

國 立 交 通 大 學

資訊工程學系

博博博博 士士士士 論論論論 文文文文

一個對時序工作流程管理系統進行分析的研究

A Study to Analyzing Temporal Workflow Management System

研 究 生：許懷中

指導教授：王豐堅 教授

中中中中 華華華華 民民民民 國國國國 一一一一 百百百百 年年年年 七七七七 月月月月

一個對時序工作流程管理系統進行分析的研究

A Study to Analyzing Temporal Workflow Management System

研 究 生：許懷中 Student：Hwai-Jung Hsu

指導教授：王豐堅 Advisor：Feng-Jian Wang

國 立 交 通 大 學

資 訊 工 程 學 系

博 士 論 文

A Dissertation

Submitted to Institute of Computer Science and Engieering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Doctor

in

Computer Science

July 2011

Hsinchu, Taiwan, Republic of China

中華民國一百年七月

 i

一個對時序一個對時序一個對時序一個對時序工作流程工作流程工作流程工作流程管理系統進行管理系統進行管理系統進行管理系統進行分析分析分析分析的的的的研究研究研究研究

學生：許懷中 指導教授：王豐堅 博士

國立交通大學資訊工程學系 (研究所) 博士班

摘摘摘摘 要要要要

現代化企業利用工作流程管理系統統整文件、資訊系統以及人事組織以遂行其企業

目的，而針對工作流程進行分析，有助於尋找企業程序中所隱藏的問題，避免工作流程

執行時重複發生的錯誤，進而增進企業整體的效率；由於大部分具有良好行為之工作流

程皆可轉換為結構化工作流程，因此結構化工作流程模型是在進行工作流程結構健全性

分析時不可或缺的工具，此外，時序為進行工作流程正確性檢查、驗證以及工作流程效

率分析上必須考量之因素，在此博士論文中，我們將時序因素與結構化工作流程模型結

合統整而成一結構化時序工作流程模型，並且針對三種不同的領域，提出各自的分析方

法；在組織分析領域，針對使用任務與角色為基存取控制模型的工作流程管理系統，我

們建立了一個可以進行工作代理的執行框架，在此框架下，代理行為受到責任分擔以及

企業政策的制約，使用者可以手動進行工作代理授權，而系統也可以自動將緊急的工作

授權給適合的代理人；在資料分析領域，我們建立了一個從結構化時序工作流程中偵測

異常文件使用的方法，藉由這個方法對工作流程定義進行靜態分析，可以有效避免由於

異常資料操作所造成的系統意外行為；最後，針對資源領域，我們提出了一個可以在結

構化時序工作流程建構的過程中，進行資源一致性與時序條件分析的遞增性分析方法，

藉由我們的方法，工作流程設計者可以瞭解他所做的每一個設計決定對於整體工作流程

定義的影響，並且修正由於錯誤的設計邏輯所造成的潛在資源衝突。

關鍵字：工作流程、工作流程管理系統、結構化時序工作流程、代理、任務與角色為基

的存取控制模型、異常文件使用、資源衝突、遞增性分析方法

 ii

A Study to Analyzing Temporal Workflow Management System

Student: Hwai-Jung Hsu Advisor: Dr. Feng-Jian Wang

Institute of Computer Science and Engineering
National Chiao Tung University

ABSTRACT

In modern enterprises, Workflow Management System (WfMS) coordinates data,

resources, and organizations to enact workflows for various business objectives. Analysis of

workflows facilitates locating problems in business processes and prevents repeated errors

during workflow enactment. Structured workflow model is a useful tool for analysis of

structural integrity because most well-behaved workflows can be reduced to structured

workflows. Besides, temporal factors are also essential for workflow analysis, especially for

validation, verification and performance analysis of workflows. In this dissertation, we

integrate temporal factors into structured workflow model as Temporal Structured Workflow

(TS workflow) model, and develop three distinct approaches for analysis of TS workflows in

various perspectives. For the organization perspective, a framework for delegating works

among users in a WfMS coordinated with Task-Role-based Access Control (TRBAC) model

is established. With the framework, delegations can be enacted manually or automatically

under restrictions like separation of duty (SOD) and management of enterprise policies. For

the data perspective, a methodology detecting artifact anomalies in TS workflows is

developed. By analyzing workflow schemas with our methodology, the unexpected run-time

behavior generated from abnormal data manipulation can be prevented. Finally, for the

resource perspective, an incremental approach is constructed to analyze resource consistencies

and temporal constraints during construction of a loop-reduced TS workflow (LRTS

workflow). With our approach, designers may realize the effect of each edit operation they

made on the workflow schema under design, and correct the potential resource conflicts

buried in business processes immediately.

Keywords: Workflow, Workflow Management System (WfMS), Temporal Structured

Workflow, Delegation, Task-Role based Access Control (TRBAC), Artifact

Anomalies, Resource Conflicts, and Incremental Methodology

 iii

誌誌誌誌 謝謝謝謝

獻給在天上看顧著我的祖父

攻讀博士不僅僅是為了獲取一個學位，它是一場對於人生、自我以及真理的探索，

如今這漫長、無止盡的旅程將要來到轉捩點，為了直到今日所完成的小小成就，有很多

人值得感謝，首先要感謝我的指導教授王豐堅老師，感謝他在學術以及人生上對我的指

導與幫助，沒有老師的耐心與包容，我無法在這條道路上堅持到底；感謝我的博士論文

口試委員，朱治平教授、黃慶育教授、黃冠寰教授、梁德容教授、吳毅成教授以及黃世

昆教授，感謝各位口委的指導，讓本博士論文得以順利完成；感謝所有曾經直接或間接

參與過本論文相關研究的實驗室伙伴，許嘉麟、王建偉、王靜慧、張志絃、許熏任、楊

大立、簡璞、陳建志等等，感謝他們在本研究中的貢獻；感謝我的祖父，雖然他沒能親

眼看到我畢業，但是他一生努力掙來的這個家，撫育我成長茁壯；感謝我的祖母，她無

怨無悔的全力支持，讓我得以心無旁騖地進行研究；感謝我的父親，沒有他的一席話，

我不會踏上這條路，沒有他多年來的默默支持，我無以為繼；感謝我的母親，雖然她總

是說自己不懂我在作些什麼，但是她的關愛是我人生的明燈；感謝我的姑姑，感謝她為

這個家的奉獻，彌補了我因著忙碌而未足夠的孝道；感謝我的妻子，感謝她這些年在我

身後的付出以及容忍我的任性，我們還將攜手創造未來；最後，感謝所有曾經在這論文

以及我攻讀博士的過程中有所貢獻的人們，謝謝大家。

 iv

目錄 – Table of Contents

摘 要 ...i

ABSTRACT ...ii

誌 謝 ...iii

目錄 – Table of Contents...iv

圖目錄 – Table of Figures ..vi

表目錄 – Table of Tables..vii

定義目錄 – Table of Definitions ...viii

演算法目錄 – Table of Algorithms...ix

輔助定理目錄 – Table of Lemmas ..x

Chapter 1. Introduction...1

Chapter 2. Temporal Structured Workflow Model ...6

2.1 Basic Elements ...6

2.2 Structured Workflow...7

2.3 Temporal Structured Workflow ..9

2.4 Analysis of Structural and Temporal Relationships between Processes in TS

workflow...10

2.4.1 Loop Reduction ...10

2.4.2 Analysis of Structural Relationships between Processes in LRTS workflow .12

2.4.3 Analysis of Twisted Temporal and Structural Relationships between Processes

in LRTS workflow..16

Chapter 3. A Delegation Framework for WfMS based on Task-Role based Access Control and

TS workflow...21

3.1 Background...21

3.1.1 Task-Role based Access Control Model ..21

3.1.2 Delegation Approaches in RBAC and TRBAC...22

3.1.3 Separation of Duty...24

3.2 Task and Role Model ..24

3.3 Delegation Framework for WfMS on TRBAC ..27

3.3.1 The properties of Delegation ...27

3.3.2 Delegatee Decision..29

3.3.3 Delegation from System Request ..32

3.3.4 Delegation from User Request ..34

3.3.5 Revocation...36

3.4 Case Study ..39

3.5 Discussion...41

Chapter 4. Detecting Artifact Anomalies in TS workflow ...43

 v

4.1 Artifact Anomalies in TS workflow..43

4.1.1 Artifact Operations ..43

4.1.2 Artifact Anomalies...45

4.2 The Methodology Detecting Artifact Anomalies in LRTS workflow47

4.2.1 Gathering Structural, Temporal, Artifact Information in LRTS workflow......47

4.2.2 Collecting Structural and Temporal Relationships between Artifact Operations

in LRTS workflow..49

4.2.3 Detecting Blank Branch ..57

4.2.4 Identifying Artifact Anomalies in an LRTS workflow59

4.3 Case Study ..66

4.4 Discussion...70

4.4.1 Related Works in Analysis of Artifact Anomalies ...70

4.4.2 Comparison between Our Approach and the Related Works72

Chapter 5. Incremental Detection of Resource Conflicts in LRTS Workflow74

5.1 Resource Conflicts in LRTS workflow ..74

5.2 Edit Operations for LRTS workflow ..75

5.3 An Incremental Algorithm Detecting Resource Conflicts in TS workflow................80

5.3.1 Updating Estimated Active Interval for Processes after Edit Operation80

5.3.2 Identifying Generation or Elimination of Resource Conflicts after

Adding/Removing a Resource Reference to/from an Activity Process............82

5.3.3 Identifying Generation or Elimination of Resource Conflicts after Alteration

of EAIs..84

5.3.4 Combining the Algorithms with Edit Operations..87

5.4 Case Study ..89

5.4.1 Case 1: Adding a Resource Reference...90

5.4.2 Case 2: Modification of the Working Duration of an Activity Process...........90

5.4.3 Case 3: Removing an Activity Process..91

5.5 Related Works...92

Chapter 6. Conclusion and Future Works...95

Reference..97

 vi

圖目錄 – Table of Figures

Figure 1 The Graphic Notations of the Basic Workflow Elements ...7

Figure 2 Building Blocks of a Structured Workflow...8

Figure 3 A Sample Structured Workflow...9

Figure 4 A Sample TS workflow ...10

Figure 5 Refined Loop Reduction for TS Workflow Model ...11

Figure 6 Calculation of ABStacks for Processes in an LRTS Workflow...............................14

Figure 7 A Sample TS workflow with ABStacks and EAIs ..15

Figure 8 The Temporal Relationships between Time Intervals [39]16

Figure 9 Calculation of EAIs in an LRTS Workflow [34][37]..18

Figure 10 The TRBAC Model [17] ...21

Figure 11 The Process for Delegation from User Request ..35

Figure 12 (a) The Sample TS Workflow Specification, (b) The Sample Role Hierarchy and

User Assignment, and (c) The Information about Tasks, Mutually-exclusive Tasks,

and Authorization Applications ...39

Figure 13 The Artifact State Transit Diagram ...45

Figure 14 Examples for Nestedly Organized Decision and Parallel Structures54

Figure 15 An Example of a Blank Branch...58

Figure 16 The Sample TS Workflow for the Case Study in Chapter 4..................................66

Figure 17 The Sample LRTS Workflow Derived from Figure 16 with Decoration of EAIs

and ABStacks...67

Figure 18 The Sample LRTS Workflow for the Case Study in Chapter 5.............................89

Figure 19 The Sample LRTS Workflow after Adding a New Resource Reference90

Figure 20 The Sample LRTS Workflow after Modification of a Working Duration.............91

Figure 21 The Sample LRTS Workflow after Deleting an Activity Process92

 vii

表目錄 – Table of Tables

Table 1 Classes of Tasks in TRBAC Model [17]..22

Table 2 Comparison of Characteristics of Various Delegation Models....................................41

Table 3 Artifact Operation List for a, and the Corresponding Concurrent Operations67

Table 4 The Output State of the Operations before op9 is Calculated68

Table 5 Comparison Between Our Approach and the Related Works......................................72

 viii

定義目錄 – Table of Definitions

Definition 1 (Workflow Model)..7

Definition 2 (Path) ..7

Definition 3 (Structural Relationships in a Structured Workflow) ...9

Definition 4 (TS workflow)..10

Definition 5 (Branch Mark)..13

Definition 6 (ABStack)...13

Definition 7 (Time Intervals)..17

Definition 8 (Time Descriptions)..17

Definition 9 (Estimated Active Interval) ..18

Definition 10 (Structural and Temporal Relationships in LRTS workflow)20

Definition 11 (Task)..25

Definition 12 (TS workflow Instance and Task Instance) ..25

Definition 13 (User) ...26

Definition 14 (Role) ...26

Definition 15 (The Role Hierarchy) ...27

Definition 16 (Delegation Record) ...28

Definition 17 (Delegation Records in Task Instances) ...28

Definition 18 (Mutually Exclusive Tasks)..30

Definition 19 (Instance Level SOD constraints) ..30

Definition 20 (Authorization Form) ...35

Definition 21 (Approved Form) ...36

Definition 22 (Artifact Model in TS workflow)...45

Definition 23 (Artifact Operation List) ..47

Definition 24 (Relationships between Artifact Operations) ...49

Definition 25 (Records of Relationships between Artifact Operations)...................................50

Definition 26 (Directly Before) ..51

Definition 27 (The List of Operations with Smaller LET than Operation op)51

Definition 28 (Set of Operation Sets derived from DB4op) ..54

Definition 29 (Records of Artifact States) ..60

Definition 30 (Artifact Anomaly Table) ...62

Definition 31 (Resources)...74

Definition 32 (Resource Conflict) ..75

Definition 33 (Basic LRTS workflow) ...76

Definition 34 (Control Blocks)...76

 ix

演算法目錄 – Table of Algorithms

Algorithm 1 Delegation Algorithm - DA..28

Algorithm 2 Removing Users Causing Delegation Loop - RUDL...29

Algorithm 3 Removing Users Involved in Mutually-Exclusive Tasks - RUMET....................30

Algorithm 4 Removing Inappropriate Users - RIU ..31

Algorithm 5 Discovering the Role Hierarchy - DRH...32

Algorithm 6 Delegation from System Request - DSR..34

Algorithm 7 Handle Forthcoming Delegation - HFD ..36

Algorithm 8 Revocation Algorithm - RA..37

Algorithm 9 Information Gathering - IG ..48

Algorithm 10 Identifying Concurrent Operations - ICO..50

Algorithm 11 Collecting Directly Before Operations – CDBO..51

Algorithm 12 Collecting Directly Before Operation Sets - CDBOPS......................................55

Algorithm 13 Detecting Blank Branch - DBB..58

Algorithm 14 Gathering Input States of an Operation - GIS..60

Algorithm 15 Identifying Artifact Anomalies for No Operations - IAAN................................62

Algorithm 16 Identifying Artifact Anomalies for Definitions - IAAD62

Algorithm 17 Identifying Artifact Anomalies for Kills - IAAK..63

Algorithm 18 Identifying Artifact Anomalies for Usages - IAAU..63

Algorithm 19 Identifying Artifact Anomalies - IAA...65

Algorithm 20 Calculate EAI - CEAI...80

Algorithm 21 Detecting Resource Conflict for New Resource Reference - DRCNRR............83

Algorithm 22 Updating Resource Conflict for Removal of Resource Reference - URCRRR.83

Algorithm 23 Detecting Resource Conflict after EAI Expansion - DRCEE............................87

Algorithm 24 Updating Resource Conflict after EAI Shrink - URCES...................................87

 x

輔助定理目錄 – Table of Lemmas

Lemma 1 ...12

Lemma 2 ...15

Lemma 3 ...19

Lemma 4 ...19

Lemma 5 ...20

Lemma 6 ...31

Lemma 7 ...49

Lemma 8 ...52

Lemma 9 ...56

Lemma 10...56

Lemma 11 ...82

Lemma 12...84

Lemma 13...85

 1

Chapter 1. Introduction

Enterprises define their business objectives in business processes, and workflows

automate the business processes by completing tasks which realize parts of business goals in a

particular order [1]. As a dominant factor in workflow management, developing appropriate

analysis techniques for workflows is necessary [2]. Irani et al. state that workflow analysis

facilitates locating problems in business processes and preventing repetition errors during

workflow enactment. [3]. Vergidis et al. claim that workflow analysis adopts a range of

different tactics such as simulation, diagnosis, validation, verification, and performance

analysis to clarify the characteristics, potential conflicts, possible bottlenecks and any

promising process alternatives [4].

To assure the correctness of workflow execution, analyses on structural integrity of

workflows are widely studied. Adam’s methodology detects inconsistent dependencies among

tasks to assure the safety of a workflow [5]. van der Aalst et al. develop effective Petri-net based

techniques to verify deadlocks, livelocks (infinite loops), and dead tasks from workflow

schemas [2][6][7]. In [8], Kiepuszewski et al. define structured workflow model and claim that

a structured workflow is well-behaved, i.e. free from deadlock and multiple active instances of

the same activity. Kiepuszewski et al. also claim that although structured workflow model is

less expressive, most arbitrary well-behaved workflows can be transformed into a structured

workflow, and structured workflow model is a good tool for various kinds of workflow

analysis.

Besides, combining timing constraints into analysis of workflow models is also familiar.

Li et al. indicate that analysis of temporal factors is essential for validation of the interval

 2

dependencies with temporal constraints in a workflow schema [9]. Adam et al. consider timing

constraints as the external conditions for structural correctness of a Petri-net based workflow

model [5]. Chen et al. develop an approach for dynamic verification of fixed-time constraints in

grid workflow system [10]. From a graph based workflow model, Eder et al. develop a timed

graph model to illustrate the working duration of activities among workflows with the

corresponding earliest and latest finish time, and calculate the deadlines among internal

activities to meet the overall temporal constraints on the basis of the model [11][12].

Marjanovic et al. build the timing model based on duration and instantiation space, and model

the absolute and relative deadline constraints for dynamic verification [13]. Zhuge et al.

consider durations of activities for temporal checking in both design-time and run-time and

model the temporal factors in workflows as timed workflow model for further analysis. [14]

For the organization perspective, modern WfMS regulates activities of employees through

varieties of access control methods. Among the methods, role-based access control (RBAC)

model [15][16] grouping users with similar permissions into roles is a popular solution among

enterprises. However, business processes are operated based on not only roles but also tasks.

With both as core concepts, Oh et al. propose task-role-based access control (TRBAC) model to

provide more modeling power for access control in WfMS [17]. Delegation which allows

subjects like access rights or work items being authorized between users or roles during

run-time is an interesting problem for workflow management [18] and is often studied on the

basis of the corresponding access control model. For example, RBDM0 [19], RBDM1 [20], and

the methods in [21], [22], and [23] describe various delegation models based on RBAC

[15][16]. On the basis of RBAC, Crampton et al. describe an approach to manage delegation in

WfMS, and raise several new issues about delegation of tasks for work-list-based WfMS [18].

Delegation for TRBAC is also studied in [24] and [25]. Jian et al. construct a framework and

define the components for delegation in TRBAC [24], and Hsu et al. enhance the work by

 3

considering temporal issues in [25].

A well-structured workflow may still fail or produce unanticipated run-time behavior

because of abnormal data manipulation, the artifact anomalies. Detect artifact anomalies in

workflows checks possible data misuse buried in workflow specifications. Various

methodologies have been developed for detection of artifact anomalies generated from

structural relationships between activities in a workflow [26][27][28][29][30]. Sadiq et al.

present seven basic data validation problems, redundant data, lost data, missing data,

mismatched data, inconsistent data, misdirected data, and insufficient data in structured

workflow model [26][31]. Hsu et al. define preliminary improper artifact usages anomalies, and

introduce the analysis of such anomalies in design phase of a structured workflow [27][28]. In

[29], Wang et al. introduce a behavior model to describe the data behavior in a workflow and

refine the work accomplished in [28] by improving its efficiency. In [30], Hsu et al. raise the

issues about analyzing artifact anomalies in workflows adopting message passing data models,

and describe a formal description for such anomalies. Nevertheless, how temporal factors may

affect the analysis of artifact anomalies is still seldom addressed. The methodology detecting

artifact anomalies generated from twisted temporal and structural relationships between

activities in workflows should be further discussed on the basis of the previous studies.

As for the resource perspective, Reveliotis et al. construct a Petri-based model with

consideration of resource allocation, and uses the model for structural and deadlock analysis of

workflow applications [32][33]. Based on Zhuge’s work [14], Li et al. estimate the active

intervals of activities, and develops an algorithm to detect and remove resource conflicts with

respect to both temporal and structural issues [34]. Zhong et al. adopt Li’s methodology [34]

onto a petri-net based workflow model, and develop an algorithm to detect resource conflicts

when a new workflow being put into WfMS during run-time [35]. Based on [36], Hsu et al.

develop an incremental methodology for analysis of resource constraints in structured

 4

workflows with temporal consideration during design-time [37]. The generation or elimination

of resource conflicts are tracked and alerted along with each edit operation made by designers

of workflows [37]. However, the technique for structural analysis adopted in [37] is inefficient

and can be revised with the methods proposed in [30].

In this dissertation, structured workflow modeled in [8] is extended as temporal structured

workflow (TS workflow) model with the temporal issues considered in [34] and [37]. The

techniques for structural and temporal analysis on TS workflows are first introduced, and the

methodology to analyze TS workflows in organization, data, and resource perspectives are then

discussed. For the organization perspective, the works accomplished in [25] are refined to adopt

TS workflow model for temporal constraints. A delegation framework for the WfMS

coordinated with TRBAC model is established, and a series of algorithms for delegation of task

instances and exploration of delegatees are developed. With the framework, a user is able to

delegate his work to another user through an approval process, and WfMS can automatically

delegate an emergent work item to an appropriate delegatee. The constraints such as

elimination of delegation loops and separation of duty (SOD) are validated for delegation

requested by either users or WfMS during run-time. As for the data perspective, a formal model

describing artifact anomalies in TS workflow is established on the basis of define-use-kill

operations. The issues about the artifact anomalies produced from twisted structural and

temporal relationships between activities in a TS workflow are discussed and modeled. The

methodology for static analysis of artifact anomalies buried in a TS workflow is developed.

Finally, for the resource perspective, the incremental methodology accomplished in [37] is

refined to integrate TS workflow model and the analysis techniques proposed in [30]. The edit

operations for constructing loop-reduced TS workflows (LRTS workflows) are first stated, and

the methodology tracking down the generation and elimination of resource conflicts along with

each edit operation made by designers is described.

 5

The rest part of this dissertation is organized as following. In chapter 2, TS workflow

model is sketched. The basic elements and the construction rules for TS workflow are described

and the methods for analysis of temporal and structural properties in TS workflows are

introduced. In chapter 3, a delegation framework for the WfMS coordinated with TRBAC

model is introduced. In chapter 4, artifact operations and the corresponding artifact anomalies

are first introduced, and the methodology detecting artifact anomalies in TS workflows is then

described accordingly. In chapter 5, an incremental methodology tracking down the resource

conflicts generated or eliminated in the steps of construction of an LRTS workflow is presented.

The related works for each of the above topics are discussed separately at the end of the

chapters, and the conclusion and future works of this study are made in chapter 6.

 6

Chapter 2. Temporal Structured Workflow Model

2.1 Basic Elements

A workflow is composed of a start process, an end process, some activity processes and

some control processes. The start (ST) process represents the entry point of a workflow, and the

end (END) process indicates the termination point. An activity (ACT) process stands for a piece

of work to be performed and describes one logical step within a workflow [1].

A control process is a routing construct used to control the divergence and convergence of

sequence flows. The control processes can be classified as AND-split (AS), AND-join (AJ),

XOR-split (XS), and XOR-join (XJ). An AND-split process within a workflow splits a single

sequence of control into two or more sequences to allow simultaneous execution of activities;

on the contrary, an AND-join process merges multiple parallel executing sequences into a

single common sequence of control [13]. An XOR-split process within a workflow is the point

where a single sequence of control decides a branch to take from multiple alternative branches,

and an XOR-join process converges multiple alternative branches in a workflow [13].

Processes are connected by directed flows, the flow(s) leading to a process are called the

in-flow(s) of the process, and the flow(s) departing from a process are called the out-flow(s) of

the process. The process starting a flow is the source process of the flow, and the process ending

a flow is the sink process of the flow. In a workflow, only AND-split and XOR-split processes

have multiple out-flows, and only AND-join and XOR-join processes have multiple in-flows.

Figure 1 illustrates the notation of the basic elements described above.

 7

Figure 1 The Graphic Notations of the Basic Workflow Elements

With all the descriptions above, a workflow is modeled as following:

Definition 1 (Workflow Model)

A workflow w, w = (Pw, Fw, s, e). and

Pw represents the set of the processes in w, and

∀ p∈Pw, p.type∈{ACT, AS, AJ, XS, XJ, ST, END}

Fw ⊆ Pw× Pw represents the set of flows in w.

∀ f∈Fw, f = (p, q) is the in-flow of process q and the out-flow of process p, and

p is the source process of f, and q is the sink process of f.

s∈Pw represents the start process of w, s.type = ST, ∃ no in-flow to s.

e∈Pw represents the end process of w, e.type = END, ∃ no out-flow from e.

* In this dissertation, “=” denotes an assignment operator and “==” denotes a Boolean equality operator

A sequence of flow(s) forms a path, and is formally modeled as following:

Definition 2 (Path)

A path is notated as a series of processes quoted by a pair of angle brackets.

For a workflow w, a path, <p1, p2, …, pk>, from p1 to pk exists if and only if (p1, p2),

(p2, p3), … (pk-1, pk)∈Fw.

2.2 Structured Workflow

A structured workflow is a workflow that is syntactically restricted in a number of ways.

Control processes are organized in pair, an XOR-split process is paired with an XOR-join

process, and an AND-split process is paired with an AND-join process. A control block is

composed of a pair of control processes and the processes placed in between the pair of control

processes. According to the type of the control processes, the control blocks can be classified as

parallel structures, decision structures, and structured loops as Figure 2 illustrates. Each process

in a structured workflow has at least one path from the start process to it, and at least one path

 8

from it to the end process. Such restriction keeps a structured workflow well-behaved [4], i.e. a

structured workflow is free from deadlocks and multiple active instances. Most arbitrary

well-behaved workflows can be transformed to be structured without loss of their contexts [4].

Figure 2 shows the building blocks of a structured workflow according to the basic elements

and constraints described above.

Figure 2 Building Blocks of a Structured Workflow

All the processes between the start and the end process in a structured workflow are

organized with the building blocks shown in Figure 2. For Figure 2(c) and Figure 2(d), the

blocks X1, X2, …, and Xn represent the branches split and converged in a parallel structure or a

decision structure. Besides, in Figure 2(e), the structured loop acts like a do-while loop when

block Y is null, and acts like a while loop when block X is null. Figure 3 illustrates the control

graph of a sample structured workflow.

 9

Figure 3 A Sample Structured Workflow

Two processes are reachable from one to the other if there exists a path between them,

parallel if they reside on different branches of a parallel structure, and exclusive to each other if

they reside on different branches of a decision structure. Take Figure 3 for example. The path

<v1, xs1, v2, v3> indicates that v1 is reachable to v3. v3 and v4 are parallel because they reside on

different branches split from as1. v2 and v8 are exclusive because they reside on different

branches of the decision structure quoted by xs1 and xj1. In this dissertation, the above structural

relationships between processes are notated as following Boolean functions:

Definition 3 (Structural Relationships in a Structured Workflow)

For a structured workflow w,

Reachable: Pw× Pw⇒ {true, false}

Reachable(p, q) holds if and only if there exists a path from p to q.

Parallel: Pw× Pw⇒ {true, false}

Parallel(p, q) holds if and only if p and q reside in different branches of a

parallel structure.

Exclusive: Pw× Pw⇒ {true, false}

Exclusive(p, q) holds if and only if p and q reside in different branches of a

decision structure.

2.3 Temporal Structured Workflow

In [14], Zhuge models timed workflow by describing the maximal and minimum working

durations for each activity. In this dissertation, a timed and structured workflow is named as a

Temporal Structured Workflow (TS workflow) and is formally modeled as following:

 10

Definition 4 (TS workflow)

A workflow w is temporal structured with following properties:

(1) w is structured, and

(2) ∀ p∈Pw, d(p) and D(p) represents the minimum and maximum working duration

of process p.

To facilitate discussion, we assume that if p is an activity process, 0 < d(p) ≤ D(p);

otherwise, d(p) = D(p) = 0. Figure 4 illustrates a sample TS workflow.

Figure 4 A Sample TS workflow

2.4 Analysis of Structural and Temporal Relationships between Processes in TS workflow

2.4.1 Loop Reduction

The structural and temporal relationships between processes are the bases of any further

analysis of a TS workflow. In [9], [11], and [12], Hsu et al. give several methodology to reveal

the structural and temporal relationships between processes in acyclic structured and timed

workflows. In [28] and [29], Hsu and Wang et al. claim that in a structured workflow, all the

possible state variations of the artifact operated in loops with more than two iterations are the

same as those with exact two iterations. Therefore, they reduce a structured loop into a decision

structure with three branches representing for no iteration, a single iteration, and two iterations

for the analysis of artifact anomalies with better efficiency. In this dissertation, we adopt an

approach similar to [7] and [8] to reduce the structured loops in a TS workflow as decision

structures to retrieve structural and temporal information in a TS workflow as in [9], [11], and

[12].

 11

In a TS workflow, the number of iterations of a loop affects the active timing of processes

succeeding to the loop. The loop reduction introduced in [7] and [8] may bring inaccuracy to the

analysis of temporal factors, and is therefore not feasible for TS workflow. In [38], Leong

considers the worst case scenarios for loops in a workflow and develops a methodology to

detect whether the workflow possibly exceeds its deadline during run-time. Here, we combine

Leong's concept and the methodology in [7] and [8] to describe a refined loop reduction method

for the analysis of TS workflow.

First, it is assumed that the maximal number of iterations for a structured loop in a TS

workflow is finite. In other words, the infinite loops are not discussed in this study. Based on the

assumption, a structured loop is transformed into a decision structure with three branches: no

iteration, a single iteration, and maximal iterations as Figure 5 illustrates.

Figure 5 Refined Loop Reduction for TS Workflow Model

The refined loop reduction bring following advantage: (1) All the possible state variations

of artifacts between iterations are still completely captured, (2) the active intervals of the

processes succeeding to the structured loop can still be accurately estimated because the worst

case scenario is considered, and (3) the methodology for acyclic structured workflow can be

adopted in TS workflow because the structured loops are reduced. In this dissertation,

loop-reduced TS workflows (LRTS workflows) are widely adopted in our methodology.

 12

2.4.2 Analysis of Structural Relationships between Processes in LRTS workflow

The structural relationships between activity processes are the groundwork for analysis of

TS workflow, and are described and proved in the following lemma.

Lemma 1

For an LRTS workflow w, p and q∈Pw, and p.type == q.type == ACT, one and

exactly one of the following statements, Reachable(p, q), Reachable(q, p),

Parallel(p, q), and Exclusive(p, q), holds.

Proof:

An LRTS workflow is still structured, and the lemma can be proved through the

discussion of the construction rules of a structured workflow. Because a single activity

process is a basic building block of a structured workflow, p and q can always be distributed

into two different building blocks combined in a sequence, a parallel structure, or a decision

structure illustrated in Figure 2.

Let bp and bq be the building blocks containing p and q separately. If bp and bq is

combined in a sequence block, p and q are reachable from former to the later. Since w is

loop-reduced, i.e. w is loop free, if Reachable(p, q) holds, Reachable(q, p) is false, and vice

versa. Besides, according to the construction rules, there exist no paths between the building

blocks split from an XOR/AND-split process. Therefore, Parallel(p, q) and Exclusive(p, q)

can not hold in this case.

Otherwise, if bp and bq is combined in a decision block, bp and bq represents different

branches split from the XOR-split process starting the decision structure. In other words, p

and q resides in different branches of a decision structure, and therefore, Exclusive(p, q) holds.

Since w is loop-reduced, there exist no paths between p and q, both Reachable(p, q) and

Reachable(q, p) are false. On the other hand, according to the construction rules, since bp and

bq reside on different branches of a decision structure, they can not reside in different branches

of a parallel structure. Therefore, Parallel(p, q) does not hold. With similar reason, we can

also show that when Parallel(p, q) holds, none of Reachable(p, q), Reachable(q, p), and

Exclusive(p, q) holds, and hence, Lemma 1 is shown correct with all the statements above. □

In [9], Hsu et al. use a data structure, ABStack, to record the structural information of

processes, and achieve an efficient analysis of the structural relationships between processes in

an acyclic structured workflow. In this dissertation, the similar approach is adopted. All the

flows in an LRTS workflow are tagged with a branch mark. The branch mark is a natural

number ID for each out-flow split from an XOR/AND split process, and is -1 for any other flow

 13

in the LRTS workflow. The branch mark in this dissertation is formally defined as following.

Definition 5 (Branch Mark)

For an LRTS workflow w,

BMw: Fw⇒ INTEGER

∀ (p, p’)∈Fw,




−
∈

=
otherwise 1

AS) (XS, ifnumber natural a
))',((BM

p.type
ppw

For p, q, q’ ∈Pw, p.type∈{XS, AS}, and (p, q), (p, q’)∈Fw,

BMw((p, q)) ≠ BMw((p, q’))

A process in an LRTS workflow might reside in nested decision/parallel structures, and the

structures are recorded in the ABStack corresponding to the process. Each of the structures is

presented as a structural item composed of the split process starting the structure and the branch

mark mapped to one of the out-flows of the split process. In the dissertation, an ABStack is

notated as a series of structural items quoted by a pair of double angle brackets, “«” and “»”.

The items representing the inner structures are recorded higher in the ABStack, where the

leftmost item is the top of the stack and the rightmost item is the bottom. The definition of an

ABStack is formally described as following.

Definition 6 (ABStack)

∀ p∈Pw, p.abstack represents the ABStack corresponding to p.

A structural item, stitem = (sp, bm), is included in p.abstack if and only if

(1) sp∈Pw, sp.type∈{AS, XS}, and ∃ a path <sp, …, p, …, jn> in w where jn is the

corresponding join process of sp.

(2) bm = BM((sp, p’)) where p’ == p or Reachable(p’, p) == true.

p.abstack == « » if and only if p resides in no decision/parallel structure.

p.abstack == «(sp1, bm1), (sp2, bm2), …, (spk, bmk)» exists if and only if a path

<spk, …, sp2, …, sp1, …, p, …, jn1, …, jn2, …, jnk> exists.

To calculate ABStacks of the processes in an LRTS workflow, push and pop

functions associated with ABStack are defined as following:

Let an ABStack abs == «(sp1, bm1), (sp2, bm2), …, (spk, bmk)»

 Push(abs, (sp, bm)) returns a new ABStack abs’, where

abs’ == «(sp, bm), (sp1, bm1), (sp2, bm2), …, (spk, bmk)»

Pop(abs) returns a new ABStack abs’, where

abs’ == «(sp2, bm2), …, (spk, bmk)»

 14

Figure 6 illustrates how push and pop functions work for the calculation of the ABStacks

corresponding to the processes in an LRTS workflow.

Figure 6 Calculation of ABStacks for Processes in an LRTS Workflow

Figure 7 illustrates a sample LRTS workflow decorated with ABStacks. Take process v5

for example. The items (as1, 2), and (xs1, 1) in the ABStack of v4 shows that v4 resides on #2

branch split from the AND-split process as1 and #1 branch split from the XOR-split process xs1.

The order of (as1, 2) and (xs1, 1) indicates that the parallel structure started from as1 is nestedly

contained by the decision structure started from xs1.

 15

Figure 7 A Sample TS workflow with ABStacks and EAIs

Besides, the structural items (as1, 1) and (as1, 2) in the ABStacks of v4 and v5

correspondingly indicate that v4 and v5 reside on different branches split from AND-split

process, as1. In other words, v4 and v5 are parallel. The parallelism or exclusiveness between

processes can be identified through comparing the ABStacks of the corresponding processes,

and Lemma 2 shows how ABStacks work for identification of structural relationships between

processes in an LRTS workflow.

Lemma 2

For an LRTS workflow w, and p, q∈Pw

(1) Parallel(p, q) holds if and only if

∃ (sp, bm)∈p.abstack and (sp, bm’)∈q.abstack where sp∈Pw, sp.type == AS and

bm ≠ bm’.

(2) Exclusive(p, q) holds if and only if

∃ (sp, bm)∈p.abstack and (sp, bm‘)∈q.abstack where sp∈Pw, sp.type == XS and

bm ≠ bm’.

Proof:

Consider the if-part of statement (1), according to Definition 6, if ∃ (sp, bm)∈p.abstack

and (sp, bm’)∈q.abstack where sp∈Pw, sp.type == AS and bm ≠ bm’, there exists a process m

that bm == (sp, m), and m is either equivalent to p or Reachable(m, p) holds. Similarly, there

exists another process n for q. bm ≠ bm’ indicates that m ≠ n, and p and q reside on different

branches split from the AND-split process, sp. Thus Parallel(p, q) holds and the if part is

shown correct.

As for the only-if-part, if Parallel(p, q) == true, p and q reside on different branches of a

parallel structure. Let sp be the AND-split process starting the parallel structure, and jn be the

 16

AND-join process terminating it. The nodes in the path from sp to p are totally different from

those in the path from sp to q. Besides sp and jn, two distinct paths, <sp, …, p, …, jn> and

<sp, …, q, …, jn>, exist. Therefore, there exists a process m that (sp, m)∈Fw and either m is

equivalent to p or Reachable(m, p) == true. Similarly, there also exists such a process n for q.

m and n can not be the same process because they reside on different branches split from sp,

and thus, BM(sp, m) ≠ BM(sp, n). According to Definition 6, (sp, BM(sp, m)) is included in

p.abstack, and (sp, BM(sp, n)) is included in q.abstack. The only-if part of statement (1) of

the lemma is proved.

Part (2) can be proved similarly and the proof is omitted here. With the paragraphs above,

Lemma 2 is shown correct.□

2.4.3 Analysis of Twisted Temporal and Structural Relationships between Processes in LRTS

workflow

In a TS workflow, the temporal and structural relationships between processes are twisted.

This section firstly shows how to identify the temporal property between processes.

Figure 8 The Temporal Relationships between Time Intervals [39]

A time interval is duration of a segment of time. In [39], Allen defines seven reasoning

relationships between time intervals. Figure 8 illustrates the temporal relationships adopted in

this dissertation on the basis of Allen’s definition, and Definition 7 describes the formal

 17

definition of time intervals and the temporal relationships between time intervals adopted in

this dissertation.

Definition 7 (Time Intervals)

A time interval ti = [S(ti), E(ti)] indicates a duration from the time point S(ti) to

E(ti), E(ti) ≥ S(ti).

A time point tp can be represented as a time interval [tp, tp], and ctime is the time

point indicating the current time.

For any two time intervals ti1 and ti2,

 ti1 is before ti2, notated as ti1 TIp ti2, if and only if E(ti1)≤ S(ti2).

 ti1 is after ti2, notated as ti1 TIf ti2, if and only if ti2 is before ti1.

 ti1 overlaps ti2, notated as ti1 TI≈ ti2, if and only if

MIN({E(ti1), E(ti2)}) – MAX({S(ti1), S(ti2)}) > 0

ti2 contains ti1, notated as ti2 TI⊇ ti1, if and only if S(ti2) ≤ S(ti1) and E(ti2)≥ E(ti1).

In Definition 7, two utility functions MAX and MIN are invoked. Function MAX returns

the element with the maximum value among the parameter set, and function MIN returns the

minimal one.

In [23] and [40], Joshi et al use not only individual time intervals but also the periodic

temporal expressions to describe the temporal constraints in roles for temporal RBAC model.

For example, the expression “the night time duty is activated 6pm to 11pm every Wednesday

and Friday” indicates that the permissions for night time duty are activated during certain

repeated time durations. The periodic temporal expressions can be viewed as a combination of

multiple time intervals, and are grouped as a time description as following definition.

Definition 8 (Time Descriptions)

A time description td is a set of time intervals. For any two time intervals tiz and tiy

in td, tix and tiy are exclusive. On the other hand, for any two non-empty time

description tda and tdb, tda contains tdb notated as tda TD⊇ tdb if and only if

∀ tib∈tdb, ∃ tia∈tda such that tia TI⊇ tib.

 18

Figure 9 Calculation of EAIs in an LRTS Workflow [34][37]

In [34] and [37], the minimum and maximum working durations are used to estimate the

active duration of a process corresponding to the start of workflow. The Estimated Active

Interval (EAI) of a process is a time interval indicating when the process can be initialized and

when it should be terminated. In this dissertation, the Estimated Active Interval of a process p,

notated as EAI(p) is defined as following:

Definition 9 (Estimated Active Interval)

For a TS workflow w and a process p∈Pw,

EAI(p) = [EST(p), LET(p)], and corresponding to when w starts:

EST(p) indicates the earliest time that p can be initialized.

LET(p) indicates the latest time that p must terminate.

With the assumption that the EST and LET of the start process of a TS workflow are zero,

the methodology described in [34] and [37] is adopted to calculate the EAIs of processes in an

LRTS workflow as Figure 9 illustrates.

 With Lemma 1 and Lemma 2, whether two processes in an LRTS workflow are

exclusive, parallel, or reachable from one to the other is identified with corresponding

ABStacks. The path direction of two reachable processes can be further derived according to

 19

the corresponding EAIs, and the following lemmas show how EAIs can be adopted in

analysis of LRTS workflow.

Lemma 3

For an LRTS workflow w, p and q∈Pw, q.type == ACT,

if Reachable(p, q), LET(p) < LET(q)

Proof:

Reachable(p, q) represents that the path <p, m1, m2, …, mn, q> exists. Now we prove the

lemma with mathematical induction. For n = 0, (p, q)∈Fw, since q.type = ACT, D(q) > 0 and

LET(q) = LET(p) + D(q). LET(p) < LET(q) holds.

Hypothesis: The lemma holds when n < k.

For n = k, LET(q) = LET(mk) + D(q) and LET(mk) < LET(q). According to the

construction rule of TS workflow, mk.type ≠ S, E, and mk.type∈{AS, XS, AJ, XJ, ACT}. The

following conditions should be discussed:

For any 1≤ i ≤ k, if there exists an mi where mi.type = ACT, according to the hypothesis,

LET(p) < LET(mi) and LET(mi) < LET(q). Therefore, LET(p) < LET(q). Otherwise, for any

1≤ i ≤ k, mi.type∈{AS, XS, AJ, XJ}, according to the EAI calculation methods, for any (u, mi)

∈Fw, LET(u) ≤ LET(mi). Since there exists a path from p to mi, LET(p) ≤ LET(mi). On the

other hand, according to the hypothesis, LET(mi) < LET(q). Therefore, LET(p) < LET(q).

With statements above, we know the lemma holds for n = k, and on the basis of mathematical

induction, Lemma 3 is proved. □

Lemma 4

For an LRTS workflow w, p and q∈Pw, p.type == q.type == ACT,

if Parrallel(p, q) == Exclusive(p, q) == false, and LET(p) < LET(q),

Reachable(p, q) == true.

Lemma 4 can be shown correct with Lemma 1 and the construction rule of LRTS

workflow. Lemma 4 describes that if two activity processes in an LRTS workflow are not

mutually parallel or exclusive, the process with larger LET is reachable from the process with

smaller LET. From Lemma 1, we know that in an LRTS workflow, two processes are either

parallel, exclusive, or reachable from one to the other. Therefore, Lemma 4 can be re-stated as

Lemma 5 that if two activity processes in an LRTS workflow are reachable from one to the

other, the activity processes with larger LET is reachable from the one with smaller LET.

 20

Lemma 5

For an LRTS workflow w, p, q∈Pw, p.type == q.type == ACT,

If (Reachable(p, q) ⊕ Reachable(q, p)) == true, and LET(p) < LET(q),

Reachable(p, q) == true.

On the other hand, two processes are concurrent if and only if they are structurally parallel

and overlapped in EAIs. On the basis of Lemma 5, a process is before another one if one of the

following statements holds, (1) the latter is structurally reachable from the former, and (2) they

are structurally parallel and the EAI of the former is before the EAI of the latter. The definition

of the structural and temporal relationships in LRTS workflow is formally described as

following.

Definition 10 (Structural and Temporal Relationships in LRTS workflow)

For an LRTS workflow w,

Concurrent: Pw× Pw⇒ {true, false}

Concurrent(p, q) == true if and only if

(Parallel(p, q) ∧ EAI(p) TI≈ EAI(q)) == true.

Before: Pw× Pw⇒ {true, false}

Before(p, q) == true if and only if

(Reachable(p, q) ∨ (Parallel(p, q) ∧ EAI(p) TIp EAI(q))) == true.

After: Pw× Pw⇒ {true, false}

After(p, q) == true if and only if Before(q, p) == true.

 21

Chapter 3. A Delegation Framework for WfMS based on

Task-Role based Access Control and TS workflow

Tasks represent the basic logical steps of business processes, and roles combining users

with similar responsibility together are the core components for access control management in

modern WfMS. With both tasks and roles as core concept, we introduce a delegation

mechanism for WfMS coordinated with TRBAC. In section 3.1, TRBAC and the issues related

to delegation in WfMS are sketched. The task and role models adopted in this dissertation are

described in section 3.2, and our delegation framework for WfMS and TRBAC is depicted in

section 3.3. In section 3.4, a case study is made, and the related works are discussed and

compared with our methodology in section 3.5.

3.1 Background

3.1.1 Task-Role based Access Control Model

Figure 10 The TRBAC Model [17]

 22

Based on RBAC96 [15][16], TRBAC model [17] illustrated in Figure 10 works for

modern enterprise environments in which tasks are the fundamental units of business processes.

TRBAC model binds permissions on tasks and groups users operating the same tasks into roles.

Rather than accessing business objects directly [15][16], users accomplish their works through

tasks in which permissions are properly defined and protected. Restricting the access rights of

business objects on tasks facilitates permission management and reduces the risks of

inappropriate permission authority made by users. In TRBAC [17], tasks are classified into four

classes according to whether the task participates in a business process and whether the task is

inherited by the ancestor job. The classes of tasks in TRBAC model are illustrated in Table 1.

Table 1 Classes of Tasks in TRBAC Model [17]

 Non-inheritable Inheritable

Passive access P (private) S (supervision)

Active access W (workflow) A (approval)

3.1.2 Delegation Approaches in RBAC and TRBAC

Delegation is to authorize subjects like access rights or works between users or roles, and

is often built based on access control models. The user (or role) authorizing the subject is the

delegator, and the one who receives it is the delegatee. In RBAC [15][16], permissions to

business objects, like documents or devices, etc. are bound with roles. RBDM0 [19] provides a

flexible way for granting and revoking permissions between roles. RBDM1 [20], an extension

of RBDM0 [19], is more realistic since it organizes roles with hierarchy. Both techniques are

focused on delegation of roles among human users through identifying can-delegation

relationships between roles.

In [21], the essence of this delegation model is that a user delegates a particular right to

another user, and delegation of partial permissions is allowed. Osborn separates users in

organization, role hierarchies, and relationships among privileges into different graph models in

[22] and [41], and shows a simple way to delegate privileges to users by creating a delegatee

 23

role. In [18], Crampton gives a further discussion about both granting and transferring access

rights between roles. When access rights are granted from the delegator to the delegatee, the

delegated access rights are available for both the delegator and the delegatee [18]. On the other

hand, if the access rights are transferred, only the delegatee holds the access rights after the

delegation [18]. Besides, Crampton considers both can-delegate and can-receive relationships,

and introduces the concept of administrative scope to improve the efficiencies in delegation

controlling [18].

Besides, tasks, the basic logic units of business processes, should also be considered in

delegation. In [18], Crampton addresses the issues like upward delegation and authorization of

appropriate permissions for delegation to adopt RBAC-based delegation mechanism in

task-based WfMS. Bammigatti associates tasks into permission management and develops a

new model for using RBAC in workflow system [42]. In TAC model [43], the permissions

possessed by roles and required by tasks are described separately, and the assignment of tasks to

roles is thus constrained. With such constraints, a protocol enabling delegation of task instances

from users to roles is established [43].

TRBAC [17] binds the permissions with tasks, and the tasks with roles. With the roles

assigned to users, users access business objects and accomplish their duties through tasks.

Therefore, authorization of permissions is not necessary for delegation of tasks and task

instances in TRBAC. In our previous work [24], a delegation framework for TRBAC has been

initially established without considering the temporal issues. Zhang et al. develops a delegation

model for time constraints-based TRBAC [44]. However, Zhang reduces TRBAC model as

TRBACM model in which permissions and tasks are separately bound with roles. In [44], users

delegate permissions together with tasks to accomplish their works, and the methodology

violates the primary sprits of TRBAC [17].

 24

3.1.3 Separation of Duty

Separation of Duty (SOD) is a security principle which requires multiple users to be

responsible for the completion of a work [45]. Since delegation transfers permissions and tasks

among users, the delegation approaches also follows the SOD policy of the corresponding

access control system. In RBDM1 [16], Ferraiolo defines SOD as “For a particular set of

transactions, no single individual is allowed to execute all the transactions within the set.”

Botha discusses SOD in workflow environments both statically and dynamically [46]. In

Botha’s study, four possible conflicts, conflicting roles, conflicting permissions, conflicting

users, and conflicting tasks, are described, and the corresponding methods for the conflicts are

developed.

TRBAC [17] offers SOD policy at both task and instance level, and defines that some tasks

are mutually-exclusive to each other. In task level SOD, for the roles played by a user, none of

the tasks assigned to the roles are mutually-exclusive. In instance level SOD, the policy is

effective for the tasks belonging to the same workflow instance. The task instances instantiated

from the mutually-exclusive tasks in a workflow instance can not be executed by the same user

[17]. In this dissertation, we follow the SOD policy established in TRBAC when delegation.

3.2 Task and Role Model

Tasks are the basic components describing pieces of works in logical steps within a

workflow [1], and are modeled as activity processes in TS workflow model. Permissions are

the rules describing the admission in accessing business objects such as documents or

computation resources. In this dissertation, individual permissions are bound with tasks on the

basis of TRBAC. Besides, it is assumed that only the tasks related to enactment of workflows

can be delegated during run-time, and therefore, only “Workflow” and “Approval” are

considered as the classes of tasks in this dissertation. Task is formally defined as following.

 25

Definition 11 (Task)

For a TS workflow w, Tw = {t | t∈Pw, t.type == ACT} is the set of tasks in w.

Let T be the set of all the tasks managed by WfMS,

Tw ⊆ T, ∀ t∈T, the following properties are additionally modeled:

 Pt is the set of permissions to business objects bound on t.

Rt is the set of roles assigned to t.

t.class∈{Workflow, Approval} is the class of t.

During run-time, TS workflow instances are instantiated from a TS workflow, and the

tasks in the TS workflow are also instantiated as Task Instances. Task instances are the basic

units for daily duties. When a task instance is going to be executed, the system offers the

instance to a role in accordance with the corresponding TS workflow. Then, the instance is

allocated to the work list of one of the users playing the offered role. The user executes the

instances in his work list, and submits the instance whenever it is complete. A task instance is

suspended once the responsible user becomes unavailable for a certain time, and is resumed

from suspension when the responsible user is again available. A task instance is failed if it is not

completed in its active interval, and is discarded if it is not executed until the end of the TS

workflow instance. The active interval of a task instance is obtained from the EAI of its source

task and the starting time of the TS workflow instance, and indicates when it can be started and

the corresponding deadline. TS workflow instance and task instances are modeled as following.

Definition 12 (TS workflow Instance and Task Instance)

A TS workflow instance wi = (w, Iwi, st).

w is the TS workflow instantiating wi

Iwi is the set of the task instances instantiated from the tasks in Tw.

 Let I be the set of all the task instances managed by WfMS.

Iwi ⊆ I, ∀ i∈ Iwi, i = (wi, tk, ar, s, eu, ai).

tk∈Twi.w is the task instantiating i.

ar∈Rtk is the role i offered.

s∈{Initiated, Discarded, Offered, Allocated, Completed, Suspended, Failed}

is the status of i.

eu is the user executing the task instance.

ai = [wi.st + EST(tk), wi.st + LET(tk.eai)] is the active interval of i.

st is the time point wi being initialized.

 26

Users are the participants of business processes. A user may play multiple roles for various

businesses, and a role can be played by multiple users also. During run-time, users execute task

instances in their work list to accomplish their daily duties. The status of a user is normally

available and is transited to unavailable when he/she is not available for work. A user is

formally modeled as following.

Definition 13 (User)

Let U be the set of all the users managed by WfMS.

∀ u∈U, u = (Ru, WL, cs).

Ru is the set of roles played by u.

WL = { i | i∈I, i.eu = u, i.s∈{Allocated, Completed, Suspended, Failed} } is the

work list of u.

cs∈{Available, Unavailable} is the current status of u.

Roles represent the collections of users with common responsibilities [15][16]. In this

dissertation, a role is modeled as a collection of the users responsible for the same tasks with

certain timing constraints. The definition roles are formally described as follows.

Definition 14 (Role)

Let R be the set of all the roles managed by WfMS.

∀ r∈R, r = (Ur, Tr, etd).

Ur is the set of users playing r.

Tr is the set of tasks assigned to r.

etd is a time description indicating when r is active.

Roles are organized with the role hierarchy. The role hierarchy indicates inheritance

relationships and partial orders between roles to reflect the organization lines of authority or

responsibility [15]. In this dissertation, the role hierarchy is modeled with directed acyclic

graph (DAG) like in [15], [47], and [48]. Among the role hierarchy, the roles in higher positions

possess larger authority, and the connected roles are more coherent than disconnected ones

[15][47][48]. The number of edges between two connected roles in the role hierarchy is defined

as their distance. The roles closer in distance are related more tightly than roles farther. The role

hierarchy and the function calculating the distance between two roles in a hierarchy are defined

 27

in the following definition.

Definition 15 (The Role Hierarchy)

The role hierarchy RH⊆ R×R.

∀ (r1, r2)∈RH, (r1, r2) shows a partial order that all inheritable tasks assigned to

r1 can also be assigned to r2.

∀ r, r’ ∈R, r’ f rh r holds if there exists (r, r1), .., (rk, r’)∈RH*.

RH is acyclic, and if r’ f rh r holds, r f rh r’ does not.

DisRH() shows the distance between two roles in the role hierarchy:

(1) DisRH(r, r) = 0,

(2) if r’ f rh r, DisRH(r, r’) = -(k+1) and DisRH(r’ , r) = k+1,

(3) DisRH(r, r’) is undefined while neither r’ f rh r nor r f rh r’ holds.

3.3 Delegation Framework for WfMS on TRBAC

3.3.1 The properties of Delegation

A delegation is primarily composed of a delegator, a delegatee and a delegating subject. In

TRBAC, since the permissions are bound with tasks, the task instances are delegated between

users during run-time. For each delegation, the delegator, the delegatee, the delegated task

instance, and the delegation duration are recorded in a delegation record. In this dissertation, the

duration is constrained not exceeding the active interval of the delegated task instance. Our

framework allows multi-level delegation [19][21], and a task instance might be delegated

several times. For each delegated task instance, a delegation record keeps tracking its status no

matter how many times it is delegated. All the delegators who once delegated the task instance

are put into the historical delegator list in the corresponding delegation record.

Besides, we assume that the maximal times that a task instance can be delegated are

constrained by an enterprise policy named the Maximal Levels of Delegation (MLD). MLD is a

non-negative integer. If MLD is equal to 1, multi-level-delegation is forbidden. With above

features, the format of a delegation record is defined in Definition 16. When a delegation occurs,

the corresponding record is attached to the task instance for reference as definition 10 shows.

 28

Definition 16 (Delegation Record)

Let D be the set of all the delegation records managed by WfMS.

∀ d∈D, d = (di, dr, de, dur, HDRL).

di is the delegated task instance, and ∀ d’∈D, if d’ ≠ d, d’.di ≠ d.di.

dr∈U is the original delegator.

de∈U, is the current delegatee.

dur is a time interval indicating during when d is effective, and di.ai TI⊇ dur.

HDRL = {u1, u2, …, uk} is the historical delegator list. u1 == dr, and

∀ um∈ HDRL, m<k, um delegated di to um+1, and uk delegated di to de.

|HDRL|≤ MLD.

Definition 17 (Delegation Records in Task Instances)

For any task instance i, if i is delegated, i.dr∈D, i.dr.di == i; otherwise, i.dr == Ø.

Algorithm 1 describes how a task instance is delegated in our framework.

Algorithm 1 Delegation Algorithm - DA

Input: the delegating task instance dti,

the delegatee u, and

the designated delegating duration ddur

Pre-Condition: dti.ai TI⊇ ddur

DA {

01: if (dti.dr ≠ Ø) {

02: if(|dti.dr.HDRL|+1 > MLD)

03: EXCEPTION(MAX_DELEGATION_LEVEL_REACHED);

04: else {

05: add dti.eu to dti.dr.HDRL;

06: dti.dr.dur = ddur;

07: dti.dr.de = u;

08: }

09: } else {

10: dti.dr = (dti, dti.eu, u, ddur, {dti.eu});

11: add dti.dr to D;

12: }

13: remove dti from dti.eu.WL;

14: add dti to u.WL;

15: dti.eu = u;

}

 29

The system invokes Algorithm 1 when delegating a task instance to the designated

delegatee. At line 1, the algorithm checks whether the input task instance has been delegated. If

so, the algorithms checks the size of historical delegator list of the task instance at line 2 to

assure that the delegation does not violate the restriction held by MLD. According to the input

parameter, the delegation record is updated from line 5 to 7. Otherwise, the task instance is

delegated for the first time. A new delegation record is created and attached to dti at line 10 and

11. After the delegation record is well updated or created, the task instance is transferred from

the delegator’s work list to the delegatee’s from line 13 to 15

3.3.2 Delegatee Decision

Algorithm 1 does not concern whether a delegatee is appropriate for delegation or not. In

multi-level-delegation, if a task instance is delegated to one of the delegators who once

delegated the task instance, a delegation loop occurs. Delegation loop causes redundancy in

business and should be avoided [49]. Algorithm 2 is constructed to remove users inducing

delegation loop from the candidate users.

Algorithm 2 Removing Users Causing Delegation Loop - RUDL

Input: the candidate user set CUS, and

the target task instance ti

Pre-Condition: CUS⊆ U

User Set RUDL {

01: if (ti.dr ≠ Ø)

02: CUS = CUS \ (ti.dr.HDRL);

03: return CUS;

}

Taking a set of users and a task instance as the input parameters, Algorithm 2 eliminates

users causing delegation loop from the input user set. Each delegator user who once delegated

the instance is recorded in the historical delegator list of the delegation record. After removing

the historical delegators from the input user set at line 2, CUS is returned at line 3.

 30

SOD is another issue in delegatee decision. Since delegation happens during run-time, we

focus on maintaining instance level SOD policy for the task instances in a TS workflow

instance. For each TS workflow, the mutually-exclusive tasks are grouped in records, and a task

might belong to multiple records. For example, task “auditing” is mutually-exclusive to both

task “ordering” and “purchasing”, but “ordering” and “purchasing” are not mutually-exclusive.

Therefore, two records are established, and “auditing” is contained in both records with

“ordering” and “purchasing” separately. The record for mutually-exclusive tasks and the SOD

constraints adopted in this dissertation is defined as follow.

Definition 18 (Mutually Exclusive Tasks)

MET is the set of all the records of mutually-exclusive tasks.

∀ met∈MET, met = (w, Tmet).

w is a TS workflow.

Tmet⊆ Tw is a set of mutually-exclusive tasks

∀ ti, tj∈Tmet, ti and tj are mutually-exclusive.

Definition 19 (Instance Level SOD constraints)

∀ workflow instance wi, ti1, ti2∈ Iwi, and (wi.w, Tmet)∈MET,

If ti1.tk, ti2.tk∈Tmet, ti1.eu ≠ ti2.eu.

In a delegation, SOD also holds. For a task instance ti which is being delegated, a user

executing a task instance mutually-exclusive to ti can not be the delegatee of ti. Taking a set of

candidate delegatees and a task instance as the input parameters, Algorithm 3 eliminates the

users violating instance SOD from the candidate delegatees.

Algorithm 3 Removing Users Involved in Mutually-Exclusive Tasks - RUMET

Input: the candidate user set CUS, and

the target task instance ti

Pre-Condition: CUS⊆ U

User Set RUMET {

01: ∀ i∈Iti.wi\{ ti} {

02: if (∃ met∈MET, met.w == ti.wi.w, i.tk, ti.tk∈Tmet)

03: remove i.eu from CUS;

04: }

 31

05: return CUS;

}

To show the correctness of Algorithm 3, we prove that the following lemma holds.

Lemma 6

Algorithm 3 follows the SOD constraints defined in Definition 19.

Proof:

By way of contradiction (B.W.O.C), we assume that a user u∈RUMET(CUS, ti) is now

executing ti’ which is mutually-exclusive to ti. Let a workflow instance wi1 contains ti’ and ti.

With the assumption, ti’ .tk and ti.tk are mutually-exclusive to each other, and ti’ .eu = u. Since

ti.wi = wi1 and ti’ ∈ Iti.wi, ti’ is selected at line 1. On the other hand, by definition 11, there

exists met∈MET that met.w = ti.wi.rws = ti’ .wi.rws = wi1.rws and ti’ .tk, ti.tk∈Tmet. Therefore,

the expression at line 2 is true for ti’ and ti’ .eu is removed from the result set at line 3. Thus, u

is not included in the result set and the assumption is contradicted. Algorithm 3 follows SOD

constraints defined in Definition 19. □

Intuitively, an unavailable user can not be the delegatee of any delegation, and a task

instance should not be delegated to the user currently executing it. Concluding these two issues

and the algorithms described in this section, the algorithm removing inappropriate users from a

set of candidate delegatees is constructed as follows.

Algorithm 4 Removing Inappropriate Users - RIU

Input: the candidate delegatee set CDS, and

the delegating task instance dti

Pre-Condition: CDS⊆ U

Candidate Delegatee Set RIU {

01: ∀ u∈CDS,

02: if (u.cs == Unavailable) remove u from CDS;

03: CDS = RUMET(RUDL(CDS, tdi), tdi) \ {dti.eu};

04: return CDS;

}

Algorithm 4 first removes the unavailable users from the input set at line 2. At line 3, the

algorithm invokes Algorithm 2 and Algorithm 3 to remove the users causing delegation loop or

violating SOD. After removing the current executing user of dti, Algorithm 4 returns the result

set at line 4.

 32

3.3.3 Delegation from System Request

When a suspended task instance is nearly timed out, the system might need to

spontaneously request a delegation for the task instance. We assume that a suspended task

instance is emergent, and need to be delegated automatically if the proportion of its remaining

active interval is less than an enterprise policy named the Emergent Execution Ratio (EER), a

real number ranged from 0 to 1. To automatically delegate the emergent task instance, WfMS

needs first decide an appropriate delegatee.

The role hierarchy indicates the organization lines of authority and responsibility [15], and

can be used for exploration of possible candidate delegatees. Along with the role hierarchy, a

task instance can be delegated upward or downward. When a task instance of daily works is

being delegated, the system gathers the users playing lower roles related to the offered role of

the instance as candidate delegatees. On the other hand, for the instances of the tasks related to

decision making, the system commits an upward discovery from the offered role in the role

hierarchy for the candidate delegatees. Besides, the users playing roles closer to the offered role

in the role hierarchies are considered as better candidates in delegatee decision. Based on

Definition 15, the algorithm discovering the role hierarchy for the candidate delegatees is

constructed as follows.

Algorithm 5 Discovering the Role Hierarchy - DRH

Input: the delegating task instance dti

Candidate Delegatee Set DRH {

01: if(dti.tk.type == Approval) p = 1;

02: else if(dti.tk.type == Workflow) p = -1;

03: m = 0;

04: US = Ø;

05: loop {

06: GR = Ø;

07: ∀ r∈R, DisRH(dti.ar, r) == p*m

08: add r to GR;

 33

09: if (GR == Ø) return Ø;

10: ∀ r∈GR, r.etd TD⊇ { dti.ai}

11: US = US∪ Ur;
12: US = RIU (US, dti);

13: if (US == Ø) m = m + 1;

14: else break;

15: }

16: return US;

}

At line 1 and 2, according to the class of the dti’s task, the algorithm decides the direction

to explore the role hierarchy. Algorithm 5 commits an upward discovery for the tasks typed

“Approval” or a downward discovery for the tasks typed “Workflow”. From line 5 to 14, the

algorithm does a breadth first search in the role hierarchy. At line 9, empty GR set represents

that all roles connected to the offered role along with the designated direction in the role

hierarchy are explored, and no proper delegatee is found. Therefore, Algorithm 5 returns Ø as

the result. If GR is not empty, the users playing roles in GR is gathered into user set US and

filtered with Algorithm 4. If US set is not empty after the removal of conflict users, the

algorithm returns US as the result set. Otherwise, the discovery continues with further

distances.

With Algorithm 5, the algorithm for delegation requested by the system is described as

Algorithm 6. WfMS tracks the status of the executing task instances, and invokes algorithm 6

whenever an emergent task instance is found. Algorithm 6 acquires the candidate delegatees by

exploring the role hierarchy with Algorithm 5 at line 2. Exception is raised if Algorithm 5

returns no candidates. Otherwise, Algorithm 6 randomly chooses a delegatee from the

candidate delegatees and invokes Algorithm 1 to delegate the emergent task instance.

 34

Algorithm 6 Delegation from System Request - DSR

Input: the delegating task instance dti

Pre-Condition: dti.s = Suspended, E(dti.ai) > ctime

 (E(dti.ai) - ctime) / (E(dti.ai) - S(dti.ai)) < EER

DSR {

01: CDS = DRH(dti);

02: if(CDS == Ø) EXCEPTION(NO_PROPER_DELEGATEE);

03: else {

04: randomly choose a user u from CDS;

05: DA(dti, u, [ctime, E(dti.ai)]);

06: }

}

3.3.4 Delegation from User Request

Many modern enterprises adopt user-authorized delegation as the primary delegation

methodology. The RBAC-based studies like [20], [22], [18], and [23], also describes how roles

and permissions are delegated under user authorization.

With our framework, a user can authorize two types of delegation. First, a user may

delegate task instances currently allocated to him. Second, a user may delegate the task

instances going to be allocated to him during a specific period.

To request a delegation, the delegator fills in an authorization form which designates the

delegating subject, the delegatee and the activation duration of the delegation. For the first type

of delegation, the delegator designates a task instance residing in his work list as the delegating

subject. The duration to authorize the delegation must be contained by the active interval of the

delegating task instance. For the second type of delegation, the delegator designates an

executable task by any of the roles he playing as the delegating subject. The duration to

authorize the delegation must be contained by the effective duration of the role.

 35

Figure 11 The Process for Delegation from User Request

After accomplishing the authorization form, the delegator user submits the form to request

the approval from his supervisor and the designated delegatee. If the delegation is approved, for

the first type of delegation, the designated task instance is delegated to the delegatee user with

algorithm 1 immediately. For the second type of delegation, the approved form is put into

Forthcoming Delegation Table (FDT). According to the form, the task instances of the

designated task which is allocated to the delegator in the specified duration are delegated to the

designated delegatee. Figure 11 represents the process of delegation from user request, the

authorization form is defined in Definition 20, FDT is defined in Definition 21, and finally,

Algorithm 7 shows how WfMS handles the second type of delegation.

Definition 20 (Authorization Form)

Let AP be the set of all authorization forms.

∀ ap∈AP, ap = (dr, de, sub, tta, is_approved).

dr is the delegator user, dr∈U.

 36

de is the designated delegatee user, dr∈U, dr ≠ de.

sub is the subject of delegation, sub∈T ∪ I, and

if sub∈T, ∃ r∈u.RU∩sub.RT and r.etd TD⊇ { tta},

otherwise, if sub∈I, sub∈dr.WL, sub.s≠Completed, and sub.ai TI⊇ tta.

tta, time to authorize, is the time interval that dr delegates the subject to de.

is_approved is a Boolean variable showing whether ap is approved.

Definition 21 (Approved Form)

∀ ap∈AP, if ap∈FDT, ap.sub∈T, ap.is_approved = true, and E(ap.tta) ≥ ctime.

Algorithm 7 Handle Forthcoming Delegation - HFD

Input: a task instance i,

a user u

Pre-Condition: i is allocating to u

HFD {

01: if (∃ ap∈FDT, ap.dr == u, and ap.sub == i.tk) {

02: if(RIU({ ap.de}, i) ≠ Ø)

03: DA(i, ap.de, [ctime, min(E(ap.tta), E(i.ai))]);

04: else EXCEPTION(INAPPROPRIATE_DELEGATEE);

05: }

}

The system invokes Algorithm 7 whenever a task instance is being allocated to its

execution user. At line 1, the algorithm first checks if the user and the task of the task instance

are recorded on an authorization form in FDT. If the task instance is authorized to be delegated,

Algorithm 7 then invokes Algorithm 4 to check whether the designated delegatee user on the

form violates any delegation constraints. If the check is not passed, an exception is raised and

further handling is necessary. According to different policies, the hanging task instance might

be handled manually or delegated by WfMS automatically. Otherwise, Algorithm 1 is invoked

to perform the delegation.

3.3.5 Revocation

A successful delegation can be revoked by its delegator before it ends [18]. To revoke a

delegated task, the authorization form is simply removed from the FDT. On the other hand, for

 37

revocation of a delegated task instance, the delegatee’s contribution on the task instance might

be preserved or discarded according to the system settings and the enterprise policies. The task

instance is transferred back to the work list of the user requesting the revocation, the revoker,

and the revoker continues executing the task instance after the revocation.

Revoking a multi-level delegation is complex. For a multi-level delegation, all the users

recorded in the historical delegator list might revoke the delegation. If the revoker is the

original delegator, after the delegated task instance is transferred back, the delegation record is

eliminated. Otherwise, if the revoker is the other delegator in the historical delegator list, the

revoker becomes the delegatee of the delegation after the revocation. The revoker and the other

delegators behind the revoker are removed from the historical delegator list.

When a delegation runs out of its effective duration, the system revokes it automatically.

The delegated task instance is transferred back like the revocation is requested by the original

delegator. Algorithm 8 is constructed as follows for revocation.

Algorithm 8 Revocation Algorithm - RA

Input: the subject to be revoked rsub,

the revoker u

Pre-Condition: rsub∈T∪I, u∈U

RA {

01: if (rsub∈T && ∃ ap∈FDT that ap.dr=u, and ap.sub=rsub)

02: remove ap from FDT;

03: else if (rsub∈I && rsub.dr == d that u∈d.HDRL, and rsub.s≠ Completed) {

04: alert dti.eu that d is going to be revoked;

05: remove rsub from rsub.eu.WL;

06: add rsub to u.WL;

07: rsub.eu = u;

08: if(u == d.dr) {

09: remove d from D

10: rsub.dr = Ø;

11: } else {

12: d.de = u;

 38

13: u and all the users behind u in the d.HDRL are removed from d.HDRL;

14: }

15: alert dti.eu dti is transferred back to his work list;

16: } else EXCEPTION(INVALID_REVOCATION);

}

Algorithm 8 takes the subject being revoked and the revoker as the input parameters. If the

subject is a task, Algorithm 8 checks whether there is any corresponding authorization form,

and removes the form from FDT at line 1 and 2. Otherwise, if the subject is a task instance,

Algorithm 8 checks the corresponding delegation record to assure the revocation is valid at line

3. If valid, the current delegatee of the delegated instance is first alerted at line 4. The delegated

instance is removed from the delegatee’s work list, and transferred to the revoker from line 5 to

7. If the revoker is the original delegator of the delegation, the delegation record is eliminated

from line 8 to 10. Otherwise, the record is updated. The delegatee is assigned to the revoker at

line 9; the revoker and the delegators behind him are removed from the historical delegator list

at line 10. The revoker is alerted at line 15. At line 16, an exception is raised if the revocation is

invalid.

 39

3.4 Case Study

Figure 12 (a) The Sample TS Workflow Specification, (b) The Sample Role Hierarchy and User Assignment, and

(c) The Information about Tasks, Mutually-exclusive Tasks, and Authorization Applications

In this section, we adopt a specification review process as an example to show the

feasibility of our approach. The workflow specification of the review process, the partial role

hierarchy, and the other related information are illustrated in Figure 12. In this case, the review

process is composed of two tasks, primary review and secondary review. Chief Engineer is in

charge of the primary review, and Senior Engineer is responsible for the secondary one. These

two review tasks are mutually-exclusive. Their EAI are both [0, 5] after calculation. Since these

two tasks reside on different branches split from the AND-split process, as1, they are concurrent

during execution.

Let Alex is busy in his duty, and apply for delegation of all the reviews allocated to him

during the time interval [ca, cb]. The application is approved by Bob, the designated delegatee,

and his supervisor. In other words, all the review jobs allocated to Alex during [ca, cb] would be

delegated to Bob instead. At time c1, ca < c1 and c1+5 < cb, a workflow instance of w1, wi1 =

({ i_t1, i_t2}, w1, c1), is instantiated so that the task instances i_t1 and i_t2 are instantiated on the

basis of t1 and t2. i_t1 and i_t2 are offered to Chief Engineer and Senior Engineer, and allocated

 40

to Alex and Carrie correspondingly. Now, i_t1 = (wi1, t1, r1, Allocated, u1, [c1, c1+5], Ø), and i_t1

= (wi1, t2, r2, Allocated, u3, [c1, c1+5], Ø). Because Alex has been approved to delegate all the

reviews during [ca, cb] to Bob, Algorithm 7 invokes Algorithm 1 to delegate i_t1 to Bob. The

delegation record d = (i1, u1, u2, [c1, c1+5], {u1}) is created, and i_t1 becomes (wi1, t1, r1,

Allocated, u2, [c1, c1+5], d) after the delegation.

At time c2 which is in the middle of the active interval of i_t1, c1 < c2 < c1+5, Bob gets an

emergent call and becomes unavailable right away. The task instances in his work list are all

suspended. Let us assume that EER equals to 1. Thus, WfMS invokes Algorithm 6 to delegate

i_t1 to another appropriate delegatee immediately. In Algorithm 6, Algorithm 5 is first invoked

to explore the role hierarchy for a proper delegatee. Because t1 is typed “Workflow”, the role

hierarchy is explored downward from Chief Engineer, the role i_t1 offered. Alex is the only user

now playing Chief Engineer, and is eliminated from the candidate delegatee set by Algorithm 2

to avoid delegation loop. When considering Senior Engineer, Carrie is eliminated from the

candidate set by Algorithm 3 because of the SOD policy, and Bob is eliminated from the

candidate set by Algorithm 4 because he is unavailable. No users playing Senior Engineer are

appropriate to take the task. Therefore, Engineer is then considered. After all, Deff and Elly are

included in the candidate set, and Deff is randomly decided as the new delegatee of i_t1.

Algorithm 1 is invoked to delegate i_t1 to Deff. d is updated as (i1, u1, u4, [c2, c1+5], {u1, u2}),

and i_t1 is updated as (wi1, t1, r1, Allocated, u4, [c1, c1+5], d).

At c3, c2 < c3 <c1+5, Alex finishes his jobs ahead of time, and decides to finish i_t1 himself.

Alex invokes Algorithm 8 to revoke i_t1. Deff is first alerted and i_t1 is then revoked. The

delegation record d is removed, and i_t1 is updated as (wi1, t1, r1, Allocated, u1, [c1, c1+5], Ø). In

summary, this case demonstrates the delegations requested from a user and the system, and

indicates how the constraints like delegation loop and SOD work in automatic delegatee

decision.

 41

3.5 Discussion

In this section, we compare our framework with the latest popular approaches: [20], [18],

[43], and [44]. Table 2 illustrates the characteristics of above approaches and ours

correspondingly.

Table 2 Comparison of Characteristics of Various Delegation Models

Characteristics RBDM1 [20] Crampton[18] Gaaloul [43] VTTRDM [44] Our Approach

Access Control RBAC [15][16]
RBAC

[15][16]
TAC [43] TRBACM [44] TRBAC [17]

Delegation of
Permissions

Grant
Grant &
Transfer

No Grant No

Delegation of
Tasks

No No Transfer Yes Transfer

Delegation of Task
Instances

No No No No Transfer

Time Constraints No No No Yes Yes

Automatic
Delegation

No No No No Yes

RBDM1 [20] is a classic delegation model for RBAC [15][16], and can be adopted in

managing delegation of permissions between users. Crampton et al. develop another

RBAC-based delegation model for workflow systems [18]. Crampton's approach allows both

grant and transfer operations for delegation of permissions while RBDM1 adopts only grant

operation [18]. Crampton also raises the issues like upward delegation and permission

authorization for delegation of tasks in work-list based workflow systems [18]. However, both

RBDM1 and Crampton's approach describe no methods about delegation of tasks.

With various access control models based on tasks and roles, Gaaloul's methodology [43],

VTTRDM [44], and our approach can be adopted in managing delegation of tasks for workflow

systems. Gaaloul's methodology describes constraints for delegation of tasks based on

Task-oriented Access Control (TAC) model [43]. TAC model describes the permissions which

a role owns and a task needs. Gaaloul's methodology allows a user to delegate his tasks to a role

 42

which has sufficient permissions to execute the tasks. Since Gaaloul's methodology allows no

delegation of permissions, it is limited and inflexible when selecting the delegatee for a

delegation.

In VTTRDM [44], both permissions and tasks can be delegated between users. RBDM1

[20] is adopted in VTTRDM to manage the delegation of permissions. When delegating a task,

if the delegatee does not have sufficient permissions to execute the task, permission delegation

from the delegator to the delegatee is necessary to enable the execution [44]. Since in

VTTRDM, the delegated permission is not limited being used for the delegated tasks only,

security risk exists.

In our approach, tasks are delegated through user's authorization. Our approach is based on

TRBAC, and a task is executed with a set of associate permissions. Therefore, the delegatee can

execute the delegated task without delegation of permissions, and the security risks brought by

delegation of tasks are eliminated. Besides, in [50], delegation is defined as "A user allocates a

task instance previously allocated to him to another user." While delegation of task instances is

ignored in [43], and [44], our approach clearly states how to delegate task instances between

users. For delegation of task instances, our methods could gather candidate delegatees and

remove inappropriate users from the candidates. With our approach, a workflow system can

automatically delegate an emergent task instance to an appropriate user to prevent the task

instance from failure.

Regarding temporal issues, in VTTRDM, delegation is effective during a single time

interval, and the delegated tasks are revoked after the interval [44]. Our approach is based on

the time constraints between the delegated task instances and the related roles. Because a role

might be activated in multiple time intervals, multiple or periodical time intervals are

considered in our approach to provide a more realistic temporal constraints.

 43

Chapter 4. Detecting Artifact Anomalies in TS workflow

A well-structured workflow may more possibly fail or produce unanticipated run-time

behavior because of abnormal data manipulation [26][27][28][29][51]. The anomalies might be

yielded differently when the temporal issues are considered. Thus, it is worthwhile to study how

to detect artifact anomalies in TS workflow. In this chapter, artifact anomalies in TS workflow

is first stated and modeled in section 4.1. The methodology detecting artifact anomalies in TS

workflow is described in section 4.2. A case study is then introduced in section 4.3 to illustrate

the feasibility of our methodology. Finally, in section 4.4, the related works are discussed and

compared with our methodology.

4.1 Artifact Anomalies in TS workflow

4.1.1 Artifact Operations

In this dissertation, we assume that an activity process in a TS workflow may operate an

artifact as one of the following ways: define (Def), use (Use) and kill (Kill). Defining an artifact

is to assign a value to the artifact, and when an artifact is first defined, it is initialized. An

activity process references an artifact through using it, and an artifact can not be used without

definition. Killing an artifact is to remove the definition of the artifact, and using a killed

artifact before it is defined again leads to errors during execution. As for the control processes

in a TS workflow, it is assumed that they all do no operation (Nop) on any artifacts.

An artifact in a TS workflow is initially stated undefined (UD), and turns to

defined&no-use (DN) after it is defined. When a DN artifact is used, its state becomes

defined&referenced (DR). A DR artifact remains DR after being used, and transits to DN after

 44

being defined again. An artifact in any states becomes UD after being killed.

On the other hand, the artifact operations made by concurrent processes are executed with

undetermined order and might generate ambiguity to artifacts. When several concurrent

processes operate on the same artifact, they race against each other for accessing the artifact and

anomalies might thus be generated. For example, let one process make a definition to an artifact,

and another one kills the artifact concurrently. The existence of the definition of the artifact

becomes ambiguous because the execution order between the kill and the definition is not

determined during design-time. These operations, called Racing Operations, require additional

consideration during analysis, and are categorized according to the operations involved as

following:

(1) Racing Definition(s)&Kill (s), abbreviated as RDK, represents a racing operation

composed of both definition(s) and kill(s) with none or any usage(s).

(2) Racing Definitions, abbreviated as RDS, represents a racing operation composed of

multiple definitions and no kills with none or any usage(s).

(3) Racing Kills, abbreviated as RKS, represents a racing operation composed of no

definitions and multiple kills with none or any usage(s).

(4) Racing Definition&Usage(s), abbreviated as RDU, represents a racing operation

composed of a single definition, any usage(s) and no kills.

(5) Racing Usage(s)&Kill, abbreviated as RUK, represents a racing operation composed of no

definitions, any usage(s), and a single kill.

(6) Racing Usages, abbreviated as RUS, represents a racing operation composed of multiple

usages only.

 45

As the example mentioned above, an RDK or an RDS introduces state ambiguous (AB) to

the artifact. Besides, an artifact transits to state UD after an RKS or an RUK, and state DR after

an RDU. Since the artifact state after a usage varies based on the input state of the artifact, the

artifact state after an RUS requires additional consideration in merging the input states of the

usages involved in the RUS. The artifact and its related operations are modeled in Definition 22,

and Figure 13 illustrates how artifact transits its state with different artifact operations.

Definition 22 (Artifact Model in TS workflow)

For an LRTS workflow w,

The set of all the artifacts operated in w is notated as Aw.

∀ a∈Aw, a.state∈{UD, DN, DR, AB}.

The artifact operation made by processes in w is described as a relationship AOP:

AOP: {p | p∈Pw, p.type == ACT} × Aw⇒ {Nop, Def, Use, Kill}

{ p | p∈Pw, p.type ≠ ACT} × Aw⇒ {Nop}

Figure 13 The Artifact State Transit Diagram

4.1.2 Artifact Anomalies

Artifact anomalies are generated from various structural and temporal relationships

between artifact operations, and can be classified into four classes: Useless Definition,

Undefined Usage, Null Kill , and Ambiguous Usage:

 46

(1) Useless Definition:

Killing or defining a DN artifact makes the previous definition useless because the

definition is destroyed (or redefined) without any usage. If an artifact remains DN at the end

process, its definition is also useless because it is not used before the end of the workflow. A

useless definition is a kind of redundancy indicating there might be logic error in the workflow

schema and should be warned to designers.

(2) Undefined Usage:

An activity process might not be correctly executed if the essential artifact is not properly

defined. Therefore, an undefined usage, i.e. using an UD artifact, is an error leading to faulty

execution, and is necessary to be handled by the workflow designers.

(3) Null Kill:

A null kill represents a process try to remove an inexistent definition; e.g. to kill a UD

artifact. A null kill is a kind of redundancy, and designers should be noticed about it.

(4) Ambiguous Usage:

An ambiguous usage means that an activity process uses an artifact which is ambiguous in

definitions or in states. Therefore, the direct usage of an AB artifact is an ambiguous usage. The

usage(s) involved in an RDS, an RDK, or an RDU are also ambiguous usages. Besides, if an

artifact is stated DR/DN before an RKU, the usage(s) involved in the RKU is also ambiguous.

Similarly, when an UD artifact meets an RDU, the definition in the RDU may not be made in

time for the usages, and the usage(s) involved in the RDU is also ambiguous.

 47

4.2 The Methodology Detecting Artifact Anomalies in LRTS workflow

In this section, the methodology detecting artifact anomalies in TS workflow is introduced.

To simplify our discussion, the structured loops in all the TS workflows under analysis are first

reduced with the methodology introduced in section 2.4.1, and the anomaly detection is made

for LRTS workflows.

Our methodology is divided into three parts. In section 4.2.1, we first describe how to

traverse an LRTS workflow to collect the structural and temporal relationships between the

processes and the artifact operations. In section 4.2.2, according to the structural and temporal

relationships gathered in the first part, the methodology analyzing relationships between the

artifact operations are described. Finally, on the basis of the analysis made in the second part,

the methodology detecting artifact anomalies in an LRTS workflow is concluded in section

4.2.3

4.2.1 Gathering Structural, Temporal, Artifact Information in LRTS workflow

In this section, we describe an algorithm to traverse an LRTS workflow to collect the

ABStacks, EAIs, and the artifact operations made by activity processes in the LRTS workflow.

The EAIs and ABStacks are calculated with the methods illustrated in Figure 6 and Figure 9

correspondingly. For each artifact a, an artifact operation list, notated as AOPLa, is established.

The definition of the list is formally described as following:

Definition 23 (Artifact Operation List)

For an LRTS workflow w and ∀ a∈Aw,

 AOPLa is the list of artifact operations working on a,

∀ op∈AOPLa, op = (p, a, est, let, type),

p∈Pw, p.type∈{ACT, END},

est = EST(p), and let = LET(p), and

type = AOP(p, a).

With the definition, the algorithm gathering structural, temporal, artifact information in

 48

LRTS workflow is described as following:

Algorithm 9 Information Gathering - IG

Input: an LRTS workflow w

Pre-Condition: w.s.mark == true, EAI(w.s) == [0, 0], w.s.abstack == « »

∀ p∈Pw\{ w.s}, p.mark == false

IG {

01: Queue tq;

02: ∀ (w.s, n)∈Fw,

03: tq.enqueue(n);

04: loop {

05: Process p = tq.dequeue();

06: if((p.type∈{AJ, XJ}) && (∃ (p’, p)∈Fw, p’.mark == false)) continue;

07: p.mark = true;

08: calculate EAI(p);

09: calculate p.abstack;

10: if(p.type == ACT)

11: ∀ a∈Aw, AOP(p, a) ≠ Nop,

12: add (p, a, EST(p), LET(p), AOP(p, a)) to AOPLa;

13: else if(p.type == END) {

14: ∀ a∈Aw, add (p, a, EST(p), LET(p), AOP(p, a)) to AOPLa;

15: break;

16: }

17: ∀ (p, p’)∈Fw, tq.enqueue(p’);

18: }

19: ∀ a∈Aw, Sorting AOPLa by LET

}

In Algorithm 9, a traverse queue is introduced to hold the order of traversal of processes in

an LRTS workflow. Starting from the start process, the processes in a TS workflow is traversed

along with flows. The EAIs, ABStacks, and artifact operations lists are calculated and collected

correspondingly. To prevent unnecessary redundancy, a Boolean flag mark is given to each

process. Besides the start process, the mark of each process in w is initialized as false, and when

a process is calculated, its mark turned to true. Since a join process may have several in-flows, a

Boolean expression is checked at line 6 to assure that the join process is calculated only when

 49

each of its source process is calculated. Algorithm 9 records the artifact operation made by each

activity process at line 12 and the “no operation” made by the end process in AOPLa at line 14

for further analysis of the definitions remaining useless at the end of w. At line 19, artifact

operation list corresponding to each artifact is sorted by LET.

4.2.2 Collecting Structural and Temporal Relationships between Artifact Operations in LRTS

workflow

Artifact operations are made by activity processes. Based on the structural and temporal

relationships between the processes, the operations effective on the same artifact can be before,

after, concurrent, or exclusive to each other. To identify these relationships between artifact

operations is the foundation of analysis of artifact anomalies. Here, we first define the structural

and temporal relationships between artifact operations as following:

Definition 24 (Relationships between Artifact Operations)

For an LRTS workflow w and ∀ a∈Aw,

∀ opi, opj∈AOPLa,

Before(opi, opj) == true if and only if Before(opi.p, opj.p) == true.

After(opi, opj) == true if and only if After(opi.p, opj.p) == true.

Concurrent(opi, opj) == true if and only if Concurrent(opi.p, opj.p) == true.

Exclusive(opi, opj) == true if and only if Exclusive(opi.p, opj.p) == true.

According to Definition 10, Definition 24, Lemma 1, and Lemma 3, the following lemma

holds.

Lemma 7

For two operation op and op’∈AOPLa,

(1) If Before(op, op’), op.let < op’.let

(2) If op.let < op’.let, After(op, op’) == false

Algorithm 10 is introduced to collect operations concurrent to each operation in an AOPLa.

To facilitate our discussion, it is assumed that each AOPLa is indexed, and opi ∈ AOPLa

indicates the ith operation in the list. Because AOPLa is sorted by LETs at the last part of

 50

Algorithm 9, for 0 < i < j, LET(opi.p) ≤ LET(opj.p). Besides, for any opi in AOPLa,

ConcD_opi, is the set collecting the definitions concurrent to opi, and ConcK_opi collects kills

correspondingly. These sets are defined as following:

Definition 25 (Records of Relationships between Artifact Operations)

For an LRTS workflow w and ∀ a∈Aw,

∀ opi∈AOPLa,

ConcD_opi =

{ op | op∈AOPLa, op.type == Def, Concurrent(opi.p, op.p) == true}

ConcK_opi =

{ op | op∈AOPLa, op.type == Kill, Concurrent(opi.p, op.p) == true}

With the records, Algorithm 10 is constructed as following:

Algorithm 10 Identifying Concurrent Operations - ICO

Input: an artifact a

Pre-Condition: a∈Aw, and w is manipulated by Algorithm 9

ICO {

01: for(i = 1 to |AOPLa|) {

02: if(opi.p.abstack ≠ « » {

03: j = i + 1;

04: while(j ≤ |AOPLa|) {

05: if (Concurrent(opi.p, opj.p)){

06: if(opi.type == Def) add opi to ConcD_opj;

07: else if(opi.type == Kill) add opi to ConcK_opj;

08: if(opj.type == Def) add opj to ConcD_opi;

09: else if(opj.type == Kill) add opj to ConcK_opi;

10: }

11: j++;

12: }

13: }

14: }

}

Because AOPLa is sorted by LETs in Algorithm 9, Algorithm 10 checks each operation in

AOPLa in order. For any opi ∈AOPLa, Algorithm 10 first checks if it resides in some parallel or

decision structure(s) at line 2. If not, opi can not be concurrent or exclusive to any other

 51

operations. From line 3 to line 14, the algorithm checks the operations which are succeeding to

opi in AOPLa in order. If the operation under checking is concurrent to opi, the records for both

operations are updated.

For an artifact operation, the operations directly before it generate/carry its input artifact

state, and might make it an artifact anomaly. For example, when a kill directly before a usage,

i.e. no other operations between them, the usage is an undefined usage. We define the

relationship directly before between artifact operations on the basis of Definition 24 as

following:

Definition 26 (Directly Before)

For an LRTS workflow w and ∀ a∈Aw,

∀ op, op’ ∈AOPLa, op is directly before op’ if and only if op is before op’, and ∃

no op” ∈AOPLa that op” is after op and before op’.

∀ op∈AOPLa, DB4op = { op’ | op’∈AOPLa and op’ is directly before op}

According to Definition 10, Definition 24, and Lemma 5, for any two artifact operations

effective on artifact a, op and op’, if op’ is before op, op’.let < op.let. Therefore, the operations

directly before op can be identified by analyzing the sub-list of AOPLa where the operations in

the sub-list are all with smaller index in AOPLa than op. The sub-list is defined as following:

Definition 27 (The List of Operations with Smaller LET than Operation op)

∀ op∈AOPLa,

 OPLop = {op’ | op’∈AOPLa , and op’.let < op.let}

 Similar to AOPLa, OPLop is sorted and indexed with LETs

The algorithm collecting the operations directly before one another operation is described

as following.

Algorithm 11 Collecting Directly Before Operations – CDBO

Input: an artifact operation op,

Pre-Condition: AOPLa has been produced by Algorithm 9, op∈AOPLa

Operation Set CDBO {

01: DB4op = Ø;

 52

02: for(i = |OPLop| to 1) {

03: if ((Concurrent(op, opi) || Exclusive(op, opi)) == false) {

04: if (ResultSet == Ø) add opi to ResultSet;

05: else if(∃ no op’∈ DB4op that Before(opi, op’) == true)

06: add opi to ResultSet;

07: }

08: }

09: return DB4op;

}

For the input artifact operation op, Algorithm 11 calculates DB4op from its corresponding

artifact operation list. Algorithm 11 checks the operations in OPLop with reverse order.

According to Lemma 1 and Definition 10, the processes in an LRTS workflow are either before,

after, concurrent or exclusive to each other, and so are the operations. The operations concurrent

or exclusive to op are excluded at line 3. With Lemma 4, the first operation found passing the

checking at line 3 is directly before op. According to Definition 26, if op’ and op” are both

directly before op, op’ can not be before op” and vice versa. Therefore, the algorithm continues

gathering the other directly before operations with the statement at line 6 after the first one is

found.

To show Algorithm 11 is correct, the following lemma is depicted and proved.

Lemma 8

For any artifact operation op and op’, op’ is directly before op if and only if

op’∈CDBO(op)

Proof:

 We first show the if-part is correct. B.W.O.C, it is assumed that op’∈CDBO(op), but is

not directly before op. According to the algorithm, the result set of Algorithm 11 is a sub-set

of OPLop. Therefore, op’∈OPLop, op’.let < op.let, and op’ can not be after op on the basis of

Lemma 7. Besides, op’ must pass the checking at line 3, op’ is not concurrent or exclusive to

op. Based on Lemma 4 and Definition 24, op’ is before op. Since op’ is not directly before op,

according to Definition 26, there must exist another operation op” which is after op’ and

before op. Because op’∈CDBO(op), op’ must be collected in the result set at line 4 or line 6

in Algorithm 11. Since op” is after op’, op’.let < op” .let. op” has a larger index than op’ in

OPLop, and is touched by Algorithm 11 earlier than op’ does. Therefore, either op” is directly

 53

before op or not, op’ can not be collected in the result set at line 4 or line 6. op’∉CDBO(op)

which is a contradiction, and the if-part of Lemma 8 is shown correct.

 As for the only-if-part, B.W.O.C, we assume that op’ is directly before op and

op’∉CDBO(op). The assumption indicates that op’ is before op. According to Lemma 7,

op’.let < op.let, and thus op’ belongs to OPLop. op’ also passes the checking at line 3 based on

Lemma 4 and Definition 24. If the result set is empty when Algorithm 11 touches op’, op’ is

inserted into the result set at line 4 because op’ is before op. Otherwise, op’ is added into the

result set at line 6 because op’ is directly before op and there exist no other operations after

op’ in OPLop. Therefore, op’∈CDBO(op) which is a contradiction, and the only-if-part of

Lemma 8 is shown correct. With the proofs of the both direction, Lemma 8 is proved. □

For an artifact operation op, multiple operations directly before it might exist. According

to Definition 26, the operations are not before or after each other. On the basis of Lemma 1 and

Definition 10, the operations are mutually concurrent or exclusive, and are possibly organized

as the following cases:

(1) All the operations are concurrent to each other.

(2) All the operations are exclusive to each other.

(3) The operations can be divided into several distinct groups where the operations in the

same group are concurrent to each other, and the operations belonging to different

groups are all mutually exclusive.

(4) The operations can be organized into several varied groups where the operations in the

same group are concurrent to each other, and the operations belonging to different

groups are either identical or mutually exclusive.

The operations in case (1) compose a racing operation. In case (2), each operation is

considered separately during analysis because only one of the operations is executed during

run-time. Case (3) and (4) happen when the operations are made by processes reside in nestedly

organized decision and parallel structures. Since only one of the branches in a decision structure

is taken during run-time, the operations reside in different branches of a decision structure are

 54

separately analyzed with the operations concurrent to them. Figure 14 illustrates two partial

LRTS workflow schemas as the examples of case (3) and (4).

Figure 14 Examples for Nestedly Organized Decision and Parallel Structures

In Figure 14, we assume that the EAIs of the activity processes with footnotes are all

overlapped, and all the operations made by them are thus directly before op. Figure 14(a)

illustrates an example of case (3) mentioned above. In Figure 14(a), the operations directly

before op can be divided into two distinct groups {op1, op2, op3} and {op4, op5, op6}. The

operations are concurrent to the ones within the same group and are exclusive to the ones

belonging to different groups. Figure 14(b) illustrates an example of the case (4). op1, op2, and

op3 are mutually exclusive and should be separately considered when analysis. However, each

of them is concurrent to op4 and op5. Therefore, the operations are organized with three groups,

{ op1, op4, op5}, { op2, op4, op5}, and {op3, op4, op5}. The operations in the same group are

concurrent to each other, and the exclusive operations are distributed among different groups.

Definition 28 (Set of Operation Sets derived from DB4op)

∀ op∈AOPLa,

DB4OPSop = {OPS | OPS⊆ DB4op, ∀ op’, op” ∈OPS, Concurrent(op’, op”) ==

true, and ∀ op3∈DB4op\OPS, ∃ op4∈OPS that Exclusive(op3, op4) == true }

Each of the groups, the operation sets, in which all the operations are mutually concurrent

represents an execution case during run-time. With Definition 26, the set of the operation sets

 55

derived from DB4op is defined as above.

However, to retrieve all such operation sets from DB4op is equivalent to solve the

well-known NP-hard problem “Maximal Clique Enumeration Problem [52].” Although many

studies and efficient algorithms like [53] and [54] has been developed for this problem, to

discuss the solution for maximal clique enumeration problem is beyond the scope of this

dissertation. To illustrate our methodology, we describe a polynomial algorithm to manufacture

DB4OPSop satisfying the cases (1), (2), (3) completely and case (4) partially from DB4op. The

algorithm is described as following.

Algorithm 12 Collecting Directly Before Operation Sets - CDBOPS

Input: an operation op,

Pre-Condition: DB4op has been calculated by Algorithm 11

Set of Operation Sets CDBOPS {

01: DB4OPSop = Ø;

02: duplicate DB4op to BaseSet;

03: while(BaseSet ≠ Ø) {

04: CurrentOPS = Ø;

05: choose and remove arbitrary operation op’ from BaseSet;

06: duplicate DB4op \{op’} to CountSet;

07: add op’ to CurrentOPS;

08: while(CountSet ≠ Ø) {

09: choose and remove arbitrary op” from BaseSet;

10: if(∀ op3∈CurrentOPS, Concurrent(op” , op3) == true) {

11: add op” to CurrentOPS;

12: remove op” from BaseSet;

13: }

14: }

15: add CurrentOPS to ResultSet;

16: }

17: return DB4OPSop;

}

First, the algorithm duplicates DB4op to BaseSet at line 2. The codes from line 3 to 16 form

a loop. In the loop, an operation op’ is arbitrarily chosen from BaseSet, and all the operations

 56

concurrent to op’ and each other are gathered and put into CurrentOPS. CurrentOPS is added to

the result set as one of the operation sets found by the algorithm at the end of the loop. The

operations in CurrentOPS are removed from BaseSet, and the next loop starts if there is still

operation remaining in BaseSet. Because any operations in DB4op are mutually concurrent or

exclusive, the operation chosen in the next loop is exclusive to at least one of the operations

gathered in this loop. Besides, the algorithm starts collecting an operation sets from different

operations every loop, and thus none of the operation sets collected in Algorithm 12 are

identical. After each operation in BaseSet is distributed into some operation set, the algorithm

returns the calculated DB4OPSop at line 17.

To depict the correctness and the effectiveness of Algorithm 12, we show that the

following lemmas hold.

Lemma 9

The result set returned by Algorithm 12 follows Definition 28.

Proof:

 Let OPS be one of the operation set collected in CDBOPS(op). According to the

pre-condition of Algorithm 12, DB4op has been calculated by Algorithm 11, and according to

Lemma 1, Definition 10, and Definition 26, the operations in DB4op are either mutually

concurrent or exclusive. From line 7 and line 11 of Algorithm 12, we know that all the

operations collected in OPS are mutually concurrent. The operations gathered in OPS are

removed from BaseSet at line 12. Therefore, for any operation remaining in BaseSet, there

exists at least one operation exclusive to it in OPS. Because BaseSet is duplicated from DB4

at line 2, OPS follows Definition 28, and Lemma 9 is thus shown correct. □

Before Algorithm 12 is introduced, four possible cases of the set of operation sets derived

from DB4op are described, and we claim the capability of Algorithm 12 based on the cases.

Here, we show the claim holds with the following lemma.

Lemma 10

Algorithm 12 is able to find the operation sets for case (1), (2), and (3) completely,

and for case (4) partially.

 57

Proof:

 The cases are separately discussed as following:

(1) All the operations in DB4op are concurrent to each other.

In this case, the algorithm collects all the operations in the first loop of the

algorithm. Only one operation set is included in the result set of Algorithm 12.

(2) All the operations in DB4op are exclusive to each other.

In this case, an operation is collected in an individual operation set in each

loop. Let the size of DB4op be N. As the result, N particular operation sets are

collected in DB4OPSop, and the union of the sets is identical to DB4op.

(3) The operations in DB4op can be divided into several distinct groups where the

operations in the same group are concurrent to each other, and the operations belonging

to different groups are all mutually exclusive.

In this case, DB4op can be divided into several distinct operation sets following

Definition 28. However, the operations included in different sets are all mutually

exclusive. According to Lemma 9, the operation sets collected by Algorithm 12

follow Definition 28. On the basis of the algorithm, each operation in DB4op is

collected into some operation set in DB4OPSop. Therefore, all the operation sets in

this case can be found by Algorithm 12.

(4) The operations in DB4op can be organized into several varied groups where the

operations in the same group are concurrent to each other, and the operations belonging

to different groups are either identical or mutually exclusive.

In Algorithm 12, at least one operation is removed from BaseSet in the loop

starting from line 3, and therefore the algorithm derives at most N operation sets

from DB4op. For case (4), the number of operation sets identified by Algorithm 12 is

less than N, but the number of operation sets in this case might exceed N. The

operation sets in case (4) follow Definition 28, and so is Algorithm 12. Since the

number of operation sets in case (4) might exceed the maximal capability of

Algorithm 12. Obviously, Algorithm 12 identifies the operation sets for case (4)

only partially. □

4.2.3 Detecting Blank Branch

Besides the cases described above, analysis of blank branches, i.e. the branches in a

decision structure where no process residing in the branch has operations effective on the same

artifact, is still ignored. Figure 15 illustrates parts of an LRTS workflow that the definitions

made by v1 and v2 are directly before the usage made by v4. The definitions should be

considered separately during analysis because they are exclusively executed during run-time.

 58

However, if the third branch is taken during execution, the usage made by v4 is undefined

because the definition of a is killed by v0, and no further definition is made by activity processes

on the third branch. The third branch is a blank branch which generates a blind spot in our

methodology.

Figure 15 An Example of a Blank Branch

For any operation op, to eliminate the effect brought by blank branches when calculating

its input states, all the operations reside in the decision structure with blank branches should be

removed from OPLop, and DB4op can then be recalculated for analysis. Algorithm 13 detects

blank branches from the directly before operations of the input operation.

Algorithm 13 Detecting Blank Branch - DBB

Input: an operation op,

Pre-Condition: DB4op has been calculated by Algorithm 11

Branch Set DBB {

01: XSSet = Ø;

02: AllBranch = Ø;

03: OpBranch = Ø;

04: ∀ op’∈DB4op {

05: ∀ si∈(op’.p.abstack\op.p.abstack) where si.p.type == XS {

06: if(si.p∉XSSet) {

07: ∀ out-flow of si.p, f, add (si.p, BM(f)) to AllBranch;

08: add si.p to XSSet;

09: }

10: add si to OpBranch;

11: }

12: }

13: BlankBranch = AllBranch\OpBranch

14: return BlankBranch;

}

 59

The temporary sets used in the algorithm are initialized from line 1 to 3. At line 5, the

algorithm checks if there exists a decision structure that (1) the structure is converged before op

and (2) an operation in DB4op resides in the structure. At line 7, Algorithm 13 records the

structural items representing all the branches of the decision structure in AllBranch. For any

operation in DB4op, if the operation resides in some decision structure, the algorithm collects

the branch of the structure where the operation resides in OpBranch at line 10. At line 13, the

blank branches are derived from the difference between AllBranch and OpBranch as

BlankBranch. BlankBranch is then returned as the result set for further analysis.

In Algorithm 13, all the branches of the decision structures with the operations directly

before op are collected in AllBranch, and the individual branches resided by the operations are

recorded in OpBranch. If all the branches collected in AllBranch are resided by the operations

directly before op, no blank branch exists. Otherwise, the differences between AllBranch and

OpBranch are the branches without operations effective on op.a, i.e. the blank branches.

4.2.4 Identifying Artifact Anomalies in an LRTS workflow

In this section, the algorithm integrating all the information gathered above to identify the

artifact anomalies in an LRTS workflow is introduced. An operation transits the state of

artifacts as Figure 13 illustrates, and artifact anomalies are produced when operations effective

on artifacts with inappropriate state. For an artifact operation op, the artifact state produced by

op, i.e. op’s output state, is recorded in op.OutState, and its input state is calculated from the

output states of the operation(s) directly before it. Since only one of the mutually exclusive

input operations is executed during run-time, the input states from these operations are

discussed separately, and an operation might thus produce multiple output states accordingly.

States of artifacts are recorded as state items, and are modeled as following.

 60

Definition 29 (Records of Artifact States)

∀ state item stItem, stItem = (st, SRC),

stItem.st represents the output artifact state of op.a, and

stItem.SRC indicates the source operations producing the state.

With the definition above, Algorithm 14 describes the methodology to calculate the input

state for each operation.

Algorithm 14 Gathering Input States of an Operation - GIS

Input: an LRTS workflow w,

an operation op

Pre-Condition: DB4OPSop has been calculated by Algorithm 12

Set of State Items GIS {

01: InStates = Ø;

02: if(DB4OPSop == Ø)

03: add (UD, {w.s}}) to InStates;

04: else ∀ OPS∈DB4OPSop {

05: if(OPS is an RDS/RDK)

06: add (AB, {op’ | op’∈OPS, op.type∈{Def, Kill}}) to InStates;

07: else if (OPS is an RDU)

08: add (DR, { op’ | op’∈OPS, op.type == Def}) to InStates;

09: else if (OPS is an RKS/RKU)

10: add (UD, { op’ | op’∈OPS, op.type == Kill}) to InStates;

11: else if (OPS is an RUS) {

12: if (∀ op’∈OPS, ∃ si∈op’.OutState that si.st == UD) {

13: UDSRC = Ø;

14: ∀ op’∈OPS and si∈op’.OutState,

15: if(si.st == UD) UDSRC = UDSRC∪ si.SRC;

16: add(UD, UDSRC) to InStates;

17: }

18: if(∃ op’∈OPS and si∈op’.OutState that si.st∈(AB, DR)) {

19: ABSRC = Ø;

20: DRSRC = Ø;

21: ∀ op’∈OPS and si∈op’.OutState {

22: if(si.st == AB) ABSRC = ABSRC∪ si.SRC;

23: else if(si.st == DR) DRSRC = DRSRC∪ si.SRC;

24: }

25: if (ABSRC ≠ Ø) add(AB, ABSRC) to InStates;

 61

26: if (DRSRC ≠ Ø) add(DR, DRSRC) to InStates;

27: }

28: } else ∀ op’∈OPS, InStates = InStates∪ op’.outStates;

29: return InStates;

}

The algorithm shows how to collect the input state of operation op from DB4OPSop. An

empty DB4OPSop indicates that no operation is operated before op. In this dissertation, we

assume that all the artifacts are initialized with state UD, and the state item (UD, {w.s}) is

inserted to the result set in this circumstance. If DB4OPSop is not an empty set, the algorithm

calculates the input state of op from each operation set in DB4OPSop. An operation set

containing multiple operations composes a racing operation, and the algorithm gives the input

state of op generated from an RDS, RDK, RDU, RKS, and RKU from line 5 to 10 based on the

description in section 4.1.1. For an RUS, if all the usages involved in the RUS propagate state

UD in their output states, the artifact might be undefined after the RUS, and state UD is

included in op’s input states accordingly. On the other hand, if there exists a usage involving in

the RUS propagating state AB for the target artifact, the target artifact might be ambiguous in

definition before op is operated. Similarly, if the target artifact is defined in one of the usages

involved in the RUS, DR is recorded as one of the input states of op. The method to calculate

the artifact states generated from an RUS is described from line 12 to 26 in the algorithm.

Finally, if the operation set contains only one single operation. The input state of op is simply

equivalent to the output state of the operation, and is handled at line 28. The input states of op

are identified for each operation set collected by Algorithm 12. The completeness of the input

states gathered by Algorithm 14 is restricted by the capability of Algorithm 12.

According to the type of an operation and its corresponding input state, whether an artifact

anomaly is generated from the operation can be detected. The artifact anomalies are recorded in

Artifact Anomaly Table (AAT) modeled as following:

 62

Definition 30 (Artifact Anomaly Table)

Let AATw be the artifact anomaly table for an LRTS workflow w

∀ aar∈AATw, aar = (op, type, SRC),

aar.op indicates the abnormal artifact operation,

aar.type∈{Useless Definition, Null Kill, Undefined Usage, Ambiguous Usage}

indicates the anomaly type, and

aar.SRC represents the set of operations leading to the anomaly.

For each record in AATw, the source operations producing the anomaly are recorded. For

example, a usage of an artifact is undefined because a kill removes the definition of the artifact

before it. The kill is recorded in the artifact anomaly record to provide information for fixing of

the anomaly. The following algorithm illustrates detection of artifact anomalies and calculation

of the output states for operations with different types.

Algorithm 15 Identifying Artifact Anomalies for No Operations - IAAN

Input: an LRTS workflow w,

an artifact operation op, and

a set of state items InState

Pre-Condition: op.type == Nop

IAAN {

01: ∀ stItem∈ InState,

02: if(stItem.state == DN)

03: add(op’ | op’∈stItem.SRC, Useless Definition, {op}) to AAT w;

04: op.OutState = InState;

}

For an artifact a, the no operation made by the end process is recorded in AOPLa to detect

if any useless definition exists at the end of the LRTS workflow. Since only a definition transits

an artifact to state DN, the algorithm records the operations generating DN state directly before

the end of the LRTS workflow as useless definitions.

Algorithm 16 Identifying Artifact Anomalies for Definitions - IAAD

Input: an LRTS workflow w,

an artifact operation op, and

a set of state items InState

Pre-Condition: op.type == Def

 63

IAAD {

01: ∀ stItem∈ InState,

02: if(stItem.state == DN)

03: add(op’ | op’∈stItem.SRC, Useless Definition, {op}) to AAT w;

04: op.OutState = { (DN, {op}) };

}

Algorithm 16 identifies the artifact anomalies generated from a definition, and calculate its

output state. For an artifact a, a definition which is not referenced by any usages before being

defined again is a useless definition. Finally, a definition transits a to state DN, and the output

state generated by the definition is recorded accordingly.

Algorithm 17 Identifying Artifact Anomalies for Kills - IAAK

Input: an LRTS workflow w,

an artifact operation op, and

a set of state items InState

Pre-Condition: op.type == Kill

IAAK {

01: ∀ stItem∈ InState,

02: if(stItem.state == DN)

03: add(op’ | op’∈stItem.SRC, Useless Definition, {op}) to AAT w;

04: else if(stItem.state == UD) add(op, Null Kill, stItem.SRC) to AATw;

05: opi.OutState = { (UD, {opi}) };

}

Algorithm 17 identifies the artifact anomalies generated from a kill, and calculates its

output state. A definition which is killed before being referenced is also useless, and the

anomaly is detected at line 2 and 3. Besides, if an artifact remains undefined before a kill, the

kill is redundant, and a Null Kill is raised accordingly. A kill transits an artifact to state UD, and

the output state generated from the kill is recorded at line 5.

Algorithm 18 Identifying Artifact Anomalies for Usages - IAAU

Input: an LRTS workflow w,

an artifact operation op, and

a set of state items InState

Pre-Condition: op.type = Use

 64

IAAU {

01: ∀ stItem∈ InState {

02: if(stItem.state == AB)

03: add(op, Ambiguous Usage, stItem.SRC∪

04: ConcD_op∪ ConcK_op) to AATw;

05: else if(stItem.state == UD) {

06: if(ConcD_op ≠ Ø)

07: add (op, Ambiguous Usage, stItem.SRC∪ ConcD_op) to AATw;

08: else add(op, Undefined Usage, stItem.SRC) to AATw;

09: }

10: else if(stItem.state∈{DR, DN})

11: if(ConcD_op∪ ConcK_op ≠ Ø)

12: add(op, Ambiguous Usage, stItem.SRC∪

13: ConcD_op∪ ConcK_op) to AATw;

14: if(stItem.state == DN) add (DR, stItem.SRC) to opi.OutState;

15: else add stItem to opi.OutState;

16: }

}

Algorithm 18 identifies whether a usage is abnormal, and calculates its output state. The

input state AB indicates that the artifact is ambiguous in definition when the operation being

operated, and makes the usage an ambiguous usage. If the input state of the usage is UD, the

algorithm checks if there is any definition concurrent to the usage from at line 6. If no

concurrent definition exists, the usage is undefined. Otherwise, the usage is ambiguous because

it may reference an undefined artifact or the value defined by the concurrent definition(s). If the

input state of the usage is DN or DR, the concurrent definitions or kills which cause ambiguity

to the usage are checked at line 11, and an Ambiguous Usage is raised if any ambiguity exists.

The usage transits a DN artifact to state DR or simply propagates the input states to the

following operations otherwise.

The expressions adopted in Algorithm 15 to Algorithm 18 are stated based on the

description in section 4.1. With all the definitions and algorithms described in this chapter, the

methodology detecting artifact anomalies in a TS workflow is introduced as following.

 65

Algorithm 19 Identifying Artifact Anomalies - IAA

Input: an LRTS workflow w

IAA {

01: IG(w);

02: ∀ a∈Aw {

03: ICO(a);

04: for(i = 1 to |AOPLa|) {

05: while(true) {

06: CDBO(opi);

07: CDBOPS(opi);

08: InState = GIS(w, opi);

09: if(opi.type == Nop) IAAN(opi, InState, w);

10: else if (opi.type == Def) IAAD(opi, InState, w);

11: else if (opi.type == Kill) IAAK(opi, InState, w);

12: else if (opi.type == Use) IAAU(opi, InState, w);

13: BlankBranch = DBB(opi);

14: if(BlankBranch == Ø) break

15: else

16: ∀ op∈OPLopi,

17: if(∃ si∈BlankBranch, and si’ ∈op.p.abstack, where si.sp == si’.sp)

18: remove op from OPLopi;

19: }

20: }

21: }

}

At line 1, the algorithm first invokes Algorithm 9 to collect structural and temporal

information like EAIs, ABStacks, and artifact operation lists for the input LRTS workflow. For

each artifact a, Algorithm 19 then identifies the concurrency between artifact operations with

Algorithm 10 at line 3, and starts analysis of the each operation in AOPLa in order from line 4.

Algorithm 11 is invoked at line 6 to collect the operations directly before opi, and the operation

sets directly before opi is manufactured by Algorithm 12 from the previous result at line 7. At

line 8, Algorithm 14 gathers the input state of opi, and invokes corresponding algorithms from

line 9 to 12 to detect artifact anomalies and calculate the output state of opi. At line 13,

Algorithm 13 is invoked to detect if there is any blank branch before opi. If not, the anomaly

 66

detection work for opi is accomplished. Otherwise, all the operations residing in the decision

structure with blank branches are removed from OPLopi, and Algorithm 19 repeats analysis of

artifact anomalies for opi until all the blank branches considered. The completeness of the

artifact anomalies detected in our methodology is decided by the completeness of the operation

sets identified by Algorithm 12. Developing an algorithm able to collecting more operation sets

is helpful in enhancing our methodology, and is left as a future work of this study.

4.3 Case Study

In this section, a case study is made to illustrate the feasibility of our methodology.

Figure 16 The Sample TS Workflow for the Case Study in Chapter 4

Figure 16 shows the sample TS workflow for our case study. The processes, flows,

working durations, and the artifact operations made on artifact a are illustrated in the sample.

To analyze the sample TS workflow with our methodology, the structured loops in the TS

workflow should first be reduced. After loop reduction, the LRTS workflow generated from the

sample TS workflow are illustrated as Figure 17. Then, Algorithm 9 is invoked to gather the

temporal and structural information such as the EAI and the ABStack for each process, and the

artifact operation list for each artifact.

 67

Figure 17 The Sample LRTS Workflow Derived from Figure 16 with Decoration of EAIs and ABStacks

Table 3 illustrates the artifact operation list and the concurrent operations for artifact a

generated by Algorithm 9 and Algorithm 10.

Table 3 Artifact Operation List for a, and the Corresponding Concurrent Operations

opi AOPLa ConcD ConcK

op1 (v1, a, 0, 2, Use) Ø Ø

op2 (v2, a, 1, 4, Def) Ø Ø

op3 (v10, a, 1, 4, Use) {op2} { op7}

op4 (v10
1, a, 1, 4, Use) {op2} { op7}

op5 (v3, a, 2, 6, Use) Ø Ø

op6 (v10
2, a, 2, 6, Use) {op2. op9} { op7}

op7 (v6, a, 3, 8, Kill) Ø Ø

op8 (v10
3, a, 3, 8, Use) {op2. op9} { op7}

op9 (v7, a, 3, 10, Def) Ø Ø

op10 (v9, a, 9, 14, Use) {op9} Ø

op11 (v11, a, 10, 16, Use) Ø Ø

op12 (v12, a, 11, 18, Def) Ø Ø

op13 (e, a, 12, 18, Nop) Ø Ø

To be brief, we do not show all the details of detecting artifact anomalies in this case study,

 68

and focus on two representative examples, op9 and op10. Therefore, we assume that the

operations before op9 are calculated already, and Table 4 shows the output state of the

operations with LETs smaller then op9’s.

Table 4 The Output State of the Operations before op9 is Calculated

opi OutState

op1 { (UD, { s}) }

op2 { (DN, { op2}) }

op3 { (UD, { s}) }

op4 { (UD, { s}) }

op5 { (DR, { op2}) }

op6 { (UD, { s}) }

op7 { (UD, { op7}) }

op8 { (AB, { s, op2, op9}) }

op1 is an undefined usage because it is operated before any activity process gives

definition to artifact a. op3, op4, op6, and op7 are ambiguous usages because there exist

definition concurrent to them. Before op9 is calculated, the artifact anomaly table, AATw,

records the following anomalies:

AATw = { (op1, Undefined Usage, {s}), (op3, Ambiguous Usage, {s, op2}), (op4,

Ambiguous Usage, {s, op2}), (op6, Ambiguous Usage, {s, op2, op7}), (op7,

Ambiguous Usage, {s, op2, op7}) }

For op9, Algorithm 19 retrieve all the operations with smaller LET from AOPLa as OPLop9,

{ op1, op2, op3, op4, op5, op6, op7, op8}, and invokes Algorithm 11 to calculate DB4op9, {op5,

op7}. Since all the operations directly before op9 are mutually exclusive, i.e. the case (2)

described in section 4.2, the DB4OPSop9 is calculated from Algorithm 12 as { {op5}, { op7} }.

With DB4OPSop9, Algorithm 14 gathers the input states of op9 as the union of the output states

of op5 and op7 as { (DR, {op2}), (UD, { op7}) }. op9 is a definition, and Algorithm 16 is invoked

for detection of artifact anomalies and generation of its output state. As a result, no artifact

anomaly is found and the output state of op9 is generated as { (DN, {op9}) }. However, during

 69

the blank branch detection, (xs1, 2) is found a blank branch, and the operation in the same

decision structure should be removed to eliminate the effect of blank branch. op5 and op7 is

removed from OPLop9. DB4op9, DB4OPSop9, and the InState of op9 are recalculated as {op2},

{{ op2}}, and { (DN, { op2}) }. After invoking Algorithm 16 once again, an artifact anomaly

(op2, Useless Definition, {op9}) is raised because the definition made by op2 is not used before

redefinition when the blank branch is taken.

DB4op10 is generated as {op3, op5, op7, op8}, and DB4OPSop10 is generated as { {op3, op5},

{ op7, op8} }. Since this case is relatively simple, we can easily identify that the operation sets

{ op3, op7} and {op5, op8} is neglected in our methodology. With DB4OPSop10, the input states

of op10 are generated. According to the definition of racing operations introduced in section

4.1.1, {op3, op5} is an RUS and {op7, op8} is an RKU, and { (DR, {op2}) } and { (UD, { op7}) }

are generated as op10’s input states correspondingly. Algorithm 18 is invoked to detect artifact

anomalies and identify the output state of op10. Two artifact anomalies, (op10, Ambiguous

Usage, {op7, op9}) and (op10, Ambiguous Usage, {op2, op9}), are generated because op9 makes

a definition to a concurrently, and generates ambiguity to op10. The output states of op10 is

{ (DR, { op2}), (UD, { op7}) }. Then the algorithm removes the blank branches for op10, and

finds no further anomalies.

Except for the artifact anomalies listed and described above, (op13, Useless Definition, {e})

are detected and recorded to AATw when Algorithm 19 completes its work throughout w. The

useless definition is detected at the end process of the LRTS workflow because the definition

made by op13 is not used by any other activity process until the end of w.

 70

4.4 Discussion

4.4.1 Related Works in Analysis of Artifact Anomalies

Sun et al. extend the Activity Diagram in UML for modeling data flow in a business

process [51]. Three classes of data-flow anomalies, missing data, redundant data, and

conflicting data, are defined. With the routing information defined in a workflow specification,

a detecting algorithm for the data-flow anomalies is constructed [51]. However, Sun et al. do

not build an explicit data model in characterizing the data behaviors, and consider only read and

initial write in data operations.

In [26], Sadiq et al. reveal the importance about the validation of workflow data, and

introduce seven basic data validation problems, Redundant Data, Lost Data, Missing Data,

Mismatched Data, Inconsistent Data, Misdirected Data, and Insufficient Data in workflow

models. Redundant Data occur when designers specify an activity to define a data item which is

not required by any other succeeding activities. Lost Data occur when designers specify two

activities that may be executed in parallel to define the same data item, and one of the

definitions is lost when the data item is preempted by the process executed in advance. Missing

Data occurs when designers specify an activity to consume a data item which is never defined

by any preceding activities. Mismatched Data arise when the structure of data is incompatible

between the definition and the usage of the data. Inconsistent data happen when the data

required by a workflow are externally updated by other applications during the workflow

execution, and the polluted data might cause errors of the workflow. Misdirected Data occur

when the direction of the data flow is conflict with the direction of the control flow of the

workflow. Insufficient Data happen when the data specified by designers is insufficient to

successfully complete an activity.

Destruction of artifacts is not considered in both Sun and Sadiq’s studies. In [27] and [28],

 71

Hsu et al. consider the effect of destroying an artifact and re-model the inaccurate artifact

manipulation by separating initialization and update as two different artifact operations. In [28],

six inaccurate artifact usages, No Producer, No Consumer, Redundant Specification,

Contradiction, Parallel Hazard, and Branch Hazard are defined. No Producer is a warning

indicating that a data item is operated before it is specified. No Consumer indicates that an

artifact is not requested after its definition (initialization). Redundant Specification indicates

that an artifact is repeatedly specified in a workflow. Contradiction implies the defect that the

state of an artifact is not matched to the pre-condition or post-condition of the activity accessing

it. Parallel Hazard occurs due to conflict interleaving of concurrent artifact operations, and is

recognized if multiple concurrent activities operate on the same artifact. Branch Hazard occurs

when branches in a decision structure contain operations on artifacts have been selected, or

when there is inconsistency between the condition testing in the XOR-split process or the

branches in the decision structure.

In [29], Wang et al. develop a systematic notation to describe artifact anomalies and

simplify the description of artifact anomalies from [28] into three categories, Missing

Production, Redundant Write, and Conflict Write. Missing Production occurs when an artifact

is consumed before it is produced or after it is destroyed. Redundant Write occurs when an

artifact is written by an activity but the artifact is neither required by the succeeding activities

nor a member of the process outputs. Conflict Write occurs when parallel processes race their

access to the same artifact. According to different structural relationships between activities

accessing some artifacts, thirteen abnormal usage patterns are described for the three categories

to follow the previous models made by Sadiq et al. [26], Hsu et al. [29], and Sun et al. [51],

 72

4.4.2 Comparison between Our Approach and the Related Works

Table 5 Comparison between Our Approach and the Related Works

Our
Approach

Sun et al. [51]
Sadiq et al.

[26]
Hsu et. al

[28]
Wang et al. [29]

Absence of

Initialization
Missing Data No Production

Delayed

Initialization

No
Producer Delayed

Production
Misdirected Data

Conditional

Production Improper

Routing
N/A

Branch
Hazard Exclusive

Production

Undefined
Usage

Missing
Data

Uncertain

Availability
Misdirected Data

Parallel
Hazard

Missing
Production

Uncertain

Production

Contingent

Redundancy

Branch
Hazard

Conditional

Consumption

after Last Write
Useless

Definition
Redundant

Data
Inevitable

Redundancy

Redundant Data
Mismatched Data

No
Consumer

Redundant
Write

No Consumption

after Last Write

Ambiguous Usage
Conflict

Data
Multiple

Initialization
Lost Data Contradiction

Conflict
Write

Multiple

Parallel

Production

N/A N/A N/A
Insufficient Data
Mismatched Data

N/A N/A N/A

Null Kill N/A N/A N/A N/A

Temporal
Consideration

N/A N/A N/A N/A

Anomaly Source
Tracking

N/A N/A N/A N/A

Table 5 lists and compares the features between the related works and our approach.

Artifact anomalies are appealed with different names in previous studies, but can still be

mapped into the three basic categories made in [51]. By comparing the definition of the artifact

anomalies defined in our approach and the related works, we conclude that Undefined Usage

and Useless Definition are directly mapped into Missing Data and Redundant Data described in

[51]. On the other hand, the Conflict Data defined in [51] are anomalies generated when

multiple definitions are made in parallel. In our approach, the concurrent definitions are

considered being executed with undetermined order, and generate ambiguity in artifacts. They

 73

are not directly considered as an anomaly because (1) an anomaly actually occurs when a usage

refers to the ambiguous definitions, and (2) similar anomaly may also occur when there exist

kills or definitions concurrent to usages. Therefore, Ambiguous Usage is categorized in this

dissertation, and covers Conflict Data discussed in the previous works. Besides, Sadiq et al.

additionally define Insufficient Data and Mismatched Data in [26] for conflicts about contents

or format between definitions and usages. Since the studies made in [28], [29], [51] and this

dissertation do not discuss the contents of artifacts, Insufficient Data and Mismatched Data

are ignored in these studies. Finally, although destruction of artifacts is considered in [28] and

[29], the redundancy generated by unnecessary destruction is not discussed in these works. In

our studies, Null Kill is categorized and detected by our approach to eliminate such

redundancies.

Our approach also considers how temporal factors may affect the detection of artifact

anomalies. The twisted temporal and structural relationships between activity processes are

modeled and analyzed, and the artifact anomalies generated along with them are detected.

Besides, when the previous works only focus on detection of artifact anomalies, our approach

also helps designers locating the problems hidden in a workflow schema with providing the

information about the sources leading to artifact anomalies.

 74

Chapter 5. Incremental Detection of Resource Conflicts in LRTS

Workflow

In this chapter, an incremental methodology detecting the resource conflicts

generated/eliminated during construction of LRTS workflows along with each edit operation

made by designers is described. With the methodology, designers obtain information after each

step they made, and may respond to any conflicts immediately. In section 5.1, the resource

conflicts in LRTS workflow are first defined, and the edit operations and additional elements

necessary for building an LRTS workflow are modeled in section 5.2. The methods for

incremental detection of resource conflicts are depicted in section 5.3. Several examples are

described in section 5.4 to illustrate the feasibility of our methodology, and the related works

are discussed in section 5.5.

5.1 Resource Conflicts in LRTS workflow

Each activity in a workflow needs certain resources to accomplish its business objective.

In this dissertation, it is assumed that all the resources required by an LRTS workflow w are

recorded in the set RESw, and designers may assign resource in RESw to activity processes in Pw

to show that the resource is necessary to the process. The resource model used in this

dissertation is defined as following.

Definition 31 (Resources)

For an LRTS workflow w,

 ∀ r∈RESw and p∈Pw, p.type == ACT

 Ref: RESw× Pw ⇒ Boolean

Ref(r, p) == true indicates that r is accessed by p

 75

In [37], two processes are defined having resource conflict if the following conditions

hold:

(1) The two processes have resource dependency on a resource, i.e. the two processes

access the same resource.

(2) The two processes have potentially concurrent execution, i.e. the two processes

reside on different branches split from an AND-split process with overlapped EAIs.

In this dissertation, we assume that all the resource conflicts buried in LRTS workflow w

would be recorded in the set RCTw. Besides, to tracking the generation or elimination of

resource conflicts, pairs of processes which satisfy the following conditions are also recorded as

potential resource conflicts in the set PRCTw: (1) the processes are resource dependency, (2) the

processes reside in different branches split from an AND-split process and their EAIs are not

overlapped, i.e. they are parallel but not concurrent. On the basis of Definition 3, Definition 10,

and [37], the resource conflict in an LRTS workflow is defined as following.

Definition 32 (Resource Conflict)

For an LRTS workflow w,

RCTw = {(r, p, q) | (Ref(r, p) ∧ Ref(r, q)) == true, and Concurrent(p, q) == true }

PRCTw = {(r, p, q) | (Ref(r, p) ∧ Ref(r, q)) == true, Concurrent(p, q) == false, and

Parallel(p, q) == true }

Since Concurrent(p, q) is equivalent to Concurrent(q, p), the resource conflict (r, p, q) is

equivalent to (r, q, p). To simplify our discussion, we assume that adding/removing (r, p, q)

into/from RCTw is equivalent to adding/removing (r, q, p) into/from RCTw. In other words, (r, p,

q)∈RCTw if and only if (r, q, p)∈RCTw. The assumption also holds for PRCTw.

5.2 Edit Operations for LRTS workflow

To trace resource conflicts generated in an LRTS workflow during design-time, the edit

operations designers may adopt to develop the LRTS workflow are first addressed. Since an

 76

LRTS workflow is structured [8], the construction of an LRTS workflow follows the constraints

described in chapter 2. Therefore, the edit operations are restricted as following:

(1) Only an activity process can be directly inserted/removed into/from an LRTS workflow.

Control processes must be inserted/removed into/from an LRTS workflow in pairs.

(2) Designers can only alter the working durations or resource references of activity

processes.

(3) The design of an LRTS workflow is started from a basic LRTS workflow, and designers

edit the LRTS workflow until all the design works are completed. The definition of basic

LRTS workflow is described in Definition 33.

Definition 33 (Basic LRTS workflow)

A basic LRTS workflow w = ({s, e}, {(s, e)}, s, e)

 D(s) = d(s) = D(e) = d(e) = 0

 EAI(s) = EAI(e) = [0, 0]

In order to keep the control processes inserted/removed into/from an LRTS workflow in

pairs, additional records for control blocks are introduced. A control block is composed of a

split process starting a decision/parallel structure and a join process converging the structure.

Besides, the record also marks a natural number counter to provide distinct ID for each branch

in the corresponding decision/parallel structure. The record for a control block is modeled as

following.

Definition 34 (Control Blocks)

For an LRTS workflow w, CBw records all the control blocks in w.

∀ cb∈CBw,

 cb = (st, end, br_count)

 st∈Pw, st.type∈{AS, XS}

 end∈Pw, end.type ==




==
==

XS. if XJ

AS. if AJ

typest

typest

 br_count is a natural number indicating the branch mark for the new branch

splitting from sp.

 77

∀ sp∈Pw, sp.type∈{AS, XS}, ∃ cb∈CBw that sp == cb.st

∀ jn∈Pw, jn.type∈{AJ, XJ}, ∃ cb∈CBw that jn == cb.end

∀ cb∈CBw, Reachable(cb.st, cb.end) == true

∀ cb, cb’∈CBw,

(1) cb.st≠cb’.st, and cb.end≠cb’.end, and

(2) Reachable(cb.st, cb’.st) == true if and only if

(Reachable(cb.end, cb’.st) ⊕ Reachable(cb’.end, cb.end)) == true.

Starting from a basic LRTS workflow w, the edit operations discussed in this dissertation

are listed as following:

(1) Inserting activity process p into an existent flow f

Pre-Condition: f = (p’, p”)∈Fw, BM(p’, p”) == bm

Post-Condition: (p’, p”)∉Fw, (p’, p), (p, p”)∈Fw,

p.type = ACT, d(p) == D(p) == 0,

BM((p’, p)) == bm, BM((p, p”)) == -1

 Comments: Designers use this operation to insert an activity process p into an existent

flow f in w. f is replaced by two new flows, the in-flow of p which is

connected to the source process of f and the out-flow of p which is connected

to the sink process of f. The minimum and maximum working durations of p

are both assumed to be zero. The branch mark of the in-flow of p is given as

the replaced one, and the branch mark of the out-flow of p is set as Ø because

p is an activity process.

(2) Inserting a new decision structure quoted by sp and jn into an existent flow f

Pre-Condition: f = (p’, p”)∈Fw, BM(p’, p”) == bm

Post-Condition: (p’, p”)∉Fw, (p’, sp), (sp, jn), (jn, p”)∈Fw,

sp.type == XS, jn.type == XJ, (sp, jn, 1)∈CBw

BM((p’, sp)) == bm, BM((sp, jn)) == 0, BM((jn, p”)) == -1

 Comments: Designers use this operation to inset a decision structure quoted by sp, an

XOR-split process, and jn, an XOR-join process, into an existent flow f in w. f

is replaced similarly as in operation (1). A control block record is generated

with this operation. Both sp and jn are recorded, and the corresponding

courter for the branches in the decision structure is initialized as 1. Besides,

the branch mark of (sp, jn), the flow of the first branch split from sp, is

initialized as 0.

 78

(3) Inserting a new parallel structure quoted by sp and jn into an existent flow f

Pre-Condition: f = (p’, p”)∈Fw, BM(p’, p”) == bm

Post-Condition: (p’, p”)∉Fw, (p’, sp), (sp, jn), (jn, p”)∈Fw,

sp.type == AS, jn.type == AJ, (sp, jn, 1)∈CBw

BM((p’, sp)) == bm, BM((sp, jn)) == 0, BM((jn, p”)) == -1

Comments: To insert a new parallel structure into w is similar to insert a new decision

structure. The only difference between them is that sp is an AND-split process,

and jn is typed AND-join.

(4) Inserting a new branch to a decision/parallel structure

Pre-Condition: (sp, jn, br_count)∈CBw, (sp, jn)∉Fw

Post-Condition: (sp, jn)∈Fw, BM((sp, jn)) == br_count++

Comments: To simplify our discussion, a flow between a pair of split and join processes is

allowed being inserted only when no such flow exists in w. The flow (sp, jn)

is added to Fw. and its branch mark is set to the current value of the

corresponding branch counter. The counter is added by 1 after the insertion.

(5) Adding a resource reference to an activity process

Pre-Condition: r∈Rw, p∈Pw, p.type == ACT, Ref(r, p) == false

Post-Condition: Ref(r, p) == true

Comments: Designers use this operation to indicate that access of the resource r is

necessary for activity process p.

(6) Removing a resource reference from an activity process

Pre-Condition: r∈Rw, p∈Pw, p.type == ACT, Ref(r, p) == true

Post-Condition: Ref(r, p) == false

Comments: Designers use this operation to remove the resource reference of resource r

from activity process p.

(7) Setting minimal working duration of an activity process

Pre-Action: var = in_value - d(p)

Pre-Condition: p∈Pw, 0≤ in_value≤ D(p), var ≠ 0

Post-Condition: d(p) == in_value

Comments: Designers use this operation to designate the minimal working duration of an

activity process in w to the specific input value, in_value. To simplify our

discussion, in_value must be a non-negative integer is equal or smaller than

 79

the maximal working duration of the target activity process. To facilitate our

detection of resource conflicts, the variation of d(p) is recorded as var before

the operation is invoked.

(8) Setting maximal working duration of an activity process

Pre-Action: var = in_value - D(p)

Pre-Condition: p∈Pw, d(p) ≤ in_value, var ≠ 0

Post-Condition: D(p) == in_value

Comments: Designers use this operation to designate the maximal working duration of an

activity process in w to the specific input value, in_value. in_value must be a

non-negative integer which is equal to or larger than the maximal working

duration of the target activity process. To facilitate our detection of resource

conflicts, the variation of D(p) is recorded as var before the operation is

invoked.

(9) Removing the activity process p from w

Pre-Condition: (p’, p), (p, p”)∈Fw, p.type == ACT, d(p) == 0, D(p) == 0,

∀ r∈Rw, Ref(r, p) == false

Post-Condition: p∉Pw, (p, p”)∈Fw

Comments: Designers use this operation to remove an activity process from w. To

simplify our discussion, it is assumed that before the removal of the activity

process, the resource references of the activity process are first removed, and

the corresponding minimum and maximal working durations are set to be 0.

(10) Removing the empty branch from w

Pre-Condition: (sp, jn, br_count)∈CBw, (sp, jn)∈Fw, and a path <sp, p1, …, pk, jn> exists.

Post-Condition: (sp, jn)∉Fw

Comments: Designers use this operation to remove the empty branch in a control block

from w. In order to keep the integrity of w, the removal which disconnects w

is forbidden.

(11) Removing the empty control block quoted by sp and jn from w

Pre-Condition: (sp, jn, br_count)∈CBw, (p’, sp), (sp, jn), (jn, p”)∈Fw,

∃ no p∈Pw that (Reachable(sp, p) ∧ Reachable(p, jn)) == true

Post-Condition: (p’, p”)∈Fw, sp, jn∉Pw,

 ∀ cb∈CBw, cb.st ≠ sp, cb.end ≠ jn

Comments: Designers use this operation to remove a control block from w. To simplify

 80

our discussion, only the control block containing no processes inside is

allowed being removed from w.

5.3 An Incremental Algorithm Detecting Resource Conflicts in TS workflow

The methods incrementally detecting resource conflicts along with the operations are

introduced in this section. According to Definition 32, resource conflicts might be

generated/eliminated after operation (5), (6), (7), and (8), and the methods would be invoked as

the post actions of the operations. Besides, among the operations above, the ABStack(s) of the

inserted process(es) should be established after operations (1), (2), and (3), and the EAIs among

the LRTS workflow under editing are necessary being updated after operation (7) and (8). The

calculation of ABStacks and EAIs are also described as the post actions of the edit operations.

In this section, the methodology to calculate EAI changes after modification of working

durations is first introduced in section 5.3.1. In section 5.3.2 and 5.3.3, the methods detecting

generation or elimination of resource conflicts after operation (5), (6), (7), and (8) are

separately discussed. In section 5.3.4, the post actions of each edit operations are described.

5.3.1 Updating Estimated Active Interval for Processes after Edit Operation

Changing EAI of a process ripples to its descendent processes. Algorithm 20 works after

any working duration modification is made. The EAIs of all the affected processes are updated,

and the set containing the processes are returned for further analysis of resource conflicts.

Algorithm 20 Calculate EAI - CEAI

Input: an LRTS workflow w,

an activity process ip

Pre-Condition: ip∈Pw, ip.type == ACT

Pre-Condition: ∀ p∈Pw, p.mark == false;

Process set CEAI {

01: CP = Ø;

02: Queue tq;

03: tq.enqueue(ip);

04: ∀ (ip, p)∈Fw, tq.enqueue(p);

 81

05: while(tq is not empty) {

06: p = tq.dequeue;

07: if(p.type∈{AJ, XJ}) && (∃ (p’, p)∈Fw, p’.mark == false)) continue;

08: p.mark = true;

09: oest = EST(p);

10: olet = LET(p);

11: if(p.type == AJ) {

12: EST(p) = MAX({ EST(p’) + d(p’) | (p’, p)∈Fw});

13: LET(p) = MAX({ LET(p’) | (p’, p)∈Fw });

14: }

15: else if(p.type == OJ) {

16: EST(p) = min({EST(p’) + d(p’) | (p’, p)∈Fw });

17: LET(p) = MAX({ LET(p’) | (p’, p)∈Fw }) ;

18: else {

19: EST(p) = EST(p’) + d(p’) | (p’, p)∈Fw;

20: LET(q) = LET(p’) + D(p) | (p’, p)∈Fw;

21: }

22: if(oest≠ EST(p) || olet≠ LET(p)) {

23: add p to CP;

24: ∀ (p, p’)∈Fw, if(p’∉tq) tq.enqueue(p’);

25: }

26: return CP;

}

Algorithm 20 is assumed being invoked after designers make a modification to the

minimal/maximal working duration of an activity process ip. Similar to Algorithm 9, a traverse

queue is adopted to traverse all the processes reachable from ip, and the algorithms checks the

process in the queue one by one. Let the process currently being checked be p. At line 9 and 10,

the original value of EAI(p) is recorded, and the algorithm updates EAI(p) according to its type

from line 11 to 21. From line 22 to 25, the algorithm compares the current EAI(p) to the original

one. If EAI(p) is changed after the operation, the algorithm inserts p into CP, puts the process(es)

succeeding to p into the traverse queue, and continues the calculation. The algorithm halts when

EAI stops changing at some join process or when the end process is met. CP, a set collecting all

the processes with altered EAIs, is returned as the result set for further analysis of resource

 82

conflicts. We show the correctness of the algorithm by proving the following lemma.

Lemma 11

After a duration modification has been made on an activity process ip in an LRTS

workflow w, the following statements hold:

(1) ∀ p∈Pw, EAI(p) changes if and only if p∈CEAI(ip, w)

(2) ∀ p∈Pw, only when EAI(p) should be altered, p∈CEAI(ip, w)

Proof:

For the first statement, any EAI change in w is accomplished by the codes from line 11 to

line 21 in Algorithm 20 only. Therefore, when any EAI change occurs, the process with

altered EAI is found at line 22 and is put into the result set CP at line 23. The process with no

EAI change is not put into CP in this algorithm.

For the second statement, on the basis of Definition 9 and the methods illustrated in

Figure 9, EAI(p) is changed only when (1) D(ip) is modified and p == ip, (2) d(ip) is modified

and (ip, p)∈Fw, or (3) (p’, p)∈Fw, and EAI(p’) is changed. When d(ip) or D(ip) is modified, ip

and its succeeding process(es) are enqueued into tq at line 3 and line 4. Therefore, the EAI

changes originated from condition (1) or (2) are calculated by the codes from line 11 to line

21, and thus p is put into CP at line 24. For condition (3), if EAI(p’) is changed, p is enqueued

into tq at line 24 because (p’, p)∈Fw. EAI(p) would be calculated by the codes from line 11 to

line 21, and p is put into CP at line 23 if EAI(p) is altered. The processes with EAI changes

from the three above conditions are all included in CP.

With the proof above, Lemma 11 is shown correct. □

5.3.2 Identifying Generation or Elimination of Resource Conflicts after Adding/Removing a

Resource Reference to/from an Activity Process

From section 5.2, the edit operation (5) and (6) change the resource references of an

activity processes. The resource dependencies among processes might be generated or

eliminated with the operations, and therefore, resource conflicts (or the potential ones) are

generated or eliminated accordingly.

Operation (5) adds the reference of a resource r to an activity process p. A resource

conflicts is generated if there exists another activity process which also references r and is

concurrent to p. Similarly, if there exists another activity process which references r and is

parallel but not concurrent to p, a potential resource conflict is produced. As following,

 83

Algorithm 21 detects the generation of (potential) resource conflicts after a new resource

reference is added to an activity process, and alerts designers for each new generated resource

conflict.

Algorithm 21 Detecting Resource Conflict for New Resource Reference - DRCNRR

Input: a resource r, an activity process p, an LRTS workflow w

Pre-Condition: r∈RESw, p∈Pw, and Ref(r, p) == true

DRCNRR {

01: ∀ p’∈Pw\{ p} {

02: if(Ref(r, p’) == true && Parallel(p, p’) == true) {

03: if(EAI(p) TI≈ EAI(p’)) {

04: add (r, p, p’) to RCTw;

05: alert(Resource conflict (r, p, p’) is generated);

06: }

07: else add (r, p, p’) to PRCTw

08: }

09: }

}

On the other hand, when a resource reference is removed from an activity process, all the

resource conflicts (or the potential ones) related to the activity process and the resource are

eliminated. Algorithm 22 updates RCTw and PRCTw after removing a resource reference from

an activity process, and raises alerts for any elimination of resource conflicts.

Algorithm 22 Updating Resource Conflict for Removal of Resource Reference

- URCRRR

Input: a resource r, an activity process p, an LRTS workflow w

Pre-Condition: r∈RESw, p∈Pw, and Ref(r, p) == false

URCRRR {

01: ∀ (r, p, p’)∈RCTw, {

02: remove (r, p, p’) from RCTw;

03: alert(Resource conflict (r, p, p’) is eliminated);

04: }

05: ∀ (r, p, p’)∈PRCTw, remove (r, p, p’) from PRCTw;

}

 84

5.3.3 Identifying Generation or Elimination of Resource Conflicts after Alteration of EAIs

Two concurrent processes might not be concurrent any more if their EAIs are no longer

overlapped after an edit operation. According to section 5.2, concurrencies between processes

might be generated or eliminated after operation (7) or (8) is invoked. In this section, first we

show that the operations changing EAIs in an LRTS workflow bring the same effect to all the

affected processes with the following lemma.

 Lemma 12

For an LRTS workflow w, and ∀ p, q∈ Pw, if EAI(p) changes after a design

operation, EAI(q) is either altered the same way or remains unchanged after the

operation.

Proof:

 Algorithm 20 collects all the processes whose EAI is changed after an edit operation.

Therefore, if we can show that the EAIs of the processes collected by Algorithm 20 are all

altered the same way, Lemma 12 is shown correct. On the basis of the discussion made for

Algorithm 20, it is known that for any process p∈Pw, EAI(p) is changed because of the

following situations:

(1) D(p) is altered.

(2) (p’, p)∈Fw, and d(p’) is altered.

(3) (p’, p)∈Fw, and EAI(p’) is altered.

According to the methods illustrated in Figure 9, for process p, only LET(p) is altered in

situation (1), and only EST(p) is altered for situation (2). Since a designer is allowed to

modify only the minimum or maximum working duration of a single activity process, only

one of the EST(p) and LET(p) can be changed in situation (3).

For situation (1), let LET’(p) be the original value of LET(p), and D(p) is changed from

v to v’, and LET(p) = LET’(p) + (v’ - v). Let (p, p”)∈Fw. LET(p”) = LET(p) + D(p) = LET’(p)

+ (v’ - v) + D(p”) = LET’(p”) + (v’- v), and therefore LET(p”) is changed the same way as

LET(p) did. According to the calculation in Algorithm 20, all the affected processes invokes

the same formula for the changes of LETs, and therefore are altered the same way LET(p) did.

Lemma 12 holds for situation (1).

For situation (2), let EST’(p) be the original value of EST(p), and d(p) is changed from v

to v’, and EST(p) = EST’(p) + (v’ - v). Let (p, p”)∈Fw. EST(p”) = EST(p) + d(p) = EST’(p) +

(v’ - v) + d(p) = EST’(p”) + (v’ - v). EST(p”) is changed the same way as EST(p) did.

According to the calculation in Algorithm 20, all the affected processes invoke the same

formula for the changes of EST’s, and therefore are altered the same way as EST(p) did.

 85

Lemma 12 holds for situation (2).

For situation (3), since the designer may not modify EAIs directly, there must exist some

process n that D(n) or d(n) is changed by designers. The proofs made above can be adopted

for n, and show that Lemma 12 holds for situation (3).

Since Lemma 12 holds in all the situations leading to change of EAI(p), Lemma 12 is

shown correct. □

For any process q whose EAI is changed after this operation, if EST’(q) < EST(q) or

LET’(q) > LET(q), EAI(q) expands after the operation; otherwise, EAI(q) shrinks. With

Lemma 12, it is known that the EAIs change the same way after operation (7) or (8) is invoked.

In other words, for any q, EAI(q) is either expanded or shrunk. According to the definition of

operation (7) and (8) stated in section 5.2, let p be the process whose working duration is

modified, v represents the original value of d(p) or D(p), v’ represents the new value assigned,

and var = (v’ – v) represents the variation of the modified working duration, and from the proof

of Lemma 12, the variation of EST(q) or LET(q) is also var. If d(p) decreases (i.e. var < 0 in

operation (7)), EAI(q) is expanded for |var| time units; otherwise, EAI(q) is shrunk. On the

contrary, if D(p) increases (i.e. var > 0 in operation (8)), EAI(q) is expanded for |var| time units;

otherwise, EAI(q) is shrunk.

In the following lemma, we show that for any processes in an LRTS workflow, shrink of

its EAI creates no resource conflicts, and expansion of its EAI eliminates no ones.

Lemma 13

For an LRTS workflow w, and ∀ p∈Pw, the shrink of EAI(p) does not generate any

new resource conflict, and the expansion of EAI(p) eliminates no resource conflicts.
Proof:

The lemma is shown correct through following discussions:

(1) The shrink of EAI(p) can not generate new resource conflicts.

B.W.O.C, it is assumed that (r, p, q) is a new resource conflict generated from

shrink of EAI(p). Let EAI’(p) be the original value of EAI(p). EAI(p) TI≈ EAI(q) and

~(EAI’(p) TI≈ EAI’(q)) both hold. Since EAI(p) is shrunk, one of the statement EST(p) >

EST’(p) or LET(p) < LET’(p) holds. First, we discuss the case that EST(p) > EST’(p).

According to Lemma 12, LET(p) == LET’(p), LET(q) == LET’(q), and EST(q) ≥

 86

EST’(q). Since ~(EAI’(p) TI≈ EAI’(q)), MIN({LET’(p), LET’(q)}) – MAX({EST’(p),

EST’(p’)}) ≤ 0. Concluding the descriptions above, MIN({LET(p), LET(q)}) –

MAX({EST(p), EST(p’)}) ≤ 0, and therefore ~(EAI(p) TI≈ EAI(q)) which is a

contradiction. The case that LET(p) < LET’(p) can be proved the similar way, and

therefore the first statement of Lemma 13 is shown correct.

(2) The expansion of EAI(n) can not eliminate any resource conflict.

B.W.O.C, it is assumed that (r, p, q) is a resource conflict eliminated from

expansion of EAI(p). Therefore, ~(EAI(p) TI≈ EAI(q)) and EAI’(p) TI≈ EAI’(q) both hold.

Since EAI(p) is shrunk, one of the statement EST(p) < EST’(p) or LET(p) > LET’(p)

holds. First, we discuss the case that EST(p) < EST’(p). According to Lemma 12,

LET(p) == LET’(p), LET(q) == LET’(q), and EST(q) ≤ EST’(q). Since

EAI’(p) TI≈ EAI’(q), MIN({LET’(p), LET’(q)}) – MAX({EST’(p), EST’(p’)}) > 0.

Concluding the descriptions above, MIN({LET(p), LET(q)}) – MAX({EST(p),

EST(p’)}) > 0, and therefore EAI(p) TI≈ EAI(q) which is a contradiction. The case that

LET(p) > LET’(p) can be proved the similar way, and therefore the second statement of

Lemma 13 is shown correct.

By (1) and (2), Lemma 13 is shown correct. □

Since the operations causing EAI expansion does not affect the structure of the LRTS

workflow or the resource references among the processes, the resource conflicts generated

from the operation must be a potential resource conflict before the operation is made. After

operation (7) or (8) is invoked, if the EAI of the target process is expanded, Algorithm 23

checks each potential resource conflict in PRCTw. If there exists any potential resource conflict

that the processes involved in it become concurrent, Algorithm 23 transfers the resource

conflict from PRCTw to RCTw and raises an alert to designers about the generation of the

resource conflict.

On the other hand, if the EAI of the target process shrinks after invocation of operation (7)

or (8). Algorithm 24 checks RCTw to assure that whether there exists any existent resource

conflicts that the processes involved in it are no longer concurrent, i.e. the EAIs of the processes

are no longer overlapped. If so, Algorithm 24 transfers the resource conflict from RCTw to

PRCTw and raises an alert to designers about the elimination of the resource conflict. The details

of Algorithm 23 and Algorithm 24 are described as following.

 87

Algorithm 23 Detecting Resource Conflict after EAI Expansion - DRCEE

Input: A set of processes PSet

Pre-Condition: PSet⊆ Pw, ∀ p∈PSet, p.type == ACT

DRCEE {

01: ∀ p∈PSet {

02: ∀ (r, p, q)∈PRCTw {

03: if(EAI(p) TI≈ EAI(q))

04: remove (r, p, q) from PRCTw;

05: add (r, p, q) into RCTw;

06: alert(Resource conflict (r, p, p’) is generated);

07: }

08: }

09: }

}

Algorithm 24 Updating Resource Conflict after EAI Shrink - URCES

Input: A set of processes PSet

Pre-Condition: PSet⊆ Pw, ∀ p∈PSet, p.type == ACT

URCES {

01: ∀ p∈PSet {

02: ∀ (r, p, q)∈RCTw {

03: if(!(EAI(p) TI≈ EAI(q)))

04: remove (r, p, q) from RCTw;

05: add (r, p, q) into PRCTw;

06: alert(Resource conflict (r, p, p’) is eliminated);

07: }

08: }

09: }

}

5.3.4 Combining the Algorithms with Edit Operations

With all the methods constructed above, the post actions of edit operations are described as

following:

(1) Inserting activity process p into an existent flow

 88

Post-Action: p.abstack =


 ∈

otherwise ,.

XS} {AS,. if), ,.Push(

abstackp'

typep'bmabstackp'

 EST(p) = EST(p’) + d(p’), LET(q) = LET(p’) + D(p)

 Comments: The ABStack and EAI corresponding to p are calculated based on the methods

described in section 2.4.2 and 2.4.3.

(2) Inserting a new decision structure quoted by sp and jn into an existent flow

Post-Action: sp.abstack =


 ∈

otherwise .

XS} {AS,. if) ,.Push(

abstackp'

typep'bmabstackp'

 jn.abstack = sp.abstack

 EST(sp) = EST(p’) + d(p’), LET(sp) = LET(p’) + D(p)

 EST(jn) = EST(sp), LET(jn) = LET(sp)

Comments: The ABStacks and EAIs corresponding to sp and jn are calculated based on the

methods described in section 2.4.2 and 2.4.3.

(3) Inserting a new parallel structure quoted by sp and jn into an existent flow

Post-Action: sp.abstack =


 ∈

otherwise .

XS} {AS,. if) ,.Push(

abstackp'

typep'bmabstackp'

 jn.abstack = sp.abstack

 EST(sp) = EST(p’) + d(p’), LET(sp) = LET(p’) + D(p)

 EST(jn) = EST(sp), LET(jn) = LET(sp)

Comments: The ABStacks and EAIs corresponding to sp and jn are calculated based on the

methods described in section 2.4.2 and 2.4.3.

(5) Adding a resource reference to an activity process

Post-Action: invoking DRCNRR(r, p)

Comments: Algorithm 21 is invoked to detect the resource conflicts generated because of

the operation.

(6) Removing a resource reference from an activity process

Post-Action: invoking URCRRR(r, p)

Comments: Algorithm 22 is invoked to remove the resource conflicts eliminated because of

the operation.

(7) Setting minimal working duration of an activity process

 89

Post-Action: invoking


 <

otherwise)) ,(URCES(CEAI

0 if)) ,(DRCEE(CEAI

pw

varpw

Comments: After the EAIs affected by this operation are updated, Algorithm 23 is invoked

if the modified d(p) is smaller than the original one, and Algorithm 24 is

invoked otherwise.

(8) Setting maximal working duration of an activity process

Post-Action: invoking


 >

otherwise)) ,(URCES(CEAI

0 if)) ,(DRCEE(CEAI

pw

varpw

Comments: After the EAIs affected by this operation are updated, Algorithm 24 is invoked

if the modified D(p) is smaller than the original one, and Algorithm 23 is

invoked otherwise.

5.4 Case Study

To demonstrate our methodology, three cases are studied in this section. First, we show

how to detect the resource conflict generated by a resource assignment, second, the effect

brought by changing the working duration of an activity process is presented, and at last, we

show the influences about removal of an activity process. We assume that designers has edited

the sample LRTS workflow w from a basic LRTS workflow as illustrated in Figure 18, and our

case study starts accordingly.

Figure 18 The Sample LRTS Workflow for the Case Study in Chapter 5

 90

5.4.1 Case 1: Adding a Resource Reference

With the sample LRTS workflow in Figure 18, designers add resource reference r1 to

activity process v4. Ref(r1, v4) becomes true after the operation. With the discussions made in

section 5.3, Algorithm 21, DRCNRR(r1, v4), is invoked.

Figure 19 The Sample LRTS Workflow after Adding a New Resource Reference

Algorithm 21 checks the structural and temporal relationships between v4 and the other

processes referring to r1, i.e. v2 and v6. According to the EAIs and the ABStacks of the processes,

the concurrency between v2 and v4 is identified, and a new resource conflict (r1, v2, v4) is

generated. (r1, v2, v4) is put into RCTw, and a corresponding alert is raised for designers. After

the operation, the LRTS workflow is updated as Figure 19, and the altered parts are marked

with different colors.

5.4.2 Case 2: Modification of the Working Duration of an Activity Process

After adding a resource reference to v4, designers modify the minimal working duration of

v4 from 7 to 4. Algorithm 20 is then invoked and updates the EAIs of the processes aj2, v6, aj1, v7,

and e. Since d(v4) is decreased from 7 to 4, the EAIs are expanded. Algorithm 23 is invoked.

Since EAI(v6) is expanded from [10, 25] to [7, 25] and is overlapped to EAI(v2), the potential

resource conflict (r1, v2, v6) becomes an actual one after this operation. (r1, v2, v6) is transferred

 91

from PRCTw to RCTw, and a corresponding alert is raised to give a warning to designers about

the generation of the resource conflict. After the operation, the TS workflow is updated as

Figure 20, and the altered parts are marked with different colors.

Figure 20 The Sample LRTS Workflow after Modification of a Working Duration

5.4.3 Case 3: Removing an Activity Process

After modifying the minimal working duration of v4, designers decide to delete the activity

process v6. Before v6 is actually removed, its resource references should be first removed, and

its working durations are set to zero. Therefore, Ref(r1, v6) is set to be false, and all the resource

conflict related to r1 and v6 are eliminated. The EAIs of the processes succeeding to v6 are

updated after d(v6) and D(v6) are set to zero. Since none of the affected process makes any

references to resources, no resource conflict are generated or eliminated here. Finally, v6 is

removed from w, the flows (aj2, v7) and (v7, aj1) are removed, and (aj2, aj1) is added into Fw

instead. After the operation, the sample LRTS workflow is updated as Figure 21, and the altered

parts are marked with different colors.

 92

Figure 21 The Sample LRTS Workflow after Deleting an Activity Process

5.5 Related Works

Resource allocation is a popular topic in analysis of workflow models. In [55], Tang et al.

extend a Petri-net based workflow model for composition of web-services and resources. In [32]

and [33], Reveliotis et al. integrate resource allocation systems into a workflow model to

analyze deadlocks and synchronization problems. Sun et al. extend the approach developed in

[9] with additional resource constraints for analysis of performance among workflows [56].

Russel et al. conclude various representation and utilization of resources in workflows as 43

resource allocation patterns, and discuss coordination among workflow, human resources and

external resources in detail [50].

In [57], Xiao et al. define the execution duration of a workflow and develop an approach to

analyze the resource feasibility in the workflow during its execution. The approach tracks the

resource occupation made by individual activities in a workflow, and keeps resources feasible

when parallel access of resources happens. Wang et al. present a modeling and analysis

approach for workflows with resources and non-determined time constraints on petri-nets [58].

The resources and the activities in workflows are modeled with different kinds of places in

petri-nets. By analyzing the reachability graph of the R/NT_WF_Net, the implementation cases

 93

which satisfy various timing constraints (from the best to the worst) are discussed and

categorized.

In [34], Li et al. model resources and temporal constraints in workflow specification for

analysis, and develop a methodology to detect generation and elimination of resource conflicts

in timed workflow specifications. Because Li et al. establish a complete model for analysis of

resource constraints in timed workflows, several studies like [35] and [36] follow Li’s approach

for further analysis of resource constraints among timed workflow. Zhong et al. apply Li’s

timing model to establish a Petri-net based workflow model for verification of resource

constraints among concurrent workflows [35]. In [36], Hsu et al. focus on providing

information to the workflow designers about resource conflicts in a workflow specification

during design-time with an incremental algorithm. The works in [36] is revised in [37], and is

further discussed in this dissertation to adopt the methods raised in [30] on TS workflow model

for analysis.

Based on the former studies on static timing management of workflow specifications, Li

continued his own research by analyzing the resource and temporal constraints between distinct

workflow instances dynamically [59]. In [59], the concept of reference points is introduced to

show the relative timing constraints between the activities in different workflow instances.

According to a pre-specified reference point in each workflow, if any resource conflict exists,

the EAIs of the processes involved in the conflict are adjusted. On the other hand, Wang et al.

presents a modeling and analysis approach for workflows with resources and non-determined

timing constraints on petri-nets [58]. On the other hand, Delias et al. propose an algorithm to

minimize the resource conflicts subject to temporal constraints and simultaneously optimizes

throughput or utilization of resources among workflow instances [60]. Rather than totally

avoiding resource conflicts, Delias’ approach optimizes the utilization of resources by

maximizing overlapping between tasks which will eventually use different resources of the

 94

same type [60]. The resource and temporal factors are formulated in a matrix to achieve an

efficient optimal solution for run-time resource scheduling [60].

 95

Chapter 6. Conclusion and Future Works

In this dissertation, the structural and temporal issues in workflow analysis are considered

and modeled with TS workflow. Based on TS workflow model, three distinct analysis

approaches for various perspectives are developed accordingly. For the organization

perspective, the issues for delegation in WfMS coordinated with TRBAC are discussed. The

constraints on delegation like delegation loops, separation of duty, and various enterprise

policies etc. are detected and followed dynamically. With our methodology, users are able to

request delegations for their works manually, and WfMS can delegate an emergent task to an

appropriate delegatee automatically. For the data perspective, on the basis of define-use-kill

operations, the artifact anomalies generated from the twisted temporal and structural

relationships between processes in TS workflow are stated. The racing behavior from the

concurrent activities are categorized and discussed, and a methodology detecting artifact

anomalies in a TS workflow through static analysis is established. For the resource perspective,

an incremental methodology verifying resource conflicts in a TS workflow along with every

edit operation made by designers is described. The relationships between edit operations and

generation/elimination of resource conflicts are discussed with both structural and temporal

consideration. With the methodology, designers realize the effect of each edit operation they

made, and acquire information to help correcting resource conflicts in their design.

In the future, several issues can be further studied on the basis of the methodologies in this

dissertation. First, for the delegation framework, the feasibility and security issues in sharing a

task instance among users can be studied to adopt grant operation in delegation of task instances.

Users’ capability and pleasure should also be considered in automatic delegation by applying

 96

the techniques based on knowledge management. Second, for the detection of artifact

anomalies, a solution to group the operation sets with completeness and better efficiency should

be studied. An incremental algorithm to detect artifact anomalies generated or eliminated by

edit operations made by designers can be constructed. Besides, the actions made on artifacts

and processes need being studied with consideration of the dependencies caused by the actions

among activity processes in more details. Third, for the verification of resource conflicts, our

methodology can be extended to detect conflicts generated across various workflows. Besides,

multiple instances of a resource type should be considered, and the delays caused by flows may

also be included in temporal analysis.

 97

Reference

[1] Workflow Management Coalition, “Workflow Management Coalition: Terminology &

Glossary,” Document Number WFMC-TC-1011, 1999

[2] W. M. P van der Aalst, “The application of Petri Nets to Workflow Management,” in

Journal of Circuits, Systems, and Computers, Vol. 8, Issue 1, pp. 21-46, 1998

[3] Z. Irani, V. Hlupic, and G. M. Giaglis, “Busincess Process Reengineering: An Analysis

Perspective,” in Journal of Flexible Manufacturing Systems, Vol. 14, pp. 5-10, 2002

[4] K. Vergidis, Ashutosh Tiwari, and Basim Majeed, “Business Process Analysis and

Optimization beyond Reengineering,” in IEEE Transactions on Systems, Man, and

Cybernetics – Part C: Applications and Reviews, Vol. 38, Issue 1, pp. 69-82, 2008

[5] N. R. Adam, V. Atluri, and W.-K. Huang, “Modeling and Analysis of Worfklows Using

Petri Nets,” in Journal of Intelligent Information Systems, Vol. 10, Issue 2, pp. 131-158,

1998

[6] W. M. P. van der Aalst, and A. H. M. ter Hofstede, “Verification of Workflow Task

Structures: A Petri-net Approach,” in Information System Vol. 25, Issue 1, pp. 43-69, 2000

[7] W. M. P. van der Aalst, K.M. van Hee, and R.A. van der Toorn, "Adaptive Workflow: An

Approach Based on Inheritance," in the Proceedings of the Workshop on Intelligent

Workflow and Process Management: The New Frontier for AI in Business, pp. 36-45,

1999

[8] B. Kiepuszewski, A.H.M. ter Hofstede, and C. Bussler, “On Structured Workflow

Modelling,” in Lecture Notes in Computer Science, Vol. 1789, pp. 431-445, 2000

[9] J. Li, Y. Fan, and M. Zhou, “Performance Modeling and Analysis of Workflow,” in IEEE

Transaction on Systems, Man, and Cybernetics - Part A: Systems and Humans, Vol. 34,

Issue 2, pp.229-242, 2004

[10] J. Chen, and Y. Yang, “Temporal Dependency based Checkpoint Selection for Dynamic

 98

Verification of Fixed-time Constraints in Grid Workflow Systems,” in the Proceedings of

the 30th International Conference on Software Engineering, pp. 141-150, 2008

[11] J. Eder, E. Panagos, H. Pozewaunig, and M. Rabinovich, “Time Management in

Workflow Systems,” in the Proceedings of International Conference on Business

Information Systems, pp. 266-280, 1999

[12] J. Eder, E. Panagos, and M. Rabinovich, “Time Constraints in Workflow Systems,” in

Lecture Notes in Computer Science, Vol. 1626, pp. 286-300, 1999

[13] O. Marjanovic, “Dynamic Verification of Temporal Constraints in Production

Workflows,” in the Proceedings of the 11th Australian Database Conference, pp. 74-81,

2000

[14] H. Zhuge, T.-Y. Cheung, and H.-K. Pung, “A Timed Workflow Process Model,” in

Journal of Systems and Software, Vol. 55, Issue 2, pp. 231-243, 2001

[15] R. S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman, "Role-Based Access Control

Models," IEEE Computer, Vol. 29, Issue 2, pp. 38-47, 1996

[16] D. Ferraiolo and R. Kuhn, “Role-based Access Controls,” in the Proceedings of the 15th

National Computer Security Conference, Vol. 2, pp. 554-563, 1992

[17] S. Oh, and S. Park, "Task-role-based access control model," in Information Systems, Vol.

28, Issue 6, pp. 533-562, 2003

[18] J. Crampton and H. Khambhammettu, “Delegation in Role-Based Access Control,” in

International Journal of Information Security, Vol. 7, Issue 2, pp. 123-136, 2008

[19] E. Barka and R. Sandhu, “A Role-Based Delegation Model and Some Extensions,” in the

Proceedings of the 23rd National Information Systems Security Conference, pp. 101-114,

2000.

[20] E. Barka, and R. Sandhu, "Role-Based Delegation Model/Hierarchical Roles (RBDM1),"

in the Proceedings of 20th Computer Security Applications Conference, 2004, pp.

396-404.

 99

[21] J. Wainer, and A. Kumar, "A Fine-grained, Controllable, User-to-User Delegation

Method in RBAC," in the Proceedings of the 10th ACM symposium on Access control

models and technologies, pp. 59-65, 2005

[22] H. Wang, and S. Osborn, "Delegation in the Role Graph Model," in the Proceedings of

the 11th ACM symposium on Access control models and technologies, pp. 91-100, 2006

[23] J. B. D. Joshi, and E. Bertino, “Fine-grained Role-based Delegation in Presence of the

Hybrid Role Hierarchy,” in the Proceedings of the 11th ACM symposium on Access

control model and technologies, pp. 81-90, 2006

[24] P. Jian, H.-J. Hsu, and F.-J. Wang, "A Delegation Framework for Access Control in

WfMS based on Tasks and Roles" in the Proceedings of 12th IEEE International Workshop

on Future Trends of Distributed Computing Systems, pp.165-171, 2008

[25] H.-J. Hsu and F.-J. Wang, “A Delegation Framework for Task-Role based Access Control

in WfMS,” in Journal of Information Science and Engineering, Vol. 27, Issue 3, pp.

1011-1028, 2011

[26] S. Sadiq, M. E. Orlowska, W. Sadiq, and C. Foulger, “Data flow and validation in

workflow modeling,” in the Proceedings of the 15th Conference on Australasian Database,

Vol. 27, pp. 207-214, 2004

[27] F.-J. Wang, C.-L. Hsu, and H.-J. Hsu, “Analyzing Inaccurate Artifact Usages in a

Workflow Schema,” in the Proceedings of the 30th Annual International Computer Software

and Application Conference, Vol. 2, pp. 109-114, 2006

[28] C.-L. Hsu, H.-J. Hsu, and F.-J. Wang, “Analysing Inaccurate Artifact Usages in

Workflow Specifications,” in IET Software, Vol. 1, Issue 4, pp. 188-205, 2007

[29] C.-H. Wang, and F.-J. Wang, “Detecting Artifact Anomalies in Business Process

Specification with a Formal Model,” in Journal of Systems and Software, Vol. 82, Issue 10,

pp. 1064-1212, 2009

[30] H.-J. Hsu, and F.-J. Wang, "Using Artifact Flow Diagrams to Model Artifact Usage

 100

Anomalies," in the Proceedings of 33rd Annual IEEE International Computer Software and

Applications Conference, Vol. 2, pp.275-280, 2009

[31] W. Sadiq, and M. E. Orlowska, “Analyzing Process Models Using Graph Reduction

Ttechniques,” in Information System, Vol. 25, Issue 2, pp. 117-134, 2000

[32] S. Reveliotis, “Structural Analysis of Resource Allocation Systems with Synchronization

Constraints,” in the Proceedings of the IEEE International Conference on Robotics &

Automation, pp. 1045-1049, 2003

[33] J. Park, and S. Reveliotis, “Deadlock Avoidance in Sequential Resource Allocation

Systems with Multiple Resource Acquisitions and Flexible Routings,” in IEEE

Transactions on Automatic Control, Vol. 46, pp. 1572-1583, 2001

[34] H. Li, Y. Yang, and T. Y. Chen, “Resource Constraints Analysis of Workflow

Specifications,” in Journal of Systems and Software, Vol. 73, Issue 2, pp. 271-285, 2004

[35] J. Zhong, and B. Song, “Verification of Resource Constraints for Concurrent

Workflows,” in the Proceedings of the 7th International Symposium on Symbolic and

Numeric Algorithms for Scientific Computing, pp. 253-261, 2005

[36] H.-J. Hsu, D.-L. Yang, and F.-J. Wang, “An Incremental Analysis to Workflow

Specifications,” in the Proceedings of the 12th Asia-Pacific Software Engineering

Conference, pp. 122-129, 2005

[37] H.-J. Hsu and F.-J. Wang, “An Incremental Analysis for Resource Conflicts to Workflow

Specifications,” in Journal of Systems and Software, Vol. 81, Issue 10, pp. 1770-1783,

2008

[38] I.-F. Leong, and Y.-W. Si, "Temporal Exception Prediction for Loops in Resource

Constrained Concurrent Workflows," in the Proceedings of 6th IEEE International

Conference on e-Business Engineering, pp. 310-315, 2009

[39] J. F. Allen, “Maintaining knowledge about temporal intervals,” in Communication of the

ACM, Vol. 26, Issue 11, pp. 832–843, 1983

 101

[40] J. B. D. Joshi, E. Bertino, U. Latif, and A. Ghafoor, "Generalized Temporal Role-Based

Access Control Model," IEEE Transactions on Knowledge and Data Engineering, Vol.

17, Issue 1, pp. 4-23, 2005

[41] M. Nyanchama, and S. Osborn, "The Role Graph Model and Conflict of Interest," in

ACM Transactions on Information and System Security, Vol. 2, Issue 1, pp. 3-33, 1999

[42] P. H. Bammigatti, and P. R. Rao, “Delegation in Role Based Access Control Model for

Workflow Systems,” in International Journal of Computer Science and Security, Vol. 2,

Issue 2, pp. 1-10, 2008

[43] K. Gaaloul, and F. Charoy, “Task Delegation Based Access Control Models for Workflow

Systems,” Software Services for e-Business and e-Society, IFIP Advances in Information

and Communication Technology, Vol. 305, pp. 400-414, 2009

[44] D.-W. Zhang, X. Pei, J.-Q. Qiu, Y. Zhang, and J. Peng, “A Delegation Model For Time

Constraints-Based TRBAC,” in the Proceedings of the 8th International Conference on

Machine Learning and Cybernetics, pp. 2027-2032, 2009

[45] R. T. Simon, and M. E. Zurko, "Separation of Duty in Role-based Environments," in the

Proceedings of 10th Computer Security Foundations Workshop, pp.183-195, 1997

[46] R. A. Botha, and J. H. P. Eloff, “Separation of Duties for Access Control Enforcement in

Workflow Environments,” in IBM System Journal, Vol. 40, Issue 3, pp. 666-683, 2001

[47] M. J. Moyer, and M. Ahamad, “Generalized Role-based Access Control,” in the

Proceedings of 21st IEEE International Conference on Distributed Computing Systems, pp.

391-398, 2001

[48] G. Ding, J. Chen, R. F. Lax, and P. P. Chen, “Graph-theoretic Method for Merging

Security System Specifications,” in Information Sciences, Vol. 177, Issue 10, pp.

2152-2166, 2007

[49] C.-H. Chang and F.-J. Wang, "An Analysis of Delegation Mechanism in Workflow

Management System," Master's Thesis, Institute of Computer Science and Engineering,

 102

National Chiao Tung University, 2003

[50] N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst, "Workflow

Resource Patterns," BETA Working Paper Series, WP 127, Eindhoven University of

Technology, Eindhoven, 2004

[51] S. X. Sun, J. L. Zhao, J. F. Nunamaker, and O. R. L. Sheng, "Formulating the data flow

perspective for business process management," in Information Systems Research, Vol. 17,

Issue 4, pp. 374-391, 2006

[52] P. M. Pardalos, and J. Xue, “The Maximum Clique Problem,” in Journal of Global

Optimization, Vol. 4, No. 3, pp. 301-328, 1994

[53] S. Tsukiyama, M. Ide, H. Ariyoshi and I. Shirakawa, “A new algorithm for generating all

the maximal independent sets,” in Society for Industrial and Applied Mathematics (SIAM)

Journal on Computing, Vol. 6, pp. 505–517, 1977.

[54] K. Makino, and T. Uno, “New Algorithms for Enumerating All Maximal Cliques,” in the

Proceedings of 9th Scandinavian Workshop on Algorithm Theory, Lecture Notes in

Computer Science, Vol. 3111, pp. 260-272, 2004

[55] Y. Tang, L. Chen, K. He, and N. Jing, “SRN: an Extended Petri-net-based Workflow

Model for Web Service Composition,” in the Proceedings of IEEE International

Conference on Web Services, pp. 591-599, 2004

[56] P. Sun, J. Wang, X. Li, and C. Jiang, “Performance Analysis of Workflow Model with

Resource Constraints,” in the Proceedings of the 1st International Multi Symposiums on

Computer and Computational Sciences, Vol. 1, pp. 397-401, 2006

[57] J. Xiao, X. Wei, and S. Chen, "An Approach for Checking Resource Feasibility of

Workflow Specifications," in the Proceedings of the 1st International Workshop on

Education Technology and Computer Science, Vol. 1, pp.163-167, 2009

[58] H. Wang, and Q. Zeng, “Modeling and Analysis for Workflow Constrained by Resources

and Nondetermined Time: An Approach Based on Petri Nets,” in IEEE Transactions on

 103

Systems, Man, and Cybernetics – Part A: Systems and Humans, Vol. 38, Issue 4, 2008

[59] H. Li, and Y. Yang, “Dynamic Checking of Temporal Constraints for Concurrent

Workflows,” in Electronic Commerce Research and Applications Vol. 4, pp. 124-142,

2005

[60] P. Delias, A. D. Doulamis, N. D. Doulamis, and N. Natsatsinis, “Optimizing Resource

Conflicts in Workflow Management Systems,” in IEEE Transactions on Knowledge and

Data Engineering, Vol. 23, Issue 3, 2011

