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廣義裂片的繞射理論分析兼論向量光束 
 

博士研究生：鄭介任  指導教授：陳志隆教授 

 

國立交通大學  光電工程研究所 

 

摘 要 
對切透鏡有比勒(Billet)横向及梅斯林(Meslin)縱向切割兩種型式。比勒對切透鏡

在遠場會產生雙曲面及等間距直線這兩種干涉條紋，而梅斯林對切透鏡在兩透鏡

焦點中間附近會產生半圓型的干涉條紋。本論文延伸對切透鏡成裂解透鏡，並討

論比勒裂解透鏡之焦點形成一個圓形時的遠場干涉條紋分佈情形及其相對於光

軸的對稱性；在梅斯林裂解透鏡中，我們將一個圓透鏡切割成2N塊等角度透鏡，

編號為單數與雙數分別放置於不同焦點處，並討論其光場分佈之對稱性。相對於

通過兩焦點之中心點的垂直面；N為單數時，振幅及相位分別為鏡面反射對稱及

反對稱(扣除π相位角)，N為偶數時，在鏡面反射對稱與反對稱外要再加上額外

的2π/N的旋轉角。此外，從光場的漸近表示式可以得知比勒裂解透鏡可以用來產

生貝索光束(Bessel beam)，並可再經由另一透鏡消除發散相位成一無繞射貝索光

束(non-diffracting Bessel beam)。相對於傳統的環形孔徑，使用此透鏡所產生的

貝索光束可以攜帶更多能量。有趣的是在漸近表示式中，貝索函數之參數與數值

孔徑無關，但是數值孔徑卻決定了漸近表示式的適用範圍。因此，數值孔徑會決

定貝索光束的發散情形與其所適用的漸近表示式範圍。 

另一方面，在完美透鏡(perfect lens)成像系統中，焦點位移(Focal shift)效應發生

於菲涅耳數(Fresnel number)小於10的情形之下，若使用線偏振光(linearly 
polarized)的入射光學系統中，則焦點位移效應與菲涅耳數及數值孔徑皆成反

比。本論文討論在徑向偏振光(radially polarized)及方位偏振光(azimuthally 
polarized)入射情形下，焦點位移效應與菲涅耳數及數值孔徑並不會只有單純反

比關係。此外，三種不同偏振光在同一個系統參數下(亦即相同菲涅耳數和數值

孔徑)，方位偏振光所造成的焦點位移效應最嚴重，徑向偏振光次之，線偏振光

最輕微。 
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Abstract 

This study examines the diffraction properties of the generalized split N-sector lens originating 

from the configuration of Meslin’s experiment and the Billet’s split bi-sector lens. In Billet’s N-split 

lens, the type of lens splitting selected causes the interference pattern of equidistant straight lines in the 

original Billet’s lens to form an N-fold angularly distributed pattern with an angle difference of 2π/N. 

For an odd number of splitting N, there is an additional angle shift of π/N for the azimuthally 

distributed patterns of equidistant straight lines. In other words, there are two kinds of symmetry even 

for simple splitting operations. On the other hand, the peak intensity distribution in the central portion 

resembles a concentric-circle-like pattern, when N is large as a result of N-beam interference. As to the 

Meslin’s N-split lens, the amplitude and the phase follow ),,()2,,( ψπψ vuU
N

vuU =+−  and 

πψπψ −Φ−=+−Φ ),,()2,,( vu
N

vu  respectively when the splitting is with double of an even number. 

On the other hand, for the case of double of an odd number, the relation changes to hold with 

),,(),,( ψψ vuUvuU =−  and πψψ −Φ−=−Φ ),,(),,( vuvu , where the optical units u and 

v are used to denote the z- and the radial coordinates respectively and the azimuthal angle is ψ. 

Additional symmetry properties are also explored and identified, particularly for the distributions on 

the focal plane.  
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Moreover, the Bessel beam is studied and by the use of the Billet’s N-split lens distributing the 

focal points circularly on the focal plane. This study explores the characteristics of beam propagation 

and analytically derives the asymptotic characteristics of beam propagation based on the stationary 

phase approximation and the moment-free Filon-type method. Results show that the unique Billet’s 

N-split lens can generate a quasi-Bessel beam if the number of splitting N is large enough, e.g., N≧24. 

This study also explores the diffraction efficiency of corresponding quasi-Bessel beam and the 

influence of aperture size. The potential advantage of proposed split-lens approach is that, unlike the 

classical means of annual aperture, this simple lens approach allows a much large throughput in 

creating the Bessel beam and hence the Bessel beam could have more optical energy.  

The diffraction behaviors of cylindrical vector beam, particularly the focal shifts further caused 

by different polarizations, namely linear, radial and azimuthal, are also investigated. The variation of 

focal shifts associated with numerical aperture and the Fresnel number is also explored. It is found that 

with a low numerical aperture, e.g., 0.1, the focal shifts associated by the radially and azimuthally 

polarized illuminations are nearly the same, while they are about 1.65 times as large as that of linearly 

polarized illumination. As the system is of high numerical aperture, e.g., 0.9, the focal shifts associated 

by the radially and azimuthally polarized illuminations have ~10% difference and their ratios with that 

of linearly polarized illumination become double in comparing with the case of low numerical aperture. 

In general, azimuthally polarized illumination has the largest power in shifting the focal point.  
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1  

Introduction 

It is a classical topic to study field propagation and its associated diffraction behavior 

in the image space of an optical system. The resultant electric fields in the image 

space are determined crucially by the optical system. In existing literature, the optical 

systems with perfect lenses are classical platforms for exploring diffraction behavior. 

The current study considers a different approach that may be able to provide an 

additional basic reference for diffraction study, namely the generalized form of a split 

lens. There are many ways to achieve lens splitting; for example, in a configuration of 

Meslin’s experiment or using Billet’s split lens. Once a lens is split in multiple pieces, 

the resulting interference involves multiple beams and the configuration of multiple 

paths. This creates complicated beam propagation and interference. Nevertheless, if 

this generalization is implemented symmetrically, the field distribution exhibits an 

embedded symmetry, which reduces and simplifies the complexity of analysis and 

calculation. Thus, exploring the diffraction behavior with such a generalization, 

particularly the symmetry properties, is worthy of further research. Therefore, this 

study presents such a generalization of Billet’s split lens and Meslin’s split lens and 
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therefore the propagation characteristics of the beams generated by Billet’s N-split 

lens manipulating the resultant electromagnetic fields. 

The exploration of the beam propagation characteristics of a polarized beam is not 

only important for fundamental understanding but also to provide a useful mean in 

exploring and probing the other systems as polarized illumination. In paraxial optics, 

the numerical aperture of the lens is small and the polarization characteristic 

properties of light sources are ignored. Nonetheless the polarization effect can not be 

ignored when the numerical aperture of lens becomes extremely large. When vector 

nature is included in consideration, the performance will be influenced where the 

focal property is always the first item to be checked because of its importance to 

application. The polarization properties of incident wave, and therefore, are important 

when we study the electromagnetic fields in an optical system having a high 

numerical aperture. For a light source with a special polarization, the polarization 

properties are crucial to the diffracted electromagnetic fields. Here some polarizations 

are listed below. 

1. Uniform polarizations; linearly polarization, circularly polarization. 

2. Non-uniform polarizations; radially polarization or azimuthally polarization. 
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1.1 Incident beams – scalar field 

 
Fig. 1-1 Schematic diagram of diffraction by a circular aperture. 

 

Fig. 1-1 shows the schematic diagram for the diffraction by an aperture. By the 

application of the first Rayleight-Sommerfeld diffraction formula, the diffracted field 

U(P) by an aperture, having the field u(ξ,η,0), can be written as [1] 

 ( ) ( )
∫ ∫
∞

∞−

∞

∞− ∂
∂

−= ηξηξ
π

dd
R
ikR

z
uPU exp0,,

2
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where k=2π/λ is the wavenumber of the incident wave, λ is the wavelength and 

( ) ( )[ ] .2
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When kR >> 1, the diffraction field can be expressed as  

 ( ) ( )
∫ ∫
∞

∞−

∞
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= ηξηξ

λ
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ikRu

i
zPU 2

exp0,,)( , (1-3) 

By use of Taylor series expansion of the square root 
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field now is  
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which is the Fresnel diffraction integral or the near field diffraction of the aperture. 

To meet sufficient criteria for accuracy, the maximum phase changed by the leading 

term of dropped series has much less than 1 radian. Thus z has to satisfy  

 ( ) ( )[ ]2max
223

4
ηξ

λ
π

−+−>> yxz . (1-5) 

If 
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2
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22 ηξ +
>>

k
z  is applicable the diffracted field can be further simplified as  
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which is the Fraunhofer diffraction integral or the far field diffraction of the aperture. 

When a circular aperture with radius a illuminated by a unit-amplitude plane-wave, 

i.e., u(ξ,η,0)=1, the on-axis diffracted field by the first Rayleigh-Sommerfeld theory 

can be expressed as [2] 
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The Fresnel diffraction integral can be written as [1] 
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The Fraunhofer diffraction integral now is [1] 
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This is the so-called Airy pattern. 

Fig. 1-2 shows the diffracted intensity ( ) 2PU  by a circular aperture with radius 

a=20λ. In the top of Fig. 1-2, the geometry and the intensity line scans through the 

radial direction at various distances from the aperture z=0.5, 90, 210, 350, 500, and 

650λ are illustrated. The near field of the aperture when z=0.5λ is clearly shown and 

the Fresnel region can be recognized when z is beyond the near field of the aperture to 

z~400λ. The Fraunhofer region is approximately beyond z=400λ as the last two curves 

shown. The middle of Fig. 1-2 displays the intensity distribution in the meridional 

plane and the on-axis intensity is shown in the bottom of Fig. 1-2. 
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Fig. 1-2 Diffraction by a circular aperture with radius a=20λ. Top: Geometry and the 
intensity line scans at various distances z=0.5, 90, 210, 350, 500, and 650λ. Middle: 
The intensity distribution in the meridional plane. Bottom: The on-axis intensity. 
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1.2 Optics 

Assume we have an aberrated wavefront and pass through a circular aperture. The 

aberrated wavefront is a deformation of a spherical wave and the spherical wave 

converges towards an axial focal point F(0,0,0). According to the classical scalar 

Debye diffraction theory the field at an observation point P(x,y,z) is then given as [3] 
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where the optical units u, v, and ψ represent the Cartesian coordinate positions of P (x, 

y, z). These values are z
f
au
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π , where 

ψcosrx =  and ψsinry = . ( )θρ ,Φ  is the aberration function. Fig. 1-3 shows the 

coordinate system.  

 
Fig. 1-3 Geometry for focusing through a circular aperture. The focal point lies on the 
origin of the XYZ Cartesian coordinate and the diffracted field is observed at P(x,y,z). 

F(0,0,0) 



Introduction 
 

8 

1.2.1  Perfect lens 

In the absence of aberrations, i.e. when ( )θρ ,Φ =0, the diffracted field of the double 

integral in Eq. (1-10) can be simplified to one integral by carrying out the integral 

with respect to θ using ( )αα
π

π αα
n

inix
n

Jeei
=∫

− 2

0

cos d
2

 where Jn(α) is Bessel function 

of first kind. 

 ( )∫
−

−=
1

0
2
1

0

)(

2

2 222)( ρρρ
λ
π ρ

devJe
f

AaiPU
iuu

a
fi
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This integral can be further carried out when u=0 i.e., the field in the focal plane is 
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The intensity distribution in the focal plane is characterized by the Airy function 

shown in Fig. 1-4. The bottom of Fig. 1-4 shows the line scan through the focus and 

the Airy function can be observed clearly. Fig. 1-5 shows the intensity distribution in 

the meridional plane. The dashed lines indicate the boundary of the geometrical 

shadow. The Airy pattern can be also observed in the radial directionFig. 1-4. 
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Fig. 1-4 Density plot of intensity distribution in the focal plane and the Airy pattern is 
clearly seen. The intensity is normalized to unity at focus.  

 

Fig. 1-5 Density and contour plot of intensity distribution in the meridional plane near 
focus of a converging spherical wave diffracted at a circular aperture. The intensity is 
normalized to unity at focus. The dashed lines represent the boundary of the 
geometrical shadow. 
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1.2.2  A lens with aberration 

1.2.2.1 Primary spherical aberration 

In the presence of primary spherical aberration only, the aberration function is 

 ( ) 4
040, ρθρ W=Φ , (1-13) 

where W040 is the amount of wavefront deformation at the aperture edge, measured in 

units of wavelengths. On substituting Eq. (1-13) and carrying out the integral carrying 

out the integral with respect to θ by the Bessel function, the Eq. (1-10) yields 

 ( )∫
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ukWiu

a
fi

. (1-14) 

From Eq. (1-14) the intensity is rotationally symmetry about the optical axis in the 

primary spherical aberration.  
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, (1-15) 

where u'=u-uF and uF=4πW040.  

The axial intensity from Eq (1-15) is symmetric about the point u=uF=4πW040 and the 

diffraction foci, a unique position (uF,vF,ψF) has the maximum intensity, is 

(4πW040,0,0). The schematic diagram for a lens having primary spherical aberration 
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with ray-tracing is shown in Fig. 1-6 where the caustic curves can be readily observed. 

The intensity distribution in the meridional plane for the case of the aberration-free, in 

the presence of primary spherical aberration W040=-0.5λ and W040=-1λ are shown in 

Fig. 1-7. The dashed lines indicate the geometrical caustics. 

 
Fig. 1-6 Schematic diagram of ray-tracing of a lens in the presence of primary 
spherical aberration. The caustic curve can be easily seen and the wavefront is also 
seen by connecting the arrows in all of the rays. 

 

caustics 
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Fig. 1-7 Density and contour plot of intensity distribution in the meridional plane near 
focus diffracted at a circular aperture in the aberration-free (W040=0) and in the 

presence of primary spherical aberration ( 4
040ρW=Φ ) of half a wavelength 

(W040=-0.5λ) and one wavelength (W040=-1λ). The dashed lines indicate the 
geometrical caustics and red vertical line denotes the diffraction focus. (a) W040=0; (b) 
W040=-0.5λ and (c) W040=-1λ. 
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1.2.2.2 Primary comatic aberration 

In the presence of primary comatic aberration only, the aberration function is 

 ( ) θρθρ cos, 3
031W=Φ , (1-16) 

and therefore, the Eq. (1-10) gives rise to 

 ∫ ∫
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uvkWiu

a
fi

. (1-17) 

Schematic diagram of ray-tracing through a lens in the presence of primary comatic 

aberration is shown in Fig. 1-8 and the geometrical confusion figures are also shown 

on the right side. 

 
Fig. 1-8 Schematic diagram of ray-tracing through a lens in the presence of primary 
comatic aberration. The geometrical confusion figures are also shown. 

Geometrical image 

Caustics 
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The intensity distribution at the geometrical focal plane in the presence of primary 

comatic aberration W031=0.5λ, W031=1λ and W031=3λ are shown in Fig. 1-9. The 

diffraction focus lies in the geometrical focal plane in the presence of primary comatic 

aberration. When the W031 is small, the location of diffraction focus is given by [3] 

vF=
2
3kW031 and ψF=0. As expected, it agrees well with the diffraction foci in Fig. 1-9 

(a) and (b). However, the diffraction foci in Fig. 1-9 (c) is vF~5.4 instead of vF=4π 

because a large comatic aberration W031=3λ is used here. 
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Fig. 1-9 Intensity distribution at the geometrical focal plane in the presence of primary 
comatic aberration. The boundary of geometrical confusion figures is also shown. (a) 
W031=0.5λ; (b) W031=1λ and (c) W031=3λ. 
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1.2.2.3 Primary astigmatism 

In the presence of primary astigmatism only, the aberration function can be written as  

 ( ) θρθρ 22
022 cos, W=Φ , (1-18) 

and therefore, the Eq. (1-10) yields 
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From Eq. (1-19) the intensity distribution has reflection symmetry about both x and y 

axis. Fig. 1-10 shows the schematic diagram of a lens having primary astigmatism. 

In the sagittal focal plane u=uS=0, the Eq. (1-19) gives rise to 
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In the tangential focal plane u=uT=2kW022, the Eq. (1-19) is 
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The diffraction pattern in the sagittal focal plane is the same as in the tangential focal 

plane, except for a rotation of 90°. The diffraction focus in the presence of a small 

amount of primary astigmatism situates in the central plane uF=kW022, midway 

between the sagittal and the tangential focal lines [3]. Fig. 1-11 shows the intensity 
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distribution in the presence of primary astigmatism W022=0.64λ at the geometrical 

focal plane, at u=k W022 and u=2kW022. As expected, the intensity patterns in Fig. 

1-11(a) and Fig. 1-11(c) show the rotation of 90° with respect to the optical axis. 

 

 
Fig. 1-10 Schematic diagram of a focusing lens in the presence of primary 
astigmatism. [5] 
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Fig. 1-11 Intensity distribution in the presence of primary astigmatism W221=0.64 (a) 
at the sagittal focal plane; (b) u=kW221 and (c) at tangential focal plane u=2kW221. 
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1.2.3 Split lens 

  A split lens is proposed and used to generate desired focus shape near the focal 

region and therefore to manipulate a beam having particular propagation characteristic 

in the entire image space. Lens splitting can be implemented in many different ways, 

such as a configuration of Meslin’s experiment or Billet’s split lens [3]. Once a lens is 

split in multiple pieces, the resulting interference will involve multiple beams and the 

configuration of multiple paths, creating a relatively complex situation for beam 

propagation and interference. 

 

1.3 Revisit on incident beams – vector fields in 

an optical system 

In an optical system with a large relative aperture, the polarization effect has been 

considered. For an aplanatic system illuminated by a linearly polarized incident beam, 

the diffracted electromagnetic fields by vector Debye theory are [4]  
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The factor B is  
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λ

π fE
B 0= , (1-23) 

and the L functions are defined as 
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where ( )fa1sin −=α . 

For radially polarized illumination, the diffracted electromagnetic fields by vector 

Debye theory are [6]  
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For azimuthally polarized illumination, the diffracted electromagnetic fields by vector 

Debye theory are [6]  
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⎠
⎞

⎜
⎝
⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−=

α
θβ

α
θβθ

sin
sin2

sin
sinexp 01

2
2

0 Jl  and β0 is the ratio of the pupil 



Revisit on incident beams – vector fields in an optical system 21

radius and the beam waist. It is taken as 3/2 in the numerical simulations. 

The time-averaged electric and magnetic energy densities for the diffracted fields are 

defined as *
16

1 EE ⋅≡
πeW . 

Fig. 1-12 shows the intensity distribution of three components of electric fields at the 

focal plane by linearly polarized (along the x-axis) illumination with NA=0.866 and 

the focal length f=30,000λ. The intensity distribution in the left column shows by 

linear scaling and in the right column displays with the logarithmic scaling. The z 

component shows clearly an oscillating electric dipole.  
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Fig. 1-12 Intensity distribution at the focal plane of an aplanatic lens with NA=0.866 
and focal length f=30,000λ, illuminated by a linearly polarized plane wave. Frames 
(a)-(c) display the intensity plot with linear scaling, while frames (d)-(f) show the 
intensity distribution with logarithm scaling. The peak intensities in (a), (b), (c) are in 
the ratios 1.0:0.0036:0.13, respectively. 
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Fig. 1-13 The electric energy density near the focal region of an aplanatic lens with 
NA=0.866 and focal length f=30,000λ, illuminated by a linearly polarized plane wave. 
The logarithmic scaling is used here.  
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Fig. 1-13 shows the electric energy density in the image space near the focus by 

slicing the XZ- and YZ-planes together with the XY-plane at the focus and z=12λ. The 

logarithmic scaling is used here. The electric energy density is not rotationally 

symmetric about the optical axis because of the bending of the polarization is clearly 

observed. The diverging characteristic beyond the focus can also be seen. 

Fig. 1-14 shows the intensity distribution of two components of electric fields at the 

focal plane with radially polarized illumination with NA=0.866 and the focal length 

f=30,000λ. The intensity distribution in the left column shows by linear scaling and in 

the right column displays with the logarithmic scaling. Fig. 1-15 shows the electric 

energy density in the image space near the focus by slicing the XZ- and YZ-planes 

together with the XY-plane at the focus and z=18λ. The logarithmic scaling is used 

here. The electric energy density is rotationally symmetric about the optical axis can 

be clearly observed. The diverging characteristic beyond the focus can also be seen. 

Fig. 1-16 shows the intensity distribution of two components of electric fields at the 

focal plane with azimuthally polarized illumination with NA=0.866 and the focal 

length f=30,000λ. The intensity distribution in the left column shows by linear scaling 

and in the right column displays with the logarithmic scaling. Fig. 1-17 shows the 

electric energy density in the image space near the focus by slicing the XZ- and 

YZ-planes together with the XY-plane at the focus and z=18λ. The logarithmic scaling 
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is used here. The electric energy density is rotationally symmetric about the optical 

axis can be clearly observed. The diverging characteristic beyond the focus can also 

be seen. 

 

 

 
Fig. 1-14 Intensity distribution at the focal plane of an aplanatic lens with NA=0.866 
and focal length f=30,000λ, illuminated by a radially polarized plane wave. Frames 
(a)-(b) display the intensity plot with linear scaling, while frames (c)-(d) show the 
intensity distribution with logarithm scaling. The peak intensities in (a), (b) are in the 
ratios 0.73:1.0, respectively. 
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Fig. 1-15 The electric energy density near the focal region of an aplanatic lens with 
NA=0.866 and focal length f=30,000λ, illuminated by a radially polarized 
Bessel-Gauss wave. The logarithmic scaling is used here.  
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Fig. 1-16 Intensity distribution at the focal plane of an aplanatic lens with NA=0.866 
and focal length f=30,000λ, illuminated by an azimuthally polarized plane wave. 
Frame (a) displays the intensity plot with linear scaling, while frame (b) shows the 
intensity distribution with logarithm scaling. 
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Fig. 1-17 The electric energy density near the focal region of an aplanatic lens with 
NA=0.866 and focal length f=30,000λ, illuminated by an azimuthally polarized 
Bessel-Gauss wave. The logarithmic scaling is used here.  
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1.4 Organization of this dissertation  

This dissertation is organized as follow. The split lenses are studied in Chapter 2 and 

Chapter 3 in terms of the transversal and longitudinal arrangement of foci, 

respectively. In Chapter 2, the transversal arrangement i.e., Billet’s N-split lens, is 

discussed and focused on the symmetry properties of the interference patterns. The 

longitudinal arrangement of foci i.e., Meslin’s N-split lens is studied in Chapter 3 for 

the symmetry properties of field distribution. The Quasi J0 Bessel beam generated by 

Billet’s N-split lens is investigated in Chapter 4 by the numerical simulations and the 

asymptotic solution. In Chapter 5, The focal shifts has been investigated by the 

application of the vector Kirchhoff diffraction theory on vector beams including 

linearly, radially and azimuthally polarization. A comparison has also made among 

these three vector beams. Finally we draw our conclusions and future works in 

Chapter 6. 
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2  

Transversal foci: Billet’s N-split lens 

2.1 Introduction 

This chapter discusses a split having transversal foci arrangement where the focal 

points of sectors locating in the same plane, the original focal plane and therefore the 

interference pattern varies with the number of sectors of the split lens. First, we revisit 

the original Billet’s split lens where there are two foci located either in the X- or Y- 

axes and there are two kinds of interference pattern in the XY-plane can be observed 

in the far field away from the focal plane. One is the straight line and the other is the 

hyperbolas. The interference pattern of equidistant straight lines are running 

perpendicular to the connection line of two foci and the interference pattern of 

hyperbolas are the cross section of the hyperboloids of revolution having the two 

focal points as common foci. In the Billet’s N-split lens, we cut a conventional lens 

into N sectors and placing the focal points of sectors on a circle. Note that the 

arrangement of sectors foci is not restricted to a circle only. The interference pattern 

of hyperbolas lies between two adjacent equidistant straight lines and having a radian 

of π/N. This type of lens splitting selected causes both the interference patterns of 
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equidistant straight lines and of hyperbolas in the original Billet’s lens to form an 

N-fold angularly distributed pattern with an angle difference of 2π/N. For an odd 

number of splitting N, there is an additional angle shift of π/N for the azimuthally 

distributed patterns of equidistant straight lines and hyperbolas. Moreover, there is an 

N-peak interference pattern near the optical axis, resembling a concentric-circle-like 

interference, can be readily observed when N is large as a result of N-beam 

interference. 

 The study of field propagation and its associated diffraction behavior is a 

classical topic in optics research [7]. Previous studies show that this topic has many 

important applications in optical testing [8] and the development of new optical 

devices using nano-technology [9]. The current design approach for creating optical 

products is still primarily based on ray optics, while diffraction-based theory generally 

provides a reference and base line of resolution and performance limitations. 

Nevertheless, the diffraction theory of optical fields remains an important research 

topic. Researchers continue to make active progress in this area, as indicated by the 

selected works of E. Wolf [10]. In viewing the demands of technology development 

and academic interest, Chu and Chern are dedicated to exploring far-field behavior 

with sub-wavelength variations, where aperture (stop) plays a key role in information 

retrieval [11]. In existing literature, the aperture stop (circular and rectangular) and 
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perfect lens are classical platforms for exploring diffraction behavior. Studies on this 

topic generally fall into one of two categories:  

(1) Light sources could be different, e.g., a cylindrical beam or a vector polarized 

beam. 

(2) The lens can have aberrations, e.g., defocus, spherical aberration, coma and 

astigmatism. 

The current study considers a different approach that may be able to provide an 

additional basic reference for diffraction study, namely the generalized form of a split 

lens. 

 There are many ways to achieve lens splitting; for example, in a configuration of 

Meslin’s experiment or using Billet’s split lens [3]. Once a lens is split in multiple 

pieces, the resulting interference involves multiple beams and the configuration of 

multiple paths. This creates complicated beam propagation and interference. 

Nevertheless, if this generalization is implemented symmetrically, the field 

distribution exhibits an embedded symmetry, which reduces and simplifies the 

complexity of analysis and calculation. Thus, exploring the diffraction behavior with 

such a generalization, particularly the symmetry properties, is worthy of further 

research. Therefore, this study presents such a generalization of Billet’s split lens. 
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Note that previous research has developed such a Billet’s split lens for multiple 

imaging and multichannel optical processing [12]. 

 

2.2 Symmetry properties 

The bottom of Fig. 2-1 shows a schematic diagram of Billet’s split bi-sector lens, 

where a conventional focusing lens is split into two identical halves (two sectors). The 

upper half and the lower half are then moved a distance d up and down the Y-axis, 

respectively. This split lens creates a collimated uniform monochromatic wave with a 

wavelength of λ for two different foci, F1 and F2, in the focal plane. The diffraction 

theory applied here assumes that the aperture radius a >> λ, the focal length f >> a >> 

λ, and the Fresnel number a2/λf is much larger than unity. When the (half) translation 

length d is zero, the two foci will coincide and the integral representation of the 

disturbance U(P) at a point P(x,y,z) in the image space is [3] 
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where the optical units u, v, and ψ represent the Cartesian coordinate positions of P (x, 
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ψcosrx =  and ψsinry = . Fig. 2-2 shows the coordinate system. The disturbance 

U(P) is 
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Fig. 2-1 Top: Front view from the left side, showing the arrangements of sectors when 
N=2, 3, 4, 5, and 6, where N is the number of sectors. Bottom: Schematic diagram of 
Billet split bi-sector lens. F1 and F2 are the first focus and second focus, respectively, 
and 2d is the separation distance between the foci of the two sectors. 

 

To generalize lens splitting, a focusing lens is divided into N equiangular 

sectors. Each sector is exploded and translated a distance d in the r direction along the 
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perpendicular bisector of the angle. Fig. 2-1 shows the schematic layouts of the 

simplest cases of N=2, 3, 4, 5, and 6. Ray-based analysis shows that the foci of all 

sectors constitute a regular N-sided polygon in the focal plane. Therefore, the focal 

point of each sector is 
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Fig. 2-2 Notation representation of the coordinate system of beam propagation. 
 

By applying coordinate translation and summing the contributions from all sectors, 

the disturbance U(P) is 
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Substituting Eq. (2-3) into Eq. (2-4) leads to 
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We can change the interval of integration for each segment to be the same value from 

0 to 2π/N and the disturbance is 
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After substituting Eq. (2-3) into Eq. (2-6), the d term in the brackets of exponential 

function is no longer a function of m. The summation can be put into the integrand of 

r term only, i.e.,  
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π2 . Now, the azimuthally symmetrical property at a specific z 

plane with respect to the optical axis is 
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This shows that a disturbance on a specified z plane is rotationally symmetrical with 

an angle of 2π/N. In other words, the disturbance repeats itself every 2π/N along the 
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azimuthal direction, and hence, an N-fold rotational symmetry originates from the 

symmetry in the split form in the lens. 

 

2.3 Billet’s N-split lens 

The light distributions of Billet’s N-split lens are explored by using numerical 

simulations. To fulfill the condition of diffraction beam, i.e., the numerical aperture 

should be around 0.1, we used a typical lens with a focal length of a few ten mm, e.g.,  

f=30,000λ, to create an aperture radius a=3,000λ. This lens also has the (half) 

separation distance d=100λ. For the numerical example of λ=630 nm, these settings 

lead to f=18.9mm, a=1.89mm, and d=0.063mm. The plot of intensity distributions 

was normalized to 100. As a base reference, we revisited the classical Billet spilt lens, 

i.e., N=2. After the focal plane, the interference pattern in the XY-plane formed within 

the overlap region lit by two sectors. The intensity distribution in Fig. 2-3(a) reflects 

this result, clearly showing a two-fold symmetry [3]. The diffraction pattern 

contributed from each sector beyond the focal plane is similar to the original half 

sector, but rotated π radians around the new translated axis. This new translated axis is 

parallel to the optical axis throughout the focus of each sector. The lights from the two 

semicircles form an overlapped region near the optical axis and create interference. 

The interference patterns, therefore, are equidistant straight lines parallel to the lines 
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that cut the spherical wavefront into two hemispheres, and are perpendicular to the 

line through two focal points F1 and F2. On the other hand, the diffraction patterns 

outside the overlapped region lit by two sectors are hyperbolas, which are sections of 

hyperboloids of revolution about the F1F2 axis and have F1 and F2 as common foci 

[3].  

 

 
Fig. 2-3 Density plot of normalized intensity distribution of the generalized N-split 
lens in the XY-plane at z=5000λ where (a) N=2, (b) N=3, (c) N=4, (d) N=5, (e) N=6, (f) 
N=7, (g) N=8, (h) N=9, and (i) N=10. 
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2.3.1  Interference pattern of straight lines 

To identify how splitting a lens changes the intensity distribution, this study evaluates 

the distributions for N=2 to N=10 in the far field (here, z=5000λ=3.15mm, if 

λ=630nm). Fig. 2-3(b) shows that a 3-fold symmetry is readily apparent when N=3. 

However, the fringes of hyperbolas must have near 2π/3 radians, instead of π radians 

in the case of N=2. In the case of N=2, they are in the opposite direction of the 

equidistant straight lines, and the fringes of equidistant straight lines in the XY-plane 

appear inside the overlap region lit by each two sectors. On the other hand, for the 

case of N=3, there are three distinct straight-line fringes that are parallel to three lines 

located at the angles of π/3, π, and 5π/3, respectively. Nevertheless, these three lines 

do not coincide with the lines of sector division, but rotate an additional angle of π/3 

around the optical axis. This is because the diffraction pattern of each sector (beyond 

the focal plane) rotates π radians around each translated axis parallel to optical axis 

through the focus of each sector. In addition, the two straight cutting edges of each 

sector also rotate by π radians, and therefore interfere with each other after a rotation 

of the azimuthal angle of π. When N is odd, the rotation prevents the interference 

pattern of each straight line from coinciding with the original cutting edge of each 

sector, and all fringes of straight lines resemble an angle of rotation of π/N-radian 

(mod 2π) around the optical axis. When N is even, the rotation of the azimuthal angle 
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of π also shifts the interference pattern of straight line π radians, but the rotated 

interference pattern of straight lines coincides with the original cutting edge of other 

sectors due to reflection symmetry between the X- and Y-axes. Under these 

circumstances, all straight line fringes look like they have not rotated, and remain 

located within the cutting edge of each sector. Similarly, the interference pattern of 

equidistant straight lines by an N-split lens is oriented at the angle of m·2π/N when N 

is an even number but for the case of odd-number lens splitting, the interference 

pattern is at the angle of π/N + m·2π/N, which requires an additional angle shift of 

π/N. 

 

2.3.2  Concentric-circle like interference pattern 

Next, consider the central region of intensity distribution near the optical axis. Fig. 

2-3 indicates that as N becomes larger, the intensity distribution centered on a 

specified location along the optical axis begins to resemble a concentric-circle-like 

interference pattern, while for a small N, the distribution is more like a regular 

N-sided polygon. This polygon basically represents the split distance d, i.e., the 

circumradius is limited by d. The intensity distribution in the central region involves 

multiple-beam interference, i.e., all sectors contribute to the total field. However, only 

the beam interference of two sectors, i.e., the overlap of the field from two sectors 
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causes the straight-line-like interference pattern in the outward azimuthal regime. For 

example, consider the case of N=12, where Fig. 2-4(b) plots the far-field intensity 

distribution (z=5000λ for simplification). The central regime contains 

concentric-circle-like interference patterns. The second bright ring actually has twelve 

peaks, and each of which is located along the azimuthal direction with an angle 

difference of π/6. However, the difference between the minimum and maximum 

intensity of the second bright ring is too small to identify in Fig. 2-4(b). Therefore, 

Fig. 2-4(c) presents an enlargement of Fig. 2-4(b). Here, the peak distributions are 

readily apparent in the inner rings, and twelve peaks clearly appear in the second and 

fourth bright rings. From the symmetrical properties deduced above, numerical 

simulation reveal that the distance between two successive peaks is )12cos(~ πd  

~0.122mm, if λ=630nm, where the peak location is defined according to the maximum, 

even at such a far-field distance. Numerical simulations also show that as N becomes 

larger, the concentric-circle-like interference patterns inside the region of 

circumscribed circle become significant at various XY-planes, i.e., at any specified 

locations along the optical axis, provided that the interference occurs after the focal 

plane. However, the symmetry properties deduced above remain the same. 
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(a) 

 
(b) 

 
(c) 

Fig. 2-4 Normalized intensity distribution of the generalized N-split lens in the 
XY-plane at z=5000λ where (a) N=4, (b) N=12, and (c) Enlargement of (b). 
 



Summary 43

2.4 Summary 

In summary, the diffraction behavior of a generalized Billet’s N-split lens has been 

derived based on symmetry consideration. The intensity distributions vary 

significantly as the number of split sectors increases, particularly compared with the 

original Billet’s split lens. Nevertheless, there is a symmetry relationship embedded in 

this class of split lenses. Due to lens-splitting form adopted in this study, the intensity 

distribution has an N-fold rotational symmetry with respect to the optical axis in the 

XY-plane. The interference patterns of equidistant straight lines are orientated at the 

angle of Nm π2⋅  when N is even, but at the angle of NmN ππ 2⋅+  when N is 

odd, where m=0, 1, 2,…, N-1. In other words, there are two kinds of symmetry even 

though the corresponding splitting operation is simple. The interference of the 

disturbance by two adjacent sectors of the split lens is the physical origin of the 

fringes of equidistant straight lines. In addition, this symmetrical property is 

physically traceable based on the symmetry embedded in the splitting form of lens.  

 

 A concentric-circle-like interference pattern near the optical axis appears when N 

is larger than 10. This feature is primarily due to multiple-beam interference. The 

multiple-beam interference inside the inner regime forms a polygon boundary of 

intensity distribution in which the distance between two successive maximum peaks 
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is )cos(~ Nd π . When the number of sectors in split lens becomes very large, the 

polygon nearly becomes a circle.  

 

 Note that the symmetry embedded within the generalized split lens and the 

straight-line provide two basic guidelines for forming the azimuthal light distribution 

while the central regime hosts a concentric-like distribution. Practically, the proposed 

approach to the generalized split lens provides more means of controlling light beams. 

Though this study is limited to Billet’s split lens, different symmetrical forms in lens 

splitting will lead to different kinds of light distribution. It is also possible to 

implement this generalized Billet’s N-split lens with liquid crystal, i.e., a 

segmented-aperture optical system in which phase-shifting material, here liquid 

crystal, fills each segmented region [13-14]. 
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3  

Longitudinal foci: Meslin’s N-split lens 

3.1 Introduction 

In previous chapter, we have studied the generalization in Billet’s configureation of 

split lens where the focal points are distributed in a XY-plane especially in a circular 

shape. Here we would like to consider a different approach which should be able to 

provide additional reference for the diffraction study of a split lens. In this chapter, we 

present our result of such a generalization in Meslin’s configuration of split lens 

where the focal points are distributed along the optical axis. Typically, the lens 

splitting could be implemented in many different ways as may be referenced in the 

literatures of multiple-beam interference and interferometry [6,7]. We, however, focus 

on the characteristics of focal point which is the key of identification in considering 

beam propagation. It is worthwhile to note that the corresponding distributions of 

focal points in classical Meslin’s experiment and Billet’s split lens [6]. For Meslin’s 

experiment, the two focal points are along the optical axis, while for Billet’s split lens, 

the two focal points are located vertically, i.e., on a plane normal to the optical axis. 

In other words, it is possible that by successive lens splitting, the lens becomes a 
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special lenslet array and the distribution of focal points becomes a line either along 

the optical axis or on a plane that is normal to the optical axis. 

 It could be understood that once lens is split in multiple pieces, the incident beam 

will be separated into multiple beams in a multiple configurations of path, which 

result in a quite complicated situation in beam propagation and interference pattern. 

Nevertheless, if the generalization is implemented with symmetry, the field 

distribution is expecting to exhibit the embedded symmetry, and hence the complexity 

of analysis may be reduced and the calculation could be simplified. As an academic 

exploration, it should be worthwhile to investigate the diffraction behavior with such 

a generalization, particularly the symmetrical property. In this chapter, we present our 

result of such a generalization in Meslin’s configuration of split lens where the focal 

points are distributed along the optical axis, the longitudinal arrangement of foci. 

 

3.2 Theoretical formalism 

Referring to Fig. 3-1(a), the notation of the coordinate system for the beam 

propagation with a perfect lens is provided. The perfect lens, having focal length f and 

aperture radius a, brings a collimated uniform monochromatic wave of wavelength λ 

to the image space. If f >> a >> λ, and if, in addition, the Fresnel number a2/λf  is 
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much larger than unity, the Debye integral,  will give a good approximation of the 

disturbance U(P) at the point P(x,y,z) in image space which follows [3] 
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where A is the amplitude of incident beam, and the optical units u and v together with 

azimuthal angle ψ are used to specify the location, i.e., z
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π . The disturbance U(P) has a symmetric property, 

i.e.,U(−u,v,ψ + π ) = − U(u,v,ψ)[ ]∗  or U(−u,v,ψ) = − U(u,v,ψ)[ ]∗  because of rotational 

symmetry, where * is the complex conjugate as shown by Collett and Wolf [15]. It 

can be readily shown that the symmetric properties of amplitude and the phase Φ  

are  

 ),,(),,( ψψ vuUvuU =− and πψψ −Φ−=−Φ ),,(),,( vuvu . (3-2) 

The amplitude (intensity) has a symmetry of reflection about the focal plane z=0, 

while the phase has reflection anti-symmetry, apart from an additive factor π.  
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Fig. 3-1 (a) Notation of the coordinate system for beam propagation. (b) Schematic 
diagram of a split lens where N is the number of sectors. F1 and F2 are the first focus 
and second focus respectively and Δz is the separation between the two lenses. On the 
top, the sector arrangements for N=2, 4, 6, 8, 10, and 12 are shown. 
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Referring to Fig. 3-1(b), when the lens is split (the distance Δz is finite), a 

conventional focusing lens with a circular aperture becomes a split lens and two 

different foci, F1 and F2, appear along the Z-axis. The major concern of this chapter is 

to explore the interference pattern in the XY-plane and together with the embedded 

symmetry properties could be changed by the lens splitting. The motivation is to keep 

the focal points still along the optical axis. Hence, we follow the well-known Meslin’s 

experiment configuration to split lens in N equiangular sectors, i.e., the sectors are 

alternatively shifted and un-shifted as illustrated on the top of Fig. 3-1(b). For 

simplification, we only consider the case of even-number N. The new origin of 

coordinate system (z=0) is set at the mid-point between two foci.  

 

In the following we will deduce the disturbance first. There are mainly two 

kinds of operation in exploring the symmetry.  

(1) u →−u , which is to identify the reflection symmetry with respect to the 

mid-focus point at z=0.  

(2) u = u * , which is a fixed value to explore the rotational symmetry on the 

XY-plane.  

To evaluate the disturbance we consider the contributions from the shifted 

sectors and the un-shifted ones. The optical units for these two kind of sectors are now 
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with 2

2

f
AaA

λ
=′ . The first part of integrand is for the shifted sectors and the second 

part is for the un-shifted ones. As to be shown below, it is not straightforward that the 

symmetry properties could be categorized in two kinds following the splitting number 

is double of an even number (e.g., N=4, 8, 12, …, defined as “double-even”) or 

double of an odd number (e.g., N=2, 6, 10, …, defined as “double-odd”). 

 

3.2.1 N is double of even number 

We first discuss the number of sectors N is double-even. Based on Eq. (3-3), 

we separate the set of angular integration into two sets of equal length. The former 

one is with the index k from 0 to 14 −N  and the latter one is from 4
N  to 12 −N , i.e.,  
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Now we can shift each term in the later set by an angle of π and the index k of latter 

set is also shifted to have the same interval with the former set.  
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The additional angle of π in the cosine makes the former and latter sets to be complex 

conjugates to each other. Therefore, the imaginary part of the integrand of polar angle 

can be canceled out. By changing the integration interval of each term to be the same, 

the disturbance becomes: 
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We introduce a factor 
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ρρχ . With Eq. (3-7), it is readily verified that the 

disturbance has a symmetrical property, [ ]∗−=+− ),,()2,,( ψπψ vuU
N

vuU . In other 

words, the amplitude and the phase with respect to the XY-plane of z=0 follow 

 U(−u,v,ψ +
2π
N

) = U(u,v,ψ)  and πψπψ −Φ−=+−Φ ),,()2,,( vu
N

vu . (3-8) 

Next let us explore the symmetry property on the XY plane, particularly for z=0. Also 

with Eq. (3-7), when uu ~= , a fixed value, it could be shown that 

),,~()4,,~( ψπψ vuuU
N

vuuU ==+= . In other words, the amplitude follows 

),,~()4,,~( ψπψ vuuU
N

vuuU ==+=  and the phase 

has ),,~()4,,~( ψπψ vuu
N

vuu =Φ=+=Φ . In addition, the disturbance in the XY-plane 

at mid-focus z=0 can be further reduced as [ ]*),,0()2,,0( ψπψ vU
N

vU −=+  and thus 

the rotational symmetry of intensity distribution in this plane is 
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),,0()2,,0( ψπψ vI
N

vI =+ , i.e., an N-fold rotational symmetry. The rotational 

symmetry of phase distribution in this plane is πψπψ −Φ−=+Φ ),,0()2,,0( v
N

v , i.e., 

an N-fold rotational antisymmetry, apart from a constant π. In other words, there is an 

transition of symmetry, the symmetry changed from N/2-fold to N-fold and back to 

N/2-fold as cross over z=0 plane. 

3.2.2 N is double of odd number 

Next, we derive the disturbance for the case of double-odd. The disturbance is  
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By changing the order of later set and splitting into two sets with equal length, U(P) 

becomes 
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We further shift the angle of integration of former set by π and by –π in later set such 

that 
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 (3-11) 

By adding a negative sign and remove the π in the cosine in the later set, the 

disturbance becomes 
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After reuniting the later set, Eq. (3-12) becomes 
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The disturbance could be further simplified by changing the integration interval of 

each term to be the same, i.e., the former and latter sets are complex conjugates to 

each other. Then, the imaginary part of integrand of polar angle can be canceled out 

and the disturbance follows 
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With Eq. (3-14), it could be seen that the disturbance has a symmetrical property with 

respect to the XY-plane of z=0, i.e., U(−u,v,ψ) = − U(u,v,ψ)[ ]∗ . As a result, the 

symmetrical properties of amplitude and phase can be expressed as 

 U(−u,v,ψ) = U(u,v,ψ)  and Φ(−u,v,ψ) = −Φ(u,v,ψ) −π . (3-15) 

 

Next let us explore the rotational symmetry about the optical axis on various 

XY-planes, where the location on the z-axis is fixed ( uu ~= ), follows 

),,~()4,,~( ψπψ vuuU
N

vuuU ==+= . In other words, the amplitude and the phase 

with respect to the optical axis in various XY-planes follow 

),,~()4,,~( ψπψ vuuU
N

vuuU ==+=  and ),,~()4,,~( ψπψ vuu
N

vuu =Φ=+=Φ  

respectively. Both the amplitude and phase have N/2-fold rotational symmetry about 

the optical axis in various XY-planes. In addition, from Eq. (3-14) the disturbance in 

the XY-plane of z=0 (u=0) is purely imaginary. Unlike that case of double even, there 

is no symmetry transition for double-odd. 
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Fig. 3-2 Summary of symmetry relations with respect to the XY-plane of z=0: (left) 
classical form for perfect lens; (right) the top shows the case of double of odd number 
(N=2, 6, and 10) while the bottom shows the case of double of even number (N=4, 8, 
and 12). 
 

A comparison of symmetry properties associated with the operation (1), 

u →−u , is provided in Fig. 3-2. On the left, the classical result of symmetry property 

deduced by Collett and Wolf [15] is indicated; on the right-top the split case of 

double-odd is summarized while on the right-bottom, it contains the cases of 

double-even. The major difference is the appearance of angle shift, 2π/N in the 

double-even case, while in the case of even-odd, the reflection symmetry is kept in 

intensity distribution and phase distribution is still has reflection antisymmetry apart 

from an additive factor π. 

For both of two cases, the axial disturbance can be expressed as 
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with the Euler’s formula: 
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For example, if the focal length f=30000λ, a=3000λ and Δz=300λ, so that the 

disturbance at origin is 
λ150

)0( iAU = . 

 

3.3 Numerical explorations 

In this section, we provide the result of numerical exploration. Without loss of 

generality, the focal length is taken as f=30,000λ, aperture radius a=3,000λ, and the 

separation distance along the z axis Δz=300λ or Δz=400λ. The plots of intensity 

distribution are normalized to 100. If with a He-Ne laser, the wavelength λ=632.8nm, 

then f=18.984 mm which is a typical lens, and the aperture a=1.90 mm, while 

Δz=0.18984 or =0.25312 mm are generally available. The observation plane is set at 

z=0 where the interference pattern can be clearly seen as shown in Fig. 3 where the 
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intensity distribution and the phase distribution for the case of N=2 (i.e., 2X1) are 

denoted with Fig. 3-3(1a) and Fig. 3-3(1b) respectively. The result (1a) is well known 

in literature [3,7]. The corresponding phase Fig. 3-3(1b) shows winding broken strips 

in distribution where the strip boundary indicates phase jumps as noted by the color 

changes in the plot. The connection between intensity and phase could be identified 

by the similarity sharing in the forms of distribution.  

 Next let us see the intensity distributions of N=6 (i.e., 2X3) and N=10 (i.e., 2X5), 

which are denoted by Fig. 3-3(3a) and Fig. 3-3(5a), while the corresponding phase 

distributions are shown in Fig. 3-3(3b) and Fig. 3-3(5b) respectively. Now, the 

N/2-fold rotational symmetry about the optical axis is clearly observed whereas there 

is no rotational symmetry for N=2, though it is still 2/2-fold, i.e., 1-fold. On the other 

hand, the phase distribution displays the phase changes by π abruptly and as 

numerically identified that there are only two kinds of value in phase, i.e., 2π± . 

This is because the disturbance in this XY-plane is purely imaginary and this feature 

was also observed in the focal plane focused by a conventional focusing lens [3]. The 

origin is mainly the inversion symmetry in imaging for a conventional lens (singlet); 

this also leads the same feature to the double-odd case. 
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 Now we change to look on the cases of N=4 (i.e., 2X2), N=8 (i.e., 2X4), and 

N=12 (i.e., 2X6). The results are dramatically different and they are denoted with Fig. 

3-3(2a), (4a), and (6a) for the intensity distribution respectively, while the 

corresponding phase distributions are labeled with Fig. 3-3(2b), (4b), and (6b) 

respectively. The phase has N-fold rotational anti-symmetry apart from a factor π 

about the optical axis in the XY-planes at z=0 as shown in Fig. 3-3 with the labels of 

Fig. 3-3(2b), (4b), (6b) and the intensity pattern in this plane has N-fold rotational 

symmetry as denoted by Fig. 3-3(2a), (4a), and (6a). The variations in phase 

distribution are much wild; the phase values are no more kept with only two values 

because of the disturbance is not purely imaginary.  

 In short, one could numerically identify that although the splitting operation is 

simply with an even number, there are two kinds of distribution and they could be 

further classified according the number of splitting, i.e., either double-even or 

double-odd.  

 Fig. 3-4 plots the intensity and phase distribution in the XY-plane having the 

same condition with Fig. 3-3 but the separation distance along the z-axis Δz now is 

400λ. The embedded symmetry can still be observed but the intensity in the vicinity 

of the optical axis is faint. This destructive interference is caused by the nearly -180° 
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Gouy phase shift of between two beams focused by the “shifted” and “un-shifted” 

half-lenses. 

 Fig. 3-5 and Fig. 3-6 show the intensity and phase distribution for N=2 in various 

XY-planes along the optical axis. From (a) to (i) the observation plane moves in a step 

of 50λ from the first focus at F1, to the second focus, at F2. The separation distance 

along the z-axis Δz now is 400λ. As expected, there is no rotational symmetry 

property with respect to the optical axis. 

 The intensity and phase distribution for N=6 are plotted in Fig. 3-7 and Fig. 3-8 

having the same condition with Fig. 3-5 and Fig. 3-6, respectively. The symmetry 

properties around the XY-plane passing through the mid-point of two foci can be 

readily observed from these figures. The 3-fold symmetry properties with respect to 

the optical axis are clearly shown in the intensity and phase distribution. 

Fig. 3-9 and Fig. 3-10 show the intensity and phase distribution for N=4 and the 

intensity distribution has 2-fold symmetry and phase has 2-fold anti-symmetry can be 

readily observed. In the case of N=8, the intensity distribution has 4-fold symmetry 

and the phase distribution has 4-fold anti-symmetry are shown in Fig. 3-11 and Fig. 

3-12, respectively. 

 Fig. 3-13 shows the on-axis intensity with the separation distance along the 

z-axis Δz=400λ. The maximum intensity for the two beams are located at F1 and F2 as 
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shown in Fig. 3-13 but the total maximum intensities are not located at F1 and F2 

because of constructive and deconstructive interference. As expected, the intensity in 

the vicinity of the mid-point of two foci, z=0, are small due to the destructive 

interference caused by the nearly -180° Gouy phase shift. 



Longitudinal foci: Meslin’s N-split lens 
 

62

 
Fig. 3-3 Normalized intensity distribution and the corresponding phase one in the 
XY-plane through the mid-point between two foci where the symbol (a) is for intensity 
and the symbol (b) is for phase, while (1) for N=2, (2) for N=4, (3) for N=6, (4) for 
N=8, (5) for N=10, and (6) for N=12. The separation distance along the z-axis 
Δz=300λ. 

 
Fig. 3-4 Normalized intensity distribution and the corresponding phase one in the 
XY-plane through the mid-point between two foci where the symbol (a) is for intensity 
and the symbol (b) is for phase, while (1) for N=2, (2) for N=4, (3) for N=6, (4) for 
N=8, (5) for N=10, and (6) for N=12. The separation distance along the z-axis 
Δz=400λ. 
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Fig. 3-5 Normalized intensity distribution for N=2 at various XY-planes along z-axis. 
(a) z=-200λ, (b) z=-150λ, (c) z=-100λ, (d) z=-50λ, (e) z=0λ, (f) z=50λ, (g) z=100λ, (h) 
z=150λ, (i) z=200λ. 

 
Fig. 3-6 The corresponding phase structure for N=2 at various XY-planes along z-axis. 
(a) z=-200λ, (b) z=-150λ, (c) z=-100λ, (d) z=-50λ, (e) z=0λ, (f) z=50λ, (g) z=100λ, (h) 
z=150λ, (i) z=200λ. 
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Fig. 3-7 Normalized intensity distribution for N=6 at various XY-planes along z-axis. 
(a) z=-200λ, (b) z=-150λ, (c) z=-100λ, (d) z=-50λ, (e) z=0λ, (f) z=50λ, (g) z=100λ, (h) 
z=150λ, (i) z=200λ. 

 
Fig. 3-8 The corresponding phase structure for N=6 at various XY-planes along z-axis. 
(a) z=-200λ, (b) z=-150λ, (c) z=-100λ, (d) z=-50λ, (e) z=0λ, (f) z=50λ, (g) z=100λ, (h) 
z=150λ, (i) z=200λ. 
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Fig. 3-9 Normalized intensity distribution for N=4 at various XY-planes along z-axis. 
(a) z=-200λ, (b) z=-150λ, (c) z=-100λ, (d) z=-50λ, (e) z=0λ, (f) z=50λ, (g) z=100λ, (h) 
z=150λ, (i) z=200λ. 

 
Fig. 3-10 The corresponding phase structure for N=4 at various XY-planes along z-axis. 
(a) z=-200λ, (b) z=-150λ, (c) z=-100λ, (d) z=-50λ, (e) z=0λ, (f) z=50λ, (g) z=100λ, (h) 
z=150λ, (i) z=200λ. 
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Fig. 3-11 Normalized intensity distribution for N=8 at various XY-planes along z-axis. 
(a) z=-200λ, (b) z=-150λ, (c) z=-100λ, (d) z=-50λ, (e) z=0λ, (f) z=50λ, (g) z=100λ, (h) 
z=150λ, (i) z=200λ. 

 
Fig. 3-12 The corresponding phase structure for N=8 at various XY-planes along z-axis. 
(a) z=-200λ, (b) z=-150λ, (c) z=-100λ, (d) z=-50λ, (e) z=0λ, (f) z=50λ, (g) z=100λ, (h) 
z=150λ, (i) z=200λ. 
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Fig. 3-13 The on-axis intensity and the intensity by two half-lenses are also plotted for 
comparison. The separation distance along the z-axis Δz=400λ. 

 

 Fig. 3-14 shows the intensity on mid-point of two foci varies with respect to the 

separation distance from Eq. (3-18). There is a region of small and zero intensity 

when the separation distance is in the vicinity of the multiplication of 2/AF, e.g. it is 

400λ, 800λ and 1200λ etc. here. The zero intensity is resulted from the deconstructive 

interference while the mid-point is located at the minimum intensity contributed from 

one lens. 
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Fig. 3-14 Intensity on mid-point of two foci varies with respect to the separation 

distance Δz. 
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 Fig. 3-15 shows the normalized intensity distribution through two foci for the 

case of double-odd where (a) for N=2 and (b) for N=6 in the XZ-plane and (c) for N=2 

and (d) for N=6 in the YZ-plane. The symmetry properties with respect to the 

XY-plane at mid-point of two foci are clearly observed. The intensity in the XZ-plane 

clearly shows the two foci by the two half-lenses and the dark region resulted from 

deconstructive interference in the vicinity of the mid-point of two foci  
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Fig. 3-15 Normalized intensity distribution near focus in the meridional plane. (a) 
N=2 and ψ=0, (b) N=6 and ψ=0, (c) N=2 and ψ= 2π , (d) N=6 and ψ= 2π . 
 

 
Fig. 3-16 Normalized intensity distribution near focus in the meridional plane. (a) 
N=4 and ψ= 4π , (b) N=8 and ψ= 8π , (c) N=4 and ψ= 43π , (d) N=8 and ψ= 83π . 
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 Fig. 3-16 shows the normalized intensity distribution through two foci for the 

case of double-even where (a) for N=4 and ψ= 4π , (b) N=8 and ψ= 8π , (c) N=4 and 

ψ= 43π , (d) N=8 and ψ= 83π . The symmetry properties with respect to the XY-plane 

at mid-point of two foci are clearly observed. The intensity in the meridional plane 

clearly shows the two foci by the two half-lenses. 

 

 

3.4 Summary 

In summary, the disturbances of a generalized N-split lens based on the configuration 

of the Meslin’s split-lens experiment have been derived analytically. It has been 

shown that the distributions have to be categorized into two different cases depending 

on whether the number of sectors N is double of an odd number (double-odd) or 

double of an even number (double-even). If the splitting is with double-even, the 

amplitude and the phase follow ),,()2,,( ψπψ vuU
N

vuU =+−  and 

πψπψ −Φ−=+−Φ ),,()2,,( vu
N

vu  respectively. On the other hand, for the case of 

double-odd, the relation changes to hold with ),,(),,( ψψ vuUvuU =−  and 

πψψ −Φ−=−Φ ),,(),,( vuvu . The symmetrical properties are distinct with 

conventional lens.  
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 It is worthwhile to note that there is a symmetry transition for the case of 

double-even: the symmetry enforces the all N sectors of interference to have the same 

behaviors both in intensity and phase as the observation is right on the z=0 plane. 

Essentially, there is one difference of angular rotation for the N/2-fold symmetries 

embedded in the distributions on the planes before and after z=0. However, there is no 

such symmetry transition for double-odd. It should be emphasized that the section of 

such a split-lens generalization is based on a consideration of focal-point distribution. 

Based on classical Meslin’s split lens configuration, one could have the focal points to 

be distributed along the optical axis. 
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4  

Quasi J0 Bessel beam by Billet’s N-split 

lens 

 

4.1 Introduction 

This chapter studies the utilization of the focal property of a classical Billet’s split 

lens to create more focal points by splitting the lens and presents the results of a 

generalized Billet’s split lens, paying special attention to beam propagation. The 

generalization is implemented by splitting the lens further, i.e., by creating more focal 

points on the focal plane by distributing them circularly. The phenomena of field 

distribution and propagation associated with such a generalized split lens are quite 

complicated. This chapter explores the characteristics of beam propagation and 

analytically derives the asymptotic characteristics of beam propagation based on the 

stationary phase approximation and the moment-free Filon-type method. The 

underlying symmetry properties of these phenomena have previously explored [16]. 

Note that a Billet’s split lens has already been developed for multiple imaging and 

multichannel optical processing [15]. This chapter shows that a non-diffracting Bessel 
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beam [17] can be achieved with by the use of the unique Billet’s N-split lens if the 

number of splitting N is large enough, e.g., N≧24. 

 The Bessel beam is novel because of its propagation invariant since Durnin et al. 

[17] first reported the non-diffracting Bessel beam generated by an annular aperture 

[18]. The non-diffracting Bessel beams can also be generated by a phase optical 

element [19]. In additional to Bessel beam, the non-diffracting Mathiue-Gauss and 

parabolic Gauss beams are introduced by Gutierrez-Vega et al. [20]. Moreover, the 

non-diffracting beam with mosaic pattern can be created by an apertured axicon [21] 

and the non-diffracting vortex beams have been studied by using an annular ring mask 

[22] or by focusing an array of laser arranged in a ring [23]. The width of annular 

aperture has to be small to produce a non-diffracting beam of long range [24-25] and 

hence, the energy loss is large. Diffractive optical element can generate an array of 

arbitrary focuses [26-27] and it is utilized as optical tweezers to trap and arrange 

particles in a particular shape [28-29], but it usually requires a complicated iterative 

calculation to obtain the phase/amplitude function. The advantage of the split-lens 

approach is that, unlike the annual aperture, this simple lens approach allows a much 

more throughput in creating the Bessel beam and hence the Bessel beam has more 

optical energy. 
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4.2 Theoretical Formalism 

To illustrate the feature analytically, first consider a conventional focusing lens that is 

split into two identical halves (two sectors), where the upper half and lower half are 

moved a distance d up and down the Y-axis, respectively. This is the classical form of 

the Billet split lens [3] schematically depicted in Fig. 4-1(a). This spilt lens produces a 

collimated uniform monochromatic wave of wavelength λ to two different foci, F1 

and F2, on the focal plane. The diffraction theory employed here assumes that the 

aperture radius a >> λ, the focal length f >> a >> λ, and the Fresnel number F=a2/λf is 

much larger than unity. Fig. 4-1(b) shows the coordinate system. Recall the eq. (2-7), 

the disturbance after the Billet’s N-split lens is 
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z) where ψcosrx =  and ψsinry = . N is the number of sectors and m is the index 

of sectors.  
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Fig. 4-1 (a) Schematic diagram of the Billet split bi-sector lens. F1 and F2 are the first 
focus and second focus, respectively, and 2d is the separation distance between the 
foci of the two sectors. A front view on the left side shows the arrangement of sectors 
with N=2, 10, and 24, where N is the number of sectors. (b) Notation representation of 
the coordinate system of beam propagation. 

 

If the sector number N is large, cos(θ-π/N) can be approximate to unity where θ is 

between the interval of 0 and 2π/N and hence the disturbance can be reduced 
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The azimuthal integration can be done by the zero-order Bessel function of the first 

kind J0 and the disturbance takes the form 
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The following discussion uses the stationary phase approximation to evaluate the 

disturbance when z is much larger than d/NA, where NA is the numerical aperture. 

This leads to 
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The amplitude can be written as 
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When z is smaller than d/NA, use the moment-free Filon-type method [18] or 

integration by parts to evaluate the asymptotic approximation of Eq. (4-3) with an 

error of order ( )2−
dvΟ . This leads to 

 ( )vJe
uv
iPU

uvi

d

d

0
22)(
⎟
⎠
⎞

⎜
⎝
⎛ −

−
−

=
π , (4-6) 



Quasi J0 Bessel beam by Billet’s N-split lens 
 

78

and the amplitude is  

 ( )
uv

vJPU
d −

= 02)( π , (4-7) 

Equations (4-5) and (4-7) show that the amplitude in the radial direction near the 

optical axis is a J0 Bessel function. This profile is not a function of u, and is 

collimated when the propagation distance z is smaller than d/NA, and, conversely, the 

profile of J0 Bessel is a function of u-1 and the beam propagates when z exceeds 

d/NA. 

 

4.3 Numerical Identification 

This section numerically verifies the feature described above. To meet the diffraction 

beam requirements, i.e., the numerical aperture (NA) should be small (around 0.05), 

take a typical lens with a focal length of a few ten mm, e.g., f=80,000λ, such that the 

aperture radius a=4,000λ. Then set the (half) separation distance d=1000λ. For the 

numerical example of λ=630 nm, we have f=50.4mm, a=2.52mm, and d=0.63mm.  
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Fig. 4-2 Normalized intensity distribution of the generalized N-split lens in the focal 
plane, where (a) N=10 and (b) N=24. 
 

 
Fig. 4-3 Phase distribution of the generalized N-split lens in the focal plane, where (a) 
N=10 and (b) N=24. 
 
 

 Fig. 4-2(a) illustrates the intensity distribution in the XY-plane of z=0, which is 

the focal plane, for the case of N=10, while Fig. 4-2(b) illustrates that for N=24. The 

plots of intensity distribution in Fig. 4-2 are normalized to 100. Fig. 4-2 (a) shows that 

there are ten focal spots along the azimuthal direction because the number of sectors 
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N is ten. These ten spots form ten vertexes that resemble a regular ten-sided polygon, 

where the circumscribed radius is d=1,000λ and the center is at the origin. On the 

other hand, when the number of sectors increases, e.g., N=24, there are twenty four 

focal spots resembling a better annular ring pattern with the circumscribed radius of 

1,000λ in the focal plane, as Fig. 4-2(b) shows. The annular ring pattern is similar to 

an annular slit, and the width of the slit is based on numerical aperture of Billet’s 

N-split lens. Compared with these focal spots, the intensity near the optical axis is too 

dim to observe the Bessel profile in Fig. 4-2. The corresponding phase structures of 

Fig. 4-2 are shown in Fig. 4-3. 

 Next, consider the intensity distribution in the meridional plane with ψ =0 

(XZ-plane). Fig. 4-4(a) and (b) illustrate the cases of N=10 and 24, respectively. These 

figure reveal a quasi Bessel beam profile beyond z=d/NA, particularly for N=24, 

which is essentially caused by the ring-like pattern forming on the focal plane. The 

intensity maximum is not located on the focal plane, but located approximately at 

z=d/NA instead. The location of maximum zmax can be numerically evaluated to be 

22,187λ and 22,421λ when N=10 and 24, respectively. 
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Fig. 4-4 The intensity distributions in the meridional plane with ψ =0 (XZ-plane) for 
different number of split sectors, (a) N=10 and (b), N=24, where the intensity is 
normalized to 100. Plots with enlarged scale are shown in (c), N=10, and (d), N=24, 
where the first three dark rings of the J0 are illustrated at the bottom. The on-axis 
intensity of asymptotic approximations is denoted with solid lines. The intensity 
within z=d/NA has been multiplied by 100 as denoted by a circle in the plots (see 
text). 
 

4.4 Asymptotic Behavior 

In this section, this study investigates the asymptotic behavior of the radial intensity 

distribution along the Z-axis at z=0, 10,000λ, zmax, 40,000λ, 60,000λ and 80,000λ are 
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shown in Fig. 4-4(c) and Fig. 4-4(d) for N=10 and 24, respectively. Note that the 

radial intensity within z=d/NA has been multiplied by 100, as the plots and the 

regions of illustration are not the same. Note that the asymptotic result calculated by 

the stationary phase approximation is for z>>d/NA, while on the other hand, for 

z<d/NA. This result is based on the moment-free Filon-type method. Fig. 4-4(c) and 

(d) show the asymptotic forms with dark lines. Note that the error between the 

calculated intensity and the asymptotic expression based on moment-free Filon-type 

method is already enlarged by 100.  

 To indicate the beam propagation characteristics of quasi J0 Bessel, Fig. 4-4(c) 

and (d) plot the first three roots of J0 Bessel function parallel to the optical axis. These 

three roots denote the first three dark rings of quasi Bessel beam in Eq. (4-7). 

Equation (4-7) predicts that the J0 Bessel function is not a function of z, i.e., the quasi 

Bessel beam near the optical axis is collimated within z=d/NA and the intensity is 

inversely proportional to (vd-u)2. Indeed, the on-axis intensity increases from the focal 

plane and reaches its maximum intensity when u=vd. On the other hand, Eq. (4-5) 

indicates that the on-axis intensity beyond z=d/NA decays because the intensity is 

inversely proportional to u3/2. The variable in the J0 Bessel function is 
u
vv d . Hence, 

the locations of minimum in the J0 Bessel function are linearly proportional to z and 
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can be plotted as straight lines with slopes of 
λπ2⋅d

jk , where jk are the roots of J0 

Bessel function [17].  

 Fig. 4-4(c) and (d) plot the first three straight lines. In the case of N=10, three 

dark rings of Bessel profile are apparent near z=d/NA. On the other hand, there are 

eight dark rings when N=24. Except for z, which is near d/NA, these lines fit the dark 

rings, and present the propagation properties of J0 Bessel beam clearly.  

 

4.5 Influence of aperture radius 

To discuss the influence of aperture size, i.e., the radius a, on the diverging J0 Bessel 

beam, we calculate the intensity disturbance in the meridional plane with the number 

of split sectors N=24 and ψ =0 (XZ-plane) for different aperture radius a=40000λ, 

24000λ and 16000λ. In Fig. 4 in which the dimension is in a logarithmic scale, we use 

the linear curves to denote the dark rings of the J0 Bessel beam. All intensities in the 

frames are normalized by the maximum intensity when aperture radius a=40000λ. The 

asymptotic approximation tells the argument in the diverging J0 Bessel function is 

u
vv d  or 

z
rd

λ
π2  where there is no aperture radius a in this argument. In other words, 

the diverging J0 Bessel beam is related to the z and r directly, instead of the aperture 

radius a. However, the diverging J0 Bessel beam is starting from z=d/NA=f·d/a. The 

aperture radius a, therefore, determines the position of the diverging J0 Bessel beam 



Quasi J0 Bessel beam by Billet’s N-split lens 
 

84

and controls the beam radius of J0 Bessel beam in terms of z=d/NA. As shown in Fig. 

4-5, different aperture radius result in different location of z=d/NA and give rise to a 

minimum beam radius at z=d/NA. Consequently, a larger aperture radius, having 

larger focusing power, leads to a smaller beam radius at z=d/NA, location of the 

minimum beam radius. 

 
Fig. 4-5 The intensity disturbances in the meridional plane with the number of split 
sectors N=24 and ψ =0 (XZ-plane) for the aperture radius at a=40000λ, 24000λ and 
16000λ which corresponds to NA=0.5, 0.3 and 0.2, respectively. The intensity is 
normalized by the maximum intensity of the case with a=40000λ. The logarithmic 
scale is used here. The solid lines also illustrate the dark rings of the J0 Bessel beam. 

 

 Fig. 4-6 illustrates the intensity disturbance in the meridional plane using the 

same parameters as in Fig. 4-5 except that the azimuthal angleψ =π/24. The J0 Bessel 

beams in Fig. 4-5 and Fig. 4-6 are similar within the seventh dark rings, but they 

become different once away from the seventh dark rings. The difference of intensity 
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disturbance is resulted from the foci of split sectors. In our arrangement, there are two 

foci contributing to the J0 Bessel beam in the meridional plane with ψ =π/24. 

However, there is no focus in the XZ-plane and it gives rise to the J0 Bessel beam 

having different intensity disturbance from that in the meridional plane with ψ =π/24. 

As already shown in Fig. 4-2, different intensity disturbance along different azimuthal 

angle occurs because of the arrangement of the sectors.  

 
Fig. 4-6 The intensity disturbances in the meridional plane with the number of split 
sectors N=24. The parameters were the same as in Figure 4 except that the azimuthal 
angleψ =π/24. 

 

 The on-axis intensity with the number of split sectors N=24 for different aperture 

radius a=40000λ, 32000λ, 24000λ, 16000λ and 8000λ is shown in Fig. 4-7 to reflect 

the influence of aperture radius a on the diverging J0 Bessel beam. The inset shows 

the on-axis intensity with a logarithmic scale. All the intensities in Fig. 4-7 are 
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normalized by the maximum intensity as the aperture radius a=40000λ. We can 

readily see that all the asymptotes of oscillating curves overlap when z is beyond 

d/NA. The inset with a logarithmic scale shows clearly the overlapping of the on-axis 

intensity with different aperture radius.  

 

 
Fig. 4-7 The on-axis intensity for the aperture radius at a=40000λ, 32000λ, 24000λ, 
16000λ and 8000λ which corresponds to NA=0.5, 0.4, 0.3, 0.2 and 0.1, respectively. 
The intensity is normalized by the maximum ox-axis intensity of the case with 
a=40000λ. The inset displays the logarithmic scaling for the on-axis intensity. 

 

In short, the aperture size determines the ranges of the asymptotic solution of the J0 

Bessel beam generated by the Billet’s N-split lens. Moreover, a larger aperture radius, 

having larger focusing power, leads to a larger maximum on-axis intensity near 
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z=d/NA. Note that the location of the maximum on-axis intensity is close to z=d/NA, 

not readily on z=d/NA. 

 

4.6 Summary 

In summary, this chapter shows that it is possible to generate a quasi J0 Bessel beam 

using a Billet’s N-split lens that introduces a monochromatic plane wave to a ring-like 

pattern on the focal plane when N is large enough, e.g., 24. This study derives the 

asymptotic characteristics of beam propagation for the quasi J0 Bessel beam from the 

stationary phase approximation and the moment-free Filon-type method.  

 Results show that the beam is collimated within z=d/NA, i.e., the dark rings of 

the J0 Bessel beam result in straight lines that are parallel to the optical axis. On the 

other hand, the beam begins to diverge as z>d/NA, and the dark rings of J0 Bessel 

beam lead to straight lines with intrinsically-determined slopes. Moreover, the 

oscillatory property of the on-axis intensity could be deduced, i.e., it increases from 

the focal plane to a maximum at z ~d/NA, while changed to oscillate downwardly as 

z>d/NA. The aperture radius determines the location of d/NA and controls the 

minimum radius of J0 Bessel beam. As expected, larger aperture radius result in 

smaller beam radius at z=d/NA and larger on-axis intensity near z=d/NA because of 

larger focusing power. Finally, note that a segmented-aperture optical system in 
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which phase-shifting material fills each segmented region [13-14] makes it possible to 

realize the generalized Billet’s N-split lens and create a quasi Bessel beam. The 

phase-shifting material could be liquid crystal for this study. 

 

 N=10 N=24 N→∞ 

vj3 0.0069 0.0471 0.0550 

vj7 0.0449 0.1149 0.1353 

Table 4-1 Fractions of energy at z=2d/NA for N=10, 24 and ∞, where the aperture 
radius a=4000λ. 

 

 It is interesting to note the fraction of total energy encircled within a circle of 

radius v about the optical axis in the detecting XY-plane u=constant. Table 4-1 shows 

the fraction of encircled energy within the third dark ring v=vj3=j3·u/vd and the seventh 

dark ring v=vj7= j7·u/vd for N=10, 24 and N→∞ at u=2d/NA=20000λ. As N→∞, there 

is 5.5% and 13.5% of total energy encircled within three dark rings and seven dark 

rings, respectively. If we place a second focal lens with focal length f2 such that the 

front focal plane of second lens is the back focal plane of first split lens [17]. The 

effective radius [24] on the second lens is Reff=d+f2 λ/Δd~20516λ in our notation with 

f2=30cm and Δd~1.22λ/NA~24.4λ. Noting that d is the radius instead of the diameter 

of the ring. The corresponding fraction of encircled energy within Reff is now 81.68% 
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as N→∞. The generation of quasi-Bessel beam has a good utilization of incident 

energy. Noting that, the Bessel beam generated by a diffractive phase element can 

possess a high diffraction efficiency of up to 93.12% [27]. 
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5  

Focal shifts on vector beams 

5.1 Introduction 

The studies of diffracted converging cylindrical vector beams have attracted 

numerous interests both in theoretical and experimental aspects [6,31-43]. 

Applications include three-dimensional molecular orientation [31,32], 

resolution-enhanced microscopy [33], optical trapping and manipulating [34-37], and 

surface plasmon interface excitation [38, 39]. In reality, light beam is associated with 

polarization. The exploration of the beam propagation characteristics of a polarized 

beam is not only important for fundamental understanding but also to provide a useful 

mean in exploring and probing the other systems as polarized illumination. In 

literature, the propagation and the focusing properties of paraxial Bessel-Gauss beam 

with azimuthal polarization have been studied in details by Greene and Hall [40-42]. 

In addition, the radially and azimuthally polarized beams with a large focal length and 

a high numerical aperture have been explored, based on vector Debye diffraction 

integral [4], by Brown et al. [6,43]. In viewing the importance of polarization 

dependence, it is meaningful to identify the beam propagation characteristics of 
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polarized cylindrical beam. It is worthwhile to note that the cylindrical vector beams 

can be generated, such as, by making use of a Mach–Zehnder-like interferometer [6], 

by a piece of wave plate [33], by liquid-crystal spatial light modulators [50], by 

twisted nematic liquid crystal device [51], or by generating the mode inside a laser 

cavity [52].  

 

 Technically, once a system has a larger relative aperture, the electromagnetic 

vector nature of light has to be taken into account [4,53,54,55]. When vector nature is 

included in consideration, the performance will be influenced where the focal 

property is always the first item to be checked because of its importance to application 

[4]. The irradiance distribution in the focal region is not symmetric with respect to the 

focal plane if the Fresnel number of the focusing system is bounded away from 

infinity [57]. As a result, the location of the point of principal maximum irradiance is 

not consistent with the geometric focus of the focusing lens but is rather closer to the 

lens and this phenomenon is referred to focal shift. Focal shift has been extensively 

investigated over the past decades, e.g., for a variety of systems including in a scalar 

converging spherical wave diffracted by a circular aperture [57-61]. However, the 

vector nature of electromagnetic wave was not considered there. Nevertheless, 

different kinds of focal shift have been studied in a non-apertured [62,63] or apertured 
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Gaussian beam [64,65], a radially polarized pulsed laser beam [66], a radially 

polarized Gaussian beam [67], a Laguerre-Gaussian beam [68], a vector Bessel-Gauss 

beam [40], and a vector Mathieu-Gauss beam [69]. It should be noted that the paraxial 

and Fresnel approximations were used there [40,62-69]. Theoretically, there are two 

approaches, i.e., the vector Kirchhoff diffraction [53-55] and vector Rayleigh theory 

[56], which have been used to investigate the effect of focal shifts, by focusing a 

linearly polarized electromagnetic wave, with a particular value of Fresnel number 

and numerical aperture (NA). A dramatic difference is that the vector Rayleigh theory 

does not calculate the diffraction from the spherical wavefront to the aperture because 

the vector Rayleigh theory is restricted to the diffraction at a plane screen. Therefore, 

the vector Kirchhoff theory is used in this paper to derive the electromagnetic field 

vectors in image space and to investigate the focal shift effects for the diffracted 

converging cylindrical vector beams with different polarization status.  
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5.2 Theoretical Background and Beam 

Formalism 

5.2.1 A brief on the vector Kirchhoff diffraction theory 

It is known that the Fresnel number, N, and the numerical aperture, NA, follow 

faN λ/2=  and fa /NA =  respectively, where a is the radius of aperture, λ  the 

wavelength, f the focal length of system and α (sinα=NA) is the maximum 

convergence angle. Fig. 5-1(a) shows the schematic diagram of the focusing system 

where vector diffraction is applied to a circular aperture. A radially or azimuthally 

polarized monochromatic wave with angular frequency ω  comes in from the left 

and is focused by an aplanatic lens. The representation of vectorial diffracted fields 

can be obtained by a vector analogy of the Green’s theorem, which is used in the 

Helmholtz representation for the diffraction of scalar fields [70-72]. In other words, 

the vector version of the Green’s function is applied to the electromagnetic fields to 

obtain the electromagnetic field vectors in image space. Therefore, the 

electromagnetic fields E and H in image space can be expressed as the surface 

integral of EQ and HQ, namely, the spatially dependent electric and magnetic fields at 

the point Q on the wave front Σ. The EQ and HQ on the wave front Σ are momentarily 
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filled in an aperture on a black screen. Therefore, the vector fields in image space can 

be written as [70, 72]: 

 ( ) ( ) ( ) ( )[ ] ,dˆˆˆ
4
1

QQQ∫ ∫
Σ

Σ ∇⋅+∇××+×= σ
π

GGGik EnEnHnxE  (5-1) 

 ( ) ( ) ( ) ( )[ ] ,dˆˆˆ
4
1

QQQ∫ ∫
Σ

Σ ∇⋅+∇××+×−= σ
π

GGGik HnHnEnxH  (5-2) 

where n̂  is the inward unit normal vector of Σ and ∇  is the gradient operator with 

respect to the integration-point spherical coordinate ( )φθ ,,r=r , λπ2=k  is the 

wave number, and ( )zyx ,,=x  is the Cartesian coordinate or ( )z,,ψρ=x  the 

cylindrical coordinate of the observation point in the image space of the system as 

shown in Fig. 1(a). The Green’s function G and its derivative are given by 

 ( ) ( ) ( ) ( ),,,expexp
, xrxrs

xr
xr

xr −≡−≡=
−

−
= s

s
iksik

G  (5-3a) 

 ( ) ( ) ( ) ( ) ( ) ( )xrxrsxrsxrsxr −−==−=∇ /ˆ,,ˆ,1ˆ, GsikGsikG ζ  (5-3b) 

where the scalar function ζ(s) is defined as ( ) .11
iks

s −=ζ  The unit vector r̂  is 

directed from the observation point P(x), where the electromagnetic field vectors are 

calculated, to the point Q(r) on the wave front Σ, where the surface integrals are 

evaluated. 
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Fig. 5-1 Schematic diagrams of the geometry of a focusing system where a vector 
diffraction theory is applied over a spherical wavefront surface with a circular 
aperture of radius a. (see text) (a) three dimensional schematic plot and (b) schematic 
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diagram of aperture. (c) Schematic illustration of radially polarized (RP) and 
azimuthal polarized (AP) beams. The corresponding arrows are used to denote the 
polarization. 

 

 In general, the vector fields in Eqs. (5-1) and (5-2) do not satisfy the Maxwell’s 

equations. An additional contour integral around the edge of the aperture has been 

added as in a saltus black screen problem. Therefore the electromagnetic fields in 

image space may be expressed in the following forms, ( ) ( ) ( ),xExExE ΓΣ +=  and 

( ) ( ) ( ),xHxHxH ΓΣ += with 

 ( ) ( ) ,dˆ
4

1
Q lG

ik
∇⋅= ∫

Γ
Γ HlxE

π
 and ( ) ( ) .dˆ

4
1

Q lG
ik

∇⋅−= ∫
Γ

Γ ElxH
π

 (5-4) 

where l̂  is the unit vector tangent to the edge of the aperture in the positive direction, 

as shown in Fig. 5-1(b). 

5.2.2 Bending of the E-vector transmitted through 

aperture 

To identify the beam propagation through a lens, we need to clarify the bending of the 

E-vector transmitted through focusing system. It can be written as [73]: 

( ) ,, inc
1

Q RERE L−=φθ   

where R describes the rotation of the coordinate system around the optical axis and L 

denotes the change of polarization on propagation through the lens, i.e.,  
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,
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0cossin
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⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−= φφ

φφ
R  .

cos0sin
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sin0cos
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⎦

⎤

⎢
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⎣

⎡ −
=
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For a radially polarized illumination, we have 

( ) ( ) ,
0

sin
cos

000inc

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
= φ

φ
θθ lgEE  

where ( )θ0g  is the geometric factor, 0E  is the amplitude of the E-vector in object 

space, ( )θ0l  is the pupil function which is assumed to vary radially but still 

maintains the cylindrical symmetry with respect to the optical axis. In the aplanatic 

system, the geometric factor is θcos . For parabolic mirrors [74], the geometric 

factor is θcos1
1
+  as shown by Ignatovsky [75, 76]. 

 Now, the electric vector component after propagating through aplanatic lens 

system by a RPI can be expressed as 

 ( ) ( ) .
sin

sincos
coscos

cos, 00Q

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

θ
φθ
φθ

θθφθ lEE  (5-5) 

On the other hand, the incident electric fields for an API can be expressed as 

( ) ( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡−
=

0
cos
sin

000 φ
φ

θθ lgEEinc . In the same manner, the electric vector component 

after an aplanatic lens for API can be expressed as 
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 ( ) ( ) .
0

cos
sin

cos, 00Q

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡−
= φ

φ
θθφθ lEE  (5-6) 

5.2.3 Diffracted electric fields in image space 

By adding Eqs. (5-1) and (5-4), we can obtain the expression for the diffracted electric 

field vectors in image space: 

( ) ( ) ( ) ( ) ( )[ ] ( ) ,dˆ
4

1dˆˆˆ
4
1

QQQQ lG
ik

GGGikd
i ∇⋅+∇⋅+∇××+×= ∫∫ ∫

ΓΣ

HlEnEnHnxE
π

σ
π

 (5-7) 

where the magnetic field HQ can be obtained from EQ by  

 ,ˆ QQ EnH ×=  (5-8) 

Eq. (5-8) is true that the field EQ and HQ are mutually perpendicular and transverse to 

the direction of propagation n̂  in free space [77]. After substituting Eqs. (5-8) and 

(5-3) into Eq. (5-7), the electric field vectors could now be written as 

 

( ) ( ) ( ) ( ) ( ) ( )[ ]{ }

( ) ( )[ ] .dˆˆˆ
4
1

dˆˆˆˆˆˆ
4

Q

QQQ

lGs

Gsikd
i

∫

∫ ∫

Γ

Σ

⋅⋅+

⋅+××+××=

Enls

sEnsEnEnnxE

ζ
π

σζ
π

 (5-9) 

In Eq. (5-7) we use the following notation for the observation point in image space: 

 ,ddsin2 φθθσ f=  ,dd φal =   
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where 
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5.2.4 Formalism of radially polarized illumination 

To have general beam formalism for the case of RPI, we substitute Eqs. (5-3), (5-5) 

and (5-10) into Eq. (5-9). After a long vector operation and algebra manipulation, the 

Cartesian components of the electric field vectors in image space could be deduced, 

i.e., 

 ( ) ( ) ( )( ) ( )( ) ( )( ),,,,,,, sss
d

zsss
d

ysss
d

x
d

i zyxEzyxEzyxE kjixE ++=  (5-11) 
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Focal shifts on vector beams 
 

100

 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ,cos
4

sinsincossin

2

000

0

2

0 00

∫

∫ ∫

⎥
⎦

⎤
⎢
⎣

⎡
−−+

⎥
⎦

⎤
⎢
⎣

⎡
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

π

α π

φαζαα
π

θφθεζφφζθθθκ

d
f
zsshlgNA

dds
f
y

f
xsshlgE d

z

0E

x

 (5-12c) 

where 
( )2NA
2 NkfK π

== , 04
E

π
κ iK
=  and ( ) ( )

2
exp

ε
εiKsh ≡ . Now we can construct 

the local azimuthal and radial components of ( ) ( )d
iE x  through the following 

transformations: 
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The transformed electric vector components are shown below. 
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where ( ) θψφθρρε cos2cossin21
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f
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⎞
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⎝

⎛
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⎠

⎞
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⎝

⎛
+=  in terms of the 

cylindrical coordinate. As expected, the azimuthal component is zero everywhere in 

the image space. The radial and longitudinal components are nonzero, however. The 

radial and longitudinal fields are independent of sφ  which means the existence of a 

rotational symmetry around the optics axis. 

 

Now, the total time-averaged electric energy density of the diffracted electric 

field vectors for the RPI in image space follows 

 ( ) ( )( ) ( )( ) ( )( )222
,,,,,,,, zEzEzzW d

z
dd

iE φρφρφρφρ ρ +== E . (5-15) 

For the special case of the electric field vectors on the optical axis, we have 

 ( )( ) ( )( ) ( )( ) ( )( )s
d

zs
d

ys
d

xs
d

i zEzEzEz ,0,0,0,0,0,0,0,0 kjiE ++= . (5-16) 

Both the x and y components of the diffracted axial electric field vanish, once after 

carrying out the integration over φ , 

 ( ) ( ) ,0,0,0 =s
d

x zE  ( ) ( ) ,0,0,0 =s
d

y zE  (5-17) 

and only the z component is nonzero, i.e.,  
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It should be noted that the principal maximum energy density of the radial component 

is stronger than that of the longitudinal component for a system of low- relative 

aperture. Therefore the evaluation of focal shifts by only the longitudinal component 

of electric field on the optical axis is not adequate for a RPI with a low-relative 

aperture. 

 

5.2.5 Formalism of azimuthally polarized illumination 

As to the case of API, by substituting Eqs. (5-3), (5-6) and (5-10) into Eq. (5-9) and 

also after a long vector operation and algebra manipulation, we can obtain the 

Cartesian components of the electric field vector in image space as shown below. 
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Using the transformation of Eq. (5-13), one can see that the radial and longitudinal 

components are zero in the image space, while the azimuthal component follows 
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 (5-20) 

The azimuthally illuminated objective produces an on-axis null at all distances zs in 

the image space. As expected, and in a manner consistent with the Maxwell’s 

equations, the azimuthal field propagates as a purely transverse polarization through 

the entire image space and the azimuthal field is independent of ψ which means that 

there is a rotational symmetry around the optics axis. 

 

5.2.6 Incident beam setting and the fractional focal shift 

In literature, a Bessel-Gauss (BG) beam could be a solution of the wave equation 

exhibiting radial polarization [48]. Here, we consider the incident beam is a BG beam. 

Meanwhile, this BG form will be applied to both the RP and AP beams. A schematic 
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diagram of such an incident beam is shown in Fig. 5-1(c). In our numerical analysis, 

the apodization ( )0l θ  at waist in the pupil of such a BG beam follows [6] 

 ( ) ⎟
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θ
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exp 0

1

2
0

0 Jl , (5-21) 

where 0β  is the ratio of the pupil radius to the beam waist radius and nJ  denotes a 

Bessel function of the first kind, of order n. All length units are normalized by λ and 

β0=3/2.  

 

If the principal maximum energy density is located at the point where the z 

value of this point is z0, the fractional focal shift can be expressed as 

 
f
z

f
f 0−=

Δ . (5-22) 

Eq. (5-22) indicates a larger positive value of fractional focal shift moves the location 

of the point of principal maximum electric energy density further towards the 

wavefront, and contrariwise, it causes the location further beyond the geometrical 

focus. Furthermore, the change rate of fractional focal shift with the Fresnel number 

could be defined as 
N

ff
∂
Δ∂ )/( . For the RP and AP illuminations, the principal 

maximum energy density may not be on the optical axis of image space. In order to 

investigate the focal shift effect for a system having an arbitrary numerical aperture 
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NA and finite value of Fresnel number N, the Powell’s method [78] is used to 

numerically determine the location of the point of principal maximum energy density 

in image space.  

 

Fig. 5-2 Density plot of the normalized time-averaged electric energy density for the 
radially polarized beams in the ρ–z plane with a numercial aperture NA=0.7, where 
the dashed line is used to indicate the geometrical focal plane. The rows from top to 
down are with the Fresnel number N=1, N=2, N=5 and N=10 correspondingly. The 
radial components are shown the first colum and the corresponding phase structures 
are shown in the second column. The longitudinal components are shown in the third 
column and the corresponding phase structures are shown in the fourth column, 
respectively. The density plots of the normalized total time-averaged electric energy 
density are shown in the fifth column. 

 

It will be very helpful to provide the distribution of total energy density to gain a 

clearer feature of beam propagation characteristics. We show the results of two 
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polarized illuminations in Fig. 5-2 and Fig. 5-3 respectively. For a simple illustration, 

we set the numerical aperture NA=0.7 and take four Fresnel numbers N, i.e., 1, 2, 5 

and 10, also for comparison. Fig. 5-2 shows the result of RPI. The existence of focal 

shifts associated with the radially polarized vector beams could be seen clearly. It also 

shows that the fractional focal shifts decrease as the Fresnel number N increases. 

Furthermore, there is a distinct asymmetry of energy-density distribution on both 

sides of the geometric focus. However, this asymmetry depends strongly on the 

Fresnel number N and it is less significant when the Fresnel number N is large. On the 

other hand, for the case of API, as shown in Fig. 5-3, the AP beam does not generate a 

longitudinal component, while the transverse field is actually resulted from the 

azimuthal component. The existence of focal shift of azimuthally polarized beam is 

clear. Overall, the characteristics of beam propagation of the two illuminations, i.e., 

RPI and API, are different. The difference is significant when the Fresnel number is 

small. We also provide the corresponding phase structures for reference. 
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Fig. 5-3 Density plot of the normalized time-averaged electric energy density for the 
azimuthally polarized beams in the ρ–z plane with a numerical aperture NA=0.7, 
where the dashed line indicates the geometrical focal plane. The rows from top to 
down is with the Fresnel numbers N=1, N=2, N=5, and N=10. The first column is the 
energy density where the corresponding phase structures are shown in the second 
column respectively. 
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5.3 Influence of incident polarization on focal 

shift 

In this section the influence of incident polarization on focal shift will be extensively 

numerically explored. In order to investigate the dependence of numerical aperture, 

the fractional focal shifts at different NAs are also numerically evaluated. It should be 

noted that for a system of low-relative-aperture, e.g., NA=0.1, the principal maximum 

energy density of the transverse component is stronger than that of the longitudinal 

component. Hence, the fractional focal shift in a low-relative-aperture system depends 

primarily on the transverse component, which is purely radially polarized. On the 

other hand, the principal maximum energy density of longitudinal component 

becomes comparable to that of transverse component when the system is with 

high-relative aperture, e.g., NA=0.9. Therefore, the fractional focal shifts will be 

evaluated by both of the transverse and longitudinal components. In numerical 

investigations, the numerical aperture NA is ranged from 0.1 to 0.99, totally 10 sets, 

and the Fresnel number N is taken from 1 to 12. 
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5.3.1 The case of radially polarized illumination (RPI) 

Typical feature of beam propagation of RPI could be referenced by Fig. 5-2. It is 

clearly that the focal point will be shifted as the Fresnel number is changed. The focal 

shifts associated by RPI are shown quantitatively by fractional focal shift in Fig. 5-4. 

The variation could be categorized in three regions, namely A, B, and C, as denoted 

on the top in Fig. 5-4. In the region A, the fractional focal shift varied not 

significantly over a range of the Fresnel number and the amount is less than 5%. In 

the region B, the fractional focal shift is within 5%-30% and the variation is inversely 

proportional to the Fresnel number. In the region C, the shift is larger than 30% and is 

nearly linearly proportional with the Fresnel number. The region classification still 

holds with different numerical apertures, although with a high-relative aperture, the 

variation is more noteworthy than that of low-relative aperture. In the region A, the 

change rate of the fractional focal shifts with respect to the Fresnel number (N>7) is 

nearly zero, i.e., 0~)/(
N

ff
∂
Δ∂ . In other words, the focal shift is much insignificant 

and we could take the change is less than 5% as a basic property. The change rate of 

the fractional focal shift with the Fresnel number becomes considerably different in 

the region B and 
Nf

f 1
∝

Δ
, but the transition is smooth. In the case of RPI, the 

transition point is around N~7. In the region C, the change rate is positive and there is 
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a nearly linear increase as the Fresnel number is moved close to 1, i.e., 1~)/(
N

ff
∂
Δ∂

. 

It is interesting to note that the regions B and C are separated by the appearance of 

crossover feature located at N~1.8-1.9 as denoted by a red arrow shown the insert in 

Fig. 5-4. The crossover is associated with the change rate of fractional focal shift 

which becomes faster with large NA, here the bound of NA=0.6 could be recognized 

in the insert shown in the figure. The corresponding fractional focal shift is ~0.3 (i.e., 

30%). 

 

Fig. 5-4 Fractional focal shift Δf/f versus the Fresnel number N for the radially 
polarized illumination (RPI). 
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5.3.2 The case of azimuthally polarized illumination (API) 

In this subsection, we turn to focus on the case of API. The typical feature of beam 

propagation can be seen by Fig. 5-3. It is different from that of RPI. However, similar 

to the case of RPI, it is found that three different variations of focal shift can be 

identified as shown in Fig. 5-5. It is still meaningful to note that the transition 

betweens region B and C is associated with a crossover feature as denoted by the red 

arrow shown in the insert of Fig. 5-5. However, the transition from the regions A to B 

is with a larger N (here N>~8 for the region A) for the case of API. Meanwhile, the 

crossover is identified at N~1.7-1.8 which is slightly less than that of RPI and the 

corresponding fractional focal shift is larger, but still around 30%.  
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Fig. 5-5 Fractional focal shift Δf/f versus the Fresnel number N for the azimuthally 
polarized illumination (API). 
 

5.3.3 The case of linearly polarized illumination (LPI) 

It is valuable to reproduce the case of LPI for comparison. In order to examine the 

dependence of the fractional focal shifts by a LPI on numerical aperture NA, the 

fractional focal shifts are numerically evaluated based on Ref. [53]. Fig. 5-6 shows the 

result. It is possible to identify the region A for which the fractional focal shift is 

taken as less than 5%. However, there is no crossover feature that could be identified 

as those of RPI and API, as highlighted in the insert in Fig. 5-6, while it is still 

C B A 
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possible to have fractional focal shift more than 30%. Unlike the cases of RPI and 

API, the maximum of fractional focal shift for LPI is limited within 40%, while for 

the case of PRI and API could reach 60-70%. 

 

 
Fig. 5-6 Fractional focal shift Δf/f versus the Fresnel number N for the linearly 
polarized illumination (LPI). 
 

5.3.4 Comparison with the ratio of fractional focal shifts 

To compare the differences of focal shift associated with different polarizations, the 

fractional focal shifts of RPI and API are normalized by that of LPI correspondingly 

as illustrated in Fig. 5-7. The ratio of (fractional) focal shift could provide us a whole 
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picture in better vision. The solid line is the ratio of (fractional) focal shifts between 

PRI and LPI, while the dashed line is used to denote the ratio of (fractional) focal 

shifts of API to LPI. For simplification, we show the cases of NA=0.1, 0.4, 0.7 and 

0.9. 

 

 
Fig. 5-7 The variation of the ratios of (fractional) focal shifts of the radially polarized 
(RP) and the azimuthally polarized (AP) to the linearly polarized illuminations (LPI). 
The former is denoted by a solid line while the latter is with a dash line. 

 

As one can recognize that with a very-low-relative aperture, i.e., around NA=0.1, the 

behavior of the two kinds of illumination (RPI and LPI) are nearly the same. The 

power of shifting the focal point will increase as the Fresnel number is decreased. As 
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the Fresnel number is close to ~7-8, the variation is steady which is corresponding to 

the transition from the region B to the region A as we have illustrated above. As NA 

is increased, the first dissimilarity between the RPI and API occurs in the region of 

low Fresnel number, as referred to the case of NA=0.4, where a thin red arrow is used 

to denote the occurrence location. If we look at the case of a larger NA, e.g., NA=0.7, 

there is a crossover, i.e., RPI has a greater power in shifting the focal point in low 

Fresnel number, while API will take a lead as the Fresnel number lager than ~1.8. The 

transition is denoted by a thick black down arrow in Fig. 5-7 for reference. When the 

numerical aperture is further increased, e.g., NA=0.9, it is API to have the greatest 

power in shifting the focal point for the whole range of the Fresnel number. 

 

5.4 Summary 

In summary, we have deduced the analytical expressions for the radially and 

azimuthally polarized beams focused by an aplanatic lens by using the vector 

Kirchhoff diffraction theory. A line integral around the edge of the aperture, making 

the solution of Green’s theorem of electromagnetic fields compatible with the 

Maxwell’s equations, is also calculated and added to the total electric fields. The 

characteristics of field propagation have been analyzed with a center of attention on 

the property of focal-shift effect. It has been shown that the focal shifts are not only 
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dependent on the Fresnel number, the numerical aperture, but also depend on the 

incident polarization. The variation of focal shift is further classified by the fractional 

focal shift and its change rate. There are basically three regions can be identified. In 

one of the regions, i.e., the region A, the fractional focal shift is taken as within 5% 

and its change rate ~0. The region A is mainly with large Fresnel number, 

approximately N> 7~8. On the other hand, for very low Fresnel number, the fractional 

focal shift is large, typically > 30%, and its change rate is a constant. This region is 

classified as region C. In between, there is a transition; the fractional focal shift varied 

inverse proportional with the Fresnel number and it is labeled as region B. The region 

classification still holds for different numerical apertures and polarized illuminations. 

 

Unlike the case of LPI, there is a unique crossover for RPI and API. The crossover is 

associated with the appearance of region C and the corresponding fractional focal 

shift could reach up to 60-70%. On the other hand, there is no crossover that could be 

identified for the case of LPI and it is interesting to note that the maximum of 

fractional focal shift that could be achieved by LPI is limited with ~40%. Although 

the crossover could be contributed as the result of the competition between the 

numerical aperture and the Fresnel number as the incident beam is encountering 

different restrictions since the polarization status is different, it is not so apparent at 



Summary 117

all. Overall, the Fresnel number has been taken as the index of characterization, so as 

to the numerical aperture. When we take these two quantities in identifying the 

performance simultaneously, the meaning underlying the two quantities is the 

competition between the wave nature )/( aλ  and the scale characteristic )/( af  of 

the corresponding system, since the Fresnel number can be expressed as 

)/)(/()/( 2 faafa λλ =  where the number aperture is )/( fa . However, there is no 

polarization factor involved. Hence, the work shown here provides a reference for 

further investigation on the polarization-associated phenomena with cylindrical vector 

beam.  

 

 It is also worthwhile to note how the trends of focal shifts associated with RP 

and AP illuminations normalized with LPI could be separated as the Fresnel number 

is varied. The characteristics of beam propagation for the two illuminations, i.e., RPI 

and API, are different. But the general trend features of the two illuminations are 

similar in the region of large Fresnel numbers, i.e., the change rate of fractional focal 

shift are nearly the same, though the values are different. Furthermore, as shown 

above, when the system is with a low-relative aperture, e.g., 0.1, the focal shifts 

associated by the radially and azimuthally polarized illuminations are nearly the same, 

while they are about 1.65 times as large as that of linearly polarized illumination. As 
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the system is of high-relative aperture, e.g., 0.9, the focal shifts associated by the 

radially and azimuthally polarized illuminations has ~10% difference and their ratios 

with that of linearly polarized illumination become double in comparing with the case 

of low-relative aperture. In other words, generally it is the azimuthally polarized 

illumination to have the largest power in shifting the focal point. On the other hand, 

there is anomaly in the region of very low Fresnel number which is closely related to 

the onset of crossover shown in Fig. 5-4 and Fig. 5-5. The variation of focal shift in 

the region of low Fresnel number is significantly different from that with large 

Fresnel number. 
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6  

Conclusions and future works 

6.1 Conclusions 

We study the diffraction behavior of an N-split lens in the transversal layout i.e., 

Billet’s split lens and longitudinal arrangement i.e., Meslin’s split lens. The 

interference patterns including the equidistant straight lines, hyperbolas, and 

concentric-circle-like patterns near the optical axis generated by a Billet’s N-split lens 

have been investigated. Nevertheless, the type of lens splitting selected causes the 

interference pattern of equidistant straight lines in the original Billet’s lens to form an 

N-fold angularly distributed pattern with an angle difference of 2π/N. For a Meslin’s 

split lens, the rotational symmetry properties of focused field with respect to the 

optical axis in the XY-plane and reflection symmetry with respect to the mid-point of 

two foci have been studied. For an odd number of splitting N, there is an additional 

angle shift of π/N for the azimuthally distributed patterns of equidistant straight lines. 

In other words, there are two kinds of symmetry even for simple splitting operations. 

On the other hand, the peak intensity distribution in the central portion resembles a 

concentric-circle-like pattern, when N is large as a result of N-beam interference. As 
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to the Meslin’s N-split lens, the amplitude and the phase follow 

),,()2,,( ψπψ vuU
N

vuU =+−  and πψπψ −Φ−=+−Φ ),,()2,,( vu
N

vu  respectively 

when the splitting is with double of an even number. On the other hand, for the case 

of double of an odd number, the relation changes to hold with 

),,(),,( ψψ vuUvuU =−  and πψψ −Φ−=−Φ ),,(),,( vuvu , where the optical units 

u and v are used to denote the z- and the radial coordinates respectively and the 

azimuthal angle is ψ. Additional symmetry properties are also explored and identified, 

particularly for the distributions on the focal plane. The on-axis fields have also been 

discussed.  

Moreover, the Bessel beam is studied and by the use of the Billet’s N-split lens 

distributing the focal points circularly on the focal plane. This study explores the 

characteristics of beam propagation and analytically derives the asymptotic 

characteristics of beam propagation based on the stationary phase approximation and 

the moment-free Filon-type method. Results show that the unique Billet’s N-split lens 

can generate a quasi-Bessel beam if the number of splitting N is large enough, e.g., N

≧ 24. This study also explores the diffraction efficiency of corresponding 

quasi-Bessel beam and the influence of aperture size. The potential advantage of 

proposed split-lens approach is that, unlike the classical means of annual aperture, this 
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simple lens approach allows a much large throughput in creating the Bessel beam and 

hence the Bessel beam could have more optical energy.  

The diffraction behaviors of cylindrical vector beam, particularly the focal shifts 

further caused by different polarizations, namely linear, radial and azimuthal, are also 

investigated in terms of vector Kirchhoff diffraction theory together with an 

additional line integral around the edge of the aperture to satisfy the Maxwell’s 

equation. The variation of focal shifts associated with numerical aperture and the 

Fresnel number is also explored. It is found that with a low numerical aperture, e.g., 

0.1, the focal shifts associated by the radially and azimuthally polarized illuminations 

are nearly the same, while they are about 1.65 times as large as that of linearly 

polarized illumination. As the system is of high numerical aperture, e.g., 0.9, the focal 

shifts associated by the radially and azimuthally polarized illuminations have ~10% 

difference and their ratios with that of linearly polarized illumination become double 

in comparing with the case of low numerical aperture. In general, azimuthally 

polarized illumination has the largest power in shifting the focal point. 

 

6.2 Future works 

Based on the dissertation, the split lens can be used to study other non-diffracting 

beams or vortex beams and consider the lens in the presence of aberration instead of a 
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perfect lens or a high numerical aperture system. We list the potential future works 

below. 

1. Study new kind of non-diffracting beam 

The new non-diffracting beams e.g. higher order Bessel beams, Mathieu beams 

[25], and Airy beams [79-80] propagating with a curve are of interest to study 

and generate by use of a split lens. The electromagnetic distributions in the 

image space of non-diffracting beams by the split lens are an important issue to 

further investigate. 

2. Vortex beams -- Optical beams with singularity 

The vortex beams are a beam having phase singularity and has important 

application in optical tweezers for manipulation of small objects and the control 

of atomic or molecular beams in terms of the exchange of angular momentum 

with optical vortices. Therefore, the vortex beam generated with the 

configuration of Meslin’s N-split lens is a good subject to do further research. 

3. The lens in the presence of aberrations 

It is inventible to bring in the aberration when making a lens. The influence of 

aberrations on the performance of the generated beams by use of a split lens 

needs to further investigated. 

4. The polarization of generated beams 
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The vector nature of electromagnetic wave has to be considered when a system 

having a large numerical aperture. It is important to study these beams created 

with a high numerical aperture lens in terms of vector diffraction theory.  
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