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摘  要 

覆晶 (Flip Chip)接合封裝技術中，一個銲錫凸塊往往包含不同的

金屬化墊層(Under Bump Metallization, UBM)結構。而銲錫接點與金

屬墊層的反應則直接會影響到接到的機械性質以及電性。同時隨著無

鉛銲錫的採用，與銲錫反應較為和緩的Ni金屬墊層也逐漸成為關注的

焦點。 

本論文第二章，探討了電鍍Ni與無電鍍Ni與銲錫接點的迴銲以及

時效之反應．由於電鍍Ni為結晶結構，而無電鍍Ni雖為非晶質結構，

卻會在反應之過程中形成一層柱狀之Ni3P，而相對的加快了反應之速

度。而由其兩種金屬墊層與錫鉛以及無鉛銲錫之反應，可以明確得到

電鍍Ni確實大大的減緩了介面反應的速率，相對降低界金屬化合物

Spalling的可能性。 

 同時，隨著可攜式電子產品微小化的趨勢，覆晶封裝銲錫接點也
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須隨之縮小，因此銲錫接點所承載的電流密度逐漸提高，在高電流密

度的影響下，覆晶封裝銲錫接點因電遷移產生可靠度的議題受到重

視。此外，導線所產生的焦耳熱效應嚴重影響銲錫接點內部的溫度分

布，因為溫度差產生的溫度梯度產生熱遷移的破壞，熱遷移的破壞也

越來越受到注目。 

後續的三四章，討論電遷移對於銲錫接點的影響。除了利用Kelvin 

Four-point Probe監控銲錫接點之電阻在電遷移測試中的變化外，同時

也觀測相對應的微觀結構變化。而為了可以更加準確的預測出銲錫接

點之壽命，利用鋁導線TCR之特性，我們可以成功校正得到銲錫接點

在測試中的真實溫度，有助於正確的估算出電遷移之活化能。不同金

屬墊層材料及設計對於接點壽命的影響，相較於Cu UBM，Ni UBM 

則據有較高的抗電遷移以及熱遷移之特性因而有較長的接點壽命。 

第五與第六章，針對越來越受到矚目的熱遷移現象做較深入的討

論。與以往觀察到的不同，上方的Cu金屬墊層，除了會因為具有往

冷端移動的特性外，更因為在Sn-based為主的銲錫接點中可沿著c軸進

行非常快速的間隙型擴散，導致在沒有電流通過的和錫接點下中也會

有相當嚴重程度的破壞。反之，Ni金屬並無出現同樣的破壞機制。 

同時，另一意外的發現為：在沒有通過電流的銲錫接點上方之鋁

導線也有嚴重的破壞產生。穿透式電子顯微鏡之分析，顯示為擴散阻
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障層之Ti也消失不見，故我們推論不僅僅是Al本身之熱遷移，連同Ti

之熱遷移，才會造成導線之破壞。 
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Abstract 

It has been reported that the choice of proper under bump 

metallization (UBM) plays an important role in determining the reliability 

of solder joints. Ni, compared with Cu, possesses slower reaction rate 

with Sn-based solder joint and lower solubility therefore has been studied 

recently. Here in chapter 2, we analyze the interfacial reaction between 

solder and electroplated Ni and eletroless Ni for the reflow and aging 

reaction at the same time with SnAg and SnPb solder joints. Electroless 

Ni has much faster reaction rate instead of Electroplated Ni due to the 

transformation of amorphous phase to a Ni3P crystalline phase. 
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The carry-on current density in the solder joint needs to be increased 

to 10
4
 A/cm

2 
or

 
higher due to the shrinking of portable devices. Under 

such high current density, the electromigration and the companied 

thermomigrtion in the solder joints becomes a serious reliability issue. To 

predict a more accurate mean time to failure, the Black’s equation needs 

to modify by calibrating the true test temperature and therefore the 

eletromigration activation energy, which both these two can have great 

influence on prediction. By utilizing Kelvin four-point probes, a criteria 

of 20% resistance increase is established and the microstructure change 

has been analyzed as well. With the temperature calibration by using Al 

TCR effect, up to 10% discrepancy in activation energy can be reached.  

For thermomigration, unexpected void formation was observed in 

powered and unpowered bumps. Besides Sn thermomigration itself, we 

proposed a model of thermomigration of Cu-Sn IMC to explain. The fast 

interstitial diffusion of Cu inside Sn matrix combined with the tendency 

of thermal migrate to cold end of Cu, damage appeared at those bumps 

even with current stressing. For further investigation, void formation 

inside Al trace and the disappearance of Ti layer was found surprisingly. 

According to literatures, Al has the tendency to cold end, and so is Ti, 
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which possesses a much larger heat of transport. More details will be 

discussed later in chapter 5 and 6. 
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arrows. 
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Figure 5-2 Back-scattered SEM images for solder bumps before current 

stressing. (a) SnAg bump with a Cu UBM. (b) SnAg bump with a Cu/Ni 

UBM. 
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Figure 5-3 Cross-sectional SEM images showing the microstructures of the 

four bumps after the current stressing of 0.55 A through N3 and N4 at 150°C 

for 76 hrs. (a) Bump 1, (b) Bump 2 with a resistance increase of 200%, (c) 

Bump 3 with a resistance increase of 300%, (d) Bump 4. Voids formed in the 

chip side in all the four bumps. 
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Figure 5-4 Cross-sectional SEM images representing the microstructure for 

the un-powered bump 1 in Cu UBM system before and after current stressing 

in bump 2 and 3 at 0.55A at 150°C for 60 hrs. (a) before, (b) after. 
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Figure 5-5 Cross-sectional BEI images showing the microstructures of 

another set of bumps after the current stressing at 0.55 A through N3 and N4 

134 
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at 150°C for 82 hrs. (a) Bump 1, (b) Bump 2 with a resistance increase of 

100%, (c) Bump 3 with a resistance increase of 350%, (d) Bump 4. 

Consumption of Cu UBM and spalling of Cu-Sn IMCs were observed in 

Bumps 1, 2 and 4. 

Figure 5-6 Microstructures at the interface of the chip and the solder after the 

current stressing of 0.55 A through Bumps 2 and 3 at 150°C for 82 hrs. (a) 

SEM image for Bump 1, (b) Ion image for Bump 1, (c) SEM image for Bump 

4, (d) ion image for Bump 4. 
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Figure 5-7 Enlarged cross-sectional SEM images of the chip-solder interface 

for (a) the bump before aging, and (b) the same bump after the aging at 165°C 

for 90 hrs. The Cu-Sn IMCs grew thicker, but no migration of Cu-Sn IMCs 

was observed. 
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Figure 5-8 Cross-sectional SEM images of the solder joints with Cu/Ni UBMs 

after the current stressing at 0.55 A through N2 and N3 at 150°C for 180 hrs.  

(a) Bump 1, no current; (b) Bump 2, with an upward electron flow; (c) Bump 

3, with a downward electron flow; (d) Bump 4, no current. Only 

electromigration damages were observed in the chip side of Bump 3. 
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Figure 5-9 Temperature distributions in the four bumps with Cu UBMs. (a) 

Bump 1, no current; (b) Bump 2, with upward electron flow of 0.55 A; (c) 

temperature profile along the white line in (a); (d) temperature profile along 

the white  line in (b); (e) Bump 3, with downward electron flow of 0.55 A; 

(f) Bump 4, no current; (g) temperature profile along the white line in (e); (h)  

temperature profile along the white line in (f). The temperature gradients are 

labeled on the bumps. 
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Figure 5-10 Temperature distributions in the four bumps with Cu/Ni UBMs 

stressed at 0.55 A through N3 and N4 at 100°C. (a) Bump 1, no current, and a 

temperature gradient of 857°C/cm; (b) Bump 2, with upward electron flow of 

0.55 A, and a temperature gradient of 1286°C/cm; (c) Bump 3, with a 

downward current flow of 0.55 A, and a temperature gradient of 1429°C /cm; 

(d) Bump 4, no current, and a temperature gradient of 857°C /cm.  
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Figure 5-11 Schematic diagrams of the possible atomic fluxes of Cu- and 

Sn-caused electromigration and thermomigration. (a) Atomic fluxes in Bumps 

1 and 4, which have no currents passing through: only thermomigration takes 

place. (b) Diffusion fluxes of Cu and Sn in Bump 2 with an upward electron 

flow. (c) Atomic fluxes of Cu and Sn in Bump 3 with a downward electron 

flow. 
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Figure 6-1 (a) Cross-sectional schematic of the layout design. An Al trace 

connected all the four solder bumps together. (b) Cross-sectional SEM image 

showing that the microstructure for the solder bump used in this study with 

Cu UBM. (c) Cross-sectional SEM image with Cu/Ni UBM. 
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Figure 6-2 Cross-sectional TEM image of Bump before current stressing. 151 

Figure 6-3 (a) Cross-sectional SEM image for Bump 4, showing the 

microstructures at the interface of the chip and the solder after the current 

stressing of 0.55A through Bumps 2 and 3 at 150°C for 82 hrs, (b) FIB Ion 

image for Bump 4 on the same area of (a). 
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Figure 6-4 (a) Cross-sectional SEM image for Bump 1, showing the 

microstructures at the interface of the chip and the solder after the current 

stressing of 0.55 A through Bumps 2 and 3 at 150°C for 82 hrs, (b) FIB Ion 

image for Bump 4 on the same area of (a). 
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Figure 6-5 (a) Cross-sectional SEM image for Bump 1, showing the 

microstructures at the interface of the chip and the solder after the current 

stressing of 0.55 A through Bumps 2 and 3 at 150°C for 165 hrs, (b) FIB Ion 

image for Bump 1 on the same area of (a). (c) Bump 4 after current stressing. 

(d) FIB Ion image for Bump 4 on the same area of (a). 

154 

Figure 6-6 Cross-sectional TEM image of Bump 4 after the current stressing 

of 0.55 A through Bumps 2 and 3 at 150°C for 82 h. 
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Figure 6-7 Cross-sectional TEM image of the Al/Cu interface for the Bump 4 

after the current stressing of 0.55 A through Bumps 2 and 3 at 150°C for 82 

hrs. 
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Figure 6-8 (a) Schematic structure of Bump 4 for simulation. (b) Temperature 

distribution along line 1 in Bump 4. 

157 

  

  

Figure A-1 Characterizations of the as-deposited SnAg film from pulse 

electroplating of STD1 formulation; (a) current profile for the 

electrodeposition process, (b) SEM micrograph of typical surface 

morphology, and the EDX analysis of film composition: Sn: 96.57 wt.%; Ag: 

3.63 wt.%, and (c) DSC curve with endothermic peak recorded at 221.8°C. 
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Figure A-2 Relationship between current density at positive polarity and the 

resulting Ag concentration in the alloy film for various baths. 

177 

Figure A-3 Current–potential curves for several baths with PEG as dditive. 

STD1 is included for comparison. 
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Figure A-4 SEM images of surface morphology of the as-deposited SnAg 

alloy films for (a) STD1, (b) STD5, (C) STD2, (d) Bath9, and (e) Bath10. 

179 



 xxii 

EDX data confirmed their near-eutectic composition. 

 

Figure A-5 XRD data for eutectic Sn-3.5wt.%Ag film showing coexistence of 

-Sn and -Ag3Sn. 
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Figure A-6 DSC curve of heat flow for occurrence of solidus temperature of 

as-deposited SnAg film from different plating baths. 
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