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Statistical Approaches for 2D Character Animation

Student: Yun-Feng Chou Advisor: Prof. Zen-Chung Shih

Institute of Computer Science and Engineering

National Chiao-Tung University

ABSTRACT

Traditionally, the production of 2D animation is a labor-intensive artisan process of
building up sequences of drawn images by hand which, when shown one after the other
one at a fixed rate, resemble a movement. Most work and hence time is spent on
drawing, inking, and coloring the individual animated characters for each of the frames.
Instead of the traditional animation generated by hand, we introduce a novel method by
enhancing still pictures and making characters move in convincing ways. The proposed
method is based on the statistical analysis and inference, while minimizing users’
intervention. We adopt nonparametric regression to efficiently analyze the
displacements of the pre-sampled data from characters in still pictures and use it to
generate 2D character animation directly. Furthermore, 2D character animation is
regarded as 3D transformation problem, which consists of a 2D spatial displacement
and a 1D shift in time. Hence, we focus on the temporal relationship of different poses
of the same character in these still pictures. Time series is applied to analyze the
character’s movement and forecast a sequence of the suitable limbs movement of the

character.

In this dissertation, 2D character animation involves novel view generation,

expressive talking face simulation, and limbs movement synthesis. Considering
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characters in still pictures, we focus on nonparametric regression to generate a novel
view and an expressive facial animation synchronized with the input speech of a
character. Kernel regression with elliptic radial basis functions (ERBFs) is proposed to
describe and deform the shape of the character in image space. Note that the novel
parametric representation, ERBFs, can be applied to represent the observations of the
shape on the unit ellipse. For preserving patterns within the deformed shape, locally
weighted regression (LOESS) is applied to fit the details with local control.
Furthermore, time series is used to analyze the limb movement of a character and
represent the motion trajectory. Note that a character’s motion could be described by a
series of non-continuous poses of a character from a sequence of contiguous frames.
According to these poses, we investigate a nonparametric Bayesian approach to
construct the time series model representing the character’s motion trajectory. Then we
can synthesize a sequence of the motion by using the motion trajectory. Last but not the
least, we also investigate how to adopt the proposed statistical approaches mentioned
above to animate passive elements. The movements of passive elements involving
natural movements that respond to natural forces in some fashion like trees swaying and
water rippling could be synthesized. Given a picture of a tree, we make it sway. Given a

picture of a pond, we make it ripple:

The solutions are developed to animate photographs or paintings effectively.
Experimental results show that‘our method effectively simulates plausible movements
for 2D character animation. They also show that the estimated motion trajectory best
matches the given still frames. In comparison to previous approaches, our proposed
method synthesizes smooth animations, while minimizing unnatural distortion and
having the advantages of being more controllable. Moreover, the proposed method is
especially suitable for intelligent multimedia applications in virtual human generation.
We believe that the provided solutions are easy to use, and empower a much quicker

animation production.
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Chapter 1
Introduction

2D characters in motion have intrigued animators and computer graphics researchers for
several decades. Most animations of 2D characters have been created using the
traditional and often highly labor intensive keyframing technique, in which computers
are employed to interpolate between animator-specified keyframes. It costs a lot of
people and money to produce a sequence of animation. More recently, increasingly
automated techniques for synthesizing realistic characters’ motion have drawn much
attention. In this dissertation, we will investigate the problem of producing animation
which captures the smoothness™ of motion and behavior. These animations are
intrinsically complex and present a challenge to the computer graphics practitioner.
Animations of this sort are of interest not only because they attempt to recreate
fascinating natural scenarios, but also because they have broad applicability. They can
be used in the entertainment industry and advanced intelligent multimedia applications
for next generation environments utilization, such as special effects in movies or in

video games, real-time live performance [41], and enhancing graphical interface [63].

1.1 Overview of Traditional 2D Animation Production

In order to describe which parts of works during animation production most time or
money is spent on, we give a brief overview of the traditional animation process in

general first, as illustrated in Figure 1.1.
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Figure 1.1: The traditional 2D animation production.




The traditional 2D animation production begins with preparing a story, including
the related scenes, objects, and scripts designs. Then the story is refined into a
storyboard. A storyboard is a visual layout of events allowing the animators to plan the
flow of the plot and the composition of the imagery. Next to the storyboard, model
sheets are also prepared. These sheets include the extreme poses of the characters to be
drawn from which intermediate attributes can be interpolated, such as position,

expression, color, size, etc.

According to model sheets and an imageboard which is a more detailed storyboard,
key animators draw keyframes representing some scenes or several poses of a
continuous action and behavior of the characters in the story. Moreover, keyframes
show the major features of each character’s action and behavior. After removing
redundant lines in keyframes, assistant animators produce the in-betweens by
considering those keyframes in order to yield a smooth animation. Unlike live action,
where the camera is running continuously, each frame of an animation film is shot one
by one. For each frame, a‘line drawing (not colored) is prepared to perform a line test
for removing redundant lines or strokes. These drawings get mechanically aligned with
the purpose of verifying that the movements are correct and that characters interact
accurately. Then each frame is composed of several layers, which will be composited
into a single frame in the compositing stage. Moreover, special effect artists can
improve the constructed scene with some special effects, such as fog, smoke, or fire.
These effects are created by compositing these layers. Furthermore, each frame is
transferred or colored from paper onto a transparent sheet of celluloid by xerography.
The transparent quality of celluloid allows for stacking up all sheets on each other. Thus,
one sheet of celluloid can be seen underneath another sheet. The opaque background
can be seen underneath all sheets of celluloid. Note that we propose a novel method by
applying statistical concepts to animate 2D character from still keyframes or pictures
instead of in-betweening step in traditional 2D animation production. In this dissertation,
the coloring step could also be carried out by preserving details of the animated

character while giving the colored keyframes or pictures.

Finally, an animation is produced by shooting frame by frame at a certain rate,
such as 24 frames per second. A soundtrack is recorded, so that the animation may be

more precisely synchronized to the soundtrack. In this last step, the soundtrack is



synchronized with the character’s action and behavior, and added to the video stream.

Hence, a movie or an original video animation is produced.

1.2 Motivation

Traditionally, 2D animation production has been a labor-intensive artisan process of
building up sequences of drawn images by hand. During the whole process, most work,
and hence time, is spent on two tedious tasks: in-betweening (or drawing) and coloring
(or inking) of each in-between frame, which take up approximately 60% of the total
labor required in traditional animation production [79]. Instead of in-betweening and
coloring, animating still keyframes or comics becomes a significant research direction
to reduce the workload of animators and production costs. Computer graphics
researchers have focused on making still pictures move in convincing ways and creating
lively 2D animation, whil¢ minimizing users’ intervention. For example, when we view
a photograph or painting, we perceive much more than the static picture before us. We
supplement that image with our life experiences: given a picture of a tree, we imagine it
swaying; given a picture-of a pond, we imagine it rippling; given a picture of a human,

we imagine him laughing, talking, or walking.

1.3 Methodology

This dissertation presents a method for animating still pictures, such as photographs and
paintings. Generating a natural-looking animation from an image can be considered to
analyze and simulate the motion of elements in that image. For example, Chuang et al.
[16] animated passive elements, which are subject to natural forces like wind, by using
stochastic motion textures to deform pictures. Besides, Hornung et al. [30] achieved the

motion of photographed persons by projecting them to 3D motion data.

In this dissertation, 2D Character animation involves novel view generation,
expressive talking face simulation, and limbs movement synthesis. We explore how a

set of explicitly encoded pre-sampled data representing a character’s motion in still



pictures. Statistical approaches are applied to analyze that motion by using
nonparametric regression which consists of kernel regression with elliptic radial basis
functions (ERBFs) and locally weighted regression (LOESS). Note that kernel
regression with ERBFs is used to fit the contours of a character and applied to infer the
corresponding displacements to synthesize a novel view or an expressive talking face.
Besides, LOESS is used to preserve important textures, patterns, or features within the
synthesized outer contours of a novel view or an expressive talking face (that is filling
in the color and texture information obtained from the original character in the given

picture).

Our proposed approach is based on the prediction abilities of both kernel
regression and LOESS [29, 42]. Kernel regression approximates the contours of the
deformed character between two key-poses, which are two poses of a character in the
given images, by the prior use of a set of kernel functions. Previously, researchers [70]
presented image morphing _techniques ‘using radial basis functions (RBFs) with
spatially-limited circular Gaussian distribution functions for the kernel. In contrast,
circular Gaussian is not'an appropriate choice to fit contours, which have noncircular
structures, as shown in Figure 1.2. Figure 1.2 (a) is the original image, Figure 1.2 (b)
using the circular Gaussians needs five kernels to fit the contour of the right arm of the
character, and Figure 1.2 (¢) using the elliptic Gaussians can fit the right arm and left
leg with the same number of kernels. Using too many circular Gaussians increases the
learning and fitting time. In this dissertation, we develop character deformation in image
space using ERBFs specifically known as elliptic Gaussians, which provide less fitting
time. Although ERBFs require more computation during optimization, better quality is

obtained with fewer number of basis functions.

Except the globally smooth shape deformation with contours fitting mentioned
above, the local-fitting methodology is also applied to preserve important features
within the contour. For example, the wood grain of the character in Figure 1.2 (a).
LOESS is used to preserve the features of details. LOESS is based on the minimized
weighted sum of squared residuals. It is a way of estimating the regression surface
through a multivariate smoothing procedure by fitting a function of independent

variables locally.



(a) (b) (c)
Figure 1.2: Comparison of the number of basis functions using Gaussians. (a) The
original image. (b) Using RBFs to fit the contour of right arm with five kernels, and (c)
using ERBFs to fit right arm and left leg with the same number of kernels.

In addition, a motion is essential by a 3D transformation problem which consists of
a 2D spatial displacement and a 1D-shift in time. 7ime series is integrated into the
original model for forecasting the limbs movements of a character. We propose a
Bayesian approach named by the Bayesian version of autoregressive moving average
(BARMA) for time series analysis, which is based on Bayesian inference [78] by using
the reversible jump Markov chains Monte Carlo (RIMCMC) method [14]. RIMCMC
has advantages for parameters estimation. Note that RIMCMC generates a sequence or
a chain of samples. Apart from'the initial sample, each sample is derived from the
previous sample, which allows the algorithm to find coefficients or parameters that
satisfy the situation of current regression model. Moreover, ARMA is a useful time
series model for human motion or stable time series data. Hence, BARMA is adopted to
fit the motion trajectories of a character. BARMA, which integrates Bayesian inference
with ARMA, is applied to predict the motion trajectories of the limbs. Then the

trajectories are applied to synthesize the behaviors or limbs movements of the character.

In Figure 1.3, the outline reflects the structure of our proposed method for 2D
character animation. Considering Figure 1.3, we briefly summarize our method in the

following paragraphs.

1. Image Abstraction: This dissertation focuses on animating arbitrary still images for
2D character animation. Considering a real image, such as a photograph, it may have

16-bits or even 24-bits per color channel. Too many unimportant or unnecessary



contours of the character in that image are calculated to animate the character. It would

waste the computation time and CPU power. Hence, we would simplify the color

representation of the real image and acquire proper contours of the character in that

image. The two-scale image abstraction is used to obtain the appropriate contours by

eliminating redundancy information. The proposed two-scale image abstraction is based

on the bilateral filter.
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2. Statistical Approaches: We adopt statistical approaches to animate 2D character.
The proposed approaches include nonparametric regression, Bayesian inference, and
time series. Nonparametric regression and time series are used to forecast a character’s
motion. Bayesian inference is employed to estimate the parameters or coefficients
during the regression analysis and time series analysis. Hence, based on the prediction
abilities of statistical analysis, we would synthesize a smooth and suitable character
animation. The Bayesian approach improves meaningful convergences even with fewer

data points than the equation parameters or coefficients.

3. Novel Views: In order to generate novel views, we adopt nonparametric regression,
1.e. kernel regression with ERBFs and LOESS. For view morphing, shape deforming is
carried out by using kernel regression with ERBFs, which is suited to the natural shape
of characters like the character’s head and body, as mentioned previously. Besides,
features invariant is maintained during shape deformations by using LOESS while

minimizing unnatural distortion.

4. Novel Expressions and Visemes: Given suitable moving templates, such as the
training data set consisting of the mouth shape and the positions of other facial features
for facial expression simulation and viseme synthesis, the proposed nonparametric
regression model composed. of kernel regression with ERBFs and LOESS would be
trained and further applied to create-lively animated talking faces and synthesize the

stylistic variations of facial moods and expressions.

5. Novel Limbs Movements: Given two contiguous frames from a comic or a video,
the contours of a character’s key-motions are synthesized by using Bayesian estimation
of kernel regression, which combines ERBF kernel with Bayesian inference through
RIMCMC. As mentioned above, ERBF kernel is suitable to fit the natural shape of a
character. Moreover, RIMCMC finds parameters that satisfy the situation of current
moving model without leading to local minimization. Then BARMA is proposed to
synthesize the contours of the whole character’s motion by analyzing the motion
trajectory from those key-motions. Note that a nonparametric Bayesian approach is
constructed for improving ARMA and adding the smooth variety of the time series data
by using ERBF kernel and RIMCMC. As similar as mentioned above, another
estimation of LOESS called the Bayesian version of LOESS (BLOESS) is applied to

preserve the details or features of the animated characters.



Note that the statistical approaches we proposed are adopted to fit the movement of
the moving element including both characters and passive elements without limiting our
domain. Motivated by the promising work on 2D character animation, this dissertation
also provides principled techniques so that the proposed statistical approaches can be
used in less restricted environments, model the movements of passive elements, and be
applied to an exciting new application. As mentioned above, nonparametric regression
is used to represent the displacements of passive elements from still pictures and infer a

sequence of movements.

1.4 Primary Contributions

According to the provided information, this dissertation makes the following

contributions for 2D character animation respectively.
Given a single pose of the character, making the character move:

® A novel approach for shape deforming based on kernel regression with ERBFs is
proposed, which is“suited to the natural shape of characters, such as a human’s

torso or an essentially human-like animal’s limbs.

® By using a closed-form solution of LOESS, a new method for detail preserving is
presented, which maintains features invariant during deformations while

minimizing unnatural distortion.

® The proposed nonparametric regression model composed of kernel regression with
ERBFs and LOESS would be applied to novel view generation. Besides, it is
further used to create lively animated talking faces and synthesize the stylistic

variations of facial moods and expressions for 2D character animation.

Given two contiguous poses of the character, making the character move and while

matching these poses best synchronously:

® (Given two contiguous poses of a character from a comic or a low-frame-rate video,

the contours of a character’s key-motions are synthesized by using a Bayesian



estimation of kernel regression, which combines ERBF kernel with RIMCMC. A
key-motion is defined as the contour of an in-between pose between two given
poses of a character. This approach can fit the shape of a character with parameters

and coefficients adaptive to the current situation of the regression model.

BARMA is proposed to analyze the motion trajectory of a character’s limb through
a nonparametric Bayesian approach. The Bayesian approach is constructed for
adding the smooth variety of the time series data by using ERBF kernel and
RIMCMC described above.

BARMA is applied to synthesize the shape of the whole character’s motion
through contours fitting. Furthermore, BLOESS is applied to preserve the details or
features of characters. The Bayesian approach improves meaningful regressions

even with fewer data points than regression coefficients.

1.5 Auxiliary Multimedia Application

Another novel application of the introduced statistical approaches is proposed to fit the

movement of the passive elements without-limiting our domain in character animation,

as described below.

Simple harmonic motion is applied to estimate the displacements of the points

sampled on the water wave or the tree in the next time-sliced scene first.

Kernel regression with ERBFs is used to fit the contours of the water wave or the

tree in the next time-sliced scene from the estimated positions of samples.

Furthermore, LOESS is applied to preserve the details, features, or textures from

the fitted contours interiors.
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1.6 Dissertation Organization

The remainder of this dissertation is organized as follows. Chapter 2 reviews the
related literature on animating characters in still pictures. Chapter 3 then summarizes
statistical approaches that we employ to animate 2D characters. Considering arbitrary
pictures, the two-scale image abstraction is used to eliminate redundancy information in
Chapter 4. Next, Chapter 5 describes how to apply nonparametric regression to
generate a novel view of a character. Chapter 6 deals with expressive talking face
simulation. In addition, Chapter 7 further infers limbs movements by integrating
Bayesian inference and time series with the regression model. Moreover, Chapter 8
demonstrates how to apply the proposed statistical approaches to animate passive
elements for simulating natural phenomena. Finally, Chapter 9 concludes this

dissertation by summarizing our contributions and suggesting future research directions.
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Chapter 2
Literature Review

2D Character animation involves novel view generation, expressive talking face
simulation, and limbs movement synthesis in this dissertation. Many research areas are
relevant to this dissertation. The following sections thus briefly review the techniques

for 2D character animation.

2.1 Image Morphing

To animate characters from still pictures in‘image morphing community, several studies
[28, 48] referred to as shape blending have been conducted. For example, Sederberg and
Greenwood [55] employed an interpolation scheme that can interpolate the length of
edges and angles between two keyframes. Furthermore, several methods [70] have
extracted properties of the given key-poses, and used them to generate characters’
motions. Xu et al. [74] synthesized an animal’s motion by inferring its motion cycle
representing the ordered motion snapshots. By morphing among the ordered poses and
refining the appearances of in-betweens, an animal could be animated. Chuang et al. [18]
adopted a wavelet curve descriptor combined with Lagrangian dynamics to implement
the animation by image morphing. The wavelet coefficients could represent the shapes
of images in different resolutions. Lagrangian dynamic equation could be applied to
simulate periodic motions. They utilized a non-self-intersecting contour morphing to
produce the motion of a similar nature by generating in-betweens. Shutler and Nixon
[61] derived Zernike velocity moments from the video about a character’s locomotion.

Then they used Zernike velocity moments to reconstruct the silhouette of an occluded
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character’s locomotion which preserved a smooth transition. Our method only employs
the correspondence of a character in several still images to synthesize the character’s

motion.

Besides, several studies [4, 52] referred to character motion synthesis have been
conducted by using RBFs for image morphing. RBF is a weighted sum of the translation
of a radially symmetric basic function augmented by a polynomial term. It is suitable
for fitting smooth functions. It could be further used to warp facial expressions and
animate images or drawings [2, 36]. In contrast, circular Gaussian is not an appropriate
choice to fit noncircular structures. In this dissertation, we adopt ERBFs to fit contours
of characters instead of RBFs. ERBF has the advantage of RBF-like smoothness.
Moreover, ERBF is applicable to more general shapes than RBF. Nonlinear
approximation of functions in certain general spaces with ERBF networks (referred to
as elliptic basis function networks in [47]) was proposed. Furthermore, a volumetric
approximation and visualization -system ‘was developed with ellipsoidal Gaussian

functions for a 3D volume'(referred to as-ellipsoidal basis functions in [33]).

DelJuan and Bodenheimer [19] synthesized in-between contours and textures of a
character based on RBF-interpolation and elastic registration by two given keyframes of
an animation. They generated a 3D mesh, which was fitted from the implicit surface
generated by RBF interpolation, to-obtained in-between contours. Contour points and
the corresponding normals of a character in a keyframe were used in RBF method to
interpolate an implicit surface. Then a 3D mesh describing the surface was generated.
The mesh was sliced in the middle to create in-between contours. In-between textures
were synthesized by using an elastic registration. Our approach fits contours with ERBF
kernel in image space directly. As mentioned above, ERBF has the RBF-like
smoothness and is suitable to more general shapes than RBF. Besides, in-between
textures they created would be distorted in complex patterns made up of a few solid

colors. LOESS we used could preserve the details without undesired distortion.
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2.2 Shape Deformation

General research on solely image-based animation has recently been carried out based
on the shape deformation of a single image. Recently, skeleton-based techniques [24, 76]
have been used to deform the shapes by manipulating the space in which they are
embedded. These techniques were very efficient in computation and easy to be
implemented. However, they did not provide convenient or meaningful interaction tools
for the user. Note that the weight tuning for rigging is a painful process for users.
Besides, shape matching techniques have been used to shape deformation. Wang et al.
[33] utilized uniform grids for 2D shapes and maintained the rigidity of each square in
the grid by using shape matching during deformations. They implemented pure
rotational transformation for each square. Note that the global area cannot be preserved.
Botsch and Sorkine [7] deformed a 2D shape by discretizing the shape into finite
elements. However, the computation time was dominated by the complexity of the

discretization, and not by the intrinsic complexity of the shape itself.

Furthermore, Alexa et al. [1] considered that the shape deformation of an image
should be as rigid as possible.. Such deformations would minimize the amount of local
scaling and shearing. Igarashi et al. [31] triangulated the input image and minimized the
distortion of these triangles in the-deformation process by solving a linear system of
equations. Schaefer et al. [53] proposed a rigid transformation method by moving least
squares. Their study concentrated on specifying deformation by using user-specified
handles. In order to generate an animation, users needed to set the next pose by
manipulating control vertices. Then the method deformed the entire image plane. Since
it ignored the geometry of the shape, unnatural distortions or serious artifacts would be
generated when the range of controlling handles were exceeded because of the
limitation of the locally influencing extent by using moving least squares. Weber et al.
[68] generalized the concept of barycentric coordinates and provided a few examples of
known coordinates which could be used for planar shape deformations. Note that the
inputs of these works are images and the outputs are also the edited and deformed
images. In comparison, our input is just an image and the output is the whole sequence

of interpolated frames.

14



2.3 Image Interpolation

Image-based animation has recently been carried out in computer vision community [27,
34, 35, 49, 62, 65, 73]. Optical flow techniques could be widely adopted for image
interpolation. Baker et al. [3] created a collection of optical flow datasets with ground
truth. They measured the flow accuracy and the interpolation quality of these optical
flow algorithms adopted for image interpolation. While the primary focus of the optical
flow algorithms was on evaluating the flow itself. Ghosting and blurring artifacts were
visible in their interpolated images even though there were minor errors in the flows.
Mahajan et al. [39] proposed an inverse optical flow method. They traced out the path
of each pixel between two given images. Then the pixel in the interpolated frame was
obtained by moving gradients along the corresponding path and using Poisson
reconstruction. Note that they need to determine the flow of each pixel for constructing
the path framework. Since these optical flow.techniques are based on the disparity of
two given images, most of them canonly handle two similar images (the disparity or the

motion between two images is limited).

2.4 View Interpolation

Several approaches [15, 25, 66] for view interpolation could be applied to generate 2D
character animation. Seitz and Dyer [56] proposed a method known as view morphing.
The input image was prewarped with the image points through the fundamental matrix
computed by computer vision techniques or predefined. Then images were transformed
onto the same plane such that their scan lines were aligned. Two views were then
morphed, and the interpolated images were postwarped with the user-specified
parameters to achieve better morphing quality. However, the quality depended on the

number of line correspondences made by users.
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2.5 Expression and Viseme Synthesis

Importantly, synthesizing a natural expression or viseme of a character from still
pictures is a critical issue for 2D character animation. Chuang and Bregler [17]
proposed an audio-driven synthesis technique for creating an expressive facial
animation by extracting information from the expression axis of a speech performance.
A statistical model based on principal component analysis for factoring the expression
and visual speech was learned from video. With this analysis of the facial expression,
the facial motion could be more effectively retargeted to another 3D face model.
Moreover, there is a strong correlation between lips movement and speech [40], and a
great number of studies have been conducted on facial animation involving lip-synching
(short for lip synchronization). There have been multiple attempts at generating an
animated face to match some given speech realistically [6, 8, 20, 21]. Incorporating
speech therefore seems crucial to the generation of true-to-life animated faces. Our
synthetic faces of the character are also driven by input speech. We reproduce small
variations in facial expressions that convey the affective states, moods, and personality
of the character. Furthermore, the strong interrelation between facial gestures and
prosodic features has been reported in- the specch processing literatures [10, 11].
However, the interrelation between facial gestures and individual phonemes is not
obvious. Our main focus is to synthesize facial animation possibly driven by analyzing

phonemes from input speech.

2.6 Motion Capture

Conversely, motion capture technology has enabled users to accumulate large database
of human motion which makes the construction of empirical models of a motion
feasible. In this technique, joint angles of a performing actor are recorded via sensors.
These values are then used to create a character’s motion [41]. A deal of research aimed
at adapting the motion to different constraints while preserving the style of the original
motion. Witkin and Popovic [69] developed a method in which the motion capture data

was warped between keyframe-like constraints set by the animator. Warping was done
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by overlapping and blending motion clips. Rose et al. [50] developed a method which
used RBFs and low-order polynomials to interpolate new motions between example

motions obtained from motion capture while maintaining inverse kinematic constraints.

As mentioned previously, Hornung et al. [30] accomplished the motion of
photographed persons by projecting them to 3D motion data. However, they stipulated
extra 3D information, including a 3D motion database and the corresponding model
pose determination, thus increasing the overloads which did not belong to image
reanimation. Although they could be applied to animate arbitrary characters from 2D
images, their system did not work for motions where the character changed its moving
direction, or where it turned its head. In this dissertation, the proposed time series

scheme based on a nonparametric Bayesian approach does not have this limitation.

2.7 Time Series

In this dissertation, time series analysis is proposed to synthesize a character’s motion.
Time series has been popularly applied in statistics.to forecast the trends in finance and
marketing [22, 60]. They have also been used.in control system, pattern recognition, or
artificial intelligence [5, 46]. In computer graphics, they are adopted for aging trajectory
prediction or character motion synthesis. For example, Scherbaum et al. [54] applied
aging prediction to images of faces with 3D model reconstruction and support vector
regression based on RBF kernel. Cai and Hodgins [12] generated animations from
various user-defined constraints. Their system learned a state space model from motion
capture data. This state space model was based on the deformed linear time series model,
and was constructed from the concept of autoregressive model. They transferred
constraint-based motion synthesis to a maximum-a-posterior (MAP) problem, and

developed an optimization framework that generated a natural motion.

Furthermore, variants of hidden Markov models (HMMs) [4, 11] have been widely
used to create the time series data of motion trajectories representing a character’s
motion. HMMs learned from human motion data have been employed to interpolate key
frames, and synthesize a new style of motion. However, these statistical schemes

required full information about a character’s motion to train the initial statistical model.
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For example, a large motion capture database of human body, or a large amount of user
intervention for constraints was necessary. Our proposed approach learns a statistical
dynamic model based on time series. Moreover, the dynamic behavior of the proposed
model is predicted by Bayesian inference. More significantly, in contrast to previous
methods, the proposed model allows the user to animate character smoothly without

additional specified motion information.
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Chapter 3
Statistical Approaches

In this chapter, we would introduce the statistical approaches that we use for 2D
character animation summarily. We focus on the nonparametric regression model
trained from key-poses of still images. Kernel regression with ERBFs is employed to
train the model to represent the displacements of contours and fit the contours of
deformed shape of a character. LOESS is-adopted to fill in the color and texture
information obtained from the original character in'the given image. Thus, we introduce
ERBFs in Section 3.1 first. Kernel regression with ERBFs is developed for regression
prediction and analysis. Then LOESS is described in Section 3.2. Besides, for animating
multiple limbs of a character simultaneously, Bayesian inference with RIMCMC is
proposed to find parameters that satisfy the situation of the regression model. The
sampling procedure of RIMCMC is outlined in Section 3.3. Furthermore, as mentioned
previously, time series analysis is applied to predict the motion trajectory of the limbs.

Hence, we give a description of the time series model in Section 3.4 briefly.

3.1 Kernel Regression with Elliptic Radial Basis

Functions

As mentioned before, researchers presented image morphing techniques using RBF for
the kernel. RBF kernel is popular for interpolating scattered data. It is suitable for fitting
smooth functions of the data and is used to warp facial expressions and animate images

or drawings.
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However, RBF is based on spatially-limited circular Gaussian distribution function.
It has a limitation in fitting the data on long or high-gradient shapes, such as cylindrical
shapes, the body, and the head of a character. The radius might reach the shortest
boundary of the area and might require numerous small RBFs to fit one long shape,
which would be matched to the shape of the character such as the body and the head.
Therefore, we use ERBFs instead of RBFs. Note that ERBF has the advantage of
RBF-like smoothness and is applicable to more general shapes than RBF. The kernel
regression model with ERBFs is trained for the prediction of the deformed character’s

shape in image space.

Note that there are two kinds of ERBFs: axis-aligned and arbitrary directional
ERBFs. A comparison of these two basis functions is shown in Figure 3.1. This figure
shows a long diagonal data distribution (pixels along contours) and the influences of the
two basis functions are drawn overlaid on the data. The data is approximated by two
basis functions: axis aligned ERBF shown in Figure 3.1 (a) and arbitrary directional
ERBF shown in Figure 3.1 (b). The major axis of the ellipse with arbitrary directional
ERBFs is aligned along the contour of a character which is a long diagonal data
distribution (gray region). For achieving more accurate quality with smaller number of
basis functions, arbitrary directional ERBFs are applied to fit the contours of a character

in a still picture.

In general, let u = (x, y) be a vector of the pre-sampled data and v = ( U, ,uy) be a
center vector of an elliptic Gaussian. An arbitrary directional ERBF can be represented

in a matrix form as follows:

—~ o\ (ﬁr_ﬁr)T Aﬁx,a (ﬁx—ﬁr)

n(u,v)exp{— 207

. o (3.1
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— — - T T
u:ux+uy:[x 0] +[O y] , (3.2)
F=v, 47, =[u, 0] +[0 u]. (3-3)
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Figure 3.1: Comparison ned ERBF. (b) Arbitrary directional

ERBF. The influence range tion is shown as blue arrows and black

curve.
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Figure 3.2: Schematic diagram of an arbitrary directional elliptic radial basis function

(ERBF).
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where o’ forie {x, y} is the covariance of Gaussian along i-axis. The orientation 6,
(the angle between the major axis of ellipse and i-axis) and the aspect ratio al.2 are used
to transfer to an arbitrary directional ERBF, as shown in Figure 3.2. Moreover, the
transformation matrix Aa, > which contains a rotation and scaling component, is
applied for alignment along the data distribution. In our work, the major axis of the
ellipse is aligned along the contour of the character, as shown in Figure 3.1 (b). For the
mathematical details of Equation (3.1), it can be derived from a hyper radial basis

function (HRBF).

HRBF is computed by using the Mahalanobis distance [29], which is defined in

the matrix form as follows:

77(17,\7)=exp(—(ﬁ—\7)TZ(ﬁ—\7)),

for X :diag(al_z,...,oj,z) and o,,...,0, € R,

(3.5)

where o} should be the covariance of the multidimensional Gaussians rather than the
single variance. HRBF differs from a standard RBE insofar each axis of the input space
rcly (the space of square summable sequences of length N) has a separate smoothing
parameter, i.e., a separate scale onto which the differences on this axis are viewed. It is
worth mentioning that RBF kernels map the-input space onto the surface of an infinite
dimensional hyperspace. Note that N = 2'in arbitrary directional ERBF kernel represents
the analysis of data distribution along the major axis and the minor axis in an ellipse.
Along the orientation of arbitrary directional ERBF (the major axis and the minor axis),

Equation (3.1) is constructed.

In this dissertation, we formulate the problem of 2D character animation as
regression analysis. Given two key-poses of a character in still images, we analyze the
contours of a character and represent the displacements of these contours as ERBFs.
Then these ERBFs constructing an implicit regression surface can be used to predict the
new position after deforming the shape of the character. In other words, we form a
regression model trained from the given key-poses. The model is adopted to predict the

motion of the character. Now, we derive the equation of kernel regression with ERBFs.

In general, the relationship of the response 7 and the predictor # can be described

as
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F=f(@)+e. (3.6)

Considering the above equation, f{.) denotes an unknown and smooth surface indicating
the relationship between 7 and %, commonly termed the regression surface
representing the shape deformation. Additionally, the error ¢ is assumed to come from a
Normal distribution N (O,rz) in Equation (3.6), where 7 denotes the noise variance.
Note that the regression surface is estimated by using kernel regression with ERBFs.

ERBEF is an appropriate choice to fit smooth functions for the form of f{.).

As mentioned above, v denotes the center vector of elliptic Gaussian (ERBF). The
proposed regression model consists of a radial component and an affine component.
Moreover, a radial one is developed as a linear combination of a set of basis functions

and their corresponding coefficients.
k
/()= 2 B9, + 1) (3.7)
j=1

where £, denotes the suitably chosen coefficient of the j-th elliptic Gaussian 7(.), v, is
the related center vector, and k is the number of basis functions in the model. Note that
there is the relative covariance of the j-th elliptic Gaussian along arbitrary i-axis o j’iz.
7n(.) is the radial component chosen as an arbitrary directional ERBF. Moreover, 71{.)
represents the affine component. In our work, we would further train the model to
predict the motion of the character by synthesizing the contours of the character’s

deformed shape.

3.2 Locally Weighted Regression

After synthesizing the contours of the character’s deformed shape, we need to fill the
contours and preserve details simultaneously. It is also motivated by following the
process of the traditional 2D animation production. A similar issue occurs when the line
art is scanned and goes to the next step of ink and paint. Hence, a local-fitting
methodology called LOESS is applied to preserve the details or features of characters

(that is filling in the color and texture information obtained from the original character
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in the given image). Like kernel regression, LOESS is a procedure for fitting a
regression surface to data through multivariate smoothing. LOESS uses the data from
the neighborhood around a specific location. In other words, LOESS performs a linear
regression on points in the data set, which are weighted by a kernel centered at that
pre-defined location. It is much more strongly influenced by the data points that lie
close to the location pre-defined according to some scaled Euclidean distance metric.
This is achieved by weighting each data point according to its distance to the
pre-defined location: a point very close to it is given a weight of one and a point far
away is given a weight of zero. Note that the shape of the kernel is a design parameter
for which many possible choices exist. The original LOESS uses the tri-cube weighting
function. Nonetheless, we have used the Gaussian kernel to estimate the weights in the

range of unit circle, as shown in Figure 3.3 (b).

During a LOESS prediction, the specific location (red dot) x,, which would be
filled color or texture information, is supplied. LOESS performs a linear regression on
the sampled contour points weighted by a kernel centered at x,. Given m pairs of points
sampled along the contour (purple dots) of the character in the input image and the
corresponding new locations of these points, the weight of the i-th sampled contour

point x, with Gaussian kernel is
wl.(xo):w(xl.—xo):exp(—su(xi —xo)Hz), (3.8)

where 1<i<m,s=1/2W2 ,, and m=) w,(x,) for m data points. s is a smoothing
parameter that determines how quickly weights decline in value as one moves away
from x;, Wieme 15 the kernel width or bandwidth which controls the amount of

localness in the regression.

Let x; be the predictor of the regression and y; be the response. The regression

function is specified by using an estimated local multivariate polynomial as follows:
D=t (%) + 8oty (X)) + o+ oty (X)) (3.9)

where 7, (.) is a function that produces the j-th term in the polynomial, and £ is the
j-th term of coefficients to be estimated. Equation (3.9) can be rewritten for matrix

manipulation, which can be easily extended to datasets with many inputs:
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Figure 3.3: LOESS analysis. (a) Original image with a uniform grid. (b) The zoom-in

view of the image. LOESS with Gaussian kernel is applied to estimate the weights.
3, =¢"t(x,), (3.10)

where ¢ is the matrix form of the coefficients vector ({ 158G M) and 7(.) is the

matrix form of the polynomial terms (t1 (%.)st, (%), (x,)) . Given m pairs of (x.5,),

I

the general way to estimate ¢ -is by minimizing the sum squared residuals.

éc = argmini(yi _é,Tti)zs

¢ i=1

(3.11)

where ¢, = t(xi). Furthermore, note that the features of the original character interiors
are considered as the specific locations to be preserved during a LOESS prediction.
According to the distance to these specific locations, the warping degree is adapted to
these features and is constrained by them. Unlike global deformation, LOESS can
maintain local features invariant during deformations while minimizing unnatural

distortion. Thus, éc is chosen by minimizing locally weighted sum of squared residuals.

A

E=argmind w(x,) (v, -¢71,) (3.12)

¢ i=1
where ¢ =¢(x,) and wy(.) is defined in Equation (3.8). The minimization can be
obtained by the least-squares normal equations. In our work, we further fill in the color
and texture information of the deformed character by using Equation (3.10) with the

A

estimated regression coefficient vector ¢.
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3.3 Reversible Jump Markov Chain Monte Carlo

(RIMCMC) Sampler

Instead of using least-squares method to estimate unknown parameters during
regression analysis, RIMCMC sampler is applied to estimate the optimized regression
parameters. For instance, the procedure to estimate the parameters of kernel regression

with ERBFs consists of three steps as follows:

1. Set Up Proper Priors: Recalling Equation (3.7), let v, be the mean of the j-th
elliptic Gaussian, while S, denotes the corresponding coefficient. We define aj’f as

the covariance of the j-th elliptic Gaussian along i-axis. We begin with a fairly flat
2

T )
, where piecision 18 the

.. . . . . . p recision 1
precision of the coefficient prior.. ¢ is the noise variance, and — ~ Gamma(0.1,0.1) .
T

Gaussian prior on the basis coefficient B, ~N| 0,

A vague but proper Gamma prior distribution represents ignorance of the noise process
and avoids inverting large matrices within each iteration of RIMCMC. We set

=0.01 and 7> =1 initially and they would be updated during RIMCMC process.

p recision

2. Determine Initial Parameter Value: Set the initial dimension & of the model equal
to 3, that is intercept term plus the number of predictors. Then we use k-means
clustering to set the starting centervector *v, for each k-means group of anchor points.
In addition, the covariance 0‘,,2 is computed for each group. Besides, calculate S, by

11

using least-squares fitting.

3. Iterate RIMCMC Sampler Until Sufficient Samples: In the RIMCMC algorithm,
we propose the next state of the chain representing a new basis function according to the
following criteria. First, draw a uniform random variable u ~ U (0,1). If u<0.33, then
perform the Birth step. In the Birth step, we would add a basis function (ERBF) in the
model. Then the corresponding parameters are updated by k-means clustering
simultaneously. Recalling Figure 3.2, for each k&-means group, the transformation matrix
4, . is computed for adding this basis function. If 0.33<u <0.66, then perform the
Death step. In the Death step, we would lose a basis function. We just select one basis
function at random and remove it. If u > 0.66, then perform the Move step. In the Move

step, we choose a basis function from the model at random and reset its mean vector to

26



another random position. Next, the corresponding parameters are updated.

Then we would compute the marginal log-likelihood of the model and draw k new
coefficients f;. Given n pairs of predictors #, and corresponding responses 7;, we

would compute the marginal log-likelihood for the creditable change of state as follows:

- 1 n - A - 2

L(r|®)=—nlogz'——22{rd—f(ud)} , (3.13)
27’- d=1

where 7 1is a general representation for the response of regression, as defined in

Equation (3.6).

Let X be the responses of basis functions in the matrix form. Y denotes the
corresponding responses of the regression model in the matrix form. P represents the
matrix form of prior precision pecision. f represents the matrix form of k coefficients
B, defined in Equation (3.7). Furthermore, S is obtained from the marginal posterior
distribution with posterior meéan S = (X "X+ P)_1 X"Y and modified standard deviation.
Note that the initial standard deviation is drawn from the noise variance z* and
modified to be the uppér triangle of posterior variance matrix (X "X+ P)_l obtained by

using Cholesky decompaosition.

Next, consider to accept the proposed change of next state. We draw a uniform
random variable u ~ U (O,l) first. [f u'1s less than the ratio of the marginal likelihood of
proposed next state to the marginal likelihood of original one, then accept the proposed
change to the model and update the state of the Markov chain. Otherwise set the next
state to be the current state. Then update prior precision pjecision by drawing a random
variable from a Gamma distribution and is modified by the sum of squares of /3, every
10 iterations. Recalculate the coefficients S, from the marginal posterior distribution
with the updated prior precision pjecision. Furthermore, draw a random variable 7? from
a Gamma distribution for a new noise variance. Given response 7 defined in Equation

(3.6), r* is modified by posterior sum of squares error for the next iteration.

Repeat RIMCMC process and record the number of states. An initial portion of the
chain is discarded to ensure stability. If the number of states is greater than the discarded
portion, then compute j‘ (.) defined in Equation (3.6) by the recorded parameters of the

current model for synthesizing limbs movement. All the simulations are run with a
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burn-in period of 5000 iterations of RIMCMC followed by 10000 samples.

3.4 Time Series Analysis

As mentioned before, time series is applied to generate smooth and continuous limbs’
movements. In our work, ARMA is used to analyze limbs’ movements of a character in
several previous time slices for estimating the motion trajectories. Then we could
synthesize the current movements following these estimated trajectories. The general
form of a time series model is considered as

D, = fis (Dt—l""’D

t—p?

a a )+a,, (3.14)

t=12°29 Y-
a,=Cv,, (3.15)

where D, denotes a univariate time series and fzs(.) indicates an unknown function of
time series. p and g represent non-negative integers. v, is a sequence of random
variables assumed to come from a Normal distribution with mean zero and variance one.
C is assumed to be a constant. Based on this general form, ARMA is formulated as

follows:

D
frs(Dr Dy i@ et )= D 6D, =D K, (3.16)
i=1 i

where ¢ and «k, are the coefficients of parameters in this model. It is similar to the
time series model proposed by Chen et al. [13], except that they assumed the functional
form of frs(.) was a known linear function whereas we assumes f7s(.) is estimated
nonparametrically along with the Bayesian estimation of ERBFs already described in
Section 3.1 and Section 3.3 in order to add smooth variety of the time series data, that is,
we develop ERBF kernel in the original time series model with parameters inferred by
using RIMCMC. We further use this nonparametric time series model to forecast the

current limbs’ movements of the character from his several previous poses.
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Chapter 4
Two-scale Image Abstraction

Generating a natural-looking 2D character animation from still photographs or paintings
can be considered to analyze and simulate the character’s motion in that image. Note
that a photograph contains redundant information. The raw format of a photograph may
have 16-bits or even 24-bits per «color channel. Using all contours of the character
extracted from raw photographs for statistical analysis is not practical and useful. Hence,
it is necessary to obtain contours of interests of the characters. We advocate the
two-scale abstraction similar to progressive image abstraction proposed by Farbman et
al. [23]. The proposed abstraction method 1s based on a two-scale decomposition of the
image consisting of a base layer, which encodes large-scale variations of pixels, and a
detail layer. The base and detail layers-would be obtained by using an edge preserving
filer called the bilateral filter [64]. Given photographs, the bilateral filter is applied to
obtain regions of interest. The selected contours of a character from the detail layer,
which represent important features, and the contours of that character in the base layer
are used to estimate the character’s motion. The redundant information of a photograph
is filtered by the bilateral filter so as to animate 2D character from arbitrary still pictures

by the proposed statistical approaches.

4.1 Color Space Transformation

In order to keep the regions of interest, we propose the two-scale image abstraction
based on the bilateral filter. It classifies the image into a base layer and a detail layer.

Important features can be preserved by adopting the contours selected from the detail
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layer and the contours of the base layer to train the statistical model. In contrast,
unimportant features can be filtered by applying the contours of base layer to the model

only.

Tomasi and Manduchi [64] suggested computing the bilateral filter on a
perceptually uniform feature space, such as CIELab [72]. Perceptually uniform means
that a change of the same amount in a color value should produce a change of the same
visual importance. Only perceptually similar colors are averaged together while bilateral
filtering is carried out in CIELab color space. Moreover, only perceptually important
details are preserved. The values used by CIELab color space are called L*, a*, and b*.
L* component closely matches human perception of lightness, which is the luminance
signal that can estimate the difference between light and dark. a* represents the
difference between red and green. b* represents the difference between yellow and blue.
Unlike RGB color space, CIELab is based on a large body of psychophysical data
concerning color-matching experiments performed by human observers, and is designed
a practical approximationto color processing in a human visual system model. In
contrast, RGB models “the output of physical devices rather than human visual
perception. CIELab can thus be used to adjust the lightness contrast by using L*
component. Furthermore, CIELab can make accurate color balance corrections by

modifying output signals ina*and b* components.

The three coordinates of CIELab represent the lightness intensity L*, its position
on a pure red and pure green scale a*, and its position on a pure yellow and pure blue
scale b*. Note that L* = 0 yields black and L* = 100 indicates diffuse white. a* = -127
indicates pure green and a* = 127 indicates pure red. b* = -127 indicates pure blue and
b* = 127 indicates pure yellow. The red/green and yellow/blue opponent channels are
computed as differences of lightness transformations of cone responses. Note that the
nonlinear relations for L*, a*, and b* are intended to mimic the nonlinear response of
the human eye. Furthermore, uniform changes of components in the CIELab color space
aim to correspond to uniform changes in perceived color, so the relative perceptual
differences between any two colors in CIELab color space can be approximated by
taking the Euclidean distance between them. The Euclidean distance is directly

proportional to the difference between the two colors as perceived by the human eye.
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CIELab can be computed via simple formulas from nonlinearly-compressed
CIEXYZ color space coordinates (Xciz, Yo, Zcir), which is not particularly
perceptually uniform. Now, we would transform the initial color space RGB of a raw

image into CIELab through CIEXYZ.
X 0.412453 0.357580 0.180423 | | R

Yo |=10.212671 0.715160 0.072169 |*| G |. (4.1)
Zcp 0.019334 0.119193 0.950227 | | B

Then three components of CIELab are obtained from CIEXYZ.

L*=1163[Y,, /Y, -16 for Y, /Y, >0.008856 “42)
L*=903.3Y,, /Y, otherwise ’ '
a*=500[ CIE(X,,; /X, ) - CIE (Y., /Y,)], (4.3)
b* =200[ CIE( Yy /Y, ) =CIE(Z/ Z,) | (4.4)
_ 3
where | = CIE(h) = lth for th > 0.008856 45)
CIE(th)=7.187th+16/116.otherwise

Here X, Y, and Z, are the tristimulus values corresponding to the reference white point.

They are specified respectively as 0.950456, 1.000000, and 1.088754.

4.2 Bilateral Filter

Next, we use the bilateral filter to classify the original image / into a base layer
encoding large-scale variations and a detail layer. Note that the detail layer is applied to
select the regions of interest and the features which should be preserved. The bilateral
filter is a non-linear filter, where each pixel in the filtered result is a weighted mean of
its neighbors, with the weights decreasing both with spatial distance and with difference

in value. The bilateral filter can be defined as
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5P (1), =iy 20 (=G, (1 =22 @)
k(p)=2,6,, (lp-4l)G., (I, -1.[) (4.7)

where Q is the whole image range, and the subscripts p and ¢ indicate spatial
locations of pixels. 7, and I are intensity values of pixel p and g. The kernel functions
G, and G, are typically Gaussians, where o determines the spatial support, while o,
controls the sensitivity to edges. k( p) is a normalized function. BF (I )p is the filtered
result of the pixel p. That represents the base layer of the original image. A bilateral
filter allows combining three color channels in CIELab and measuring photometric
distances between pixels in the combined space. Furthermore, the detail layer is the
division of the original image by the base layer. The ratio is computed on each color
channel separately and is independent of the signal magnitude. The ratio captures the
local detail variation in the original image and is commonly called a quotient image [59]

or a ratio image [37] in computer vision community.

4.3 Image Abstraction

We transform the color space of the base layer and the detail layer back to RGB for the
further process. As mentioned previously, X,, Y,, and Z, are specified respectively as

0.950456, 1.000000, and 1.088754. The reverse transformation to CIEXYZ is

Xop =X, (P, +a*500), (4.8)
Yo =Y, P s (4.9)
Zey =2, (P, +b*/200Y , (4.10)
where P, =(L*+16)/116. (4.11)

The color space RGB can be obtained by the transformation matrix.
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R7 [ 3240479 -1.537150 —0.498535] [X,,
G |=|-0.969256 1.875992  0.041556 |*| Y., |. (4.12)
B| | 0.055648 —0.204043 1.057311 | | Z,,

Furthermore, the detail layer is attenuated to achieve a stylized abstract look. In
this work, the short line segments in the detail layer are regarded as unimportant regions
or noises. Hence, the median filter is applied to smooth or denoise the detail layer. The
idea of median filtering is to calculate the median of neighboring pixels’ values. It can

be done by repeating these steps for each pixel in the image, as described follows:

1. Store the neighboring pixels in an array called the window. Note that the

neighboring pixels are chosen by a box.
2. Sort the window in numerical order.
3. Pick the median from the window as the pixels value.

Finally, the base layer is overlaid with edges extracted from the filtered detail layer.

4.4 Experimental Results

The proposed method yields several results. Figure 4.1 shows the abstracted image by
using the bilateral filter. Figure 4.1 (a) is the original real image. Figure 4.1 (b) is the
coarsened image of the base layer with oy =12 and o, =0.15. In our experiment, we
found these parameters to be better suited for applications that discarded or attenuated
some of the details, such as image abstraction. Thus, we used these parameters
throughout this dissertation for most real images. Figure 4.1 (c) is the selected contours
from the detail layer by using the median filter. Moreover, Figure 4.1 (d) shows the

image abstraction result.

Figure 4.2 shows another example of the abstracted image. Figure 4.2 (a) is the
original real image. Figure 4.2 (b) is the coarsened image of the base layer by using the
bilateral filter. Figure 4.2 (c) is the selected contours from the detail layer by using the

median filter. Finally, Figure 4.2 (d) shows the image abstraction result.

33



(©) (d)

Figure 4.1: Image abstraction computed using our two-scale decomposition. (a) The
original real image (the photo of Charlize Theron). (b) The base layer. (¢) The selected

contours from the detail layer. (d) The final abstracted image.
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(©) (d)

Figure 4.2: Another example of image abstraction. (a) The original real image (the
photo of David Axelrod). (b) The base layer. (¢) The selected contours from the detail
layer. (d) The final result.
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Chapter 5
Novel View Generation

For animating 2D characters in still pictures, we proposed a statistical method based on
nonparametric regression analysis to generate a novel view of a character. Kernel
regression with ERBFs is introduced to fit the contours of a character and is applied to
infer the corresponding displacements of the contours. LOESS is applied to fill in the

color and texture informatien obtained from the original character in the given picture.

5.1 View Interpolation

In our work, we would take the 1dea of creating deformations directly in image space
one step further by making 2D characters move. Actually, we propose a nonparametric
regression model to animate the characters from still images. For instance, animating
the character in a comic could be carried out by the creation of a novel view, as shown
in Figure 5.1. It shows two continuous frames in the original comic, which can be
regarded as two different scenes, and the synthesized frames from a single input frame.
Figure 5.1 (a) are the original frames in the comic. Figure 5.1 (b) shows the synthesized
novel views. Note that the model is trained to fit the shape and detail of the character
between two key-poses from a given frame and its reverse, while minimizing unnatural
distortion. Then the trained model is applied to synthesize the smooth transition

between these key-poses.
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Rats! ... Millions of rats
coming up from the sewers!...
Absolutely panic-stricken!

Whew!...They've gonel..
What about Swowy.
What's happened tohim?

(a)
y -
y A A |
Whew!...They've gone!.. Whew!...They've gone!., Whew!...They've gonel.. Whew!...They've gonel.,
What about Swowy. What about Swowy. What about Swowy. What about Swowy.

What's happened tohim? What's happened tohim? What's happened tohim 2 What's happened tohim 2

(b)

Figure 5.1: Novel view generation in a comic. (a) Two continuous frames in a comic.

(b) The frames synthesized from a single frame. © Georges Remi (Hergé)

As mentioned previously, the proposed model is based on the prediction abilities of
nonparametric regression. Kernel regression approximates the shape of a deformed
character between two key-poses or moving templates indicating different poses by the
prior use of a set of kernel functions. Circular Gaussian distribution function is not an
appropriate choice to fit contours, which have noncircular structures like characters or
human-like subjects. Instead of RBF kernel based on spatially-limited circular Gaussian,
kernel regression using elliptic radial basis functions (ERBFs), specifically elliptic

Gaussians which provide less learning time, is applied for contours fitting during shape
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deformation (defined as shape deforming). Although ERBFs require more computation
during optimization, better quality is obtained with smaller number of basis functions.
Furthermore, the local-fitting methodology is also applied to preserve important features
within the deformed shape (that is filling in the color and texture information obtained
from the original character in the given image). Locally weighted regression, or LOESS,
is used to preserve the features or details by fitting a function of independent variables

locally.

5.2 Algorithm Overview

In Figure 5.2, the outline reflects the structure of our proposed method for novel view
generation. Considering Figure 5.2, we briefly describe our method in the following

paragraphs.

1. Character Extraction: As mentioned in Chapter 4, in addition to the paintings or the
comic, the input images like real images are filtered by using the bilateral filter first.
Then in order to reduce the effects of the background upon deformations, we extract
characters from the input image. We use level-set-based GrabCut to extract characters
and features, as described in Section 5.3.-Similar regions are extracted by the level set

method. The bounding box of all regions is then used by GrabCut.

(2) (b) (©) (d) (e)

Figure 5.2: This example shows the picture of Mona Lisa. (a) The original input image.
(b) The character is extracted, (c) who is described by the similar parts found by
level-set-based GrabCut, and (d) the contours are applied to build the nonparametric
regression model for shape deforming and detail preserving. After deforming the shape
and preserving details, several resulting frames in the synthesized Mona Lisa’s views

are shown in (e).

38



The boundaries of regions corresponding to the matte produced automatically are
further applied to obtain the final character matte. The foreground and background are
separated successfully. Besides, the facial features are extracted simultaneously by the
level set method. As shown in Figure 5.2 (b), Mona Lisa is extracted, which is described
by the similar parts found by level-set-based GrabCut in Figure 5.2 (c), and the
corresponding contours shown in Figure 5.2 (d) are applied to build the nonparametric

regression model for shape deforming and detail preserving.

2. Statistical Approaches: Before we generate novel views of a character in a still
image, we apply nomparametric regression for novel view generation mentioned in
Section 3.1 and Section 3.2. Note that the proposed statistical approaches are not only
used to generate novel views of a character, but also adopted to create an expressive
talking face and synthesize smooth limbs movements. In practice, our framework for

2D character animation consists of these statistical approaches.

3. Novel View Generation: Given one Key-pose of a character and its reverse, we
deform the shape of the character by applying a trained nonparametric regression model
for generating novel views of the character. The process can be divided into two steps:
shape deforming and detail preserving. In the shape deforming, the correspondence in
training data set is constructed first. Kernel regression with ERBFs is employed to train
the model to represent and fit'the contour-of deformed shape, as described in Section 5.4.
In the detail preserving step, as described in Section 5.5, LOESS is adopted to fit the
details of the deformed shape. LOESS is suitable for detail preserving in accordance

with the previously fitted contours. Figure 5.2 (e) shows finally the resulting images.

5.3 Character Extraction

In addition to the paintings or the comic, real images are filtered by using the bilateral
filte. Then we adopt the level set method to extract regions with a similar color
distribution in the image. The level set method, proposed by Osher and Sethian [38, 57,
58], is an approach for approximating the dynamics of moving curves and surfaces.
Note that we choose HSV color space [72], it is not only close to the people

understanding of colors, but also is regarded as the best option in judgment on the color
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changes. It consists of three components, namely representatives of hue H (hue),
saturation S (saturation), and brightness V' (value). In practice, HSV color space allows
combining the three color channels appropriately. Moreover, the combined color
difference can be the made to correspond to the distance between two points in the color
space. It is suitable for image segmentation and analysis. We introduce the concept of
color gradient information of images, instead of using gray gradient to update the curve
evolution function of the level set method. Furthermore, these regions representing the

facial features of a character are found simultaneously.

After feature extraction, GrabCut [51] is then applied to separate foreground
(characters) and background. GrabCut is powerful object matting tool. However, it
requires an initial incomplete trimap which represents the seeds of foreground and
background for the underlying graph cut algorithm. That is, no hard foreground labeling
is done at all. The region of background is determined by users as a strip of pixels
around the outside of the marked rectangle. The Gibbs energy minimization is computed

and the object matting for character extraction 1s applied.

We construct a bounding box of all these regions extracted by using the level set
method. Then we use the bounding box for GrabCut instead of the initial incomplete
trimap. Note that the extracted regions correspond to the regions of a character matte
with the similar color distribution.-The-pixels inside the contours of the regions are
considered the foreground distribution replacing users’ refinement during the iterative
minimization in GrabCut. Subsequently, the entire energy minimization process would
be performed iteratively with the updated foreground distribution. The process is
guaranteed to converge at least to a local minimization since the energy decreases
monotonically. After convergence is achieved, the character matte is extracted

successfully.

Note that we choose HSV color space. Due to the hue, saturation, and brightness of
the three components to determine changes in color, the level set method with color
gradient enriches the way that only uses gray gradient to judge whether at the border.
Since joining the color factor, the character and feature extraction is robust for the
images, which the gray level of the background is close to the gray level of the

foreground. The final character and features matte is shown in Figure 5.2 (b).

40



5.4 Shape Deformation Using Kernel Regression with

ERBFs

As mentioned previously, we use level-set-based GrabCut to extract the character and
similar regions in the character. After extracting the characters in the input image and its
reverse, we train a regression model with ERBF kernel. First, in Section 5.4.1, an initial
solution to regression parameters is obtained. Then we discuss how to train the model
and fit the character’s deformed shape by the trained model, as described in Section

54.2.

5.4.1 The Determination of Initial Values

The initial guesses are important for further optimization convergence in model learning.
Before setting the initial value of center-and covariance, the correspondence with regard
to feature alignment should be done. First, we'create a window and use it to compute
the curvature along each region boundary inthe face. Note that these regions in the face
are obtained by using the level.set method. We choose the top five curvatures from the
window interiors and sample points along these contours. The five bounding boxes of
these sets of sample points are the feature blocks shown in Figure 5.3 (a) and Figure 5.3
(b). The structure of these feature blocks (that is the order of the feature blocks) is
constructed to maintain the spatial relationship among these features, as shown in
Figure 5.3 (c). Note that the structure is similar to the tree structure. However, there are
no root and leaf nodes in our work. We only use the link between two nodes (feature
blocks) to record the spatial relationship or the order of two nodes. Subsequently,
Tchebichef moments (TMs) [43] of these blocks are used to determine the
correspondence in the other key-pose, which is obtained by reversing the original input

image, for spatial constraints, as shown in Figure 5.3 (d) and Figure 5.3 (e).

41



(a) (b) (©) (d) (e) ® (2)

Figure 5.3: Correspondences and initial value determination. (a) Top five features are
selected. (b) The structure is constructed from feature blocks. (¢) The spatial relation is
obtained from first key-pose. (d) (e) The correspondences in the other key-pose are
extracted based on the structure of spatial relationship. (f) (g) The samples and
correspondences are shown as red dots, and k-means clustering is employed to

determine initial value of regression parameters.

TMs are translation, scale, and rotation invariant functions, which are useful for
image retrieval and pattern recognition: For each feature block, we compute TMs of the
block and compare with'the other key-pose by using a window with the same size of the
block. Since the minimal difference is found, the correspondences can be obtained.
Moreover, the hard constraint is used to refine the correspondences found by TMs.
According to the spatial relationship of the feature blocks, some correspondences are
interchanged. For example, the correspondences of right eye and left eye found by TMs
are interchanged. The correspondences based on the structure of the spatial relationship

are constructed.

Owing to predicting the contours of the deformed character by the nonparametric
regression model, we sample the contours and obtain the correspondences shown in
Figure 5.3 (f) and Figure 5.3 (g) as red dots by using TMs. The contour samples, feature
blocks mentioned above, and their correspondences are defined as n pairs of anchor
points in the space U =(ﬁ1,ﬁ{,...,ﬁn,ﬁ;) for the training stage. K-means clustering is
used to set the starting center values to the means of the training anchor points. In
addition, the covariance for each k-means group shown in Figure 5.3 (f) as the block is

computed.
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5.4.2 Shape Deforming

The shape deformation of that character is constructed to infer the corresponding
displacements of the contours for novel view generation. We define the deformation
based on the mapping of n anchor points sampled along the contour of a character. We
formulate this problem as regression analysis. Given n pairs of anchor points, we use
arbitrary directional ERBFs to predict the contours by interpolating a smooth function.
The response 7 = (rAx,rAy) is the displacement of an anchor point, and the predictor
U= (x, y) is the coordinate vector of the anchor point. The resulting ERBF
interpolating function is defined as a transformation function f :R* — R. For k pairs of
the means of anchor points obtained by A-means clustering, f{.) contains the radial part

R(.) and the affine part 7(.). Equation (3.6) and Equation (3.7) can be rewritten as

7, =f(d,)+¢e ford =1,.,n, (5.1)
f(a)=R(i)+T (i) (5.2)
R(ﬁ)zéﬂin(ﬁ,ﬁj ). (5.3)
T (i) =M ji, (5.4)

where 7, denotes the displacement of the d-th anchor point ,. f() is the displacement
of either the x-coordinate or the y-coordinate between the correspondences (the given n
pairs of anchor points). Additionally, the error ¢ is assumed to come from a Normal

distribution N (0, rz) , where 7° denotes the noise variance.

Moreover, let v = ( ., yy) be the center vector of elliptic Gaussian (ERBF). The
radial component R(.) is developed as a linear combination of a set of basis functions
and their corresponding coefficients. 3, denotes the suitably chosen coefficient of the
J-th elliptic Gaussian 7(.). V, is the related center vector. k is the number of basis
functions in the model. Note that 77(.) is chosen as an arbitrary directional ERBF, as
described in Equation (3.1). Recalling Section 5.4.1, we use k-means clustering to set
the center vector v, for each k-means group of anchor points. In addition, the

corresponding covariance is computed for each group.
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Besides, 7(.) is a 2D affine transformation, where M, is a 2x2 real matrix.
According to the correspondences of anchor points in feature blocks between the given
picture and its reverse, controlling the affine component 7(.) is carried out by a
least-squares approximation procedure, perhaps using matrix pseudo-inverse techniques.
After the affine component has been computed, the radial component R(.) satisfies the

following equation:

R(i) = f(@)-T(i). (5.5)

>

The estimated weight of the radial component /S, is determined by solving the linear

system.

ﬂl 200 ﬁk
2
| R .o . B (5.6)
=argmin )_ Zﬂjn(”d"’j)_(f(”d)_T(”d)) :
BB a=l|l =t
This can be solved by the least-squares normal equations to minimize the sum of the

square difference. Equation (5.6) can be rewritten in a matrix form as
B=(K"K) K (f (@) =Ti)), (5.7)

where B is the matrix form of the vector S ; for j = 1,...,k, K is the matrix form of the

vector 77(i,V), and (f(ﬁ)—T(ﬁ)) is the matrix form of the vector (f(ﬁ)—T(ﬁ)) .

After the weights ( ﬁ’] yerns ﬁA’k) are computed in the initial loop, we can compute the
residual for nonlinear optimization. Since residuals are recomputed, the residuals update
these parameters in the next iteration, which are centers, covariances, and weights, with
a gradient descent. Optimization convergence is achieved when the residual is
sufficiently small. The whole process is converged completely soon after in several
iterative loops. Then the kernel regression model with ERBFs is trained. Note that we
can use the model to fit the complete contours of a novel view. We can make
predictions of the displacement for each contour point by using Equation (5.1).
Furthermore, we use Catmull-Rom splines to connect new positions of the contour
points. For each in-between frame in temporal domain, the contours of a novel view are

synthesized by the model.
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5.5 Detail Preservation Using LOESS

In addition to shape deforming for the whole animation process, the details from the
character interiors have to be preserved by filling in the color and texture information
obtained from the original character in the given image. After synthesizing the contours
of the character’s deformed shape by using kernel regression with ERBFs, LOESS is
applied to preserve the details or features of characters. In this section, the detail is
preserved within the deformed shape by using LOESS. Then novel views are

synthesized completely.

Besides, Equation (5.1) is based on ERBFs and is trained to fit the contours. If we
use Equation (5.1) to fill the interiors of the fitted contours with the color and texture
information, the filled information will be warped to adapt to the shape of the fitted
contours easily without considering the local features of the original character interiors.
The result shows the unnatural distortion like the concentric shape effect, as shown in
Figure 5.4. Figure 5.4 (a) shows the given key-pose. Another key-pose is shown in
Figure 5.4 (d). Figure 5.4 (b) shows the result obtained by using LOESS. Moreover,
Figure 5.4 (c) shows another result obtained by using Equation (5.1) directly. Note that

there are unnatural distortions shown inthe result obtained by using Equation (5.1).

EEEE

(a) (b) (c) (d)

Figure 5.4: Unnatural distortion without detail preserving. (a) (d) The given key-poses.
(b) The synthesized in-between obtained by shape deformation and detail preservation.
(c) Another result obtained by shape deformation without detail preserving. © Warner

Bros. Entertainment Inc.
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Recalling Figure 3.3, to implement detail preserving, we sample the original image
with a uniform grid (50x50). Given a grid point x, enclosed by the contours of a novel
view, its filled color or texture information would be controlled by LOESS. In this work,
let X Z(xl.’x,xi,y) be the i-th point sampled along the contours of the character in the
given image, as shown in Figure 3.3 (b). Let y, = ( Viwes Vi y) denote the measurement of
the dependent variable representing the new location of the sample point x;, in a
synthesized frame in the temporal domain. Suppose that the target coordinate J, is
calculated by using Equation (3.9). Before calculating the target coordinate y,, we
would estimate the regression coefficient vector ¢ in Equation (3.12) by the

least-squares normal equations. Moreover, we could calculate the target coordinate 3y,

directly from the closed-form solution as follows.

Recalling Equation (3.9), there is a 2D transformation model in our work. Thus, we
have ¢ (x,)=1 for ¢, which is a translation coefficient and ¢,(x,)=x, for &, which
is a rotation coefficient. For brevity, we drop the argument x, for the weight w, (x0 )
Given m pairs of (X,-,y,-), we denote the approximated mean, variance and covariance

in the following manner:

i = Ziwfx", (5.8)
m
2
I/x — ziM}i(‘xi _lux) , (59)
m
O_xyzzziwi(xi_ﬂx)(yi_ﬂy)’ (5.10)
m
,Lzy=z"}:[yi, (5.11)

Then the new location of x, and the estimated target coordinate j, of the arbitrary new

sample x; can be computed as follows:
2

9, :ﬂy"‘%(xj—ﬂx)- (5.12)

X

In practice, we approximate the character with a uniform grid, as shown in Figure
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3.3 (a). We find the new location of each vertex in the grid (each grid point). Then we
fill the resulting quad by using bilinear interpolation. Therefore, we can use Equation
(5.12) to find the new location of the grid point x, and obtain the pixel values for filling
in the color and texture information. Then we fill the resulting quad using bilinear
interpolation. Note that we would reconstruct the details within the deformed shape with
the contours fitted by kernel regression with ERBFs via a simple closed-form solution.
After shape deforming and detail preserving, novel view generation is carried out. In
order to maintain the 3D effect of the new view, it is sometimes combined with

backward deformation by using color blending.

5.6 Experimental Results

In the shape deforming stage, the number of basis functions of all the examples fitting
the contours was decided by residual analysis. The default setting was eighteen basis
functions with better fitting results. Moreover, we applied only our ERBF model on the
top five regions in contours to align the significant features in two key-poses or moving
templates instead of the entire.character because the prediction of unimportant features

led to redundancy.

The proposed nonparametric model was implemented on an Intel Core 2 Quad
6600 2.40 GHz CPU and 3 gigabytes main memory that allowed efficient generation of
novel views. The complete generation process consisted of two independent steps:
shape deforming and detail preserving. Table 5.1 lists the resolutions and executions for
the figures shown. Execution time is measured in each step. There is another
performance measurement for body movement synthesis, which deformed the shape of
the character to synthesize body movement by using the proposed model trained from

two given key-poses of a character.

Our experiments were performed on digitized images obtained from “The
Adventures of TinTin: The Shooting Star” which was originally produced by Georges
Remi (Hergé). The results are presented in Figure 5.1 and Figure 5.5. They show

different frames in the original comic, several synthesized frames of characters’ motion,
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and the zoom-in views. They were only head movement. A user specification exists by
which the head and the body can be segmented. For fitting the contours of the head
component, the second key-pose involved reversing the contours of the head component
and concatenating with the other contours. A novel view would then be synthesized

using the trained model. Another example of Mona Lisa is shown in Figure 5.6.

Table 5.1: Running times of figures for novel view generation and body movement

synthesis.
. . Body Movement
Novel View Generation
Synthesis
TinTin Captain | Snowy Cat Object
Mona )
Figure Name | (head | (hedd-"{'(head | pigq (tail with
fitting) fitting) fitting) moving) Wood
Figure No. 5.1 5.5 5.5 5.6 5.7 59
Resolution | 240x502 | 519%446 | 169x117 | 182x268 | 193x280 | 189x216
Shape
Deforming 6487 5876 9420 6434 3673 6002
~ Training
~ Fitting
806 721 1382 827 607 744
(Millisecond)
Detail
Preserving 3478 3299 3812 3413 2699 3442
~ Training
~ Fitting
440 369 745 566 341 421
(Millisecond)
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Can't you look what you're
doing, you seismic sewa-
h

Me ! A semaphore?
... You, why you're
wothing buta ...

Lucky For us the
air is quite warm.
It's extraordinary,
when we're o near

Good night,Snowy.
Keep a good look-

ook what you're
seismic sewa-

Good night,Snowy. || Good wight Smowy. || Good wight Smowy. ||  Good wight Snowy)
Keep a good look- Keep 2 good look- Keep a good look- Keep 2 good look-|
out...

(¢)

Figure 5.5: Novel view generation in-a comic. (a) The frames in the comic. (b) The
frames synthesized from a single frame. (c) The zoom-in views of the results. ©

Georges Remi (Hergé)

(a) (b)

Figure 5.6: Novel view generation from a painting. (a) The picture of Mona Lisa. (b)

Novel view generation.
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(d) (e)

Figure 5.7: Body movement synthesis. (a) (¢) Two key-poses of the cat. (b) (c) (d) The

synthesized results.

The synthesized results of body movement are shown in Figure 5.7 and Figure 5.9
Body movement synthesis focuses on simulating a single limb’s movement of a
character. It is different from the proposed limbs movement synthesis. Note that limbs
movement synthesis focuses on simulating simultaneously multiple limbs’ movements
which have motion trajectories respectively. Figure 5.7 (a) shows the original image of
a cat representing one key-pose. Another key-pose is shown in Figure 5.7 (e). These two

key-poses were employed to generate the tail’s movement by the proposed statistical
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approaches, as shown in Figure 5.7 (b), Figure 5.7 (c¢), and Figure 5.7 (d). Note that the
pattern of fur shown in Figure 5.7 is preserved by using LOESS.

Since our goal is to do visually plausible 2D character animation, we focus on the
qualitative analysis. We provide the results obtained by using kernel regression with
RBFs, view morphing proposed by Seitz and Dyer [56], and image deformation using
the moving least squares method proposed by Schaefer et al. [53], which suffice for

direct visual comparisons.

(e) ®

Figure 5.8: Visual comparison of novel view generation. (a) The picture of Mona Lisa.
(b) The result obtained by using kernel regression with RBFs (18 radial basis functions).
(c) Another result obtained by using kernel regression with RBFs (200 radial basis
functions). (d) The result obtained by using kernel regression with ERBFs (our method
with 18 elliptic radial basis functions). (e) The result obtained by using view morphing
proposed by Seitz and Dyer [56] (f) Ghost occurrence in view morphing without enough

correspondences (red lines are specified by users).
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Figure 5.8 shows a comparison of novel view generation. Figure 5.8 (b) is obtained
by using kernel regression with 18 RBFs, and Figure 5.8 (d) is obtained by our model
with the same number of ERBFs respectively. Since shape fitting with RBFs contains
more unnatural distortions during deformations, ghost effects are observed in the final
result with color blending even though feature alignment is achieved in shape
deforming. The quality of the final blending result with ERBFs is better. We also
provide another result obtained by using kernel regression with 89 RBFs without

apparent distortion, as shown in Figure 5.8 (c).

As mentioned before, the previous techniques like view morphing and shape
deformation may be able to produce good quality results for 2D character animation.
However, these techniques needed user intervention. Figure 5.8 (e) provides the
comparison with view morphing proposed by Seitz and Dyer [56]. In view morphing, it
is necessary to compute an additional estimated fundamental matrix for camera
calibration. Further, many users” specifications are required for correspondences. Figure
5.8 (f) shows that the lack-of users’ specification'would create ghost effects because of
nonalignment. There ar¢ seventeen control lines on the face specified by users. A better

result is obtained when more than thirty or forty control lines are specified.

Moreover, Figure 5.9 provides a comparison with the method proposed by
Schaefer et al. [53]. Figure 5.9 (a) shows-one key-pose of a human-like object. Another
key-pose is the reverse of Figure 5.9 (a). The whole body was considered as the unit of
movement. The whole body’s movement was synthesized, as shown in Figure 5.9 (d).
Note that the pattern of wood grain in Figure 5.9 (d) is preserved by using LOESS.
Although the method of Schaefer et al. preserved the details of characters, such as wood
grain shown in Figure 5.9 (b), the property may lead to an undesired result and
unnatural distortions when users specify the moving handles, which exceed the control
extent because of the constraint using moving least squares, as shown in Figure 5.9 (c).
This man-made situation or interference would not occur in the proposed model. Our

model is automatic in shape deformation process of body movement synthesis.
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(a) (b) (©) (d)

Figure 5.9: Visual comparison of body movement synthesis and detail preservation. (a)
The character with handles (red dots). (b) The results created by image deformation
using the moving least squares method proposed by Schaefer et al. [53]. (¢) The
undesired warp occurrence by using the moving least squares method (moving handles

exceed the control extent). (d) The same pose with (b) created by using our method.
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Chapter 6
Expressive Face with Speech Animation

As discussed in Chapter 5, we have applied nonparametric regression to generate a
novel view of a character. With the exception of a novel view interpolation, several
facial effects observed in 2D character animation, such as eye, nose, and mouth
movements, could be created by using nonparametric regression mentioned in Section

3.1 and Section 3.2.

Moreover, as we now.show, the same structure can be further applied to create
lively animated talking faces and synthesize the stylistic variations of facial moods and
expressions for generating facial animation. For novel view generation, the proposed
nonparametric regression model.is trained from one pose of a character and its reverse.
Then the trained model is applied to synthesize the smooth transition between these two
poses. For facial animation, the trained nonparametric model is employed to generate
synchronized lips movement and drive the stochastic process for facial features
movements by giving any speech data and the relative moving templates. Note that the
statistical model is trained to fit the shape and detail of the character between these

moving templates.

6.1 Character and Features Extraction

In order to reduce color complexity and the effects of the background upon
deformations, we use the bilateral filter and level-set-based GrabCut mentioned

previously to simplify and extract characters. Similar regions are extracted by the level
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set method. Note that the facial features of the extracted character are obtained
simultaneously by the level set method. By moving the facial features, we simulate the
dynamics of the features to synthesize different expressions, such as wink, anger, or
happy. Furthermore, an expressive facial animation with lips movement from speech

could be simulated.

6.2 Speech Animation

After the pre-process of character and features extraction for reducing the effects of the

redundancies, we generate the lip synchronization by a series of speech data.

A Nonparametric
Regression Model

1. Kernel Regression with ERBFs
2. LOESS

?

Viseme Segmentation

Tramning Data: Moving
Templates V Vi d their durat

Jisemes and their durations : : ;

e - SRS i Speech Animation Generation
1‘d T k By using the model tramed from Moving

Meuwtral OO R

ddﬂ d Templates V
TH B OH

Speech Data

L L "
os 1 15 2 25

Figure 6.1: The overview of speech animation generation.
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6.2.1 Algorithm Overview

In Figure 6.1, the outline reflects the structure of our proposed method for deforming
mouth shape synchronized with input speech. Considering Figure 6.1, we briefly

describe our method in the following paragraphs.

1. Training Data: For model learning, according to different multimedia applications,
the nonparametric regression model is trained from different training data sets. As
mentioned before, the model is trained from two key-poses of a character for novel view
generation. To generate speech animation, the training data set consists of two extreme
templates in moving templates V" for visemes synthesis, which are the neutral mouth
shape and the mouth shape with vowel /o/. The moving templates are the base target
positions of the facial features to be animated. The positions of mouth shape are

recorded in moving templates V, as shown in Figure 6.1.

2. Viseme Segmentation: In viseme synthesis, the goal is to model the correspondence
between mouth shape variation and speech. Viseme segmentation, which means to
determine all visemes and their durations, is done from the speech data. Note that it is to
align phoneme labels to the. audio stream, and.use this information to label the

corresponding lips movement.

3. Speech Animation Generation: For generating the lip-synch animation, we collect
moving templates V' and the speech data, whereas the speech data is the voice data.
After viseme segmentation, we would convert to the corresponding mouth shape and

synthesize speech animation by using the trained nonparametric regression model.

6.2.2 Viseme Synthesis

For viseme synthesis, viseme segmentation of the speech data is performed to determine
all visemes and their durations. First of all, we employ a Hidden Markov Model (HMM
[45]) speech recognizer, which is the high-precision speech recognition software in
noisy environments, to analyze the given speech data. In practice, HMM speech
recognizer is used to obtain the phoneme segments called phoneme samples, as shown

in Figure 6.2.
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Text
I am a boy.

A 4

Phoneme Samples

AY-AE-M-AX-B-OY

Visemes

Figure 6.2: Viseme segmentation of the given speech data.

Table 6.1: Conversion table from phoneme to mouth shape and the corresponding

phonetic alphabet.

Mouth Shape (Viseme)

No.
1

O | 0 | N | B W N

p— | | |
Wi N = O

—
AN

Phoneme Samples

AA,; AE, AX, HH, SIL,
andY

B, M; and P

CH, J, and SH

00, OY, W, and UH

AY, EY, and ER

Fand V
IH and I'Y
G and K
N and NG

OH

R

S, TS, and Z
D,L,and T
TH

Phonetic Alphabet

/al, &/, 1, /h/, /sil/,
and /j/

/b/, /m/, and /p/
itf/,/d3/, and /[/
/u/, 191/, /w/, and /U/
/al/, /e/, and /3/
/f/ and /v/

/1/ and /i/

/g/ and /k/

/n/, and /1)/

/o/

/t/

/s/, /ts/, and /z/

/d/, /17, and /t/

10/

Besides, we design fifteen templates in moving templates V' for viseme synthesis,

which are fourteen common mouth shapes with their relative visemes and a neutral

mouth shape for all other visemes, as shown in Figure 6.1. The templates in moving

templates V" are employed to record the positions of anchor points sampled on the

contour of the lips, as shown in Figure 6.4. These anchor points are obtained from the
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extracted features found by using the level set method, as mentioned before. Then we
construct a phoneme—viseme mapping table by using a simple table lookup method [77]
to find the relative moving template (viseme) of a phoneme sample in moving templates
V directly, as shown in Figure 6.2. Table 6.1 shows the conversion from the phoneme to
the mouth shape. For two continuous phoneme samples with the same neutral mouth

shapes, one of the samples is redefined as the mouth shape with vowel /o/.

Given the positions of anchor points sampled from the contours of the extracted
lips, moving templates V" with their relative visemes, and the input phoneme samples,
we could create the lip-synch animation. Next, we predict the motion of the character by
using nonparametric regression: First, kernel regression with ERBFs is employed to fit
the contour of a deformed shape. Then we preserve the details of the deformed shape by

LOESS. We again consider the method to synthesize visemes.

Note that the nonparametric regression model consisting of kernel regression with
ERBFs and LOESS is trained for viseme synthesis. In the shape deforming stage, the
kernel regression model-with ERBFs is trained. We would train the model with the
training data, that is, n pairs of anchor points recorded in two extreme moving templates,
which are the neutral mouth shape and the mouth shape with vowel /o/ in V, are the
prior use of a set of kernel functions. In other words, these anchors points and their
corresponding displacements-are used-to-train the kernel regression model with ERBFs.
Note that the regression coefficients are estimated by the least-squares normal equations.
The trained model is applied to fit the variations of the mouth shape between arbitrary
two visemes of the phoneme samples using the corresponding moving templates in
for lip-synch animation generation. Finally, the similar process to preserve details

within the target mouth is carried out by LOESS.

6.3 Viseme Synthesis with Expressive Face

In addition to speech animation, we could further synthesize an expressive face of a
character. By moving the facial features obtained from the structure of the spatial
relation, which we constructed before, we simulate the dynamics of these features to

synthesize different expressions. We could enhance the expression by shaking the
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shoulders or wagging the character’s head. Even we could further retarget the
expression onto another character, as illustrated in Figure 6.3. After the pre-process of
character and features extraction, two emotional states in moving templates D are

provided for facial expression simulation.

Traiming Data: Moving Templates D

Netural Facial expressions of emotions

A Nonparametric

Regression Model Expressive Face Synthesis
/18] M t' [|. i :‘v V]
1. Kemel Regression with ERBFs %’lﬁsliiih; mode] trained from Moving
2. LOESS -

Figure 6.3: The overview of expressive face generation with the picture of Mona Lisa.

Figure 6.4: Groupings of facial shape and features labeled as anchor points and relative

curves.
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We collect moving templates D for facial mood and expression simulation, which
consist of a neutral expression and several common expressions, such as happy, angry,
sad, fear, surprise, and wink. Note that the moving templates are the base target
positions of the facial features to be animated. Moving templates D focuses on the
positions of all facial features. The templates in moving templates D are employed to
record the positions of anchor points sampled and grouped from the contours of the
extracted features, such as facial shape, eyebrows, eyes, nose, and lips, as shown in
Figure 6.4. Given moving templates D, we can use nomparametric regression to
synthesize facial expression of any emotional state through moving templates D.
Furthermore, an expressive face with speech animation is created by combining with the

lip-synch process described in Section 6.2.

As discussed in last section, the nonparametric regression model consisting of
kernel regression with ERBFs and LOESS is similarly trained. In the shape deforming
stage, the kernel regression imodel with' ERBFs is trained. For facial expression
simulation, note that we would train the-model with a different training data, that is, n
pairs of anchor points“recorded in two. moving templates which are the neutral
expression and the specific emotional state in D, Then the trained model is applied to fit
the movements of facial features between these two emotional states. Then the similar

process to preserve details within the target face is carried out by LOESS.

Furthermore, an expressive face with speech animation could be created by
combining with the lip-synch process simultaneously. Before the model with LOESS is
trained for detail preserving, we would find the positions of anchor points for facial
features in the target expressive face composed of specific emotion and visemes.
Actually, we would like to identify facial expression simulation independently of the
content (utterance of sentences and the corresponding lips movement). The target

animated expressive face with lip-synch FE can be represented as follows:
FE=AT(N+F,+F)=AT(N+Y D,+yD,+(1-y)L), (6.1)

where AT(.) is a 2D affine transformation of the head movements. The head movements
are specified by users. N is a neutral expression. F; (lips) and F,; (facial features
except lips) are the movements of facial features. Note that F; and F; are displacements

from the neutral expression. So N +F,;+F; represents an individual facial expression in
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a certain emotional state and viseme.

Instead of using F; and F;, D; is applied for the detailed movements of lips in a
specific emotional state, and D; for each i represents the movement of an individual
facial feature except lips. Note that five non-overlapping features are identified for a
specific emotional state, such as left eyebrow, right eyebrow, left eye, right eye, and
nose. D; and D; are obtained through the fitted movements of facial features from the
neutral expression to the specific expression. Besides, L is lips movement synchronized
with the input speech. L is obtained through the fitted variations of mouth shape

adapting to the audio stream. For the final mouth shape, a blending weight y is

considered to generate an expressive face with lip synchronization.

After finding the positions of facial features in the target expressive face, the model
with LOESS is trained by these facial features. Then the trained model is employed to
preserve details within the target expressive face. For example, after the mouth shape is
obtained, the mouth cavity; which is the region between the upper lip and lower lip, is
filled in the color and texture information obtained from the original character in the
given image by using the trained model. Note that we use the color and texture
information inside the mouth of the character to make the character appear realistic

while talking. Thus, the character with a lively animated talking face is created.

6.4 Experimental Results

The proposed nonparametric model was implemented on an Intel Core 2 Quad 6600
2.40 GHz CPU and 3 gigabytes main memory that allowed efficient generation of an
expressive talking face. The complete generation process consisted of two independent
steps: shape deforming and detail preserving. Table 6.2 lists the resolutions and
executions for the figures shown. Execution time is measured in each step. We are
interested in extending our concept to facial expression and viseme synthesis. Several
facial effects observed in 2D character animation, such as eye, nose, and mouth
movements, could be created, as shown in Figure 6.5, Figure 6.6, Figure 6.7, and Figure
6.8. By moving the facial features, we simulated the dynamics of the features to

synthesize different expressions synchronized with the speech. Figure 6.5 shows the
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visual result combining with novel view generation. Figure 6.5 (a) is the original picture
of Mona Lisa. A novel view of Mona Lisa is shown in Figure 6.5 (b). For expression
synthesis, Figure 6.5 (c¢) shows the synthesized facial expressions (smiley). Moreover,
the lively talking face of Mona Lisa simulated by viseme and expression synthesis is

shown in Figure 6.5 (d).

Table 6.2: Running times of figures for viseme and facial expression synthesis.

Viseme Synthesis Facial Expression Synthesis
Figure Name Mona Lisa Lips Mona Lisa Self-Portrait
Figure No. 6.5 6.6 6.5 6.7
Resolution 182x268 565x281 182x268 505%x582
Shape
Deforming 10432 12017 10860 14093
~ Training
~ Fitting
2009 2471 2204 4272
(Millisecond)
Detail
Preserving 3414 4294 3298 4836
~ Training
~ Fitting
1166 1707 1001 1864
(Millisecond)
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(a) (b)

(d)

Figure 6.5: 2D character animation of Mona Lisa. (a) The picture of Mona Lisa. (b) A

novel view. (c) Different kinds of the smiles. (d) The lively talking face simulation.
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Another synthesized lip-synch example is shown in Figure 6.6 for five vowels.
Moreover, we used the model to predict other emotional states of another character in

Vincent van Gogh’ Self-Portrait for expression synthesis, as shown in Figure 6.7.

Since our goal is to do visually plausible character animation for novel view,
viseme, and facial expression synthesis, we focus on the qualitative analysis. We
provide a direct visual comparison with the results obtained by animating still images
using the path-based method proposed by Mahajan et al. [39]. Figure 6.8 and Figure 6.9
show comparisons with the path-based method. Their method was based on an inverse
optical flow and preserved the spatial frequencies of the input images. However, as
mentioned before, the disparity or the motion that they could handle between the images
was limited. In [39], the disparity or motion between the images was about 30 pixels.
Given an image revealed in Figure 6.8 (a), the expressions (staring and smiley) were
synthesized by using our method, as shown in Figure 6.8 (b) and Figure 6.8 (c). Figure
6.8 (d) shows the result obtained by using the path-based method.

|y - -~
(a) (b) (c)

— - —y —
(d) (©) ®

Figure 6.6: Viseme synthesis for five vowels. (a) The original mouth shape. (b) /a/. (¢)

/e/. (d) /. (e) Jol. () Iu/.
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(©) (d) (e)

Figure 6.7: Character animation with expression synthesis. (a) The original expression

in Vincent van Gogh’s Self-Portrait. (b) Sad. (c) Smiley. (d) Staring. (e) Winking.

Moreover, given another example of the girl revealed in Figure 6.8 (e), facial
expressions were synthesized by using our method, as shown in Figure 6.8 (f) and
Figure 6.8 (g). The result obtained by using the path-based method is shown in Figure
6.8 (h). Furthermore, given Figure 6.8 (e) and its reverse, the novel views shown in
Figure 6.8 (i) and Figure 6.8 (k) were generated by using our method. Note that the
maximum disparity or motion between two images is 70 pixels. A few shades on the
face are due to the fact that the inconsistent illumination or brightness on the face in the
input image and the aforementioned color blending we used to maintain the 3D effect of

the synthesized view. Another smiley example in the synthesized view is shown in

Figure 6.8 (j).
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(@) W) (k)

Figure 6.8: Visual comparison of expression synthesis. (a) The input image obtained
from [39]. (b) (c) The face emotions synthesized by using our method (staring and
smiley). (d) The result obtained by using the path-based method proposed by Mahajan
et al. [39] (smiley). (e) Another given image (the zoom-in view of the girl’s face). (f) (g)
The face emotions synthesized by using our method. (d) The result obtained by using
the path-based method. (i) (j) Different facial moods in a novel view synthesized by
using our method (neutral and smiley). (k) Another novel view synthesized by using our

method.

We also provide a comparison with an example of a yawning cat obtained by using

the path-based method proposed by Mahajan et al. [39]. The original picture of a cat is
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shown in Figure 6.9 (a). Given the picture, the selected frames of the expression (wink)
shown in Figure 6.9 (b) and Figure 6.9 (c) were generated by using our method. Figure
6.9 (d) shows the result obtained from [39]. Another example is the zoom-in view of the
cat’s face, as sown in Figure 6.9 (e). Given the face, Figure 6.9 (f) and Figure (g) were
synthesized by using our method. Figure 6.9 (h) shows the result obtained by using the
path-based method. Note that the details are preserved explicitly by using LOESS, such

as fur, whiskers, and tongue of the cat.

In general, we find that our method provides visually superior shape deforming or
detail preserving with minimal artifacts in most cases. On the other hand, our method
does not suffer from serious ghosting, blurring artifact, or unnatural warping, which
exists in other methods, such as the path-based method [39], view morphing [56], and
the moving least squares method [53] compared in Section 5.6. Moreover, our proposed
synthesis process does not require user-specified correspondences. Considering view
morphing and the moving least squares method, they require users’ intervention for

correspondences or handling the deformation.

(e) ® (2 (h)

Figure 6.9: Another comparison of expression synthesis. (a) The input images obtained
from [39]. (b) (c) The selected frames of a yawning cat synthesized by using our method.
(d) The result obtained by using the path-based method proposed by Mahajan et al. [39].
(e) Another given image (the zoom-in view of the cat’s face). (f) (g) The expressive
faces of the cat synthesized by using our method. (h) The result obtained by using the
path-based method.
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Chapter 7
Limbs Movement Synthesis

In a comic, a movement may be described by a series of non-continuous poses in a
sequence of contiguous frames. While two contiguous frames represent two adjacent
time-sliced poses in a continuous movement only, they cannot represent the movement
completely. Thus, generating a natutal-looking animation for limbs movement is still a
major challenge in computer graphics. We synthesize limbs movements simultaneously
according to still comic frames or low-frame-rate video frames. Basically, the
movement is considered as an essential 3D transformation problem, which consists of a
2D spatial displacement and a«1D shift in time. So we construct a time series model to

synthesize limbs movements.

In this chapter, we propose a model to analyze time series data of a character’s
motion by using a nonparametric Bayesian approach with ERBF kernel. Then we can
automatically generate a sequence of motions by using the constructed time series

model, which is adopted to fit the motion trajectories of a character.

7.1 Statistic-based Movement Synthesis

An approach of human or human-like subject movement synthesis is the
constraint-based motion synthesis [12]. It was formulated in a maximum-a-posterior
(MAP) framework. This statistical framework is approximated by only using the
likelihood and prior terms, which is equivalent to the minimization of an error function.

However, the framework only correlates with the training data. It does not necessarily
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give a small error with respect to new data.

We also adopt a statistical method to synthesize the motion. First, we simulate
key-motions of a character between two contiguous frames in a comic or a
low-frame-rate video by using kernel regression with ERBFs mentioned in Section 3.1.
A key-motion is defined as the contour of an in-between pose between the poses of a
character in two contiguous frames of a comic. Note that ERBF kernel is suitable to

perform scattered-data interpolation and is applicable to fit the human-like shape.

Besides, we obtain the regression parameters suitable for the current motion of a
character by Bayesian inference, which is based on the RIMCMC method. Note that
RIMCMC generates a sequence or a chain of samples, as mentioned summarily in
Section 3.3. Apart from the initial sample, each sample is derived from the previous
sample, which allows the algorithm to find coefficients or parameters that satisfy the
situation of current regression model: We do not use least-square error to find the
regression coefficients or parameters because the least-square method might lead to

local minimization.

However, these simulated key-motions are described discretely in the temporal
domain. For generating a-smooth and continuous character animation, we synthesize the
contours of a character’s motion following the ' motion trajectory that is obtained by the
proposed time series model called by ‘the Bayesian version of ARMA (BARMA).
BARMA integrates ARMA with a nonparametric Bayesian approach that is based on
kernel regression with ERBFs and RIMCMC-based model estimation. Note that the

model is trained from the key-motions.

After generating a sequence of motion, a local-fitting methodology is also applied
to preserve important features within contours. LOESS, as mentioned in Section 3.2, is
a way of estimating the regression surface through a multivariate smoothing procedure
by fitting a function of independent variables locally, which maintains features invariant
during deformations without unnatural distortion. Furthermore, the Bayesian version of
LOESS (BLOESS) is proposed to improve meaningful regressions by using Bayesian

inference to infer regression coefficients in LOESS.

69



7.2 Algorithm Overview

The proposed approach for generating 2D character animation from between two
contiguous poses consists of the following four components: Shape Structure, Bayesian

Regression, Time Series, and Detail Preservation.

What a wonder-
ful uight!

S Yes, but joll
Y Ki

(d) (e) ®

Figure 7.1: The overview of our approach for synthesizing limbs movements. (a)
Considering several poses in consecutive frames of the source comic, (b) the character
is extracted by level-set-based GrabCut. We construct the shape structure and refine it
(here: the same color represents as the same level in the shape structure). (d) The
key-motion is synthesized by Bayesian regression. (e) Then the time series is estimated
to synthesize the whole motion. (f) The intermediate color is overlaid on the deformed
contour by BLOESS. (c) The character animation in a comic is generated by using our

method. © Georges Remi (Hergé)
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1. Shape Structure: A hard character matte is obtained by using level-set-based
GrabCut, as shown in Figure 7.1 (b). The foreground and background are adequately
separated. The moving components are found simultaneously. Note that a moving
component denotes the basic unit of a character’s motion. To create convincing
animations of a 2D character, its shape needs to be deformed plausibly, while
maintaining the effort for generating animations on three generic body layers. These
body layers denote the topological changes of a generalized character model for
different camera viewpoints. Note that we abstract the character in order to construct the
shape structure by using the bilateral filter, as mentioned in Chapter 4. The skeleton of a
character is specified by using a predefined 2D skeleton structure.

2. Bayesian Regression: Anchor points are first sampled along the contours of a
character in a frame. The shape deformation function between these samples and
correspondences in another frame is trained by using Bayesian regression, which is
based on Bayesian inference of kernel regression. Note that the ERBF kernel is adopted
for regression analysis. Moreover, RIMCMC is-applied to infer the optimized regression
coefficients and parameters. The deformation function is used to fit the deformed
contours for interpolating key-motions. For instance, Figure 7.1 (d) shows a key-motion
obtained by using the deformation function. The function is trained from two poses of a
character shown in Figure 7.1 (b) (below). Key-motions are applied to construct the
time series model further.

3. Time Series: ARMA is a useful and stable time series model, as mentioned in Section
3.4. Given the key-motions, the entire limb movement is synthesized by using BARMA,
which integrates Bayesian estimation with ARMA. BARMA is applied to predict the
motion trajectories between the key-motions.

4. Detail Preservation: The trajectories are applied to fit contours for synthesizing a
series of motions, as shown in Figure 7.1 (e). Then the details of character are preserved
by using BLOESS. In other words, BLOESS improves meaningful regressions by using
Bayesian inference during a LOESS prediction for filling in the color and texture
information obtained from the original character, as shown in Figure 7.1 (f). The limbs
movements are synthesized in accordance with the previously fitted contours and details,

as shown in Figure 7.1 (¢).
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7.3 Bayesian-based Limbs Movement Synthesis

In this section, we explain our method in detail. The shape structure is constructed first.
Then Bayesian regression with ERBF kernel and RIMCMC is applied for key-motions
generations. Next, the time series model BARMA is constructed and used to estimate
the motion trajectory. Finally, the movements of a character’s limbs are synthesized by

using BARMA and BLOESS.

7.3.1 Shape Structure

In this stage, similar regions are extracted by approximating the dynamics of moving
curves. This method is known as the level set method mentioned in Section 5.3. After
abstracting the character by using the bilateral filter, we apply the level set method to
segment regions with the“similar color distribution. Next, the bounding box of these
regions is applied for GrabCut mentioned in Section 5.3 to separate the foreground and
background. Furthermore, the moving components of a character are found
simultaneously. Besides, the skeleton of each moving component is obtained by using
morphology-based operations {32]. Given a-predefined human skeleton structure, the
skeleton of a character is specified by moving the bones of that predefined skeleton to
align to the bones of the obtained skeletons of moving components. Furthermore, we

can refine the skeletal bones and joints in occluded regions manually.

These moving components are further partitioned into three layers manually while
animating characters from a side view. For instance, an animation might involve one
layer for the foremost arm, one for the body and the foremost leg, and one for the
remaining arm and leg. Moreover, these layers cannot move independently. They
should be stitched together to convey the impression of a connected body when
animating the character. Hence, every layer is composed of moving components,

skeletal bones, and joints. Different layers are linked by the shared skeletal joints.
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7.3.2 Point-to-point Correspondences

Basically, a shape deformation of a character is constructed for motion synthesis. Before
defining the deformation, the point-to-point correspondences of anchor points are
obtained. As illustrated in Figure 7.2, a character raises up his arm. We can construct
the point-to-point correspondences from these bones (blue lines) and joints (purple dots).
The anchor points are sampled along the contours of the character randomly. For
example, there is a point u, sampled along the contour of a right arm randomly. u, is
called an anchor point. First, we find the projection J, of the anchor point u, on the
line segment m or the extended line of E Based on the predefined skeleton
structure, the skeleton correspondence between two frames is obtained. Note that the

corresponding joints J, and J, of J, and J, are known. According to the ratio of

’

i , we can find the point J," which satisfies the constraint that LI _NIw Then
JJ NN ARRUTS

we czompute the normal vector on the point Jm' and find the intersectioh of the normal
vector and the contour of the right arm. The intersection point ui' is the correspondence
of the anchor point u, . Thus, we can obtain n anchor points sampled along the contours

in a frame and their correspondences in another frame.

Then we define the-deformation based on the mapping of n anchor points sampled
along the contour of a’ character and the ‘relative correspondences. The shape
deformation function between' these samples and correspondences in another frame is
trained by using kernel regression with ERBFs and Bayesian inference with RIMCMC
mentioned. Note that ERBF kernel is adopted for regression analysis, and RIMCMC is
applied to estimate the optimized regression coefficients and parameters suitable for the
current motion of a character. The deformation function is used to fit the deformed

contours for interpolating key-motions.
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(a) (b)

Figure 7.2: Point-to-point correspondences. (a) The character in a frame and the
zoom-in view of his right arm. (b) The character in another frame and the zoom-in view

of his right arm. © Georges Remi (Herg¢)

7.3.3 Bayesian Inference

Now, we would describe how to estimate the most suitable coefficients and parameters
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to fit the contour of a character by Bayesian inference. The central process of Bayesian
inference 1s the calculation of probability distributions on the unknown parameter
vectors. Recalling Equation (3.1) to Equation (3.4), Equation (3.6), and Equation (3.7)
in Section 3.1, k is the number of elliptic Gaussians. v, denotes the mean of the j-th
elliptic Gaussian, while g, denotes the corresponding coefficient. We define O'j’l.z as
the covariance of the j-th elliptic Gaussian along i-axis. 6, is the angle between the
major axis of ellipse and i-axis. 4, , is the transformation matrix with orientation 6,
and the aspect ratio a,”. Let £, f,,v,,and o, ? be variables and a,> term be fixed. 6,
and 4, , are set up according to the principal component of anchor points sampled from
contours. Hence, the parameter space @ can be  written as
C :{ 2V, O j,iz} forj =1,...,k . Taking D, to represent our training data, which are
the anchor points and their displacements, we are interested in inference about the
posterior probability of parameters ® conditional on the data, i.e. p(®|D[mm ) Recalling

Equation (3.6), given a new contour.point

new

(any point on the contour of character),

the target response 7, (thedisplacement of that point) can be given as an expectation.

new

E[7.

where f (.) is the estimation of our ERBF model. However, the integral is intractable

new 2 tram ] J.f new’ | train ) ®’ (7 1)

and untenable for asymptotic methods. We propose a Bayesian estimation of ERBFs.
The proposed method imitates the ERBF procedure by RJMCMC which can

approximate the integral of Equation (7.1), as described in Section 3.3.

RIMCMC proceeds by drawing samples of @ in direct proportion to p(®|D,mm)
and then approximates Equation (7.1) by

—

o+
unew’ Dtrain :| ~

E[F

new

N A

Z S (#h,,-0©
N , (7.2)

where N is the number of samples generated, called the Markov chain length, and 7, is

the burn-in period. ®, denotes the current parameter space while there are ¢ samples.

The burn-in stage discards the samples generated by the Markov chain with unstable

distribution of interest P(®|D,mm). Finally, we use Equation (7.2) to generalize the

displacement of the character’s contour. We can make predictions of the displacement
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r,, of an arbitrary new contour point u

new

.o DY using Equation (7.2). Furthermore, we
use Catmull-Rom splines to connect new positions of the contour points in in-betweens.
So the contours of key-motions are synthesized by the model. In our implementation,
we synthesize 10 key-motions between two contiguous frames in a comic or a

low-frame-rate video.

7.3.4 The Time Series Model

As mentioned above, these key-motions are described discretely in the temporal domain.
For generating a smooth and continuous limbs movement, we synthesize the movement
following the motion trajectory that is obtained by time series. We propose a
nonparametric Bayesian approach to analyze time series data representing the motion
trajectory. Recalling Equation (3.16),  the equation of ARMA can be rewritten as

follows:

]
h

Frs (Drooi D3ty el ) = Z}:¢ f(U.,)- ina,_i, (7.3)
where D, denotes a univariate time series. p and.g represent non-negative integers. ¢,
and x; are the coefficients of parameters-in this model. ¢, denotes the white noise. f{.)
defined in Equation (3.6) is applied to estimate f75(.). We develop a Bayesian version of
ARMA (BARMA) by combining ERBF kernel with Bayesian inference based on
RIMCMC. In our work, U, = (ﬁi,l,...,ﬁi’n) denotes the positions of » contour points
sampled from the i-th key-motion. ¢, is obtained by drawing a random variable. The
coefficients of f{.) have already been inferred by using RIMCMC described in Section
7.3.3. Furthermore, we perform RIMCMC to estimate the optimal coefficients ¢, and x..
In our implementation, we already synthesize 10 key-motions between two given
contiguous frames. We find that an appropriate number of frames is about 10 in our
experiments (Note that p = 10 and ¢ = 10). These key-motions are sufficient to predict
the motion trajectory of key-motions effectively. We use BARMA to obtain the motion
trajectories. Note that the entire limbs movement of a character is synthesized by fitting

contours of each frame in the temporal domain through the trajectories.
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7.3.5 Detail Preservation

The details of character are preserved by using LOESS. LOESS is employed to fill in
the color and texture information obtained from the original character. A series of
motions is synthesized in accordance with the previously fitted contours and details. As
mentioned in Section 3.2, the specific location x, within the fitted contours, which
would be filled in color and texture information, is supplied during a LOESS prediction.
LOESS performs a linear regression on the sampled contour points weighted by a kernel
centered at x,. The weight of the i-th sampled contour point x; is defined by Gaussian

kernel, as illustrated in Figure 7.3.

Recalling Section 5.5, we use the closed-form solution to find the regression
coefficients in LOESS. For the same reason, we could apply RIMCMC to sample
suitable coefficients of the current model. We use a special form of LOESS called
BLOESS to build a model fromthe-data. BLOESS allows meaningful regressions even

with fewer data points than regression coefficients. Note that we assume a wide

2
T

Gaussian prior on the coefficient vector & ~ N | 0y of the regression model in

Equation (3.10) and ~a Gamma prior on  the nfﬁ%rse of the noise variance
1

—5 = Gamma(O.l,O.l) m common with RIMCMC sampler. p,ecision 1S the precision of
T

the coefficient prior.

| -

(a) (b)

Figure 7.3: LOESS analysis. (a) The original character with a uniform grid (50x50). (b)
The zoom-in view of the image. LOESS with Gaussian kernel is applied to estimate the

weights. © Georges Remi (Hergé)
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Let X be the polynomial terms of data samples in the matrix form. Y denotes the
response representing the matrix form of the corresponding new locations. P represents
the matrix form of the precision pjecision. W represents the diagonal matrix form of
w;(x,) for ISi<m in Equation (3.8). ¢ is obtained from the marginal posterior
distribution with posterior mean ¢ =(X "wrx +P)_1 X"w?Y and modified standard
deviation. Note that the initial standard deviation is drawn from the noise variance 7’
and modified to be the upper triangle of posterior variance matrix (X "wrx +P)_]
obtained by using Cholesky decomposition. According to the estimated regression
coefficient vector £, we can use Equation (3.10) to find the new location of x, and
obtain the pixel values for filling in the color and texture information. In practice, we
approximate the character with a uniform grid, as shown in Figure 7.3 (a). We find the
new location of each vertex in the grid. Then we fill the resulting quad using bilinear

interpolation.

7.4 Summary

In brief review, the complete limbs movement synthesis process consists of the
following phases. The shape structure of the character is built first. Each layer of the
shape structure of characters consists of several moving components, for instance, head,
body, arm, and leg. The indications of moving components are then refined manually by
the predefined 2D skeleton structure. The deformed contour of each moving component
1s synthesized through Bayesian regression. Key-motions are synthesized by combining
all moving components using alpha-blending or the painter’s algorithm with connective
constraints formed from shape structures. As mentioned before, we actually create 10
key-motions between two contiguous frames in a comic or a low-frame-rate video by
using ERBFs with the parameters estimated by RIMCMC. Then we construct the time
series model BARMA to track the motion trajectory, which best matches key-motions
and generates the entire limbs movement in contours. Bayesian regression and time
series simulation are both constrained to the connection topology in the shape structure.
Furthermore, BLOESS is applied to reconstruct the details within the deformed

contours fitted from Bayesian regression and BARMA. The entire limbs movement is
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synthesized after shape deforming and detail preserving. Actually, we forecast 300
frames to generate the 10 second character animation between two contiguous frames in

a comic.

7.5 Experimental Results

The implementations were conducted on digitized images obtained from comics, such
as “The Adventures of TinTin: The Shooting Star”, which was originally produced by
Georges Remi (Hergé). The proposed time series model with nonparametric Bayesian
inference was implemented on an Intel Core 2 Quad 6600 2.40 GHz CPU and 3
gigabytes main memory, which enabled smooth limbs movements. Table 7.1 lists
performance measurements for the figures'shown. Execution time is measured in each
step. Shape Structure consists of the time of segmentation and the whole shape structure
generation. Bayesian Regression comprises: the time of ERBF kernel training and
RIMCMC sampling. RIMCMC sampling took a lot longer. All the simulations were run
with a burn-in period of'5000 iterations of RIMCMC followed by 10000 samples. Time

Series indicates the time to-construct the time-series model.

Table 7.1: Performance measurements of limbs movement synthesis.

TinTin Ball Man Bunny
Figure No. 7.1 7.5 7.6 7.7
Resolution 240%502 100x75 368583 | 319%x646
Shape Structure (Second) 7 1 6 9
Bayesian Regression (Second) 1834 43 2046 2257
Time Series (Second) 102 21 104 128
UI (Minute) 1 0 1 1
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Note RIMCMC sampling is carried out once to obtain the regression coefficients
during Time Series step because the number of ERBFs is known (recalling p = 10 and ¢
= 10 in Equation (7.3)). UI represents the time of users’ intervention to refine shape
structure further. Besides, Detail Preservation is not demonstrated since it takes less
than 20 milliseconds for each frame and is quite fast. The time of animation generation
is not shown because it varies significantly due to different numbers of frames

generated.

P
e/ T

e — X —

(a) (b)

Figure 7.4: Two major diagrams of a motion trajectory: (a) spatio-temporal and (b)

spatial.

(@) (b)

Figure 7.5: A motion trajectory of a ball. (a) Given two consecutive frames of a
bouncing ball in a low-rate-frame video, (b) the synthesized frames of animation are

shown with the motion trajectory.
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The motion trajectory obtained by the proposed time series model is described in
Figure 7.4. The spatio-temporal diagram, which is illustrated in Figure 7.4 (a), captures
the movement of a character in time. Then it can be mathematically represented as a
curve (x,y,t) in three-dimensional space or equivalently as a parametric curve (x(¢),(¢))
in the two-dimensional space. The spatial diagram can be mathematically represented as
a one-dimensional function y = fy(x). As illustrated in Figure 7.4 (b), the spatial
diagram is a projection of the spatio-temporal trajectory onto the image plane. Figure
7.5 (a) shows two consecutive key-poses of a bouncing ball in a low-frame-rate video.
There is one moving component only. The motion of the bouncing ball was synthesized
with its motion trajectory. As shown in Figure 7.5 (b), the trajectory is described by the

movement of the ball’s barycenter. The ball was animated along with the trajectory.

The results which are selected frames of 2D character animations generated by our
method are presented in Figure 7.1 and Figure 7.6. There are 10 moving components
representing the character shown in Figure 7.6 (a), such as head, right arm, right hand,
torso, left arm, left hand; right leg, night foot, left leg, and left foot. Three motion
trajectories of the man" were obtained by BARMA. The extracted frames of the

animation synthesized by using these motion trajectories are shown in Figure 7.6 (b).

(b)

Figure 7.6: Limbs movement synthesis. (a) Given two consecutive frames in the comic,

(b) limbs movement synthesis is carried out using the estimated time series.
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Furthermore, Figure 7.1 (a) shows several digitized frames of comic obtained from
“The Adventures of TinTin: The Shooting Star”. There are 8 moving components
representing the character shown in Figure 7.1 (a), such as head, right arm, right hand,
torso, left arm, left hand, left leg, and right leg. As similarly above, the character shown
in Figure 7.1 consists of three layers in the proposed shape structure. Three motion
trajectories were computed by BARMA from these three layers respectively and used to
simulate the complete animation. The results reveal the strength of our method as the
possibility of convincingly posing or animating any kind of comic characters, as shown

in Figure 7.1 (¢).

As mentioned before, DeJuan and Bodenheimer [19] synthesized in-between
contours and textures by RBF kernel and elastic registration. However, for animating
characters, their method would be operated iteratively. The whole animation was
interpolated directly. Using such image-based interpolation method they proposed may
introduce new artifacts. Our approach could generate a smooth and natural-looking 2D
character animation by using the time series estimated from Bayesian inference with
ERBF kernel. Note that'the time series model is applied to represent the trajectory of a
character’s motion. It should be noted that, the motion trajectory could be further used
to predict a character’s movement, wviseme, 'or facial expression by nonlinearly
extrapolating reasonable deformations without the restriction of a purely interpolation

method.

Figure 7.7 provides the comparison with the in-betweening technique proposed by
DeJuan and Bodenheimer [19]. Given keyframes shown in Figure 7.7 (a), they
generated the in-between bunny revealed in Figure 7.7 (b). Figure 7.7 (c) shows our
synthesized result. Note that our method is based on ERBF kernel. It is more suitable
than RBF kernel for fitting contours, which have noncircular structures, such as the
arms and legs of the bunny. Note that there are 11 moving components representing the
bunny, such as head including ears, right arm, right hand, torso, tail, left arm, left hand,
right leg, right foot, left leg, and left foot. Two layers are constructed in the proposed
shape structure. One layer consists of head, right arm, right hand, left arm, and left hand.
Another layer consists of the other 6 moving components. The motion trajectories are

also computed by BARMA for synthesizing character animation.
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(©) (d)

Figure 7.7: Visual comparison of character animation. (a) The inputs are two keyframes.
(b) The in-between frame for Bugs Bunny are generated by using the technique
proposed by DeJuan and Bodenheimer [19]. (¢c) Motion synthesis is carried out using the
estimated time series for character animation. (d) A novel view and new expression is

predicted by using the estimated time series. © Warner Bros. Entertainment Inc.
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Furthermore, the character’s novel view or expression could be forecasted directly
by using the time series model, as shown in Figure 7.7 (d). In order to maintain the 3D
effect of this new view, it sometimes uses color blending or cross dissolving to combine
the features coming from two views. Given Figure 7.7 (c) and its reverse, the motion
trajectory was estimated by the movements of facial components from Figure 7.7 (¢) to
its reverse. Figure 7.7 (c) was deformed forward to synthesize a frontal view by the
motion trajectory. Then we combined the frontal view with another frontal view
obtained by backward deformation from the reverse of Figure 7.7 (c) by using color
blending. Note that the features of the bunny’s head in the frontal view are simulated,

such as the right ear of the bunny.
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Chapter 8
Animating Passive Elements

The proposed statistical approaches have many advanced multimedia applications of
next generation environments. This chapter presents a novel application of natural
image for taking a still picture and making it move in convincing ways by simulating
natural phenomena. Given a picture of @ pond, we make it ripple. Given a picture of a
tree, we make it sway. Considering the traditional 2D animation production, the
background of the scene is the same-as the character. The production process of
building up sequences of drawn passive elements in the background is to resemble a
movement by hand. It i still a:labor-intensive artisan process. For the reason, we focus
on simulating the movements of these passive elements. In this chapter, we explore how
a set of explicitly encoded /pre-sampled data representing the passive elements’
movements in still pictures by using kernel regression with ERBFs mentioned in
Section 3.1. Simple harmonic motion is applied to estimate displacements of samples of
passive elements in next time-sliced scene. Then these positions are used to reconstruct
the whole moving passive elements. The same process to preserve details is carried out

by using LOESS mentioned in Section 3.2.

8.1 Simple Harmonic Motion

In physics, simple harmonic motion is the motion of a simple harmonic oscillator [71].
Simple harmonic motion 1s typified by the motion of a mass on a spring when it is
subject to the linear elastic restoring force given by Hooke's law. To explore simple

harmonic motion, let’s take the example of a spring with a mass M in the absence of
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gravity. If this is an ideal spring, the force is (-Ks;Xp;s) where K, is a measure of the
stiffness of the spring and Xp;, is the displacement. The force is toward the origin if that
is the equilibrium position of the spring. Newton's second law becomes

d*X,.
MTD’S =KX, (8.1)

The answer of this differential equation is
X, (1) = 4, sin(ot +¢), (8.2)

where Xp;(f) denotes the displacement of a mass at any time ¢ A, denotes the
amplitude representing the maximum displacement from equilibrium. @ denotes the

angular frequency. In this dissertation, without loss of generality, we will take ¢, also

called the phase shift, to be zero (or just defining it where # = 0 is). The motion is
periodic and sinusoidal in time. Each oscillation is identical, and thus the period,
frequency, and amplitude of the motion are constant. The motion equation (8.2) for
simple harmonic motion contains a complete description of the motion, and other
parameters of the motion can be caleulated from it. Moreover, using the techniques of

differential calculus, the velocity and acceleration as a function of time are given by

v(t):%:a)Aamp cos i, (8.3)
dt
2

a(r)= % =-w'4,,, sinot =-’ X, (). (8.4)

Since Ma(t) = —MCUZXDiS = _KStiXDis >

o = Ksi (8.5)

<

Besides, @ =27 f,,, where fr.. denotes the frequency representing the number of cycles

per second,

: (8.6)
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where Tp., denotes the period representing the time required to complete a full cycle.
These equations demonstrate that the period and the frequency are independent of the

amplitude and the initial phase shift of the motion.

8.2 Algorithm Overview

The proposed approach for animating passive elements from a single still picture
consists of the following five components: Passive Element Specification, Edge
Extraction, Movement Selection, Displacement Estimation, and Movement Prediction.
In Figure 8.1, the outline reflects the structure of our proposed method to animate
passive elements. Considering Figure 8.1, we briefly describe our method in the

following paragraphs.

1. Passive Element Specification: The user can scribble different colors in the interiors
of various regions for marking the passive elements which would be animated. Note
that each color indicates a specified movement style for that region. Real images are
simplified by using image abstraction mentioned in Chapter 4. Once the user scribbles
on the picture, the whole passive element is obtained by propagating that stroke through

the level set method mentioned in Section 5.3.

2. Edge Extraction: As mentioned previously, the process to animate passive elements
is base on shape deforming by applying the proposed statistical approaches to fit
contours. Thus, passive elements are extracted by using the proposed level-set-based
GrabCut mentioned in Section 5.3. Then the edges of these elements are extracted by

using an edge detector.

3. Movement Selection: Our system provides two kinds of movement styles for natural
phenomena simulation. For water waves, we focus on the ripple effect of water.
Moreover, the branched and trunks of trees can be modeled as approximated physical
systems like a simple pendulum. Wind force causes trees to sway. Another natural
phenomenon is to model the periodical oscillation effect of trees. Besides, the dynamics
of passive elements are driven by the wind force. The driving wind force causes the

wave motion of these elements. Hence, the user could control the wind direction, the
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wind speed, the amplitude, and the frequency of the wave motion.

A Still Image

Passive Element

Specification

Edge Extraction

Displacement Movement Passive Element
Movement Estimation Prediction Animation

Selection

Direction
Speed
Amplitude
Frequency

Original Image Result

Figure 8.1: The overview of passive element animation with the example of the
Japanese Temple named Temple of the Golden Pavilion (from Japanese term

Kinkaku-ji).
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4. Displacement Estimation: As mentioned above, our approximated physical system
is modeled by simple harmonic motion. The displacements of the samples, which are
sampled on the interiors of passive elements, are estimated by applying simple

harmonic motion with the specified parameters.

5. Movement Prediction: All displacements of the samples are used to compute the
distortions along x-axis and y-axis of pixels. These distortions are encoded explicitly by
the regression surface using kernel regression with ERBFs. By using the representation,
the movements of passive elements are simulated. Finally, LOESS is applied to

preserve details if necessary.

8.3 Passive Element Animation

In this section, we describe our approach toe simulate the movements of passive

elements. We focus on the details of each movement style, i.e., water waves and trees.

8.3.1 Extraction and Specification

In addition to the paintings or drawings, real images are simplified by using the bilateral
filter. Once the user scribbles on the image, regions with a similar color distribution of
the drawing or the corresponding filtered image can be sensibly segmented by a single
scribble propagation using the level set method. The segmented regions, which are
propagated from the same scribble, indicate that they belong to the same passive
element. Note that if the color distribution is too similar between the background and a
passive element, the user should refine the scribble to mask the region of that element

manually, as showed in Figure 8.2 (a).

Level-set-based GrabCut is applied to obtain the passive elements, which we want
to animate, through analyze these segmented regions iteratively. Next, the contours of
these elements are extracted by using Sobel Operator [32] for further sampling. Besides,
different scribbles with different colors represent various movement styles. The user

could choose parameters of each motion type to control a specified motion, i.e., the
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wind direction, the wind speed, the amplitude, and the frequency of the wave motion.
Furthermore, the ripple effect of water and the oscillation effect of trees driven by the

wind force are designed to simulate specified natural phenomena.

8.3.2 Water Waves

In order to simulate the movement of water effectively, we assume that the water
surface is discrete and consists of water particles. We sample the water surface with a
uniform grid (50%50), as shown in Figure 8.2 (b). Each sample is the water particle on
the water surface defined as the grid point on the uniform grid. Next, according to the

movement style, we estimate the displacements of these sampled water particles.

Based on the observation of the ripple effect, a pebble thrown into a pond will
produce concentric circular ripples, which move outward from the point of impact. The
ripple is the wave motionbased on harmonic oscillation. Thus, the point of impact is

determined by the user-specified wind direction first.

(a) (b)

Figure 8.2: The example of the Temple of the Golden Pavilion for segmentation and
sampling. (a) Users should mask the whole region of the pond, since its color
distribution is too similar to the background. (b) The pond with a uniform grid

(50x50).
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(a) (b)

Figure 8.3: The example of the wind blowing downward. (a) The sources of the wave
(orange dots) are selected. (b) The zoom-in view of the image. Note that Py (purple dot)
denotes the point of impact. Pr; (green dot) denotes the sample of the water particle,

whose displacement is estimated from Ps.

Ps
(Initial position)

Propagation
velocity

Figure 8.4: Schematic diagram of simple harmonic motion.

For example, the top point Pgs of the intersection between the grid and the outer
contour of the pond in image space is chosen as the point of impact when the wind
direction is downward. Moreover, the user-specified amplitude is considered as the
displacement of the water particle at this point. Besides, the grid points on the vertical,
horizontal, or diagonal direction of Pg are determined to be the sources of the wave in
terms of the wind direction. Figure 8.3 (a) shows Pg (purple dot) and the sources of the
wave (orange dots) when the wind direction is downward. Note that the sources of the
wave are selected according the direction vertical to the wind direction. The water

particles’ displacements at these sources are the same as the displacement at Ps, which
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is the user-specified amplitude. Then we could estimate each sample’s displacement by
applying simple harmonic motion. Recalling the equations reviewed in Section 8.1, the
motion equation is derived by the differential equation to time dimension in the spring
system. Now, we simulate the traveling wave to estimate samples’ displacements like
the displacement of P7; (green dot). As illustrated in Figure 8.4, x-axis indicates the
position of the grid point in image space. y-axis indicates the water particle’s
displacement in vertical direction. Propagation velocity v equals to the user-specified
wind speed. A denotes the wavelength. 4 denotes the amplitude of the wave
representing the displacement of the wave in the initial position. In other words, 4
represents the initial displacements of the point of impact Py and the sources of the
wave. We could estimate the displacements of samples at different time slices from

initial displacements of Pg and the sources of the wave respectively.

y(x,t)= Asin%{(x—vt), (8.7)
= (8.8)

where fr. and @ are the frequency and angular frequency respectively, as defined in
Section 8.1. Moreover, a'traveling wave would take the form of a sine wave. The
motion relationship "distance = velocity xtime" is the key to the basic wave relationship
of the wave frequency, wavelength, and propagation velocity. With the wavelength as
distance, this relationship becomes A =vT,,. Then using fg, = 1/T,, gives the

standard wave relationship:
V= fFreﬂ" (89)

Thus, we could estimate A =v/f,,,. Finally, we assemble Equations (8.7), Equation
(8.8), and Equation (8.9) to compute all displacements of samples, which are the
displacements of the water particles on all grid points. Note that the displacement of
each sample would be computed from its the nearest source of the wave along the wind
direction. After computing all displacements of samples, we further estimate the
displacements of these samples’ 4-neighbors. Then we would approximate the
distortions of these samples. Note that the degree of distortion is mainly determined by

the gradient of the water surface, the refraction, and the depth of the water.
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Pi.j—1

Pi—1,j Pi,j Pi+1,j

Pi,j+1

Figure 8.5: The diagram of an arbitrary sample (P;;) and its 4-neighbors (Pi.;, Pi+1,,

P;j.1, and P;;+;). Each point represents as a pixel in image space.

We only approximate them by analyzing the gradient since the distortion increases
when the water surface is more declivous. Hence, the difference between the

displacements of the water particle’s 4-neighbors is represented as the distortion of that

particle:
Axo;y =D, (Pi+l,j ) =Dy, (Pi—l,j)’ (8.10)
Ayoy :DDis(Pi,j—l)_DDis <Pi,j+1)’ (8.11)

where Pi.;j, Pi+1j, Pij.1, and’ Pyjs is shown’in Figure 8.5. Ax,, denotes the distortion
along the horizontal direction of P;; in'image space. Ay,, denotes the distortion along
the vertical direction in image space. Dp;(.) is the displacement of its parameter. Note
that these distortions represent the coordinate offsets along the horizontal direction and

the vertical direction in image space (offsets of x-axis and y-axis).

Furthermore, we could obtain all samples’ distortions along x-axis and y-axis. Each
distortion is encoded explicitly by the regression surface using kernel regression with
ERBFs. By using the representation, we could find the distortions of all water particles
on the water surface. That means the distortions of all pixels in image space which
belong to the passive element (water) are obtained. In the other words, these distortions
are used to train the kernel regression model, as described in Section 3.1. In general, we
formulate this problem as regression analysis. Recalling Equation (3.6), the relationship
of the response 7 = (Axoff,AyOff) and the predictor # representing the coordinate of

each pixel can be constructed. Then the trained model is used to fit the distortions of all
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pixels in image space which belong to the passive element (water) by Equation (3.6).
Hence, new pixel values of all pixels are determined by copying the pixel values at new
positions (the original coordinate plus the offsets). The movement of the passive

element is simulated.

8.3.3 Trees

Simple harmonic motion is found if there is a small enough deviation from stable static
equilibrium. For example, touch the water surface lightly or knock the drum surface.
For a small wind, the leaves on the tree show simple harmonic motion. For a stronger
wind, branch of the tree will show simple harmonic motion. For a huge wind, the whole
tree might show simple harmonic motion. Now, we provide an approximated physical

system to simulate the swaying trees,in spirit to the motion of a simple pendulum.

First, we find the bounding box of the extracted trees, which is obtained by the
method mentioned in Section 8.3.1. As-illustrated in Figure 8.6, the tree is enclosed by
the bounding box (red tectangular). Then the skeleton of the tree named the major axis
of the tree is chosen through the intersection between the tree and the bounding box.
Note that the blue circle indicates the tip of the tree. Another end of the major axis is

called the root.

Next, we could compute the displacement of the tip by simple harmonic motion.
Based on the observation, the driving function that causes trees to sway is typically
wind. Then the elastic restoring force of the tree makes the tree back to the equilibrium
position. The motion of the tree can be estimated by using Equation (8.2) and the
user-specified parameters. Note that the circular motion of the tip is considered as the
horizontal motion since the angle of sway & shown in Figure 8.6 (b) is smaller enough.
Recalling Equation (8.2), the displacement of the tip is estimated. Then we compute the
equation of the major axis and sample the axis uniformly. According to the extreme
position of the tip (the equilibrium position plus the displacement) and the position of
the root, the corresponding extreme positions and the displacements of other samples

are estimated approximately.
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(@) (b)

Figure 8.6: The diagram of the tree with simple harmonic motion. (a) The oscillation of

major axis of the tree. (b) The zoom=in view of the motion of the major axis.

Furthermore, these-displacements are encoded explicitly by the regression surface
using kernel regression-with ERBFs. It is.similar-to the process of the water waves.
Moreover, the contours of the tree are extracted by using the method described in
Section 8.3.1. By using the representation, we could find the displacements of the
contours. That means deforming the shape of the tree in image space is carried out.
Finally, the details, features, or textures from the fitted contours interiors are preserved

by using LOESS. Hence, the movement of the passive element is simulated.

8.4 Experimental Results

We have applied our system to several photographs and famous paintings. Here, we
show some of the results. First, we simulated the water ripple effect in the pond. We
used the small amplitude of wave to give the ripples a fine-grained look. Figure 8.7
shows the extracted frame from the resulting passive element animation. We use this
example to demonstrate that we can change the appearance of the water by controlling

the specified parameters. Furthermore, we show another look of the water under
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different wind speeds, directions, and frequency. Figure 8.7 (a) is the original real image
of the Japanese Temple named Temple of the Golden Pavilion (from Japanese term

Kinkaku-ji). Figure 8.7 (b) is the animated picture with higher wind speed. Figure 8.7 (c)

shows the wind of different direction. Figure 8.7 (d) shows the rougher water surface.

L ..

(2) (b)

(©) (d)

Figure 8.7: The result of the Temple of the Golden Pavilion. (a) The original image. (b)
Simulating the ripple effect with higher wind speed. (c) The different wind direction. (d)

The rougher water surface.
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(a) (b)

Figure 8.8: The result for swaying plants: (a) The original painting of Vincent van
Gogh’s Still Life Vase with Fourteen Sunflowers. (b) The extracted frame from the

animated painting.

Moreover, our model works even better with paintings. Figure 8.8 shows the result
of the swaying plants. ForVincent van Gogh’s Still Life Vase with Fourteen Sunflowers,
we used our model to animate 3-layers of plants. Note that the resulting animation is
smooth and impressive. The viewer can find out that the flowers swaying in a natural
way with the simple harmonic motion model. It is just like the flowers’ motions are

driven by wind blowing.

Furthermore, Figure 8.9 provides an example to make a tree sway. Note that we
estimate the motion of the tree with the angle of sway 0 < 5. Note that the original
circular motion of harmonic oscillation can be considered as the horizontal motion
Figure 8.9 (a) shows the original painting of Vincent van Gogh’s “Country Road in
Provence by Night”. The extracted frame in a different time slice of the swaying tree is
shown in Figure 8.9 (b). Moreover, the pattern of the tree is also preserved by using

LOESS.
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(a) (b)

Figure 8.9: Another example for a swaying tree. (a) The original painting of Vincent
van Gogh’s “Country Road in Provence by Night”. (b) The extracted frame from the

animated painting.

Table 8.1: Performance measurements for passive element animation.

The Temple of the St.l e Vase Country Road in
g with Fourteen .
Golden Pavilion Provence by Night
Sunflowers
Figure No. 8.7 8.8 8.9
Resolution 608x480 632x849 467x599
Shape Deforming 3096 3044 2602
(Millisecond)
Detail Preserving 0 1443 980
(Millisecond)
UI (Minute) 1 2 1

Finally, Table 8.1 lists performance measurements for the figures shown. The
proposed model for passive element animation was implemented on an Intel Core 2
Quad 6600 2.40 GHz CPU and 3 gigabytes main memory, which enabled to apply the
proposed statistical approaches to animate passive elements for simulating natural
phenomena effectively. It takes from several seconds to several minutes to animate a
picture depending on the complexity of the input picture. Shape deforming represents

the time for training and fitting with kernel regression with ERBFs. Detail preserving
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represents the time for training and fitting with LOESS. UI represents the time of users’
intervention to specify the passive element, refine the scribble to mask the region of
passive element, and further indicate movement styles on different passive elements.
Note that we only deformed the water surface shown in Figure 8.7. We simulated the
ripple effect with the distortion of the water. Hence, we did not perform the detail
preservation procedure in that scene. Furthermore, there are 3 layers specified by users

in Figure 8.8 manually. Each layer represents different frequencies of movements.
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Chapter 9
Conclusion and Future Work

In this dissertation, we have introduced a novel set of statistical approaches which
expand the working range of 2D character animation in three directions: novel view
generation, expressive talking face simulation, and limbs movement synthesis. We have
also presented a novel application of the proposed statistical approaches to animate still

pictures for passive element.animation.

9.1 Conclusion

In particular, this dissertation involves the following major works:

The Statistical Approaches. The statistical approaches are investigated to eliminate the
time-consuming aspects of the traditional 2D animation production. By considering the
traditional 2D animation, some key limitations and fallacies are identified. That is the
problem of the repeated drawing and coloring of all characters in all frames. To this end,
we particularly focus on automatically calculating the movements of characters in
in-between frames. We use regression analysis to estimate and forecast the variations of
the shapes of characters during deformations in image space. Bayesian inference is used
for adding the smooth variety during regression analysis and improves meaningful
regressions even with fewer data points than regression coefficients. Moreover, the
motion of a 2D character is a 3D transformation problem in essence, which consists of a
2D spatial displacement and a 1D shift in time. Considering the temporal relation, time

series analysis is applied to estimate the moving trajectory of a character’s limb for the
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smooth motion simulation.

Shape Deformation and Detail Preservation. This dissertation proposes a novel
method for 2D Character animation. The character’s motion is analyzed and predicted
by nonparametric regression. That is, kernel regression with ERBFs is used to deform
the shape of a character in image space directly for synthesizing the motion of a
character. The extension to ERBFs decreases fitting time involves in alleviating the
motion synthesis problems that are commonly observed for characters in noncircular
structures. Moreover, LOESS is used to preserve the details from the deformed shape
interiors by filling in the color and texture information obtained from the original
character in the given image. The animation process is similar to machine learning in
artificial intelligence or neural network community. In terms of different training data
sets, we could synthesize different kinds of motions of a character, such as a novel view

or an expressive face with lips movement from speech.

The Temporal Relation and Bayesian Estimation. We further consider the temporal
relation between the given poses-of a character. We use time series analysis, which is
modeled by a nonparametric approach, and Bayesian inference to improve the original
nonparametric regression model. Hence, Bayesian regression based on RIMCMC
sampling which can be“applied to choose the suitable parameters, BARMA, and
BLOESS are proposed for  synthesizing the movements of multiple limbs
simultaneously. Note that the Bayesian framework provides a more principled solution
and better results than previous methods. Moreover, BARMA is flexible and appropriate

for any data distribution for data prediction in the temporal domain.

An Application of Animating Passive Elements. This work could also be extended to
focus on another novel multimedia application. That is animating pictures for passive
element animation which are subject to natural forces like wind. We apply our proposed
statistical approaches to animate passive elements. With the help of the physics, we are
able to synthesize natural phenomena with time-varying motions from still photographs

or paintings.

Furthermore, the results reveal that the generated 2D character animations with
minimizing unnatural distortions. However, the prediction performance of the proposed

method is considered strongly by correspondences of the input pictures. The proposed
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method will not produce a reasonable result for the lower degree of similarity between
the input pictures. For example, one is the back-face view, and the other is the
front-face view. It may be solved through the extra information needed to handle the
motion of rotation with users’ interaction. Besides, animating passive elements in the
painting with the apparent strokes may cause unnatural movements. We sample the
element uniformly and use these samples’ displacements to predict the whole element’s
movement. Thus, it lacks the information to indicate each stroke’s orientation or its
moving direction. It could be solved by providing additional vector fields or painterly

art maps [75] to guide the flow of the strokes.

9.2 Future Work

Future studies should address'the following issues to build upon the ideas presented

here.

A More Efficient Fitting Method. As shown in Table 7.1, RIMCMC sampling takes a
lot longer since all the simulations are run with ‘a burn-in period of 5000 iterations of
RIMCMC followed by 10000 samples. RIMCMC sampling is the most time-consuming
part in our system and usually consumes more than 90 percent of the overall time for
synthesizing limbs movement. Hence, Enhancing the performance and quality of the
scattered ERBFs, LOESS fitting algorithm, and Bayesian inference based on RIMCMC

1s an important task.

A Motion Retargeting Module. 7ime series is used to analyze and estimate the motion
trajectory of the character. The estimated motion trajectory could be applied to retarget
the motion onto any similar humans or human-like characters. The motion retargeting

technique would empower a much quicker animation production.

Virtual Human Generation. Deforming characters in a 2D image has received lots of
interests. Moreover, it is very useful for advanced intelligent multimedia applications
for next generation environments utilization. Thus, the proposed method is especially
suitable for animation production or intelligent multimedia applications, such as virtual

human generation. The created virtual human can be treated as the spokesman or
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substitute in various services of the next generation application domain, such as remote
education, remote diagnosis, network gaming, virtual shopping, digital photo frame,

video conference, and so on.

Furthermore, there are a number of research opportunities in other multimedia

applications for the future.

Progressive Image Abstraction. In non-photorealistic rendering, a progressive image
abstraction approach could be proposed by developing two-scale decomposition
mentioned in Chapter 4. More specifically, let / denote the input image for which we
would like to construct k-level decomposition. B;; is the 1-level base layer, which is the
filtered result of / by bilateral filtering. The corresponding detail layer D;; is the
division of the original image by By;. Then B, is 2-level base layer, which is the
filtered result of B;; by bilateral filtering. The corresponding detail layer Dy, is the
division of B;; by Bj,. For this reason, By, is k-level base layer, which is the filtered
result of B; 4.5 by bilateral filtering. The corresponding detail layer Dy, 1s the division of
Bra-1) by Bri. Moreover;. the relationship between /, an arbitrary base layer, and the
corresponding detail layer are reversible. Based on the multi-scale decomposition, users
can control various degree of detail of the scene in-a spatially varying manner. That is,

users can provide more detail in area of interest.

A Bobbing Boat and Flowing Clouds Simulation. A boat on the water surface
simulated in Section 8.3.2 is rolling and moving vertically downward. It is almost in
oscillatory motion. We can approximate the motion of the boat. According to the
simulated wave shape of water, the displacement of the boat on the carrier wave is
estimated through affine transformation. More specifically, we estimate the waterline by
naval architecture or fluid mechanics. The displacements of the points sampled along
the waterline equal to the displacements of the water particles at these samples. Then
nonparametric regression mentioned in Section 3.1 and Section 3.2 could be use to fit
the movement of the whole boat. Besides, another common passive element for scenic
pictures could be simulated is cloud. We could specify a translational and rotational
motion to cloud instead of simple harmonic motion. For global cloud movement, for
example, a gradual translation along the wind direction emulates prevailing wind effects.
Moreover, particles forming the cloud may rotate with velocity determined by the wind.

Hence, we sample the contours of clouds and estimated the displacements of samples
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through affine transformation. The proposed statistical approaches are applied to fit the

motions of clouds.

v
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