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Abstract

It has Dbeen reported that the choice of proper under bump
metallization (UBM) plays an important role in determining the reliability
of solder joints. Ni, compared with Cu, possesses slower reaction rate
with Sn-based solder joint and lower solubility therefore has been studied
recently. Here in chapter 2, we analyze the interfacial reaction between
solder and electroplated Ni and eletroless Ni for the reflow and aging
reaction at the same time with SnAg and SnPb solder joints. Electroless
Ni has much faster reaction rate instead of Electroplated Ni due to the

transformation of amorphous phase to a NisP crystalline phase.



The carry-on current density in the solder joint needs to be increased
to 10* A/cm?or higher due to the shrinking of portable devices. Under
such high current density, the electromigration and the companied
thermomigrtion in the solder joints becomes a serious reliability issue. To
predict a more accurate mean time to failure, the Black’s equation needs
to modify by calibrating the true test temperature and therefore the
eletromigration activation energy, which both these two can have great
influence on prediction. By utilizing Kelvin four-point probes, a criteria
of 20% resistance increase is established and the microstructure change
has been analyzed as well. With the temperature calibration by using Al
TCR effect, up to 10% discrepancy in activation energy can be reached.

For thermomigration, unexpected void formation was observed in
powered and unpowered bumps. Besides Sn thermomigration itself, we
proposed a model of thermomigration of Cu-Sn IMC to explain. The fast
interstitial diffusion of Cu inside Sn matrix combined with the tendency
of thermal migrate to cold end of Cu, damage appeared at those bumps
even with current stressing. For further investigation, void formation
inside Al trace and the disappearance of Ti layer was found surprisingly.

According to literatures, Al has the tendency to cold end, and so is Ti,



which possesses a much larger heat of transport. More details will be

discussed later in chapter 5 and 6.
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function of stressing time up to failure which represented as the resistance of
Bump 3 increased 100 % when powered by 0.9 A (7.9%10* A/lcm?) at 150 °C
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10°
Figure 4-11 Plots of MTTF against K | (a) eutectic SnAg solder joints with
Cu/Ni UBM, and (b) eutectic SnAg solder joints with Cu UBM.

Figure 5-1 Schematic diagrams for (a) a SnAg solder joint with a 5-mm Cu
UBM, (b) a SnAg solder joint with a 5-mm Cu/3-mm Ni UBM, (c)
cross-sectional view of the test layout. The electron flows are indicated by the
arrows.

Figure 5-2 Back-scattered SEM images for solder bumps before current
stressing. (a) SnAg bump with a Cu UBM. (b) SnAg bump with a Cu/Ni
UBM.
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at 150°C for 82 hrs. (a) Bump 1, (b) Bump 2 with a resistance increase of
100%, (c) Bump 3 with a resistance increase of 350%, (d) Bump 4.
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4, (d) ion image for Bump 4.
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for (a) the bump before aging, and (b) the same bump after the aging at 165°C
for 90 hrs. The Cu-Sn IMCs grew thicker, but no migration of Cu-Sn IMCs
was observed.

Figure 5-8 Cross-sectional SEM images of the solder joints with Cu/Ni UBMs
after the current stressing at 0.55 A through N2 and N3 at 150°C for 180 hrs.
(a) Bump 1, no current; (b) Bump 2, with an upward electron flow; (c) Bump
3, with a downward electron flow; (d) Bump 4, no current. Only
electromigration damages were observed in the chip side of Bump 3.

Figure 5-9 Temperature distributions in the four bumps with Cu UBMs. (a)
Bump 1, no current; (b) Bump 2, with upward electron flow of 0.55 A; (c)
temperature profile along the white line in (a); (d) temperature profile along
the white line in (b); (¢) Bump 3, with downward electron flow of 0.55 A;
(f) Bump 4, no current; (g) temperature profile along the white line in (e); (h)
temperature profile along the white line in (f). The temperature gradients are
labeled on the bumps.

Figure 5-10 Temperature distributions in the four bumps with Cu/Ni UBMs
stressed at 0.55 A through N3 and N4 at 100°C. (a) Bump 1, no current, and a
temperature gradient of 857°C/cm; (b) Bump 2, with upward electron flow of
0.55 A, and a temperature gradient of 1286°C/cm; (c) Bump 3, with a
downward current flow of 0.55 A, and a temperature gradient of 1429°C /cm;
(d) Bump 4, no current, and a temperature gradient of 857°C /cm.

Figure 5-11 Schematic diagrams of the possible atomic fluxes of Cu- and
Sn-caused electromigration and thermomigration. (a) Atomic fluxes in Bumps
1 and 4, which have no currents passing through: only thermomigration takes
place. (b) Diffusion fluxes of Cu and Sn in Bump 2 with an upward electron
flow. (c) Atomic fluxes of Cu and Sn in Bump 3 with a downward electron
flow.
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Figure 6-1 (a) Cross-sectional schematic of the layout design. An Al trace
connected all the four solder bumps together. (b) Cross-sectional SEM image
showing that the microstructure for the solder bump used in this study with
Cu UBM. (c) Cross-sectional SEM image with Cu/Ni UBM.

Figure 6-2 Cross-sectional TEM image of Bump before current stressing.

Figure 6-3 (a) Cross-sectional SEM image for Bump 4, showing the
microstructures at the interface of the chip and the solder after the current
stressing of 0.55A through Bumps 2 and 3 at 150°C for 82 hrs, (b) FIB lon
image for Bump 4 on the same area of (a).

Figure 6-4 (a) Cross-sectional SEM image for Bump 1, showing the
microstructures at the interface of the chip and the solder after the current
stressing of 0.55 A through Bumps 2 and 3 at 150°C for 82 hrs, (b) FIB lon
image for Bump 4 on the same area of (a).

Figure 6-5 (a) Cross-sectional SEM image for Bump 1, showing the
microstructures at the interface of the chip and the solder after the current
stressing of 0.55 A through Bumps 2 and 3 at 150°C for 165 hrs, (b) FIB lon
image for Bump 1 on the same area of (a). (¢) Bump 4 after current stressing.
(d) FIB lon image for Bump 4 on the same area of (a).

Figure 6-6 Cross-sectional TEM image of Bump 4 after the current stressing
of 0.55 A through Bumps 2 and 3 at 150°C for 82 h.

Figure 6-7 Cross-sectional TEM image of the Al/Cu interface for the Bump 4
after the current stressing of 0.55 A through Bumps 2 and 3 at 150°C for 82
hrs.

Figure 6-8 (a) Schematic structure of Bump 4 for simulation. (b) Temperature
distribution along line 1 in Bump 4.

Figure A-1 Characterizations of the as-deposited SnAg film from pulse
electroplating of STD1 formulation; (a) current profile for the
electrodeposition process, (b) SEM micrograph of typical surface
morphology, and the EDX analysis of film composition: Sn: 96.57 wt.%; Ag:
3.63 wt.%, and (c) DSC curve with endothermic peak recorded at 221.8°C.
Figure A-2 Relationship between current density at positive polarity and the
resulting Ag concentration in the alloy film for various baths.

Figure A-3 Current—potential curves for several baths with PEG as dditive.
STD1 is included for comparison.

Figure A-4 SEM images of surface morphology of the as-deposited SnAg
alloy films for (a) STD1, (b) STD5, (C) STD2, (d) Bath9, and (e) Bath10.
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EDX data confirmed their near-eutectic composition.

Figure A-5 XRD data for eutectic Sn-3.5wt.%Ag film showing coexistence of 180

B-Snand =-AgsSn.
Figure A-6 DSC curve of heat flow for occurrence of solidus temperature of 181
as-deposited SnAg film from different plating baths.
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