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摘     要 

 
空載光達資料可用於各種淺層與深層山崩之探討。雖然空載光達資料為山崩

研究開啟嶄新的一頁，但是由於許多新的分析方法有待開發，所以尚未成為普遍

使用的工具。空載光達資料用於山崩研究主要可分為三方面：（1）山崩偵測，

經由光達資料辨認山崩並且清點山崩的分佈特性與幾何特性，並可進而進行山崩

潛感性分析；（2）山崩監測，經由多期光達資料分析山崩的變動或山崩的體積

及其變化；（3）山崩辨認或山崩變動模型建立，經由光達資料產生之山崩型態

測計參數建立預測與評估模式。本研究之目的即針對這三個山崩研究面向分別提

出分析方法，並選擇台灣的案例進行實驗：（1）山崩辨識，以專家法與半自動

法，進行台灣北部與南部之淺層山崩與深層山崩案例之探討；（2）山崩監測，

提出個體山崩體積與全區山崩體積估算法，對高雄市案例進行個體深層山崩與區

域性淺層山崩體積之估算；（3）山崩自動萃取建模，利用光達資料產生之山崩

型態測計參數，以高雄市案例建立預測與評估模式。結果顯示，本研究所提出之

各種光達山崩分析法均有其可行性，空載光達資料確實對於各種淺層與深層山崩

之探討均有其效用。 

首先，為了解空載光達技術用於山崩研究之潛力與限制，本論文首先彙整用

於型態測計的重要的山崩分類與幾何特徵，進而對空載光達技術應用於台灣山崩

的經驗予以審視。並分別就空載光達技術在山崩研究應用上的主要有利與不利因

素加以探討。以申論空載光達資料用於山崩研究隱含之基本問題。 

在淺層山崩辨識的探討上，本研究提出的方法包括（1）專家法：包括數值

表面模型暈渲法與數值高程模型暈渲法；（2）半自動法：包括點雲密度指標法

與物件導向分析法；與（3）自動法：本研究提出一個混合影像分割與物件導向

法，並以傳統逐像元方式的分類法比較。在深層山崩辨識的探討上，本研究提出

的方法包括（1）專家法；（2）半自動法：影像組織分析與物件導向分析法；（3）

多期光達變動分析法：以三期光達資料檢視深層山崩之活動性。專家法分別以數

值表面模型暈渲圖及數值高程模型暈渲圖作為專家判釋的依據，結果顯示淺層山
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崩判釋上，數值表面模型暈渲法優於數值高程模型暈渲法；相反地，深層山崩判

釋上，反映林木遮蔽下之微地形的數值高程模型暈渲圖優於數值高程模型暈渲圖。

半自動法先進行光達影像增揚處理 (enhancement)，產生之結果再由地質專家進

一步分析判釋。光達點雲密度指標法提出四種光達點雲密度指標及其計算方法，

其處理結果再與正規化數值表面模型暈渲法 (nDSM-shaded relief ) 專家判釋成

果進行比較，結果顯示問題的關鍵在於點雲密度指標之參數的選擇。物件導向分

析法以區域影像分割法 (area-based segmentation) 產生物件再以支持向量機法 

(SVM)完成分類，分類結果分別與傳統逐像元分類法 (pixel-based method) 及專家

判釋成果進行比較，結果顯示整體精度達 93.4%，Kappa 係數達 0.817，物件導向

法優於傳統逐像元分類法。至於深層山崩，利用影像組織分析與物件導向分析法

進行之山崩活動性探討，本研究顯示台灣的地質與地形環境的複雜度在這方法仍

有很大探討空間。在多期光達變動分析上，本研究以簡單數值高程模型差異法檢

視三期光達資料，確實可以觀察到深層山崩之活動性。 

在山崩體積估計的探討上，本研究提出兩種山崩體積估計方案，全區性山崩

體積評估的方法包括：簡易數值高程模型相減法 (Difference of DEMs，簡稱

Simple DoD Method)與個體山崩體積累計法；個體山崩體積評估的方法包括：山

崩三維斷面法、平均切片法、與網格法等。本研究以小林山崩及高雄市納馬夏區

之一個圖幅進行實例示範。此外，一個山崩圖幅之個別山崩可予以分割，從而產

生每一個山崩的精確體積，因而可以進而探討山崩之面積 A (m2)與體積 V (m3)

的冪次法則關係式，V = kAa。本研究納馬夏案例，獲得 k = 0.099，a = 1.395，相

關係數 R2= 83.7%。此冪次法則可以反映不同地質、土壤、與風化侵蝕的特性。 

在山崩自動萃取模式的建立上，本研究利用 2005年與 2009年兩期的光達資

料建立一個山崩自動萃取的山崩型態測計模式。首先利用研究區的衛星影像進行

自動山崩分類，其後以專家法，逐一檢視與修正山崩分佈圖。利用山崩分佈圖作

為切割版，萃取發生山崩地區之光達山崩型態測計參數如坡度、地形曲率、物件

高程模式(OHM)、OHM 粗糙度、與地形濕度指數等。再統計產生山崩型態測計

參數之區間值，由而建立一個二元多評準決策模式，此為一線性組合模式，所有

落入山崩型態測計參數之區間值範圍者即為山崩。結果顯示此山崩模式之整體精

度為 64.9%。當進一步考慮將舊山崩區與河岸區納入，精度為 64.4%，並沒有改

善。當排除面積小於 50m2 (即小於 10m x 5m) 之山崩時，2005年與 2009年之山

崩預測精度分別成為 76.6% 與 72.5%，有明顯改善。成果顯示此山崩型態測計模

式是有效的，唯型態測計參數的選擇與參數區間值的產生仍值得進一步探討。 

總結而言，本研究針對空載光達資料用於山崩研究之三個面向分別提出分析

方法，並選擇案例進行實驗，結果顯示本研究提出之方法可行，空載光達資料確
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實是山崩研究有用的工具。中央地質調查所在 2009 年莫拉克風災後推動全國光

達測繪計畫，期間從 2010年至 2015年，其目的在獲取全區之一公尺解析力之光

達數值表面模型(DSM ) 與數值高程模型 (DEM)、以及 0.5公尺解析力之正攝影

像。這可提供未來多期體積變化研究的基準，亦可提供本研究後續之應用與探討，

以了解不同地文環境之適用性。此外，因為森林覆蓋下深層山崩不易被察覺，值

得進一步開發半自動化的物建導向分析法予以探討。森林覆蓋區是多期變動監測

之誤差主要來源，光達全光譜分析用於萃取森林底層較微弱的反射訊號，以增加

森林地區數值高程模型的精度，並降低多期變動監測的不確定性，值得進一步探

討。未來也可以考慮加入山崩誘因作為參數，併入本研究提出之山崩模式。 

 
關鍵詞：遙測、自然災害、地形測計、影像增揚、國家空間資訊基礎建設。 
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ABSTRACT 

Taiwan is located on the active collision zone between the Eurasian plate and the 

Philippine Sea plate. Mountains have a high relief, and rock formations are highly 

fractured and fragile. These physiographic settings are unfavorable to landslide 

susceptibility. LiDAR-derived data can be used to investigate any type of landslides 

including both shallow and deep-seated ones. Nevertheless, LiDAR data are not yet a 

common tool for landslides investigations though this technique has opened new 

domains of applications that still have to be developed. Applications of LiDAR in 

landslide investigations can be classified as: (1) Detection and characterization of 

landslides which include the recognition of landslides and their subsequent application 

in susceptibility analysis; (2) Monitoring of displacement or volume change of 

landslide bodies; (3) Modeling for the movement of landslides or the automatic 

extraction of landslides. The purposes of this research are to develop methods for 

understanding all these 3 aspects: (1) Landslide recognition for both shallow and 

deep-seated landslides with expert-based and semi-automatic approaches with cases 

from northern and southern Taiwan; (2) Landslide volume estimation for both shallow 

and deep-seated landslides  with multi-temporal LiDAR data in southern Taiwan; and 

(3) Modeling landslide extraction with 6 geomorphometric features including slope, 

curvature, OHM (object height model), OHM roughness, and topographic wetness 

index which are derived from multi-temporal LiDAR data acquired in 2005 and 2009 

in southern Taiwan.  
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For exploring the prospects and limitations of LiDAR Technology, the 

significant classification scheme and landslide features are concisely reviewed. 

Subsequently, both favorable and adverse factors of applying LiDAR data for 

landslide investigation are discussed on basis of the experiences gained so far in 

Taiwan. It is concluded that the awareness of the adverse factors is critical in using the 

LiDAR products for landslide investigations.. 

In the experiment of landslide detection by indices of LiDAR point-cloud 

density, classification results from the indices derived from the proposed four kinds of 

densities are verified by the result obtained by manual interpretation of the derived 

nDSM images. The datasets for this study are in I-Lan County after Typhoon 

Kalmaegi on 17 July 2008. The results show that a proper definition of the parameters 

for the indices is most critical for the detection of shallow landslides. Landslides 

recognition of the same area was also done by a pixel-based method and an 

object-oriented method combining area-based segmentation and a Supported Vector 

Machine (SVM) method. The geomorphometric features applied in the classification 

include Slope, OHM, and Shaded Relief which are derived from LiDAR data , as well 

as features of RGB, Greenness, and NDVI which are derived from concurrent images. 

This case shows the object-oriented SVM method is better than a pixel-based SVM 

method in classification accuracy and the most important features include slope and 

OHM. In addition, deep-seated landslide under forest can be detected in this area under 

expert-based shaded-relief analysis of micro-morphology. 

In the experiment of landslide volume change with multi-temporal LiDAR data 

acquired in 2005 and 2010 in southern Taiwan, both regional approach and approach 

of individual landslides for volume estimation are raised. For the estimation of 

regional sedimentation, two methods are proposed: (1) a simple DoD method; (2) 

Method of Accumulating Individuals. For the estimation of each individual landslide, 

three methods are proposed: (1) Method of 3D Sections; (2) Method of Average 

Sections; and (3) Grid Method. These methods are texted with a deep-seated landslide 

(Hsiaolin Landslide) and with a selected map-sheet area in Namashia District of 
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Kaohsiong City. Because the area and volume of each individual landslide in an area 

can be estimated, it is straightforward to model the relation between A (m2) and 

volume V (m3) of landslides, V = kAa. The result of the Ternbausan-One area shows 

that k = 0.099, a = 1.395, and R-squared coefficient of determination = 83.7%. The 

empirical formula reflects different physiographic conditions including geology, soils, 

climate and denudation processes.  

In the experiment of establishing a geomorphological model for extracting 

landslides using multi-temporal LiDAR data of high accuracy and high resolution. 

Two sets of LiDAR data were acquired for before and after a heavy rainfall event. The 

landslides which took place from 2005 to 2009 were classified automatically by 

satellite images, and subsequently the landslides were interpreted and edited manually. 

Geomorphometric parameters including slope, curvature, OHM, OHM roughness, and 

topographic wetness index were then extracted using stencils of landslide polygons 

overlaid on respective thematic maps derived from LiDAR, DEM and DSM. The 

ranges of every parameter were derived from the statistics of the landslide area. Some 

selected non-morphometric parameters were also included in a later stage to account 

for all possible features of landslides, such as vegetation index and geological strength. 

The ranges of the parameters of landslides were optimized for the model by the 

statistics of the landslide area. The overall accuracy predicted by the model was 64.9%. 

When the buffer zones of old landslides and riverside areas were included, the overall 

accuracy was 64.4%, showing no improvement. When landslides smaller than 50 m2 

were filtered, the overall accuracy reached 76.6% and 72.5% for 2005 and 2009, 

respectively. The results show that the geomorphological model proposed in this 

research is effective for landslide extraction. 

In conclusion, the methods developed in this research for landslide detection, for 

multi-temporal volume change analysis, and for establishing a landslide extracting 

model are proved to be effective for the cases in Taiwan and for the airborne LiDAR 

data acquired. Generally, LiDAR data can be a good tool for landslides investigations. 

A national geohazard mapping program employing integrated airborne LiDAR and 
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digital photography was launched by the Central Geological Survey after Typhoon 

Morakot hit southern Taiwan in 2009. The national mapping program, spanning 2010 

to 2015, was dedicated to capture an entire territory of the country with airborne 

LiDAR and digital imagery. More datasets of multi-temporal and various 

physiographical settings are becoming available. Technique of OOA segmentation 

method for the detection of deep-seated landslides in dense forest should be developed 

especially for the high relief terrain of Taiwan. Other research topics include 

uncertainties of LiDAR analysis, the dependence of morphometric parameters on 

triggering events or geographical locations, and full waveform for detect the subtle 

reflection from the forest floor, thus to increase ground point densities of 

densely-vegetated area and to suppress the uncertainties of the DEM in this 

environment. 

 

Keywords: remote sensing, natural hazards, geomorphometry, image enhancement, 
NSDI 
  



x 

 

DEDICATION 
 
 

This dissertation is dedicated to the memory  
of my beloved father, Liu Ma-Hsiang (1910-1993) 

and mother, Liu Jhuang-Hsio (1916-2008) 
for their love, humble, and hard-work in raising 7 children: 

Jin-Tsai Liu, Jin-Shi Liu, 
Jin-Cheng Liu, Jin-Shing Liu, 

Yue-Mei Liu, Me and Chiu-Guei Hsu. 



xi 

 

ACKNOWLEDGEMENTS 

Many people have contributed to my success in completing this dissertation, 

especially my family, my advisor Prof. Tian-Yuan Shih, the outstanding committee 

members for reviewing my dissertation, my colleagues in Industrial Technology 

Research Institute (ITRI) and in LIDAR Technology Co. Ltd., and peers of 

professional geo-infomatics worldwide. 

I am fortunate to have an outstanding committee for reviewing my dissertation 

including Prof. Dr. Liang-Chien Chen, Prof. Dr. Chyi-Tyi Lee, Associate Prof. Dr. 

Yu-Chang Chan, Prof. Dr. Jyh-Jong Liao, Prof. Dr. Cheinway Hwang, Associate Prof. 

Dr. Tee-Ann Teo, and Prof. Dr. Tian-Yuan Shih.  

I have been involved in the profession of remote sensing and photogrammetry since 

my first job in 1977 when I enrolled to the newly-established remote sensing group in 

Mining Research and Service Organization of ITRI. I started with aerial 

photo-interpretation for geological applications. With the advancement of the 

technology, Prof. Shih cooperated with ITRI introduced airborne LiDAR technology 

to Taiwan after the major disaster JiJi Earthquake in 1999. Subsequently, with 

supports by National Chiao Tung University, National Central University, National 

Taiwan University, and National Cheng Kung University, ITRI started an operational 

experiment of airborne LiDAR from 2004 to 2006 and introduced this new technology 

to the industry of Taiwan with sponsorship of the Ministry of the Interior, Republic of 

China (Taiwan). In 2005, Dr. Yu-Chang Chan of Institute of Earth Sciences, Academia 

Sinica coordinated with ITRI and Chung-Hsing Survey Company initiated a geological 

study using airborne LiDAR with sponsorship of Central Geological Survey. The 

study continued from March 2005 till December 2010. The effectiveness and 

significance of airborne LiDAR for geological study have been explored and validated 

by this 7-years 2 phases of study. Thus, after Morakot disaster in 2009, Central 

Geological Survey launched a national LiDAR mapping program dedicated to the 

investigation of geological hazards. I gained the knowledge of airborne LiDAR as well 

as natural hazards from peers of this profession. Especially, I acknowledge all of the 



xii 

 

colleagues in ITRI worked with me in this period of time for promoting airborne 

LiDAR technology including Kuo-Shin Hsiao, Da-ko Chen, Wei-Chen Hsu, Hsin-Yu 

Hou, Tzu-Yi Liao, Chi-Chung Lau, Miao-Hsiang Peng, and Chieh-Cheng Yen.  

I also must acknowledge Dr. Jiann-Yeou Rau for his invaluable discussion when he 

was a Ph. D student and associate specialist in Center for Space and Remote Sensing 

Research, National Central University, under the supervision of Prof. Dr. Liang-Chien 

Chen. From 2004 to 2009, with the cooperation of ITRI, Prof. Dr. Chen was in charge 

of research and development on building reconstruction from LIDAR Data and Aerial 

Imagery. The discussion with Dr. Rau includes monitoring scheme of landslides and 

joint efforts in developing software tools for manual interpretation of shallow 

landslides in addition to the application of photogrammetric means for automatic 

detection of landslides. 

I am also indebted to Prof. Dr. Chyi-Tyi Lee for his friendship and long support. 

Since Prof. Lee inaugurated the first Director of Graduate Institute of Applied Geology 

in 1991, National Central University, I have learnt so much landslide-related 

knowledge from him because seismic and landslide hazard analyses are his academic 

interests and I have the privilege to discuss with him and his research students.  

Finally, to my family, my wife Linda Feng-Chin Lin, my son Luis Yao Liu, and my 

daughter Sofia Shao-Wen Liu, thank you for listening and understanding when I 

responded to your many requests with excuses of professional matters.  



xiii 

 

TABLE OF CONTENTS 

中中中中文摘要文摘要文摘要文摘要   ...................................................................................................................... iii 

ABSTRACT  ................................................................................................................. vi 

DEDICATION  .............................................................................................................. x 

ACKNOWLEDGEMENTS  ....................................................................................... xi 

LIST OF TABLES ...................................................................................................... xvi 

LIST OF FIGURES ................................................................................................... xvii 

CHAPTER 1 INTRODUCTION .................................................................................. 1 

1.1 Research Background and Motivation .............................................................. 1 

1.2 Research Purposes ............................................................................................. 6 

1.3 Organization of the Dissertation ........................................................................ 7 

CHAPTER 2 GEOMORPHOMETRY OF LANDSLIDES AND AIRBORNE 

LIDAR TECHNOLOGY ........................................................................ 9 

2.1 Significance of Geomorphometry of Landslides ............................................... 9 

2.2 Introduction to Airborne LiDAR Technology ................................................. 13 

2.3 Favorable Factors of using LiDAR for Landslide Investigations ................... 17 

2.4 Adverse Factors of using LiDAR for Landslide Investigations ...................... 20 

CHAPTER 3 LANDSLIDE DETECTION USING AIRBORNE LIDAR DATA . 25 

3.1 Detection of Shallow Landslides ..................................................................... 26 

3.1.1 Introduction ............................................................................................ 26 

3.1.2 Method 1: Expert-based Method ............................................................ 27 



xiv 

 

3.1.3 Method 2: Method with Indices of Point Cloud Density ....................... 30 

3.1.4 Method 3: Method of nDSM Slicing ...................................................... 38 

3.1.5 Method 4: A Hybrid Object-oriented Method ........................................ 44 

3.2 Detection of Deep-seated Landslides .............................................................. 52 

3.2.1 Introduction ............................................................................................ 52 

3.2.2 Method 1: Expert-based Methods .......................................................... 54 

3.2.3 Method 2: Texture or OOA Methods...................................................... 57 

3.2.4 Method 3: Multi-temporal Analysis ....................................................... 62 

CHAPTER 4 LANDSLIDE MONITORING AND VOLUME CHANGE 

ANALYSIS OF LANDSLIDES ............................................................ 72 

4.1 Introduction ..................................................................................................... 72 

4.2 Methods of Landslide Volume Analysis .......................................................... 73 

4.3 Study Area and Materials ................................................................................ 81 

4.4 Results and Discussion .................................................................................... 83 

CHAPTER 5 LANDSLIDE EXTRACTION WITH A GEOMORPHOLOGICAL 

MODEL .................................................................................................. 89 

5.1 Introduction ..................................................................................................... 89 

5.2 Study Area and Materials ................................................................................ 90 

5.3 The Geomorphological Model for Landslide Extraction ................................ 96 

5.4 Results and Discussion .................................................................................. 103 

5.5 Summary of establishing the geomorphologic model ................................... 112 



xv 

 

CHAPTER 6 CONCLUSIONS AND FUTURE WORKS ..................................... 114 

6.1 Conclusions and contributions ...................................................................... 114 

6.2 Recommendation for future study ................................................................. 114 

REFERENCES........................................................................................................... 116 

APPENDIX 1 ACRONYM........................................................................................ 139 



xvi 

 

LIST OF TABLES 
 

Table 2.1 Table 2.1 Types of landslides (Varnes, 1978) ................................................ 10 

Table 2.2 Simplified classification landslide scheme applied to Taiwan ...................... 12 

Table 3.1 The criteria for the recognition of rainfall-induced landslides ...................... 28 

Table 3.2 Attributes of the LiDAR data used in point density study ............................. 35 

Table 3.3 Confusion table of OOA classification and pixel-based classification ......... 52 

Table 5.1 Tries of different combinations of thresholds for model parameters .......... 110 

Table 5.2 Model accuracy for 2008 training samples in polygons .............................. 110 

Table 5.3 Model accuracy for 2009 training samples in polygons .............................. 110 

 

  



xvii 

 

LIST OF FIGURES 
 
 Figure 2.1 An idealized rotational slide showing commonly used nomenclature for 

labeling the parts of a landslide (Cruden and Varnes, 1996). .......................... 10 

 Figure 2.2 Suggested nomenclature for landslides by IAEG Commission on 

Landslides (1990). ........................................................................................... 11 

 Figure 2.3 Flowchart of Airborne LiDAR Survey and Applications.. .......................... 15 

 Figure 2.4 Multiple echoes (returns) of LiDAR pulses. G denotes a point on the bare 

ground.. ............................................................................................................ 19 

 Figure 2.5 Manual editing of point clouds is a must, especially for vegetated and 

complex terrain. ............................................................................................... 24 

 Figure 2.6 Example of the resultant DEMs due to data voids and artifacts. ................. 24 

 Figure 3.1 A scheme showing the methods proposed in this study for landslide 

detection using LiDAR standard products. ..................................................... 26 

 Figure 3.2 Shaded-relief image of LiDAR DSM (Left) and DEM (Right) at the 

southern bank of Shimen Reservoir, North Taiwan.. ...................................... 30 

 Figure 3.3 Orthographic aerial photograph (Left) and DSM-shaded relief (Right) at 

Alishan of central Taiwan. ............................................................................... 30 

 Figure 3.4 Schematic diagram showing the geometry of airborne LiDAR scanning. .. 32 

 Figure 3.5 Selected results of four types of point density and their distribution under 

various searching radii with 1m grid.. ............................................................. 37 

 Figure 3.6 (A) Point cloud distribution with attribute of  flight strip source ID. (B) 

Density map of multiple-return echoes with r=1.414m and grid spacing = 

1m.. .................................................................................................................. 38 

 Figure 3.7 (A) Gray map of nDSM of the study area. (B) Distribution of the locations 

of points with extra-ordinary values. ............................................................... 42 

 Figure 3.8 Gray maps of nDSM(A), DSM(B) and DEM(C). ........................................ 43 

 Figure 3.9 Gray-level slicing of various nDSM ranges.. ............................................... 44 

 Figure 3.10 Flowchart of OOA data processing. ........................................................... 49 

 Figure 3.11 The three derivatives of othophoto, DEM and DSM for data entry. .......... 49 



xviii 

 

 Figure 3.12 Study Area and Ground Truth for OOA Test. ............................................ 50 

 Figure 3.13 Results of the hybrid OOA method. ........................................................... 51 

 Figure 3.14 The results generated by pixel-based SVM classification. ........................ 52 

 Figure 3.15 A comparison of two images: color aerial photograph (left) and 

shaded-relief image of airborne LiDAR DEM (right) (Lewis, 2006). ............ 56 

 Figure 3.16 Deep-seated landslides revealed in LiDAR-derived image at I-Lan.. ....... 57 

 Figure 3.17 Shaded relief image of the Coringa Landslide and immediate 

surroundings. The primary kinematic units within the slide are earthflows E1 

and E2, the area of compression U1 and the Blocky area with incorporated 

limestone blocks (McKean and Roering, 2004).. ............................................ 59 

 Figure 3.18 Shaded relief image of the Salmon Falls landslides for semivariogram 

and fractal analyses. UB=Upper block, B=Body, T=Toe. (Glenn et al., 2006).60 

 Figure 3.19 LiDAR-derivatives of Li-Shan landslide complex, central Taiwan. .......... 61 

 Figure 3.20 The location of Hsiaolin Slide and the vicinity. The landslide boundary is 

draped on the 3D perspective view of aerial photograph taken after the 

event.. ............................................................................................................... 65 

 Figure 3.21 Three DSMs and DEMs of Hsiaolin Slide. ................................................ 66 

 Figure 3.22 Topographic Features of Hsiaolin Slide and its Subdivisions. .................. 68 

 Figure 3.23 (A) color coded image of V32; (B) hsaded relief image of V32.. ............. 69 

 Figure 3.24 Cross section of Hsiaolin Slide along A-B-B' shown in top diagram of Fig. 

3。α=31.7°，β=22.3°，γ=8.6°....................................................................... 70 

 Figure 3.25 A close-up of the depletion area of Hsiaolin Slide. Remnants of 

unconsolidated materials still exited on the bare surface. The dash-line is the 

isoplethic line with -20 m. The area covers 48.68 hectares.. .......................... 70 

 Figure 4.1 A simple difference of 2010 DEM and 2005 DEM and the DoD result 

where the legend shows the value of the difference in meters.. ...................... 75 

 Figure 4.2 Different thresholds applied to the DoD results: (A) not applied; (B) a 

threshold of -3 m.. ........................................................................................... 76 

 Figure 4.3 Each individual landslide (B) can be extracted from the overall landslide 



xix 

 

map (A) generated by DoD method. ............................................................... 77 

 Figure 4.4 Landslide volume estimation using three landslide dimensions. ................. 78 

 Figure 4.5 Landslide volume estimation using areas of cross sections of fixed-interval.

 ......................................................................................................................... 80 

 Figure 4.6 Landslide volume estimation using a grid of landslide depths. ................... 80 

 Figure 4.7 The study area of Namashia District of Kaohsiong City. ............................ 82 

 Figure 4.8 LiDAR Data used in Namashia study area. ................................................. 83 

 Figure 4.9 Hsiaolin Slide and its 7 subdivisions. The landslide is represented by an 

ellipse for the dimensions of width and length. Black lines are isopleths of -5 

m and red lines are isopleths of +4m. Subdivision A is the major landslide 

body. ................................................................................................................ 84 

 Figure 4.10 Interpretation of a 2D landslide map on basis of orthophoto and 

DoD-shaded images......................................................................................... 87 

 Figure 4.11 extraction of individual landslides are made one by one from the whole 

landslide map. .................................................................................................. 88 

 Figure 4.12 Empirical formula of landslide area A (m2) and volume V (m3) of the data 

points of landslides in the study area, V=kAa.. ............................................... 88 

 Figure 5.1 SPOT image taken on 2009/08/24 after Typhoon Morakot. The 8-digit 

numbers are the map numbers of national 1/5000 map series. ....................... 91 

 Figure 5.2 A regional geological map near the Hsiaolin village (Song et al., 2000).. .. 92 

 Figure 5.3 Satellite images of the study area from 2005 to 2009. Bright grey features 

on the images are mostly landslide scars. Landslide occurrence increasingly 

increases in this period of time, as shown in Figure 5.8. ................................ 93 

 Figure 5.4 DEM and DSM images before Typhoon Morakot. ...................................... 95 

 Figure 5.5 3D perspective views of Hsiaolin Village before and after Typhoon 

Morakot. Hsiaolin Landslide has a volume of ~25 million cubic meters with 

a maximum depth of 85 m on top area and a maximum length of 3396 m 

from top to the other side of Chisan River. The landslide completely 

destroyed the village.. ...................................................................................... 95 



xx 

 

 Figure 5.6 DEM and DSM obtained after Typhoon Morakot. As compared to those of 

Fig. 4, dramatic landform change can be found in river valley as well as 

mountain slopes, especially the example of Hsiaolin Landslide. ................... 96 

 Figure 5.7 Flowchart of the geomorphometric model. .................................................. 98 

 Figure 5.8 Landslide distribution between 2005 and 2009. Landslides on images are 

high-lighted with yellow polylines.  New landslides are in red polylines 

when comparing images taken in 2005 and 2008 (E) and those in 2008 and 

2009, respectively.. ........................................................................................ 105 

 Figure 5.9 The distributions of major LiDAR-derived geomorphometric parameters 

selected for landslide recognition in this study. The coordinates of the maps 

are (209810，2566339) and (217609，2557916) for the lower right and upper 

left, respectively. ............................................................................................ 106 

 Figure 5.10 Frequency distribution of geomorphologic parameters of landslides in 

2005. .............................................................................................................. 108 

 Figure 5.11 Frequency distribution of geomorphologic parameters of landslides in 

2009.. ............................................................................................................. 108 

 Figure 5.12 Landslide prediction with geomorphometric model: (A) Prediction of 

2008 landslide susceptibility based on 2005 landslides in vector segments. 

(B) Prediction of 2009 landslide susceptibility based on 2005 landslides in 

vector segments. ............................................................................................ 112 

 
 

 



1 

 

Chapter 1 Introduction 

 

1.1 Research background and motivation 

Motivated by the tremendous loss and damages of Taiwan due to natural 

disasters caused by the vulnerable physiographic environment (NFA, 2012) and 

the newly availability of airborne LiDAR technology due to the launch of a 

national airborne LiDAR mapping program (Liu and Fei, 2011) and advances in 

the researches on the use of LiDAR in landslide investigations (Jaboyedoff et al., 

2010&2012), this study is devoted to explore the applicability of airborne 

LiDAR data for investigation of landslides in Taiwan. 

Nearly three-quarters of the territory of Taiwan, and 95% of its population, 

are exposed to frequent natural hazards (Dilley et al., 2005). In the aftermath of 

Typhoon Morakot, which dramatically affected southern Taiwan on August 8, 

2009, and August 9, 2009, and caused the worst flooding in a century, 

authorities realized that the country is lacking detailed, accurate, and current 

elevation data and aerial imagery covering the entire territory of 36 000 km2. To 

address this problem, a national mapping program, spanning 2010 to 2015, was 

launched to capture an entire territory of the country with airborne LiDAR 

(Light Detecting And Ranging) and digital imagery (Liu and Fei 2011). A 

LiDAR DEM (Digital Elevation Model) and DSM (Digital Surface Model) and 

color orthophotos represent a core part of this national spatial data infrastructure.  
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Taiwan is located on the active collision zone between the Eurasian plate 

and the Philippine Sea plate. Mountains have a high slope and high relief, and 

rock formations are highly fractured and fragile. These physiographic settings 

are unfavorable to slope stabilities. Taiwan is also located on the path of 

typhoons in northwest Pacific area. Torrential rainfall during the typhoon season 

often triggers geological hazards. Landslides are one of the most important 

primary disasters.  

In Taiwan, a typhoon can trigger hundreds, even thousands, of shallow 

landslides in mountainous areas (Lin and Jeng, 2000; Cheng et al., 2005; Lin et 

al., 2006). These landslides can deliver large amounts of sediment into local 

reservoirs, reducing their water storage capacity (Dadson et al., 2004; Mikos et 

al., 2006). In addition, the turbidity of the water in the reservoirs has a negative 

effect on the sustainable operation of water supply reservoirs. The assessment 

and inventory of landslides is essential for effective watershed management and 

sustainable development. However, because of the steep terrain in Taiwan’s 

mountainous watersheds, most landslides are unreachable. The detailed 

topographic mapping required for emergency mitigation measures cannot be 

completed within a short period using conventional on-site surveying. Therefore, 

improving the efficiency and accuracy of landslide monitoring and mapping 

using remote sensing techniques has become an important research issue (Liu, 

1987; Raju and Saibaba, 1999; Rau et al., 2007; Borghuis et al., 2007; Herva et 

al., 2003). 
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In planning optimal measures of disaster mitigation, researchers often use 

remote sensing images and digital elevation models to map disaster features and 

to predict disaster susceptibility. During or immediately after a disaster event, 

ground survey or photogrammetry, in addition to remote sensing images, can be 

used to obtain detailed topography data of the subjected area. Because of its 

ability to obtain high-density point clouds and direct geo-referencing, LiDAR 

can be used to obtain a more accurate and detailed topographic survey. LiDAR 

generates accurate 3D coordinates of discrete measurements. Subsequently, 

DEM and DSM can be produced with high efficiency. In tropical and 

sub-tropical zones of Taiwan, most of the terrains are covered by dense forestry. 

Ground surface would be normally predicted by the surface of canopy in 

photogrammetry if the ground points cannot be seen from two different 

perspectives of a stereo-pair. One of the most important advantages of airborne 

LiDAR compared with conventional photogrammetry is that photogrammetry 

requires two different lines of sight to both see the same points on the ground 

from two different perspectives, but LiDAR only needs a single laser pulse to 

penetrate through the trees to measure the ground beneath. This means that 

LiDAR will have far fewer areas where the terrain is obscured by trees that 

block the lines of sight. The images of bare ground before and after the event are 

thus derived from LiDAR surveys to understand changes in the landscape and 

their possible consequences. The geomorphometric features become good tools 

for landslide detection, and are adopted in this study. 
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The general feature of a rainfall-induced landslide on aerial photograph is a 

fresh landslide scar with an elongated shape located on a relatively steep slope. 

Landslides can occur in any kind of geology, as there are some weathered 

overburdens on steep slopes. In aerial photographs, landslide features include a 

bright tone, bare surface, and the other features shown in Table 1. Manual 

interpretation uses both 2D and 3D features of the landslides for recognition: 2D 

features include tone, location, and shape, and 3D features include location, 

direction, slope, and shadow effects. A sound consideration of the automation of 

landslide recognition should consider all these aspects. 

Geomorphometry is a major concern in manual interpretation. 

Geomorphometry, also known as geomorphological analysis, terrain 

morphometry, terrain analysis, and land surface analysis (Hengl and Reuter, 

2009), is the science of quantitative land surface analysis. The purpose of 

geomorphometry is to extract surface parameters and objects using input from 

digital terrain models. Pike (1988) used a dozen groups of parameters as terrain 

descriptors by manually digitized digital terrain models. Pike used the resulting 

"geometric signature or topographic signature" to categorize terrain 

characteristics, and suggested the degree of landslide danger. Topographic 

signature of life and their processes are deemed to be strongly influenced by 

biota (Dietrich and Perron, 2006). Guth (2001&2003) used terrain fabric as 

measures of a point property of the digital terrain models and the underlying 

topographic surface. This technique is also called topographic fingerprinting 
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(Densmore and Hovius, 2000), and determines the location of a landslide on the 

slope. State-of-the-art technology such as high resolution satellite images, digital 

aerial photography, and airborne LiDAR has opened a new era in the automation 

of landslide recognition, especially the possibility of applying 

geomorphometrics. The extraction of land surface parameters is becoming 

increasingly attractive for both stochastic and process-based modeling, as it 

makes use of all the levels of detailed digital terrain models. Topographic-based 

analyses can be used to objectively delineate landslide features, generate 

mechanical inferences about landslide behavior, and evaluate recent landslide 

activity (Glenn et al., 2006; Mckean and Roering, 2004). Surface roughness 

derived from LiDAR DTM allows the objective measurement of landslide 

topography. Eigenvalues of surface normals are an effective parameter for 

differentiating shallow landslides and debris flows (Woodcock, 1977). Expert 

knowledge of the geomorphometric properties of landslides may be required to 

establish an automatic interpretation method. High resolution and high accuracy 

LiDAR DEM and DSM and orthophotos are now basic constituents of NSDI in 

Taiwan (Liu and Fei, 2011). Therefore, it is high time to further apply 

geomorphometry in active landslide study (Liu et al., 2009). 

Airborne LiDAR make it possible to map and evaluate landslides in a 

survey type of regional level (typically at scales ranging from 1:10,000 down to 

1:4,000,000 or even smaller), whereas the accuracy can be as good as or 

community level or site-specific level (typically vary from 1:1,000 to 1:10,000). 



6 

 

 

1.2 Research purposes 

The major future challenges in landslide investigations as reviewed by van 

Westen et al. (2005) includes: (1) the use of very detailed topographic data; (2) 

the generation of event-based landslide inventory maps; (3) the use of 

event-based maps in spatial-temporal probabilistic modeling; and (4) the use of 

land use and climatic change scenarios in deterministic modeling. This 

viewpoint was also supported by a recent review by Jaboyedoff et al. 

(2010&2012) on the use of LiDAR in landslide investigations. The later stressed 

on airborne LiDAR for imaging relief by high-resolution digital elevation 

models or 3D models and gave a general review of different applications of 

LiDAR for landslide, rockfall and debris-flow. This review shows that 

LiDAR-derived data can be used to investigate any type of landslides including 

both shallow and deep-seated ones. Nevertheless, LiDAR data are not yet a 

common tool for landslides investigations though this technique has opened new 

domains of applications that still have to be developed.  

Applications of LiDAR in landslide investigations can be classified as: (1) 

Detection and characterization of landslides which include the recognition of 

landslides and their subsequent application in susceptibility analysis; (2) 

Monitoring of displacement or volume change of landslide bodies; (3) Modeling 

for prediction of landslides. Therefore, the purposes of this research are to 

develop methods for understanding all these 3 aspects:  (1) Landslide 
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recognition for both shallow and deep-seated landslides with expert-based and 

semi-automatic approaches with cases from northern and southern Taiwan; (2) 

Landslide volume change with multi-temporal LiDAR data in southern Taiwan; 

and (3) geomorphommetric modeling for the automatic extraction of shallow 

landslides with selected geomorphometric features such as including slope, 

curvature, OHM (object height model), OHM roughness, and topographic 

wetness index which are derived from multi-temporal LiDAR data acquired in 

2005 and 2009 in southern Taiwan. 

 

1.3 Organization of the dissertation 

The remainder of this dissertation is organized as follows. In Chapter 2, 

summaries of classification schemes of landslides and morphologic features of 

landslides are introduced with subsequent review of favorable and adverse 

factors of applying LiDAR data for landslide investigation, thus to perceive the 

prospects and limitations of the new technology. In Chapter 3, methods and 

experiments for landslide detection for both shallow and deep-seated landslides 

are presented including expert-based interpretation and semi-automated methods. 

In Chapter 4, methods and experiments for the volume estimation of regional 

sedimentation and individual landslides with multi-temporal LiDAR data are 

presented and an empirical power law is derived to model the relation between 

A (m2) and volume V (m3) of landslides. In Chapter 5, methods and experiments 

for establishing a geomorphological model for extracting landslides using 
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multi-temporal LiDAR data are presented. Final concluding remarks and 

suggestions for future researches are presented in Chapter 6. Appendix 1 gives a 

list of acronym for the abbreviations used in this dissertation. 
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Chapter 2   Geomorphometry of Landslides and Airborne 

LiDAR Technology  

This chapter is served as basics to the applications of airborne LiDAR data for 

landslide investigations. At first, summaries of classification schemes of 

landslides and standard morphologic features of landslides are introduced. 

Secondly, a review of favorable and adverse factors of applying LiDAR data for 

landslide investigation is made, thus to perceive the prospects and limitations of 

the new technology. 

 

2.1 Significance of Geomorphometry of Landslides 

Landslide refers to any mass of earth material displaced by gravity. The various 

types of landslides can be differentiated by the kinds of material involved and 

the mode of movement. The most popular classification system based on these 

parameters is shown in Table 2.1 (Varnes, 1978). Geomorphometry is 

measurement of forms (size and shape) of geological phenomena or features. 

Morphological features of landslides are properties related to the external 

structure of landslides. Airborne LiDAR survey acquires digital elevation 

models in a resolution as high as one meter which may reveal detailed landslide 

features. The dimensions and geometry of a landslide have been described by 

Varnes (1978) and subsequently modified by Cruden and Varnes (1996) using 

the cutaway drawing in Figure 2.1. Subsequently, the International Association 
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of Engineering Geologists (IAEG) created a Commission on Landslides that has 

produced the section and definitions of a landslides for landslide features and 

dimensions (Figure 2.2) (IAEG Commission on Landslide, 1990). The feature of 

different parts of a landslide may thus be recognized from airborne LiDAR data.  

Table 2.1 Types of landslides (Varnes, 1978). 

 

 

 

Figure 2.1 An idealized rotational slide showing commonly used nomenclature 
for labeling the parts of a landslide (Cruden and Varnes, 1996) 

 



 

No.  Name of Landslide features
1  Crown 
2  Main scarp 
3  Top 
4  Head 
5  Minor scarp 
6  Main body 
7  Foot 
8  Tip 
9  Toe 
10  Surface of rupture
11  Toe of surface of rupture
12  Surface of separation
13  Displaced material
14  Zone of depletion
15  Zone of accumulation
16  Depletion 
17  Depleted mass
18  Accumulation 
19  Flank 
20  Original ground surface

Figure 2.2 Suggested nomenclature for landslides

 

For practical applications in the physiographic environments of Taiwan, the 

classification scheme of landslides developed by Varnes (1978) is simplified 
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of Landslide features 

Surface of rupture 
Toe of surface of rupture 
Surface of separation 
Displaced material 
Zone of depletion 
Zone of accumulation 

 
 

Original ground surface 

Designations of Landslide dimensions

1. Wd -- Width of displaced mass

2. Wr --  Width of surface rupture

3. Ld -- Length of displaced mass

4. Lr -- Length of surface rupture

5. Dd -- Depth of displaced mass

6. Dr -- Depth of surface rupture

7. L -- Total length

8. Lcl -- Length of center line

Suggested nomenclature for landslides by IAEG 

Landslides (1990) 

For practical applications in the physiographic environments of Taiwan, the 

classification scheme of landslides developed by Varnes (1978) is simplified 

 

Landslide dimensions 

idth of displaced mass 

Width of surface rupture 

Length of displaced mass 

Length of surface rupture 

Depth of displaced mass 

Depth of surface rupture 

Total length 

Length of center line 

by IAEG Commission on 

For practical applications in the physiographic environments of Taiwan, the 

classification scheme of landslides developed by Varnes (1978) is simplified 
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into five major categories, namely, rock falls, shallow-seated landslides, 

deep-seated landslides, dip-slope and wedge slides, and debris flows, as shown 

in Table 2.2. Thus, types of landslides can be differentiated by their physical 

appearance, which is especially useful for practical applications with remotely 

sensed images. 

 

Table 2.2 Simplified classification landslide scheme applied to Taiwan 

Type of Movements 
Type of Materials 

Bed rock 
Engineering Soils 

Debris Soils 
Falls 

Rock falls 
Shallow-seated slide Topples 

Slide 
Translational 

Dip-slope and wedge 
slide 

Rotational Deep-seated slide 
Flows (not applicable) Debris flow (not applicable) 

 

In this dissertation, for the detection of landslide features only shallow and 

deep-seated landslides are differentiated. Shallow landslide refers to the 

landslide in which the sliding surface is located within the soil mantle or 

weathered bedrock (typically to a depth from few decimeters to some meters). 

Shallow landslides usually include debris slides, debris flow, and failures of 

road cut-slopes. Deep-seated landslide refers to the landslide in which the 

sliding surface is mostly deeply located below the maximum rooting depth of 

trees (typically to depths greater than ten meters). Deep-seated landslides 
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usually involve deep regolith, weathered rock, and/or bedrock and include large 

slope failure associated with translational, rotational, or complex movement. 

These typically move slowly, only several meters per year, but occasionally 

move faster. They tend to be larger than shallow landslides and form along a 

plane of weakness such as a fault or bedding plane.  

As pointed out by Pike (1988&2000), geological phenomena such as 

landslides may be characterized by sets of diagnostic measurements of 

geo-features which is known as geometric signature. Therefore, morphological 

features of landslides of the properties related to the external structure of 

landslides can be used for landslide detection, for multi-temporal change 

analysis, and landslide modeling. Spatial measures of landslide include both 2D 

planimetric attributes (X, Y) and 3D continuous elevation or relief attributes (X, 

Y, Z). Obviously, airborne LiDAR survey with standard products of point 

clouds and grids of digital elevation models and digital surface models should 

have high potentials for obtaining the spatial measures of landslides. 

 

2.2 Introduction to Airborne LiDAR Technology - standard products 

Airborne LiDAR is mainly used for landslide investigation to create accurate 

and precise high resolution digital elevation models (DEM) and digital surface 

models (DSM) in raster grids. Basic products of airborne LiDAR usually include 

all points, ground points, DEM, and DSM (MOI, 2006). The former two are 

vectors of discrete points and the later two are interpolated raster grids of the 



14 

 

discrete points of the former two. Nevertheless, new specifications and 

recommendations may requires products such as simultaneous digital aerial 

photographs, full waveforms, and so on (Heidemann, 2012). 

Figure 2.3 is a flowchart showing the general process of an airborne 

LiDAR survey and applications. Generally, five phases of tasks are implemented 

for an airborne LiDAR survey, including: (1) The planning step; (2) Flights and 

pre-processing – obtaining point clouds in local projected coordinate system, 

such as Taiwan Geodetic Datum 1997 (TWD97), Taiwan Vertical Datum 2001 

(TWVD 2001); (3) Classification step – The extraction of points hitting the bare 

earth from all point clouds for the production of LiDAR DEM; (4) Quality 

validation step - for assuring the conformance of quality and quantity 

requirements of the results to the selected guidelines or specifications, such as 

MOI (2006) or USGS Lidar base specification (Heidemann, 2012); and (5) The 

output step – Interpolation of discrete points is made to obtain grids of specified 

resolution and specified map-sheet extent, such as 1 m grid of national 5k 

map-sheets in Taiwan. Thus, DEMs and DSMs with ellipsoid height are created 

by interpolation of the discrete ground points. In Taiwan, DEMs and DSMs with 

orthometric heights are then prepared by applying a reduction of geoid 

undulation model published by the Ministry of The Interior, namely Taiwan 

Vertical Datum 2001 (TWVD2001). Subsequently, applications can be made 

with or without former or ancillary data. And, most importantly domain 

knowledge of the applications are critical and required. 
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Figure 2.3 Flowchart of Airborne LiDAR Survey and Applications 

 

A common practice of using rectangular grid for interpolation from vector 

format of discrete points to rater format is due to its ease of use and availability 

of interpolation tools. TIN (Triangulated Irregular Network) or other raster 

format can also be applied for geological applications when point clouds are 

available. 

Usually, vertical accuracy will be specified in the LiDAR survey. The 

vertical accuracy of DEM is evaluated by a direct comparison of LiDAR DEM 

and ground durvey for the analyzed study areas. According to the accuracy 
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specification of LiDAR DTM by the Ministry of the Interior, Taiwan (MOI, 

2006), the accuracy of elevation should satisfy the following formula based on 

some environment conditions and the production of DEM： 

�	 = � + � + ��                                 (2.1) 

where σ is the tolerable error, a is fundamental accuracy based on the 

product level of DEM, b is the topography-adjustment factor, c is the 

vegetation-adjustment factor, and t is the mean height of trees. The DEM used in 

this study is derived from point cloud data with manual editing and strip 

adjustment so the fundamental accuracy a is equal to 0.3 m and the 

topography-adjustment factor b is 0 in an area with a slope smaller than 5°, 0.2 

m in an area with a slope 5°-15°, 0.5 m in an area with a slope 15°-30°, and 1.0 

m in an area with a slope greater than 30°. The vegetation-adjustment factor c is 

0 for bare land, 0.2 for grass land, 0.3 for forest, and 0.5 for dense forest. 

According to the accuracy specification, the maximum tolerable error of DEM 

in the dense forest area will be 8.3 m with a slope greater than 30° if the mean 

height of trees is 14 m. In geological applications, most of the time expert 

interventions are required for interpretation. Therefore, such a stunning 

tolerance of absolute accuracy would usually not cause problems in applications 

though cares and awareness always have to be taken.  

The relative error is also evaluated with overlap data and absolute error is 

evaluated by a comparison with ground control points. According to the LiDAR 
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guide (MOI, 2006), the residuals between strips in this study are smaller than 10 

cm. A cross flight is designed in every 30 km perpendicular to major flight lines 

for checking discrepancies between flight strips. Five land-types and 

transactions for ground survey are also selected for validating the accuracy 

achieved in this phase. Ground data are collected by GPS and Total Stations. 

The 5 designated land-cover types include (1) bare land, (2) low vegetation, (3) 

sparsely-vegetated forest, (4) dense forest, and (5) building-up area. At least 30 

measurements are collected for each of the cover types. In addition, 50 check 

points are collected along a profile of 20 km in length crossing the flight strips. 

As an example, the RMSE (root mean square error) accuracies on cover types of 

bare land, low vegetation, spare forest and building-up areas are better than 

0.16m for the datasets used in this study for Namashia case (see paragraph 4.3 in 

Chapter 4). The average error for transactions in the study area is 0.131 m. And, 

the RMSE is around 0.25 m for dense forest. These standardized procedures 

assure the requirements of geodetic and vertical survey datum, as well as the 

quality of the datasets.  

 

2.3 Favorable Factors of using LiDAR for Landslide Investigations 

The favorable factors or unique features that make airborne LiDAR data so 

useful for landslide investigations are summarized in this paragraph. These 

unique features include (1) multiple echoes and/or full waveform; (2) high 

density and high resolution; (3) high accuracy, in terms of large area survey; (4) 
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direct geo-referencing. 

 The capability of multiple echoes for one laser pulse make it possible to 

"see through" the forest. As shown in Fig.2.4, when a pulse is traveling down it 

might hit an object before reaches the ground, and thus, an echo or return can be 

expected from the point where the beam hit the object. The beam will travel 

further downward and may hit another objects except completely blocked by an 

object or the ground. Currently, LiDAR sensors are able to record up to 7 echoes 

per pulse and every echo can give a coordinate of the interaction location. 

Whereas, 4 echoes are recorded for most of LiDAR sensors, such as the 

prevailing sensor producers Leica and Optech. Points for both of types A and B 

are created by single echo, also known as only echo. For type A, the points hit 

the bare ground. For type B, the points hit on object above the ground. Points of 

type C~F are created by multiple echoes and the points may hit several objects 

before reach the bare ground. Types C and D include two echoes, namely first 

echo and last echo. Types E and F include three echoes, namely first echo, 

intermediate echo and last echo. This feature of multiple echoes is used in 

assisting automatic and manual editing of ground points.  

The state-of-the-art pulse rate of airborne LiDAR can be as high as 500 

KHz (Roth and Thompson, 2008; Roth, 2010 & 2011). Average point density of 

airborne LiDAR survey can be as high as 20 points per square meter. The most 

common specification is with an average point density of 1 or 2 points per 

square meter, which has been practiced in Taiwan. Therefore, DEM/DSM grid is 
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usually with 1 m or 2m. Because of the nature of airborne survey with a nominal 

flight speed of circa 100 knots, efficiency of large area survey with high 

resolution and high accuracy can be achieved. In addition, the technology of 

direct geo-referencing of airborne LiDAR makes it possible to have accurate 

coordinates of each individual points as well as the derived grid. As compared to 

the traditional stereoscopic study of aerial photo-interpretation, the direct 

geo-referencing is an important favorable factor. Thus, it is possible to obtain 

results of interpreted landslides with high position accuracy. 

All these unique features of airborne LiDAR make it possible (1) to 

observe 3D features of landslides; (2)  to observe landslides under forest cover; 

(3) to detect micro-morphological features of deep-seated landslides; and (4) to 

observe minor offset of lineaments of geological structure. 

 

Figure 2.4 Multiple echoes (returns) of LiDAR pulses. G denotes a point on the 

bare ground. 
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2.4 Adverse Factors of using LiDAR for Landslide Investigations 

This paragraph is to discuss some pitfalls which may mislead the 

applications of airborne LiDAR data for landslide investigations. Cares and 

awareness have to be taken for these pitfalls though researches can also be 

conducted to find out methods for suppressing the uncertainties caused by these 

pitfalls. Trade-offs of resource allocations for the compensation between ideal 

products and de facto products can be perceived in this discussion (Liu et al., 

2010).  

These adverse factors are inherent in every stage of LiDAR data 

production: (1) In general handling of data, there are problems of edge-matching 

between map-sheets and interpolation methods; (2) In project preparation and 

acquisition stage, there are problems of setting up a common datum for all 

surveys, and acquisition with an optimal point density for all points and ground 

points; (3) In acquisition and editing stage, the problem of artifacts (commission 

error) and voids (omission error) (Liu et al., 2010; Hopkinson, 2006). 

Due to the large volume of LiDAR point clouds, interpolation for 

DEM/DSM grids is usually carried out on basis of map-sheets which may 

extend only around 2.5 km by 2.5 km as the instance of 1/5000 Taiwan National 

Map-sheet Series. For a large study area which is composed of multiple 

map-sheets, discontinuities will exist between map-sheets. Measures are 

required to handle this problem though it is not specified in LiDAR guidelines 

(MOI, 2006). In addition, different interpolation algorithm may generate 
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different results of DEM/DSM form identical discrete point cloud. Uses must 

aware of this problem when using DEM/DSM datasets, especially when 

comparing two different datasets. 

A national common datum is required to keep all spatial data under the 

same frame for analysis and comparison. Nevertheless, in practice, this may not 

be the case. Some dedicated LiDAR survey may apply their own datum for 

some reasons. As an example, the datum adopted by Taiwan LiDAR Survey 

project is TWD97_CGS and the ground control points of this datum are with 

different coordinates in 2009 and 2011. Other source of datum problem may be 

due to that the DEM/DSM datasets are generated by different sensors or by 

different sensors such as InSAR or photogrammetry.  

Density of ground points is an important index of DEM quality. However, 

high density of ground points may not be easily achieved for areas of high relief 

or dense forest (Hsu et al., 2012; Liu and Fei, 2011). In general, low penetration 

rate (i.e. the ratio between number of ground points and that of all points) may 

be due to factors such as (a) nature of vegetation cover; (2) complexity of 

topography; (3) ground surface conditions such as wetness, grass, or bushes; (4) 

flight parameters which may be limited by constraints of schedule and budgets; 

and others. Lack of ground points in certain areas will cause data voids, and thus 

cause problems or misunderstanding in applications. In addition, high overall 

point density may produce high density of ground points, whereas it cannot be 

assured due to the un-controllable factors aforementioned.  
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Figure 2.5 is an example of point cloud editing for filtering non-ground 

points and retaining ground points. Manual editing of point clouds is a must, 

especially for vegetated and complex terrain. Even though after manual editing, 

the resultant DEM is still prone to errors in the viewpoints of users in geology. 

Why? Usually, there are around 4 millions of ground points in a map-sheet of 

2.5 km by 2.5 km. If the acceptability criterion is set to 1 percent for either 

commission error and omission error, the total erroneous points will be as many 

as 80,000 points in one map-sheets. Points of commission error result in artifacts 

in LiDAR image where the height of trees are used in the interpolation of DEM. 

Points of omission error take place very often in dense forest area and thus result 

in flat mountain tops and rough terrains in sloping area. Figure 2.6 shows 

examples of voids (A) due to lacking ground points on top of mountains and 

artifacts (B) due to imperfect filtering of trees on sloping areas. Figure 2.6(C) 

shows that it is possible to improve this type of flaws by good practice of 

manual editing. 

Data voids mostly are resulted from gaps of flight coverage and occlusion 

by topography, clouds, and trees. in the experience of Taiwan National LiDAR 

Mapping, Hsu et al. (2012) indicated that there are 8 types of gaps, namely (a) 

water bodies; (b) cloud covers; (c) steep slopes; (d) volley bottoms; (e) mountain 

ridges and tops; (f) lateral winds on high mountain tops; (g) sudden change of 

topography at the ends of a flight-line; and (h) possible mirror reflection or 

absorption of laser energy on certain high mountain slopes. For the area covered 
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by water bodies, there are no echoes due to water absorption of LiDAR IR 

wavelength in 1064 nm. Cloud covers are the most serious problem in the high 

mountains. Steep slopes in this area are almost as high as 90 degrees. Volley 

bottoms and mountain ridges or tops are out of range of the setting pulse rates 

and thus caused no returns of signals recorded. The lateral winds on high 

mountain tops causes the plane drifts, deviate from the scheduled flight path, 

and thus cause gaps of point clouds. Sudden change of topography at the ends of 

a flight-line due to safety reasons and thus causes the width of flight-strip 

becomes smaller on ridges. An unusual phenomena with no LiDAR echoes is 

the possible mirror reflection or moisture absorption on certain high mountain 

slopes where in reality are landslide terrains with medium slopes.  

Due to the unique features of airborne LiDAR data, the number of 

publications discussing the use of LIDAR in landslide studies has grown 

considerably during the last decade (Derron and Jaboyedoff, 2010). 

Nevertheless, some of the adverse factors discussed above are inherent to the 

datasets. Awareness and cares have to be taken into consideration in the 

applications. Some of the adverse factors that concerning with the settings of 

flight parameters might be amended with strict specifications, and thus requiring 

more cost in data acquisition. A trade-off between quality and cost is obvious in 

this case. 
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Figure 2.5 Manual editing of point clouds is a must, especially for vegetated 

and complex terrain. 

 

Figure 2.6 Example of the resultant DEMs due to data voids and artifacts 
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Chapter 3 Landslide Detection Using Airborne LiDAR Data 

 

In this chapter, methods and experiments for landslide detection for both 

shallow and deep-seated landslides are presented including expert-based 

interpretation and automated methods. 

In the experiment of shallow landslide detection (Figure 3.1), four 

methods are proposed and tested in this research, namely (1) Expert-based 

Method - a test of conventional approach of manual photo-interpretation; (2) 

Method of Indices of Point Density - using LiDAR point clouds; (3) Method of 

nDSM Slicing - using DSM and DEM; and (4) A hybrid OOA Method - using 

all standard products of LiDAR survey in an object-oriented classifier.  

In the experiment of deep-seated landslide detection, three methods are 

raised and two of them are tested in this research, namely (1) Expert-based 

method - a test of conventional approach of manual photo-interpretation with the 

new possibility of micro-morphology analysis using LiDAR-derived 

shaded-relief images. This is the main application of LiDAR data for the study 

of deep-seated landslides; (2) Method of Texture-related or OOA Method - 

though this is not tested in this study whereas a brief review is made for 

demonstrating the significance; (3) Method of Multi-temporal Analysis - the 

major extension of expert-method using multiple times of LiDAR data for 
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perceiving the activeness of deep-seated landslides.  

 

Figure 3.1 A scheme showing the methods proposed in this study for landslide 

detection using LiDAR standard products 

 

3.1 Detection of Shallow Landslides 

3.1.1 Introduction 

An effective method for landslide detection has to be able to give a correct 

recognition of landslide body and to give an accurate delineation of landslide. In 

other words, area size and spatial distribution of landslides should be correctly 

enumerated. In this research, four methods are proposed, tested, and discussed. 

Only samples are demonstrated for expert-based method. Each of the other three 

methods uses the same datasets and discussed with four parts including 

introduction of the method, methodology, materials, and results and discussion.  
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3.1.2 Method 1: Expert-based Method 

Rainfall-induced landslides are in majority shallow-seated in the high relief 

terrains of Taiwan. Techniques of stereoscopic airphoto interpretation have been 

adopted for landslide inventory in Taiwan since 1973 when an aerial survey 

team was established under Agricultural Council of the government (Liu, 1987). 

Though it is labor intensive, it is believed to be reliable. The core spirit of this 

approach is the synergy of human perception to include both 2D and 3D features 

of the target and its environment. In the traditional photo-interpretation 

procedures, the most critical technique is to use stereoscope for perceiving the 

sense of 3D features and an expert should be acquainted with interpretation key 

for the study area (Chang and Liu, 2004; Van Den Eeckhaut, et al., 2005). 

Shaded-relief images of DEM and DSM can be good substitutes for aerial 

photographs for expert interpretation. 

Table 3.1 shows the criteria used for the recognition of landslides on aerial 

photographs which are also applicable for using LiDAR-derived shaded-relief 

images. The general feature of a rainfall-induced landslide is characterized by 

the fresh landslide scars in elongated shape and located in a relatively steep 

slope. It takes place in any kind of geology so long as there are some weathered 

overburdens. Features on aerial photographs include the bright tone, the bare 

surface, and the features shown in Table 3.1. Manual interpretation uses both 2D 

and 3D features of the landslides for recognition. The 2D features include tone, 
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location, and shape. The 3D features include location, direction, slope, and 

shadow effects.  

 

Table 3.1 The criteria for the recognition of rainfall-induced landslides 

Feature Description Discrimination rule 
Tone Light, grey light Brightness 

value>Threshold 
Location Near ridges, cut-off slopes, 

road-sides 
Trigger events and buffer 
zone of the feature 

Shape Spoon-shaped, elongated-oval, 
dentritic, rectangular, triangular 

Location-specific and 
topography-specific 

Direction The drop direction of the landslide is 
the gravitational vector on the 
ground surface. 

Roughly perpendicular to 
the streams and 
topography-specific 

Slope Depend on types of landslides. E.G. 
Shallow-seated landslides > 45%; 
Deep-seated landslides ~40%; 
Debris flows ~10-20%. 

Slope > Threshold 

Shadow Depend on whether the landslides 
are in shadow-side or sunny-side 

Solar azimuth in related 
to slope aspect 

 

Figure 3.2 shows two shallow landslides on shaded-relief images derived 

from LiDAR DSM and DEM, respectively. Obviously, due to the contract of 

surface smoothness the landslide can be observed better on DSM-shaded image 

rather than on DEM-shaded image. Another important issue is the occlusion of 

landslide due to high relief . As shown in Figure 3.3, occlusion of landslide 

features takes place everywhere in high mountain areas due to the nature of 

central projection of aerial photography. Shadow effect may become an annoy 

or disturbance rather than an advantage in the high relief mountain areas. 
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LiDAR-derived images can be treated as true-ortho images because they are 

derived from point clouds of high accuracy.  

The advantages in using LiDAR-derived images for landslide detection for 

expert method can be summarized as follows:  

(1) Landslide features maybe overlooked or omitted due to shadow, 

occlusion and vegetation cover using aerial photo-interpretation approach. These 

adverse problems can be minimized by using DEM-shaded and DSM-shaded 

images as surrogates to aerial photographs. 

(2) The objects above ground surface have been removed for DEM whereas 

those are remained for DSM. Therefore, DSM-shaded images exhibit better 

contrast of landslides with surroundings than that of DEM-shaded images. 

Therefore, for image interpretation of shallow landslides, DSM-shaded images 

are better than DEM-shaded images. 

(3) Various angles of illumination can be visualized and tested for gaining 

better perception of landslides. As a comparison, the sun angle is fixed for aerial 

photography. Shadow effects which are used to be important factor for visual 

interpretation can be optimized using LiDAR-derived images. 

(4) LiDAR-derived images are true-ortho images with which relief 

displacement and distortions due to object heights are removed. Therefore, the 

result of landslide map obtained by interpreting LiDAR-derived images 

possesses accurate coordinates on the map. 
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Figure 3.2 Shaded-relief image of LiDAR DSM (Left) and DEM (Right) at the 

southern bank of Shimen Reservoir, North Taiwan 

 

  

Figure 3.3 Orthographic aerial photograph (Left) and DSM-shaded relief 

(Right) at Alishan of central Taiwan. 

 

3.1.3 Method 2: Method with indices of point cloud density 

(A) Introduction 

Basic products of airborne LiDAR include all points, ground points, digital 
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elevation model (DEM), and digital surface model (DSM). The former two are 

vectors of discrete points and the later two are interpolated raster grids of the 

discrete points of the former two. The DEM and DSM grids are commonly used 

for applications whereas point clouds are rarely used. LiDAR discrete points are 

worthy of a further study due to the fruitful information adhered with the 

attributes of individual points. Point density has been used as an important 

indicator of DEM/DSM quality (Shih and Huang, 2006; Liu et al., 2007; Puetz 

et al., 2009; Raber, 2003). An understanding of the forest closure and crown 

density can be obtained by inspection of the point-density distribution of point 

clouds (Dubayah and Blair, 2000; Means et al., 2000; Naesset, 2002). Therefore, 

point density derived from specific properties of point clouds can be used to 

explore the possibility of extracting landslide information from point clouds. 

Visual interpretation of shaded-relief image derived from DEM is usually 

adopted by geologists whereas other LiDAR products have not been commonly 

applied. In this paper, possible derived indices from point clouds are discussed 

first and then experiments of selected indices are made to find out the most 

descriptive ones for landslide detection. 

 

(B) Deriving a point density map 

The attributes of individual points of LiDAR point clouds are recorded in a LAS 

format. The format contains binary data consisting of a header block, variable 

length records, and point data (ASPRS, 2008&2009). Each point data record 



 

includes the XYZ coordinates, intensity, return number, number of returns, scan 

direction, and classification of the point. These attributes of point cloud are 

closely related to the geometry of laser scanning configuration and thus relevant 

to the point density of unit ground area. The spatial distribution of point density 

implies the properties of the land surface. 

determined by the relationship between the location of laser head, scanning 

angle, location of object and shape of the ground surface, as 

shown in Figure 3.4. In other words, factors for point density include all these 

flight design parameters and the effects of ground conditions: 

look angle; (3) flight height

(6)strip overlap; (7) terrain relief

Figure 3.4 Schematic diagram showing the geometry of airborne LiDAR 
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includes the XYZ coordinates, intensity, return number, number of returns, scan 

direction, and classification of the point. These attributes of point cloud are 

closely related to the geometry of laser scanning configuration and thus relevant 

to the point density of unit ground area. The spatial distribution of point density 

implies the properties of the land surface. Exact coordinates of each point are 

determined by the relationship between the location of laser head, scanning 

of object and shape of the ground surface, as 

. In other words, factors for point density include all these 

flight design parameters and the effects of ground conditions: 

(3) flight height; (4) plane attitude (roll, yaw, pitch); 

(7) terrain relief; and (8) above-ground objects

 

Schematic diagram showing the geometry of airborne LiDAR 

scanning 

includes the XYZ coordinates, intensity, return number, number of returns, scan 

direction, and classification of the point. These attributes of point cloud are 

closely related to the geometry of laser scanning configuration and thus relevant 

to the point density of unit ground area. The spatial distribution of point density 

Exact coordinates of each point are 

determined by the relationship between the location of laser head, scanning 

of object and shape of the ground surface, as schematically 

. In other words, factors for point density include all these 

flight design parameters and the effects of ground conditions: (1) pulse rate; (2) 

4) plane attitude (roll, yaw, pitch); (5) flight speed; 

ground objects. 

Schematic diagram showing the geometry of airborne LiDAR 
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For discriminating landslide and non-landslide lands, the types of point clouds 

for point density enumeration can be categorized as follows: (1) all points, (2) 

ground points,  (3) single-echoes points or only-echoes points, (4) 

multiple-echoes points, i.e. (first + intermediate + last) returns, (5) first-return 

points, (6) intermediate-return points, and (7) last-return points. Secondary 

indices can also be created by combining two or more types of point clouds, for 

example, penetration rate can be derived by the ratio of ground and all points 

denoting the fraction of points hitting the bare ground. For exploring the 

capability of point clouds for the detection of landslides, four types of point 

density with five searching radii are used in this study, including point density 

type of all points, ground points, only-echoes points, and multiple-echoes points. 

Comparison of them will be made to search for most descriptive ones for 

landslides.  

Point density can be measured by various approaches (Shih and Huang, 2006). 

In this study, point density is measured by subdividing the surveyed area into 

grid cells, then computing the unit density of the number of points in a circle 

with certain searching radius centered at the cell center. A software application 

is implemented in this study to cater for the output grid size, searching radius, 

and type of points. This method is comparable to that by Crosby (2007). In this 

dedicated software application, the function of reading Terrascan PTC file for 

point class definition is also implemented so that various type of point density 



34 

 

can be designated. Point density distribution of ground points is affected by the 

criteria and procedures of both automated and manual editing process. 

Nevertheless, point density except that of ground points is mainly decided by 

flight operation parameters including pulse rate, look angle, flight height, 

aircraft attitude, flight speed, strip overlap, terrain relief, and above-ground 

objects. Because the average ground points of the selected study area is 0.75 

pts/m2, 1 m is selected for grid spacing. To cater for the effects of the uniformity 

of point distribution, ground surface undulation and land-cover types, five 

searching radii are used, i.e. 0.707m, 1.414m, 3.0m, 5.0m, and 10 m.  

 

(C) Testing site and materials 

 

The study area is located in I-Lan County of northeastern Taiwan, on the track 

of the Typhoon Kalmaegi attacked Taiwan on July 16th~18th, 2008, about nine 

month after Typhoon Krosa on October 4th, 2007 in this area. The dataset for 

the experiment was taken on 4th November, 2008 after Typhoon Kalmaegi. In 

general, the accuracy of bare grounds checked in the field is about 0.15 m. An 

area covering 2 km by 2 km is selected for the experiment. The overall point 

density of the study area is 2.75 points/m2 with ground point density of 0.75 

points/m2 (Table 3.2). 
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Table 3.2 Attributes of the LiDAR data used in point density study 

Type of points All points 
Ground 
points 

Only-echoes 
points 

Multiple-echoes 
points 

Total number of 
points 

12,142,434 3,320,615 5,789,148 6,353,286 

Average point 
density (points/m2) 

2.75 0.75 1.31 1.44 

Minimum height (m) 574.08 574.08 574.08 577.72 
Maximum height 

(m) 
1290.43 1279.65 1290.43 1290.29 

 

 (D) Results and discussions 

After examination of the test results of the four types of points versus five 

searching radii, findings are as follows:  

(1) Striping noise of point density map is obviously affected by flight speed and 

strip source as shown in Figure 3.5. 

(2) Point density map of multiple-echoes point gives better contrast between 

landslide and non-landslide areas than any maps derived from other three types 

of point density, as shown in Fig. 3.6 (B). 

(3) For output of 1m grid spacing, point density map with a searching radius of 

1.414 m shows best result among all radii including 0.707, 1.414, 3, 5, and 10 m. 

This result is subjected to the density of all points and ground points. A larger 

radius cannot give better enhancement of landslides. 

(4) Although the overall point density of only-echoes points of the whole study 

area is similar to that of multiple-echoes points as shown in Table 3.2, a 

conspicuous contrast of landslide area is observed on the density map of 
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multiple-echoes points other than that of only-echoes points. This is due to a 

high concentration of multiple-echoes points in forested land and most of bare 

grounds are covered by only-echoes points. 

(5) Landslide feature is conspicuous in some part of the density map of ground 

points whereas it is vague in other parts. This is a consequence of the factors of 

penetration rate in different part of the area and the filtering process of 

non-ground points with both automated algorithm and manual editing. However, 

on the map of all points overlaid by ground points, landslides features can be 

enhanced for visualization. Nevertheless, commission errors of landslide 

interpretation can be serious on this map, especially in those bare lands which 

are not landslides. These errors might be eliminated by slope gradient of ground 

surface in a later step. 
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Figure 3.5 Selected results of four types of point density and their distribution 

under various searching radii with 1m grid. 
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(A) 

 
(B) 

Figure 3.6 (A) Point cloud distribution with attribute of flight strip source ID. 

(B) Density map of multiple-return echoes with r=1.414m, grid spacing = 1m. 

 

3.1.4 Method 3: Method of nDSM slicing 

(A) Introduction 

The resulted standard products of an airborne LiDAR survey thus include all 

points, ground points, Digital Surface Model (abbreviated as DSM) and Digital 

Elevation Model (abbreviated as DEM). The former two items are point vectors 

whereas the later two are gridded results interpolated from the former two. DEM 

is the one prevailingly applied. It is pointed out that the cloud of discrete points 

is full of latent information which can be further explored (Liu et al., 2010). 

LiDAR DEM has been used for landslide interpretation (Schulz, 2007; Van Den 

Eeckhaut et al., 2007) whereas DSM is not applied as often. Both of DSM and 

DEM are standard products of a LiDAR survey. A necessity to compare the 
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effect of them is obvious. 

Because both DSM and DEM are in raster format which is compatible with 

remote sensing images, it is convenient to apply image processing techniques in 

extracting useful thematic information. The difference of DSM and DEM is 

known as normalized DSM, denoted as nDSM. Due to the bareness of shallow 

landslides, the pixel value of landslide area is theoretically near zero. This 

feature can never be obtained in a conventional DEM. Therefore, the properties 

of nDSM obtained by image subtraction will be further explored with gray-level 

slicing methods to find out the best enhanced thematic maps from DSM and 

DEM for the detection of landslides.  

 

 (B) Method 

Image enhancement techniques are used for the enhancement of landslide 

features on DSM and DEM images. The purpose of the enhancement processing 

is to make the resultant images more suitable for landslide interpretation or for 

subsequent automated pattern recognition of landslides. Image processing can be 

applied in either spatial domain or frequency domain (Gonzalez and Woods, 

2002). Approaches in spatial domain are to treat image pixels directly: g(x,y) = 

T[ f(x,y)], where the T function can be applied to single pixels such as contrast 

stretching, thresholding, or binary Image, or it can be applied globally to the 

whole image or a subset of the image. Approaches in frequency domain are 

making use of convolution theorem: g(x,y) = h(x,y)＊ f(x,y); G(u,v) = 
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H(u,v)F(u,v). h(x,y) and H(u,v) are the masks in spatial domain and frequency 

domain, respectively. g(x,y) is to be solved and obtained by a Forier Transform 

of G(u,v). The pixel processing in spatial domain usually include (1) gray value 

transformation, (2) enhancement with statistical characteristics, (3) image 

subtraction, and  (4) image averaging. In this study, image subtraction of DSM 

and DEM is applied first to obtain nDSM, which latently enclose all objects or 

features above the bare ground. Subsequently, gray-level slicing method is 

applied to the nDSM image to find out an optimal range of gray values to 

present landslide distribution. 

 

 (C) Testing site and materials 

A test area is selected in I-Lan County of eastern Taiwan, the same as the one 

for the test of Method with indices of point cloud density in Paragraph 3.1.3 (C). 

The attributes of the data sets is shown in Table 3.2. 

 

 (D) Results and discussion 

Figure 3.7(A) is a gray map of nDSM obtained by subtraction of DSM and 

DEM of the study area. The range of the values in the resultant image is from 

-29.60 m to +116.68 m. The nDSM image is obviously prone of outliers or 

extra-ordinary values such as negative values and values larger than the height 

of highest possible trees. Therefore, nDSM is in no way representing all objects 

above bare ground and cares have to be taken for object extraction. The 
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extra-ordinary values are due to both definition of ground points (and thus DEM) 

and operation procedures of interpolation from discrete points to continuous 

surfaces. The distribution of these extra-ordinary points is shown in Figure 

3.7(B). It is observed that the extra-ordinary points are mostly located in areas of 

rugged terrain and high fluctuation of relief change. 

To resolve the noises of extra-ordinary values in nDSM, it is necessary to 

either correct the errors or reset the range of the pixel values to a designated 

range with specific lower bound and upper bound. Gray-level slicing method is 

thus applied to find out the visual effect of different settings of gray-level 

ranges. 

Gray-level slicing is a simple and straight forward method of image 

enhancement. If there is a specific range of pixel values on nDSM images 

favorable for landslide features in natural vegetated-slopes, it will be 

discriminated by simple slicing method. 
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Figure 3.7 (A) Gray map of nDSM of the study area.  (B) Distribution of the 

locations of points with extra-ordinary values. 

 

Figure 3.8 is a blow-up of a small part of the study area, including gray 

maps of nDSM, DSM and DEM of identical portion of the image. The higher 

the digital numbers the brighter the image. In landslide area, the tone is dark due 

to its extreme low pixel values. On the contrary, it is bright in forested areas due 

to the higher pixel values of tree heights. Because pixel values of a DSM is 

composed of both ground height and tree height, the contrast between the areas 

of landslide and non-landslide is less obvious. The contrast is even less obvious 

for a DEM which gives only the ground height. Therefore, for visual 

interpretation of landslides, nDSM can be better than DSM and DEM. 

Theoretically, omission error prevails if the range between the lower and 

upper bounds of the slices is too small. On the contrary, commission error 
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prevails if the range of slices is too large. Because the value of a landslide pixel 

on nDSM should be zero or a small number due to its physical bareness and 

possible sensor uncertainty, the lower bound is designated as zero and the upper 

bound will depend on the result of experiment in this study, tuning from +1 m 

upward till +20 m. 

It can be observed from the results of different slicing ranges in Figure 3.9 

that (1) the shape of landslides in dark tone can be conspicuously depicted in the 

slice of 0~1 m; (2) the shape of landslides are even obvious when the upper 

range becomes larger up to 10 m whereas the best is the range of 0~5 m; and (3) 

too many pixels of commission error are included and thus the boundary of the 

shape of landslides become vague in the slice of 0~20 m. 

 

   

Figure 3.8 Gray maps of nDSM(A), DSM(B) and DEM(C) 
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Figure 3.9 Gray-level slicing of various nDSM ranges 

 

3.1.5 Method 4: A Hybrid Object-oriented Method 

(A) Introduction 

Most of the conventional automatic classification methods for landslide 

detection are mainly based on spectral features of remotely-sensed images other 

than topographic features. Because the spectral features of buildings and roads 

are similar to those of landslides, therefore serious mis-interpretation took place. 

Moreover, limitations are due to the spatial and spectral resolutions of the 

images. More than 50% of the rainfall-induced landslides in Taiwan are less 

than 50.0 m in length (Liu et al., 2012). Landslides of this scale are not readily 
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identifiable using images of a pixel-size larger than 10.0 m. By pixel-wise 

classification, landslides can occupy only individual or just a few pixels without 

forming an outer shape of landslides (Liu et al., 2009). Moreover, commission 

and omission errors of pixel-based classification can further complicate the 

situation. The pixel-based methods are then required to be replaced with 

approaches based on objects or segments (Kerle and Martha, 2010). Therefore, 

The main objective of this research is to combine both of an unsupervised of 

region-based image segmentation and a supervised classification method with 

SVM classifier using standard products from airborne LiDAR survey, as shown 

in the scheme of landslide detection in Figure 3.1. 

(B) Method 

Basic task of segmentation algorithms is the merge of image elements 

based on homogeneity parameters or on the differentiation to neighboring 

regions, respectively. Thus, segmentation methods follow the two strongly 

correlated principles of neighborhood and similarity of pixel values. The 

region-based approaches start in image space where the available elements 

either pixels or already existing regions are tested for similarity against other 

elements. Concerning the definition of the initial segmentation the procedures of 

region growing (i.e. bottom-up, i.e. starting with a seed pixel) and region 

splitting (i.e. top-down, i.e. starting with the entire scene) are distinguished. One 

disadvantage of the splitting method is that it tends to be over-segmented 

because a splitting always produces a fixed number of sub-regions (normally: 4) 
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although two or three of them might actually be homogeneous with respect to 

each other. As a consequence, one can apply an integration of the various 

methods. Thus, it leads to the split-and-merge algorithm that after a split process. 

If neighboring regions are similar, they should be remerged again (Chang et al., 

2010).  

To strengthen the automation of segmentation, clustering is adopted for 

region-based segmentation. The ISOCLUST is an iterative self-organizing 

unsupervised classifier based on a concept similar to ISODATA routine of Ball 

and Hall (1965) and cluster routines such as the H-means and K-means 

procedures (Jain and Dubes, 1988). Object-oriented analysis (OOA) is 

inherently more suitable, as it can address the phenomena under study such as 

landslides in this case, as that they are “objects”, not “pixels” that have spectral, 

spatial and contextual characteristics. Thus in this study, the unsupervised 

classification method ISODATA are applied to the nDSM image to find out an 

optimal range of data values to present landslide distribution (Research System, 

Inc., 2006). 

After the segmentation, a supervised classification of the segments with 

SVM classifier is applied to obtain landslide class. 

SVM (Support Vector Machine) is a relatively new classifier and is based 

on strong foundations from the broad area of statistical learning theory. Since its 

inception in early 90s, it has found applications in a wide range of pattern 

recognition problems, image classification, financial time series prediction, face 
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detection, biomedical signal analysis, medical diagnostics, and data mining 

(Witten & Frank, 2000; Hwang and Chiang, 2010; Burges, 1998; Chapelle et al., 

1999). Under the basic assumption of the SVM approach, the training sample is 

expressed as  	
��，
��，
��，
��，…
��，
��� where xi	∈ �� represents 

an input mode, yi	∈ 	 �	±1	�. The optimal decision-making formula is as follows: 

���� + � = 0                                 (3.1) 

The weighing vectors w and b is deemed satisfactory once converged. 


������ + �� ≥ 1 − "#                                 (3.2) 

The value "# is a loose variable existing in a linear, undividable condition. 

It describes the degree of module deviation under the ideal linear circumstances. 

The goal of the SVM is to identify a decision support phase where the average 

error of the training samples is minimized. The optimization equation is 

therefore derived as follows: 

φ�w, ε� = �
�(

)w+ c∑ ε#,
#-�                             (3.3) 

Where C is a positive parameter assigned by the end user. It serves as a 

penalty for the correctness of the SVM. The C value is used to leverage the 

probable mis-interpretation percentage and the complexity of the algorithm. A 

converged optimization equation can be derived adopting the Lagrange 

Multiplication Method: 

.�	/	� = 	∑ /� −	��
0
�-� 	∑ 		∑ /�	/1	
� 	
1 	2	
	�� 	, �1 	�0

1-�
0
�-�          (3.4) 
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Where �α#�#-�,  is the Lagrange multiplier while Eq. (4) fulfilling the 

following criteria. 

∑ /�
�0
�-� = 0,			0 ≤ /� ≤ 5, 6 = 1,2,3… ,9                  (3.5) 

K (	�� 	, 	�1 	) is a core function. There are four types of core functions 

included in the Mercer Theorem: 

1.Linear： 2
�� , �1� = :���1                        (3.6) 

2. Polynomial:  	2
�� , �1� = 
;:���1 + <�d,;>0d        (3.7) 

3. radial basis function (RBF):  2
���1� = =�> ?−;@�� − �1@
�A , ; > 0

                                                    (3.8) 

4. Sigmoid:  2
�� , �1� = ��Cℎ
;:���1 + <� , ; > 0           (3.9) 

Here, ;, r, and d are kernel parameters (Burges, 1998). 

 

The data flow is shown in Figure 3.10 where the feature space for 

landslide classification includes only the standard LiDAR survey products, 

namely ortho image, DEM and DSM. Especially, the derivatives of greenness, 

slope and nDSM are used for input for the segmentation (Figures 3.11). 

Accuracy validation will be made against the results obtained by visual 

interpretation using all available images derived from the same datasets (Figure 

3.12). In addition, a pixel-based classification with the same datasets is also 

carried out for comparison. 
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Figure 3.10 Flowchart of OOA data processing 

 

 
(A) Greenness 

 
(B) Slope 

 
(C) nDSM 

Figure 3.11 The three derivatives of othophoto, DEM and DSM for data entry 
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(C) Testing site and materials 

A test area is selected in I-Lan County of eastern Taiwan, the same as the one 

for the test of Method with indices of point cloud density in Paragraph 3.1.3 (C). 

The attributes of the data sets is shown in Table 3.2. For this test, only a subset 

of the area is used (Figure 3.12).  

  

Figure 3.12 Study Area and Ground Truth for OOA Test 

 

(D) Results and discussion 

Figure 3.13 shows the results of segmentation and vector classification. 

The results generated by pixel-based classification are shown in Figure 3.14. 

The comparison between the results of the hybrid OOA method, pixel-based 

SVM method and those of ground truth is shown in Table 3.3. The Producer 

accuracy of landslide class by object-based method is 85.68% whereas that by 

pixel-based method is 72.01%. The user accuracy of landslide class by 

object-based method is 80.41% whereas that by pixel-based method is 76.2%. 
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Kappa coefficient and overall accuracy of object-based method are 0. 817 and 

93.4%, respectively. It is concluded that the hybrid OOA method proposed in 

this study is an effective method which is better than pixel-based method. 

 

(A) segmentation 

 

(B) Training samples 

 

(C) OOA result 

Figure 3.13 Results of the hybrid OOA method 
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(A) training areas on orthophoto 

 

(B) Landslide map 

Figure 3.14 The results generated by pixel-based SVM classification 

 

Table 3.3 Confusion table of OOA classification and pixel-based classification 

Object-based PA％ UA％ Pixel-based PA％ UA％ 
Landslide 85.68 80.41 Landslide 72.01 76.2 
River bed 83.21 87.81 River bed 70.88 76.2 
Vegetation 95.72 96.59 Vegetation 94.55 93.53 

Kappa Coefficient = 0.817 Kappa Coefficient = 0.704 
Overall Accuracy = 93.4% Overall Accuracy = 89.64% 

 

3.2 Detection of Deep-seated Landslides 

3.2.1 Introduction 

Expert-based method is the most popular method adopted for the detection of 

deep-seated landslides (PWRI, 2008; SWCS, 1992; ITRI, 1993). Because most 
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of the deep-seated landslides are either latent or located under forest cover, only 

a few of them which are in creeping or which are newly-happened in a 

catastrophe can be detected and treated. For deep-seated landslides, detection 

and characterization are the most important task before any mitigation measure 

can be taken or any inference of landslide kinematics and mechanics can be 

made. 

There have been many studies using aerial photographs, satellite remote 

sensing and airborne LiDAR for the observation of the characteristic 

morphological features (Agliardi et al., 2001; Agliardi et al. al, 2009; Chigira, 

2011; Chigira & Kiho, 1994; Chigira et al, 2003; Chigira  & Yagi, 2006; 

Dewitte et al., 2008; Dramis & Sorriso-Valvo, 1994; Glenn et al., 2006; Ventura 

et al., 2011). Nevertheless, some automatic methods such as PIV and CosiCorr 

have been raised for detect and characterize deep-seated landslide of creeping 

type or large-scaled ancient landslide which are in metastability (Lo et al., 2009; 

Tseng et al., 2007). In this study, three methods are raised and discussed, namely 

(1) Expert-based Method - using LiDAR-derived shaded images or other 

enhanced images for visual interpretation; (2) Texture-related or OOA methods - 

demonstrated cases are reviewed but not tested with Taiwan case; (3) 

Multi-temporal change analysis - using simple DoD (Difference of DEMs) 

method to extract images for interpreting the activeness of the landslide. 
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3.2.2 Method 1: Expert-based Method 

 

The mechanism for triggering a deep-seated landslide is complicated. Two 

major topics are usually adopted before further understanding of the mechanism, 

namely (1) detailed mapping of the features and the topography of the landslides 

for a description of the geospatial and geological environment; (2) susceptibility 

mapping and interpretation of the landslide for zoning different possibility of 

re-activeness.  

For an ancient landslide under forest cover which may have re-activated 

several times in history, the delineation of the boundary and other features such 

as hummocky topography become the most critical part. Stereo-pairs of aerial 

photographs are usually used for this purpose. Figure 3.15(A) shows a 2005 

high-resolution aerial photo (left) of the Gladstone, Oregon area, trees, houses, 

and roadways hide the contours of a large landslide. On the basis of this image, 

there is little geohazard risk in the area. In a DEM image derived from LiDAR 

data for the same area (right) the surface is created by digitally removing all 

vegetation and man-made structures, resulting in a true surface shape. The 

landslide scarps and toes in the middle of image are clearly visible. Statewide 

LiDAR mapping proposal was thus initiated to identify areas at risk in Oregon 

State (Lewis, 2006). Therefore, LiDAR-derived images become a superior 

surrogates of traditional aerial photographs being used for expert-based method 

due to its capability of virtual deforestation (Dewitte et al., 2008; Glenn et al., 
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2006;Ventura et al., 2011). 

The geomorphic features shown in Figures 2.2 and 2.3 are those to be 

observed on LiDAR-derived images. Figure 3.16 shows two examples of 

deep-seated landslides in LiDAR-derived image at I-Lan County. Figure 3.16 (A) 

and (C) are shaded-relief images of DEM whereas (B) and (D) are images of 

DSM. There are two deep-seated landslides on the images an annotated on 

Figure 3.16 (A) and (B). Obviously, the top landslide is a recent one where the 

scarp remains and the lower one is older where the main scarp is covered by 

forest and becomes vague. On the DSM-shaded image (D) on which landslide 

boundary was not annotated, the boundary of the lower landslide is not obvious, 

whereas the scarps of the top landslide are conspicuous. In addition, a scarp to 

the north of the top landslide is becoming obvious if it is closely observed. 

Therefore, there is a high susceptibility of developing an even newer 

deep-seated landslide at this place. 

Both shallow landslides and deep-seated landslides can be observed on 

these images. Another observation of these images. By comparison of the lower 

part of shallow landslides in Figure 3.16 (C)&(D) and Figure 3.14 (A), 

DSM-derived images give better contrast for shallow landslide areas where the 

area covered by landslides has smoother surface. However, for the interpretation 

of deep-seated landslides especially old ones, DEM-derived images give better 

results of feature mapping. In conclusion, the best practice should make use of 

all DEM and DSM data for this purpose rather than just use one of them. 
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Deep-seated landslides usually evolve for long time or re-activate when 

triggering factors prevail such as rainfall or earthquake. Evidences should be 

found in the field to support the observation on images.  

 

(A) orthophoto 

 

(B) LiDAR DEM 

Figure 3.15 A comparison of two images: color aerial photograph (left) and 

shaded-relief image of airborne LiDAR DEM (right) (Lewis, 2006). 
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Figure 3.16 Deep-seated landslides revealed in LiDAR-derived image at I-Lan.  

 

3.2.3 Method 2: Texture or OOA Method 

This is one of the major academic research area in using LiDAR data for the 

investigation of deep-seated landslides (Dewitte et al., 2008; Glenn et al., 

2006;Ventura et al., 2011; McKean and Roering, 2004).  

The first example as shown in Figure 3.17 was made by McKean and 
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Roering (2004). Airborne LiDAR DEMs data was used to characterize a large 

landslide complex and surrounding terrain near Christchurch, New Zealand. It is 

found that the bedrock landslide is rougher than adjacent unfailed limestone 

terrain. Four statistical measures of surface roughness are raised and any of the 

statistics can differentiate landslide and unfailed area. The second example as 

shown in Figure 3.18 was published by Glenn et al., (2006). Similarly, 

roughness is the core point for the automatic detection of the landslide. The 

roughness of this study is done by semivariogram and fractal analyses. It is 

concluded in this case that topographic elements are related to the material types 

and the type of local motion of the landslide. Weak, unconsolidated materials 

comprising the toe of the slide, which were heavily fractured and locally thrust 

upward, had relatively high surface roughness, high fractal dimension, and high 

vertical and lateral movement.  

Since roughness is the major concern in the automatic detection of 

landslides, not only for deep-seated ones but also for shallow landslides. As 

explained in expert-based method, contrast caused by surface roughness is the 

best indicator for visual interpretation. The usefulness of roughness for 

automatic detection of shallow landslides was also proved by local cases (Yang 

et al., 2010). Nevertheless, factors of deep-seated landslides are complicated and 

the geological and morphological environment of each individual landslide are 

not the same. Therefore, roughness may be a good indicator under certain 

conditions but it may not be a good indicator for other conditions. Figure 3.19 is 
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an example of Li-Shan area in central Taiwan (ITRI, 1993). The landslide 

complex in this area may not be easily detected by automatic method. The 

several segments of main scarps on top of the LiShan and several deep-dissected 

ditches are readily visible. There are also some prominent lineaments to the east 

of the landslide complex. This may give indications that complex structure 

control may take place. All these questions have to be answered by other means 

rather than just by the results of the interpretation of LiDAR-derived images. 

 

Figure 3.17 Shaded relief image of the Coringa Landslide and immediate 

surroundings. The primary kinematic units within the slide are earthflows E1 

and E2, the area of compression U1 and the Blocky area with incorporated 

limestone blocks (McKean and Roering, 2004). 
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Figure 3.18 Shaded relief image of the Salmon Falls landslides for 

semivariogram and fractal analyses. UB=Upper block, B=Body, T=Toe. 

(Glenn et al., 2006) 
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(A) (B) 

 
(C) 

 
(D) 

Figure 3.19 LiDAR-derivatives of Li-Shan landslide complex, central Taiwan 

 



62 

 

3.2.4 Method 3: Multi-temporal Analysis 

(A) Introduction 

The purpose of the analysis applying multi-temporal LiDAR data is to analyze 

the activity or susceptibility of the landslide. The method proposed for 

deep-seated landslide is a simple DoD method (Diffrence of DEMs). To 

demonstrate the potential of the simple DoD method, the three DEMs in Hsialin 

Slide obtained in three surveys are used.  

 Old deep-seated landslides may re-activated several times in history. 

However, this may evolve as long as more than a century time such as Tsaoling 

landslide, of which the first time of movement was recorded in 1862 due to an 

earthquake (Chen et al., 2005). Tracking of landslide displacements by 

multi-temporal DTMs either created by InSAR, photogrammetric or airborne 

LiDAR becomes important especially when multi-temporal LiDAR survey have 

been made (Dewitte et al., 2008; Ventura et al., 2011). 

 

(B) Method 

It is straight-forward to apply the difference of two DEMs for representing 

landslide volume caused by a landslide event (Liu et al., 2010 and 2011), e.g.  

 ( )∑ −=∆ 1221 TT DEMDEMV            (3.10)  

Where DEMT2 represents the DEM of the accurate topography after the 

event and DEMT1 represents that before the event. ∆V is the volume change 

after the event, which is a summation of the difference values of each individual 
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corresponding pixels of DEMs. A negative value of ∆V indicates the area is 

erosive. Whereas a positive value of ∆V indicates the area is sedimentary.  

Basic issues behind the method of simple subtraction of two DEMs 

include a common datum of different datasets and data quality of them. Simple 

subtraction method would not be applicable if the uncertainties are too large due 

to these two basic issues. If two DEMs are generated by two surveys using 

different datum, it is required to unify both the geodetic and the vertical systems. 

In addition, to assure the quality of DEM, it is required to abide by a strict 

survey plan and to apply a solid validation process. The two DEMs used in this 

study are both surveyed with identical geodetic and vertical systems, namely 

TWD97 and TWVD 2001. A strict guideline becomes a pre-requisite for this 

purpose. Data quality should be checked to validate the datasets. The 

experimental data are obtained by applying a common LiDAR Survey Guideline 

(MOI, 2006).  

The three datasets obtained for this study are with two different height 

systems. One is with orthometric height and the other two with ellipsoid height. 

Therefore, geoid undulation of the study area was applied to standardize these 

three datasets to a common height system either orthometric or ellipsoid height. 

In our case, ellipsoid height system is used. This step has to be cautious and 

checked before applied the simple difference method. Three difference images 

are derived at first for further interpretation, including V21, V32, and V31, e.g.  

 ( )∑ −=∆ 1221 TT DEMDEMV          (3.11)  
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 ( )∑ −=∆ 2332 TT DEMDEMV          (3.12)  

 ( )∑ −=∆ 1331 TT DEMDEMV          (3.13)  

 

(C) Study site and materials 

One of the most catastrophic disaster in Taiwan is Hsiaolin Slide triggered 

by typhoon Morakot occurred on 9th August 2009 at Shiaolin Village in 

Kiaosiung City of Southern Taiwan (Dong et al., 2011; Juang and Lee, 2011; Hu 

et al., 2010; Lin et al., 2011)(Figure 3.20). Three times of airborne LiDAR 

survey were conducted in this area. The LiDAR images of the respective times 

are shown in Figure 3.21. The major event of typhoon Morakot occurred on 9th 

August 2009. Therefore, the airborne LiDAR survey conducted in June 2006 

portrayed the topography before the event whereas the LiDAR survey conducted 

on 18 and 23 June 2010 portrayed the topography after the event. A catastrophic 

change of the topography can be expected. Another airborne LiDAR survey for 

the same area was conducted on 16 and 27 October 2010, that is four months 

after the former survey. A comparison of the topographic change between June 

and October of 2010 can reveal the change of post event process and local 

instability in this period of time can be observed. 
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Figure 3.20 The location of Hsiaolin Slide and the vicinity. The landslide 

boundary is draped on the 3D perspective view of aerial photograph taken after 

the event.  
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Legend DSM 2006 DEM 2006 
DSM 2010-06 DEM 2010-06 
DSM 2010-10 DEM 2010-10 

Figure 3.21 Three DSMs and DEMs of Hsiaolin Slide 

 

(D) Results and discussion 

Some observations of the results of T2 as compared to T1 and those of T3 as 

compared to T2 will be presented in this paragraph. 

The difference of T2-T1 reflects the topographic change of typhoon 

Morakot, the main event. As shown on top diagram of Figure 3.22, the area 

coverage of Hsiaolin Slide is 224.3 hectares with A-A’=3059 m, A-B=1880 m, 

B- B’=1516 m, A-B-B’=3396 m, and A-B’=3315 m. In middle diagram of 
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Figure 3.22, isoplethic lines are plotted every 5 m from -85 m to +85 m for the 

range of the difference between T2 and T1 from -86.87 m to +85.66 m. Two 

major depleted areas and four accumulated areas can be readily identified. N1 is 

estimated with a negative volume of 26,515, 325 m3. This area is the main part 

of the disastrous landslide with a deepest sliding mass of 86.87 m in depth. N2 is 

with a negative volume of 1,614,475 m3. This is a secondary landslide along old 

stream valley. P1 is with a positive volume of 4,638,809 m3. The accumulated 

landslide deposits were located in the right-hand side of Chisan River which is 

opposite to the location of the sliding mass. P2 with a positive volume of 

8,852,825 m3. The major part of the sliding materials were moved along an old 

stream valley and accumulated in the valley bottom, thus the deepest deposition 

with +85.66 m was located in this part.  
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(A) 

(B) 

    (C) 

Figure 3.22 Topographic Features of Hsiaolin Slide and its subdivisions 

 

The difference of T3-T2 reflects the topographic change after the main event 

typhoon Morakot. A distinct deposit of 48,960 m2 and a depleted area of 34,070 

m2 can be observed on the upper part of the landslide which can be further 

identified in Figure 3.23. The deepest depth of the deposit is 37 m and the 

largest depth of the depleted area is 26 m. In other words, after the main event of 

typhoon Morakot, with the change from June to October, local slope of 
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instability was readily identifiable on the difference image. Figure 3.24  is a 

longitudinal cross section of Hsiaolin Slide, showing that the original slope of 

the depleted area was 22.3° (β) and the resulted slope after sliding event became 

31.7°(α). If we look closely at the ground surface after the event as shown in 

Figure 3.25, there were unconsolidated materials remaining on the steep slope of 

the top part of the landslide, which are the origin of the re-activated materis. 

  

Figure 3.23 (A) color coded image of V32; (B) hsaded relief image of V32. 

 

 

Figure 3.24 Cross section of Hsiaolin Slide along A-B-B' shown in top diagram 
of Fig. 3。α=31.7°，β=22.3°，γ=8.6°. 
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Figure 3.25 A close-up of the depletion area of Hsiaolin Slide. Remnants of 

unconsolidated materials still exited on the bare surface. The dash-line is the 

isoplethic line with -20 m. The area covers 48.68 hectares. 

 

In summary for the multi-temporal anaysis: 

 (1) Multi-temporal airborne LiDAR datasets are useful for quantifying the 

time-series change of deep-seated landslides in the physiographic settings 

of Taiwan. 

(2) Simple difference method can be applied for extracting the change of 

topographic surface between two consecutive time. However, precautions 

of common datum and consistent accuracy of respective datasets have to 
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be maintained. 

(3) A national airborne LiDAR project is to be implemented from 2010 to 2015 

(Liu & Fei, 2011). Multi-temporal airborne LiDAR data will become 

available for most of the area in Taiwan. The importance of applying 

multi-temporal analysis become obvious. 

(4) Movement slip vectors might be able to be obtained by further study using 

PIV or CosiCorr methods.  
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Chapter 4 Landslide Monitoring and Volume Change Analysis 

Using Airborne LiDAR Data  

 

In this chapter, methods of volume estimation for both individual landslide and 

whole study area are proposed. Experiments for landslide volume change with 

airborne LiDAR data before and after the specific event are presented and an 

empirical power law is derived to model the relation between area A (m2) and 

volume V (m3) of landslides by using the results of area and volume of 

individual landslides. 

 

4.1 Introduction 

The most urgent and fundamental issue raised after a landslide disastrous 

event is to understand the most up-to-date status of the disaster for the purposes 

of disaster emergency response and prevention. One of the key issue is to know 

how many landslides and where are they or how big is the landslides or even 

how much sediments will it be generated by the event. Therefore, remote 

sensing techniques are employed extensively (Rau et al., 2007; Bell et al., 

2005&2006; Joyce, 2009; Teeuw, 2007; Highland and Bobrowsky, 2008).  

Several techniques such as DInSAR, LiDAR, GPS, and aerial 

photogrammetry are capable of supplying accurate 3D topographic data (Tarchi 
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et al., 2003; McKean and Roering, 2004; Chen et al., 2005&2006; Glenn et al., 

2006; Demoulin, 2006; Jaboyedoff et al., 2009&2010&2012). Because the 

archive of old aerial photographs in Taiwan contains around one million of 

aerial photographs starting from 1943, stereophotogrammetric analysis of aerial 

photographs can be a good source for obtaining DEM and DSM for 

understanding either the evolution of the landscape or the change of volume in a 

specific event. Nevertheless, the national LiDAR mapping program (Liu and Fei, 

2011) will form a basis for estimate volume change of landslides if additional 

airborne LiDAR survey is conducted after an event. Therefore, the main 

objective of this research is to propose methods of volume estimation for both 

individual landslides and whole study area with airborne LiDAR datasets before 

and after the specific events.. 

 

4.2 Method of Landslide Volume Analysis 

For the estimation of landslide volumes in a study area, two methods are 

proposed: (1) Simple DoD Method; and (2) Method of Accumulating 

Individuals. For the estimation of each individual landslide, three methods are 

proposed: (1) Method of 3D Sections; (2) Method of Average Sections; and (3) 

Grid Method. The whole area estimation approach and the individual landslide 

estimation approach will be discussed as follows: 

(A) Whole Area Estimation Approach 

As described in the Method of Multi-temporal Analysis for deep-seated 
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landslide, the Simple DoD Method is a Difference of DEMs approach with a 

simple and straight forward formula, e.g. ∆V＝Σ(DEMT2 - DEMT1), where 

DEMT2 represents the DEM of the accurate topography after torrential event and 

DEMT1 represents that before torrential event. ∆V is the volume change after the 

event. A negative value of ∆V indicates the area is erosive. Whereas a positive 

value of ∆V indicates the area is sedimentary. 

Figure 4.1 shows an example of the DoD Method. When a simple overlay 

subtraction is made with the 2010 DEM being subtracted by 2005 DEM, the 

resultant image will be a map of depletion (with negative value) and 

accumulation (with positive value). However, if it is inspected closely with 

re-classed image as shown in Figure 4.2. All the area of positive value (possible 

deposits) is masked out with a value of 0 and the all the area of negative value  

(possible landslides) is assigned a value of 1. Obviously, the portaion of the 

negative area is too big and most of the shapes of the possible landslides are not 

correct. Too many isolated irregular spots can be observed. This indicate too 

many commission errors are included. The threshold method is thus used to 

filter out some low values due to uncertainties of the datasets and other 

environmental issues. The total estimated volume for Figure 4.2(A) when 

threshold is not applied is 13,193,828 m3, whereas the total estimated volume 

for Figure 4.2(B) when threshold is set as -3 m is 10,360,912 m3. The difference 

of volume of these two thresholds is as large as 2,832,916 m3 (~21.47%). In 

Figure 4.2(B), in addition to spotted negative areas, it is also observed that there 
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are negative areas along the streams. This is due to down-cutting of the stream 

in this up-stream area. Therefore, volume of the so-called landslides may be 

over-estimated. In an operational sense, manual editing will be required to filter 

out these areas for a better estimation. 

 

  
Figure 4.1 A simple difference of 2010 DEM and 2005 DEM and the DoD 

result where the legend shows the value of the difference in meters. 
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(A) threshold = 0 

 

(B) threshold = -3 m 

Figure 4.2 Different thresholds applied to the DoD results: (A) not applied; 

(B) a threshold of -3 m. 

 

It is also mentioned in the Method of Multi-temporal Analysis for 

deep-seated landslide, basic issues behind this method include uncertainties such 

as common datum, data quality, and environmental issues. Especially, the major 

uncertainties are from the areas that covered by forest. Methods can be used to 

cater for these issues including (1) the masking method which applies a mask for 

the forested land, (2) the point-cloud-merging method which merges point 

clouds of the two respective survey for editing, (3) full waveform method to 

search for more ground points under forest, and (4) others. These methods 

remain for further study. 

For the estimation of landslide volumes in a study area, the alternative for 
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the Simple DoD Method is the Method of Accumulating Individuals which 

estimates the volume (V) by accumulating individual volume (vi) of all 

landslides in the study area. The method of the estimation of each individual 

landslide will be given in the following section. The formula is described as 

follows:  








= ∑
=

n

i
ivV

1
                                         (4.1) 

where V is the landslide volume; n is the total number of landslide; vi is the 

volume of each of the individual landslides in the study area.  

As shown in Figure 4.3, with the assistance of ancillary information and 

other LiDAR-derived images, each individual landslide can be extracted from 

the overall landslide map of the whole study area generated by the simple DoD 

method. Subsequently, the total volume of the study area can be obtained by 

adding up all the individual landside volumes. 

 

(A) whole study area 
 

(B) one landslide from whole area 

Figure 4.3 Each individual landslide (B) can be extracted from the overall 

landslide map (A) generated by DoD method. 
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 (B) Individual Landslide Estimation Approach 

For the estimation of each individual landslide, three methods are proposed: (1) 

Method of 3D Sections; (2) Method of Average Sections; and (3) Grid Method. 

Method of 3D Sections is a method using three landslide features to 

represent a landslide body, i.e. (1) Wr: Width of surface rupture; (2) Lr: Length 

of surface rupture; and (3) Dr: Depth of surface rupture (Figures 2.3 and 4.4). In 

this method, a landslide body is represented by the lower half of an ellipsoid. 

This method is useful for estimating a landslide volume by in-situ measurements.  

And, it can be applied after the specific event without referring to measurements 

of the land surface before the event. The formula is described as follows: 

rrr LWDV ××= π
6
1

                                   (4.2) 

where V is the landslide volume; Dr is the depth of surface rupture; Wr is the 

width of surface rupture; Lr is the length of surface rupture. 

 

(A) cross section 

 

(B) 3D perspective 

Figure 4.4 Landslide volume estimation using three landslide dimensions 
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Method of Average Sections (Figure 4.5) is a method using the area of 

fixed-interval cross sections along the longitudinal axis of the landslide to 

estimate the volume. The formula is described as follows: 








= ∑
=

n

i
iAhV

1
                                    (4.3) 

where V is the landslide volume; n is the total number of cross sections; h is 

the fixed interval between two cross sections; Ai is the area of ith cross section.  

Grid Method is a method using a grid for the difference between the DEMs 

before and after landslide event to estimate the landslide volume. Each grid 

element has a value which represents the depletion (with negative value) or 

accumulation (with positive value) in the event. In the extent of the landslide, 

the absolute value of each grid element is the thickness or depth of the landslide 

at the specific site. Therefore, it is a straight-forward method when 

multi-temporal LiDAR DEMs are used for landslide volume estimation. The 

formula is described as follows: 











= ∑∑

= =

n

i

m

j
ijhAV

1 1

                                   (4.4) 

where V is the landslide volume; A is the unit area of each grid element; m 

and n are the raw and column number of the grid; hij is the depth of the landslide 

at the pixel(m,n). 
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Figure 4.5 Landslide volume estimation using areas of cross sections of 

fixed-interval 

 

 

Figure 4.6 Landslide volume estimation using a grid of landslide depths. 
 

In addition, because the area (A) and volume (V) of each individual 

landslide can be estimated by aforementioned Grid Method if multi-temporal 

DEMs are used, it is straight forward to derive the relationship between A and V 

for the study area. 
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4.3 Study Area and Materials 

For demonstrating the volume estimation of each individual landslide, the case 

of Hsiaolin Slide will be give first. The study area and materials can be referred 

to the discussion in Method 3 (Multi-temporal Analysis) for deep-seated 

landslide detection in Paragraph 3.2.4(C) and Figures 3.19 and 3.20. 

An additional site in Namashia District of Kaohsiong City (Figure 4.7) will be 

used to demonstrate (1) the extraction of individual landslides from the overall 

landslide map; (2) Method of Accumulating Individuals; and (3) Derivation of 

the power law for the relationship between area (A) and volume (V) of the study 

area.  

The mapname of the study area is Ternbausan-One in Namashia District, 

southern Taiwan (Figure 4.7), about 2 km apart from Hsiaolin Slide. The extent 

is about 2,579 m x 2,775 m, around 7 km2. There are very few landslides on 

orthophoto taken in 2005 whereas landslides are everywhere on Formosat-2 

orthoimage taken in 2010 of the same area. As shown inFigure 4.8, two times of 

LiDAR data are used, for representing the accurate topography before and after 

2009 Morakot rainfall event. The first LiDAR dataset was acquired in 2005 

(MOI, 2006) and the second one in 2010 (SWCB, 2010). The point density of 

both datasets is more than 1 point/m2. The grid-size of final DEM is 1 m. The 

orthometric height of each grid cell conforms to the accuracy standards required 

by the National Draft LiDAR Specifications (MOI, 2006). The premises for 

applying two DEMs for landslide volume estimation require that both the datum 
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and the quality of the two DEM datasets are maintained. To assure the quality of 

the DEM, strict standard operation procedures are followed (MOI, 2006).  

 

Figure 4.7 The study area of Namashia District of Kaohsiong City. 

 

  



83 

 

 

(A) 2005 DSM 

 

(B) 2005 DEM 

 

(C) 2010 DSM 

 

(D) 2010 DEM 

Figure 4.8 LiDAR Data used in Namashia study area 

 

4.4 Results and Discussion 

4.4.1 Hsiaolin Case for Individual Landslide Estimation 

The results of applying the three methods of individual landslide will be 

presented in the paragraph, including (1) Method of 3D Sections; (2) Method of 
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Average Sections; and (3) Grid Method. 

As shown in Figure 3.23, because the travel distance of Hsiaolin Slide 

(~2000 m) is larger than the length of rupture surface (~1500m ), the landslide 

volume can be estimated by Method of 3D Sections. Figure 4.9 shows the 

Hsiaolin Slide and its subdivisions. In total, there are 7 subdivisions with 

negative values. Subdivision A is the major landslide body and it is used for 

demonstration of the Method of 3D Sections. When the ellipse for the landslide 

is selected, the Lr (2376 m) and Wr (695 m) can be easily measured whereas the 

depths to the rupture surface are variable in all places of the landslide. An 

estimation of a representing depth has to be made. It is known that the deepest 

depth is 85 m. An intelligent guess of the average depth would be from 50 m to 

85 m. And, by applying formula 4.2, the estimated volume may vary from 

25,036,378 m3 to 42,575,390 m3. 

 

Figure 4.9 Hsiaolin Slide and its 7 subdivisions. The landslide is represented by 

an ellipse for the dimensions of width and length. Black lines are isopleths of -5 

m and red lines are isopleths of +4m. Subdivision A is the major landslide body. 
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With 15 cross sections and fixed interval of 50 m between sections, the 

estimated volume using Method of Average Sections is 26,303,750 m3.  

In Grid Method, The landslide volume is calculated by using 2010 DEM 

subtracted by 2005 DEM. In calculation, the failure surface was divided as 1 m2 

grid, and the negative value of grid subtraction represents the area that was 

eroded. Therefore, for the landslide, the summation of the negative value of 

every grid times the grid area is counted as the volume of landslide (Formula 

4.3). Thus, With a grid of 1 m resolution, the estimated volume using Grid 

Method is 26,465,275 m3.  

The results obviously show that the variation of the volumes given by 

Method of 3D Sections is larger than that of other two methods. Therefore, Grid 

Method would be more preferable due to it’s easier in automation if high 

resolution DEM can be obtained from LiDAR surveys. 

 

4.4.2 Namashia Case for Whole Area Volume Estimation and Power Law 

The test site in Namashia District of Kaohsiong City (Figure 4.7) is used 

to demonstrate (1) The extraction of individual landslides from the overall 

landslide map; (2) Method of Accumulating Individuals; and (3) Derivation of 

the power law for the relationship between area and volume of the study area. 

A 2D landslide map (Figure 4.10) has to be generated first. Then, 

extraction of individual landslides are made one by one from the 2D landslide 

map (Figure 4.11). Thus, the area and volume of each individual landslide can 
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thus be estimated. For the estimation of landslide volumes in a study area, the 

alternative for the Simple DoD Method is the Method of Accumulating 

Individuals which estimates the volume (V) by accumulating individual volume 

(vi) of all landslides in the study area as shown in Formula 4.1.  

To derive the regression relationship between A and V, Guzzetti et al. 

(2008&2012) tested different fitting techniques including least-square linear fit, 

robust linear fit, robust-resistant regression, and least-square, non-linear fit to 

account for problems associated with the fitting of log-transformed data 

spanning multiple orders of magnitude. Guzzetti et al. (2009)  suggested 

robust-linear fitting (Venables and Ripley, 2002) for minimizing the effects of 

the outliers. This fitting method is also used for regression of the landslide 

volume V and landslide area A in this study, V = kAa.  

The result of the Ternbausan-One area with 50 landslides shows that k = 

0.099, a = 1.395, and R-squared coefficient of determination = 83.7%. As shown 

in Figure 4.12, a dash line in the figure depict a separate study in the 

neighborhood using 488 points of landslides in a geological environment of 

well-cemented sandstone and shale, k = 0.0146, a = 1.523 (Tseng et al., 2011). 

Because of the geology in Ternbausan-One area is mainly composed of shale 

and silts, The surface materials of this area are more soft and weathered than 

those of the neighborhood area. Therefore, the power law gives a meaningful 

result that higher volume of deposits of unit area is generated in study area than 

that in the neighborhood area with, that is more sedimentation in this area than 
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the other area. It was also reported by Guzzetti et al. (2008) that k = 0.0844 and 

a = 1.423. These empirical formulas reflect different physiographic conditions 

including geology, soils, climate and denudation processes (Kalderon-Asael et 

al., 2008). It is concluded that further experiments can be applied with the 

methods proposed in this paper for the extraction of individual landslides from 

the overall landslide map and, subsequently, for the derivation of the 

relationship between landslide area and volume. 

 

(A) Orthophoto 

 

(B) DoD-shaded image 

Figure 4.10 Interpretation of a 2D landslide map on basis of orthophoto and 

DoD-shaded images 
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Figure 4.11 Extraction of individual landslides are made one by one from the 
whole landslide map 

 

 

Figure 4.12 Empirical formula of landslide area A (m2) and volume V (m3) of 
the data points of landslides in the study area, V=kAa. 
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Chapter 5 Landslide Extraction with a Geomorphological 

Model  

 

In this chapter, methods and experiments are made for establishing a 

geomorphological model for extracting landslides using multi-temporal LiDAR 

data. 

 

5.1 Introduction 

As stated in the motivation of this dissertation in chapter 2, landslides is 

one of the most frequent natural disasters in Taiwan as well as in the world. In 

addition, high resolution LiDAR-derived products allow more accurate landslide 

modelling by improving their geometrical characterization. Expert knowledge of 

the geomorphometric properties of landslides may be required to establish an 

automatic interpretation method. High resolution and high accuracy LiDAR 

DEM and DSM and orthophotos are now basic constituents of NSDI in Taiwan 

(Liu and Fei, 2011). Therefore, it is high time to further apply geomorphometry 

in active landslide study (Liu et al., 2009). 

A geomorphometric model is urgently needed for disaster management. 

Therefore, the purpose of this study is to develop a geomorphometric model 

based on highly accurate and high resolution LiDAR topographic data with 
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parameters calibrated by optimized thresholds (SWCB, 2010). The 

demonstration case in this study was located in southern Taiwan near Hsiaolin 

village, the village destroyed by Typhoon Morakot. The landslide type which 

can be detected by this model is a shallow landslide (Liu et al., 2009). 

  

5.2 Study Area and Materials 

Materials for this research include high resolution satellite images and airborne 

LiDAR data. 

5.2.1 Physiographic Settings of the Study Area 

Hsiaolin village is located in Chiahsien District, Kaohsiung City (Figure 

5.1). The study area is covered by 9 map-sheets of 1/5000 national photomaps: 

95193025~95193027; 95193035~95193037, and 95193045~95193047. The 

village is located on a river terrace of Chisan River. The geological map in 

Figure 5.2 (Song et al., 2000) shows that the area is situated in the Western 

Foothill Zone of Miocene sedimentary formations including Changchikeng 

Formation, Tangenshan Sandstone, Yenshuikeng Shale, and Peliao Shale. The 

area is primarily covered by Tangenshan Sandstone and Yenshuikeng Shale. 

Tangenshan Sandstone consists of alternate layers of sandstone and shale, 

whereas Yenshuikeng Shale consists of alternations of siltstone and shale with 

occasional lens-type conglomerates. The river terrace materials include recent 

fluvial and colluvial deposits of sand and gravel. 
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Figure 5.1 SPOT image taken on 2009/08/24 after Typhoon Morakot. The 

8-digit numbers are the map numbers of national 1/5000 map series. 
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Figure 5.2 A regional geological map near the Hsiaolin village (Song et al., 

2000). 

 

5.2.2 Satellite images 

This study uses SPOT images taken at approximately the same season as the 
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first LiDAR survey in 2005 used for comparison. The Formosat-2 image taken 

after Typhoon Morakot was collected and compared with the second LiDAR 

survey in 2010. In addition, there are several typhoon events from 2007 to 2009. 

Therefore, this study also uses SPOT images acquired from 2005 to 2009 

(Figure 5.3) to analyze landslide recurrence rate. The resolution of 

enhanced-mode SPOT images is 2.5 m, pan-sharpened Formosat-2 image have a 

resolution of 2.0 m. 

 

Figure 5.3 Satellite images of the study area from 2005 to 2009. Bright grey 

features on the images are mostly landslide scars. Landslide occurrence 

increasingly increases in this period of time, as shown in Figure 5.8 

 



94 

 

5.2.3 Airborne LiDAR data 

LiDAR data before and after Typhoon Morakot were collected for this 

study. The LiDAR feature of multiple returns provides a good means for editing 

the point clouds and produce DSM, DEM, and CHM (Canopy Height Model) or 

DBM (Digital Building Model). This in turn enables the analysis of 

multi-temporal datasets. As Figure 5.4 shows, the DEM and DSM in this study 

are based on 2005 LiDAR survey. The landscape suffered from dramatic 

changes after Typhoon Morakot (Figure 5.5). The large landslide near Hsiaolin 

Village is the most conspicuous example. Figure 5.6 shows the DEM and DSM 

of the study area acquired in 2009 after Typhoon Morakot. Both of the LiDAR 

datasets in this study were surveyed using a common guideline (MOI, 2006) and 

a common datum—TWD97 for geodetic coordinates and TWV2001 for vertical 

system—to maintain the same level of accuracy. The RMSE (Root mean square 

error) was 16.7 cm with a standard deviation of 16.3 cm for 2005 LiDAR data. 

The RMSE was 20.2 cm with a standard deviation of 18.3 cm for 2009 LiDAR 

data. RMSE is a measure of the dispersion between the coordinates obtained by 

Airborne LiDAR and those surveyed in the field. Whereas, standard deviation is 

a measure for the concentration of the differences between these two datasets. 

The accuracy of these two datasets meets the requirement set in the MOI 

guideline (MOI, 2006).  



 

Figure 5.4 DEM and DSM images before Typhoon Morakot

 

Figure 5.5 3D perspective views of Hsiaolin Village before and after Typhoon 

Morakot. Hsiaolin Landslide has a volume of ~25 million cubic meters with a 

maximum depth of 85 m on top area and a maximum length of 3396 m from top 

to the other side of Chisan River. The landslide completely destroyed the 
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DEM and DSM images before Typhoon Morakot

3D perspective views of Hsiaolin Village before and after Typhoon 

Hsiaolin Landslide has a volume of ~25 million cubic meters with a 

maximum depth of 85 m on top area and a maximum length of 3396 m from top 

to the other side of Chisan River. The landslide completely destroyed the 

village. 

 

DEM and DSM images before Typhoon Morakot 

 

3D perspective views of Hsiaolin Village before and after Typhoon 

Hsiaolin Landslide has a volume of ~25 million cubic meters with a 

maximum depth of 85 m on top area and a maximum length of 3396 m from top 

to the other side of Chisan River. The landslide completely destroyed the 
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Figure 5.6 DEM and DSM obtained after Typhoon Morakot. As compared to 

those of Figure 5.4, dramatic landform change can be found in river valley as 

well as mountain slopes, especially the example of Hsiaolin Landslide. 

 

5.3 The Geomorphological Model for Landslide Extraction 

5.3.1 Introduction 

The proposed model includes both global and local detection procedures, 

and uses a supervised classification method for global landslide detection. The 

focus of this paper is on global detection. Because of the diversity of the 

geologic and topographic environments in which landslides occur, omission and 

commission errors are unavoidable when using the global approach. Thus, local 

landslide detection is required to increase the accuracy of the resulting landslide 
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map (Liu et al., 2009). With the attendance of geological expert, the local 

approach employs several interactive manual editing tools to compile landslide 

information and minimize commission and omission errors. Therefore, the aim 

of the global detection is to include as much as possible the areas which are 

vulnerable to landslides. For error analysis, the user accuracy, producer accuracy, 

average accuracy, and overall accuracy were calculated from a confusion matrix 

(Kohavi and Provost, 1998). 

Figure 5.7 shows the flowchart of the geomorphometric model established 

in this study. Landslide areas possess geomorphometric characteristics that can 

be used to establish a geomorphometric model to describe the topographic 

feature of landslides. As the first step, global parameters based on landslides 

extracted from satellite images by classifying bare land and then filtering out 

commission errors produced by bare agriculture lands and debris flows were 

obtained. Landslide polygons were then overlaid on parametric maps derived 

from 2005 LiDAR data. The parametric parameters of the extracted samples 

were then used as training sample globally. Thresholds of various parameters 

were derived based on statistics of the training samples of landslides. Threshold 

values of the six geomorphometric parameters (T1~T6) were defined a priori 

based on some user-defined training areas, that is, the landslide polygons. The 

mean and standard deviation values of each index were calculated and the 

threshold values were set to be the mean ± 3 standard deviations. The proposed 

method classifies a pixel as a landslide pixel if the following expression is true:  
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(Slope > T1)∩(Roughness < T2)∩(Curvature >  T3)∩(OHM < 

T4)∩(Greenness < T5)∩(Wetness > T6). Otherwise, it is classified as a 

non-landslide pixel. Because the global landslide detection algorithm is pixel 

based, isolated landslide pixels were removed by morphological filtering (e.g., 

opening and closing). Small landslides were eliminated by setting a minimum 

mapping unit. Finally, the detected landslide pixels were converted into 

vector-based polygons. In other words, the pixel conforms to the threshold 

criterion is designated as 1, otherwise it is designated as 0. The area of the 

intersecting set of all the parameters was categorized as landslide area. This is a 

dichotomic multi-criteria evaluation approach. 

 

Figure 5.7 Flowchart of the geomorphometric model 
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5.3.2 Geomorphometric Parameters of Landslides 

For extracting landslides from high accuracy and high resolution LiDAR data, 

parameters for establishing the model were selected based on the criteria usually 

used in manual interpretation of landslides, including the 2D and 3D landslide 

features detailed previously in Table 3.1. The parameters of the 

geomorphometric model in this study were derived from LiDAR DEM and 

DSM. The major parameters in this model include slope, surface curvature, 

OHM (object height model), OHM roughness, and topographic wetness index. 

In addition, NDVI (Normalized Difference Vegetation Index) or greenness is 

one of the most important indexes for landslide recognition due to that fresh 

shallow-seated landslides are characterized by bare land without or with little 

vegetation cover. Therefore, it is also included in the model. A number of 

vegetation indices, such as the NDVI (Jackson et al., 1983), EVI (Enhanced 

Vegetation Index) (Liu and Huete, 1995), and LAI (Leaf Area Index) (Chen and 

Black, 1992) have been used in remote sensing for analyzing vegetation cover. 

Of these indices, NDVI is the standard method for comparing relative biomass 

and vegetation greenness in remotely sensed images. A higher NDVI indicates a 

higher level of healthy vegetation cover. The greenness index is similar to the 

NDVI, except that it substitutes a green band for the near-infrared band.  

These parameters are also closely related to the factors for landslide 

susceptibility (Tarolli et al., 2011). The control factors of slope stability usually 

include slope angle, strength of materials, and pore water pressure (Turner and 
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Schuster, 1996). If the slope gradient is high, the slope can be unstable. Slope 

angle was thus selected as the first parameter because of its importance, and can 

be easily derived from DEM. Because DEM represents the bare ground surface 

and DSM represents the upper envelope of all the objects above the bare ground 

surface, the difference between these two well-defined surfaces is minimal in the 

area of rainfall-induced landslide. In this case, the OHM, defined as the 

difference between these two surfaces, can be a good parameter for automatic 

landslide recognition. After wash out or sliding, the surface of landslides in 

nature should be smoother than the surroundings. Surface roughness is an 

objective and useful measurement of landslide topography (Glenn et al.,2006; 

Woodcock, 1977; Mckean and Roering, 2004). Landform curvature is another 

critical factor controlling the susceptibility of landslide occurrence (Pirotti and 

Tarolli, 2010).  

The definition of the parameters is as follows (Wilson and Gallant, 2000; 

Zhou and Liu, 2006):  

 (1) Slope. The slope angle of a landslide is the angle between the horizontal 

surface and the ground surface of the longitudinal axis of the landslide. The 

slope angle for each landslide can be derived from LiDAR DEM data. A variety 

of methods are available for terrain slope gradient estimation. However, the 

details of a high-resolution terrain model may introduce high variations in 

changes of local slope gradients (Sharpnack and Akin, 1969).  This study 

adopts the method proposed by Parker (1997) to overcome this problem, that is 
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the derivatives of the Gaussian function are convoluted with the DEM in the x 

and y directions, respectively, and then combined to estimate the slope.  

(2) OHM. Object height models (i.e., OHMs) are obtained by subtracting 

DSM from DEM to describe the height of objects above bare ground. The OHM 

describes the heights of above-ground objects in raster format. Objects close to 

zero in height may represent the bare soil that characterizes landslides.  

 (3) OHM Roughness. Roughness is a derivative of OHM, defined as one 

standard deviation in a 5 x 5 moving window. This measure, which is a function 

of geological structure and lithology, describes the relief variation in the local 

area. Because most landslides occur in bare soil areas, the surface is smoother 

than that of forested areas. Thus, a surface roughness index can be used to detect 

landslide areas. To account for the high terrain variation in mountainous areas, 

this study uses object heights rather than surface heights. For simplicity, the 

standard deviation of object heights within a local window serves as the surface 

roughness index.  

(4) Curvature. Curvature is the second derivative of the surface (Schmidt et al., 

2003). Two optional output curvature types are possible: the profile curvature is 

in the direction of the maximum slope, and the plan curvature is perpendicular to 

the direction of the maximum slope. The  curvature is the slope form and has a 

significant effect on surface runoff, soil erosion, and deposition processes 

(Stefano et al., 2000). This study applies a 15 x 15 medium filter to the DEM to 

suppress any accidental height changes in the high resolution elevation model. 
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The curvature along the slope direction was then calculated with a 5 x 5 mask.  

(5) Topographic wetness index (TWI). Wetness is derived from the 

concentration of a small watershed (Kirkby, 1975; Wilson and Gallant, 2000). 

Topography is often one of the major controls of the spatial pattern in saturated 

areas, which in turn is a key to understanding the variability of hydrological 

processes. The topographic wetness index has become a widely-used tool to 

describe wetness conditions. The formula is as follows:  

)
tan

ln(
θ

ω A=                                     (5.1)  

where A is the local upslope contributing area and θ is local slope.  

 (6) NDVI or greenness. This parameter is derived from satellite images or 

orthophotos acquired at a compatible time as the LiDAR survey. In other words, 

there are no rainfall events between the time that both the LiDAR data and the 

images or orthophotos are acquired. Because rainfall-induced landslides of 

natural slopes are mostly covered by densely-vegetated surroundings, the 

vegetation index is critical for indicating the areas of bareness. The most popular 

index is the NDVI:  

NDVI = (NIR-R)/(NIR+R)                             (5.2) 

where R stands for the grey value of the red band and NIR stands for grey 

value of the near infrared band. Theoretically, if the image digital values are 

calibrated to stand for the reflectance of the target, the NDVI can be widely 
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applicable. However, the digital numbers of the red band and NIR band of 

digital aerial cameras are not calibrated for this purpose. Therefore, the NDVI 

value is a relative indicator of vegetation cover. NDVI can be applied to modern 

digital aerial cameras, which usually include an NIR band. If color aerial 

photographs include only RGB bands, an alternative greenness parameter can be 

used. Greenness is also a relative indicator with radiometric values that are not 

normalized:  

Greenness=(G-R)/(G+R)                                    (5.3) 

where G is the grey value of the green band, and R is the grey value of the red 

band. The values of NDVI and Greenness range from -1 to 1. Nevertheless, the 

range for these values in landslides may change depending on natural weather, 

terrain conditions and type, and camera sensor settings. A relatively low value 

implies that the area of the pixel is low vegetated or bare.  

 

5.4 Results and Discussion 

5.4.1 Establishing The Geomorphometric Model of Landslides 

Bare land has a relatively low reflectance in the infrared region of the 

electromagnetic spectrum. This feature can be used in unsupervised 

classification to obtain a preliminary map of landslides. On an interactive screen, 

manual editing of the results can filter out commission errors such as bare crop 

fields and debris flows. Figure 5.8(A)-(D) show the distribution of landslides 

over four different years. Six typhoons affected Taiwan in 2008: Kalmaegi, 
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Fung-wong, Nuri, Sinlaku, Hagupit, and Jangmi. A comparison of the images in 

2007 and 2008 reveals more landslides in 2008 (Figure 5.8E). The number of 

landslides increased substantially after the torrential rainfall of Typhoon 

Morakot (Figure 5.8F).  

The recurrence rate of landslides, defined as the repetitive occurrence of 

landslides between two different times, was 65% between 2007 and 2005. The 

recurrent rate was even as high as 95.9% between 2009 and 2008. 64.1% of the 

landslides in 2008 reappeared in 2009 after Typhoon Morakot. The high 

recurrence rate between succeeding years shows that landslides happen in 

similar environmental conditions. To verify the accuracy of the landslides 

obtained by satellite images, conventional aerial photo-interpretation was 

conducted. It is shown that the overall accuracy was 92.4% with omission error 

of 9.2% and commission error of 16.1%.  

 



105 

 

 

Figure 5.8 Landslide distribution between 2005 and 2009. Landslides on 

images are high-lighted with yellow polylines. New landslides are in red 

polylines when comparing images taken in 2005 and 2008 (E) and those in 

2008 and 2009, respectively. 

 

5.4.2 Statistics of Geomorphometric Parameters 

Figures 5.4 and 5.6 are the primary data of DEM and DSM obtained in 2005 

and 2009, respectively. For further understanding the features of landforms, 

geomorphometric parameters are extracted from these primary datasets. Figure 

5.9 shows the distributions of major LiDAR-derived geomorphometric 

parameters selected for landslide recognition in this study.  



 

Figure 5.9 The distributions of major LiDAR

parameters selected for landslide recognition in this study. The coordinates of 

the maps are (209810，

 

Figure 5.10 shows the frequency distribution of geomorphometric parameters 

based on 2005 landslide data. Fig

these parameters based on 2009 landslide data. The average slope of landslides 

in 2005 is 31.2 degrees. The surface roughness is generally below 1.5 m, with a 

cumulative fraction of 90% below 1.5 m (Fig

derived from the difference of DSM and DE

20% and 30% of all the landslide pixels having a value below 0.5 m and 3.3 m, 
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Figure 5.9 The distributions of major LiDAR-derived geomorphometric 

parameters selected for landslide recognition in this study. The coordinates of 

，2566339) and (217609，2557916) for the lower right 

and upper left, respectively. 

.10 shows the frequency distribution of geomorphometric parameters 

based on 2005 landslide data. Figure 5.11 shows the frequency distribution of 

sed on 2009 landslide data. The average slope of landslides 

in 2005 is 31.2 degrees. The surface roughness is generally below 1.5 m, with a 

cumulative fraction of 90% below 1.5 m (Figure 5.10B). On basis of the OHM 

derived from the difference of DSM and DEM, the average OHM is 9.1m with 

20% and 30% of all the landslide pixels having a value below 0.5 m and 3.3 m, 

 

derived geomorphometric 

parameters selected for landslide recognition in this study. The coordinates of 

2557916) for the lower right 

.10 shows the frequency distribution of geomorphometric parameters 

.11 shows the frequency distribution of 

sed on 2009 landslide data. The average slope of landslides 

in 2005 is 31.2 degrees. The surface roughness is generally below 1.5 m, with a 

.10B). On basis of the OHM 

M, the average OHM is 9.1m with 

20% and 30% of all the landslide pixels having a value below 0.5 m and 3.3 m, 
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respectively. Figure 5.10D is a frequency distribution of OHM. The major 

fraction of OHM is distributed between 5 m to 20 m. A cumulative fraction is 

37% and 92% for OHM under 5 m and 20 m, respectively. Only 8% of OHM 

exceeds 20 m, indicating commission errors of trees can be as high as 8%. 

Figure 5.11 shows the frequency distribution of geomorphometric parameters 

based on 2009 landslide data  obtained from images after Typhoon Morakot. In 

other words, the training samples of the geomorphometric parameters are 

obtained from the LiDAR data taken in 2009. The average slope of the landslide 

areas is 33.8 degrees, with a major range in 25~50 degrees. A cumulative 

fraction is 25% and 90% for slope under 25 and 50 degrees, respectively. The 

average roughness is 1.2 m, with 90% less than 1.5 m. The average curvature is 

-0.008, showing that most of the slope forms are more concave than convex. The 

OHM ranges from 5~20 m with an average of 9.1 m. Similarly, there are 30% of 

the landslide pixels having an OHM less than 3.3 m. The average roughness of 

OHM is 2.6 m, with a standard deviation of 1.2 m.  

The frequency distributions of various parameters derived by landslides in 

2005 and 2009 show no obvious differences. In both cases, the average slopes 

fall within the range of 30~50 degrees, with a roughness of 1.1~1.7 m, curvature 

of -0.04~-0.02, OHM under 17 m, and OHM roughness of 1.5~3.5 m.  



 

Figure 5.10 Frequency distribution of geomorphologic parameters of landslides 

 

Figure 5.11 Frequency distribution of geomorphologic parameters of landslides 
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Frequency distribution of geomorphologic parameters of landslides 

in 2005. 

Frequency distribution of geomorphologic parameters of landslides 

in 2009. 

 

Frequency distribution of geomorphologic parameters of landslides 

 

Frequency distribution of geomorphologic parameters of landslides 
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When using the landslides in 2008 for training samples, the slope ranges from 

25~55 degrees, with an average of 38.2 degrees. As a comparison, the general 

average slope for 2009 landslides is 33.8 degrees, with an OHM of less than 20 

m, roughness less than 1.5 m, and average curvature of -0.018. More concave 

slope forms were present in 2008 than in 2009. Before the Morakot landslide 

event, the average OHM was 7.3 m, and the average roughness was 2.4 m with a 

standard deviation of 1.2 m.  

The average slopes of 2008 landslides are higher than those of 2009 

landslides. However, the curvature for 2008 is less than that for 2009. There are 

no obvious differences in OHM and roughness. In 2008, a total of 60% of the 

landslides have an area of less than 0.5 hectares, whereas the average area of 

individual landslides in 2009 become larger, with 73% of them possessing an 

area of less than 1.0 hectare.  

 

5.4.3 Verification of the Geomorphometric Model 

By comparing the spatial distribution of landslides in 2005 and 2009, this 

study shows that the recurrent rate is as high as 55%. It is therefore reasonable to 

suppose there is a higher susceptibility in the buffer zone of old landslides. River 

bank erosion is another important trigger factor for river bank landslides, and 

upstream erosion has the same effect. Therefore, the proposed model includes 

buffer zones for river bank and upstream areas. In addition to six 
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geomorphometric parameters, the model includes buffer zones of old landslides 

and river banks and up-streams.  

A sensitivity analysis of the different combinations of thresholds was 

conducted to find out the optimum combination of thresholds. Tries with major 

ranges of each parameters have been tested (Table 5.1).  The final optimized 

results show that the overall accuracy obtained in this study is 68.2%, where the 

user accuracy is 42.6% and the omission error is 57.4%. Because spatial 

resolution of DEM and DSM is 1 m, slivers or dispersed isolated small patches 

of landslides generated when grids are transformed into vectors can be treated as 

noise. In this study, polygons with an area smaller than 50 square meters are 

filtered out and manually edited to delete some commission errors, improving 

the accuracy of the final result. Figures 5.12(A) and 5.12(B) are examples of the 

modeled results of landslides in 2008 and 2009, respectively. After manual 

editing, Tables 5.2 and 5.3 show that the average accuracies in 2008 and 2009 

are 76.6% and 72.5%, respectively. Because landslides only covers small 

fraction of the study area, the result detected by the model with loose criteria set 

for the parameter thresholds can be prone to commission errors. This leads to 

user accuracy as low as 5.0% and 20.2% for 2008 and 2009, respectively. For 

conservation purposes, commissions cause no big problems, whereas omission 

errors overlook hazardous areas. Therefore, this model remains meaningful 

though further effort is required to filter the commission errors.  
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Table 5.2.  Model accuracy for 2008 training samples in polygons 

Category Landslides 
(hectare) 

Non-landslides 
(hectare) 

Producer 
accuracy (%) 

Overall accuracy: 
76.61% 

Average accuracy: 
51.47% 

  

Landslides 75.54 1,430.51 5.02 
Non-landslides 105.88 4,957.16 97.91 
User accuracy 

(%) 
41.64 77.61   

 
Table 5.3.  Model accuracy for 2009 training samples in polygons 

Category Landslides 
(hectare) 

Non-landslides 
(hectare) 

Producer 
accuracy (%) 

Overall accuracy: 
72.51% 

Average accuracy: 
54.19% 

  

Landslides 317.18 1,245.36 20.3 
Non-landslides 560.31 4,446.24 88.7 
User accuracy 

(%) 
36.15 78.12   

 

Table 5.1.  Tries of different combinations of thresholds for model parameters 

tries 
slope 

(degree) 

DEM 

roughness 

(m) 

curvature 
OHM 

(m) 

OHM 

roughness 

(m) 

Wetness 

Overall 

accuracy 

(%) 

Producer 

accuracy 

(%) 

Omission 

error (%) 

User 

accuracy 

(%) 

Commission 

error (%) 

1 >22 <1.8 >-0.15 <25 <4.5 >0.5 53.59 15.67 84.33 56.45 43.55 

2 >23 <1.8 >-0.15 <25 <4.5 >0.5 53.81 15.68 84.33 56.1 43.89 

3 >24 <1.8 >-0.15 <25 <4.5 >0.5 54.22 15.68 84.32 55.46 44.54 

4 >25 <1.8 >-0.15 <25 <4.5 >0.5 54.72 15.75 84.25 54.93 45.07 

5 >22 <1.7 >-0.15 <25 <4.5 >0.5 54.95 15.76 84.24 54.58 45.42 

6 >23 <1.7 >-0.15 <25 <4.5 >0.5 55.35 15.77 84.23 53.94 46.06 

7 >24 <1.7 >-0.15 <25 <4.5 >0.5 55.91 15.84 84.16 53.31 46.68 

8 >25 <1.7 >-0.15 <25 <4.5 >0.5 56.14 15.84 84.16 52.97 47.03 

9 >22 <1.6 >-0.15 <25 <4.5 >0.5 56.55 15.86 84.16 52.32 47.68 

10 >23 <1.6 >-0.15 <25 <4.5 >0.5 57.16 15.93 84.07 51.61 48.39 

11 >24 <1.6 >-0.15 <25 <4.5 >0.5 57.09 15.74 84.06 51.26 48.74 

12 >25 <1.6 >-0.15 <25 <4.5 >0.5 57.8 15.76 84.04 50.62 49.28 

13 … … … … … … … … … … … 
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Figure 5.12 Landslide prediction with geomorphometric model: (A) Prediction 

of 2008 landslide susceptibility based on 2005 landslides in vector segments. 

(B) Prediction of 2009 landslide susceptibility based on 2005 landslides in 

vector segments. 

 

5.5 Summary of establishing the geomorphologic model 

Both of the LiDAR datasets used in this study, including the one obtained 

from the Ministry of the Interior in 2005 and the one obtained from July 23, 

2010, to July 28, 2010, were manually edited for ground points. This editing 

produced a DEM and DSM grid of 1-m resolution. The parameters of the 

geomorphometric model were generated using these high resolution data. These 

parameters include slope, curvature, OHM, OHM roughness, and topographic 
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wetness index. Based on the training samples of landslide polygons in 2009, 

modeled results give an overall accuracy of 65.8%. Because the recurrent rate 

from 2005~2009 is more than 55%, the model includes buffer zones of old 

landslides, river bank, and upstream erosions. To account for sliver noise, 

polygons smaller than 50 m2 were filtered out. The accuracies of the model 

results improved to 76.6% and 72.5% when using training samples of landslide 

polygons in 2008 and 2009, respectively. These results show that the 

geomorphological model proposed is effective for landslide extraction.  

To improve the model, other physiographical regions should be considered 

to calibrate the parameters. In addition, more parameters including hydrological 

conditions and geological environments should be considered to ensure the 

inclusion of all possible factors of susceptibility. Rainfall is one of the most 

important factors in hydrological conditions. The critical rainfall and rainfall 

intensity required to trigger a specific landslide is a challenge for future research. 

Soil moisture is another important factor in hydrology which might affect 

landslide occurrence and requires further study. The attitudes of geological 

formations and the strength of rock bodies are the major factors that should be 

considered for inclusion in the model. As the national Taiwanese LiDAR Project 

progresses, more datasets of multi-temporal and various physiographical settings 

are becoming available. Future research should also investigate the dependence 

of morphometric parameters on triggering events or geographical locations. 
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Chapter 6 Conclusions and Future Works 

 

6.1 Conclusions and contributions 

In conclusion, a comprehensive review and methods in using airborne 

LiDAR data for landslide investigations are made in this research. The methods 

developed in this research cover the areas for landslide detection, for landslide 

volume estimation and multi-temporal volume change analysis, and for 

establishing a landslide extracting model. Selected examples from both shallow 

and deep-seated landslides are used to demonstrate and prove the effectiveness 

for the cases in Taiwan and for the airborne LiDAR data acquired. Generally, it 

is proved airborne LiDAR data can be a good tool for extracting morphometric 

features of Taiwan landslides. 

 

6.2 Recommendation for future study 

Technique of OOA segmentation method for the detection of deep-seated 

landslides in dense forest should be developed especially for the high relief 

terrain of Taiwan. Uncertainties of LiDAR analysis due to adverse factors 

should be further explored to minimize the problem in multi-temporal change 

analysis. Future research should also investigate the dependence of 

morphometric parameters on triggering events or geographical locations. 

Another research area will be the application of full waveform to detect the 
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subtle reflection from the forest floor, thus to increase ground point densities of 

densely-vegetated area and to suppress the uncertainties of the DEM in this 

environment. 

To improve the model for automatic extraction of landslides, other 

physiographical regions should be considered to calibrate the parameters. In 

addition, more parameters including hydrological conditions and geological 

environments should be considered to ensure the inclusion of all possible factors 

of susceptibility. Rainfall is one of the most important factors in hydrological 

conditions. The attitudes of geological formations and the strength of rock 

bodies are the major factors that should be considered for inclusion in the model. 

Finally, a national geohazard mapping program employing integrated 

airborne LiDAR and digital photography was launched by the Central 

Geological Survey. The national mapping program, spanning 2010 to 2015, was 

dedicated to capture an entire territory of the country with airborne LiDAR and 

digital imagery with the aim to explore geological hazards (Liu and Fei, 2011). 

More datasets of multi-temporal and various physiographical settings are 

becoming available. More researches should investigate the dependence of 

morphometric parameters on triggering events and geographical locations. 
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Appendix 1 Acronym 

Acronym Definition 

ASCII American Standard Code for Information Interchange 

ASPRS American Society of Photogrammetry and Remote Sensing 

CGS Central Geological Survey 

CHM Canopy Height Model 

DBM Digital Building Model 

DEM Digital Elevation Model 

DHM Digital Height Model 

DOM Digital Orthophoto Map 

DSM Digital Surface Model 

DTED Digital Terrain Elevation Data 

DTM Digital Terrain Model 

GCPs Ground Control Points 

GIS Geographical Information System 

GPS Global Positioning System 

IAEG International Association of Engineering Geologists 

IMG ERDAS IMAGINE file format 

IMU Inertial Measurement Unit 

LAS LASer file format 

LiDAR Light Detection and Ranging 

MOI Ministry of the Interior 

NSDI National Spatial Database Infrastructure 

OHM Object Height Model 

POS Positioning and Orientation System 

RMSE Root Mean Square Error 

SVM Support Vector Machine 

TIN Triangulated Irregular Network 

TWD97 Taiwan Geodetic Datum 1997 

TWVD2001 Taiwan Vertical Datum 2001 

USGS US Geological Survey 
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1977 工業技術研究院礦業研究所遙測小組技術員 

1981 工業技術研究院礦業研究所遙測小組助理研究員 

1984 工業技術研究院能源與礦業研究所所海外礦業發展室副研究員 

1988 工業技術研究院能源與礦業研究所所海外礦業發展室研究員 

1991 工業技術研究院能源與資源研究所遙測技術研究室研究員兼副主任代理主任 

1994 工業技術研究院能源與資源研究所土地資源研究室研究員兼副主任 

1996 工業技術研究院能源與資源研究所礦產資源研究室研究員兼主任 

2001 工業技術研究院能源與資源研究所礦產資源研究室正研究員兼主任 

2002 工業技術研究院能源與資源研究所遙測與資訊技術研究室正研究員兼主任 

2004 工業技術研究院能源與資源研究所永續資源組正研究員 

2006 工業技術研究院能源與環境研究所遙測與資源資訊研究室正研究員 


