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摘要 

 

動態補償預估方法(Motion-Compensated Prediction，MCP)能移除視訊訊號在時間軸

上的重複性，因此是許多視訊壓縮標準中常見的壓縮技術。雖然動態補償預估方法已經

被提出並且研究超過 20 年，本論文仍將從理論、應用與實作等不同面向來重新探討動

態補償預估方。 

首先，我們以新的觀點重新解讀動作補償預估機制的運作，我們將動態補償預估方

法視為兩個步驟；第一個步驟為運動向量取樣，第二個步驟則為利用取樣所得之運動向

量作像素預估值的估算。我們同時提出理論的分析來支持我們提出之新觀點並用以驗證

現存常見之不同動態補償預估方法例如區塊動態補償(Block Motion Compensation，

BMC)、SKIP 預估方法與樣板比對預估方法(Template Matching Prediction)等等。實驗結

果也證明提出之架構能準確分析各種不同的動態補償預估方法。 

承續上述觀點，我們提出了參數化交疊區塊動作補償(Parametric Overlapped Block 

Motion Compensation，POBMC)的技術來加強 MCP 的效率。傳統的區塊動作補償(OBMC)

是用來解決區塊動作補償(BMC)所具有之動作不確定性(Motion Uncertainty)的問題，藉

由考慮鄰近區塊動作估測(Block Motion Estimation，BME)的結果，來做亮度值的估測。

OBMC 已被證實能夠提供較 BMC 為佳的編碼效率。然而在 H.264/AVC 採用了可變區

塊大小動作補償(Variable Block Size Motion Compensation，VBSMC)的技術下，OBMC
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與 VSBMC 的結合使得 OBMC 使用的權重計算與儲存變成了一大挑戰。我們透過亮度

與動作自相關係數的理論模型，以及將 BME 產生的運動向量近似為區塊中心點動作向

量的假設，提出了 POBMC 技術。此技術根據每個像素點各自所有的鄰近動作向量以及

此像素點到各動作向量對應的取樣點(區塊中心點)距離，來分配最佳的權重以達到最佳

的 MCP 效能。 

最後，我們利用提出之參數化交疊區塊動作補償架構來結合樣版比對預估以及方塊

動量補償預估。由於樣板比對所產生的運動向量是不需耗費位元傳送，因此所以提出之

雙向預估模式只需要傳送一個方塊運動向量即可達到利用兩個運動向量作雙向預估之

效果。延續所提出的運動向量取樣架構，當樣板比對所找出的運動向量被近似為樣板重

心點的運動向量後，此結合預估可以藉由找出最佳方塊運動向量的取樣點來達到最佳的

結合預估效率。此外由於樣板比對預估有運算複雜度的問題，所提出的特殊雙向預估架

構更可彈性地利用任何解碼端可推導出之運動向量來取代樣版比對運動向量以達到降

低複雜度的目的。實驗結果最終也證明所提出之雙向預估模式可以有效增進現行視訊壓

縮效能。  

在本論文中，我們首先將 MCP 的結構視為運動向量取樣及預估亮度場(Intensity 

Field)重建兩個部份。從此觀點出發，我們接著提出參數化交疊區塊動作補償的技術來

加強 MCP 的效率。藉由提出的參數化交疊區塊動作補償架構，我們更進一步發展出一

套特殊的雙向預估方法(Bi-Prediction)結合樣板比對(Template Matching)之運動向量與傳

統之方塊運動向量來增加預估的效率。我們相信，延續本論文所提之 MCP 分析架構將

有利於未來更多動態向量預估方法相關技術的改進以增進視訊壓縮之效率。 

 ii



Advanced Motion-Compensated Prediction (MCP) for 

High-Efficiency Video Coding 

 

Student: Yi-Wen Chen 

                                                  

Advisor:  Prof. Wen-Hsiao Peng 
       Prof. Suh-Yin Lee 

Department of Computer Science, 

National Chiao Tung University 

 

Abstract 

Motion-Compensated Prediction (MCP) has been the most popular approach, in the 

block-based hybrid video coding framework, for removing temporal redundancy. This 

dissertation attempts to reexamine its design from a theoretical perspective, with an aim to 

expose undisclosed details that crucially determine its performance and to seek further 

improvements.  

Firstly, we introduce an analytical interpretation of MCP by viewing its process as 

consisting of motion sampling followed by the reconstruction of a temporal predictor. In this 

context, block-based motion estimation acts as a motion sampler taking samples at block 

centers while block-based motion compensation (BMC) interpolates between motion samples 

using the nearest-neighbor rule to reconstruct the motion field. Such an interpretation clearly 

reveals the essence of various MCP schemes. We have shown that the distinction between 

BMC, SKIP prediction and template matching prediction (TMP) lies in the choice of motion 

sampling structure, and likewise, that the celebrated control grid interpolation (CGI) and 

overlapped block motion compensation (OBMC) outperforms BMC, because of using more 

sophisticated motion interpolation algorithms. 

This new interpretation of MCP also helps us to conceptualize the combination of 
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OBMC with variable block-size motion partitioning, which was done heuristically in the 

H.263 standard. We cast this problem as forming a linear estimate of a pixel's intensity from 

motion samples taken on an irregular grid. To circumvent the difficulties arising from the 

least-squares solution, we express the optimal OBMC weights in closed form based on 

parametric signal assumptions. The computation of this parametric OBMC (POBMC) 

solution requires only the geometric relations between the prediction pixel and its nearby 

block centers, offering a generic framework capable of reconstructing a temporal predictor 

from any irregularly sampled motion vectors. 

The last part of this dissertation proposes a novel bi-prediction scheme combining BMC 

and TMP, the design of which is another highlight of the motion sampling and reconstruction 

concept. This scheme attains bi-prediction performance with only one set of motion 

parameters. Specifically, we transform the problem of finding an optimized block motion 

vector based on the contribution from the template motion vector into that of searching for its 

optimal sampling location. The result is a particular type of geometry motion partitioning. 

This notion is further extended to enable a low-complexity, template-matching-free 

implementation.  

The techniques above have been evaluated in several core experiments of the JCV-VC 

committee, showing very promising results. This demonstrates that when looking deeper into 

the underlying principles, it is possible to make further improvements to existing designs or 

bring completely new ideas. We believe the other components of the hybrid-based video 

coding framework can also be improved with the same philosophy. 
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Chapter 1

Introduction

1.1 Overview of Dissertation

The advances in video production technology and the consumer demand have

led to the ever-increasing demands for further video coding standard towards

higher resolution (4Kx2K resolution and above) and particularlily better video

quality. After the success of existing H.264/AVC video coding standard, ITU-T

Video Coding Experts Group (VCEG) targeted a new generation of video com-

pression technology that has substantially higher compression capability than the

H.264/AVC standard. Thus, ITU VCEG and MPEG worked together again and

formed the so-called Joint Collaborative Team on Video Coding (JCT-VC) in

January 2010. A joint Call-for-Proposal (CfP) for High Efficiency Video Coding

(HEVC) was issued[2] to collect promsing coding tools as a good starting point to

develop next-generation video coding design.

In most of the modern video coding standards such as MPEG1, MPEG2,

MPEG4, H.263, H.264 and HEVC, a hybrid block-based motion compensated

DCT-like transform coding architecture is still utilized. Motion-compensated pre-

diction (MCP) is the key to the success of the modern video coding standards, as

it removes the temporal redundancy in video signals and reduces the size of bit-

streams significantly. Although MCP has been studied for over twenty years, we
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Figure 1.1: The relationship between the proposed works and the signal models.

believe a deeper understanding of the principles behind the designs would bring a

fundamental breakthrough in improving coding efficiency. In this dissertation, we

therefore focus on improving MCP effeciency to provide better coding performance

within a reasonable computation complexity overhead.

As shown in Fig. 1.1, to gain more insights into MCP, we first view MCP as

a two stage process; it takes motion samples at block center and then generats

predictor by the sampled motion vectors. Under this point of view and based

on the presumed signal models for intensity and motion vectors, we then propose

a parametric window design to tackle the problem of adapting overlapped block

motion compensation (OBMC) windows for use with VBSMC. Lastly, we also

demonstrate how template and block motion estimates can jointly be applied in

a parametric overlapped block motion compensation (OBMC) framework to form

an efficient bi-predictioin scheme to further improve temporal prediction. The
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Figure 1.2: The operatioins of block motion compensation (BMC).

following summarizes our major contributions for developing MCP coding tools

and some complexity reduced approaches.

1.2 Motion-Compensated Prediction (MCP): An

Analytical Perspective

An insightful perspective on MCP is to view its process as consisting of sparse

motion sampling followed by the reconstruction of temporal predictors. In this

context, as illustrated in Fig. 1.1, block-based motion estimation acts as a mo-

tion sampler taking samples at block centers while BMC interpolates, using the

nearest-neighbor rule, between motion samples to construct the motion field. This

interpretation facilitates a better understanding of various MCP schemes from a

unied framework. For example, if we take such a view, VBSMC is merely an

enhancement of BMC in motion sampling as shown in Fig. 1.1.

The models are then applied to the analysis of prediction efficiency of various

MCP schemes. To justify our theoretical analysis, we also show that template

3



Figure 1.3: The operatioins of variable block size motion compensation (VBSMC).

Figure 1.4: The operatioins of template matching prediction (TMP).
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matching prediction (TMP), which estimates motion for a current block by using

its surrending pixels (cf. Fig. 1.1), consistently outperforms SKIP prediction, but

hardly competes with block motion compensation (BMC) unless both the motion

and intensity fields are less random or have high spatial correlation.

To facilitate the analysis of various MVP schemes, we adopt the signal models,

which assumes that the autocorrelation function of the intensity and motion fields

follows some quadritic and exponential forms. Given these assumptions, we then

examine the prediction error for BMC, CGI, OBMC, TMP and Skip predictioin.

It is interesting that the mean-square error (MSE) of OBMC exhibits the same

form as that of CGI, suggesting that OBMC and CGI have identical prediction

efficiency and they outperform the other MCP scehemes in terms of prediction

efficiency. Nevertheless, OBMC is generally preferable to CGI. The reasons are

twofold. First, the true motion for every pixel is not easily accessible, which makes

it difficult to estimate the weighting coefficients for CGI. Second, OBMC can not

only alleviate motion uncertainty, but it also serves to attenuate quantization

noises in reference pictures. These arguments also explain why OBMC normally

outperforms CGI in practice.

With the above observations, we focus on improving OBMC. However, window

design for OBMC becomes difficul when variable block size motion compensation

(VBSMC) are incorporated. In an effort to adapt OBMC for use with VBSMC,

we approach the problem using parametric solutions as detailed in the next sub-

section.

1.3 Parametric OBMC

This work adapts overlapped block motion compensation (OBMC) to suit variable

block-size motion partitioning. The motion vectors (MVs) for various partitions

5



are formalized as motion samples taken with an irregular grid. With this view-

point, determining OBMC weights to associate with these samples becomes an

under-determined problem since a distinct solution has to be sought for each pre-

diction pixel.

We tackle this problem by expressing the optimal weights in closed-form based

on parametric signal assumptions. The computation of this solution requires only

the geometrical relationship between the prediction pixel and its nearby block

centers, leading to a generic framework allowing for reconstructing temporal pre-

dictors from any irregularly sampled MVs. A modified implementation is also

proposed to address MV location uncertainty and to reduce computational com-

plexity.

Extensive experiments have been conducted using the KTA software. Experi-

mental results demonstrate that our scheme performs better than similar previous

works, and provides about 5% BD-Rate savings compared to H.264/AVC anchor.

When compared to the recently proposed Quadtree-based Adaptive Loop Fil-

ter (QALF) [12]and Enhanced Adaptive Interpolation Filter (EAIF)[29], POBMC

also shows a comparable gain. Furthermore, the combination of it with either filter

gives a combined effect that is almost the sum of their separate improvements.

Along with other promising coding tools in KTA2.4, the proposed POBMC

[8] was submitted, for subjective viewing tests, in response to the HEVC Call for

Proposals issued jointly by MPEG and VCEG in April, 2010 [2]. It was ranked

12 overall and 10 with low delay configurations among 27 proposals, in terms of

the average mean opinion score [3]. After the CfP competition in the 1st JCT-VC

meeting, TMuC (Testing Model under Consideration) is constructed mainly from

the best performer’s codebase and the other top-performing HEVC proposals.
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1.4 Bi-Prediction Combining TMP and BMC

An efficient bi-predictioin scheme combining TMP with BMC using POBMC is

proposed. Template matching prediction (TMP), which estimates the motion

for a target block by using its surrounding pixels, has been observed to perform

efficiently in inter-frame coding. In this work, we expos how template and block

motion estimates can jointly be applied in a parametric overlapped block motion

compensation (OBMC) framework to further improve temporal prediction. When

integrated in HM3.0, the reference software of HEVC, the combined technique

is observed to achieve Y-BD-rate savings of 2% BD-rate reductioin. The notion

is further extended to allow the template MV to be replaced with one of those

MVs for neighboring prediction units, enabling a low-complexity and template-

matching-free implementation. Experiments show that this reduced-complexity

approach can provide competitive coding gain with lower computation complexity

and memory access bandwidth.

Currently, the JCT-VC committeehas finished the HEVC working draft 4 and

HEVC test model (HM) [23]. With its promising results and compatibility with

existing tool features, the proposed new bi-prediction scheme which combines the

implicitly inferred motion and block motion with POBMC is being evaluated in

several formal core experiments in JCT-VC meeting[10][16][7][6].

1.5 Organization and Contribution

For more details of each part of the proposed advanced MCP schemes for High-

Efficiency Video Coding, the rest of this dissertation is organized as follows:

• Chapter 2 introduces a new viewpoint by viewing MCP as a motion sampler

taking motion sampling followed by a reconstruction of prediction signal.[26].
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– We have analyzed, both theoretically and empirically, the prediction

efficiency of BMC, CGI, OBMC, TMP and SKIP prediction.

– We have shown that although TMP hardly competes with BMC, it is

shown to outperform SKIP prediction, which explains why the bit rate

can be significantly reduced when TMP is efficiently combined with

SKIP prediction.

– We have shown that OBMC and CGI outperform other MCP schemes.

• Chapter 3 details the algorithm of Parametric Overlapped Block Motion

Compensation (POBMC) [9].

– Our scheme requires only the geometry relation to compute the weight

vector for OBMC.

– Compared to EAIF and QALF, our scheme shows a comparable gain.

Furthermore, the combination of it with either filter gives a combined

effect that is almost the sum of their separate improvements.

– Our scheme is a suboptimal yet computationally efficient implementa-

tion, which need not solve the Wiener-Hopf equation and thus requires

no matrix inverse computation.

– By integrating POBMC into AVC/H.264 reference software KTA, our

codec [8], submitted for subjective test in response to the Call for

Proposals for Video Compression Technology issued jointly by ITU-

T VCEG and ISO/IEC MPEG, ranks 12 overall (and 10 with Low

Delay Settings) among 27 proposals.

• Chapter 4 introduces a bi-prediction scheme with only single motion over-

head as for unidirectional prediction.
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– It combines motion vectors found by template and block matchings

with OBMC

– The concept of adaptive motion merging is incorporated to enable a

template-matching-free implementation.

– The proposed bi-prediction scheme is being evaluated using HEVC ref-

erence software and provides top one coding efficiency in the core ex-

periment 1 of 6th JCTVC meeting.

• Lastly, Chapter 5 summarizes our works and illustrates the research activi-

ties in the future.
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Chapter 2

Motion-Compensated Prediction:
An Analytical Perspective

2.1 Introduction

Motion compensated prediction (MCP) is an algorithmic technique employed in

the encoding/decoding of video data for removing temporal redundancy. In hybrid

video coding schemes such as MPEG and H.264/AVC standards, pictures are

predicted from previous or bidirectionally from previous and future pictures by a

block-based motion compensation (BMC) scheme. It uses one single motion vector

(MV) (two MVs for bipredictioin schemes) as an estimate of the true motion field

for a block of pixels, in order to trade off the accuracy of motion representation

for less overhead.

An insightful perspective on MCP is to view its process as consisting of sparse

motion sampling followed by the reconstruction of temporal predictors. In this

context, block-based motion estimation acts as a motion sampler taking samples

at block centers while BMC interpolates, using the nearest-neighbor rule, between

motion samples to construct the motion field. This interpretation facilitates a

better understanding of various MCP schemes from a unified framework. For

example, if we take such a view, VBSMC is merely an enhancement of BMC

in motion sampling. The various MB partitionings are assimilated to different
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sampling structures, and choosing a specific block partitioning can be thought of

as determining a local sampling pattern. By a similar reasoning, the difference

between BMC and CGI is easily seen to be a different choice of motion interpolator.

Somewhat less intuitive is OBMC, which does not directly reconstruct the motion

field. Nevertheless, it was shown in [25] that an optimal OBMC window is also

an optimal motion interpolation function, with which CGI can achieve the same

mean-square prediction error as OBMC. This result furnishes another view of

OBMC from the standpoint of motion interpolation. As an illustration, Fig. 2.1

contrasts graphically these techniques for the 1-D case.

With these ideas in mind, in the following sections, we shall first show that

when chosen to minimize the mean-square block matching error, the MV is shown

to approximate the true motion of the block center based on the motion and

intensity fields of video signals. We then apply the statistical motion distribution

model to the analysis of prediction efficiency of various MCP schemes such as

Template Matching Prediction (TMP), BMC and SKIP prediction. The analytical

results are justified by empirical experiments with typical image sequences.

2.2 Motion and Intensity Models

In this section, we review two statistical models used to characterize the motion

and intensity fields of video signals. These models will serve as the basis for ana-

lyzing the motion compensation error of motion compensated prediction (MCP)

in this dissertation.

To analyze the distribution of motion-compensated residuals, Tao etal. [24]

assumes that the autocorrelation function of the intensity and motion fields can be

11



(a) (b)

(c) (d)

Figure 2.1: Various MCP schemes in the 1-D case: (a) MCP based on the true
motion field, (b) BMC, (c) CGI and (d) OBMC.
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approximated with a quadratic function and an exponential function, respectively:

E[Ik(s1)Ik(s2)] = σ2
I

(
1− ||s1−s2||

2
2

K

)
E[vx(s1)vx(s2)] = E[vy(s1)vy(s2)] = σ2

mρ
||s1−s2||1
m ,

(2.1)

where Ik(s) represents the intensity value of pixel s = (x(s), y(s))T of frame k;

v(s) = (vx(s), vy(s))T denotes its motion vector; and {σ2
I , K} and {σ2

m, ρm} are

their respective variance and correlation coefficient. Likewise, in [30] Zheng et

al. introduces a motion distribution model assuming that the difference between

motion at two pixels obeys the normal distribution:

vx(s1)− vx(s2) or vy(s1)− vy(s2) ∼ N(0, α ‖s1 − s2‖2
2), (2.2)

where α is a constant indicating the degree of motion variation in the horizontal

or vertical direction.

Given these models, they both show that the block-based motion estimate

tends to be the motion of the block center sc, with the mean-square prediction

error for pixel s, d(s; v(sc)) ≡ Ik(s)−Ik−1(s + v(sc)), given respectively by

E[d2(s; v(sc))] =
8σ2

Iσ
2
m

K

(
1− ρ||s−sc||1m

)
(2.3)

and

E[d2(s; v(sc))] = ε||s− sc||22, (2.4)

where ε is a factor related to the randomness of the motion and intensity fields

(the randomness increases with increasing ε). According to these equations, the

prediction error is larger for boundary pixels, which agrees with the general ob-

servation.

2.3 Analysis of Various MCP Schemes

Given these statistical models, we next examine the prediction error for various

MCP schemes including BMC, CGI[21], OBMC [19], TMP[13] and SKIP modes.
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Assume at first the sampling structure is a square lattice. Such is the case when

an image is divided into equally spaced square blocks for motion estimation.

2.3.1 Error Variance Distribution of BMC, CGI and OBMC

The prediction error of pixel s, s ∈B for BMC, CGI and OBMC can be expressed

respectively as

dBMC(s) = Ik(s)−Ik−1(s + v(s0))

dCGI(s) = Ik(s)− Ik−1

(
s +

3∑
i=0

w
(c)
i (s)v(si)

)

dOBMC(s) = Ik(s)−
3∑

i=0

w
(o)
i (s)Ik−1(s + v(si))

where {w(c)
i (s)} are chosen such that

∑
w

(c)
i (s)v(si) forms a vector LMMSE es-

timate of v(s) subject to the unit gain constraint1. By a similar approach, the

weighting coefficients {w(o)
i (s)} and {w(ig)

i (s)} are derived to linearly estimate Ik(s)

based on the data sets {Ik−1(s + v(si))} and {Ik−1(s + v(ti))}, respectively. Par-

ticularly, in computing {w(ig)
i (s)} the motion vectors at ti, i = 1, 2, 3 are taken to

be known, while during actual motion compensation they are interpolated from

those of nearby block centers (with the results denoted by ṽ(ti)).

The mean-square prediction error (MSE) for the four MCP schemes can be

evaluated by using (2.1), although the algebra is a bit tedious. We shall thus use

CGI as an example to indicate the main idea without going into formal details. To

start off, the vector LMMSE estimator for v(s) is firstly found by combining the

scalar estimator for each of its components. As such, w
(c)
i (s) is a matrix-valued

function (of dimension 2x2). However, a great simplification can be made since

1We consider this Wiener filter rather than bilinear filter [21] since our interest is in deter-
mining the theoretic limit of CGI.
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(a) the horizontal and vertical motion fields are independent of each other and

(b) they share an identical signal model as hinted in (2.1). The former makes the

matrix become diagonal while the latter further equalizes the diagonal elements.

Together the two conditions reduce w
(c)
i (s) to a scalar, with its value given by the

ith element of

w(c)(s) = R−1

[
P−U

(
UTR−1P− 1

UTR−1U

)]
, (2.5)

where U is a unit vector and Rij = E[vx(si)vx(sj)] and Pj = E[vx(s)vx(sj)] for

0 ≤ i, j ≤ 3.

To complete the evaluation of E[
∥∥dCGI(s)

∥∥2
], we still need to know E [I2

k(s)],

E[I2
k−1(s +

∑
w

(c)
i (s)v(si))], and E[Ik(s)Ik−1(s +

∑
w

(c)
i (s)v(si))]. The first two

terms, according to (2.1), are simply σ2
I , while the last one can be computed by

substituting (2.1) and (2.5) into (2.6).

E

[
Ik−1(s + v(s))Ik−1

(
s +

3∑
i=0

w
(c)
i (s)v(si)

)]
(2.6)

= σ2
IE

1−2K−1

(
3∑

i=0

w
(c)
i (s)(vx(s)− vx(si))

)2


where we have used the fact that
∑

w
(c)
i (s) = 1. A straightforward computation

then gives

E
[∥∥dCGI(s)

∥∥2
]

=
f

2

∑
0≤i,j≤3

w
(c)
i (s)w

(c)
j (s)

(
1− ρ‖s−si‖1m

−ρ‖
s−sj‖

1
m + ρ

‖si−sj‖
1

m

)
, (2.7)

with the scaling factor f = 8σ2
Iσ

2
mK

−1. Following similar derivations to those for

CGI, we can calculate the MSE for the other schemes as

E
[∥∥dBMC(s)

∥∥2
]

= f
(
1− ρ‖s−s0‖1m

)
E
[∥∥dOBMC(s)

∥∥2
]

= E
[∥∥dCGI(s)

∥∥2
]
w(c)(s)=w(o)(s)
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where I∆(i) = Ik(s)− Ik−1(s+ṽ(ti)) and E[I∆(i)I∆(j)] can be expanded and eval-

uated term by term through a calculation similar to (2.6).

It is interesting that the MSE of OBMC exhibits the same form as that of CGI,

with w(o)(s) substituting for w(c)(s). Somewhat surprisingly, w(o)(s) is found to

be equal to w(c)(s), suggesting that OBMC and CGI have identical prediction

efficiency and that the OBMC filter w(o)(s) is also a good motion interpolator.

Nevertheless, OBMC is generally preferable to CGI. The reasons are twofold.

First, the true motion for every pixel is not easily accessible, which makes it dif-

ficult to estimate w(c)(s) for CGI. Second, OBMC can not only alleviate motion

uncertainty, but it also serves to attenuate quantization noises in reference pic-

tures. These arguments also explain why OBMC normally outperforms CGI in

practice.

2.3.2 Error Variance Distribution of TMP

Template Matching Prediction (TMP) is a decoder-side motion derivation scheme.

As shown in Fig. 2.3, TMP finds the predictor for a target block B by minimizing

the predictor erro over the pixels in its immediate inverse-L-shaped neighborhood

B.To gain some insights into TMP, Fig. 4.1 plots the mean-square prediction error

surface with a TMP MV for motion compensation of the target block. It is seen

that this MV tends to minimize the prediction error in the upper left quarter, a

result that is intuitively agreeable since it approximates the true motion associated

with the template centroid. Although it has been observed that TMPcan provide

coding gain[13], there is almost no satisfactory theoretical basis that clearly inter-

prets the theoretical aspects of TMP thoroughly. In the following sections, we will

first analyze the prediction efficiency of TMP followed and then the comparisons

of TMP, BMC and Skip prediction. This section provides a theoretical analysis to
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Figure 2.2: Mean-square prediction error surface of TMP using the sequence
”Football”.

expose the factors that determine the prediction efficiency of TMP. The analysis

is carried out based on the statistical models introduced in previous section

We begin by examining the distribution of TMP error variance. To do so

requires modeling the template motion estimate. Proceeding as the approach

described in [30], we can obtain, with the results that

st = arg min
t

∑
s∈T

E[d2(s; v(t))] =


∑
s∈T

x(s)

|T |
,

∑
s∈T

y(s)

|T |

T

. (2.8)

Thus, the motion estimate found by minimizing the template matching error is

likely to be the motion associated with the centroid of the template, a result that

is intuitively agreeable and is a direct extension of that for (rectangular) block

matching.

As shown in Fig. 2.3, the centroid of the template st is obviously not at the

block center when the template is straddled on the top and to the left of the target

block B. Thus we can expect TMP to yield higher prediction error than BMC

for block B. A little computation using st in place of sc in (2.7) and (3.5) further

shows that the error is lower in the upper left quarter and higher in the lower
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Figure 2.3: Template Matching Prediction.

right quarter. This result is well supported by the empirical data displayed in Fig.

2.4, Fig. 2.5 and Fig. 2.6, where the actual error surface and the ones predicted

by the two models are compared. For clarity we have rotated the error surfaces

counterclockwise by 135◦. From the figure, we also observe that Zheng’s model

seems to perform better in estimating error variances.

In summary, although TMP does not require extra motion information, its

prediction efficiency is generally much worse than that of BMC in the mean-square

error (MSE) sense. An exception is when both the intensity and motion fields are

less random or have high spatial correlation, that is, with Tao’s model, σ2
I , σ

2
m

are smaller or ρm, K tend to be larger and with Zheng’s model, ε is small. It is

then natural to question how it can achieve a bit-rate saving of 10%. The answer

becomes clear when its performance is compared with that of SKIP prediction.

2.3.3 Error Variance Distribution of SKIP Prediction

We shall now derive formulae that will enable us to estimate the error variance for

SKIP prediction. Recall that if a block is coded in SKIP mode, its motion vector
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(a)

(b)

(c)

Figure 2.4: Mean-square prediction error surfaces of block B produced with BMC
by (a) empirical results, (b) Tao and (c) Zheng’s model, respectively. The sequence
is Football and the block size used for motion compensation is 16x16.

19



(a)

(b)

(c)

Figure 2.5: Mean-square prediction error surfaces of block B produced with TMP
by (a) empirical results, (b) Tao and (c) Zheng’s model, respectively. The sequence
is Football and the block size used for motion compensation is 16x16.
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(a)

(b)

(c)

Figure 2.6: Mean-square prediction error surfaces of block B produced with SKIP
by (a) empirical results, (b) Tao and (c) Zheng’s model, respectively. The sequence
is Football and the block size used for motion compensation is 16x16.
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is determined by the median of those in its neighborhood. Using the example

shown in Fig. 2.3, the inferred vector v̂ for block B is

v̂x = Median{vx(s1), vx(s2), vx(s3)}
v̂y = Median{vy(s1), vy(s2), vy(s3)} (2.9)

where (vx(si), vy(si))
T , i = 1, 2, 3 are the motion vectors associated with blocks Bi

and are approximated by the motion of their centers. The corresponding mean-

square prediction error for pixel s, s ∈B then becomes

E
[
d2(s;v̂)

]
= E

[
(Ik(s)− Ik−1(s+v̂))2] (2.10)

= E
[
(Ik−1(s + v(s))− Ik−1(s+v̂))2] .

Computing the expectation in (2.10), which involves order statistics, is in gen-

eral a difficult task. To circumvent the difficulties, we take a simpler approach by

assuming that v̂(i, j) ≡ (v̂x, v̂y) = (vx(si), vy(sj)), i, j = 1, 2, 3, with each ordered

pair being equally likely. Hence, we can replace (2.10) with

E [d2(s;v̂)]

= 1
9

3∑
i=1

3∑
j=1

E
[
(Ik−1(s + v(s))− Ik−1(s+v̂(i, j)))2] , (2.11)

which can readily be evaluated by incorporating Tao’s model. A straightforward

calculation then gives

E
[
d2(s;v̂)

]
=

8σ2
Iσ

2
m

3K

3∑
i=1

(
1− ρ‖s−si‖1m

)
. (2.12)

Similarly, repeating the procedure in [30], we obtain the result for Zheng’s model

as

E
[
d2(s;v̂)

]
≈ ε

3

3∑
i=1

‖s− si‖2
2 , (2.13)

where the approximation is due to the use of Taylor’s expansion in computing the

prediction error Ik−1(s + v(s))− Ik−1(s+v̂(i, j)).
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Table 2.1: Comparison of Mean-Square Prediction Error
Football QP22 Foreman QP22 Football QP38 Foreman QP38

Schemes Emp. T. Z. Emp. T. Z. Emp. T. Z. Emp. T. Z.
BMC(8) 112 109 113 19 17 19 141 134 141 43 40 43

TMP L2(8) 372 302 342 41 29 31 398 307 360 70 48 64
TMP L4(8) 382 346 369 39 33 34 405 351 385 70 55 66

BMC(16) 238 232 238 28 27 28 256 246 256 59 55 59
TMP L2(16) 590 530 609 54 48 34 600 516 597 85 67 66
TMP L4(16) 588 555 620 55 50 37 596 539 607 86 70 69

SKIP(16) 913 916 887 129 136 140 913 914 885 329 340 339

It is interesting to know that both (2.12) and (2.13) are merely a weighted sum

of the mean-square prediction errors, i.e.
∑3

i=1 (E[d2(s; v(si))]/3), when v(si),i =

1, 2, 3 are separately utilized for motion compensation of pixel s. In fact, this is

a direct consequence of our assumption made about v̂. Its validity is justified by

the empirical data given in Fig. 2.4, 2.5 and 2.6, where it is seen that the error

surfaces predicted by (2.12) and (2.13) resemble closely the actual one. Also, as

expected, with the help of v(s2) SKIP prediction tends to minimize the error at

the upper part of the block, especially at the upper right quarter.

2.3.4 Comparison of BMC, TMP and SKIP Prediction

Table 2.1 compares the MSE of residual signals for different schemes. The empir-

ical values and those predicted by the models are illustrated. For experiments, we

use CIF Football and Foreman sequences, each being 50-frame long. The search

range for block or template matching is ±32 pixels, with quarter-pel accuracy. To

simulate quantization effects, the reference frame and the template region (of size

2 or 4) are coded by H.264/AVC. In addition, the model parameters σ2
Iσ

2
m/K, ρm

and ε are estimated by a least-square fit to empirical data.

From the table, several observations can be made: (a) the models are consis-

tent with experimental results (at least qualitatively); (b) with explicit motion

information, BMC yields a minimum MSE among all the schemes; (c) TMP con-

sistently outperforms SKIP prediction regardless of the template or target block
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size; and (d) the MSE of TMP increases as the template or target block size is

increased. The third explains why the bit rate can be significantly reduced when

TMP is applied to SKIP macroblocks as an alternative prediction source [13]. The

last is due to the fact that the template centroid deviates more from the center of

the target block. Remarkably, these results are true in an average sense, meaning

that a hybrid of TMP and BMC may outperform either one alone, as reported in

[13].

2.4 Summary

We have re-examed the predictioin efficiency of motion compensated prediction

(MCP) and interpreted it as a motion sampler followed by the reconstruction of

prediction signal. We also show that, in a statistical sense, block matching based

motion estimation will result in motion vectors that are most likely to be the

motion vectors sampled at block centers. With the help of motion and intensity

models, the comparison of BMC, CGI, OBMC, TMP and SKIP prediction are also

demonstrated both theoretically and empirically. Although TMP hardly competes

with BMC, TMP is shown to outperform SKIP prediction, which explains why

the bit rate can be significantly reduced when TMP is efficiently combined with

SKIP prediction. Based on this theoretical framework, in this dissertation, we

then apply some of these results to design a parametric solution for OBMC to suit

for irregular motion sampling structures.
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Chapter 3

Parametric Overlapped Block
Motion Compensation

3.1 Introduction

As discussed in chapter 2, various algorithms have been proposed to improve

BMC. The most straightforward technique is variable block-size motion compen-

sation(VBSMC), which increases motion sampling density in areas with complex

motion to compensate for the inefficiency of BMC. By contrast, Control-Grid

Interpolation (CGI) [21] and Overlapped Block Motion Compensation (OBMC)

[19] use more sophisticated algorithms to reconstruct the motion field without

additional samples. The former improves motion interpolation by employing a

triangular filter function, while the latter directly gives a linear estimate of each

pixel’s intensity based on predictors derived from the current and nearby block

MVs. Both are able to alleviate blocking artifacts effectively, but in practice,

OBMC is preferred to CGI since the averaging of predictors also helps to reduce

quantization noise [25]. To reduce and equalize prediction error within blocks, two

approaches have been proposed: overlapped block motion compensation (OBMC)

[3] and variable blocksize motion compensation (VBSMC) [4][5]. OBMC improves

the motion compensation accuracy for every pixel by considering nearby motion

estimates as different plausible hypotheses for its true motion. VBSMC, on the
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other hand, extends BMC naturally to allow the use of subblocks of varying size in

motion compensation. While OBMC requires no extra side information, VBSMC

must additionally signal the choice of block size and motion vector. Each method

has some merits and faults, and this dissertation seeks to form an optimized hybrid

of the two techniques.

Motivated by the preceding observations, we are led to seek an optimized

hybrid of VBSMC and OBMC, aiming to trade better prediction for fewer MVs

while retaining the flexibility to adapt motion sampling structure according to

variations in image statistics. However, determining OBMC weights to associate

with MVs on an irregular grid poses a challenging problem. This is because the

variable block-size partitioning yields spatially varying geometric relations between

a prediction pixel and its nearby block centers. In this case, solving for the weights

with the least-squares method would become an under-determined problem since

a distinct solution has to be sought for each possible context. Clearly, there may

be more parameters to be estimated than there are data points.

This problem is not new. A similar situation occurred in the development of

H.263 [1]. At that time, it was resolved by treating larger blocks as a collection of

smaller blocks with the same MV in each smaller block as in the larger aggregate

block and by applying a fixed window function to all MVs. In an attempt to extend

the notion to H.264/AVC, Wang et al. [27] additionally proposed to weight more

heavily those MVs from smaller aggregate blocks, which they believed can more

reliably represent the motion of neighboring blocks, although no justification was

given. Both methods suffer from the same problem that inner pixels in larger

blocks are not properly compensated. Essentially, the MVs utilized for OBMC of

those pixels are replicated from the same (aggregate) block MVs, producing a net
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effect like BMC. A third method that has recently been proposed is irregular-grid

OBMC [11], which circumvents this deficiency by an adaptive window support

that scales with local motion sampling density. It, however, remains unclear how

to choose a proper scaling factor for each MV.

This dissertation departs from heuristic methods to approach the problem from

a theoretical perspective. We formalize the notion of motion-compensated predic-

tion (MCP) as a two-stage process consisting of sparse motion sampling followed

by the reconstruction of temporal predictors. Within such a framework, OBMC

in its generalized form is seen to find a LMMSE estimate for every pixel’s inten-

sity based on motion-compensated signals derived from MVs sampled at nearby

block centers. This viewpoint allows us to derive a parametric solution, termed

POBMC, for determining the optimal weights in closed form. In doing so, the

signal models in [30] are adopted to describe the probabilistic structures of the

underlying intensity and motion fields. One important result of our POBMC is

that its parameters include only the `2 distances between the locations of the pre-

diction pixel and the MVs involved–i.e., their geometric relations are all that are

needed to determine the weights. This leads to a generic method of reconstructing

temporal predictors from any sparsely and irregularly sampled motion data.

Although our approach has some parallels with the other parametric solution

[24], the unique features that distinguish this work from it include

1. Our focus is to adapt OBMC to suit variable block-size motion partitioning,

while [24] concentrates on adjusting OBMC windows, based on the use of

fixed block-size partitioning, in response to variations in sequence statistics;

2. We adopt an alternative signal model [30], which not only better represents

the reality but also gives a result that is considerably more intuitive and
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tractable;

3. We address the uncertainty associated with a block MV’s location by in-

troducing a compensation term to reflect its dispersion around the block

center;

4. We propose a suboptimal yet computationally efficient implementation, which

need not solve the Wiener-Hopf equation and thus eliminates the need to

compute matrix inverse.

In addition, we implement the proposed scheme with KTA 2.4r1 [20] and provide

a performance comparison with the recently proposed Enhanced Adaptive Inter-

polation Filter (EAIF) [29] and Quadtree-based Adaptive Loop Filter (QALF)

[12] together with an analysis on how they interact with each other.

In the common test conditions, our POBMC delivers better rate-distortion

(R-D) performance than both the H.263 OBMC [1] and the parametric solution

[24]. Relative to an H.264/AVC anchor with extended macroblock (MB) size, it

achieves 3.1% (0.7-13.6%) BD-rate reductions, compared to 4.6% (0.5-10.1%) and

7.2% (1.3-18.0%) with the single use of EAIF and of QALF, respectively. Although

POBMC has the least gain among these filters, it can be combined efficiently with

either of the other two filters. The result is an improvement that is almost the sum

of their separate effects. In particular, the combination of POBMC and QALF

performs very close to or better than that of EAIF and QALF, even in cases where

the single use of EAIF outperforms that of POBMC.

The rest of this dissertation is organized as follows: Section II revisits the

notion of motion-compensated prediction from a perspective based on motion

sampling and reconstruction. Section III presents in detail the derivation of our

parametric solutions. Section IV examines their properties by contrasting the-
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oretical predictions with empirical data. Section V evaluates the compression

performance of POBMC from various aspects and provides a runtime analysis.

Section VI concludes this dissertation with a summary of our observations and a

list of future works. Finally, the implementation details of POBMC is elaborated

in Appendix.

3.2 Parametric Overlapped Block Motion Com-

pensation (POBMC)

3.2.1 Review of OBMC

This section briefly reviews the basics of OBMC, to aid the understanding of

our POBMC. In words, OBMC is to find a LMMSE estimate of a pixel’s intensity

value Ik(s) based on motion-compensated signals {Ik−1(s+v(si))}Li=1 derived from

its nearby block MVs {v(si)}Li=1. From an estimation-theoretic perspective, these

MVs are plausible hypotheses for its true motion, and to maximize coding effi-

ciency, their weights w = [w1, w2, ..., wL]T are chosen to minimize the mean-square

prediction error subject to the unit-gain constraint [19]:

w∗ = arg min
w
ξ(w) s.t.

L∑
i=1

wi = 1, (3.1)

where

ξ(w) = E


(
Ik(s)−

L∑
i=1

wiIk−1(s + v(si))

)2
 .

Applying the Lagrangian method to (3.1 ) then gives

w∗ = R−1

[
P−U

(
UTR−1P− 1

UTR−1U

)]
, (3.2)

where [R]ij = E[Ik−1(s + v(si))Ik−1(s + v(sj))] and [P]j = E[Ik(s)Ik−1(s + v(sj))]

stand, respectively, for auto- and cross-correlation matrices, and U is a column
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vector with all elements equal to one [19]. Given that the underlying intensity

and motion fields are stationary and that motion samples are taken on a square

lattice (such is the case when an image is divided into a group of square blocks

for motion search), the optimal weights w∗ for pixel s depend solely on its relative

position within a block. They are often obtained using the least-squares method

due to lack of knowledge of the probabilistic models of real data.

The concept of OBMC can be generalized to the case where motion sampling

structure is irregular. The challenge, however, becomes how to compute for each

pixel its optimal weights to associate with nearby MVs, given that both auto-

and cross-correlation functions are spatially varying. The least-squares solution,

although feasible in theory, is impractical because the storage of weighting coef-

ficients optimized for different contexts demands huge memory requirements. To

tackle this problem, we resort to a parametric solution.

3.2.2 Signal Models

POBMC aims to give a closed-form formula for the optimal weights. To do so,

it usually needs to assume signal models for the intensity and motion fields. The

choice of the models often involves a trade-off between accuracy, simplicity and

tractability, and can sometimes be quite subtle. For instance, Tao et al. [24] model

the auto-correlation functions of the intensity and motion fields using quadratic

and exponential functions, respectively. These models are so chosen that R and P

can be expressed in closed form. In general, different models have their merits and

faults, and what model best represents reality is normally justified by empirical

simulations.

In this dissertation we aim to give a direct estimate of the optimal weights

w∗. This is accomplished by adopting the motion model proposed in [30], which
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assumes that the difference between the true motion of any two pixels, e.g., s1 and

s2, has a normal distribution of the form

vx(s1)− vx(s2) or vy(s1)− vy(s2) ∼ N (0, αr2(s1, s2)), (3.3)

where α is a positive number indicating the degree of motion randomness in the

horizontal or vertical direction 1, and r(s1, s2) is the `2 distance (measured in the

unit of pixel) between s1 and s2. Caution, however, must be exercised when using

(3.3) because it is an incomplete specification. The variance αr2(s1,mathbfs2)

must be bounded from above for the model to be proper. To see this, let us

assume the motion field is stationary and symmetric. It then follows from (3.3)

that

E{vx(s1)vx(s2)} = E{vy(s1)vy(s2)} = σ2
m + µ2

m −
αr2(s1, s2)

2
, (3.4)

where µm and σ2
m are the mean and the variance of the motion field, respectively.

Using the Cauchy-Schwarz inequality, we have 4σ2
m ≥ αr2(s1, s2) ≥ 0. The lower

bound is obvious, but the upper bound deserves more attention. According to

(3.4), it implies that the MVs of two far-away pixels are negatively correlated. A

tighter bound that agrees more with the general observation is 2σ2
m, which will

make them become uncorrelated. We can equivalently define a clipper function for

r(s1, s2) to have the property r̂(s1, s2) = Clip(0, r(s1, s2), τ), where the clipping

threshold τ =
√

2σ2
m/α. Hereafter we shall omit the tedious repetition of this

constraint by using r̂(s1, s2) in place of r(s1, s2).

3.2.3 Optimal Weights in Parametric Form

With the signal model in (3.3), we next proceed to determine the optimal weights

w∗ using calculus. To begin with, we rewrite, by noting that
∑L

i=1wi = 1, the

1The smaller α value suggests the motion field has higher spatial correlation.
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mean-square prediction error ξ(w) in Eq. (3.1) as

ξ(w) = E


(

L∑
i=1

wid(s; v(si))

)2
 , (3.5)

where d(s; v(si)) = Ik(s)−Ik−1(s+v(si)) denotes the residual signal when Ik(s) is

predicted from the motion-compensated signal Ik−1(s + v(si)) using the MV v(si)

for block i. (3.5) can be written more compactly in matrix notation as

ξ(w) = wTE{ddT}w = wTDw, (3.6)

where d = [d(s; v(s1)),d(s; v(s2)), ...,d(s; v(sL))]T .

To continue, we borrow a result in [30], which shows that if (3.3) is valid, then

E{d2(s; v(si)} has a closed-form formula given by

E{d2(s; v(si)} = E{(Ik−1(s + v(s))− Ik−1(s + v(si)))
2}

= εr̂2(s, si),

(3.7)

where ε is a constant indicating the joint randomness of the motion and intensity

fields; Ik(s) = Ik−1(s + v(s)) with v(s) denoting the true motion of pixel s; and

the block MV v(si) is approximated as the motion associated with the block

center si. What remain to be determined in D are those off-diagonal entries, i.e.,

E{d(s; v(si)d(s; v(sj)}, i 6= j; in fact, their derivations are merely an application

of (3.7). With a little bit of algebra 2, we obtain

E{d(s; v(si)d(s; v(sj)}

=E{(Ik(s)−Ik−1(s + v(si)))(Ik(s)−Ik−1(s + v(sj)))}

=
1

2
E{(Ik(s)−Ik−1(s + v(si))

2}

+
1

2
E{(Ik(s)−Ik−1(s + v(sj))

2}

−1

2
E{(Ik(s+v(si))−Ik−1(s + v(sj))

2}

=
1

2
ε
(
r̂2(s, si) + r̂2(s, sj)− r̂2(si, sj)

)

(3.8)

2(a− b)(a− c) = 1
2 (a− b)2 + 1

2 (a− c)2 − 1
2 (b− c)2
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The astute reader may feel a sense of misgiving about the approximation E{(Ik

(s+v(si))−Ik−1(s + v(sj))
2} ≈ εr̂2(si, sj), as it does not seem to be a direct exten-

sion of (3.7). The subtle difference is the replacement of v(s) with v(si). However,

assuming that v(si) represents the true motion of the block center si, its proof can

be carried out in the same manner as for (3.7). Another testament to its mathe-

matical correctness is that (3.8) includes (3.7) as a special case where si = sj.

Returning to (3.6), we are now ready to find the optimal weights. Since ξ(w) is

to be minimized subject to
∑L

i=1 wi = 1, the solution space has only a dimension

of L − 1. To simplify the computation, we define a reduced-dimension weight

vector w̃ = [w̃1, w̃2, ..., w̃L−1]T , the elements of which are free variables and are

related to the weight vector w by

w = e−Mw̃, (3.9)

where

e= [0, 0, ..., 1]T
L×1

and

M =

[
−I
UT

]
=



−1 0 0 · · · 0
0 −1 0 · · · 0
0 0 −1 · · · 0
...

...
...

. . .
...

0 0 0 · · · −1
1 1 1 · · · 1


L×(L−1)

.

When spelled out, (3.9) simply states that wi = w̃i, 1 ≤ i ≤ L − 1 and wL =

1−
∑L−1

i=1 w̃i. Substituting (3.9) into (3.6), setting the gradient of ξ with respect

to w̃ to 0, and solving the resulting system equations then yields

w̃∗ = (MTDM)
−1

MTDe. (3.10)

The result of w̃∗ immediately gives that of w∗ by (3.9):

w∗=
(
I−M(MTDM)

−1
MTD

)
e (3.11)
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(a) (b)

Figure 3.1: The distribution of a block MV’s location when the block size used for
motion search is varied: (a) 16x16 and (b) 32x32. The MV location is approxi-
mated by the centroid position of the first ten pixels, in a block, having relatively
smaller prediction error.

Inspection of (3.11) reveals that the optimal weights depend solely on the

distances between the prediction pixel s and the block centers involved {si}Li=1.

The ε term is absent in the final result. This remarkable property allows MVs

sampled on a possibly irregular grid to be incorporated for OBMC, providing a

reconstruction method applicable to any sampling structures.

3.2.4 Optimal Weights in a Special Case

An interesting special case occurs by considering D as a diagonal matrix. In this

case, the prediction errors {d(s; v(si)}Li=1 are uncorrelated with each other, i.e.,

E{d(s; v(si)d(s; v(sj)} = 0,∀i 6= j, and w∗ becomes

w∗ =

(
L∑
i=1

1

r̂2(s, si)

)−1 [
1

r̂2(s, s1)
,

1

r̂2(s, s2)
, ...,

1

r̂2(s, sL)

]T
. (3.12)

The proof of this result requires some work but involves only straightforward com-

putations. (3.12) is a great simplification of (3.11): the optimal weights w∗i are

simply the normalized inverses of the corresponding squared distances between

s and si. It has the interpretation that prior to normalization, the contribution
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of each MV v(si) to estimating its nearby pixel intensities is a function of pixel

s that decays quadratically with r̂(s, si). If we take such a view, other functions

can be substituted for 1/r̂2(s, si). For example, it may be just as well to adopt

the raised cosine or bilinear function of various supports, or to change the power

of 1/r̂(s, si). As an afterthought, each of these functions may correspond to mak-

ing some specific assumptions about the motion and intensity fields. Due to its

simplicity, (3.12) will be included in the following sections as an alternative to

(3.11).

3.2.5 MV Location Uncertainty

In the preceding derivation, we have always assumed that a block MV represents

the true motion of the block center. However, this is an approximation; in fact,

it may correspond to the motion of any pixel around the center. To see this,

consider a small group of pixel locations in a block where prediction errors are

relatively smaller. We think of the block MV as the motion connected to their

centroid. Although not precise, this expedient provides a rough estimate of the

MV location without having to acquire the true motion field. Fig. 3.1 presents two

plots showing the centroid distributions when the block size used for motion search

is varied. Two observations are immediate: (a) the means of both distributions

are close to the block center, which justifies the widely accepted approximation,

and (b) the variance is non-zero and increases with the increasing block size,

which suggests that the locations of si, sj in (3.7) and (3.8) should be modeled

probabilistically.

We now generalize both equations to consider their random effects. To conform

with our previous notation, we denote by s̃i = si + ni (respectively, s̃j = sj + nj)

their true locations, which are characterized by an independent, additive noise
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vector ni(respectively, nj) with mean zero and covariance matrix

Knini
=

 δ
(x)
i ρi

√
δ

(x)
i δ

(y)
i

ρi

√
δ

(x)
i δ

(y)
i δ

(y)
i

 .

Substituting s̃i for si in (3.7) and applying the law of iterated expectations, we

get

E{d2(s; v(s̃i)}

=E
{
E{d2(s; v(s̃i))|̃si}

}
= εE

{
r̂2(s, s̃i)

}
'εE

{
(s(x)−s

(x)
i − n

(x)
i )2 + (s(y)−s

(y)
i − n

(y)
i )2

}
'εr̂2(s, si) + ε(δ

(x)
i + δ

(y)
i ),

(3.13)

where the superscripts x, y indicate the two components of a point or a vector.

In (3.13), the locations of pixel s and the block center si are treated as known

variables because we know exactly what MVs will be utilized for the motion com-

pensation of pixel s. As such, they are deterministic quantities and the expectation

in the penultimate approximation is taken with respect to ni only. In the course,

we have tacitly ignored the clipping effect on r(s,̃si),which however is crucial for

our signal models to be proper (Section 3.2.2). A way out of this difficulty is

to assume that si is close enough to s so that the result in (3.13) is a good ap-

proximation. This assumption can be justified to some extent since in practical

implementation of our schemes, we use only those neighboring MVs that are closer

to a pixel for its motion compensation. From (3.13), the consequence of MV loca-

tion uncertainty is an increase in the mean-square prediction error. Of particular

interest is that the penalty depends only on the variances of ni (or equivalently,

the variances of s̃i) regardless of its distribution.
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A similar calculation leads us to

E{d(s; v(s̃i)d(s; v(s̃j)}

=
1

2
εE
{(
r̂2(s, s̃i) + r̂2(s, s̃j)− r̂2(s̃i, s̃j)

)}
'1

2
ε
(
r̂2(s, si) + δ

(x)
i + δ

(y)
i

)
+

1

2
ε
(
r̂2(s, sj) + δ

(x)
j + δ

(y)
j

)
−1

2
ε
(
r̂2(si, sj) + δ

(x)
i + δ

(y)
i + δ

(x)
j + δ

(y)
j

)
=

1

2
ε
(
r̂2(s, si) + r̂2(s, sj)− r̂2(si, sj)

)
,

where ni and nj are assumed to be independent. As shown, the variance terms

in (3.14) cancel each other out, leading to the same result as in (3.8). Simply

substituting (3.13) into the matrix D in (3.11) gives the modified optimal weights

with consideration of MV location uncertainty. These results also apply to the

case where D is a diagonal matrix.

In concluding this section, we want to point out that the proposed scheme

has two parameters to be determined: the clipping threshold τ and the degree

of MV location uncertainty δ = δ
(x)
i + δ

(y)
i . The latter actually denotes a set of

parameters, one for each distinct block size. As will be discussed later, they can

be determined by off-line training.

3.3 Analysis of Window Functions

While (3.11) characterizes the contributions of a set of MVs to estimating the

intensity of a pixel, an equivalent yet more insightful perspective is to see the

window function of each MV, which specifies its weights used to estimate pixel

intensities in a neighborhood [19]. In this section, we shall gain further insights

into the proposed solutions from this viewpoint. To ease comprehension, we first

consider the simpler case of fixed block-size motion partitioning, followed by the

more sophisticated one involving variable block-size partitioning.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2: The effect of the clipping threshold value on the shape of the proposed
parametric windows with (a)(c)(e) non-diagonal and (b)(d)(f) diagonal D matri-
ces. From top to bottom, the clipping threshold values are 10, 15, 35, respectively.
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(a) (b)

Figure 3.3: Window functions along the slide of Y=16 based on a (a) non-diagonal
or (b) diagonal D matrix.

3.3.1 Theoretical Window Functions

Fig. 3.2(a), (b) and (c) plot the window functions for various clipping threshold

values τ ’s. Their counterparts in Fig. 3.2(d), (e) and (f) show the results when

the off-diagonal entries of D are set zero. In the former case, we observe that the

window shape inflates with the increasing τ , and eventually converges to a bilinear

function. This trend of inflation continues in the latter case although the change

in the window shape is not that radical, especially when the value of τ becomes

high enough. These phenomena can be explained by noting that a higher clipping

threshold implies a stronger correlation between the motion of different pixels

(smaller α) or a larger motion variance (larger σ2
m). Under these circumstances, it

is intuitive to expect that the influence of a block MV will extend to more pixels.

To gain a better appreciation of how the window shape evolves, Fig. 3.3

further displays the cross sections of these windows along the slideY = 16. There

are several points to be noted here. First, the weights around the block center

(X = 16) are seen to be smaller than 1. This result is a manifestation of MV

location uncertainty. As expected, their values tend to approach 1 if we have

δ = δ
(x)
i + δ

(y)
i = 0 (cf. (3.13)). Some other interesting observations follow from
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comparing the window values at X = 16.5 (current block center) and at X = 0.5

or 32.5 (neighboring block centers). The windows with a diagonal D resemble

normal functions in shape, and exhibit an upward trend in magnitude near the

block center (respectively, a downward trend at the neighboring block centers)

as the value of τ increases. In the general case, however, the behavior is more

intricate: the peak value escalates first and then declines. But, both cases have

one thing in common–their windows converge to a function dependent only on δ

when τ is large enough.

3.3.2 Comparison with Empirical Window Functions

The different results above lead us to wonder which model is more reasonable

and how much the penalty is for keeping only the diagonal entries of D. In this

section, we provide empirical justifications by contrasting the parametric windows

with those obtained by the least-squares method. Results of [24] are also included

for comparison. Particularly, to demonstrate the best achievable performance of

our parametric schemes, both the values of τ and δ are searched exhaustively

based on minimizing the mean-square prediction error, and so is the parameter

ρm in [24]3.

From the results presented in Fig. 3.4(a) and Fig. 3.5(a), we see that the

proposed windows with a non-diagonal D match closely the least-squares ones.

The other windows, although showing similar magnitudes at block boundaries

(X = 8.5 or 24.5), have much higher weights near the block center (X = 16.5).

Despite their distinct appearances, the penalties in MSE are somehow surprisingly

not as high as expected. We find that there are actually several window functions

3The parametric solution in [24] originally has four parameters to be determined. But, a little
neat algebra shows that the resulting window is dependent on only the correlation coefficient of
the motion field, ρm.
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(a)

(b)

(c)

Figure 3.4: Comparisons of window functions and their MSE surfaces using testing
sequence ”S04”: (a) parametric windows versus optimal least-squares windows;
the MSE surfaces of the proposed parametric solution with a (b) non-diagonal or
(c) diagonal D matrix.
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(a)

(b)

(c)

Figure 3.5: Comparisons of window functions and their MSE surfaces using testing
sequence ”S03”: (a) parametric windows versus optimal least-squares windows;
the MSE surfaces of the proposed parametric solution with a (b) non-diagonal or
(c) diagonal D matrix.
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(of different shapes) performing almost equally well. To see this, Fig. 3.4(b)

and Fig. 3.5(b) plot the resulting MSEs as functions of τ and δ for the case of

non-diagonal D. The best settings, which yield similar MSEs as achieved by

the optimal windows, are labelled ”minimum”. From the figure, these settings

roughly have τ = 15 ∼ 20 and δ = 100 ∼ 200; however, many other choices

deliver similar performance. For example, all the settings in Fig. 3.3, except

setting B, are among the best performing ones even though their window shapes

differ noticeably. In particular, it seems beneficial (in terms of MSE) to have a

high clipping threshold. This may be attributed to the incorporation of an R-D

based motion search criterion, which imposes a motion smoothness constraint and

thus increases the motion correlation. Notice that the MSE stops decreasing when

τ exceeds a certain value because, as mentioned previously, the window converges

to a function dependent on δ. From Fig. 3.4(b) and Fig. 3.5(b), one may doubt

the necessity of using parametric windows, since the bilinear function shown in

Fig. 3.2(c) seems to provide sufficiently good performance. While this is indeed

the case for fixed block-size motion partitioning, it is not true for the variable

block-size case. As will be seen in the next section, difficulties arise when a fixed

window is to be applied to MVs sampled on an irregular grid. In addition, it is

worth noting that this bilinear function differs from the usual one [19] in that its

peak value at the block center is much smaller than 1, which has to do with the

MV location uncertainty. A side experiment shows that the latter yields larger

MSEs due to the ignorance of this uncertainty. Finally, some sequences are seen to

be more sensitive to parameter selection than others. Fig. 3.4(c) and Fig. 3.5(c)

further show the results for the case of diagonal D. Comparing with Fig. 3.4(b)

and Fig. 3.5(b), there is an obvious distinction in the region with τ ≥ 15, where
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Figure 3.6: An irregular motion sampling grid due to the use of variable block-size
motion partitioning.

the MSE first decreases slightly along the δ-axis and then increases rapidly (in

some cases) with the increasing δ. The ”minimum” points thus have δ = 10 ∼ 50.

Analogous to the general case, there are also more than one window function

showing similar performance to the least-squares solutions; examples are settings

B and C in Fig. 3.3. Interestingly, what are improper settings in the general

case now become proper ones. This is because the meanings of both parameters

change when we twist D . It is for the same reason that the estimation of their

values becomes difficult. Fortunately, their optimal values are found empirically

to be less sequence-dependent, even if not truly independent, and can be obtained

off-line. According to the MSE results in Fig. 3.4(a) and Fig. 3.5(a), ignoring the

off-diagonal entries of D does not seem to have a significant impact on prediction

performance, if δ and τ are chosen properly. Because of its simplicity and fairly

good performance, we shall hereafter adopt (3.12) as our parametric solution.

3.3.3 Window Functions on Irregular Sampling Grids

The discussion so far has been restricted to window functions for regular motion

sampling structures. We now turn our attention to irregular ones, which could
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(a) (b)

Figure 3.7: Window functions overlaid on the irregular motion sampling grid
shown in Fig. 3.6: the proposed parametric windows with (a) a non-diagonal D
matrix (Clip=17, δ=121), (b) a diagonal D matrix (Clip=19, δ=25).
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(a) (b)

Figure 3.8: Window functions overlaid on the irregular motion sampling grid
shown in Fig. 3.6: the proposed parametric windows with (a) a diagonal D ma-
trix plus a MB-adaptive adjustment of δ (Clip=19, δ=16 for 8x8 MVs and δ=36
otherwise), and (b) the H.263 windows.
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result from an application of variable block-size motion partitioning. One example

of such a structure is given in Fig. 3.6.

Fig. 3.7(a) and (b) plot the window functions associated with those MVs in the

shaded area for the cases of non-diagonal and diagonal D, respectively. Some of

them are displayed separately for close scrutiny. We see that these functions may

not be symmetric, and their shapes depend highly on the local sampling pattern.

An interesting observation is that windows in areas with a higher motion sampling

density (i.e., in MBs with more partitions) are less concentrated; this implies a

stronger averaging of the relevant MVs. In theory, it seems reasonable as these

MVs, spatially closer to each other, are assumed to be highly correlated, but in

practice, this may not always be the case. Sometimes a MB is segmented into

smaller partitions because it spans across multiple objects with different motion.

We thus propose to adjust the value of δ in a MB-adaptive manner. Recall that

it indicates the dispersion of a MV’s location around the block center; generally,

MVs for smaller blocks should have a smaller δ value. After such adjustment,

the results, as illustrated in Fig. 3.8(a), are more centralized windows in high

density areas, which help to mitigate the over-blurring of block boundaries. In

particular, the tuning of δ need not be fine-granular; an adaptive selection between

two distinct levels is sufficient (Section 3.4).

Finally, the results based on the window function in H.263 are shown in Fig.

3.8(b). Recall that in H.263, a fixed window function is used for OBMC. To apply

the same window to all MVs, the issue of variable block-size motion partitioning

is resolved by treating larger blocks as a collection of smaller blocks with the same

MV in each smaller block as in the larger aggregate block. Hence, in comput-

ing the effective weighting factor of a MV at some specific pixel, we add up the
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contributions of all its replicas. From the figure, the window functions for larger

blocks have a value equal or close to 1 around the block centers, which implies

their inner pixels are not properly compensated by OBMC. This result is a direct

consequence of the MV replication mechanism. As will be seen next, this approach

leads to poor compression performance; in fact, applying any fixed window with

the same approach will suffer from similar problem.

3.4 Experimental Results

The proposed POBMC is analyzed by a series of tests: the first test compares

its compression performance with that of similar previous works, including the

OBMC in H.263 [1] and the parametric solution in [24]; the second test contrasts

POBMC with the two in-loop filters, EAIF [29] and QALF [12], in KTA [20];

and the third test studies how these in-loop filters interact with each other in a

complete codec. Finally, we conclude this section with a software runtime analysis,

to offer a rough indication of its complexity characteristics. All OBMC schemes

are implemented in KTA 2.4r1 [20], with details given in Appendix. All tests,

unless otherwise stated, use the configurations shown in Table 3.1. The results

are obtained by encoding the first 100 frames of standard JCT-VC test sequences

[2]. Those for POBMC are produced using (3.12) with τ = 32.

3.4.1 R-D Performance Analyses

3.4.1.1 Comparison of OBMC Algorithms

Table 3.2 compares the compression performance of different OBMC schemes by

showing their BD-rate savings [4] relative to an anchor encoding, which conforms

to H.264/AVC High Profile with inclusion of extended MB size (up to 32x32). In

particular, they all involve an adaptive switching between BMC and one or more
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Table 3.1: Encoder Configurations
Configuration Setting

GOP Structure IPPP... IBBB... Hierarchical B
Intra Period 0 0 24
QPP & QPB QPI+1 QPI+1 QPI+1/2/3/4
QPI 22, 27, 32, 37
CABAC On
Reference Frames 4 (P), 2 (B L0, B L1)
8x8 Transform On
De-blocking On
RDO On
Motion Vector Range ±128
Motion Search 3 (EPZS)
Sub Pixel MC On
Adaptive Rounding Off
Motion Comp. Block Sizes 8x8 to 32x32

OBMC options. The subscript H-I indicates the use of only one OBMC option.

For example, POBMCH-I denotes the hybrid of BMC and POBMC with δ = 16,

and POBMCH-II includes one more option with δ = 0. To signal the choice of

MCP schemes, a flag is sent for each non-skip super MB (a MB of size 32x32). If

a super MB is split into partitions smaller than or equal to 16x16, the flag will be

transmitted at the 16x16 block level. For POBMCH-II, one additional bit is used

to signal the δ value.

It is observed from Table 3.2 that BilinearH-I performs similarly to 263H-I. Es-

sentially, they both use a fixed window function and thus suffer from the same

problem of having to use the MV replication mechanism to address variable block-

size partitioning. As expected, adapting window functions on the fly is beneficial,

and the benefits of our parametric solutions are more obvious. In the IPPP case,

POBMCH-I has an average BD-rate saving of 2.9%, with a minimum of 0.9% and a

maximum of 9.6%. Adding one more OBMC option with δ = 0 (POBMCH-II) fur-

ther improves performance slightly, giving, on average, 0.1-0.6% extra gains. These

results provide only a lower bound on what is achievable, because the creation of
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POBMC predictors currently uses motion parameters4 optimized for BMC. It is

for the same reason that the gains of POBMC (and similarly, of the other OBMC

schemes) over the anchor decrease radically when the IBBB or Hierarchical B

structure is in use. Note that both bi-prediction and POBMC are multi-hypothesis

MCP techniques, and we are comparing a well-optimized bi-prediction with a sub-

optimal POBMC. Another cause of this performance decline is the increased use

of the SKIP and Direct modes, especially in the Hierarchical B sequence. In those

modes, POBMC is not functioning. Even so, POBMCH-II still yields 0.9-5.8% and

0.7-3.9% BD-rate savings in the IBBB and Hierarchical B sequences, respectively.

The obvious inefficiency of POBMC can be improved by optimizing motion

parameters. The rightmost column (POBMCH-II+MD) of Table 3.2 presents the

results when partition choices (and only partition choices) are additionally adapted

for POBMC at a higher computational cost (Appendix). As can be seen, the

performance improves further in the IPPP case, adding up to an average saving of

5.2%, whereas the improvements are much smaller in the remaining cases. To see

why, Fig. 3.9 contrasts the mode distributions before and after this optimization,

where the percentage of each mode indicates its average spatial coverage in a

frame, i.e., the number of pixels coded by that particular mode. It is observed that

despite the use of suboptimal motion parameters, POBMC is still more efficient

than single-hypothesis MCP. It thus tends to favor the use of larger partitions,

thereby reducing the overhead for signaling motion parameters. However, the

impact of this suboptimality can be such that the superiority of POBMC over bi-

prediction becomes modest. This explains why POBMC is enabled less frequently

in the IBBB or Hierarchical B sequence and why the increase in the use of larger

4Here, the motion parameters include the partition choice, the prediction type (forward-,
backward- or bi-prediction) for each partition, as well as the corresponding MV(s).
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partitions is not as significant as in the former case. Nevertheless, it is expected

to perform better if the MVs and prediction directions are further optimized.

3.4.1.2 Comparison of In-Loop Filters and the Combined Effects

Having compared the compression performance of various OBMC schemes, we

now proceed to show how POBMC performs relative to EAIF and QALF. We

begin by contrasting the functions, implementations, and optimization criteria of

these filters in Table 3.3. As can be seen, they all form a predictor (at every

pixel position) from a weighted average of the reference samples, using the Wiener

or least-squares criterion. However, what samples are involved depends on their

main functions. For example, to address motion uncertainty, POBMC takes in

those pointed to by the current and neighboring block MVs, I ′k−1(s + v(si)), some

of which may be at sub-pixel positions. To generate sub-pixel samples, EAIF

interpolates between adjacent integer samples, with a filter support lying mainly

around s + v̂(sc), where v̂(sc) is the current MV in integer precision. The small

deviation di (in units of integer samples) from s + v̂(sc) partly helps to mitigate

the problem of motion uncertainty. In complete analogy with EAIF, QALF also

linearly combines nearby integer samples, but for a purpose of smoothing out

quantization noise present in the reference frame. The filtered image Pk−1(s),

when used for MCP, yields a form similar to that of EAIF: Pk−1(s+v̂(sc)) =∑
i∈I3 wiI

′
k−1(s + v̂(sc) + di). While averaging the reference samples, these filters

all reduce noise to some extent. Their functions overlap, but each has its own

emphasis. As a result, they possess very different filter characteristics: POBMC

has a pixel-adaptive filter function, whereas that of EAIF and that of QALF are

sub-pixel-dependent and fixed5, respectively.

5Note that some advanced QALF algorithms [14][18] feature a pixel-adaptive filter.
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(a) IPPP structure

(b) IBBB structure

(c) HB structure

Figure 3.9: Mode distribution comparison of POBMCH-II and POBMCH-II+MD
using testing sequence ”BQSquare”.
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Table 3.2: BD-rate Saving Comparison of Various OBMC Schemes
Category Non-parametric

Scheme 263H-I Bilinear∗H-I

GOP IPP IBB HB IPP IBB HB

HD S03 0.2 0.8 0.4 0.4 0.9 0.4

S04 0.3 0.3 0.3 0.3 0.3 0.4

S05 0.4 0.7 0.2 0.5 0.7 0.3

S06 2.0 0.7 0.3 2.1 0.8 0.2

S07 2.9 1.1 0.9 3.1 1.0 0.9

Avg. 1.2 0.7 0.4 1.3 0.7 0.4

WVGA S08 -0.2 -0.1 -0.2 -0.1 -0.2 0.2

S09 0.3 0.4 0.3 0.4 0.3 0.3

S10 0.0 0.2 -0.1 0.2 0.3 0.2

S11 0.2 0.6 0.3 0.3 0.7 0.3

Avg. 0.1 0.3 0.1 0.2 0.3 0.3

QWVGA S12 0.1 0.3 0.2 0.1 0.4 0.2

S13 0.8 0.8 0.4 0.9 0.7 0.4

S14 -0.1 -0.1 -0.2 0.1 0.2 -0.1

S15 0.1 0.2 0.2 0.1 -0.1 0.2

Avg. 0.2 0.3 0.2 0.3 0.3 0.2

720p S16 1.0 0.3 0.6 1.1 0.2 0.7

S17 1.6 1.8 0.8 1.5 2.0 0.7

S18 1.0 0.5 0.5 1.2 0.4 0.6

Avg. 1.2 0.8 0.6 1.3 0.8 0.7

Overall 1.1 0.6 0.4 1.2 0.6 0.4

Category Parametric

Scheme TaoH-I POBMCH-I POBMCH-II POBMCH-II+MD

GOP IPP IBB HB IPP IBB HB IPP IBB HB IPP IBB HB

HD S03 1.0 1.4 0.6 5.0 2.3 1.2 5.1 2.7 1.7 7.2 2.8 1.8

S04 0.7 0.5 0.5 0.9 0.9 1.2 1.4 1.1 1.9 2.6 1.4 2.0

S05 1.7 1.4 0.5 3.3 2.3 1.0 3.6 2.6 1.6 5.9 2.8 1.6

S06 2.3 1.2 0.4 3.5 2.1 1.1 3.6 2.5 1.6 5.7 2.9 1.6

S07 7.8 1.9 1.4 9.6 3.1 3.2 10.2 3.7 3.9 13.6 4.0 4.2

Avg. 2.7 1.3 0.7 4.3 2.1 1.5 4.8 2.5 2.1 7.0 2.8 2.2

WVGA S08 1.0 0.4 0.4 1.8 1.0 0.7 1.9 1.5 1.1 3.4 1.9 1.4

S09 1.4 0.8 0.5 2.6 1.3 1.1 2.9 1.6 1.3 4.6 1.8 1.4

S10 1.3 0.4 0.4 1.4 0.8 0.7 1.8 0.9 0.9 3.5 0.9 1.0

S11 1.5 0.8 0.4 2.0 1.4 1.0 2.4 1.6 1.4 4.0 1.6 1.4

Avg. 1.3 0.6 0.4 2.0 1.1 0.9 2.3 1.4 1.2 3.9 1.6 1.3

QWVGA S12 1.5 0.5 0.4 2.2 1.1 0.6 2.4 1.6 0.8 4.0 1.8 0.9

S13 2.1 1.4 0.6 3.3 2.3 1.2 3.8 2.5 1.2 5.9 3.0 1.2

S14 1.0 0.4 0.3 1.4 0.9 0.7 1.7 1.3 0.9 3.0 1.5 1.1

S15 1.1 0.5 0.4 1.1 0.9 0.6 1.4 1.3 0.7 2.7 1.7 0.7

Avg. 1.4 0.7 0.4 2.0 1.3 0.8 2.3 1.7 0.9 3.9 2.0 1.0

720p S16 1.4 0.5 0.8 2.1 1.0 1.5 2.4 1.5 2.4 4.1 1.8 2.5

S17 2.2 3.3 1.2 4.1 5.5 2.2 4.7 5.8 2.6 7.7 6.2 2.6

S18 1.5 0.8 0.8 2.9 1.4 1.5 3.5 1.7 1.8 5.3 1.8 2.0

Avg. 1.7 1.5 0.9 3.0 2.7 1.7 3.5 3.0 2.3 5.7 3.3 2.4

Overall 1.9 1.0 0.6 2.9 1.8 1.2 3.3 2.1 1.6 5.2 2.4 1.7
∗: the bilinear window function shown in Fig. 3.2(c) is used.

Positive values mean bitrate savings, whereas negative values mean bitrate increments.
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Table 3.4 compares the BD-rate savings of POBMCH-II+MD, EAIF and QALF.

In the IPPP case, POBMC and EAIF offer a nearly identical average BD-rate sav-

ing (∼5.3%), although the results in individual test sequences are highly variable.

The gain of QALF, by contrast, is about 2% higher. In particular, they all per-

form better in high-resolution sequences. It is worth noting that the performance

impact due to the use of bi-prediction on EAIF or QALF is minimal to moderate

(see the results for the IBBB and Hierarchical B structures). The impact is mostly

negative for EAIF, but is positive in quite a few sequences for QALF. Overall, both

exhibit a performance decline in these prediction sequences; however, the perfor-

mance drop relative to the IPPP setting is comparatively much smaller. The

reasons are twofold: first, these tools have less overlap with bi-prediction than

POBMC, in terms of functionalities, and second, the SKIP and Direct modes can

still benefit from enabling them.

Although POBMC has the least gain among these filters, it can be combined

more efficiently with either of the other two filters. Table 3.5 presents the BD-rate

savings of all possible joint applications of these filters. An interesting observation

is that the combination of POBMC and QALF performs very close to or better

than that of EAIF and QALF, even in the IBBB or Hierarchical B case where

the single use of EAIF outperforms that of POBMC. This leads us to suspect

that a considerable part of the gain from EAIF is actually due to an attenuation

in quantization noise. In this regard, EAIF shares similarities with QALF. This

conjecture is supported by another observation that EAIF is still advantageous to

high-resolution sequences, in which the signal aliasing is supposed to be less severe.

The results in the rightmost column of Table 3.5 also indicates that the benefits of

additionally enabling EAIF on top of POBMC+QALF are quite limited, except
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Table 3.3: Comparison of In-Loop Prediction Filters
Filter Function Predictor Formulation Filter Optimization

POBMC Motion Uncertainty Pk(s) =
∑

i∈I1 wi(s)I ′k−1(s + v(si)) E
{

(Ik(s) − Pk(s))2
}

EAIF Aliasing Pk(s) =
∑

i∈I2 wi(v(sc))I
′
k−1(s + v̂(sc) + di)

∑
s(Ik(s) − Pk(s))2

QALF Quantization Noise Pk−1(s) =
∑

i∈I3 wiI
′
k−1(s + di)

∑
s(Ik−1(s) − Pk−1(s))2

I ′k−1 : reference frame with coding noise

Table 3.4: BD-rate Saving Comparison of Various In-loop Filters
Scheme POBMCH-II+MD EAIF QALF

GOP IPP IBB HB IPP IBB HB IPP IBB HB

HD S03 7.2 2.8 1.8 9.8 5.6 2.9 12.8 9.3 9.1

S04 2.6 1.4 2.0 2.6 2.0 2.2 2.8 3.2 4.4

S05 5.9 2.8 1.6 3.2 2.1 2.8 5.8 4.4 5.7

S06 5.7 2.9 1.6 7.2 4.3 3.5 8.9 6.3 6.0

S07 13.6 4.0 4.2 9.3 8.7 7.4 10.3 15.0 11.7

Avg. 7.0 2.8 2.2 6.4 4.5 3.8 8.1 7.6 7.4

WVGA S08 3.4 1.9 1.4 6.2 8.1 3.9 10.7 11.1 7.9

S09 4.6 1.8 1.4 4.0 3.4 2.3 4.7 3.8 3.2

S10 3.5 0.9 1.0 4.5 2.6 3.3 5.2 7.9 9.1

S11 4.0 1.6 1.4 1.9 1.5 1.1 2.2 2.5 2.4

Avg. 3.9 1.6 1.3 4.2 3.9 2.6 5.7 6.3 5.7

QWVGA S12 4.0 1.8 0.9 3.7 2.2 2.4 5.3 3.2 3.5

S13 5.9 3.0 1.2 8.8 8.0 7.5 9.1 15.0 18.0

S14 3.0 1.5 1.1 2.0 1.7 1.4 2.8 3.6 4.1

S15 2.7 1.7 0.7 0.5 0.5 0.5 1.8 1.3 1.9

Avg. 3.9 2.0 1.0 3.8 3.1 3.0 4.7 5.8 6.9

720p S16 4.1 1.8 2.5 7.1 4.7 6.3 12.4 8.1 8.2

S17 7.7 6.2 2.6 8.4 10.1 7.6 11.7 13.0 10.7

S18 5.3 1.8 2.0 8.4 4.5 6.6 10.5 6.6 7.6

Avg. 5.7 3.3 2.4 8.0 6.4 6.9 11.5 9.2 8.8

Overall 5.2 2.4 1.7 5.5 4.4 3.9 7.3 7.1 7.1

in few low-resolution sequences, such as S10 and S13, where the aliasing may still

be significant.

3.4.2 Complexity Analyses

3.4.2.1 Encoding and Decoding Times

This section compares the software runtimes of the algorithms discussed above

to provide a rough indication of their complexity characteristics. For the runtime

measurements, a single machine equipped with Intel Core i7-860 CPU (2926MHz),

8 GB RAM, and SATA-2 hard drive is used to run encoding or decoding in a

single thread. The execution time is measured on Windows Vista 64-bit SP1

using NTimer. YUV writing is enabled during encoding. When interpreting the
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Table 3.5: BD-rate Saving Comparison of Various Combinations of In-loop Filters
Scheme POBMC+EAIF POBMC+QALF EAIF+QALF All Enabled

GOP IPP IBB HB IPP IBB HB IPP IBB HB IPP IBB HB

HD S03 11.3 7.1 4.4 13.9 10.8 10.4 13.9 10.2 10.0 15.1 11.8 11.0

S04 4.0 2.9 3.4 4.4 4.1 5.5 4.0 3.5 5.2 5.2 4.6 6.7

S05 8.2 4.1 4.0 10.8 6.1 6.9 6.6 4.5 6.2 11.1 5.4 7.4

S06 10.5 6.0 4.8 12.0 8.0 6.7 10.9 7.8 7.5 13.6 9.3 8.3

S07 18.9 11.2 10.2 22.4 17.6 14.0 13.8 16.1 13.8 24.0 17.6 14.7

Avg. 10.6 6.3 5.4 12.7 9.3 8.7 9.8 8.4 8.5 13.8 9.7 9.6

WVGA S08 10.6 8.9 4.9 15.0 11.2 8.5 13.2 13.5 8.9 16.6 15.2 9.8

S09 7.5 4.3 3.0 8.1 5.1 4.2 7.1 5.2 4.9 9.9 6.2 6.0

S10 8.8 2.7 4.0 11.5 8.5 9.8 7.6 8.2 10.1 14.0 9.2 10.6

S11 5.0 2.2 1.9 5.8 3.4 3.2 3.4 3.3 3.1 6.8 3.5 3.9

Avg. 8.0 4.5 3.5 10.1 7.1 6.4 7.8 7.6 6.8 11.8 8.5 7.6

QWVGA S12 6.0 3.1 2.9 8.2 4.6 4.0 6.1 3.8 4.5 8.3 4.9 4.9

S13 15.9 9.9 8.3 20.0 17.4 18.7 13.8 15.9 19.6 24.6 17.7 20.3

S14 5.3 2.3 2.2 7.1 4.3 4.8 3.7 3.8 4.4 7.8 4.6 4.9

S15 3.2 1.4 0.7 4.0 2.4 2.3 2.1 1.6 2.4 4.3 2.7 2.8

Avg. 7.6 4.2 3.5 9.8 7.2 7.5 6.4 6.3 7.7 11.3 7.5 8.3

720p S16 9.6 5.3 7.8 14.5 8.9 9.7 13.5 8.5 8.8 14.9 9.1 10.6

S17 14.9 14.7 9.6 18.6 17.7 10.5 12.8 13.7 12.3 18.8 18.1 13.9

S18 11.1 5.8 8.1 14.0 7.2 8.8 12.0 7.7 10.0 14.8 9.4 10.9

Avg. 11.9 8.6 8.5 15.7 11.3 9.7 12.8 10.0 10.4 16.2 12.2 11.8

Overall 9.4 5.7 5.0 11.9 8.6 8.0 9.0 8.0 8.2 13.1 9.3 9.2

Table 3.6: Runtime Comparison of Various In-Loop Filters
Scheme 263H-I TaoH-I POBMCH-I POBMCH-II POBMCH-II+MD EAIF QALF

IPP 1.47 1.61 1.63 1.71 2.01 2.22 1.40

Enc IBB 1.37 1.50 1.57 1.62 1.97 2.00 1.45

HB 1.32 1.42 1.48 1.60 2.00 2.12 1.25

IPP 1.40 1.48 1.64 1.68 1.73 1.41 1.53

Dec IBB 1.35 1.45 1.51 1.57 1.66 1.25 1.56

HB 1.48 1.54 1.62 1.64 1.68 1.46 1.43
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results, one should be aware that the software runtime can be more related to the

implementation quality of an algorithm than to its intrinsic complexity.

The upper half of Table 3.66 presents the encoding times of these algorithms

in the form of average time ratios7 relative to the anchor encoding. As can be seen

from the left most column, adding OBMC option increases the encoding time by

30-50%. This is attributed to the extra computation required for mode decision

and pixel-adaptive weighting. Moreover, computing weighting coefficients by para-

metric solutions (e.g., TaoH-I and POBMCH-I) involves floating-point arithmetic,

thereby taking 10-20% longer encoding time, and as expected, the more flexible

POBMCH-II increases the encoding time further (˜10%). When POBMCH-II+MD

is in use, the encoding time almost doubles due to multi-pass R-D based mode

decision. Similar results can also be seen in EAIF. By contrast, QALF intro-

duces only a moderate time increase (20-45%), the reason probably being that

determining restoration filter and segmentation map may still be computationally

less demanding than performing mode decision, which requires actually coding

all the MBs using all possible options. We finally note that the impacts of these

algorithms on encoding time appear consistent regardless of prediction structures.

While there is a wide variation between the encoding times of these algorithms,

the difference between their decoding times is less significant. Still, performing

OBMC leads to slow decoding times: relative to the anchor decoding (which

decodes bit-streams produced by the anchor encoding), a 40-70% increase of de-

coding time is observed (the lower half of Table 3.6). The main reasons include

the increased memory accesses needed to fetch multiple predictors and the extra

operations required for weighting them in a pixel-adaptive manner. Another cause

6BilinearH-I is of comparable complexity to 263H-I and gives similar runtime results.
7The average of the encoding time ratios of some specific algorithm and the anchor over all

test sequences and QP settings.
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Table 3.7: BD-rate and Runtime Comparisons of POBMCH-II+MD and Its Sim-
plified Version

Scheme POBMCH-II+MD Simplified

GOP IPP IBB HB IPP IBB HB

HD 7.0 2.8 2.2 5.9 2.4 2.3

WVGA 3.9 1.6 1.3 3.2 1.5 1.1

QWVGA 3.9 2.0 1.0 3.3 1.9 0.9

720p 5.7 3.3 2.4 4.5 3.2 2.3

Overall 5.2 2.4 1.7 4.3 2.2 1.6

Time Ratios

Enc 2.01 1.97 2.00 1.46 1.40 1.33

Dec 1.73 1.66 1.68 1.34 1.32 1.30

of this increase is an implementation expedient, which requires parsing the bit-

stream twice (Appendix). Again, the parametric solutions incur a higher penalty

than the non-parametric ones, and ours appear to be more complex. The latter,

however, is not because our schemes are computationally more demanding, but

because the OBMC mode is selected more often when they are in use. Recall

that these algorithms allow the encoder to switch adaptively between BMC and

OBMC. We also find that when using non-parametric windows, OBMC exhibits

similar decoding complexity characteristics to EAIF or QALF. Essentially, they

all perform filtering of pixel intensities based on pre-computed filters.

3.4.2.2 Simplification

In the current implementation of POBMC (and the other OBMC schemes), gener-

ating a prediction value for a pixel may require MVs associated with the neighbor-

ing blocks to its right or below. Such a non-causal access of MVs requires motion

parameters for the entire picture to be first generated and buffered, which induces

a large delay in both the encoding and the decoding processes. This, however,

can be avoided by utilizing only those MVs in the causal neighborhood. Some

performance loss is expected, as the pixels in the bottom-right quarter of a pre-

diction block may not benefit much from OBMC. Table 3.7 compares the BD-rate
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savings and the runtimes of POBMCH-II+MD and its simplified version based on

this notion. Specifically, the simplifications include a causal MV access and the

use of only one δ option (δ = 16). From the results, we see that the performance

of the simplified POBMC is only slightly worse than that of POBMCH-II+MD.

However, both the encoder and the decoder run much faster. This is mainly be-

cause on the encoder side, the determination of motion compensation methods

and partition choices can now be done in one single pass, and on the decoder

side, there is no need to first extract all motion parameters. To further reduce

the complexity of POBMC, additional constraints can be placed on the number

of MVs involved and on their ranges. Our preliminary study shows that using

only four neighboring MVs, truncated to be in the range of current MV +/- four

pixels, can achieve 10-15% runtime reductions without introducing noticeable per-

formance degradation. In addition, the techniques discussed in [22] can be applied

to POBMC. Lastly, we want to point out that although (3.11) inevitably requires

floating-point arithmetic, (3.12) can have a fixed-point implementation. This can

be seen by considering the prediction of a pixel based on three MVs. In this case,

the OBMC weight associated with one of these MVs is computed as

w∗1 =

1
r̂2(s,s1)

1
r̂2(s,s1)

+ 1
r̂2(s,s2)

+ 1
r̂2(s,s3)

=
r̂2(s, s2)r̂2(s, s3)

r̂2(s, s1)r̂2(s, s2) + r̂2(s, s2)r̂2(s, s3) + r̂2(s, s3)r̂2(s, s1)
.

Obviously, with proper scaling and rounding, the computations of the numerator,

the denominator, and the quotient can all be done in fixed-point arithmetic, even

though it still takes quite some work to obtain the result. Compared with (3.2),

which is adopted by the parametric solution in [24], both (3.11) and (3.12) require

less computation. While (3.12) need not perform matrix inverse, (3.11) only has

to invert a smaller matrix of dimension (L− 1)× (L− 1), compared to L× L in
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(3.2).

3.5 Conclusion

In this dissertation, we introduced a parametric solution for OBMC (termed

POBMC) and studied its properties from both theoretical and empirical aspects.

In the course, we found it convenient to approximate block MVs as motion samples

taken at block centers; this expedient helped us to conceptualize the combination

of OBMC with variable block-size motion partitioning. Because in practice it is

far from adequate to describe the location of a block MV as a deterministic vari-

able, we amended our solution to reveal its random nature. The novelty of our

scheme was shown to require only the geometric relations between the prediction

pixel and its nearby block centers for computing the window function. It thus

lends itself to reconstructing temporal predictors from any sparsely and irregu-

larly sampled motion data. The superiority of our scheme over similar previous

works was confirmed by extensive experiments. Moreover, its performance was

shown to be comparable to EAIF and QALF. Above all, it can work with either

(or all) of them to yield an improvement that is nearly the sum of their separate

effects.

Along with the coding tools in KTA2.4r1, part of this work [8] was submitted,

for subjective viewing tests, in response to the HEVC Call for Proposals issued

jointly by MPEG and VCEG in April, 2010 [2]. It was ranked 12 overall and

10 in low delay configurations among 27 proposals, in terms of the average mean

opinion score [3]. The notion of POBMC has recently been extended to develop

a reduced-overhead bi-prediction scheme [15][17]. Owing to its promising results,

the technique is currently being evaluated in a core experiment of JCT-VC.
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Chapter 4

Bi-Prediction Combining TMP
and BMC

4.1 Introduction

Using the data accessible to the decoder for motion inference has recently emerged

as a promising technique for next generation video coding. Template matching

prediction (TMP) is a typical example of utilizing the decoder-side information

for motion inference. It estimates the motion vector (MV) for a target block on

the decoder side by minimizing the matching error over the reconstructed pixels

in its immediate inverse-L-shaped neighborhood (usually termed the template).

Motion merging [28] and OBMC [19] also follow the same rationale. They both

view the received motion data as a source of information about the motion field

and forms a better prediction of a pixels intensity based on its own and/or nearby

block MVs.

For the above reasons, we are led to develop a biprediction scheme, which

incurs only the overhead for unidirectional prediction. The idea is to combine

MVs resulting from the template and block matchings with OBMC. Of particular

interest in this combination is that the template MV is inferred on the decoder side;

it thus has only to signal one block MV while attaining biprediction performance.

The choice of a proper window function is critical in these applications. We
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approach this problem through the parametric OBMC framework in Chapter 3.

The resulting window function is shown to resemble a particular type of geometry

motion partitioning as shown in Fig. 4.4(c) with its MVs located on the diago-

nal running from the upper left to the lower right. Particularly, asymmetric-like

partitioning as shown in Fig. 4.4(a),(b) arises when the template region is of

rectangular shape and is located to the left or on the top of a target block.

To gain more insights into this biprediction scheme, Fig. 4.1 plots the mean-

square prediction error surface with the single use of TMP MV for motion com-

pensation of the target block. It is seen that this MV tends to minimize the

prediction error in the upper left quarter, a result that is intuitively agreeable

since it approximates the true motion associated with the template centroid. This

observation implies that the block MV should be managed to contribute more to

minimizing the error in the remaining part, especially in the bottom right region.

We thus also propose in this chapter a new search criterion for the block MV to

achieve this objective.

The proposed bipredictioin scheme can be further generalized to allow a template-

matching-free implementation, which replaces the template MV with a decoded

MV specified by a mechanism similar to motion merging. The approach is to

replace the template MV with one of those for prediction units (PUs) in a causal

neighborhood of the current PU. In particular, the selection of MV is made

adaptive by adopting the same signaling mechanism as for motion merging [28].

Depending on the direction in which the MV (and other motion parameters)

is derived, a separate window function is applied for OBMC. Remarkably, this

scheme can produce, with less overhead, an effect similar to combining asymmet-

ric/geometry motion partitions [14][18] and PU-based motion merging [28].
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Figure 4.1: Mean-square prediction error surface of TMP using the sequence
”Football”.

In the following sections, we will first detail the concept of the joint application

of TMP and BMC. A low complixity and template-matching-free implementation

is then introduced. We will also show the experiments conducted using the HEVC

reference software and the common test configurations to evaluate three variants

of this scheme. The best of them achieves an average BD-rate saving of 2.2%,

with a minimum of 0.2% and a maximum of 4.7%. It is observed that the average

decoding time increases by 10% while the encoding time doubles.

4.2 Combining Template and Block Motion Com-

pensation

In this section, we present the proposed bi-prediction scheme and the design of its

window function.

4.2.1 Concept of Operation

Fig. 4.2 depicts its concept of operation. Like the conventional bi-prediction, it

predicts a target block based on two predictors. These predictors however are
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weighted in a pixel-adaptive manner using POBMC, with one of them derived

from a MV vt found by template matching [13] and the other from the usual

motion compensation. Since vt can be inferred on the decoder side, this scheme

has only to signal motion parameters for one block MV (denoted as vb). In this

application, vt cannot be specified discretionarily. It is thus important to find

a vb that, when applied jointly with vt, minimizes the prediction error over the

target block B. The question arises naturally what is the most appropriate choice

for vb and the combining weights which, along with the given vb, would result in

minimal prediction residual? To answer the question, the overall prediction error

of the proposed bi-prediction is first formulated as follows:

arg min
{vb,i},{w(s̃)}

∑
i

∑
s∈B

(
I (s)− wt (s̃) Ĩ (s + vt,i)− wb (s̃) Ĩ (s + vb,i)

)2

(4.1)

where s̃ denotes the pixel position within a block (i.e., relative to the block

origin), wb (s̃) denotes its window function, wt (s̃) = 1 − wb (s̃), and Ĩ is the

reference picture. Clearly, wb (s̃) has a decisive effect on the value of vb,i and thus

on the prediction performance of this scheme.

4.2.2 Optimized Prediction

It is intuitive to use an iterative procedure for solving this problem as described

by 4.1. Firstly, given an initial estimate of vb,i and wb (s̃), the motion vectors are

refined conditioned on the given block motion field vb,i and window function wb (s̃).

Conversely, the window function is refined conditioned on the given block motion

field until the vector field and window function converge. Although the iterative

procedure can ideally find the optimal solution, the process is time consuming and

less instructive.

A more instructive way of solving this problem is to consider the notion of mo-

tion sampling and reconstruction through the wiener-based approach. To observe
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Figure 4.2: Joint application of TMP and BMC.

the statistical characteristic of the proposed bi-prediction scehme, the problem is

reformulated as follow:

∑
s∈B

E

{(
I (s)− wt (s̃) Ĩ (s + v(st))− wb (s̃) Ĩ (s + v(sb))

)2
}

(4.2)

Instead of using an iterative procedure to determine wb (s) (and thus wt (s)), as

is the case with the OBMC [19], we approach this problem by resorting to the

parametric framework in Chapter 3. To proceed, vt is approximated as the pixel

true motion v(st) at the template centroid st, a justification of which can be

found in [26]. However, we avoid making the same approximation for vb because

its search criterion is no longer to minimize the sum of squared prediction errors1

(cf. (4.4)). It is replaced instead by the true motion v(sb) of some unknown pixel

sb in B. We now cast the problem of determining wb (s) as the search for an sb

1A block MV approximates the pixel true motion at the block center only if its search criterion
is to minimize the sum of squared prediction errors [30][24].
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in B that minimizes the sum of mean-square prediction errors (SMSE) over B as

indicated by 4.2.

Each term in the summation of (4.2) is simply the mean-square prediction er-

ror, produced by OBMC based on v(st) and v(sb), at some pixel s and can be mod-

eled with (3.5). For a given sb, (4.2) is minimized when each operand reaches its

minimum, that is, according to (3.12), when wb (s) = w∗b (s) = r2(s; st)/(r
2(s; st)+

r2(s; sb)). Noting this, we have:

s∗b = arg min
sb∈B

∑
s∈B

ε(w∗t (s))2r2(s; st) + (w∗b (s))2 r2(s; sb)). (4.3)

Due to its non-linear nature, s∗b has to be found by numerical simulations, i.e.,

we have to compute SMSE for every admissible location of sb. Fortunately, the

computation is tedious but not difficult, and can be made offline. Once it has been

solved, the w∗b (s) is immediate by (3.12). Applying this window function to (4.4),

we get an optimized block matching criterion, with which a v∗b approximating the

pixel true motion at s∗b can be found.

To get a sense of where s∗b should be located, Fig. 4.3 (b) plots the SMSE as

a function of its location. As can be observed, the SMSE becomes smaller when

sb sits in the bottom right quarter; a further precise calculation shows that its

optimal location occurs at point (9.5,9.5) for a 16×16 target block. This is of

no surprise because vt, located at the template centroid (1.9,1.9), has a higher

correlation with the motion field in the upper left quarter and thus contributes

more to minimizing the errors there. Intuitively, sb should be so placed that the

errors in the remaining part of B can be minimized.

4.2.3 Window Functions

Fig. 4.3 (c) and (d) plot the window functions, 1−w∗b (s) and w∗b (s), for vt and vb,

respectively. As can be seen, their waveforms suggest a special type of geometry
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(a) InvL (b) SMSE Surface

(a) w∗t (s) (b) w∗b (s)

Figure 4.3: SMSE surface as a function of Sb’s location, and the optimal window
functions associated with vt and vb, respectively.
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motion partition [14] with two MVs located on the diagonal running from the

upper left to the lower right. Following the same line of derivation, we can obtain

window functions for other template designs. Some results are given in Fig. 4.4.

In particular, asymmetric-like motion partitions [14][18] result when the template

region locates directly to the left or above a target block (See Fig. 4.4). Two

conceptual differences however are to be noted. First, unlike explicit geometry or

asymmetric partitions, these implicit “soft” partitions incur less motion overhead

(only one MV is to be signaled). Second, there is a strong interdependency between

the transmitted and inferred MVs due to OBMC (cf. (4.4)).

4.2.4 Optimized Block Matching Criterion

After the optimal window function is determined, in practical implementation,

the optimal blcok motion vector for the target block is found by minimizing the

modified search criterion:

v∗b = arg min
vb

∑
s∈B

(
I (s)− w∗t (s) Ĩ (s + vt)− w∗b (s) Ĩ (s + vb)

)2

, (4.4)

where w∗b (s) and w∗t (s) represent the optimal window function as shown in Fig.

4.3.

4.3 Extension with Motion Merging

Recognizing that performing template matching not only increases the decoding

complexity but also complicates the pipeline design of the decoder, we additionally

propose a low-complexity and TMP-free implementation. This is accomplished

by replacing the template MV vt by one of those decoded MVs from neighboring

partitions (cf. Fig. 4.5). In this way, the need to perform TMP is waived at

the cost of extra bits. To minimize the overhead, we adopt the same signaling

mechanism as for motion merging [28]. When enabled, it sends additional flags
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(a) Rect-T

(b) Rect-L

(c) InvL

Figure 4.4: Window functions for typical template designs.
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Figure 4.5: Adaptive motion merging and the approximation of vt.

to indicate which merge candidate is selected from a predefined candidate set

containing the motion parameters of the spatially neighboring partition, to the

left, above, above-right, bottom-left the current one or of the co-located partition.

The motion parameters of the selected candidate is then reused as vt. Depending

on the inference direction, a separate window function is applied for OBMC. For

example, in Fig. 4.5, if vt is deduced from left, above, co-located, above-right or

bottom-left merge candidate, the window function w1,1, w1,2, w1,3,w1,4, w1,5 (cf.

Fig. 4.6) is selected, respectively. In other cases where left candidate and above

candidate have the same motion parameter, the weighting function w1,6 as shown

in Fig. 4.6 is used instead. Essentially, we treat the MVs deduced from each merge

candidate as if they were the pixel true motion associated with the corresponding

template centroids. Because these assumptions may not always hold true, we let

the encoder to switch adaptively between this proposed mode and the usual inter

mode.
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w1,1 w2,1

w3,1 w4,1

w5,1 w6,1

Figure 4.6: Window functions for different merge candidates.
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4.4 Simplification with Motion Merging

To reduce the buffer size for the weighting coefficients and also to reduce the com-

putational complexity of calculating the values of predicted pixels, the simplified

window functions are proposed. In this simplified biprediction scheme with mo-

tion merging, a window function wm,n can take values from either the set (0.125,

0.5, 0.875) or the set (0.125, 0.5, 0.75). The distribution of its weighting co-

efficients forms a partitioning of a PU into three non-overlapping regions, each

corresponds to the application of some specific coefficient. As an illustration, Fig.

4.7 presents the various partitionings that can arise from the use of the window

functions shown in Fig. 4.8 and Fig. 4.9. As can be seen, the coefficients 0.5

occupy a region that may distribute vertically, horizontally, or diagonally (at an

angle of 45 or 135 degree).

To resize a window function according to the target PU size, the start position

a and the width b of this region (see Fig. 4.7 for their definitions) are stored

and can be referred as a look-up table when performing the proposed biprediction

mode. To further improve the prediction efficiency, as can be seen in Fig. 4.8 and

Fig. 4.9, two different sets of window functions are utilized for a 2Nx2N PU. In

this simplified scheme, each 2Nx2N PU, when coded in the proposed mode, can

select between two sets of window functions, denoted by wm,n with m=1, , 6 and

n=2,3 to adapt for fine turning the weighting coefficients. To indicate which set

is in use, i.e., the value of n, one additional flag is sent for each 2Nx2N PU. For a

chosen set of window functions, the parameter m is determined similarly by letting

the encoder to switch adaptively between this proposed mode and the usual inter

mode.
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w1,1 w2,1

w3,1 w4,1

w5,1 w6,1

Figure 4.7: Partitioning of a 2Nx2N PU due to the application of the proposed
window functions. In region A1, A2, B and C, wm,n(i, j)=0.75, 0.875, 0.5 and
0.125,respectively.
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w1,2 w2,2

w3,2 w4,2

w5,2 w6,2

Figure 4.8: Simplified window functions set 1 for different merge candidates.
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w1,3 w2,3

w3,3 w4,3

w5,3 w6,3

Figure 4.9: Simplified window functions set 2 for different merge candidates.
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4.5 Experiments

Based on the proposed scheme (referred hereafter to as TB-mode), we develop

three algorithms featuring different performance and complexity trade-offs. Ex-

tensive experiments are carried out using the HEVC reference software (HM3.0)

and the common test conditions [5] to compare their BD-rate savings relative to

anchor encodings with TB-mode disabled. Rough estimates of their complexity

characteristics are made by showing the encoding and decoding time ratios rel-

ative to anchor settings. All three algorithms use parametric window functions.

The following summarizes these algorithms:

• Algorithm #1 applies TB-mode to 2N×2N prediction units (PUs)2. The

vt is found by performing shape-adaptive template matching in a search

range of MVp±8 pixels. For each 2N×2N PU, one flag is sent to switch

adaptively between TB-mode and the usual inter mode. When the former

is chosen, it codes two extra bits (at most) to specify the template shape

(InvL, Rect-T or Rect-L). A separate set of window functions are designed

for each distinct 2N×2N PU size.

• Algorithm #2 TB-mode with motion merging by signaling vt with motion

merging mechanism (See Section 4.3).

• Algorithm #3 simplifies Algo. #2 using two sets of simplified window

functions. (See Section 4.4).

Table 4.1 presents the average BD-rate savings of these algorithms in different

test classes and configurations. As can be seen, Algo. #1 has an average BD-rate

2CU, the basic compression unit as the MB in AVC, can have various sizes but is restricted
to be a square shape. PUs are the various MB partitions having a square or rectangular shape
with several sizes.
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(Y) saving of 1.9% over all test cases, with a minimum of 1.2% and a maximum

of 3.4%. Due to the extra computations needed for template matching, it doubles

the decoding time while increasing the encoding time by about 70%.

Algo. #2 gives similar coding performance at a faster decoding speed than

Algo. #1. Averagely, it perform an average BD-rate (Y) saving of 1.7% over all

test cases, with a minimum of 0.9% and a maximum of 3.2%. with an average

decoding time only 4% slightly longer than anchors’. In tests with High Efficiency

configurations, its decoder can run even a bit faster. As expected, without having

to perform template matching, its decoding complexity drops significantly. But.

somehow surprisingly, the vt signaled by motion merging seems to outperform

that inferred by template matching. The reason may be twofold. First, the motion

merging signaling mechanism incurs less overhead: while it needs only one extra

bit to signal vt, Algo. #1 requires, on average, more than one bit to indicate

the template shape. Second, template matching may result in poor vt due to

coding noise. Recall that its search criterion is to minimize the error over the

reconstructed pixels. Nevertheless, we believe Algo. #1 has plenty of room for

further improvement.

Algo. #3 is the one with lowest computational complexity with an average

BD-rate saving of 1.6% and a maximum saving up to 2.9%. This is attributed

to the simplified window functions. But because this scheme utilizes PU-adaptive

window selection from two sets of window functions, the encoder has to perform,

for each PU, one extra motion search to evaluate TB-mode, which accounts for

the slightly increased encoding time. But as for the decoder, the complexity is

relative low due to a simple calculatioin of the predictor values.
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Table 4.1: BD-rate savings and processing time ratios
Random Access High Efficiency Low Complexity

Algo. #1 #2 #3 #1 #2 #3

Class B -1.2 -0.9 -1.0 -1.4 -1.0 -0.9

Class C -2.0 -1.5 -1.6 -1.7 -1.2 -1.3

Class D -1.9 -1.6 -1.8 -1.6 -1.2 -1.4

All -1.7 -1.4 -1.2 -1.0 -1.1 -1.2

Enc. Time [%] 176 172 184 175 172 183

Dec. Time [%] 172 168 112 194 176 113

Low Delay High Efficiency Low Complexity

Algo. #1 #2 #3 #1 #2 #3

Class B -1.9 -1.5 -1.3 -2.4 -2.0 -2.0

Class C -2.3 -1.8 -1.7 -2.4 -1.9 -2.0

Class D -2.1 -2.0 -1.9 -2.2 -1.9 -2.0

Class E -3.3 -2.9 -1.8 -3.4 -3.2 -2.9

All -2.4 -2.1 -1.7 -2.6 -2.3 -2.2

Enc. Time [%] 157 150 162 155 149 159

Dec. Time [%] 220 155 109 269 155 110

4.6 Conclusion

Summarizing, in this chapter, we propose a bi-prediction scheme, which combines

MVs found by template and block matchings with an optimized OBMC window

function. Since the template MV is inferred on the decoder side, it has only to

signal one block MV. This notion is further generalized by incorporating adaptive

motion merging to allow a template-matching-free implementation. Three algo-

rithms featuring different performance and complexity trade-offs are presented;

they all show moderate coding gains. The best of them produces an effect similar

to performing partial motion merging for geometry/asymmetric motion partitions.
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Chapter 5

Conslusion

In this dissertation, we have proposed an analytical perspective of MCP and devel-

oped a generic scheme to reconstruct predictor from any irregular motion sampling

structure. Proceeding in the generic reconstruction scheme, a bi-prediction com-

bining TMP and BMC is introduced to further improve prediction efficiency. Most

of techniques proposed in this dissertation are evaluated and cross-checked in CEs

of the JCV-VC committee, showing very promising results. In the followings, we

summarize the works in this dissertation and show how the proposed schemes can

be further improved.

5.1 Motion-Compensated Prediction: An Ana-

lytical Perspective

We found it convenient and insightful to interpret MCP as a motion sampling and

reconstruction process. Such an interpretation reveals many important aspects of

MCP which would otherwise be difficult to see. Using this notion, we provide a

theoretical support for various MCP schemes from the sampling perspective. It

is shown that the motion estimate found by template matching tends to be the

motion associated with the template centroid and that TMP consistently out-

performs SKIP prediction, but hardly competes with block motion compensation
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(BMC) unless both the motion and intensity fields are less random or have high

spatial correlation.

5.2 Parametric OBMC

We have proposed a parametric window design that enables OBMC to make use of

variable blocksize motion estimates. In the common test conditions, our POBMC

delivers better rate-distortion performance than the previous approaches such as

H.263 OBMC. Relative to an H.264/AVC anchor with extended macroblock (MB)

size, it achieves 3.1% (0.7-13.6%) BD-rate reductions. With its promising results

and compatibility with existing tool features, POBMC is being evaluated in several

formal core experiments in HEVC standardization activities at the time of writing.

5.3 Bi-PredictionUsing Template and Block MVs

A framework describing the joint prediction of explicitly transmitted and implicitly

inferred MVs is proposed with an example showing the joint prediction of tem-

plate matching prediction (TMP) and block based motion compensation (BMC).

By considering the contribution of decoder-side inferred MVs to the prediction

of the target block, the optimum sampling locations of explicit MVs are derived

and then the join prediction of implicit and explicit MVs can be optimized using

corresponding weighting coefficients derived by POBMC. Moreover, the MVs as-

sociated with each optimum sampling location are estimated by a modified search

criterion to optimize its prediction quality. Relative to the anchor (HEVC refer-

ence software, HM3.0), the proposed bi-prediction achieves an average BD-rate

saving of 1.6%, with a minimum of 0.9% and a maximum of 2.9%.
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5.4 Future Work

It is a general feeling that video coding efficiency has been pushed to the limit;

however, when looking deeper into the underlying principles behind the designs,

there seems to be room for further improvements. We shall apply the methodol-

ogy introduced in this dissertation to expose more undisclosed details of MCP to

further improve video coding performance.

We plan to extend the works of this dissertation in several directions: (1) to

study the quantization effect of POBMC coefficients, (2) to go beyond conventional

motion partitioning to develop more efficient sampling patterns for POBMC, and

finally, (3) to combine POBMC with advanced inter prediction techniques in the

state-of-the-art video codec usch as HEVC, (4) to find the best solution of the

proposed bi-prediction scheme with the optimal trade-off coding between coding

efficiency and complexity such as encoding/decoding time and memory access

bandwidth.
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