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摘摘摘摘                            要要要要    

    

 

現代化企業利用工作流程管理系統統整文件、資訊系統以及人事組織以遂行其企業

目的，而針對工作流程進行分析，有助於尋找企業程序中所隱藏的問題，避免工作流程

執行時重複發生的錯誤，進而增進企業整體的效率；由於大部分具有良好行為之工作流

程皆可轉換為結構化工作流程，因此結構化工作流程模型是在進行工作流程結構健全性

分析時不可或缺的工具，此外，時序為進行工作流程正確性檢查、驗證以及工作流程效

率分析上必須考量之因素，在此博士論文中，我們將時序因素與結構化工作流程模型結

合統整而成一結構化時序工作流程模型，並且針對三種不同的領域，提出各自的分析方

法；在組織分析領域，針對使用任務與角色為基存取控制模型的工作流程管理系統，我

們建立了一個可以進行工作代理的執行框架，在此框架下，代理行為受到責任分擔以及

企業政策的制約，使用者可以手動進行工作代理授權，而系統也可以自動將緊急的工作

授權給適合的代理人；在資料分析領域，我們建立了一個從結構化時序工作流程中偵測

異常文件使用的方法，藉由這個方法對工作流程定義進行靜態分析，可以有效避免由於

異常資料操作所造成的系統意外行為；最後，針對資源領域，我們提出了一個可以在結

構化時序工作流程建構的過程中，進行資源一致性與時序條件分析的遞增性分析方法，

藉由我們的方法，工作流程設計者可以瞭解他所做的每一個設計決定對於整體工作流程

定義的影響，並且修正由於錯誤的設計邏輯所造成的潛在資源衝突。 

 

關鍵字：工作流程、工作流程管理系統、結構化時序工作流程、代理、任務與角色為基

的存取控制模型、異常文件使用、資源衝突、遞增性分析方法 
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ABSTRACT 
 

In modern enterprises, Workflow Management System (WfMS) coordinates data, 

resources, and organizations to enact workflows for various business objectives. Analysis of 

workflows facilitates locating problems in business processes and prevents repeated errors 

during workflow enactment. Structured workflow model is a useful tool for analysis of 

structural integrity because most well-behaved workflows can be reduced to structured 

workflows. Besides, temporal factors are also essential for workflow analysis, especially for 

validation, verification and performance analysis of workflows. In this dissertation, we 

integrate temporal factors into structured workflow model as Temporal Structured Workflow 

(TS workflow) model, and develop three distinct approaches for analysis of TS workflows in 

various perspectives. For the organization perspective, a framework for delegating works 

among users in a WfMS coordinated with Task-Role-based Access Control (TRBAC) model 

is established. With the framework, delegations can be enacted manually or automatically 

under restrictions like separation of duty (SOD) and management of enterprise policies. For 

the data perspective, a methodology detecting artifact anomalies in TS workflows is 

developed. By analyzing workflow schemas with our methodology, the unexpected run-time 

behavior generated from abnormal data manipulation can be prevented. Finally, for the 

resource perspective, an incremental approach is constructed to analyze resource consistencies 

and temporal constraints during construction of a loop-reduced TS workflow (LRTS 

workflow). With our approach, designers may realize the effect of each edit operation they 

made on the workflow schema under design, and correct the potential resource conflicts 

buried in business processes immediately. 

 

Keywords: Workflow, Workflow Management System (WfMS), Temporal Structured 

Workflow, Delegation, Task-Role based Access Control (TRBAC), Artifact 

Anomalies, Resource Conflicts, and Incremental Methodology 
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Chapter 1. Introduction 

 

Enterprises define their business objectives in business processes, and workflows 

automate the business processes by completing tasks which realize parts of business goals in a 

particular order [1]. As a dominant factor in workflow management, developing appropriate 

analysis techniques for workflows is necessary [2]. Irani et al. state that workflow analysis 

facilitates locating problems in business processes and preventing repetition errors during 

workflow enactment. [3]. Vergidis et al. claim that workflow analysis adopts a range of 

different tactics such as simulation, diagnosis, validation, verification, and performance 

analysis to clarify the characteristics, potential conflicts, possible bottlenecks and any 

promising process alternatives [4].  

To assure the correctness of workflow execution, analyses on structural integrity of 

workflows are widely studied. Adam’s methodology detects inconsistent dependencies among 

tasks to assure the safety of a workflow [5]. van der Aalst et al. develop effective Petri-net based 

techniques to verify deadlocks, livelocks (infinite loops), and dead tasks from workflow 

schemas [2][6][7]. In [8], Kiepuszewski et al. define structured workflow model and claim that 

a structured workflow is well-behaved, i.e. free from deadlock and multiple active instances of 

the same activity. Kiepuszewski et al. also claim that although structured workflow model is 

less expressive, most arbitrary well-behaved workflows can be transformed into a structured 

workflow, and structured workflow model is a good tool for various kinds of workflow 

analysis.  

Besides, combining timing constraints into analysis of workflow models is also familiar. 

Li et al. indicate that analysis of temporal factors is essential for validation of the interval 
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dependencies with temporal constraints in a workflow schema [9]. Adam et al. consider timing 

constraints as the external conditions for structural correctness of a Petri-net based workflow 

model [5]. Chen et al. develop an approach for dynamic verification of fixed-time constraints in 

grid workflow system [10]. From a graph based workflow model, Eder et al. develop a timed 

graph model to illustrate the working duration of activities among workflows with the 

corresponding earliest and latest finish time, and calculate the deadlines among internal 

activities to meet the overall temporal constraints on the basis of the model [11][12]. 

Marjanovic et al. build the timing model based on duration and instantiation space, and model 

the absolute and relative deadline constraints for dynamic verification [13]. Zhuge et al. 

consider durations of activities for temporal checking in both design-time and run-time and 

model the temporal factors in workflows as timed workflow model for further analysis. [14]  

For the organization perspective, modern WfMS regulates activities of employees through 

varieties of access control methods. Among the methods, role-based access control (RBAC) 

model [15][16] grouping users with similar permissions into roles is a popular solution among 

enterprises. However, business processes are operated based on not only roles but also tasks. 

With both as core concepts, Oh et al. propose task-role-based access control (TRBAC) model to 

provide more modeling power for access control in WfMS [17]. Delegation which allows 

subjects like access rights or work items being authorized between users or roles during 

run-time is an interesting problem for workflow management [18] and is often studied on the 

basis of the corresponding access control model. For example, RBDM0 [19], RBDM1 [20], and 

the methods in [21], [22], and [23] describe various delegation models based on RBAC 

[15][16]. On the basis of RBAC, Crampton et al. describe an approach to manage delegation in 

WfMS, and raise several new issues about delegation of tasks for work-list-based WfMS [18]. 

Delegation for TRBAC is also studied in [24] and [25]. Jian et al. construct a framework and 

define the components for delegation in TRBAC [24], and Hsu et al. enhance the work by 
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considering temporal issues in [25].  

A well-structured workflow may still fail or produce unanticipated run-time behavior 

because of abnormal data manipulation, the artifact anomalies. Detect artifact anomalies in 

workflows checks possible data misuse buried in workflow specifications. Various 

methodologies have been developed for detection of artifact anomalies generated from 

structural relationships between activities in a workflow [26][27][28][29][30]. Sadiq et al. 

present seven basic data validation problems, redundant data, lost data, missing data, 

mismatched data, inconsistent data, misdirected data, and insufficient data in structured 

workflow model [26][31]. Hsu et al. define preliminary improper artifact usages anomalies, and 

introduce the analysis of such anomalies in design phase of a structured workflow [27][28]. In 

[29], Wang et al. introduce a behavior model to describe the data behavior in a workflow and 

refine the work accomplished in [28] by improving its efficiency. In [30], Hsu et al. raise the 

issues about analyzing artifact anomalies in workflows adopting message passing data models, 

and describe a formal description for such anomalies. Nevertheless, how temporal factors may 

affect the analysis of artifact anomalies is still seldom addressed. The methodology detecting 

artifact anomalies generated from twisted temporal and structural relationships between 

activities in workflows should be further discussed on the basis of the previous studies. 

As for the resource perspective, Reveliotis et al. construct a Petri-based model with 

consideration of resource allocation, and uses the model for structural and deadlock analysis of 

workflow applications [32][33]. Based on Zhuge’s work [14], Li et al. estimate the active 

intervals of activities, and develops an algorithm to detect and remove resource conflicts with 

respect to both temporal and structural issues [34]. Zhong et al. adopt Li’s methodology [34] 

onto a petri-net based workflow model, and develop an algorithm to detect resource conflicts 

when a new workflow being put into WfMS during run-time [35]. Based on [36], Hsu et al. 

develop an incremental methodology for analysis of resource constraints in structured 
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workflows with temporal consideration during design-time [37]. The generation or elimination 

of resource conflicts are tracked and alerted along with each edit operation made by designers 

of workflows [37]. However, the technique for structural analysis adopted in [37] is inefficient 

and can be revised with the methods proposed in [30]. 

In this dissertation, structured workflow modeled in [8] is extended as temporal structured 

workflow (TS workflow) model with the temporal issues considered in [34] and [37]. The 

techniques for structural and temporal analysis on TS workflows are first introduced, and the 

methodology to analyze TS workflows in organization, data, and resource perspectives are then 

discussed. For the organization perspective, the works accomplished in [25] are refined to adopt 

TS workflow model for temporal constraints. A delegation framework for the WfMS 

coordinated with TRBAC model is established, and a series of algorithms for delegation of task 

instances and exploration of delegatees are developed. With the framework, a user is able to 

delegate his work to another user through an approval process, and WfMS can automatically 

delegate an emergent work item to an appropriate delegatee. The constraints such as 

elimination of delegation loops and separation of duty (SOD) are validated for delegation 

requested by either users or WfMS during run-time. As for the data perspective, a formal model 

describing artifact anomalies in TS workflow is established on the basis of define-use-kill 

operations. The issues about the artifact anomalies produced from twisted structural and 

temporal relationships between activities in a TS workflow are discussed and modeled. The 

methodology for static analysis of artifact anomalies buried in a TS workflow is developed. 

Finally, for the resource perspective, the incremental methodology accomplished in [37] is 

refined to integrate TS workflow model and the analysis techniques proposed in [30]. The edit 

operations for constructing loop-reduced TS workflows (LRTS workflows) are first stated, and 

the methodology tracking down the generation and elimination of resource conflicts along with 

each edit operation made by designers is described. 
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The rest part of this dissertation is organized as following. In chapter 2, TS workflow 

model is sketched. The basic elements and the construction rules for TS workflow are described 

and the methods for analysis of temporal and structural properties in TS workflows are 

introduced. In chapter 3, a delegation framework for the WfMS coordinated with TRBAC 

model is introduced. In chapter 4, artifact operations and the corresponding artifact anomalies 

are first introduced, and the methodology detecting artifact anomalies in TS workflows is then 

described accordingly. In chapter 5, an incremental methodology tracking down the resource 

conflicts generated or eliminated in the steps of construction of an LRTS workflow is presented. 

The related works for each of the above topics are discussed separately at the end of the 

chapters, and the conclusion and future works of this study are made in chapter 6. 
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Chapter 2. Temporal Structured Workflow Model 

 

2.1 Basic Elements 

A workflow is composed of a start process, an end process, some activity processes and 

some control processes. The start (ST) process represents the entry point of a workflow, and the 

end (END) process indicates the termination point. An activity (ACT) process stands for a piece 

of work to be performed and describes one logical step within a workflow [1].  

A control process is a routing construct used to control the divergence and convergence of 

sequence flows. The control processes can be classified as AND-split (AS), AND-join (AJ), 

XOR-split (XS), and XOR-join (XJ). An AND-split process within a workflow splits a single 

sequence of control into two or more sequences to allow simultaneous execution of activities; 

on the contrary, an AND-join process merges multiple parallel executing sequences into a 

single common sequence of control [13]. An XOR-split process within a workflow is the point 

where a single sequence of control decides a branch to take from multiple alternative branches, 

and an XOR-join process converges multiple alternative branches in a workflow [13].  

Processes are connected by directed flows, the flow(s) leading to a process are called the 

in-flow(s) of the process, and the flow(s) departing from a process are called the out-flow(s) of 

the process. The process starting a flow is the source process of the flow, and the process ending 

a flow is the sink process of the flow. In a workflow, only AND-split and XOR-split processes 

have multiple out-flows, and only AND-join and XOR-join processes have multiple in-flows. 

Figure 1 illustrates the notation of the basic elements described above. 
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Figure 1 The Graphic Notations of the Basic Workflow Elements 

With all the descriptions above, a workflow is modeled as following: 

Definition 1 (Workflow Model) 

A workflow w, w = (Pw, Fw, s, e). and 

Pw represents the set of the processes in w, and 

∀ p∈Pw, p.type∈{ACT, AS, AJ, XS, XJ, ST, END} 

Fw ⊆ Pw× Pw represents the set of flows in w. 

∀ f∈Fw, f = (p, q) is the in-flow of process q and the out-flow of process p, and  

p is the source process of f, and q is the sink process of f. 

s∈Pw represents the start process of w, s.type = ST, ∃  no in-flow to s. 

e∈Pw represents the end process of w, e.type = END, ∃  no out-flow from e. 

* In this dissertation, “=” denotes an assignment operator and “==” denotes a Boolean equality operator  

A sequence of flow(s) forms a path, and is formally modeled as following: 

Definition 2 (Path) 

A path is notated as a series of processes quoted by a pair of angle brackets.  

For a workflow w, a path, <p1, p2, …, pk>, from p1 to pk exists if and only if (p1, p2), 

(p2, p3), … (pk-1, pk)∈Fw. 

2.2 Structured Workflow 

A structured workflow is a workflow that is syntactically restricted in a number of ways. 

Control processes are organized in pair, an XOR-split process is paired with an XOR-join 

process, and an AND-split process is paired with an AND-join process. A control block is 

composed of a pair of control processes and the processes placed in between the pair of control 

processes. According to the type of the control processes, the control blocks can be classified as 

parallel structures, decision structures, and structured loops as Figure 2 illustrates. Each process 

in a structured workflow has at least one path from the start process to it, and at least one path 
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from it to the end process. Such restriction keeps a structured workflow well-behaved [4], i.e. a 

structured workflow is free from deadlocks and multiple active instances. Most arbitrary 

well-behaved workflows can be transformed to be structured without loss of their contexts [4]. 

Figure 2 shows the building blocks of a structured workflow according to the basic elements 

and constraints described above. 

 

Figure 2 Building Blocks of a Structured Workflow 

All the processes between the start and the end process in a structured workflow are 

organized with the building blocks shown in Figure 2. For Figure 2(c) and Figure 2(d), the 

blocks X1, X2, …, and Xn represent the branches split and converged in a parallel structure or a 

decision structure. Besides, in Figure 2(e), the structured loop acts like a do-while loop when 

block Y is null, and acts like a while loop when block X is null. Figure 3 illustrates the control 

graph of a sample structured workflow. 
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Figure 3 A Sample Structured Workflow 

Two processes are reachable from one to the other if there exists a path between them, 

parallel if they reside on different branches of a parallel structure, and exclusive to each other if 

they reside on different branches of a decision structure. Take Figure 3 for example. The path 

<v1, xs1, v2, v3> indicates that v1 is reachable to v3. v3 and v4 are parallel because they reside on 

different branches split from as1. v2 and v8 are exclusive because they reside on different 

branches of the decision structure quoted by xs1 and xj1. In this dissertation, the above structural 

relationships between processes are notated as following Boolean functions: 

Definition 3 (Structural Relationships in a Structured Workflow) 

For a structured workflow w, 

Reachable: Pw× Pw⇒ {true, false} 

Reachable(p, q) holds if and only if there exists a path from p to q. 

Parallel: Pw× Pw⇒ {true, false} 

Parallel(p, q) holds if and only if p and q reside in different branches of a 

parallel structure. 

Exclusive: Pw× Pw⇒ {true, false} 

Exclusive(p, q) holds if and only if p and q reside in different branches of a 

decision structure. 

2.3 Temporal Structured Workflow 

In [14], Zhuge models timed workflow by describing the maximal and minimum working 

durations for each activity. In this dissertation, a timed and structured workflow is named as a 

Temporal Structured Workflow (TS workflow) and is formally modeled as following: 
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Definition 4 (TS workflow) 

A workflow w is temporal structured with following properties: 

(1) w is structured, and 

(2) ∀ p∈Pw, d(p) and D(p) represents the minimum and maximum working duration 

of process p. 

To facilitate discussion, we assume that if p is an activity process, 0 < d(p) ≤ D(p); 

otherwise, d(p) = D(p) = 0. Figure 4 illustrates a sample TS workflow. 

 
Figure 4 A Sample TS workflow 

2.4 Analysis of Structural and Temporal Relationships between Processes in TS workflow 

2.4.1 Loop Reduction 

The structural and temporal relationships between processes are the bases of any further 

analysis of a TS workflow. In [9], [11], and [12], Hsu et al. give several methodology to reveal 

the structural and temporal relationships between processes in acyclic structured and timed 

workflows. In [28] and [29], Hsu and Wang et al. claim that in a structured workflow, all the 

possible state variations of the artifact operated in loops with more than two iterations are the 

same as those with exact two iterations. Therefore, they reduce a structured loop into a decision 

structure with three branches representing for no iteration, a single iteration, and two iterations 

for the analysis of artifact anomalies with better efficiency. In this dissertation, we adopt an 

approach similar to [7] and [8] to reduce the structured loops in a TS workflow as decision 

structures to retrieve structural and temporal information in a TS workflow as in [9], [11], and 

[12]. 



 

 11 

In a TS workflow, the number of iterations of a loop affects the active timing of processes 

succeeding to the loop. The loop reduction introduced in [7] and [8] may bring inaccuracy to the 

analysis of temporal factors, and is therefore not feasible for TS workflow. In [38], Leong 

considers the worst case scenarios for loops in a workflow and develops a methodology to 

detect whether the workflow possibly exceeds its deadline during run-time. Here, we combine 

Leong's concept and the methodology in [7] and [8] to describe a refined loop reduction method 

for the analysis of TS workflow. 

First, it is assumed that the maximal number of iterations for a structured loop in a TS 

workflow is finite. In other words, the infinite loops are not discussed in this study. Based on the 

assumption, a structured loop is transformed into a decision structure with three branches: no 

iteration, a single iteration, and maximal iterations as Figure 5 illustrates.  

 
Figure 5 Refined Loop Reduction for TS Workflow Model 

The refined loop reduction bring following advantage: (1) All the possible state variations 

of artifacts between iterations are still completely captured, (2) the active intervals of the 

processes succeeding to the structured loop can still be accurately estimated because the worst 

case scenario is considered, and (3) the methodology for acyclic structured workflow can be 

adopted in TS workflow because the structured loops are reduced. In this dissertation, 

loop-reduced TS workflows (LRTS workflows) are widely adopted in our methodology. 
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2.4.2 Analysis of Structural Relationships between Processes in LRTS workflow 

The structural relationships between activity processes are the groundwork for analysis of 

TS workflow, and are described and proved in the following lemma. 

Lemma 1 

For an LRTS workflow w, p and q∈Pw, and p.type == q.type == ACT, one and 

exactly one of the following statements, Reachable(p, q), Reachable(q, p), 

Parallel(p, q), and Exclusive(p, q), holds. 

Proof: 

An LRTS workflow is still structured, and the lemma can be proved through the 

discussion of the construction rules of a structured workflow. Because a single activity 

process is a basic building block of a structured workflow, p and q can always be distributed 

into two different building blocks combined in a sequence, a parallel structure, or a decision 

structure illustrated in Figure 2.  

Let bp and bq be the building blocks containing p and q separately. If bp and bq is 

combined in a sequence block, p and q are reachable from former to the later. Since w is 

loop-reduced, i.e. w is loop free, if Reachable(p, q) holds, Reachable(q, p) is false, and vice 

versa. Besides, according to the construction rules, there exist no paths between the building 

blocks split from an XOR/AND-split process. Therefore, Parallel(p, q) and Exclusive(p, q) 

can not hold in this case. 

Otherwise, if bp and bq is combined in a decision block, bp and bq represents different 

branches split from the XOR-split process starting the decision structure. In other words, p 

and q resides in different branches of a decision structure, and therefore, Exclusive(p, q) holds. 

Since w is loop-reduced, there exist no paths between p and q, both Reachable(p, q) and 

Reachable(q, p) are false. On the other hand, according to the construction rules, since bp and 

bq reside on different branches of a decision structure, they can not reside in different branches 

of a parallel structure. Therefore, Parallel(p, q) does not hold. With similar reason, we can 

also show that when Parallel(p, q) holds, none of Reachable(p, q), Reachable(q, p), and 

Exclusive(p, q) holds, and hence, Lemma 1 is shown correct with all the statements above. □ 

In [9], Hsu et al. use a data structure, ABStack, to record the structural information of 

processes, and achieve an efficient analysis of the structural relationships between processes in 

an acyclic structured workflow. In this dissertation, the similar approach is adopted. All the 

flows in an LRTS workflow are tagged with a branch mark. The branch mark is a natural 

number ID for each out-flow split from an XOR/AND split process, and is -1 for any other flow 
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in the LRTS workflow. The branch mark in this dissertation is formally defined as following. 

Definition 5 (Branch Mark) 

For an LRTS workflow w, 

BMw: Fw⇒ INTEGER 

∀ (p, p’)∈Fw, 




−
∈

=
otherwise 1

AS) (XS, ifnumber  natural a
))',((BM

p.type
ppw  

For p, q, q’ ∈Pw, p.type∈{XS, AS}, and (p, q), (p, q’)∈Fw,  

BMw((p, q)) ≠ BMw((p, q’)) 

A process in an LRTS workflow might reside in nested decision/parallel structures, and the 

structures are recorded in the ABStack corresponding to the process. Each of the structures is 

presented as a structural item composed of the split process starting the structure and the branch 

mark mapped to one of the out-flows of the split process. In the dissertation, an ABStack is 

notated as a series of structural items quoted by a pair of double angle brackets, “«” and “»”. 

The items representing the inner structures are recorded higher in the ABStack, where the 

leftmost item is the top of the stack and the rightmost item is the bottom. The definition of an 

ABStack is formally described as following. 

Definition 6 (ABStack) 

∀ p∈Pw, p.abstack represents the ABStack corresponding to p.  

A structural item, stitem = (sp, bm), is included in p.abstack if and only if 

(1) sp∈Pw, sp.type∈{AS, XS}, and ∃ a path <sp, …, p, …, jn> in w where jn is the 

corresponding join process of sp. 

(2) bm = BM( (sp, p’) ) where p’ == p or Reachable(p’, p) == true. 

p.abstack == « » if and only if p resides in no decision/parallel structure. 

p.abstack == «(sp1, bm1), (sp2, bm2), …, (spk, bmk)» exists if and only if a path 

<spk, …, sp2, …, sp1, …, p, …, jn1, …, jn2, …, jnk> exists. 

To calculate ABStacks of the processes in an LRTS workflow, push and pop 

functions associated with ABStack are defined as following: 

Let an ABStack abs == «(sp1, bm1), (sp2, bm2), …, (spk, bmk)» 

      Push( abs, (sp, bm) ) returns a new ABStack abs’, where 

abs’ == «(sp, bm), (sp1, bm1), (sp2, bm2), …, (spk, bmk)» 

Pop( abs ) returns a new ABStack abs’, where  

abs’ == «(sp2, bm2), …, (spk, bmk)» 
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Figure 6 illustrates how push and pop functions work for the calculation of the ABStacks 

corresponding to the processes in an LRTS workflow. 

 

Figure 6 Calculation of ABStacks for Processes in an LRTS Workflow 

Figure 7 illustrates a sample LRTS workflow decorated with ABStacks. Take process v5 

for example. The items (as1, 2), and (xs1, 1) in the ABStack of v4 shows that v4 resides on #2 

branch split from the AND-split process as1 and #1 branch split from the XOR-split process xs1. 

The order of (as1, 2) and (xs1, 1) indicates that the parallel structure started from as1 is nestedly 

contained by the decision structure started from xs1.  
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Figure 7 A Sample TS workflow with ABStacks and EAIs 

Besides, the structural items (as1, 1) and (as1, 2) in the ABStacks of v4 and v5 

correspondingly indicate that v4 and v5 reside on different branches split from AND-split 

process, as1. In other words, v4 and v5 are parallel. The parallelism or exclusiveness between 

processes can be identified through comparing the ABStacks of the corresponding processes, 

and Lemma 2 shows how ABStacks work for identification of structural relationships between 

processes in an LRTS workflow. 

Lemma 2 

For an LRTS workflow w, and p, q∈Pw 

(1) Parallel(p, q) holds if and only if  

∃ (sp, bm)∈p.abstack and (sp, bm’)∈q.abstack where sp∈Pw, sp.type == AS and 

bm ≠ bm’. 

(2) Exclusive(p, q) holds if and only if  

∃ (sp, bm)∈p.abstack and (sp, bm‘)∈q.abstack where sp∈Pw, sp.type == XS and 

bm ≠ bm’. 

Proof: 

Consider the if-part of statement (1), according to Definition 6, if ∃ (sp, bm)∈p.abstack 

and (sp, bm’)∈q.abstack where sp∈Pw, sp.type == AS and bm ≠ bm’, there exists a process m 

that bm == (sp, m), and m is either equivalent to p or Reachable(m, p) holds. Similarly, there 

exists another process n for q. bm ≠ bm’ indicates that m ≠ n, and p and q reside on different 

branches split from the AND-split process, sp. Thus Parallel(p, q) holds and the if part is 

shown correct. 

As for the only-if-part, if Parallel(p, q) == true, p and q reside on different branches of a 

parallel structure. Let sp be the AND-split process starting the parallel structure, and jn be the 
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AND-join process terminating it. The nodes in the path from sp to p are totally different from 

those in the path from sp to q. Besides sp and jn, two distinct paths, <sp, …, p, …, jn> and 

<sp, …, q, …, jn>, exist. Therefore, there exists a process m that (sp, m)∈Fw and either m is 

equivalent to p or Reachable(m, p) == true. Similarly, there also exists such a process n for q. 

m and n can not be the same process because they reside on different branches split from sp, 

and thus, BM(sp, m) ≠ BM(sp, n). According to Definition 6, (sp, BM(sp, m)) is included in 

p.abstack, and (sp, BM(sp, n)) is included in q.abstack. The only-if part of statement (1) of 

the lemma is proved. 

Part (2) can be proved similarly and the proof is omitted here. With the paragraphs above, 

Lemma 2 is shown correct.□ 

2.4.3 Analysis of Twisted Temporal and Structural Relationships between Processes in LRTS 

workflow 

In a TS workflow, the temporal and structural relationships between processes are twisted. 

This section firstly shows how to identify the temporal property between processes. 

  

Figure 8 The Temporal Relationships between Time Intervals [39] 

A time interval is duration of a segment of time. In [39], Allen defines seven reasoning 

relationships between time intervals. Figure 8 illustrates the temporal relationships adopted in 

this dissertation on the basis of Allen’s definition, and Definition 7 describes the formal 
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definition of time intervals and the temporal relationships between time intervals adopted in 

this dissertation. 

Definition 7 (Time Intervals) 

A time interval ti = [S(ti), E(ti)] indicates a duration from the time point S(ti) to 

E(ti), E(ti) ≥ S(ti).  

A time point tp can be represented as a time interval [tp, tp], and ctime is the time 

point indicating the current time.  

For any two time intervals ti1 and ti2,  

  ti1 is before ti2, notated as ti1 TIp ti2, if and only if E(ti1)≤ S(ti2). 

  ti1 is after ti2, notated as ti1 TIf ti2, if and only if ti2 is before ti1. 

  ti1 overlaps ti2, notated as ti1 TI≈ ti2, if and only if  

MIN({E( ti1), E(ti2)}) – MAX({S( ti1), S(ti2)}) > 0 

ti2 contains ti1, notated as ti2 TI⊇ ti1, if and only if S(ti2) ≤ S(ti1) and E(ti2)≥ E(ti1).  

In Definition 7, two utility functions MAX and MIN are invoked. Function MAX returns 

the element with the maximum value among the parameter set, and function MIN returns the 

minimal one. 

In [23] and [40], Joshi et al use not only individual time intervals but also the periodic 

temporal expressions to describe the temporal constraints in roles for temporal RBAC model. 

For example, the expression “the night time duty is activated 6pm to 11pm every Wednesday 

and Friday” indicates that the permissions for night time duty are activated during certain 

repeated time durations. The periodic temporal expressions can be viewed as a combination of 

multiple time intervals, and are grouped as a time description as following definition. 

Definition 8 (Time Descriptions) 

A time description td is a set of time intervals. For any two time intervals tiz and tiy 

in td, tix and tiy are exclusive. On the other hand, for any two non-empty time 

description tda and tdb, tda contains tdb notated as tda TD⊇ tdb if and only if 

∀ tib∈tdb, ∃ tia∈tda such that tia TI⊇ tib. 
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Figure 9 Calculation of EAIs in an LRTS Workflow [34][37] 

In [34] and [37], the minimum and maximum working durations are used to estimate the 

active duration of a process corresponding to the start of workflow. The Estimated Active 

Interval (EAI) of a process is a time interval indicating when the process can be initialized and 

when it should be terminated. In this dissertation, the Estimated Active Interval of a process p, 

notated as EAI(p) is defined as following: 

Definition 9 (Estimated Active Interval) 

For a TS workflow w and a process p∈Pw, 

EAI(p) = [EST(p), LET(p)], and corresponding to when w starts: 

EST(p) indicates the earliest time that p can be initialized. 

LET(p) indicates the latest time that p must terminate. 

With the assumption that the EST and LET of the start process of a TS workflow are zero, 

the methodology described in [34] and [37] is adopted to calculate the EAIs of processes in an 

LRTS workflow as Figure 9 illustrates.  

 With Lemma 1 and Lemma 2, whether two processes in an LRTS workflow are 

exclusive, parallel, or reachable from one to the other is identified with corresponding 

ABStacks. The path direction of two reachable processes can be further derived according to 
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the corresponding EAIs, and the following lemmas show how EAIs can be adopted in 

analysis of LRTS workflow. 

Lemma 3 

For an LRTS workflow w, p and q∈Pw, q.type == ACT,  

if Reachable(p, q), LET(p) < LET(q) 

Proof: 

Reachable(p, q) represents that the path <p, m1, m2, …, mn, q> exists. Now we prove the 

lemma with mathematical induction. For n = 0, (p, q)∈Fw, since q.type = ACT, D(q) > 0 and 

LET(q) = LET(p) + D(q). LET(p) < LET(q) holds. 

Hypothesis: The lemma holds when n < k. 

For n = k, LET(q) = LET(mk) + D(q) and LET(mk) < LET(q). According to the 

construction rule of TS workflow, mk.type ≠ S, E, and mk.type∈{AS, XS, AJ, XJ, ACT}. The 

following conditions should be discussed: 

For any 1≤ i ≤ k, if there exists an mi where mi.type = ACT, according to the hypothesis, 

LET(p) < LET(mi) and LET(mi) < LET(q). Therefore, LET(p) < LET(q). Otherwise, for any 

1≤ i ≤ k, mi.type∈{AS, XS, AJ, XJ}, according to the EAI calculation methods, for any (u, mi) 

∈Fw, LET(u) ≤ LET(mi). Since there exists a path from p to mi, LET(p) ≤ LET(mi). On the 

other hand, according to the hypothesis, LET(mi) < LET(q). Therefore, LET(p) < LET(q). 

With statements above, we know the lemma holds for n = k, and on the basis of mathematical 

induction, Lemma 3 is proved. □ 

Lemma 4 

For an LRTS workflow w, p and q∈Pw, p.type == q.type == ACT,  

if Parrallel(p, q) == Exclusive(p, q) == false, and LET(p) < LET(q), 

Reachable(p, q) == true. 

Lemma 4 can be shown correct with Lemma 1 and the construction rule of LRTS 

workflow. Lemma 4 describes that if two activity processes in an LRTS workflow are not 

mutually parallel or exclusive, the process with larger LET is reachable from the process with 

smaller LET. From Lemma 1, we know that in an LRTS workflow, two processes are either 

parallel, exclusive, or reachable from one to the other. Therefore, Lemma 4 can be re-stated as 

Lemma 5 that if two activity processes in an LRTS workflow are reachable from one to the 

other, the activity processes with larger LET is reachable from the one with smaller LET.  
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Lemma 5 

For an LRTS workflow w, p, q∈Pw, p.type == q.type == ACT,  

If (Reachable(p, q) ⊕ Reachable(q, p)) == true, and LET(p) < LET(q), 

Reachable(p, q) == true. 

On the other hand, two processes are concurrent if and only if they are structurally parallel 

and overlapped in EAIs. On the basis of Lemma 5, a process is before another one if one of the 

following statements holds, (1) the latter is structurally reachable from the former, and (2) they 

are structurally parallel and the EAI of the former is before the EAI of the latter. The definition 

of the structural and temporal relationships in LRTS workflow is formally described as 

following. 

Definition 10 (Structural and Temporal Relationships in LRTS workflow) 

For an LRTS workflow w, 

Concurrent: Pw× Pw⇒ {true, false} 

Concurrent(p, q) == true if and only if 

( Parallel(p, q) ∧ EAI(p) TI≈ EAI(q) ) == true. 

Before: Pw× Pw⇒ {true, false} 

Before(p, q) == true if and only if 

( Reachable(p, q) ∨ ( Parallel(p, q) ∧ EAI(p) TIp EAI(q) ) ) == true. 

After: Pw× Pw⇒ {true, false} 

After(p, q) == true if and only if Before(q, p) == true. 
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Chapter 3. A Delegation Framework for WfMS based on 

Task-Role based Access Control and TS workflow 

 

Tasks represent the basic logical steps of business processes, and roles combining users 

with similar responsibility together are the core components for access control management in 

modern WfMS. With both tasks and roles as core concept, we introduce a delegation 

mechanism for WfMS coordinated with TRBAC. In section 3.1, TRBAC and the issues related 

to delegation in WfMS are sketched. The task and role models adopted in this dissertation are 

described in section 3.2, and our delegation framework for WfMS and TRBAC is depicted in 

section 3.3. In section 3.4, a case study is made, and the related works are discussed and 

compared with our methodology in section 3.5. 

3.1 Background 

3.1.1 Task-Role based Access Control Model 

 

Figure 10 The TRBAC Model [17] 
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Based on RBAC96 [15][16], TRBAC model [17] illustrated in Figure 10 works for 

modern enterprise environments in which tasks are the fundamental units of business processes. 

TRBAC model binds permissions on tasks and groups users operating the same tasks into roles. 

Rather than accessing business objects directly [15][16], users accomplish their works through 

tasks in which permissions are properly defined and protected. Restricting the access rights of 

business objects on tasks facilitates permission management and reduces the risks of 

inappropriate permission authority made by users. In TRBAC [17], tasks are classified into four 

classes according to whether the task participates in a business process and whether the task is 

inherited by the ancestor job. The classes of tasks in TRBAC model are illustrated in Table 1.  

Table 1 Classes of Tasks in TRBAC Model [17] 

 Non-inheritable Inheritable 

Passive access P (private) S (supervision) 

Active access W (workflow) A (approval) 

3.1.2 Delegation Approaches in RBAC and TRBAC 

Delegation is to authorize subjects like access rights or works between users or roles, and 

is often built based on access control models. The user (or role) authorizing the subject is the 

delegator, and the one who receives it is the delegatee. In RBAC [15][16], permissions to 

business objects, like documents or devices, etc. are bound with roles. RBDM0 [19] provides a 

flexible way for granting and revoking permissions between roles. RBDM1 [20], an extension 

of RBDM0 [19], is more realistic since it organizes roles with hierarchy. Both techniques are 

focused on delegation of roles among human users through identifying can-delegation 

relationships between roles. 

In [21], the essence of this delegation model is that a user delegates a particular right to 

another user, and delegation of partial permissions is allowed. Osborn separates users in 

organization, role hierarchies, and relationships among privileges into different graph models in 

[22] and [41], and shows a simple way to delegate privileges to users by creating a delegatee 
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role. In [18], Crampton gives a further discussion about both granting and transferring access 

rights between roles. When access rights are granted from the delegator to the delegatee, the 

delegated access rights are available for both the delegator and the delegatee [18]. On the other 

hand, if the access rights are transferred, only the delegatee holds the access rights after the 

delegation [18]. Besides, Crampton considers both can-delegate and can-receive relationships, 

and introduces the concept of administrative scope to improve the efficiencies in delegation 

controlling [18]. 

Besides, tasks, the basic logic units of business processes, should also be considered in 

delegation. In [18], Crampton addresses the issues like upward delegation and authorization of 

appropriate permissions for delegation to adopt RBAC-based delegation mechanism in 

task-based WfMS. Bammigatti associates tasks into permission management and develops a 

new model for using RBAC in workflow system [42]. In TAC model [43], the permissions 

possessed by roles and required by tasks are described separately, and the assignment of tasks to 

roles is thus constrained. With such constraints, a protocol enabling delegation of task instances 

from users to roles is established [43].  

TRBAC [17] binds the permissions with tasks, and the tasks with roles. With the roles 

assigned to users, users access business objects and accomplish their duties through tasks. 

Therefore, authorization of permissions is not necessary for delegation of tasks and task 

instances in TRBAC. In our previous work [24], a delegation framework for TRBAC has been 

initially established without considering the temporal issues. Zhang et al. develops a delegation 

model for time constraints-based TRBAC [44]. However, Zhang reduces TRBAC model as 

TRBACM model in which permissions and tasks are separately bound with roles. In [44], users 

delegate permissions together with tasks to accomplish their works, and the methodology 

violates the primary sprits of TRBAC [17].  
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3.1.3 Separation of Duty 

Separation of Duty (SOD) is a security principle which requires multiple users to be 

responsible for the completion of a work [45]. Since delegation transfers permissions and tasks 

among users, the delegation approaches also follows the SOD policy of the corresponding 

access control system. In RBDM1 [16], Ferraiolo defines SOD as “For a particular set of 

transactions, no single individual is allowed to execute all the transactions within the set.” 

Botha discusses SOD in workflow environments both statically and dynamically [46]. In 

Botha’s study, four possible conflicts, conflicting roles, conflicting permissions, conflicting 

users, and conflicting tasks, are described, and the corresponding methods for the conflicts are 

developed. 

TRBAC [17] offers SOD policy at both task and instance level, and defines that some tasks 

are mutually-exclusive to each other. In task level SOD, for the roles played by a user, none of 

the tasks assigned to the roles are mutually-exclusive. In instance level SOD, the policy is 

effective for the tasks belonging to the same workflow instance. The task instances instantiated 

from the mutually-exclusive tasks in a workflow instance can not be executed by the same user 

[17]. In this dissertation, we follow the SOD policy established in TRBAC when delegation.  

3.2 Task and Role Model 

Tasks are the basic components describing pieces of works in logical steps within a 

workflow [1], and are modeled as activity processes in TS workflow model. Permissions are 

the rules describing the admission in accessing business objects such as documents or 

computation resources. In this dissertation, individual permissions are bound with tasks on the 

basis of TRBAC. Besides, it is assumed that only the tasks related to enactment of workflows 

can be delegated during run-time, and therefore, only “Workflow” and “Approval” are 

considered as the classes of tasks in this dissertation. Task is formally defined as following. 
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Definition 11 (Task) 

For a TS workflow w, Tw = {t | t∈Pw, t.type == ACT} is the set of tasks in w. 

Let T be the set of all the tasks managed by WfMS, 

Tw ⊆ T, ∀ t∈T, the following properties are additionally modeled: 

  Pt is the set of permissions to business objects bound on t.  

Rt is the set of roles assigned to t.  

t.class∈{Workflow, Approval} is the class of t.  

During run-time, TS workflow instances are instantiated from a TS workflow, and the 

tasks in the TS workflow are also instantiated as Task Instances. Task instances are the basic 

units for daily duties. When a task instance is going to be executed, the system offers the 

instance to a role in accordance with the corresponding TS workflow. Then, the instance is 

allocated to the work list of one of the users playing the offered role. The user executes the 

instances in his work list, and submits the instance whenever it is complete. A task instance is 

suspended once the responsible user becomes unavailable for a certain time, and is resumed 

from suspension when the responsible user is again available. A task instance is failed if it is not 

completed in its active interval, and is discarded if it is not executed until the end of the TS 

workflow instance. The active interval of a task instance is obtained from the EAI of its source 

task and the starting time of the TS workflow instance, and indicates when it can be started and 

the corresponding deadline. TS workflow instance and task instances are modeled as following. 

Definition 12 (TS workflow Instance and Task Instance) 

A TS workflow instance wi = (w, Iwi, st).  

w is the TS workflow instantiating wi 

Iwi is the set of the task instances instantiated from the tasks in Tw.  

    Let I be the set of all the task instances managed by WfMS. 

Iwi ⊆ I, ∀ i∈ Iwi, i = (wi, tk, ar, s, eu, ai).  

tk∈Twi.w is the task instantiating i.  

ar∈Rtk is the role i offered.  

s∈{Initiated, Discarded, Offered, Allocated, Completed, Suspended, Failed} 

is the status of i.  

eu is the user executing the task instance.  

ai = [wi.st + EST(tk), wi.st + LET(tk.eai)] is the active interval of i. 

st is the time point wi being initialized. 
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Users are the participants of business processes. A user may play multiple roles for various 

businesses, and a role can be played by multiple users also. During run-time, users execute task 

instances in their work list to accomplish their daily duties. The status of a user is normally 

available and is transited to unavailable when he/she is not available for work. A user is 

formally modeled as following. 

Definition 13 (User) 

Let U be the set of all the users managed by WfMS. 

∀ u∈U, u = (Ru, WL, cs ).  

Ru is the set of roles played by u.  

WL = { i | i∈I, i.eu = u, i.s∈{Allocated, Completed, Suspended, Failed} } is the 

work list of u.  

cs∈{Available, Unavailable} is the current status of u. 

Roles represent the collections of users with common responsibilities [15][16]. In this 

dissertation, a role is modeled as a collection of the users responsible for the same tasks with 

certain timing constraints. The definition roles are formally described as follows. 

Definition 14 (Role) 

Let R be the set of all the roles managed by WfMS. 

∀ r∈R, r = (Ur, Tr, etd).  

Ur is the set of users playing r.  

Tr is the set of tasks assigned to r.  

etd is a time description indicating when r is active. 

Roles are organized with the role hierarchy. The role hierarchy indicates inheritance 

relationships and partial orders between roles to reflect the organization lines of authority or 

responsibility [15]. In this dissertation, the role hierarchy is modeled with directed acyclic 

graph (DAG) like in [15], [47], and [48]. Among the role hierarchy, the roles in higher positions 

possess larger authority, and the connected roles are more coherent than disconnected ones 

[15][47][48]. The number of edges between two connected roles in the role hierarchy is defined 

as their distance. The roles closer in distance are related more tightly than roles farther. The role 

hierarchy and the function calculating the distance between two roles in a hierarchy are defined 
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in the following definition. 

Definition 15 (The Role Hierarchy) 

The role hierarchy RH⊆ R×R. 

∀ (r1, r2)∈RH, (r1, r2) shows a partial order that all inheritable tasks assigned to 

r1 can also be assigned to r2.  

∀ r, r’ ∈R, r’ f rh r holds if there exists (r, r1), .., (rk, r’ )∈RH*.  

RH is acyclic, and if r’ f rh r holds, r f rh r’  does not.  

DisRH() shows the distance between two roles in the role hierarchy:  

(1) DisRH(r, r) = 0,  

(2) if r’ f rh r, DisRH(r, r’ ) = -(k+1) and DisRH(r’ , r) = k+1,  

(3) DisRH(r, r’ ) is undefined while neither r’ f rh r nor r f rh r’  holds. 

3.3 Delegation Framework for WfMS on TRBAC 

3.3.1 The properties of Delegation 

A delegation is primarily composed of a delegator, a delegatee and a delegating subject. In 

TRBAC, since the permissions are bound with tasks, the task instances are delegated between 

users during run-time. For each delegation, the delegator, the delegatee, the delegated task 

instance, and the delegation duration are recorded in a delegation record. In this dissertation, the 

duration is constrained not exceeding the active interval of the delegated task instance. Our 

framework allows multi-level delegation [19][21], and a task instance might be delegated 

several times. For each delegated task instance, a delegation record keeps tracking its status no 

matter how many times it is delegated. All the delegators who once delegated the task instance 

are put into the historical delegator list in the corresponding delegation record.  

Besides, we assume that the maximal times that a task instance can be delegated are 

constrained by an enterprise policy named the Maximal Levels of Delegation (MLD). MLD is a 

non-negative integer. If MLD is equal to 1, multi-level-delegation is forbidden. With above 

features, the format of a delegation record is defined in Definition 16. When a delegation occurs, 

the corresponding record is attached to the task instance for reference as definition 10 shows.  
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Definition 16 (Delegation Record) 

Let D be the set of all the delegation records managed by WfMS. 

∀ d∈D, d = (di, dr, de, dur, HDRL).  

di is the delegated task instance, and ∀ d’∈D, if d’ ≠ d, d’.di ≠ d.di.  

dr∈U is the original delegator.  

de∈U, is the current delegatee.  

dur is a time interval indicating during when d is effective, and di.ai TI⊇ dur.  

HDRL = {u1, u2, …, uk} is the historical delegator list. u1 == dr, and    

∀ um∈ HDRL, m<k, um delegated di to um+1, and uk delegated di to de. 

|HDRL|≤ MLD. 

 

Definition 17 (Delegation Records in Task Instances) 

For any task instance i, if i is delegated, i.dr∈D, i.dr.di == i; otherwise, i.dr == Ø. 

Algorithm 1 describes how a task instance is delegated in our framework. 

Algorithm 1 Delegation Algorithm - DA 

Input: the delegating task instance dti,  

the delegatee u, and  

the designated delegating duration ddur 

Pre-Condition: dti.ai TI⊇ ddur 

DA { 

01: if (dti.dr ≠ Ø) { 

02:   if( |dti.dr.HDRL|+1 > MLD ) 

03:     EXCEPTION( MAX_DELEGATION_LEVEL_REACHED ); 

04:   else { 

05:     add dti.eu to dti.dr.HDRL; 

06:     dti.dr.dur = ddur; 

07:     dti.dr.de = u; 

08:   } 

09: } else { 

10:   dti.dr = (dti, dti.eu, u, ddur, {dti.eu}); 

11:   add dti.dr to D; 

12: } 

13: remove dti from dti.eu.WL; 

14: add dti to u.WL; 

15: dti.eu = u; 

} 
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The system invokes Algorithm 1 when delegating a task instance to the designated 

delegatee. At line 1, the algorithm checks whether the input task instance has been delegated. If 

so, the algorithms checks the size of historical delegator list of the task instance at line 2 to 

assure that the delegation does not violate the restriction held by MLD. According to the input 

parameter, the delegation record is updated from line 5 to 7. Otherwise, the task instance is 

delegated for the first time. A new delegation record is created and attached to dti at line 10 and 

11. After the delegation record is well updated or created, the task instance is transferred from 

the delegator’s work list to the delegatee’s from line 13 to 15 

3.3.2 Delegatee Decision 

Algorithm 1 does not concern whether a delegatee is appropriate for delegation or not. In 

multi-level-delegation, if a task instance is delegated to one of the delegators who once 

delegated the task instance, a delegation loop occurs. Delegation loop causes redundancy in 

business and should be avoided [49]. Algorithm 2 is constructed to remove users inducing 

delegation loop from the candidate users. 

Algorithm 2 Removing Users Causing Delegation Loop - RUDL 

Input: the candidate user set CUS, and  

the target task instance ti 

Pre-Condition: CUS⊆ U 

User Set RUDL { 

01: if (ti.dr ≠ Ø) 

02:   CUS = CUS \ ( ti.dr.HDRL ); 

03: return CUS; 

} 

Taking a set of users and a task instance as the input parameters, Algorithm 2 eliminates 

users causing delegation loop from the input user set. Each delegator user who once delegated 

the instance is recorded in the historical delegator list of the delegation record. After removing 

the historical delegators from the input user set at line 2, CUS is returned at line 3.  
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SOD is another issue in delegatee decision. Since delegation happens during run-time, we 

focus on maintaining instance level SOD policy for the task instances in a TS workflow 

instance. For each TS workflow, the mutually-exclusive tasks are grouped in records, and a task 

might belong to multiple records. For example, task “auditing” is mutually-exclusive to both 

task “ordering” and “purchasing”, but “ordering” and “purchasing” are not mutually-exclusive. 

Therefore, two records are established, and “auditing” is contained in both records with 

“ordering” and “purchasing” separately. The record for mutually-exclusive tasks and the SOD 

constraints adopted in this dissertation is defined as follow. 

Definition 18 (Mutually Exclusive Tasks) 

MET is the set of all the records of mutually-exclusive tasks.  

∀ met∈MET, met = (w, Tmet).  

w is a TS workflow.  

Tmet⊆ Tw is a set of mutually-exclusive tasks  

∀ ti, tj∈Tmet, ti and tj are mutually-exclusive. 

 

Definition 19 (Instance Level SOD constraints) 

∀ workflow instance wi, ti1, ti2∈ Iwi, and (wi.w, Tmet)∈MET, 

If ti1.tk, ti2.tk∈Tmet, ti1.eu ≠ ti2.eu. 

In a delegation, SOD also holds. For a task instance ti which is being delegated, a user 

executing a task instance mutually-exclusive to ti can not be the delegatee of ti. Taking a set of 

candidate delegatees and a task instance as the input parameters, Algorithm 3 eliminates the 

users violating instance SOD from the candidate delegatees. 

Algorithm 3 Removing Users Involved in Mutually-Exclusive Tasks - RUMET 

Input: the candidate user set CUS, and 

the target task instance ti 

Pre-Condition: CUS⊆ U 

User Set RUMET { 

01: ∀  i∈Iti.wi\{ ti} { 

02:   if ( ∃ met∈MET, met.w == ti.wi.w, i.tk, ti.tk∈Tmet ) 

03:      remove i.eu from CUS; 

04:  } 
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05:  return CUS; 

} 

To show the correctness of Algorithm 3, we prove that the following lemma holds. 

Lemma 6 

Algorithm 3 follows the SOD constraints defined in Definition 19. 

Proof:  

By way of contradiction (B.W.O.C), we assume that a user u∈RUMET(CUS, ti) is now 

executing ti’  which is mutually-exclusive to ti. Let a workflow instance wi1 contains ti’ and ti. 

With the assumption, ti’ .tk and ti.tk are mutually-exclusive to each other, and ti’ .eu = u. Since 

ti.wi = wi1 and ti’ ∈ Iti.wi, ti’  is selected at line 1. On the other hand, by definition 11, there 

exists met∈MET that met.w = ti.wi.rws = ti’ .wi.rws = wi1.rws and ti’ .tk, ti.tk∈Tmet. Therefore, 

the expression at line 2 is true for ti’  and ti’ .eu is removed from the result set at line 3. Thus, u 

is not included in the result set and the assumption is contradicted. Algorithm 3 follows SOD 

constraints defined in Definition 19. □ 

Intuitively, an unavailable user can not be the delegatee of any delegation, and a task 

instance should not be delegated to the user currently executing it. Concluding these two issues 

and the algorithms described in this section, the algorithm removing inappropriate users from a 

set of candidate delegatees is constructed as follows. 

Algorithm 4 Removing Inappropriate Users - RIU 

Input: the candidate delegatee set CDS, and 

the delegating task instance dti 

Pre-Condition: CDS⊆ U 

Candidate Delegatee Set RIU { 

01: ∀ u∈CDS, 

02:   if ( u.cs == Unavailable ) remove u from CDS; 

03: CDS = RUMET( RUDL( CDS, tdi ), tdi ) \ {dti.eu}; 

04: return CDS; 

} 

Algorithm 4 first removes the unavailable users from the input set at line 2. At line 3, the 

algorithm invokes Algorithm 2 and Algorithm 3 to remove the users causing delegation loop or 

violating SOD. After removing the current executing user of dti, Algorithm 4 returns the result 

set at line 4. 
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3.3.3 Delegation from System Request 

When a suspended task instance is nearly timed out, the system might need to 

spontaneously request a delegation for the task instance. We assume that a suspended task 

instance is emergent, and need to be delegated automatically if the proportion of its remaining 

active interval is less than an enterprise policy named the Emergent Execution Ratio (EER), a 

real number ranged from 0 to 1. To automatically delegate the emergent task instance, WfMS 

needs first decide an appropriate delegatee. 

The role hierarchy indicates the organization lines of authority and responsibility [15], and 

can be used for exploration of possible candidate delegatees. Along with the role hierarchy, a 

task instance can be delegated upward or downward. When a task instance of daily works is 

being delegated, the system gathers the users playing lower roles related to the offered role of 

the instance as candidate delegatees. On the other hand, for the instances of the tasks related to 

decision making, the system commits an upward discovery from the offered role in the role 

hierarchy for the candidate delegatees. Besides, the users playing roles closer to the offered role 

in the role hierarchies are considered as better candidates in delegatee decision. Based on 

Definition 15, the algorithm discovering the role hierarchy for the candidate delegatees is 

constructed as follows. 

Algorithm 5 Discovering the Role Hierarchy - DRH 

Input: the delegating task instance dti 

Candidate Delegatee Set DRH { 

01: if( dti.tk.type == Approval ) p = 1; 

02: else if( dti.tk.type == Workflow ) p = -1; 

03: m = 0; 

04: US = Ø; 

05: loop { 

06:   GR = Ø; 

07:   ∀ r∈R, DisRH(dti.ar, r) == p*m  

08:     add r to GR; 
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09:   if ( GR == Ø ) return Ø; 

10:   ∀ r∈GR, r.etd TD⊇ { dti.ai} 

11:     US = US∪ Ur; 
12:   US = RIU ( US, dti ); 

13:   if ( US == Ø ) m = m + 1; 

14:   else break; 

15: } 

16: return US; 

} 

At line 1 and 2, according to the class of the dti’s task, the algorithm decides the direction 

to explore the role hierarchy. Algorithm 5 commits an upward discovery for the tasks typed 

“Approval” or a downward discovery for the tasks typed “Workflow”. From line 5 to 14, the 

algorithm does a breadth first search in the role hierarchy. At line 9, empty GR set represents 

that all roles connected to the offered role along with the designated direction in the role 

hierarchy are explored, and no proper delegatee is found. Therefore, Algorithm 5 returns Ø as 

the result. If GR is not empty, the users playing roles in GR is gathered into user set US and 

filtered with Algorithm 4. If US set is not empty after the removal of conflict users, the 

algorithm returns US as the result set. Otherwise, the discovery continues with further 

distances. 

With Algorithm 5, the algorithm for delegation requested by the system is described as 

Algorithm 6. WfMS tracks the status of the executing task instances, and invokes algorithm 6 

whenever an emergent task instance is found. Algorithm 6 acquires the candidate delegatees by 

exploring the role hierarchy with Algorithm 5 at line 2. Exception is raised if Algorithm 5 

returns no candidates. Otherwise, Algorithm 6 randomly chooses a delegatee from the 

candidate delegatees and invokes Algorithm 1 to delegate the emergent task instance. 
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Algorithm 6 Delegation from System Request - DSR 

Input: the delegating task instance dti 

Pre-Condition: dti.s = Suspended, E(dti.ai) > ctime 

            ( E(dti.ai) - ctime ) / (E(dti.ai) - S(dti.ai) ) < EER  

DSR { 

01: CDS = DRH(dti); 

02: if( CDS == Ø ) EXCEPTION( NO_PROPER_DELEGATEE ); 

03: else { 

04:   randomly choose a user u from CDS; 

05:   DA( dti, u, [ctime, E(dti.ai)] ); 

06: } 

} 

3.3.4 Delegation from User Request 

Many modern enterprises adopt user-authorized delegation as the primary delegation 

methodology. The RBAC-based studies like [20], [22], [18], and [23], also describes how roles 

and permissions are delegated under user authorization.  

With our framework, a user can authorize two types of delegation. First, a user may 

delegate task instances currently allocated to him. Second, a user may delegate the task 

instances going to be allocated to him during a specific period.  

To request a delegation, the delegator fills in an authorization form which designates the 

delegating subject, the delegatee and the activation duration of the delegation. For the first type 

of delegation, the delegator designates a task instance residing in his work list as the delegating 

subject. The duration to authorize the delegation must be contained by the active interval of the 

delegating task instance. For the second type of delegation, the delegator designates an 

executable task by any of the roles he playing as the delegating subject. The duration to 

authorize the delegation must be contained by the effective duration of the role. 
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Figure 11 The Process for Delegation from User Request 

After accomplishing the authorization form, the delegator user submits the form to request 

the approval from his supervisor and the designated delegatee. If the delegation is approved, for 

the first type of delegation, the designated task instance is delegated to the delegatee user with 

algorithm 1 immediately. For the second type of delegation, the approved form is put into 

Forthcoming Delegation Table (FDT). According to the form, the task instances of the 

designated task which is allocated to the delegator in the specified duration are delegated to the 

designated delegatee. Figure 11 represents the process of delegation from user request, the 

authorization form is defined in Definition 20, FDT is defined in Definition 21, and finally, 

Algorithm 7 shows how WfMS handles the second type of delegation. 

Definition 20 (Authorization Form) 

Let AP be the set of all authorization forms.  

∀ ap∈AP, ap = (dr, de, sub, tta, is_approved).  

dr is the delegator user, dr∈U.  
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de is the designated delegatee user, dr∈U, dr ≠ de.  

sub is the subject of delegation, sub∈T ∪ I, and  

if sub∈T, ∃ r∈u.RU∩sub.RT and r.etd TD⊇ { tta}, 

otherwise, if sub∈I, sub∈dr.WL, sub.s≠Completed, and sub.ai TI⊇ tta.  

tta, time to authorize, is the time interval that dr delegates the subject to de. 

is_approved is a Boolean variable showing whether ap is approved. 

 

Definition 21 (Approved Form) 

∀ ap∈AP, if ap∈FDT, ap.sub∈T, ap.is_approved = true, and E(ap.tta) ≥ ctime. 

 

Algorithm 7 Handle Forthcoming Delegation - HFD 

Input: a task instance i,  

a user u 

Pre-Condition: i is allocating to u 

HFD { 

01: if ( ∃ ap∈FDT, ap.dr == u, and ap.sub == i.tk ) { 

02:   if( RIU({ ap.de}, i) ≠ Ø ) 

03:     DA( i, ap.de, [ctime, min(E(ap.tta), E(i.ai))] ); 

04:   else EXCEPTION( INAPPROPRIATE_DELEGATEE ); 

05: } 

} 

The system invokes Algorithm 7 whenever a task instance is being allocated to its 

execution user. At line 1, the algorithm first checks if the user and the task of the task instance 

are recorded on an authorization form in FDT. If the task instance is authorized to be delegated, 

Algorithm 7 then invokes Algorithm 4 to check whether the designated delegatee user on the 

form violates any delegation constraints. If the check is not passed, an exception is raised and 

further handling is necessary. According to different policies, the hanging task instance might 

be handled manually or delegated by WfMS automatically. Otherwise, Algorithm 1 is invoked 

to perform the delegation.  

3.3.5 Revocation 

A successful delegation can be revoked by its delegator before it ends [18]. To revoke a 

delegated task, the authorization form is simply removed from the FDT. On the other hand, for 
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revocation of a delegated task instance, the delegatee’s contribution on the task instance might 

be preserved or discarded according to the system settings and the enterprise policies. The task 

instance is transferred back to the work list of the user requesting the revocation, the revoker, 

and the revoker continues executing the task instance after the revocation. 

Revoking a multi-level delegation is complex. For a multi-level delegation, all the users 

recorded in the historical delegator list might revoke the delegation. If the revoker is the 

original delegator, after the delegated task instance is transferred back, the delegation record is 

eliminated. Otherwise, if the revoker is the other delegator in the historical delegator list, the 

revoker becomes the delegatee of the delegation after the revocation. The revoker and the other 

delegators behind the revoker are removed from the historical delegator list.  

When a delegation runs out of its effective duration, the system revokes it automatically. 

The delegated task instance is transferred back like the revocation is requested by the original 

delegator.  Algorithm 8 is constructed as follows for revocation.  

Algorithm 8 Revocation Algorithm - RA 

Input: the subject to be revoked rsub,  

the revoker u 

Pre-Condition: rsub∈T∪I, u∈U 

RA { 

01: if (rsub∈T && ∃ ap∈FDT that ap.dr=u, and ap.sub=rsub) 

02:   remove ap from FDT; 

03: else if (rsub∈I && rsub.dr == d that u∈d.HDRL, and rsub.s≠ Completed) { 

04:   alert dti.eu that d is going to be revoked; 

05:   remove rsub from rsub.eu.WL; 

06:   add rsub to u.WL; 

07:   rsub.eu = u; 

08:   if( u == d.dr) { 

09:     remove d from D 

10:     rsub.dr = Ø; 

11:   } else { 

12:     d.de = u; 
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13:     u and all the users behind u in the d.HDRL are removed from d.HDRL; 

14:   } 

15:   alert dti.eu dti is transferred back to his work list; 

16: } else EXCEPTION(INVALID_REVOCATION); 

} 

Algorithm 8 takes the subject being revoked and the revoker as the input parameters. If the 

subject is a task, Algorithm 8 checks whether there is any corresponding authorization form, 

and removes the form from FDT at line 1 and 2. Otherwise, if the subject is a task instance, 

Algorithm 8 checks the corresponding delegation record to assure the revocation is valid at line 

3. If valid, the current delegatee of the delegated instance is first alerted at line 4. The delegated 

instance is removed from the delegatee’s work list, and transferred to the revoker from line 5 to 

7. If the revoker is the original delegator of the delegation, the delegation record is eliminated 

from line 8 to 10. Otherwise, the record is updated. The delegatee is assigned to the revoker at 

line 9; the revoker and the delegators behind him are removed from the historical delegator list 

at line 10. The revoker is alerted at line 15. At line 16, an exception is raised if the revocation is 

invalid. 
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3.4 Case Study 

 

Figure 12 (a) The Sample TS Workflow Specification, (b) The Sample Role Hierarchy and User Assignment, and 

(c) The Information about Tasks, Mutually-exclusive Tasks, and Authorization Applications 

In this section, we adopt a specification review process as an example to show the 

feasibility of our approach. The workflow specification of the review process, the partial role 

hierarchy, and the other related information are illustrated in Figure 12. In this case, the review 

process is composed of two tasks, primary review and secondary review. Chief Engineer is in 

charge of the primary review, and Senior Engineer is responsible for the secondary one. These 

two review tasks are mutually-exclusive. Their EAI are both [0, 5] after calculation. Since these 

two tasks reside on different branches split from the AND-split process, as1, they are concurrent 

during execution.  

Let Alex is busy in his duty, and apply for delegation of all the reviews allocated to him 

during the time interval [ca, cb]. The application is approved by Bob, the designated delegatee, 

and his supervisor. In other words, all the review jobs allocated to Alex during [ca, cb] would be 

delegated to Bob instead. At time c1, ca < c1 and c1+5 < cb, a workflow instance of w1, wi1 = 

({ i_t1, i_t2}, w1, c1), is instantiated so that the task instances i_t1 and i_t2 are instantiated on the 

basis of t1 and t2. i_t1 and i_t2 are offered to Chief Engineer and Senior Engineer, and allocated 
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to Alex and Carrie correspondingly. Now, i_t1 = (wi1, t1, r1, Allocated, u1, [c1, c1+5], Ø), and i_t1 

= (wi1, t2, r2, Allocated, u3, [c1, c1+5], Ø). Because Alex has been approved to delegate all the 

reviews during [ca, cb] to Bob, Algorithm 7 invokes Algorithm 1 to delegate i_t1 to Bob. The 

delegation record d = (i1, u1, u2, [c1, c1+5], {u1}) is created, and i_t1 becomes (wi1, t1, r1, 

Allocated, u2, [c1, c1+5], d) after the delegation. 

At time c2 which is in the middle of the active interval of i_t1, c1 < c2 < c1+5, Bob gets an 

emergent call and becomes unavailable right away. The task instances in his work list are all 

suspended. Let us assume that EER equals to 1. Thus, WfMS invokes Algorithm 6 to delegate 

i_t1 to another appropriate delegatee immediately. In Algorithm 6, Algorithm 5 is first invoked 

to explore the role hierarchy for a proper delegatee. Because t1 is typed “Workflow”, the role 

hierarchy is explored downward from Chief Engineer, the role i_t1 offered. Alex is the only user 

now playing Chief Engineer, and is eliminated from the candidate delegatee set by Algorithm 2 

to avoid delegation loop. When considering Senior Engineer, Carrie is eliminated from the 

candidate set by Algorithm 3 because of the SOD policy, and Bob is eliminated from the 

candidate set by Algorithm 4 because he is unavailable. No users playing Senior Engineer are 

appropriate to take the task. Therefore, Engineer is then considered. After all, Deff and Elly are 

included in the candidate set, and Deff is randomly decided as the new delegatee of i_t1. 

Algorithm 1 is invoked to delegate i_t1 to Deff. d is updated as (i1, u1, u4, [c2, c1+5], {u1, u2}), 

and i_t1 is updated as (wi1, t1, r1, Allocated, u4, [c1, c1+5], d). 

At c3, c2 < c3 <c1+5, Alex finishes his jobs ahead of time, and decides to finish i_t1 himself. 

Alex invokes Algorithm 8 to revoke i_t1. Deff is first alerted and i_t1 is then revoked. The 

delegation record d is removed, and i_t1 is updated as (wi1, t1, r1, Allocated, u1, [c1, c1+5], Ø). In 

summary, this case demonstrates the delegations requested from a user and the system, and 

indicates how the constraints like delegation loop and SOD work in automatic delegatee 

decision. 
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3.5 Discussion 

In this section, we compare our framework with the latest popular approaches: [20], [18], 

[43], and [44]. Table 2 illustrates the characteristics of above approaches and ours 

correspondingly.  

Table 2 Comparison of Characteristics of Various Delegation Models 

Characteristics RBDM1 [20] Crampton[18] Gaaloul [43] VTTRDM [44] Our Approach 

Access Control RBAC [15][16] 
RBAC 

[15][16] 
TAC [43] TRBACM [44] TRBAC [17] 

Delegation of 
Permissions 

Grant 
Grant & 
Transfer 

No Grant No 

Delegation of 
Tasks 

No No Transfer Yes Transfer 

Delegation of Task 
Instances 

No No No No Transfer 

Time Constraints No No No Yes Yes 

Automatic 
Delegation 

No No No No Yes 

RBDM1 [20] is a classic delegation model for RBAC [15][16], and can be adopted in 

managing delegation of permissions between users. Crampton et al. develop another 

RBAC-based delegation model for workflow systems [18]. Crampton's approach allows both 

grant and transfer operations for delegation of permissions while RBDM1 adopts only grant 

operation [18]. Crampton also raises the issues like upward delegation and permission 

authorization for delegation of tasks in work-list based workflow systems [18]. However, both 

RBDM1 and Crampton's approach describe no methods about delegation of tasks. 

With various access control models based on tasks and roles, Gaaloul's methodology [43], 

VTTRDM [44], and our approach can be adopted in managing delegation of tasks for workflow 

systems. Gaaloul's methodology describes constraints for delegation of tasks based on 

Task-oriented Access Control (TAC) model [43]. TAC model describes the permissions which 

a role owns and a task needs. Gaaloul's methodology allows a user to delegate his tasks to a role 
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which has sufficient permissions to execute the tasks. Since Gaaloul's methodology allows no 

delegation of permissions, it is limited and inflexible when selecting the delegatee for a 

delegation.  

In VTTRDM [44], both permissions and tasks can be delegated between users. RBDM1 

[20] is adopted in VTTRDM to manage the delegation of permissions. When delegating a task, 

if the delegatee does not have sufficient permissions to execute the task, permission delegation 

from the delegator to the delegatee is necessary to enable the execution [44]. Since in 

VTTRDM, the delegated permission is not limited being used for the delegated tasks only, 

security risk exists. 

In our approach, tasks are delegated through user's authorization. Our approach is based on 

TRBAC, and a task is executed with a set of associate permissions. Therefore, the delegatee can 

execute the delegated task without delegation of permissions, and the security risks brought by 

delegation of tasks are eliminated. Besides, in [50], delegation is defined as "A user allocates a 

task instance previously allocated to him to another user." While delegation of task instances is 

ignored in [43], and [44], our approach clearly states how to delegate task instances between 

users. For delegation of task instances, our methods could gather candidate delegatees and 

remove inappropriate users from the candidates. With our approach, a workflow system can 

automatically delegate an emergent task instance to an appropriate user to prevent the task 

instance from failure. 

Regarding temporal issues, in VTTRDM, delegation is effective during a single time 

interval, and the delegated tasks are revoked after the interval [44]. Our approach is based on 

the time constraints between the delegated task instances and the related roles. Because a role 

might be activated in multiple time intervals, multiple or periodical time intervals are 

considered in our approach to provide a more realistic temporal constraints.  
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Chapter 4. Detecting Artifact Anomalies in TS workflow 

 

A well-structured workflow may more possibly fail or produce unanticipated run-time 

behavior because of abnormal data manipulation [26][27][28][29][51]. The anomalies might be 

yielded differently when the temporal issues are considered. Thus, it is worthwhile to study how 

to detect artifact anomalies in TS workflow. In this chapter, artifact anomalies in TS workflow 

is first stated and modeled in section 4.1. The methodology detecting artifact anomalies in TS 

workflow is described in section 4.2. A case study is then introduced in section 4.3 to illustrate 

the feasibility of our methodology. Finally, in section 4.4, the related works are discussed and 

compared with our methodology. 

4.1 Artifact Anomalies in TS workflow 

4.1.1 Artifact Operations 

In this dissertation, we assume that an activity process in a TS workflow may operate an 

artifact as one of the following ways: define (Def), use (Use) and kill (Kill ). Defining an artifact 

is to assign a value to the artifact, and when an artifact is first defined, it is initialized. An 

activity process references an artifact through using it, and an artifact can not be used without 

definition. Killing an artifact is to remove the definition of the artifact, and using a killed 

artifact before it is defined again leads to errors during execution. As for the control processes 

in a TS workflow, it is assumed that they all do no operation (Nop) on any artifacts. 

An artifact in a TS workflow is initially stated undefined (UD), and turns to 

defined&no-use (DN) after it is defined. When a DN artifact is used, its state becomes 

defined&referenced (DR). A DR artifact remains DR after being used, and transits to DN after 



 

 44

being defined again. An artifact in any states becomes UD after being killed.  

On the other hand, the artifact operations made by concurrent processes are executed with 

undetermined order and might generate ambiguity to artifacts. When several concurrent 

processes operate on the same artifact, they race against each other for accessing the artifact and 

anomalies might thus be generated. For example, let one process make a definition to an artifact, 

and another one kills the artifact concurrently. The existence of the definition of the artifact 

becomes ambiguous because the execution order between the kill and the definition is not 

determined during design-time. These operations, called Racing Operations, require additional 

consideration during analysis, and are categorized according to the operations involved as 

following: 

(1) Racing Definition(s)&Kill (s), abbreviated as RDK, represents a racing operation 

composed of both definition(s) and kill(s) with none or any usage(s). 

(2) Racing Definitions, abbreviated as RDS, represents a racing operation composed of 

multiple definitions and no kills with none or any usage(s). 

(3) Racing Kills, abbreviated as RKS, represents a racing operation composed of no 

definitions and multiple kills with none or any usage(s). 

(4) Racing Definition&Usage(s), abbreviated as RDU, represents a racing operation 

composed of a single definition, any usage(s) and no kills. 

(5) Racing Usage(s)&Kill, abbreviated as RUK, represents a racing operation composed of no 

definitions, any usage(s), and a single kill. 

(6) Racing Usages, abbreviated as RUS, represents a racing operation composed of multiple 

usages only. 
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As the example mentioned above, an RDK or an RDS introduces state ambiguous (AB) to 

the artifact. Besides, an artifact transits to state UD after an RKS or an RUK, and state DR after 

an RDU. Since the artifact state after a usage varies based on the input state of the artifact, the 

artifact state after an RUS requires additional consideration in merging the input states of the 

usages involved in the RUS. The artifact and its related operations are modeled in Definition 22, 

and Figure 13 illustrates how artifact transits its state with different artifact operations. 

Definition 22 (Artifact Model in TS workflow) 

For an LRTS workflow w, 

The set of all the artifacts operated in w is notated as Aw. 

∀ a∈Aw, a.state∈{UD, DN, DR, AB}. 

The artifact operation made by processes in w is described as a relationship AOP: 

AOP: {p | p∈Pw, p.type == ACT} × Aw⇒ {Nop, Def, Use, Kill} 

{ p | p∈Pw, p.type ≠ ACT} × Aw⇒ {Nop} 

 

Figure 13 The Artifact State Transit Diagram 

4.1.2 Artifact Anomalies 

Artifact anomalies are generated from various structural and temporal relationships 

between artifact operations, and can be classified into four classes: Useless Definition, 

Undefined Usage, Null Kill , and Ambiguous Usage: 
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(1) Useless Definition:  

Killing or defining a DN artifact makes the previous definition useless because the 

definition is destroyed (or redefined) without any usage. If an artifact remains DN at the end 

process, its definition is also useless because it is not used before the end of the workflow. A 

useless definition is a kind of redundancy indicating there might be logic error in the workflow 

schema and should be warned to designers. 

(2) Undefined Usage: 

An activity process might not be correctly executed if the essential artifact is not properly 

defined. Therefore, an undefined usage, i.e. using an UD artifact, is an error leading to faulty 

execution, and is necessary to be handled by the workflow designers. 

(3) Null Kill: 

A null kill represents a process try to remove an inexistent definition; e.g. to kill a UD 

artifact. A null kill is a kind of redundancy, and designers should be noticed about it. 

(4) Ambiguous Usage: 

An ambiguous usage means that an activity process uses an artifact which is ambiguous in 

definitions or in states. Therefore, the direct usage of an AB artifact is an ambiguous usage. The 

usage(s) involved in an RDS, an RDK, or an RDU are also ambiguous usages. Besides, if an 

artifact is stated DR/DN before an RKU, the usage(s) involved in the RKU is also ambiguous. 

Similarly, when an UD artifact meets an RDU, the definition in the RDU may not be made in 

time for the usages, and the usage(s) involved in the RDU is also ambiguous. 
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4.2 The Methodology Detecting Artifact Anomalies in LRTS workflow 

In this section, the methodology detecting artifact anomalies in TS workflow is introduced. 

To simplify our discussion, the structured loops in all the TS workflows under analysis are first 

reduced with the methodology introduced in section 2.4.1, and the anomaly detection is made 

for LRTS workflows.  

Our methodology is divided into three parts. In section 4.2.1, we first describe how to 

traverse an LRTS workflow to collect the structural and temporal relationships between the 

processes and the artifact operations. In section 4.2.2, according to the structural and temporal 

relationships gathered in the first part, the methodology analyzing relationships between the 

artifact operations are described. Finally, on the basis of the analysis made in the second part, 

the methodology detecting artifact anomalies in an LRTS workflow is concluded in section 

4.2.3 

4.2.1 Gathering Structural, Temporal, Artifact Information in LRTS workflow 

In this section, we describe an algorithm to traverse an LRTS workflow to collect the 

ABStacks, EAIs, and the artifact operations made by activity processes in the LRTS workflow. 

The EAIs and ABStacks are calculated with the methods illustrated in Figure 6 and Figure 9 

correspondingly. For each artifact a, an artifact operation list, notated as AOPLa, is established. 

The definition of the list is formally described as following: 

Definition 23 (Artifact Operation List) 

For an LRTS workflow w and ∀ a∈Aw, 

  AOPLa is the list of artifact operations working on a, 

∀ op∈AOPLa, op = (p, a, est, let, type), 

p∈Pw, p.type∈{ACT, END}, 

est = EST(p), and let = LET(p), and 

type = AOP(p, a). 

With the definition, the algorithm gathering structural, temporal, artifact information in 
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LRTS workflow is described as following: 

Algorithm 9 Information Gathering - IG 

Input: an LRTS workflow w 

Pre-Condition: w.s.mark == true, EAI( w.s ) == [0, 0], w.s.abstack == « » 

∀ p∈Pw\{ w.s}, p.mark == false 

IG { 

01: Queue tq; 

02: ∀ (w.s, n)∈Fw, 

03:   tq.enqueue( n ); 

04: loop { 

05:   Process p = tq.dequeue(); 

06:   if( (p.type∈{AJ, XJ}) && ( ∃ (p’, p)∈Fw, p’.mark == false) ) continue; 

07:   p.mark = true; 

08:   calculate EAI(p); 

09:   calculate p.abstack; 

10:   if( p.type == ACT ) 

11:     ∀ a∈Aw, AOP(p, a) ≠ Nop, 

12:       add (p, a, EST(p), LET(p), AOP(p, a)) to AOPLa; 

13:   else if( p.type == END ) { 

14:     ∀ a∈Aw, add (p, a, EST(p), LET(p), AOP(p, a)) to AOPLa; 

15:     break; 

16:   }  

17:   ∀ (p, p’)∈Fw, tq.enqueue(p’); 

18: } 

19: ∀ a∈Aw, Sorting AOPLa by LET 

} 

In Algorithm 9, a traverse queue is introduced to hold the order of traversal of processes in 

an LRTS workflow. Starting from the start process, the processes in a TS workflow is traversed 

along with flows. The EAIs, ABStacks, and artifact operations lists are calculated and collected 

correspondingly. To prevent unnecessary redundancy, a Boolean flag mark is given to each 

process. Besides the start process, the mark of each process in w is initialized as false, and when 

a process is calculated, its mark turned to true. Since a join process may have several in-flows, a 

Boolean expression is checked at line 6 to assure that the join process is calculated only when 
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each of its source process is calculated. Algorithm 9 records the artifact operation made by each 

activity process at line 12 and the “no operation” made by the end process in AOPLa at line 14 

for further analysis of the definitions remaining useless at the end of w. At line 19, artifact 

operation list corresponding to each artifact is sorted by LET. 

4.2.2 Collecting Structural and Temporal Relationships between Artifact Operations in LRTS 

workflow 

Artifact operations are made by activity processes. Based on the structural and temporal 

relationships between the processes, the operations effective on the same artifact can be before, 

after, concurrent, or exclusive to each other. To identify these relationships between artifact 

operations is the foundation of analysis of artifact anomalies. Here, we first define the structural 

and temporal relationships between artifact operations as following: 

Definition 24 (Relationships between Artifact Operations) 

For an LRTS workflow w and ∀ a∈Aw, 

∀ opi, opj∈AOPLa, 

Before(opi, opj) == true if and only if Before(opi.p, opj.p) == true. 

After(opi, opj) == true if and only if After(opi.p, opj.p) == true. 

Concurrent(opi, opj) == true if and only if Concurrent(opi.p, opj.p) == true. 

Exclusive(opi, opj) == true if and only if Exclusive(opi.p, opj.p) == true. 

According to Definition 10, Definition 24, Lemma 1, and Lemma 3, the following lemma 

holds. 

Lemma 7 

For two operation op and op’∈AOPLa,  

(1) If Before(op, op’), op.let < op’.let 

(2) If op.let < op’.let, After(op, op’) == false 

Algorithm 10 is introduced to collect operations concurrent to each operation in an AOPLa. 

To facilitate our discussion, it is assumed that each AOPLa is indexed, and opi ∈ AOPLa 

indicates the ith operation in the list. Because AOPLa is sorted by LETs at the last part of 
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Algorithm 9, for 0 < i < j, LET(opi.p) ≤  LET(opj.p). Besides, for any opi in AOPLa, 

ConcD_opi, is the set collecting the definitions concurrent to opi, and ConcK_opi collects kills 

correspondingly. These sets are defined as following: 

Definition 25 (Records of Relationships between Artifact Operations) 

For an LRTS workflow w and ∀ a∈Aw, 

∀ opi∈AOPLa, 

ConcD_opi = 

{ op | op∈AOPLa, op.type == Def, Concurrent(opi.p, op.p) == true} 

ConcK_opi = 

{ op | op∈AOPLa, op.type == Kill, Concurrent(opi.p, op.p) == true} 

With the records, Algorithm 10 is constructed as following: 

Algorithm 10 Identifying Concurrent Operations - ICO 

Input: an artifact a 

Pre-Condition: a∈Aw, and w is manipulated by Algorithm 9 

ICO { 

01: for( i = 1 to |AOPLa| ) { 

02:   if( opi.p.abstack ≠ « » { 

03:     j = i + 1; 

04:     while( j ≤ |AOPLa| ) { 

05:       if ( Concurrent(opi.p, opj.p) ){ 

06:         if( opi.type == Def ) add opi to ConcD_opj; 

07:         else if( opi.type == Kill ) add opi to ConcK_opj; 

08:         if( opj.type == Def ) add opj to ConcD_opi; 

09:         else if( opj.type == Kill ) add opj to ConcK_opi; 

10:       } 

11:       j++; 

12:     } 

13:   } 

14: } 

} 

Because AOPLa is sorted by LETs in Algorithm 9, Algorithm 10 checks each operation in 

AOPLa in order. For any opi ∈AOPLa, Algorithm 10 first checks if it resides in some parallel or 

decision structure(s) at line 2. If not, opi can not be concurrent or exclusive to any other 
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operations. From line 3 to line 14, the algorithm checks the operations which are succeeding to 

opi in AOPLa in order. If the operation under checking is concurrent to opi, the records for both 

operations are updated. 

For an artifact operation, the operations directly before it generate/carry its input artifact 

state, and might make it an artifact anomaly. For example, when a kill directly before a usage, 

i.e. no other operations between them, the usage is an undefined usage. We define the 

relationship directly before between artifact operations on the basis of Definition 24 as 

following: 

Definition 26 (Directly Before) 

For an LRTS workflow w and ∀ a∈Aw, 

∀ op, op’ ∈AOPLa, op is directly before op’ if and only if op is before op’, and ∃  

no op” ∈AOPLa that op”  is after op and before op’. 

∀ op∈AOPLa, DB4op = { op’ | op’∈AOPLa and op’ is directly before op} 

According to Definition 10, Definition 24, and Lemma 5, for any two artifact operations 

effective on artifact a, op and op’, if op’ is before op, op’.let < op.let. Therefore, the operations 

directly before op can be identified by analyzing the sub-list of AOPLa where the operations in 

the sub-list are all with smaller index in AOPLa than op. The sub-list is defined as following: 

Definition 27 (The List of Operations with Smaller LET than Operation op) 

∀ op∈AOPLa, 

  OPLop = {op’ | op’∈AOPLa , and op’.let < op.let} 

  Similar to AOPLa, OPLop is sorted and indexed with LETs 

The algorithm collecting the operations directly before one another operation is described 

as following. 

Algorithm 11 Collecting Directly Before Operations – CDBO 

Input: an artifact operation op,  

Pre-Condition: AOPLa has been produced by Algorithm 9, op∈AOPLa  

Operation Set CDBO { 

01: DB4op = Ø; 
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02: for( i = |OPLop| to 1 ) { 

03:   if ( ( Concurrent(op, opi) || Exclusive(op, opi) ) == false ) { 

04:     if ( ResultSet == Ø ) add opi to ResultSet; 

05:     else if( ∃ no op’∈  DB4op that Before(opi, op’) == true )  

06:       add opi to ResultSet; 

07:   } 

08: } 

09: return DB4op; 

} 

For the input artifact operation op, Algorithm 11 calculates DB4op from its corresponding 

artifact operation list. Algorithm 11 checks the operations in OPLop with reverse order. 

According to Lemma 1 and Definition 10, the processes in an LRTS workflow are either before, 

after, concurrent or exclusive to each other, and so are the operations. The operations concurrent 

or exclusive to op are excluded at line 3. With Lemma 4, the first operation found passing the 

checking at line 3 is directly before op. According to Definition 26, if op’ and op”  are both 

directly before op, op’ can not be before op”  and vice versa. Therefore, the algorithm continues 

gathering the other directly before operations with the statement at line 6 after the first one is 

found. 

To show Algorithm 11 is correct, the following lemma is depicted and proved. 

Lemma 8 

For any artifact operation op and op’, op’ is directly before op if and only if 

op’∈CDBO(op) 

Proof: 

 We first show the if-part is correct. B.W.O.C, it is assumed that op’∈CDBO(op), but is 

not directly before op. According to the algorithm, the result set of Algorithm 11 is a sub-set 

of OPLop. Therefore, op’∈OPLop, op’.let < op.let, and op’ can not be after op on the basis of 

Lemma 7. Besides, op’ must pass the checking at line 3, op’ is not concurrent or exclusive to 

op. Based on Lemma 4 and Definition 24, op’ is before op. Since op’ is not directly before op, 

according to Definition 26, there must exist another operation op”  which is after op’ and 

before op. Because op’∈CDBO(op), op’ must be collected in the result set at line 4 or line 6 

in Algorithm 11. Since op”  is after op’, op’.let < op” .let. op”  has a larger index than op’ in 

OPLop, and is touched by Algorithm 11 earlier than op’ does. Therefore, either op”  is directly 
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before op or not, op’ can not be collected in the result set at line 4 or line 6. op’∉CDBO(op) 

which is a contradiction, and the if-part of Lemma 8 is shown correct. 

 As for the only-if-part, B.W.O.C, we assume that op’ is directly before op and 

op’∉CDBO(op). The assumption indicates that op’ is before op. According to Lemma 7, 

op’.let < op.let, and thus op’ belongs to OPLop. op’ also passes the checking at line 3 based on 

Lemma 4 and Definition 24. If the result set is empty when Algorithm 11 touches op’, op’ is 

inserted into the result set at line 4 because op’ is before op. Otherwise, op’ is added into the 

result set at line 6 because op’ is directly before op and there exist no other operations after 

op’ in OPLop. Therefore, op’∈CDBO(op) which is a contradiction, and the only-if-part of 

Lemma 8 is shown correct. With the proofs of the both direction, Lemma 8 is proved. □ 

For an artifact operation op, multiple operations directly before it might exist. According 

to Definition 26, the operations are not before or after each other. On the basis of Lemma 1 and 

Definition 10, the operations are mutually concurrent or exclusive, and are possibly organized 

as the following cases: 

(1) All the operations are concurrent to each other. 

(2) All the operations are exclusive to each other. 

(3) The operations can be divided into several distinct groups where the operations in the 

same group are concurrent to each other, and the operations belonging to different 

groups are all mutually exclusive. 

(4) The operations can be organized into several varied groups where the operations in the 

same group are concurrent to each other, and the operations belonging to different 

groups are either identical or mutually exclusive. 

The operations in case (1) compose a racing operation. In case (2), each operation is 

considered separately during analysis because only one of the operations is executed during 

run-time. Case (3) and (4) happen when the operations are made by processes reside in nestedly 

organized decision and parallel structures. Since only one of the branches in a decision structure 

is taken during run-time, the operations reside in different branches of a decision structure are 
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separately analyzed with the operations concurrent to them. Figure 14 illustrates two partial 

LRTS workflow schemas as the examples of case (3) and (4). 

 

Figure 14 Examples for Nestedly Organized Decision and Parallel Structures 

In Figure 14, we assume that the EAIs of the activity processes with footnotes are all 

overlapped, and all the operations made by them are thus directly before op. Figure 14(a) 

illustrates an example of case (3) mentioned above. In Figure 14(a), the operations directly 

before op can be divided into two distinct groups {op1, op2, op3} and {op4, op5, op6}. The 

operations are concurrent to the ones within the same group and are exclusive to the ones 

belonging to different groups. Figure 14(b) illustrates an example of the case (4). op1, op2, and 

op3 are mutually exclusive and should be separately considered when analysis. However, each 

of them is concurrent to op4 and op5. Therefore, the operations are organized with three groups, 

{ op1, op4, op5}, { op2, op4, op5}, and {op3, op4, op5}. The operations in the same group are 

concurrent to each other, and the exclusive operations are distributed among different groups. 

Definition 28 (Set of Operation Sets derived from DB4op) 

∀ op∈AOPLa, 

DB4OPSop = {OPS | OPS⊆ DB4op, ∀ op’, op” ∈OPS, Concurrent(op’, op” ) == 

true, and ∀ op3∈DB4op\OPS, ∃ op4∈OPS that Exclusive(op3, op4) == true } 

Each of the groups, the operation sets, in which all the operations are mutually concurrent 

represents an execution case during run-time. With Definition 26, the set of the operation sets 
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derived from DB4op is defined as above. 

However, to retrieve all such operation sets from DB4op is equivalent to solve the 

well-known NP-hard problem “Maximal Clique Enumeration Problem [52].” Although many 

studies and efficient algorithms like [53] and [54] has been developed for this problem, to 

discuss the solution for maximal clique enumeration problem is beyond the scope of this 

dissertation. To illustrate our methodology, we describe a polynomial algorithm to manufacture 

DB4OPSop satisfying the cases (1), (2), (3) completely and case (4) partially from DB4op. The 

algorithm is described as following. 

Algorithm 12 Collecting Directly Before Operation Sets - CDBOPS 

Input: an operation op,  

Pre-Condition: DB4op has been calculated by Algorithm 11 

Set of Operation Sets CDBOPS { 

01: DB4OPSop = Ø; 

02: duplicate DB4op to BaseSet; 

03: while( BaseSet ≠ Ø) { 

04:   CurrentOPS = Ø; 

05:   choose and remove arbitrary operation op’ from BaseSet; 

06:   duplicate DB4op \{op’} to CountSet; 

07:   add op’ to CurrentOPS; 

08:   while( CountSet ≠ Ø) { 

09:     choose and remove arbitrary op”  from BaseSet; 

10:     if( ∀ op3∈CurrentOPS, Concurrent(op” , op3) == true ) { 

11:       add op”  to CurrentOPS; 

12:       remove op”  from BaseSet; 

13:     } 

14:   } 

15:   add CurrentOPS to ResultSet; 

16: } 

17: return DB4OPSop; 

} 

First, the algorithm duplicates DB4op to BaseSet at line 2. The codes from line 3 to 16 form 

a loop. In the loop, an operation op’ is arbitrarily chosen from BaseSet, and all the operations 
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concurrent to op’ and each other are gathered and put into CurrentOPS. CurrentOPS is added to 

the result set as one of the operation sets found by the algorithm at the end of the loop. The 

operations in CurrentOPS are removed from BaseSet, and the next loop starts if there is still 

operation remaining in BaseSet. Because any operations in DB4op are mutually concurrent or 

exclusive, the operation chosen in the next loop is exclusive to at least one of the operations 

gathered in this loop. Besides, the algorithm starts collecting an operation sets from different 

operations every loop, and thus none of the operation sets collected in Algorithm 12 are 

identical. After each operation in BaseSet is distributed into some operation set, the algorithm 

returns the calculated DB4OPSop at line 17.  

To depict the correctness and the effectiveness of Algorithm 12, we show that the 

following lemmas hold. 

Lemma 9 

The result set returned by Algorithm 12 follows Definition 28. 

Proof: 

 Let OPS be one of the operation set collected in CDBOPS(op). According to the 

pre-condition of Algorithm 12, DB4op has been calculated by Algorithm 11, and according to 

Lemma 1, Definition 10, and Definition 26, the operations in DB4op are either mutually 

concurrent or exclusive. From line 7 and line 11 of Algorithm 12, we know that all the 

operations collected in OPS are mutually concurrent. The operations gathered in OPS are 

removed from BaseSet at line 12. Therefore, for any operation remaining in BaseSet, there 

exists at least one operation exclusive to it in OPS. Because BaseSet is duplicated from DB4 

at line 2, OPS follows Definition 28, and Lemma 9 is thus shown correct. □ 

Before Algorithm 12 is introduced, four possible cases of the set of operation sets derived 

from DB4op are described, and we claim the capability of Algorithm 12 based on the cases. 

Here, we show the claim holds with the following lemma. 

Lemma 10 

Algorithm 12 is able to find the operation sets for case (1), (2), and (3) completely, 

and for case (4) partially. 

 



 

 57

Proof: 

 The cases are separately discussed as following: 

(1) All the operations in DB4op are concurrent to each other. 

In this case, the algorithm collects all the operations in the first loop of the 

algorithm. Only one operation set is included in the result set of Algorithm 12. 

(2) All the operations in DB4op are exclusive to each other. 

In this case, an operation is collected in an individual operation set in each 

loop. Let the size of DB4op be N. As the result, N particular operation sets are 

collected in DB4OPSop, and the union of the sets is identical to DB4op. 

(3) The operations in DB4op can be divided into several distinct groups where the 

operations in the same group are concurrent to each other, and the operations belonging 

to different groups are all mutually exclusive. 

In this case, DB4op can be divided into several distinct operation sets following 

Definition 28. However, the operations included in different sets are all mutually 

exclusive. According to Lemma 9, the operation sets collected by Algorithm 12 

follow Definition 28. On the basis of the algorithm, each operation in DB4op is 

collected into some operation set in DB4OPSop. Therefore, all the operation sets in 

this case can be found by Algorithm 12. 

(4) The operations in DB4op can be organized into several varied groups where the 

operations in the same group are concurrent to each other, and the operations belonging 

to different groups are either identical or mutually exclusive. 

In Algorithm 12, at least one operation is removed from BaseSet in the loop 

starting from line 3, and therefore the algorithm derives at most N operation sets 

from DB4op. For case (4), the number of operation sets identified by Algorithm 12 is 

less than N, but the number of operation sets in this case might exceed N. The 

operation sets in case (4) follow Definition 28, and so is Algorithm 12. Since the 

number of operation sets in case (4) might exceed the maximal capability of 

Algorithm 12. Obviously, Algorithm 12 identifies the operation sets for case (4) 

only partially. □ 

4.2.3 Detecting Blank Branch 

Besides the cases described above, analysis of blank branches, i.e. the branches in a 

decision structure where no process residing in the branch has operations effective on the same 

artifact, is still ignored. Figure 15 illustrates parts of an LRTS workflow that the definitions 

made by v1 and v2 are directly before the usage made by v4. The definitions should be 

considered separately during analysis because they are exclusively executed during run-time. 
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However, if the third branch is taken during execution, the usage made by v4 is undefined 

because the definition of a is killed by v0, and no further definition is made by activity processes 

on the third branch. The third branch is a blank branch which generates a blind spot in our 

methodology.  

 
Figure 15 An Example of a Blank Branch 

For any operation op, to eliminate the effect brought by blank branches when calculating 

its input states, all the operations reside in the decision structure with blank branches should be 

removed from OPLop, and DB4op can then be recalculated for analysis. Algorithm 13 detects 

blank branches from the directly before operations of the input operation. 

Algorithm 13 Detecting Blank Branch - DBB 

Input: an operation op,  

Pre-Condition: DB4op has been calculated by Algorithm 11 

Branch Set DBB { 

01: XSSet = Ø; 

02: AllBranch = Ø; 

03: OpBranch = Ø; 

04: ∀ op’∈DB4op { 

05:   ∀ si∈( op’.p.abstack\op.p.abstack ) where si.p.type == XS { 

06:     if( si.p∉XSSet ) { 

07:       ∀ out-flow of si.p, f, add ( si.p, BM(f) ) to AllBranch; 

08:       add si.p to XSSet; 

09:     } 

10:     add si to OpBranch; 

11:   } 

12: } 

13: BlankBranch = AllBranch\OpBranch  

14: return BlankBranch; 

} 
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The temporary sets used in the algorithm are initialized from line 1 to 3. At line 5, the 

algorithm checks if there exists a decision structure that (1) the structure is converged before op 

and (2) an operation in DB4op resides in the structure. At line 7, Algorithm 13 records the 

structural items representing all the branches of the decision structure in AllBranch. For any 

operation in DB4op, if the operation resides in some decision structure, the algorithm collects 

the branch of the structure where the operation resides in OpBranch at line 10. At line 13, the 

blank branches are derived from the difference between AllBranch and OpBranch as 

BlankBranch. BlankBranch is then returned as the result set for further analysis.  

In Algorithm 13, all the branches of the decision structures with the operations directly 

before op are collected in AllBranch, and the individual branches resided by the operations are 

recorded in OpBranch. If all the branches collected in AllBranch are resided by the operations 

directly before op, no blank branch exists. Otherwise, the differences between AllBranch and 

OpBranch are the branches without operations effective on op.a, i.e. the blank branches.  

4.2.4 Identifying Artifact Anomalies in an LRTS workflow 

In this section, the algorithm integrating all the information gathered above to identify the 

artifact anomalies in an LRTS workflow is introduced. An operation transits the state of 

artifacts as Figure 13 illustrates, and artifact anomalies are produced when operations effective 

on artifacts with inappropriate state. For an artifact operation op, the artifact state produced by 

op, i.e. op’s output state, is recorded in op.OutState, and its input state is calculated from the 

output states of the operation(s) directly before it. Since only one of the mutually exclusive 

input operations is executed during run-time, the input states from these operations are 

discussed separately, and an operation might thus produce multiple output states accordingly. 

States of artifacts are recorded as state items, and are modeled as following. 
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Definition 29 (Records of Artifact States) 

∀ state item stItem, stItem = (st, SRC), 

stItem.st represents the output artifact state of op.a, and 

stItem.SRC indicates the source operations producing the state. 

With the definition above, Algorithm 14 describes the methodology to calculate the input 

state for each operation. 

Algorithm 14 Gathering Input States of an Operation - GIS 

Input: an LRTS workflow w,  

an operation op  

Pre-Condition: DB4OPSop has been calculated by Algorithm 12 

Set of State Items GIS { 

01: InStates = Ø; 

02: if( DB4OPSop == Ø ) 

03:   add ( UD, {w.s}} ) to InStates; 

04: else ∀ OPS∈DB4OPSop { 

05:   if( OPS is an RDS/RDK ) 

06:     add ( AB, {op’ | op’∈OPS, op.type∈{Def, Kill}} ) to InStates; 

07:   else if ( OPS is an RDU ) 

08:     add ( DR, { op’ | op’∈OPS, op.type == Def} ) to InStates; 

09:   else if ( OPS is an RKS/RKU ) 

10:     add ( UD, { op’ | op’∈OPS, op.type == Kill} ) to InStates; 

11:   else if ( OPS is an RUS ) { 

12:     if (∀ op’∈OPS, ∃ si∈op’.OutState that si.st == UD) { 

13:       UDSRC = Ø; 

14:       ∀ op’∈OPS and si∈op’.OutState, 

15:         if( si.st == UD ) UDSRC = UDSRC∪ si.SRC; 

16:       add( UD, UDSRC ) to InStates; 

17:     } 

18:     if( ∃ op’∈OPS and si∈op’.OutState that si.st∈(AB, DR) ) { 

19:       ABSRC = Ø; 

20:       DRSRC = Ø; 

21:       ∀ op’∈OPS and si∈op’.OutState { 

22:         if( si.st == AB ) ABSRC = ABSRC∪ si.SRC; 

23:         else if( si.st == DR ) DRSRC = DRSRC∪ si.SRC; 

24:       } 

25:       if ( ABSRC ≠ Ø) add( AB, ABSRC ) to InStates; 
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26:       if ( DRSRC ≠ Ø) add( DR, DRSRC ) to InStates; 

27:     }  

28:   } else ∀ op’∈OPS, InStates = InStates∪ op’.outStates; 

29: return InStates; 

} 

The algorithm shows how to collect the input state of operation op from DB4OPSop. An 

empty DB4OPSop indicates that no operation is operated before op. In this dissertation, we 

assume that all the artifacts are initialized with state UD, and the state item ( UD, {w.s} ) is 

inserted to the result set in this circumstance. If DB4OPSop is not an empty set, the algorithm 

calculates the input state of op from each operation set in DB4OPSop. An operation set 

containing multiple operations composes a racing operation, and the algorithm gives the input 

state of op generated from an RDS, RDK, RDU, RKS, and RKU from line 5 to 10 based on the 

description in section 4.1.1. For an RUS, if all the usages involved in the RUS propagate state 

UD in their output states, the artifact might be undefined after the RUS, and state UD is 

included in op’s input states accordingly. On the other hand, if there exists a usage involving in 

the RUS propagating state AB for the target artifact, the target artifact might be ambiguous in 

definition before op is operated. Similarly, if the target artifact is defined in one of the usages 

involved in the RUS, DR is recorded as one of the input states of op. The method to calculate 

the artifact states generated from an RUS is described from line 12 to 26 in the algorithm. 

Finally, if the operation set contains only one single operation. The input state of op is simply 

equivalent to the output state of the operation, and is handled at line 28. The input states of op 

are identified for each operation set collected by Algorithm 12. The completeness of the input 

states gathered by Algorithm 14 is restricted by the capability of Algorithm 12. 

According to the type of an operation and its corresponding input state, whether an artifact 

anomaly is generated from the operation can be detected. The artifact anomalies are recorded in 

Artifact Anomaly Table (AAT) modeled as following: 
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Definition 30 (Artifact Anomaly Table) 

Let AATw be the artifact anomaly table for an LRTS workflow w 

∀ aar∈AATw, aar = (op, type, SRC), 

aar.op indicates the abnormal artifact operation, 

aar.type∈{Useless Definition, Null Kill, Undefined Usage, Ambiguous Usage} 

indicates the anomaly type, and 

aar.SRC represents the set of operations leading to the anomaly. 

For each record in AATw, the source operations producing the anomaly are recorded. For 

example, a usage of an artifact is undefined because a kill removes the definition of the artifact 

before it. The kill is recorded in the artifact anomaly record to provide information for fixing of 

the anomaly. The following algorithm illustrates detection of artifact anomalies and calculation 

of the output states for operations with different types. 

Algorithm 15 Identifying Artifact Anomalies for No Operations - IAAN 

Input: an LRTS workflow w,  

an artifact operation op, and  

a set of state items InState 

Pre-Condition: op.type == Nop 

IAAN { 

01: ∀ stItem∈ InState, 

02:   if( stItem.state == DN ) 

03:     add( op’ | op’∈stItem.SRC, Useless Definition, {op} ) to AAT w; 

04: op.OutState = InState; 

} 

For an artifact a, the no operation made by the end process is recorded in AOPLa to detect 

if any useless definition exists at the end of the LRTS workflow. Since only a definition transits 

an artifact to state DN, the algorithm records the operations generating DN state directly before 

the end of the LRTS workflow as useless definitions. 

Algorithm 16 Identifying Artifact Anomalies for Definitions - IAAD 

Input: an LRTS workflow w,  

an artifact operation op, and  

a set of state items InState 

Pre-Condition: op.type == Def 
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IAAD { 

01: ∀ stItem∈ InState, 

02:   if( stItem.state == DN ) 

03:     add(op’ | op’∈stItem.SRC, Useless Definition, {op} ) to AAT w; 

04: op.OutState = { ( DN, {op} ) }; 

} 

Algorithm 16 identifies the artifact anomalies generated from a definition, and calculate its 

output state. For an artifact a, a definition which is not referenced by any usages before being 

defined again is a useless definition. Finally, a definition transits a to state DN, and the output 

state generated by the definition is recorded accordingly. 

Algorithm 17 Identifying Artifact Anomalies for Kills - IAAK 

Input: an LRTS workflow w,  

an artifact operation op, and  

a set of state items InState 

Pre-Condition: op.type == Kill  

IAAK { 

01: ∀ stItem∈ InState, 

02:   if( stItem.state == DN ) 

03:     add( op’ | op’∈stItem.SRC, Useless Definition, {op} ) to AAT w; 

04:   else if( stItem.state == UD ) add( op, Null Kill, stItem.SRC ) to AATw; 

05: opi.OutState = { ( UD, {opi} ) }; 

} 

Algorithm 17 identifies the artifact anomalies generated from a kill, and calculates its 

output state. A definition which is killed before being referenced is also useless, and the 

anomaly is detected at line 2 and 3. Besides, if an artifact remains undefined before a kill, the 

kill is redundant, and a Null Kill is raised accordingly. A kill transits an artifact to state UD, and 

the output state generated from the kill is recorded at line 5.  

Algorithm 18 Identifying Artifact Anomalies for Usages - IAAU 

Input: an LRTS workflow w,  

an artifact operation op, and  

a set of state items InState 

Pre-Condition: op.type = Use 
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IAAU { 

01: ∀ stItem∈ InState { 

02:   if( stItem.state == AB ) 

03:     add( op, Ambiguous Usage, stItem.SRC∪  

04:         ConcD_op∪ ConcK_op ) to AATw; 

05:   else if( stItem.state == UD ) { 

06:     if(ConcD_op ≠ Ø ) 

07:       add (op, Ambiguous Usage, stItem.SRC∪ ConcD_op) to AATw; 

08:     else add(op, Undefined Usage, stItem.SRC) to AATw; 

09:   } 

10:   else if( stItem.state∈{DR, DN} )  

11:     if( ConcD_op∪ ConcK_op ≠ Ø ) 

12:       add(op, Ambiguous Usage, stItem.SRC∪  

13:         ConcD_op∪ ConcK_op) to AATw; 

14:   if( stItem.state == DN ) add (DR, stItem.SRC) to opi.OutState; 

15:   else add stItem to opi.OutState; 

16: } 

} 

Algorithm 18 identifies whether a usage is abnormal, and calculates its output state. The 

input state AB indicates that the artifact is ambiguous in definition when the operation being 

operated, and makes the usage an ambiguous usage. If the input state of the usage is UD, the 

algorithm checks if there is any definition concurrent to the usage from at line 6. If no 

concurrent definition exists, the usage is undefined. Otherwise, the usage is ambiguous because 

it may reference an undefined artifact or the value defined by the concurrent definition(s). If the 

input state of the usage is DN or DR, the concurrent definitions or kills which cause ambiguity 

to the usage are checked at line 11, and an Ambiguous Usage is raised if any ambiguity exists. 

The usage transits a DN artifact to state DR or simply propagates the input states to the 

following operations otherwise. 

The expressions adopted in Algorithm 15 to Algorithm 18 are stated based on the 

description in section 4.1. With all the definitions and algorithms described in this chapter, the 

methodology detecting artifact anomalies in a TS workflow is introduced as following. 
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Algorithm 19 Identifying Artifact Anomalies - IAA 

Input: an LRTS workflow w 

IAA { 

01: IG( w ); 

02: ∀ a∈Aw { 

03:   ICO( a ); 

04:   for( i = 1 to |AOPLa| ) { 

05:     while( true ) { 

06:       CDBO( opi ); 

07:       CDBOPS( opi ); 

08:       InState = GIS( w, opi ); 

09:       if( opi.type == Nop ) IAAN( opi, InState, w ); 

10:       else if ( opi.type == Def ) IAAD( opi, InState, w ); 

11:       else if ( opi.type == Kill ) IAAK( opi, InState, w ); 

12:       else if ( opi.type == Use ) IAAU( opi, InState, w ); 

13:       BlankBranch = DBB( opi ); 

14:       if( BlankBranch == Ø ) break 

15:       else 

16:         ∀ op∈OPLopi, 

17:           if( ∃ si∈BlankBranch, and si’ ∈op.p.abstack, where si.sp == si’.sp ) 

18:             remove op from OPLopi; 

19:     } 

20:   } 

21: } 

} 

At line 1, the algorithm first invokes Algorithm 9 to collect structural and temporal 

information like EAIs, ABStacks, and artifact operation lists for the input LRTS workflow. For 

each artifact a, Algorithm 19 then identifies the concurrency between artifact operations with 

Algorithm 10 at line 3, and starts analysis of the each operation in AOPLa in order from line 4. 

Algorithm 11 is invoked at line 6 to collect the operations directly before opi, and the operation 

sets directly before opi is manufactured by Algorithm 12 from the previous result at line 7. At 

line 8, Algorithm 14 gathers the input state of opi, and invokes corresponding algorithms from 

line 9 to 12 to detect artifact anomalies and calculate the output state of opi. At line 13, 

Algorithm 13 is invoked to detect if there is any blank branch before opi. If not, the anomaly 
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detection work for opi is accomplished. Otherwise, all the operations residing in the decision 

structure with blank branches are removed from OPLopi, and Algorithm 19 repeats analysis of 

artifact anomalies for opi until all the blank branches considered. The completeness of the 

artifact anomalies detected in our methodology is decided by the completeness of the operation 

sets identified by Algorithm 12. Developing an algorithm able to collecting more operation sets 

is helpful in enhancing our methodology, and is left as a future work of this study. 

4.3 Case Study 

In this section, a case study is made to illustrate the feasibility of our methodology. 

 

Figure 16 The Sample TS Workflow for the Case Study in Chapter 4 

Figure 16 shows the sample TS workflow for our case study. The processes, flows, 

working durations, and the artifact operations made on artifact a are illustrated in the sample. 

To analyze the sample TS workflow with our methodology, the structured loops in the TS 

workflow should first be reduced. After loop reduction, the LRTS workflow generated from the 

sample TS workflow are illustrated as Figure 17. Then, Algorithm 9 is invoked to gather the 

temporal and structural information such as the EAI and the ABStack for each process, and the 

artifact operation list for each artifact. 
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Figure 17 The Sample LRTS Workflow Derived from Figure 16 with Decoration of EAIs and ABStacks  

Table 3 illustrates the artifact operation list and the concurrent operations for artifact a 

generated by Algorithm 9 and Algorithm 10. 

Table 3 Artifact Operation List for a, and the Corresponding Concurrent Operations 

opi AOPLa ConcD ConcK 

op1 (v1, a, 0, 2, Use) Ø Ø 

op2 (v2, a, 1, 4, Def) Ø Ø 

op3 (v10, a, 1, 4, Use) {op2} { op7} 

op4 (v10
1, a, 1, 4, Use) {op2} { op7} 

op5 (v3, a, 2, 6, Use) Ø Ø 

op6 (v10
2, a, 2, 6, Use) {op2. op9} { op7} 

op7 (v6, a, 3, 8, Kill) Ø Ø 

op8 (v10
3, a, 3, 8, Use) {op2. op9} { op7} 

op9 (v7, a, 3, 10, Def) Ø Ø 

op10 (v9, a, 9, 14, Use) {op9} Ø 

op11 (v11, a, 10, 16, Use) Ø Ø 

op12 (v12, a, 11, 18, Def) Ø Ø 

op13 (e, a, 12, 18, Nop) Ø Ø 

 

To be brief, we do not show all the details of detecting artifact anomalies in this case study, 
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and focus on two representative examples, op9 and op10. Therefore, we assume that the 

operations before op9 are calculated already, and Table 4 shows the output state of the 

operations with LETs smaller then op9’s. 

Table 4 The Output State of the Operations before op9 is Calculated 

opi OutState 

op1 { (UD, { s}) } 

op2 { (DN, { op2}) } 

op3 { (UD, { s}) } 

op4 { (UD, { s}) } 

op5 { (DR, { op2}) } 

op6 { (UD, { s}) } 

op7 { (UD, { op7}) } 

op8 { (AB, { s, op2, op9}) } 

op1 is an undefined usage because it is operated before any activity process gives 

definition to artifact a. op3, op4, op6, and op7 are ambiguous usages because there exist 

definition concurrent to them. Before op9 is calculated, the artifact anomaly table, AATw, 

records the following anomalies:  

AATw = { ( op1, Undefined Usage, {s} ), ( op3, Ambiguous Usage, {s, op2} ), ( op4, 

Ambiguous Usage, {s, op2} ), ( op6, Ambiguous Usage, {s, op2, op7} ), ( op7, 

Ambiguous Usage, {s, op2, op7} ) } 

For op9, Algorithm 19 retrieve all the operations with smaller LET from AOPLa as OPLop9, 

{ op1, op2, op3, op4, op5, op6, op7, op8}, and invokes Algorithm 11 to calculate DB4op9, {op5, 

op7}. Since all the operations directly before op9 are mutually exclusive, i.e. the case (2) 

described in section 4.2, the DB4OPSop9 is calculated from Algorithm 12 as { {op5}, { op7} }. 

With DB4OPSop9, Algorithm 14 gathers the input states of op9 as the union of the output states 

of op5 and op7 as { (DR, {op2}), (UD, { op7}) }. op9 is a definition, and Algorithm 16 is invoked 

for detection of artifact anomalies and generation of its output state. As a result, no artifact 

anomaly is found and the output state of op9 is generated as { (DN, {op9}) }. However, during 
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the blank branch detection, (xs1, 2) is found a blank branch, and the operation in the same 

decision structure should be removed to eliminate the effect of blank branch. op5 and op7 is 

removed from OPLop9. DB4op9, DB4OPSop9, and the InState of op9 are recalculated as {op2}, 

{{ op2}}, and { (DN, { op2}) }. After invoking Algorithm 16 once again, an artifact anomaly 

(op2, Useless Definition, {op9}) is raised because the definition made by op2 is not used before 

redefinition when the blank branch is taken.  

DB4op10 is generated as {op3, op5, op7, op8}, and DB4OPSop10 is generated as { {op3, op5}, 

{ op7, op8} }. Since this case is relatively simple, we can easily identify that the operation sets 

{ op3, op7} and {op5, op8} is neglected in our methodology. With DB4OPSop10, the input states 

of op10 are generated. According to the definition of racing operations introduced in section 

4.1.1, {op3, op5} is an RUS and {op7, op8} is an RKU, and { (DR, {op2}) } and { (UD, { op7}) } 

are generated as op10’s input states correspondingly. Algorithm 18 is invoked to detect artifact 

anomalies and identify the output state of op10. Two artifact anomalies, (op10, Ambiguous 

Usage, {op7, op9}) and (op10, Ambiguous Usage, {op2, op9}), are generated because op9 makes 

a definition to a concurrently, and generates ambiguity to op10. The output states of op10 is 

{ (DR, { op2}), (UD, { op7}) }. Then the algorithm removes the blank branches for op10, and 

finds no further anomalies. 

Except for the artifact anomalies listed and described above, (op13, Useless Definition, {e}) 

are detected and recorded to AATw when Algorithm 19 completes its work throughout w. The 

useless definition is detected at the end process of the LRTS workflow because the definition 

made by op13 is not used by any other activity process until the end of w. 
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4.4 Discussion 

4.4.1 Related Works in Analysis of Artifact Anomalies 

Sun et al. extend the Activity Diagram in UML for modeling data flow in a business 

process [51]. Three classes of data-flow anomalies, missing data, redundant data, and 

conflicting data, are defined. With the routing information defined in a workflow specification, 

a detecting algorithm for the data-flow anomalies is constructed [51]. However, Sun et al. do 

not build an explicit data model in characterizing the data behaviors, and consider only read and 

initial write in data operations. 

In [26], Sadiq et al. reveal the importance about the validation of workflow data, and 

introduce seven basic data validation problems, Redundant Data, Lost Data, Missing Data, 

Mismatched Data, Inconsistent Data, Misdirected Data, and Insufficient Data in workflow 

models. Redundant Data occur when designers specify an activity to define a data item which is 

not required by any other succeeding activities. Lost Data occur when designers specify two 

activities that may be executed in parallel to define the same data item, and one of the 

definitions is lost when the data item is preempted by the process executed in advance. Missing 

Data occurs when designers specify an activity to consume a data item which is never defined 

by any preceding activities. Mismatched Data arise when the structure of data is incompatible 

between the definition and the usage of the data. Inconsistent data happen when the data 

required by a workflow are externally updated by other applications during the workflow 

execution, and the polluted data might cause errors of the workflow. Misdirected Data occur 

when the direction of the data flow is conflict with the direction of the control flow of the 

workflow. Insufficient Data happen when the data specified by designers is insufficient to 

successfully complete an activity. 

Destruction of artifacts is not considered in both Sun and Sadiq’s studies. In [27] and [28], 
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Hsu et al. consider the effect of destroying an artifact and re-model the inaccurate artifact 

manipulation by separating initialization and update as two different artifact operations. In [28], 

six inaccurate artifact usages, No Producer, No Consumer, Redundant Specification, 

Contradiction, Parallel Hazard, and Branch Hazard are defined. No Producer is a warning 

indicating that a data item is operated before it is specified. No Consumer indicates that an 

artifact is not requested after its definition (initialization). Redundant Specification indicates 

that an artifact is repeatedly specified in a workflow. Contradiction implies the defect that the 

state of an artifact is not matched to the pre-condition or post-condition of the activity accessing 

it. Parallel Hazard occurs due to conflict interleaving of concurrent artifact operations, and is 

recognized if multiple concurrent activities operate on the same artifact. Branch Hazard occurs 

when branches in a decision structure contain operations on artifacts have been selected, or 

when there is inconsistency between the condition testing in the XOR-split process or the 

branches in the decision structure. 

In [29], Wang et al. develop a systematic notation to describe artifact anomalies and 

simplify the description of artifact anomalies from [28] into three categories, Missing 

Production, Redundant Write, and Conflict Write. Missing Production occurs when an artifact 

is consumed before it is produced or after it is destroyed. Redundant Write occurs when an 

artifact is written by an activity but the artifact is neither required by the succeeding activities 

nor a member of the process outputs. Conflict Write occurs when parallel processes race their 

access to the same artifact. According to different structural relationships between activities 

accessing some artifacts, thirteen abnormal usage patterns are described for the three categories 

to follow the previous models made by Sadiq et al. [26], Hsu et al. [29], and Sun et al. [51], 
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4.4.2 Comparison between Our Approach and the Related Works 

Table 5 Comparison between Our Approach and the Related Works 

Our 
Approach 

Sun et al. [51] 
Sadiq et al. 

[26] 
Hsu et. al 

[28] 
Wang et al. [29] 

Absence of 

Initialization 
Missing Data No Production 

Delayed 

Initialization 

No 
Producer Delayed 

Production 
Misdirected Data 

Conditional 

Production Improper 

Routing 
N/A 

Branch 
Hazard Exclusive 

Production 

Undefined 
Usage 

Missing 
Data 

Uncertain 

Availability 
Misdirected Data 

Parallel 
Hazard 

Missing 
Production 

Uncertain 

Production 

Contingent 

Redundancy 

Branch 
Hazard 

Conditional 

Consumption 

after Last Write 
Useless 

Definition 
Redundant 

Data 
Inevitable 

Redundancy 

Redundant Data 
Mismatched Data 

No 
Consumer 

Redundant 
Write 

No Consumption 

after Last Write 

Ambiguous Usage 
Conflict 

Data 
Multiple 

Initialization 
Lost Data Contradiction 

Conflict 
Write 

Multiple 

Parallel 

Production 

N/A N/A N/A 
Insufficient Data 
Mismatched Data 

N/A N/A N/A  

Null Kill N/A N/A N/A N/A 

Temporal 
Consideration 

N/A N/A N/A N/A 

Anomaly Source 
Tracking 

N/A N/A N/A N/A 

Table 5 lists and compares the features between the related works and our approach. 

Artifact anomalies are appealed with different names in previous studies, but can still be 

mapped into the three basic categories made in [51]. By comparing the definition of the artifact 

anomalies defined in our approach and the related works, we conclude that Undefined Usage 

and Useless Definition are directly mapped into Missing Data and Redundant Data described in 

[51]. On the other hand, the Conflict Data defined in [51] are anomalies generated when 

multiple definitions are made in parallel. In our approach, the concurrent definitions are 

considered being executed with undetermined order, and generate ambiguity in artifacts. They 
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are not directly considered as an anomaly because (1) an anomaly actually occurs when a usage 

refers to the ambiguous definitions, and (2) similar anomaly may also occur when there exist 

kills or definitions concurrent to usages. Therefore, Ambiguous Usage is categorized in this 

dissertation, and covers Conflict Data discussed in the previous works. Besides, Sadiq et al. 

additionally define Insufficient Data and Mismatched Data in [26] for conflicts about contents 

or format between definitions and usages. Since the studies made in [28], [29], [51] and this 

dissertation do not discuss the contents of artifacts, Insufficient Data and Mismatched Data 

are ignored in these studies. Finally, although destruction of artifacts is considered in [28] and 

[29], the redundancy generated by unnecessary destruction is not discussed in these works. In 

our studies, Null Kill is categorized and detected by our approach to eliminate such 

redundancies.  

Our approach also considers how temporal factors may affect the detection of artifact 

anomalies. The twisted temporal and structural relationships between activity processes are 

modeled and analyzed, and the artifact anomalies generated along with them are detected. 

Besides, when the previous works only focus on detection of artifact anomalies, our approach 

also helps designers locating the problems hidden in a workflow schema with providing the 

information about the sources leading to artifact anomalies.  
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Chapter 5. Incremental Detection of Resource Conflicts in LRTS 

Workflow 

 

In this chapter, an incremental methodology detecting the resource conflicts 

generated/eliminated during construction of LRTS workflows along with each edit operation 

made by designers is described. With the methodology, designers obtain information after each 

step they made, and may respond to any conflicts immediately. In section 5.1, the resource 

conflicts in LRTS workflow are first defined, and the edit operations and additional elements 

necessary for building an LRTS workflow are modeled in section 5.2. The methods for 

incremental detection of resource conflicts are depicted in section 5.3. Several examples are 

described in section 5.4 to illustrate the feasibility of our methodology, and the related works 

are discussed in section 5.5. 

5.1 Resource Conflicts in LRTS workflow 

Each activity in a workflow needs certain resources to accomplish its business objective. 

In this dissertation, it is assumed that all the resources required by an LRTS workflow w are 

recorded in the set RESw, and designers may assign resource in RESw to activity processes in Pw 

to show that the resource is necessary to the process. The resource model used in this 

dissertation is defined as following. 

Definition 31 (Resources) 

For an LRTS workflow w,  

  ∀ r∈RESw and p∈Pw, p.type == ACT 

    Ref: RESw× Pw ⇒  Boolean 

Ref(r, p) == true indicates that r is accessed by p 
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In [37], two processes are defined having resource conflict if the following conditions 

hold: 

(1) The two processes have resource dependency on a resource, i.e. the two processes 

access the same resource. 

(2) The two processes have potentially concurrent execution, i.e. the two processes 

reside on different branches split from an AND-split process with overlapped EAIs. 

In this dissertation, we assume that all the resource conflicts buried in LRTS workflow w 

would be recorded in the set RCTw. Besides, to tracking the generation or elimination of 

resource conflicts, pairs of processes which satisfy the following conditions are also recorded as 

potential resource conflicts in the set PRCTw: (1) the processes are resource dependency, (2) the 

processes reside in different branches split from an AND-split process and their EAIs are not 

overlapped, i.e. they are parallel but not concurrent. On the basis of Definition 3, Definition 10, 

and [37], the resource conflict in an LRTS workflow is defined as following. 

Definition 32 (Resource Conflict) 

For an LRTS workflow w,  

RCTw = {(r, p, q) | (Ref(r, p) ∧ Ref(r, q)) == true, and Concurrent(p, q) == true } 

PRCTw = {(r, p, q) | (Ref(r, p) ∧ Ref(r, q)) == true, Concurrent(p, q) == false, and 

Parallel(p, q) == true } 

Since Concurrent(p, q) is equivalent to Concurrent(q, p), the resource conflict (r, p, q) is 

equivalent to (r, q, p). To simplify our discussion, we assume that adding/removing (r, p, q) 

into/from RCTw is equivalent to adding/removing (r, q, p) into/from RCTw. In other words, (r, p, 

q)∈RCTw if and only if (r, q, p)∈RCTw. The assumption also holds for PRCTw.  

5.2 Edit Operations for LRTS workflow 

To trace resource conflicts generated in an LRTS workflow during design-time, the edit 

operations designers may adopt to develop the LRTS workflow are first addressed. Since an 
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LRTS workflow is structured [8], the construction of an LRTS workflow follows the constraints 

described in chapter 2. Therefore, the edit operations are restricted as following:  

(1) Only an activity process can be directly inserted/removed into/from an LRTS workflow. 

Control processes must be inserted/removed into/from an LRTS workflow in pairs.  

(2) Designers can only alter the working durations or resource references of activity 

processes.  

(3) The design of an LRTS workflow is started from a basic LRTS workflow, and designers 

edit the LRTS workflow until all the design works are completed. The definition of basic 

LRTS workflow is described in Definition 33. 

Definition 33 (Basic LRTS workflow) 

A basic LRTS workflow w = ( {s, e}, {( s, e)}, s, e ) 

  D(s) = d(s) = D(e) = d(e) = 0 

  EAI(s) = EAI(e) = [0, 0] 

In order to keep the control processes inserted/removed into/from an LRTS workflow in 

pairs, additional records for control blocks are introduced. A control block is composed of a 

split process starting a decision/parallel structure and a join process converging the structure. 

Besides, the record also marks a natural number counter to provide distinct ID for each branch 

in the corresponding decision/parallel structure. The record for a control block is modeled as 

following. 

Definition 34 (Control Blocks) 

For an LRTS workflow w, CBw records all the control blocks in w. 

∀ cb∈CBw, 

    cb = (st, end, br_count) 

    st∈Pw, st.type∈{AS, XS} 

    end∈Pw, end.type == 




==
==

XS. if XJ

AS. if AJ

typest

typest
 

    br_count is a natural number indicating the branch mark for the new branch 

splitting from sp. 
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∀ sp∈Pw, sp.type∈{AS, XS}, ∃ cb∈CBw that sp == cb.st 

∀ jn∈Pw, jn.type∈{AJ, XJ}, ∃ cb∈CBw that jn == cb.end 

∀ cb∈CBw, Reachable(cb.st, cb.end) == true 

∀ cb, cb’∈CBw,  

(1) cb.st≠cb’.st, and cb.end≠cb’.end, and 

(2) Reachable(cb.st, cb’.st) == true if and only if  

(Reachable(cb.end, cb’.st) ⊕ Reachable(cb’.end, cb.end)) == true. 

Starting from a basic LRTS workflow w, the edit operations discussed in this dissertation 

are listed as following: 

(1) Inserting activity process p into an existent flow f 

Pre-Condition: f = (p’, p” )∈Fw, BM(p’, p” ) == bm 

Post-Condition: (p’, p” )∉Fw, (p’, p), (p, p” )∈Fw,  

p.type = ACT, d(p) == D(p) == 0,  

BM( (p’, p) ) == bm, BM( (p, p” ) ) == -1 

   Comments: Designers use this operation to insert an activity process p into an existent 

flow f in w. f is replaced by two new flows, the in-flow of p which is 

connected to the source process of f and the out-flow of p which is connected 

to the sink process of f. The minimum and maximum working durations of p 

are both assumed to be zero. The branch mark of the in-flow of p is given as 

the replaced one, and the branch mark of the out-flow of p is set as Ø because 

p is an activity process.  

(2) Inserting a new decision structure quoted by sp and jn into an existent flow f 

Pre-Condition: f = (p’, p” )∈Fw, BM(p’, p” ) == bm 

Post-Condition: (p’, p” )∉Fw, (p’, sp), (sp, jn), (jn, p” )∈Fw,  

sp.type == XS, jn.type == XJ, (sp, jn, 1)∈CBw 

BM( (p’, sp) ) == bm, BM( (sp, jn) ) == 0, BM( (jn, p” ) ) == -1 

   Comments: Designers use this operation to inset a decision structure quoted by sp, an 

XOR-split process, and jn, an XOR-join process, into an existent flow f in w. f 

is replaced similarly as in operation (1). A control block record is generated 

with this operation. Both sp and jn are recorded, and the corresponding 

courter for the branches in the decision structure is initialized as 1. Besides, 

the branch mark of (sp, jn), the flow of the first branch split from sp, is 

initialized as 0. 
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(3) Inserting a new parallel structure quoted by sp and jn into an existent flow f 

Pre-Condition: f = (p’, p” )∈Fw, BM(p’, p” ) == bm 

Post-Condition: (p’, p” )∉Fw, (p’, sp), (sp, jn), (jn, p” )∈Fw,  

sp.type == AS, jn.type == AJ, (sp, jn, 1)∈CBw 

BM( (p’, sp) ) == bm, BM( (sp, jn) ) == 0, BM( (jn, p” ) ) == -1 

Comments: To insert a new parallel structure into w is similar to insert a new decision 

structure. The only difference between them is that sp is an AND-split process, 

and jn is typed AND-join. 

(4) Inserting a new branch to a decision/parallel structure 

Pre-Condition: (sp, jn, br_count)∈CBw, (sp, jn)∉Fw 

Post-Condition: (sp, jn)∈Fw, BM( (sp, jn) ) == br_count++ 

Comments: To simplify our discussion, a flow between a pair of split and join processes is 

allowed being inserted only when no such flow exists in w. The flow (sp, jn) 

is added to Fw. and its branch mark is set to the current value of the 

corresponding branch counter. The counter is added by 1 after the insertion. 

(5) Adding a resource reference to an activity process 

Pre-Condition: r∈Rw, p∈Pw, p.type == ACT, Ref(r, p) == false 

Post-Condition: Ref(r, p) == true 

Comments: Designers use this operation to indicate that access of the resource r is 

necessary for activity process p. 

(6) Removing a resource reference from an activity process 

Pre-Condition: r∈Rw, p∈Pw, p.type == ACT, Ref(r, p) == true 

Post-Condition: Ref(r, p) == false 

Comments: Designers use this operation to remove the resource reference of resource r 

from activity process p. 

(7) Setting minimal working duration of an activity process 

Pre-Action: var = in_value - d(p) 

Pre-Condition: p∈Pw, 0≤ in_value≤ D(p), var ≠ 0 

Post-Condition: d(p) == in_value 

Comments: Designers use this operation to designate the minimal working duration of an 

activity process in w to the specific input value, in_value. To simplify our 

discussion, in_value must be a non-negative integer is equal or smaller than 
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the maximal working duration of the target activity process. To facilitate our 

detection of resource conflicts, the variation of d(p) is recorded as var before 

the operation is invoked. 

(8) Setting maximal working duration of an activity process 

Pre-Action: var = in_value - D(p) 

Pre-Condition: p∈Pw, d(p) ≤ in_value, var ≠ 0 

Post-Condition: D(p) == in_value 

Comments: Designers use this operation to designate the maximal working duration of an 

activity process in w to the specific input value, in_value. in_value must be a 

non-negative integer which is equal to or larger than the maximal working 

duration of the target activity process. To facilitate our detection of resource 

conflicts, the variation of D(p) is recorded as var before the operation is 

invoked. 

(9) Removing the activity process p from w 

Pre-Condition: (p’, p), (p, p” )∈Fw, p.type == ACT, d(p) == 0, D(p) == 0, 

∀ r∈Rw, Ref(r, p) == false 

Post-Condition: p∉Pw, (p, p” )∈Fw  

Comments: Designers use this operation to remove an activity process from w. To 

simplify our discussion, it is assumed that before the removal of the activity 

process, the resource references of the activity process are first removed, and 

the corresponding minimum and maximal working durations are set to be 0. 

(10) Removing the empty branch from w 

Pre-Condition: (sp, jn, br_count)∈CBw, (sp, jn)∈Fw, and a path <sp, p1, …, pk, jn> exists. 

Post-Condition: (sp, jn)∉Fw 

Comments: Designers use this operation to remove the empty branch in a control block 

from w. In order to keep the integrity of w, the removal which disconnects w 

is forbidden. 

(11) Removing the empty control block quoted by sp and jn from w 

Pre-Condition: (sp, jn, br_count)∈CBw, (p’, sp), (sp, jn), (jn, p” )∈Fw, 

∃  no p∈Pw that (Reachable(sp, p) ∧ Reachable(p, jn)) == true 

Post-Condition: (p’, p” )∈Fw, sp, jn∉Pw, 

                ∀ cb∈CBw, cb.st ≠ sp, cb.end ≠ jn 

Comments: Designers use this operation to remove a control block from w. To simplify 
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our discussion, only the control block containing no processes inside is 

allowed being removed from w. 

5.3 An Incremental Algorithm Detecting Resource Conflicts in TS workflow 

The methods incrementally detecting resource conflicts along with the operations are 

introduced in this section. According to Definition 32, resource conflicts might be 

generated/eliminated after operation (5), (6), (7), and (8), and the methods would be invoked as 

the post actions of the operations. Besides, among the operations above, the ABStack(s) of the 

inserted process(es) should be established after operations (1), (2), and (3), and the EAIs among 

the LRTS workflow under editing are necessary being updated after operation (7) and (8). The 

calculation of ABStacks and EAIs are also described as the post actions of the edit operations. 

In this section, the methodology to calculate EAI changes after modification of working 

durations is first introduced in section 5.3.1. In section 5.3.2 and 5.3.3, the methods detecting 

generation or elimination of resource conflicts after operation (5), (6), (7), and (8) are 

separately discussed. In section 5.3.4, the post actions of each edit operations are described. 

5.3.1 Updating Estimated Active Interval for Processes after Edit Operation 

Changing EAI of a process ripples to its descendent processes. Algorithm 20 works after 

any working duration modification is made. The EAIs of all the affected processes are updated, 

and the set containing the processes are returned for further analysis of resource conflicts.  

Algorithm 20 Calculate EAI - CEAI 

Input: an LRTS workflow w, 

an activity process ip 

Pre-Condition: ip∈Pw, ip.type == ACT 

Pre-Condition: ∀ p∈Pw, p.mark == false; 

Process set CEAI { 

01: CP = Ø; 

02: Queue tq; 

03: tq.enqueue(ip); 

04: ∀ (ip, p)∈Fw, tq.enqueue(p); 
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05: while(tq is not empty) { 

06:   p = tq.dequeue; 

07:   if(p.type∈{AJ, XJ}) && ( ∃ (p’, p)∈Fw, p’.mark == false) ) continue; 

08:   p.mark = true; 

09:   oest = EST(p); 

10:   olet = LET(p); 

11:   if(p.type == AJ) { 

12:     EST(p) = MAX( { EST(p’) + d(p’) | (p’, p)∈Fw} ); 

13:     LET(p) = MAX( { LET(p’) | (p’, p)∈Fw } );  

14:   } 

15:   else if(p.type == OJ) { 

16:     EST(p) = min( {EST(p’) + d(p’) | (p’, p)∈Fw } ); 

17:     LET(p) = MAX( { LET(p’) | (p’, p)∈Fw } ) ; 

18:   else { 

19:     EST(p) = EST(p’) + d(p’) | (p’, p)∈Fw;  

20:     LET(q) = LET(p’) + D(p) | (p’, p)∈Fw; 

21:   } 

22:   if( oest≠ EST(p) || olet≠ LET(p) ) { 

23:     add p to CP; 

24:     ∀ (p, p’)∈Fw, if(p’∉tq) tq.enqueue(p’); 

25:   } 

26: return CP; 

} 

Algorithm 20 is assumed being invoked after designers make a modification to the 

minimal/maximal working duration of an activity process ip. Similar to Algorithm 9, a traverse 

queue is adopted to traverse all the processes reachable from ip, and the algorithms checks the 

process in the queue one by one. Let the process currently being checked be p. At line 9 and 10, 

the original value of EAI(p) is recorded, and the algorithm updates EAI(p) according to its type 

from line 11 to 21. From line 22 to 25, the algorithm compares the current EAI(p) to the original 

one. If EAI(p) is changed after the operation, the algorithm inserts p into CP, puts the process(es) 

succeeding to p into the traverse queue, and continues the calculation. The algorithm halts when 

EAI stops changing at some join process or when the end process is met. CP, a set collecting all 

the processes with altered EAIs, is returned as the result set for further analysis of resource 
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conflicts. We show the correctness of the algorithm by proving the following lemma. 

Lemma 11 

After a duration modification has been made on an activity process ip in an LRTS 

workflow w, the following statements hold: 

(1) ∀ p∈Pw, EAI(p) changes if and only if p∈CEAI(ip, w) 

(2) ∀ p∈Pw, only when EAI(p) should be altered, p∈CEAI(ip, w) 

Proof: 

For the first statement, any EAI change in w is accomplished by the codes from line 11 to 

line 21 in Algorithm 20 only. Therefore, when any EAI change occurs, the process with 

altered EAI is found at line 22 and is put into the result set CP at line 23. The process with no 

EAI change is not put into CP in this algorithm. 

For the second statement, on the basis of Definition 9 and the methods illustrated in 

Figure 9, EAI(p) is changed only when (1) D(ip) is modified and p == ip, (2) d(ip) is modified 

and (ip, p)∈Fw, or (3) (p’, p)∈Fw, and EAI(p’) is changed. When d(ip) or D(ip) is modified, ip 

and its succeeding process(es) are enqueued into tq at line 3 and line 4. Therefore, the EAI 

changes originated from condition (1) or (2) are calculated by the codes from line 11 to line 

21, and thus p is put into CP at line 24. For condition (3), if EAI(p’) is changed, p is enqueued 

into tq at line 24 because (p’, p)∈Fw. EAI(p) would be calculated by the codes from line 11 to 

line 21, and p is put into CP at line 23 if EAI(p) is altered. The processes with EAI changes 

from the three above conditions are all included in CP.  

With the proof above, Lemma 11 is shown correct. □ 

5.3.2 Identifying Generation or Elimination of Resource Conflicts after Adding/Removing a 

Resource Reference to/from an Activity Process 

From section 5.2, the edit operation (5) and (6) change the resource references of an 

activity processes. The resource dependencies among processes might be generated or 

eliminated with the operations, and therefore, resource conflicts (or the potential ones) are 

generated or eliminated accordingly. 

Operation (5) adds the reference of a resource r to an activity process p. A resource 

conflicts is generated if there exists another activity process which also references r and is 

concurrent to p. Similarly, if there exists another activity process which references r and is 

parallel but not concurrent to p, a potential resource conflict is produced. As following, 
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Algorithm 21 detects the generation of (potential) resource conflicts after a new resource 

reference is added to an activity process, and alerts designers for each new generated resource 

conflict. 

Algorithm 21 Detecting Resource Conflict for New Resource Reference - DRCNRR 

Input: a resource r, an activity process p, an LRTS workflow w 

Pre-Condition: r∈RESw, p∈Pw, and Ref(r, p) == true 

DRCNRR { 

01: ∀ p’∈Pw\{ p} { 

02:   if( Ref(r, p’) == true && Parallel(p, p’) == true ) { 

03:     if( EAI(p) TI≈ EAI(p’) ) { 

04:       add (r, p, p’) to RCTw; 

05:       alert( Resource conflict (r, p, p’) is generated ); 

06:     } 

07:     else add (r, p, p’) to PRCTw 

08:   } 

09: } 

} 

On the other hand, when a resource reference is removed from an activity process, all the 

resource conflicts (or the potential ones) related to the activity process and the resource are 

eliminated. Algorithm 22 updates RCTw and PRCTw after removing a resource reference from 

an activity process, and raises alerts for any elimination of resource conflicts. 

Algorithm 22 Updating Resource Conflict for Removal of Resource Reference 

- URCRRR 

Input: a resource r, an activity process p, an LRTS workflow w 

Pre-Condition: r∈RESw, p∈Pw, and Ref(r, p) == false 

URCRRR { 

01: ∀ (r, p, p’)∈RCTw, { 

02:   remove (r, p, p’) from RCTw; 

03:   alert( Resource conflict (r, p, p’) is eliminated ); 

04: } 

05: ∀ (r, p, p’)∈PRCTw, remove (r, p, p’) from PRCTw; 

} 
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5.3.3 Identifying Generation or Elimination of Resource Conflicts after Alteration of EAIs 

Two concurrent processes might not be concurrent any more if their EAIs are no longer 

overlapped after an edit operation. According to section 5.2, concurrencies between processes 

might be generated or eliminated after operation (7) or (8) is invoked. In this section, first we 

show that the operations changing EAIs in an LRTS workflow bring the same effect to all the 

affected processes with the following lemma. 

 Lemma 12 

For an LRTS workflow w, and ∀ p, q∈ Pw, if EAI(p) changes after a design 

operation, EAI(q) is either altered the same way or remains unchanged after the 

operation. 

Proof: 

 Algorithm 20 collects all the processes whose EAI is changed after an edit operation. 

Therefore, if we can show that the EAIs of the processes collected by Algorithm 20 are all 

altered the same way, Lemma 12 is shown correct. On the basis of the discussion made for 

Algorithm 20, it is known that for any process p∈Pw, EAI(p) is changed because of the 

following situations: 

(1) D(p) is altered. 

(2) (p’, p)∈Fw, and d(p’) is altered. 

(3) (p’, p)∈Fw, and EAI(p’) is altered. 

According to the methods illustrated in Figure 9, for process p, only LET(p) is altered in 

situation (1), and only EST(p) is altered for situation (2). Since a designer is allowed to 

modify only the minimum or maximum working duration of a single activity process, only 

one of the EST(p) and LET(p) can be changed in situation (3). 

For situation (1), let LET’(p) be the original value of LET(p), and D(p) is changed from 

v to v’, and LET(p) = LET’(p) + (v’ - v). Let (p, p” )∈Fw. LET(p” ) = LET(p) + D(p) = LET’(p) 

+ (v’ - v) + D(p” ) = LET’(p” ) + (v’- v), and therefore LET(p” ) is changed the same way as 

LET(p) did. According to the calculation in Algorithm 20, all the affected processes invokes 

the same formula for the changes of LETs, and therefore are altered the same way LET(p) did. 

Lemma 12 holds for situation (1). 

For situation (2), let EST’(p) be the original value of EST(p), and d(p) is changed from v 

to v’, and EST(p) = EST’(p) + (v’ - v). Let (p, p” )∈Fw. EST(p” ) = EST(p) + d(p) = EST’(p) + 

(v’ - v) + d(p) = EST’(p” ) + (v’ - v). EST(p” ) is changed the same way as EST(p) did. 

According to the calculation in Algorithm 20, all the affected processes invoke the same 

formula for the changes of EST’s, and therefore are altered the same way as EST(p) did. 
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Lemma 12 holds for situation (2). 

For situation (3), since the designer may not modify EAIs directly, there must exist some 

process n that D(n) or d(n) is changed by designers. The proofs made above can be adopted 

for n, and show that Lemma 12 holds for situation (3). 

Since Lemma 12 holds in all the situations leading to change of EAI(p), Lemma 12 is 

shown correct. □ 

For any process q whose EAI is changed after this operation, if EST’(q) < EST(q) or 

LET’(q) > LET(q), EAI(q) expands after the operation; otherwise, EAI(q) shrinks. With 

Lemma 12, it is known that the EAIs change the same way after operation (7) or (8) is invoked. 

In other words, for any q, EAI(q) is either expanded or shrunk. According to the definition of 

operation (7) and (8) stated in section 5.2, let p be the process whose working duration is 

modified, v represents the original value of d(p) or D(p), v’ represents the new value assigned, 

and var = (v’ – v) represents the variation of the modified working duration, and from the proof 

of Lemma 12, the variation of EST(q) or LET(q) is also var. If d(p) decreases (i.e. var < 0 in 

operation (7)), EAI(q) is expanded for |var| time units; otherwise, EAI(q) is shrunk. On the 

contrary, if D(p) increases (i.e. var > 0 in operation (8)), EAI(q) is expanded for |var| time units; 

otherwise, EAI(q) is shrunk.  

In the following lemma, we show that for any processes in an LRTS workflow, shrink of 

its EAI creates no resource conflicts, and expansion of its EAI eliminates no ones. 

Lemma 13 

For an LRTS workflow w, and ∀ p∈Pw, the shrink of EAI(p) does not generate any 

new resource conflict, and the expansion of EAI(p) eliminates no resource conflicts. 
Proof: 

The lemma is shown correct through following discussions:  

(1) The shrink of EAI(p) can not generate new resource conflicts. 

B.W.O.C, it is assumed that (r, p, q) is a new resource conflict generated from 

shrink of EAI(p). Let EAI’(p) be the original value of EAI(p). EAI(p) TI≈ EAI(q) and 

~(EAI’(p) TI≈ EAI’( q)) both hold. Since EAI(p) is shrunk, one of the statement EST(p) > 

EST’(p) or LET(p) < LET’(p) holds. First, we discuss the case that EST(p) > EST’(p). 

According to Lemma 12, LET(p) == LET’(p), LET(q) == LET’(q), and EST(q) ≥  
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EST’(q). Since ~(EAI’(p) TI≈ EAI’( q)), MIN({LET’( p), LET’(q)}) – MAX({EST’( p), 

EST’(p’)}) ≤  0. Concluding the descriptions above, MIN({LET(p), LET(q)}) – 

MAX({EST( p), EST(p’)}) ≤  0, and therefore ~(EAI(p) TI≈ EAI(q)) which is a 

contradiction. The case that LET(p) < LET’(p) can be proved the similar way, and 

therefore the first statement of Lemma 13 is shown correct.  

(2) The expansion of EAI(n) can not eliminate any resource conflict. 

B.W.O.C, it is assumed that (r, p, q) is a resource conflict eliminated from 

expansion of EAI(p). Therefore, ~(EAI(p) TI≈ EAI(q)) and EAI’(p) TI≈ EAI’( q) both hold. 

Since EAI(p) is shrunk, one of the statement EST(p) < EST’(p) or LET(p) > LET’(p) 

holds. First, we discuss the case that EST(p) < EST’(p). According to Lemma 12, 

LET(p) == LET’(p), LET(q) == LET’(q), and EST(q) ≤  EST’(q). Since 

EAI’( p) TI≈ EAI’( q), MIN({LET’( p), LET’(q)}) – MAX({EST’( p), EST’(p’)}) > 0. 

Concluding the descriptions above, MIN({LET(p), LET(q)}) – MAX({EST( p), 

EST(p’)}) > 0, and therefore EAI(p) TI≈ EAI(q) which is a contradiction. The case that 

LET(p) > LET’(p) can be proved the similar way, and therefore the second statement of 

Lemma 13 is shown correct. 

By (1) and (2), Lemma 13 is shown correct. □ 

Since the operations causing EAI expansion does not affect the structure of the LRTS 

workflow or the resource references among the processes, the resource conflicts generated 

from the operation must be a potential resource conflict before the operation is made. After 

operation (7) or (8) is invoked, if the EAI of the target process is expanded, Algorithm 23 

checks each potential resource conflict in PRCTw. If there exists any potential resource conflict 

that the processes involved in it become concurrent, Algorithm 23 transfers the resource 

conflict from PRCTw to RCTw and raises an alert to designers about the generation of the 

resource conflict.  

On the other hand, if the EAI of the target process shrinks after invocation of operation (7) 

or (8). Algorithm 24 checks RCTw to assure that whether there exists any existent resource 

conflicts that the processes involved in it are no longer concurrent, i.e. the EAIs of the processes 

are no longer overlapped. If so, Algorithm 24 transfers the resource conflict from RCTw to 

PRCTw and raises an alert to designers about the elimination of the resource conflict. The details 

of Algorithm 23 and Algorithm 24 are described as following. 
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Algorithm 23 Detecting Resource Conflict after EAI Expansion - DRCEE 

Input: A set of processes PSet 

Pre-Condition: PSet⊆ Pw, ∀ p∈PSet, p.type == ACT 

DRCEE { 

01: ∀ p∈PSet { 

02:   ∀ (r, p, q)∈PRCTw { 

03:     if( EAI(p) TI≈ EAI(q) )  

04:       remove (r, p, q) from PRCTw; 

05:       add (r, p, q) into RCTw; 

06:      alert( Resource conflict (r, p, p’) is generated ); 

07:     } 

08:   } 

09: } 

} 

 

Algorithm 24 Updating Resource Conflict after EAI Shrink - URCES 

Input: A set of processes PSet 

Pre-Condition: PSet⊆ Pw, ∀ p∈PSet, p.type == ACT 

URCES { 

01: ∀ p∈PSet { 

02:   ∀ (r, p, q)∈RCTw { 

03:     if( !(EAI(p) TI≈ EAI(q)) )  

04:       remove (r, p, q) from RCTw; 

05:       add (r, p, q) into PRCTw; 

06:       alert( Resource conflict (r, p, p’) is eliminated ); 

07:     } 

08:   } 

09: } 

}  

5.3.4 Combining the Algorithms with Edit Operations 

With all the methods constructed above, the post actions of edit operations are described as 

following: 

(1) Inserting activity process p into an existent flow  
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Post-Action: p.abstack = 


 ∈

otherwise ,.

XS} {AS,. if ), ,.Push(

abstackp'

typep'bmabstackp'
 

              EST(p) = EST(p’) + d(p’), LET(q) = LET(p’) + D(p) 

  Comments: The ABStack and EAI corresponding to p are calculated based on the methods 

described in section 2.4.2 and 2.4.3. 

(2) Inserting a new decision structure quoted by sp and jn into an existent flow 

Post-Action: sp.abstack = 


 ∈

otherwise .

XS} {AS,. if ) ,.Push(

abstackp'

typep'bmabstackp'
 

           jn.abstack = sp.abstack 

              EST(sp) = EST(p’) + d(p’), LET(sp) = LET(p’) + D(p) 

              EST(jn) = EST(sp), LET(jn) = LET(sp) 

Comments: The ABStacks and EAIs corresponding to sp and jn are calculated based on the 

methods described in section 2.4.2 and 2.4.3. 

(3) Inserting a new parallel structure quoted by sp and jn into an existent flow 

Post-Action: sp.abstack = 


 ∈

otherwise .

XS} {AS,. if ) ,.Push(

abstackp'

typep'bmabstackp'
 

             jn.abstack = sp.abstack 

             EST(sp) = EST(p’) + d(p’), LET(sp) = LET(p’) + D(p) 

             EST(jn) = EST(sp), LET(jn) = LET(sp)  

Comments: The ABStacks and EAIs corresponding to sp and jn are calculated based on the 

methods described in section 2.4.2 and 2.4.3. 

(5) Adding a resource reference to an activity process 

Post-Action: invoking DRCNRR(r, p) 

Comments: Algorithm 21 is invoked to detect the resource conflicts generated because of 

the operation. 

(6) Removing a resource reference from an activity process 

Post-Action: invoking URCRRR(r, p) 

Comments: Algorithm 22 is invoked to remove the resource conflicts eliminated because of 

the operation. 

(7) Setting minimal working duration of an activity process 
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Post-Action: invoking 


 <

otherwise )) ,(URCES(CEAI

0 if )) ,(DRCEE(CEAI

pw

varpw
 

Comments: After the EAIs affected by this operation are updated, Algorithm 23 is invoked 

if the modified d(p) is smaller than the original one, and Algorithm 24 is 

invoked otherwise. 

(8) Setting maximal working duration of an activity process 

Post-Action: invoking 


 >

otherwise )) ,(URCES(CEAI

0 if )) ,(DRCEE(CEAI

pw

varpw
 

Comments: After the EAIs affected by this operation are updated, Algorithm 24 is invoked 

if the modified D(p) is smaller than the original one, and Algorithm 23 is 

invoked otherwise. 

5.4 Case Study 

To demonstrate our methodology, three cases are studied in this section. First, we show 

how to detect the resource conflict generated by a resource assignment, second, the effect 

brought by changing the working duration of an activity process is presented, and at last, we 

show the influences about removal of an activity process. We assume that designers has edited 

the sample LRTS workflow w from a basic LRTS workflow as illustrated in Figure 18, and our 

case study starts accordingly. 

 

Figure 18 The Sample LRTS Workflow for the Case Study in Chapter 5 
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5.4.1 Case 1: Adding a Resource Reference 

With the sample LRTS workflow in Figure 18, designers add resource reference r1 to 

activity process v4. Ref(r1, v4) becomes true after the operation. With the discussions made in 

section 5.3, Algorithm 21, DRCNRR(r1, v4), is invoked. 

 

Figure 19 The Sample LRTS Workflow after Adding a New Resource Reference 

Algorithm 21 checks the structural and temporal relationships between v4 and the other 

processes referring to r1, i.e. v2 and v6. According to the EAIs and the ABStacks of the processes, 

the concurrency between v2 and v4 is identified, and a new resource conflict (r1, v2, v4) is 

generated. (r1, v2, v4) is put into RCTw, and a corresponding alert is raised for designers. After 

the operation, the LRTS workflow is updated as Figure 19, and the altered parts are marked 

with different colors.  

5.4.2 Case 2: Modification of the Working Duration of an Activity Process 

After adding a resource reference to v4, designers modify the minimal working duration of 

v4 from 7 to 4. Algorithm 20 is then invoked and updates the EAIs of the processes aj2, v6, aj1, v7, 

and e. Since d(v4) is decreased from 7 to 4, the EAIs are expanded. Algorithm 23 is invoked. 

Since EAI(v6) is expanded from [10, 25] to [7, 25] and is overlapped to EAI(v2), the potential 

resource conflict (r1, v2, v6) becomes an actual one after this operation. (r1, v2, v6) is transferred 
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from PRCTw to RCTw, and a corresponding alert is raised to give a warning to designers about 

the generation of the resource conflict. After the operation, the TS workflow is updated as 

Figure 20, and the altered parts are marked with different colors.  

 

Figure 20 The Sample LRTS Workflow after Modification of a Working Duration 

5.4.3 Case 3: Removing an Activity Process 

After modifying the minimal working duration of v4, designers decide to delete the activity 

process v6. Before v6 is actually removed, its resource references should be first removed, and 

its working durations are set to zero. Therefore, Ref(r1, v6) is set to be false, and all the resource 

conflict related to r1 and v6 are eliminated. The EAIs of the processes succeeding to v6 are 

updated after d(v6) and D(v6) are set to zero. Since none of the affected process makes any 

references to resources, no resource conflict are generated or eliminated here. Finally, v6 is 

removed from w, the flows (aj2, v7) and (v7, aj1) are removed, and (aj2, aj1) is added into Fw 

instead. After the operation, the sample LRTS workflow is updated as Figure 21, and the altered 

parts are marked with different colors.  
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Figure 21 The Sample LRTS Workflow after Deleting an Activity Process 

5.5 Related Works 

Resource allocation is a popular topic in analysis of workflow models. In [55], Tang et al. 

extend a Petri-net based workflow model for composition of web-services and resources. In [32] 

and [33], Reveliotis et al. integrate resource allocation systems into a workflow model to 

analyze deadlocks and synchronization problems. Sun et al. extend the approach developed in 

[9] with additional resource constraints for analysis of performance among workflows [56]. 

Russel et al. conclude various representation and utilization of resources in workflows as 43 

resource allocation patterns, and discuss coordination among workflow, human resources and 

external resources in detail [50].  

In [57], Xiao et al. define the execution duration of a workflow and develop an approach to 

analyze the resource feasibility in the workflow during its execution. The approach tracks the 

resource occupation made by individual activities in a workflow, and keeps resources feasible 

when parallel access of resources happens. Wang et al. present a modeling and analysis 

approach for workflows with resources and non-determined time constraints on petri-nets [58]. 

The resources and the activities in workflows are modeled with different kinds of places in 

petri-nets. By analyzing the reachability graph of the R/NT_WF_Net, the implementation cases 
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which satisfy various timing constraints (from the best to the worst) are discussed and 

categorized. 

In [34], Li et al. model resources and temporal constraints in workflow specification for 

analysis, and develop a methodology to detect generation and elimination of resource conflicts 

in timed workflow specifications. Because Li et al. establish a complete model for analysis of 

resource constraints in timed workflows, several studies like [35] and [36] follow Li’s approach 

for further analysis of resource constraints among timed workflow. Zhong et al. apply Li’s 

timing model to establish a Petri-net based workflow model for verification of resource 

constraints among concurrent workflows [35]. In [36], Hsu et al. focus on providing 

information to the workflow designers about resource conflicts in a workflow specification 

during design-time with an incremental algorithm. The works in [36] is revised in [37], and is 

further discussed in this dissertation to adopt the methods raised in [30] on TS workflow model 

for analysis.  

Based on the former studies on static timing management of workflow specifications, Li 

continued his own research by analyzing the resource and temporal constraints between distinct 

workflow instances dynamically [59]. In [59], the concept of reference points is introduced to 

show the relative timing constraints between the activities in different workflow instances. 

According to a pre-specified reference point in each workflow, if any resource conflict exists, 

the EAIs of the processes involved in the conflict are adjusted. On the other hand, Wang et al. 

presents a modeling and analysis approach for workflows with resources and non-determined 

timing constraints on petri-nets [58]. On the other hand, Delias et al. propose an algorithm to 

minimize the resource conflicts subject to temporal constraints and simultaneously optimizes 

throughput or utilization of resources among workflow instances [60]. Rather than totally 

avoiding resource conflicts, Delias’ approach optimizes the utilization of resources by 

maximizing overlapping between tasks which will eventually use different resources of the 
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same type [60]. The resource and temporal factors are formulated in a matrix to achieve an 

efficient optimal solution for run-time resource scheduling [60].  
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Chapter 6. Conclusion and Future Works 

 

In this dissertation, the structural and temporal issues in workflow analysis are considered 

and modeled with TS workflow. Based on TS workflow model, three distinct analysis 

approaches for various perspectives are developed accordingly. For the organization 

perspective, the issues for delegation in WfMS coordinated with TRBAC are discussed. The 

constraints on delegation like delegation loops, separation of duty, and various enterprise 

policies etc. are detected and followed dynamically. With our methodology, users are able to 

request delegations for their works manually, and WfMS can delegate an emergent task to an 

appropriate delegatee automatically. For the data perspective, on the basis of define-use-kill 

operations, the artifact anomalies generated from the twisted temporal and structural 

relationships between processes in TS workflow are stated. The racing behavior from the 

concurrent activities are categorized and discussed, and a methodology detecting artifact 

anomalies in a TS workflow through static analysis is established. For the resource perspective, 

an incremental methodology verifying resource conflicts in a TS workflow along with every 

edit operation made by designers is described. The relationships between edit operations and 

generation/elimination of resource conflicts are discussed with both structural and temporal 

consideration. With the methodology, designers realize the effect of each edit operation they 

made, and acquire information to help correcting resource conflicts in their design. 

In the future, several issues can be further studied on the basis of the methodologies in this 

dissertation. First, for the delegation framework, the feasibility and security issues in sharing a 

task instance among users can be studied to adopt grant operation in delegation of task instances. 

Users’ capability and pleasure should also be considered in automatic delegation by applying 
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the techniques based on knowledge management. Second, for the detection of artifact 

anomalies, a solution to group the operation sets with completeness and better efficiency should 

be studied. An incremental algorithm to detect artifact anomalies generated or eliminated by 

edit operations made by designers can be constructed. Besides, the actions made on artifacts 

and processes need being studied with consideration of the dependencies caused by the actions 

among activity processes in more details. Third, for the verification of resource conflicts, our 

methodology can be extended to detect conflicts generated across various workflows. Besides, 

multiple instances of a resource type should be considered, and the delays caused by flows may 

also be included in temporal analysis.  
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