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ABSTRACT

In modern enterprises, Workflow Management SystahfMS) coordinates data,
resources, and organizations to enact workflows/éoious business objectives. Analysis of
workflows facilitates locating problems in busingg®cesses and prevents repeated errors
during workflow enactment. Structured workflow mbde a useful tool for analysis of
structural integrity because most well-behaved Wows can be reduced to structured
workflows. Besides, temporal factors are also dsaeior workflow analysis, especially for
validation, verification and performance analysis vaorkflows. In this dissertation, we
integrate temporal factors into structured workflowedel as Temporal Structured Workflow
(TS workflow) model, and develop three distinct my@zhes for analysis of TS workflows in
various perspectives. For the organization pergspeca framework for delegating works
among users in a WfMS coordinated with Task-RolgebaAccess Control (TRBAC) model
is established. With the framework, delegations banenacted manually or automatically
under restrictions like separation of duty (SODJ amanagement of enterprise policies. For
the data perspective, a methodology detecting aattianomalies in TS workflows is
developed. By analyzing workflow schemas with owgtimdology, the unexpected run-time
behavior generated from abnormal data manipulatan be prevented. Finally, for the
resource perspective, an incremental approachmstiected to analyze resource consistencies
and temporal constraints during construction of captreduced TS workflow (LRTS
workflow). With our approach, designers may realize effect of each edit operation they
made on the workflow schema under design, and cothe potential resource conflicts
buried in business processes immediately.

Keywords: Workflow, Workflow Management System (W&Y) Temporal Structured
Workflow, Delegation, Task-Role based Access Cdn{idRBAC), Artifact
Anomalies, Resource Conflicts, and Incremental Meéthogy
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Chapter 1. Introduction

Enterprises define their business objectives ininess processes, and workflows
automate the business processes by completinguds&l realize parts of business goals in a
particular order [1]. As a dominant factor in wdd¥f management, developing appropriate
analysis techniques for workflows is necessary [i2ni et al. state that workflow analysis
facilitates locating problems in business process®&$ preventing repetition errors during
workflow enactment. [3]. Vergidis et al. claim thaborkflow analysis adopts a range of
different tactics such as simulation, diagnosislidation, verification, and performance
analysis to clarify the characteristics, potenttanflicts, possible bottlenecks and any

promising process alternatives [4].

To assure the correctness of workflow executiorglymes on structural integrity of
workflows are widely studied. Adam’s methodologyets inconsistent dependencies among
tasks to assure the safety of a workflow [5]. vanAhlst et al. develop effective Petri-net based
techniques to verify deadlocks, livelocks (infini@ops), and dead tasks from workflow
schemas [2][6][7]. In [8], Kiepuszewski et al. defistructured workflow model and claim that
a structured workflow is well-behaved, i.e. freenfrdeadlock and multiple active instances of
the same activity. Kiepuszewski et al. also clamat talthough structured workflow model is
less expressive, most arbitrary well-behaved workél can be transformed into a structured
workflow, and structured workflow model is a goaablt for various kinds of workflow

analysis.

Besides, combining timing constraints into analysisvorkflow models is also familiar.

Li et al. indicate that analysis of temporal fast@s essential for validation of the interval



dependencies with temporal constraints in a wovkBghema [9]. Adam et al. consider timing
constraints as the external conditions for strattoorrectness of a Petri-net based workflow
model [5]. Chen et al. develop an approach for dynaerification of fixed-time constraints in
grid workflow system [10]. From a graph based wiakf model, Eder et al. develop a timed
graph model to illustrate the working duration aftiaties among workflows with the
corresponding earliest and latest finish time, aattulate the deadlines among internal
activities to meet the overall temporal constraiots the basis of the model [11][12].
Marjanovic et al. build the timing model based amatfion and instantiation space, and model
the absolute and relative deadline constraintsdigramic verification [13]. Zhuge et al.
consider durations of activities for temporal chegkin both design-time and run-time and

model the temporal factors in workflows as timedkflow model for further analysis. [14]

For the organization perspective, modern WfMS ratgpd activities of employees through
varieties of access control methods. Among the atsthrole-based access control (RBAC)
model [15][16] grouping users with similar perm@ss into roles is a popular solution among
enterprises. However, business processes are epdrased on not only roles but also tasks.
With both as core concepts, Oh et al. proposeralgkbased access control (TRBAC) model to
provide more modeling power for access control ifiVW¥ [17]. Delegation which allows
subjects like access rights or work items beindh@gzed between users or roles during
run-time is an interesting problem for workflow nagement [18] and is often studied on the
basis of the corresponding access control modekXample, RBDMO [19], RBDM1 [20], and
the methods in [21], [22], and [23] describe vasialelegation models based on RBAC
[15][16]. On the basis of RBAC, Crampton et al.a#édse an approach to manage delegation in
WIFMS, and raise several new issues about delegafitasks for work-list-based WfMS [18].
Delegation for TRBAC is also studied in [24] and&]2Jian et al. construct a framework and

define the components for delegation in TRBAC [2)d Hsu et al. enhance the work by



considering temporal issues in [25].

A well-structured workflow may still fail or prodecunanticipated run-time behavior
because of abnormal data manipulation, the artdacimalies. Detect artifact anomalies in
workflows checks possible data misuse buried in kilew specifications. Various
methodologies have been developed for detectiorartfact anomalies generated from
structural relationships between activities in arkflow [26][27][28][29][30]. Sadiqg et al.
present seven basic data validation problems, dahindata, lost data, missing data,
mismatched data, inconsistent data, misdirected, datd insufficient data in structured
workflow model [26][31]. Hsu et al. define prelinairy improper artifact usages anomalies, and
introduce the analysis of such anomalies in degigase of a structured workflow [27][28]. In
[29], Wang et al. introduce a behavior model tocdbege the data behavior in a workflow and
refine the work accomplished in [28] by improvirig éfficiency. In [30], Hsu et al. raise the
iIssues about analyzing artifact anomalies in work8l adopting message passing data models,
and describe a formal description for such anormahevertheless, how temporal factors may
affect the analysis of artifact anomalies is stldom addressed. The methodology detecting
artifact anomalies generated from twisted tempauadl structural relationships between

activities in workflows should be further discussedthe basis of the previous studies.

As for the resource perspective, Reveliotis etcahstruct a Petri-based model with
consideration of resource allocation, and usesnibdel for structural and deadlock analysis of
workflow applications [32][33]. Based on Zhuge's lwd14], Li et al. estimate the active
intervals of activities, and develops an algoritttndetect and remove resource conflicts with
respect to both temporal and structural issues [Bddng et al. adopt Li's methodology [34]
onto a petri-net based workflow model, and develpglgorithm to detect resource conflicts
when a new workflow being put into WfMS during rtime [35]. Based on [36], Hsu et al.

develop an incremental methodology for analysisr@&gource constraints in structured



workflows with temporal consideration during destgne [37]. The generation or elimination
of resource conflicts are tracked and alerted aleitiy each edit operation made by designers
of workflows [37]. However, the technique for stiw@l analysis adopted in [37] is inefficient

and can be revised with the methods proposed in [30

In this dissertation, structured workflow modelad8] is extended as temporal structured
workflow (TS workfloy model with the temporal issues considered in [@4dl [37]. The
techniques for structural and temporal analysig 8rworkflows are first introduced, and the
methodology to analyze TS workflows in organizatidata, and resource perspectives are then
discussed. For the organization perspective, thlksxaccomplished in [25] are refined to adopt
TS workflow model for temporal constraints. A dedtgn framework for the WfMS
coordinated with TRBAC model is established, asérées of algorithms for delegation of task
instances and exploration of delegatees are dexeldfvith the framework, a user is able to
delegate his work to another user through an agpm@wocess, and WfMS can automatically
delegate an emergent work item to an approprialegdiee. The constraints such as
elimination of delegation loops and separation ofydSOD) are validated for delegation
requested by either users or WfMS during run-tikeefor the data perspective, a formal model
describing artifact anomalies in TS workflow isasished on the basis of define-use-kill
operations. The issues about the artifact anomalieduced from twisted structural and
temporal relationships between activities in a T@kflow are discussed and modeled. The
methodology for static analysis of artifact anomslburied in a TS workflow is developed.
Finally, for the resource perspective, the incret@memethodology accomplished in [37] is
refined to integrate TS workflow model and the gg@ltechniques proposed in [30]. The edit
operations for constructing loop-reduced TS workBdLRTS workflows) are first stated, and
the methodology tracking down the generation aimdieation of resource conflicts along with

each edit operation made by designers is described.



The rest part of this dissertation is organizedolswing. In chapter 2, TS workflow
model is sketched. The basic elements and thercatish rules for TS workflow are described
and the methods for analysis of temporal and strattproperties in TS workflows are
introduced. In chapter 3, a delegation framewonktfee WfMS coordinated with TRBAC
model is introduced. In chapter 4, artifact operadiand the corresponding artifact anomalies
are first introduced, and the methodology detecdirifjact anomalies in TS workflows is then
described accordingly. In chapter 5, an incrememizthodology tracking down the resource
conflicts generated or eliminated in the stepsoostruction of an LRTS workflow is presented.
The related works for each of the above topicsdiseussed separately at the end of the

chapters, and the conclusion and future worksiefgtudy are made in chapter 6.



Chapter 2. Temporal Sructured Workflow Model

2.1 Basic Elements

A workflow is composed of atart processanend processsomeactivity processeand
somecontrol processeslhe start$T) process represents the entry point of a workflovd the
end END) process indicates the termination point. An aigtilACT) process stands for a piece

of work to be performed and describes one logiead within a workflow [1].

A control process is a routing construct used tarod the divergence and convergence of
sequence flows. The control processes can be fatassis AND-split (AS, AND-join (AJ),
XOR-split(Xg, andXOR-join (XJ). An AND-split process within a workflow splitssangle
sequence of control into two or more sequencefidw aimultaneous execution of activities;
on the contrary, an AND-join process merges mudtiparallel executing sequences into a
single common sequence of control [13]. An XORigmlocess within a workflow is the point
where a single sequence of control decides a bitantetike from multiple alternative branches,

and an XOR-join process converges multiple altéradiranches in a workflow [13].

Processes are connected by dirediimas, the flow(s) leading to a process are called the
in-flow(s) of the process, and the flow(s) departing fropracess are called tloeit-flow(s) of
the process. The process starting a flow isthace processf the flow, and the process ending
a flow is thesink proces®f the flow. In a workflow, only AND-split and XORplit processes
have multiple out-flows, and only AND-join and XQ8&in processes have multiple in-flows.

Figure 1 illustrates the notation of the basic eleta described above.



Start AND-Split XOR-Split
Process Process Process

O C :: Activity
Process

End AND-Join XOR Join
Process Process  Process

Flow

Figure 1 The Graphic Notations of the Basic Wonkflelements

With all the descriptions above, a workflow is miadieas following:

Definition 1 (Workflow Model)
A workflow w, w = (Ry, Ry, S, €). and
P. represents the set of the processesg, iand
0 pOPy, ptyped{ACT, AS, AJ, XS, XJ, ST, END}
Fw O Pyx Py represents the set of flowswn
OfoRw, = (p, g) is the in-flow of procesg and the out-flow of process and
p is the source processfofandq is the sink process 6f
sOP, represents the start processwé.type= ST, C no in-flow tos.
el PW represents the end procesew()e.type: END, C no out-flow frome.

A sequence of flow(s) formspath and is formally modeled as following:

Definition 2 (Path)
A path is notated as a series of processes qugtagahir of angle brackets.
For a workfloww, a path, 91, pz, ..., p>, fromp; to px exists if and only ifg;, p2),

(P2, P3), --- (Px-1, P O Fw.

2.2 Structured Workflow

A structured workflow is a workflow that is syntaally restricted in a number of ways.
Control processes are organized in pair, an XOR-ppbcess is paired with an XOR-join
process, and an AND-split process is paired withAAID-join process. A control block is
composed of a pair of control processes and theepses placed in between the pair of control
processes. According to the type of the controtgsses, the control blocks can be classified as
parallel structures, decision structures, and &irad loops as Figure 2 illustrates. Each process

in a structured workflow has at least one path ftbenstart process to it, and at least one path



from it to the end process. Such restriction keepuctured workflow well-behaved [4], i.e. a
structured workflow is free from deadlocks and mpldt active instances. Most arbitrary
well-behaved workflows can be transformed to becstired without loss of their contexts [4].
Figure 2 shows the building blocks of a structunemtkflow according to the basic elements

and constraints described above.

(c)Parallel Structure

(e) Structured Loop

Figure 2 Building Blocks of a Structured Workflow

All the processes between the start and the encegsoin a structured workflow are
organized with the building blocks shown in Fig@reFor Figure 2(c) and Figure 2(d), the
blocks X, X», ..., and X represent the branches split and converged imadiglestructure or a
decision structure. Besides, in Figure 2(e), thecstired loop acts like a do-while loop when
block Y is null, and acts like a while loop wherdk X is null. Figure 3 illustrates the control

graph of a sample structured workflow.
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Figure 3 A Sample Structured Workflow

Two processes ameachablefrom one to the other if there exists a path betwiem,
parallel if they reside on different branches of a parataicture, anéxclusiveo each other if
they reside on different branches of a decisianctiire. Take Figure 3 for example. The path
<vi, X§1, Vo, V3> indicates that, is reachable tws. vz andv, are parallel because they reside on
different branches split froms. v, andvg are exclusive because they reside on different
branches of the decision structure quoteaddpwndxj;. In this dissertation, the above structural

relationships between processes are notated asving Boolean functions:

Definition 3 (Structural Relationships in a Struet Workflow)
For a structured workflow,
Reachable: * P, = {true, false}
Reachabled, g) holds if and only if there exists a path frero g.
Parallel: R x P,= {true, false}
Parallelp, q) holds if and only ifp and g reside in different branches of|a
parallel structure.
Exclusive: R x Py= {true, false}
Exclusivep, g) holds if and only ifp andq reside in different branches of| a
decision structure.

2.3 Temporal Structured Workflow

In [14], Zhuge models timed workflow by describitg maximal and minimum working
durations for each activity. In this dissertatiartjmed and structured workflow is named as a

Temporal Structured Workflog'S workflowy and is formally modeled as following:



Definition 4 (TS workflow)

A workflow w is temporal structured with following properties:

(1) wis structured, and

(2) OplPy, d(p) and DE) represents the minimum and maximum working dongt
of proces9.

To facilitate discussion, we assume thapifs an activity process, 0 < D(p);

otherwise, d§) = D(p) = 0. Figure 4 illustrates a sample TS workflow.

O v )=® ’M(

0,0) (0,0

(d(n),D(n))

(2,3)
Figure 4 A Sample TS workflow

2.4 Analysis of Structural and Temporal Relatiopstbetween Processes in TS workflow

2.4.1 Loop Reduction

The structural and temporal relationships betwaecgsses are the bases of any further
analysis of a TS workflow. In [9], [11], and [1Ysu et al. give several methodology to reveal
the structural and temporal relationships betwemgsses in acyclic structured and timed
workflows. In [28] and [29], Hsu and Wang et akioh that in a structured workflow, all the
possible state variations of the artifact operatedops with more than two iterations are the
same as those with exact two iterations. Therefbes, reduce a structured loop into a decision
structure with three branches representing foteration, a single iteration, and two iterations
for the analysis of artifact anomalies with begéficiency. In this dissertation, we adopt an
approach similar to [7] and [8] to reduce the dtiued loops in a TS workflow as decision
structures to retrieve structural and temporalrimfation in a TS workflow as in [9], [11], and

[12].
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In a TS workflow, the number of iterations of apoaffects the active timing of processes
succeeding to the loop. The loop reduction intredua [7] and [8] may bring inaccuracy to the
analysis of temporal factors, and is therefore feasible for TS workflow. In [38], Leong
considers the worst case scenarios for loops irokflew and develops a methodology to
detect whether the workflow possibly exceeds i@dilee during run-time. Here, we combine
Leong's concept and the methodology in [7] andd&lescribe a refined loop reduction method

for the analysis of TS workflow.

First, it is assumed that the maximal number oftiens for a structured loop in a TS
workflow is finite. In other words, the infinitedps are not discussed in this study. Based on the
assumption, a structured loop is transformed inie@sion structure with three branches: no

iteration, a single iteration, and maximal iterai@s Figure 5 illustrates.

Figure 5 Refined Loop Reduction for TS Workflow Mgd

The refined loop reduction bring following advargadl) All the possible state variations
of artifacts between iterations are still comphetedptured, (2) the active intervals of the
processes succeeding to the structured loop dahesticcurately estimated because the worst
case scenario is considered, and (3) the methogdtwgacyclic structured workflow can be
adopted in TS workflow because the structured loapes reduced. In this dissertation,

loop-reduced TS workflowd RTS workflowpsare widely adopted in our methodology.
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2.4.2 Analysis of Structural Relationships betwBeocesses in LRTS workflow

The structural relationships between activity peses are the groundwork for analysis of

TS workflow, and are described and proved in thiedong lemma.

Lemma 1

For an LRTS workfloww, p and qOP,, andp.type == q.type == ACT, one anc
exactly one of the following statements, Reachable), Reachable|, p),
Parallelf, g), and Exclusived, g), holds.

Proof:

An LRTS workflow is still structured, and the lemn@an be proved through the
discussion of the construction rules of a structuveorkflow. Because a single activity
process is a basic building block of a structuredkflow, p andq can always be distributed
into two different building blocks combined in agsence, a parallel structure, or a decision
structure illustrated in Figure 2.

Let b, and by be the building blocks containing and q separatelylf b, and by is
combined in a sequence blogkandq are reachable from former to the later. Simcés
loop-reduced, i.ew is loop free, if Reachablg(qg) holds, Reachablg(p) is false, and vice
versa. Besides, according to the construction yilese exist no paths between the building
blocks split from an XOR/AND-split process. ThenefoParalleld, q) and Exclusiveg, q)
can not hold in this case.

Otherwise, ifb, and byis combined in a decision block, andby represents different
branches split from the XOR-split process startimg decision structure. In other worgs,
andq resides in different branches of a decision stnectand therefore, Exclusivg(@) holds.
Sincew is loop-reduced, there exist no paths betwpeand g, both Reachablp( g) and
Reachabley, p) are false. On the other hand, according to tmstcoction rules, sincl, and
by reside on different branches of a decision strectimrey can not reside in different branches
of a parallel structure. Therefore, Parapelf) does not hold. With similar reason, we can
also show that when Paraligl(q) holds, none of Reachabte(q), Reachablef, p), and
Exclusivep, g) holds, and hence, Lemma 1 is shown correct Witihe statements above.

In [9], Hsu et al. use a data structure, ABStaokreticord the structural information of
processes, and achieve an efficient analysis dittiaetural relationships between processes in
an acyclic structured workflow. In this dissertatidhe similar approach is adopted. All the
flows in an LRTS workflow are tagged with a brandlark. The branch mark is a natural

number ID for each out-flow split from an XOR/ANPI& process, and is -1 for any other flow
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in the LRTS workflow. The branch mark in this didagon is formally defined as following.

Definition 5 (Branch Mark)
For an LRTS workfloww,
BMy: Fy= INTEGER

anaturalnumberf p.typed(XS,AS)
—1lotherwise

O(p, p)OFw, BM,,((p. p)) ={

Forp, g, ' OPw, p.typel{XS, AS}, and @, 9), (o, ") OFw,
BMw((p, 9)) # BMw((p, "))

Aprocess in an LRTS workflow might reside in nesdecision/parallel structures, and the
structures are recorded in the ABStack correspanidirthe process. Each of the structures is
presented assructural itemcomposed of the split process starting the stracnd the branch
mark mapped to one of the out-flows of the spldgass. In the dissertation, an ABStack is
notated as a series of structural items quoted fgiraof double angle brackets, “«” and “»”.
The items representing the inner structures arerded higher in the ABStack, where the
leftmost item is the top of the stack and the ngbst item is the bottom. The definition of an

ABStack is formally described as following.

Definition 6 (ABStack)
O pLIPy, p.abstackrepresents the ABStack corresponding to
A structural itemstitem= (sp, bm), is included inp.abstackif and only if
(1) spPy, sptype l{AS, XS}, and Ca path sp ...,p, ...,jn>inw wherejn is the
corresponding join process s
(2) bm=BM( (sp, p’) ) wherep’ ==p or Reachable(, p) == true.
p.abstack== « » if and only ifp resides in no decision/parallel structure.
p.abstack== «(sp, bm), (Sp, bm), ..., (Sp, bm)» exists if and only if a pat
<SPy +-or Sy ooy SPLy cees Py weey N1, <oy JN2, .., JNS EXISTS.
To calculate ABStacks of the processes in an LRT@kflow, push and pop
functions associated with ABStack are defined #sviang:
Let an ABStackabs== «(sp;, bmy), (Sp, brmy), ..., (Sp., bmy)»
Pushg@bs (sp bm) ) returns a new ABStackbs’, where
abs’ == «(sp bm), (sp, bmy), (Sp, bmy), ..., (Sp., bm)»
Pop(abs) returns a new ABStackbs’, where
abs’ == «(sp, bm), ..., (Sp, bmJ)»

=
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Figure 6 illustrates how push and pop functionskifor the calculation of the ABStacks

corresponding to the processes in an LRTS workflow.

(1) For the start process

Q s.abstack = «»

(2) For the processes succeeding to a split process
(AND-split or XOR-split)

: pk.abstack =
@ _ bk Push( spy.abstack, (spx, by) )

: @ pr-abstack = Pop(jn;.abstack)

(3) For the other processes

[p H q ] q.abstack = p.abstack

Figure 6 Calculation of ABStacks for ProcesseqihBTS Workflow

Figure 7 illustrates a sample LRTS workflow decedatvith ABStacks. Take procegs
for example. The itemsag;, 2), and Xs, 1) in the ABStack o¥, shows that, resides on #2
branch split from the AND-split proceas, and #1 branch split from the XOR-split process
The order ofds, 2) and xs;, 1) indicates that the parallel structure staftech as, is nestedly

contained by the decision structure started frem
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«as;, 1), «asy, 1),
(xsg, 1» (xs7, I)» EAL [EST(p), LET(p)]
ABStack:«(sp;, bmy), ...»

«(xsy, )»

«(xsy, 1)» «(xsy, 1)» «(xsz, 1)»

“ «((axssl;,zl)),» Y [4, 8] [4, 10]
[2 6] « 0 «©» «»
i ’ xj,
«(xs1, 2)» «(xsy, 2)» «(xs1, 2)» [4,10] 4, 12] [5,12]
e D e B e B
[1,4] [2,6] 3, 8]

Figure 7 A Sample TS workflow with ABStacks and EAI

Besides, the structural itemas{, 1) and &s, 2) in the ABStacks ofv, and vs
correspondingly indicate that, and vs reside on different branches split from AND-split
processas. In other wordsy, andvs are parallel. The parallelism or exclusivenessvbenh
processes can be identified through comparing B8tacks of the corresponding processes,
and Lemma 2 shows how ABStacks work for identifaxabf structural relationships between

processes in an LRTS workflow.

Lemma 2

For an LRTS workfloww, andp, qLI1P,

(1) Parallelp, g) holds if and only if
C(sp bmOp.abstackand ép, bm’)0g.abstackwherespllP,, sptype== AS and
bm+# bm’,

(2) Exclusivep, q) holds if and only if
C(sp bmOp.abstackand 6p bm‘)0q.abstackwherespllP,, sptype== XS and
bm+# bm’

Proof:

Consider the if-part of statement (1), accordindpadinition 6, if C(sp, bm)Op.abstack
and ép, bm’)0q.abstackwherespllP,, sptype== AS andom+ bm’, there exists a process
thatbm == (sp m), andm is either equivalent tp or Reachabl&{, p) holds. Similarly, there
exists another processfor g. bm# bm’ indicates thatn # n, andp andq reside on different
branches split from the AND-split procesp Thus Paralleff, g) holds and the if part is
shown correct.

As for the only-if-part, if Paralleff, ) == true,p andq reside on different branches of a
parallel structure. Letp be the AND-split process starting the parallaiciure, angn be the
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AND-join process terminating it. The nodes in tlahpfromspto p are totally different from
those in the path fromp to . Besidessp andjn, two distinct paths, sp, ..., p, ..., jn> and
<sp ...,q, ..., Jn>, exist. Therefore, there exists a procesthat 6p, m)OF, and eithem is
equivalent tgp or Reachabl&, p) == true. Similarly, there also exists such a pssn for q.
m andn can not be the same process because they resiifeyant branches split frorsp,
and thus, BMgp, m) # BM(sp, n). According to Definition 6,gp, BM(sp m)) is included in
p.abstack and ép, BM(sp n)) is included ing.abstack The only-if part of statement (1) of
the lemma is proved.

Part (2) can be proved similarly and the proofristted here. With the paragraphs above,
Lemma 2 is shown correct.

2.4.3 Analysis of Twisted Temporal and Structuralg®onships between Processes in LRTS

workflow

In a TS workflow, the temporal and structural nelaships between processes are twisted.

This section firstly shows how to identify the teongl property between processes.

S(T1) E(T1) S(T2) E(T2)

1. T1 before T2 E(T1) <S(T2) hﬂﬂ hTzﬁ
2. TI meets T2 E(T1) = S(T2) 1+

3. T1 overlaps T2 S(T1) < S(T2) |—T1_|
S(T2) < E(T1) PU#
E(T1) < E(T2)

4.T1 starts T2 S(T1) = S(T2) l_Tl_I
E(T1) <E(T2) ?TM

5. T1 during T2 S(T1) > S(T2) I Tl I
E(T1) <E(T2) bTZﬁ

6. T1 finishes T2 S(T1) > S(T2) l—Tl
E(T1) = E(T2) bm

7.T1 equals T2 S(T1) = S(T2) Tl
E(T1) = E(T2) .

Figure 8 The Temporal Relationships between Tintertals [39]
A time interval is duration of a segment of time.[B9], Allen defines seven reasoning

relationships between time intervals. Figure 8Ssillates the temporal relationships adopted in

this dissertation on the basis of Allen’s definitioand Definition 7 describes the formal



definition of time intervals and the temporal redaships between time intervals adopted in

this dissertation.

Definition 7 (Time Intervals)

Atime intervalti = [S(i), E(ti)] indicates a duration from the time po8iti) to
E(ti), Eti)=S(i).

A time pointtp can be represented as a time interi@ltp], andctimeis the time
point indicating the current time.

For any two time interval; andti,,
ti; is beforeti,, notated asi; <+, tip, if and only if E€i1) < Stiy).
tiy is after tp, notated as ti--, ti,, if and only if tb is before .
ti; overlapgi,, notated afi; = ti,, if and only if

MIN({E(ti1), Eti2)}) — MAX({S(ti1), Sti2)}) >0

ti, containsti,, notated afi, Oy, tiy if and only if S€iz) <S(i1) and Efiz) = E(ti,).

In Definition 7, two utility functions MAX and MINare invoked. Function MAX returns
the element with the maximum value among the pa@nset, and function MIN returns the

minimal one.

In [23] and [40], Joshi et al use not only indivadidime intervals but also the periodic
temporal expressions to describe the temporal @nt in roles for temporal RBAC model.
For example, the expressiothé night time duty is activated 6pm to 11pm eVeeginesday
and Friday indicates that the permissions for night timeydate activated during certain
repeated time durations. The periodic temporalesgions can be viewed as a combination of

multiple time intervals, and are grouped dsree descriptioras following definition.

Definition 8 (Time Descriptions)

A time descriptiortd is a set of time intervals. For any two time intds ti, andtiy
in td, tiy andtiy are exclusive. On the other hand, for any two eompty time
descriptiontd, and td,, td, containstd, notated astd, U, td, if and only if
OtipUtdy, Ctialtda such thatia Oy, tip.
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(a) For activity/ AND-split/XOR-split/end process n
S EST(n) = EST(m) + d
Sy ESTO) = ESTOn) +dm)
S R— - LET(n) = LET(m) + D(n)

EST(xj) = MIN({EST(m;) + d(my) | i = 1.. k})
LET(xj) = MAX( {LET(m))} ) + D(xj)

Figure 9 Calculation of EAls in-an LRTS Workflow4[§37]

In [34] and [37], the minimum and maximum workingrdtions are used to estimate the

active duration of a process corresponding to tae ®f workflow. TheEstimated Active

Interval (EAI) of a process is a time interval indicatingen the process can be initialized and

when it should be terminated. In this dissertattbe, Estimated Active Interval of a process

notated as EA}) is defined as following:

Definition 9 (Estimated Active Interval)

For a TS workfloww and a procegsL!P,,
EAI(p) = [EST(), LET(p)], and corresponding to whewnstarts:
EST() indicates the earliest time thatan be initialized.
LET(p) indicates the latest time thatmust terminate.

With the assumption that the EST and LET of the gtecess of a TS workflow are zero,

the methodology described in [34] and [37] is addpb calculate the EAIs of processes in an

LRTS workflow as Figure 9 illustrates.

With Lemma 1 and Lemma 2, whether two processes®nnLRTS workflow are

exclusive, parallel, or reachable from one to thkeo is identified with corresponding

ABStacks. The path direction of two reachable psses can be further derived according to
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the corresponding EAIs, and the following lemmasvshhow EAIs can be adopted in

analysis of LRTS workflow.

Lemma 3
For an LRTS workfloww, p andqLIP,, g.type== ACT,
if Reachablgg, ), LET(p) < LET(q)

Proof:

Reachablgq, q) represents that the path,m, m,, ..., m,, g> exists. Now we prove the
lemma with mathematical induction. Foe= 0, (o, 9)OF,, sinceqg.type= ACT, D@ > 0 and
LET(g) = LET(p) + D(q). LET(p) < LET(q) holds.

Hypothesis: The lemma holds whers k.

For n = k, LET(g) = LET(m¢ + D(Q) and LET() < LET(). According to the
construction rule of TS workflown.type# S, E, andn.typed{AS, XS, AJ, XJ, ACT}. The
following conditions should be discussed:

For any ki<k, if there exists am wherem.type = ACT, according to the hypothesis,
LET(p) < LET(m) and LET(n) < LET(q). Therefore, LETg) < LET(q). Otherwise, for any
1<i<k, m.typed{AS, XS, AJ, XJ}, according to the EAI calculationethods, for anyui m)
OFw, LET(@U)<LET(m). Since there exists a path frgmto m, LET(p)<LET(m). On the
other hand, according to the hypothesis, UBY( LET(q). Therefore, LETg) < LET(q).
With statements above, we know the lemma holds fok, and on the basis of mathematical
induction, Lemma 3 is proved.

Lemma 4
For an LRTS workfloww, p andqUlP,, p.type==g.type== ACT,
if Parrallel, q) == Exclusivep, q) == false, and LETY) < LET(q),
Reachablet, ) == true.

Lemma 4 can be shown correct with Lemma 1 and trestouction rule of LRTS
workflow. Lemma 4 describes that if two activityopesses in an LRTS workflow are not
mutually parallel or exclusive, the process wittgéa LET is reachable from the process with
smaller LET. From Lemma 1, we know that in an LR¥&kflow, two processes are either
parallel, exclusive, or reachable from one to ttieeo Therefore, Lemma 4 can be re-stated as
Lemma 5 that if two activity processes in an LRT&kflow are reachable from one to the

other, the activity processes with larger LET @ateable from the one with smaller LET.
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Lemma5
For an LRTS workfloww, p, gOP,, p.type==q.type== ACT,
If (Reachablgg, g) 0 Reachableq, p)) == true, and LET{) < LET(q),
Reachablet, ) == true.

On the other hand, two processes are concurrandibnly if they are structurally parallel
and overlapped in EAIs. On the basis of Lemmagpaess is before another one if one of the
following statements holds, (1) the latter is stuwally reachable from the former, and (2) they
are structurally parallel and the EAI of the fornebefore the EAI of the latter. The definition
of the structural and temporal relationships in BRWworkflow is formally described as

following.

Definition 10 (Structural and Temporal Relationghip LRTS workflow)
For an LRTS workfloww,
Concurrent: Rx Py= {true, false}
Concurrentf, q) == true if and only if
( Parallelp, ) L EAI(p) =, EAI(Q) ) == true.
Before: R, x Py= {true, false}
Beforef, ) == true if and only if
( Reachablqqg, g) L ( Parallelp, g) L EAI(p) <y EAI(Q) ) ) == true.
After: Pyx Py= {true, false}
After(p, q) == true if and only if Beforej, p) == true.
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Chapter 3. A Delegation Framework for WfM S based on

Task-Role based Access Control and TS workflow

Tasks represent the basic logical steps of busipes®sses, and roles combining users
with similar responsibility together are the commponents for access control management in
modern WIMS. With both tasks and roles as core epncwe introduce a delegation
mechanism for WIMS coordinated with TRBAC. In sentB.1, TRBAC and the issues related
to delegation in WIMS are sketched. The task amelmmodels adopted in this dissertation are
described in section 3.2, and our delegation fraomkvior WfMS and TRBAC is depicted in
section 3.3. In section 3.4, a case study is madd,the related works are discussed and

compared with our methodology in section 3.5.
3.1 Background
3.1.1 Task-Role based Access Control Model

Workflow Workflow
Schema Instances

AT

i

Activation Condition
Time Constraint

Class A . Cardinality

PTA
Task
Session @

Figure 10 The TRBAC Model [17]

e
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Based on RBAC96 [15][16], TRBAC model [17] illustea in Figure 10 works for
modern enterprise environments in which tasksreeéundamental units of business processes.
TRBAC model binds permissions on tasks and grospsswoperating the same tasks into roles.
Rather than accessing business objects direct]j1jd]5 users accomplish their works through
tasks in which permissions are properly defined prnodected. Restricting the access rights of
business objects on tasks facilitates permissiomagement and reduces the risks of
inappropriate permission authority made by user$RBAC [17], tasks are classified into four
classes according to whether the task participatadusiness process and whether the task is

inherited by the ancestor job. The classes of taskK®RBAC model are illustrated in Table 1.

Table 1 Classes of Tasks in TRBAC Model [17]

Non-inheritable Inheritable
Passive access P (private) S (supervision)
Active access W (workflow) A (approval)

3.1.2 Delegation Approaches in RBAC and TRBAC

Delegation is to authorize subjects like accedstsigr works between users or roles, and
is often built based on access control models. Uses (or role) authorizing the subject is the
delegator and the one who receives it is telegatee In RBAC [15][16], permissions to
business objects, like documents or devices, ed@und with roles. RBDMO [19] provides a
flexible way for granting and revoking permissidetween roles. RBDML1 [20], an extension
of RBDMO [19], is more realistic since it organizeges with hierarchy. Both techniques are
focused on delegation of roles among human usewudh identifying can-delegation

relationships between roles.

In [21], the essence of this delegation model & thuser delegates a particular right to
another user, and delegation of partial permissisnallowed. Osborn separates users in
organization, role hierarchies, and relationshipsig privileges into different graph models in

[22] and [41], and shows a simple way to delegait@l@ges to users by creating a delegatee
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role. In [18], Crampton gives a further discussidnout both granting and transferring access
rights between roles. When access rights are gidrien the delegator to the delegatee, the
delegated access rights are available for botdéhegator and the delegatee [18]. On the other
hand, if the access rights are transferred, ordydislegatee holds the access rights after the
delegation [18]. Besides, Crampton considers bathdelegate and can-receive relationships,
and introduces the concept of administrative sdopenprove the efficiencies in delegation

controlling [18].

Besides, tasks, the basic logic units of businessgsses, should also be considered in
delegation. In [18], Crampton addresses the islkeesipward delegation and authorization of
appropriate permissions for delegation to adopt RBXased delegation mechanism in
task-based WfMS. Bammigatti associates tasks iatmnigzsion management and develops a
new model for using RBAC in workflow system [42h TAC model [43], the permissions
possessed by roles and required by tasks are bedagparately, and the assignment of tasks to
roles is thus constrained. With such constrainggptocol enabling delegation of task instances

from users to roles is established [43].

TRBAC [17] binds the permissions with tasks, and thasks with roles. With the roles
assigned to users, users access business objecceomplish their duties through tasks.
Therefore, authorization of permissions is not seagy for delegation of tasks and task
instances in TRBAC. In our previous work [24], dedmtion framework for TRBAC has been
initially established without considering the temgdassues. Zhang et al. develops a delegation
model for time constraints-based TRBAC [44]. Howew#hang reduces TRBAC model as
TRBACM model in which permissions and tasks areassely bound with roles. In [44], users
delegate permissions together with tasks to acasmpheir works, and the methodology

violates the primary sprits of TRBAC [17].
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3.1.3 Separation of Duty

Separation of Duty§OD) is a security principle which requires multiplseus to be
responsible for the completion of a work [45]. Simtelegation transfers permissions and tasks
among users, the delegation approaches also follbevsSOD policy of the corresponding
access control system. In RBDML1 [16], Ferraioloires SOD as For a particular set of
transactions, no single individual is allowed toeewte all the transactions within the &et.
Botha discusses SOD in workflow environments bdttically and dynamically [46]. In
Botha’s study, four possible conflicts, conflictimgles, conflicting permissions, conflicting
users, and conflicting tasks, are described, amddhresponding methods for the conflicts are

developed.

TRBAC [17] offers SOD policy at both task and imsta level, and defines that some tasks
aremutually-exclusiveéo each other. In task level SOD, for the roles/ptl by a user, none of
the tasks assigned to the roles are mutually-exelusn instance level SOD, the policy is
effective for the tasks belonging to the same worvkiinstance. The task instances instantiated
from the mutually-exclusive tasks in a workflowt@sce can not be executed by the same user

[17]. In this dissertation, we follow the SOD pgliestablished in TRBAC when delegation.

3.2 Task and Role Model

Tasksare the basic components describing pieces of svorkiogical steps within a
workflow [1], and are modeled as activity processe$S workflow modelPermissionsare
the rules describing the admission in accessingnesis objects such as documents or
computation resources. In this dissertation, imtligi permissions are bound with tasks on the
basis of TRBAC. Besides, it is assumed that ongyt#sks related to enactment of workflows
can be delegated during run-time, and therefordy Oworkflow” and “Approval” are

considered as the classes of tasks in this disisertdask is formally defined as following.
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Definition 11 (Task)
For a TS workfloww, Ty, = {t |tOP,, t.type== ACT} is the set of tasks w.
Let T be the set of all the tasks managed by WfMS,
TwOT, OtOT, the following properties are additionally modkle
P, is the set of permissions to business objects douah
R: is the set of roles assignedtto
t.class1{Workflow, Approval} is theclass oft.

During run-time, TS workflow instances are instatéd from a TS workflow, and the
tasks in the TS workflow are also instantiatedTask Instanceslask instances are the basic
units for daily duties. When a task instance isngadio be executed, the system offers the
instance to a role in accordance with the corredimgn TS workflow. Then, the instance is
allocated to the work list of one of the users pigythe offered role. The user executes the
instances in his work list, and submits the instawbenever it is complete. A task instance is
suspended once the responsible user becomes @dwdbr a certain time, and is resumed
from suspension when the responsible user is ayaifable. A task instance is failed if it is not
completed in its active interval, and is discardetl is not executed until the end of the TS
workflow instance. The active interval of a tasktance is obtained from the EAI of its source
task and the starting time of the TS workflow imgt®, and indicates when it can be started and

the corresponding deadline. TS workflow instanagtask instances are modeled as following.

Definition 12 (TS workflow Instance and Task Instejp
A TS workflow instancevi = (w, |, Sf).
w is the TS workflow instantiatingi
lwi is the set of the task instances instantiated tlmrtasks in J.
Let | be the set of all the task instances rgaddby WIMS.
lwiOl, Oi0l, 1= (wi, tk, ar, s, ey ai).
tkLI Twiw IS the task instantiating
arlJR is the role offered.
sL{Initiated, Discarded, Offered, Allocated, Compkt&uspended, Failed}
is the status at
euis the user executing the task instance.
ai = [wi.st+ EST(kK), wi.st+ LET(tk.eai] is the active interval af
stis the time poinwi being initialized.
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Usersare the participants of business processes. An@gplay multiple roles for various
businesses, and a role can be played by multigles @dso. During run-time, users execute task
instances in their work list to accomplish theirlgauties. The status of a user is normally
available and is transited tonavailablewhen he/she is not available for work. A user is

formally modeled as following.

Definition 13 (User)
Let U be the set of all the users managed by WfMS.
OudU, u= (R, WL, cs).
Ry is the set of roles played by
WL ={i|ill, i.,eu=u, i.slJ{Allocated, Completed, Suspended, Failed} } is the
work list of u.
cslI{Available, Unavailable} is theurrent status af.

Rolesrepresent the collections of users with commopaesibilities [15][16]. In this
dissertation, a role is modeled as a collectiothefusers responsible for the same tasks with

certain timing constraints. The definition roles &rmally described as follows.

Definition 14 (Role)
Let R be the set of all the roles managed by WfMS.
OroR,r = (U, T,, etd).

U, is the set of users playimg

T, is the set of tasks assignedto

etdis a time description indicating whers active.

Roles are organized with thele hierarchy The role hierarchy indicates inheritance
relationships and partial orders between roleetieat the organization lines of authority or
responsibility [15]. In this dissertation, the rdieerarchy is modeled with directed acyclic
graph (DAG) like in [15], [47], and [48]. Among thmele hierarchy, the roles in higher positions
possess larger authority, and the connected rosnare coherent than disconnected ones
[15][47][48]. The number of edges between two catee roles in the role hierarchy is defined
as theidistance The roles closer in distance are related mohdlyighan roles farther. The role

hierarchy and the function calculating the distape®veen two roles in a hierarchy are defined
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in the following definition.

Definition 15 (The Role Hierarchy)
The role hierarchRHL RxR.
O (r1, rz)RH, (r1, r2) shows a partial order that all inheritable tagksigned tg
r; can also be assignedro
Or, r R, r" = r holds if there existg (r1), .., {x ' )JRH*.
RH is acyclic, andf r’ -, r holds,r - r’ does not.
DisRH() shows the distance between two roles irdhehierarchy:
(1) DisRH({, ) =0,
(2) if r' = r, DisSRH({, r') = -(k+1) and DisRH(, r) = k+1,
(3) DisRH(, r’) is undefined while neithef >, r norr~ r’ holds.

3.3 Delegation Framework for WIMS on TRBAC

3.3.1 The properties of Delegation

A delegation is primarily composed of a delegadalelegatee and a delegating subject. In
TRBAC, since the permissions are bound with taglesfask instances are delegated between
users during run-time. For each delegation, thegibr, the delegatee, the delegated task
instance, and the delegation duration are recardadelegation record. In this dissertation, the
duration is constrained not exceeding the activervial of the delegated task instance. Our
framework allows multi-level delegation [19][21]n@ a task instance might be delegated
several times. For each delegated task instaraelegation record keeps tracking its status no
matter how many times it is delegated. All the daters who once delegated the task instance

are put into the historical delegator list in tloeresponding delegation record.

Besides, we assume that the maximal times thaskaitestance can be delegated are
constrained by an enterprise policy namedviagimal Levels of DelegatiaiMLD). MLD is a
non-negative integer. If MLD is equal to 1, mukikl-delegation is forbidden. With above
features, the format of a delegation record is@efiin Definition 16. When a delegation occurs,

the corresponding record is attached to the tastlmee for reference as definition 10 shows.
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Definition 16 (Delegation Record)
Let D be the set of all the delegation records rgaddy W{MS.
0d0D, d = (di, dr, de dur, HDRL).
di is the delegated task instance, andl’ (1D, if d’#d, d’.di# d.di.
drJU is the original delegator.
dellU, is the current delegatee.
dur is a time interval indicating during whelris effective, andii.ai U, dur.

HDRL = {ui, U, ..., u} is the historical delegator listu; == dr, and
OunOHDRL, mxk, uy, delegateddi to um+;, and ux delegateddi to de
|[HDRL|<MLD.

Definition 17 (Delegation Records in Task Instances
For any task instandeif i is delegated,dr(1D, i.dr.di ==i; otherwisej.dr == @.

Algorithm 1 describes how a task instance is detsba our framework.

Algorithm 1 Delegation Algorithm BA
Input: the delegating task instardtg
the delegatea, and
the designated delegating durataufur
Pre-Conditiondti.ai O, ddur
DA {
01:if (dti.dr # @) {
02: if( |dti.dr.HDRL|+1 > MLD )
03: EXCEPTION( MAX_DELEGATION_LEVEL REACHED );
04: else{
05: adddti.euto dti.dr.HDRL,;
06: dti.dr.dur = ddur,
07: dti.dr.de=u;
08: }
09:} else {
10: dti.dr = (dti, dti.eu, u, ddur, {dti.eu});
11: adddti.drto D;
12:}
13:removedti from dti.euWL,;
14:adddti to u.WL;
15:dti.eu=u;
}
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The system invokes Algorithm 1 when delegating sk tenstance to the designated
delegatee. At line 1, the algorithm checks whetheiinput task instance has been delegated. If
so, the algorithms checks the size of historicé&gheor list of the task instance at line 2 to
assure that the delegation does not violate theaatsn held by MLD. According to the input
parameter, the delegation record is updated from % to 7. Otherwise, the task instance is
delegated for the first time. A new delegation reas created and attacheddtbat line 10 and
11. After the delegation record is well updatedm@ated, the task instance is transferred from

the delegator’s work list to the delegatee’s frame 13 to 15
3.3.2 Delegatee Decision

Algorithm 1 does not concern whether a delegate@psopriate for delegation or not. In
multi-level-delegation, if a task instance is delesgl to one of the delegators who once
delegated the task instance, a delegation looprec@elegation loop causes redundancy in
business and should be avoided [49]. Algorithm 2asstructed to remove users inducing

delegation loop from the candidate users.

Algorithm 2 Removing Users Causing Delegation Le&iJDL
Input: the candidate user set CUS, and
the target task instante
Pre-Condition: CUSIU
User Set RUDL {
01:if (ti.dr £ @)
02: CUS =CUS\ (i.dr.HDRL);
03:return CUS;

}

Taking a set of users and a task instance as plg jparameters, Algorithm 2 eliminates
users causing delegation loop from the input usertsach delegator user who once delegated
the instance is recorded in the historical delagabof the delegation record. After removing

the historical delegators from the input user séha 2, CUS is returned at line 3.
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SOD is another issue in delegatee decision. Sielegdtion happens during run-time, we
focus on maintaining instance level SOD policy fbe task instances in a TS workflow
instance. For each TS workflow, the mutually-exslegasks are grouped in records, and a task
might belong to multiple records. For example, téakditing” is mutually-exclusive to both
task “ordering” and “purchasing”, but “ordering”é@ftpurchasing” are not mutually-exclusive.
Therefore, two records are established, and “aglitis contained in both records with
“ordering” and “purchasing” separately. The rectomdmutually-exclusive tasks and the SOD

constraints adopted in this dissertation is defingdbllow.

Definition 18 (Mutually Exclusive Tasks)
MET is the set of all the records of mutually-exstue tasks.
OmetUMET, met= (W, Trey-
wis a TS workflow.
Tmetld Tw is a set of mutually-exclusive tasks
Ot, ;U Tmes t @andt; are mutually-exclusive.

Definition 19 (Instance Level SOD constraints)
Oworkflow instancewi, tiy, tio0 1y and (vi.w, Tme) UMET,
If til.tk, tiz.tkD Trmet til.eu;é tiz.eu.

In a delegation, SOD also holds. For a task ingtéinewhich is being delegated, a user
executing a task instance mutually-exclusivé t@an not be the delegateetiofTaking a set of
candidate delegatees and a task instance as thepammeters, Algorithm 3 eliminates the

users violating instance SOD from the candidategigkes.

Algorithm 3 Removing Users Involved in Mutually-Bxsive Tasks RUMET
Input: the candidate user set CUS, and
the target task instantie
Pre-Condition: CUSIU
User Set RUMET {
01: 0 iUlgwi\{ti}{
02: if ( CmetUMET, metw ==ti.wi.w, i.tk, ti.tkLTmet)
03: remova.eufrom CUS;
04: }
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05: return CUS;
}

To show the correctness of Algorithm 3, we prowet the following lemma holds.

Lemma 6
Algorithm 3 follows the SOD constraints defineddefinition 19.
Proof:

By way of contradiction§.W.0.G, we assume that a usérlRUMET(CUS, i) is now
executingti’ which is mutually-exclusive tb. Let a workflow instancevi; containsti’ andti.
With the assumptiortj’ .tk andti.tk are mutually-exclusive to each other, @aneu=u. Since
ti.wi = wip andti’ Olywi, ti' is selected at line 1. On the other hand, by defm 11, there
existsmet IMET thatmetw = ti.wi.rws = ti’ .wi.rws = wi;.rws andti’ .tk, ti.tkL Ty Therefore,
the expression at line 2 is true férandti’ .euis removed from the result set at line 3. Thus,
is not included in the result set and the assumpscontradicted. Algorithm 3 follows SOD
constraints defined in Definition 18.

Intuitively, an unavailable user can not be theedatee of any delegation, and a task
instance should not be delegated to the user diyexecuting it. Concluding these two issues
and the algorithms described in this section, therahm removing inappropriate users from a

set of candidate delegatees is constructed asv&llo

Algorithm 4 Removing Inappropriate UserRHJ
Input: the candidate delegatee set CDS, and

the delegating task instande
Pre-Condition: CD&IU
Candidate Delegatee Set RIU {
01: OullCDS,
02: if (u.cs== Unavailable ) remove from CDS;
03:CDS = RUMET( RUDL( CDStdi ), tdi ) \ {dti.eu};
04:return CDS;
}

Algorithm 4 first removes the unavailable usersifrie input set at line 2. At line 3, the
algorithm invokes Algorithm 2 and Algorithm 3 tameve the users causing delegation loop or
violating SOD. After removing the current executuger ofdti, Algorithm 4 returns the result

set at line 4.
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3.3.3 Delegation from System Request

When a suspended task instance is nearly timed tbet,system might need to
spontaneously request a delegation for the tadknos. We assume that a suspended task
instance iemergentand need to be delegated automatically if th@qmoon of its remaining
active interval is less than an enterprise poliagnad theEmergent Execution Rat(&ER), a
real number ranged from 0 to 1. To automaticallegate the emergent task instance, WfMS

needs first decide an appropriate delegatee.

The role hierarchy indicates the organization liolesuthority and responsibility [15], and
can be used for exploration of possible candidategatees. Along with the role hierarchy, a
task instance can be delegated upward or downWdhgn a task instance of daily works is
being delegated, the system gathers the userqigléywer roles related to the offered role of
the instance as candidate delegatees. On thelathdr for the instances of the tasks related to
decision making, the system commits an upward gesgofrom the offered role in the role
hierarchy for the candidate delegatees. Besidesidérs playing roles closer to the offered role
in the role hierarchies are considered as bettedidates in delegatee decision. Based on
Definition 15, the algorithm discovering the roleedarchy for the candidate delegatees is

constructed as follows.

Algorithm 5 Discovering the Role Hierarch{pRH
Input: the delegating task instarutie
Candidate Delegatee Set DRH {

01:if( dti.tk.type== Approval )p = 1;

02: else if(dti.tk.type== Workflow )p = -1;
03:m =0;

04:US = @;

05:loop {

06: GR=0;

07: 0OrUR, DisRH@ti.ar, r) ==p*m

08: addr to GR,;
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09: if (GR==0)return &;
10: [OrUGR,r.ed,, {dti.ai}
11: UsS =uUsluy;

12: US =RIU (USdti );

13: f(US=@ )m=m+ 1;
14: else break;

15:}

16:return US;

}

At line 1 and 2, according to the class of diés task, the algorithm decides the direction
to explore the role hierarchy. Algorithm 5 commais upward discovery for the tasks typed
“Approval” or a downward discovery for the taskpeyd “Workflow”. From line 5 to 14, the
algorithm does a breadth first search in the radeanchy. At line 9, empty GR set represents
that all roles connected to the offered role alenth the designated direction in the role
hierarchy are explored, and no proper delegatémired. Therefore, Algorithm 5 returns @ as
the result. If GR is not empty, the users playiogs in GR is gathered into user set US and
filtered with Algorithm 4. If US set is not emptyiter the removal of conflict users, the
algorithm returns US as the result set. Otherwike, discovery continues with further

distances.

With Algorithm 5, the algorithm for delegation rexpied by the system is described as
Algorithm 6. WfMS tracks the status of the execgtiask instances, and invokes algorithm 6
whenever an emergent task instance is found. Algorb acquires the candidate delegatees by
exploring the role hierarchy with Algorithm 5 ahdi 2. Exception is raised if Algorithm 5
returns no candidates. Otherwise, Algorithm 6 ramgochooses a delegatee from the

candidate delegatees and invokes Algorithm 1 teg#é the emergent task instance.
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Algorithm 6 Delegation from System Reque€dSR
Input: the delegating task instarutie
Pre-Conditiondti.s = Suspended, Hfi.ai) > ctime
( Edti.ai) - ctime) / (E(dti.ai) - S@ti.ai) ) < EER
DSR {
01: CDS = DRH(iti);
02: if(CDS == @ ) EXCEPTION( NO_PROPER_DELEGATEE );
03: else {
04: randomly choose a usefrom CDS;
05:  DA(dti, u, [ctime E(dti.ai)] );
06: }
}

3.3.4 Delegation from User Request

Many modern enterprises adopt user-authorized detegas the primary delegation
methodology. The RBAC-based studies like [20], [228], and [23], also describes how roles

and permissions are delegated under user authonzat

With our framework, a user can authorize two typéslelegation. First, a user may
delegate task instances currently allocated to I8econd, a user may delegate the task

instances going to be allocated to him during @i§peeriod.

To request a delegation, the delegator fills iraathorization form which designates the
delegating subject, the delegatee and the activdtioation of the delegation. For the first type
of delegation, the delegator designates a tasinustresiding in his work list as the delegating
subject. The duration to authorize the delegatiostrbe contained by the active interval of the
delegating task instance. For the second type tdgddon, the delegator designates an
executable task by any of the roles he playinghasdelegating subject. The duration to

authorize the delegation must be contained byffeeteve duration of the role.
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The Delegator u The Authorization form
fills the authorization form (u, d, sub, tta, true)

The Authorization form
(u, d, sub, tta, false)

——— check the type of the
delegation subject

The Delegatee d The Supervisor task taskjinstance
Approves Approves

The Authorization form H
| (u, d, sub, tta, false)
no <> yes

Whether the delegatee and the supervisor
both approve the form ?

Put the form into
FDT

The System invokes
DA( sub, d, tta)

Figure 11 The Process for Delegation from User [Refju

After accomplishing the authorization form, theedgltor user submits the form to request
the approval from his supervisor and the designaééehatee. If the delegation is approved, for
the first type of delegation, the designated taskaince is delegated to the delegatee user with
algorithm 1 immediately. For the second type ofedation, the approved form is put into
Forthcoming Delegation Tabl¢FDT). According to the form, the task instancestloé
designated task which is allocated to the delegatibre specified duration are delegated to the
designated delegatee. Figure 11 represents thegwad delegation from user request, the
authorization form is defined in Definition 20, FDF defined in Definition 21, and finally,

Algorithm 7 shows how WfMS handles the second typéelegation.

Definition 20 (Authorization Form)

Let AP be the set of all authorization forms.

OaplLIAP, ap = (dr, de sub tta, is_approvedl
dr is the delegator usetrOU.
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deis the designated delegatee uden U, dr # de
subis the subject of delegatios,lb 1T O 1, and
if subdT, CrOu.RyNsubRr andr.etd,,{tta},
otherwise, ifsubll, subJdr.WL, suhs# Completed, andub.aill;, tta.
tta, time to authorize, is the time interval thdit delegates the subject te
is_approveds a Boolean variable showing whetlagris approved.

Definition 21 (Approved Form)
OapUAP, if apllFDT, ap.sullT, ap.is_approved = true, and &g.tta) > ctime.

Algorithm 7 Handle Forthcoming DelegatioitFD
Input: a task instande
a useru
Pre-Conditioni is allocating tau
HFD {
01:if ( CaplFDT, ap.dr ==u, andap.sub==i.tk ) {
02: if(RIU{apde, i)£D)
03: DA( 1, ap.de, [ctime min(E(ap.tta), E(.ai))] );
04: else EXCEPTION( INAPPROPRIATE DELEGATEE );
05:}
}

The system invokes Algorithm 7 whenever a taskamst is being allocated to its

execution user. At line 1, the algorithm first cked the user and the task of the task instance
are recorded on an authorization form in FDT. & thsk instance is authorized to be delegated,
Algorithm 7 then invokes Algorithm 4 to check wheththe designated delegatee user on the
form violates any delegation constraints. If theahis not passed, an exception is raised and
further handling is necessary. According to diffgrpolicies, the hanging task instance might

be handled manually or delegated by WfMS automifficatherwise, Algorithm 1 is invoked

to perform the delegation.

3.3.5 Revocation

A successful delegation can be revoked by its @gtegoefore it ends [18]. To revoke a

delegated task, the authorization form is simpigeeed from the FDT. On the other hand, for
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revocation of a delegated task instance, the dideigacontribution on the task instance might
be preserved or discarded according to the syst&imgs and the enterprise policies. The task
instance is transferred back to the work list & tiser requesting the revocation, téeoker

and the revoker continues executing the task instafter the revocation.

Revoking a multi-level delegation is complex. Famalti-level delegation, all the users
recorded in the historical delegator list mightaks the delegation. If the revoker is the
original delegator, after the delegated task irc#tas transferred back, the delegation record is
eliminated. Otherwise, if the revoker is the ottletegator in the historical delegator list, the
revoker becomes the delegatee of the delegatienthf revocation. The revoker and the other

delegators behind the revoker are removed fronhigterical delegator list.

When a delegation runs out of its effective duratibie system revokes it automatically.
The delegated task instance is transferred baekili& revocation is requested by the original

delegator. Algorithm 8 is constructed as followsrevocation.

Algorithm 8 Revocation Algorithm RA
Input: the subject to be revokeslib,
the revokeu
Pre-ConditionrsubJTUI, ulJU
RA{
01:if (rsubdT && CaplFDT thatap.dr=u, andap.subrsub)
02: removeapfrom FDT,;
03:else if fsublll && rsubdr ==d thatulld.HDRL, andrsub.s# Completed) {
04: alertdti.euthatd is going to be revoked;
05: removersubfromrsubeuWL;
06: addrsubtou.WL,;
07: rsubeu=u;
08: if(u==d.dr){

09: removed from D
10: rsubdr = @;

11: }else{

12: d.de=uy;
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13: u and all the users behindn thed.HDRL are removed frord.HDRL,;
14: }

15: alertdti.eudti is transferred back to his work list;

16:} else EXCEPTION(INVALID_REVOCATION);

}

Algorithm 8 takes the subject being revoked and¢veker as the input parameters. If the
subject is a task, Algorithm 8 checks whether therany corresponding authorization form,
and removes the form from FDT at line 1 and 2. @tise, if the subject is a task instance,
Algorithm 8 checks the corresponding delegatiomto assure the revocation is valid at line
3. If valid, the current delegatee of the delegatsthnce is first alerted at line 4. The delegated
instance is removed from the delegatee’s workaist] transferred to the revoker from line 5 to
7. If the revoker is the original delegator of ttedegation, the delegation record is eliminated
from line 8 to 10. Otherwise, the record is updaféte delegatee is assigned to the revoker at
line 9; the revoker and the delegators behind lmerremoved from the historical delegator list
at line 10. The revoker is alerted at line 15.iA¢116, an exception is raised if the revocation is

invalid.
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3.4 Case Study

w;: Specification Review Process
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S :
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Figure 12 (a) The Sample TS Workflow Specificatifis), The Sample Role Hierarchy and User Assignrand,

(c) The Information about Tasks, Mutually-exclusifasks, and Authorization Applications

In this section, we adopt a specification reviewgasss as an example to show the
feasibility of our approach. The workflow specifica of the review process, the partial role
hierarchy, and the other related information dtesifated in Figure 12. In this case, the review
process is composed of two tasks, primary reviesvsatondary review. Chief Engineer is in
charge of the primary review, and Senior Enginseesponsible for the secondary one. These
two review tasks are mutually-exclusive. Their Eé#¢ both [0, 5] after calculation. Since these
two tasks reside on different branches split framAND-split processs;, they are concurrent

during execution.

Let Alex is busy in his duty, and apply for delagatof all the reviews allocated to him
during the time intervald, c,]. The application is approved by Bob, the desigdatelegatee,
and his supervisor. In other words, all the rejielas allocated to Alex duringd, ¢,] would be
delegated to Bob instead. At timg ¢, < ¢; andc;+5 < ¢, a workflow instance ofv;, wiy =
({i_ty, 1_to}, wy, ¢1), is instantiated so that the task instancgsandi_t, are instantiated on the

basis oft; andt,. i_t; andi_t, are offered to Chief Engineer and Senior Engiressd, allocated
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to Alex and Carrie correspondingly. Nawt; = (wis, ti, r1, Allocated,us, [ci, c1+5], @), and_t;
= (wiy, t, I, Allocated,us, [c1, C11+5], @). Because Alex has been approved to deledktiee
reviews during ¢,, C,] to Bob, Algorithm 7 invokes Algorithm 1 to deldgga t; to Bob. The
delegation recordl = (i1, ui, Uy, [C1, C1t5], {ui}) Is created, and t; becomes Wiy, ty, 1y,

Allocated,us, [ci, c1+5], d) after the delegation.

At time ¢, which is in the middle of the active intervaliof;, c; < ¢, < c;+5, Bob gets an
emergent call and becomes unavailable right awhg. task instances in his work list are all
suspended. Let us assume that EER equals to 1, WS invokes Algorithm 6 to delegate
I_t; to another appropriate delegatee immediately.l¢oAthm 6, Algorithm 5 is first invoked
to explore the role hierarchy for a proper delegaBecausé; is typed “Workflow”, the role
hierarchy is explored downward from Chief Enginées,rolel_t; offered. Alex is the only user
now playing Chief Engineer, and is eliminated frthva candidate delegatee set by Algorithm 2
to avoid delegation loop. When considering Seningigeer, Carrie is eliminated from the
candidate set by Algorithm 3 because of the SODcyoand Bob is eliminated from the
candidate set by Algorithm 4 because he is unadaildNo users playing Senior Engineer are
appropriate to take the task. Therefore, Engirsetiren considered. After all, Deff and Elly are
included in the candidate set, and Deff is randoddgided as the new delegateei di.
Algorithm 1 is invoked to delegatet; to Deff.d is updated asi Ui, Us, [C2, C1+5], {U1, U2}),

andi_t; is updated asafis, t1, ri, Allocated,uy, [c1, C1+5], d).

At c3, C2 < c3<c1+5, Alex finishes his jobs ahead of time, and desi finish_t; himself.
Alex invokes Algorithm 8 to revoke t;. Deff is first alerted and t; is then revoked. The
delegation record is removed, and t; is updated asai,, t, r1, Allocated,uy, [C1, C1+5], D). In
summary, this case demonstrates the delegationestayl from a user and the system, and
indicates how the constraints like delegation l@yul SOD work in automatic delegatee

decision.

40



3.5 Discussion

In this section, we compare our framework with létest popular approaches: [20], [18],

[43], and [44]. Table 2 illustrates the characterss of above approaches and ours

correspondingly.

Table 2 Comparison of Characteristics of VariouteDation Models

Characteristics | RBDM1[20] |Crampton[18] |Gaaloul [43] | VTTRDM [44] | Our Approach
RBAC
Access Control | RBAC [15][16] [15][16] TAC [43] TRBACM [44] TRBAC [17]
Deleggthn of Grant Grant & No Grant No
Permissions Transfer
Delegation of No No Transfer Yes Transfer
Tasks
Delegation of Task No No No No Transfer
Instances
Time Constraints No No No Yes Yes
Automa.tlc No No No No Yes
Delegation

RBDML1 [20] is a classic delegation model for RBAC5][16], and can be adopted in
managing delegation of permissions between useramg@on et al. develop another
RBAC-based delegation model for workflow system8][Trampton's approach allows both
grant and transfer operations for delegation ofp&sions while RBDM1 adopts only grant
operation [18]. Crampton also raises the issues libward delegation and permission
authorization for delegation of tasks in work-hstsed workflow systems [18]. However, both

RBDM1 and Crampton's approach describe no methoaist @lelegation of tasks.

With various access control models based on tasksaes, Gaaloul's methodology [43],
VTTRDM [44], and our approach can be adopted inagary delegation of tasks for workflow
systems. Gaaloul's methodology describes congtrdmt delegation of tasks based on
Task-oriented Access Control (TAC) model [43]. TA®del describes the permissions which

a role owns and a task needs. Gaaloul's methodaltmys a user to delegate his tasks to a role
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which has sufficient permissions to execute thkstaSince Gaaloul's methodology allows no
delegation of permissions, it is limited and inflde when selecting the delegatee for a

delegation.

In VTTRDM [44], both permissions and tasks can beedated between users. RBDM1
[20] is adopted in VTTRDM to manage the delegatbpermissions. When delegating a task,
if the delegatee does not have sufficient permmssto execute the task, permission delegation
from the delegator to the delegatee is necessamgntble the execution [44]. Since in
VTTRDM, the delegated permission is not limitedrigeused for the delegated tasks only,

security risk exists.

In our approach, tasks are delegated through weHsrization. Our approach is based on
TRBAC, and a task is executed with a set of assopermissions. Therefore, the delegatee can
execute the delegated task without delegation whigsions, and the security risks brought by
delegation of tasks are eliminated. Besides, i, [@€legation is defined a&'user allocates a
task instance previously allocated to him to anotiser.’ While delegation of task instances is
ignored in [43], and [44], our approach clearlytesahow to delegate task instances between
users. For delegation of task instances, our metltodld gather candidate delegatees and
remove inappropriate users from the candidatesh Wbt approach, a workflow system can
automatically delegate an emergent task instan@ntappropriate user to prevent the task

instance from failure.

Regarding temporal issues, in VTTRDM, delegatiorefiective during a single time
interval, and the delegated tasks are revoked tifeemterval [44]. Our approach is based on
the time constraints between the delegated tas&noss and the related roles. Because a role
might be activated in multiple time intervals, nmpli or periodical time intervals are

considered in our approach to provide a more t@atsmporal constraints.
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Chapter 4. Detecting Artifact Anomaliesin TS workflow

A well-structured workflow may more possibly fait produce unanticipated run-time
behavior because of abnormal data manipulatiorj2Z§P8][29][51]. The anomalies might be
yielded differently when the temporal issues amsabered. Thus, it is worthwhile to study how
to detect artifact anomalies in TS workflow. Ingtlchapter, artifact anomalies in TS workflow
is first stated and modeled in section 4.1. Thehoeklogy detecting artifact anomalies in TS
workflow is described in section 4.2. A case stigdthen introduced in section 4.3 to illustrate
the feasibility of our methodology. Finally, in sien 4.4, the related works are discussed and

compared with our methodology.
4.1 Artifact Anomalies in TS workflow
4.1.1 Artifact Operations

In this dissertation, we assume that an activipcpss in a TS workflow may operate an
artifact as one of the following ways: defiri2ef), use Use and kill Kill). Defining an artifact
is to assign a value to the artifact, and when réifaet is first defined, it is initialized. An
activity process references an artifact throughgigi and an artifact can not be used without
definition. Killing an artifact is to remove the fdetion of the artifact, and using a killed
artifact before it is defined again leads to erausng execution. As for the control processes

in a TS workflow, it is assumed that they all doap®ration Nop) on any artifacts.

An artifact in a TS workflow is initially statedindefined (UD), and turns to
defined&no-use(DN) after it is defined. When a DN artifact is useis, state becomes

defined&referencedDR). A DR artifact remains DR after being used, aaahgits to DN after

43



being defined again. An artifact in any states bee® UD after being killed.

On the other hand, the artifact operations madeobgurrent processes are executed with
undetermined order and might generate ambiguityartdacts. When several concurrent
processes operate on the same artifact, they gateshaeach other for accessing the artifact and
anomalies might thus be generated. For examplenteprocess make a definition to an artifact,
and another one kills the artifact concurrentlye xistence of the definition of the artifact
becomes ambiguous because the execution order évetthie kill and the definition is not
determined during design-time. These operationgdRacing Operationgequire additional
consideration during analysis, and are categoramambrding to the operations involved as

following:

(1) Racing Definitiorgs)&Kill (s), abbreviated asRDK, represents a racing operation

composed of both definition(s) and kill(s) with moor any usage(s).

(2) Racing Definitions abbreviated afkRDS represents a racing operation composed of

multiple definitions and no kills with none or angage(s).

(3) Racing Kills abbreviated asRKS represents a racing operation composed of no

definitions and multiple kills with none or any ge4s).

(4) Racing Definition&Usages), abbreviated asRDU, represents a racing operation

composed of a single definition, any usage(s) ankilfs.

(5) Racing Usage(s)&Killabbreviated aRUK, represents a racing operation composed of no

definitions, any usage(s), and a single kill.

(6) Racing Usagesabbreviated aRUS represents a racing operation composed of mailtipl

usages only.
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As the example mentioned above, an RDK or an RB8duoces state ambiguousR) to
the artifact. Besides, an artifact transits toest#id after an RKS or an RUK, and state DR after
an RDU. Since the artifact state after a usageesdrased on the input state of the artifact, the
artifact state after an RUS requires additionalsagration in merging the input states of the
usages involved in the RUS. The artifact and ietee operations are modeled in Definition 22,

and Figure 13 illustrates how artifact transitssttste with different artifact operations.

Definition 22 (Artifact Model in TS workflow)
For an LRTS workfloww,

The set of all the artifacts operatedanis notated as /&
OabOAw, a.state]{UD, DN, DR, AB}.
The artifact operation made by processes ia described as a relationship AO
AOP: {p | pOPy, p.type==ACT} x A= {Nop, Def, Use, Kill}
{p | pOPw, p-type# ACT} x Ay= {Nop}

U/RDS/RDK

Ambiguous
(AB)

RDS/RDK

Y

RDS/RDK

RDS/RDK

K/RKS/

RUK U/K/RUK/RKS

Defined&No-use
(DN)

Tonou ")

Figure 13 The Artifact State Transit Diagram

4.1.2 Artifact Anomalies

Artifact anomalies are generated from various $tma¢ and temporal relationships
between artifact operations, and can be classiidd four classesUseless Definition

Undefined UsageNull Kill, andAmbiguous Usage
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(1) Useless Definition:

Killing or defining a DN artifact makes the previwefinition useless because the
definition is destroyed (or redefined) without amsage. If an artifact remains DN at the end
process, its definition is also useless becaussenivt used before the end of the workflow. A
useless definition is a kind of redundancy indiogithere might be logic error in the workflow

schema and should be warned to designers.

(2) Undefined Usage:

An activity process might not be correctly executdtie essential artifact is not properly
defined. Therefore, an undefined usage, i.e. uamgD artifact, is an error leading to faulty

execution, and is necessary to be handled by thkfloxy designers.

(3) Null Kill:

A null kill represents a process try to remove m@existent definition; e.g. to kill a UD

artifact. A null kill is a kind of redundancy, adésigners should be noticed about it.

(4) Ambiguous Usage:

An ambiguous usage means that an activity processan artifact which is ambiguous in
definitions or in states. Therefore, the direcigesaf an AB artifact is an ambiguous usage. The
usage(s) involved in an RDS, an RDK, or an RDUase ambiguous usages. Besides, if an
artifact is stated DR/DN before an RKU, the usagef{slved in the RKU is also ambiguous.
Similarly, when an UD artifact meets an RDU, thérdgon in the RDU may not be made in

time for the usages, and the usage(s) involveddarRDU is also ambiguous.
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4.2 The Methodology Detecting Artifact AnomaliesliRTS workflow

In this section, the methodology detecting artitamdmalies in TS workflow is introduced.
To simplify our discussion, the structured loopslithe TS workflows under analysis are first
reduced with the methodology introduced in secB@hl, and the anomaly detection is made

for LRTS workflows.

Our methodology is divided into three parts. Inteec4.2.1, we first describe how to
traverse an LRTS workflow to collect the structusald temporal relationships between the
processes and the artifact operations. In sect@®2 4according to the structural and temporal
relationships gathered in the first part, the methogy analyzing relationships between the
artifact operations are described. Finally, onlihsis of the analysis made in the second part,
the methodology detecting artifact anomalies InLRTS workflow is concluded in section

4.2.3

4.2.1 Gathering Structural, Temporal, Artifact Imf@tion in LRTS workflow

In this section, we describe an algorithm to tragean LRTS workflow to collect the
ABStacks, EAIs, and the artifact operations madadiivity processes in the LRTS workflow.
The EAIs and ABStacks are calculated with the naghbtustrated in Figure 6 and Figure 9
correspondingly. For each artifagtan artifact operation list, notated as AQHE established.

The definition of the list is formally described falowing:

Definition 23 (Artifact Operation List)
For an LRTS workfloww and 0 adAy,
AOPL, is the list of artifact operations working an
0 opOdAOPL,, op = (p, &, est let, typd,
pOP, p.typed{ACT, END},
est= ESTQ), andlet = LET(p), and
type= AOP(, a).

With the definition, the algorithm gathering stnuietl, temporal, artifact information in
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LRTS workflow is described as following:

Algorithm 9 Information GatheringlG

Input: an LRTS workfloww

Pre-Conditionw.s.mark== true, EAI(w.s) == [0, 0],w.s.abstack== « »
O poOP\Nw.s}, p.mark== false

IG {

01: Queueq;

02: 0 (w.s, N)OFy,

03: tgenqueuef);

04:loop {

05: Procesp =tq.dequeue();

06: if( (p.typea{AJ, XJ}) && ( C(p’, p)OFy, p’.mark== false) ) continue;

07: p.mark= true;

08: calculate EAIp);

09: calculatep.abstack

10: if( p.type==ACT)

11: OadAw, AOP(, a) # Nop,

12: add g, a, ESTf), LET(p), AOP(p, a)) to AOPL;

13: else if(p.type==END ) {

14: OadAw, add p, a, ESTp), LET(p), AOP(p, a)) to AOPL;

15: break;

16: }

17: 0O(p, p’)0Fw, tg.enqueuet’);
18:}

19: DanAw, Sorting AOPl, by LET
}

In Algorithm 9, a traverse queue is introduceddttihe order of traversal of processes in
an LRTS workflow. Starting from the start procdbg, processes in a TS workflow is traversed
along with flows. The EAIs, ABStacks, and artifaperations lists are calculated and collected
correspondingly. To prevent unnecessary redundan@golean flagnark is given to each
process. Besides the start process, the mark bfpgacess inv is initialized as false, and when
a process is calculated, its mark turned to trireeSa join process may have several in-flows, a

Boolean expression is checked at line 6 to as$iatettie join process is calculated only when
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each of its source process is calculated. Algor@macords the artifact operation made by each
activity process at line 12 and the “no operatiordde by the end process in AQRit line 14
for further analysis of the definitions remainingeless at the end of. At line 19, artifact

operation list corresponding to each artifact iwesbby LET.

4.2.2 Collecting Structural and Temporal Relatiopstbetween Artifact Operations in LRTS

workflow

Artifact operations are made by activity proces&sased on the structural and temporal
relationships between the processes, the operatftetive on the same artifact can be before,
after, concurrent, or exclusive to each other. dentify these relationships between artifact
operations is the foundation of analysis of artilEmomalies. Here, we first define the structural

and temporal relationships between artifact opanatas following:

Definition 24 (Relationships between Artifact Ogeras)
For an LRTS workfloww and OalAy,
Uop, opgLAOPL,,
Beforepp, op) == true if and only if Befor&.p, op.p) == true.
After(op, op) == true if and only if Afterdp.p, op.p) == true.
Concurrentfp, op) == true if and only if Concurrerdf.p, op.p) == true.
Exclusivepp, op) == true if and only if Exclusivep.p, op.p) == true.

According to Definition 10, Definition 24, Lemmadnd Lemma 3, the following lemma

holds.

Lemma 7
For two operatiomp andop’0AOPL,,
(1) If Before(op, op’), op.let <op’.let
(2) If op.let < op'.let, After(op, op’) == false

Algorithm 10 is introduced to collect operationsicorrent to each operation in an AQPL
To facilitate our discussion, it is assumed thatheAOPL, is indexed, andp [1AOPL,

indicates thdth operation in the list. Because AQPik sorted by LETs at the last part of
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Algorithm 9, for 0 <i < j, LET(op.p) < LET(op.p). Besides, for anyp in AOPL,,
ConcD op, is the set collecting the definitions concurrendp, and ConcKop collects kills

correspondingly. These sets are defined as follgwin

Definition 25 (Records of Relationships betweerifAct Operations)
For an LRTS workfloww and OalAy,
UopUAOPL,,
ConcD op =
{op |opd AOPL,, op.type== Def, Concurrent.p, op.p) == true}
ConcK op =
{op |opd AOPL,, op.type== Kill, Concurrentbp.p, op.p) == true}

With the records, Algorithm 10 is constructed dtofeing:

Algorithm 10 Identifying Concurrent Operation§GO
Input: an artifact

Pre-Conditional Ay, andw is manipulated by Algorithm 9
ICO {

01:for(i =1to |AOPL ) {

02: if( op.p.abstack# « » {

03: j=i+1;

04: while(j <|JAOPLy| ) {

05: if ( Concurrent§p.p, op.p) ){

06: if(op.type== Def ) addop to ConcD _op;

07: else ifop.type== Kill ) addop to ConcK _op;
08: if(op.type== Def ) addop to ConcD op;

09: else ifp.type== Kill ) addop to ConcK _op;
10: }

11: L

12: }

13: }

14:}

}

Because AOPLis sorted by LETs in Algorithm 9, Algorithm 10 atks each operation in
AOPL, in order. For anpp OAOPL,, Algorithm 10 first checks if it resides in somarallel or

decision structure(s) at line 2. If naip can not be concurrent or exclusive to any other
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operations. From line 3 to line 14, the algorithmecks the operations which are succeeding to
op in AOPL, in order. If the operation under checking is canent to op the records for both

operations are updated.

For an artifact operation, the operations direb#jore it generate/carry its input artifact
state, and might make it an artifact anomaly. Fangple, when a kill directly before a usage,
i.e. no other operations between them, the usagmn isindefined usage. We define the
relationshipdirectly beforebetween artifact operations on the basis of Débnit24 as

following:

Definition 26 (Directly Before)

For an LRTS workfloww and OalJAy,
0 op, op JAOPL,, op is directly beforeop if and only ifop is beforeop, and C
noop” LJAOPL, thatop” is afterop and beforeop.

0 opLJAOPL,, DB4y, = { op’ |op’LIAOPL, andop’ is directly beforeop}

According to Definition 10, Definition 24, and Lenand, for any two artifact operations
effective on artifach, op andop’, if op’ is beforeop, op’.let < op.let. Therefore, the operations
directly beforeop can be identified by analyzing the sub-list of AQ®vhere the operations in

the sub-list are all with smaller index in AOPthanop. The sub-list is defined as following:

Definition 27 (The List of Operations with Smallee T than Operatiop)
0 opUJAOPL,,

OPLyp = {op’| op’JAOPL, , andop’.let < op.let}

Similar to AOPl,, OPLy, is sorted and indexed with LETs

The algorithm collecting the operations directlydse one another operation is described

as following.

Algorithm 11 Collecting Directly Before Operatior&CDBO

Input: an artifact operatioop,

Pre-Condition: AOPL.has been produced by Algorithmdpo AOPL,
Operation Set CDBO {

01:DB4yp, = 9;
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02:for(i = |OPlep| to 1) {

03: if (( Concurrentgp, op) || Exclusivegp, op) ) == false ) {
04: if (ResultSet == @ ) adop to ResultSet;

05: else if( Cnoop’D DB4y, that Beforegp, op’) == true )

06: addop to ResultSet;
07: }

08:}

09:return DB4y;

}

For the input artifact operatiap, Algorithm 11 calculates DBgfrom its corresponding
artifact operation list. Algorithm 11 checks theeogtions in OP4, with reverse order.
According to Lemma 1 and Definition 10, the proesss an LRTS workflow are either before,
after, concurrent or exclusive to each other, anars the operations. The operations concurrent
or exclusive tmp are excluded at line 3. With Lemma 4, the firsti@pion found passing the
checking at line 3 is directly befomp. According to Definition 26, ibp’ andop” are both
directly beforeop, op’ can not be beforep” and vice versa. Therefore, the algorithm continues
gathering the other directly before operations i statement at line 6 after the first one is

found.

To show Algorithm 11 is correct, the following lerars depicted and proved.

Lemma 8
For any artifact operatiolmp and op’, op’ is directly beforeop if and only if
op’0CDBO(0op)

Proof:

We first show the if-part is correct. B.W.O.Cjstassumed thaip’0CDBO(op), but is
not directly beforeop. According to the algorithm, the result set of &ighm 11 is a sub-set
of OPLgp. Thereforepp’0OPLyp, op’.let < op.let andop’ can not be afteop on the basis of
Lemma 7. Besidegip’ must pass the checking at linec®, is not concurrent or exclusive to
op. Based on Lemma 4 and Definition 2f, is beforeop. Sinceop’ is not directly beforep,
according to Definition 26, there must exist anotbperationop” which is afterop’ and
beforeop. Becausep’'0CDBO(op), op’ must be collected in the result set at line 4iroe b
in Algorithm 11. Sinceop” is afterop’, op’.let < op”.let. op” has a larger index thap’ in
OPLop, and is touched by Algorithm 11 earlier thapi does. Therefore, eithep” is directly
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beforeop or not,op’ can not be collected in the result set at ling #in@ 6.op’ 1CDBO(0p)
which is a contradiction, and the if-part of Lemés shown correct.

As for the only-if-part, B.W.O.C, we assume thap’' is directly beforeop and
op'0CDBO(op). The assumption indicates thep’ is beforeop. According to Lemma 7,
op’.let <op.let, and thuop’ belongs to OP4,. op’ also passes the checking at line 3 based on
Lemma 4 and Definition 24. If the result set is &gmwhen Algorithm 11 touchesp’, op’ is
inserted into the result set at line 4 becayses beforeop. Otherwisepp’ is added into the
result set at line 6 becausp’ is directly beforeop and there exist no other operations after
op’ in OPLg,. Therefore,op’0CDBO(0p) which is a contradiction, and the only-if-part of
Lemma 8 is shown correct. With the proofs of théhlgirection, Lemma 8 is proved.

For an artifact operatioop, multiple operations directly before it might exiaccording
to Definition 26, the operations are not beforafber each other. On the basis of Lemma 1 and
Definition 10, the operations are mutually concotrer exclusive, and are possibly organized

as the following cases:
() All the operations are concurrent to each other
(2) All the operations are exclusive to each other.

(3) The operations can be divided into severalrdisgroups where the operations in the
same group are concurrent to each other, and temtqns belonging to different

groups are all mutually exclusive.

(4) The operations can be organized into severadgroups where the operations in the
same group are concurrent to each other, and teetiqns belonging to different

groups are either identical or mutually exclusive.

The operations in case (1) compose a racing opeatralin case (2), each operation is
considered separately during analysis becauseamdyof the operations is executed during
run-time. Case (3) and (4) happen when the op&stice made by processes reside in nestedly
organized decision and parallel structures. Simtgane of the branches in a decision structure

is taken during run-time, the operations residdifferent branches of a decision structure are
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separately analyzed with the operations concumetihem. Figure 14 illustrates two partial

LRTS workflow schemas as the examples of casen@)4).

[artifact operation on a ]

(b)

Figure 14 Examples for Nestedly Organized Decisiot Parallel Structures

In Figure 14, we assume that the EAIls of the agtiprocesses with footnotes are all
overlapped, and all the operations made by thenthare directly beforep. Figure 14(a)
illustrates an example of case (3) mentioned abbv&igure 14(a), the operations directly
beforeop can be divided into two distinct groupspf, op,, ops} and {ops, ops, ops}. The
operations are concurrent to the ones within thmesgroup and are exclusive to the ones
belonging to different groups. Figure 14(b) illad&s an example of the case @p., op,, and
ops are mutually exclusive and should be separatelgidered when analysis. However, each
of them is concurrent top, andops. Therefore, the operations are organized withetigreups,
{op1, ops, Ops}, { O, Opy, Ops}, and {ops, Ops, Ops}. The operations in the same group are

concurrent to each other, and the exclusive omeratare distributed among different groups.

Definition 28 (Set of Operation Sets derived frofd4g,)
0 opLJAOPL,,
DB40OPS, = {OPS | OP&DB4,, Oop, op OOPS, Concurrendp, op) ==
true, and 0 op’0DB4,,\OPS, Cop'0OPS that Exclusive®, op*) == true }

Each of the groups, the operation sets, in whicthaloperations are mutually concurrent

represents an execution case during run-time. D&fnition 26, the set of the operation sets
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derived from DB4, is defined as above.

However, to retrieve all such operation sets frof4§) is equivalent to solve the
well-known NP-hard problem “Maximal Clique Enumeéoat Problem [52].” Although many
studies and efficient algorithms like [53] and [344s been developed for this problem, to
discuss the solution for maximal clique enumeragwablem is beyond the scope of this
dissertation. To illustrate our methodology, weadig® a polynomial algorithm to manufacture

DB40OPS,, satisfying the cases (1), (2), (3) completely easke (4) partially from DBg. The

algorithm is described as following.

04:
05:
06:
07:
08:
09:
10:
11:
12:
13:
14:
15:
16:}

}

Algorithm 12 Collecting Directly Before OperatioetS -CDBOPS
Input: an operatioop,

Pre-Condition: DB4, has been calculated by Algorithm 11

Set of Operation Sets CDBOPS {

01:DB40OPS, = 9;

02:duplicate DB4, to BaseSet;

03:while( BaseSet @) {

CurrentOPS = @;
choose and remove arbitrary operatghfrom BaseSet;
duplicate DB4, \{op’} to CountSet;
addop’ to CurrentOPS,;
while( CountSet @) {
choose and remove arbitray” from BaseSet;
if( 0 op’0CurrentOPS, Concurrenif”, op®) == true ) {
addop” to CurrentOPS;
removeop” from BaseSet;

}
add CurrentOPS to ResultSet;

17:return DBAOPS;,

First, the algorithm duplicates DB#Ao BaseSet at line 2. The codes from line 3 toti&

a loop. In the loop, an operatiop’ is arbitrarily chosen from BaseSet, and all therapons
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concurrent tap’ and each other are gathered and put into CurréhtORrrentOPS is added to
the result set as one of the operation sets foynthd algorithm at the end of the loop. The
operations in CurrentOPS are removed from Base®dtthe next loop starts if there is still
operation remaining in BaseSet. Because any opagin DB4, are mutually concurrent or
exclusive, the operation chosen in the next loogxidusive to at least one of the operations
gathered in this loop. Besides, the algorithm steollecting an operation sets from different
operations every loop, and thus none of the omeratets collected in Algorithm 12 are
identical. After each operation in BaseSet is tisted into some operation set, the algorithm

returns the calculated DB4ORSt line 17.

To depict the correctness and the effectivenes&lgbrithm 12, we show that the

following lemmas hold.

Lemma 9
The result set returned by Algorithm 12 follows iDéfon 28.
Proof:

Let OPS be one of the operation set collected PBOPSEp). According to the
pre-condition of Algorithm 12, DB4 has been calculated by Algorithm 11, and accorttng
Lemma 1, Definition 10, and Definition 26, the og@sns in DB4, are either mutually
concurrent or exclusive. From line 7 and line 11Addorithm 12, we know that all the
operations collected in OPS are mutually concurréhe operations gathered in OPS are
removed from BaseSet at line 12. Therefore, for a@pgration remaining in BaseSet, there
exists at least one operation exclusive to it irSOBecause BaseSet is duplicated from DB4
at line 2, OPS follows Definition 28, and Lemmas3hus shown correat.

Before Algorithm 12 is introduced, four possibleses of the set of operation sets derived
from DB4,, are described, and we claim the capability of Althon 12 based on the cases.

Here, we show the claim holds with the followingilma.

Lemma 10
Algorithm 12 is able to find the operation sets ¢ase (1), (2), and (3) completely,
and for case (4) partially.
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Proof:
The cases are separately discussed as following:
(1) All the operations in DB¢ are concurrent to each other.

In this case, the algorithm collects all the ogeret in the first loop of the
algorithm. Only one operation set is included ia tesult set of Algorithm 12.

(2) All the operations in DB4, are exclusive to each other.

In this case, an operation is collected in an iildial operation set in each
loop. Let the size of DBg be N. As the resultN particular operation sets are
collected in DB4OPg, and the union of the sets is identical to B4

(3) The operations in DBg can be divided into several distinct groups whitre
operations in the same group are concurrent to ethar, and the operations belonging
to different groups are all mutually exclusive.

In this case, DB4, can be divided into several distinct operatiors $eflowing
Definition 28. However, the operations includeddifferent sets are all mutually
exclusive. According to Lemma 9, the operation setitected by Algorithm 12
follow Definition 28. On the basis of the algorithmach operation in DBg is
collected into some operation set in DB4@RSherefore, all the operation sets in
this case can be found by Algorithm 12.

(4) The operations in DBg can be organized into several varied groups wkiese
operations in the same group are concurrent to ethar, and the operations belonging
to different groups are either identical or mutya&ikclusive.

In Algorithm 12, at least one operation is removexn BaseSet in the loop
starting from line 3, and therefore the algoritherides at mosiN operation sets
from DB4,,. For case (4), the number of operation sets ifiedtby Algorithm 12 is
less thanN, but the number of operation sets in this casehimgxceedN. The
operation sets in case (4) follow Definition 28daso is Algorithm 12. Since the
number of operation sets in case (4) might excéed maximal capability of
Algorithm 12. Obviously, Algorithm 12 identifies eéhoperation sets for case (4)
only partially.o

4.2.3 Detecting Blank Branch

Besides the cases described above, analysis ok bi@mches, i.e. the branches in a
decision structure where no process residing ifbbthach has operations effective on the same
artifact, is still ignored. Figure 15 illustratearfs of an LRTS workflow that the definitions
made byv; and v, are directly before the usage made \y The definitions should be

considered separately during analysis becauseatteegxclusively executed during run-time.
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However, if the third branch is taken during exemut the usage made lwy is undefined
because the definition afis killed byvy, and no further definition is made by activity pesses
on the third branch. The third branch is a blardnibh which generates a blind spot in our

methodology.

[ artifact operation on a J

Figure 15 An Example of a Blank Branch

For any operationp, to eliminate the effect brought by blank branciwben calculating
its input states, all the operations reside indd@sion structure with blank branches should be
removed from OP{,, and DB4, can then be recalculated for analysis. Algoriti3ndétects

blank branches from the directly before operatioinhe input operation.

Algorithm 13 Detecting Blank BranchDBB

Input: an operationp,

Pre-Condition: DB4, has been calculated by Algorithm 11
Branch Set DBB {

01:XSSet = @,

02:AllBranch = @;

03:OpBranch = @,

04: Dop’LIDB4gp {

05: Osill(op’.p.abstackop.p.abstack) wheresi.p.type== XS {
06: if( si.pdXSSet ) {

07: 0 out-flow of si.p, { add (si.p, BM(f) ) to AllIBranch;
08: addsi.p to XSSet;

09: }

10: addsi to OpBranch;

11. }

12:}

13:BlankBranch = AlIBranch\OpBranch
14:return BlankBranch;

}
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The temporary sets used in the algorithm are liaéd from line 1 to 3. At line 5, the
algorithm checks if there exists a decision stmgcthat (1) the structure is converged befipe
and (2) an operation in DBgresides in the structure. At line 7, Algorithm e ords the
structural items representing all the branchedefdecision structure in AllBranch. For any
operation in DB4, if the operation resides in some decision stmegtthe algorithm collects
the branch of the structure where the operatioidessn OpBranch at line 10. At line 13, the
blank branches are derived from the difference betwAllBranch and OpBranch as

BlankBranch. BlankBranch is then returned as tkalteset for further analysis.

In Algorithm 13, all the branches of the decisidrustures with the operations directly
beforeop are collected in AllIBranch, and the individual tches resided by the operations are
recorded in OpBranch. If all the branches colleatedliBranch are resided by the operations
directly beforeop, no blank branch exists. Otherwise, the differenoetween AllBranch and

OpBranch are the branches without operations @ffeohop.a, i.e. the blank branches.
4.2.4 Identifying Artifact Anomalies in an LRTS wkblow

In this section, the algorithm integrating all théormation gathered above to identify the
artifact anomalies in an LRTS workflow is introddceAn operation transits the state of
artifacts as Figure 13 illustrates, and artifaciraalies are produced when operations effective
on artifacts with inappropriate state. For an aciifoperatiorop, the artifact state produced by
op, i.e.op's output state, is recorded ap.OutState, and its input state is calculated frbe t
output states of the operation(s) directly befareSince only one of the mutually exclusive
input operations is executed during run-time, thput states from these operations are
discussed separately, and an operation might tradupe multiple output states accordingly.

States of artifacts are recorded as state itendsagnmodeled as following.
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Definition 29 (Records of Artifact States)

[ state iterrstltem stitem= (st, SRC),
stitemst represents the output artifact stat@pf, and
stitemSRC indicates the source operations producingttite.

With the definition above, Algorithm 14 describégs imethodology to calculate the input

state for each operation.

Algorithm 14 Gathering Input States of an Operati@iS
Input: an LRTS workfloww,
an operatiorop
Pre-Condition: DB4OPs3 has been calculated by Algorithm 12
Set of State Iltems GIS {
01:InStates = &,
02:if( DB4OPSp, == D)
03: add (UD, {v.s}} ) to InStates;
04:else 1 OPSIDB40OPS, {
05: if( OPS is an RDS/RDK )
06: add (AB, pp’ |op’0OPS,op.typei{Def, Kill}} ) to InStates;
07: elseif (OPSis an RDU)
08: add ( DR, {op’ | op’0OPS,op.type== Def} ) to InStates;
09: elseif (OPS is an RKS/RKU )
10: add (UD, {op’ |op’0OPS,op.type==Kill} ) to InStates;
11: elseif (OPSisan RUS){
12: if (0op’00OPS, Csidop’.OutState thasi.st== UD) {

13: UDSRC = ¢;

14: 0op’0OPS andgidop’.OutState,

15: if(sist==UD ) UDSRC = UDSRC si.SRC;

16: add( UD, UDSRC) to InStates;

17: }

18: if( Cop’0OPS andizop’.OutState thasi.std(AB, DR) ) {
19: ABSRC = @;

20: DRSRC = @&;

21: 0op’0OPS andgidop’.OutState {

22: if(sist==AB ) ABSRC = ABSRTIsi.SRC;

23: else ifi.st== DR ) DRSRC = DRSRCsi.SRC;
24: }

25: if (ABSRC+# @) add( AB, ABSRC ) to InStates;

60



26: if (DRSRC# @) add( DR, DRSRC)) to InStates;
27: }

28: }else 0op’'00OPS, InStates = InStatesp’.outStates;
29:return InStates;

}

The algorithm shows how to collect the input stteperationop from DB4OPS,. An
empty DB4OP$, indicates that no operation is operated befgueln this dissertation, we
assume that all the artifacts are initialized vatate UD, and the state item ( UDy.§} ) is
inserted to the result set in this circumstanc®BAOPS, is not an empty set, the algorithm
calculates the input state op from each operation set in DB4ORBSAN operation set
containing multiple operations composes a racingratpn, and the algorithm gives the input
state ofop generated from an RDS, RDK, RDU, RKS, and RKU filora 5 to 10 based on the
description in section 4.1.1. For an RUS, if all tisages involved in the RUS propagate state
UD in their output states, the artifact might bedeimed after the RUS, and state UD is
included inop's input states accordingly. On the other hanthefe exists a usage involving in
the RUS propagating state AB for the target artjfe target artifact might be ambiguous in
definition beforeop is operated. Similarly, if the target artifactdisfined in one of the usages
involved in the RUS, DR is recorded as one of tipait states obp. The method to calculate
the artifact states generated from an RUS is destrirom line 12 to 26 in the algorithm.
Finally, if the operation set contains only onegtnoperation. The input state @b is simply
equivalent to the output state of the operatiod,iarhandled at line 28. The input statespf
are identified for each operation set collectecAlyorithm 12. The completeness of the input

states gathered by Algorithm 14 is restricted leydapability of Algorithm 12.

According to the type of an operation and its cgpoanding input state, whether an artifact
anomaly is generated from the operation can betieteThe artifact anomalies are recorded in

Artifact Anomaly Table (AAT) modeled as following:
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Definition 30 (Artifact Anomaly Table)
Let AAT,, be the artifact anomaly table for an LRTS workfiaw
OaarJAAT , aar = (op, type SRC),
aar.op indicates the abnormal artifact operation,
aar.typed{Useless Definition, Null Kill, Undefined Usage, Aiiguous Usage]
indicates the anomaly type, and
aar.SRCrepresents the set of operations leading to thealyo

For each record in AA], the source operations producing the anomalyererded. For
example, a usage of an artifact is undefined becausll removes the definition of the artifact
before it. The kill is recorded in the artifact amaly record to provide information for fixing of
the anomaly. The following algorithm illustratedetstion of artifact anomalies and calculation

of the output states for operations with differgmies.

Algorithm 15 Identifying Artifact Anomalies for N@perations {AAN
Input: an LRTS workfloww,
an artifact operatioop, and
a set of state items InState
Pre-Conditionop.type== Nop
IAAN {
01: o stitemInState,
02: if( stitemstate== DN )
03: add(op’ | op’OstlitemSRC, Useless Definitionpof} ) to AAT ;
04:0p.OutState = InState;

}

For an artifach, the no operation made by the end process isd¢edan AOPI, to detect
if any useless definition exists at the end ofltR& S workflow. Since only a definition transits
an artifact to state DN, the algorithm recordsdperations generating DN state directly before

the end of the LRTS workflow as useless definitions

Algorithm 16 Identifying Artifact Anomalies for Dgfitions -IAAD
Input: an LRTS workfloww,

an artifact operatioop, and

a set of state items InState
Pre-Conditionop.type== Def
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IAAD {

01: O stitenuInState,

02: if( stitemstate== DN )

03: add6p’ | op’'OstltemSRC, Useless Definitionpf} ) to AAT ;
04:op.OutState = { ( DN, ép}) };

}

Algorithm 16 identifies the artifact anomalies geated from a definition, and calculate its
output state. For an artifaat a definition which is not referenced by any usalgefore being
defined again is a useless definition. Finallyeéirdtion transitsa to state DN, and the output

state generated by the definition is recorded altagly.

Algorithm 17 Identifying Artifact Anomalies for Kl - IAAK
Input: an LRTS workfloww,
an artifact operatioop, and
a set of state items InState
Pre-Conditionop.type==Kill
IAAK {
01: O stitenInState,
02: if( stitemstate== DN )
03: add(op’ | op’OstlitemSRC, Useless Definitionpf} ) to AAT ;
04: else if(stitemstate== UD ) add(op, Null Kill, stitemSRC ) to AAT,;
05:0p.OutState ={ (UD, ép}) };

}

Algorithm 17 identifies the artifact anomalies geated from a kill, and calculates its
output state. A definition which is killed beforeibg referenced is also useless, and the
anomaly is detected at line 2 and 3. Besides, dréfact remains undefined before a kill, the
kill is redundant, and a Null Kill is raised accorgly. A kill transits an artifact to state UD, and

the output state generated from the kill is recdraleline 5.

Algorithm 18 Identifying Artifact Anomalies for Ugas -IAAU
Input: an LRTS workfloww,

an artifact operatioop, and

a set of state items InState
Pre-Conditionop.type =Use
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IAAU {

01: O stlitenmdInState {

02: if( stitemstate==AB )

03: add(op, Ambiguous UsagestlitemSRCLI
04: ConcDopll ConcK op) to AAT;
05: else if(stitemstate== UD ) {

06: if(ConcD_op+ @)

07: add ¢p, Ambiguous UsagestitemSRCLI ConcD op) to AAT,;
08: else addip, Undefined UsagestitemSRC) to AAT,;
09: }

10: else if(stitemstaté 1{DR, DN} )

11: if( ConcD oplJ ConcK op# @)

12: addop, Ambiguous UsagestltemSRCL

13: ConcDopl! ConcK_op) to AAT,,;

14: if( stitemstate== DN ) add (DRstltemSRC) toop.OutState;
15: else addtltem to opOutState;

16:}

}

Algorithm 18 identifies whether a usage is abnormaatl calculates its output state. The
input state AB indicates that the artifact is araloigs in definition when the operation being
operated, and makes the usage an ambiguous us#ugeiriput state of the usage is UD, the
algorithm checks if there is any definition coneuwtr to the usage from at line 6. If no
concurrent definition exists, the usage is undeffiigtherwise, the usage is ambiguous because
it may reference an undefined artifact or the valened by the concurrent definition(s). If the
input state of the usage is DN or DR, the concuefinitions or kills which cause ambiguity
to the usage are checked at line 11, and an AmbgUsage is raised if any ambiguity exists.
The usage transits a DN artifact to state DR ompkinpropagates the input states to the

following operations otherwise.

The expressions adopted in Algorithm 15 to Algonitii8 are stated based on the
description in section 4.1. With all the definit®and algorithms described in this chapter, the

methodology detecting artifact anomalies in a T$kflow is introduced as following.
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Algorithm 19 Identifying Artifact Anomalies lAA

Input: an LRTS workfloww

IAA {

01:1G(w);

02: DadAy {

03: ICO(a);

04: for(i =1to |AOPL| ){

05: while( true ) {

06: CDBO(op );

07: CDBOPSOEp );

08: InState = GIS, op );

09: if(op.type== Nop ) IAAN(op, InStatew );

10: else if (op.type== Def ) IAAD( op, InStatew );
11: else if (op.type== Kill ) IAAK( op, InStatew );
12: else if (op.type== Use ) IAAU(op, InStatew );
13: BlankBranch = DBB¢p );

14: if( BlankBranch == @) break

15: else

16: 0 opt OP Ly,

17: if( CsioBlankBranch, andi’ Dop.p.abstackwheresi.sp==si’.sp)
18: removep from OPLop;;

19: }

20: }

21:}

}

At line 1, the algorithm first invokes Algorithm ® collect structural and temporal
information like EAIs, ABStacks, and artifact opioa lists for the input LRTS workflow. For
each artifach, Algorithm 19 then identifies the concurrency beén artifact operations with
Algorithm 10 at line 3, and starts analysis of élaeh operation in AORLn order from line 4.
Algorithm 11 is invoked at line 6 to collect theesptions directly beforep, and the operation
sets directly beforep is manufactured by Algorithm 12 from the previoasuit at line 7. At
line 8, Algorithm 14 gathers the input stateopf, and invokes corresponding algorithms from
line 9 to 12 to detect artifact anomalies and dateuthe output state afp. At line 13,

Algorithm 13 is invoked to detect if there is angrik branch beforep. If not, the anomaly
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detection work folop is accomplished. Otherwise, all the operationglieg in the decision
structure with blank branches are removed from {Pand Algorithm 19 repeats analysis of
artifact anomalies foop until all the blank branches considered. The cetepless of the
artifact anomalies detected in our methodologyemded by the completeness of the operation
sets identified by Algorithm 12. Developing an aitjum able to collecting more operation sets

is helpful in enhancing our methodology, and is &sfa future work of this study.
4.3 Case Study

In this section, a case study is made to illustitaefeasibility of our methodology.

(Nop) [Kill]

(NopJ LUse] [(Nop) ’ ’ (Nop ] [Use] [Def] [Nop)

O v Jrus 2

0.0) 12 (0.0 (0,0)

(1,2)

(1,2)

(d(p), D(p))
(AOP(p, a))

(1,2)

Figure 16 The Sample TS Workflow for the Case Stad@hapter 4

Figure 16 shows the sample TS workflow for our casely. The processes, flows,
working durations, and the artifact operations maeartifacta are illustrated in the sample.
To analyze the sample TS workflow with our methodg| the structured loops in the TS
workflow should first be reduced. After loop redoat the LRTS workflow generated from the
sample TS workflow are illustrated as Figure 17edhAlgorithm 9 is invoked to gather the
temporal and structural information such as the &#d the ABStack for each process, and the

artifact operation list for each artifact.
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Figure 17 The Sample LRTS Workflow Derived from trigg 16 with Decoration of EAls and ABStacks

Table 3 illustrates the artifact operation list @hd concurrent operations for artifact

generated by Algorithm 9 and Algorithm 10.

Table 3 Artifact Operation List fax, and the Corresponding Concurrent Operations

op AOPL, ConcD ConcK
opy (vi,a 0, 2, Use) ] )
op2 (v2, &, 1, 4, Def) ) %]
ops (Vio, & 1, 4, Use) o2} { op7}
ops (vio', & 1, 4, Use) 6pz} { opr}
ops (v3, 4 2, 6, Use) 1] )
Ops (vic’, & 2, 6, Use) 2. oo} { op}
opy (Vs, &, 3, 8, Kill) %] (%]
ops (vio’, & 3, 8, Use) 2. oo} { op}
(0]0) (v7, &, 3, 10, Def) (%] %]
Op1o (Vo, &, 9, 14, Use) oo} 1]
op1u1 (vi1, &, 10, 16, Use) %] 1]
Op12 (viz, &, 11, 18, Def) ] ]
Op13 (e a, 12, 18, Nop) ] )

To be brief, we do not show all the details of deiwy artifact anomalies in this case study,

67



and focus on two representative examples, and ope. Therefore, we assume that the
operations beforepy are calculated already, and Table 4 shows theubwfate of the

operations with LETs smaller theps's.

Table 4 The Output State of the Operations bedpses Calculated

op OutState

opy {(UD,{s)}

op: { (ON, {opz}) }

ops {(UD,{s})}

Oopy {(UD,{sh}

ops { (OR, {op}) }

Ops {(UD, {sh}

opr { (UD, {op7}) }

OpPs { (AB, {'s, op, op3}) }

op; is an undefined usage because it is operated bafoyeactivity process gives
definition to artifacta. ops, ops, Ops, and op; are ambiguous usages because there exist
definition concurrent to them. Befoirgy is calculated, the artifact anomaly table, AAT

records the following anomalies:

AAT,, = { ( op;, Undefined Usage,s} ), ( ops, Ambiguous Usage,s{ opy} ), ( ops,
Ambiguous Usage,§ opy} ), ( ops, Ambiguous Usage,s{ op,, opz} ), ( opy,
Ambiguous Usage.§ op;, op7} ) }

Forops, Algorithm 19 retrieve all the operations with dl@alLET from AOPL, as OPlyyg,
{opy, opy, Ops, O, OpPs, OPs, OP7, Ops}, and invokes Algorithm 11 to calculate D84 {ops,
op;}. Since all the operations directly befoogy are mutually exclusive, i.e. the case (2)
described in section 4.2, the DB4QRSs calculated from Algorithm 12 as pfs}, { ops} }.
With DB4OP S0, Algorithm 14 gathers the input statesop$ as the union of the output states
of ops andop; as { (DR, {opz}), (UD, {op;}) }. opg is a definition, and Algorithm 16 is invoked
for detection of artifact anomalies and generatbiits output state. As a result, no artifact

anomaly is found and the output stat@pfis generated as { (DNofs}) }. However, during
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the blank branch detectioms(, 2) is found a blank branch, and the operatiothan same
decision structure should be removed to eliminhéedffect of blank branclops andop; is
removed from OPdye. DB4yp9, DB4OPSG,e and the InState afpy are recalculated a®gy},
{{ op:}}, and { (DN, {opy}) }. After invoking Algorithm 16 once again, antdact anomaly
(ope, Useless Definition,dpo}) is raised because the definition madeodpy is not used before

redefinition when the blank branch is taken.

DB4,p10iS generated asofs, ops, 0Pz, ops}, and DB4OP§,10is generated as {0, 0ps},
{op7, ops} }. Since this case is relatively simple, we casiy identify that the operation sets
{ops, op7} and {ops, ops} is neglected in our methodology. With DB4QRS the input states
of opyp are generated. According to the definition of mgcoperations introduced in section
4.1.1, {ops, 0ps} is an RUS and §p;7, ops} is an RKU, and { (DR, ¢p.}) } and { (UD, {op?}) }
are generated ag,o's input states correspondingly. Algorithm 18 igsoked to detect artifact
anomalies and identify the output stateopfo,. Two artifact anomalies,0p10, Ambiguous
Usage, fp7, opa}) and (0p1o, Ambiguous Usage oz, 0po}), are generated becausp makes
a definition toa concurrently, and generates ambiguityofm,. The output states afpyo is
{ (DR, {op}), (UD, {op7}) }. Then the algorithm removes the blank branchasop,, and

finds no further anomalies.

Except for the artifact anomalies listed and désdtiabove,qp:3, Useless Definition,d})
are detected and recorded to AAThen Algorithm 19 completes its work througheautThe
useless definition is detected at the end proce#®ed.RTS workflow because the definition

made byopy3 is not used by any other activity process ungl¢nd ofw.
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4 .4 Discussion

4.4.1 Related Works in Analysis of Artifact Anonesi

Sun et al. extend the Activity Diagram in UML forodeling data flow in a business
process [51]. Three classes of data-flow anomalmissing data, redundant data, and
conflicting data, are defined. With the routingamhation defined in a workflow specification,

a detecting algorithm for the data-flow anomal®sanstructed [51]. However, Sun et al. do
not build an explicit data model in characterizihg data behaviors, and consider only read and

initial write in data operations.

In [26], Sadiq et al. reveal the importance abdet validation of workflow data, and
introduce seven basic data validation problems,uRéant Data, Lost Data, Missing Data,
Mismatched Data, Inconsistent Data, MisdirectedaDand Insufficient Data in workflow
models. Redundant Data occur when designers spatgtivity to define a data item which is
not required by any other succeeding activitiesstldata occur when designers specify two
activities that may be executed in parallel to mefthe same data item, and one of the
definitions is lost when the data item is preemjitgthe process executed in advance. Missing
Data occurs when designers specify an activityottsame a data item which is never defined
by any preceding activities. Mismatched Data anken the structure of data is incompatible
between the definition and the usage of the dateorisistent data happen when the data
required by a workflow are externally updated biiestapplications during the workflow
execution, and the polluted data might cause eobtke workflow. Misdirected Data occur
when the direction of the data flow is conflict withe direction of the control flow of the
workflow. Insufficient Data happen when the dataafied by designers is insufficient to

successfully complete an activity.

Destruction of artifacts is not considered in b&tln and Sadiqg’s studies. In [27] and [28],

70



Hsu et al. consider the effect of destroying aifaatt and re-model the inaccurate artifact
manipulation by separating initialization and ugdas two different artifact operations. In [28],
six inaccurate artifact usages, No Producer, No sCGorer, Redundant Specification,
Contradiction, Parallel Hazard, and Branch Hazaed defined. No Producer is a warning
indicating that a data item is operated befores ispecified. No Consumer indicates that an
artifact is not requested after its definition {jimization). Redundant Specification indicates
that an artifact is repeatedly specified in a wiakf Contradiction implies the defect that the
state of an artifact is not matched to the pre-ttador post-condition of the activity accessing
it. Parallel Hazard occurs due to conflict intevieg of concurrent artifact operations, and is
recognized if multiple concurrent activities operah the same artifact. Branch Hazard occurs
when branches in a decision structure contain tipesaon artifacts have been selected, or
when there is inconsistency between the conditemtirtg in the XOR-split process or the

branches in the decision structure.

In [29], Wang et al. develop a systematic notatiordescribe artifact anomalies and
simplify the description of artifact anomalies frof8] into three categories, Missing
Production, Redundant Write, and Conflict Write sslhg Production occurs when an artifact
is consumed before it is produced or after it istiyyed. Redundant Write occurs when an
artifact is written by an activity but the artifastneither required by the succeeding activities
nor a member of the process outputs. Conflict Woideurs when parallel processes race their
access to the same artifact. According to diffesgnictural relationships between activities
accessing some artifacts, thirteen abnormal usaifgerps are described for the three categories

to follow the previous models made by Sadiq ef24], Hsu et al. [29], and Sun et al. [51],
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4.4.2 Comparison between Our Approach and the &elAbrks

Table 5 Comparison between Our Approach and that&eMorks

Our Sadiq et al. Hsu et. al
Sun et al. [51 Wang et al. [29
Approach [51] [26] [28] 9 [29]
At?sgncg of Missing Data No Production
Initialization No
Delayed Producer Delayed
. o Initialization Misdirected Datal o Production
Undefined Missing Missing Conditional
Usage Data Improper Branch Production}  Production
Routing Hazard i
N/A Exclu3|ye
Production
Un'certfa'ln Misdirected Datal Parallel Uncerta.un
Availability Hazard Production
. Conditional
Contingent Branch Consumption
Useless Redundant Redundancy| Redundant Datal Hazard Redundant P :
L | X after Last Write
Definition Data " Mismatched Datg Write -
Inevitable No No Consumption
Redundancy Consumer after Last Write
. ’ . Multiple
. Conflict Multipl a5 Conflict
Ambiguous Usage ! _u_ 'p_e Lost Data Contradictior . ! Parallel
Data Initialization Write i
Production
Insufficient Data
N/A N/A N/A B el el N/A N/A N/A
Null Kill N/A N/A N/A N/A
Temporal
npora N/A N/A N/A N/A
Consideration
Anomaly Source
y Sou N/A N/A N/A N/A
Tracking

Table 5 lists and compares the features betweemetated works and our approach.
Artifact anomalies are appealed with different nanme previous studies, but can still be
mapped into the three basic categories made in fyl¢omparing the definition of the artifact
anomalies defined in our approach and the relatttsy we conclude that Undefined Usage
and Useless Definition are directly mapped intodifig Data and Redundant Data described in
[51]. On the other hand, the Conflict Data defined51] are anomalies generated when
multiple definitions are made in parallel. In oypaoach, the concurrent definitions are

considered being executed with undetermined oeder,generate ambiguity in artifacts. They
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are not directly considered as an anomaly becdyss(anomaly actually occurs when a usage
refers to the ambiguous definitions, and (2) simalaomaly may also occur when there exist
kills or definitions concurrent to usages. Therefokmbiguous Usage is categorized in this
dissertation, and covers Conflict Data discussetthénprevious works. Besides, Sadiq et al.
additionally define Insufficient Data and Mismatdh@ata in [26] for conflicts about contents
or format between definitions and usages. Sincestheéies made in [28], [29], [51] and this
dissertation do not discuss the contents of attifdasufficient Data and Mismatched Data
are ignored in these studies. Finally, althoughrdeson of artifacts is considered in [28] and
[29], the redundancy generated by unnecessaryudéstr is not discussed in these works. In
our studies, Null Kill is categorized and detecteg our approach to eliminate such

redundancies.

Our approach also considers how temporal factorg aff@ct the detection of artifact
anomalies. The twisted temporal and structuralticelahips between activity processes are
modeled and analyzed, and the artifact anomaliegrgéed along with them are detected.
Besides, when the previous works only focus onatiete of artifact anomalies, our approach
also helps designers locating the problems hiddesn workflow schema with providing the

information about the sources leading to artifaxiraalies.
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Chapter 5. Incremental Detection of Resource Conflictsin LRTS

Wor kflow

In this chapter, an incremental methodology datgctithe resource conflicts
generated/eliminated during construction of LRTSkflows along with each edit operation
made by designers is described. With the methogptigsigners obtain information after each
step they made, and may respond to any conflictseidmately. In section 5.1, the resource
conflicts in LRTS workflow are first defined, anlet edit operations and additional elements
necessary for building an LRTS workflow are modeladsection 5.2. The methods for
incremental detection of resource conflicts areiated in section 5.3. Several examples are
described in section 5.4 to illustrate the feagibdf our methodology, and the related works

are discussed in section 5.5.
5.1 Resource Conflicts in LRTS workflow

Each activity in a workflow needs certain resourimeaccomplish its business objective.
In this dissertation, it is assumed that all theotgces required by an LRTS workfloware
recorded in the set RigSand designers may assign resource in/RE&ctivity processes in,P
to show that the resource is necessary to the ggocCEhe resource model used in this

dissertation is defined as following.

Definition 31 (Resources)
For an LRTS workfloww,
OrORESy andpOPy, p.type==ACT
Ref: REGx P, = Boolean
Ref(r, p) == true indicates thatis accessed hyy
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In [37], two processes are defined haviegource conflictf the following conditions

hold:

(1) The two processes havesource dependenon a resource, i.e. the two processes

access the same resource.

(2) The two processes hawmtentially concurrent executipm.e. the two processes

reside on different branches split from an AND-spibcess with overlapped EAIs.

In this dissertation, we assume that all the resoaonflicts buried in LRTS workflowy
would be recorded in the set R TBesides, to tracking the generation or eliminatad
resource conflicts, pairs of processes which gt following conditions are also recorded as
potential resource conflicis the set PRCF. (1) the processes are resource dependencyg(2) th
processes reside in different branches split franAD-split process and their EAIs are not
overlapped, i.e. they are parallel but not conaur®n the basis of Definition 3, Definition 10,

and [37], the resource conflict in an LRTS workfl@defined as following.

Definition 32 (Resource Conflict)
For an LRTS workfloww,
RCTy ={(r, p, 9) | (Reff, p) CRef(, q)) == true, and Concurremt(q) == true }
PRCT, = {(r, p, ) | (Ref¢, p) CRef(r, q)) == true, Concurrent( q) == false, ang
Parallelp, q) == true }

Since Concurrent( q) is equivalent to Concurreng(p), the resource conflict (p, q) is
equivalent tor, g, p). To simplify our discussion, we assume that agildemoving ¢, p, Q)
into/from RCT, is equivalent to adding/removing §, p) into/from RCT,. In other words,r( p,

g)ORCT,, if and only if ¢, g, p)DRCT,. The assumption also holds for PRCT

5.2 Edit Operations for LRTS workflow

To trace resource conflicts generated in an LRT&fhw during design-time, the edit

operations designers may adopt to develop the LRdi&flow are first addressed. Since an
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LRTS workflow is structured [8], the constructioiam LRTS workflow follows the constraints

described in chapter 2. Therefore, the edit opmnatare restricted as following:

(1) Only an activity process can be directly inserteaoved into/from an LRTS workflow.

Control processes must be inserted/removed into/an LRTS workflow in pairs.

(2) Designers can only alter the working durations esource references of activity

processes.

(3) The design of an LRTS workflow is started from &ibd RTS workflow, and designers
edit the LRTS workflow until all the design workeeacompleted. The definition of basic

LRTS workflow is described in Definition 33.

Definition 33 (Basic LRTS workflow)

A basic LRTS workfloww = ( {s, €}, {(s, €)}, s, e)
D(s)=d(s)=D(e) =dE =0
EAI(s) = EAI(e) = [0, 0]

In order to keep the control processes inserteaivechinto/from an LRTS workflow in
pairs, additional records for control blocks areaduced. A control block is composed of a
split process starting a decision/parallel struetamd a join process converging the structure.
Besides, the record also marks a natural numbeteoto provide distinct ID for each branch
in the corresponding decision/parallel structuriee Tecord for a control block is modeled as

following.

Definition 34 (Control Blocks)
For an LRTS workfloww, CB, records all the control blocks m
0cbOCBy,
cb = (st, end br_coun)
stoP,, sttyped{AS, XS}

AJif sttype==AS
endJP,, endtype== " Stype

XJif sttype==XS
br_countis a natural number indicating the branch marktfer new branch

splitting fromsp.
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0 spdPy, sptyped{AS, XS}, CcboCB, thatsp==ch.st
0jnOPy, jn.typed{AJ, XJ}, CcboCB, thatjn ==ch.end
0 cbOCB,, Reachablef.st, ch.end == true
0 cb, cb’0CBy,
(1) cb.st+#cb’.st, andcb.end+#cb’.end and
(2) Reachablef.st, cb’.st) == true if and only if
(Reachablafb.end cb’.st) 0 Reachablafb’.end cb.end) == true.

Starting from a basic LRTS workflow, the edit operations discussed in this disseriatio

are listed as following:

(1) Inserting activity procegsinto an existent flow

Pre-Conditionf = (p’, p”)0Fw, BM(p’, p”) ==bm
Post-Condition: i, p”)OFw, (P’, P), (, P”) O Fw,
p.type= ACT, df) == D(p) == 0,
BM( (p’, p) ) ==bm BM( (p, p”) ) ==-1
Comments: Designers use this operation to irseractivity procesp into an existent
flow f in w. f is replaced by two new flows, the in-flow @f which is
connected to the source proces$ and the out-flow op which is connected
to the sink process éf The minimum and maximum working durationspof
are both assumed to be zero. The branch mark ohtfiew of p is given as
the replaced one, and the branch mark of the out-@if p is set as @ because
p is an activity process.

(2) Inserting a new decision structure quotedgpgndjn into an existent flov

Pre-Conditionf = (p’, p”)0F, BM(p’, p”) ==bm
Post-Condition:if’, p”)OFw, (P’, SP, (Sp jn), (n, p”)OF,
sptype== XS,jn.type== XJ, 6p, jn, 1)0CB,
BM( (p", sp) ) ==bm BM( (sp jn) ) == 0, BM((n, p") ) == -1
Comments: Designers use this operation to iaseécision structure quoted lBp an
XOR-split process, anj, an XOR-join process, into an existent flowm w. f
is replaced similarly as in operation (1). A cohtotock record is generated
with this operation. Bothsp and jn are recorded, and the corresponding
courter for the branches in the decision structsinaitialized as 1. Besides,
the branch mark ofsf, jn), the flow of the first branch split fromp, is
initialized as 0.
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(3) Inserting a new parallel structure quotedspwyndijn into an existent flow

Pre-Conditionf = (p’, p”)0Fw, BM(p’, p”) ==bm
Post-Condition: i, p”)OFw, (', SP, (Sp jn), (n, p”)OFu,
sptype==AS,jn.type==AJ, 6p, jn, 1)0CB,
BM( (p’, sp) ) ==bm BM((sp jn)) == 0, BM({n, p")) ==-1
Comments: To insert a new parallel structure wwtés similar to insert a new decision
structure. The only difference between them is $pas an AND-split process,
andjn is typed AND-join.

(4) Inserting a new branch to a decision/paratieicture

Pre-Condition: gp jn, br_coun)o0CB,, (sp, jn)0FR,

Post-Condition: gp, jn) 0F,, BM( (sp jn) ) ==br_count+

Comments: To simplify our discussion, a flow betweepair of split and join processes is
allowed being inserted only when no such flow existw. The flow &p, jn)
iIs added to F and its branch mark is set to the current valbehe
corresponding branch counter. The counter is abdgiddafter the insertion.

(5) Adding a resource reference to an activity pssc

Pre-Conditionr ORy, pOP,, p.type== ACT, Ref¢, p) == false

Post-Condition: Ref( p) == true

Comments: Designers use this operation to inditiaé¢ access of the resourceis
necessary for activity proceps

(6) Removing a resource reference from an actpibcess

Pre-Conditionr ORy, pOPy, p.type== ACT, Ref(, p) == true

Post-Condition: Ref( p) == false

Comments: Designers use this operation to remoeadbource reference of resource
from activity procesg.

(7) Setting minimal working duration of an activjiyocess

Pre-Action:var =in_value- d(p)

Pre-ConditionpoP,, 0<in_value<D(p), var# 0

Post-Condition: df) ==in_value

Comments: Designers use this operation to desighateninimal working duration of an
activity process inwv to the specific input valuen_value To simplify our
discussionjn_valuemust be a non-negative integer is equal or smtikzmn
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the maximal working duration of the target activityocess. To facilitate our
detection of resource conflicts, the variation @f)ds recorded asar before
the operation is invoked.

(8) Setting maximal working duration of an activiyocess

Pre-Action:var = in_value- D(p)

Pre-ConditionpOP,, d(p)<in_value var # 0

Post-Condition: Og) == in_value

Comments: Designers use this operation to desighatmaximal working duration of an
activity process inw to the specific input valuén_value in_valuemust be a
non-negative integer which is equal to or largemthhe maximal working
duration of the target activity process. To faatkt our detection of resource
conflicts, the variation of ) is recorded awar before the operation is
invoked.

(9) Removing the activity procepfromw

Pre-Condition: ', p), (p, p”)0Fw, p.type== ACT, df) == 0, D) == 0,
OroORy, Reff, p) == false
Post-ConditionpOPy, (p, p”)0Fy
Comments: Designers use this operation to removedivity process fromw. To
simplify our discussion, it is assumed that befilve removal of the activity
process, the resource references of the activaggss are first removed, and
the corresponding minimum and maximal working doret are set to be 0.

(10) Removing the empty branch fram

Pre-Condition: gp, jn, br_coun)oCB,, (sp, jn)OF,, and a pathsp py, ..., P JN> exists.

Post-Condition: gp, jn) OFy

Comments: Designers use this operation to remoeesthpty branch in a control block
from w. In order to keep the integrity of, the removal which disconneats
is forbidden.

(11) Removing the empty control block quotedspyandjn fromw

Pre-Condition: gp, jn, br_coun}oCB,, (p’, sp), (sp. jn), (in, p”)OFw,
C nopOPR, that (Reachablsf, p) C Reachabled, jn)) == true
Post-Condition:[§’, p”)OFw, Sp, jn0OPy,
0 cbOCB,, ch.st# sp, ch.end+#jn
Comments: Designers use this operation to remosengrol block fromw. To simplify
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our discussion, only the control block containing processes inside is
allowed being removed from.

5.3 An Incremental Algorithm Detecting Resource fliors in TS workflow

The methods incrementally detecting resource adsflalong with the operations are
introduced in this section. According to DefinitioB2, resource conflicts might be
generated/eliminated after operation (5), (6),4ny (8), and the methods would be invoked as
the post actions of the operations. Besides, arttemgperations above, the ABStack(s) of the
inserted process(es) should be established aftgatbpns (1), (2), and (3), and the EAls among
the LRTS workflow under editing are necessary beipdated after operation (7) and (8). The
calculation of ABStacks and EAIs are also descrigiethe post actions of the edit operations.
In this section, the methodology to calculate EAbmrges after modification of working
durations is first introduced in section 5.3.1séttion 5.3.2 and 5.3.3, the methods detecting
generation or elimination of resource conflictseafbperation (5), (6), (7), and (8) are

separately discussed. In section 5.3.4, the pasingcof each edit operations are described.
5.3.1 Updating Estimated Active Interval for Praesafter Edit Operation

Changing EAI of a process ripples to its descengestesses. Algorithm 20 works after
any working duration modification is made. The EAfsll the affected processes are updated,

and the set containing the processes are retuonddrther analysis of resource conflicts.

Algorithm 20 Calculate EAI €EAI
Input: an LRTS workfloww,

an activity procesgp
Pre-ConditionipOPR,, ip.type==ACT
Pre-Condition: O pOP,, p.mark== false;
Process set CEAI {
01:CP =@;
02: Queuetq;
03:tg.enqueuép);
04: O (ip, p)dFw, tg.enqueu);
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05: while(tq is not empty) {

06: p=tg.dequeug

07: if(p.typed{AJ, XJ}) && ( C(p’, p)OFw, p’.mark== false) ) continue;
08: p.mark = true;

09: oest=ESTp);

10: olet= LET(p);

11:  if(p.type==AJ) {

12: ESTE) = MAX({ESTp’) +d(p’) | @', pUFW});
13: LET(E) = MAX({LET(P) | ', pOFw });

14: }

15: else ifp.type== 0J) {

16: ESTE) = min({ESTp’) +d(p) | @', p)UFw });
17: LET(P) = MAX({LET(P) | @', pOFw});

18: else{

19: ESTE) =ESTE’) +d(p’) | @', p)UFw;

20: LET@) = LET(’) +D(p) | (@', p) O Fw;

21 }

22: if( oestz EST() ||oletz LET(p) ) {

23: addp to CP;

24: O(p, p’)URy, if(p’0tqg) tg.enqueu’);

25 }
26:return CP;
}

Algorithm 20 is assumed being invoked after designmaake a modification to the
minimal/maximal working duration of an activity mesdsp. Similar to Algorithm 9, a traverse
gueue is adopted to traverse all the processebakkecfromip, and the algorithms checks the
process in the queue one by one. Let the processntly being checked kg At line 9 and 10,
the original value of EA[) is recorded, and the algorithm updates pA#ccording to its type
from line 11 to 21. From line 22 to 25, the aldgomitcompares the current EQ)(to the original
one. If EAI(p) is changed after the operation, the algorithreritsp into CP, puts the process(es)
succeeding tp into the traverse queue, and continues the caionld he algorithm halts when
EAI stops changing at some join process or whertigeprocess is met. CP, a set collecting all

the processes with altered EAIs, is returned agdhkelt set for further analysis of resource
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conflicts. We show the correctness of the algorithynproving the following lemma.

Lemma 11

After a duration modification has been made on &ivity processp in an LRTS
workflow w, the following statements hold:
(1) opoPy, EAI(p) changes if and only goOCEAI(ip, w)
(2) oOpoPy, only when EAIP) should be altereght CEAI(ip, w)

Proof:

For the first statement, any EAI changeniis accomplished by the codes from line 11 to
line 21 in Algorithm 20 only. Therefore, when anylEchange occurs, the process with
altered EAI is found at line 22 and is put into theult set CP at line 23. The process with no
EAIl change is not put into CP in this algorithm.

For the second statement, on the basis of Defmificand the methods illustrated in
Figure 9, EAIp) is changed only when (1) Ip] is modified ang ==ip, (2) dip) is modified
and {p, p)OFw, or (3) ', p)OFy, and EAIQ’) is changedWhen d{p) or D(ip) is modified,ip
and its succeeding process(es) are enqueuedqgrabline 3 and line 4. Therefore, the EAI
changes originated from condition (1) or (2) arkewated by the codes from line 11 to line
21, and thug is put into CRat line 24. For condition (3), if EAX) is changedp is enqueued
into tq at line 24 becaus@’( p)OF,. EAI(p) would be calculated by the codes from line 11 to
line 21, andp is put into CPat line 23 if EAIp) is altered. The processes with EAI changes
from the three above conditions are all include@h

With the proof above, Lemma 11 is shown correct.

5.3.2 Identifying Generation or Elimination of Raste Conflicts after Adding/Removing a

Resource Reference to/from an Activity Process

From section 5.2, the edit operation (5) and (@ngje the resource references of an
activity processes. The resource dependencies arporgesses might be generated or
eliminated with the operations, and therefore, wes® conflicts (or the potential ones) are

generated or eliminated accordingly.

Operation (5) adds the reference of a resource ant@ctivity process p. A resource
conflicts is generated if there exists anothervégtiprocess which also references r and is
concurrent to p. Similarly, if there exists anotlaetivity process which references r and is

parallel but not concurrent to p, a potential reseuconflict is produced. As following,
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Algorithm 21 detects the generation of (potentr@¥ource conflicts after a new resource
reference is added to an activity process, andsaliesigners for each new generated resource

conflict.

Algorithm 21 Detecting Resource Conflict for Newdearce ReferenceDRCNRR
Input: a resource, an activity procesg, an LRTS workfloww

Pre-Conditionr ORES,, pOP,, and Ref(, p) == true

DRCNRR {

01: op’ OPMp}{

02: if( Ref(r, p’) == true && Parallelp, p’) ==true ) {

03: if( EAI(p) =y, EAI(p’) ) {

04: add{, p, p’) to RCT;

05: alert( Resource confliat,(p, p’) is generated );

06: }

07: else addr(p, p’) to PRCT,

08: }

09:}

}

On the other hand, when a resource reference isvesifrom an activity process, all the
resource conflicts (or the potential ones) reldatethe activity process and the resource are
eliminated. Algorithm 22 updates R¢&nd PRCY, after removing a resource reference from

an activity process, and raises alerts for anyieltion of resource conflicts.

Algorithm 22 Updating Resource Conflict for RemowResource Reference
- URCRRR
Input: a resource, an activity procesg, an LRTS workfloww
Pre-ConditionrORES,, pOP,, and Ref(, p) == false
URCRRR {
01: o(r,p, p)ORCTy, {
02: remove(, p, p’) from RCT,;
03:  alert( Resource conflict,(p, p’) is eliminated );
04: }
05: oO(r, p, p)OPRCT,, removeX, p, p’) from PRCT,;
}
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5.3.3 Identifying Generation or Elimination of Raste Conflicts after Alteration of EAIls

Two concurrent processes might not be concurreptnaore if their EAls are no longer
overlapped after an edit operation. According itiea 5.2, concurrencies between processes
might be generated or eliminated after operatiQro(48) is invoked. In this section, first we
show that the operations changing EAIs in an LRT8k#low bring the same effect to all the

affected processes with the following lemma.

Lemma 12

For an LRTS workfloww, and Op, qOP,, if EAI(p) changes after a design
operation, EAIQ) is either altered the same way or remains undthrdter the
operation.

Proof:

Algorithm 20 collects all the processes whose EAthanged after an edit operation.
Therefore, if we can show that the EAIs of the psses collected by Algorithm 20 are all
altered the same way, Lemma 12 is shown correctth®rbasis of the discussion made for
Algorithm 20, it is known that for any procepsIP,, EAI(p) is changed because of the
following situations:

(1) D(p) is altered.

(2) (p’, p)OFw, and dp’) is altered.

3) (p’, p)OFw, and EAIP) is altered.

According to the methods illustrated in Figure @, firoces$, only LET(p) is altered in
situation (1), and only ESp) is altered for situation (2). Since a designemliswed to
modify only the minimum or maximum working duratiof a single activity process, only
one of the ESTH) and LETg) can be changed in situation (3).

For situation (1), let LET[) be the original value of LEP], and Df) is changed from
vtov',and LET) = LET'(p) + (v’ - V). Let (o, p”)0OF LET(p”) = LET(p) + D(p) = LET'(p)

+ (V' -v) + D(p”) = LET'(p") + (v'- v), and therefore LET(’) is changed the same way as
LET(p) did. According to the calculation in Algorithm 28Il the affected processes invokes
the same formula for the changes of LETs, and thexare altered the same way LB)Idid.
Lemma 12 holds for situation (1).

For situation (2), let ESTp) be the original value of ESp), andd(p) is changed fronv
tov’, and ESTQ) = EST'(p) + (V' - V). Let (o, p")OF, ESTQ”) = ESTP) + d(p) = EST'(p) +
(V' -v) +dp) = EST(") + (v - v). ESTE”) is changed the same way as B3Tdid.
According to the calculation in Algorithm 20, alie affected processes invoke the same
formula for the changes of EST’s, and therefore atered the same way as ES)r¢lid.
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Lemma 12 holds for situation (2).

For situation (3), since the designer may not mpoHAIs directly, there must exist some
procesan that Df) or d() is changed by designers. The proofs made abavéeadopted
for n, and show that Lemma 12 holds for situation (3).

Since Lemma 12 holds in all the situations leadmghange of EAlf), Lemma 12 is
shown correcta

For any processg whose EAI is changed after this operation, if E§I'< ESTQ) or
LET'(q) > LET(g), EAI(g) expands after the operation; otherwise, gAlghrinks. With
Lemma 12, it is known that the EAls change the samgafter operation (7) or (8) is invoked.
In other words, for any, EAI(Q) is either expanded or shrunk. According to thinden of
operation (7) and (8) stated in section 5.2,pldie the process whose working duration is
modified, v represents the original value opyipor D(p), v’ represents the new value assigned,
andvar = (V' —V) represents the variation of the modified workilugation, and from the proof
of Lemma 12, the variation of ESj)(or LET(q) is alsovar. If d(p) decreases (i.&ar <0 in
operation (7)), EAIK{) is expanded fowar| time units; otherwise, EAd] is shrunk. On the
contrary, if D) increases (i.ezar > 0 in operation (8)), EAY) is expanded fowr| time units;

otherwise, EAIQ) is shrunk.

In the following lemma, we show that for any praeesin an LRTS workflow, shrink of

its EAI creates no resource conflicts, and expamefats EAI eliminates no ones.

Lemma 13
For an LRTS workflowmv, and 0 pOPR,, the shrink of EAIp) does not generate any
new resource conflict, and the expansion of pA§liminates no resource conflict

UJ

Proof:
The lemma is shown correct through following distoss:
(1) The shrink of EAIf) can not generate new resource conflicts.

B.W.O.C, it is assumed that, (p, ) is a new resource conflict generated from
shrink of EAIQ). Let EAI'(p) be the original value of EAp. EAI(p) =, EAI(g) and
~(EAI'(p) =, EAI'(Q)) both hold. Since EAf) is shrunk, one of the statement EQT
EST'(p) or LET(p) < LET’(p) holds. First, we discuss the case that pEF(EST (p).
According to Lemma 12, LEpP] == LET(p), LET(q) == LET'(qg), and ESTq) =
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EST'(g). Since ~(EAI'Q)=1 EAI'(Q)), MIN{LET'( p), LET'(q)}) — MAX({EST'( p),

EST'(p’)}) < 0. Concluding the descriptions above, MIN{LBY,( LET(q)}) -
MAX({EST(p), EST@’)}) < 0, and therefore ~(EAN = EAI(Q)) which is a
contradiction. The case that LEp)(< LET'(p) can be proved the similar way, and
therefore the first statement of Lemma 13 is showmnect.

(2) The expansion of EAMW) can not eliminate any resource conflict.

B.W.O.C, it is assumed that,(p, q) is a resource conflict eliminated from
expansion of EAN). Therefore, ~(EAl) =1, EAI(Q)) and EAI'(p) =y, EAI'(q) both hold.
Since EAIQ) is shrunk, one of the statement EQT€ EST'(p) or LET(p) > LET’(p)
holds. First, we discuss the case that PP K EST'(p). According to Lemma 12,

LET(p) == LET(p), LET(@ == LET(g), and ESTg) < EST'(g). Since
EAI'(p) = EAI'(Q), MIN{LET'( p), LET'(0)}) — MAX({EST'(p), EST'(p’)}) > O.

Concluding the descriptions above, MIN{LE)( LET(@)}) — MAX({EST(p),
ESTE’)}) > 0, and therefore EAR) =, EAI(q) which is a contradiction. The case that

LET(p) > LET’(p) can be proved the similar way, and thereforestend statement of
Lemma 13 is shown correct.
By (1) and (2), Lemma 13 is shown correct.

Since the operations causing EAIl expansion doesff@tt the structure of the LRTS
workflow or the resource references among the psE® the resource conflicts generated
from the operation must be a potential resourcdlicobefore the operation is made. After
operation (7) or (8) is invoked, if the EAI of tha&rget process is expanded, Algorithm 23
checks each potential resource conflict in PRGfTthere exists any potential resource conflict
that the processes involved in it become concurr@ligorithm 23 transfers the resource
conflict from PRCT, to RCT, and raises an alert to designers about the geowrafithe

resource conflict.

On the other hand, if the EAI of the target procdsiks after invocation of operation (7)
or (8). Algorithm 24 checks RGTto assure that whether there exists any exisesgurce
conflicts that the processes involved in it aréamger concurrent, i.e. the EAIs of the processes
are no longer overlapped. If so, Algorithm 24 tfarns the resource conflict from RGTo
PRCTyand raises an alert to designers about the elimmaf the resource conflict. The details

of Algorithm 23 and Algorithm 24 are described alofwving.
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Algorithm 23 Detecting Resource Conflict after E&{pansion DRCEE
Input: A set of processes PSet

Pre-Condition: PSetP,, 0OpOPSetp.type==ACT

DRCEE {

01: OpOPSet {

02: 0O(r, p, qOPRCT, {

03: if( EAI(p) =y EAI(Q) )

04: remover( p, q) from PRCT;;

05: add ¥, p, g) into RCT,;

06: alert( Resource conflict f, p’) is generated );

07: }

08: }

09:}

}

Algorithm 24 Updating Resource Conflict after EAirfik - URCES
Input: A set of processes PSet

Pre-Condition: PSetPR,, 0pOPSetp.type==ACT

URCES {

01: DpoPSet{

02: o(r,p, QORCT, {

03: if( (EAI(p) =r, EAI(Q)) )

04: remover p, q) from RCT,;

05: add ¥, p, g) into PRCT;

06: alert( Resource conflict (r, p, p’) is elirted );
07: }

08: }

09: }

5.3.4 Combining the Algorithms with Edit Operations

With all the methods constructed above, the pdsirasof edit operations are described as

following:

(1) Inserting activity procegsinto an existent flow
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Push(p'.abstackbm), if p'typell{AS, XS}

Post-Action:p.abstack= _
p'.abstackotherwise

ESTH) = EST’) +d(p’), LET(q) = LET(p’) + D(p)

Comments: The ABStack and EAI corresponding &ve calculated based on the methods
described in section 2.4.2 and 2.4.3.

(2) Inserting a new decision structure quotedgpgndjn into an existent flow

Push('.abstackbm) if p'typel{AS, XS}

Post-Action:spabstack= { )
p'.abstackotherwise

jn.abstack= sp.abstack
ESTgp = ESTE’) +d(p’), LET(sp = LET(p’) + D(p)
EST6) = EST6Ep, LET(jn) = LET(sp
Comments: The ABStacks and EAIs correspondirngpi@ndjn are calculated based on the
methods described in section 2.4.2 and 2.4.3.

(3) Inserting a new parallel structure quotedspwyndijn into an existent flow

Push(p'.abstackbm if p'typel{AS, XS}

Post-Action:spabstack= .
p'.abstackotherwise

jn.abstack= spabstack
EST{p = ESTE') +d(p’), LET(sp) = LET(p’) + D(p)
ESTj0) = ESTEp, LET(jn) = LET(sp)
Comments: The ABStacks and EAIs correspondirgptandjn are calculated based on the
methods described in section 2.4.2 and 2.4.3.

(5) Adding a resource reference to an activity pssc

Post-Action: invoking DRCNRR( p)
Comments: Algorithm 21 is invoked to detect theotese conflicts generated because of
the operation.

(6) Removing a resource reference from an actpiocess

Post-Action: invoking URCRRR( p)
Comments: Algorithm 22 is invoked to remove theotese conflicts eliminated because of
the operation.

(7) Setting minimal working duration of an activjiyocess
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DRCEE(CEA(w, p)) if var<0

URCES(CEA(w, p)) otherwise

Comments: After the EAIs affected by this operatwoa updated, Algorithm 23 is invoked
if the modified dp) is smaller than the original one, and Algorithfmi2
invoked otherwise.

Post-Action: invoking{

(8) Setting maximal working duration of an activiyocess

DRCEE(CEA(w, p)) if var >0

URCES(CEA(w, p)) otherwise

Comments: After the EAIs affected by this operatme updated, Algorithm 24 is invoked
if the modified Df) is smaller than the original one, and Algorithia 2
invoked otherwise.

Post-Action: invoking{

5.4 Case Study

To demonstrate our methodology, three cases adeedtin this section. First, we show
how to detect the resource conflict generated gsaurce assignment, second, the effect
brought by changing the working duration of an\aftiprocess is presented, and at last, we
show the influences about removal of an activitygess. We assume that designers has edited
the sample LRTS workflowv from a basic LRTS workflow as illustrated in Figuk8, and our

case study starts accordingly.

«(xsy, 1),

RCTw= { } (as;, 1)»

PRCTw={(7), v2, vs)}

«(as;, I)» XS, (1,4),13,9] Xj,

0.0013.5 20 oA 10
( ” ) [ ’ ] (as,, ])» ( ’ )1[ H ]
«» «© “© las; 2 :
@.5), 3, 10]
(0,0),0,01 (3 5) 70, 57 0: 0413, 5] “((‘;ZJ’ 12))’» (0,0),[12,25] (2, 5, [12, 30] (0, 0), [14, 30]
D1y

(7,12), [3, 17]
as; aj
«(asz, 2),

(as;, 2)» (0,0)

2 «asi, 2)» «(asi, 2)» «(as;, 2»

S

RESw={r;}
Ref: (7, v;) => true
(r1, v) => true

« -+ »: ABStack
(d(p), D(p)). [EST(p), LET(p)]

[10,17] (2, 8), [10, 25]

Figure 18 The Sample LRTS Workflow for the Casedgtin Chapter 5
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5.4.1 Case 1: Adding a Resource Reference

With the sample LRTS workflow in Figure 18, desighadd resource referenceto
activity procesy,. Ref(1, v4) becomes true after the operation. With the dsioms made in

section 5.3, Algorithm 21, DRCNRR( V), is invoked.

PRCTw={(r1, v2, vo)}

(as;, I)»

RCTw={(rs, v2, v4)} «(xsy, 1),

«(asy, 1)»
<
(0, 0),|[4, 10]

«(xsy, 2),
(asz, I)»

«»
«» «»

2. 5),[3, 10] v, ¢
(0,0).10. 01 (3.5), o, 57 (0 01 [3. 31 “((‘;2; Qp (0.0).[12.25] (2,5), [12, 30] (0. 0). [14,30]
;
RESWI{}’]} 2 «(asp, 2» aSg(7, 12),[3, 17] Lljg «(asy, 2)» «(asy, 2)»
Ref: (r;, v5) => true «(asz, 2), El]i(;)j);)?p%iu[ig;T(p), LET(p)]
(r1, v6) => true (0,0).|13.5]  (as;, 2 ©- 04110, 17] (2.8),[10,25]
(ry, vy => true 2

(13).3.8]
Figure 19 The Sample LRTS Workflow after Adding eviNResource Reference
Algorithm 21 checks the structural and temporahtrehships betweew, and the other
processes referring tg, i.e.v, andvs. According to the EAIs and the ABStacks of thegesses,
the concurrency between andv, is identified, and a new resource conflict, (2, va) is
generated.r(, Vo, V) is put into RCT,, and a corresponding alert is raised for desigmeter
the operation, the LRTS workflow is updated as Fagi©, and the altered parts are marked

with different colors.

5.4.2 Case 2: Modification of the Working Duratioihan Activity Process

After adding a resource reference/tipdesigners modify the minimal working duration of
vy from 7 to 4. Algorithm 20 is then invoked and ugegeathe EAIs of the processss vs, aj1, V7,
ande. Since dy,) is decreased from 7 to 4, the EAIls are expandighbrithm 23 is invoked.
Since EAI{e) is expanded from [10, 25] to [7, 25] and is oapfded to EAN.), the potential

resource conflictrg, v», V) becomes an actual one after this operatianvy, ve) is transferred
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from PRCT, to RCT,, and a corresponding alert is raised to give aningrto designers about
the generation of the resource conflict. After tpeeration, the TS workflow is updated as

Figure 20, and the altered parts are marked witbrdnt colors.

RCTw={(ry, v2, v4), (r1, v2, ve)} «(xsp, 1),
PRCTw={} (as;, I»
!
«as, D> |xs, (1,4),3,9] Xj 1 ga €lass, I»

X0

«(xs;, 2),

©,0113,51 (), .04,
«» «© “» las; 2
@, 5,3, 10]
(0,0),0,0] (35) 70, 57 (0 0,3, 5] «(asa, 1), (0,0),[9,25] (2,5),[9,30] (0,0),[11,30]

(asg, 2)»

RESw={r;} «(as;, 2)» o
Ref: (1, v2) => true «(ass, 2), (), Doy, (55T, LET0)]
(1, vg) => true ST (asy, 2 (O OX[T7.17) (2.8).[7.25] »DwD, :

(r1, vq) => true

1, 3),A[3, 8]

Figure 20 The Sample LRTS Workflow after Modifieatiof a Working Duration

5.4.3 Case 3: Removing an Activity Process

After modifying the minimal working duration ®f, designers decide to delete the activity
processss. Beforevg is actually removed, its resource references shioalfirst removed, and
its working durations are set to zero. Therefor(iR vs) is set to be false, and all the resource
conflict related tor; andves are eliminated. The EAIs of the processes sucngeivs are
updated after d§) and D{;) are set to zero. Since none of the affected gsogakes any
references to resources, no resource conflict anergted or eliminated here. Finaly, is
removed fromw, the flows &j,, v7) and {~, aji) are removed, andj;, aj;) is added into 7
instead. After the operation, the sample LRTS workis updated as Figure 21, and the altered

parts are marked with different colors.
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RCTw={(r1, v2, v4)} «(xsy, 1),
PRCTw={} (as;, I»

1

«asp, I» | xs; (1,4, [3,9] Xj; «(as;, I»
I
51, 2),
(0, 0%, [3. 5] «g; ’ 1))» (0. 0), 4, 10]
«» « “» las; 2
@.5). 3. 10]
(0,0),10,01 (375 10, 51 (0. 0, [3. 51 «((“HSSZ’ 12))’» 0,007,171 (2,5),[7,22] (0,0),[9,22]
1>
RESw={r/} 2 «(as;, 2» a32(4’ 12), 3. 17] aj> «(as, 2)»
Ref (1, v2) => true (a2, 2), (40, Do, ST, LETQ)
(r1, vs) => false 0,0),13.51 (45, 2 0017 17] B ’
(r1, v4) => true 2

(1,3),[3, 8]

Figure 21 The Sample LRTS Workflow after Deletimgectivity Process

5.5 Related Works

Resource allocation is a popular topic in analg§iworkflow models. In [55], Tang et al.
extend a Petri-net based workflow model for comipmsiof web-services and resources. In [32]
and [33], Reveliotis et al. integrate resource c@tmn systems into a workflow model to
analyze deadlocks and synchronization problems.efah extend the approach developed in
[9] with additional resource constraints for an@ysf performance among workflows [56].
Russel et al. conclude various representation éhdation of resources in workflows as 43
resource allocation patterns, and discuss coordmaimong workflow, human resources and

external resources in detail [50].

In [57], Xiao et al. define the execution duratafra workflow and develop an approach to
analyze the resource feasibility in the workflowridg its execution. The approach tracks the
resource occupation made by individual activitiesa iworkflow, and keeps resources feasible
when parallel access of resources happens. Warmd @resent a modeling and analysis
approach for workflows with resources and non-cheteed time constraints on petri-nets [58].
The resources and the activities in workflows ameted with different kinds of places in

petri-nets. By analyzing the reachability grapthaf R/NT_WF_Net, the implementation cases
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which satisfy various timing constraints (from tbest to the worst) are discussed and

categorized.

In [34], Li et al. model resources and temporalstaants in workflow specification for
analysis, and develop a methodology to detect géinarand elimination of resource conflicts
in timed workflow specifications. Because Li etedtablish a complete model for analysis of
resource constraints in timed workflows, sevenadiigs like [35] and [36] follow Li’s approach
for further analysis of resource constraints ambomgd workflow. Zhong et al. apply Li's
timing model to establish a Petri-net based worvkflmodel for verification of resource
constraints among concurrent workflows [35]. In ][36Isu et al. focus on providing
information to the workflow designers about reseuconflicts in a workflow specification
during design-time with an incremental algorithnheTworks in [36] is revised in [37], and is
further discussed in this dissertation to adopntie¢hods raised in [30] on TS workflow model

for analysis.

Based on the former studies on static timing mamaage of workflow specifications, Li
continued his own research by analyzing the resoamd temporal constraints between distinct
workflow instances dynamically [59]. In [59], therwept of reference points is introduced to
show the relative timing constraints between thividies in different workflow instances.
According to a pre-specified reference point inneaorkflow, if any resource conflict exists,
the EAls of the processes involved in the confli adjusted. On the other hand, Wang et al.
presents a modeling and analysis approach for Yeovkfwith resources and non-determined
timing constraints on petri-nets [58]. On the othand, Delias et al. propose an algorithm to
minimize the resource conflicts subject to tempoistraints and simultaneously optimizes
throughput or utilization of resources among warflinstances [60]. Rather than totally
avoiding resource conflicts, Delias’ approach opas the utilization of resources by

maximizing overlapping between tasks which will eumlly use different resources of the
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same type [60]. The resource and temporal fact@damulated in a matrix to achieve an

efficient optimal solution for run-time resourcéneduling [60].
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Chapter 6. Conclusion and Future Works

In this dissertation, the structural and tempasiies in workflow analysis are considered
and modeled with TS workflow. Based on TS workflonodel, three distinct analysis
approaches for various perspectives are develommbrdingly. For the organization
perspective, the issues for delegation in WfMS domted with TRBAC are discussed. The
constraints on delegation like delegation loopgas&tion of duty, and various enterprise
policies etc. are detected and followed dynamic&lith our methodology, users are able to
request delegations for their works manually, a1/ can delegate an emergent task to an
appropriate delegatee automatically. For the datapective, on the basis of define-use-kill
operations, the artifact anomalies generated frowa twisted temporal and structural
relationships between processes in TS workflow sda¢ed. The racing behavior from the
concurrent activities are categorized and discysaad a methodology detecting artifact
anomalies in a TS workflow through static analysisstablished. For the resource perspective,
an incremental methodology verifying resource dot#lin a TS workflow along with every
edit operation made by designers is described.rélagionships between edit operations and
generation/elimination of resource conflicts arecdssed with both structural and temporal
consideration. With the methodology, designersizeahe effect of each edit operation they

made, and acquire information to help correctirsgpuece conflicts in their design.

In the future, several issues can be further stuoliethe basis of the methodologies in this
dissertation. First, for the delegation framewahig feasibility and security issues in sharing a
task instance among users can be studied to adoptgperation in delegation of task instances.

Users’ capability and pleasure should also be densd in automatic delegation by applying
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the techniques based on knowledge management. Getmn the detection of artifact
anomalies, a solution to group the operation sgtsa@mpleteness and better efficiency should
be studied. An incremental algorithm to detectfactianomalies generated or eliminated by
edit operations made by designers can be consttuBgsides, the actions made on artifacts
and processes need being studied with consideratithe dependencies caused by the actions
among activity processes in more details. Thirdtle verification of resource conflicts, our
methodology can be extended to detect conflicteigdad across various workflows. Besides,
multiple instances of a resource type should bsidened, and the delays caused by flows may

also be included in temporal analysis.
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