
Information Processing Letters 35 (1990) 167-170
North Holland

7 August 1990

PARALLEL ALGORITHM FOR GENERATING PERMUTATIONS ON LINEAR ARRAY

Chau-Jy LIN

Departmeni of Applied Mathematics, National Chrao Tung University, Hsinchu, Taiwan, R. 0. C.

Communicated by K. Ikeda
Received 31 January 1990
Revised 9 April 1990

Keywords: Parallel algorithm, linear array, permutations, ranking function

1. Introduction

Given n items, a parallel algorithm for gener-
ating the n! permutations is presented. This al-
gorithm is designed to run on a linear array con-
sisting of n identical processing elements (PEs for
short). These PEs are numbered and referred to as
PE(i) for 1 < i < n. Each PE is responsible for
producing one component of each permutation.
Every PE(i) contains six registers, namely: C(i),
T(i), K(i), Y(i), Z(i) and X(i). A permutation
takes constant time from the preceding one. For
generating the required n ! permutations, our al-
gorithm requires n! + n - 1 time steps in which
n - 1 initial time steps are included. Here, a time
step is defined as the maximal elapsed time (con-
sidering all PEs) to do the following three tasks:
(1) PI!.(i) receives two data from PE(i + 1); (2)
PE(i) executes the design algorithm once; (3) PE(i)
sends the i th component of a certain permutation
to output terminal. This ith component is stored
in the register C(i).

In the literature, there are many methods used
to produce the n! permutations sequentially, e.g.
the methods of lexicographic order, inversion vec-
tors, rotations, minimal changes, random genera-
tions, and by reversing a certain suffix of current
permutation, see [6,7]. A parallel algorithm is given
in [2] to generate the permutations. However, this
algorithm is not optimal (in the sense that the
number of PE times the time complexity does not
match the optimal sequential running time) and

each PE needs a stack of size n. The parallel
algorithm in [l] uses an arbitrary number of inde-
pendent PEs, each producing a part of consecutive
permutations. This algorithm is optimal, but each
PE requires storage size O(n) and has to deal with
large integers. The parallel algorithm in [3] run-
ning on a SIMD computer is complicated because
it requires a table to handle a binary tree. An
efficient parallel algorithm for generating all the
n! permutations is presented in [5] which is ex-
ecuted on vector processors. This algorithm re-
quires a large memory size. In contrast, our al-
gorithm requires O(n!) time steps and runs on a
linear array in which each PE contains only con-
stant storage size and the elapsed time of a time
step is independent of n.

2. The design for generating permutations

Without loss of generality, the n items are
denoted by 1, 2,. . . , n. We write per(n) to denote
the set of the n! permutations which are produced
by our algorithm with the order as they are gener-
ated. The basic idea for designing our algorithm is
the use of iterative method and adding modulo
operation. The design consideration is described
as below.

(1) For any B in per(n - l), we append the
number n to B to form a permutation A in
per(n). We denote A = {a,, a2,. . . , a,} and as-
sume that A is produced at time step t. For

0020-0190/90/$03.50 0 1990 - Elsevier Science Publishers B.V. (North-Holland) 167

1 <j < n - 1, let Aj = {a/, a:,. . . , a,/} be the n -
1 permutations in per(n) to be produced at time
steps t +j. For 1 < i < n, P&I’) calculates the ith
components a,l of A, with the statement: if a, + j
> n then a/= a, + j - n else u;l = a, + j. These n
permutations A and Aj are called in a cycle-n-
perms with the header A. The register K(i) keeps
a counter indicating how many permutations has
generated within a cycle-n-perms.

(2) During the generation of a current cycle-n-
perms with the header A = {a,, u2,. _ ., a,_,, a,
= n}, the next header (say A’) for the next cycle-
n-perms must be prepared in time. That is, a
permutation B’ in per(n - 1) is also produced
before it can be used to form the header A’. The
preparation of B’ = { b,, b,, . . _ , b,_ 1 } is consid-
ered as follows. Let u,‘“) = a, for 1 < i < n and k

be a variable with initial value 0. We perform the
procedure

while ~19, = n - k do
begin

k:=k+l;

for i = 1 to n - k do u,‘“’ := u~(~-I) + 1
end.

After executing this while-do loop, the required
B’ is ready with its components bi = u!“’ for
l<i<n-k and b,=i for n-k+l<i<n-1.

Now we present the consideration to prepare
the header A’ in our algorithm. Once the header A

is produced, a signal for preparing new header A’

is issued from PE(n) to PE(i) for 1 < i < n - 1.
This signal causes two data to be sent out from
PE(n). One is an updating information with the
number n - 1 which is put in Y(n) and then it
should be propagated to the register Y(i) for
1 < i < n - 1. The other is a flag which indicates
that PE(n) has sent out an updating information
by assigning 1 to register Z(n). For 1 < i < n - 1,
when PE(i) receives an updating information from
PE(i + 1) by receiving Y(i + l), PE(i) begins to
evaluate the i th component of A’ and stores this
component in register T(i)_ Then PE(i) de-
termines whether it should issue another signal to
PE(i - 1). The condition for PE(i) to issue a sig-
nal is that PE(i + 1) has issued its signal and
PE(i) has the value i in its T(i). Once this condi-
tion is true, PE(i) sends its updating information

with the number i - 1 in Y(i) and its flag in Z(i)

within two consecutive time steps. Thus, in order
to delay this time step of sending out the flag,
PE(i) needs an assignment statement to translate
its flag from Z(i) to register X(i).

(3) We continue the above two design consid-
erations until PE(l) has issued an updating infor-
mation.

3. The parallel algorithm

From the previous description, a parallel al-
gorithm for generating the n! permutations is pre-
sented with name GENPER(n). Here, we assume
that the registers with names Y(n + 1) and X(n +

1) are in the memory of the host computer. We
have Y(n + 1) = 0 at all time steps and we also
assume X(n + 1) = 1 at the time step t = q * n for
0 < q < (n - l)! and X(n + 1) = 0 at the remain-
ing time steps. The algorithm GENPER(n) is ex-
ecuted in a skew form, that is, PE(i) has i - 1 time
steps delay before it begins to evaluate the i th
component of the first permutation.

Algorithm GENPER(n) =
[Initial state]

For 1 < i < n, set C(i) = i, K(i) = n, T(i) = i,

X(i) = Z(i) = Y(i) = 0 in PE(i) at time step
n - i.

[Execution state]

begin
repeat / * do parallel for all PE(i). * /

if K(i) < n then
evaluating-perms-after-header

else evaluating-header;

output C(i);
X(i) := Z(i);

if Y(i + 1) # 0 then
evaluating-next-header

else Y(i) := 0;

if X(i+l)=l and T=i then
issuing-updating-signal

else Z(i) := 0

until X(1) = 1
end.

Volume 35, Number 4 INFORMATION PROCESSING LETTERS 7 August, 1990

168

Volume 35. Number 4 INFORMATION PROCESSING LElTERS 7 August, 1990

evaluating-perms-after-header =
begin

if C(i) < n then
C(i) := C(i) + 1

else C(i) := 1; K(i) := K(i) + 1
end

evaluating-header =

l)* qn_l+cn_l for OGc,_,<n-2. We con-
tinue this process until there exists an integer j
such that q,=O and q,+,=c, for O<c,<j-1.
The minimum integer of j is 2 because of y < n!

- 1.

begin C(i) := T(i); K(i) := 1 end
evaluating-next-header =

hegin
if T(i) < Y(i + 1) then

T(i) := T(i) + 1
else T(i) := 1; Y(i) := Y(i + 1)

end
issuing-updating-signal =

hegin Y(i) = i - 1; Z(i) := 1 end

Now we calculate the desired permutation A
with index y. Initially, let A,_ 1 = { 1, 2,. . . , j - l}.
Suppose that there exists an integer i for 1 < i < n

- 1 such that the A, = {a,‘, al,. . . , a:} is de-
termined. For 1 < k < i if c,, i # 0, we assign a;

+ c,+i(mod i+ 1) to ak and let a,+l = c,+, to
form A,+i = {a,, a, ,..., a,,,}. If c,+i = 0, then
we get A,, , by appending the number i + 1 to A,,
I.e., ak = ak ’ for l<k<i and a,+,=i+l. We
continue this evaluation until the final permuta-
tion A,, = A is obtained.

4. The index of per(n) 5. The correctness proof

We give the ranking and the unranking func-
tions of per(n). Let A,, A, be two permutations
in per(n) which are generated at time steps t,, t,
respectively. We define A, <A, if and only if
t, -C t,. The one-to-one correspondence f between
the per(n) and the set of integers (0, 1, 2,. . ., n!
- l} has the property: A < B if and only if

f(A) < f(B). The function f and its inverse func-
tion are called the ranking (or index) and unrank-
ing function of per(n), respectively. Their corre-
sponding evaluations are derived as follows.

The essential part in our algorithm is that dur-
ing the execution of current cycle-n-perms with a
header (say A), the next header for the next cycle-
n-perms must be prepared in time. Suppose the
header of the current cycle-n-perms is A =

{a,, a2,...,an-lr a,= n}, then the next header
A’ = {a,‘, a;,. . ., a:-,, a: = n} will be prepared
within the time steps that the current cycle-n-perms
are generating.

For ranking, let A = {a,, a,, . . . , a,) be any
given permutation in per(n) with the initial in-
dex({ 1)) = 0. The index of A will be evaluated
recursively. If a,, = n, we have the formula:
index(A) = n * index({a,, a2 ,..., a,_,}). If a,, <
n, first we compute the permutation in per(n - 1)

to obtain B={a,-a,, a,-a,,,...,a,_,-aa,}
with subtraction modulo n. Then we have the
formula: index(A) = n * index(B) + a,,,

Proposition 1. PE(i) sets Z(i) = 1 only if PE(i + 1)
has set Z(i + 1) = 1.

Proof. By the two statements “X(i) := Z(i)” and
“if X(i + 1) = 1 and T(i) = i then issuing-updat-

ing-signal else Z(i) := 0”. 0

Proposition 2. The components of the header in
per(n) for the next cycle-n-perms are prepared in
time.

As for unranking, given any integer y such that
O<y<n!-l.WeevaluateasequenceC={c,=
0 ,..., c,_i =O, c,, c,+ ,,._., c,,} by the following
process. There exist two nonnegative integers
q,, c, suchthat y=n * qn+cn forO<c,<n-1.
If q, = 0, then the evaluation of the sequence C
stops; otherwise we continue to find two nonnega-
tive integers qn_l, c,_~ such that q, = (n -

Proof. Let A = {a,, a2,. . . , a,} be the header of
the current cycle-n-perms and A’ =

{ 4, a;, . . . , a:} be the next header of the next
cycle-n-perms. We wish to show that the a,’ is
ready at time step t = t, + 2(n - i), where to is the
time step such that GENPER(n) produces the n th
component of header A. From the discussion in

169

Volume 35, Number 4 INFORMATION PROCESSING LETTERS 7 August, 1990

the previous section and the use of mathematical
induction, we obtain t, = 4 * n + 1 for q =

0, 1, 2,. ..,(n - l)!. For 1 < i Q n - 1, PE(i)
calculates the content of its Z’(i) from t = to + (n
- i) to t = t, + 2(n - i). The final value of T(i)
(i.e., u;) is ready before the time step t = t, + 2(n
- i). Since the generation of ith components of
any fixed permutation has n - i time steps delay
in GENPER(n) (because of a skew form for the
first permutation to be generated), and a cycle-n-
perms has n permutations to be produced, a: is
retrieved at t, + (n - i) + n = t, + 2n - i. There-
fore, A’ has prepared before it is generated by the
fact of t,+2n-i>1,+2(n-i). 0

From the adding module operation in
GENPER(n), we have the following propositions.

Proposition 3. Within any cycle-n-perms, the n
permutations are different.

Proposition 4. Any two permutations being gener-

ated within any two different cycie-n-perms are dis-

tinct.

Theorem 5. The parallel algorithm GENPER(n)

generates n! permutations correctly.

Proof. By induction on n under the use of the
ranking function as shown in the previous section.

Cl

Since we have n - 1 time steps delay before the
components of the first permutation {I, 2, 3,. . . ,
n} to be produced, and there are n! permutations
to be generated, the execution of GENPER(n)
requires n! + (n - 1) time steps.

6. Conclusion

In this paper we have presented a parallel al-
gorithm to generate all the n! permutations of n
given items. The computational model used is a

linear array consisting of n PEs. Since each PE is
identical and executes the same program, it is
suitable for VLSI implementation. In [4] a parallel
algorithm to generate all the (r) = m!/(n!(m -
n)!) combinations is presented. It seems that these
two algorithms can be used to generate all the

P = m!/(m - n)! permutations.
a;; B= {a,, a,,...,

Note that for
a,_,} in per(n - 1) and A

= {a,, a,,..., a,-,, n }, we can modify our linear
array so that it gives the permutations after A by
loading some adequate initial values. That is, the
initial values of C(i) = i of PE(i), 1 < i < n, are
replaced by C(i) = a,. Then during the execution
of the modified algorithm, the permutation A

comes out at the first time step, and any m re-
quired permutations following A will be generated
within the following m time steps. Furthermore,
there exist many combinatorial enumeration prob-
lems for which efficient parallel algorithms are yet
to be developed. We hope that this consideration
of designing parallel algorithm can be used to
solve some of these problems in the near future.
We are also interested to investigate the parallel
algorithms which will be run on a computational
model where the storage in any PE and the elapsed
time in a time step are independent of the prob-
lem size.

References

[l] S.G. Akl, Adaptive and optimal parallel algorithms for
enumerating permutations and combinations, Compu~ J.
30 (1987) 433-436.

[2] G.H. Chen and M.S. Chern, Parallel generation of permu-

tations and combinations BIT 26 (1986) 277-283.

[3] P. Gupta and G.P. Bhattackerjee, Parallel generation of

permutations, Comput J. 26 (1983) 97-105.

[4] C.J. Lin, A parallel algorithm for generating combinations,

Comput. Math. Appl. 12 (1989) 1523-1533.

[5] U. Mor and AS. Fraenkel, Permutation generation on
vector processors, Comput. J. 25 (1982) 423-428.

[6] R. Sedgewick, Permutation generation method, Comput.
Surveys 9 (1977) 137-164.

[7] S. Zals, A new algorithm for generation of permutations,

BIT 24 (1984) 196-204.

170

