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摘要摘要摘要摘要    

     包含區間一般以經驗分位數來估計，本論文提出以對稱型分位數來估計，並且在

論文中可看出對稱型分位數包含區間在非對稱分佈及離群值資料上有比經驗分位數包

含區間有較短的長度及較好的穩健度。在對稱分佈尤其是厚尾型對稱分佈, 對稱型分位

數包含區間有較小的變異。本論文亦提出以對稱型分位數建構多分位點管制圖，並且探

討其大樣本理論。 

本論文亦探討非線性混合性構面型資料統計品質管制。我们以主成份分析來建構統計品

質管制 Phase-I 及 Phase-II 的監控統計量。在 Phase-I，我們採用主成份計分建構的 T
2

監控統計量。在 Phase-II，各別主成份計分圖、主成份計分建構的 T
2
管制圖及聯合型主

成份計分管制圖被提出及比較，在應用面亦有所建議。 



Abstract

Classically the non-parametric coverage interval is estimated by empirical quan-

tiles. We introduce an alternative way for estimating the coverage interval by

symmetric quantiles of Chen and Chiang (1996). We further show that this

alternative estimator has a better precision in the sense that its asymptotic

variances are smaller than the classical one.

In an attempt to develop a scheme for monitoring a vector of distributional

quantiles, we propose a symmetric-quantiles-based control chart. Compara-

tive studies in terms of the asymptotic covariance matrix and the average run

length show that the proposed control chart is more efficient than the classical

empirical-quantiles-based control chart.

The monitoring of process/product profiles is presently a growing and promis-

ing area of research in statistical process control. We focus on developing mon-

itoring schemes for nonlinear profiles with random effects in this study. We

utilize the technique of principal components analysis to analyze the covariance

structure of the profiles and propose monitoring schemes based on principal

component (PC) scores. In the Phase I analysis of historical data, due to the

dependency of the PC-scores, we adopt the usual Hotelling T 2 chart to check

the stability. For Phase II monitoring, we study individual PC-score control

charts, a combined chart scheme that combines all the PC-score charts, and a



T 2 chart. Although an individual PC-score chart may be perfect for monitoring

a particular mode of variation, a chart that can detect general shifts, such as

the T 2 chart and the combined chart scheme, is more feasible in practice. The

performances of the schemes under study are evaluated in terms of the average

run length.
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Chapter 1

Introduction

Statistical control charts have been widely used in many real-life applications

and various control chart techniques have been developed to handle different

process scenarios and characteristics of data in this literature. In this disserta-

tion, two different types of control charts, a symmetric-quantile based control

chart and a nonparametric profile control chart, are proposed and studied. In

addition to control charts, other applications of coverage interval are also in-

troduced.

1.1 Coverage Interval

In statistics, we generally have a random sample, X1, ..., Xn, from a distri-

bution with the probability density function (pdf) f(x, θ), x ∈ <, where < is

the sample space and θ is an unknown parameter (scalar or vector) with the

parameter space Θ. The statistical inferences presented in the literature gen-
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erally involve estimation and hypothesis about the unknown parameter θ. In

many practical problems, we face to deal with statistical problems for inferences

about a probabilistic unknown interval or multivariate region, not this single

point of parameter θ.

Let X be a random variable or a statistic which is formulated from the

random sample X1, ..., Xn. A coverage interval is an interval with two confidence

limits which covers values in the population of random quantity W in some

probabilistic sense. For example, C(θ) = (a(θ), b(θ)) is a γ coverage interval

if it satisfies γ = Pθ(X ∈ C(θ)) for θ ∈ Θ. Treating γ coverage interval

C(θ) as the unknown parameter interval of interest for inferences has provided

many very important applications in various areas of sciences but still lacking

communications in theory and application (see Huang, Chen and Welsh (2010)

for a brief review).

This coverage interval has been referred with various terminologies in differ-

ent areas of applications, for example, the coverage interval C(θ) is called the

reference interval in laboratory chemistry to refer to population-based reference

values obtained from a well-defined group of reference individuals. Laboratory

test results are commonly compared to a reference interval before care-givers

make physiological assessments, medical diagnoses, or management decisions.

An individual who is being screened for a disorder based on a measurement is

suspected to be abnormal if his/her measurement value lies outside the reference

interval.
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An experiment for measuring a measurand, a particular quantity subject

to measurement, is a method through a process that tries to gain or discover

knowledge of the measurand. Measurements always have errors and there-

fore uncertainties. General rules for evaluating and reporting uncertainty in

measurement have been published by the most important and internationally

widespread metrological publication – ISO (the International Standards Orga-

nization) Guide to the Expression of Uncertainty in Measurement. The mea-

surement result should be reported with a specified confidence as an uncertainty

interval defining the range of values that could reasonably be attributed to the

measurand. Hence, a coverage interval in physical science is called the uncer-

tainty interval. This topic is interesting but not studied in this dissertation.

The control chart is one of the basic quality improvement tools in statistical

process control (SPC) for a process to identify special causes of variation and

signal the need to take necessary corrective actions. If the variation is due

to common causes alone, the process is said to be in statistical control. When

special causes are present, the process is said to be out of control. Suppose that

W is the statistic to be monitored and (a(θ), b(θ)) is the γ coverage interval.

By letting LCL = a(θ) and UCL = b(θ) be the lower control limit and upper

control limit, respectively, we may say that special causes may be present when

an observation of W falls outside the interval (LCL,UCL).

A control chart is a statistical scheme devised for the purpose of checking

and then monitoring the statistical stability of a process. Various control chart

3



techniques have been developed and widely applied for process control. Widely

used Shewhart control chart, EWMA, and CUSUM chart are under the para-

metric (normal distribution) statistical thinking to perform process control by

monitoring the parameters. The design of control chart is based on the concept

of the coverage interval of a certain statistic such as sample mean or sample

range under the assumption of a specified distribution, mostly the normal dis-

tribution.

1.2 Coverage Interval by Symmetric Quantile

The coverage interval can be estimated either parametrically or non-parametrically.

The parametric method classically assumes that the underlying distribution

of the measurement variable is normal whereas, recently, Chen, Huang and

Chen (2007) has proposed a technique for constructing coverage intervals for

asymmetric distributions. On the other hand, the non-parametric approach

estimates the quantiles (percentiles) directly; the most popular technique for

estimating the unknown quantiles is through the empirical quantiles. Most

authorities now recommend the nonparametric method because it makes no as-

sumptions concerning the type of the reference variable. It is easy and reliable

whether the reference variable follows either a normal or non-normal distribu-

tion (see these points in Reed, Henry and Mason (1971) and Solberg (1986)).

It is vitally important to establish a coverage interval so that users can di-
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agnose the disease with precision. Some factors that may increase the precision

have been considered. Number one hundred and twenty or more of healthy

subjects required for the determination of coverage interval has been recom-

mended by International Federation of Clinical Chemistry. The determination

of the confidence interval of the quantile, that is, the limits within which true

quantile is located with a specified confidence, is strongly recommended. How-

ever, Friedberg et al. (2007) has observed that analytic imprecision is a very

important factor for the quality of the established coverage interval. Hence,

searching for an alternative technique in developing coverage interval to in-

crease the analytic precision of the computed coverage interval is an interesting

and important topic.

We consider the non-parametric approach in constructing coverage interval.

Is there an alternative technique producing a coverage interval of better preci-

sion than that constructed by empirical quantile? For improving the efficiency

of the trimmed mean for estimating the location parameter, Kim (1992) and

Chen and Chiang (1996) introduced the symmetric quantile to construct an

alternative trimmed mean. They observed that this trimmed mean can have

asymptotic variances very close to the Cramer Rao lower bounds for several

distributions, including heavy tail ones. One aim in this research is to con-

struct an alternative coverage interval by symmetric quantiles and show that it

does gain better precision than the classical version constructed by empirical

quantiles. This surprising result has been published in Metrologia (Lin, Chan
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and Chen (2008)).

1.3 Multivariate Control Chart by Symmetric Quan-

tiles

It is known that the performance of a normal-based control chart is seriously

degraded when the underlying distribution departs from normal. However,

manufacturing processes with non-normal quality characteristics variable are

very common (see, for example, Cheng and Thaga (2006), Shiling and Nelson

(1976) and Kanji and Arif (2000)). Nonparametric control charts are then

suggested because it makes no assumption concerning the distribution of the

monitoring variable. For example, Janacek and Meikle (1997) considered the

median chart, Liu and Tang (1996) considered the boostrap control chart, and

Grimshaw and Alt (1997) considered using quantile function to construct the

control chart.

Among the existing nonparametric control charts, the quantile- based control

chart by Grimshaw and Alt (1997) is a nonparametric control chart that can

simultaneously monitor distribution parameters. Unlike the confidence interval

that estimates the range in which a population parameter falls, the control chart

is a coverage interval that estimates the range which covers a certain percentage

of the population of a specific statistic. Because coverage intervals are based

upon only a sample of the entire population, we cannot be 100% confident that

6



the interval will contain the specified proportion of the statistic’s population.

It is interesting to study if there is an alternative quantile technique that can

be used to construct a quantile control chart of better efficiency in some sense

than that constructed by empirical quantiles. Again, one of our aims in this

research is to construct an alternative control chart by symmetric quantiles and

show that it does gain better efficiency than the classical version constructed

by empirical quantiles.

1.4 Nonparametric Profile Control Chart

Statistical process control has been widely applied in many areas, especially

in industries. Another topic in this research is about profile monitoring. Most

statistical process control applications deal with the quality of a process or

product can be adequately represented by the distribution of a univariate qual-

ity characteristic or a vector of correlated quality characteristics. But in many

practical situations, the focus point is the relationship between a response vari-

able and some explanatory variables. Thus, at each sampling stage, a collection

of data points that can represent the relationship is a data curve or data pro-

file. And thus a control chart designed for profile data is called a profile control

chart.

The monitoring of process/product profiles is presently a growing and promis-

ing area of research in statistical process control. One of the aims in this re-

7



search is to develop monitoring schemes for nonlinear profiles with random

effects. We utilize the technique of principal components analysis to analyze

the covariance structure of the profiles and propose monitoring schemes based

on principal component (PC) scores.

Profile monitoring is a relatively new research area in quality control. Kang

and Albin (2000) studied the problem of linear profile monitoring and proposed

two control schemes by modelling the profiles with the simple linear regression

model, Y = A0+A1x+ε, where Y is the response variable and x is the indepen-

dent variable; A0 and A1 are the parameters to be estimated; the noise variables

ε’s are independent and normally distributed with mean zero and common vari-

ance σ2. By centering the x-values to make the least squares estimators of the

Y -intercept (A0) and slope (A1) independent of each other, Kim et al. (2003)

proposed a combined-chart scheme in which three EWMA charts designed re-

spectively for detecting shifts in intercept, slope, and standard deviation (σ) are

used simultaneously. Mahmound and Woodall (2004) presented and compared

several control charts for Phase I analysis of linear profiles and applied some of

the charts to a calibration application. For more discussions on linear profile

monitoring, see the review paper by Woodall et al. (2004).

Shiau and Weng (2004) extended the above linear profile monitoring schemes

to a scheme suitable for profiles of more general forms via nonparametric re-

gression. No assumptions are made for the form of the profiles except the

smoothness. The nonparametric regression model considered is Y = g(x) + ε,

8



where g(x) is a smooth function and ε is the random error as before. Spline

regression was adopted as the curve fitting/smoothing technique for its sim-

plicity. They proposed an EWMA chart for detecting mean shifts, an R chart

for variation changes, and an EWMSD (standard deviation) chart for variation

increases.

Note that the models described above all consist of a deterministic line/curve

plus random noises. It does not account for some allowable profile-to-profile

variations that we often observe in many profile data, e.g., the aspartame ex-

ample and VDP example, where these profile-to-profile variations should be con-

sidered as caused by common causes. A monitoring scheme constructed based

on the afore-mentioned “fixed-effect” model may interpret these common-cause

variations as caused by some special causes and signal many false alarms. Thus,

we need a suitable model that can cope with these common-cause variations

and construct a monitoring scheme accordingly.

For this, Shiau, Lin, and Chen (2006) considered a random-effect linear

model to develop monitoring schemes for linear profiles. Similarly, Jensen et

al. (2006) proposed a linear mixed (effects) model for linear profiles. Williams

et al. (2003) fitted nonlinear profiles by nonlinear parametric regression and

then monitored profiles with some T 2 statistics of the estimated parameters.

Later, Williams et al. (2007) extended this methodology to nonlinear profiles

with a nonconstant variance at set points to analyze a set of heteroscedastic

dose-response profiles. Adopting a random-effect parametric nonlinear regres-
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sion model for profiles, Shiau, Yen, and Feng (2006) proposed a robust nonlinear

profile monitoring scheme. Jensen et al. (2009) proposed using nonlinear mixed

models to model nonlinear profiles. Note that the parametric approaches men-

tioned above all need to pre-specify a parametric functional form for profiles, a

task often not so easy for practitioners. Qiu, Zou and Wang (2010) proposed a

novel control chart, which dealt with mixed effect profile data without assump-

tions on a parametric functional form. Their control chart is based on local

linear kernel smoothing of profile data and on the EWMA weighting scheme

at different time points and the heteroscedasticity of observations within each

profile.

We extend the nonparametric fixed-effect model of Shiau and Weng (2004)

to a random-effect model in order to incorporate some profile-to-profile variabil-

ity as caused by common causes. With the random-effect model, we focus on

the covariance structure and use the principal components analysis (PCA) to

analyze it. Ding et al. (2006) also considered modelling profiles nonparametri-

cally for a Phase I analysis, but proposed using ICA (independent components

analysis) instead of PCA for monitoring profiles that are in clusters, a situation

PCA may fail to preserve the clustering feature of the original data.

PCA is very useful in summarizing and interpreting a set of profile data

with the same equally spaced x-values for each profile. We remark that the

smoothing step described above can relax this requirement for profile data since

the equally-spaced data can be obtained from the smoothed profiles easily.

10



Some pioneer works on analyzing curves with PCA include Castro et al. (1986),

Rice and Silverman (1991), Jones and Rice (1992), and others. For applications,

Shiau and Lin (1999) analyzed a set of accelerated LED degradation profiles to

estimate the mean lifetime of the product with the techniques of nonparametric

regression and PCA.

For Phase I profile monitoring, we propose using the usual Hotelling T 2

chart, a commonly used control chart designed for multivariate process data, by

treating the principal component (PC) scores of a profile obtained from PCA

as the multivariate data. For Phase II process monitoring, we propose and

study three monitoring schemes constructed by utilizing the eigenvalues and

eigenvectors obtained from PCA to compute the PC-scores of each incoming

profile, including individual PC-score charts, a combined chart that combines

all of the PC-score charts and a T 2 chart (different from the T 2 chart of Phase

I). The performances of these monitoring schemes are evaluated in terms of the

average run length (ARL).
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Chapter 2

A Nonparametric Coverage Interval

In this chapter, we propose a coverage interval estimation based on sym-

metric quantiles. The coverage precision of the proposed symmetric coverage

interval is studied and comparisons with empirical quantile coverage interval is

also conducted to demonstrate that the symmetric quantile coverage interval

is superior to its empirical counterpart in practical usage when the underlying

distribution is symmetric.

2.1 Symmetric Coverage Interval

For random variable Y with cumulative distribution function F , the λth

quantile is defined as

F−1(λ) = inf{c : F (c) ≥ λ}.

12



The classical 1− α coverage interval is defined as

C(1− α) = (F−1(
α

2
), F−1(1− α

2
)).

Suppose that we now have a random sample y1, ..., yn from distribution F . The

corresponding empirical 1− α coverage interval is

Cn(1− α) = (F−1
n (

α

2
), F−1

n (1− α

2
)) (2.1)

where we let F−1
n be the empirical quantile, a quantile function with distribution

function of the sample type as Fn(y) = 1
n

∑n
i=1 I(yi ≤ y).

Unlike the way in which the empirical quantile is constructed based on the

cumulative distribution function, the so-called symmetric quantile of Chen and

Chiang (1996) is formulated based on a folded distribution function. Let us

consider the folded cumulative function about µ, known or unknown, as

Fs(a) = P (|y − µ| ≤ a), a ≥ 0.

Extending from Chen and Chiang (1996), we define the 1 − α symmetric cov-

erage interval as

Cs(1− α) = (µ− F−1
s (1− α), µ + F−1

s (1− α))

where F−1
s (λ) = inf{a : Fs(a) ≥ λ}. If F is continuous, the 1 − α symmetric

coverage interval satisfies 1−α = P (µ−F−1
s (1−α) ≤ y ≤ µ + F−1

s (1−α)). If

we further assume that F is symmetric at µ, it can be seen that

Cs(1− α) = C(1− α), (2.2)

13



the classical one and the symmetric one are identical in the sense of containing

the same set of reference individuals.

We interpret the folded cumulative function and the symmetric coverage

interval through Figure2.1.

0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

µµ − Fs−−1((0.8))

µµ + Fs−−1((0.8))

µµ

µµ+aµµ−a

Folded distribution function and symmetric coverage interval for Gamma distribution ΓΓ(2,2)

Figure 2.1: The symmetric coverage interval.

Considering the Gamma distribution Γ(2, 2) which has probability density

function (pdf) as the curve in the figure, we consider the folded distribution

about the median. With this distribution, the median µ is 3.36. For a given

a > 0, the value of this folded distribution at a represents the probability of

a region as the part of shadow. Suppose that the interest is 80% coverage

interval. For this continuous distribution, we search F−1
s (0.8) = a∗ such that

0.8 = P (µ− a∗ ≤ y ≤ µ + a∗) with y ∼ Γ(2, 2) which indicates that a∗ = 2.21.
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Hence the 80% symmetric coverage interval is

Cs(0.8) = (µ− F−1
s (0.8), µ + F−1

s (0.8))

= (1.15, 5.57)

Let µ̂ be an estimate of µ. We may define the sample type 1 − α symmetric

coverage interval as

Csn(1− α) = (µ̂− F−1
sn (1− α), µ̂ + F−1

sn (1− α)) (2.3)

where Fsn(a) = 1
n

∑n
i=1 I(|yi − µ̂| ≤ a) is the sample type folded cumulative

distribution function and F−1
sn (1− α) = inf{a : Fsn(a) ≥ 1− α}.

Let’s give a simple example to describe the construction of sample symmetric

coverage interval. Suppose that we have a set of observations that are ordered

as

−5,−3,−2,−1,−0.5, 0.5, 1, 3, 50, 100.

We want to construct 80% empirical and symmetric coverage intervals. With

F−1
n (0.1) = −5 and F−1

n (0.9) = 50, the 80% empirical coverage interval is

Cn(0.8) = (−5, 50). (2.4)

For construction of symmetric coverage interval, we choose sample median as

the estimate of µ. That is,

µ̂ = F−1
n (0.5) = inf{a :

1

10

10∑
i=1

I(yi ≤ a) ≥ 0.5} = −0.5.

Let’s denote residuals ei = yi − µ̂, i = 1, ..., 10. The residuals are

−4.5,−2.5,−1.5,−0.5, 0, 1, 1.5, 3.5, 50.5, 100.5.
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The sample type folded cumulative distribution function is

Fsn(a) =
1

10

10∑
i=1

I(|ei| ≤ a).

For examples, Fsn(0) = 1
10 , Fsn(1) = 1

10 [I(| − 0.5| ≤ 1) + I(|0| ≤ 1) + I(|1| ≤

1)] = 3
10 . Then we have

F−1
sn (0.8) = inf{a :

1

10

10∑
i=1

I(|ei| ≤ a) ≥ 0.8}

= 4.5.

This indicates that the 80% symmetric coverage interval is

Csn(0.8) = (µ̂− F−1
sn (0.8), µ̂ + F−1

sn (0.8))

= (−0.5− 4.5,−0.5 + 4.5)

= (−5, 4). (2.5)

Comparing the resulted sample empirical and symmetric coverage intervals

in (2.4) and (2.5), it is seen the benefit for using the latter one for that it is

shorter than the former one. This would happen very often when the observa-

tions are drawn from asymmetric distributions.
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2.2 Precision Study of Symmetric Coverage Interval

The equality of (2.2) does not hold when the underlying distribution F is

not symmetric so that there is no fair criterion to compare their corresponding

sample coverage intervals. Hence, we may set the case that F is symmetric to

compare the precision of these two coverage intervals through the asymptotic

variances of their sample type coverage intervals.

We consider that µ is the median parameter and let µ̂ be the sample median

as

µ̂ = arginfµ∈R

n∑
i=1

|yi − µ|.

Suppose that we assume that F is continuous and symmetric at µ. From

Ruppert and Carroll (1980), we have a Bahadur representation for this sample

median as

n1/2(µ̂− µ) = n−1/2 1

f(µ)

n∑
i=1

(0.5− I(yi ≤ µ)) + op(1). (2.6)

On the other hand, a Barhadur representation for F−1
sn (1 − α) developed by

Chen and Chiang (1996) is

n1/2(F−1
sn (1− α)− (F−1(1− α

2
)− µ)) =

1

2f(F−1(1− α
2 ))

n−1/2
n∑

i=1

{1− α

− I(F−1(
α

2
) ≤ yi ≤ F−1(1− α

2
)}+ op(1). (2.7)

The assumption of symmetric distribution indicates that µ̂−F−1
sn (1−α) and

µ̂ + F−1
sn (1 − α) have the same asymptotic variance and, from (2.6) and (2.7),

17



we have a Bahadur representation for µ̂− F−1
sn (1− α) as

n1/2((µ̂− F−1
sn (1− α))− F−1(

α

2
)) = n−1/2

n∑
i=1

{[− 1

2f(µ)
− 1− α

2f(F−1(1− α
2 ))

]

I(yi ≤ F−1(
α

2
)) + [− 1

2f(µ)
+

α

2f(F−1(1− α
2 ))

]I(F−1(
α

2
) ≤ yi ≤ µ)

+ [
1

2f(µ)
+

α

2f(F−1(1− α
2 ))

]I(µ < yi ≤ F−1(1− α

2
))

+ [
1

2f(µ)
− 1− α

2f(F−1(1− α
2 ))

]I(yi ≥ F−1(1− α

2
))}+ op(1). (2.8)

Since y1, ..., yn is a random sample from distribution F , we may see that the

asymptotic variance of n1/2(µ̂− F−1
sn (1− α)− F−1(α

2 )) is

σ2
s =

α

2
[(

1

2f(µ)
+

1− α

2f(F−1(1− α
2 ))

)2 + (
1

2f(µ)

− 1− α

2f(F−1(1− α
2 ))

)2] + (1− α

2
)[(− 1

2f(µ)
+

α

2f(F−1(1− α
2 ))

)2

+ (
1

2f(µ)
+

α

2f(F−1(1− α
2 ))

)2]. (2.9)

On the other hand, in this situation that y has a continuous and symmetric

distribution, we may see that n1/2(F−1
n (α

2 ) − F−1(α
2 )) and n1/2(F−1

n (1 − α
2 ) −

F−1(1− α
2 )) also have the same asymptotic variance (see, for example, Sen and

Singer (1993, p168)) as

σ2
e =

α

2
(1− α

2
)f−2(F−1(1− α

2
)). (2.10)

Since these two sample coverage intervals estimate the same population cov-

erage interval, it is fair that we evaluate the efficiency of the symmetric type
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coverage interval defined as the following

Eff =
σ2

e

σ2
s

. (2.11)

Let’s consider several distributions for computation of asymptotic variances

of (2.9) and (2.10) to compare their corresponding efficiencies of (2.11) where

distributions include standard normal distribution N(0, 1), t-distribution t(r)

where r is the degrees of freedom, Cauchy distribution (Cauchy(s), s > 0) with

pdf

f(y) =
1

π

s

y2 + s2
, y ∈ R

and the Laplace distribution (Lap(b)) with pdf

f(y) =
1

2b
e−

|y|
b , y ∈ R.

We display the resulted efficiencies in Table 2.1.
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Table 2.1. The efficiencies, Eff , of symmetric coverage interval

dist/1− α 0.6 0.8 0.9 0.95 0.98

N(0, 1) 0.87 0.87 1.02 1.21 1.48

t(r)

r = 1 0.98 1.78 2.13 2.1 2.04

r = 5 0.89 1.01 1.31 1.61 1.85

r = 10 0.88 0.94 1.16 1.42 1.7

Cauchy(s)

s = 1, 5, 10
0.98 1.78 2.13 2.1 2.04

Lap(b)

b = 1, 5, 10
1.2 1.6 1.8 1.9 1.96

It is relatively efficient to use the empirical quantile to construct coverage inter-

val when the quantile percentage is close to 0.5 in either direction. This means

that when we want a 1 − α coverage interval with coverage probability 1 − α

as the value of 0.6 or even smaller. The one estimated by empirical quantiles

is the right choice. On the other hand, we see that it gains more precision to

use symmetric quantile to construct coverage interval when 1 − α is with the

value of 0.8 or larger. This alternative coverage interval is then attractive since

it is very common that we apply coverage interval only for large 1 − α, for

example, the reference interval in medical diagnosis chooses the value of 0.95.

In fact, the case that when the underlying distribution is the Laplace one the

coverage interval constructed by symmetric quantiles totally dominate the one
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by empirical quantiles.

This interesting result is not surprising. The surprising fact is that, unlike

estimation of location and scale parameters that have been received very much

attention in statistical literature for proposing techniques and developing the-

ories in gaining better precisions, the attention for developing alternative ways

in constructing coverage intervals for gaining better precision than the classical

one has not been paid in statistical and metrological literatures.

2.3 Concluding Remarks

As for constructing a coverage interval, a symmetric quantile coverage in-

terval performs better than the commonly used empirical quantile coverage

interval both empirically and theoretically. The robust estimation on the dis-

tribution mass and the symmetric folding feature of the symmetric quantile

coverage interval prevent the estimation of coverage interval heavily impacted

by outliers. When an underlying distribution is not symmetric, with center

on the distribution median, using symmetric quantiles to construct a coverage

interval can cover more percentage of the higher density part compared with

the other side with lower distribution density, and thus a symmetric quantile

coverage interval gives a shorter coverage interval than the empirical one. Even

when the distribution is symmetric, we still can see the symmetric quantile

coverage interval is with smaller asymptotical variance than the empirical one
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for most coverage intervals with large 1− α.

22



Chapter 3

Multivariate Control Chart by

Symmetric Quantiles

In this chapter, we apply symmetric quantile techniques in constructing con-

trol chart schemes. A multivariate control chart by symmetric quantiles is

proposed and its asymptotic characteristic is studied. Comparisons between

empirical quantile based control chart and symmetric quantile control chart

are also studied through efficiency in terms of asymptotic variances and ARL.

Symmetric quantile based multivariate control chart is more efficient than the

empirical quantile based multivariate control chart in detecting small distribu-

tional shifts even when underlying distribution is not symmetric.
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3.1 Empirical Quantiles Based Control Chart for Mon-

itoring Quantile Vector

With the interest of control charts comparison, let us first introduce, in de-

tail, the empirical quantiles based control chart of Grimshaw and Alt (1997).

For percentages α1, ..., αk with α1 < α2 < ... < αk, let us consider the popula-

tion quantile vector

Q(α1, ..., αk) =



F−1(α1)

F−1(α2)

...

F−1(αk)


(3.1)

for monitoring that can be estimated by the corresponding empirical quantile

vector

Qe(α1, ..., αk) =



F−1
n (α1)

F−1
n (α2)

...

F−1
n (αk)


.

Grimshaw and Alt (1997) proposed to apply Qe(α1, ..., αk) to monitor the pop-

ulation quantile vector Q(α1, ..., αk). The asymptotic property of Qe(α1, ..., αk)

relies on the empirical quantiles F−1
n (αj)’s. A Bahhadur representation for

F−1
n (α) (see, for example, Ruppert and Carroll (1980)) is

√
n(F−1

n (α)− F−1(α)) =
1

f(F−1(α))
n−1/2

n∑
i=1

(α− I(yi ≤ F−1(α))) + op(1)

24



where f is the probability density function of variable y and I is the indicator

function. This leads to that n1/2(Qe(α1, ..., αk) − Q(α1, ..., αk)) converges to a

normal distribution Nk(0k, Σ) with Σ = (σe
jk) and where σe

ij = αi(1−αj)
f(F−1(αi))f(F−1(αj))

for i ≤ j. This further implies that the following

n(Qe(α1, ..., αk)−Q(α1, ..., αk))
′Σ−1(Qe(α1, ..., αk)−Q(α1, ..., αk)) → χ2(k)

holds asymptotically in distribution.

Suppose that we have a training sample yij, i = 1, ..., n, j = 1, ...,m that rep-

resents an in-control data set of m samples of size n from distribution F so that

estimate of Q(α1, ..., αk) and Σ are available. Generally we let Qej(α1, ..., αk)

and Σ̂j be estimates, respectively, based on sample yij, i = 1, ..., n and define

Q0(α1, ..., αk) = 1
m

∑m
j=1 Qej(α1, ..., αk) and Σ0 = 1

m

∑m
j=1 Σ̂j. Treated esti-

mates Q0 and Σ0 as true values of Q(α1, ..., αk) and Σ, the control statistic and

upper control limit proposed by Grimshaw and Alt (1997) are

Control statistic Te = n(Qe(α1, ..., αk)−Q0(α1, ..., αk))
′Σ−1

0 (Qe(α1, ..., αk)

−Q0(α1, ..., αk))

UCLe = χ2
α (3.2)

(3.3)

where χ2
α satisfies 1 − α = P (χ2(k) ≤ χ2

α). With this proposal, if a sample

point y1, ..., yn has a value of Te lying below the upper limit UCLe and a set

of T ′
es does not exhibit any systematic pattern, we say that the process is in

statistical control at the level 1− α.
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With Q(α1, ..., αk) of (3.1) as the target to be monitored, the idea behind

this study is why should we estimate it by the empirical quantiles.

3.2 Symmetric Quantile Control Chart

From the study in chapter 2, we anticipate that using the symmetric quan-

tiles to estimate the distributional characteristic vector Q(α1, ..., αk) is more

efficient than that of empirical quantiles. Considering a number ` decreasing

percentages γ1 > γ2 > ... > γ`, we define its corresponding 2` symmetric quan-

tile vector and population symmetric quantiles, respectively, as

Qsn(γ1, ..., γ`) =



F
(−)
sn (γ1)

F
(−)
sn (γ2)

...

F
(−)
sn (γ`)

F
(+)
sn (γ`)

F
(+)
sn (γ`−1)

...

F
(+)
sn (γ1)



and Qs(γ1, ..., γ`) =



F
(−)
s (γ1)

F
(−)
s (γ2)

...

F
(−)
s (γ`)

F
(+)
s (γ`)

F
(+)
s (γ`−1)

...

F
(+)
s (γ1)



.

where, the γ symmetric quantile pair is defined as

{F (−)
s (γ), F (+)

s (γ)} = {µ− F−1
s (γ), µ + F−1

s (γ)} (3.4)

. For the random sample y1, ..., yn from distribution F , let µ̂ be an estimate of
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µ. We may define the sample type γ symmetric quantile pair as

{F (−)
sn (γ), F (+)

sn (γ)} = {µ̂− F−1
sn (γ), µ̂ + F−1

sn (γ)} (3.5)

with sample folded distribution function Fsn(a) = 1
n

∑n
i=1 I(|yi − µ̂| ≤ a)

and

F−1
sn (γ) = inf{a : Fsn(a) ≥ γ}. (3.6)

From Chen and Chiang (1996), we may see that n1/2(Qsn(γ1, ..., γ`)−Qs(γ1, ..., γ`))

is asymptotically normal N2`(02`, Σs) for some matrix Σs that will be given ex-

plicitly latter. This further implies that the following

n(Qsn(γ1, ..., γ`)−Qs(γ1, ..., γ`))
′Σ−1

s (Qsn(γ1, ..., γ`)

−Qs(γ1, ..., γ`)) → χ2(2`)

holds asymptotically in distribution.

Again, from the training sample yij, i = 1, ..., n, j = 1, ...,m that repre-

sents an in-control data set of m samples of size n, we let Qs0(γ1, ..., γ`) =

1
m

∑m
j=1 Qsn,j(γ1, ..., γ`) and Σs0 = 1

m

∑m
j=1 Σ̂s,j where Qsn,j(γ1, ..., γ`) and Σ̂s,j

are estimates of, respectively, Qs(γ1, ..., γ`) and Σs. Let us denote these two es-

timates by Qs0 and Σs0. Based on these estimates, we proposed control statistic
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and upper control limit as

Control statistic Ts = n(Qsn(γ1, ..., γ`)−Qs0(γ1, ..., γ`))
′Σ−1

s0

(Qsn(γ1, ..., γ`)−Qs0(γ1, ..., γ`))

UCL = χ2
α(2`) (3.7)

The asymptotic covariance matrix Σs varies with the predetermined estima-

tor of µ. From a comparison in Chen and Chiang (1996), although various

estimators of µ lead to different asymptotic distributions for their correspond-

ing symmetric quantiles, however, their performances in constructing statistical

procedures such as trimmed means are very competitive. Hence from here af-

ter, for simplicity, we consider that µ is the median parameter and let µ̂ be the

`1-norm estimate as

µ̂ = arginfµ∈R

n∑
i=1

|yi − µ|.

A description of the asymptotic covariance matrix Σs under this setting of

predetermined estimator will be developed in next subsection.

3.3 Derivation of Asymptotic Covariance Matrix of Sym-

metric Quantile Vector

We assume that F is continuous and symmetric at median µ. From Ruppert

and Carroll (1980), we have a Bahadur representation for this `1-norm estimate
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as

n1/2(µ̂− µ) = n−1/2 1

f(µ)

n∑
i=1

(0.5− I(yi ≤ µ)) + op(1). (3.8)

Furthermore, a Barhadur representation for F−1
sn (γ) of (3.6) that has been de-

veloped by Chen and Chiang (1996) is

n1/2(F−1
sn (γ)− F−1(γ)) =

1

2f(F−1(1+γ
2 ))

n−1/2
n∑

i=1

(γ

− I(−F−1(
1 + γ

2
) ≤ yi ≤ F−1(

1 + γ

2
)) + op(1). (3.9)

From (3.8) and (3.9), Bahadur representations, respectively, for F
(−)
sn (γ) and

F
(+)
sn (γ) are

n1/2(F (−)
sn (γ)− F−1(

1− γ

2
)) = n−1/2

n∑
i=1

{[− 1

2f(µ)
− γ

2f(F−1(1+γ
2 ))

]

I(yi ≤ F−1(
1− γ

2
)) + [− 1

2f(µ)
+

1− γ

2f(F−1(1+γ
2 ))

]I(F−1(
1− γ

2
) ≤ yi ≤ µ)

+ [
1

2f(µ)
+

1− γ

2f(F−1(1+γ
2 ))

]I(µ < yi ≤ F−1(
1 + γ

2
))

+ [
1

2f(µ)
− γ

2f(F−1(1+γ
2 ))

]I(yi ≥ F−1(
1 + γ

2
))}+ op(1). (3.10)

and

n1/2(F (+)
sn (γ)− F−1(

1 + γ

2
)) = n−1/2

n∑
i=1

{[− 1

2f(µ)
+

γ

2f(F−1(1+γ
2 ))

]

I(yi ≤ F−1(
1− γ

2
)) + [− 1

2f(µ)
− 1− γ

2f(F−1(1+γ
2 ))

]I(F−1(
1− γ

2
) ≤ yi ≤ µ)

+ [
1

2f(µ)
− 1− γ

2f(F−1(1+γ
2 ))

]I(µ < yi ≤ F−1(
1 + γ

2
))

+ [
1

2f(µ)
+

γ

2f(F−1(1+γ
2 ))

]I(yi ≥ F−1(
1 + γ

2
))}+ op(1). (3.11)
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By letting ` = k
2 and α1, ..., αk satisfying 1−α1 = αk, 1−α2 = αk−1, ..., 1−αk/2 =

αk
2+1, then Qs(1−2α1, 1−2α2, ..., 1−2αk

2
) = Q(α1, α2, ..., αk). This allows us to

compare estimators of Q(α1, ..., αk) that are constructed by empirical quantiles

and symmetric quantiles. For αi < αj, we need to develop the asymptotic

variances and covariances for F
(−)
sn (1− 2αi) and F

(+)
sn (1− 2αj) for i 6= j. Let’s

denote σ2
α1

, σ2
1−α1

, σα11−α2 as the asymptotic variance of n1/2(F
(−)
sn (1 − 2α1) −

F−1(α1)) and n1/2(F
(+)
sn (1− 2α1)− F−1(1− α1)) and asymptotic covariance of

n1/2(F
(−)
sn (1 − 2α1) − F−1(α1)) and n1/2(F

(+)
sn (1 − 2α2) − F−1(1 − α2)). Since

y1, ..., yn is a random sample from distribution F , we may derive the followings

from (3.10) and (3.11),

σ2
α1

= σ2
1−α1

, σα11−α2 = σ1−α2α1, σα1α2 = σα2α1, σ1−α11−α2 = σ1−α21−α1,

σ2
α1

= (
1

2f(µ)
)2 + 2α1(1− 2α1)(

1

2f(F−1(1− α1))
)2,

σα1α2 = (
1

2f(µ)
)2 + 2α1(1− 2α2)(

1

4f(F−1(1− α1))f(F−1(1− α2))
),

(3.12)

σα11−α2 =

( 1
2f(µ))

2 − 2α1(1− 2α2)(
1

4f(F−1(1−α1))f(F−1(1−α2))
) if α1 < α2

( 1
2f(µ))

2 − 2α2(1− 2α1)(
1

4f(F−1(1−α1))f(F−1(1−α2))
) if α1 > α2

,

σ1−α11−α2 = (
1

2f(µ)
)2 + 2α1(1− 2α2)(

1

4f(F−1(1− α1))f(F−1(1− α2))
).

With careful arrangement and derivations from (3.8) - (3.12) and denoting αij =

αi(1− αj) and fij = f(F−1(1− αi

2 ))f(F−1(1− αj

2 )), the asymptotic covariance
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matrix for the symmetric quantile vector Qsn(1 − 2α1, 1 − 2α2, ..., 1 − 2α`) is

stated in the following theorem.

Theorem 3.3.1 When the distribution F is symmetric about its median µ,

then the asymptotic covariance matrix for the symmetric quantile vector is

Σs =
1

4f(µ)2
11′ +

1

4



A1

A′
1


A2

A3


A′

3

A′
2


A4

A′
4




where

A1 =



α11

f11

α12

f12
. . .

α1(`−1)

f1(`−1)

α1`

f1`

α22

f22
. . .

α2(`−1)

f2(`−1)

α2`

f2`

...
...

...

α(`−1)(`−1)

f(`−1)(`−1)

α(`−1)`

f(`−1)`

α``

f``



A2 =



−α1`

f1`
−α1(`−1)

f1(`−1)
. . . −α12

f12
−α11

f11

−α2(`−1)

f2(`−1)
. . . −α22

f22
−α21

f21

...
...

...

−α(`−1)2

f(`−1)2
−α(`−1)1

f(`−1)1

−α`1

f`1


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A3 =



−α`2

f`2

−α`3

f`3
−α(`−1)3

f(`−1)3

...
...

−α`(`−1)

f`(`−1)
−α(`−1)(`−1)

f(`−1)(`−1)
. . . −α3(`−1)

f3(`−1)

−α``

f``
−α(`−1)`

f(`−1)`
. . . −α3`

f3`
−α2`

f2`



A4 =



α``

f``

α(`−1)`

f(`−1)`
. . . α2`

f2`

α1`

f1`

α(`−1)(`−1)

f(`−1)(`−1)
. . .

α2(`−1)

f2(`−1)

α1(`−1)

f1(`−1)

...
...

...

α22

f22

α12

f12

α11

f11


, and ` =

k

2
.

3.4 A Comparison between Empirical and Symmetric

Quantile Control Charts

When the interest is of constructing a symmetric quantiles based control

chart, we wish to establish evidences for supporting the use of this new control

chart. Since the symmetric quantile and the empirical quantile are both asymp-

totically normal and both are consistent for a same population quantile vector

Q(α1, ..., αk), one interesting criterion in comparing these two control charts

is to study the efficiencies in terms of the ratio of sizes of their asymptotic

covariance matrices.
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Grimshaw and Alt (1997) pointed out that for effective use of a quantile

chart in detection of distributional shift we should select quantile percentages

αi’s so that their corresponding quantile differences F−1
O (αi) − F−1

I (αi), with

FO and FI respectively representing the distribution function of in-control and

likely out-of-control processes, are large. For verification of this concern, Chiang

et al. (2006) showed that α′is should be lie away of 0.5. We consider comparing

the estimator of quantile pair  F−1(α)

F−1(1− α)

 . (3.13)

The asymptotic covariance matrices of the estimators of empirical quantile and

symmetric quantile provide us to define the efficiency as

Eff =

Det(Cov

 F−1
n (α)

F−1
n (1− α)

)

Det(Cov

F
(−)
sn (1− 2α)

F
(+)
sn (1− 2α)

)

=
α(1− α)/(f(F−1(α)f(F−1(1− α))

σ4
α − σ2

α1−α

(3.14)

where the covariance matrix of empirical quantiles is decribed in subsection 3.3

and that of the symmetric quantiles and notations of σ4
α and σ2

α1−α are listed in

(3.12). When Eff > 1, the estimation of quantile vector (3.13) is more efficient

by the symmetric quantiles. On the other hand, if Eff < 1, it prefers to

estimate quantile vector by empirical quantiles. For computation of efficiencies

of (3.14), we consider the distributions including normal distribution, Cauchy
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distribution, Laplace distribution (Lap(b)) with pdf

f(y) =
1

2b
e−

|y|
b , y ∈ R

and the Cauchy distribution with pdf

f(x, δ, γ) =
1

π
[

γ

(x− δ)2 + γ2
], x ∈ R.

From (3.14), the computation of efficiency requires only the density function

and its corresponding distribution function. We display the resulted efficiencies

in Table 3.1.

Table 3.1. The efficiencies, Eff , for symmetric quantiles based estimator

Dist/1− 2α 0.6 0.7 0.8 0.9 0.95 0.98

Normal 0.85 0.79 0.81 1.03 1.50 2.72

Laplace 1.25 1.67 2.5 5 10 25

Cauchy 0.98 1.4 3.35 21.93 166.98 2573

t(r)

r = 1 0.98 1.4 3.35 21.93 166.98 2573

r = 2 0.9 1.01 1.53 4.29 14.58 83.01

r = 5 0.87 0.86 1.02 1.75 3.54 10.24

The estimation of quantile vector (3.13) by empirical quantiles is more effi-

cient when the quantile percentage is 0.6. However, it is impressed that it gains

more precision to use symmetric quantile to construct the quantile vector esti-

mator when percentage is equal or more than 0.8. In fact, the case that when
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the underlying distribution is the Laplace one the estimator of quantile vec-

tor constructed by symmetric quantiles totally dominate the one by empirical

quantiles.

3.5 Comparison of Average Run Length for Two Quan-

tile Charts

The average run length (ARL), representing the average number of sam-

ples taken before an action signal is given, is the most popular technique in

evaluating a control chart or comparison of alternative control charts. In this

section, we make further comparison of ARL′s for control charts constructed

by empirical quantile and symmetric quantile.

Let α = (α1, ..., αk)
′ be the percentage vector considered for constructing a

quantile control chart. Let Qn(α) be the quantile control chart for monitoring

the distributional shift of random variable X. We assume that when the pro-

cess is in control, the quantile control chart satisfies the following asymptotic

property

n(Qn(α)−Q0(α))′Σ−1
0 (Qn(α)−Q0(α)) → χ2(k) in distribution.

Hence we actually consider the following hypothesis

H0 : Q(α) = Q0(α) vs Q(α) 6= Q0(α), (3.15)
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where Q(α) is the true population quantile vector estimated by statistic Qn(α).

Suppose that the significance level for the control chart is α. Then, the quantile

control chart indicates rejecting H0 when

n(Qn(α)−Q0(α))′Σ−1
0 (Qn(α)−Q0(α) ≥ χ2

α(k).

We note here that control chart by symmetric quantiles and by empirical quan-

tiles have the same vector Q0(α) but have different asymptotic covariance ma-

trices Σ0.

To study the performance of the control charts in terms of ARL, we consider

linear function aX + b for representation of distributional shift. Note that the

population quantile vector and covariance matrix for aX + b are, respectively,

QaX+b(α) = aQ0(α)+b and ΣaX+b = a2Σ0. Then the probability that we claim

for an out of control under the linear function aX + b is

PQaX+b(α),ΣaX+b
(n(Qn(α)−Q0(α))′Σ−1

0 (Qn(α)−Q0(α)) ≥ χ2
α(k))

= PQaX+b(α),ΣaX+b
(n(Qn(α)−QaX+b(α) + (−(1− a)Q0(α) + b))′Σ−1

aX+b

(Qn(α)−QaX+b(α) + (−(1− a)Q0(α) + b)) ≥ 1

a2
χ2

α(k))

= P (χ2(k,
n

a2
(−(1− a)Q0(α) + b)′Σ−1

0 (−(1− a)Q0(α) + b)) ≥ 1

a2
χ2

α(k))

(3.16)

(3.17)

since
√

nΣ
−1/2′

aX+b(Qn(α)−QaX+b(α)+(−(1−a)Q0(α)+b))
app∼ Nk(

√
nΣ

−1/2′

aX+b(−(1−

a)Q0(α) + b), Ik) = Nk(
√

n
a Σ

−1/2′

0 (−(1 − a)Q0(α) + b), Ik) where χ2(k, λ) has a
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noncentral chi-square distribution with non-centrality parameter λ. The ARL

for quantile vector Qn(α) is

ARL =
1

P (χ2
k(λ = n

a2 (−(1− a)Q0(α) + b)′Σ−1
0 (−(1− a)Q0(α) + b)) ≥ 1

a2χ2
α(k))

where a level α control chart is expected to have ARL = 1
α when the process is

in control.

Since the asymptotic covariance matrices ΣaX+b for control charts constructed

by symmetric quantiles and by empirical quantiles are different that leads to

different non-centrality parameters resulting varied performances in ARL′s. We

then compute the ARL′s for the symmetric quantile control chart and the em-

pirical quantile control chart for comparison.

Let us fix significance level at α = 0.005 and n = 1000, for a non-parametric

study, we consider the Laplace distribution Lap(2) as the in control distribution

with percentage vectors given as

k = 4 : (α1, α2, ..., α4) = (0.02, 0.05, 0.95, 0.98),

k = 10 : (α1, α2, ..., α10) = (0.02, 0.05, 0.13, 0.25, 0.37, 0.63, 0.75, 0.87, 0.95, 0.98)

For easiness of expression, we denote the ARL′s for empirical quantile charts

and symmetric quantile charts, respectively, by ARLe and ARLs. The com-

puted ARL′s are displayed in Table 3.2 and Table 3.3.

Table 3.2. Comparison of symmetric and empirical quantile charts by ARL (k=4)
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(a, b) ARLs ARLe (a, b) ARLs ARLe

(1, 0) 200 200 (1.2, 0.5) 17.00 21.73

(1, 0.2) 172.14 196.81 (1.2, 1) 8.32 18.54

(1, 0.5) 90.89 181.30 (1.2, 2) 2.20 11.91

(1, 1) 22.74 138.83 (1.5, 1) 3.02 3.91

(1, 2) 2.68 61.77 (2, 1) 1.44 1.54

(1, 5) 1.00 5.32 (2, 2) 1.25 1.47

Table 3.3. Comparison of symmetric and empirical quantile charts by ARL (k=10)

(a, b) ARLs ARLe (a, b) ARLs ARLe

(1, 0) 200 200 (1.2, 0.5) 2.27 4.15

(1, 0.2) 102.4 140.7 (1.2, 1) 1.08 1.64

(1, 0.5) 13.05 37.01 (1.2, 2) 1 1

(1, 1) 1.42 3.97 (1.5, 0.5) 1.09 1.29

(1, 2) 1.00 1.01 (2, 1) 1 1

(1, 5) 1 1 (2, 2) 1 1

The case (a, b) = (1, 0) represents the process being in-control and both

ARL′s are the expected number 200 for setting α = 0.05. Surprisingly ARL′
ss

are all smaller than the corresponding ARL′
es unless they are number 1′s. This
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indicates that the symmetric quantiles based control chart can detect the dis-

tributional shift with smaller number of samples.

We see that in this setting of coverage interval the symmetric quantiles based

control chart is still more efficient than the empirical quantiles based control

chart in detection of distributional shift.

3.6 Concluding Remarks

In contrast with empirical quantile based control chart of Grimshaw and Alt

(1997), a symmetric quantile based control chart is proposed in this dissertation

to monitor the popoulation-quantile vector aiming for monitoring more detailed

features of a population distribution. The asymptotic theorem is also derived.

The symmetric quantile based control chart totally dominates the empirical

one across all αi of a population quantile vector Q(α1, ..., αk), when the un-

derlying distribution is Laplace distribution, which is widely used in modelling

spectral vector of speech signals in speech recognition.
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Chapter 4

Monitoring Nonlinear Profiles with

Random Effects by Nonparametric

Regression

In this chapter, we study nonlinear profile monitoring schemes. Principal

component analysis is conducted, and a T 2 chart and a combined chart based

on principal component scores are studied as well as individual Principal Com-

ponent charts.
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4.1 Proposed Monitoring Schemes

4.1.1 A Motivated Example

This study was motivated by the aspartame example given in Kang and

Albin (2000). Since no data are available, a profile of the form Y = I +

MeN(x−1)2 + ε is used to mimic an aspartame profile. Then the idea is to

perturb the parameters I, M, N randomly to create allowable profile-to-profile

variations for an in-control process.

Thus the following random-effect model was considered to generate aspar-

tame profiles:

Yj = I + MeN(xj−1)2 + εj, j = 1, · · · , p, (4.1)

where I ∼ N(µI , σ
2
I ), M ∼ N(µM , σ2

M), N ∼ N(µN , σ2
N), ε ∼ N(0, σ2

ε ), and

all the random components are independent of each other. Unfortunately, the

response profile YYY = (Y1, · · · , Yp)
′ of model (4.1) has a complicated distribution

with mean µµµ = (µ1, · · · , µp)
′ and covariance matrix ΣΣΣ as follows. For i, j =

1, · · · , p,

µj = E(Yj) = µI + µMeµN (xj−1)2+
σ2
N (xj−1)4

2 ,

Cov(Yi, Yj) = σ2
I + (µ2

M + σ2
M)

[
eµN [(xi−1)2+(xj−1)2]+

σ2
N [(xi−1)2+(xj−1)2]2

2

]
−µ2

MeµN (xi−1)2+
σ2
N (xi−1)4

2 +µN (xj−1)2+
σ2
N (xj−1)4

2 + σ2
εδij, (4.2)

where δij = 1 if i = j; and 0 otherwise. Note that, by (4.2), the covariance ma-

trix ΣΣΣ will be changed if the mean of M or N shifts, a situation too complicated
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to analyze the performance of the control charts under study.

So, instead, we model the aspartame profiles as realizations of a Gaussian

stochastic process with the mean function

µ(x) = µI + µMeµN (x−1)2 (4.3)

and a covariance function G(s, t), where s, t are in the domain of x. To re-

tain a similar profile-to-profile variation as it would be in the random-effect

model (4.1), we let the in-control profiles follow MV N(µµµ0,ΣΣΣ), where µµµ0 =

(µ01, · · · , µ0p)
′ with

µ0j = µI + µMeµN (xj−1)2, j = 1, · · · , p, (4.4)

and ΣΣΣ is the covariance matrix given by equation (4.2).

When the mean function (4.3) is shifted, say, µI to µI+ασI , µM to µM+βσM ,

and µN to µN + γσN , µ0j is shifted from µI + µMeµN (xj−1)2 to

µ̃j ≡ (µI + ασI) + (µM + βσM)e(µN+γσN )(xj−1)2, j = 1, · · · , p.

Let µ̃µµ = (µ̃1, · · · , µ̃p)
′. Then the shift on the mean of YYY is δδδ ≡ µ̃µµ− µµµ0.

4.1.2 Data Smoothing

In order to extend nonlinear profiles of a fixed parametric form to smooth

profiles of a flexible nonparametric form, a smoothing technique is needed for de-

noising sample profiles. The idea of smoothing is to fit a smooth function whose

final form is determined by the data and the chosen level of smoothness for the
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curve. One popular approach is to fit noisy data by splines. Frequently, cubic

splines (i.e., piecewise cubic polynomials with continuous second derivatives) are

used for such approximations. Two commonly used spline smoothing techniques

are smoothing splines and B-spline regression, both are available in popular

statistical packages like R, Splus, and others. Other smoothing techniques such

as local polynomial smoothing and wavelets can be used as well. We remark

based on our experiences that, by filtering out noises, the actual signals can

be better extracted from the data and PCA can explore the variation among

profiles a lot better. In particular, smoothing tends to be more advantageous

as the noise level (σ2
ε ) gets larger.

4.1.3 Phase I Monitoring

Assume that a set of n historical profiles is available for Phase I analysis. We

first apply a smoothing technique to each of the n profiles to filter out the noise,

and then apply PCA to the smoothed profiles as follows. Denote the (p × 1)

data vector of the i-th profile by yi and the usual sample covariance matrix

of {yi, i = 1, · · · , n} by SSS. Apply the eigenanalysis to SSS. The eigenvector vr

corresponding to the r-th largest eigenvalue λr is the r-th principal component

and Sir ≡ v
′

ryi is called the score of the r-th principal component of the i-th

profile, r = 1, · · · , p, i = 1, · · · , n.

We select the number of the “effective” principal components by considering

the total variation explained by the chosen principal components along with
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the principle of parsimoniousness that we often use in the variable selection

problem. Denote this number by K and the (K×1) score vector (Si1, · · · , SiK)′

by sssi.

For Phase I monitoring, due to the dependency of the K PC-scores, we

adopt the usual Hotelling T 2 statistic described below. For the i-th profile,

i = 1, . . . , n, the T 2 statistic is defined as

T 2
i = (sssi − s̄ss)′BBB−1(sssi − s̄ss), (4.5)

where s̄ss =
∑n

i=1 sssi/n and BBB =
∑n

i=1(sssi − s̄ss)(sssi − s̄ss)′/(n− 1), the usual sample

mean and sample covariance matrix of the score vectors.

Since score vectors are distributed as multivariate normal asymptotically

(Anderson, 2003), according to Tracy et al. (1992), also Sullivan and Woodall

(1996), we have

n

(n− 1)2
T 2

i ∼ Beta

(
K

2
,
n−K − 1

2

)
approximately.

Thus, an approximate α-level upper control limit can be set at the 100(1− α)

percentile of the beta distribution with K/2 and (n−K − 1)/2 as parameters.

For Phase I analysis, perform control-charting with the T 2 statistic of the

score vectors in (4.5) to detect the out-of-control profiles in the historical data

set. If there are any, remove them and redo PCA and control-charting with the

remaining profiles. Repeat this procedure until all the remaining profiles are

within the control limit. These remaining profiles are considered as “in-control”

profiles and can be used to characterize the in-control process. The resulting
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principal components and eigenvalues can then be used to set up the control

limit for Phase II on-line monitoring.

4.1.4 Phase II Monitoring

As in most of Phase II studies, we assume the in-control process distribution

of the profiles after de-noising has been characterized as Np (µµµ0,ΣΣΣ0), either from

prior experiences or estimated from the Phase I analysis.

Our Phase II monitoring schemes are also based on PCA. Apply PCA to ΣΣΣ0

to obtain eigenvalues, λ1 ≥ · · · ≥ λp ≥ 0, and the corresponding eigenvectors,

v1, · · · , vp. Similar to that in Phase I analysis, choose the number of effective

principal components K based on the parsimoniousness and the total variation

that the first K PCs account for. More specifically, since the r-th PC accounts

for λr/
∑p

r=1 λr of the total variation, we can simply choose the first K such

that
∑K

r=1 λr/
∑p

r=1 λr reaches a desired level.

Now for each of the incoming profiles in Phase II monitoring, first smooth

and then project it onto the first K PCs to obtain K PC-scores. Denote these

scores by S1, · · · , SK . Since these scores are independent and Sr follows a

normal distribution with mean v′rµ0 and variance λr when the process is in

control, it is easy to construct a control chart for each of the K PC-scores

accordingly. Denote the desired in-control false-alarm rate by α. Then the

control limits for the r-th PC-score chart, which monitors the statistic Sr, is

v′rµ0 ± Zα/2

√
λr, r = 1, · · · , K.

45



If a particular mode of process change can be caught by one of the first

K principal components, then we can use that particular PC-score chart to

monitor it. However, very often a process shift is reflected in more than one

principal component. When this happens, we can consider a combined chart

scheme by combining all K PC-score charts. A combined chart scheme signals

out-of-control when any of the K individual charts signals. Thus, the proposed

combined chart is equivalent to monitoring the statistic

max
1≤r≤K

|Sr − v′rµ0√
λr

|.

This chart signals out-of-control when max1≤r≤K |(Sr − v′rµ0)/
√

λr| > Zα′/2,

where the individual false-alarm rate α′ should be chosen at the level of 1 −

(1− α)1/K so that the overall false-alarm rate is at the desired level α.

We can also consider a T 2 chart by monitoring the statistic

T 2 =
K∑

r=1

(Sr − v′rµ0)
2

λr
, (4.6)

which follows the chi-square distribution with K degrees of freedom (denoted

by χ2
K) when the process is in control. Thus, the upper control limit is the

100(1− α) percentile of χ2
K .

4.1.5 ARL of the Proposed Schemes

We evaluate the performances of the proposed Phase II monitoring schemes

described above in terms of ARL, the average run length. The ARL values of

the individual PC-score chart can be computed as follows. Assume that the
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mean of the profile has been shifted from µ0 to µ0 + δ. The probability of

detecting the shift by the r-th PC-score chart is

p = 1− P (|Sr − v′rµ0√
λr

| ≤ Zα/2) = 1− P (− v′rδ√
λr

− Zα/2 ≤ Z ≤ − v′rδ√
λr

+ Zα/2)

= 1− Φ(− v′rδ√
λr

+ Zα/2) + Φ(− v′rδ√
λr

− Zα/2),

where Φ is the cumulative distribution function of the standard normal variate

Z and Zα/2 is the 100(1−α/2) percentile of Z. Then the value 1/p is the ARL

of the r-th PC-score chart.

Since the PC-scores S1, · · · , SK are independent, the ARL of the combined

chart also can be computed easily by the reciprocal of

p = 1− P ( max
1≤r≤K

|Sr − v′rµ0√
λr

| ≤ Zα′/2) = 1−
K∏

r=1

P (|Sr − v′rµ0√
λr

| ≤ Zα′/2)

= 1−
K∏

r=1

[Φ(− v′rδ√
λr

+ Zα′/2)− Φ(− v′rδ√
λr

− Zα′/2)],

where α′ = 1− (1− α)1/K is the individual false-alarm rate.

Since T 2 statistic in (4.6) follows a noncentral chi-square distribution with K

degrees of freedom and non-centrality ξ =
∑K

r=1(v
′
rδ)2/λr (denoted by χ2

K(ξ)).

Then the detecting power of the T 2 chart can be easily calculated by

p = P (T 2 > χ2
K,α) = P (χ2

K(ξ) > χ2
K,α),

where χ2
K,α denotes the 100(1−α) percentile of the central chi-square distribu-

tion χ2
K .

47



4.2 Simulation and Comparative Studies

4.2.1 Settings for Simulation

In our simulation study, we generate profiles from MV N(µµµ0,ΣΣΣ), where µµµ0 is

given in (4.4) and ΣΣΣ is given in (4.2) with µI = 1, σI = 0.2, µM = 15, σM = 1,

µN = −1.5, σN = 0.3, and x = 0.64, 0.8, . . . , 3.52. Both of x and y values are

scaled variables, not the actual temperature levels and the amount of aspartame

dissolved in the dissolving process. Denote the in-control ARL by ARL0. All

charts are designed to have the same ARL0 = 370.3704, which corresponds to

the false-alarm rate of α = 0.0027.

4.2.2 A Study on the Number of Principal Components

To study how the choice of the number of effective principal components

affects the detecting power of the monitoring scheme, we conduct a simulation

study. In this study, the detecting power is measured by the ability of the

monitoring scheme in detecting the real out-of-control profiles. For example,

in a data set of fifty simulated profiles with three out-of-control profiles, if the

scheme catches two of the three, then the detecting power measured is 2/3.

The false-alarm rate can be measured in a similar way. Let the number of the

principal components used be k. Then for each data set, compute the detect-

ing power and the percentage of the total variation explained by k principal

components for various values of k.
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We choose some settings of shifts. For each setting, we generate fifty profiles

within which some profiles are generated from the shifted population. Then

repeat each setting 20,000 times to get the averaged detecting power and the

averaged percentage of the total variation explained.

As one would expect, the result (not shown) of the study indicates that hav-

ing more principal components does explain more variation, but not necessarily

has more detecting power. In fact, the power of the T 2 statistic starts to drop

when k gets to a certain level, which usually is a fairly small number. So it is

necessary to choose an appropriate number of principal components.

4.2.3 A Simulated Aspartame Example–Phase I Monitoring
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Figure 4.1: (a) 200 generated and (b) smoothed in-control aspartame profiles.

We now demonstrate Phase I analysis with the aspartame example described

before. In Phase I, we generate 200 in-control historical profiles, each with 19
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set points. First de-noise these profiles by smoothing splines using statistical

package R. Figures 4.1(a) and 4.1(b) display the 200 simulated profiles and their

smoothed profiles respectively. Then we apply PCA to the sample covariance

matrix of these smoothed profiles and get the 19 eigenvalues, λ1 ≥ λ2 ≥ . . . ≥

λ19 ≥ 0 and their associated eigenvectors. The first four principal components

account for 75.16%, 19.41%, 2.60%, and 0.92% of the total variation in the

profiles, respectively. For profile monitoring, we decide to choose K = 3 for

parsimoniousness since with three PCs, it has already accounted for 97.17% of

the total variation. In practice, it is also fine to choose K = 4. Now project

each (smoothed) profile onto the first three eigenvectors to get the scores and

then compute T 2 by (4.5). The resulting T 2 control chart (not shown) indicates

that the process is in control.

4.2.4 An ARL Comparison Study–Phase II Monitoring

To compare the performances of the proposed schemes for Phase II monitor-

ing described in Subsection 4.1.4, we compute the ARL values of each scheme

as derived in Subsection 4.1.5.

Let the (i, j)-th entry of the in-control covariance matrix ΣΣΣ0 be (4.2) without

the σ2
ε δij term. Apply PCA to this “population” covariance matrix. It is

found that the first four principal components respectively account for 74.82%,

22.58%, 2.30%, and 0.29%, which totals 99.99%, of the total variation; and

other components practically explain nothing. This is mainly because we have
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only three degrees of freedom in varying profiles (without measurement error),

namely, the values of I, M, and N in model (4.1).

Figure 4.2(a) depicts the first three eigenvectors of ΣΣΣ0. To see the effect of a

particular principal component, say vvvr, Ramsay and Silverman (2005) presented

a visualizing tool that plots µµµ0 ± Lvvvr, where L is a suitable multiple. Figures

4.2(b)-4.2(d) illustrate respectively the corresponding features captured by the

first three principal components with L = 3. From the figures, we can see that

the PC1 captures the variation of the vertical shifting of the profiles except

for the right tail; PC2 reflects the variation in the height of the peak and the

declining rate of the curve; PC3 captures mainly the vertical shifting in the tail

and slightly the variation at the peak.

For ARL comparison, consider the I-shift from µI to µI + δσI , M -shift from

µM to µM + δσM , and N -shift from µN to µN + δσN , for δ = 0, 0.25, . . . , 3. Fig-

ures 4.3(a)-4.3(c) display the ARL curves for the shifts in I, M, N , respectively.

We observe the followings:

• Both PC1 and PC3 have some power in catching the shift in I because

both represent the mode of variation in vertical shifting (but in different

areas) of the profile as shown in Figures 4.2(a) and 4.2(c). We are a little

bit surprised to see that PC1 is less powerful than PC3. This may be

explained by: (i) PC3 explains almost all the variation in vertical shifting

in the tail area; (ii) although PC1 can explain the vertical shifting for

x < 2.5, the other two PCs also pick up some, especially around the peak
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Figure 4.2: Aspartame example. (a) Plot of vvv1, vvv2, vvv3; (b)-(d) µµµ0 ± 3vvvr, r = 1, 2, 3.
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area. PC2 hardly has any power in detecting I-shift. The power of the T 2

and combined chart are between that of PC1 and PC3, and as the shift

gets larger, the difference in ARL between PC3 and the T 2/combined

chart gets smaller. Also, the T 2 and combined chart are very close with

T 2 slightly better for the shift size α ≤ 1.5 and the combined chart better

for α ≥ 1.75.

• As to the M -shifts, except for PC3 that does not have much power, the

other four charts are not too far from each other. The order of the per-

formance is about PC2 > T 2 > combined > PC1, with the exception that

T 2 finally beats PC2 for larger shifts. Here “>” means “performs better

than”.

• For detecting N -shift, PC3 has a strange ARL curve (see Figure 4.3(c)),
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(b)  ARL comparison for M−shift
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which may be caused by the fact that the shift in the mean vector when

projected onto PC3, vvv′3δδδ, is not monotone in the shift multiple δ. PC1

performs the best for small shifts but gets worse as the shift gets larger

and eventually becomes the worst one for large shifts. T 2 is the second

best for small shifts and then quickly becomes the best. PC2 and the

combined chart are fairly close for small shifts; PC2 wins when the shift

size is small and soon loses it to the combined chart for moderate to large

shifts.

We learn from this study that a mode of variation often cannot be captured

by a single PC-score chart. Even for the variation as simple as the vertical

shifting like the I-shift, it takes more than one principal component to represent

this effect. Also the T 2 and combined chart are fairly close to each other and

comparable with the best PC-score chart.
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(c)  ARL comparison for N−shift
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Figure 4.3: ARL comparisons of aspartame example. (a) I, (b) M , (c) N shifts.

4.3 A Case Study–VDP Example

The VDP data set described in Section 1 contains n = 24 profiles, each was

measured at p = 314 set points. Figure 4.4(a) is the plot of the VDP data.

First de-noise these profiles by smoothing splines using statistical package R.

See Figure 4.4(b) for the plot of the smoothed profiles. Apply PCA to the

sample covariance matrix of the smoothed profiles. And the first four principal

components account for 85.26%, 10.83%, 1.90%, 0.84% of the total variation

in the profiles, respectively. We select K = 3 principal components for Phase

I process monitoring because the total variation explained by the first three

PCs is already as high as 97.99%. Figure 4.5(a) is the plot of the first three

eigenvectors. Figures 4.5(b)-4.5(d) show the modes of variation they capture by
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Figure 4.4: (a) 24 VDP profiles (b) 24 smoothed VDP profiles.
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(d)  PC 3 (1.90% of variation)
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Figure 4.5: VDP example. (a) Plot of vvv1, vvv2, vvv3; (b)-(d) µµµ± 10vvvr, r = 1, 2, 3.
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plotting the mean vector µµµ and µµµ±10 vvvr, r = 1, 2, 3. The figures show that: (i)

PC1 represents the variation in the ground level of the VDP profiles, especially

the bottom part of the “bathtub”; (ii) PC2 can catch some variation in the

roundness of the bottom part of the bathtub; and (iii) PC3 may be able to

describe the variation in the roundness on the two ends and the central part of

the bathtub bottom. All these interpretations can also be seen from the three

eigenvectors shown in Figure 4.5(a). As to Phase I monitoring,the T 2 control

chart (not shown) indicates no out-of-control profiles in the VDP data.

In Phase II monitoring, we treat the average profile vector µ of the 24

smoothed VDP profiles and the sample covariance matrix Σ as the in-control

process parameters to perform our simulation. Here, µ = (µ(t1), · · · , µ(t314))
′

is a 314 × 1 vector and the covariance matrix Σ is a 314×314 matrix. We

can generate the in-control profiles by Y ∼ MV N(µ, Σ). For out-of-control

conditions, we shift the profiles in their first two principal components. That

is, generate new profile data by

Ỹ ∼ k
√

λi × vi + MV N(µ, Σ) ,

where k=0, 0.25, . . . , 2 and vi is the i-th eigenvector of Σ, i=1, 2. We simulated

200,000 profiles to compute an ARL estimate for each out-of-control conditions

considered. Then we repeat the procedure 1000 times to get our final ARL

estimate along with its standard error.

ARL results for shifts in principal component 1 and 2 are listed separately
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in Table(4.1) and Table(4.2). As we can see that shifts in principal component

1 are solely captured by the first principal component score. Likewise, shifts in

principal component 2 are captured by the second principal component score.

The other three principal component scores make no contributions to the power

of detection.

4.4 Concluding Remarks

In this study, we propose and discuss monitoring schemes for nonlinear pro-

files. We use the principal components analysis to analyze the covariance matrix

of the profiles and then utilizing the principal component scores that capture

the main features of the profile data for process monitoring.

In addition to the individual PC score charts, we study two charts that uti-

lize the overall information contained in the K effective principal components,

namely, the combined chart and T 2 chart. The T 2 chart performs somewhat

better than the combined chart in terms of the average run length, but not

too far off. However, by providing charts for all of the effective components,

the combined chart gives more clues for finding assignable causes than the T 2

chart.

When the shift corresponds to a mode of variation that a particular princi-

pal component represents, then it would be ideal to use the individual PC-score

chart for process monitoring because this particular individual chart will have
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the best power among the charts under study. Unfortunately, this ideal situa-

tion is rare in practice. Moreover, by just monitoring one individual PC chart,

one is running a risk of not being able to detect other types of process changes.

One may argue that we should monitor the process with all K individual charts

simultaneously in order to catch all potential changes. But with the same α for

each of the individual charts, the overall false-alarm rate is greatly increased

to 1− (1− α)K , which is about K times of the original false-alarm rate. Thus,

for being more practical and conservative, we recommend using the T 2 chart

or the combined chart scheme, because they still have comparably good power

to monitor these particular types of shifts and have a lot better power than the

individual chart for general types of shifts.

It is noted that the degree of smoothness used in the data smoothing step

has a great impact on the result of the subsequent PCA step. The high to-

tal explanation power of the first few principal components demonstrated in

the paper is in fact caused by the high degree of smoothness in the smoothed

curves. This argument is supported by our finding that if B-spline regression

is used for smoothing, the number of B-spline bases used is exactly the num-

ber of the principal components with nonzero eigenvalues. So if the underlying

profiles (i.e., with no noises) are fairly smooth as what we have in the hypothet-

ical aspartame example (in which a data profile is a 3-parameter exponential

function plus noises), then the data dimension can be well reduced by applying

PCA to the smoothed curves. The situation in the VDP data is similar. On
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the other hand, if the underlying profiles are not very smooth and data pro-

files are not too much over-smoothed, then it might take quite a few principal

components to explain good enough proportion of variation. We remark that,

regardless of which K, the number of effective principal components, is chosen,

the false-alarm rate for each of our schemes stays at α. However, the diagnosis

of out-of-control conditions would likely become more complicated when K is

large.

The degree of smoothness may affect the effectiveness of the Phase II process

monitoring as well. If the noise levels are about the same for both Phase I

and Phase II profile data, we suggest applying the same degree of smoothness

to them. In this way, the results of Phase II monitoring are somehow not

that sensitive to the extent of smoothing. However, when profiles are over-

smoothed to the extent that some local features are lost, then the process

changes associated with these vanished local features cannot be detected. On

the other hand, when profiles are under-smoothed to an extent, some spurious

features may appear in the fitted curves. Unfortunately, these spurious features

may not appear at the same place and may not have the same form across

profiles. Then the estimated in-control model obtained from Phase I data may

not suitable for effective Phase II monitoring. We remark that even for the case

that the in-control process is known or appropriately characterized, the spurious

features in the “smoothed” Phase II profiles caused by under-smoothing will

cause more false alarms to signal.
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In practice, when one employs the T 2 chart or the combined chart scheme

and detects significant shifts, it is desirable to find the sources responsible for the

shifts. For this, we suggest to rank the standardized PC-scores and investigate

the corresponding principal components in order, starting from the largest PC

score. With the help of the plots like Figures 4.2(a)-4.2(d) and 4.5(a)-4.5(d) and

engineers’ expertise, the characteristics of the principal components sometimes

can reveal potential root causes of the shifts.

The monitoring of process or product profiles has become a popular and

promising area of research in statistical process control in recent years. At the

same time, functional data analysis (FDA) is also gaining lots of attentions and

applications. We believe many techniques developed for FDA may be extended

to developing new profile monitoring techniques in SPC.
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k

chart 0 0.25 0.5 0.75 1

PC1 201.141 157.7244 91.6269 50.1074 28.1935

0.6537 0.4263 0.1869 0.0773 0.0339

PC2 202.5093 201.1011 202.7793 201.3586 202.3857

0.6897 0.6687 0.6295 0.6704 0.6432

PC3 202.2185 202.1651 201.4955 203.475 202.0911

0.6937 0.6648 0.6495 0.6207 0.6461

PC4 202.4143 200.7331 201.7661 202.0241 202.1318

0.6594 0.6526 0.6303 0.6551 0.6248

chart 1.25 1.5 1.75 2

PC1 16.7264 10.4605 6.8874 4.7689

0.0153 0.0071 0.0037 0.0020

PC2 202.5093 201.1011 202.7793 201.3586

0.6897 0.6687 0.6295 0.6704

PC3 202.2185 202.1651 201.4955 203.475

0.6937 0.6648 0.6495 0.6207

PC4 202.4143 200.7331 201.7661 202.0241

0.6594 0.6526 0.6303 0.6551

Table 4.1: ARL comparison for shifts in principal component 1.
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k

chart 0 0.25 0.5 0.75 1

PC1 203.1434 202.2938 202.2304 201.9739 202.0307

0.6599 0.6496 0.6643 0.6826 0.6423

PC2 202.3857 157.2349 91.368 50.138 28.2533

0.6432 0.4475 0.1938 0.0783 0.0318

PC3 202.0911 201.3132 202.4239 202.4192 201.6323

0.6461 0.6695 0.6455 0.6580 0.6622

PC4 202.1318 201.4323 201.5589 203.1134 201.6549

0.6248 0.6797 0.6407 0.6532 0.6349

chart 1.25 1.5 1.75 2

PC1 200.6637 202.6417 202.2779 201.5532

0.6327 0.6492 0.6344 0.6624

PC2 16.75 10.455 6.8888 4.771

0.0141 0.0073 0.0038 0.0020

PC3 201.7072 202.043 202.6156 202.3369

0.6355 0.6418 0.6803 0.6310

PC4 203.0749 202.5458 202.4285 201.5443

0.6780 0.6515 0.6505 0.6427

Table 4.2: ARL comparison for shifts in principal component 2.
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Chapter 5

Conclusion

5.1 Symmetric Quantile Coverage Interval

Symmetric quantile coverage interval performs better than empirical quantile

coverage interval in terms of the followings:

a. symmetric quantile coverage interval can cover more of the high density

part of distribution function, when the underlying distribution is asymmetric.

b. symmetric quantile coverage interval is more robust against outliers than

empirical quantile coverage interval.

c. Even when the underlying distribution is symmetric, symmetric quantile

coverage interval is with smaller variance when the coverage percentage is with

large 1 − α, which is the common practices of most applications of coverage

interval.
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5.2 Multivariate Control Chart by Symmetric Quan-

tile

An application of coverage interval is a control chart, with the upper and

lower control limits constructed by the two ends of a coverage interval. As for

constructing a control chart with interests on the multiple characteristics of one

distribution, multivariate control chart by symmetric quantiles is proposed and

its asymptotic theorem is derived.

When the underlying distribution is with heavy tails, the proposed symmet-

ric quantile control chart performs better than the empirical quantile control

chart, proposed by Grimshaw and Alt(1997).

5.3 Monitoring Nonlinear Profiles by Nonparametric

Regression

PCA score based T 2 monitoring schemes is proposed to deal with nonlin-

ear profile data in phase-1 monitoring. For phase-II monitoring, three PCA

score based monitoring schemes(Individual score charts, T 2 chart, the combined

chart) are investigated and compared. T 2 chart is recommended in practical

uses with the plotting of

µµµ± L vvvr

.
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Data smoothing is recommended to be deone before PCA analysis, for it has

great impacts on the effectiveness of the construction of phase-I control schemes

and the effectiveness of phase-II monitoring.

5.4 Future Research

PAT(Part Average Testing) is the post-process defined in AEC-Q001, where

Automotive Eletronics Council(AEC) was established for the purpose of es-

tablishing common part-qualification and quality system standards. PAT is

primarily for detecting outlier parts which tend to be higher contributors to

long term quality and reliability problems. Current static PAT limits= (Ro-

bust Mean) ± 6*(Robust Sigma) where the Robust Mean is the median, and

the Robust Sigma qual to (Q3−Q1)/1.35.

PAT has recently been adopted by a number of semiconductor companies,

with the typical applications on wafer sort and final test data. Most semicon-

ductor wafer sort and final test parameters are not normal and with heavy tails

or asymmetric. Application of symmetric qunatile coverage interval as outlier

detection tool can be investigated and compared with the one proposed by AEC

standard.

Tolerance analysis is adopted by semiconductor companies to assist design-

ing specs. The output performance transfer function and component tolerance

intervals are the inputs into tolerance analysis and output performance toler-
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ance interval is the desired result for important references in spec definition.

However, when major output performance is a I-V curve under specific condi-

tions, the solution to the tolerance region of the I-V curve is a topic which needs

to be explored. Curve/Profile tolerance region will contribute an important I-V

curve performance measure in semiconductor IC performance evaluation.
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