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算子和矩陣的數值域研究

學 生 : 蔡 明 誠 指 導 教 授 : 吳 培 元 教 授

國 立 交 通 大 學 應 用 數 學 系

摘 要

在本論文中, 我們對於某些算子和矩陣的數值域做一個研究。

首先, 我們考慮 C0 收縮算子和二次算子。 我們證明如果 A 是一個 C0 收縮算

子有著最小函數 φ 使得 w(A) = w(S(φ)) 而且 B 和A 可交換, 其中 w(·) 表示

算子的數值半徑, 則 w(AB) ≤ w(A)‖B‖。 因此, 對於所有二次算子 A 和任意和

A 可以交換的算子 B, 我們也得到 w(AB) ≤ w(A)‖B‖。

接著, 令 A 代表 n 維 (n ≥ 2) 的帶權移動矩陣 [tij]
n
i,j=1, 其中 ti,i+1 = ai,

i = 1, 2, . . . , n− 1, tn,1 = an 而且其餘 ti,j = 0。 我們證明它的數值域邊界具有

一個線段的充分必要條件是這些 ai 不為零而且 A 的 n− 1 維主要子矩陣的數值

域都相同。 由此我們得到如果一個 n 維的帶權移動矩陣 A, 其中這些 ai 是非零而

且 |ai| 是週期的, 則它的數值域邊界具有一個線段。 我們也證明了它的數值域邊界

含有一個非圓的橢圓弧若且唯若這些 ai 不為零, n 是偶數, |a1| = |a3| = · · · =
|an−1|, |a2| = |a4| = · · · = |an| 而且 |a1| 6= |a2|。 最後, 我們刻劃 A 是可約的

情形而且完整描述它的數值域。

再來, 我們證明一個四維的實冪零矩陣 A 的數值域邊界最多具有兩個線段。 我

們也給了一個四維的冪零矩陣 A 的數值域邊界具有兩個平行線段的一個充分必要

條件。

最後, 我們將證明一個有限維矩陣 A = (
∑k1

i=1⊕Ai)⊕diag (w1, . . . , wk2
), 其

中

Ai =

[
xi zi

0 yi

]
, i = 1, . . . , k1, 是兩個非負收縮矩陣的乘積若且唯若 0 ≤

xi, yi, wj ≤ 1 而且, 對於所有 i, j, |zi| ≤ |√xi −
√

yi|
√

(1− xi)(1− yi)。 藉此

我們可以在 n 維的二次算子上得到一個類似的結果。
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Abstract

In this thesis, we study properties of the numerical ranges of some operators and

matrices.

First, we consider C0 contractions and quadratic operators. We show that if A is a C0

contraction with minimal function φ such that w(A) = w(S(φ)) and if B commutes with

A, where w(·) denotes the numerical radius of an operator, then w(AB) ≤ w(A)‖B‖.
As a consequence, we also obtain w(AB) ≤ w(A)‖B‖ for any quadratic operator A and

any B commuting with A.

Second, let A be the n-by-n (n ≥ 2) weighted shift matrix [tij]
n
i,j=1, where ti,i+1 = ai

for i = 1, 2, · · · , n − 1, tn,1 = an and ti,j = 0 otherwise. We show that the boundary

of its numerical range contains a line segment if and only if the ai’s are nonzero and

the numerical ranges of the (n− 1)-by-(n− 1) principal submatrices of A are all equal.

Using this, we obtain that the boundary of the numerical range of an n-by-n weighted

shift matrix A has a line segment if the ai’s are nonzero and their moduli are periodic.

We also prove that ∂W (A) contains a noncircular elliptic arc if and only if the ai’s are

nonzero, n is even, |a1| = |a3| = · · · = |an−1|, |a2| = |a4| = · · · = |an| and |a1| 6= |a2|.
Finally, we give a criterion for A to be reducible and completely characterize the numer-

ical ranges of such matrices.

Next, we show that if A is a 4-by-4 nilpotent real matrix, then the boundary of its

numerical range has at most two line segments. We also give a necessary and sufficient

condition for the boundary of W (A) to have a pair of parallel line segments.

Finally, we give a necessary and sufficient condition for a finite matrix A = (
∑k1

i=1⊕Ai)⊕

diag (w1, . . . , wk2), where Ai =

[
xi zi

0 yi

]
for all i, to be a product of two nonnegative

contractions: 0 ≤ xi, yi, wj ≤ 1 and |zi| ≤ |√xi −
√

yi|
√

(1− xi)(1− yi) for all i, j. Ap-

plying this, we obtain an analogous characterization for an n-by-n quadratic operator.
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Chapter 1 Introduction

Let A be a bounded linear operator on a complex Hilbert space H. The numer-

ical range W (A) and numerical radius w(A) of A are, by definition,

W (A) = {〈Ax, x〉 : x ∈ H, ‖x‖ = 1}

and

w(A) = sup{|z| : z ∈ W (A)},

respectively, where 〈·, ·〉 and ‖·‖ denote the inner product and its corresponding norm

in H. In addition, we let r(A) = max{|z| : z ∈ σ(A)} denote the spectral radius of

A. For an operator A, let AT denote its transpose, A∗ its adjoint, Re A its real part

(A + A∗)/2 and Im A its imaginary part (A − A∗)/2i. For any subset 4 of C, 4∧

denotes its convex hull, that is, 4∧ is the smallest convex set containing 4. We list

several important properties of the numerical range.

(1) W (U∗AU) = W (A) for any unitary operator U .

(2) W (A) is a bounded subset of C and compact if H is finite dimensional.

(3) W (aA+ bI) = aW (A) + b for any scalars a and b.

(4) W (Re A) = Re W (A) and W (Im A) = Im W (A).

(5) If A =

[
B ∗

∗ ∗

]
, then W (B) ⊆ W (A).

(6) By the celebrated Hausdorff–Toeplitz theorem, W (A) is always a convex

subset of C.

(7) σ(A) ⊆ W (A).

(8) If A is normal, then W (A) is equal to σ(A)∧.

(9) W (
∑
n

⊕An) = (∪nW (An))∧ and w(
∑
n

⊕An) = sup
n
w(An).

(10) r(A) ≤ w(A) ≤ ‖A‖ ≤ 2w(A).

For other properties, the reader may consult [20, Chapter 22] or [19].
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In Chapter 2, we consider C0 contractions. Recall that an operator A (on a

separable Hilbert space) is of class C0 if it is a contraction (‖A‖ ≤ 1), it is completely

nonunitary (i.e., it has no unitary direct summand) and it satisfies φ(A) = 0 for

some φ in the Hardy space H∞ of bounded analytic functions on the open unit disc.

The minimal function of a C0 contraction A is the smallest function φ in H∞ with

φ(A) = 0 (i.e., it divides all other annihilating functions of A). More important for

us here is the compression of the shift S(φ) defined as follows. Let φ be an inner

function (φ ∈ H∞ with |φ| = 1 a.e. on the unit circle) and let S(φ) be defined on

H = H2 	 φH2 by

S(φ)f = PH(zf(z))|H for f ∈ H.

In Theorem 2.1, we show that if A is a C0 contraction with minimal function φ such

that w(A) = w(S(φ)) and if B commutes with A, then w(AB) ≤ w(A)‖B‖. This is

in contrast to the known fact that if A = S(φ) (even on a finite-dimensional space)

and B commutes with A, then w(AB) ≤ ‖A‖w(B) is not necessarily true. As a

consequence, we have w(AB) ≤ w(A)‖B‖ for any quadratic operator A and any B

commuting with A. Here, an operator A is said to be quadratic if it is annihilated by

a quadratic polynomial, that is, if it satisfies A2+aA+bI = 0 for some scalars a and b.

In Chapter 3, we consider an n-by-n (n ≥ 3) matrix A of the form
0 a1

0
. . .

. . . an−1

an 0

 .

In Section 3.2, we show that the boundary of its numerical range contains a line

segment if and only if the aj’s are nonzero and the numerical ranges of the (n − 1)-

by-(n − 1) principal submatrices of A are all equal. For n = 3, this is the case if

and only if |a1| = |a2| = |a3| 6= 0, in which case W (A) is the equilateral triangular

2



region with vertices the three cubic roots of a1a2a3. For n = 4, the condition becomes

|a1| = |a3| 6= 0 and |a2| = |a4| 6= 0, in which case W (A) is the convex hull of two

(degenerate or otherwise) ellipses. In Section 3.4, we show that if the aj’s are nonzero

and their moduli are periodic, then the boundary of its numerical range contains a

line segment. We also prove that ∂W (A) contains a noncircular elliptic arc if and only

if the aj’s are nonzero, n is even, |a1| = |a3| = · · · = |an−1|, |a2| = |a4| = · · · = |an|

and |a1| 6= |a2|. Finally, we give a criterion for A to be reducible (i.e., it is unitarily

equivalent to the direct sun of two other matrices) and completely characterize the

numerical ranges of such matrices.

In Chapter 4, let A be a 4-by-4 nilpotent matrix (Ak = 0 for some k ≥ 1). We

show that if A is a real matrix, then the boundary of its numerical range has at most

two line segments. We also prove that the boundary of W (A) has one pair of parallel

line segments if and only if A is unitarily equivalent to a matrix of the form

α


0 r1 ir2 −r3

0 r3 −ir2
0 r1

0

 ,

where α ∈ C \ {0}, r1, r3 > 0 and r2 ∈ R. Moreover, in this case, ∂W (A) has no

other line segment. Finally, we give a special form for A to have a line segment on

the boundary of its numerical range.

In Chapter 5, a bounded linear operator A on a complex Hilbert space H is

nonnegative if 〈Ax, x〉 ≥ 0 for any x in H. Theorem 5.18 says that if a bounded linear

operator A of the form

 A1 A3

0 A2

 is a product of two nonnegative contractions, then

so are A1 and A2. In addition, in Corollary 5.22, a necessary and sufficient condition

3



for a finite matrix A = (
∑k1

i=1⊕Ai) ⊕ diag(w1, . . . , wk2), where Ai =

 xi zi

0 yi

 for

all i, to be a product of two nonnegative contractions is

0 ≤ xi, yi, wj ≤ 1 and |zi| ≤ |
√
xi −

√
yi|
√

(1− xi)(1− yi) for all i, j.

Here, a diagonal matrix with diagonals a1, . . . , an is denoted by diag(a1, . . . , an). It

follows in Corollary 5.23 that an n-by-n quadratic operator is a product of two non-

negative contractions if and only if it is unitarily equivalent to a matrix of the form

aI1 ⊕ bI2 ⊕ (
k∑
i=1

⊕

 a ci

0 b

),

where 0 ≤ a, b ≤ 1 and |ci| ≤ |
√
a −
√
b|
√

(1− a)(1− b) for all i. Finally, we show

that W (A) is not a circular disc if A is a product of two n-by-n nonnegative contrac-

tions (Corollary 5.26).

4



Chapter 2 Numerical radius inequality for C0 contractions

2.1 Introduction

Let A be a bounded linear operator on a complex Hilbert space H. The numer-

ical radius inequalities we discuss here have their genesis from the power inequality.

The latter asserts that w(An) ≤ w(A)n for all n ≥ 1 or, equivalently, that w(A) ≤ 1

implies w(An) ≤ 1 for all n. The first proof of it is given by Berger in his Ph.D. thesis

[2] by way of his structure theorem for numerical contractions: w(A) ≤ 1 if and only

if there is a unitary operator U on a space K containing H such that An = 2PHU
n|H

for all n ≥ 1, where PH denotes the (orthogonal) projection from K onto H (Lemma

2.6(b)). A totally elementary proof of the power inequality is later provided by Pearcy

[38] (cf. also [20, Problem 221]).

In 1969, Holbrook [21] asked whether, for commuting operators A and B, the

inequalities w(AB) ≤ w(A)‖B‖ and w(AB) ≤ ‖A‖w(B) hold. It is known that this

is indeed the case when A and B doubly commute (i.e., AB = BA and AB∗ = B∗A)

(cf. [21, Theorem 3.4]). Another known case is when A is an isometry (cf. [4, Lemma

2]). On the other hand, Crabb showed that for commuting A and B the inequality

w(AB) ≤ (
√

2 + 2
√

3/2)w(A)‖B‖ is true (cf. [37]). More recently, Holbrook [22]

proved w(AB) ≤ w(A)w(B) for commuting 2-by-2 matrices A and B. So much for

the partial positive confirmations. It came as a surprise when in 1988 Müller [34] gave

an example of two 12-by-12 commuting matrices A and B with w(AB) > ‖A‖w(B).

The example involves pure computations with no revealing reason why this should be

the case. The day is saved by Davidson and Holbrook [9] that w(AB) > ‖A‖w(B) is

already true for A = J9 and B = J3
9 +J7

9 . Here Jn, n ≥ 1, denotes the n-by-n Jordan
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block 
0 1

0
. . .

. . . 1

0

 ,

whose numerical range is known to be {z ∈ C : |z| ≤ cos(π/(n + 1))}. In [23],

Holbrook and Schoch showed that w(AB) > ‖A‖w(B) can occur even for 3-by-3

commuting A and B.

Let φ be an inner function and let S(φ) be defined on H = H2 	 φH2 by

S(φ)f = PH(zf(z))|H for f ∈ H.

Then S(φ) is a C0 contraction with minimal function φ and satisfies

rank (I − S(φ)∗S(φ)) = 1.

Such operators were first studied by Sarason [41] and later developed by Sz.-Nagy

and Foiaş in the 1960s and ’70s; they form the building blocks for the “Jordan model”

for general C0 contractions (cf. [44] and [1]). Among other things, S(φ) is known to

have the commutant lifting property: every operator B commuting with S(φ) is of

the form f(S(φ)) for some f in H∞ with ‖f‖∞ = ‖B‖ (Lemma 2.3). If φ(z) = zn,

n ≥ 1,

(resp., φ(z) =
z − a
1− az

· z − b
1− bz

, |a|, |b| < 1),

then S(φ) is unitarily equivalent to Jn

(resp.,

 a (1− |a|2)1/2(1− |b|2)1/2

0 b

).

6



2.2 Numerical radius inequality for C0 contractions

The main theorem of this section is

Theorem 2.1. If A is a C0 contraction with minimal function φ such that

w(A) = w(S(φ)) and if B commutes with A, then w(AB) ≤ w(A)‖B‖.

We start the proof with the following lemma.

Lemma 2.2. If A = S(φ) and B commutes with A, then w(AB) ≤ w(A)‖B‖.

For its proof, we need the following lemmas.

Lemma 2.3. (Sarason’s Commutant Lifting Theorem). If B is an operator on

H2 	 φH2 that commutes with S(φ), then there is a function f in H∞ such that

‖f‖∞ = ‖B‖ and B = f(S(φ)).

Let D = {z ∈ C : |z| < 1}.

Lemma 2.4. Assume w(A) ≤ 1. Let f : D→ D be analytic on D and continuous

on D. Then w(f(A)) ≤ 1 + 2|f(0)|.

The proof of Lemma 2.3 is in [41, Theorem 3] and Lemma 2.4 is obtained in

Berger and Stampfli [3, Corollary 2] or Kato [27, Theorem 5].

Using the preceding lemmas, we now prove Lemma 2.2.

7



Proof of Lemma 2.2. We may assume that A 6= 0 and ‖B‖ = 1. By Lemma 2.3,

B = f(A) for some f in H∞ with ‖f‖∞ = ‖B‖ = 1. Letting A1 = A/w(A) and

g(z) = zf(w(A)z), we have A1B = g(A1) with g in H∞, g(0) = 0 and ‖g‖∞ ≤

‖f‖∞ = 1. By Lemma 2.4, we obtain

w(A1B) = w(g(A1)) ≤ ‖g‖∞ ≤ 1.

Thus w(AB) ≤ w(A) follows as required. �

As was remarked before, the Davidson–Holbrook example of A = J9 and B =

J3
9 +J7

9 shows the falsity of w(AB) ≤ ‖A‖w(B) for A = S(φ) and B commuting with

A.

Using the extension of a C0 contraction to the direct sum of the compressions

of the shift and a “completely bounded” version of the result of Kato or Berger and

Stampfli, one can generalize Lemma 2.2 from S(φ) to the more general C0 contrac-

tions.

We start with the following lemmas. For any operator X on H and any integer

d ≥ 1, let X(d) denote the direct sum of d copies of X on H(d), the direct sum of d

copies of H.

Lemma 2.5. Let A be a C0 contraction with minimal function φ. Then

(a) A can be extended to an operator A1 on a larger space which is unitarily equiv-

alent to S(φ)(dA), where dA = dim ran (I − A∗A)1/2 ≤ ∞, and

(b) every operator B commuting with A can be extended to an operator B1 com-

muting with A1 with ‖B1‖ = ‖B‖.

8



The proof of this lemma is based on the Sz.-Nagy–Foiaş functional model for

C0 contractions (cf. [44, Section VI.3]).

Proof of Lemma 2.5. (a) We represent the C0 contraction A∗ on H = H2(K) 	

ΘH2(K) by A∗f = PH(zf(z)) for f in H, where K is a space of dimension dA, H2(K)

is the Hardy space of K-valued analytic square-integrable functions on the unit disc,

and Θ is the characteristic function of A∗. Since the minimal function of A∗ is φ̃ given

by φ̃(z) = φ(z) for |z| < 1, we have φ̃(A∗) = 0 and hence φ̃H2(K) ⊆ ΘH2(K). Let

A∗1 be the operator defined on H0 = H2(K)	 φ̃H2(K) by A∗1g = PH0(zg(z)) for g in

H0. Then A1 is unitarily equivalent to S(φ)(dA). Since H ⊆ H0 and A and A1 are

given by

Af =
1

z
(f(z)− f(0)) for f ∈ H

and

A1g =
1

z
(g(z)− g(0)) for g ∈ H0,

respectively, we obtain A = A1|H as required.

(b) Since B∗ commutes with A∗, it can be represented as B∗f = PH(Φf) for

f in H, where Φ is a K-valued bounded analytic function on the unit disc with

ΦΘH2(K) ⊆ ΘH2(K) and ‖Φ‖∞ = ‖B∗‖. Let B∗1 be defined on H0 by B∗1g =

PH0(Φg) for g in H0. Then B1 commutes with A1 and

‖B1‖ = ‖B∗1‖ ≤ ‖Φ‖∞ = ‖B∗‖ = ‖B‖.

On the other hand, if C denotes the adjoint of the operator f 7→ Φf on H2(K),

then B = C|H and B1 = C|H0. It follows that B = B1|H and hence ‖B‖ ≤ ‖B1‖.

Therefore, ‖B‖ = ‖B1‖ as required. �
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Part (a) of the preceding lemma is due to Nakazi and Takahashi [35, Lemma 4].

Lemma 2.6. Let A be an operator on H. Then

(a) (Sz-Nagy’s Power Dilation Theorem). A is a contraction if and only if there is

a unitary operator U on a space K containing H such that An = PHU
n|H for

all n ≥ 1.

(b) (Berger’s Dilation Theorem). w(A) ≤ 1 if and only if there is a unitary operator

U on a space K containing H such that An = 2PHU
n|H for all n ≥ 1. Here

PH denotes the (orthogonal) projection from K onto H.

The proof of the former can be deduced from [43, Theorem ] and the latter is

proved in [2].

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. As before, we may assume that A 6= 0 and ‖B‖ = 1. By

Lemma 2.5, A extends to (an operator unitarily equivalent to) A1 = S(φ)(d) on L,

where d = dA, and B extends to B1 on L with B1A1 = A1B1 and ‖B1‖ = ‖B‖. A

matrix version of Lemma 2.2 [41, Theorem 3] implies that B1 can be represented as

[fij(S(φ))]di,j=1, where the fij’s are in H∞ for all i and j and ‖[fij]‖∞ = ‖B1‖. Let

gij(z) = fij(w(A)z) for |z| < 1. We have

‖[gij]‖∞ = sup{‖[gij(z)]‖ : |z| < 1}

≤ sup{‖[fij(w)]‖ : |w| < 1}

= ‖[fij]‖∞ = ‖B1‖ = ‖B‖ = 1.

If C = S(φ)/w(S(φ)), then w(C) = 1 and B1 = [gij(C)]. By Lemma 2.6 (b), there is a

unitary operator U on a space K containing H ≡ H2	φH2 such that Cn = 2PHU
n|H
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for all n ≥ 1. Since Cgij(C) = 2PH(Ugij(U))|H for all i and j, we obtain

(A1B1/w(A))n = [Cgij(C)]n = 2PL[Ugij(U)]n|L

for all n ≥ 1. On the other hand, because

‖[Ugij(U)]‖ ≤ ‖[zgij(z)]‖∞ ≤ ‖[gij]‖∞ ≤ 1,

Lemma 2.6 (a) yields a unitary operator W on a space containing K such that

[Ugij(U)]n = PK(d)W n|K(d)

for all n. Combining these two dilations, we obtain (A1B1/w(A))n = 2PLW
n|L

for all n. This implies, by Lemma 2.6 (b) again, that w(A1B1/w(A)) ≤ 1 or

w(AB) ≤ w(A1B1) ≤ w(A) as required. �

Note that, for any C0 contraction A with minimal function φ, Lemma 2.5 (a)

implies that w(A) ≤ w(S(φ)). In Theorem 2.1, the extra condition on their equality

is essential for otherwise the example of

B =
J9 + 1

4
J5
9

‖J9 + 1
4
J5
9‖

and A = B3 attests to the falsity of the assertion there (cf. [8]). When A acts on

a finite-dimensional space, the next proposition gives some equivalent conditions for

the equality w(A) = w(S(φ)).

Proposition 2.7. For a C0 contraction A with minimal function φ on a finite-

dimensional space, the following are equivalent:

(a) w(A) = w(S(φ));

(b) ∂W (A) ∩ ∂W (S(φ)) 6= ∅;
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(c) W (A) = W (S(φ)).

Proof. (a)⇒(b). We infer from Lemma 2.5 (a) that W (A) ⊆ W (S(φ)). If ∂W (A) ∩

∂W (S(φ)) = ∅, then obviously w(A) < w(S(φ)). This proves (a)⇒(b).

(b)⇒(c). By [17, Lemma 3.3], (b) implies that S(φ) is a direct summand of A.

Thus W (S(φ)) ⊆ W (A). Together with W (A) ⊆ W (S(φ)) from Lemma 2.5 (a), this

yields (c).

(c)⇒(a). This is trivial. �

We conclude this section by asking the following remaining question concerning

this topic.

Is it true that if A = S(φ), then w(An+1) ≤ w(An) for all n ≥ 1? More gen-

erally, if A is a C0 contraction with minimal function φ such that w(A) = w(S(φ)),

then is w(An+1) ≤ w(An) true for all n ≥ 1?

Recall that a general inner function φ has a canonical factorization as cφ1φ2,

where c is a complex number with |c| = 1, φ1 is a Blaschke product

φ1(z) =
∞∏
n=1

ān
|an|

z − an
1− ānz

with zeros an in D satisfying
∑

n (1− |an|) <∞ and φ2 is a singular function

φ2(z) = exp(−
∫ 2π

0

eiθ + z

eiθ − z
dµ(θ)),

where µ is a positive measure on ∂D which is singular with respective to the Lebesgue

measure on ∂D. From [1, Theorem 2.4.11], we know that σ(S(φ)), the spectrum of
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S(φ), consists of those points λ ∈ D such that φ(λ) = 0 and those λ in ∂D such that

φ cannot be continued analytically across λ.

Lemma 2.8.

(a) If H is a finite-dimensional space, then w(S(φ)n) < 1 for all n.

(b) If H is an infinite-dimensional space, then w(S(φ)n) = 1 for all n.

Proof. (a) This follows from the fact that σ(T ) ⊆ D if and only if W (T ) ⊆ D for any

finite-dimensional contraction T (cf. [20, Solution 212]).

(b) Since H is finite dimensional if and only if S(φ) = cφ1 where c is a complex

number with |c| = 1 and φ1 is a finite Blaschke product [10, Lemma 7.35]. Hence,∑
n (1− |an|) <∞ implies lim

n→∞
|an| = 1. There exists γ in ∂D such that γ ∈ σ(S(φ)).

Thus, r(S(φ)n) = r(S(φ))n = 1 by spectral mapping theorem. Hence, w(S(φ)n) = 1.

�

If A is a Jordan block or a quadratic contraction (to be considered in Section

2.3), then we do have w(An+1) ≤ w(An) for all n. The latter is a consequence of

Proposition 2.11 in Section 2.3. For the negative side, although w(A2) ≤ w(A) for

any contraction A by the power inequality, w(A4) ≤ w(A3) is in general false by the

example in [8].
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2.3 Numerical radius inequality for quadratic operators

An operator A is said to be quadratic if it is annihilated by a quadratic polyno-

mial, that is, if it satisfies A2 + aA+ bI = 0 for some scalars a and b. The structure

of quadratic operators is well-understood (cf. [46]).

Lemma 2.9. Let A be a quadratic operator on H. Then

(a) the spectrum of A consists of the two zeros α and β of the polynomial z2+az+b,

(b) A is unitarily equivalent to an operator of the form αI1 D

0 βI2

 ,
(c)

‖A‖ = ‖

 α ‖D‖

0 β

 ‖,
and

(d) the numerical range of A is the (open or closed) elliptic disc with foci at α and

β, major axis of length (|α− β|2 + ‖D‖2)1/2 and minor axis of length ‖D‖.

The proof of this Lemma can be found in [46, Theorems 1.1 and 2.1] and in the

proof of [46, Lemma 2.2].

Using Theorem 2.1, we can now prove a numerical radius inequality for quadratic

operators.
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Theorem 2.10. If A is a quadratic operator and B commutes with A, then

w(AB) ≤ w(A)‖B‖.

Proof. If A is normal, then A is unitarily equivalent to αI1 ⊕ βI2, in which case the

asserted inequality can be easily verified. Hence we may assume that A is nonnor-

mal and has norm one. Then A is unitarily equivalent to an operator of the form[
αI1 D

0 βI2

]
with D 6= 0 by Lemma 2.9 (b). Since 1 = ‖A‖ ≥ (|α|2 + ‖D‖2)1/2 and

D 6= 0, we have |α| < 1 and, similarly, |β| < 1. Hence A is a C0 contraction with

φ(A) = 0, where φ is the inner function

φ(z) =
z − α
1− αz

· z − β
1− βz

.

On the other hand, since

1 = ‖A‖ = ‖

 α ‖D‖

0 β

 ‖
by Lemma 2.9 (c), we obtain that S(φ) is unitarily equivalent to

[
α ‖D‖

0 β

]
. There-

fore, w(A) = w(S(φ)) by Lemma 2.9 (d). The asserted inequality then follows from

Theorem 2.1. �

Before we move on, two remarks are in order. (1) The inequality in the preceding

theorem is not necessarily true if A is annihilated by a cubic polynomial. In [9,

Corollary 4], it was shown that if

A =


0 I3 J3

0 I3

0

 and B =


J3

J3

J3

 ,
then A3 = B3 = 0, AB = BA, w(A) = cos(π/10), ‖B‖ = 1 and w(AB) = 1 and

thus w(AB) > w(A)‖B‖. (2) The stronger inequality w(AB) ≤ w(A)w(B) is not
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necessarily true for a quadratic A and commuting B. An example was given in [21, p.

168]. Here is another one: A = J2 ⊕ J2 and B = J2
4 . In this case, A2 = 0, AB = BA

and w(A) = w(B) = w(AB) = 1/2.

In contrast to (2) above, if B is a polynomial of the quadratic A, then we do

have w(AB) ≤ w(A)w(B).

Proposition 2.11. If A is a quadratic operator and B is a polynomial of A, then

w(AB) ≤ w(A)w(B).

Proof. We may assume that A =

 αI1 D

0 βI2

 and B = A+λI. By Lemma 2.9 (d),

we have w(A) = w(

 α ‖D‖

0 β

). Similarly,

w(B) = w(

 (α + λ)I1 D

0 (β + λ)I2

) = w(

 α + λ ‖D‖

0 β + λ

)

and

w(AB) = w(

 α(α + λ)I1 (α + β + λ)D

0 β(β + λ)I2

)

= w(

 α(α + λ) |α + β + λ|‖D‖

0 β(β + λ)

)

= w(

 α ‖D‖

0 β

 α + λ ‖D‖

0 β + λ

).
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The latter is less than or equal to the product of w(

 α ‖D‖

0 β

) = w(A) and

w(

 α + λ ‖D‖

0 β + λ

) = w(B) by [22]. This completes the proof. �

Although Proposition 2.11 is proved via [22], it also generalizes the latter. In-

deed, if A and B are commuting 2-by-2 matrices, then, assuming that A =

[
α γ

0 β

]
with γ 6= 0, B must be a (linear) polynomial of A and thus w(AB) ≤ w(A)w(B) by

Proposition 2.11.

If A is square-zero (A2 = 0) or idempotent (A2 = A), the inequality w(AB) ≤

min{w(A)‖B‖, ‖A‖w(B)} (for commuting B) was proved in [13] using a completely

different approach. The same can be said for w(AB) ≤ ‖A‖w(B) when A satisfies

A2 = aI for some scalar a and B commutes with A (cf. [39]).

We conclude this section by stating the following remaining question concerning

this topic:

Is it true that w(AB) ≤ ‖A‖w(B) for A quadratic and B commuting with A?

Note that this is false if A is annihilated by a cubic polynomial: the example of

[9, Corollary 4] with

A =


J3

J3

J3

 and B =


0 I3 J3

0 I3

0


attests to this.

17



Chapter 3 Numerical ranges of weighted shift matrices

3.1 Introduction

An n-by-n (n ≥ 2) weighted shift matrix A is one of the form
0 a1

0
. . .

. . . an−1

an 0

 ,

where the aj’s, called the weights of A, are complex numbers. The purpose of this

chapter is to study the numerical ranges of such matrices.

Recall that for any n-by-n complex matrix A, its numerical range W (A) is by

definition the subset {〈Ax, x〉 : x ∈ Cn, ‖x‖ = 1} of the plane. It is known that W (A)

is a nonempty compact convex subset of C. For any subset 4 of C, 4∧ denotes its

convex hull, that is, 4∧ is the smallest convex set containing 4. W (A) contains the

convex hull of the spectrum of A and, when A is normal, they are equal ([19, Theorem

1.4-4]). For other properties, we may consult [25, Chapter 1] or [19].

In Section 3.2, we know that the numerical ranges of certain weighted shift

matrices are easier to determine. For example, if any of the weights of an n-by-n

weighted shift matrix A is zero, then its numerical range is a circular disc centered at

the origin. On the other hand, if all the weights of A have equal (nonzero) moduli,

thenW (A) is a polygonal region with its boundary a regular n-gon. The main theorem

of Section 2 gives necessary and sufficient conditions for the boundary of W (A) to

have a line segment. More specifically, it is shown that this is the case if and only the

aj’s are nonzero and W (A[1]) = · · · = W (A[n]). In this case, W (A[j]) is the circular
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disc centered at the origin with radius w0(A), the line segment lies on one of the lines

x cos θk + y sin θk = w0(A), where θk = (
∑n

j=1arg aj + (2k + 1)π)/n, 0 ≤ k < n, and

there are exactly n line segments on ∂W (A) (Theorem 3.1). This is then used to give

a characterization of such a matrix A of size 4 with line segments on ∂W (A) purely

in terms of its weights, namely, for

A =


0 a1

0 a2

0 a3

a4 0

 ,

the boundary of W (A) has a line segment if and only if |a1| = |a3| 6= 0 and

|a2| = |a4| 6= 0. Along the way, we also prove various properties of the numer-

ical ranges of such matrices. In the literature, there are works on the numerical

ranges and numerical radii of weighted shift matrices and operators. For example,

[42, Lemma 2] gives a method to compute the numerical radius of a weighted shift

matrix with at least one zero weight. [40, 42, 5] discuss properties of the numerical

ranges and numerical radii of weighted shifts on l2 with periodic or geometric weights.

In Section 3.3, we state Theorem 3.15 on the numerical ranges of matrices which

has an analogous structure as the one in Theorem 3.1, namely, the nilpotent matrices

of the form

A =



0 a1 0 · · · 0 an

0 a2
. . . 0

. . . . . . . . .
...

. . . . . . 0

0 an−1

0


(i)
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with weights a1, . . . , an. Note that A and the weighted shift matrix with weights

a1, . . . , an (an real) have the same real parts, which explains why (almost) all results

in Section 2 for the latter have their analogues for the former. The main differ-

ence is that in the present case A is unitarily equivalent to ωn−2A and hence W (A)

has the (n − 2)-symmetry property. A study of the matrix of the form (i) with

a1 = · · · = an = 1 was made in [18, Proposition 3.2].

In Section 3.4, we study the numerical ranges of the n-by-n weighted shift ma-

trices with periodic weights. In our discussions, we may assume that the weights are

all nonnegative. Then in Theorem 3.21 below, we show that if an n-by-n weighted

shift matrix A has periodic nonzero weights, then all its (n− 1)-by-(n− 1) principal

submatrices have identical numerical ranges. Using Theorem 3.1, we obtain that the

boundary of its numerical range has a line segment. In Theorem 3.27, we give a

necessary and sufficient condition for the boundary of W (A) to have a noncircular

elliptic arc. More specifically, it is shown that this is the case if and only if the aj’s are

nonzero, n is even, |a1| = |a3| = · · · = |an−1|, |a2| = |a4| = · · · = |an| and |a1| 6= |a2|.

For n = 4, this essentially generalizes Proposition 3.13. Finally, we give a criterion

for A to be reducible and characterize their numerical ranges in Theorem 3.28. In

particular, it says that, for n = 4, A is reducible if and only if either (1) ai = aj = 0

for some i and j, 1 ≤ i < j ≤ n, or (2) |a1| = |a3| 6= 0 and |a2| = |a4| 6= 0.

For 1 ≤ i1 < · · · < im ≤ n, let A[i1, . . . , im] denote the (n−m)-by-(n−m) prin-

cipal submatrix of A obtained by deleting its rows and columns indexed by i1, . . . , im.

Recall that the numerical radius w(A) and generalized Crawford number w0(A) of A

are, by definition, max {|z| : z ∈ W (A)} and min {|z| : z ∈ ∂W (A)}, respectively.

Let l(A) denote the number of line segments on ∂W (A). A diagonal matrix with

diagonals a1, . . . , an is denoted by diag(a1, . . . , an). Our basic reference for properties
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of matrices is [24].

For an n-by-nmatrixA, consider the degree-n homogeneous polynomial pA(x, y, z) =

det(xRe A+ yIm A+ zIn). The Kippenhahn curve C(A) of A is the algebraic curve

dual to the one determined by pA(x, y, z) = 0 in the complex projective plane CP2,

that is, C(A) consists of all points [u, v, w] in CP2 such that ux+vy+wz = 0 is a tan-

gent line to pA(x, y, z) = 0. As usual, we identify the point (x, y) in C2 with [x, y, 1] in

CP2 and identify any point [x, y, z] in CP2 such that z 6= 0 with (x/z, y/z) in C2. The

real part of the curve C(A), namely, the set {a+ bi ∈ C : a, b ∈ R and ax+ by + z =

0 is tangent to pA(x, y, z) = 0}, will be denoted by CR(A). A result of Kippenhahn

[28, p. 199] says that the numerical range W (A) is the convex hull of the real points

of the curve pA(x, y, z) = 0, that is, W (A) = CR(A)∧. The point [x0, y0, z0] is said to

be a focus of the curve C if it is not equal to [1,±i, 0] and the lines through [x0, y0, z0]

and [1,±i, 0] are tangent to C at points other than [1,±i, 0].

For any nonzero complex number z = x+ iy (x and y real), arg z is the angle θ,

0 ≤ θ < 2π, from the positive x-axis to the vector (x, y). If z = 0, then arg z can be

an arbitrary real number. In the following, let B(0; r) = {z ∈ C : |z| ≤ r} for r > 0

and ωn = e2πi/n for n ≥ 1.
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3.2 Numerical ranges of weighted shift matrices

The main result of this section is the following.

Theorem 3.1. Let A be an n-by-n (n ≥ 2) weighted shift matrix with weights

a1, . . . , an. Then ∂W (A) has a line segment if and only if the aj’s are nonzero

and W (A[1]) = · · · = W (A[n]). In this case, W (A[j]) is the circular disc cen-

tered at the origin with radius w0(A), the line segment lies on one of the lines

x cos θk + y sin θk = w0(A), where θk = (
∑n

j=1arg aj + (2k + 1)π)/n, 0 ≤ k < n,

and there are exactly n line segments on ∂W (A).

For the proof of Theorem 3.1, we need the following lemmas. We start with the

necessity of the proof with a lemma from [15, Lemma 5]. It relates the line segments

on ∂W (A) to the numerical ranges of submatrices of A.

Lemma 3.2. If A is an n-by-n matrix and B is an (n− 1)-by-(n− 1) submatrix

of A, then every line segment on ∂W (A) intersects ∂W (B).

Lemma 3.3. Let A and B be n-by-n (n ≥ 3) weighted shift matrices with weights

a1, . . . , an and b1, . . . , bn, respectively.

(1) If, for some fixed k, 1 ≤ k ≤ n, bj = ak+j (an+j ≡ aj) for all j, then A is

unitarily equivalent to B.

(2) If |aj| = |bj| for all j, then A is unitarily equivalent to eiαkB, where αk =

(2kπ +
∑n

j=1(arg aj−arg bj))/n for 0 ≤ k < n. In particular, A is unitarily

equivalent to wnA and hence W (A) has n symmetry.

(3) (a) Either the intersection number of ∂W (A) and ∂B(0;w(A)) is n or W (A) =
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B(0;w(A)).

(b) Either the intersection number of ∂W (A) and ∂B(0;w0(A)) is n or W (A) =

B(0;w0(A)).

(4) The following conditions are equivalent:

(a) aj = 0 for some j,

(b) A is unitarily equivalent to eiθA for all real θ, and

(c) W (A) is a circular disc centered at the origin.

(5) If ∂W (A) has a line segment L, then dist(0, L) = w0(A) and there are exactly

n line segments on ∂W (A).

Proof. (1) If U is the n-by-n weighted shift matrix with weights 1, . . . , 1, then U is

unitary and AUn−k = Un−kB. This proves the unitary equivalence of A and B.

(2) If U = diag(eiφ1 , . . . , eiφn), where φ1 = 0 and φj = φj−1 + (arg bj−1−arg

aj−1) + αk for 2 ≤ j ≤ n, then U is unitary and AU = U(eiαkB). In particular, A is

unitarily equivalent to wnA by letting B = A and k = 1.

(3) (a) follows from J. Anderson’s result (cf. [45, Lemma 6] or [33, Theorem

4.12]) and (2). (b) follows from [18, Theorem 2.5 (a), (b)] and (2).

(4) If (a) holds, then the αk’s in (2) can be arbitrary. Letting B = A in there,

we obtain (b). The implication (b) ⇒ (c) is trivial. To prove (c) ⇒ (a), note that 0,

the center of the circular disc W (A), is an eigenvalue of A (cf. [33, Theorem 4.2]).

Hence detA = (−1)n+1a1 · · · an = 0, which shows that aj = 0 for some j.
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(5) If L is a line segment on ∂W (A), then, by Lemma 3.2, L intersects ∂W (A[j])

for every j, 1 ≤ j ≤ n. Since W (A[j]) ⊆ W (A) and W (A[j]) is a circular disc

centered at the origin, we obtain dist(0, L) = w0(A[j]) ≤ w0(A) for every j. But

dist(0, L) ≥ w0(A) is obviously true. This shows that dist(0, L) = w0(A[1]) = · · · =

w0(A[n]) = w0(A). Additionally, there are exactly n line segments on ∂W (A) by (2)

and (3b). �

Therefore, the necessity of Theorem 3.1 follows easily from Lemmas 3.2 and

3.3 (4), (5). We now proceed to prepare ourselves for the proof of the sufficiency of

Theorem 3.1. This will be done in a series of lemmas and propositions. Note that

some of them have already been obtained in [26], the Ph.D. dissertation of Issos on

irreducible nonnegative matrices. For example, (2) follows from [26, Theorem 7]. We

start with the following.

Lemma 3.4. Let A be an n-by-n (n ≥ 3) weighted shift matrix with weights

a1, . . . , an, and let θ = (
∑n

j=1arg aj)/n.

(1) W (A) is symmetric with respect to the lines y = x tan((kπ/n)+θ) for 0 ≤ k < n.

(2) We have {arg λ : λ ∈ ∂W (A), |λ| = w(A)} = {(2kπ/n) + θ : 0 ≤ k < n} and

{arg λ : λ ∈ ∂W (A), |λ| = w0(A)} = {((2k + 1)π/n) + θ : 0 ≤ k < n}.

(3) w(A) ≤ w0(A) sec(π/n) and

B(0;w0(A)) ⊆ W (A) ⊆ w0(A)(sec
π

n
)eiθ{1, ωn, . . . , ωn−1n }∧.

Proof. (1) We need only consider aj 6= 0 for all j by Lemma 3.3 (4). Lemma

3.3 (2) implies that A is unitarily equivalent to ei((2kπ/n)+θ)B and ei(((2k+1)π/n)+θ)C,

where B and C are the n-by-n weighted shift matrices with weights |a1|, . . . , |an| and

|a1|, . . . , |an−1|,−|an|, respectively, where 0 ≤ k < n. Hence our assertion follows
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from the fact that the numerical range of a finite square matrix with real entries is

symmetric with respect to the x-axis.

(2) Assume that aj 6= 0 for all j. Then A is unitarily equivalent to eiθB,

where B is the n-by-n matrix with weights |a1|, . . . , |an| by Lemma 3.3 (2). By the

Perron-Frobenius Theory [31, Theorem 15.5.1], we know that w(A) = w(B) ∈ W (B).

Therefore our assertion follows from Lemma 3.3 (3a), (3b) and (1).

(3) Since the points w(A)ei((2kπ/n)+θ), 0 ≤ k < n, are in W (A) by (2), the regular

n-polygonal region R whose vertices are these points is contained in W (A). Hence

w0(A) ≥ dist(0, R) = w(A)
1

2
|eiθ + ei((2π/n)+θ)| = w(A) cos

π

n
.

This proves that w(A) ≤ w0(A) sec(π/n).

By (2), we have the containment B(0;w0(A)) ⊆ W (A). For the other direction,

note that if u is any point of W (A) which is in a different half-plane, determined

by the line L connecting w0(A) sec(π/n)eiθ and w0(A) sec(π/n)ei((2π/n)+θ), from the

origin, then, by (1), its symmetric point u′ with respect to the line connecting 0 and

w0(A)ei((π/n)+θ) is also in W (A). Thus (u+u′)/2 is in W (A), which would contradict

the fact that w0(A)ei((π/n)+θ) is on the boundary of W (A). This shows that W (A) is

contained in the same half-plane of L as the origin. The n-symmetry of W (A) from

(1) then yields that

W (A) ⊆ w0(A)(sec
π

n
){ei((2kπ/n)+θ) : 0 ≤ k < n}∧

= w0(A)(sec
π

n
)eiθ{ωkn : 0 ≤ k < n}∧.

�
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As a side result, the next proposition gives conditions for a weighted shift matrix

to have a regular polygonal region as its numerical range. The equivalence of some

conditions below can also be derived from [26, Theorem 13].

Proposition 3.5. Let A be a nonzero n-by-n (n ≥ 3) weighted shift matrix with

weights a1, . . . , an. Then the following conditions are equivalent:

(1) A is normal,

(2) |a1| = · · · = |an|,

(3) A is unitarily equivalent to diag(λ, λωn, . . . , λω
n−1
n ), where λ = (a1 · · · an)1/n,

(4) W (A) is a regular n-polygonal region with center at the origin and the distance

from the center to its vertices equal to |a1 · · · an|1/n,

(5) ∂W (A) has a nondifferentiable point, and

(6) w(A) = w0(A) sec(π/n).

Proof. That (1) ⇒ (2), (3) ⇒ (4) and (4) ⇒ (5) are trivial. To prove (2) ⇒ (3),

note that, under (2), A is unitarily equivalent to |a1|ei(
∑n

j=1 arg aj)/nB, where B is the

n-by-n weighted shift matrix with weights 1, . . . , 1 by Lemma 3.3 (2). It is easily

seen that B is unitarily equivalent to diag(1, ωn, . . . , ω
n−1
n ) and |a1|ei(

∑n
j=1 arg aj)/n =

(a1 · · · an)1/n = λ. Hence (3) follows. For (5) ⇒ (1), if λ is a nondifferentiable

point of ∂W (A), then so are λωkn, 0 ≤ k < n, by Lemma 3.3 (2). Since each of

such points is a reducing eigenvalue of A, we obtain that A is unitarily equivalent to

diag(λ, λωn, . . . , λω
n−1
n ). In particular, A is normal, that is, (1) holds. Finally, if (4)

holds, then (2) is true and hence

w(A) = |a1 · · · an|1/n = |a1| = w0(A) sec
π

n
,

26



that is, (6) holds. Conversely, if (6) is true, then Lemma 3.4 (3) says that W (A) ⊆

w(A)eiθ{1, ωn, . . . , ωn−1n }∧, where θ = (
∑n

j=1arg aj)/n. But the vertices of this latter

regular n-polygonal region, namely, w(A)eiθωkn, 0 ≤ k < n, are in W (A) by Lemma

3.4 (2). Hence we must have W (A) = w(A)eiθ{1, ωn, . . . , ωn−1n }∧. Hence ∂W (A) has

nondifferentiable points, that is, (5) holds. This completes the proof. �

For the sufficiency of Theorem 3.1, we also need the following lemma.

Lemma 3.6. Let A and B be the n-by-n (n ≥ 2) weighted shift matrices with

weights a1, . . . , an−1, 0 and b1, . . . , bn−1, 0, respectively.

(1) If |aj| ≤ |bj| for all j, then W (A) ⊆ W (B).

(2) If the bj’s are nonzero, |aj| ≤ |bj| for all j and |ak| < |bk| for some k, then

W (A) $ W (B).

(3) If the aj’s are nonzero, then W (A[n]) $ W (A).

Proof. In view of Lemma 3.3 (2), we may assume that the aj’s and bj’s are all

nonnegative. Since W (A) and W (B) are circular discs centered at the origin by

Proposition 3 (3), the assertions in (1) and (2) are equivalent to w(A) ≤ w(B) and

w(A) < w(B), respectively. These in turn follow from [32, Corollary 3.6]. To prove

(3), let C = A[n]⊕ [0]. Then W (A[n]) = W (C) $ W (A) by (2). This completes the

proof. �

The next lemma is needed for the proof of Proposition 3.8.

Lemma 3.7. If A and B are n-by-n (n ≥ 2) weighted shift matrices with weights

a1, . . . , an−1, 0 and an−1, . . . , a1, 0, respectively, then W (A) = W (B).
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Proof. Since W (A) and W (B) are circular discs centered at the origin by Lemma 3.3

(4), we need only check that w(A) = w(B). By Lemma 3.3 (2), we may assume that

aj ≥ 0 for all j. Let x = [x1 . . . xn]T be a unit vector with nonnegative components

such that w(A) = 〈Ax, x〉. Then

w(A) =
n−1∑
j=1

ajxj+1xj = 〈By, y〉 ≤ w(B),

where y = [xn . . . x1]
T . Similarly, we have w(B) ≤ w(A). Thus w(A) = w(B) as

asserted. �

The preceding lemma can also be proven by noting, under aj ≥ 0 for all j, that

Re A and Re B are unitarily equivalent:

J(Re A)=(Re B)J , where J = [Jij]
n
i,j=1 is the n-by-n skew identity matrix with

Jij =

 1 if i+ j = n+ 1,

0 otherwise,

and hence w(A) = ‖Re A‖ = ‖Re B‖ = w(B).

Proposition 3.8. Let A be an n-by-n (n ≥ 3) weighted shift matrix with weights

a1, . . . , an. If |a1| = · · · = |an−3| and ∂W (A) has a line segment, then |an−2| = |an| 6=

0.

Proof. By Lemma 3.3 (2), we may assume that aj ≥ 0 for all j. Since ∂W (A)

has a line segment, we even have aj > 0 by Lemma 3.3 (4). Let A1 and A2 be

the (n − 1)-by-(n − 1) weighted shift matrices with weights a1, . . . , an−3, an−2, 0 and

a1, . . . , an−3, an, 0, respectively. Then A1 = A[n] and W (A2) = W (A3), where A3

is the (n − 1)-by-(n − 1) weighted shift matrix with weights an, an−3, . . . , a1, 0, by
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Lemma 3.7. Since a1 = · · · = an−3, by Lemma 3.3 (1), A3 is unitarily equivalent to

A[n− 1]. Thus W (A3) = W (A[n− 1]). Note that the existence of a line segment on

∂W (A) guarantees that W (A[n]) = W (A[n − 1]) by the necessity part of Theorem

3.1. We conclude that W (A1) = W (A2). Therefore, an−2 = an by Lemma 3.6 (2).

This completes the proof. �

From Proposition 3.8, we can derive the following for weighted shift matrices

of size 3 or 4: (1) a 3-by-3 weighted shift matrix A with weights a1, a2, a3 is such that

∂W (A) contains a line segment if and only if |a1| = |a2| = |a3| 6= 0, and (2) if the

4-by-4 weighted shift matrix A with weights a1, a2, a3, a4 is such that ∂W (A) contains

a line segment, then |a1| = |a3| 6= 0 and |a2| = |a4| 6= 0. The necessity in (1) and (2)

is a consequence of Proposition 3.8 and Lemma 3.3 (1). The sufficiency in (1) has

already been proven in Proposition 3.5. Note that the condition in (2) is actually also

sufficient, but its proof has to wait until the proving of Theorem 3.1 (cf. Proposition

3.13 later).

The next proposition is the major step in proving the sufficiency of Theorem 3.1.

Proposition 3.9. Let A be an n-by-n (n ≥ 3) weighted shift matrix with nonzero

weights a1, . . . , an, and let θ = (π +
∑n

j=1arg aj)/n.

(1) If W (A[j − 1]) = W (A[j]) = W (A[j + 1]) = B(0; r) for some j, 1 ≤ j ≤ n

(A[0] ≡ A[n] and A[n + 1] ≡ A[1]) and some r > 0, then r is either the largest

or the second largest eigenvalue of Re (e−iθA).

(2) If W (A[1]) = · · · = W (A[n]) = B(0; r)(r > 0), then r = w0(A) is the largest

eigenvalue of Re (e−iθA) with multiplicity at least two.
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For the proof, we need the following lemma.

Lemma 3.10. Let A be an n-by-n (n ≥ 5) weighted shift matrix with nonzero

real weights a1, . . . , an. For 1 ≤ j ≤ n − 2, let B = Re A[n] be partitioned as Aj Bj

Cj Dj

 with Aj, Bj, Cj and Dj of sizes j-by-j, j-by-(n− j − 1), (n− j − 1)-by-j

and (n − j − 1)-by-(n − j − 1), respectively. If λ is the maximum eigenvalue of B,

then a22 . . . a
2
n−3λ

2 = 4n−4 det(λIn−3 − An−3) det(λIn−3 −D2).

Proof. Since the aj’s are nonzero, W (A[n]) properly contains W (A[j + 1, . . . , n]) for

any j, 1 ≤ j ≤ n−2, by Lemma 3.6 (3). Hence λ, being the radius of the circular disc

W (A[n]), does not belong to W (A[j+ 1, . . . , n]). In particular, λ is not an eigenvalue

of Aj =Re A[j+ 1, . . . , n] and therefore λIj −Aj is invertible for all j, 1 ≤ j ≤ n− 2.

Similarly, the same is true for λIn−j−1 −Dj. Thus

0 = det(λIn−1 −B)

= det(λIj − Aj) det((λIn−j−1 −Dj)− (−Cj)(λIj − Aj)−1(−Bj))

= det(λIj − Aj) det((λIn−j−1 −Dj)−
1

4
a2j

det(λIj−1 − Aj−1)
det(λIj − Aj)


1 0 · · · 0

0 0
...

...
. . .

...

0 · · · · · · 0

)

= det(λIj − Aj)(det(λIn−j−1 −Dj)−
1

4
a2j

det(λIj−1 − Aj−1)
det(λIj − Aj)

det(λIn−j−2 −Dj+1)),

from which we obtain

a2j = 4
det(λIj − Aj) det(λIn−j−1 −Dj)

det(λIj−1 − Aj−1) det(λIn−j−2 −Dj+1)

for 2 ≤ j ≤ n− 3. Taking the product of the a2j ’s yields

a22 . . . a
2
n−3λ

2 = 4n−4
det(λIn−3 − An−3) det(λIn−3 −D2)

det(λI1 − A1) det(λI1 −Dn−2)
λ2

= 4n−4 det(λIn−3 − An−3) det(λIn−3 −D2)
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since A1 and Dn−2 are both the 1-by-1 zero matrix. This completes the proof. �

Proof of Proposition 3.9. (1) We may assume, by Lemma 3.3 (1), that W (A[n−1]) =

W (A[n]) = W (A[1]) = B(0; r). Also, by Lemma 3.3 (2), A is unitarily equivalent to

eiθC, where C is the n-by-n weighted shift matrix with weights |a1|, . . . , |an−1|,−|an|.

Then w0(A) = w0(C) is in ∂W (C) by Lemma 3.4 (2) and W (A[j]) = W (C[j]) for all

j. Thus w0(C) is the maximum eigenvalue of Re C and r is the maximum eigenvalue

of Re C[j] for j = 1, n− 1 and n. We now expand the determinant of rIn−Re C by

minors along its nth row to obtain

det(rIn − Re C)

=
1

2
|an|(−1)n+1dn1 −

1

2
|an−1|(−1)2n−1dn,n−1 + r det(rIn−1 − Re C[n])

=
1

2
|an|(−1)n+1dn1 −

1

2
|an−1|(−1)2n−1dn,n−1,

where (−1)n+jdnj denotes the cofactor of the (n, j)-entry of Re C in Re C, j = 1,

n− 1. The expansion of the determinant dn1 (resp., dn,n−1) along its first row (resp.,

its last row) yields

dn1 =
(−1)n−1

2n−1
|a1 · · · an−1|+

(−1)n

2
|an| detC1

(resp.,

dn,n−1 =
1

2n−1
|a1 · · · an−2an| −

1

2
|an−1| detC2),

where

C1 =


r −|a2|/2

−|a2|/2 r
. . .

. . . . . . −|an−2|/2

−|an−2|/2 r


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(resp.,

C2 =


r −|a1|/2

−|a1|/2 r
. . .

. . . . . . −|an−3|/2

−|an−3|/2 r

).

Hence

det(rIn − Re C) =
1

2n
|a1 · · · an| −

1

4
|an|2 detC1 +

1

2n
|a1 · · · an| −

1

4
|an−1|2 detC2

=
1

2n−1
|a1 · · · an| −

1

4
|an|2 detC1 −

1

4
|an−1|2 detC2.(ii)

On the other hand, let

Dj =


r −|aj|/2

−|aj|/2 r
. . .

. . . . . . −|an+j−5|/2

−|an+j−5|/2 r


for j = 1, 2 and 3. Since det(rIn−1−Re C[n]) = 0, expanding this determinant along

its first row (resp., its last row) yields r detC1 = (|a1|2/4) detD3 (resp., r detC2 =

(|an−2|2/4) detD1). Similarly, from det(rIn−1 − Re C[1]) = 0 (resp., det(rIn−1 −

Re C[n−1]) = 0), we obtain r detC1 = (|an−1|2/4) detD2 (resp., r detC2 = (|an|2/4) detD2).

Since r is the maximum eigenvalue of Re C[j] for j = 1, n−1 and n, we have detCj ≥ 0

for j = 1 and 2, and detDj ≥ 0 for j = 1, 2 and 3. Thus (ii) becomes

det(rIn − Re C) =
1

2n−1
|a1 · · · an| −

1

4
|an|2

|an−1|2

4r
detD2 −

1

4
|an−1|2

|an|2

4r
detD2

=
1

2n−1
|a1 · · · an| −

1

8r
|an−1an|2

|an−2|
|an|

(detD1)
1/2 |a1|
|an−1|

(detD3)
1/2

=
1

2n−1
|a1 · · · an| −

1

8r
|a1an−2an−1an|(detD1 · detD3)

1/2 = 0
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by Lemma 3.10. Hence det(rIn−Re (e−iθA)) = 0. Since r is the maximum eigenvalue

of Re (e−iθA)[1], this shows that it is either the largest or the second largest eigen-

value of Re (e−iθA).

(2) From our assumption and the proof of (1), we have det(rIn−1 − Re C[j]) =

det(rIn − Re C) = 0 for all j, 1 ≤ j ≤ n. Thus if p(z) = det(zIn − Re C), then

p′(r) =
∑n

j=1 det(rIn−1 − Re C[j]) = 0 (cf. [24, p. 43, Problem 4]). This shows that

the eigenvalue r of Re C has (algebraic) multiplicity at least two or, equivalently,

dim ker(rIn−Re C) ≥ 2. Since B(0; r) = W (C[n]) ⊆ W (C), we have r ≤ w0(C).

If r < w0(C), then we deduce from the facts that w0(C) is the maximum eigenvalue

of Re C and dim ker(rIn−Re C) ≥ 2 that B(0; r) = W (C[n]) = W (C[n − 1, n]).

This contradicts Lemma 3.6 (3) since the aj’s are nonzero. Hence we must have

r = w0(C) = w0(A), which is the largest eigenvalue of Re (e−iθA) with multiplicity

at least two. �

Another result which we need is the following condition for the line segment on

the boundary of a numerical range. It is from [16, Lemma 1.4].

Lemma 3.11. Let A be an n-by-n (n ≥ 2) matrix. Then ∂W (A) has a line

segment on the line x cos θ + y sin θ = d if and only if d is the maximum eigenvalue

of Re (e−iθA), which has unit eigenvectors x1 and x2 such that Im 〈e−iθAx1, x1〉 6= Im

〈e−iθAx2, x2〉.

Lemma 3.12. Let A be an n-by-n (n ≥ 2) weighted shift matrix with nonzero

real weights a1, . . . , an. Then ∂W (A) has a line segment on the line x = d if and only

if d is the maximum eigenvalue of Re A with multiplicity at least two.
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Proof. In view of Lemma 3.11, we need only prove the sufficiency part. Since dim

ker(dIn−Re A) ≥ 2, there are real vectors b = [0 b2 . . . bn]T and c = [c1 0 c3 . . . cn]T

in ker(dIn−Re A) with b2, c1 6= 0. Then we obtain a1b2 + anbn = 0, 2db2 = a2b3,

2dbj = aj−1bj−1 + ajbj+1 for 3 ≤ j ≤ n− 1, and an−1bn−1 = 2dbn (resp., 2dc1 = ancn,

a1c1 + a2c3 = 0, 2dc3 = a3c4, 2dcj = aj−1cj−1 + ajcj+1 for 4 ≤ j ≤ n − 1, and

anc1 + an−1cn−1 = 2dcn). Simple computations show that

anbnc1 = −a1b2c1 = a2b2c3 = (2db3 − a3b4)c3

= a3(b3c4 − b4c3) = a3b3c4 − (2dc4 − a4c5)b4

= a4(b4c5 − b5c4)

= · · ·

= an−1(bn−1cn − bncn−1).

Letting x1 = (b+ ic)/‖b+ ic‖ and x2 = b/‖b‖, we have

Im〈Ax1, x1〉 =
1

‖b+ ic‖2
(−a1b2c1 + a2b2c3 +

n−1∑
j=3

aj(bjcj+1 − bj+1cj) + anbnc1)

= − na1b2c1
‖b+ ic‖2

6= 0 = Im〈Ax2, x2〉.

Our assertion follows from Lemma 3.11. �

We are now ready to prove the sufficiency of Theorem 3.1.

Proof of Theorem 3.1. Assume that aj 6= 0 and W (A[j]) = B(0; r) for all j, 1 ≤ j ≤ n.

By Lemma 3.3 (2), A is unitarily equivalent to eiθC, where C is the n-by-n weighted

shift matrix with weights |a1|, . . . , |an−1|,−|an| and θ = (π +
∑n

j=1 arg aj)/n. By

Proposition 3.9 (2), r = w0(C) = w0(A) is the largest eigenvalue of Re C with multi-

plicity at least two. Lemma 3.12 then implies that ∂W (C) has a line segment on the

line x = r. Thus ∂W (A) has a line segment on x cos θ + y sin θ = r = w0(A). This
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completes the proof. �

The next proposition characterizes those 4-by-4 weighted shift matrices A with

∂W (A) containing a line segment in terms of the weights of A. It was worked out by

H.-L. Gau and P. Y. Wu some years ago.

Proposition 3.13. Let A be a 4-by-4 weighted shift matrix with weights a1, . . . , a4.

Then the following conditions are equivalent:

(1) ∂W (A) has a line segment,

(2) |a1| = |a3| 6= 0 and |a2| = |a4| 6= 0,

(3) A is unitarily equivalent to

 0 b1

b2 0

 ⊕
 0 c1

c2 0

, where b1b2 = −c1c2 6= 0

and |b1|2 + |b2|2 = |c1|2 + |c2|2, and

(4) A is unitarily equivalent to

 0 b1

b2 0

⊕ i
 0 b1

b2 0

 with b1, b2 6= 0.

In this case, W (A) is the convex hull of the two (orthogonal) ellipses E1 and E2 (may

degenerate to line segments if |b1| = |b2|) with E1 having foci ±(b1b2)
1/2 and minor

axis of length ||b1| − |b2|| and E2 = iE1. In particular, ∂W (A) has four line segments.

Proof. (1) ⇔ (2). Since the characteristic polynomial of Re A[1] is

det(zI3 − Re A[1]) = z3 − 1

4
(|a2|2 + |a3|2)z,

we have w(A[1]) = ‖Re A[1]‖ = (|a2|2 + |a3|2)1/2/2. Similarly, we obtain values of

w(A[j]) for 2 ≤ j ≤ 4. Thus the equivalence of (1) and (2) follows from Theorem 3.1

and Lemma 3.3 (4).
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(2) ⇒ (3). Since det(zI4 − A) = z4 − a1a2a3a4, the eigenvalues of A are αj ≡

(a1a2a3a4)
1/4ωj4, 0 ≤ j < 4. Their respective eigenvectors can be computed to be

(multiples of) xj ≡ [1 αj/a1 αj
2/(a1a2) αj

3/(a1a2a3)]
T , 0 ≤ j < 4. Note that

〈xj, xk〉 = 1 +
1

|a1|2
αjαk +

1

|a1a2|2
(αjαk)

2 +
1

|a1a2a3|2
(αjαk)

3

for any j and k. From this, it is easy to verify that

〈x1, x2〉 = 〈x1, x4〉 = 〈x3, x2〉 = 〈x3, x4〉 = 0.

Let y1 = x1−x3 = [0 2α0/a1 0 2α0
3/(a1a2a3)]

T , y2 = x1+x3 = [2 0 2α0
2/(a1a2) 0]T ,

y3 = x2 − x4 = [0 2iα0/a1 0 − 2iα0
3/(a1a2a3)]

T and y4 = x2 + x4 = [2 0 −

2α0
2/(a1a2) 0]T , and let M be the subspace of C4 spanned by y1 and y2. Since

Ay1 = Ax1 − Ax3 = α1x1 − α3x3 and Ay2 = Ax1 + Ax3 = α1x1 + α3x3, and M

is also spanned by x1 and x3, we have AM ⊆ M . A simple computation shows

that A∗y1 = (a4α0
3/(a1a2a3))y2 and A∗y2 = (|a1|2/α0)y1, where the assumptions that

|a1| = |a3| and |a2| = |a4| are used. This shows that A∗M ⊆ M . Thus M is a

reducing subspace of A. Moreover, it is easily seen that M⊥ is spanned by y3 and y4,

and 〈y1, y2〉 = 〈y3, y4〉 = 〈Ayj, yj〉 = 0 for all j. Therefore, A is unitarily equivalent

to a matrix of the form

 0 b1

b2 0

⊕
 0 c1

c2 0

 ≡ B⊕C on M ⊕M⊥. Since x1 and

x3 are in M , α1 and α3 are eigenvalues of B. Hence

−b1b2 = detB = α1α3 = α
1/2
0 ω2

4 = −α1/2
0 .

A similar argument with C yields −c1c2 = α
1/2
0 . It follows that b1b2 = −c1c2.

To prove |b1|2 + |b2|2 = |c1|2 + |c2|2, note that simple computations give

b1 = 〈A y2
‖y2‖

,
y1
‖y1‖
〉 = α0

‖y1‖
‖y2‖

,

b2 = 〈A y1
‖y1‖

,
y2
‖y2‖
〉 = α0

‖y2‖
‖y1‖

,
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c1 = 〈A y4
‖y4‖

,
y3
‖y3‖
〉 = iα0

‖y3‖
‖y4‖

,

and

c2 = 〈A y3
‖y3‖

,
y4
‖y4‖
〉 = iα0

‖y4‖
‖y3‖

,

and ‖y1‖ = ‖y3‖ and ‖y2‖ = ‖y4‖. Thus

|b1|2 + |b2|2 = |α0|2(
‖y1‖2

‖y2‖2
+
‖y2‖2

‖y1‖2
)

= |α0|2(
‖y3‖2

‖y4‖2
+
‖y4‖2

‖y3‖2
) = |c1|2 + |c2|2

as asserted.

(3) ⇒ (4). Note that

 0 b1

b2 0

 (resp.,

 0 c1

c2 0

) is unitarily equivalent to (b1b2)
1/2 ||b1| − |b2||

0 −(b1b2)
1/2

 (resp.,

 (c1c2)
1/2 ||c1| − |c2||

0 −(c1c2)
1/2

). From the assumption

in (3), we have (b1b2)
1/2 = ±i(c1c2)1/2 and ||b1| − |b2|| = ||c1| − |c2||. Thus

 0 c1

c2 0


is unitarily equivalent to i

 0 b1

b2 0

, and (4) follows.

(4) ⇒ (1). Since W (

 0 b1

b2 0

) is the elliptic disc with foci ±(b1b2)
1/2 and mi-

nor axis of length ||b1| − |b2||, that is, W (

 0 b1

b2 0

) = E1
∧ and W (i

 0 b1

b2 0

) =

(iE1)
∧, it is obvious that ∂W (A) contains four line segments. This also proves our

assertion on W (A), completing the proof. �

For n > 4, we can use the same arguments as in the proof of (1) ⇔ (2) above

to obtain conditions in terms of the weights. They turn out to be too complicated to
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be useful.

Recall that a set S is nowhere dense in Cn if its closure contains no nonempty

open subset of Cn. By Theorem 3.1, we can obtain the following result.

Proposition 3.14. Let S = {[a1, . . . , an]T ∈ Cn : ∂W (


0 a1

0
. . .

. . . an−1

an 0

)

has a line segment} (n ≥ 2). Then S is closed and nowhere dense in Cn.

Proof. (1) For any a = [a1, . . . , an]T ∈ Cn, let A be the n-by-n (n ≥ 3) weighted shift

matrix with weights a1, . . . , an. Then Theorem 3.1 implies

S = {[a1, . . . , an]T ∈ Cn : ∂W (A) has a line segment}

= {[a1, . . . , an]T ∈ Cn : W (A[1]) = · · · = W (A[n]), ai 6= 0 for all i}

= {[a1, . . . , an]T ∈ Cn : ‖Re (A[1])‖ = · · · = ‖Re (A[n])‖, ai 6= 0 for all i}

Let {rk} = {[a1k, . . . , ank]T} ⊆ S be a convergent sequence, a = [a1, . . . , an]T = lim rk.

Since |aik − ai| ≤ ‖rk − a‖ for all i and k, we have aik → ai as k → ∞ for all i. Let

Ak (resp., A) be the n-by-n weighted shift matrices with weights a1k, . . . , ank (resp.,

a1, . . . , an), then we obtain ‖Re ((Ak)[i])‖ → ‖Re (A[i])‖ as k → ∞ for all i. Since

{rk} ⊆ S, we have ‖Re ((Ak)[i])‖ = ‖Re ((Ak)[j])‖ for all i, j, k, 1 ≤ i < j ≤ n and

the aik’s are nonzero. Therefore, we show that ‖Re (A[1])‖ = · · · = ‖Re (A[n])‖ and

the aj’s are nonzero. This implies a ∈ S and hence S is closed in Cn.

(2) We need only show that S has no interior point. Suppose there exists

a = [a1, . . . , an]T in the interior of S. Then we have B(a; r) ⊆ S for some r, r > 0. Let

b = [(|a1|+r/2)eiarga1 , a2, . . . , an]T ∈ Cn and A (resp., B) be the n-by-n weighted shift
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matrix with weights a1, . . . , an (resp., (|a1|+r/2)eiarga1 , a2, . . . , an). Hence both a and

b are in S by Theorem 3.1. These imply W (A[n]) = W (A[1]), W (B[n]) = W (B[1])

and the aj’s are nonzero. Since A[1] = B[1], we obtain that a1 = (|a1| + r/2)eiarga1

by Lemma 3.6 (2). It is impossible. This completes the proof. �
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3.3 Nilpotent matrices with n weights

Consider the n-by-n nilpotent matrix of the form (i) with weights a1, . . . , an.

We start with the main result of this section, which is analogous to Theorem 3.1.

Theorem 3.15. Let A be an n-by-n (n ≥ 3) nilpotent matrix of the form (i)

with weights a1, . . . , an. Then ∂W (A) has a line segment if and only if the aj’s are

nonzero and W (A[1]) = · · · = W (A[n]). In this case, W (A[j]) is the circular disc

centered at the origin with radius w0(A), the line segment lies on one of the lines

x cos θk + y sin θk = w0(A), where θk = ((
∑n−1

j=1arg aj)−arg an + (2k + 1)π)/(n − 2),

0 ≤ k < n− 3, and there are exactly n− 2 line segments on ∂W (A).

For the proof of Theorem 3.15, we also need a fuller understanding of the nu-

merical range of the n-by-n nilpotent matrix of the form (i) with weights a1, . . . , an.

This is provided by the following lemmas.

Lemma 3.16. Let A and B be n-by-n (n ≥ 3) nilpotent matrix of the form (i)

with weights a1, . . . , an and b1, . . . , bn, respectively.

(1) If |aj| = |bj| for all j, then A is unitarily equivalent to eiβkB, where βk =

(
∑n−1

j=1 (arg aj − arg bj) + (arg bn − arg an) + 2kπ)/(n − 2) for 0 ≤ k < n − 2.

In particular, A is unitarily equivalent to wn−2A and hence W (A) has n − 2

symmetry.

(2) (a) Either the intersection number of ∂W (A) and ∂B(0;w(A)) is n − 2 or

W (A) = B(0;w(A)).

(b) Either the intersection number of ∂W (A) and ∂B(0;w0(A)) is n − 2 or

W (A) = B(0;w0(A)).
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(3) The following conditions are equivalent:

(a) aj = 0 for some j,

(b) A is unitarily equivalent to eiθA for all real θ,

(c) W (A) is a circular disc centered at the origin, and

(d) ∂W (A) contains an elliptic arc.

(4) If ∂W (A) has a line segment L, then dist(0, L) = w0(A) and there are exactly

n− 2 line segments on ∂W (A).

Proof. (1) If U = diag(eiφ1 , . . . , eiφn), where φ1 = 0 and φj = φj−1 + (arg bj−1−arg

aj−1) + βk for 2 ≤ j ≤ n, then U is unitary and AU = U(eiβkB). In particular, A is

unitarily equivalent to wn−2A by letting B = A and k = 1.

(2) (a) follows from [18, Proposition 3.1] and (1). (b) follows from [18, Theorems

2.5 (b), 3.5 (a) and (b)] and (1).

(3) If (a) holds, then the βk’s in (1) can be arbitrary. Letting B = A in there,

we obtain (b). The implications (b) ⇒ (c) and (c) ⇒ (d) are trivial. To prove (c)

⇒ (a), let λ be the maximum eigenvalue of Re(ωA) for all |ω| = 1. Then we have

det(λI−Re(ωA))= 0 for all |ω| = 1. Since

det(λI − Re(ωA)) = f(λ)− a1 · · · an−1an
2n

ωn−2 − a1 · · · an−1an
2n

ωn−2

for some polynomial f(λ) which is independent of ω with degree f(λ) ≤ n, it can be

considered as a trigonometric polynomial in ω which has infinitely many zeros. Hence

the coefficients of ωn−2 and ωn−2 are both zero and we obtain aj = 0 for some j. We

finally show that (d) ⇒ (c). If E is an elliptic disc and ∂W (A) contains an arc of

∂E, then we have E ⊆ W (A) and the two foci of ∂E are the eigenvalues of A by [14].
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Hence E = B(0;w0(A)) is a closed circular disc centered at the origin. Therefore we

have W (A) = E by (2b) and this proves our assertion.

(4) For w0(A) =dist(0, L), the proof is the same as the one in Lemma 3.3 (5).

Additionally, there are exactly n− 2 line segments on ∂W (A) by (1) and (2b). �

Therefore, the necessity of Theorem 3.15 follows easily from Lemmas 3.2 and

3.16 (3), (4). To prove the sufficiency of Theorem 3.15, we need several lemmas and

propositions. We start with the following.

Lemma 3.17. Let A be an n-by-n (n ≥ 3) nilpotent matrix of the form (i) with

weights a1, . . . , an, and let θ = ((
∑n−1

j=1 arg aj)− arg an)/(n− 2).

(1) ∂W (A) is a differentiable curve.

(2) W (A) is symmetric with respect to the lines y = x tan((kπ/(n − 2)) + θ) for

0 ≤ k < n− 2.

(3) We have {arg λ : λ ∈ ∂W (A), |λ| = w(A)} = {(2kπ/(n−2))+θ : 0 ≤ k < n−2}

and {arg λ : λ ∈ ∂W (A), |λ| = w0(A)} = {((2k + 1)π/(n − 2)) + θ : 0 ≤ k <

n− 2}.

(4) For n ≥ 5, w(A) ≤ w0(A) sec(π/(n− 2)) and

B(0;w0(A)) ⊆ W (A) ⊆ w0(A)(sec
π

n− 2
)eiθ{1, ωn−2, . . . , ωn−3n−2}∧.

In addition, w(A) < w0(A) sec(π/(n− 2)) if aj 6= 0 for all j.

Proof. (1) If there exists λ ∈ ∂W (A) such that λ is not differentiable, then λ is a

reducing eigenvalue of A. However σ(A) = {0} implies λ = 0. This contradicts the
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fact that 0 does not belong to ∂W (A). Hence λ is differentiable for all λ ∈ W (A).

The proofs of (2), (3) and (4) are essentially similar to those of Lemma 3.4 (1),

(2) and (3) by replacing θ = (
∑n

j=1 arg aj)/n in θ = ((
∑n−1

j=1 arg aj)− arg an)/(n− 2).

We only need show that w(A) 6= w0(A) sec(π/(n − 2)) if aj 6= 0 for all j in (4). If

w(A) = w0(A) sec(π/(n−2)), then (4) says thatW (A) ⊆ w(A)eiθ{1, ωn−2, . . . , ωn−3n−2}∧.

But the vertices of this latter regular n−2-polygonal region, namely, w(A)eiθωkn−2, 0 ≤

k < n−2, are inW (A) by (3). Hence we must haveW (A) = w(A)eiθ{1, ωn−2, . . . , ωn−3n−2}∧.

Hence ∂W (A) has nondifferentiable points. It contradicts (1). Consequently our as-

sertion follows. �

The next proposition is the major step in proving the sufficiency of Theorem

3.15.

Proposition 3.18. Let A be an n-by-n (n ≥ 3) nilpotent matrix of the form (i)

with nonzero weights a1, . . . , an, and let θ = (π + (
∑n−1

j=1arg aj)−arg an)/(n− 2).

(1) If W (A[j − 1]) = W (A[j]) = W (A[j + 1]) = B(0; r) for some j, 1 ≤ j ≤ n

(A[0] ≡ A[n] and A[n + 1] ≡ A[1]) and some r > 0, then r is either the largest

or the second largest eigenvalue of Re (e−iθA).

(2) If W (A[1]) = · · · = W (A[n]) = B(0; r)(r > 0), then r = w0(A) is the largest

eigenvalue of Re (e−iθA) with multiplicity at least two.

Proof. (1) By Lemma 3.16 (1), A is unitarily equivalent to eiθB, where B is the n-by-n

nilpotent matrix of the form (i) with nonzero weights |a1|, . . . , |an−1|,−|an|. Let C be

the n-by-n weighted shift matrix with weights |a1|, . . . , |an−1|,−|an|. Then we have

W (Ak) = W (Bk) = W (Ck) = B(0; r) for k = j − 1, j and j + 1. Since det(rIn−Re
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B) = det(rIn−Re C), Proposition 3.9 (1) implies that r is either the largest or the

second largest eigenvalue of Re (e−iθA).

(2) In the proof of (1), by our assumption and Proposition 3.9 (2), we obtain

that r = w0(C) is the largest eigenvalue of Re C with multiplicity at least two.

Since det(rIn−Re B) = det(rIn−Re C), Lemmas 3.4 (2) and 3.17 (3) implies that

r = w0(C) = w0(B) = w0(A), which is the largest eigenvalue of Re (e−iθA) with

multiplicity at least two. �

To prove the sufficiency of Theorem 3.15, we also need the following lemma:

Lemma 3.19. Let A be an n-by-n (n ≥ 3) nilpotent matrix of the form (i) with

nonzero real weights a1, . . . , an. Then ∂W (A) has a line segment on the line x = d if

and only if d is the maximum eigenvalue of Re A with multiplicity at least two.

Proof. In view of Lemma 3.11, we need only prove the sufficiency part. Let B

and C be n-by-n weighted shift matrices with nonzero real weights a1, . . . , an and

0, . . . , 0,−2an, respectively. Then Re A = Re B and Im A = Im B + Im C. Hence

by our assumption and the proof of Lemma 3.12, there exist real unit vectors x1 and

x2 such that 〈Im Bx1, x1〉 = Im 〈Bx1, x1〉 6= Im 〈Bx2, x2〉 = 〈Im Bx2, x2〉. In addi-

tion, we also have 〈Im Cx1, x1〉 = 〈Im Cx2, x2〉 = 0. Therefore, Im 〈Ax1, x1〉 = 〈Im

Bx1, x1〉 6= 〈Im Bx2, x2〉 = Im 〈Ax2, x2〉. Finally, Lemma 3.11 implies our assertion.

�

We are now ready to prove the sufficiency of Theorem 3.15.

Proof of Theorem 3.15. Assume that aj 6= 0 and W (A[j]) = B(0; r) for all j,
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1 ≤ j ≤ n. By Lemma 3.16 (1), A is unitarily equivalent to eiθB, where B is

the n-by-n nilpotent matrix of the form (i) with weights |a1|, . . . , |an−1|,−|an| and

θ = (π+(
∑n−1

j=1arg aj)−arg an)/(n−2). By Proposition 3.18 (2), r = w0(B) = w0(A)

is the largest eigenvalue of Re B with multiplicity at least two. Lemma 3.19 then

implies that ∂W (B) has a line segment on the line x = r. Thus ∂W (A) has a line

segment on x cos θ + y sin θ = r = w0(A). This completes the proof. �

The following is an easy corollary.

Corollary 3.20. Let A (resp., B) be the n-by-n (n ≥ 3) weighted shift matrix

(resp., nilpotent matrix of the form (i)) with weights a1, . . . , an. Then

(1) w(A) = w(B),

(2) w0(A) = w0(B), and

(3) ∂W (A) has a line segment if and only if ∂W (B) has.

Proof. (1) If the ai’s are real, then Re A = Re B. Hence we can assume that the ai’s

are real by Lemmas 3.3 (2) and 3.16 (1) and the result can be obtained by Lemmas

3.4 (2) and 3.17 (3).

(2) The proof is similar to the one of (1).

(3) This follows directly from Theorems 3.1 and 3.15 and that W (Ai) = W (Bi)

for all i. �
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3.4 Weighted shift matrix with periodic weights

The purpose of this section is to study the numerical ranges of the n-by-n

weighted shift matrices with periodic weights. The main result of this section is the

following.

Theorem 3.21. Let A be an n-by-n (n ≥ 3) weighted shift matrix with nonzero

weights a1, . . . , an. Assume that |aj| = |ak+j| = · · · = |a(m−1)k+j| for all 1 ≤ j ≤ k,

where n = km for some k and m, k,m ≥ 2. Then

(a) pA is reducible and W (A) = W (B), where B = C ⊕ (eiθC) ⊕ · · · ⊕ (ei(m−1)θC)

and C is the k-by-k weighted shift matrix with weights a1, . . . , ak−1, αak, α =

(a1 · · · an)1/m/(a1 · · · ak) and ωn = e2πi/n.

(b) ∂W (A) has a line segment L and dist(0, L) = w0(A) = w(A[i]) = maximum

zero of det(λIn−1 − Re A[i]) for every i, 1 ≤ i ≤ n.

Note that ∂W (A) has a line segment for k = 1 by Proposition 3.5.

An easy consequence of the preceding theorem is the following:

Corollary 3.22. Let A be an n-by-n (n ≥ 3) weighted shift matrix with weights

a1, . . . , an. Suppose that n− 2 of the aj’s have equal absolute value and the remaining

two terms are ak and al. Then ∂W (A) has a line segment if and only if all the ai’s

are nonzero and either

(a) n is even, |k − l| = n/2, |ak| = |al|, or

(b) all the ai’s have the same absolute values.
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Proof. The sufficiency follows easily from Theorem 3.21. Now we prove the necessity.

By Theorem 3.1, we have that the ai’s are nonzero and W (A[1]) = · · · = W (A[n]). If

n is even and |k − l| = n/2, then we may assume that k = n/2, l = n, ai = aj > 0

for 1 ≤ i < j ≤ n− 1, i, j 6= n/2 and an/2, an > 0 by Lemma 3.3 (1) and (2). Also,

W (A[n/2]) = W (A[n]) implies that |an/2| = |an| by Lemma 3.6. Otherwise, we may

assume that 1 ≤ k < n/2, l = n, ai = aj > 0 for 1 ≤ i < j ≤ n − 1, i, j 6= k and

ak, an > 0 by Lemma 3.3 (1) and (2). Let a ≡ ai, where i 6= k, n. Note that we

have W (A[k]) = W (A[2k]) = W (A[n − k]) = W (A[n]) and A[n] is the (n − 1)-by-

(n − 1) matrix [sij]
n−1
i,j=1, where si,i+1 = a for 1 ≤ i ≤ n − 2, i 6= k, sk,k+1 = ak and

si,j = 0 otherwise. By Lemma 3.3 (1), we may assume that A[k] is the (n − 1)-by-

(n− 1) matrix [tij]
n−1
i,j=1, where ti,i+1 = a for 1 ≤ i ≤ n− 2, i 6= n− k, tn−k,n−k+1 = an

and ti,j = 0 otherwise. For the orders of {an, ak, a}, consider the following three cases:

(1) an ≥ a ≥ ak or an ≤ a ≤ ak. Since W (A[n]) = W (A[k]), by Lemma 3.6 (2),

we infer that an = a = ak.

(2) an ≥ ak ≥ a or an ≤ ak ≤ a. By Lemma 3.3 (1), we may assume that A[n−k]

is the (n− 1)-by-(n− 1) matrix [uij]
n−1
i,j=1, where ui,i+1 = a for 1 ≤ i ≤ n− 2, i 6= k, 2k,

uk,k+1 = an, u2k,2k+1 = ak and ui,j = 0 otherwise. Since W (A[n]) = W (A[n− k]), by

Lemma 3.6 (2), we also infer that an = a = ak.

(3) ak ≥ an ≥ a or ak ≤ an ≤ a. By Lemma 3.3 (1), we may assume that A[2k]

is the (n − 1)-by-(n − 1) matrix [vij]
n−1
i,j=1, where vi,i+1 = a for 1 ≤ i ≤ n − 2, i 6=

n − k, n − 2k, vn−2k,n−2k+1 = an, vn−k,n−k+1 = ak and vi,j = 0 otherwise. Since

W (A[k]) = W (A[2k]), by Lemma 3.6 (2), we obtain that an = a = ak and complete

the proof. �

We now proceed to prepare ourselves for the proof of Theorem 3.21. This will
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be done in a series of lemmas. We start our work with the following lemma.

For the ease of exposition, we introduce some notations which are used in

Lemmas 3.23, 3.25 and 3.26 below. Fix k ∈ N. For every n ≥ 2, there is a

unique m ∈ N and a unique l ∈ N, 0 ≤ l ≤ k − 1, such that n = km − l.

Moreover, for every i ∈ Z, let (ai, ai+1, . . . , ai+n−2) be any sequence of nonzero

real numbers with ai+j = ai+k+j = · · · = ai+(m−1)k+j if 0 ≤ j ≤ k − 2 and

ai+(k−1) = ai+2k−1 = · · · = ai+(m−1)k−1. Finally, let An(ai) be the n-by-n tridiagonal

self-adjoint matrix with zeros on its diagonal and (ai, ai+1, . . . , ai+n−2) the sequence

of entries on its subdiagonal.

Lemma 3.23. Fix k ≥ 3. For m ∈ N and 1 ≤ i ≤ k, let the ai’s be real. Then

(1) det(λIk−1 − Ak−1(ai))| det(λIkm−1 − Akm−1(ai)), and

(2)

det(λIkm−1 − Akm−1(ai))
det(λIk−1 − Ak−1(ai))

= det(λIk(m−1) − Ak(m−1)(ai−1))

−a2i+k−2 det(λIk−2 − Ak−2(ai))
det(λIk(m−1)−1 − Ak(m−1)−1(ai))

det(λIk−1 − Ak−1(ai))
(a0 ≡ ak).

Proof. (1) For λ ∈ σ(Ak−1(ai)), there is a nonzero vector u = [x1, . . . , xk−1]
T in

ker(λIk−1 − Ak−1(ai)) with x1, xk−1 6= 0. Letting

v = [x1, . . . , xk−1, 0, rx1, . . . , rxk−1, 0, . . . , rx1, . . . , rxk−1]
T

with r = −ai+k−2xk−1/ai+k−1x1, we have ai+k−2xk−1 + ai+k−1rx1 = 0. Thus λ ∈

σ(Akm−1(ai)).
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(2) For simplicity, we may assume that i = 1. Let Akm−1(a1) be partitioned as Aj Bj

Cj Dj

 with Aj, Bj, Cj and Dj of sizes j-by-j, j-by-(km−1−j), (km−1−j)-by-j

and (km− 1− j)-by-(km− 1− j), respectively. Thus we have

det(λIkm−1 − Akm−1(a1))
det(λIk−1 − Ak−1(a1))

= det((λIk(m−1) −Dk−1)− (−Ck−1)(λIk−1 − Ak−1)−1(−Bk−1))

= det((λIk(m−1) −Dk−1)− a2k−1
det(λIk−2 − Ak−2)
det(λIk−1 − Ak−1)


1 0 · · · 0

0 0
...

...
. . .

...

0 · · · · · · 0

)

= det(λIk(m−1) −Dk−1)− a2k−1 det(λIk−2 − Ak−2)
det(λIk(m−1)−1 −Dk)

det(λIk−1 − Ak−1)
= det(λIk(m−1) − Ak(m−1)(ak))

−a2k−1 det(λIk−2 − Ak−2(a1))
det(λIk(m−1)−1 − Ak(m−1)−1(a1))

det(λIk−1 − Ak−1(a1))
.

�

Now we consider the circular symmetric functions Sr(a1, . . . , an), where n and

r are nonnegative integers, defined first in [42, p. 496]. S0 is defined to be 1,

while for r ≥ 1, Sr(a1, . . . , an) =
∑
{
∏r

k=1 aπ(k) | π : (1, . . . , r) → (1, . . . , n), where

π(k) + 1 ≤ π(k+ 1) for 1 ≤ k < r, and if π(1) = 1 then π(r) 6= n}. These have a nice

description: imagine a regular n-gonal with vertices labeled a1 through an. Draw a

convex r-gonal in it, with vertices among the ai’s with the restriction that it cannot

use an edge of the original polygon. Each term in Sr(a1, . . . , an) is the product of the

vertices of such an r-gon. These functions satisfy many identities, but we need only

the following:

(1) Sr(a1, . . . , an, 0) = Sr(an, . . . , a1, 0),
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(2) Sr+1(a1, . . . , an+1, 0) = Sr+1(a1, . . . , an, 0) + an+1Sr(a1, . . . , an−1, 0).

Another result from [42, Lemma 1] which we need is the following:

Lemma 3.24. Let A be an (n+ 1)-by-(n+ 1) tridiagonal self-adjoint matrix with

zeros on its diagonal, and let (a1, . . . , an) be the sequence of entries on its subdiagonal.

Then

det(In+1 − µA) =

b(n+1)/2c∑
l=0

Sl(|a1|2, . . . , |an|2, 0)(−1)lµ2l

for any scalar µ.

Hence we have the following lemma which is derived from the above identities

and Lemma 3.24.

Lemma 3.25. For n ≥ 4, 1 ≤ i ≤ n (a0 ≡ an), let the ai’s be real and

gi(λ) = det(λIn − An(ai)) − a2i−1 det(λIn−2 − An−2(ai+1)). Then gi(λ) = gj(λ) for

1 ≤ i 6= j ≤ n.

Proof. For simplicity, we may assume that i = 1 and j = 2. By [42, Lemma 1], we

have

g1(λ) =

bn/2c∑
l=0

Sl(a
2
1, . . . , a

2
n−1, 0)(−1)lλn−2l

−a2n
b(n−2)/2c∑

l=0

Sl(a
2
2, . . . , a

2
n−2, 0)(−1)lλn−2l−2

= λn +

bn/2c∑
l=1

Sl(a
2
1, . . . , a

2
n−1, 0)(−1)lλn−2l

−a2n
bn/2c∑
l1=1

Sl1−1(a
2
2, . . . , a

2
n−2, 0)(−1)l1−1λn−2l1
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= λn +

bn/2c∑
l=1

(−1)l[Sl(a
2
1, . . . , a

2
n−1, 0) + a2nSl−1(a

2
2, . . . , a

2
n−2, 0)]λn−2l.

= λn +

bn/2c∑
l=1

(−1)l[Sl(a
2
2, . . . , a

2
n−1, 0) + a21Sl−1(a

2
3, . . . , a

2
n−1, 0)

+Sl(a
2
2, . . . , a

2
n, 0)− Sl(a22, . . . , a2n−1, 0)]λn−2l

= λn +

bn/2c∑
l=1

(−1)l[Sl(a
2
2, . . . , a

2
n, 0) + a21Sl−1(a

2
3, . . . , a

2
n−1, 0)]λn−2l,

where the fourth equality follows from the above identities (1) and (2). Similarly, we

also have g2(λ) = λn +
bn/2c∑
l=1

(−1)l[Sl(a
2
2, . . . , a

2
n, 0) + a21Sl−1(a

2
3, . . . , a

2
n−1, 0)]λn−2l from

the above third equality. Thus g1(λ) = g2(λ). �

The next lemma is the major step in proving Theorem 3.21.

Lemma 3.26. Fix k ≥ 3. For m ≥ 3, 1 ≤ i 6= j ≤ k, let the ai’s be real. Then

(1) det(λIk−2 − Ak−2(ai)) det(λIk(m−1)−1 − Ak(m−1)−1(ai))

− det(λIk−1 − Ak−1(ai)) det(λIk(m−1)−2 − Ak(m−1)−2(ai))

= −
k∏

l=1,l 6=i−2
a2l det(λIk(m−2)−1 − Ak(m−2)−1(ai))

(a−1 ≡ ak−1, a0 ≡ ak and A1(ai) ≡ 0),

(2) det(λIkm−1−Akm−1(ai))

det(λIk−1−Ak−1(ai))
− det(λIkm−1−Akm−1(aj))

det(λIk−1−Ak−1(aj))

=
k∏
l=1

a2l [
det(λIk(m−2)−1−Ak(m−2)−1(ai))

det(λIk−1−Ak−1(ai))
− det(λIk(m−2)−1−Ak(m−2)−1(aj))

det(λIk−1−Ak−1(aj))
], and

(3) det(λIkm−1−Akm−1(ai))

det(λIk−1−Ak−1(ai))
=

det(λIkm−1−Akm−1(aj))

det(λIk−1−Ak−1(aj))
for m ≥ 2, 1 ≤ i 6= j ≤ k.

Proof. For simplicity, we may assume that i = 1 and j = 2.

(1) det(λIk−2 − Ak−2(a1)) det(λIk(m−1)−1 − Ak(m−1)−1(a1))

− det(λIk−1 − Ak−1(a1)) det(λIk(m−1)−2 − Ak(m−1)−2(a1))
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= det(λIk−2 − Ak−2(a1))[λ det(λI − Ak(m−1)−2(a1))

−a2k−2 det(λIk(m−1)−3 − Ak(m−1)−3(a1))]

−[det(λIk−2 − Ak−2(a1))− a2k−2 det(λIk−3 − Ak−3(a1))]

· det(λIk(m−1)−2 − Ak(m−1)−2(a1))

= a2k−2[det(λIk−3 − Ak−3(a1)) det(λIk(m−1)−2 − Ak(m−1)−2(a1))

− det(λIk−2 − Ak−2(a1)) det(λIk(m−1)−3 − Ak(m−1)−3(a1))]

= · · · (by induction)

= a2k−2 . . . a
2
2a

2
1[det(λIk(m−1)−(k−1) − Ak(m−1)−(k−1)(a1))

−λ det(λIk(m−1)−k − Ak(m−1)−k(a1))]

= −a21 . . . a2k−2a2k det(λIk(m−2)−1 − Ak(m−2)−1(a1)).

(2) By Lemma 3.23 (2), we have

det(λIkm−1 − Akm−1(a1))
det(λIk−1 − Ak−1(a1))

− det(λIkm−1 − Akm−1(a2))
det(λIk−1 − Ak−1(a2))

= [det(λIk(m−1) − Ak(m−1)(ak))− a2k−1 det(λIk−2 − Ak−2(a1))

·
det(λIk(m−1)−1 − Ak(m−1)−1(a1))

det(λIk−1 − Ak−1(a1))
]− [det(λIk(m−1) − Ak(m−1)(a1))

−a2k det(λIk−2 − Ak−2(a2))
det(λIk(m−1)−1 − Ak(m−1)−1(a2))

det(λIk−1 − Ak−1(a2))
]

= a2k det(λIk−2 − Ak−2(a2))
det(λIk(m−1)−1 − Ak(m−1)−1(a2))

det(λIk−1 − Ak−1(a2))

−a2k−1 det(λIk−2 − Ak−2(a1))
det(λIk(m−1)−1 − Ak(m−1)−1(a1))

det(λIk−1 − Ak−1(a1))
+a2k−1 det(λIk(m−1)−2 − Ak(m−1)−2(a1))− a2k det(λIk(m−1)−2 − Ak(m−1)−2(a2))

=
a2k

det(λIk−1 − Ak−1(a2))
(−a21 . . . a2k−1) det(λIk(m−2)−1 − Ak(m−2)−1(a2))

−
a2k−1

det(λIk−1 − Ak−1(a1))
(−a21 . . . a2k−2a2k) det(λIk(m−2)−1 − Ak(m−2)−1(a1))

=
k∏
l=1

a2l [
det(λIkm−1 − Akm−1(a1))

det(λIk−1 − Ak−1(a1))
− det(λIkm−1 − Akm−1(a2))

det(λIk−1 − Ak−1(a2))
],

52



where the second and third equalities follow from (1) and Lemma 3.25, respectively.

(3) By the second equality in the proof of (2), the assertion for m = 2 is easily

seen to be true. For m = 3, we have

det(λI3k−1 − A3k−1(a1))

det(λIk−1 − Ak−1(a1))
− det(λI3k−1 − A3k−1(a2))

det(λIk−1 − Ak−1(a2))

= (a1a2a3)
2[

det(λIk−1 − Ak−1(a1))
det(λIk−1 − Ak−1(a1))

− det(λIk−1 − Ak−1(a2))
det(λIk−1 − Ak−1(a2))

] = 0.

Therefore our assertion follows from the above results, (2) and induction. �

We are now ready to prove Theorem 3.21.

Proof of Theorem 3.21. (a) Let B = C⊕(eiθC)⊕· · ·⊕(ei(m−1)θC), where C is the k-by-

k weighted shift matrix with weights a1, . . . , ak−1, αak, α = (a1 · · · an)1/m/(a1 · · · ak)

and θ = 2π/n. Since |aj| = |ak+j| = · · · = |a(m−1)k+j| 6= 0 for 1 ≤ j ≤ k and

arg (a1 · · · an)/((a1 · · · ak)mαm) = 0, we may assume that A is the n-by-n weighted

shift matrix with periodic weights a1, . . . , ak−1, αak, . . . , a1, . . . , ak−1, αak by Lemma

3.3 (2). Let the matrix xRe A+ yIm A+ zIn be partitioned as


C11 · · · C1m

...
...

Cm1 · · · Cmm


with Cij of sizes k-by-k for all i, j, 1 ≤ i, j ≤ n. Since C1j + · · ·+Cmj = xRe C+yIm

C + zIk, for all j, 1 ≤ j ≤ m, we have

pA(x, y, z) = det(xRe A+ yIm A+ zIn)

= det


C11 + · · ·+ Cm1 C12 + · · ·+ Cm2 · · · C1m + · · ·+ Cmm

C21 C22 · · · C2m

...
...

...

Cm1 Cm2 · · · Cmm


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= det


xRe C + yIm C + zIk 0 · · · 0

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

.

Hence pC |pA. Since A and ωjnA are unitarily equivalent for all integer j, then pC |pωj
nA

for all integer j, consequently, pωj
nC
|pA for all j = 0, 1, . . . ,m − 1. Note that the

real foci of the curve pωj
nC

= 0 are eigenvalues of ωjnC for each j. Since σ(C) =

{λ, ωkλ, . . . , ωk−1k λ}, where λ = (a1 · · · ak)1/k, it follows that σ(ωinC)∩σ(ωjnC) = ∅ for

any 0 ≤ i < j ≤ m − 1, thus the homogeneous polynomials pωi
nC

and pωj
nC

have no

common factor for any 0 ≤ i < j ≤ m−1. Therefore, we deduce that pA =
∏m−1

j=0 pωj
nC

or W (A) = W (B). This completes the proof.

(b) By Lemma 3.3 (5) and its proof, we need only prove that ∂W (A) has a line

segment. By assumption and Lemma 3.3 (2), we may assume that aj = ak+j = · · · =

a(m−1)k+j > 0 for every j, 1 ≤ j ≤ k. For k = 2, since

det(λI2·2−1 − A2·2−1(
a2
2

)) = λ3 − (a21 + a22)
λ

4
= det(λI2·2−1 − A2·2−1(

a1
2

)) ,

det(λIn−1 − Re A[1]) = det(λI2m−1 − A2m−1(
a2
2

))

= λ det(λI2(m−1) − A2(m−1)(
a2
2

))

− det(λI2(m−1)−1 − A2(m−1)−1(
a2
2

))
a21
4
, and

det(λIn−1 − Re A[2]) = det(λI2m−1 − A2m−1(
a1
2

))

= λ det(λI2(m−1) − A2(m−1)(
a2
2

))

− det(λI2(m−1)−1 − A2(m−1)−1(
a1
2

))
a21
4
,

we obtain det(λIn−1−Re A[1]) = det(λIn−1−Re A[2]) by induction. Similarly, we

have det(λIn−1−Re A[i]) = det(λIn−1−Re A[j]) for 1 ≤ i, j ≤ n. Hence W (A[i]) =

W (A[j]) for every i, j, 1 ≤ i, j ≤ n. For k ≥ 3, we have ‖Akm−1(a1/2)‖ >
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‖Ak−1(a1/2)‖ by Lemma 3.6. Thus w(A[n]) = ‖Re A[n]‖ = ‖Akm−1(a1/2)‖ = max-

imum zero of det(λI−Re A[n])
det(λI−Re A[k,...,n])

by Lemma 3.23. Similarly, we also have w(A[i]) =

maximum zero of det(λI−Re A[i])
det(λI−Re A[1,...,i,i+k,...,n])

for every i, 1 ≤ i ≤ n− 1. Hence W (A[i]) =

W (A[j]) for every i, j, 1 ≤ i, j ≤ n by Lemma 3.26 (3). Therefore, by Theorem 3.1,

∂W (A) has a line segment L with dist(0, L) = w(A[i]) for all i. �

The next theorem gives a necessary and sufficient condition for an n-by-n

weighted shift matrix A to have a noncircular elliptic arc in ∂W (A). Moreover,

in this case, ∂W (A) also has a line segment.

Theorem 3.27. Let A be an n-by-n (n ≥ 3) weighted shift matrix with weights

a1, . . . , an. Then ∂W (A) has a noncircular elliptic arc if and only if the aj’s are

nonzero, n is even, |a1| = |a3| = · · · = |an−1|, |a2| = |a4| = · · · = |an| and

|a1| 6= |a2|. In this case, W (A) = W (B), where B = C ⊕ (eiθC)⊕ · · · ⊕ (e((n/2)−1)θC),

C =

 0 a1

αa2 0

, α = (a1 · · · an)2/n/(a1a2) and θ = 2π/n, and ∂W (A) has a line

segment.

Proof. The sufficiency follows easily from Theorem 3.21 (a) and the fact thatW (

 0 a1

αa2 0

)

is a noncircular elliptic disc as |a1| 6= |αa2| and both are nonzero, where α =

(a1 · · · an)2/n/(a1a2).

To prove the necessity, by Lemma 3.3 (2), we have that A is unitarily equivalent

to eiφA′, where φ = (
∑n

j=1 arg aj)/n and A′ is the n-by-n weighted shift matrix with

weights |a1|, . . . , |an|. Then σ(A) = {|a1 · · · an|1/nωjn : j = 0, 1, . . . , n − 1}. Since

∂W (A) has a noncircular elliptic arc, by [14], there is a 2-by-2 matrix C1 such that

pC1|pA′ and σ(C1) ⊆ σ(A′), say, σ(C1) = {β, γ}. From Lemma 3.3 (2), we infer that
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pωj
nC1
|pA′ and σ(ωjnC1) ⊆ σ(A′) for all j = 0, 1, . . . , n− 1. Therefore, σ(A′) ⊇ {ωjnβ :

j = 0, . . . , n − 1} ∪ {ωjnγ : j = 0, . . . , n − 1}. Since these sets σ(A′), {ωjnβ : j =

0, . . . , n − 1} and {ωjnγ : j = 0, . . . , n − 1} consist of n distinct elements, we deduce

that σ(A′) = {ωjnβ : j = 0, . . . , n− 1} = {ωjnγ : j = 0, . . . , n− 1}. Therefore, we may

assume that β = |a1 · · · an|1/n and γ = ωj0n β for some j0. Now, if ωj0n 6= −1 or n is odd,

then these irreducible homogeneous polynomials pC1 , pωnC1 , . . . , pωbn/2c
n C1

are distinct,

it follows that pA′ can be divided by the homogeneous polynomial
∏bn/2c

j=0 pωj
nC1

of

degree 2(bn/2c+1) > n, this contradicts to the fact that pA′ is of degree n. Therefore,

we deduce that ωj0n = −1 and n is even. Moreover, pA′ =
∏(n/2)−1

j=0 pωj
nC1

. On the other

hand, since C1 is 2-by-2 with eigenvalues ±|a1 · · · an|1/n, by unitarily equivalence, we

may assume that C1 =

 0 b1

b2 0

, where b1, b2 > 0, b1 6= b2 and b1b2 = |a1 · · · an|2/n.

Let B′ = C1⊕ωnC1⊕· · ·⊕ω(n/2)−1
n C1 and B1 be the n-by-n weighted shift matrix with

periodic weights b1, b2, b1, b2, . . . , b1, b2. By Theorem 3.21 (a), we have pB1 = pB′ = pA′ .

Compute now the coefficients of (x2 +y2)zn−2 and yn of pA′ and pB1 . Since pA′ = pB1 ,

we have
∑n

j=1 |aj|2 = (b21 + b22)n/2 and (
∏n/2

j=1 |a2j−1| −
∏n/2

j=1 |a2j|)2 = (b
n/2
1 − bn/22 )2.

Hence we may assume that b
n/2
1 − b

n/2
2 =

∏n/2
j=1 |a2j−1| −

∏n/2
j=1 |a2j|. In addition,

b1b2 = |a1 · · · an|2/n implies that b
n/2
1 =

∏n/2
j=1 |a2j−1| and b

n/2
2 =

∏n/2
j=1 |a2j|. We also

have

n∑
j=1

|aj|2 =

n
2∑
j=1

|a2j−1|2 +

n
2∑
j=1

|a2j|2

≥ n

2
(

n
2∏
j=1

|a2j−1|2)
2
n +

n

2
(

n
2∏
j=1

|a2j|2)
2
n =

n

2
(b21 + b22).

Therefore, the equality holds if and only if b1 = |a2j−1| 6= 0, b2 = |a2j| 6= 0 for all

j, 1 ≤ j ≤ n/2 and b1 6= b2. Let C = eiφC1 and B = eiφB1. Then C is unitarily

equivalent to

 0 a1

αa2 0

, where α = ei(2φ−arg a1−arg a2) = (a1 · · · an)2/n/(a1a2) and

W (A) = eiφW (A′) = eiφW (B1) = W (B). This proves our assertion. In particular, it
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follows from Theorem 3.21 (b) that ∂W (A) has a line segment. �

Note that the weighted shift matrix A in the above theorem is a special case

of the ones considered in Theorem 3.21. The next theorem is another special case.

Recall that a matrix A is said to be reducible if it is unitarily equivalent to the direct

sun of two other matrices; otherwise, A is irreducible. We characterize those n-by-n

weighted shift matrices A which are reducible in the following theorem.

Theorem 3.28. Let A be an n-by-n (n ≥ 2) weighted shift matrix with weights

a1, . . . , an. Then A is reducible if and only if one of the following cases holds:

(1) ai = aj = 0 for some 1 ≤ i < j ≤ n,

(2) n is odd, |ai| = |aj| 6= 0 for all 1 ≤ i < j ≤ n,

(3) n is even, |ai| = |ai+(n/2)| 6= 0 for all 1 ≤ i ≤ n/2.

In case (1), A is unitarily equivalent to B1⊕B2, where B1 and B2 are the weighted shift

matrices with weights aj+1, . . . , ai−1, 0 and ai+1, . . . , aj−1, 0, respectively (ar ≡ an+r

for 1 ≤ r ≤ n, B1 ≡ [0] if i = 1, j = n and B2 ≡ [0] if i = j − 1). Hence

W (A) is a circular disc centered at the origin. In case (2), A is unitarily equivalent

to diag(α, αωn, . . . , αω
n−1
n ), where ωn = e2πi/n and α = (a1 · · · an)1/n. Hence W (A)

is a closed regular n-gonal region centered at the origin and the distance from the

origin to its vertices equals |a1 · · · an|1/n. In case (3), A is unitarily equivalent to

A1 ⊕ eiθA1, where θ = 2π/n and A1 is an (n/2)-by-(n/2) weighted shift matrix with

weights a1, . . . , a(n/2)−1, αan/2, α = (a1 · · · an)1/2/(a1 · · · an/2). In particular, ∂W (A)

has a line segment.
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Proof. (1) Let ai = aj = 0 for some i, j, 1 ≤ i < j ≤ n. Also, by Lemma 3.3

(1), we may assume that j = n. Then A = B1 ⊕ B2, where B1 and B2 are the

weighted shift matrices with weights aj+1, . . . , an, a1, . . . , ai−1, 0 and ai+1, . . . , aj−1, 0,

respectively (ar ≡ an+r for 1 ≤ r ≤ n, B1 ≡ [0] if i = 1, j = n and B2 ≡ [0] if

i = j − 1). Hence W (A) is a circular disc centered at the origin. Let ai = 0 for some

i, 1 ≤ i ≤ n, and aj 6= 0 for all j 6= i. Again, by Lemma 3.3 (1), we may assume

that i = n. Then for any orthogonal projection P = [pij]
n
i,j=1 such that AP = PA,

we have ai(pi,i − pi+1,i+1) = ai+1(pi+1,i+1 − pi+2,i+2) = 0 for 1 ≤ i ≤ n − 1. Thus

p1,1 = p2,2 = · · · = pn,n. In addition, AP = PA also implies that aipi+1,1 = 0 for

1 ≤ i ≤ n − 1. We substitute pi+1,1 = 0 in these equalities for AP = PA. Then

aipi+1,2 = a1pi,1 = 0 for 2 ≤ i ≤ n − 1. Proceeding successively with the remain-

ing equalities for AP = PA, we have pi,j = 0 for i > j. Hence the assumption

P = P ∗ = P 2 implies that P = 0 or P = In. Therefore, A is irreducible.

(2) If n is odd and ai 6= 0 for all 1 ≤ i ≤ n, then we may assume that

ai > 0 by Lemma 3.3 (2). For any orthogonal projection P = [pij]
n
i,j=1 such that

AP = PA, we have a1(p1,1 − p2,2) = a2(p2,2 − p3,3) = · · · = an(pn,n − p1,1) = 0. Thus

p1,1 = p2,2 = · · · = pn,n. In addition, AP = PA also implies that aipi+1,i+2 = ai+1pi,i+1

and ai+1pi+2,i+1 = aipi+1,i for 1 ≤ i ≤ n (pn,n+1 ≡ pn,1, pn+1,n+2 ≡ p1,2, pn+1,n ≡ p1,n,

pn+2,n+1 ≡ p2,1, an+1 ≡ a1). Since P = P ∗, we have ai+1pi+1,i+2 = aipi,i+1 for

1 ≤ i ≤ n. Thus pi,i+1 = 0 for some i or a1 = · · · = an. Hence pi,i+1 = 0 for every i,

1 ≤ i ≤ n or a1 = · · · = an. Since n− 1 is even, by the same process, we have pi,j = 0

for all i < j or a1 = · · · = an. Thus P = P ∗ = P 2 implies that P equals 0 or In, or

a1 = · · · = an. That is, A is reducible if and only if |a1| = · · · = |an| 6= 0. Hence the

assertion on W (A) follows from Proposition 3.5.

(3) If n is even and ai 6= 0 for all 1 ≤ i ≤ n, then we may assume that
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ai > 0 by Lemma 3.3 (2). For any orthogonal projection P = [pij]
n
i,j=1 such that

AP = PA, following a similar argument as in the proof of (2), we obtain p1,1 =

p2,2 = · · · = pn,n and pi,j = 0 for all i 6= j, |i − j| 6= n/2. In addition, we

also have aipi+1,(n/2)+i+1 = a(n/2)+ipi,(n/2)+i and a(n/2)+ip(n/2)+i+1,i+1 = aip(n/2)+i,i for

every i, 1 ≤ i ≤ n/2 (p(n/2)+1,n+1 ≡ p(n/2)+1,1, pn+1,(n/2)+1 ≡ p1,(n/2)+1). Hence

P = P ∗ = P 2 implies that P equals 0 or In, or a1 = a(n/2)+1, . . . , an/2 = an.

Therefore, A is reducible if and only if |ai| = |ai+(n/2)| for all i, 1 ≤ i ≤ n/2.

Hence ∂W (A) has a line segment by Theorem 3.21 (b). Moreover, by Lemma

3.3 (2), A is unitarily equivalent to eiψB, where ψ = (
∑n

j=1 arg aj)/n and B is

the n-by-n weighted shift matrix with weights |a1|, . . . , |an/2|, |a1|, . . . , |an/2|. Let

U = (1/
√

2)

 In/2 In/2

In/2 −In/2

. Then U∗BU = B1 ⊕ eiθB1, where θ = 2π/n and

B1 is the (n/2)-by-(n/2) weighted shift matrix with weights |a1|, . . . , |an/2|. Hence

A is unitarily equivalent to (eiψB1) ⊕ eiθ(eiψB1). Let A1 = eiψB1. Then A1 is

the (n/2)-by-(n/2) weighted shift matrix with weights a1, . . . , a(n/2)−1, αan/2, where

α = eiφ and φ = (n/2)θ− (
∑n/2

j=1 arg aj) = (n/2)(
∑n

j=1 arg aj)/n− (
∑n/2

j=1 arg aj) =

(
∑n/2

j=1 arg a(n/2)+j −
∑n/2

j=1 arg aj)/2. This proves our assertion. �

An immediate corollary of Theorem 3.28 and [14] is the following:

Corollary 3.29. Let A be an n-by-n (n ≥ 3) weighted shift matrix with weights

a1, . . . , an and ai = 0 for some i, 1 ≤ i ≤ n. Then

(1) pA is reducible.

(2) A is reducible if and only if aj = 0 for some j 6= i, 1 ≤ j ≤ n.

Recall that the reducibility of an n-by-n matrix A implies the reducibility of

pA but the converse is in general not true. We give two examples of weighted shift
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matrices A for which pA is reducible but A is irreducible.

Example 3.30.

(1) If A = Jn (n ≥ 3), then A is irreducible, pA is reducible and ∂W (A) has no line

segment.

(2) If A is a 6-by-6 weighted shift matrix with weights 1, 2, 1, 2, 1, 2, then A is irre-

ducible, pA is reducible but ∂W (A) has a line segment.

Proof. (1) From Lemma 3.3 (4), we obtain that W (A) is a circular disc centered at

the origin. Hence the assertion follows directly from [14] and Theorem 3.28.

(2) Follow directly from Theorems 3.21 and 3.28. �
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Chapter 4 Numerical ranges of 4-by-4 nilpotent real matrices

4.1 Introduction

A matrix A is nilpotent if Ak = 0 for some k ≥ 1. In this section, we are

concerned with the number of line segments on the boundary of the numerical range

of a 4-by-4 nilpotent matrix. The study of this problem was started in [18]. It was

proven in [18, Theorem 3.4] that the number of line segments on the boundary of the

numerical range of a 4-by-4 nilpotent matrix A is less than or equal to 2 under the

additional condition that A has a 3-by-3 principal submatrix B with W (B) a circular

disc centered at the origin. But it is unknown whether the numbers are less than or

equal to 2 for all 4-by-4 nilpotent matrices (cf. Corollary 4.3 below). In Theorem 4.1

below, we show that if A is a 4-by-4 nilpotent real matrix, then ∂W (A) has at most

two line segments. The proof is based on Lemmas 3.2 and 3.11 in Chapter 3. The

former says that if A is an n-by-n matrix and B is any (n − 1)-by-(n − 1) principal

submatix of A, then every line segment of ∂W (A) intersects ∂W (B). The latter gives

a necessary and sufficient condition for the existence of line segments on ∂W (A).

More precisely, it says that for an n-by-n matrix A, ∂W (A) has a line segment on

the line x cos θ+ y sin θ = d if and only if d is the maximum eigenvalue of Re (e−iθA)

with unit eigenvectors x1 and x2 such that Im 〈e−iθAx1, x1〉 6= Im 〈e−iθAx2, x2〉. In

Theorem 4.4, we give a necessary and sufficient condition for the boundary of W (A)

to have a pair of parallel line segments. More specifically, it is shown that this is the

case if and only if A is unitarily equivalent to a matrix of the form

α


0 r1 ir2 −r3

0 r3 −ir2
0 r1

0

 ,
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where α ∈ C\{0}, r1, r3 > 0 and r2 ∈ R. Moreover, in this case, ∂W (A) has no other

line segment. in Theorem 4.6, we show that a 4-by-4 nilpotent matrix A which has a

line segment on the boundary of its numerical range must be unitarily equivalent to

a matrix of a special form.
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4.2 Numerical ranges of 4-by-4 nilpotent real matrice

The main result of this section is the following.

Theorem 4.1. Let A be a 4-by-4 nilpotent real matrix. Then ∂W (A) has at most

two line segments.

The proof of Theorem 4.1 depends on some lemmas and propositions. The first

one is Lemma 3.2 in Chapter 3. It relates the line segments on ∂W (A) to the numer-

ical ranges of submatrices of A.

Lemma 3.2. Let A be an n-by-n (n ≥ 2) matrix and let B be any (n−1)-by-(n−1)

principal submatrix of A. Then every line segment of ∂W (A) intersects ∂W (B).

Proposition 4.2. Let A be the 4-by-4 nilpotent matrix
0 a1 a2 a3

0 0 a4 a5

0 0 0 a6

0 0 0 0

 ,

where aj ∈ C for 1 ≤ j ≤ 6. Then

(1) ∂W (A) has at most three line segments if pA is irreducible and at most one line

segment if pA is reducible.

(2) ∂W (A) has at most two line segments if at least one of the aj’s is zero.

Proof. (1) If pA is irreducible, then our assertion on ∂W (A) follows from [18, Lemma

2.1]. Otherwise, we may consider the following three cases. First, assume that pA
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is the product of two factors pA = p1p2 with p1 irreducible cubic and p2 linear. Let

Cj be the dual curve of pj = 0, j = 1, 2. If the real point (a, b) is a focus of C1,

then the line x + iy − (a + ib)z = 0 which passes [a, b, 1] and [1, i, 0] is tangent to

C1. Hence p1(1, i,−(a + ib)) = 0. Since det(A − (a + ib)I4) = pA(1, i,−(a + ib)) =

p1(1, i,−(a + ib))p2(1, i,−(a + ib)), we have that a + ib is an eigenvalue of A. Then

σ(A) = {0} implies a = b = 0. This shows that 0 is in C1. Similarly, by the same

argument, we also have 0 in C2. Since p2 is linear, we obtain that C2 is a single point.

Thus C2 = {0} and hence W (A) = C∧1 . Note that if p is a degree-n homogeneous

irreducible polynomial, then the number of singular points of the curve p = 0 is at

most (n − 1)(n − 2)/2 (cf. [36, p. 59, Exercises 5]), and every line segment on the

boundary of the convex hull of the dual curve of p = 0 corresponds to a singular

point of the curve p = 0 through duality. Applying these to the cubic p1, we deduce

that there can be at most one line segment on ∂W (A). Next, if pA is the product of

an irreducible quadratic factor and a (possibly reducible) quadratic factor, then [14]

and σ(A) = {0} imply that ∂W (A) has no line segment. Finally, if pA is the product

of four linear factors, then similarly, W (A) = {0}. Hence ∂W (A) has also no line

segment.

(2) Since ai = 0 for some i, by [7, Theorem 1], we obtain that W (A[k]) is a

circular disc centered at the origin for some k, 1 ≤ k ≤ 4. Thus our assertion follows

from [18, Theorem 3.4]. �

An easy consequence of Theorem 4.1 and the preceding two results is the fol-

lowing:

Corollary 4.3. Let A be a 4-by-4 nilpotent matrix. Suppose that ∂W (A) has two

line segments L1, L2 with dist(0, L1) =dist(0, L2). Then ∂W (A) has exactly two line
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segments.

Proof. After applying a suitable affine transformation, we may assume, without loss

of generality, that for some θ, 0 < θ < 2π, both ∂W (A) and ∂W (e−iθA) have a line

segment on x = 1/2. Since A is nilpotent, by Proposition 4.2 (2), we may assume

that

A =


0 a1 a2 a3

0 0 a4 a5

0 0 0 a6

0 0 0 0

 ,

where aj 6= 0 for 1 ≤ j ≤ 6, and aj > 0 for j = 1, 4, 6. We deduce from Lemma 3.2

that x = 1/2 is tangent to ∂W (A[k]) and ∂W ((e−iθA)[k]) for every k, 1 ≤ k ≤ 4. Thus

det((1/2)I3 − Re (A[k])) = 0 and det((1/2)I3 − Re ((e−iθA)[k])) = 0 for 1 ≤ k ≤ 4.

A simple computation shows that Re (a1a2a4) = Re (e−iθa1a2a4), Re (a1a3a5) =

Re (e−iθa1a3a5) and Re (a4a5a6) = Re (e−iθa4a5a6). Hence, by the first and third

equalities, we have aj(1 − e−iθ) = −aj(1 − eiθ) for j = 2, 5. This and the second

equality yield a2a5 = a2a5 and a3a
2
5 = a3a5

2. Therefore, if a2 = |a2|eiφ for some real

φ, then a5 = ±|a5|eiφ and a3 = ±|a3|e2iφ. Finally, let U = diag(e4iφ, e3iφ, e2iφ, eiφ).

Then U is unitary and

U∗AU = e−iφ


0 a1 |a2| ±|a3|

0 0 a4 ±|a5|

0 0 0 a6

0 0 0 0

 .

Consequently, our assertion follows from Theorem 4.1. �

We conclude from Theorem 4.1, Proposition 4.2 and Corollary 4.3 that l(A) ≤ 3

for a 4-by-4 nilpotent complex matrix A and l(A) ≤ 2 for a 4-by-4 nilpotent complex
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matrix A satisfying any one of the following four conditions: (1) A is a real matrix;

(2) pA is reducible; (3) A is unitarily equivalent to the form of Proposition 4.2 and

at least one of the aj’s is zero and (4) ∂W (A) has two line segments L1, L2 with

dist(0, L1) =dist(0, L2). However, it is still unknown that l(A) ≤ 2 for all 4-by-4

nilpotent complex matrices A.

For our main theorem, another result which we need is Theorem 3.11 in Chapter

3:

Lemma 3.11. Let A be an n-by-n (n ≥ 2) matrix. Then ∂W (A) has a line

segment on the line x cos θ + y sin θ = d if and only if d is the maximum eigen-

value of Re (e−iθA) with unit eigenvectors x1 and x2 such that Im 〈e−iθAx1, x1〉 6= Im

〈e−iθAx2, x2〉.

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. By Proposition 4.2 (1), we may assume that pA is irreducible

and l(A) ≤ 3. Suppose that l(A) = 3. Since the numerical range of the real matrix A

is symmetric with respect to the x-axis, we may assume that for some r > 0 and θ,

0 < θ < π, ∂W (A) (resp., ∂W (e±iθA)) has a line segment on x = r (resp., x = 1/2).

Since A is nilpotent, by Proposition 4.2 (2), we may assume that

A =


0 a1 a2 a3

0 0 a4 a5

0 0 0 a6

0 0 0 0

 ,

where ai ∈ R, ai 6= 0 for 1 ≤ i ≤ 6 and aj > 0 for j = 1, 4, 6 . We deduce from Lemma

3.2 that x = r (resp., x = 1/2) is tangent to ∂W (A[k]) (resp., ∂W ((e±iθA)[k]) for every
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k, 1 ≤ k ≤ 4. Thus det(rI3 − Re (A[k])) = 0 and det((1/2)I3 − Re ((e±iθA)[k])) = 0

for 1 ≤ k ≤ 4. A simple computation shows that

4r2 − a1a2a4
r

= 1− 2a1a2a4 cos θ,

4r2 − a1a3a5
r

= 1− 2a1a3a5 cos θ,

4r2 − a2a3a6
r

= 1− 2a2a3a6 cos θ,

4r2 − a4a5a6
r

= 1− 2a4a5a6 cos θ.

If 1/r = 2 cos θ, then from the first equality above we obtain cos2 θ = 1. This is

impossible since 0 < θ < π. Hence from the above four equalities, we have a1a2 =

a5a6, a1a3 = a4a6, a1a4 = a3a6, a1a5 = a2a6, a2a3 = a4a5 and a2a4 = a3a5. This shows

that either a4 = a3, a5 = a2, and a6 = a1, or a4 = −a3, a5 = −a2, and a6 = −a1.

Because a1, a6 > 0, we only need to consider the former case. Since ∂W (A) has a

line segment on x = r, Lemma 3.11 implies that dim ker(rI4−Re A) ≥ 2. Moreover,

for every [x1 . . . x4]
T ∈ ker(rI4−Re A), a simple computation shows that either

(a) ker(rI4−Re A) ⊆ {[x1 . . . x4]T : x1 + x2 + x3 + x4 = 0}, or

(b) r = (a1 + a2 + a3)/2.

In case (a), substituting x4 = −x1 − x2 − x3 in the component equalities for

(rI4−Re A)[x1 . . . x4]
T = 0, we obtain the two equalities (2r−a1+a2+a3)(x1+x2) = 0

and (2r + a1 + a2 − a3)(x2 + x3) = 0. Therefore, we need to consider the following

four cases:

(1) 2r − a1 + a2 + a3 = 0 and x2 + x3 = 0. Substituting them and x4 =

−x1−x2−x3 into the component equalities for (rI4−Re A)[x1 . . . x4]
T = 0 and using

dim ker(rI4−Re A) ≥ 2, we obtain a1 = a2 and r = −a3/2. Since a3 = a4 > 0, we

have r < 0, which contradicts our assumption on r.
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(2) 2r + a1 + a2 − a3 = 0 and x1 + x2 = 0. Similarly, we obtain a2 = a3 and

r = −a1/2. Since a1 > 0, we also have r < 0. This is impossible.

(3) x1 + x2 = 0 and x2 + x3 = 0. Since x4 = −x1− x2− x3 and dim ker(rI4−Re

A) ≥ 2, we are led to a contradiction.

(4) 2r − a1 + a2 + a3 = 0 and 2r + a1 + a2 − a3 = 0. From above we obtain

a1 = a3 and a2 = −2r < 0. If U =diag(1,−1, 1,−1), then U is unitary and

U∗AU =


0 −a1 a2 −a1
0 0 −a1 a2

0 0 0 −a1
0 0 0 0

 = −


0 a1 −a2 a1

0 0 a1 −a2
0 0 0 a1

0 0 0 0

 .

Hence we may assume, without loss of generality, that

A =


0 1 a 1

0 0 1 a

0 0 0 1

0 0 0 0

 ,

where a > 0. Since A is a 4-by-4 upper triangular nilpotent matrix, by [6, p. 147,

(4)], the eigenvalues of Re (e−iθA) are given by µ−1(θ) = −(a/2)− sin(θ/2), µ0(θ) =

(a/2)+cos(θ/2), µ1(θ) = −(a/2)+sin(θ/2) and µ2(θ) = (a/2)−cos(θ/2). If 0 < a < 1,

then we have µ0(0) = 1 + (a/2) > µk(0) for k = ±1, 2 and µ1(π) = 1− (a/2) > µj(π)

for j = −1, 0, 2. Let

µ(θ) = max{µk(θ) : k = −1, 0, 1, 2}.

Since µk(0) and µk(π) are differentiable functions for all k, we have (µ)′+(0) =

(µ0)
′
+(0) = (µ0)

′
−(0) = (µ)′−(0) and (µ)′+(π) = (µ1)

′
+(π) = (µ1)

′
−(π) = (µ)′−(π).

68



Hence [6, Theorem 2] implies that ∂W (A) has no vertical line segment. In addition,

the fact that A is a real matrix implies that ∂W (A) has at most two line segments.

If a = 1, then ∂W (A) has exactly one line segment by [6, Theorem 2]. If a > 1,

then we obtain µ0(θ) = a/2 + cos(θ/2) > µk(θ) for k = ±1, 2. Similarly, for every θ,

0 ≤ θ < π, we have (µ)′+(θ) = (µ0)
′
+(θ) = (µ0)

′
−(θ) = (µ)′−(θ). Again, [6, Theorem 2]

and the fact that A is a real matrix imply that ∂W (A) has at most one line segment.

These all contradict our assertion.

In case (b), we substitute r = (a1 + a2 + a3)/2 in the component equalities for

(rI4−Re A)[x1 . . . x4]
T = 0. A simple computation shows that

(a2 + a3)[(a1 + a2)x1 − (a1 + a3)x2 − (a2 − a3)x3] = 0

and

(a1 + a2)[(a1 − a2)x1 − (a1 + a3)x2 + (a2 + a3)x3] = 0.

If a1+a2 6= 0 and a2+a3 6= 0, then from above we have x1 = x3. Substituting x1 = x3

into the second equality above, we obtain x1 = x2 since a1 > 0 and a3 = a4 > 0. Thus

substituting r = (a1 + a2 + a3)/2 and x1 = x2 = x3 into the component equalities for

(rI4−Re A)[x1 . . . x4]
T = 0 would imply that x1 = x2 = x3 = x4, which contradicts

dim ker(rI4−Re A) ≥ 2. Therefore, we only need to consider the following two cases:

(5) a1 + a2 = 0. Then a2 = −a1 and hence

A =


0 a1 −a1 a3

0 0 a3 −a1
0 0 0 a1

0 0 0 0

 ,

where a1, a3 > 0. Since ∂W (e−iθA) has a line segment on x = 1/2, Lemma 3.11 im-

plies that dim ker((1/2)I4−Re (e−iθA)) ≥ 2, where 0 < θ < π. Thus there is a nonzero
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vector x of the form [0 x2 x3 x4]
T in ker((1/2)I4−Re e−iθA). A simple computation

shows that a1(x2 − x3) = −a3x4, x2 = e−iθ(a3x3 − a1x4) = 0, x3 = a3e
iθx2 + a1e

−iθx4

and a1e
iθ(x2 − x3) = −x4. By the first and last equalities, we have (a3e

iθ − 1)x4 = 0.

Since a3e
iθ − 1 6= 0, we obtain x4 = 0. Hence we have x2 = x3 from the first equality.

Substituting them into the second equality yields (1 − a3e−iθ)x2 = 0. Thus we also

have x2 = 0, which contradicts our assumption on the nonzeroness of x.

(6) a2 + a3 = 0. Then a2 = −a3 and hence

A =


0 a1 −a3 a3

0 0 a3 −a3
0 0 0 a1

0 0 0 0

 ,

where a1, a3 > 0. Using the same argument as in the proof of case (5), we are also

led to a contradiction. This completes the proof. �

We next give a necessary and sufficient condition for the boundary of the nu-

merical range of a 4-by-4 nilpotent matrix A to have a pair of parallel line segments.

Theorem 4.4. Let A be a 4-by-4 nilpotent matrix. Then ∂W (A) has a pair of

parallel line segments if and only if A is unitarily equivalent to a matrix of the form

α


0 r1 ir2 −r3

0 r3 −ir2
0 r1

0

 ,

where α ∈ C \ {0}, r1, r3 > 0 and r2 ∈ R. In this case, ∂W (A) has no other line

segment.
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Proof. We first prove the sufficiency. In the assumption, we may assume that α = 1

and r21 + r22 + r23 = 1. From a simple computation, we obtain, for every µ with |µ| = 1

and for every z ∈ C,

p(z, µ) ≡ det(zI4 − Re(µA))

= z4 − (
2r21 + 2r22 + 2r23

4
)z2 + (

r41 + r42 + r43 + 2r21r
2
2 + 2r22r

2
3 + (µ2 + µ2)r21r

2
3

16
)

= z4 − (
1

2
)z2 + (

1 + (µ2 + µ2 − 2)r21r
2
3

16
),

and hence

p(z, 1) = z4 − 1

2
z2 +

1

16
= (z − 1

2
)2(z +

1

2
)2.

Thus both 1/2 and −1/2 are the eigenvalues of Re A with multiplicity two. Since

r1, r3 > 0 and r21 + r22 + r23 = 1, we have r1 < 1 and r3 < 1. Some calculations on

ker((1/2)I4−Re A) show that

ker(
1

2
I4−ReA) = {λ1[

t1
1− r21

t2
1− r21

1 0]T +λ2[−
t2

1− r21
− t1

1− r21
0 1]T : λ1, λ2 ∈ C},

where t1 = r1r3 + ir2 and t2 = r3 + ir1r2. Note that if B is a 4-by-4 nilpotent matrix

of the form 
0 b1 b2 b3

0 0 b4 b5

0 0 0 b6

0 0 0 0

 ,

where bj ∈ C for 1 ≤ j ≤ 6, then for every nonzero r ∈ R and x = [x1 x2 x3 x4]
T ∈

ker(rI4−Re B), we have 2rx1 = b1x2 + b2x3 + b3x4 and −b1x1 + 2rx2 = b4x3 + b5x4.

Thus

Im〈Bx, x〉 = Im(x1(b1x2 + b2x3 + b3x4) + x2(b4x3 + b5x4) + b6x3x4)

= Im(2r|x1|2 − b1x1x2 + 2r|x2|2 + b6x3x4)

= Im(b6x3x4 − b1x1x2).(iii)
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We derive from (iii) that Im 〈Ax, x〉 = r1 Im (x3x4−x1x2). Letting y = [t1− it2 t2−

it1 1− r21 (1− r21)i]T and z = [t1 + it2 t2 + it1 1− r21 − (1− r21)i]T , we obtain

Im〈Ay, y〉 = r1Im(i(1− r21)2 − (t1 − it2)(t2 + it1))

= r1Im(i(1− r21)2 − (t1t2 + t1t2 + i|t1|2 − i|t2|2))

= r1((1− r21)2 + |t2|2 − |t1|2)

= r1((1− r21)2 + r23 + r21r
2
2 − r21r23 − r22)

= r1((1− r21)2 + (1− r21)(r23 − r22))

= r1(1− r21)(1− r21 − r22 + r23)

= r1(1− r21)(1 + r23 − (1− r23)) = 2r1r
2
3(1− r21) > 0

and

Im〈Az, z〉 = r1Im(−i(1− r21)2 − (t1 + it2)(t2 − it1))

= r1Im(−i(1− r21)2 − (t1t2 + t1t2 − i|t1|2 + i|t2|2))

= r1(−(1− r21)2 − |t2|2 + |t1|2)

= −Im〈Ay, y〉 < 0.

Finally, letting y1 = y/‖y‖ and z1 = z/‖z‖, we have Im〈Ay1, y1〉 6= Im〈Az1, z1〉.

Therefore, by Lemma 3.11, ∂W (A) has a line segment on x = 1/2. In a similar

fashion, we also derive that ∂W (A) has a line segment on x = −1/2. This proves one

direction.

Now we prove the necessity. After applying a suitable affine transformation,

we may assume, without loss of generality, that for some r ∈ R, ∂W (A) has two

line segments on x = 1/2 and x = r. Lemma 3.11 implies that dim ker((1/2)I4−Re

A) = dim ker(rI4−Re A) = 2. Thus both 1/2 and r are the eigenvalues of Re A

with multiplicity two. Since Re A has zeros on its diagonal, we have (1/2) + r = tr
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(Re A)= 0, where tr (Re A) denotes the sum of the diagonal entries of Re A. Thus

r = −1/2. Since A is nilpotent, we may assume that

A =


0 a1 a2 a3

0 0 a4 a5

0 0 0 a6

0 0 0 0

 ,

where ai ∈ C for 1 ≤ i ≤ 6 and aj ≥ 0 for j = 1, 4, 6. Fix |µ| = 1. For every z ∈ C,

some simple computations show that

p(z, µ) ≡ det(zI4 − ReµA)

= z4 − (
a21 + |a2|2 + |a3|2 + a24 + |a5|2 + a26

4
)z2

−Re(µ(α1 + α2 + α3 + α4))

4
z

+
a21a

2
6 + |a2|2|a5|2 + |a3|2a24 − β + (1− µ2)a1a3a4a6 + (1− µ2)a1a3a4a6

16
,

where α1 ≡ a1a2a4, α2 ≡ a1a3a5, α3 ≡ a2a3a6, α4 ≡ a4a5a6 and β = 2 Re(a1a2a5a6 +

a2a3a4a5 + a1a3a4a6). Hence we obtain

∂p

∂z
(z, µ) = 4z3 − (

a21 + |a2|2 + |a3|2 + a24 + |a5|2 + a26
2

)z

−Re(µ(α1 + α2 + α3 + α4))

4
.

Thus p(±1/2, 1) = ∂p
∂z

(±1/2, 1) = 0. By our assumption, we deduce from Lemma 3.2

that both x = 1/2 and x = −1/2 are tangent to ∂W (A[k]) for every k, 1 ≤ k ≤ 4.

Then det(±1/2I3 − Re A[k]) = 0 for 1 ≤ k ≤ 4. A simple computation shows that

a21 + |a2|2 +a24 = 1± 2 Re α1, a
2
1 + |a3|2 + |a5|2 = 1± 2 Re α2, |a2|2 + |a3|2 +a26 = 1± 2

Re α3 and a24 + |a5|2 + a26 = 1 ± 2 Reα4. Hence Re αj = 0 for 1 ≤ j ≤ 4. Moreover,

taking the sum of the first three equalities above and subtracting the last equality

from it yields a21+ |a2|2+ |a3|2 = 1. From this and the first equality, we have |a3| = a4.
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Therefore, the first three equalities imply that |a2| = |a5| and a1 = a6. Substituting

them into the equality p(1/2, 1) = 0, we have 1 = a41 + |a2|4 + |a3|4 − β. Thus

1 = (a21 + |a2|2 + |a3|2)2 − 2a21|a2|2 − 2|a2|2|a3|2 − 2a21|a3|2 − β

= 1− (|a1a2 + a5a6|2 + |a2a3 + a4a5|2 + |a1a3 + a4a6|2).

Consequently, we obtain a1a2 = −a5a6, a2a3 = −a4a5 and a1a3 = −a4a6. Consider

the following cases:

(1) a1a4 = 0. Suppose that a1 = 0 (resp., a4 = 0). Then a6 = 0 (resp., a3 = 0)

and hence W (A) is a circular disc centered at the origin by [7, Theorem 1]. This is a

contradiction.

(2) a1a4 6= 0 and a2 = 0. Hence a5 = 0. From a1a3 = −a4a6 and a1 = a6 and

|a3| = a4, we have a3 = −a4.

(3) a1a2a4 6= 0. Hence aj 6= 0 for all j, 1 ≤ j ≤ 6. We also have a3 = −a4 < 0

by the same argument as in case (2). In addition, a1a2 = −a5a6 (resp., a2a3 = −a4a5)

implies that a2 = −a5 (resp., a2 = a5). Thus a2 = −a5 = −a2. That is, a2 = ir for

some r ∈ R and r 6= 0. This proves our assertion.

Finally, that ∂W (A) has no line segment other than those on x = ±1/2 follows

from Corollary 4.3. �

An immediate consequence of the preceding theorem is the following:

Corollary 4.5. Let A be a 4-by-4 nilpotent real matrix. Then ∂W (A) has two
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parallel line segments if and only if A is unitarily equivalent to a matrix of the form

α


0 r1 0 −r3

0 r3 0

0 r1

0

 ,

where α ∈ R \ {0}, and r1, r3 > 0.

Proof. The sufficiency follows easily from Theorem 4.4. For the necessity, we may

assume, by Theorem 4.4, that

A = α


0 r1 ir2 −r3

0 r3 −ir2
0 r1

0

 ,

where α ∈ C \ {0}, r1, r3 > 0 and r2 ∈ R. Since A is a real matrix, we obtain α ∈ R.

Thus iαr2 = −iαr2 and hence r2 = 0. Our assertion follows. �

Finally, it is shown in the next theorem that a 4-by-4 nilpotent matrix A which

has a line segment on ∂W (A) must be unitarily equivalent to a matrix of a special

form.

Theorem 4.6. Let A be a 4-by-4 nilpotent matrix. If ∂W (A) has a line segment,

then A is unitarily equivalent to a matrix of the form

α


0 a1 a2 a3

0 a4 a5

0 a6

0

 ,(iv)
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where

a4 = a1a2 + ((1− |a1|2)(1− |a2|2))1/2eiθ1 ,

a5 = a1a3 + ((1− |a1|2)(1− |a3|2))1/2eiθ2 ,

a6 = a2a3 + ((1− |a2|2)(1− |a3|2))1/2ei(θ2−θ1),

|ai| ≤ 1 for 1 ≤ i ≤ 3, and α ∈ C \ {0}, θ1, θ2 ∈ R. (If |a1| = 1 or |a2| = 1, then θ1

can be an arbitrary real number. Similarly, if |a1| = 1 or |a3| = 1, then θ2 can be an

arbitrary real number.)

Proof. Since A is nilpotent, we may assume that

A =


0 a1 a2 a3

0 0 a4 a5

0 0 0 a6

0 0 0 0

 ,

where aj ∈ C for all j. After applying a suitable affine transformation, we may as-

sume, without loss of generality, that ∂W (A) has a line segment on x = −1/2. Lemma

3.11 implies that −1/2 is the minimum eigenvalue of Re A and dim ker((1/2)I4+Re

A) ≥ 2. Hence the fact that Re

 0 aj

0 0

 is a submatrix of ReA yieldsW (

 0 aj

0 0

) ⊆

W (

 0 1

0 0

) for every j. Thus |aj| ≤ 1 for 1 ≤ j ≤ 6. We deduce from Lemma 3.2

that x = −1/2 is tangent to ∂W (A[k]) and ∂W ((e−iθA)[k]) for every k, 1 ≤ k ≤ 4.

Then we have det((1/2)I3 + Re (A[k])) = 0 and det((1/2)I3 + Re ((e−iθA)[k])) = 0
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for 1 ≤ k ≤ 4. A simple computation shows that

|a1|2 + |a2|2 + |a4|2 = 1 + 2Re a1a2a4,

|a1|2 + |a3|2 + |a5|2 = 1 + 2Re a1a3a5,

|a2|2 + |a3|2 + |a6|2 = 1 + 2Re a2a3a6,

|a4|2 + |a5|2 + |a6|2 = 1 + 2Re a4a5a6.

Let r1 =
√

1− |a1|2, r2 =
√

1− |a2|2 and r3 =
√

1− |a3|2. From the first three

equalities above, we obtain

|a4 − a1a2|2 = (1− |a1|2)(1− |a2|2) = r21r
2
2,

|a5 − a1a3|2 = (1− |a1|2)(1− |a3|2) = r21r
2
3,

|a6 − a2a3|2 = (1− |a2|2)(1− |a3|2) = r22r
2
3.

Thus we may assume that a4 = a1a2 + r1r2e
iθ1 , a5 = a1a3 + r1r3e

iθ2 and a6 =

a2a3 + r2r3e
iθ3 , where θj ∈ R for 1 ≤ j ≤ 3. By means of a succession of elementary

row operations, we can transform (1/2)I4+Re A into the matrix

D =


1 a1 a2 a3

0 1− |a1|2 a4 − a1a2 a5 − a1a3
0 a4 − a1a2 1− |a2|2 a6 − a2a3
0 a5 − a1a3 a6 − a2a3 1− |a3|2

 =


1 a1 a2 a3

0 r21 r1r2e
iθ1 r1r3e

iθ2

0 r1r2e
−iθ1 r22 r2r3e

iθ3

0 r1r3e
−iθ2 r2r3e

−iθ3 r23

 .

Since dim ker((1/2)I4+Re A) ≥ 2, we have dim ran((1/2)I4+Re A) = 1 or 2. If dim

ran((1/2)I4+Re A) = 1, then dim ranD = 1. Hence we have r1 = r2 = r3 = 0.

This implies that a4 = a1a2, a5 = a1a3 and a6 = a2a3. On the other hand, if dim

ran((1/2)I4+Re A) = 2, then dim ranD = 2. Thus we obtain r2r3e
iθ3 = r2r3e

i(θ2−θ1).

This completes the proof. �

For the converse of Theorem 4.6, the following example shows that this is not
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true in general.

Example 4.7. Let

A =


0 (

√
2 +
√

3)/2 1/2
√

2/2

0 0 (
√

2 +
√

3 +
√

6− 3
√

3)/4 (
√

4 + 2
√

3 +
√

4− 2
√

3)/4

0 0 0 (
√

2 +
√

6)/4

0 0 0 0

 .

Then A is of the form (iv) and ∂W (A) has no line segment.

Proof. It is easily seen that A is of the form (iv) by letting α = 1 and θ1 = θ2 = 0.

Now suppose that for some r > 0 and θ, 0 ≤ θ < 2π, ∂W (e−iθA) has line segment on

x = r. We deduce from Lemma 3.2 that x = 1/2 is tangent to ∂W ((e−iθ(A/(2r)))[k])

for every k, 1 ≤ k ≤ 4. Thus det((1/2)I3 − Re ((e−iθ(A/(2r)))[k]) = 0 for 1 ≤ k ≤ 4.

A simple computation shows that

1− (
1

2r
)2(

5 +
√

3

4
) = 2(

1

2r
)3(

1 +
√

3

8
) cos θ,

1− (
1

2r
)2(

7 +
√

3

4
) = 2(

1

2r
)3(

3 +
√

3

8
) cos θ.

From the above two equalities, we obtain cos θ 6= 0 and hence

1− ( 1
2r

)2(5+
√
3

4
)

1− ( 1
2r

)2(7+
√
3

4
)

=
1 +
√

3

3 +
√

3
.

This shows that r = 1/2. Substituting r = 1/2 in the first equality, we have cos θ =

−1. We next show that ∂W (A) has no line segment on x = −1/2. By means of a

succession of elementary row operations, we can transform (−1/2)I4−Re A into the

matrix

E =


1 (

√
2 +
√

3)/2 1/2
√

2/2

0
√

2−
√

3
√

3
√

2

0 0 0 0

0 0 0 0

 .
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Thus some calculations on ker((−1/2)I4−Re A) show that

ker(−1

2
I4 − ReA) = {λ1[t1 −

√
3t2 1 0]T + λ2[

√
2

2
t1 −

√
2t2 0 1]T : λ1, λ2 ∈ C},

where t1 = 1 +
√

3 and t2 =
√

2 +
√

3. Hence by (iii) in the proof of Theorem 4.4,

we derive that for any x = [x1 x2 x3 x4]
T ∈ ker((−1/2)I4−Re A),

Im〈Ax, x〉 = Im(

√
2 +
√

6

4
x3x4 −

√
2 +
√

3

2
x1x2)

= Im(

√
2

4
t1x3x4 −

1

2
t2(t1x3 +

√
2

2
t1x4)(−

√
3t2x3 −

√
2t2x4))

= Im((

√
2

4
t1 +

√
6

4
t1t

2
2)x3x4 +

√
2

2
t1t

2
2x3x4)

= Im(

√
2

4
(1 +

√
3)(1 +

√
3(2 +

√
3))x3x4 +

√
2

2
(1 +

√
3)(2 +

√
3)x3x4)

=

√
2

2
(1 +

√
3)(2 +

√
3)Im(x3x4 + x3x4) = 0.

Thus by Lemma 3.11, ∂W (A) has no line segment on x = −1/2. Therefore, it is

impossible for ∂W (A) to have a line segment.
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Chapter 5 Products of two 2-by-2 nonnegative contractions

5.1 Introduction

Recall that a bounded linear operator A on a complex Hilbert space H is non-

negative (resp., positive) if 〈Ah, h〉 ≥ 0 for any h in H (resp., 〈Ah, h〉 > 0 for any

h 6= 0 in H). For convenience, we denote it by A ≥ 0 (resp., A > 0). We know that

A ≥ 0 (resp., A > 0) if and only if A = A∗ and σ(A) ≥ 0 (resp., σ(A) > 0). It is

well-known that if A and B satisfy 0 ≤ A, B ≤ I, then Re AB ≥ −1/8 and −1/4 ≤

Im AB ≤ 1/4 (cf. [12, Theorem 1.1 and Corollary 4.3]). The purpose of this chapter

is to study matrices which are products of 2-by-2 nonnegative contractions. We also

give several properties of a matrix which is a product of n-by-n ones and discuss those

of its numerical range.

In Section 5.2, we consider a matrix which is a product of two 2-by-2 nonnegative

contractions. Let A be a 2-by-2 matrix in upper-triangular form x z

0 y

 .
In Theorem 5.1 below, we give a necessary and sufficient condition for A to be a

product of two nonnegative contractions. More specifically, it is shown that this is

the case if and only if

0 ≤ x, y ≤ 1 and |z| ≤ |
√
x−√y|

√
(1− x)(1− y).

Next, we list several propositions and corollaries of Theorem 5.1. For example, Corol-

lary 5.6 says that W (A) is not a circular disc if a 2-by-2 matrix A is a product of

two nonnegative contractions. It was proven in Corollary 5.12 that if A is a 2-by-2
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matrix which is a product of finitely many nonnegative contractions, then

‖A‖ = 1 if and only if A ∼=

 x 0

0 1

 , where 0 ≤ x ≤ 1.

In Corollary 5.13 (resp., Corollary 5.14), we give another proof of the fact that if

B and C satisfy 0 ≤ B, C ≤ I2, then (−1/4)I2 ≤ Im BC ≤ (1/4)I2 (resp., Re

BC ≥ (−1/8)I2) and

{w ∈ C : Im w =
i

4
} ∩ ∂W (BC) 6= ∅ if and only if BC ∼=

 0 1
2

0 1
2


(resp.,

−1

8
∈ ∂W (BC) if and only if BC ∼=

 0
√
3
4

0 1
4

 ).

Finally, in Corollary 5.15 (resp., Corollary 5.17), we give some equivalent conditions

for a 2-by-2 matrix to be the product of two nonnegative contractions at least one of

which is noninvertible (resp., invertible).

In Section 5.3, Theorem 5.18 says that if a bounded linear operator A of the

form

 A1 A3

0 A2

 is a product of two nonnegative contractions, then so are A1 and

A2. We also have several immediate corollaries (cf. Corollaries 5.21, 5.22, 5.23 and

5.24 below). For example, in Corollary 5.22, it is shown that a finite matrix A =

(
∑k1

i=1⊕Ai)⊕ diag(w1, . . . , wk2), where Ai =

 xi zi

0 yi

 for all i, is a product of two

nonnegative contractions if and only if

0 ≤ xi, yi, wj ≤ 1 and |zi| ≤ |
√
xi −

√
yi|
√

(1− xi)(1− yi) for all i, j.

In Corollary 5.23, it is shown that an n-by-n quadratic operator is a product of two

nonnegative contractions if and only if it is unitarily equivalent to a matrix of the
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form

aI1 ⊕ bI2 ⊕ (
k∑
i=1

⊕

 a ci

0 b

),

where 0 ≤ a, b ≤ 1 and |ci| ≤ |
√
a −
√
b|
√

(1− a)(1− b) for all i. In addition, we

generalize Corollary 5.6 in Corollary 5.26. More specifically, in Theorem 5.25, it is

shown that if an n-by-n matrix A whose numerical range is a circular disc centered at

a, then a is an eigenvalue of A with its geometric multiplicity less than its algebraic

multiplicity. Hence from Theorem 5.25 we obtain Corollary 5.26, which says that

W (A) is not a circular disc if A is a product of two n-by-n nonnegative contractions.

Finally, from Kuo and Wu [29, Theorem 3.1], we know that an n-by-n matrix A is

a product of finitely many orthogonal projections if and only if it is unitarily equiv-

alent to Ik ⊕ A1, where 0 ≤ k ≤ n and A1 is singular with ‖A1‖ < 1. Therefore, an

n-by-n matrix A is a product of finitely many orthogonal projections if and only if it

is unitarily equivalent to Ik ⊕ A1, where 0 ≤ k ≤ n and A1 is a product of finitely

many orthogonal projections with ‖A1‖ < 1. In Proposition 5.30, we also show that

A is a product of infinitely (resp., finitely) many nonnegative contractions if and only

if A ∼= Ik⊕B, where 0 ≤ k ≤ n and B is a product of infinitely (resp., finitely) many

nonnegative contractions with ‖B‖ < 1.
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5.2 Products of two 2-by-2 nonnegative contractions

The following theorem is the main result of this section.

Theorem 5.1. Let A be a 2-by-2 matrix of the form

 x z

0 y

. Then A is a

product of two nonnegative contractions B and C if and only if 0 ≤ x, y ≤ 1 and

|z| ≤ |
√
x − √y|

√
(1− x)(1− y). In this case, we can choose B and C such that

‖B‖ = ‖C‖ = 1.

In order to prove this theorem, we need the following lemmas. The proof of

Lemma 5.2 can be obtained by [4, Theorem 3] and Lemma 5.3 is a common result in

linear algebra.

Lemma 5.2. If B ≥ 0 and A is any bounded linear operator, then σ(AB)∧ ⊆

W (A) ·W (B).

Lemma 5.3. Let A and B be two 2-by-2 matrices. Then A and B are unitarily

equivalent if and only if tr A =tr B, detA = detB and tr (A∗A)=tr (B∗B). In

particular, normal A and B are unitarily equivalent if and only if tr A =tr B and

detA = detB.

The next lemma is the major step in proving Theorem 5.1.

Lemma 5.4. Let A be a 2-by-2 matrix of the form

 x z

0 y

. Then

(1) A = BC, whereB (resp., C) is unitarily equivalent to diag(1, λ1) (resp., diag(1, λ2)),

where 0 ≤ λ1 ≤ 1 (resp., 0 ≤ λ2 ≤ 1), if and only if xy = λ1λ2, where 0 ≤ x, y ≤
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1, min{x, y} ≤ λ1, λ2 ≤ max{x, y} and |z|2 = (1−x)(1− y)[(x+ y)− (λ1 +λ2)].

(2) A is a product of two nonnegative contractions which are both unitarily equiv-

alent to diag(1, λ) for some λ, 0 ≤ λ ≤ 1, if and only if 0 ≤ x, y ≤ 1 and

|z| = |
√
x−√y|

√
(1− x)(1− y). In this case, λ =

√
xy.

(3) A is a product of two nonnegative contractions which are both unitarily equiv-

alent to diag(λ1, λ2) for some λ1 and λ2, 0 ≤ λ1, λ2 ≤ 1, if and only if 0 ≤ x,

y ≤ 1 and |z| ≤ |
√
x−√y|

√
(1− x)(1− y).

Proof. (1) We first prove the sufficiency. By assumption, if y = 1, then x = λ1λ2 and

z = 0. It is easy to see that our assertion holds in this case. Hence we may assume,

without loss of generality, that xy = λ1λ2, where 0 ≤ x ≤ λ1 ≤ λ2 ≤ y < 1 and

|z|2 = (1 − x)(1 − y)[(x + y) − (λ1 + λ2)]. Let B =

 1 0

0 λ1

, C =

 a b

b d

 and

A1 = BC =

 a b

bλ1 dλ1

, where a = 1− c, d = λ2 + c, c = (1− x)(1− y)/(1− λ1)

and |b| =
√
ad− λ2. Then we obtain that a + d = 1 + λ2 and ad − |b|2 = λ2. Then

Lemma 5.3 implies that C ∼=

 1 0

0 λ2

. Hence we only need to prove that A ∼= A1.

Some simple computations show that

tr A1 = a+ dλ1 = 1− c+ λ1(λ2 + c) = 1 + λ1λ2 − c(1− λ1)

= 1 + xy − (1− x)(1− y) = x+ y = tr A

and

detA1 = adλ1 − |b|2λ1 = λ1(ad− |b|2) = λ1λ2 = xy = detA.
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In addition,

|z|2 = (1− x)(1− y)[(x+ y)− (λ1 + λ2)]

= (1− x)(1− y)[(1− λ1)(1− λ2)− (1− x)(1− y)]

= c(1− λ1)[(1− λ1)(1− λ2)− c(1− λ1)]

= (1− λ1)2[c− cλ2 − c2]

= (1− λ1)2[(λ2 + c)(1− c)− λ2]

= (1− λ1)2(ad− λ2) = |b|2(1− λ1)2.

This implies that

tr(A∗1A1) = a2 + |b|2 + |b|2λ21 + d2λ21

= (a+ dλ1)
2 + |b|2(1− λ1)2 − 2λ1(ad− |b|2)

= 1 + λ1λ2 − c(1− λ1)

= (x+ y)2 − 2xy + |z|2 = tr(A∗A).

From these equalities and Lemma 5.3, we obtain A1
∼= A as asserted. This proves the

sufficiency.

For the converse, Lemma 5.2 implies that σ(A) ⊆ W (B)W (C) ⊆ [0, 1] and

hence 0 ≤ x, y ≤ 1. If λ1 = 1, then A ∼= C ∼=

 1 0

0 λ2

. This implies that z = 0 and

max{x, y} = 1. It is easy to see that our assertion holds for the case max{x, y} = 1.

Hence we may assume that 0 ≤ x ≤ y < 1 and λ1 < 1. By our assumptions, we

may further assume that B =

 1 0

0 λ1

, C =

 a b

b d

 with C ∼=

 1 0

0 λ2

 and

A ∼= BC =

 a b

bλ1 dλ1

. Hence Lemma 5.3 implies that a+d = 1+λ2, ad−|b|2 = λ2,

and x + y = a + dλ1, xy = (ad − |b|2)λ1, x2 + y2 + |z|2 = a2 + |b|2 + (|b|2 + d2)λ21.
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Thus we have

|z|2 = [a2 + |b|2 + (|b|2 + d2)λ21]− (a+ dλ1)
2 + 2(ad− |b|2)λ1 = |b|2(1− λ1)2.

In addition, we also obtain that

x+ y = a+ dλ1 = (1 + λ2 − d) + dλ1 = 1 + λ2 − (1− λ1)d

and hence

d =
1

1− λ1
(1 + λ2 − x− y)

=
1

1− λ1
[(1− x)(1− y)− xy + λ2]

=
1

1− λ1
[λ2(1− λ1) + (1− x)(1− y)].

Let c = (1− x)(1− y)/(1− λ1). Then d = λ2 + c and a = 1− c. This implies that

|z|2 = |b|2(1− λ1)2 = (1− λ1)2(ad− λ2)

= (1− λ1)2[(1− c)(λ2 + c)− λ2]

= c(1− λ1)2(1− λ2 − c)

= c(1− λ2)[(1− λ1)(1− λ2)− c(1− λ1)]

= (1− x)(1− y)[(x+ y)− (λ1 + λ2)].

Hence x + y ≥ λ1 + λ2. By the equality xy = (ad − |b|2)λ1 = λ1λ2, we derive

that x2 + λ1λ2 = x2 + xy ≥ xλ1 + xλ2. That is, (λ1 − x)(λ2 − x) ≥ 0. Therefore,

x ≤ λ1, λ2 ≤ y follows. This proves the necessity.

(2) By (1), the sufficiency follows easily from letting λ1 = λ2 =
√
xy. For

the necessity, let λ1 = λ2 = λ. Then (1) implies that λ =
√
xy and hence |z|2 =

(1− x)(1− y)[(x+ y)− 2λ] = (1− x)(1− y)(
√
x−√y)2. Our assertion follows.
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(3) Assume thatA = BC, whereB, C are both unitarily equivalent to diag(λ1, λ2)

for some λ1 and nonzero λ2, 0 ≤ λ1 ≤ λ2 ≤ 1. Considering A/(λ2
2) = (B/λ2)(C/λ2),

we deduce from (2) that 0 ≤ x/λ2, y/λ2 ≤ 1 and

| z
λ2
| = |

√
x

λ2
−
√

y

λ2
|
√

(1− x

λ2
)(1− y

λ2
).

Hence 0 ≤ x, y ≤ 1 and

|z| = |
√
x−√y|

√
(λ2 − x)(1− y

λ2
) ≤ |
√
x−√y|

√
(1− x)(1− y).

This proves the sufficiency. For the necessity, we may assume that 0 ≤ x ≤ y ≤ 1.

Consider the function f(t) = |
√
x − √y|

√
(t− x)(1− (y/t)) on [y, 1]. We have

f(y) = 0 and f(1) = |
√
x − √y|

√
(1− x)(1− y). Hence the real-valued continuous

function f must assume the value z at some point α, y ≤ α ≤ 1. This says that

0 ≤ x/α ≤ y/α ≤ 1 and |z/α| = |
√
x/α −

√
y/α|

√
(1− (x/α))(1− (y/α)). There-

fore, by (2), A = α(A/α) = αBC = (
√
αB)(

√
αC) for some nonnegative contractions

√
αB and

√
αC which are both unitarily equivalent to diag(

√
α, λ
√
α) for some λ,

0 ≤ λ ≤ 1. This completes the proof. �

Now, we are ready to prove Theorem 5.1 by using the preceding lemmas.

Proof of Theorem 5.1. The sufficiency follows easily from Lemma 5.4 (3). To prove the

necessity, Lemma 5.2 implies that 0 ≤ x, y ≤ 1. First, we consider ‖B‖ = ‖C‖ = 1.

Then B (resp., C) is unitarily equivalent to diag(1, λ1) (resp., diag(1, λ2)) for some

λ1 (resp., λ2), 0 ≤ λ1 ≤ 1 (resp., 0 ≤ λ2 ≤ 1). By Lemma 5.4 (1), we obtain that

xy = λ1λ2, where 0 ≤ x, y ≤ 1, min{x, y} ≤ λ1, λ2 ≤ max{x, y} and |z|2 = (1−x)(1−

y)[(x+ y)− (λ1 +λ2)]. Thus we have the inequality λ1 +λ2 ≥ 2
√
λ1λ2 = 2

√
xy. This

implies that |z| ≤
√

(1− x)(1− y)
√

(x+ y)− 2
√
xy =

√
(1− x)(1− y)|

√
x − √y|.

In general, since A = α

 x/α z/α

0 y/α

 = α(B/‖B‖)(C/‖C‖), where 0 < α =
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‖B‖‖C‖ ≤ 1, the scalars x, y, z in the above can be replaced by x/α, y/α, z/α, respec-

tively, to get 0 ≤ x/α, y/α ≤ 1 and |z/α| ≤
√

(1− (x/α))(1− (y/α))|
√
x/α−

√
y/α|.

This shows that 0 ≤ x, y ≤ α ≤ 1 and |z| ≤ |
√
x − √y|

√
(α− x)(1− (y/α)) ≤

|
√
x−√y|

√
(1− x)(1− y), which proves our assertion. �

Next, we list below some corollaries of Theorem 5.1.

Corollary 5.5. Let a 2-by-2 matrix A of the form

 x z

0 y

 be a product of two

nonnegative contractions. Then any A
′

=

 x z
′

0 y

 with |z′ | ≤ |z| is also a product

of two nonnegative contractions.

Proof. This follows directly from Theorem 5.1. �

Corollary 5.6. If a 2-by-2 matrix A is a product of two nonnegative contractions,

then W (A) is not a circular disc.

Proof. We may assume that A is of the form

 x z

0 y

 and W (A) is a circular disc. It

implies that x = y, and hence z = 0 by Theorem 5.1. This yields that W (A) = {x},

contradicting our assumption. Our assertion follows. �

Corollary 5.7. A 2-by-2 matrix A is a product of two nonnegative contractions

if and only if A is a product of two nonnegative contractions which are both unitarily

equivalent to diag(λ1, λ2) for some λ1 and λ2, 0 ≤ λ1, λ2 ≤ 1.

Proof. This follows directly from Theorem 5.1 and Lemma 5.4 (3). �
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Corollary 5.8. Let A be a 2-by-2 matrix. Then A = BC, where B, C are both

orthogonal projections (B = B∗ = B2, C = C∗ = C2) if and only if either A = I2

or A is unitarily equivalent to a matrix of the form

 0
√
y(1− y)

0 y

 for some y,

0 ≤ y ≤ 1.

Proof. We may assume that A is a 2-by-2 matrix of the form

 x z

0 y

. Since a 2-by-2

nonzero, nonidentity orthogonal projection P is unitarily equivalent to a matrix of

the form

 0 0

0 1

, by Lemma 5.4 (2) we know that A is a product of two orthogonal

projections if and only if either A = I2 or x = 0, 0 ≤ y ≤ 1 and |z| =
√
y(1− y). �

The next corollary which is analogous to Lemma 5.4 (2) and (3) is needed for

the proof of Corollary 5.10.

Corollary 5.9. Let A be a 2-by-2 matrix of the form

 x z

0 y

. Then

(1) A is a product of two nonnegative matrices which are both unitarily equivalent

to diag(1, λ) for some λ, λ ≥ 1, if and only if x, y ≥ 1 and |z| = |
√
x −

√
y|
√

(x− 1)(y − 1). In this case, λ =
√
xy.

(2) A is a product of two nonnegative matrices which are both unitarily equivalent

to diag(λ1, λ2) for some λ1 and λ2, λ1, λ2 ≥ 1, if and only if x, y ≥ 1 and

|z| ≤ |
√
x−√y|

√
(x− 1)(y − 1).

Proof. Note that A = BC, where B, C are both unitarily equivalent to diag(1, λ) for
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some λ, λ ≥ 1, if and only if A−1 =

 1/x −z/xy

0 1/y

 = C−1B−1, where B, C are

both unitarily equivalent to diag(1, 1/λ) for some λ, 0 < 1/λ ≤ 1. In addition, x,

y ≥ 1 and |z| = |
√
x−√y|

√
(1− x)(1− y) (resp., |z| ≤ |

√
x−√y|

√
(1− x)(1− y)) if

and only if 0 < 1/x, 1/y ≤ 1 and |−z/xy| = |
√

1/x−
√

1/y|
√

(1− (1/x))(1− (1/y))

(resp., | − z/xy| ≤ |
√

1/x−
√

1/y|
√

(1− (1/x))(1− (1/y))). Hence our assertions in

(1) and (2) follow from Lemma 5.4 (2) and (3), respectively. �

Corollary 5.10. Let A be a 2-by-2 matrix. Then A is a product of two posi-

tive contractions if and only if A−1 is unitarily equivalent to a matrix of the form a c

0 b

 , where a, b ≥ 1 and |c| ≤ |
√
a−
√
b|
√

(a− 1)(b− 1).

Proof. This follows directly from Theorem 5.1 and the proof of Corollary 5.9. �

Corollary 5.11. Let A be a 2-by-2 matrix, which is a product of two nonnegative

contractions. Then

‖A‖ = 1 if and only if A ∼=

 x 0

0 1

 , where 0 ≤ x ≤ 1.

Proof. We need only prove the necessity. Let A be a 2-by-2 matrix of the form x z

0 y

. Since the assumption and the fact that ‖A‖ = 1 imply |z| =
√

(1− |x|2)(1− |y|2),

by Theorem 5.1 we obtain 0 ≤ x, y ≤ 1 and

(1− x2)(1− y2) ≤ (1− x)(1− y)(
√
x−√y)2.

A simple computation shows that either one of x and y is 1, or (1 +
√
xy)2 ≤ 0. Note

that the latter is a contradiction. The former implies z = 0 and our assertion follows.
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Corollary 5.12. Let the 2-by-2 matrix A be a product of finitely many nonnegative

contractions. Then

‖A‖ = 1 if and only if A ∼=

 x 0

0 1

 , where 0 ≤ x ≤ 1.

Proof. We need only prove the necessity. Assume that A = A1 · · ·An, where

0 ≤ Ai ≤ I2 for all i, 1 ≤ i ≤ n. Since ‖A‖ = 1, we have that ‖A1A2‖ = 1. Corollary

5.11 implies that A1A2
∼=

 x1 0

0 1

, where 0 ≤ x1 ≤ 1 and hence 0 ≤ A1A2 ≤ I2.

Repeating the above arguments with A1 replacing A1A2 and so forth, we obtain

A ∼=

 x 0

0 1

, where 0 ≤ x ≤ 1. This proves our assertion. �

Recall that if A and B satisfy 0 ≤ A, B ≤ In, then it is known that Re

AB ≥ (−1/8)In and (−1/4)In ≤ Im AB ≤ (1/4)In (cf. [12]). Now, we give another

proof for the case n = 2 in the following.

Corollary 5.13. Let the 2-by-2 matrix A be a product of two nonnegative con-

tractions. Then (−1/4)I2 ≤ Im A ≤ (1/4)I2, and

{w ∈ C : Im w =
i

4
} ∩ ∂W (A) 6= ∅ if and only if A ∼=

 0 1
2

0 1
2

 .(v)

In case (v), {w ∈ C : Im w = −i/4} ∩ ∂W (A) 6= ∅.

Proof. By Theorem 5.1, we may assume that A is a 2-by-2 matrix of the form x z

0 y

, where 0 ≤ x ≤ y ≤ 1 and 0 ≤ z ≤ (
√
y −
√
x)
√

(1− x)(1− y). This
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implies that

z ≤
√
y(1− y) =

√
−(y − 1

2
)2 +

1

4
≤ 1

2

and hence z = 1/2 if and only if y = 1/2 and x = 0. Since W (A) is the elliptic disc

with foci x, y and minor axis of length z, we obtain (−1/4)I2 ≤ Im A ≤ (1/4)I2

and thus the sufficiency of (v). For the necessity of (v), if A =

 0 1/2

0 1/2

, then

Im A =

 0 −i/4

i/4 0

. Hence σ(ImA) = {−1/4, 1/4}. This implies that Im

W (A) = W (ImA) = [−1/4, 1/4], completing the proof. �

Corollary 5.14. Let the 2-by-2 matrix A be a product of two nonnegative con-

tractions. Then Re A ≥ (−1/8)I2, and

−1

8
∈ ∂W (A) if and only if A ∼=

 0
√
3
4

0 1
4

 .(vi)

Proof. By Theorem 5.1, we may assume that A is a 2-by-2 matrix of the form x z

0 y

, where 0 ≤ x ≤ y ≤ 1 and 0 ≤ z ≤ (
√
y −
√
x)
√

(1− x)(1− y). This

implies that

z2 + (y − x)2 ≤ (1− x)(1− y)(
√
y −
√
x)2 + (

√
y +
√
x)2(
√
y −
√
x)2

= (1 +
√
xy)2(

√
y −
√
x)2.

Note thatW (A) is the elliptic disc with foci x, y and major axis of length
√
z2 + (y − x)2.

Therefore, by our assumption we have, for any λ ∈ Re W (A),

λ ≥
(x+ y)−

√
z2 + (y − x)2

2

≥ 1

2
(x+ y +

√
x−√y + x

√
y − y

√
x).(vii)
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Consider the function f(x, y) = 1/2(x + y +
√
x − √y + x

√
y − y

√
x) on R, where

R = {(x, y) ∈ R2 : 0 ≤ x ≤ 1, x ≤ y ≤ 1}. We observe that f is a continuous function

on R. Consider the following cases:

(1) x = 0, 0 ≤ y ≤ 1. Hence f(x, y) ≥ 1/2(y−√y) = 1/2((
√
y− 1/2)2− 1/4) ≥

−1/8 and f assumes a local minimum −1/8 if and only if x = 0, y = 1/4.

(2) 0 ≤ x ≤ 1, y = 1. Hence f(x, y) ≥ 1/2(x+ 1 +
√
x− 1 + x−

√
x) = x ≥ 0.

(3) 0 ≤ x ≤ 1, y = x. Hence f(x, y) ≥ 1/2(x+ x+
√
x−
√
x+ x

√
x− x

√
x) =

x ≥ 0.

(4) 0 < x < y < 1. Some simple computations involving ∂f
∂x

= ∂f
∂y

= 0 show that

x = y = 0. This is a contradiction.

Hence f assumes an absolute minimum −1/8 if and only if x = 0 and y =

1/4. Therefore, by (vii), for any λ ∈ Re W (A), we have λ ≥ −1/8 and thus ob-

tain the sufficiency of (vi). For the necessity of (vi), if A =

 0
√

3/4

0 1/4

, then

Re A =

 0
√

3/8
√

3/8 1/4

. Hence σ(ReA) = {−1/8, 3/8}. This implies that Re

W (A) = W (ReA) = [−1/8, 3/8], completing the proof. �

Finally, we will give some equivalent conditions for a 2-by-2 matrix to be the

product of two nonnegative contractions at least one of which is noninvertible (resp.,

invertible) in Corollary 5.15 (resp., Corollary 5.17).

Corollary 5.15. The following conditions are equivalent for a 2-by-2 matrix A:
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(1) A is noninvertible and is a product of two nonnegative contractions.

(2) A is a product of two nonnegative contractions which are both noninvertible.

(3) A is a product of two nonnegative contractions at least one of which is nonin-

vertible.

Proof. We need only prove (1) ⇒ (2). This follows easily from Corollary 5.7 and our

assumption that A is noninvertible. �

To prove the next corollary, we need the following lemma.

Lemma 5.16. Let A =

 0
√
y(1− y)

0 y

 be a 2-by-2 matrix, where 0 < y < 1,

and A = BC for some B and C, 0 ≤ B, C ≤ I2. Then both B and C are nontrivial

orthogonal projections.

Proof. We may assume that B ∼=

 b1 0

0 b2

 (resp., C ∼=

 c1 0

0 c2

), where b2 6= 0,

c2 6= 0 and 0 ≤ b1 ≤ b2 ≤ 1, 0 ≤ c1 ≤ c2 ≤ 1. Considering A/(b2c2) = (B/b2)(C/c2),

we obtain, by Lemma 5.4 (1), that b1c1 = 0 and

y(1− y)

b22c
2
2

= (1− y

b2c2
)(

y

b2c2
− b1
b2
− c1
c2

).(viii)

Hence we may assume, without loss of generality, that b1 = 0. Plugging this into

(viii) yields (b2(c1 + c2) − 1)y = b22c1c2. If b2(c1 + c2) 6= 1, then 0 < y < 1 im-

plies that (1 − b2c1)(1 − b2c2) < 0. This contradicts our assumption. It follows that

b2(c1 + c2) = 1. Thus c1 = 0 and hence b2 = c2 = 1. This proves our assertion. �

Now, we prove the following corollary.
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Corollary 5.17. A 2-by-2 matrix A is a product of two nonnegative contractions

at least one of which is invertible if and only if either (1) A is a product of two positive

contractions, or (2) A is unitarily equivalent to a matrix of the form

 x z

0 y

, where

x = 0, 0 ≤ y ≤ 1 and |z| <
√
y(1− y) (if y = 0 or 1, then z = 0).

Proof. Note that the necessity follows easily from Theorem 5.1 and Lemma 5.16.

For the converse, we may assume that A =

 0 z

0 y

, where 0 < y < 1 and

0 < |z| <
√
y(1− y). Let λ1 = 0 and λ2 = y − (|z|2/(1− y)). Then 0 < λ2 ≤ y < 1

and |z|2 = (1− y)(y − λ2). Therefore, our assertion follows from Lemma 5.4 (1). �
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5.3 Products of two n-by-n nonnegative contractions

On a finite-dimensional Hilbert space, Wu [47, Corollary 2.3] has shown that

if A =

 A1 A3

0 A2

 is a product of two nonnegative matrices, then so are A1 and

A2. Here we give another proof which holds for both finite- and infinite-dimensional

Hilbert spaces. In fact, it is even true that nonnegative matrices are replaced by

nonnegative contractions. The main result of this section is the following:

Theorem 5.18. Let A be a bounded linear operator of the form A1 A3

0 A2

 on H
⊕

K,

where H and K are both Hilbert spaces. If A is a product of two nonnegative contrac-

tions, then so are A1 and A2.

In order to prove this theorem, we need the following lemmas. The proof of the

lemma can be found in [11, p. 547].

Lemma 5.19. Let A be a bounded linear operator of the form A11 A12

A∗12 A22

 on H
⊕

K,

where H and K are Hilbert spaces. Then A is nonnegative if and only if A11 and A22

are both nonnegative and there exists a contraction D mapping K into H satisfying

A12 = A
1/2
11 DA

1/2
22 .

Lemma 5.20. If A is a nonnegative bounded linear operator on the Hilbert space

H, then there exists a (possibly unbounded) linear operator B on ranA such that
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BA = PranA.

Proof. If A1 is the restriction of A to (ker A)⊥, then A1 is injective. So we can consider

the (possibly unbounded) inverse A−11 : ran A → (ker A)⊥. Since A is nonnegative,

it is easy to check that (ker A)⊥ = ranA and A−11 A = PranA. Hence our assertion

follows. �

Proof of Theorem 5.18. By our assumption and Lemma 5.19, we may assume that

A = BC, where B (resp., C) is of the form B1 B
1/2
1 D1B

1/2
2

B
1/2
2 D∗1B

1/2
1 B2

 (resp.,

 C1 C
1/2
1 D2C

1/2
2

C
1/2
2 D∗2C

1/2
1 C2

) on H
⊕

K,

0 ≤ B1 ≤ IH (resp., 0 ≤ C1 ≤ IH), 0 ≤ B2 ≤ IK (resp., 0 ≤ C2 ≤ IK) and D1 (resp.,

D2) is a contraction from K into H. From A = BC, we obtain that

A1 = B1C1 +B
1/2
1 D1(B

1/2
2 C

1/2
2 D∗2C

1/2
1 ),(ix)

B
1/2
2 (D∗1B

1/2
1 C

1/2
1 )C

1/2
1 = −B1/2

2 (B
1/2
2 C

1/2
2 D∗2)C

1/2
1 ,(x)

A2 = (B
1/2
2 D∗1B

1/2
1 C

1/2
1 )D2C

1/2
2 +B2C2.

Since 0 ≤ B
1/2
2 ≤ IK , we deduce from Lemma 5.20 that there exists a (possibly

unbounded) linear operator E on ranB
1/2
2 such that EB

1/2
2 = P

ranB
1/2
2

. Hence by (x),

we derive that

B
1/2
2 C

1/2
2 D∗2C

1/2
1 = P

ranB
1/2
2

(B
1/2
2 C

1/2
2 D∗2C

1/2
1 ) = −P

ranB
1/2
2

(D∗1B
1/2
1 C1).

Moreover, substitute this into (ix) to get

A1 = B1C1 −B1/2
1 D1(P

ranB
1/2
2

(D∗1B
1/2
1 C1))

= [B
1/2
1 (IH −D1P

ranB
1/2
2

D∗1)B
1/2
1 ]C1

= [B
1/2
1 (IH − (P

ranB
1/2
2

D∗1)
∗(P

ranB
1/2
2

D∗1))B
1/2
1 ]C1.
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Note that ‖P
ranB

1/2
2

D∗1‖ ≤ 1 implies that 0 ≤ (IH − (P
ranB

1/2
2

D∗1)
∗(P

ranB
1/2
2

D∗1)) ≤ IH .

Therefore, A1 = [(B
1/2
1 P ∗1 )P1B

1/2
1 ]C1, where P ∗1P1 = IH − (P

ranB
1/2
2

D∗1)
∗(P

ranB
1/2
2

D∗1)

for some P1, 0 ≤ P1 ≤ IH . This shows that A1 is a product of two nonnegative con-

tractions. In a similar fashion, we also derive that A∗2 is a product of two nonnegative

contractions, and hence so is A2. This completes our proof. �

The following corollaries are easy consequences of the preceding theorem. Recall

that the first one has been proven in Wu [47, Corollary 2.3].

Corollary 5.21. If an n-by-n (n ≥ 2) matrix A =

 A1 A3

0 A2

 is a product of

two n-by-n nonnegative matrices, then so are A1 and A2.

Proof. We assume thatA = BC, whereB, C ≥ 0. SinceA/(‖B‖‖C‖) = (B/‖B‖)(C/‖C‖),

Theorem 5.18 implies that each of A1/(‖B‖‖C‖) and A2/(‖B‖‖C‖) is a product of

two nonnegative contractions. Hence each of A1 and A2 is a product of two nonneg-

ative matrices. Our assertion follows. �

Corollary 5.22. An n-by-n matrix A = (
∑k1

i=1⊕Ai) ⊕ diag(w1, . . . , wk2), where

Ai =

 xi zi

0 yi

 for all i, is a product of two nonnegative contractions if and only if

0 ≤ xi, yi, wj ≤ 1 and |zi| ≤ |
√
xi −

√
yi|
√

(1− xi)(1− yi) for all i, j.

Proof. Note that Theorem 5.18 implies that A is a product of two nonnegative con-

tractions if and only if Ai, i = 1, . . . , k1, and diag (w1, . . . , wk2) are products of two

nonnegative contractions. Thus our assertion follows from Theorem 5.1. �

Corollary 5.23. Let A be a finite quadratic matrix. Then A is a product of two
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nonnegative contractions if and only if it is unitarily equivalent to a matrix of the

form

aI1 ⊕ bI2 ⊕ (
k∑
i=1

⊕

 a ci

0 b

),

where 0 ≤ a, b ≤ 1 and 0 < ci ≤ |
√
a−
√
b|
√

(1− a)(1− b) for all i.

Proof. Since A is quadratic, [46, Theorem 1.1] says that it is unitarily equivalent to

a matrix of the form

aI1 ⊕ bI2 ⊕

 aI3 D

0 bI4

 , where D > 0.

Hence we may assume that it is unitarily equivalent to a matrix of the form

A = aI1 ⊕ bI2 ⊕ (
k∑
i=1

⊕

 a ci

0 b

), where ci > 0.

Therefore, our assertion follows from Corollary 5.22. �

Corollary 5.24. Let A be a bounded linear operator of the form 0
√
y(1− y)

0 y

⊕ A1 on C2
⊕

K,

where 0 < y < 1 and K is a Hilbert space. If A is a product of two nonnegative

contractions B and C, then we have {0, 1} ∈ σ(B) and {0, 1} ∈ σ(C).

Proof. This follows easily from Lemma 5.16 and the proof of Theorem 5.18. �

In order to prove that the numerical range of a product of nonnegative contrac-

tions on a finite-dimensional space cannot be a circular disc, we give a more general
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result in the following. These are from [48]

Theorem 5.25. Let A be an n-by-n matrix. If W (A) is a circular disc centered

at a, then a is an eigenvalue of A with its geometric multiplicity less than its algebraic

multiplicity.

Proof. Note that a is an eigenvalue of A with algebraic multiplicity at least two (cf.

[33, Corollary 4.4]). Hence we may assume that A is unitarily equivalent to a matrix

of the form

 A1 A2

0 A3

, where A1 =


a ∗ ∗

0
. . . ∗

0 0 a


k×k

and A3 =


λ1 ∗ ∗

0
. . . ∗

0 0 λn−k


with λj 6= a for all j. Suppose that the geometric multiplicity of a is equal to its alge-

braic multiplicity. Then we may assume that A is similar to B, where B = aIk ⊕B1

and a /∈ σ(B1). This implies that rank (A − aIn) = rank (B − aIn) = n − k and

hence A1 = aIk. In addition, let λ be the maximum eigenvalue of Re (ω(A − aIn)),

|ω| = 1. Then our assumption that W (A) is a circular disc centered at a implies

det(λIn−Re(ω(A − aIn))= 0. Since det(λIn−Re(ω(A − aIn))) can be considered as

a trigonometric polynomial in ω with infinitely many zeros, the coefficients of ωj for

j = 0,±1, . . . ,±(n − k) are all zero. Since the coefficient of ωn−k can be computed

to be (−1/2)n−kλk(λ1 − a) · · · (λn−k − a), it follows that λi = a for some i. This

contradicts our assumption. Our proof is then completed. �

Corollary 5.26. Let the n-by-n matrix A be a product of two nonnegative matri-

ces. Then W (A) is not a circular disc. In particular, W (A) is not a circular disc if

A is a product of two nonnegative contractions.

Proof. Suppose that W (A) is a circular disc centered at a. Then a is an eigenvalue of

A with multiplicity at least two. Since A is a product of two nonnegative matrices,
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by [47, Theorem 2.2], A is similar to a nonnegative matrix D. Hence the geometric

multiplicity of the eigenvalue a of A is equal to its algebraic multiplicity. Therefore,

Theorem 5.25 leads to a contradiction. This proves our assertion. �

Note that the result of Corollary 5.26 may be false if the assumption on non-

negativity is replaced by self-adjointness. We give an easy example here. Suppose

that A1 =

 0 1

1 0

, A2 =

 1 0

0 0

 and A = A1A2 =

 0 0

1 0

. Then A1 and A2

are both self-adjoint but W (A) is a circular disc.

We know that if a bounded linear operator A is a product of two nonnega-

tive contractions, then σ(A) = σ(A∗). However, W (A) may not be equal to W (A∗).

We give an example in the following. Note that this also means that W (A1A2) 6=

W (A2A1) for some A1, A2, 0 ≤ A1, A2 ≤ In.

Example 5.27. Let

A =


0 i i

0 1
2

i

0 0 1

 .
Then there exists ε > 0 such that εA is a product of two nonnegative contractions and

W (εA) 6= W (εA∗).

Proof. It is easy to see that both A and A∗ are similar to


0 0 0

0 1/2 0

0 0 1

. Hence by

[47, Theorem 2.2], we know that A = BC for some nonnegative matrices B and C.
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Thus εA is a product of two nonnegative contractions for some ε > 0. In addition,

Im A =
1

2i


0 i i

i 0 i

i i 0

 =


0 1

2
1
2

1
2

0 1
2

1
2

1
2

0


and Im A∗ = − Im A. It is easy to verify that σ(Im A) = {−1/2, 1} and σ(Im A∗) =

{−1, 1/2}. Hence

Im W (A) = W (Im A) = σ(Im A)∧ = [−1/2, 1]

and

Im W (A∗) = W (Im A∗) = −W (Im A) = [1/2,−1].

This shows that W (A) 6= W (A∗) and hence W (εA) 6= W (εA∗). �

Now, we will give several propositions about a product of finitely many nonneg-

ative contractions. The first one is analogous to [47, Proposition 3.5].

Proposition 5.28. Let A be a bounded linear operator of the form A1 0

0 0

 on H
⊕

K,

where H and K are Hilbert spaces. If A = BCD for some nonnegative contractions

B, C, D and either B or D is invertible, then A1 is also a product of three nonnegative

contractions.

Proof. We may assume, without loss of generality, that D is invertible. The proof is

analogous to the proof of [47, Proposition 3.5]. Let

D−1 =

 D1 D2

D3 D4

 .
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Then D−1 ≥ IH
⊕
K and

AD−1 =

 A1D1 A1D2

0 0

 = BC

is the product of two nonnegative contractions. It follows from Theorem 5.18 that the

same is true for A1D1. Since D−1 ≥ IH
⊕
K , we know by Lemma 5.19 that D1 ≥ IH .

Hence 0 < D−11 ≤ IH . Therefore, A1 is the product of three nonnegative contractions.

�

Proposition 5.29. For n ≥ 1, αIn is a product of four nonnegative contractions

if and only if 0 ≤ α ≤ 1.

Proof. The sufficiency is trivial. For the converse, we only need to consider α > 0.

We may assume that αIn = A1A2A3A4, where 0 < Ai ≤ In, 1 ≤ i ≤ 4. Hence

|α| ≤ 1 and αA−14 A−13 = A1A2. This implies that ασ(A−14 A−13 ) = σ(A1A2) and hence

0 < α ≤ 1 follows from Lemma 5.2. �

For the ease of exposition, we introduce some notations. Let

S1 = { products of finitely many n-by-n orthogonal projections},

S2 = { products of finitely many n-by-n nonnegative contractions}

and

S3 = { products of infinitely many n-by-n nonnegative contractions}.

It is clear that S1 ⊆ S2 ⊆ S3. From Kuo and Wu [29, Theorem 3.1], we know that

an n-by-n matrix A is in S1 if and only if A is unitarily equivalent to Ik ⊕A1, where

0 ≤ k ≤ n and A1 is singular with ‖A1‖ < 1. They also derived that if an n-by-n

matrix A is in S2, then there exists k > 0 such that ‖(I − A)x‖2 ≤ k(‖x‖2 − ‖Ax‖2)

for all x (cf. [30, Proposition 2.1]). Moreover, if an n-by-n matrix A is in S2, then A
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is unitarily equivalent to Ik ⊕ A2, where 0 ≤ k ≤ n, A2 is a completely nonunitary

contraction and A2 ∈ S2 (cf. [30, Proposition 2.3]). Note that ‖A2‖ < 1 follows

from the proof of [30, Theorem 2.2]. Here we give several related propositions and

corollaries.

Proposition 5.30. Let A be an n-by-n matrix. Then for every i, 1 ≤ i ≤ 3, A is

in Si if and only if A ∼= Ik ⊕Bi, where 0 ≤ k ≤ n and Bi ∈ Si with ‖Bi‖ < 1.

Proof. From the above results, we only need consider the case i = 3. The sufficiency

is trivial. For the converse, we assume that Am = T1 · · ·Tm and A =
∏∞

j=1 Tj =

limm→∞Am with ‖A‖ = 1. Since 1 ≥ ‖Am‖ ↘ ‖A‖, we have ‖Am‖ = 1 and hence

1 ∈ σ(Am) by [30, Proposition 2.3]. In addition, we know that lim supm σ(Am) ⊆ σ(A)

(cf. [20, Problem 103]). This implies that 1 ∈ σ(A). Consider Hm = ker(In−Am) and

H = ∩∞m=1Hm. We want to prove that Hm ↘ H. Fix m0 ∈ N, let m ≥ m0 and let v

be a nonzero vector in Hm. Then v = Amv = T1 · · ·Tmv and hence ‖v‖ = ‖Tmv‖. [30,

Proposition 2.1] shows that Tmv = v. By the same process, we obtain that Tjv = v

for every j, 1 ≤ j ≤ m. It follows that Am0v = v, that is, v ∈ Hm0 . Thus we obtain

Hm ↘ H. This implies that there exists an N ∈ N such that Hm = H for all m,

m ≥ N . Hence by the above arguments, for every m, m ≥ N , and v ∈ H = Hm,

we have Amv = v and Tjv = v for every j, 1 ≤ j ≤ m. This also implies that

A∗mv = (Tm · · ·T1)v = v. Therefore, for every j, 1 ≤ j ≤ m, there exists some unitary

matrix U such that Tj = U∗(Ik ⊕ T ′j)U on H
⊕

H⊥ for some k, 0 ≤ k ≤ n and

Am = U∗(Ik ⊕
∏m

j=1 T
′
j)U for every m. Note that ‖

∏m
j=1 T

′
j‖ < 1 for every j, j ≥ N

by the results preceding this proposition. Let A = U∗

 B C

D E

U on H
⊕

H⊥.
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Then limm→∞Am = A implies that

‖

 Ik −B −C

−D
∏m

j=1 T
′
j − E

 ‖ = ‖U(Am − A)U∗‖ = ‖Am − A‖ → 0 as m→∞.

Hence

‖Ik −B‖ ≤ ‖Am − A‖ → 0,

‖ − C‖ = ‖PH(Am − A)|H⊥‖ ≤ ‖Am − A‖ → 0,

‖ −D‖ = ‖PH⊥(Am − A)|H‖ ≤ ‖Am − A‖ → 0

and

‖
m∏
j=1

T ′j − E‖ ≤ ‖Am − A‖ → 0 as m→∞.

Therefore, B = Ik, C = D = 0 and E = limm

∏m
j=1 T

′
j . Finally, ‖

∏m
j=1 T

′
j‖ ≤

‖
∏N

j=1 T
′
j‖ for every m, m ≥ N , implies that

‖E‖ = lim
m
‖

m∏
j=1

T ′j‖ ≤ ‖
N∏
j=1

T ′j‖ < 1.

This completes our proof. �

Proposition 5.31. Let A be an n-by-n noninvertible matrix.

(1) The following conditions are equivalent :

(a) A ∼= Ik ⊕ A1, where 0 ≤ k < n and A1 is singular with ‖A1‖ < 1,

(b) A ∈ S1,

(c) A ∈ S2, and

(d) A ∈ S3.

(2) A ∈ S2 ⇔ ‖A‖ ≤ 1.
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Proof. (1) (a) ⇔ (b) follows easily from the noninvertibility of A and [29, Theorem

3.1]. It is clear that (b) ⇒ (c) and (c) ⇒ (d). (d) ⇒ (a) follows easily from the fact

that A is noninvertible and Proposition 5.30.

(2) The necessity is trivial. For the sufficiency, consider An = (1− (1/n))A, for

all n. Then ‖An‖ = (1 − (1/n))‖A‖ ≤ (1 − (1/n)) < 1. Since A is noninvertible,

we have An is noninvertible. Hence, by (1), An ∈ S2. Therefore, the fact that An

converges to A leads to our assertion. �

Corollary 5.32. S2 ⊆ S3 & S2.

Proof. It is trivial that S2 ⊆ S3 ⊆ S2. In order to prove S2\S3 6= ∅, we consider

A = [−1]⊕ [0]n−1. Since A is noninvertible, Proposition 5.31 (1) and (2) imply that

A ∈ S2\S3. This proves our assertion. �

In Section 5.2, we have mentioned that if A and B satisfy 0 ≤ A, B ≤ In, then

inf{λ|λ ∈ σ(ReAB), 0 ≤ A,B ≤ In} = −1/8,

sup{λ|λ ∈ σ(ReAB), 0 ≤ A,B ≤ In} = 1,

inf{λ|λ ∈ σ(ImAB), 0 ≤ A,B ≤ In} = −1/4

and

sup{λ|λ ∈ σ(ImAB), 0 ≤ A,B ≤ In} = 1/4.

Moreover, we also have the following proposition.

Proposition 5.33. For i = 1, 2, and 3, we have

(1) inf{λ|λ ∈ σ(ReA), A ∈ Si} = inf{λ|λ ∈ σ(ImA), A ∈ Si} = −1,
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(2) sup{λ|λ ∈ σ(ReA), A ∈ Si} = sup{λ|λ ∈ σ(ImA), A ∈ Si} = 1.

Proof. It is trivial that if Ai satisfy 0 ≤ Ai ≤ In for every i, 1 ≤ i ≤ m, m ∈ N, then

−In ≤ Re
m∏
i=1

Ai ≤ In and − In ≤ Im
m∏
i=1

Ai ≤ In.

Hence our assertion follows from Proposition 5.31 (1). This completes the proof. �
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