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1. Introduction 

Given n items, a parallel algorithm for gener- 
ating the n! permutations is presented. This al- 
gorithm is designed to run on a linear array con- 
sisting of n identical processing elements (PEs for 
short). These PEs are numbered and referred to as 
PE(i) for 1 < i < n. Each PE is responsible for 
producing one component of each permutation. 
Every PE(i) contains six registers, namely: C(i), 
T(i), K(i), Y(i), Z(i) and X(i). A permutation 
takes constant time from the preceding one. For 
generating the required n ! permutations, our al- 
gorithm requires n! + n - 1 time steps in which 
n - 1 initial time steps are included. Here, a time 
step is defined as the maximal elapsed time (con- 
sidering all PEs) to do the following three tasks: 
(1) PI!.(i) receives two data from PE(i + 1); (2) 
PE( i) executes the design algorithm once; (3) PE( i) 
sends the i th component of a certain permutation 
to output terminal. This ith component is stored 
in the register C(i). 

In the literature, there are many methods used 
to produce the n! permutations sequentially, e.g. 
the methods of lexicographic order, inversion vec- 
tors, rotations, minimal changes, random genera- 
tions, and by reversing a certain suffix of current 
permutation, see [6,7]. A parallel algorithm is given 
in [2] to generate the permutations. However, this 
algorithm is not optimal (in the sense that the 
number of PE times the time complexity does not 
match the optimal sequential running time) and 

each PE needs a stack of size n. The parallel 
algorithm in [l] uses an arbitrary number of inde- 
pendent PEs, each producing a part of consecutive 
permutations. This algorithm is optimal, but each 
PE requires storage size O(n) and has to deal with 
large integers. The parallel algorithm in [3] run- 
ning on a SIMD computer is complicated because 
it requires a table to handle a binary tree. An 
efficient parallel algorithm for generating all the 
n! permutations is presented in [5] which is ex- 
ecuted on vector processors. This algorithm re- 
quires a large memory size. In contrast, our al- 
gorithm requires O(n!) time steps and runs on a 
linear array in which each PE contains only con- 
stant storage size and the elapsed time of a time 
step is independent of n. 

2. The design for generating permutations 

Without loss of generality, the n items are 
denoted by 1, 2,. . . , n. We write per(n) to denote 
the set of the n! permutations which are produced 
by our algorithm with the order as they are gener- 
ated. The basic idea for designing our algorithm is 
the use of iterative method and adding modulo 
operation. The design consideration is described 
as below. 

(1) For any B in per(n - l), we append the 
number n to B to form a permutation A in 
per(n). We denote A = {a,, a2,. . . , a,} and as- 
sume that A is produced at time step t. For 
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1 <j < n - 1, let Aj = {a/, a:,. . . , a,/} be the n - 
1 permutations in per(n) to be produced at time 
steps t +j. For 1 < i < n, P&I’) calculates the ith 
components a,l of A, with the statement: if a, + j 
> n then a/= a, + j - n else u;l = a, + j. These n 
permutations A and Aj are called in a cycle-n- 
perms with the header A. The register K(i) keeps 
a counter indicating how many permutations has 
generated within a cycle-n-perms. 

(2) During the generation of a current cycle-n- 
perms with the header A = {a,, u2,. _ ., a,_,, a, 
= n}, the next header (say A’) for the next cycle- 
n-perms must be prepared in time. That is, a 
permutation B’ in per(n - 1) is also produced 
before it can be used to form the header A’. The 
preparation of B’ = { b,, b,, . . _ , b,_ 1 } is consid- 
ered as follows. Let u,‘“) = a, for 1 < i < n and k 

be a variable with initial value 0. We perform the 
procedure 

while ~19, = n - k do 
begin 

k:=k+l; 

for i = 1 to n - k do u,‘“’ := u~(~-I) + 1 
end. 

After executing this while-do loop, the required 
B’ is ready with its components bi = u!“’ for 
l<i<n-k and b,=i for n-k+l<i<n-1. 

Now we present the consideration to prepare 
the header A’ in our algorithm. Once the header A 

is produced, a signal for preparing new header A’ 

is issued from PE(n) to PE(i) for 1 < i < n - 1. 
This signal causes two data to be sent out from 
PE(n). One is an updating information with the 
number n - 1 which is put in Y(n) and then it 
should be propagated to the register Y(i) for 
1 < i < n - 1. The other is a flag which indicates 
that PE(n) has sent out an updating information 
by assigning 1 to register Z(n). For 1 < i < n - 1, 
when PE( i) receives an updating information from 
PE( i + 1) by receiving Y( i + l), PE( i) begins to 
evaluate the i th component of A’ and stores this 
component in register T(i)_ Then PE(i) de- 
termines whether it should issue another signal to 
PE(i - 1). The condition for PE(i) to issue a sig- 
nal is that PE(i + 1) has issued its signal and 
PE( i) has the value i in its T(i). Once this condi- 
tion is true, PE(i) sends its updating information 

with the number i - 1 in Y(i) and its flag in Z(i) 

within two consecutive time steps. Thus, in order 
to delay this time step of sending out the flag, 
PE(i) needs an assignment statement to translate 
its flag from Z(i) to register X(i). 

(3) We continue the above two design consid- 
erations until PE(l) has issued an updating infor- 
mation. 

3. The parallel algorithm 

From the previous description, a parallel al- 
gorithm for generating the n! permutations is pre- 
sented with name GENPER(n). Here, we assume 
that the registers with names Y( n + 1) and X( n + 

1) are in the memory of the host computer. We 
have Y(n + 1) = 0 at all time steps and we also 
assume X(n + 1) = 1 at the time step t = q * n for 
0 < q < (n - l)! and X(n + 1) = 0 at the remain- 
ing time steps. The algorithm GENPER(n) is ex- 
ecuted in a skew form, that is, PE(i) has i - 1 time 
steps delay before it begins to evaluate the i th 
component of the first permutation. 

Algorithm GENPER( n ) = 
[Initial state] 

For 1 < i < n, set C(i) = i, K(i) = n, T(i) = i, 

X(i) = Z(i) = Y(i) = 0 in PE(i) at time step 
n - i. 

[Execution state] 

begin 
repeat / * do parallel for all PE(i). * / 

if K(i) < n then 
evaluating-perms-after-header 

else evaluating-header; 

output C(i); 
X(i) := Z(i); 

if Y(i + 1) # 0 then 
evaluating-next-header 

else Y(i) := 0; 

if X(i+l)=l and T=i then 
issuing-updating-signal 

else Z(i) := 0 

until X(1) = 1 
end. 
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evaluating-perms-after-header = 
begin 

if C(i) < n then 
C(i) := C(i) + 1 

else C(i) := 1; K(i) := K(i) + 1 
end 

evaluating-header = 

l)* qn_l+cn_l for OGc,_,<n-2. We con- 
tinue this process until there exists an integer j 
such that q,=O and q,+,=c, for O<c,<j-1. 
The minimum integer of j is 2 because of y < n! 

- 1. 

begin C(i) := T(i); K(i) := 1 end 
evaluating-next-header = 

hegin 
if T(i) < Y(i + 1) then 

T(i) := T(i) + 1 
else T(i) := 1; Y(i) := Y(i + 1) 

end 
issuing-updating-signal = 

hegin Y(i) = i - 1; Z(i) := 1 end 

Now we calculate the desired permutation A 
with index y. Initially, let A,_ 1 = { 1, 2,. . . , j - l}. 
Suppose that there exists an integer i for 1 < i < n 

- 1 such that the A, = {a,‘, al,. . . , a:} is de- 
termined. For 1 < k < i if c,, i # 0, we assign a; 

+ c,+i(mod i+ 1) to ak and let a,+l = c,+, to 
form A,+i = {a,, a, ,..., a,,,}. If c,+i = 0, then 
we get A,, , by appending the number i + 1 to A,, 
I.e., ak = ak ’ for l<k<i and a,+,=i+l. We 
continue this evaluation until the final permuta- 
tion A,, = A is obtained. 

4. The index of per(n) 5. The correctness proof 

We give the ranking and the unranking func- 
tions of per(n). Let A,, A, be two permutations 
in per(n) which are generated at time steps t,, t, 
respectively. We define A, <A, if and only if 
t, -C t,. The one-to-one correspondence f between 
the per(n) and the set of integers (0, 1, 2,. . ., n! 
- l} has the property: A < B if and only if 

f(A) < f(B). The function f and its inverse func- 
tion are called the ranking (or index) and unrank- 
ing function of per(n), respectively. Their corre- 
sponding evaluations are derived as follows. 

The essential part in our algorithm is that dur- 
ing the execution of current cycle-n-perms with a 
header (say A), the next header for the next cycle- 
n-perms must be prepared in time. Suppose the 
header of the current cycle-n-perms is A = 

{a,, a2,...,an-lr a,= n}, then the next header 
A’ = {a,‘, a;,. . ., a:-,, a: = n} will be prepared 
within the time steps that the current cycle-n-perms 
are generating. 

For ranking, let A = {a,, a,, . . . , a,) be any 
given permutation in per(n) with the initial in- 
dex({ 1)) = 0. The index of A will be evaluated 
recursively. If a,, = n, we have the formula: 
index(A) = n * index({a,, a2 ,..., a,_,}). If a,, < 
n, first we compute the permutation in per(n - 1) 

to obtain B={a,-a,, a,-a,,,...,a,_,-aa,} 
with subtraction modulo n. Then we have the 
formula: index(A) = n * index(B) + a,,, 

Proposition 1. PE(i) sets Z(i) = 1 only if PE(i + 1) 
has set Z(i + 1) = 1. 

Proof. By the two statements “X(i) := Z(i)” and 
“if X(i + 1) = 1 and T(i) = i then issuing-updat- 

ing-signal else Z(i) := 0”. 0 

Proposition 2. The components of the header in 
per(n) for the next cycle-n-perms are prepared in 
time. 

As for unranking, given any integer y such that 
O<y<n!-l.WeevaluateasequenceC={c,= 
0 ,..., c,_i =O, c,, c,+ ,,._., c,,} by the following 
process. There exist two nonnegative integers 
q,, c, suchthat y=n * qn+cn forO<c,<n-1. 
If q, = 0, then the evaluation of the sequence C 
stops; otherwise we continue to find two nonnega- 
tive integers qn_l, c,_~ such that q, = (n - 

Proof. Let A = {a,, a2,. . . , a,} be the header of 
the current cycle-n-perms and A’ = 

{ 4, a;, . . . , a:} be the next header of the next 
cycle-n-perms. We wish to show that the a,’ is 
ready at time step t = t, + 2(n - i), where to is the 
time step such that GENPER( n) produces the n th 
component of header A. From the discussion in 
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the previous section and the use of mathematical 
induction, we obtain t, = 4 * n + 1 for q = 

0, 1, 2,. ..,(n - l)!. For 1 < i Q n - 1, PE(i) 
calculates the content of its Z’(i) from t = to + (n 
- i) to t = t, + 2(n - i). The final value of T(i) 
(i.e., u;) is ready before the time step t = t, + 2(n 
- i). Since the generation of ith components of 
any fixed permutation has n - i time steps delay 
in GENPER(n) (because of a skew form for the 
first permutation to be generated), and a cycle-n- 
perms has n permutations to be produced, a: is 
retrieved at t, + (n - i) + n = t, + 2n - i. There- 
fore, A’ has prepared before it is generated by the 
fact of t,+2n-i>1,+2(n-i). 0 

From the adding module operation in 
GENPER(n), we have the following propositions. 

Proposition 3. Within any cycle-n-perms, the n 
permutations are different. 

Proposition 4. Any two permutations being gener- 

ated within any two different cycie-n-perms are dis- 

tinct. 

Theorem 5. The parallel algorithm GENPER(n) 

generates n! permutations correctly. 

Proof. By induction on n under the use of the 
ranking function as shown in the previous section. 

Cl 

Since we have n - 1 time steps delay before the 
components of the first permutation {I, 2, 3,. . . , 
n} to be produced, and there are n! permutations 
to be generated, the execution of GENPER(n) 
requires n! + (n - 1) time steps. 

6. Conclusion 

In this paper we have presented a parallel al- 
gorithm to generate all the n! permutations of n 
given items. The computational model used is a 

linear array consisting of n PEs. Since each PE is 
identical and executes the same program, it is 
suitable for VLSI implementation. In [4] a parallel 
algorithm to generate all the (r) = m!/(n!(m - 
n)!) combinations is presented. It seems that these 
two algorithms can be used to generate all the 

P = m!/(m - n)! permutations. 
a;; B= {a,, a,,..., 

Note that for 
a,_,} in per(n - 1) and A 

= {a,, a,,..., a,-,, n }, we can modify our linear 
array so that it gives the permutations after A by 
loading some adequate initial values. That is, the 
initial values of C(i) = i of PE(i), 1 < i < n, are 
replaced by C(i) = a,. Then during the execution 
of the modified algorithm, the permutation A 

comes out at the first time step, and any m re- 
quired permutations following A will be generated 
within the following m time steps. Furthermore, 
there exist many combinatorial enumeration prob- 
lems for which efficient parallel algorithms are yet 
to be developed. We hope that this consideration 
of designing parallel algorithm can be used to 
solve some of these problems in the near future. 
We are also interested to investigate the parallel 
algorithms which will be run on a computational 
model where the storage in any PE and the elapsed 
time in a time step are independent of the prob- 
lem size. 
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