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Abstract

In this thesis, we study properties of the numerical ranges of some operators and

matrices.

First, we consider Cj contractions and quadratic operators. We show that if A is a Cj
contraction with minimal function ¢ such that w(A) = w(S(¢)) and if B commutes with
A, where w(-) denotes the numerical radius of an operator, then w(AB) < w(A)||B].
As a consequence, we also obtain w(AB)-<-w(A)||.B|| for any quadratic operator A and
any B commuting with A.

Second, let A be the n-by-n (n > 2) weighted shift matrix [t;]7;_,, where t;;,1 = a;
fori =1,2,---,n—1, t,1 = a, and t;; = 0 otherwise. We show that the boundary
of its numerical range contains a line segment if and only if the a;’s are nonzero and
the numerical ranges of the (n.—1)-by-(n — 1) principal submatrices of A are all equal.
Using this, we obtain that the boundary of the mumnerical range of an n-by-n weighted
shift matrix A has a line segment if the a;’s are nonzero and their moduli are periodic.
We also prove that W (A) contains a noncircular elliptic arc if and only if the a;’s are
nonzero, n is even, |ai| = |ag| = -+ = |ap_1], |az] = |as| = -+ = |a,| and |aq| # |az|.
Finally, we give a criterion for A to be reducible and completely characterize the numer-
ical ranges of such matrices.

Next, we show that if A is a 4-by-4 nilpotent real matrix, then the boundary of its
numerical range has at most two line segments. We also give a necessary and sufficient
condition for the boundary of W(A) to have a pair of parallel line segments.

Finally, we give a necessary and sufficient condition for a finite matrix A = (Zl.“

i=1 @Az>®
T Z;

Yi
contractions: 0 < z;,y;,w; <1 and |2| < |y/&i — Ui/ (1 — 2:)(1 — ;) for all 4, j. Ap-

plying this, we obtain an analogous characterization for an n-by-n quadratic operator.

diag (wy, . .., wy,), where A; =

] for all 7, to be a product of two nonnegative
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Chapter 1 Introduction

Let A be a bounded linear operator on a complex Hilbert space H. The numer-

ical range W (A) and numerical radius w(A) of A are, by definition,
W(A) ={(Az,z) : v € H, ||z]| = 1}

and

w(A) =sup{|z| : z € W(A)},

respectively, where (-, -) and || -|| denote the inner product and its corresponding norm
in H. In addition, we let r(A) = max{|z]:z'€ 0(A)} denote the spectral radius of
A. For an operator A, let AT denote its transpose, A* its adjoint, Re A its real part
(A+ A*)/2 and Im A its imaginary part (A — A*)/2i. For any subset A of C, A"
denotes its convex hull, thatis, Ais the smallest convex set containing A. We list
several important properties-of the numerical range.
(1) W(U*AU) = W(A) for any unitary operator U.
(2) W(A) is a bounded subset ‘of C and compact if H is finite dimensional.
(3) W(aA +bl) = aW(A) + b for any scalars a and b.
(4) W(Re A) = Re W(A) and W(Im A) =Im W(A).
(5) If A= { v ] then W(B) C W (A).
(6) By the celebrated Hausdorff-Toeplitz theorem, W (A) is always a convex
subset of C.

(7) o(4) C W(A).

(8) If A is normal, then W (A) is equal to o(A)".

(9) W2 ©4n) = (UnW(A))" and w3, ©An) = supw(Ay).

(10) r(A) < w(A) < A < 20(A). ’
For other properties, the reader may consult [20, Chapter 22| or [19].



In Chapter 2, we consider C contractions. Recall that an operator A (on a
separable Hilbert space) is of class Cy if it is a contraction (|| A|| < 1), it is completely
nonunitary (i.e., it has no unitary direct summand) and it satisfies ¢(A) = 0 for
some ¢ in the Hardy space H* of bounded analytic functions on the open unit disc.
The minimal function of a Cy contraction A is the smallest function ¢ in H*> with
¢(A) = 0 (i.e., it divides all other annihilating functions of A). More important for
us here is the compression of the shift S(¢) defined as follows. Let ¢ be an inner
function (¢ € H*> with |¢| = 1 a.e. on the unit circle) and let S(¢) be defined on
H = H?*© ¢H? by

S(@)f = Pu(zf(2))|H for f e H.

In Theorem 2.1, we show that if Ais a Cy contraction with minimal function ¢ such
that w(A) = w(S(¢)) and if B commutes with A, then w(AB) < w(A)||B||. This is
in contrast to the known fact that if A = 5(¢) (even on a finite-dimensional space)
and B commutes with A, then w(AB) < |[Allw(B) is not necessarily true. As a
consequence, we have w(AB) < w(A)|| Bl for any quadratic operator A and any B
commuting with A. Here, an operator A is'said to be quadratic if it is annihilated by

a quadratic polynomial, that is, if it satisfies A2 +aA+bI = 0 for some scalars a and b.

In Chapter 3, we consider an n-by-n (n > 3) matrix A of the form

0 ay
0
Ap—1

a, 0

In Section 3.2, we show that the boundary of its numerical range contains a line
segment if and only if the a;’s are nonzero and the numerical ranges of the (n — 1)-
by-(n — 1) principal submatrices of A are all equal. For n = 3, this is the case if

and only if |a;| = |as| = |as| # 0, in which case W (A) is the equilateral triangular

2



region with vertices the three cubic roots of ajasas. For n = 4, the condition becomes
la1| = |as] # 0 and |ag| = |a4| # 0, in which case W(A) is the convex hull of two
(degenerate or otherwise) ellipses. In Section 3.4, we show that if the a;’s are nonzero
and their moduli are periodic, then the boundary of its numerical range contains a
line segment. We also prove that OW (A) contains a noncircular elliptic arc if and only
if the a;’s are nonzero, n is even, |ai| = |ag| = -+ = |an_1], |a2] = |as] = -+ = |a,|
and |a;| # |az|. Finally, we give a criterion for A to be reducible (i.e., it is unitarily
equivalent to the direct sun of two other matrices) and completely characterize the

numerical ranges of such matrices.

In Chapter 4, let A be a 4-by-4 nilpotent matrix (A* = 0 for some k > 1). We
show that if A is a real matrix, then the boundary of its numerical range has at most
two line segments. We also prove that the boundary of W (A) has one pair of parallel

line segments if and only if A is unitarily equivalent to-a matrix of the form

0 1 ’iTQ —7Ts3
0 r3 —iTg
« ’
0 71
0

where o € C\ {0}, 1, r3 > 0 and ro € R. Moreover, in this case, W (A) has no
other line segment. Finally, we give a special form for A to have a line segment on

the boundary of its numerical range.

In Chapter 5, a bounded linear operator A on a complex Hilbert space H is

nonnegative if (Az,z) > 0 for any x in H. Theorem 5.18 says that if a bounded linear

A Az
operator A of the form is a product of two nonnegative contractions, then
0 A,

so are A; and A,. In addition, in Corollary 5.22, a necessary and sufficient condition
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for a finite matrix A = (Zf;l ®A;) & diag(wy, ..., wy,), where A; = © 7 for
0 v

all 7, to be a product of two nonnegative contractions is

0 < @i, yi,w; < 1and |z] < |y — vyl V(1 —2:)(1 —y;) for all 4, j.

Here, a diagonal matrix with diagonals a4, ...,a, is denoted by diag(as,...,a,). It
follows in Corollary 5.23 that an n-by-n quadratic operator is a product of two non-

negative contractions if and only if it is unitarily equivalent to a matrix of the form

k
a ¢
ol @0 ® (Y_ @ ),
A, 0 b
where 0 < a, b < 1 and |¢;] < Jy/a=+/bly/(1—a)(1l =) for all i. Finally, we show

that W (A) is not a circular disc-if-A is a product of two n-by-n nonnegative contrac-

tions (Corollary 5.26).



Chapter 2 Numerical radius inequality for C|, contractions
2.1 Introduction

Let A be a bounded linear operator on a complex Hilbert space H. The numer-
ical radius inequalities we discuss here have their genesis from the power inequality.
The latter asserts that w(A"™) < w(A)" for all n > 1 or, equivalently, that w(A) <1
implies w(A™) < 1 for all n. The first proof of it is given by Berger in his Ph.D. thesis
[2] by way of his structure theorem for numerical contractions: w(A) < 1 if and only
if there is a unitary operator U on a space /X containing H such that A" = 2PyU"|H
for all n > 1, where Py denotes_the (orthogonal) projection from K onto H (Lemma
2.6(b)). A totally elementary proof of the power inequality is later provided by Pearcy
[38] (cf. also [20, Problem 221]).

In 1969, Holbrook [21] asked whether; for commuting operators A and B, the
inequalities w(AB) < w(A)||B|| and - w(AB)-<{|A}lw(B) hold. It is known that this
is indeed the case when A and B doubly commute (i.e., AB = BA and AB* = B*A)
(cf. [21, Theorem 3.4]). Another known case is when A is an isometry (cf. [4, Lemma
2]). On the other hand, Crabb showed that for commuting A and B the inequality
w(AB) < (\/W/2)U}(A)HBH is true (cf. [37]). More recently, Holbrook [22]
proved w(AB) < w(A)w(B) for commuting 2-by-2 matrices A and B. So much for
the partial positive confirmations. It came as a surprise when in 1988 Miiller [34] gave
an example of two 12-by-12 commuting matrices A and B with w(AB) > || A||w(B).
The example involves pure computations with no revealing reason why this should be
the case. The day is saved by Davidson and Holbrook [9] that w(AB) > [|A|lw(B) is
already true for A = Jy and B = J3 + JJ. Here J,, n > 1, denotes the n-by-n Jordan



block

whose numerical range is known to be {z € C : |z| < cos(n/(n + 1))}. In [23],
Holbrook and Schoch showed that w(AB) > ||A|jw(B) can occur even for 3-by-3

commuting A and B.

Let ¢ be an inner function and let S(¢) be defined on H = H? © ¢H? by

S(6)f= Pu(=f(2)H- for'] € H.

Then S(¢) is a Cj contraction with minimal function ¢ and satisfies
rank (I —=S(9)"S(0)) = 1.

Such operators were first studied: by Sarason-]41] and later developed by Sz.-Nagy
and Foiag in the 1960s and ’70s; they form the building blocks for the “Jordan model”
for general Cj contractions (cf. [44] and [1]). Among other things, S(¢) is known to
have the commutant lifting property: every operator B commuting with S(¢) is of
the form f(S(¢)) for some f in H* with ||f||ec = ||B]| (Lemma 2.3). If ¢(z) = 2,
n>1,

z—a z—0b

(resp.,¢(z) = 1—az ’ 1 —527 |CL|, |b| < 1)7

then S(¢) is unitarily equivalent to .J,

a (1= a]*)2(1—[b*)"/?
0 b

(resp.,



2.2 Numerical radius inequality for (|, contractions

The main theorem of this section is

Theorem 2.1. If A is a Cy contraction with minimal function ¢ such that

w(A) =w(S(¢)) and if B commutes with A, then w(AB) < w(A)||B||.

We start the proof with the following lemma.

Lemma 2.2. If A= S(¢) and B commutes with A, then w(AB) < w(A)| B

For its proof, we need the following lemmas.

Lemma 2.3. (Sarason’s-Commutant Lifting Theorem). If B is an operator on

H? © ¢H? that commutes with S(¢); then-there is @ function f in H™ such that
[fllse = IB]l and B = f(S(¢)).

Let D={z€C:|z] < 1}.

Lemma 2.4. Assume w(A) < 1. Let f : D — D be analytic on D and continuous
onD. Then w(f(A)) <1+ 2[f(0)].

The proof of Lemma 2.3 is in [41, Theorem 3| and Lemma 2.4 is obtained in

Berger and Stampfli [3, Corollary 2] or Kato [27, Theorem 5.

Using the preceding lemmas, we now prove Lemma 2.2.



Proof of Lemma 2.2. We may assume that A # 0 and ||B|| = 1. By Lemma 2.3,
B = f(A) for some f in H* with ||f|lc = ||B|| = 1. Letting A; = A/w(A) and
g(z) = zf(w(A)z), we have A1 B = ¢g(A;) with g in H*®, ¢g(0) = 0 and ||g]|e <
| flloc = 1. By Lemma 2.4, we obtain

w(A1B) = w(g(Ar)) < |lglle < 1.

Thus w(AB) < w(A) follows as required. [

As was remarked before, the Davidson—Holbrook example of A = Jy and B =
J$ + JJ shows the falsity of w(AB) < ||A]jw(B) for A = S(¢) and B commuting with
A.

Using the extension of a Cy contraction to the direct sum of the compressions
of the shift and a “completely bounded™ version of the result of Kato or Berger and
Stampfli, one can generalize Lemma 2.2 from S(¢) to.the more general C contrac-

tions.

We start with the following lemmas. For any operator X on H and any integer
d > 1, let X denote the direct sum of d copies of X on H@, the direct sum of d

copies of H.

Lemma 2.5. Let A be a Cy contraction with minimal function ¢. Then

(a) A can be extended to an operator Ay on a larger space which is unitarily equiv-

alent to S(¢)\ %), where d4 = dimran (I — A*A)1/2 < oo, and

(b) every operator B commuting with A can be extended to an operator By com-

muting with Ay with | By|| = || B]].



The proof of this lemma is based on the Sz.-Nagy—Foias functional model for

Cy contractions (cf. [44, Section VI.3]).

Proof of Lemma 2.5. (a) We represent the Cj contraction A* on H = H?*(K) &
OH?*(K) by A*f = Py(zf(2)) for f in H, where K is a space of dimension d4, H?*(K)
is the Hardy space of K-valued analytic square-integrable functions on the unit disc,
and © is the characteristic function of A*. Since the minimal function of A* is gg given
by ¢(z) = ¢(z) for |z| < 1, we have ¢(A*) = 0 and hence pH2(K) C OH2(K). Let
A% be the operator defined on Hy = H%(K) © ¢H2(K) by Atg = Py,(2g(z)) for g in
Hy. Then A, is unitarily equivalent to S(¢)%4). Since H C Hy and A and A, are
given by
Af 22 O o \fe B

and

A= (o) = GO for g€

respectively, we obtain A = A;|H as required.

(b) Since B* commutes with A*, it can be represented as B*f = Py (®f) for
f in H, where ® is a K-valued bounded analytic function on the unit disc with
POH?*(K) C OH?*(K) and ||®||c = ||B*||. Let Bj be defined on Hy, by Bjg =
Py, (®g) for g in Hy. Then B; commutes with A; and

1Bill = 1Bl < [ @l[ec = |B¥]| = || B]|

On the other hand, if C' denotes the adjoint of the operator f — ®f on H?*(K),
then B = C|H and B; = C|H,. It follows that B = B;|H and hence || B| < || B1]].
Therefore, ||B|| = ||B;]| as required. [



Part (a) of the preceding lemma is due to Nakazi and Takahashi [35, Lemma 4].

Lemma 2.6. Let A be an operator on H. Then

(a) (Sz-Nagy’s Power Dilation Theorem). A is a contraction if and only if there is
a unitary operator U on a space K containing H such that A" = PgU"|H for

alln > 1.

(b) (Berger’s Dilation Theorem). w(A) < 1 if and only if there is a unitary operator
U on a space K containing H such that A" = 2PyU"|H for all m > 1. Here

Py denotes the (orthogonal) projection from K onto H.

The proof of the former‘can be-deduced from [43, Theorem | and the latter is
proved in [2].

We are now ready to prove Theorem 2:1.

Proof of Theorem 2.1. As before, we may assume that A # 0 and ||B|| = 1. By
Lemma 2.5, A extends to (an operator unitarily equivalent to) A; = S(¢)@ on L,
where d = d4, and B extends to By on L with BjA; = A1 By and ||By|| = || B|. A
matrix version of Lemma 2.2 [41, Theorem 3] implies that By can be represented as

[fi5(S(9))]¢._;, where the f;;’s are in H* for all ¢ and j and ||[f;]/lcc = ||B1]|- Let

ij=1>

9ii(2) = fi;(w(A)z) for |z| < 1. We have
giilllee = sup{lllg;; ()]l - |2] <1}
< sup{||[fi(w)]]| « [w] <1}
= [[fisllloo = I1Bell = [|BI| = 1.

IfC = 8S(¢)/w(S(¢)), then w(C) =1 and B = [¢;;(C)]. By Lemma 2.6 (b), there is a
unitary operator U on a space K containing H = H*©¢H? such that C" = 2PgU"|H

10



for all n > 1. Since Cyg;;(C) = 2Py (Ug;;(U))|H for all i and j, we obtain
(A1 By /w(A))" = [Cgiy(C)]" = 2P [Ugi;(U)]"|L
for all n > 1. On the other hand, because
10 < Nllz965 () loe < Nllgigllloo <1,
Lemma 2.6 (a) yields a unitary operator W on a space containing K such that
[Ugi;(U)]" = Py W™ K'Y

for all n. Combining these two dilations, we.obtain (A;By/w(A))" = 2P, W™|L
for all n. This implies, by Lemma 2.6 (b) again, that w(A;B;/w(A)) < 1 or
w(AB) < w(A;By) < w(A) as required. [

Note that, for any Cy eontraction A with minimal function ¢, Lemma 2.5 (a)
implies that w(A) < w(S(¢)). In Theorem 2.1, the extra condition on their equality
is essential for otherwise the example of
B_ Jo+ 33

170 + £J5
and A = B? attests to the falsity of the assertion there (cf. [8]). When A acts on

a finite-dimensional space, the next proposition gives some equivalent conditions for

the equality w(A) = w(S(¢)).

Proposition 2.7. For a Cy contraction A with minimal function ¢ on a finite-

dimensional space, the following are equivalent:

11



Proof. (a)=-(b). We infer from Lemma 2.5 (a) that W(A) C W(S(¢)). If OW(A)N
OW (S(¢)) = 0, then obviously w(A) < w(S(¢)). This proves (a)=(b).

(b)=-(c). By [17, Lemma 3.3|, (b) implies that S(¢) is a direct summand of A.
Thus W(S(¢)) C W(A). Together with W(A) C W(S(¢)) from Lemma 2.5 (a), this
yields (c).

(c)=(a). This is trivial. [

We conclude this section by asking the following remaining question concerning

this topic.

Is it true that if A = S(6), then w(A"™) <aw(A") for all n > 17 More gen-
erally, if A is a Cj contraction with‘minimal function ¢ such that w(A) = w(S(¢)),

then is w(A™) < w(A") true for all n > 17

Recall that a general inner function ¢ has a canonical factorization as c¢q¢o,

where ¢ is a complex number with |c¢| = 1, ¢; is a Blaschke product

an, 2 — Ay

o) =]

ol m 1—ayz
with zeros a, in D satisfying >, (1 — |a,|) < oo and ¢, is a singular function

27 67,0_1__2

62(2) = exp(~ / 2 aue)),

o €9 —z

where p is a positive measure on 0D which is singular with respective to the Lebesgue

measure on JD. From [1, Theorem 2.4.11], we know that o(S(¢)), the spectrum of

12



S(¢), consists of those points A € D such that ¢(\) = 0 and those A in D such that

¢ cannot be continued analytically across A.

Lemma 2.8.
(a) If H is a finite-dimensional space, then w(S(¢)") < 1 for all n.

(b) If H is an infinite-dimensional space, then w(S(4)") =1 for all n.

Proof. (a) This follows from the fact that o(7") C D if and only if W(T") C D for any

finite-dimensional contraction 7" (cf.«[20, Solution 212]).

(b) Since H is finite dimensional if and only.if S(¢) = c¢; where ¢ is a complex
number with |¢|] = 1 and ¢¢is a finite Blaschke produet [10, Lemma 7.35]. Hence,
> (1 —lay|) < oo implies nlg{)lo |a,,| = 1. There exists in 0D such that v € a(S(¢)).
Thus, r(S(¢)") = r(S(¢))" = I by.spectral mapping theorem. Hence, w(S(¢)") = 1.
]

If Ais a Jordan block or a quadratic contraction (to be considered in Section
2.3), then we do have w(A™™) < w(A") for all n. The latter is a consequence of
Proposition 2.11 in Section 2.3. For the negative side, although w(A?) < w(A) for
any contraction A by the power inequality, w(A*) < w(A3) is in general false by the

example in [8].

13



2.3 Numerical radius inequality for quadratic operators

An operator A is said to be quadratic if it is annihilated by a quadratic polyno-
mial, that is, if it satisfies A% + aA + bl = 0 for some scalars a and b. The structure

of quadratic operators is well-understood (cf. [46]).
Lemma 2.9. Let A be a quadratic operator on H. Then

(a) the spectrum of A consists of the two zeros o and 3 of the polynomial 2*+az+0,

(b) A is unitarily equivalent to an operator of the form

Oé.[l D
05 5L

a D]l
A= I
0

and

(d) the numerical range of A is the (open or closed) elliptic disc with foci at o and

B, major azis of length (la — B|*> + || D||*)*/? and minor axis of length || D||.

The proof of this Lemma can be found in [46, Theorems 1.1 and 2.1] and in the
proof of [46, Lemma 2.2].

Using Theorem 2.1, we can now prove a numerical radius inequality for quadratic

operators.
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Theorem 2.10. If A is a quadratic operator and B commutes with A, then
w(AB) < w(A)]|B.

Proof. If A is normal, then A is unitarily equivalent to aly @ (15, in which case the
asserted inequality can be easily verified. Hence we may assume that A is nonnor-

mal and has norm one. Then A is unitarily equivalent to an operator of the form

with D # 0 by Lemma 2.9 (b). Since 1 = ||A|| > (Ja|? + ||D||*)"/? and

aly

Ip)

D # 0, we have |a| < 1 and, similarly, |5| < 1. Hence A is a Cj contraction with

¢(A) = 0, where ¢ is the inner function

2= .z—pf

qb(z) S I'—az . 1—32/'
On the other hand, since
a [[D]
L= Al = i
0

by Lemma 2.9 (c), we obtain that S{¢)-is-unitarily equivalent to { z ”IZH ] . There-
fore, w(A) = w(S(¢)) by Lemma 2.9 (d). The asserted inequality then follows from
Theorem 2.1. |

Before we move on, two remarks are in order. (1) The inequality in the preceding
theorem is not necessarily true if A is annihilated by a cubic polynomial. In [9,

Corollary 4], it was shown that if

0 13 J3 J3
A= 0 I and B = J3 ,
0 J3

then A> = B> = 0, AB = BA, w(A) = cos(w/10), ||B|]| = 1 and w(AB) = 1 and
thus w(AB) > w(A)||B||. (2) The stronger inequality w(AB) < w(A)w(B) is not

15



necessarily true for a quadratic A and commuting B. An example was given in [21, p.
168]. Here is another one: A = J, ® J, and B = J}. In this case, A> =0, AB = BA
and w(A) = w(B) = w(AB) = 1/2.

In contrast to (2) above, if B is a polynomial of the quadratic A, then we do

have w(AB) < w(A)w(B).

Proposition 2.11. If A is a quadratic operator and B is a polynomial of A, then
w(AB) < w(A)w(B).

Iy—D
Proof. We may assume that A = > and B = A+ M. By Lemma 2.9 (d),
0 Bl
o Dy o
we have w(A) = w( ). Similarly,
0 B
+ X4 D +A ||D
()] @00 /&l avn i)
0 (BN 0 B+A
and
[ oo+ N (a+8+ND |
w(AB) = w(| NN IEND,
I 0 BB+ N1y |
ala+A) |a+ B+ A[D]
= w( )
B BB+N |
N a DI || et+r D]
= w( ).
0 p 0 pB+A
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a D]

The latter is less than or equal to the product of w( ) = w(A) and
0 p
at+X [[D] .
) = w(B) by [22]. This completes the proof. |
0 B+

Although Proposition 2.11 is proved via [22], it also generalizes the latter. In-

N
B
with v # 0, B must be a (linear) polynomial of A and thus w(AB) < w(A)w(B) by

deed, if A and B are commuting 2-by-2 matrices, then, assuming that A =

Proposition 2.11.

If A is square-zero (A% = 0).or idempotent/ (A? = A), the inequality w(AB) <
min{w(A)|B|, ||Allw(B)} (for'ecommuting B) was proved in [13] using a completely
different approach. The same can be said for w(AB) < ||Aljw(B) when A satisfies

A% = al for some scalar a and B commutes with A'(cf..[39]).

We conclude this section by stating the following remaining question concerning

this topic:

Is it true that w(AB) < ||A|jw(B) for A quadratic and B commuting with A?

Note that this is false if A is annihilated by a cubic polynomial: the example of
9, Corollary 4] with

J3 0 I3 J;
A= Js and B = 0 I
J3 0

attests to this.
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Chapter 3 Numerical ranges of weighted shift matrices

3.1 Introduction

An n-by-n (n > 2) weighted shift matriz A is one of the form

0 ay
0

Ap—1

a, 0

where the a;’s, called the weights of A;-are complex numbers. The purpose of this

chapter is to study the numerical ranges of such matrices.

Recall that for any n-by-n complex matrix A; its-numerical range W (A) is by
definition the subset {(Ax, z)= @ € C™ ||z|| = 1} of the plane. It is known that W (A)
is a nonempty compact convex subset of C. For‘any subset A of C, A" denotes its
convex hull, that is, A" is the smallest convex set containing A. W(A) contains the
convex hull of the spectrum of A and, when A is normal, they are equal ([19, Theorem

1.4-4]). For other properties, we may consult [25, Chapter 1] or [19].

In Section 3.2, we know that the numerical ranges of certain weighted shift
matrices are easier to determine. For example, if any of the weights of an n-by-n
weighted shift matrix A is zero, then its numerical range is a circular disc centered at
the origin. On the other hand, if all the weights of A have equal (nonzero) moduli,
then W (A) is a polygonal region with its boundary a regular n-gon. The main theorem
of Section 2 gives necessary and sufficient conditions for the boundary of W (A) to
have a line segment. More specifically, it is shown that this is the case if and only the

a;’s are nonzero and W(A[l]) = --- = W(A[n]). In this case, W(A[j]) is the circular
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disc centered at the origin with radius wy(A), the line segment lies on one of the lines
 cos Oy +ysin Oy, = wo(A), where 0, = (3_7_arg a; + (2k + 1)7)/n, 0 < k < n, and
there are exactly n line segments on OW (A) (Theorem 3.1). This is then used to give
a characterization of such a matrix A of size 4 with line segments on 0W (A) purely

in terms of its weights, namely, for

0 aq
A— 0 (05} 7
0 as
ay 0
the boundary of W(A) has a line segment if and only if |a;| = |az| # 0 and
las| = |as| # 0. Along the .way, we also prove various properties of the numer-

ical ranges of such matrices. 'In the literature, there-are works on the numerical
ranges and numerical radii of weighted shift matrices and operators. For example,
[42, Lemma 2| gives a method to compute the numerical radius of a weighted shift
matrix with at least one zero weight. [40, 42, 5] discuss properties of the numerical

ranges and numerical radii of weighted shifts on (? with periodic or geometric weights.

In Section 3.3, we state Theorem 3.15 on the numerical ranges of matrices which
has an analogous structure as the one in Theorem 3.1, namely, the nilpotent matrices

of the form

_0 aa 0 --- 0 an, |
0 ay . 0
(i) A=
0
0 ap_1
L 0 i

19



with weights aq,...,a,. Note that A and the weighted shift matrix with weights
ai,...,a, (a, real) have the same real parts, which explains why (almost) all results
in Section 2 for the latter have their analogues for the former. The main differ-
ence is that in the present case A is unitarily equivalent to w,_2A and hence W (A)
has the (n — 2)-symmetry property. A study of the matrix of the form (i) with

a; = ---=a, = 1 was made in [18, Proposition 3.2].

In Section 3.4, we study the numerical ranges of the n-by-n weighted shift ma-
trices with periodic weights. In our discussions, we may assume that the weights are
all nonnegative. Then in Theorem 3.21 below, we show that if an n-by-n weighted
shift matrix A has periodic nonzero weights, then all its (n — 1)-by-(n — 1) principal
submatrices have identical numerical ranges. Using Theorem 3.1, we obtain that the
boundary of its numerical range has a line segment. In Theorem 3.27, we give a
necessary and sufficient condition for the boundary of W (A) to have a noncircular
elliptic arc. More specifically, it is shown that this is‘the case if and only if the a;’s are
nonzero, n is even, |ai| = |az| =4 =lap-ifsfaz| = |as| = - -+ = |a,| and |a1| # |aa].
For n = 4, this essentially generalizes Proposition 3.13. Finally, we give a criterion
for A to be reducible and characterize their numerical ranges in Theorem 3.28. In
particular, it says that, for n = 4, A is reducible if and only if either (1) a; =a; =0

for some i and j, 1 <i < j <n,or (2) |a1] = |as| # 0 and |as| = |as| # 0.

For 1 <iy < -+ <y <n,let Afiy,...,4,] denote the (n —m)-by-(n —m) prin-
cipal submatrix of A obtained by deleting its rows and columns indexed by i1, ..., 4.
Recall that the numerical radius w(A) and generalized Crawford number wo(A) of A
are, by definition, max {|z| : z € W(A)} and min {|z| : z € W (A)}, respectively.
Let [(A) denote the number of line segments on W (A). A diagonal matrix with

diagonals ay, . . ., a, is denoted by diag(a, ..., a,). Our basic reference for properties
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of matrices is [24].

For an n-by-n matrix A, consider the degree-n homogeneous polynomial p4(z,y, z) =
det(zRe A+ ylm A + z1,,). The Kippenhahn curve C'(A) of A is the algebraic curve
dual to the one determined by pa(x,y,z) = 0 in the complex projective plane CP?,
that is, C'(A) consists of all points [u, v, w] in CP? such that uzr +vy+wz = 0 is a tan-
gent line to pa(x,y, 2) = 0. As usual, we identify the point (z,y) in C? with [z,y,1] in
CP? and identify any point [z, y, z] in CP? such that z # 0 with (z/z,y/z) in C?. The
real part of the curve C'(A), namely, the set {a +bi € C:a,b € R and ax + by + z =
0 is tangent to pa(x,y,z) = 0}, will be denoted by Cr(A). A result of Kippenhahn
28, p. 199] says that the numerical range W (A).is‘the convex hull of the real points
of the curve pa(z,y, z) = 0, that'is, W (A) = Cr(A)". The point [z, Yo, 2] is said to
be a focus of the curve C if it.is not equal to [1, 44, 0] and the lines through [x¢, yo, 20]
and [1, £, 0] are tangent to €' at points other than [1, 4, 0].

For any nonzero complex numberz.= a1y (= and y real), arg z is the angle 6,
0 < 6 < 2m, from the positive z-axis to the vector (z, y). If z =0, then arg z can be
an arbitrary real number. In the following, let B(0;7) = {2z € C: |z| < r} for r > 0

and w,, = e*™/" for n > 1.
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3.2 Numerical ranges of weighted shift matrices
The main result of this section is the following.

Theorem 3.1. Let A be an n-by-n (n > 2) weighted shift matriz with weights
ai,...,an. Then OW(A) has a line segment if and only if the a;’s are nonzero
and W(A[1]) = --- = W(A[n]). In this case, W(A[j]) is the circular disc cen-
tered at the origin with radius wo(A), the line segment lies on one of the lines
xcos O + ysinby = wo(A), where O, = (3°7_jarg a; + (2k + )m)/n, 0 < k < n,

and there are exactly n line segments on QW (A).

For the proof of Theorem 3.1, we need the following lemmas. We start with the
necessity of the proof with a.lemma from [15, Lemma 5]. It relates the line segments

on 0W(A) to the numerical ranges of submatrices of ‘A.

Lemma 3.2. If A is an n-by-n matriz.and B is an (n — 1)-by-(n — 1) submatriz

of A, then every line segment on OW (A) intersects OW (B).

Lemma 3.3. Let A and B be n-by-n (n > 3) weighted shift matrices with weights

Qi,...,0a, and by, ..., by,, respectively.

(1) If, for some fized k, 1 < k < n, b; = agy; (any; = a;) for all j, then A is

unitarily equivalent to B.

(2) If |aj| = |bj| for all j, then A is unitarily equivalent to €+ B, where oy, =
(2km + 377 (arg aj—arg b;))/n for 0 < k < n. In particular, A is unitarily

equivalent to w, A and hence W(A) has n symmetry.

(3) (a) Fither the intersection number of OW (A) and 0B(0;w(A)) isn or W(A) =
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B(0;w(A)).
(b) FEither the intersection number of OW (A) and 0B(0;wy(A)) isn or W(A) =
B(0; wo(A)).

(4) The following conditions are equivalent:

(a) a; =0 for some j,
(b) A is unitarily equivalent to €® A for all real 0, and
(¢) W(A) is a circular disc centered at the origin.

(5) If OW(A) has a line segment L, thendist(0, L) = wo(A) and there are exactly
n line segments on OW (A):

Proof. (1) If U is the n-by-n_ weighted shift matrix with weights 1,...,1, then U is
unitary and AU"* = U"~*B. This proves the unitary equivalence of A and B.

(2) If U = diag(e,...,e"), where ¢; = 0 and ¢; = ¢; 1 + (arg b;_;—arg
aj_1) + o for 2 < j < n, then U is unitary and AU = U(e*** B). In particular, A is

unitarily equivalent to w, A by letting B = A and k = 1.

(3) (a) follows from J. Anderson’s result (cf. [45, Lemma 6] or [33, Theorem
4.12]) and (2). (b) follows from [18, Theorem 2.5 (a), (b)] and (2).

(4) If (a) holds, then the a;’s in (2) can be arbitrary. Letting B = A in there,
we obtain (b). The implication (b) = (c) is trivial. To prove (c) = (a), note that 0,
the center of the circular disc W(A), is an eigenvalue of A (cf. [33, Theorem 4.2]).

Hence det A = (=1)"*a; - - - a,, = 0, which shows that a; = 0 for some j.
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(5) If L is a line segment on 9W (A), then, by Lemma 3.2, L intersects OW (A[j])
for every j, 1 < j < n. Since W(A[j]) € W(A) and W(A[j]) is a circular disc
centered at the origin, we obtain dist(0, L) = wo(A[j]) < we(A) for every j. But
dist(0, L) > wy(A) is obviously true. This shows that dist(0, L) = wo(A[l]) = --- =
wo(A[n]) = wo(A). Additionally, there are exactly n line segments on 0W (A) by (2)
and (3b). |

Therefore, the necessity of Theorem 3.1 follows easily from Lemmas 3.2 and
3.3 (4), (5). We now proceed to prepare ourselves for the proof of the sufficiency of
Theorem 3.1. This will be done in a series of lemmas and propositions. Note that
some of them have already beentobtained in [26}; the Ph.D. dissertation of Issos on
irreducible nonnegative matrices. For-example, (2) follows from [26, Theorem 7]. We

start with the following.

Lemma 3.4. Let A be an n-by=n (n > 3) weighted shift matriz with weights
i, ..., an, and let 0 = (377_ arg a;)/n:

(1) W(A) is symmetric with respect to the linesy = x tan((kw/n)+0) for0 < k < n.

(2) We have {arg X : A € OW(A), |\ = w(A)} = {(2kn/n)+0 :0 <k < n} and
{arg A : A € OW(A), I\ = wo(A)} = {(2k+ 1)m/n) + 60 : 0 < k < n}.

(3) w(A) < wo(A)sec(m/n) and

B(0; wo(A)) C W(A) C wO(A)(seC%)ew{l,wn,... WA,

? n

Proof. (1) We need only consider a; # 0 for all j by Lemma 3.3 (4). Lemma
3.3 (2) implies that A is unitarily equivalent to e!(Fm/M+0) B and (Ck+r/n)+0)
where B and C are the n-by-n weighted shift matrices with weights |a4], ..., |a,| and

lai], ..., |an—1|, —|an|, respectively, where 0 < k < m. Hence our assertion follows
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from the fact that the numerical range of a finite square matrix with real entries is

symmetric with respect to the r-axis.

(2) Assume that a; # 0 for all j. Then A is unitarily equivalent to ¢*B,
where B is the n-by-n matrix with weights |a4|,...,|a,| by Lemma 3.3 (2). By the
Perron-Frobenius Theory [31, Theorem 15.5.1], we know that w(A) = w(B) € W(B).

Therefore our assertion follows from Lemma 3.3 (3a), (3b) and (1).

(3) Since the points w(A)e2F7/M)+0) 0 < k < n, arein W (A) by (2), the regular

n-polygonal region R whose vertices are these points is contained in W (A). Hence
1 . :
wo(A) > dist(0, R).50(A)5le? 4. @I = w(A) cos T
n

This proves that w(A) < wy(A) sec(m/n).

By (2), we have the containment B(0; wg(A)) €W (A). For the other direction,
note that if u is any point of W(A) which is ina different half-plane, determined
by the line L connecting wo(A) sec(7/n)e? and wy(A) sec(w/n)e@™/M+9)  from the
origin, then, by (1), its symmetric point «’ with respect to the line connecting 0 and
wo(A)e /M) is also in W (A). Thus (u+u')/2 is in W(A), which would contradict
the fact that wy(A)e?™™+9) is on the boundary of W (A). This shows that W (A) is
contained in the same half-plane of L as the origin. The n-symmetry of W (A) from

(1) then yields that

W(A) C wo(A)(sec —){e@/m+0) . o < | < p}"
n

= wp(A)(sec E)ew{wﬁ 0<k<n}"
n
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As a side result, the next proposition gives conditions for a weighted shift matrix
to have a regular polygonal region as its numerical range. The equivalence of some

conditions below can also be derived from [26, Theorem 13].

Proposition 3.5. Let A be a nonzero n-by-n (n > 3) weighted shift matriz with

weights aq, . .., a,. Then the following conditions are equivalent:

(1) A is normal,
(2) aa] = -+ = aal,

(3) A is unitarily equivalent to diag(X, Ny 2.5 , A1), where A = (ay - - - a,)"/™,

n

(4) W(A) is a regular n-polygonal-region with center at the origin and the distance

from the center to its vertices equal to-{aq -+ - ay|"*,
(5) OW(A) has a nondifferentiable point, and

(6) w(A) = wo(A)sec(m/n).

Proof. That (1) = (2), (3) = (4) and (4) = (5) are trivial. To prove (2) = (3),
note that, under (2), A is unitarily equivalent to |ay|e®=i=12 %)/" B where B is the
n-by-n weighted shift matrix with weights 1,...,1 by Lemma 3.3 (2). It is easily
seen that B is unitarily equivalent to diag(1,w,,...,w" ') and |a,|e=i= 28 @)/m —
(ay---a,)™ = X. Hence (3) follows. For (5) = (1), if A is a nondifferentiable
point of OW(A), then so are Aw*, 0 < k < n, by Lemma 3.3 (2). Since each of
such points is a reducing eigenvalue of A, we obtain that A is unitarily equivalent to
diag(\, A\wp, . .., Aw"™1). In particular, A is normal, that is, (1) holds. Finally, if (4)
holds, then (2) is true and hence

™
w(A) = ’al . -anll/n = |a1| = wO(A) 88657

26



that is, (6) holds. Conversely, if (6) is true, then Lemma 3.4 (3) says that W (A) C
w(A)e{1,wp, ..., wp '}, where 6 = (327 arg a;) /n. But the vertices of this latter
regular n-polygonal region, namely, w(A)ew® 0 < k < n, are in W(A) by Lemma
3.4 (2). Hence we must have W (A) = w(A)e?{1,w,,...,w? 1}". Hence OW (A) has

nondifferentiable points, that is, (5) holds. This completes the proof. |
For the sufficiency of Theorem 3.1, we also need the following lemma.

Lemma 3.6. Let A and B be the n-by-n (n > 2) weighted shift matrices with

weights ay, ..., a,_1,0 and by, ..., b,_1,0, respectively.
(1) If |a;| < |b;| for all j, then W(A) C W (B).

(2) If the bj’s are nonzero,|ajj=<bj| for all j and |ay| < |by| for some k, then
W(A) S W(B).

(3) If the aj’s are nonzero, then W A[n]) & W(A).

Proof. In view of Lemma 3.3 (2), we may assume that the a;’s and b;’s are all
nonnegative. Since W(A) and W(B) are circular discs centered at the origin by
Proposition 3 (3), the assertions in (1) and (2) are equivalent to w(A) < w(B) and
w(A) < w(B), respectively. These in turn follow from [32, Corollary 3.6]. To prove
(3), let C' = A[n] @ [0]. Then W(A[n]) = W(C) & W(A) by (2). This completes the
proof. [ |

The next lemma is needed for the proof of Proposition 3.8.

Lemma 3.7. If A and B are n-by-n (n > 2) weighted shift matrices with weights
aiy...,a,-1,0 and a,_1,...,a1,0, respectively, then W (A) = W(B).

27



Proof. Since W(A) and W (B) are circular discs centered at the origin by Lemma 3.3
(4), we need only check that w(A) = w(B). By Lemma 3.3 (2), we may assume that
a; >0 for all j. Let © = [z1...2,]" be a unit vector with nonnegative components

such that w(A) = (Az,z). Then
n—1
w(A) = Zaﬂjﬂ% = (By,y) < w(B),
j=1

where y = [z,,...2;]7. Similarly, we have w(B) < w(A). Thus w(A) = w(B) as

asserted. [ |

The preceding lemma canalso be proven by noting, under a; > 0 for all j, that
Re A and Re B are unitarily equivalent:
J(Re A)=(Re B)J, where J.= [J;]{';—; is the n-by-n skew identity matrix with
Lo i ik = g4,

J. ij — )
0 otherwise,

and hence w(A) = ||Re A|| = ||Re B|| = w(B).

Proposition 3.8. Let A be an n-by-n (n > 3) weighted shift matriz with weights
aiy ... apn. If lar| = -+ = |ay—3| and OW (A) has a line segment, then |a,_s| = |a,| #
0.

Proof. By Lemma 3.3 (2), we may assume that a; > 0 for all j. Since OW(A)
has a line segment, we even have a; > 0 by Lemma 3.3 (4). Let A; and Ay be
the (n — 1)-by-(n — 1) weighted shift matrices with weights ay, ..., a,_3,a,_2,0 and
ai,...,0a,_3,a,,0, respectively. Then A; = A[n] and W (Ay) = W(A;3), where Aj
is the (n — 1)-by-(n — 1) weighted shift matrix with weights a,, a,_s,...,a1,0, by
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Lemma 3.7. Since a; = --+ = a,_3, by Lemma 3.3 (1), A3 is unitarily equivalent to
Aln — 1]. Thus W(A3) = W(A[n — 1]). Note that the existence of a line segment on
OW (A) guarantees that W(A[n]) = W(A[n — 1]) by the necessity part of Theorem
3.1. We conclude that W(A;) = W(Az). Therefore, a,—o = a, by Lemma 3.6 (2).
This completes the proof. |

From Proposition 3.8, we can derive the following for weighted shift matrices
of size 3 or 4: (1) a 3-by-3 weighted shift matriz A with weights ay, as, as is such that
OW (A) contains a line segment if and only if |ai| = |as| = |as| # 0, and (2) if the
4-by-4 weighted shift matriz A with weights ay, as, as, ay is such that OW (A) contains
a line segment, then |a1| = |as| %0 and |as| ="1as] % 0. The necessity in (1) and (2)
is a consequence of Proposition 3.8 and Lemma 3.3 (1). The sufficiency in (1) has
already been proven in Proposition 3.5. Note that the condition in (2) is actually also
sufficient, but its proof has te wait until the proving of Theorem 3.1 (cf. Proposition

3.13 later).
The next proposition is the major step in proving the sufficiency of Theorem 3.1.

Proposition 3.9. Let A be an n-by-n (n > 3) weighted shift matriz with nonzero

weights ay, . .., a,, and let = (7 + Z;L:larg a;)/n.

(1) If W(A[j — 1)) = W(A[j]) = W(A[j + 1]) = B(0;r) for some j, 1 < j <n
(A[0] = A[n] and A[n + 1] = A[1]) and some r > 0, then r is either the largest

or the second largest eigenvalue of Re (e”A).

(2) If W(A[L]) = --- = W(A[n]) = B(0;7)(r > 0), then r = wo(A) is the largest

eigenvalue of Re (e A) with multiplicity at least two.
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For the proof, we need the following lemma.

Lemma 3.10. Let A be an n-by-n (n > 5) weighted shift matriz with nonzero

real weights ay,...,a,. For 1 < j < n — 2, let B = Re A[n] be partitioned as

A; B

Cj Dj

and (n — j — 1)-by-(n — j — 1), respectively. If X is the mazximum eigenvalue of B,
then a...a% _3\* = 4" *det(\,,_3 — A,_3) det(A,,_3 — Dy).

n

with A;, Bj, Cj and D; of sizes j-by-j, j-by-(n —j —1), (n—j —1)-by-j

Proof. Since the a;’s are nonzero, W(A[n]) properly contains W (A[j + 1,...,n]) for
any j, 1 < j <n—2, by Lemma 3.6/(3). Hence A, being the radius of the circular disc
W (A[n]), does not belong to W/(A[j+1,...;n]). In particular, A is not an eigenvalue
of A; =Re A[j +1,...,n] and therefore X; = A; is invertible for all j, 1 < j <n—2.

Similarly, the same is true for AI,,_; 4 —D;: Thus

0 = det(AM,_, — B)
= det(\; — A;) det((M,—j1 = Dy)=(=CJAL — A;)"'(—By))

2det()\Ij_1 — Aj—l) 0 0
J .

1
— det(M; — A)det((M,_._y — D.) — —a?
et = 4j) det(Mn-j-1 = D)) 1% det(M; — A))

det(Aly—j—2 — Djt1)),

1 ydet(N;_; — Aj_y)
_ I — A, I,_..1—D;)—=a* ! ’
det(ALy = A)(det W o—jor = Dy) = 50,3 007 =45

from which we obtain
24 det(A; — A;) det(A,,—;—1 — D;)
J det(Aj_1 — A1) det(A—j_2 — Djt1)
for 2 < j <n — 3. Taking the product of the a?’s yields
noadet(A,—5 — Ap_3)det(A,—3 — Ds)
det(My — Ay) det(My — Do)
= 4" *det(A,_3 — A,_3)det(\,_5 — Dy)

2 2 \2 _ 2
ay...a, s\ =4 A
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since A; and D,,_, are both the 1-by-1 zero matrix. This completes the proof. [ |

Proof of Proposition 3.9. (1) We may assume, by Lemma 3.3 (1), that W(A[n—1]) =
W (A[n]) = W(A[1]) = B(0;r). Also, by Lemma 3.3 (2), A is unitarily equivalent to
e?C, where C'is the n-by-n weighted shift matrix with weights |a,], ..., |a,_1], —|ax|.
Then wy(A) = we(C) is in OW(C') by Lemma 3.4 (2) and W (A[j]) = W(Cj]) for all
J. Thus wy(C) is the maximum eigenvalue of Re C' and r is the maximum eigenvalue
of Re C[j] for j =1, n — 1 and n. We now expand the determinant of rI,,—Re C by

minors along its nth row to obtain

det(rl, — Re C)

1 1
= 5|ozn|(—1)"+1dnl - §|an_1|(—1)2”_1dn,n_1 + rdet(rl,_; — Re Cln])

1 1
= §|an|<_1)n+ldnl = §|an_1l(—1)2"ﬁ1dn,n_1,

where (—1)""7d,; denotes the cofactor of the:(n; j)-entry of Re C' in Re C, j =1,
n — 1. The expansion of the determinant d,; (resp:, d,,—1) along its first row (resp.,

its last row) yields

-1 n—1 —1)"
(1) ]al---an,ll—i—( ) la,| det Cy

dnl = on—1 2

(resp.,
1 1

dnp-1= 1 a1+ apaan,| — §|an—1| det Cy),

where _ _
r —las|/2
—laql/2 T
o | el
—lan—a|/2
—lan—2|/2 r
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(resp.,
r —laq]/2

c, —lai|/2 r

~—

—lan—s|/2
—lan—3|/2 r

Hence

1 1 1 1
det(rl, —Re C) = 2—n|a1 cee | — Z|a”|2det Cy + 2—n|a1 Ce | — Z|an_1|2 det Cy

. 1 1 1
(11> - on—1 ‘al c 'Cln‘ — Z—l\anﬁdet Cl — Z|an,1|2det 02.

On the other hand, let

P S a2
oyl 2]
s gosl/2

[y 525 /2 r

for j = 1, 2 and 3. Since det(rI,_1 =Re-Cln})= 0, expanding this determinant along
its first row (resp., its last row) yields rdet C; = (|a;|?/4) det D3 (resp., rdet Cy =
(|an—2/?/4) det Dy). Similarly, from det(rl,_; — Re C[1]) = 0 (resp., det(rl,_; —
Re C[n—1]) = 0), we obtain r det Cy = (|a,,_1|*/4) det Dy (resp., r det Co = (|a,|?/4) det Dy).
Since 7 is the maximum eigenvalue of Re C/[j] for j = 1, n—1 and n, we have det C; > 0

for j =1 and 2, and det D; > 0 for j = 1, 2 and 3. Thus (ii) becomes

det(rl, — Re C) = lay - - ay| — l\an\Q ana [ det Dy — llan,ﬂZ 2 det D,
2n—1 4 4r 4 4r
1 1 Ay a
= gl - g\anlan\” ” ‘2|(detD1)1/2%(detD3)l/2
n n—1
1 1
= lay -+ an| — g\alan,Qan,lanl(det Dy - det D3)? =0
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by Lemma 3.10. Hence det(rl,—Re (e7%A)) = 0. Since r is the maximum eigenvalue
of Re (e7®A)[1], this shows that it is either the largest or the second largest eigen-
value of Re (e " A).

(2) From our assumption and the proof of (1), we have det(rl,_1 — Re C[j]) =
det(rl, — Re C) = 0 for all j, 1 < j < n. Thus if p(z) = det(zl, — Re C), then
p'(r) =35 det(rl,—1 — Re C[j]) = 0 (cf. [24, p. 43, Problem 4]). This shows that
the eigenvalue r of Re C has (algebraic) multiplicity at least two or, equivalently,
dim ker(rl,—Re C) > 2. Since B(0;7) = W(C[n]) C W(C), we have r < wy(C).
If r < wo(C), then we deduce from the facts that wy(C') is the maximum eigenvalue
of Re C' and dim ker(rl,—Re ) >2 that B(0Q;r).= W(Cln]) = W(C[n — 1,n]).
This contradicts Lemma 3.6.(3) since the a,’s are nonzero. Hence we must have
r = wy(C) = wo(A), which is the largest eigenvalue of Re (e~ A) with multiplicity

at least two. [ |

Another result which we need is the following condition for the line segment on

the boundary of a numerical range. It is from [16, Lemma 1.4].

Lemma 3.11. Let A be an n-by-n (n > 2) matriz. Then OW(A) has a line
segment on the line x cos + ysinf = d if and only if d is the maximum eigenvalue

of Re (e="A), which has unit eigenvectors xy and x4 such that Im (e~ Az, z,) # Im

(€7 Axy, x5).

Lemma 3.12. Let A be an n-by-n (n > 2) weighted shift matriz with nonzero
real weights ay, . .., a,. Then OW (A) has a line segment on the line x = d if and only

if d is the mazimum eigenvalue of Re A with multiplicity at least two.
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Proof. In view of Lemma 3.11, we need only prove the sufficiency part. Since dim
ker(dI,—Re A) > 2, there are real vectors b = [0 by...b,|T and ¢ = [¢; 0 c3... )T
in ker(dl,—Re A) with by, ¢; # 0. Then we obtain a;by + a,b, = 0, 2dby = asbs,
2db; = aj_1bj_1 + a;bjs1 for 3 < j <n—1, and a,,—1b,—1 = 2db,, (resp., 2dcy = ancy,
aicy + ages = 0, 2dcs = ascq, 2dc; = aj_1cj—1 + ajcjpy for 4 < j < n —1, and

anC1 + ap_1¢n—1 = 2dc,). Simple computations show that

CLnanI = —albgcl = Clgszg = (2db3 — a3b4)03
= (Z3(b364 — b463) = &3b304 — (2dC4 — (Z4C5)b4

= a4(b4c5 - 5504)

= alnfl(bn-lcn = bncn-1)~

Letting x1 = (b + ic)/||b + il and x5 = b/]|b||, we have

n—1
1
Im(Azy, z1) = m(—albgcl + agbycs + Z aj(bjcit1 — bjric;) + anbpcy)
=3
na1b201
= —————#0=Im(A )
rice 7 0= Im(Awe, )
Our assertion follows from Lemma 3.11. [ |

We are now ready to prove the sufficiency of Theorem 3.1.

Proof of Theorem 3.1. Assume that a; # 0 and W(A[j]) = B(0;r) forall j, 1 < j <n.
By Lemma 3.3 (2), A is unitarily equivalent to e??C, where C is the n-by-n weighted
shift matrix with weights |ail,...,|an1], —|a,| and 0 = (7 + > 7 arg a;)/n. By
Proposition 3.9 (2), r = wo(C) = wy(A) is the largest eigenvalue of Re C' with multi-
plicity at least two. Lemma 3.12 then implies that W (C') has a line segment on the
line x = r. Thus OW(A) has a line segment on xcosf + ysinf = r = wy(A). This
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completes the proof. [ |

The next proposition characterizes those 4-by-4 weighted shift matrices A with
OW (A) containing a line segment in terms of the weights of A. It was worked out by

H.-L. Gau and P. Y. Wu some years ago.

Proposition 3.13. Let A be a 4-by-4 weighted shift matriz with weights ay, .. ., a4.

Then the following conditions are equivalent:
(1) OW(A) has a line segment,

(2) la1| = las| # 0 and |as| = |ag} #0,

. L , 0 b 0" ¢
(3) A is unitarily equivalent to D , where biby = —cice # 0
bg 0 Cy 0

and ‘b1’2 + ‘b2|2 = ’01‘2 = |02‘2, and

o . 0 b |00 by :
(4) A is unitarily equivalent to (&) with by, by # 0.
by 10 by 0

In this case, W(A) is the convex hull of the two (orthogonal) ellipses Ey and Ey (may
degenerate to line segments if |by| = |bs|) with By having foci £(bibs)'? and minor

azis of length ||by| — |be|| and Ey = iEy. In particular, OW (A) has four line segments.

Proof. (1) < (2). Since the characteristic polynomial of Re A[1] is

1
(laaf* + las]*)z,

det(zI3 — Re A[l]) = 2° — 1

we have w(A[l]) = ||[Re A[1]]| = (Jag|® + |as|?)'/?/2. Similarly, we obtain values of
w(Al[j]) for 2 < j < 4. Thus the equivalence of (1) and (2) follows from Theorem 3.1
and Lemma 3.3 (4).
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(2) = (3). Since det(zly — A) = 2* — ajasazay, the eigenvalues of A are a; =
(a1a2a3a4)1/4wi, 0 < 5 < 4. Their respective eigenvectors can be computed to be
(multiples of) z; = [1 «aj/a1 a;*/(a1a2) «;/(ar1a2a3)]", 0 < j < 4. Note that

1 1
(o)

1
(j,ap) = 1+ oy + (jag)’

+ -
lay|? lajas|? |ayasas|?

for any j and k. From this, it is easy to verify that
(T1,29) = (21, 04) = (23, T2) = (¥3,74) = 0.

Let y; = x1—x3 = [0 209/a; 0 2a0%/(a1a2a3)]", yo = 1423 = [2 0 2000%/(ayaz) 0]7,
ys = 19 — x4 = [0 2icg/ay 0 — 2iag®/(ara0a3)]T and yy = 20+ 24 =2 0 —
2002 /(araz) 0]F, and let M be the subspace of \C* spanned by y; and y,. Since
Ayp = Axy — Axy = aqry —asxgand Ays = Ary + Ars = agxy + azrs, and M
is also spanned by z; and w3, we have AM C M. A simple computation shows
that A*y; = (az®/(arazaz))ys and A*ys=(|ay|?/ap)yr; where the assumptions that
la1| = |as| and |ay] = |a4| are wsed.” This shows that A*M C M. Thus M is a
reducing subspace of A. Moreover; it.is easily seen that M~ is spanned by y3 and 4,

and (y1,y2) = (ys,ya) = (Ay;,y;) = 0 for'all j. Therefore, A is unitarily equivalent

. 0 bl 0 C1 .
to a matrix of the form > =B@®Con M® M. Since z; and

bg 0 Co 0
xs3 are in M, a; and as are eigenvalues of B. Hence

—biby = det B = aja3 = aéﬂwz = —04(1]/2.
A similar argument with C' yields —cicy = 04(1)/ % Tt follows that biby = —cqca.

To prove |b1|* + |ba]* = |c1]? + |c2)?, note that simple computations give

b1:<A Yo : n :a0||ylH’
yall " [l 2l

n Y2 ||y2H
by = (A—, ) = Qo
yall” [l 1l
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yi o ys - sl

o = (A", = iag :
yall” llysll |4l
and
P 7 (|
Cy = T - (T
sl lyall |ys]|

and [[y1]| = [lysll and [[g2]| = |[ya|. Thus

gl llgel?
[b1[* + [b2]* = Jero|*( + )
(21 7
lysll® . Ilyall® 5 2
= aol*( ) =l + e
[yall llysll?
as asserted.
0. b 0y
(3) = (4). Note that (resp., ) is unitarily equivalent to
b2 0 Co 0
bibo)Y2 ||by| — |b c16)Y2 ler| = |e
(b1b2) [oa] = 6] (vesp., (c1c2) st Iall ). From the assumption
0 —<b1b2)1/2 0 —(0162)1/2
c
in (3), we have (byhy)"/? = +i(cie)™2 and ||by| =Jbs}| = ||c1| — |c2||. Thus '
Co
b
is unitarily equivalent to i , and (4) follows.
by 0
: 0 b, . o : :
(4) = (1). Since W( ) is the elliptic disc with foci £(b;by)*/? and mi-
by O
: : 0 b A |0 b
nor axis of length ||by]| — |bel|, that is, W( )= E\" and W(i ) =
b2 0 bg 0

(iE7)", it is obvious that W (A) contains four line segments. This also proves our

assertion on W (A), completing the proof. [ |

For n > 4, we can use the same arguments as in the proof of (1) < (2) above

to obtain conditions in terms of the weights. They turn out to be too complicated to
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be useful.

Recall that a set S is nowhere dense in C" if its closure contains no nonempty

open subset of C". By Theorem 3.1, we can obtain the following result.

0 aq

Proposition 3.14. Let S = {[ay,...,a,]" € C" : dW( ‘ . )

an, 0
has a line segment} (n > 2). Then S is closed and nowhere dense in C".

Proof. (1) For any a = [ay, . .. jas]” € C%letA be the n-by-n (n > 3) weighted shift

matrix with weights aq, ..., d;. Then Theéorem 3.1 implies

S = {lay,...,a,)" € C: OW(A) has a line segment}

= {a1,...,a,)" € C* W (AR]) =-=WA(An]), a; # 0 for all i}
= {las,...,a,]" €C": |Re (ARPl=+7"= [Re (A[n])|, a; # 0 for all i}
Let {ri} = {[aix, - - -, am]’ } C S be a convergent sequence, a = [ay, . .., a,]’ = limry.

Since |a;, — a;| < ||ry — al| for all ¢ and k, we have a;; — a; as k — oo for all i. Let
Ay, (resp., A) be the n-by-n weighted shift matrices with weights aiy, ..., @ (resp.,
ai,...,a,), then we obtain ||Re ((Ax)[7])|| — ||Re (A[i])]| as k — oo for all 7. Since
{re} € 8, we have [Re (A0 = [Re (A [])| for all 4, j, k, 1 < < j < n and
the a;.’s are nonzero. Therefore, we show that |Re (A[1])|| =--- = ||Re (A[n])| and

the a;’s are nonzero. This implies a € S and hence S is closed in C".

(2) We need only show that S has no interior point. Suppose there exists
[ay,...,a,)" in the interior of S. Then we have B(a;r) C S for some r, r > 0. Let

a =
b= [(|ai|+7/2)e84 ay, ... a,]7 € C" and A (resp., B) be the n-by-n weighted shift
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matrix with weights ay, . .., a, (resp., (|ai|+7/2)e®8" ay, ... a,). Hence both a and
b are in S by Theorem 3.1. These imply W (A[n|) = W(A[1]), W(B[n]) = W(B]1])
and the a;’s are nonzero. Since A[1] = B[1], we obtain that a; = (|a;| 4 r/2)e™rem

by Lemma 3.6 (2). It is impossible. This completes the proof. [ |
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3.3 Nilpotent matrices with n weights

Consider the n-by-n nilpotent matrix of the form (i) with weights aq, ..., a,.

We start with the main result of this section, which is analogous to Theorem 3.1.

Theorem 3.15. Let A be an n-by-n (n > 3) nilpotent matriz of the form (i)
with weights ay, ..., a,. Then OW(A) has a line segment if and only if the a;’s are
nonzero and W (A[l]) = -+ = W(An|). In this case, W(A[j]) is the circular disc
centered at the origin with radius wo(A), the line segment lies on one of the lines
x cosby + ysinby, = wo(A), where 0, = ((Z;.:llarg aj)—arg a, + (2k + 1)m)/(n — 2),
0 <k <n—3, and there are exactlyn — 2 line segments on OW (A).

For the proof of Theorem 3.15, we also need a fuller understanding of the nu-
merical range of the n-by-n nilpotent matrix of the form (i) with weights aq, ..., a,.

This is provided by the following lemmas.

Lemma 3.16. Let A and B be n-by-n (n > 3) nilpotent matriz of the form (i)

with weights aq, ..., a, and by, ..., b,, respectively.

1) If |la;| = |b;| for all j, then A is unitarily equivalent to e’ B, where B}, =
j j

(Z;:ll(arg a; — argb;) + (argb, — arga,) + 2km)/(n —2) for 0 < k < n — 2.

In particular, A is unitarily equivalent to w,_»A and hence W(A) has n — 2

symmetry.

(2) (a) Either the intersection number of OW (A) and 0B(0;w(A)) is n — 2 or
W(A) = B(0;w(A)).

(b) Either the intersection number of OW (A) and 0B(0;wy(A)) is n — 2 or
W(A) = B(0; wo(A)).
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(3) The following conditions are equivalent:

(a) a; =0 for some j,
(b) A is unitarily equivalent to ¢? A for all real 0,
(¢c) W(A) is a circular disc centered at the origin, and

(d) OW(A) contains an elliptic arc.

(4) If OW(A) has a line segment L, then dist(0, L) = wo(A) and there are exactly
n — 2 line segments on OW (A).

Proof. (1) It U = diag(e", ..., en) where ¢y = 0 and ¢; = ¢;_1 + (arg b;_;—arg
aj_1) + B for 2 < j < n, then U is-unitary and AU = U(e’’s B). In particular, A is

unitarily equivalent to w,_>A by letting B = A and .k = 1.

(2) (a) follows from [18, Propesition 3.1] and (1)..(b) follows from [18, Theorems
2.5 (b), 3.5 (a) and (b)] and (1).

(3) If (a) holds, then the ;s in (1) can be arbitrary. Letting B = A in there,
we obtain (b). The implications (b) = (c) and (c¢) = (d) are trivial. To prove (c)
= (a), let A be the maximum eigenvalue of Re(wA) for all |w| = 1. Then we have

det(A]—Re(wA))= 0 for all |w| = 1. Since

det(M — Re(wA)) = f(A) — WWH _a .;n_lanwn_Q

for some polynomial f(\) which is independent of w with degree f(\) < n, it can be
considered as a trigonometric polynomial in w which has infinitely many zeros. Hence
the coefficients of w"™? and W™ 2 are both zero and we obtain a; = 0 for some j. We
finally show that (d) = (c). If E is an elliptic disc and W (A) contains an arc of
OFE, then we have E' C W(A) and the two foci of OF are the eigenvalues of A by [14].
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Hence E = B(0;wq(A)) is a closed circular disc centered at the origin. Therefore we

have W(A) = E by (2b) and this proves our assertion.

(4) For wy(A) =dist(0, L), the proof is the same as the one in Lemma 3.3 (5).
Additionally, there are exactly n — 2 line segments on OW (A) by (1) and (2b). H

Therefore, the necessity of Theorem 3.15 follows easily from Lemmas 3.2 and
3.16 (3), (4). To prove the sufficiency of Theorem 3.15, we need several lemmas and

propositions. We start with the following.

Lemma 3.17. Let A be an n-byn (n > 3)-wilpotent matriz of the form (1) with

weights ay, . .., a,, and let 0 = ((Z;:ll arg a;) — arg a,)/(n — 2).

(1) OW(A) is a differentiable curve.

(2) W(A) is symmetric with respect to the linesy = xtan((kw/(n — 2)) + 6) for

0<k<n-—2.

(3) We have {arg A : A € OW (A), |A\| = w(A)} = {(2kr/(n—2))+0 : 0 < k <n—2}
and {arg A : A € OW(A), |\ = wo(A)} = {(2k+ )n/(n—2))+0:0< k<
n—2}.

(4) Forn > 5, w(A) < wy(A)sec(n/(n—2)) and

B(0; wo(A)) € W(A) C wo(A)(sec — S {1 o, W)

In addition, w(A) < wy(A)sec(n/(n —2)) if a; # 0 for all j.

Proof. (1) If there exists A\ € OW(A) such that A is not differentiable, then A is a
reducing eigenvalue of A. However o(A) = {0} implies A = 0. This contradicts the
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fact that 0 does not belong to OW (A). Hence A is differentiable for all A € W (A).

The proofs of (2), (3) and (4) are essentially similar to those of Lemma 3.4 (1),
(2) and (3) by replacing 8 — (S, arg a;)/n in 0 = (S} arga) — argan)/(n - 2).
We only need show that w(A) # wy(A)sec(n/(n —2)) if a; # 0 for all j in (4). If
w(A) = wo(A) sec(n/(n—2)), then (4) says that W (A) C w(A)e?{1,w, o,...,w' 5}
But the vertices of this latter regular n—2-polygonal region, namely, w(A)e?wk ,, 0 <
k < n—2, arein W (A) by (3). Hence we must have W (A) = w(A)e?{1,w,_o,...,w ' 3 }".
Hence OW (A) has nondifferentiable points. It contradicts (1). Consequently our as-

sertion follows. [}

The next proposition is.the major step in proving the sufficiency of Theorem

3.15.

Proposition 3.18. Let Avbe.an n-by-n-(n> 3) milpotent matriz of the form (i)
with nonzero weights ay, ..., a,, ondlet-.=(r+ (3" arg a;)—arg a,)/(n — 2).

(1) IF WAL — 1)) = W(AL) = WAL + 1)) = BO;r) for some j, 1< j < n
(A[0] = A[n] and A[n + 1] = A[1]) and some r > 0, then r is either the largest

or the second largest eigenvalue of Re (e % A).

(2) If W(A[L]) = --- = W(A[n]) = B(0;7)(r > 0), then r = wo(A) is the largest
eigenvalue of Re (e A) with multiplicity at least two.

Proof. (1) By Lemma 3.16 (1), A is unitarily equivalent to ¢? B, where B is the n-by-n
nilpotent matrix of the form (i) with nonzero weights |ai|, ..., |a,—1|, —|a,|. Let C be
the n-by-n weighted shift matrix with weights |a4|,...,|an—1|, —|an|. Then we have

W(A) = W(Bg) = W(Cy) = B(0;r) for k = j — 1, j and j + 1. Since det(rl,—Re
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B) = det(rl,—Re C), Proposition 3.9 (1) implies that r is either the largest or the

second largest eigenvalue of Re (e7%A).

(2) In the proof of (1), by our assumption and Proposition 3.9 (2), we obtain
that r = wy(C) is the largest eigenvalue of Re C with multiplicity at least two.
Since det(rl,—Re B) = det(rl,—Re C), Lemmas 3.4 (2) and 3.17 (3) implies that
r = wo(C) = wo(B) = wo(A), which is the largest eigenvalue of Re (e=*A) with
multiplicity at least two. [

To prove the sufficiency of Theorem 3.15, we also need the following lemma:

Lemma 3.19. Let A be an n-by-n (n >.3) nilpatent matriz of the form (i) with
nonzero real weights ay, . .., an. Then OW (A) has a line-segment on the line x = d if

and only if d is the maximum eigenvalue of Re A with multiplicity at least two.

Proof. In view of Lemma 3.11,we need.only prove the sufficiency part. Let B
and C' be n-by-n weighted shift matrices with nonzero real weights a4, ..., a, and
0,...,0,—2a,, respectively. Then Re A = Re B and Im A =Im B + Im C. Hence
by our assumption and the proof of Lemma 3.12, there exist real unit vectors x; and
x9 such that (Im Bxy,z1) = Im (Bxy,21) # Im (Bza, x9) = (Im Bz, xs). In addi-
tion, we also have (Im Cxy,x;) = (Im Cxg,29) = 0. Therefore, Im (Azy, ;) = (Im

Bxy,x1) # (Im Bxg,x9) = Im (Axy, x9). Finally, Lemma 3.11 implies our assertion.

We are now ready to prove the sufficiency of Theorem 3.15.

Proof of Theorem 3.15. Assume that a; # 0 and W(A[j]) = B(0;r) for all j,
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1 < j < n. By Lemma 3.16 (1), A is unitarily equivalent to ¢ B, where B is

the n-by-n nilpotent matrix of the form (i) with weights |ay],...,|an-1], —|a,| and
0= (m+ (Z;:llarg aj)—arg a,)/(n—2). By Proposition 3.18 (2), r = wo(B) = wp(A)

is the largest eigenvalue of Re B with multiplicity at least two. Lemma 3.19 then
implies that OW (B) has a line segment on the line x = r. Thus W (A) has a line
segment on x cos @ + ysinf = r = wy(A). This completes the proof. [

The following is an easy corollary.

Corollary 3.20. Let A (resp., B)_be.the n-by-n (n > 3) weighted shift matrix
(resp., nilpotent matriz of the form (1)) with weights.ay, ..., a,. Then
(1) w(A) = w(B),
(2) wo(A) = wo(B), and

(3) OW(A) has a line segment if.and only if OW(B) has.

Proof. (1) If the a;’s are real, then Re A = Re B. Hence we can assume that the a;’s
are real by Lemmas 3.3 (2) and 3.16 (1) and the result can be obtained by Lemmas
3.4 (2) and 3.17 (3).

(2) The proof is similar to the one of (1).

(3) This follows directly from Theorems 3.1 and 3.15 and that W (A;) = W (B;)
for all s. ]
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3.4 Weighted shift matrix with periodic weights

The purpose of this section is to study the numerical ranges of the n-by-n
weighted shift matrices with periodic weights. The main result of this section is the

following.

Theorem 3.21. Let A be an n-by-n (n > 3) weighted shift matriz with nonzero
weights ay, . .., an. Assume that |a;| = |apyi| = -+ = |a@m-1yp4;| for all 1 < j < K,

where n = km for some k and m, k,m > 2. Then

(a) pa is reducible and W (A) = W.(B), uwhere B = C & (¢C) @ --- @ (e!m=DI0)
and C' s the k-by-k weighted shift_matria with. weights ay, ..., ar_1, @ag, o =

(ay---apn)"™/(ay - - - ap) and wy = e*TH™.

(b) OW(A) has a line segment L and dist(0, L) = wo(A) = w(A[i]) = mazimum
zero of det(A\l,—1 — Re Ali]) for‘everyi,-1 < i < n.

Note that W (A) has a line segment for £ = 1 by Proposition 3.5.

An easy consequence of the preceding theorem is the following:

Corollary 3.22. Let A be an n-by-n (n > 3) weighted shift matriz with weights
ai, ..., a,. Suppose that n —2 of the a;’s have equal absolute value and the remaining
two terms are ay, and a;. Then OW (A) has a line segment if and only if all the a;’s

are nonzero and either
(a) n is even, |k — 1| =n/2, |ag| = |ay|, or

(b) all the a;’s have the same absolute values.
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Proof. The sufficiency follows easily from Theorem 3.21. Now we prove the necessity.
By Theorem 3.1, we have that the a;’s are nonzero and W(A[l]) = --- = W(A[n]). If
n is even and |k — [| = n/2, then we may assume that k =n/2, l =n, a; = a; > 0
for1 <i<j<n-—1,14, j#n/2and ay, a, >0 by Lemma 3.3 (1) and (2). Also,
W (A[n/2]) = W(A[n]) implies that |a,/| = |a,| by Lemma 3.6. Otherwise, we may
assume that 1 <k <n/2,l=mn,a,=a; >0for 1 <i<j<n-—11, j#kand
ag, a, > 0 by Lemma 3.3 (1) and (2). Let a = a;, where i # k, n. Note that we
have W(A[k]) = W(A[2k]) = W(A[n — k]) = W(A[n]) and A[n] is the (n — 1)-by-

(n — 1) matrix [sij];fj_:ll, where s;,41 =afor 1 <i <n—24i#Ek, sppy1 = ar and
s;; = 0 otherwise. By Lemma 3.3 (1), we may assume that A[k] is the (n — 1)-by-
(n — 1) matrix [tij];?:ll, where tipyr=oafor 1 <4<n—2i#n—k, ty_pni+1 = ay

and t; ; = 0 otherwise. For the orders-of {a,,ax,a}, consider the following three cases:

(1) ap, > a > ay or a, < a < a. Since W (A[n]) =W (A[k]), by Lemma 3.6 (2),

we infer that a,, = a = ay.

(2) a, > ay > aora, < a; < a. ByLemma 3.3 (1), we may assume that Aln—k]|
is the (n—1)-by-(n — 1) matrix [u;]!71;, where u; ;41 = a for 1 <i <n—2,i # k, 2k,
Uk k1 = Qn, Uk 2k+1 = @ and u; ; = 0 otherwise. Since W (A[n]) = W(A[n — k]), by
Lemma 3.6 (2), we also infer that a, = a = a.

(3) ax > a, > a or ax < a, < a. By Lemma 3.3 (1), we may assume that A[2k]

is the (n — 1)-by-(n — 1) matrix [v]{;2;, where v = a for 1 < i < n—2,i #
n—k,n— 2k, Up_okn—2kt1 = Gny, Un—kn—kt+1 = G and v;; = 0 otherwise. Since
W (A[k]) = W(A[2k]), by Lemma 3.6 (2), we obtain that a,, = a = a; and complete

the proof. [ |

We now proceed to prepare ourselves for the proof of Theorem 3.21. This will
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be done in a series of lemmas. We start our work with the following lemma.

For the ease of exposition, we introduce some notations which are used in
Lemmas 3.23, 3.25 and 3.26 below. Fix k£ € N. For every n > 2, there is a
unique m € N and a unique [ € N, 0 < [ < k — 1, such that n = km — [.
Moreover, for every i € 7Z, let (a;, a;i1,...,0;4n—2) be any sequence of nonzero
real numbers with a;1; = @iypr; = -+ = Gigm-1)p+; if 0 < 7 < k-2 and
Qit(k—1) = Qig2h—1 = - = Giy(m—1)k—1. Finally, let A,(a;) be the n-by-n tridiagonal
self-adjoint matrix with zeros on its diagonal and (a;, @;t1, ..., @;4n—2) the sequence

of entries on its subdiagonal.

Lemma 3.23. Fiz k > 3. For m€ Noand 1 < v <k, let the a;’s be real. Then

(1) det()\Ik_l — Ak_l(ai))| det()\Ik,m_l — Akm_l(ai)), cmd

(2)
det()\]km,1 — Akm,l(ai))
det()\[k,1 — Ak,l(ai))
= det(Mym-1) — Arm-1)(@i-1))

—CL?Jrka det()\]k_g — Ak_Q(a/Z'>>

det(My(m—1)-1 — Ak(m-1)-1(ai)) (a0 = az)
det(My—1 — Ap_1(a;)) '

Proof. (1) For A € o(Ag_1(a;)), there is a nonzero vector u = [r1,...,251]" in

ker(Ay_1 — Ax_1(a;)) with z1, 2,1 # 0. Letting
v=[T1,.. . Tp_1,0,721, ..., T25_1,0,. .., T, ... TTp1]

with r = —a;x_2%k_1/0i1 k171, We have a;p_2xk_1 + ajrp_17z1 = 0. Thus X €

O'(Akm_l(ai)).
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(2) For simplicity, we may assume that i = 1. Let A,,_1(a1) be partitioned as
Aj Bj
C; D
and (km — 1 — j)-by-(km — 1 — j), respectively. Thus we have
det(Mgm—1 — Agm-1(a1))
det()\Ik_l — Ak_l(al))
= det((Mym—1) — Di—1) = (=Cr—1)(AMlp—1 — Ap-1) (= By-1))

with A;, B;, C; and D of sizes j-by-j, j-by-(km—1—j), (km—1—7)-by-j

. a2 det()\fk,g — Ak,Q) 0 0
"det(My—1 — Ap1) |

= det(()\[k(m,l) — Dk—l)

det()\[k(mfl)fl — Dk)
det()\lk_l — Ak—l)

= det()\Ik(m_l) — Dk—l) /4 ai_l det()\lk_g N Ak_g)

= det()\fk(m_l) - Ak(m—l) (ak))

det( Ay (m—1)—1 = Arm-1)-1(a1))

2 = A i
_ I - A
aj,_y det(Mg_o r-2() det(A 5 k-1(a1))

Now we consider the circular symmetric functions S, (a4, ...,a,), where n and
r are nonnegative integers, defined first in [42, p. 496]. Sy is defined to be 1,
while for r > 1, S;(a1,...,an) = D> Al lo1 @ney | 72 (1,...,7) = (1,...,n), where
w(k)+1<m(k+1)for 1 <k <r,andif 7(1) = 1 then 7(r) # n}. These have a nice
description: imagine a regular n-gonal with vertices labeled a; through a,. Draw a
convex r-gonal in it, with vertices among the a;’s with the restriction that it cannot
use an edge of the original polygon. Each term in S,(ay,...,a,) is the product of the
vertices of such an r-gon. These functions satisfy many identities, but we need only

the following:

(1) S.(ay,...,a,,0) = S.(an,...,a1,0),
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(2) ST’-‘rl(al: sy Angd, 0) = Sr-i-l(al? s 7an70) + a'n-i-lST(al) s 7an—170)'

Another result from [42, Lemma 1] which we need is the following:

Lemma 3.24. Let A be an (n+ 1)-by-(n+ 1) tridiagonal self-adjoint matriz with

zeros on its diagonal, and let (aq,. .., ay) be the sequence of entries on its subdiagonal.
Then
l(n+1)/2]
det(ln—l-l - MA) = Z Sl(’a1|27 ) |an|27 0)<_1)l:u2l
1=0

for any scalar p.

Hence we have the following lemma which is derived from the above identities

and Lemma 3.24.
Lemma 3.25. Forn >4, 1 < i < n(ap/= ay,), let the a;’s be real and
gi(\) = det(A\L, — A,(a;)) — a? 4 deb(A,—» —Ais(aii1)). Then gi(\) = g;(\) for

1<i#j<n.

Proof. For simplicity, we may assume that ¢ = 1 and j = 2. By [42, Lemma 1], we

have
ln/2]
a(A) = Z Sl(af, o ,aiilj())(_l)l)\nfy
1=0
[(n—2)/2]
_ai Z Sl(ag, c ,ai_% O)(_l)l)\n—Ql—z
1=0
[n/2]
= A Z Sl(a%, ’@i_l,o)(—l)l)\"*ﬂ
=1
[n/2]



Ln/2]

= )\n—|— Z Sl al,...,ai_l,O)+a315l—1(a%7'-'aai—Q’O)])\n_Ql'
Ln/2J
= \"+ Z Sl az,...,ai,l,o)+af5171(a§,---,a72%1,0)

+Sl(a27"'7a7217 ) _Sl(agw'-aaiflao)])\nim
Ln/2]
= >\n+ Z Sl a/27..., n,O)_’_a/lSl 1(&3,...,@%_170)])\n_2l,

where the fourth equality follows from the above identities (1) and (2). Similarly, we

also have go(\) = A" + Z( D'[Si(a3, .., a3,0) + aiSi_a(ag, . .., a7y, 0)]A"~* from

n

the above third equahty Thus g1(A) = g2(\). |
The next lemma is the major step in proving Theorem 3.21.

Lemma 3.26. Fiz k > 3. Form >3;1 <i# j <k, let the a;’s be real. Then

(1) det()\[k,g — Ak,Q(CLi)) det()\fk(m,l),l — Ak(m_l)_1<ai)>
— det(/\fk,1 — Ak,l(ai)) det()\lk(m_l)_g 5 Ak(m_l)_2<ai)>
k
=— [I a7 det(Am—2)—1 — Apim—2)-1(a;))

I=1,1#i—2
(a_1 = ax_1, ap = ay, and Aq(a;) = 0),

<2> detMpm—1—Arm—1(a:))  detWpm—1—Arm—1(a;))

det(Ay_1—Ag—_1(a;)) det(Ay_1—Ak_1(a;))
k
_ az[det()\fk<m—2)—1—Ak(m—z)—l(ai)) . det(”k(m_Q)_l—Ak(m—2)—1(%’))] and
l det(AIk_l—Ak_l(a,-)) det(AIk_l—Ak_l(aj)) ’

=1

det(Mgm—1—Arm—1(a;)) _ det(Mgpm—1—Arm—1(a;))
<3) det(;lk,i—AZ 1(21)) o det()lflk 1 Ai 1( ZJ y form >2,1<1 7é ] <k.

Proof. For simplicity, we may assume that ¢ = 1 and j = 2.

(1) det()\[k,Q — Ak,g(al)) det(AIk(m_l)_l — Ak(m_l)_1<a1))
—det(Mp—1 — Ap—1(a1)) det (A gim—1)—2 — Arm-1)—2(a1))
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= det(My-2 — Ap-2(ar))[Adet (A — Apm-1)-2(a1))
—aj_y detMim-1)-3 — Akm-1)-3(a1))]
—[det(Ay_o — Ap_o(ay)) — ai_,det(A}_3 — Ap_3(ay))]
~det(Agim—1)-2 — Arm-1)—2(a1))

= al_,[det(\_5 — Ap_s(a1)) det(Mim-1)—2 — Apm-1)-2(a1))
— det (Ao — Ap—2(a1)) det(My(m—1)—3 — Ar@m-1)-3(a1))]

= .- (by induction)

= ai_Q .. .aga% [det()\lk(mfl),(k,l) — Ak(mfl),(kfl)(al))

—Adet(Mgm-1)—k — Ar@as1y(a1))]

= —a% .. .aiqai det()\lk(m_g)_l — Ak(m_g)_1<a1)).

(2) By Lemma 3.23 (2); we have
det(Mgm—1 — Agm—1(ar)) detNpny = Apm=i(a2))

det(Alx—1 — Ag_1(ay)) det(Alg—1 — Ap-i(az))
[det(/\]k(m_l) — Ak(m_l)(ak)) > ai_l det(AIk_Q — Ak_Q(Ch))
'det(Adjg‘E?/\]li_i — ﬁ:ﬁ(;i);(al))] — [det(Mk(n-1) — Argn-1)(a1))
det(Ay(m—1)-1 — Ak(mfl)fl(a2)>]
det()\lk_l — Ak_l(ag))
det(Mign-1)-1 — Arm-1)-1(a2))
det()\lk_l — Ak_l(ag))
det(Mign-—1)-1 — Agm-1)-1(a1))
det()\]k_l — Ak_l(al))
+ai_y det(Aym-1)-2 — Agm-1)-2(0a1)) — aj det(Axm—-1)—2 — Agm-1)-2(a2))
2
T A ) Qi1 = Arn-1(02)
ay_,

CdetOW 1 — Ay_1(ar))

ﬁ alz[detwkm,l — Apna(@))  detM -1 — Apm-1(a2))
det()\fk,1 — Akfl(CLl)) det(A[k,1 — Ak,l(aQ))

—ai det(My_o — Ag_o(az))

ap det(Mg_o — Ag_2(as))

—ai_det(Mj_o — Ap_s(a1))

(—a% .. .aiﬂai) det(AIk(m_Q)_l — Ak(m_g)_l(al))
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where the second and third equalities follow from (1) and Lemma 3.25, respectively.

(3) By the second equality in the proof of (2), the assertion for m = 2 is easily

seen to be true. For m = 3, we have

det(Azp—1 — Agp—1(a1)) B det(Ms,—1 — Asi—1(a2))
det()\lk_l — Ak_1<a1)) det()\lk_l — Ak_l(ag))
det(Alx_1 — Ag_1(ay)) B det(Alx_1 — Ag_1(az))
det(Aly_1 — Ag_1(a1))  det(Ap_1 — Ap_1(az))

= (ajasa3)?| ]=0.

Therefore our assertion follows from the above results, (2) and induction. |
We are now ready to prove Theorem-3.21.

Proof of Theorem 3.21. (a) Lét B = C@(e?C) -+ (e~ 9C), where C is the k-by-
k weighted shift matrix with weights @y, ap_1, g, = (ay---an)™/(ay - - ay)
and 0 = 2m/n. Since |a;] = |apj] = = lamiimwr;| # 0 for 1 < j < k and

arg (ai---an)/((ag---ar)"a™) = 0, we may assume that A is the n-by-n weighted

shift matrix with periodic weights aq; ..., a1, aag, ..., a,...,ax_1,aa; by Lemma
Ciu -+ Cin
3.3 (2). Let the matrix xRe A+ yIm A + zI,, be partitioned as

le T C1mm
with C; of sizes k-by-k for all i, j, 1 <4, 7 <n. Since Cy;+- -+ Cpj = 2Re C'+ylm

C + zI, for all j, 1 < j < m, we have

pa(z,y,z) = det(zRe A+ ylm A+ z1I,,)

Ciit+-+Cn Cat--+Ch2 -+ Cint+- 4+ Chum
C C Cor
_ et 21 22 2
C(ml Om2 Cmm
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tRe C+ylm C+2[;, 0 --- O

* x % %
= det
* *x % %
* * * *

Hence pc|pa. Since A and w’ A are unitarily equivalent for all integer j, then pelpyia
for all integer j, consequently, pw£C|pA for all ;7 = 0,1,...,m — 1. Note that the
real foci of the curve p ;. = 0 are ecigenvalues of wlC for each j. Since o(C) =
(N WA, - WAL, where A = (ay - - - ag) /¥, it follows that o(w!,C)No(w!C) = P for
any 0 <7 < j < m — 1, thus the homogeneous polynomials p,;c and p_;, have no
common factor for any 0 < i < 7 < m—=1. Therefore, we deduce that p4, = H;”:_Ol Poic

or W(A) =W(B). This completes the proof.

(b) By Lemma 3.3 (5) and its proof, we need only prove that 0WW(A) has a line
segment. By assumption and -Lemma 3:3(2); wemay assume that a; = a4 j = -+ =

A(m—1)k+j > 0 for every j, 1 < j < k. For k = 2, since

a A a
det(Alpo_1 — A2.2,1(52)) = N - (a% + ag)Z = det(MNgo1 — A2-2—1(?1)) )
det(M,y —Re A[1]) = det(My1 — Az 1(2))
a
= AdetOMagn-1) = Azn-1)(5)
2
a a
—det(AMlom—1)-1 — A2(m—1)—1(52))zl , and

det(M,_; —Re A[2]) = det(Alym_1 — Azm_l(%))

ag

= Adet(Mapm-1) — A2(m—1)(5))

aq a%

— det()\lg(m_1)_1 - A2(m—1)—1(5))z )

we obtain det(\,_;—Re A[l]) = det(A,_1—Re A[2]) by induction. Similarly, we
have det(Al,—1—Re Ali]) = det(Al,—1—Re A[j]) for 1 < i,5 < n. Hence W(A[i]) =
W(A[j]) for every i, j, 1 < 4,j < n. For k > 3, we have ||Agn-1(a1/2)| >
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|Ag—1(a1/2)|| by Lemma 3.6. Thus w(A[n]) = ||Re A[n]|| = ||Akm-1(a1/2)|| = max-

det(AI—Re A[n])

det(A[—Re Alk,...,n
det(AI—Re A[i])

det(M—Re A[L,...i,itk,.,

W (A[j]) for every i, j, 1 <, < n by Lemma 3.26 (3). Therefore, by Theorem 3.1,
OW (A) has a line segment L with dist(0, L) = w(A[i]) for all i. |

imum zero of 5 by Lemma 3.23. Similarly, we also have w(Ali]) =

maximum zero of oy for every i, 1 <7 <n—1. Hence W(A[i]) =

The next theorem gives a necessary and sufficient condition for an n-by-n
weighted shift matrix A to have a noncircular elliptic arc in OW(A). Moreover,

in this case, 0W(A) also has a line segment.

Theorem 3.27. Let A be an n=-by-n (n > 3) weighted shift matriz with weights
ai,...,a,. Then OW(A) has a noncircular elliptic arc if and only if the a;’s are
nonzero, n is even, |ai| =-|as| = -+ = Jaz_1|, lao} = |as| = -+ = |a,| and
la1| # |az|. In this case, W(A) = W (B), where B = & (¢’C) @ - - @ (e((W/2=V0C),

0 a
C = ! , o = (ay--<an)¥™/(a1as) and §'= 27 /n, and OW (A) has a line
aay 0
segment.

Proof. The sufficiency follows easily from Theorem 3.21 (a) and the fact that W (
a9

is a noncircular elliptic disc as |a;| # |aas| and both are nonzero, where a =

(ay---an)?"/(aras).

To prove the necessity, by Lemma 3.3 (2), we have that A is unitarily equivalent
to e A’ where ¢ = (Z?:l arga;)/n and A’ is the n-by-n weighted shift matrix with
weights |a1],...,|a,|. Then o(A) = {|a;---a,|""w) : j = 0,1,...,n — 1}. Since
OW (A) has a noncircular elliptic arc, by [14], there is a 2-by-2 matrix C such that
poypar and o(Cy) C o(A'), say, o(Cy) = {B,7v}. From Lemma 3.3 (2), we infer that
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Poic, [par and o(wCh) C o(A') for all j = 0,1,...,n — 1. Therefore, o(A") D {w}5 :
j=0,...,n—1}U{wly:j=0,...,n — 1}. Since these sets o(4'), {wif : j =
0,...,n—1} and {wly:j=0,...,n — 1} consist of n distinct elements, we deduce
that o(A") ={wif:7=0,....,n—1} ={wly:j=0,...,n— 1}. Therefore, we may

1/n and = w’* 3 for some jo. Now, if wi® # —1 or n is odd,

assume that 8 = |a; - - - a,|
then these irreducible homogeneous polynomials pe,, pu,cys- - - P, Ln/2) ¢, Are distinct,
it follows that p4 can be divided by the homogeneous polynomial H _0 p wicy, Of

degree 2(|n/2|+1) > n, this contradicts to the fact that p4 is of degree n. Therefore,

we deduce that w/ = —1 and n is even. Moreover, py = HE.Z/OZ)*1 Puic,- On the other

hand, since O is 2-by-2 with eigenvalues.£|a; - - - a,|*/™, by unitarily equivalence, we
b

may assume that C; = ' Jwhere by, by >0,b; # by and biby = |ay - - - a,|?/".
by 0

Let B = C1¢w,C,®- - ~@w7(f/2)7101 and By bethe n-by-n weighted shift matrix with
periodic weights by, b, by, b, 7. ., by, by. By Theorem 3.21(a), we have pg, = pp = par.
Compute now the coefficients’of (22 + %)z > and y” of p4 and pp,. Since pa = pp,,
we have S0 [a;]? = (b3 + b3)n/2 and (TT}5 Jasgcal — [T723 lags)? = (8] — b/%)?
Hence we may assume that b/* — p3/* = H"/2 lagj—1] — H"/2 lagj|. In addition,
biby = |ay - - ap|¥™ implies that b/* = H”/2 lag;_1| and b}/* = H”/2 lagj|. We also

have

n n
n 2 2
Sl = Y lagi P+ lagl
j=1 = j=1

2 2 n
> [loa,) = 508 +15).

. =
wl3

([T 1oz + %

|3

T

1

j

Therefore, the equality holds if and only if by = |agj—1| # 0, by = |ag;| # 0 for all

J, 1 <j<n/2and b # by. Let C = €?C) and B = €?B;. Then C is unitarily
ai

equivalent to , where o = ¢/¢arga—argaz) — (g, ...q,)%/"/(a,ay) and
aay 0

W (A) = W (A") = W (B;) = W(B). This proves our assertion. In particular, it
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follows from Theorem 3.21 (b) that OW (A) has a line segment. [

Note that the weighted shift matrix A in the above theorem is a special case
of the ones considered in Theorem 3.21. The next theorem is another special case.
Recall that a matrix A is said to be reducible if it is unitarily equivalent to the direct
sun of two other matrices; otherwise, A is irreducible. We characterize those n-by-n

weighted shift matrices A which are reducible in the following theorem.

Theorem 3.28. Let A be an n-by-n (n > 2) weighted shift matriz with weights

ai,...,a,. Then A is reducible if and only if one of the following cases holds:
(1) a; =a; =0 for some 1 << j < ny
(2) nis odd, |a;| = |a;| # O forall 1 <i < j<mn,

(3) n is even, |a;| = |ais(m/9y) # 0 for-alll-<i-< n /2.

In case (1), A is unitarily equivalent to By @ By, where By and By are the weighted shift
matrices with weights a1, ...,a;—1,0 and a;tq,...,a;-1,0, respectively (a, = apir
for1 <r <n, B =[0]ifi=1 5 =mnand B, = [0] ifi = j—1). Hence
W (A) is a circular disc centered at the origin. In case (2), A is unitarily equivalent

1) where w, = ¥/ and o = (ay---a,)"™. Hence W(A)

to diag(a, awy, . . ., Q!

s a closed regular n-gonal region centered at the origin and the distance from the
origin to its vertices equals |aj---an|Y". In case (3), A is unitarily equivalent to
AL @ e Ay, where 0 = 27 /n and Ay is an (n/2)-by-(n/2) weighted shift matriz with
weights ay, ..., am/2) -1, Wan2, @ = (ai---a,)Y?/(ay -+~ an2). In particular, OW (A)

has a line segment.
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Proof. (1) Let a; = a; = 0 for some 4, j, 1 < i < j < n. Also, by Lemma 3.3
(1), we may assume that j = n. Then A = B; @ Bs, where B; and B, are the
weighted shift matrices with weights a;;1,...,a,,a1,...,0;-1,0 and a;41,...,a;-1,0,
respectively (a, = apyr for 1 < r < n, By = [0]ifi =1, j =n and By = [0] if
i=7—1). Hence W(A) is a circular disc centered at the origin. Let a; = 0 for some
i, 1 <i<mn,and a; # 0 for all j # i. Again, by Lemma 3.3 (1), we may assume
that i = n. Then for any orthogonal projection P = [p;;];';_; such that AP = PA,
we have a;(pii — Pit1,i+1) = Gig1(Dig1i41 — Piv2,ig2) = 0 for 1 <4 < n — 1. Thus
P11 = P22 = '+ = Pnn. In addition, AP = PA also implies that a;p;4+11 = 0 for
1 <7< n-—1 We substitute p;111_=.0 in these equalities for AP = PA. Then
a;pi+12 = ap;n = 0 for 2 <7 < n— 1. Proceeding successively with the remain-
ing equalities for AP = PA, we have p;; = 0 for ¢.> j. Hence the assumption
P = P* = P? implies that P.= 0 or P = I,,. Therefore,-A is irreducible.

(2) If n is odd and a; = 0 -for all'1-<-4 < m, then we may assume that
a; > 0 by Lemma 3.3 (2). For any orthogenal projection P = [p;;|i';_; such that
AP = PA, we have a;(p11 — p22) = a2(p22 — p33) = -+ = an(Pnn —P11) = 0. Thus
P11 = P22 = -+ = Pnp. Inaddition, AP = PA also implies that a;p;1,i+2 = @ip1P4i41
and a;1Piy2,i+1 = @iPir1i for 1 <4 <n (Pung1 = Doty Potint2 = P12, Pritln = Pin,
Pni2nt+1l = P21, Antl = ap). Since P = P*, we have Qip1Pit1i42 = QiPii1 for
1 <¢ <n. Thus p;;4+1 = 0 for some ¢ or a; = -+ = a,. Hence p; ;11 = 0 for every ¢,
1<i<nora =---=a,. Since n—1is even, by the same process, we have p; ; =0
foralli < jora; =---=a,. Thus P= P*= P?implies that P equals 0 or I, or
a; = --+ = a,. That is, A is reducible if and only if |a;| = -+ = |a,| # 0. Hence the

assertion on W (A) follows from Proposition 3.5.

(3) If n is even and a; # 0 for all 1 < ¢ < n, then we may assume that

58



a; > 0 by Lemma 3.3 (2). For any orthogonal projection P = [p;;|;;—; such that
AP = PA, following a similar argument as in the proof of (2), we obtain p;; =
Pa2 = -+ = Pny, and pi; = 0 for all @ # j, |i — j| # n/2. In addition, we
also have a;piy1,(n/2)+it1 = Any2)+iPin/2)+i a0d A(n/2)1iP(n/2)+it 1,401 = QiP(n/2)+i;i LOT
every 1, 1 < i < n/2 (Pn/2)+1,n41 = Pn/2)+1,15 Pntl(n/2)+1 = Pi,(n/2)+1)- Hence
P = P* = P? implies that P equals 0 or I,, or a1 = a(u2)41s---,anj2 = Q.
Therefore, A is reducible if and only if |a;| = |ai1@m/2)| for all i, 1 < i < n/2.
Hence OW(A) has a line segment by Theorem 3.21 (b). Moreover, by Lemma
3.3 (2), A is unitarily equivalent to ¢*¥B, where ¢ = (Z?Zl arg a;)/n and B is

the n-by-n weighted shift matrix with weights |ai|,...,|ans|, |a1], ..., |an/2|. Let
In/2 In/2 ;

U= (1/v2) Then U*BU = B{® €“B,, where § = 27/n and
[n/2 _In/2

By is the (n/2)-by-(n/2) weighted shift matrix with weights |a1|,. .., |an/2|. Hence

A is unitarily equivalent to-(e’VB;) @ €?(e¥B,)." Let A; = ¢¥B;. Then A; is
the (n/2)-by-(n/2) weighted shift matrix with weights a1, ..., a(/2)-1, @Gy 2, where

: n/2 n n/2
o = ¢ and 6 = (n/2)0 — (S 2me ;) = (/2 arg o)/ — (S22 arg ay) =
(Z;”fl arg G(n/2)+j — Z;Lfl arg a;)/2. This proves our assertion. |

An immediate corollary of Theorem 3.28 and [14] is the following:

Corollary 3.29. Let A be an n-by-n (n > 3) weighted shift matriz with weights

ai,...,a, and a; =0 for some i, 1 < i <n. Then
(1) pa is reducible.

(2) A is reducible if and only if a; = 0 for some j #1i, 1 < j <mn.

Recall that the reducibility of an n-by-n matrix A implies the reducibility of

pa but the converse is in general not true. We give two examples of weighted shift
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matrices A for which p, is reducible but A is irreducible.

Example 3.30.

(1) If A= J, (n > 3), then A is irreducible, p is reducible and OW (A) has no line

segment.

(2) If A is a 6-by-6 weighted shift matriz with weights 1,2,1,2,1,2, then A is irre-

ducible, pa is reducible but OW (A) has a line segment.

Proof. (1) From Lemma 3.3 (4), weobtain that JV (A) is a circular disc centered at

the origin. Hence the assertion follows directlyfrom [14] and Theorem 3.28.

(2) Follow directly from Theorems 3.21 and 3.28. |
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Chapter 4 Numerical ranges of 4-by-4 nilpotent real matrices

4.1 Introduction

A matrix A is nilpotent if A¥ = 0 for some & > 1. In this section, we are
concerned with the number of line segments on the boundary of the numerical range
of a 4-by-4 nilpotent matrix. The study of this problem was started in [18]. It was
proven in [18, Theorem 3.4] that the number of line segments on the boundary of the
numerical range of a 4-by-4 nilpotent matrix A is less than or equal to 2 under the
additional condition that A has a 3-by-3 principal submatrix B with W (B) a circular
disc centered at the origin. But. it isunknown whether the numbers are less than or
equal to 2 for all 4-by-4 nilpotent matrices (cf. Corollary 4.3 below). In Theorem 4.1
below, we show that if A is a 4-by-4 nilpotent real matrix, then OW (A) has at most
two line segments. The proef is based on Lemmas 3.2-and 3.11 in Chapter 3. The
former says that if A is an n-by-n matrix-and B is'any (n — 1)-by-(n — 1) principal
submatix of A, then every line segment-of OW-(A) intersects OW (B). The latter gives
a necessary and sufficient condition for the existence of line segments on 0W (A).
More precisely, it says that for an n-by-n matrix A, OW(A) has a line segment on
the line z cos§ + ysin § = d if and only if d is the maximum eigenvalue of Re (e~ A)
with unit eigenvectors z; and zy such that Im (e=“ Az, x1) # Im (e=% Azy, 25). In
Theorem 4.4, we give a necessary and sufficient condition for the boundary of W (A)
to have a pair of parallel line segments. More specifically, it is shown that this is the

case if and only if A is unitarily equivalent to a matrix of the form

0 T1 ’L"I“g —T3
0 T3 —iTQ

0 1
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where aw € C\ {0}, r1, r3 > 0 and o € R. Moreover, in this case, W (A) has no other
line segment. in Theorem 4.6, we show that a 4-by-4 nilpotent matrix A which has a
line segment on the boundary of its numerical range must be unitarily equivalent to

a matrix of a special form.
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4.2 Numerical ranges of 4-by-4 nilpotent real matrice

The main result of this section is the following.

Theorem 4.1. Let A be a 4-by-4 nilpotent real matriz. Then OW (A) has at most

two line segments.

The proof of Theorem 4.1 depends on some lemmas and propositions. The first
one is Lemma 3.2 in Chapter 3. It relates the line segments on OW (A) to the numer-

ical ranges of submatrices of A.

Lemma 3.2. Let A be ana-by-n-(n >.2).matriz and let B be any (n—1)-by-(n—1)
principal submatriz of A. Then every line segment of W (A) intersects OW (B).

Proposition 4.2. Let A be the 4-by-4 nilpotent matrix

—0 a; Qs a3-
0 0 a4 as

00 0 ag|
(00 0 0|

where a; € C for 1 < j <6. Then

(1) OW(A) has at most three line segments if pa is irreducible and at most one line

segment if pa is reducible.

(2) OW(A) has at most two line segments if at least one of the a;’s is zero.

Proof. (1) If py is irreducible, then our assertion on 0W (A) follows from [18, Lemma

2.1]. Otherwise, we may consider the following three cases. First, assume that pa
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is the product of two factors py = pipe with p; irreducible cubic and ps linear. Let
C; be the dual curve of p; = 0, j = 1, 2. If the real point (a,b) is a focus of C4,
then the line z + iy — (a + ib)z = 0 which passes [a,b, 1] and [1,4,0] is tangent to
Cy. Hence py(1,4,—(a +ib)) = 0. Since det(A — (a + ib)1y) = pa(l,i,—(a + b)) =
p1(1,i,—(a +ib))p2(1,7, —(a + b)), we have that a + ib is an eigenvalue of A. Then
o(A) = {0} implies @ = b = 0. This shows that 0 is in C;. Similarly, by the same
argument, we also have 0 in C5. Since ps is linear, we obtain that CY is a single point.
Thus Cy = {0} and hence W(A) = C}*. Note that if p is a degree-n homogeneous
irreducible polynomial, then the number of singular points of the curve p = 0 is at
most (n — 1)(n —2)/2 (cf. [36, p. 59, Exercises 5]), and every line segment on the
boundary of the convex hull of the dual curve-of'p = 0 corresponds to a singular
point of the curve p = 0 through duality. Applying these to the cubic p;, we deduce
that there can be at most one line segment on W (A). -Next, if p, is the product of
an irreducible quadratic factor and. a (possibly reducible) quadratic factor, then [14]
and o(A) = {0} imply that 0W (A) has no line'segment. Finally, if p4 is the product
of four linear factors, then similarly, W.(A).="{0}. Hence OW(A) has also no line

segment.

(2) Since a; = 0 for some 4, by [7, Theorem 1], we obtain that W(A[k]) is a
circular disc centered at the origin for some k, 1 < k < 4. Thus our assertion follows

from [18, Theorem 3.4]. |

An easy consequence of Theorem 4.1 and the preceding two results is the fol-

lowing:

Corollary 4.3. Let A be a 4-by-4 nilpotent matrixz. Suppose that OW (A) has two
line segments Ly, Ly with dist(0, Ly) =dist(0, Lg). Then OW (A) has exactly two line
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segments.

Proof. After applying a suitable affine transformation, we may assume, without loss
of generality, that for some 6, 0 < 6 < 27, both W (A) and W (e~ A) have a line
segment on x = 1/2. Since A is nilpotent, by Proposition 4.2 (2), we may assume

that

0 a1 as as
0 0 a4 as
0 0 0 ag
100 0 0
where a; # 0 for 1 < j <6, and_ a; >0for 7= 1,4, 6. We deduce from Lemma 3.2
that x = 1/2 is tangent to OW (A[k])-and W (e~ A)[k]) for every k, 1 < k < 4. Thus
det((1/2)I5 — Re (A[k])) = O-and.det((1/2)13= Re ((e= A)[k])) = 0 for 1 < k < 4.

A simple computation shows that Re (aya@sas) = Re (e “a1aza4), Re (ajazas) =
Re (e ?a;azas) and Re (asazae) = Re (e”“ayasaq). Hence, by the first and third
equalities, we have @;(1 — e ) = =q;(1 — e)for j = 2, 5. This and the second
equality yield @zas = asas and azai = asas>. Therefore, if ay = |ay|e’® for some real
¢, then az = +|asle’® and a3 = £|az|e*®. Finally, let U = diag(e??, 31, %9 ¢i?).

Then U is unitary and

0 aq |CL2‘ :|:|CL3’

0 0 Qay :|:|CL5|

U*AU = e7*
0 0 0 ag
0 0 0 0
Consequently, our assertion follows from Theorem 4.1. [ |

We conclude from Theorem 4.1, Proposition 4.2 and Corollary 4.3 that [(A) < 3

for a 4-by-4 nilpotent complex matrix A and [(A) < 2 for a 4-by-4 nilpotent complex
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matrix A satisfying any one of the following four conditions: (1) A is a real matrix;
(2) pa is reducible; (3) A is unitarily equivalent to the form of Proposition 4.2 and
at least one of the a;’s is zero and (4) OW(A) has two line segments L;, L, with
dist(0, Ly) =dist(0, Lo). However, it is still unknown that [(A) < 2 for all 4-by-4

nilpotent complex matrices A.

For our main theorem, another result which we need is Theorem 3.11 in Chapter

Lemma 3.11. Let A be an n-by-n.(n. > 2) matriz. Then OW(A) has a line
segment on the line xcosf + ysin® = d if and only if d is the maximum eigen-

value of Re (e~ A) with unit .cigenvectors x, and.xy such that Im (e~ Az, z1) # Im

(e7 Azy, 15).

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. By Proposition 4.2 (1), we may assume that p, is irreducible
and [(A) < 3. Suppose that {(A) = 3. Since the numerical range of the real matrix A
is symmetric with respect to the x-axis, we may assume that for some r > 0 and 6,
0<0<m, OW(A) (resp., W (e A)) has a line segment on x = r (resp., x = 1/2).

Since A is nilpotent, by Proposition 4.2 (2), we may assume that

0 a; as2 as
A= 0 O a4 as ,

0 0 0 ag

0 0 0 O

where a; € R, a; #0for1 <¢<6anda; >0forj =1,4,6. We deduce from Lemma
3.2 that x = r (resp., * = 1/2) is tangent to OW (A[k]) (resp., OW ((e*? A)[k]) for every
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k, 1 <k < 4. Thus det(rl3 — Re (A[k])) = 0 and det((1/2)I5 — Re ((e*A)[k])) =0

for 1 < k < 4. A simple computation shows that

a1G2G4
4r? — = 1—2ayasa4cosb,
r
a1a30as5
ré — = 1 — 2ajasa5 cos
472 1 — 2a,asa5 cos b,
r
20306
re — = 1—2axasa
4r? 1 — 2asa3a¢ cos 0,
r
a4G506
4r? — = 1 — 2a4asag cosb.
r

If 1/r = 2cosf, then from the first equality above we obtain cos?f = 1. This is
impossible since 0 < # < m. Hence from the above four equalities, we have a;ay =
as0g, 103 = A40g, Q104 = A30¢, Q105 = A3, AoG3 = a4a5 and asay = azas. This shows
that either a4 = a3, a5 = ao, and ag =1@jy0r ay = =as, as = —ao, and ag = —ay.
Because ay, ag > 0, we only need to-consider the former case. Since OW(A) has a
line segment on x = r, Lemma 3.11 implies that dim ker(r/;—Re A) > 2. Moreover,
for every [z ... z4]7 € ker(rI;~Re A); a simple computation shows that either

(a) ker(riy—Re A) C {[z1¢.vmy]” 1 21 + 2o+ @3+ 14 = 0}, Or

(b) r = (a1 + as + as)/2.

In case (a), substituting x4 = —x1 — x9 — x3 in the component equalities for
(rl;—Re A)[z; ... 24" = 0, we obtain the two equalities (2r—a; +as+az)(z1+z9) = 0
and (2r + a; + as — ag)(xe + x3) = 0. Therefore, we need to consider the following

four cases:

(1) 2r —ay; + as + a3 = 0 and 9 + x3 = 0. Substituting them and z, =
—x1 — Ty — T3 into the component equalities for (rI;—Re A)[z; ... x4]" = 0 and using
dim ker(rI;—Re A) > 2, we obtain a; = as and r = —a3/2. Since a3 = a4 > 0, we

have r < 0, which contradicts our assumption on r.
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(2) 2r + a; + ay — a3 = 0 and z; + x2 = 0. Similarly, we obtain a; = a3 and

r = —ay/2. Since a; > 0, we also have r < 0. This is impossible.

(3) 1+ 22 = 0 and x5 + 23 = 0. Since x4 = —x1 — x5 — x3 and dim ker(rI;—Re

A) > 2, we are led to a contradiction.

(4) 2r — a3 + ag + a3 = 0 and 2r + a; + a; — a3 = 0. From above we obtain

a; = ag and ay = —2r < 0. If U =diag(1,—1,1,—1), then U is unitary and

0 —Qa as —a 0 a; —as ay
0 0 —a @ 0 0 a —a
U AU — 1 2 1 2
0 O 0 —-a 0 0 0 a;
0 O 0 0 0-0 0 0

Hence we may assume, without loss of generality, that

1a1-
01 a
0 01
000_

o oo <©

where a > 0. Since A is a 4-by-4 upper triangular nilpotent matrix, by [6, p. 147,
(4)], the eigenvalues of Re (e"% A) are given by p_1(0) = —(a/2) —sin(0/2), uo(0) =
(a/2)4cos(0/2), p1(0) = —(a/2)+sin(0/2) and p2(6) = (a/2)—cos(0/2). If 0 < a < 1,
then we have 110(0) = 1+ (a/2) > p(0) for k = £1, 2 and py(m) =1 — (a/2) > p;(m)
for j = —1, 0, 2. Let

p(0) = max{ux(0) : k =—1,0,1,2}.

Since pu,(0) and gy (m) are differentiable functions for all k, we have (), (0) =
(10)(0) = (p0)(0) = ()_(0) and (n)y(7) = ()} (7) = (w)_(m) = (u)"(7).

68



Hence [6, Theorem 2] implies that 0T (A) has no vertical line segment. In addition,
the fact that A is a real matrix implies that OW (A) has at most two line segments.
If @ = 1, then OW(A) has exactly one line segment by [6, Theorem 2|. If a > 1,
then we obtain ug(0) = a/2 + cos(6/2) > uk(0) for k = £1, 2. Similarly, for every 0,
0 <0<, we have (1), (0) = (1)’ (0) = (10)_(0) = (1)_(#). Again, [6, Theorem 2]
and the fact that A is a real matrix imply that OW (A) has at most one line segment.

These all contradict our assertion.

In case (b), we substitute r = (a1 + a2 + a3)/2 in the component equalities for

(rl;—Re A)[z; ... 247 = 0. A simple computation shows that
(CLQ -+ Clg)[(al -+ ag)xl — (CL1 in CL3).’L’2 "\ (CLQ — a3);€3] =0

and

(a1 + as)[(a1 = az)ry = (@14 az)xs + (az+ as)xs] = 0.

If a1 +as # 0 and as+as # 0, then from above we have ©1 = x3. Substituting x; = x3
into the second equality above, we obtainay = x5 since a; > 0 and a3 = a4 > 0. Thus
substituting = (a1 + as + a3)/2 and x; = x9 = z3 into the component equalities for
(rl;—Re A)[zy ... 247 = 0 would imply that z; = 2o = x3 = x4, which contradicts

dim ker(ri;—Re A) > 2. Therefore, we only need to consider the following two cases:

(5) a; + ag = 0. Then ay = —a;y and hence

0 ap —ap as
A— 0 0 as —a 7

0 0 0 ax

0 0 0 0

where ay, az > 0. Since OW (e~ A) has a line segment on z = 1/2, Lemma 3.11 im-

plies that dim ker((1/2)I;—Re (e"% A)) > 2, where 0 < § < m. Thus there is a nonzero

69



vector x of the form [0 x5 x5 x4])7 in ker((1/2)[,—Re e~ A). A simple computation
shows that ai(zy — 23) = —azxy, 1o = e (azrs — ayzq) = 0, 23 = azexy + aje Py
and a,e(xy — 23) = —x4. By the first and last equalities, we have (aze? — 1)z = 0.
Since age® — 1 # 0, we obtain 2, = 0. Hence we have 2o = x5 from the first equality.
Substituting them into the second equality yields (1 — aze™*)xy = 0. Thus we also

have x5 = 0, which contradicts our assumption on the nonzeroness of x.

(6) az + a3 = 0. Then ay = —ag and hence

0 ai —as a3
A— 0.0 as —dag ’
0 0 0 ay
I 000 0 |

where a;, ag > 0. Using the-same argument as in the proof of case (5), we are also

led to a contradiction. This eompletes the proof. [ |

We next give a necessary and sufficient condition for the boundary of the nu-

merical range of a 4-by-4 nilpotent matrix A to have a pair of parallel line segments.

Theorem 4.4. Let A be a 4-by-4 nilpotent matriz. Then OW(A) has a pair of

parallel line segments if and only if A is unitarily equivalent to a matriz of the form

0 T1 iTQ —T3
O T3 _iTQ
« )
0 1
0

where a« € C\ {0}, 1, r3 > 0 and o € R. In this case, OW (A) has no other line

segment.
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Proof. We first prove the sufficiency. In the assumption, we may assume that a = 1
and r? +73 +7r2 = 1. From a simple computation, we obtain, for every p with |u| =1

and for every z € C,

p(z,n) = det(zly — Re(uA))

2r? + 2r2 + 2r2 ri4ry 41+ 2rird + 2r2r2 + (p® + @?)riv?

= 2 4 )2+ 16 )
2 2 2,.2
A (%)22 n (1 + (1 +1M6 2)7“17“3)’
and hence
pal) =2 = 52+ g = (= e )

Thus both 1/2 and —1/2 are theteigenvalues-of Re A with multiplicity two. Since
ri, 3 > 0 and 72 + r3 + r2 =1, we-have 7; < 1 andr;3 < 1. Some calculations on

ker((1/2)I,—Re A) show that

1 t, A\t / t t
ker(= 1, — ReA) = {\[— 1 1017 [ .
er(24 eA) {1[1—7”% L~ r? 0] + Aol 1—-rfy 1—12

0 1]T : )\1,)\2 € C},

where t; = rir3 +iry and ty = r3iryre. Notethat if B is a 4-by-4 nilpotent matrix

of the form ) )
0 by by b
0 0 by bs
00 0 b |
00 0 O

where b; € C for 1 < j <6, then for every nonzero r» € R and = = [z1 2 z3 zq)T €
ker(rl;—Re B), we have 2rx; = b1xy + boxs + bszy and —byx; + 2rwy = byws + bsry.
Thus

IHl<B$C, .T) = Im(a:_l(ble + b2$3 + b3.134) + LU_Q(b4.T}3 —+ b5374) —+ b6$_3$4>
= Im(2r|x, |* — by T3 + 2r|xy|? + beT3w4)
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We derive from (iii) that Im (Az,z) = r Im (T3zy — 2173). Letting y = [t — ity to—

ity 1—7r2 (1—r2)]" and 2z = [ty + ity to+it;y 1—1rF — (1 —r})i]T, we obtain

Im(Ay,y) = mIm(i(1—7r})* = (ty — it2) (f2 + it1))
= rIm(i(1 —rd)? — (LTy + Tty + it |2 — i[ta]?))
2+ |t — [t1]?)

)
)

L=+ (1= ) =)
(1=rf=rf+r)
(

1 =~ (1= 1r3) =2rr35(1—71) >0
and

Im(Az,2) = rIm(—i(1 =93> =(t, +ity)(E; — it)))

Finally, letting y1 = y/[|y|| and z1 = z/||z|, we have Im(Ay,,y1) # Im(Az, z1).
Therefore, by Lemma 3.11, W (A) has a line segment on x = 1/2. In a similar
fashion, we also derive that W (A) has a line segment on # = —1/2. This proves one

direction.

Now we prove the necessity. After applying a suitable affine transformation,
we may assume, without loss of generality, that for some r € R, 0W(A) has two
line segments on = 1/2 and = r. Lemma 3.11 implies that dim ker((1/2)I;—Re
A) = dim ker(rl;—Re A) = 2. Thus both 1/2 and r are the eigenvalues of Re A
with multiplicity two. Since Re A has zeros on its diagonal, we have (1/2) +r = tr
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(Re A)= 0, where tr (Re A) denotes the sum of the diagonal entries of Re A. Thus

r = —1/2. Since A is nilpotent, we may assume that
0 ay as das
. 0 0 a4 as ,
0 0 0 ag
0 0 0 O

where a; € C for 1 <7 <6 and a; > 0 for j =1, 4, 6. Fix |u| = 1. For every z € C,

some simple computations show that

p(z,n) = det(zly — RepA)
ai + lag|® + |aslP 4 af + |as|* + @

_ 4 _ 2
_Re(u(ozl + Qo (i3 + Oé4))z
4
+a%a§ + |ag?|asl? + |as|?af =B + (1 — p?)arazasae + (1 — ?)ajazaqae

16 ’
where o = ajaza4, ay = 10305,/ Q3= asa3a6, 4 = 40506 and § = 2 Re(ajazazag +

asazasas + ajazasag). Hence we obtain

Jp

&(Znu) = 423_(

af + lag|” + |as]? + af + |as|* + ag
2
Re(p(on + as + ag + ay))
; .

E

Thus p(£1/2,1) = %(:I:l/Z, 1) = 0. By our assumption, we deduce from Lemma 3.2
that both = 1/2 and © = —1/2 are tangent to OW (A[k]) for every k, 1 < k < 4.
Then det(£1/21; — Re A[k]) = 0 for 1 < k < 4. A simple computation shows that
a? +lag|? +a? = 14+2 Re ay, a? + |az]* + |as|* = 1 £2 Re ay, |as|® + |az|* + a2 = 1£2
Re az and a? + |a5]? + ag = 1 £+ 2 Reay. Hence Re a; = 0 for 1 < j < 4. Moreover,
taking the sum of the first three equalities above and subtracting the last equality

from it yields a? +|as|?+|a3|> = 1. From this and the first equality, we have |az| = a4.
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Therefore, the first three equalities imply that |as| = |as| and a1 = ag. Substituting
them into the equality p(1/2,1) = 0, we have 1 = af + |aa|* + |az|* — 8. Thus

1 = (af + |ag]? + las]*)? — 2ai|ag|* — 2|ag|?|as|” — 2a7|as|” — 5
= 1 — (Ja1@s + @sa6]® + |as@s + a4a5]* + |ara@s + asagl®).
Consequently, we obtain aya; = —asag, asa3 = —asas and a;az3 = —agag. Consider

the following cases:

(1) ajaq = 0. Suppose that a; = 0 (resp., ay = 0). Then ag = 0 (resp., a3 = 0)
and hence W (A) is a circular disc centered at the origin by [7, Theorem 1]. This is a

contradiction.
(2) ayaq # 0 and ay =0. Hence as = 0. From a1a;3 = —a4as and a; = ag and
las| = a4, we have ag = —ay.

(3) arazay # 0. Hence a; # 0'for-all j; 1 <y < 6. We also have a3 = —as <0
by the same argument as in case (2). In addition, a1az = —asag (resp., as@z = —a4as)
implies that as = —as (resp., ag = @5). Thus ay = —a5 = —ay. That is, ay = ir for

some r € R and r # 0. This proves our assertion.

Finally, that 0 (A) has no line segment other than those on z = £1/2 follows
from Corollary 4.3. |

An immediate consequence of the preceding theorem is the following:

Corollary 4.5. Let A be a 4-by-4 nilpotent real matriz. Then OW (A) has two
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parallel line segments if and only if A is unitarily equivalent to a matriz of the form

0 T 0 —T3
0 T3 0
« Y
0 ™
0

where v € R\ {0}, and 7, r3 > 0.

Proof. The sufficiency follows easily from Theorem 4.4. For the necessity, we may

assume, by Theorem 4.4, that

0 T1 i’l"Q —7Ts3
0 T3 —i?“z
A=« ,
0 1
0

where aw € C\ {0}, r1, 3 > 0 and. 75 € R. Since A is'a real matrix, we obtain o € R.

Thus iary = —iary and hence ry = 0. Our-assertion follows. [ |

Finally, it is shown in the next theorem that a 4-by-4 nilpotent matrix A which
has a line segment on 0W (A) must be unitarily equivalent to a matrix of a special

form.

Theorem 4.6. Let A be a 4-by-4 nilpotent matriz. If OW (A) has a line segment,

then A is unitarily equivalent to a matriz of the form

0 a; as as
0 a4 a
(iV) 4 5 ’
0 Qg
0
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where
ay = aay + (1 = | *)(1 — |aof*)) /2™,
as = aay + (1 — |ar*)(1 — |ag|*)) /e,
ag = azaz + (1 — |az|?)(1 — |as|*)) /20,
la;] <1 for1 <i<3, anda € C\ {0}, 0, 02 € R. (If |a1| =1 or|as| = 1, then 0,

can be an arbitrary real number. Similarly, if |a1| = 1 or |as| = 1, then 6y can be an

arbitrary real number.)

Proof. Since A is nilpotent, we may assume that

0 a; Qg dads
A 0 0 a4 QA5 \
0 0 0 ag
0 0 -0-0
L A

where a; € C for all j. After applying a-suitable affine transformation, we may as-
sume, without loss of generality, that 91 (A) has a line segment on x = —1/2. Lemma
3.11 implies that —1/2 is the minimum eigenvalue of Re A and dim ker((1/2)I,4+Re

) C

0 aj aj
A) > 2. Hence the fact that Re ? | is a submatrix of Re A yields W/ ( ’
0 O 0 0

01
W ( ) for every j. Thus |a;| <1 for 1 < j < 6. We deduce from Lemma 3.2
00

that x = —1/2 is tangent to OW (A[k]) and OW ((e""? A)[k]) for every k, 1 < k < 4.
Then we have det((1/2)I5 + Re (A[k])) = 0 and det((1/2)I5 + Re ((e"?A)[k])) = 0
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for 1 <k < 4. A simple computation shows that

la1]? + |ao]? + |as]? = 1+ 2Re ayazas,
a1 |? + |as|® + |as]* = 1+ 2Re ayazas,
lao|?* + |as|* + |as]* = 1+ 2Re asazag,
lag|* + |as|® + |as|* = 1+ 2Re asazas.
Let r1 = /1 —|a1]?, r2 = /1 —az|?> and r3 = /1 —|as|?>. From the first three

equalities above, we obtain

TP = (1 ralaaP)0 — losl?) = r2r3
s — Tias P ST — Y0 s ) = 7272,
a6 — @pasl? | = = Jaol?) (1 = |agf?) = r3r3.
Thus we may assume that ay = ayag +=71ree, as = Gras + rirse?®? and ag =

Tzas + ror3e’® . where 0; € Rfor 1< j < 3.-By means of a succession of elementary

row operations, we can transform (1/2)l;+Re-Ainto the matrix

1 ay ao as 1 ai ao as
2 _ _ ) 0 »
o 0 1—|aq]* a4—ajas a5 — aras 10 Ty riree?t  rirse'??
0 a3—aas 1—las* ag— azas 0 ryree” 2 rorsei?s

0 a5 —aa3 a5 —agaz 1 —|ag)? 0 rirse” 2 pyrge=is g2

Since dim ker((1/2)I,+Re A) > 2, we have dim ran((1/2)I;+Re A) =1 or 2. If dim
ran((1/2)I4+Re A) = 1, then dim ranD = 1. Hence we have r; = ry = 13 = 0.
This implies that ay, = @yas, a5 = @ras and ag = azas. On the other hand, if dim
ran((1/2)I,+Re A) = 2, then dim ranD = 2. Thus we obtain ryrze’® = rorael®=61),

This completes the proof. [ |

For the converse of Theorem 4.6, the following example shows that this is not
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true in general.

Example 4.7. Let

[0 (V21 v3)/2 1/2 V2/2 ]
L0 0 (V2+V3+V6—-3V3)/4 (VA+2V3+V4—2V3)/4
0 0 0 (V2+6)/4

| 0 0 0 0 |

Then A is of the form (iv) and OW (A) has no line segment.

Proof. 1t is easily seen that A is of the form: (iy) by letting o = 1 and 0; = 6, = 0.
Now suppose that for some r >0 and 0, 0 < 6 <27,0W (e~ A) has line segment on
x = r. We deduce from Lemma 3.2 that x=1/2 is tangent to OW ((e=*(A/(2r)))[k])
for every k, 1 < k < 4. Thusdet((1/2)I3 — Re ((e=®(A/(2r)))[k]) =0 for 1 <k < 4.

A simple computation shows that

REEILERL) g S )P
1= (o T TR s B Y8,

From the above two equalities, we obtain cos# # 0 and hence
- (P55 1443
L= (G(RE) 34V3
This shows that » = 1/2. Substituting » = 1/2 in the first equality, we have cosf =

—1. We next show that 0W(A) has no line segment on z = —1/2. By means of a

succession of elementary row operations, we can transform (—1/2)/,—Re A into the

matrix
1 (V21 V3)2 12 vR)2 ]
L0 V2-VB VB V2
0 0 0 0
0 0 0 0 |
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Thus some calculations on ker((—1/2)I,—Re A) show that

V2

1
ker(—§[4 —ReA) = {\[t; —V3t, 107 + )\2[7751 — V21, 01]": M, A € CY,

where t; = 1 + /3 and t, = \/2 + /3. Hence by (iii) in the proof of Theorem 4.4,
we derive that for any x = |1 9 23 74)7 € ker((—1/2)I;,—Re A),

V24+V6__ 243

Im(Az, x) = Im( 1 D% 5

2 1 2
= Im(\/T_tﬂ_sM - §t2(t1$3 + §t1x4)(—\/§t2$_3 — \/§t2$_4))

= Im((?tl + ?tltg)x_g,m + ;tltgxng)
= Im(ﬁ(l +V3) ([ HA3(2 4 V3))TFaa + ?(1 +V3)(2 + V3)as77)

4
= ‘/75(1 +/3) (24 V3)Im(Tsra+asTr) =0.

173)

Thus by Lemma 3.11, OW (A) has no'line segment on =z = —1/2. Therefore, it is

impossible for OW (A) to have a linesegment.
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Chapter 5  Products of two 2-by-2 nonnegative contractions

5.1 Introduction

Recall that a bounded linear operator A on a complex Hilbert space H is non-
negative (resp., positive) if (Ah,h) > 0 for any h in H (resp., (Ah,h) > 0 for any
h # 0 in H). For convenience, we denote it by A > 0 (resp., A > 0). We know that
A >0 (resp., A > 0) if and only if A = A* and o(A) > 0 (resp., o(A) > 0). It is
well-known that if A and B satisfy 0 < A, B < I, then Re AB > —1/8 and —1/4 <
Im AB <1/4 (cf. [12, Theorem 1.1 and Corollary 4.3]). The purpose of this chapter
is to study matrices which are products of 2-by-2 monnegative contractions. We also
give several properties of a matrix which is a product of n-by-n ones and discuss those

of its numerical range.

In Section 5.2, we consider a matrix whichis a product of two 2-by-2 nonnegative

contractions. Let A be a 2-by-2 matrix-in. upper-triangular form

x oz
0y
In Theorem 5.1 below, we give a necessary and sufficient condition for A to be a

product of two nonnegative contractions. More specifically, it is shown that this is

the case if and only if

0<az,y<landl|z] <|Vo—ylv/(1-2)(1-y).

Next, we list several propositions and corollaries of Theorem 5.1. For example, Corol-
lary 5.6 says that W(A) is not a circular disc if a 2-by-2 matrix A is a product of

two nonnegative contractions. It was proven in Corollary 5.12 that if A is a 2-by-2
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matrix which is a product of finitely many nonnegative contractions, then

z 0
|A]| = 1 if and only if A = , where 0 <z < 1.
0 1

In Corollary 5.13 (resp., Corollary 5.14), we give another proof of the fact that if
B and C satisfy 0 < B, C < I, then (—=1/4)I; < Im BC < (1/4)Iy (resp., Re
BC > (—1/8)I3) and

{wE(C:Imw:i}ﬂ@W(BC)#@ifandonlyifBC%’
0

N N

(resp.,

0
—é € OW (BCY) if-and-only if BC"=
0

o ol

Finally, in Corollary 5.15 (resp., Corollary 5.17), we give some equivalent conditions
for a 2-by-2 matrix to be the-product of two-nonnegative contractions at least one of

which is noninvertible (resp., invertible).

In Section 5.3, Theorem 5.18 says that if a bounded linear operator A of the

A As
form is a product of two nonnegative contractions, then so are A; and
0 A,

Ay. We also have several immediate corollaries (cf. Corollaries 5.21, 5.22, 5.23 and

5.24 below). For example, in Corollary 5.22, it is shown that a finite matrix A =
T; Z;

(Zfil ®A;) & diag(wy, ..., ws,), where A; = for all ¢, is a product of two
0 v

nonnegative contractions if and only if

0<ux;,vy,w; <1and |z <|/x; — \/E\\/(l —x;)(1 —y,;) for all 4, 5.

In Corollary 5.23, it is shown that an n-by-n quadratic operator is a product of two

nonnegative contractions if and only if it is unitarily equivalent to a matrix of the
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form

k
a ¢c;
ol &0L® () @ ),
i—1 0 b

where 0 < a, b < 1 and |¢;| < |va — Vb|y/(1—a)(1 —0) for all 4. In addition, we
generalize Corollary 5.6 in Corollary 5.26. More specifically, in Theorem 5.25, it is
shown that if an n-by-n matrix A whose numerical range is a circular disc centered at
a, then a is an eigenvalue of A with its geometric multiplicity less than its algebraic
multiplicity. Hence from Theorem 5.25 we obtain Corollary 5.26, which says that
W (A) is not a circular disc if A is a product of two n-by-n nonnegative contractions.
Finally, from Kuo and Wu [29, Theorem 3.1], we know that an n-by-n matrix A is
a product of finitely many orthogonal projections'if and only if it is unitarily equiv-
alent to Iy @ A, where 0 < k'<'njand A; is singular'with ||A;|| < 1. Therefore, an
n-by-n matrix A is a product of finitely many orthegonal projections if and only if it
is unitarily equivalent to I, @ A;, where 0 < k < n and A; is a product of finitely
many orthogonal projections with || A; || < 1. In-Proposition 5.30, we also show that
A is a product of infinitely (resp.; finitely) many nonnegative contractions if and only
if A= I, ® B, where 0 < k < n and B is a product of infinitely (resp., finitely) many

nonnegative contractions with || B|| < 1.
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5.2 Products of two 2-by-2 nonnegative contractions

The following theorem is the main result of this section.

x z
Theorem 5.1. Let A be a 2-by-2 matriz of the form . Then A is a

0y
product of two nonnegative contractions B and C if and only if 0 < z, y < 1 and

12| < |Vz — Yl —x)(1—y). In this case, we can choose B and C such that
1Bl =[] = 1.

In order to prove this theorem, we need the following lemmas. The proof of
Lemma 5.2 can be obtained by«[4, Theorem 3] -and Lemma 5.3 is a common result in

linear algebra.

Lemma 5.2. If B > 0and A is any bounded linear operator, then o(AB)" C
W(A)-W(B).

Lemma 5.3. Let A and B be two 2-by-2 matrices. Then A and B are unitarily
equivalent if and only if tr A =tr B, det A = det B and tr (A*A)=tr (B*B). In
particular, normal A and B are unitarily equivalent if and only if tr A =tr B and

det A = det B.

The next lemma is the major step in proving Theorem 5.1.

x oz
Lemma 5.4. Let A be a 2-by-2 matrix of the form . Then
0y

(1) A = BC, where B (resp., C') is unitarily equivalent to diag(1, A1) (resp., diag(1, \2)),

where 0 < Ay < 1 (resp., 0 < Ao < 1), if and only if vy = M Ao, where 0 < x,y <
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1, min{x,y} < A\, A\ < max{z,y} and |z]* = (1—2)(1—y)[(z+y) — (A1 + Xa2)].

(2) A is a product of two nonnegative contractions which are both unitarily equiv-

alent to diag(1,\) for some A, 0 < A < 1, if and only if 0 < z, y < 1 and

12| = |vVz — Y|/ (1 — z)(1 —y). In this case, X = \/Ty.

(3) A is a product of two nonnegative contractions which are both unitarily equiv-

alent to diag(Ai, Ay) for some Ny and Ay, 0 < Ay, Ay < 1, if and only if 0 < x,

y <1and|z| < Vo — ylv/ (1 —2)(1—y).

Proof. (1) We first prove the sufficiency. By assumption, if y = 1, then z = A\ A\ and
z = 0. It is easy to see that our assertion.holds in this case. Hence we may assume,

without loss of generality, that xy = AjAo, where 0 <z < A < A <y < 1 and

122 = (1 —2)1 —y)(z +y)— (A + A)]. Let B = + 0 , C = o b and

0 N\ b d
a b

Ay =BC=| _ ,wherea=1—c,d=Xo+c,c=(1—-2)1—y)/(1 —=X\)
bA\1 d\

and |b] = vad — Ay. Then we obtain that a +d = 1 + Ay and ad — [b]> = . Then

1 0
Lemma 5.3 implies that C' = . Hence we only need to prove that A = A;.

0 Ao
Some simple computations show that

tr Ay = a+d)\1:1—0+)\1()\2+0):1+)\1>\2—C(1—)\1>

= l+oy—(1—-z)(l—y)=ac+y=tr A
and

det Ay = ad\; — |b]*A\ = Mi(ad — |b]*) = M\ Ay = 2y = det A.
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In addition,

22 = (1-2)1=yl(z+y) — (M + )]
= (1=2)1-y)[1 = )1 =X) - (1—2)(1-y)
= (1= A)[(1T = A)(1 = A2) — (1 = Ay)]
= (1=MN)*[c—cAy—
= (1-X)?* [N +0)(1—c)— A\
= (1—\)*(ad — X)) = [b]*(1 — A2

This implies that

tr(ATA) = a3 b° + [B°AT 4 d2Xs
= (a4 dA)2 AL~ )? = 2)\ (ad — |b]?)
= 1 —|—>\1>\2 — C(l — )\1)

= (z+ y)2 — 2xy + |z\2 =1r(A*A).

From these equalities and Lemma 5.3, we-obtain A; = A as asserted. This proves the

sufficiency.

For the converse, Lemma 5.2 implies that o(A) C W(B)W(C) C [0, 1] and

1 0
hence 0 <z, y < 1. If \y =1, then A= (C = . This implies that z = 0 and

0 Ao
max{z,y} = 1. It is easy to see that our assertion holds for the case max{z,y} = 1.

Hence we may assume that 0 < z < y < 1 and \; < 1. By our assumptions, we

1 0 a b ) 10
may further assume that B = ,C =1 _ with C' = and
0 N b d 0 X
a b
A2 BC=| _ . Hence Lemma 5.3 implies that a+d = 14+ )y, ad—|b|? = s,
b\1 d\;

and T +y = a+d\;, 2y = (ad — |b]*)\1, 22 + y* + |2]? = a® + |b]* + (|b]* + d*)\3.
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Thus we have
[2* = [a® + [b]” + (1b]* + d*)AT] = (a + dM)? + 2(ad — [B]*) A1 = [p]*(1 — A1)
In addition, we also obtain that

r+y=a+dh =1+ —d)+d\ =1+ —(1—-X\)d

and hence
d = 1_1A1(1+A2—x—y)
— 1_1/\1[(1—x)(1—y)—1131/+)\2]
— o Dall g (1)1 - )

Let c=(1—2)(1 —y)/(1 —A;). Then d = \s + ¢ and a= 1 — ¢. This implies that

27 = B S XP2= TN )’ (ad — X)
= (1231 — ) Do) — A
= c(1-X)*(1=X—¢)
= (1 =2)[(1 =X)L =A2) —c(1 = N\y)]
= (1-2)A=ylz+y) —(+r)]
Hence x +y > A + Xp. By the equality zy = (ad — |b|*)A\; = A2, we derive

that 2% + M Ay = 22 + 2y > x| + x)Xe. That is, (A, — 2)(A\y — z) > 0. Therefore,

x < A\, Ay <y follows. This proves the necessity.
(2) By (1), the sufficiency follows easily from letting \y = Ay = /zy. For

the necessity, let A\; = XAy = A. Then (1) implies that A = /ry and hence |z|*> =
1-—2)(1-y)l(z+y) -2\ =1 —-2)(1—y) (Vo —/y)* Our assertion follows.
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(3) Assume that A = BC, where B, C are both unitarily equivalent to diag(A1, A2)
for some \; and nonzero Ay, 0 < A\; < Ay < 1. Considering A/(\o?) = (B/A\2)(C/X2),
we deduce from (2) that 0 < /A, y/Ay < 1 and

E BT D

Hence 0 <z, y <1 and

o1 = IWE = Vil = 2)(1 = ) < V5 = iV T =T =)

This proves the sufficiency. For the necessity, we may assume that 0 < z <y < 1.
Consider the function f(t) = |z — \/y[\/(t —2)(1 — (y/t)) on [y, 1]. We have
f(y) =0 and f(1) = [z — /Y|y (1 ==)(1 =y).» Hence the real-valued continuous

function f must assume the valie.z-at some point a, y < o < 1. This says that
0 <az/a<y/a<1and|z/a| = |\/ala—/y/al\/(1— (z/a))(1 — (y/a)). There-
fore, by (2), A = a(A/a) = aBC = (yaB)(y/aC) for seme nonnegative contractions
vaB and /aC' which are beth, unitarily equivalent to diag(y/«, A\/a) for some A,
0 < X < 1. This completes the proof. [ |

Now, we are ready to prove Theorem 5.1 by using the preceding lemmas.

Proof of Theorem 5.1. The sufficiency follows easily from Lemma 5.4 (3). To prove the
necessity, Lemma 5.2 implies that 0 < z, y < 1. First, we consider ||B|| = ||C]] = 1.
Then B (resp., C') is unitarily equivalent to diag(1, A1) (resp., diag(1, \2)) for some
A1 (resp., A2), 0 < A; < 1 (resp., 0 < Ay < 1). By Lemma 5.4 (1), we obtain that
Yy = Mg, where 0 < z, y < 1, min{z,y} < A\, Ay < max{z,y} and |z]*> = (1—x)(1—
Y)[(z+y) — (A + A2)]. Thus we have the inequality A +As > 2¢/A Ao = 2,/zy. This
implics that |2 < (T =1~ 9@ T~ 2vas = VI - D~ 9V - Vil
r/a z/a

In general, since A = « = «a(B/||B|)(C/]|C]), where 0 < a =
0 y/a
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IB|IIIC|| < 1, the scalars z,y, z in the above can be replaced by z/a, y/a, z/a, respec-
tively, to get 0 < z/a, y/a < land |z/a] < /(1 — (z/a))(1 — (y/a))|\/x/a—/y/a|.
This shows that 0 < z, y < a < 1 and |z| < |V — Y[/ (a—2)(1 = (y/a)) <
vz — /yl/(1 — z)(1 — y), which proves our assertion. |

Next, we list below some corollaries of Theorem 5.1.

x z
Corollary 5.5. Let a 2-by-2 matrix A of the form be a product of two
0

)
. . I X Z/ . / .
nonnegative contractions. Then any A= with |z'| < |z| is also a product
Y
of two nonnegative contractions.
Proof. This follows directly from Theorem 5:1. [ |

Corollary 5.6. If a 2-by-2 matriz A is a product of two nonnegative contractions,

then W (A) is not a circular disc.

T oz

Proof. We may assume that A is of the form and W (A) is a circular disc. It
0y

implies that = y, and hence z = 0 by Theorem 5.1. This yields that W (A) = {z},

contradicting our assumption. Our assertion follows. [ |

Corollary 5.7. A 2-by-2 matriz A is a product of two nonnegative contractions
if and only if A is a product of two nonnegative contractions which are both unitarily
equivalent to diag(A1, \2) for some Ay and Ay, 0 < Ay, Ay < 1.

Proof. This follows directly from Theorem 5.1 and Lemma 5.4 (3). |

88



Corollary 5.8. Let A be a 2-by-2 matriz. Then A = BC', where B, C' are both
orthogonal projections (B = B* = B?, C' = C* = C?) if and only if either A = I,
o . . y(1—y)
or A is unitarily equivalent to a matriz of the form for some vy,

Y
0<y<1.

x oz
Proof. We may assume that A is a 2-by-2 matrix of the form . Since a 2-by-2

0 y
nonzero, nonidentity orthogonal projection P is unitarily equivalent to a matrix of

0
the form , by Lemma 5.4 (2) we know that A is a product of two orthogonal
01

projections if and only if either A =Jdyor £ =0,0 <y <1 and |z| = /y(1—y). A

The next corollary which is analogous to Lemma 5.4 (2) and (3) is needed for

the proof of Corollary 5.10.

x oz
Corollary 5.9. Let A be a 2-by-2 matrix of the form . Then
0y

is a product of two nonnegative matrices which are both unitarily equivalen

1) Avis a product of t jve matrices which are both unitarily equivalent
to diag(1,\) for some N\, X\ > 1, if and only if xz, y > 1 and |z| = |V —
VI (@ —1)(y — 1). In this case, X = \/Ty.

(2) A is a product of two nonnegative matrices which are both unitarily equivalent

to diag(A1, A2) for some Ay and Ao, A1, Ao > 1, if and only if x, y > 1 and

2] < [V = Vilv/(@ = 1)y - 1).

Proof. Note that A = BC, where B, C are both unitarily equivalent to diag(1, \) for
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1z —z/xy

0 1/y
both unitarily equivalent to diag(1,1/\) for some A\, 0 < 1/A < 1. In addition, z,

y = land |z] = |Vo—/yly/(1 - 2)(1 —y) (resp., 2] < [V — /gl (1 - 2)(1 —y)) if
and only it 0 < 1/, 1/y < 1 and | —2/zy] = |v/T/5 —/Tul/(T= (7)1 = (1/9)
(vesp., | — z/xy| < |/1/z—+/1/y|/(1 — (1/2))(1 — (1/y))). Hence our assertions in
(1) and (2) follow from Lemma 5.4 (2) and (3), respectively. |

some A\, A > 1, if and only if A= = = C7'B7!, where B, C are

Corollary 5.10. Let A be a 2-by-2 matriz. Then A is a product of two posi-

tive contractions if and only if A™' is unitarily equivalent to a matriz of the form

, where a, b > 1 and || <1\/a — Vb \/la=1)(b— 1).

a ¢

0 b

Proof. This follows directly from Theorem 5.1 and the proof of Corollary 5.9. [ |

Corollary 5.11. Let A be a 2-by=2 matriz, which is a product of two nonnegative

contractions. Then

x 0
|A|l=1 if and only if A= , where 0 <z < 1.
0

Proof. We need only prove the necessity. Let A be a 2-by-2 matrix of the form

T

. Since the assumption and the fact that || Al = 1imply |z| = /(1 — |z]2)(1 — |y[2),
0y
by Theorem 5.1 we obtain 0 < x, y < 1 and

1-2)1-y) < (1-2)(1-y) (V- Vy)

A simple computation shows that either one of x and y is 1, or (1+ /7y)? < 0. Note

that the latter is a contradiction. The former implies z = 0 and our assertion follows.
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Corollary 5.12. Let the 2-by-2 matrix A be a product of finitely many nonnegative

contractions. Then

x 0
|A|| =1 if and only if A= , where 0 < x < 1.
0

Proof. We need only prove the necessity. Assume that A = A;---A,, where
0<A; <I)foralli, 1 <i<n. Since ||A]| =1, we have that ||A; As|| = 1. Corollary

z; 0
5.11 implies that A1 Ay = ! , where 0 <'@1.< 1 and hence 0 < A1 A4; < L.
0w 1
Repeating the above arguments with Ay replacing Ay As and so forth, we obtain
z 0
A , where 0 < z.<'1. This proves our assertion. [ |
0 1

Recall that if A and B satisfy 0 < A, B < I, then it is known that Re
AB > (—1/8)I,, and (—=1/4)I, < Im AB </(1/4)1, (cf. [12]). Now, we give another

proof for the case n = 2 in the following.

Corollary 5.13. Let the 2-by-2 matriz A be a product of two nonnegative con-
tractions. Then (—1/4)I, < Im A < (1/4)I, and

(v) {wECIImwzi}ﬂﬁl/V(A);é@ if and only if A=

= N

0
In case (v), {w € C:Im w = —i/4} NOW(A) # @.

Proof. By Theorem 5.1, we may assume that A is a 2-by-2 matrix of the form

r z

, where 0 <z <y <land0 <z < (¥ —v2)y/(1—2)(1—y). This
0y
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implies that

1 1 1

2<Vyll—y) = \/—(y—§)2+1 <3
and hence z = 1/2 if and only if y = 1/2 and = 0. Since W (A) is the elliptic disc
with foci x, y and minor axis of length z, we obtain (—1/4), < Im A < (1/4)I,

0 1/2
and thus the sufficiency of (v). For the necessity of (v), if A = / , then
0 1/2
0 —i/4
Im A = . Hence o(ImA) = {—1/4,1/4}. This implies that Im
i/t 0
W(A) = W(ImA) = [-1/4,1/4], completing the proof. |

Corollary 5.14. Let the 2-by-2 - matriz A be a product of two nonnegative con-
tractions. Then Re A > (—1/8) I, and

V3

0
(vi) —é € OW(A) if andonly if A= .

4
1
4

Proof. By Theorem 5.1, we may assume that A is a 2-by-2 matrix of the form

r =z

. , where 0 <z <y <land0 <2z < (¥ —va)y/(1—2)(1—y). This
impliez that
Ph-af < (-2 -y)F - VAP + (Vi VDG~ V)
= (VT V)
Note that TV (A) is the elliptic disc with foci x, y and major axis of length /22 + (y — x)2.

Therefore, by our assumption we have, for any A € Re W (A),

(z+y) — 22+ (y — x)?
2

(@ +y+ Ve —Vy+zyy—yva).

A2

(vii) >

N —
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Consider the function f(z,y) = 1/2(z +y + Vx — /¥y + 2/y — yy/x) on R, where
R={(z,y) eR?*:0<x <1,z <y<1}. Weobserve that f is a continuous function

on R. Consider the following cases:

(1) x=0,0<y <1 Hence f(z,y) > 1/2(y—/y) = 1/2((\/y —1/2)* = 1/4) >

—1/8 and f assumes a local minimum —1/8 if and only if z =0, y = 1/4.

(2)0<x<1,y=1. Hence f(z,y) >1/2(x+ 1+ —1+2—x)=2>0.

(3)0<z<1,y=uz Hence f(z,y) > 1/2(x + x + /x — /& + 2/T — 2/T) =
x> 0.

(4) 0 < x <y < 1. Some simple computations invelving % = % = (0 show that

x =1y = 0. This is a contradietion.

Hence f assumes an absolute minimum~—1/8 if and only if x = 0 and y =
1/4. Therefore, by (vii), for any A € Re W(A), we have A > —1/8 and thus ob-
0 V3/4

tain the sufficiency of (vi). For the necessity of (vi), if A = , then
0 1/4
0 V3/8 N
Re A = . Hence o(ReA) = {—1/8,3/8}. This implies that Re
V3/8  1/4
W(A) = W(ReA) = [-1/8,3/8], completing the proof. |

Finally, we will give some equivalent conditions for a 2-by-2 matrix to be the
product of two nonnegative contractions at least one of which is noninvertible (resp.,

invertible) in Corollary 5.15 (resp., Corollary 5.17).

Corollary 5.15. The following conditions are equivalent for a 2-by-2 matriz A:
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1) A is noninvertible and is a product of two nonnegative contractions.
p g
(2) A is a product of two nonnegative contractions which are both noninvertible.

(3) A is a product of two nonnegative contractions at least one of which is nonin-

vertible.

Proof. We need only prove (1) = (2). This follows easily from Corollary 5.7 and our

assumption that A is noninvertible. [ |

To prove the next corollary, we need-the following lemma.

0 Vy(l—y)
0 (0
and A = BC' for some B and C, 0 < B, C' < I,. Then both B and C' are nontrivial

Lemma 5.16. Let A = be.a 2-by-2 matriz, where 0 <y < 1,

orthogonal projections.

bl 0 C1 0
Proof. We may assume that B = (resp., C' ), where by # 0,

0 bz 0 C2
co#0and 0 <b; <by <1,0<¢ <cp <1. Considering A/(byca) = (B/b2)(C/c2),

we obtain, by Lemma 5.4 (1), that bjc; = 0 and

y(l_y) _ (1 L L b Cl)

(viii) e -

B boco” “boces by

Hence we may assume, without loss of generality, that b; = 0. Plugging this into
(viii) yields (ba(ci + ca) — 1)y = b3cica. If ba(cy + ¢2) # 1, then 0 < y < 1 im-
plies that (1 — bacy)(1 — bace) < 0. This contradicts our assumption. It follows that

ba(cy + ¢3) = 1. Thus ¢; = 0 and hence by = ¢o = 1. This proves our assertion. [ |

Now, we prove the following corollary.
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Corollary 5.17. A 2-by-2 matriz A is a product of two nonnegative contractions

at least one of which is invertible if and only if either (1) A is a product of two positive

Tz
contractions, or (2) A is unitarily equivalent to a matriz of the form , where

0y
r=0,0<y<1land|z| < y(l—y) (ify =0 or 1, then z = 0).

Proof. Note that the necessity follows easily from Theorem 5.1 and Lemma 5.16.

z
For the converse, we may assume that A = , where 0 < y < 1 and

0y
0<|z] < y(l—y). Let \y =0and Ao =y — (|2]*/(1 —y)). Then 0 < Ny <y <1

and |z]? = (1 — y)(y — A2). Therefore, our assértion follows from Lemma 5.4 (1). MW
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5.3 Products of two n-by-n nonnegative contractions

On a finite-dimensional Hilbert space, Wu [47, Corollary 2.3] has shown that
A Az

if A= is a product of two nonnegative matrices, then so are A; and

0 A
As. Here we give another proof which holds for both finite- and infinite-dimensional

Hilbert spaces. In fact, it is even true that nonnegative matrices are replaced by

nonnegative contractions. The main result of this section is the following;:

Theorem 5.18. Let A be a bounded linear operator of the form

on H@K,

where H and K are both Hilbert spaces. If A‘is a product of two nonnegative contrac-

Al A
0 -4

tions, then so are Ay and As.

In order to prove this theorem, we need the following lemmas. The proof of the

lemma can be found in [11, p. 547].

Lemma 5.19. Let A be a bounded linear operator of the form

on HEP K,

where H and K are Hilbert spaces. Then A is nonnegative if and only if A;y and Agg

Al 1 A12
Aly A

are both nonnegative and there exists a contraction D mapping K into H satisfying

A= APDAN?

Lemma 5.20. If A is a nonnegative bounded linear operator on the Hilbert space

H, then there exists a (possibly unbounded) linear operator B on ran A such that
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BA = PranA

Proof. If Aj is the restriction of A to (ker A)*, then A; is injective. So we can consider
the (possibly unbounded) inverse A;': ran A — (ker A)*. Since A is nonnegative,
it is easy to check that (ker A)* = ran A and A7'A = P—. Hence our assertion

ran

follows. u

Proof of Theorem 5.18. By our assumption and Lemma 5.19, we may assume that

A = BC, where B (resp., C) is of the form

B B)* Dy By ) Gy CV2 D,
BY?DrBl/? B, | YDyt Cy

0< By <Iy(resp., 0<Cy £1g), 0< By < [g (resp., 0 < Cy < Ig) and Dy (resp.,
D,) is a contraction from K.into H. From A = BC| we. obtain that

(ix) A, = B,C, ¥+ Bi 2Dy (By 2O DiC?),
) BY2(D; Bl O Ol =B (B0 Dy 01,
Ay = (BY?DrB*CY*\DyCy* + By,

1/2

Since 0 < By’ < Ik, we deduce from Lemma 5.20 that there exists a (possibly

unbounded) linear operator F on ran B, 12 such that EBl/2 = P— 57 Hence by (x),

we derive that

B2y Dict? = P- 1/2(31/201/21) Cl?) = —P—ranB1/2(D;‘Bll/201).

Moreover, substitute this into (ix) to get

Ay = BiC = B"Di(P (DB ()
= [BY”(In — DiP——=D})B*|Cy

—D})) B0

ran B,

1/2 *\ %
= (B (I — (P 5D} (P
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Note that ||PWDT“ S 1 implies that 0 S (IH - (PWDT)*(PWDT)) S ]H
ran 2 ran 2 ran 2
Therefore, Ay = [(By*P{)PiB,*|Cy, where P; Py = Iy = (P—7D})*(P——5D})

for some P, 0 < P, < Iy. This shows that A; is a product of two nonnegative con-
tractions. In a similar fashion, we also derive that A} is a product of two nonnegative

contractions, and hence so is Ay. This completes our proof. |

The following corollaries are easy consequences of the preceding theorem. Recall

that the first one has been proven in Wu [47, Corollary 2.3].

A A
Corollary 5.21. If an n-by-n (n.> 2) matric A = P s a product of
0 A,

two n-by-n nonnegative matrices, then so-are Ay and-As,.

Proof. We assume that A = BC', where B, C' > 0. Since A/(||B||||C]|) = (B/||B|)(C/||C]),
Theorem 5.18 implies that each of Ay /(|| BIHIC ) and A/ (|| B]|||C]|) is a product of
two nonnegative contractions. Hence each of A; and: A, is a product of two nonneg-

ative matrices. Our assertion follows. [ |

Corollary 5.22. An n-by-n matriz A = (3.5, ®A;) @ diag(wy, . . ., wy,), where

A, = for all 1, is a product of two nonnegative contractions if and only if

0 v
0 <z, y, wj <1and|z| < |z — \/E|\/(1 — ;) (1 — ;) for all i, j.

Proof. Note that Theorem 5.18 implies that A is a product of two nonnegative con-
tractions if and only if A;, ¢ = 1,..., k1, and diag (wy, ..., wy,) are products of two

nonnegative contractions. Thus our assertion follows from Theorem 5.1. |

Corollary 5.23. Let A be a finite quadratic matriz. Then A is a product of two
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nonnegative contractions if and only if it is unitarily equivalent to a matriz of the

form

a ¢c;

k
ol & 0L ® () @ ),
i=1 0 b

where 0 < a, b< 1 and 0 < ¢; < |v/a — vVb|\/(1 —a)(1 —b) for all i.

Proof. Since A is quadratic, [46, Theorem 1.1] says that it is unitarily equivalent to

a matrix of the form

a]3 D
al, ® bly ® , where D > 0.

0" by

Hence we may assume that it is unitarily equivalent to a matrix of the form

k a C;
A:all@blg@(z:@ ); where ¢; > 0.
o1 0 b
Therefore, our assertion follows from Corollary 5.22: |

Corollary 5.24. Let A be a bounded linear operator of the form

0 vy(l—1y)

@ A; on CQ@K,
0 Y

where 0 < y < 1 and K is a Hilbert space. If A is a product of two nonnegative
contractions B and C, then we have {0,1} € o(B) and {0,1} € o(C).

Proof. This follows easily from Lemma 5.16 and the proof of Theorem 5.18. [ |

In order to prove that the numerical range of a product of nonnegative contrac-

tions on a finite-dimensional space cannot be a circular disc, we give a more general
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result in the following. These are from [48]

Theorem 5.25. Let A be an n-by-n matriz. If W(A) is a circular disc centered
at a, then a is an eigenvalue of A with its geometric multiplicity less than its algebraic

multiplicity.

Proof. Note that a is an eigenvalue of A with algebraic multiplicity at least two (cf.

[33, Corollary 4.4]). Hence we may assume that A is unitarily equivalent to a matrix

a * AL % *
A Ay
of the form ,where Ay = | 0 . % and Az = 0o . *
0 Aj
0 O0-a 0 0 M_g
kxk

with \; # a for all j. Suppose.that the geometric multiplicity of a is equal to its alge-
braic multiplicity. Then we may assume that A is similar to B, where B = al, @& B,
and a ¢ o(By). This implies that rank(A — al,) = rank (B — al,) = n — k and
hence A; = aly. In addition;let \ be the maximum eigenvalue of Re (w(A — aly,)),
lw| = 1. Then our assumption that W (A) is_a’circular disc centered at a implies
det(Al,—Re(w(A — al,,))= 0. Since det(A,—Re(w(A — al,))) can be considered as
a trigonometric polynomial in w with infinitely many zeros, the coefficients of w’ for
j =0,%£1,...,%£(n — k) are all zero. Since the coefficient of w"* can be computed
to be (=1/2)" *X*(\; —a)--- (\,_r — a), it follows that \; = a for some i. This

contradicts our assumption. Our proof is then completed. [

Corollary 5.26. Let the n-by-n matriz A be a product of two nonnegative matri-
ces. Then W (A) is not a circular disc. In particular, W (A) is not a circular disc if

A is a product of two nonnegative contractions.

Proof. Suppose that W (A) is a circular disc centered at a. Then a is an eigenvalue of

A with multiplicity at least two. Since A is a product of two nonnegative matrices,
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by [47, Theorem 2.2], A is similar to a nonnegative matrix D. Hence the geometric
multiplicity of the eigenvalue a of A is equal to its algebraic multiplicity. Therefore,

Theorem 5.25 leads to a contradiction. This proves our assertion. [ |

Note that the result of Corollary 5.26 may be false if the assumption on non-

negativity is replaced by self-adjointness. We give an easy example here. Suppose

01 10 00
that 4; = , Ay = and A = A, 45 = . Then A; and A,
10 00 10

are both self-adjoint but W (A) is a circular disc.

We know that if a bounded dlinear operator A is a product of two nonnega-
tive contractions, then o(A) ='g(A*). However, W (A) may not be equal to W(A*).
We give an example in the following. Nete that this also means that W (A4;A,) #
W(AzA;) for some Ay, Ay, 0.< Ay, Ay < 1,0

Example 5.27. Let

0 7
A:O%Z
0 01

Then there exists € > 0 such that €A is a product of two nonnegative contractions and

W(eA) # W(eA*).

0 0 0
Proof. Tt is easy to see that both A and A* are similar to | 0 1/2 0 |. Hence by

0 0 1
[47, Theorem 2.2], we know that A = BC for some nonnegative matrices B and C.
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Thus €A is a product of two nonnegative contractions for some € > 0. In addition,

0 i i 0 3 3

1
_ = = |1 1
ImA—QZ, i 0| =135 0 3
v 1 0 %%0

and Im A* = — Im A. Tt is easy to verify that o(Im A) = {—1/2,1} and o(Im A*) =
{—1,1/2}. Hence

Im W(A) = W(Im A) = o(Im A)" = [~1/2,1]

and

Im W(A") = W(lm A*) = =W ({Im A) =[1/2,-1].

This shows that W (A) # W (A*) and-hence W (eA) £ W (cA*). [

Now, we will give several propositions about a product of finitely many nonneg-

ative contractions. The first one is analogous to [47; Proposition 3.5].

Proposition 5.28. Let A be a bounded linear operator of the form

on H@K,

where H and K are Hilbert spaces. If A = BCD for some nonnegative contractions

A 0
0 0

B, C, D and either B or D is invertible, then Ay is also a product of three nonnegative

contractions.

Proof. We may assume, without loss of generality, that D is invertible. The proof is

analogous to the proof of [47, Proposition 3.5]. Let

D, D,
Ds Dy

D' =
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Then Dt > Iy gk and

AD; AD
AD'= | TN TP Z o
0 0

is the product of two nonnegative contractions. It follows from Theorem 5.18 that the
same is true for A;D;. Since D~! > In @ Kk, we know by Lemma 5.19 that Dy > Iy.
Hence 0 < Dy 1 < Iy. Therefore, A is the product of three nonnegative contractions.

Proposition 5.29. Forn > 1, al, is a product of four nonnegative contractions

if and only if 0 < a < 1.

Proof. The sufficiency is trivial. For the converse, we only need to consider a > 0.
We may assume that af, = A;A;A3Ay, where 0 < A; < I,, 1 < i < 4. Hence
la] <1 and aA; A3 = A} As. This implies-that ao(A4,'A;') = 0(A4;45) and hence

0 < o <1 follows from Lemma 5:2. [ |

For the ease of exposition, we introduce some notations. Let

S1 = { products of finitely many n-by-n orthogonal projections},

Sy = { products of finitely many n-by-n nonnegative contractions}
and

S3 = { products of infinitely many n-by-n nonnegative contractions}.

It is clear that S; C Sy C S3. From Kuo and Wu [29, Theorem 3.1], we know that
an n-by-n matrix A is in S; if and only if A is unitarily equivalent to I & Ay, where
0 < k <n and A; is singular with ||A;]] < 1. They also derived that if an n-by-n
matrix A is in Sy, then there exists k > 0 such that ||[(I — A)z||* < k(||z|* — || Az]]?)

for all = (cf. [30, Proposition 2.1]). Moreover, if an n-by-n matrix A is in Sy, then A
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is unitarily equivalent to I @ As, where 0 < k < n, A, is a completely nonunitary
contraction and Ay € Sy (cf. [30, Proposition 2.3]). Note that ||As]| < 1 follows
from the proof of [30, Theorem 2.2]. Here we give several related propositions and

corollaries.

Proposition 5.30. Let A be an n-by-n matriz. Then for everyi, 1 <i <3, A is
in S; if and only if A= I, ® By, where 0 < k <n and B; € S; with || B;|| < 1.

Proof. From the above results, we only need consider the case ¢ = 3. The sufficiency
is trivial. For the converse, we assume that A, = T} ---T,, and A = H;; T; =
limy, 00 A with [JA|| = 1. Since 1> || A, || ¢ |J4]|, we have ||A,,|| = 1 and hence
1 € o(A,,) by [30, Proposition2.3]. Tn-addition, we know that lim sup,, o(A4,,) C o(A)
(cf. [20, Problem 103]). This.implies that 1 € 6(A). Consider H,, = ker(1,—A,,) and
H =n_,H,. We want to prove that H; \, H. Fix my € N, let m > my and let v
be a nonzero vector in H,,. Thenw =A,,v="Ty+--T,,v and hence |[v]| = || T,nv|. [30,
Proposition 2.1] shows that 7,,v = w. By thesame process, we obtain that Tju = v
for every 7, 1 < j < m. It follows that A,,,v = v, that is, v € H,,,. Thus we obtain
H,, ~\, H. This implies that there exists an N € N such that H,, = H for all m,
m > N. Hence by the above arguments, for every m, m > N, and v € H = H,,,
we have A, v = v and Tjv = v for every j, 1 < j < m. This also implies that
A* v = (T, - T1)v = v. Therefore, for every j, 1 < j < m, there exists some unitary
matrix U such that T; = U*(I, @ T;)U on H@ H* for some k, 0 < k < n and

A = Uy @ [T}L, T)U for every m. Note that || [T/, Tj[| < 1 for every j, j > N

B C
by the results preceding this proposition. Let A = U* Uon HPH.
D FE
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Then lim,, .o A,, = A implies that

I, — B -C
D LT B

I | = |U(Ay — AU*|| = | A — Al| — 0 as m — oo.

Hence
11k = Bl < [|Am — Al =0,
I = Cll = 1Pu(Am = A) e[| < [[Am — All =0,
I = DIl = 1P+ (Am = Alall < [[Am = Al =0
and

HHT;—EHSHAm—A||——>Oasm—>oo.

j=1
Therefore, B = I, C = D= 0 and B = lim,, [[5*, 7}. Finally, ||[[[Z, T}|| <
[ vazl T for every m, m >N, implies that
m N
18] = Tl FRTE< I [0 < 1.
j=1 &
This completes our proof. [

Proposition 5.31. Let A be an n-by-n noninvertible matrix.

(1) The following conditions are equivalent :

(a) A= I, @ Ay, where 0 < k <n and Ay is singular with || A;|| < 1,
(b) A€ Sy,

(c) A€ Sy, and

(d) A€ Ss.

(2) A€ Sy, & ||A| <1

105



Proof. (1) (a) < (b) follows easily from the noninvertibility of A and [29, Theorem
3.1]. It is clear that (b) = (c) and (c) = (d). (d) = (a) follows easily from the fact

that A is noninvertible and Proposition 5.30.

(2) The necessity is trivial. For the sufficiency, consider A, = (1 — (1/n))A, for
all n. Then [|A,]| = (1 — (1/n))|A] < (1 —(1/n)) < 1. Since A is noninvertible,
we have A, is noninvertible. Hence, by (1), A, € Sy. Therefore, the fact that A,

converges to A leads to our assertion. [ |

Corollary 5.32. S, C S3 & Ss.

Proof. Tt is trivial that S, €95 €-S5. In.order to prove S;\Ss5 # 0, we consider
A =[-1] & [0],_1. Since A is noninvertible, Proposition 5.31 (1) and (2) imply that

A € S5\ Ss. This proves our assertion. |

In Section 5.2, we have mentioned-that-if A and B satisfy 0 < A, B < [,,, then

inf{\\ € 0(ReAB),0 < A, B <1I,} = —1/8,

sup{ A\ € 0(RedAB),0< A, B<I,} =1,

inf{A\[A € c(ImAB),0< A, B<1I,} =—-1/4
and

sup{AA € c(ImAB),0< A,B<1I,} =1/4.

Moreover, we also have the following proposition.

Proposition 5.33. Fori =1, 2, and 3, we have

(1) inf{A\|X € 0(ReA), A € S;} =inf{\|\ € 0(ImA), A € S;} = —1,
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(2) sup{A|\ € 0(ReA), A € S;} =sup{\X € o(ImA), A € S;} = 1.

Proof. 1t is trivial that if A; satisfy 0 < A; < I, for every i, 1 <i < m, m € N, then
~I, < Re [[Ai<Lyand =1, < Im J[Ai < I
i=1 i=1

Hence our assertion follows from Proposition 5.31 (1). This completes the proof. W
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