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以統計方法為基礎之二維角色動畫合成 

 

研究生: 周芸鋒                               指導教授: 施仁忠 教授 

 

國立交通大學資訊科學與工程研究所博士班 

 

摘        要 

 

傳統二維動畫製作是屬於一個勞動密集型態的製作過程，也就是以人工手繪的方

式逐格繪製該動畫中每一格人物角色的姿勢，且以固定的畫面更新率，產生該人

物角色的動作或行為，而製作過程中，耗費大量的人力與物力在繪製每格人物角

色的姿勢，與為其所繪製之姿勢進行上色工作。為了節省上述傳統二維動畫製作

所耗費的人力與成本，本論文提出一個新的動畫合成方法，取代傳統人工手繪的

方式，我們的方法以統計分析與推論為基礎，以較為有限的人工介入，來合成逼

真的二維角色動畫。我們透過統計學中的無母數迴歸分析，有效率地描述靜態影

像中，預先採樣的角色位移資訊，藉此合成該靜態影像中角色的二維動畫。此外，

二維角色動畫可以被視為一個三維的空間與時間轉換問題，我們根據數張連續的

靜態影像中的同一人物，研究其在不同時間點個別姿勢之相對關係，我們採用時

間序列的概念，來分析與預測該角色一連串適宜的連續動作。 

在本論文中，我們把二維角色動畫製作分成不同的多媒體應用，包括新視角

的合成、臉部表情與說話嘴形的模擬、肢體動作合成。如上述所示，我們透過無

母數迴歸，產生出由另一個視點觀看影像中人物角色的效果，且進一步模擬該角

色與輸入語音同步的說話嘴形和臉部表情。針對影像中該角色的輪廓資訊，本論

文將介紹一種特殊的資料參數表示式：橢圓徑向基底函數，主要用於描述於橢圓

表面採樣之資訊。我們利用無母數迴歸當中的橢圓徑向基底函數核迴歸去描述並
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預測該人物角色形狀的改變，藉此產生角色動畫，而且，為了在角色變形之後，

仍維持原有的角色細節或特徵，無母數迴歸中的局部加權迴歸則被用來加強區域

細節的控制，藉此保有該角色的原有特徵。此外，我們進行時間序列分析，從數

張連續影像中，針對影像中同一人物角色在不同時間點的姿勢，來分析該角色的

肢體移動軌跡，我們提出一個無母數貝氏方法來估計代表該移動軌跡的時間序

列，並依照所估計的時間序列，模擬該角色的行為或動作。本論文最終將更深入

探討如何透過所提之統計方法來合成被動元件的動畫，也就是合成由自然界外力

所造成的被動元件移動，如合成出因風吹拂，造成樹木搖曳與水起漣漪的效果。 

本論文提出一個從靜態影像中，有效率地合成出二維角色動畫的方法。實驗

成果充分驗證本論文所提方法之可行性與可塑性，不但能夠有效模擬出逼真的角

色動作，所估計的移動軌跡能因應所提供角色不同時間點的姿勢而變化，產生出

的動畫亦減少不自然的扭曲現象，另一方面，本論文所提方法特別適合於智能化

的多媒體應用，可用於如虛擬人物的合成，我們也相信此方法能加速整個動畫製

作的過程。 
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ABSTRACT 

Traditionally, the production of 2D animation is a labor-intensive artisan process of 

building up sequences of drawn images by hand which, when shown one after the other 

one at a fixed rate, resemble a movement. Most work and hence time is spent on 

drawing, inking, and coloring the individual animated characters for each of the frames. 

Instead of the traditional animation generated by hand, we introduce a novel method by 

enhancing still pictures and making characters move in convincing ways. The proposed 

method is based on the statistical analysis and inference, while minimizing users’ 

intervention. We adopt nonparametric regression to efficiently analyze the 

displacements of the pre-sampled data from characters in still pictures and use it to 

generate 2D character animation directly. Furthermore, 2D character animation is 

regarded as 3D transformation problem, which consists of a 2D spatial displacement 

and a 1D shift in time. Hence, we focus on the temporal relationship of different poses 

of the same character in these still pictures. Time series is applied to analyze the 

character’s movement and forecast a sequence of the suitable limbs movement of the 

character. 

In this dissertation, 2D character animation involves novel view generation, 

expressive talking face simulation, and limbs movement synthesis. Considering 
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characters in still pictures, we focus on nonparametric regression to generate a novel 

view and an expressive facial animation synchronized with the input speech of a 

character. Kernel regression with elliptic radial basis functions (ERBFs) is proposed to 

describe and deform the shape of the character in image space. Note that the novel 

parametric representation, ERBFs, can be applied to represent the observations of the 

shape on the unit ellipse. For preserving patterns within the deformed shape, locally 

weighted regression (LOESS) is applied to fit the details with local control. 

Furthermore, time series is used to analyze the limb movement of a character and 

represent the motion trajectory. Note that a character’s motion could be described by a 

series of non-continuous poses of a character from a sequence of contiguous frames. 

According to these poses, we investigate a nonparametric Bayesian approach to 

construct the time series model representing the character’s motion trajectory. Then we 

can synthesize a sequence of the motion by using the motion trajectory. Last but not the 

least, we also investigate how to adopt the proposed statistical approaches mentioned 

above to animate passive elements. The movements of passive elements involving 

natural movements that respond to natural forces in some fashion like trees swaying and 

water rippling could be synthesized. Given a picture of a tree, we make it sway. Given a 

picture of a pond, we make it ripple.  

The solutions are developed to animate photographs or paintings effectively. 

Experimental results show that our method effectively simulates plausible movements 

for 2D character animation. They also show that the estimated motion trajectory best 

matches the given still frames. In comparison to previous approaches, our proposed 

method synthesizes smooth animations, while minimizing unnatural distortion and 

having the advantages of being more controllable. Moreover, the proposed method is 

especially suitable for intelligent multimedia applications in virtual human generation. 

We believe that the provided solutions are easy to use, and empower a much quicker 

animation production. 
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Chapter 1

 

                 

Introduction 

2D characters in motion have intrigued animators and computer graphics researchers for 

several decades. Most animations of 2D characters have been created using the 

traditional and often highly labor intensive keyframing technique, in which computers 

are employed to interpolate between animator-specified keyframes. It costs a lot of 

people and money to produce a sequence of animation. More recently, increasingly 

automated techniques for synthesizing realistic characters’ motion have drawn much 

attention. In this dissertation, we will investigate the problem of producing animation 

which captures the smoothness of motion and behavior. These animations are 

intrinsically complex and present a challenge to the computer graphics practitioner. 

Animations of this sort are of interest not only because they attempt to recreate 

fascinating natural scenarios, but also because they have broad applicability. They can 

be used in the entertainment industry and advanced intelligent multimedia applications 

for next generation environments utilization, such as special effects in movies or in 

video games, real-time live performance [41], and enhancing graphical interface [63]. 

 

1.1 Overview of Traditional 2D Animation Production 

In order to describe which parts of works during animation production most time or 

money is spent on, we give a brief overview of the traditional animation process in 

general first, as illustrated in Figure 1.1. 
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Figure 1.1: The traditional 2D animation production. 
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The traditional 2D animation production begins with preparing a story, including 

the related scenes, objects, and scripts designs. Then the story is refined into a 

storyboard. A storyboard is a visual layout of events allowing the animators to plan the 

flow of the plot and the composition of the imagery. Next to the storyboard, model 

sheets are also prepared. These sheets include the extreme poses of the characters to be 

drawn from which intermediate attributes can be interpolated, such as position, 

expression, color, size, etc. 

According to model sheets and an imageboard which is a more detailed storyboard, 

key animators draw keyframes representing some scenes or several poses of a 

continuous action and behavior of the characters in the story. Moreover, keyframes 

show the major features of each character’s action and behavior. After removing 

redundant lines in keyframes, assistant animators produce the in-betweens by 

considering those keyframes in order to yield a smooth animation. Unlike live action, 

where the camera is running continuously, each frame of an animation film is shot one 

by one. For each frame, a line drawing (not colored) is prepared to perform a line test 

for removing redundant lines or strokes. These drawings get mechanically aligned with 

the purpose of verifying that the movements are correct and that characters interact 

accurately. Then each frame is composed of several layers, which will be composited 

into a single frame in the compositing stage. Moreover, special effect artists can 

improve the constructed scene with some special effects, such as fog, smoke, or fire. 

These effects are created by compositing these layers. Furthermore, each frame is 

transferred or colored from paper onto a transparent sheet of celluloid by xerography. 

The transparent quality of celluloid allows for stacking up all sheets on each other. Thus, 

one sheet of celluloid can be seen underneath another sheet. The opaque background 

can be seen underneath all sheets of celluloid. Note that we propose a novel method by 

applying statistical concepts to animate 2D character from still keyframes or pictures 

instead of in-betweening step in traditional 2D animation production. In this dissertation, 

the coloring step could also be carried out by preserving details of the animated 

character while giving the colored keyframes or pictures. 

Finally, an animation is produced by shooting frame by frame at a certain rate, 

such as 24 frames per second. A soundtrack is recorded, so that the animation may be 

more precisely synchronized to the soundtrack. In this last step, the soundtrack is 
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synchronized with the character’s action and behavior, and added to the video stream. 

Hence, a movie or an original video animation is produced. 

 

1.2 Motivation 

Traditionally, 2D animation production has been a labor-intensive artisan process of 

building up sequences of drawn images by hand. During the whole process, most work, 

and hence time, is spent on two tedious tasks: in-betweening (or drawing) and coloring 

(or inking) of each in-between frame, which take up approximately 60% of the total 

labor required in traditional animation production [79]. Instead of in-betweening and 

coloring, animating still keyframes or comics becomes a significant research direction 

to reduce the workload of animators and production costs. Computer graphics 

researchers have focused on making still pictures move in convincing ways and creating 

lively 2D animation, while minimizing users’ intervention. For example, when we view 

a photograph or painting, we perceive much more than the static picture before us. We 

supplement that image with our life experiences: given a picture of a tree, we imagine it 

swaying; given a picture of a pond, we imagine it rippling; given a picture of a human, 

we imagine him laughing, talking, or walking.  

 

1.3 Methodology 

This dissertation presents a method for animating still pictures, such as photographs and 

paintings. Generating a natural-looking animation from an image can be considered to 

analyze and simulate the motion of elements in that image. For example, Chuang et al. 

[16] animated passive elements, which are subject to natural forces like wind, by using 

stochastic motion textures to deform pictures. Besides, Hornung et al. [30] achieved the 

motion of photographed persons by projecting them to 3D motion data.  

In this dissertation, 2D Character animation involves novel view generation, 

expressive talking face simulation, and limbs movement synthesis. We explore how a 

set of explicitly encoded pre-sampled data representing a character’s motion in still 
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pictures. Statistical approaches are applied to analyze that motion by using 

nonparametric regression which consists of kernel regression with elliptic radial basis 

functions (ERBFs) and locally weighted regression (LOESS). Note that kernel 

regression with ERBFs is used to fit the contours of a character and applied to infer the 

corresponding displacements to synthesize a novel view or an expressive talking face. 

Besides, LOESS is used to preserve important textures, patterns, or features within the 

synthesized outer contours of a novel view or an expressive talking face (that is filling 

in the color and texture information obtained from the original character in the given 

picture). 

Our proposed approach is based on the prediction abilities of both kernel 

regression and LOESS [29, 42]. Kernel regression approximates the contours of the 

deformed character between two key-poses, which are two poses of a character in the 

given images, by the prior use of a set of kernel functions. Previously, researchers [70] 

presented image morphing techniques using radial basis functions (RBFs) with 

spatially-limited circular Gaussian distribution functions for the kernel. In contrast, 

circular Gaussian is not an appropriate choice to fit contours, which have noncircular 

structures, as shown in Figure 1.2. Figure 1.2 (a) is the original image, Figure 1.2 (b) 

using the circular Gaussians needs five kernels to fit the contour of the right arm of the 

character, and Figure 1.2 (c) using the elliptic Gaussians can fit the right arm and left 

leg with the same number of kernels. Using too many circular Gaussians increases the 

learning and fitting time. In this dissertation, we develop character deformation in image 

space using ERBFs specifically known as elliptic Gaussians, which provide less fitting 

time. Although ERBFs require more computation during optimization, better quality is 

obtained with fewer number of basis functions.  

Except the globally smooth shape deformation with contours fitting mentioned 

above, the local-fitting methodology is also applied to preserve important features 

within the contour. For example, the wood grain of the character in Figure 1.2 (a). 

LOESS is used to preserve the features of details. LOESS is based on the minimized 

weighted sum of squared residuals. It is a way of estimating the regression surface 

through a multivariate smoothing procedure by fitting a function of independent 

variables locally. 
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(a)                   (b)                  (c) 

Figure 1.2: Comparison of the number of basis functions using Gaussians. (a) The 

original image. (b) Using RBFs to fit the contour of right arm with five kernels, and (c) 

using ERBFs to fit right arm and left leg with the same number of kernels. 

In addition, a motion is essential by a 3D transformation problem which consists of 

a 2D spatial displacement and a 1D shift in time. Time series is integrated into the 

original model for forecasting the limbs movements of a character. We propose a 

Bayesian approach named by the Bayesian version of autoregressive moving average 

(BARMA) for time series analysis, which is based on Bayesian inference [78] by using 

the reversible jump Markov chains Monte Carlo (RJMCMC) method [14]. RJMCMC 

has advantages for parameters estimation. Note that RJMCMC generates a sequence or 

a chain of samples. Apart from the initial sample, each sample is derived from the 

previous sample, which allows the algorithm to find coefficients or parameters that 

satisfy the situation of current regression model. Moreover, ARMA is a useful time 

series model for human motion or stable time series data. Hence, BARMA is adopted to 

fit the motion trajectories of a character. BARMA, which integrates Bayesian inference 

with ARMA, is applied to predict the motion trajectories of the limbs. Then the 

trajectories are applied to synthesize the behaviors or limbs movements of the character. 

In Figure 1.3, the outline reflects the structure of our proposed method for 2D 

character animation. Considering Figure 1.3, we briefly summarize our method in the 

following paragraphs. 

1. Image Abstraction: This dissertation focuses on animating arbitrary still images for 

2D character animation. Considering a real image, such as a photograph, it may have 

16-bits or even 24-bits per color channel. Too many unimportant or unnecessary 
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contours of the character in that image are calculated to animate the character. It would 

waste the computation time and CPU power. Hence, we would simplify the color 

representation of the real image and acquire proper contours of the character in that 

image. The two-scale image abstraction is used to obtain the appropriate contours by 

eliminating redundancy information. The proposed two-scale image abstraction is based 

on the bilateral filter. 

 

 

Figure 1.3: The overview of 2D character animation with the proposed statistical 

approaches. 
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2. Statistical Approaches: We adopt statistical approaches to animate 2D character. 

The proposed approaches include nonparametric regression, Bayesian inference, and 

time series. Nonparametric regression and time series are used to forecast a character’s 

motion. Bayesian inference is employed to estimate the parameters or coefficients 

during the regression analysis and time series analysis. Hence, based on the prediction 

abilities of statistical analysis, we would synthesize a smooth and suitable character 

animation. The Bayesian approach improves meaningful convergences even with fewer 

data points than the equation parameters or coefficients. 

3. Novel Views: In order to generate novel views, we adopt nonparametric regression, 

i.e. kernel regression with ERBFs and LOESS. For view morphing, shape deforming is 

carried out by using kernel regression with ERBFs, which is suited to the natural shape 

of characters like the character’s head and body, as mentioned previously. Besides, 

features invariant is maintained during shape deformations by using LOESS while 

minimizing unnatural distortion. 

4. Novel Expressions and Visemes: Given suitable moving templates, such as the 

training data set consisting of the mouth shape and the positions of other facial features 

for facial expression simulation and viseme synthesis, the proposed nonparametric 

regression model composed of kernel regression with ERBFs and LOESS would be 

trained and further applied to create lively animated talking faces and synthesize the 

stylistic variations of facial moods and expressions. 

5. Novel Limbs Movements: Given two contiguous frames from a comic or a video, 

the contours of a character’s key-motions are synthesized by using Bayesian estimation 

of kernel regression, which combines ERBF kernel with Bayesian inference through 

RJMCMC. As mentioned above, ERBF kernel is suitable to fit the natural shape of a 

character. Moreover, RJMCMC finds parameters that satisfy the situation of current 

moving model without leading to local minimization. Then BARMA is proposed to 

synthesize the contours of the whole character’s motion by analyzing the motion 

trajectory from those key-motions. Note that a nonparametric Bayesian approach is 

constructed for improving ARMA and adding the smooth variety of the time series data 

by using ERBF kernel and RJMCMC. As similar as mentioned above, another 

estimation of LOESS called the Bayesian version of LOESS (BLOESS) is applied to 

preserve the details or features of the animated characters. 
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Note that the statistical approaches we proposed are adopted to fit the movement of 

the moving element including both characters and passive elements without limiting our 

domain. Motivated by the promising work on 2D character animation, this dissertation 

also provides principled techniques so that the proposed statistical approaches can be 

used in less restricted environments, model the movements of passive elements, and be 

applied to an exciting new application. As mentioned above, nonparametric regression 

is used to represent the displacements of passive elements from still pictures and infer a 

sequence of movements.  

 

1.4 Primary Contributions  

According to the provided information, this dissertation makes the following 

contributions for 2D character animation respectively. 

Given a single pose of the character, making the character move: 

 A novel approach for shape deforming based on kernel regression with ERBFs is 

proposed, which is suited to the natural shape of characters, such as a human’s 

torso or an essentially human-like animal’s limbs. 

 By using a closed-form solution of LOESS, a new method for detail preserving is 

presented, which maintains features invariant during deformations while 

minimizing unnatural distortion. 

 The proposed nonparametric regression model composed of kernel regression with 

ERBFs and LOESS would be applied to novel view generation. Besides, it is 

further used to create lively animated talking faces and synthesize the stylistic 

variations of facial moods and expressions for 2D character animation.  

Given two contiguous poses of the character, making the character move and while 

matching these poses best synchronously: 

 Given two contiguous poses of a character from a comic or a low-frame-rate video, 

the contours of a character’s key-motions are synthesized by using a Bayesian 
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estimation of kernel regression, which combines ERBF kernel with RJMCMC. A 

key-motion is defined as the contour of an in-between pose between two given 

poses of a character. This approach can fit the shape of a character with parameters 

and coefficients adaptive to the current situation of the regression model.  

 BARMA is proposed to analyze the motion trajectory of a character’s limb through 

a nonparametric Bayesian approach. The Bayesian approach is constructed for 

adding the smooth variety of the time series data by using ERBF kernel and 

RJMCMC described above.  

 BARMA is applied to synthesize the shape of the whole character’s motion 

through contours fitting. Furthermore, BLOESS is applied to preserve the details or 

features of characters. The Bayesian approach improves meaningful regressions 

even with fewer data points than regression coefficients. 

 

1.5 Auxiliary Multimedia Application 

Another novel application of the introduced statistical approaches is proposed to fit the 

movement of the passive elements without limiting our domain in character animation, 

as described below. 

 Simple harmonic motion is applied to estimate the displacements of the points 

sampled on the water wave or the tree in the next time-sliced scene first. 

 Kernel regression with ERBFs is used to fit the contours of the water wave or the 

tree in the next time-sliced scene from the estimated positions of samples. 

 Furthermore, LOESS is applied to preserve the details, features, or textures from 

the fitted contours interiors. 
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1.6 Dissertation Organization 

The remainder of this dissertation is organized as follows. Chapter 2 reviews the 

related literature on animating characters in still pictures. Chapter 3 then summarizes 

statistical approaches that we employ to animate 2D characters. Considering arbitrary 

pictures, the two-scale image abstraction is used to eliminate redundancy information in 

Chapter 4. Next, Chapter 5 describes how to apply nonparametric regression to 

generate a novel view of a character. Chapter 6 deals with expressive talking face 

simulation. In addition, Chapter 7 further infers limbs movements by integrating 

Bayesian inference and time series with the regression model. Moreover, Chapter 8 

demonstrates how to apply the proposed statistical approaches to animate passive 

elements for simulating natural phenomena. Finally, Chapter 9 concludes this 

dissertation by summarizing our contributions and suggesting future research directions. 
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Chapter 2

 

                 

Literature Review 

2D Character animation involves novel view generation, expressive talking face 

simulation, and limbs movement synthesis in this dissertation. Many research areas are 

relevant to this dissertation. The following sections thus briefly review the techniques 

for 2D character animation. 

 

2.1 Image Morphing 

To animate characters from still pictures in image morphing community, several studies 

[28, 48] referred to as shape blending have been conducted. For example, Sederberg and 

Greenwood [55] employed an interpolation scheme that can interpolate the length of 

edges and angles between two keyframes. Furthermore, several methods [70] have 

extracted properties of the given key-poses, and used them to generate characters’ 

motions. Xu et al. [74] synthesized an animal’s motion by inferring its motion cycle 

representing the ordered motion snapshots. By morphing among the ordered poses and 

refining the appearances of in-betweens, an animal could be animated. Chuang et al. [18] 

adopted a wavelet curve descriptor combined with Lagrangian dynamics to implement 

the animation by image morphing. The wavelet coefficients could represent the shapes 

of images in different resolutions. Lagrangian dynamic equation could be applied to 

simulate periodic motions. They utilized a non-self-intersecting contour morphing to 

produce the motion of a similar nature by generating in-betweens. Shutler and Nixon 

[61] derived Zernike velocity moments from the video about a character’s locomotion. 

Then they used Zernike velocity moments to reconstruct the silhouette of an occluded 
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character’s locomotion which preserved a smooth transition. Our method only employs 

the correspondence of a character in several still images to synthesize the character’s 

motion.  

Besides, several studies [4, 52] referred to character motion synthesis have been 

conducted by using RBFs for image morphing. RBF is a weighted sum of the translation 

of a radially symmetric basic function augmented by a polynomial term. It is suitable 

for fitting smooth functions. It could be further used to warp facial expressions and 

animate images or drawings [2, 36]. In contrast, circular Gaussian is not an appropriate 

choice to fit noncircular structures. In this dissertation, we adopt ERBFs to fit contours 

of characters instead of RBFs. ERBF has the advantage of RBF-like smoothness. 

Moreover, ERBF is applicable to more general shapes than RBF. Nonlinear 

approximation of functions in certain general spaces with ERBF networks (referred to 

as elliptic basis function networks in [47]) was proposed. Furthermore, a volumetric 

approximation and visualization system was developed with ellipsoidal Gaussian 

functions for a 3D volume (referred to as ellipsoidal basis functions in [33]). 

DeJuan and Bodenheimer [19] synthesized in-between contours and textures of a 

character based on RBF interpolation and elastic registration by two given keyframes of 

an animation. They generated a 3D mesh, which was fitted from the implicit surface 

generated by RBF interpolation, to obtained in-between contours. Contour points and 

the corresponding normals of a character in a keyframe were used in RBF method to 

interpolate an implicit surface. Then a 3D mesh describing the surface was generated. 

The mesh was sliced in the middle to create in-between contours. In-between textures 

were synthesized by using an elastic registration. Our approach fits contours with ERBF 

kernel in image space directly. As mentioned above, ERBF has the RBF-like 

smoothness and is suitable to more general shapes than RBF. Besides, in-between 

textures they created would be distorted in complex patterns made up of a few solid 

colors. LOESS we used could preserve the details without undesired distortion. 
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2.2 Shape Deformation 

General research on solely image-based animation has recently been carried out based 

on the shape deformation of a single image. Recently, skeleton-based techniques [24, 76] 

have been used to deform the shapes by manipulating the space in which they are 

embedded. These techniques were very efficient in computation and easy to be 

implemented. However, they did not provide convenient or meaningful interaction tools 

for the user. Note that the weight tuning for rigging is a painful process for users. 

Besides, shape matching techniques have been used to shape deformation. Wang et al. 

[33] utilized uniform grids for 2D shapes and maintained the rigidity of each square in 

the grid by using shape matching during deformations. They implemented pure 

rotational transformation for each square. Note that the global area cannot be preserved. 

Botsch and Sorkine [7] deformed a 2D shape by discretizing the shape into finite 

elements. However, the computation time was dominated by the complexity of the 

discretization, and not by the intrinsic complexity of the shape itself.  

Furthermore, Alexa et al. [1] considered that the shape deformation of an image 

should be as rigid as possible. Such deformations would minimize the amount of local 

scaling and shearing. Igarashi et al. [31] triangulated the input image and minimized the 

distortion of these triangles in the deformation process by solving a linear system of 

equations. Schaefer et al. [53] proposed a rigid transformation method by moving least 

squares. Their study concentrated on specifying deformation by using user-specified 

handles. In order to generate an animation, users needed to set the next pose by 

manipulating control vertices. Then the method deformed the entire image plane. Since 

it ignored the geometry of the shape, unnatural distortions or serious artifacts would be 

generated when the range of controlling handles were exceeded because of the 

limitation of the locally influencing extent by using moving least squares. Weber et al. 

[68] generalized the concept of barycentric coordinates and provided a few examples of 

known coordinates which could be used for planar shape deformations. Note that the 

inputs of these works are images and the outputs are also the edited and deformed 

images. In comparison, our input is just an image and the output is the whole sequence 

of interpolated frames. 
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2.3 Image Interpolation 

Image-based animation has recently been carried out in computer vision community [27, 

34, 35, 49, 62, 65, 73]. Optical flow techniques could be widely adopted for image 

interpolation. Baker et al. [3] created a collection of optical flow datasets with ground 

truth. They measured the flow accuracy and the interpolation quality of these optical 

flow algorithms adopted for image interpolation. While the primary focus of the optical 

flow algorithms was on evaluating the flow itself. Ghosting and blurring artifacts were 

visible in their interpolated images even though there were minor errors in the flows. 

Mahajan et al. [39] proposed an inverse optical flow method. They traced out the path 

of each pixel between two given images. Then the pixel in the interpolated frame was 

obtained by moving gradients along the corresponding path and using Poisson 

reconstruction. Note that they need to determine the flow of each pixel for constructing 

the path framework. Since these optical flow techniques are based on the disparity of 

two given images, most of them can only handle two similar images (the disparity or the 

motion between two images is limited). 

 

2.4 View Interpolation 

Several approaches [15, 25, 66] for view interpolation could be applied to generate 2D 

character animation. Seitz and Dyer [56] proposed a method known as view morphing. 

The input image was prewarped with the image points through the fundamental matrix 

computed by computer vision techniques or predefined. Then images were transformed 

onto the same plane such that their scan lines were aligned. Two views were then 

morphed, and the interpolated images were postwarped with the user-specified 

parameters to achieve better morphing quality. However, the quality depended on the 

number of line correspondences made by users. 
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2.5 Expression and Viseme Synthesis 

Importantly, synthesizing a natural expression or viseme of a character from still 

pictures is a critical issue for 2D character animation. Chuang and Bregler [17] 

proposed an audio-driven synthesis technique for creating an expressive facial 

animation by extracting information from the expression axis of a speech performance. 

A statistical model based on principal component analysis for factoring the expression 

and visual speech was learned from video. With this analysis of the facial expression, 

the facial motion could be more effectively retargeted to another 3D face model. 

Moreover, there is a strong correlation between lips movement and speech [40], and a 

great number of studies have been conducted on facial animation involving lip-synching 

(short for lip synchronization). There have been multiple attempts at generating an 

animated face to match some given speech realistically [6, 8, 20, 21]. Incorporating 

speech therefore seems crucial to the generation of true-to-life animated faces. Our 

synthetic faces of the character are also driven by input speech. We reproduce small 

variations in facial expressions that convey the affective states, moods, and personality 

of the character. Furthermore, the strong interrelation between facial gestures and 

prosodic features has been reported in the speech processing literatures [10, 11]. 

However, the interrelation between facial gestures and individual phonemes is not 

obvious. Our main focus is to synthesize facial animation possibly driven by analyzing 

phonemes from input speech. 

 

2.6 Motion Capture 

Conversely, motion capture technology has enabled users to accumulate large database 

of human motion which makes the construction of empirical models of a motion 

feasible. In this technique, joint angles of a performing actor are recorded via sensors. 

These values are then used to create a character’s motion [41]. A deal of research aimed 

at adapting the motion to different constraints while preserving the style of the original 

motion. Witkin and Popovic [69] developed a method in which the motion capture data 

was warped between keyframe-like constraints set by the animator. Warping was done 
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by overlapping and blending motion clips. Rose et al. [50] developed a method which 

used RBFs and low-order polynomials to interpolate new motions between example 

motions obtained from motion capture while maintaining inverse kinematic constraints. 

As mentioned previously, Hornung et al. [30] accomplished the motion of 

photographed persons by projecting them to 3D motion data. However, they stipulated 

extra 3D information, including a 3D motion database and the corresponding model 

pose determination, thus increasing the overloads which did not belong to image 

reanimation. Although they could be applied to animate arbitrary characters from 2D 

images, their system did not work for motions where the character changed its moving 

direction, or where it turned its head. In this dissertation, the proposed time series 

scheme based on a nonparametric Bayesian approach does not have this limitation. 

 

2.7 Time Series 

In this dissertation, time series analysis is proposed to synthesize a character’s motion. 

Time series has been popularly applied in statistics to forecast the trends in finance and 

marketing [22, 60]. They have also been used in control system, pattern recognition, or 

artificial intelligence [5, 46]. In computer graphics, they are adopted for aging trajectory 

prediction or character motion synthesis. For example, Scherbaum et al. [54] applied 

aging prediction to images of faces with 3D model reconstruction and support vector 

regression based on RBF kernel. Cai and Hodgins [12] generated animations from 

various user-defined constraints. Their system learned a state space model from motion 

capture data. This state space model was based on the deformed linear time series model, 

and was constructed from the concept of autoregressive model. They transferred 

constraint-based motion synthesis to a maximum-a-posterior (MAP) problem, and 

developed an optimization framework that generated a natural motion.  

Furthermore, variants of hidden Markov models (HMMs) [4, 11] have been widely 

used to create the time series data of motion trajectories representing a character’s 

motion. HMMs learned from human motion data have been employed to interpolate key 

frames, and synthesize a new style of motion. However, these statistical schemes 

required full information about a character’s motion to train the initial statistical model. 
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For example, a large motion capture database of human body, or a large amount of user 

intervention for constraints was necessary. Our proposed approach learns a statistical 

dynamic model based on time series. Moreover, the dynamic behavior of the proposed 

model is predicted by Bayesian inference. More significantly, in contrast to previous 

methods, the proposed model allows the user to animate character smoothly without 

additional specified motion information.  
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Chapter 3

 

                 

Statistical Approaches 

In this chapter, we would introduce the statistical approaches that we use for 2D 

character animation summarily. We focus on the nonparametric regression model 

trained from key-poses of still images. Kernel regression with ERBFs is employed to 

train the model to represent the displacements of contours and fit the contours of 

deformed shape of a character. LOESS is adopted to fill in the color and texture 

information obtained from the original character in the given image. Thus, we introduce 

ERBFs in Section 3.1 first. Kernel regression with ERBFs is developed for regression 

prediction and analysis. Then LOESS is described in Section 3.2. Besides, for animating 

multiple limbs of a character simultaneously, Bayesian inference with RJMCMC is 

proposed to find parameters that satisfy the situation of the regression model. The 

sampling procedure of RJMCMC is outlined in Section 3.3. Furthermore, as mentioned 

previously, time series analysis is applied to predict the motion trajectory of the limbs. 

Hence, we give a description of the time series model in Section 3.4 briefly. 

 

3.1 Kernel Regression with Elliptic Radial Basis 

Functions 

As mentioned before, researchers presented image morphing techniques using RBF for 

the kernel. RBF kernel is popular for interpolating scattered data. It is suitable for fitting 

smooth functions of the data and is used to warp facial expressions and animate images 

or drawings.  
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However, RBF is based on spatially-limited circular Gaussian distribution function. 

It has a limitation in fitting the data on long or high-gradient shapes, such as cylindrical 

shapes, the body, and the head of a character. The radius might reach the shortest 

boundary of the area and might require numerous small RBFs to fit one long shape, 

which would be matched to the shape of the character such as the body and the head. 

Therefore, we use ERBFs instead of RBFs. Note that ERBF has the advantage of 

RBF-like smoothness and is applicable to more general shapes than RBF. The kernel 

regression model with ERBFs is trained for the prediction of the deformed character’s 

shape in image space. 

Note that there are two kinds of ERBFs: axis-aligned and arbitrary directional 

ERBFs. A comparison of these two basis functions is shown in Figure 3.1. This figure 

shows a long diagonal data distribution (pixels along contours) and the influences of the 

two basis functions are drawn overlaid on the data. The data is approximated by two 

basis functions: axis aligned ERBF shown in Figure 3.1 (a) and arbitrary directional 

ERBF shown in Figure 3.1 (b). The major axis of the ellipse with arbitrary directional 

ERBFs is aligned along the contour of a character which is a long diagonal data 

distribution (gray region). For achieving more accurate quality with smaller number of 

basis functions, arbitrary directional ERBFs are applied to fit the contours of a character 

in a still picture. 

In general, let aaaaaaaiaa be a vector of the pre-sampled data and aaaaaaaaaaia be a 

center vector of an elliptic Gaussian. An arbitrary directional ERBF can be represented 

in a matrix form as follows: 
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(a)                              (b)            

Figure 3.1: Comparison of ERBFs. (a) Axis aligned ERBF. (b) Arbitrary directional 

ERBF. The influence range of each basis function is shown as blue arrows and black 

curve.  

 

Figure 3.2: Schematic diagram of an arbitrary directional elliptic radial basis function 

(ERBF). 
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where aaaaaaaaaaaaaiaa is the covariance of Gaussian along i-axis. The orientation aia 

(the angle between the major axis of ellipse and i-axis) and the aspect ratio aaa are used 

to transfer to an arbitrary directional ERBF, as shown in Figure 3.2. Moreover, the 

transformation matrix aaaaa, which contains a rotation and scaling component, is 

applied for alignment along the data distribution. In our work, the major axis of the 

ellipse is aligned along the contour of the character, as shown in Figure 3.1 (b). For the 

mathematical details of Equation (3.1), it can be derived from a hyper radial basis 

function (HRBF). 

2
ia

,i iaAθ

{ }2
iθ for ,i i xσ ∈ y

HRBF is computed by using the Mahalanobis distance [29], which is defined in 

the matrix form as follows: 
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where aaaa should be the covariance of the multidimensional Gaussians rather than the 

single variance. HRBF differs from a standard RBF insofar each axis of the input space 

aaaaaaa (the space of square summable sequences of length N) has a separate smoothing 

parameter, i.e., a separate scale onto which the differences on this axis are viewed. It is 

worth mentioning that RBF kernels map the input space onto the surface of an infinite 

dimensional hyperspace. Note that N = 2 in arbitrary directional ERBF kernel represents 

the analysis of data distribution along the major axis and the minor axis in an ellipse. 

Along the orientation of arbitrary directional ERBF (the major axis and the minor axis), 

Equation (3.1) is constructed. 

2
Nσ

2
Nχ ⊆

In this dissertation, we formulate the problem of 2D character animation as 

regression analysis. Given two key-poses of a character in still images, we analyze the 

contours of a character and represent the displacements of these contours as ERBFs. 

Then these ERBFs constructing an implicit regression surface can be used to predict the 

new position after deforming the shape of the character. In other words, we form a 

regression model trained from the given key-poses. The model is adopted to predict the 

motion of the character. Now, we derive the equation of kernel regression with ERBFs.  

In general, the relationship of the response aa and the predictor aa can be described 

as 

r u
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( ) .r f u ε= +

 in 

,
k

                                  (3.6)       

Considering the above equation, f(.) denotes an unknown and smooth surface indicating 

the relationship between aa and aa, commonly termed the regression surface 

representing the shape deformation. Additionally, the error ε is assumed to come from a 

Normal distribution aaaaaaaa Equation (3.6), where aaa denotes the noise variance. 

Note that the regression surface is estimated by using kernel regression with ERBFs. 

ERBF is an appropriate choice to fit smooth functions for the form of f(.). 

r u

( ) 2τ20,N τ

As mentioned above, aa denotes the center vector of elliptic Gaussian (ERBF). The 

proposed regression model consists of a radial component and an affine component. 

Moreover, a radial one is developed as a linear combination of a set of basis functions 

and their corresponding coefficients. 

v

( ) ( ) ( )
1

,j j
j

f u u v Tβ η
=

= +∑ u                       (3.7)       

where aaj denotes the suitably chosen coefficient of the j-th elliptic Gaussian aa(.), a  is 

the related center vector, and k is the number of basis functions in the model. Note that 

there is the relative covariance of the j-th elliptic Gaussian along arbitrary i-axis aisss. 

ai(.) is the radial component chosen as an arbitrary directional ERBF. Moreover, T(.) 

represents the affine component. In our work, we would further train the model to 

predict the motion of the character by synthesizing the contours of the character’s 

deformed shape. 

ajβ η jv

η

2
,j iσ

 

3.2 Locally Weighted Regression 

After synthesizing the contours of the character’s deformed shape, we need to fill the 

contours and preserve details simultaneously. It is also motivated by following the 

process of the traditional 2D animation production. A similar issue occurs when the line 

art is scanned and goes to the next step of ink and paint. Hence, a local-fitting 

methodology called LOESS is applied to preserve the details or features of characters 

(that is filling in the color and texture information obtained from the original character 
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in the given image). Like kernel regression, LOESS is a procedure for fitting a 

regression surface to data through multivariate smoothing. LOESS uses the data from 

the neighborhood around a specific location. In other words, LOESS performs a linear 

regression on points in the data set, which are weighted by a kernel centered at that 

pre-defined location. It is much more strongly influenced by the data points that lie 

close to the location pre-defined according to some scaled Euclidean distance metric. 

This is achieved by weighting each data point according to its distance to the 

pre-defined location: a point very close to it is given a weight of one and a point far 

away is given a weight of zero. Note that the shape of the kernel is a design parameter 

for which many possible choices exist. The original LOESS uses the tri-cube weighting 

function. Nonetheless, we have used the Gaussian kernel to estimate the weights in the 

range of unit circle, as shown in Figure 3.3 (b). 

During a LOESS prediction, the specific location (red dot) aa, which would be 

filled color or texture information, is supplied. LOESS performs a linear regression on 

the sampled contour points weighted by a kernel centered at aa. Given m pairs of points 

sampled along the contour (purple dots) of the character in the input image and the 

corresponding new locations of these points, the weight of the i-th sampled contour 

point aa with Gaussian kernel is 

0x

0x

ix

( ) ( ) ( )( )0 0 0exp ,i i iw x w x x s x x= − = − −
2

 fo

( )

            (3.8)       

where aaaaaaaa , and a r m data points. s is a smoothing 

parameter that determines how quickly weights decline in value as one moves away 

from aia, Wkernel is the kernel width or bandwidth which controls the amount of 

localness in the regression. 

, aaaaaaaaaaa aaaaaaaaaaaaa( )0ii
m w= x∑1 i m≤ ≤ 2

kernel1 2s W=

0x

Let aaa be the predictor of the regression and aaa be the response. The regression 

function is specified by using an estimated local multivariate polynomial as follows: 
ix iy

( ) ( )i1 1 2 2ˆ ... ,i i i M My t x t x t xζ ζ ζ= + + +                (3.9)       

where taa(.) is a function that produces the j-th term in the polynomial, and aaa is the 

j-th term of coefficients to be estimated. Equation (3.9) can be rewritten for matrix 

manipulation, which can be easily extended to datasets with many inputs: 

jt jζ
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                   (a)                                  (b) 

Figure 3.3: LOESS analysis. (a) Original image with a uniform grid. (b) The zoom-in 

view of the image. LOESS with Gaussian kernel is applied to estimate the weights. 
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ˆ ,iy t xζ=                                   (3.10)       

where aa is the matrix form of the coefficients vector aaaaaaaaaaaaa and (.) is the 

matrix form of the polynomial terms aaaaaaaaaaaaaaaaaaaaaa. Given m pairs of aaaaaaa, 

the general way to estimate aaa is by minimizing the sum squared residuals.  

ζ

( ) ( ) ( )( )
( )1 2, ,..., Mζ ζ ζ

( ),i ix y1 2, ,...,i it x t x tM ix
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ˆ arg min ,T
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i
y t

ζ
ζ

=

= −∑                         (3.11)       

where a Furthermore, note that the features of the original character interiors 

are considered as the specific locations to be preserved during a LOESS prediction. 

According to the distance to these specific locations, the warping degree is adapted to 

these features and is constrained by them. Unlike global deformation, LOESS can 

maintain local features invariant during deformations while minimizing unnatural 

distortion. Thus, aa is chosen by minimizing locally weighted sum of squared residuals. 

aaaaaaai( )it t x= i

ζ̂
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w x y t

ζ
ζ

=

= ∑                   (3.12)       

where a and wi(.) is defined in Equation (3.8). The minimization can be 

obtained by the least-squares normal equations. In our work, we further fill in the color 

and texture information of the deformed character by using Equation (3.10) with the 

estimated regression coefficient vector aa. 

aaaaaaaa( )it t x= i

ζ̂
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3.3 Reversible Jump Markov Chain Monte Carlo 

(RJMCMC) Sampler 

Instead of using least-squares method to estimate unknown parameters during 

regression analysis, RJMCMC sampler is applied to estimate the optimized regression 

parameters. For instance, the procedure to estimate the parameters of kernel regression 

with ERBFs consists of three steps as follows: 

1. Set Up Proper Priors: Recalling Equation (3.7), let we be the mean of the j-th 

elliptic Gaussian, while aaa denotes the corresponding coefficient. We define aaaai as 

the covariance of the j-th elliptic Gaussian along i-axis. We begin with a fairly flat 

Gaussian prior on the basis coefficient aaaaaaaaaaaaaaaaaa, where precision is the 

precision of the coefficient prior. aaa is the noise variance, and aaaaaaaaaaaaaaaaaaaaa. 

A vague but proper Gamma prior distribution represents ignorance of the noise process 

and avoids inverting large matrices within each iteration of RJMCMC. We set 

aaaaaaaaaaaaaaaaaaaaaaa initially and they would be updated during RJMCMC process.  

jv

jβ
2

,j iσ

2

0,j
recision

N
p
τβ

⎛ ⎞
⎜
⎝ ⎠

∼ ⎟

( )2

1 0.1,0.1Gamma
τ
∼2τ

2. Determine Initial Parameter Value: Set the initial dimension k of the model equal 

to 3, that is intercept term plus the number of predictors. Then we use k-means 

clustering to set the starting center vector aaa for each k-means group of anchor points. 

In addition, the covariance aaaaj is computed for each group. Besides, calculate aaa by 

using least-squares fitting. 

3. Iterate RJMCMC Sampler Until Sufficient Samples: In the RJMCMC algorithm, 

we propose the next state of the chain representing a new basis function according to the 

following criteria. First, draw a uniform random variable aaaaaaaaaa. If aaaaaaaa, then 

perform the Birth step. In the Birth step, we would add a basis function (ERBF) in the 

model. Then the corresponding parameters are updated by k-means clustering 

simultaneously. Recalling Figure 3.2, for each k-means group, the transformation matrix 

aaaaa is computed for adding this basis function. If aaaaaaaaaaaaaa, then perform the 

Death step. In the Death step, we would lose a basis function. We just select one basis 

function at random and remove it. If aaaaaaaa, then perform the Move step. In the Move 

step, we choose a basis function from the model at random and reset its mean vector to 

2 =

)

0.01 and 1recisionp τ=

jv
2

jβ,j iσ

(0,1u U∼ 0.33u <

0.33 6u 0.6≤ ≤,i iaAθ

0.66u >
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another random position. Next, the corresponding parameters are updated.  

Then we would compute the marginal log-likelihood of the model and draw k new 

coefficients aaa. Given n pairs of predictors aaa and corresponding responses aa, we 

would compute the marginal log-likelihood for the creditable change of state as follows: 

( ) ( ){2
1

1 ˆlog ,
2 d d

d
L r n r f uτ

τ =

Θ = − − −∑ }2n

aaaaa

 obtai

 f

             (3.13)       

where aa is a general representation for the response of regression, as defined in 

Equation (3.6).  

 Let X be the responses of basis functions in the matrix form. Y denotes the 

corresponding responses of the regression model in the matrix form. P represents the 

matrix form of prior precision precision. aaa represents the matrix form of k coefficients 

aaj defined in Equation (3.7). Furthermore, aa is obtained from the marginal posterior 

distribution with posterior mean aaa  and modified standard deviation. 

Note that the initial standard deviation is drawn from the noise variance aaa and 

modified to be the upper triangle of posterior variance matrix aaaaaaaaaaa ned by 

using Cholesky decomposition. 

aaaaaaaaaaaa

Next, consider to accept the proposed change of next state. We draw a uniform 

random variable aaaaaaaaaa irst. If u is less than the ratio of the marginal likelihood of 

proposed next state to the marginal likelihood of original one, then accept the proposed 

change to the model and update the state of the Markov chain. Otherwise set the next 

state to be the current state. Then update prior precision precision by drawing a random 

variable from a Gamma distribution and is modified by the sum of squares of aaa every 

10 iterations. Recalculate the coefficients aaa from the marginal posterior distribution 

with the updated prior precision precision. Furthermore, draw a random variable aaa from 

a Gamma distribution for a new noise variance. Given response aa defined in Equation 

(3.6), aaa is modified by posterior sum of squares error for the next iteration. 

Repeat RJMCMC process and record the number of states. An initial portion of the 

chain is discarded to ensure stability. If the number of states is greater than the discarded 

portion, then compute aa(.) defined in Equation (3.6) by the recorded parameters of the 

current model for synthesizing limbs movement. All the simulations are run with a 

drjβ du

r

β
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burn-in period of 5000 iterations of RJMCMC followed by 10000 samples.  

 

3.4 Time Series Analysis 

As mentioned before, time series is applied to generate smooth and continuous limbs’ 

movements. In our work, ARMA is used to analyze limbs’ movements of a character in 

several previous time slices for estimating the motion trajectories. Then we could 

synthesize the current movements following these estimated trajectories. The general 

form of a time series model is considered as 

( )1 1,..., ; ,..., ,t TS t t p t t q tD f D D α α α− − − −= +               (3

,tC

.14)       

t ν=

p q

                                      (3.15)       α

where Dt denotes a univariate time series and fTS(.) indicates an unknown function of 

time series. p and q represent non-negative integers. aa is a sequence of random 

variables assumed to come from a Normal distribution with mean zero and variance one. 

C is assumed to be a constant. Based on this general form, ARMA is formulated as 

follows: 

tν

( )1 1
1 1

,..., ; ,..., ,TS t t p t t q i t i i t i
i i

f D D Dα α φ κ− − − − −
= =

= −∑ ∑ α −      (3.16)       

where aaa and aaa are the coefficients of parameters in this model. It is similar to the 

time series model proposed by Chen et al. [13], except that they assumed the functional 

form of fTS(.) was a known linear function whereas we assumes fTS(.) is estimated 

nonparametrically along with the Bayesian estimation of ERBFs already described in 

Section 3.1 and Section 3.3 in order to add smooth variety of the time series data, that is, 

we develop ERBF kernel in the original time series model with parameters inferred by 

using RJMCMC. We further use this nonparametric time series model to forecast the 

current limbs’ movements of the character from his several previous poses. 

iφ iκ
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Chapter 4

 

                    

Two-scale Image Abstraction 

Generating a natural-looking 2D character animation from still photographs or paintings 

can be considered to analyze and simulate the character’s motion in that image. Note 

that a photograph contains redundant information. The raw format of a photograph may 

have 16-bits or even 24-bits per color channel. Using all contours of the character 

extracted from raw photographs for statistical analysis is not practical and useful. Hence, 

it is necessary to obtain contours of interests of the characters. We advocate the 

two-scale abstraction similar to progressive image abstraction proposed by Farbman et 

al. [23]. The proposed abstraction method is based on a two-scale decomposition of the 

image consisting of a base layer, which encodes large-scale variations of pixels, and a 

detail layer. The base and detail layers would be obtained by using an edge preserving 

filer called the bilateral filter [64]. Given photographs, the bilateral filter is applied to 

obtain regions of interest. The selected contours of a character from the detail layer, 

which represent important features, and the contours of that character in the base layer 

are used to estimate the character’s motion. The redundant information of a photograph 

is filtered by the bilateral filter so as to animate 2D character from arbitrary still pictures 

by the proposed statistical approaches.  

 

4.1 Color Space Transformation 

In order to keep the regions of interest, we propose the two-scale image abstraction 

based on the bilateral filter. It classifies the image into a base layer and a detail layer. 

Important features can be preserved by adopting the contours selected from the detail 
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layer and the contours of the base layer to train the statistical model. In contrast, 

unimportant features can be filtered by applying the contours of base layer to the model 

only. 

Tomasi and Manduchi [64] suggested computing the bilateral filter on a 

perceptually uniform feature space, such as CIELab [72]. Perceptually uniform means 

that a change of the same amount in a color value should produce a change of the same 

visual importance. Only perceptually similar colors are averaged together while bilateral 

filtering is carried out in CIELab color space. Moreover, only perceptually important 

details are preserved. The values used by CIELab color space are called L*, a*, and b*. 

L* component closely matches human perception of lightness, which is the luminance 

signal that can estimate the difference between light and dark. a* represents the 

difference between red and green. b* represents the difference between yellow and blue. 

Unlike RGB color space, CIELab is based on a large body of psychophysical data 

concerning color-matching experiments performed by human observers, and is designed 

a practical approximation to color processing in a human visual system model. In 

contrast, RGB models the output of physical devices rather than human visual 

perception. CIELab can thus be used to adjust the lightness contrast by using L* 

component. Furthermore, CIELab can make accurate color balance corrections by 

modifying output signals in a* and b* components.  

The three coordinates of CIELab represent the lightness intensity L*, its position 

on a pure red and pure green scale a*, and its position on a pure yellow and pure blue 

scale b*. Note that L* = 0 yields black and L* = 100 indicates diffuse white. a* = -127 

indicates pure green and a* = 127 indicates pure red. b* = -127 indicates pure blue and 

b* = 127 indicates pure yellow. The red/green and yellow/blue opponent channels are 

computed as differences of lightness transformations of cone responses. Note that the 

nonlinear relations for L*, a*, and b* are intended to mimic the nonlinear response of 

the human eye. Furthermore, uniform changes of components in the CIELab color space 

aim to correspond to uniform changes in perceived color, so the relative perceptual 

differences between any two colors in CIELab color space can be approximated by 

taking the Euclidean distance between them. The Euclidean distance is directly 

proportional to the difference between the two colors as perceived by the human eye.  
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CIELab can be computed via simple formulas from nonlinearly-compressed 

CIEXYZ color space coordinates (XCIE, YCIE, ZCIE), which is not particularly 

perceptually uniform. Now, we would transform the initial color space RGB of a raw 

image into CIELab through CIEXYZ.  

0.412453 0.357580 0.180423
0.212671 0.715160 0.072169 .
0.019334 0.119193 0.950227

CIE

CIE

CIE

X R
Y G
Z B

⎡ ⎤ ⎡ ⎤ ⎡
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⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎥
⎥
⎥⎦

       (4.1)       

Then three components of CIELab are obtained from CIEXYZ. 

3* 116 -16 for 0.008856,
* 903.3  otherwise

CIE n CIE n
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L Y Y Y Y
L Y Y

⎧ =⎪
⎨
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>            (4.2)       

( ) ( )* 500 ,CIE n CIE na CIE X X CIE Y Y= −⎡⎣ ⎤⎦               (4.3)       

( ) ( )* 200 ,CIE n CIE nb CIE Y Y CIE Z Z= −⎡⎣ ⎤⎦                (4.4)       

( )
( )

3  for 0.008856
where .

7.787 16 116  otherwise
CIE th th th

CIE th th
⎧ = >⎪
⎨

= +⎪⎩
           (4.5)       

Here Xn, Yn, and Zn are the tristimulus values corresponding to the reference white point. 

They are specified respectively as 0.950456, 1.000000, and 1.088754.  

 

4.2 Bilateral Filter 

Next, we use the bilateral filter to classify the original image I into a base layer 

encoding large-scale variations and a detail layer. Note that the detail layer is applied to 

select the regions of interest and the features which should be preserved. The bilateral 

filter is a non-linear filter, where each pixel in the filtered result is a weighted mean of 

its neighbors, with the weights decreasing both with spatial distance and with difference 

in value. The bilateral filter can be defined as 
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( ) ( ) ( ) ( ) ,
S I p q qp

q

1BF I G p q G I I I
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= − −∑
       

(4.6)       

( ) ( ) ( ),S I p q
q

k p G p q G I Iσ σ
∈Ω

= − −∑                 (4.7)       

where  is the whole image range, and the subscripts p and q indicate spatial 

locations of pixels. Ip and I  are intensity values of pixel p and q. The kernel functions 

S and G I are typically Gaussians, where gis determines the spatial support, while gs 

controls the sensitivity to edges. k  is a normalized function. B  is the filtered 

result of the pixel p. That represents the base layer of the original image. A bilateral 

filter allows combining three color channels in CIELab and measuring photometric 

distances between pixels in the combined space. Furthermore, the detail layer is the 

division of the original image by the base layer. The ratio is computed on each color 

channel separately and is independent of the signal magnitude. The ratio captures the 

local detail variation in the original image and is commonly called a quotient image [59] 

or a ratio image [37] in computer vision community. 

Ω

qpI qI

S
GGσ I

Gσ Sσ Iσ

pppp( )k p FIPsdP( ) p
BF I

 

4.3 Image Abstraction 

We transform the color space of the base layer and the detail layer back to RGB for the 

further process. As mentioned previously, Xn, Yn, and Zn are specified respectively as 

0.950456, 1.000000, and 1.088754. The reverse transformation to CIEXYZ is 

( )* 500 ,CIE n tempX X P a= +
3

3

                        (4.8)       

,CIE n tempY Y P=                                    (4.9)       

( * 200 ,CIE n tempZ Z P b= + )3
                        (4.10)       

( )where P * 16 116.temp L= +                        (4.11)       

The color space RGB can be obtained by the transformation matrix. 
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  (4.12)       

Furthermore, the detail layer is attenuated to achieve a stylized abstract look. In 

this work, the short line segments in the detail layer are regarded as unimportant regions 

or noises. Hence, the median filter is applied to smooth or denoise the detail layer. The 

idea of median filtering is to calculate the median of neighboring pixels’ values. It can 

be done by repeating these steps for each pixel in the image, as described follows: 

1. Store the neighboring pixels in an array called the window. Note that the 

neighboring pixels are chosen by a box.  

2. Sort the window in numerical order. 

3. Pick the median from the window as the pixels value.  

Finally, the base layer is overlaid with edges extracted from the filtered detail layer. 

 

4.4 Experimental Results 

The proposed method yields several results. Figure 4.1 shows the abstracted image by 

using the bilateral filter. Figure 4.1 (a) is the original real image. Figure 4.1 (b) is the 

coarsened image of the base layer with asaaaaaa and aaaaaaaaa. In our experiment, we 

found these parameters to be better suited for applications that discarded or attenuated 

some of the details, such as image abstraction. Thus, we used these parameters 

throughout this dissertation for most real images. Figure 4.1 (c) is the selected contours 

from the detail layer by using the median filter. Moreover, Figure 4.1 (d) shows the 

image abstraction result. 

0.15Iσ =12Sσ =

Figure 4.2 shows another example of the abstracted image. Figure 4.2 (a) is the 

original real image. Figure 4.2 (b) is the coarsened image of the base layer by using the 

bilateral filter. Figure 4.2 (c) is the selected contours from the detail layer by using the 

median filter. Finally, Figure 4.2 (d) shows the image abstraction result. 
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(a)                                 (b) 

     

(c)                                 (d) 

Figure 4.1: Image abstraction computed using our two-scale decomposition. (a) The 

original real image (the photo of Charlize Theron). (b) The base layer. (c) The selected 

contours from the detail layer. (d) The final abstracted image. 
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(a)                                  (b) 

     

(c)                                   (d) 

Figure 4.2: Another example of image abstraction. (a) The original real image (the 

photo of David Axelrod). (b) The base layer. (c) The selected contours from the detail 

layer. (d) The final result. 
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Chapter 5

 

                   

Novel View Generation 

For animating 2D characters in still pictures, we proposed a statistical method based on 

nonparametric regression analysis to generate a novel view of a character. Kernel 

regression with ERBFs is introduced to fit the contours of a character and is applied to 

infer the corresponding displacements of the contours. LOESS is applied to fill in the 

color and texture information obtained from the original character in the given picture. 

 

5.1 View Interpolation 

In our work, we would take the idea of creating deformations directly in image space 

one step further by making 2D characters move. Actually, we propose a nonparametric 

regression model to animate the characters from still images. For instance, animating 

the character in a comic could be carried out by the creation of a novel view, as shown 

in Figure 5.1. It shows two continuous frames in the original comic, which can be 

regarded as two different scenes, and the synthesized frames from a single input frame. 

Figure 5.1 (a) are the original frames in the comic. Figure 5.1 (b) shows the synthesized 

novel views. Note that the model is trained to fit the shape and detail of the character 

between two key-poses from a given frame and its reverse, while minimizing unnatural 

distortion. Then the trained model is applied to synthesize the smooth transition 

between these key-poses.  
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                                   (a) 

 

                                  (b) 

Figure 5.1: Novel view generation in a comic. (a) Two continuous frames in a comic. 

(b) The frames synthesized from a single frame. © Georges Remi (Hergé) 

As mentioned previously, the proposed model is based on the prediction abilities of 

nonparametric regression. Kernel regression approximates the shape of a deformed 

character between two key-poses or moving templates indicating different poses by the 

prior use of a set of kernel functions. Circular Gaussian distribution function is not an 

appropriate choice to fit contours, which have noncircular structures like characters or 

human-like subjects. Instead of RBF kernel based on spatially-limited circular Gaussian, 

kernel regression using elliptic radial basis functions (ERBFs), specifically elliptic 

Gaussians which provide less learning time, is applied for contours fitting during shape 
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deformation (defined as shape deforming). Although ERBFs require more computation 

during optimization, better quality is obtained with smaller number of basis functions. 

Furthermore, the local-fitting methodology is also applied to preserve important features 

within the deformed shape (that is filling in the color and texture information obtained 

from the original character in the given image). Locally weighted regression, or LOESS, 

is used to preserve the features or details by fitting a function of independent variables 

locally. 

 

5.2 Algorithm Overview 

In Figure 5.2, the outline reflects the structure of our proposed method for novel view 

generation. Considering Figure 5.2, we briefly describe our method in the following 

paragraphs. 

1. Character Extraction: As mentioned in Chapter 4, in addition to the paintings or the 

comic, the input images like real images are filtered by using the bilateral filter first. 

Then in order to reduce the effects of the background upon deformations, we extract 

characters from the input image. We use level-set-based GrabCut to extract characters 

and features, as described in Section 5.3. Similar regions are extracted by the level set 

method. The bounding box of all regions is then used by GrabCut.  

 

(a)        (b)     (c)      (d)                    (e) 

Figure 5.2: This example shows the picture of Mona Lisa. (a) The original input image. 

(b) The character is extracted, (c) who is described by the similar parts found by 

level-set-based GrabCut, and (d) the contours are applied to build the nonparametric 

regression model for shape deforming and detail preserving. After deforming the shape 

and preserving details, several resulting frames in the synthesized Mona Lisa’s views 

are shown in (e). 
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The boundaries of regions corresponding to the matte produced automatically are 

further applied to obtain the final character matte. The foreground and background are 

separated successfully. Besides, the facial features are extracted simultaneously by the 

level set method. As shown in Figure 5.2 (b), Mona Lisa is extracted, which is described 

by the similar parts found by level-set-based GrabCut in Figure 5.2 (c), and the 

corresponding contours shown in Figure 5.2 (d) are applied to build the nonparametric 

regression model for shape deforming and detail preserving. 

2. Statistical Approaches: Before we generate novel views of a character in a still 

image, we apply nonparametric regression for novel view generation mentioned in 

Section 3.1 and Section 3.2. Note that the proposed statistical approaches are not only 

used to generate novel views of a character, but also adopted to create an expressive 

talking face and synthesize smooth limbs movements. In practice, our framework for 

2D character animation consists of these statistical approaches. 

3. Novel View Generation: Given one key-pose of a character and its reverse, we 

deform the shape of the character by applying a trained nonparametric regression model 

for generating novel views of the character. The process can be divided into two steps: 

shape deforming and detail preserving. In the shape deforming, the correspondence in 

training data set is constructed first. Kernel regression with ERBFs is employed to train 

the model to represent and fit the contour of deformed shape, as described in Section 5.4. 

In the detail preserving step, as described in Section 5.5, LOESS is adopted to fit the 

details of the deformed shape. LOESS is suitable for detail preserving in accordance 

with the previously fitted contours. Figure 5.2 (e) shows finally the resulting images. 

 

5.3 Character Extraction  

In addition to the paintings or the comic, real images are filtered by using the bilateral 

filte. Then we adopt the level set method to extract regions with a similar color 

distribution in the image. The level set method, proposed by Osher and Sethian [38, 57, 

58], is an approach for approximating the dynamics of moving curves and surfaces. 

Note that we choose HSV color space [72], it is not only close to the people 

understanding of colors, but also is regarded as the best option in judgment on the color 
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changes. It consists of three components, namely representatives of hue H (hue), 

saturation S (saturation), and brightness V (value). In practice, HSV color space allows 

combining the three color channels appropriately. Moreover, the combined color 

difference can be the made to correspond to the distance between two points in the color 

space. It is suitable for image segmentation and analysis. We introduce the concept of 

color gradient information of images, instead of using gray gradient to update the curve 

evolution function of the level set method. Furthermore, these regions representing the 

facial features of a character are found simultaneously. 

After feature extraction, GrabCut [51] is then applied to separate foreground 

(characters) and background. GrabCut is powerful object matting tool. However, it 

requires an initial incomplete trimap which represents the seeds of foreground and 

background for the underlying graph cut algorithm. That is, no hard foreground labeling 

is done at all. The region of background is determined by users as a strip of pixels 

around the outside of the marked rectangle. The Gibbs energy minimization is computed 

and the object matting for character extraction is applied. 

We construct a bounding box of all these regions extracted by using the level set 

method. Then we use the bounding box for GrabCut instead of the initial incomplete 

trimap. Note that the extracted regions correspond to the regions of a character matte 

with the similar color distribution. The pixels inside the contours of the regions are 

considered the foreground distribution replacing users’ refinement during the iterative 

minimization in GrabCut. Subsequently, the entire energy minimization process would 

be performed iteratively with the updated foreground distribution. The process is 

guaranteed to converge at least to a local minimization since the energy decreases 

monotonically. After convergence is achieved, the character matte is extracted 

successfully. 

Note that we choose HSV color space. Due to the hue, saturation, and brightness of 

the three components to determine changes in color, the level set method with color 

gradient enriches the way that only uses gray gradient to judge whether at the border. 

Since joining the color factor, the character and feature extraction is robust for the 

images, which the gray level of the background is close to the gray level of the 

foreground. The final character and features matte is shown in Figure 5.2 (b). 
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5.4 Shape Deformation Using Kernel Regression with 

ERBFs 

As mentioned previously, we use level-set-based GrabCut to extract the character and 

similar regions in the character. After extracting the characters in the input image and its 

reverse, we train a regression model with ERBF kernel. First, in Section 5.4.1, an initial 

solution to regression parameters is obtained. Then we discuss how to train the model 

and fit the character’s deformed shape by the trained model, as described in Section 

5.4.2.  

 

5.4.1 The Determination of Initial Values 

The initial guesses are important for further optimization convergence in model learning. 

Before setting the initial value of center and covariance, the correspondence with regard 

to feature alignment should be done. First, we create a window and use it to compute 

the curvature along each region boundary in the face. Note that these regions in the face 

are obtained by using the level set method. We choose the top five curvatures from the 

window interiors and sample points along these contours. The five bounding boxes of 

these sets of sample points are the feature blocks shown in Figure 5.3 (a) and Figure 5.3 

(b). The structure of these feature blocks (that is the order of the feature blocks) is 

constructed to maintain the spatial relationship among these features, as shown in 

Figure 5.3 (c). Note that the structure is similar to the tree structure. However, there are 

no root and leaf nodes in our work. We only use the link between two nodes (feature 

blocks) to record the spatial relationship or the order of two nodes. Subsequently, 

Tchebichef moments (TMs) [43] of these blocks are used to determine the 

correspondence in the other key-pose, which is obtained by reversing the original input 

image, for spatial constraints, as shown in Figure 5.3 (d) and Figure 5.3 (e).  
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      (a)       (b)       (c)      (d)        (e)       (f)        (g) 

Figure 5.3: Correspondences and initial value determination. (a) Top five features are 

selected. (b) The structure is constructed from feature blocks. (c) The spatial relation is 

obtained from first key-pose. (d) (e) The correspondences in the other key-pose are 

extracted based on the structure of spatial relationship. (f) (g) The samples and 

correspondences are shown as red dots, and k-means clustering is employed to 

determine initial value of regression parameters. 

 TMs are translation, scale, and rotation invariant functions, which are useful for 

image retrieval and pattern recognition. For each feature block, we compute TMs of the 

block and compare with the other key-pose by using a window with the same size of the 

block. Since the minimal difference is found, the correspondences can be obtained. 

Moreover, the hard constraint is used to refine the correspondences found by TMs. 

According to the spatial relationship of the feature blocks, some correspondences are 

interchanged. For example, the correspondences of right eye and left eye found by TMs 

are interchanged. The correspondences based on the structure of the spatial relationship 

are constructed. 

Owing to predicting the contours of the deformed character by the nonparametric 

regression model, we sample the contours and obtain the correspondences shown in 

Figure 5.3 (f) and Figure 5.3 (g) as red dots by using TMs. The contour samples, feature 

blocks mentioned above, and their correspondences are defined as n pairs of anchor 

points in the space aaaaaaaaaaaaaaaaaa for the training stage. K-means clustering is 

used to set the starting center values to the means of the training anchor points. In 

addition, the covariance for each k-means group shown in Figure 5.3 (f) as the block is 

computed. 

( 1 1, ,...,U u u= )' ',n nu u
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( )

5.4.2 Shape Deforming 

The shape deformation of that character is constructed to infer the corresponding 

displacements of the contours for novel view generation. We define the deformation 

based on the mapping of n anchor points sampled along the contour of a character. We 

formulate this problem as regression analysis. Given n pairs of anchor points, we use 

arbitrary directional ERBFs to predict the contours by interpolating a smooth function. 

The response aaaaaaaaaaa is the displacement of an anchor point, and the predictor 

aiaaaaaaia is the coordinate vector of the anchor point. The resulting ERBF 

interpolating function is defined as a transformation function aaaaaaaaaa. For k pairs of 

the means of anchor points obtained by k-means clustering, f(.) contains the radial part 

R(.) and the affine part T(.). Equation (3.6) and Equation (3.7) can be rewritten as 

 for 1,..., ,d dr f u d nε= + =                      (5.1)       

( ) ( ) ,f u R u T u= +
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,rT u M u=                                    (5.4)       

where aia denotes the displacement of the d-th anchor point a . f(.) is the displacement 

of either the x-coordinate or the y-coordinate between the correspondences (the given n 

pairs of anchor points). Additionally, the error ε is assumed to come from a Normal 

distribution a a here aaa denotes the noise variance.  

ia

a aaaaaa

Moreover, let aaaaaaaaaaa the center vector of elliptic Gaussian (ERBF). The 

radial component R(.) is developed as a linear combination of a set of basis functions 

and their corresponding coefficients. aaj denotes the suitably chosen coefficient of the 

j-th elliptic Gaussian aa(.). aaj is the related center vector. k is the number of basis 

functions in the model. Note that aa(.) is chosen as an arbitrary directional ERBF, as 

described in Equation (3.1). Recalling Section 5.4.1, we use k-means clustering to set 

the center vector aaj for each k-means group of anchor points. In addition, the 

corresponding covariance is computed for each group.  
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( ) ( )

Besides, T(.) is a 2D affine transformation, where Mr is a 2×2 real matrix. 

According to the correspondences of anchor points in feature blocks between the given 

picture and its reverse, controlling the affine component T(.) is carried out by a 

least-squares approximation procedure, perhaps using matrix pseudo-inverse techniques. 

After the affine component has been computed, the radial component R(.) satisfies the 

following equation: 

( ).R u f u T u= −                               (5.5)       

The estimated weight of the radial component aaa is determined by solving the linear 

system.  
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jβ
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This can be solved by the least-squares normal equations to minimize the sum of the 

square difference. Equation (5.6) can be rewritten in a matrix form as 

( ) ( ) ( )(1
,T TB K K K f u T u=

−
−

, a  is the ma a. 

) ar

                       (5.7)       

where B is the matrix form of the vector aaj for j = 1,…,k, K is the matrix form of the 

vector aa nd aaaaaaaaaaaaaa trix form of the vector aaaaaa
jβ

( aaaaaaaaaaaa

After the weights (a e computed in the initial loop, we can compute the 

residual for nonlinear optimization. Since residuals are recomputed, the residuals update 

these parameters in the next iteration, which are centers, covariances, and weights, with 

a gradient descent. Optimization convergence is achieved when the residual is 

sufficiently small. The whole process is converged completely soon after in several 

iterative loops. Then the kernel regression model with ERBFs is trained. Note that we 

can use the model to fit the complete contours of a novel view. We can make 

predictions of the displacement for each contour point by using Equation (5.1). 

Furthermore, we use Catmull-Rom splines to connect new positions of the contour 

points. For each in-between frame in temporal domain, the contours of a novel view are 

synthesized by the model. 
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5.5 Detail Preservation Using LOESS 

In addition to shape deforming for the whole animation process, the details from the 

character interiors have to be preserved by filling in the color and texture information 

obtained from the original character in the given image. After synthesizing the contours 

of the character’s deformed shape by using kernel regression with ERBFs, LOESS is 

applied to preserve the details or features of characters. In this section, the detail is 

preserved within the deformed shape by using LOESS. Then novel views are 

synthesized completely. 

Besides, Equation (5.1) is based on ERBFs and is trained to fit the contours. If we 

use Equation (5.1) to fill the interiors of the fitted contours with the color and texture 

information, the filled information will be warped to adapt to the shape of the fitted 

contours easily without considering the local features of the original character interiors. 

The result shows the unnatural distortion like the concentric shape effect, as shown in 

Figure 5.4. Figure 5.4 (a) shows the given key-pose. Another key-pose is shown in 

Figure 5.4 (d). Figure 5.4 (b) shows the result obtained by using LOESS. Moreover, 

Figure 5.4 (c) shows another result obtained by using Equation (5.1) directly. Note that 

there are unnatural distortions shown in the result obtained by using Equation (5.1).  

 

 

        (a)               (b)               (c)                (d) 

Figure 5.4: Unnatural distortion without detail preserving. (a) (d) The given key-poses. 

(b) The synthesized in-between obtained by shape deformation and detail preservation. 

(c) Another result obtained by shape deformation without detail preserving. © Warner 

Bros. Entertainment Inc. 
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Recalling Figure 3.3, to implement detail preserving, we sample the original image 

with a uniform grid (50×50). Given a grid point aa enclosed by the contours of a novel 

view, its filled color or texture information would be controlled by LOESS. In this work, 

let aaaaaaaaaaaaa be the i-th point sampled along the contours of the character in the 

given image, as shown in Figure 3.3 (b). Let aaaaaaaaaaaaaa denote the measurement of 

the dependent variable representing the new location of the sample point aa in a 

synthesized frame in the temporal domain. Suppose that the target coordinate aai is 

calculated by using Equation (3.9). Before calculating the target coordinate aai, we 

would estimate the regression coefficient vector aa in Equation (3.12) by the 

least-squares normal equations. Moreover, we could calculate the target coordinate aai 

directly from the closed-form solution as follows.  

0x

( ), ,,i i x i yx x x=

( ), ,,i i x i yy y y=

ix

ˆiy

ˆiy
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ˆiy

Recalling Equation (3.9), there is a 2D transformation model in our work. Thus, we 

have aaaaaaaaaa for aaa which is a translation coefficient and aaaaaaaaaa for aaa which 

is a rotation coefficient. For brevity, we drop the argument aa for the weight aaaaaa. 

Given m pairs of aaaaaaa, we denote the approximated mean, variance and covariance 

in the following manner: 
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Then the new location of aai and the estimated target coordinate aaj of the arbitrary new 

sample a j can be computed as follows: a
0x ˆ jy

jx

(ˆ .xy
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In practice, we approximate the character with a uniform grid, as shown in Figure 
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3.3 (a). We find the new location of each vertex in the grid (each grid point). Then we 

fill the resulting quad by using bilinear interpolation. Therefore, we can use Equation 

(5.12) to find the new location of the grid point aaj and obtain the pixel values for filling 

in the color and texture information. Then we fill the resulting quad using bilinear 

interpolation. Note that we would reconstruct the details within the deformed shape with 

the contours fitted by kernel regression with ERBFs via a simple closed-form solution. 

After shape deforming and detail preserving, novel view generation is carried out. In 

order to maintain the 3D effect of the new view, it is sometimes combined with 

backward deformation by using color blending. 

0x

 

5.6 Experimental Results 

In the shape deforming stage, the number of basis functions of all the examples fitting 

the contours was decided by residual analysis. The default setting was eighteen basis 

functions with better fitting results. Moreover, we applied only our ERBF model on the 

top five regions in contours to align the significant features in two key-poses or moving 

templates instead of the entire character because the prediction of unimportant features 

led to redundancy. 

The proposed nonparametric model was implemented on an Intel Core 2 Quad 

6600 2.40 GHz CPU and 3 gigabytes main memory that allowed efficient generation of 

novel views. The complete generation process consisted of two independent steps: 

shape deforming and detail preserving. Table 5.1 lists the resolutions and executions for 

the figures shown. Execution time is measured in each step. There is another 

performance measurement for body movement synthesis, which deformed the shape of 

the character to synthesize body movement by using the proposed model trained from 

two given key-poses of a character.  

Our experiments were performed on digitized images obtained from “The 

Adventures of TinTin: The Shooting Star” which was originally produced by Georges 

Remi (Hergé). The results are presented in Figure 5.1 and Figure 5.5. They show 

different frames in the original comic, several synthesized frames of characters’ motion, 
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and the zoom-in views. They were only head movement. A user specification exists by 

which the head and the body can be segmented. For fitting the contours of the head 

component, the second key-pose involved reversing the contours of the head component 

and concatenating with the other contours. A novel view would then be synthesized 

using the trained model. Another example of Mona Lisa is shown in Figure 5.6. 

Table 5.1: Running times of figures for novel view generation and body movement 

synthesis. 

 Novel View Generation 
Body Movement 

Synthesis 

Figure Name 

TinTin 

(head 

fitting) 

Captain 

(head 

fitting) 

Snowy 

(head 

fitting) 

Mona 

Lisa 

Cat 

(tail 

moving) 

Object 

with 

Wood 

Figure No. 5.1 5.5 5.5 5.6 5.7 5.9 

Resolution 240×502 519×446 169×117 182×268 193×280 189×216

Shape 
Deforming 

~ Training 

6487 5876 9420 6434 3673 6002 

~ Fitting 

(Millisecond) 
806 721 1382 827 607 744 

Detail 
Preserving 

~ Training 

3478 3299 3812 3413 2699 3442 

~ Fitting 

(Millisecond) 
440 369 745 566 341 421 
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                                       (a) 

  

                                       (b) 

    

                                       (c) 

Figure 5.5: Novel view generation in a comic. (a) The frames in the comic. (b) The 

frames synthesized from a single frame. (c) The zoom-in views of the results. © 

Georges Remi (Hergé) 

 

(a)                 (b) 

Figure 5.6: Novel view generation from a painting. (a) The picture of Mona Lisa. (b) 

Novel view generation. 
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(a)                      (b)                      (c) 

   

          (d)                     (e) 

Figure 5.7: Body movement synthesis. (a) (e) Two key-poses of the cat. (b) (c) (d) The 

synthesized results. 

The synthesized results of body movement are shown in Figure 5.7 and Figure 5.9 

Body movement synthesis focuses on simulating a single limb’s movement of a 

character. It is different from the proposed limbs movement synthesis. Note that limbs 

movement synthesis focuses on simulating simultaneously multiple limbs’ movements 

which have motion trajectories respectively. Figure 5.7 (a) shows the original image of 

a cat representing one key-pose. Another key-pose is shown in Figure 5.7 (e). These two 

key-poses were employed to generate the tail’s movement by the proposed statistical 
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approaches, as shown in Figure 5.7 (b), Figure 5.7 (c), and Figure 5.7 (d). Note that the 

pattern of fur shown in Figure 5.7 is preserved by using LOESS.  

Since our goal is to do visually plausible 2D character animation, we focus on the 

qualitative analysis. We provide the results obtained by using kernel regression with 

RBFs, view morphing proposed by Seitz and Dyer [56], and image deformation using 

the moving least squares method proposed by Schaefer et al. [53], which suffice for 

direct visual comparisons.  

 

(a)                (b)               (c)               (d) 

  

(e)                                 (f) 

Figure 5.8: Visual comparison of novel view generation. (a) The picture of Mona Lisa. 

(b) The result obtained by using kernel regression with RBFs (18 radial basis functions). 

(c) Another result obtained by using kernel regression with RBFs (200 radial basis 

functions). (d) The result obtained by using kernel regression with ERBFs (our method 

with 18 elliptic radial basis functions). (e) The result obtained by using view morphing 

proposed by Seitz and Dyer [56] (f) Ghost occurrence in view morphing without enough 

correspondences (red lines are specified by users). 
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Figure 5.8 shows a comparison of novel view generation. Figure 5.8 (b) is obtained 

by using kernel regression with 18 RBFs, and Figure 5.8 (d) is obtained by our model 

with the same number of ERBFs respectively. Since shape fitting with RBFs contains 

more unnatural distortions during deformations, ghost effects are observed in the final 

result with color blending even though feature alignment is achieved in shape 

deforming. The quality of the final blending result with ERBFs is better. We also 

provide another result obtained by using kernel regression with 89 RBFs without 

apparent distortion, as shown in Figure 5.8 (c).  

As mentioned before, the previous techniques like view morphing and shape 

deformation may be able to produce good quality results for 2D character animation. 

However, these techniques needed user intervention. Figure 5.8 (e) provides the 

comparison with view morphing proposed by Seitz and Dyer [56]. In view morphing, it 

is necessary to compute an additional estimated fundamental matrix for camera 

calibration. Further, many users’ specifications are required for correspondences. Figure 

5.8 (f) shows that the lack of users’ specification would create ghost effects because of 

nonalignment. There are seventeen control lines on the face specified by users. A better 

result is obtained when more than thirty or forty control lines are specified.  

Moreover, Figure 5.9 provides a comparison with the method proposed by 

Schaefer et al. [53]. Figure 5.9 (a) shows one key-pose of a human-like object. Another 

key-pose is the reverse of Figure 5.9 (a). The whole body was considered as the unit of 

movement. The whole body’s movement was synthesized, as shown in Figure 5.9 (d). 

Note that the pattern of wood grain in Figure 5.9 (d) is preserved by using LOESS. 

Although the method of Schaefer et al. preserved the details of characters, such as wood 

grain shown in Figure 5.9 (b), the property may lead to an undesired result and 

unnatural distortions when users specify the moving handles, which exceed the control 

extent because of the constraint using moving least squares, as shown in Figure 5.9 (c). 

This man-made situation or interference would not occur in the proposed model. Our 

model is automatic in shape deformation process of body movement synthesis. 
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(a)            (b)              (c)              (d) 

Figure 5.9: Visual comparison of body movement synthesis and detail preservation. (a) 

The character with handles (red dots). (b) The results created by image deformation 

using the moving least squares method proposed by Schaefer et al. [53]. (c) The 

undesired warp occurrence by using the moving least squares method (moving handles 

exceed the control extent). (d) The same pose with (b) created by using our method. 
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Chapter 6

 

                

Expressive Face with Speech Animation  

As discussed in Chapter 5, we have applied nonparametric regression to generate a 

novel view of a character. With the exception of a novel view interpolation, several 

facial effects observed in 2D character animation, such as eye, nose, and mouth 

movements, could be created by using nonparametric regression mentioned in Section 

3.1 and Section 3.2.  

Moreover, as we now show, the same structure can be further applied to create 

lively animated talking faces and synthesize the stylistic variations of facial moods and 

expressions for generating facial animation. For novel view generation, the proposed 

nonparametric regression model is trained from one pose of a character and its reverse. 

Then the trained model is applied to synthesize the smooth transition between these two 

poses. For facial animation, the trained nonparametric model is employed to generate 

synchronized lips movement and drive the stochastic process for facial features 

movements by giving any speech data and the relative moving templates. Note that the 

statistical model is trained to fit the shape and detail of the character between these 

moving templates. 

 

6.1 Character and Features Extraction 

In order to reduce color complexity and the effects of the background upon 

deformations, we use the bilateral filter and level-set-based GrabCut mentioned 

previously to simplify and extract characters. Similar regions are extracted by the level 
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set method. Note that the facial features of the extracted character are obtained 

simultaneously by the level set method. By moving the facial features, we simulate the 

dynamics of the features to synthesize different expressions, such as wink, anger, or 

happy. Furthermore, an expressive facial animation with lips movement from speech 

could be simulated. 

 

6.2 Speech Animation 

After the pre-process of character and features extraction for reducing the effects of the 

redundancies, we generate the lip synchronization by a series of speech data.  

 

 

 

Figure 6.1: The overview of speech animation generation. 
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6.2.1 Algorithm Overview 

In Figure 6.1, the outline reflects the structure of our proposed method for deforming 

mouth shape synchronized with input speech. Considering Figure 6.1, we briefly 

describe our method in the following paragraphs. 

1. Training Data: For model learning, according to different multimedia applications, 

the nonparametric regression model is trained from different training data sets. As 

mentioned before, the model is trained from two key-poses of a character for novel view 

generation. To generate speech animation, the training data set consists of two extreme 

templates in moving templates V for visemes synthesis, which are the neutral mouth 

shape and the mouth shape with vowel /o/. The moving templates are the base target 

positions of the facial features to be animated. The positions of mouth shape are 

recorded in moving templates V, as shown in Figure 6.1. 

2. Viseme Segmentation: In viseme synthesis, the goal is to model the correspondence 

between mouth shape variation and speech. Viseme segmentation, which means to 

determine all visemes and their durations, is done from the speech data. Note that it is to 

align phoneme labels to the audio stream, and use this information to label the 

corresponding lips movement.  

3. Speech Animation Generation: For generating the lip-synch animation, we collect 

moving templates V and the speech data, whereas the speech data is the voice data. 

After viseme segmentation, we would convert to the corresponding mouth shape and 

synthesize speech animation by using the trained nonparametric regression model. 

 

6.2.2 Viseme Synthesis 

For viseme synthesis, viseme segmentation of the speech data is performed to determine 

all visemes and their durations. First of all, we employ a Hidden Markov Model (HMM 

[45]) speech recognizer, which is the high-precision speech recognition software in 

noisy environments, to analyze the given speech data. In practice, HMM speech 

recognizer is used to obtain the phoneme segments called phoneme samples, as shown 

in Figure 6.2.  
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Text 
I am a boy. 

 

 

Phoneme Samples Visemes 
 
 

AY-AE-M-AX-B-OY
 

 

Figure 6.2: Viseme segmentation of the given speech data. 

 

Table 6.1: Conversion table from phoneme to mouth shape and the corresponding 

phonetic alphabet. 

Mouth Shape (Viseme) 
No. Phoneme Samples Phonetic Alphabet 

1 
 

AA, AE, AX, HH, SIL, 
and Y 

/a/, /@/, /Q/, /h/, /sil/, 
and /j/ 

2 B, M, and P /b/, /m/, and /p/ 
3 CH, J, and SH /fX/, /gY/, and /X/ 
4 OO, OY, W, and UH /u/, /OI/, /w/, and /U/ 
5 AY, EY, and ER /AI/, /e/, and /P/ 
6 F and V /f/ and /v/ 
7 IH and IY /I/ and /i/ 
8 G and K /g/ and /k/ 
9 N and NG /n/, and /V/ 
10 OH /o/ 
11 R /r/ 
12 S, TS, and Z /s/, /ts/, and /z/ 
13 D, L, and T /d/, /l/, and /t/ 
14 TH /Z/ 

 

Besides, we design fifteen templates in moving templates V for viseme synthesis, 

which are fourteen common mouth shapes with their relative visemes and a neutral 

mouth shape for all other visemes, as shown in Figure 6.1. The templates in moving 

templates V are employed to record the positions of anchor points sampled on the 

contour of the lips, as shown in Figure 6.4. These anchor points are obtained from the 

                             

   

AY AE M …
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extracted features found by using the level set method, as mentioned before. Then we 

construct a phoneme–viseme mapping table by using a simple table lookup method [77] 

to find the relative moving template (viseme) of a phoneme sample in moving templates 

V directly, as shown in Figure 6.2. Table 6.1 shows the conversion from the phoneme to 

the mouth shape. For two continuous phoneme samples with the same neutral mouth 

shapes, one of the samples is redefined as the mouth shape with vowel /o/. 

Given the positions of anchor points sampled from the contours of the extracted 

lips, moving templates V with their relative visemes, and the input phoneme samples, 

we could create the lip-synch animation. Next, we predict the motion of the character by 

using nonparametric regression: First, kernel regression with ERBFs is employed to fit 

the contour of a deformed shape. Then we preserve the details of the deformed shape by 

LOESS. We again consider the method to synthesize visemes. 

Note that the nonparametric regression model consisting of kernel regression with 

ERBFs and LOESS is trained for viseme synthesis. In the shape deforming stage, the 

kernel regression model with ERBFs is trained. We would train the model with the 

training data, that is, n pairs of anchor points recorded in two extreme moving templates, 

which are the neutral mouth shape and the mouth shape with vowel /o/ in V, are the 

prior use of a set of kernel functions. In other words, these anchors points and their 

corresponding displacements are used to train the kernel regression model with ERBFs. 

Note that the regression coefficients are estimated by the least-squares normal equations. 

The trained model is applied to fit the variations of the mouth shape between arbitrary 

two visemes of the phoneme samples using the corresponding moving templates in V 

for lip-synch animation generation. Finally, the similar process to preserve details 

within the target mouth is carried out by LOESS. 

 

6.3 Viseme Synthesis with Expressive Face 

In addition to speech animation, we could further synthesize an expressive face of a 

character. By moving the facial features obtained from the structure of the spatial 

relation, which we constructed before, we simulate the dynamics of these features to 

synthesize different expressions. We could enhance the expression by shaking the 
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shoulders or wagging the character’s head. Even we could further retarget the 

expression onto another character, as illustrated in Figure 6.3. After the pre-process of 

character and features extraction, two emotional states in moving templates D are 

provided for facial expression simulation.  

 

 

 

Figure 6.3: The overview of expressive face generation with the picture of Mona Lisa. 

 

 

Figure 6.4: Groupings of facial shape and features labeled as anchor points and relative 

curves. 
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)

We collect moving templates D for facial mood and expression simulation, which 

consist of a neutral expression and several common expressions, such as happy, angry, 

sad, fear, surprise, and wink. Note that the moving templates are the base target 

positions of the facial features to be animated. Moving templates D focuses on the 

positions of all facial features. The templates in moving templates D are employed to 

record the positions of anchor points sampled and grouped from the contours of the 

extracted features, such as facial shape, eyebrows, eyes, nose, and lips, as shown in 

Figure 6.4. Given moving templates D, we can use nonparametric regression to 

synthesize facial expression of any emotional state through moving templates D. 

Furthermore, an expressive face with speech animation is created by combining with the 

lip-synch process described in Section 6.2. 

As discussed in last section, the nonparametric regression model consisting of 

kernel regression with ERBFs and LOESS is similarly trained. In the shape deforming 

stage, the kernel regression model with ERBFs is trained. For facial expression 

simulation, note that we would train the model with a different training data, that is, n 

pairs of anchor points recorded in two moving templates which are the neutral 

expression and the specific emotional state in D. Then the trained model is applied to fit 

the movements of facial features between these two emotional states. Then the similar 

process to preserve details within the target face is carried out by LOESS. 

Furthermore, an expressive face with speech animation could be created by 

combining with the lip-synch process simultaneously. Before the model with LOESS is 

trained for detail preserving, we would find the positions of anchor points for facial 

features in the target expressive face composed of specific emotion and visemes. 

Actually, we would like to identify facial expression simulation independently of the 

content (utterance of sentences and the corresponding lips movement). The target 

animated expressive face with lip-synch FE can be represented as follows: 

( ) (( )1nl l i li
FE AT F F AT D D Lγ γ= + + = + + + − ,∑    (6.1)       

where AT(.) is a 2D affine transformation of the head movements. The head movements 

are specified by users.  is a neutral expression. Fl (lips) and Fnl (facial features 

except lips) are the movements of facial features. Note that Fl and Fnl are displacements 

from the neutral expression. So +Fnl+Fl represents an individual facial expression in 
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a certain emotional state and viseme.  

Instead of using Fl and Fnl, Dl is applied for the detailed movements of lips in a 

specific emotional state, and Di for each i represents the movement of an individual 

facial feature except lips. Note that five non-overlapping features are identified for a 

specific emotional state, such as left eyebrow, right eyebrow, left eye, right eye, and 

nose. Dl and Di are obtained through the fitted movements of facial features from the 

neutral expression to the specific expression. Besides, L is lips movement synchronized 

with the input speech. L is obtained through the fitted variations of mouth shape 

adapting to the audio stream. For the final mouth shape, a blending weight γ  is 

considered to generate an expressive face with lip synchronization.  

After finding the positions of facial features in the target expressive face, the model 

with LOESS is trained by these facial features. Then the trained model is employed to 

preserve details within the target expressive face. For example, after the mouth shape is 

obtained, the mouth cavity, which is the region between the upper lip and lower lip, is 

filled in the color and texture information obtained from the original character in the 

given image by using the trained model. Note that we use the color and texture 

information inside the mouth of the character to make the character appear realistic 

while talking. Thus, the character with a lively animated talking face is created. 

 

6.4 Experimental Results 

The proposed nonparametric model was implemented on an Intel Core 2 Quad 6600 

2.40 GHz CPU and 3 gigabytes main memory that allowed efficient generation of an 

expressive talking face. The complete generation process consisted of two independent 

steps: shape deforming and detail preserving. Table 6.2 lists the resolutions and 

executions for the figures shown. Execution time is measured in each step. We are 

interested in extending our concept to facial expression and viseme synthesis. Several 

facial effects observed in 2D character animation, such as eye, nose, and mouth 

movements, could be created, as shown in Figure 6.5, Figure 6.6, Figure 6.7, and Figure 

6.8. By moving the facial features, we simulated the dynamics of the features to 

synthesize different expressions synchronized with the speech. Figure 6.5 shows the 
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visual result combining with novel view generation. Figure 6.5 (a) is the original picture 

of Mona Lisa. A novel view of Mona Lisa is shown in Figure 6.5 (b). For expression 

synthesis, Figure 6.5 (c) shows the synthesized facial expressions (smiley). Moreover, 

the lively talking face of Mona Lisa simulated by viseme and expression synthesis is 

shown in Figure 6.5 (d). 

Table 6.2: Running times of figures for viseme and facial expression synthesis. 

 Viseme Synthesis Facial Expression Synthesis 

Figure Name Mona Lisa  Lips Mona Lisa Self-Portrait 

Figure No. 6.5 6.6 6.5 6.7 

Resolution 182×268 565×281 182×268 505×582 

Shape 

Deforming 

~ Training 

10432 12017 10860 14093 

~ Fitting 

(Millisecond) 
2009 2471 2204 4272 

Detail 

Preserving 

~ Training 

3414 4294 3298 4836 

~ Fitting 

(Millisecond) 
1166 1707 1001 1864 
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(a)                    (b) 

 

                                   (c) 

 

                                   (d) 

Figure 6.5: 2D character animation of Mona Lisa. (a) The picture of Mona Lisa. (b) A 

novel view. (c) Different kinds of the smiles. (d) The lively talking face simulation. 
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Another synthesized lip-synch example is shown in Figure 6.6 for five vowels. 

Moreover, we used the model to predict other emotional states of another character in 

Vincent van Gogh’ Self-Portrait for expression synthesis, as shown in Figure 6.7.  

Since our goal is to do visually plausible character animation for novel view, 

viseme, and facial expression synthesis, we focus on the qualitative analysis. We 

provide a direct visual comparison with the results obtained by animating still images 

using the path-based method proposed by Mahajan et al. [39]. Figure 6.8 and Figure 6.9 

show comparisons with the path-based method. Their method was based on an inverse 

optical flow and preserved the spatial frequencies of the input images. However, as 

mentioned before, the disparity or the motion that they could handle between the images 

was limited. In [39], the disparity or motion between the images was about 30 pixels. 

Given an image revealed in Figure 6.8 (a), the expressions (staring and smiley) were 

synthesized by using our method, as shown in Figure 6.8 (b) and Figure 6.8 (c). Figure 

6.8 (d) shows the result obtained by using the path-based method.  

 

     

(a)                     (b)                     (c) 

     

(d)                     (e)                     (f) 

Figure 6.6: Viseme synthesis for five vowels. (a) The original mouth shape. (b) /a/. (c) 

/e/. (d) /i/. (e) /o/. (f) /u/. 



 

 
 

65

   

(a)                    (b) 

     

(c)                     (d)                      (e) 

Figure 6.7: Character animation with expression synthesis. (a) The original expression 

in Vincent van Gogh’s Self-Portrait. (b) Sad. (c) Smiley. (d) Staring. (e) Winking. 

Moreover, given another example of the girl revealed in Figure 6.8 (e), facial 

expressions were synthesized by using our method, as shown in Figure 6.8 (f) and 

Figure 6.8 (g). The result obtained by using the path-based method is shown in Figure 

6.8 (h). Furthermore, given Figure 6.8 (e) and its reverse, the novel views shown in 

Figure 6.8 (i) and Figure 6.8 (k) were generated by using our method. Note that the 

maximum disparity or motion between two images is 70 pixels. A few shades on the 

face are due to the fact that the inconsistent illumination or brightness on the face in the 

input image and the aforementioned color blending we used to maintain the 3D effect of 

the synthesized view. Another smiley example in the synthesized view is shown in 

Figure 6.8 (j). 



 

 
 

66

 

(a)               (b)               (c)               (d) 

 

        (e)               (f)                (g)               (h) 

 

             (i)                (j)               (k) 

Figure 6.8: Visual comparison of expression synthesis. (a) The input image obtained 

from [39]. (b) (c) The face emotions synthesized by using our method (staring and 

smiley). (d) The result obtained by using the path-based method proposed by Mahajan 

et al. [39] (smiley). (e) Another given image (the zoom-in view of the girl’s face). (f) (g) 

The face emotions synthesized by using our method. (d) The result obtained by using 

the path-based method. (i) (j) Different facial moods in a novel view synthesized by 

using our method (neutral and smiley). (k) Another novel view synthesized by using our 

method.  

We also provide a comparison with an example of a yawning cat obtained by using 

the path-based method proposed by Mahajan et al. [39]. The original picture of a cat is 
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shown in Figure 6.9 (a). Given the picture, the selected frames of the expression (wink) 

shown in Figure 6.9 (b) and Figure 6.9 (c) were generated by using our method. Figure 

6.9 (d) shows the result obtained from [39]. Another example is the zoom-in view of the 

cat’s face, as sown in Figure 6.9 (e). Given the face, Figure 6.9 (f) and Figure (g) were 

synthesized by using our method. Figure 6.9 (h) shows the result obtained by using the 

path-based method. Note that the details are preserved explicitly by using LOESS, such 

as fur, whiskers, and tongue of the cat. 

In general, we find that our method provides visually superior shape deforming or 

detail preserving with minimal artifacts in most cases. On the other hand, our method 

does not suffer from serious ghosting, blurring artifact, or unnatural warping, which 

exists in other methods, such as the path-based method [39], view morphing [56], and 

the moving least squares method [53] compared in Section 5.6. Moreover, our proposed 

synthesis process does not require user-specified correspondences. Considering view 

morphing and the moving least squares method, they require users’ intervention for 

correspondences or handling the deformation. 

 

(a)                (b)               (c)               (d)  

 

(e)             (f)              (g)             (h) 

Figure 6.9: Another comparison of expression synthesis. (a) The input images obtained 

from [39]. (b) (c) The selected frames of a yawning cat synthesized by using our method. 

(d) The result obtained by using the path-based method proposed by Mahajan et al. [39]. 

(e) Another given image (the zoom-in view of the cat’s face). (f) (g) The expressive 

faces of the cat synthesized by using our method. (h) The result obtained by using the 

path-based method. 
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Chapter 7

 

                   

Limbs Movement Synthesis 

In a comic, a movement may be described by a series of non-continuous poses in a 

sequence of contiguous frames. While two contiguous frames represent two adjacent 

time-sliced poses in a continuous movement only, they cannot represent the movement 

completely. Thus, generating a natural-looking animation for limbs movement is still a 

major challenge in computer graphics. We synthesize limbs movements simultaneously 

according to still comic frames or low-frame-rate video frames. Basically, the 

movement is considered as an essential 3D transformation problem, which consists of a 

2D spatial displacement and a 1D shift in time. So we construct a time series model to 

synthesize limbs movements.  

In this chapter, we propose a model to analyze time series data of a character’s 

motion by using a nonparametric Bayesian approach with ERBF kernel. Then we can 

automatically generate a sequence of motions by using the constructed time series 

model, which is adopted to fit the motion trajectories of a character. 

 

7.1 Statistic-based Movement Synthesis 

An approach of human or human-like subject movement synthesis is the 

constraint-based motion synthesis [12]. It was formulated in a maximum-a-posterior 

(MAP) framework. This statistical framework is approximated by only using the 

likelihood and prior terms, which is equivalent to the minimization of an error function. 

However, the framework only correlates with the training data. It does not necessarily 
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give a small error with respect to new data.  

We also adopt a statistical method to synthesize the motion. First, we simulate 

key-motions of a character between two contiguous frames in a comic or a 

low-frame-rate video by using kernel regression with ERBFs mentioned in Section 3.1. 

A key-motion is defined as the contour of an in-between pose between the poses of a 

character in two contiguous frames of a comic. Note that ERBF kernel is suitable to 

perform scattered-data interpolation and is applicable to fit the human-like shape.  

Besides, we obtain the regression parameters suitable for the current motion of a 

character by Bayesian inference, which is based on the RJMCMC method. Note that 

RJMCMC generates a sequence or a chain of samples, as mentioned summarily in 

Section 3.3. Apart from the initial sample, each sample is derived from the previous 

sample, which allows the algorithm to find coefficients or parameters that satisfy the 

situation of current regression model. We do not use least-square error to find the 

regression coefficients or parameters because the least-square method might lead to 

local minimization.  

However, these simulated key-motions are described discretely in the temporal 

domain. For generating a smooth and continuous character animation, we synthesize the 

contours of a character’s motion following the motion trajectory that is obtained by the 

proposed time series model called by the Bayesian version of ARMA (BARMA). 

BARMA integrates ARMA with a nonparametric Bayesian approach that is based on 

kernel regression with ERBFs and RJMCMC-based model estimation. Note that the 

model is trained from the key-motions. 

After generating a sequence of motion, a local-fitting methodology is also applied 

to preserve important features within contours. LOESS, as mentioned in Section 3.2, is 

a way of estimating the regression surface through a multivariate smoothing procedure 

by fitting a function of independent variables locally, which maintains features invariant 

during deformations without unnatural distortion. Furthermore, the Bayesian version of 

LOESS (BLOESS) is proposed to improve meaningful regressions by using Bayesian 

inference to infer regression coefficients in LOESS.  
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7.2 Algorithm Overview  

The proposed approach for generating 2D character animation from between two 

contiguous poses consists of the following four components: Shape Structure, Bayesian 

Regression, Time Series, and Detail Preservation.  

 

(a)                         (b)                         (c) 

 

           (d)                      (e)                       (f) 

Figure 7.1: The overview of our approach for synthesizing limbs movements. (a) 

Considering several poses in consecutive frames of the source comic, (b) the character 

is extracted by level-set-based GrabCut. We construct the shape structure and refine it 

(here: the same color represents as the same level in the shape structure). (d) The 

key-motion is synthesized by Bayesian regression. (e) Then the time series is estimated 

to synthesize the whole motion. (f) The intermediate color is overlaid on the deformed 

contour by BLOESS. (c) The character animation in a comic is generated by using our 

method. © Georges Remi (Hergé) 
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1. Shape Structure: A hard character matte is obtained by using level-set-based 

GrabCut, as shown in Figure 7.1 (b). The foreground and background are adequately 

separated. The moving components are found simultaneously. Note that a moving 

component denotes the basic unit of a character’s motion. To create convincing 

animations of a 2D character, its shape needs to be deformed plausibly, while 

maintaining the effort for generating animations on three generic body layers. These 

body layers denote the topological changes of a generalized character model for 

different camera viewpoints. Note that we abstract the character in order to construct the 

shape structure by using the bilateral filter, as mentioned in Chapter 4. The skeleton of a 

character is specified by using a predefined 2D skeleton structure.  

2. Bayesian Regression: Anchor points are first sampled along the contours of a 

character in a frame. The shape deformation function between these samples and 

correspondences in another frame is trained by using Bayesian regression, which is 

based on Bayesian inference of kernel regression. Note that the ERBF kernel is adopted 

for regression analysis. Moreover, RJMCMC is applied to infer the optimized regression 

coefficients and parameters. The deformation function is used to fit the deformed 

contours for interpolating key-motions. For instance, Figure 7.1 (d) shows a key-motion 

obtained by using the deformation function. The function is trained from two poses of a 

character shown in Figure 7.1 (b) (below). Key-motions are applied to construct the 

time series model further. 

3. Time Series: ARMA is a useful and stable time series model, as mentioned in Section 

3.4. Given the key-motions, the entire limb movement is synthesized by using BARMA, 

which integrates Bayesian estimation with ARMA. BARMA is applied to predict the 

motion trajectories between the key-motions. 

4. Detail Preservation: The trajectories are applied to fit contours for synthesizing a 

series of motions, as shown in Figure 7.1 (e). Then the details of character are preserved 

by using BLOESS. In other words, BLOESS improves meaningful regressions by using 

Bayesian inference during a LOESS prediction for filling in the color and texture 

information obtained from the original character, as shown in Figure 7.1 (f). The limbs 

movements are synthesized in accordance with the previously fitted contours and details, 

as shown in Figure 7.1 (c). 
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7.3 Bayesian-based Limbs Movement Synthesis 

In this section, we explain our method in detail. The shape structure is constructed first. 

Then Bayesian regression with ERBF kernel and RJMCMC is applied for key-motions 

generations. Next, the time series model BARMA is constructed and used to estimate 

the motion trajectory. Finally, the movements of a character’s limbs are synthesized by 

using BARMA and BLOESS. 

 

7.3.1 Shape Structure 

In this stage, similar regions are extracted by approximating the dynamics of moving 

curves. This method is known as the level set method mentioned in Section 5.3. After 

abstracting the character by using the bilateral filter, we apply the level set method to 

segment regions with the similar color distribution. Next, the bounding box of these 

regions is applied for GrabCut mentioned in Section 5.3 to separate the foreground and 

background. Furthermore, the moving components of a character are found 

simultaneously. Besides, the skeleton of each moving component is obtained by using 

morphology-based operations [32]. Given a predefined human skeleton structure, the 

skeleton of a character is specified by moving the bones of that predefined skeleton to 

align to the bones of the obtained skeletons of moving components. Furthermore, we 

can refine the skeletal bones and joints in occluded regions manually. 

These moving components are further partitioned into three layers manually while 

animating characters from a side view. For instance, an animation might involve one 

layer for the foremost arm, one for the body and the foremost leg, and one for the 

remaining arm and leg. Moreover, these layers cannot move independently. They 

should be stitched together to convey the impression of a connected body when 

animating the character. Hence, every layer is composed of moving components, 

skeletal bones, and joints. Different layers are linked by the shared skeletal joints. 
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7.3.2 Point-to-point Correspondences 

Basically, a shape deformation of a character is constructed for motion synthesis. Before 

defining the deformation, the point-to-point correspondences of anchor points are 

obtained. As illustrated in Figure 7.2, a character raises up his arm. We can construct 

the point-to-point correspondences from these bones (blue lines) and joints (purple dots). 

The anchor points are sampled along the contours of the character randomly. For 

example, there is a point aai sampled along the contour of a right arm randomly. aai is 

called an anchor point. First, we find the projection aai of the anchor point aai on the 

line segment aaaaa or the extended line of aaaaa. Based on the predefined skeleton 

structure, the skeleton correspondence between two frames is obtained. Note that the 

corresponding joints aaai and aaai of aai and aai are known. According to the ratio of 

aaaaa, we can find the point aaai which satisfies the constraint that aaaaaaaaaaaaa. Then 

we compute the normal vector on the point aaai and find the intersection of the normal 

vector and the contour of the right arm. The intersection point aaa is the correspondence 

of the anchor point aai. Thus, we can obtain n anchor points sampled along the contours 

in a frame and their correspondences in another frame. 
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Then we define the deformation based on the mapping of n anchor points sampled 

along the contour of a character and the relative correspondences. The shape 

deformation function between these samples and correspondences in another frame is 

trained by using kernel regression with ERBFs and Bayesian inference with RJMCMC 

mentioned. Note that ERBF kernel is adopted for regression analysis, and RJMCMC is 

applied to estimate the optimized regression coefficients and parameters suitable for the 

current motion of a character. The deformation function is used to fit the deformed 

contours for interpolating key-motions.  
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(a)                                  (b) 

Figure 7.2: Point-to-point correspondences. (a) The character in a frame and the 

zoom-in view of his right arm. (b) The character in another frame and the zoom-in view 

of his right arm. © Georges Remi (Hergé) 

 

7.3.3 Bayesian Inference 

Now, we would describe how to estimate the most suitable coefficients and parameters 
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to fit the contour of a character by Bayesian inference. The central process of Bayesian 

inference is the calculation of probability distributions on the unknown parameter 

vectors. Recalling Equation (3.1) to Equation (3.4), Equation (3.6), and Equation (3.7) 

in Section 3.1, k is the number of elliptic Gaussians. aai denotes the mean of the j-th 

elliptic Gaussian, while aaa denotes the corresponding coefficient. We define aaaai as 

the covariance of the j-th elliptic Gaussian along i-axis. aai is the angle between the 

major axis of ellipse and i-axis. aaaa is the transformation matrix with orientation aai 

and the aspect ratio aiai. Let aaaaaaaaaaaaaaaaa be variables and aaai term be fixed. aai 

and aaaa are set up according to the principal component of anchor points sampled from 

contours. Hence, the parameter space aai can be written as 

aaaaaaaaaaaaaaaaaaaaaaaaaaaaa. Taking Dtrain to represent our training data, which are 

the anchor points and their displacements, we are interested in inference about the 

posterior probability of parameters ai conditional on the data, i.e. aaaaaaaaaa. Recalling 

Equation (3.6), given a new contour point aaaa (any point on the contour of character), 

the target response aaaa (the displacement of that point) can be given as an expectation. 

jv
2

,j iσ

iθ

,i iaAθ

( ) ( ), ,new new train new train
ˆ ,E r u D f u p D d⎡ ⎤ = Θ Θ⎣ ⎦ Θ∫

 

        (7.1)       

where aa(.) is the estimation of our ERBF model. However, the integral is intractable 

and untenable for asymptotic methods. We propose a Bayesian estimation of ERBFs. 

The proposed method imitates the ERBF procedure by RJMCMC which can 

approximate the integral of Equation (7.1), as described in Section 3.3.  

RJMCMC proceeds by drawing samples of a  in direct proportion to a

and then approximates Equation (7.1) by 
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where N is the number of samples generated, called the Markov chain length, and aai is 

the burn-in period.    denotes the current parameter space while there are t samples. 

The burn-in stage discards the samples generated by the Markov chain with unstable 

distribution of interest aa lly, we use Equation (7.2) to generalize the 

displacement of the character’s contour. We can make predictions of the displacement 
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p q

aaaa of an arbitrary new contour point aaaa by using Equation (7.2). Furthermore, we 

use Catmull-Rom splines to connect new positions of the contour points in in-betweens. 

So the contours of key-motions are synthesized by the model. In our implementation, 

we synthesize 10 key-motions between two contiguous frames in a comic or a 

low-frame-rate video. 

newr newu

 

7.3.4 The Time Series Model 

As mentioned above, these key-motions are described discretely in the temporal domain. 

For generating a smooth and continuous limbs movement, we synthesize the movement 

following the motion trajectory that is obtained by time series. We propose a 

nonparametric Bayesian approach to analyze time series data representing the motion 

trajectory. Recalling Equation (3.16), the equation of ARMA can be rewritten as 

follows: 

( ) ( )1 1
1 1

,..., ; ,..., ,TS t t p t t q i t i i t i
i i

f D D f Uα α φ κ− − − − −
= =

= −∑ ∑ α −    (7.3)       

where Dt denotes a univariate time series. p and q represent non-negative integers. aa 

and aaa are the coefficients of parameters in this model. aaa denotes the white noise. f(.) 

defined in Equation (3.6) is applied to estimate fTS(.). We develop a Bayesian version of 

ARMA (BARMA) by combining ERBF kernel with Bayesian inference based on 

RJMCMC. In our work, aa a denotes the positions of n contour points 

sampled from the i-th key-motion. aai is obtained by drawing a random variable. The 

coefficients of f(.) have already been inferred by using RJMCMC described in Section 

7.3.3. Furthermore, we perform RJMCMC to estimate the optimal coefficients aa and aa. 

In our implementation, we already synthesize 10 key-motions between two given 

contiguous frames. We find that an appropriate number of frames is about 10 in our 

experiments (Note that p = 10 and q = 10). These key-motions are sufficient to predict 

the motion trajectory of key-motions effectively. We use BARMA to obtain the motion 

trajectories. Note that the entire limbs movement of a character is synthesized by fitting 

contours of each frame in the temporal domain through the trajectories. 
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7.3.5 Detail Preservation 

The details of character are preserved by using LOESS. LOESS is employed to fill in 

the color and texture information obtained from the original character. A series of 

motions is synthesized in accordance with the previously fitted contours and details. As 

mentioned in Section 3.2, the specific location aa within the fitted contours, which 

would be filled in color and texture information, is supplied during a LOESS prediction. 

LOESS performs a linear regression on the sampled contour points weighted by a kernel 

centered at aa. The weight of the i-th sampled contour point aa is defined by Gaussian 

kernel, as illustrated in Figure 7.3. 

0x

0x ix

Recalling Section 5.5, we use the closed-form solution to find the regression 

coefficients in LOESS. For the same reason, we could apply RJMCMC to sample 

suitable coefficients of the current model. We use a special form of LOESS called 

BLOESS to build a model from the data. BLOESS allows meaningful regressions even 

with fewer data points than regression coefficients. Note that we assume a wide 

Gaussian prior on the coefficient vector aaaaaaaaaaaaaaaaa of the regression model in 

Equation (3.10) and a Gamma prior on the inverse of the noise variance 

aaaaaaaaaaaaaaaaaaaaa in common with RJMCMC sampler. precision is the precision of 

the coefficient prior.  
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(a)                               (b) 

Figure 7.3: LOESS analysis. (a) The original character with a uniform grid (50 50× ). (b) 

The zoom-in view of the image. LOESS with Gaussian kernel is applied to estimate the 

weights. © Georges Remi (Hergé) 
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Let X be the polynomial terms of data samples in the matrix form. Y denotes the 

response representing the matrix form of the corresponding new locations. P represents 

the matrix form of the precision precision. W represents the diagonal matrix form of 

aaaaaasaaaaaaaaaiaa in Equation (3.8). aa is obtained from the marginal posterior 

distribution with posterior mean aaaaaaaaaaaaaaaaaaaaaaaaaa and modified standard 

deviation. Note that the initial standard deviation is drawn from the noise variance aaa 

and modified to be the upper triangle of posterior variance matrix aaaaaaaaaaaaaaaa 

obtained by using Cholesky decomposition. According to the estimated regression 

coefficient vector aa, we can use Equation (3.10) to find the new location of aa and 

obtain the pixel values for filling in the color and texture information. In practice, we 

approximate the character with a uniform grid, as shown in Figure 7.3 (a). We find the 

new location of each vertex in the grid. Then we fill the resulting quad using bilinear 

interpolation. 

( )0  for 1iw x i m≤ ≤ ζ̂
1( )2 2T TX W X P X W Y

−
ζ = +

2τ

( ) 12TX W X P
−

+

ζ̂ 0x

 

7.4 Summary  

In brief review, the complete limbs movement synthesis process consists of the 

following phases. The shape structure of the character is built first. Each layer of the 

shape structure of characters consists of several moving components, for instance, head, 

body, arm, and leg. The indications of moving components are then refined manually by 

the predefined 2D skeleton structure. The deformed contour of each moving component 

is synthesized through Bayesian regression. Key-motions are synthesized by combining 

all moving components using alpha-blending or the painter’s algorithm with connective 

constraints formed from shape structures. As mentioned before, we actually create 10 

key-motions between two contiguous frames in a comic or a low-frame-rate video by 

using ERBFs with the parameters estimated by RJMCMC. Then we construct the time 

series model BARMA to track the motion trajectory, which best matches key-motions 

and generates the entire limbs movement in contours. Bayesian regression and time 

series simulation are both constrained to the connection topology in the shape structure. 

Furthermore, BLOESS is applied to reconstruct the details within the deformed 

contours fitted from Bayesian regression and BARMA. The entire limbs movement is 
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synthesized after shape deforming and detail preserving. Actually, we forecast 300 

frames to generate the 10 second character animation between two contiguous frames in 

a comic.  

 

7.5 Experimental Results 

The implementations were conducted on digitized images obtained from comics, such 

as “The Adventures of TinTin: The Shooting Star”, which was originally produced by 

Georges Remi (Hergé). The proposed time series model with nonparametric Bayesian 

inference was implemented on an Intel Core 2 Quad 6600 2.40 GHz CPU and 3 

gigabytes main memory, which enabled smooth limbs movements. Table 7.1 lists 

performance measurements for the figures shown. Execution time is measured in each 

step. Shape Structure consists of the time of segmentation and the whole shape structure 

generation. Bayesian Regression comprises the time of ERBF kernel training and 

RJMCMC sampling. RJMCMC sampling took a lot longer. All the simulations were run 

with a burn-in period of 5000 iterations of RJMCMC followed by 10000 samples. Time 

Series indicates the time to construct the time series model.  

Table 7.1: Performance measurements of limbs movement synthesis. 

 
TinTin Ball Man Bunny 

Figure No.  7.1 7.5 7.6 7.7 
Resolution  240×502 100×75 368×583 319×646 

Shape Structure (Second) 7 1 6  9 

Bayesian Regression (Second) 1834 43 2046 2257 

Time Series (Second)  102 21 104 128 

UI (Minute)  1  0  1  1  
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Note RJMCMC sampling is carried out once to obtain the regression coefficients 

during Time Series step because the number of ERBFs is known (recalling p = 10 and q 

= 10 in Equation (7.3)). UI represents the time of users’ intervention to refine shape 

structure further. Besides, Detail Preservation is not demonstrated since it takes less 

than 20 milliseconds for each frame and is quite fast. The time of animation generation 

is not shown because it varies significantly due to different numbers of frames 

generated. 

 

(a)                               (b) 

Figure 7.4: Two major diagrams of a motion trajectory: (a) spatio-temporal and (b) 

spatial. 

 

(a)                                   (b) 

Figure 7.5: A motion trajectory of a ball. (a) Given two consecutive frames of a 

bouncing ball in a low-rate-frame video, (b) the synthesized frames of animation are 

shown with the motion trajectory. 
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The motion trajectory obtained by the proposed time series model is described in 

Figure 7.4. The spatio-temporal diagram, which is illustrated in Figure 7.4 (a), captures 

the movement of a character in time. Then it can be mathematically represented as a 

curve (x,y,t) in three-dimensional space or equivalently as a parametric curve (x(t),y(t)) 

in the two-dimensional space. The spatial diagram can be mathematically represented as 

a one-dimensional function y = fMT(x). As illustrated in Figure 7.4 (b), the spatial 

diagram is a projection of the spatio-temporal trajectory onto the image plane. Figure 

7.5 (a) shows two consecutive key-poses of a bouncing ball in a low-frame-rate video. 

There is one moving component only. The motion of the bouncing ball was synthesized 

with its motion trajectory. As shown in Figure 7.5 (b), the trajectory is described by the 

movement of the ball’s barycenter. The ball was animated along with the trajectory. 

The results which are selected frames of 2D character animations generated by our 

method are presented in Figure 7.1 and Figure 7.6. There are 10 moving components 

representing the character shown in Figure 7.6 (a), such as head, right arm, right hand, 

torso, left arm, left hand, right leg, right foot, left leg, and left foot. Three motion 

trajectories of the man were obtained by BARMA. The extracted frames of the 

animation synthesized by using these motion trajectories are shown in Figure 7.6 (b).  

 

                                  (a) 

 

                              (b) 

Figure 7.6: Limbs movement synthesis. (a) Given two consecutive frames in the comic, 

(b) limbs movement synthesis is carried out using the estimated time series.  
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Furthermore, Figure 7.1 (a) shows several digitized frames of comic obtained from 

“The Adventures of TinTin: The Shooting Star”. There are 8 moving components 

representing the character shown in Figure 7.1 (a), such as head, right arm, right hand, 

torso, left arm, left hand, left leg, and right leg. As similarly above, the character shown 

in Figure 7.1 consists of three layers in the proposed shape structure. Three motion 

trajectories were computed by BARMA from these three layers respectively and used to 

simulate the complete animation. The results reveal the strength of our method as the 

possibility of convincingly posing or animating any kind of comic characters, as shown 

in Figure 7.1 (c). 

As mentioned before, DeJuan and Bodenheimer [19] synthesized in-between 

contours and textures by RBF kernel and elastic registration. However, for animating 

characters, their method would be operated iteratively. The whole animation was 

interpolated directly. Using such image-based interpolation method they proposed may 

introduce new artifacts. Our approach could generate a smooth and natural-looking 2D 

character animation by using the time series estimated from Bayesian inference with 

ERBF kernel. Note that the time series model is applied to represent the trajectory of a 

character’s motion. It should be noted that, the motion trajectory could be further used 

to predict a character’s movement, viseme, or facial expression by nonlinearly 

extrapolating reasonable deformations without the restriction of a purely interpolation 

method. 

Figure 7.7 provides the comparison with the in-betweening technique proposed by 

DeJuan and Bodenheimer [19]. Given keyframes shown in Figure 7.7 (a), they 

generated the in-between bunny revealed in Figure 7.7 (b). Figure 7.7 (c) shows our 

synthesized result. Note that our method is based on ERBF kernel. It is more suitable 

than RBF kernel for fitting contours, which have noncircular structures, such as the 

arms and legs of the bunny. Note that there are 11 moving components representing the 

bunny, such as head including ears, right arm, right hand, torso, tail, left arm, left hand, 

right leg, right foot, left leg, and left foot. Two layers are constructed in the proposed 

shape structure. One layer consists of head, right arm, right hand, left arm, and left hand. 

Another layer consists of the other 6 moving components. The motion trajectories are 

also computed by BARMA for synthesizing character animation.  
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(a)                                     (b) 

 

(c)                           (d) 

Figure 7.7: Visual comparison of character animation. (a) The inputs are two keyframes. 

(b) The in-between frame for Bugs Bunny are generated by using the technique 

proposed by DeJuan and Bodenheimer [19]. (c) Motion synthesis is carried out using the 

estimated time series for character animation. (d) A novel view and new expression is 

predicted by using the estimated time series. © Warner Bros. Entertainment Inc. 
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Furthermore, the character’s novel view or expression could be forecasted directly 

by using the time series model, as shown in Figure 7.7 (d). In order to maintain the 3D 

effect of this new view, it sometimes uses color blending or cross dissolving to combine 

the features coming from two views. Given Figure 7.7 (c) and its reverse, the motion 

trajectory was estimated by the movements of facial components from Figure 7.7 (c) to 

its reverse. Figure 7.7 (c) was deformed forward to synthesize a frontal view by the 

motion trajectory. Then we combined the frontal view with another frontal view 

obtained by backward deformation from the reverse of Figure 7.7 (c) by using color 

blending. Note that the features of the bunny’s head in the frontal view are simulated, 

such as the right ear of the bunny. 
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Chapter 8

 

                   

Animating Passive Elements 

The proposed statistical approaches have many advanced multimedia applications of 

next generation environments. This chapter presents a novel application of natural 

image for taking a still picture and making it move in convincing ways by simulating 

natural phenomena. Given a picture of a pond, we make it ripple. Given a picture of a 

tree, we make it sway. Considering the traditional 2D animation production, the 

background of the scene is the same as the character. The production process of 

building up sequences of drawn passive elements in the background is to resemble a 

movement by hand. It is still a labor-intensive artisan process. For the reason, we focus 

on simulating the movements of these passive elements. In this chapter, we explore how 

a set of explicitly encoded pre-sampled data representing the passive elements’ 

movements in still pictures by using kernel regression with ERBFs mentioned in 

Section 3.1. Simple harmonic motion is applied to estimate displacements of samples of 

passive elements in next time-sliced scene. Then these positions are used to reconstruct 

the whole moving passive elements. The same process to preserve details is carried out 

by using LOESS mentioned in Section 3.2.  

 

8.1 Simple Harmonic Motion 

In physics, simple harmonic motion is the motion of a simple harmonic oscillator [71]. 

Simple harmonic motion is typified by the motion of a mass on a spring when it is 

subject to the linear elastic restoring force given by Hooke's law. To explore simple 

harmonic motion, let’s take the example of a spring with a mass M in the absence of 
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gravity. If this is an ideal spring, the force is (-KStiXDis) where KSti is a measure of the 

stiffness of the spring and XDis is the displacement. The force is toward the origin if that 

is the equilibrium position of the spring. Newton's second law becomes 

2

2 .Dis
Sti Dis

d XM K X
dt

= −                            (8.1)       

The answer of this differential equation is  

( ) ( )sin ,Dis ampX t A tω φ= +                         (8.2)       

where XDis(t) denotes the displacement of a mass at any time t. Aamp denotes the 

amplitude representing the maximum displacement from equilibrium. ω  denotes the 

angular frequency. In this dissertation, without loss of generality, we will take φ , also 

called the phase shift, to be zero (or just defining it where t = 0 is). The motion is 

periodic and sinusoidal in time. Each oscillation is identical, and thus the period, 

frequency, and amplitude of the motion are constant. The motion equation (8.2) for 

simple harmonic motion contains a complete description of the motion, and other 

parameters of the motion can be calculated from it. Moreover, using the techniques of 

differential calculus, the velocity and acceleration as a function of time are given by 

( ) cos ,Dis
ampv t A t

dt
dX ω ω= =                         (8.3)       

( ) ( )2 2
2 sin .Dis

amp Dis
d Xa t A t X t

dt
ω ω ω= = − = −

2

( ) 2

          (8.4)       

Since Dis Sti DisMa t M X K Xω= − = − , 

2 .StiK
M

ω =                                       (8.5)       

Besides, aaaaaaaaza where fFre denotes the frequency representing the number of cycles 

per second, 

2 Frefω π=

1 ,
2

Sti
Fre

1

Per

Kf
M Tπ

= =                             (8.6)       
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where TPer denotes the period representing the time required to complete a full cycle. 

These equations demonstrate that the period and the frequency are independent of the 

amplitude and the initial phase shift of the motion. 

 

8.2 Algorithm Overview 

The proposed approach for animating passive elements from a single still picture 

consists of the following five components: Passive Element Specification, Edge 

Extraction, Movement Selection, Displacement Estimation, and Movement Prediction. 

In Figure 8.1, the outline reflects the structure of our proposed method to animate 

passive elements. Considering Figure 8.1, we briefly describe our method in the 

following paragraphs. 

1. Passive Element Specification: The user can scribble different colors in the interiors 

of various regions for marking the passive elements which would be animated. Note 

that each color indicates a specified movement style for that region. Real images are 

simplified by using image abstraction mentioned in Chapter 4. Once the user scribbles 

on the picture, the whole passive element is obtained by propagating that stroke through 

the level set method mentioned in Section 5.3. 

2. Edge Extraction: As mentioned previously, the process to animate passive elements 

is base on shape deforming by applying the proposed statistical approaches to fit 

contours. Thus, passive elements are extracted by using the proposed level-set-based 

GrabCut mentioned in Section 5.3. Then the edges of these elements are extracted by 

using an edge detector. 

3. Movement Selection: Our system provides two kinds of movement styles for natural 

phenomena simulation. For water waves, we focus on the ripple effect of water. 

Moreover, the branched and trunks of trees can be modeled as approximated physical 

systems like a simple pendulum. Wind force causes trees to sway. Another natural 

phenomenon is to model the periodical oscillation effect of trees. Besides, the dynamics 

of passive elements are driven by the wind force. The driving wind force causes the 

wave motion of these elements. Hence, the user could control the wind direction, the 
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wind speed, the amplitude, and the frequency of the wave motion. 

 

 

Figure 8.1: The overview of passive element animation with the example of the 

Japanese Temple named Temple of the Golden Pavilion (from Japanese term 

Kinkaku-ji). 
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4. Displacement Estimation: As mentioned above, our approximated physical system 

is modeled by simple harmonic motion. The displacements of the samples, which are 

sampled on the interiors of passive elements, are estimated by applying simple 

harmonic motion with the specified parameters.  

5. Movement Prediction: All displacements of the samples are used to compute the 

distortions along x-axis and y-axis of pixels. These distortions are encoded explicitly by 

the regression surface using kernel regression with ERBFs. By using the representation, 

the movements of passive elements are simulated. Finally, LOESS is applied to 

preserve details if necessary. 

 

8.3 Passive Element Animation 

In this section, we describe our approach to simulate the movements of passive 

elements. We focus on the details of each movement style, i.e., water waves and trees. 

 

8.3.1 Extraction and Specification 

In addition to the paintings or drawings, real images are simplified by using the bilateral 

filter. Once the user scribbles on the image, regions with a similar color distribution of 

the drawing or the corresponding filtered image can be sensibly segmented by a single 

scribble propagation using the level set method. The segmented regions, which are 

propagated from the same scribble, indicate that they belong to the same passive 

element. Note that if the color distribution is too similar between the background and a 

passive element, the user should refine the scribble to mask the region of that element 

manually, as showed in Figure 8.2 (a).  

Level-set-based GrabCut is applied to obtain the passive elements, which we want 

to animate, through analyze these segmented regions iteratively. Next, the contours of 

these elements are extracted by using Sobel Operator [32] for further sampling. Besides, 

different scribbles with different colors represent various movement styles. The user 

could choose parameters of each motion type to control a specified motion, i.e., the 
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wind direction, the wind speed, the amplitude, and the frequency of the wave motion. 

Furthermore, the ripple effect of water and the oscillation effect of trees driven by the 

wind force are designed to simulate specified natural phenomena. 

 

8.3.2 Water Waves 

In order to simulate the movement of water effectively, we assume that the water 

surface is discrete and consists of water particles. We sample the water surface with a 

uniform grid (50×50), as shown in Figure 8.2 (b). Each sample is the water particle on 

the water surface defined as the grid point on the uniform grid. Next, according to the 

movement style, we estimate the displacements of these sampled water particles.  

Based on the observation of the ripple effect, a pebble thrown into a pond will 

produce concentric circular ripples, which move outward from the point of impact. The 

ripple is the wave motion based on harmonic oscillation. Thus, the point of impact is 

determined by the user-specified wind direction first.  

 

  

(a)                                  (b) 

Figure 8.2: The example of the Temple of the Golden Pavilion for segmentation and 

sampling. (a) Users should mask the whole region of the pond, since its color 

distribution is too similar to the background. (b) The pond with a uniform grid 

(50 ). 50×
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(a)                            (b) 

Figure 8.3: The example of the wind blowing downward. (a) The sources of the wave 

(orange dots) are selected. (b) The zoom-in view of the image. Note that PS (purple dot) 

denotes the point of impact. PT1 (green dot) denotes the sample of the water particle, 

whose displacement is estimated from PS. 

 

Figure 8.4: Schematic diagram of simple harmonic motion. 

For example, the top point PS of the intersection between the grid and the outer 

contour of the pond in image space is chosen as the point of impact when the wind 

direction is downward. Moreover, the user-specified amplitude is considered as the 

displacement of the water particle at this point. Besides, the grid points on the vertical, 

horizontal, or diagonal direction of PS are determined to be the sources of the wave in 

terms of the wind direction. Figure 8.3 (a) shows PS (purple dot) and the sources of the 

wave (orange dots) when the wind direction is downward. Note that the sources of the 

wave are selected according the direction vertical to the wind direction. The water 

particles’ displacements at these sources are the same as the displacement at PS, which 
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is the user-specified amplitude. Then we could estimate each sample’s displacement by 

applying simple harmonic motion. Recalling the equations reviewed in Section 8.1, the 

motion equation is derived by the differential equation to time dimension in the spring 

system. Now, we simulate the traveling wave to estimate samples’ displacements like 

the displacement of PT1 (green dot). As illustrated in Figure 8.4, x-axis indicates the 

position of the grid point in image space. y-axis indicates the water particle’s 

displacement in vertical direction. Propagation velocity v equals to the user-specified 

wind speed. λ  denotes the wavelength. A denotes the amplitude of the wave 

representing the displacement of the wave in the initial position. In other words, A 

represents the initial displacements of the point of impact PS and the sources of the 

wave. We could estimate the displacements of samples at different time slices from 

initial displacements of PS and the sources of the wave respectively. 

( ) ( ), siny x t A x vt2 ,π
λ

= −                          (8.7)       

2 v 2 ,Frefπ π ω
λ

= =                                (8.8)       

where fFre and ω  are the frequency and angular frequency respectively, as defined in 

Section 8.1. Moreover, a traveling wave would take the form of a sine wave. The 

motion relationship "distance = velocity× time" is the key to the basic wave relationship 

of the wave frequency, wavelength, and propagation velocity. With the wavelength as 

distance, this relationship becomes aaaaaaaa. Then using aaaaaaaaaaaa gives the 

standard wave relationship: 
PervTλ = 1Fre Perf T=

.v fFreλ=                                       (8.9)       

Thus, we could estimate aaaaaaaaa. Finally, we assemble Equations (8.7), Equation 

(8.8), and Equation (8.9) to compute all displacements of samples, which are the 

displacements of the water particles on all grid points. Note that the displacement of 

each sample would be computed from its the nearest source of the wave along the wind 

direction. After computing all displacements of samples, we further estimate the 

displacements of these samples’ 4-neighbors. Then we would approximate the 

distortions of these samples. Note that the degree of distortion is mainly determined by 

the gradient of the water surface, the refraction, and the depth of the water.  

Frev fλ =
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Figure 8.5: The diagram of an arbitrary sample (Pi,j) and its 4-neighbors (Pi-1,j, Pi+1,j, 

P , and P ). Each point represents as a pixel in image space. 

the distortion increases 

when the water surface is more declivous. Hence, the difference between the 

displacem

i,j-1 i,j+1

We only approximate them by analyzing the gradient since 

ents of the water particle’s 4-neighbors is represented as the distortion of that 

particle: 

( ) ( )1, 1, ,Off Dis i j Dis i jx D P D P+ −Δ = −                    (8.10)       

( ) ( )

where Pi-1,j, Pi+1,j, Pi,j-1, and Pi,j+1 is shown in Fig

along the horizontal direction of P  in image space. aaaaa denotes the distortion along 

y-axis. Each 

distortion is encoded explicitly by the regression surface using kernel regression with 

ERBFs. By using the representa

, 1 , 1 ,Off Dis i j Dis i jy D P D P− +Δ = −                    (8.11)       

ure 8.5. aaaaa denotes the distortion OffxΔ

i,j

the vertical direction in image space. DDis(.) is the displacement of its parameter. Note 

that these distortions represent the coordinate offsets along the horizontal direction and 

the vertical direction in image space (offsets of x-axis and y-axis). 

Furthermore, we could obtain all samples’ distortions along x-axis and 

tion, we could find the distortions of all water particles 

on the water surface. That means the distortions of all pixels in image space which 

belong to the passive element (water) are obtained. In the other words, these distortions 

are used to train the kernel regression model, as described in Section 3.1. In general, we 

formulate this problem as regression analysis. Recalling Equation (3.6), the relationship 

of the response aaaaaaaaaaaaaaaa and the predictor aa representing the coordinate of 

each pixel can be constructed. Then the trained model is used to fit the distortions of all 

OffyΔ

( ),Off Offr x y= Δ Δ u
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8.3.3 Trees 

Simple harmonic motion is found if there is a small enough deviation from stable static 

    First, we find the bounding box of the extracted trees, which is obtained by the 

Next, we could compute the displacement of the tip by simple harmonic motion. 

Base

pixels in image space which belong to the passive element (water) by Equation (3.6). 

Hence, new pixel values of all pixels are determined by copying the pixel values at new 

positions (the original coordinate plus the offsets). The movement of the passive 

element is simulated. 

equilibrium. For example, touch the water surface lightly or knock the drum surface. 

For a small wind, the leaves on the tree show simple harmonic motion. For a stronger 

wind, branch of the tree will show simple harmonic motion. For a huge wind, the whole 

tree might show simple harmonic motion. Now, we provide an approximated physical 

system to simulate the swaying trees in spirit to the motion of a simple pendulum. 

method mentioned in Section 8.3.1. As illustrated in Figure 8.6, the tree is enclosed by 

the bounding box (red rectangular). Then the skeleton of the tree named the major axis 

of the tree is chosen through the intersection between the tree and the bounding box. 

Note that the blue circle indicates the tip of the tree. Another end of the major axis is 

called the root. 

d on the observation, the driving function that causes trees to sway is typically 

wind. Then the elastic restoring force of the tree makes the tree back to the equilibrium 

position. The motion of the tree can be estimated by using Equation (8.2) and the 

user-specified parameters. Note that the circular motion of the tip is considered as the 

horizontal motion since the angle of sway θ  shown in Figure 8.6 (b) is smaller enough. 

Recalling Equation (8.2), the displacement f the tip is estimated. Then we compute the 

equation of the major axis and sample the axis uniformly. According to the extreme 

position of the tip (the equilibrium position plus the displacement) and the position of 

the root, the corresponding extreme positions and the displacements of other samples 

are estimated approximately. 

o
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(a)                            (b) 

Figure 8.6: The dia The oscillation of 

major axis of the tree. (b) The zoom-in view of the motion of the major axis. 

on surface 

using kernel regression with ERBFs. It is similar to the process of the water waves. 

Moreover, the contours of the tree are ex

.4 Experimental Results 

We have applied our system to several photographs and famous paintings. Here, we 

show some of the results. First, we simulated the water ripple effect in the pond. We 

gram of the tree with simple harmonic motion. (a) 

Furthermore, these displacements are encoded explicitly by the regressi

tracted by using the method described in 

Section 8.3.1. By using the representation, we could find the displacements of the 

contours. That means deforming the shape of the tree in image space is carried out. 

Finally, the details, features, or textures from the fitted contours interiors are preserved 

by using LOESS. Hence, the movement of the passive element is simulated. 

 

8

used the small amplitude of wave to give the ripples a fine-grained look. Figure 8.7 

shows the extracted frame from the resulting passive element animation. We use this 

example to demonstrate that we can change the appearance of the water by controlling 

the specified parameters. Furthermore, we show another look of the water under 
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different wind speeds, directions, and frequency. Figure 8.7 (a) is the original real image 

of the Japanese Temple named Temple of the Golden Pavilion (from Japanese term 

Kinkaku-ji). Figure 8.7 (b) is the animated picture with higher wind speed. Figure 8.7 (c) 

shows the wind of different direction. Figure 8.7 (d) shows the rougher water surface. 

 

  

(a)                                  (b) 

  

(c)                                 (d) 

Figure 8.7: The result o inal image. (b) 

Simulating the ripple effect with higher wind speed. (c) The different wind direction. (d) 

f the Temple of the Golden Pavilion. (a) The orig

The rougher water surface. 
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(a)                             (b) 

Figure 8.8: The result for swaying plants. (a) The original painting of Vincent van 

Gogh’s Still Life Vase with Fourteen Sunflowers. (b) The extracted frame from the 

animated painting. 

Moreover, our model works even better with paintings. Figure 8.8 shows the result 

of the swaying plants. For Vincent van Gogh’s Still Life Vase with Fourteen Sunflowers, 

we used our model to animate 3 layers of plants. Note that the resulting animation is 

smooth and impressive. The viewer can find out that the flowers swaying in a natural 

way with the simple harmonic motion model. It is just like the flowers’ motions are 

driven by wind blowing. 

Furthermore, Figure 8.9 provides an example to make a tree sway. Note that we 

estimate the motion of the tree with the angle of sway θ < 5. Note that the original 

circular motion of harmonic oscillation can be considered as the horizontal motion 

Figure 8.9 (a) shows the original painting of Vincent van Gogh’s “Country Road in 

Provence by Night”. The extracted frame in a different time slice of the swaying tree is 

shown in Figure 8.9 (b). Moreover, the pattern of the tree is also preserved by using 

LOESS.  
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(a)                        (b) 

Figure 8.9: Another example for a swaying tree. (a) The original painting of Vincent 

van Gogh’s “Country Road in Provence by Night”. (b) The extracted frame from the 

animated painting. 

Table 8.1: Performance measurements for passive element animation. 

 The Temple of the 
Golden Pavilion 

Still Life Vase 
with Fourteen 
Sunflowers 

Country Road in 
Provence by Night

Figure No.  8.7 8.8 8.9 
Resolution  608×480 632×849 467×599 

Shape Deforming 
(Millisecond) 

3096 3044 2602 

Detail Preserving  
(Millisecond) 

0 1443 980 

UI (Minute)  1 2 1 
 

Finally, Table 8.1 lists performance measurements for the figures shown. The 

proposed model for passive element animation was implemented on an Intel Core 2 

Quad 6600 2.40 GHz CPU and 3 gigabytes main memory, which enabled to apply the 

proposed statistical approaches to animate passive elements for simulating natural 

phenomena effectively. It takes from several seconds to several minutes to animate a 

picture depending on the complexity of the input picture. Shape deforming represents 

the time for training and fitting with kernel regression with ERBFs. Detail preserving 
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represents the time for training and fitting with LOESS. UI represents the time of users’ 

intervention to specify the passive element, refine the scribble to mask the region of 

passive element, and further indicate movement styles on different passive elements. 

Note that we only deformed the water surface shown in Figure 8.7. We simulated the 

ripple effect with the distortion of the water. Hence, we did not perform the detail 

preservation procedure in that scene. Furthermore, there are 3 layers specified by users 

in Figure 8.8 manually. Each layer represents different frequencies of movements. 

 

 

 

  



 

 
 

100

Chapter 9

 

                  

Conclusion and Future Work 

In this dissertation, we have introduced a novel set of statistical approaches which 

expand the working range of 2D character animation in three directions: novel view 

generation, expressive talking face simulation, and limbs movement synthesis. We have 

also presented a novel application of the proposed statistical approaches to animate still 

pictures for passive element animation.  

 

9.1 Conclusion 

In particular, this dissertation involves the following major works: 

The Statistical Approaches. The statistical approaches are investigated to eliminate the 

time-consuming aspects of the traditional 2D animation production. By considering the 

traditional 2D animation, some key limitations and fallacies are identified. That is the 

problem of the repeated drawing and coloring of all characters in all frames. To this end, 

we particularly focus on automatically calculating the movements of characters in 

in-between frames. We use regression analysis to estimate and forecast the variations of 

the shapes of characters during deformations in image space. Bayesian inference is used 

for adding the smooth variety during regression analysis and improves meaningful 

regressions even with fewer data points than regression coefficients. Moreover, the 

motion of a 2D character is a 3D transformation problem in essence, which consists of a 

2D spatial displacement and a 1D shift in time. Considering the temporal relation, time 

series analysis is applied to estimate the moving trajectory of a character’s limb for the 
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smooth motion simulation. 

Shape Deformation and Detail Preservation. This dissertation proposes a novel 

method for 2D Character animation. The character’s motion is analyzed and predicted 

by nonparametric regression. That is, kernel regression with ERBFs is used to deform 

the shape of a character in image space directly for synthesizing the motion of a 

character. The extension to ERBFs decreases fitting time involves in alleviating the 

motion synthesis problems that are commonly observed for characters in noncircular 

structures. Moreover, LOESS is used to preserve the details from the deformed shape 

interiors by filling in the color and texture information obtained from the original 

character in the given image. The animation process is similar to machine learning in 

artificial intelligence or neural network community. In terms of different training data 

sets, we could synthesize different kinds of motions of a character, such as a novel view 

or an expressive face with lips movement from speech. 

The Temporal Relation and Bayesian Estimation. We further consider the temporal 

relation between the given poses of a character. We use time series analysis, which is 

modeled by a nonparametric approach, and Bayesian inference to improve the original 

nonparametric regression model. Hence, Bayesian regression based on RJMCMC 

sampling which can be applied to choose the suitable parameters, BARMA, and 

BLOESS are proposed for synthesizing the movements of multiple limbs 

simultaneously. Note that the Bayesian framework provides a more principled solution 

and better results than previous methods. Moreover, BARMA is flexible and appropriate 

for any data distribution for data prediction in the temporal domain.  

An Application of Animating Passive Elements. This work could also be extended to 

focus on another novel multimedia application. That is animating pictures for passive 

element animation which are subject to natural forces like wind. We apply our proposed 

statistical approaches to animate passive elements. With the help of the physics, we are 

able to synthesize natural phenomena with time-varying motions from still photographs 

or paintings. 

Furthermore, the results reveal that the generated 2D character animations with 

minimizing unnatural distortions. However, the prediction performance of the proposed 

method is considered strongly by correspondences of the input pictures. The proposed 
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method will not produce a reasonable result for the lower degree of similarity between 

the input pictures. For example, one is the back-face view, and the other is the 

front-face view. It may be solved through the extra information needed to handle the 

motion of rotation with users’ interaction. Besides, animating passive elements in the 

painting with the apparent strokes may cause unnatural movements. We sample the 

element uniformly and use these samples’ displacements to predict the whole element’s 

movement. Thus, it lacks the information to indicate each stroke’s orientation or its 

moving direction. It could be solved by providing additional vector fields or painterly 

art maps [75] to guide the flow of the strokes. 

 

9.2 Future Work 

Future studies should address the following issues to build upon the ideas presented 

here.  

A More Efficient Fitting Method. As shown in Table 7.1, RJMCMC sampling takes a 

lot longer since all the simulations are run with a burn-in period of 5000 iterations of 

RJMCMC followed by 10000 samples. RJMCMC sampling is the most time-consuming 

part in our system and usually consumes more than 90 percent of the overall time for 

synthesizing limbs movement. Hence, Enhancing the performance and quality of the 

scattered ERBFs, LOESS fitting algorithm, and Bayesian inference based on RJMCMC 

is an important task.  

A Motion Retargeting Module. Time series is used to analyze and estimate the motion 

trajectory of the character. The estimated motion trajectory could be applied to retarget 

the motion onto any similar humans or human-like characters. The motion retargeting 

technique would empower a much quicker animation production. 

Virtual Human Generation. Deforming characters in a 2D image has received lots of 

interests. Moreover, it is very useful for advanced intelligent multimedia applications 

for next generation environments utilization. Thus, the proposed method is especially 

suitable for animation production or intelligent multimedia applications, such as virtual 

human generation. The created virtual human can be treated as the spokesman or 
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substitute in various services of the next generation application domain, such as remote 

education, remote diagnosis, network gaming, virtual shopping, digital photo frame, 

video conference, and so on. 

Furthermore, there are a number of research opportunities in other multimedia 

applications for the future. 

Progressive Image Abstraction. In non-photorealistic rendering, a progressive image 

abstraction approach could be proposed by developing two-scale decomposition 

mentioned in Chapter 4. More specifically, let I denote the input image for which we 

would like to construct k-level decomposition. BL1 is the 1-level base layer, which is the 

filtered result of I by bilateral filtering. The corresponding detail layer DL1 is the 

division of the original image by BL1. Then BL2 is 2-level base layer, which is the 

filtered result of BL1 by bilateral filtering. The corresponding detail layer DL2 is the 

division of BL1 by BL2. For this reason, BLk is k-level base layer, which is the filtered 

result of BL(k-1) by bilateral filtering. The corresponding detail layer DLk is the division of 

BL(k-1) by BLk. Moreover, the relationship between I, an arbitrary base layer, and the 

corresponding detail layer are reversible. Based on the multi-scale decomposition, users 

can control various degree of detail of the scene in a spatially varying manner. That is, 

users can provide more detail in area of interest. 

A Bobbing Boat and Flowing Clouds Simulation. A boat on the water surface 

simulated in Section 8.3.2 is rolling and moving vertically downward. It is almost in 

oscillatory motion. We can approximate the motion of the boat. According to the 

simulated wave shape of water, the displacement of the boat on the carrier wave is 

estimated through affine transformation. More specifically, we estimate the waterline by 

naval architecture or fluid mechanics. The displacements of the points sampled along 

the waterline equal to the displacements of the water particles at these samples. Then 

nonparametric regression mentioned in Section 3.1 and Section 3.2 could be use to fit 

the movement of the whole boat. Besides, another common passive element for scenic 

pictures could be simulated is cloud. We could specify a translational and rotational 

motion to cloud instead of simple harmonic motion. For global cloud movement, for 

example, a gradual translation along the wind direction emulates prevailing wind effects. 

Moreover, particles forming the cloud may rotate with velocity determined by the wind. 

Hence, we sample the contours of clouds and estimated the displacements of samples 
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through affine transformation. The proposed statistical approaches are applied to fit the 

motions of clouds.  
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