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ABSTRACT

Taiwan is located on the active collision zone leetww the Eurasian plate and the
Philippine Sea plate. Mountains have a high relfd rock formations are highly
fractured and fragile. These physiographic settiags unfavorable to landslide
susceptibility. LIDAR-derived data can be usednwesstigate any type of landslides
including both shallow and deep-seated ones. Nesleds, LIDAR data are not yet a
common tool for landslides investigations thougls ttechnique has opened new
domains of applications that still have to be depetl. Applications of LIDAR in
landslide investigations can be classified as: @gjection and characterization of
landslides which include the recognition of landis§ and their subsequent application
in susceptibility analysis; (2) Monitoring of disggement or volume change of
landslide bodies; (3) Modeling for the movement lafdslides or the automatic
extraction of landslides. The purposes of this agde are to develop methods for
understanding all these 3 aspects: (1) Landslidegration for both shallow and
deep-seated landslides with expert-based and sgomatic approaches with cases
from northern and southern Taiwan; (2) Landslidrine estimation for both shallow
and deep-seated landslides with multi-temporalARDlata in southern Taiwan; and
(3) Modeling landslide extraction with 6 geomorplatnt features including slope,
curvature, OHM (object height model), OHM roughneasd topographic wetness
index which are derived from multi-temporal LiDARtd acquired in 2005 and 2009

in southern Taiwan.
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For exploring the prospects and limitations of LiRATechnology, the
significant classification scheme and landslidetuess are concisely reviewed.
Subsequently, both favorable and adverse factorsapplying LIiDAR data for
landslide investigation are discussed on basishef dxperiences gained so far in
Taiwan. It is concluded that the awareness of thvese factors is critical in using the
LiDAR products for landslide investigations..

In the experiment of landslide detection by indiadsLIDAR point-cloud
density, classification results from the indicesiviid from the proposed four kinds of
densities are verified by the result obtained byhnad interpretation of the derived
NDSM images. The datasets for this study are irar-ICounty after Typhoon
Kalmaegi on 17 July 2008. The results show thatopgr definition of the parameters
for the indices is most critical for the detectioh shallow landslides. Landslides
recognition of the same area was also done by al-pased method and an
object-oriented method combining area-based se@tmemtand a Supported Vector
Machine (SVM) method. The geomorphometric feataeglied in the classification
include Slope, OHM, and Shaded Relief which arévddrfrom LIiDAR data , as well
as features of RGB, Greenness, and NDVI which ared from concurrent images.
This case shows the object-oriented SVM methodetteb than a pixel-based SVM
method in classification accuracy and the most mamb features include slope and
OHM. In addition, deep-seated landslide under tazan be detected in this area under
expert-based shaded-relief analysis of micro-mdggyo

In the experiment of landslide volume change withitrtemporal LIDAR data
acquired in 2005 and 2010 in southern Taiwan, begional approach and approach
of individual landslides for volume estimation araéised. For the estimation of
regional sedimentation, two methods are proposgda(simple DoD method; (2)
Method of Accumulating Individuals. For the estimatof each individual landslide,
three methods are proposed: (1) Method of 3D Sexti¢2) Method of Average
Sections; and (3) Grid Method. These methods atedewith a deep-seated landslide

(Hsiaolin Landslide) and with a selected map-sheef in Namashia District of
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Kaohsiong City. Because the area and volume of gabitidual landslide in an area
can be estimated, it is straightforward to mode telation between A (fh and
volume V (m) of landslides, V = kA The result of the Ternbausan-One area shows
that k = 0.099, a = 1.395, and R-squared coefficodérdetermination = 83.7%. The
empirical formula reflects different physiograpleenditions including geology, soils,
climate and denudation processes.

In the experiment of establishing a geomorpholdgicadel for extracting
landslides using multi-temporal LIDAR data of higlacuracy and high resolution.
Two sets of LIDAR data were acquired for before aftdr a heavy rainfall event. The
landslides which took place from 2005 to 2009 welassified automatically by
satellite images, and subsequently the landslidas mterpreted and edited manually.
Geomorphometric parameters including slope, curea@HM, OHM roughness, and
topographic wetness index were then extracted usiegcils of landslide polygons
overlaid on respective thematic maps derived fraAR, DEM and DSM. The
ranges of every parameter were derived from thessts of the landslide area. Some
selected non-morphometric parameters were alsaded!|in a later stage to account
for all possible features of landslides, such agetegion index and geological strength.
The ranges of the parameters of landslides werenzed for the model by the
statistics of the landslide area. The overall amcypredicted by the model was 64.9%.
When the buffer zones of old landslides and riviergireas were included, the overall
accuracy was 64.4%, showing no improvement. Whedslades smaller than 50 m2
were filtered, the overall accuracy reached 76.6% @2.5% for 2005 and 2009,
respectively. The results show that the geomorgicéd model proposed in this
research is effective for landslide extraction.

In conclusion, the methods developed in this retefor landslide detection, for
multi-temporal volume change analysis, and for ldistaing a landslide extracting
model are proved to be effective for the casesanvdn and for the airborne LIDAR
data acquired. Generally, LIDAR data can be a gootfor landslides investigations.
A national geohazard mapping program employinggrateed airborne LIDAR and
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digital photography was launched by the Central I@goal Survey after Typhoon
Morakot hit southern Taiwan in 2009. The nationalpmng program, spanning 2010
to 2015, was dedicated to capture an entire teyritd the country with airborne
LIDAR and digital imagery. More datasets of muértporal and various
physiographical settings are becoming availableehiigjue of OOA segmentation
method for the detection of deep-seated landsliddense forest should be developed
especially for the high relief terrain of Taiwan.th@r research topics include
uncertainties of LIDAR analysis, the dependencemairphometric parameters on
triggering events or geographical locations, andviaveform for detect the subtle
reflection from the forest floor, thus to increaggound point densities of
densely-vegetated area and to suppress the umtiedaiof the DEM in this

environment.

Keywords: remote sensing, natural hazards, geomamptry, image enhancement,
NSDI



DEDICATION

This dissertation is dedicated to the memory
of my beloved father, Liu Ma-Hsiang (1910-1993)
and mother, Liu Jhuang-Hsio (1916-2008)
for their love, humble, and hard-work in raisingildren:
Jin-Tsai Liu, Jin-Shi Liu,
Jin-Cheng Liu, Jin-Shing Liu,
Yue-Mei Liu, Me and Chiu-Guei Hsu.



ACKNOWLEDGEMENTS

Many people have contributed to my success in cetimgl this dissertation,
especially my family, my advisor Prof. Tian-Yuanilghthe outstanding committee
members for reviewing my dissertation, my colleague Industrial Technology
Research Institute (ITRI) and in LIDAR Technologyo.CLtd., and peers of

professional geo-infomatics worldwide.

| am fortunate to have an outstanding committeerémiewing my dissertation
including Prof. Dr. Liang-Chien Chen, Prof. Dr. Giyi Lee, Associate Prof. Dr.
Yu-Chang Chan, Prof. Dr. Jyh-Jong Liao, Prof. Dnefdway Hwang, Associate Prof.
Dr. Tee-Ann Teo, and Prof. Dr. Tian-Yuan Shih.

| have been involved in the profession of remotessgy and photogrammetry since
my first job in 1977 when | enrolled to the newlstablished remote sensing group in
Mining Research and Service Organization of ITRI. started with aerial
photo-interpretation for geological applications.ithVthe advancement of the
technology, Prof. Shih cooperated with ITRI introdd airborne LIiDAR technology
to Taiwan after the major disaster JiJi Earthquakel999. Subsequently, with
supports by National Chiao Tung University, NatiloGantral University, National
Taiwan University, and National Cheng Kung UnivrsITRI started an operational
experiment of airborne LIDAR from 2004 to 2006 antloduced this new technology
to the industry of Taiwan with sponsorship of thaistry of the Interior, Republic of
China (Taiwan). In 2005, Dr. Yu-Chang Chan of lngé of Earth Sciences, Academia
Sinica coordinated with ITRI and Chung-Hsing Sur@ampany initiated a geological
study using airborne LIDAR with sponsorship of QahtGeological Survey. The
study continued from March 2005 till December 20Ihe effectiveness and
significance of airborne LIiDAR for geological studgve been explored and validated
by this 7-years 2 phases of study. Thus, after kuiralisaster in 2009, Central
Geological Survey launched a national LIDAR mappprogram dedicated to the
investigation of geological hazards. | gained thevdedge of airborne LIDAR as well
as natural hazards from peers of this professigpeé&ally, | acknowledge all of the

xi



colleagues in ITRI worked with me in this period tohe for promoting airborne
LIiDAR technology including Kuo-Shin Hsiao, Da-ko €h Wei-Chen Hsu, Hsin-Yu
Hou, Tzu-Yi Liao, Chi-Chung Lau, Miao-Hsiang Peagd Chieh-Cheng Yen.

| also must acknowledge Dr. Jiann-Yeou Rau foirnraluable discussion when he
was a Ph. D student and associate specialist iteCtar Space and Remote Sensing
Research, National Central University, under thgesusion of Prof. Dr. Liang-Chien
Chen. From 2004 to 2009, with the cooperation &l|TProf. Dr. Chen was in charge
of research and development on building reconstmudtom LIDAR Data and Aerial
Imagery. The discussion with Dr. Rau includes nawmg scheme of landslides and
joint efforts in developing software tools for mahuinterpretation of shallow
landslides in addition to the application of photogmetric means for automatic

detection of landslides.

| am also indebted to Prof. Dr. Chyi-Tyi Lee fostiriendship and long support.
Since Prof. Lee inaugurated the first Director oaduate Institute of Applied Geology
in 1991, National Central University, | have learsd much landslide-related
knowledge from him because seismic and landslidardaanalyses are his academic

interests and | have the privilege to discuss Wwith and his research students.

Finally, to my family, my wife Linda Feng-Chin Limyy son Luis Yao Liu, and my
daughter Sofia Shao-Wen Liu, thank you for listgnend understanding when |

responded to your many requests with excuses tégsimnal matters.

Xii



TABLE OF CONTENTS

PR BB s ii
AB ST RA CT et e e s b s ne e r e e nr e e e enns Vi
DEDICATION e san e s n e e n e e eneeeneas X
ACKNOWLEDGEMENTS ..ot XI
LIST OF TABLES ..o XVi
LIST OF FIGURES. . ...ttt XVil
CHAPTER LINTRODUCTION . ...t teeee e e e e e e e eeas 1
1.1 Research Background and Motivation .....cccceeeooeeivveeiiiiiieecececiee e 1.
1.2 RESEArCH PUIMPOSES ... ot ceeeeeeiee et e e e e 6
1.3 Organization of the DiSSertation........cccceceiieeeereeiiiii e e e eeeeene 7
CHAPTER 2 GEOMORPHOMETRY OF LANDSLIDES AND AIRBORNE
LIDAR TECHNOLOGY ... eeeems e 9
2.1 Significance of Geomorphometry of Landslides..........cccccooviiviiiiiiiiinneenne, 9
2.2 Introduction to Airborne LIDAR TeChnolOgy e ..ovveeeveiiiiiiiiiiiiiiiiieeeeeceiins 13
2.3 Favorable Factors of using LIDAR for Landslideestigations.................... 17
2.4 Adverse Factors of using LIDAR for Landslidedstigations....................... 20
CHAPTER 3LANDSLIDE DETECTION USING AIRBORNE LIDAR DATA .25
3.1 Detection of Shallow Landslides.........ccccoiiiiiiiiiiiiiiees 26
3. 1.1 INtrOAUCTION ...t 26
3.1.2 Method 1: Expert-based Method.........ccoeeiiiiiiiiiii e, 27

Xiii



3.1.3 Method 2: Method with Indices of Point CldDdnsity ....................... 30

3.1.4 Method 3: Method of NDSM SIIiCING......ommmmeeieeeiieiiiiie e 38

3.1.5 Method 4: A Hybrid Object-oriented Method.................cveeeee, 44
3.2 Detection of Deep-seated Landslides ......cccccoeevviiieiiiiiiiccviccceeee, 52.

3.2. 1 INtrOAUCTION ... 52

3.2.2 Method 1: Expert-based Methods ... eeeiiiiiiiiiiiiiiiiieeeeeeeeennn. 94
3.2.3 Method 2: Texture or OOA Methods......coeeeeiiiiieiiiiiiiiieee e 57
3.2.4 Method 3: Multi-temporal Analysis .......ccccccoevviiiiiiieeeieccie e, 62

CHAPTER 4 LANDSLIDE MONITORING AND VOLUME CHANGE

ANALYSISOF LANDSLIDES.......cccot it 72
73 I 1Y (0T [ o [ o T P 72
4.2 Methods of Landslide Volume AnalySiS..........coouuiiiiiiiiiiiiiiiiii e, 73
4.3 Study Area and MaterialS ...............uommmeeeeeeeeeeeiiae e eeeeeee 81
4.4 Results and DISCUSSION ......cooeeeeiiiieceeeeee e e 83

IMODEL .. 89
5.1 INETOTAUCTION ..ttt e e e e e e e e e e e e e e e eeeeeeessbennnneeeeeeenees 89
5.2 Study Area and Materials ...............mmrennnn e ee e D
5.3 The Geomorphological Model for Landslide EXti@T....................cccce.ee. 96
5.4 Results and DISCUSSION .........ccooeeiieeeeeeeiiee e e 103
5.5 Summary of establishing the geomorphologic rhade............................ 112

Xiv



CHAPTER 6 CONCLUSIONSAND FUTURE WORKS........coooie 114

6.1 Conclusions and contribULiONS ..........ccoo oo 114

6.2 Recommendation for future Study ........ccccceeeeriiiiiiiiiii e 114
REFERENGCES.... ... et e e e e e e e e e e e e anenees 116
APPENDIX LACRONY M ...t mee e e e e e et e e e 139

XV



LIST OF TABLES

Table 2.1 Table 2.1 Types of landslides (Varne38)Q..............cevvvviiiiiiieeeeennnnns 10

Table 2.2 Simplified classification landslide scleeapplied to Taiwan ...................... 12
Table 3.1 The criteria for the recognition of ralidinduced landslides...................... 28
Table 3.2 Attributes of the LIDAR data used in gaensity study...........ccccvvvneeeenne. 35
Table 3.3 Confusion table of OOA classification @mnkl-based classification ......... 52
Table 5.1 Tries of different combinations of thralsls for model parameters .......... 110
Table 5.2 Model accuracy for 2008 training sampigsolygons...........cccccevvvvvvnnnnnn. 110
Table 5.3 Model accuracy for 2009 training sampigsolygons..........ccccceevvvvvnnnnnn.. 110

XVi



LIST OF FIGURES

Figure 2.1 An idealized rotational slide showimgnenonly used nomenclature for

labeling the parts of a landslide (Cruden and \&rt896)................ccc.e 10
Figure 2.2 Suggested nomenclature for landsligd&BG Commission on

Landslides (1990). .....ccoouiiiiii e 11
Figure 2.3 Flowchart of Airborne LIDAR Survey aAdplications.. ..........cccceeevvvnnnn.. 15
Figure 2.4 Multiple echoes (returns) of LIDAR peds G denotes a point on the bare

(0] {08 o R USRS 19
Figure 2.5 Manual editing of point clouds is a mespecially for vegetated and

(070 01 01 1S3t (=] 1 = 1| 24
Figure 2.6 Example of the resultant DEMs due ta @aids and artifacts................... 24
Figure 3.1 A scheme showing the methods propos#ds study for landslide

detection using LIDAR standard products. ....cccccceoovveeiiiiiiniiiieeeiiciieeeeee 26
Figure 3.2 Shaded-relief image of LIDAR DSM (Ledt)d DEM (Right) at the

southern bank of Shimen Reservoir, North Taiwan.........cccccoeeveeiennnnnnnn. 30
Figure 3.3 Orthographic aerial photograph (Lefif ®SM-shaded relief (Right) at

Alishan of central TAIWAN. ...........uuuuuummmmmm e enas 30

Figure 3.4 Schematic diagram showing the geonadtayrborne LIDAR scanning. .. 32

Figure 3.5 Selected results of four types of pdarisity and their distribution under
various searching radii with Im grid........ccceeeiiiiiiiiiiiiiiereiciee e . 3

Figure 3.6 (A) Point cloud distribution with abute of flight strip source ID. (B)

Density map of multiple-return echoes with r=1.414ma grid spacing =

Figure 3.7 (A) Gray map of nDSM of the study al&).Distribution of the locations

of points with extra-ordinary values........cee.coeeeeeieeiiiiiniieeeeeeiiiiineeenn 42,
Figure 3.8 Gray maps of nDSM(A), DSM(B) and DEM(C)...........cccuvveiiiiriiiiinnnnnnn. 43
Figure 3.9 Gray-level slicing of various NDSM r@8g...........cccuuueiiiiiiiieiiiiiinnneeee, 44
Figure 3.10 Flowchart of OOA data processSiNg...........cceevvvvvvvciiieeeeeeeniiinneeennnn. 49
Figure 3.11 The three derivatives of othophotolvDdhd DSM for data entry........... 49

XVii



Figure 3.12 Study Area and Ground Truth for OOABLTE..........ccevvvviiiiiieeeeeeei, 50

Figure 3.13 Results of the hybrid OOA method..........coooovvviiiiiii e 51
Figure 3.14 The results generated by pixel-bad&d 8assification. ...........c............ 52
Figure 3.15 A comparison of two images: coloragrhotograph (left) and
shaded-relief image of airborne LIDAR DEM (righbefvis, 2006)............. 56
Figure 3.16 Deep-seated landslides revealed idRi{derived image at I-Lan.. ....... 57

Figure 3.17 Shaded relief image of the Coringadside and immediate
surroundings. The primary kinematic units withie 8lide are earthflows E1
and E2, the area of compression Ul and the Blosy with incorporated
limestone blocks (McKean and Roering, 2004)..........coovvvviieiieeeeeeeinnnnnn. 59

Figure 3.18 Shaded relief image of the SalmorsHatidslides for semivariogram
and fractal analyses. UB=Upper block, B=Body, T=T&denn et al., 2006).60

Figure 3.19 LiDAR-derivatives of Li-Shan landslidemplex, central Taiwan........... 61

Figure 3.20 The location of Hsiaolin Slide and Wi@nity. The landslide boundary is

draped on the 3D perspective view of aerial phatplyitaken after the

oY= | PP 65
Figure 3.21 Three DSMs and DEMs of Hsiaolin Slide..............ccccvviiiiiiiininennns 6.6
Figure 3.22 Topographic Features of Hsiaolin Shdd its Subdivisions. .................. 68
Figure 3.23 (A) color coded image of V32; (B) hsddelief image of V32.. ............. 69
Figure 3.24 Cross section of Hsiaolin Slide al&ng-B' shown in top diagram of Fig.

30 0=31.7°% BT22.3% 8.6 i 70

Figure 3.25 A close-up of the depletion area aabls Slide. Remnants of

unconsolidated materials still exited on the badase. The dash-line is the

isoplethic line with -20 m. The area covers 48.68tares.. ..........cccccccene.... 70
Figure 4.1 A simple difference of 2010 DEM and 2@EM and the DoD result

where the legend shows the value of the differe@meeeters........................ 75
Figure 4.2 Different thresholds applied to the DeBults: (A) not applied; (B) a

threshold Of -3 M. .. s 76

Figure 4.3 Each individual landslide (B) can b&a&sted from the overall landslide

XVili



map (A) generated by DoD method. ...........cccooiiiiiiiiiii e, 77
Figure 4.4 Landslide volume estimation using thaeelslide dimensions.................. 78

Figure 4.5 Landslide volume estimation using agasoss sections of fixed-interval.

............................................................................................................... 80
Figure 4.6 Landslide volume estimation using d gfilandslide depths.................... 80
Figure 4.7 The study area of Namashia Distridcf@bhsiong City. ............cccceeeeeeeens 82
Figure 4.8 LIDAR Data used in Namashia study area...........cccccveeeeeeveeennnnnnnn. 83.

Figure 4.9 Hsiaolin Slide and its 7 subdivisiohise landslide is represented by an
ellipse for the dimensions of width and length.d&léines are isopleths of -5
m and red lines are isopleths of +4m. Subdivisios the major landslide
0100 Y PP SSPPUPRR 84

Figure 4.10 Interpretation of a 2D landslide magoasis of orthophoto and

DoD-shaded IMages...........oiiii i 87
Figure 4.11 extraction of individual landslides anade one by one from the whole
|AaNASHIAE MAP. c.veeiieie e ————— 88
Figure 4.12 Empirical formula of landslide are&®) and volume V (1) of the data
points of landslides in the study area, VEKA..........cccccoeovveeiiiicccieeeee. 88
Figure 5.1 SPOT image taken on 2009/08/24 aftphdgn Morakot. The 8-digit
numbers are the map numbers of national 1/5000s@@a@s. ...............euven... 91

Figure 5.2 A regional geological map near the simavillage (Song et al., 2000).. .. 92
Figure 5.3 Satellite images of the study area f20@5 to 2009. Bright grey features
on the images are mostly landslide scars. Landsbkdarrence increasingly
increases in this period of time, as shown in BB, .............ccoeevviiiineenee. 93
Figure 5.4 DEM and DSM images before Typhoon Motak............cccccccoeveeirnnnnnnn. 95
Figure 5.5 3D perspective views of Hsiaolin Vikalgefore and after Typhoon
Morakot. Hsiaolin Landslide has a volume of ~25lion cubic meters with
a maximum depth of 85 m on top area and a maxinaugth of 3396 m
from top to the other side of Chisan River. Thalkide completely
destroyed the village.. .........coo oo 95

XiX



Figure 5.6 DEM and DSM obtained after Typhoon MotaAs compared to those of
Fig. 4, dramatic landform change can be foundverrvalley as well as
mountain slopes, especially the example of Hsidddindslide. ................... 96

Figure 5.7 Flowchart of the geomorphometric madel.............cccoooeiiiiiiiiiinnnen. 98.

Figure 5.8 Landslide distribution between 2005 20@9. Landslides on images are
high-lighted with yellow polylines. New landslidase in red polylines
when comparing images taken in 2005 and 2008 (&}tawse in 2008 and
2009, rESPECHVEIY.. ..uiie e e e 105

Figure 5.9 The distributions of major LIDAR-derd/geomorphometric parameters
selected for landslide recognition in this studyeTToordinates of the maps
are (2098102566339) and (217602557916) for the lower right and upper
left, FESPECLIVEIY. ... e 106

Figure 5.10 Frequency distribution of geomorphmgrarameters of landslides in
2005, e —————— 111111t trar et e e e et e aaaanannnrnrees 108

Figure 5.11 Frequency distribution of geomorphagrarameters of landslides in

Figure 5.12 Landslide prediction with geomorphamenodel: (A) Prediction of
2008 landslide susceptibility based on 2005 laddslin vector segments.
(B) Prediction of 2009 landslide susceptibility bdon 2005 landslides in

VECLOr SEOMENTS. oot meee e e e e et e e e e e e eemnans 112

XX



Chapter 1Introduction

1.1 Resear ch background and motivation
Motivated by the tremendous loss and damages ofvafaidue to natural
disasters caused by the vulnerable physiographicaement (NFA, 2012) and
the newly availability of airborne LIDAR technologyue to the launch of a
national airborne LIDAR mapping program (Liu and,2011) and advances in
the researches on the use of LIDAR in landslidestigations (Jaboyedoff et al.,
2010&2012), this study is devoted to explore theliapbility of airborne
LiDAR data for investigation of landslides in Taimwa

Nearly three-quarters of the territory of Taiwand®5% of its population,
are exposed to frequent natural hazards (Dillegl.e2005). In the aftermath of
Typhoon Morakot, which dramatically affected south&aiwan on August 8,
2009, and August 9, 2009, and caused the worstdifigoin a century,
authorities realized that the country is lackindaded, accurate, and current
elevation data and aerial imagery covering theemgirritory of 36 000 ki To
address this problem, a national mapping prograemring 2010 to 2015, was
launched to capture an entire territory of the ¢ounvith airborne LIiDAR
(Light Detecting And Ranging) and digital imagetyi and Fei 2011). A
LiDAR DEM (Digital Elevation Model) and DSM (DigiteéSurface Model) and

color orthophotos represent a core part of thienat spatial data infrastructure.



Taiwan is located on the active collision zone lestwthe Eurasian plate
and the Philippine Sea plate. Mountains have a kigpe and high relief, and
rock formations are highly fractured and fragildne$e physiographic settings
are unfavorable to slope stabilities. Taiwan isoalscated on the path of
typhoons in northwest Pacific area. Torrential fialrduring the typhoon season
often triggers geological hazards. Landslides are of the most important
primary disasters.

In Taiwan, a typhoon can trigger hundreds, evemughnds, of shallow
landslides in mountainous areas (Lin and Jeng, ;2086@ng et al., 2005; Lin et
al., 2006). These landslides can deliver large amsoof sediment into local
reservoirs, reducing their water storage capaéiydéon et al., 2004; Mikos et
al., 2006). In addition, the turbidity of the waterthe reservoirs has a negative
effect on the sustainable operation of water suppdervoirs. The assessment
and inventory of landslides is essential for effectvatershed management and
sustainable development. However, because of #wpdterrain in Taiwan’s
mountainous watersheds, most landslides are urabkch The detailed
topographic mapping required for emergency mitagatmeasures cannot be
completed within a short period using conventiamakite surveying. Therefore,
improving the efficiency and accuracy of landslis®nitoring and mapping
using remote sensing techniques has become antampoesearch issue (Liu,
1987; Raju and Saibaba, 1999; Rau et al., 2007QRas et al., 2007; Herva et

al., 2003).



In planning optimal measures of disaster mitiggti@searchers often use
remote sensing images and digital elevation madefsap disaster features and
to predict disaster susceptibility. During or imnadly after a disaster event,
ground survey or photogrammetry, in addition to sersensing images, can be
used to obtain detailed topography data of theesidn area. Because of its
ability to obtain high-density point clouds andetir geo-referencing, LIDAR
can be used to obtain a more accurate and detapegraphic survey. LIDAR
generates accurate 3D coordinates of discrete merasnts. Subsequently,
DEM and DSM can be produced with high efficiencyn fropical and
sub-tropical zones of Taiwan, most of the terrairescovered by dense forestry.
Ground surface would be normally predicted by thefage of canopy in
photogrammetry if the ground points cannot be s&em two different
perspectives of a stereo-pair. One of the most imapbadvantages of airborne
LIDAR compared with conventional photogrammetrythat photogrammetry
requires two different lines of sight to both ske same points on the ground
from two different perspectives, but LIDAR only misea single laser pulse to
penetrate through the trees to measure the groandakth. This means that
LIDAR will have far fewer areas where the terrasnabscured by trees that
block the lines of sight. The images of bare grobefbre and after the event are
thus derived from LIiDAR surveys to understand clesnm the landscape and
their possible consequences. The geomorphomettars become good tools
for landslide detection, and are adopted in thidyst
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The general feature of a rainfall-induced landsbdeaerial photograph is a
fresh landslide scar with an elongated shape Idaattea relatively steep slope.
Landslides can occur in any kind of geology, ase¢hare some weathered
overburdens on steep slopes. In aerial photograahdslide features include a
bright tone, bare surface, and the other featunesvis in Table 1. Manual
interpretation uses both 2D and 3D features ofahdslides for recognition: 2D
features include tone, location, and shape, andfeziiures include location,
direction, slope, and shadow effects. A sound clamation of the automation of
landslide recognition should consider all thesesaisp

Geomorphometry is a major concern in manual inetgion.
Geomorphometry, also known as geomorphological yarsl terrain
morphometry, terrain analysis, and land surfacdyaisa(Hengl and Reuter,
2009), is the science of quantitative land surfacalysis. The purpose of
geomorphometry is to extract surface parametersoaietts using input from
digital terrain models. Pike (1988) used a dozeugs of parameters as terrain
descriptors by manually digitized digital terrairoaels. Pike used the resulting
"geometric signature or topographic signature" tategorize terrain
characteristics, and suggested the degree of ldadslanger. Topographic
signature of life and their processes are deemduktstrongly influenced by
biota (Dietrich and Perron, 2006). Guth (2001&20@8gd terrain fabric as
measures of a point property of the digital termaiadels and the underlying
topographic surface. This technique is also cattgabgraphic fingerprinting
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(Densmore and Hovius, 2000), and determines ttegitotof a landslide on the
slope. State-of-the-art technology such as higbluéen satellite images, digital
aerial photography, and airborne LIDAR has openedva era in the automation
of landslide recognition, especially the possipilit of applying
geomorphometrics. The extraction of land surfaceampaters is becoming
increasingly attractive for both stochastic andcpss-based modeling, as it
makes use of all the levels of detailed digitataier models. Topographic-based
analyses can be used to objectively delineate liled$eatures, generate
mechanical inferences about landslide behavior, eraduate recent landslide
activity (Glenn et al., 2006; Mckean and Roerin§04£). Surface roughness
derived from LIDAR DTM allows the objective measorent of landslide
topography. Eigenvalues of surface normals are féactwe parameter for
differentiating shallow landslides and debris flo¢@oodcock, 1977). Expert
knowledge of the geomorphometric properties of $idds may be required to
establish an automatic interpretation method. Hegolution and high accuracy
LIDAR DEM and DSM and orthophotos are now basicstibments of NSDI in
Taiwan (Liu and Fei, 2011). Therefore, it is higim¢ to further apply
geomorphometry in active landslide study (Liu et 2009).

Airborne LIDAR make it possible to map and evalu&rdslides in a
survey type of regional level (typically at scataaging from 1:10,000 down to
1:4,000,000 or even smaller), whereas the accucacy be as good as or
community level or site-specific level (typicallamy from 1:1,000 to 1:10,000).
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1.2 Resear ch purposes

The major future challenges in landslide invesiaret as reviewed by van
Westen et al. (2005) includes: (1) the use of &tailed topographic data; (2)
the generation of event-based landslide inventogpsn (3) the use of
event-based maps in spatial-temporal probabilmticleling; and (4) the use of
land use and climatic change scenarios in detestiinimodeling. This
viewpoint was also supported by a recent review Japoyedoff et al.
(2010&2012) on the use of LIDAR in landslide invgations. The later stressed
on airborne LIDAR for imaging relief by high-resthn digital elevation
models or 3D models and gave a general review féérdnt applications of
LIDAR for landslide, rockfall and debris-flow. Thiseview shows that
LiDAR-derived data can be used to investigate gpy tof landslides including
both shallow and deep-seated ones. NevertheleBsAR.idata are not yet a
common tool for landslides investigations though tBchnique has opened new
domains of applications that still have to be deped.

Applications of LIDAR in landslide investigationsaut be classified as: (1)
Detection and characterization of landslides whintiude the recognition of
landslides and their subsequent application in eqtgulity analysis; (2)
Monitoring of displacement or volume change of Btk bodies; (3) Modeling
for prediction of landslides. Therefore, the pugmof this research are to
develop methods for understanding all these 3 #&spec(l) Landslide
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recognition for both shallow and deep-seated ladhelsIwith expert-based and
semi-automatic approaches with cases from nortardhsouthern Taiwan; (2)
Landslide volume change with multi-temporal LiDARtd in southern Taiwan;
and (3) geomorphommetric modeling for the autometitraction of shallow
landslides with selected geomorphometric featuresh sas including slope,
curvature, OHM (object height model), OHM roughneasd topographic
wetness index which are derived from multi-tempiBlAR data acquired in

2005 and 2009 in southern Taiwan.

1.3 Organization of the dissertation

The remainder of this dissertation is organizedf@®ws. In Chapter 2,
summaries of classification schemes of landslides morphologic features of
landslides are introduced with subsequent reviewfavbrable and adverse
factors of applying LIDAR data for landslide inviggition, thus to perceive the
prospects and limitations of the new technology Clmapter 3, methods and
experiments for landslide detection for both sivaleind deep-seated landslides
are presented including expert-based interpretatmmhsemi-automated methods.
In Chapter 4, methods and experiments for the velestimation of regional
sedimentation and individual landslides with mtdtmporal LIDAR data are
presented and an empirical power law is deriveohdolel the relation between
A (m?) and volume V (1) of landslides. In Chapter 5, methods and experisne
for establishing a geomorphological model for estirey landslides using
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multi-temporal LIDAR data are presented. Final dodmg remarks and
suggestions for future researches are present€tapter 6. Appendix 1 gives a

list of acronym for the abbreviations used in thissertation.



Chapter 2 Geomorphometry of Landslides and Airborne

LiDAR Technology

This chapter is served as basics to the appliaidrairborne LIDAR data for
landslide investigations. At first, summaries ofasdification schemes of
landslides and standard morphologic features otidkates are introduced.
Secondly, a review of favorable and adverse facbepplying LIDAR data for
landslide investigation is made, thus to perceneedrospects and limitations of

the new technology.

2.1 Significance of Geomor phometry of Landslides

Landslide refers to any mass of earth materiallaigal by gravity. The various
types of landslides can be differentiated by thed&iof material involved and
the mode of movement. The most popular classiboaslystem based on these
parameters is shown in Table 2.1 (Varnes, 1978)onteephometry is
measurement of forms (size and shape) of geologisehomena or features.
Morphological features of landslides are propertielted to the external
structure of landslides. Airborne LIDAR survey atrga digital elevation
models in a resolution as high as one meter whiah reveal detailed landslide
features. The dimensions and geometry of a larel$ialve been described by
Varnes (1978) and subsequently modified by Crudeh\garnes (1996) using

the cutaway drawing in Figure 2.1. Subsequently,Ittternational Association



of Engineering Geologists (IAEG) created a Commoissin Landslides that has
produced the section and definitions of a landslitte landslide features and
dimensions (Figure 2.2) (IAEG Commission on Laraislil990). The feature of
different parts of a landslide may thus be recogphizom airborne LiDAR data.

Table 2.1 Types of landslides (Varnes, 1978).

TYPE OF MATERTAT,
ENGINEERING SOILS
TYPE OF MOVEMENT
BEDROCK Predominantly | Predominantly
coarse fine
FALLS Rock fall Debris fall Earth fall
TOPPLES Rock topple Debris topple Earth topple
ROTATIONAL
SLIDES Rock slide Debris slide Earth slide
TRANSLATIONAL
LATERAL SPREADS Rock spread Debris spread Earth spread
Rock flow Debris flow Earth flow
FLOW
(deep creep) (soil creep)
COMPLEX (Combinations of two or more principal types of movement)

ORIGINAL GROUND,
SURFACE O

(3
O

. ‘%\%\O“ Trarsverse

<
Transverse  Cracks

Figure 2.1 An idealized rotational slide showingntoonly used nomenclature
for labeling the parts of a landslide (Cruden ardriés, 1996)
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LLR

No. Nameof Landslide feature _ _ _ _ _
1 Crown Designations oLandslide dimensiol
2 Main scarp . .

3 Top 1. Wd -- Wdth of displaced ma

4 Head 2. Wr --  Width of surface ruptu

5 Minor scarp

6 Main body 3. Ld --Length of displaced ma

7 Foot

8 Tip 4. Lr -- Length of surface ruptu

9 Toe

10 Surface of ruptul 5. Dd --Depth of displaced mz

11 Toe of surface of ruptu

12 Surface of separati 6.Dr -- Depth of surface ruptu

13 Displaced materi 7. L --Total lengtl

14 Zone of depletio

15 Zone of accumulatic 8. Lcl -- Length of center lir
16 Depletion

17 Depleted mass

18 Accumulation

19 Flank

20 Original ground surfac

Figure 2.2Suggested nomenclature for landsl by IAEG Commission on
Landslides (1990)

For practical applications in the physiographic issmvments of Taiwan, th

classification scheme of landslides developed byn&¥a (1978) is simplifie
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into five major categories, namely, rock falls, lkha&-seated landslides,
deep-seated landslides, dip-slope and wedge skaelsdebris flows, as shown
in Table 2.2. Thus, types of landslides can beetkffitiated by their physical
appearance, which is especially useful for practgpgplications with remotely

sensed images.

Table 2.2 Simplified classification landslide scleeapplied to Taiwan

Type of Materials
Engineering Soils

A4

Type of Movements

Bed rock Debris Soils
Falls
Topples Rock falls _
: Shallow-seated slide
Siide Translationa D|p-slop;(ﬁdaend wedge
Rotational Deep-seated slide
Flows (not applicable) Debris flowy (not applicahle)

In this dissertation, for the detection of landsligatures only shallow and
deep-seated landslides are differentiated. Shallamdslide refers to the
landslide in which the sliding surface is located¢hm the soil mantle or
weathered bedrock (typically to a depth from fewideters to some meters).
Shallow landslides usually include debris slidesbrés flow, and failures of
road cut-slopes. Deep-seated landslide refers d¢oldhdslide in which the
sliding surface is mostly deeply located below thaximum rooting depth of

trees (typically to depths greater than ten mete®ep-seated landslides
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usually involve deep regolith, weathered rock, andedrock and include large
slope failure associated with translational, rotai, or complex movement.
These typically move slowly, only several meters pear, but occasionally
move faster. They tend to be larger than shallawddhdes and form along a
plane of weakness such as a fault or bedding plane.

As pointed out by Pike (1988&2000), geological ptraena such as
landslides may be characterized by sets of diagnasieasurements of
geo-features which is known as geometric signaflinerefore, morphological
features of landslides of the properties relatedth®® external structure of
landslides can be used for landslide detection, nfwti-temporal change
analysis, and landslide modeling. Spatial measoiréandslide include both 2D
planimetric attributes (X, Y) and 3D continuousvalgon or relief attributes (X,
Y, Z). Obviously, airborne LIDAR survey with standaproducts of point
clouds and grids of digital elevation models angitdl surface models should

have high potentials for obtaining the spatial meas of landslides.

2.2 Introduction to Airborne LiDAR Technology - standard products
Airborne LIDAR is mainly used for landslide invesdtion to create accurate
and precise high resolution digital elevation med®EM) and digital surface
models (DSM) in raster grids. Basic products db@ine LIDAR usually include
all points, ground points, DEM, and DSM (MOI, 2008he former two are
vectors of discrete points and the later two aterpolated raster grids of the
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discrete points of the former two. Neverthelessw ngpecifications and
recommendations may requires products such as tamealus digital aerial
photographs, full waveforms, and so on (Heidemanap).

Figure 2.3 is a flowchart showing the general psscef an airborne
LiDAR survey and applications. Generally, five pbsisf tasks are implemented
for an airborne LIiDAR survey, including: (1) Theaphing step; (2) Flights and
pre-processing — obtaining point clouds in locadjgcted coordinate system,
such as Taiwan Geodetic Datum 1997 (TWD97), Taiwartical Datum 2001
(TWVD 2001); (3) Classification step — The extraatiof points hitting the bare
earth from all point clouds for the production oDBAR DEM; (4) Quality
validation step - for assuring the conformance afaldy and quantity
requirements of the results to the selected gundelor specifications, such as
MOI (2006) or USGS Lidar base specification (Heidam, 2012); and (5) The
output step — Interpolation of discrete points e&dento obtain grids of specified
resolution and specified map-sheet extent, suci as grid of national 5k
map-sheets in Taiwan. Thus, DEMs and DSMs witlpstiid height are created
by interpolation of the discrete ground pointsThiwan, DEMs and DSMs with
orthometric heights are then prepared by applyingeduction of geoid
undulation model published by the Ministry of Thaerior, namely Taiwan
Vertical Datum 2001 (TWVD2001). Subsequently, aggtions can be made
with or without former or ancillary data. And, mostportantly domain
knowledge of the applications are critical and eyl
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" Raw points [ Boresight Data
Editing
All and ground points
\ 4
Quality Check [+ Ground check
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DEM and DSM
o Former LiDAR or
Applications other ancillary data
\4
I ntearation

Figure 2.3 Flowchart of Airborne LIDAR Survey ang@ications

A common practice of using rectangular grid foemblation from vector
format of discrete points to rater format is duétsoease of use and availability
of interpolation tools. TIN (Triangulated Irregul®etwork) or other raster
format can also be applied for geological applarai when point clouds are
available.

Usually, vertical accuracy will be specified in theDAR survey. The
vertical accuracy of DEM is evaluated by a direminparison of LIDAR DEM

and ground durvey for the analyzed study areasowdatg to the accuracy
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specification of LIDAR DTM by the Ministry of thenterior, Taiwan (MOlI,
2006), the accuracy of elevation should satisfyfdtlewing formula based on

some environment conditions and the production VD

o =a+b+ct (2.1)

where o is the tolerable errom is fundamental accuracy based on the
product level of DEM,b is the topography-adjustment factoe, is the
vegetation-adjustment factor, ahid the mean height of trees. The DEM used in
this study is derived from point cloud data with maal editing and strip
adjustment so the fundamental accuraxyis equal to 0.3 m and the
topography-adjustment factbris O in an area with a slope smaller than 5°, 0.2
m in an area with a slope 5°-15°, 0.5 m in an an¢la a slope 15°-30°, and 1.0
m in an area with a slope greater than 30°. Thete#éign-adjustment factaris
O for bare land, 0.2 for grass land, 0.3 for fqrestd 0.5 for dense forest.
According to the accuracy specification, the maxmiolerable error of DEM
in the dense forest area will be 8.3 m with a slgpeater than 30° if the mean
height of trees is 14 m. In geological applicationsst of the time expert
interventions are required for interpretation. Hfere, such a stunning
tolerance of absolute accuracy would usually nasegroblems in applications
though cares and awareness always have to be taken.

The relative error is also evaluated with overlapadand absolute error is

evaluated by a comparison with ground control moiAccording to the LIDAR
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guide (MOI, 2006), the residuals between stripthis study are smaller than 10
cm. A cross flight is designed in every 30 km parpeular to major flight lines
for checking discrepancies between flight stripdveF land-types and
transactions for ground survey are also selectedvédidating the accuracy
achieved in this phase. Ground data are collecye®BS and Total Stations.
The 5 designated land-cover types include (1) lzaré, (2) low vegetation, (3)
sparsely-vegetated forest, (4) dense forest, anduiding-up area. At least 30
measurements are collected for each of the coyastyin addition, 50 check
points are collected along a profile of 20 km indth crossing the flight strips.
As an example, the RMSE (root mean square errogracies on cover types of
bare land, low vegetation, spare forest and bugkdip areas are better than
0.16m for the datasets used in this study for Namaasase (see paragraph 4.3 in
Chapter 4). The average error for transactionkerstudy area is 0.131 m. And,
the RMSE is around 0.25 m for dense forest. Thémedardized procedures
assure the requirements of geodetic and vertiaaegudatum, as well as the

quality of the datasets.

2.3 Favorable Factorsof using LIDAR for Landdlide | nvestigations

The favorable factors or unique features that maikieorne LIDAR data so
useful for landslide investigations are summarizedhis paragraph. These
unique features include (1) multiple echoes anditir waveform; (2) high
density and high resolution; (3) high accuracyteirms of large area survey; (4)
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direct geo-referencing.
The capability of multiple echoes for one laselspumake it possible to

"see through" the forest. As shown in Fig.2.4, whegpulse is traveling down it
might hit an object before reaches the ground,thuas, an echo or return can be
expected from the point where the beam hit the abbjehe beam will travel
further downward and may hit another objects exceptpletely blocked by an
object or the ground. Currently, LIDAR sensors @k to record up to 7 echoes
per pulse and every echo can give a coordinatéhefirtteraction location.
Whereas, 4 echoes are recorded for most of LiDARs@s, such as the
prevailing sensor producers Leica and Optech. Péartboth of types A and B
are created by single echo, also known as only.gebiotype A, the points hit
the bare ground. For type B, the points hit on cigdove the ground. Points of
type C~F are created by multiple echoes and thetpanay hit several objects
before reach the bare ground. Types C and D indiwdeechoes, namely first
echo and last echo. Types E and F include threeeschhamely first echo,
intermediate echo and last echo. This feature oltiphel echoes is used in
assisting automatic and manual editing of groundtpo

The state-of-the-art pulse rate of airborne LiDA& de as high as 500
KHz (Roth and Thompson, 2008; Roth, 2010 & 201Merage point density of
airborne LIDAR survey can be as high as 20 poietssguare meter. The most
common specification is with an average point dgnsf 1 or 2 points per
square meter, which has been practiced in Taiwvaerefore, DEM/DSM grid is
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usually with 1 m or 2m. Because of the nature df@ne survey with a nominal
flight speed of circa 100 knots, efficiency of lar@rea survey with high
resolution and high accuracy can be achieved. thtiad, the technology of
direct geo-referencing of airborne LIDAR makes a@sgible to have accurate
coordinates of each individual points as well &sdarived grid. As compared to
the traditional stereoscopic study of aerial phaoterpretation, the direct
geo-referencing is an important favorable factdrug; it is possible to obtain
results of interpreted landslides with high positazcuracy.

All these unique features of airborne LIDAR makepdassible (1) to
observe 3D features of landslides; (2) to obstmdslides under forest cover;
(3) to detect micro-morphological features of deepted landslides; and (4) to

observe minor offset of lineaments of geologicaldure.
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Figure 2.4 Multiple echoes (returns) of LIDAR puds& denotes a point on the

bare ground.
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2.4 Adverse Factorsof using LiDAR for Landslide I nvestigations

This paragraph is to discuss some pitfalls whichy nmaislead the
applications of airborne LIDAR data for landslidevestigations. Cares and
awareness have to be taken for these pitfalls thaegearches can also be
conducted to find out methods for suppressing tieetainties caused by these
pitfalls. Trade-offs of resource allocations foe tbompensation between ideal
products and de facto products can be perceivedisndiscussion (Liu et al.,
2010).

These adverse factors are inherent in every stdgéil@AR data
production: (1) In general handling of data, thee problems of edge-matching
between map-sheets and interpolation methods;n(rdject preparation and
acquisition stage, there are problems of settingaupommon datum for all
surveys, and acquisition with an optimal point dignfer all points and ground
points; (3) In acquisition and editing stage, thebfem of artifacts (commission
error) and voids (omission error) (Liu et al., 20H@pkinson, 2006).

Due to the large volume of LIDAR point clouds, muelation for
DEM/DSM grids is usually carried out on basis ofpashneets which may
extend only around 2.5 km by 2.5 km as the instaidg5000 Taiwan National
Map-sheet Series. For a large study area whichomposed of multiple
map-sheets, discontinuities will exist between rmehpets. Measures are
required to handle this problem though it is nacsiped in LIDAR guidelines
(MOI, 2006). In addition, different interpolationlgarithm may generate
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different results of DEM/DSM form identical disceepoint cloud. Uses must
aware of this problem when using DEM/DSM datasetspecially when
comparing two different datasets.

A national common datum is required to keep alltigp@ata under the
same frame for analysis and comparison. Neverthelegpractice, this may not
be the case. Some dedicated LIDAR survey may aph@y own datum for
some reasons. As an example, the datum adoptedaiiyai LIDAR Survey
project is TWD97_CGS and the ground control powitshis datum are with
different coordinates in 2009 and 2011. Other sswifcdatum problem may be
due to that the DEM/DSM datasets are generatediffigreht sensors or by
different sensors such as INSAR or photogrammetry.

Density of ground points is an important index &ND quality. However,
high density of ground points may not be easilyi@atd for areas of high relief
or dense forest (Hsu et al., 2012; Liu and Fei120h general, low penetration
rate (i.e. the ratio between number of ground goamtd that of all points) may
be due to factors such as (a) nature of vegetatawer; (2) complexity of
topography; (3) ground surface conditions such e&ss, grass, or bushes; (4)
flight parameters which may be limited by constimiof schedule and budgets;
and others. Lack of ground points in certain ameficause data voids, and thus
cause problems or misunderstanding in applicatioms&ddition, high overall
point density may produce high density of grounth{s whereas it cannot be
assured due to the un-controllable factors aforéiomed.
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Figure 2.5 is an example of point cloud editing fittering non-ground
points and retaining ground points. Manual editofgooint clouds is a must,
especially for vegetated and complex terrain. Bheugh after manual editing,
the resultant DEM is still prone to errors in thewpoints of users in geology.
Why? Usually, there are around 4 millions of groynmints in a map-sheet of
2.5 km by 2.5 km. If the acceptability criterion get to 1 percent for either
commission error and omission error, the totalregoms points will be as many
as 80,000 points in one map-sheets. Points of cesnom error result in artifacts
in LIDAR image where the height of trees are usethe interpolation of DEM.
Points of omission error take place very oftenensk forest area and thus result
in flat mountain tops and rough terrains in slopmga. Figure 2.6 shows
examples of voids (A) due to lacking ground poiatstop of mountains and
artifacts (B) due to imperfect filtering of trees sloping areas. Figure 2.6(C)
shows that it is possible to improve this type laiwk by good practice of
manual editing.

Data voids mostly are resulted from gaps of fligbwerage and occlusion
by topography, clouds, and trees. in the experi@ficeaiwan National LiDAR
Mapping, Hsu et al. (2012) indicated that there &tgpes of gaps, namely (a)
water bodies; (b) cloud covers; (c) steep slopBsydliey bottoms; (e) mountain
ridges and tops; (f) lateral winds on high mountaips; (g) sudden change of
topography at the ends of a flight-line; and (hkgble mirror reflection or
absorption of laser energy on certain high mourgkopes. For the area covered
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by water bodies, there are no echoes due to wasorgtion of LIDAR IR
wavelength in 1064 nm. Cloud covers are the masbise problem in the high
mountains. Steep slopes in this area are almobkighsas 90 degrees. Volley
bottoms and mountain ridges or tops are out ofgasfghe setting pulse rates
and thus caused no returns of signals recorded. |dteeal winds on high
mountain tops causes the plane drifts, deviate filmenscheduled flight path,
and thus cause gaps of point clouds. Sudden cl@dngpography at the ends of
a flight-line due to safety reasons and thus cadlseswidth of flight-strip
becomes smaller on ridges. An unusual phenomerranitLiDAR echoes is
the possible mirror reflection or moisture absanpton certain high mountain
slopes where in reality are landslide terrains \wttdium slopes.

Due to the unique features of airborne LIDAR datze number of
publications discussing the use of LIDAR in landslistudies has grown
considerably during the last decade (Derron andoyadoff, 2010).
Nevertheless, some of the adverse factors discudsede are inherent to the
datasets. Awareness and cares have to be takencamsideration in the
applications. Some of the adverse factors that exmieg with the settings of
flight parameters might be amended with strict gmations, and thus requiring
more cost in data acquisition. A trade-off betwgeality and cost is obvious in

this case.
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Figure 2.5 Manual editing of point clouds is a mespecially for vegetated

and complex terrain.

Figure 2.6 Example of the resultant DEMs due t@daids and artifacts
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Chapter 3 Landslide Detection Using Airborne LiDAR Data

In this chapter, methods and experiments for ladelstetection for both
shallow and deep-seated landslides are presentelddimg expert-based
interpretation and automated methods.

In the experiment of shallow landslide detectiorigiiFe 3.1), four
methods are proposed and tested in this reseaesheln (1) Expert-based
Method - a test of conventional approach of mamladto-interpretation; (2)
Method of Indices of Point Density - using LiDARIipbclouds; (3) Method of
nDSM Slicing - using DSM and DEM; and (4) A hyb@DA Method - using
all standard products of LIDAR survey in an objedented classifier.

In the experiment of deep-seated landslide detectiree methods are
raised and two of them are tested in this researalmely (1) Expert-based
method - a test of conventional approach of maphato-interpretation with the
new possibility of micro-morphology analysis usingiDAR-derived
shaded-relief images. This is the main applicatbhiDAR data for the study
of deep-seated landslides; (2) Method of Textulated or OOA Method -
though this is not tested in this study whereasriaf beview is made for
demonstrating the significance; (3) Method of Mtd#tmporal Analysis - the

major extension of expert-method using multiple esmof LIDAR data for
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perceiving the activeness of deep-seated landslides
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Figure 3.1 A scheme showing the methods propos#uddgrstudy for landslide

detection using LIDAR standard products

3.1 Detection of Shallow Landdides

3.1.1 Introduction
An effective method for landslide detection hasbt able to give a correct

recognition of landslide body and to give an acudeelineation of landslide. In
other words, area size and spatial distributiotan@islides should be correctly
enumerated. In this research, four methods areopenp tested, and discussed.
Only samples are demonstrated for expert-basedoaieBach of the other three
methods uses the same datasets and discussed awithpérts including

introduction of the method, methodology, materiatg] results and discussion.
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3.1.2 Method 1: Expert-based Method

Rainfall-induced landslides are in majority shalleeated in the high relief
terrains of Taiwan. Techniques of stereoscopichaip interpretation have been
adopted for landslide inventory in Taiwan since 39vhen an aerial survey
team was established under Agricultural Councthefgovernment (Liu, 1987).
Though it is labor intensive, it is believed to riediable. The core spirit of this
approach is the synergy of human perception taudecboth 2D and 3D features
of the target and its environment. In the tradiiorphoto-interpretation
procedures, the most critical technique is to useesscope for perceiving the
sense of 3D features and an expert should be axtqdawith interpretation key
for the study area (Chang and Liu, 2004; Van Depkkaut, et al., 2005).
Shaded-relief images of DEM and DSM can be goodst#ubes for aerial
photographs for expert interpretation.

Table 3.1 shows the criteria used for the recogmibf landslides on aerial
photographs which are also applicable for usingAR>derived shaded-relief
images. The general feature of a rainfall-inducewislide is characterized by
the fresh landslide scars in elongated shape araield in a relatively steep
slope. It takes place in any kind of geology salas there are some weathered
overburdens. Features on aerial photographs indlueleright tone, the bare
surface, and the features shown in Table 3.1. Mantepretation uses both 2D

and 3D features of the landslides for recognitiime 2D features include tone,
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location, and shape. The 3D features include looatdirection, slope, and

shadow effects.

Table 3.1 The criteria for the recognition of railinduced landslides

Feature Description Discrimination rule
Tone Light, grey light Brightness
value>Threshold
Location | Near ridges, cut-off slopes, Trigger events and buffer
road-sides zone of the feature
Shape Spoon-shaped, elongated-oval, |Location-specific and

dentritic, rectangular, triangular |topography-specific
Direction | The drop direction of the landslidg Roughly perpendicular to
the gravitational vector on the the streams and
ground surface. topography-specific
Slope Depend on types of landslides. E{&lope > Threshold
Shallow-seated landslides > 45%;
Deep-seated landslides ~40%;
Debris flows ~10-20%.
Shadow | Depend on whether the landslidg$olar azimuth in related
are in shadow-side or sunny-side |to slope aspect

Figure 3.2 shows two shallow landslides on shaeédfrimages derived
from LIDAR DSM and DEM, respectively. Obviously, €uo the contract of
surface smoothness the landslide can be obsertent ba DSM-shaded image
rather than on DEM-shaded image. Another imporigsue is the occlusion of
landslide due to high relief . As shown in Figur8,3occlusion of landslide
features takes place everywhere in high mountadasadue to the nature of
central projection of aerial photography. Shadofeafmay become an annoy

or disturbance rather than an advantage in the hafjef mountain areas.
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LiDAR-derived images can be treated as true-orthages because they are
derived from point clouds of high accuracy.

The advantages in using LIDAR-derived images fod&ide detection for
expert method can be summarized as follows:

(1) Landslide features maybe overlooked or omitthee to shadow,
occlusion and vegetation cover using aerial photerpretation approach. These
adverse problems can be minimized by using DEM-athaahd DSM-shaded
Images as surrogates to aerial photographs.

(2) The objects above ground surface have beenvesiiior DEM whereas
those are remained for DSM. Therefore, DSM-shadeages exhibit better
contrast of landslides with surroundings than tb&tDEM-shaded images.
Therefore, for image interpretation of shallow Isides, DSM-shaded images
are better than DEM-shaded images.

(3) Various angles of illumination can be visuatizznd tested for gaining
better perception of landslides. As a comparido@.sun angle is fixed for aerial
photography. Shadow effects which are used to lpoitant factor for visual
interpretation can be optimized using LIDAR-derivethges.

(4) LiDAR-derived images are true-ortho images wivhich relief
displacement and distortions due to object heightsremoved. Therefore, the
result of landslide map obtained by interpretingDAR-derived images

possesses accurate coordinates on the map.
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Figure 3.2 Shaded-relief image of LIDAR DSM (Ledt)d DEM (Right) at the

southern bank of Shimen Reservoir, North Taiwan

Figure 3.3 Orthographic aerial photograph (Left) &8M-shaded relief

(Right) at Alishan of central Taiwan.

3.1.3Method 2: Method with indices of point cloud density
(A) Introduction

Basic products of airborne LIDAR include all poinground points, digital
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elevation model (DEM), and digital surface modeSW@). The former two are
vectors of discrete points and the later two aterpolated raster grids of the
discrete points of the former two. The DEM and D§iis are commonly used
for applications whereas point clouds are rareBdu&iDAR discrete points are
worthy of a further study due to the fruitful infoation adhered with the
attributes of individual points. Point density hlasen used as an important
indicator of DEM/DSM quality (Shih and Huang, 20Q6u et al., 2007; Puetz
et al.,, 2009; Raber, 2003). An understanding offtrest closure and crown
density can be obtained by inspection of the pdentsity distribution of point
clouds (Dubayah and Blair, 2000; Means et al., 20G&sset, 2002). Therefore,
point density derived from specific properties @it clouds can be used to
explore the possibility of extracting landslide arrhation from point clouds.
Visual interpretation of shaded-relief image dediveom DEM is usually
adopted by geologists whereas other LIDAR prodbetge not been commonly
applied. In this paper, possible derived indicesnfipoint clouds are discussed
first and then experiments of selected indicesmagle to find out the most

descriptive ones for landslide detection.

(B) Deriving a point density map
The attributes of individual points of LIDAR poiatouds are recorded in a LAS
format. The format contains binary data consistih@g header block, variable

length records, and point data (ASPRS, 2008&208axh point data record
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includes the XYZ coordinates, intensity, return ta@m number of returns, sc
direction, and classification of the point. Thed#ilautes of point cloud ar
closely related to the geometry of laser scannorgiguration and thus releva
to the point density of unit ground area. The spalistribution of point densit
implies the properties of the land surfaExact coordinates of each point .
determined by the relationship between the locatbriaser head, scannii
angle, locationof object and shape of the ground surfaceschematically
shown in Figure 3.4In other words, factors for point density inclualé these
flight design parameters and the effects of grocomatitions:(1) pulse rate; (2)
look angley(3) flight heigh; (4) plane attitude (roll, yaw, pitch(5) flight speed;

(6)strip overlap{(7) terrain relie; and (8) aboveround object.

1 Laser head

2 Scanning angle

4 Object

3 Ground topography

Figure 3.4Schematic diagram showing the geometry of airbarDAR

scanning
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For discriminating landslide and non-landslide ®rttie types of point clouds
for point density enumeration can be categorizetbbews: (1) all points, (2)
ground points, (3) single-echoes points or onlyees points, (4)
multiple-echoes points, i.e. (first + intermediatdast) returns, (5) first-return
points, (6) intermediate-return points, and (7)t-faturn points. Secondary
indices can also be created by combining two orentgpes of point clouds, for
example, penetration rate can be derived by the odtground and all points
denoting the fraction of points hitting the bareowrd. For exploring the
capability of point clouds for the detection of dshdes, four types of point
density with five searching radii are used in ttigdy, including point density
type of all points, ground points, only-echoes pniand multiple-echoes points.
Comparison of them will be made to search for nubsscriptive ones for
landslides.

Point density can be measured by various approd&tas and Huang, 2006).
In this study, point density is measured by suldliing the surveyed area into
grid cells, then computing the unit density of thanber of points in a circle
with certain searching radius centered at theamiter. A software application
Is implemented in this study to cater for the outpud size, searching radius,
and type of points. This method is comparable & By Crosby (2007). In this
dedicated software application, the function ofdreg Terrascan PTC file for
point class definition is also implemented so Weious type of point density

33



can be designated. Point density distribution olugd points is affected by the
criteria and procedures of both automated and nbaed#ing process.
Nevertheless, point density except that of grouathtp is mainly decided by
flight operation parameters including pulse raokl angle, flight height,
aircraft attitude, flight speed, strip overlap,réem relief, and above-ground
objects. Because the average ground points ofdleeted study area is 0.75
pts/nf, 1 m is selected for grid spacing. To cater feréffects of the uniformity
of point distribution, ground surface undulationdaland-cover types, five

searching radii are used, i.e. 0.707m, 1.414m, 3500m, and 10 m.

(C) Testing site and materials

The study area is located in I-Lan County of naxtern Taiwan, on the track
of the Typhoon Kalmaegi attacked Taiwan on Julyh8th, 2008, about nine
month after Typhoon Krosa on October 4th, 2007hie &rea. The dataset for
the experiment was taken on 4th November, 2008 &ftphoon Kalmaegi. In
general, the accuracy of bare grounds checkedeitii¢ld is about 0.15 m. An
area covering 2 km by 2 km is selected for the erpnt. The overall point
density of the study area is 2.75 pointsinith ground point density of 0.75

points/nf (Table 3.2).
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Table 3.2 Attributes of the LIDAR data used in gaensity study

Ground | Only-echoes Multiple-echoes
points points points

12,142,434 3,320,615 5,789,148 6,353,286

Type of points All points

Total number of

points
Average point
density (poits/) 2.75 0.75 1.31 1.44
Minimum height (m) 574.08 | 574.08 574.08 577.72
Maximum height |\ 1590 43 | 127068  1290.43 1290.29

(m)

(D) Results and discussions
After examination of the test results of the foupes of points versus five
searching radii, findings are as follows:
(1) Striping noise of point density map is obviguaffected by flight speed and
strip source as shown in Figure 3.5.
(2) Point density map of multiple-echoes point gilzetter contrast between
landslide and non-landslide areas than any mapgedefrom other three types
of point density, as shown in Fig. 3.6 (B).
(3) For output of 1m grid spacing, point densitypnath a searching radius of
1.414 m shows best result among all radii includiigp7, 1.414, 3, 5, and 10 m.
This result is subjected to the density of all p®iand ground points. A larger
radius cannot give better enhancement of landslides
(4) Although the overall point density of only-e@sopoints of the whole study
area is similar to that of multiple-echoes points shown in Table 3.2, a

conspicuous contrast of landslide area is obseamdhe density map of
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multiple-echoes points other than that of only-eshpoints. This is due to a
high concentration of multiple-echoes points inekied land and most of bare
grounds are covered by only-echoes points.

(5) Landslide feature is conspicuous in some phatih@® density map of ground
points whereas it is vague in other parts. This c®nsequence of the factors of
penetration rate in different part of the area dahd filtering process of
non-ground points with both automated algorithm arashual editing. However,
on the map of all points overlaid by ground poiésdslides features can be
enhanced for visualization. Nevertheless, commmssasrors of landslide
interpretation can be serious on this map, espgcralthose bare lands which
are not landslides. These errors might be elimehbteslope gradient of ground

surface in a later step.
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Figure 3.5 Selected results of four types of pdarisity and their distribution

under various searching radii with 1m grid.
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(A) (B)

Figure 3.6 (A) Point cloud distribution with attute of flight strip source ID.

(B) Density map of multiple-return echoes with #114m, grid spacing = 1m.

3.1.4 Method 3: Method of nDSM dlicing
(A) Introduction

The resulted standard products of an airborne LiDAR/ey thus include all
points, ground points, Digital Surface Model (ablmted as DSM) and Digital
Elevation Model (abbreviated as DEM). The formeo ftems are point vectors
whereas the later two are gridded results intetedlrom the former two. DEM
Is the one prevailingly applied. It is pointed ¢hat the cloud of discrete points
is full of latent information which can be furthekplored (Liu et al., 2010).
LiDAR DEM has been used for landslide interpretati§chulz, 2007; Van Den
Eeckhaut et al., 2007) whereas DSM is not appledfeen. Both of DSM and

DEM are standard products of a LIDAR survey. A rssty to compare the
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effect of them is obvious.

Because both DSM and DEM are in raster format wisadompatible with
remote sensing images, it is convenient to apphgenprocessing techniques in
extracting useful thematic information. The diffece of DSM and DEM is
known as normalized DSM, denoted as nDSM. Due d¢obtireness of shallow
landslides, the pixel value of landslide area isotktically near zero. This
feature can never be obtained in a conventional DEMrefore, the properties
of nDSM obtained by image subtraction will be fertlexplored with gray-level
slicing methods to find out the best enhanced thienmaps from DSM and

DEM for the detection of landslides.

(B) Method

Image enhancement techniques are used for the @hant of landslide
features on DSM and DEM images. The purpose oétiirancement processing
Is to make the resultant images more suitabledoddlide interpretation or for
subsequent automated pattern recognition of laeslimage processing can be
applied in either spatial domain or frequency dem@onzalez and Woods,
2002). Approaches in spatial domain are to treaigenpixels directly: g(x,y) =
T[ f(x,y)], where the T function can be appliedsiogle pixels such as contrast
stretching, thresholding, or binary Image, or ih dee applied globally to the
whole image or a subset of the image. Approachesenuency domain are
making use of convolution theorem: g(x,y) = h(eyX(x,y); G(u,v) =
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H(u,v)F(u,v). h(x,y) and H(u,v) are the masks iatsd domain and frequency
domain, respectively. g(x,y) is to be solved anthimed by a Forier Transform
of G(u,v). The pixel processing in spatial domasually include (1) gray value
transformation, (2) enhancement with statisticahrahbteristics, (3) image
subtraction, and (4) image averaging. In thistiumage subtraction of DSM
and DEM is applied first to obtain nDSM, which latlg enclose all objects or
features above the bare ground. Subsequently, lgvay-slicing method is
applied to the nDSM image to find out an optimahga of gray values to

present landslide distribution.

(C) Testing siteand materials
A test area is selected in I-Lan County of easii@anvan, the same as the one
for the test of Method with indices of point clodensity in Paragraph 3.1.3 (C).

The attributes of the data sets is shown in Taldle 3

(D) Results and discussion

Figure 3.7(A) is a gray map of nDSM obtained bytsdiion of DSM and
DEM of the study area. The range of the valueshenresultant image is from
-29.60 m to +116.68 m. The nDSM image is obvioyslgne of outliers or
extra-ordinary values such as negative values ahes larger than the height
of highest possible trees. Therefore, nDSM is iniag representing all objects
above bare ground and cares have to be taken fectobxtraction. The
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extra-ordinary values are due to both definitiomadund points (and thus DEM)
and operation procedures of interpolation from i points to continuous
surfaces. The distribution of these extra-ordinponts is shown in Figure
3.7(B). It is observed that the extra-ordinary p®gre mostly located in areas of
rugged terrain and high fluctuation of relief chang

To resolve the noises of extra-ordinary valuesi$H, it is necessary to
either correct the errors or reset the range ofpikel values to a designated
range with specific lower bound and upper bounay&evel slicing method is
thus applied to find out the visual effect of diffat settings of gray-level
ranges.

Gray-level slicing is a simple and straight forwamkethod of image
enhancement. If there is a specific range of pwales on nDSM images
favorable for landslide features in natural vegstatlopes, it will be

discriminated by simple slicing method.
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Figure 3.7 (A) Gray map of nDSM of the study are@B) Distribution of the

locations of points with extra-ordinary values.

Figure 3.8 is a blow-up of a small part of the gtaglea, including gray
maps of nDSM, DSM and DEM of identical portion éetimage. The higher
the digital numbers the brighter the image. In i@ area, the tone is dark due
to its extreme low pixel values. On the contrarys ibright in forested areas due
to the higher pixel values of tree heights. Becauigel values of a DSM is
composed of both ground height and tree heightctimrast between the areas
of landslide and non-landslide is less obvious. dtwetrast is even less obvious
for a DEM which gives only the ground height. THere, for visual
interpretation of landslides, nDSM can be bettantbSM and DEM.

Theoretically, omission error prevails if the rarfggtween the lower and

upper bounds of the slices is too small. On thetraoyy commission error
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prevails if the range of slices is too large. Begatihe value of a landslide pixel
on nDSM should be zero or a small number due tphtgsical bareness and
possible sensor uncertainty, the lower bound iggdased as zero and the upper
bound will depend on the result of experiment iis gtudy, tuning from +1 m
upward till +20 m.

It can be observed from the results of differeitirsd) ranges in Figure 3.9
that (1) the shape of landslides in dark tone @nodmspicuously depicted in the
slice of 0~1 m; (2) the shape of landslides arenedavious when the upper
range becomes larger up to 10 m whereas the b range of 0~5 m; and (3)
too many pixels of commission error are included #rs the boundary of the

shape of landslides become vague in the slice 20 0.

Figure 3.8 Gray maps of nDSM(A), DSM(B) and DEM(C)
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Figure 3.9 Gray-level slicing of various nDSM rasge

3.1.5Method 4: A Hybrid Object-oriented Method
(A) Introduction

Most of the conventional automatic classificatioethods for landslide
detection are mainly based on spectral featuresmbtely-sensed images other
than topographic features. Because the spectralrésaof buildings and roads
are similar to those of landslides, therefore serimis-interpretation took place.
Moreover, limitations are due to the spatial anéctal resolutions of the
images. More than 50% of the rainfall-induced ldidés in Taiwan are less

than 50.0 m in length (Liu et al., 2012). Lands$ia# this scale are not readily
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identifiable using images of a pixel-size largearth10.0 m. By pixel-wise
classification, landslides can occupy only indiadar just a few pixels without
forming an outer shape of landslides (Liu et a0l092. Moreover, commission
and omission errors of pixel-based classificatiam durther complicate the
situation. The pixel-based methods are then redutee be replaced with
approaches based on objects or segments (Kerllartia, 2010). Therefore,
The main objective of this research is to combinehbof an unsupervised of
region-based image segmentation and a supervissdifctation method with
SVM classifier using standard products from airlgobiDAR survey, as shown
in the scheme of landslide detection in Figure 3.1.
(B) Method

Basic task of segmentation algorithms is the mefyemage elements
based on homogeneity parameters or on the difiatemt to neighboring
regions, respectively. Thus, segmentation methadlew the two strongly
correlated principles of neighborhood and simiardf pixel values. The
region-based approaches start in image space wheravailable elements
either pixels or already existing regions are tbdtw similarity against other
elements. Concerning the definition of the inisagmentation the procedures of
region growing (i.e. bottom-up, i.e. starting with seed pixel) and region
splitting (i.e. top-down, i.e. starting with thetea scene) are distinguished. One
disadvantage of the splitting method is that itdgerio be over-segmented
because a splitting always produces a fixed nurobsub-regions (normally: 4)
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although two or three of them might actually be bgeneous with respect to
each other. As a consequence, one can apply agratim of the various
methods. Thus, it leads to the split-and-mergerdlguo that after a split process.
If neighboring regions are similar, they shouldremerged again (Chang et al.,
2010).

To strengthen the automation of segmentation, elung is adopted for
region-based segmentation. The ISOCLUST is an titeraself-organizing
unsupervised classifier based on a concept sital#8ODATA routine of Ball
and Hall (1965) and cluster routines such as thenddns and K-means
procedures (Jain and Dubes, 1988). Object-orierdedlysis (OOA) is
inherently more suitable, as it can address th@grhena under study such as
landslides in this case, as that they are “objectst “pixels” that have spectral,
spatial and contextual characteristics. Thus irs ttudy, the unsupervised
classification method ISODATA are applied to theSND image to find out an
optimal range of data values to present landsligiiloution (Research System,
Inc., 2006).

After the segmentation, a supervised classificabbithe segments with
SVM classifier is applied to obtain landslide class

SVM (Support Vector Machine) is a relatively newasdifier and is based
on strong foundations from the broad area of sizdislearning theory. Since its
inception in early 90s, it has found applicationsa wide range of pattern
recognition problems, image classification, fin@h¢ime series prediction, face
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detection, biomedical signal analysis, medical dasgics, and data mining
(Witten & Frank, 2000; Hwang and Chiang, 2010; Ba#,gl998; Chapelle et al.,

1999). Under the basic assumption of the SVM amrothe training sample is

expressed as{(x; 1) " (xz *¥2) * ..(x3 »y3)} wherex € R? represents

an input modey, € { +1 }. The optimal decision-making formula is as follows
wlx;+b=0 (3.1)

The weighing vector&y andb is deemed satisfactory once converged.

yiwlx; +b) > 1—¢g (3.2)

The valueg; is a loose variable existing in a linear, undivilgacondition.
It describes the degree of module deviation unueideal linear circumstances.
The goal of the SVM is to identify a decision sugpgahase where the average
error of the training samples is minimized. The iopation equation is

therefore derived as follows:

o(w,€) = %WTW +cYN & (3.3)

Where C is a positive parameter assigned by theusad It serves as a
penalty for the correctness of the SVM. The C vatieised to leverage the
probable mis-interpretation percentage and the toatp of the algorithm. A
converged optimization equation can be derived tdgppthe Lagrange

Multiplication Method:

1

Q(a) = IiV:1ai_ >

. 1iv:1 Z?]ﬂ a;a;y; y; K (xi » Xj ) (3.4)
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Where {o;}Y, is the Lagrange multiplier while Eq. (4) fulfilin the

following criteria.

N ay; =0 0<a;<C,i=123..,N (3.5)
K (x;, x;) is a core function. There are four types of coracfions

included in the Mercer Theorem:
1.Linear:  K(x;x;)=x]x; (3.6)

2. Polynomial:  K(x;,x;) = (yxlx; +7)%y>0" (3.7)
3. radial basis function (RBF): K(x;x;) = exp (—y”xl- — xj||2),y >0

(3.8)
4. Sigmoid:  K(x;,x;) = tanh(yx{x; +1),y >0 (3.9)

Here, y, 1, and d are kernel parameters (Burges, 1998).

The data flow is shown in Figure 3.10 where thetuiea space for
landslide classification includes only the stand&ar®AR survey products,
namely ortho image, DEM and DSM. Especially, thevdives of greenness,
slope and nDSM are used for input for the segmemtafFigures 3.11).
Accuracy validation will be made against the resutibtained by visual
interpretation using all available images derivexhf the same datasets (Figure
3.12). In addition, a pixel-based classificatiorthwihne same datasets is also
carried out for comparison.
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Figure 3.10 Flowchart of OOA data processing

(A) Greenness
Figure 3.11 The three derivatives of othophoto, D& DSM for data entry

49



(C) Testing siteand materials

A test area is selected in I-Lan County of easfi@anvan, the same as the one
for the test of Method with indices of point clodensity in Paragraph 3.1.3 (C).
The attributes of the data sets is shown in Tal#e Ror this test, only a subset

of the area is used (Figure 3.12).

Study Area

Taiwan.

Figure 3.12 Study Area and Ground Truth for OOAtTes

(D) Results and discussion

Figure 3.13 shows the results of segmentation audov classification.
The results generated by pixel-based classificagien shown in Figure 3.14.
The comparison between the results of the hybridAO@ethod, pixel-based
SVM method and those of ground truth is shown ibl&&.3. The Producer
accuracy of landslide class by object-based meih@b.68% whereas that by
pixel-based method is 72.01%. The user accuracylaonflslide class by

object-based method is 80.41% whereas that by-pestd method is 76.2%.
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Kappa coefficient and overall accuracy of objecdshmethod are 0. 817 and
93.4%, respectively. It is concluded that the hyWBOA method proposed in

this study is an effective method which is bettamt pixel-based method.

(A) segmentation (B) Training samples (C) OOA result

Figure 3.13 Results of the hybrid OOA method
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(A) training areas on orthophoto

(B) Landslide map

Figure 3.14 The results generated by pixel-basad SMssification

Table 3.3 Confusion table of OOA classification g@ndel-based classification

Object-based PA%; UA9% | Pixel-based PA% UA9%
Landslide 85.68 80.41 Landslide 72.01 76.2
River bed 83.21 87.81 River bed 70.88 76.2

Vegetation 95.72 96.59| Vegetation 94.55 93.53

Kappa Coefficient = 0.817

Kappa Coefficient = 0.704

Overall Accuracy = 93.4%

Overall Accuracy = 89.64%

3.2 Detection of Deep-seated L andslides

3.2.1 Introduction

Expert-based method is the most popular methodteddpr the detection of

deep-seated landslides (PWRI, 2008; SWCS, 1992t, IT¥®3). Because most
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of the deep-seated landslides are either latelacated under forest cover, only
a few of them which are in creeping or which arevigenappened in a

catastrophe can be detected and treated. For @éagpdslandslides, detection
and characterization are the most important tasgréeany mitigation measure
can be taken or any inference of landslide kinezeaéind mechanics can be
made.

There have been many studies using aerial photograatellite remote
sensing and airborne LIDAR for the observation ¢ie tcharacteristic
morphological features (Agliardi et al., 2001; Asgtli et al. al, 2009; Chigira,
2011; Chigira & Kiho, 1994; Chigira et al, 2003; i@ha & Yagi, 2006;
Dewitte et al., 2008; Dramis & Sorriso-Valvo, 199enn et al., 2006; Ventura
et al., 2011). Nevertheless, some automatic methodls as PIV and CosiCorr
have been raised for detect and characterize despek landslide of creeping
type or large-scaled ancient landslide which anaé@tastability (Lo et al., 2009;
Tseng et al., 2007). In this study, three methedsased and discussed, namely
(1) Expert-based Method - using LiDAR-derived shlthdeages or other
enhanced images for visual interpretation; (2) Uie<related or OOA methods -
demonstrated cases are reviewed but not tested Wdilwan case; (3)
Multi-temporal change analysis - using simple DadDifference of DEMS)

method to extract images for interpreting the a&ctess of the landslide.
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3.2.2 Method 1: Expert-based Method

The mechanism for triggering a deep-seated larelskdcomplicated. Two
major topics are usually adopted before furthereustdnding of the mechanism,
namely (1) detailed mapping of the features anddpegraphy of the landslides
for a description of the geospatial and geologeralironment; (2) susceptibility
mapping and interpretation of the landslide forimgndifferent possibility of
re-activeness.

For an ancient landslide under forest cover whicky rhave re-activated
several times in history, the delineation of themmary and other features such
as hummocky topography become the most critical [ereo-pairs of aerial
photographs are usually used for this purpose.r&i@ul5(A) shows a 2005
high-resolution aerial photo (left) of the Gladstp®regon area, trees, houses,
and roadways hide the contours of a large landslialethe basis of this image,
there is little geohazard risk in the area. In avDifhage derived from LIDAR
data for the same area (right) the surface is edehy digitally removing all
vegetation and man-made structures, resulting tnua surface shape. The
landslide scarps and toes in the middle of imageckearly visible. Statewide
LIDAR mapping proposal was thus initiated to idgnareas at risk in Oregon
State (Lewis, 2006). Therefore, LiDAR-derived imagkeecome a superior
surrogates of traditional aerial photographs beisgd for expert-based method

due to its capability of virtual deforestation (D#er et al., 2008; Glenn et al.,
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2006;Ventura et al., 2011).

The geomorphic features shown in Figures 2.2 aBdaPe those to be
observed on LiDAR-derived images. Figure 3.16 shdwe examples of
deep-seated landslides in LIiDAR-derived image lan-County. Figure 3.16 (A)
and (C) are shaded-relief images of DEM whereasafR®) (D) are images of
DSM. There are two deep-seated landslides on tlegesr an annotated on
Figure 3.16 (A) and (B). Obviously, the top landslis a recent one where the
scarp remains and the lower one is older wherentam scarp is covered by
forest and becomes vague. On the DSM-shaded inidgen( which landslide
boundary was not annotated, the boundary of therdandslide is not obvious,
whereas the scarps of the top landslide are camsysc In addition, a scarp to
the north of the top landslide is becoming obvidug is closely observed.
Therefore, there is a high susceptibility of depalg an even newer
deep-seated landslide at this place.

Both shallow landslides and deep-seated landsl@des be observed on
these images. Another observation of these imd&yesomparison of the lower
part of shallow landslides in Figure 3.16 (C)&(Dihda Figure 3.14 (A),
DSM-derived images give better contrast for shallamdslide areas where the
area covered by landslides has smoother surfacgevtw, for the interpretation
of deep-seated landslides especially old ones, DIENed images give better
results of feature mapping. In conclusion, the Ipeattice should make use of
all DEM and DSM data for this purpose rather thast juse one of them.
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Deep-seated landslides usually evolve for long tiore re-activate when

triggering factors prevail such as rainfall or bgttake. Evidences should be

found in the field to support the observation oag®es.

Jennings Ave. and Oatfield Rd. area, Gladstone

1 0.5 miles

(A) orthophoto (B) LIDAR DEM
Figure 3.15 A comparison of two images: color dgafetograph (left) and

shaded-relief image of airborne LIDAR DEM (righbefvis, 2006).
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Figure 3.16 Deep-seated landslides revealed in REgrived image at I-Lan.

3.2.3 Method 2: Texture or OOA Method
This is one of the major academic research arassimg LIDAR data for the

investigation of deep-seated landslides (Dewittealet 2008; Glenn et al.,
2006;Ventura et al., 2011; McKean and Roering, 2004

The first example as shown in Figure 3.17 was miagleMcKean and
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Roering (2004). Airborne LIDAR DEMs data was usedcharacterize a large
landslide complex and surrounding terrain near <tthurch, New Zealand. It is
found that the bedrock landslide is rougher thajacaht unfailed limestone
terrain. Four statistical measures of surface roagh are raised and any of the
statistics can differentiate landslide and unfaideda. The second example as
shown in Figure 3.18 was published by Glenn et @Q06). Similarly,
roughness is the core point for the automatic dete®f the landslide. The
roughness of this study is done by semivariograch faactal analyses. It is
concluded in this case that topographic elemertsedated to the material types
and the type of local motion of the landslide. Weakconsolidated materials
comprising the toe of the slide, which were heafrictured and locally thrust
upward, had relatively high surface roughness, frigttal dimension, and high
vertical and lateral movement.

Since roughness is the major concern in the autondetection of
landslides, not only for deep-seated ones but msshallow landslides. As
explained in expert-based method, contrast caugesifface roughness is the
best indicator for visual interpretation. The used#ss of roughness for
automatic detection of shallow landslides was alsved by local cases (Yang
et al., 2010). Nevertheless, factors of deep-sdatettlides are complicated and
the geological and morphological environment ofresdlividual landslide are
not the same. Therefore, roughness may be a gatidaior under certain
conditions but it may not be a good indicator frew conditions. Figure 3.19 is
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an example of Li-Shan area in central Taiwan (ITR§93). The landslide
complex in this area may not be easily detectedalmpmatic method. The
several segments of main scarps on top of the bhishd several deep-dissected
ditches are readily visible. There are also sonenprent lineaments to the east
of the landslide complex. This may give indicatiath&t complex structure
control may take place. All these questions haveetanswered by other means

rather than just by the results of the interpretabf LIDAR-derived images.

Ea ! ".
R R
T e TR,
m cnmpmmna
Ridge
i

Figure 3.17 Shaded relief image of the Coringa kldd and immediate
surroundings. The primary kinematic units withie #lide are earthflows E1
and E2, the area of compression Ul and the Bloay with incorporated

limestone blocks (McKean and Roering, 2004).
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Figure 3.18 Shaded relief image of the Salmon Fatidslides for
semivariogram and fractal analyses. UB=Upper bl&ci8ody, T=Toe.

(Glenn et al., 2006)
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Figure 3.19 LiDAR-derivatives of Li-Shan landslidemplex, central Taiwan
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3.2.4 Method 3: Multi-temporal Analysis
(A) Introduction

The purpose of the analysis applying multi-temparBIAR data is to analyze
the activity or susceptibility of the landslide. eflhmethod proposed for
deep-seated landslide is a simple DoD method @itfe of DEMs). To
demonstrate the potential of the simple DoD methioel three DEMs in Hsialin
Slide obtained in three surveys are used.

Old deep-seated landslides may re-activated detieras in history.
However, this may evolve as long as more than tuggtime such as Tsaoling
landslide, of which the first time of movement wasorded in 1862 due to an
earthquake (Chen et al., 2005). Tracking of ladédsldisplacements by
multi-temporal DTMs either created by INSAR, phatogmetric or airborne
LIDAR becomes important especially when multi-temgdd.iDAR survey have

been made (Dewitte et al., 2008; Ventura et all120

(B) Method
It is straight-forward to apply the difference waict DEMs for representing
landslide volume caused by a landslide event (Lal.e2010 and 2011), e.g.

AV,, =Y (DEM,, - DEM,,) (3.10)

Where DEM, represents the DEM of the accurate topography #fie
event and DEM, represents that before the eveaY is the volume change

after the event, which is a summation of the dififeme values of each individual
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corresponding pixels of DEMs. A negative valueA) indicates the area is
erosive. Whereas a positive valueAd indicates the area is sedimentary.

Basic issues behind the method of simple subtmactb two DEMs
include a common datum of different datasets ard gaality of them. Simple
subtraction method would not be applicable if theartainties are too large due
to these two basic issues. If two DEMs are geneérate two surveys using
different datum, it is required to unify both theogletic and the vertical systems.
In addition, to assure the quality of DEM, it isgored to abide by a strict
survey plan and to apply a solid validation procd$®e two DEMs used in this
study are both surveyed with identical geodetic aedical systems, namely
TWD97 and TWVD 2001. A strict guideline becomesra-gequisite for this
purpose. Data quality should be checked to validdie datasets. The
experimental data are obtained by applying a combidAR Survey Guideline
(MO, 2006).

The three datasets obtained for this study are tth different height
systems. One is with orthometric height and therotivo with ellipsoid height.
Therefore, geoid undulation of the study area wadied to standardize these
three datasets to a common height system eitheorodtric or ellipsoid height.
In our case, ellipsoid height system is used. Btep has to be cautious and
checked before applied the simple difference methddee difference images
are derived at first for further interpretationgluding V.4, V3, and \4y, €.g.

AV,, =Y (DEM,, - DEM,,) (3.11)
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AV, =Y (DEM,, - DEM,, ) (3.12)

AV, = (DEM,, - DEM,,) (3.13)

(C) Study siteand materials

One of the most catastrophic disaster in Taiwdfisiaolin Slide triggered
by typhoon Morakot occurred on 9th August 2009 atadlin Village in
Kiaosiung City of Southern Taiwan (Dong et al., 20duang and Lee, 2011; Hu
et al., 2010; Lin et al., 2011)(Figure 3.20). Thiteees of airborne LIDAR
survey were conducted in this area. The LIDAR insagkthe respective times
are shown in Figure 3.21. The major event of typhbtmrakot occurred on 9th
August 2009. Therefore, the airborne LIDAR surveynducted in June 2006
portrayed the topography before the event whetea&iDAR survey conducted
on 18 and 23 June 2010 portrayed the topography thie event. A catastrophic
change of the topography can be expected. AnotHasrae LIiDAR survey for
the same area was conducted on 16 and 27 Octotér &t is four months
after the former survey. A comparison of the toppéc change between June
and October of 2010 can reveal the change of pestteprocess and local

instability in this period of time can be observed.
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Figure 3.20 The location of Hsiaolin Slide and Wi@nity. The landslide
boundary is draped on the 3D perspective view nédbghotograph taken after

the event.
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Legend DSM 2006 DEM 2006
DSM 2010-06{ DEM 2010-06
DSM 2010-10 DEM 2010-10

Figure 3.21 Three DSMs and DEMs of Hsiaolin Slide

(D) Results and discussion
Some observations of the results of T2 as compiaréldl and those of T3 as
compared to T2 will be presented in this paragraph.

The difference of T2-T1 reflects the topographicaruipe of typhoon
Morakot, the main event. As shown on top diagranfiglure 3.22, the area
coverage of Hsiaolin Slide is 224.3 hectares witA’A3059 m, A-B=1880 m,

B- B'=1516 m, A-B-B'=3396 m, and A-B'=3315 m. In odle diagram of
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Figure 3.22, isoplethic lines are plotted every Srom -85 m to +85 m for the
range of the difference between T2 and T1 from886n to +85.66 m. Two
major depleted areas and four accumulated arealsecegrdily identified. N1 is
estimated with a negative volume of 26,515, 375 This area is the main part
of the disastrous landslide with a deepest slidnags of 86.87 m in depth. N2 is
with a negative volume of 1,614,475.rfhis is a secondary landslide along old
stream valley. P1 is with a positive volume of 84889 ni. The accumulated
landslide deposits were located in the right-hadd sf Chisan River which is
opposite to the location of the sliding mass. P2hvd positive volume of
8,852,825 m The major part of the sliding materials were nibaeéong an old
stream valley and accumulated in the valley bottibms the deepest deposition

with +85.66 m was located in this part.
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(B)

(©)

Figure 3.22 Topographic Features of Hsiaolin Séidd its subdivisions

The difference of T3-T2 reflects the topographi@amie after the main event
typhoon Morakot. A distinct deposit of 48,966 and a depleted area of 34,070
m® can be observed on the upper part of the landslidieh can be further

identified in Figure 3.23. The deepest depth of deposit is 37 m and the
largest depth of the depleted area is 26 m. Inrotloeds, after the main event of

typhoon Morakot, with the change from June to Oetpdocal slope of
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instability was readily identifiable on the diffeix@e image. Figure 3.24 is a
longitudinal cross section of Hsiaolin Slide, shogvithat the original slope of
the depleted area was 22.8} &nd the resulted slope after sliding event became
31.7°@). If we look closely at the ground surface aftee event as shown in
Figure 3.25, there were unconsolidated materia@nmng on the steep slope of

the top part of the landslide, which are the origfithe re-activated materis.

Figure 3.23 (A) color coded image of V32; (B) hshaelief image of V32.
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Figure 3.24 Cross section of Hsiaolin Slide alonB-' shown in top diagram
of Fig. 3. a=31.7°> f=22.3°> y=8.6°.
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Figure 3.25 A close-up of the depletion area ofdn Slide. Remnants of
unconsolidated materials still exited on the baréase. The dash-line is the

isoplethic line with -20 m. The area covers 48.68tares.

In summary for the multi-temporal anaysis:

(1) Multi-temporal airborne LIDAR datasets are fusdor quantifying the
time-series change of deep-seated landslides iphipgiographic settings
of Taiwan.

(2) Simple difference method can be applied forraeting the change of
topographic surface between two consecutive tinmvever, precautions

of common datum and consistent accuracy of regfedatasets have to
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be maintained.

(3) A national airborne LIDAR project is to be irphented from 2010 to 2015
(Liu & Fei, 2011). Multi-temporal airborne LIDAR ¢tk will become
available for most of the area in Taiwan. The intpoce of applying
multi-temporal analysis become obvious.

(4) Movement slip vectors might be able to be at@diby further study using

PIV or CosiCorr methods.
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Chapter 4 Landslide Monitoring and Volume Change Analysis

Using Airborne LiDAR Data

In this chapter, methods of volume estimation fothbindividual landslide and
whole study area are proposed. Experiments forslatevolume change with
airborne LIDAR data before and after the specifrerg are presented and an
empirical power law is derived to model the relatlwetween area A (hand
volume V (M) of landslides by using the results of area anturnae of

individual landslides.

4.1 Introduction

The most urgent and fundamental issue raised aftandslide disastrous
event is to understand the most up-to-date stdttieealisaster for the purposes
of disaster emergency response and preventionoOtne key issue is to know
how many landslides and where are they or how dithe landslides or even
how much sediments will it be generated by the evé&herefore, remote
sensing techniques are employed extensively (Raal.e2007; Bell et al.,
2005&2006; Joyce, 2009; Teeuw, 2007; Highland aadrBwsky, 2008).

Several techniqgues such as DInSAR, LiDAR, GPS, aaerial

photogrammetry are capable of supplying accurateéopiographic data (Tarchi
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et al., 2003; McKean and Roering, 2004; Chen e805&2006; Glenn et al.,
2006; Demoulin, 2006; Jaboyedoff et al., 2009&2020&2). Because the
archive of old aerial photographs in Taiwan cordgaamound one million of
aerial photographs starting from 1943, stereophiatogetric analysis of aerial
photographs can be a good source for obtaining D&M DSM for

understanding either the evolution of the lands@apée change of volume in a
specific event. Nevertheless, the national LIDARopiag program (Liu and Fei,
2011) will form a basis for estimate volume chawndgdandslides if additional

airborne LIDAR survey is conducted after an evehhberefore, the main
objective of this research is to propose methodgobfme estimation for both
individual landslides and whole study area witlbaine LIDAR datasets before

and after the specific events..

4.2 Method of Landslide Volume Analysis

For the estimation of landslide volumes in a stagga, two methods are
proposed: (1) Simple DoD Method; and (2) Method Afcumulating
Individuals. For the estimation of each individlehdslide, three methods are
proposed: (1) Method of 3D Sections; (2) Method\wérage Sections; and (3)
Grid Method. The whole area estimation approachthadndividual landslide
estimation approach will be discussed as follows:
(A) Whole Area Estimation Approach
As described in the Method of Multi-temporal Ana$ysfor deep-seated
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landslide, the Simple DoD Method is a DifferenceDEMs approach with a

simple and straight forward formula, eV =X(DEM+, - DEM;), where

DEM~, represents the DEM of the accurate topography &fteential event and
DEM~+; represents that before torrential evét.is the volume change after the
event. A negative value @V indicates the area is erosive. Whereas a positive
value ofAV indicates the area is sedimentary.

Figure 4.1 shows an example of the DoD Method. Wlhemmple overlay
subtraction is made with the 2010 DEM being sulichdoy 2005 DEM, the
resultant image will be a map of depletion (withgagve value) and
accumulation (with positive value). However, ifig inspected closely with
re-classed image as shown in Figure 4.2. All tlea &f positive value (possible
deposits) is masked out with a value of 0 and ththa area of negative value
(possible landslides) is assigned a value of 1.i@isWy, the portaion of the
negative area is too big and most of the shap#segbossible landslides are not
correct. Too many isolated irregular spots can lbeeoved. This indicate too
many commission errors are included. The thresinoddhod is thus used to
filter out some low values due to uncertainties tioé datasets and other
environmental issues. The total estimated volume Fgure 4.2(A) when
threshold is not applied is 13,193,828, mhereas the total estimated volume
for Figure 4.2(B) when threshold is set as -3 860,912 rm The difference
of volume of these two thresholds is as large 882916 m (~21.47%). In

Figure 4.2(B), in addition to spotted negative aréiais also observed that there
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are negative areas along the streams. This isaldewn-cutting of the stream
in this up-stream area. Therefore, volume of thedlked landslides may be
over-estimated. In an operational sense, manuahgdvill be required to filter

out these areas for a better estimation.

2005 DEMF

-53.98
-48.135
-42.31
-36.48
-30.64
-24 .51
-15.97
-13.14
-7.30
-1.47
4.537
1020
16.04
21.87
277
33.54
39.38

ek

" Figure 4.1 A simple difference of 2010 DEM and 2@BM and the DoD

result where the legend shows the value of themiffce in meters.
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(A) threshold =0 (B) threshold = -3 m

Figure 4.2 Different thresholds applied to the DeBults: (A) not applied;

(B) a threshold of -3 m.

It is also mentioned in the Method of Multi-temporanalysis for
deep-seated landslide, basic issues behind thisoeh@tclude uncertainties such
as common datum, data quality, and environmergakis Especially, the major
uncertainties are from the areas that covered t®sfoMethods can be used to
cater for these issues including (1) the maskinthatewhich applies a mask for
the forested land, (2) the point-cloud-merging rodttwhich merges point
clouds of the two respective survey for editing), {8 waveform method to
search for more ground points under forest, andofiers. These methods
remain for further study.

For the estimation of landslide volumes in a statsa, the alternative for
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the Simple DoD Method is the Method of Accumulatimglividuals which
estimates the volume (V) by accumulating individuadlume (y) of all
landslides in the study area. The method of thienasbn of each individual
landslide will be given in the following sectionh& formula is described as

follows:

where V is the landslide volume; n is the total bemof landslide; vi is the
volume of each of the individual landslides in gady area.

As shown in Figure 4.3, with the assistance of lEwgi information and
other LiDAR-derived images, each individual landslican be extracted from
the overall landslide map of the whole study areaegated by the simple DoD
method. Subsequently, the total volume of the staida can be obtained by

adding up all the individual landside volumes.

5400
5063
4725
4388
4050
73
3375
3038
2700

2363
2025
1688
4350
4043
75

(A) whole study area (B) one landslide from whole area
Figure 4.3 Each individual landslide (B) can beastied from the overall
landslide map (A) generated by DoD method.
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(B) Individual Landslide Estimation Approach
For the estimation of each individual landslidegthmethods are proposed: (1)
Method of 3D Sections; (2) Method of Average Sewjand (3) Grid Method.
Method of 3D Sections is a method using three laglsfeatures to
represent a landslide body, i.e. (1) Wr: Width wiface rupture; (2) Lr: Length
of surface rupture; and (3) Dr: Depth of surfagatuee (Figures 2.3 and 4.4). In
this method, a landslide body is represented byldhwer half of an ellipsoid.
This method is useful for estimating a landslideua@e by in-situ measurements.
And, it can be applied after the specific eventaitt referring to measurements

of the land surface before the event. The fornaildescribed as follows:

1
V = 7D W XL, (4.2)

where V is the landslide volume; [3 the depth of surface rupture; &/ the

width of surface rupture;lis the length of surface rupture.

l
o

: ID,'_ . “Surface
& of rupture

-

(A) cross section (B) 3D perspective

Figure 4.4 Landslide volume estimation using thaeelslide dimensions
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Method of Average Sections (Figure 4.5) is a methsthg the area of
fixed-interval cross sections along the longitutlimais of the landslide to

estimate the volume. The formula is described bsvis:

n
V= h(;A) (4.3)
where V is the landslide volume; n is the total bemof cross sections; h is
the fixed interval between two cross sectiongsAhe area gfh cross section.
Grid Method is a method using a grid for the défece between the DEMs
before and after landslide event to estimate timelsigde volume. Each grid
element has a value which represents the depl¢th negative value) or
accumulation (with positive value) in the event.tie extent of the landslide,
the absolute value of each grid element is thétigiss or depth of the landslide
at the specific site. Therefore, it is a straigitafard method when
multi-temporal LIDAR DEMs are used for landslidelwme estimation. The
formula is described as follows:
V= leilm} (4.4)
where V is the landslide volume; A is the unit aoé@ach grid element; m
and n are the raw and column number of the gfias the depth of the landslide

at the pixel(m,n).
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Figure 4.6 Landslide volume estimation using a gfithndslide depths.

In addition, because the area (A) and volume (V)eath individual
landslide can be estimated by aforementioned Gradhbtd if multi-temporal

DEMs are used, it is straight forward to derive tblationship between A and V

for the study area.
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4.3 Study Area and Materials

For demonstrating the volume estimation of eaclividdal landslide, the case
of Hsiaolin Slide will be give first. The study arand materials can be referred
to the discussion in Method 3 (Multi-temporal Arsb) for deep-seated
landslide detection in Paragraph 3.2.4(C) and Eeg@r19 and 3.20.

An additional site in Namashia District of Kaohgyo@ity (Figure 4.7) will be
used to demonstrate (1) the extraction of individaadslides from the overall
landslide map; (2) Method of Accumulating Indivitkjaand (3) Derivation of
the power law for the relationship between areagi®d volume (V) of the study
area.

The mapname of the study area is Ternbausan-Oridamashia District,
southern Taiwan (Figure 4.7), about 2 km apart fiHsraolin Slide. The extent
is about 2,579 m x 2,775 m, around 7kffhere are very few landslides on
orthophoto taken in 2005 whereas landslides areyetvere on Formosat-2
orthoimage taken in 2010 of the same area. As shiokigure 4.8, two times of
LiDAR data are used, for representing the accuagiegraphy before and after
2009 Morakot rainfall event. The first LIDAR datasgas acquired in 2005
(MO, 2006) and the second one in 2010 (SWCB, 20Ibg point density of
both datasets is more than 1 poift/ffhe grid-size of final DEM is 1 m. The
orthometric height of each grid cell conforms te Htcuracy standards required
by the National Draft LIDAR Specifications (MOI, @6). The premises for
applying two DEMs for landslide volume estimati@guire that both the datum
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and the quality of the two DEM datasets are maneidi To assure the quality of

the DEM, strict standard operation proceduresateved (MOI, 2006).

Figure 4.7 The study area of Namashia District abKsiong City.
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(C) 2010 DSM (D) 2010 DEM

Figure 4.8 LIDAR Data used in Namashia study area

4.4 Results and Discussion
4.4.1 Hslaolin Casefor Individual Landdide Estimation
The results of applying the three methods of il landslide will be

presented in the paragraph, including (1) Metho@8®fSections; (2) Method of
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Average Sections; and (3) Grid Method.

As shown in Figure 3.23, because the travel distasicHsiaolin Slide
(~2000 m) is larger than the length of rupture acef(~1500m ), the landslide
volume can be estimated by Method of 3D Sectiongure 4.9 shows the
Hsiaolin Slide and its subdivisions. In total, theare 7 subdivisions with
negative values. Subdivision A is the major lartislbody and it is used for
demonstration of the Method of 3D Sections. Whenetipse for the landslide
Is selected, the Lr (2376 m) and Wr (695 m) caedmly measured whereas the
depths to the rupture surface are variable in kEtgs of the landslide. An
estimation of a representing depth has to be nlade known that the deepest
depth is 85 m. An intelligent guess of the averdggeth would be from 50 m to
85 m. And, by applying formula 4.2, the estimatedume may vary from

25,036,378 mito 42,575,390 fh

Figure 4.9 Hsiaolin Slide and its 7 subdivisionseTandslide is represented by
an ellipse for the dimensions of width and len@lack lines are isopleths of -5

m and red lines are isopleths of +4m. Subdivisias the major landslide body.
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With 15 cross sections and fixed interval of 50 etween sections, the
estimated volume using Method of Average Sectisr6i303,750

In Grid Method, The landslide volume is calculatadusing 2010 DEM
subtracted by 2005 DEM. In calculation, the failatgface was divided as °m
grid, and the negative value of grid subtractiopresents the area that was
eroded. Therefore, for the landslide, the summatibthe negative value of
every grid times the grid area is counted as tHame of landslide (Formula
4.3). Thus, With a grid of 1 m resolution, the mstied volume using Grid
Method is 26,465,275 in

The results obviously show that the variation o tolumes given by
Method of 3D Sections is larger than that of otimey methods. Therefore, Grid
Method would be more preferable due to it's easmemutomation if high

resolution DEM can be obtained from LIDAR surveys.

4.4.2 Namashia Case for Whole Area Volume Estimation and Power Law

The test site in Namashia District of KaohsiongyQRigure 4.7) is used
to demonstrate (1) The extraction of individual dslides from the overall
landslide map; (2) Method of Accumulating Indivitkjaand (3) Derivation of
the power law for the relationship between areawaaime of the study area.

A 2D landslide map (Figure 4.10) has to be gendrdiest. Then,
extraction of individual landslides are made oneobg from the 2D landslide
map (Figure 4.11). Thus, the area and volume df @atividual landslide can
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thus be estimated. For the estimation of landslmlames in a study area, the
alternative for the Simple DoD Method is the Methofl Accumulating
Individuals which estimates the volume (V) by acalating individual volume
(v;) of all landslides in the study area as shownamtula 4.1.

To derive the regression relationship between A ¥nduzzetti et al.
(2008&2012) tested different fitting techniqueslitbng least-square linear fit,
robust linear fit, robust-resistant regression, dast-square, non-linear fit to
account for problems associated with the fitting lof-transformed data
spanning multiple orders of magnitude. Guzzettiakt (2009) suggested
robust-linear fitting (Venables and Ripley, 2008} minimizing the effects of
the outliers. This fitting method is also used fegression of the landslide
volume V and landslide area A in this study, V kA

The result of the Ternbausan-One area with 50 l@ledsshows that k =
0.099, a = 1.395, and R-squared coefficient ofrdateation = 83.7%. As shown
in Figure 4.12, a dash line in the figure depictsgparate study in the
neighborhood using 488 points of landslides in alggcal environment of
well-cemented sandstone and shale, k = 0.01461.823 (Tseng et al., 2011).
Because of the geology in Ternbausan-One area iidlyn@mposed of shale
and silts, The surface materials of this area aseengsoft and weathered than
those of the neighborhood area. Therefore, the ptave gives a meaningful
result that higher volume of deposits of unit asegenerated in study area than
that in the neighborhood area with, that is moirsentation in this area than
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the other area. It was also reported by Guzzetl.€2008) that k = 0.0844 and
a = 1.423. These empirical formulas reflect differphysiographic conditions
including geology, soils, climate and denudationcesses (Kalderon-Asael et
al., 2008). It is concluded that further experinsenain be applied with the
methods proposed in this paper for the extractiomaividual landslides from
the overall landslide map and, subsequently, fog therivation of the

relationship between landslide area and volume.

(A) Orthophoto (B) DoD-shaded image

Figure 4.10 Interpretation of a 2D landslide magbasis of orthophoto and

DoD-shaded images
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Figure 4.11 Extraction of individual landslides arade one by one from the
whole landslide map
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Figure 4.12 Empirical formula of landslide arear&) and volume V (rf) of
the data points of landslides in the study are&A/=
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Chapter 5 Landslide Extraction with a Geomor phological

M od€l

In this chapter, methods and experiments are mante eftablishing a
geomorphological model for extracting landslidegmgsnulti-temporal LiDAR

data.

5.1 Introduction

As stated in the motivation of this dissertationchapter 2, landslides is
one of the most frequent natural disasters in Taiagawell as in the world. In
addition, high resolution LiDAR-derived productéoal more accurate landslide
modelling by improving their geometrical charactation. Expert knowledge of
the geomorphometric properties of landslides maydugiired to establish an
automatic interpretation method. High resolutiord dngh accuracy LIDAR
DEM and DSM and orthophotos are now basic constituef NSDI in Taiwan
(Liu and Fei, 2011). Therefore, it is high timeftwther apply geomorphometry
in active landslide study (Liu et al., 2009).

A geomorphometric model is urgently needed for stesamanagement.
Therefore, the purpose of this study is to develogeomorphometric model

based on highly accurate and high resolution LiD#iRographic data with
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parameters calibrated by optimized thresholds (SWCE10). The
demonstration case in this study was located ithgon Taiwan near Hsiaolin
village, the village destroyed by Typhoon Morakbhe landslide type which

can be detected by this model is a shallow lanelglitl et al., 2009).

5.2 Study Area and Materials
Materials for this research include high resolutsatellite images and airborne
LiDAR data.
5.2.1 Physiographic Settings of the Study Area

Hsiaolin village is located in Chiahsien Distrigtaohsiung City (Figure
5.1). The study area is covered by 9 map-sheets5000 national photomaps:
95193025~95193027; 95193035~95193037, and 951988483047. The
village is located on a river terrace of ChisaneRivThe geological map in
Figure 5.2 (Song et al.,, 2000) shows that the &mesituated in the Western
Foothill Zone of Miocene sedimentary formations lugiing Changchikeng
Formation, Tangenshan Sandstone, Yenshuikeng SiradePeliao Shale. The
area is primarily covered by Tangenshan SandstodeYanshuikeng Shale.
Tangenshan Sandstone consists of alternate layesarmistone and shale,
whereas Yenshuikeng Shale consists of alternatbrsdtstone and shale with
occasional lens-type conglomerates. The river ¢erraaterials include recent

fluvial and colluvial deposits of sand and gravel.
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Figure 5.1 SPOT image taken on 2009/08/24 afteh®gp Morakot. The

8-digit numbers are the map numbers of nationdldd5map series.
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Regional Geological Map of the Study Area
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Figure 5.2 A regional geological map near the Hgiadllage (Song et al.,

2000).

5.2.2 Satelliteimages

This study uses SPOT images taken at approxim#tielgame season as the
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first LIDAR survey in 2005 used for comparison. Th@mosat-2 image taken
after Typhoon Morakot was collected and comparetth whe second LIiDAR
survey in 2010. In addition, there are several t¢gwhevents from 2007 to 20009.
Therefore, this study also uses SPOT images achdien 2005 to 2009
(Figure 5.3) to analyze Ilandslide recurrence ralde resolution of
enhanced-mode SPOT images is 2.5 m, pan-sharpenew$at-2 image have a

resolution of 2.0 m.

Figure 5.3 Satellite images of the study area f20@5 to 2009. Bright grey
features on the images are mostly landslide stcarglslide occurrence

increasingly increases in this period of time, la®m in Figure 5.8
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5.2.3 Airborne LiDAR data

LIDAR data before and after Typhoon Morakot werdlembed for this
study. The LIDAR feature of multiple returns proegda good means for editing
the point clouds and produce DSM, DEM, and CHM (@»snHeight Model) or
DBM (Digital Building Model). This in turn enablegshe analysis of
multi-temporal datasets. As Figure 5.4 shows, tBMCand DSM in this study
are based on 2005 LIDAR survey. The landscape reafférom dramatic
changes after Typhoon Morakot (Figure 5.5). Thgddandslide near Hsiaolin
Village is the most conspicuous example. Figuresh@®vs the DEM and DSM
of the study area acquired in 2009 after Typhoonalot. Both of the LIDAR
datasets in this study were surveyed using a congumteline (MOI, 2006) and
a common datum—TWD97 for geodetic coordinates ant/Z001 for vertical
system—to maintain the same level of accuracy. RIM&SE (Root mean square
error) was 16.7 cm with a standard deviation oBXfin for 2005 LIiDAR data.
The RMSE was 20.2 cm with a standard deviation88 tm for 2009 LIiDAR
data. RMSE is a measure of the dispersion betweegdordinates obtained by
Airborne LIDAR and those surveyed in the field. iéees, standard deviation is
a measure for the concentration of the differermts/een these two datasets.
The accuracy of these two datasets meets the emgemt set in the MOI

guideline (MOI, 2006).
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Figure 5.4DEM and DSM images before Typhoon More
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Figure 5.53D perspective views of Hsiaolin Village before aiter Typhoor
Morakot.Hsiaolin Landslide has a volume of ~25 million aubieters with :
maximum depth of 85 m on top area and a maximugtteof 3396 m from to
to the other side of Chisan River. The landslidegietely destroyed tr

village.
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Figure 5.6 DEM and DSM obtained after Typhoon Maotalds compared to
those of Figure 5.4, dramatic landform change @fobnd in river valley as

well as mountain slopes, especially the exampldsidolin Landslide.

5.3 The Geomor phological Model for Landslide Extraction

5.3.1 Introduction
The proposed model includes both global and loetéation procedures,

and uses a supervised classification method fdragjllandslide detection. The
focus of this paper is on global detection. Becaokdhe diversity of the

geologic and topographic environments in which &lidés occur, omission and
commission errors are unavoidable when using tbkajlapproach. Thus, local

landslide detection is required to increase theiraoy of the resulting landslide
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map (Liu et al., 2009). With the attendance of ggmal expert, the local
approach employs several interactive manual editits to compile landslide
information and minimize commission and omissioroes. Therefore, the aim
of the global detection is to include as much assilbe the areas which are
vulnerable to landslides. For error analysis, theraccuracy, producer accuracy,
average accuracy, and overall accuracy were cédclfeom a confusion matrix
(Kohavi and Provost, 1998).

Figure 5.7 shows the flowchart of the geomorphoimetodel established
in this study. Landslide areas possess geomorphiecnebaracteristics that can
be used to establish a geomorphometric model taridesthe topographic
feature of landslides. As the first step, globatapaeters based on landslides
extracted from satellite images by classifying blared and then filtering out
commission errors produced by bare agriculture daawld debris flows were
obtained. Landslide polygons were then overlaidparametric maps derived
from 2005 LIDAR data. The parametric parameterghef extracted samples
were then used as training sample globally. Thieshof various parameters
were derived based on statistics of the trainimgpdes of landslides. Threshold
values of the six geomorphometric parameters (T)1-+Wé&e defined a priori
based on some user-defined training areas, th#tadandslide polygons. The
mean and standard deviation values of each indexe walculated and the
threshold values were set to be the mean = 3 stamtdviations. The proposed
method classifies a pixel as a landslide pixehé& tollowing expression is true:
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(Slope > T1N(Roughness < TZ)Curvature > TP(OHM <
T4)N(Greenness < THYWetness > T6). Otherwise, it is classified as a
non-landslide pixel. Because the global landslidéction algorithm is pixel
based, isolated landslide pixels were removed bgph@ogical filtering (e.g.,
opening and closing). Small landslides were elingidaby setting a minimum
mapping unit. Finally, the detected landslide paxelere converted into
vector-based polygons. In other words, the pixeifaons to the threshold
criterion is designated as 1, otherwise it is desigd as 0. The area of the
intersecting set of all the parameters was categoras landslide area. This is a

dichotomic multi-criteria evaluation approach.

| LiDAR data | Images
! !
| DEM/DSM | Interpretation- Landslides
< before and after the event
v Y
| slope | | curvature | | OHM | | OHM roughness | |Topographic wetness index

VV*V

geomorphometric parameters

(&

~ " 0ld landslide and |

Yy river buffer !
Dichotomy |

_____________________

P , Hydrological and

geological data !
Model prediction of landslide areas | ~ ~~ T TTTTTTTTTTTT

v

Accuracy evaluation <

(" Statistics of landslides and Thresholds of selected ]

Poor

|
v Good
Removal of small commission polygons

v

Validation of the result

Figure 5.7 Flowchart of the geomorphometric model
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5.3.2 Geomor phometric Parametersof Landdlides

For extracting landslides from high accuracy amghhiesolution LIDAR data,
parameters for establishing the model were seldzdedd on the criteria usually
used in manual interpretation of landslides, intlgdhe 2D and 3D landslide
features detailed previously in Table 3.1. The metars of the
geomorphometric model in this study were deriveaimfrLiDAR DEM and
DSM. The major parameters in this model includepa]osurface curvature,
OHM (object height model), OHM roughness, and toppgic wetness index.
In addition, NDVI (Normalized Difference Vegetatidndex) or greenness is
one of the most important indexes for landslideogadtion due to that fresh
shallow-seated landslides are characterized by lback without or with little
vegetation cover. Therefore, it is also includedthe model. A number of
vegetation indices, such as the NDVI (Jackson et18i83), EVI (Enhanced
Vegetation Index) (Liu and Huete, 1995), and LA¢&E Area Index) (Chen and
Black, 1992) have been used in remote sensingralyzing vegetation cover.
Of these indices, NDVI is the standard method famparing relative biomass
and vegetation greenness in remotely sensed imAdagher NDVI indicates a
higher level of healthy vegetation cover. The gnsss index is similar to the
NDVI, except that it substitutes a green band ierriear-infrared band.

These parameters are also closely related to thwtoréa for landslide
susceptibility (Tarolli et al., 2011). The contfakctors of slope stability usually

include slope angle, strength of materials, anc paater pressure (Turner and
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Schuster, 1996). If the slope gradient is high, dlope can be unstable. Slope
angle was thus selected as the first parameteubedd its importance, and can
be easily derived from DEM. Because DEM represtdrgsbare ground surface
and DSM represents the upper envelope of all thectsbabove the bare ground
surface, the difference between these two welléeffisurfaces is minimal in the
area of rainfall-induced landslide. In this casee tOHM, defined as the
difference between these two surfaces, can be d pamameter for automatic
landslide recognition. After wash out or slidingpetsurface of landslides in
nature should be smoother than the surroundingdadcu roughness is an
objective and useful measurement of landslide togug (Glenn et al.,2006;
Woodcock, 1977; Mckean and Roering, 2004). Landfourvature is another
critical factor controlling the susceptibility odAndslide occurrence (Pirotti and
Tarolli, 2010).

The definition of the parameters is as follows @& and Gallant, 2000;
Zhou and Liu, 2006):

(1) Slope. The slope angle of a landslide is tigdeabetween the horizontal
surface and the ground surface of the longitudaad of the landslide. The
slope angle for each landslide can be derived itddAR DEM data. A variety
of methods are available for terrain slope gradesttmation. However, the
details of a high-resolution terrain model may odtrce high variations in
changes of local slope gradients (Sharpnack anah,Ak969). This study
adopts the method proposed by Parker (1997) tacomes this problem, that is
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the derivatives of the Gaussian function are carted with the DEM in the x
and y directions, respectively, and then combiegstimate the slope.

(2) OHM. Object height models (i.e., OHMs) are ai¢d by subtracting
DSM from DEM to describe the height of objects abbare ground. The OHM
describes the heights of above-ground objectssterdormat. Objects close to
zero in height may represent the bare soil thatadterizes landslides.

(3) OHM Roughness. Roughness is a derivative oMQHefined as one
standard deviation in a 5 x 5 moving window. Thisasure, which is a function
of geological structure and lithology, describes thlief variation in the local
area. Because most landslides occur in bare ssalsathe surface is smoother
than that of forested areas. Thus, a surface ragghindex can be used to detect
landslide areas. To account for the high terramatian in mountainous areas,
this study uses object heights rather than surfesghts. For simplicity, the
standard deviation of object heights within a losaldow serves as the surface
roughness index.

(4) Curvature. Curvature is the second derivativl® surface (Schmidt et al.,
2003). Two optional output curvature types are fdssthe profile curvature is
in the direction of the maximum slope, and the arvature is perpendicular to
the direction of the maximum slope. The curvatartne slope form and has a
significant effect on surface runoff, soil erosicand deposition processes
(Stefano et al., 2000). This study applies a 15 xnedium filter to the DEM to
suppress any accidental height changes in thereggiution elevation model.
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The curvature along the slope direction was thécutated with a 5 x 5 mask.

(5) Topographic wetness index (TWI). Wetness isiveer from the
concentration of a small watershed (Kirkby, 1975|s@h and Gallant, 2000).
Topography is often one of the major controls @& $ipatial pattern in saturated
areas, which in turn is a key to understanding vtheability of hydrological
processes. The topographic wetness index has beaowdely-used tool to

describe wetness conditions. The formula is asvidl

A

w = In(
tar @

) (5.1)

where A is the local upslope contributing area @isllocal slope.

(6) NDVI or greenness. This parameter is derivednfsatellite images or
orthophotos acquired at a compatible time as tBAR survey. In other words,
there are no rainfall events between the time bo#t the LIDAR data and the
images or orthophotos are acquired. Because rihinthiced landslides of
natural slopes are mostly covered by densely-veggtaurroundings, the
vegetation index is critical for indicating the aseof bareness. The most popular

index is the NDVI:

NDVI = (NIR-R)/(NIR+R) (5.2)
where R stands for the grey value of the red bartiNIR stands for grey
value of the near infrared band. Theoreticallythié image digital values are

calibrated to stand for the reflectance of the dgrthe NDVI can be widely
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applicable. However, the digital numbers of the bethd and NIR band of
digital aerial cameras are not calibrated for fhuspose. Therefore, the NDVI
value is a relative indicator of vegetation coW2VI can be applied to modern
digital aerial cameras, which usually include anRNband. If color aerial
photographs include only RGB bands, an alternareenness parameter can be
used. Greenness is also a relative indicator vaithometric values that are not

normalized:

Greenness=(G-R)/(G+R) (5.3)

where G is the grey value of the green band, amitifie grey value of the red
band. The values of NDVI and Greenness range ftbito 4. Nevertheless, the
range for these values in landslides may changendi#pg on natural weather,
terrain conditions and type, and camera sensangettA relatively low value

implies that the area of the pixel is low vegetaiefare.

5.4 Results and Discussion

5.4.1 Establishing The Geomor phometric M odel of Landslides

Bare land has a relatively low reflectance in th&ared region of the
electromagnetic spectrum. This feature can be usedunsupervised
classification to obtain a preliminary map of lalmiss. On an interactive screen,
manual editing of the results can filter out consima errors such as bare crop
fields and debris flows. Figure 5.8(A)-(D) show thestribution of landslides

over four different years. Six typhoons affectedwia in 2008: Kalmaegi,
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Fung-wong, Nuri, Sinlaku, Hagupit, and Jangmi. Anparison of the images in
2007 and 2008 reveals more landslides in 2008 (EigBE). The number of
landslides increased substantially after the taiakrrainfall of Typhoon
Morakot (Figure 5.8F).

The recurrence rate of landslides, defined as #épetitive occurrence of
landslides between two different times, was 65%vbeh 2007 and 2005. The
recurrent rate was even as high as 95.9% betwe@h &td 2008. 64.1% of the
landslides in 2008 reappeared in 2009 after Typhbtorakot. The high
recurrence rate between succeeding years showslahdslides happen in
similar environmental conditions. To verify the amacy of the landslides
obtained by satellite images, conventional aeribpbtp-interpretation was
conducted. It is shown that the overall accuracg @24% with omission error

of 9.2% and commission error of 16.1%.
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Figure 5.8 Landslide distribution between 2005 20@9. Landslides on
images are high-lighted with yellow polylines. Nemdslides are in red
polylines when comparing images taken in 2005 @&@84E) and those in

2008 and 2009, respectively.

5.4.2 Statistics of Geomor phometric Parameters
Figures 5.4 and 5.6 are the primary data of DEM @8#§1 obtained in 2005

and 2009, respectively. For further understandimg features of landforms,
geomorphometric parameters are extracted from thes®ry datasets. Figure
5.9 shows the distributions of major LiDAR-derivegeomorphometric

parameters selected for landslide recognitioniggtudy.
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(B) DEM oughness = (C) Curvature

(D) HM T ‘ (E) OHM roughness : (F) Topographic wetness index
Figure 5.9 The distributions of major LiDAderived geomorphometr

parameters selected for landslide recognitionisxgtudy. The coordinates

the maps are (20981:02566339) and (2176092557916) for the lower rigt

and upper left, respectively.

Figure 510 shows the frequency distribution of geomorphoim@arameter
based on 2005 landslide data.ure 511 shows the frequency distribution
these parameters ¢ on 2009 landslide data. The average slopendslides
in 2005 is 31.2 degrees. The surface roughnessnisrglly below 1.5 m, with
cumulative fraction of 90% below 1.5 m (ure 510B). On basis of the OHI
derived from the difference of DSM and M, the average OHM is 9.1m wi

20% and 30% of all the landslide pixels having edelow 0.5 m and 3.3 r
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respectively. Figure 5.10D is a frequency distitmutof OHM. The major
fraction of OHM is distributed between 5 m to 20 Asncumulative fraction is
37% and 92% for OHM under 5 m and 20 m, respegtiv@hly 8% of OHM
exceeds 20 m, indicating commission errors of toaesbe as high as 8%.

Figure 5.11 shows the frequency distribution ofrgegphometric parameters
based on 2009 landslide data obtained from imafies Typhoon Morakot. In
other words, the training samples of the geomormiom parameters are
obtained from the LIDAR data taken in 2009. Therage slope of the landslide
areas is 33.8 degrees, with a major range in 25ddiffees. A cumulative
fraction is 25% and 90% for slope under 25 and &grekes, respectively. The
average roughness is 1.2 m, with 90% less thamlBhe average curvature is
-0.008, showing that most of the slope forms areensoncave than convex. The
OHM ranges from 5~20 m with an average of 9.1 mil&rly, there are 30% of
the landslide pixels having an OHM less than 3.3The average roughness of
OHM is 2.6 m, with a standard deviation of 1.2 m.

The frequency distributions of various parametezaved by landslides in
2005 and 2009 show no obvious differences. In loages, the average slopes
fall within the range of 30~50 degrees, with a twugss of 1.1~1.7 m, curvature

of -0.04~-0.02, OHM under 17 m, and OHM roughndsk.$~3.5 m.
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When using the landslides in 2008 for training si@spthe slope ranges from
25~55 degrees, with an average of 38.2 degrees. @&snparison, the general
average slope for 2009 landslides is 33.8 degwts,an OHM of less than 20
m, roughness less than 1.5 m, and average curvatu®018. More concave
slope forms were present in 2008 than in 2009. &efoe Morakot landslide
event, the average OHM was 7.3 m, and the avemaggness was 2.4 m with a
standard deviation of 1.2 m.

The average slopes of 2008 landslides are highan tihose of 2009
landslides. However, the curvature for 2008 is teas that for 2009. There are
no obvious differences in OHM and roughness. In82@0total of 60% of the
landslides have an area of less than 0.5 hectatesreas the average area of
individual landslides in 2009 become larger, wiB% of them possessing an

area of less than 1.0 hectare.

5.4.3 Verification of the Geomor phometric Model
By comparing the spatial distribution of landslidas2005 and 2009, this

study shows that the recurrent rate is as higlbés & is therefore reasonable to
suppose there is a higher susceptibility in thédsdone of old landslides. River
bank erosion is another important trigger factar ieer bank landslides, and
upstream erosion has the same effect. Therefoeepritposed model includes

buffer zones for river bank and upstream areas. atfdition to six
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geomorphometric parameters, the model includesbuafines of old landslides
and river banks and up-streams.

A sensitivity analysis of the different combinatsorof thresholds was
conducted to find out the optimum combination okgiholds. Tries with major
ranges of each parameters have been tested (Tdbhle Fhe final optimized
results show that the overall accuracy obtainatlisistudy is 68.2%, where the
user accuracy is 42.6% and the omission error i€l%. Because spatial
resolution of DEM and DSM is 1 m, slivers or disget isolated small patches
of landslides generated when grids are transfoimtedvectors can be treated as
noise. In this study, polygons with an area smalwn 50 square meters are
filtered out and manually edited to delete some ro@sion errors, improving
the accuracy of the final result. Figures 5.12(Aj &.12(B) are examples of the
modeled results of landslides in 2008 and 2009 ews/ely. After manual
editing, Tables 5.2 and 5.3 show that the averagaracies in 2008 and 2009
are 76.6% and 72.5%, respectively. Because lamdslohly covers small
fraction of the study area, the result detectethbymodel with loose criteria set
for the parameter thresholds can be prone to cosmmnisrrors. This leads to
user accuracy as low as 5.0% and 20.2% for 20086608, respectively. For
conservation purposes, commissions cause no blggons, whereas omission
errors overlook hazardous areas. Therefore, thidemoemains meaningful

though further effort is required to filter the camssion errors.
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Table5.1. Triesof different combinations of thresholds for model parameters

slope PEM OHM OrM Overall | Produce Omissior] User Commissior]
tries roughnesscurvature roughnesg Wetness accuracy accuracy accuracy
(degree) (m) error (%) error (%)
(m) (m) (%0) (%0) (%0)
1 >22 <1.8 >-0.15| <25 <4.5 >0.5 53.59 15.67 84.33 56.4p 43.55
2 >23 <1.8 >-0.15| <25 <4.5 >0.5 53.81 15.68 84.33 56.1 43.89
3 >24 <1.8 >-0.15| <25 <4.5 >0.5 54.22 15.68 84.37 55.46 44.54
4 >25 <1.8 >-0.15| <25 <4.5 >0.5 54.72 15.75 84.25 54.98 45.07
5 >22 <1l.7 >-0.15| <25 <4.5 >0.5 54.95 15.76 84.24 54.58 45.42
6 >23 <l1l.7 >-0.15| <25 <45 >0.5 55.35 15.77 84.23 53.94 46.06
7 >24 <l1l.7 >-0.15| <25 <4.5 >0.5 55.91 15.84 84.14 53.31L 46.68
8 >25 <l1l.7 >-0.15| <25 <4.5 >0.5 56.14 15.84 84.14 52.9y 47.03
9 >22 <1.6 >-0.15| <25 <4.5 >0.5 56.55 15.86 84.14 52.3p 47.68
10 >23 <1.6 >-0.15| <25 <4.5 >0.5 57.16 15.93 84.07 51.61 48.39
11 >24 <1.6 >-0.15| <25 <4.5 >0.5 57.09 15.74 84.06 51.2p 48.74
12 >25 <1.6 >-0.15| <25 <4.5 >0.5 57.8 15.76 84.04 50.62 49.28
13

Table5.2. Modéd accuracy for 2008 training samplesin polygons

Category LandslidesNon-landslides Producer | Overall accuracy
(hectare) (hectare) |accuracy (%) 76.61%
Landslides 75.54 1,430.51 5.02 | Average accuracy:
Non-landslides  105.88 4,957.16 97.91 51.47%
User accuracy  41.64 77.61
(%)
Table5.3. Modd accuracy for 2009 training samplesin polygons
Category LandslidesNon-landslides Producer | Overall accuracy
(hectare) (hectare) |accuracy (% 72.51%
Landslides 317.18 1,245.36 20.3 | Average accuracy:
Non-landslide§s 560.31 4,446.24 88.7 54.19%
User accuracy 36.15 78.12

(%)
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Non-landslide Blue Grey [ 1 1 |

Figure 5.12 Landslide prediction with geomorphomeatiodel: (A) Prediction
of 2008 landslide susceptibility based on 2005 $éidds in vector segments.
(B) Prediction of 2009 landslide susceptibility edon 2005 landslides in

vector segments.

5.5 Summary of establishing the geomor phologic model

Both of the LIDAR datasets used in this study, udahg the one obtained
from the Ministry of the Interior in 2005 and theeoobtained from July 23,
2010, to July 28, 2010, were manually edited faugd points. This editing
produced a DEM and DSM grid of 1-m resolution. Tperameters of the
geomorphometric model were generated using thegerksolution data. These

parameters include slope, curvature, OHM, OHM roggs, and topographic
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wetness index. Based on the training samples afslate polygons in 2009,
modeled results give an overall accuracy of 65.B&cause the recurrent rate
from 2005~2009 is more than 55%, the model includeffer zones of old
landslides, river bank, and upstream erosions. d@ount for sliver noise,
polygons smaller than 50 °nwere filtered out. The accuracies of the model
results improved to 76.6% and 72.5% when usingitrgisamples of landslide
polygons in 2008 and 2009, respectively. These lteesshow that the
geomorphological model proposed is effective fodkide extraction.

To improve the model, other physiographical regisimsuld be considered
to calibrate the parameters. In addition, more rpatars including hydrological
conditions and geological environments should besicered to ensure the
inclusion of all possible factors of susceptibilifgainfall is one of the most
important factors in hydrological conditions. Thetical rainfall and rainfall
intensity required to trigger a specific landslida challenge for future research.
Soil moisture is another important factor in hydgl which might affect
landslide occurrence and requires further studye attitudes of geological
formations and the strength of rock bodies arentgor factors that should be
considered for inclusion in the model. As the nadioraiwanese LiDAR Project
progresses, more datasets of multi-temporal andusphysiographical settings
are becoming available. Future research shouldialsstigate the dependence

of morphometric parameters on triggering evenigemgraphical locations.

113



Chapter 6 Conclusions and Future Works

6.1 Conclusions and contributions

In conclusion, a comprehensive review and methaodsising airborne
LIiDAR data for landslide investigations are madehis research. The methods
developed in this research cover the areas foslaleddetection, for landslide
volume estimation and multi-temporal volume changmealysis, and for
establishing a landslide extracting model. Seleeteamples from both shallow
and deep-seated landslides are used to demonatrétprove the effectiveness
for the cases in Taiwan and for the airborne LiDddRa acquired. Generally, it
is proved airborne LIDAR data can be a good tooleitracting morphometric

features of Taiwan landslides.

6.2 Recommendation for future study

Technique of OOA segmentation method for the dieteatf deep-seated
landslides in dense forest should be developedcedlyefor the high relief
terrain of Taiwan. Uncertainties of LIDAR analysiie to adverse factors
should be further explored to minimize the problemmulti-temporal change
analysis. Future research should also investigdie tependence of
morphometric parameters on triggering events orgggahical locations.

Another research area will be the application df waveform to detect the
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subtle reflection from the forest floor, thus tenease ground point densities of
densely-vegetated area and to suppress the umtietaof the DEM in this
environment.

To improve the model for automatic extraction ohdslides, other
physiographical regions should be considered tibredé the parameters. In
addition, more parameters including hydrologicahdibons and geological
environments should be considered to ensure thésioa of all possible factors
of susceptibility. Rainfall is one of the most innfamt factors in hydrological
conditions. The attitudes of geological formaticssd the strength of rock
bodies are the major factors that should be coresidi®r inclusion in the model.

Finally, a national geohazard mapping program ewpip integrated
airborne LIDAR and digital photography was launchbg the Central
Geological Survey. The national mapping prograransmg 2010 to 2015, was
dedicated to capture an entire territory of thentguwith airborne LIiDAR and
digital imagery with the aim to explore geologitazards (Liu and Fei, 2011).
More datasets of multi-temporal and various physipgical settings are
becoming available. More researches should inwgstighe dependence of

morphometric parameters on triggering events andmhical locations.
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Appendix 1 Acronym

Acronym Definition

ASCII American Standard Code for Information Inteange
ASPRS American Society of Photogrammetry and Rei8etesing
CGS Central Geological Survey

CHM Canopy Height Model

DBM Digital Building Model

DEM Digital Elevation Model

DHM Digital Height Model

DOM Digital Orthophoto Map

DSM Digital Surface Model

DTED Digital Terrain Elevation Data

DTM Digital Terrain Model

GCPs Ground Control Points

GIS Geographical Information System

GPS Global Positioning System

IAEG International Association of Engineering Gapgis
IMG ERDAS IMAGINE file format

IMU Inertial Measurement Unit

LAS LASer file format

LIiDAR Light Detection and Ranging

MOI Ministry of the Interior

NSDI National Spatial Database Infrastructure

OHM Object Height Model

POS Positioning and Orientation System

RMSE Root Mean Square Error

SVM Support Vector Machine

TIN Triangulated Irregular Network

TWD97 Taiwan Geodetic Datum 1997

TWVD2001 | Taiwan Vertical Datum 2001

USGS US Geological Survey
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