Fig. 3-2 Steps of precise kinematic orbit determination using GPS data.............c............ 31

Fig. 3-3 Estimated atmospheric drag coefficients (top) and solar reflectivity coefficients

Oof FM 5 from Day 225 t0 232, 2006 .......ccoviiiuiiiiiiiieesiiesiisesiiesieesrassaeesieesaeesee e ssaesnnes 37
Fig. 3-4 Raw and normal-point residuals in Y-direction (FM5, DOY216)..........cccccvenuee. 41
Fig. 4-1 Trajectory of FM5 satellite (AUQUSE 2006) ..........ocverieiiriieiienie e 44

Fig. 4-2 Percentages of acceptance of kinematic orbits for normal-point computations.. 45

Fig. 4-3 Standard errors of normal-point kinematic orbits in August 2006 ...................... 45

Fig. 4-4 Observed and modeled degree variances of CSR RLO04 solution in August 2006

Fig. 4-5 Steps of gravity recovery from COSMIC GPS data using analytical orbital

PErtUrbation aPPrOACK ..........oiiiie e 55

viii



Fig. 4-6 Degree variance and formal error degree variances of time-varying geopotential

coefficients from the COSMIC-only and COSMIC-GRACE solutions..........c.c.ccceveveenee. 56

Fig. 4-7 Geoid variation to spherical harmonic degree 15 from the CSR RL04 solution

Fig. 4-8 Geoid variations to spherical harmonic degree 15 from COSMIC-only (top) and

COSMIC-GRACE SOIULIONS oo, 57

Fig. 4-9 Relative differences of the COSMIC-only (top) and COSMIC-GRACE

coefficients with respect to the GRACE-derived coefficients of gravity variation for
AC, ~ (leftyand AS,_ UP O AEGIEE 15 ....coocvecvceieeeesies ittt 58
Fig. 4-10 Same as Fig. 4-9, but for the zonal coeffiCients .............ccocoovviiiiiiciiie 59

Fig. 4-11 Formal error degree variances of time-varying geopotential coefficients from

the CSR RL04 and the combiNed SOIUTIONS........ovviveeeieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e e 59

Fig. 4-12 Degree variances from COSMIC-GRACE, and calibrated error degree

variances from COSMIC-GRACE, GRACE and combined solutions ........ccccceeevvveeenn... 60

Fig. 4-13 Geoid variation to spherical harmonic degree 15 from the combined solution

Fig. 4-14 Geoid changes in Amazon area derived from combined (left) and GRACE

SOIULIONS ..ottt e e e et e e ettt e e e e e e e e et e e e e e e e e e ——aaaans 61

Fig. 5-1 RMS differences of GRACE-A (Top) and GRACE-B between NCTU kinematic

orbits and CSR dyNamIiC OFDITS........ooiiiiiiieiere e 64

Fig. 5-2 Percentages of acceptance of kinematic orbits for normal-point computations



Fig. 5-3 The simulation procedure of residual acceleration approach ..........ccccccooevvenee. 72

Fig. 5-4 Recovered gravity variation using one week of one COSMIC data and degree-5
solutions by (a) oceanic mass variation (b) 1-cm white noise (c) 3-cm white noise (d)

5-cm white noise. Unit is Mgal.........cccooveiiiiiiii e 73

Fig. 5-5 Relative differences of recovered zonal coefficients from the degree-5 solution

(0N COSMIC SALEIIITE) ... 74

Fig. 5-6 Relative differences of the recovered harmonic coefficients of gravity variation
for (A) Aénm (degree-5 solution), (B) A§nm ( degree-5 solution), (C) Aénm
(degree-10 solution), (D) A§nm ( degree-10 solution), (E) Aénm (degree-15 solution),
(F) A§nm ( degree-15 solution), (G) Aénm (degree-20 solution) and (H) A§nm (
degree-20 solution) using one week of six COSMIC satellite data with 3-cm white noise75

Fig. 5-7 Recovered gravity variation combining one week of six COSMIC satellite data
by adding 1-cm white noise (top), 3-cm white noise (center) and 5-cm white noise
(bottom). UNIt IS MQAL ....ec.iiiiiie ettt er e te e raenae s 76

Fig. 5-8 Relative errors of the recovered harmonic coefficients up to degree 5 of gravity
variation for (A) Aénm (1 cm white noise), (B) A§nm (1 cm white noise), (C) Aénm
(3 cm white noise), (D) A§nm (3 cm white noise), (E) Aénm (5 cm white noise) and (F)

~

AS, (5 cm white noise) using one week of six COSMIC satellites data...................... 77

Fig. 5-9 Relative errors of recovered zonal coefficients from the degree-5 solution (six

COSMIC SALEHTITES) ...ttt bbbt nes 78

Fig. 5-10 Degree variances and formal error degree variances of time-varying



geopotential coefficients from the COSMIC-only, COSMIC-GRACE and CSR RLO04

SONULIONS ..., 81

Fig. 5-11 Geoid variations to spherical harmonic degree 15 from COSMIC-only solution

(top) and from COSMIC-GRACE solution using residual acceleration approach ........... 82

Fig. 5-12 Geoid variation to spherical harmonic degree 15 from the combined solution

Fig. 5-13 Relative differences of the COSMIC-only (top) and COSMIC-GRACE

geopotential coefficients with respect to the CSR RL04 coefficients of gravity variation

for AC_ (left)and AS, ~ UP 10 dEQIEE 15.......ccoieveeriieiiese e 84

Fig. 5-14 Relative differences of the combined solution coefficients with respect to the

CSR RL04 coefficients for AC,_ (leftyand AS_ uptodegree 15 ......c.cccccevererenneee, 85

Fig. 5-15 Relative differences for the zonal coefficients from ACC, AOP, CSR RL04 and

COMBINEA SOIULIONS ... e 86

Fig. 5-16 Calibrated error degree variances from ACC, AOP, CSR RL04 and combined

SOIULIONS ..o e et e e e e e et e e e e e e e e e et e e e e e e e e e raaaens 87

Fig. 6-1 The monthly RMS differences between dynamic and kinematic orbits of
COSMIC and GRACE satellites in radial (top), along-track and cross-track (bottom)

directions from September 2006 to December 2007 ..........cccevveveiiieiiere e 91

Fig. 6-2 Maps of geoid variations up to degree 5 of CSR RL04 solutions from September

20006 10 DECEMDET 2007 .. oo 96

Fig. 6-3 Maps of geoid variations up to degree 15 of CSR RLO4 solutions from

September 2006 t0 DeCemMbBEr 2007 .........c.ccieiiiieieeie e 98

Xi



Fig. 6-4 Maps of geoid variations up to degree 5 of NCTU AOP solutions from

September 2006 t0 DecemBDer 2007.........ccuviieiiereiie e 100

Fig. 6-5 Maps of geoid variations up to degree 5 of NCTU ACC solutions from

September 2006 to December 2007.........c.coveiieieiie e 102

Fig. 6-6 Maps of geoid variations up to degree 15 of combined NCTU AOP solutions

from September 2006 t0 December 2007 .........cccoiiiiriiienieiee e 104

Fig. 6-7 Maps of geoid variations up to degree 15 of combined NCTU ACC solutions

from September 2006 to December 2007 ........ccvvcveieeiieie e 106

Fig. 6-8 Time series of AC,, from CSR RL04 and SLR solutions from September 2006

10 DECEMDET 2007 ...t e et e e e e et ettt e e e e e e e e e et e e e e e e e e 109

Fig. 6-9 Time series of AC,, from SLR, CSR RL04, NCTU AOP and NCTU ACC

solutions from September 2006 to December 2007 ..........ccccovveveiireiieiieie e 110

Fig. 6-10 Time series of delta AC,, from CSR RL04, NCTU AOP, and NCTU ACC

solutions from September 2006 to December 2007 .......ccccovevieveiieiieiiee e 110

Fig. 6-11 Time series of delta AC,, from CSR RL04, NCTU AOP, and NCTU ACC

solutions from September 2006 to December 2007 ..........cccvveveiiieiieve e 111

Xii



Chapter 1
Introduction

1.1 Background

The Earth’s gravity field is the sum of gravitational attraction and centrifugal
force and it would vary in space and time due to the mass redistributions caused by
atmospheric circulation, oceanic circulation, ground water-level variation, melting ice
and other factors (Torge 1989). Gravity variations will result in satellite orbital
perturbations, and variations in Earth rotational velocity and vertical datum of the
Earth etc..

The precise Earth’s gravity field model can be applied to several disciplines of
Earth sciences including geodesy, atmosphere, oceanography, aerospace engineering
and geophysics. It can be determined with a variety of techniques and observation
data types including surface gravity measurements, satellite tracking measurements
and satellite radar altimetry measurements (Nerem 1995). Surface gravity
measurements by terrestrial absolute/relative gravimetry, superconducting gravimetry,
and airborne/ship-borne gravimetry can obtain the highest point-wise accuracy or
regional information about the Earth’s gravity field. Satellite radar altimetry data can
monitor the global sea surface height to derive gravity anomalies and geoid over the
oceans or lake areas. Satellite tracking measurements are popular for global gravity
field modeling and mainly acquired by Satellite Laser Ranging (SLR), Doppler
Orbitography and Radio positioning Integrated by satellite (DORIS), Precise Range
and Range Rate Experiment (PRARE), high-low satellite-to-satellite tracking
(hl-SST), low-low satellite-to-satellite tracking (11-SST) and Satellite Gravity

Gradiometry (SGQG).



Low Earth orbiters (LEOs) have become one of the basic and efficient tools for
determining global time-varying gravity field in 21th century. A number of satellite
missions have been launched in order to accomplish time-varying gravity field
determination such as CHAMP (CHAllenging Minisatellite Payload) (Reigber et al.
1996), GRACE (The Gravity Recovery and Climate Experiment) (Tapley 1997),
FORMOSAT-3/COSMIC (Constellation Observing System for Meteorology,
Ionosphere and Climate) (Chao et al. 2000) and GOCE (Gravity Field and
Steady-State Ocean Circulation Explorer) (ESA 1999). Although these missions
employ different measurement techniques, the common feature of all missions is the
use of GPS (Global Positioning System) observations for the precise orbit
determination. The GPS-determined precise orbit data contains all information of
orbital perturbation forces due to the Earth’s non-sphericity, air drag, solar radiation,
N-body, solid Earth tide, ocean tide, Earth’s radiation (albedo), and relativistic effects
(Seeber 2003). With appropriate methods removing the non-gravitational forces and
constraints, the time-varying gravity can be derived from precise orbit data.

The FORMOSAT-3/COSMIC mission is a joint Taiwan-USA satellite mission
launched in April 2006 for meteorological and ionospheric research and geodetic
applications. Each of the six COSMIC satellites is equipped with two POD (Precise
Orbit Determination) GPS antennas with a code-less, dual-frequency BlackJack GPS
receiver (Dunn et al. 2003; Wu et al. 2005; Schreiner 2005; Montenbruck et al. 2006)
developed by the Jet Propulsion Laboratory (JPL), which yield data for precise orbit
and gravity determinations (Fig. 1-1). For abbreviation, the six COSMIC satellites
will be named FM1- FM6, following the convention of NSPO (National Space
Organization). With 6 satellites in the constellation, COSMIC configuration will

provide a strong geometry in determining Earth’s gravity fields. COSMIC GPS data



can be used to compute orbit perturbations and/or accelerations so that they may
recover the Earth’s temporal gravity fields and derive the spatial and time variations
of the Earth’s mass. The origin of the spacecraft coordinate frame is at the geometric
center of the ring. The angle between the line of coordinate origin- physical center of
POD antenna and either the +X or -X axis is 30°. The angle between the normal to the
antenna patch and the +X or —X axis is 15°. The COMs (center of mass) of the six
satellites have been determined in a NSPO laboratory, in the configurations of full
load and empty propellant fuel with stowed solar panels. The Attitude and Orbit
Control System (AOCS) of a COSMIC satellite is a combination of outputs from a
three-axis magnetometer, an one-axis Earth sensor and a three-axis Coarse Sun sensor
but without the star-camera. The phase center offset and phase center variation (PCV)
of the two POD antennas were both determined in an anechoic chamber using a
mockup of COSMIC satellite, built by UCAR (the University Corporation for
Atmospheric Research). The L1 and L2 phase centers were estimated for L1 and L2
frequencies and for 8 different solar arrays drive (SAD) orientations.

The geopotential parameters can be estimated from the LEO’s
centimeter-precise POD data. The GPS data processing is performed at two stages for
gravity recovery. In the first step, a reference orbit is computed from hl-SST data; the
hl-SST data are applied to linearize the observational equations for the gravity
coefficients estimation. In the second step, gravity recovery is carried out. Combining
with different types of space measurements, the second step may use one of the three
methods: (i) Kaula’s linear perturbation theory (Kaula 1966); (ii) direct numerical
integration (Hwang 2001; Visser et al. 2001; Rowlands et al. 2002); (iii) energy
balance approach (Wolff 1969; Wagner 1983; Jekeli 1999; Visser et al. 2003; Visser

2005).



The GRACE mission, a joint effort of NASA (USA) and DLR (German), was
launched on March 17, 2002. This mission consists of two satellites, GRACE-A and
GRACE-B, operating at an altitude of about 500 km as a formation at a distance of
about 200 km apart. The orbit inclination is 89° as a near polar orbit and the period of
1 revolution is 94 minutes. The purpose of choosing such an orbit is mainly to obtain
a homogeneous and complete global coverage for gravity field recovery. The primary
objective of GRACE mission is to determine the high precision and high spatial
resolution Earth’s gravity field, with an emphasis on its temporal changes (Tapley et
al. 2004). The secondary objective is to determine total electron content and/or
refractivity from the excess delay or bending angle of GPS measurements caused by
the atmosphere and ionosphere. Both GRACE satellites are equipped with the
following instruments: K-Band Ranging System (KBR), Accelerometer, GPS Space
Receiver, Laser Retro-Reflector (LRR), Star Camera Assembly (SCA), Coarse Earth
and Sun Sensor (CES), Ultra Stable Oscillator (USO) and Center of Mass Trim
Assembly (CMT) (Fig.1-2) (GFZ homepage). The KBR system is to measure the
inter-satellite distance forming the 1I-SST observation, derived range-rates, and
range-accelerations between two satellites. The accuracies of the inter-satellite
distance and the range rate are 10um and lum/s, respectively. On-board GPS
TurboRogue Space Receivers receive GPS data to determine precise satellite orbits
and to synchronize time tags of KBR measurements. The SuperSTAR accelerometer
measures non-gravitational satellite accelerations. The satellite attitudes are controlled
and determined by the SCA and CES systems. The LRR system is to measure
distances between dedicated laser ground stations and the satellites with an accuracy
of 1-2 cm. The USO system is built for the frequency generation of the KBR system.

The CMT system is developed to adjust the offset between the satellite's COM and the



center of the accelerometer proof-mass.
Three alternative monthly GRACE gravity models published by different
institutions CSR, GFZ and JPL are available at the web site of Center for Space

Research (CSR), The University of Texas at Austin (http://www.csr.utexas.edu/grace).

The static gravity solutions, GGMO02S (Tapley et al. 2005) and GGMO3S (Tapley et al.
2007) derived from GRACE KBR and GPS measurements, is also available at the
website. The monthly solutions issued by CSR have three versions: Release 01
(RLO1), Release 02 (RLO0O2) and Release 04 (RLO04). The CSR RL04 monthly
solutions based on one-step variational equations approach contain fully normalized
spherical harmonic coefficients up to degree and order 60. The solution is obtained
through an optimally weighted combination of GPS and KBR data with one-day
dynamic arcs for a designated month. More details of the RL04 model development

can be found in the documents released with the GRACE products (Bettadpur 2007).
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1.2 Research objectives

The primary objective of this research is to develop efficient techniques and
data processing procedures to process the hl-SST observations from COSMIC and
GRACE to recover the temporal Earth’s gravity field models represented in the form
of spherical harmonic series. Based on this objective, the first research regarding with
the hl-SST data processing starts from a so-called analytical orbital perturbation (AOP)
approach developed by Kaula (1966). For gravity recovery, the geometrically
determined kinematic orbits are functions of orbit dynamic parameters, including
geopotential coefficients, can be regarded as observations, and would be used in the
least-squares estimation of these parameters.

The residual acceleration (ACC) approach is the second technique related to
hl-SST data processing using satellites accelerations derived from precise kinematic
and reference dynamic orbits by numerical differentiations. After removing
accelerations other than the Earth’s gravity-induced accelerations, linear relations
between LEO accelerations and gravity coefficients can be established. The residual
acceleration differences between kinematic and reference orbits are assumed to be
linear functions of time-varying geopotential coefficients and further used as
observations for the geopotential coefficients estimation.

The second objective of this thesis is to derive time series of low-degree, zonal
term gravity changes using COSMIC and GRACE GPS data. The combined COSMIC
and GRACE solutions are also computed which are expected to enhance local
temporal gravity signatures contained in the GRACE only solutions. The time series
of zonal geopotential coefficients derived by AOP and ACC methods will also be

assessed by those derived by tracking data.



1.3 Outline of Thesis

This dissertation comprises seven chapters. The detailed introductions of two
gravity field recovery methods, analytical orbital perturbation approach and residual
acceleration approach, are described in Chapter 2. This chapter starts from the
analytical orbital perturbation approach which makes use of the relationship between
the positional variations of orbits and variations in the six Keplerian elements from
hl-SST observations. After that, the residual acceleration approach is proposed for
gravity solutions.

In Chapter 3, since the precise orbits play an important role in gravity field
recovery, the main principle of precise orbit determination is presented. The
descriptions of orbit dynamics are discussed especially about the surface forces
including atmospheric drag, solar radiation pressure and the Earth’s radiation pressure
acting on COSMIC satellites. The procedures of precise dynamic orbit determination
using GEODYN II software (Pavlis et al. 1996) and precise kinematic orbit
determination using Bernese 5.0 software (Dach et al. 2007) are also provided. To
reduce noises and data volume, the normal-point reduction is therefore introduced.

Chapter 4 is devoted to gravity field modeling using analytical orbital perturbation
approach. The procedure of processing kinematic orbit and the orbit accuracy
assessment is presented in this chapter. Both COSMIC and combined COSMIC and
GRACE gravity solutions are computed using the post-processed orbit data.

Chapter 5 focuses on gravity field modeling derived from combined COSMIC and
GRACE POD data and residual acceleration approach was applied. Position data
screening and computation of residual accelerations are discussed in this chapter. The
results from simulations and real data processing are carried out and compared with

the results from AOP solution and CSR RL04 solution.



A time-series analysis of the estimated COSMIC and GRACE monthly
low-degree temporal gravity solution is the subject of Chapter 6. The time span is
from September 2006 to December 2007. The COSMIC and GRACE monthly
low-degree temporal gravity solutions and combined solutions are presented in this
chapter. Moreover, a comparison of some zonal geopotential coefficients with SLR
and CSR RL04 solutions is also covered in this chapter.

Chapter 7 contains summaries, conclusions, future researches and suggestions.



Chapter 2

Methods for gravity field modeling using GPS observations

2.1 Introduction

A conventional one-step approach to model the gravity field is to use the raw
GPS measurements directly in the equations of motion for estimation of geopotential
coefficients. In this case, the relationship between geopotential coefficients and SST
measurements is not linear, so the linearlization of observation equations is required.
After linearization and with some iterations, the orbits of LEOs and GPS satellites and
gravity field parameters can be determined by the method of least-squares adjustment
with inputs from GPS ground and space-borne data, SLR data, accelerometer data,
K-band observation data, etc. (Zhu et al 2004). The GGM and EIGEN series of static
gravity field models based on GRACE KBR and GPS measurements are computed in
this way (Tapley et al. 2004; Reigber et al. 2005; Forste et al. 2006).

At present, the two-step approach, i.e. computing orbit first and estimating
gravity fields using such orbits, is widely adopted for gravity field modeling.
Compared to the one-step approach, this two-step procedure avoids the
time-consuming computations of associated partials with respect to parameters. Two
basic important physical laws are applied: the energy conservation law and Newton’s
second law of motion. In this thesis, we focus on the two-step approach using GPS
observations based on Newton’s second law of motion. See Section 2-2 for the
description of the two-step approach where the analytical orbital perturbation
approach is involved (Kaula 1966). The residual acceleration approach linking the
acceleration vector to the gradient of the gravitational potential is discussed in Section

2.3.
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2.2 Theory of analytical orbital perturbation approach
To establish the linear relationship between the satellite positions and
geopotential coefficients, Kaula (1966) demonstrated the analytical orbital

perturbation method for gravity field recovery in terms of the six Keplerian elements.

The six Keplerian elements (a ,e ,i ,w ,{) ,M ) are semi-major axis, eccentricity,

inclination, argument of perigee, right ascension of the ascending node, and mean
anomaly. To use the three-dimensional positional data for gravity field recovery,
orbital perturbations in radial, along-track and cross-track (RTN) directions should be
transformed to perturbations in the Keplerian elements.

The radial distance » of a LEO from the geocenter is
r=a(l—ecoskE) (2-1)

where E is eccentricity anomaly, which is related to the mean anomaly by
M = FE —e-sin E. The perturbations in the RTN directions, shown in Fig. 2-1, can be

expressed as

Ax, =@Aa +@Ae+§—;AE =(l—-ecosE)Aa—(acos E)Ae+ (aesin E)AE (2-2)

oa Oe
Ax, =r(Au+ AQcosi) = r[Aw+ Af + (cosi)AQ] (2-3)
Ax; = r[(sinu)Ai — (sinicosu)AQ] (2-4)

where f'is true anomaly and u =@+ f 1is argument of latitude.
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Fig. 2-1: Geometry showing the effects of perturbations in argument of perigee (top),
right ascension of the ascending node and inclination (bottom) on the radial,

along-track, and cross-track perturbations at a satellite position (Hwang 2001)
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The potential due to the Earth (called geopotential) at the satellite position, V, is

expanded into a spherical harmonic series as (Heiskanen and Moritz 1985)

V(r¢,1)_ {HZ(F)”Z(C cosmA+S, sinm/i)ﬁnm(sinqé)}

_oM (2-5)

ns

r

where (r,¢,1) are the spherical coordinates (radial distance, geocentric latitude and

longitude), a. is the semi-major axis of the Earth’s reference ellipsoid, K is the

maximum degree of expansion depending on the satellite altitude, (C_,S ) are

nm?> "™~ nm

geopotential coefficients, P, is the fully normalized associated Legendre function of
degree n and order m, and ¥V, is the potential due to the Earth’s non-sphericity

(perturbing potential). From eq. (2-5), the perturbing potential V= can be expressed

ns

in terms of the six Keplerian elements as (Kaula 1996; Balmino 1994; Hwang 2001):

“R=YYY ZRW (2-6)

n=2 m=0 p=0 g=—

R =GMa 2 F. ()G, (e)S

nmpq "~ a nmp npq nmpq

(0, M,,0) (2-7)

where Q is the number depending on the orbital eccentricity, and 0 is Greenwich

sidereal time (GST). is the fully normalized inclination function, and is defined

nmp

by (Balmino 1994; Hwang and Hwang 2002)
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-H F (2-8)

nmp nm*™ nmp

where

n—m+1

F_(i)= (_1)E[ 2 ] (n+m)! % min{an,Zan} (_l)j 2n—2p 2p caga
nmp n . .
2 p‘(n_p)' j:max{n—2p—m,0} J n—-—m-—j

(2-9)

H, =[2-6m))2l-1)(1I-m)/I+m)]" (2-10)

c=cos(i/2), s=sin(i/2), and a=m-n+2p+2j G, (e) is the eccentricity

npq

function, which is a polynomial of e about the order e (Kaula 1966). S, is
defined by

6}1—:—71 Entn 1
S g (@, M ,Q,0) = 5 COS(YW g )+ — SIN(Y,,,.,,) (2-11)
w=m-2p)o+n-2p+q)M+m(Q-06) (2-12)

where C, is C, when (n-m) is even and C,, is C, when (n-m) is odd (the

nm

same is true for S

nm ) °

The Lagrange’s equation of motion (LEOM) is (Kaula 1966)
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da_2 0R
dt na oM

de_l—e2 OR \ll—eza_R

dt  7a‘e oM - na‘e Ow

di cosi 6_R 1 OR

dt a’\1—e?sini 00  7a*~\1-e? sini 02

(2-13)

dw cosi 8_R+\/1—e2 R

dt 7a’1—e’sini 0i na’e Oe

@_ 1 o

dt  7g’e\1-e? sini Oi

dM 1-¢* 0R 2 OR

—7— =N .

dt na‘e de na da

where 7 =+GM /a’ is the mean angular velocity. An approximate solution of eq.
(2-13) with a closed form can be derived for a near-circular orbit (e~ 0).In such a

solution, it is assumed that a ,e and i are invariant with time (denoted as a ,e and

i yand @ ,Q and M vary linearly with time, so that (Hwang and Hwang 2002)

o(t)=w, +olt—1,)
Qt)=Q,+O(t-1,) (2-14)

M(t)=M,+M(t—t,)

where @, ,Q, and M, are the mean elements and @ ,Q and M are the
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linear rates. Because the C,, term (or —.J,) is the order of 10~ and it is at least

1000 times larger than any other geopotential coefficients, the major contribution to

the perturbing potential is due to this term and can be expressed as

R, =%£&j S By, ()G, (O)cos((2—2p)o+ (2~ 2p + M) (2-15)
a

a p=0g=-0

The term with M in eq. (2-15) has a period much smaller than other terms, and hence

can be neglected provided that long-period perturbations are sought, that is,
2-2p+qg=0 (2-16)

The (p, g) terms with (0, -2) and (2, 2) do not exist (Kaula 1966), thus the only term

left is

GMC, (a.\ . .
Rypy0 = P = (j) Fy ()G, (e) (2-17)

Based on Kaula (1966), the values of F,, (i) and G,,,(e) are

F,,(i)=3sin’i/4-1/2
(2-18)
Goo(e) = (1—e?) 2

Thus, the secular perturbation due to C,, is

16



da_de_dz_o

T 2-19
dt dt dt ( )

. do 3nCya,’

H=—=—""2"¢ ({—5¢c0s]
dt  4(1-e*)a’ ( )

2
o9 L‘flezcosi (2-20)
dt 2(1-¢e)a

m=M_,_ 3nC202a€ ~(3cosi—1)
dt 4(1-e€)a

A reference orbit at the reference epoch f, based on nine orbital parameters
(a.,e,i 0, ,Qy M, 0 ,Q ,M ) is used. Integrating eq. (2-13) with respect to time

yields

n

Aa = izz iAanmpq (2-21)

n=2 m=0 p=0 g=—0

where «a denotes any of the six Keplerian elements. Integrating eq. (2-11), we get

S g (0, M ,Q,0) = (_ g Jsm(y/nmpq) — (5 jCOS(%mpq) (2-22)

nm nm

The perturbations in a ,e ,i are
As, = ZZZ zalimmsnrnpq (2-23)

And the perturbations in @ ,QQ and M are
17



335 S aS, 228

n=2 m=0 p=0 g=—

The coefficients anm in the order of six Keplerian elements a ,e ,i o, QM are

'Pq

=2abF, G, (n—2p+q)

" mpq nmp — npq

2 _b(l_ez)l/2 _eYV2(n-2 —
anmpq - Tanpanq X[(l e ) (n p+q) n+ p]
I [(n—2p)cosl—m
anmpq _banp npq Sin[(l_ez)l/z
(2-25)
4 — anpanq
e sinI(1-e)"?
s =) cos/ -
Xmpg = b|:T r nmp anq _mF nmp anq
(1_e2)1/2 —
Ly —banp 2(n+l)anq _TG —3anq(n 2p+q)—
nmpq
where
p=-1" (“_j (2-26)
Y umpg \ @
W mpg = (1=2D)0+(n—2p +q)M +m(Q—0) (2-27)
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— OF, . 0G

anp - anl.mp ’anq = az)q (2'28)

where ¥ is the frequency of the perturbations, and 0 is the velocity of the GST
(about 7.292115x107 rads™).
Let Ax, and As, represents the perturbations in the RTN directions and of the

six Keplerian elements. We have

6
Ax, =Y cihAs,, =123 (2-29)

k=1

wherec; are the coefficients used to transform the Keplerian perturbations to the

RTN perturbations (Hwang 2001). The coefficients are

r_ 1 _ 1 _ =~ %\ W
c;=c,=c¢;=0,c, =1-ecosE,

| aesin’E |,  aesinE
¢, =—aCoSE+———,ci=———,
l—ecosE l—ecosE

r(2-e’ —ecosE)sin E

V1-e’>(1—ecosE)’
rl-e’

(1—ecosE)*’

2 2 2 _
¢, =¢; =0,c; =

(2-30)

2 2 2
c, =rcosl,c; =r,cq =

33 3 3
¢ =c;=c; =cg =0,
;  rsino(cosE —e)—+1—e” coswsin E]
(P s
l-ecosE

cosw(cosE —e)—+/1—e’ sinwsin E
l—ecosE

c, =rsin/

b
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The above relationships between orbit perturbations and geopotential coefficients can

be used for least-squares estimation of the later given GPS-determined satellite orbits.

2.3 Theory of residual acceleration approach

A residual acceleration method is employed to determine the time variation of
the Earth’s gravity field. In this method, the accelerations of LEOs are determined by
numerical differentiations of the positions of LEOs. All perturbing forces caused by
the static gravity field, Earth's non-sphericity, N-body, solid Earth tide, ocean tide, air
drag, solar radiation pressure, Earth radiation and relativity are modeled first. After
removing accelerations other than the Earth’s gravity-induced accelerations, linear
relations between LEO accelerations and gravity coefficients can be established.
Empirical parameters can be used to model the residual non-gravitational
accelerations.

The total gravitational force is the gradient of J. The acceleration vector

expressed in the Earth-fixed coordinate system is (GSFC 1989)

ov, or 09 OA| [or |
ox,, ox, 0x, Ox, or

, oV or o oA | |V

a, = ~|= - 2-31
o, , O, Oy, o¢ ( )
oV or 0¢ 04 oV .

0Oz, 0z, 0z, 0z, | L OA |

where x5 , 5 and z, are the Earth-fixed coordinates and r,¢, and A are the spherical

coordinates. The partial derivatives of the non-spherical portion of the Earth’s

potential with respect to r, ¢, and A are given by
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Ve .M Z(&j (n+1)Y(C,, cosmA+3,, sinmA)P, (sing) (232)

or r- S\ r o

aVnS - GM (&j Z (6nm cos mﬂ' + §1n1 Sln m/l) ’
a¢ r n=2 r m=0 (2-33)

[\/(n -m)(n+m+1)/(1+ 5(m))}_)n,m+l (sin ¢) — m tan ¢}_3nm (sin ¢)]

o, _GM Z(&j > (S, cosmi~C,, sinmA)B, (sing) (234
=\ r

m=0

where o(m)=1 when m is zero and 6(m)=0 when m is not zero. Substituting eq.
(2-32) through eq. (2-34) into eq. (2-31) and transforming the Earth-fixed coordinates

(x», y», zp) into the spherical coordinates (», @, A), eq. (2-31) can be rewritten as

Xy X2y — b ov
X+ v X+ >
— oV

ab — & Y2y Xp ns =Ma (2_35)

" r r\/x,f +y,f \/x,f +y,f g?/¢
2 2 ns
Z NSV 0 rcos gol

r r

where a is the acceleration vector [Ar,Aq,,Ax]expressed in a local rotating frame

which are the radial, latitudinal, and longitudinal accelerations, respectively. M is an
orthogonal matrix. The transformation of eq. (2-35) can be simplified by neglecting

. . . . . I .
precession, nutation, and polar motion to obtain the acceleration vector a’ in the

inertial coordinate system (Hwang and Lin 1998):
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- q-1
X - Xz -y B T
roopx? + 2 2 2 —6V’”
y X +y ar
|y -y x oV, 036
roopdxt+y? x'+y° rog
ov,
[ 2 2 'm0
z Oy 0 | cos ¢OA |
L7 r _

where x, y and z are the inertial coordinates, » = /x* + y> + z* . The longitude and

latitude are calculated as follows:

A=tan"'(y/x)—GAST (2-37)

¢ =sin"'(z/r) (2-38)

where GAST is Greenwich apparent sidereal time.
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Chapter 3

Force modeling and precise orbit determination for COSMIC

3.1 Introduction

Precise orbits of a satellite position are important for positioning the satellite and
for estimation of the Earth’s gravitation. Owing to the development of GPS, the
spacecraft equipped with hl-SST receiver can collect position data continuously. The
dynamic method (using force models) and the kinematic method (not using force
models) (Svehla and Rothacher 2003; Jiggi et al. 2006 and 2007; Hwang et al. 2009)
are two popular methods using GPS data applied for POD of LEOs. In addition, the
so-called reduced-dynamic orbit determination, which is a compromising method
between the dynamic method and the kinematic method, requires simplified force
models. All above procedures for POD require GPS satellite ephemeris, Earth
rotation information, and LEO GPS observation data as input for processing.

In Section 3.2, we focus on the perturbation force models acting on a COSMIC
spacecraft. Without an accelerometer on the COSMIC spacecraft, the non-
gravitational accelerations due to atmospheric drag and solar radiation need to be
modeled. Section 3.3 and 3.4 describe the kinematic and dynamic orbit determination
methods, complete with the principles, computation procedures and some analysis of
results. The procedure of observed orbit data compression applied in gravity recovery

is presented in the last part of this chapter.

3.2 Orbit dynamics of COSMIC satellite
The perturbing forces (accelerations) can be classified into gravitational forces

and surface forces (or non-gravitational forces). The gravitational forces include the
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Earth’s non-sphericity, N-body, solid Earth tide, ocean tide, and relativistic effect,
and the surface forces include atmospheric drag, solar radiation pressure and the
Earth’s radiation pressure. General accelerations, or empirical accelerations, are used
to absorb the mis-modeled and un-modeled gravitational and surface forces. The
algorithms of N-body, solid Earth tide, ocean tide, and relativistic effects can be
found in a standard textbook of orbit dynamics such as Seeber (2003), and they will
not be elaborated here. In this section, we focus on the parameters related to Earth’s

non-sphericity, atmospheric drag and solar radiation pressure.

3.2.1 Equations of motion and perturbing potential force
In a geocentric inertial rectangular coordinate system, the equations of motion
of an artificial Earth satellite such a COSMIC spacecraft can be expressed as (Long

et al. 1989; Montenbruck and Gill 2001; Seeber 2003)

r+a +a,, (3-1

where

I': vector of satellite coordinates in the inertial frame

I': acceleration vector

GM: Earth’s gravitational constant

4, : acceleration due to Earth’s non-sphericity

Apere: accelerations due to other perturbing forces
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The first term in eq. (3-1) is called the point mass effect of the Earth given by
Newton’s law of gravity and is 1000 times larger than any other acceleration. Eq.
(3-1) contains a system of second order differential equations which can be
integrated to obtain the satellite positions and velocity at any epoch giving the initial
state vector. The direct integration known as Cowell’s method (Balmino 1989) is
selected for the simplicity and capacity for incorporating additional perturbations
easily (Pavlis et al. 1996). The accelerations in eq. (3-1) are associated with certain

parameters and can be adopted from existing values or estimated by satellite tracking

data.
The acceleration a,,,, due to the geopotential is the gradient vector of the
geopotential:
a,m= o __Gils r+a
earth — or - }"3 ns (3-2)

The first term in eq. (3-2) corresponds to the potential of a spherically symmetric
Earth and the potential can be considered static. In fact, due to mass re-distribution in
the Earth system, the geopotential is time-dependent so that the time-varying part
should be considered. This is equivalent to dividing the coefficients in eq. (2-5) into

a static part and a time-varying part as

C,.()=C, +AC, (), S, (=S, +AS,, () (3-3)

where ¢ is time. Thus, by recovering temporal gravity we mean estimating the
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time-varying coefficients (AC (t),Agnm (¢)) with respect to a mean gravity field.

nm

3.2.2 Atmospheric drag and solar radiation effects on COSMIC satellites

The acceleration vector of a LEO due to atmospheric drag is given by

1 Ay L. .
Agrag = _ECDp;d|r_rd|(r_rd) (3-4)

where Cp is drag coefficient depending on the LEO shape and atmospheric

composition, p is atmospheric density at the LEO position, A4, is effective

(cross-sectional) area and m is the mass of the LEO, r,r, are the velocity vectors of

the LEO and atmosphere in the inertial frame, and (r-r,) is the velocity vector of

the LEO relative to atmosphere. For each of the six COSMIC spacecrafts, the mass
(with full thrust fuel) has been determined in the chamber test before the launch
(April 2006). The remaining thrust fuel during the flight is observed and is used to
adjust the time-dependent mass after the launch (Hwang et al. 2006 and 2009). The

effective area A, is the projected area of the area of the satellite in the flight direction
onto a plane perpendicular to the direction(r —r,). A COSMIC spacecraft travels in a

manner that the POD+X antenna points to the flight direction (Fig. 3-1). Therefore,

the total area in the flight direction is

AT = Amain + Apanel (3_5)

26



where 4 is the area of the main body and 4,,,, is the area of two solar panels,

main

which are computed as

A, =1.034x0.132 (m?)
: (3-6)
A =222 5in0 ()

where @ is the rotational angle of the solar panel (Fig. 3-1). Here we assume the

thickness of the solar panels is negligible. The effective area was then computed by

A=Ay cos™ (E- (=1, )iE—1,)) (3-7)

The velocity vector of atmosphere was computed as

W,y
g =| —0,x (3-8)

where x and y are geocentric coordinate components of the LEO in the inertial frame,

and o, is the rotational velocity of atmosphere at an altitude of 4 computed as

(King-Hele and Walker 1983)
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o, =w,(1-1.588187x107/7+1.88539x10° h* —

(3-9)
5.108229 x107*A° +3.917401x10™"" 1*)

where @, is the mean rotational velocity of the Earth (7.292115x 10 rad/sec), and

h 1s in km.

The acceleration vector due to solar radiation pressure is

2 r—l‘s

a,, szgCri(au) (3-10)
m

3
|r—rs

where v is the eclipse factor, P, is solar flux at one astronomical unit (au)
(4.560x107° N/m?), C,is reflectivity coefficient depending on the characteristics of

the LEO, 4;is the effective area (different from the effective area for atmospheric

drag) and r, is the position vector of the Sun. The method to compute the effective

area for the solar radiation pressure is the same as that used in the atmospheric drag.

In this case, the effective area lies in a plane perpendicular to the vector (r—r,). C,

can be expressed as (1+¢€), where ¢ is reflectivity (from 0 to 1), which depends on the
material of satellite parts. The eclipse factor depends on the position of LEO; v=0
when the LEO is in the Earth’s shadow, and v=1 when the LEO is illuminated by the
Sun. The orbit dynamic modeling software we used is able to determine the eclipse
factor in the cases of umbra and penumbra based on the ratio of the sunlight received
at the LEO location, so that in practice the eclipse factor for a COSMIC satellite

varies from zero to one.
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Fig. 3-1: The dimensions of the main part and solar panels of a COSMIC LEO (top),

velocity vector  and LEO-to-atmosphere vector (r-r,) (Hwang et al. 2008)
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3.3 Kinematic orbit determination using Bernese 5.0

The precise kinematic orbits of LEOs in this research were determined by the
Bernese Version 5.0 GPS software (Dach et al. 2007). The reduced dynamic and
kinematic approaches are available in Bernese 5.0 for POD with GPS observations.
The reduced dynamic approach estimates orbit arc-dependent parameters including
the initial state vector (6 Keplerian elements), 9 solar radiation coefficients and three
stochastic pulses in the radial, along-track and cross-track directions. The kinematic
approach estimates the kinematic parameters of an orbit arc, including epoch
coordinate components, receiver clock errors and phase ambiguities. Both the reduced
dynamic and kinematic orbit determinations require high precision GPS satellite
orbits and clocks. The GPS satellite precise orbits and high-rate clocks can be
downloaded on the website provided by the Center for Orbit Determination in Europe

(CODE, http://www.aiub.unibe.ch/igs.html). In the kinematic orbit determination with

Bernese 5.0, the reduced dynamic orbit serves as a priori orbit for the kinematic orbit.
Fig. 3-2 shows the steps of precise kinematic orbit determination using real GPS data.

The zero-differenced ionosphere-free GPS measurements are usually used for
point-wise calculation of the satellite positions in the kinematic approach. The
limitations of orbit accuracy associated with kinematic orbits are based on the GPS
satellite observation numbers and relative GPS-LEO geometry (Byun and Schutz
2001). Satellite coordinates are estimated together with one GPS receiver clock
parameter every epoch. Comparing with SLR observations, the kinematic POD with
accuracy of 1-3 cm was demonstrated for the GRACE mission (Svehla and Rothacher
2004). Using an overlapping analysis, the orbit accuracy of COSMIC is about 3 cm,
compared to 1 cm in the case of GRACE satellites (Hwang et al. 2009). We find that
the quality of GPS data depends on the quality of satellite attitude data. For the case

of COSMIC satellite at an altitude of 800 km, typical standard errors of attitude
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measurements over the equator and the polar regions are 0.5° and 3° , respectively,
and are larger at a lower altitude. When the attitude of a satellite is poorly determined,
the uncertainties in the estimated GPS phase ambiguities are relatively large, leading
to degraded orbital accuracy. The detail of GPS-determined orbits of GRACE and
COSMIC satellites using the kinematic approaches by Bernese have been documented

by Svehla and Rothacher (2005), Jiggi et al. (2007) and Hwang et al. (2009).

RNXSMT
Smoothing GPS codes

|

RXBOV3
Transforming data ORBGEN
l Creating GPS standard orbit

CODSPP
Computing kinematic single
positioning using smoothed code

Fy

KINPRE
I Creating SP3 form with LEO
kinematic orbit

Y

CODSPP h .
Computing LEO clock offset based ORBGEN
on GPS clock \ Creating LEO standard orbit

A

h

MAUPRP STDPRE
Preprocessing phase obs. Creating SP3 form with LEO
standard orbit
r Y

GPSEST
Estimating LEQ dynamic parameters ORBGEN
and stochastic pulses

Y

Computing LEO standard orbit

¥
GPSEST
Estimating LEO kinematic orbit, receiver
clock and the ambiguities

Fig. 3-2: Steps of precise kinematic orbit determination using GPS data
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3.4 Dynamic orbit determination using GEODYN II software

The dynamic orbit determination strategy for LEO based on GPS double-
difference tracking data is demonstrated for the first time for TOPEX/Poseidon
mission (Bertiger et al. 1994; Schutz et al. 1994). The equations of motion are solved
by numerical integration. The dynamic model errors will lead to systematic errors
growing with the arc length (Bock 2003).

In this research, we use NASA Goddard GEODYN II software to model the
perturbing forces described in Section 3.2.1. GEODYN II is used extensively for
satellite orbit determination, geodetic parameter estimation, tracking instrument
calibration, satellite orbit prediction, as well as for other applied research in satellite
geodesy using virtually all types of satellite tracking data (Pavlis et al. 1996). For
direct numerical integration, GEODYN II uses Cowell’s summation method to obtain
the position and velocity at epoch and uses the Bayesian’s least-squares method for
parameter estimation. The mathematical models of the perturbing forces used in
GEODYN II can be found in Long et al. (1989), Pavlis et al. (1996) and McCarthy
(1996). GEODYN 1I has been used for precise orbit determination/prediction and
force modeling in various Earth resource satellites such as TOPEX/Poseidon and
GRACE. Temporal gravity fields from such satellite tracking data as SLR and
GRACE KBR have been derived with GEODYN II (Cox and Chao 2002; Luthcke et
al. 2006).

GEODYN 1I is divided into three major components: the Tracking Data
Formatter (TDF), GEODYN IIS and GEODYN IIE. The flow of running GEODYN II
can be found in Hwang (2002). The TDF program takes in the one of several tracking
data forms. In this research, the tracking data format is PCE data format containing

the information of satellite position and velocity as a priori orbit.
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In preparation for the execution of GEODYN 11, a file containing the ephemeris
of the planets and a file containing A1UTC, polar motion, solar flux and magnetic
flux must be made ready. AIUTC is the difference between the atomic time (A1) used
in GEODYN II and the universal time (UTC), which is available from

http://hpiers.obspm.fr/eop-pc/. Solar flux and magnetic flux are obtained from

NOAA’s web site ftp:/ftp.ngdc.noaa.gov  under the directory  STP/
GEOMAGNETIC DATA/INDICE. These raw data are processed to produce binary
files suitable for input to GEODYN IIS program.

The GEODYN IIS program is mainly used to read and process the option cards,
the input observation data, optional gravity model, station geodetics, area/mass files,
ephemeris and table data. The default gravity model is stored in the file ftn12. In this
research, we choose GGMO03S gravity models up to degree/order 70 derived from
GRACE GPS and KBR observations.

The JPL export ephemeris as input file ftn01 is used in GEODYN IIS for
nutations, positions, and velocities of the Moon, Sun, and planets. In this research, we
use the JPL binary DE-403 ephemeris. GEODYN II interpolates for the ephemeris in
the mean of 1950.0 reference system by Chebyshev interpolation. This step gives
greater accuracy than interpolating in the reference system (the true of date coordinate
system) because the high-frequency perturbations due to nutations are absent. After
interpolation, the coordinates are then rotated to the true of date system using the
precession and nutation matrices (Seeber 2003). More details on the transformations
between different coordinate systems can be found in the textbooks or manuals like
Long et al. (1989), Pavlis et al. (1996) and Seeber (2003).

The file ftn05 contains all option cards determining the force and non-force
model parameters to be used in the program execution. These option cards are divided

into two major categories: the Global Set and the Arc Set (Pavlis et al. 1996; Hwang
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2002). The Global Set consisting of four groups provides all of the common arcs
processing information. The first group, Global Set Mandatory Cards, is the
mandatory run description on other three cards. The second set of Global Set Option
cards is used to define and/or estimate conditions which are common to all the arcs
being processed. This group contains the information and estimations of the Earth's
gravitational potential and/or new Earth constants, application and/or adjustment of
time dependent gravity coefficients, dynamic polar motion, the third body
gravitational potential and/or new constants, solid Earth tide model, ocean tide model,
atmosphere drag model, solar flux, and tectonic plate motion. The third group is the
Position Card Group containing the information of tracking stations. The last group is
the Global Set Terminator to end the Global Set.

One or more Arc Set contains information defining its arc in fin05 file. The Arc
Set also has four groups in this order. The first group, Arc Set Mandatory Cards, is to
decide the reference coordinate system and time and spacecraft parameters in this arc.
The second group, Arc Option Set cards, is specified to make use of GEODYN II's
individual arc capabilities. The third group is the Data Selection/Deletion Subgroup
used to edit input observations. The last group is the Arc Set Terminator to end the
Arc Set.

The parameters in the Global Set for the force models of COSMIC given in
Table 3-1 are defined by input option cards in the file fin05. For surface forces in the
Arc set, we solve for atmospheric drag coefficient, radiation coefficient and 9
empirical coefficients of general acceleration along the radial, along-track and
cross-track directions every 1.5 hours (one orbital period) using COSMIC kinematic
orbits. As an example, Fig. 3-3 shows the estimated atmospheric drag coefficients and
reflectivity coefficients for FMS5. These estimated coefficients vary over time, and the

mean values/standard deviations of the drag and reflectivity coefficients are 2.12/0.29
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and 1.23/0.30, respectively. The general accelerations for COSMIC (Table 3-1) at an
altitude of 520 km are on the order of 10"'ms? . GEODYN IIE performs the
computation of satellite orbit and geodetic parameter estimations. The output from IIE
contains all necessary information for data analysis.

The main purpose of precise dynamic orbit determination is to generate a
reference orbit to compute the residual orbit perturbations for gravity field recovery.
The residual orbit perturbation is a function of the perturbing force due to the
perturbing geopotential. Like satellite position, satellite acceleration contains the
effect due to the geopotential, plus other perturbing forces which must be modeled for

gravity field recovery.
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Table 3-1: Standards for the orbit dynamics of COSMIC satellites

Model/parameter Standard

Conventional inertial

J2000
reference frame
N-body JPL DE-403
Earth gravity model GGMO03S
Polar motion IERS standard 2000
Reference ellipsoid a.=6378136.3 m, f=1/298.257
GM 396800.4415 km’s™
Ocean tides GOT00.2 (Ray 1999)
Solid Earth tides IERS standard 2000

Mass Spectrometer Incoherent Scatter (MSIS)
Atmosphere density
Empirical Drag Model (Hedin, 1991)

Second-degree zonal spherical harmonic model
Earth radiation pressure
(Knocke et al. 1988)

Solar radiation pressure one coefficient every 1.5 hours
Atmosphere drag one coefficient every 1.5 hours
General accelerations 9 parameters every 1.5 hours
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3.5 Normal-point reduction

The original sampling interval of COSMIC and GRACE GPS POD
carrier-phase and code observables is 1 second. In practice, a 5-s (0.2 Hz) is used in
the reduced-dynamic and kinematic orbit computations. To reduce noises and data
volume, the 5-s kinematic orbits can be compressed and filtered at a greater item
interval by an algorithm similar to that used in the normal-point reduction of satellite
laser ranging. In this research, we adopt the Herstmonceux algorithm (Sinclaire 1997)
to compress the COSMIC and GRACE precise orbits. Specifically, we use the

following steps to generate normal-point kinematic orbits:

(1) Use the reduced-dynamic orbit as the reference orbit to generate differenced

orbit. A differenced orbit component is

p=x—x/, i=1,2,3 (3-11)

where x/ and x| are components of kinematic and reduced-dynamic orbits,

respectively.

(2) Remove large outliers in the kinematic orbit, which will not be used in the

subsequent computations. An outlier is defined as | p[| >20cm.

(3) Within a bin (a window containing many differenced orbits), the differenced orbits
are fitted by a polynomial in time using least-squares. The polynomial is called the

trend function f(¢)
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(4) For each orbit component, compute the residuals at the times of observations as

vi=p,—f(t) (3-12)

(5) Compute the root-mean-square value RMS of the residuals. Identify outliers using
a rejection level of 2.5 times of RMS, and neglect these outliers in step (3) of the next

iteration
(6) Repeat steps (3)-(5) until no outlier is found

(7) Divide the accepted residuals into bins starting from 0" UTC.

(8) Compute the mean value v, and the mean time of the accepted residuals within

each bin. The number of accepted residuals within bin m is denoted asn,, .

(9) For each orbit component, locate the kinematic orbit x' and its residual v, ,

whose observation time 7, is nearest to the mean time of the accepted residuals in

bin m.

(10) Compute the normal-point kinematic orbit as

NPH‘[ = xl’lil - Vm + ‘7’71 (3-13)
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(11) Compute the standard error of normal points as (if n, =1, this bin is neglected)

Ilmvg
o = (3-14)
n, (n, —1)

m

The bin size can be adjusted according to the desired spatial resolution of gravity
solution and data compression ratio. The degree of the fitted polynomial increases
with the bin size. For a one-minute bin, a second-degree polynomial is found to be
optimal. Statistically, the standard errors of normal points will be smaller than those
of raw orbits. For example, Fig. 3-4 shows the normal-point residuals (differences
between reduced-dynamic and kinematic orbits) are smaller than raw residuals in

Y-direction of FMS5 satellite in DOY 216, 2006.
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Fig. 3-4: Raw and normal-point residuals in Y-direction (FM5, DOY216)
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Chapter 4
Recovery of temporal gravity field using analytical orbital

perturbation approach

4.1 Introduction

In the previous chapter, two different approaches for gravity field modeling
are developed. In this chapter, we employ the analytical orbital perturbation
approach to compute temporal gravity field using COSMIC and GRACE GPS data.
The experimental solutions of time-varying geopotential coefficients are computed
using one month (August 2006) of COSMIC and GRACE kinematic orbits.
According to Hwang et al. (2009), the current orbital accuracies of COSMIC and
GRACE kinematic orbit are 3 and 1 cm respectively and the accuracies of the 60-s
normal points are further improved. The perturbing forces other than the Earth
gravity that act on COSMIC spacecrafts are modeled by GEODYN II using the
standard models of orbit dynamics (Table 3-1), yielding pure dynamic orbits that
serve as reference orbits. With the reference orbits and GPS-derived kinematic
orbits, three-dimensional residual orbital perturbations (difference between
kinematic and reference orbits) are assumed to be linear functions of time-varying
geopotential coefficients (Chapter 2) and are used as observations to estimate the
latter. Both COSMIC and combined COSMIC and GRACE gravity solutions were

computed.

4.2 Kinematic orbits of COSMIC and accuracy assessment
In this study, the kinematic orbits of the six COSMIC satellites used for gravity

recovery are over the time span from August 2 to August 31, 2006. In this time span,
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the altitudes of the six COSMIC satellites are 512, 543, 521, 515, 800 and 505 km
for FM1, FM2, ... and FM6, respectively. The inclinations of all COSMIC orbits are
72°and the eccentricities are nearly zero. Fig 4-1 shows the trajectory of FMS5
satellite in August 2006. The coverage of satellite ground tracks of FMS5 is uniform,
but the 72°-inclination angle a naturally lead to polar gaps.

According to the sampling theorem (Meskd 1994), the along-track sampling

interval At can be computed as

T ﬂ_a3/2
At =—~=
2K K~JGM (4-1)

where T is the period time of one revolution, K is the maximum degree of the
geopotential field, and a is the semi-major axis. At the altitude of 800 km, use of a
maximum harmonic degree 50 of the geopotential is sufficient for COSMIC
(Hwang 2001), so the sampling interval is about 60 seconds. The raw GPS
kinematic orbits of COSMIC spacecrafts are computed at a 5-s interval. Due to
presence of outliers in the GPS data and the need to compress the high-rate orbit
data for gravity recovery, the raw GPS kinematic orbits were pre-processed as

follows:

Step 1: Removing outliers. An outlier is a kinematic orbit component whose
difference with the reduced dynamic orbit (prior orbit) exceeds 20 cm.

Step 2: Compressing 5-second orbits to one-minute normal-point orbits.

The detail of normal-point compression (Step 2) is given in Section 3-5. The

normal-point kinematic orbits in Step 2 are actually used for gravity recovery. Fig.
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4-2 shows the percentages of accepted 5-second kinematic orbits in August 2006
after removing outliers (Step 1). The average percentages of acceptance are 74.3,
76.5, 73.4, 66.0, 82.5 and 69.5% for FM1, FM2, ..., and FM®6, respectively. In most
cases, data are rejected due to bad attitude control and/or poor clock resolution.
FMS5 has the largest percentage of acceptance, due to its 800-km altitude where the
attitude control is better than other five spacecrafts. Fig. 4-3 shows daily standard
errors of the one-minute normal orbits, which will be used as data weights in the
gravity recovery. On average, the accuracy of the normal-point orbits is 7 mm,
compared to the 3 cm orbit error for the raw 5-s orbits. Table 4-1 shows the statistics
of the standard errors for the six COSMIC satellites in August 2006. FMS5 has the

least standard error of all satellites in the normal-point data.
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Fig. 4-1: Trajectory of FMS5 satellite (August 2006)

44



100

accepted percentase (%)

FMl FM2 FM3 FM4

August, 2006

FM5

FM6

Fig. 4-2: Percentages of acceptance of kinematic orbits for normal-point

computations
8 _ A v M S
——FMl
781 —=—FM2

averaged NF (mm)

6 T T T T T T T T T T T T T T T T T T T T T

2 34 53 6 7 8 910111213 4151617 1819 2 21 2223 24 25 20 20 2820 303

day (August, 2006)

Fig. 4-3: Standard errors of normal-point kinematic orbits in August 2006

45




Table 4-1: Statistics of standard errors of normal-point kinematic orbits

MAX. (mm) MEAN (mm) MIN. (mm)
FM1 7.38 7.13 6.77
FM2 7.38 7.06 6.68
FM3 7.30 6.98 6.68
FM4 7.23 6.93 6.57
FM5 6.87 6.49 6.20
FM6 7.72 7.24 6.75

4.3 Reference dynamic orbits for COSMIC and GRACE

The geometry of COSMIC spacecraft is simple compared to that of GRACE,
and its surface forces can be with a sufficient degree of confidence. The NASA
Goddard GEODYN 1I is used to determine the COSMIC dynamic orbits and the
parameters for the force models of COSMIC are given in Section 3.4 and Hwang et
al. (2008).

The reference dynamic orbit data of GRACE in August 2006 is provided by
CSR. The software used for GRACE dynamic POD is the CSR MSODP software
(Rim 1992) and the double-differenced GRACE GPS carrier-phase observations are
processed to convert range measurements using a network of 51 International
Global Navigation Satellite System (GNSS) Service (IGS) ground stations (Beutler
et al., 1999). An aggressive force model parameterization is used to estimate many
empirical parameters including the GRACE satellite initial positions and velocities,
ambiguity parameters, troposphere zenith delays, center of mass offset in the nadir
direction, atmosphere drag parameters, 1 cycle-per-revolution (1-cpr) (along-track)

and normal (cross-track) empirical accelerations, and the previously mentioned GPS
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orbit element correction to improve the orbit accuracy (Kang et al. 2003). The orbit
dynamic standard of GRACE is listed in the paper of Kang et al. (2006). The
GPS-based dynamic orbits have about 1-cm radial orbit accuracy and better than
2.5-cm accuracy in the along-track and cross-track directions (Kang et al. 2006).
Due to different satellite sizes and altitudes, we choose different orbit dynamic
standards for each mission to produce a precise orbit. Table 4-2 shows the different
standards for the orbit dynamics between COSMIC and GRACE satellites. The
gravity content that is sensible at the altitude of 800 km will be about harmonic
degree 50 (Hwang and Lin 1998). The ocean tide effect on satellite contains the
leading diurnal and semi-diurnal constituents including Q1, O1, M1, S1, P1, K1, J1,
N2, M2, S2, K2 and other long-period constituents using different ocean tide

models. The selection of other force standards is based on past experience and tests.

Table 4-2: Different standards for the orbit dynamics of COSMIC and GRACE

satellites
Model/parameter COSMIC GRACE
Earth gravity model GGMO3S (70x70) GGMO02C (120x120)
N-body JPL DE-403 JPL DE-405
Ocean tides GOTO00.2 FES2004
Mass Spectrometer Incoherent ~ Density temperature model
Atmosphere density Scatter (MSIS) Empirical Drag (DTM)
Model
Second-degree zonal spherical Albedo and infrared

Earth radiation pressure ‘
harmonic model

Solar radiation pressure one coefficient every 1.5 hours Box-wing model
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4.4 Formulae used in gravity recovery
Following Section 4.2, the observables are now normal point kinematic orbits
of COSMIC at a one-minute interval for gravity recovery. For determining temporal

gravity variation, the unknown parameters are time-varying geopotential coefficients

(Afnm(t),Agnm (1)) . An empirical model is used to compensate partially the

deficiency of the linear orbital perturbation and absorb the error in the initial state
vector and errors in the force models in the parameter estimation. Specifically, for
each of the radial, along-track and cross-track residual orbit components, we use the

following empirical model:

Ar, =a, +a, cosu +a, sinu + a, cos2u +a, sin2u + ast cosu + at sinu + a,¢sin2u (42)
+agt cos2u +ayt +a it

where i = 1, 2 and 3 (three orbit components), u is argument of latitude, a; is the
coefficient for the perturbation component, and ¢ is the time elapsed with respect to a
reference epoch. Eq. (4-2) is based on the results in Colombo (1984), Engelis (1987)
and Hwang (1995).

With GEODYN 1II, the reference orbits of COSMIC and GRACE are
determined by numerically integrating the equations of motion that take into account
all perturbing forces acting on COSMIC and GRACE satellites. The GRACE-derived

gravity model GGMO3S is used as the Earth’s static gravity model containing

geopotential coefficients (C°,S°). The CSR RLO04 products are used in this

nm? "~ nm

chapter for comparison and analysis. If the reference orbits are generated using an
optimal static gravity model such as GGMO03S and all other perturbing forces are

properly modeled, we can assume that the residual orbits are linear functions of
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time-varying geopotential coefficients.

For parameter estimation, the matrix representation is

L=AX-V (4-3)

where A is the design matrix containing the partials of residual orbit components with
respect to time-varying geopotential coefficients and empirical parameters, vectors V,
X and L contain random errors, unknowns (geopotential coefficients and empirical
parameters) and observations (residual orbits), respectively. Given a priori values of
the unknowns and the associated weight matrix, Py , the least-squares solution of X

1S

X=—A"PA+P)"'A"PL (4-4)

where P is the weight matrix containing inverses the squared standard errors (Fig. 4-2
and Table 4-1). Because COSMIC is not in a polar orbit, it is necessary to use P_ to
stabilize the estimation of X. For the geopotential coefficient part of P_, it is a
diagonal matrix containing the variances of time-varying geopotential coefficients.
The variances were computed as follows. The geopotential coefficients of GGM03S
were subtracted from the monthly coefficients of GRACE gravity models in August
2006 to obtain monthly time-varying coefficients. The degree variances of the
monthly time-varying coefficients were computed and the average degree variances
determined. The average degree variances were then least-squares fit to a model
whose expression is similar to that of the Kaula rule (Kaula 1966), i.e., an™”, where

n is the spherical harmonic degree. The result shows that the average degree variance

follows (Fig. 4-4)
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—2 I oA o2 —21-1.7130
o = AC: +AS. )=5.04x10" n 4-5
n 2n+1 ’;)( nm nm) ( )

where AC, ,AS, are coefficients. A diagonal element of P, corresponding to any

nm?

geopotential coefficient of the same degree is computed by

b =L ==2 (4-6)

Because the orbital inclination of COSMIC is72°, it is expected COSMIC GPS data
will enhance the current gravity models of GRACE and CHAMP. The GRACE and
CHAMP missions are in polar orbits. We also carried out a combined

COSMIC-GRACE solution. In this case, the least-squares solution of X is

X=—(A"PA+Z,')(A'PL+Z.'g) 4-7)

where g is a vector of time-varying geopotential coefficients from GRACE and X,

is the error covariance of g. Since the full error covariance matrices of GRACE

gravity models are not released, only error variances of the time-varying geopotential

coefficients are used for the diagonal elements, so X, is in fact a diagonal matrix.
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2006

4.5 Results of gravity recovery

Several experimental gravity solutions were carried out using one month of
normal-point kinematic orbits of COSMIC and GRACE. Fig. 4-5 shows the steps of
gravity recovery from real GPS data using the analytical orbital perturbation
approach. Based on numerous tests and the result of Hwang et al. (2008), we decide
to adopt 15 as the maximum degree of expansion for the COSMIC-only and
COSMIC-GRACE solutions. Fig. 4-6 shows degree variances and error degree
variances from the COSMIC and COSMIC-GRACE solutions. The error degree
variances of COSMIC and COSMIC-GRACE solutions increase with degree and are
all less than the degree variances below degree 10 and 11, respectively. The

COSMIC-GRACE solution yields error degree variances that are smaller than those
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from the COSMIC-only solution due to the use of more observations and better data
coverage. For spherical harmonic components with degrees lower than 10, the
signal-to-noise ratio is larger than 1.

Fig. 4-7 shows the geoid variation to spherical harmonic degree 15 from the
CSR RL04 solution, and the high and low signatures of geoid variations are clearly
seen. In Fig. 4-8, we compare geoid changes from the COSMIC-only and
COSMIC-GRACE solutions to degree 15. The COSMIC-only solution shows more
artifacts than the COSMIC-GRACE solution, but these two solutions reveal clear
geoid highs and lows over Europe, Greenland, Amazon Basin, India continent and
southern Africa, which resemble those given by the CSR RL04 solution in Fig. 4-7.
The geoid variations at latitudes higher than 72° are probably not reliable due to the
low inclination of COSMIC. Also, the GPS data used in the current solutions are
from five of the six COSMIC satellites that are at altitudes of about 520 km, where
the non-gravity forces are difficult to model and the attitude control is not optimal.

In order to compare the geopotential coefficients from COSMIC and from
GRACE, we compute the relative differences of coefficients as follows (regarding
GRACE-derived geopotential coefficients as the reference values):

¢ ACS -ACS s ASS —ASY

nm nm nm

gnm - Agn(; s gnm - AEG (4_8)

nm

where (ACC,ASC ) and (ACY ,ASC ) are the estimated geopotential coefficients

nm? nm nm

from COSMIC and GRACE, respectively, and (&€ , &> ) are the relative differences.

nm >~ nm

The relative differences of all coefficients and those of the zonal coefficients from
COSMIC-only and COSMIC-GRACE solutions are given in Figs. 4-9 and 4-10. The

COSMIC-GRACE solution yields the relative errors that are smaller than those from
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the COSMIC-only solution. The recovered coefficients with relative differences
smaller than one are considered as significantly close to the CSR RLO04 coefficients.
From Figs. 4-9 and 4-10, a large portion of the recovered geopotential coefficients
from COSMIC-only and COSMIC-GRACE solutions are consistent with those of
CSR RLO0O4 solution. However, a significant portion of the COSMIC-derived
coefficients disagree with the GRACE-derived coefficients, which is expected given
the different data qualities from the two missions.

Fig. 4-11 shows the error degree variances (formal errors) of time-varying
geopotential coefficients from the combined and the CSR RLO04 solutions. The
combined solution yields error degree variances that are smaller than those from the
CSR RL04 solution. We also compute calibrated standard errors of
COSMIC-GRACE geopotential coefficients using the method given in Schmidt et al.
(2007), which was used to calibrate the error estimates of GRACE-derived
geopotential coefficients. A scaling factor at degree n and order m is computed as

ce -co

nm nm

S =g (4-9)

nm

where CS and C¢ are the estimated geopotential coefficients from

nm

COSMIC-GRACE and GRACE, respectively, and E, is the un-calibrated error

degree variance from COSMIC-GRACE. A calibrated standard error is obtained by
multiplying the un-calibrated standard error by the factor in eq. (4-9). Fig. 4-12
compares the calibrated error degree variances from GRACE (available at the website,
http://www.csr.utexas.edu/grace), COSMIC and combined solutions. Again, the
combined solution yields smaller error degree variances than those from GRACE

solutions.
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Fig. 4-13 shows the geoid variations from the combined COSMIC and GRACE
solution. The combined solution closely resembles the GRACE solution and this is
due to the large weights of GRACE coefficients in the combination. Comparing Fig.
4-13 and 4-7, we note that the combined solution enhances the geoid signatures of the
GRACE solution over central Africa, Russia and Greenland, and the geoid highs in
North America, India and northern Amazon. Fig 4-14 shows the geoid signature
enhanced in Amazon derived from combined solutions.

More quantitative assessments of accuracy and spatial resolution of COSMIC
gravity solutions are yet to be carried out, for example, using terrestrial based gravity
measurements at locations with large gravity changes. However, from the gravity
solutions, the COSMIC mission shows a potential for gravity recovery. The COSMIC
mission coincides with the GRACE mission since April 2006, and its lifetime is
expected to be 5 years. Following the procedure of gravity recovery, we will produce
monthly gravity fields from the combined COSMIC and GRACE data for a longer

term in Chapter 6.
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Calculating the COSMIC Integrating the COSMIC orbit data

kinematic orbit data from GPS with GGMO3S gravity field model
tracking data and rotating to CIS and all perturbation by GEODYN
coordinate

h 4
Calculating the differences of COSMIC positions

Using empirical coefficients model to remove the error
of the perturbation model and rotating to RTN coordinate

l

Forming the normal matiix

A i
Solving the temporal geopotential
coefficients with weighted constraints

Fig. 4-5: Steps of gravity recovery from COSMIC GPS data using analytical orbital

perturbation approach
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Chapter S

Temporal gravity recovery based on satellite accelerations

5.1 Introduction

A residual acceleration approach is employed to determine the time variation
of the Earth’s gravity field by using the precise GPS high-low tracking data from
two different inclination satellite missions -COSMIC and GRACE. It makes use of
satellites accelerations derived from precise kinematic and reference dynamic orbits
by numerical differentiations. We carried out experimental solutions of time-varying
geopotential coefficients using one month of COSMIC and GRACE kinematic
orbits (August 2006). The residual accelerations are derived from differencing
kinematic and reference orbits. We also carried out a combined solution with CSR
RLO04 solution. The comparison between the results from this method and from the

analytical orbital perturbation approach will be presented.

5.2 Processing of COSMIC and GRACE residual accelerations
5.2.1 Position data screening

Because kinematic orbits results in a series of satellite positions without force
model assumptions, it is preferable for gravity field modeling. For the comparison
of the gravity recovery result presented in Chapter 4, the kinematic orbits of the six
COSMIC satellites and two GRACE satellites used for gravity recovery are over the
time span from August 2 to August 31, 2006. The original sampling intervals of
COSMIC and GRACE kinematic orbit is 5-s and 10-s, respectively. The 5-s
COSMIC and 10-s GRACE kinematic data can be decimated and filtered to a

coarser sampling interval to improve orbit quality (Hwang et al. 2008).
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Again, to reduce noises and data volume, the original COSMIC and GRACE
kinematic orbits were re-sampled at a 1-minute interval using the normal-point
reduction procedure in Section 3.5. A typical way of removing outliers is to screen
the orbit position differences between two successive epochs, and the kinematic
orbits are not used if the differences exceed a certain threshold value (Ditmar et al.
2006). In this study, the threshold value is that 2.5 times of the RMS of orbit
differences, with a tolerable maximum difference of 20 cm, which is an empirical
value (Hwang et al. 2008).

Fig. 5-1 shows the RMS differences of GRACE-A and GRACE-B between
NCTU kinematic orbits and CSR dynamic orbits. The average RMS values in RTN
directions of reduced GRACE and COSMIC (1 minute) between kinematic orbits
and dynamic orbits are listed in Table 5-1. The RMS differences of COSMIC are
about 7 cm and uniform in all components. These differences are larger than those
of GRACE. FMS has the least RMS difference of all COSMIC satellites in the
normal-point data. The larger RMS difference of COSMIC may come from the poor
antenna position and bad attitude control compared to the GRACE satellite (Hwang
et al. 2010). Fig. 5-2 shows the percentages of accepted COSMIC and GRACE
kinematic orbits in August 2006 after removing outliers. The statistics of average
percentages of acceptance are shown in Table 5-2. FMS5 has the largest percentage
of acceptance in COSMIC mission due to its 800-km altitude where the surface
perturbation force is smaller and the attitude control is better than other those for
other five spacecrafts. These normal-point kinematic orbits were used for gravity

recovery.
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Fig. 5-1: RMS differences of GRACE-A (Top) and GRACE-B between NCTU

kinematic orbits and CSR dynamic orbits
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Table 5-1: Average RMS differences between kinematic orbits and dynamic orbits

in RTN directions for six COSMIC and two GRACE satellites (unit: cm)

radial along-track cross-track
FM1 7.74 7.52 7.30
FM2 7.55 7.44 7.19
FM3 7.54 7.62 7.24
FM4 7.87 7.65 7.53
FM5 7.27 7.11 6.85
FMo6 7.77 7.73 7.58
GRA 6.50 6.30 3.81
GRB 6.71 6.53 4.52
100 = =~ / - mﬁ;rﬂ - = FMl
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Fig. 5-2: Percentages of acceptance of kinematic orbits for normal point

computations
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Table 5-2: Statistics of percentages of accepted normal-point kinematic orbits

(August, 2006)

Min. Max. Ave.
FM1 64.31 85.42 82.62
FM2 68.65 87.30 83.77
FM3 68.37 87.22 83.85
FM4 77.08 87.15 83.22
FM5 89.41 95.24 92.10
FM6 78.09 86.18 82.84
GRA 97.15 100 99.68
GRB 98.43 100 99.66

5.2.2 Computation of residual accelerations

The key concept under consideration is the determination of the LEO
acceleration derived from a kinematic orbit. Acceleration derived from GPS phase
observations were first used in airborne gravimetry (Jekeli and Garcia 1997).
Reubelt et al. (2004) have used the means of high-resolution nine-point scheme
Newton interpolation and Ditmar et al. (2006) have used a three-point difference
scheme to derive the accelerations from CHAMP satellite orbits for computing
gravity field.

In this study, we employ a numerical differentiation technique to compute
accelerations from COSMIC and GRACE normal-point kinematic and dynamic
orbits. This technique is based on the divided-difference method (Gerald and
Wheatley 2003) that requires less arithmetic operations than Lagrangian and
Neville’s methods.

Assuming the function values of f(x) are given at several values for x, an

nth-degree polynomial representing this function is (Gerald and Wheatley 2003):
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P (x) =ay +(x—x)a, +(x—x,)(x — x,)a, +"'+(x_xo)(x_xl)“'(x_xn—l)a" (5-1)

If a; is chosen so that P (x)= f(x)at the n+1 known points, (x;, f;),i =0,...,n,

then P (x) is an interpolating polynomial. The first divided difference between x,

and x, is

Mo ]=270 - ] (5-2)

Xy =X
The higher-order difference is defined as

..’xn]: f[xlaxz "'ax;]__fx[xoaxl "'axn—l] (5-3)

f[xmxla'

So we can establish that the a; of eq. (5-1) are given by these divided differences

and each P (x,) will equal f(x;) if aizf[xo,xl,---,x,.]. Eq. (5-1) can be

written as

P = 4 o= ) I+ (= x) = x) P o (= =) (=, ) f

(5-4)

If the x-values are evenly spaced, ordinary differences are used instead of divided

differences (Gerald and Wheatley 2003). It’s called Newton-Gregory interpolation

method and an interpolating polynomial of degree n with x evaluated at (x,) can
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be represented as:

s(s 1)

A fy + A fI (5-5)

P,(x)=f, +sAf, + S(S—l)--’-i('s—nﬂ)

where A’f, is n-order difference, s=(x—x,)/h and A is the uniform spacing in

1

x-values. We can write eq. (5-5) in terms of s=(x—x,)/h:

P.(s)= f.+sAf+( I)Azf +w& 4. +H(s Nt f" (5-6)

’ 2! 3!
Therefore,
d d ds 1 7 57 ' f,
—P (s)=—P (s)—=—[Af, + s—1 5-7
I () 7 ( )dx h[ Vi 2 {HH( )} (5-7)

The derivation of f{x), denoted as f"'(x), can be approximated as
1 1 1 LS Af,

F@) = | 8,2 B f e f e () (5-8)
h 2 3 no|_

The second-order derivation of f(x) is

£ =~ [Azf -Nf oA, —%A%--} (5-9)
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In this study, the default polynomial degree n is 14. The residual satellite

accelerations vector a can be computed as follow:

a=al" —a® (5-10)

1 1

where a®™ is the observed kinematic acceleration and a'™*™

i i

1s the reference

dynamic acceleration and the index i indicates a given component at a given epoch.

5.3 Validation of the acceleration method

In the following simulation, the true orbit perturbing noises are known and so
are the true values of temporal gravity field. The purpose of this simulation is to
validate the computer program for the acceleration method and assess the accuracy
of the recovered gravity field.

We simulate the six FORMOSAT-3 satellite orbits using a computer program
package, called CTODS (Chang 2003), developed for precise orbit and gravity
determination. The perturbing forces caused by the Earth's non-sphericity, N-body,
solid Earth tide, ocean tide, air drag, solar radiation pressure, Earth radiation and
relativity are modeled. The data span is from June 1, 2002 to June 7, 2002 and the
data sampling is 1 minute. The initial state vectors (six Keplerians) are a =
7160.137km, e=0,i=72°,0=0°, Q=0°—24°—-48°—-72°-96°—-120° and

M =0°,52.5°,105°,157.5°,210°,262.5°. We assume the geopotential coefficients

af; and SE of the reference gravity field GGM02C model and the temporal

nm

geopotential coefficients AC,, and AS, derived from the ocean mass variation

are true. The following data sets are used (See Fig.5-3) :
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(1) Compute C! = C: +AC,, and S| =S’ +AS,,.

2) Integrate 7-day orbits at a 1-minute interval using C’ and S’ up to
g y g G am  UP

degree 70 for each of the 6 COSMIC satellites. Random errors are added to

the orbit based on a 1, 3, 5-cm standard deviation.
(3) Repeat (2), butusing C% and S~ .

(4) Calculate the accelerations by quadratic differential of (2) and (3) positions.

(5) Subtract the accelerations in (4) to get the radial, along-track and cross-track
perturbations due to mass variation.

(6) Sample the acceleration data at a 2-minute interval by using normal-point

method.

(7) Compute Aéﬂm and AS, , which are the estimates of AC, and AS, , by

using the residual acceleration approach.
One set of normal equation, geopotential coefficients and empirical coefficients is
computed from a 7-day orbit arc for each satellite. These normal equations are
considered uncorrelated and are combined to determine an averaged gravity field.

Fig.5-4(a) shows the gravity variation to spherical harmonic degree/order 5
from the ocean mass variation, and (b), (¢) and (d) show the recovered gravity
variation with 1, 3 and 5 cm random white noise, respectively. Fig. 5-4 suggests that
the temporal gravity can be recovered well using a 7-day arc data of one satellite
with 1 cm random white noise. With 3 c¢cm random white noise, the recovered
gravity signatures are less obvious compared to the case of 1-cm noise. Fig. 5-5
shows the relative differences for zonal terms of the simulation-derived coefficients
with respect to the ocean mass variation derived coefficients of gravity variation

with different random noises.
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We can also combine normal equations from all satellites to recover the

gravity field. The observation equation in such combination solution is

X=(QeN)'QeU) (5-11)

where N; is the individual normal equation, i is the number of satellites, ¢, is the

regularization factor of weighting matrix since the weighting of different kinds of

observations is generally unknown. If the prior weighting matrix is unknown, we

need to estimate the variance-covariance to estimate ¢, (Koch 1987).

Fig. 5-6 shows the relative differences of the recovered harmonic coefficients
of gravity variation up to degree/order 5, 10, 15, and 20 using one week of 6
satellites data with 3 cm white noise. The relative differences in the case of
degree/order 5 are smaller than those in the cases of degree/order 10, 15, and 20. Fig.
5-7 presents the recovered gravity variation combining one week of six satellites
data by adding 1, 3 and 5 cm white noise. The relative differences in these solutions
are shown in Fig. 5-8. The gravity signatures can be recovered well if the orbit data
contains 5-cm noise or smaller. Fig. 5-9 shows smaller relative differences for zonal
terms when adding different random noises, in comparison to the results given in

Fig. 5-5.
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Fig. 5-3: The simulation procedure of residual acceleration approach
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5.4 Gravity recovery using COSMIC and GRACE GPS data

The CSR RL04 products are presented in this chapter for comparison and
analysis. Following Hwang et al. (2008) and Xu et.al (2006) studies, the
signal-to-noise ratio of COSMIC-derived spherical harmonic components is shown
larger than 1 with degrees lower than 10. For efficient computation, we decide to
adopt 15 as the maximum degree of expansion and carried out several experimental
gravity solutions using one month of COSMIC and GRACE normal-point kinematic
orbits with different combinations. Fig. 5-10 shows degree variances and error

degree variances from the COSMIC, COSMIC-GRACE and CSR RL04 solutions.
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We can clearly observe three features from Fig. 5-10: (i) The COSMIC and
COSMIC-GRACE degree variances decrease and the error degree variances
increase unapparently with degree; (ii) all error degree variances are less than the
degree variances below degree 10; (iii) The degree variance of COSMIC-only
solution is closer to the CSR RL04 solution but degree 2 may be affected by the
constraint of Kaula’s rule.

The geoid changes from the COSMIC-only and COSMIC-GRACE solutions
to degree 15 are shown in Fig. 5-11; Fig. 5-12 shows the geoid variations from the
combined COSMIC and GRACE solution and from CSR RLO04 solution to degree
15. Comparing Fig. 5-11 and Fig. 5-12, the COSMIC-only solution shows clear
geoid highs and lows over European, eastern Pacific, India continent and southern
Africa, which resembles those given by the CSR RL04 solution but still contains the
aliasing artifacts over southern Pacific and Bering Sea. We note that the
COSMIC-GRACE solution can reduce the geoid signature artifacts of the
COSMIC-only solution due to better observation data coverage. The combined
solution closely resembles the CSR RL04 solution and this is due to the large
weights of CSR RL04 coefficients in the combination. We still need to carry out
more quantitative assessments of accuracy and spatial resolution of COSMIC
gravity solutions using the terrestrial-based data.

The relative differences of the COSMIC-only and COSMIC-GRACE
geopotential coefficients with respect to the CSR RL04 coefficients are given in Fig.
5-13. A large portion of the recovered geopotential coefficients are smaller than 1
which is considered as significantly close to the CSR RL04 solution. The
COSMIC-GRACE greatly enhances the COSMIC-only solution especially in some
terms of geopotential coefficients listed in Table 5-3. This would be explained by

the combination of two different inclination satellite observation data. Fig. 5-14
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shows the relative differences of the combined solution coefficients with respect to
the CSR RL04 coefficients and most of them are less than 1. From Fig. 5-15, we can
note that the relative differences of zonal coefficients derived from
COSMIC-GRACE solution are larger than COSMIC-GRACE solution using
analytical orbit perturbation approach after degree 6. The cause could be taced back
to the lower degree geopotential coefficients which are more sensitive to the
accuracy of accelerations.

We also compute calibrated standard errors of COSMIC-derived geopotential
coefficients using the method given in Hwang et al. (2008). A calibrated standard
error is obtained by multiplying the un-calibrated standard error by the scaling
factor. Fig. 5-16 compares the calibrated error degree variances from CSR RLO04,
COSMIC-only using AOP approach, COSMIC-only and COSMIC-GRACE using
acceleration approach, and combined solutions. From the comparison, one can see
that the combined solution yields smaller error degree variances than those from
CSR RLO04 solution. The calibrated error degree variances of COSMIC-only and
COSMIC-GRACE derived by acceleration approach turn out to be smaller than
them of COSMIC-only solution derived by analytical orbit perturbation approach.
However, it may not be necessary to say that the time-varying gravity field
recovered from acceleration approach would be better than that recovered from
analytical orbit perturbation approach. In this study, the COMSIC observation data
combined with GRACE shows a good potential to recover the low degree

time-varying gravity field.
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RL04 solutions
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Fig. 5-11: Geoid variations to spherical harmonic degree 15 from COSMIC-only solution

(top) and from COSMIC-GRACE solution using residual acceleration approach

82



0 20 40 60 B0 100 120 140 160 180 200 220 240 260 280 300 320 340 360

-10 8 6 4 - 0 2 4 6 8 10

2006-8
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Table 5-3: Relative errors of geopotential coefficients from COSMIC-only and

COSMIC-GRACE solutions

_ COSMIC-only COSMIC-GRACE
coefficient ‘ ‘
solution solution
AC;, 55.287 1.987
AC,, 1088.755 4.61
So.s 20.110 2.854
AC,,, 29.133 1.953
AC,, 499.183 3.902
AC; 16.223 2.491
ACi;, 30.375 2.074
AC, 22.240 1.278
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Chapter 6

Low-degree gravity change

6.1 Introduction

In Chapters 4 and 5, we have presented two methods to process the COSMIC
and GRACE hI-SST data to recover the temporal gravity field using one month of
observations. Therefore, we use these two methods to compute the monthly solutions:
the NCTU AOP solution by the analytical orbital perturbation method, and the
NCTU ACC solution by the residual acceleration method. The six COSMIC and two
GRACE POD data from September 2006 to December 2007 were processed to obtain
16 monthly solutions. Section 6.2 will describe COSMIC and GRACE POD data
processing. The time series of low degree (up to degree/order 5) NCTU AOP, ACC
solutions and the combined solutions (up to degree/order 15) with GRACE KBR

solutions will be discussed in Section 6.3. Finally, Section 6.4 focuses on variations of
low-degree zonal harmonic coefficients, including Aazo ) AQO and Aam. These

results will be compared with the SLR and CSR RL04 solutions.

6.2 Data of COSMIC and GRACE

Following the procedure mentioned in Chapter 3, the reduced-dynamic and
kinematic orbits of both COSMIC and GRACE satellites were determined using 16
months of zero-differenced measurements by Bernese 5.0 from September 2006 to
December 2007. The original sampling intervals of COSMIC, GRACE kinematic and
reduced-dynamic orbits are 30-s. The force models for both COSMIC and GRACE
are listed in Table 3-1 and the prior static gravity field is from the GGMO03S model.

Because of unknown reasons, COSMIC GPS observations in certain days were

missing or not completed. Table 6-1 presents the numbers of files received from each
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COSMIC satellite and the numbers of kinematic orbit computed from the original data
from September 2006 to December 2007. The unusable kinematic orbit data take the
blame for the bad attitude control, bad GPS observation quality or simply missing
observations. Fig. 6-1 shows the monthly RMS differences between dynamic and
kinematic orbits of COSMIC and GRACE satellites in the radial, along-track and
cross-track directions. The averaged RMS differences in these three directions for
each COSMIC and GRACE satellite are listed in Table 6-2. Comparison of the RMS
differences between COSMIC and GRACE in August 2006 shown in Table 5-1
suggests that the RMS differences of each COSMIC satellite are at the same level but
smaller due to the better attitude control and the higher satellite operating altitudes.
We will use these dynamic and kinematic orbits to recover monthly temporal gravity
field solutions following the procedures for the analytical orbital perturbation and

residual acceleration approaches.
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Table 6-1: Numbers of observation files and usable kinematic orbit files from

September 2006 to December 2007

Month FM1 FM2 FM3 FM4 FM5 FM6
2006.9 26°26" 15/14 26/26 27127 29/29 23/23
2006.10 27/24 30/27 27/27 28/25 28/28 25/24
2006.11 28/28 16/16 30/29 29/29 28/27 29/25
2006.12 27/27 26/26 26/26 29/29 29/29 22/21
2007.1 29/29 30/29 27/27 29/29 29/28 20/20
2007.2 26/26 27/27 28/27 28/28 28/28 16/14
2007.3 29/29 6/6 31/31 28/23 30/30 30/30
2007.4 30/29 13/13 30/29 23/18 29/29 20/20
2007.5 31/30 12/10 30/28 23/21 30/29 31/31
2007.6 30/30 22/21 25/25 30/30 30/30 26/26
2007.7 30/30 29/29 16/14 30/30 31/27 31/31
2007.8 31/31 18/18 17/17 30/29 31/30 29/28
2007.9 28/27 8/8 77 30/30 29/28 77

2007.10 28/15 27/27 21/21 31/31 31/31 0/0

2007.11 29/28 13/13 7/4 30/30 28/26 12/12
2007.12 27/27 27/27 23/23 31/29 29/27 28/27

a: Number of observation files

b: Number of usable kinematic orbit files

90




0.080
0.078
0.076
0.074
0.072
0.070
0.068
0.066
0.064
0.062
0.060
0.058
0.056
0.054
0.052

0.050 T T T T T T 1
2006.6 2006.8 2007.0 2007.2 2007.4 2007.6 2007.8 2008.0

\A_c:i]’

N\

o v

RMS differences (m)

Year

0.080
0.078
0.076
0.074
0.072
0.070
0.068
0.066
0.064
0.062
0.060
0.058
0.056
0.054
0.052

0.050 T T T T T T 1
2006.6 2006.8 2007.0 2007.2 2007.4 2007.6 2007.8 2008.0

AT sy

-~

RMS differences (m)
¥
\
\

Year

0.080 —

0.075

0.070

wy b
[] h 3
|
Avqnp

0.065

(VLR
Ky am

'TERT1S
\

.
.« a oy

0.060

0.055 - - % -

RMS differences (m)

oos0 | * e

0.045

0.040 T T T T T T 1
2006.6 2006.8 2007.0 2007.2 2007.4 2007.6 2007.8 2008.0

Year

Fig. 6-1: The monthly RMS differences between dynamic and kinematic orbits of
COSMIC and GRACE satellites in radial (top), along-track and cross-track (bottom)

directions from September 2006 to December 2007
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Table 6-2: Averaged RMS differences between kinematic and dynamic orbits from

September 2006 to December 2007 (unit: cm)

Satellite radial alone-track cross-track
FM1 7.24 6.96 6.66
FM2 7.02 6.76 6.46
FM3 7.30 7.00 6.78
FM4 7.25 6.95 6.68
FMS5 7.00 6.73 6.31
FM6 6.88 6.59 6.33
GRA 6.28 6.26 5.01

GRB 6.38 6.38 5.42
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6.3 Time series of monthly gravity solutions

In order to investigate the temporal variation of gravity field, we process the
COSMIC and GRACE data from September 2006 to December 2007 at almost one
month interval. The NCTU solutions contain a series of monthly estimates of the
temporal gravity field variation with respect to the GGMO03S model based on four
years (January 2003 through December 2006) of GRACE KBR and GPS data from
the RL04 processing. To focus on changes of low-degree geopotential coefficients, we
adopted degrees 5 as the maximum degree in harmonic expansion for gravity recovery
using COSMIC and GRACE hl-SST data. Figs. 6-2 and 6-3 show the time series of
geoid variations to spherical harmonic degree 5 and 15 of CSR RL04 solutions from
September 2006 to December 2007. Some hydrological signals are clearly visualized
over the Amazon, India, central Africa, Russia, North America and Greenland. The
maximum variations can be observed in spring (April) and autumn (September to
October) and this pattern is consistent from one year to another.

Figs. 6-4 and 6-5 present the time series of the geoid variations to spherical
harmonic degree 5 from the NCTU AOP and ACC solutions from September 2006 to
December 2007. In general, the NCTU AOP and ACC solutions show similar
magnitudes of geoid variations and show clear geoid highs and lows compared with
CSR RLO04 solutions with small phase differences. Compared with the CSR RL04
results shown in Fig. 6-2, not all monthly NCTU AOP and ACC solutions are of the
same quality. For example, the AOP solutions for December of 2006; January,
February and April of 2007 still show some artifacts at latitudes higher than 72°,
which may be caused by lack of the measurements and ACC solutions as well for
November and December of 2006, and February, April, June, August, September,
October and December of 2007. The geoid signatures of the same month shown in the

NCTU ACC solution are usually smaller than in the NCTU AOP solution. The reason
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may be that the numerical differentiation for acceleration derivation will increase the
noise and we should use more terms of empirical model to absorb the noise.

The combined COSMIC-GRACE solutions are also carried out. The time series
of the geoid variations to spherical harmonic degree 15 of combined NCTU AOP and
ACC solutions from September 2006 to December 2007 are shown in Figs 6-6 and
6-7. We can indicate that the combined NCTU AOP and ACC solutions closely
resemble the CSR RL04 solutions. Some geoid signatures are enhanced in some large
mass redistribution areas like Amazon, India, and North America etc.. This is due to
the large weights of GRACE coefficients in the combination. Comparing with Figs.
6-3, 6-6 and 6-7, we note that the combined NCTU AOP solutions show greater

enhancements of geoid signatures than NCTU ACC solutions.
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Fig 6-2: Maps of geoid variations up to degree 5 of CSR RL04 solutions from

September 2006 to December 2007
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September 2006 to December 2007
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Fig 6-4: Maps of geoid variations up to

September 2006 to December 2007
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Fig 6-5: Maps of geoid variations up to degree 5 of NCTU ACC solutions from

September 2006 to December 2007
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Fig 6-6: Maps of geoid variations up to degree 15 of combined NCTU AOP solutions

from September 2006 to December 2007
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Fig 6-7: Maps of geoid variations up to degree 15 of combined NCTU ACC solutions

from September 2006 to December 2007
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6.4 Low-degree zonal coefficients
The studies for long term time series of low degree geopotential coefficients

become an important issue for application of satellite geodesy. The conventional J,

and the fully normalized zonal coefficient C,, are related by

J,=—C,, =—2n+1C,, (6-1)

The second coefficient J; is called Earth’s mean tide-free dynamic oblateness (Cox

and Chao 2002):

J, =[C—(4+B)/2]/ MR* = —C,, =—/5C,, (6-2)

where 4, B, C present the Earth’s mean principle moments of inertia, M is the mean
mass of Earth and R is the mean radius of Earth.

From the variation of the coefficient J> one can study atmospheric mass
variation, oceanic mass redistribution and ground water-level change, which are vital
to the understanding of global change. By observing the LEO orbital node
acceleration using SLR, one can determine precise variation of the coefficient J;
(Cheng and Tapley 1999; Cox and Chao 2002). The rate estimate of J, from SLR data
is decreasing from 1979 to 1998, and then increasing since 1998 until around 2005
and decreasing after 2005 due to the significant inter-annual variation (Cheng and
Tapley 2008). The long term variations of zonal terms J, and J; can be used to explain
mantle compositions and post-glacial rebound. The long and short period variations of
J> and J; are related to solid Earth, oceanic and atmospheric tidal or non-tidal change,

and seasonal mass change of hydrology. The time variations of even zonal coefficients
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Jn (n :2,4,6,...) are sensitive to the mantle composition and the variations of odd

terms J ; (n = 3,5,7,...) are sensitive to the glacial mass balance (Ivins et al. 1993).

Cheng et al. (1997) have used 8 SLR satellite observations, including those from

Starlette, Lageos 1 and 2, Ajisai, Etalon 1 and 2, Stella and BE-C, to analyze

low-degree  zonal  coefficients to  obtain  J, = (— 2.7i0.4)><10_11 /yr
J,=(-13£05)x10" /yr, J, =(-1.4£1.0)x10™"" /yr, J, =(2.1£0.6)x10™" /yr,

andJ, =(0.3£0.7)x10™" /yr.

The second zonal coefficient Cyq is rather difficult to estimate from GRACE data,
particularly due to the polar orbit design and the presence of several long-tidal aliases
(Ries et al. 2008). The combination of satellite data of different inclinations such as
COSMIC-GRACE will not only effectively improve the accuracy of zonal
geopotential coefficients but also the tesseral terms (Zheng et al. 2008). In Section 6.2,
we choose the GGMO3S model as a reference Earth’s gravity field model so the
reference Cyis also chosen from the same model. Fig. 6-8 shows the time series of
Cy change from CSR RLO04 and SLR solutions from September 2006 to December
2007. The file containing monthly estimates of C,y, reference C,y (the value is
-0.48416948x107°) and the error estimates of Cyo by 5 SLR satellites (LAGEOS-1
and 2, Starlette, Stella and Ajisai) can be available at the JPL ftp site
(ftp://podaac.jpl.nasa.gov/grace/doc/ TN-05_C20 SLR.txt) (Cheng et al. 2004). The

background gravity model used in the SLR analysis is consistent with the CSR RL04
processing. Large differences of AQO occurred in April, September and October of

2007. Time series of AEzO change from the ACC, AOP, CSR RL04 and SLR

solutions from September 2006 to December 2007 are given in Fig 6-9. The rates of
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AC,, from SLR, AOP, ACC, and CSR RLO04 are (—094+043x10™" ,

(~1.06£08Gx10™, (0.15£0.79x10"" and (~1.98+08¢x10™ | respectively. These

results suggest that the AOP solution and the SLR solution provide a more similar

magnitude of variation with a smaller phase difference than CSR RL04 and ACC
solutions. For the AC,, and AC,, changes, the three solutions (CSR RL04, AOP
and ACC) have almost the same phase and similar magnitude of variation (see Fig.

6-10 and 6-11). The rates of AQO from CSR RLO04, AOP and ACC solutions are
(~1.58£607)x10", (=5.13£7.09x10", and (=7.07+8.14x10"", and the rates of AC,,

are (3.46%3.06)x10™" | (-020+£291x10", and (233+£301)x10™"", respectively.

In conclusion, the NCTU AOP and ACC solutions produce improved

low-degree zonal coefficients because they use satellite data of different inclinations.
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Chapter 7

Summary, Conclusions, and Recommendations

7.1 Summary and Conclusions

The primary contribution of this research is to use the combination of satellite
hl-SST data of different inclinations to recover the temporal gravity fields,
particularly the low-degree ones. This research is divided into four major parts. In the
first part, we refined the COSMIC and the GRACE hl-SST data processing
methodology for kinematic and dynamic POD (chapter 2). Secondly, we further
developed the analytical orbital perturbation approach to process the COSMIC and
the GRACE positional data to recover the temporal gravity field (chapter 4). Thirdly,
the acceleration data derived from the COSMIC and the GRACE positional data are
applied to the temporal gravity recovery procedure using the residual acceleration
approach (chapter 5). Finally, we conducted an analysis of the time series of low-
degree geopotential coefficients using the COSMIC and the GRACE hl-SST data, and
validated such results by the CSR RL04 and SLR solutions.

The main results are summarized as follows.

(1) Precise kinematic and dynamic orbits of the COSMIC and the GRACE satellites
are computed, with accuracies at the cm level.

(2) Detailed and precise force modeling for COSMIC LEOs is achieved.

(3) Time-varying gravity changes are estimated with a sufficient confidence from
COSMIC only and combined COSMIC and GRACE GPS tracking data, based on
the analytical orbit perturbation theory.

(4) An alternative method of gravity recovery based on satellite accelerations is
developed. The result is as good as the result from the analytical orbit perturbation

theory. In the case of combined COSMIC and GRACE GPS data, both methods
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produce changes in geopotential coefficients with smaller error degree variances
and more evident gravity change signatures than the ones given by the
GRACE-only solutions.

(5) Time series of second, third and fourth zonal geopotential coefficients are

determined from COSMIC and GRACE GPS data and they are consistent with the

SLR results. The rates of AQO from SLR, AOP, ACC, and CSR RLO04 are
(~0.94£049x10™, (-1.06£08x10", (015:0.78x10™" and (~1.98+0.8¢x10™ |
respectively. The rates of Aam from CSR RL04, AOP and ACC solutions are
(~1.58£607)x10", (-5.13709x10", and (~7.07+814x10"", and the rates of

AC,, are (3.46%3.06)x107" | (=020£291)x10"", and (233+3.01)x10"",

respectively.

7.2 Recommendations for future work
To further improve accuracies in orbit determination and gravity recovery, there

are several topics that need to be investigated in future works.

(1) Improving COSMIC kinematic orbits
This can be achieved by (1) using ambiguity fixing, (2) combing GPS data from
the two POD antennas (3) using improved attitude data (collaborating with NSPO)

and (4) using improved PCV estimates (Hwang et al. 2009).

(2) Improving the COSMIC and the GRACE dynamic orbits
Compared to the method used in this study, an improved method is to use the

double-differenced GPS carrier-phase observations with sufficient numbers of ground
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stations. But this will require a higher computational capacity.

(3) Improving the accuracy of acceleration derivation

In this study, we use the numerical differential method to derive the acceleration
from positional data. There are at least two different variants of acceleration
approaches such as the point-wise acceleration method and average acceleration

method. These methods to derive observed acceleration should be investigated.

(4) Accuracy assessment of the COSMIC and combined solutions
More quantitative assessments of accuracy and spatial resolution of the
COSMIC and combined gravity solutions are yet to carry out, for example, using

terrestrial based gravity measurements at locations with major gravity changes.
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Appendix A: Acronyms

ACC Residual acceleration approach

AOCS Attitude and Orbit Control System

AQP Analytical orbital perturbation approach

CES Coarse Earth and Sun Sensor

CHAMP CHAllenging Minisatellite Payload

CMT Center of Mass Trim Assembly

CODE Center for Orbit Determination in Europe

COSMIC Constellation Observing System for Meteorology, lonosphere and Climate
CSR Center for Space Research

DORIS  Doppler Orbitography and Radio positioning Integrated by satellite
GOCE Gravity Field and Steady-State Ocean Circulation Explorer
GPS Global Positioning System

GRACE  The Gravity Recovery and Climate Experiment

GST Greenwich sidereal time

hl-SST  high-low satellite-to-satellite tracking

ILRS International Laser Ranging Service

JPL Jet Propulsion Laboratory

KBR K-Band Ranging System

LEO Low Earth orbiter

LEOM Lagrange’s equation of motion

1I-SST low-low satellite-to-satellite tracking

LRR Laser Retro-Reflector

NSPO National Space Organization

POD Precise Orbit Determination

PRARE  Precise Range and Range Rate Experiment

PCV phase center variation
RTN radial, along-track and cross-track
SAD solar arrays drive

SCA Star Camera Assembly

SGG Satellite Gravity Gradiometry
SLR Satellite Laser Ranging

TDF Tracking Data Formatter
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UCAR the University Corporation for Atmospheric Research
USO Ultra Stable Oscillator
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