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Abstract. Previously, we have calculated atomic generalised oscillator strengths at zero 
momentum transfer using the local plasma approximation. In this work, we have extended 
our calculations to non-zero momentum transfer for the atomic K shell. Basically, we have 
adopted similar formulations to those developed previously, however, parameters here 
were allowed to be momentum dependent. A pseudo-electron density distribution derived 
from the exact generalised oscillator strength data at zero momentum transfer was employed 
in the present work. This has several advantages over the Hartree-Slater electron density 
distribution employed previously. Calculated results of the generalised oscillator strengths 
at any momentum transfer and energy transfer for atoms up to sodium have been compared 
with theoretical data of the matrix element method. Fairly reasonable agreement was found 
for all cases. 

1. Introduction 

Atomic generalised oscillator strength ( G O S )  has been defined by Bethe for the stopping 
power of charged particles (Bethe 1930,1933). The GOS embodies the dynamic response 
properties of atoms in terms of atomic excitation and ionisation spectra. It is a function 
of momentum and energy transfers incurred in the inelastic interactions between 
charged particles and atoms. In the limit of zero momentum transfer, the GOS 

approaches the optical oscillator strength. 
Theoretical prediction of GOS follows one of two different approaches. The first 

involves a full matrix element evaluation utilising atomic wavefunctions obtained from 
quantum mechanical methods such as the Hartree-Fock-Slater ( HFS) (McGuire 1971, 
Dehmer et a1 1975, Inokuti et a1 1978) and the hydrogenic (Walske 1952,1956) methods. 
The second employs models which are in general simpler but lead to less accurate 
results. Among these models, the binary collision model (Gryzinski 1965a, b, c, Tung 
1980) and the local plasma approximation (LPA) (Johnson and Inokuti 1983, Tung 
and Kwei 1985) are the most frequently quoted. 

Previously (Kwei et a1 1988), we have calculated atomic ionisation GOS at zero 
momentum transfer using the LPA with the HFS electron density distribution (Herman 
and Skillman 1963). The LPA has been proven to be useful in the determination of 
shellwise ionisation GOS contributed by individual subshells of atoms. The approach 
of the LPA began with a Drude-type response function for electrons in a small volume 
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around the nucleus of an atom in a given subshell. The atomic GOS of that subshell 
was then obtained by averaging the above space-varying response function over the 
entire volume occupied by the atom according to the electron density distribution of 
that subshell. Quantum excitations of electrons and plasma oscillations of local electron 
densities have both been taken into consideration. Such an approach has also been 
adopted by Tung et a1 (1988) in the determination of atomic mean excitation energies. 

Application of the LPA for atomic K-shell GOS at non-zero momentum transfers is 
the subject of this work. Previous derivation in the LPA formulations is generally valid. 
However, a few modifications need to be made before the application of these formula- 
tions. These include allowing the ionisation fraction, plasma damping coefficient and 
resonant energy to be momentum dependent. In addition, a pseudo-electron density 
distribution derived using the exact GOS data at zero moment,um transfer may be 
utilised to develop GOS at non-zero momentum transfers. 

2. Theory 

The atomic GOS is a quantity which characterises the dynamic response of atoms on 
their interactions with charged particles. For interacting atomic systems such as solids 
and liquids, this response is usually expressed in terms of the dielectric function of 
the bulk material. In the case of weakly interacting systems such as dilute gases, the 
dielectric function is approximately related to the GOS by the relation (Powell 1985) 

a f  2 w z  
- ( k ,  w ) = y I m ( - l / & ( k , w ) )  
aw =w P 

where af/aw is the differential GOS with respect to the energy transfer w, E represents 
the dielectric function, Im( -1/ E )  denotes the energy loss function, k is the momentum 
transfer, Z is the atomic number, wp = ( 4 r n ) ' l 2  is the free electron plasma energy, and 
n is the electron density. Note that atomic units are used throughout this paper unless 
otherwise specified. 

For a system composed of atoms having several subshells with different binding 
energies, the dielectric function is given by (Ritchie and Howie 1977, Raether 1980) 

where wki  represents the energy-momentum dispersive relation, w p i  = ( 4 5 ~ 1 ~ ) ' ' ~  is the 
plasma energy and Y k j  is the momentum-dependent plasma damping coefficient, all 
associated with the ith subshell. The exact form of the dispersive relation is guided 
by its behaviour at two extremes. At the optical end, i.e. k + 0 ,  w k i  approaches the 
effective plasma energy Gpi ,  where (Kwei et a1 1988, Lindhard and Scharff 1953) 

(3) G p i = ( w Z p i + w i )  2 1/2 

and wi is the binding energy of the ith subshell. At k + CO, wki tends to the Bethe ridge 
(Inokuti 1971), i.e. a region in the neighbourhood of the free electron dispersive line 
k 2 / 2 .  With this guidance, one may write 

wki = GPi -t ai( k) k 2 / 2  (4) 
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where a i ( k )  is a weakly k-dependent function and &,(CO) = 1 as is required. Substituting 
(2) into (l),  one obtains 

It is found in ( 5 )  that the GOS is separated into contributions from individual subshells. 
Now, consider the electron density distribution of the ith subshell, ni( r ) ,  varying 

with the radius from the nucleus. Applying the LPA procedure, i.e. averaging the local 
GOS over the entire space occupied by an atom according to the space-varying electron 
density distribution, one obtains the LPA COS of the ith subshell as 

4.irr2n,( r )w2yk i  
{ w ’ -  [&( r )  + a , ( k ) k 2 / 2 1 2 } * +  w 2 Y k j  2 dr. 

af; - ( k , w ) = -  
aw 

Equation ( 6 )  represents an average GOS of bound local plasmas with density n , ( r )  and 
binding energy w , .  In the limit of zero momentum transfer, this equation leads to 
equation (19) of Kwei et a1 (1988). 

Note that the atomic GOS calculated using equation (6) satisfies the sum rule 

2 ( k, U )  dw = 4.irr2 n, ( r ) d r = Zi . J (7) 

However, the LPA concept is valid only for COS contributed by ionisations but not for 
discrete excitations. Let Z f ( k ) ,  Z y ( k )  and Z F ( k )  be the sum oscillator strength 
contributed by ionisations, excitations to unoccupied levels and excitations to occupied 
levels respectively. They are defined by (McGuire et a1 1982, McGuire 1983) 

and 

Zl ( k )  = - ( k, w ) dw J :: 

ZO( k )  = k, Ej - Ei,) 
occupied i ’  

where a f ] / a w  is the ionisation GOS and is the excitation GOS for the transition 
between initial i and final i ’  states. The sum rule of (7) is equivalent to the relation 
Zi = Zf ( k )  + Zu( k )  + Z?( k ) .  The correct ionisation GOS is therefore established by 
multiplying (6) by an ionisation fraction defined by F , ( k )  = Z f ( k ) / Z , .  Thus, we obtain 

where n: ( r ,  k )  = n i ( r ) F I ( k ) .  . 

Taking k = 0 and Y k i  + 0, (1 1) leads to 

where Gbi(ro)  is the derivative of G p i ( r )  at ro and ro is the root of the equation 

w - G P i (  r )  = 0. (13) 
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One may obtain a so-called pseudo-electron density distribution n : (  r, 0) (Penn 1987) 
from equations (12), (13) and (3) by substituting experimental or theoretical ionisation 
GOS data into the left-hand side of (12). The pseudo-electron density represents a 
hypothetical electron density which yields the experimental or theoretical GOS at zero 
momentum transfer under the LPA approach. 

The plasma damping coefficient in (11) controls the width of the GOS spectrum. It 
has been shown (Ashley and Williams 1980) that this coefficient was directly related 
to the full width at half maximum of the GOS spectrum. From an examination of 
McGuire's cos data (McGuire 1971), it reveals that this coefficient is increasing with 
the momentum transfer. In a first approximation, one may propose Y k j  = Ai + Bjk2 
(Zacharias 1972), where Ai and Bi are coefficients depending on the atom and the 
subshell. Since the pseudo-electron density distribution is derived under the condition 
Y k i  + 0 at k = 0, Ai = 0 follows accordingly, and in this work we use 

Y k i  = Bjk2. (14) 

3. Results and discussion 

Figure 1 shows a plot of GOS for the carbon 1s shell calculated by McGuire (1971) 
using the matrix element method and the Hartree-Slater potential wavefunctions 
(Herman and Skillman 1963). It is seen that the GOS spectra for small momentum 
transfers decrease monotonically with the increase of energy transfer. As the momentum 
transfer becomes larger and larger, these spectra become bell shaped with the width 
increasingly broader, the height smaller and the peak energy transfer greater. This 
indicates that the plasma damping coefficient approaches zero at the smallest available 

w i a u i  

Figure 1. A plot of ionisation COS for the carbon K Figure 2. A comparison of the local plasma energy, 
shell from the matrix element method (McGuire wp(r ) ,  the effective plasma energy, Cp(r) ,  and the 
1971). All quantities are in atomic units. pseudo-effective plasma energy, 6 J r )  for the 

carbon K shell. wp(r)  = ( 4 ~ n ( r ) ) ' / ~  and C,(r) = 
( 4 ~ n ( r )  + w t - l s ) ' / 2  are calculated using the Hartree- 
Slater electron density distribution (Herman and 
Skillman 1963). cS,(r)  = ( 4 m ' ( r ,  O ) + O J ~ - ~ J ' ' ~  is 
calculated using (12) with ionisation COS at k = 0.01 
from the matrix element method (McGuire 1971). 
All quantities are in atomic units. 
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k value of 0.01. Therefore, we may substitute the GOS values at k = 0.01 into equation 
(12) to determine the pseudo-electron density and subsequently the pseudo-effective 
plasma energy using (3). Figure 2 is a comparison of the results on the free electron 
plasma energy wp( r ) ,  the bound electron effective plasma energy Gp( r )  and the pseudo- 
effective plasma energy Wp(r), where w p ( r )  and Gp(r) are calculated using the HFS 

electron densities and W,( r )  using McGuire’s GOS data at k = 0.01. At small radius the 
free electron plasma energy dominates the contribution to the effective plasma energy 
according to (3), whereas the binding energy dominates at large radius. Substantial 
differences between Gp( r )  and Gp( r )  occur only at small r where at r + 0 Gp  extends 
to a finite value and Gp extends to infinity. Since the GOS is inversely proportional to 
the first derivative of Gp as expressed in (12), large values of Gb at small r correspond 
to small GOS at large w in figure 1. On the other hand, small values of Gb at large r 
correspond to large GOS at small w in figure 1. 

It is seen from figure 1 that plasma damping becomes more and more important 
as k becomes larger and larger. Areas under the GOS spectra for different k values are 
constrained by the sum rule of (8). To study the dependence of the plasma damping 
coefficient on the momentum transfer, we replot the data presented in figure 1 as a 
function of a scaled energy transfer defined by w / ( w c - l s +  k2/2), where wc-ls is the 
binding energy of the carbon 1s-shell. This is shown in figure 3 where the ordinate is 
taken as the product of GOS and w ~ - , ~ +  k2/2 in order to retain areas under the spectra 
unchanged from those in figure 1. One advantage of the plot associated with figure 3 
is that all spectra have maxima at about the same scaled energy transfer around 1. 
Except for spectra at k = 0.01 and 2.1, all other spectra have nearly equal widths. This 
confirms the assumption of (14). 

Figure 3. A new plot of the data presented in figure 
1. The energy transfer on the abscissa is scaled by 
dividing w by w ~ - , ~ +  k 2 / 2 .  The ordinate is taken as 
the product of GOS and wC-,.+ k 2 / 2 .  All quantities 
are in atomic units. 

0 20 40 60 80 100 
k 2 [ a u l  

Figure 4. A plot of the plasma damping coefficient 
as a function of momentum transfer squared for the 
K shell of several atoms. Results (full circles) are 
obtained by a fit of equation (11) to ionisation GOS 

from the matrix element method (McGuire 1971). 
All quantities are in atomic units. 

To this end we have calculated ionisation GOS of the K shell using (11) with 
parameters determined by a fit of this equation to McGuire’s GOS data. Figure 4 shows 
a representation of the fitted results (full circles) for the plasma damping coefficient 
as a function of momentum transfer squared. Note that we have assumed in (11) 
n :( r, k) = pi (  k )  n :( r, 0 ) ,  where pi (  k) is determined from the fitting procedure and n f (  r, 0) 
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is calculated using ( 1 2 )  and the k = 0.01 GOS of McGuire. Since this assumption is 
based on the pseudo-electron density distribution corresponding to zero plasma damp- 
ing coefficient at zero momentum transfer, Ai in (14) thus vanishes. This leads to 
straight lines passing through the origin in the plot of figure 4. It indicates in the figure 
that slopes of these lines increase with atomic number of the atom. To see the 
dependence of this increase, we plot in figure 5 these slopes, or Bi in (14), as a function 
of binding energy of the K-shell. It reveals that a log-log dependence of B, on the 
binding energy is effective. Such a dependence leads to an easy determination of the 
plasma damping coefficient at any momentum transfer for any atom. 

0.5 1 10 50 
K - s h e l l  ( a u  ) k ( a u i  

Figure 5. Aplot of slopes of the straight lines presen- 
ted in figure 4 plotted against the binding energy of 
the K shell of atoms. All quantities are in atomic 
units. 

Figure 6. A plot of the resonant energy transfer, 
w ,  + a , ( k ) k 2 / 2 ,  as a function of momentum transfer 
squared for all subshells of the carbon atom. All 
quantities are in atomic units. 

The value of a i ( k )  in (11) has also been determined by a fit of this equation to 
McGuire’s GOS data. As discussed previously, cy i  increases with k and eventually 
approaches 1 at k .+ CO. A plot of the fitted results on the resonant energy transfer at 
r + w ,  i.e. U ,  + a i ( k ) k 2 / 2  according to (3) and ( l l) ,  for the carbon atom is shown in 
figure 6 .  It is seen that this energy, representing the energy transfer corresponding to 
the maximum COS at a given k, approaches the binding energy at k = 0 and tends to 
merge with the Bethe ridge at k + w .  The resonant energy transfer at smaller r, 
G p i (  r )  + cyi( k )  k 2 / 2 ,  is larger because of the increased contribution of plasma oscillations 
as shown in figure 2. 

With all parameters determined, we have calculated using (1 1) ionisation GOS at 
any momentum transfers and energy transfers for the K shell. Representative results 
as a function of energy transfer for several momentum transfers for the carbon and 
beryllium atoms are plotted in figures 7 and 8 and compared with corresponding results 
of the matrix element method. Fairly reasonable agreement is found for all cases. In 
figure 9, we plot a representation of the calculated ionisation C O S  for the neon K shell 
against momentum and energy transfers. One sees that when k is small, the GOS has 
a prominent maximum at an energy transfer around the binding energy. This maximum 
corresponds to the threshold energy transfer involved in the quantum ionisation of 
atoms. The extended tail of the GOS spectrum corresponds to the contribution from 
damped local plasmas. As k increases, this spectrum becomes further broadened with 
the dispersive line in (k, w )  plane featuring a free electron behaviour. 
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Figure 7. A comparison of ionisation C O S  of the 
carbon K shell calculated in this work (full curves) 
and those from the matrix element method (McGuire 
1971) (broken curves). All quantities are in atomic 
units. 
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Figure 8. A comparison of ionisation C O S  of the 
beryllium K shell calculated in this work (full curves) 
and those from the matrix element method (McGuire 
1971) (broken curves). All quantities are in atomic 
units. 

Figure 9. A representation of calculated ionisation COS against momentum and energy 
transfers for the neon K shell. All quantities are in atomic units. 

4. Problems with the L shell 

For the L shell of atoms, the pseudo-electron density distribution derived based on 
the zero plasma damping coefficient is no longer valid. This can be understood from 
a plot of ionisation GOS for the oxygen 2s subshell of the matrix element method, 
shown in figure 10. The GOS spectrum corresponding to the smallest available k value 
of 0.01 indicates a large plasma damping coefficient with respect to the scaled energy 
transfer. It also indicates that (14) is poor in describing the momentum-dependent 
plasma damping coefficient and that a factor proportional to the fourth power of the 
momentum transfer may be essential. Although the pseudo-electron density distribution 
does not necessarily reflect the actual electron density distribution, the difference 
between them may indicate the applicability of the former distribution in the LPA. In 
figure 11, we plot a comparison of these distributions for the nitrogen atom. The 
profound differences for the 2s and 2p subshells are due to the non-zero plasma 
damping coefficient at k + 0 and the correlation of electrons in these subshells (Kwei 
et a1 1988). Because of these, a different approach should be sought in the application 
of LPA for the L shell. We will discuss this approach in detail in a later paper. 
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Figure 10. A similar plot to figure 3 for ionisation 
G O S  of the oxygen 2s subshell from the matrix ele- 
ment method (McGuire 1971). All quantities are in 
atomic units. 

8- ( n u )  

Figure 11. A comparison of the pseudo-electron 
density distribution (full curves) and the Hartree- 
Slater electron density distribution (broken curves) 
(Herman and Skillman 1963) for the nitrogen atom. 
All quantities are in atomic units. 

5. Conclusion 

The LPA has proved in this work to be applicable in evaluating ionisation GOS at any 
momentum transfers and energy transfers for the atomic K shell. The pseudo electron 
density distribution was demonstrated to be useful in the procedure of the LPA for 
averaging momentum-dependent GOS. The plasma damping coefficient was found 
proportional to the momentum transfer squared with the proportional constant relating 
directly to the binding energy of the atom. 

Because of the problems discussed in section 4, a different approach should be 
sought in the application of LPA for the L shell. We will discuss this approach in a 
later paper. 
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