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Abstract—We consider optimal encoding of video sequences
for ATM networks. Two cases are investigated. In one, the video
units are coded independently (e.g., motion JPEG), while in
the other, the coding quality of a later picture may depend
on that of an earlier picture (e.g., H.26x and MPEGx). The
aggregate distortion–rate relationship for the latter case exhibits
a tree structure, and its solution commands a higher degree of
complexity than the former. For independent coding, we develop
an algorithm which employs multiple Lagrange multipliers to
find the constrained bit allocation. This algorithm is optimal up
to a convex-hull approximation of the distortion–rate relations in
the case of CBR (constant bit-rate) transmission. It is suboptimal
in the case of VBR (variable bit-rate) transmission by the use
of a suboptimal transmission rate control mechanism for sim-
plicity. For dependent coding, the Lagrange-multiplier approach
becomes rather unwieldy, and a constrained tree search method is
used. The solution is optimal for both CBR and VBR transmission
if the full constrained tree is searched. Simulation results are
presented which confirm the superiority in coding quality of the
encoding algorithms. We also compare the coded video quality
and other characteristics of VBR and CBR transmission.

Index Terms—Asynchronous transfer mode, bit allocation, im-
age coding, optimization methods, quantization, rate distortion
theory.

I. INTRODUCTION

W E consider objective optimization of video coding
for ATM networks. Video coding techniques can be

classified as being independent or dependent. In information-
theoretic terms, independent coding refers to the situation
where the distortion–rate (D–R) relation of a later video unit
(a picture, a macroblock, etc.) is independent of how an earlier
video unit is coded, or in other words, the distortion–rate
relations of successive video units are separable, while for
dependent coding, it may be dependent, or inseparable. The
former includes schemes such as motion JPEG [1]–[3] and
certain ways of intraframe coding of macroblocks, while the
latter includes those employing motion-compensated predic-
tive coding such as H.26x [4]–[6] and MPEGx [7], [5]. The
purpose of our study is twofold: first, to develop efficient
algorithms for both independent and dependent video coding,
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Fig. 1. Constant and variable bit-rate coding.

and second, to compare the properties of optimized CBR
(constant bit-rate) and VBR (variable bit-rate) video coding.

Concerning transmission properties, it is widely held that
VBR (ATM in particular) is better than CBR due to the time-
varying nature in information content of typical video. A
simple make-believe example may help illustrate the reason.
Consider Fig. 1, which schematically illustrates the different
situations one may encounter in CBR and VBR coding of
the same four successive video units (numbered as, say, 0,
1, 2, and 3). Each column of dots (open or closed) under the
heading CBR or VBR corresponds to a certain video unit. Each
series of line segments connecting dots in different columns
represents a possible way of coding through the successive
video units, with the vertical position of the last dot denoting
the total data rate of the coded video. ( ) are the
distortions associated with three different coding paths. The
upper and lower edges of each rectangle delimit the allowed
total rate at each time as prescribed by the finite channel
transmission capacity and codec buffer sizes. It is seen that,
with CBR transmission at a constant rate, the coding path
leading to a final total distortion of is not allowed because
it violates the rate constraints at video unit 2. However, with
VBR transmission at an average rate, it is allowed, leading
to a lower total distortion, for at time 2 the transmission
rate can be varied momentarily to accommodate it. It is of
interest to have some quantitative comparison of VBR and
CBR performance under optimized coding, which is part of
our goal.

Concerning coding algorithms, Shoham and Gersho [8]
proposed an optimal bit allocation algorithm for still-image
coding. The algorithm does not address video coding under
multiple buffer-imposed constraints, however. For independent
coding, Ortegaet al. [9] considered trellis search (where each
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Fig. 2. Codec system with ATM network.

trellis node at stage corresponds to the buffer level grown out
of a particular sequence of quantizing and coding of the signal
up to video unit ) for finding the buffer-constrained optimal
bit allocation. This method finds the optimal solution at a very
high computational load. A closely related work is [10]. Ortega
et al. [9] also presented several reduced-complexity algorithms
which could yield nearly optimal results, among which are
some that employ the Lagrange-multiplier technique. How-
ever, these Lagrange-multiplier-based algorithms are heuristic.
Nor is their optimality characterized theoretically. A different
Lagrange-multiplier-based algorithm was considered in [12].
This algorithm makes use of multiple Lagrange multipliers
to accommodate the multiple rate constraints. However, its
theoretical basis and operational features have not been de-
scribed clearly. Moreover, the above algorithms were derived
largely for CBR transmission. A key result of the present paper
is an algorithm (together with the underlying theory) which
solves a multiple Lagrange-multiplier problem for indepen-
dent video coding under the VBR environment of ATM net-
works. (The VBR environment aside, the multiple-Lagrange-
multiplier optimization is a theoretically much more involved
problem than the one-Lagrange-multiplier optimization treated
in [8] and employed in [9].) We also present some simulation
results.

For dependent coding, two alternatives can be envisioned.
One is to ignore the dependency in D–R relations, and to
employ an independent-coding algorithm to reach a suboptimal
solution. The other is to seek an optimal solution taking
the D–R dependency into account. We consider the latter
in this work. Since the problem is also one of constrained
optimization, the Lagrange-multiplier approach can again be
attempted. However, it is found to be very cumbersome to
use, and the “monotonicity condition” [11] which, if valid,
could lead to significant complexity reduction, is found to not
always hold in our particular situation. An algorithm based on
tree search is thus developed instead.

The coding and transmission system that we consider can
be modeled as shown in Fig. 2. As seen, we assume a
buffering and transmission delay of video units between
encoder output and decoder input, where a video unit can be
a picture, a macroblock, or some other grouping of picture
elements. For simplicity, assume that the encoder and the
decoder have infinite processing speed. The encoder performs
delayed coding with delay equal to video units. With
delayed coding, the encoder factors the relative complexity

of present and “future” video units into consideration in its
bit allocation and is therefore more likely to yield a better
coding quality than considering only one video unit at a time
[13, ch. 9].

At time , the encoder outputs bits (the encoded bits
for video unit ) to the encoder buffer, which outputs
bits to the ATM network. The ATM network employs a leaky-
bucket (LB) policing mechanism. In optimization of video
coding, the finite codec buffer sizes and the ATM network
policing mechanism place rate constraints on the coded video
[14], [16], [17]. More specifically, the decoder buffer fullness
and the ATM policing mechanism impose constraints on the
allowed transmission rate at time , which affects the
encoder buffer fullness, and in turn imposes constraints on the
allowed encoder output rate at time . Optimization of
coding must operate under these constraints. Then a specific
transmission rate must be determined for each. In a
sense, the optimization is a joint encoder and channel rate
control problem, and we have two control targets, namely,

and .
In what follows, we first derive the rate constraints due to fi-

nite channel capacity and finite codec buffer sizes in Section II.
These constraints are derived for VBR transmission. But
they also apply to CBR transmission in a simplified form.
Section III then addresses independent coding. It formulates
the optimization problem, and develops an efficient Lagrange-
multiplier-based algorithm for solving the problem. Section IV
discusses dependent coding, and outlines a tree-search-based
solution. Section V presents some simulation results, and
Section VI is the conclusion.

II. OPTIMIZATION CONSTRAINTS

We now derive the rate constraints under which the encoder
has to operate. We first consider the constraints on the channel
rate due to finite decoder buffer and the leaky-bucket
ATM policing mechanism, and then that on the encoded bits

due to the finite encoder buffer and channel rate. Then
we explain how these constraints function in coding.

A. Constraints on the Transmission Bit Rate

As said, constraints on the transmission bit rate are derived
from limits of the decoder buffer and the LB buffer.

We first check the rate constraints imposed by the finite
decoder buffer size. Let denote the decoder buffer size, and
let be the decoder buffer level after extraction of
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[data for the th video unit] for decoding. Then

(1)

Cumulated over time, it yields

(2)

where . To avoid decoder buffer under- and overflows
at time [i.e., to ensure ,
therefore, must satisfy

(3)

The quantities and define rate boundaries
within which decoder under- and overflows, respectively, are
avoided. The factor will be explained later. Equation (3)
summarizes the constraints on transmission rates from the
limited decoder buffer size (as well as from the bits of
previously encoded video units) up to time . In writing the
inequality, we have assumed and to be given.

We now move to check the constraints from the network
policing function. Let denote the LB size, the LB
fullness, and the average leak rate. Then

(4)

Cumulating over time, we obtain

(5)

where . To ensure that the policing mechanism passes all
data intact, must be such that the LB never overflows, i.e.,

[14]. To fully utilize the channel capacity,
we would desire to avoid LB underflows as well, i.e., to let

. In this case, the cumulated channel rates are
constrained by

(6)

where and the role of will be explained later.
and specify boundary conditions for absence of LB
underflow and overflow, respectively.

Equations (3) and (6) together give the constraints on the
transmission rate at any time after. They depend on the
buffer sizes, current buffer fullness, as well as the rates of
some previously encoded video units.

Fig. 3. Typical region of permitted rates when coding delay= 1 video unit.

B. Constraints on the Encoded Bits

We now derive constraints on encoded bits due to the
transmission rate and the finite encoder buffer size. Let
denote the encoder buffer size, and let be the encoder
buffer level after the th picture has been coded. With

and as defined earlier, we have

(7)

Cumulated over time, it yields

(8)

where . To avoid encoder buffer under- and overflow at
time , we need and thus

(9)

which constrains the cumulated number of encoded bits at
all future time under a given sequence of transmission rates

.
The scale factor is introduced in (3), (6), and (9) for the

purpose of rate control, so that a target buffer fullness less than
and can be set for (the conclusion of the

delay-coded video units); that is, for and
for . For example, we may chooseto be less than,
equal to, or greater than at according to whether the
video units after are expected to be more complex, equal
in complexity, or less complex than the video units
that are being delay encoded.

The constraints (9), with given , mark out a region of
permissible values for the vector
in the -dimensional space. For example, for a
typical region may look like the shaded area shown in Fig. 3.
For signals with convex D–R relations, the optimal solution
should situate on or near the top border of the region.

C. Interpretation of the Rate Constraints

Fig. 4 summarizes the relation among constraints (3), (6),
and (9) at time , when we begin the encoding of video units

. For convenience, we draw the case for .
At time , the encoded bits and the LB fullness are available
for time up to . (They are already fixed and cannot be
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Fig. 4. Relation among rate constraints.

changed.) The bits and

place constraints on
and the constraints are unidirectional. The relation between

and is different. The situation
can be appreciated by looking at Fig. 2. While the allowed
transmission rates [as determined
from (3) and (6)] constrain as
in (9), after the encoding of video units (which
determines ), specific values for

must be determined to facilitate
transmission. For this, now act as
constraints through the finite encoder buffer size. From this
perspective, (9) can be rewritten into

(10)

where and and specify boundaries be-
yond which encoder buffer over- and underflow, respectively,
would occur. Therefore, the constraining relationship between

and
is bidirectional, with both directions at work at different
times during the coding and transmission process. Moreover,

and
are related through the decoder buffer relationship (2). Hence,
the former are constrained by the latter in the following way:

(11)

for (a reformulation of (3) for these values
of ). The constraints are again unidirectional for the coding of
video units . (They will work in the other direction
in the coding of later video units.)

In summary, in coding video units , the effective
constraints are (3) for , (6) for ,
(9) and (10) for , and (11) for .
Under constraint are quantities, namely,

and .

III. OPTIMAL INDEPENDENT CODING—THE

LAGRANGE MULTIPLIER APPROACH

We now consider optimal coding in the case where the video
units are independently coded, examples being motion JPEG
and certain ways of intraframe coding. Consider an additive
distortion measure, that is, the encoder seeks to conduct the
following minimization:

(12)

where denotes all possible ways of coding video unit
and denotes the corresponding distortion in this video
unit, subject to the constraints on in
(9) together with (3) and (6). The choice for is limitless,
of which the MSE and the weighted MSE are two common
examples.

As discussed, we approach this problem by way of
Lagrange-multiplier optimization. The Lagrange-multiplier
method only finds solutions on the convex hull of a D–R
relation, while it is known that actual D–R relations for
real video may be nonconvex. Hence, it is possible that
the Lagrange-multiplier solution is suboptimal, and the truly
optimal solution lies somewhere between it and the rate-
region boundary. A search procedure can be appended to
the Lagrange-multiplier method to look for the truly optimal
solution [8], but it is deemed too complicated to implement
and may lead to small improvement only.

A. Suboptimal Control of the Transmission Rate

For the present work, it appears overwhelming to consider
all possible bit allocations afforded by the rate constraints
derived in the last section (and illustrated in Fig. 4) in the
Lagrange-multiplier optimization. We take a handwaving mea-
sure, and employ a kind of greedy method to control the
transmission rate , but leave under the full freedom
of the constraints that remain. More specifically, the rates are
controlled in the following way.

Intuitively, we should maximize in hope of
the best video quality. From (9), this calls for choosing
the maximum possible value for for then, the
allowed range for is the highest among all
possible. From (3) and (6), should not exceed

. Thus, the rate budget for
is set to be

(13)

[where for notational convenience we write as
a shorthand for ] and the allocated total rate
should be as close to the right-hand side (RHS) as possible.
In determining the bit allocation for the video subsequence

(where ), we allow to be as large as
possible to avoid encoder buffer overflow or to be as small as
possible to avoid encoder buffer underflowup to , without
regard for how this would affect later coding. (Step S3 in the
algorithm presented later in this section is an enbodiment of
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this principle.) After encoding of video units , we
determine according to

(14)

where . Results from several specific choices
of are presented later.

The above method of rate control is acknowledgeably
suboptimal. We leave fully optimal solutions to potential
future work. (We remark that this is an issue only for VBR
transmission. For CBR transmission, the channel rate is fixed,
and there is no issue of suboptimality.)

B. Lagrange-Multiplier Optimization

With greedy determination of , only are subject to
optimization. Applying the Lagrange-multiplier technique to
(12), we obtain

(15)

where are the Lagrange-multipliers. Term
a Lagrange-multiplier vector. To find the

optimal solution, we will have to step through a series of
candidate Lagrange-multiplier vectors. For each given vector,
the above minimum can be evaluated if we have the D–R
relation for video units to . Therefore, the first task
in Lagrange-multiplier optimization is “data generation” (using
the term of Ramchandranet al. [11]) which computes the D–R
relation for each macroblock in video units to . Next,
we have to find the optimal Lagrange-multiplier vector.

Optimization under multiple constraints (hence multiple
Lagrange multipliers) can be very difficult unless the problem
possesses some simplifying structure. Fortunately, we have
such a situation: the multimultiplier problem (15) can be
broken down into a series of one-multiplier problems, each
of which is readily solvable using the technique of [8]. The
derivation of this result takes some theoretical excursion, and
is relegated to the Appendix. Below, we describe the ensuing
algorithm. It has a recursive construct.

First, we freeze all Lagrange multipliers except to zero
and solve (15) subject to the constraint (13) on the total rate.
This is a one-Lagrange-multiplier problem which is readily
solvable using the method of [8]. The solution will satisfy
the total-rate constraint for video units but not
necessarily at any time between and . In the case

, for example, the solution may lie along the line that
defines the top border of the allowed rate region in Fig. 3, such
as point A, assuming the D–R relations are convex. We thus
have to check for possible violation of the “nonterminal” rate
constraints. If the constraints are satisfied everywhere, then
we have obtained the optimal bit allocation. Otherwise, some

Fig. 5. Concept of anchor points. Abscissa denotes time (index of video
units). Ordinate positions of circles give cumulated bit allocation for video
units [n�N;m]. For simplicity, the upper and lower bounds on cumulated
rate are drawn as straight lines. This is the case for CBR transmission. For
VBR transmission, they may be jagged.

other solution has to be found. For the example above,
the true solution should lie in the upper right corner of the
allowed rate region.

To obtain the true solution, we first identify theanchor
point in video sequence , defined as the last video
unit that violates the RHS (overflow) constraint in (9) that
comes before the first violation of the left-hand side (LHS)
(underflow) constraint, or the last video unit that violates the
LHS constraint in (9) that comes before the first violation of
the RHS constraint, whichever condition holds. If only one
kind of violation occurs over the sequence, then it is the
last video unit before where violation occurs. The idea of
anchor points is illustrated in Fig. 5. Denote the anchor point
by . Define the video subsequence as theanchor
subsequence. Now, we can modify the bit allocation to address
the violations.

The basic idea is as follows. Conduct an optimal bit alloca-
tion for the anchor subsequence subject only to the total-rate
constraint on this subsequence (a one-Lagrange-multiplier
optimization problem). Examine whether all of the nonterminal
rate constraints for are satisfied. If not, then identify
the anchor point in in the same manner as we have
done for the overall sequence , set to denote this
new anchor point, and recursively descend into the new anchor
subsequence as we have done in the case of the initial anchor
subsequence above. If yes, then we have obtained the optimal
bit allocation for . For “sliding-window coding” in
which video units are merely employed for
bit allocation but only video unit is actually encoded
and sent to buffer at each time, we may stop here. For
“jumping-window coding” with jump distance , in which
all video units are actually encoded at time
and buffered for later transmission, we continue with the
following: subtract from the rate allocated to the last anchor
subsequence, advance to the subsequence and repeat the
above procedure to allocate the remaining bits to it.

To effect the one-constraint optimal bit allocation over an
anchor subsequence, we freeze all Lagrange multipliers except
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to zero, and conduct the minimization of (15) subject
to the constraint (9) for only, with the additional
requirement that the solution should lie on or near the LHS or
the RHS rate boundary at depending on which
boundary is exceeded at the anchor point. We remark that,
due to the recursive nature of the overall procedure, the whole
delay-encoded video sequence can be viewed as
the startup anchor subsequence.

As an example, consider again the example shown
in Fig. 3 where the initial optimization subject only to (13)
yields a solution at pointA. The anchor point is thus
and the anchor subsequence is . Optimized coding
of the anchor subsequence subject to the RHS of (9) for
would yield a solution along the right border of the rate region.
The desired “corner solution” is obtained by allocating the
remaining bits to and optimizing its coding subject to this
rate constraint.

We summarize the foregoing Lagrange-multiplier optimiza-
tion procedure into an algorithmic description.

Algorithm 1: S1: Compute constraints on the total bit
budget for the video units using (13). Set
violation overflow, and .

S2 (Trial optimization): Employ a Lagrange multiplierto
perform the optimization

subject to

if violation overflow

if violation underflow

(16)

(where the inequalities should be satisfied as close to being
equality as possible). Obtain the associated bit allocation

.
S3: Check (9), (3), and (6) for any buffer under- or overflows

under the above bit allocation. In their absence, go toS4.
Otherwise, locate the anchor point in as defined
previously. Set the variableviolation to indicate the kind of
violation. Set bit budget

if
overflow
underflow

for video units . Set and go toS2.
S4: Determine according to (14),

and update the buffer levels and using
(1), (4), and (7).

If ( ) go to S5; else let ,
and and go toS2.

S5: Output and for . Increment
by and go toS1.
The above algorithm applies to jumping-window coding

with jump distance . Modification of it for sliding-
window coding is easy and omitted.

C. Complexity Analysis

The above algorithm contains two phases: a data generation
phase and a Lagrange-multiplier optimization phase. Assume
that in the data generation phase, we obtain the D–R relation
of each video unit in . In addition, the “singular
Lagrange multiplier values” [8] for these video units are also
obtained and sorted. (A singular Lagrange multiplier for video
unit is a number for which there is more than one solution
to the problem , i.e., more than one way
of quantizing the video unit to yield the minimum. It is equal
to the slope of a line segment on the convex hull of the D–R
relation of the video unit.)

For the Lagrange-multiplier optimization, assume there are
singular Lagrange multipliers per video unit. is upper

bounded by the product of the number of macroblocks in
each video unit and the number of selectable quantizers
for each macroblock. In the above-presented algorithm, the
most computation-intensive step is S2 (trial optimization). In
comparison, other steps have negligible complexity. Consider
first a worst case scenario where the trial optimization always
results in constraint violations (except when ), and
the new anchor point always occurs at . It then takes

trial optimizations on anchor subsequences of lengths
, respectively, to obtain optimal bit

allocation for the video unit . For sliding-window coding,
this is when we slide the window and begin optimization for
the next segment of video. For jumping-window coding, we
continue optimization for video units , which
requires trial optimizations to attain the optimal solution
for video unit , and so on.

A pass over S2 requires, at worst, search among
singular Lagrange multipliers for solution, at a complex-

ity on the order of steps employing
logarithmic search. Each search step requires up to the order
of arithmetic operations to compute the total
rate and compare it against the constraint. For sliding-window
coding, therefore, the worst case complexity [denoting it by

] is on the order of

(17)

per video unit. This worst case scenario may appear too
pessimistic. However, we have too few data to define a statis-
tically meaningful majority or average situation. Nevertheless,
it seems heuristically reasonable to consider the following
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more favorable situation than the worst case, namely, that
the anchor subsequence reduces geometrically in length with
each recursion. We can derive (derivation omitted) that the
complexity in this case, denoted , is an order of
magnitude lower in power of than as

(18)

per video unit, where is the factor by which the lengths of
anchor subsequences reduce in each recursion.

For jumping-window coding, the worst case complexity is
given by

(19)

for the whole sequence . Dividing it by , we
obtain the average complexity per video unit, which is the
same in order of magnitude as except for a three-
times lower proportionality constant. For the more favorable
situation of geometrical shrinkage of anchor subsequence, a
boundon complexity is given by

(20)

for the whole sequence or of it per video
unit. If, in addition, we assume that the final set of anchor
subsequences for which the optimal solutions of S2 satisfy all
rate constraints is also geometrically distributed in length, then
the complexity for jumping-window coding is brought down
further by one order of magnitude in power of to

(21)

where is a constant, for the whole sequence and
thereof per video unit—which is lower by an order of

magnitude in power of than sliding-window coding.
Work is in progress concerning an algorithm which guar-

antees geometrical convergence regardless of how anchor
subsequences shrink in recursion [15].

IV. OPTIMAL DEPENDENT

CODING—CONSTRAINED TREE SEARCH

We now direct attention to optimal bit allocation for coding
schemes where the D–R relation of a later video unit may
depend on how an earlier unit is encoded. Examples of such
schemes include ITU-T’s H.26x series recommendations and
ISO’s MPEGx standards.

In common video coding schemes, the distortion and rate
of a video unit are both controlled by choice of the quantizer
step size. In the case of dependent coding, different choices of
the quantizer for an earlier video unit may lead to different
D–R relations for later video units. Hence, the collection
of all possible coding choices for a video sequence, say

, can be organized into a tree. The first-level nodes
are defined by the quantizer choices for unit . Each
node has as many children (second-level nodes) as there are
choices for the quantizer. Each tree branch is associated with
a certain distortion and a certain data rate. In the case of
independent coding, the tree degenerates into a trellis because
successive levels’ distortion–rate relations are independent.
Such a trellis is employed in solving for the constrained
optimal bit allocation in independent video coding in [9] and
[10]. Use of the tree in dependent coding is considered in [11],
where the tree is also termed a trellis.

Several methods exist for finding the optimal solution. One
is still using a Lagrange multiplier approach. But since the
D–R relations of successive video units are not separable,
performance of the minimization (15) for a given set of
Lagrange multiplier values can no longer be accomplished
by minimizing for each video unit individually and then
combining the results, but entails a search over all of the
terminal nodes of the above D–R tree for the lowest value
of distortion rate . Aside from the issue of tree search
under given multiplier values, another issue is the number of
multiplier values that need be searched to find a solution at
the desired constraint boundary. This number can be mini-
mized using a logarithmic-type search scheme, such as the
hierarchical method in [16].

To reduce the tree-search complexity for given Lagrange
multiplier values, a kind of “monotonicity condition” in the
D–R relations of successive video units was assumed and
exploited in [11]. Briefly, this condition says that a video unit
will have a worse D–R relation if its preceeding video unit is
quantized with a coarser step size than if with a finer step size,
in the sense that the D–R relation of the latter lies toward the
upper right of that of the former. While this is experimentally
confirmed in some cases [11], we have found that the condition
may not always hold forany conceived way of coding under
the H.26x or the MPEGx framework. Some examples are
shown in Fig. 6. The figure plots the operational D–R relation
of the second picture in two successive predictive-coded
pictures under H.261 framework. and denote the average
quantizer step sizes used in the encoding of the previous and
the present pictures, respectively. Under H.261, there are many
ways to encode a picture to yield the same average quantizer
stepsize. Points in the figure correspond to that minimizing
the distortion in the respective pictures. Note that a segment
of the curve for clearly lies to the lower left of the
curve for , violating monotonicity.

The above violation of monotonicity can probably be at-
tributed in part to the fact that, in “optimizing” the quantization
vector, we only minimized the distortion, but paid no attention
to its rate implications. But this is at least one reasonable
(although suboptimal) way to trim the full coding tree for
delayed coding over a window of several pictures—the tree
size could be astronomical without trimming. (Alternatively,
one could conceive of the existence of a problem whose
solution set observes the structure of this trimmed tree. In this
case, the problem is endowed with inherent nonmonotonicity.)
Another possible cause of nonmonotonicity, under H.261 and
similar coding frameworks, is the allowed use of intraframe
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Fig. 6. Example showing that monotonicity may not always hold.

coding for macroblocks in a predictively coded picture. If
the reference picture is coarsely quantized, the encoder may
choose to use intraframe coding for the present picture, which
may result in a lower distortion at the expense of more bits
for the present picture when compared to the case where the
reference picture is more finely quantized. This already could
result in violation of the monotonicity condition. Adding to
it is that the variation in rate and distortion from the above
phenomenon could be irregular to sum up to more conspicuous
violations.

Nevertheless, one should note that the above in no way
nullifies the usefulness of the monotonicity assumption in
reduction of complexity for tree/trellis search. The reduced-
complexity algorithm so obtained can be applied even in the
face of nonmonotonicity to arrive at a suboptimal solution.
However, in the present work, we opt to avoid this addi-
tional source of potential suboptimality. In this case, with the
dependency in D–R relations and without the monotonicity
condition, the Lagrange multiplier method appears too tedious
and inefficient. (The Appendix touches on this briefly.) An
attempt was made to simplify the problem by disregarding
some constraints in (3), (6), and (9), in particular, those
restricting encoder buffer underflows. Simulation results show
that this, in many cases, increases the distortion in the coded
video because these underflows do occur, and the ensued bit
stuffing nibbles away channel bandwidth that could otherwise
be used for video data, although the increase in distortion may
not always be significant.

In conclusion, we deemed the Lagrange multiplier ap-
proach too unwieldy in dependent coding, and we opted
for straightforward search over the coding tree under the
previously derived rate constraints. The search can be carried
out recursively by growing the tree one level at a time
(corresponding to quantization and coding of one successive
video unit using all possible quantizer step sizes), trimming
the new-grown branches according to the previously derived
rate constraints, and recording the distortion associated with
each survivor path, until we come to the end of the video

(a)

(b)

Fig. 7. Bit allocation under optimal independent encoding. Straight lines in
each plot mark the upper and lower constraints on cumulated rate at each
time. (a) Case of 100 macroblocks. (b) Case of 396 macroblocks. For clarity,
curves for (b) are “flattened” by subtracting500n from the cumulated rate
at macroblockn; thus, we have the term “normalized.” As a result, the
rate constraints actually correspond to encoder buffer boundaries, and the
normalized cumulated rates correspond to would-be encoder buffer levels
should the buffer be able to accommodate the coded bits.

units under delay encoding. The survivor path with minimum
total distortion then gives the solution. With full-tree search,
the solution is optimal under either CBR or VBR transmission
[9].

The sliding-window video sequence coding procedure can
be described as follows. Modification to jumping-window
coding is straightforward.

Algorithm 2: S1: Grow the coding tree recursively, one
level at a time, subject to the rate constraints derived earlier.

S2: Find the path with the least total distortion. Quantize
and encode video unit using the quantizer step size in the
optimal solution. Determine the transmission rate subject
to (14).

S3: Update the buffer levels , and . Incre-
ment by 1 and go toS1.
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Fig. 8. Variation of optimal Lagrange multipliers with time.

V. A SIMULATION STUDY

We simulate both independent and dependent coding. The
goals are, first, to examine the performance and properties
of the (sub)optimal coding of earlier sections, and second,
to compare the performance of CBR- and ATM-type VBR
transmission. The codec and transmission delayis set equal
to (the delay-encoding “window size”) in all cases. For
convenience, we use PSNR to measure coding performance,
although it may not be a subjectively meaningful measure at
all times.

A. Independent Coding

We consider H.261-type intraframe video coding, and let
each video unit be a macroblock. The encoder buffer size
is set to be 2400 bits, and the channel rate per video unit
is 500 bits. We employ jumping-window encoding. The first
picture in the well-known salesman sequence, in CIF format
(396 macroblocks), is encoded.

We first inspect the variation in video rate from opti-
mized bit allocation. For this, we let and en-
code the first 100 macroblocks of the picture under CBR
transmission. The result is plotted in Fig. 7(a). For compar-
ison, the result from optimization only under the total-rate
constraint (but not buffer constraints at any earlier time)
is also shown. Observe in Fig. 7(a) that, for video units
near 20–30 and 45–60, where the buffer constraints are vi-
olated in the total-rate-constrained solution, the fully con-
strained optimal bit allocation is sometimes close to the
constraint boundary, as one might expect from the discussions
in the Appendix. It is also of interest to observe that the
two curves show similar variations over these regions. The
rate variation from fully constrained and total-rate-constrained
optimization of all 396 macroblocks together is shown in
Fig. 7(b).

We next compare the performance and characteristics of
CBR and VBR transmission. The LB size and leak rate are
set to be 4800 and 500 bits per video unit, respectively. The

(a)

(b)

Fig. 9. LB and encoder buffer fullness under different transmission rate
control schemes. (a) High transmission rate. (b) Medium transmission rate.

initial and target LB levels are both set to be half full so
that the total bits available for coding are the same under
CBR and VBR. Results in Fig. 8 show that VBR offers
a slightly higher average PSNR. The difference is small,
presumably due to the video material in addition to the use
of a suboptimal transmission rate control scheme. We expect
a more significant difference in performance for material
showing greater variation in complexity across video units.
(Indeed, it will be seen later in dependent coding results that
VBR yields a prominent gain at scene cuts.) Curves in Fig. 8
also show that, compared to CBR, the Lagrange multipliers
under VBR transmission exhibit less variation, and are closer
to the total-rate-constrained solution, which implies a smaller
deviation of bit numbers from the total-rate-constrained solu-
tion, and thus a better match of transmission rate with video
complexity.

Reconsider the determination of transmission rates under
VBR transmission. Equation (14) practically specifies an in-
finitude of possible choices. Specifically, we may take the
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Fig. 10. Encoded and transmitted bit rates. Top: high transmission rate;
bottom: medium transmission rate.

weighted sum of the upper and the lower bounds as

(22)

for , where and .
Fig. 9(a) is obtained with . We see that, in
this situation, the encoder buffer is often empty when the LB is
not full, which indicates that the LB, or more exactly, the ATM
network, is absorbing the variation in the video rate for a best
coding quality. Fig. 9(b) is obtained with ,
which has led to a half-full encoder buffer when the LB
buffer level is not high. As further illustration, the encoded
and transmitted bit rates in each case are depicted in Fig. 10,
which shows that the transmission rate follows the encoded bit
rate when the LB is not full and is kept at the leak rate when it
is full. Interestingly, the two transmission rate control methods
have resulted in the same received video quality because of
the same solution in bit allocation.

We now examine the variation in coding performance as a
function of the length of encoding delay. Fig. 11 shows the
PSNR results obtained with different coding delays for both
CBR and VBR transmission. The best performance occurs at
full-length delay. But it is interesting that the PSNR is not
monotonically increasing with delay for either CBR or VBR,
which can be expected since the forced satisfaction offor
a block of video units may not be optimal over a longer or
shorter block. But the suboptimality should lessen as long-
enough blocks are used. For VBR transmission, the PSNR
improvement over CBR transmission increases asincreases.

B. Dependent Coding

We consider H.261-type coding. Fig. 12 shows the average
PSNR results obtained from (sub)optimal CBR and VBR
coding of the CIF Salesman sequence at 10 pictures/s at
different (average) rates, where the suboptimality arises due
to the use of distortion-minimized average quantizer step sizes

Fig. 11. PSNR performance at different encoding delays (in fractions of total
sequence length, i.e., 396 macroblocks).

Fig. 12. Overall PSNR of RM8 and delayed coding of CIF Salesman
sequence at 10 pictures/s atp � 64 kbits/s.

for each picture for simplicity. These average quantizer step
sizes are limited to between 2 and 36, in steps of two. For
comparison, results from the widely used reference algorithm
RM8 [18] is also included. For fairness in comparison, for all
algorithms, the first picture in the sequence is coded the same
as in RM8. The codec buffer sizes are
where is as defined in the figure, and the codec delayis
two pictures. For VBR transmission, the LB begins (somewhat
unfairly) at empty at the second picture. It is seen that the
suboptimal CBR coding yields approximately 1.0 dB gain
over RM8, and the suboptimal VBR coding gains roughly an
additional 0.2 dB over all rates. Fig. 13 shows the variation of
per-picture PSNR at an average rate of 384 kbits/s ( ).

It is of interest to examine the buffer-level variations in the
different coding methods. Fig. 14(a) plots the encoder buffer
level at the end of each picture for each method. Fig. 14(b)
further shows the number of encoded bits and the VBR channel
transmission rate. Observe from Fig. 14(a) that the buffer-
level variations in the delayed-coding solutions are greater
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Fig. 13. PSNR of RM8 and delayed coding of CIF Salesman sequence at
10 pictures/s at 384 kbits/s.

than that in RM8. On the positive side, this may be due to
the fact that the delayed-coding solution makes better use of
the buffer space to catch the complexity variation in successive
pictures and adjust the bit rate accordingly. However, there are
at least two other possibilities. And it is possible that all of
these forces are at work at the same time to different degrees.
First, as noted above, for simplicity, we have limited the set of
quantizer step sizes, or equivalently, the number of tree nodes
at each level. This may have affected the algorithm’s ability to
find smoothly varying bit allocations for successive pictures.
Second, in delayed encoding, if somehow a picture is allocated
a high rate, then later pictures may be encoded to a high
fidelity more easily (because of a good reference picture in
predictive coding), but they also are subject to more stringent
rate constraints. Over time, the quality may suffer until a point
where the high complexity in a picture (due to a poor reference
in motion-compensated prediction) and the gradually released
rate constraints again lead to a high-rate coding. The end
result may be oscillating rates, PSNR, and buffer levels as
shown in Figs. 13 and 14. In VBR coding, where we have an
additional degree of freedom in controlling the transmission
resource, the above could be further enhanced. However, we
should note that oscillation in PSNR, by itself, may not be an
undesirable phenomenon since the aim in delayed coding is to
achieve minimumtotal distortionover several pictures rather
than homogeneous PSNR.

Heuristically, the performance improvement due to delayed
coding should be especially acute at a scene cut. This is
because of the -picture worth of “foreknowledge” provided
following the scene cut, while RM8, by its simple feedback
control of the quantizer step sizes, does not make use of this
foreknowledge, even if available. To verify this point, we
consider a composite sequence made up of 30 pictures each of
Salesman, Swing, Miss America, and Claire in that order. The
composite sequence is named Fly, in which the several scene
changes can be used to verify the effectiveness of the delayed-
coding schemes in bit allocation and the flexibility offered by
VBR ATM rate control.

(a)

(b)

Fig. 14. Variation in buffer level and rate in RM8 and delayed coding of the
Salesman sequence. (a) Buffer level variation. (b) Encoded bits and channel
transmission rate in VBR coding.

Fig. 15(a) shows the PSNR result from coding Fly at 320
kbits/s. We see that the delayed coding schemes can have
a significant advantage immediately following a scene cut,
possibly at the expense of a somewhat lower performance
immediately preceding it. The PSNR performance of VBR
ATM transmission is significantly better than that of CBR at
scene changes (although the edge in sequence-wise average
PSNR is less significant). And we see from Fig. 15(b) that
the VBR ATM transmission, by its greater flexibility in rate
control, allocates more bits than CBR or RM8 to the picture
after a scene cut.

VI. CONCLUSION

We considered objective optimal encoding of video se-
quences for ATM networks. Both independent and dependent
coding were investigated. They can be formulated as opti-
mization problems subject to multiple rate constraints arising
from the finite channel transmission rate and the finite codec
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(a)

(b)

Fig. 15. Coding of the CIF Fly sequence by RM8 and delayed coding at 10
pictures/s at 320 kbits/s. (a) PSNR performance. (b) Bits per picture.

buffer sizes. For independent coding, we derived an efficient
bit allocation algorithm based on the use of multiple Lagrange
multipliers. In this algorithm, we exploited the monotonic
relation between total distortion and the amount of deviation
from the constraint boundaries. The algorithm is optimal up
to a convex-hull approximation of the D–R relations in the
case of CBR transmission. It is suboptimal in the case of
VBR transmission due to the use of a suboptimal transmission
rate control method. For dependent coding, the aggregate
D–R relationship exhibits a tree structure, and the Lagrange
multiplier approach becomes rather unwieldy. We resorted to
a constrained tree search approach. The solution is optimal for
both CBR and VBR transmission if the full constrained tree
is searched.

We presented some simulation results which confirm the
superiority of the coding quality of the derived encoding
algorithms over simpler schemes such as RM8. In addition,
(sub)optimal coding under VBR transmission, as expected, has
yielded higher PSNR performance than that under CBR trans-

Fig. 16. Nonoptimality with unequal Lagrange multipliers.

mission, although the difference appears not very significant
except at scene cuts.

The ability of the optimization approach to efficiently al-
locate bits among pictures with differing complexity could
be further exploited for bandwidth allocation and coding of
multiple video sources for transmission over a shared channel.

APPENDIX

THEORY OF THELAGRANGE-MULTIPLIER CODING ALGORITHM

For simplicity, consider only convex D–R relations. Define
, . Then (15) can be

rewritten as

(23)

where the equality holds due to the independence in the
D–R relations. Since there is a one-to-one correspondence
between and , characterization of can be
accomplished by characterizing . For convenience,
term the prime Lagrange multipliers. Now, as-
sume tentatively that the D–R relations associated with the
video units are continuous. And assume that the optimal bit
allocation touches one of the two boundaries in (9) at time

, where . In particular, it touches
the RHS boundary at so that the bit budget is fully
consumed. Further, let . Then we have the
following.

Lemma 1: The optimal bit allocation is such that ,
, are constant over each video subsequence

.
Proof: Suppose, in the optimal solution,

for some . Then in minimization of
for we have the situation

in Fig. 16 where and are the optimal solutions. Due to
the different slopes in the D–R curves at and , we can
reduce the total distortion without changing the total rate by
moving bits from to until either or until a
constraint in (9) is reached somewhere in . The former
contradicts the optimality assumption of the original solution,
while the latter contradicts the assumption that the boundaries
in (9) are not touched in .
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Define theoptimal anchor point as the last video unit
before which the optimal prime Lagrange multipliers are equal,
i.e., . And call the subsequence

theoptimal anchor subsequence. We now prove that
the anchor point in each recursion of the algorithm described
in Section III will be located at or after the optimal anchor
point. The proof consists of two steps. First, we show that the
anchor point obtained from the initial optimization (yielding
optimal ) is located at or after the optimal anchor point.
Then we show that the anchor point will stay at or after the
optimal anchor point with each recursion in the algorithm.

Lemma 2: The initial anchor point obtained by optimiza-
tion subject only to the total rate constraint is such that

.
Proof: We showed earlier that the sequence of optimal

prime Lagrange multipliers is piecewise constant with
magnitude changes occurring only at some .
Four cases can be envisioned: 1) wherever
( ), the boundary in (9) that is touched at is
the RHS boundary; 2) the RHS boundary in (9) is touched at

and there exists some time where the LHS boundary
is touched and ; 3) same as 1), but replace the RHS
by the LHS; and 4) same as 2), but replace the RHS by the
LHS and vice versa. We address the first two cases only since
the other two are complementary.

For case 1), we show that and ,
and the conclusion follows. To show that , assume

. Then we have the situation of Fig. 16, with
and in the roles of and , respectively. Bits can
be moved from video unit to to reduce distortion
while keeping the same total rate. But then the total rate at

would shift inside the RHS boundary in (9), contradicting
the assumption that the optimal solution touches that boundary
there. To show that , assume . Then since

is nondecreasing in and .
By convexity of the D–R relations, the total rate obtained
under would be lower than in the optimal allocation,
contradicting the assumption that satisfies the total rate
constraint. Therefore, . By convexity in the D–R
relations, bits allocated to video units under are
more than that under . Hence, there is overflow atand no
underflow before it, and thus .

For case 2), we can show that . Then if ,
there is no overflow up to and there is underflow afterwards;
if , then there is overflow at and no underflow
before it. The proof relies on D–R convexity as in case 1). In
either case, .

Lemma 3: The anchor point will stay at or after the
optimal anchor point with each recursion in the algorithm.

Proof: Consider the two cases addressed in the proof
of the last lemma. For case 1), we begin the recursion by
having overflow at some anchor which resulted from
optimization with some Lagrange multiplier geared to
satisfy a rate constraint at some “future” video unit .
Optimization of coding for video units subject only
to the RHS constraint of (9) at video unitby using a Lagrange
multiplier will lead to a solution characterized by some

in case and in case . The proof

involves an examination of the convexity in D–R relations and
the nondecreasing nature of as in the last lemma; details
are omitted. Now, if , then we have obtained the
optimal anchor point at together with the optimal coding
of ; and we can proceed to the optimal coding of

. If , then we are in a similar situation
as in the proof for case 1) in the last lemma where we had

, and thus a similar conclusion holds. For case 2),
we begin with either an underflow at or an overflow
at . In case of underflow, optimal coding of
subject to the LHS constraint in (9) ateither will result in
an overflow at with no underflow before it, or will result
in an underflow at a later video unit with no overflow before
that video unit. The proof again involves a look into the D–R
convexity. In case of overflow, the situation is similar either
to the immediately preceding underflow case or to case 1)
discussed above, depending on whereis located.

Lemmas 2 and 3 together establish the convergence of
the Lagrange-multiplier algorithm toward the optimal solution
in independence coding for continuous D–R relations. The
discussion can be extended to handle discrete D–R relations
[15].

The situation with dependent coding is much more compli-
cated because the optimization objective (15) can no longer
be decomposed as in the RHS of (23). For example, in
the case depicted in Fig. 3 with the initial optimal
solution under located at , the anchor subsequence

cannot be optimized independently of . In
other words, the Lagrange multiplier cannot be optimized
independently of . The algorithm in Section III can be
modified to accommodate this dependence, but the resulting
computation can become overwhelming.
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